diff --git "a/80879/metadata.json" "b/80879/metadata.json" new file mode 100644--- /dev/null +++ "b/80879/metadata.json" @@ -0,0 +1,83492 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "80879", + "quality_score": 0.9233, + "per_segment_quality_scores": [ + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.18, + "end": 141.4, + "probability": 0.0359 + }, + { + "start": 141.4, + "end": 141.4, + "probability": 0.2244 + }, + { + "start": 141.4, + "end": 142.68, + "probability": 0.4879 + }, + { + "start": 142.7, + "end": 146.16, + "probability": 0.9303 + }, + { + "start": 155.62, + "end": 156.52, + "probability": 0.7011 + }, + { + "start": 166.56, + "end": 167.52, + "probability": 0.7247 + }, + { + "start": 168.08, + "end": 168.84, + "probability": 0.9172 + }, + { + "start": 169.88, + "end": 170.7, + "probability": 0.7703 + }, + { + "start": 172.44, + "end": 175.36, + "probability": 0.9963 + }, + { + "start": 175.4, + "end": 180.32, + "probability": 0.8356 + }, + { + "start": 180.68, + "end": 181.26, + "probability": 0.9716 + }, + { + "start": 182.2, + "end": 183.66, + "probability": 0.9471 + }, + { + "start": 185.2, + "end": 186.76, + "probability": 0.8074 + }, + { + "start": 187.98, + "end": 188.82, + "probability": 0.7311 + }, + { + "start": 190.26, + "end": 191.34, + "probability": 0.7767 + }, + { + "start": 193.08, + "end": 195.16, + "probability": 0.9976 + }, + { + "start": 196.22, + "end": 197.32, + "probability": 0.9829 + }, + { + "start": 197.88, + "end": 198.5, + "probability": 0.6484 + }, + { + "start": 199.62, + "end": 199.8, + "probability": 0.9226 + }, + { + "start": 200.54, + "end": 202.32, + "probability": 0.9429 + }, + { + "start": 203.5, + "end": 205.92, + "probability": 0.9498 + }, + { + "start": 207.58, + "end": 207.92, + "probability": 0.3215 + }, + { + "start": 208.36, + "end": 213.0, + "probability": 0.9795 + }, + { + "start": 215.56, + "end": 217.08, + "probability": 0.5414 + }, + { + "start": 218.1, + "end": 220.2, + "probability": 0.7904 + }, + { + "start": 221.2, + "end": 223.22, + "probability": 0.5531 + }, + { + "start": 225.3, + "end": 228.58, + "probability": 0.9919 + }, + { + "start": 230.2, + "end": 231.4, + "probability": 0.9909 + }, + { + "start": 232.72, + "end": 236.54, + "probability": 0.9963 + }, + { + "start": 237.82, + "end": 240.42, + "probability": 0.9758 + }, + { + "start": 241.88, + "end": 244.74, + "probability": 0.9039 + }, + { + "start": 245.62, + "end": 248.64, + "probability": 0.9301 + }, + { + "start": 249.58, + "end": 251.46, + "probability": 0.6903 + }, + { + "start": 252.94, + "end": 254.84, + "probability": 0.7944 + }, + { + "start": 255.72, + "end": 257.42, + "probability": 0.9482 + }, + { + "start": 258.24, + "end": 261.5, + "probability": 0.8337 + }, + { + "start": 262.64, + "end": 266.32, + "probability": 0.9932 + }, + { + "start": 267.08, + "end": 272.42, + "probability": 0.972 + }, + { + "start": 272.82, + "end": 274.3, + "probability": 0.8613 + }, + { + "start": 275.7, + "end": 279.2, + "probability": 0.9492 + }, + { + "start": 279.2, + "end": 283.54, + "probability": 0.9605 + }, + { + "start": 284.14, + "end": 285.2, + "probability": 0.8077 + }, + { + "start": 286.04, + "end": 288.54, + "probability": 0.8738 + }, + { + "start": 289.08, + "end": 291.54, + "probability": 0.5471 + }, + { + "start": 292.78, + "end": 294.9, + "probability": 0.886 + }, + { + "start": 296.4, + "end": 300.18, + "probability": 0.9889 + }, + { + "start": 300.72, + "end": 302.46, + "probability": 0.9833 + }, + { + "start": 303.62, + "end": 306.26, + "probability": 0.9691 + }, + { + "start": 306.84, + "end": 308.1, + "probability": 0.7516 + }, + { + "start": 309.54, + "end": 316.0, + "probability": 0.9326 + }, + { + "start": 317.64, + "end": 322.74, + "probability": 0.9974 + }, + { + "start": 322.74, + "end": 327.94, + "probability": 0.9994 + }, + { + "start": 329.62, + "end": 331.84, + "probability": 0.9413 + }, + { + "start": 332.64, + "end": 333.84, + "probability": 0.909 + }, + { + "start": 334.4, + "end": 337.96, + "probability": 0.9956 + }, + { + "start": 338.42, + "end": 341.74, + "probability": 0.9442 + }, + { + "start": 343.06, + "end": 346.86, + "probability": 0.9678 + }, + { + "start": 348.36, + "end": 350.08, + "probability": 0.9849 + }, + { + "start": 350.86, + "end": 354.7, + "probability": 0.9782 + }, + { + "start": 355.46, + "end": 358.14, + "probability": 0.9741 + }, + { + "start": 360.06, + "end": 362.96, + "probability": 0.9133 + }, + { + "start": 364.0, + "end": 367.26, + "probability": 0.7499 + }, + { + "start": 368.02, + "end": 371.56, + "probability": 0.4095 + }, + { + "start": 372.88, + "end": 374.62, + "probability": 0.9431 + }, + { + "start": 375.22, + "end": 375.84, + "probability": 0.5801 + }, + { + "start": 376.46, + "end": 377.5, + "probability": 0.9099 + }, + { + "start": 378.3, + "end": 381.96, + "probability": 0.8748 + }, + { + "start": 383.4, + "end": 384.08, + "probability": 0.6356 + }, + { + "start": 384.64, + "end": 386.2, + "probability": 0.9917 + }, + { + "start": 386.78, + "end": 389.76, + "probability": 0.9835 + }, + { + "start": 390.3, + "end": 393.84, + "probability": 0.9269 + }, + { + "start": 395.04, + "end": 398.9, + "probability": 0.7743 + }, + { + "start": 400.24, + "end": 402.94, + "probability": 0.917 + }, + { + "start": 403.62, + "end": 404.74, + "probability": 0.9554 + }, + { + "start": 405.14, + "end": 409.02, + "probability": 0.9552 + }, + { + "start": 410.0, + "end": 410.86, + "probability": 0.9412 + }, + { + "start": 411.56, + "end": 412.78, + "probability": 0.3717 + }, + { + "start": 413.58, + "end": 415.08, + "probability": 0.6219 + }, + { + "start": 415.9, + "end": 417.38, + "probability": 0.9685 + }, + { + "start": 419.26, + "end": 420.74, + "probability": 0.9609 + }, + { + "start": 422.06, + "end": 422.36, + "probability": 0.7124 + }, + { + "start": 423.26, + "end": 426.34, + "probability": 0.8643 + }, + { + "start": 427.36, + "end": 429.78, + "probability": 0.8488 + }, + { + "start": 431.2, + "end": 433.76, + "probability": 0.7117 + }, + { + "start": 434.3, + "end": 436.2, + "probability": 0.9661 + }, + { + "start": 436.94, + "end": 439.16, + "probability": 0.9733 + }, + { + "start": 440.5, + "end": 441.74, + "probability": 0.6226 + }, + { + "start": 442.6, + "end": 443.44, + "probability": 0.862 + }, + { + "start": 444.28, + "end": 446.52, + "probability": 0.814 + }, + { + "start": 447.88, + "end": 450.82, + "probability": 0.9709 + }, + { + "start": 451.6, + "end": 453.44, + "probability": 0.9342 + }, + { + "start": 455.74, + "end": 456.66, + "probability": 0.7755 + }, + { + "start": 457.64, + "end": 457.74, + "probability": 0.4573 + }, + { + "start": 463.6, + "end": 466.7, + "probability": 0.7485 + }, + { + "start": 467.28, + "end": 470.16, + "probability": 0.9045 + }, + { + "start": 471.66, + "end": 476.14, + "probability": 0.9443 + }, + { + "start": 476.24, + "end": 477.68, + "probability": 0.5635 + }, + { + "start": 482.48, + "end": 487.42, + "probability": 0.8095 + }, + { + "start": 489.04, + "end": 493.24, + "probability": 0.9899 + }, + { + "start": 495.48, + "end": 496.82, + "probability": 0.7854 + }, + { + "start": 496.96, + "end": 498.62, + "probability": 0.9807 + }, + { + "start": 499.4, + "end": 502.04, + "probability": 0.8783 + }, + { + "start": 502.6, + "end": 503.86, + "probability": 0.9989 + }, + { + "start": 504.46, + "end": 507.38, + "probability": 0.989 + }, + { + "start": 507.7, + "end": 508.2, + "probability": 0.4566 + }, + { + "start": 508.98, + "end": 510.8, + "probability": 0.7439 + }, + { + "start": 512.04, + "end": 514.84, + "probability": 0.9265 + }, + { + "start": 515.76, + "end": 518.5, + "probability": 0.9897 + }, + { + "start": 519.08, + "end": 522.5, + "probability": 0.9963 + }, + { + "start": 524.08, + "end": 525.07, + "probability": 0.6836 + }, + { + "start": 529.9, + "end": 535.16, + "probability": 0.9988 + }, + { + "start": 537.04, + "end": 537.92, + "probability": 0.9711 + }, + { + "start": 538.9, + "end": 540.92, + "probability": 0.9983 + }, + { + "start": 541.76, + "end": 542.88, + "probability": 0.7971 + }, + { + "start": 543.82, + "end": 546.04, + "probability": 0.9652 + }, + { + "start": 547.34, + "end": 548.4, + "probability": 0.7375 + }, + { + "start": 549.0, + "end": 551.72, + "probability": 0.941 + }, + { + "start": 552.5, + "end": 557.6, + "probability": 0.9957 + }, + { + "start": 558.06, + "end": 560.92, + "probability": 0.9778 + }, + { + "start": 562.06, + "end": 563.54, + "probability": 0.9782 + }, + { + "start": 564.26, + "end": 565.34, + "probability": 0.7904 + }, + { + "start": 566.64, + "end": 571.42, + "probability": 0.9674 + }, + { + "start": 572.42, + "end": 574.94, + "probability": 0.9132 + }, + { + "start": 575.56, + "end": 577.54, + "probability": 0.91 + }, + { + "start": 578.84, + "end": 580.46, + "probability": 0.9755 + }, + { + "start": 581.2, + "end": 584.38, + "probability": 0.976 + }, + { + "start": 584.96, + "end": 585.98, + "probability": 0.6229 + }, + { + "start": 586.5, + "end": 587.52, + "probability": 0.5123 + }, + { + "start": 590.16, + "end": 594.3, + "probability": 0.7599 + }, + { + "start": 594.6, + "end": 595.4, + "probability": 0.7474 + }, + { + "start": 595.84, + "end": 600.82, + "probability": 0.9854 + }, + { + "start": 601.54, + "end": 603.68, + "probability": 0.9952 + }, + { + "start": 605.2, + "end": 609.86, + "probability": 0.9948 + }, + { + "start": 610.7, + "end": 613.52, + "probability": 0.9807 + }, + { + "start": 613.86, + "end": 614.5, + "probability": 0.4363 + }, + { + "start": 614.9, + "end": 617.08, + "probability": 0.9821 + }, + { + "start": 617.7, + "end": 620.3, + "probability": 0.9561 + }, + { + "start": 620.88, + "end": 624.28, + "probability": 0.8586 + }, + { + "start": 626.3, + "end": 629.84, + "probability": 0.9769 + }, + { + "start": 629.84, + "end": 633.7, + "probability": 0.9956 + }, + { + "start": 634.86, + "end": 638.36, + "probability": 0.7213 + }, + { + "start": 638.8, + "end": 639.54, + "probability": 0.9466 + }, + { + "start": 639.94, + "end": 640.42, + "probability": 0.8048 + }, + { + "start": 640.72, + "end": 641.48, + "probability": 0.8379 + }, + { + "start": 641.94, + "end": 644.46, + "probability": 0.796 + }, + { + "start": 645.9, + "end": 650.78, + "probability": 0.9912 + }, + { + "start": 651.58, + "end": 652.5, + "probability": 0.948 + }, + { + "start": 653.36, + "end": 657.22, + "probability": 0.9938 + }, + { + "start": 657.22, + "end": 659.52, + "probability": 0.9556 + }, + { + "start": 661.4, + "end": 662.36, + "probability": 0.8882 + }, + { + "start": 664.02, + "end": 664.82, + "probability": 0.6283 + }, + { + "start": 665.4, + "end": 669.18, + "probability": 0.9909 + }, + { + "start": 670.3, + "end": 674.5, + "probability": 0.987 + }, + { + "start": 676.32, + "end": 678.36, + "probability": 0.3749 + }, + { + "start": 679.2, + "end": 679.4, + "probability": 0.6639 + }, + { + "start": 679.68, + "end": 681.36, + "probability": 0.7433 + }, + { + "start": 682.08, + "end": 684.46, + "probability": 0.9844 + }, + { + "start": 685.08, + "end": 686.64, + "probability": 0.916 + }, + { + "start": 687.3, + "end": 688.72, + "probability": 0.8622 + }, + { + "start": 690.22, + "end": 692.74, + "probability": 0.972 + }, + { + "start": 693.26, + "end": 693.82, + "probability": 0.9244 + }, + { + "start": 694.44, + "end": 697.1, + "probability": 0.9655 + }, + { + "start": 697.5, + "end": 698.12, + "probability": 0.9236 + }, + { + "start": 698.32, + "end": 701.22, + "probability": 0.8302 + }, + { + "start": 703.06, + "end": 706.9, + "probability": 0.9617 + }, + { + "start": 707.6, + "end": 710.94, + "probability": 0.879 + }, + { + "start": 710.94, + "end": 714.72, + "probability": 0.7422 + }, + { + "start": 715.42, + "end": 718.54, + "probability": 0.9954 + }, + { + "start": 720.64, + "end": 723.6, + "probability": 0.9093 + }, + { + "start": 723.98, + "end": 724.7, + "probability": 0.7422 + }, + { + "start": 724.8, + "end": 725.52, + "probability": 0.8218 + }, + { + "start": 725.92, + "end": 727.06, + "probability": 0.9626 + }, + { + "start": 728.12, + "end": 731.9, + "probability": 0.9948 + }, + { + "start": 731.9, + "end": 736.32, + "probability": 0.9775 + }, + { + "start": 738.3, + "end": 743.9, + "probability": 0.8998 + }, + { + "start": 744.34, + "end": 745.1, + "probability": 0.768 + }, + { + "start": 745.7, + "end": 747.08, + "probability": 0.7081 + }, + { + "start": 747.2, + "end": 751.42, + "probability": 0.9824 + }, + { + "start": 752.5, + "end": 755.76, + "probability": 0.9409 + }, + { + "start": 756.82, + "end": 757.14, + "probability": 0.6393 + }, + { + "start": 757.8, + "end": 758.18, + "probability": 0.7322 + }, + { + "start": 758.26, + "end": 761.64, + "probability": 0.9841 + }, + { + "start": 762.58, + "end": 763.3, + "probability": 0.9187 + }, + { + "start": 763.92, + "end": 767.46, + "probability": 0.9793 + }, + { + "start": 768.32, + "end": 771.58, + "probability": 0.9929 + }, + { + "start": 772.26, + "end": 776.08, + "probability": 0.9767 + }, + { + "start": 777.92, + "end": 778.76, + "probability": 0.6249 + }, + { + "start": 779.86, + "end": 782.88, + "probability": 0.9684 + }, + { + "start": 783.3, + "end": 787.48, + "probability": 0.9911 + }, + { + "start": 789.14, + "end": 790.42, + "probability": 0.9983 + }, + { + "start": 791.6, + "end": 794.56, + "probability": 0.9058 + }, + { + "start": 795.38, + "end": 797.12, + "probability": 0.959 + }, + { + "start": 797.54, + "end": 799.4, + "probability": 0.8438 + }, + { + "start": 799.88, + "end": 801.76, + "probability": 0.8404 + }, + { + "start": 802.26, + "end": 802.74, + "probability": 0.9507 + }, + { + "start": 802.98, + "end": 804.18, + "probability": 0.9333 + }, + { + "start": 805.66, + "end": 810.48, + "probability": 0.736 + }, + { + "start": 811.2, + "end": 812.04, + "probability": 0.8486 + }, + { + "start": 813.44, + "end": 817.5, + "probability": 0.931 + }, + { + "start": 818.78, + "end": 820.16, + "probability": 0.9493 + }, + { + "start": 821.3, + "end": 822.54, + "probability": 0.9329 + }, + { + "start": 823.18, + "end": 824.04, + "probability": 0.8315 + }, + { + "start": 825.12, + "end": 827.5, + "probability": 0.9834 + }, + { + "start": 828.4, + "end": 828.98, + "probability": 0.9095 + }, + { + "start": 830.34, + "end": 832.44, + "probability": 0.9914 + }, + { + "start": 833.74, + "end": 838.34, + "probability": 0.9922 + }, + { + "start": 838.88, + "end": 840.66, + "probability": 0.9985 + }, + { + "start": 841.1, + "end": 842.56, + "probability": 0.8293 + }, + { + "start": 843.5, + "end": 845.58, + "probability": 0.9696 + }, + { + "start": 846.02, + "end": 847.94, + "probability": 0.9803 + }, + { + "start": 848.34, + "end": 850.76, + "probability": 0.8542 + }, + { + "start": 851.4, + "end": 857.16, + "probability": 0.99 + }, + { + "start": 857.74, + "end": 859.16, + "probability": 0.8842 + }, + { + "start": 860.1, + "end": 862.84, + "probability": 0.7815 + }, + { + "start": 863.76, + "end": 868.18, + "probability": 0.968 + }, + { + "start": 869.68, + "end": 872.42, + "probability": 0.9941 + }, + { + "start": 873.34, + "end": 875.26, + "probability": 0.7514 + }, + { + "start": 876.56, + "end": 877.96, + "probability": 0.9883 + }, + { + "start": 879.18, + "end": 883.04, + "probability": 0.9075 + }, + { + "start": 883.62, + "end": 886.2, + "probability": 0.9805 + }, + { + "start": 887.04, + "end": 892.08, + "probability": 0.9606 + }, + { + "start": 893.1, + "end": 894.26, + "probability": 0.9982 + }, + { + "start": 894.78, + "end": 895.64, + "probability": 0.9735 + }, + { + "start": 896.46, + "end": 897.08, + "probability": 0.8372 + }, + { + "start": 897.62, + "end": 899.38, + "probability": 0.9822 + }, + { + "start": 900.82, + "end": 901.86, + "probability": 0.9847 + }, + { + "start": 902.64, + "end": 905.92, + "probability": 0.75 + }, + { + "start": 906.56, + "end": 908.46, + "probability": 0.87 + }, + { + "start": 909.12, + "end": 913.34, + "probability": 0.8792 + }, + { + "start": 913.82, + "end": 916.94, + "probability": 0.974 + }, + { + "start": 918.02, + "end": 918.54, + "probability": 0.7908 + }, + { + "start": 919.16, + "end": 920.4, + "probability": 0.7825 + }, + { + "start": 921.18, + "end": 927.08, + "probability": 0.8815 + }, + { + "start": 927.18, + "end": 927.92, + "probability": 0.7307 + }, + { + "start": 928.46, + "end": 930.88, + "probability": 0.9854 + }, + { + "start": 932.5, + "end": 935.18, + "probability": 0.7026 + }, + { + "start": 935.8, + "end": 936.94, + "probability": 0.6314 + }, + { + "start": 937.7, + "end": 939.44, + "probability": 0.9749 + }, + { + "start": 939.98, + "end": 940.96, + "probability": 0.7252 + }, + { + "start": 941.58, + "end": 945.72, + "probability": 0.9818 + }, + { + "start": 946.3, + "end": 947.08, + "probability": 0.9 + }, + { + "start": 947.84, + "end": 952.46, + "probability": 0.9727 + }, + { + "start": 953.04, + "end": 953.86, + "probability": 0.9285 + }, + { + "start": 954.86, + "end": 957.0, + "probability": 0.926 + }, + { + "start": 958.1, + "end": 958.72, + "probability": 0.894 + }, + { + "start": 960.56, + "end": 962.34, + "probability": 0.9661 + }, + { + "start": 962.74, + "end": 966.26, + "probability": 0.9778 + }, + { + "start": 966.76, + "end": 968.36, + "probability": 0.9938 + }, + { + "start": 969.06, + "end": 973.9, + "probability": 0.9908 + }, + { + "start": 975.28, + "end": 975.64, + "probability": 0.7325 + }, + { + "start": 978.28, + "end": 981.08, + "probability": 0.8839 + }, + { + "start": 981.54, + "end": 985.28, + "probability": 0.9467 + }, + { + "start": 985.44, + "end": 988.82, + "probability": 0.998 + }, + { + "start": 990.0, + "end": 993.64, + "probability": 0.9268 + }, + { + "start": 994.24, + "end": 996.24, + "probability": 0.809 + }, + { + "start": 997.32, + "end": 997.58, + "probability": 0.4966 + }, + { + "start": 998.48, + "end": 999.52, + "probability": 0.9745 + }, + { + "start": 1000.04, + "end": 1000.86, + "probability": 0.9078 + }, + { + "start": 1001.72, + "end": 1003.5, + "probability": 0.9238 + }, + { + "start": 1004.24, + "end": 1005.16, + "probability": 0.9155 + }, + { + "start": 1007.18, + "end": 1009.78, + "probability": 0.9761 + }, + { + "start": 1010.38, + "end": 1012.66, + "probability": 0.9725 + }, + { + "start": 1013.18, + "end": 1014.2, + "probability": 0.9694 + }, + { + "start": 1014.88, + "end": 1015.96, + "probability": 0.8799 + }, + { + "start": 1016.06, + "end": 1017.6, + "probability": 0.8612 + }, + { + "start": 1018.08, + "end": 1021.96, + "probability": 0.9474 + }, + { + "start": 1021.96, + "end": 1026.12, + "probability": 0.9897 + }, + { + "start": 1027.82, + "end": 1028.18, + "probability": 0.7672 + }, + { + "start": 1028.8, + "end": 1029.14, + "probability": 0.9244 + }, + { + "start": 1035.24, + "end": 1036.5, + "probability": 0.9702 + }, + { + "start": 1037.12, + "end": 1039.2, + "probability": 0.8323 + }, + { + "start": 1040.06, + "end": 1042.04, + "probability": 0.9691 + }, + { + "start": 1042.38, + "end": 1043.14, + "probability": 0.6622 + }, + { + "start": 1044.24, + "end": 1045.74, + "probability": 0.9966 + }, + { + "start": 1049.3, + "end": 1052.5, + "probability": 0.5501 + }, + { + "start": 1053.22, + "end": 1053.62, + "probability": 0.8046 + }, + { + "start": 1054.66, + "end": 1056.84, + "probability": 0.9053 + }, + { + "start": 1057.7, + "end": 1059.5, + "probability": 0.9756 + }, + { + "start": 1060.28, + "end": 1063.04, + "probability": 0.9875 + }, + { + "start": 1064.76, + "end": 1068.98, + "probability": 0.9637 + }, + { + "start": 1069.84, + "end": 1070.97, + "probability": 0.9737 + }, + { + "start": 1075.08, + "end": 1078.46, + "probability": 0.915 + }, + { + "start": 1078.78, + "end": 1080.9, + "probability": 0.942 + }, + { + "start": 1081.44, + "end": 1082.0, + "probability": 0.8813 + }, + { + "start": 1082.62, + "end": 1084.82, + "probability": 0.996 + }, + { + "start": 1085.24, + "end": 1089.04, + "probability": 0.9709 + }, + { + "start": 1089.72, + "end": 1094.9, + "probability": 0.6815 + }, + { + "start": 1095.4, + "end": 1097.6, + "probability": 0.8646 + }, + { + "start": 1097.7, + "end": 1100.28, + "probability": 0.5688 + }, + { + "start": 1100.52, + "end": 1102.52, + "probability": 0.6616 + }, + { + "start": 1103.26, + "end": 1105.24, + "probability": 0.5026 + }, + { + "start": 1105.32, + "end": 1107.9, + "probability": 0.9897 + }, + { + "start": 1108.54, + "end": 1114.8, + "probability": 0.9434 + }, + { + "start": 1116.9, + "end": 1118.08, + "probability": 0.9449 + }, + { + "start": 1119.26, + "end": 1119.9, + "probability": 0.7012 + }, + { + "start": 1121.2, + "end": 1123.94, + "probability": 0.9559 + }, + { + "start": 1124.02, + "end": 1127.36, + "probability": 0.8589 + }, + { + "start": 1127.84, + "end": 1128.8, + "probability": 0.998 + }, + { + "start": 1129.48, + "end": 1131.98, + "probability": 0.957 + }, + { + "start": 1133.14, + "end": 1134.22, + "probability": 0.9648 + }, + { + "start": 1134.96, + "end": 1135.74, + "probability": 0.6041 + }, + { + "start": 1136.72, + "end": 1137.62, + "probability": 0.9034 + }, + { + "start": 1137.72, + "end": 1140.3, + "probability": 0.944 + }, + { + "start": 1141.48, + "end": 1142.2, + "probability": 0.5482 + }, + { + "start": 1142.2, + "end": 1144.08, + "probability": 0.9434 + }, + { + "start": 1144.12, + "end": 1144.84, + "probability": 0.8017 + }, + { + "start": 1145.06, + "end": 1146.26, + "probability": 0.9241 + }, + { + "start": 1147.06, + "end": 1148.54, + "probability": 0.9989 + }, + { + "start": 1151.24, + "end": 1152.46, + "probability": 0.9932 + }, + { + "start": 1153.1, + "end": 1155.64, + "probability": 0.9817 + }, + { + "start": 1157.04, + "end": 1158.72, + "probability": 0.9604 + }, + { + "start": 1159.66, + "end": 1163.38, + "probability": 0.6294 + }, + { + "start": 1164.7, + "end": 1167.6, + "probability": 0.8217 + }, + { + "start": 1170.14, + "end": 1173.78, + "probability": 0.9821 + }, + { + "start": 1175.02, + "end": 1176.32, + "probability": 0.3335 + }, + { + "start": 1177.58, + "end": 1181.42, + "probability": 0.9907 + }, + { + "start": 1182.72, + "end": 1184.4, + "probability": 0.958 + }, + { + "start": 1185.16, + "end": 1187.88, + "probability": 0.9581 + }, + { + "start": 1188.74, + "end": 1189.44, + "probability": 0.8696 + }, + { + "start": 1190.4, + "end": 1193.34, + "probability": 0.7659 + }, + { + "start": 1195.58, + "end": 1197.08, + "probability": 0.6073 + }, + { + "start": 1197.64, + "end": 1198.2, + "probability": 0.6661 + }, + { + "start": 1199.3, + "end": 1200.32, + "probability": 0.7303 + }, + { + "start": 1201.46, + "end": 1203.52, + "probability": 0.9546 + }, + { + "start": 1204.2, + "end": 1206.38, + "probability": 0.9937 + }, + { + "start": 1206.76, + "end": 1206.98, + "probability": 0.7083 + }, + { + "start": 1209.98, + "end": 1211.76, + "probability": 0.9797 + }, + { + "start": 1212.34, + "end": 1213.6, + "probability": 0.9325 + }, + { + "start": 1225.54, + "end": 1229.9, + "probability": 0.5988 + }, + { + "start": 1230.98, + "end": 1236.6, + "probability": 0.6794 + }, + { + "start": 1239.04, + "end": 1239.04, + "probability": 0.0758 + }, + { + "start": 1353.18, + "end": 1353.26, + "probability": 0.0995 + }, + { + "start": 1353.26, + "end": 1353.51, + "probability": 0.4439 + }, + { + "start": 1354.4, + "end": 1355.6, + "probability": 0.9254 + }, + { + "start": 1363.52, + "end": 1363.9, + "probability": 0.0747 + }, + { + "start": 1363.9, + "end": 1363.9, + "probability": 0.2936 + }, + { + "start": 1363.9, + "end": 1363.96, + "probability": 0.2076 + }, + { + "start": 1363.96, + "end": 1363.96, + "probability": 0.1553 + }, + { + "start": 1363.96, + "end": 1364.02, + "probability": 0.3727 + }, + { + "start": 1364.12, + "end": 1364.24, + "probability": 0.2108 + }, + { + "start": 1388.5, + "end": 1389.84, + "probability": 0.938 + }, + { + "start": 1390.84, + "end": 1392.0, + "probability": 0.9238 + }, + { + "start": 1395.04, + "end": 1403.56, + "probability": 0.9116 + }, + { + "start": 1405.16, + "end": 1406.36, + "probability": 0.731 + }, + { + "start": 1407.14, + "end": 1411.0, + "probability": 0.9958 + }, + { + "start": 1412.7, + "end": 1414.38, + "probability": 0.9775 + }, + { + "start": 1416.34, + "end": 1420.74, + "probability": 0.9988 + }, + { + "start": 1422.04, + "end": 1425.24, + "probability": 0.9897 + }, + { + "start": 1426.34, + "end": 1428.3, + "probability": 0.8938 + }, + { + "start": 1430.44, + "end": 1432.34, + "probability": 0.6781 + }, + { + "start": 1435.18, + "end": 1437.38, + "probability": 0.799 + }, + { + "start": 1439.22, + "end": 1441.92, + "probability": 0.873 + }, + { + "start": 1443.16, + "end": 1443.98, + "probability": 0.8711 + }, + { + "start": 1445.84, + "end": 1447.82, + "probability": 0.8453 + }, + { + "start": 1448.7, + "end": 1450.52, + "probability": 0.9463 + }, + { + "start": 1452.38, + "end": 1455.96, + "probability": 0.7212 + }, + { + "start": 1456.62, + "end": 1457.62, + "probability": 0.321 + }, + { + "start": 1459.4, + "end": 1460.76, + "probability": 0.8535 + }, + { + "start": 1462.26, + "end": 1464.42, + "probability": 0.9587 + }, + { + "start": 1466.72, + "end": 1471.22, + "probability": 0.9246 + }, + { + "start": 1473.32, + "end": 1475.74, + "probability": 0.921 + }, + { + "start": 1477.5, + "end": 1482.18, + "probability": 0.9763 + }, + { + "start": 1484.36, + "end": 1487.92, + "probability": 0.9256 + }, + { + "start": 1487.98, + "end": 1489.08, + "probability": 0.9316 + }, + { + "start": 1490.68, + "end": 1493.5, + "probability": 0.9989 + }, + { + "start": 1494.14, + "end": 1497.98, + "probability": 0.9907 + }, + { + "start": 1499.02, + "end": 1500.66, + "probability": 0.9944 + }, + { + "start": 1501.66, + "end": 1502.62, + "probability": 0.9694 + }, + { + "start": 1506.18, + "end": 1510.46, + "probability": 0.9917 + }, + { + "start": 1511.58, + "end": 1515.36, + "probability": 0.9114 + }, + { + "start": 1517.16, + "end": 1517.84, + "probability": 0.7844 + }, + { + "start": 1518.52, + "end": 1519.84, + "probability": 0.9399 + }, + { + "start": 1520.96, + "end": 1521.92, + "probability": 0.7805 + }, + { + "start": 1522.58, + "end": 1523.46, + "probability": 0.9628 + }, + { + "start": 1524.34, + "end": 1525.0, + "probability": 0.5884 + }, + { + "start": 1526.38, + "end": 1528.66, + "probability": 0.9484 + }, + { + "start": 1529.5, + "end": 1529.68, + "probability": 0.6562 + }, + { + "start": 1533.98, + "end": 1538.72, + "probability": 0.9913 + }, + { + "start": 1539.14, + "end": 1539.8, + "probability": 0.6986 + }, + { + "start": 1540.16, + "end": 1541.4, + "probability": 0.9711 + }, + { + "start": 1542.52, + "end": 1544.08, + "probability": 0.8538 + }, + { + "start": 1544.86, + "end": 1545.12, + "probability": 0.6578 + }, + { + "start": 1547.28, + "end": 1550.66, + "probability": 0.9274 + }, + { + "start": 1552.32, + "end": 1554.32, + "probability": 0.6308 + }, + { + "start": 1555.68, + "end": 1560.3, + "probability": 0.9968 + }, + { + "start": 1561.8, + "end": 1562.76, + "probability": 0.926 + }, + { + "start": 1565.16, + "end": 1566.36, + "probability": 0.9252 + }, + { + "start": 1567.0, + "end": 1570.14, + "probability": 0.9539 + }, + { + "start": 1570.14, + "end": 1572.66, + "probability": 0.9576 + }, + { + "start": 1573.76, + "end": 1576.2, + "probability": 0.976 + }, + { + "start": 1576.26, + "end": 1577.3, + "probability": 0.7859 + }, + { + "start": 1578.6, + "end": 1580.38, + "probability": 0.988 + }, + { + "start": 1581.92, + "end": 1586.96, + "probability": 0.9808 + }, + { + "start": 1588.42, + "end": 1590.92, + "probability": 0.8913 + }, + { + "start": 1591.4, + "end": 1591.84, + "probability": 0.7003 + }, + { + "start": 1594.82, + "end": 1596.82, + "probability": 0.9976 + }, + { + "start": 1598.68, + "end": 1599.66, + "probability": 0.5682 + }, + { + "start": 1600.68, + "end": 1603.2, + "probability": 0.957 + }, + { + "start": 1604.26, + "end": 1604.82, + "probability": 0.9807 + }, + { + "start": 1606.3, + "end": 1606.86, + "probability": 0.9676 + }, + { + "start": 1607.86, + "end": 1608.52, + "probability": 0.549 + }, + { + "start": 1609.84, + "end": 1610.84, + "probability": 0.9414 + }, + { + "start": 1612.26, + "end": 1616.28, + "probability": 0.98 + }, + { + "start": 1616.82, + "end": 1617.32, + "probability": 0.8411 + }, + { + "start": 1618.16, + "end": 1620.2, + "probability": 0.9025 + }, + { + "start": 1621.2, + "end": 1628.1, + "probability": 0.988 + }, + { + "start": 1628.76, + "end": 1630.36, + "probability": 0.9946 + }, + { + "start": 1632.24, + "end": 1634.38, + "probability": 0.9971 + }, + { + "start": 1635.1, + "end": 1636.34, + "probability": 0.9172 + }, + { + "start": 1637.38, + "end": 1638.8, + "probability": 0.9553 + }, + { + "start": 1639.9, + "end": 1644.72, + "probability": 0.984 + }, + { + "start": 1646.8, + "end": 1648.04, + "probability": 0.72 + }, + { + "start": 1649.2, + "end": 1652.84, + "probability": 0.9827 + }, + { + "start": 1654.1, + "end": 1654.6, + "probability": 0.6758 + }, + { + "start": 1655.88, + "end": 1658.14, + "probability": 0.9971 + }, + { + "start": 1659.22, + "end": 1660.24, + "probability": 0.6854 + }, + { + "start": 1661.7, + "end": 1663.66, + "probability": 0.9446 + }, + { + "start": 1664.7, + "end": 1666.6, + "probability": 0.7155 + }, + { + "start": 1668.12, + "end": 1669.72, + "probability": 0.9889 + }, + { + "start": 1670.7, + "end": 1671.14, + "probability": 0.7324 + }, + { + "start": 1672.7, + "end": 1677.14, + "probability": 0.8589 + }, + { + "start": 1678.52, + "end": 1683.34, + "probability": 0.953 + }, + { + "start": 1685.56, + "end": 1686.38, + "probability": 0.8396 + }, + { + "start": 1687.18, + "end": 1688.3, + "probability": 0.9272 + }, + { + "start": 1689.36, + "end": 1692.92, + "probability": 0.9248 + }, + { + "start": 1693.8, + "end": 1696.2, + "probability": 0.9834 + }, + { + "start": 1697.74, + "end": 1699.96, + "probability": 0.9897 + }, + { + "start": 1700.54, + "end": 1702.38, + "probability": 0.9964 + }, + { + "start": 1702.92, + "end": 1704.46, + "probability": 0.9198 + }, + { + "start": 1705.26, + "end": 1706.62, + "probability": 0.9909 + }, + { + "start": 1707.32, + "end": 1709.94, + "probability": 0.8906 + }, + { + "start": 1711.98, + "end": 1712.42, + "probability": 0.8584 + }, + { + "start": 1713.7, + "end": 1716.12, + "probability": 0.9971 + }, + { + "start": 1717.02, + "end": 1718.08, + "probability": 0.8443 + }, + { + "start": 1719.02, + "end": 1720.68, + "probability": 0.9843 + }, + { + "start": 1722.0, + "end": 1723.0, + "probability": 0.9836 + }, + { + "start": 1723.18, + "end": 1724.52, + "probability": 0.9282 + }, + { + "start": 1724.98, + "end": 1725.64, + "probability": 0.9518 + }, + { + "start": 1726.34, + "end": 1727.66, + "probability": 0.9907 + }, + { + "start": 1728.98, + "end": 1730.64, + "probability": 0.9766 + }, + { + "start": 1731.4, + "end": 1734.06, + "probability": 0.866 + }, + { + "start": 1734.82, + "end": 1736.7, + "probability": 0.9743 + }, + { + "start": 1737.52, + "end": 1738.64, + "probability": 0.5048 + }, + { + "start": 1739.02, + "end": 1739.36, + "probability": 0.9336 + }, + { + "start": 1741.42, + "end": 1744.5, + "probability": 0.9434 + }, + { + "start": 1746.04, + "end": 1750.36, + "probability": 0.9925 + }, + { + "start": 1750.62, + "end": 1751.5, + "probability": 0.5328 + }, + { + "start": 1752.16, + "end": 1755.5, + "probability": 0.9779 + }, + { + "start": 1757.56, + "end": 1759.72, + "probability": 0.6872 + }, + { + "start": 1769.5, + "end": 1770.42, + "probability": 0.7686 + }, + { + "start": 1772.2, + "end": 1777.46, + "probability": 0.9173 + }, + { + "start": 1777.7, + "end": 1778.32, + "probability": 0.689 + }, + { + "start": 1779.26, + "end": 1780.92, + "probability": 0.9219 + }, + { + "start": 1781.9, + "end": 1782.66, + "probability": 0.7796 + }, + { + "start": 1784.92, + "end": 1789.06, + "probability": 0.9932 + }, + { + "start": 1789.98, + "end": 1793.88, + "probability": 0.9989 + }, + { + "start": 1795.22, + "end": 1797.96, + "probability": 0.981 + }, + { + "start": 1798.78, + "end": 1801.42, + "probability": 0.9111 + }, + { + "start": 1803.0, + "end": 1805.68, + "probability": 0.9893 + }, + { + "start": 1805.8, + "end": 1806.66, + "probability": 0.6389 + }, + { + "start": 1806.68, + "end": 1807.0, + "probability": 0.5827 + }, + { + "start": 1807.7, + "end": 1809.68, + "probability": 0.8935 + }, + { + "start": 1810.22, + "end": 1814.04, + "probability": 0.9644 + }, + { + "start": 1815.12, + "end": 1817.92, + "probability": 0.9968 + }, + { + "start": 1818.82, + "end": 1819.74, + "probability": 0.9373 + }, + { + "start": 1820.42, + "end": 1821.96, + "probability": 0.7804 + }, + { + "start": 1822.72, + "end": 1823.56, + "probability": 0.5257 + }, + { + "start": 1824.48, + "end": 1826.2, + "probability": 0.8368 + }, + { + "start": 1826.66, + "end": 1829.06, + "probability": 0.9575 + }, + { + "start": 1829.52, + "end": 1833.2, + "probability": 0.9951 + }, + { + "start": 1833.88, + "end": 1838.0, + "probability": 0.959 + }, + { + "start": 1838.4, + "end": 1838.98, + "probability": 0.884 + }, + { + "start": 1841.16, + "end": 1842.44, + "probability": 0.9974 + }, + { + "start": 1843.56, + "end": 1846.48, + "probability": 0.8641 + }, + { + "start": 1847.16, + "end": 1851.54, + "probability": 0.9969 + }, + { + "start": 1853.7, + "end": 1855.74, + "probability": 0.9906 + }, + { + "start": 1856.38, + "end": 1858.88, + "probability": 0.872 + }, + { + "start": 1860.0, + "end": 1864.28, + "probability": 0.9898 + }, + { + "start": 1864.98, + "end": 1867.04, + "probability": 0.9941 + }, + { + "start": 1867.18, + "end": 1868.22, + "probability": 0.9766 + }, + { + "start": 1868.6, + "end": 1873.52, + "probability": 0.9958 + }, + { + "start": 1876.76, + "end": 1877.5, + "probability": 0.9868 + }, + { + "start": 1878.88, + "end": 1882.06, + "probability": 0.8829 + }, + { + "start": 1882.64, + "end": 1884.26, + "probability": 0.7719 + }, + { + "start": 1885.14, + "end": 1887.5, + "probability": 0.9775 + }, + { + "start": 1888.12, + "end": 1891.04, + "probability": 0.936 + }, + { + "start": 1892.42, + "end": 1895.1, + "probability": 0.9814 + }, + { + "start": 1896.74, + "end": 1898.98, + "probability": 0.9834 + }, + { + "start": 1899.64, + "end": 1901.78, + "probability": 0.9697 + }, + { + "start": 1903.72, + "end": 1906.08, + "probability": 0.6827 + }, + { + "start": 1906.18, + "end": 1908.46, + "probability": 0.9893 + }, + { + "start": 1909.18, + "end": 1911.02, + "probability": 0.8386 + }, + { + "start": 1911.98, + "end": 1913.54, + "probability": 0.9702 + }, + { + "start": 1914.5, + "end": 1916.82, + "probability": 0.9949 + }, + { + "start": 1917.62, + "end": 1921.8, + "probability": 0.9894 + }, + { + "start": 1923.36, + "end": 1924.84, + "probability": 0.9782 + }, + { + "start": 1926.1, + "end": 1930.32, + "probability": 0.9942 + }, + { + "start": 1930.32, + "end": 1935.36, + "probability": 0.9931 + }, + { + "start": 1936.1, + "end": 1937.0, + "probability": 0.9953 + }, + { + "start": 1937.56, + "end": 1941.72, + "probability": 0.9816 + }, + { + "start": 1942.32, + "end": 1944.94, + "probability": 0.9976 + }, + { + "start": 1945.48, + "end": 1945.9, + "probability": 0.8724 + }, + { + "start": 1946.66, + "end": 1947.62, + "probability": 0.9377 + }, + { + "start": 1948.12, + "end": 1952.22, + "probability": 0.9575 + }, + { + "start": 1953.98, + "end": 1957.36, + "probability": 0.9906 + }, + { + "start": 1957.36, + "end": 1961.0, + "probability": 0.9925 + }, + { + "start": 1962.46, + "end": 1965.0, + "probability": 0.9892 + }, + { + "start": 1966.58, + "end": 1969.9, + "probability": 0.9447 + }, + { + "start": 1970.4, + "end": 1971.72, + "probability": 0.8128 + }, + { + "start": 1972.78, + "end": 1975.62, + "probability": 0.9259 + }, + { + "start": 1976.26, + "end": 1981.74, + "probability": 0.9545 + }, + { + "start": 1982.1, + "end": 1982.82, + "probability": 0.2709 + }, + { + "start": 1984.32, + "end": 1988.22, + "probability": 0.9789 + }, + { + "start": 1988.8, + "end": 1992.0, + "probability": 0.915 + }, + { + "start": 1992.82, + "end": 1994.17, + "probability": 0.9375 + }, + { + "start": 1995.46, + "end": 1997.08, + "probability": 0.8759 + }, + { + "start": 1997.2, + "end": 2000.98, + "probability": 0.9854 + }, + { + "start": 2001.9, + "end": 2004.9, + "probability": 0.996 + }, + { + "start": 2005.26, + "end": 2009.0, + "probability": 0.9957 + }, + { + "start": 2010.34, + "end": 2011.3, + "probability": 0.8152 + }, + { + "start": 2013.52, + "end": 2014.32, + "probability": 0.8901 + }, + { + "start": 2015.44, + "end": 2017.1, + "probability": 0.9694 + }, + { + "start": 2018.78, + "end": 2021.74, + "probability": 0.9963 + }, + { + "start": 2022.16, + "end": 2026.98, + "probability": 0.9979 + }, + { + "start": 2028.2, + "end": 2031.84, + "probability": 0.9767 + }, + { + "start": 2034.56, + "end": 2035.84, + "probability": 0.9972 + }, + { + "start": 2036.48, + "end": 2037.78, + "probability": 0.9633 + }, + { + "start": 2038.48, + "end": 2041.76, + "probability": 0.9779 + }, + { + "start": 2042.58, + "end": 2045.82, + "probability": 0.9702 + }, + { + "start": 2046.28, + "end": 2050.22, + "probability": 0.9984 + }, + { + "start": 2050.7, + "end": 2051.34, + "probability": 0.558 + }, + { + "start": 2051.78, + "end": 2052.42, + "probability": 0.7711 + }, + { + "start": 2052.88, + "end": 2054.28, + "probability": 0.8993 + }, + { + "start": 2054.72, + "end": 2056.94, + "probability": 0.9666 + }, + { + "start": 2061.2, + "end": 2062.46, + "probability": 0.8005 + }, + { + "start": 2063.14, + "end": 2064.94, + "probability": 0.928 + }, + { + "start": 2065.8, + "end": 2067.8, + "probability": 0.9022 + }, + { + "start": 2068.46, + "end": 2071.28, + "probability": 0.9396 + }, + { + "start": 2071.94, + "end": 2072.62, + "probability": 0.9517 + }, + { + "start": 2073.18, + "end": 2074.38, + "probability": 0.7824 + }, + { + "start": 2074.5, + "end": 2079.46, + "probability": 0.9773 + }, + { + "start": 2079.56, + "end": 2080.37, + "probability": 0.9114 + }, + { + "start": 2080.84, + "end": 2082.06, + "probability": 0.8774 + }, + { + "start": 2083.48, + "end": 2085.98, + "probability": 0.8963 + }, + { + "start": 2086.42, + "end": 2087.99, + "probability": 0.9788 + }, + { + "start": 2088.48, + "end": 2089.46, + "probability": 0.983 + }, + { + "start": 2089.78, + "end": 2091.62, + "probability": 0.9142 + }, + { + "start": 2091.92, + "end": 2098.14, + "probability": 0.986 + }, + { + "start": 2098.56, + "end": 2103.54, + "probability": 0.9702 + }, + { + "start": 2104.64, + "end": 2108.6, + "probability": 0.9901 + }, + { + "start": 2109.36, + "end": 2112.64, + "probability": 0.9945 + }, + { + "start": 2113.9, + "end": 2116.28, + "probability": 0.9956 + }, + { + "start": 2117.06, + "end": 2119.82, + "probability": 0.9542 + }, + { + "start": 2119.82, + "end": 2123.78, + "probability": 0.9901 + }, + { + "start": 2125.78, + "end": 2127.08, + "probability": 0.8781 + }, + { + "start": 2128.42, + "end": 2133.14, + "probability": 0.9948 + }, + { + "start": 2134.3, + "end": 2138.82, + "probability": 0.9989 + }, + { + "start": 2139.58, + "end": 2140.72, + "probability": 0.9735 + }, + { + "start": 2140.82, + "end": 2142.54, + "probability": 0.9666 + }, + { + "start": 2142.9, + "end": 2146.36, + "probability": 0.9746 + }, + { + "start": 2147.06, + "end": 2148.6, + "probability": 0.9929 + }, + { + "start": 2149.82, + "end": 2150.7, + "probability": 0.9802 + }, + { + "start": 2151.8, + "end": 2154.8, + "probability": 0.9935 + }, + { + "start": 2154.8, + "end": 2158.64, + "probability": 0.9993 + }, + { + "start": 2159.72, + "end": 2164.74, + "probability": 0.9947 + }, + { + "start": 2164.92, + "end": 2167.02, + "probability": 0.9796 + }, + { + "start": 2167.92, + "end": 2169.64, + "probability": 0.7689 + }, + { + "start": 2170.2, + "end": 2172.4, + "probability": 0.9948 + }, + { + "start": 2172.62, + "end": 2174.68, + "probability": 0.9807 + }, + { + "start": 2175.72, + "end": 2178.14, + "probability": 0.9946 + }, + { + "start": 2178.56, + "end": 2180.8, + "probability": 0.9801 + }, + { + "start": 2181.58, + "end": 2185.18, + "probability": 0.9597 + }, + { + "start": 2185.72, + "end": 2186.88, + "probability": 0.8906 + }, + { + "start": 2186.98, + "end": 2191.14, + "probability": 0.978 + }, + { + "start": 2191.68, + "end": 2195.68, + "probability": 0.9943 + }, + { + "start": 2196.6, + "end": 2201.02, + "probability": 0.9944 + }, + { + "start": 2201.44, + "end": 2205.76, + "probability": 0.9848 + }, + { + "start": 2205.76, + "end": 2211.46, + "probability": 0.9935 + }, + { + "start": 2212.38, + "end": 2215.04, + "probability": 0.9863 + }, + { + "start": 2216.62, + "end": 2219.38, + "probability": 0.8826 + }, + { + "start": 2220.7, + "end": 2224.2, + "probability": 0.8053 + }, + { + "start": 2224.88, + "end": 2227.34, + "probability": 0.9794 + }, + { + "start": 2227.96, + "end": 2229.92, + "probability": 0.9415 + }, + { + "start": 2230.42, + "end": 2235.68, + "probability": 0.9939 + }, + { + "start": 2236.52, + "end": 2238.9, + "probability": 0.9825 + }, + { + "start": 2239.52, + "end": 2241.28, + "probability": 0.9827 + }, + { + "start": 2241.84, + "end": 2245.38, + "probability": 0.9889 + }, + { + "start": 2247.02, + "end": 2250.92, + "probability": 0.995 + }, + { + "start": 2251.44, + "end": 2252.46, + "probability": 0.795 + }, + { + "start": 2253.14, + "end": 2254.0, + "probability": 0.9489 + }, + { + "start": 2254.46, + "end": 2255.4, + "probability": 0.9653 + }, + { + "start": 2255.54, + "end": 2256.0, + "probability": 0.9913 + }, + { + "start": 2256.1, + "end": 2260.16, + "probability": 0.9955 + }, + { + "start": 2260.7, + "end": 2261.46, + "probability": 0.9229 + }, + { + "start": 2261.94, + "end": 2265.22, + "probability": 0.8975 + }, + { + "start": 2266.0, + "end": 2267.24, + "probability": 0.7511 + }, + { + "start": 2268.96, + "end": 2273.5, + "probability": 0.8127 + }, + { + "start": 2273.56, + "end": 2276.56, + "probability": 0.9815 + }, + { + "start": 2276.66, + "end": 2278.9, + "probability": 0.9567 + }, + { + "start": 2279.3, + "end": 2282.06, + "probability": 0.9758 + }, + { + "start": 2283.46, + "end": 2286.78, + "probability": 0.998 + }, + { + "start": 2287.8, + "end": 2292.14, + "probability": 0.9973 + }, + { + "start": 2293.22, + "end": 2295.97, + "probability": 0.9098 + }, + { + "start": 2296.16, + "end": 2303.3, + "probability": 0.9712 + }, + { + "start": 2303.5, + "end": 2306.4, + "probability": 0.9771 + }, + { + "start": 2306.4, + "end": 2309.44, + "probability": 0.9726 + }, + { + "start": 2310.56, + "end": 2311.16, + "probability": 0.67 + }, + { + "start": 2311.2, + "end": 2312.38, + "probability": 0.9727 + }, + { + "start": 2312.86, + "end": 2316.3, + "probability": 0.989 + }, + { + "start": 2316.74, + "end": 2320.0, + "probability": 0.9958 + }, + { + "start": 2321.5, + "end": 2324.96, + "probability": 0.982 + }, + { + "start": 2325.5, + "end": 2326.44, + "probability": 0.9595 + }, + { + "start": 2326.96, + "end": 2327.7, + "probability": 0.9719 + }, + { + "start": 2328.08, + "end": 2329.5, + "probability": 0.936 + }, + { + "start": 2329.56, + "end": 2332.36, + "probability": 0.9685 + }, + { + "start": 2333.04, + "end": 2341.1, + "probability": 0.9979 + }, + { + "start": 2343.64, + "end": 2347.94, + "probability": 0.9932 + }, + { + "start": 2348.02, + "end": 2349.42, + "probability": 0.8132 + }, + { + "start": 2349.96, + "end": 2351.18, + "probability": 0.9344 + }, + { + "start": 2352.0, + "end": 2356.0, + "probability": 0.9963 + }, + { + "start": 2356.84, + "end": 2360.6, + "probability": 0.8031 + }, + { + "start": 2361.34, + "end": 2362.55, + "probability": 0.7107 + }, + { + "start": 2363.96, + "end": 2366.62, + "probability": 0.5539 + }, + { + "start": 2367.52, + "end": 2369.96, + "probability": 0.9941 + }, + { + "start": 2370.58, + "end": 2374.32, + "probability": 0.9068 + }, + { + "start": 2374.68, + "end": 2382.32, + "probability": 0.9284 + }, + { + "start": 2382.84, + "end": 2385.58, + "probability": 0.6849 + }, + { + "start": 2386.28, + "end": 2386.72, + "probability": 0.8947 + }, + { + "start": 2387.06, + "end": 2388.64, + "probability": 0.9468 + }, + { + "start": 2389.76, + "end": 2392.86, + "probability": 0.9838 + }, + { + "start": 2393.86, + "end": 2399.08, + "probability": 0.9295 + }, + { + "start": 2399.9, + "end": 2401.48, + "probability": 0.5931 + }, + { + "start": 2402.04, + "end": 2403.14, + "probability": 0.7251 + }, + { + "start": 2404.28, + "end": 2405.38, + "probability": 0.8759 + }, + { + "start": 2405.78, + "end": 2406.26, + "probability": 0.9205 + }, + { + "start": 2406.38, + "end": 2407.36, + "probability": 0.8313 + }, + { + "start": 2407.76, + "end": 2411.34, + "probability": 0.662 + }, + { + "start": 2412.4, + "end": 2417.62, + "probability": 0.6996 + }, + { + "start": 2418.4, + "end": 2423.5, + "probability": 0.9952 + }, + { + "start": 2424.54, + "end": 2428.67, + "probability": 0.9943 + }, + { + "start": 2429.56, + "end": 2437.28, + "probability": 0.9937 + }, + { + "start": 2438.42, + "end": 2440.72, + "probability": 0.9886 + }, + { + "start": 2441.38, + "end": 2444.62, + "probability": 0.9414 + }, + { + "start": 2445.16, + "end": 2446.62, + "probability": 0.9709 + }, + { + "start": 2447.02, + "end": 2449.68, + "probability": 0.8027 + }, + { + "start": 2452.1, + "end": 2455.14, + "probability": 0.9942 + }, + { + "start": 2455.64, + "end": 2458.38, + "probability": 0.9969 + }, + { + "start": 2458.76, + "end": 2462.66, + "probability": 0.9979 + }, + { + "start": 2463.6, + "end": 2469.16, + "probability": 0.9885 + }, + { + "start": 2471.08, + "end": 2475.42, + "probability": 0.9937 + }, + { + "start": 2476.4, + "end": 2480.58, + "probability": 0.9956 + }, + { + "start": 2481.94, + "end": 2485.34, + "probability": 0.9937 + }, + { + "start": 2485.98, + "end": 2488.04, + "probability": 0.9902 + }, + { + "start": 2488.66, + "end": 2489.48, + "probability": 0.9856 + }, + { + "start": 2489.92, + "end": 2491.22, + "probability": 0.9919 + }, + { + "start": 2491.34, + "end": 2493.0, + "probability": 0.8536 + }, + { + "start": 2493.42, + "end": 2498.0, + "probability": 0.9987 + }, + { + "start": 2498.8, + "end": 2501.0, + "probability": 0.765 + }, + { + "start": 2501.88, + "end": 2504.54, + "probability": 0.9523 + }, + { + "start": 2505.36, + "end": 2506.26, + "probability": 0.9846 + }, + { + "start": 2507.72, + "end": 2509.66, + "probability": 0.9765 + }, + { + "start": 2510.54, + "end": 2516.07, + "probability": 0.9944 + }, + { + "start": 2517.04, + "end": 2519.9, + "probability": 0.8644 + }, + { + "start": 2520.54, + "end": 2524.84, + "probability": 0.9987 + }, + { + "start": 2525.48, + "end": 2531.36, + "probability": 0.9944 + }, + { + "start": 2531.78, + "end": 2532.88, + "probability": 0.9969 + }, + { + "start": 2533.42, + "end": 2536.4, + "probability": 0.9874 + }, + { + "start": 2536.86, + "end": 2541.3, + "probability": 0.9996 + }, + { + "start": 2542.2, + "end": 2543.86, + "probability": 0.9943 + }, + { + "start": 2543.94, + "end": 2548.6, + "probability": 0.9529 + }, + { + "start": 2549.08, + "end": 2551.02, + "probability": 0.9867 + }, + { + "start": 2551.5, + "end": 2552.14, + "probability": 0.9811 + }, + { + "start": 2552.72, + "end": 2556.54, + "probability": 0.9743 + }, + { + "start": 2557.78, + "end": 2562.9, + "probability": 0.9325 + }, + { + "start": 2562.9, + "end": 2566.92, + "probability": 0.9887 + }, + { + "start": 2568.46, + "end": 2572.2, + "probability": 0.9914 + }, + { + "start": 2572.38, + "end": 2573.8, + "probability": 0.9995 + }, + { + "start": 2574.36, + "end": 2575.24, + "probability": 0.9668 + }, + { + "start": 2575.86, + "end": 2579.0, + "probability": 0.9933 + }, + { + "start": 2579.58, + "end": 2580.76, + "probability": 0.9072 + }, + { + "start": 2581.34, + "end": 2585.32, + "probability": 0.8992 + }, + { + "start": 2586.02, + "end": 2591.46, + "probability": 0.994 + }, + { + "start": 2592.02, + "end": 2597.84, + "probability": 0.9951 + }, + { + "start": 2598.48, + "end": 2602.02, + "probability": 0.9382 + }, + { + "start": 2604.16, + "end": 2605.06, + "probability": 0.8692 + }, + { + "start": 2606.42, + "end": 2609.84, + "probability": 0.9883 + }, + { + "start": 2609.84, + "end": 2613.48, + "probability": 0.9986 + }, + { + "start": 2615.1, + "end": 2616.32, + "probability": 0.881 + }, + { + "start": 2617.4, + "end": 2622.22, + "probability": 0.9949 + }, + { + "start": 2622.9, + "end": 2627.88, + "probability": 0.9941 + }, + { + "start": 2629.58, + "end": 2630.5, + "probability": 0.8528 + }, + { + "start": 2632.16, + "end": 2636.16, + "probability": 0.9817 + }, + { + "start": 2641.14, + "end": 2641.3, + "probability": 0.905 + }, + { + "start": 2641.82, + "end": 2643.0, + "probability": 0.9185 + }, + { + "start": 2644.62, + "end": 2645.42, + "probability": 0.9767 + }, + { + "start": 2651.64, + "end": 2654.12, + "probability": 0.8277 + }, + { + "start": 2654.7, + "end": 2655.38, + "probability": 0.8597 + }, + { + "start": 2656.36, + "end": 2657.92, + "probability": 0.9953 + }, + { + "start": 2658.5, + "end": 2661.38, + "probability": 0.9972 + }, + { + "start": 2662.54, + "end": 2666.24, + "probability": 0.9965 + }, + { + "start": 2666.92, + "end": 2668.34, + "probability": 0.9145 + }, + { + "start": 2668.52, + "end": 2669.16, + "probability": 0.8311 + }, + { + "start": 2669.62, + "end": 2671.64, + "probability": 0.9963 + }, + { + "start": 2672.4, + "end": 2676.2, + "probability": 0.9986 + }, + { + "start": 2677.42, + "end": 2680.62, + "probability": 0.9085 + }, + { + "start": 2681.42, + "end": 2684.0, + "probability": 0.9132 + }, + { + "start": 2684.7, + "end": 2689.6, + "probability": 0.9678 + }, + { + "start": 2690.66, + "end": 2692.32, + "probability": 0.9684 + }, + { + "start": 2694.72, + "end": 2699.78, + "probability": 0.9961 + }, + { + "start": 2702.22, + "end": 2703.84, + "probability": 0.9948 + }, + { + "start": 2704.76, + "end": 2705.64, + "probability": 0.999 + }, + { + "start": 2706.92, + "end": 2709.94, + "probability": 0.9994 + }, + { + "start": 2710.38, + "end": 2714.7, + "probability": 0.9992 + }, + { + "start": 2715.0, + "end": 2716.28, + "probability": 0.6771 + }, + { + "start": 2716.56, + "end": 2717.88, + "probability": 0.9796 + }, + { + "start": 2718.7, + "end": 2720.32, + "probability": 0.7181 + }, + { + "start": 2720.76, + "end": 2724.78, + "probability": 0.9946 + }, + { + "start": 2725.48, + "end": 2728.64, + "probability": 0.8135 + }, + { + "start": 2731.72, + "end": 2735.06, + "probability": 0.999 + }, + { + "start": 2736.06, + "end": 2739.36, + "probability": 0.9479 + }, + { + "start": 2739.96, + "end": 2740.76, + "probability": 0.9492 + }, + { + "start": 2741.6, + "end": 2743.22, + "probability": 0.9117 + }, + { + "start": 2743.32, + "end": 2747.8, + "probability": 0.9366 + }, + { + "start": 2748.92, + "end": 2751.24, + "probability": 0.9474 + }, + { + "start": 2751.36, + "end": 2753.5, + "probability": 0.8502 + }, + { + "start": 2754.32, + "end": 2758.18, + "probability": 0.8757 + }, + { + "start": 2759.18, + "end": 2759.72, + "probability": 0.9323 + }, + { + "start": 2761.06, + "end": 2764.06, + "probability": 0.8848 + }, + { + "start": 2765.24, + "end": 2766.42, + "probability": 0.3637 + }, + { + "start": 2767.9, + "end": 2769.82, + "probability": 0.8058 + }, + { + "start": 2771.08, + "end": 2772.76, + "probability": 0.8732 + }, + { + "start": 2773.34, + "end": 2776.34, + "probability": 0.5892 + }, + { + "start": 2777.12, + "end": 2784.02, + "probability": 0.9949 + }, + { + "start": 2785.18, + "end": 2787.34, + "probability": 0.9935 + }, + { + "start": 2789.28, + "end": 2793.0, + "probability": 0.9731 + }, + { + "start": 2794.12, + "end": 2794.72, + "probability": 0.7095 + }, + { + "start": 2795.68, + "end": 2796.26, + "probability": 0.6255 + }, + { + "start": 2797.22, + "end": 2800.28, + "probability": 0.7041 + }, + { + "start": 2801.08, + "end": 2802.62, + "probability": 0.8955 + }, + { + "start": 2803.78, + "end": 2805.9, + "probability": 0.9191 + }, + { + "start": 2805.9, + "end": 2811.28, + "probability": 0.9515 + }, + { + "start": 2812.02, + "end": 2815.8, + "probability": 0.7499 + }, + { + "start": 2816.76, + "end": 2818.38, + "probability": 0.7968 + }, + { + "start": 2819.26, + "end": 2820.88, + "probability": 0.7834 + }, + { + "start": 2821.28, + "end": 2821.68, + "probability": 0.7759 + }, + { + "start": 2824.26, + "end": 2825.2, + "probability": 0.7968 + }, + { + "start": 2825.66, + "end": 2829.01, + "probability": 0.8538 + }, + { + "start": 2829.52, + "end": 2831.34, + "probability": 0.1647 + }, + { + "start": 2832.06, + "end": 2834.08, + "probability": 0.0556 + }, + { + "start": 2835.72, + "end": 2836.48, + "probability": 0.1386 + }, + { + "start": 2845.44, + "end": 2846.28, + "probability": 0.0992 + }, + { + "start": 2846.28, + "end": 2846.74, + "probability": 0.1995 + }, + { + "start": 2846.88, + "end": 2847.88, + "probability": 0.0313 + }, + { + "start": 2847.96, + "end": 2848.88, + "probability": 0.1166 + }, + { + "start": 2850.73, + "end": 2851.74, + "probability": 0.0694 + }, + { + "start": 2856.16, + "end": 2856.74, + "probability": 0.1005 + }, + { + "start": 2857.38, + "end": 2858.84, + "probability": 0.1146 + }, + { + "start": 2860.12, + "end": 2860.6, + "probability": 0.1476 + }, + { + "start": 2860.72, + "end": 2861.04, + "probability": 0.2608 + }, + { + "start": 2861.82, + "end": 2861.94, + "probability": 0.1484 + }, + { + "start": 2862.64, + "end": 2863.48, + "probability": 0.1735 + }, + { + "start": 2863.96, + "end": 2864.3, + "probability": 0.1028 + }, + { + "start": 2864.74, + "end": 2866.12, + "probability": 0.1484 + }, + { + "start": 2866.96, + "end": 2869.18, + "probability": 0.0341 + }, + { + "start": 2873.75, + "end": 2874.7, + "probability": 0.054 + }, + { + "start": 2876.4, + "end": 2883.46, + "probability": 0.0047 + }, + { + "start": 2889.27, + "end": 2891.14, + "probability": 0.0204 + }, + { + "start": 2891.14, + "end": 2891.18, + "probability": 0.004 + }, + { + "start": 3002.06, + "end": 3002.8, + "probability": 0.4917 + }, + { + "start": 3003.4, + "end": 3006.36, + "probability": 0.9946 + }, + { + "start": 3006.92, + "end": 3008.38, + "probability": 0.9811 + }, + { + "start": 3009.28, + "end": 3009.84, + "probability": 0.9509 + }, + { + "start": 3010.7, + "end": 3011.88, + "probability": 0.9838 + }, + { + "start": 3012.7, + "end": 3015.08, + "probability": 0.9037 + }, + { + "start": 3016.34, + "end": 3018.0, + "probability": 0.9822 + }, + { + "start": 3020.08, + "end": 3024.0, + "probability": 0.6765 + }, + { + "start": 3025.1, + "end": 3026.52, + "probability": 0.6727 + }, + { + "start": 3027.4, + "end": 3029.92, + "probability": 0.9326 + }, + { + "start": 3030.46, + "end": 3033.0, + "probability": 0.7744 + }, + { + "start": 3034.62, + "end": 3037.58, + "probability": 0.8586 + }, + { + "start": 3038.24, + "end": 3039.56, + "probability": 0.9473 + }, + { + "start": 3040.12, + "end": 3040.92, + "probability": 0.9351 + }, + { + "start": 3041.76, + "end": 3042.64, + "probability": 0.7313 + }, + { + "start": 3043.4, + "end": 3045.26, + "probability": 0.9942 + }, + { + "start": 3046.42, + "end": 3046.62, + "probability": 0.488 + }, + { + "start": 3046.7, + "end": 3046.88, + "probability": 0.6777 + }, + { + "start": 3047.08, + "end": 3048.84, + "probability": 0.9689 + }, + { + "start": 3049.04, + "end": 3049.42, + "probability": 0.9555 + }, + { + "start": 3050.7, + "end": 3055.98, + "probability": 0.9773 + }, + { + "start": 3057.1, + "end": 3061.96, + "probability": 0.8907 + }, + { + "start": 3062.5, + "end": 3062.74, + "probability": 0.8257 + }, + { + "start": 3063.34, + "end": 3064.38, + "probability": 0.9081 + }, + { + "start": 3065.58, + "end": 3067.08, + "probability": 0.6291 + }, + { + "start": 3068.3, + "end": 3070.56, + "probability": 0.9968 + }, + { + "start": 3071.52, + "end": 3072.72, + "probability": 0.8793 + }, + { + "start": 3073.88, + "end": 3078.02, + "probability": 0.9672 + }, + { + "start": 3078.74, + "end": 3082.34, + "probability": 0.7805 + }, + { + "start": 3083.38, + "end": 3084.28, + "probability": 0.6846 + }, + { + "start": 3084.34, + "end": 3088.02, + "probability": 0.9192 + }, + { + "start": 3088.8, + "end": 3089.9, + "probability": 0.9683 + }, + { + "start": 3091.16, + "end": 3091.84, + "probability": 0.4947 + }, + { + "start": 3092.06, + "end": 3093.12, + "probability": 0.7497 + }, + { + "start": 3093.18, + "end": 3095.9, + "probability": 0.9896 + }, + { + "start": 3096.44, + "end": 3099.46, + "probability": 0.9872 + }, + { + "start": 3100.22, + "end": 3102.74, + "probability": 0.9882 + }, + { + "start": 3103.72, + "end": 3106.4, + "probability": 0.9769 + }, + { + "start": 3106.84, + "end": 3108.76, + "probability": 0.855 + }, + { + "start": 3108.92, + "end": 3109.58, + "probability": 0.8071 + }, + { + "start": 3110.18, + "end": 3113.48, + "probability": 0.738 + }, + { + "start": 3115.0, + "end": 3115.9, + "probability": 0.9951 + }, + { + "start": 3116.08, + "end": 3116.2, + "probability": 0.7226 + }, + { + "start": 3116.36, + "end": 3120.01, + "probability": 0.9308 + }, + { + "start": 3120.32, + "end": 3120.54, + "probability": 0.5806 + }, + { + "start": 3121.0, + "end": 3123.32, + "probability": 0.9563 + }, + { + "start": 3123.58, + "end": 3126.66, + "probability": 0.9941 + }, + { + "start": 3127.2, + "end": 3130.34, + "probability": 0.9858 + }, + { + "start": 3131.52, + "end": 3132.26, + "probability": 0.9204 + }, + { + "start": 3132.46, + "end": 3135.54, + "probability": 0.9779 + }, + { + "start": 3136.7, + "end": 3138.18, + "probability": 0.4774 + }, + { + "start": 3138.24, + "end": 3138.7, + "probability": 0.2876 + }, + { + "start": 3138.84, + "end": 3139.74, + "probability": 0.7491 + }, + { + "start": 3140.16, + "end": 3141.6, + "probability": 0.9677 + }, + { + "start": 3141.9, + "end": 3146.32, + "probability": 0.9519 + }, + { + "start": 3146.92, + "end": 3147.68, + "probability": 0.8086 + }, + { + "start": 3150.24, + "end": 3154.22, + "probability": 0.9834 + }, + { + "start": 3155.42, + "end": 3156.12, + "probability": 0.612 + }, + { + "start": 3156.16, + "end": 3156.48, + "probability": 0.6909 + }, + { + "start": 3156.5, + "end": 3161.72, + "probability": 0.9191 + }, + { + "start": 3162.46, + "end": 3165.0, + "probability": 0.9974 + }, + { + "start": 3166.76, + "end": 3168.96, + "probability": 0.9912 + }, + { + "start": 3169.04, + "end": 3169.24, + "probability": 0.9067 + }, + { + "start": 3169.38, + "end": 3169.92, + "probability": 0.5548 + }, + { + "start": 3170.34, + "end": 3171.64, + "probability": 0.9888 + }, + { + "start": 3172.3, + "end": 3173.34, + "probability": 0.8449 + }, + { + "start": 3173.98, + "end": 3174.3, + "probability": 0.9882 + }, + { + "start": 3176.14, + "end": 3176.7, + "probability": 0.9175 + }, + { + "start": 3177.54, + "end": 3180.76, + "probability": 0.7807 + }, + { + "start": 3181.28, + "end": 3182.3, + "probability": 0.9451 + }, + { + "start": 3183.02, + "end": 3183.88, + "probability": 0.8191 + }, + { + "start": 3184.36, + "end": 3186.44, + "probability": 0.9219 + }, + { + "start": 3187.36, + "end": 3192.46, + "probability": 0.9984 + }, + { + "start": 3193.04, + "end": 3194.8, + "probability": 0.9878 + }, + { + "start": 3196.28, + "end": 3197.28, + "probability": 0.5745 + }, + { + "start": 3197.86, + "end": 3201.8, + "probability": 0.9673 + }, + { + "start": 3202.56, + "end": 3206.16, + "probability": 0.8887 + }, + { + "start": 3206.7, + "end": 3207.12, + "probability": 0.8776 + }, + { + "start": 3207.78, + "end": 3209.02, + "probability": 0.7174 + }, + { + "start": 3209.78, + "end": 3213.22, + "probability": 0.9719 + }, + { + "start": 3213.84, + "end": 3214.58, + "probability": 0.9839 + }, + { + "start": 3215.7, + "end": 3217.42, + "probability": 0.9832 + }, + { + "start": 3218.12, + "end": 3222.52, + "probability": 0.9655 + }, + { + "start": 3223.36, + "end": 3226.32, + "probability": 0.9968 + }, + { + "start": 3226.84, + "end": 3230.12, + "probability": 0.9927 + }, + { + "start": 3230.86, + "end": 3232.92, + "probability": 0.9885 + }, + { + "start": 3233.56, + "end": 3235.68, + "probability": 0.9938 + }, + { + "start": 3236.44, + "end": 3237.1, + "probability": 0.9902 + }, + { + "start": 3237.66, + "end": 3240.14, + "probability": 0.8796 + }, + { + "start": 3241.98, + "end": 3244.56, + "probability": 0.8638 + }, + { + "start": 3244.92, + "end": 3248.62, + "probability": 0.8621 + }, + { + "start": 3249.96, + "end": 3252.88, + "probability": 0.9938 + }, + { + "start": 3253.44, + "end": 3253.88, + "probability": 0.9164 + }, + { + "start": 3256.24, + "end": 3258.28, + "probability": 0.8693 + }, + { + "start": 3260.24, + "end": 3264.74, + "probability": 0.9077 + }, + { + "start": 3265.36, + "end": 3266.68, + "probability": 0.9977 + }, + { + "start": 3267.3, + "end": 3269.26, + "probability": 0.9407 + }, + { + "start": 3288.68, + "end": 3288.9, + "probability": 0.1722 + }, + { + "start": 3288.9, + "end": 3288.9, + "probability": 0.1755 + }, + { + "start": 3288.9, + "end": 3289.12, + "probability": 0.0215 + }, + { + "start": 3289.12, + "end": 3289.12, + "probability": 0.022 + }, + { + "start": 3289.12, + "end": 3289.12, + "probability": 0.08 + }, + { + "start": 3316.46, + "end": 3324.56, + "probability": 0.8052 + }, + { + "start": 3325.86, + "end": 3326.4, + "probability": 0.8657 + }, + { + "start": 3327.46, + "end": 3328.64, + "probability": 0.9446 + }, + { + "start": 3329.38, + "end": 3332.94, + "probability": 0.8577 + }, + { + "start": 3334.06, + "end": 3335.44, + "probability": 0.9862 + }, + { + "start": 3336.2, + "end": 3338.1, + "probability": 0.9972 + }, + { + "start": 3338.62, + "end": 3343.26, + "probability": 0.9927 + }, + { + "start": 3343.92, + "end": 3347.4, + "probability": 0.9359 + }, + { + "start": 3348.36, + "end": 3353.54, + "probability": 0.967 + }, + { + "start": 3355.3, + "end": 3355.92, + "probability": 0.8885 + }, + { + "start": 3356.68, + "end": 3357.4, + "probability": 0.7086 + }, + { + "start": 3358.24, + "end": 3358.78, + "probability": 0.9316 + }, + { + "start": 3360.26, + "end": 3362.76, + "probability": 0.9927 + }, + { + "start": 3363.56, + "end": 3364.16, + "probability": 0.7358 + }, + { + "start": 3365.08, + "end": 3365.78, + "probability": 0.9522 + }, + { + "start": 3366.54, + "end": 3367.62, + "probability": 0.959 + }, + { + "start": 3368.74, + "end": 3370.92, + "probability": 0.7896 + }, + { + "start": 3373.74, + "end": 3374.4, + "probability": 0.9595 + }, + { + "start": 3375.3, + "end": 3382.22, + "probability": 0.987 + }, + { + "start": 3383.54, + "end": 3387.32, + "probability": 0.9139 + }, + { + "start": 3388.02, + "end": 3388.88, + "probability": 0.8237 + }, + { + "start": 3389.86, + "end": 3390.44, + "probability": 0.9956 + }, + { + "start": 3390.96, + "end": 3393.02, + "probability": 0.9481 + }, + { + "start": 3394.6, + "end": 3396.08, + "probability": 0.7373 + }, + { + "start": 3396.7, + "end": 3401.66, + "probability": 0.9679 + }, + { + "start": 3402.9, + "end": 3405.38, + "probability": 0.9871 + }, + { + "start": 3406.26, + "end": 3407.82, + "probability": 0.9885 + }, + { + "start": 3409.52, + "end": 3413.32, + "probability": 0.9873 + }, + { + "start": 3414.06, + "end": 3414.96, + "probability": 0.595 + }, + { + "start": 3415.92, + "end": 3416.7, + "probability": 0.9453 + }, + { + "start": 3417.6, + "end": 3420.08, + "probability": 0.9795 + }, + { + "start": 3421.34, + "end": 3422.08, + "probability": 0.9546 + }, + { + "start": 3423.24, + "end": 3426.2, + "probability": 0.9797 + }, + { + "start": 3427.1, + "end": 3430.56, + "probability": 0.6926 + }, + { + "start": 3431.68, + "end": 3433.38, + "probability": 0.9849 + }, + { + "start": 3435.18, + "end": 3435.96, + "probability": 0.9722 + }, + { + "start": 3437.06, + "end": 3441.04, + "probability": 0.8569 + }, + { + "start": 3441.8, + "end": 3444.3, + "probability": 0.9979 + }, + { + "start": 3445.26, + "end": 3448.22, + "probability": 0.9832 + }, + { + "start": 3449.2, + "end": 3452.2, + "probability": 0.9918 + }, + { + "start": 3453.9, + "end": 3455.38, + "probability": 0.9954 + }, + { + "start": 3456.08, + "end": 3457.0, + "probability": 0.8455 + }, + { + "start": 3457.62, + "end": 3459.98, + "probability": 0.97 + }, + { + "start": 3461.48, + "end": 3463.18, + "probability": 0.9635 + }, + { + "start": 3463.7, + "end": 3464.9, + "probability": 0.786 + }, + { + "start": 3466.18, + "end": 3473.64, + "probability": 0.9515 + }, + { + "start": 3474.26, + "end": 3475.76, + "probability": 0.7602 + }, + { + "start": 3476.86, + "end": 3477.54, + "probability": 0.634 + }, + { + "start": 3478.86, + "end": 3479.94, + "probability": 0.8807 + }, + { + "start": 3480.5, + "end": 3484.18, + "probability": 0.9919 + }, + { + "start": 3485.32, + "end": 3486.86, + "probability": 0.9609 + }, + { + "start": 3489.38, + "end": 3490.14, + "probability": 0.7081 + }, + { + "start": 3491.56, + "end": 3494.8, + "probability": 0.9987 + }, + { + "start": 3495.94, + "end": 3499.44, + "probability": 0.9911 + }, + { + "start": 3500.76, + "end": 3501.64, + "probability": 0.7937 + }, + { + "start": 3502.46, + "end": 3504.88, + "probability": 0.9788 + }, + { + "start": 3505.8, + "end": 3506.84, + "probability": 0.8325 + }, + { + "start": 3507.52, + "end": 3509.2, + "probability": 0.9268 + }, + { + "start": 3509.76, + "end": 3510.56, + "probability": 0.9929 + }, + { + "start": 3511.92, + "end": 3512.7, + "probability": 0.824 + }, + { + "start": 3513.44, + "end": 3514.36, + "probability": 0.9328 + }, + { + "start": 3515.42, + "end": 3515.86, + "probability": 0.9761 + }, + { + "start": 3516.62, + "end": 3519.72, + "probability": 0.9788 + }, + { + "start": 3520.84, + "end": 3521.44, + "probability": 0.6499 + }, + { + "start": 3522.64, + "end": 3528.46, + "probability": 0.9956 + }, + { + "start": 3528.98, + "end": 3531.0, + "probability": 0.9976 + }, + { + "start": 3531.78, + "end": 3532.2, + "probability": 0.8272 + }, + { + "start": 3533.36, + "end": 3535.62, + "probability": 0.989 + }, + { + "start": 3536.36, + "end": 3541.68, + "probability": 0.9408 + }, + { + "start": 3542.9, + "end": 3544.76, + "probability": 0.8984 + }, + { + "start": 3545.7, + "end": 3546.84, + "probability": 0.9187 + }, + { + "start": 3547.58, + "end": 3550.14, + "probability": 0.9728 + }, + { + "start": 3550.82, + "end": 3552.4, + "probability": 0.7142 + }, + { + "start": 3554.2, + "end": 3556.74, + "probability": 0.9922 + }, + { + "start": 3557.46, + "end": 3563.88, + "probability": 0.9745 + }, + { + "start": 3565.74, + "end": 3566.7, + "probability": 0.9764 + }, + { + "start": 3568.18, + "end": 3568.8, + "probability": 0.7364 + }, + { + "start": 3569.92, + "end": 3573.5, + "probability": 0.9447 + }, + { + "start": 3574.28, + "end": 3575.26, + "probability": 0.8987 + }, + { + "start": 3576.12, + "end": 3576.76, + "probability": 0.7788 + }, + { + "start": 3577.98, + "end": 3583.42, + "probability": 0.9814 + }, + { + "start": 3585.18, + "end": 3586.88, + "probability": 0.9121 + }, + { + "start": 3587.66, + "end": 3589.24, + "probability": 0.7004 + }, + { + "start": 3590.48, + "end": 3592.08, + "probability": 0.9389 + }, + { + "start": 3593.54, + "end": 3593.98, + "probability": 0.7506 + }, + { + "start": 3595.36, + "end": 3597.58, + "probability": 0.998 + }, + { + "start": 3598.16, + "end": 3603.16, + "probability": 0.9502 + }, + { + "start": 3604.5, + "end": 3607.86, + "probability": 0.9642 + }, + { + "start": 3608.48, + "end": 3612.08, + "probability": 0.8915 + }, + { + "start": 3613.04, + "end": 3616.52, + "probability": 0.9978 + }, + { + "start": 3617.58, + "end": 3618.58, + "probability": 0.8257 + }, + { + "start": 3619.28, + "end": 3620.3, + "probability": 0.8556 + }, + { + "start": 3621.26, + "end": 3622.48, + "probability": 0.9039 + }, + { + "start": 3623.14, + "end": 3625.68, + "probability": 0.8246 + }, + { + "start": 3626.76, + "end": 3629.48, + "probability": 0.7621 + }, + { + "start": 3630.46, + "end": 3631.3, + "probability": 0.998 + }, + { + "start": 3631.92, + "end": 3632.32, + "probability": 0.7258 + }, + { + "start": 3634.32, + "end": 3635.52, + "probability": 0.7453 + }, + { + "start": 3638.02, + "end": 3641.56, + "probability": 0.9843 + }, + { + "start": 3644.46, + "end": 3647.18, + "probability": 0.9686 + }, + { + "start": 3648.14, + "end": 3648.7, + "probability": 0.955 + }, + { + "start": 3649.46, + "end": 3653.16, + "probability": 0.999 + }, + { + "start": 3654.52, + "end": 3654.96, + "probability": 0.7668 + }, + { + "start": 3656.74, + "end": 3658.44, + "probability": 0.9307 + }, + { + "start": 3659.02, + "end": 3661.16, + "probability": 0.998 + }, + { + "start": 3663.0, + "end": 3664.76, + "probability": 0.9866 + }, + { + "start": 3665.78, + "end": 3667.82, + "probability": 0.6786 + }, + { + "start": 3669.5, + "end": 3671.76, + "probability": 0.9975 + }, + { + "start": 3672.4, + "end": 3673.1, + "probability": 0.7794 + }, + { + "start": 3674.2, + "end": 3675.56, + "probability": 0.6876 + }, + { + "start": 3676.36, + "end": 3680.44, + "probability": 0.999 + }, + { + "start": 3681.32, + "end": 3682.18, + "probability": 0.9806 + }, + { + "start": 3682.8, + "end": 3686.44, + "probability": 0.9993 + }, + { + "start": 3688.2, + "end": 3688.74, + "probability": 0.7961 + }, + { + "start": 3690.1, + "end": 3690.96, + "probability": 0.9397 + }, + { + "start": 3692.42, + "end": 3693.52, + "probability": 0.9291 + }, + { + "start": 3694.24, + "end": 3696.54, + "probability": 0.9863 + }, + { + "start": 3697.76, + "end": 3698.92, + "probability": 0.9267 + }, + { + "start": 3700.9, + "end": 3705.8, + "probability": 0.9752 + }, + { + "start": 3707.56, + "end": 3708.56, + "probability": 0.9976 + }, + { + "start": 3710.56, + "end": 3712.12, + "probability": 0.673 + }, + { + "start": 3714.38, + "end": 3715.28, + "probability": 0.991 + }, + { + "start": 3716.16, + "end": 3718.78, + "probability": 0.9615 + }, + { + "start": 3719.36, + "end": 3720.14, + "probability": 0.8139 + }, + { + "start": 3720.76, + "end": 3723.18, + "probability": 0.7767 + }, + { + "start": 3724.44, + "end": 3727.06, + "probability": 0.9135 + }, + { + "start": 3728.46, + "end": 3728.98, + "probability": 0.8062 + }, + { + "start": 3729.56, + "end": 3732.5, + "probability": 0.9783 + }, + { + "start": 3733.44, + "end": 3735.62, + "probability": 0.9976 + }, + { + "start": 3736.66, + "end": 3739.62, + "probability": 0.9961 + }, + { + "start": 3741.82, + "end": 3742.49, + "probability": 0.3559 + }, + { + "start": 3743.6, + "end": 3745.54, + "probability": 0.9862 + }, + { + "start": 3747.04, + "end": 3751.36, + "probability": 0.9966 + }, + { + "start": 3752.86, + "end": 3755.16, + "probability": 0.9805 + }, + { + "start": 3756.18, + "end": 3757.04, + "probability": 0.778 + }, + { + "start": 3757.76, + "end": 3761.72, + "probability": 0.892 + }, + { + "start": 3762.38, + "end": 3763.68, + "probability": 0.9756 + }, + { + "start": 3765.86, + "end": 3767.94, + "probability": 0.9727 + }, + { + "start": 3769.38, + "end": 3775.78, + "probability": 0.9127 + }, + { + "start": 3776.76, + "end": 3781.32, + "probability": 0.9987 + }, + { + "start": 3782.08, + "end": 3783.52, + "probability": 0.981 + }, + { + "start": 3784.16, + "end": 3787.62, + "probability": 0.9782 + }, + { + "start": 3789.06, + "end": 3791.8, + "probability": 0.9951 + }, + { + "start": 3794.68, + "end": 3795.56, + "probability": 0.8257 + }, + { + "start": 3796.84, + "end": 3800.42, + "probability": 0.9558 + }, + { + "start": 3801.32, + "end": 3807.44, + "probability": 0.9922 + }, + { + "start": 3809.86, + "end": 3810.92, + "probability": 0.999 + }, + { + "start": 3812.62, + "end": 3815.37, + "probability": 0.887 + }, + { + "start": 3816.86, + "end": 3818.36, + "probability": 0.9186 + }, + { + "start": 3820.08, + "end": 3824.26, + "probability": 0.9758 + }, + { + "start": 3824.86, + "end": 3826.58, + "probability": 0.9737 + }, + { + "start": 3827.4, + "end": 3827.98, + "probability": 0.9656 + }, + { + "start": 3828.7, + "end": 3831.5, + "probability": 0.9838 + }, + { + "start": 3832.38, + "end": 3833.36, + "probability": 0.9342 + }, + { + "start": 3835.4, + "end": 3836.16, + "probability": 0.7589 + }, + { + "start": 3836.86, + "end": 3837.52, + "probability": 0.7578 + }, + { + "start": 3839.5, + "end": 3841.3, + "probability": 0.9966 + }, + { + "start": 3842.16, + "end": 3845.56, + "probability": 0.9973 + }, + { + "start": 3846.72, + "end": 3850.56, + "probability": 0.9693 + }, + { + "start": 3851.92, + "end": 3852.68, + "probability": 0.7601 + }, + { + "start": 3853.44, + "end": 3856.44, + "probability": 0.998 + }, + { + "start": 3857.44, + "end": 3857.86, + "probability": 0.9492 + }, + { + "start": 3859.44, + "end": 3860.12, + "probability": 0.8514 + }, + { + "start": 3860.7, + "end": 3861.58, + "probability": 0.8513 + }, + { + "start": 3863.18, + "end": 3864.38, + "probability": 0.8476 + }, + { + "start": 3865.08, + "end": 3868.28, + "probability": 0.9314 + }, + { + "start": 3868.94, + "end": 3870.6, + "probability": 0.9885 + }, + { + "start": 3872.56, + "end": 3874.34, + "probability": 0.7688 + }, + { + "start": 3875.2, + "end": 3876.5, + "probability": 0.741 + }, + { + "start": 3877.44, + "end": 3879.7, + "probability": 0.9851 + }, + { + "start": 3880.58, + "end": 3881.77, + "probability": 0.9875 + }, + { + "start": 3882.3, + "end": 3883.62, + "probability": 0.9971 + }, + { + "start": 3884.14, + "end": 3887.7, + "probability": 0.6441 + }, + { + "start": 3888.64, + "end": 3889.24, + "probability": 0.7822 + }, + { + "start": 3890.22, + "end": 3890.86, + "probability": 0.9656 + }, + { + "start": 3891.38, + "end": 3893.04, + "probability": 0.9767 + }, + { + "start": 3894.02, + "end": 3895.68, + "probability": 0.8219 + }, + { + "start": 3896.7, + "end": 3902.3, + "probability": 0.9884 + }, + { + "start": 3903.28, + "end": 3905.04, + "probability": 0.9361 + }, + { + "start": 3906.68, + "end": 3909.74, + "probability": 0.9569 + }, + { + "start": 3910.34, + "end": 3912.72, + "probability": 0.9266 + }, + { + "start": 3915.42, + "end": 3917.49, + "probability": 0.8901 + }, + { + "start": 3919.74, + "end": 3920.16, + "probability": 0.9469 + }, + { + "start": 3920.68, + "end": 3921.14, + "probability": 0.9896 + }, + { + "start": 3921.94, + "end": 3928.62, + "probability": 0.8579 + }, + { + "start": 3929.5, + "end": 3931.28, + "probability": 0.9959 + }, + { + "start": 3932.24, + "end": 3937.52, + "probability": 0.9423 + }, + { + "start": 3938.94, + "end": 3941.68, + "probability": 0.8391 + }, + { + "start": 3942.58, + "end": 3943.3, + "probability": 0.4801 + }, + { + "start": 3944.52, + "end": 3948.96, + "probability": 0.9772 + }, + { + "start": 3950.52, + "end": 3953.04, + "probability": 0.9927 + }, + { + "start": 3953.66, + "end": 3954.94, + "probability": 0.7953 + }, + { + "start": 3956.04, + "end": 3964.24, + "probability": 0.8311 + }, + { + "start": 3966.22, + "end": 3966.22, + "probability": 0.0937 + }, + { + "start": 3966.88, + "end": 3967.52, + "probability": 0.8524 + }, + { + "start": 3969.18, + "end": 3974.4, + "probability": 0.9838 + }, + { + "start": 3975.1, + "end": 3978.74, + "probability": 0.9694 + }, + { + "start": 3980.0, + "end": 3981.24, + "probability": 0.8528 + }, + { + "start": 3981.72, + "end": 3983.24, + "probability": 0.7563 + }, + { + "start": 3983.28, + "end": 3985.06, + "probability": 0.9328 + }, + { + "start": 3985.7, + "end": 3986.78, + "probability": 0.6889 + }, + { + "start": 3987.42, + "end": 3988.92, + "probability": 0.7937 + }, + { + "start": 3990.26, + "end": 3995.38, + "probability": 0.9911 + }, + { + "start": 3996.0, + "end": 3999.14, + "probability": 0.991 + }, + { + "start": 4001.56, + "end": 4003.24, + "probability": 0.9502 + }, + { + "start": 4005.08, + "end": 4007.84, + "probability": 0.9949 + }, + { + "start": 4009.2, + "end": 4013.18, + "probability": 0.9966 + }, + { + "start": 4014.48, + "end": 4016.54, + "probability": 0.9963 + }, + { + "start": 4017.68, + "end": 4019.5, + "probability": 0.9602 + }, + { + "start": 4020.26, + "end": 4023.92, + "probability": 0.9663 + }, + { + "start": 4026.18, + "end": 4026.72, + "probability": 0.6379 + }, + { + "start": 4027.88, + "end": 4032.5, + "probability": 0.7081 + }, + { + "start": 4033.54, + "end": 4036.04, + "probability": 0.938 + }, + { + "start": 4037.1, + "end": 4040.53, + "probability": 0.9729 + }, + { + "start": 4041.78, + "end": 4044.16, + "probability": 0.9867 + }, + { + "start": 4044.82, + "end": 4045.26, + "probability": 0.7734 + }, + { + "start": 4048.02, + "end": 4050.78, + "probability": 0.9431 + }, + { + "start": 4053.44, + "end": 4056.16, + "probability": 0.9408 + }, + { + "start": 4060.22, + "end": 4062.27, + "probability": 0.7761 + }, + { + "start": 4063.98, + "end": 4065.5, + "probability": 0.7844 + }, + { + "start": 4065.94, + "end": 4067.46, + "probability": 0.7641 + }, + { + "start": 4067.68, + "end": 4069.26, + "probability": 0.9736 + }, + { + "start": 4069.86, + "end": 4073.25, + "probability": 0.7749 + }, + { + "start": 4074.52, + "end": 4078.68, + "probability": 0.9932 + }, + { + "start": 4078.98, + "end": 4079.34, + "probability": 0.7207 + }, + { + "start": 4081.72, + "end": 4083.52, + "probability": 0.848 + }, + { + "start": 4084.8, + "end": 4086.64, + "probability": 0.9722 + }, + { + "start": 4086.84, + "end": 4092.44, + "probability": 0.9809 + }, + { + "start": 4112.32, + "end": 4113.72, + "probability": 0.4648 + }, + { + "start": 4120.9, + "end": 4122.69, + "probability": 0.0206 + }, + { + "start": 4125.46, + "end": 4125.88, + "probability": 0.1207 + }, + { + "start": 4126.42, + "end": 4130.44, + "probability": 0.1673 + }, + { + "start": 4130.98, + "end": 4133.42, + "probability": 0.0468 + }, + { + "start": 4159.06, + "end": 4159.52, + "probability": 0.0003 + }, + { + "start": 4170.02, + "end": 4177.96, + "probability": 0.545 + }, + { + "start": 4179.42, + "end": 4180.1, + "probability": 0.4957 + }, + { + "start": 4181.42, + "end": 4184.36, + "probability": 0.4596 + }, + { + "start": 4186.54, + "end": 4189.38, + "probability": 0.9888 + }, + { + "start": 4190.5, + "end": 4192.54, + "probability": 0.6032 + }, + { + "start": 4195.18, + "end": 4195.46, + "probability": 0.7139 + }, + { + "start": 4197.56, + "end": 4202.94, + "probability": 0.6509 + }, + { + "start": 4207.52, + "end": 4214.02, + "probability": 0.6332 + }, + { + "start": 4217.52, + "end": 4218.04, + "probability": 0.1381 + }, + { + "start": 4218.04, + "end": 4220.86, + "probability": 0.9507 + }, + { + "start": 4221.76, + "end": 4226.34, + "probability": 0.7612 + }, + { + "start": 4226.9, + "end": 4227.88, + "probability": 0.6758 + }, + { + "start": 4230.04, + "end": 4232.7, + "probability": 0.5469 + }, + { + "start": 4235.0, + "end": 4238.7, + "probability": 0.8845 + }, + { + "start": 4240.32, + "end": 4241.46, + "probability": 0.6799 + }, + { + "start": 4243.38, + "end": 4245.73, + "probability": 0.9697 + }, + { + "start": 4245.98, + "end": 4247.7, + "probability": 0.9821 + }, + { + "start": 4248.52, + "end": 4249.72, + "probability": 0.6691 + }, + { + "start": 4250.14, + "end": 4251.74, + "probability": 0.7392 + }, + { + "start": 4253.02, + "end": 4253.94, + "probability": 0.6081 + }, + { + "start": 4254.76, + "end": 4256.4, + "probability": 0.8385 + }, + { + "start": 4256.82, + "end": 4258.66, + "probability": 0.8979 + }, + { + "start": 4259.3, + "end": 4261.14, + "probability": 0.5231 + }, + { + "start": 4262.4, + "end": 4265.08, + "probability": 0.8837 + }, + { + "start": 4265.76, + "end": 4267.68, + "probability": 0.9048 + }, + { + "start": 4268.88, + "end": 4269.74, + "probability": 0.8253 + }, + { + "start": 4271.72, + "end": 4272.76, + "probability": 0.2407 + }, + { + "start": 4277.8, + "end": 4285.32, + "probability": 0.7209 + }, + { + "start": 4287.3, + "end": 4290.24, + "probability": 0.8643 + }, + { + "start": 4290.8, + "end": 4292.92, + "probability": 0.8886 + }, + { + "start": 4293.0, + "end": 4293.85, + "probability": 0.9839 + }, + { + "start": 4295.08, + "end": 4296.8, + "probability": 0.7667 + }, + { + "start": 4297.5, + "end": 4299.58, + "probability": 0.9239 + }, + { + "start": 4299.66, + "end": 4303.62, + "probability": 0.9375 + }, + { + "start": 4304.62, + "end": 4305.62, + "probability": 0.7981 + }, + { + "start": 4305.82, + "end": 4307.0, + "probability": 0.6635 + }, + { + "start": 4307.06, + "end": 4309.32, + "probability": 0.8151 + }, + { + "start": 4310.5, + "end": 4313.94, + "probability": 0.9792 + }, + { + "start": 4314.16, + "end": 4316.7, + "probability": 0.8992 + }, + { + "start": 4316.8, + "end": 4317.2, + "probability": 0.467 + }, + { + "start": 4319.02, + "end": 4322.2, + "probability": 0.7367 + }, + { + "start": 4324.8, + "end": 4326.06, + "probability": 0.593 + }, + { + "start": 4327.68, + "end": 4328.9, + "probability": 0.6241 + }, + { + "start": 4330.66, + "end": 4336.88, + "probability": 0.8333 + }, + { + "start": 4338.89, + "end": 4343.04, + "probability": 0.9868 + }, + { + "start": 4344.94, + "end": 4347.72, + "probability": 0.4161 + }, + { + "start": 4348.52, + "end": 4350.96, + "probability": 0.7078 + }, + { + "start": 4351.98, + "end": 4354.04, + "probability": 0.9958 + }, + { + "start": 4355.02, + "end": 4356.78, + "probability": 0.772 + }, + { + "start": 4358.7, + "end": 4360.42, + "probability": 0.7772 + }, + { + "start": 4360.82, + "end": 4362.94, + "probability": 0.9976 + }, + { + "start": 4364.48, + "end": 4366.62, + "probability": 0.9118 + }, + { + "start": 4367.52, + "end": 4369.6, + "probability": 0.9907 + }, + { + "start": 4370.96, + "end": 4374.06, + "probability": 0.9938 + }, + { + "start": 4377.04, + "end": 4379.14, + "probability": 0.6952 + }, + { + "start": 4381.08, + "end": 4383.86, + "probability": 0.8131 + }, + { + "start": 4384.0, + "end": 4385.16, + "probability": 0.7367 + }, + { + "start": 4385.72, + "end": 4388.76, + "probability": 0.9862 + }, + { + "start": 4392.54, + "end": 4397.02, + "probability": 0.3917 + }, + { + "start": 4398.1, + "end": 4398.68, + "probability": 0.8979 + }, + { + "start": 4399.86, + "end": 4401.06, + "probability": 0.9604 + }, + { + "start": 4402.3, + "end": 4403.04, + "probability": 0.6287 + }, + { + "start": 4405.71, + "end": 4407.42, + "probability": 0.9954 + }, + { + "start": 4407.94, + "end": 4414.94, + "probability": 0.8789 + }, + { + "start": 4415.9, + "end": 4416.4, + "probability": 0.7359 + }, + { + "start": 4416.92, + "end": 4419.7, + "probability": 0.9044 + }, + { + "start": 4420.88, + "end": 4421.66, + "probability": 0.9501 + }, + { + "start": 4422.8, + "end": 4425.78, + "probability": 0.9674 + }, + { + "start": 4429.52, + "end": 4430.96, + "probability": 0.6327 + }, + { + "start": 4431.04, + "end": 4431.42, + "probability": 0.8698 + }, + { + "start": 4432.64, + "end": 4434.82, + "probability": 0.8752 + }, + { + "start": 4435.62, + "end": 4438.06, + "probability": 0.7461 + }, + { + "start": 4438.7, + "end": 4442.7, + "probability": 0.9656 + }, + { + "start": 4442.8, + "end": 4443.58, + "probability": 0.7319 + }, + { + "start": 4444.9, + "end": 4449.34, + "probability": 0.8784 + }, + { + "start": 4449.86, + "end": 4451.2, + "probability": 0.8154 + }, + { + "start": 4452.32, + "end": 4455.91, + "probability": 0.8904 + }, + { + "start": 4457.98, + "end": 4463.16, + "probability": 0.527 + }, + { + "start": 4463.72, + "end": 4464.7, + "probability": 0.8886 + }, + { + "start": 4464.7, + "end": 4466.04, + "probability": 0.9774 + }, + { + "start": 4466.22, + "end": 4467.36, + "probability": 0.7581 + }, + { + "start": 4467.44, + "end": 4469.78, + "probability": 0.961 + }, + { + "start": 4470.0, + "end": 4471.22, + "probability": 0.9031 + }, + { + "start": 4472.3, + "end": 4476.96, + "probability": 0.9819 + }, + { + "start": 4477.6, + "end": 4478.24, + "probability": 0.8971 + }, + { + "start": 4478.36, + "end": 4481.02, + "probability": 0.9956 + }, + { + "start": 4481.02, + "end": 4483.45, + "probability": 0.9621 + }, + { + "start": 4484.88, + "end": 4487.72, + "probability": 0.7954 + }, + { + "start": 4488.5, + "end": 4491.86, + "probability": 0.9722 + }, + { + "start": 4492.84, + "end": 4496.24, + "probability": 0.9653 + }, + { + "start": 4497.7, + "end": 4504.44, + "probability": 0.9777 + }, + { + "start": 4504.76, + "end": 4506.5, + "probability": 0.275 + }, + { + "start": 4507.16, + "end": 4510.76, + "probability": 0.9897 + }, + { + "start": 4513.38, + "end": 4513.62, + "probability": 0.022 + }, + { + "start": 4515.12, + "end": 4516.21, + "probability": 0.0305 + }, + { + "start": 4516.24, + "end": 4517.02, + "probability": 0.0529 + }, + { + "start": 4517.12, + "end": 4517.6, + "probability": 0.0532 + }, + { + "start": 4518.52, + "end": 4519.82, + "probability": 0.1018 + }, + { + "start": 4522.54, + "end": 4524.98, + "probability": 0.2579 + }, + { + "start": 4527.42, + "end": 4528.38, + "probability": 0.3777 + }, + { + "start": 4530.66, + "end": 4537.4, + "probability": 0.9652 + }, + { + "start": 4538.2, + "end": 4538.76, + "probability": 0.0346 + }, + { + "start": 4539.2, + "end": 4544.32, + "probability": 0.9451 + }, + { + "start": 4544.4, + "end": 4546.28, + "probability": 0.8922 + }, + { + "start": 4547.22, + "end": 4549.12, + "probability": 0.8946 + }, + { + "start": 4550.1, + "end": 4552.96, + "probability": 0.8461 + }, + { + "start": 4553.8, + "end": 4555.44, + "probability": 0.9858 + }, + { + "start": 4557.24, + "end": 4559.14, + "probability": 0.8683 + }, + { + "start": 4560.34, + "end": 4563.18, + "probability": 0.5855 + }, + { + "start": 4563.96, + "end": 4564.26, + "probability": 0.6135 + }, + { + "start": 4564.76, + "end": 4566.42, + "probability": 0.1963 + }, + { + "start": 4566.62, + "end": 4566.72, + "probability": 0.057 + }, + { + "start": 4566.72, + "end": 4567.92, + "probability": 0.938 + }, + { + "start": 4568.92, + "end": 4571.8, + "probability": 0.5697 + }, + { + "start": 4573.14, + "end": 4574.76, + "probability": 0.7783 + }, + { + "start": 4574.84, + "end": 4574.84, + "probability": 0.5277 + }, + { + "start": 4574.84, + "end": 4576.91, + "probability": 0.9572 + }, + { + "start": 4578.21, + "end": 4579.08, + "probability": 0.5977 + }, + { + "start": 4579.08, + "end": 4579.18, + "probability": 0.8394 + }, + { + "start": 4579.44, + "end": 4583.32, + "probability": 0.946 + }, + { + "start": 4583.32, + "end": 4586.5, + "probability": 0.6946 + }, + { + "start": 4586.6, + "end": 4589.76, + "probability": 0.9932 + }, + { + "start": 4589.88, + "end": 4592.48, + "probability": 0.9368 + }, + { + "start": 4592.62, + "end": 4592.98, + "probability": 0.8699 + }, + { + "start": 4594.14, + "end": 4594.14, + "probability": 0.1255 + }, + { + "start": 4594.14, + "end": 4594.3, + "probability": 0.0866 + }, + { + "start": 4594.5, + "end": 4599.06, + "probability": 0.8778 + }, + { + "start": 4600.96, + "end": 4601.74, + "probability": 0.423 + }, + { + "start": 4602.4, + "end": 4603.02, + "probability": 0.5008 + }, + { + "start": 4603.76, + "end": 4604.2, + "probability": 0.6648 + }, + { + "start": 4604.68, + "end": 4606.64, + "probability": 0.9151 + }, + { + "start": 4606.64, + "end": 4606.88, + "probability": 0.9489 + }, + { + "start": 4606.96, + "end": 4608.28, + "probability": 0.995 + }, + { + "start": 4608.42, + "end": 4610.66, + "probability": 0.9404 + }, + { + "start": 4611.28, + "end": 4611.92, + "probability": 0.8876 + }, + { + "start": 4613.64, + "end": 4613.76, + "probability": 0.9167 + }, + { + "start": 4613.84, + "end": 4614.12, + "probability": 0.9612 + }, + { + "start": 4614.14, + "end": 4614.42, + "probability": 0.9132 + }, + { + "start": 4614.54, + "end": 4617.9, + "probability": 0.9849 + }, + { + "start": 4618.1, + "end": 4619.73, + "probability": 0.8732 + }, + { + "start": 4620.54, + "end": 4621.6, + "probability": 0.8882 + }, + { + "start": 4621.88, + "end": 4623.34, + "probability": 0.7591 + }, + { + "start": 4624.52, + "end": 4625.82, + "probability": 0.7052 + }, + { + "start": 4626.32, + "end": 4626.88, + "probability": 0.7585 + }, + { + "start": 4627.74, + "end": 4630.42, + "probability": 0.9956 + }, + { + "start": 4630.86, + "end": 4632.78, + "probability": 0.9048 + }, + { + "start": 4633.4, + "end": 4635.77, + "probability": 0.9937 + }, + { + "start": 4636.68, + "end": 4638.1, + "probability": 0.6865 + }, + { + "start": 4639.06, + "end": 4640.48, + "probability": 0.8503 + }, + { + "start": 4641.24, + "end": 4642.84, + "probability": 0.9851 + }, + { + "start": 4643.48, + "end": 4646.1, + "probability": 0.6559 + }, + { + "start": 4647.24, + "end": 4647.98, + "probability": 0.7193 + }, + { + "start": 4648.78, + "end": 4649.06, + "probability": 0.7224 + }, + { + "start": 4650.46, + "end": 4653.88, + "probability": 0.9291 + }, + { + "start": 4655.1, + "end": 4657.13, + "probability": 0.7422 + }, + { + "start": 4657.72, + "end": 4659.6, + "probability": 0.9806 + }, + { + "start": 4659.72, + "end": 4661.5, + "probability": 0.994 + }, + { + "start": 4661.9, + "end": 4663.72, + "probability": 0.9939 + }, + { + "start": 4663.82, + "end": 4664.97, + "probability": 0.8999 + }, + { + "start": 4665.86, + "end": 4668.52, + "probability": 0.9871 + }, + { + "start": 4668.68, + "end": 4668.68, + "probability": 0.0185 + }, + { + "start": 4668.68, + "end": 4670.24, + "probability": 0.9946 + }, + { + "start": 4670.32, + "end": 4671.34, + "probability": 0.8328 + }, + { + "start": 4671.42, + "end": 4672.1, + "probability": 0.7921 + }, + { + "start": 4672.94, + "end": 4674.68, + "probability": 0.9691 + }, + { + "start": 4674.76, + "end": 4676.26, + "probability": 0.7471 + }, + { + "start": 4676.5, + "end": 4680.36, + "probability": 0.7539 + }, + { + "start": 4681.64, + "end": 4681.84, + "probability": 0.1714 + }, + { + "start": 4681.84, + "end": 4685.89, + "probability": 0.9143 + }, + { + "start": 4686.44, + "end": 4688.54, + "probability": 0.7761 + }, + { + "start": 4689.46, + "end": 4689.48, + "probability": 0.0501 + }, + { + "start": 4689.48, + "end": 4689.48, + "probability": 0.0362 + }, + { + "start": 4689.48, + "end": 4692.42, + "probability": 0.9167 + }, + { + "start": 4693.86, + "end": 4694.92, + "probability": 0.9906 + }, + { + "start": 4695.78, + "end": 4696.64, + "probability": 0.8441 + }, + { + "start": 4697.72, + "end": 4699.66, + "probability": 0.0181 + }, + { + "start": 4700.2, + "end": 4700.38, + "probability": 0.3165 + }, + { + "start": 4700.38, + "end": 4700.38, + "probability": 0.0376 + }, + { + "start": 4700.38, + "end": 4701.64, + "probability": 0.7048 + }, + { + "start": 4702.4, + "end": 4704.82, + "probability": 0.4814 + }, + { + "start": 4705.4, + "end": 4707.46, + "probability": 0.7958 + }, + { + "start": 4707.86, + "end": 4708.42, + "probability": 0.8356 + }, + { + "start": 4708.68, + "end": 4711.5, + "probability": 0.689 + }, + { + "start": 4712.6, + "end": 4713.58, + "probability": 0.9535 + }, + { + "start": 4714.34, + "end": 4717.76, + "probability": 0.8624 + }, + { + "start": 4718.8, + "end": 4718.9, + "probability": 0.0529 + }, + { + "start": 4718.9, + "end": 4722.08, + "probability": 0.8839 + }, + { + "start": 4725.06, + "end": 4725.96, + "probability": 0.2174 + }, + { + "start": 4725.96, + "end": 4726.04, + "probability": 0.1761 + }, + { + "start": 4726.04, + "end": 4726.04, + "probability": 0.2469 + }, + { + "start": 4726.04, + "end": 4726.04, + "probability": 0.0954 + }, + { + "start": 4726.04, + "end": 4729.82, + "probability": 0.7567 + }, + { + "start": 4729.88, + "end": 4731.04, + "probability": 0.88 + }, + { + "start": 4731.3, + "end": 4732.24, + "probability": 0.8576 + }, + { + "start": 4734.62, + "end": 4737.78, + "probability": 0.7301 + }, + { + "start": 4738.62, + "end": 4739.34, + "probability": 0.7886 + }, + { + "start": 4740.36, + "end": 4740.6, + "probability": 0.9829 + }, + { + "start": 4741.86, + "end": 4743.42, + "probability": 0.9974 + }, + { + "start": 4743.6, + "end": 4744.64, + "probability": 0.932 + }, + { + "start": 4744.74, + "end": 4746.16, + "probability": 0.9678 + }, + { + "start": 4746.94, + "end": 4748.18, + "probability": 0.9959 + }, + { + "start": 4748.96, + "end": 4751.34, + "probability": 0.7432 + }, + { + "start": 4751.48, + "end": 4752.18, + "probability": 0.9677 + }, + { + "start": 4753.24, + "end": 4754.02, + "probability": 0.4983 + }, + { + "start": 4754.16, + "end": 4754.68, + "probability": 0.8968 + }, + { + "start": 4755.4, + "end": 4757.04, + "probability": 0.9637 + }, + { + "start": 4757.68, + "end": 4760.0, + "probability": 0.1756 + }, + { + "start": 4760.46, + "end": 4764.32, + "probability": 0.8934 + }, + { + "start": 4766.74, + "end": 4767.06, + "probability": 0.1928 + }, + { + "start": 4767.06, + "end": 4769.8, + "probability": 0.6921 + }, + { + "start": 4770.5, + "end": 4770.84, + "probability": 0.7567 + }, + { + "start": 4771.72, + "end": 4772.52, + "probability": 0.9558 + }, + { + "start": 4772.8, + "end": 4773.24, + "probability": 0.1011 + }, + { + "start": 4773.24, + "end": 4778.0, + "probability": 0.987 + }, + { + "start": 4778.8, + "end": 4781.4, + "probability": 0.9976 + }, + { + "start": 4781.5, + "end": 4786.84, + "probability": 0.9983 + }, + { + "start": 4787.12, + "end": 4787.38, + "probability": 0.534 + }, + { + "start": 4787.84, + "end": 4788.3, + "probability": 0.834 + }, + { + "start": 4788.62, + "end": 4790.4, + "probability": 0.9844 + }, + { + "start": 4791.24, + "end": 4791.86, + "probability": 0.9552 + }, + { + "start": 4792.54, + "end": 4795.7, + "probability": 0.9876 + }, + { + "start": 4796.54, + "end": 4797.78, + "probability": 0.9929 + }, + { + "start": 4799.24, + "end": 4799.54, + "probability": 0.8269 + }, + { + "start": 4799.58, + "end": 4800.38, + "probability": 0.7438 + }, + { + "start": 4800.86, + "end": 4802.84, + "probability": 0.9529 + }, + { + "start": 4803.56, + "end": 4804.46, + "probability": 0.938 + }, + { + "start": 4805.68, + "end": 4806.98, + "probability": 0.8942 + }, + { + "start": 4808.2, + "end": 4809.94, + "probability": 0.9052 + }, + { + "start": 4810.94, + "end": 4811.95, + "probability": 0.6392 + }, + { + "start": 4812.22, + "end": 4814.26, + "probability": 0.9639 + }, + { + "start": 4815.28, + "end": 4815.8, + "probability": 0.0567 + }, + { + "start": 4815.8, + "end": 4817.54, + "probability": 0.8307 + }, + { + "start": 4818.26, + "end": 4820.4, + "probability": 0.7714 + }, + { + "start": 4821.1, + "end": 4822.96, + "probability": 0.9907 + }, + { + "start": 4823.28, + "end": 4824.27, + "probability": 0.6338 + }, + { + "start": 4824.78, + "end": 4825.68, + "probability": 0.8156 + }, + { + "start": 4826.08, + "end": 4826.98, + "probability": 0.9663 + }, + { + "start": 4828.16, + "end": 4830.74, + "probability": 0.9282 + }, + { + "start": 4831.72, + "end": 4835.5, + "probability": 0.9871 + }, + { + "start": 4836.08, + "end": 4841.08, + "probability": 0.9785 + }, + { + "start": 4841.32, + "end": 4846.55, + "probability": 0.9984 + }, + { + "start": 4849.64, + "end": 4851.8, + "probability": 0.6297 + }, + { + "start": 4852.48, + "end": 4855.48, + "probability": 0.9307 + }, + { + "start": 4856.28, + "end": 4857.84, + "probability": 0.754 + }, + { + "start": 4859.16, + "end": 4861.4, + "probability": 0.9669 + }, + { + "start": 4862.28, + "end": 4864.34, + "probability": 0.9941 + }, + { + "start": 4865.08, + "end": 4867.5, + "probability": 0.99 + }, + { + "start": 4868.74, + "end": 4872.72, + "probability": 0.9858 + }, + { + "start": 4872.86, + "end": 4873.14, + "probability": 0.0111 + }, + { + "start": 4873.18, + "end": 4874.12, + "probability": 0.7477 + }, + { + "start": 4874.62, + "end": 4876.74, + "probability": 0.8323 + }, + { + "start": 4876.82, + "end": 4880.06, + "probability": 0.9847 + }, + { + "start": 4880.18, + "end": 4880.46, + "probability": 0.0006 + }, + { + "start": 4881.34, + "end": 4882.14, + "probability": 0.0064 + }, + { + "start": 4882.14, + "end": 4884.02, + "probability": 0.2387 + }, + { + "start": 4884.84, + "end": 4885.68, + "probability": 0.5623 + }, + { + "start": 4886.22, + "end": 4886.94, + "probability": 0.7307 + }, + { + "start": 4887.7, + "end": 4893.14, + "probability": 0.991 + }, + { + "start": 4894.32, + "end": 4895.58, + "probability": 0.3792 + }, + { + "start": 4895.58, + "end": 4898.6, + "probability": 0.6708 + }, + { + "start": 4899.02, + "end": 4899.66, + "probability": 0.3629 + }, + { + "start": 4899.92, + "end": 4903.24, + "probability": 0.9536 + }, + { + "start": 4903.24, + "end": 4905.46, + "probability": 0.9028 + }, + { + "start": 4906.7, + "end": 4908.66, + "probability": 0.9393 + }, + { + "start": 4909.16, + "end": 4909.2, + "probability": 0.1283 + }, + { + "start": 4909.2, + "end": 4909.2, + "probability": 0.1722 + }, + { + "start": 4909.2, + "end": 4909.72, + "probability": 0.5912 + }, + { + "start": 4909.88, + "end": 4910.76, + "probability": 0.1585 + }, + { + "start": 4910.76, + "end": 4911.96, + "probability": 0.529 + }, + { + "start": 4912.46, + "end": 4913.64, + "probability": 0.9434 + }, + { + "start": 4914.04, + "end": 4916.1, + "probability": 0.0095 + }, + { + "start": 4916.64, + "end": 4916.86, + "probability": 0.1176 + }, + { + "start": 4916.86, + "end": 4916.86, + "probability": 0.0142 + }, + { + "start": 4916.86, + "end": 4917.35, + "probability": 0.4816 + }, + { + "start": 4919.08, + "end": 4924.05, + "probability": 0.9962 + }, + { + "start": 4924.82, + "end": 4925.1, + "probability": 0.6557 + }, + { + "start": 4925.88, + "end": 4926.5, + "probability": 0.7481 + }, + { + "start": 4927.18, + "end": 4930.1, + "probability": 0.951 + }, + { + "start": 4930.76, + "end": 4931.0, + "probability": 0.5645 + }, + { + "start": 4931.6, + "end": 4933.98, + "probability": 0.6174 + }, + { + "start": 4934.98, + "end": 4935.54, + "probability": 0.9824 + }, + { + "start": 4936.48, + "end": 4937.06, + "probability": 0.9372 + }, + { + "start": 4937.68, + "end": 4938.5, + "probability": 0.6702 + }, + { + "start": 4939.26, + "end": 4939.71, + "probability": 0.9764 + }, + { + "start": 4940.84, + "end": 4943.86, + "probability": 0.9975 + }, + { + "start": 4944.9, + "end": 4945.26, + "probability": 0.2413 + }, + { + "start": 4945.38, + "end": 4948.42, + "probability": 0.9969 + }, + { + "start": 4949.26, + "end": 4953.52, + "probability": 0.9803 + }, + { + "start": 4954.34, + "end": 4954.76, + "probability": 0.254 + }, + { + "start": 4955.06, + "end": 4955.12, + "probability": 0.0988 + }, + { + "start": 4955.12, + "end": 4955.75, + "probability": 0.7597 + }, + { + "start": 4955.98, + "end": 4959.36, + "probability": 0.9856 + }, + { + "start": 4959.84, + "end": 4962.66, + "probability": 0.9836 + }, + { + "start": 4963.4, + "end": 4964.34, + "probability": 0.7832 + }, + { + "start": 4965.22, + "end": 4968.72, + "probability": 0.7956 + }, + { + "start": 4970.08, + "end": 4971.1, + "probability": 0.5687 + }, + { + "start": 4971.44, + "end": 4971.98, + "probability": 0.9681 + }, + { + "start": 4972.4, + "end": 4973.08, + "probability": 0.9614 + }, + { + "start": 4973.52, + "end": 4976.38, + "probability": 0.8375 + }, + { + "start": 4977.7, + "end": 4979.3, + "probability": 0.6529 + }, + { + "start": 4980.76, + "end": 4982.18, + "probability": 0.9818 + }, + { + "start": 4982.84, + "end": 4985.66, + "probability": 0.9592 + }, + { + "start": 4986.46, + "end": 4987.66, + "probability": 0.9819 + }, + { + "start": 4988.32, + "end": 4988.98, + "probability": 0.7346 + }, + { + "start": 4989.66, + "end": 4992.86, + "probability": 0.8962 + }, + { + "start": 4993.58, + "end": 4993.94, + "probability": 0.6879 + }, + { + "start": 4994.66, + "end": 4996.62, + "probability": 0.9911 + }, + { + "start": 4996.78, + "end": 4997.62, + "probability": 0.8546 + }, + { + "start": 4997.72, + "end": 4999.56, + "probability": 0.8623 + }, + { + "start": 5000.28, + "end": 5001.92, + "probability": 0.9868 + }, + { + "start": 5002.66, + "end": 5003.3, + "probability": 0.925 + }, + { + "start": 5004.08, + "end": 5006.12, + "probability": 0.9956 + }, + { + "start": 5007.24, + "end": 5012.74, + "probability": 0.9937 + }, + { + "start": 5013.58, + "end": 5014.62, + "probability": 0.9697 + }, + { + "start": 5015.2, + "end": 5015.92, + "probability": 0.8956 + }, + { + "start": 5016.52, + "end": 5023.44, + "probability": 0.9938 + }, + { + "start": 5023.5, + "end": 5025.16, + "probability": 0.7613 + }, + { + "start": 5025.78, + "end": 5026.18, + "probability": 0.8608 + }, + { + "start": 5026.46, + "end": 5027.3, + "probability": 0.239 + }, + { + "start": 5027.58, + "end": 5027.72, + "probability": 0.5245 + }, + { + "start": 5027.74, + "end": 5028.06, + "probability": 0.5424 + }, + { + "start": 5028.9, + "end": 5030.04, + "probability": 0.9849 + }, + { + "start": 5031.12, + "end": 5033.2, + "probability": 0.7031 + }, + { + "start": 5034.08, + "end": 5035.1, + "probability": 0.9296 + }, + { + "start": 5035.2, + "end": 5037.14, + "probability": 0.9613 + }, + { + "start": 5037.76, + "end": 5038.56, + "probability": 0.8679 + }, + { + "start": 5039.38, + "end": 5042.56, + "probability": 0.9856 + }, + { + "start": 5044.18, + "end": 5044.88, + "probability": 0.8225 + }, + { + "start": 5046.34, + "end": 5047.06, + "probability": 0.7825 + }, + { + "start": 5048.28, + "end": 5050.48, + "probability": 0.9941 + }, + { + "start": 5051.2, + "end": 5051.82, + "probability": 0.9762 + }, + { + "start": 5052.06, + "end": 5052.1, + "probability": 0.0573 + }, + { + "start": 5052.1, + "end": 5053.54, + "probability": 0.2242 + }, + { + "start": 5053.9, + "end": 5055.12, + "probability": 0.6796 + }, + { + "start": 5055.44, + "end": 5056.38, + "probability": 0.9829 + }, + { + "start": 5056.62, + "end": 5059.56, + "probability": 0.8233 + }, + { + "start": 5060.28, + "end": 5062.48, + "probability": 0.9551 + }, + { + "start": 5062.48, + "end": 5065.32, + "probability": 0.9959 + }, + { + "start": 5066.28, + "end": 5067.01, + "probability": 0.941 + }, + { + "start": 5067.26, + "end": 5068.72, + "probability": 0.9961 + }, + { + "start": 5069.38, + "end": 5069.7, + "probability": 0.9465 + }, + { + "start": 5070.24, + "end": 5072.5, + "probability": 0.972 + }, + { + "start": 5072.64, + "end": 5073.64, + "probability": 0.9274 + }, + { + "start": 5074.18, + "end": 5076.32, + "probability": 0.9963 + }, + { + "start": 5077.02, + "end": 5078.52, + "probability": 0.9885 + }, + { + "start": 5078.94, + "end": 5079.96, + "probability": 0.9399 + }, + { + "start": 5080.08, + "end": 5081.1, + "probability": 0.9681 + }, + { + "start": 5081.68, + "end": 5082.9, + "probability": 0.9654 + }, + { + "start": 5083.5, + "end": 5085.4, + "probability": 0.9756 + }, + { + "start": 5085.6, + "end": 5086.61, + "probability": 0.5919 + }, + { + "start": 5087.18, + "end": 5088.0, + "probability": 0.8687 + }, + { + "start": 5088.62, + "end": 5089.0, + "probability": 0.8522 + }, + { + "start": 5089.98, + "end": 5090.58, + "probability": 0.9597 + }, + { + "start": 5091.24, + "end": 5094.06, + "probability": 0.9885 + }, + { + "start": 5094.88, + "end": 5097.66, + "probability": 0.9928 + }, + { + "start": 5098.9, + "end": 5099.56, + "probability": 0.6504 + }, + { + "start": 5100.74, + "end": 5102.02, + "probability": 0.9749 + }, + { + "start": 5102.64, + "end": 5104.68, + "probability": 0.9888 + }, + { + "start": 5105.94, + "end": 5108.92, + "probability": 0.5024 + }, + { + "start": 5109.96, + "end": 5112.52, + "probability": 0.9913 + }, + { + "start": 5113.16, + "end": 5114.28, + "probability": 0.9631 + }, + { + "start": 5115.08, + "end": 5115.74, + "probability": 0.4533 + }, + { + "start": 5117.52, + "end": 5120.9, + "probability": 0.456 + }, + { + "start": 5121.06, + "end": 5122.76, + "probability": 0.649 + }, + { + "start": 5123.48, + "end": 5124.92, + "probability": 0.9938 + }, + { + "start": 5125.64, + "end": 5126.92, + "probability": 0.9843 + }, + { + "start": 5127.82, + "end": 5129.28, + "probability": 0.9526 + }, + { + "start": 5130.42, + "end": 5130.88, + "probability": 0.93 + }, + { + "start": 5131.72, + "end": 5134.04, + "probability": 0.9888 + }, + { + "start": 5134.21, + "end": 5138.64, + "probability": 0.6892 + }, + { + "start": 5138.66, + "end": 5142.14, + "probability": 0.9387 + }, + { + "start": 5143.18, + "end": 5144.2, + "probability": 0.9717 + }, + { + "start": 5145.4, + "end": 5146.66, + "probability": 0.9811 + }, + { + "start": 5147.32, + "end": 5152.1, + "probability": 0.8326 + }, + { + "start": 5153.0, + "end": 5153.8, + "probability": 0.8784 + }, + { + "start": 5154.42, + "end": 5158.4, + "probability": 0.977 + }, + { + "start": 5158.4, + "end": 5160.96, + "probability": 0.995 + }, + { + "start": 5161.98, + "end": 5163.08, + "probability": 0.9989 + }, + { + "start": 5163.62, + "end": 5166.06, + "probability": 0.9946 + }, + { + "start": 5168.02, + "end": 5170.98, + "probability": 0.991 + }, + { + "start": 5171.68, + "end": 5173.56, + "probability": 0.9979 + }, + { + "start": 5174.2, + "end": 5176.92, + "probability": 0.994 + }, + { + "start": 5176.92, + "end": 5179.1, + "probability": 0.9655 + }, + { + "start": 5179.22, + "end": 5179.76, + "probability": 0.602 + }, + { + "start": 5179.84, + "end": 5180.32, + "probability": 0.6397 + }, + { + "start": 5180.38, + "end": 5181.06, + "probability": 0.7364 + }, + { + "start": 5181.94, + "end": 5184.26, + "probability": 0.749 + }, + { + "start": 5184.89, + "end": 5187.52, + "probability": 0.7761 + }, + { + "start": 5188.32, + "end": 5190.26, + "probability": 0.9563 + }, + { + "start": 5191.38, + "end": 5195.48, + "probability": 0.9316 + }, + { + "start": 5196.08, + "end": 5199.34, + "probability": 0.9954 + }, + { + "start": 5200.08, + "end": 5204.58, + "probability": 0.9982 + }, + { + "start": 5204.98, + "end": 5209.58, + "probability": 0.9373 + }, + { + "start": 5210.12, + "end": 5210.7, + "probability": 0.8646 + }, + { + "start": 5211.24, + "end": 5212.3, + "probability": 0.9981 + }, + { + "start": 5213.52, + "end": 5215.4, + "probability": 0.8628 + }, + { + "start": 5216.2, + "end": 5219.52, + "probability": 0.986 + }, + { + "start": 5220.08, + "end": 5222.02, + "probability": 0.8099 + }, + { + "start": 5223.12, + "end": 5228.52, + "probability": 0.9965 + }, + { + "start": 5229.6, + "end": 5229.67, + "probability": 0.8029 + }, + { + "start": 5230.8, + "end": 5231.76, + "probability": 0.7497 + }, + { + "start": 5232.3, + "end": 5236.98, + "probability": 0.9387 + }, + { + "start": 5242.38, + "end": 5244.34, + "probability": 0.9722 + }, + { + "start": 5245.1, + "end": 5248.0, + "probability": 0.6522 + }, + { + "start": 5248.74, + "end": 5249.34, + "probability": 0.7427 + }, + { + "start": 5250.14, + "end": 5250.42, + "probability": 0.8479 + }, + { + "start": 5251.5, + "end": 5253.92, + "probability": 0.9686 + }, + { + "start": 5254.58, + "end": 5257.72, + "probability": 0.9198 + }, + { + "start": 5259.16, + "end": 5260.5, + "probability": 0.6918 + }, + { + "start": 5261.04, + "end": 5263.7, + "probability": 0.8621 + }, + { + "start": 5263.7, + "end": 5266.64, + "probability": 0.9895 + }, + { + "start": 5268.0, + "end": 5271.64, + "probability": 0.9936 + }, + { + "start": 5272.68, + "end": 5273.14, + "probability": 0.7319 + }, + { + "start": 5273.66, + "end": 5277.32, + "probability": 0.9944 + }, + { + "start": 5277.8, + "end": 5278.14, + "probability": 0.2958 + }, + { + "start": 5278.34, + "end": 5279.12, + "probability": 0.8432 + }, + { + "start": 5279.56, + "end": 5279.78, + "probability": 0.7365 + }, + { + "start": 5280.64, + "end": 5282.76, + "probability": 0.9871 + }, + { + "start": 5283.4, + "end": 5287.48, + "probability": 0.9648 + }, + { + "start": 5287.88, + "end": 5289.28, + "probability": 0.9354 + }, + { + "start": 5291.42, + "end": 5291.42, + "probability": 0.4975 + }, + { + "start": 5291.42, + "end": 5291.86, + "probability": 0.6785 + }, + { + "start": 5292.92, + "end": 5294.92, + "probability": 0.8803 + }, + { + "start": 5296.06, + "end": 5297.78, + "probability": 0.8927 + }, + { + "start": 5298.44, + "end": 5302.78, + "probability": 0.9731 + }, + { + "start": 5302.78, + "end": 5306.98, + "probability": 0.9929 + }, + { + "start": 5307.7, + "end": 5307.96, + "probability": 0.3581 + }, + { + "start": 5308.1, + "end": 5308.92, + "probability": 0.7033 + }, + { + "start": 5309.0, + "end": 5312.8, + "probability": 0.9824 + }, + { + "start": 5312.9, + "end": 5313.42, + "probability": 0.6264 + }, + { + "start": 5313.96, + "end": 5314.6, + "probability": 0.6035 + }, + { + "start": 5314.9, + "end": 5317.42, + "probability": 0.078 + }, + { + "start": 5317.42, + "end": 5318.08, + "probability": 0.1631 + }, + { + "start": 5318.18, + "end": 5319.54, + "probability": 0.9011 + }, + { + "start": 5320.04, + "end": 5322.46, + "probability": 0.8975 + }, + { + "start": 5323.31, + "end": 5323.44, + "probability": 0.5566 + }, + { + "start": 5323.44, + "end": 5323.62, + "probability": 0.9002 + }, + { + "start": 5325.0, + "end": 5325.22, + "probability": 0.4767 + }, + { + "start": 5325.4, + "end": 5326.14, + "probability": 0.8488 + }, + { + "start": 5326.28, + "end": 5328.88, + "probability": 0.9881 + }, + { + "start": 5328.88, + "end": 5331.52, + "probability": 0.909 + }, + { + "start": 5332.68, + "end": 5334.98, + "probability": 0.9684 + }, + { + "start": 5335.96, + "end": 5336.24, + "probability": 0.634 + }, + { + "start": 5337.06, + "end": 5338.24, + "probability": 0.9433 + }, + { + "start": 5338.86, + "end": 5342.36, + "probability": 0.9977 + }, + { + "start": 5343.52, + "end": 5347.28, + "probability": 0.9946 + }, + { + "start": 5348.04, + "end": 5352.08, + "probability": 0.9823 + }, + { + "start": 5352.08, + "end": 5354.64, + "probability": 0.9888 + }, + { + "start": 5355.8, + "end": 5359.02, + "probability": 0.9894 + }, + { + "start": 5359.1, + "end": 5361.78, + "probability": 0.9991 + }, + { + "start": 5362.4, + "end": 5365.92, + "probability": 0.9979 + }, + { + "start": 5366.54, + "end": 5368.22, + "probability": 0.9985 + }, + { + "start": 5368.86, + "end": 5370.5, + "probability": 0.9122 + }, + { + "start": 5371.02, + "end": 5374.86, + "probability": 0.9951 + }, + { + "start": 5376.1, + "end": 5376.46, + "probability": 0.7542 + }, + { + "start": 5377.08, + "end": 5380.96, + "probability": 0.9734 + }, + { + "start": 5382.02, + "end": 5386.28, + "probability": 0.9941 + }, + { + "start": 5386.76, + "end": 5390.38, + "probability": 0.9398 + }, + { + "start": 5392.27, + "end": 5396.7, + "probability": 0.9596 + }, + { + "start": 5397.26, + "end": 5398.96, + "probability": 0.9995 + }, + { + "start": 5399.68, + "end": 5404.26, + "probability": 0.9963 + }, + { + "start": 5404.86, + "end": 5407.42, + "probability": 0.8387 + }, + { + "start": 5408.1, + "end": 5411.8, + "probability": 0.9951 + }, + { + "start": 5411.8, + "end": 5414.46, + "probability": 0.9747 + }, + { + "start": 5415.4, + "end": 5417.5, + "probability": 0.9976 + }, + { + "start": 5418.08, + "end": 5418.8, + "probability": 0.9336 + }, + { + "start": 5419.5, + "end": 5420.1, + "probability": 0.7512 + }, + { + "start": 5420.64, + "end": 5423.64, + "probability": 0.9993 + }, + { + "start": 5423.64, + "end": 5426.36, + "probability": 0.9991 + }, + { + "start": 5427.8, + "end": 5431.82, + "probability": 0.9942 + }, + { + "start": 5432.42, + "end": 5436.3, + "probability": 0.9982 + }, + { + "start": 5437.36, + "end": 5437.88, + "probability": 0.4564 + }, + { + "start": 5437.96, + "end": 5440.92, + "probability": 0.8172 + }, + { + "start": 5441.58, + "end": 5443.76, + "probability": 0.7794 + }, + { + "start": 5444.6, + "end": 5445.24, + "probability": 0.9835 + }, + { + "start": 5446.2, + "end": 5448.0, + "probability": 0.9919 + }, + { + "start": 5448.56, + "end": 5451.42, + "probability": 0.9902 + }, + { + "start": 5452.14, + "end": 5454.4, + "probability": 0.994 + }, + { + "start": 5454.4, + "end": 5457.38, + "probability": 0.9677 + }, + { + "start": 5459.12, + "end": 5460.76, + "probability": 0.9469 + }, + { + "start": 5461.4, + "end": 5463.32, + "probability": 0.9893 + }, + { + "start": 5463.94, + "end": 5470.09, + "probability": 0.9813 + }, + { + "start": 5470.94, + "end": 5473.58, + "probability": 0.9012 + }, + { + "start": 5474.12, + "end": 5477.4, + "probability": 0.9729 + }, + { + "start": 5478.78, + "end": 5479.32, + "probability": 0.9525 + }, + { + "start": 5479.96, + "end": 5480.94, + "probability": 0.9906 + }, + { + "start": 5481.54, + "end": 5483.52, + "probability": 0.7631 + }, + { + "start": 5484.18, + "end": 5487.42, + "probability": 0.6514 + }, + { + "start": 5488.03, + "end": 5490.0, + "probability": 0.9451 + }, + { + "start": 5491.18, + "end": 5494.42, + "probability": 0.965 + }, + { + "start": 5496.1, + "end": 5502.4, + "probability": 0.956 + }, + { + "start": 5502.62, + "end": 5503.3, + "probability": 0.7257 + }, + { + "start": 5511.48, + "end": 5515.7, + "probability": 0.8403 + }, + { + "start": 5515.7, + "end": 5518.68, + "probability": 0.9967 + }, + { + "start": 5519.22, + "end": 5522.24, + "probability": 0.8696 + }, + { + "start": 5523.4, + "end": 5524.98, + "probability": 0.9236 + }, + { + "start": 5525.5, + "end": 5528.96, + "probability": 0.9954 + }, + { + "start": 5528.98, + "end": 5532.36, + "probability": 0.9915 + }, + { + "start": 5532.82, + "end": 5534.28, + "probability": 0.8876 + }, + { + "start": 5536.2, + "end": 5538.82, + "probability": 0.9883 + }, + { + "start": 5539.22, + "end": 5541.2, + "probability": 0.9425 + }, + { + "start": 5541.92, + "end": 5544.3, + "probability": 0.9729 + }, + { + "start": 5544.3, + "end": 5547.28, + "probability": 0.9868 + }, + { + "start": 5547.82, + "end": 5551.74, + "probability": 0.9623 + }, + { + "start": 5552.66, + "end": 5554.2, + "probability": 0.9757 + }, + { + "start": 5554.9, + "end": 5558.12, + "probability": 0.9993 + }, + { + "start": 5558.74, + "end": 5559.86, + "probability": 0.998 + }, + { + "start": 5560.52, + "end": 5562.88, + "probability": 0.9596 + }, + { + "start": 5563.9, + "end": 5565.28, + "probability": 0.9604 + }, + { + "start": 5565.86, + "end": 5568.0, + "probability": 0.995 + }, + { + "start": 5568.86, + "end": 5572.14, + "probability": 0.9951 + }, + { + "start": 5572.22, + "end": 5572.44, + "probability": 0.746 + }, + { + "start": 5573.78, + "end": 5574.54, + "probability": 0.5394 + }, + { + "start": 5574.9, + "end": 5575.14, + "probability": 0.8657 + }, + { + "start": 5575.32, + "end": 5577.2, + "probability": 0.7765 + }, + { + "start": 5577.42, + "end": 5578.5, + "probability": 0.5908 + }, + { + "start": 5579.8, + "end": 5582.0, + "probability": 0.6632 + }, + { + "start": 5582.52, + "end": 5583.28, + "probability": 0.8809 + }, + { + "start": 5584.3, + "end": 5586.51, + "probability": 0.9951 + }, + { + "start": 5586.88, + "end": 5587.84, + "probability": 0.8361 + }, + { + "start": 5589.4, + "end": 5593.42, + "probability": 0.9109 + }, + { + "start": 5594.84, + "end": 5596.82, + "probability": 0.6119 + }, + { + "start": 5597.46, + "end": 5599.2, + "probability": 0.9058 + }, + { + "start": 5600.22, + "end": 5600.54, + "probability": 0.8682 + }, + { + "start": 5601.98, + "end": 5602.28, + "probability": 0.5925 + }, + { + "start": 5603.14, + "end": 5605.8, + "probability": 0.9004 + }, + { + "start": 5605.96, + "end": 5606.8, + "probability": 0.6757 + }, + { + "start": 5607.02, + "end": 5608.1, + "probability": 0.7918 + }, + { + "start": 5609.7, + "end": 5611.84, + "probability": 0.6366 + }, + { + "start": 5614.0, + "end": 5616.77, + "probability": 0.1432 + }, + { + "start": 5617.92, + "end": 5620.4, + "probability": 0.9978 + }, + { + "start": 5621.78, + "end": 5624.52, + "probability": 0.9837 + }, + { + "start": 5624.8, + "end": 5625.14, + "probability": 0.9167 + }, + { + "start": 5625.22, + "end": 5626.62, + "probability": 0.8611 + }, + { + "start": 5628.06, + "end": 5630.06, + "probability": 0.9596 + }, + { + "start": 5632.04, + "end": 5634.34, + "probability": 0.9769 + }, + { + "start": 5635.8, + "end": 5639.52, + "probability": 0.9919 + }, + { + "start": 5640.66, + "end": 5644.62, + "probability": 0.9685 + }, + { + "start": 5645.62, + "end": 5651.54, + "probability": 0.9886 + }, + { + "start": 5653.02, + "end": 5654.72, + "probability": 0.9995 + }, + { + "start": 5655.5, + "end": 5656.36, + "probability": 0.7273 + }, + { + "start": 5657.96, + "end": 5660.38, + "probability": 0.9403 + }, + { + "start": 5660.38, + "end": 5665.14, + "probability": 0.9515 + }, + { + "start": 5667.16, + "end": 5669.54, + "probability": 0.9922 + }, + { + "start": 5669.54, + "end": 5672.32, + "probability": 0.6435 + }, + { + "start": 5672.88, + "end": 5674.48, + "probability": 0.7533 + }, + { + "start": 5674.62, + "end": 5677.26, + "probability": 0.7935 + }, + { + "start": 5679.02, + "end": 5682.62, + "probability": 0.9888 + }, + { + "start": 5683.26, + "end": 5684.52, + "probability": 0.9491 + }, + { + "start": 5685.54, + "end": 5688.32, + "probability": 0.9961 + }, + { + "start": 5689.46, + "end": 5691.56, + "probability": 0.9552 + }, + { + "start": 5692.3, + "end": 5695.6, + "probability": 0.6338 + }, + { + "start": 5696.64, + "end": 5698.22, + "probability": 0.9966 + }, + { + "start": 5698.74, + "end": 5701.12, + "probability": 0.6366 + }, + { + "start": 5702.08, + "end": 5704.1, + "probability": 0.9435 + }, + { + "start": 5705.24, + "end": 5705.94, + "probability": 0.5911 + }, + { + "start": 5706.3, + "end": 5707.59, + "probability": 0.8977 + }, + { + "start": 5710.02, + "end": 5712.42, + "probability": 0.9505 + }, + { + "start": 5714.12, + "end": 5715.58, + "probability": 0.708 + }, + { + "start": 5716.24, + "end": 5719.47, + "probability": 0.9462 + }, + { + "start": 5720.24, + "end": 5724.12, + "probability": 0.9958 + }, + { + "start": 5724.9, + "end": 5729.66, + "probability": 0.9955 + }, + { + "start": 5730.14, + "end": 5731.58, + "probability": 0.9756 + }, + { + "start": 5733.8, + "end": 5738.74, + "probability": 0.9889 + }, + { + "start": 5739.3, + "end": 5740.04, + "probability": 0.8364 + }, + { + "start": 5741.52, + "end": 5744.74, + "probability": 0.9976 + }, + { + "start": 5744.74, + "end": 5749.08, + "probability": 0.9823 + }, + { + "start": 5750.1, + "end": 5750.42, + "probability": 0.1738 + }, + { + "start": 5751.38, + "end": 5752.46, + "probability": 0.9788 + }, + { + "start": 5754.96, + "end": 5758.02, + "probability": 0.9898 + }, + { + "start": 5758.86, + "end": 5760.5, + "probability": 0.8745 + }, + { + "start": 5762.16, + "end": 5765.1, + "probability": 0.9824 + }, + { + "start": 5767.48, + "end": 5773.0, + "probability": 0.8791 + }, + { + "start": 5773.64, + "end": 5774.88, + "probability": 0.9954 + }, + { + "start": 5775.62, + "end": 5778.06, + "probability": 0.9215 + }, + { + "start": 5779.44, + "end": 5782.36, + "probability": 0.7298 + }, + { + "start": 5782.56, + "end": 5784.99, + "probability": 0.978 + }, + { + "start": 5785.92, + "end": 5792.16, + "probability": 0.9858 + }, + { + "start": 5792.16, + "end": 5796.04, + "probability": 0.9963 + }, + { + "start": 5796.2, + "end": 5801.5, + "probability": 0.8014 + }, + { + "start": 5802.66, + "end": 5804.13, + "probability": 0.9863 + }, + { + "start": 5805.72, + "end": 5808.18, + "probability": 0.7822 + }, + { + "start": 5808.52, + "end": 5813.72, + "probability": 0.9964 + }, + { + "start": 5815.7, + "end": 5820.04, + "probability": 0.8291 + }, + { + "start": 5820.88, + "end": 5824.04, + "probability": 0.8355 + }, + { + "start": 5825.02, + "end": 5825.8, + "probability": 0.5237 + }, + { + "start": 5828.02, + "end": 5831.32, + "probability": 0.9419 + }, + { + "start": 5831.96, + "end": 5832.0, + "probability": 0.1268 + }, + { + "start": 5832.24, + "end": 5833.32, + "probability": 0.9912 + }, + { + "start": 5834.8, + "end": 5836.82, + "probability": 0.9956 + }, + { + "start": 5837.76, + "end": 5837.76, + "probability": 0.9316 + }, + { + "start": 5838.76, + "end": 5840.5, + "probability": 0.9377 + }, + { + "start": 5840.73, + "end": 5843.12, + "probability": 0.9924 + }, + { + "start": 5843.26, + "end": 5848.4, + "probability": 0.8725 + }, + { + "start": 5849.02, + "end": 5849.44, + "probability": 0.7036 + }, + { + "start": 5849.6, + "end": 5850.84, + "probability": 0.8049 + }, + { + "start": 5851.14, + "end": 5852.72, + "probability": 0.7136 + }, + { + "start": 5852.72, + "end": 5853.6, + "probability": 0.6948 + }, + { + "start": 5854.1, + "end": 5855.44, + "probability": 0.8213 + }, + { + "start": 5856.7, + "end": 5859.5, + "probability": 0.9946 + }, + { + "start": 5860.12, + "end": 5865.26, + "probability": 0.5744 + }, + { + "start": 5865.28, + "end": 5865.76, + "probability": 0.6084 + }, + { + "start": 5866.02, + "end": 5867.64, + "probability": 0.932 + }, + { + "start": 5870.58, + "end": 5874.5, + "probability": 0.6628 + }, + { + "start": 5875.78, + "end": 5877.9, + "probability": 0.9521 + }, + { + "start": 5878.9, + "end": 5882.1, + "probability": 0.9281 + }, + { + "start": 5883.43, + "end": 5887.06, + "probability": 0.8826 + }, + { + "start": 5887.5, + "end": 5891.82, + "probability": 0.9924 + }, + { + "start": 5891.82, + "end": 5897.86, + "probability": 0.9833 + }, + { + "start": 5898.9, + "end": 5901.24, + "probability": 0.9872 + }, + { + "start": 5901.24, + "end": 5903.82, + "probability": 0.9948 + }, + { + "start": 5904.56, + "end": 5907.33, + "probability": 0.9927 + }, + { + "start": 5908.8, + "end": 5911.3, + "probability": 0.793 + }, + { + "start": 5912.66, + "end": 5918.28, + "probability": 0.9953 + }, + { + "start": 5918.82, + "end": 5924.56, + "probability": 0.9531 + }, + { + "start": 5924.8, + "end": 5927.72, + "probability": 0.9658 + }, + { + "start": 5928.28, + "end": 5931.76, + "probability": 0.9946 + }, + { + "start": 5932.44, + "end": 5934.42, + "probability": 0.9877 + }, + { + "start": 5934.46, + "end": 5938.56, + "probability": 0.9975 + }, + { + "start": 5939.38, + "end": 5942.07, + "probability": 0.9829 + }, + { + "start": 5942.7, + "end": 5944.85, + "probability": 0.9387 + }, + { + "start": 5944.94, + "end": 5947.9, + "probability": 0.9878 + }, + { + "start": 5948.22, + "end": 5949.74, + "probability": 0.9232 + }, + { + "start": 5950.18, + "end": 5951.7, + "probability": 0.9958 + }, + { + "start": 5951.8, + "end": 5954.32, + "probability": 0.9639 + }, + { + "start": 5954.68, + "end": 5957.88, + "probability": 0.987 + }, + { + "start": 5958.34, + "end": 5960.58, + "probability": 0.8396 + }, + { + "start": 5961.12, + "end": 5962.4, + "probability": 0.7165 + }, + { + "start": 5964.74, + "end": 5967.0, + "probability": 0.8969 + }, + { + "start": 5967.02, + "end": 5973.5, + "probability": 0.9751 + }, + { + "start": 5974.16, + "end": 5975.02, + "probability": 0.6434 + }, + { + "start": 5975.12, + "end": 5975.54, + "probability": 0.5778 + }, + { + "start": 5975.54, + "end": 5978.22, + "probability": 0.7478 + }, + { + "start": 5978.58, + "end": 5979.58, + "probability": 0.9786 + }, + { + "start": 5979.7, + "end": 5981.34, + "probability": 0.9915 + }, + { + "start": 5982.04, + "end": 5983.56, + "probability": 0.8875 + }, + { + "start": 5983.68, + "end": 5985.96, + "probability": 0.938 + }, + { + "start": 5986.38, + "end": 5988.06, + "probability": 0.915 + }, + { + "start": 5988.7, + "end": 5990.56, + "probability": 0.9717 + }, + { + "start": 5991.12, + "end": 5992.51, + "probability": 0.9746 + }, + { + "start": 5993.92, + "end": 5998.88, + "probability": 0.9924 + }, + { + "start": 5999.42, + "end": 6004.28, + "probability": 0.9985 + }, + { + "start": 6004.64, + "end": 6008.04, + "probability": 0.9897 + }, + { + "start": 6008.04, + "end": 6010.78, + "probability": 0.8601 + }, + { + "start": 6011.32, + "end": 6014.3, + "probability": 0.9893 + }, + { + "start": 6014.46, + "end": 6015.28, + "probability": 0.8623 + }, + { + "start": 6015.4, + "end": 6016.28, + "probability": 0.9186 + }, + { + "start": 6016.42, + "end": 6017.84, + "probability": 0.9905 + }, + { + "start": 6018.12, + "end": 6018.72, + "probability": 0.5106 + }, + { + "start": 6019.14, + "end": 6020.16, + "probability": 0.9646 + }, + { + "start": 6020.44, + "end": 6021.08, + "probability": 0.908 + }, + { + "start": 6021.42, + "end": 6022.18, + "probability": 0.6164 + }, + { + "start": 6022.8, + "end": 6023.24, + "probability": 0.9581 + }, + { + "start": 6023.48, + "end": 6024.59, + "probability": 0.9902 + }, + { + "start": 6026.46, + "end": 6031.28, + "probability": 0.9498 + }, + { + "start": 6031.78, + "end": 6034.0, + "probability": 0.93 + }, + { + "start": 6034.54, + "end": 6038.54, + "probability": 0.5 + }, + { + "start": 6038.54, + "end": 6042.46, + "probability": 0.9877 + }, + { + "start": 6042.64, + "end": 6044.06, + "probability": 0.8115 + }, + { + "start": 6044.58, + "end": 6045.46, + "probability": 0.9009 + }, + { + "start": 6045.88, + "end": 6048.08, + "probability": 0.9807 + }, + { + "start": 6048.52, + "end": 6050.7, + "probability": 0.5418 + }, + { + "start": 6051.28, + "end": 6053.48, + "probability": 0.7338 + }, + { + "start": 6054.34, + "end": 6055.2, + "probability": 0.7343 + }, + { + "start": 6056.26, + "end": 6058.47, + "probability": 0.8617 + }, + { + "start": 6060.66, + "end": 6064.92, + "probability": 0.7838 + }, + { + "start": 6065.96, + "end": 6068.54, + "probability": 0.8029 + }, + { + "start": 6068.78, + "end": 6069.3, + "probability": 0.1687 + }, + { + "start": 6070.54, + "end": 6072.02, + "probability": 0.6508 + }, + { + "start": 6072.56, + "end": 6074.04, + "probability": 0.928 + }, + { + "start": 6075.04, + "end": 6076.52, + "probability": 0.845 + }, + { + "start": 6076.68, + "end": 6077.66, + "probability": 0.9824 + }, + { + "start": 6078.0, + "end": 6078.44, + "probability": 0.9012 + }, + { + "start": 6078.84, + "end": 6079.3, + "probability": 0.4355 + }, + { + "start": 6079.7, + "end": 6080.82, + "probability": 0.6442 + }, + { + "start": 6081.22, + "end": 6082.9, + "probability": 0.8185 + }, + { + "start": 6083.4, + "end": 6087.16, + "probability": 0.8282 + }, + { + "start": 6088.5, + "end": 6092.18, + "probability": 0.8969 + }, + { + "start": 6093.2, + "end": 6096.44, + "probability": 0.9761 + }, + { + "start": 6097.18, + "end": 6099.42, + "probability": 0.5688 + }, + { + "start": 6100.24, + "end": 6103.02, + "probability": 0.9488 + }, + { + "start": 6106.74, + "end": 6109.82, + "probability": 0.8149 + }, + { + "start": 6110.82, + "end": 6113.74, + "probability": 0.7798 + }, + { + "start": 6114.76, + "end": 6117.53, + "probability": 0.9795 + }, + { + "start": 6120.38, + "end": 6121.38, + "probability": 0.672 + }, + { + "start": 6122.52, + "end": 6125.6, + "probability": 0.9652 + }, + { + "start": 6126.4, + "end": 6127.56, + "probability": 0.6818 + }, + { + "start": 6128.74, + "end": 6132.28, + "probability": 0.8339 + }, + { + "start": 6133.72, + "end": 6137.64, + "probability": 0.9879 + }, + { + "start": 6137.64, + "end": 6141.74, + "probability": 0.9949 + }, + { + "start": 6142.46, + "end": 6143.7, + "probability": 0.583 + }, + { + "start": 6144.48, + "end": 6147.58, + "probability": 0.8341 + }, + { + "start": 6148.46, + "end": 6151.9, + "probability": 0.9492 + }, + { + "start": 6152.66, + "end": 6154.42, + "probability": 0.8644 + }, + { + "start": 6154.8, + "end": 6156.58, + "probability": 0.9571 + }, + { + "start": 6157.02, + "end": 6162.0, + "probability": 0.9963 + }, + { + "start": 6162.08, + "end": 6164.22, + "probability": 0.9827 + }, + { + "start": 6164.72, + "end": 6166.7, + "probability": 0.7505 + }, + { + "start": 6167.26, + "end": 6169.94, + "probability": 0.9905 + }, + { + "start": 6170.74, + "end": 6174.42, + "probability": 0.9923 + }, + { + "start": 6175.98, + "end": 6183.82, + "probability": 0.9941 + }, + { + "start": 6184.12, + "end": 6184.66, + "probability": 0.9551 + }, + { + "start": 6185.42, + "end": 6185.66, + "probability": 0.3999 + }, + { + "start": 6186.54, + "end": 6187.94, + "probability": 0.9042 + }, + { + "start": 6188.74, + "end": 6190.24, + "probability": 0.8452 + }, + { + "start": 6191.0, + "end": 6193.86, + "probability": 0.955 + }, + { + "start": 6194.94, + "end": 6197.34, + "probability": 0.9697 + }, + { + "start": 6198.02, + "end": 6199.1, + "probability": 0.9373 + }, + { + "start": 6200.12, + "end": 6202.28, + "probability": 0.7732 + }, + { + "start": 6202.86, + "end": 6206.92, + "probability": 0.995 + }, + { + "start": 6207.44, + "end": 6209.76, + "probability": 0.9689 + }, + { + "start": 6210.12, + "end": 6211.84, + "probability": 0.984 + }, + { + "start": 6212.28, + "end": 6214.2, + "probability": 0.9987 + }, + { + "start": 6214.52, + "end": 6215.94, + "probability": 0.9929 + }, + { + "start": 6216.18, + "end": 6216.68, + "probability": 0.6917 + }, + { + "start": 6217.26, + "end": 6218.04, + "probability": 0.7389 + }, + { + "start": 6218.24, + "end": 6218.78, + "probability": 0.897 + }, + { + "start": 6220.44, + "end": 6222.34, + "probability": 0.9799 + }, + { + "start": 6222.46, + "end": 6227.04, + "probability": 0.9255 + }, + { + "start": 6228.12, + "end": 6229.52, + "probability": 0.8223 + }, + { + "start": 6229.76, + "end": 6231.0, + "probability": 0.6934 + }, + { + "start": 6231.38, + "end": 6233.9, + "probability": 0.516 + }, + { + "start": 6234.72, + "end": 6235.98, + "probability": 0.6466 + }, + { + "start": 6237.08, + "end": 6238.72, + "probability": 0.9341 + }, + { + "start": 6246.0, + "end": 6246.72, + "probability": 0.5924 + }, + { + "start": 6248.52, + "end": 6250.75, + "probability": 0.9146 + }, + { + "start": 6250.98, + "end": 6251.66, + "probability": 0.7153 + }, + { + "start": 6252.18, + "end": 6253.2, + "probability": 0.9404 + }, + { + "start": 6254.88, + "end": 6256.04, + "probability": 0.7961 + }, + { + "start": 6256.96, + "end": 6257.94, + "probability": 0.848 + }, + { + "start": 6262.5, + "end": 6272.54, + "probability": 0.9882 + }, + { + "start": 6274.72, + "end": 6277.24, + "probability": 0.6659 + }, + { + "start": 6279.32, + "end": 6282.96, + "probability": 0.8716 + }, + { + "start": 6282.96, + "end": 6285.5, + "probability": 0.8832 + }, + { + "start": 6288.18, + "end": 6289.2, + "probability": 0.9291 + }, + { + "start": 6289.6, + "end": 6291.9, + "probability": 0.9966 + }, + { + "start": 6292.64, + "end": 6293.78, + "probability": 0.9627 + }, + { + "start": 6295.66, + "end": 6297.06, + "probability": 0.889 + }, + { + "start": 6299.9, + "end": 6300.67, + "probability": 0.9855 + }, + { + "start": 6304.1, + "end": 6306.4, + "probability": 0.9913 + }, + { + "start": 6306.94, + "end": 6310.3, + "probability": 0.981 + }, + { + "start": 6311.68, + "end": 6312.98, + "probability": 0.9468 + }, + { + "start": 6314.02, + "end": 6315.44, + "probability": 0.8647 + }, + { + "start": 6316.0, + "end": 6317.62, + "probability": 0.7931 + }, + { + "start": 6318.96, + "end": 6321.26, + "probability": 0.8708 + }, + { + "start": 6323.12, + "end": 6325.98, + "probability": 0.8347 + }, + { + "start": 6327.46, + "end": 6328.45, + "probability": 0.9978 + }, + { + "start": 6329.0, + "end": 6330.7, + "probability": 0.9876 + }, + { + "start": 6331.3, + "end": 6331.9, + "probability": 0.7275 + }, + { + "start": 6333.52, + "end": 6334.64, + "probability": 0.7297 + }, + { + "start": 6336.34, + "end": 6338.68, + "probability": 0.933 + }, + { + "start": 6341.6, + "end": 6341.6, + "probability": 0.7734 + }, + { + "start": 6342.44, + "end": 6347.9, + "probability": 0.9688 + }, + { + "start": 6348.78, + "end": 6351.18, + "probability": 0.9209 + }, + { + "start": 6352.26, + "end": 6357.16, + "probability": 0.7162 + }, + { + "start": 6357.28, + "end": 6358.72, + "probability": 0.5744 + }, + { + "start": 6359.8, + "end": 6360.74, + "probability": 0.8528 + }, + { + "start": 6362.98, + "end": 6364.04, + "probability": 0.479 + }, + { + "start": 6367.18, + "end": 6368.12, + "probability": 0.9841 + }, + { + "start": 6368.82, + "end": 6370.72, + "probability": 0.9751 + }, + { + "start": 6371.7, + "end": 6372.31, + "probability": 0.6818 + }, + { + "start": 6375.39, + "end": 6377.1, + "probability": 0.6682 + }, + { + "start": 6378.58, + "end": 6380.1, + "probability": 0.9803 + }, + { + "start": 6380.72, + "end": 6382.9, + "probability": 0.4888 + }, + { + "start": 6383.04, + "end": 6384.54, + "probability": 0.2131 + }, + { + "start": 6385.0, + "end": 6385.24, + "probability": 0.4774 + }, + { + "start": 6386.26, + "end": 6386.66, + "probability": 0.8342 + }, + { + "start": 6387.18, + "end": 6388.58, + "probability": 0.4831 + }, + { + "start": 6389.18, + "end": 6389.28, + "probability": 0.5837 + }, + { + "start": 6389.84, + "end": 6390.18, + "probability": 0.9868 + }, + { + "start": 6392.1, + "end": 6393.42, + "probability": 0.8568 + }, + { + "start": 6394.86, + "end": 6395.1, + "probability": 0.8057 + }, + { + "start": 6395.78, + "end": 6395.88, + "probability": 0.2351 + }, + { + "start": 6397.28, + "end": 6398.16, + "probability": 0.1591 + }, + { + "start": 6399.4, + "end": 6400.84, + "probability": 0.8919 + }, + { + "start": 6401.86, + "end": 6403.58, + "probability": 0.9697 + }, + { + "start": 6407.2, + "end": 6408.14, + "probability": 0.9915 + }, + { + "start": 6411.14, + "end": 6411.34, + "probability": 0.0837 + }, + { + "start": 6412.16, + "end": 6412.88, + "probability": 0.3008 + }, + { + "start": 6412.88, + "end": 6414.52, + "probability": 0.2938 + }, + { + "start": 6415.1, + "end": 6415.38, + "probability": 0.2779 + }, + { + "start": 6415.78, + "end": 6418.72, + "probability": 0.4894 + }, + { + "start": 6421.08, + "end": 6421.62, + "probability": 0.9049 + }, + { + "start": 6425.32, + "end": 6427.98, + "probability": 0.9941 + }, + { + "start": 6429.18, + "end": 6431.86, + "probability": 0.9963 + }, + { + "start": 6433.88, + "end": 6435.22, + "probability": 0.6091 + }, + { + "start": 6435.96, + "end": 6436.48, + "probability": 0.7129 + }, + { + "start": 6438.32, + "end": 6438.44, + "probability": 0.4636 + }, + { + "start": 6438.44, + "end": 6438.82, + "probability": 0.5012 + }, + { + "start": 6439.92, + "end": 6441.16, + "probability": 0.481 + }, + { + "start": 6441.16, + "end": 6441.72, + "probability": 0.6817 + }, + { + "start": 6442.12, + "end": 6443.0, + "probability": 0.91 + }, + { + "start": 6443.16, + "end": 6445.7, + "probability": 0.7207 + }, + { + "start": 6448.7, + "end": 6450.82, + "probability": 0.8885 + }, + { + "start": 6452.0, + "end": 6453.82, + "probability": 0.9424 + }, + { + "start": 6454.34, + "end": 6455.96, + "probability": 0.7006 + }, + { + "start": 6457.48, + "end": 6459.22, + "probability": 0.3368 + }, + { + "start": 6463.88, + "end": 6465.86, + "probability": 0.9372 + }, + { + "start": 6466.02, + "end": 6466.66, + "probability": 0.8653 + }, + { + "start": 6466.96, + "end": 6468.32, + "probability": 0.9964 + }, + { + "start": 6469.92, + "end": 6474.2, + "probability": 0.8819 + }, + { + "start": 6479.38, + "end": 6482.14, + "probability": 0.9974 + }, + { + "start": 6482.62, + "end": 6485.12, + "probability": 0.7178 + }, + { + "start": 6486.36, + "end": 6488.44, + "probability": 0.9609 + }, + { + "start": 6489.72, + "end": 6490.8, + "probability": 0.7528 + }, + { + "start": 6491.4, + "end": 6491.8, + "probability": 0.9516 + }, + { + "start": 6494.18, + "end": 6495.76, + "probability": 0.9837 + }, + { + "start": 6497.3, + "end": 6499.06, + "probability": 0.8674 + }, + { + "start": 6501.8, + "end": 6503.64, + "probability": 0.996 + }, + { + "start": 6504.18, + "end": 6504.92, + "probability": 0.7893 + }, + { + "start": 6506.06, + "end": 6513.2, + "probability": 0.995 + }, + { + "start": 6516.22, + "end": 6517.38, + "probability": 0.9475 + }, + { + "start": 6518.48, + "end": 6519.18, + "probability": 0.8019 + }, + { + "start": 6522.72, + "end": 6524.34, + "probability": 0.7393 + }, + { + "start": 6524.7, + "end": 6527.38, + "probability": 0.9734 + }, + { + "start": 6528.06, + "end": 6533.2, + "probability": 0.9541 + }, + { + "start": 6533.84, + "end": 6534.84, + "probability": 0.8384 + }, + { + "start": 6536.08, + "end": 6536.7, + "probability": 0.7126 + }, + { + "start": 6538.26, + "end": 6539.92, + "probability": 0.8829 + }, + { + "start": 6540.18, + "end": 6542.94, + "probability": 0.9712 + }, + { + "start": 6543.62, + "end": 6545.72, + "probability": 0.8941 + }, + { + "start": 6547.34, + "end": 6553.3, + "probability": 0.6231 + }, + { + "start": 6553.58, + "end": 6553.82, + "probability": 0.0215 + }, + { + "start": 6554.54, + "end": 6556.08, + "probability": 0.6583 + }, + { + "start": 6560.12, + "end": 6562.86, + "probability": 0.8654 + }, + { + "start": 6563.1, + "end": 6563.82, + "probability": 0.9269 + }, + { + "start": 6565.16, + "end": 6565.5, + "probability": 0.4385 + }, + { + "start": 6566.26, + "end": 6566.72, + "probability": 0.5029 + }, + { + "start": 6567.4, + "end": 6567.4, + "probability": 0.004 + }, + { + "start": 6569.68, + "end": 6570.03, + "probability": 0.1941 + }, + { + "start": 6570.46, + "end": 6570.46, + "probability": 0.0069 + }, + { + "start": 6570.46, + "end": 6572.96, + "probability": 0.6795 + }, + { + "start": 6573.14, + "end": 6573.55, + "probability": 0.9355 + }, + { + "start": 6573.88, + "end": 6575.2, + "probability": 0.962 + }, + { + "start": 6575.78, + "end": 6579.4, + "probability": 0.6576 + }, + { + "start": 6579.8, + "end": 6580.02, + "probability": 0.0375 + }, + { + "start": 6581.48, + "end": 6582.08, + "probability": 0.027 + }, + { + "start": 6582.08, + "end": 6582.78, + "probability": 0.02 + }, + { + "start": 6583.04, + "end": 6583.8, + "probability": 0.0204 + }, + { + "start": 6584.96, + "end": 6586.66, + "probability": 0.7271 + }, + { + "start": 6587.46, + "end": 6589.54, + "probability": 0.9397 + }, + { + "start": 6589.7, + "end": 6592.0, + "probability": 0.8799 + }, + { + "start": 6592.32, + "end": 6592.94, + "probability": 0.884 + }, + { + "start": 6594.16, + "end": 6595.22, + "probability": 0.0849 + }, + { + "start": 6595.43, + "end": 6598.53, + "probability": 0.2772 + }, + { + "start": 6599.16, + "end": 6599.92, + "probability": 0.0433 + }, + { + "start": 6599.94, + "end": 6599.94, + "probability": 0.1236 + }, + { + "start": 6599.94, + "end": 6599.94, + "probability": 0.0742 + }, + { + "start": 6599.94, + "end": 6602.15, + "probability": 0.6416 + }, + { + "start": 6603.0, + "end": 6605.42, + "probability": 0.7787 + }, + { + "start": 6605.66, + "end": 6606.88, + "probability": 0.1068 + }, + { + "start": 6607.04, + "end": 6608.3, + "probability": 0.1532 + }, + { + "start": 6608.32, + "end": 6612.32, + "probability": 0.955 + }, + { + "start": 6613.88, + "end": 6614.8, + "probability": 0.0363 + }, + { + "start": 6615.7, + "end": 6616.82, + "probability": 0.5094 + }, + { + "start": 6617.4, + "end": 6618.62, + "probability": 0.3261 + }, + { + "start": 6619.06, + "end": 6619.82, + "probability": 0.2613 + }, + { + "start": 6620.4, + "end": 6621.82, + "probability": 0.8638 + }, + { + "start": 6622.74, + "end": 6623.1, + "probability": 0.8411 + }, + { + "start": 6624.48, + "end": 6626.04, + "probability": 0.9955 + }, + { + "start": 6626.46, + "end": 6627.96, + "probability": 0.8903 + }, + { + "start": 6629.4, + "end": 6630.68, + "probability": 0.9403 + }, + { + "start": 6632.34, + "end": 6635.54, + "probability": 0.9576 + }, + { + "start": 6636.72, + "end": 6641.14, + "probability": 0.9399 + }, + { + "start": 6642.64, + "end": 6643.8, + "probability": 0.6328 + }, + { + "start": 6644.72, + "end": 6645.22, + "probability": 0.8059 + }, + { + "start": 6647.97, + "end": 6653.4, + "probability": 0.9365 + }, + { + "start": 6654.82, + "end": 6655.9, + "probability": 0.9554 + }, + { + "start": 6659.28, + "end": 6660.3, + "probability": 0.7901 + }, + { + "start": 6660.56, + "end": 6661.2, + "probability": 0.9212 + }, + { + "start": 6661.24, + "end": 6661.82, + "probability": 0.937 + }, + { + "start": 6664.3, + "end": 6667.22, + "probability": 0.7774 + }, + { + "start": 6667.74, + "end": 6668.24, + "probability": 0.9438 + }, + { + "start": 6668.8, + "end": 6670.36, + "probability": 0.0081 + }, + { + "start": 6671.0, + "end": 6678.8, + "probability": 0.8597 + }, + { + "start": 6682.02, + "end": 6685.0, + "probability": 0.5542 + }, + { + "start": 6686.52, + "end": 6687.32, + "probability": 0.9711 + }, + { + "start": 6690.22, + "end": 6690.66, + "probability": 0.9869 + }, + { + "start": 6693.26, + "end": 6693.94, + "probability": 0.8288 + }, + { + "start": 6695.42, + "end": 6697.48, + "probability": 0.9677 + }, + { + "start": 6697.82, + "end": 6702.24, + "probability": 0.9421 + }, + { + "start": 6702.24, + "end": 6705.66, + "probability": 0.9952 + }, + { + "start": 6706.88, + "end": 6709.62, + "probability": 0.9956 + }, + { + "start": 6709.76, + "end": 6713.16, + "probability": 0.6171 + }, + { + "start": 6714.52, + "end": 6715.28, + "probability": 0.6079 + }, + { + "start": 6715.92, + "end": 6720.56, + "probability": 0.6699 + }, + { + "start": 6722.04, + "end": 6725.38, + "probability": 0.9839 + }, + { + "start": 6725.72, + "end": 6726.84, + "probability": 0.9807 + }, + { + "start": 6726.92, + "end": 6727.6, + "probability": 0.6324 + }, + { + "start": 6731.4, + "end": 6733.04, + "probability": 0.8808 + }, + { + "start": 6734.16, + "end": 6738.16, + "probability": 0.9926 + }, + { + "start": 6739.48, + "end": 6740.66, + "probability": 0.7143 + }, + { + "start": 6743.68, + "end": 6744.92, + "probability": 0.1009 + }, + { + "start": 6746.08, + "end": 6746.9, + "probability": 0.63 + }, + { + "start": 6747.24, + "end": 6753.0, + "probability": 0.9152 + }, + { + "start": 6755.32, + "end": 6755.92, + "probability": 0.9003 + }, + { + "start": 6757.2, + "end": 6758.04, + "probability": 0.8422 + }, + { + "start": 6759.74, + "end": 6760.62, + "probability": 0.5231 + }, + { + "start": 6762.56, + "end": 6766.5, + "probability": 0.9674 + }, + { + "start": 6767.08, + "end": 6770.84, + "probability": 0.9742 + }, + { + "start": 6771.74, + "end": 6773.3, + "probability": 0.9946 + }, + { + "start": 6774.56, + "end": 6775.94, + "probability": 0.946 + }, + { + "start": 6777.12, + "end": 6777.98, + "probability": 0.7709 + }, + { + "start": 6778.6, + "end": 6781.87, + "probability": 0.8389 + }, + { + "start": 6782.94, + "end": 6785.92, + "probability": 0.9297 + }, + { + "start": 6788.68, + "end": 6789.7, + "probability": 0.8883 + }, + { + "start": 6791.28, + "end": 6794.86, + "probability": 0.9359 + }, + { + "start": 6796.24, + "end": 6800.0, + "probability": 0.9603 + }, + { + "start": 6801.48, + "end": 6802.04, + "probability": 0.7228 + }, + { + "start": 6802.88, + "end": 6804.48, + "probability": 0.8137 + }, + { + "start": 6806.62, + "end": 6807.98, + "probability": 0.9958 + }, + { + "start": 6808.5, + "end": 6808.78, + "probability": 0.8861 + }, + { + "start": 6809.54, + "end": 6811.12, + "probability": 0.9785 + }, + { + "start": 6812.16, + "end": 6813.86, + "probability": 0.8801 + }, + { + "start": 6815.22, + "end": 6818.58, + "probability": 0.9585 + }, + { + "start": 6819.12, + "end": 6819.5, + "probability": 0.6828 + }, + { + "start": 6821.78, + "end": 6826.0, + "probability": 0.7201 + }, + { + "start": 6826.96, + "end": 6828.5, + "probability": 0.3537 + }, + { + "start": 6829.36, + "end": 6829.38, + "probability": 0.2637 + }, + { + "start": 6829.38, + "end": 6830.42, + "probability": 0.9455 + }, + { + "start": 6831.48, + "end": 6832.82, + "probability": 0.9603 + }, + { + "start": 6833.62, + "end": 6834.44, + "probability": 0.9131 + }, + { + "start": 6836.48, + "end": 6840.2, + "probability": 0.8401 + }, + { + "start": 6841.1, + "end": 6844.66, + "probability": 0.777 + }, + { + "start": 6846.22, + "end": 6849.28, + "probability": 0.7046 + }, + { + "start": 6849.34, + "end": 6850.24, + "probability": 0.9159 + }, + { + "start": 6850.56, + "end": 6851.3, + "probability": 0.9482 + }, + { + "start": 6851.96, + "end": 6855.74, + "probability": 0.7484 + }, + { + "start": 6856.4, + "end": 6859.5, + "probability": 0.8757 + }, + { + "start": 6859.86, + "end": 6864.9, + "probability": 0.7553 + }, + { + "start": 6867.97, + "end": 6869.98, + "probability": 0.8573 + }, + { + "start": 6870.54, + "end": 6873.76, + "probability": 0.6736 + }, + { + "start": 6874.56, + "end": 6878.06, + "probability": 0.9668 + }, + { + "start": 6878.82, + "end": 6879.41, + "probability": 0.9595 + }, + { + "start": 6881.26, + "end": 6883.42, + "probability": 0.9873 + }, + { + "start": 6883.72, + "end": 6885.04, + "probability": 0.9651 + }, + { + "start": 6885.52, + "end": 6886.16, + "probability": 0.9392 + }, + { + "start": 6887.84, + "end": 6890.1, + "probability": 0.8345 + }, + { + "start": 6891.13, + "end": 6894.14, + "probability": 0.844 + }, + { + "start": 6894.72, + "end": 6900.2, + "probability": 0.7743 + }, + { + "start": 6901.75, + "end": 6906.62, + "probability": 0.8773 + }, + { + "start": 6907.22, + "end": 6909.0, + "probability": 0.9578 + }, + { + "start": 6911.24, + "end": 6912.92, + "probability": 0.9917 + }, + { + "start": 6914.6, + "end": 6917.08, + "probability": 0.7071 + }, + { + "start": 6918.34, + "end": 6919.02, + "probability": 0.8351 + }, + { + "start": 6919.56, + "end": 6922.88, + "probability": 0.9204 + }, + { + "start": 6923.9, + "end": 6924.36, + "probability": 0.9768 + }, + { + "start": 6926.88, + "end": 6929.96, + "probability": 0.9823 + }, + { + "start": 6931.02, + "end": 6932.6, + "probability": 0.8843 + }, + { + "start": 6933.5, + "end": 6934.44, + "probability": 0.8612 + }, + { + "start": 6935.64, + "end": 6937.72, + "probability": 0.8913 + }, + { + "start": 6942.6, + "end": 6945.08, + "probability": 0.9014 + }, + { + "start": 6947.1, + "end": 6947.46, + "probability": 0.743 + }, + { + "start": 6948.16, + "end": 6949.6, + "probability": 0.9233 + }, + { + "start": 6951.22, + "end": 6951.94, + "probability": 0.7464 + }, + { + "start": 6953.28, + "end": 6958.06, + "probability": 0.9531 + }, + { + "start": 6959.16, + "end": 6963.54, + "probability": 0.9681 + }, + { + "start": 6964.24, + "end": 6965.64, + "probability": 0.868 + }, + { + "start": 6970.6, + "end": 6973.92, + "probability": 0.8282 + }, + { + "start": 6973.92, + "end": 6976.16, + "probability": 0.9945 + }, + { + "start": 6977.12, + "end": 6978.41, + "probability": 0.9507 + }, + { + "start": 6979.2, + "end": 6980.32, + "probability": 0.9084 + }, + { + "start": 6981.26, + "end": 6981.36, + "probability": 0.8569 + }, + { + "start": 6983.82, + "end": 6984.9, + "probability": 0.9639 + }, + { + "start": 6985.44, + "end": 6987.76, + "probability": 0.9715 + }, + { + "start": 6988.32, + "end": 6989.82, + "probability": 0.6871 + }, + { + "start": 6990.04, + "end": 6990.3, + "probability": 0.7837 + }, + { + "start": 6991.7, + "end": 6993.96, + "probability": 0.8778 + }, + { + "start": 6994.08, + "end": 6994.72, + "probability": 0.9329 + }, + { + "start": 6995.72, + "end": 6997.1, + "probability": 0.9973 + }, + { + "start": 6997.68, + "end": 6998.14, + "probability": 0.9734 + }, + { + "start": 6999.14, + "end": 6999.66, + "probability": 0.5621 + }, + { + "start": 7000.66, + "end": 7003.06, + "probability": 0.9678 + }, + { + "start": 7003.56, + "end": 7005.2, + "probability": 0.8459 + }, + { + "start": 7007.44, + "end": 7009.26, + "probability": 0.9984 + }, + { + "start": 7010.04, + "end": 7011.14, + "probability": 0.8756 + }, + { + "start": 7011.92, + "end": 7012.96, + "probability": 0.9546 + }, + { + "start": 7014.62, + "end": 7015.5, + "probability": 0.8896 + }, + { + "start": 7017.18, + "end": 7020.6, + "probability": 0.9915 + }, + { + "start": 7021.2, + "end": 7021.48, + "probability": 0.7942 + }, + { + "start": 7023.72, + "end": 7026.4, + "probability": 0.8928 + }, + { + "start": 7028.34, + "end": 7028.96, + "probability": 0.9344 + }, + { + "start": 7030.64, + "end": 7033.64, + "probability": 0.9899 + }, + { + "start": 7043.78, + "end": 7046.64, + "probability": 0.988 + }, + { + "start": 7050.66, + "end": 7051.98, + "probability": 0.9495 + }, + { + "start": 7052.24, + "end": 7056.8, + "probability": 0.9858 + }, + { + "start": 7057.64, + "end": 7059.68, + "probability": 0.7373 + }, + { + "start": 7062.8, + "end": 7063.32, + "probability": 0.9869 + }, + { + "start": 7064.08, + "end": 7066.3, + "probability": 0.9894 + }, + { + "start": 7068.62, + "end": 7069.9, + "probability": 0.9938 + }, + { + "start": 7071.74, + "end": 7074.08, + "probability": 0.9892 + }, + { + "start": 7075.92, + "end": 7078.34, + "probability": 0.9985 + }, + { + "start": 7080.34, + "end": 7082.58, + "probability": 0.9907 + }, + { + "start": 7082.74, + "end": 7083.24, + "probability": 0.9776 + }, + { + "start": 7084.66, + "end": 7085.62, + "probability": 0.6872 + }, + { + "start": 7088.84, + "end": 7089.48, + "probability": 0.9904 + }, + { + "start": 7090.64, + "end": 7092.44, + "probability": 0.9995 + }, + { + "start": 7093.56, + "end": 7095.2, + "probability": 0.9017 + }, + { + "start": 7097.24, + "end": 7098.62, + "probability": 0.8499 + }, + { + "start": 7101.68, + "end": 7103.21, + "probability": 0.9052 + }, + { + "start": 7105.84, + "end": 7107.19, + "probability": 0.9945 + }, + { + "start": 7109.02, + "end": 7110.76, + "probability": 0.9557 + }, + { + "start": 7112.52, + "end": 7117.16, + "probability": 0.9954 + }, + { + "start": 7117.98, + "end": 7121.18, + "probability": 0.9746 + }, + { + "start": 7122.0, + "end": 7127.54, + "probability": 0.8909 + }, + { + "start": 7128.0, + "end": 7128.78, + "probability": 0.6141 + }, + { + "start": 7129.3, + "end": 7130.22, + "probability": 0.7389 + }, + { + "start": 7132.18, + "end": 7134.72, + "probability": 0.921 + }, + { + "start": 7135.22, + "end": 7137.5, + "probability": 0.9951 + }, + { + "start": 7137.86, + "end": 7138.56, + "probability": 0.7361 + }, + { + "start": 7138.76, + "end": 7139.7, + "probability": 0.9836 + }, + { + "start": 7140.7, + "end": 7143.2, + "probability": 0.8045 + }, + { + "start": 7143.52, + "end": 7145.98, + "probability": 0.9913 + }, + { + "start": 7146.7, + "end": 7148.18, + "probability": 0.939 + }, + { + "start": 7148.9, + "end": 7149.2, + "probability": 0.8682 + }, + { + "start": 7149.86, + "end": 7151.96, + "probability": 0.988 + }, + { + "start": 7153.98, + "end": 7155.38, + "probability": 0.6351 + }, + { + "start": 7155.9, + "end": 7157.62, + "probability": 0.8962 + }, + { + "start": 7158.6, + "end": 7159.7, + "probability": 0.9512 + }, + { + "start": 7160.66, + "end": 7165.34, + "probability": 0.9285 + }, + { + "start": 7166.16, + "end": 7167.34, + "probability": 0.825 + }, + { + "start": 7167.58, + "end": 7169.96, + "probability": 0.8591 + }, + { + "start": 7170.72, + "end": 7171.02, + "probability": 0.8962 + }, + { + "start": 7171.54, + "end": 7173.46, + "probability": 0.9879 + }, + { + "start": 7174.32, + "end": 7177.06, + "probability": 0.866 + }, + { + "start": 7178.08, + "end": 7181.36, + "probability": 0.9976 + }, + { + "start": 7182.02, + "end": 7184.76, + "probability": 0.9697 + }, + { + "start": 7186.76, + "end": 7188.26, + "probability": 0.9918 + }, + { + "start": 7189.06, + "end": 7190.94, + "probability": 0.9565 + }, + { + "start": 7191.54, + "end": 7193.49, + "probability": 0.9504 + }, + { + "start": 7195.14, + "end": 7197.24, + "probability": 0.9801 + }, + { + "start": 7198.32, + "end": 7200.12, + "probability": 0.4188 + }, + { + "start": 7200.66, + "end": 7205.04, + "probability": 0.9765 + }, + { + "start": 7205.78, + "end": 7208.8, + "probability": 0.9884 + }, + { + "start": 7209.94, + "end": 7213.38, + "probability": 0.9774 + }, + { + "start": 7213.72, + "end": 7214.68, + "probability": 0.2042 + }, + { + "start": 7214.82, + "end": 7215.58, + "probability": 0.162 + }, + { + "start": 7215.68, + "end": 7216.42, + "probability": 0.2396 + }, + { + "start": 7217.66, + "end": 7219.92, + "probability": 0.8328 + }, + { + "start": 7220.34, + "end": 7222.16, + "probability": 0.9644 + }, + { + "start": 7222.84, + "end": 7224.88, + "probability": 0.821 + }, + { + "start": 7226.08, + "end": 7226.7, + "probability": 0.23 + }, + { + "start": 7226.8, + "end": 7226.8, + "probability": 0.0459 + }, + { + "start": 7226.9, + "end": 7228.92, + "probability": 0.1996 + }, + { + "start": 7229.19, + "end": 7229.64, + "probability": 0.1375 + }, + { + "start": 7229.64, + "end": 7232.52, + "probability": 0.5822 + }, + { + "start": 7232.62, + "end": 7233.1, + "probability": 0.7285 + }, + { + "start": 7233.22, + "end": 7233.84, + "probability": 0.7713 + }, + { + "start": 7235.78, + "end": 7235.92, + "probability": 0.0301 + }, + { + "start": 7235.92, + "end": 7235.92, + "probability": 0.0123 + }, + { + "start": 7235.92, + "end": 7238.14, + "probability": 0.3375 + }, + { + "start": 7238.24, + "end": 7239.34, + "probability": 0.3759 + }, + { + "start": 7239.34, + "end": 7240.22, + "probability": 0.808 + }, + { + "start": 7240.22, + "end": 7240.22, + "probability": 0.2548 + }, + { + "start": 7240.22, + "end": 7241.82, + "probability": 0.5587 + }, + { + "start": 7242.26, + "end": 7244.2, + "probability": 0.9956 + }, + { + "start": 7244.94, + "end": 7245.88, + "probability": 0.6348 + }, + { + "start": 7245.98, + "end": 7246.42, + "probability": 0.8448 + }, + { + "start": 7246.9, + "end": 7248.3, + "probability": 0.3876 + }, + { + "start": 7248.38, + "end": 7248.4, + "probability": 0.4215 + }, + { + "start": 7248.4, + "end": 7250.78, + "probability": 0.1169 + }, + { + "start": 7250.78, + "end": 7253.0, + "probability": 0.8019 + }, + { + "start": 7253.3, + "end": 7255.62, + "probability": 0.58 + }, + { + "start": 7256.08, + "end": 7256.08, + "probability": 0.4313 + }, + { + "start": 7256.3, + "end": 7257.16, + "probability": 0.4154 + }, + { + "start": 7257.38, + "end": 7258.84, + "probability": 0.3536 + }, + { + "start": 7259.02, + "end": 7260.22, + "probability": 0.2573 + }, + { + "start": 7260.22, + "end": 7260.98, + "probability": 0.4475 + }, + { + "start": 7261.34, + "end": 7262.74, + "probability": 0.3199 + }, + { + "start": 7262.74, + "end": 7263.78, + "probability": 0.217 + }, + { + "start": 7263.94, + "end": 7264.34, + "probability": 0.25 + }, + { + "start": 7264.5, + "end": 7265.32, + "probability": 0.4922 + }, + { + "start": 7265.42, + "end": 7266.32, + "probability": 0.5854 + }, + { + "start": 7266.68, + "end": 7266.82, + "probability": 0.0106 + }, + { + "start": 7266.84, + "end": 7267.78, + "probability": 0.1226 + }, + { + "start": 7267.88, + "end": 7267.92, + "probability": 0.0149 + }, + { + "start": 7267.92, + "end": 7267.92, + "probability": 0.2159 + }, + { + "start": 7267.92, + "end": 7268.78, + "probability": 0.2673 + }, + { + "start": 7269.28, + "end": 7269.98, + "probability": 0.561 + }, + { + "start": 7270.08, + "end": 7270.88, + "probability": 0.814 + }, + { + "start": 7270.88, + "end": 7272.65, + "probability": 0.7337 + }, + { + "start": 7274.1, + "end": 7274.1, + "probability": 0.1938 + }, + { + "start": 7274.12, + "end": 7275.18, + "probability": 0.3379 + }, + { + "start": 7275.36, + "end": 7275.42, + "probability": 0.0627 + }, + { + "start": 7275.42, + "end": 7276.92, + "probability": 0.0195 + }, + { + "start": 7277.66, + "end": 7277.98, + "probability": 0.7473 + }, + { + "start": 7278.3, + "end": 7279.12, + "probability": 0.6902 + }, + { + "start": 7280.94, + "end": 7281.8, + "probability": 0.8478 + }, + { + "start": 7284.04, + "end": 7285.52, + "probability": 0.0339 + }, + { + "start": 7285.58, + "end": 7285.6, + "probability": 0.0573 + }, + { + "start": 7285.6, + "end": 7285.6, + "probability": 0.1569 + }, + { + "start": 7285.6, + "end": 7287.28, + "probability": 0.5439 + }, + { + "start": 7287.38, + "end": 7292.06, + "probability": 0.6839 + }, + { + "start": 7292.58, + "end": 7294.12, + "probability": 0.7778 + }, + { + "start": 7296.17, + "end": 7298.32, + "probability": 0.7305 + }, + { + "start": 7298.46, + "end": 7299.74, + "probability": 0.792 + }, + { + "start": 7300.58, + "end": 7302.64, + "probability": 0.6681 + }, + { + "start": 7302.8, + "end": 7303.5, + "probability": 0.9225 + }, + { + "start": 7303.6, + "end": 7304.54, + "probability": 0.9805 + }, + { + "start": 7304.92, + "end": 7308.4, + "probability": 0.7823 + }, + { + "start": 7309.12, + "end": 7309.5, + "probability": 0.8523 + }, + { + "start": 7309.5, + "end": 7310.3, + "probability": 0.7606 + }, + { + "start": 7311.42, + "end": 7313.58, + "probability": 0.8106 + }, + { + "start": 7314.98, + "end": 7316.34, + "probability": 0.9899 + }, + { + "start": 7316.54, + "end": 7318.38, + "probability": 0.9811 + }, + { + "start": 7318.74, + "end": 7319.8, + "probability": 0.6542 + }, + { + "start": 7320.42, + "end": 7324.64, + "probability": 0.6743 + }, + { + "start": 7325.8, + "end": 7327.99, + "probability": 0.9968 + }, + { + "start": 7328.54, + "end": 7330.21, + "probability": 0.9868 + }, + { + "start": 7330.46, + "end": 7335.12, + "probability": 0.9508 + }, + { + "start": 7335.28, + "end": 7336.92, + "probability": 0.8582 + }, + { + "start": 7338.64, + "end": 7339.64, + "probability": 0.778 + }, + { + "start": 7341.7, + "end": 7344.18, + "probability": 0.9211 + }, + { + "start": 7346.0, + "end": 7350.98, + "probability": 0.8628 + }, + { + "start": 7351.06, + "end": 7353.94, + "probability": 0.8278 + }, + { + "start": 7355.16, + "end": 7357.78, + "probability": 0.9917 + }, + { + "start": 7357.86, + "end": 7358.68, + "probability": 0.7918 + }, + { + "start": 7358.82, + "end": 7362.6, + "probability": 0.9985 + }, + { + "start": 7362.6, + "end": 7365.66, + "probability": 0.9966 + }, + { + "start": 7366.38, + "end": 7367.48, + "probability": 0.9983 + }, + { + "start": 7367.8, + "end": 7369.51, + "probability": 0.997 + }, + { + "start": 7369.92, + "end": 7371.32, + "probability": 0.9468 + }, + { + "start": 7372.4, + "end": 7374.04, + "probability": 0.9373 + }, + { + "start": 7375.8, + "end": 7377.16, + "probability": 0.9878 + }, + { + "start": 7377.42, + "end": 7379.0, + "probability": 0.9958 + }, + { + "start": 7379.38, + "end": 7381.14, + "probability": 0.9941 + }, + { + "start": 7381.46, + "end": 7383.28, + "probability": 0.9749 + }, + { + "start": 7383.88, + "end": 7386.44, + "probability": 0.9592 + }, + { + "start": 7387.94, + "end": 7388.8, + "probability": 0.9186 + }, + { + "start": 7388.98, + "end": 7390.26, + "probability": 0.991 + }, + { + "start": 7390.68, + "end": 7391.62, + "probability": 0.8659 + }, + { + "start": 7391.88, + "end": 7393.02, + "probability": 0.5632 + }, + { + "start": 7393.28, + "end": 7395.53, + "probability": 0.9526 + }, + { + "start": 7396.7, + "end": 7399.92, + "probability": 0.744 + }, + { + "start": 7400.99, + "end": 7402.76, + "probability": 0.9856 + }, + { + "start": 7403.4, + "end": 7406.48, + "probability": 0.9698 + }, + { + "start": 7407.04, + "end": 7407.46, + "probability": 0.7772 + }, + { + "start": 7408.5, + "end": 7409.98, + "probability": 0.9419 + }, + { + "start": 7411.1, + "end": 7413.76, + "probability": 0.9954 + }, + { + "start": 7414.96, + "end": 7415.22, + "probability": 0.6738 + }, + { + "start": 7415.38, + "end": 7418.66, + "probability": 0.9639 + }, + { + "start": 7418.78, + "end": 7420.72, + "probability": 0.9329 + }, + { + "start": 7420.82, + "end": 7424.94, + "probability": 0.9697 + }, + { + "start": 7425.02, + "end": 7425.95, + "probability": 0.9473 + }, + { + "start": 7426.52, + "end": 7427.24, + "probability": 0.9813 + }, + { + "start": 7427.98, + "end": 7428.92, + "probability": 0.8944 + }, + { + "start": 7429.04, + "end": 7429.62, + "probability": 0.9457 + }, + { + "start": 7429.78, + "end": 7433.76, + "probability": 0.9875 + }, + { + "start": 7434.14, + "end": 7439.87, + "probability": 0.9985 + }, + { + "start": 7440.4, + "end": 7442.2, + "probability": 0.9974 + }, + { + "start": 7442.56, + "end": 7442.76, + "probability": 0.7153 + }, + { + "start": 7442.84, + "end": 7443.38, + "probability": 0.9239 + }, + { + "start": 7444.36, + "end": 7444.8, + "probability": 0.1376 + }, + { + "start": 7444.8, + "end": 7444.8, + "probability": 0.466 + }, + { + "start": 7444.8, + "end": 7444.94, + "probability": 0.1367 + }, + { + "start": 7446.48, + "end": 7447.84, + "probability": 0.6141 + }, + { + "start": 7447.98, + "end": 7449.46, + "probability": 0.4446 + }, + { + "start": 7450.42, + "end": 7450.52, + "probability": 0.4434 + }, + { + "start": 7450.76, + "end": 7450.8, + "probability": 0.4535 + }, + { + "start": 7450.82, + "end": 7454.58, + "probability": 0.9915 + }, + { + "start": 7455.64, + "end": 7456.98, + "probability": 0.9342 + }, + { + "start": 7457.02, + "end": 7457.7, + "probability": 0.8025 + }, + { + "start": 7457.78, + "end": 7460.14, + "probability": 0.8408 + }, + { + "start": 7460.86, + "end": 7467.78, + "probability": 0.9823 + }, + { + "start": 7468.3, + "end": 7471.52, + "probability": 0.9958 + }, + { + "start": 7472.06, + "end": 7473.5, + "probability": 0.9089 + }, + { + "start": 7473.58, + "end": 7475.86, + "probability": 0.9827 + }, + { + "start": 7475.92, + "end": 7477.12, + "probability": 0.9595 + }, + { + "start": 7478.12, + "end": 7479.68, + "probability": 0.8903 + }, + { + "start": 7480.68, + "end": 7482.4, + "probability": 0.9985 + }, + { + "start": 7483.0, + "end": 7486.94, + "probability": 0.9776 + }, + { + "start": 7487.26, + "end": 7490.74, + "probability": 0.9577 + }, + { + "start": 7491.06, + "end": 7491.4, + "probability": 0.8263 + }, + { + "start": 7492.18, + "end": 7493.36, + "probability": 0.8841 + }, + { + "start": 7493.66, + "end": 7497.62, + "probability": 0.9353 + }, + { + "start": 7497.62, + "end": 7503.46, + "probability": 0.9954 + }, + { + "start": 7503.9, + "end": 7504.8, + "probability": 0.57 + }, + { + "start": 7504.92, + "end": 7505.74, + "probability": 0.5981 + }, + { + "start": 7505.8, + "end": 7506.98, + "probability": 0.94 + }, + { + "start": 7507.62, + "end": 7509.9, + "probability": 0.6578 + }, + { + "start": 7510.52, + "end": 7514.34, + "probability": 0.9396 + }, + { + "start": 7514.7, + "end": 7516.38, + "probability": 0.9832 + }, + { + "start": 7516.48, + "end": 7519.26, + "probability": 0.9982 + }, + { + "start": 7519.7, + "end": 7522.37, + "probability": 0.9636 + }, + { + "start": 7523.32, + "end": 7524.5, + "probability": 0.966 + }, + { + "start": 7524.96, + "end": 7529.12, + "probability": 0.9875 + }, + { + "start": 7529.64, + "end": 7530.22, + "probability": 0.9491 + }, + { + "start": 7530.68, + "end": 7535.92, + "probability": 0.7974 + }, + { + "start": 7536.6, + "end": 7537.74, + "probability": 0.4697 + }, + { + "start": 7538.14, + "end": 7541.54, + "probability": 0.9746 + }, + { + "start": 7541.96, + "end": 7543.84, + "probability": 0.7084 + }, + { + "start": 7543.92, + "end": 7544.42, + "probability": 0.8724 + }, + { + "start": 7544.48, + "end": 7545.28, + "probability": 0.9844 + }, + { + "start": 7547.28, + "end": 7547.54, + "probability": 0.0185 + }, + { + "start": 7547.54, + "end": 7550.34, + "probability": 0.9755 + }, + { + "start": 7550.7, + "end": 7553.46, + "probability": 0.9662 + }, + { + "start": 7553.98, + "end": 7556.08, + "probability": 0.7247 + }, + { + "start": 7556.96, + "end": 7560.16, + "probability": 0.9626 + }, + { + "start": 7560.96, + "end": 7562.52, + "probability": 0.9824 + }, + { + "start": 7562.58, + "end": 7564.66, + "probability": 0.9921 + }, + { + "start": 7565.84, + "end": 7570.54, + "probability": 0.9979 + }, + { + "start": 7571.34, + "end": 7574.06, + "probability": 0.9102 + }, + { + "start": 7574.46, + "end": 7577.82, + "probability": 0.9628 + }, + { + "start": 7578.48, + "end": 7581.1, + "probability": 0.9893 + }, + { + "start": 7581.64, + "end": 7586.36, + "probability": 0.9795 + }, + { + "start": 7586.36, + "end": 7591.68, + "probability": 0.9924 + }, + { + "start": 7592.42, + "end": 7596.52, + "probability": 0.7947 + }, + { + "start": 7597.1, + "end": 7598.32, + "probability": 0.5042 + }, + { + "start": 7599.36, + "end": 7601.5, + "probability": 0.9 + }, + { + "start": 7602.06, + "end": 7603.82, + "probability": 0.939 + }, + { + "start": 7604.54, + "end": 7607.6, + "probability": 0.9803 + }, + { + "start": 7608.64, + "end": 7612.94, + "probability": 0.9895 + }, + { + "start": 7613.46, + "end": 7615.04, + "probability": 0.9468 + }, + { + "start": 7615.36, + "end": 7616.04, + "probability": 0.8628 + }, + { + "start": 7616.04, + "end": 7616.94, + "probability": 0.9044 + }, + { + "start": 7616.96, + "end": 7622.28, + "probability": 0.8776 + }, + { + "start": 7623.58, + "end": 7626.8, + "probability": 0.9746 + }, + { + "start": 7626.8, + "end": 7629.04, + "probability": 0.957 + }, + { + "start": 7630.14, + "end": 7631.57, + "probability": 0.7572 + }, + { + "start": 7632.06, + "end": 7632.58, + "probability": 0.2987 + }, + { + "start": 7632.58, + "end": 7633.72, + "probability": 0.7805 + }, + { + "start": 7634.52, + "end": 7639.86, + "probability": 0.97 + }, + { + "start": 7640.54, + "end": 7643.52, + "probability": 0.7617 + }, + { + "start": 7644.06, + "end": 7649.32, + "probability": 0.9882 + }, + { + "start": 7649.82, + "end": 7654.3, + "probability": 0.8669 + }, + { + "start": 7654.44, + "end": 7655.92, + "probability": 0.8319 + }, + { + "start": 7656.7, + "end": 7661.18, + "probability": 0.8861 + }, + { + "start": 7661.48, + "end": 7665.7, + "probability": 0.9722 + }, + { + "start": 7666.16, + "end": 7668.7, + "probability": 0.9955 + }, + { + "start": 7668.79, + "end": 7671.48, + "probability": 0.9788 + }, + { + "start": 7672.14, + "end": 7673.68, + "probability": 0.7855 + }, + { + "start": 7674.0, + "end": 7675.02, + "probability": 0.8491 + }, + { + "start": 7675.36, + "end": 7681.24, + "probability": 0.8253 + }, + { + "start": 7681.68, + "end": 7685.44, + "probability": 0.9534 + }, + { + "start": 7686.24, + "end": 7689.92, + "probability": 0.9365 + }, + { + "start": 7691.4, + "end": 7693.18, + "probability": 0.8933 + }, + { + "start": 7693.28, + "end": 7698.16, + "probability": 0.9922 + }, + { + "start": 7698.26, + "end": 7698.46, + "probability": 0.0988 + }, + { + "start": 7698.58, + "end": 7699.72, + "probability": 0.7387 + }, + { + "start": 7700.2, + "end": 7701.93, + "probability": 0.4961 + }, + { + "start": 7702.24, + "end": 7704.08, + "probability": 0.8405 + }, + { + "start": 7704.84, + "end": 7706.92, + "probability": 0.9865 + }, + { + "start": 7708.36, + "end": 7712.45, + "probability": 0.996 + }, + { + "start": 7713.06, + "end": 7716.04, + "probability": 0.9948 + }, + { + "start": 7717.18, + "end": 7718.18, + "probability": 0.8309 + }, + { + "start": 7718.68, + "end": 7724.8, + "probability": 0.849 + }, + { + "start": 7725.08, + "end": 7725.82, + "probability": 0.9576 + }, + { + "start": 7726.26, + "end": 7727.68, + "probability": 0.9438 + }, + { + "start": 7728.14, + "end": 7729.56, + "probability": 0.9832 + }, + { + "start": 7729.88, + "end": 7731.16, + "probability": 0.9937 + }, + { + "start": 7731.66, + "end": 7733.46, + "probability": 0.9614 + }, + { + "start": 7733.9, + "end": 7734.76, + "probability": 0.5949 + }, + { + "start": 7734.86, + "end": 7738.86, + "probability": 0.9953 + }, + { + "start": 7739.3, + "end": 7741.74, + "probability": 0.7984 + }, + { + "start": 7743.22, + "end": 7747.0, + "probability": 0.9871 + }, + { + "start": 7747.62, + "end": 7751.48, + "probability": 0.976 + }, + { + "start": 7751.52, + "end": 7753.38, + "probability": 0.9965 + }, + { + "start": 7754.04, + "end": 7755.26, + "probability": 0.9868 + }, + { + "start": 7755.44, + "end": 7758.36, + "probability": 0.9677 + }, + { + "start": 7759.22, + "end": 7759.54, + "probability": 0.9253 + }, + { + "start": 7760.24, + "end": 7761.56, + "probability": 0.8739 + }, + { + "start": 7761.88, + "end": 7762.06, + "probability": 0.5571 + }, + { + "start": 7762.16, + "end": 7763.9, + "probability": 0.6673 + }, + { + "start": 7764.48, + "end": 7766.4, + "probability": 0.9594 + }, + { + "start": 7766.84, + "end": 7768.88, + "probability": 0.9966 + }, + { + "start": 7769.26, + "end": 7771.93, + "probability": 0.9905 + }, + { + "start": 7772.64, + "end": 7776.34, + "probability": 0.8716 + }, + { + "start": 7776.42, + "end": 7777.18, + "probability": 0.7104 + }, + { + "start": 7778.15, + "end": 7780.54, + "probability": 0.6136 + }, + { + "start": 7781.16, + "end": 7783.88, + "probability": 0.9553 + }, + { + "start": 7784.12, + "end": 7785.88, + "probability": 0.9373 + }, + { + "start": 7785.98, + "end": 7789.62, + "probability": 0.9936 + }, + { + "start": 7789.62, + "end": 7794.56, + "probability": 0.9632 + }, + { + "start": 7795.36, + "end": 7795.94, + "probability": 0.7542 + }, + { + "start": 7795.94, + "end": 7796.72, + "probability": 0.8273 + }, + { + "start": 7796.77, + "end": 7798.33, + "probability": 0.9966 + }, + { + "start": 7798.68, + "end": 7802.3, + "probability": 0.9775 + }, + { + "start": 7802.74, + "end": 7804.64, + "probability": 0.9759 + }, + { + "start": 7805.08, + "end": 7805.78, + "probability": 0.9417 + }, + { + "start": 7805.98, + "end": 7807.16, + "probability": 0.9509 + }, + { + "start": 7807.2, + "end": 7808.02, + "probability": 0.4876 + }, + { + "start": 7808.22, + "end": 7808.62, + "probability": 0.9084 + }, + { + "start": 7808.86, + "end": 7809.42, + "probability": 0.7251 + }, + { + "start": 7809.9, + "end": 7810.86, + "probability": 0.9645 + }, + { + "start": 7811.56, + "end": 7812.47, + "probability": 0.9593 + }, + { + "start": 7812.72, + "end": 7813.5, + "probability": 0.9198 + }, + { + "start": 7813.6, + "end": 7815.02, + "probability": 0.7497 + }, + { + "start": 7817.11, + "end": 7819.15, + "probability": 0.678 + }, + { + "start": 7820.56, + "end": 7821.38, + "probability": 0.5535 + }, + { + "start": 7821.98, + "end": 7822.36, + "probability": 0.4182 + }, + { + "start": 7822.92, + "end": 7823.96, + "probability": 0.829 + }, + { + "start": 7824.24, + "end": 7824.94, + "probability": 0.2329 + }, + { + "start": 7825.02, + "end": 7826.16, + "probability": 0.1659 + }, + { + "start": 7826.38, + "end": 7827.52, + "probability": 0.8562 + }, + { + "start": 7828.6, + "end": 7829.04, + "probability": 0.3181 + }, + { + "start": 7829.04, + "end": 7829.04, + "probability": 0.2167 + }, + { + "start": 7829.04, + "end": 7830.83, + "probability": 0.8797 + }, + { + "start": 7830.96, + "end": 7832.44, + "probability": 0.9932 + }, + { + "start": 7832.7, + "end": 7833.7, + "probability": 0.9841 + }, + { + "start": 7833.76, + "end": 7834.26, + "probability": 0.6827 + }, + { + "start": 7834.46, + "end": 7836.46, + "probability": 0.9649 + }, + { + "start": 7836.98, + "end": 7837.0, + "probability": 0.0413 + }, + { + "start": 7837.0, + "end": 7837.6, + "probability": 0.2659 + }, + { + "start": 7837.74, + "end": 7839.2, + "probability": 0.69 + }, + { + "start": 7839.74, + "end": 7844.14, + "probability": 0.9206 + }, + { + "start": 7844.2, + "end": 7846.44, + "probability": 0.9336 + }, + { + "start": 7846.66, + "end": 7847.4, + "probability": 0.1868 + }, + { + "start": 7847.6, + "end": 7848.18, + "probability": 0.1157 + }, + { + "start": 7848.34, + "end": 7850.06, + "probability": 0.857 + }, + { + "start": 7850.22, + "end": 7850.96, + "probability": 0.5312 + }, + { + "start": 7851.2, + "end": 7852.96, + "probability": 0.8853 + }, + { + "start": 7853.8, + "end": 7858.25, + "probability": 0.4224 + }, + { + "start": 7858.58, + "end": 7860.48, + "probability": 0.8625 + }, + { + "start": 7860.66, + "end": 7861.16, + "probability": 0.3318 + }, + { + "start": 7861.22, + "end": 7861.22, + "probability": 0.4111 + }, + { + "start": 7861.22, + "end": 7861.52, + "probability": 0.5131 + }, + { + "start": 7861.82, + "end": 7864.42, + "probability": 0.5918 + }, + { + "start": 7865.34, + "end": 7865.72, + "probability": 0.8526 + }, + { + "start": 7866.4, + "end": 7870.3, + "probability": 0.5084 + }, + { + "start": 7870.6, + "end": 7872.18, + "probability": 0.313 + }, + { + "start": 7872.26, + "end": 7873.3, + "probability": 0.9937 + }, + { + "start": 7874.16, + "end": 7875.6, + "probability": 0.9175 + }, + { + "start": 7875.9, + "end": 7877.26, + "probability": 0.8098 + }, + { + "start": 7877.6, + "end": 7881.12, + "probability": 0.976 + }, + { + "start": 7881.24, + "end": 7881.34, + "probability": 0.7901 + }, + { + "start": 7882.4, + "end": 7883.38, + "probability": 0.7694 + }, + { + "start": 7883.52, + "end": 7884.26, + "probability": 0.5888 + }, + { + "start": 7884.34, + "end": 7887.66, + "probability": 0.9302 + }, + { + "start": 7887.78, + "end": 7887.84, + "probability": 0.0084 + }, + { + "start": 7887.84, + "end": 7888.44, + "probability": 0.5216 + }, + { + "start": 7889.34, + "end": 7892.07, + "probability": 0.9934 + }, + { + "start": 7892.74, + "end": 7894.0, + "probability": 0.4835 + }, + { + "start": 7894.04, + "end": 7894.42, + "probability": 0.399 + }, + { + "start": 7894.98, + "end": 7896.42, + "probability": 0.4744 + }, + { + "start": 7896.58, + "end": 7897.74, + "probability": 0.9352 + }, + { + "start": 7897.84, + "end": 7900.06, + "probability": 0.8272 + }, + { + "start": 7900.24, + "end": 7900.86, + "probability": 0.3453 + }, + { + "start": 7901.0, + "end": 7903.94, + "probability": 0.9678 + }, + { + "start": 7904.22, + "end": 7906.06, + "probability": 0.8657 + }, + { + "start": 7906.36, + "end": 7906.88, + "probability": 0.1605 + }, + { + "start": 7907.84, + "end": 7908.22, + "probability": 0.2946 + }, + { + "start": 7908.22, + "end": 7908.82, + "probability": 0.0062 + }, + { + "start": 7908.98, + "end": 7910.72, + "probability": 0.6452 + }, + { + "start": 7910.86, + "end": 7912.18, + "probability": 0.8287 + }, + { + "start": 7912.44, + "end": 7914.42, + "probability": 0.8124 + }, + { + "start": 7914.52, + "end": 7916.94, + "probability": 0.5449 + }, + { + "start": 7917.26, + "end": 7919.0, + "probability": 0.3549 + }, + { + "start": 7919.0, + "end": 7919.96, + "probability": 0.4518 + }, + { + "start": 7920.06, + "end": 7921.82, + "probability": 0.5077 + }, + { + "start": 7925.99, + "end": 7929.5, + "probability": 0.2804 + }, + { + "start": 7932.35, + "end": 7933.12, + "probability": 0.0429 + }, + { + "start": 7933.12, + "end": 7934.83, + "probability": 0.1429 + }, + { + "start": 7935.33, + "end": 7936.97, + "probability": 0.4997 + }, + { + "start": 7937.12, + "end": 7937.18, + "probability": 0.1493 + }, + { + "start": 7937.18, + "end": 7938.12, + "probability": 0.2919 + }, + { + "start": 7938.74, + "end": 7944.56, + "probability": 0.8583 + }, + { + "start": 7944.62, + "end": 7945.76, + "probability": 0.6295 + }, + { + "start": 7946.26, + "end": 7947.0, + "probability": 0.9481 + }, + { + "start": 7947.16, + "end": 7951.54, + "probability": 0.8271 + }, + { + "start": 7951.66, + "end": 7951.98, + "probability": 0.7516 + }, + { + "start": 7952.12, + "end": 7952.46, + "probability": 0.821 + }, + { + "start": 7952.96, + "end": 7954.06, + "probability": 0.7876 + }, + { + "start": 7954.16, + "end": 7955.16, + "probability": 0.8501 + }, + { + "start": 7955.98, + "end": 7958.17, + "probability": 0.5098 + }, + { + "start": 7958.78, + "end": 7963.24, + "probability": 0.9697 + }, + { + "start": 7964.0, + "end": 7965.72, + "probability": 0.9971 + }, + { + "start": 7965.82, + "end": 7968.74, + "probability": 0.9046 + }, + { + "start": 7969.1, + "end": 7970.98, + "probability": 0.9679 + }, + { + "start": 7971.52, + "end": 7975.74, + "probability": 0.9203 + }, + { + "start": 7977.62, + "end": 7980.76, + "probability": 0.9591 + }, + { + "start": 7981.14, + "end": 7985.86, + "probability": 0.9972 + }, + { + "start": 7985.86, + "end": 7989.86, + "probability": 0.9983 + }, + { + "start": 7990.86, + "end": 7993.96, + "probability": 0.9976 + }, + { + "start": 7994.92, + "end": 7996.08, + "probability": 0.8784 + }, + { + "start": 7996.92, + "end": 8000.02, + "probability": 0.9827 + }, + { + "start": 8000.68, + "end": 8004.9, + "probability": 0.958 + }, + { + "start": 8005.54, + "end": 8005.9, + "probability": 0.3997 + }, + { + "start": 8006.64, + "end": 8008.34, + "probability": 0.0629 + }, + { + "start": 8010.52, + "end": 8011.22, + "probability": 0.0629 + }, + { + "start": 8011.9, + "end": 8011.96, + "probability": 0.1905 + }, + { + "start": 8011.96, + "end": 8011.96, + "probability": 0.2413 + }, + { + "start": 8011.96, + "end": 8011.96, + "probability": 0.0513 + }, + { + "start": 8011.96, + "end": 8011.96, + "probability": 0.1649 + }, + { + "start": 8011.96, + "end": 8013.18, + "probability": 0.1755 + }, + { + "start": 8013.26, + "end": 8015.04, + "probability": 0.7068 + }, + { + "start": 8015.16, + "end": 8016.3, + "probability": 0.9363 + }, + { + "start": 8016.4, + "end": 8019.7, + "probability": 0.995 + }, + { + "start": 8020.46, + "end": 8021.42, + "probability": 0.6744 + }, + { + "start": 8021.52, + "end": 8024.4, + "probability": 0.7062 + }, + { + "start": 8025.4, + "end": 8026.68, + "probability": 0.7804 + }, + { + "start": 8027.32, + "end": 8028.58, + "probability": 0.9388 + }, + { + "start": 8028.62, + "end": 8030.38, + "probability": 0.7422 + }, + { + "start": 8030.46, + "end": 8032.17, + "probability": 0.9929 + }, + { + "start": 8032.56, + "end": 8033.2, + "probability": 0.7899 + }, + { + "start": 8033.54, + "end": 8034.95, + "probability": 0.99 + }, + { + "start": 8035.6, + "end": 8037.5, + "probability": 0.5407 + }, + { + "start": 8037.5, + "end": 8040.74, + "probability": 0.7146 + }, + { + "start": 8040.98, + "end": 8044.28, + "probability": 0.8809 + }, + { + "start": 8044.4, + "end": 8046.24, + "probability": 0.2923 + }, + { + "start": 8046.34, + "end": 8046.57, + "probability": 0.5337 + }, + { + "start": 8047.06, + "end": 8048.34, + "probability": 0.448 + }, + { + "start": 8048.34, + "end": 8048.46, + "probability": 0.051 + }, + { + "start": 8048.46, + "end": 8050.53, + "probability": 0.1945 + }, + { + "start": 8050.54, + "end": 8051.26, + "probability": 0.1908 + }, + { + "start": 8051.66, + "end": 8052.56, + "probability": 0.5376 + }, + { + "start": 8052.6, + "end": 8053.08, + "probability": 0.1874 + }, + { + "start": 8054.22, + "end": 8054.92, + "probability": 0.4849 + }, + { + "start": 8055.1, + "end": 8056.22, + "probability": 0.5093 + }, + { + "start": 8057.24, + "end": 8057.42, + "probability": 0.1281 + }, + { + "start": 8057.94, + "end": 8059.2, + "probability": 0.9229 + }, + { + "start": 8059.44, + "end": 8059.58, + "probability": 0.0403 + }, + { + "start": 8059.58, + "end": 8060.46, + "probability": 0.0638 + }, + { + "start": 8060.84, + "end": 8064.28, + "probability": 0.6433 + }, + { + "start": 8064.68, + "end": 8065.54, + "probability": 0.9218 + }, + { + "start": 8066.54, + "end": 8066.88, + "probability": 0.5609 + }, + { + "start": 8066.96, + "end": 8070.71, + "probability": 0.9983 + }, + { + "start": 8071.14, + "end": 8072.26, + "probability": 0.8343 + }, + { + "start": 8072.36, + "end": 8073.86, + "probability": 0.9706 + }, + { + "start": 8073.92, + "end": 8074.12, + "probability": 0.7401 + }, + { + "start": 8074.76, + "end": 8076.06, + "probability": 0.973 + }, + { + "start": 8076.08, + "end": 8076.94, + "probability": 0.9471 + }, + { + "start": 8076.98, + "end": 8079.04, + "probability": 0.9077 + }, + { + "start": 8079.62, + "end": 8081.76, + "probability": 0.7459 + }, + { + "start": 8081.84, + "end": 8081.84, + "probability": 0.6655 + }, + { + "start": 8081.84, + "end": 8082.1, + "probability": 0.1441 + }, + { + "start": 8082.54, + "end": 8083.38, + "probability": 0.9307 + }, + { + "start": 8083.6, + "end": 8085.46, + "probability": 0.5216 + }, + { + "start": 8085.46, + "end": 8087.38, + "probability": 0.5252 + }, + { + "start": 8087.4, + "end": 8089.16, + "probability": 0.7498 + }, + { + "start": 8089.22, + "end": 8090.74, + "probability": 0.0657 + }, + { + "start": 8090.9, + "end": 8094.52, + "probability": 0.9066 + }, + { + "start": 8095.06, + "end": 8098.54, + "probability": 0.3965 + }, + { + "start": 8098.54, + "end": 8098.86, + "probability": 0.049 + }, + { + "start": 8102.02, + "end": 8106.64, + "probability": 0.9354 + }, + { + "start": 8106.74, + "end": 8108.55, + "probability": 0.9868 + }, + { + "start": 8109.08, + "end": 8110.68, + "probability": 0.0317 + }, + { + "start": 8110.7, + "end": 8112.02, + "probability": 0.1065 + }, + { + "start": 8112.18, + "end": 8116.4, + "probability": 0.2189 + }, + { + "start": 8116.5, + "end": 8117.26, + "probability": 0.5352 + }, + { + "start": 8117.5, + "end": 8118.56, + "probability": 0.9399 + }, + { + "start": 8118.92, + "end": 8119.72, + "probability": 0.292 + }, + { + "start": 8119.72, + "end": 8120.3, + "probability": 0.123 + }, + { + "start": 8120.46, + "end": 8121.58, + "probability": 0.8088 + }, + { + "start": 8121.68, + "end": 8122.32, + "probability": 0.7458 + }, + { + "start": 8122.38, + "end": 8122.4, + "probability": 0.7617 + }, + { + "start": 8122.4, + "end": 8123.76, + "probability": 0.2619 + }, + { + "start": 8123.96, + "end": 8124.64, + "probability": 0.4441 + }, + { + "start": 8126.57, + "end": 8127.31, + "probability": 0.0986 + }, + { + "start": 8128.82, + "end": 8131.16, + "probability": 0.6362 + }, + { + "start": 8131.2, + "end": 8133.82, + "probability": 0.4981 + }, + { + "start": 8133.86, + "end": 8135.24, + "probability": 0.722 + }, + { + "start": 8135.32, + "end": 8135.42, + "probability": 0.0229 + }, + { + "start": 8135.42, + "end": 8137.48, + "probability": 0.9523 + }, + { + "start": 8137.54, + "end": 8138.74, + "probability": 0.7039 + }, + { + "start": 8139.06, + "end": 8139.82, + "probability": 0.5706 + }, + { + "start": 8139.82, + "end": 8140.6, + "probability": 0.3919 + }, + { + "start": 8140.6, + "end": 8144.76, + "probability": 0.7913 + }, + { + "start": 8145.62, + "end": 8147.08, + "probability": 0.5417 + }, + { + "start": 8147.7, + "end": 8149.18, + "probability": 0.5061 + }, + { + "start": 8149.2, + "end": 8151.76, + "probability": 0.7481 + }, + { + "start": 8151.92, + "end": 8153.76, + "probability": 0.2026 + }, + { + "start": 8155.66, + "end": 8156.14, + "probability": 0.623 + }, + { + "start": 8156.26, + "end": 8157.86, + "probability": 0.8743 + }, + { + "start": 8158.34, + "end": 8161.58, + "probability": 0.9967 + }, + { + "start": 8162.26, + "end": 8163.96, + "probability": 0.9976 + }, + { + "start": 8164.18, + "end": 8164.46, + "probability": 0.7898 + }, + { + "start": 8164.6, + "end": 8165.6, + "probability": 0.8487 + }, + { + "start": 8165.66, + "end": 8168.6, + "probability": 0.9685 + }, + { + "start": 8169.52, + "end": 8170.58, + "probability": 0.8337 + }, + { + "start": 8170.68, + "end": 8171.12, + "probability": 0.4292 + }, + { + "start": 8171.26, + "end": 8171.34, + "probability": 0.7045 + }, + { + "start": 8171.44, + "end": 8173.3, + "probability": 0.79 + }, + { + "start": 8173.38, + "end": 8173.72, + "probability": 0.6353 + }, + { + "start": 8173.78, + "end": 8174.44, + "probability": 0.893 + }, + { + "start": 8175.42, + "end": 8176.42, + "probability": 0.5952 + }, + { + "start": 8177.96, + "end": 8179.28, + "probability": 0.9769 + }, + { + "start": 8179.28, + "end": 8180.62, + "probability": 0.9409 + }, + { + "start": 8180.66, + "end": 8181.82, + "probability": 0.9547 + }, + { + "start": 8181.84, + "end": 8184.68, + "probability": 0.988 + }, + { + "start": 8184.88, + "end": 8189.4, + "probability": 0.9856 + }, + { + "start": 8189.58, + "end": 8192.22, + "probability": 0.9885 + }, + { + "start": 8192.22, + "end": 8194.96, + "probability": 0.9227 + }, + { + "start": 8195.97, + "end": 8197.74, + "probability": 0.9971 + }, + { + "start": 8197.88, + "end": 8201.2, + "probability": 0.9988 + }, + { + "start": 8201.2, + "end": 8204.68, + "probability": 0.9995 + }, + { + "start": 8205.1, + "end": 8209.8, + "probability": 0.9736 + }, + { + "start": 8209.96, + "end": 8210.6, + "probability": 0.8427 + }, + { + "start": 8211.06, + "end": 8213.74, + "probability": 0.9739 + }, + { + "start": 8213.96, + "end": 8215.22, + "probability": 0.8002 + }, + { + "start": 8215.36, + "end": 8216.02, + "probability": 0.8097 + }, + { + "start": 8216.34, + "end": 8219.22, + "probability": 0.9498 + }, + { + "start": 8219.22, + "end": 8221.66, + "probability": 0.9845 + }, + { + "start": 8222.74, + "end": 8223.72, + "probability": 0.693 + }, + { + "start": 8223.78, + "end": 8226.85, + "probability": 0.9366 + }, + { + "start": 8227.4, + "end": 8231.66, + "probability": 0.9968 + }, + { + "start": 8232.82, + "end": 8234.08, + "probability": 0.6527 + }, + { + "start": 8234.3, + "end": 8240.06, + "probability": 0.9561 + }, + { + "start": 8240.62, + "end": 8242.76, + "probability": 0.9956 + }, + { + "start": 8242.86, + "end": 8243.46, + "probability": 0.7617 + }, + { + "start": 8244.12, + "end": 8246.4, + "probability": 0.8224 + }, + { + "start": 8246.96, + "end": 8247.48, + "probability": 0.8945 + }, + { + "start": 8247.64, + "end": 8254.58, + "probability": 0.9831 + }, + { + "start": 8254.74, + "end": 8255.52, + "probability": 0.99 + }, + { + "start": 8256.64, + "end": 8260.4, + "probability": 0.96 + }, + { + "start": 8260.4, + "end": 8264.14, + "probability": 0.9932 + }, + { + "start": 8264.14, + "end": 8268.54, + "probability": 0.9961 + }, + { + "start": 8269.14, + "end": 8269.96, + "probability": 0.5441 + }, + { + "start": 8270.04, + "end": 8272.62, + "probability": 0.9979 + }, + { + "start": 8272.62, + "end": 8276.06, + "probability": 0.9886 + }, + { + "start": 8277.1, + "end": 8281.04, + "probability": 0.8079 + }, + { + "start": 8281.04, + "end": 8284.3, + "probability": 0.9976 + }, + { + "start": 8284.72, + "end": 8286.16, + "probability": 0.704 + }, + { + "start": 8286.46, + "end": 8291.16, + "probability": 0.997 + }, + { + "start": 8291.44, + "end": 8292.34, + "probability": 0.9794 + }, + { + "start": 8292.64, + "end": 8293.42, + "probability": 0.8761 + }, + { + "start": 8293.74, + "end": 8296.1, + "probability": 0.9985 + }, + { + "start": 8296.64, + "end": 8298.76, + "probability": 0.9459 + }, + { + "start": 8299.4, + "end": 8301.12, + "probability": 0.9754 + }, + { + "start": 8301.58, + "end": 8302.42, + "probability": 0.9892 + }, + { + "start": 8302.56, + "end": 8304.64, + "probability": 0.9946 + }, + { + "start": 8305.04, + "end": 8307.52, + "probability": 0.8876 + }, + { + "start": 8308.0, + "end": 8310.5, + "probability": 0.9878 + }, + { + "start": 8311.14, + "end": 8312.01, + "probability": 0.8123 + }, + { + "start": 8312.52, + "end": 8315.28, + "probability": 0.9951 + }, + { + "start": 8315.9, + "end": 8318.0, + "probability": 0.9951 + }, + { + "start": 8318.42, + "end": 8319.25, + "probability": 0.8001 + }, + { + "start": 8320.26, + "end": 8321.55, + "probability": 0.3593 + }, + { + "start": 8322.36, + "end": 8324.18, + "probability": 0.9956 + }, + { + "start": 8326.56, + "end": 8327.36, + "probability": 0.728 + }, + { + "start": 8328.16, + "end": 8330.54, + "probability": 0.9584 + }, + { + "start": 8331.0, + "end": 8332.42, + "probability": 0.6688 + }, + { + "start": 8332.52, + "end": 8334.06, + "probability": 0.9973 + }, + { + "start": 8337.38, + "end": 8337.54, + "probability": 0.501 + }, + { + "start": 8337.54, + "end": 8337.72, + "probability": 0.2092 + }, + { + "start": 8337.8, + "end": 8338.58, + "probability": 0.0785 + }, + { + "start": 8338.94, + "end": 8339.69, + "probability": 0.5374 + }, + { + "start": 8340.12, + "end": 8341.3, + "probability": 0.958 + }, + { + "start": 8341.46, + "end": 8342.34, + "probability": 0.4126 + }, + { + "start": 8342.5, + "end": 8343.04, + "probability": 0.9569 + }, + { + "start": 8343.26, + "end": 8345.38, + "probability": 0.9351 + }, + { + "start": 8345.38, + "end": 8347.58, + "probability": 0.9623 + }, + { + "start": 8347.62, + "end": 8347.62, + "probability": 0.5141 + }, + { + "start": 8347.62, + "end": 8347.88, + "probability": 0.7758 + }, + { + "start": 8348.74, + "end": 8348.74, + "probability": 0.336 + }, + { + "start": 8349.92, + "end": 8350.06, + "probability": 0.079 + }, + { + "start": 8350.06, + "end": 8351.66, + "probability": 0.5234 + }, + { + "start": 8352.04, + "end": 8356.46, + "probability": 0.5547 + }, + { + "start": 8358.14, + "end": 8358.6, + "probability": 0.1603 + }, + { + "start": 8359.5, + "end": 8359.84, + "probability": 0.2169 + }, + { + "start": 8360.16, + "end": 8362.26, + "probability": 0.2004 + }, + { + "start": 8362.3, + "end": 8362.82, + "probability": 0.3184 + }, + { + "start": 8363.24, + "end": 8364.66, + "probability": 0.0853 + }, + { + "start": 8365.28, + "end": 8366.56, + "probability": 0.0206 + }, + { + "start": 8367.76, + "end": 8368.32, + "probability": 0.0685 + }, + { + "start": 8368.32, + "end": 8370.1, + "probability": 0.0752 + }, + { + "start": 8370.1, + "end": 8371.0, + "probability": 0.0227 + }, + { + "start": 8371.0, + "end": 8372.1, + "probability": 0.1924 + }, + { + "start": 8373.3, + "end": 8374.0, + "probability": 0.2487 + }, + { + "start": 8375.73, + "end": 8375.94, + "probability": 0.2765 + }, + { + "start": 8387.18, + "end": 8389.32, + "probability": 0.4712 + }, + { + "start": 8391.52, + "end": 8391.92, + "probability": 0.9138 + }, + { + "start": 8396.86, + "end": 8397.7, + "probability": 0.1657 + }, + { + "start": 8397.7, + "end": 8404.06, + "probability": 0.0469 + }, + { + "start": 8406.17, + "end": 8408.3, + "probability": 0.0827 + }, + { + "start": 8408.3, + "end": 8409.52, + "probability": 0.3342 + }, + { + "start": 8410.2, + "end": 8410.9, + "probability": 0.232 + }, + { + "start": 8411.54, + "end": 8412.28, + "probability": 0.137 + }, + { + "start": 8412.28, + "end": 8412.72, + "probability": 0.2867 + }, + { + "start": 8412.88, + "end": 8412.98, + "probability": 0.2843 + }, + { + "start": 8413.0, + "end": 8413.0, + "probability": 0.0 + }, + { + "start": 8413.0, + "end": 8413.0, + "probability": 0.0 + }, + { + "start": 8413.0, + "end": 8413.0, + "probability": 0.0 + }, + { + "start": 8413.0, + "end": 8413.0, + "probability": 0.0 + }, + { + "start": 8413.0, + "end": 8413.0, + "probability": 0.0 + }, + { + "start": 8413.0, + "end": 8413.0, + "probability": 0.0 + }, + { + "start": 8413.0, + "end": 8413.0, + "probability": 0.0 + }, + { + "start": 8413.0, + "end": 8413.0, + "probability": 0.0 + }, + { + "start": 8413.0, + "end": 8413.0, + "probability": 0.0 + }, + { + "start": 8413.0, + "end": 8413.0, + "probability": 0.0 + }, + { + "start": 8413.0, + "end": 8413.0, + "probability": 0.0 + }, + { + "start": 8413.0, + "end": 8413.0, + "probability": 0.0 + }, + { + "start": 8413.0, + "end": 8413.0, + "probability": 0.0 + }, + { + "start": 8413.28, + "end": 8413.6, + "probability": 0.1321 + }, + { + "start": 8413.6, + "end": 8413.6, + "probability": 0.0382 + }, + { + "start": 8413.6, + "end": 8413.6, + "probability": 0.2034 + }, + { + "start": 8413.6, + "end": 8414.2, + "probability": 0.0187 + }, + { + "start": 8414.22, + "end": 8414.86, + "probability": 0.646 + }, + { + "start": 8415.12, + "end": 8417.08, + "probability": 0.7354 + }, + { + "start": 8417.74, + "end": 8422.76, + "probability": 0.4943 + }, + { + "start": 8427.78, + "end": 8428.88, + "probability": 0.1184 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8551.0, + "end": 8551.0, + "probability": 0.0 + }, + { + "start": 8562.88, + "end": 8564.82, + "probability": 0.0622 + }, + { + "start": 8568.24, + "end": 8569.34, + "probability": 0.1882 + }, + { + "start": 8569.36, + "end": 8569.92, + "probability": 0.5141 + }, + { + "start": 8582.44, + "end": 8583.42, + "probability": 0.3163 + }, + { + "start": 8584.94, + "end": 8586.94, + "probability": 0.0652 + }, + { + "start": 8587.46, + "end": 8587.74, + "probability": 0.6254 + }, + { + "start": 8588.94, + "end": 8589.26, + "probability": 0.0149 + }, + { + "start": 8592.62, + "end": 8593.14, + "probability": 0.1738 + }, + { + "start": 8593.94, + "end": 8596.8, + "probability": 0.7985 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.0, + "end": 8672.0, + "probability": 0.0 + }, + { + "start": 8672.66, + "end": 8672.66, + "probability": 0.1036 + }, + { + "start": 8672.66, + "end": 8672.66, + "probability": 0.1227 + }, + { + "start": 8672.66, + "end": 8672.66, + "probability": 0.0578 + }, + { + "start": 8672.66, + "end": 8672.66, + "probability": 0.0393 + }, + { + "start": 8672.66, + "end": 8672.66, + "probability": 0.1067 + }, + { + "start": 8672.66, + "end": 8672.66, + "probability": 0.073 + }, + { + "start": 8672.66, + "end": 8672.88, + "probability": 0.3139 + }, + { + "start": 8672.9, + "end": 8674.38, + "probability": 0.6064 + }, + { + "start": 8674.98, + "end": 8676.86, + "probability": 0.6769 + }, + { + "start": 8679.42, + "end": 8680.66, + "probability": 0.9309 + }, + { + "start": 8681.1, + "end": 8684.18, + "probability": 0.9655 + }, + { + "start": 8684.96, + "end": 8689.86, + "probability": 0.8496 + }, + { + "start": 8689.86, + "end": 8691.78, + "probability": 0.9769 + }, + { + "start": 8692.4, + "end": 8693.3, + "probability": 0.5939 + }, + { + "start": 8694.48, + "end": 8695.62, + "probability": 0.014 + }, + { + "start": 8695.62, + "end": 8695.92, + "probability": 0.2625 + }, + { + "start": 8696.72, + "end": 8696.94, + "probability": 0.0186 + }, + { + "start": 8696.94, + "end": 8697.82, + "probability": 0.7171 + }, + { + "start": 8697.82, + "end": 8698.14, + "probability": 0.6831 + }, + { + "start": 8698.34, + "end": 8699.6, + "probability": 0.5757 + }, + { + "start": 8699.6, + "end": 8701.07, + "probability": 0.2013 + }, + { + "start": 8701.72, + "end": 8702.08, + "probability": 0.8163 + }, + { + "start": 8702.16, + "end": 8702.44, + "probability": 0.3659 + }, + { + "start": 8702.48, + "end": 8704.42, + "probability": 0.127 + }, + { + "start": 8704.58, + "end": 8704.69, + "probability": 0.2848 + }, + { + "start": 8704.76, + "end": 8705.56, + "probability": 0.4778 + }, + { + "start": 8705.7, + "end": 8706.84, + "probability": 0.5953 + }, + { + "start": 8706.94, + "end": 8708.24, + "probability": 0.425 + }, + { + "start": 8708.34, + "end": 8709.04, + "probability": 0.8387 + }, + { + "start": 8709.26, + "end": 8709.26, + "probability": 0.2137 + }, + { + "start": 8709.26, + "end": 8709.26, + "probability": 0.0939 + }, + { + "start": 8709.26, + "end": 8713.2, + "probability": 0.8703 + }, + { + "start": 8717.67, + "end": 8717.74, + "probability": 0.0512 + }, + { + "start": 8718.58, + "end": 8719.18, + "probability": 0.0116 + }, + { + "start": 8719.18, + "end": 8721.42, + "probability": 0.1638 + }, + { + "start": 8723.08, + "end": 8726.98, + "probability": 0.3559 + }, + { + "start": 8728.08, + "end": 8728.98, + "probability": 0.0856 + }, + { + "start": 8728.98, + "end": 8729.22, + "probability": 0.0952 + }, + { + "start": 8729.38, + "end": 8732.66, + "probability": 0.3618 + }, + { + "start": 8733.78, + "end": 8736.87, + "probability": 0.0234 + }, + { + "start": 8742.08, + "end": 8742.36, + "probability": 0.0047 + }, + { + "start": 8743.14, + "end": 8743.72, + "probability": 0.1096 + }, + { + "start": 8743.72, + "end": 8744.2, + "probability": 0.2032 + }, + { + "start": 8753.26, + "end": 8755.54, + "probability": 0.136 + }, + { + "start": 8759.06, + "end": 8760.1, + "probability": 0.0774 + }, + { + "start": 8761.96, + "end": 8763.8, + "probability": 0.0207 + }, + { + "start": 8763.8, + "end": 8764.76, + "probability": 0.0913 + }, + { + "start": 8764.76, + "end": 8764.8, + "probability": 0.0661 + }, + { + "start": 8764.8, + "end": 8765.44, + "probability": 0.1182 + }, + { + "start": 8765.86, + "end": 8766.22, + "probability": 0.0151 + }, + { + "start": 8797.0, + "end": 8797.0, + "probability": 0.0 + }, + { + "start": 8797.0, + "end": 8797.0, + "probability": 0.0 + }, + { + "start": 8797.0, + "end": 8797.0, + "probability": 0.0 + }, + { + "start": 8797.0, + "end": 8797.0, + "probability": 0.0 + }, + { + "start": 8797.0, + "end": 8797.0, + "probability": 0.0 + }, + { + "start": 8797.0, + "end": 8797.0, + "probability": 0.0 + }, + { + "start": 8797.0, + "end": 8797.0, + "probability": 0.0 + }, + { + "start": 8797.0, + "end": 8797.0, + "probability": 0.0 + }, + { + "start": 8797.0, + "end": 8797.0, + "probability": 0.0 + }, + { + "start": 8797.0, + "end": 8797.0, + "probability": 0.0 + }, + { + "start": 8797.0, + "end": 8797.0, + "probability": 0.0 + }, + { + "start": 8797.0, + "end": 8797.0, + "probability": 0.0 + }, + { + "start": 8797.0, + "end": 8797.0, + "probability": 0.0 + }, + { + "start": 8797.0, + "end": 8797.0, + "probability": 0.0 + }, + { + "start": 8797.0, + "end": 8797.0, + "probability": 0.0 + }, + { + "start": 8797.0, + "end": 8797.0, + "probability": 0.0 + }, + { + "start": 8797.0, + "end": 8797.0, + "probability": 0.0 + }, + { + "start": 8797.0, + "end": 8798.1, + "probability": 0.5055 + }, + { + "start": 8798.6, + "end": 8800.56, + "probability": 0.9951 + }, + { + "start": 8801.22, + "end": 8803.3, + "probability": 0.9203 + }, + { + "start": 8804.06, + "end": 8806.56, + "probability": 0.7937 + }, + { + "start": 8807.34, + "end": 8809.66, + "probability": 0.9769 + }, + { + "start": 8810.4, + "end": 8811.12, + "probability": 0.7277 + }, + { + "start": 8811.2, + "end": 8814.16, + "probability": 0.9897 + }, + { + "start": 8815.0, + "end": 8816.8, + "probability": 0.9909 + }, + { + "start": 8816.9, + "end": 8817.82, + "probability": 0.6832 + }, + { + "start": 8817.94, + "end": 8818.96, + "probability": 0.9111 + }, + { + "start": 8819.94, + "end": 8823.06, + "probability": 0.9507 + }, + { + "start": 8824.04, + "end": 8825.5, + "probability": 0.9393 + }, + { + "start": 8825.78, + "end": 8826.44, + "probability": 0.5898 + }, + { + "start": 8826.54, + "end": 8827.78, + "probability": 0.5527 + }, + { + "start": 8830.16, + "end": 8831.72, + "probability": 0.3883 + }, + { + "start": 8831.76, + "end": 8832.64, + "probability": 0.3382 + }, + { + "start": 8832.64, + "end": 8834.52, + "probability": 0.7558 + }, + { + "start": 8834.52, + "end": 8834.56, + "probability": 0.3693 + }, + { + "start": 8834.64, + "end": 8834.72, + "probability": 0.2673 + }, + { + "start": 8834.78, + "end": 8835.96, + "probability": 0.3634 + }, + { + "start": 8837.32, + "end": 8841.12, + "probability": 0.9687 + }, + { + "start": 8841.84, + "end": 8843.28, + "probability": 0.9575 + }, + { + "start": 8844.38, + "end": 8849.64, + "probability": 0.9894 + }, + { + "start": 8850.46, + "end": 8851.78, + "probability": 0.9915 + }, + { + "start": 8852.32, + "end": 8853.58, + "probability": 0.7413 + }, + { + "start": 8854.58, + "end": 8856.08, + "probability": 0.7561 + }, + { + "start": 8857.3, + "end": 8859.84, + "probability": 0.9934 + }, + { + "start": 8860.54, + "end": 8862.68, + "probability": 0.9443 + }, + { + "start": 8864.04, + "end": 8868.18, + "probability": 0.8812 + }, + { + "start": 8868.74, + "end": 8870.86, + "probability": 0.998 + }, + { + "start": 8871.94, + "end": 8873.68, + "probability": 0.9794 + }, + { + "start": 8874.38, + "end": 8877.16, + "probability": 0.9891 + }, + { + "start": 8878.2, + "end": 8881.82, + "probability": 0.9927 + }, + { + "start": 8882.62, + "end": 8884.9, + "probability": 0.8301 + }, + { + "start": 8886.1, + "end": 8888.86, + "probability": 0.9454 + }, + { + "start": 8889.84, + "end": 8891.42, + "probability": 0.9414 + }, + { + "start": 8892.18, + "end": 8893.02, + "probability": 0.6958 + }, + { + "start": 8894.02, + "end": 8894.34, + "probability": 0.987 + }, + { + "start": 8895.04, + "end": 8898.28, + "probability": 0.9945 + }, + { + "start": 8899.1, + "end": 8902.58, + "probability": 0.9832 + }, + { + "start": 8902.58, + "end": 8905.54, + "probability": 0.9973 + }, + { + "start": 8906.18, + "end": 8907.62, + "probability": 0.7017 + }, + { + "start": 8908.82, + "end": 8911.62, + "probability": 0.9784 + }, + { + "start": 8912.16, + "end": 8916.08, + "probability": 0.9601 + }, + { + "start": 8916.82, + "end": 8920.34, + "probability": 0.9961 + }, + { + "start": 8921.3, + "end": 8925.42, + "probability": 0.9727 + }, + { + "start": 8925.56, + "end": 8928.78, + "probability": 0.9978 + }, + { + "start": 8930.34, + "end": 8935.22, + "probability": 0.9984 + }, + { + "start": 8935.3, + "end": 8936.72, + "probability": 0.983 + }, + { + "start": 8937.88, + "end": 8939.54, + "probability": 0.8029 + }, + { + "start": 8939.74, + "end": 8941.06, + "probability": 0.6404 + }, + { + "start": 8941.42, + "end": 8942.86, + "probability": 0.8287 + }, + { + "start": 8943.72, + "end": 8946.04, + "probability": 0.9924 + }, + { + "start": 8946.82, + "end": 8949.6, + "probability": 0.9985 + }, + { + "start": 8949.6, + "end": 8953.3, + "probability": 0.9891 + }, + { + "start": 8954.12, + "end": 8957.84, + "probability": 0.998 + }, + { + "start": 8957.84, + "end": 8961.12, + "probability": 0.9974 + }, + { + "start": 8961.9, + "end": 8963.92, + "probability": 0.9995 + }, + { + "start": 8965.08, + "end": 8968.92, + "probability": 0.999 + }, + { + "start": 8968.98, + "end": 8970.78, + "probability": 0.9727 + }, + { + "start": 8971.64, + "end": 8972.22, + "probability": 1.0 + }, + { + "start": 8972.84, + "end": 8974.58, + "probability": 0.9995 + }, + { + "start": 8975.26, + "end": 8978.58, + "probability": 0.9659 + }, + { + "start": 8979.26, + "end": 8979.94, + "probability": 0.6225 + }, + { + "start": 8980.86, + "end": 8982.86, + "probability": 0.998 + }, + { + "start": 8984.22, + "end": 8988.92, + "probability": 0.9908 + }, + { + "start": 8989.5, + "end": 8990.24, + "probability": 0.9176 + }, + { + "start": 8990.92, + "end": 8993.38, + "probability": 0.9893 + }, + { + "start": 8994.0, + "end": 8996.88, + "probability": 0.9985 + }, + { + "start": 8996.88, + "end": 8999.82, + "probability": 0.8305 + }, + { + "start": 9000.38, + "end": 9006.08, + "probability": 0.9908 + }, + { + "start": 9006.96, + "end": 9007.52, + "probability": 0.9504 + }, + { + "start": 9008.54, + "end": 9009.44, + "probability": 0.9995 + }, + { + "start": 9010.56, + "end": 9012.02, + "probability": 0.9994 + }, + { + "start": 9013.46, + "end": 9017.52, + "probability": 0.9992 + }, + { + "start": 9018.78, + "end": 9020.24, + "probability": 0.828 + }, + { + "start": 9021.8, + "end": 9023.14, + "probability": 0.3313 + }, + { + "start": 9023.96, + "end": 9027.96, + "probability": 0.9687 + }, + { + "start": 9029.3, + "end": 9031.48, + "probability": 0.9884 + }, + { + "start": 9032.66, + "end": 9035.8, + "probability": 0.9977 + }, + { + "start": 9036.68, + "end": 9039.64, + "probability": 0.8771 + }, + { + "start": 9040.48, + "end": 9041.24, + "probability": 0.8689 + }, + { + "start": 9042.12, + "end": 9042.8, + "probability": 0.6339 + }, + { + "start": 9042.9, + "end": 9044.18, + "probability": 0.9294 + }, + { + "start": 9044.44, + "end": 9045.18, + "probability": 0.9323 + }, + { + "start": 9045.2, + "end": 9048.0, + "probability": 0.4163 + }, + { + "start": 9048.32, + "end": 9048.72, + "probability": 0.9022 + }, + { + "start": 9048.8, + "end": 9049.76, + "probability": 0.5734 + }, + { + "start": 9049.88, + "end": 9050.48, + "probability": 0.8117 + }, + { + "start": 9050.62, + "end": 9054.4, + "probability": 0.9692 + }, + { + "start": 9054.42, + "end": 9056.34, + "probability": 0.5154 + }, + { + "start": 9056.54, + "end": 9056.64, + "probability": 0.0258 + }, + { + "start": 9056.86, + "end": 9058.1, + "probability": 0.5503 + }, + { + "start": 9058.22, + "end": 9058.71, + "probability": 0.5694 + }, + { + "start": 9058.9, + "end": 9059.78, + "probability": 0.9768 + }, + { + "start": 9059.82, + "end": 9060.54, + "probability": 0.8673 + }, + { + "start": 9060.66, + "end": 9062.32, + "probability": 0.9687 + }, + { + "start": 9062.5, + "end": 9064.64, + "probability": 0.854 + }, + { + "start": 9064.64, + "end": 9066.16, + "probability": 0.7979 + }, + { + "start": 9067.18, + "end": 9070.25, + "probability": 0.237 + }, + { + "start": 9071.68, + "end": 9071.98, + "probability": 0.0256 + }, + { + "start": 9072.02, + "end": 9072.5, + "probability": 0.0454 + }, + { + "start": 9072.5, + "end": 9072.5, + "probability": 0.1615 + }, + { + "start": 9072.6, + "end": 9074.76, + "probability": 0.0645 + }, + { + "start": 9074.88, + "end": 9075.48, + "probability": 0.7747 + }, + { + "start": 9075.48, + "end": 9079.08, + "probability": 0.9862 + }, + { + "start": 9079.2, + "end": 9082.7, + "probability": 0.9918 + }, + { + "start": 9083.38, + "end": 9084.41, + "probability": 0.7002 + }, + { + "start": 9084.78, + "end": 9084.96, + "probability": 0.4883 + }, + { + "start": 9084.96, + "end": 9090.36, + "probability": 0.9478 + }, + { + "start": 9091.18, + "end": 9091.52, + "probability": 0.4745 + }, + { + "start": 9091.8, + "end": 9093.28, + "probability": 0.9941 + }, + { + "start": 9093.74, + "end": 9094.2, + "probability": 0.1193 + }, + { + "start": 9094.2, + "end": 9094.2, + "probability": 0.1331 + }, + { + "start": 9094.2, + "end": 9094.2, + "probability": 0.1455 + }, + { + "start": 9094.2, + "end": 9094.69, + "probability": 0.4502 + }, + { + "start": 9094.84, + "end": 9095.26, + "probability": 0.4613 + }, + { + "start": 9095.26, + "end": 9095.66, + "probability": 0.089 + }, + { + "start": 9095.76, + "end": 9096.42, + "probability": 0.1771 + }, + { + "start": 9096.42, + "end": 9098.1, + "probability": 0.7948 + }, + { + "start": 9098.37, + "end": 9098.76, + "probability": 0.1956 + }, + { + "start": 9098.76, + "end": 9100.98, + "probability": 0.957 + }, + { + "start": 9101.62, + "end": 9102.18, + "probability": 0.5111 + }, + { + "start": 9102.22, + "end": 9102.5, + "probability": 0.3507 + }, + { + "start": 9102.56, + "end": 9103.02, + "probability": 0.8237 + }, + { + "start": 9103.72, + "end": 9104.28, + "probability": 0.6995 + }, + { + "start": 9104.5, + "end": 9104.54, + "probability": 0.3691 + }, + { + "start": 9104.54, + "end": 9106.1, + "probability": 0.9728 + }, + { + "start": 9106.22, + "end": 9106.52, + "probability": 0.203 + }, + { + "start": 9106.52, + "end": 9107.42, + "probability": 0.7974 + }, + { + "start": 9108.08, + "end": 9108.46, + "probability": 0.5374 + }, + { + "start": 9108.54, + "end": 9113.26, + "probability": 0.9697 + }, + { + "start": 9114.26, + "end": 9117.94, + "probability": 0.9289 + }, + { + "start": 9118.56, + "end": 9120.92, + "probability": 0.9937 + }, + { + "start": 9121.48, + "end": 9123.88, + "probability": 0.9719 + }, + { + "start": 9124.44, + "end": 9127.36, + "probability": 0.8403 + }, + { + "start": 9128.12, + "end": 9130.52, + "probability": 0.884 + }, + { + "start": 9131.0, + "end": 9134.02, + "probability": 0.9917 + }, + { + "start": 9134.68, + "end": 9138.4, + "probability": 0.9902 + }, + { + "start": 9138.94, + "end": 9139.62, + "probability": 0.9845 + }, + { + "start": 9140.76, + "end": 9141.48, + "probability": 0.718 + }, + { + "start": 9142.5, + "end": 9142.64, + "probability": 0.2561 + }, + { + "start": 9142.64, + "end": 9142.64, + "probability": 0.0447 + }, + { + "start": 9142.64, + "end": 9143.14, + "probability": 0.5575 + }, + { + "start": 9143.28, + "end": 9143.72, + "probability": 0.6438 + }, + { + "start": 9143.8, + "end": 9144.88, + "probability": 0.4384 + }, + { + "start": 9144.92, + "end": 9145.38, + "probability": 0.3361 + }, + { + "start": 9145.4, + "end": 9147.36, + "probability": 0.9379 + }, + { + "start": 9148.22, + "end": 9148.44, + "probability": 0.2824 + }, + { + "start": 9148.44, + "end": 9149.74, + "probability": 0.8839 + }, + { + "start": 9150.02, + "end": 9150.02, + "probability": 0.0394 + }, + { + "start": 9150.02, + "end": 9151.15, + "probability": 0.5948 + }, + { + "start": 9151.46, + "end": 9152.2, + "probability": 0.7437 + }, + { + "start": 9152.94, + "end": 9155.18, + "probability": 0.9955 + }, + { + "start": 9155.36, + "end": 9159.0, + "probability": 0.9359 + }, + { + "start": 9159.54, + "end": 9162.72, + "probability": 0.9973 + }, + { + "start": 9163.8, + "end": 9164.66, + "probability": 0.9685 + }, + { + "start": 9165.24, + "end": 9170.58, + "probability": 0.9984 + }, + { + "start": 9171.28, + "end": 9176.32, + "probability": 0.9985 + }, + { + "start": 9176.9, + "end": 9179.4, + "probability": 0.9161 + }, + { + "start": 9180.3, + "end": 9181.3, + "probability": 0.5782 + }, + { + "start": 9181.88, + "end": 9183.32, + "probability": 0.9022 + }, + { + "start": 9183.9, + "end": 9186.8, + "probability": 0.8634 + }, + { + "start": 9188.0, + "end": 9188.66, + "probability": 0.879 + }, + { + "start": 9189.44, + "end": 9190.9, + "probability": 0.8992 + }, + { + "start": 9191.74, + "end": 9191.74, + "probability": 0.0528 + }, + { + "start": 9191.92, + "end": 9194.52, + "probability": 0.9916 + }, + { + "start": 9194.54, + "end": 9195.46, + "probability": 0.6768 + }, + { + "start": 9196.32, + "end": 9199.14, + "probability": 0.7995 + }, + { + "start": 9199.4, + "end": 9199.5, + "probability": 0.5819 + }, + { + "start": 9199.96, + "end": 9202.38, + "probability": 0.9644 + }, + { + "start": 9202.7, + "end": 9203.88, + "probability": 0.9031 + }, + { + "start": 9204.42, + "end": 9206.42, + "probability": 0.9844 + }, + { + "start": 9208.16, + "end": 9210.68, + "probability": 0.8594 + }, + { + "start": 9211.98, + "end": 9213.56, + "probability": 0.6826 + }, + { + "start": 9214.2, + "end": 9215.74, + "probability": 0.9786 + }, + { + "start": 9216.76, + "end": 9221.82, + "probability": 0.9924 + }, + { + "start": 9222.94, + "end": 9226.74, + "probability": 0.9452 + }, + { + "start": 9228.36, + "end": 9229.72, + "probability": 0.9735 + }, + { + "start": 9231.06, + "end": 9232.98, + "probability": 0.9502 + }, + { + "start": 9234.44, + "end": 9237.8, + "probability": 0.8953 + }, + { + "start": 9239.6, + "end": 9241.16, + "probability": 0.9608 + }, + { + "start": 9241.88, + "end": 9244.82, + "probability": 0.8896 + }, + { + "start": 9246.86, + "end": 9249.48, + "probability": 0.9368 + }, + { + "start": 9251.54, + "end": 9252.44, + "probability": 0.4585 + }, + { + "start": 9252.58, + "end": 9252.58, + "probability": 0.5855 + }, + { + "start": 9252.82, + "end": 9254.76, + "probability": 0.9079 + }, + { + "start": 9254.86, + "end": 9255.5, + "probability": 0.751 + }, + { + "start": 9256.0, + "end": 9257.7, + "probability": 0.8761 + }, + { + "start": 9257.94, + "end": 9258.16, + "probability": 0.0308 + }, + { + "start": 9258.34, + "end": 9259.28, + "probability": 0.4182 + }, + { + "start": 9259.34, + "end": 9260.58, + "probability": 0.9719 + }, + { + "start": 9260.84, + "end": 9262.26, + "probability": 0.8429 + }, + { + "start": 9262.34, + "end": 9263.38, + "probability": 0.6281 + }, + { + "start": 9263.96, + "end": 9264.4, + "probability": 0.574 + }, + { + "start": 9265.98, + "end": 9266.36, + "probability": 0.1987 + }, + { + "start": 9267.02, + "end": 9267.72, + "probability": 0.9346 + }, + { + "start": 9269.1, + "end": 9271.47, + "probability": 0.9009 + }, + { + "start": 9271.66, + "end": 9272.02, + "probability": 0.7055 + }, + { + "start": 9272.1, + "end": 9273.86, + "probability": 0.9746 + }, + { + "start": 9273.98, + "end": 9275.52, + "probability": 0.7733 + }, + { + "start": 9276.02, + "end": 9278.34, + "probability": 0.9771 + }, + { + "start": 9278.82, + "end": 9279.12, + "probability": 0.8133 + }, + { + "start": 9279.38, + "end": 9279.87, + "probability": 0.9054 + }, + { + "start": 9281.14, + "end": 9282.7, + "probability": 0.4662 + }, + { + "start": 9282.94, + "end": 9285.16, + "probability": 0.8112 + }, + { + "start": 9285.62, + "end": 9286.68, + "probability": 0.4958 + }, + { + "start": 9298.52, + "end": 9300.04, + "probability": 0.7892 + }, + { + "start": 9300.04, + "end": 9300.04, + "probability": 0.0849 + }, + { + "start": 9300.04, + "end": 9300.04, + "probability": 0.0181 + }, + { + "start": 9300.04, + "end": 9300.04, + "probability": 0.042 + }, + { + "start": 9300.04, + "end": 9300.04, + "probability": 0.0711 + }, + { + "start": 9300.04, + "end": 9300.68, + "probability": 0.0383 + }, + { + "start": 9302.4, + "end": 9303.09, + "probability": 0.9148 + }, + { + "start": 9304.48, + "end": 9307.98, + "probability": 0.9692 + }, + { + "start": 9310.06, + "end": 9312.44, + "probability": 0.9977 + }, + { + "start": 9314.16, + "end": 9314.82, + "probability": 0.8437 + }, + { + "start": 9314.9, + "end": 9317.04, + "probability": 0.9976 + }, + { + "start": 9317.34, + "end": 9318.32, + "probability": 0.9267 + }, + { + "start": 9319.8, + "end": 9321.72, + "probability": 0.9223 + }, + { + "start": 9322.58, + "end": 9325.58, + "probability": 0.9926 + }, + { + "start": 9326.22, + "end": 9329.0, + "probability": 0.9952 + }, + { + "start": 9330.38, + "end": 9332.54, + "probability": 0.9971 + }, + { + "start": 9333.18, + "end": 9333.84, + "probability": 0.8686 + }, + { + "start": 9334.36, + "end": 9335.34, + "probability": 0.7721 + }, + { + "start": 9336.4, + "end": 9341.54, + "probability": 0.9967 + }, + { + "start": 9341.92, + "end": 9342.48, + "probability": 0.7005 + }, + { + "start": 9344.72, + "end": 9347.46, + "probability": 0.9327 + }, + { + "start": 9348.04, + "end": 9348.83, + "probability": 0.9341 + }, + { + "start": 9349.14, + "end": 9350.06, + "probability": 0.7266 + }, + { + "start": 9351.11, + "end": 9353.1, + "probability": 0.0403 + }, + { + "start": 9353.1, + "end": 9353.14, + "probability": 0.1788 + }, + { + "start": 9353.52, + "end": 9353.6, + "probability": 0.0522 + }, + { + "start": 9353.6, + "end": 9353.6, + "probability": 0.118 + }, + { + "start": 9353.6, + "end": 9353.6, + "probability": 0.2029 + }, + { + "start": 9353.6, + "end": 9353.6, + "probability": 0.077 + }, + { + "start": 9353.78, + "end": 9356.02, + "probability": 0.8089 + }, + { + "start": 9356.02, + "end": 9356.34, + "probability": 0.0983 + }, + { + "start": 9356.34, + "end": 9358.75, + "probability": 0.9734 + }, + { + "start": 9360.56, + "end": 9362.72, + "probability": 0.9827 + }, + { + "start": 9363.86, + "end": 9365.5, + "probability": 0.9956 + }, + { + "start": 9366.2, + "end": 9368.98, + "probability": 0.986 + }, + { + "start": 9369.46, + "end": 9370.3, + "probability": 0.9106 + }, + { + "start": 9370.8, + "end": 9371.9, + "probability": 0.9766 + }, + { + "start": 9372.18, + "end": 9373.3, + "probability": 0.9536 + }, + { + "start": 9373.6, + "end": 9379.26, + "probability": 0.9842 + }, + { + "start": 9380.66, + "end": 9383.2, + "probability": 0.9441 + }, + { + "start": 9384.02, + "end": 9385.36, + "probability": 0.857 + }, + { + "start": 9385.74, + "end": 9386.56, + "probability": 0.96 + }, + { + "start": 9386.64, + "end": 9388.18, + "probability": 0.9727 + }, + { + "start": 9388.72, + "end": 9391.02, + "probability": 0.4797 + }, + { + "start": 9391.44, + "end": 9393.06, + "probability": 0.6807 + }, + { + "start": 9393.68, + "end": 9398.8, + "probability": 0.9937 + }, + { + "start": 9399.44, + "end": 9401.52, + "probability": 0.8345 + }, + { + "start": 9403.28, + "end": 9404.62, + "probability": 0.9966 + }, + { + "start": 9405.94, + "end": 9407.42, + "probability": 0.9894 + }, + { + "start": 9408.72, + "end": 9410.08, + "probability": 0.9907 + }, + { + "start": 9410.42, + "end": 9410.55, + "probability": 0.0328 + }, + { + "start": 9411.18, + "end": 9411.72, + "probability": 0.4159 + }, + { + "start": 9412.98, + "end": 9413.86, + "probability": 0.2491 + }, + { + "start": 9413.86, + "end": 9414.7, + "probability": 0.6322 + }, + { + "start": 9416.0, + "end": 9418.54, + "probability": 0.9108 + }, + { + "start": 9418.88, + "end": 9420.14, + "probability": 0.9609 + }, + { + "start": 9420.48, + "end": 9421.7, + "probability": 0.9802 + }, + { + "start": 9421.76, + "end": 9423.06, + "probability": 0.9771 + }, + { + "start": 9424.04, + "end": 9427.96, + "probability": 0.9359 + }, + { + "start": 9428.26, + "end": 9429.28, + "probability": 0.5104 + }, + { + "start": 9429.28, + "end": 9429.28, + "probability": 0.5364 + }, + { + "start": 9429.28, + "end": 9429.88, + "probability": 0.8098 + }, + { + "start": 9431.06, + "end": 9433.96, + "probability": 0.7501 + }, + { + "start": 9435.56, + "end": 9437.02, + "probability": 0.4724 + }, + { + "start": 9437.6, + "end": 9438.94, + "probability": 0.7124 + }, + { + "start": 9442.52, + "end": 9453.02, + "probability": 0.6112 + }, + { + "start": 9455.68, + "end": 9456.8, + "probability": 0.4917 + }, + { + "start": 9457.42, + "end": 9459.02, + "probability": 0.9864 + }, + { + "start": 9460.73, + "end": 9465.06, + "probability": 0.9946 + }, + { + "start": 9465.66, + "end": 9472.17, + "probability": 0.9406 + }, + { + "start": 9472.46, + "end": 9473.1, + "probability": 0.367 + }, + { + "start": 9473.8, + "end": 9475.02, + "probability": 0.9858 + }, + { + "start": 9476.1, + "end": 9482.66, + "probability": 0.985 + }, + { + "start": 9483.48, + "end": 9485.38, + "probability": 0.8249 + }, + { + "start": 9486.76, + "end": 9488.06, + "probability": 0.9937 + }, + { + "start": 9488.32, + "end": 9490.62, + "probability": 0.9497 + }, + { + "start": 9491.62, + "end": 9497.78, + "probability": 0.9682 + }, + { + "start": 9498.8, + "end": 9499.6, + "probability": 0.7548 + }, + { + "start": 9499.74, + "end": 9502.94, + "probability": 0.9966 + }, + { + "start": 9502.94, + "end": 9506.14, + "probability": 0.9874 + }, + { + "start": 9506.22, + "end": 9506.88, + "probability": 0.6955 + }, + { + "start": 9507.02, + "end": 9507.24, + "probability": 0.9117 + }, + { + "start": 9507.52, + "end": 9509.08, + "probability": 0.9899 + }, + { + "start": 9510.48, + "end": 9510.68, + "probability": 0.9369 + }, + { + "start": 9511.28, + "end": 9515.48, + "probability": 0.8987 + }, + { + "start": 9516.06, + "end": 9521.3, + "probability": 0.7901 + }, + { + "start": 9521.58, + "end": 9522.2, + "probability": 0.9412 + }, + { + "start": 9522.46, + "end": 9524.92, + "probability": 0.9308 + }, + { + "start": 9526.14, + "end": 9529.6, + "probability": 0.8559 + }, + { + "start": 9529.66, + "end": 9531.95, + "probability": 0.9347 + }, + { + "start": 9532.58, + "end": 9533.54, + "probability": 0.8475 + }, + { + "start": 9543.54, + "end": 9544.3, + "probability": 0.0565 + }, + { + "start": 9544.3, + "end": 9544.3, + "probability": 0.0891 + }, + { + "start": 9544.3, + "end": 9544.3, + "probability": 0.2042 + }, + { + "start": 9544.3, + "end": 9548.63, + "probability": 0.6552 + }, + { + "start": 9550.08, + "end": 9555.12, + "probability": 0.8571 + }, + { + "start": 9555.64, + "end": 9558.5, + "probability": 0.9827 + }, + { + "start": 9561.18, + "end": 9563.38, + "probability": 0.9976 + }, + { + "start": 9564.1, + "end": 9569.88, + "probability": 0.8487 + }, + { + "start": 9571.18, + "end": 9575.7, + "probability": 0.9634 + }, + { + "start": 9575.7, + "end": 9579.44, + "probability": 0.9993 + }, + { + "start": 9580.6, + "end": 9585.03, + "probability": 0.999 + }, + { + "start": 9586.96, + "end": 9592.68, + "probability": 0.9846 + }, + { + "start": 9592.82, + "end": 9600.82, + "probability": 0.9951 + }, + { + "start": 9602.12, + "end": 9605.04, + "probability": 0.9914 + }, + { + "start": 9605.24, + "end": 9606.02, + "probability": 0.9869 + }, + { + "start": 9606.12, + "end": 9611.09, + "probability": 0.9907 + }, + { + "start": 9611.9, + "end": 9612.78, + "probability": 0.9306 + }, + { + "start": 9614.76, + "end": 9616.98, + "probability": 0.9758 + }, + { + "start": 9617.42, + "end": 9619.44, + "probability": 0.3532 + }, + { + "start": 9619.48, + "end": 9620.02, + "probability": 0.4506 + }, + { + "start": 9620.06, + "end": 9623.44, + "probability": 0.9614 + }, + { + "start": 9623.82, + "end": 9628.32, + "probability": 0.9929 + }, + { + "start": 9628.32, + "end": 9637.68, + "probability": 0.8764 + }, + { + "start": 9638.42, + "end": 9639.64, + "probability": 0.7605 + }, + { + "start": 9639.78, + "end": 9642.1, + "probability": 0.9512 + }, + { + "start": 9642.2, + "end": 9642.71, + "probability": 0.9662 + }, + { + "start": 9642.96, + "end": 9644.3, + "probability": 0.8816 + }, + { + "start": 9644.36, + "end": 9645.9, + "probability": 0.9834 + }, + { + "start": 9647.14, + "end": 9648.42, + "probability": 0.9854 + }, + { + "start": 9649.06, + "end": 9650.46, + "probability": 0.9935 + }, + { + "start": 9651.06, + "end": 9652.42, + "probability": 0.8813 + }, + { + "start": 9652.62, + "end": 9653.44, + "probability": 0.5161 + }, + { + "start": 9653.64, + "end": 9655.0, + "probability": 0.8304 + }, + { + "start": 9658.4, + "end": 9661.76, + "probability": 0.9568 + }, + { + "start": 9662.66, + "end": 9664.16, + "probability": 0.7411 + }, + { + "start": 9664.24, + "end": 9664.4, + "probability": 0.6935 + }, + { + "start": 9664.5, + "end": 9665.71, + "probability": 0.9982 + }, + { + "start": 9666.6, + "end": 9673.72, + "probability": 0.9819 + }, + { + "start": 9673.72, + "end": 9678.46, + "probability": 0.9543 + }, + { + "start": 9678.48, + "end": 9679.68, + "probability": 0.9709 + }, + { + "start": 9680.4, + "end": 9685.62, + "probability": 0.996 + }, + { + "start": 9685.88, + "end": 9690.06, + "probability": 0.71 + }, + { + "start": 9690.52, + "end": 9693.28, + "probability": 0.9922 + }, + { + "start": 9693.48, + "end": 9698.52, + "probability": 0.9933 + }, + { + "start": 9699.36, + "end": 9701.52, + "probability": 0.979 + }, + { + "start": 9701.58, + "end": 9702.16, + "probability": 0.8236 + }, + { + "start": 9702.66, + "end": 9706.92, + "probability": 0.814 + }, + { + "start": 9707.72, + "end": 9713.38, + "probability": 0.9932 + }, + { + "start": 9713.6, + "end": 9715.4, + "probability": 0.9807 + }, + { + "start": 9716.08, + "end": 9722.86, + "probability": 0.9627 + }, + { + "start": 9723.38, + "end": 9730.0, + "probability": 0.9895 + }, + { + "start": 9730.52, + "end": 9734.36, + "probability": 0.979 + }, + { + "start": 9735.66, + "end": 9739.64, + "probability": 0.9791 + }, + { + "start": 9740.56, + "end": 9743.14, + "probability": 0.9595 + }, + { + "start": 9743.6, + "end": 9746.87, + "probability": 0.8538 + }, + { + "start": 9747.04, + "end": 9748.12, + "probability": 0.6047 + }, + { + "start": 9749.0, + "end": 9753.24, + "probability": 0.7891 + }, + { + "start": 9754.02, + "end": 9757.06, + "probability": 0.9856 + }, + { + "start": 9757.46, + "end": 9757.66, + "probability": 0.6186 + }, + { + "start": 9757.7, + "end": 9758.94, + "probability": 0.9751 + }, + { + "start": 9759.82, + "end": 9764.96, + "probability": 0.9957 + }, + { + "start": 9764.96, + "end": 9768.92, + "probability": 0.995 + }, + { + "start": 9769.02, + "end": 9770.62, + "probability": 0.9255 + }, + { + "start": 9771.4, + "end": 9775.9, + "probability": 0.9945 + }, + { + "start": 9777.32, + "end": 9778.64, + "probability": 0.9995 + }, + { + "start": 9778.8, + "end": 9780.62, + "probability": 0.6563 + }, + { + "start": 9780.68, + "end": 9784.82, + "probability": 0.9911 + }, + { + "start": 9785.96, + "end": 9792.62, + "probability": 0.9956 + }, + { + "start": 9793.56, + "end": 9794.1, + "probability": 0.6385 + }, + { + "start": 9794.88, + "end": 9800.12, + "probability": 0.9567 + }, + { + "start": 9800.18, + "end": 9800.34, + "probability": 0.7211 + }, + { + "start": 9800.34, + "end": 9800.54, + "probability": 0.8189 + }, + { + "start": 9800.76, + "end": 9801.26, + "probability": 0.9043 + }, + { + "start": 9801.66, + "end": 9801.98, + "probability": 0.7873 + }, + { + "start": 9802.08, + "end": 9802.84, + "probability": 0.9732 + }, + { + "start": 9802.94, + "end": 9803.38, + "probability": 0.9257 + }, + { + "start": 9803.56, + "end": 9803.96, + "probability": 0.9021 + }, + { + "start": 9804.52, + "end": 9805.98, + "probability": 0.9651 + }, + { + "start": 9806.1, + "end": 9808.0, + "probability": 0.7275 + }, + { + "start": 9808.72, + "end": 9816.0, + "probability": 0.9419 + }, + { + "start": 9817.08, + "end": 9819.24, + "probability": 0.8101 + }, + { + "start": 9819.38, + "end": 9824.64, + "probability": 0.9725 + }, + { + "start": 9825.28, + "end": 9825.78, + "probability": 0.7603 + }, + { + "start": 9825.88, + "end": 9832.57, + "probability": 0.9838 + }, + { + "start": 9833.16, + "end": 9835.14, + "probability": 0.9342 + }, + { + "start": 9835.78, + "end": 9841.2, + "probability": 0.7953 + }, + { + "start": 9841.8, + "end": 9846.94, + "probability": 0.9969 + }, + { + "start": 9847.0, + "end": 9848.69, + "probability": 0.9989 + }, + { + "start": 9849.24, + "end": 9854.12, + "probability": 0.9822 + }, + { + "start": 9854.16, + "end": 9857.96, + "probability": 0.9938 + }, + { + "start": 9858.56, + "end": 9864.76, + "probability": 0.9995 + }, + { + "start": 9865.98, + "end": 9869.36, + "probability": 0.6964 + }, + { + "start": 9869.94, + "end": 9873.0, + "probability": 0.991 + }, + { + "start": 9873.76, + "end": 9875.62, + "probability": 0.95 + }, + { + "start": 9875.8, + "end": 9880.38, + "probability": 0.99 + }, + { + "start": 9880.38, + "end": 9889.1, + "probability": 0.9915 + }, + { + "start": 9889.2, + "end": 9891.14, + "probability": 0.9947 + }, + { + "start": 9891.46, + "end": 9895.76, + "probability": 0.9863 + }, + { + "start": 9895.9, + "end": 9896.46, + "probability": 0.7881 + }, + { + "start": 9896.52, + "end": 9896.94, + "probability": 0.7114 + }, + { + "start": 9897.08, + "end": 9902.26, + "probability": 0.9557 + }, + { + "start": 9902.7, + "end": 9904.0, + "probability": 0.9615 + }, + { + "start": 9905.82, + "end": 9910.12, + "probability": 0.9598 + }, + { + "start": 9911.16, + "end": 9911.42, + "probability": 0.5418 + }, + { + "start": 9911.5, + "end": 9911.64, + "probability": 0.6797 + }, + { + "start": 9911.76, + "end": 9914.64, + "probability": 0.5949 + }, + { + "start": 9914.72, + "end": 9914.72, + "probability": 0.2046 + }, + { + "start": 9914.74, + "end": 9914.94, + "probability": 0.9332 + }, + { + "start": 9914.96, + "end": 9918.66, + "probability": 0.9967 + }, + { + "start": 9920.16, + "end": 9920.95, + "probability": 0.7389 + }, + { + "start": 9921.86, + "end": 9926.26, + "probability": 0.9768 + }, + { + "start": 9926.7, + "end": 9927.4, + "probability": 0.9575 + }, + { + "start": 9927.52, + "end": 9928.3, + "probability": 0.8302 + }, + { + "start": 9928.34, + "end": 9930.24, + "probability": 0.9719 + }, + { + "start": 9930.38, + "end": 9932.1, + "probability": 0.9824 + }, + { + "start": 9932.7, + "end": 9934.66, + "probability": 0.9937 + }, + { + "start": 9934.8, + "end": 9938.1, + "probability": 0.9819 + }, + { + "start": 9938.64, + "end": 9940.26, + "probability": 0.8654 + }, + { + "start": 9940.46, + "end": 9943.6, + "probability": 0.9933 + }, + { + "start": 9943.84, + "end": 9944.7, + "probability": 0.5433 + }, + { + "start": 9945.08, + "end": 9946.54, + "probability": 0.8826 + }, + { + "start": 9947.02, + "end": 9948.3, + "probability": 0.9976 + }, + { + "start": 9948.94, + "end": 9951.02, + "probability": 0.9381 + }, + { + "start": 9952.28, + "end": 9958.16, + "probability": 0.9945 + }, + { + "start": 9958.4, + "end": 9959.52, + "probability": 0.6466 + }, + { + "start": 9960.54, + "end": 9962.1, + "probability": 0.9978 + }, + { + "start": 9962.7, + "end": 9965.16, + "probability": 0.9974 + }, + { + "start": 9966.12, + "end": 9969.0, + "probability": 0.923 + }, + { + "start": 9969.26, + "end": 9969.34, + "probability": 0.5975 + }, + { + "start": 9969.44, + "end": 9970.84, + "probability": 0.967 + }, + { + "start": 9971.12, + "end": 9971.62, + "probability": 0.9772 + }, + { + "start": 9971.78, + "end": 9972.64, + "probability": 0.8934 + }, + { + "start": 9972.76, + "end": 9973.18, + "probability": 0.7725 + }, + { + "start": 9973.9, + "end": 9977.74, + "probability": 0.9365 + }, + { + "start": 9979.72, + "end": 9983.14, + "probability": 0.9272 + }, + { + "start": 9983.66, + "end": 9985.08, + "probability": 0.9464 + }, + { + "start": 9985.72, + "end": 9992.98, + "probability": 0.9749 + }, + { + "start": 9993.92, + "end": 9997.88, + "probability": 0.9971 + }, + { + "start": 9998.24, + "end": 9999.74, + "probability": 0.9888 + }, + { + "start": 9999.8, + "end": 10002.21, + "probability": 0.9861 + }, + { + "start": 10003.48, + "end": 10007.06, + "probability": 0.9967 + }, + { + "start": 10007.06, + "end": 10011.5, + "probability": 0.9974 + }, + { + "start": 10011.68, + "end": 10013.81, + "probability": 0.9704 + }, + { + "start": 10013.86, + "end": 10017.29, + "probability": 0.9862 + }, + { + "start": 10018.48, + "end": 10019.62, + "probability": 0.9951 + }, + { + "start": 10020.34, + "end": 10021.52, + "probability": 0.9972 + }, + { + "start": 10021.92, + "end": 10022.79, + "probability": 0.8782 + }, + { + "start": 10023.54, + "end": 10023.9, + "probability": 0.6217 + }, + { + "start": 10024.4, + "end": 10027.34, + "probability": 0.8936 + }, + { + "start": 10027.66, + "end": 10027.66, + "probability": 0.5194 + }, + { + "start": 10027.66, + "end": 10028.92, + "probability": 0.8003 + }, + { + "start": 10028.92, + "end": 10033.64, + "probability": 0.7388 + }, + { + "start": 10034.12, + "end": 10035.9, + "probability": 0.937 + }, + { + "start": 10036.22, + "end": 10037.33, + "probability": 0.943 + }, + { + "start": 10037.56, + "end": 10040.08, + "probability": 0.9796 + }, + { + "start": 10040.46, + "end": 10043.01, + "probability": 0.9167 + }, + { + "start": 10044.8, + "end": 10046.88, + "probability": 0.9165 + }, + { + "start": 10046.88, + "end": 10049.3, + "probability": 0.9948 + }, + { + "start": 10049.86, + "end": 10053.02, + "probability": 0.9821 + }, + { + "start": 10053.1, + "end": 10054.36, + "probability": 0.7518 + }, + { + "start": 10054.52, + "end": 10055.37, + "probability": 0.8185 + }, + { + "start": 10056.04, + "end": 10058.26, + "probability": 0.9666 + }, + { + "start": 10059.0, + "end": 10062.86, + "probability": 0.9736 + }, + { + "start": 10063.32, + "end": 10064.88, + "probability": 0.9851 + }, + { + "start": 10065.38, + "end": 10067.1, + "probability": 0.9836 + }, + { + "start": 10067.82, + "end": 10069.76, + "probability": 0.8968 + }, + { + "start": 10070.58, + "end": 10073.0, + "probability": 0.979 + }, + { + "start": 10073.65, + "end": 10076.48, + "probability": 0.9438 + }, + { + "start": 10076.9, + "end": 10078.9, + "probability": 0.9967 + }, + { + "start": 10079.36, + "end": 10080.22, + "probability": 0.9333 + }, + { + "start": 10080.92, + "end": 10084.6, + "probability": 0.9597 + }, + { + "start": 10086.8, + "end": 10087.5, + "probability": 0.6573 + }, + { + "start": 10087.54, + "end": 10089.56, + "probability": 0.9159 + }, + { + "start": 10089.64, + "end": 10091.74, + "probability": 0.9604 + }, + { + "start": 10091.88, + "end": 10092.36, + "probability": 0.7508 + }, + { + "start": 10092.42, + "end": 10092.66, + "probability": 0.8702 + }, + { + "start": 10093.06, + "end": 10095.26, + "probability": 0.9954 + }, + { + "start": 10096.24, + "end": 10098.14, + "probability": 0.9937 + }, + { + "start": 10098.62, + "end": 10102.88, + "probability": 0.9794 + }, + { + "start": 10103.44, + "end": 10103.82, + "probability": 0.9891 + }, + { + "start": 10104.47, + "end": 10108.26, + "probability": 0.8138 + }, + { + "start": 10108.9, + "end": 10110.9, + "probability": 0.9274 + }, + { + "start": 10112.36, + "end": 10112.8, + "probability": 0.9176 + }, + { + "start": 10113.0, + "end": 10113.56, + "probability": 0.8357 + }, + { + "start": 10113.96, + "end": 10117.44, + "probability": 0.924 + }, + { + "start": 10118.32, + "end": 10122.02, + "probability": 0.9961 + }, + { + "start": 10122.76, + "end": 10124.44, + "probability": 0.998 + }, + { + "start": 10125.14, + "end": 10131.22, + "probability": 0.9756 + }, + { + "start": 10131.7, + "end": 10135.94, + "probability": 0.9664 + }, + { + "start": 10135.94, + "end": 10141.46, + "probability": 0.9972 + }, + { + "start": 10141.92, + "end": 10142.22, + "probability": 0.866 + }, + { + "start": 10143.14, + "end": 10145.24, + "probability": 0.9761 + }, + { + "start": 10146.02, + "end": 10149.7, + "probability": 0.9877 + }, + { + "start": 10150.26, + "end": 10155.44, + "probability": 0.8219 + }, + { + "start": 10155.48, + "end": 10159.08, + "probability": 0.9392 + }, + { + "start": 10160.22, + "end": 10162.72, + "probability": 0.9722 + }, + { + "start": 10162.86, + "end": 10164.5, + "probability": 0.9858 + }, + { + "start": 10164.72, + "end": 10166.77, + "probability": 0.993 + }, + { + "start": 10167.6, + "end": 10171.06, + "probability": 0.9712 + }, + { + "start": 10171.54, + "end": 10177.31, + "probability": 0.9841 + }, + { + "start": 10178.04, + "end": 10181.54, + "probability": 0.9914 + }, + { + "start": 10181.6, + "end": 10182.14, + "probability": 0.664 + }, + { + "start": 10182.34, + "end": 10182.94, + "probability": 0.6806 + }, + { + "start": 10183.1, + "end": 10183.94, + "probability": 0.9573 + }, + { + "start": 10185.02, + "end": 10189.42, + "probability": 0.9736 + }, + { + "start": 10189.98, + "end": 10190.9, + "probability": 0.2602 + }, + { + "start": 10190.94, + "end": 10193.16, + "probability": 0.979 + }, + { + "start": 10193.42, + "end": 10196.52, + "probability": 0.9034 + }, + { + "start": 10196.52, + "end": 10199.92, + "probability": 0.9962 + }, + { + "start": 10200.38, + "end": 10202.02, + "probability": 0.9667 + }, + { + "start": 10202.16, + "end": 10203.4, + "probability": 0.9201 + }, + { + "start": 10203.4, + "end": 10204.58, + "probability": 0.9899 + }, + { + "start": 10205.64, + "end": 10208.66, + "probability": 0.9954 + }, + { + "start": 10209.46, + "end": 10210.04, + "probability": 0.839 + }, + { + "start": 10210.16, + "end": 10210.64, + "probability": 0.5068 + }, + { + "start": 10210.7, + "end": 10210.96, + "probability": 0.9489 + }, + { + "start": 10211.06, + "end": 10211.44, + "probability": 0.9285 + }, + { + "start": 10211.52, + "end": 10212.64, + "probability": 0.6985 + }, + { + "start": 10212.78, + "end": 10214.81, + "probability": 0.9229 + }, + { + "start": 10215.9, + "end": 10220.8, + "probability": 0.9784 + }, + { + "start": 10221.42, + "end": 10222.42, + "probability": 0.8695 + }, + { + "start": 10222.5, + "end": 10223.54, + "probability": 0.6401 + }, + { + "start": 10223.78, + "end": 10225.02, + "probability": 0.7065 + }, + { + "start": 10225.04, + "end": 10226.18, + "probability": 0.847 + }, + { + "start": 10226.38, + "end": 10227.7, + "probability": 0.5038 + }, + { + "start": 10228.4, + "end": 10229.14, + "probability": 0.2234 + }, + { + "start": 10229.24, + "end": 10229.78, + "probability": 0.5093 + }, + { + "start": 10229.86, + "end": 10230.77, + "probability": 0.9718 + }, + { + "start": 10231.92, + "end": 10237.72, + "probability": 0.9588 + }, + { + "start": 10238.32, + "end": 10240.48, + "probability": 0.9969 + }, + { + "start": 10241.66, + "end": 10244.48, + "probability": 0.9725 + }, + { + "start": 10244.96, + "end": 10247.08, + "probability": 0.9927 + }, + { + "start": 10247.08, + "end": 10249.4, + "probability": 0.9731 + }, + { + "start": 10249.56, + "end": 10249.96, + "probability": 0.8714 + }, + { + "start": 10250.5, + "end": 10251.96, + "probability": 0.8657 + }, + { + "start": 10252.6, + "end": 10255.82, + "probability": 0.9171 + }, + { + "start": 10256.26, + "end": 10259.78, + "probability": 0.9889 + }, + { + "start": 10259.96, + "end": 10264.14, + "probability": 0.9932 + }, + { + "start": 10264.34, + "end": 10264.64, + "probability": 0.7273 + }, + { + "start": 10265.1, + "end": 10266.0, + "probability": 0.6609 + }, + { + "start": 10266.06, + "end": 10266.58, + "probability": 0.7381 + }, + { + "start": 10266.96, + "end": 10267.48, + "probability": 0.9111 + }, + { + "start": 10269.02, + "end": 10270.14, + "probability": 0.7759 + }, + { + "start": 10270.14, + "end": 10270.42, + "probability": 0.6788 + }, + { + "start": 10270.88, + "end": 10272.15, + "probability": 0.8739 + }, + { + "start": 10273.0, + "end": 10273.48, + "probability": 0.7314 + }, + { + "start": 10273.6, + "end": 10276.02, + "probability": 0.8704 + }, + { + "start": 10287.55, + "end": 10288.58, + "probability": 0.712 + }, + { + "start": 10289.68, + "end": 10292.32, + "probability": 0.772 + }, + { + "start": 10293.16, + "end": 10293.98, + "probability": 0.75 + }, + { + "start": 10294.08, + "end": 10295.26, + "probability": 0.8672 + }, + { + "start": 10295.9, + "end": 10296.93, + "probability": 0.9124 + }, + { + "start": 10298.0, + "end": 10298.7, + "probability": 0.7554 + }, + { + "start": 10300.14, + "end": 10301.02, + "probability": 0.9739 + }, + { + "start": 10301.22, + "end": 10303.96, + "probability": 0.9941 + }, + { + "start": 10305.0, + "end": 10309.42, + "probability": 0.9964 + }, + { + "start": 10310.04, + "end": 10310.5, + "probability": 0.495 + }, + { + "start": 10310.9, + "end": 10312.11, + "probability": 0.8566 + }, + { + "start": 10313.22, + "end": 10313.34, + "probability": 0.6461 + }, + { + "start": 10313.9, + "end": 10314.8, + "probability": 0.8495 + }, + { + "start": 10315.52, + "end": 10316.72, + "probability": 0.9647 + }, + { + "start": 10317.5, + "end": 10319.84, + "probability": 0.8646 + }, + { + "start": 10320.92, + "end": 10322.06, + "probability": 0.9442 + }, + { + "start": 10323.38, + "end": 10326.16, + "probability": 0.9851 + }, + { + "start": 10326.78, + "end": 10327.37, + "probability": 0.9246 + }, + { + "start": 10328.66, + "end": 10333.54, + "probability": 0.8168 + }, + { + "start": 10334.3, + "end": 10336.12, + "probability": 0.8964 + }, + { + "start": 10336.98, + "end": 10340.12, + "probability": 0.9883 + }, + { + "start": 10369.4, + "end": 10369.66, + "probability": 0.721 + }, + { + "start": 10370.38, + "end": 10370.68, + "probability": 0.7722 + }, + { + "start": 10371.96, + "end": 10374.58, + "probability": 0.7502 + }, + { + "start": 10374.88, + "end": 10377.28, + "probability": 0.8419 + }, + { + "start": 10377.48, + "end": 10381.3, + "probability": 0.9951 + }, + { + "start": 10381.4, + "end": 10381.84, + "probability": 0.8492 + }, + { + "start": 10382.02, + "end": 10382.72, + "probability": 0.4148 + }, + { + "start": 10383.34, + "end": 10384.68, + "probability": 0.6772 + }, + { + "start": 10384.7, + "end": 10386.02, + "probability": 0.7545 + }, + { + "start": 10386.48, + "end": 10387.26, + "probability": 0.8885 + }, + { + "start": 10387.68, + "end": 10388.6, + "probability": 0.8762 + }, + { + "start": 10390.08, + "end": 10392.68, + "probability": 0.6846 + }, + { + "start": 10393.42, + "end": 10395.83, + "probability": 0.1374 + }, + { + "start": 10397.42, + "end": 10401.4, + "probability": 0.9829 + }, + { + "start": 10403.02, + "end": 10405.86, + "probability": 0.9951 + }, + { + "start": 10407.58, + "end": 10408.1, + "probability": 0.1041 + }, + { + "start": 10409.1, + "end": 10411.6, + "probability": 0.2955 + }, + { + "start": 10413.28, + "end": 10413.92, + "probability": 0.1187 + }, + { + "start": 10415.1, + "end": 10415.31, + "probability": 0.0462 + }, + { + "start": 10417.46, + "end": 10418.38, + "probability": 0.5756 + }, + { + "start": 10419.46, + "end": 10420.06, + "probability": 0.1146 + }, + { + "start": 10421.8, + "end": 10422.08, + "probability": 0.2499 + }, + { + "start": 10422.84, + "end": 10424.28, + "probability": 0.709 + }, + { + "start": 10425.88, + "end": 10426.76, + "probability": 0.2881 + }, + { + "start": 10427.64, + "end": 10428.44, + "probability": 0.5275 + }, + { + "start": 10429.72, + "end": 10430.64, + "probability": 0.92 + }, + { + "start": 10431.72, + "end": 10433.82, + "probability": 0.9231 + }, + { + "start": 10435.1, + "end": 10437.34, + "probability": 0.5044 + }, + { + "start": 10438.36, + "end": 10440.11, + "probability": 0.9546 + }, + { + "start": 10441.78, + "end": 10447.08, + "probability": 0.9956 + }, + { + "start": 10447.12, + "end": 10448.1, + "probability": 0.8581 + }, + { + "start": 10448.5, + "end": 10449.42, + "probability": 0.8094 + }, + { + "start": 10450.26, + "end": 10451.94, + "probability": 0.6222 + }, + { + "start": 10453.0, + "end": 10456.38, + "probability": 0.9775 + }, + { + "start": 10457.64, + "end": 10458.22, + "probability": 0.9636 + }, + { + "start": 10458.82, + "end": 10462.76, + "probability": 0.9874 + }, + { + "start": 10463.4, + "end": 10464.1, + "probability": 0.9808 + }, + { + "start": 10464.64, + "end": 10467.6, + "probability": 0.9986 + }, + { + "start": 10468.42, + "end": 10469.66, + "probability": 0.7048 + }, + { + "start": 10470.22, + "end": 10472.86, + "probability": 0.9186 + }, + { + "start": 10474.02, + "end": 10476.22, + "probability": 0.7289 + }, + { + "start": 10477.4, + "end": 10479.62, + "probability": 0.9736 + }, + { + "start": 10480.32, + "end": 10481.14, + "probability": 0.8384 + }, + { + "start": 10481.9, + "end": 10486.21, + "probability": 0.5631 + }, + { + "start": 10488.78, + "end": 10489.98, + "probability": 0.8121 + }, + { + "start": 10490.84, + "end": 10492.98, + "probability": 0.4998 + }, + { + "start": 10494.18, + "end": 10495.54, + "probability": 0.4159 + }, + { + "start": 10496.28, + "end": 10497.14, + "probability": 0.4239 + }, + { + "start": 10498.32, + "end": 10504.16, + "probability": 0.9105 + }, + { + "start": 10505.82, + "end": 10508.38, + "probability": 0.8575 + }, + { + "start": 10509.72, + "end": 10511.32, + "probability": 0.3071 + }, + { + "start": 10511.44, + "end": 10512.38, + "probability": 0.9343 + }, + { + "start": 10512.44, + "end": 10513.46, + "probability": 0.7542 + }, + { + "start": 10513.72, + "end": 10514.42, + "probability": 0.5003 + }, + { + "start": 10515.48, + "end": 10517.1, + "probability": 0.8347 + }, + { + "start": 10518.82, + "end": 10521.42, + "probability": 0.9839 + }, + { + "start": 10522.46, + "end": 10524.76, + "probability": 0.9924 + }, + { + "start": 10525.8, + "end": 10526.4, + "probability": 0.993 + }, + { + "start": 10527.52, + "end": 10528.8, + "probability": 0.9927 + }, + { + "start": 10529.78, + "end": 10536.66, + "probability": 0.9986 + }, + { + "start": 10538.36, + "end": 10540.9, + "probability": 0.0946 + }, + { + "start": 10542.32, + "end": 10543.3, + "probability": 0.4796 + }, + { + "start": 10544.32, + "end": 10545.22, + "probability": 0.7082 + }, + { + "start": 10546.68, + "end": 10552.9, + "probability": 0.9686 + }, + { + "start": 10553.38, + "end": 10554.12, + "probability": 0.4322 + }, + { + "start": 10554.96, + "end": 10561.78, + "probability": 0.9951 + }, + { + "start": 10562.52, + "end": 10565.6, + "probability": 0.9436 + }, + { + "start": 10566.8, + "end": 10571.16, + "probability": 0.9592 + }, + { + "start": 10572.26, + "end": 10573.58, + "probability": 0.9886 + }, + { + "start": 10574.24, + "end": 10575.16, + "probability": 0.9811 + }, + { + "start": 10576.48, + "end": 10577.88, + "probability": 0.8796 + }, + { + "start": 10579.8, + "end": 10580.6, + "probability": 0.9726 + }, + { + "start": 10581.68, + "end": 10582.64, + "probability": 0.7897 + }, + { + "start": 10584.08, + "end": 10585.3, + "probability": 0.6536 + }, + { + "start": 10588.2, + "end": 10588.28, + "probability": 0.0329 + }, + { + "start": 10588.28, + "end": 10588.28, + "probability": 0.3673 + }, + { + "start": 10588.28, + "end": 10589.0, + "probability": 0.3196 + }, + { + "start": 10589.68, + "end": 10591.56, + "probability": 0.8012 + }, + { + "start": 10592.58, + "end": 10600.48, + "probability": 0.9906 + }, + { + "start": 10601.08, + "end": 10603.84, + "probability": 0.695 + }, + { + "start": 10605.82, + "end": 10609.42, + "probability": 0.5781 + }, + { + "start": 10610.74, + "end": 10611.74, + "probability": 0.8492 + }, + { + "start": 10613.8, + "end": 10615.2, + "probability": 0.8519 + }, + { + "start": 10616.26, + "end": 10621.34, + "probability": 0.9829 + }, + { + "start": 10621.34, + "end": 10625.82, + "probability": 0.9912 + }, + { + "start": 10626.98, + "end": 10627.74, + "probability": 0.383 + }, + { + "start": 10628.26, + "end": 10629.2, + "probability": 0.7778 + }, + { + "start": 10629.84, + "end": 10630.34, + "probability": 0.895 + }, + { + "start": 10631.5, + "end": 10632.88, + "probability": 0.9473 + }, + { + "start": 10633.1, + "end": 10635.06, + "probability": 0.9919 + }, + { + "start": 10635.24, + "end": 10636.24, + "probability": 0.8223 + }, + { + "start": 10637.38, + "end": 10639.68, + "probability": 0.9616 + }, + { + "start": 10640.28, + "end": 10641.26, + "probability": 0.8936 + }, + { + "start": 10641.82, + "end": 10643.88, + "probability": 0.7827 + }, + { + "start": 10644.52, + "end": 10645.29, + "probability": 0.7487 + }, + { + "start": 10646.4, + "end": 10647.43, + "probability": 0.988 + }, + { + "start": 10648.68, + "end": 10656.12, + "probability": 0.9172 + }, + { + "start": 10656.12, + "end": 10661.22, + "probability": 0.9736 + }, + { + "start": 10662.5, + "end": 10664.1, + "probability": 0.7474 + }, + { + "start": 10665.06, + "end": 10665.52, + "probability": 0.4959 + }, + { + "start": 10666.14, + "end": 10667.0, + "probability": 0.8943 + }, + { + "start": 10668.3, + "end": 10669.66, + "probability": 0.896 + }, + { + "start": 10670.54, + "end": 10671.5, + "probability": 0.8582 + }, + { + "start": 10672.4, + "end": 10674.14, + "probability": 0.9866 + }, + { + "start": 10674.7, + "end": 10677.14, + "probability": 0.9323 + }, + { + "start": 10677.94, + "end": 10679.02, + "probability": 0.9767 + }, + { + "start": 10680.38, + "end": 10681.74, + "probability": 0.9672 + }, + { + "start": 10684.06, + "end": 10685.32, + "probability": 0.9054 + }, + { + "start": 10686.84, + "end": 10688.64, + "probability": 0.9629 + }, + { + "start": 10689.22, + "end": 10693.1, + "probability": 0.9131 + }, + { + "start": 10696.02, + "end": 10697.06, + "probability": 0.9791 + }, + { + "start": 10697.92, + "end": 10704.36, + "probability": 0.9555 + }, + { + "start": 10704.84, + "end": 10705.38, + "probability": 0.8096 + }, + { + "start": 10706.7, + "end": 10707.16, + "probability": 0.7547 + }, + { + "start": 10708.44, + "end": 10710.08, + "probability": 0.8787 + }, + { + "start": 10710.74, + "end": 10711.7, + "probability": 0.7188 + }, + { + "start": 10712.42, + "end": 10714.2, + "probability": 0.904 + }, + { + "start": 10715.1, + "end": 10716.02, + "probability": 0.822 + }, + { + "start": 10716.72, + "end": 10717.62, + "probability": 0.9946 + }, + { + "start": 10719.48, + "end": 10724.68, + "probability": 0.9566 + }, + { + "start": 10724.82, + "end": 10725.46, + "probability": 0.9894 + }, + { + "start": 10725.74, + "end": 10726.4, + "probability": 0.9947 + }, + { + "start": 10726.44, + "end": 10727.1, + "probability": 0.9791 + }, + { + "start": 10727.74, + "end": 10730.36, + "probability": 0.4959 + }, + { + "start": 10730.36, + "end": 10735.34, + "probability": 0.868 + }, + { + "start": 10736.38, + "end": 10740.18, + "probability": 0.8719 + }, + { + "start": 10741.06, + "end": 10743.76, + "probability": 0.9817 + }, + { + "start": 10744.44, + "end": 10753.28, + "probability": 0.9806 + }, + { + "start": 10753.64, + "end": 10758.56, + "probability": 0.9969 + }, + { + "start": 10759.2, + "end": 10761.68, + "probability": 0.9193 + }, + { + "start": 10762.0, + "end": 10764.76, + "probability": 0.9316 + }, + { + "start": 10765.6, + "end": 10766.82, + "probability": 0.9941 + }, + { + "start": 10768.18, + "end": 10772.28, + "probability": 0.9846 + }, + { + "start": 10773.04, + "end": 10774.14, + "probability": 0.9562 + }, + { + "start": 10774.22, + "end": 10777.42, + "probability": 0.9802 + }, + { + "start": 10778.08, + "end": 10778.66, + "probability": 0.7448 + }, + { + "start": 10778.82, + "end": 10781.36, + "probability": 0.9719 + }, + { + "start": 10782.56, + "end": 10785.98, + "probability": 0.9933 + }, + { + "start": 10786.58, + "end": 10792.04, + "probability": 0.9897 + }, + { + "start": 10792.87, + "end": 10797.86, + "probability": 0.9141 + }, + { + "start": 10798.02, + "end": 10798.66, + "probability": 0.7842 + }, + { + "start": 10798.94, + "end": 10800.96, + "probability": 0.9901 + }, + { + "start": 10801.48, + "end": 10802.62, + "probability": 0.5679 + }, + { + "start": 10802.78, + "end": 10806.86, + "probability": 0.9939 + }, + { + "start": 10807.6, + "end": 10807.88, + "probability": 0.8263 + }, + { + "start": 10807.96, + "end": 10812.06, + "probability": 0.85 + }, + { + "start": 10812.26, + "end": 10812.52, + "probability": 0.5145 + }, + { + "start": 10813.78, + "end": 10814.52, + "probability": 0.5453 + }, + { + "start": 10815.4, + "end": 10815.56, + "probability": 0.0001 + }, + { + "start": 10815.56, + "end": 10815.56, + "probability": 0.0231 + }, + { + "start": 10815.56, + "end": 10815.56, + "probability": 0.0778 + }, + { + "start": 10815.56, + "end": 10816.68, + "probability": 0.634 + }, + { + "start": 10816.94, + "end": 10818.32, + "probability": 0.3804 + }, + { + "start": 10818.68, + "end": 10820.0, + "probability": 0.9928 + }, + { + "start": 10820.72, + "end": 10826.0, + "probability": 0.944 + }, + { + "start": 10826.48, + "end": 10827.42, + "probability": 0.9194 + }, + { + "start": 10827.78, + "end": 10828.46, + "probability": 0.9068 + }, + { + "start": 10828.5, + "end": 10830.66, + "probability": 0.0299 + }, + { + "start": 10830.76, + "end": 10833.02, + "probability": 0.9788 + }, + { + "start": 10833.12, + "end": 10838.08, + "probability": 0.9983 + }, + { + "start": 10838.6, + "end": 10838.84, + "probability": 0.2264 + }, + { + "start": 10839.18, + "end": 10840.26, + "probability": 0.8633 + }, + { + "start": 10841.2, + "end": 10842.94, + "probability": 0.929 + }, + { + "start": 10843.44, + "end": 10847.4, + "probability": 0.9932 + }, + { + "start": 10847.4, + "end": 10851.84, + "probability": 0.9743 + }, + { + "start": 10852.54, + "end": 10855.34, + "probability": 0.9221 + }, + { + "start": 10856.32, + "end": 10858.46, + "probability": 0.8416 + }, + { + "start": 10858.94, + "end": 10860.88, + "probability": 0.825 + }, + { + "start": 10861.42, + "end": 10862.32, + "probability": 0.5683 + }, + { + "start": 10862.72, + "end": 10864.4, + "probability": 0.9413 + }, + { + "start": 10865.66, + "end": 10869.12, + "probability": 0.9865 + }, + { + "start": 10869.32, + "end": 10870.72, + "probability": 0.7511 + }, + { + "start": 10871.64, + "end": 10873.96, + "probability": 0.407 + }, + { + "start": 10874.52, + "end": 10875.64, + "probability": 0.7556 + }, + { + "start": 10876.18, + "end": 10881.78, + "probability": 0.9481 + }, + { + "start": 10883.14, + "end": 10884.74, + "probability": 0.8876 + }, + { + "start": 10885.86, + "end": 10887.32, + "probability": 0.3095 + }, + { + "start": 10888.48, + "end": 10889.0, + "probability": 0.9969 + }, + { + "start": 10889.52, + "end": 10890.16, + "probability": 0.7611 + }, + { + "start": 10891.14, + "end": 10894.04, + "probability": 0.9593 + }, + { + "start": 10894.84, + "end": 10897.74, + "probability": 0.9283 + }, + { + "start": 10898.64, + "end": 10900.49, + "probability": 0.9183 + }, + { + "start": 10901.22, + "end": 10901.91, + "probability": 0.9946 + }, + { + "start": 10902.78, + "end": 10905.54, + "probability": 0.9017 + }, + { + "start": 10905.62, + "end": 10907.9, + "probability": 0.9404 + }, + { + "start": 10908.08, + "end": 10908.64, + "probability": 0.8569 + }, + { + "start": 10908.88, + "end": 10910.9, + "probability": 0.6681 + }, + { + "start": 10911.14, + "end": 10912.68, + "probability": 0.7382 + }, + { + "start": 10913.22, + "end": 10914.28, + "probability": 0.8428 + }, + { + "start": 10915.44, + "end": 10919.02, + "probability": 0.9557 + }, + { + "start": 10919.54, + "end": 10921.86, + "probability": 0.6905 + }, + { + "start": 10922.4, + "end": 10926.08, + "probability": 0.6312 + }, + { + "start": 10926.78, + "end": 10928.28, + "probability": 0.9432 + }, + { + "start": 10929.94, + "end": 10934.06, + "probability": 0.9829 + }, + { + "start": 10935.28, + "end": 10938.38, + "probability": 0.9978 + }, + { + "start": 10939.12, + "end": 10941.76, + "probability": 0.7661 + }, + { + "start": 10942.54, + "end": 10943.56, + "probability": 0.5171 + }, + { + "start": 10944.48, + "end": 10949.0, + "probability": 0.998 + }, + { + "start": 10949.78, + "end": 10957.18, + "probability": 0.9916 + }, + { + "start": 10958.44, + "end": 10960.54, + "probability": 0.8706 + }, + { + "start": 10961.54, + "end": 10967.88, + "probability": 0.8507 + }, + { + "start": 10968.7, + "end": 10973.42, + "probability": 0.876 + }, + { + "start": 10974.58, + "end": 10975.52, + "probability": 0.9004 + }, + { + "start": 10976.76, + "end": 10981.58, + "probability": 0.9859 + }, + { + "start": 10983.74, + "end": 10984.82, + "probability": 0.9832 + }, + { + "start": 10985.54, + "end": 10987.02, + "probability": 0.9005 + }, + { + "start": 10987.58, + "end": 10990.06, + "probability": 0.9682 + }, + { + "start": 10991.54, + "end": 10992.26, + "probability": 0.8453 + }, + { + "start": 10992.8, + "end": 10993.42, + "probability": 0.6393 + }, + { + "start": 10993.96, + "end": 10994.84, + "probability": 0.9531 + }, + { + "start": 10995.38, + "end": 10998.56, + "probability": 0.9364 + }, + { + "start": 10999.72, + "end": 11000.58, + "probability": 0.6656 + }, + { + "start": 11000.68, + "end": 11002.01, + "probability": 0.6371 + }, + { + "start": 11003.04, + "end": 11010.6, + "probability": 0.9517 + }, + { + "start": 11011.08, + "end": 11015.92, + "probability": 0.985 + }, + { + "start": 11016.44, + "end": 11017.28, + "probability": 0.9984 + }, + { + "start": 11018.02, + "end": 11019.38, + "probability": 0.7112 + }, + { + "start": 11020.1, + "end": 11021.4, + "probability": 0.9961 + }, + { + "start": 11022.08, + "end": 11023.88, + "probability": 0.9689 + }, + { + "start": 11024.5, + "end": 11029.88, + "probability": 0.977 + }, + { + "start": 11030.54, + "end": 11033.14, + "probability": 0.999 + }, + { + "start": 11034.06, + "end": 11036.44, + "probability": 0.9971 + }, + { + "start": 11036.44, + "end": 11039.5, + "probability": 0.9956 + }, + { + "start": 11041.4, + "end": 11042.28, + "probability": 0.7673 + }, + { + "start": 11042.44, + "end": 11045.66, + "probability": 0.9925 + }, + { + "start": 11046.8, + "end": 11049.36, + "probability": 0.9527 + }, + { + "start": 11050.0, + "end": 11051.2, + "probability": 0.9395 + }, + { + "start": 11052.0, + "end": 11053.26, + "probability": 0.7313 + }, + { + "start": 11054.24, + "end": 11057.0, + "probability": 0.9496 + }, + { + "start": 11057.92, + "end": 11062.56, + "probability": 0.9503 + }, + { + "start": 11062.62, + "end": 11066.58, + "probability": 0.9985 + }, + { + "start": 11066.58, + "end": 11069.82, + "probability": 0.9998 + }, + { + "start": 11071.18, + "end": 11072.24, + "probability": 0.2258 + }, + { + "start": 11074.28, + "end": 11077.08, + "probability": 0.9933 + }, + { + "start": 11077.6, + "end": 11079.48, + "probability": 0.9533 + }, + { + "start": 11079.62, + "end": 11085.24, + "probability": 0.8987 + }, + { + "start": 11086.14, + "end": 11089.16, + "probability": 0.8393 + }, + { + "start": 11090.4, + "end": 11091.72, + "probability": 0.8949 + }, + { + "start": 11092.42, + "end": 11092.7, + "probability": 0.9214 + }, + { + "start": 11093.48, + "end": 11098.82, + "probability": 0.9883 + }, + { + "start": 11099.04, + "end": 11102.74, + "probability": 0.5014 + }, + { + "start": 11103.48, + "end": 11104.14, + "probability": 0.6302 + }, + { + "start": 11104.16, + "end": 11110.76, + "probability": 0.897 + }, + { + "start": 11110.9, + "end": 11115.4, + "probability": 0.957 + }, + { + "start": 11115.58, + "end": 11116.7, + "probability": 0.994 + }, + { + "start": 11117.5, + "end": 11119.96, + "probability": 0.9451 + }, + { + "start": 11120.42, + "end": 11122.98, + "probability": 0.8183 + }, + { + "start": 11122.98, + "end": 11127.84, + "probability": 0.9753 + }, + { + "start": 11128.5, + "end": 11130.36, + "probability": 0.9072 + }, + { + "start": 11132.22, + "end": 11135.56, + "probability": 0.9986 + }, + { + "start": 11135.7, + "end": 11137.93, + "probability": 0.9878 + }, + { + "start": 11138.5, + "end": 11141.64, + "probability": 0.9982 + }, + { + "start": 11141.64, + "end": 11146.06, + "probability": 0.9891 + }, + { + "start": 11146.52, + "end": 11150.8, + "probability": 0.9716 + }, + { + "start": 11151.58, + "end": 11155.2, + "probability": 0.5497 + }, + { + "start": 11155.54, + "end": 11157.16, + "probability": 0.9521 + }, + { + "start": 11157.6, + "end": 11158.02, + "probability": 0.3407 + }, + { + "start": 11158.1, + "end": 11160.06, + "probability": 0.8663 + }, + { + "start": 11160.3, + "end": 11163.42, + "probability": 0.9608 + }, + { + "start": 11163.88, + "end": 11164.14, + "probability": 0.3842 + }, + { + "start": 11164.14, + "end": 11164.86, + "probability": 0.3906 + }, + { + "start": 11164.92, + "end": 11166.7, + "probability": 0.9167 + }, + { + "start": 11166.72, + "end": 11166.88, + "probability": 0.4881 + }, + { + "start": 11168.4, + "end": 11169.24, + "probability": 0.7456 + }, + { + "start": 11189.02, + "end": 11191.26, + "probability": 0.7303 + }, + { + "start": 11193.48, + "end": 11195.32, + "probability": 0.5834 + }, + { + "start": 11198.24, + "end": 11199.18, + "probability": 0.7092 + }, + { + "start": 11201.88, + "end": 11203.62, + "probability": 0.9736 + }, + { + "start": 11204.24, + "end": 11207.38, + "probability": 0.7545 + }, + { + "start": 11208.3, + "end": 11209.08, + "probability": 0.8319 + }, + { + "start": 11209.86, + "end": 11210.5, + "probability": 0.7482 + }, + { + "start": 11212.12, + "end": 11215.14, + "probability": 0.8972 + }, + { + "start": 11216.04, + "end": 11217.34, + "probability": 0.9502 + }, + { + "start": 11219.54, + "end": 11220.38, + "probability": 0.8106 + }, + { + "start": 11221.2, + "end": 11222.4, + "probability": 0.8174 + }, + { + "start": 11223.42, + "end": 11226.96, + "probability": 0.8455 + }, + { + "start": 11229.26, + "end": 11234.18, + "probability": 0.9279 + }, + { + "start": 11235.26, + "end": 11236.54, + "probability": 0.7711 + }, + { + "start": 11238.2, + "end": 11244.04, + "probability": 0.995 + }, + { + "start": 11246.44, + "end": 11251.46, + "probability": 0.9313 + }, + { + "start": 11252.66, + "end": 11254.68, + "probability": 0.9974 + }, + { + "start": 11254.94, + "end": 11258.76, + "probability": 0.9546 + }, + { + "start": 11261.68, + "end": 11263.38, + "probability": 0.6682 + }, + { + "start": 11264.86, + "end": 11268.12, + "probability": 0.9899 + }, + { + "start": 11270.56, + "end": 11271.08, + "probability": 0.566 + }, + { + "start": 11272.42, + "end": 11279.16, + "probability": 0.986 + }, + { + "start": 11279.94, + "end": 11282.76, + "probability": 0.9934 + }, + { + "start": 11284.92, + "end": 11291.36, + "probability": 0.9904 + }, + { + "start": 11292.86, + "end": 11293.84, + "probability": 0.6893 + }, + { + "start": 11294.76, + "end": 11298.4, + "probability": 0.9454 + }, + { + "start": 11301.18, + "end": 11305.64, + "probability": 0.9724 + }, + { + "start": 11308.28, + "end": 11309.36, + "probability": 0.9952 + }, + { + "start": 11310.92, + "end": 11312.0, + "probability": 0.8143 + }, + { + "start": 11313.32, + "end": 11314.28, + "probability": 0.3926 + }, + { + "start": 11315.66, + "end": 11316.64, + "probability": 0.2941 + }, + { + "start": 11318.28, + "end": 11320.78, + "probability": 0.9181 + }, + { + "start": 11322.6, + "end": 11324.92, + "probability": 0.9435 + }, + { + "start": 11326.94, + "end": 11328.08, + "probability": 0.8639 + }, + { + "start": 11330.44, + "end": 11336.5, + "probability": 0.9989 + }, + { + "start": 11338.58, + "end": 11340.54, + "probability": 0.7823 + }, + { + "start": 11341.58, + "end": 11345.44, + "probability": 0.9692 + }, + { + "start": 11347.26, + "end": 11348.4, + "probability": 0.8736 + }, + { + "start": 11351.28, + "end": 11352.64, + "probability": 0.9299 + }, + { + "start": 11354.2, + "end": 11355.72, + "probability": 0.7841 + }, + { + "start": 11357.38, + "end": 11359.72, + "probability": 0.998 + }, + { + "start": 11360.76, + "end": 11364.4, + "probability": 0.9922 + }, + { + "start": 11365.3, + "end": 11370.98, + "probability": 0.9878 + }, + { + "start": 11370.98, + "end": 11377.88, + "probability": 0.9678 + }, + { + "start": 11378.94, + "end": 11381.04, + "probability": 0.9964 + }, + { + "start": 11382.58, + "end": 11385.68, + "probability": 0.692 + }, + { + "start": 11387.46, + "end": 11388.12, + "probability": 0.9723 + }, + { + "start": 11389.7, + "end": 11390.6, + "probability": 0.9539 + }, + { + "start": 11391.4, + "end": 11393.3, + "probability": 0.9803 + }, + { + "start": 11394.72, + "end": 11401.5, + "probability": 0.991 + }, + { + "start": 11402.54, + "end": 11403.36, + "probability": 0.6162 + }, + { + "start": 11404.2, + "end": 11405.96, + "probability": 0.9925 + }, + { + "start": 11407.86, + "end": 11410.28, + "probability": 0.841 + }, + { + "start": 11411.88, + "end": 11413.38, + "probability": 0.7503 + }, + { + "start": 11414.44, + "end": 11421.08, + "probability": 0.8566 + }, + { + "start": 11423.4, + "end": 11424.3, + "probability": 0.8956 + }, + { + "start": 11425.22, + "end": 11426.5, + "probability": 0.7633 + }, + { + "start": 11427.52, + "end": 11429.64, + "probability": 0.7665 + }, + { + "start": 11430.4, + "end": 11434.76, + "probability": 0.993 + }, + { + "start": 11441.74, + "end": 11444.08, + "probability": 0.9917 + }, + { + "start": 11447.58, + "end": 11448.8, + "probability": 0.9804 + }, + { + "start": 11450.0, + "end": 11453.44, + "probability": 0.9716 + }, + { + "start": 11454.32, + "end": 11457.74, + "probability": 0.976 + }, + { + "start": 11458.52, + "end": 11459.8, + "probability": 0.9725 + }, + { + "start": 11461.06, + "end": 11462.12, + "probability": 0.9718 + }, + { + "start": 11462.38, + "end": 11464.24, + "probability": 0.998 + }, + { + "start": 11465.58, + "end": 11467.1, + "probability": 0.9897 + }, + { + "start": 11467.82, + "end": 11469.84, + "probability": 0.9941 + }, + { + "start": 11470.94, + "end": 11472.62, + "probability": 0.8954 + }, + { + "start": 11473.74, + "end": 11475.04, + "probability": 0.96 + }, + { + "start": 11475.82, + "end": 11477.56, + "probability": 0.8865 + }, + { + "start": 11478.16, + "end": 11479.9, + "probability": 0.79 + }, + { + "start": 11480.56, + "end": 11484.4, + "probability": 0.9912 + }, + { + "start": 11485.78, + "end": 11487.8, + "probability": 0.884 + }, + { + "start": 11489.0, + "end": 11489.88, + "probability": 0.8866 + }, + { + "start": 11490.58, + "end": 11491.08, + "probability": 0.7881 + }, + { + "start": 11493.16, + "end": 11495.03, + "probability": 0.9629 + }, + { + "start": 11496.14, + "end": 11498.42, + "probability": 0.9976 + }, + { + "start": 11499.06, + "end": 11501.14, + "probability": 0.993 + }, + { + "start": 11501.72, + "end": 11503.48, + "probability": 0.9766 + }, + { + "start": 11505.7, + "end": 11507.84, + "probability": 0.9929 + }, + { + "start": 11509.18, + "end": 11509.94, + "probability": 0.8943 + }, + { + "start": 11510.9, + "end": 11512.4, + "probability": 0.8664 + }, + { + "start": 11513.9, + "end": 11514.9, + "probability": 0.7487 + }, + { + "start": 11514.9, + "end": 11519.02, + "probability": 0.9502 + }, + { + "start": 11521.54, + "end": 11526.42, + "probability": 0.9896 + }, + { + "start": 11530.04, + "end": 11533.8, + "probability": 0.9945 + }, + { + "start": 11534.76, + "end": 11536.76, + "probability": 0.9208 + }, + { + "start": 11538.56, + "end": 11540.08, + "probability": 0.9922 + }, + { + "start": 11541.42, + "end": 11543.9, + "probability": 0.9896 + }, + { + "start": 11544.92, + "end": 11546.32, + "probability": 0.9871 + }, + { + "start": 11547.14, + "end": 11547.98, + "probability": 0.9522 + }, + { + "start": 11548.92, + "end": 11549.76, + "probability": 0.9705 + }, + { + "start": 11550.52, + "end": 11551.8, + "probability": 0.8975 + }, + { + "start": 11552.58, + "end": 11557.26, + "probability": 0.9217 + }, + { + "start": 11558.54, + "end": 11561.62, + "probability": 0.826 + }, + { + "start": 11563.7, + "end": 11567.66, + "probability": 0.9965 + }, + { + "start": 11568.72, + "end": 11571.28, + "probability": 0.9636 + }, + { + "start": 11571.56, + "end": 11572.36, + "probability": 0.7463 + }, + { + "start": 11573.04, + "end": 11575.76, + "probability": 0.9939 + }, + { + "start": 11576.1, + "end": 11577.42, + "probability": 0.9618 + }, + { + "start": 11579.2, + "end": 11580.74, + "probability": 0.6807 + }, + { + "start": 11581.62, + "end": 11583.72, + "probability": 0.9912 + }, + { + "start": 11584.88, + "end": 11586.44, + "probability": 0.9747 + }, + { + "start": 11586.98, + "end": 11588.24, + "probability": 0.9116 + }, + { + "start": 11589.0, + "end": 11589.84, + "probability": 0.9907 + }, + { + "start": 11590.58, + "end": 11593.03, + "probability": 0.7858 + }, + { + "start": 11595.64, + "end": 11600.26, + "probability": 0.9951 + }, + { + "start": 11601.06, + "end": 11604.99, + "probability": 0.9993 + }, + { + "start": 11606.6, + "end": 11609.47, + "probability": 0.8289 + }, + { + "start": 11611.68, + "end": 11615.64, + "probability": 0.857 + }, + { + "start": 11615.64, + "end": 11621.42, + "probability": 0.9863 + }, + { + "start": 11623.1, + "end": 11624.66, + "probability": 0.6543 + }, + { + "start": 11625.46, + "end": 11626.56, + "probability": 0.7285 + }, + { + "start": 11627.34, + "end": 11630.28, + "probability": 0.8891 + }, + { + "start": 11631.52, + "end": 11634.11, + "probability": 0.9695 + }, + { + "start": 11635.06, + "end": 11637.82, + "probability": 0.9907 + }, + { + "start": 11639.5, + "end": 11640.9, + "probability": 0.712 + }, + { + "start": 11642.36, + "end": 11645.18, + "probability": 0.9948 + }, + { + "start": 11647.0, + "end": 11650.2, + "probability": 0.7995 + }, + { + "start": 11651.4, + "end": 11657.96, + "probability": 0.974 + }, + { + "start": 11659.48, + "end": 11661.26, + "probability": 0.7937 + }, + { + "start": 11662.6, + "end": 11667.38, + "probability": 0.9981 + }, + { + "start": 11668.32, + "end": 11670.12, + "probability": 0.9989 + }, + { + "start": 11671.5, + "end": 11673.24, + "probability": 0.786 + }, + { + "start": 11674.02, + "end": 11675.12, + "probability": 0.9001 + }, + { + "start": 11676.88, + "end": 11679.6, + "probability": 0.5225 + }, + { + "start": 11680.72, + "end": 11688.16, + "probability": 0.9878 + }, + { + "start": 11689.18, + "end": 11691.64, + "probability": 0.5726 + }, + { + "start": 11693.32, + "end": 11696.64, + "probability": 0.75 + }, + { + "start": 11697.4, + "end": 11699.16, + "probability": 0.9089 + }, + { + "start": 11699.44, + "end": 11700.08, + "probability": 0.8011 + }, + { + "start": 11700.22, + "end": 11700.7, + "probability": 0.9564 + }, + { + "start": 11701.04, + "end": 11701.86, + "probability": 0.713 + }, + { + "start": 11703.37, + "end": 11708.88, + "probability": 0.9015 + }, + { + "start": 11709.94, + "end": 11711.54, + "probability": 0.5842 + }, + { + "start": 11711.78, + "end": 11713.64, + "probability": 0.9464 + }, + { + "start": 11714.16, + "end": 11721.16, + "probability": 0.9785 + }, + { + "start": 11721.72, + "end": 11723.22, + "probability": 0.9968 + }, + { + "start": 11723.96, + "end": 11727.24, + "probability": 0.9957 + }, + { + "start": 11727.78, + "end": 11729.16, + "probability": 0.3007 + }, + { + "start": 11730.2, + "end": 11733.78, + "probability": 0.9979 + }, + { + "start": 11734.4, + "end": 11736.46, + "probability": 0.7507 + }, + { + "start": 11737.12, + "end": 11738.78, + "probability": 0.9799 + }, + { + "start": 11738.84, + "end": 11739.6, + "probability": 0.5168 + }, + { + "start": 11741.16, + "end": 11744.22, + "probability": 0.9971 + }, + { + "start": 11745.18, + "end": 11749.12, + "probability": 0.7499 + }, + { + "start": 11750.56, + "end": 11754.46, + "probability": 0.9985 + }, + { + "start": 11757.4, + "end": 11758.84, + "probability": 0.9952 + }, + { + "start": 11759.42, + "end": 11761.58, + "probability": 0.9988 + }, + { + "start": 11762.2, + "end": 11763.08, + "probability": 0.9283 + }, + { + "start": 11764.84, + "end": 11765.78, + "probability": 0.8225 + }, + { + "start": 11766.62, + "end": 11767.46, + "probability": 0.9219 + }, + { + "start": 11769.02, + "end": 11771.64, + "probability": 0.9849 + }, + { + "start": 11772.44, + "end": 11779.7, + "probability": 0.9904 + }, + { + "start": 11781.72, + "end": 11786.86, + "probability": 0.9997 + }, + { + "start": 11790.28, + "end": 11793.06, + "probability": 0.9317 + }, + { + "start": 11794.62, + "end": 11797.06, + "probability": 0.9113 + }, + { + "start": 11797.98, + "end": 11799.78, + "probability": 0.9409 + }, + { + "start": 11800.84, + "end": 11802.12, + "probability": 0.6165 + }, + { + "start": 11804.1, + "end": 11805.72, + "probability": 0.825 + }, + { + "start": 11808.14, + "end": 11811.02, + "probability": 0.9518 + }, + { + "start": 11812.32, + "end": 11816.92, + "probability": 0.9912 + }, + { + "start": 11818.26, + "end": 11824.56, + "probability": 0.8265 + }, + { + "start": 11827.28, + "end": 11834.4, + "probability": 0.9854 + }, + { + "start": 11835.78, + "end": 11841.02, + "probability": 0.9991 + }, + { + "start": 11841.08, + "end": 11846.82, + "probability": 0.9988 + }, + { + "start": 11847.08, + "end": 11847.24, + "probability": 0.7712 + }, + { + "start": 11847.76, + "end": 11848.36, + "probability": 0.9625 + }, + { + "start": 11849.18, + "end": 11852.2, + "probability": 0.9932 + }, + { + "start": 11853.76, + "end": 11863.16, + "probability": 0.9607 + }, + { + "start": 11864.0, + "end": 11867.22, + "probability": 0.8214 + }, + { + "start": 11869.6, + "end": 11870.2, + "probability": 0.5033 + }, + { + "start": 11871.48, + "end": 11872.56, + "probability": 0.8356 + }, + { + "start": 11873.2, + "end": 11874.76, + "probability": 0.653 + }, + { + "start": 11876.1, + "end": 11881.18, + "probability": 0.9736 + }, + { + "start": 11885.88, + "end": 11889.86, + "probability": 0.9984 + }, + { + "start": 11891.08, + "end": 11893.46, + "probability": 0.9996 + }, + { + "start": 11894.66, + "end": 11899.66, + "probability": 0.7754 + }, + { + "start": 11902.34, + "end": 11903.96, + "probability": 0.9558 + }, + { + "start": 11905.52, + "end": 11908.34, + "probability": 0.9141 + }, + { + "start": 11909.5, + "end": 11910.1, + "probability": 0.5666 + }, + { + "start": 11911.85, + "end": 11914.16, + "probability": 0.9957 + }, + { + "start": 11917.22, + "end": 11918.02, + "probability": 0.607 + }, + { + "start": 11918.76, + "end": 11925.4, + "probability": 0.9858 + }, + { + "start": 11926.02, + "end": 11928.42, + "probability": 0.8743 + }, + { + "start": 11929.74, + "end": 11931.06, + "probability": 0.6798 + }, + { + "start": 11931.9, + "end": 11937.0, + "probability": 0.96 + }, + { + "start": 11938.74, + "end": 11939.44, + "probability": 0.589 + }, + { + "start": 11941.62, + "end": 11942.42, + "probability": 0.268 + }, + { + "start": 11943.48, + "end": 11944.18, + "probability": 0.8341 + }, + { + "start": 11947.38, + "end": 11951.94, + "probability": 0.5482 + }, + { + "start": 11952.48, + "end": 11958.26, + "probability": 0.9902 + }, + { + "start": 11959.78, + "end": 11960.32, + "probability": 0.7437 + }, + { + "start": 11961.62, + "end": 11962.58, + "probability": 0.8857 + }, + { + "start": 11963.38, + "end": 11964.58, + "probability": 0.7291 + }, + { + "start": 11966.46, + "end": 11968.99, + "probability": 0.9441 + }, + { + "start": 11970.12, + "end": 11971.8, + "probability": 0.9855 + }, + { + "start": 11974.52, + "end": 11978.94, + "probability": 0.9591 + }, + { + "start": 11979.52, + "end": 11980.02, + "probability": 0.7091 + }, + { + "start": 11980.18, + "end": 11984.82, + "probability": 0.9556 + }, + { + "start": 11984.82, + "end": 11985.86, + "probability": 0.99 + }, + { + "start": 11986.18, + "end": 11987.14, + "probability": 0.9489 + }, + { + "start": 11988.11, + "end": 11988.92, + "probability": 0.6822 + }, + { + "start": 11990.02, + "end": 11992.04, + "probability": 0.9082 + }, + { + "start": 11992.56, + "end": 11992.68, + "probability": 0.7307 + }, + { + "start": 11994.08, + "end": 11994.9, + "probability": 0.6146 + }, + { + "start": 11995.16, + "end": 11997.42, + "probability": 0.9165 + }, + { + "start": 11998.78, + "end": 11999.28, + "probability": 0.8711 + }, + { + "start": 12002.48, + "end": 12005.8, + "probability": 0.7334 + }, + { + "start": 12006.34, + "end": 12007.69, + "probability": 0.9579 + }, + { + "start": 12007.94, + "end": 12010.06, + "probability": 0.046 + }, + { + "start": 12010.66, + "end": 12012.8, + "probability": 0.0014 + }, + { + "start": 12025.18, + "end": 12029.42, + "probability": 0.9222 + }, + { + "start": 12029.54, + "end": 12030.44, + "probability": 0.6391 + }, + { + "start": 12031.1, + "end": 12034.74, + "probability": 0.9777 + }, + { + "start": 12034.74, + "end": 12037.66, + "probability": 0.9953 + }, + { + "start": 12038.08, + "end": 12040.42, + "probability": 0.9616 + }, + { + "start": 12040.52, + "end": 12040.88, + "probability": 0.921 + }, + { + "start": 12042.3, + "end": 12043.24, + "probability": 0.0542 + }, + { + "start": 12043.64, + "end": 12045.4, + "probability": 0.9943 + }, + { + "start": 12045.56, + "end": 12046.54, + "probability": 0.974 + }, + { + "start": 12047.86, + "end": 12048.3, + "probability": 0.2129 + }, + { + "start": 12049.24, + "end": 12050.25, + "probability": 0.8758 + }, + { + "start": 12050.94, + "end": 12051.14, + "probability": 0.8774 + }, + { + "start": 12051.24, + "end": 12052.64, + "probability": 0.9543 + }, + { + "start": 12052.8, + "end": 12053.7, + "probability": 0.7059 + }, + { + "start": 12054.1, + "end": 12054.42, + "probability": 0.8173 + }, + { + "start": 12055.04, + "end": 12058.68, + "probability": 0.7676 + }, + { + "start": 12058.86, + "end": 12060.44, + "probability": 0.6093 + }, + { + "start": 12060.56, + "end": 12065.24, + "probability": 0.8069 + }, + { + "start": 12066.56, + "end": 12072.34, + "probability": 0.9829 + }, + { + "start": 12072.58, + "end": 12075.6, + "probability": 0.8586 + }, + { + "start": 12075.9, + "end": 12081.2, + "probability": 0.9941 + }, + { + "start": 12081.78, + "end": 12085.46, + "probability": 0.933 + }, + { + "start": 12085.92, + "end": 12090.96, + "probability": 0.9976 + }, + { + "start": 12091.54, + "end": 12094.56, + "probability": 0.7459 + }, + { + "start": 12095.14, + "end": 12096.6, + "probability": 0.9931 + }, + { + "start": 12097.28, + "end": 12101.0, + "probability": 0.8828 + }, + { + "start": 12101.6, + "end": 12105.6, + "probability": 0.662 + }, + { + "start": 12106.02, + "end": 12108.08, + "probability": 0.9966 + }, + { + "start": 12108.58, + "end": 12110.24, + "probability": 0.9941 + }, + { + "start": 12111.14, + "end": 12112.94, + "probability": 0.998 + }, + { + "start": 12114.1, + "end": 12117.32, + "probability": 0.9915 + }, + { + "start": 12117.78, + "end": 12125.5, + "probability": 0.9963 + }, + { + "start": 12126.02, + "end": 12126.66, + "probability": 0.4882 + }, + { + "start": 12126.74, + "end": 12127.98, + "probability": 0.9528 + }, + { + "start": 12128.42, + "end": 12129.18, + "probability": 0.926 + }, + { + "start": 12129.38, + "end": 12130.54, + "probability": 0.8703 + }, + { + "start": 12131.08, + "end": 12132.72, + "probability": 0.5823 + }, + { + "start": 12133.4, + "end": 12137.92, + "probability": 0.9948 + }, + { + "start": 12138.58, + "end": 12141.68, + "probability": 0.9928 + }, + { + "start": 12141.78, + "end": 12142.52, + "probability": 0.8524 + }, + { + "start": 12142.52, + "end": 12144.15, + "probability": 0.9375 + }, + { + "start": 12144.92, + "end": 12145.54, + "probability": 0.9819 + }, + { + "start": 12145.82, + "end": 12146.6, + "probability": 0.819 + }, + { + "start": 12146.88, + "end": 12149.24, + "probability": 0.8164 + }, + { + "start": 12149.36, + "end": 12150.46, + "probability": 0.8828 + }, + { + "start": 12150.72, + "end": 12153.56, + "probability": 0.9316 + }, + { + "start": 12153.88, + "end": 12154.74, + "probability": 0.9425 + }, + { + "start": 12155.44, + "end": 12156.74, + "probability": 0.9832 + }, + { + "start": 12157.14, + "end": 12158.4, + "probability": 0.9307 + }, + { + "start": 12158.78, + "end": 12160.9, + "probability": 0.9927 + }, + { + "start": 12161.36, + "end": 12161.78, + "probability": 0.4753 + }, + { + "start": 12161.84, + "end": 12162.46, + "probability": 0.9045 + }, + { + "start": 12163.36, + "end": 12163.5, + "probability": 0.4131 + }, + { + "start": 12163.6, + "end": 12168.18, + "probability": 0.9025 + }, + { + "start": 12168.34, + "end": 12169.04, + "probability": 0.9349 + }, + { + "start": 12169.84, + "end": 12172.94, + "probability": 0.9852 + }, + { + "start": 12173.1, + "end": 12173.72, + "probability": 0.9048 + }, + { + "start": 12173.8, + "end": 12175.24, + "probability": 0.7321 + }, + { + "start": 12175.46, + "end": 12177.22, + "probability": 0.6674 + }, + { + "start": 12178.34, + "end": 12179.28, + "probability": 0.5126 + }, + { + "start": 12179.84, + "end": 12181.6, + "probability": 0.9888 + }, + { + "start": 12181.74, + "end": 12184.66, + "probability": 0.9968 + }, + { + "start": 12185.1, + "end": 12186.54, + "probability": 0.8254 + }, + { + "start": 12187.29, + "end": 12191.76, + "probability": 0.9647 + }, + { + "start": 12192.44, + "end": 12193.94, + "probability": 0.9976 + }, + { + "start": 12194.46, + "end": 12196.02, + "probability": 0.9927 + }, + { + "start": 12196.02, + "end": 12197.04, + "probability": 0.7473 + }, + { + "start": 12197.61, + "end": 12201.16, + "probability": 0.9933 + }, + { + "start": 12201.52, + "end": 12203.04, + "probability": 0.9932 + }, + { + "start": 12203.8, + "end": 12206.74, + "probability": 0.9907 + }, + { + "start": 12207.04, + "end": 12210.5, + "probability": 0.9988 + }, + { + "start": 12210.56, + "end": 12211.5, + "probability": 0.7015 + }, + { + "start": 12211.78, + "end": 12212.44, + "probability": 0.9708 + }, + { + "start": 12212.5, + "end": 12213.22, + "probability": 0.7804 + }, + { + "start": 12213.52, + "end": 12214.14, + "probability": 0.6528 + }, + { + "start": 12214.5, + "end": 12217.98, + "probability": 0.9922 + }, + { + "start": 12218.12, + "end": 12219.22, + "probability": 0.9064 + }, + { + "start": 12220.02, + "end": 12222.7, + "probability": 0.9684 + }, + { + "start": 12222.9, + "end": 12224.58, + "probability": 0.9604 + }, + { + "start": 12225.2, + "end": 12225.6, + "probability": 0.8528 + }, + { + "start": 12226.0, + "end": 12226.96, + "probability": 0.9726 + }, + { + "start": 12227.62, + "end": 12229.75, + "probability": 0.8179 + }, + { + "start": 12230.58, + "end": 12232.06, + "probability": 0.9443 + }, + { + "start": 12232.16, + "end": 12232.36, + "probability": 0.9087 + }, + { + "start": 12232.46, + "end": 12232.56, + "probability": 0.3546 + }, + { + "start": 12232.94, + "end": 12235.66, + "probability": 0.9783 + }, + { + "start": 12235.74, + "end": 12236.44, + "probability": 0.8643 + }, + { + "start": 12236.94, + "end": 12237.58, + "probability": 0.8475 + }, + { + "start": 12238.18, + "end": 12240.48, + "probability": 0.9805 + }, + { + "start": 12240.58, + "end": 12242.18, + "probability": 0.9023 + }, + { + "start": 12242.5, + "end": 12243.74, + "probability": 0.7176 + }, + { + "start": 12244.4, + "end": 12245.82, + "probability": 0.7455 + }, + { + "start": 12246.44, + "end": 12248.52, + "probability": 0.5115 + }, + { + "start": 12248.52, + "end": 12251.26, + "probability": 0.9955 + }, + { + "start": 12251.4, + "end": 12256.38, + "probability": 0.9982 + }, + { + "start": 12256.84, + "end": 12260.68, + "probability": 0.961 + }, + { + "start": 12261.06, + "end": 12261.88, + "probability": 0.7747 + }, + { + "start": 12262.18, + "end": 12262.28, + "probability": 0.8289 + }, + { + "start": 12262.28, + "end": 12262.44, + "probability": 0.3519 + }, + { + "start": 12262.54, + "end": 12263.31, + "probability": 0.743 + }, + { + "start": 12263.7, + "end": 12266.64, + "probability": 0.979 + }, + { + "start": 12267.02, + "end": 12268.24, + "probability": 0.995 + }, + { + "start": 12268.7, + "end": 12269.34, + "probability": 0.6999 + }, + { + "start": 12269.4, + "end": 12270.32, + "probability": 0.9264 + }, + { + "start": 12270.62, + "end": 12271.52, + "probability": 0.9336 + }, + { + "start": 12271.68, + "end": 12272.1, + "probability": 0.9217 + }, + { + "start": 12273.22, + "end": 12274.51, + "probability": 0.9468 + }, + { + "start": 12274.96, + "end": 12277.04, + "probability": 0.9884 + }, + { + "start": 12277.8, + "end": 12281.64, + "probability": 0.9934 + }, + { + "start": 12282.46, + "end": 12287.0, + "probability": 0.9963 + }, + { + "start": 12287.68, + "end": 12290.34, + "probability": 0.9921 + }, + { + "start": 12291.0, + "end": 12292.36, + "probability": 0.3931 + }, + { + "start": 12292.46, + "end": 12292.54, + "probability": 0.4183 + }, + { + "start": 12292.54, + "end": 12293.48, + "probability": 0.9424 + }, + { + "start": 12293.6, + "end": 12294.06, + "probability": 0.5008 + }, + { + "start": 12294.22, + "end": 12296.54, + "probability": 0.9444 + }, + { + "start": 12296.86, + "end": 12298.02, + "probability": 0.959 + }, + { + "start": 12299.52, + "end": 12301.3, + "probability": 0.2582 + }, + { + "start": 12301.56, + "end": 12301.88, + "probability": 0.7977 + }, + { + "start": 12302.02, + "end": 12304.7, + "probability": 0.3112 + }, + { + "start": 12304.92, + "end": 12305.76, + "probability": 0.902 + }, + { + "start": 12305.84, + "end": 12308.08, + "probability": 0.9012 + }, + { + "start": 12309.12, + "end": 12311.08, + "probability": 0.8948 + }, + { + "start": 12312.2, + "end": 12316.04, + "probability": 0.9047 + }, + { + "start": 12316.2, + "end": 12317.46, + "probability": 0.5687 + }, + { + "start": 12318.38, + "end": 12321.04, + "probability": 0.9882 + }, + { + "start": 12321.8, + "end": 12326.22, + "probability": 0.994 + }, + { + "start": 12327.54, + "end": 12333.92, + "probability": 0.9946 + }, + { + "start": 12334.62, + "end": 12335.9, + "probability": 0.8074 + }, + { + "start": 12336.1, + "end": 12338.12, + "probability": 0.9961 + }, + { + "start": 12338.62, + "end": 12340.5, + "probability": 0.9957 + }, + { + "start": 12341.14, + "end": 12342.58, + "probability": 0.9714 + }, + { + "start": 12343.46, + "end": 12343.52, + "probability": 0.0305 + }, + { + "start": 12343.52, + "end": 12349.34, + "probability": 0.869 + }, + { + "start": 12350.16, + "end": 12352.08, + "probability": 0.913 + }, + { + "start": 12352.38, + "end": 12354.04, + "probability": 0.9556 + }, + { + "start": 12354.48, + "end": 12355.16, + "probability": 0.9416 + }, + { + "start": 12355.46, + "end": 12356.2, + "probability": 0.9581 + }, + { + "start": 12356.5, + "end": 12357.76, + "probability": 0.9682 + }, + { + "start": 12358.14, + "end": 12361.15, + "probability": 0.9858 + }, + { + "start": 12361.8, + "end": 12362.8, + "probability": 0.6753 + }, + { + "start": 12363.46, + "end": 12365.68, + "probability": 0.8893 + }, + { + "start": 12366.34, + "end": 12370.98, + "probability": 0.8848 + }, + { + "start": 12371.14, + "end": 12373.08, + "probability": 0.9676 + }, + { + "start": 12373.62, + "end": 12374.02, + "probability": 0.8026 + }, + { + "start": 12374.12, + "end": 12374.64, + "probability": 0.8766 + }, + { + "start": 12374.72, + "end": 12375.34, + "probability": 0.7363 + }, + { + "start": 12375.68, + "end": 12380.76, + "probability": 0.9861 + }, + { + "start": 12381.48, + "end": 12382.56, + "probability": 0.9963 + }, + { + "start": 12383.24, + "end": 12383.9, + "probability": 0.9255 + }, + { + "start": 12384.86, + "end": 12386.46, + "probability": 0.9828 + }, + { + "start": 12387.22, + "end": 12388.88, + "probability": 0.9968 + }, + { + "start": 12389.62, + "end": 12392.1, + "probability": 0.995 + }, + { + "start": 12392.72, + "end": 12394.92, + "probability": 0.5808 + }, + { + "start": 12395.84, + "end": 12398.28, + "probability": 0.88 + }, + { + "start": 12398.5, + "end": 12399.54, + "probability": 0.9123 + }, + { + "start": 12399.9, + "end": 12400.7, + "probability": 0.9573 + }, + { + "start": 12401.62, + "end": 12403.67, + "probability": 0.8892 + }, + { + "start": 12404.24, + "end": 12405.9, + "probability": 0.9805 + }, + { + "start": 12406.34, + "end": 12408.4, + "probability": 0.9009 + }, + { + "start": 12408.88, + "end": 12409.96, + "probability": 0.9934 + }, + { + "start": 12410.58, + "end": 12412.5, + "probability": 0.9678 + }, + { + "start": 12413.14, + "end": 12414.42, + "probability": 0.9634 + }, + { + "start": 12415.08, + "end": 12415.92, + "probability": 0.9697 + }, + { + "start": 12416.38, + "end": 12418.76, + "probability": 0.9935 + }, + { + "start": 12419.28, + "end": 12420.54, + "probability": 0.9961 + }, + { + "start": 12421.04, + "end": 12422.46, + "probability": 0.999 + }, + { + "start": 12422.74, + "end": 12426.04, + "probability": 0.7773 + }, + { + "start": 12426.5, + "end": 12427.06, + "probability": 0.8723 + }, + { + "start": 12427.16, + "end": 12427.62, + "probability": 0.8866 + }, + { + "start": 12427.72, + "end": 12428.2, + "probability": 0.9252 + }, + { + "start": 12428.34, + "end": 12430.24, + "probability": 0.9466 + }, + { + "start": 12430.56, + "end": 12432.15, + "probability": 0.9646 + }, + { + "start": 12432.26, + "end": 12435.76, + "probability": 0.9149 + }, + { + "start": 12436.74, + "end": 12437.62, + "probability": 0.7234 + }, + { + "start": 12438.7, + "end": 12443.7, + "probability": 0.9517 + }, + { + "start": 12444.14, + "end": 12449.28, + "probability": 0.9851 + }, + { + "start": 12450.18, + "end": 12452.16, + "probability": 0.655 + }, + { + "start": 12452.9, + "end": 12453.98, + "probability": 0.9589 + }, + { + "start": 12454.04, + "end": 12454.46, + "probability": 0.6707 + }, + { + "start": 12454.66, + "end": 12455.96, + "probability": 0.9708 + }, + { + "start": 12456.12, + "end": 12456.96, + "probability": 0.9125 + }, + { + "start": 12457.06, + "end": 12459.88, + "probability": 0.9899 + }, + { + "start": 12460.3, + "end": 12461.3, + "probability": 0.8336 + }, + { + "start": 12461.72, + "end": 12465.12, + "probability": 0.9758 + }, + { + "start": 12465.68, + "end": 12466.38, + "probability": 0.9619 + }, + { + "start": 12466.62, + "end": 12468.04, + "probability": 0.942 + }, + { + "start": 12468.28, + "end": 12469.78, + "probability": 0.9545 + }, + { + "start": 12470.18, + "end": 12471.31, + "probability": 0.6161 + }, + { + "start": 12471.5, + "end": 12472.18, + "probability": 0.7064 + }, + { + "start": 12472.28, + "end": 12472.68, + "probability": 0.4308 + }, + { + "start": 12472.78, + "end": 12473.33, + "probability": 0.501 + }, + { + "start": 12473.64, + "end": 12474.5, + "probability": 0.5746 + }, + { + "start": 12475.22, + "end": 12475.46, + "probability": 0.4633 + }, + { + "start": 12476.08, + "end": 12476.66, + "probability": 0.7917 + }, + { + "start": 12477.44, + "end": 12477.84, + "probability": 0.6606 + }, + { + "start": 12478.32, + "end": 12478.66, + "probability": 0.3906 + }, + { + "start": 12478.82, + "end": 12481.5, + "probability": 0.9536 + }, + { + "start": 12482.06, + "end": 12483.04, + "probability": 0.8433 + }, + { + "start": 12483.46, + "end": 12486.06, + "probability": 0.9423 + }, + { + "start": 12486.4, + "end": 12486.78, + "probability": 0.6526 + }, + { + "start": 12486.86, + "end": 12488.32, + "probability": 0.9434 + }, + { + "start": 12488.7, + "end": 12491.9, + "probability": 0.9959 + }, + { + "start": 12492.3, + "end": 12496.34, + "probability": 0.9878 + }, + { + "start": 12496.68, + "end": 12500.66, + "probability": 0.9889 + }, + { + "start": 12501.02, + "end": 12501.16, + "probability": 0.1591 + }, + { + "start": 12501.74, + "end": 12503.36, + "probability": 0.7186 + }, + { + "start": 12504.3, + "end": 12507.64, + "probability": 0.8595 + }, + { + "start": 12507.7, + "end": 12511.18, + "probability": 0.9713 + }, + { + "start": 12511.68, + "end": 12512.06, + "probability": 0.78 + }, + { + "start": 12513.2, + "end": 12515.84, + "probability": 0.6393 + }, + { + "start": 12516.14, + "end": 12516.75, + "probability": 0.7192 + }, + { + "start": 12516.8, + "end": 12520.06, + "probability": 0.9856 + }, + { + "start": 12520.4, + "end": 12524.86, + "probability": 0.9952 + }, + { + "start": 12525.24, + "end": 12527.12, + "probability": 0.9871 + }, + { + "start": 12527.44, + "end": 12527.62, + "probability": 0.2164 + }, + { + "start": 12527.74, + "end": 12529.4, + "probability": 0.9857 + }, + { + "start": 12529.62, + "end": 12530.72, + "probability": 0.9949 + }, + { + "start": 12531.18, + "end": 12531.84, + "probability": 0.7488 + }, + { + "start": 12532.34, + "end": 12535.44, + "probability": 0.988 + }, + { + "start": 12535.96, + "end": 12537.3, + "probability": 0.5633 + }, + { + "start": 12537.46, + "end": 12539.44, + "probability": 0.3758 + }, + { + "start": 12539.76, + "end": 12540.84, + "probability": 0.7944 + }, + { + "start": 12541.1, + "end": 12542.12, + "probability": 0.8262 + }, + { + "start": 12542.18, + "end": 12543.1, + "probability": 0.8616 + }, + { + "start": 12543.64, + "end": 12545.08, + "probability": 0.9712 + }, + { + "start": 12545.5, + "end": 12547.2, + "probability": 0.8954 + }, + { + "start": 12547.68, + "end": 12550.28, + "probability": 0.8218 + }, + { + "start": 12550.84, + "end": 12552.22, + "probability": 0.9963 + }, + { + "start": 12553.08, + "end": 12554.7, + "probability": 0.9902 + }, + { + "start": 12555.28, + "end": 12558.6, + "probability": 0.7867 + }, + { + "start": 12558.84, + "end": 12560.08, + "probability": 0.9596 + }, + { + "start": 12560.46, + "end": 12562.36, + "probability": 0.9977 + }, + { + "start": 12562.86, + "end": 12563.51, + "probability": 0.7612 + }, + { + "start": 12564.26, + "end": 12565.2, + "probability": 0.7577 + }, + { + "start": 12565.34, + "end": 12566.15, + "probability": 0.8691 + }, + { + "start": 12566.42, + "end": 12568.52, + "probability": 0.9885 + }, + { + "start": 12568.94, + "end": 12569.0, + "probability": 0.7915 + }, + { + "start": 12569.06, + "end": 12569.86, + "probability": 0.9694 + }, + { + "start": 12570.06, + "end": 12571.3, + "probability": 0.9696 + }, + { + "start": 12571.8, + "end": 12572.26, + "probability": 0.9324 + }, + { + "start": 12572.54, + "end": 12573.88, + "probability": 0.9937 + }, + { + "start": 12587.92, + "end": 12590.66, + "probability": 0.1618 + }, + { + "start": 12590.66, + "end": 12591.28, + "probability": 0.1709 + }, + { + "start": 12591.62, + "end": 12592.03, + "probability": 0.4076 + }, + { + "start": 12592.66, + "end": 12593.34, + "probability": 0.2281 + }, + { + "start": 12593.72, + "end": 12597.88, + "probability": 0.1516 + }, + { + "start": 12598.36, + "end": 12599.2, + "probability": 0.0975 + }, + { + "start": 12599.26, + "end": 12602.06, + "probability": 0.1016 + }, + { + "start": 12607.32, + "end": 12607.78, + "probability": 0.0717 + }, + { + "start": 12610.72, + "end": 12612.7, + "probability": 0.0873 + }, + { + "start": 12613.22, + "end": 12614.18, + "probability": 0.2996 + }, + { + "start": 12614.78, + "end": 12618.84, + "probability": 0.0125 + }, + { + "start": 12623.24, + "end": 12628.7, + "probability": 0.0366 + }, + { + "start": 12629.3, + "end": 12631.46, + "probability": 0.1364 + }, + { + "start": 12631.5, + "end": 12635.12, + "probability": 0.2532 + }, + { + "start": 12640.57, + "end": 12642.84, + "probability": 0.1458 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12674.0, + "end": 12674.0, + "probability": 0.0 + }, + { + "start": 12681.8, + "end": 12682.98, + "probability": 0.3229 + }, + { + "start": 12685.87, + "end": 12688.88, + "probability": 0.0373 + }, + { + "start": 12689.48, + "end": 12690.5, + "probability": 0.1352 + }, + { + "start": 12691.58, + "end": 12692.82, + "probability": 0.015 + }, + { + "start": 12692.82, + "end": 12692.82, + "probability": 0.1387 + }, + { + "start": 12692.82, + "end": 12692.82, + "probability": 0.1336 + }, + { + "start": 12692.82, + "end": 12693.72, + "probability": 0.0493 + }, + { + "start": 12696.8, + "end": 12700.34, + "probability": 0.075 + }, + { + "start": 12703.0, + "end": 12703.0, + "probability": 0.0 + }, + { + "start": 12703.0, + "end": 12703.0, + "probability": 0.0 + }, + { + "start": 12703.0, + "end": 12703.0, + "probability": 0.0 + }, + { + "start": 12703.0, + "end": 12703.0, + "probability": 0.0 + }, + { + "start": 12703.0, + "end": 12703.0, + "probability": 0.0 + }, + { + "start": 12703.18, + "end": 12703.22, + "probability": 0.1511 + }, + { + "start": 12703.22, + "end": 12703.22, + "probability": 0.0623 + }, + { + "start": 12703.22, + "end": 12703.66, + "probability": 0.1306 + }, + { + "start": 12704.0, + "end": 12705.54, + "probability": 0.9155 + }, + { + "start": 12705.94, + "end": 12707.8, + "probability": 0.9756 + }, + { + "start": 12722.6, + "end": 12723.36, + "probability": 0.142 + }, + { + "start": 12727.96, + "end": 12728.82, + "probability": 0.0182 + }, + { + "start": 12743.24, + "end": 12744.28, + "probability": 0.025 + }, + { + "start": 12744.5, + "end": 12745.68, + "probability": 0.0073 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12829.0, + "end": 12829.0, + "probability": 0.0 + }, + { + "start": 12830.37, + "end": 12832.18, + "probability": 0.242 + }, + { + "start": 12832.38, + "end": 12832.52, + "probability": 0.4472 + }, + { + "start": 12832.52, + "end": 12832.8, + "probability": 0.432 + }, + { + "start": 12832.8, + "end": 12838.68, + "probability": 0.7881 + }, + { + "start": 12840.98, + "end": 12841.42, + "probability": 0.8796 + }, + { + "start": 12845.22, + "end": 12845.9, + "probability": 0.2055 + }, + { + "start": 12846.02, + "end": 12846.98, + "probability": 0.6244 + }, + { + "start": 12847.66, + "end": 12848.56, + "probability": 0.777 + }, + { + "start": 12850.24, + "end": 12851.96, + "probability": 0.9899 + }, + { + "start": 12852.66, + "end": 12853.42, + "probability": 0.9808 + }, + { + "start": 12854.7, + "end": 12855.19, + "probability": 0.8432 + }, + { + "start": 12855.86, + "end": 12857.98, + "probability": 0.9684 + }, + { + "start": 12858.88, + "end": 12860.28, + "probability": 0.9949 + }, + { + "start": 12860.98, + "end": 12863.68, + "probability": 0.9529 + }, + { + "start": 12864.5, + "end": 12866.42, + "probability": 0.714 + }, + { + "start": 12868.92, + "end": 12870.68, + "probability": 0.7762 + }, + { + "start": 12872.08, + "end": 12875.88, + "probability": 0.9111 + }, + { + "start": 12875.94, + "end": 12877.64, + "probability": 0.6204 + }, + { + "start": 12877.64, + "end": 12878.16, + "probability": 0.3989 + }, + { + "start": 12878.24, + "end": 12878.4, + "probability": 0.6846 + }, + { + "start": 12878.46, + "end": 12878.56, + "probability": 0.4472 + }, + { + "start": 12878.68, + "end": 12880.38, + "probability": 0.9851 + }, + { + "start": 12880.6, + "end": 12881.46, + "probability": 0.8795 + }, + { + "start": 12881.98, + "end": 12885.1, + "probability": 0.946 + }, + { + "start": 12885.12, + "end": 12889.18, + "probability": 0.9724 + }, + { + "start": 12889.7, + "end": 12894.72, + "probability": 0.9906 + }, + { + "start": 12895.66, + "end": 12899.36, + "probability": 0.959 + }, + { + "start": 12900.0, + "end": 12900.54, + "probability": 0.7851 + }, + { + "start": 12901.4, + "end": 12903.36, + "probability": 0.9788 + }, + { + "start": 12904.38, + "end": 12907.72, + "probability": 0.9769 + }, + { + "start": 12908.04, + "end": 12908.82, + "probability": 0.6315 + }, + { + "start": 12909.16, + "end": 12912.36, + "probability": 0.7868 + }, + { + "start": 12913.02, + "end": 12913.48, + "probability": 0.2524 + }, + { + "start": 12913.64, + "end": 12918.36, + "probability": 0.9109 + }, + { + "start": 12919.1, + "end": 12919.8, + "probability": 0.9126 + }, + { + "start": 12921.56, + "end": 12922.8, + "probability": 0.9658 + }, + { + "start": 12923.06, + "end": 12923.32, + "probability": 0.9479 + }, + { + "start": 12924.1, + "end": 12928.24, + "probability": 0.9788 + }, + { + "start": 12928.72, + "end": 12929.88, + "probability": 0.5673 + }, + { + "start": 12929.98, + "end": 12931.04, + "probability": 0.8054 + }, + { + "start": 12932.4, + "end": 12934.3, + "probability": 0.9839 + }, + { + "start": 12935.02, + "end": 12939.74, + "probability": 0.9746 + }, + { + "start": 12939.82, + "end": 12940.48, + "probability": 0.529 + }, + { + "start": 12941.16, + "end": 12944.18, + "probability": 0.9918 + }, + { + "start": 12945.14, + "end": 12947.68, + "probability": 0.731 + }, + { + "start": 12948.44, + "end": 12952.52, + "probability": 0.9328 + }, + { + "start": 12952.52, + "end": 12955.14, + "probability": 0.947 + }, + { + "start": 12956.92, + "end": 12957.7, + "probability": 0.5485 + }, + { + "start": 12958.56, + "end": 12962.42, + "probability": 0.9938 + }, + { + "start": 12962.98, + "end": 12963.66, + "probability": 0.7053 + }, + { + "start": 12964.56, + "end": 12964.76, + "probability": 0.6192 + }, + { + "start": 12965.06, + "end": 12965.66, + "probability": 0.5539 + }, + { + "start": 12966.18, + "end": 12972.0, + "probability": 0.8348 + }, + { + "start": 12972.8, + "end": 12973.68, + "probability": 0.3973 + }, + { + "start": 12974.78, + "end": 12976.76, + "probability": 0.8732 + }, + { + "start": 12977.24, + "end": 12977.96, + "probability": 0.7231 + }, + { + "start": 12978.1, + "end": 12978.58, + "probability": 0.8673 + }, + { + "start": 12978.9, + "end": 12980.28, + "probability": 0.874 + }, + { + "start": 12980.82, + "end": 12981.16, + "probability": 0.6053 + }, + { + "start": 12981.62, + "end": 12982.52, + "probability": 0.9719 + }, + { + "start": 12982.68, + "end": 12984.02, + "probability": 0.9711 + }, + { + "start": 12984.42, + "end": 12987.62, + "probability": 0.831 + }, + { + "start": 12989.22, + "end": 12993.72, + "probability": 0.8477 + }, + { + "start": 12994.88, + "end": 12998.06, + "probability": 0.8094 + }, + { + "start": 12999.04, + "end": 13003.05, + "probability": 0.9578 + }, + { + "start": 13003.42, + "end": 13006.22, + "probability": 0.9663 + }, + { + "start": 13007.0, + "end": 13009.78, + "probability": 0.73 + }, + { + "start": 13010.52, + "end": 13016.02, + "probability": 0.9648 + }, + { + "start": 13016.3, + "end": 13019.94, + "probability": 0.9033 + }, + { + "start": 13019.94, + "end": 13023.82, + "probability": 0.9382 + }, + { + "start": 13024.04, + "end": 13026.08, + "probability": 0.9408 + }, + { + "start": 13026.22, + "end": 13028.84, + "probability": 0.8103 + }, + { + "start": 13028.96, + "end": 13029.66, + "probability": 0.9655 + }, + { + "start": 13029.88, + "end": 13030.33, + "probability": 0.4722 + }, + { + "start": 13030.96, + "end": 13031.4, + "probability": 0.3915 + }, + { + "start": 13031.44, + "end": 13034.34, + "probability": 0.9907 + }, + { + "start": 13034.6, + "end": 13038.44, + "probability": 0.9239 + }, + { + "start": 13038.94, + "end": 13040.16, + "probability": 0.8319 + }, + { + "start": 13040.7, + "end": 13042.78, + "probability": 0.9813 + }, + { + "start": 13042.92, + "end": 13046.78, + "probability": 0.9919 + }, + { + "start": 13047.56, + "end": 13049.54, + "probability": 0.8891 + }, + { + "start": 13049.86, + "end": 13051.62, + "probability": 0.9539 + }, + { + "start": 13052.02, + "end": 13054.28, + "probability": 0.9806 + }, + { + "start": 13054.96, + "end": 13057.3, + "probability": 0.8315 + }, + { + "start": 13058.12, + "end": 13059.64, + "probability": 0.635 + }, + { + "start": 13059.82, + "end": 13060.52, + "probability": 0.8747 + }, + { + "start": 13060.94, + "end": 13062.72, + "probability": 0.8873 + }, + { + "start": 13062.74, + "end": 13063.3, + "probability": 0.9352 + }, + { + "start": 13064.3, + "end": 13066.92, + "probability": 0.6686 + }, + { + "start": 13067.5, + "end": 13071.34, + "probability": 0.8919 + }, + { + "start": 13071.48, + "end": 13072.64, + "probability": 0.9849 + }, + { + "start": 13072.86, + "end": 13073.96, + "probability": 0.8195 + }, + { + "start": 13074.2, + "end": 13074.87, + "probability": 0.9762 + }, + { + "start": 13075.42, + "end": 13076.54, + "probability": 0.9549 + }, + { + "start": 13076.56, + "end": 13077.82, + "probability": 0.8187 + }, + { + "start": 13078.16, + "end": 13079.42, + "probability": 0.9556 + }, + { + "start": 13080.2, + "end": 13081.04, + "probability": 0.8757 + }, + { + "start": 13081.2, + "end": 13082.66, + "probability": 0.9871 + }, + { + "start": 13082.76, + "end": 13083.26, + "probability": 0.371 + }, + { + "start": 13083.34, + "end": 13084.14, + "probability": 0.8494 + }, + { + "start": 13084.16, + "end": 13085.32, + "probability": 0.4046 + }, + { + "start": 13086.98, + "end": 13087.62, + "probability": 0.8613 + }, + { + "start": 13088.56, + "end": 13090.16, + "probability": 0.7494 + }, + { + "start": 13091.2, + "end": 13091.84, + "probability": 0.7897 + }, + { + "start": 13092.4, + "end": 13099.52, + "probability": 0.97 + }, + { + "start": 13099.92, + "end": 13101.12, + "probability": 0.7221 + }, + { + "start": 13101.2, + "end": 13103.44, + "probability": 0.4586 + }, + { + "start": 13103.64, + "end": 13106.86, + "probability": 0.992 + }, + { + "start": 13106.86, + "end": 13110.46, + "probability": 0.9993 + }, + { + "start": 13111.42, + "end": 13114.38, + "probability": 0.7495 + }, + { + "start": 13114.76, + "end": 13116.58, + "probability": 0.5022 + }, + { + "start": 13117.18, + "end": 13118.02, + "probability": 0.9716 + }, + { + "start": 13118.64, + "end": 13120.4, + "probability": 0.9133 + }, + { + "start": 13121.52, + "end": 13123.92, + "probability": 0.7458 + }, + { + "start": 13124.44, + "end": 13126.12, + "probability": 0.8639 + }, + { + "start": 13126.64, + "end": 13127.78, + "probability": 0.9724 + }, + { + "start": 13128.26, + "end": 13134.02, + "probability": 0.6138 + }, + { + "start": 13134.56, + "end": 13135.08, + "probability": 0.8682 + }, + { + "start": 13135.54, + "end": 13137.88, + "probability": 0.7875 + }, + { + "start": 13138.7, + "end": 13142.22, + "probability": 0.9271 + }, + { + "start": 13142.34, + "end": 13142.88, + "probability": 0.821 + }, + { + "start": 13143.68, + "end": 13144.08, + "probability": 0.4903 + }, + { + "start": 13144.2, + "end": 13145.24, + "probability": 0.8367 + }, + { + "start": 13145.92, + "end": 13146.92, + "probability": 0.9888 + }, + { + "start": 13147.08, + "end": 13147.94, + "probability": 0.5209 + }, + { + "start": 13148.28, + "end": 13149.46, + "probability": 0.9499 + }, + { + "start": 13149.58, + "end": 13150.54, + "probability": 0.7714 + }, + { + "start": 13150.72, + "end": 13151.96, + "probability": 0.9511 + }, + { + "start": 13152.06, + "end": 13152.98, + "probability": 0.9247 + }, + { + "start": 13167.0, + "end": 13167.44, + "probability": 0.9734 + }, + { + "start": 13171.12, + "end": 13173.5, + "probability": 0.0497 + }, + { + "start": 13173.52, + "end": 13175.02, + "probability": 0.0151 + }, + { + "start": 13175.76, + "end": 13175.83, + "probability": 0.0625 + }, + { + "start": 13176.32, + "end": 13179.56, + "probability": 0.0557 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13269.0, + "end": 13269.0, + "probability": 0.0 + }, + { + "start": 13270.76, + "end": 13271.18, + "probability": 0.2514 + }, + { + "start": 13271.18, + "end": 13271.74, + "probability": 0.0966 + }, + { + "start": 13271.74, + "end": 13274.06, + "probability": 0.0907 + }, + { + "start": 13276.16, + "end": 13279.58, + "probability": 0.2012 + }, + { + "start": 13282.54, + "end": 13284.46, + "probability": 0.0919 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.0, + "end": 13402.0, + "probability": 0.0 + }, + { + "start": 13402.28, + "end": 13405.58, + "probability": 0.0388 + }, + { + "start": 13405.58, + "end": 13406.6, + "probability": 0.0234 + }, + { + "start": 13407.76, + "end": 13408.98, + "probability": 0.0786 + }, + { + "start": 13408.98, + "end": 13408.98, + "probability": 0.0362 + }, + { + "start": 13408.98, + "end": 13408.98, + "probability": 0.0464 + }, + { + "start": 13408.98, + "end": 13408.98, + "probability": 0.1858 + }, + { + "start": 13408.98, + "end": 13410.44, + "probability": 0.0435 + }, + { + "start": 13410.44, + "end": 13415.62, + "probability": 0.927 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.0 + }, + { + "start": 13523.08, + "end": 13526.76, + "probability": 0.684 + }, + { + "start": 13528.34, + "end": 13529.1, + "probability": 0.7225 + }, + { + "start": 13530.2, + "end": 13532.06, + "probability": 0.8962 + }, + { + "start": 13532.9, + "end": 13537.04, + "probability": 0.934 + }, + { + "start": 13538.7, + "end": 13543.12, + "probability": 0.8891 + }, + { + "start": 13543.64, + "end": 13544.48, + "probability": 0.9768 + }, + { + "start": 13545.8, + "end": 13546.56, + "probability": 0.9468 + }, + { + "start": 13546.86, + "end": 13547.58, + "probability": 0.6074 + }, + { + "start": 13547.76, + "end": 13548.68, + "probability": 0.9298 + }, + { + "start": 13548.72, + "end": 13549.72, + "probability": 0.7699 + }, + { + "start": 13550.08, + "end": 13552.32, + "probability": 0.9485 + }, + { + "start": 13553.68, + "end": 13555.42, + "probability": 0.805 + }, + { + "start": 13555.86, + "end": 13558.78, + "probability": 0.9825 + }, + { + "start": 13559.1, + "end": 13560.32, + "probability": 0.4922 + }, + { + "start": 13560.64, + "end": 13561.56, + "probability": 0.4398 + }, + { + "start": 13561.58, + "end": 13562.46, + "probability": 0.8862 + }, + { + "start": 13562.82, + "end": 13565.22, + "probability": 0.9703 + }, + { + "start": 13565.76, + "end": 13568.36, + "probability": 0.7857 + }, + { + "start": 13569.34, + "end": 13572.42, + "probability": 0.6854 + }, + { + "start": 13572.86, + "end": 13574.72, + "probability": 0.587 + }, + { + "start": 13575.32, + "end": 13576.46, + "probability": 0.9189 + }, + { + "start": 13576.88, + "end": 13578.1, + "probability": 0.7126 + }, + { + "start": 13578.56, + "end": 13580.08, + "probability": 0.9167 + }, + { + "start": 13581.34, + "end": 13581.96, + "probability": 0.6826 + }, + { + "start": 13583.36, + "end": 13585.04, + "probability": 0.8082 + }, + { + "start": 13585.98, + "end": 13588.14, + "probability": 0.7988 + }, + { + "start": 13588.48, + "end": 13590.72, + "probability": 0.8599 + }, + { + "start": 13590.84, + "end": 13591.04, + "probability": 0.9548 + }, + { + "start": 13592.63, + "end": 13594.52, + "probability": 0.7326 + }, + { + "start": 13595.64, + "end": 13599.3, + "probability": 0.9968 + }, + { + "start": 13599.3, + "end": 13604.12, + "probability": 0.9775 + }, + { + "start": 13604.94, + "end": 13606.14, + "probability": 0.9984 + }, + { + "start": 13607.39, + "end": 13611.6, + "probability": 0.9969 + }, + { + "start": 13612.44, + "end": 13613.5, + "probability": 0.802 + }, + { + "start": 13614.42, + "end": 13618.04, + "probability": 0.9958 + }, + { + "start": 13618.78, + "end": 13623.9, + "probability": 0.9836 + }, + { + "start": 13623.92, + "end": 13624.76, + "probability": 0.6702 + }, + { + "start": 13625.18, + "end": 13626.04, + "probability": 0.8174 + }, + { + "start": 13626.18, + "end": 13634.06, + "probability": 0.9731 + }, + { + "start": 13634.64, + "end": 13636.6, + "probability": 0.8824 + }, + { + "start": 13637.1, + "end": 13638.22, + "probability": 0.9495 + }, + { + "start": 13638.82, + "end": 13639.26, + "probability": 0.9286 + }, + { + "start": 13639.5, + "end": 13642.82, + "probability": 0.8876 + }, + { + "start": 13642.98, + "end": 13643.48, + "probability": 0.9403 + }, + { + "start": 13644.02, + "end": 13645.8, + "probability": 0.9859 + }, + { + "start": 13646.52, + "end": 13648.1, + "probability": 0.9144 + }, + { + "start": 13648.76, + "end": 13650.02, + "probability": 0.9913 + }, + { + "start": 13650.08, + "end": 13651.04, + "probability": 0.8921 + }, + { + "start": 13651.3, + "end": 13654.0, + "probability": 0.7677 + }, + { + "start": 13654.2, + "end": 13654.76, + "probability": 0.9951 + }, + { + "start": 13655.0, + "end": 13655.53, + "probability": 0.9895 + }, + { + "start": 13655.7, + "end": 13655.95, + "probability": 0.9949 + }, + { + "start": 13656.28, + "end": 13656.55, + "probability": 0.9624 + }, + { + "start": 13657.4, + "end": 13660.76, + "probability": 0.993 + }, + { + "start": 13660.86, + "end": 13661.54, + "probability": 0.3646 + }, + { + "start": 13662.28, + "end": 13663.3, + "probability": 0.8365 + }, + { + "start": 13663.68, + "end": 13667.48, + "probability": 0.9871 + }, + { + "start": 13667.98, + "end": 13668.86, + "probability": 0.9128 + }, + { + "start": 13668.98, + "end": 13669.52, + "probability": 0.8447 + }, + { + "start": 13669.82, + "end": 13671.12, + "probability": 0.7917 + }, + { + "start": 13671.34, + "end": 13674.64, + "probability": 0.8441 + }, + { + "start": 13696.8, + "end": 13696.82, + "probability": 0.189 + }, + { + "start": 13696.82, + "end": 13700.84, + "probability": 0.7675 + }, + { + "start": 13702.56, + "end": 13705.8, + "probability": 0.9886 + }, + { + "start": 13706.9, + "end": 13710.16, + "probability": 0.8856 + }, + { + "start": 13711.32, + "end": 13714.16, + "probability": 0.877 + }, + { + "start": 13715.68, + "end": 13717.16, + "probability": 0.8452 + }, + { + "start": 13718.2, + "end": 13722.4, + "probability": 0.7542 + }, + { + "start": 13723.84, + "end": 13727.54, + "probability": 0.9319 + }, + { + "start": 13727.76, + "end": 13729.1, + "probability": 0.8517 + }, + { + "start": 13729.26, + "end": 13730.94, + "probability": 0.7353 + }, + { + "start": 13732.12, + "end": 13734.82, + "probability": 0.9888 + }, + { + "start": 13735.86, + "end": 13737.08, + "probability": 0.9316 + }, + { + "start": 13738.18, + "end": 13739.29, + "probability": 0.957 + }, + { + "start": 13741.34, + "end": 13742.46, + "probability": 0.9954 + }, + { + "start": 13743.78, + "end": 13744.96, + "probability": 0.9961 + }, + { + "start": 13746.64, + "end": 13755.8, + "probability": 0.973 + }, + { + "start": 13757.12, + "end": 13758.4, + "probability": 0.998 + }, + { + "start": 13760.08, + "end": 13762.14, + "probability": 0.9979 + }, + { + "start": 13764.14, + "end": 13766.62, + "probability": 0.9992 + }, + { + "start": 13768.06, + "end": 13770.4, + "probability": 0.9995 + }, + { + "start": 13771.4, + "end": 13772.84, + "probability": 0.978 + }, + { + "start": 13774.36, + "end": 13781.58, + "probability": 0.9956 + }, + { + "start": 13782.08, + "end": 13784.1, + "probability": 0.9996 + }, + { + "start": 13785.1, + "end": 13786.16, + "probability": 0.9621 + }, + { + "start": 13787.4, + "end": 13788.33, + "probability": 0.9556 + }, + { + "start": 13789.68, + "end": 13793.26, + "probability": 0.9971 + }, + { + "start": 13794.42, + "end": 13797.48, + "probability": 0.9564 + }, + { + "start": 13798.7, + "end": 13802.46, + "probability": 0.995 + }, + { + "start": 13802.46, + "end": 13804.74, + "probability": 0.9988 + }, + { + "start": 13807.26, + "end": 13808.36, + "probability": 0.9512 + }, + { + "start": 13809.2, + "end": 13812.72, + "probability": 0.9645 + }, + { + "start": 13814.44, + "end": 13816.04, + "probability": 0.9967 + }, + { + "start": 13817.62, + "end": 13818.76, + "probability": 0.9819 + }, + { + "start": 13820.14, + "end": 13825.86, + "probability": 0.9965 + }, + { + "start": 13827.5, + "end": 13828.34, + "probability": 0.7417 + }, + { + "start": 13828.94, + "end": 13830.74, + "probability": 0.6597 + }, + { + "start": 13831.96, + "end": 13834.86, + "probability": 0.9775 + }, + { + "start": 13836.28, + "end": 13840.14, + "probability": 0.9757 + }, + { + "start": 13841.78, + "end": 13842.9, + "probability": 0.9979 + }, + { + "start": 13843.54, + "end": 13844.14, + "probability": 0.4989 + }, + { + "start": 13848.84, + "end": 13850.14, + "probability": 0.7096 + }, + { + "start": 13851.5, + "end": 13854.98, + "probability": 0.8046 + }, + { + "start": 13856.18, + "end": 13861.16, + "probability": 0.8484 + }, + { + "start": 13862.4, + "end": 13863.96, + "probability": 0.8457 + }, + { + "start": 13865.88, + "end": 13869.64, + "probability": 0.9807 + }, + { + "start": 13870.7, + "end": 13871.96, + "probability": 0.7754 + }, + { + "start": 13872.72, + "end": 13876.78, + "probability": 0.9119 + }, + { + "start": 13877.98, + "end": 13879.32, + "probability": 0.8567 + }, + { + "start": 13882.66, + "end": 13883.98, + "probability": 0.6655 + }, + { + "start": 13884.72, + "end": 13886.14, + "probability": 0.5036 + }, + { + "start": 13886.72, + "end": 13889.14, + "probability": 0.8957 + }, + { + "start": 13890.7, + "end": 13892.4, + "probability": 0.7032 + }, + { + "start": 13894.04, + "end": 13894.94, + "probability": 0.5104 + }, + { + "start": 13896.38, + "end": 13897.92, + "probability": 0.5812 + }, + { + "start": 13898.96, + "end": 13900.56, + "probability": 0.9471 + }, + { + "start": 13901.12, + "end": 13901.94, + "probability": 0.3839 + }, + { + "start": 13902.16, + "end": 13904.49, + "probability": 0.8781 + }, + { + "start": 13906.44, + "end": 13908.56, + "probability": 0.624 + }, + { + "start": 13909.94, + "end": 13914.2, + "probability": 0.9839 + }, + { + "start": 13914.88, + "end": 13915.5, + "probability": 0.4655 + }, + { + "start": 13916.98, + "end": 13918.06, + "probability": 0.6863 + }, + { + "start": 13919.0, + "end": 13920.66, + "probability": 0.9528 + }, + { + "start": 13921.9, + "end": 13925.76, + "probability": 0.5353 + }, + { + "start": 13926.54, + "end": 13930.84, + "probability": 0.8895 + }, + { + "start": 13932.62, + "end": 13938.16, + "probability": 0.8767 + }, + { + "start": 13939.54, + "end": 13942.56, + "probability": 0.9131 + }, + { + "start": 13942.66, + "end": 13942.92, + "probability": 0.8719 + }, + { + "start": 13943.36, + "end": 13947.3, + "probability": 0.9722 + }, + { + "start": 13947.46, + "end": 13948.3, + "probability": 0.3734 + }, + { + "start": 13948.42, + "end": 13948.94, + "probability": 0.5144 + }, + { + "start": 13949.04, + "end": 13949.04, + "probability": 0.73 + }, + { + "start": 13950.56, + "end": 13951.04, + "probability": 0.616 + }, + { + "start": 13951.98, + "end": 13953.55, + "probability": 0.4589 + }, + { + "start": 13954.3, + "end": 13954.96, + "probability": 0.7275 + }, + { + "start": 13955.62, + "end": 13956.56, + "probability": 0.7289 + }, + { + "start": 13957.34, + "end": 13958.68, + "probability": 0.3197 + }, + { + "start": 13959.06, + "end": 13959.7, + "probability": 0.3589 + }, + { + "start": 13959.88, + "end": 13960.59, + "probability": 0.6634 + }, + { + "start": 13960.88, + "end": 13961.66, + "probability": 0.6968 + }, + { + "start": 13961.7, + "end": 13964.9, + "probability": 0.0488 + }, + { + "start": 13964.94, + "end": 13967.8, + "probability": 0.0014 + }, + { + "start": 13967.8, + "end": 13967.8, + "probability": 0.0776 + }, + { + "start": 13967.8, + "end": 13967.8, + "probability": 0.114 + }, + { + "start": 13967.8, + "end": 13969.64, + "probability": 0.7527 + }, + { + "start": 13970.32, + "end": 13973.38, + "probability": 0.9367 + }, + { + "start": 13974.46, + "end": 13977.46, + "probability": 0.8598 + }, + { + "start": 13981.24, + "end": 13983.86, + "probability": 0.7639 + }, + { + "start": 13983.98, + "end": 13986.1, + "probability": 0.0285 + }, + { + "start": 13986.68, + "end": 13989.62, + "probability": 0.5366 + }, + { + "start": 13989.88, + "end": 13991.46, + "probability": 0.6235 + }, + { + "start": 13993.08, + "end": 13993.68, + "probability": 0.7063 + }, + { + "start": 13994.58, + "end": 13997.9, + "probability": 0.9119 + }, + { + "start": 13999.04, + "end": 14001.92, + "probability": 0.9795 + }, + { + "start": 14004.02, + "end": 14007.2, + "probability": 0.9048 + }, + { + "start": 14008.6, + "end": 14009.02, + "probability": 0.0717 + }, + { + "start": 14009.5, + "end": 14009.56, + "probability": 0.3202 + }, + { + "start": 14009.56, + "end": 14014.6, + "probability": 0.9945 + }, + { + "start": 14017.24, + "end": 14019.64, + "probability": 0.9775 + }, + { + "start": 14020.9, + "end": 14021.94, + "probability": 0.8805 + }, + { + "start": 14023.08, + "end": 14025.46, + "probability": 0.9942 + }, + { + "start": 14026.8, + "end": 14031.08, + "probability": 0.5498 + }, + { + "start": 14031.9, + "end": 14039.5, + "probability": 0.4781 + }, + { + "start": 14040.9, + "end": 14043.62, + "probability": 0.9108 + }, + { + "start": 14044.8, + "end": 14046.2, + "probability": 0.9324 + }, + { + "start": 14047.44, + "end": 14050.14, + "probability": 0.9934 + }, + { + "start": 14052.48, + "end": 14053.12, + "probability": 0.7123 + }, + { + "start": 14054.22, + "end": 14055.58, + "probability": 0.9933 + }, + { + "start": 14056.74, + "end": 14058.48, + "probability": 0.9921 + }, + { + "start": 14060.32, + "end": 14062.2, + "probability": 0.989 + }, + { + "start": 14063.56, + "end": 14072.18, + "probability": 0.991 + }, + { + "start": 14072.52, + "end": 14073.6, + "probability": 0.9829 + }, + { + "start": 14074.4, + "end": 14077.36, + "probability": 0.9523 + }, + { + "start": 14079.78, + "end": 14081.78, + "probability": 0.77 + }, + { + "start": 14082.6, + "end": 14084.26, + "probability": 0.9801 + }, + { + "start": 14084.92, + "end": 14086.16, + "probability": 0.8075 + }, + { + "start": 14086.98, + "end": 14089.9, + "probability": 0.9873 + }, + { + "start": 14091.58, + "end": 14094.6, + "probability": 0.992 + }, + { + "start": 14096.98, + "end": 14097.68, + "probability": 0.0031 + }, + { + "start": 14098.02, + "end": 14098.8, + "probability": 0.0914 + }, + { + "start": 14099.8, + "end": 14106.0, + "probability": 0.7333 + }, + { + "start": 14106.62, + "end": 14109.22, + "probability": 0.1372 + }, + { + "start": 14109.4, + "end": 14111.96, + "probability": 0.9985 + }, + { + "start": 14113.0, + "end": 14116.02, + "probability": 0.9441 + }, + { + "start": 14116.54, + "end": 14117.12, + "probability": 0.9844 + }, + { + "start": 14119.96, + "end": 14123.14, + "probability": 0.9965 + }, + { + "start": 14124.82, + "end": 14126.98, + "probability": 0.9788 + }, + { + "start": 14127.2, + "end": 14129.77, + "probability": 0.7886 + }, + { + "start": 14131.02, + "end": 14134.28, + "probability": 0.9687 + }, + { + "start": 14135.72, + "end": 14138.52, + "probability": 0.9961 + }, + { + "start": 14139.84, + "end": 14142.82, + "probability": 0.8011 + }, + { + "start": 14143.6, + "end": 14144.44, + "probability": 0.8217 + }, + { + "start": 14146.2, + "end": 14147.62, + "probability": 0.9806 + }, + { + "start": 14148.24, + "end": 14149.63, + "probability": 0.7483 + }, + { + "start": 14150.96, + "end": 14153.28, + "probability": 0.9495 + }, + { + "start": 14154.46, + "end": 14157.96, + "probability": 0.9691 + }, + { + "start": 14158.98, + "end": 14160.3, + "probability": 0.9791 + }, + { + "start": 14160.98, + "end": 14162.08, + "probability": 0.9289 + }, + { + "start": 14163.92, + "end": 14164.91, + "probability": 0.858 + }, + { + "start": 14165.78, + "end": 14168.03, + "probability": 0.9199 + }, + { + "start": 14169.74, + "end": 14171.94, + "probability": 0.9761 + }, + { + "start": 14172.94, + "end": 14174.05, + "probability": 0.9778 + }, + { + "start": 14174.58, + "end": 14179.69, + "probability": 0.7569 + }, + { + "start": 14180.54, + "end": 14183.12, + "probability": 0.7944 + }, + { + "start": 14183.98, + "end": 14185.62, + "probability": 0.9963 + }, + { + "start": 14187.64, + "end": 14188.62, + "probability": 0.8971 + }, + { + "start": 14189.42, + "end": 14191.64, + "probability": 0.9016 + }, + { + "start": 14192.3, + "end": 14193.68, + "probability": 0.9377 + }, + { + "start": 14195.36, + "end": 14195.84, + "probability": 0.9902 + }, + { + "start": 14196.54, + "end": 14198.82, + "probability": 0.981 + }, + { + "start": 14199.6, + "end": 14200.3, + "probability": 0.8262 + }, + { + "start": 14201.28, + "end": 14203.68, + "probability": 0.9902 + }, + { + "start": 14204.22, + "end": 14205.76, + "probability": 0.9891 + }, + { + "start": 14207.48, + "end": 14208.76, + "probability": 0.9899 + }, + { + "start": 14209.38, + "end": 14210.68, + "probability": 0.9998 + }, + { + "start": 14211.98, + "end": 14214.5, + "probability": 0.9453 + }, + { + "start": 14215.56, + "end": 14218.32, + "probability": 0.6389 + }, + { + "start": 14220.3, + "end": 14222.0, + "probability": 0.951 + }, + { + "start": 14223.26, + "end": 14225.2, + "probability": 0.9894 + }, + { + "start": 14226.08, + "end": 14229.6, + "probability": 0.9897 + }, + { + "start": 14230.74, + "end": 14231.97, + "probability": 0.9884 + }, + { + "start": 14232.8, + "end": 14234.8, + "probability": 0.9937 + }, + { + "start": 14235.38, + "end": 14236.96, + "probability": 0.9639 + }, + { + "start": 14237.64, + "end": 14245.54, + "probability": 0.991 + }, + { + "start": 14246.08, + "end": 14249.78, + "probability": 0.9937 + }, + { + "start": 14250.32, + "end": 14250.52, + "probability": 0.8693 + }, + { + "start": 14252.54, + "end": 14253.4, + "probability": 0.7751 + }, + { + "start": 14254.64, + "end": 14257.3, + "probability": 0.938 + }, + { + "start": 14257.84, + "end": 14259.74, + "probability": 0.9113 + }, + { + "start": 14259.94, + "end": 14260.8, + "probability": 0.8713 + }, + { + "start": 14261.1, + "end": 14265.12, + "probability": 0.9747 + }, + { + "start": 14265.88, + "end": 14269.64, + "probability": 0.8982 + }, + { + "start": 14269.64, + "end": 14275.22, + "probability": 0.9895 + }, + { + "start": 14276.9, + "end": 14280.26, + "probability": 0.9917 + }, + { + "start": 14281.68, + "end": 14283.66, + "probability": 0.995 + }, + { + "start": 14285.36, + "end": 14285.82, + "probability": 0.8926 + }, + { + "start": 14289.16, + "end": 14290.3, + "probability": 0.8972 + }, + { + "start": 14291.42, + "end": 14298.88, + "probability": 0.9984 + }, + { + "start": 14300.22, + "end": 14303.4, + "probability": 0.9194 + }, + { + "start": 14304.8, + "end": 14306.74, + "probability": 0.9951 + }, + { + "start": 14307.32, + "end": 14308.18, + "probability": 0.6503 + }, + { + "start": 14309.46, + "end": 14312.46, + "probability": 0.9982 + }, + { + "start": 14313.86, + "end": 14315.34, + "probability": 0.9358 + }, + { + "start": 14316.54, + "end": 14321.26, + "probability": 0.9969 + }, + { + "start": 14322.84, + "end": 14325.01, + "probability": 0.6557 + }, + { + "start": 14325.22, + "end": 14328.64, + "probability": 0.9954 + }, + { + "start": 14329.42, + "end": 14332.34, + "probability": 0.9109 + }, + { + "start": 14332.78, + "end": 14333.54, + "probability": 0.6805 + }, + { + "start": 14334.58, + "end": 14336.34, + "probability": 0.9976 + }, + { + "start": 14337.42, + "end": 14339.5, + "probability": 0.8794 + }, + { + "start": 14341.2, + "end": 14343.8, + "probability": 0.9941 + }, + { + "start": 14343.88, + "end": 14344.44, + "probability": 0.8573 + }, + { + "start": 14345.56, + "end": 14346.9, + "probability": 0.9884 + }, + { + "start": 14348.74, + "end": 14350.26, + "probability": 0.9277 + }, + { + "start": 14351.12, + "end": 14352.78, + "probability": 0.7901 + }, + { + "start": 14353.94, + "end": 14356.94, + "probability": 0.9697 + }, + { + "start": 14357.86, + "end": 14359.18, + "probability": 0.7275 + }, + { + "start": 14360.74, + "end": 14366.66, + "probability": 0.9946 + }, + { + "start": 14368.02, + "end": 14369.9, + "probability": 0.9959 + }, + { + "start": 14370.98, + "end": 14373.46, + "probability": 0.9654 + }, + { + "start": 14373.9, + "end": 14376.64, + "probability": 0.9899 + }, + { + "start": 14377.04, + "end": 14379.74, + "probability": 0.976 + }, + { + "start": 14379.88, + "end": 14381.8, + "probability": 0.9884 + }, + { + "start": 14382.9, + "end": 14388.0, + "probability": 0.9976 + }, + { + "start": 14388.58, + "end": 14390.36, + "probability": 0.8621 + }, + { + "start": 14391.68, + "end": 14396.06, + "probability": 0.9357 + }, + { + "start": 14396.78, + "end": 14400.02, + "probability": 0.9845 + }, + { + "start": 14401.3, + "end": 14407.18, + "probability": 0.9964 + }, + { + "start": 14408.24, + "end": 14412.98, + "probability": 0.91 + }, + { + "start": 14414.38, + "end": 14416.42, + "probability": 0.8623 + }, + { + "start": 14416.54, + "end": 14419.06, + "probability": 0.6447 + }, + { + "start": 14420.1, + "end": 14422.36, + "probability": 0.8871 + }, + { + "start": 14424.32, + "end": 14426.16, + "probability": 0.8329 + }, + { + "start": 14426.76, + "end": 14430.34, + "probability": 0.8306 + }, + { + "start": 14431.3, + "end": 14433.69, + "probability": 0.99 + }, + { + "start": 14435.24, + "end": 14435.6, + "probability": 0.9471 + }, + { + "start": 14437.12, + "end": 14438.82, + "probability": 0.8565 + }, + { + "start": 14440.22, + "end": 14440.32, + "probability": 0.489 + }, + { + "start": 14441.72, + "end": 14446.24, + "probability": 0.9919 + }, + { + "start": 14447.2, + "end": 14450.4, + "probability": 0.9969 + }, + { + "start": 14451.16, + "end": 14454.52, + "probability": 0.9839 + }, + { + "start": 14455.68, + "end": 14457.66, + "probability": 0.9658 + }, + { + "start": 14459.42, + "end": 14460.83, + "probability": 0.9941 + }, + { + "start": 14461.72, + "end": 14463.92, + "probability": 0.9961 + }, + { + "start": 14464.64, + "end": 14466.6, + "probability": 0.9985 + }, + { + "start": 14467.36, + "end": 14471.52, + "probability": 0.9617 + }, + { + "start": 14472.28, + "end": 14475.58, + "probability": 0.7068 + }, + { + "start": 14476.1, + "end": 14476.44, + "probability": 0.7949 + }, + { + "start": 14477.08, + "end": 14480.92, + "probability": 0.9548 + }, + { + "start": 14481.52, + "end": 14481.74, + "probability": 0.3549 + }, + { + "start": 14481.74, + "end": 14482.22, + "probability": 0.2539 + }, + { + "start": 14483.36, + "end": 14485.64, + "probability": 0.9233 + }, + { + "start": 14486.82, + "end": 14492.48, + "probability": 0.9993 + }, + { + "start": 14494.24, + "end": 14495.52, + "probability": 0.9974 + }, + { + "start": 14496.62, + "end": 14498.94, + "probability": 0.9982 + }, + { + "start": 14499.04, + "end": 14500.09, + "probability": 0.9707 + }, + { + "start": 14501.66, + "end": 14503.96, + "probability": 0.991 + }, + { + "start": 14505.38, + "end": 14506.22, + "probability": 0.4545 + }, + { + "start": 14508.1, + "end": 14509.4, + "probability": 0.7949 + }, + { + "start": 14510.74, + "end": 14512.5, + "probability": 0.7823 + }, + { + "start": 14513.32, + "end": 14519.12, + "probability": 0.9143 + }, + { + "start": 14519.92, + "end": 14522.58, + "probability": 0.9977 + }, + { + "start": 14523.38, + "end": 14525.64, + "probability": 0.9768 + }, + { + "start": 14526.44, + "end": 14528.3, + "probability": 0.9984 + }, + { + "start": 14529.34, + "end": 14533.68, + "probability": 0.9995 + }, + { + "start": 14534.4, + "end": 14534.86, + "probability": 0.8072 + }, + { + "start": 14535.78, + "end": 14538.48, + "probability": 0.9923 + }, + { + "start": 14539.08, + "end": 14540.46, + "probability": 0.7524 + }, + { + "start": 14541.7, + "end": 14542.6, + "probability": 0.9868 + }, + { + "start": 14542.86, + "end": 14543.14, + "probability": 0.7231 + }, + { + "start": 14543.24, + "end": 14544.0, + "probability": 0.6774 + }, + { + "start": 14544.14, + "end": 14544.62, + "probability": 0.6356 + }, + { + "start": 14544.8, + "end": 14546.74, + "probability": 0.8409 + }, + { + "start": 14552.82, + "end": 14555.9, + "probability": 0.712 + }, + { + "start": 14558.72, + "end": 14560.48, + "probability": 0.7795 + }, + { + "start": 14562.32, + "end": 14563.58, + "probability": 0.8936 + }, + { + "start": 14563.66, + "end": 14564.32, + "probability": 0.7343 + }, + { + "start": 14564.4, + "end": 14565.2, + "probability": 0.723 + }, + { + "start": 14565.3, + "end": 14566.24, + "probability": 0.8288 + }, + { + "start": 14567.04, + "end": 14567.66, + "probability": 0.5693 + }, + { + "start": 14569.44, + "end": 14573.3, + "probability": 0.6458 + }, + { + "start": 14574.06, + "end": 14578.52, + "probability": 0.8905 + }, + { + "start": 14579.74, + "end": 14580.74, + "probability": 0.4479 + }, + { + "start": 14581.56, + "end": 14586.42, + "probability": 0.9476 + }, + { + "start": 14587.66, + "end": 14590.12, + "probability": 0.7835 + }, + { + "start": 14591.98, + "end": 14596.02, + "probability": 0.9055 + }, + { + "start": 14597.72, + "end": 14599.23, + "probability": 0.998 + }, + { + "start": 14600.88, + "end": 14604.32, + "probability": 0.951 + }, + { + "start": 14604.6, + "end": 14605.84, + "probability": 0.8958 + }, + { + "start": 14606.58, + "end": 14610.48, + "probability": 0.9671 + }, + { + "start": 14611.0, + "end": 14612.52, + "probability": 0.9291 + }, + { + "start": 14613.52, + "end": 14615.48, + "probability": 0.9933 + }, + { + "start": 14615.78, + "end": 14616.95, + "probability": 0.9966 + }, + { + "start": 14617.08, + "end": 14619.86, + "probability": 0.9944 + }, + { + "start": 14620.5, + "end": 14622.58, + "probability": 0.9821 + }, + { + "start": 14623.24, + "end": 14625.56, + "probability": 0.9926 + }, + { + "start": 14626.9, + "end": 14629.0, + "probability": 0.9928 + }, + { + "start": 14629.84, + "end": 14631.32, + "probability": 0.8616 + }, + { + "start": 14632.14, + "end": 14632.52, + "probability": 0.4893 + }, + { + "start": 14632.62, + "end": 14634.0, + "probability": 0.9082 + }, + { + "start": 14635.08, + "end": 14635.88, + "probability": 0.7097 + }, + { + "start": 14636.0, + "end": 14636.68, + "probability": 0.9774 + }, + { + "start": 14637.1, + "end": 14644.0, + "probability": 0.9236 + }, + { + "start": 14644.98, + "end": 14645.48, + "probability": 0.9103 + }, + { + "start": 14645.66, + "end": 14646.38, + "probability": 0.8721 + }, + { + "start": 14646.54, + "end": 14649.94, + "probability": 0.9705 + }, + { + "start": 14650.56, + "end": 14653.6, + "probability": 0.9739 + }, + { + "start": 14654.1, + "end": 14654.26, + "probability": 0.4586 + }, + { + "start": 14654.72, + "end": 14655.44, + "probability": 0.9062 + }, + { + "start": 14656.32, + "end": 14658.42, + "probability": 0.986 + }, + { + "start": 14658.96, + "end": 14661.6, + "probability": 0.8973 + }, + { + "start": 14662.44, + "end": 14663.64, + "probability": 0.9937 + }, + { + "start": 14663.82, + "end": 14666.04, + "probability": 0.9858 + }, + { + "start": 14667.12, + "end": 14668.54, + "probability": 0.9785 + }, + { + "start": 14668.86, + "end": 14672.28, + "probability": 0.9496 + }, + { + "start": 14672.78, + "end": 14673.72, + "probability": 0.7061 + }, + { + "start": 14674.28, + "end": 14674.84, + "probability": 0.741 + }, + { + "start": 14674.88, + "end": 14677.48, + "probability": 0.7867 + }, + { + "start": 14677.86, + "end": 14678.48, + "probability": 0.9203 + }, + { + "start": 14678.58, + "end": 14679.86, + "probability": 0.9894 + }, + { + "start": 14680.7, + "end": 14684.38, + "probability": 0.8398 + }, + { + "start": 14684.54, + "end": 14686.89, + "probability": 0.8077 + }, + { + "start": 14687.66, + "end": 14687.84, + "probability": 0.3029 + }, + { + "start": 14687.94, + "end": 14688.72, + "probability": 0.905 + }, + { + "start": 14688.8, + "end": 14689.7, + "probability": 0.9656 + }, + { + "start": 14690.08, + "end": 14691.04, + "probability": 0.8895 + }, + { + "start": 14691.6, + "end": 14693.52, + "probability": 0.4999 + }, + { + "start": 14694.34, + "end": 14694.71, + "probability": 0.6011 + }, + { + "start": 14695.1, + "end": 14697.52, + "probability": 0.6276 + }, + { + "start": 14698.3, + "end": 14702.86, + "probability": 0.9515 + }, + { + "start": 14702.88, + "end": 14705.24, + "probability": 0.9221 + }, + { + "start": 14705.74, + "end": 14709.72, + "probability": 0.5666 + }, + { + "start": 14710.32, + "end": 14711.18, + "probability": 0.9927 + }, + { + "start": 14712.08, + "end": 14715.84, + "probability": 0.987 + }, + { + "start": 14718.43, + "end": 14720.52, + "probability": 0.8715 + }, + { + "start": 14721.48, + "end": 14723.48, + "probability": 0.9545 + }, + { + "start": 14723.68, + "end": 14724.66, + "probability": 0.9688 + }, + { + "start": 14724.74, + "end": 14727.62, + "probability": 0.992 + }, + { + "start": 14728.84, + "end": 14730.76, + "probability": 0.9933 + }, + { + "start": 14731.6, + "end": 14733.44, + "probability": 0.9904 + }, + { + "start": 14734.98, + "end": 14735.66, + "probability": 0.8237 + }, + { + "start": 14736.92, + "end": 14737.8, + "probability": 0.9282 + }, + { + "start": 14737.8, + "end": 14742.52, + "probability": 0.9003 + }, + { + "start": 14743.52, + "end": 14746.1, + "probability": 0.5798 + }, + { + "start": 14746.22, + "end": 14746.86, + "probability": 0.7587 + }, + { + "start": 14746.94, + "end": 14750.52, + "probability": 0.9965 + }, + { + "start": 14751.66, + "end": 14757.12, + "probability": 0.9069 + }, + { + "start": 14758.22, + "end": 14762.3, + "probability": 0.9954 + }, + { + "start": 14764.27, + "end": 14767.6, + "probability": 0.9961 + }, + { + "start": 14767.6, + "end": 14770.54, + "probability": 0.9983 + }, + { + "start": 14771.6, + "end": 14772.42, + "probability": 0.8574 + }, + { + "start": 14772.6, + "end": 14773.64, + "probability": 0.9599 + }, + { + "start": 14773.74, + "end": 14775.22, + "probability": 0.8481 + }, + { + "start": 14775.98, + "end": 14779.48, + "probability": 0.9948 + }, + { + "start": 14780.0, + "end": 14780.96, + "probability": 0.967 + }, + { + "start": 14781.48, + "end": 14788.3, + "probability": 0.9807 + }, + { + "start": 14788.56, + "end": 14789.02, + "probability": 0.5805 + }, + { + "start": 14789.06, + "end": 14790.59, + "probability": 0.5983 + }, + { + "start": 14791.26, + "end": 14791.72, + "probability": 0.574 + }, + { + "start": 14791.8, + "end": 14793.64, + "probability": 0.9949 + }, + { + "start": 14794.6, + "end": 14796.04, + "probability": 0.8715 + }, + { + "start": 14796.14, + "end": 14797.62, + "probability": 0.8705 + }, + { + "start": 14798.5, + "end": 14798.78, + "probability": 0.6054 + }, + { + "start": 14799.48, + "end": 14800.88, + "probability": 0.9966 + }, + { + "start": 14801.46, + "end": 14802.72, + "probability": 0.9783 + }, + { + "start": 14803.16, + "end": 14806.38, + "probability": 0.9392 + }, + { + "start": 14806.76, + "end": 14807.4, + "probability": 0.9631 + }, + { + "start": 14807.48, + "end": 14808.14, + "probability": 0.9434 + }, + { + "start": 14808.48, + "end": 14808.66, + "probability": 0.9204 + }, + { + "start": 14809.42, + "end": 14810.44, + "probability": 0.618 + }, + { + "start": 14810.44, + "end": 14812.38, + "probability": 0.5549 + }, + { + "start": 14812.48, + "end": 14813.74, + "probability": 0.9479 + }, + { + "start": 14813.82, + "end": 14814.54, + "probability": 0.9588 + }, + { + "start": 14815.96, + "end": 14817.78, + "probability": 0.9826 + }, + { + "start": 14818.34, + "end": 14819.94, + "probability": 0.8567 + }, + { + "start": 14820.54, + "end": 14821.58, + "probability": 0.9562 + }, + { + "start": 14822.04, + "end": 14822.7, + "probability": 0.9321 + }, + { + "start": 14822.9, + "end": 14823.86, + "probability": 0.9644 + }, + { + "start": 14824.04, + "end": 14824.36, + "probability": 0.736 + }, + { + "start": 14824.5, + "end": 14825.54, + "probability": 0.8594 + }, + { + "start": 14825.94, + "end": 14828.32, + "probability": 0.9679 + }, + { + "start": 14828.4, + "end": 14829.08, + "probability": 0.8482 + }, + { + "start": 14829.8, + "end": 14832.08, + "probability": 0.9889 + }, + { + "start": 14833.04, + "end": 14833.65, + "probability": 0.9883 + }, + { + "start": 14833.92, + "end": 14834.31, + "probability": 0.9307 + }, + { + "start": 14834.44, + "end": 14835.74, + "probability": 0.9979 + }, + { + "start": 14836.5, + "end": 14837.4, + "probability": 0.7388 + }, + { + "start": 14837.5, + "end": 14839.43, + "probability": 0.9877 + }, + { + "start": 14839.58, + "end": 14842.28, + "probability": 0.8286 + }, + { + "start": 14842.72, + "end": 14845.5, + "probability": 0.6923 + }, + { + "start": 14845.6, + "end": 14847.98, + "probability": 0.8145 + }, + { + "start": 14848.42, + "end": 14851.2, + "probability": 0.8252 + }, + { + "start": 14852.28, + "end": 14854.01, + "probability": 0.9294 + }, + { + "start": 14854.14, + "end": 14856.28, + "probability": 0.7549 + }, + { + "start": 14856.86, + "end": 14859.4, + "probability": 0.9488 + }, + { + "start": 14860.14, + "end": 14865.2, + "probability": 0.7442 + }, + { + "start": 14865.6, + "end": 14867.38, + "probability": 0.6688 + }, + { + "start": 14867.6, + "end": 14867.6, + "probability": 0.7386 + }, + { + "start": 14867.8, + "end": 14868.76, + "probability": 0.8103 + }, + { + "start": 14869.44, + "end": 14871.16, + "probability": 0.7945 + }, + { + "start": 14871.26, + "end": 14872.32, + "probability": 0.9404 + }, + { + "start": 14872.44, + "end": 14875.52, + "probability": 0.9954 + }, + { + "start": 14876.24, + "end": 14877.5, + "probability": 0.6965 + }, + { + "start": 14878.24, + "end": 14881.88, + "probability": 0.9189 + }, + { + "start": 14882.18, + "end": 14882.6, + "probability": 0.9659 + }, + { + "start": 14882.92, + "end": 14883.78, + "probability": 0.3846 + }, + { + "start": 14883.82, + "end": 14884.48, + "probability": 0.9556 + }, + { + "start": 14884.6, + "end": 14885.24, + "probability": 0.8606 + }, + { + "start": 14886.1, + "end": 14887.8, + "probability": 0.9937 + }, + { + "start": 14888.14, + "end": 14890.74, + "probability": 0.6451 + }, + { + "start": 14890.78, + "end": 14892.53, + "probability": 0.9871 + }, + { + "start": 14893.24, + "end": 14896.64, + "probability": 0.9976 + }, + { + "start": 14896.96, + "end": 14901.46, + "probability": 0.9967 + }, + { + "start": 14902.04, + "end": 14904.08, + "probability": 0.9417 + }, + { + "start": 14905.0, + "end": 14905.74, + "probability": 0.9821 + }, + { + "start": 14905.76, + "end": 14910.28, + "probability": 0.9712 + }, + { + "start": 14910.36, + "end": 14910.8, + "probability": 0.787 + }, + { + "start": 14911.04, + "end": 14911.22, + "probability": 0.6469 + }, + { + "start": 14911.88, + "end": 14913.6, + "probability": 0.5271 + }, + { + "start": 14913.74, + "end": 14918.04, + "probability": 0.7948 + }, + { + "start": 14921.14, + "end": 14928.02, + "probability": 0.5441 + }, + { + "start": 14929.6, + "end": 14929.6, + "probability": 0.0169 + }, + { + "start": 14929.6, + "end": 14929.62, + "probability": 0.0645 + }, + { + "start": 14929.62, + "end": 14930.98, + "probability": 0.0816 + }, + { + "start": 14938.82, + "end": 14938.92, + "probability": 0.0 + }, + { + "start": 14946.62, + "end": 14947.84, + "probability": 0.8694 + }, + { + "start": 14955.28, + "end": 14955.82, + "probability": 0.4685 + }, + { + "start": 14957.26, + "end": 14958.64, + "probability": 0.9927 + }, + { + "start": 14959.44, + "end": 14963.66, + "probability": 0.9349 + }, + { + "start": 14964.64, + "end": 14964.78, + "probability": 0.426 + }, + { + "start": 14965.5, + "end": 14966.2, + "probability": 0.5524 + }, + { + "start": 14967.1, + "end": 14970.36, + "probability": 0.9976 + }, + { + "start": 14970.36, + "end": 14974.7, + "probability": 0.9915 + }, + { + "start": 14975.68, + "end": 14978.16, + "probability": 0.9976 + }, + { + "start": 14979.1, + "end": 14981.98, + "probability": 0.8883 + }, + { + "start": 14982.82, + "end": 14984.8, + "probability": 0.9966 + }, + { + "start": 14985.96, + "end": 14988.4, + "probability": 0.9497 + }, + { + "start": 14989.8, + "end": 14990.92, + "probability": 0.6364 + }, + { + "start": 14991.74, + "end": 14995.02, + "probability": 0.9968 + }, + { + "start": 14995.78, + "end": 14996.84, + "probability": 0.8577 + }, + { + "start": 14997.58, + "end": 14999.04, + "probability": 0.9261 + }, + { + "start": 14999.94, + "end": 15004.86, + "probability": 0.9963 + }, + { + "start": 15005.48, + "end": 15006.08, + "probability": 0.8053 + }, + { + "start": 15006.7, + "end": 15008.8, + "probability": 0.8793 + }, + { + "start": 15009.44, + "end": 15010.92, + "probability": 0.9728 + }, + { + "start": 15012.4, + "end": 15013.58, + "probability": 0.9961 + }, + { + "start": 15014.18, + "end": 15015.06, + "probability": 0.7605 + }, + { + "start": 15016.06, + "end": 15017.5, + "probability": 0.9661 + }, + { + "start": 15018.24, + "end": 15019.44, + "probability": 0.9732 + }, + { + "start": 15020.02, + "end": 15022.0, + "probability": 0.9791 + }, + { + "start": 15022.82, + "end": 15026.46, + "probability": 0.86 + }, + { + "start": 15026.62, + "end": 15027.48, + "probability": 0.8654 + }, + { + "start": 15028.72, + "end": 15031.94, + "probability": 0.9183 + }, + { + "start": 15032.08, + "end": 15034.56, + "probability": 0.9668 + }, + { + "start": 15036.34, + "end": 15038.66, + "probability": 0.8972 + }, + { + "start": 15039.18, + "end": 15040.04, + "probability": 0.9948 + }, + { + "start": 15041.24, + "end": 15042.6, + "probability": 0.9487 + }, + { + "start": 15043.2, + "end": 15046.46, + "probability": 0.9887 + }, + { + "start": 15047.22, + "end": 15048.43, + "probability": 0.9783 + }, + { + "start": 15049.24, + "end": 15051.48, + "probability": 0.9943 + }, + { + "start": 15052.52, + "end": 15054.38, + "probability": 0.9979 + }, + { + "start": 15055.42, + "end": 15058.38, + "probability": 0.9476 + }, + { + "start": 15059.54, + "end": 15061.12, + "probability": 0.8427 + }, + { + "start": 15062.52, + "end": 15063.94, + "probability": 0.8021 + }, + { + "start": 15064.46, + "end": 15066.71, + "probability": 0.8334 + }, + { + "start": 15069.76, + "end": 15073.42, + "probability": 0.7699 + }, + { + "start": 15074.54, + "end": 15075.94, + "probability": 0.4645 + }, + { + "start": 15075.94, + "end": 15077.5, + "probability": 0.8732 + }, + { + "start": 15077.66, + "end": 15078.32, + "probability": 0.7922 + }, + { + "start": 15079.04, + "end": 15080.98, + "probability": 0.7507 + }, + { + "start": 15082.1, + "end": 15084.0, + "probability": 0.9512 + }, + { + "start": 15084.1, + "end": 15085.2, + "probability": 0.9182 + }, + { + "start": 15085.26, + "end": 15086.28, + "probability": 0.9419 + }, + { + "start": 15086.74, + "end": 15088.46, + "probability": 0.9907 + }, + { + "start": 15088.54, + "end": 15089.4, + "probability": 0.559 + }, + { + "start": 15090.14, + "end": 15091.92, + "probability": 0.923 + }, + { + "start": 15092.06, + "end": 15094.88, + "probability": 0.9429 + }, + { + "start": 15095.68, + "end": 15098.28, + "probability": 0.9819 + }, + { + "start": 15099.24, + "end": 15101.72, + "probability": 0.7327 + }, + { + "start": 15102.8, + "end": 15103.44, + "probability": 0.9412 + }, + { + "start": 15104.68, + "end": 15107.4, + "probability": 0.969 + }, + { + "start": 15108.68, + "end": 15109.74, + "probability": 0.7426 + }, + { + "start": 15110.68, + "end": 15112.16, + "probability": 0.9792 + }, + { + "start": 15113.3, + "end": 15114.9, + "probability": 0.9771 + }, + { + "start": 15116.5, + "end": 15118.04, + "probability": 0.8275 + }, + { + "start": 15118.7, + "end": 15120.5, + "probability": 0.9689 + }, + { + "start": 15121.68, + "end": 15126.62, + "probability": 0.9297 + }, + { + "start": 15127.38, + "end": 15128.28, + "probability": 0.9669 + }, + { + "start": 15128.42, + "end": 15129.26, + "probability": 0.9873 + }, + { + "start": 15129.46, + "end": 15130.32, + "probability": 0.9853 + }, + { + "start": 15130.76, + "end": 15131.66, + "probability": 0.9872 + }, + { + "start": 15131.74, + "end": 15132.84, + "probability": 0.9718 + }, + { + "start": 15133.44, + "end": 15134.64, + "probability": 0.7899 + }, + { + "start": 15135.46, + "end": 15138.36, + "probability": 0.9829 + }, + { + "start": 15139.2, + "end": 15143.26, + "probability": 0.9962 + }, + { + "start": 15144.3, + "end": 15147.3, + "probability": 0.9989 + }, + { + "start": 15147.94, + "end": 15148.96, + "probability": 0.9524 + }, + { + "start": 15150.36, + "end": 15153.34, + "probability": 0.9956 + }, + { + "start": 15154.42, + "end": 15157.88, + "probability": 0.998 + }, + { + "start": 15159.18, + "end": 15161.12, + "probability": 0.3962 + }, + { + "start": 15161.74, + "end": 15162.92, + "probability": 0.9001 + }, + { + "start": 15164.52, + "end": 15167.16, + "probability": 0.9688 + }, + { + "start": 15167.26, + "end": 15168.36, + "probability": 0.9692 + }, + { + "start": 15168.52, + "end": 15169.28, + "probability": 0.911 + }, + { + "start": 15170.04, + "end": 15172.86, + "probability": 0.9978 + }, + { + "start": 15173.64, + "end": 15178.5, + "probability": 0.9775 + }, + { + "start": 15179.16, + "end": 15180.44, + "probability": 0.9256 + }, + { + "start": 15181.02, + "end": 15181.84, + "probability": 0.9517 + }, + { + "start": 15182.84, + "end": 15185.34, + "probability": 0.8079 + }, + { + "start": 15186.02, + "end": 15189.02, + "probability": 0.9199 + }, + { + "start": 15190.0, + "end": 15192.2, + "probability": 0.9944 + }, + { + "start": 15192.9, + "end": 15197.66, + "probability": 0.998 + }, + { + "start": 15197.66, + "end": 15202.3, + "probability": 0.9956 + }, + { + "start": 15202.4, + "end": 15203.74, + "probability": 0.8629 + }, + { + "start": 15204.32, + "end": 15207.24, + "probability": 0.8435 + }, + { + "start": 15209.94, + "end": 15211.58, + "probability": 0.8776 + }, + { + "start": 15212.16, + "end": 15214.46, + "probability": 0.9558 + }, + { + "start": 15215.02, + "end": 15217.46, + "probability": 0.9859 + }, + { + "start": 15218.38, + "end": 15223.08, + "probability": 0.9731 + }, + { + "start": 15223.6, + "end": 15224.28, + "probability": 0.8362 + }, + { + "start": 15224.94, + "end": 15225.66, + "probability": 0.9537 + }, + { + "start": 15226.18, + "end": 15226.66, + "probability": 0.9478 + }, + { + "start": 15226.74, + "end": 15227.48, + "probability": 0.9846 + }, + { + "start": 15227.94, + "end": 15229.52, + "probability": 0.9751 + }, + { + "start": 15229.92, + "end": 15232.04, + "probability": 0.9833 + }, + { + "start": 15232.78, + "end": 15234.84, + "probability": 0.9561 + }, + { + "start": 15235.04, + "end": 15237.15, + "probability": 0.9966 + }, + { + "start": 15237.68, + "end": 15238.28, + "probability": 0.0235 + }, + { + "start": 15238.48, + "end": 15239.82, + "probability": 0.8286 + }, + { + "start": 15240.46, + "end": 15243.92, + "probability": 0.9055 + }, + { + "start": 15244.46, + "end": 15245.82, + "probability": 0.9651 + }, + { + "start": 15246.62, + "end": 15247.5, + "probability": 0.9711 + }, + { + "start": 15248.42, + "end": 15251.86, + "probability": 0.9858 + }, + { + "start": 15252.58, + "end": 15254.56, + "probability": 0.9976 + }, + { + "start": 15255.34, + "end": 15256.98, + "probability": 0.9041 + }, + { + "start": 15257.84, + "end": 15258.26, + "probability": 0.8843 + }, + { + "start": 15258.96, + "end": 15261.2, + "probability": 0.9822 + }, + { + "start": 15261.6, + "end": 15263.12, + "probability": 0.9625 + }, + { + "start": 15263.76, + "end": 15267.58, + "probability": 0.9841 + }, + { + "start": 15268.74, + "end": 15270.84, + "probability": 0.957 + }, + { + "start": 15271.06, + "end": 15275.52, + "probability": 0.9741 + }, + { + "start": 15276.24, + "end": 15278.48, + "probability": 0.995 + }, + { + "start": 15279.02, + "end": 15282.56, + "probability": 0.999 + }, + { + "start": 15283.16, + "end": 15285.32, + "probability": 0.9673 + }, + { + "start": 15285.88, + "end": 15286.94, + "probability": 0.7191 + }, + { + "start": 15287.84, + "end": 15289.82, + "probability": 0.9649 + }, + { + "start": 15290.5, + "end": 15294.28, + "probability": 0.9829 + }, + { + "start": 15294.88, + "end": 15297.28, + "probability": 0.9863 + }, + { + "start": 15298.1, + "end": 15299.0, + "probability": 0.799 + }, + { + "start": 15299.16, + "end": 15299.84, + "probability": 0.4472 + }, + { + "start": 15300.22, + "end": 15301.64, + "probability": 0.8826 + }, + { + "start": 15301.76, + "end": 15302.6, + "probability": 0.9056 + }, + { + "start": 15303.22, + "end": 15303.68, + "probability": 0.9921 + }, + { + "start": 15305.12, + "end": 15307.46, + "probability": 0.938 + }, + { + "start": 15308.0, + "end": 15309.24, + "probability": 0.7367 + }, + { + "start": 15310.32, + "end": 15311.54, + "probability": 0.9849 + }, + { + "start": 15313.54, + "end": 15314.16, + "probability": 0.9905 + }, + { + "start": 15315.2, + "end": 15316.24, + "probability": 0.9095 + }, + { + "start": 15317.54, + "end": 15319.46, + "probability": 0.9255 + }, + { + "start": 15320.12, + "end": 15321.08, + "probability": 0.834 + }, + { + "start": 15322.04, + "end": 15323.8, + "probability": 0.9855 + }, + { + "start": 15324.54, + "end": 15326.38, + "probability": 0.9722 + }, + { + "start": 15328.7, + "end": 15331.72, + "probability": 0.9935 + }, + { + "start": 15333.34, + "end": 15336.86, + "probability": 0.9963 + }, + { + "start": 15337.58, + "end": 15341.1, + "probability": 0.8917 + }, + { + "start": 15342.36, + "end": 15344.08, + "probability": 0.9875 + }, + { + "start": 15345.22, + "end": 15349.7, + "probability": 0.9803 + }, + { + "start": 15350.42, + "end": 15354.1, + "probability": 0.9747 + }, + { + "start": 15355.56, + "end": 15359.16, + "probability": 0.9908 + }, + { + "start": 15359.8, + "end": 15364.38, + "probability": 0.9851 + }, + { + "start": 15365.26, + "end": 15368.02, + "probability": 0.9949 + }, + { + "start": 15368.02, + "end": 15371.94, + "probability": 0.9831 + }, + { + "start": 15372.3, + "end": 15376.84, + "probability": 0.9934 + }, + { + "start": 15377.58, + "end": 15381.78, + "probability": 0.976 + }, + { + "start": 15382.36, + "end": 15383.62, + "probability": 0.7672 + }, + { + "start": 15384.64, + "end": 15386.54, + "probability": 0.9817 + }, + { + "start": 15387.74, + "end": 15389.66, + "probability": 0.9922 + }, + { + "start": 15390.92, + "end": 15391.48, + "probability": 0.7443 + }, + { + "start": 15392.02, + "end": 15396.0, + "probability": 0.9961 + }, + { + "start": 15397.36, + "end": 15397.56, + "probability": 0.2916 + }, + { + "start": 15399.02, + "end": 15400.38, + "probability": 0.8372 + }, + { + "start": 15401.22, + "end": 15402.74, + "probability": 0.9869 + }, + { + "start": 15403.32, + "end": 15407.82, + "probability": 0.9909 + }, + { + "start": 15410.6, + "end": 15415.6, + "probability": 0.9969 + }, + { + "start": 15416.68, + "end": 15418.04, + "probability": 0.998 + }, + { + "start": 15418.7, + "end": 15419.56, + "probability": 0.6143 + }, + { + "start": 15420.6, + "end": 15423.46, + "probability": 0.889 + }, + { + "start": 15425.56, + "end": 15429.54, + "probability": 0.9976 + }, + { + "start": 15429.72, + "end": 15430.62, + "probability": 0.9851 + }, + { + "start": 15431.18, + "end": 15434.44, + "probability": 0.7854 + }, + { + "start": 15435.56, + "end": 15437.99, + "probability": 0.9209 + }, + { + "start": 15439.08, + "end": 15441.88, + "probability": 0.8589 + }, + { + "start": 15443.08, + "end": 15446.9, + "probability": 0.8971 + }, + { + "start": 15447.94, + "end": 15451.26, + "probability": 0.9893 + }, + { + "start": 15452.24, + "end": 15455.92, + "probability": 0.9954 + }, + { + "start": 15457.42, + "end": 15459.2, + "probability": 0.8398 + }, + { + "start": 15460.42, + "end": 15463.26, + "probability": 0.9961 + }, + { + "start": 15463.38, + "end": 15464.84, + "probability": 0.9459 + }, + { + "start": 15465.7, + "end": 15467.94, + "probability": 0.784 + }, + { + "start": 15468.94, + "end": 15471.92, + "probability": 0.9231 + }, + { + "start": 15473.36, + "end": 15474.06, + "probability": 0.91 + }, + { + "start": 15474.96, + "end": 15480.12, + "probability": 0.9464 + }, + { + "start": 15481.54, + "end": 15485.38, + "probability": 0.9916 + }, + { + "start": 15486.04, + "end": 15488.84, + "probability": 0.9503 + }, + { + "start": 15489.56, + "end": 15495.3, + "probability": 0.9972 + }, + { + "start": 15497.04, + "end": 15499.16, + "probability": 0.9949 + }, + { + "start": 15501.38, + "end": 15504.32, + "probability": 0.9606 + }, + { + "start": 15504.9, + "end": 15506.3, + "probability": 0.6223 + }, + { + "start": 15507.08, + "end": 15512.94, + "probability": 0.527 + }, + { + "start": 15513.88, + "end": 15519.86, + "probability": 0.9684 + }, + { + "start": 15520.38, + "end": 15523.56, + "probability": 0.8625 + }, + { + "start": 15524.24, + "end": 15527.12, + "probability": 0.667 + }, + { + "start": 15527.76, + "end": 15530.32, + "probability": 0.964 + }, + { + "start": 15530.98, + "end": 15537.32, + "probability": 0.6779 + }, + { + "start": 15537.72, + "end": 15543.52, + "probability": 0.9571 + }, + { + "start": 15544.42, + "end": 15546.24, + "probability": 0.7616 + }, + { + "start": 15546.84, + "end": 15548.46, + "probability": 0.6806 + }, + { + "start": 15549.24, + "end": 15551.34, + "probability": 0.4535 + }, + { + "start": 15551.96, + "end": 15556.3, + "probability": 0.9158 + }, + { + "start": 15557.28, + "end": 15559.98, + "probability": 0.9897 + }, + { + "start": 15560.74, + "end": 15562.04, + "probability": 0.8188 + }, + { + "start": 15562.78, + "end": 15565.15, + "probability": 0.9979 + }, + { + "start": 15566.08, + "end": 15566.6, + "probability": 0.8013 + }, + { + "start": 15568.56, + "end": 15569.44, + "probability": 0.7375 + }, + { + "start": 15570.26, + "end": 15572.96, + "probability": 0.8245 + }, + { + "start": 15573.68, + "end": 15574.9, + "probability": 0.8879 + }, + { + "start": 15576.28, + "end": 15576.98, + "probability": 0.263 + }, + { + "start": 15606.02, + "end": 15607.46, + "probability": 0.4791 + }, + { + "start": 15608.74, + "end": 15609.72, + "probability": 0.676 + }, + { + "start": 15611.34, + "end": 15614.04, + "probability": 0.7948 + }, + { + "start": 15615.46, + "end": 15616.04, + "probability": 0.9636 + }, + { + "start": 15616.86, + "end": 15617.84, + "probability": 0.8086 + }, + { + "start": 15619.16, + "end": 15620.72, + "probability": 0.9982 + }, + { + "start": 15621.36, + "end": 15622.14, + "probability": 0.9845 + }, + { + "start": 15623.22, + "end": 15626.0, + "probability": 0.8842 + }, + { + "start": 15627.44, + "end": 15628.88, + "probability": 0.7202 + }, + { + "start": 15629.7, + "end": 15631.54, + "probability": 0.6819 + }, + { + "start": 15632.36, + "end": 15638.1, + "probability": 0.9952 + }, + { + "start": 15638.78, + "end": 15641.28, + "probability": 0.9196 + }, + { + "start": 15642.8, + "end": 15643.88, + "probability": 0.9946 + }, + { + "start": 15644.6, + "end": 15648.72, + "probability": 0.9835 + }, + { + "start": 15649.88, + "end": 15651.24, + "probability": 0.9368 + }, + { + "start": 15653.14, + "end": 15655.44, + "probability": 0.8632 + }, + { + "start": 15656.46, + "end": 15657.19, + "probability": 0.3975 + }, + { + "start": 15658.52, + "end": 15660.18, + "probability": 0.7902 + }, + { + "start": 15661.02, + "end": 15662.3, + "probability": 0.8719 + }, + { + "start": 15663.22, + "end": 15664.12, + "probability": 0.5609 + }, + { + "start": 15665.2, + "end": 15665.98, + "probability": 0.9694 + }, + { + "start": 15667.68, + "end": 15674.6, + "probability": 0.963 + }, + { + "start": 15675.3, + "end": 15675.74, + "probability": 0.7669 + }, + { + "start": 15677.36, + "end": 15679.14, + "probability": 0.9768 + }, + { + "start": 15679.68, + "end": 15680.34, + "probability": 0.5465 + }, + { + "start": 15681.22, + "end": 15683.86, + "probability": 0.9814 + }, + { + "start": 15684.74, + "end": 15685.64, + "probability": 0.9722 + }, + { + "start": 15687.1, + "end": 15690.7, + "probability": 0.5818 + }, + { + "start": 15691.68, + "end": 15693.06, + "probability": 0.9893 + }, + { + "start": 15693.82, + "end": 15694.88, + "probability": 0.9336 + }, + { + "start": 15695.78, + "end": 15698.02, + "probability": 0.9854 + }, + { + "start": 15698.76, + "end": 15699.96, + "probability": 0.9423 + }, + { + "start": 15700.66, + "end": 15701.58, + "probability": 0.9217 + }, + { + "start": 15702.82, + "end": 15704.06, + "probability": 0.5006 + }, + { + "start": 15704.86, + "end": 15705.68, + "probability": 0.9013 + }, + { + "start": 15706.88, + "end": 15709.22, + "probability": 0.9775 + }, + { + "start": 15709.94, + "end": 15712.56, + "probability": 0.9762 + }, + { + "start": 15713.88, + "end": 15714.94, + "probability": 0.9917 + }, + { + "start": 15715.58, + "end": 15716.6, + "probability": 0.0832 + }, + { + "start": 15717.34, + "end": 15720.44, + "probability": 0.8804 + }, + { + "start": 15721.2, + "end": 15721.74, + "probability": 0.693 + }, + { + "start": 15723.06, + "end": 15723.46, + "probability": 0.7492 + }, + { + "start": 15724.88, + "end": 15725.36, + "probability": 0.5766 + }, + { + "start": 15726.14, + "end": 15726.82, + "probability": 0.7386 + }, + { + "start": 15727.8, + "end": 15729.96, + "probability": 0.9949 + }, + { + "start": 15731.06, + "end": 15736.34, + "probability": 0.9917 + }, + { + "start": 15737.66, + "end": 15738.84, + "probability": 0.8081 + }, + { + "start": 15740.98, + "end": 15743.86, + "probability": 0.9864 + }, + { + "start": 15744.48, + "end": 15745.28, + "probability": 0.9929 + }, + { + "start": 15746.68, + "end": 15746.94, + "probability": 0.5396 + }, + { + "start": 15747.84, + "end": 15748.94, + "probability": 0.9269 + }, + { + "start": 15750.0, + "end": 15751.46, + "probability": 0.9888 + }, + { + "start": 15752.36, + "end": 15754.5, + "probability": 0.9897 + }, + { + "start": 15755.12, + "end": 15755.68, + "probability": 0.7336 + }, + { + "start": 15756.68, + "end": 15762.18, + "probability": 0.9844 + }, + { + "start": 15763.1, + "end": 15763.74, + "probability": 0.9891 + }, + { + "start": 15765.54, + "end": 15770.42, + "probability": 0.9971 + }, + { + "start": 15771.4, + "end": 15772.93, + "probability": 0.9618 + }, + { + "start": 15774.32, + "end": 15774.84, + "probability": 0.7635 + }, + { + "start": 15775.48, + "end": 15776.32, + "probability": 0.8517 + }, + { + "start": 15777.08, + "end": 15778.0, + "probability": 0.9838 + }, + { + "start": 15778.64, + "end": 15780.22, + "probability": 0.9493 + }, + { + "start": 15781.0, + "end": 15782.22, + "probability": 0.9751 + }, + { + "start": 15783.3, + "end": 15789.68, + "probability": 0.9937 + }, + { + "start": 15789.68, + "end": 15797.22, + "probability": 0.9909 + }, + { + "start": 15798.3, + "end": 15799.24, + "probability": 0.6867 + }, + { + "start": 15800.16, + "end": 15801.48, + "probability": 0.9107 + }, + { + "start": 15802.78, + "end": 15803.84, + "probability": 0.721 + }, + { + "start": 15805.22, + "end": 15806.56, + "probability": 0.9979 + }, + { + "start": 15807.44, + "end": 15808.2, + "probability": 0.9732 + }, + { + "start": 15808.98, + "end": 15810.02, + "probability": 0.6791 + }, + { + "start": 15811.92, + "end": 15813.0, + "probability": 0.963 + }, + { + "start": 15813.96, + "end": 15814.86, + "probability": 0.7135 + }, + { + "start": 15815.98, + "end": 15817.54, + "probability": 0.9861 + }, + { + "start": 15818.26, + "end": 15820.0, + "probability": 0.9896 + }, + { + "start": 15821.32, + "end": 15823.2, + "probability": 0.912 + }, + { + "start": 15824.16, + "end": 15826.98, + "probability": 0.9983 + }, + { + "start": 15827.82, + "end": 15828.62, + "probability": 0.6234 + }, + { + "start": 15830.2, + "end": 15831.28, + "probability": 0.9836 + }, + { + "start": 15832.64, + "end": 15833.56, + "probability": 0.9332 + }, + { + "start": 15834.9, + "end": 15836.44, + "probability": 0.9851 + }, + { + "start": 15837.24, + "end": 15838.6, + "probability": 0.9754 + }, + { + "start": 15840.06, + "end": 15841.97, + "probability": 0.9905 + }, + { + "start": 15842.76, + "end": 15843.66, + "probability": 0.7345 + }, + { + "start": 15844.86, + "end": 15846.12, + "probability": 0.6692 + }, + { + "start": 15846.76, + "end": 15847.9, + "probability": 0.7337 + }, + { + "start": 15848.78, + "end": 15850.76, + "probability": 0.9312 + }, + { + "start": 15851.42, + "end": 15852.72, + "probability": 0.8648 + }, + { + "start": 15853.44, + "end": 15855.94, + "probability": 0.9957 + }, + { + "start": 15857.5, + "end": 15861.98, + "probability": 0.9973 + }, + { + "start": 15863.08, + "end": 15863.82, + "probability": 0.7231 + }, + { + "start": 15864.76, + "end": 15867.26, + "probability": 0.9897 + }, + { + "start": 15868.08, + "end": 15869.92, + "probability": 0.9799 + }, + { + "start": 15870.46, + "end": 15871.28, + "probability": 0.8763 + }, + { + "start": 15872.08, + "end": 15876.18, + "probability": 0.9258 + }, + { + "start": 15877.44, + "end": 15879.64, + "probability": 0.9853 + }, + { + "start": 15879.68, + "end": 15883.48, + "probability": 0.975 + }, + { + "start": 15884.4, + "end": 15885.22, + "probability": 0.6769 + }, + { + "start": 15885.74, + "end": 15886.3, + "probability": 0.6936 + }, + { + "start": 15886.92, + "end": 15888.42, + "probability": 0.9719 + }, + { + "start": 15889.16, + "end": 15889.94, + "probability": 0.8216 + }, + { + "start": 15890.84, + "end": 15891.36, + "probability": 0.9514 + }, + { + "start": 15892.2, + "end": 15892.88, + "probability": 0.9776 + }, + { + "start": 15893.92, + "end": 15895.5, + "probability": 0.7696 + }, + { + "start": 15896.2, + "end": 15896.66, + "probability": 0.9016 + }, + { + "start": 15897.8, + "end": 15899.06, + "probability": 0.6636 + }, + { + "start": 15900.24, + "end": 15906.34, + "probability": 0.9976 + }, + { + "start": 15907.46, + "end": 15910.07, + "probability": 0.9961 + }, + { + "start": 15911.32, + "end": 15912.28, + "probability": 0.9607 + }, + { + "start": 15912.96, + "end": 15914.8, + "probability": 0.8975 + }, + { + "start": 15915.94, + "end": 15917.33, + "probability": 0.6462 + }, + { + "start": 15919.34, + "end": 15921.68, + "probability": 0.9695 + }, + { + "start": 15923.06, + "end": 15927.82, + "probability": 0.9079 + }, + { + "start": 15929.08, + "end": 15930.18, + "probability": 0.9971 + }, + { + "start": 15930.96, + "end": 15934.31, + "probability": 0.9976 + }, + { + "start": 15935.4, + "end": 15937.64, + "probability": 0.9953 + }, + { + "start": 15939.08, + "end": 15940.24, + "probability": 0.5718 + }, + { + "start": 15941.04, + "end": 15942.26, + "probability": 0.9113 + }, + { + "start": 15942.98, + "end": 15944.26, + "probability": 0.9456 + }, + { + "start": 15945.06, + "end": 15945.74, + "probability": 0.5059 + }, + { + "start": 15946.8, + "end": 15949.36, + "probability": 0.9757 + }, + { + "start": 15949.98, + "end": 15950.55, + "probability": 0.6492 + }, + { + "start": 15951.72, + "end": 15952.48, + "probability": 0.6727 + }, + { + "start": 15953.18, + "end": 15954.16, + "probability": 0.4435 + }, + { + "start": 15954.78, + "end": 15956.2, + "probability": 0.6959 + }, + { + "start": 15957.48, + "end": 15958.22, + "probability": 0.8067 + }, + { + "start": 15959.68, + "end": 15960.7, + "probability": 0.8267 + }, + { + "start": 15962.72, + "end": 15965.08, + "probability": 0.9875 + }, + { + "start": 15965.86, + "end": 15967.98, + "probability": 0.9272 + }, + { + "start": 15968.54, + "end": 15972.66, + "probability": 0.9923 + }, + { + "start": 15973.44, + "end": 15976.72, + "probability": 0.9972 + }, + { + "start": 15977.5, + "end": 15978.96, + "probability": 0.9964 + }, + { + "start": 15979.68, + "end": 15981.46, + "probability": 0.999 + }, + { + "start": 15982.2, + "end": 15985.14, + "probability": 0.9947 + }, + { + "start": 15985.78, + "end": 15987.48, + "probability": 0.9824 + }, + { + "start": 15988.52, + "end": 15990.82, + "probability": 0.9993 + }, + { + "start": 15992.08, + "end": 15994.82, + "probability": 0.6173 + }, + { + "start": 15994.96, + "end": 15995.2, + "probability": 0.4022 + }, + { + "start": 15995.94, + "end": 16000.32, + "probability": 0.9531 + }, + { + "start": 16001.42, + "end": 16002.98, + "probability": 0.9914 + }, + { + "start": 16003.56, + "end": 16006.85, + "probability": 0.9097 + }, + { + "start": 16007.86, + "end": 16009.02, + "probability": 0.9859 + }, + { + "start": 16009.64, + "end": 16011.56, + "probability": 0.8562 + }, + { + "start": 16012.12, + "end": 16012.82, + "probability": 0.6175 + }, + { + "start": 16013.72, + "end": 16015.24, + "probability": 0.7324 + }, + { + "start": 16016.24, + "end": 16017.98, + "probability": 0.9945 + }, + { + "start": 16018.9, + "end": 16019.84, + "probability": 0.924 + }, + { + "start": 16021.24, + "end": 16022.76, + "probability": 0.9493 + }, + { + "start": 16023.56, + "end": 16028.62, + "probability": 0.9854 + }, + { + "start": 16029.52, + "end": 16031.2, + "probability": 0.9939 + }, + { + "start": 16031.9, + "end": 16032.86, + "probability": 0.9136 + }, + { + "start": 16035.26, + "end": 16039.66, + "probability": 0.816 + }, + { + "start": 16039.66, + "end": 16039.9, + "probability": 0.7696 + }, + { + "start": 16041.12, + "end": 16043.12, + "probability": 0.9963 + }, + { + "start": 16044.62, + "end": 16046.52, + "probability": 0.9696 + }, + { + "start": 16047.1, + "end": 16047.8, + "probability": 0.95 + }, + { + "start": 16048.38, + "end": 16050.06, + "probability": 0.9494 + }, + { + "start": 16051.2, + "end": 16052.21, + "probability": 0.9559 + }, + { + "start": 16053.56, + "end": 16055.02, + "probability": 0.9961 + }, + { + "start": 16055.32, + "end": 16055.78, + "probability": 0.048 + }, + { + "start": 16055.78, + "end": 16057.5, + "probability": 0.8629 + }, + { + "start": 16058.56, + "end": 16060.1, + "probability": 0.9537 + }, + { + "start": 16060.86, + "end": 16063.1, + "probability": 0.9159 + }, + { + "start": 16064.0, + "end": 16064.44, + "probability": 0.7837 + }, + { + "start": 16065.16, + "end": 16066.82, + "probability": 0.9988 + }, + { + "start": 16067.12, + "end": 16072.34, + "probability": 0.3582 + }, + { + "start": 16073.5, + "end": 16074.76, + "probability": 0.0047 + }, + { + "start": 16078.38, + "end": 16080.1, + "probability": 0.069 + }, + { + "start": 16080.34, + "end": 16080.48, + "probability": 0.2109 + }, + { + "start": 16080.48, + "end": 16081.22, + "probability": 0.0821 + }, + { + "start": 16087.28, + "end": 16087.28, + "probability": 0.2847 + }, + { + "start": 16087.28, + "end": 16088.84, + "probability": 0.0704 + }, + { + "start": 16089.22, + "end": 16089.54, + "probability": 0.4341 + }, + { + "start": 16089.56, + "end": 16089.56, + "probability": 0.1479 + }, + { + "start": 16089.56, + "end": 16090.34, + "probability": 0.7797 + }, + { + "start": 16097.96, + "end": 16099.3, + "probability": 0.75 + }, + { + "start": 16105.1, + "end": 16106.92, + "probability": 0.5891 + }, + { + "start": 16107.06, + "end": 16109.26, + "probability": 0.877 + }, + { + "start": 16110.1, + "end": 16111.2, + "probability": 0.6575 + }, + { + "start": 16111.32, + "end": 16112.12, + "probability": 0.1266 + }, + { + "start": 16112.44, + "end": 16114.48, + "probability": 0.6639 + }, + { + "start": 16115.74, + "end": 16116.95, + "probability": 0.5386 + }, + { + "start": 16117.98, + "end": 16119.78, + "probability": 0.1402 + }, + { + "start": 16121.52, + "end": 16121.82, + "probability": 0.1696 + }, + { + "start": 16121.82, + "end": 16124.04, + "probability": 0.1152 + }, + { + "start": 16124.32, + "end": 16125.06, + "probability": 0.3324 + }, + { + "start": 16125.58, + "end": 16127.1, + "probability": 0.9623 + }, + { + "start": 16127.36, + "end": 16130.76, + "probability": 0.9523 + }, + { + "start": 16131.64, + "end": 16134.66, + "probability": 0.1288 + }, + { + "start": 16135.32, + "end": 16136.16, + "probability": 0.6832 + }, + { + "start": 16136.32, + "end": 16138.14, + "probability": 0.7231 + }, + { + "start": 16138.24, + "end": 16140.38, + "probability": 0.0678 + }, + { + "start": 16141.46, + "end": 16142.24, + "probability": 0.5 + }, + { + "start": 16142.28, + "end": 16144.03, + "probability": 0.8581 + }, + { + "start": 16144.06, + "end": 16144.9, + "probability": 0.6284 + }, + { + "start": 16145.98, + "end": 16149.38, + "probability": 0.9615 + }, + { + "start": 16149.54, + "end": 16152.84, + "probability": 0.8125 + }, + { + "start": 16153.54, + "end": 16156.5, + "probability": 0.9854 + }, + { + "start": 16156.8, + "end": 16161.3, + "probability": 0.9665 + }, + { + "start": 16161.78, + "end": 16162.99, + "probability": 0.9239 + }, + { + "start": 16163.1, + "end": 16163.34, + "probability": 0.7028 + }, + { + "start": 16163.48, + "end": 16168.02, + "probability": 0.9893 + }, + { + "start": 16169.2, + "end": 16172.78, + "probability": 0.9651 + }, + { + "start": 16173.96, + "end": 16178.4, + "probability": 0.9875 + }, + { + "start": 16178.62, + "end": 16183.04, + "probability": 0.9985 + }, + { + "start": 16183.64, + "end": 16184.67, + "probability": 0.8532 + }, + { + "start": 16185.06, + "end": 16189.12, + "probability": 0.9688 + }, + { + "start": 16189.12, + "end": 16191.56, + "probability": 0.9963 + }, + { + "start": 16193.5, + "end": 16196.68, + "probability": 0.9893 + }, + { + "start": 16196.74, + "end": 16197.64, + "probability": 0.859 + }, + { + "start": 16197.78, + "end": 16198.44, + "probability": 0.7635 + }, + { + "start": 16198.66, + "end": 16201.1, + "probability": 0.9826 + }, + { + "start": 16201.1, + "end": 16203.16, + "probability": 0.987 + }, + { + "start": 16203.9, + "end": 16207.3, + "probability": 0.9081 + }, + { + "start": 16208.2, + "end": 16209.92, + "probability": 0.881 + }, + { + "start": 16210.34, + "end": 16211.6, + "probability": 0.9556 + }, + { + "start": 16211.86, + "end": 16214.32, + "probability": 0.9247 + }, + { + "start": 16214.48, + "end": 16219.45, + "probability": 0.9932 + }, + { + "start": 16219.58, + "end": 16224.38, + "probability": 0.9937 + }, + { + "start": 16224.96, + "end": 16225.82, + "probability": 0.7025 + }, + { + "start": 16226.7, + "end": 16230.44, + "probability": 0.9549 + }, + { + "start": 16230.44, + "end": 16234.8, + "probability": 0.9132 + }, + { + "start": 16234.84, + "end": 16238.8, + "probability": 0.9565 + }, + { + "start": 16238.8, + "end": 16242.6, + "probability": 0.9882 + }, + { + "start": 16242.74, + "end": 16245.62, + "probability": 0.9966 + }, + { + "start": 16246.14, + "end": 16247.98, + "probability": 0.9978 + }, + { + "start": 16249.26, + "end": 16253.02, + "probability": 0.9972 + }, + { + "start": 16253.04, + "end": 16254.98, + "probability": 0.9985 + }, + { + "start": 16254.98, + "end": 16257.86, + "probability": 0.9985 + }, + { + "start": 16258.42, + "end": 16259.38, + "probability": 0.4951 + }, + { + "start": 16259.96, + "end": 16262.98, + "probability": 0.9764 + }, + { + "start": 16263.14, + "end": 16263.72, + "probability": 0.8534 + }, + { + "start": 16264.36, + "end": 16266.46, + "probability": 0.9991 + }, + { + "start": 16266.58, + "end": 16270.2, + "probability": 0.9951 + }, + { + "start": 16270.96, + "end": 16271.78, + "probability": 0.9355 + }, + { + "start": 16271.88, + "end": 16272.09, + "probability": 0.7021 + }, + { + "start": 16272.24, + "end": 16273.34, + "probability": 0.6294 + }, + { + "start": 16273.88, + "end": 16275.24, + "probability": 0.9878 + }, + { + "start": 16276.16, + "end": 16279.32, + "probability": 0.9723 + }, + { + "start": 16279.32, + "end": 16281.74, + "probability": 0.9907 + }, + { + "start": 16282.54, + "end": 16287.32, + "probability": 0.9951 + }, + { + "start": 16288.08, + "end": 16290.4, + "probability": 0.9976 + }, + { + "start": 16290.52, + "end": 16291.18, + "probability": 0.9663 + }, + { + "start": 16291.38, + "end": 16294.58, + "probability": 0.9929 + }, + { + "start": 16296.51, + "end": 16297.46, + "probability": 0.776 + }, + { + "start": 16298.14, + "end": 16299.86, + "probability": 0.8387 + }, + { + "start": 16299.88, + "end": 16302.08, + "probability": 0.8591 + }, + { + "start": 16302.24, + "end": 16305.0, + "probability": 0.9862 + }, + { + "start": 16305.0, + "end": 16307.16, + "probability": 0.9956 + }, + { + "start": 16307.74, + "end": 16307.88, + "probability": 0.4269 + }, + { + "start": 16307.94, + "end": 16310.48, + "probability": 0.9946 + }, + { + "start": 16310.94, + "end": 16312.76, + "probability": 0.9991 + }, + { + "start": 16313.64, + "end": 16314.54, + "probability": 0.8352 + }, + { + "start": 16315.02, + "end": 16316.46, + "probability": 0.9928 + }, + { + "start": 16316.92, + "end": 16318.5, + "probability": 0.9402 + }, + { + "start": 16319.08, + "end": 16321.32, + "probability": 0.9941 + }, + { + "start": 16321.46, + "end": 16321.95, + "probability": 0.9668 + }, + { + "start": 16322.6, + "end": 16327.3, + "probability": 0.9993 + }, + { + "start": 16329.68, + "end": 16330.1, + "probability": 0.8979 + }, + { + "start": 16330.26, + "end": 16334.58, + "probability": 0.9927 + }, + { + "start": 16334.72, + "end": 16336.0, + "probability": 0.9989 + }, + { + "start": 16337.18, + "end": 16338.72, + "probability": 0.959 + }, + { + "start": 16338.92, + "end": 16341.26, + "probability": 0.7416 + }, + { + "start": 16341.36, + "end": 16342.94, + "probability": 0.9761 + }, + { + "start": 16344.08, + "end": 16349.1, + "probability": 0.9968 + }, + { + "start": 16349.72, + "end": 16355.66, + "probability": 0.9845 + }, + { + "start": 16356.3, + "end": 16359.44, + "probability": 0.9966 + }, + { + "start": 16359.48, + "end": 16360.94, + "probability": 0.5158 + }, + { + "start": 16361.64, + "end": 16366.24, + "probability": 0.9971 + }, + { + "start": 16366.76, + "end": 16370.34, + "probability": 0.9723 + }, + { + "start": 16370.82, + "end": 16377.08, + "probability": 0.9993 + }, + { + "start": 16377.8, + "end": 16381.94, + "probability": 0.995 + }, + { + "start": 16383.36, + "end": 16387.82, + "probability": 0.9923 + }, + { + "start": 16389.02, + "end": 16390.42, + "probability": 0.8399 + }, + { + "start": 16390.48, + "end": 16394.34, + "probability": 0.8315 + }, + { + "start": 16394.52, + "end": 16398.04, + "probability": 0.9227 + }, + { + "start": 16398.04, + "end": 16398.08, + "probability": 0.5216 + }, + { + "start": 16398.08, + "end": 16398.76, + "probability": 0.7202 + }, + { + "start": 16398.88, + "end": 16399.34, + "probability": 0.7063 + }, + { + "start": 16399.46, + "end": 16400.0, + "probability": 0.4756 + }, + { + "start": 16400.42, + "end": 16400.6, + "probability": 0.3781 + }, + { + "start": 16400.76, + "end": 16401.38, + "probability": 0.669 + }, + { + "start": 16401.4, + "end": 16401.8, + "probability": 0.2099 + }, + { + "start": 16401.8, + "end": 16403.36, + "probability": 0.9138 + }, + { + "start": 16403.68, + "end": 16403.68, + "probability": 0.0883 + }, + { + "start": 16404.28, + "end": 16404.5, + "probability": 0.1688 + }, + { + "start": 16404.92, + "end": 16406.4, + "probability": 0.3034 + }, + { + "start": 16406.4, + "end": 16406.88, + "probability": 0.483 + }, + { + "start": 16406.88, + "end": 16409.82, + "probability": 0.5863 + }, + { + "start": 16409.82, + "end": 16412.26, + "probability": 0.7645 + }, + { + "start": 16413.1, + "end": 16414.41, + "probability": 0.9756 + }, + { + "start": 16414.58, + "end": 16416.06, + "probability": 0.9014 + }, + { + "start": 16416.64, + "end": 16416.88, + "probability": 0.1952 + }, + { + "start": 16417.04, + "end": 16417.48, + "probability": 0.4222 + }, + { + "start": 16417.66, + "end": 16420.52, + "probability": 0.7098 + }, + { + "start": 16420.98, + "end": 16421.0, + "probability": 0.3923 + }, + { + "start": 16421.0, + "end": 16422.06, + "probability": 0.9634 + }, + { + "start": 16422.12, + "end": 16423.38, + "probability": 0.9496 + }, + { + "start": 16423.62, + "end": 16425.68, + "probability": 0.9954 + }, + { + "start": 16425.74, + "end": 16425.84, + "probability": 0.8728 + }, + { + "start": 16426.68, + "end": 16429.42, + "probability": 0.8981 + }, + { + "start": 16430.04, + "end": 16432.34, + "probability": 0.5155 + }, + { + "start": 16433.06, + "end": 16435.18, + "probability": 0.8336 + }, + { + "start": 16436.66, + "end": 16439.18, + "probability": 0.9954 + }, + { + "start": 16439.34, + "end": 16440.26, + "probability": 0.8432 + }, + { + "start": 16440.42, + "end": 16442.2, + "probability": 0.9181 + }, + { + "start": 16442.8, + "end": 16444.66, + "probability": 0.9329 + }, + { + "start": 16445.76, + "end": 16450.08, + "probability": 0.8286 + }, + { + "start": 16450.22, + "end": 16453.34, + "probability": 0.9141 + }, + { + "start": 16454.28, + "end": 16456.12, + "probability": 0.9963 + }, + { + "start": 16457.06, + "end": 16459.48, + "probability": 0.9922 + }, + { + "start": 16459.48, + "end": 16462.74, + "probability": 0.9972 + }, + { + "start": 16463.82, + "end": 16467.3, + "probability": 0.9332 + }, + { + "start": 16467.42, + "end": 16468.06, + "probability": 0.5407 + }, + { + "start": 16468.16, + "end": 16470.34, + "probability": 0.9425 + }, + { + "start": 16470.48, + "end": 16472.38, + "probability": 0.9644 + }, + { + "start": 16472.86, + "end": 16473.86, + "probability": 0.8727 + }, + { + "start": 16473.94, + "end": 16476.7, + "probability": 0.9964 + }, + { + "start": 16477.34, + "end": 16479.06, + "probability": 0.7571 + }, + { + "start": 16479.74, + "end": 16481.16, + "probability": 0.9792 + }, + { + "start": 16481.4, + "end": 16482.98, + "probability": 0.8142 + }, + { + "start": 16483.32, + "end": 16485.02, + "probability": 0.9893 + }, + { + "start": 16485.84, + "end": 16489.34, + "probability": 0.9907 + }, + { + "start": 16490.56, + "end": 16491.58, + "probability": 0.91 + }, + { + "start": 16492.34, + "end": 16493.84, + "probability": 0.9946 + }, + { + "start": 16494.82, + "end": 16494.88, + "probability": 0.5449 + }, + { + "start": 16495.4, + "end": 16500.7, + "probability": 0.9901 + }, + { + "start": 16500.96, + "end": 16501.72, + "probability": 0.5331 + }, + { + "start": 16502.6, + "end": 16504.2, + "probability": 0.9724 + }, + { + "start": 16504.28, + "end": 16505.8, + "probability": 0.957 + }, + { + "start": 16505.84, + "end": 16508.32, + "probability": 0.9976 + }, + { + "start": 16508.65, + "end": 16509.88, + "probability": 0.9597 + }, + { + "start": 16509.98, + "end": 16511.08, + "probability": 0.8602 + }, + { + "start": 16511.76, + "end": 16512.58, + "probability": 0.7138 + }, + { + "start": 16512.72, + "end": 16513.48, + "probability": 0.8069 + }, + { + "start": 16513.64, + "end": 16515.88, + "probability": 0.8722 + }, + { + "start": 16516.46, + "end": 16516.94, + "probability": 0.9116 + }, + { + "start": 16517.06, + "end": 16517.52, + "probability": 0.9081 + }, + { + "start": 16517.68, + "end": 16521.2, + "probability": 0.9671 + }, + { + "start": 16522.44, + "end": 16524.66, + "probability": 0.9893 + }, + { + "start": 16524.76, + "end": 16525.96, + "probability": 0.5808 + }, + { + "start": 16526.38, + "end": 16530.56, + "probability": 0.9941 + }, + { + "start": 16532.46, + "end": 16534.74, + "probability": 0.9927 + }, + { + "start": 16535.16, + "end": 16537.06, + "probability": 0.981 + }, + { + "start": 16537.12, + "end": 16538.5, + "probability": 0.9668 + }, + { + "start": 16538.74, + "end": 16542.38, + "probability": 0.999 + }, + { + "start": 16543.16, + "end": 16547.76, + "probability": 0.9968 + }, + { + "start": 16548.26, + "end": 16549.56, + "probability": 0.9839 + }, + { + "start": 16550.06, + "end": 16551.22, + "probability": 0.783 + }, + { + "start": 16551.62, + "end": 16555.06, + "probability": 0.9326 + }, + { + "start": 16555.76, + "end": 16556.38, + "probability": 0.6709 + }, + { + "start": 16556.44, + "end": 16558.04, + "probability": 0.873 + }, + { + "start": 16558.46, + "end": 16560.08, + "probability": 0.811 + }, + { + "start": 16560.16, + "end": 16560.7, + "probability": 0.6552 + }, + { + "start": 16560.7, + "end": 16560.72, + "probability": 0.5553 + }, + { + "start": 16560.72, + "end": 16563.7, + "probability": 0.9225 + }, + { + "start": 16564.54, + "end": 16564.68, + "probability": 0.0329 + }, + { + "start": 16564.68, + "end": 16565.36, + "probability": 0.8271 + }, + { + "start": 16565.44, + "end": 16566.24, + "probability": 0.9274 + }, + { + "start": 16566.32, + "end": 16567.96, + "probability": 0.8772 + }, + { + "start": 16568.32, + "end": 16573.44, + "probability": 0.9432 + }, + { + "start": 16573.54, + "end": 16578.02, + "probability": 0.9966 + }, + { + "start": 16578.22, + "end": 16582.5, + "probability": 0.9086 + }, + { + "start": 16582.84, + "end": 16584.4, + "probability": 0.7875 + }, + { + "start": 16584.92, + "end": 16586.06, + "probability": 0.9959 + }, + { + "start": 16586.2, + "end": 16587.94, + "probability": 0.9837 + }, + { + "start": 16588.98, + "end": 16589.16, + "probability": 0.252 + }, + { + "start": 16589.22, + "end": 16590.6, + "probability": 0.6319 + }, + { + "start": 16590.68, + "end": 16591.94, + "probability": 0.8876 + }, + { + "start": 16594.26, + "end": 16595.1, + "probability": 0.7325 + }, + { + "start": 16596.48, + "end": 16597.96, + "probability": 0.8713 + }, + { + "start": 16614.78, + "end": 16617.12, + "probability": 0.5665 + }, + { + "start": 16618.06, + "end": 16621.28, + "probability": 0.8448 + }, + { + "start": 16622.5, + "end": 16624.88, + "probability": 0.9361 + }, + { + "start": 16626.08, + "end": 16630.6, + "probability": 0.9866 + }, + { + "start": 16631.18, + "end": 16631.88, + "probability": 0.9788 + }, + { + "start": 16633.58, + "end": 16636.66, + "probability": 0.9724 + }, + { + "start": 16638.92, + "end": 16641.68, + "probability": 0.8438 + }, + { + "start": 16643.24, + "end": 16645.1, + "probability": 0.98 + }, + { + "start": 16651.14, + "end": 16656.01, + "probability": 0.9573 + }, + { + "start": 16656.09, + "end": 16657.05, + "probability": 0.6573 + }, + { + "start": 16658.62, + "end": 16668.01, + "probability": 0.9953 + }, + { + "start": 16669.55, + "end": 16672.13, + "probability": 0.949 + }, + { + "start": 16672.69, + "end": 16674.17, + "probability": 0.7842 + }, + { + "start": 16675.69, + "end": 16676.59, + "probability": 0.7984 + }, + { + "start": 16677.89, + "end": 16680.33, + "probability": 0.9478 + }, + { + "start": 16680.89, + "end": 16683.19, + "probability": 0.9146 + }, + { + "start": 16683.75, + "end": 16686.27, + "probability": 0.9946 + }, + { + "start": 16687.53, + "end": 16688.63, + "probability": 0.5933 + }, + { + "start": 16689.69, + "end": 16690.83, + "probability": 0.9994 + }, + { + "start": 16691.59, + "end": 16694.19, + "probability": 0.9674 + }, + { + "start": 16694.79, + "end": 16696.95, + "probability": 0.7255 + }, + { + "start": 16698.89, + "end": 16699.15, + "probability": 0.5208 + }, + { + "start": 16700.81, + "end": 16704.37, + "probability": 0.9247 + }, + { + "start": 16705.13, + "end": 16706.73, + "probability": 0.6043 + }, + { + "start": 16707.51, + "end": 16708.05, + "probability": 0.7917 + }, + { + "start": 16708.61, + "end": 16713.95, + "probability": 0.627 + }, + { + "start": 16715.51, + "end": 16718.11, + "probability": 0.674 + }, + { + "start": 16718.91, + "end": 16721.69, + "probability": 0.8229 + }, + { + "start": 16722.71, + "end": 16724.41, + "probability": 0.9695 + }, + { + "start": 16725.29, + "end": 16726.61, + "probability": 0.923 + }, + { + "start": 16727.73, + "end": 16729.91, + "probability": 0.9934 + }, + { + "start": 16730.77, + "end": 16736.41, + "probability": 0.9712 + }, + { + "start": 16738.57, + "end": 16740.99, + "probability": 0.7242 + }, + { + "start": 16741.47, + "end": 16743.55, + "probability": 0.9966 + }, + { + "start": 16744.07, + "end": 16745.69, + "probability": 0.5656 + }, + { + "start": 16746.89, + "end": 16747.69, + "probability": 0.7532 + }, + { + "start": 16748.91, + "end": 16750.23, + "probability": 0.949 + }, + { + "start": 16750.95, + "end": 16753.91, + "probability": 0.7523 + }, + { + "start": 16754.99, + "end": 16762.01, + "probability": 0.9585 + }, + { + "start": 16762.27, + "end": 16765.75, + "probability": 0.9779 + }, + { + "start": 16766.79, + "end": 16769.79, + "probability": 0.9664 + }, + { + "start": 16770.69, + "end": 16772.49, + "probability": 0.4803 + }, + { + "start": 16773.11, + "end": 16774.27, + "probability": 0.9279 + }, + { + "start": 16775.03, + "end": 16775.55, + "probability": 0.9657 + }, + { + "start": 16776.51, + "end": 16778.13, + "probability": 0.917 + }, + { + "start": 16779.39, + "end": 16781.07, + "probability": 0.9763 + }, + { + "start": 16781.79, + "end": 16783.65, + "probability": 0.8208 + }, + { + "start": 16784.69, + "end": 16786.91, + "probability": 0.9751 + }, + { + "start": 16788.23, + "end": 16790.91, + "probability": 0.9952 + }, + { + "start": 16792.15, + "end": 16792.97, + "probability": 0.8773 + }, + { + "start": 16793.93, + "end": 16794.65, + "probability": 0.6249 + }, + { + "start": 16795.17, + "end": 16796.77, + "probability": 0.9272 + }, + { + "start": 16798.01, + "end": 16799.65, + "probability": 0.5958 + }, + { + "start": 16801.07, + "end": 16805.09, + "probability": 0.9935 + }, + { + "start": 16806.45, + "end": 16808.97, + "probability": 0.8989 + }, + { + "start": 16810.31, + "end": 16813.55, + "probability": 0.984 + }, + { + "start": 16814.95, + "end": 16815.83, + "probability": 0.9875 + }, + { + "start": 16817.37, + "end": 16820.09, + "probability": 0.9944 + }, + { + "start": 16821.13, + "end": 16821.57, + "probability": 0.7546 + }, + { + "start": 16822.09, + "end": 16823.07, + "probability": 0.5379 + }, + { + "start": 16823.15, + "end": 16824.41, + "probability": 0.5053 + }, + { + "start": 16825.77, + "end": 16834.61, + "probability": 0.9156 + }, + { + "start": 16835.33, + "end": 16836.19, + "probability": 0.9894 + }, + { + "start": 16837.29, + "end": 16839.33, + "probability": 0.9863 + }, + { + "start": 16840.03, + "end": 16840.89, + "probability": 0.8804 + }, + { + "start": 16841.81, + "end": 16846.96, + "probability": 0.9906 + }, + { + "start": 16847.91, + "end": 16849.11, + "probability": 0.9985 + }, + { + "start": 16850.63, + "end": 16853.19, + "probability": 0.2643 + }, + { + "start": 16854.41, + "end": 16857.69, + "probability": 0.3252 + }, + { + "start": 16858.65, + "end": 16861.43, + "probability": 0.2873 + }, + { + "start": 16863.37, + "end": 16864.01, + "probability": 0.6425 + }, + { + "start": 16865.49, + "end": 16866.83, + "probability": 0.9443 + }, + { + "start": 16868.07, + "end": 16872.03, + "probability": 0.9454 + }, + { + "start": 16872.53, + "end": 16875.83, + "probability": 0.9698 + }, + { + "start": 16876.55, + "end": 16878.33, + "probability": 0.8967 + }, + { + "start": 16878.45, + "end": 16879.25, + "probability": 0.8114 + }, + { + "start": 16879.65, + "end": 16880.37, + "probability": 0.9339 + }, + { + "start": 16880.61, + "end": 16881.99, + "probability": 0.7881 + }, + { + "start": 16882.39, + "end": 16884.37, + "probability": 0.6202 + }, + { + "start": 16885.89, + "end": 16890.35, + "probability": 0.9912 + }, + { + "start": 16890.97, + "end": 16894.57, + "probability": 0.9979 + }, + { + "start": 16895.73, + "end": 16897.11, + "probability": 0.8424 + }, + { + "start": 16897.59, + "end": 16901.29, + "probability": 0.95 + }, + { + "start": 16901.69, + "end": 16901.99, + "probability": 0.5648 + }, + { + "start": 16902.41, + "end": 16902.67, + "probability": 0.8546 + }, + { + "start": 16903.15, + "end": 16903.79, + "probability": 0.9822 + }, + { + "start": 16904.03, + "end": 16904.57, + "probability": 0.9697 + }, + { + "start": 16904.91, + "end": 16905.43, + "probability": 0.9756 + }, + { + "start": 16905.89, + "end": 16911.95, + "probability": 0.9977 + }, + { + "start": 16912.47, + "end": 16913.57, + "probability": 0.7192 + }, + { + "start": 16914.95, + "end": 16917.53, + "probability": 0.9834 + }, + { + "start": 16918.45, + "end": 16921.67, + "probability": 0.9933 + }, + { + "start": 16922.43, + "end": 16923.07, + "probability": 0.6938 + }, + { + "start": 16924.91, + "end": 16925.23, + "probability": 0.7917 + }, + { + "start": 16927.01, + "end": 16929.11, + "probability": 0.8608 + }, + { + "start": 16930.09, + "end": 16930.71, + "probability": 0.7015 + }, + { + "start": 16931.27, + "end": 16932.13, + "probability": 0.6129 + }, + { + "start": 16933.45, + "end": 16936.65, + "probability": 0.9499 + }, + { + "start": 16937.89, + "end": 16941.83, + "probability": 0.783 + }, + { + "start": 16942.37, + "end": 16943.45, + "probability": 0.8085 + }, + { + "start": 16943.67, + "end": 16944.57, + "probability": 0.7363 + }, + { + "start": 16946.33, + "end": 16948.09, + "probability": 0.9249 + }, + { + "start": 16948.83, + "end": 16950.99, + "probability": 0.982 + }, + { + "start": 16951.73, + "end": 16956.59, + "probability": 0.9892 + }, + { + "start": 16957.41, + "end": 16957.79, + "probability": 0.3926 + }, + { + "start": 16958.45, + "end": 16964.53, + "probability": 0.8891 + }, + { + "start": 16965.29, + "end": 16973.35, + "probability": 0.9907 + }, + { + "start": 16974.39, + "end": 16975.45, + "probability": 0.7686 + }, + { + "start": 16976.25, + "end": 16978.59, + "probability": 0.6293 + }, + { + "start": 16979.21, + "end": 16980.57, + "probability": 0.6223 + }, + { + "start": 16981.67, + "end": 16983.97, + "probability": 0.8538 + }, + { + "start": 16984.61, + "end": 16985.87, + "probability": 0.7376 + }, + { + "start": 16986.37, + "end": 16993.87, + "probability": 0.9948 + }, + { + "start": 16994.43, + "end": 16996.51, + "probability": 0.9895 + }, + { + "start": 16997.07, + "end": 17002.57, + "probability": 0.9867 + }, + { + "start": 17003.23, + "end": 17003.95, + "probability": 0.9663 + }, + { + "start": 17004.23, + "end": 17005.05, + "probability": 0.3119 + }, + { + "start": 17005.21, + "end": 17006.81, + "probability": 0.5723 + }, + { + "start": 17006.91, + "end": 17007.55, + "probability": 0.3251 + }, + { + "start": 17007.63, + "end": 17007.83, + "probability": 0.2607 + }, + { + "start": 17008.55, + "end": 17009.83, + "probability": 0.8247 + }, + { + "start": 17010.51, + "end": 17016.25, + "probability": 0.9874 + }, + { + "start": 17017.45, + "end": 17017.47, + "probability": 0.7891 + }, + { + "start": 17018.37, + "end": 17019.23, + "probability": 0.834 + }, + { + "start": 17019.83, + "end": 17020.59, + "probability": 0.6321 + }, + { + "start": 17021.13, + "end": 17023.27, + "probability": 0.9979 + }, + { + "start": 17024.97, + "end": 17026.95, + "probability": 0.9599 + }, + { + "start": 17027.95, + "end": 17029.59, + "probability": 0.9517 + }, + { + "start": 17030.73, + "end": 17036.15, + "probability": 0.997 + }, + { + "start": 17036.95, + "end": 17037.57, + "probability": 0.7504 + }, + { + "start": 17038.31, + "end": 17042.27, + "probability": 0.9292 + }, + { + "start": 17042.91, + "end": 17046.35, + "probability": 0.9788 + }, + { + "start": 17047.47, + "end": 17048.71, + "probability": 0.7581 + }, + { + "start": 17049.59, + "end": 17051.26, + "probability": 0.9951 + }, + { + "start": 17052.07, + "end": 17052.59, + "probability": 0.9756 + }, + { + "start": 17053.55, + "end": 17055.57, + "probability": 0.9933 + }, + { + "start": 17056.13, + "end": 17056.89, + "probability": 0.9421 + }, + { + "start": 17057.45, + "end": 17058.99, + "probability": 0.946 + }, + { + "start": 17059.65, + "end": 17064.75, + "probability": 0.8302 + }, + { + "start": 17065.83, + "end": 17066.01, + "probability": 0.7397 + }, + { + "start": 17066.61, + "end": 17067.15, + "probability": 0.5413 + }, + { + "start": 17068.65, + "end": 17070.65, + "probability": 0.7749 + }, + { + "start": 17071.39, + "end": 17073.81, + "probability": 0.4359 + }, + { + "start": 17074.25, + "end": 17075.65, + "probability": 0.9073 + }, + { + "start": 17076.53, + "end": 17080.47, + "probability": 0.8277 + }, + { + "start": 17081.41, + "end": 17083.93, + "probability": 0.9602 + }, + { + "start": 17084.91, + "end": 17085.23, + "probability": 0.1459 + }, + { + "start": 17085.29, + "end": 17085.67, + "probability": 0.498 + }, + { + "start": 17085.67, + "end": 17086.91, + "probability": 0.9695 + }, + { + "start": 17087.41, + "end": 17088.01, + "probability": 0.4421 + }, + { + "start": 17088.61, + "end": 17089.57, + "probability": 0.0824 + }, + { + "start": 17090.13, + "end": 17090.25, + "probability": 0.0106 + }, + { + "start": 17090.25, + "end": 17093.61, + "probability": 0.8794 + }, + { + "start": 17094.79, + "end": 17094.99, + "probability": 0.5874 + }, + { + "start": 17095.65, + "end": 17097.65, + "probability": 0.8843 + }, + { + "start": 17098.07, + "end": 17099.43, + "probability": 0.994 + }, + { + "start": 17100.33, + "end": 17101.83, + "probability": 0.9361 + }, + { + "start": 17102.67, + "end": 17104.73, + "probability": 0.8829 + }, + { + "start": 17105.73, + "end": 17106.61, + "probability": 0.8163 + }, + { + "start": 17106.99, + "end": 17110.97, + "probability": 0.8805 + }, + { + "start": 17111.67, + "end": 17118.31, + "probability": 0.9801 + }, + { + "start": 17119.41, + "end": 17120.45, + "probability": 0.7466 + }, + { + "start": 17121.31, + "end": 17122.97, + "probability": 0.9536 + }, + { + "start": 17123.69, + "end": 17126.17, + "probability": 0.6994 + }, + { + "start": 17126.83, + "end": 17127.29, + "probability": 0.5526 + }, + { + "start": 17127.37, + "end": 17130.99, + "probability": 0.8942 + }, + { + "start": 17131.39, + "end": 17131.73, + "probability": 0.6242 + }, + { + "start": 17131.97, + "end": 17132.55, + "probability": 0.658 + }, + { + "start": 17133.47, + "end": 17136.01, + "probability": 0.9674 + }, + { + "start": 17136.63, + "end": 17137.35, + "probability": 0.9731 + }, + { + "start": 17138.25, + "end": 17139.87, + "probability": 0.987 + }, + { + "start": 17140.87, + "end": 17145.29, + "probability": 0.7661 + }, + { + "start": 17147.09, + "end": 17150.11, + "probability": 0.8849 + }, + { + "start": 17151.05, + "end": 17152.29, + "probability": 0.9639 + }, + { + "start": 17153.47, + "end": 17155.13, + "probability": 0.9721 + }, + { + "start": 17156.13, + "end": 17157.55, + "probability": 0.9587 + }, + { + "start": 17158.25, + "end": 17161.27, + "probability": 0.9529 + }, + { + "start": 17163.75, + "end": 17164.27, + "probability": 0.9797 + }, + { + "start": 17165.17, + "end": 17166.25, + "probability": 0.9144 + }, + { + "start": 17167.21, + "end": 17172.69, + "probability": 0.9629 + }, + { + "start": 17173.37, + "end": 17174.09, + "probability": 0.6033 + }, + { + "start": 17174.69, + "end": 17178.73, + "probability": 0.9393 + }, + { + "start": 17179.25, + "end": 17181.79, + "probability": 0.9742 + }, + { + "start": 17183.09, + "end": 17183.7, + "probability": 0.9827 + }, + { + "start": 17185.37, + "end": 17187.27, + "probability": 0.9823 + }, + { + "start": 17188.19, + "end": 17189.15, + "probability": 0.862 + }, + { + "start": 17190.19, + "end": 17191.32, + "probability": 0.9846 + }, + { + "start": 17193.44, + "end": 17194.91, + "probability": 0.0435 + }, + { + "start": 17194.91, + "end": 17196.91, + "probability": 0.6062 + }, + { + "start": 17197.17, + "end": 17199.07, + "probability": 0.7843 + }, + { + "start": 17199.25, + "end": 17200.63, + "probability": 0.9093 + }, + { + "start": 17201.01, + "end": 17203.27, + "probability": 0.7578 + }, + { + "start": 17203.89, + "end": 17206.09, + "probability": 0.9827 + }, + { + "start": 17206.99, + "end": 17207.53, + "probability": 0.9517 + }, + { + "start": 17208.49, + "end": 17209.33, + "probability": 0.9463 + }, + { + "start": 17209.47, + "end": 17210.17, + "probability": 0.9415 + }, + { + "start": 17210.61, + "end": 17212.99, + "probability": 0.9938 + }, + { + "start": 17213.55, + "end": 17218.85, + "probability": 0.6606 + }, + { + "start": 17219.51, + "end": 17220.53, + "probability": 0.7472 + }, + { + "start": 17220.69, + "end": 17220.99, + "probability": 0.8 + }, + { + "start": 17221.01, + "end": 17224.85, + "probability": 0.9782 + }, + { + "start": 17225.27, + "end": 17228.93, + "probability": 0.9792 + }, + { + "start": 17229.59, + "end": 17230.63, + "probability": 0.7311 + }, + { + "start": 17231.57, + "end": 17231.93, + "probability": 0.4693 + }, + { + "start": 17232.49, + "end": 17232.87, + "probability": 0.6467 + }, + { + "start": 17233.79, + "end": 17236.61, + "probability": 0.8079 + }, + { + "start": 17236.71, + "end": 17237.43, + "probability": 0.9381 + }, + { + "start": 17238.01, + "end": 17238.57, + "probability": 0.9142 + }, + { + "start": 17239.09, + "end": 17243.21, + "probability": 0.9823 + }, + { + "start": 17244.25, + "end": 17246.01, + "probability": 0.991 + }, + { + "start": 17248.15, + "end": 17249.39, + "probability": 0.9359 + }, + { + "start": 17249.95, + "end": 17250.11, + "probability": 0.5111 + }, + { + "start": 17250.93, + "end": 17252.79, + "probability": 0.5989 + }, + { + "start": 17253.15, + "end": 17255.89, + "probability": 0.9927 + }, + { + "start": 17256.21, + "end": 17262.79, + "probability": 0.9871 + }, + { + "start": 17262.79, + "end": 17268.77, + "probability": 0.9798 + }, + { + "start": 17269.89, + "end": 17271.01, + "probability": 0.9261 + }, + { + "start": 17271.53, + "end": 17272.29, + "probability": 0.5284 + }, + { + "start": 17273.17, + "end": 17276.15, + "probability": 0.662 + }, + { + "start": 17277.21, + "end": 17279.41, + "probability": 0.9637 + }, + { + "start": 17280.11, + "end": 17281.51, + "probability": 0.9672 + }, + { + "start": 17282.15, + "end": 17284.15, + "probability": 0.98 + }, + { + "start": 17285.15, + "end": 17286.65, + "probability": 0.9604 + }, + { + "start": 17288.11, + "end": 17289.33, + "probability": 0.97 + }, + { + "start": 17290.23, + "end": 17291.45, + "probability": 0.9833 + }, + { + "start": 17292.17, + "end": 17293.11, + "probability": 0.4752 + }, + { + "start": 17293.75, + "end": 17294.55, + "probability": 0.7053 + }, + { + "start": 17296.02, + "end": 17301.66, + "probability": 0.6967 + }, + { + "start": 17302.41, + "end": 17304.15, + "probability": 0.9388 + }, + { + "start": 17304.65, + "end": 17305.93, + "probability": 0.8217 + }, + { + "start": 17306.59, + "end": 17308.69, + "probability": 0.9538 + }, + { + "start": 17309.13, + "end": 17310.71, + "probability": 0.9414 + }, + { + "start": 17310.89, + "end": 17312.01, + "probability": 0.1018 + }, + { + "start": 17312.59, + "end": 17314.23, + "probability": 0.981 + }, + { + "start": 17314.91, + "end": 17318.01, + "probability": 0.7674 + }, + { + "start": 17318.61, + "end": 17323.15, + "probability": 0.9485 + }, + { + "start": 17323.81, + "end": 17326.99, + "probability": 0.7417 + }, + { + "start": 17327.97, + "end": 17329.85, + "probability": 0.9463 + }, + { + "start": 17331.59, + "end": 17332.51, + "probability": 0.558 + }, + { + "start": 17334.03, + "end": 17335.63, + "probability": 0.7164 + }, + { + "start": 17335.91, + "end": 17337.24, + "probability": 0.9321 + }, + { + "start": 17337.57, + "end": 17339.81, + "probability": 0.9943 + }, + { + "start": 17340.65, + "end": 17340.85, + "probability": 0.8875 + }, + { + "start": 17342.43, + "end": 17342.65, + "probability": 0.9033 + }, + { + "start": 17343.69, + "end": 17346.45, + "probability": 0.6679 + }, + { + "start": 17347.25, + "end": 17348.61, + "probability": 0.9729 + }, + { + "start": 17349.29, + "end": 17355.13, + "probability": 0.9849 + }, + { + "start": 17357.11, + "end": 17360.37, + "probability": 0.9478 + }, + { + "start": 17361.79, + "end": 17366.75, + "probability": 0.8773 + }, + { + "start": 17367.39, + "end": 17369.49, + "probability": 0.8525 + }, + { + "start": 17369.77, + "end": 17370.25, + "probability": 0.9695 + }, + { + "start": 17371.49, + "end": 17374.09, + "probability": 0.8786 + }, + { + "start": 17375.03, + "end": 17378.19, + "probability": 0.9292 + }, + { + "start": 17378.51, + "end": 17379.53, + "probability": 0.044 + }, + { + "start": 17379.69, + "end": 17379.79, + "probability": 0.0002 + }, + { + "start": 17379.79, + "end": 17381.11, + "probability": 0.9485 + }, + { + "start": 17381.75, + "end": 17384.73, + "probability": 0.98 + }, + { + "start": 17385.37, + "end": 17387.51, + "probability": 0.8812 + }, + { + "start": 17388.05, + "end": 17388.83, + "probability": 0.524 + }, + { + "start": 17389.51, + "end": 17391.17, + "probability": 0.5743 + }, + { + "start": 17391.73, + "end": 17393.71, + "probability": 0.8867 + }, + { + "start": 17396.19, + "end": 17397.95, + "probability": 0.5871 + }, + { + "start": 17398.27, + "end": 17398.47, + "probability": 0.6848 + }, + { + "start": 17399.01, + "end": 17401.73, + "probability": 0.6379 + }, + { + "start": 17402.13, + "end": 17403.52, + "probability": 0.9417 + }, + { + "start": 17403.77, + "end": 17404.26, + "probability": 0.7335 + }, + { + "start": 17404.71, + "end": 17405.99, + "probability": 0.6377 + }, + { + "start": 17406.63, + "end": 17407.39, + "probability": 0.329 + }, + { + "start": 17408.48, + "end": 17409.78, + "probability": 0.1317 + }, + { + "start": 17411.43, + "end": 17411.89, + "probability": 0.0532 + }, + { + "start": 17411.89, + "end": 17413.11, + "probability": 0.2813 + }, + { + "start": 17413.77, + "end": 17416.22, + "probability": 0.9875 + }, + { + "start": 17416.77, + "end": 17420.17, + "probability": 0.1421 + }, + { + "start": 17420.17, + "end": 17420.17, + "probability": 0.0555 + }, + { + "start": 17420.17, + "end": 17420.27, + "probability": 0.0243 + }, + { + "start": 17420.87, + "end": 17421.67, + "probability": 0.2772 + }, + { + "start": 17422.83, + "end": 17423.47, + "probability": 0.5822 + }, + { + "start": 17424.05, + "end": 17424.17, + "probability": 0.3547 + }, + { + "start": 17424.53, + "end": 17429.49, + "probability": 0.9773 + }, + { + "start": 17429.97, + "end": 17430.81, + "probability": 0.8163 + }, + { + "start": 17430.87, + "end": 17433.17, + "probability": 0.1418 + }, + { + "start": 17434.67, + "end": 17435.25, + "probability": 0.2766 + }, + { + "start": 17435.49, + "end": 17437.32, + "probability": 0.1487 + }, + { + "start": 17438.77, + "end": 17442.07, + "probability": 0.7323 + }, + { + "start": 17443.69, + "end": 17445.63, + "probability": 0.6757 + }, + { + "start": 17447.43, + "end": 17448.23, + "probability": 0.701 + }, + { + "start": 17465.43, + "end": 17465.43, + "probability": 0.2612 + }, + { + "start": 17465.43, + "end": 17467.51, + "probability": 0.4838 + }, + { + "start": 17471.41, + "end": 17472.87, + "probability": 0.673 + }, + { + "start": 17473.49, + "end": 17474.27, + "probability": 0.6183 + }, + { + "start": 17475.91, + "end": 17483.51, + "probability": 0.9895 + }, + { + "start": 17486.35, + "end": 17490.47, + "probability": 0.9668 + }, + { + "start": 17491.05, + "end": 17492.87, + "probability": 0.8736 + }, + { + "start": 17493.97, + "end": 17495.19, + "probability": 0.9802 + }, + { + "start": 17496.79, + "end": 17500.99, + "probability": 0.9963 + }, + { + "start": 17501.95, + "end": 17506.48, + "probability": 0.9937 + }, + { + "start": 17507.85, + "end": 17510.77, + "probability": 0.9503 + }, + { + "start": 17512.01, + "end": 17514.77, + "probability": 0.9222 + }, + { + "start": 17515.83, + "end": 17517.41, + "probability": 0.9954 + }, + { + "start": 17518.43, + "end": 17522.29, + "probability": 0.9589 + }, + { + "start": 17524.23, + "end": 17527.29, + "probability": 0.964 + }, + { + "start": 17529.45, + "end": 17530.95, + "probability": 0.999 + }, + { + "start": 17531.31, + "end": 17533.99, + "probability": 0.9285 + }, + { + "start": 17534.65, + "end": 17537.37, + "probability": 0.8251 + }, + { + "start": 17538.45, + "end": 17541.05, + "probability": 0.931 + }, + { + "start": 17541.99, + "end": 17545.57, + "probability": 0.978 + }, + { + "start": 17546.91, + "end": 17548.07, + "probability": 0.9824 + }, + { + "start": 17548.17, + "end": 17549.33, + "probability": 0.8127 + }, + { + "start": 17550.79, + "end": 17553.59, + "probability": 0.8667 + }, + { + "start": 17554.75, + "end": 17556.07, + "probability": 0.7388 + }, + { + "start": 17557.65, + "end": 17560.17, + "probability": 0.9556 + }, + { + "start": 17560.29, + "end": 17561.41, + "probability": 0.9359 + }, + { + "start": 17561.55, + "end": 17564.37, + "probability": 0.9958 + }, + { + "start": 17565.63, + "end": 17567.42, + "probability": 0.9355 + }, + { + "start": 17570.57, + "end": 17575.09, + "probability": 0.8423 + }, + { + "start": 17576.09, + "end": 17576.73, + "probability": 0.6264 + }, + { + "start": 17578.69, + "end": 17583.83, + "probability": 0.9418 + }, + { + "start": 17583.99, + "end": 17587.03, + "probability": 0.9895 + }, + { + "start": 17588.77, + "end": 17588.77, + "probability": 0.7925 + }, + { + "start": 17589.39, + "end": 17591.03, + "probability": 0.9902 + }, + { + "start": 17592.15, + "end": 17593.11, + "probability": 0.9006 + }, + { + "start": 17593.15, + "end": 17597.51, + "probability": 0.7545 + }, + { + "start": 17598.51, + "end": 17605.83, + "probability": 0.9883 + }, + { + "start": 17607.41, + "end": 17611.03, + "probability": 0.9893 + }, + { + "start": 17611.97, + "end": 17612.33, + "probability": 0.9611 + }, + { + "start": 17613.99, + "end": 17615.99, + "probability": 0.9696 + }, + { + "start": 17617.09, + "end": 17617.69, + "probability": 0.2486 + }, + { + "start": 17620.07, + "end": 17623.99, + "probability": 0.9863 + }, + { + "start": 17624.71, + "end": 17627.71, + "probability": 0.9736 + }, + { + "start": 17629.55, + "end": 17632.85, + "probability": 0.9242 + }, + { + "start": 17633.51, + "end": 17638.47, + "probability": 0.9803 + }, + { + "start": 17639.87, + "end": 17640.39, + "probability": 0.3818 + }, + { + "start": 17640.41, + "end": 17644.09, + "probability": 0.958 + }, + { + "start": 17645.27, + "end": 17648.17, + "probability": 0.6175 + }, + { + "start": 17650.21, + "end": 17650.53, + "probability": 0.4633 + }, + { + "start": 17652.21, + "end": 17653.5, + "probability": 0.9811 + }, + { + "start": 17653.91, + "end": 17657.03, + "probability": 0.9779 + }, + { + "start": 17657.81, + "end": 17659.65, + "probability": 0.8643 + }, + { + "start": 17660.71, + "end": 17664.25, + "probability": 0.8713 + }, + { + "start": 17665.99, + "end": 17668.41, + "probability": 0.9861 + }, + { + "start": 17669.77, + "end": 17671.31, + "probability": 0.6796 + }, + { + "start": 17672.83, + "end": 17674.97, + "probability": 0.7242 + }, + { + "start": 17676.55, + "end": 17677.71, + "probability": 0.8792 + }, + { + "start": 17678.89, + "end": 17680.07, + "probability": 0.7908 + }, + { + "start": 17680.11, + "end": 17680.79, + "probability": 0.5069 + }, + { + "start": 17681.09, + "end": 17683.11, + "probability": 0.9331 + }, + { + "start": 17683.65, + "end": 17685.13, + "probability": 0.8779 + }, + { + "start": 17685.21, + "end": 17689.37, + "probability": 0.9135 + }, + { + "start": 17690.09, + "end": 17693.15, + "probability": 0.7258 + }, + { + "start": 17694.23, + "end": 17695.59, + "probability": 0.7263 + }, + { + "start": 17696.37, + "end": 17698.99, + "probability": 0.9336 + }, + { + "start": 17700.11, + "end": 17702.15, + "probability": 0.1518 + }, + { + "start": 17702.15, + "end": 17702.15, + "probability": 0.0568 + }, + { + "start": 17702.15, + "end": 17702.21, + "probability": 0.356 + }, + { + "start": 17702.21, + "end": 17702.21, + "probability": 0.3263 + }, + { + "start": 17702.61, + "end": 17702.61, + "probability": 0.028 + }, + { + "start": 17702.61, + "end": 17702.61, + "probability": 0.0497 + }, + { + "start": 17702.61, + "end": 17705.64, + "probability": 0.9231 + }, + { + "start": 17707.47, + "end": 17709.23, + "probability": 0.9172 + }, + { + "start": 17710.41, + "end": 17712.43, + "probability": 0.9731 + }, + { + "start": 17713.01, + "end": 17713.81, + "probability": 0.8015 + }, + { + "start": 17714.65, + "end": 17716.63, + "probability": 0.9012 + }, + { + "start": 17717.93, + "end": 17720.21, + "probability": 0.7767 + }, + { + "start": 17720.73, + "end": 17722.49, + "probability": 0.3672 + }, + { + "start": 17724.93, + "end": 17725.82, + "probability": 0.9929 + }, + { + "start": 17726.49, + "end": 17726.89, + "probability": 0.8816 + }, + { + "start": 17727.72, + "end": 17729.55, + "probability": 0.9939 + }, + { + "start": 17730.85, + "end": 17732.37, + "probability": 0.5203 + }, + { + "start": 17733.89, + "end": 17737.57, + "probability": 0.7643 + }, + { + "start": 17738.79, + "end": 17739.53, + "probability": 0.7669 + }, + { + "start": 17741.55, + "end": 17745.79, + "probability": 0.9863 + }, + { + "start": 17747.93, + "end": 17750.21, + "probability": 0.8857 + }, + { + "start": 17751.01, + "end": 17755.05, + "probability": 0.9915 + }, + { + "start": 17757.15, + "end": 17758.33, + "probability": 0.8705 + }, + { + "start": 17759.43, + "end": 17760.11, + "probability": 0.9744 + }, + { + "start": 17761.51, + "end": 17770.03, + "probability": 0.7677 + }, + { + "start": 17771.35, + "end": 17775.83, + "probability": 0.9195 + }, + { + "start": 17776.61, + "end": 17779.03, + "probability": 0.8977 + }, + { + "start": 17780.69, + "end": 17780.97, + "probability": 0.7285 + }, + { + "start": 17781.49, + "end": 17784.53, + "probability": 0.9703 + }, + { + "start": 17785.59, + "end": 17788.09, + "probability": 0.9641 + }, + { + "start": 17791.47, + "end": 17794.67, + "probability": 0.8663 + }, + { + "start": 17795.45, + "end": 17796.81, + "probability": 0.7434 + }, + { + "start": 17798.41, + "end": 17801.55, + "probability": 0.7829 + }, + { + "start": 17802.81, + "end": 17806.01, + "probability": 0.9351 + }, + { + "start": 17808.27, + "end": 17812.93, + "probability": 0.9805 + }, + { + "start": 17813.79, + "end": 17814.69, + "probability": 0.9035 + }, + { + "start": 17816.17, + "end": 17820.19, + "probability": 0.9863 + }, + { + "start": 17821.13, + "end": 17823.13, + "probability": 0.9838 + }, + { + "start": 17824.73, + "end": 17826.69, + "probability": 0.9797 + }, + { + "start": 17829.27, + "end": 17831.63, + "probability": 0.9976 + }, + { + "start": 17832.15, + "end": 17833.77, + "probability": 0.9866 + }, + { + "start": 17834.39, + "end": 17834.95, + "probability": 0.7507 + }, + { + "start": 17835.57, + "end": 17836.85, + "probability": 0.8217 + }, + { + "start": 17837.71, + "end": 17838.23, + "probability": 0.9873 + }, + { + "start": 17839.03, + "end": 17841.65, + "probability": 0.9721 + }, + { + "start": 17844.89, + "end": 17846.09, + "probability": 0.9434 + }, + { + "start": 17847.83, + "end": 17849.43, + "probability": 0.8069 + }, + { + "start": 17850.13, + "end": 17852.73, + "probability": 0.4971 + }, + { + "start": 17854.11, + "end": 17858.17, + "probability": 0.9908 + }, + { + "start": 17858.83, + "end": 17861.25, + "probability": 0.9844 + }, + { + "start": 17863.21, + "end": 17864.83, + "probability": 0.8197 + }, + { + "start": 17867.35, + "end": 17868.49, + "probability": 0.7265 + }, + { + "start": 17868.63, + "end": 17869.29, + "probability": 0.7481 + }, + { + "start": 17869.45, + "end": 17871.73, + "probability": 0.7433 + }, + { + "start": 17873.01, + "end": 17876.67, + "probability": 0.9011 + }, + { + "start": 17877.57, + "end": 17879.15, + "probability": 0.6409 + }, + { + "start": 17879.79, + "end": 17880.75, + "probability": 0.8435 + }, + { + "start": 17881.39, + "end": 17883.53, + "probability": 0.9854 + }, + { + "start": 17885.27, + "end": 17887.37, + "probability": 0.5731 + }, + { + "start": 17888.15, + "end": 17889.33, + "probability": 0.9962 + }, + { + "start": 17890.31, + "end": 17891.4, + "probability": 0.8789 + }, + { + "start": 17892.89, + "end": 17896.33, + "probability": 0.9568 + }, + { + "start": 17897.89, + "end": 17898.91, + "probability": 0.7882 + }, + { + "start": 17899.59, + "end": 17901.07, + "probability": 0.9537 + }, + { + "start": 17902.43, + "end": 17906.09, + "probability": 0.976 + }, + { + "start": 17908.13, + "end": 17908.71, + "probability": 0.965 + }, + { + "start": 17911.07, + "end": 17912.61, + "probability": 0.8272 + }, + { + "start": 17912.97, + "end": 17917.89, + "probability": 0.7489 + }, + { + "start": 17919.11, + "end": 17920.39, + "probability": 0.6556 + }, + { + "start": 17921.53, + "end": 17922.75, + "probability": 0.9961 + }, + { + "start": 17923.73, + "end": 17926.27, + "probability": 0.8664 + }, + { + "start": 17927.01, + "end": 17930.69, + "probability": 0.9801 + }, + { + "start": 17931.69, + "end": 17933.37, + "probability": 0.9529 + }, + { + "start": 17934.51, + "end": 17935.47, + "probability": 0.6131 + }, + { + "start": 17936.91, + "end": 17938.25, + "probability": 0.9541 + }, + { + "start": 17938.63, + "end": 17940.11, + "probability": 0.9585 + }, + { + "start": 17940.37, + "end": 17943.09, + "probability": 0.9774 + }, + { + "start": 17944.15, + "end": 17944.93, + "probability": 0.9912 + }, + { + "start": 17945.93, + "end": 17949.77, + "probability": 0.9934 + }, + { + "start": 17951.37, + "end": 17951.97, + "probability": 0.5569 + }, + { + "start": 17953.19, + "end": 17954.27, + "probability": 0.7925 + }, + { + "start": 17955.01, + "end": 17956.21, + "probability": 0.9963 + }, + { + "start": 17957.73, + "end": 17962.55, + "probability": 0.9939 + }, + { + "start": 17963.47, + "end": 17964.49, + "probability": 0.9951 + }, + { + "start": 17964.99, + "end": 17965.53, + "probability": 0.633 + }, + { + "start": 17966.87, + "end": 17968.3, + "probability": 0.9819 + }, + { + "start": 17968.37, + "end": 17971.61, + "probability": 0.9162 + }, + { + "start": 17974.29, + "end": 17977.01, + "probability": 0.733 + }, + { + "start": 17978.55, + "end": 17984.61, + "probability": 0.9963 + }, + { + "start": 17985.63, + "end": 17986.99, + "probability": 0.9595 + }, + { + "start": 17987.51, + "end": 17989.31, + "probability": 0.8351 + }, + { + "start": 17990.65, + "end": 17993.11, + "probability": 0.7194 + }, + { + "start": 17994.29, + "end": 17996.05, + "probability": 0.8281 + }, + { + "start": 17997.05, + "end": 17998.11, + "probability": 0.8327 + }, + { + "start": 17999.67, + "end": 18000.41, + "probability": 0.8025 + }, + { + "start": 18000.67, + "end": 18002.77, + "probability": 0.3055 + }, + { + "start": 18002.79, + "end": 18005.41, + "probability": 0.9652 + }, + { + "start": 18007.39, + "end": 18011.97, + "probability": 0.9885 + }, + { + "start": 18013.95, + "end": 18017.17, + "probability": 0.8046 + }, + { + "start": 18017.73, + "end": 18020.69, + "probability": 0.8009 + }, + { + "start": 18021.69, + "end": 18024.33, + "probability": 0.9601 + }, + { + "start": 18024.67, + "end": 18025.66, + "probability": 0.6896 + }, + { + "start": 18027.29, + "end": 18028.93, + "probability": 0.936 + }, + { + "start": 18029.13, + "end": 18033.55, + "probability": 0.9934 + }, + { + "start": 18036.09, + "end": 18041.89, + "probability": 0.9669 + }, + { + "start": 18043.27, + "end": 18045.31, + "probability": 0.9967 + }, + { + "start": 18046.29, + "end": 18047.83, + "probability": 0.9657 + }, + { + "start": 18049.71, + "end": 18051.95, + "probability": 0.999 + }, + { + "start": 18052.65, + "end": 18054.51, + "probability": 0.8005 + }, + { + "start": 18056.77, + "end": 18057.59, + "probability": 0.6421 + }, + { + "start": 18058.71, + "end": 18060.39, + "probability": 0.9507 + }, + { + "start": 18062.19, + "end": 18062.93, + "probability": 0.8511 + }, + { + "start": 18063.45, + "end": 18064.69, + "probability": 0.8533 + }, + { + "start": 18066.95, + "end": 18071.53, + "probability": 0.9711 + }, + { + "start": 18072.43, + "end": 18075.15, + "probability": 0.9976 + }, + { + "start": 18076.03, + "end": 18078.11, + "probability": 0.7379 + }, + { + "start": 18078.59, + "end": 18081.07, + "probability": 0.5958 + }, + { + "start": 18081.19, + "end": 18083.35, + "probability": 0.843 + }, + { + "start": 18083.65, + "end": 18084.85, + "probability": 0.9614 + }, + { + "start": 18086.85, + "end": 18090.07, + "probability": 0.6823 + }, + { + "start": 18090.75, + "end": 18092.63, + "probability": 0.2266 + }, + { + "start": 18092.87, + "end": 18093.59, + "probability": 0.3881 + }, + { + "start": 18093.83, + "end": 18095.03, + "probability": 0.1783 + }, + { + "start": 18095.47, + "end": 18096.23, + "probability": 0.2887 + }, + { + "start": 18096.89, + "end": 18099.75, + "probability": 0.7383 + }, + { + "start": 18100.43, + "end": 18101.55, + "probability": 0.9756 + }, + { + "start": 18101.67, + "end": 18102.59, + "probability": 0.6728 + }, + { + "start": 18103.09, + "end": 18106.85, + "probability": 0.9956 + }, + { + "start": 18107.63, + "end": 18109.89, + "probability": 0.2559 + }, + { + "start": 18110.65, + "end": 18112.95, + "probability": 0.8408 + }, + { + "start": 18113.27, + "end": 18116.19, + "probability": 0.8102 + }, + { + "start": 18116.53, + "end": 18118.65, + "probability": 0.9557 + }, + { + "start": 18120.87, + "end": 18128.27, + "probability": 0.8073 + }, + { + "start": 18129.19, + "end": 18130.85, + "probability": 0.0137 + }, + { + "start": 18131.05, + "end": 18131.35, + "probability": 0.8372 + }, + { + "start": 18131.35, + "end": 18132.27, + "probability": 0.7014 + }, + { + "start": 18132.43, + "end": 18133.51, + "probability": 0.5367 + }, + { + "start": 18133.69, + "end": 18133.97, + "probability": 0.4143 + }, + { + "start": 18133.99, + "end": 18138.05, + "probability": 0.8156 + }, + { + "start": 18138.51, + "end": 18140.67, + "probability": 0.9279 + }, + { + "start": 18140.73, + "end": 18141.27, + "probability": 0.6246 + }, + { + "start": 18141.85, + "end": 18143.39, + "probability": 0.9712 + }, + { + "start": 18144.13, + "end": 18146.15, + "probability": 0.9858 + }, + { + "start": 18146.83, + "end": 18148.21, + "probability": 0.802 + }, + { + "start": 18148.43, + "end": 18149.49, + "probability": 0.934 + }, + { + "start": 18150.59, + "end": 18152.99, + "probability": 0.9888 + }, + { + "start": 18153.25, + "end": 18154.49, + "probability": 0.9763 + }, + { + "start": 18157.93, + "end": 18159.77, + "probability": 0.8839 + }, + { + "start": 18160.93, + "end": 18163.37, + "probability": 0.8828 + }, + { + "start": 18163.37, + "end": 18164.05, + "probability": 0.7341 + }, + { + "start": 18164.33, + "end": 18165.45, + "probability": 0.3846 + }, + { + "start": 18177.91, + "end": 18180.85, + "probability": 0.7728 + }, + { + "start": 18184.47, + "end": 18185.77, + "probability": 0.9253 + }, + { + "start": 18187.69, + "end": 18189.23, + "probability": 0.9235 + }, + { + "start": 18189.65, + "end": 18192.26, + "probability": 0.7495 + }, + { + "start": 18192.49, + "end": 18193.45, + "probability": 0.6301 + }, + { + "start": 18193.63, + "end": 18195.45, + "probability": 0.938 + }, + { + "start": 18196.3, + "end": 18198.15, + "probability": 0.9377 + }, + { + "start": 18198.85, + "end": 18201.51, + "probability": 0.9775 + }, + { + "start": 18203.59, + "end": 18203.97, + "probability": 0.224 + }, + { + "start": 18204.01, + "end": 18205.71, + "probability": 0.5121 + }, + { + "start": 18206.29, + "end": 18207.31, + "probability": 0.0601 + }, + { + "start": 18207.59, + "end": 18208.71, + "probability": 0.9309 + }, + { + "start": 18209.15, + "end": 18209.73, + "probability": 0.9866 + }, + { + "start": 18211.03, + "end": 18212.55, + "probability": 0.8195 + }, + { + "start": 18213.43, + "end": 18218.95, + "probability": 0.9625 + }, + { + "start": 18220.09, + "end": 18221.01, + "probability": 0.7305 + }, + { + "start": 18221.19, + "end": 18224.05, + "probability": 0.9655 + }, + { + "start": 18224.11, + "end": 18225.47, + "probability": 0.8202 + }, + { + "start": 18226.21, + "end": 18230.27, + "probability": 0.9812 + }, + { + "start": 18233.03, + "end": 18233.59, + "probability": 0.74 + }, + { + "start": 18234.51, + "end": 18237.17, + "probability": 0.9987 + }, + { + "start": 18238.33, + "end": 18238.65, + "probability": 0.7211 + }, + { + "start": 18238.69, + "end": 18240.43, + "probability": 0.5693 + }, + { + "start": 18241.11, + "end": 18241.39, + "probability": 0.8708 + }, + { + "start": 18243.83, + "end": 18245.03, + "probability": 0.7793 + }, + { + "start": 18245.24, + "end": 18248.39, + "probability": 0.0729 + }, + { + "start": 18248.55, + "end": 18249.69, + "probability": 0.9421 + }, + { + "start": 18250.35, + "end": 18250.69, + "probability": 0.4612 + }, + { + "start": 18252.15, + "end": 18252.63, + "probability": 0.0314 + }, + { + "start": 18252.63, + "end": 18252.77, + "probability": 0.1974 + }, + { + "start": 18252.77, + "end": 18254.83, + "probability": 0.0504 + }, + { + "start": 18255.35, + "end": 18260.57, + "probability": 0.559 + }, + { + "start": 18260.85, + "end": 18262.51, + "probability": 0.703 + }, + { + "start": 18262.55, + "end": 18264.15, + "probability": 0.8177 + }, + { + "start": 18264.19, + "end": 18264.45, + "probability": 0.4685 + }, + { + "start": 18264.67, + "end": 18264.89, + "probability": 0.433 + }, + { + "start": 18265.53, + "end": 18267.09, + "probability": 0.9956 + }, + { + "start": 18268.29, + "end": 18268.69, + "probability": 0.5613 + }, + { + "start": 18268.87, + "end": 18269.73, + "probability": 0.7687 + }, + { + "start": 18269.83, + "end": 18276.03, + "probability": 0.8646 + }, + { + "start": 18276.03, + "end": 18279.33, + "probability": 0.8519 + }, + { + "start": 18279.47, + "end": 18279.83, + "probability": 0.6363 + }, + { + "start": 18280.57, + "end": 18283.51, + "probability": 0.9652 + }, + { + "start": 18283.69, + "end": 18284.87, + "probability": 0.4359 + }, + { + "start": 18284.93, + "end": 18285.83, + "probability": 0.859 + }, + { + "start": 18286.57, + "end": 18286.89, + "probability": 0.9292 + }, + { + "start": 18287.83, + "end": 18291.29, + "probability": 0.7271 + }, + { + "start": 18292.83, + "end": 18293.95, + "probability": 0.8164 + }, + { + "start": 18296.17, + "end": 18300.25, + "probability": 0.9846 + }, + { + "start": 18300.93, + "end": 18303.03, + "probability": 0.9612 + }, + { + "start": 18304.09, + "end": 18304.68, + "probability": 0.9167 + }, + { + "start": 18305.75, + "end": 18306.51, + "probability": 0.8393 + }, + { + "start": 18307.71, + "end": 18309.31, + "probability": 0.8795 + }, + { + "start": 18310.21, + "end": 18311.61, + "probability": 0.9797 + }, + { + "start": 18312.41, + "end": 18316.01, + "probability": 0.9574 + }, + { + "start": 18316.09, + "end": 18319.42, + "probability": 0.9846 + }, + { + "start": 18320.91, + "end": 18321.61, + "probability": 0.9428 + }, + { + "start": 18323.13, + "end": 18324.35, + "probability": 0.9551 + }, + { + "start": 18324.37, + "end": 18325.19, + "probability": 0.7867 + }, + { + "start": 18325.47, + "end": 18327.03, + "probability": 0.8807 + }, + { + "start": 18327.39, + "end": 18328.15, + "probability": 0.9675 + }, + { + "start": 18329.85, + "end": 18331.93, + "probability": 0.9163 + }, + { + "start": 18333.69, + "end": 18334.19, + "probability": 0.9637 + }, + { + "start": 18335.35, + "end": 18336.11, + "probability": 0.9863 + }, + { + "start": 18337.07, + "end": 18337.59, + "probability": 0.9923 + }, + { + "start": 18338.29, + "end": 18338.89, + "probability": 0.9587 + }, + { + "start": 18342.27, + "end": 18345.17, + "probability": 0.9703 + }, + { + "start": 18345.71, + "end": 18348.07, + "probability": 0.8665 + }, + { + "start": 18348.75, + "end": 18349.61, + "probability": 0.5156 + }, + { + "start": 18350.87, + "end": 18353.53, + "probability": 0.9893 + }, + { + "start": 18353.77, + "end": 18355.23, + "probability": 0.9871 + }, + { + "start": 18355.55, + "end": 18356.25, + "probability": 0.955 + }, + { + "start": 18356.71, + "end": 18359.07, + "probability": 0.9381 + }, + { + "start": 18359.53, + "end": 18360.37, + "probability": 0.8786 + }, + { + "start": 18361.69, + "end": 18362.71, + "probability": 0.9863 + }, + { + "start": 18363.71, + "end": 18363.81, + "probability": 0.6089 + }, + { + "start": 18365.85, + "end": 18368.17, + "probability": 0.9963 + }, + { + "start": 18368.75, + "end": 18372.09, + "probability": 0.8693 + }, + { + "start": 18372.37, + "end": 18375.29, + "probability": 0.7085 + }, + { + "start": 18375.43, + "end": 18376.17, + "probability": 0.7718 + }, + { + "start": 18376.67, + "end": 18379.57, + "probability": 0.989 + }, + { + "start": 18379.99, + "end": 18384.33, + "probability": 0.9894 + }, + { + "start": 18385.13, + "end": 18387.01, + "probability": 0.9201 + }, + { + "start": 18389.69, + "end": 18390.85, + "probability": 0.4359 + }, + { + "start": 18391.45, + "end": 18396.11, + "probability": 0.9927 + }, + { + "start": 18398.29, + "end": 18402.27, + "probability": 0.9189 + }, + { + "start": 18402.43, + "end": 18402.53, + "probability": 0.7346 + }, + { + "start": 18404.09, + "end": 18407.77, + "probability": 0.9797 + }, + { + "start": 18408.05, + "end": 18408.83, + "probability": 0.6469 + }, + { + "start": 18409.27, + "end": 18409.61, + "probability": 0.1298 + }, + { + "start": 18412.59, + "end": 18414.31, + "probability": 0.5923 + }, + { + "start": 18415.39, + "end": 18416.77, + "probability": 0.988 + }, + { + "start": 18417.47, + "end": 18421.59, + "probability": 0.8576 + }, + { + "start": 18422.21, + "end": 18423.55, + "probability": 0.3615 + }, + { + "start": 18423.69, + "end": 18426.99, + "probability": 0.9235 + }, + { + "start": 18428.61, + "end": 18429.53, + "probability": 0.4147 + }, + { + "start": 18430.39, + "end": 18431.79, + "probability": 0.8169 + }, + { + "start": 18432.37, + "end": 18434.05, + "probability": 0.8602 + }, + { + "start": 18434.55, + "end": 18436.01, + "probability": 0.9484 + }, + { + "start": 18436.85, + "end": 18437.78, + "probability": 0.9827 + }, + { + "start": 18439.43, + "end": 18441.07, + "probability": 0.7265 + }, + { + "start": 18442.03, + "end": 18444.45, + "probability": 0.9949 + }, + { + "start": 18445.05, + "end": 18446.73, + "probability": 0.8073 + }, + { + "start": 18447.29, + "end": 18447.77, + "probability": 0.5612 + }, + { + "start": 18448.01, + "end": 18448.51, + "probability": 0.6623 + }, + { + "start": 18449.79, + "end": 18450.97, + "probability": 0.7563 + }, + { + "start": 18451.53, + "end": 18452.03, + "probability": 0.9839 + }, + { + "start": 18453.15, + "end": 18454.99, + "probability": 0.9782 + }, + { + "start": 18455.27, + "end": 18457.43, + "probability": 0.9506 + }, + { + "start": 18458.25, + "end": 18460.97, + "probability": 0.9976 + }, + { + "start": 18461.85, + "end": 18463.61, + "probability": 0.9546 + }, + { + "start": 18464.49, + "end": 18466.95, + "probability": 0.9792 + }, + { + "start": 18468.65, + "end": 18470.15, + "probability": 0.9346 + }, + { + "start": 18470.29, + "end": 18472.81, + "probability": 0.9795 + }, + { + "start": 18473.11, + "end": 18475.55, + "probability": 0.975 + }, + { + "start": 18475.85, + "end": 18480.59, + "probability": 0.9542 + }, + { + "start": 18482.03, + "end": 18485.61, + "probability": 0.951 + }, + { + "start": 18486.53, + "end": 18487.93, + "probability": 0.7874 + }, + { + "start": 18488.61, + "end": 18489.37, + "probability": 0.7424 + }, + { + "start": 18490.07, + "end": 18490.93, + "probability": 0.8689 + }, + { + "start": 18491.45, + "end": 18492.25, + "probability": 0.9564 + }, + { + "start": 18492.89, + "end": 18496.55, + "probability": 0.9755 + }, + { + "start": 18497.91, + "end": 18498.73, + "probability": 0.9444 + }, + { + "start": 18499.99, + "end": 18503.35, + "probability": 0.8591 + }, + { + "start": 18504.53, + "end": 18511.57, + "probability": 0.7854 + }, + { + "start": 18511.93, + "end": 18512.51, + "probability": 0.9689 + }, + { + "start": 18515.01, + "end": 18516.15, + "probability": 0.9736 + }, + { + "start": 18516.89, + "end": 18517.97, + "probability": 0.8953 + }, + { + "start": 18518.85, + "end": 18519.39, + "probability": 0.9886 + }, + { + "start": 18520.51, + "end": 18520.67, + "probability": 0.8434 + }, + { + "start": 18521.23, + "end": 18522.55, + "probability": 0.9622 + }, + { + "start": 18523.25, + "end": 18523.81, + "probability": 0.9149 + }, + { + "start": 18524.49, + "end": 18525.11, + "probability": 0.8199 + }, + { + "start": 18525.69, + "end": 18526.13, + "probability": 0.9289 + }, + { + "start": 18527.63, + "end": 18530.09, + "probability": 0.9779 + }, + { + "start": 18532.31, + "end": 18533.06, + "probability": 0.9941 + }, + { + "start": 18534.45, + "end": 18535.51, + "probability": 0.6038 + }, + { + "start": 18537.61, + "end": 18539.13, + "probability": 0.9961 + }, + { + "start": 18539.99, + "end": 18540.33, + "probability": 0.6452 + }, + { + "start": 18541.39, + "end": 18544.05, + "probability": 0.9312 + }, + { + "start": 18544.67, + "end": 18547.51, + "probability": 0.9858 + }, + { + "start": 18548.09, + "end": 18548.83, + "probability": 0.8755 + }, + { + "start": 18551.73, + "end": 18552.35, + "probability": 0.9195 + }, + { + "start": 18553.55, + "end": 18556.33, + "probability": 0.9966 + }, + { + "start": 18557.41, + "end": 18559.43, + "probability": 0.9024 + }, + { + "start": 18561.07, + "end": 18563.93, + "probability": 0.9918 + }, + { + "start": 18564.99, + "end": 18565.41, + "probability": 0.8651 + }, + { + "start": 18566.01, + "end": 18567.17, + "probability": 0.8541 + }, + { + "start": 18569.31, + "end": 18570.63, + "probability": 0.9355 + }, + { + "start": 18573.25, + "end": 18575.55, + "probability": 0.9956 + }, + { + "start": 18577.47, + "end": 18579.25, + "probability": 0.8735 + }, + { + "start": 18579.67, + "end": 18582.07, + "probability": 0.8348 + }, + { + "start": 18582.57, + "end": 18584.87, + "probability": 0.9457 + }, + { + "start": 18586.05, + "end": 18586.55, + "probability": 0.7289 + }, + { + "start": 18586.65, + "end": 18589.15, + "probability": 0.856 + }, + { + "start": 18589.17, + "end": 18589.65, + "probability": 0.6746 + }, + { + "start": 18589.77, + "end": 18590.01, + "probability": 0.2614 + }, + { + "start": 18590.05, + "end": 18591.49, + "probability": 0.8928 + }, + { + "start": 18591.59, + "end": 18598.13, + "probability": 0.9948 + }, + { + "start": 18598.87, + "end": 18600.25, + "probability": 0.5439 + }, + { + "start": 18600.99, + "end": 18602.93, + "probability": 0.9126 + }, + { + "start": 18603.99, + "end": 18606.25, + "probability": 0.9343 + }, + { + "start": 18606.57, + "end": 18607.63, + "probability": 0.9611 + }, + { + "start": 18608.53, + "end": 18609.93, + "probability": 0.9878 + }, + { + "start": 18610.93, + "end": 18615.87, + "probability": 0.9415 + }, + { + "start": 18616.95, + "end": 18621.37, + "probability": 0.9691 + }, + { + "start": 18622.67, + "end": 18623.49, + "probability": 0.9249 + }, + { + "start": 18624.03, + "end": 18626.37, + "probability": 0.8349 + }, + { + "start": 18627.91, + "end": 18628.73, + "probability": 0.9985 + }, + { + "start": 18629.05, + "end": 18631.83, + "probability": 0.941 + }, + { + "start": 18632.45, + "end": 18632.89, + "probability": 0.9956 + }, + { + "start": 18634.31, + "end": 18635.83, + "probability": 0.97 + }, + { + "start": 18636.15, + "end": 18637.01, + "probability": 0.7731 + }, + { + "start": 18637.27, + "end": 18637.79, + "probability": 0.7283 + }, + { + "start": 18637.87, + "end": 18638.03, + "probability": 0.7722 + }, + { + "start": 18638.87, + "end": 18640.17, + "probability": 0.9805 + }, + { + "start": 18640.79, + "end": 18642.81, + "probability": 0.9172 + }, + { + "start": 18643.37, + "end": 18644.09, + "probability": 0.5803 + }, + { + "start": 18645.29, + "end": 18645.91, + "probability": 0.925 + }, + { + "start": 18648.15, + "end": 18650.13, + "probability": 0.977 + }, + { + "start": 18650.27, + "end": 18650.65, + "probability": 0.9458 + }, + { + "start": 18650.91, + "end": 18651.65, + "probability": 0.9454 + }, + { + "start": 18651.93, + "end": 18653.67, + "probability": 0.9642 + }, + { + "start": 18655.09, + "end": 18658.61, + "probability": 0.9489 + }, + { + "start": 18659.57, + "end": 18660.73, + "probability": 0.9972 + }, + { + "start": 18661.57, + "end": 18663.01, + "probability": 0.9357 + }, + { + "start": 18663.89, + "end": 18664.73, + "probability": 0.8841 + }, + { + "start": 18666.51, + "end": 18669.41, + "probability": 0.9974 + }, + { + "start": 18670.29, + "end": 18670.81, + "probability": 0.9899 + }, + { + "start": 18671.39, + "end": 18673.83, + "probability": 0.748 + }, + { + "start": 18676.27, + "end": 18677.75, + "probability": 0.9264 + }, + { + "start": 18678.73, + "end": 18679.41, + "probability": 0.8704 + }, + { + "start": 18680.53, + "end": 18683.75, + "probability": 0.7906 + }, + { + "start": 18684.87, + "end": 18686.77, + "probability": 0.7082 + }, + { + "start": 18687.89, + "end": 18687.99, + "probability": 0.7524 + }, + { + "start": 18688.51, + "end": 18689.61, + "probability": 0.8475 + }, + { + "start": 18690.19, + "end": 18690.59, + "probability": 0.9609 + }, + { + "start": 18692.13, + "end": 18692.97, + "probability": 0.9672 + }, + { + "start": 18693.01, + "end": 18693.81, + "probability": 0.9579 + }, + { + "start": 18693.87, + "end": 18694.29, + "probability": 0.9419 + }, + { + "start": 18694.47, + "end": 18695.89, + "probability": 0.9153 + }, + { + "start": 18695.97, + "end": 18696.81, + "probability": 0.9597 + }, + { + "start": 18696.85, + "end": 18697.41, + "probability": 0.7326 + }, + { + "start": 18697.65, + "end": 18699.27, + "probability": 0.7409 + }, + { + "start": 18701.87, + "end": 18703.35, + "probability": 0.9885 + }, + { + "start": 18704.19, + "end": 18705.29, + "probability": 0.8101 + }, + { + "start": 18706.33, + "end": 18710.23, + "probability": 0.9362 + }, + { + "start": 18711.15, + "end": 18712.37, + "probability": 0.9066 + }, + { + "start": 18713.35, + "end": 18715.19, + "probability": 0.9965 + }, + { + "start": 18715.25, + "end": 18716.41, + "probability": 0.8924 + }, + { + "start": 18716.77, + "end": 18717.71, + "probability": 0.7024 + }, + { + "start": 18718.25, + "end": 18720.73, + "probability": 0.8354 + }, + { + "start": 18722.47, + "end": 18725.71, + "probability": 0.982 + }, + { + "start": 18725.85, + "end": 18726.43, + "probability": 0.9008 + }, + { + "start": 18727.47, + "end": 18729.57, + "probability": 0.8212 + }, + { + "start": 18730.79, + "end": 18731.53, + "probability": 0.8019 + }, + { + "start": 18732.55, + "end": 18733.29, + "probability": 0.8144 + }, + { + "start": 18735.27, + "end": 18736.53, + "probability": 0.9127 + }, + { + "start": 18736.57, + "end": 18738.71, + "probability": 0.8748 + }, + { + "start": 18740.65, + "end": 18741.25, + "probability": 0.9263 + }, + { + "start": 18743.97, + "end": 18744.53, + "probability": 0.8835 + }, + { + "start": 18751.43, + "end": 18751.75, + "probability": 0.8939 + }, + { + "start": 18752.87, + "end": 18754.09, + "probability": 0.7579 + }, + { + "start": 18756.01, + "end": 18757.11, + "probability": 0.8882 + }, + { + "start": 18758.57, + "end": 18761.19, + "probability": 0.9987 + }, + { + "start": 18761.95, + "end": 18763.83, + "probability": 0.9871 + }, + { + "start": 18764.31, + "end": 18766.59, + "probability": 0.9987 + }, + { + "start": 18767.89, + "end": 18768.03, + "probability": 0.9011 + }, + { + "start": 18768.05, + "end": 18770.13, + "probability": 0.9445 + }, + { + "start": 18770.21, + "end": 18770.71, + "probability": 0.7974 + }, + { + "start": 18770.81, + "end": 18771.53, + "probability": 0.8578 + }, + { + "start": 18772.01, + "end": 18777.19, + "probability": 0.9144 + }, + { + "start": 18777.59, + "end": 18778.07, + "probability": 0.8965 + }, + { + "start": 18778.41, + "end": 18778.87, + "probability": 0.9094 + }, + { + "start": 18779.69, + "end": 18780.43, + "probability": 0.7017 + }, + { + "start": 18782.87, + "end": 18784.91, + "probability": 0.9802 + }, + { + "start": 18785.77, + "end": 18785.77, + "probability": 0.029 + }, + { + "start": 18785.77, + "end": 18787.59, + "probability": 0.9515 + }, + { + "start": 18788.53, + "end": 18789.37, + "probability": 0.8686 + }, + { + "start": 18790.55, + "end": 18791.11, + "probability": 0.545 + }, + { + "start": 18792.07, + "end": 18794.73, + "probability": 0.9934 + }, + { + "start": 18795.21, + "end": 18797.29, + "probability": 0.9618 + }, + { + "start": 18797.39, + "end": 18799.91, + "probability": 0.9561 + }, + { + "start": 18800.35, + "end": 18801.51, + "probability": 0.7898 + }, + { + "start": 18801.59, + "end": 18802.29, + "probability": 0.6783 + }, + { + "start": 18802.63, + "end": 18803.47, + "probability": 0.9831 + }, + { + "start": 18803.55, + "end": 18807.35, + "probability": 0.887 + }, + { + "start": 18808.01, + "end": 18811.79, + "probability": 0.9893 + }, + { + "start": 18812.11, + "end": 18813.77, + "probability": 0.7486 + }, + { + "start": 18814.73, + "end": 18818.43, + "probability": 0.9899 + }, + { + "start": 18819.03, + "end": 18822.75, + "probability": 0.9884 + }, + { + "start": 18824.47, + "end": 18826.75, + "probability": 0.8893 + }, + { + "start": 18827.89, + "end": 18828.09, + "probability": 0.7585 + }, + { + "start": 18829.21, + "end": 18831.29, + "probability": 0.7953 + }, + { + "start": 18831.39, + "end": 18834.49, + "probability": 0.9405 + }, + { + "start": 18834.49, + "end": 18837.41, + "probability": 0.9495 + }, + { + "start": 18839.61, + "end": 18840.65, + "probability": 0.8882 + }, + { + "start": 18840.99, + "end": 18842.51, + "probability": 0.8159 + }, + { + "start": 18842.93, + "end": 18844.79, + "probability": 0.9373 + }, + { + "start": 18845.77, + "end": 18846.33, + "probability": 0.7062 + }, + { + "start": 18846.89, + "end": 18847.75, + "probability": 0.5437 + }, + { + "start": 18848.87, + "end": 18852.37, + "probability": 0.7819 + }, + { + "start": 18853.65, + "end": 18856.1, + "probability": 0.8724 + }, + { + "start": 18856.87, + "end": 18861.31, + "probability": 0.9806 + }, + { + "start": 18862.59, + "end": 18865.21, + "probability": 0.8993 + }, + { + "start": 18866.09, + "end": 18866.73, + "probability": 0.9614 + }, + { + "start": 18867.75, + "end": 18872.43, + "probability": 0.9255 + }, + { + "start": 18873.15, + "end": 18875.01, + "probability": 0.9374 + }, + { + "start": 18876.71, + "end": 18878.19, + "probability": 0.6556 + }, + { + "start": 18878.97, + "end": 18880.17, + "probability": 0.604 + }, + { + "start": 18881.47, + "end": 18883.37, + "probability": 0.9041 + }, + { + "start": 18884.81, + "end": 18885.63, + "probability": 0.9799 + }, + { + "start": 18886.27, + "end": 18888.93, + "probability": 0.8135 + }, + { + "start": 18889.71, + "end": 18894.57, + "probability": 0.9788 + }, + { + "start": 18895.15, + "end": 18896.69, + "probability": 0.9558 + }, + { + "start": 18897.11, + "end": 18902.31, + "probability": 0.9873 + }, + { + "start": 18902.31, + "end": 18902.55, + "probability": 0.1312 + }, + { + "start": 18903.31, + "end": 18907.11, + "probability": 0.9662 + }, + { + "start": 18909.43, + "end": 18911.65, + "probability": 0.9211 + }, + { + "start": 18914.29, + "end": 18914.65, + "probability": 0.8284 + }, + { + "start": 18915.91, + "end": 18917.51, + "probability": 0.8461 + }, + { + "start": 18918.83, + "end": 18922.24, + "probability": 0.689 + }, + { + "start": 18923.31, + "end": 18924.71, + "probability": 0.8877 + }, + { + "start": 18925.39, + "end": 18926.75, + "probability": 0.9562 + }, + { + "start": 18926.89, + "end": 18929.35, + "probability": 0.6668 + }, + { + "start": 18929.49, + "end": 18932.2, + "probability": 0.9976 + }, + { + "start": 18932.57, + "end": 18933.01, + "probability": 0.5369 + }, + { + "start": 18933.37, + "end": 18933.71, + "probability": 0.867 + }, + { + "start": 18934.17, + "end": 18935.13, + "probability": 0.9801 + }, + { + "start": 18936.77, + "end": 18942.53, + "probability": 0.9858 + }, + { + "start": 18943.41, + "end": 18946.53, + "probability": 0.9979 + }, + { + "start": 18947.51, + "end": 18950.75, + "probability": 0.9816 + }, + { + "start": 18951.83, + "end": 18954.63, + "probability": 0.9966 + }, + { + "start": 18955.27, + "end": 18960.28, + "probability": 0.9847 + }, + { + "start": 18961.07, + "end": 18961.89, + "probability": 0.7863 + }, + { + "start": 18962.33, + "end": 18963.97, + "probability": 0.9644 + }, + { + "start": 18964.95, + "end": 18966.63, + "probability": 0.9004 + }, + { + "start": 18968.09, + "end": 18969.39, + "probability": 0.7923 + }, + { + "start": 18969.83, + "end": 18971.19, + "probability": 0.9959 + }, + { + "start": 18973.07, + "end": 18975.33, + "probability": 0.7305 + }, + { + "start": 18976.25, + "end": 18978.61, + "probability": 0.9982 + }, + { + "start": 18980.1, + "end": 18981.27, + "probability": 0.9935 + }, + { + "start": 18982.53, + "end": 18983.31, + "probability": 0.7538 + }, + { + "start": 18984.49, + "end": 18985.63, + "probability": 0.7537 + }, + { + "start": 18986.63, + "end": 18988.51, + "probability": 0.879 + }, + { + "start": 18989.71, + "end": 18993.59, + "probability": 0.9494 + }, + { + "start": 18995.01, + "end": 18997.07, + "probability": 0.9104 + }, + { + "start": 18998.41, + "end": 19000.37, + "probability": 0.7322 + }, + { + "start": 19000.37, + "end": 19000.83, + "probability": 0.7534 + }, + { + "start": 19002.57, + "end": 19005.93, + "probability": 0.7907 + }, + { + "start": 19006.49, + "end": 19006.51, + "probability": 0.7983 + }, + { + "start": 19008.07, + "end": 19012.17, + "probability": 0.9333 + }, + { + "start": 19013.13, + "end": 19014.75, + "probability": 0.989 + }, + { + "start": 19015.17, + "end": 19016.03, + "probability": 0.8757 + }, + { + "start": 19017.81, + "end": 19018.99, + "probability": 0.8022 + }, + { + "start": 19020.53, + "end": 19021.29, + "probability": 0.7786 + }, + { + "start": 19021.87, + "end": 19022.21, + "probability": 0.9097 + }, + { + "start": 19023.29, + "end": 19024.69, + "probability": 0.8153 + }, + { + "start": 19026.03, + "end": 19027.21, + "probability": 0.9309 + }, + { + "start": 19028.17, + "end": 19028.43, + "probability": 0.8657 + }, + { + "start": 19029.39, + "end": 19029.73, + "probability": 0.8943 + }, + { + "start": 19030.45, + "end": 19032.47, + "probability": 0.9263 + }, + { + "start": 19033.25, + "end": 19033.45, + "probability": 0.8394 + }, + { + "start": 19033.51, + "end": 19034.82, + "probability": 0.9359 + }, + { + "start": 19035.41, + "end": 19037.55, + "probability": 0.9434 + }, + { + "start": 19037.85, + "end": 19042.11, + "probability": 0.9752 + }, + { + "start": 19042.61, + "end": 19044.16, + "probability": 0.999 + }, + { + "start": 19044.31, + "end": 19046.27, + "probability": 0.9945 + }, + { + "start": 19046.65, + "end": 19047.35, + "probability": 0.8104 + }, + { + "start": 19047.41, + "end": 19047.95, + "probability": 0.5708 + }, + { + "start": 19048.83, + "end": 19048.93, + "probability": 0.365 + }, + { + "start": 19049.83, + "end": 19051.49, + "probability": 0.4787 + }, + { + "start": 19051.65, + "end": 19052.13, + "probability": 0.5918 + }, + { + "start": 19052.41, + "end": 19052.41, + "probability": 0.0052 + }, + { + "start": 19052.41, + "end": 19053.13, + "probability": 0.4809 + }, + { + "start": 19053.27, + "end": 19053.89, + "probability": 0.6631 + }, + { + "start": 19054.62, + "end": 19055.55, + "probability": 0.3531 + }, + { + "start": 19055.63, + "end": 19057.11, + "probability": 0.7825 + }, + { + "start": 19058.27, + "end": 19058.99, + "probability": 0.7036 + }, + { + "start": 19059.21, + "end": 19060.91, + "probability": 0.7512 + }, + { + "start": 19062.59, + "end": 19062.97, + "probability": 0.7911 + }, + { + "start": 19073.35, + "end": 19074.51, + "probability": 0.8155 + }, + { + "start": 19075.71, + "end": 19076.81, + "probability": 0.6366 + }, + { + "start": 19079.07, + "end": 19081.47, + "probability": 0.9417 + }, + { + "start": 19081.99, + "end": 19084.85, + "probability": 0.9501 + }, + { + "start": 19085.45, + "end": 19086.41, + "probability": 0.954 + }, + { + "start": 19087.21, + "end": 19087.79, + "probability": 0.8922 + }, + { + "start": 19088.97, + "end": 19090.31, + "probability": 0.9926 + }, + { + "start": 19090.65, + "end": 19098.29, + "probability": 0.9921 + }, + { + "start": 19099.47, + "end": 19100.51, + "probability": 0.8097 + }, + { + "start": 19101.13, + "end": 19101.51, + "probability": 0.8658 + }, + { + "start": 19102.39, + "end": 19105.01, + "probability": 0.991 + }, + { + "start": 19106.11, + "end": 19111.35, + "probability": 0.9884 + }, + { + "start": 19112.79, + "end": 19113.29, + "probability": 0.9521 + }, + { + "start": 19114.53, + "end": 19117.01, + "probability": 0.9949 + }, + { + "start": 19117.89, + "end": 19120.05, + "probability": 0.972 + }, + { + "start": 19120.79, + "end": 19121.43, + "probability": 0.9028 + }, + { + "start": 19122.05, + "end": 19123.41, + "probability": 0.8306 + }, + { + "start": 19124.01, + "end": 19126.71, + "probability": 0.9668 + }, + { + "start": 19127.47, + "end": 19129.47, + "probability": 0.9346 + }, + { + "start": 19130.03, + "end": 19132.05, + "probability": 0.895 + }, + { + "start": 19132.69, + "end": 19136.11, + "probability": 0.9537 + }, + { + "start": 19136.75, + "end": 19138.85, + "probability": 0.9862 + }, + { + "start": 19139.81, + "end": 19146.77, + "probability": 0.9958 + }, + { + "start": 19147.43, + "end": 19148.34, + "probability": 0.9656 + }, + { + "start": 19149.11, + "end": 19149.91, + "probability": 0.9126 + }, + { + "start": 19150.49, + "end": 19151.57, + "probability": 0.8832 + }, + { + "start": 19152.15, + "end": 19157.11, + "probability": 0.9868 + }, + { + "start": 19157.73, + "end": 19158.78, + "probability": 0.9875 + }, + { + "start": 19159.63, + "end": 19161.5, + "probability": 0.9817 + }, + { + "start": 19162.41, + "end": 19166.93, + "probability": 0.9775 + }, + { + "start": 19167.53, + "end": 19169.37, + "probability": 0.9614 + }, + { + "start": 19169.99, + "end": 19172.13, + "probability": 0.6982 + }, + { + "start": 19172.63, + "end": 19176.33, + "probability": 0.8124 + }, + { + "start": 19176.93, + "end": 19179.11, + "probability": 0.8716 + }, + { + "start": 19179.81, + "end": 19181.05, + "probability": 0.8527 + }, + { + "start": 19181.91, + "end": 19184.09, + "probability": 0.942 + }, + { + "start": 19185.23, + "end": 19189.43, + "probability": 0.9899 + }, + { + "start": 19190.35, + "end": 19197.69, + "probability": 0.9752 + }, + { + "start": 19198.35, + "end": 19203.81, + "probability": 0.9386 + }, + { + "start": 19204.99, + "end": 19207.19, + "probability": 0.9309 + }, + { + "start": 19207.89, + "end": 19209.89, + "probability": 0.8779 + }, + { + "start": 19210.75, + "end": 19213.21, + "probability": 0.977 + }, + { + "start": 19213.53, + "end": 19216.57, + "probability": 0.9409 + }, + { + "start": 19217.27, + "end": 19219.45, + "probability": 0.9978 + }, + { + "start": 19219.93, + "end": 19223.35, + "probability": 0.6817 + }, + { + "start": 19224.05, + "end": 19226.05, + "probability": 0.6573 + }, + { + "start": 19226.35, + "end": 19229.99, + "probability": 0.8396 + }, + { + "start": 19231.37, + "end": 19232.81, + "probability": 0.9941 + }, + { + "start": 19232.97, + "end": 19236.21, + "probability": 0.9933 + }, + { + "start": 19236.33, + "end": 19237.09, + "probability": 0.9655 + }, + { + "start": 19237.45, + "end": 19239.61, + "probability": 0.9238 + }, + { + "start": 19240.15, + "end": 19241.51, + "probability": 0.9727 + }, + { + "start": 19242.27, + "end": 19244.49, + "probability": 0.9978 + }, + { + "start": 19245.39, + "end": 19246.51, + "probability": 0.9006 + }, + { + "start": 19247.07, + "end": 19249.51, + "probability": 0.8436 + }, + { + "start": 19250.65, + "end": 19251.13, + "probability": 0.9912 + }, + { + "start": 19251.99, + "end": 19255.99, + "probability": 0.9883 + }, + { + "start": 19256.05, + "end": 19257.93, + "probability": 0.9871 + }, + { + "start": 19258.77, + "end": 19260.01, + "probability": 0.9018 + }, + { + "start": 19260.41, + "end": 19265.01, + "probability": 0.9236 + }, + { + "start": 19265.53, + "end": 19266.45, + "probability": 0.9441 + }, + { + "start": 19267.29, + "end": 19270.11, + "probability": 0.7812 + }, + { + "start": 19270.29, + "end": 19271.71, + "probability": 0.8614 + }, + { + "start": 19272.15, + "end": 19273.89, + "probability": 0.991 + }, + { + "start": 19274.25, + "end": 19276.28, + "probability": 0.905 + }, + { + "start": 19276.63, + "end": 19278.29, + "probability": 0.9261 + }, + { + "start": 19278.41, + "end": 19278.97, + "probability": 0.6502 + }, + { + "start": 19279.69, + "end": 19282.21, + "probability": 0.8772 + }, + { + "start": 19282.69, + "end": 19286.03, + "probability": 0.9506 + }, + { + "start": 19286.39, + "end": 19288.91, + "probability": 0.9862 + }, + { + "start": 19289.67, + "end": 19291.43, + "probability": 0.9653 + }, + { + "start": 19291.53, + "end": 19296.65, + "probability": 0.9956 + }, + { + "start": 19297.57, + "end": 19298.99, + "probability": 0.9533 + }, + { + "start": 19299.61, + "end": 19302.89, + "probability": 0.9923 + }, + { + "start": 19303.69, + "end": 19305.54, + "probability": 0.9766 + }, + { + "start": 19306.19, + "end": 19308.59, + "probability": 0.9644 + }, + { + "start": 19309.25, + "end": 19312.03, + "probability": 0.9009 + }, + { + "start": 19312.21, + "end": 19315.21, + "probability": 0.9808 + }, + { + "start": 19315.63, + "end": 19317.45, + "probability": 0.9396 + }, + { + "start": 19318.67, + "end": 19320.41, + "probability": 0.8527 + }, + { + "start": 19320.89, + "end": 19322.63, + "probability": 0.9991 + }, + { + "start": 19323.15, + "end": 19326.93, + "probability": 0.9402 + }, + { + "start": 19327.75, + "end": 19329.83, + "probability": 0.9983 + }, + { + "start": 19330.51, + "end": 19331.83, + "probability": 0.9788 + }, + { + "start": 19332.31, + "end": 19334.15, + "probability": 0.981 + }, + { + "start": 19335.31, + "end": 19336.75, + "probability": 0.9932 + }, + { + "start": 19337.45, + "end": 19339.13, + "probability": 0.7798 + }, + { + "start": 19339.51, + "end": 19342.41, + "probability": 0.9971 + }, + { + "start": 19342.41, + "end": 19346.59, + "probability": 0.9768 + }, + { + "start": 19347.23, + "end": 19350.21, + "probability": 0.9968 + }, + { + "start": 19350.87, + "end": 19352.19, + "probability": 0.9925 + }, + { + "start": 19352.71, + "end": 19354.77, + "probability": 0.5468 + }, + { + "start": 19355.23, + "end": 19358.73, + "probability": 0.9966 + }, + { + "start": 19358.73, + "end": 19361.71, + "probability": 0.9966 + }, + { + "start": 19361.89, + "end": 19366.83, + "probability": 0.8969 + }, + { + "start": 19367.25, + "end": 19368.55, + "probability": 0.9372 + }, + { + "start": 19369.05, + "end": 19372.15, + "probability": 0.9897 + }, + { + "start": 19372.63, + "end": 19378.09, + "probability": 0.9249 + }, + { + "start": 19378.55, + "end": 19384.55, + "probability": 0.9832 + }, + { + "start": 19385.21, + "end": 19389.05, + "probability": 0.9847 + }, + { + "start": 19389.59, + "end": 19390.31, + "probability": 0.6201 + }, + { + "start": 19391.07, + "end": 19392.33, + "probability": 0.6053 + }, + { + "start": 19392.43, + "end": 19393.17, + "probability": 0.9677 + }, + { + "start": 19393.63, + "end": 19396.31, + "probability": 0.986 + }, + { + "start": 19397.01, + "end": 19399.69, + "probability": 0.8841 + }, + { + "start": 19400.17, + "end": 19404.11, + "probability": 0.9988 + }, + { + "start": 19404.31, + "end": 19405.21, + "probability": 0.7286 + }, + { + "start": 19405.83, + "end": 19410.63, + "probability": 0.978 + }, + { + "start": 19411.31, + "end": 19413.67, + "probability": 0.9927 + }, + { + "start": 19414.11, + "end": 19419.01, + "probability": 0.9791 + }, + { + "start": 19419.87, + "end": 19421.73, + "probability": 0.8534 + }, + { + "start": 19422.45, + "end": 19423.67, + "probability": 0.9067 + }, + { + "start": 19424.83, + "end": 19430.87, + "probability": 0.8996 + }, + { + "start": 19431.29, + "end": 19432.85, + "probability": 0.8577 + }, + { + "start": 19433.05, + "end": 19433.84, + "probability": 0.925 + }, + { + "start": 19434.59, + "end": 19438.75, + "probability": 0.996 + }, + { + "start": 19439.27, + "end": 19440.97, + "probability": 0.9844 + }, + { + "start": 19441.75, + "end": 19446.15, + "probability": 0.9844 + }, + { + "start": 19446.71, + "end": 19447.11, + "probability": 0.6957 + }, + { + "start": 19447.49, + "end": 19450.59, + "probability": 0.8145 + }, + { + "start": 19450.77, + "end": 19452.31, + "probability": 0.5373 + }, + { + "start": 19452.33, + "end": 19452.75, + "probability": 0.7327 + }, + { + "start": 19453.53, + "end": 19455.25, + "probability": 0.7966 + }, + { + "start": 19455.43, + "end": 19459.77, + "probability": 0.9828 + }, + { + "start": 19460.27, + "end": 19461.67, + "probability": 0.8774 + }, + { + "start": 19462.25, + "end": 19464.97, + "probability": 0.6497 + }, + { + "start": 19465.49, + "end": 19471.41, + "probability": 0.9854 + }, + { + "start": 19472.21, + "end": 19474.82, + "probability": 0.8926 + }, + { + "start": 19475.97, + "end": 19481.63, + "probability": 0.9842 + }, + { + "start": 19482.93, + "end": 19483.99, + "probability": 0.9639 + }, + { + "start": 19484.75, + "end": 19489.83, + "probability": 0.9924 + }, + { + "start": 19490.67, + "end": 19492.11, + "probability": 0.9398 + }, + { + "start": 19493.93, + "end": 19497.41, + "probability": 0.9613 + }, + { + "start": 19497.47, + "end": 19499.85, + "probability": 0.9851 + }, + { + "start": 19500.45, + "end": 19503.95, + "probability": 0.9919 + }, + { + "start": 19504.61, + "end": 19507.49, + "probability": 0.9976 + }, + { + "start": 19507.91, + "end": 19511.64, + "probability": 0.9943 + }, + { + "start": 19512.39, + "end": 19516.71, + "probability": 0.9928 + }, + { + "start": 19517.35, + "end": 19518.15, + "probability": 0.5945 + }, + { + "start": 19519.37, + "end": 19523.01, + "probability": 0.7474 + }, + { + "start": 19523.47, + "end": 19525.33, + "probability": 0.9031 + }, + { + "start": 19526.11, + "end": 19528.41, + "probability": 0.8543 + }, + { + "start": 19529.35, + "end": 19531.75, + "probability": 0.9064 + }, + { + "start": 19532.31, + "end": 19534.13, + "probability": 0.5505 + }, + { + "start": 19534.73, + "end": 19535.54, + "probability": 0.9739 + }, + { + "start": 19535.89, + "end": 19540.41, + "probability": 0.9926 + }, + { + "start": 19540.55, + "end": 19542.45, + "probability": 0.9688 + }, + { + "start": 19543.43, + "end": 19549.45, + "probability": 0.9915 + }, + { + "start": 19550.13, + "end": 19553.95, + "probability": 0.9961 + }, + { + "start": 19554.75, + "end": 19555.39, + "probability": 0.8884 + }, + { + "start": 19556.25, + "end": 19557.69, + "probability": 0.9885 + }, + { + "start": 19558.27, + "end": 19565.03, + "probability": 0.9859 + }, + { + "start": 19565.97, + "end": 19566.39, + "probability": 0.3878 + }, + { + "start": 19567.77, + "end": 19568.37, + "probability": 0.9861 + }, + { + "start": 19569.33, + "end": 19569.61, + "probability": 0.8732 + }, + { + "start": 19569.75, + "end": 19570.63, + "probability": 0.9725 + }, + { + "start": 19570.73, + "end": 19573.65, + "probability": 0.9766 + }, + { + "start": 19574.57, + "end": 19576.79, + "probability": 0.9678 + }, + { + "start": 19577.41, + "end": 19578.27, + "probability": 0.8615 + }, + { + "start": 19579.37, + "end": 19580.27, + "probability": 0.6573 + }, + { + "start": 19580.79, + "end": 19581.53, + "probability": 0.6037 + }, + { + "start": 19582.07, + "end": 19585.65, + "probability": 0.9818 + }, + { + "start": 19587.43, + "end": 19588.03, + "probability": 0.7946 + }, + { + "start": 19589.21, + "end": 19590.67, + "probability": 0.9627 + }, + { + "start": 19591.35, + "end": 19594.95, + "probability": 0.981 + }, + { + "start": 19595.59, + "end": 19598.55, + "probability": 0.9642 + }, + { + "start": 19599.97, + "end": 19602.87, + "probability": 0.9834 + }, + { + "start": 19603.41, + "end": 19604.36, + "probability": 0.6582 + }, + { + "start": 19604.81, + "end": 19610.03, + "probability": 0.9274 + }, + { + "start": 19610.63, + "end": 19611.19, + "probability": 0.9055 + }, + { + "start": 19612.25, + "end": 19613.99, + "probability": 0.9829 + }, + { + "start": 19614.55, + "end": 19615.15, + "probability": 0.985 + }, + { + "start": 19615.73, + "end": 19617.37, + "probability": 0.9932 + }, + { + "start": 19618.47, + "end": 19619.85, + "probability": 0.9449 + }, + { + "start": 19620.55, + "end": 19621.81, + "probability": 0.9905 + }, + { + "start": 19622.37, + "end": 19624.09, + "probability": 0.9848 + }, + { + "start": 19624.47, + "end": 19626.85, + "probability": 0.9901 + }, + { + "start": 19627.19, + "end": 19630.03, + "probability": 0.9982 + }, + { + "start": 19630.77, + "end": 19632.93, + "probability": 0.98 + }, + { + "start": 19633.85, + "end": 19634.85, + "probability": 0.9984 + }, + { + "start": 19635.49, + "end": 19637.85, + "probability": 0.995 + }, + { + "start": 19638.43, + "end": 19639.81, + "probability": 0.992 + }, + { + "start": 19640.85, + "end": 19642.01, + "probability": 0.9955 + }, + { + "start": 19642.93, + "end": 19646.25, + "probability": 0.9985 + }, + { + "start": 19646.67, + "end": 19648.81, + "probability": 0.7472 + }, + { + "start": 19649.55, + "end": 19651.93, + "probability": 0.9984 + }, + { + "start": 19652.45, + "end": 19653.79, + "probability": 0.9984 + }, + { + "start": 19654.47, + "end": 19659.53, + "probability": 0.9951 + }, + { + "start": 19659.71, + "end": 19666.21, + "probability": 0.9989 + }, + { + "start": 19667.03, + "end": 19668.65, + "probability": 0.991 + }, + { + "start": 19671.21, + "end": 19671.97, + "probability": 0.814 + }, + { + "start": 19672.63, + "end": 19674.31, + "probability": 0.7764 + }, + { + "start": 19675.05, + "end": 19681.19, + "probability": 0.9924 + }, + { + "start": 19682.13, + "end": 19684.73, + "probability": 0.9966 + }, + { + "start": 19685.47, + "end": 19686.37, + "probability": 0.7798 + }, + { + "start": 19687.11, + "end": 19689.99, + "probability": 0.9922 + }, + { + "start": 19690.81, + "end": 19691.61, + "probability": 0.4921 + }, + { + "start": 19692.15, + "end": 19692.33, + "probability": 0.9974 + }, + { + "start": 19692.95, + "end": 19697.75, + "probability": 0.6785 + }, + { + "start": 19698.51, + "end": 19703.95, + "probability": 0.9966 + }, + { + "start": 19704.49, + "end": 19705.35, + "probability": 0.9729 + }, + { + "start": 19706.03, + "end": 19708.07, + "probability": 0.9487 + }, + { + "start": 19708.99, + "end": 19713.05, + "probability": 0.7673 + }, + { + "start": 19713.61, + "end": 19715.69, + "probability": 0.9709 + }, + { + "start": 19716.77, + "end": 19717.51, + "probability": 0.9036 + }, + { + "start": 19718.33, + "end": 19719.59, + "probability": 0.8002 + }, + { + "start": 19720.51, + "end": 19722.73, + "probability": 0.9757 + }, + { + "start": 19723.71, + "end": 19725.57, + "probability": 0.9248 + }, + { + "start": 19726.45, + "end": 19727.95, + "probability": 0.9906 + }, + { + "start": 19728.53, + "end": 19732.25, + "probability": 0.9684 + }, + { + "start": 19733.09, + "end": 19735.81, + "probability": 0.9707 + }, + { + "start": 19736.35, + "end": 19739.55, + "probability": 0.9929 + }, + { + "start": 19740.21, + "end": 19743.41, + "probability": 0.9963 + }, + { + "start": 19744.25, + "end": 19748.11, + "probability": 0.9927 + }, + { + "start": 19748.89, + "end": 19750.05, + "probability": 0.9185 + }, + { + "start": 19750.77, + "end": 19752.53, + "probability": 0.9981 + }, + { + "start": 19753.31, + "end": 19755.37, + "probability": 0.9852 + }, + { + "start": 19756.03, + "end": 19761.55, + "probability": 0.9936 + }, + { + "start": 19762.17, + "end": 19764.61, + "probability": 0.9792 + }, + { + "start": 19765.71, + "end": 19767.91, + "probability": 0.8842 + }, + { + "start": 19768.33, + "end": 19768.97, + "probability": 0.9736 + }, + { + "start": 19769.71, + "end": 19773.85, + "probability": 0.9769 + }, + { + "start": 19774.35, + "end": 19776.43, + "probability": 0.9569 + }, + { + "start": 19777.43, + "end": 19780.55, + "probability": 0.9841 + }, + { + "start": 19781.43, + "end": 19784.53, + "probability": 0.9248 + }, + { + "start": 19785.19, + "end": 19788.89, + "probability": 0.9234 + }, + { + "start": 19789.63, + "end": 19792.77, + "probability": 0.8584 + }, + { + "start": 19793.53, + "end": 19794.12, + "probability": 0.9004 + }, + { + "start": 19795.11, + "end": 19798.51, + "probability": 0.9961 + }, + { + "start": 19798.93, + "end": 19800.06, + "probability": 0.9274 + }, + { + "start": 19800.73, + "end": 19803.31, + "probability": 0.9819 + }, + { + "start": 19804.31, + "end": 19808.0, + "probability": 0.9993 + }, + { + "start": 19808.79, + "end": 19809.95, + "probability": 0.9984 + }, + { + "start": 19810.61, + "end": 19812.41, + "probability": 0.8724 + }, + { + "start": 19812.81, + "end": 19816.65, + "probability": 0.9924 + }, + { + "start": 19816.81, + "end": 19818.49, + "probability": 0.9528 + }, + { + "start": 19819.21, + "end": 19820.81, + "probability": 0.9818 + }, + { + "start": 19821.35, + "end": 19822.17, + "probability": 0.9822 + }, + { + "start": 19823.09, + "end": 19827.87, + "probability": 0.9631 + }, + { + "start": 19828.59, + "end": 19832.02, + "probability": 0.9982 + }, + { + "start": 19832.67, + "end": 19833.61, + "probability": 0.8994 + }, + { + "start": 19834.15, + "end": 19838.81, + "probability": 0.9813 + }, + { + "start": 19839.99, + "end": 19841.35, + "probability": 0.9844 + }, + { + "start": 19845.33, + "end": 19846.59, + "probability": 0.5105 + }, + { + "start": 19848.47, + "end": 19849.33, + "probability": 0.7692 + }, + { + "start": 19850.49, + "end": 19851.31, + "probability": 0.5075 + }, + { + "start": 19854.87, + "end": 19855.71, + "probability": 0.6381 + }, + { + "start": 19856.63, + "end": 19857.19, + "probability": 0.5393 + }, + { + "start": 19860.15, + "end": 19861.95, + "probability": 0.6424 + }, + { + "start": 19862.43, + "end": 19862.93, + "probability": 0.7651 + }, + { + "start": 19863.45, + "end": 19865.42, + "probability": 0.9897 + }, + { + "start": 19866.31, + "end": 19867.61, + "probability": 0.8963 + }, + { + "start": 19868.61, + "end": 19875.91, + "probability": 0.9507 + }, + { + "start": 19876.91, + "end": 19880.43, + "probability": 0.9974 + }, + { + "start": 19881.45, + "end": 19882.63, + "probability": 0.9847 + }, + { + "start": 19883.19, + "end": 19886.25, + "probability": 0.9961 + }, + { + "start": 19886.69, + "end": 19889.77, + "probability": 0.9972 + }, + { + "start": 19890.71, + "end": 19895.01, + "probability": 0.9031 + }, + { + "start": 19895.15, + "end": 19897.37, + "probability": 0.6234 + }, + { + "start": 19898.01, + "end": 19898.99, + "probability": 0.8127 + }, + { + "start": 19899.11, + "end": 19903.01, + "probability": 0.9289 + }, + { + "start": 19903.57, + "end": 19906.57, + "probability": 0.5234 + }, + { + "start": 19907.35, + "end": 19909.61, + "probability": 0.8712 + }, + { + "start": 19910.55, + "end": 19912.79, + "probability": 0.9876 + }, + { + "start": 19914.43, + "end": 19915.21, + "probability": 0.7662 + }, + { + "start": 19915.51, + "end": 19916.03, + "probability": 0.7645 + }, + { + "start": 19916.67, + "end": 19917.83, + "probability": 0.5257 + }, + { + "start": 19918.79, + "end": 19919.59, + "probability": 0.9827 + }, + { + "start": 19920.77, + "end": 19922.27, + "probability": 0.974 + }, + { + "start": 19922.71, + "end": 19923.81, + "probability": 0.9633 + }, + { + "start": 19925.01, + "end": 19926.09, + "probability": 0.9648 + }, + { + "start": 19927.21, + "end": 19929.55, + "probability": 0.731 + }, + { + "start": 19929.73, + "end": 19931.99, + "probability": 0.9789 + }, + { + "start": 19934.29, + "end": 19935.95, + "probability": 0.9914 + }, + { + "start": 19936.57, + "end": 19937.27, + "probability": 0.8207 + }, + { + "start": 19938.37, + "end": 19939.15, + "probability": 0.9538 + }, + { + "start": 19940.53, + "end": 19941.87, + "probability": 0.9352 + }, + { + "start": 19942.83, + "end": 19945.73, + "probability": 0.9863 + }, + { + "start": 19947.21, + "end": 19951.21, + "probability": 0.9928 + }, + { + "start": 19952.82, + "end": 19955.71, + "probability": 0.9768 + }, + { + "start": 19958.09, + "end": 19958.58, + "probability": 0.937 + }, + { + "start": 19959.53, + "end": 19962.37, + "probability": 0.9504 + }, + { + "start": 19962.87, + "end": 19966.43, + "probability": 0.981 + }, + { + "start": 19967.65, + "end": 19968.41, + "probability": 0.8338 + }, + { + "start": 19969.41, + "end": 19972.41, + "probability": 0.978 + }, + { + "start": 19972.57, + "end": 19973.47, + "probability": 0.9715 + }, + { + "start": 19975.19, + "end": 19976.33, + "probability": 0.3636 + }, + { + "start": 19977.87, + "end": 19980.51, + "probability": 0.9494 + }, + { + "start": 19981.71, + "end": 19984.15, + "probability": 0.9438 + }, + { + "start": 19985.31, + "end": 19986.51, + "probability": 0.9084 + }, + { + "start": 19986.63, + "end": 19991.41, + "probability": 0.8995 + }, + { + "start": 19992.61, + "end": 19993.83, + "probability": 0.439 + }, + { + "start": 19994.43, + "end": 19995.43, + "probability": 0.9979 + }, + { + "start": 19996.47, + "end": 19998.31, + "probability": 0.9766 + }, + { + "start": 19999.63, + "end": 20004.83, + "probability": 0.9749 + }, + { + "start": 20005.55, + "end": 20006.73, + "probability": 0.9333 + }, + { + "start": 20007.47, + "end": 20008.39, + "probability": 0.7194 + }, + { + "start": 20008.53, + "end": 20010.71, + "probability": 0.9852 + }, + { + "start": 20011.71, + "end": 20012.19, + "probability": 0.4889 + }, + { + "start": 20012.73, + "end": 20016.47, + "probability": 0.998 + }, + { + "start": 20016.61, + "end": 20018.93, + "probability": 0.9929 + }, + { + "start": 20020.63, + "end": 20022.31, + "probability": 0.8833 + }, + { + "start": 20022.83, + "end": 20022.85, + "probability": 0.2582 + }, + { + "start": 20022.85, + "end": 20023.97, + "probability": 0.8744 + }, + { + "start": 20025.15, + "end": 20028.15, + "probability": 0.6377 + }, + { + "start": 20029.15, + "end": 20031.13, + "probability": 0.9428 + }, + { + "start": 20032.57, + "end": 20035.69, + "probability": 0.7574 + }, + { + "start": 20036.49, + "end": 20038.29, + "probability": 0.9966 + }, + { + "start": 20039.71, + "end": 20042.11, + "probability": 0.6901 + }, + { + "start": 20042.91, + "end": 20045.59, + "probability": 0.6601 + }, + { + "start": 20046.91, + "end": 20050.75, + "probability": 0.9097 + }, + { + "start": 20051.18, + "end": 20051.97, + "probability": 0.393 + }, + { + "start": 20052.09, + "end": 20053.79, + "probability": 0.7021 + }, + { + "start": 20054.53, + "end": 20057.27, + "probability": 0.813 + }, + { + "start": 20057.93, + "end": 20060.55, + "probability": 0.9939 + }, + { + "start": 20062.05, + "end": 20063.85, + "probability": 0.0452 + }, + { + "start": 20064.81, + "end": 20066.57, + "probability": 0.8084 + }, + { + "start": 20067.95, + "end": 20069.05, + "probability": 0.5159 + }, + { + "start": 20069.19, + "end": 20072.73, + "probability": 0.8576 + }, + { + "start": 20073.83, + "end": 20076.15, + "probability": 0.9478 + }, + { + "start": 20076.69, + "end": 20077.69, + "probability": 0.9896 + }, + { + "start": 20078.75, + "end": 20080.45, + "probability": 0.1008 + }, + { + "start": 20081.19, + "end": 20084.53, + "probability": 0.5212 + }, + { + "start": 20085.55, + "end": 20087.31, + "probability": 0.9048 + }, + { + "start": 20088.09, + "end": 20091.39, + "probability": 0.9224 + }, + { + "start": 20091.67, + "end": 20092.31, + "probability": 0.6406 + }, + { + "start": 20094.09, + "end": 20098.93, + "probability": 0.9672 + }, + { + "start": 20099.89, + "end": 20102.77, + "probability": 0.8257 + }, + { + "start": 20103.41, + "end": 20104.23, + "probability": 0.9819 + }, + { + "start": 20105.17, + "end": 20111.45, + "probability": 0.9932 + }, + { + "start": 20112.75, + "end": 20114.29, + "probability": 0.7529 + }, + { + "start": 20114.87, + "end": 20116.61, + "probability": 0.9951 + }, + { + "start": 20117.29, + "end": 20119.27, + "probability": 0.9785 + }, + { + "start": 20120.01, + "end": 20125.49, + "probability": 0.981 + }, + { + "start": 20126.81, + "end": 20127.87, + "probability": 0.8284 + }, + { + "start": 20128.81, + "end": 20129.47, + "probability": 0.8864 + }, + { + "start": 20130.45, + "end": 20130.65, + "probability": 0.3558 + }, + { + "start": 20133.85, + "end": 20137.81, + "probability": 0.9797 + }, + { + "start": 20138.37, + "end": 20139.89, + "probability": 0.9657 + }, + { + "start": 20142.35, + "end": 20142.71, + "probability": 0.8212 + }, + { + "start": 20144.27, + "end": 20145.35, + "probability": 0.8467 + }, + { + "start": 20147.41, + "end": 20150.97, + "probability": 0.9957 + }, + { + "start": 20151.61, + "end": 20152.51, + "probability": 0.8324 + }, + { + "start": 20153.33, + "end": 20155.33, + "probability": 0.8157 + }, + { + "start": 20156.11, + "end": 20157.03, + "probability": 0.7013 + }, + { + "start": 20157.65, + "end": 20158.84, + "probability": 0.9896 + }, + { + "start": 20159.47, + "end": 20161.41, + "probability": 0.8233 + }, + { + "start": 20161.75, + "end": 20164.51, + "probability": 0.966 + }, + { + "start": 20165.99, + "end": 20167.25, + "probability": 0.7702 + }, + { + "start": 20167.37, + "end": 20170.33, + "probability": 0.8751 + }, + { + "start": 20170.73, + "end": 20174.57, + "probability": 0.8482 + }, + { + "start": 20174.99, + "end": 20175.47, + "probability": 0.853 + }, + { + "start": 20176.39, + "end": 20180.21, + "probability": 0.9987 + }, + { + "start": 20181.17, + "end": 20182.85, + "probability": 0.8066 + }, + { + "start": 20183.45, + "end": 20185.29, + "probability": 0.9943 + }, + { + "start": 20185.83, + "end": 20188.03, + "probability": 0.9956 + }, + { + "start": 20188.47, + "end": 20190.7, + "probability": 0.9946 + }, + { + "start": 20192.21, + "end": 20193.52, + "probability": 0.9988 + }, + { + "start": 20194.67, + "end": 20195.84, + "probability": 0.9973 + }, + { + "start": 20196.77, + "end": 20197.89, + "probability": 0.9941 + }, + { + "start": 20197.97, + "end": 20199.99, + "probability": 0.9885 + }, + { + "start": 20201.61, + "end": 20203.47, + "probability": 0.9985 + }, + { + "start": 20204.89, + "end": 20205.79, + "probability": 0.3684 + }, + { + "start": 20207.45, + "end": 20208.09, + "probability": 0.8539 + }, + { + "start": 20208.17, + "end": 20208.99, + "probability": 0.9512 + }, + { + "start": 20209.03, + "end": 20209.77, + "probability": 0.7087 + }, + { + "start": 20209.99, + "end": 20210.63, + "probability": 0.9894 + }, + { + "start": 20211.81, + "end": 20215.37, + "probability": 0.9957 + }, + { + "start": 20216.91, + "end": 20218.73, + "probability": 0.9989 + }, + { + "start": 20218.77, + "end": 20221.08, + "probability": 0.9991 + }, + { + "start": 20222.07, + "end": 20223.57, + "probability": 0.6947 + }, + { + "start": 20224.61, + "end": 20225.95, + "probability": 0.9786 + }, + { + "start": 20228.33, + "end": 20230.19, + "probability": 0.995 + }, + { + "start": 20230.19, + "end": 20232.77, + "probability": 0.9678 + }, + { + "start": 20233.27, + "end": 20234.71, + "probability": 0.9961 + }, + { + "start": 20235.17, + "end": 20236.07, + "probability": 0.9893 + }, + { + "start": 20237.57, + "end": 20239.66, + "probability": 0.998 + }, + { + "start": 20241.89, + "end": 20243.09, + "probability": 0.6056 + }, + { + "start": 20243.29, + "end": 20245.01, + "probability": 0.9771 + }, + { + "start": 20245.91, + "end": 20248.41, + "probability": 0.9976 + }, + { + "start": 20249.17, + "end": 20250.31, + "probability": 0.9958 + }, + { + "start": 20250.49, + "end": 20251.85, + "probability": 0.999 + }, + { + "start": 20252.55, + "end": 20255.49, + "probability": 0.9974 + }, + { + "start": 20258.47, + "end": 20260.97, + "probability": 0.9734 + }, + { + "start": 20262.53, + "end": 20263.93, + "probability": 0.993 + }, + { + "start": 20266.55, + "end": 20268.73, + "probability": 0.9865 + }, + { + "start": 20270.67, + "end": 20271.65, + "probability": 0.9991 + }, + { + "start": 20272.17, + "end": 20273.53, + "probability": 0.9966 + }, + { + "start": 20273.57, + "end": 20276.11, + "probability": 0.9977 + }, + { + "start": 20276.33, + "end": 20277.41, + "probability": 0.85 + }, + { + "start": 20277.69, + "end": 20279.17, + "probability": 0.8748 + }, + { + "start": 20279.87, + "end": 20281.67, + "probability": 0.9958 + }, + { + "start": 20281.67, + "end": 20283.89, + "probability": 0.9873 + }, + { + "start": 20284.93, + "end": 20285.35, + "probability": 0.8021 + }, + { + "start": 20286.31, + "end": 20289.13, + "probability": 0.9021 + }, + { + "start": 20289.13, + "end": 20290.91, + "probability": 0.8796 + }, + { + "start": 20291.45, + "end": 20291.85, + "probability": 0.7902 + }, + { + "start": 20292.65, + "end": 20294.87, + "probability": 0.8569 + }, + { + "start": 20295.25, + "end": 20296.05, + "probability": 0.8342 + }, + { + "start": 20296.57, + "end": 20299.45, + "probability": 0.9666 + }, + { + "start": 20300.47, + "end": 20301.17, + "probability": 0.9951 + }, + { + "start": 20302.29, + "end": 20303.73, + "probability": 0.999 + }, + { + "start": 20305.55, + "end": 20308.19, + "probability": 0.967 + }, + { + "start": 20308.57, + "end": 20311.01, + "probability": 0.9948 + }, + { + "start": 20312.23, + "end": 20313.49, + "probability": 0.4623 + }, + { + "start": 20313.57, + "end": 20314.59, + "probability": 0.7039 + }, + { + "start": 20314.97, + "end": 20315.71, + "probability": 0.5836 + }, + { + "start": 20315.77, + "end": 20316.79, + "probability": 0.8607 + }, + { + "start": 20317.09, + "end": 20317.89, + "probability": 0.7592 + }, + { + "start": 20320.01, + "end": 20321.73, + "probability": 0.9825 + }, + { + "start": 20323.03, + "end": 20327.05, + "probability": 0.9451 + }, + { + "start": 20328.41, + "end": 20329.73, + "probability": 0.8373 + }, + { + "start": 20330.77, + "end": 20331.55, + "probability": 0.9158 + }, + { + "start": 20332.97, + "end": 20333.41, + "probability": 0.9053 + }, + { + "start": 20334.91, + "end": 20336.69, + "probability": 0.9911 + }, + { + "start": 20338.07, + "end": 20339.19, + "probability": 0.9576 + }, + { + "start": 20339.89, + "end": 20341.51, + "probability": 0.9863 + }, + { + "start": 20341.87, + "end": 20343.47, + "probability": 0.9888 + }, + { + "start": 20344.63, + "end": 20346.69, + "probability": 0.9873 + }, + { + "start": 20346.99, + "end": 20349.01, + "probability": 0.9747 + }, + { + "start": 20349.29, + "end": 20349.87, + "probability": 0.9822 + }, + { + "start": 20352.21, + "end": 20353.19, + "probability": 0.8837 + }, + { + "start": 20353.97, + "end": 20354.83, + "probability": 0.994 + }, + { + "start": 20355.65, + "end": 20356.53, + "probability": 0.7554 + }, + { + "start": 20357.77, + "end": 20361.05, + "probability": 0.8635 + }, + { + "start": 20362.27, + "end": 20363.03, + "probability": 0.9852 + }, + { + "start": 20363.75, + "end": 20364.67, + "probability": 0.6952 + }, + { + "start": 20366.49, + "end": 20369.91, + "probability": 0.9845 + }, + { + "start": 20370.59, + "end": 20371.51, + "probability": 0.5944 + }, + { + "start": 20372.17, + "end": 20373.11, + "probability": 0.7141 + }, + { + "start": 20374.73, + "end": 20376.79, + "probability": 0.9869 + }, + { + "start": 20377.09, + "end": 20378.47, + "probability": 0.9927 + }, + { + "start": 20379.01, + "end": 20380.41, + "probability": 0.9448 + }, + { + "start": 20380.95, + "end": 20386.77, + "probability": 0.9413 + }, + { + "start": 20387.05, + "end": 20387.63, + "probability": 0.6695 + }, + { + "start": 20388.61, + "end": 20390.27, + "probability": 0.8459 + }, + { + "start": 20391.67, + "end": 20394.73, + "probability": 0.9851 + }, + { + "start": 20396.41, + "end": 20398.21, + "probability": 0.9408 + }, + { + "start": 20399.97, + "end": 20402.15, + "probability": 0.9976 + }, + { + "start": 20402.83, + "end": 20403.99, + "probability": 0.9583 + }, + { + "start": 20405.25, + "end": 20408.81, + "probability": 0.993 + }, + { + "start": 20408.81, + "end": 20411.63, + "probability": 0.991 + }, + { + "start": 20412.67, + "end": 20413.37, + "probability": 0.8738 + }, + { + "start": 20413.81, + "end": 20414.51, + "probability": 0.8422 + }, + { + "start": 20414.73, + "end": 20417.09, + "probability": 0.999 + }, + { + "start": 20418.05, + "end": 20420.49, + "probability": 0.9913 + }, + { + "start": 20421.55, + "end": 20422.93, + "probability": 0.9624 + }, + { + "start": 20423.97, + "end": 20425.05, + "probability": 0.9479 + }, + { + "start": 20426.05, + "end": 20426.73, + "probability": 0.9485 + }, + { + "start": 20427.27, + "end": 20429.05, + "probability": 0.7315 + }, + { + "start": 20430.35, + "end": 20433.43, + "probability": 0.9897 + }, + { + "start": 20433.51, + "end": 20435.29, + "probability": 0.9932 + }, + { + "start": 20435.61, + "end": 20436.21, + "probability": 0.9907 + }, + { + "start": 20437.25, + "end": 20437.45, + "probability": 0.2566 + }, + { + "start": 20437.45, + "end": 20438.47, + "probability": 0.6853 + }, + { + "start": 20438.63, + "end": 20439.25, + "probability": 0.8916 + }, + { + "start": 20440.31, + "end": 20440.31, + "probability": 0.957 + }, + { + "start": 20440.31, + "end": 20440.77, + "probability": 0.3252 + }, + { + "start": 20440.85, + "end": 20441.64, + "probability": 0.9424 + }, + { + "start": 20441.81, + "end": 20443.1, + "probability": 0.2385 + }, + { + "start": 20444.09, + "end": 20445.37, + "probability": 0.732 + }, + { + "start": 20445.43, + "end": 20447.33, + "probability": 0.8819 + }, + { + "start": 20447.75, + "end": 20450.83, + "probability": 0.9663 + }, + { + "start": 20451.15, + "end": 20451.33, + "probability": 0.0826 + }, + { + "start": 20451.33, + "end": 20451.33, + "probability": 0.2214 + }, + { + "start": 20451.53, + "end": 20455.67, + "probability": 0.9791 + }, + { + "start": 20456.13, + "end": 20456.41, + "probability": 0.0854 + }, + { + "start": 20456.49, + "end": 20458.03, + "probability": 0.7881 + }, + { + "start": 20458.89, + "end": 20463.29, + "probability": 0.9971 + }, + { + "start": 20463.77, + "end": 20463.83, + "probability": 0.3449 + }, + { + "start": 20463.93, + "end": 20468.41, + "probability": 0.9248 + }, + { + "start": 20468.55, + "end": 20469.17, + "probability": 0.9434 + }, + { + "start": 20471.19, + "end": 20471.65, + "probability": 0.5435 + }, + { + "start": 20472.37, + "end": 20472.75, + "probability": 0.8348 + }, + { + "start": 20473.01, + "end": 20476.11, + "probability": 0.9715 + }, + { + "start": 20477.79, + "end": 20478.49, + "probability": 0.9232 + }, + { + "start": 20479.27, + "end": 20480.03, + "probability": 0.0003 + }, + { + "start": 20482.27, + "end": 20484.23, + "probability": 0.9456 + }, + { + "start": 20484.27, + "end": 20484.91, + "probability": 0.9988 + }, + { + "start": 20486.69, + "end": 20488.47, + "probability": 0.9951 + }, + { + "start": 20488.55, + "end": 20489.07, + "probability": 0.8529 + }, + { + "start": 20489.19, + "end": 20490.03, + "probability": 0.996 + }, + { + "start": 20490.03, + "end": 20492.45, + "probability": 0.8514 + }, + { + "start": 20498.33, + "end": 20499.23, + "probability": 0.9941 + }, + { + "start": 20500.13, + "end": 20502.73, + "probability": 0.7442 + }, + { + "start": 20503.55, + "end": 20504.13, + "probability": 0.9592 + }, + { + "start": 20505.43, + "end": 20505.93, + "probability": 0.9483 + }, + { + "start": 20506.65, + "end": 20508.55, + "probability": 0.9596 + }, + { + "start": 20509.85, + "end": 20510.85, + "probability": 0.9977 + }, + { + "start": 20511.89, + "end": 20513.31, + "probability": 0.9797 + }, + { + "start": 20514.71, + "end": 20519.61, + "probability": 0.9834 + }, + { + "start": 20520.23, + "end": 20522.19, + "probability": 0.9993 + }, + { + "start": 20522.83, + "end": 20524.15, + "probability": 0.9966 + }, + { + "start": 20525.47, + "end": 20526.57, + "probability": 0.9364 + }, + { + "start": 20527.37, + "end": 20529.03, + "probability": 0.97 + }, + { + "start": 20530.57, + "end": 20531.15, + "probability": 0.8499 + }, + { + "start": 20532.27, + "end": 20532.63, + "probability": 0.5442 + }, + { + "start": 20534.01, + "end": 20534.49, + "probability": 0.9836 + }, + { + "start": 20535.49, + "end": 20536.13, + "probability": 0.9703 + }, + { + "start": 20536.95, + "end": 20537.51, + "probability": 0.9738 + }, + { + "start": 20538.39, + "end": 20538.73, + "probability": 0.3462 + }, + { + "start": 20538.89, + "end": 20539.33, + "probability": 0.7913 + }, + { + "start": 20539.89, + "end": 20540.85, + "probability": 0.9338 + }, + { + "start": 20541.25, + "end": 20542.87, + "probability": 0.9944 + }, + { + "start": 20543.11, + "end": 20544.43, + "probability": 0.9231 + }, + { + "start": 20544.79, + "end": 20546.35, + "probability": 0.9992 + }, + { + "start": 20546.73, + "end": 20547.67, + "probability": 0.9548 + }, + { + "start": 20547.85, + "end": 20548.15, + "probability": 0.9778 + }, + { + "start": 20548.45, + "end": 20549.49, + "probability": 0.8823 + }, + { + "start": 20550.57, + "end": 20551.09, + "probability": 0.6515 + }, + { + "start": 20552.55, + "end": 20552.97, + "probability": 0.9835 + }, + { + "start": 20553.95, + "end": 20557.31, + "probability": 0.993 + }, + { + "start": 20557.69, + "end": 20560.67, + "probability": 0.97 + }, + { + "start": 20561.65, + "end": 20565.15, + "probability": 0.9992 + }, + { + "start": 20565.15, + "end": 20570.29, + "probability": 0.9787 + }, + { + "start": 20570.77, + "end": 20573.21, + "probability": 0.9821 + }, + { + "start": 20574.65, + "end": 20576.27, + "probability": 0.9955 + }, + { + "start": 20576.43, + "end": 20577.07, + "probability": 0.6783 + }, + { + "start": 20578.31, + "end": 20579.45, + "probability": 0.9798 + }, + { + "start": 20581.55, + "end": 20582.47, + "probability": 0.984 + }, + { + "start": 20583.35, + "end": 20588.17, + "probability": 0.9905 + }, + { + "start": 20589.63, + "end": 20592.61, + "probability": 0.9919 + }, + { + "start": 20592.61, + "end": 20596.75, + "probability": 0.9969 + }, + { + "start": 20597.13, + "end": 20600.45, + "probability": 0.9492 + }, + { + "start": 20600.95, + "end": 20602.07, + "probability": 0.8782 + }, + { + "start": 20602.59, + "end": 20605.09, + "probability": 0.9644 + }, + { + "start": 20606.03, + "end": 20609.13, + "probability": 0.8279 + }, + { + "start": 20609.75, + "end": 20611.25, + "probability": 0.8435 + }, + { + "start": 20611.77, + "end": 20613.13, + "probability": 0.9783 + }, + { + "start": 20613.73, + "end": 20615.53, + "probability": 0.9552 + }, + { + "start": 20615.83, + "end": 20617.49, + "probability": 0.9817 + }, + { + "start": 20618.65, + "end": 20622.01, + "probability": 0.9929 + }, + { + "start": 20622.89, + "end": 20624.59, + "probability": 0.9937 + }, + { + "start": 20625.01, + "end": 20626.13, + "probability": 0.8 + }, + { + "start": 20627.01, + "end": 20631.31, + "probability": 0.9565 + }, + { + "start": 20632.01, + "end": 20633.47, + "probability": 0.9631 + }, + { + "start": 20633.75, + "end": 20635.73, + "probability": 0.9964 + }, + { + "start": 20637.01, + "end": 20639.35, + "probability": 0.957 + }, + { + "start": 20639.45, + "end": 20639.87, + "probability": 0.9329 + }, + { + "start": 20640.05, + "end": 20641.03, + "probability": 0.9003 + }, + { + "start": 20641.35, + "end": 20643.29, + "probability": 0.8953 + }, + { + "start": 20643.77, + "end": 20644.33, + "probability": 0.9307 + }, + { + "start": 20644.63, + "end": 20645.17, + "probability": 0.8339 + }, + { + "start": 20645.73, + "end": 20647.67, + "probability": 0.8108 + }, + { + "start": 20649.51, + "end": 20650.43, + "probability": 0.9951 + }, + { + "start": 20651.47, + "end": 20652.03, + "probability": 0.7378 + }, + { + "start": 20653.33, + "end": 20656.63, + "probability": 0.9883 + }, + { + "start": 20657.45, + "end": 20658.39, + "probability": 0.8075 + }, + { + "start": 20660.43, + "end": 20661.33, + "probability": 0.9927 + }, + { + "start": 20661.99, + "end": 20663.21, + "probability": 0.5997 + }, + { + "start": 20664.15, + "end": 20664.88, + "probability": 0.2548 + }, + { + "start": 20666.21, + "end": 20667.03, + "probability": 0.6743 + }, + { + "start": 20667.11, + "end": 20669.23, + "probability": 0.9964 + }, + { + "start": 20669.29, + "end": 20670.93, + "probability": 0.975 + }, + { + "start": 20671.67, + "end": 20673.51, + "probability": 0.9978 + }, + { + "start": 20675.03, + "end": 20676.49, + "probability": 0.9564 + }, + { + "start": 20677.99, + "end": 20679.71, + "probability": 0.9618 + }, + { + "start": 20679.71, + "end": 20682.39, + "probability": 0.9961 + }, + { + "start": 20683.45, + "end": 20686.19, + "probability": 0.9951 + }, + { + "start": 20687.01, + "end": 20688.71, + "probability": 0.9482 + }, + { + "start": 20688.81, + "end": 20689.27, + "probability": 0.7515 + }, + { + "start": 20689.65, + "end": 20690.53, + "probability": 0.8018 + }, + { + "start": 20690.67, + "end": 20693.63, + "probability": 0.9869 + }, + { + "start": 20693.91, + "end": 20694.53, + "probability": 0.6607 + }, + { + "start": 20695.35, + "end": 20695.75, + "probability": 0.8384 + }, + { + "start": 20696.33, + "end": 20696.81, + "probability": 0.9247 + }, + { + "start": 20697.49, + "end": 20699.01, + "probability": 0.9964 + }, + { + "start": 20699.77, + "end": 20700.49, + "probability": 0.9973 + }, + { + "start": 20701.23, + "end": 20702.83, + "probability": 0.3579 + }, + { + "start": 20703.23, + "end": 20705.45, + "probability": 0.9554 + }, + { + "start": 20705.85, + "end": 20706.91, + "probability": 0.6005 + }, + { + "start": 20707.23, + "end": 20710.55, + "probability": 0.9982 + }, + { + "start": 20710.65, + "end": 20710.89, + "probability": 0.8175 + }, + { + "start": 20711.83, + "end": 20713.57, + "probability": 0.9428 + }, + { + "start": 20713.65, + "end": 20714.95, + "probability": 0.7604 + }, + { + "start": 20715.89, + "end": 20717.37, + "probability": 0.7231 + }, + { + "start": 20729.04, + "end": 20729.53, + "probability": 0.0301 + }, + { + "start": 20729.53, + "end": 20729.53, + "probability": 0.2525 + }, + { + "start": 20729.53, + "end": 20729.95, + "probability": 0.1715 + }, + { + "start": 20729.99, + "end": 20730.77, + "probability": 0.0531 + }, + { + "start": 20731.03, + "end": 20731.57, + "probability": 0.1427 + }, + { + "start": 20740.85, + "end": 20743.13, + "probability": 0.6286 + }, + { + "start": 20745.05, + "end": 20745.83, + "probability": 0.7755 + }, + { + "start": 20747.75, + "end": 20748.23, + "probability": 0.8874 + }, + { + "start": 20749.85, + "end": 20750.91, + "probability": 0.7179 + }, + { + "start": 20751.57, + "end": 20752.05, + "probability": 0.9776 + }, + { + "start": 20753.69, + "end": 20756.19, + "probability": 0.9651 + }, + { + "start": 20756.93, + "end": 20757.73, + "probability": 0.9899 + }, + { + "start": 20758.51, + "end": 20759.27, + "probability": 0.9821 + }, + { + "start": 20760.03, + "end": 20760.93, + "probability": 0.9891 + }, + { + "start": 20761.61, + "end": 20762.99, + "probability": 0.9174 + }, + { + "start": 20764.29, + "end": 20768.05, + "probability": 0.9951 + }, + { + "start": 20768.95, + "end": 20772.25, + "probability": 0.7154 + }, + { + "start": 20773.27, + "end": 20776.39, + "probability": 0.9283 + }, + { + "start": 20776.47, + "end": 20778.23, + "probability": 0.9894 + }, + { + "start": 20778.27, + "end": 20781.13, + "probability": 0.997 + }, + { + "start": 20782.49, + "end": 20784.23, + "probability": 0.9937 + }, + { + "start": 20784.31, + "end": 20784.73, + "probability": 0.4945 + }, + { + "start": 20784.81, + "end": 20785.35, + "probability": 0.6896 + }, + { + "start": 20785.49, + "end": 20785.63, + "probability": 0.7379 + }, + { + "start": 20785.71, + "end": 20788.17, + "probability": 0.9966 + }, + { + "start": 20788.43, + "end": 20789.27, + "probability": 0.9124 + }, + { + "start": 20789.31, + "end": 20790.39, + "probability": 0.9772 + }, + { + "start": 20790.51, + "end": 20791.11, + "probability": 0.9004 + }, + { + "start": 20791.31, + "end": 20792.63, + "probability": 0.9644 + }, + { + "start": 20792.67, + "end": 20794.63, + "probability": 0.9648 + }, + { + "start": 20795.77, + "end": 20796.39, + "probability": 0.5661 + }, + { + "start": 20797.49, + "end": 20799.81, + "probability": 0.9973 + }, + { + "start": 20800.99, + "end": 20802.35, + "probability": 0.9425 + }, + { + "start": 20802.47, + "end": 20803.05, + "probability": 0.4904 + }, + { + "start": 20803.77, + "end": 20804.81, + "probability": 0.7106 + }, + { + "start": 20806.59, + "end": 20807.35, + "probability": 0.915 + }, + { + "start": 20809.53, + "end": 20810.01, + "probability": 0.9595 + }, + { + "start": 20812.45, + "end": 20812.97, + "probability": 0.7653 + }, + { + "start": 20815.95, + "end": 20816.83, + "probability": 0.984 + }, + { + "start": 20818.73, + "end": 20819.17, + "probability": 0.9911 + }, + { + "start": 20819.89, + "end": 20821.47, + "probability": 0.701 + }, + { + "start": 20824.19, + "end": 20824.85, + "probability": 0.544 + }, + { + "start": 20826.01, + "end": 20826.87, + "probability": 0.8181 + }, + { + "start": 20827.91, + "end": 20828.73, + "probability": 0.533 + }, + { + "start": 20829.65, + "end": 20831.51, + "probability": 0.99 + }, + { + "start": 20832.63, + "end": 20833.25, + "probability": 0.8337 + }, + { + "start": 20834.13, + "end": 20834.21, + "probability": 0.9321 + }, + { + "start": 20834.27, + "end": 20835.49, + "probability": 0.9575 + }, + { + "start": 20835.75, + "end": 20835.93, + "probability": 0.8447 + }, + { + "start": 20836.25, + "end": 20836.79, + "probability": 0.9631 + }, + { + "start": 20837.35, + "end": 20837.79, + "probability": 0.698 + }, + { + "start": 20837.81, + "end": 20839.61, + "probability": 0.7889 + }, + { + "start": 20839.71, + "end": 20844.47, + "probability": 0.9961 + }, + { + "start": 20844.53, + "end": 20845.89, + "probability": 0.9469 + }, + { + "start": 20846.05, + "end": 20848.31, + "probability": 0.9958 + }, + { + "start": 20848.65, + "end": 20851.05, + "probability": 0.9944 + }, + { + "start": 20851.29, + "end": 20852.31, + "probability": 0.8307 + }, + { + "start": 20853.09, + "end": 20854.13, + "probability": 0.8479 + }, + { + "start": 20854.65, + "end": 20856.55, + "probability": 0.9916 + }, + { + "start": 20856.77, + "end": 20859.21, + "probability": 0.8463 + }, + { + "start": 20860.17, + "end": 20861.93, + "probability": 0.9232 + }, + { + "start": 20863.75, + "end": 20866.39, + "probability": 0.976 + }, + { + "start": 20866.55, + "end": 20867.43, + "probability": 0.6079 + }, + { + "start": 20867.99, + "end": 20869.91, + "probability": 0.8657 + }, + { + "start": 20870.01, + "end": 20871.05, + "probability": 0.9468 + }, + { + "start": 20871.59, + "end": 20873.47, + "probability": 0.6159 + }, + { + "start": 20873.99, + "end": 20875.19, + "probability": 0.9677 + }, + { + "start": 20875.31, + "end": 20876.35, + "probability": 0.9661 + }, + { + "start": 20876.47, + "end": 20878.57, + "probability": 0.8969 + }, + { + "start": 20879.65, + "end": 20881.83, + "probability": 0.8999 + }, + { + "start": 20881.83, + "end": 20884.83, + "probability": 0.9982 + }, + { + "start": 20886.91, + "end": 20887.51, + "probability": 0.9728 + }, + { + "start": 20888.13, + "end": 20888.53, + "probability": 0.4264 + }, + { + "start": 20889.53, + "end": 20890.63, + "probability": 0.7221 + }, + { + "start": 20891.87, + "end": 20894.99, + "probability": 0.9749 + }, + { + "start": 20896.03, + "end": 20897.93, + "probability": 0.8467 + }, + { + "start": 20899.29, + "end": 20900.05, + "probability": 0.9805 + }, + { + "start": 20900.75, + "end": 20901.61, + "probability": 0.7015 + }, + { + "start": 20902.89, + "end": 20906.49, + "probability": 0.9893 + }, + { + "start": 20906.65, + "end": 20907.27, + "probability": 0.9495 + }, + { + "start": 20907.37, + "end": 20911.81, + "probability": 0.8948 + }, + { + "start": 20911.89, + "end": 20913.07, + "probability": 0.9291 + }, + { + "start": 20913.23, + "end": 20917.37, + "probability": 0.8577 + }, + { + "start": 20917.95, + "end": 20922.75, + "probability": 0.9954 + }, + { + "start": 20923.91, + "end": 20927.05, + "probability": 0.9768 + }, + { + "start": 20927.15, + "end": 20929.65, + "probability": 0.9952 + }, + { + "start": 20930.01, + "end": 20932.85, + "probability": 0.9968 + }, + { + "start": 20933.89, + "end": 20935.17, + "probability": 0.9749 + }, + { + "start": 20935.55, + "end": 20938.83, + "probability": 0.9736 + }, + { + "start": 20939.53, + "end": 20940.77, + "probability": 0.923 + }, + { + "start": 20940.79, + "end": 20941.89, + "probability": 0.8949 + }, + { + "start": 20943.25, + "end": 20943.49, + "probability": 0.7442 + }, + { + "start": 20943.97, + "end": 20947.29, + "probability": 0.984 + }, + { + "start": 20951.29, + "end": 20953.54, + "probability": 0.7147 + }, + { + "start": 20955.17, + "end": 20956.75, + "probability": 0.8626 + }, + { + "start": 20957.79, + "end": 20959.77, + "probability": 0.9571 + }, + { + "start": 20960.81, + "end": 20962.03, + "probability": 0.9449 + }, + { + "start": 20962.73, + "end": 20963.97, + "probability": 0.9556 + }, + { + "start": 20964.05, + "end": 20964.59, + "probability": 0.0663 + }, + { + "start": 20966.09, + "end": 20967.32, + "probability": 0.2899 + }, + { + "start": 20968.11, + "end": 20970.79, + "probability": 0.988 + }, + { + "start": 20971.05, + "end": 20973.77, + "probability": 0.8559 + }, + { + "start": 20973.83, + "end": 20974.29, + "probability": 0.8736 + }, + { + "start": 20974.39, + "end": 20976.16, + "probability": 0.9948 + }, + { + "start": 20976.77, + "end": 20977.97, + "probability": 0.9425 + }, + { + "start": 20978.03, + "end": 20980.15, + "probability": 0.8975 + }, + { + "start": 20980.75, + "end": 20981.75, + "probability": 0.7274 + }, + { + "start": 20982.05, + "end": 20983.55, + "probability": 0.7964 + }, + { + "start": 20983.61, + "end": 20985.29, + "probability": 0.9411 + }, + { + "start": 20986.91, + "end": 20989.07, + "probability": 0.9933 + }, + { + "start": 20989.25, + "end": 20989.87, + "probability": 0.6573 + }, + { + "start": 20989.97, + "end": 20990.41, + "probability": 0.9868 + }, + { + "start": 20990.59, + "end": 20992.63, + "probability": 0.9975 + }, + { + "start": 20992.63, + "end": 20994.71, + "probability": 0.9979 + }, + { + "start": 20995.29, + "end": 20997.67, + "probability": 0.9978 + }, + { + "start": 20998.63, + "end": 20998.63, + "probability": 0.0744 + }, + { + "start": 20998.63, + "end": 20999.47, + "probability": 0.8716 + }, + { + "start": 20999.77, + "end": 21001.89, + "probability": 0.9433 + }, + { + "start": 21002.63, + "end": 21003.95, + "probability": 0.6445 + }, + { + "start": 21004.05, + "end": 21005.37, + "probability": 0.9913 + }, + { + "start": 21006.21, + "end": 21007.97, + "probability": 0.9858 + }, + { + "start": 21008.09, + "end": 21009.29, + "probability": 0.9818 + }, + { + "start": 21009.63, + "end": 21011.75, + "probability": 0.7054 + }, + { + "start": 21012.45, + "end": 21014.09, + "probability": 0.7046 + }, + { + "start": 21016.21, + "end": 21017.33, + "probability": 0.7105 + }, + { + "start": 21018.15, + "end": 21018.63, + "probability": 0.6699 + }, + { + "start": 21020.43, + "end": 21021.15, + "probability": 0.7083 + }, + { + "start": 21022.45, + "end": 21022.69, + "probability": 0.2214 + }, + { + "start": 21022.69, + "end": 21023.51, + "probability": 0.4175 + }, + { + "start": 21024.52, + "end": 21025.55, + "probability": 0.9448 + }, + { + "start": 21027.03, + "end": 21027.64, + "probability": 0.9324 + }, + { + "start": 21028.97, + "end": 21029.31, + "probability": 0.7245 + }, + { + "start": 21029.45, + "end": 21032.37, + "probability": 0.9885 + }, + { + "start": 21032.37, + "end": 21036.31, + "probability": 0.6499 + }, + { + "start": 21037.39, + "end": 21038.35, + "probability": 0.9893 + }, + { + "start": 21039.29, + "end": 21041.63, + "probability": 0.9312 + }, + { + "start": 21042.37, + "end": 21044.43, + "probability": 0.983 + }, + { + "start": 21044.95, + "end": 21045.27, + "probability": 0.5325 + }, + { + "start": 21046.31, + "end": 21050.57, + "probability": 0.9602 + }, + { + "start": 21052.06, + "end": 21053.65, + "probability": 0.6218 + }, + { + "start": 21053.65, + "end": 21056.35, + "probability": 0.6406 + }, + { + "start": 21057.23, + "end": 21059.31, + "probability": 0.9643 + }, + { + "start": 21059.51, + "end": 21061.33, + "probability": 0.8218 + }, + { + "start": 21061.93, + "end": 21066.47, + "probability": 0.9755 + }, + { + "start": 21067.67, + "end": 21070.07, + "probability": 0.9817 + }, + { + "start": 21070.43, + "end": 21071.53, + "probability": 0.3671 + }, + { + "start": 21071.55, + "end": 21072.29, + "probability": 0.4855 + }, + { + "start": 21072.37, + "end": 21074.47, + "probability": 0.8227 + }, + { + "start": 21074.55, + "end": 21077.15, + "probability": 0.9894 + }, + { + "start": 21078.19, + "end": 21080.09, + "probability": 0.8444 + }, + { + "start": 21080.39, + "end": 21081.35, + "probability": 0.9731 + }, + { + "start": 21081.69, + "end": 21082.15, + "probability": 0.6206 + }, + { + "start": 21082.31, + "end": 21082.75, + "probability": 0.9615 + }, + { + "start": 21082.83, + "end": 21085.14, + "probability": 0.9979 + }, + { + "start": 21087.31, + "end": 21088.57, + "probability": 0.9342 + }, + { + "start": 21089.79, + "end": 21091.71, + "probability": 0.8383 + }, + { + "start": 21091.89, + "end": 21094.06, + "probability": 0.9939 + }, + { + "start": 21094.45, + "end": 21096.19, + "probability": 0.8515 + }, + { + "start": 21097.41, + "end": 21098.31, + "probability": 0.9302 + }, + { + "start": 21098.93, + "end": 21100.39, + "probability": 0.8854 + }, + { + "start": 21100.49, + "end": 21101.77, + "probability": 0.9976 + }, + { + "start": 21105.19, + "end": 21106.95, + "probability": 0.653 + }, + { + "start": 21107.97, + "end": 21109.33, + "probability": 0.9581 + }, + { + "start": 21109.91, + "end": 21110.15, + "probability": 0.7609 + }, + { + "start": 21110.43, + "end": 21110.95, + "probability": 0.5489 + }, + { + "start": 21111.05, + "end": 21112.07, + "probability": 0.9941 + }, + { + "start": 21112.53, + "end": 21114.15, + "probability": 0.9268 + }, + { + "start": 21115.25, + "end": 21115.41, + "probability": 0.0666 + }, + { + "start": 21116.27, + "end": 21118.79, + "probability": 0.2864 + }, + { + "start": 21119.15, + "end": 21119.15, + "probability": 0.3196 + }, + { + "start": 21119.15, + "end": 21119.15, + "probability": 0.0554 + }, + { + "start": 21119.15, + "end": 21119.15, + "probability": 0.1279 + }, + { + "start": 21119.15, + "end": 21121.05, + "probability": 0.3957 + }, + { + "start": 21121.23, + "end": 21121.73, + "probability": 0.8529 + }, + { + "start": 21122.39, + "end": 21124.09, + "probability": 0.8475 + }, + { + "start": 21127.81, + "end": 21129.03, + "probability": 0.4559 + }, + { + "start": 21130.29, + "end": 21130.85, + "probability": 0.8981 + }, + { + "start": 21132.31, + "end": 21132.81, + "probability": 0.8352 + }, + { + "start": 21133.29, + "end": 21135.73, + "probability": 0.9818 + }, + { + "start": 21135.87, + "end": 21136.73, + "probability": 0.9908 + }, + { + "start": 21136.85, + "end": 21139.75, + "probability": 0.9961 + }, + { + "start": 21141.29, + "end": 21141.82, + "probability": 0.0928 + }, + { + "start": 21141.85, + "end": 21142.19, + "probability": 0.1459 + }, + { + "start": 21142.95, + "end": 21144.07, + "probability": 0.9149 + }, + { + "start": 21144.07, + "end": 21144.67, + "probability": 0.3061 + }, + { + "start": 21144.97, + "end": 21146.53, + "probability": 0.9039 + }, + { + "start": 21147.03, + "end": 21148.89, + "probability": 0.6771 + }, + { + "start": 21149.89, + "end": 21151.53, + "probability": 0.4455 + }, + { + "start": 21152.17, + "end": 21155.39, + "probability": 0.6239 + }, + { + "start": 21155.53, + "end": 21156.41, + "probability": 0.2912 + }, + { + "start": 21156.59, + "end": 21156.81, + "probability": 0.0838 + }, + { + "start": 21157.43, + "end": 21158.97, + "probability": 0.0589 + }, + { + "start": 21159.03, + "end": 21159.47, + "probability": 0.7722 + }, + { + "start": 21161.27, + "end": 21164.71, + "probability": 0.999 + }, + { + "start": 21164.97, + "end": 21167.45, + "probability": 0.9938 + }, + { + "start": 21168.63, + "end": 21168.95, + "probability": 0.5289 + }, + { + "start": 21170.05, + "end": 21172.15, + "probability": 0.9981 + }, + { + "start": 21172.25, + "end": 21172.83, + "probability": 0.6037 + }, + { + "start": 21172.95, + "end": 21174.29, + "probability": 0.9534 + }, + { + "start": 21174.55, + "end": 21175.13, + "probability": 0.8252 + }, + { + "start": 21175.27, + "end": 21176.59, + "probability": 0.9304 + }, + { + "start": 21176.65, + "end": 21177.71, + "probability": 0.9908 + }, + { + "start": 21178.29, + "end": 21178.99, + "probability": 0.3496 + }, + { + "start": 21179.87, + "end": 21181.81, + "probability": 0.9291 + }, + { + "start": 21182.27, + "end": 21183.13, + "probability": 0.7924 + }, + { + "start": 21183.21, + "end": 21184.29, + "probability": 0.9961 + }, + { + "start": 21184.47, + "end": 21184.85, + "probability": 0.8437 + }, + { + "start": 21185.33, + "end": 21187.16, + "probability": 0.9927 + }, + { + "start": 21187.65, + "end": 21188.97, + "probability": 0.979 + }, + { + "start": 21189.49, + "end": 21190.33, + "probability": 0.9845 + }, + { + "start": 21191.61, + "end": 21192.21, + "probability": 0.8839 + }, + { + "start": 21192.29, + "end": 21193.55, + "probability": 0.8601 + }, + { + "start": 21193.71, + "end": 21195.33, + "probability": 0.9175 + }, + { + "start": 21195.55, + "end": 21196.31, + "probability": 0.8301 + }, + { + "start": 21196.87, + "end": 21199.27, + "probability": 0.9349 + }, + { + "start": 21200.63, + "end": 21205.31, + "probability": 0.8496 + }, + { + "start": 21206.09, + "end": 21208.13, + "probability": 0.9946 + }, + { + "start": 21208.55, + "end": 21209.63, + "probability": 0.6501 + }, + { + "start": 21209.87, + "end": 21211.96, + "probability": 0.9851 + }, + { + "start": 21212.92, + "end": 21214.07, + "probability": 0.9529 + }, + { + "start": 21214.27, + "end": 21214.63, + "probability": 0.785 + }, + { + "start": 21214.79, + "end": 21215.75, + "probability": 0.7969 + }, + { + "start": 21215.81, + "end": 21217.53, + "probability": 0.9759 + }, + { + "start": 21217.67, + "end": 21217.97, + "probability": 0.6753 + }, + { + "start": 21219.21, + "end": 21222.61, + "probability": 0.9683 + }, + { + "start": 21222.77, + "end": 21223.21, + "probability": 0.771 + }, + { + "start": 21223.33, + "end": 21228.33, + "probability": 0.9838 + }, + { + "start": 21228.45, + "end": 21229.63, + "probability": 0.9769 + }, + { + "start": 21230.75, + "end": 21231.03, + "probability": 0.3055 + }, + { + "start": 21231.59, + "end": 21232.33, + "probability": 0.5955 + }, + { + "start": 21233.17, + "end": 21234.11, + "probability": 0.9466 + }, + { + "start": 21234.83, + "end": 21235.33, + "probability": 0.8053 + }, + { + "start": 21236.13, + "end": 21237.01, + "probability": 0.6538 + }, + { + "start": 21237.77, + "end": 21238.77, + "probability": 0.9736 + }, + { + "start": 21238.83, + "end": 21239.31, + "probability": 0.9495 + }, + { + "start": 21239.65, + "end": 21241.17, + "probability": 0.5374 + }, + { + "start": 21241.87, + "end": 21243.75, + "probability": 0.9648 + }, + { + "start": 21245.13, + "end": 21247.65, + "probability": 0.9814 + }, + { + "start": 21247.65, + "end": 21250.63, + "probability": 0.9902 + }, + { + "start": 21251.33, + "end": 21252.55, + "probability": 0.8886 + }, + { + "start": 21253.49, + "end": 21257.83, + "probability": 0.786 + }, + { + "start": 21258.45, + "end": 21260.59, + "probability": 0.9233 + }, + { + "start": 21261.73, + "end": 21262.67, + "probability": 0.9697 + }, + { + "start": 21263.29, + "end": 21264.15, + "probability": 0.7383 + }, + { + "start": 21264.23, + "end": 21265.81, + "probability": 0.9945 + }, + { + "start": 21266.43, + "end": 21268.09, + "probability": 0.998 + }, + { + "start": 21268.79, + "end": 21270.45, + "probability": 0.9927 + }, + { + "start": 21271.13, + "end": 21272.81, + "probability": 0.7473 + }, + { + "start": 21272.97, + "end": 21277.09, + "probability": 0.9919 + }, + { + "start": 21277.89, + "end": 21278.97, + "probability": 0.9547 + }, + { + "start": 21279.71, + "end": 21282.03, + "probability": 0.7281 + }, + { + "start": 21282.13, + "end": 21283.99, + "probability": 0.846 + }, + { + "start": 21285.43, + "end": 21288.57, + "probability": 0.9651 + }, + { + "start": 21289.53, + "end": 21291.13, + "probability": 0.8818 + }, + { + "start": 21291.27, + "end": 21293.07, + "probability": 0.9171 + }, + { + "start": 21293.99, + "end": 21297.97, + "probability": 0.9654 + }, + { + "start": 21298.81, + "end": 21299.79, + "probability": 0.9314 + }, + { + "start": 21300.19, + "end": 21302.01, + "probability": 0.952 + }, + { + "start": 21302.11, + "end": 21306.55, + "probability": 0.9579 + }, + { + "start": 21306.73, + "end": 21309.05, + "probability": 0.936 + }, + { + "start": 21309.05, + "end": 21311.99, + "probability": 0.9374 + }, + { + "start": 21312.65, + "end": 21313.15, + "probability": 0.8426 + }, + { + "start": 21313.99, + "end": 21314.41, + "probability": 0.9777 + }, + { + "start": 21316.27, + "end": 21317.05, + "probability": 0.7714 + }, + { + "start": 21318.31, + "end": 21319.23, + "probability": 0.963 + }, + { + "start": 21320.61, + "end": 21322.29, + "probability": 0.9602 + }, + { + "start": 21323.07, + "end": 21324.11, + "probability": 0.8517 + }, + { + "start": 21326.27, + "end": 21326.33, + "probability": 0.8672 + }, + { + "start": 21327.17, + "end": 21328.51, + "probability": 0.8483 + }, + { + "start": 21328.95, + "end": 21330.41, + "probability": 0.9647 + }, + { + "start": 21330.55, + "end": 21331.11, + "probability": 0.9612 + }, + { + "start": 21331.23, + "end": 21332.95, + "probability": 0.9951 + }, + { + "start": 21333.19, + "end": 21334.85, + "probability": 0.9479 + }, + { + "start": 21335.77, + "end": 21337.19, + "probability": 0.9077 + }, + { + "start": 21338.15, + "end": 21340.49, + "probability": 0.9947 + }, + { + "start": 21340.63, + "end": 21344.41, + "probability": 0.7998 + }, + { + "start": 21344.53, + "end": 21345.03, + "probability": 0.5683 + }, + { + "start": 21346.83, + "end": 21347.51, + "probability": 0.4367 + }, + { + "start": 21349.03, + "end": 21351.11, + "probability": 0.9367 + }, + { + "start": 21352.01, + "end": 21354.17, + "probability": 0.9497 + }, + { + "start": 21354.37, + "end": 21356.57, + "probability": 0.9909 + }, + { + "start": 21357.31, + "end": 21358.25, + "probability": 0.6759 + }, + { + "start": 21358.95, + "end": 21360.15, + "probability": 0.6288 + }, + { + "start": 21360.23, + "end": 21360.49, + "probability": 0.7459 + }, + { + "start": 21360.53, + "end": 21364.15, + "probability": 0.979 + }, + { + "start": 21364.73, + "end": 21365.29, + "probability": 0.9632 + }, + { + "start": 21366.01, + "end": 21367.43, + "probability": 0.994 + }, + { + "start": 21367.59, + "end": 21371.09, + "probability": 0.9983 + }, + { + "start": 21372.19, + "end": 21372.55, + "probability": 0.8907 + }, + { + "start": 21373.61, + "end": 21374.89, + "probability": 0.6391 + }, + { + "start": 21375.01, + "end": 21377.03, + "probability": 0.9296 + }, + { + "start": 21377.17, + "end": 21381.31, + "probability": 0.9713 + }, + { + "start": 21381.33, + "end": 21381.97, + "probability": 0.9017 + }, + { + "start": 21383.83, + "end": 21384.63, + "probability": 0.8326 + }, + { + "start": 21385.73, + "end": 21386.55, + "probability": 0.7919 + }, + { + "start": 21388.05, + "end": 21390.81, + "probability": 0.9634 + }, + { + "start": 21391.93, + "end": 21392.67, + "probability": 0.8008 + }, + { + "start": 21394.23, + "end": 21395.55, + "probability": 0.917 + }, + { + "start": 21396.17, + "end": 21397.83, + "probability": 0.5965 + }, + { + "start": 21398.13, + "end": 21398.23, + "probability": 0.0643 + }, + { + "start": 21398.23, + "end": 21398.95, + "probability": 0.4765 + }, + { + "start": 21400.23, + "end": 21402.11, + "probability": 0.9795 + }, + { + "start": 21402.29, + "end": 21405.11, + "probability": 0.9714 + }, + { + "start": 21405.23, + "end": 21406.88, + "probability": 0.5488 + }, + { + "start": 21407.25, + "end": 21411.39, + "probability": 0.9171 + }, + { + "start": 21411.95, + "end": 21413.05, + "probability": 0.6807 + }, + { + "start": 21413.79, + "end": 21417.19, + "probability": 0.8704 + }, + { + "start": 21417.85, + "end": 21421.01, + "probability": 0.9694 + }, + { + "start": 21421.61, + "end": 21422.61, + "probability": 0.8782 + }, + { + "start": 21423.41, + "end": 21423.69, + "probability": 0.799 + }, + { + "start": 21424.73, + "end": 21425.61, + "probability": 0.9688 + }, + { + "start": 21425.89, + "end": 21426.91, + "probability": 0.9561 + }, + { + "start": 21427.33, + "end": 21429.09, + "probability": 0.9823 + }, + { + "start": 21429.31, + "end": 21431.29, + "probability": 0.9709 + }, + { + "start": 21433.41, + "end": 21435.01, + "probability": 0.8923 + }, + { + "start": 21435.57, + "end": 21437.63, + "probability": 0.9812 + }, + { + "start": 21437.77, + "end": 21440.09, + "probability": 0.9774 + }, + { + "start": 21440.13, + "end": 21441.04, + "probability": 0.9912 + }, + { + "start": 21442.89, + "end": 21443.81, + "probability": 0.9907 + }, + { + "start": 21444.35, + "end": 21445.73, + "probability": 0.8436 + }, + { + "start": 21445.85, + "end": 21448.49, + "probability": 0.9915 + }, + { + "start": 21448.55, + "end": 21449.31, + "probability": 0.9884 + }, + { + "start": 21450.31, + "end": 21451.24, + "probability": 0.9893 + }, + { + "start": 21452.11, + "end": 21453.55, + "probability": 0.6729 + }, + { + "start": 21453.99, + "end": 21458.51, + "probability": 0.9866 + }, + { + "start": 21458.51, + "end": 21462.27, + "probability": 0.9953 + }, + { + "start": 21463.01, + "end": 21465.53, + "probability": 0.5481 + }, + { + "start": 21466.27, + "end": 21467.73, + "probability": 0.9634 + }, + { + "start": 21468.43, + "end": 21468.92, + "probability": 0.9589 + }, + { + "start": 21470.73, + "end": 21471.49, + "probability": 0.963 + }, + { + "start": 21474.07, + "end": 21474.71, + "probability": 0.7568 + }, + { + "start": 21475.45, + "end": 21476.45, + "probability": 0.9128 + }, + { + "start": 21477.13, + "end": 21480.57, + "probability": 0.9764 + }, + { + "start": 21480.87, + "end": 21483.57, + "probability": 0.9995 + }, + { + "start": 21483.59, + "end": 21485.99, + "probability": 0.9982 + }, + { + "start": 21487.29, + "end": 21489.43, + "probability": 0.9951 + }, + { + "start": 21489.53, + "end": 21490.81, + "probability": 0.666 + }, + { + "start": 21490.81, + "end": 21493.15, + "probability": 0.5203 + }, + { + "start": 21493.61, + "end": 21494.09, + "probability": 0.604 + }, + { + "start": 21494.09, + "end": 21496.79, + "probability": 0.6653 + }, + { + "start": 21496.83, + "end": 21497.57, + "probability": 0.886 + }, + { + "start": 21497.61, + "end": 21498.79, + "probability": 0.786 + }, + { + "start": 21498.87, + "end": 21501.11, + "probability": 0.7974 + }, + { + "start": 21501.81, + "end": 21502.25, + "probability": 0.6809 + }, + { + "start": 21502.31, + "end": 21506.61, + "probability": 0.9686 + }, + { + "start": 21506.75, + "end": 21507.61, + "probability": 0.6692 + }, + { + "start": 21508.55, + "end": 21510.57, + "probability": 0.8984 + }, + { + "start": 21511.93, + "end": 21512.25, + "probability": 0.1856 + }, + { + "start": 21512.55, + "end": 21513.83, + "probability": 0.979 + }, + { + "start": 21514.45, + "end": 21515.37, + "probability": 0.8477 + }, + { + "start": 21516.29, + "end": 21516.45, + "probability": 0.6945 + }, + { + "start": 21516.95, + "end": 21517.65, + "probability": 0.793 + }, + { + "start": 21518.99, + "end": 21520.35, + "probability": 0.7444 + }, + { + "start": 21520.55, + "end": 21522.21, + "probability": 0.8315 + }, + { + "start": 21522.43, + "end": 21522.69, + "probability": 0.8395 + }, + { + "start": 21525.47, + "end": 21528.04, + "probability": 0.9394 + }, + { + "start": 21528.21, + "end": 21529.73, + "probability": 0.9897 + }, + { + "start": 21529.83, + "end": 21531.67, + "probability": 0.8066 + }, + { + "start": 21532.45, + "end": 21536.49, + "probability": 0.9121 + }, + { + "start": 21536.81, + "end": 21537.43, + "probability": 0.5598 + }, + { + "start": 21537.45, + "end": 21538.95, + "probability": 0.7837 + }, + { + "start": 21539.73, + "end": 21540.55, + "probability": 0.9368 + }, + { + "start": 21541.19, + "end": 21541.99, + "probability": 0.9444 + }, + { + "start": 21542.59, + "end": 21543.63, + "probability": 0.8917 + }, + { + "start": 21544.49, + "end": 21548.53, + "probability": 0.9924 + }, + { + "start": 21549.03, + "end": 21549.75, + "probability": 0.747 + }, + { + "start": 21550.77, + "end": 21554.85, + "probability": 0.9891 + }, + { + "start": 21555.19, + "end": 21557.04, + "probability": 0.7772 + }, + { + "start": 21557.15, + "end": 21558.44, + "probability": 0.9656 + }, + { + "start": 21559.23, + "end": 21559.57, + "probability": 0.8188 + }, + { + "start": 21560.25, + "end": 21561.67, + "probability": 0.9971 + }, + { + "start": 21563.37, + "end": 21564.95, + "probability": 0.9969 + }, + { + "start": 21564.99, + "end": 21567.39, + "probability": 0.9993 + }, + { + "start": 21567.39, + "end": 21569.85, + "probability": 0.9977 + }, + { + "start": 21570.89, + "end": 21571.55, + "probability": 0.7699 + }, + { + "start": 21572.21, + "end": 21572.31, + "probability": 0.2411 + }, + { + "start": 21572.93, + "end": 21573.05, + "probability": 0.0099 + }, + { + "start": 21573.05, + "end": 21573.83, + "probability": 0.2927 + }, + { + "start": 21574.15, + "end": 21574.29, + "probability": 0.0284 + }, + { + "start": 21574.31, + "end": 21574.55, + "probability": 0.8586 + }, + { + "start": 21574.61, + "end": 21575.25, + "probability": 0.79 + }, + { + "start": 21575.27, + "end": 21577.79, + "probability": 0.9586 + }, + { + "start": 21578.33, + "end": 21582.09, + "probability": 0.9587 + }, + { + "start": 21582.53, + "end": 21586.79, + "probability": 0.826 + }, + { + "start": 21587.17, + "end": 21589.47, + "probability": 0.9539 + }, + { + "start": 21590.31, + "end": 21590.91, + "probability": 0.6741 + }, + { + "start": 21591.55, + "end": 21591.93, + "probability": 0.6923 + }, + { + "start": 21592.89, + "end": 21593.13, + "probability": 0.8556 + }, + { + "start": 21595.47, + "end": 21597.75, + "probability": 0.9912 + }, + { + "start": 21598.13, + "end": 21601.89, + "probability": 0.9916 + }, + { + "start": 21602.43, + "end": 21604.01, + "probability": 0.9977 + }, + { + "start": 21604.15, + "end": 21607.91, + "probability": 0.9952 + }, + { + "start": 21607.91, + "end": 21612.05, + "probability": 0.9966 + }, + { + "start": 21612.61, + "end": 21615.95, + "probability": 0.998 + }, + { + "start": 21616.65, + "end": 21619.25, + "probability": 0.9699 + }, + { + "start": 21620.23, + "end": 21621.19, + "probability": 0.9723 + }, + { + "start": 21621.97, + "end": 21622.77, + "probability": 0.8798 + }, + { + "start": 21623.43, + "end": 21624.95, + "probability": 0.9815 + }, + { + "start": 21625.01, + "end": 21625.57, + "probability": 0.9005 + }, + { + "start": 21625.73, + "end": 21625.87, + "probability": 0.5567 + }, + { + "start": 21625.91, + "end": 21629.63, + "probability": 0.9664 + }, + { + "start": 21630.19, + "end": 21631.49, + "probability": 0.9814 + }, + { + "start": 21631.57, + "end": 21633.11, + "probability": 0.9906 + }, + { + "start": 21633.55, + "end": 21635.95, + "probability": 0.9967 + }, + { + "start": 21636.79, + "end": 21638.49, + "probability": 0.983 + }, + { + "start": 21640.77, + "end": 21641.41, + "probability": 0.8716 + }, + { + "start": 21642.73, + "end": 21644.87, + "probability": 0.6275 + }, + { + "start": 21645.41, + "end": 21647.01, + "probability": 0.8103 + }, + { + "start": 21648.57, + "end": 21651.13, + "probability": 0.9966 + }, + { + "start": 21651.65, + "end": 21652.68, + "probability": 0.8683 + }, + { + "start": 21653.41, + "end": 21655.09, + "probability": 0.9001 + }, + { + "start": 21655.43, + "end": 21656.35, + "probability": 0.9661 + }, + { + "start": 21656.41, + "end": 21656.97, + "probability": 0.5914 + }, + { + "start": 21657.85, + "end": 21661.23, + "probability": 0.8151 + }, + { + "start": 21661.31, + "end": 21662.05, + "probability": 0.9205 + }, + { + "start": 21662.43, + "end": 21663.89, + "probability": 0.8998 + }, + { + "start": 21663.93, + "end": 21664.59, + "probability": 0.9073 + }, + { + "start": 21664.63, + "end": 21664.95, + "probability": 0.629 + }, + { + "start": 21667.35, + "end": 21667.53, + "probability": 0.0247 + }, + { + "start": 21667.53, + "end": 21667.53, + "probability": 0.2324 + }, + { + "start": 21667.53, + "end": 21667.53, + "probability": 0.1928 + }, + { + "start": 21667.53, + "end": 21667.95, + "probability": 0.5738 + }, + { + "start": 21668.13, + "end": 21669.47, + "probability": 0.7837 + }, + { + "start": 21669.51, + "end": 21669.85, + "probability": 0.432 + }, + { + "start": 21669.91, + "end": 21670.39, + "probability": 0.6313 + }, + { + "start": 21670.55, + "end": 21671.67, + "probability": 0.8217 + }, + { + "start": 21672.17, + "end": 21672.77, + "probability": 0.8826 + }, + { + "start": 21672.91, + "end": 21673.47, + "probability": 0.9626 + }, + { + "start": 21674.11, + "end": 21675.53, + "probability": 0.9799 + }, + { + "start": 21680.39, + "end": 21681.23, + "probability": 0.082 + }, + { + "start": 21681.23, + "end": 21681.27, + "probability": 0.0136 + }, + { + "start": 21681.27, + "end": 21683.15, + "probability": 0.5501 + }, + { + "start": 21683.29, + "end": 21684.33, + "probability": 0.7493 + }, + { + "start": 21684.91, + "end": 21689.09, + "probability": 0.836 + }, + { + "start": 21690.01, + "end": 21690.49, + "probability": 0.9139 + }, + { + "start": 21691.61, + "end": 21692.05, + "probability": 0.5878 + }, + { + "start": 21693.47, + "end": 21695.39, + "probability": 0.9856 + }, + { + "start": 21696.09, + "end": 21697.79, + "probability": 0.9849 + }, + { + "start": 21698.71, + "end": 21700.51, + "probability": 0.8924 + }, + { + "start": 21701.35, + "end": 21702.53, + "probability": 0.9609 + }, + { + "start": 21705.09, + "end": 21706.91, + "probability": 0.9626 + }, + { + "start": 21707.79, + "end": 21709.73, + "probability": 0.8274 + }, + { + "start": 21709.89, + "end": 21710.37, + "probability": 0.6523 + }, + { + "start": 21710.51, + "end": 21712.5, + "probability": 0.9858 + }, + { + "start": 21712.61, + "end": 21715.05, + "probability": 0.9938 + }, + { + "start": 21715.57, + "end": 21717.55, + "probability": 0.9082 + }, + { + "start": 21720.75, + "end": 21721.71, + "probability": 0.453 + }, + { + "start": 21721.79, + "end": 21721.89, + "probability": 0.5778 + }, + { + "start": 21721.97, + "end": 21723.52, + "probability": 0.9966 + }, + { + "start": 21724.03, + "end": 21725.51, + "probability": 0.8359 + }, + { + "start": 21725.77, + "end": 21727.99, + "probability": 0.4972 + }, + { + "start": 21728.55, + "end": 21729.01, + "probability": 0.9554 + }, + { + "start": 21729.69, + "end": 21731.81, + "probability": 0.8478 + }, + { + "start": 21732.51, + "end": 21733.71, + "probability": 0.9641 + }, + { + "start": 21744.39, + "end": 21744.88, + "probability": 0.2783 + }, + { + "start": 21746.78, + "end": 21749.17, + "probability": 0.7305 + }, + { + "start": 21750.71, + "end": 21752.43, + "probability": 0.6215 + }, + { + "start": 21753.01, + "end": 21755.43, + "probability": 0.8034 + }, + { + "start": 21756.23, + "end": 21756.61, + "probability": 0.0036 + }, + { + "start": 21759.57, + "end": 21759.67, + "probability": 0.0712 + }, + { + "start": 21759.67, + "end": 21759.67, + "probability": 0.1035 + }, + { + "start": 21759.67, + "end": 21760.37, + "probability": 0.2305 + }, + { + "start": 21760.37, + "end": 21762.41, + "probability": 0.6146 + }, + { + "start": 21763.39, + "end": 21764.07, + "probability": 0.75 + }, + { + "start": 21765.03, + "end": 21765.43, + "probability": 0.5577 + }, + { + "start": 21765.67, + "end": 21766.33, + "probability": 0.8627 + }, + { + "start": 21766.43, + "end": 21768.19, + "probability": 0.7323 + }, + { + "start": 21768.69, + "end": 21774.85, + "probability": 0.7342 + }, + { + "start": 21775.99, + "end": 21778.69, + "probability": 0.8533 + }, + { + "start": 21779.21, + "end": 21780.15, + "probability": 0.6801 + }, + { + "start": 21780.37, + "end": 21783.13, + "probability": 0.8769 + }, + { + "start": 21784.15, + "end": 21788.49, + "probability": 0.8607 + }, + { + "start": 21789.43, + "end": 21792.37, + "probability": 0.68 + }, + { + "start": 21792.75, + "end": 21794.91, + "probability": 0.9871 + }, + { + "start": 21797.22, + "end": 21799.07, + "probability": 0.7303 + }, + { + "start": 21800.79, + "end": 21801.15, + "probability": 0.6215 + }, + { + "start": 21801.73, + "end": 21807.37, + "probability": 0.9334 + }, + { + "start": 21808.78, + "end": 21813.55, + "probability": 0.2702 + }, + { + "start": 21813.83, + "end": 21813.83, + "probability": 0.7033 + }, + { + "start": 21813.83, + "end": 21817.15, + "probability": 0.8656 + }, + { + "start": 21817.87, + "end": 21823.27, + "probability": 0.8437 + }, + { + "start": 21823.27, + "end": 21825.03, + "probability": 0.8516 + }, + { + "start": 21827.21, + "end": 21835.37, + "probability": 0.9722 + }, + { + "start": 21836.05, + "end": 21837.05, + "probability": 0.9791 + }, + { + "start": 21837.25, + "end": 21837.65, + "probability": 0.7106 + }, + { + "start": 21837.79, + "end": 21843.37, + "probability": 0.998 + }, + { + "start": 21844.19, + "end": 21844.39, + "probability": 0.6073 + }, + { + "start": 21844.45, + "end": 21846.31, + "probability": 0.7479 + }, + { + "start": 21846.69, + "end": 21848.27, + "probability": 0.9927 + }, + { + "start": 21850.29, + "end": 21852.37, + "probability": 0.7536 + }, + { + "start": 21852.63, + "end": 21855.43, + "probability": 0.731 + }, + { + "start": 21856.71, + "end": 21857.77, + "probability": 0.5741 + }, + { + "start": 21858.57, + "end": 21859.81, + "probability": 0.9538 + }, + { + "start": 21859.87, + "end": 21862.31, + "probability": 0.9665 + }, + { + "start": 21863.15, + "end": 21864.91, + "probability": 0.9379 + }, + { + "start": 21864.99, + "end": 21868.47, + "probability": 0.919 + }, + { + "start": 21868.83, + "end": 21869.65, + "probability": 0.9381 + }, + { + "start": 21870.31, + "end": 21871.49, + "probability": 0.96 + }, + { + "start": 21872.13, + "end": 21872.87, + "probability": 0.5441 + }, + { + "start": 21873.55, + "end": 21877.57, + "probability": 0.9956 + }, + { + "start": 21880.49, + "end": 21881.93, + "probability": 0.831 + }, + { + "start": 21883.45, + "end": 21885.71, + "probability": 0.8761 + }, + { + "start": 21885.71, + "end": 21885.91, + "probability": 0.9409 + }, + { + "start": 21886.71, + "end": 21887.07, + "probability": 0.3772 + }, + { + "start": 21887.21, + "end": 21891.77, + "probability": 0.8421 + }, + { + "start": 21891.85, + "end": 21893.91, + "probability": 0.7642 + }, + { + "start": 21894.83, + "end": 21896.37, + "probability": 0.8307 + }, + { + "start": 21896.75, + "end": 21897.41, + "probability": 0.8446 + }, + { + "start": 21897.51, + "end": 21899.85, + "probability": 0.9919 + }, + { + "start": 21900.75, + "end": 21902.63, + "probability": 0.9932 + }, + { + "start": 21902.71, + "end": 21904.65, + "probability": 0.9377 + }, + { + "start": 21904.75, + "end": 21905.61, + "probability": 0.9633 + }, + { + "start": 21905.81, + "end": 21906.38, + "probability": 0.8263 + }, + { + "start": 21907.31, + "end": 21909.33, + "probability": 0.9441 + }, + { + "start": 21910.31, + "end": 21912.39, + "probability": 0.4903 + }, + { + "start": 21912.51, + "end": 21914.13, + "probability": 0.9777 + }, + { + "start": 21914.59, + "end": 21916.23, + "probability": 0.9479 + }, + { + "start": 21916.95, + "end": 21918.23, + "probability": 0.8649 + }, + { + "start": 21919.09, + "end": 21922.03, + "probability": 0.7922 + }, + { + "start": 21922.91, + "end": 21924.91, + "probability": 0.9888 + }, + { + "start": 21924.93, + "end": 21927.53, + "probability": 0.9054 + }, + { + "start": 21928.21, + "end": 21929.03, + "probability": 0.7443 + }, + { + "start": 21929.67, + "end": 21933.01, + "probability": 0.8319 + }, + { + "start": 21933.13, + "end": 21934.47, + "probability": 0.99 + }, + { + "start": 21935.69, + "end": 21936.57, + "probability": 0.9263 + }, + { + "start": 21937.13, + "end": 21938.17, + "probability": 0.9902 + }, + { + "start": 21939.19, + "end": 21941.13, + "probability": 0.9896 + }, + { + "start": 21941.21, + "end": 21941.99, + "probability": 0.7957 + }, + { + "start": 21942.75, + "end": 21945.39, + "probability": 0.5118 + }, + { + "start": 21945.49, + "end": 21949.17, + "probability": 0.916 + }, + { + "start": 21950.09, + "end": 21950.99, + "probability": 0.817 + }, + { + "start": 21951.79, + "end": 21954.87, + "probability": 0.9913 + }, + { + "start": 21955.03, + "end": 21955.49, + "probability": 0.9735 + }, + { + "start": 21956.59, + "end": 21961.85, + "probability": 0.8561 + }, + { + "start": 21961.97, + "end": 21963.73, + "probability": 0.9072 + }, + { + "start": 21963.81, + "end": 21964.73, + "probability": 0.8982 + }, + { + "start": 21965.31, + "end": 21965.99, + "probability": 0.7564 + }, + { + "start": 21966.11, + "end": 21966.69, + "probability": 0.8744 + }, + { + "start": 21967.71, + "end": 21968.11, + "probability": 0.6585 + }, + { + "start": 21969.07, + "end": 21971.09, + "probability": 0.9478 + }, + { + "start": 21972.07, + "end": 21974.71, + "probability": 0.8556 + }, + { + "start": 21975.65, + "end": 21977.93, + "probability": 0.9916 + }, + { + "start": 21979.11, + "end": 21981.95, + "probability": 0.9209 + }, + { + "start": 21982.51, + "end": 21985.37, + "probability": 0.9912 + }, + { + "start": 21985.53, + "end": 21989.31, + "probability": 0.9956 + }, + { + "start": 21990.23, + "end": 21990.77, + "probability": 0.3646 + }, + { + "start": 21990.97, + "end": 21994.75, + "probability": 0.9923 + }, + { + "start": 21995.73, + "end": 21997.27, + "probability": 0.995 + }, + { + "start": 21997.75, + "end": 21997.87, + "probability": 0.7746 + }, + { + "start": 21998.69, + "end": 21999.47, + "probability": 0.9292 + }, + { + "start": 22000.37, + "end": 22003.61, + "probability": 0.9789 + }, + { + "start": 22004.09, + "end": 22005.85, + "probability": 0.9859 + }, + { + "start": 22006.31, + "end": 22008.62, + "probability": 0.7808 + }, + { + "start": 22009.09, + "end": 22012.07, + "probability": 0.8641 + }, + { + "start": 22012.85, + "end": 22013.23, + "probability": 0.9108 + }, + { + "start": 22014.05, + "end": 22016.77, + "probability": 0.9958 + }, + { + "start": 22017.85, + "end": 22019.79, + "probability": 0.9357 + }, + { + "start": 22020.93, + "end": 22025.01, + "probability": 0.8818 + }, + { + "start": 22025.05, + "end": 22025.39, + "probability": 0.7601 + }, + { + "start": 22025.43, + "end": 22026.33, + "probability": 0.9958 + }, + { + "start": 22027.35, + "end": 22029.45, + "probability": 0.9622 + }, + { + "start": 22029.59, + "end": 22029.95, + "probability": 0.9032 + }, + { + "start": 22030.01, + "end": 22031.19, + "probability": 0.9429 + }, + { + "start": 22031.93, + "end": 22032.79, + "probability": 0.3862 + }, + { + "start": 22032.97, + "end": 22034.71, + "probability": 0.7228 + }, + { + "start": 22034.79, + "end": 22035.95, + "probability": 0.8177 + }, + { + "start": 22036.45, + "end": 22036.95, + "probability": 0.0121 + }, + { + "start": 22037.67, + "end": 22038.43, + "probability": 0.3744 + }, + { + "start": 22038.75, + "end": 22040.31, + "probability": 0.54 + }, + { + "start": 22041.75, + "end": 22042.31, + "probability": 0.6142 + }, + { + "start": 22042.71, + "end": 22043.17, + "probability": 0.7904 + }, + { + "start": 22044.47, + "end": 22046.95, + "probability": 0.6468 + }, + { + "start": 22048.39, + "end": 22050.15, + "probability": 0.8902 + }, + { + "start": 22050.93, + "end": 22051.73, + "probability": 0.9998 + }, + { + "start": 22052.51, + "end": 22055.59, + "probability": 0.9794 + }, + { + "start": 22056.71, + "end": 22056.75, + "probability": 0.7062 + }, + { + "start": 22056.87, + "end": 22058.01, + "probability": 0.9556 + }, + { + "start": 22058.33, + "end": 22058.67, + "probability": 0.5964 + }, + { + "start": 22058.75, + "end": 22059.75, + "probability": 0.9875 + }, + { + "start": 22060.11, + "end": 22064.23, + "probability": 0.8573 + }, + { + "start": 22065.81, + "end": 22067.57, + "probability": 0.7369 + }, + { + "start": 22069.09, + "end": 22072.35, + "probability": 0.9932 + }, + { + "start": 22073.05, + "end": 22073.63, + "probability": 0.7137 + }, + { + "start": 22074.49, + "end": 22078.13, + "probability": 0.9983 + }, + { + "start": 22080.15, + "end": 22083.71, + "probability": 0.9877 + }, + { + "start": 22084.29, + "end": 22085.81, + "probability": 0.9666 + }, + { + "start": 22086.51, + "end": 22087.85, + "probability": 0.7558 + }, + { + "start": 22087.97, + "end": 22088.41, + "probability": 0.3756 + }, + { + "start": 22088.63, + "end": 22089.41, + "probability": 0.9022 + }, + { + "start": 22089.43, + "end": 22094.29, + "probability": 0.8821 + }, + { + "start": 22095.41, + "end": 22095.89, + "probability": 0.4619 + }, + { + "start": 22096.45, + "end": 22096.91, + "probability": 0.4695 + }, + { + "start": 22097.15, + "end": 22098.07, + "probability": 0.8824 + }, + { + "start": 22098.11, + "end": 22099.47, + "probability": 0.9585 + }, + { + "start": 22100.23, + "end": 22102.73, + "probability": 0.9698 + }, + { + "start": 22103.15, + "end": 22104.93, + "probability": 0.9736 + }, + { + "start": 22105.69, + "end": 22106.13, + "probability": 0.989 + }, + { + "start": 22107.11, + "end": 22108.99, + "probability": 0.9963 + }, + { + "start": 22109.81, + "end": 22111.53, + "probability": 0.999 + }, + { + "start": 22112.21, + "end": 22114.11, + "probability": 0.9992 + }, + { + "start": 22114.81, + "end": 22117.13, + "probability": 0.8774 + }, + { + "start": 22117.79, + "end": 22120.03, + "probability": 0.9238 + }, + { + "start": 22120.89, + "end": 22123.21, + "probability": 0.802 + }, + { + "start": 22123.93, + "end": 22124.89, + "probability": 0.8247 + }, + { + "start": 22124.99, + "end": 22126.34, + "probability": 0.9838 + }, + { + "start": 22127.09, + "end": 22128.66, + "probability": 0.9739 + }, + { + "start": 22130.34, + "end": 22134.67, + "probability": 0.9939 + }, + { + "start": 22134.85, + "end": 22137.28, + "probability": 0.9986 + }, + { + "start": 22138.11, + "end": 22139.35, + "probability": 0.732 + }, + { + "start": 22140.25, + "end": 22142.2, + "probability": 0.9731 + }, + { + "start": 22143.01, + "end": 22145.87, + "probability": 0.9844 + }, + { + "start": 22145.91, + "end": 22148.99, + "probability": 0.9563 + }, + { + "start": 22149.73, + "end": 22150.64, + "probability": 0.9863 + }, + { + "start": 22151.73, + "end": 22153.17, + "probability": 0.9656 + }, + { + "start": 22153.59, + "end": 22156.71, + "probability": 0.9977 + }, + { + "start": 22157.79, + "end": 22161.69, + "probability": 0.9823 + }, + { + "start": 22161.69, + "end": 22163.59, + "probability": 0.9983 + }, + { + "start": 22164.21, + "end": 22167.63, + "probability": 0.9985 + }, + { + "start": 22167.63, + "end": 22172.03, + "probability": 0.9839 + }, + { + "start": 22172.51, + "end": 22174.81, + "probability": 0.9985 + }, + { + "start": 22175.98, + "end": 22177.93, + "probability": 0.9874 + }, + { + "start": 22179.77, + "end": 22184.57, + "probability": 0.9953 + }, + { + "start": 22184.57, + "end": 22187.09, + "probability": 0.999 + }, + { + "start": 22187.51, + "end": 22191.11, + "probability": 0.979 + }, + { + "start": 22191.45, + "end": 22192.59, + "probability": 0.9917 + }, + { + "start": 22192.73, + "end": 22193.35, + "probability": 0.9422 + }, + { + "start": 22193.99, + "end": 22195.37, + "probability": 0.9946 + }, + { + "start": 22196.49, + "end": 22198.65, + "probability": 0.9358 + }, + { + "start": 22199.75, + "end": 22202.31, + "probability": 0.9909 + }, + { + "start": 22202.35, + "end": 22203.67, + "probability": 0.6835 + }, + { + "start": 22205.01, + "end": 22207.91, + "probability": 0.8391 + }, + { + "start": 22208.03, + "end": 22208.87, + "probability": 0.8053 + }, + { + "start": 22209.27, + "end": 22210.67, + "probability": 0.9938 + }, + { + "start": 22211.27, + "end": 22213.15, + "probability": 0.9441 + }, + { + "start": 22213.81, + "end": 22215.09, + "probability": 0.9016 + }, + { + "start": 22215.61, + "end": 22217.87, + "probability": 0.9604 + }, + { + "start": 22219.15, + "end": 22221.01, + "probability": 0.8515 + }, + { + "start": 22223.39, + "end": 22225.81, + "probability": 0.7836 + }, + { + "start": 22226.37, + "end": 22229.81, + "probability": 0.9909 + }, + { + "start": 22230.37, + "end": 22231.81, + "probability": 0.8482 + }, + { + "start": 22232.51, + "end": 22234.33, + "probability": 0.9095 + }, + { + "start": 22234.43, + "end": 22234.89, + "probability": 0.8436 + }, + { + "start": 22234.93, + "end": 22235.79, + "probability": 0.8937 + }, + { + "start": 22237.03, + "end": 22239.41, + "probability": 0.9277 + }, + { + "start": 22240.75, + "end": 22241.48, + "probability": 0.9951 + }, + { + "start": 22242.25, + "end": 22244.95, + "probability": 0.9836 + }, + { + "start": 22245.79, + "end": 22248.35, + "probability": 0.7692 + }, + { + "start": 22249.43, + "end": 22249.89, + "probability": 0.6812 + }, + { + "start": 22250.55, + "end": 22253.09, + "probability": 0.981 + }, + { + "start": 22254.53, + "end": 22257.35, + "probability": 0.9214 + }, + { + "start": 22257.47, + "end": 22258.39, + "probability": 0.8858 + }, + { + "start": 22259.27, + "end": 22260.19, + "probability": 0.4077 + }, + { + "start": 22260.23, + "end": 22261.41, + "probability": 0.788 + }, + { + "start": 22261.69, + "end": 22263.75, + "probability": 0.9435 + }, + { + "start": 22264.59, + "end": 22266.97, + "probability": 0.9942 + }, + { + "start": 22267.35, + "end": 22268.71, + "probability": 0.956 + }, + { + "start": 22269.33, + "end": 22271.73, + "probability": 0.9736 + }, + { + "start": 22272.61, + "end": 22275.05, + "probability": 0.6157 + }, + { + "start": 22275.53, + "end": 22276.59, + "probability": 0.8592 + }, + { + "start": 22276.95, + "end": 22283.03, + "probability": 0.9375 + }, + { + "start": 22283.03, + "end": 22284.85, + "probability": 0.6762 + }, + { + "start": 22285.81, + "end": 22285.99, + "probability": 0.5765 + }, + { + "start": 22288.94, + "end": 22294.59, + "probability": 0.9021 + }, + { + "start": 22295.29, + "end": 22295.83, + "probability": 0.6739 + }, + { + "start": 22297.65, + "end": 22302.43, + "probability": 0.8641 + }, + { + "start": 22303.99, + "end": 22305.09, + "probability": 0.9878 + }, + { + "start": 22305.57, + "end": 22307.39, + "probability": 0.9973 + }, + { + "start": 22307.51, + "end": 22308.93, + "probability": 0.9619 + }, + { + "start": 22309.41, + "end": 22311.23, + "probability": 0.9792 + }, + { + "start": 22311.43, + "end": 22311.91, + "probability": 0.9653 + }, + { + "start": 22312.45, + "end": 22313.37, + "probability": 0.9774 + }, + { + "start": 22313.51, + "end": 22314.53, + "probability": 0.8988 + }, + { + "start": 22315.41, + "end": 22318.37, + "probability": 0.9814 + }, + { + "start": 22318.93, + "end": 22323.27, + "probability": 0.9981 + }, + { + "start": 22323.87, + "end": 22326.77, + "probability": 0.9731 + }, + { + "start": 22326.87, + "end": 22328.73, + "probability": 0.9617 + }, + { + "start": 22328.81, + "end": 22332.95, + "probability": 0.9983 + }, + { + "start": 22333.63, + "end": 22334.11, + "probability": 0.9963 + }, + { + "start": 22335.59, + "end": 22338.07, + "probability": 0.9058 + }, + { + "start": 22339.51, + "end": 22344.81, + "probability": 0.738 + }, + { + "start": 22345.95, + "end": 22348.85, + "probability": 0.8066 + }, + { + "start": 22350.31, + "end": 22353.75, + "probability": 0.8302 + }, + { + "start": 22355.39, + "end": 22355.47, + "probability": 0.124 + }, + { + "start": 22355.47, + "end": 22357.17, + "probability": 0.632 + }, + { + "start": 22357.31, + "end": 22357.93, + "probability": 0.9898 + }, + { + "start": 22358.23, + "end": 22359.13, + "probability": 0.8603 + }, + { + "start": 22360.07, + "end": 22361.31, + "probability": 0.7331 + }, + { + "start": 22361.43, + "end": 22363.15, + "probability": 0.9162 + }, + { + "start": 22364.69, + "end": 22367.53, + "probability": 0.9756 + }, + { + "start": 22369.19, + "end": 22372.07, + "probability": 0.833 + }, + { + "start": 22372.81, + "end": 22377.59, + "probability": 0.9928 + }, + { + "start": 22379.55, + "end": 22382.91, + "probability": 0.9966 + }, + { + "start": 22383.03, + "end": 22387.47, + "probability": 0.9849 + }, + { + "start": 22388.07, + "end": 22389.61, + "probability": 0.9865 + }, + { + "start": 22390.13, + "end": 22390.33, + "probability": 0.9425 + }, + { + "start": 22391.75, + "end": 22392.27, + "probability": 0.2614 + }, + { + "start": 22392.45, + "end": 22396.95, + "probability": 0.9946 + }, + { + "start": 22397.35, + "end": 22399.07, + "probability": 0.9781 + }, + { + "start": 22400.19, + "end": 22404.23, + "probability": 0.9948 + }, + { + "start": 22404.93, + "end": 22406.01, + "probability": 0.9995 + }, + { + "start": 22406.57, + "end": 22408.33, + "probability": 0.7491 + }, + { + "start": 22409.43, + "end": 22412.05, + "probability": 0.9962 + }, + { + "start": 22412.65, + "end": 22417.67, + "probability": 0.9998 + }, + { + "start": 22417.67, + "end": 22422.01, + "probability": 0.9986 + }, + { + "start": 22422.51, + "end": 22426.13, + "probability": 0.9908 + }, + { + "start": 22426.61, + "end": 22430.04, + "probability": 0.9701 + }, + { + "start": 22430.29, + "end": 22434.61, + "probability": 0.9827 + }, + { + "start": 22435.29, + "end": 22438.03, + "probability": 0.9907 + }, + { + "start": 22439.63, + "end": 22443.51, + "probability": 0.9972 + }, + { + "start": 22443.51, + "end": 22446.71, + "probability": 0.9997 + }, + { + "start": 22447.37, + "end": 22447.67, + "probability": 0.5483 + }, + { + "start": 22447.77, + "end": 22450.85, + "probability": 0.9964 + }, + { + "start": 22451.61, + "end": 22452.89, + "probability": 0.9922 + }, + { + "start": 22453.75, + "end": 22455.71, + "probability": 0.9593 + }, + { + "start": 22456.97, + "end": 22460.21, + "probability": 0.9943 + }, + { + "start": 22460.83, + "end": 22462.33, + "probability": 0.9946 + }, + { + "start": 22462.45, + "end": 22464.09, + "probability": 0.9966 + }, + { + "start": 22464.47, + "end": 22464.57, + "probability": 0.1241 + }, + { + "start": 22464.57, + "end": 22465.77, + "probability": 0.5082 + }, + { + "start": 22468.35, + "end": 22470.65, + "probability": 0.9823 + }, + { + "start": 22470.79, + "end": 22470.95, + "probability": 0.4225 + }, + { + "start": 22471.11, + "end": 22473.81, + "probability": 0.7794 + }, + { + "start": 22474.23, + "end": 22475.73, + "probability": 0.9834 + }, + { + "start": 22477.11, + "end": 22480.49, + "probability": 0.957 + }, + { + "start": 22482.15, + "end": 22484.97, + "probability": 0.9777 + }, + { + "start": 22485.63, + "end": 22487.45, + "probability": 0.6494 + }, + { + "start": 22488.53, + "end": 22489.05, + "probability": 0.6682 + }, + { + "start": 22489.29, + "end": 22491.75, + "probability": 0.8354 + }, + { + "start": 22491.83, + "end": 22493.09, + "probability": 0.9658 + }, + { + "start": 22494.17, + "end": 22494.61, + "probability": 0.9738 + }, + { + "start": 22494.71, + "end": 22495.99, + "probability": 0.739 + }, + { + "start": 22496.52, + "end": 22500.85, + "probability": 0.9445 + }, + { + "start": 22501.69, + "end": 22502.19, + "probability": 0.7962 + }, + { + "start": 22502.31, + "end": 22502.89, + "probability": 0.9198 + }, + { + "start": 22502.95, + "end": 22507.05, + "probability": 0.9977 + }, + { + "start": 22507.05, + "end": 22510.05, + "probability": 0.9935 + }, + { + "start": 22511.05, + "end": 22511.9, + "probability": 0.6279 + }, + { + "start": 22512.41, + "end": 22513.06, + "probability": 0.95 + }, + { + "start": 22514.17, + "end": 22516.15, + "probability": 0.9792 + }, + { + "start": 22516.49, + "end": 22517.57, + "probability": 0.9668 + }, + { + "start": 22518.89, + "end": 22520.73, + "probability": 0.9525 + }, + { + "start": 22520.99, + "end": 22523.23, + "probability": 0.9985 + }, + { + "start": 22523.87, + "end": 22526.17, + "probability": 0.9775 + }, + { + "start": 22526.97, + "end": 22527.95, + "probability": 0.6744 + }, + { + "start": 22528.17, + "end": 22529.03, + "probability": 0.6171 + }, + { + "start": 22529.15, + "end": 22531.15, + "probability": 0.9456 + }, + { + "start": 22531.99, + "end": 22532.85, + "probability": 0.9341 + }, + { + "start": 22559.77, + "end": 22560.03, + "probability": 0.8777 + }, + { + "start": 22560.83, + "end": 22562.49, + "probability": 0.6363 + }, + { + "start": 22567.89, + "end": 22568.63, + "probability": 0.6774 + }, + { + "start": 22570.07, + "end": 22571.43, + "probability": 0.4512 + }, + { + "start": 22571.53, + "end": 22574.03, + "probability": 0.938 + }, + { + "start": 22574.39, + "end": 22576.23, + "probability": 0.8233 + }, + { + "start": 22576.83, + "end": 22578.91, + "probability": 0.9261 + }, + { + "start": 22579.15, + "end": 22579.29, + "probability": 0.2882 + }, + { + "start": 22579.29, + "end": 22579.39, + "probability": 0.0206 + }, + { + "start": 22580.55, + "end": 22581.97, + "probability": 0.9415 + }, + { + "start": 22581.97, + "end": 22582.67, + "probability": 0.5641 + }, + { + "start": 22582.99, + "end": 22584.29, + "probability": 0.6194 + }, + { + "start": 22588.67, + "end": 22594.09, + "probability": 0.7989 + }, + { + "start": 22597.49, + "end": 22601.05, + "probability": 0.8916 + }, + { + "start": 22602.95, + "end": 22606.29, + "probability": 0.8672 + }, + { + "start": 22608.43, + "end": 22609.91, + "probability": 0.6991 + }, + { + "start": 22610.47, + "end": 22610.99, + "probability": 0.9715 + }, + { + "start": 22611.05, + "end": 22612.67, + "probability": 0.8594 + }, + { + "start": 22612.67, + "end": 22616.77, + "probability": 0.6165 + }, + { + "start": 22616.83, + "end": 22620.99, + "probability": 0.8816 + }, + { + "start": 22622.81, + "end": 22624.67, + "probability": 0.6484 + }, + { + "start": 22625.91, + "end": 22628.01, + "probability": 0.7224 + }, + { + "start": 22629.51, + "end": 22631.31, + "probability": 0.8265 + }, + { + "start": 22631.57, + "end": 22634.45, + "probability": 0.988 + }, + { + "start": 22635.23, + "end": 22639.81, + "probability": 0.999 + }, + { + "start": 22639.99, + "end": 22641.23, + "probability": 0.9257 + }, + { + "start": 22642.01, + "end": 22642.77, + "probability": 0.9709 + }, + { + "start": 22644.39, + "end": 22645.33, + "probability": 0.9833 + }, + { + "start": 22647.73, + "end": 22648.71, + "probability": 0.8855 + }, + { + "start": 22651.75, + "end": 22654.77, + "probability": 0.9998 + }, + { + "start": 22656.13, + "end": 22660.29, + "probability": 0.9985 + }, + { + "start": 22661.91, + "end": 22663.81, + "probability": 0.9314 + }, + { + "start": 22665.07, + "end": 22666.69, + "probability": 0.9754 + }, + { + "start": 22668.39, + "end": 22669.67, + "probability": 0.9957 + }, + { + "start": 22672.37, + "end": 22676.49, + "probability": 0.7187 + }, + { + "start": 22678.17, + "end": 22678.63, + "probability": 0.8896 + }, + { + "start": 22679.27, + "end": 22680.53, + "probability": 0.7082 + }, + { + "start": 22682.95, + "end": 22685.85, + "probability": 0.9598 + }, + { + "start": 22686.85, + "end": 22689.39, + "probability": 0.9956 + }, + { + "start": 22691.79, + "end": 22692.35, + "probability": 0.61 + }, + { + "start": 22693.25, + "end": 22694.87, + "probability": 0.9928 + }, + { + "start": 22695.77, + "end": 22699.15, + "probability": 0.9877 + }, + { + "start": 22701.63, + "end": 22702.99, + "probability": 0.9714 + }, + { + "start": 22703.23, + "end": 22706.19, + "probability": 0.9874 + }, + { + "start": 22706.19, + "end": 22709.85, + "probability": 0.6866 + }, + { + "start": 22710.57, + "end": 22713.53, + "probability": 0.9059 + }, + { + "start": 22714.63, + "end": 22715.29, + "probability": 0.8317 + }, + { + "start": 22716.39, + "end": 22716.63, + "probability": 0.9151 + }, + { + "start": 22717.45, + "end": 22719.55, + "probability": 0.9803 + }, + { + "start": 22720.35, + "end": 22722.31, + "probability": 0.7885 + }, + { + "start": 22723.43, + "end": 22728.13, + "probability": 0.9957 + }, + { + "start": 22729.77, + "end": 22732.03, + "probability": 0.9437 + }, + { + "start": 22732.93, + "end": 22734.89, + "probability": 0.9648 + }, + { + "start": 22735.07, + "end": 22739.73, + "probability": 0.9761 + }, + { + "start": 22739.97, + "end": 22740.97, + "probability": 0.9634 + }, + { + "start": 22741.69, + "end": 22744.19, + "probability": 0.995 + }, + { + "start": 22745.25, + "end": 22746.17, + "probability": 0.816 + }, + { + "start": 22746.83, + "end": 22747.91, + "probability": 0.7369 + }, + { + "start": 22748.83, + "end": 22750.65, + "probability": 0.9484 + }, + { + "start": 22751.59, + "end": 22753.15, + "probability": 0.9949 + }, + { + "start": 22753.99, + "end": 22755.65, + "probability": 0.9556 + }, + { + "start": 22757.51, + "end": 22760.81, + "probability": 0.7852 + }, + { + "start": 22762.27, + "end": 22764.25, + "probability": 0.9563 + }, + { + "start": 22766.05, + "end": 22770.41, + "probability": 0.9982 + }, + { + "start": 22772.05, + "end": 22772.99, + "probability": 0.6091 + }, + { + "start": 22774.75, + "end": 22776.47, + "probability": 0.998 + }, + { + "start": 22777.43, + "end": 22779.53, + "probability": 0.9649 + }, + { + "start": 22780.29, + "end": 22781.55, + "probability": 0.8823 + }, + { + "start": 22781.95, + "end": 22784.11, + "probability": 0.9695 + }, + { + "start": 22785.45, + "end": 22790.43, + "probability": 0.9932 + }, + { + "start": 22791.65, + "end": 22792.63, + "probability": 0.7745 + }, + { + "start": 22793.79, + "end": 22800.53, + "probability": 0.9851 + }, + { + "start": 22801.53, + "end": 22803.77, + "probability": 0.917 + }, + { + "start": 22805.15, + "end": 22808.57, + "probability": 0.9906 + }, + { + "start": 22809.71, + "end": 22812.79, + "probability": 0.9098 + }, + { + "start": 22813.75, + "end": 22817.05, + "probability": 0.9969 + }, + { + "start": 22817.21, + "end": 22819.11, + "probability": 0.8291 + }, + { + "start": 22819.75, + "end": 22821.51, + "probability": 0.9784 + }, + { + "start": 22823.33, + "end": 22824.21, + "probability": 0.8311 + }, + { + "start": 22824.89, + "end": 22826.63, + "probability": 0.7428 + }, + { + "start": 22828.11, + "end": 22829.19, + "probability": 0.9605 + }, + { + "start": 22830.61, + "end": 22831.85, + "probability": 0.8798 + }, + { + "start": 22832.99, + "end": 22835.41, + "probability": 0.7932 + }, + { + "start": 22836.69, + "end": 22839.05, + "probability": 0.9156 + }, + { + "start": 22839.75, + "end": 22841.17, + "probability": 0.998 + }, + { + "start": 22842.33, + "end": 22843.93, + "probability": 0.9966 + }, + { + "start": 22844.21, + "end": 22845.29, + "probability": 0.9624 + }, + { + "start": 22845.53, + "end": 22852.61, + "probability": 0.9991 + }, + { + "start": 22853.91, + "end": 22854.95, + "probability": 0.7177 + }, + { + "start": 22856.13, + "end": 22859.53, + "probability": 0.9186 + }, + { + "start": 22860.91, + "end": 22861.09, + "probability": 0.7788 + }, + { + "start": 22862.51, + "end": 22866.01, + "probability": 0.9969 + }, + { + "start": 22866.41, + "end": 22868.77, + "probability": 0.9885 + }, + { + "start": 22869.59, + "end": 22872.29, + "probability": 0.992 + }, + { + "start": 22873.47, + "end": 22875.89, + "probability": 0.889 + }, + { + "start": 22877.59, + "end": 22879.35, + "probability": 0.9735 + }, + { + "start": 22879.59, + "end": 22882.07, + "probability": 0.9891 + }, + { + "start": 22882.83, + "end": 22886.71, + "probability": 0.7976 + }, + { + "start": 22886.95, + "end": 22887.83, + "probability": 0.795 + }, + { + "start": 22887.93, + "end": 22888.71, + "probability": 0.8764 + }, + { + "start": 22889.31, + "end": 22890.53, + "probability": 0.6276 + }, + { + "start": 22891.35, + "end": 22893.99, + "probability": 0.6823 + }, + { + "start": 22894.95, + "end": 22896.5, + "probability": 0.9336 + }, + { + "start": 22897.45, + "end": 22899.02, + "probability": 0.8442 + }, + { + "start": 22900.27, + "end": 22901.87, + "probability": 0.5799 + }, + { + "start": 22902.11, + "end": 22903.53, + "probability": 0.8717 + }, + { + "start": 22903.63, + "end": 22906.13, + "probability": 0.9985 + }, + { + "start": 22906.57, + "end": 22906.87, + "probability": 0.9792 + }, + { + "start": 22907.39, + "end": 22908.05, + "probability": 0.7717 + }, + { + "start": 22908.77, + "end": 22910.83, + "probability": 0.9676 + }, + { + "start": 22910.99, + "end": 22912.89, + "probability": 0.9648 + }, + { + "start": 22913.91, + "end": 22914.13, + "probability": 0.8384 + }, + { + "start": 22915.09, + "end": 22916.75, + "probability": 0.999 + }, + { + "start": 22917.67, + "end": 22921.97, + "probability": 0.8719 + }, + { + "start": 22922.13, + "end": 22923.09, + "probability": 0.9229 + }, + { + "start": 22925.29, + "end": 22925.91, + "probability": 0.9976 + }, + { + "start": 22928.01, + "end": 22928.66, + "probability": 0.9443 + }, + { + "start": 22929.39, + "end": 22931.89, + "probability": 0.8796 + }, + { + "start": 22931.97, + "end": 22934.17, + "probability": 0.9897 + }, + { + "start": 22935.11, + "end": 22937.49, + "probability": 0.7503 + }, + { + "start": 22938.49, + "end": 22940.71, + "probability": 0.9748 + }, + { + "start": 22942.63, + "end": 22943.83, + "probability": 0.8474 + }, + { + "start": 22944.03, + "end": 22950.11, + "probability": 0.9904 + }, + { + "start": 22950.17, + "end": 22950.6, + "probability": 0.79 + }, + { + "start": 22951.59, + "end": 22951.93, + "probability": 0.4795 + }, + { + "start": 22952.01, + "end": 22955.37, + "probability": 0.9939 + }, + { + "start": 22956.55, + "end": 22960.09, + "probability": 0.8876 + }, + { + "start": 22961.21, + "end": 22962.99, + "probability": 0.98 + }, + { + "start": 22963.77, + "end": 22965.81, + "probability": 0.9261 + }, + { + "start": 22967.27, + "end": 22969.97, + "probability": 0.9774 + }, + { + "start": 22970.39, + "end": 22973.41, + "probability": 0.9847 + }, + { + "start": 22973.57, + "end": 22977.03, + "probability": 0.9827 + }, + { + "start": 22977.51, + "end": 22978.73, + "probability": 0.9121 + }, + { + "start": 22979.51, + "end": 22980.64, + "probability": 0.9941 + }, + { + "start": 22981.55, + "end": 22984.39, + "probability": 0.751 + }, + { + "start": 22984.47, + "end": 22985.47, + "probability": 0.9685 + }, + { + "start": 22985.55, + "end": 22986.39, + "probability": 0.8377 + }, + { + "start": 22986.55, + "end": 22986.77, + "probability": 0.8876 + }, + { + "start": 22987.03, + "end": 22987.83, + "probability": 0.8503 + }, + { + "start": 22988.83, + "end": 22989.59, + "probability": 0.9602 + }, + { + "start": 22989.63, + "end": 22994.91, + "probability": 0.9795 + }, + { + "start": 22995.59, + "end": 22998.29, + "probability": 0.9517 + }, + { + "start": 22999.81, + "end": 23000.97, + "probability": 0.9403 + }, + { + "start": 23003.07, + "end": 23004.29, + "probability": 0.9612 + }, + { + "start": 23004.41, + "end": 23007.65, + "probability": 0.9756 + }, + { + "start": 23008.99, + "end": 23010.05, + "probability": 0.9873 + }, + { + "start": 23010.75, + "end": 23012.07, + "probability": 0.9751 + }, + { + "start": 23013.05, + "end": 23013.67, + "probability": 0.9652 + }, + { + "start": 23014.41, + "end": 23018.07, + "probability": 0.9979 + }, + { + "start": 23019.57, + "end": 23020.53, + "probability": 0.7456 + }, + { + "start": 23021.53, + "end": 23023.87, + "probability": 0.9945 + }, + { + "start": 23025.63, + "end": 23026.83, + "probability": 0.5436 + }, + { + "start": 23028.07, + "end": 23029.61, + "probability": 0.9344 + }, + { + "start": 23029.83, + "end": 23030.13, + "probability": 0.8265 + }, + { + "start": 23030.37, + "end": 23031.07, + "probability": 0.9331 + }, + { + "start": 23032.11, + "end": 23033.49, + "probability": 0.6113 + }, + { + "start": 23034.81, + "end": 23037.57, + "probability": 0.9968 + }, + { + "start": 23038.29, + "end": 23040.6, + "probability": 0.9434 + }, + { + "start": 23041.29, + "end": 23041.87, + "probability": 0.9117 + }, + { + "start": 23042.65, + "end": 23046.07, + "probability": 0.9937 + }, + { + "start": 23046.91, + "end": 23049.19, + "probability": 0.9763 + }, + { + "start": 23050.49, + "end": 23051.93, + "probability": 0.9994 + }, + { + "start": 23052.63, + "end": 23055.29, + "probability": 0.7144 + }, + { + "start": 23056.07, + "end": 23056.87, + "probability": 0.7598 + }, + { + "start": 23057.51, + "end": 23059.13, + "probability": 0.8521 + }, + { + "start": 23060.41, + "end": 23062.39, + "probability": 0.9933 + }, + { + "start": 23062.93, + "end": 23064.93, + "probability": 0.7054 + }, + { + "start": 23066.05, + "end": 23067.79, + "probability": 0.9951 + }, + { + "start": 23068.53, + "end": 23073.47, + "probability": 0.9964 + }, + { + "start": 23073.65, + "end": 23075.53, + "probability": 0.9916 + }, + { + "start": 23075.99, + "end": 23076.81, + "probability": 0.413 + }, + { + "start": 23076.95, + "end": 23082.27, + "probability": 0.9897 + }, + { + "start": 23083.29, + "end": 23084.41, + "probability": 0.9216 + }, + { + "start": 23085.23, + "end": 23088.07, + "probability": 0.9843 + }, + { + "start": 23089.37, + "end": 23089.69, + "probability": 0.6854 + }, + { + "start": 23091.49, + "end": 23092.05, + "probability": 0.6333 + }, + { + "start": 23092.79, + "end": 23093.33, + "probability": 0.7031 + }, + { + "start": 23093.53, + "end": 23094.44, + "probability": 0.8777 + }, + { + "start": 23095.01, + "end": 23096.37, + "probability": 0.9688 + }, + { + "start": 23096.81, + "end": 23097.21, + "probability": 0.779 + }, + { + "start": 23097.23, + "end": 23098.57, + "probability": 0.9971 + }, + { + "start": 23098.59, + "end": 23101.23, + "probability": 0.9513 + }, + { + "start": 23101.79, + "end": 23105.75, + "probability": 0.9455 + }, + { + "start": 23106.29, + "end": 23108.03, + "probability": 0.9446 + }, + { + "start": 23108.35, + "end": 23108.69, + "probability": 0.8199 + }, + { + "start": 23109.15, + "end": 23114.09, + "probability": 0.9717 + }, + { + "start": 23114.49, + "end": 23115.01, + "probability": 0.9712 + }, + { + "start": 23115.69, + "end": 23117.25, + "probability": 0.8826 + }, + { + "start": 23118.13, + "end": 23120.85, + "probability": 0.9008 + }, + { + "start": 23120.91, + "end": 23122.81, + "probability": 0.9683 + }, + { + "start": 23122.93, + "end": 23123.62, + "probability": 0.9883 + }, + { + "start": 23125.03, + "end": 23127.43, + "probability": 0.7653 + }, + { + "start": 23127.57, + "end": 23127.81, + "probability": 0.9303 + }, + { + "start": 23129.11, + "end": 23131.65, + "probability": 0.9927 + }, + { + "start": 23132.33, + "end": 23133.99, + "probability": 0.819 + }, + { + "start": 23135.35, + "end": 23137.69, + "probability": 0.9897 + }, + { + "start": 23138.17, + "end": 23138.27, + "probability": 0.8022 + }, + { + "start": 23139.07, + "end": 23139.33, + "probability": 0.4936 + }, + { + "start": 23139.35, + "end": 23140.13, + "probability": 0.8032 + }, + { + "start": 23141.41, + "end": 23143.77, + "probability": 0.9934 + }, + { + "start": 23144.93, + "end": 23146.16, + "probability": 0.9839 + }, + { + "start": 23147.29, + "end": 23147.81, + "probability": 0.4127 + }, + { + "start": 23147.89, + "end": 23150.43, + "probability": 0.9816 + }, + { + "start": 23150.63, + "end": 23153.41, + "probability": 0.8604 + }, + { + "start": 23154.17, + "end": 23158.17, + "probability": 0.9932 + }, + { + "start": 23158.91, + "end": 23163.83, + "probability": 0.5832 + }, + { + "start": 23163.83, + "end": 23164.51, + "probability": 0.9814 + }, + { + "start": 23165.21, + "end": 23167.93, + "probability": 0.9941 + }, + { + "start": 23168.17, + "end": 23169.43, + "probability": 0.9952 + }, + { + "start": 23170.15, + "end": 23170.97, + "probability": 0.9823 + }, + { + "start": 23172.43, + "end": 23172.61, + "probability": 0.7776 + }, + { + "start": 23172.81, + "end": 23177.39, + "probability": 0.715 + }, + { + "start": 23178.35, + "end": 23179.13, + "probability": 0.6543 + }, + { + "start": 23180.65, + "end": 23181.05, + "probability": 0.9595 + }, + { + "start": 23181.27, + "end": 23184.13, + "probability": 0.9161 + }, + { + "start": 23184.29, + "end": 23186.75, + "probability": 0.8801 + }, + { + "start": 23187.27, + "end": 23188.71, + "probability": 0.7676 + }, + { + "start": 23188.79, + "end": 23189.41, + "probability": 0.796 + }, + { + "start": 23190.61, + "end": 23191.33, + "probability": 0.5002 + }, + { + "start": 23191.55, + "end": 23191.97, + "probability": 0.823 + }, + { + "start": 23192.09, + "end": 23193.99, + "probability": 0.9946 + }, + { + "start": 23194.81, + "end": 23197.25, + "probability": 0.9012 + }, + { + "start": 23197.91, + "end": 23201.55, + "probability": 0.9982 + }, + { + "start": 23201.55, + "end": 23204.99, + "probability": 0.998 + }, + { + "start": 23205.89, + "end": 23207.51, + "probability": 0.5565 + }, + { + "start": 23209.07, + "end": 23209.75, + "probability": 0.3499 + }, + { + "start": 23211.03, + "end": 23214.41, + "probability": 0.9927 + }, + { + "start": 23214.43, + "end": 23216.11, + "probability": 0.9986 + }, + { + "start": 23216.41, + "end": 23217.03, + "probability": 0.9063 + }, + { + "start": 23217.79, + "end": 23218.73, + "probability": 0.9475 + }, + { + "start": 23219.87, + "end": 23222.41, + "probability": 0.9783 + }, + { + "start": 23222.47, + "end": 23223.13, + "probability": 0.9075 + }, + { + "start": 23223.25, + "end": 23223.71, + "probability": 0.6939 + }, + { + "start": 23223.83, + "end": 23224.05, + "probability": 0.6257 + }, + { + "start": 23224.89, + "end": 23225.95, + "probability": 0.6018 + }, + { + "start": 23227.11, + "end": 23228.79, + "probability": 0.9201 + }, + { + "start": 23230.11, + "end": 23231.46, + "probability": 0.5728 + }, + { + "start": 23232.11, + "end": 23234.8, + "probability": 0.9814 + }, + { + "start": 23235.37, + "end": 23235.53, + "probability": 0.5005 + }, + { + "start": 23235.57, + "end": 23236.61, + "probability": 0.9644 + }, + { + "start": 23236.79, + "end": 23237.77, + "probability": 0.9854 + }, + { + "start": 23238.19, + "end": 23238.91, + "probability": 0.8338 + }, + { + "start": 23239.69, + "end": 23242.13, + "probability": 0.8377 + }, + { + "start": 23242.35, + "end": 23243.53, + "probability": 0.9029 + }, + { + "start": 23245.77, + "end": 23245.91, + "probability": 0.4033 + }, + { + "start": 23246.01, + "end": 23246.83, + "probability": 0.9784 + }, + { + "start": 23247.13, + "end": 23248.39, + "probability": 0.9418 + }, + { + "start": 23249.15, + "end": 23250.73, + "probability": 0.9887 + }, + { + "start": 23251.15, + "end": 23253.63, + "probability": 0.9669 + }, + { + "start": 23254.55, + "end": 23256.67, + "probability": 0.9907 + }, + { + "start": 23257.17, + "end": 23259.05, + "probability": 0.9943 + }, + { + "start": 23259.29, + "end": 23261.95, + "probability": 0.9934 + }, + { + "start": 23261.99, + "end": 23262.09, + "probability": 0.6924 + }, + { + "start": 23262.33, + "end": 23262.87, + "probability": 0.9021 + }, + { + "start": 23263.19, + "end": 23264.07, + "probability": 0.8809 + }, + { + "start": 23264.19, + "end": 23264.85, + "probability": 0.9775 + }, + { + "start": 23264.91, + "end": 23266.09, + "probability": 0.8057 + }, + { + "start": 23266.27, + "end": 23267.27, + "probability": 0.99 + }, + { + "start": 23268.39, + "end": 23270.63, + "probability": 0.9993 + }, + { + "start": 23271.35, + "end": 23272.53, + "probability": 0.8447 + }, + { + "start": 23273.71, + "end": 23273.71, + "probability": 0.896 + }, + { + "start": 23274.45, + "end": 23275.43, + "probability": 0.9969 + }, + { + "start": 23276.31, + "end": 23278.17, + "probability": 0.9305 + }, + { + "start": 23278.23, + "end": 23279.49, + "probability": 0.9668 + }, + { + "start": 23279.85, + "end": 23280.89, + "probability": 0.8726 + }, + { + "start": 23281.69, + "end": 23284.35, + "probability": 0.9902 + }, + { + "start": 23285.05, + "end": 23286.99, + "probability": 0.9786 + }, + { + "start": 23288.01, + "end": 23289.93, + "probability": 0.9977 + }, + { + "start": 23290.59, + "end": 23294.45, + "probability": 0.7235 + }, + { + "start": 23294.67, + "end": 23296.02, + "probability": 0.8633 + }, + { + "start": 23296.31, + "end": 23296.85, + "probability": 0.5824 + }, + { + "start": 23296.85, + "end": 23302.03, + "probability": 0.9795 + }, + { + "start": 23302.13, + "end": 23303.37, + "probability": 0.8625 + }, + { + "start": 23304.33, + "end": 23305.37, + "probability": 0.8032 + }, + { + "start": 23306.91, + "end": 23307.79, + "probability": 0.8953 + }, + { + "start": 23307.89, + "end": 23308.43, + "probability": 0.7266 + }, + { + "start": 23309.41, + "end": 23311.4, + "probability": 0.9956 + }, + { + "start": 23312.65, + "end": 23314.57, + "probability": 0.9293 + }, + { + "start": 23314.85, + "end": 23314.97, + "probability": 0.5499 + }, + { + "start": 23315.11, + "end": 23320.19, + "probability": 0.7821 + }, + { + "start": 23321.33, + "end": 23322.31, + "probability": 0.8975 + }, + { + "start": 23322.37, + "end": 23324.45, + "probability": 0.9231 + }, + { + "start": 23325.17, + "end": 23325.77, + "probability": 0.99 + }, + { + "start": 23326.69, + "end": 23334.33, + "probability": 0.7949 + }, + { + "start": 23334.45, + "end": 23334.73, + "probability": 0.4128 + }, + { + "start": 23334.89, + "end": 23337.37, + "probability": 0.9468 + }, + { + "start": 23337.39, + "end": 23338.63, + "probability": 0.7601 + }, + { + "start": 23339.63, + "end": 23339.73, + "probability": 0.749 + }, + { + "start": 23340.53, + "end": 23345.65, + "probability": 0.9946 + }, + { + "start": 23345.65, + "end": 23349.51, + "probability": 0.9839 + }, + { + "start": 23350.25, + "end": 23355.15, + "probability": 0.9471 + }, + { + "start": 23355.37, + "end": 23355.93, + "probability": 0.6637 + }, + { + "start": 23356.73, + "end": 23358.04, + "probability": 0.9827 + }, + { + "start": 23358.29, + "end": 23359.67, + "probability": 0.9498 + }, + { + "start": 23360.45, + "end": 23361.09, + "probability": 0.7007 + }, + { + "start": 23361.65, + "end": 23363.31, + "probability": 0.9651 + }, + { + "start": 23364.17, + "end": 23365.35, + "probability": 0.968 + }, + { + "start": 23365.57, + "end": 23366.22, + "probability": 0.688 + }, + { + "start": 23366.35, + "end": 23367.43, + "probability": 0.8747 + }, + { + "start": 23367.47, + "end": 23368.77, + "probability": 0.9542 + }, + { + "start": 23370.29, + "end": 23372.67, + "probability": 0.988 + }, + { + "start": 23373.19, + "end": 23375.19, + "probability": 0.9004 + }, + { + "start": 23375.31, + "end": 23375.49, + "probability": 0.7049 + }, + { + "start": 23376.53, + "end": 23379.05, + "probability": 0.775 + }, + { + "start": 23380.01, + "end": 23381.85, + "probability": 0.8618 + }, + { + "start": 23382.59, + "end": 23383.83, + "probability": 0.8299 + }, + { + "start": 23387.38, + "end": 23390.19, + "probability": 0.7061 + }, + { + "start": 23392.81, + "end": 23397.45, + "probability": 0.0459 + }, + { + "start": 23398.01, + "end": 23399.11, + "probability": 0.0998 + }, + { + "start": 23401.61, + "end": 23402.73, + "probability": 0.1036 + }, + { + "start": 23433.19, + "end": 23438.27, + "probability": 0.9933 + }, + { + "start": 23440.33, + "end": 23440.43, + "probability": 0.0957 + }, + { + "start": 23443.57, + "end": 23444.95, + "probability": 0.7957 + }, + { + "start": 23445.65, + "end": 23446.77, + "probability": 0.42 + }, + { + "start": 23447.83, + "end": 23451.15, + "probability": 0.6818 + }, + { + "start": 23453.27, + "end": 23454.81, + "probability": 0.7828 + }, + { + "start": 23455.91, + "end": 23456.47, + "probability": 0.043 + }, + { + "start": 23458.49, + "end": 23462.15, + "probability": 0.2167 + }, + { + "start": 23462.15, + "end": 23462.15, + "probability": 0.1091 + }, + { + "start": 23462.15, + "end": 23463.13, + "probability": 0.4251 + }, + { + "start": 23466.11, + "end": 23466.25, + "probability": 0.3365 + }, + { + "start": 23466.25, + "end": 23466.33, + "probability": 0.1061 + }, + { + "start": 23466.33, + "end": 23467.99, + "probability": 0.0333 + }, + { + "start": 23468.55, + "end": 23470.51, + "probability": 0.4372 + }, + { + "start": 23474.19, + "end": 23478.95, + "probability": 0.966 + }, + { + "start": 23480.17, + "end": 23481.78, + "probability": 0.7123 + }, + { + "start": 23482.57, + "end": 23485.21, + "probability": 0.6994 + }, + { + "start": 23485.35, + "end": 23487.69, + "probability": 0.9582 + }, + { + "start": 23488.01, + "end": 23494.51, + "probability": 0.9668 + }, + { + "start": 23496.27, + "end": 23498.31, + "probability": 0.9561 + }, + { + "start": 23500.59, + "end": 23504.71, + "probability": 0.9893 + }, + { + "start": 23505.95, + "end": 23507.45, + "probability": 0.9803 + }, + { + "start": 23508.21, + "end": 23508.73, + "probability": 0.9443 + }, + { + "start": 23510.93, + "end": 23511.63, + "probability": 0.776 + }, + { + "start": 23513.75, + "end": 23514.61, + "probability": 0.739 + }, + { + "start": 23516.01, + "end": 23517.57, + "probability": 0.804 + }, + { + "start": 23521.35, + "end": 23523.97, + "probability": 0.8577 + }, + { + "start": 23524.31, + "end": 23525.43, + "probability": 0.9807 + }, + { + "start": 23525.59, + "end": 23530.23, + "probability": 0.9956 + }, + { + "start": 23530.29, + "end": 23533.45, + "probability": 0.9607 + }, + { + "start": 23534.73, + "end": 23538.07, + "probability": 0.6919 + }, + { + "start": 23538.75, + "end": 23543.73, + "probability": 0.8154 + }, + { + "start": 23545.07, + "end": 23549.39, + "probability": 0.9879 + }, + { + "start": 23550.17, + "end": 23550.47, + "probability": 0.8603 + }, + { + "start": 23550.53, + "end": 23551.09, + "probability": 0.8957 + }, + { + "start": 23551.15, + "end": 23553.89, + "probability": 0.825 + }, + { + "start": 23555.33, + "end": 23562.81, + "probability": 0.9341 + }, + { + "start": 23562.81, + "end": 23565.8, + "probability": 0.8558 + }, + { + "start": 23566.05, + "end": 23566.75, + "probability": 0.3645 + }, + { + "start": 23567.37, + "end": 23569.79, + "probability": 0.7363 + }, + { + "start": 23570.83, + "end": 23574.91, + "probability": 0.906 + }, + { + "start": 23575.91, + "end": 23577.55, + "probability": 0.9038 + }, + { + "start": 23577.95, + "end": 23580.39, + "probability": 0.9037 + }, + { + "start": 23580.57, + "end": 23586.67, + "probability": 0.9382 + }, + { + "start": 23587.13, + "end": 23589.33, + "probability": 0.9526 + }, + { + "start": 23589.53, + "end": 23590.43, + "probability": 0.7844 + }, + { + "start": 23590.47, + "end": 23592.03, + "probability": 0.8513 + }, + { + "start": 23592.25, + "end": 23592.67, + "probability": 0.4197 + }, + { + "start": 23592.89, + "end": 23598.99, + "probability": 0.9873 + }, + { + "start": 23598.99, + "end": 23603.21, + "probability": 0.9742 + }, + { + "start": 23603.45, + "end": 23606.27, + "probability": 0.9855 + }, + { + "start": 23607.59, + "end": 23609.39, + "probability": 0.9497 + }, + { + "start": 23609.49, + "end": 23614.83, + "probability": 0.9943 + }, + { + "start": 23615.77, + "end": 23617.29, + "probability": 0.8334 + }, + { + "start": 23617.83, + "end": 23621.77, + "probability": 0.9665 + }, + { + "start": 23623.23, + "end": 23625.93, + "probability": 0.9963 + }, + { + "start": 23626.57, + "end": 23630.89, + "probability": 0.9964 + }, + { + "start": 23630.89, + "end": 23634.39, + "probability": 0.6519 + }, + { + "start": 23636.35, + "end": 23638.93, + "probability": 0.9979 + }, + { + "start": 23640.71, + "end": 23644.37, + "probability": 0.999 + }, + { + "start": 23645.11, + "end": 23646.27, + "probability": 0.9502 + }, + { + "start": 23647.95, + "end": 23650.31, + "probability": 0.8972 + }, + { + "start": 23652.29, + "end": 23655.59, + "probability": 0.9992 + }, + { + "start": 23657.53, + "end": 23658.95, + "probability": 0.9944 + }, + { + "start": 23660.11, + "end": 23661.09, + "probability": 0.9883 + }, + { + "start": 23662.21, + "end": 23662.85, + "probability": 0.8315 + }, + { + "start": 23664.05, + "end": 23667.99, + "probability": 0.9305 + }, + { + "start": 23669.37, + "end": 23670.17, + "probability": 0.9823 + }, + { + "start": 23671.65, + "end": 23675.65, + "probability": 0.987 + }, + { + "start": 23676.19, + "end": 23679.77, + "probability": 0.9755 + }, + { + "start": 23680.81, + "end": 23685.53, + "probability": 0.9964 + }, + { + "start": 23686.33, + "end": 23687.79, + "probability": 0.9221 + }, + { + "start": 23690.05, + "end": 23691.55, + "probability": 0.982 + }, + { + "start": 23693.31, + "end": 23694.63, + "probability": 0.8525 + }, + { + "start": 23696.37, + "end": 23697.01, + "probability": 0.8086 + }, + { + "start": 23697.57, + "end": 23698.51, + "probability": 0.8218 + }, + { + "start": 23699.11, + "end": 23699.73, + "probability": 0.1867 + }, + { + "start": 23700.55, + "end": 23702.33, + "probability": 0.723 + }, + { + "start": 23703.45, + "end": 23704.21, + "probability": 0.8257 + }, + { + "start": 23707.17, + "end": 23708.65, + "probability": 0.6982 + }, + { + "start": 23709.13, + "end": 23712.49, + "probability": 0.984 + }, + { + "start": 23714.11, + "end": 23715.39, + "probability": 0.9175 + }, + { + "start": 23716.09, + "end": 23717.45, + "probability": 0.965 + }, + { + "start": 23717.89, + "end": 23722.39, + "probability": 0.9736 + }, + { + "start": 23724.21, + "end": 23725.44, + "probability": 0.9551 + }, + { + "start": 23726.11, + "end": 23727.11, + "probability": 0.8852 + }, + { + "start": 23727.95, + "end": 23732.11, + "probability": 0.9836 + }, + { + "start": 23733.31, + "end": 23738.01, + "probability": 0.9803 + }, + { + "start": 23740.53, + "end": 23741.6, + "probability": 0.9901 + }, + { + "start": 23742.61, + "end": 23744.25, + "probability": 0.9872 + }, + { + "start": 23745.55, + "end": 23747.59, + "probability": 0.9845 + }, + { + "start": 23748.45, + "end": 23751.17, + "probability": 0.8843 + }, + { + "start": 23752.87, + "end": 23755.29, + "probability": 0.8033 + }, + { + "start": 23757.35, + "end": 23760.15, + "probability": 0.9682 + }, + { + "start": 23761.07, + "end": 23763.17, + "probability": 0.8332 + }, + { + "start": 23763.75, + "end": 23765.45, + "probability": 0.9392 + }, + { + "start": 23767.13, + "end": 23767.99, + "probability": 0.8145 + }, + { + "start": 23768.61, + "end": 23770.05, + "probability": 0.9235 + }, + { + "start": 23772.77, + "end": 23775.89, + "probability": 0.5094 + }, + { + "start": 23776.71, + "end": 23777.97, + "probability": 0.2209 + }, + { + "start": 23778.65, + "end": 23780.15, + "probability": 0.9734 + }, + { + "start": 23782.41, + "end": 23783.37, + "probability": 0.4729 + }, + { + "start": 23783.53, + "end": 23784.47, + "probability": 0.9064 + }, + { + "start": 23784.81, + "end": 23788.25, + "probability": 0.9001 + }, + { + "start": 23788.63, + "end": 23789.11, + "probability": 0.9055 + }, + { + "start": 23790.17, + "end": 23791.23, + "probability": 0.9709 + }, + { + "start": 23792.05, + "end": 23793.27, + "probability": 0.9891 + }, + { + "start": 23795.45, + "end": 23798.33, + "probability": 0.9624 + }, + { + "start": 23799.43, + "end": 23801.63, + "probability": 0.8775 + }, + { + "start": 23802.45, + "end": 23805.21, + "probability": 0.7727 + }, + { + "start": 23806.39, + "end": 23807.44, + "probability": 0.8532 + }, + { + "start": 23807.53, + "end": 23808.75, + "probability": 0.9681 + }, + { + "start": 23808.81, + "end": 23810.61, + "probability": 0.846 + }, + { + "start": 23811.45, + "end": 23813.29, + "probability": 0.9492 + }, + { + "start": 23814.79, + "end": 23817.45, + "probability": 0.7643 + }, + { + "start": 23818.59, + "end": 23821.57, + "probability": 0.9748 + }, + { + "start": 23822.69, + "end": 23825.67, + "probability": 0.9773 + }, + { + "start": 23826.49, + "end": 23827.55, + "probability": 0.7225 + }, + { + "start": 23828.79, + "end": 23833.17, + "probability": 0.9844 + }, + { + "start": 23834.83, + "end": 23835.95, + "probability": 0.7962 + }, + { + "start": 23838.43, + "end": 23839.55, + "probability": 0.9976 + }, + { + "start": 23841.13, + "end": 23844.39, + "probability": 0.9939 + }, + { + "start": 23845.69, + "end": 23846.71, + "probability": 0.6944 + }, + { + "start": 23847.83, + "end": 23848.97, + "probability": 0.9749 + }, + { + "start": 23850.67, + "end": 23854.31, + "probability": 0.9709 + }, + { + "start": 23855.21, + "end": 23856.43, + "probability": 0.7605 + }, + { + "start": 23857.63, + "end": 23859.03, + "probability": 0.6923 + }, + { + "start": 23861.91, + "end": 23863.75, + "probability": 0.9863 + }, + { + "start": 23865.99, + "end": 23871.13, + "probability": 0.9929 + }, + { + "start": 23872.17, + "end": 23873.21, + "probability": 0.8329 + }, + { + "start": 23875.01, + "end": 23875.19, + "probability": 0.9844 + }, + { + "start": 23875.97, + "end": 23879.07, + "probability": 0.8942 + }, + { + "start": 23880.59, + "end": 23881.81, + "probability": 0.8216 + }, + { + "start": 23883.55, + "end": 23884.33, + "probability": 0.844 + }, + { + "start": 23885.49, + "end": 23886.73, + "probability": 0.7022 + }, + { + "start": 23887.45, + "end": 23888.57, + "probability": 0.9819 + }, + { + "start": 23890.21, + "end": 23891.47, + "probability": 0.9806 + }, + { + "start": 23894.37, + "end": 23895.49, + "probability": 0.7353 + }, + { + "start": 23897.45, + "end": 23898.35, + "probability": 0.9556 + }, + { + "start": 23899.85, + "end": 23901.57, + "probability": 0.9849 + }, + { + "start": 23902.39, + "end": 23903.19, + "probability": 0.8437 + }, + { + "start": 23904.79, + "end": 23907.21, + "probability": 0.9889 + }, + { + "start": 23908.63, + "end": 23911.89, + "probability": 0.9795 + }, + { + "start": 23915.07, + "end": 23918.49, + "probability": 0.9714 + }, + { + "start": 23921.21, + "end": 23922.81, + "probability": 0.7236 + }, + { + "start": 23925.23, + "end": 23926.41, + "probability": 0.902 + }, + { + "start": 23927.29, + "end": 23929.99, + "probability": 0.824 + }, + { + "start": 23930.89, + "end": 23932.41, + "probability": 0.7959 + }, + { + "start": 23932.99, + "end": 23933.45, + "probability": 0.8401 + }, + { + "start": 23935.21, + "end": 23936.63, + "probability": 0.5579 + }, + { + "start": 23937.83, + "end": 23940.59, + "probability": 0.9974 + }, + { + "start": 23942.93, + "end": 23945.97, + "probability": 0.9793 + }, + { + "start": 23947.35, + "end": 23947.55, + "probability": 0.9279 + }, + { + "start": 23950.05, + "end": 23950.79, + "probability": 0.631 + }, + { + "start": 23952.99, + "end": 23954.35, + "probability": 0.972 + }, + { + "start": 23955.75, + "end": 23957.63, + "probability": 0.8852 + }, + { + "start": 23958.25, + "end": 23959.37, + "probability": 0.9314 + }, + { + "start": 23960.95, + "end": 23966.55, + "probability": 0.994 + }, + { + "start": 23967.59, + "end": 23968.83, + "probability": 0.8867 + }, + { + "start": 23969.97, + "end": 23970.77, + "probability": 0.6459 + }, + { + "start": 23972.03, + "end": 23972.77, + "probability": 0.7408 + }, + { + "start": 23973.69, + "end": 23977.97, + "probability": 0.9285 + }, + { + "start": 23979.65, + "end": 23980.51, + "probability": 0.9854 + }, + { + "start": 23981.45, + "end": 23982.25, + "probability": 0.994 + }, + { + "start": 23983.65, + "end": 23984.21, + "probability": 0.9891 + }, + { + "start": 23985.13, + "end": 23985.35, + "probability": 0.9764 + }, + { + "start": 23985.43, + "end": 23987.79, + "probability": 0.9296 + }, + { + "start": 23988.69, + "end": 23988.97, + "probability": 0.8164 + }, + { + "start": 23989.05, + "end": 23991.45, + "probability": 0.3773 + }, + { + "start": 23991.47, + "end": 23992.39, + "probability": 0.629 + }, + { + "start": 23992.87, + "end": 23993.07, + "probability": 0.6116 + }, + { + "start": 23993.86, + "end": 23996.31, + "probability": 0.8066 + }, + { + "start": 23996.37, + "end": 23996.71, + "probability": 0.6187 + }, + { + "start": 23996.71, + "end": 23996.83, + "probability": 0.5231 + }, + { + "start": 23997.59, + "end": 23998.85, + "probability": 0.9856 + }, + { + "start": 24000.23, + "end": 24001.57, + "probability": 0.9917 + }, + { + "start": 24001.65, + "end": 24003.23, + "probability": 0.9564 + }, + { + "start": 24004.13, + "end": 24005.86, + "probability": 0.9488 + }, + { + "start": 24007.11, + "end": 24010.11, + "probability": 0.659 + }, + { + "start": 24010.75, + "end": 24012.91, + "probability": 0.9743 + }, + { + "start": 24013.31, + "end": 24014.19, + "probability": 0.8085 + }, + { + "start": 24014.79, + "end": 24015.67, + "probability": 0.8421 + }, + { + "start": 24017.05, + "end": 24018.13, + "probability": 0.9819 + }, + { + "start": 24018.65, + "end": 24020.85, + "probability": 0.997 + }, + { + "start": 24020.95, + "end": 24022.39, + "probability": 0.736 + }, + { + "start": 24023.03, + "end": 24027.19, + "probability": 0.9211 + }, + { + "start": 24028.31, + "end": 24029.47, + "probability": 0.9207 + }, + { + "start": 24030.19, + "end": 24032.91, + "probability": 0.9764 + }, + { + "start": 24033.61, + "end": 24037.47, + "probability": 0.99 + }, + { + "start": 24037.87, + "end": 24039.41, + "probability": 0.9561 + }, + { + "start": 24039.81, + "end": 24045.59, + "probability": 0.9336 + }, + { + "start": 24046.17, + "end": 24050.61, + "probability": 0.9076 + }, + { + "start": 24054.93, + "end": 24058.09, + "probability": 0.7599 + }, + { + "start": 24058.61, + "end": 24061.37, + "probability": 0.9946 + }, + { + "start": 24062.43, + "end": 24066.25, + "probability": 0.9779 + }, + { + "start": 24066.35, + "end": 24068.01, + "probability": 0.9694 + }, + { + "start": 24069.05, + "end": 24072.01, + "probability": 0.9372 + }, + { + "start": 24073.27, + "end": 24074.85, + "probability": 0.7625 + }, + { + "start": 24075.57, + "end": 24076.15, + "probability": 0.7319 + }, + { + "start": 24076.99, + "end": 24077.75, + "probability": 0.9736 + }, + { + "start": 24079.79, + "end": 24082.57, + "probability": 0.9957 + }, + { + "start": 24083.28, + "end": 24084.59, + "probability": 0.9914 + }, + { + "start": 24086.67, + "end": 24087.53, + "probability": 0.8972 + }, + { + "start": 24088.47, + "end": 24089.79, + "probability": 0.9412 + }, + { + "start": 24090.89, + "end": 24091.23, + "probability": 0.663 + }, + { + "start": 24094.05, + "end": 24094.33, + "probability": 0.5754 + }, + { + "start": 24094.37, + "end": 24094.99, + "probability": 0.9503 + }, + { + "start": 24095.31, + "end": 24100.71, + "probability": 0.9813 + }, + { + "start": 24102.33, + "end": 24108.29, + "probability": 0.9983 + }, + { + "start": 24109.05, + "end": 24115.39, + "probability": 0.995 + }, + { + "start": 24116.81, + "end": 24117.69, + "probability": 0.9184 + }, + { + "start": 24118.49, + "end": 24122.17, + "probability": 0.9956 + }, + { + "start": 24123.07, + "end": 24126.11, + "probability": 0.9907 + }, + { + "start": 24126.69, + "end": 24129.37, + "probability": 0.9868 + }, + { + "start": 24129.85, + "end": 24131.81, + "probability": 0.9922 + }, + { + "start": 24132.87, + "end": 24139.13, + "probability": 0.9905 + }, + { + "start": 24139.75, + "end": 24144.13, + "probability": 0.9945 + }, + { + "start": 24145.55, + "end": 24150.11, + "probability": 0.9883 + }, + { + "start": 24151.55, + "end": 24152.17, + "probability": 0.9215 + }, + { + "start": 24153.11, + "end": 24154.25, + "probability": 0.975 + }, + { + "start": 24155.27, + "end": 24157.59, + "probability": 0.9937 + }, + { + "start": 24158.29, + "end": 24159.69, + "probability": 0.9982 + }, + { + "start": 24161.11, + "end": 24165.17, + "probability": 0.9741 + }, + { + "start": 24166.25, + "end": 24169.75, + "probability": 0.985 + }, + { + "start": 24171.85, + "end": 24175.49, + "probability": 0.9839 + }, + { + "start": 24175.97, + "end": 24176.67, + "probability": 0.4823 + }, + { + "start": 24176.91, + "end": 24177.31, + "probability": 0.7062 + }, + { + "start": 24178.51, + "end": 24181.29, + "probability": 0.9295 + }, + { + "start": 24182.35, + "end": 24183.47, + "probability": 0.8403 + }, + { + "start": 24184.21, + "end": 24185.21, + "probability": 0.8828 + }, + { + "start": 24186.89, + "end": 24193.17, + "probability": 0.972 + }, + { + "start": 24194.43, + "end": 24194.89, + "probability": 0.8961 + }, + { + "start": 24195.73, + "end": 24196.11, + "probability": 0.237 + }, + { + "start": 24196.85, + "end": 24198.0, + "probability": 0.9954 + }, + { + "start": 24198.59, + "end": 24199.11, + "probability": 0.8616 + }, + { + "start": 24201.59, + "end": 24202.55, + "probability": 0.6425 + }, + { + "start": 24204.17, + "end": 24208.73, + "probability": 0.9977 + }, + { + "start": 24209.45, + "end": 24213.89, + "probability": 0.9977 + }, + { + "start": 24215.31, + "end": 24220.77, + "probability": 0.996 + }, + { + "start": 24221.23, + "end": 24221.57, + "probability": 0.5596 + }, + { + "start": 24223.09, + "end": 24223.85, + "probability": 0.9552 + }, + { + "start": 24226.43, + "end": 24228.31, + "probability": 0.9933 + }, + { + "start": 24229.29, + "end": 24234.01, + "probability": 0.9897 + }, + { + "start": 24234.37, + "end": 24237.37, + "probability": 0.8472 + }, + { + "start": 24239.71, + "end": 24243.57, + "probability": 0.9495 + }, + { + "start": 24245.85, + "end": 24249.13, + "probability": 0.9854 + }, + { + "start": 24249.13, + "end": 24252.89, + "probability": 0.9972 + }, + { + "start": 24253.51, + "end": 24254.53, + "probability": 0.9886 + }, + { + "start": 24255.91, + "end": 24256.63, + "probability": 0.8674 + }, + { + "start": 24257.39, + "end": 24259.19, + "probability": 0.9276 + }, + { + "start": 24260.21, + "end": 24264.49, + "probability": 0.9772 + }, + { + "start": 24265.41, + "end": 24266.87, + "probability": 0.9992 + }, + { + "start": 24268.73, + "end": 24272.63, + "probability": 0.9798 + }, + { + "start": 24273.77, + "end": 24274.23, + "probability": 0.9775 + }, + { + "start": 24275.81, + "end": 24276.97, + "probability": 0.846 + }, + { + "start": 24278.45, + "end": 24279.09, + "probability": 0.8186 + }, + { + "start": 24280.77, + "end": 24283.13, + "probability": 0.9927 + }, + { + "start": 24284.07, + "end": 24284.91, + "probability": 0.4725 + }, + { + "start": 24286.15, + "end": 24286.85, + "probability": 0.8429 + }, + { + "start": 24290.19, + "end": 24291.07, + "probability": 0.8918 + }, + { + "start": 24291.71, + "end": 24294.93, + "probability": 0.9868 + }, + { + "start": 24295.97, + "end": 24297.81, + "probability": 0.6913 + }, + { + "start": 24298.13, + "end": 24298.37, + "probability": 0.1451 + }, + { + "start": 24299.37, + "end": 24300.29, + "probability": 0.2155 + }, + { + "start": 24301.73, + "end": 24303.15, + "probability": 0.949 + }, + { + "start": 24303.79, + "end": 24310.17, + "probability": 0.9657 + }, + { + "start": 24314.23, + "end": 24316.31, + "probability": 0.6839 + }, + { + "start": 24317.69, + "end": 24319.27, + "probability": 0.9973 + }, + { + "start": 24319.97, + "end": 24321.39, + "probability": 0.7412 + }, + { + "start": 24322.21, + "end": 24323.31, + "probability": 0.9188 + }, + { + "start": 24325.75, + "end": 24331.31, + "probability": 0.8924 + }, + { + "start": 24332.07, + "end": 24332.63, + "probability": 0.9672 + }, + { + "start": 24333.39, + "end": 24334.05, + "probability": 0.7655 + }, + { + "start": 24334.15, + "end": 24334.59, + "probability": 0.7524 + }, + { + "start": 24334.67, + "end": 24336.43, + "probability": 0.9911 + }, + { + "start": 24337.61, + "end": 24342.83, + "probability": 0.8604 + }, + { + "start": 24342.97, + "end": 24343.65, + "probability": 0.6268 + }, + { + "start": 24343.91, + "end": 24344.81, + "probability": 0.733 + }, + { + "start": 24346.25, + "end": 24346.69, + "probability": 0.8269 + }, + { + "start": 24347.23, + "end": 24350.36, + "probability": 0.9956 + }, + { + "start": 24352.73, + "end": 24355.25, + "probability": 0.956 + }, + { + "start": 24357.45, + "end": 24358.31, + "probability": 0.97 + }, + { + "start": 24359.21, + "end": 24359.87, + "probability": 0.9082 + }, + { + "start": 24360.71, + "end": 24363.17, + "probability": 0.9801 + }, + { + "start": 24364.73, + "end": 24365.13, + "probability": 0.4146 + }, + { + "start": 24366.53, + "end": 24367.43, + "probability": 0.7795 + }, + { + "start": 24368.29, + "end": 24369.41, + "probability": 0.9402 + }, + { + "start": 24369.99, + "end": 24371.75, + "probability": 0.9674 + }, + { + "start": 24372.63, + "end": 24373.31, + "probability": 0.504 + }, + { + "start": 24373.83, + "end": 24376.89, + "probability": 0.9778 + }, + { + "start": 24377.41, + "end": 24378.21, + "probability": 0.7348 + }, + { + "start": 24378.77, + "end": 24380.47, + "probability": 0.9883 + }, + { + "start": 24381.35, + "end": 24382.95, + "probability": 0.9707 + }, + { + "start": 24383.65, + "end": 24385.01, + "probability": 0.9445 + }, + { + "start": 24386.13, + "end": 24387.23, + "probability": 0.6846 + }, + { + "start": 24388.57, + "end": 24394.15, + "probability": 0.8463 + }, + { + "start": 24395.07, + "end": 24397.89, + "probability": 0.8143 + }, + { + "start": 24398.03, + "end": 24399.77, + "probability": 0.9539 + }, + { + "start": 24401.61, + "end": 24402.19, + "probability": 0.9749 + }, + { + "start": 24403.57, + "end": 24407.47, + "probability": 0.9256 + }, + { + "start": 24408.07, + "end": 24409.77, + "probability": 0.7762 + }, + { + "start": 24410.33, + "end": 24411.37, + "probability": 0.8473 + }, + { + "start": 24411.81, + "end": 24412.75, + "probability": 0.8575 + }, + { + "start": 24412.95, + "end": 24414.33, + "probability": 0.9558 + }, + { + "start": 24414.71, + "end": 24415.63, + "probability": 0.9255 + }, + { + "start": 24417.15, + "end": 24418.65, + "probability": 0.7231 + }, + { + "start": 24419.31, + "end": 24422.85, + "probability": 0.8265 + }, + { + "start": 24423.11, + "end": 24424.17, + "probability": 0.9324 + }, + { + "start": 24425.63, + "end": 24427.93, + "probability": 0.5961 + }, + { + "start": 24431.59, + "end": 24433.49, + "probability": 0.9718 + }, + { + "start": 24434.31, + "end": 24435.59, + "probability": 0.9792 + }, + { + "start": 24437.63, + "end": 24440.15, + "probability": 0.9152 + }, + { + "start": 24441.31, + "end": 24442.87, + "probability": 0.9966 + }, + { + "start": 24445.57, + "end": 24445.91, + "probability": 0.9055 + }, + { + "start": 24448.73, + "end": 24450.87, + "probability": 0.9927 + }, + { + "start": 24452.81, + "end": 24454.47, + "probability": 0.7943 + }, + { + "start": 24455.83, + "end": 24458.42, + "probability": 0.8956 + }, + { + "start": 24460.11, + "end": 24460.71, + "probability": 0.8866 + }, + { + "start": 24463.19, + "end": 24464.23, + "probability": 0.6929 + }, + { + "start": 24465.85, + "end": 24469.79, + "probability": 0.9782 + }, + { + "start": 24471.23, + "end": 24472.69, + "probability": 0.8236 + }, + { + "start": 24473.77, + "end": 24475.43, + "probability": 0.8223 + }, + { + "start": 24475.51, + "end": 24476.53, + "probability": 0.5365 + }, + { + "start": 24476.67, + "end": 24479.65, + "probability": 0.9841 + }, + { + "start": 24479.73, + "end": 24481.89, + "probability": 0.994 + }, + { + "start": 24482.49, + "end": 24483.19, + "probability": 0.7778 + }, + { + "start": 24483.23, + "end": 24484.31, + "probability": 0.8792 + }, + { + "start": 24487.11, + "end": 24487.37, + "probability": 0.1405 + }, + { + "start": 24487.91, + "end": 24488.63, + "probability": 0.0214 + }, + { + "start": 24488.63, + "end": 24488.63, + "probability": 0.3721 + }, + { + "start": 24488.63, + "end": 24489.17, + "probability": 0.5661 + }, + { + "start": 24490.35, + "end": 24491.21, + "probability": 0.6077 + }, + { + "start": 24491.93, + "end": 24495.19, + "probability": 0.9228 + }, + { + "start": 24495.37, + "end": 24497.19, + "probability": 0.6849 + }, + { + "start": 24497.61, + "end": 24498.49, + "probability": 0.6823 + }, + { + "start": 24499.29, + "end": 24501.27, + "probability": 0.936 + }, + { + "start": 24502.51, + "end": 24504.11, + "probability": 0.7723 + }, + { + "start": 24505.03, + "end": 24505.97, + "probability": 0.8672 + }, + { + "start": 24507.43, + "end": 24508.87, + "probability": 0.9702 + }, + { + "start": 24508.95, + "end": 24510.79, + "probability": 0.9875 + }, + { + "start": 24511.81, + "end": 24516.55, + "probability": 0.7064 + }, + { + "start": 24516.73, + "end": 24517.41, + "probability": 0.4825 + }, + { + "start": 24518.19, + "end": 24520.17, + "probability": 0.0266 + }, + { + "start": 24520.17, + "end": 24522.94, + "probability": 0.1323 + }, + { + "start": 24524.29, + "end": 24525.81, + "probability": 0.9799 + }, + { + "start": 24526.39, + "end": 24528.11, + "probability": 0.9971 + }, + { + "start": 24528.61, + "end": 24532.81, + "probability": 0.9922 + }, + { + "start": 24533.23, + "end": 24534.49, + "probability": 0.9559 + }, + { + "start": 24534.83, + "end": 24536.29, + "probability": 0.783 + }, + { + "start": 24536.53, + "end": 24539.68, + "probability": 0.9975 + }, + { + "start": 24539.97, + "end": 24541.03, + "probability": 0.8026 + }, + { + "start": 24541.09, + "end": 24541.23, + "probability": 0.7703 + }, + { + "start": 24542.35, + "end": 24542.51, + "probability": 0.666 + }, + { + "start": 24542.51, + "end": 24542.51, + "probability": 0.0486 + }, + { + "start": 24542.51, + "end": 24542.97, + "probability": 0.4132 + }, + { + "start": 24542.97, + "end": 24547.19, + "probability": 0.9229 + }, + { + "start": 24547.45, + "end": 24547.59, + "probability": 0.302 + }, + { + "start": 24547.59, + "end": 24549.71, + "probability": 0.9314 + }, + { + "start": 24550.05, + "end": 24550.43, + "probability": 0.305 + }, + { + "start": 24550.77, + "end": 24551.19, + "probability": 0.0245 + }, + { + "start": 24551.31, + "end": 24553.71, + "probability": 0.9832 + }, + { + "start": 24554.29, + "end": 24556.77, + "probability": 0.7785 + }, + { + "start": 24557.13, + "end": 24558.15, + "probability": 0.6871 + }, + { + "start": 24559.51, + "end": 24561.75, + "probability": 0.8488 + }, + { + "start": 24561.95, + "end": 24563.43, + "probability": 0.8832 + }, + { + "start": 24563.89, + "end": 24565.69, + "probability": 0.9617 + }, + { + "start": 24567.05, + "end": 24567.83, + "probability": 0.0007 + }, + { + "start": 24567.83, + "end": 24567.83, + "probability": 0.0081 + }, + { + "start": 24567.83, + "end": 24568.95, + "probability": 0.1864 + }, + { + "start": 24569.31, + "end": 24570.47, + "probability": 0.0932 + }, + { + "start": 24570.89, + "end": 24572.49, + "probability": 0.1605 + }, + { + "start": 24572.95, + "end": 24578.51, + "probability": 0.1603 + }, + { + "start": 24578.51, + "end": 24579.14, + "probability": 0.298 + }, + { + "start": 24580.13, + "end": 24584.85, + "probability": 0.4798 + }, + { + "start": 24584.85, + "end": 24585.21, + "probability": 0.2279 + }, + { + "start": 24585.21, + "end": 24586.35, + "probability": 0.5673 + }, + { + "start": 24586.55, + "end": 24587.41, + "probability": 0.894 + }, + { + "start": 24587.45, + "end": 24588.15, + "probability": 0.7859 + }, + { + "start": 24588.43, + "end": 24593.39, + "probability": 0.9897 + }, + { + "start": 24594.61, + "end": 24598.79, + "probability": 0.8105 + }, + { + "start": 24599.37, + "end": 24602.71, + "probability": 0.9537 + }, + { + "start": 24603.43, + "end": 24606.75, + "probability": 0.9451 + }, + { + "start": 24607.53, + "end": 24608.17, + "probability": 0.9109 + }, + { + "start": 24609.95, + "end": 24610.83, + "probability": 0.9697 + }, + { + "start": 24611.91, + "end": 24615.93, + "probability": 0.9742 + }, + { + "start": 24616.51, + "end": 24618.47, + "probability": 0.9961 + }, + { + "start": 24619.61, + "end": 24620.87, + "probability": 0.7827 + }, + { + "start": 24621.51, + "end": 24622.47, + "probability": 0.7939 + }, + { + "start": 24622.77, + "end": 24623.45, + "probability": 0.8116 + }, + { + "start": 24623.53, + "end": 24624.37, + "probability": 0.9897 + }, + { + "start": 24625.27, + "end": 24626.73, + "probability": 0.8558 + }, + { + "start": 24627.57, + "end": 24629.15, + "probability": 0.6187 + }, + { + "start": 24629.77, + "end": 24631.15, + "probability": 0.1668 + }, + { + "start": 24632.63, + "end": 24634.13, + "probability": 0.1219 + }, + { + "start": 24634.33, + "end": 24635.39, + "probability": 0.2709 + }, + { + "start": 24635.51, + "end": 24636.33, + "probability": 0.5933 + }, + { + "start": 24636.53, + "end": 24638.39, + "probability": 0.6892 + }, + { + "start": 24639.01, + "end": 24640.97, + "probability": 0.9783 + }, + { + "start": 24641.13, + "end": 24646.43, + "probability": 0.8513 + }, + { + "start": 24646.43, + "end": 24650.65, + "probability": 0.9964 + }, + { + "start": 24651.57, + "end": 24651.67, + "probability": 0.3275 + }, + { + "start": 24651.75, + "end": 24654.15, + "probability": 0.707 + }, + { + "start": 24654.73, + "end": 24656.63, + "probability": 0.9893 + }, + { + "start": 24657.71, + "end": 24659.73, + "probability": 0.9951 + }, + { + "start": 24661.49, + "end": 24663.11, + "probability": 0.9727 + }, + { + "start": 24664.35, + "end": 24667.95, + "probability": 0.8425 + }, + { + "start": 24668.87, + "end": 24669.96, + "probability": 0.6933 + }, + { + "start": 24671.07, + "end": 24671.57, + "probability": 0.7165 + }, + { + "start": 24672.29, + "end": 24675.23, + "probability": 0.9977 + }, + { + "start": 24676.61, + "end": 24679.87, + "probability": 0.9707 + }, + { + "start": 24680.87, + "end": 24683.05, + "probability": 0.8297 + }, + { + "start": 24683.71, + "end": 24683.71, + "probability": 0.2783 + }, + { + "start": 24683.99, + "end": 24687.53, + "probability": 0.8334 + }, + { + "start": 24689.05, + "end": 24689.69, + "probability": 0.8002 + }, + { + "start": 24690.85, + "end": 24693.89, + "probability": 0.8928 + }, + { + "start": 24694.53, + "end": 24695.59, + "probability": 0.6187 + }, + { + "start": 24696.97, + "end": 24700.99, + "probability": 0.9333 + }, + { + "start": 24702.27, + "end": 24707.57, + "probability": 0.9399 + }, + { + "start": 24709.91, + "end": 24713.69, + "probability": 0.9969 + }, + { + "start": 24714.73, + "end": 24715.05, + "probability": 0.6838 + }, + { + "start": 24715.21, + "end": 24717.27, + "probability": 0.8398 + }, + { + "start": 24717.91, + "end": 24721.74, + "probability": 0.7993 + }, + { + "start": 24746.11, + "end": 24747.37, + "probability": 0.7438 + }, + { + "start": 24748.01, + "end": 24749.29, + "probability": 0.8498 + }, + { + "start": 24750.89, + "end": 24753.71, + "probability": 0.9834 + }, + { + "start": 24754.87, + "end": 24758.67, + "probability": 0.9977 + }, + { + "start": 24760.39, + "end": 24763.47, + "probability": 0.9911 + }, + { + "start": 24764.55, + "end": 24765.77, + "probability": 0.8319 + }, + { + "start": 24766.31, + "end": 24773.09, + "probability": 0.9888 + }, + { + "start": 24774.53, + "end": 24776.91, + "probability": 0.9643 + }, + { + "start": 24777.79, + "end": 24782.45, + "probability": 0.9789 + }, + { + "start": 24783.31, + "end": 24790.61, + "probability": 0.9867 + }, + { + "start": 24792.09, + "end": 24792.67, + "probability": 0.7689 + }, + { + "start": 24793.57, + "end": 24797.25, + "probability": 0.9915 + }, + { + "start": 24797.85, + "end": 24799.55, + "probability": 0.9927 + }, + { + "start": 24800.47, + "end": 24803.17, + "probability": 0.7555 + }, + { + "start": 24803.77, + "end": 24812.81, + "probability": 0.9979 + }, + { + "start": 24813.51, + "end": 24816.69, + "probability": 0.9811 + }, + { + "start": 24817.33, + "end": 24818.59, + "probability": 0.8365 + }, + { + "start": 24819.39, + "end": 24823.39, + "probability": 0.9774 + }, + { + "start": 24824.55, + "end": 24828.25, + "probability": 0.8451 + }, + { + "start": 24828.73, + "end": 24831.71, + "probability": 0.9796 + }, + { + "start": 24831.87, + "end": 24832.59, + "probability": 0.9882 + }, + { + "start": 24833.35, + "end": 24839.11, + "probability": 0.8974 + }, + { + "start": 24840.05, + "end": 24843.45, + "probability": 0.7654 + }, + { + "start": 24845.89, + "end": 24848.75, + "probability": 0.9871 + }, + { + "start": 24849.29, + "end": 24852.27, + "probability": 0.9731 + }, + { + "start": 24852.85, + "end": 24855.11, + "probability": 0.9565 + }, + { + "start": 24856.33, + "end": 24857.23, + "probability": 0.805 + }, + { + "start": 24858.47, + "end": 24862.51, + "probability": 0.956 + }, + { + "start": 24863.81, + "end": 24864.21, + "probability": 0.5332 + }, + { + "start": 24865.03, + "end": 24869.95, + "probability": 0.9694 + }, + { + "start": 24870.61, + "end": 24878.69, + "probability": 0.8638 + }, + { + "start": 24879.01, + "end": 24881.45, + "probability": 0.9969 + }, + { + "start": 24882.13, + "end": 24882.97, + "probability": 0.9598 + }, + { + "start": 24883.69, + "end": 24884.65, + "probability": 0.9035 + }, + { + "start": 24885.97, + "end": 24886.89, + "probability": 0.9351 + }, + { + "start": 24887.79, + "end": 24890.51, + "probability": 0.853 + }, + { + "start": 24891.13, + "end": 24892.69, + "probability": 0.9653 + }, + { + "start": 24893.73, + "end": 24895.33, + "probability": 0.5882 + }, + { + "start": 24896.87, + "end": 24899.13, + "probability": 0.9902 + }, + { + "start": 24900.65, + "end": 24904.91, + "probability": 0.9956 + }, + { + "start": 24905.61, + "end": 24909.49, + "probability": 0.981 + }, + { + "start": 24910.15, + "end": 24911.49, + "probability": 0.922 + }, + { + "start": 24912.19, + "end": 24914.95, + "probability": 0.9979 + }, + { + "start": 24916.05, + "end": 24920.45, + "probability": 0.9897 + }, + { + "start": 24921.25, + "end": 24923.03, + "probability": 0.9684 + }, + { + "start": 24923.97, + "end": 24925.75, + "probability": 0.9287 + }, + { + "start": 24927.47, + "end": 24929.41, + "probability": 0.9985 + }, + { + "start": 24930.35, + "end": 24932.01, + "probability": 0.7319 + }, + { + "start": 24932.49, + "end": 24941.67, + "probability": 0.8784 + }, + { + "start": 24942.35, + "end": 24943.25, + "probability": 0.7456 + }, + { + "start": 24944.65, + "end": 24947.93, + "probability": 0.9785 + }, + { + "start": 24948.89, + "end": 24951.15, + "probability": 0.6925 + }, + { + "start": 24952.91, + "end": 24957.49, + "probability": 0.9878 + }, + { + "start": 24958.17, + "end": 24960.05, + "probability": 0.9602 + }, + { + "start": 24960.93, + "end": 24962.17, + "probability": 0.9932 + }, + { + "start": 24963.69, + "end": 24966.87, + "probability": 0.8689 + }, + { + "start": 24967.91, + "end": 24968.53, + "probability": 0.491 + }, + { + "start": 24969.19, + "end": 24970.39, + "probability": 0.7683 + }, + { + "start": 24971.03, + "end": 24973.31, + "probability": 0.9932 + }, + { + "start": 24974.05, + "end": 24975.15, + "probability": 0.9332 + }, + { + "start": 24976.51, + "end": 24978.05, + "probability": 0.9949 + }, + { + "start": 24978.23, + "end": 24982.07, + "probability": 0.9816 + }, + { + "start": 24983.13, + "end": 24987.05, + "probability": 0.9364 + }, + { + "start": 24987.71, + "end": 24990.79, + "probability": 0.796 + }, + { + "start": 24993.91, + "end": 24994.39, + "probability": 0.3216 + }, + { + "start": 24994.41, + "end": 24995.57, + "probability": 0.701 + }, + { + "start": 24995.87, + "end": 24999.73, + "probability": 0.9874 + }, + { + "start": 25000.35, + "end": 25001.77, + "probability": 0.974 + }, + { + "start": 25002.61, + "end": 25007.67, + "probability": 0.9735 + }, + { + "start": 25008.75, + "end": 25011.77, + "probability": 0.8448 + }, + { + "start": 25012.47, + "end": 25015.63, + "probability": 0.4123 + }, + { + "start": 25016.67, + "end": 25019.45, + "probability": 0.9967 + }, + { + "start": 25019.97, + "end": 25025.77, + "probability": 0.9915 + }, + { + "start": 25026.87, + "end": 25028.21, + "probability": 0.9358 + }, + { + "start": 25029.35, + "end": 25030.99, + "probability": 0.7084 + }, + { + "start": 25031.95, + "end": 25033.15, + "probability": 0.9475 + }, + { + "start": 25033.93, + "end": 25038.97, + "probability": 0.9375 + }, + { + "start": 25039.65, + "end": 25041.39, + "probability": 0.9775 + }, + { + "start": 25042.25, + "end": 25045.41, + "probability": 0.9779 + }, + { + "start": 25045.95, + "end": 25048.93, + "probability": 0.9831 + }, + { + "start": 25049.49, + "end": 25049.83, + "probability": 0.9395 + }, + { + "start": 25050.35, + "end": 25051.63, + "probability": 0.9917 + }, + { + "start": 25052.71, + "end": 25054.39, + "probability": 0.801 + }, + { + "start": 25055.65, + "end": 25055.85, + "probability": 0.4203 + }, + { + "start": 25057.09, + "end": 25058.33, + "probability": 0.9907 + }, + { + "start": 25059.13, + "end": 25062.37, + "probability": 0.6545 + }, + { + "start": 25064.53, + "end": 25066.29, + "probability": 0.7408 + }, + { + "start": 25066.37, + "end": 25072.99, + "probability": 0.9504 + }, + { + "start": 25073.53, + "end": 25076.95, + "probability": 0.9951 + }, + { + "start": 25077.95, + "end": 25079.89, + "probability": 0.6862 + }, + { + "start": 25080.87, + "end": 25084.23, + "probability": 0.7914 + }, + { + "start": 25084.97, + "end": 25087.95, + "probability": 0.9993 + }, + { + "start": 25088.99, + "end": 25092.19, + "probability": 0.8786 + }, + { + "start": 25093.89, + "end": 25095.96, + "probability": 0.9789 + }, + { + "start": 25097.17, + "end": 25100.95, + "probability": 0.9894 + }, + { + "start": 25101.39, + "end": 25103.43, + "probability": 0.7545 + }, + { + "start": 25104.51, + "end": 25109.35, + "probability": 0.8311 + }, + { + "start": 25110.25, + "end": 25111.27, + "probability": 0.9371 + }, + { + "start": 25112.15, + "end": 25115.31, + "probability": 0.9479 + }, + { + "start": 25115.85, + "end": 25116.69, + "probability": 0.963 + }, + { + "start": 25119.09, + "end": 25122.11, + "probability": 0.9738 + }, + { + "start": 25122.73, + "end": 25124.79, + "probability": 0.7192 + }, + { + "start": 25126.39, + "end": 25130.26, + "probability": 0.8844 + }, + { + "start": 25134.65, + "end": 25135.25, + "probability": 0.4972 + }, + { + "start": 25136.47, + "end": 25138.71, + "probability": 0.8547 + }, + { + "start": 25138.93, + "end": 25140.55, + "probability": 0.6463 + }, + { + "start": 25141.59, + "end": 25143.03, + "probability": 0.738 + }, + { + "start": 25144.23, + "end": 25147.69, + "probability": 0.9249 + }, + { + "start": 25148.37, + "end": 25148.79, + "probability": 0.6871 + }, + { + "start": 25150.61, + "end": 25157.91, + "probability": 0.9341 + }, + { + "start": 25158.89, + "end": 25164.41, + "probability": 0.9995 + }, + { + "start": 25165.65, + "end": 25172.03, + "probability": 0.9941 + }, + { + "start": 25173.37, + "end": 25175.63, + "probability": 0.7111 + }, + { + "start": 25176.39, + "end": 25178.77, + "probability": 0.9985 + }, + { + "start": 25179.37, + "end": 25186.45, + "probability": 0.9554 + }, + { + "start": 25187.03, + "end": 25190.15, + "probability": 0.9978 + }, + { + "start": 25191.17, + "end": 25192.79, + "probability": 0.9953 + }, + { + "start": 25193.85, + "end": 25198.85, + "probability": 0.991 + }, + { + "start": 25199.67, + "end": 25204.01, + "probability": 0.979 + }, + { + "start": 25204.01, + "end": 25208.23, + "probability": 0.9988 + }, + { + "start": 25208.89, + "end": 25213.89, + "probability": 0.992 + }, + { + "start": 25214.39, + "end": 25216.17, + "probability": 0.8316 + }, + { + "start": 25216.59, + "end": 25218.13, + "probability": 0.7223 + }, + { + "start": 25220.79, + "end": 25222.89, + "probability": 0.8066 + }, + { + "start": 25223.03, + "end": 25226.73, + "probability": 0.9396 + }, + { + "start": 25226.73, + "end": 25230.57, + "probability": 0.9924 + }, + { + "start": 25231.55, + "end": 25237.87, + "probability": 0.9256 + }, + { + "start": 25239.55, + "end": 25244.33, + "probability": 0.7125 + }, + { + "start": 25245.53, + "end": 25246.73, + "probability": 0.6354 + }, + { + "start": 25247.97, + "end": 25249.33, + "probability": 0.9423 + }, + { + "start": 25249.47, + "end": 25250.21, + "probability": 0.7639 + }, + { + "start": 25250.69, + "end": 25252.43, + "probability": 0.8854 + }, + { + "start": 25253.15, + "end": 25258.25, + "probability": 0.9446 + }, + { + "start": 25258.33, + "end": 25260.19, + "probability": 0.9285 + }, + { + "start": 25260.23, + "end": 25261.45, + "probability": 0.9914 + }, + { + "start": 25262.19, + "end": 25267.67, + "probability": 0.9943 + }, + { + "start": 25268.63, + "end": 25271.72, + "probability": 0.9401 + }, + { + "start": 25272.57, + "end": 25273.25, + "probability": 0.9297 + }, + { + "start": 25273.43, + "end": 25275.37, + "probability": 0.7419 + }, + { + "start": 25276.11, + "end": 25279.71, + "probability": 0.9792 + }, + { + "start": 25281.33, + "end": 25284.19, + "probability": 0.8456 + }, + { + "start": 25284.91, + "end": 25288.93, + "probability": 0.3744 + }, + { + "start": 25289.49, + "end": 25290.25, + "probability": 0.5115 + }, + { + "start": 25291.05, + "end": 25293.17, + "probability": 0.8618 + }, + { + "start": 25294.11, + "end": 25294.61, + "probability": 0.8089 + }, + { + "start": 25295.31, + "end": 25296.49, + "probability": 0.9862 + }, + { + "start": 25297.29, + "end": 25305.75, + "probability": 0.9841 + }, + { + "start": 25306.05, + "end": 25310.15, + "probability": 0.956 + }, + { + "start": 25312.23, + "end": 25317.39, + "probability": 0.8104 + }, + { + "start": 25319.69, + "end": 25321.47, + "probability": 0.8443 + }, + { + "start": 25321.67, + "end": 25323.97, + "probability": 0.7339 + }, + { + "start": 25325.25, + "end": 25325.89, + "probability": 0.5639 + }, + { + "start": 25326.77, + "end": 25327.79, + "probability": 0.7872 + }, + { + "start": 25328.83, + "end": 25330.31, + "probability": 0.9276 + }, + { + "start": 25330.93, + "end": 25332.17, + "probability": 0.9858 + }, + { + "start": 25333.53, + "end": 25339.03, + "probability": 0.9937 + }, + { + "start": 25339.91, + "end": 25343.87, + "probability": 0.9961 + }, + { + "start": 25344.45, + "end": 25346.57, + "probability": 0.6903 + }, + { + "start": 25347.17, + "end": 25349.05, + "probability": 0.9295 + }, + { + "start": 25349.79, + "end": 25354.15, + "probability": 0.9567 + }, + { + "start": 25354.67, + "end": 25356.81, + "probability": 0.9915 + }, + { + "start": 25359.67, + "end": 25361.45, + "probability": 0.7654 + }, + { + "start": 25363.45, + "end": 25368.39, + "probability": 0.7515 + }, + { + "start": 25369.53, + "end": 25372.75, + "probability": 0.922 + }, + { + "start": 25373.45, + "end": 25374.33, + "probability": 0.9827 + }, + { + "start": 25376.37, + "end": 25377.11, + "probability": 0.9537 + }, + { + "start": 25377.79, + "end": 25380.67, + "probability": 0.9888 + }, + { + "start": 25382.21, + "end": 25383.71, + "probability": 0.9622 + }, + { + "start": 25384.73, + "end": 25389.79, + "probability": 0.7999 + }, + { + "start": 25390.77, + "end": 25394.21, + "probability": 0.9045 + }, + { + "start": 25394.89, + "end": 25395.87, + "probability": 0.6721 + }, + { + "start": 25396.67, + "end": 25397.19, + "probability": 0.7785 + }, + { + "start": 25397.95, + "end": 25401.01, + "probability": 0.9698 + }, + { + "start": 25402.67, + "end": 25405.47, + "probability": 0.9941 + }, + { + "start": 25406.23, + "end": 25407.11, + "probability": 0.9831 + }, + { + "start": 25408.09, + "end": 25411.23, + "probability": 0.9885 + }, + { + "start": 25412.13, + "end": 25418.35, + "probability": 0.8823 + }, + { + "start": 25418.35, + "end": 25423.31, + "probability": 0.9983 + }, + { + "start": 25424.99, + "end": 25427.23, + "probability": 0.9852 + }, + { + "start": 25427.53, + "end": 25428.25, + "probability": 0.5167 + }, + { + "start": 25428.63, + "end": 25429.99, + "probability": 0.5879 + }, + { + "start": 25430.13, + "end": 25433.15, + "probability": 0.8292 + }, + { + "start": 25434.89, + "end": 25438.23, + "probability": 0.9969 + }, + { + "start": 25439.03, + "end": 25439.67, + "probability": 0.5564 + }, + { + "start": 25440.37, + "end": 25443.03, + "probability": 0.8526 + }, + { + "start": 25443.57, + "end": 25448.11, + "probability": 0.9994 + }, + { + "start": 25449.43, + "end": 25452.21, + "probability": 0.9743 + }, + { + "start": 25453.47, + "end": 25454.05, + "probability": 0.904 + }, + { + "start": 25457.55, + "end": 25460.24, + "probability": 0.6858 + }, + { + "start": 25462.33, + "end": 25468.49, + "probability": 0.9706 + }, + { + "start": 25469.69, + "end": 25470.03, + "probability": 0.5973 + }, + { + "start": 25471.73, + "end": 25472.01, + "probability": 0.7305 + }, + { + "start": 25473.81, + "end": 25474.51, + "probability": 0.7254 + }, + { + "start": 25475.17, + "end": 25476.15, + "probability": 0.8961 + }, + { + "start": 25476.87, + "end": 25477.65, + "probability": 0.9651 + }, + { + "start": 25477.99, + "end": 25483.13, + "probability": 0.9585 + }, + { + "start": 25483.39, + "end": 25486.61, + "probability": 0.8389 + }, + { + "start": 25487.95, + "end": 25491.07, + "probability": 0.9784 + }, + { + "start": 25492.86, + "end": 25495.33, + "probability": 0.9717 + }, + { + "start": 25497.81, + "end": 25497.93, + "probability": 0.4509 + }, + { + "start": 25499.13, + "end": 25504.91, + "probability": 0.9066 + }, + { + "start": 25505.63, + "end": 25506.97, + "probability": 0.9307 + }, + { + "start": 25507.49, + "end": 25508.03, + "probability": 0.7964 + }, + { + "start": 25508.63, + "end": 25513.81, + "probability": 0.9915 + }, + { + "start": 25514.01, + "end": 25514.95, + "probability": 0.9802 + }, + { + "start": 25515.75, + "end": 25517.53, + "probability": 0.833 + }, + { + "start": 25518.17, + "end": 25519.83, + "probability": 0.9458 + }, + { + "start": 25520.23, + "end": 25521.79, + "probability": 0.9749 + }, + { + "start": 25522.81, + "end": 25523.49, + "probability": 0.8763 + }, + { + "start": 25524.95, + "end": 25533.11, + "probability": 0.9658 + }, + { + "start": 25533.47, + "end": 25536.61, + "probability": 0.9953 + }, + { + "start": 25537.61, + "end": 25541.11, + "probability": 0.9939 + }, + { + "start": 25541.73, + "end": 25545.63, + "probability": 0.9988 + }, + { + "start": 25546.39, + "end": 25549.01, + "probability": 0.4734 + }, + { + "start": 25550.45, + "end": 25552.05, + "probability": 0.9973 + }, + { + "start": 25553.17, + "end": 25555.37, + "probability": 0.9098 + }, + { + "start": 25556.57, + "end": 25557.91, + "probability": 0.8667 + }, + { + "start": 25558.73, + "end": 25564.31, + "probability": 0.9937 + }, + { + "start": 25565.17, + "end": 25568.33, + "probability": 0.6604 + }, + { + "start": 25568.61, + "end": 25573.17, + "probability": 0.9968 + }, + { + "start": 25573.79, + "end": 25578.97, + "probability": 0.9565 + }, + { + "start": 25579.87, + "end": 25584.03, + "probability": 0.9888 + }, + { + "start": 25584.77, + "end": 25586.33, + "probability": 0.9453 + }, + { + "start": 25586.57, + "end": 25586.95, + "probability": 0.8795 + }, + { + "start": 25587.65, + "end": 25588.05, + "probability": 0.6631 + }, + { + "start": 25588.71, + "end": 25590.29, + "probability": 0.6534 + }, + { + "start": 25590.49, + "end": 25592.99, + "probability": 0.7031 + }, + { + "start": 25593.81, + "end": 25595.65, + "probability": 0.9102 + }, + { + "start": 25597.11, + "end": 25600.18, + "probability": 0.9512 + }, + { + "start": 25600.63, + "end": 25601.23, + "probability": 0.957 + }, + { + "start": 25624.25, + "end": 25626.09, + "probability": 0.6703 + }, + { + "start": 25631.13, + "end": 25636.73, + "probability": 0.9972 + }, + { + "start": 25639.37, + "end": 25642.99, + "probability": 0.9935 + }, + { + "start": 25644.03, + "end": 25646.49, + "probability": 0.9887 + }, + { + "start": 25647.69, + "end": 25649.13, + "probability": 0.8614 + }, + { + "start": 25651.81, + "end": 25653.07, + "probability": 0.776 + }, + { + "start": 25654.45, + "end": 25656.05, + "probability": 0.999 + }, + { + "start": 25658.45, + "end": 25663.81, + "probability": 0.9951 + }, + { + "start": 25666.35, + "end": 25669.81, + "probability": 0.9945 + }, + { + "start": 25672.11, + "end": 25674.75, + "probability": 0.6991 + }, + { + "start": 25675.41, + "end": 25680.17, + "probability": 0.9964 + }, + { + "start": 25681.53, + "end": 25683.23, + "probability": 0.6424 + }, + { + "start": 25686.45, + "end": 25687.07, + "probability": 0.6987 + }, + { + "start": 25688.03, + "end": 25692.67, + "probability": 0.8828 + }, + { + "start": 25694.69, + "end": 25696.23, + "probability": 0.9611 + }, + { + "start": 25697.29, + "end": 25698.51, + "probability": 0.8534 + }, + { + "start": 25699.29, + "end": 25700.13, + "probability": 0.815 + }, + { + "start": 25701.43, + "end": 25703.81, + "probability": 0.9849 + }, + { + "start": 25703.89, + "end": 25706.49, + "probability": 0.9845 + }, + { + "start": 25706.83, + "end": 25708.63, + "probability": 0.9831 + }, + { + "start": 25708.65, + "end": 25710.25, + "probability": 0.9893 + }, + { + "start": 25710.37, + "end": 25712.09, + "probability": 0.9931 + }, + { + "start": 25713.69, + "end": 25717.39, + "probability": 0.9889 + }, + { + "start": 25718.19, + "end": 25720.03, + "probability": 0.9645 + }, + { + "start": 25722.89, + "end": 25724.85, + "probability": 0.9312 + }, + { + "start": 25725.81, + "end": 25726.67, + "probability": 0.9519 + }, + { + "start": 25728.87, + "end": 25731.15, + "probability": 0.9977 + }, + { + "start": 25733.01, + "end": 25734.29, + "probability": 0.9785 + }, + { + "start": 25734.99, + "end": 25736.38, + "probability": 0.9941 + }, + { + "start": 25737.81, + "end": 25739.97, + "probability": 0.9835 + }, + { + "start": 25740.59, + "end": 25747.09, + "probability": 0.9973 + }, + { + "start": 25750.35, + "end": 25752.03, + "probability": 0.9827 + }, + { + "start": 25754.09, + "end": 25757.11, + "probability": 0.9657 + }, + { + "start": 25758.87, + "end": 25760.83, + "probability": 0.999 + }, + { + "start": 25765.19, + "end": 25767.27, + "probability": 0.9893 + }, + { + "start": 25768.25, + "end": 25770.21, + "probability": 0.9804 + }, + { + "start": 25771.49, + "end": 25773.31, + "probability": 0.9629 + }, + { + "start": 25774.21, + "end": 25775.72, + "probability": 0.9771 + }, + { + "start": 25777.65, + "end": 25781.61, + "probability": 0.9928 + }, + { + "start": 25783.73, + "end": 25785.47, + "probability": 0.6245 + }, + { + "start": 25786.19, + "end": 25789.03, + "probability": 0.4525 + }, + { + "start": 25791.47, + "end": 25792.43, + "probability": 0.9128 + }, + { + "start": 25792.95, + "end": 25795.55, + "probability": 0.9607 + }, + { + "start": 25797.59, + "end": 25801.57, + "probability": 0.8796 + }, + { + "start": 25803.15, + "end": 25804.47, + "probability": 0.9374 + }, + { + "start": 25806.81, + "end": 25807.65, + "probability": 0.894 + }, + { + "start": 25807.69, + "end": 25812.27, + "probability": 0.9868 + }, + { + "start": 25815.39, + "end": 25817.35, + "probability": 0.9991 + }, + { + "start": 25819.09, + "end": 25820.71, + "probability": 0.9993 + }, + { + "start": 25822.37, + "end": 25824.11, + "probability": 0.9976 + }, + { + "start": 25825.35, + "end": 25828.53, + "probability": 0.9935 + }, + { + "start": 25828.75, + "end": 25830.29, + "probability": 0.9825 + }, + { + "start": 25831.03, + "end": 25831.53, + "probability": 0.6086 + }, + { + "start": 25832.65, + "end": 25833.83, + "probability": 0.9494 + }, + { + "start": 25835.27, + "end": 25838.13, + "probability": 0.9916 + }, + { + "start": 25839.59, + "end": 25843.43, + "probability": 0.9963 + }, + { + "start": 25845.19, + "end": 25851.71, + "probability": 0.992 + }, + { + "start": 25853.23, + "end": 25854.59, + "probability": 0.8283 + }, + { + "start": 25856.05, + "end": 25859.49, + "probability": 0.9944 + }, + { + "start": 25861.69, + "end": 25864.73, + "probability": 0.9256 + }, + { + "start": 25867.35, + "end": 25872.65, + "probability": 0.9838 + }, + { + "start": 25873.59, + "end": 25874.67, + "probability": 0.7902 + }, + { + "start": 25875.53, + "end": 25876.63, + "probability": 0.7384 + }, + { + "start": 25876.83, + "end": 25878.25, + "probability": 0.9502 + }, + { + "start": 25879.43, + "end": 25881.07, + "probability": 0.764 + }, + { + "start": 25881.33, + "end": 25885.07, + "probability": 0.9635 + }, + { + "start": 25885.07, + "end": 25890.59, + "probability": 0.9909 + }, + { + "start": 25891.31, + "end": 25893.53, + "probability": 0.8937 + }, + { + "start": 25894.67, + "end": 25896.63, + "probability": 0.9475 + }, + { + "start": 25898.31, + "end": 25900.27, + "probability": 0.978 + }, + { + "start": 25901.59, + "end": 25902.99, + "probability": 0.9265 + }, + { + "start": 25904.71, + "end": 25907.35, + "probability": 0.9977 + }, + { + "start": 25908.97, + "end": 25911.67, + "probability": 0.9911 + }, + { + "start": 25912.51, + "end": 25913.33, + "probability": 0.546 + }, + { + "start": 25913.53, + "end": 25914.95, + "probability": 0.821 + }, + { + "start": 25915.43, + "end": 25916.51, + "probability": 0.9005 + }, + { + "start": 25916.81, + "end": 25919.87, + "probability": 0.9294 + }, + { + "start": 25920.29, + "end": 25921.21, + "probability": 0.7788 + }, + { + "start": 25923.19, + "end": 25926.06, + "probability": 0.9619 + }, + { + "start": 25927.79, + "end": 25928.75, + "probability": 0.9609 + }, + { + "start": 25929.07, + "end": 25930.17, + "probability": 0.7216 + }, + { + "start": 25930.63, + "end": 25931.75, + "probability": 0.989 + }, + { + "start": 25932.77, + "end": 25934.95, + "probability": 0.9718 + }, + { + "start": 25935.69, + "end": 25936.75, + "probability": 0.9941 + }, + { + "start": 25939.97, + "end": 25942.25, + "probability": 0.799 + }, + { + "start": 25944.47, + "end": 25949.39, + "probability": 0.9976 + }, + { + "start": 25950.77, + "end": 25953.71, + "probability": 0.998 + }, + { + "start": 25955.07, + "end": 25958.0, + "probability": 0.7283 + }, + { + "start": 25959.19, + "end": 25962.45, + "probability": 0.8941 + }, + { + "start": 25963.17, + "end": 25966.73, + "probability": 0.9201 + }, + { + "start": 25967.81, + "end": 25971.65, + "probability": 0.9826 + }, + { + "start": 25973.87, + "end": 25978.04, + "probability": 0.9933 + }, + { + "start": 25979.41, + "end": 25979.87, + "probability": 0.689 + }, + { + "start": 25980.85, + "end": 25982.61, + "probability": 0.9888 + }, + { + "start": 25985.09, + "end": 25988.65, + "probability": 0.9817 + }, + { + "start": 25988.75, + "end": 25993.39, + "probability": 0.968 + }, + { + "start": 25996.13, + "end": 26001.77, + "probability": 0.9961 + }, + { + "start": 26002.69, + "end": 26005.39, + "probability": 0.9985 + }, + { + "start": 26006.49, + "end": 26009.76, + "probability": 0.959 + }, + { + "start": 26011.41, + "end": 26013.57, + "probability": 0.9356 + }, + { + "start": 26014.09, + "end": 26016.09, + "probability": 0.9983 + }, + { + "start": 26016.93, + "end": 26017.63, + "probability": 0.8055 + }, + { + "start": 26019.21, + "end": 26021.07, + "probability": 0.981 + }, + { + "start": 26022.07, + "end": 26024.75, + "probability": 0.9937 + }, + { + "start": 26025.41, + "end": 26027.71, + "probability": 0.9788 + }, + { + "start": 26027.85, + "end": 26031.49, + "probability": 0.9959 + }, + { + "start": 26032.15, + "end": 26033.63, + "probability": 0.9667 + }, + { + "start": 26034.51, + "end": 26038.85, + "probability": 0.9976 + }, + { + "start": 26038.85, + "end": 26042.15, + "probability": 0.9956 + }, + { + "start": 26042.29, + "end": 26042.85, + "probability": 0.819 + }, + { + "start": 26043.73, + "end": 26044.69, + "probability": 0.9321 + }, + { + "start": 26045.13, + "end": 26047.79, + "probability": 0.9914 + }, + { + "start": 26050.13, + "end": 26052.37, + "probability": 0.9948 + }, + { + "start": 26052.37, + "end": 26054.81, + "probability": 0.9929 + }, + { + "start": 26056.25, + "end": 26058.87, + "probability": 0.784 + }, + { + "start": 26059.45, + "end": 26061.97, + "probability": 0.9992 + }, + { + "start": 26061.97, + "end": 26065.09, + "probability": 0.9963 + }, + { + "start": 26067.99, + "end": 26070.61, + "probability": 0.9994 + }, + { + "start": 26072.27, + "end": 26073.23, + "probability": 0.9559 + }, + { + "start": 26073.83, + "end": 26076.89, + "probability": 0.9989 + }, + { + "start": 26077.15, + "end": 26077.91, + "probability": 0.9485 + }, + { + "start": 26078.13, + "end": 26078.83, + "probability": 0.981 + }, + { + "start": 26080.47, + "end": 26082.91, + "probability": 0.9915 + }, + { + "start": 26085.21, + "end": 26087.81, + "probability": 0.8584 + }, + { + "start": 26088.53, + "end": 26092.89, + "probability": 0.9331 + }, + { + "start": 26092.97, + "end": 26095.25, + "probability": 0.9534 + }, + { + "start": 26095.61, + "end": 26097.05, + "probability": 0.7263 + }, + { + "start": 26098.01, + "end": 26099.85, + "probability": 0.9885 + }, + { + "start": 26100.53, + "end": 26103.01, + "probability": 0.8566 + }, + { + "start": 26103.69, + "end": 26105.39, + "probability": 0.9913 + }, + { + "start": 26106.73, + "end": 26107.87, + "probability": 0.9625 + }, + { + "start": 26108.23, + "end": 26110.67, + "probability": 0.9883 + }, + { + "start": 26110.75, + "end": 26111.11, + "probability": 0.4574 + }, + { + "start": 26112.51, + "end": 26114.01, + "probability": 0.9977 + }, + { + "start": 26114.73, + "end": 26116.87, + "probability": 0.9851 + }, + { + "start": 26118.41, + "end": 26119.83, + "probability": 0.9011 + }, + { + "start": 26120.39, + "end": 26122.71, + "probability": 0.8772 + }, + { + "start": 26122.79, + "end": 26123.81, + "probability": 0.9437 + }, + { + "start": 26123.93, + "end": 26125.37, + "probability": 0.8457 + }, + { + "start": 26125.81, + "end": 26125.83, + "probability": 0.5087 + }, + { + "start": 26125.83, + "end": 26128.53, + "probability": 0.9816 + }, + { + "start": 26129.05, + "end": 26131.01, + "probability": 0.9517 + }, + { + "start": 26131.55, + "end": 26133.07, + "probability": 0.908 + }, + { + "start": 26133.59, + "end": 26135.51, + "probability": 0.9689 + }, + { + "start": 26135.91, + "end": 26141.67, + "probability": 0.9722 + }, + { + "start": 26141.79, + "end": 26145.73, + "probability": 0.9888 + }, + { + "start": 26146.27, + "end": 26147.41, + "probability": 0.88 + }, + { + "start": 26147.79, + "end": 26148.23, + "probability": 0.515 + }, + { + "start": 26148.39, + "end": 26149.45, + "probability": 0.8575 + }, + { + "start": 26149.73, + "end": 26150.83, + "probability": 0.7487 + }, + { + "start": 26150.89, + "end": 26152.96, + "probability": 0.9966 + }, + { + "start": 26153.59, + "end": 26156.51, + "probability": 0.9005 + }, + { + "start": 26156.53, + "end": 26159.89, + "probability": 0.999 + }, + { + "start": 26160.53, + "end": 26162.35, + "probability": 0.4858 + }, + { + "start": 26162.35, + "end": 26165.57, + "probability": 0.9578 + }, + { + "start": 26165.73, + "end": 26166.75, + "probability": 0.7402 + }, + { + "start": 26167.09, + "end": 26168.13, + "probability": 0.748 + }, + { + "start": 26169.15, + "end": 26171.03, + "probability": 0.6979 + }, + { + "start": 26171.15, + "end": 26174.95, + "probability": 0.7986 + }, + { + "start": 26174.95, + "end": 26177.93, + "probability": 0.9971 + }, + { + "start": 26178.73, + "end": 26181.91, + "probability": 0.1093 + }, + { + "start": 26181.91, + "end": 26182.99, + "probability": 0.1279 + }, + { + "start": 26183.43, + "end": 26184.45, + "probability": 0.9671 + }, + { + "start": 26184.57, + "end": 26185.69, + "probability": 0.4846 + }, + { + "start": 26185.75, + "end": 26188.31, + "probability": 0.9863 + }, + { + "start": 26189.31, + "end": 26189.65, + "probability": 0.5001 + }, + { + "start": 26189.87, + "end": 26190.87, + "probability": 0.7814 + }, + { + "start": 26193.33, + "end": 26195.01, + "probability": 0.9871 + }, + { + "start": 26195.79, + "end": 26196.69, + "probability": 0.7599 + }, + { + "start": 26199.83, + "end": 26202.37, + "probability": 0.9918 + }, + { + "start": 26203.73, + "end": 26205.01, + "probability": 0.9915 + }, + { + "start": 26206.19, + "end": 26207.01, + "probability": 0.8754 + }, + { + "start": 26207.71, + "end": 26210.33, + "probability": 0.9956 + }, + { + "start": 26210.33, + "end": 26212.79, + "probability": 0.9982 + }, + { + "start": 26213.41, + "end": 26216.98, + "probability": 0.9917 + }, + { + "start": 26217.67, + "end": 26218.83, + "probability": 0.9987 + }, + { + "start": 26219.77, + "end": 26226.03, + "probability": 0.9896 + }, + { + "start": 26227.25, + "end": 26229.35, + "probability": 0.9728 + }, + { + "start": 26229.59, + "end": 26233.45, + "probability": 0.9963 + }, + { + "start": 26235.05, + "end": 26238.11, + "probability": 0.9702 + }, + { + "start": 26238.65, + "end": 26239.89, + "probability": 0.9541 + }, + { + "start": 26240.01, + "end": 26241.07, + "probability": 0.9854 + }, + { + "start": 26242.41, + "end": 26244.49, + "probability": 0.9991 + }, + { + "start": 26245.89, + "end": 26247.39, + "probability": 0.9899 + }, + { + "start": 26247.47, + "end": 26249.05, + "probability": 0.9921 + }, + { + "start": 26249.05, + "end": 26250.55, + "probability": 0.9781 + }, + { + "start": 26251.05, + "end": 26254.57, + "probability": 0.9967 + }, + { + "start": 26255.21, + "end": 26258.27, + "probability": 0.9983 + }, + { + "start": 26260.17, + "end": 26261.83, + "probability": 0.9954 + }, + { + "start": 26261.83, + "end": 26264.87, + "probability": 0.999 + }, + { + "start": 26265.31, + "end": 26267.01, + "probability": 0.9902 + }, + { + "start": 26268.83, + "end": 26270.91, + "probability": 0.759 + }, + { + "start": 26271.81, + "end": 26274.79, + "probability": 0.8638 + }, + { + "start": 26275.07, + "end": 26276.41, + "probability": 0.965 + }, + { + "start": 26276.71, + "end": 26279.95, + "probability": 0.9722 + }, + { + "start": 26280.03, + "end": 26283.33, + "probability": 0.9873 + }, + { + "start": 26285.39, + "end": 26287.21, + "probability": 0.9832 + }, + { + "start": 26287.35, + "end": 26290.69, + "probability": 0.8309 + }, + { + "start": 26290.83, + "end": 26293.23, + "probability": 0.9978 + }, + { + "start": 26294.63, + "end": 26295.33, + "probability": 0.915 + }, + { + "start": 26296.69, + "end": 26297.21, + "probability": 0.8873 + }, + { + "start": 26298.33, + "end": 26299.39, + "probability": 0.9717 + }, + { + "start": 26300.67, + "end": 26303.01, + "probability": 0.9652 + }, + { + "start": 26304.83, + "end": 26309.37, + "probability": 0.9948 + }, + { + "start": 26310.73, + "end": 26313.27, + "probability": 0.8497 + }, + { + "start": 26313.43, + "end": 26316.55, + "probability": 0.998 + }, + { + "start": 26317.89, + "end": 26321.27, + "probability": 0.999 + }, + { + "start": 26322.13, + "end": 26325.19, + "probability": 0.9995 + }, + { + "start": 26327.67, + "end": 26329.23, + "probability": 0.9972 + }, + { + "start": 26330.79, + "end": 26331.97, + "probability": 0.952 + }, + { + "start": 26332.91, + "end": 26335.13, + "probability": 0.9952 + }, + { + "start": 26335.13, + "end": 26339.03, + "probability": 0.9959 + }, + { + "start": 26339.67, + "end": 26343.41, + "probability": 0.9868 + }, + { + "start": 26344.41, + "end": 26348.52, + "probability": 0.9976 + }, + { + "start": 26349.07, + "end": 26350.93, + "probability": 0.9976 + }, + { + "start": 26355.23, + "end": 26357.53, + "probability": 0.9954 + }, + { + "start": 26359.03, + "end": 26359.81, + "probability": 0.9907 + }, + { + "start": 26362.03, + "end": 26362.57, + "probability": 0.9622 + }, + { + "start": 26364.43, + "end": 26365.03, + "probability": 0.8889 + }, + { + "start": 26367.21, + "end": 26368.79, + "probability": 0.8126 + }, + { + "start": 26371.51, + "end": 26373.91, + "probability": 0.9572 + }, + { + "start": 26375.35, + "end": 26375.53, + "probability": 0.044 + }, + { + "start": 26375.53, + "end": 26375.53, + "probability": 0.0921 + }, + { + "start": 26375.53, + "end": 26376.95, + "probability": 0.483 + }, + { + "start": 26377.01, + "end": 26379.65, + "probability": 0.9977 + }, + { + "start": 26380.47, + "end": 26382.51, + "probability": 0.9991 + }, + { + "start": 26383.15, + "end": 26383.43, + "probability": 0.6301 + }, + { + "start": 26383.51, + "end": 26385.17, + "probability": 0.9834 + }, + { + "start": 26385.99, + "end": 26390.09, + "probability": 0.9951 + }, + { + "start": 26390.39, + "end": 26391.77, + "probability": 0.9609 + }, + { + "start": 26392.37, + "end": 26394.23, + "probability": 0.989 + }, + { + "start": 26394.55, + "end": 26398.35, + "probability": 0.9832 + }, + { + "start": 26398.51, + "end": 26399.47, + "probability": 0.8497 + }, + { + "start": 26399.93, + "end": 26402.63, + "probability": 0.9937 + }, + { + "start": 26403.19, + "end": 26405.45, + "probability": 0.989 + }, + { + "start": 26405.73, + "end": 26407.83, + "probability": 0.998 + }, + { + "start": 26408.13, + "end": 26409.61, + "probability": 0.9494 + }, + { + "start": 26410.15, + "end": 26411.21, + "probability": 0.7913 + }, + { + "start": 26411.75, + "end": 26412.54, + "probability": 0.9326 + }, + { + "start": 26415.47, + "end": 26416.31, + "probability": 0.2439 + }, + { + "start": 26416.31, + "end": 26416.93, + "probability": 0.2163 + }, + { + "start": 26417.31, + "end": 26420.17, + "probability": 0.9963 + }, + { + "start": 26420.24, + "end": 26420.31, + "probability": 0.3588 + }, + { + "start": 26420.35, + "end": 26422.99, + "probability": 0.993 + }, + { + "start": 26424.13, + "end": 26425.23, + "probability": 0.9883 + }, + { + "start": 26425.39, + "end": 26426.55, + "probability": 0.999 + }, + { + "start": 26426.97, + "end": 26428.23, + "probability": 0.8722 + }, + { + "start": 26428.69, + "end": 26430.09, + "probability": 0.9519 + }, + { + "start": 26430.45, + "end": 26432.51, + "probability": 0.9821 + }, + { + "start": 26432.83, + "end": 26433.09, + "probability": 0.7957 + }, + { + "start": 26435.15, + "end": 26436.87, + "probability": 0.8398 + }, + { + "start": 26436.93, + "end": 26437.41, + "probability": 0.7223 + }, + { + "start": 26437.47, + "end": 26437.81, + "probability": 0.7268 + }, + { + "start": 26437.89, + "end": 26440.07, + "probability": 0.8931 + }, + { + "start": 26440.15, + "end": 26440.85, + "probability": 0.7302 + }, + { + "start": 26441.73, + "end": 26444.37, + "probability": 0.6781 + }, + { + "start": 26453.15, + "end": 26455.11, + "probability": 0.9376 + }, + { + "start": 26455.93, + "end": 26457.17, + "probability": 0.908 + }, + { + "start": 26458.17, + "end": 26460.26, + "probability": 0.9966 + }, + { + "start": 26460.35, + "end": 26460.79, + "probability": 0.5537 + }, + { + "start": 26460.89, + "end": 26463.55, + "probability": 0.992 + }, + { + "start": 26463.67, + "end": 26464.41, + "probability": 0.7586 + }, + { + "start": 26465.09, + "end": 26465.63, + "probability": 0.9948 + }, + { + "start": 26466.31, + "end": 26471.45, + "probability": 0.9985 + }, + { + "start": 26472.11, + "end": 26472.63, + "probability": 0.8298 + }, + { + "start": 26472.69, + "end": 26473.49, + "probability": 0.7981 + }, + { + "start": 26473.59, + "end": 26474.22, + "probability": 0.7803 + }, + { + "start": 26474.69, + "end": 26476.57, + "probability": 0.8812 + }, + { + "start": 26477.79, + "end": 26478.86, + "probability": 0.8994 + }, + { + "start": 26479.71, + "end": 26483.03, + "probability": 0.9888 + }, + { + "start": 26483.71, + "end": 26484.55, + "probability": 0.89 + }, + { + "start": 26485.19, + "end": 26485.89, + "probability": 0.6993 + }, + { + "start": 26486.73, + "end": 26487.81, + "probability": 0.8265 + }, + { + "start": 26489.33, + "end": 26491.01, + "probability": 0.9812 + }, + { + "start": 26492.07, + "end": 26494.23, + "probability": 0.9862 + }, + { + "start": 26495.67, + "end": 26499.29, + "probability": 0.9822 + }, + { + "start": 26500.13, + "end": 26503.43, + "probability": 0.6074 + }, + { + "start": 26505.11, + "end": 26506.12, + "probability": 0.4144 + }, + { + "start": 26506.29, + "end": 26511.97, + "probability": 0.9717 + }, + { + "start": 26512.87, + "end": 26516.57, + "probability": 0.9966 + }, + { + "start": 26517.63, + "end": 26518.45, + "probability": 0.9519 + }, + { + "start": 26518.75, + "end": 26519.41, + "probability": 0.9067 + }, + { + "start": 26520.25, + "end": 26520.57, + "probability": 0.9027 + }, + { + "start": 26520.63, + "end": 26521.15, + "probability": 0.8743 + }, + { + "start": 26521.99, + "end": 26526.09, + "probability": 0.9654 + }, + { + "start": 26527.87, + "end": 26528.59, + "probability": 0.7578 + }, + { + "start": 26529.83, + "end": 26530.49, + "probability": 0.0023 + }, + { + "start": 26530.49, + "end": 26531.71, + "probability": 0.3213 + }, + { + "start": 26531.99, + "end": 26534.39, + "probability": 0.7996 + }, + { + "start": 26534.47, + "end": 26535.03, + "probability": 0.9606 + }, + { + "start": 26537.01, + "end": 26537.89, + "probability": 0.9303 + }, + { + "start": 26538.95, + "end": 26539.41, + "probability": 0.8619 + }, + { + "start": 26540.33, + "end": 26543.89, + "probability": 0.9746 + }, + { + "start": 26544.05, + "end": 26545.89, + "probability": 0.9014 + }, + { + "start": 26547.53, + "end": 26550.01, + "probability": 0.7917 + }, + { + "start": 26550.99, + "end": 26556.07, + "probability": 0.984 + }, + { + "start": 26558.27, + "end": 26559.77, + "probability": 0.34 + }, + { + "start": 26559.87, + "end": 26562.17, + "probability": 0.697 + }, + { + "start": 26562.93, + "end": 26565.11, + "probability": 0.8114 + }, + { + "start": 26566.59, + "end": 26568.44, + "probability": 0.8286 + }, + { + "start": 26569.33, + "end": 26571.35, + "probability": 0.7693 + }, + { + "start": 26571.99, + "end": 26576.87, + "probability": 0.9938 + }, + { + "start": 26577.69, + "end": 26579.99, + "probability": 0.9597 + }, + { + "start": 26580.17, + "end": 26581.61, + "probability": 0.9409 + }, + { + "start": 26582.17, + "end": 26583.01, + "probability": 0.701 + }, + { + "start": 26583.19, + "end": 26583.33, + "probability": 0.9209 + }, + { + "start": 26584.87, + "end": 26587.05, + "probability": 0.9193 + }, + { + "start": 26587.69, + "end": 26589.17, + "probability": 0.7059 + }, + { + "start": 26590.29, + "end": 26593.93, + "probability": 0.9917 + }, + { + "start": 26596.41, + "end": 26596.95, + "probability": 0.9919 + }, + { + "start": 26598.37, + "end": 26598.39, + "probability": 0.1042 + }, + { + "start": 26598.39, + "end": 26601.43, + "probability": 0.9575 + }, + { + "start": 26601.87, + "end": 26606.91, + "probability": 0.992 + }, + { + "start": 26606.95, + "end": 26611.13, + "probability": 0.6991 + }, + { + "start": 26611.65, + "end": 26613.29, + "probability": 0.3055 + }, + { + "start": 26613.41, + "end": 26615.33, + "probability": 0.9487 + }, + { + "start": 26615.53, + "end": 26615.89, + "probability": 0.0023 + }, + { + "start": 26616.81, + "end": 26617.43, + "probability": 0.0776 + }, + { + "start": 26617.43, + "end": 26619.36, + "probability": 0.2398 + }, + { + "start": 26619.69, + "end": 26619.97, + "probability": 0.6163 + }, + { + "start": 26620.03, + "end": 26620.35, + "probability": 0.8188 + }, + { + "start": 26620.43, + "end": 26621.45, + "probability": 0.8855 + }, + { + "start": 26621.57, + "end": 26622.21, + "probability": 0.6121 + }, + { + "start": 26622.33, + "end": 26622.73, + "probability": 0.8769 + }, + { + "start": 26623.15, + "end": 26624.31, + "probability": 0.8534 + }, + { + "start": 26624.41, + "end": 26625.16, + "probability": 0.4239 + }, + { + "start": 26625.61, + "end": 26625.79, + "probability": 0.2646 + }, + { + "start": 26625.99, + "end": 26628.59, + "probability": 0.9758 + }, + { + "start": 26629.31, + "end": 26632.17, + "probability": 0.9878 + }, + { + "start": 26633.47, + "end": 26637.11, + "probability": 0.992 + }, + { + "start": 26637.11, + "end": 26642.11, + "probability": 0.9454 + }, + { + "start": 26642.19, + "end": 26642.67, + "probability": 0.8209 + }, + { + "start": 26643.11, + "end": 26645.39, + "probability": 0.7678 + }, + { + "start": 26646.45, + "end": 26648.37, + "probability": 0.437 + }, + { + "start": 26649.07, + "end": 26649.07, + "probability": 0.2345 + }, + { + "start": 26649.07, + "end": 26649.07, + "probability": 0.262 + }, + { + "start": 26649.07, + "end": 26649.07, + "probability": 0.4219 + }, + { + "start": 26649.07, + "end": 26649.31, + "probability": 0.2993 + }, + { + "start": 26649.35, + "end": 26652.31, + "probability": 0.5722 + }, + { + "start": 26652.33, + "end": 26652.41, + "probability": 0.2346 + }, + { + "start": 26652.41, + "end": 26653.11, + "probability": 0.9723 + }, + { + "start": 26653.23, + "end": 26654.07, + "probability": 0.6113 + }, + { + "start": 26654.61, + "end": 26656.15, + "probability": 0.1157 + }, + { + "start": 26656.15, + "end": 26656.97, + "probability": 0.151 + }, + { + "start": 26657.75, + "end": 26662.09, + "probability": 0.9618 + }, + { + "start": 26662.65, + "end": 26663.19, + "probability": 0.8845 + }, + { + "start": 26663.41, + "end": 26666.59, + "probability": 0.9128 + }, + { + "start": 26666.73, + "end": 26667.15, + "probability": 0.8064 + }, + { + "start": 26667.69, + "end": 26668.15, + "probability": 0.6623 + }, + { + "start": 26668.29, + "end": 26668.65, + "probability": 0.7725 + }, + { + "start": 26669.41, + "end": 26671.01, + "probability": 0.958 + }, + { + "start": 26671.73, + "end": 26672.43, + "probability": 0.9739 + }, + { + "start": 26673.41, + "end": 26676.89, + "probability": 0.8945 + }, + { + "start": 26680.33, + "end": 26680.83, + "probability": 0.8173 + }, + { + "start": 26680.87, + "end": 26681.43, + "probability": 0.6868 + }, + { + "start": 26681.89, + "end": 26685.09, + "probability": 0.9946 + }, + { + "start": 26685.77, + "end": 26686.37, + "probability": 0.8988 + }, + { + "start": 26686.47, + "end": 26687.97, + "probability": 0.9365 + }, + { + "start": 26688.97, + "end": 26691.89, + "probability": 0.9119 + }, + { + "start": 26692.33, + "end": 26693.27, + "probability": 0.3014 + }, + { + "start": 26693.51, + "end": 26693.71, + "probability": 0.5106 + }, + { + "start": 26694.27, + "end": 26695.31, + "probability": 0.9282 + }, + { + "start": 26695.35, + "end": 26697.17, + "probability": 0.7808 + }, + { + "start": 26697.31, + "end": 26697.73, + "probability": 0.9296 + }, + { + "start": 26697.85, + "end": 26699.26, + "probability": 0.8621 + }, + { + "start": 26700.09, + "end": 26701.13, + "probability": 0.9119 + }, + { + "start": 26702.57, + "end": 26703.45, + "probability": 0.5651 + }, + { + "start": 26703.93, + "end": 26707.41, + "probability": 0.765 + }, + { + "start": 26707.41, + "end": 26711.41, + "probability": 0.9785 + }, + { + "start": 26712.53, + "end": 26713.6, + "probability": 0.972 + }, + { + "start": 26713.75, + "end": 26714.53, + "probability": 0.9131 + }, + { + "start": 26715.49, + "end": 26715.49, + "probability": 0.4333 + }, + { + "start": 26715.49, + "end": 26715.59, + "probability": 0.4023 + }, + { + "start": 26716.59, + "end": 26717.63, + "probability": 0.7185 + }, + { + "start": 26718.03, + "end": 26718.03, + "probability": 0.3104 + }, + { + "start": 26718.03, + "end": 26720.05, + "probability": 0.5982 + }, + { + "start": 26720.25, + "end": 26721.69, + "probability": 0.8358 + }, + { + "start": 26722.67, + "end": 26723.89, + "probability": 0.9043 + }, + { + "start": 26726.45, + "end": 26727.45, + "probability": 0.6244 + }, + { + "start": 26727.51, + "end": 26728.53, + "probability": 0.9636 + }, + { + "start": 26729.51, + "end": 26731.83, + "probability": 0.5133 + }, + { + "start": 26731.89, + "end": 26732.85, + "probability": 0.7777 + }, + { + "start": 26733.47, + "end": 26736.03, + "probability": 0.8718 + }, + { + "start": 26737.01, + "end": 26737.89, + "probability": 0.6658 + }, + { + "start": 26738.41, + "end": 26739.53, + "probability": 0.2443 + }, + { + "start": 26739.73, + "end": 26742.69, + "probability": 0.969 + }, + { + "start": 26744.67, + "end": 26745.85, + "probability": 0.7739 + }, + { + "start": 26746.03, + "end": 26747.21, + "probability": 0.9802 + }, + { + "start": 26747.67, + "end": 26750.37, + "probability": 0.9347 + }, + { + "start": 26751.29, + "end": 26751.73, + "probability": 0.7206 + }, + { + "start": 26752.07, + "end": 26753.29, + "probability": 0.9388 + }, + { + "start": 26754.29, + "end": 26755.15, + "probability": 0.6926 + }, + { + "start": 26755.63, + "end": 26758.19, + "probability": 0.0855 + }, + { + "start": 26758.19, + "end": 26758.19, + "probability": 0.0543 + }, + { + "start": 26758.19, + "end": 26758.29, + "probability": 0.2024 + }, + { + "start": 26758.51, + "end": 26758.99, + "probability": 0.9569 + }, + { + "start": 26760.13, + "end": 26762.13, + "probability": 0.9451 + }, + { + "start": 26762.91, + "end": 26765.09, + "probability": 0.9588 + }, + { + "start": 26766.39, + "end": 26768.5, + "probability": 0.9175 + }, + { + "start": 26769.09, + "end": 26770.39, + "probability": 0.6265 + }, + { + "start": 26771.33, + "end": 26771.93, + "probability": 0.6815 + }, + { + "start": 26772.77, + "end": 26774.83, + "probability": 0.5911 + }, + { + "start": 26775.67, + "end": 26776.07, + "probability": 0.5348 + }, + { + "start": 26776.53, + "end": 26776.57, + "probability": 0.1161 + }, + { + "start": 26776.57, + "end": 26777.71, + "probability": 0.7742 + }, + { + "start": 26778.53, + "end": 26779.35, + "probability": 0.596 + }, + { + "start": 26779.39, + "end": 26779.87, + "probability": 0.8169 + }, + { + "start": 26780.49, + "end": 26780.93, + "probability": 0.4601 + }, + { + "start": 26781.05, + "end": 26781.65, + "probability": 0.2066 + }, + { + "start": 26781.77, + "end": 26782.85, + "probability": 0.8319 + }, + { + "start": 26782.91, + "end": 26783.67, + "probability": 0.7097 + }, + { + "start": 26783.75, + "end": 26784.99, + "probability": 0.9873 + }, + { + "start": 26785.19, + "end": 26787.53, + "probability": 0.7104 + }, + { + "start": 26788.75, + "end": 26790.33, + "probability": 0.8956 + }, + { + "start": 26791.21, + "end": 26791.79, + "probability": 0.5087 + }, + { + "start": 26792.87, + "end": 26795.63, + "probability": 0.9456 + }, + { + "start": 26796.83, + "end": 26798.41, + "probability": 0.9775 + }, + { + "start": 26799.23, + "end": 26801.87, + "probability": 0.792 + }, + { + "start": 26802.71, + "end": 26805.93, + "probability": 0.9905 + }, + { + "start": 26806.23, + "end": 26809.81, + "probability": 0.8643 + }, + { + "start": 26810.43, + "end": 26812.45, + "probability": 0.7865 + }, + { + "start": 26812.97, + "end": 26813.33, + "probability": 0.1433 + }, + { + "start": 26813.63, + "end": 26814.99, + "probability": 0.8248 + }, + { + "start": 26815.55, + "end": 26815.59, + "probability": 0.0211 + }, + { + "start": 26815.59, + "end": 26815.95, + "probability": 0.5916 + }, + { + "start": 26816.69, + "end": 26817.35, + "probability": 0.7166 + }, + { + "start": 26818.01, + "end": 26819.89, + "probability": 0.8259 + }, + { + "start": 26820.71, + "end": 26823.73, + "probability": 0.8058 + }, + { + "start": 26824.35, + "end": 26825.33, + "probability": 0.7619 + }, + { + "start": 26825.57, + "end": 26827.69, + "probability": 0.8885 + }, + { + "start": 26829.03, + "end": 26829.51, + "probability": 0.6298 + }, + { + "start": 26830.03, + "end": 26832.25, + "probability": 0.9564 + }, + { + "start": 26832.45, + "end": 26834.35, + "probability": 0.9355 + }, + { + "start": 26834.93, + "end": 26835.55, + "probability": 0.7957 + }, + { + "start": 26836.07, + "end": 26836.83, + "probability": 0.9439 + }, + { + "start": 26837.53, + "end": 26837.81, + "probability": 0.6144 + }, + { + "start": 26838.65, + "end": 26839.91, + "probability": 0.8427 + }, + { + "start": 26840.97, + "end": 26840.97, + "probability": 0.0574 + }, + { + "start": 26841.27, + "end": 26843.67, + "probability": 0.9662 + }, + { + "start": 26843.75, + "end": 26844.29, + "probability": 0.4028 + }, + { + "start": 26844.37, + "end": 26844.37, + "probability": 0.5676 + }, + { + "start": 26844.39, + "end": 26847.39, + "probability": 0.9863 + }, + { + "start": 26848.31, + "end": 26851.73, + "probability": 0.764 + }, + { + "start": 26852.55, + "end": 26853.75, + "probability": 0.793 + }, + { + "start": 26853.81, + "end": 26854.85, + "probability": 0.5744 + }, + { + "start": 26855.21, + "end": 26857.83, + "probability": 0.9765 + }, + { + "start": 26859.01, + "end": 26859.11, + "probability": 0.6561 + }, + { + "start": 26859.11, + "end": 26860.53, + "probability": 0.9222 + }, + { + "start": 26862.19, + "end": 26863.21, + "probability": 0.8932 + }, + { + "start": 26864.81, + "end": 26866.71, + "probability": 0.5484 + }, + { + "start": 26867.17, + "end": 26867.79, + "probability": 0.9126 + }, + { + "start": 26868.29, + "end": 26869.63, + "probability": 0.833 + }, + { + "start": 26869.69, + "end": 26870.23, + "probability": 0.5256 + }, + { + "start": 26870.23, + "end": 26871.07, + "probability": 0.6312 + }, + { + "start": 26871.09, + "end": 26872.63, + "probability": 0.5368 + }, + { + "start": 26872.63, + "end": 26873.97, + "probability": 0.6089 + }, + { + "start": 26874.09, + "end": 26875.93, + "probability": 0.7551 + }, + { + "start": 26876.15, + "end": 26877.39, + "probability": 0.3845 + }, + { + "start": 26877.53, + "end": 26878.15, + "probability": 0.2146 + }, + { + "start": 26878.23, + "end": 26881.97, + "probability": 0.9146 + }, + { + "start": 26881.97, + "end": 26883.07, + "probability": 0.674 + }, + { + "start": 26883.09, + "end": 26884.47, + "probability": 0.9431 + }, + { + "start": 26886.23, + "end": 26886.23, + "probability": 0.8775 + }, + { + "start": 26886.23, + "end": 26887.18, + "probability": 0.5958 + }, + { + "start": 26887.49, + "end": 26888.33, + "probability": 0.5153 + }, + { + "start": 26888.49, + "end": 26889.27, + "probability": 0.1414 + }, + { + "start": 26891.35, + "end": 26891.53, + "probability": 0.6533 + }, + { + "start": 26891.65, + "end": 26893.75, + "probability": 0.6939 + }, + { + "start": 26893.87, + "end": 26895.83, + "probability": 0.8288 + }, + { + "start": 26896.87, + "end": 26899.99, + "probability": 0.8618 + }, + { + "start": 26901.11, + "end": 26902.6, + "probability": 0.9866 + }, + { + "start": 26903.59, + "end": 26906.35, + "probability": 0.6104 + }, + { + "start": 26907.13, + "end": 26908.85, + "probability": 0.9354 + }, + { + "start": 26909.49, + "end": 26911.67, + "probability": 0.6722 + }, + { + "start": 26912.21, + "end": 26915.39, + "probability": 0.7496 + }, + { + "start": 26917.27, + "end": 26918.73, + "probability": 0.8691 + }, + { + "start": 26918.81, + "end": 26920.05, + "probability": 0.8706 + }, + { + "start": 26920.85, + "end": 26921.71, + "probability": 0.7271 + }, + { + "start": 26921.81, + "end": 26922.55, + "probability": 0.9314 + }, + { + "start": 26922.63, + "end": 26926.97, + "probability": 0.97 + }, + { + "start": 26928.51, + "end": 26931.12, + "probability": 0.9941 + }, + { + "start": 26931.91, + "end": 26933.97, + "probability": 0.5949 + }, + { + "start": 26934.67, + "end": 26936.27, + "probability": 0.999 + }, + { + "start": 26936.65, + "end": 26941.66, + "probability": 0.9161 + }, + { + "start": 26942.05, + "end": 26942.25, + "probability": 0.3281 + }, + { + "start": 26942.87, + "end": 26945.15, + "probability": 0.9542 + }, + { + "start": 26945.57, + "end": 26946.27, + "probability": 0.6546 + }, + { + "start": 26947.59, + "end": 26949.11, + "probability": 0.722 + }, + { + "start": 26949.21, + "end": 26950.93, + "probability": 0.7666 + }, + { + "start": 26951.36, + "end": 26952.14, + "probability": 0.7254 + }, + { + "start": 26953.55, + "end": 26956.21, + "probability": 0.7807 + }, + { + "start": 26956.33, + "end": 26956.65, + "probability": 0.8642 + }, + { + "start": 26956.69, + "end": 26957.41, + "probability": 0.9801 + }, + { + "start": 26957.73, + "end": 26958.47, + "probability": 0.6938 + }, + { + "start": 26958.91, + "end": 26959.67, + "probability": 0.8908 + }, + { + "start": 26959.71, + "end": 26960.15, + "probability": 0.723 + }, + { + "start": 26960.33, + "end": 26961.27, + "probability": 0.9336 + }, + { + "start": 26961.65, + "end": 26965.67, + "probability": 0.9855 + }, + { + "start": 26967.67, + "end": 26971.01, + "probability": 0.891 + }, + { + "start": 26971.79, + "end": 26975.34, + "probability": 0.9879 + }, + { + "start": 26975.67, + "end": 26979.07, + "probability": 0.9663 + }, + { + "start": 26980.91, + "end": 26981.67, + "probability": 0.3356 + }, + { + "start": 26982.69, + "end": 26984.14, + "probability": 0.8638 + }, + { + "start": 26985.23, + "end": 26985.67, + "probability": 0.9207 + }, + { + "start": 26985.73, + "end": 26986.17, + "probability": 0.912 + }, + { + "start": 26986.25, + "end": 26987.91, + "probability": 0.9723 + }, + { + "start": 26990.05, + "end": 26991.91, + "probability": 0.5968 + }, + { + "start": 26991.97, + "end": 26992.89, + "probability": 0.623 + }, + { + "start": 26993.97, + "end": 26996.39, + "probability": 0.8462 + }, + { + "start": 26996.43, + "end": 26997.33, + "probability": 0.5427 + }, + { + "start": 26997.69, + "end": 26999.11, + "probability": 0.9261 + }, + { + "start": 26999.63, + "end": 27001.51, + "probability": 0.8152 + }, + { + "start": 27002.57, + "end": 27006.13, + "probability": 0.9217 + }, + { + "start": 27007.33, + "end": 27009.55, + "probability": 0.8085 + }, + { + "start": 27010.11, + "end": 27011.65, + "probability": 0.5862 + }, + { + "start": 27012.39, + "end": 27013.01, + "probability": 0.8304 + }, + { + "start": 27013.95, + "end": 27013.95, + "probability": 0.7985 + }, + { + "start": 27014.29, + "end": 27017.29, + "probability": 0.9106 + }, + { + "start": 27018.17, + "end": 27019.31, + "probability": 0.6664 + }, + { + "start": 27020.51, + "end": 27025.14, + "probability": 0.9062 + }, + { + "start": 27026.21, + "end": 27028.21, + "probability": 0.894 + }, + { + "start": 27030.65, + "end": 27031.05, + "probability": 0.9102 + }, + { + "start": 27032.23, + "end": 27033.05, + "probability": 0.9761 + }, + { + "start": 27033.55, + "end": 27034.51, + "probability": 0.9834 + }, + { + "start": 27035.23, + "end": 27037.27, + "probability": 0.9861 + }, + { + "start": 27037.43, + "end": 27037.89, + "probability": 0.9884 + }, + { + "start": 27038.09, + "end": 27039.07, + "probability": 0.95 + }, + { + "start": 27039.35, + "end": 27040.81, + "probability": 0.9932 + }, + { + "start": 27044.07, + "end": 27044.59, + "probability": 0.9723 + }, + { + "start": 27045.47, + "end": 27046.37, + "probability": 0.9392 + }, + { + "start": 27046.91, + "end": 27048.43, + "probability": 0.8983 + }, + { + "start": 27049.21, + "end": 27049.65, + "probability": 0.3653 + }, + { + "start": 27051.19, + "end": 27052.19, + "probability": 0.9946 + }, + { + "start": 27053.43, + "end": 27058.39, + "probability": 0.9655 + }, + { + "start": 27059.51, + "end": 27062.29, + "probability": 0.9437 + }, + { + "start": 27063.55, + "end": 27064.79, + "probability": 0.9933 + }, + { + "start": 27065.21, + "end": 27066.09, + "probability": 0.9827 + }, + { + "start": 27067.57, + "end": 27069.95, + "probability": 0.9082 + }, + { + "start": 27070.89, + "end": 27072.01, + "probability": 0.9744 + }, + { + "start": 27072.29, + "end": 27073.93, + "probability": 0.9779 + }, + { + "start": 27075.27, + "end": 27077.29, + "probability": 0.9902 + }, + { + "start": 27078.07, + "end": 27080.95, + "probability": 0.9846 + }, + { + "start": 27082.31, + "end": 27085.55, + "probability": 0.9957 + }, + { + "start": 27086.23, + "end": 27087.09, + "probability": 0.8306 + }, + { + "start": 27087.95, + "end": 27090.93, + "probability": 0.9946 + }, + { + "start": 27091.53, + "end": 27093.29, + "probability": 0.8964 + }, + { + "start": 27094.81, + "end": 27095.83, + "probability": 0.9309 + }, + { + "start": 27095.89, + "end": 27098.67, + "probability": 0.9971 + }, + { + "start": 27098.73, + "end": 27100.59, + "probability": 0.9035 + }, + { + "start": 27100.65, + "end": 27106.75, + "probability": 0.9478 + }, + { + "start": 27107.35, + "end": 27108.49, + "probability": 0.9679 + }, + { + "start": 27109.31, + "end": 27110.75, + "probability": 0.776 + }, + { + "start": 27111.77, + "end": 27113.89, + "probability": 0.9685 + }, + { + "start": 27114.69, + "end": 27118.51, + "probability": 0.9361 + }, + { + "start": 27119.83, + "end": 27121.85, + "probability": 0.9595 + }, + { + "start": 27122.27, + "end": 27124.41, + "probability": 0.9971 + }, + { + "start": 27124.55, + "end": 27124.67, + "probability": 0.534 + }, + { + "start": 27124.81, + "end": 27125.87, + "probability": 0.4496 + }, + { + "start": 27127.45, + "end": 27130.71, + "probability": 0.9969 + }, + { + "start": 27130.87, + "end": 27133.17, + "probability": 0.9988 + }, + { + "start": 27133.63, + "end": 27134.41, + "probability": 0.9315 + }, + { + "start": 27134.89, + "end": 27137.81, + "probability": 0.9786 + }, + { + "start": 27138.81, + "end": 27141.18, + "probability": 0.9976 + }, + { + "start": 27141.81, + "end": 27143.09, + "probability": 0.7581 + }, + { + "start": 27143.89, + "end": 27145.03, + "probability": 0.9985 + }, + { + "start": 27146.49, + "end": 27147.6, + "probability": 0.8719 + }, + { + "start": 27148.31, + "end": 27149.67, + "probability": 0.9943 + }, + { + "start": 27150.31, + "end": 27151.17, + "probability": 0.9956 + }, + { + "start": 27152.31, + "end": 27153.35, + "probability": 0.9927 + }, + { + "start": 27153.93, + "end": 27155.09, + "probability": 0.6226 + }, + { + "start": 27155.47, + "end": 27158.49, + "probability": 0.8839 + }, + { + "start": 27159.63, + "end": 27160.06, + "probability": 0.8398 + }, + { + "start": 27160.65, + "end": 27161.78, + "probability": 0.9941 + }, + { + "start": 27161.85, + "end": 27163.65, + "probability": 0.9941 + }, + { + "start": 27164.05, + "end": 27167.59, + "probability": 0.8229 + }, + { + "start": 27168.27, + "end": 27169.59, + "probability": 0.9706 + }, + { + "start": 27169.69, + "end": 27171.17, + "probability": 0.9608 + }, + { + "start": 27171.79, + "end": 27173.83, + "probability": 0.9842 + }, + { + "start": 27174.75, + "end": 27179.15, + "probability": 0.993 + }, + { + "start": 27179.25, + "end": 27181.93, + "probability": 0.896 + }, + { + "start": 27181.93, + "end": 27185.59, + "probability": 0.9856 + }, + { + "start": 27186.53, + "end": 27189.0, + "probability": 0.9952 + }, + { + "start": 27190.27, + "end": 27191.23, + "probability": 0.8436 + }, + { + "start": 27191.85, + "end": 27193.73, + "probability": 0.9985 + }, + { + "start": 27193.73, + "end": 27195.91, + "probability": 0.9985 + }, + { + "start": 27196.73, + "end": 27199.59, + "probability": 0.999 + }, + { + "start": 27199.99, + "end": 27201.55, + "probability": 0.8616 + }, + { + "start": 27202.01, + "end": 27205.31, + "probability": 0.9543 + }, + { + "start": 27205.71, + "end": 27207.65, + "probability": 0.98 + }, + { + "start": 27207.77, + "end": 27213.07, + "probability": 0.9961 + }, + { + "start": 27213.57, + "end": 27216.17, + "probability": 0.9956 + }, + { + "start": 27216.17, + "end": 27219.95, + "probability": 0.9779 + }, + { + "start": 27221.05, + "end": 27224.29, + "probability": 0.321 + }, + { + "start": 27224.29, + "end": 27225.01, + "probability": 0.8538 + }, + { + "start": 27225.53, + "end": 27226.85, + "probability": 0.8958 + }, + { + "start": 27227.43, + "end": 27228.25, + "probability": 0.9218 + }, + { + "start": 27229.07, + "end": 27231.45, + "probability": 0.9077 + }, + { + "start": 27232.19, + "end": 27234.69, + "probability": 0.9153 + }, + { + "start": 27235.21, + "end": 27236.07, + "probability": 0.7387 + }, + { + "start": 27236.47, + "end": 27237.29, + "probability": 0.8446 + }, + { + "start": 27237.39, + "end": 27239.67, + "probability": 0.9867 + }, + { + "start": 27240.53, + "end": 27241.75, + "probability": 0.9589 + }, + { + "start": 27242.03, + "end": 27243.17, + "probability": 0.9849 + }, + { + "start": 27243.45, + "end": 27245.99, + "probability": 0.9531 + }, + { + "start": 27246.57, + "end": 27246.57, + "probability": 0.1477 + }, + { + "start": 27246.57, + "end": 27249.13, + "probability": 0.6692 + }, + { + "start": 27249.63, + "end": 27252.71, + "probability": 0.4924 + }, + { + "start": 27253.01, + "end": 27253.87, + "probability": 0.251 + }, + { + "start": 27253.91, + "end": 27256.25, + "probability": 0.4682 + }, + { + "start": 27256.25, + "end": 27256.25, + "probability": 0.0016 + }, + { + "start": 27256.25, + "end": 27256.73, + "probability": 0.2766 + }, + { + "start": 27257.33, + "end": 27257.87, + "probability": 0.4096 + }, + { + "start": 27257.91, + "end": 27261.57, + "probability": 0.7589 + }, + { + "start": 27261.93, + "end": 27266.79, + "probability": 0.953 + }, + { + "start": 27267.37, + "end": 27269.37, + "probability": 0.9991 + }, + { + "start": 27269.47, + "end": 27270.77, + "probability": 0.9958 + }, + { + "start": 27271.37, + "end": 27272.87, + "probability": 0.9425 + }, + { + "start": 27273.75, + "end": 27274.54, + "probability": 0.9917 + }, + { + "start": 27274.85, + "end": 27277.23, + "probability": 0.9961 + }, + { + "start": 27277.71, + "end": 27280.63, + "probability": 0.9858 + }, + { + "start": 27280.93, + "end": 27283.01, + "probability": 0.7841 + }, + { + "start": 27283.39, + "end": 27284.13, + "probability": 0.4133 + }, + { + "start": 27284.13, + "end": 27284.57, + "probability": 0.0824 + }, + { + "start": 27284.71, + "end": 27285.41, + "probability": 0.5015 + }, + { + "start": 27285.83, + "end": 27286.57, + "probability": 0.975 + }, + { + "start": 27286.63, + "end": 27289.23, + "probability": 0.9186 + }, + { + "start": 27289.23, + "end": 27293.37, + "probability": 0.9083 + }, + { + "start": 27293.47, + "end": 27293.59, + "probability": 0.1159 + }, + { + "start": 27293.59, + "end": 27295.31, + "probability": 0.9164 + }, + { + "start": 27295.43, + "end": 27296.29, + "probability": 0.458 + }, + { + "start": 27296.33, + "end": 27297.23, + "probability": 0.9307 + }, + { + "start": 27297.47, + "end": 27298.07, + "probability": 0.8986 + }, + { + "start": 27298.13, + "end": 27298.55, + "probability": 0.9172 + }, + { + "start": 27298.65, + "end": 27299.13, + "probability": 0.5048 + }, + { + "start": 27299.81, + "end": 27300.31, + "probability": 0.1104 + }, + { + "start": 27300.69, + "end": 27303.71, + "probability": 0.5368 + }, + { + "start": 27303.71, + "end": 27305.87, + "probability": 0.8402 + }, + { + "start": 27306.21, + "end": 27307.65, + "probability": 0.4004 + }, + { + "start": 27307.87, + "end": 27310.37, + "probability": 0.7253 + }, + { + "start": 27310.55, + "end": 27313.67, + "probability": 0.964 + }, + { + "start": 27313.73, + "end": 27315.31, + "probability": 0.3807 + }, + { + "start": 27315.63, + "end": 27317.19, + "probability": 0.8332 + }, + { + "start": 27317.37, + "end": 27318.71, + "probability": 0.9321 + }, + { + "start": 27321.67, + "end": 27321.67, + "probability": 0.0186 + }, + { + "start": 27326.47, + "end": 27327.15, + "probability": 0.8223 + }, + { + "start": 27327.19, + "end": 27328.39, + "probability": 0.9104 + }, + { + "start": 27328.55, + "end": 27331.42, + "probability": 0.9733 + }, + { + "start": 27338.79, + "end": 27339.49, + "probability": 0.5707 + }, + { + "start": 27342.17, + "end": 27343.13, + "probability": 0.5938 + }, + { + "start": 27344.45, + "end": 27345.17, + "probability": 0.6725 + }, + { + "start": 27345.33, + "end": 27346.33, + "probability": 0.8717 + }, + { + "start": 27346.43, + "end": 27346.73, + "probability": 0.8514 + }, + { + "start": 27347.13, + "end": 27349.25, + "probability": 0.9734 + }, + { + "start": 27350.13, + "end": 27354.25, + "probability": 0.9303 + }, + { + "start": 27355.33, + "end": 27358.43, + "probability": 0.7886 + }, + { + "start": 27358.43, + "end": 27358.63, + "probability": 0.0432 + }, + { + "start": 27359.05, + "end": 27359.29, + "probability": 0.4951 + }, + { + "start": 27360.07, + "end": 27364.03, + "probability": 0.8867 + }, + { + "start": 27364.89, + "end": 27369.67, + "probability": 0.9485 + }, + { + "start": 27370.07, + "end": 27372.19, + "probability": 0.7104 + }, + { + "start": 27373.39, + "end": 27375.95, + "probability": 0.9606 + }, + { + "start": 27376.05, + "end": 27377.51, + "probability": 0.9736 + }, + { + "start": 27378.39, + "end": 27378.45, + "probability": 0.0061 + }, + { + "start": 27378.45, + "end": 27378.45, + "probability": 0.2141 + }, + { + "start": 27378.45, + "end": 27382.91, + "probability": 0.3032 + }, + { + "start": 27382.91, + "end": 27386.81, + "probability": 0.6513 + }, + { + "start": 27387.73, + "end": 27387.91, + "probability": 0.6042 + }, + { + "start": 27389.21, + "end": 27390.85, + "probability": 0.644 + }, + { + "start": 27391.77, + "end": 27393.35, + "probability": 0.762 + }, + { + "start": 27394.17, + "end": 27396.35, + "probability": 0.7693 + }, + { + "start": 27396.87, + "end": 27397.77, + "probability": 0.0594 + }, + { + "start": 27397.77, + "end": 27399.39, + "probability": 0.7369 + }, + { + "start": 27399.47, + "end": 27403.27, + "probability": 0.6013 + }, + { + "start": 27404.39, + "end": 27407.95, + "probability": 0.9908 + }, + { + "start": 27408.73, + "end": 27411.51, + "probability": 0.9827 + }, + { + "start": 27412.09, + "end": 27415.89, + "probability": 0.9619 + }, + { + "start": 27416.57, + "end": 27418.57, + "probability": 0.9614 + }, + { + "start": 27419.17, + "end": 27420.75, + "probability": 0.9226 + }, + { + "start": 27421.37, + "end": 27424.29, + "probability": 0.7873 + }, + { + "start": 27424.89, + "end": 27428.31, + "probability": 0.9765 + }, + { + "start": 27429.65, + "end": 27430.47, + "probability": 0.9512 + }, + { + "start": 27431.43, + "end": 27433.05, + "probability": 0.9062 + }, + { + "start": 27433.37, + "end": 27435.73, + "probability": 0.3817 + }, + { + "start": 27435.97, + "end": 27436.23, + "probability": 0.8674 + }, + { + "start": 27436.43, + "end": 27437.35, + "probability": 0.9258 + }, + { + "start": 27438.35, + "end": 27441.73, + "probability": 0.8265 + }, + { + "start": 27442.65, + "end": 27446.43, + "probability": 0.9726 + }, + { + "start": 27447.61, + "end": 27454.67, + "probability": 0.7671 + }, + { + "start": 27455.47, + "end": 27456.53, + "probability": 0.6847 + }, + { + "start": 27457.47, + "end": 27458.41, + "probability": 0.885 + }, + { + "start": 27459.29, + "end": 27460.53, + "probability": 0.8926 + }, + { + "start": 27461.77, + "end": 27466.19, + "probability": 0.9676 + }, + { + "start": 27467.47, + "end": 27471.73, + "probability": 0.969 + }, + { + "start": 27472.59, + "end": 27473.15, + "probability": 0.8873 + }, + { + "start": 27473.89, + "end": 27476.35, + "probability": 0.9953 + }, + { + "start": 27476.87, + "end": 27478.55, + "probability": 0.6953 + }, + { + "start": 27479.75, + "end": 27481.83, + "probability": 0.999 + }, + { + "start": 27482.95, + "end": 27484.21, + "probability": 0.9743 + }, + { + "start": 27485.49, + "end": 27489.61, + "probability": 0.9313 + }, + { + "start": 27489.67, + "end": 27493.03, + "probability": 0.8273 + }, + { + "start": 27493.11, + "end": 27493.31, + "probability": 0.3693 + }, + { + "start": 27493.43, + "end": 27494.53, + "probability": 0.5871 + }, + { + "start": 27495.07, + "end": 27496.13, + "probability": 0.96 + }, + { + "start": 27497.53, + "end": 27497.75, + "probability": 0.0103 + }, + { + "start": 27497.97, + "end": 27499.15, + "probability": 0.5177 + }, + { + "start": 27499.73, + "end": 27500.83, + "probability": 0.9827 + }, + { + "start": 27501.35, + "end": 27503.37, + "probability": 0.959 + }, + { + "start": 27504.35, + "end": 27509.69, + "probability": 0.9681 + }, + { + "start": 27510.21, + "end": 27512.79, + "probability": 0.9061 + }, + { + "start": 27513.51, + "end": 27515.73, + "probability": 0.0302 + }, + { + "start": 27515.73, + "end": 27517.17, + "probability": 0.4432 + }, + { + "start": 27518.39, + "end": 27519.75, + "probability": 0.9897 + }, + { + "start": 27520.33, + "end": 27524.65, + "probability": 0.856 + }, + { + "start": 27525.43, + "end": 27526.11, + "probability": 0.795 + }, + { + "start": 27526.41, + "end": 27533.69, + "probability": 0.9023 + }, + { + "start": 27534.71, + "end": 27536.03, + "probability": 0.908 + }, + { + "start": 27536.65, + "end": 27538.79, + "probability": 0.8359 + }, + { + "start": 27539.65, + "end": 27541.91, + "probability": 0.9948 + }, + { + "start": 27543.05, + "end": 27546.65, + "probability": 0.8462 + }, + { + "start": 27547.31, + "end": 27548.87, + "probability": 0.9683 + }, + { + "start": 27549.47, + "end": 27550.75, + "probability": 0.9807 + }, + { + "start": 27551.79, + "end": 27554.21, + "probability": 0.9165 + }, + { + "start": 27554.51, + "end": 27559.63, + "probability": 0.8804 + }, + { + "start": 27560.83, + "end": 27562.41, + "probability": 0.946 + }, + { + "start": 27563.21, + "end": 27567.17, + "probability": 0.9537 + }, + { + "start": 27568.05, + "end": 27568.09, + "probability": 0.5119 + }, + { + "start": 27568.09, + "end": 27569.35, + "probability": 0.9417 + }, + { + "start": 27569.47, + "end": 27570.17, + "probability": 0.4938 + }, + { + "start": 27570.19, + "end": 27571.19, + "probability": 0.9783 + }, + { + "start": 27572.75, + "end": 27576.33, + "probability": 0.9361 + }, + { + "start": 27576.39, + "end": 27579.27, + "probability": 0.9966 + }, + { + "start": 27580.51, + "end": 27585.21, + "probability": 0.9251 + }, + { + "start": 27585.85, + "end": 27589.49, + "probability": 0.9642 + }, + { + "start": 27590.69, + "end": 27592.39, + "probability": 0.7801 + }, + { + "start": 27593.53, + "end": 27596.51, + "probability": 0.926 + }, + { + "start": 27596.63, + "end": 27599.13, + "probability": 0.998 + }, + { + "start": 27600.43, + "end": 27602.45, + "probability": 0.9944 + }, + { + "start": 27602.97, + "end": 27604.59, + "probability": 0.7695 + }, + { + "start": 27605.39, + "end": 27606.77, + "probability": 0.9873 + }, + { + "start": 27607.61, + "end": 27608.09, + "probability": 0.8657 + }, + { + "start": 27608.17, + "end": 27608.73, + "probability": 0.3795 + }, + { + "start": 27608.73, + "end": 27614.11, + "probability": 0.8536 + }, + { + "start": 27614.99, + "end": 27618.59, + "probability": 0.9771 + }, + { + "start": 27619.35, + "end": 27621.89, + "probability": 0.7868 + }, + { + "start": 27623.29, + "end": 27625.61, + "probability": 0.9661 + }, + { + "start": 27626.95, + "end": 27630.67, + "probability": 0.994 + }, + { + "start": 27631.19, + "end": 27632.39, + "probability": 0.9954 + }, + { + "start": 27634.58, + "end": 27636.03, + "probability": 0.767 + }, + { + "start": 27638.31, + "end": 27639.35, + "probability": 0.9685 + }, + { + "start": 27639.87, + "end": 27640.27, + "probability": 0.2823 + }, + { + "start": 27640.53, + "end": 27647.05, + "probability": 0.9901 + }, + { + "start": 27647.11, + "end": 27649.47, + "probability": 0.9893 + }, + { + "start": 27650.15, + "end": 27652.59, + "probability": 0.9812 + }, + { + "start": 27653.23, + "end": 27657.01, + "probability": 0.9885 + }, + { + "start": 27657.75, + "end": 27665.45, + "probability": 0.98 + }, + { + "start": 27666.41, + "end": 27668.37, + "probability": 0.9932 + }, + { + "start": 27669.75, + "end": 27674.53, + "probability": 0.8923 + }, + { + "start": 27674.93, + "end": 27676.67, + "probability": 0.8154 + }, + { + "start": 27677.21, + "end": 27681.67, + "probability": 0.9824 + }, + { + "start": 27682.93, + "end": 27685.15, + "probability": 0.6137 + }, + { + "start": 27685.66, + "end": 27685.99, + "probability": 0.2045 + }, + { + "start": 27686.07, + "end": 27687.87, + "probability": 0.9808 + }, + { + "start": 27688.31, + "end": 27689.01, + "probability": 0.8522 + }, + { + "start": 27689.13, + "end": 27690.65, + "probability": 0.9768 + }, + { + "start": 27691.47, + "end": 27691.83, + "probability": 0.2158 + }, + { + "start": 27691.83, + "end": 27692.31, + "probability": 0.6545 + }, + { + "start": 27693.41, + "end": 27694.41, + "probability": 0.9551 + }, + { + "start": 27694.61, + "end": 27696.19, + "probability": 0.9522 + }, + { + "start": 27697.69, + "end": 27700.71, + "probability": 0.9987 + }, + { + "start": 27701.47, + "end": 27706.23, + "probability": 0.998 + }, + { + "start": 27706.37, + "end": 27708.87, + "probability": 0.9995 + }, + { + "start": 27709.93, + "end": 27711.49, + "probability": 0.634 + }, + { + "start": 27711.65, + "end": 27714.37, + "probability": 0.9663 + }, + { + "start": 27714.49, + "end": 27720.43, + "probability": 0.9305 + }, + { + "start": 27721.23, + "end": 27725.11, + "probability": 0.9862 + }, + { + "start": 27725.81, + "end": 27726.49, + "probability": 0.9657 + }, + { + "start": 27727.21, + "end": 27729.11, + "probability": 0.9808 + }, + { + "start": 27730.43, + "end": 27733.35, + "probability": 0.9923 + }, + { + "start": 27733.87, + "end": 27736.97, + "probability": 0.999 + }, + { + "start": 27738.57, + "end": 27740.55, + "probability": 0.7306 + }, + { + "start": 27740.65, + "end": 27744.47, + "probability": 0.9961 + }, + { + "start": 27744.57, + "end": 27745.2, + "probability": 0.967 + }, + { + "start": 27746.39, + "end": 27748.05, + "probability": 0.9841 + }, + { + "start": 27748.89, + "end": 27752.07, + "probability": 0.9484 + }, + { + "start": 27752.47, + "end": 27754.99, + "probability": 0.909 + }, + { + "start": 27755.05, + "end": 27758.15, + "probability": 0.9402 + }, + { + "start": 27758.53, + "end": 27760.03, + "probability": 0.9948 + }, + { + "start": 27760.67, + "end": 27761.55, + "probability": 0.6922 + }, + { + "start": 27761.61, + "end": 27762.17, + "probability": 0.444 + }, + { + "start": 27762.17, + "end": 27765.37, + "probability": 0.8463 + }, + { + "start": 27765.45, + "end": 27766.13, + "probability": 0.9188 + }, + { + "start": 27766.89, + "end": 27767.19, + "probability": 0.8991 + }, + { + "start": 27767.39, + "end": 27768.75, + "probability": 0.9799 + }, + { + "start": 27769.33, + "end": 27771.39, + "probability": 0.9816 + }, + { + "start": 27771.61, + "end": 27774.73, + "probability": 0.9367 + }, + { + "start": 27777.57, + "end": 27781.73, + "probability": 0.8864 + }, + { + "start": 27782.41, + "end": 27786.09, + "probability": 0.9921 + }, + { + "start": 27787.21, + "end": 27790.15, + "probability": 0.7025 + }, + { + "start": 27792.09, + "end": 27793.89, + "probability": 0.9529 + }, + { + "start": 27794.39, + "end": 27795.07, + "probability": 0.6948 + }, + { + "start": 27795.35, + "end": 27799.25, + "probability": 0.9609 + }, + { + "start": 27799.85, + "end": 27804.65, + "probability": 0.9767 + }, + { + "start": 27804.75, + "end": 27805.62, + "probability": 0.538 + }, + { + "start": 27806.47, + "end": 27807.41, + "probability": 0.7915 + }, + { + "start": 27807.47, + "end": 27808.13, + "probability": 0.9239 + }, + { + "start": 27808.73, + "end": 27809.93, + "probability": 0.9597 + }, + { + "start": 27810.27, + "end": 27810.89, + "probability": 0.7302 + }, + { + "start": 27810.93, + "end": 27811.83, + "probability": 0.866 + }, + { + "start": 27811.89, + "end": 27813.05, + "probability": 0.9585 + }, + { + "start": 27813.09, + "end": 27814.51, + "probability": 0.9863 + }, + { + "start": 27814.79, + "end": 27815.35, + "probability": 0.8777 + }, + { + "start": 27815.45, + "end": 27815.99, + "probability": 0.8164 + }, + { + "start": 27816.13, + "end": 27816.43, + "probability": 0.8593 + }, + { + "start": 27816.59, + "end": 27816.97, + "probability": 0.9657 + }, + { + "start": 27817.07, + "end": 27817.57, + "probability": 0.5901 + }, + { + "start": 27818.33, + "end": 27822.21, + "probability": 0.9447 + }, + { + "start": 27823.21, + "end": 27823.97, + "probability": 0.9686 + }, + { + "start": 27824.55, + "end": 27826.39, + "probability": 0.9939 + }, + { + "start": 27826.45, + "end": 27829.37, + "probability": 0.8099 + }, + { + "start": 27830.31, + "end": 27831.59, + "probability": 0.6789 + }, + { + "start": 27831.97, + "end": 27834.11, + "probability": 0.8013 + }, + { + "start": 27834.15, + "end": 27835.06, + "probability": 0.9297 + }, + { + "start": 27836.41, + "end": 27838.77, + "probability": 0.9787 + }, + { + "start": 27839.15, + "end": 27841.45, + "probability": 0.9758 + }, + { + "start": 27843.75, + "end": 27844.87, + "probability": 0.9549 + }, + { + "start": 27846.25, + "end": 27846.79, + "probability": 0.5579 + }, + { + "start": 27847.09, + "end": 27848.09, + "probability": 0.9587 + }, + { + "start": 27848.27, + "end": 27852.73, + "probability": 0.9766 + }, + { + "start": 27853.41, + "end": 27855.95, + "probability": 0.942 + }, + { + "start": 27856.51, + "end": 27858.17, + "probability": 0.9653 + }, + { + "start": 27858.23, + "end": 27859.05, + "probability": 0.8301 + }, + { + "start": 27859.13, + "end": 27860.09, + "probability": 0.9388 + }, + { + "start": 27860.59, + "end": 27861.01, + "probability": 0.7714 + }, + { + "start": 27861.09, + "end": 27862.09, + "probability": 0.7214 + }, + { + "start": 27862.73, + "end": 27865.95, + "probability": 0.9893 + }, + { + "start": 27867.09, + "end": 27869.45, + "probability": 0.9062 + }, + { + "start": 27869.57, + "end": 27872.43, + "probability": 0.9379 + }, + { + "start": 27872.43, + "end": 27875.27, + "probability": 0.8549 + }, + { + "start": 27875.85, + "end": 27877.13, + "probability": 0.9191 + }, + { + "start": 27877.83, + "end": 27879.41, + "probability": 0.9927 + }, + { + "start": 27879.87, + "end": 27881.75, + "probability": 0.8784 + }, + { + "start": 27882.79, + "end": 27883.71, + "probability": 0.9444 + }, + { + "start": 27883.81, + "end": 27885.51, + "probability": 0.9496 + }, + { + "start": 27887.09, + "end": 27887.53, + "probability": 0.9406 + }, + { + "start": 27889.81, + "end": 27891.63, + "probability": 0.9492 + }, + { + "start": 27892.21, + "end": 27893.35, + "probability": 0.804 + }, + { + "start": 27895.21, + "end": 27899.17, + "probability": 0.955 + }, + { + "start": 27900.64, + "end": 27903.93, + "probability": 0.8643 + }, + { + "start": 27903.95, + "end": 27904.47, + "probability": 0.809 + }, + { + "start": 27904.55, + "end": 27906.13, + "probability": 0.9843 + }, + { + "start": 27907.01, + "end": 27908.61, + "probability": 0.9755 + }, + { + "start": 27910.25, + "end": 27912.99, + "probability": 0.5992 + }, + { + "start": 27913.79, + "end": 27914.93, + "probability": 0.9619 + }, + { + "start": 27915.49, + "end": 27916.45, + "probability": 0.9049 + }, + { + "start": 27917.01, + "end": 27918.15, + "probability": 0.7736 + }, + { + "start": 27918.63, + "end": 27920.39, + "probability": 0.9911 + }, + { + "start": 27921.49, + "end": 27923.61, + "probability": 0.9165 + }, + { + "start": 27923.73, + "end": 27925.65, + "probability": 0.869 + }, + { + "start": 27925.81, + "end": 27927.25, + "probability": 0.9969 + }, + { + "start": 27927.41, + "end": 27929.27, + "probability": 0.8768 + }, + { + "start": 27929.41, + "end": 27932.11, + "probability": 0.957 + }, + { + "start": 27932.89, + "end": 27934.25, + "probability": 0.7541 + }, + { + "start": 27935.09, + "end": 27937.89, + "probability": 0.8454 + }, + { + "start": 27937.91, + "end": 27938.73, + "probability": 0.9659 + }, + { + "start": 27938.89, + "end": 27939.29, + "probability": 0.3871 + }, + { + "start": 27939.87, + "end": 27940.95, + "probability": 0.9685 + }, + { + "start": 27944.43, + "end": 27946.11, + "probability": 0.9973 + }, + { + "start": 27946.95, + "end": 27949.47, + "probability": 0.9985 + }, + { + "start": 27950.05, + "end": 27954.07, + "probability": 0.9598 + }, + { + "start": 27954.59, + "end": 27958.17, + "probability": 0.7333 + }, + { + "start": 27959.05, + "end": 27960.85, + "probability": 0.9919 + }, + { + "start": 27961.49, + "end": 27962.69, + "probability": 0.9726 + }, + { + "start": 27964.67, + "end": 27966.19, + "probability": 0.8119 + }, + { + "start": 27966.33, + "end": 27968.47, + "probability": 0.9679 + }, + { + "start": 27968.51, + "end": 27970.35, + "probability": 0.8567 + }, + { + "start": 27970.89, + "end": 27974.79, + "probability": 0.9524 + }, + { + "start": 27974.97, + "end": 27976.41, + "probability": 0.9576 + }, + { + "start": 27976.85, + "end": 27978.59, + "probability": 0.9823 + }, + { + "start": 27979.13, + "end": 27979.63, + "probability": 0.3089 + }, + { + "start": 27979.71, + "end": 27980.9, + "probability": 0.9607 + }, + { + "start": 27981.03, + "end": 27981.81, + "probability": 0.9868 + }, + { + "start": 27981.93, + "end": 27982.81, + "probability": 0.9897 + }, + { + "start": 27983.23, + "end": 27989.39, + "probability": 0.8149 + }, + { + "start": 27990.51, + "end": 27990.93, + "probability": 0.5717 + }, + { + "start": 27991.09, + "end": 27991.93, + "probability": 0.5708 + }, + { + "start": 27992.31, + "end": 27993.27, + "probability": 0.9017 + }, + { + "start": 27994.05, + "end": 28000.35, + "probability": 0.9346 + }, + { + "start": 28001.19, + "end": 28002.09, + "probability": 0.9712 + }, + { + "start": 28002.91, + "end": 28007.86, + "probability": 0.9955 + }, + { + "start": 28008.17, + "end": 28009.91, + "probability": 0.9921 + }, + { + "start": 28010.43, + "end": 28013.65, + "probability": 0.9478 + }, + { + "start": 28013.77, + "end": 28019.16, + "probability": 0.9907 + }, + { + "start": 28019.85, + "end": 28022.49, + "probability": 0.7055 + }, + { + "start": 28023.25, + "end": 28023.67, + "probability": 0.7675 + }, + { + "start": 28024.27, + "end": 28025.36, + "probability": 0.9781 + }, + { + "start": 28025.53, + "end": 28025.99, + "probability": 0.984 + }, + { + "start": 28027.09, + "end": 28029.35, + "probability": 0.7659 + }, + { + "start": 28030.17, + "end": 28034.33, + "probability": 0.9613 + }, + { + "start": 28034.57, + "end": 28034.97, + "probability": 0.5222 + }, + { + "start": 28035.71, + "end": 28037.31, + "probability": 0.5979 + }, + { + "start": 28037.83, + "end": 28040.41, + "probability": 0.9835 + }, + { + "start": 28042.15, + "end": 28043.39, + "probability": 0.6348 + }, + { + "start": 28043.93, + "end": 28046.67, + "probability": 0.9191 + }, + { + "start": 28047.11, + "end": 28049.85, + "probability": 0.9941 + }, + { + "start": 28050.33, + "end": 28051.67, + "probability": 0.9933 + }, + { + "start": 28054.87, + "end": 28058.31, + "probability": 0.9968 + }, + { + "start": 28059.47, + "end": 28062.89, + "probability": 0.9804 + }, + { + "start": 28063.13, + "end": 28065.35, + "probability": 0.9874 + }, + { + "start": 28066.27, + "end": 28071.99, + "probability": 0.9958 + }, + { + "start": 28073.13, + "end": 28074.63, + "probability": 0.915 + }, + { + "start": 28074.67, + "end": 28077.23, + "probability": 0.9121 + }, + { + "start": 28078.17, + "end": 28080.55, + "probability": 0.9796 + }, + { + "start": 28080.79, + "end": 28083.83, + "probability": 0.9875 + }, + { + "start": 28084.45, + "end": 28087.51, + "probability": 0.8105 + }, + { + "start": 28088.01, + "end": 28090.45, + "probability": 0.9064 + }, + { + "start": 28091.99, + "end": 28092.89, + "probability": 0.9812 + }, + { + "start": 28093.95, + "end": 28096.27, + "probability": 0.923 + }, + { + "start": 28097.13, + "end": 28098.55, + "probability": 0.637 + }, + { + "start": 28098.71, + "end": 28099.25, + "probability": 0.4989 + }, + { + "start": 28099.35, + "end": 28100.21, + "probability": 0.6573 + }, + { + "start": 28100.29, + "end": 28101.01, + "probability": 0.8269 + }, + { + "start": 28101.69, + "end": 28104.87, + "probability": 0.9573 + }, + { + "start": 28105.49, + "end": 28107.59, + "probability": 0.6697 + }, + { + "start": 28109.25, + "end": 28110.85, + "probability": 0.998 + }, + { + "start": 28113.33, + "end": 28114.91, + "probability": 0.9744 + }, + { + "start": 28115.43, + "end": 28115.43, + "probability": 0.8003 + }, + { + "start": 28116.11, + "end": 28116.21, + "probability": 0.2762 + }, + { + "start": 28116.21, + "end": 28119.69, + "probability": 0.8347 + }, + { + "start": 28120.49, + "end": 28122.29, + "probability": 0.8777 + }, + { + "start": 28123.37, + "end": 28128.05, + "probability": 0.8975 + }, + { + "start": 28128.75, + "end": 28129.71, + "probability": 0.957 + }, + { + "start": 28129.87, + "end": 28131.69, + "probability": 0.7348 + }, + { + "start": 28131.83, + "end": 28134.77, + "probability": 0.9961 + }, + { + "start": 28135.75, + "end": 28138.83, + "probability": 0.8791 + }, + { + "start": 28141.75, + "end": 28144.65, + "probability": 0.8875 + }, + { + "start": 28144.93, + "end": 28148.41, + "probability": 0.9971 + }, + { + "start": 28148.65, + "end": 28149.89, + "probability": 0.944 + }, + { + "start": 28150.39, + "end": 28152.33, + "probability": 0.9872 + }, + { + "start": 28152.43, + "end": 28154.97, + "probability": 0.9924 + }, + { + "start": 28155.13, + "end": 28155.61, + "probability": 0.8328 + }, + { + "start": 28156.69, + "end": 28160.15, + "probability": 0.3691 + }, + { + "start": 28160.15, + "end": 28161.22, + "probability": 0.4513 + }, + { + "start": 28162.39, + "end": 28165.63, + "probability": 0.8676 + }, + { + "start": 28166.15, + "end": 28170.27, + "probability": 0.9981 + }, + { + "start": 28170.27, + "end": 28173.99, + "probability": 0.9944 + }, + { + "start": 28174.31, + "end": 28174.85, + "probability": 0.8767 + }, + { + "start": 28175.97, + "end": 28177.11, + "probability": 0.8331 + }, + { + "start": 28177.19, + "end": 28181.56, + "probability": 0.8995 + }, + { + "start": 28182.29, + "end": 28183.91, + "probability": 0.9956 + }, + { + "start": 28184.57, + "end": 28187.89, + "probability": 0.9312 + }, + { + "start": 28188.63, + "end": 28190.15, + "probability": 0.539 + }, + { + "start": 28191.29, + "end": 28196.85, + "probability": 0.9769 + }, + { + "start": 28197.11, + "end": 28198.17, + "probability": 0.9912 + }, + { + "start": 28198.37, + "end": 28199.6, + "probability": 0.8154 + }, + { + "start": 28200.03, + "end": 28201.53, + "probability": 0.9779 + }, + { + "start": 28201.91, + "end": 28203.95, + "probability": 0.9409 + }, + { + "start": 28206.65, + "end": 28207.63, + "probability": 0.7663 + }, + { + "start": 28208.43, + "end": 28209.13, + "probability": 0.8516 + }, + { + "start": 28209.35, + "end": 28212.27, + "probability": 0.9331 + }, + { + "start": 28212.81, + "end": 28214.63, + "probability": 0.6105 + }, + { + "start": 28214.79, + "end": 28215.59, + "probability": 0.775 + }, + { + "start": 28215.61, + "end": 28216.39, + "probability": 0.7504 + }, + { + "start": 28216.61, + "end": 28218.29, + "probability": 0.989 + }, + { + "start": 28218.47, + "end": 28219.86, + "probability": 0.9924 + }, + { + "start": 28220.89, + "end": 28224.01, + "probability": 0.9879 + }, + { + "start": 28224.03, + "end": 28225.75, + "probability": 0.9891 + }, + { + "start": 28225.83, + "end": 28226.29, + "probability": 0.9401 + }, + { + "start": 28226.83, + "end": 28229.13, + "probability": 0.9941 + }, + { + "start": 28229.37, + "end": 28232.97, + "probability": 0.8559 + }, + { + "start": 28233.57, + "end": 28237.69, + "probability": 0.8892 + }, + { + "start": 28241.31, + "end": 28242.82, + "probability": 0.2322 + }, + { + "start": 28243.41, + "end": 28243.93, + "probability": 0.7098 + }, + { + "start": 28244.07, + "end": 28245.11, + "probability": 0.9211 + }, + { + "start": 28245.19, + "end": 28246.65, + "probability": 0.8423 + }, + { + "start": 28247.07, + "end": 28247.35, + "probability": 0.3785 + }, + { + "start": 28247.35, + "end": 28250.13, + "probability": 0.3042 + }, + { + "start": 28250.61, + "end": 28253.23, + "probability": 0.5092 + }, + { + "start": 28254.25, + "end": 28256.45, + "probability": 0.8119 + }, + { + "start": 28256.81, + "end": 28257.51, + "probability": 0.7618 + }, + { + "start": 28257.85, + "end": 28258.66, + "probability": 0.9501 + }, + { + "start": 28259.31, + "end": 28265.65, + "probability": 0.1623 + }, + { + "start": 28265.65, + "end": 28265.89, + "probability": 0.0759 + }, + { + "start": 28265.89, + "end": 28265.91, + "probability": 0.0624 + }, + { + "start": 28265.91, + "end": 28266.69, + "probability": 0.1092 + }, + { + "start": 28267.09, + "end": 28270.21, + "probability": 0.9323 + }, + { + "start": 28270.51, + "end": 28270.51, + "probability": 0.1727 + }, + { + "start": 28270.51, + "end": 28272.93, + "probability": 0.6686 + }, + { + "start": 28273.03, + "end": 28274.39, + "probability": 0.9626 + }, + { + "start": 28274.89, + "end": 28276.23, + "probability": 0.9308 + }, + { + "start": 28276.35, + "end": 28277.23, + "probability": 0.0181 + }, + { + "start": 28278.01, + "end": 28278.93, + "probability": 0.1693 + }, + { + "start": 28278.93, + "end": 28279.17, + "probability": 0.0129 + }, + { + "start": 28279.77, + "end": 28279.89, + "probability": 0.1335 + }, + { + "start": 28279.89, + "end": 28279.89, + "probability": 0.0057 + }, + { + "start": 28279.89, + "end": 28280.11, + "probability": 0.2298 + }, + { + "start": 28280.11, + "end": 28280.91, + "probability": 0.3315 + }, + { + "start": 28281.45, + "end": 28281.45, + "probability": 0.0802 + }, + { + "start": 28281.45, + "end": 28283.87, + "probability": 0.4066 + }, + { + "start": 28284.73, + "end": 28285.11, + "probability": 0.3796 + }, + { + "start": 28285.17, + "end": 28285.25, + "probability": 0.4044 + }, + { + "start": 28285.25, + "end": 28286.15, + "probability": 0.486 + }, + { + "start": 28286.31, + "end": 28288.61, + "probability": 0.235 + }, + { + "start": 28288.61, + "end": 28288.69, + "probability": 0.6869 + }, + { + "start": 28288.79, + "end": 28290.87, + "probability": 0.9178 + }, + { + "start": 28290.87, + "end": 28291.41, + "probability": 0.4652 + }, + { + "start": 28291.93, + "end": 28292.93, + "probability": 0.9035 + }, + { + "start": 28293.31, + "end": 28294.01, + "probability": 0.7102 + }, + { + "start": 28294.31, + "end": 28294.39, + "probability": 0.4837 + }, + { + "start": 28296.05, + "end": 28296.75, + "probability": 0.2768 + }, + { + "start": 28296.75, + "end": 28297.55, + "probability": 0.2391 + }, + { + "start": 28298.85, + "end": 28304.01, + "probability": 0.0589 + }, + { + "start": 28304.01, + "end": 28304.83, + "probability": 0.1063 + }, + { + "start": 28304.83, + "end": 28305.41, + "probability": 0.0398 + }, + { + "start": 28305.77, + "end": 28305.85, + "probability": 0.134 + }, + { + "start": 28305.85, + "end": 28308.05, + "probability": 0.2377 + }, + { + "start": 28308.63, + "end": 28311.34, + "probability": 0.3177 + }, + { + "start": 28311.95, + "end": 28320.89, + "probability": 0.5056 + }, + { + "start": 28321.27, + "end": 28321.95, + "probability": 0.1008 + }, + { + "start": 28321.95, + "end": 28321.95, + "probability": 0.0267 + }, + { + "start": 28321.95, + "end": 28322.69, + "probability": 0.0666 + }, + { + "start": 28322.69, + "end": 28323.67, + "probability": 0.1998 + }, + { + "start": 28324.75, + "end": 28328.61, + "probability": 0.0091 + }, + { + "start": 28328.79, + "end": 28331.93, + "probability": 0.1088 + }, + { + "start": 28332.49, + "end": 28332.75, + "probability": 0.134 + }, + { + "start": 28333.0, + "end": 28333.0, + "probability": 0.0 + }, + { + "start": 28333.0, + "end": 28333.0, + "probability": 0.0 + }, + { + "start": 28333.0, + "end": 28333.0, + "probability": 0.0 + }, + { + "start": 28333.0, + "end": 28333.0, + "probability": 0.0 + }, + { + "start": 28333.0, + "end": 28333.0, + "probability": 0.0 + }, + { + "start": 28333.0, + "end": 28333.0, + "probability": 0.0 + }, + { + "start": 28333.0, + "end": 28333.0, + "probability": 0.0 + }, + { + "start": 28333.0, + "end": 28335.1, + "probability": 0.7034 + }, + { + "start": 28335.2, + "end": 28335.4, + "probability": 0.0594 + }, + { + "start": 28335.7, + "end": 28337.04, + "probability": 0.5282 + }, + { + "start": 28337.26, + "end": 28337.6, + "probability": 0.8222 + }, + { + "start": 28337.74, + "end": 28339.87, + "probability": 0.7852 + }, + { + "start": 28340.28, + "end": 28343.06, + "probability": 0.9595 + }, + { + "start": 28343.22, + "end": 28345.74, + "probability": 0.9458 + }, + { + "start": 28346.66, + "end": 28350.0, + "probability": 0.3766 + }, + { + "start": 28350.18, + "end": 28353.02, + "probability": 0.4173 + }, + { + "start": 28353.2, + "end": 28353.9, + "probability": 0.9086 + }, + { + "start": 28354.0, + "end": 28354.12, + "probability": 0.0541 + }, + { + "start": 28354.12, + "end": 28354.12, + "probability": 0.0668 + }, + { + "start": 28354.12, + "end": 28356.78, + "probability": 0.7446 + }, + { + "start": 28356.92, + "end": 28359.74, + "probability": 0.5146 + }, + { + "start": 28359.84, + "end": 28360.22, + "probability": 0.7396 + }, + { + "start": 28360.4, + "end": 28361.2, + "probability": 0.1446 + }, + { + "start": 28361.5, + "end": 28365.28, + "probability": 0.9409 + }, + { + "start": 28365.56, + "end": 28366.68, + "probability": 0.9632 + }, + { + "start": 28367.92, + "end": 28371.22, + "probability": 0.941 + }, + { + "start": 28371.68, + "end": 28375.73, + "probability": 0.9829 + }, + { + "start": 28375.94, + "end": 28376.9, + "probability": 0.7376 + }, + { + "start": 28377.02, + "end": 28377.8, + "probability": 0.6271 + }, + { + "start": 28378.56, + "end": 28380.18, + "probability": 0.9912 + }, + { + "start": 28381.24, + "end": 28385.14, + "probability": 0.993 + }, + { + "start": 28385.28, + "end": 28388.34, + "probability": 0.9966 + }, + { + "start": 28388.88, + "end": 28389.72, + "probability": 0.9807 + }, + { + "start": 28389.94, + "end": 28391.44, + "probability": 0.6059 + }, + { + "start": 28391.52, + "end": 28394.98, + "probability": 0.7498 + }, + { + "start": 28395.0, + "end": 28397.86, + "probability": 0.978 + }, + { + "start": 28397.86, + "end": 28399.0, + "probability": 0.9311 + }, + { + "start": 28399.04, + "end": 28400.2, + "probability": 0.8516 + }, + { + "start": 28400.94, + "end": 28401.46, + "probability": 0.7834 + }, + { + "start": 28402.36, + "end": 28403.36, + "probability": 0.741 + }, + { + "start": 28404.06, + "end": 28404.44, + "probability": 0.4663 + }, + { + "start": 28404.52, + "end": 28405.44, + "probability": 0.8289 + }, + { + "start": 28405.68, + "end": 28406.7, + "probability": 0.6328 + }, + { + "start": 28406.92, + "end": 28407.38, + "probability": 0.9308 + }, + { + "start": 28407.76, + "end": 28408.48, + "probability": 0.5396 + }, + { + "start": 28409.0, + "end": 28410.06, + "probability": 0.9353 + }, + { + "start": 28410.56, + "end": 28411.64, + "probability": 0.3957 + }, + { + "start": 28411.64, + "end": 28411.64, + "probability": 0.1922 + }, + { + "start": 28411.64, + "end": 28412.44, + "probability": 0.0697 + }, + { + "start": 28412.44, + "end": 28413.7, + "probability": 0.2422 + }, + { + "start": 28413.8, + "end": 28415.9, + "probability": 0.5934 + }, + { + "start": 28416.18, + "end": 28416.9, + "probability": 0.5696 + }, + { + "start": 28417.8, + "end": 28418.48, + "probability": 0.5465 + }, + { + "start": 28418.64, + "end": 28418.96, + "probability": 0.4508 + }, + { + "start": 28418.96, + "end": 28420.5, + "probability": 0.3461 + }, + { + "start": 28420.98, + "end": 28421.6, + "probability": 0.1045 + }, + { + "start": 28421.84, + "end": 28421.84, + "probability": 0.0879 + }, + { + "start": 28421.84, + "end": 28422.96, + "probability": 0.2905 + }, + { + "start": 28422.98, + "end": 28423.74, + "probability": 0.9902 + }, + { + "start": 28424.3, + "end": 28428.74, + "probability": 0.9556 + }, + { + "start": 28428.94, + "end": 28430.26, + "probability": 0.4766 + }, + { + "start": 28430.32, + "end": 28431.46, + "probability": 0.9828 + }, + { + "start": 28431.88, + "end": 28431.92, + "probability": 0.0411 + }, + { + "start": 28431.92, + "end": 28433.04, + "probability": 0.8295 + }, + { + "start": 28433.6, + "end": 28435.32, + "probability": 0.5589 + }, + { + "start": 28435.4, + "end": 28436.24, + "probability": 0.6521 + }, + { + "start": 28436.28, + "end": 28436.72, + "probability": 0.7607 + }, + { + "start": 28436.88, + "end": 28437.52, + "probability": 0.4387 + }, + { + "start": 28437.54, + "end": 28437.92, + "probability": 0.6165 + }, + { + "start": 28438.38, + "end": 28440.16, + "probability": 0.7989 + }, + { + "start": 28440.2, + "end": 28441.06, + "probability": 0.9683 + }, + { + "start": 28441.74, + "end": 28443.2, + "probability": 0.991 + }, + { + "start": 28443.26, + "end": 28445.05, + "probability": 0.9472 + }, + { + "start": 28445.4, + "end": 28446.16, + "probability": 0.8972 + }, + { + "start": 28446.2, + "end": 28448.12, + "probability": 0.3125 + }, + { + "start": 28448.7, + "end": 28448.84, + "probability": 0.1177 + }, + { + "start": 28448.84, + "end": 28452.3, + "probability": 0.4977 + }, + { + "start": 28452.44, + "end": 28452.8, + "probability": 0.3851 + }, + { + "start": 28452.8, + "end": 28455.08, + "probability": 0.7856 + }, + { + "start": 28455.4, + "end": 28456.72, + "probability": 0.95 + }, + { + "start": 28457.22, + "end": 28459.5, + "probability": 0.4713 + }, + { + "start": 28459.5, + "end": 28460.32, + "probability": 0.3638 + }, + { + "start": 28460.8, + "end": 28461.82, + "probability": 0.4277 + }, + { + "start": 28462.55, + "end": 28462.76, + "probability": 0.2015 + }, + { + "start": 28462.76, + "end": 28464.13, + "probability": 0.8879 + }, + { + "start": 28464.54, + "end": 28465.06, + "probability": 0.5624 + }, + { + "start": 28465.16, + "end": 28468.4, + "probability": 0.9689 + }, + { + "start": 28468.48, + "end": 28469.48, + "probability": 0.766 + }, + { + "start": 28469.6, + "end": 28471.54, + "probability": 0.969 + }, + { + "start": 28472.12, + "end": 28472.2, + "probability": 0.135 + }, + { + "start": 28472.3, + "end": 28472.66, + "probability": 0.1394 + }, + { + "start": 28472.66, + "end": 28472.66, + "probability": 0.4457 + }, + { + "start": 28472.66, + "end": 28473.9, + "probability": 0.5575 + }, + { + "start": 28473.9, + "end": 28478.56, + "probability": 0.6641 + }, + { + "start": 28478.96, + "end": 28480.9, + "probability": 0.6809 + }, + { + "start": 28480.9, + "end": 28483.4, + "probability": 0.0984 + }, + { + "start": 28484.28, + "end": 28484.78, + "probability": 0.3579 + }, + { + "start": 28487.32, + "end": 28487.46, + "probability": 0.0043 + }, + { + "start": 28487.48, + "end": 28487.8, + "probability": 0.1496 + }, + { + "start": 28487.8, + "end": 28487.8, + "probability": 0.0094 + }, + { + "start": 28487.8, + "end": 28490.6, + "probability": 0.5526 + }, + { + "start": 28491.18, + "end": 28491.68, + "probability": 0.9681 + }, + { + "start": 28492.44, + "end": 28495.28, + "probability": 0.4036 + }, + { + "start": 28495.94, + "end": 28497.06, + "probability": 0.7279 + }, + { + "start": 28497.06, + "end": 28497.64, + "probability": 0.0605 + }, + { + "start": 28498.04, + "end": 28499.24, + "probability": 0.2065 + }, + { + "start": 28499.24, + "end": 28501.06, + "probability": 0.6805 + }, + { + "start": 28501.18, + "end": 28503.08, + "probability": 0.8075 + }, + { + "start": 28503.18, + "end": 28503.96, + "probability": 0.9781 + }, + { + "start": 28504.36, + "end": 28508.4, + "probability": 0.9915 + }, + { + "start": 28508.4, + "end": 28510.72, + "probability": 0.9466 + }, + { + "start": 28511.08, + "end": 28512.24, + "probability": 0.9863 + }, + { + "start": 28512.78, + "end": 28515.68, + "probability": 0.7278 + }, + { + "start": 28516.32, + "end": 28517.7, + "probability": 0.6212 + }, + { + "start": 28517.86, + "end": 28522.38, + "probability": 0.9734 + }, + { + "start": 28522.48, + "end": 28523.98, + "probability": 0.6718 + }, + { + "start": 28524.0, + "end": 28524.82, + "probability": 0.2265 + }, + { + "start": 28524.82, + "end": 28525.68, + "probability": 0.1879 + }, + { + "start": 28525.7, + "end": 28527.06, + "probability": 0.5621 + }, + { + "start": 28527.74, + "end": 28527.8, + "probability": 0.0004 + }, + { + "start": 28527.8, + "end": 28527.8, + "probability": 0.2188 + }, + { + "start": 28527.8, + "end": 28530.26, + "probability": 0.7456 + }, + { + "start": 28530.32, + "end": 28532.18, + "probability": 0.8601 + }, + { + "start": 28532.22, + "end": 28534.64, + "probability": 0.9872 + }, + { + "start": 28535.52, + "end": 28537.0, + "probability": 0.9228 + }, + { + "start": 28537.08, + "end": 28537.08, + "probability": 0.0012 + }, + { + "start": 28539.24, + "end": 28539.68, + "probability": 0.0891 + }, + { + "start": 28539.68, + "end": 28539.68, + "probability": 0.0561 + }, + { + "start": 28539.68, + "end": 28541.25, + "probability": 0.7586 + }, + { + "start": 28541.4, + "end": 28544.7, + "probability": 0.9878 + }, + { + "start": 28545.04, + "end": 28548.14, + "probability": 0.9401 + }, + { + "start": 28548.58, + "end": 28549.32, + "probability": 0.6702 + }, + { + "start": 28549.92, + "end": 28551.36, + "probability": 0.9724 + }, + { + "start": 28551.42, + "end": 28553.15, + "probability": 0.9976 + }, + { + "start": 28553.26, + "end": 28555.54, + "probability": 0.986 + }, + { + "start": 28556.22, + "end": 28558.28, + "probability": 0.9883 + }, + { + "start": 28558.66, + "end": 28560.32, + "probability": 0.8497 + }, + { + "start": 28560.9, + "end": 28561.44, + "probability": 0.218 + }, + { + "start": 28561.66, + "end": 28562.14, + "probability": 0.2704 + }, + { + "start": 28562.38, + "end": 28563.14, + "probability": 0.3435 + }, + { + "start": 28563.73, + "end": 28565.1, + "probability": 0.0825 + }, + { + "start": 28565.1, + "end": 28565.1, + "probability": 0.1112 + }, + { + "start": 28565.1, + "end": 28565.1, + "probability": 0.1016 + }, + { + "start": 28565.16, + "end": 28565.7, + "probability": 0.4894 + }, + { + "start": 28565.7, + "end": 28565.7, + "probability": 0.3278 + }, + { + "start": 28565.7, + "end": 28566.42, + "probability": 0.7413 + }, + { + "start": 28566.44, + "end": 28567.18, + "probability": 0.6381 + }, + { + "start": 28567.4, + "end": 28567.76, + "probability": 0.6277 + }, + { + "start": 28568.26, + "end": 28569.06, + "probability": 0.5438 + }, + { + "start": 28569.06, + "end": 28569.06, + "probability": 0.1795 + }, + { + "start": 28569.06, + "end": 28573.14, + "probability": 0.9583 + }, + { + "start": 28573.26, + "end": 28577.04, + "probability": 0.9368 + }, + { + "start": 28577.56, + "end": 28579.76, + "probability": 0.7793 + }, + { + "start": 28580.5, + "end": 28581.4, + "probability": 0.7331 + }, + { + "start": 28581.84, + "end": 28585.5, + "probability": 0.9607 + }, + { + "start": 28585.54, + "end": 28586.26, + "probability": 0.9333 + }, + { + "start": 28586.34, + "end": 28588.36, + "probability": 0.2225 + }, + { + "start": 28588.36, + "end": 28589.76, + "probability": 0.572 + }, + { + "start": 28590.2, + "end": 28594.06, + "probability": 0.6514 + }, + { + "start": 28594.16, + "end": 28596.78, + "probability": 0.9971 + }, + { + "start": 28597.3, + "end": 28599.52, + "probability": 0.8809 + }, + { + "start": 28600.2, + "end": 28601.08, + "probability": 0.618 + }, + { + "start": 28601.1, + "end": 28602.4, + "probability": 0.52 + }, + { + "start": 28602.72, + "end": 28605.12, + "probability": 0.7566 + }, + { + "start": 28605.46, + "end": 28606.04, + "probability": 0.91 + }, + { + "start": 28606.34, + "end": 28608.22, + "probability": 0.8032 + }, + { + "start": 28608.44, + "end": 28610.0, + "probability": 0.9961 + }, + { + "start": 28610.14, + "end": 28611.58, + "probability": 0.998 + }, + { + "start": 28611.74, + "end": 28612.22, + "probability": 0.5298 + }, + { + "start": 28612.3, + "end": 28613.24, + "probability": 0.8755 + }, + { + "start": 28614.02, + "end": 28616.16, + "probability": 0.6752 + }, + { + "start": 28616.4, + "end": 28618.86, + "probability": 0.7498 + }, + { + "start": 28619.5, + "end": 28621.12, + "probability": 0.9834 + }, + { + "start": 28621.4, + "end": 28622.04, + "probability": 0.7944 + }, + { + "start": 28622.16, + "end": 28624.44, + "probability": 0.9248 + }, + { + "start": 28624.62, + "end": 28625.63, + "probability": 0.6999 + }, + { + "start": 28626.18, + "end": 28629.52, + "probability": 0.862 + }, + { + "start": 28630.04, + "end": 28631.08, + "probability": 0.7971 + }, + { + "start": 28631.32, + "end": 28632.02, + "probability": 0.7596 + }, + { + "start": 28632.66, + "end": 28634.42, + "probability": 0.8608 + }, + { + "start": 28634.96, + "end": 28635.66, + "probability": 0.9902 + }, + { + "start": 28636.0, + "end": 28638.1, + "probability": 0.9841 + }, + { + "start": 28638.1, + "end": 28641.18, + "probability": 0.981 + }, + { + "start": 28641.38, + "end": 28643.54, + "probability": 0.7092 + }, + { + "start": 28643.56, + "end": 28644.1, + "probability": 0.8666 + }, + { + "start": 28644.14, + "end": 28646.38, + "probability": 0.9453 + }, + { + "start": 28646.4, + "end": 28646.86, + "probability": 0.5524 + }, + { + "start": 28647.6, + "end": 28651.02, + "probability": 0.8259 + }, + { + "start": 28651.04, + "end": 28654.7, + "probability": 0.8031 + }, + { + "start": 28655.46, + "end": 28656.42, + "probability": 0.4761 + }, + { + "start": 28656.52, + "end": 28657.06, + "probability": 0.7055 + }, + { + "start": 28657.38, + "end": 28658.96, + "probability": 0.9888 + }, + { + "start": 28659.12, + "end": 28661.94, + "probability": 0.8103 + }, + { + "start": 28662.46, + "end": 28664.76, + "probability": 0.857 + }, + { + "start": 28664.84, + "end": 28666.78, + "probability": 0.3822 + }, + { + "start": 28666.84, + "end": 28667.3, + "probability": 0.585 + }, + { + "start": 28667.94, + "end": 28669.08, + "probability": 0.573 + }, + { + "start": 28669.18, + "end": 28669.9, + "probability": 0.8738 + }, + { + "start": 28670.06, + "end": 28674.24, + "probability": 0.9654 + }, + { + "start": 28674.58, + "end": 28675.12, + "probability": 0.4673 + }, + { + "start": 28675.18, + "end": 28676.58, + "probability": 0.8192 + }, + { + "start": 28677.12, + "end": 28678.64, + "probability": 0.9927 + }, + { + "start": 28678.68, + "end": 28680.46, + "probability": 0.5679 + }, + { + "start": 28680.46, + "end": 28681.62, + "probability": 0.7163 + }, + { + "start": 28681.74, + "end": 28683.06, + "probability": 0.5849 + }, + { + "start": 28683.16, + "end": 28684.04, + "probability": 0.9287 + }, + { + "start": 28684.22, + "end": 28687.28, + "probability": 0.2782 + }, + { + "start": 28687.4, + "end": 28688.24, + "probability": 0.0257 + }, + { + "start": 28688.28, + "end": 28688.32, + "probability": 0.0684 + }, + { + "start": 28688.32, + "end": 28689.02, + "probability": 0.2522 + }, + { + "start": 28689.42, + "end": 28690.4, + "probability": 0.3314 + }, + { + "start": 28690.86, + "end": 28691.2, + "probability": 0.407 + }, + { + "start": 28691.2, + "end": 28692.28, + "probability": 0.4771 + }, + { + "start": 28692.28, + "end": 28693.74, + "probability": 0.726 + }, + { + "start": 28696.14, + "end": 28697.68, + "probability": 0.0836 + }, + { + "start": 28698.02, + "end": 28699.62, + "probability": 0.5319 + }, + { + "start": 28700.06, + "end": 28700.1, + "probability": 0.2682 + }, + { + "start": 28700.1, + "end": 28703.32, + "probability": 0.896 + }, + { + "start": 28703.32, + "end": 28703.38, + "probability": 0.066 + }, + { + "start": 28703.38, + "end": 28703.38, + "probability": 0.0421 + }, + { + "start": 28703.66, + "end": 28704.54, + "probability": 0.2065 + }, + { + "start": 28705.2, + "end": 28706.12, + "probability": 0.1699 + }, + { + "start": 28706.46, + "end": 28708.52, + "probability": 0.9912 + }, + { + "start": 28709.14, + "end": 28711.22, + "probability": 0.9913 + }, + { + "start": 28711.24, + "end": 28713.22, + "probability": 0.061 + }, + { + "start": 28713.22, + "end": 28714.77, + "probability": 0.233 + }, + { + "start": 28715.2, + "end": 28716.36, + "probability": 0.2778 + }, + { + "start": 28716.64, + "end": 28716.64, + "probability": 0.5023 + }, + { + "start": 28716.64, + "end": 28716.98, + "probability": 0.2385 + }, + { + "start": 28716.98, + "end": 28719.02, + "probability": 0.8901 + }, + { + "start": 28719.1, + "end": 28721.66, + "probability": 0.8969 + }, + { + "start": 28721.72, + "end": 28723.52, + "probability": 0.6638 + }, + { + "start": 28723.72, + "end": 28724.42, + "probability": 0.774 + }, + { + "start": 28724.5, + "end": 28726.02, + "probability": 0.9719 + }, + { + "start": 28726.86, + "end": 28726.92, + "probability": 0.114 + }, + { + "start": 28726.92, + "end": 28726.92, + "probability": 0.0249 + }, + { + "start": 28726.92, + "end": 28729.82, + "probability": 0.9807 + }, + { + "start": 28730.38, + "end": 28734.16, + "probability": 0.7673 + }, + { + "start": 28734.54, + "end": 28735.58, + "probability": 0.4923 + }, + { + "start": 28735.58, + "end": 28736.52, + "probability": 0.2193 + }, + { + "start": 28736.58, + "end": 28737.12, + "probability": 0.3971 + }, + { + "start": 28737.12, + "end": 28737.52, + "probability": 0.4263 + }, + { + "start": 28737.8, + "end": 28738.14, + "probability": 0.6206 + }, + { + "start": 28738.38, + "end": 28738.62, + "probability": 0.5994 + }, + { + "start": 28739.88, + "end": 28742.28, + "probability": 0.8223 + }, + { + "start": 28742.4, + "end": 28743.4, + "probability": 0.8202 + }, + { + "start": 28743.6, + "end": 28744.46, + "probability": 0.9766 + }, + { + "start": 28745.86, + "end": 28747.48, + "probability": 0.7581 + }, + { + "start": 28761.22, + "end": 28762.66, + "probability": 0.4258 + }, + { + "start": 28764.12, + "end": 28764.5, + "probability": 0.0134 + }, + { + "start": 28764.5, + "end": 28765.26, + "probability": 0.2954 + }, + { + "start": 28766.1, + "end": 28768.4, + "probability": 0.8271 + }, + { + "start": 28770.2, + "end": 28771.62, + "probability": 0.5353 + }, + { + "start": 28772.52, + "end": 28775.08, + "probability": 0.6802 + }, + { + "start": 28775.5, + "end": 28777.87, + "probability": 0.8423 + }, + { + "start": 28778.96, + "end": 28782.0, + "probability": 0.9924 + }, + { + "start": 28782.96, + "end": 28784.8, + "probability": 0.9775 + }, + { + "start": 28784.92, + "end": 28785.44, + "probability": 0.9976 + }, + { + "start": 28785.82, + "end": 28789.22, + "probability": 0.691 + }, + { + "start": 28789.94, + "end": 28792.38, + "probability": 0.9944 + }, + { + "start": 28793.18, + "end": 28797.48, + "probability": 0.9311 + }, + { + "start": 28798.32, + "end": 28800.12, + "probability": 0.82 + }, + { + "start": 28801.18, + "end": 28801.69, + "probability": 0.9966 + }, + { + "start": 28803.44, + "end": 28805.62, + "probability": 0.8247 + }, + { + "start": 28806.74, + "end": 28810.16, + "probability": 0.9817 + }, + { + "start": 28810.68, + "end": 28811.82, + "probability": 0.9927 + }, + { + "start": 28812.52, + "end": 28812.74, + "probability": 0.7027 + }, + { + "start": 28813.4, + "end": 28814.7, + "probability": 0.9961 + }, + { + "start": 28815.26, + "end": 28819.04, + "probability": 0.9775 + }, + { + "start": 28819.96, + "end": 28821.92, + "probability": 0.98 + }, + { + "start": 28821.96, + "end": 28822.68, + "probability": 0.5977 + }, + { + "start": 28822.72, + "end": 28823.2, + "probability": 0.6193 + }, + { + "start": 28823.32, + "end": 28824.24, + "probability": 0.6743 + }, + { + "start": 28824.3, + "end": 28824.94, + "probability": 0.6348 + }, + { + "start": 28825.56, + "end": 28825.78, + "probability": 0.3411 + }, + { + "start": 28825.94, + "end": 28827.92, + "probability": 0.91 + }, + { + "start": 28828.14, + "end": 28829.38, + "probability": 0.2001 + }, + { + "start": 28829.54, + "end": 28830.02, + "probability": 0.6695 + }, + { + "start": 28830.46, + "end": 28830.94, + "probability": 0.0752 + }, + { + "start": 28834.05, + "end": 28835.34, + "probability": 0.1112 + }, + { + "start": 28835.34, + "end": 28836.24, + "probability": 0.8422 + }, + { + "start": 28836.78, + "end": 28838.3, + "probability": 0.8513 + }, + { + "start": 28838.92, + "end": 28841.32, + "probability": 0.9251 + }, + { + "start": 28842.34, + "end": 28842.92, + "probability": 0.9043 + }, + { + "start": 28843.92, + "end": 28846.06, + "probability": 0.9917 + }, + { + "start": 28846.6, + "end": 28849.14, + "probability": 0.8916 + }, + { + "start": 28849.16, + "end": 28850.58, + "probability": 0.7934 + }, + { + "start": 28852.26, + "end": 28852.66, + "probability": 0.1076 + }, + { + "start": 28852.74, + "end": 28856.54, + "probability": 0.8546 + }, + { + "start": 28857.1, + "end": 28858.54, + "probability": 0.9989 + }, + { + "start": 28860.16, + "end": 28860.46, + "probability": 0.9446 + }, + { + "start": 28860.98, + "end": 28864.6, + "probability": 0.9975 + }, + { + "start": 28865.68, + "end": 28867.66, + "probability": 0.9204 + }, + { + "start": 28868.56, + "end": 28871.66, + "probability": 0.953 + }, + { + "start": 28872.02, + "end": 28872.08, + "probability": 0.4027 + }, + { + "start": 28872.22, + "end": 28874.17, + "probability": 0.9029 + }, + { + "start": 28874.26, + "end": 28874.46, + "probability": 0.2009 + }, + { + "start": 28874.6, + "end": 28875.56, + "probability": 0.1192 + }, + { + "start": 28875.8, + "end": 28880.12, + "probability": 0.3967 + }, + { + "start": 28880.44, + "end": 28881.88, + "probability": 0.8391 + }, + { + "start": 28881.9, + "end": 28884.16, + "probability": 0.2771 + }, + { + "start": 28884.16, + "end": 28885.39, + "probability": 0.991 + }, + { + "start": 28885.84, + "end": 28888.75, + "probability": 0.0396 + }, + { + "start": 28891.06, + "end": 28891.26, + "probability": 0.1009 + }, + { + "start": 28891.26, + "end": 28891.26, + "probability": 0.2259 + }, + { + "start": 28891.26, + "end": 28892.46, + "probability": 0.147 + }, + { + "start": 28893.24, + "end": 28898.34, + "probability": 0.8101 + }, + { + "start": 28898.86, + "end": 28901.86, + "probability": 0.976 + }, + { + "start": 28902.4, + "end": 28906.78, + "probability": 0.9781 + }, + { + "start": 28907.0, + "end": 28908.84, + "probability": 0.8264 + }, + { + "start": 28908.92, + "end": 28910.58, + "probability": 0.5592 + }, + { + "start": 28911.2, + "end": 28914.78, + "probability": 0.6781 + }, + { + "start": 28914.8, + "end": 28916.54, + "probability": 0.7656 + }, + { + "start": 28916.64, + "end": 28917.32, + "probability": 0.5835 + }, + { + "start": 28917.7, + "end": 28919.18, + "probability": 0.9141 + }, + { + "start": 28919.5, + "end": 28921.84, + "probability": 0.912 + }, + { + "start": 28922.24, + "end": 28923.2, + "probability": 0.2434 + }, + { + "start": 28923.2, + "end": 28924.96, + "probability": 0.8657 + }, + { + "start": 28925.1, + "end": 28927.72, + "probability": 0.8728 + }, + { + "start": 28927.76, + "end": 28929.68, + "probability": 0.9761 + }, + { + "start": 28930.06, + "end": 28931.32, + "probability": 0.9883 + }, + { + "start": 28932.22, + "end": 28934.84, + "probability": 0.9669 + }, + { + "start": 28936.2, + "end": 28936.7, + "probability": 0.1776 + }, + { + "start": 28936.7, + "end": 28940.38, + "probability": 0.5972 + }, + { + "start": 28940.5, + "end": 28942.48, + "probability": 0.3088 + }, + { + "start": 28942.78, + "end": 28943.86, + "probability": 0.4795 + }, + { + "start": 28944.06, + "end": 28945.68, + "probability": 0.3199 + }, + { + "start": 28945.84, + "end": 28949.94, + "probability": 0.2136 + }, + { + "start": 28950.32, + "end": 28951.14, + "probability": 0.2538 + }, + { + "start": 28951.2, + "end": 28954.44, + "probability": 0.6621 + }, + { + "start": 28955.08, + "end": 28956.4, + "probability": 0.0405 + }, + { + "start": 28956.4, + "end": 28959.06, + "probability": 0.5494 + }, + { + "start": 28959.7, + "end": 28961.3, + "probability": 0.5537 + }, + { + "start": 28961.34, + "end": 28963.72, + "probability": 0.4572 + }, + { + "start": 28964.34, + "end": 28964.58, + "probability": 0.4696 + }, + { + "start": 28965.16, + "end": 28968.23, + "probability": 0.1433 + }, + { + "start": 28969.56, + "end": 28969.86, + "probability": 0.1218 + }, + { + "start": 28969.86, + "end": 28974.0, + "probability": 0.3443 + }, + { + "start": 28974.18, + "end": 28975.92, + "probability": 0.4027 + }, + { + "start": 28976.26, + "end": 28979.84, + "probability": 0.0514 + }, + { + "start": 28979.84, + "end": 28980.53, + "probability": 0.0753 + }, + { + "start": 28980.76, + "end": 28981.06, + "probability": 0.6733 + }, + { + "start": 28981.22, + "end": 28982.34, + "probability": 0.0329 + }, + { + "start": 28983.22, + "end": 28990.28, + "probability": 0.8857 + }, + { + "start": 28991.6, + "end": 28994.76, + "probability": 0.8545 + }, + { + "start": 28995.56, + "end": 28998.62, + "probability": 0.9976 + }, + { + "start": 28999.28, + "end": 29000.28, + "probability": 0.577 + }, + { + "start": 29000.68, + "end": 29003.48, + "probability": 0.988 + }, + { + "start": 29003.48, + "end": 29005.46, + "probability": 0.9927 + }, + { + "start": 29006.06, + "end": 29008.26, + "probability": 0.8984 + }, + { + "start": 29011.68, + "end": 29017.44, + "probability": 0.6709 + }, + { + "start": 29017.46, + "end": 29017.46, + "probability": 0.0143 + }, + { + "start": 29017.46, + "end": 29017.46, + "probability": 0.0228 + }, + { + "start": 29017.46, + "end": 29017.7, + "probability": 0.6798 + }, + { + "start": 29018.64, + "end": 29021.26, + "probability": 0.7244 + }, + { + "start": 29021.4, + "end": 29021.92, + "probability": 0.6361 + }, + { + "start": 29022.1, + "end": 29022.52, + "probability": 0.2898 + }, + { + "start": 29022.54, + "end": 29023.1, + "probability": 0.6044 + }, + { + "start": 29023.8, + "end": 29025.52, + "probability": 0.7426 + }, + { + "start": 29025.94, + "end": 29028.2, + "probability": 0.8835 + }, + { + "start": 29028.34, + "end": 29031.08, + "probability": 0.9822 + }, + { + "start": 29031.46, + "end": 29032.6, + "probability": 0.9966 + }, + { + "start": 29033.52, + "end": 29036.16, + "probability": 0.9839 + }, + { + "start": 29036.34, + "end": 29038.0, + "probability": 0.5936 + }, + { + "start": 29038.16, + "end": 29039.22, + "probability": 0.8565 + }, + { + "start": 29039.84, + "end": 29042.68, + "probability": 0.8482 + }, + { + "start": 29043.44, + "end": 29043.94, + "probability": 0.8815 + }, + { + "start": 29044.04, + "end": 29046.97, + "probability": 0.4134 + }, + { + "start": 29047.6, + "end": 29048.89, + "probability": 0.9844 + }, + { + "start": 29049.9, + "end": 29050.56, + "probability": 0.8307 + }, + { + "start": 29051.28, + "end": 29052.54, + "probability": 0.1528 + }, + { + "start": 29052.54, + "end": 29053.72, + "probability": 0.8838 + }, + { + "start": 29053.8, + "end": 29055.3, + "probability": 0.7004 + }, + { + "start": 29055.81, + "end": 29056.74, + "probability": 0.8394 + }, + { + "start": 29057.62, + "end": 29058.04, + "probability": 0.7202 + }, + { + "start": 29058.76, + "end": 29060.5, + "probability": 0.9971 + }, + { + "start": 29060.52, + "end": 29062.28, + "probability": 0.995 + }, + { + "start": 29063.82, + "end": 29069.7, + "probability": 0.9971 + }, + { + "start": 29070.08, + "end": 29071.06, + "probability": 0.6447 + }, + { + "start": 29071.4, + "end": 29072.42, + "probability": 0.9894 + }, + { + "start": 29072.98, + "end": 29079.34, + "probability": 0.9661 + }, + { + "start": 29079.36, + "end": 29081.62, + "probability": 0.7644 + }, + { + "start": 29082.08, + "end": 29083.56, + "probability": 0.99 + }, + { + "start": 29084.14, + "end": 29086.62, + "probability": 0.9258 + }, + { + "start": 29087.3, + "end": 29090.74, + "probability": 0.9841 + }, + { + "start": 29090.74, + "end": 29094.04, + "probability": 0.9807 + }, + { + "start": 29094.2, + "end": 29095.46, + "probability": 0.8438 + }, + { + "start": 29096.18, + "end": 29097.74, + "probability": 0.9891 + }, + { + "start": 29098.1, + "end": 29099.64, + "probability": 0.3819 + }, + { + "start": 29099.98, + "end": 29100.85, + "probability": 0.9819 + }, + { + "start": 29101.2, + "end": 29101.74, + "probability": 0.3127 + }, + { + "start": 29102.18, + "end": 29105.42, + "probability": 0.3687 + }, + { + "start": 29105.58, + "end": 29106.08, + "probability": 0.343 + }, + { + "start": 29106.1, + "end": 29108.2, + "probability": 0.608 + }, + { + "start": 29108.46, + "end": 29110.56, + "probability": 0.9683 + }, + { + "start": 29110.56, + "end": 29110.63, + "probability": 0.631 + }, + { + "start": 29111.44, + "end": 29114.08, + "probability": 0.7688 + }, + { + "start": 29114.28, + "end": 29114.86, + "probability": 0.9751 + }, + { + "start": 29115.38, + "end": 29117.92, + "probability": 0.3605 + }, + { + "start": 29118.08, + "end": 29118.4, + "probability": 0.6128 + }, + { + "start": 29119.44, + "end": 29119.92, + "probability": 0.7967 + }, + { + "start": 29120.32, + "end": 29124.38, + "probability": 0.9121 + }, + { + "start": 29124.82, + "end": 29126.6, + "probability": 0.7484 + }, + { + "start": 29126.6, + "end": 29127.64, + "probability": 0.2816 + }, + { + "start": 29127.66, + "end": 29128.8, + "probability": 0.4064 + }, + { + "start": 29128.88, + "end": 29129.41, + "probability": 0.4289 + }, + { + "start": 29129.42, + "end": 29129.46, + "probability": 0.0188 + }, + { + "start": 29129.6, + "end": 29132.7, + "probability": 0.2747 + }, + { + "start": 29132.72, + "end": 29136.78, + "probability": 0.5801 + }, + { + "start": 29137.78, + "end": 29137.78, + "probability": 0.3212 + }, + { + "start": 29138.56, + "end": 29141.78, + "probability": 0.6973 + }, + { + "start": 29141.84, + "end": 29141.84, + "probability": 0.1769 + }, + { + "start": 29141.84, + "end": 29141.84, + "probability": 0.2471 + }, + { + "start": 29141.84, + "end": 29142.02, + "probability": 0.2351 + }, + { + "start": 29142.1, + "end": 29143.96, + "probability": 0.4946 + }, + { + "start": 29145.02, + "end": 29148.62, + "probability": 0.4077 + }, + { + "start": 29149.88, + "end": 29151.98, + "probability": 0.0729 + }, + { + "start": 29152.88, + "end": 29153.82, + "probability": 0.7429 + }, + { + "start": 29155.04, + "end": 29157.1, + "probability": 0.9939 + }, + { + "start": 29157.22, + "end": 29157.42, + "probability": 0.704 + }, + { + "start": 29157.5, + "end": 29162.78, + "probability": 0.9053 + }, + { + "start": 29163.4, + "end": 29168.06, + "probability": 0.9624 + }, + { + "start": 29168.86, + "end": 29169.0, + "probability": 0.415 + }, + { + "start": 29169.14, + "end": 29172.08, + "probability": 0.8994 + }, + { + "start": 29172.12, + "end": 29173.67, + "probability": 0.9838 + }, + { + "start": 29174.22, + "end": 29176.76, + "probability": 0.9922 + }, + { + "start": 29177.04, + "end": 29177.62, + "probability": 0.8608 + }, + { + "start": 29178.96, + "end": 29183.13, + "probability": 0.6064 + }, + { + "start": 29184.66, + "end": 29184.66, + "probability": 0.0763 + }, + { + "start": 29184.66, + "end": 29184.66, + "probability": 0.7246 + }, + { + "start": 29184.66, + "end": 29185.98, + "probability": 0.0948 + }, + { + "start": 29186.22, + "end": 29187.76, + "probability": 0.2697 + }, + { + "start": 29188.14, + "end": 29188.94, + "probability": 0.6363 + }, + { + "start": 29189.6, + "end": 29190.3, + "probability": 0.8479 + }, + { + "start": 29190.7, + "end": 29192.2, + "probability": 0.5676 + }, + { + "start": 29192.38, + "end": 29193.2, + "probability": 0.6826 + }, + { + "start": 29193.52, + "end": 29195.22, + "probability": 0.55 + }, + { + "start": 29195.4, + "end": 29196.86, + "probability": 0.2966 + }, + { + "start": 29196.96, + "end": 29197.38, + "probability": 0.0042 + }, + { + "start": 29197.9, + "end": 29198.52, + "probability": 0.0769 + }, + { + "start": 29198.52, + "end": 29200.34, + "probability": 0.9968 + }, + { + "start": 29200.66, + "end": 29202.42, + "probability": 0.984 + }, + { + "start": 29202.72, + "end": 29203.36, + "probability": 0.7906 + }, + { + "start": 29203.92, + "end": 29206.82, + "probability": 0.9761 + }, + { + "start": 29207.41, + "end": 29211.9, + "probability": 0.9523 + }, + { + "start": 29212.68, + "end": 29214.02, + "probability": 0.9562 + }, + { + "start": 29215.04, + "end": 29216.55, + "probability": 0.9683 + }, + { + "start": 29217.1, + "end": 29219.38, + "probability": 0.9851 + }, + { + "start": 29220.08, + "end": 29225.68, + "probability": 0.9765 + }, + { + "start": 29226.46, + "end": 29232.68, + "probability": 0.9866 + }, + { + "start": 29233.76, + "end": 29235.26, + "probability": 0.9744 + }, + { + "start": 29236.38, + "end": 29237.08, + "probability": 0.9881 + }, + { + "start": 29238.46, + "end": 29240.42, + "probability": 0.9989 + }, + { + "start": 29242.1, + "end": 29244.32, + "probability": 0.8633 + }, + { + "start": 29245.48, + "end": 29246.72, + "probability": 0.9753 + }, + { + "start": 29249.98, + "end": 29251.1, + "probability": 0.6188 + }, + { + "start": 29252.14, + "end": 29253.04, + "probability": 0.6326 + }, + { + "start": 29253.28, + "end": 29253.92, + "probability": 0.3034 + }, + { + "start": 29254.02, + "end": 29255.24, + "probability": 0.6971 + }, + { + "start": 29255.82, + "end": 29256.51, + "probability": 0.0112 + }, + { + "start": 29256.84, + "end": 29262.34, + "probability": 0.9456 + }, + { + "start": 29262.84, + "end": 29265.0, + "probability": 0.4149 + }, + { + "start": 29265.32, + "end": 29267.54, + "probability": 0.7436 + }, + { + "start": 29268.4, + "end": 29268.4, + "probability": 0.0869 + }, + { + "start": 29268.4, + "end": 29272.4, + "probability": 0.633 + }, + { + "start": 29272.7, + "end": 29272.84, + "probability": 0.2087 + }, + { + "start": 29272.84, + "end": 29273.94, + "probability": 0.7584 + }, + { + "start": 29274.76, + "end": 29278.6, + "probability": 0.9927 + }, + { + "start": 29279.36, + "end": 29281.0, + "probability": 0.5643 + }, + { + "start": 29281.12, + "end": 29281.92, + "probability": 0.6328 + }, + { + "start": 29282.1, + "end": 29284.86, + "probability": 0.6633 + }, + { + "start": 29285.6, + "end": 29287.92, + "probability": 0.67 + }, + { + "start": 29288.54, + "end": 29289.46, + "probability": 0.7841 + }, + { + "start": 29289.52, + "end": 29289.88, + "probability": 0.8305 + }, + { + "start": 29290.06, + "end": 29290.88, + "probability": 0.3832 + }, + { + "start": 29291.16, + "end": 29293.59, + "probability": 0.607 + }, + { + "start": 29295.06, + "end": 29297.16, + "probability": 0.9872 + }, + { + "start": 29297.5, + "end": 29297.72, + "probability": 0.7648 + }, + { + "start": 29297.9, + "end": 29299.04, + "probability": 0.4046 + }, + { + "start": 29299.04, + "end": 29300.44, + "probability": 0.6351 + }, + { + "start": 29300.62, + "end": 29301.7, + "probability": 0.3231 + }, + { + "start": 29302.2, + "end": 29303.18, + "probability": 0.4985 + }, + { + "start": 29303.18, + "end": 29304.04, + "probability": 0.5543 + }, + { + "start": 29304.26, + "end": 29304.94, + "probability": 0.8379 + }, + { + "start": 29307.88, + "end": 29309.98, + "probability": 0.9909 + }, + { + "start": 29310.7, + "end": 29315.56, + "probability": 0.9771 + }, + { + "start": 29316.08, + "end": 29317.86, + "probability": 0.88 + }, + { + "start": 29318.72, + "end": 29320.3, + "probability": 0.9871 + }, + { + "start": 29320.98, + "end": 29323.22, + "probability": 0.9905 + }, + { + "start": 29323.84, + "end": 29325.1, + "probability": 0.8842 + }, + { + "start": 29326.06, + "end": 29331.56, + "probability": 0.7127 + }, + { + "start": 29331.6, + "end": 29332.68, + "probability": 0.9478 + }, + { + "start": 29333.3, + "end": 29336.98, + "probability": 0.9958 + }, + { + "start": 29337.5, + "end": 29340.22, + "probability": 0.985 + }, + { + "start": 29340.8, + "end": 29343.08, + "probability": 0.7628 + }, + { + "start": 29343.28, + "end": 29345.84, + "probability": 0.9966 + }, + { + "start": 29346.18, + "end": 29346.98, + "probability": 0.8766 + }, + { + "start": 29347.06, + "end": 29348.46, + "probability": 0.907 + }, + { + "start": 29348.98, + "end": 29351.04, + "probability": 0.8035 + }, + { + "start": 29351.44, + "end": 29352.28, + "probability": 0.4287 + }, + { + "start": 29352.68, + "end": 29353.36, + "probability": 0.6188 + }, + { + "start": 29353.72, + "end": 29356.64, + "probability": 0.9941 + }, + { + "start": 29357.86, + "end": 29362.22, + "probability": 0.9644 + }, + { + "start": 29362.6, + "end": 29366.28, + "probability": 0.999 + }, + { + "start": 29366.98, + "end": 29368.44, + "probability": 0.9531 + }, + { + "start": 29368.52, + "end": 29372.04, + "probability": 0.9978 + }, + { + "start": 29372.78, + "end": 29375.87, + "probability": 0.915 + }, + { + "start": 29376.4, + "end": 29378.16, + "probability": 0.9323 + }, + { + "start": 29378.8, + "end": 29379.44, + "probability": 0.811 + }, + { + "start": 29380.12, + "end": 29381.36, + "probability": 0.5685 + }, + { + "start": 29381.9, + "end": 29382.7, + "probability": 0.9087 + }, + { + "start": 29383.28, + "end": 29387.0, + "probability": 0.9603 + }, + { + "start": 29387.36, + "end": 29391.24, + "probability": 0.9822 + }, + { + "start": 29391.62, + "end": 29394.94, + "probability": 0.9519 + }, + { + "start": 29395.1, + "end": 29397.46, + "probability": 0.7365 + }, + { + "start": 29397.86, + "end": 29399.08, + "probability": 0.7789 + }, + { + "start": 29399.66, + "end": 29403.7, + "probability": 0.9911 + }, + { + "start": 29404.14, + "end": 29405.8, + "probability": 0.9988 + }, + { + "start": 29408.3, + "end": 29408.3, + "probability": 0.0374 + }, + { + "start": 29408.3, + "end": 29410.48, + "probability": 0.1552 + }, + { + "start": 29410.5, + "end": 29413.34, + "probability": 0.7018 + }, + { + "start": 29413.42, + "end": 29413.98, + "probability": 0.9161 + }, + { + "start": 29414.62, + "end": 29414.92, + "probability": 0.8696 + }, + { + "start": 29414.98, + "end": 29416.62, + "probability": 0.9697 + }, + { + "start": 29417.02, + "end": 29418.54, + "probability": 0.7505 + }, + { + "start": 29419.2, + "end": 29421.14, + "probability": 0.968 + }, + { + "start": 29422.08, + "end": 29423.79, + "probability": 0.9974 + }, + { + "start": 29424.56, + "end": 29427.42, + "probability": 0.9924 + }, + { + "start": 29427.63, + "end": 29429.87, + "probability": 0.9927 + }, + { + "start": 29430.46, + "end": 29432.96, + "probability": 0.9961 + }, + { + "start": 29433.76, + "end": 29434.96, + "probability": 0.9902 + }, + { + "start": 29435.7, + "end": 29442.38, + "probability": 0.9855 + }, + { + "start": 29443.58, + "end": 29449.28, + "probability": 0.9495 + }, + { + "start": 29449.28, + "end": 29455.3, + "probability": 0.9976 + }, + { + "start": 29455.8, + "end": 29456.7, + "probability": 0.7626 + }, + { + "start": 29456.8, + "end": 29458.14, + "probability": 0.9646 + }, + { + "start": 29458.26, + "end": 29459.04, + "probability": 0.7049 + }, + { + "start": 29459.52, + "end": 29461.12, + "probability": 0.9429 + }, + { + "start": 29461.64, + "end": 29463.32, + "probability": 0.8168 + }, + { + "start": 29463.92, + "end": 29465.88, + "probability": 0.9823 + }, + { + "start": 29465.96, + "end": 29466.32, + "probability": 0.8237 + }, + { + "start": 29466.42, + "end": 29467.26, + "probability": 0.9896 + }, + { + "start": 29469.06, + "end": 29476.6, + "probability": 0.9173 + }, + { + "start": 29477.04, + "end": 29479.1, + "probability": 0.7256 + }, + { + "start": 29479.32, + "end": 29481.1, + "probability": 0.9597 + }, + { + "start": 29481.8, + "end": 29483.2, + "probability": 0.9698 + }, + { + "start": 29484.42, + "end": 29486.28, + "probability": 0.9952 + }, + { + "start": 29486.82, + "end": 29488.4, + "probability": 0.9924 + }, + { + "start": 29488.92, + "end": 29491.08, + "probability": 0.9951 + }, + { + "start": 29491.66, + "end": 29493.68, + "probability": 0.875 + }, + { + "start": 29494.78, + "end": 29498.18, + "probability": 0.897 + }, + { + "start": 29498.26, + "end": 29498.86, + "probability": 0.9324 + }, + { + "start": 29499.44, + "end": 29500.7, + "probability": 0.9399 + }, + { + "start": 29500.78, + "end": 29503.22, + "probability": 0.9951 + }, + { + "start": 29505.12, + "end": 29506.14, + "probability": 0.7244 + }, + { + "start": 29506.42, + "end": 29507.68, + "probability": 0.994 + }, + { + "start": 29508.18, + "end": 29509.48, + "probability": 0.8901 + }, + { + "start": 29510.62, + "end": 29511.3, + "probability": 0.8349 + }, + { + "start": 29511.62, + "end": 29514.12, + "probability": 0.9577 + }, + { + "start": 29514.22, + "end": 29515.82, + "probability": 0.9723 + }, + { + "start": 29516.52, + "end": 29517.6, + "probability": 0.7893 + }, + { + "start": 29518.14, + "end": 29519.94, + "probability": 0.967 + }, + { + "start": 29520.06, + "end": 29523.24, + "probability": 0.9615 + }, + { + "start": 29524.76, + "end": 29527.0, + "probability": 0.9914 + }, + { + "start": 29527.94, + "end": 29529.66, + "probability": 0.999 + }, + { + "start": 29530.16, + "end": 29531.84, + "probability": 0.9937 + }, + { + "start": 29532.28, + "end": 29533.44, + "probability": 0.9304 + }, + { + "start": 29534.6, + "end": 29536.25, + "probability": 0.9978 + }, + { + "start": 29536.72, + "end": 29537.52, + "probability": 0.8956 + }, + { + "start": 29538.26, + "end": 29540.56, + "probability": 0.9974 + }, + { + "start": 29540.9, + "end": 29542.38, + "probability": 0.9983 + }, + { + "start": 29544.42, + "end": 29546.42, + "probability": 0.7426 + }, + { + "start": 29547.14, + "end": 29549.58, + "probability": 0.9556 + }, + { + "start": 29549.7, + "end": 29552.12, + "probability": 0.9956 + }, + { + "start": 29552.48, + "end": 29554.34, + "probability": 0.9709 + }, + { + "start": 29554.36, + "end": 29555.5, + "probability": 0.6929 + }, + { + "start": 29556.22, + "end": 29558.6, + "probability": 0.9027 + }, + { + "start": 29558.88, + "end": 29564.26, + "probability": 0.9953 + }, + { + "start": 29564.98, + "end": 29565.28, + "probability": 0.9116 + }, + { + "start": 29565.34, + "end": 29566.98, + "probability": 0.9369 + }, + { + "start": 29567.3, + "end": 29568.58, + "probability": 0.7444 + }, + { + "start": 29568.82, + "end": 29569.28, + "probability": 0.4504 + }, + { + "start": 29569.98, + "end": 29570.42, + "probability": 0.8164 + }, + { + "start": 29571.16, + "end": 29575.24, + "probability": 0.9951 + }, + { + "start": 29575.44, + "end": 29576.42, + "probability": 0.7448 + }, + { + "start": 29577.14, + "end": 29577.92, + "probability": 0.7513 + }, + { + "start": 29578.5, + "end": 29580.01, + "probability": 0.9551 + }, + { + "start": 29580.7, + "end": 29581.26, + "probability": 0.9764 + }, + { + "start": 29581.72, + "end": 29582.9, + "probability": 0.8042 + }, + { + "start": 29583.12, + "end": 29583.92, + "probability": 0.5761 + }, + { + "start": 29584.22, + "end": 29586.56, + "probability": 0.8712 + }, + { + "start": 29587.16, + "end": 29588.14, + "probability": 0.6858 + }, + { + "start": 29591.94, + "end": 29592.56, + "probability": 0.8805 + }, + { + "start": 29600.41, + "end": 29602.58, + "probability": 0.855 + }, + { + "start": 29605.18, + "end": 29607.08, + "probability": 0.8833 + }, + { + "start": 29608.24, + "end": 29609.08, + "probability": 0.5707 + }, + { + "start": 29610.12, + "end": 29612.48, + "probability": 0.7974 + }, + { + "start": 29614.1, + "end": 29615.12, + "probability": 0.9161 + }, + { + "start": 29615.96, + "end": 29617.1, + "probability": 0.8472 + }, + { + "start": 29618.32, + "end": 29620.02, + "probability": 0.6296 + }, + { + "start": 29620.26, + "end": 29621.28, + "probability": 0.7301 + }, + { + "start": 29621.32, + "end": 29621.78, + "probability": 0.9704 + }, + { + "start": 29621.86, + "end": 29626.22, + "probability": 0.9706 + }, + { + "start": 29627.48, + "end": 29631.28, + "probability": 0.9437 + }, + { + "start": 29631.94, + "end": 29632.6, + "probability": 0.9932 + }, + { + "start": 29637.02, + "end": 29637.34, + "probability": 0.0794 + }, + { + "start": 29637.94, + "end": 29640.92, + "probability": 0.6526 + }, + { + "start": 29642.4, + "end": 29643.76, + "probability": 0.7844 + }, + { + "start": 29644.28, + "end": 29647.36, + "probability": 0.7296 + }, + { + "start": 29648.86, + "end": 29649.94, + "probability": 0.967 + }, + { + "start": 29650.6, + "end": 29651.28, + "probability": 0.5344 + }, + { + "start": 29652.88, + "end": 29655.82, + "probability": 0.536 + }, + { + "start": 29657.14, + "end": 29657.9, + "probability": 0.0299 + }, + { + "start": 29659.8, + "end": 29660.5, + "probability": 0.9788 + }, + { + "start": 29661.72, + "end": 29662.08, + "probability": 0.398 + }, + { + "start": 29662.6, + "end": 29666.48, + "probability": 0.9644 + }, + { + "start": 29667.36, + "end": 29669.25, + "probability": 0.6662 + }, + { + "start": 29671.68, + "end": 29673.4, + "probability": 0.7935 + }, + { + "start": 29673.82, + "end": 29674.43, + "probability": 0.9878 + }, + { + "start": 29675.8, + "end": 29677.34, + "probability": 0.917 + }, + { + "start": 29678.68, + "end": 29683.41, + "probability": 0.9823 + }, + { + "start": 29685.02, + "end": 29692.02, + "probability": 0.9929 + }, + { + "start": 29693.12, + "end": 29698.36, + "probability": 0.929 + }, + { + "start": 29700.14, + "end": 29701.52, + "probability": 0.8204 + }, + { + "start": 29704.8, + "end": 29709.16, + "probability": 0.9175 + }, + { + "start": 29710.0, + "end": 29710.92, + "probability": 0.9083 + }, + { + "start": 29711.92, + "end": 29714.38, + "probability": 0.7986 + }, + { + "start": 29715.46, + "end": 29720.38, + "probability": 0.9897 + }, + { + "start": 29721.48, + "end": 29726.76, + "probability": 0.9974 + }, + { + "start": 29727.3, + "end": 29729.88, + "probability": 0.6117 + }, + { + "start": 29730.82, + "end": 29735.9, + "probability": 0.9792 + }, + { + "start": 29736.54, + "end": 29737.32, + "probability": 0.9646 + }, + { + "start": 29738.0, + "end": 29738.54, + "probability": 0.6388 + }, + { + "start": 29739.92, + "end": 29741.94, + "probability": 0.9774 + }, + { + "start": 29743.22, + "end": 29744.24, + "probability": 0.83 + }, + { + "start": 29745.3, + "end": 29747.52, + "probability": 0.8375 + }, + { + "start": 29748.6, + "end": 29751.18, + "probability": 0.9595 + }, + { + "start": 29754.46, + "end": 29755.36, + "probability": 0.8251 + }, + { + "start": 29756.0, + "end": 29757.0, + "probability": 0.7677 + }, + { + "start": 29758.42, + "end": 29759.28, + "probability": 0.9791 + }, + { + "start": 29760.34, + "end": 29761.36, + "probability": 0.7387 + }, + { + "start": 29761.46, + "end": 29762.18, + "probability": 0.7671 + }, + { + "start": 29762.58, + "end": 29766.76, + "probability": 0.9664 + }, + { + "start": 29767.6, + "end": 29770.26, + "probability": 0.9607 + }, + { + "start": 29770.86, + "end": 29773.26, + "probability": 0.6759 + }, + { + "start": 29774.62, + "end": 29778.44, + "probability": 0.9651 + }, + { + "start": 29779.02, + "end": 29783.58, + "probability": 0.9881 + }, + { + "start": 29785.06, + "end": 29790.52, + "probability": 0.7511 + }, + { + "start": 29791.16, + "end": 29795.58, + "probability": 0.9155 + }, + { + "start": 29796.92, + "end": 29798.28, + "probability": 0.656 + }, + { + "start": 29799.04, + "end": 29801.04, + "probability": 0.9927 + }, + { + "start": 29802.34, + "end": 29804.02, + "probability": 0.9795 + }, + { + "start": 29805.92, + "end": 29808.14, + "probability": 0.7077 + }, + { + "start": 29808.78, + "end": 29814.52, + "probability": 0.9677 + }, + { + "start": 29814.54, + "end": 29815.16, + "probability": 0.9249 + }, + { + "start": 29816.14, + "end": 29819.26, + "probability": 0.9934 + }, + { + "start": 29819.84, + "end": 29822.2, + "probability": 0.9948 + }, + { + "start": 29822.78, + "end": 29825.08, + "probability": 0.9712 + }, + { + "start": 29827.14, + "end": 29828.38, + "probability": 0.9303 + }, + { + "start": 29829.16, + "end": 29830.3, + "probability": 0.9766 + }, + { + "start": 29831.48, + "end": 29834.06, + "probability": 0.7572 + }, + { + "start": 29834.64, + "end": 29835.24, + "probability": 0.8633 + }, + { + "start": 29836.0, + "end": 29838.4, + "probability": 0.9773 + }, + { + "start": 29839.94, + "end": 29847.92, + "probability": 0.9893 + }, + { + "start": 29849.02, + "end": 29851.04, + "probability": 0.8724 + }, + { + "start": 29851.96, + "end": 29856.42, + "probability": 0.9136 + }, + { + "start": 29856.46, + "end": 29856.7, + "probability": 0.3655 + }, + { + "start": 29857.78, + "end": 29861.76, + "probability": 0.9842 + }, + { + "start": 29863.08, + "end": 29865.86, + "probability": 0.889 + }, + { + "start": 29867.98, + "end": 29869.62, + "probability": 0.9832 + }, + { + "start": 29870.48, + "end": 29871.84, + "probability": 0.534 + }, + { + "start": 29872.38, + "end": 29875.42, + "probability": 0.9868 + }, + { + "start": 29876.22, + "end": 29877.96, + "probability": 0.9896 + }, + { + "start": 29878.62, + "end": 29882.58, + "probability": 0.956 + }, + { + "start": 29883.74, + "end": 29885.38, + "probability": 0.9694 + }, + { + "start": 29885.8, + "end": 29886.96, + "probability": 0.8568 + }, + { + "start": 29887.02, + "end": 29888.54, + "probability": 0.4346 + }, + { + "start": 29889.5, + "end": 29892.1, + "probability": 0.9798 + }, + { + "start": 29893.66, + "end": 29894.2, + "probability": 0.9966 + }, + { + "start": 29895.62, + "end": 29896.66, + "probability": 0.7151 + }, + { + "start": 29899.1, + "end": 29899.7, + "probability": 0.9078 + }, + { + "start": 29900.24, + "end": 29903.04, + "probability": 0.7937 + }, + { + "start": 29903.36, + "end": 29905.08, + "probability": 0.9897 + }, + { + "start": 29905.38, + "end": 29906.82, + "probability": 0.9547 + }, + { + "start": 29907.88, + "end": 29910.26, + "probability": 0.7073 + }, + { + "start": 29911.34, + "end": 29912.12, + "probability": 0.459 + }, + { + "start": 29912.16, + "end": 29913.5, + "probability": 0.4038 + }, + { + "start": 29914.96, + "end": 29916.28, + "probability": 0.9159 + }, + { + "start": 29917.02, + "end": 29919.88, + "probability": 0.9715 + }, + { + "start": 29920.4, + "end": 29921.48, + "probability": 0.9639 + }, + { + "start": 29923.52, + "end": 29925.12, + "probability": 0.9302 + }, + { + "start": 29925.9, + "end": 29927.64, + "probability": 0.5413 + }, + { + "start": 29928.66, + "end": 29931.08, + "probability": 0.9922 + }, + { + "start": 29931.84, + "end": 29935.36, + "probability": 0.9944 + }, + { + "start": 29935.94, + "end": 29939.06, + "probability": 0.9736 + }, + { + "start": 29939.1, + "end": 29940.08, + "probability": 0.9126 + }, + { + "start": 29941.08, + "end": 29945.36, + "probability": 0.9312 + }, + { + "start": 29947.32, + "end": 29948.96, + "probability": 0.6811 + }, + { + "start": 29949.62, + "end": 29950.71, + "probability": 0.963 + }, + { + "start": 29952.22, + "end": 29953.66, + "probability": 0.9707 + }, + { + "start": 29954.64, + "end": 29962.88, + "probability": 0.8993 + }, + { + "start": 29963.66, + "end": 29964.02, + "probability": 0.9595 + }, + { + "start": 29965.18, + "end": 29966.27, + "probability": 0.7337 + }, + { + "start": 29967.12, + "end": 29970.12, + "probability": 0.9288 + }, + { + "start": 29970.68, + "end": 29975.22, + "probability": 0.986 + }, + { + "start": 29975.68, + "end": 29978.84, + "probability": 0.9382 + }, + { + "start": 29978.9, + "end": 29980.82, + "probability": 0.9087 + }, + { + "start": 29983.54, + "end": 29985.2, + "probability": 0.5305 + }, + { + "start": 29986.46, + "end": 29987.3, + "probability": 0.8021 + }, + { + "start": 29989.1, + "end": 29989.86, + "probability": 0.8477 + }, + { + "start": 29989.96, + "end": 29990.68, + "probability": 0.4973 + }, + { + "start": 29990.7, + "end": 29994.2, + "probability": 0.8718 + }, + { + "start": 29995.54, + "end": 29996.69, + "probability": 0.9842 + }, + { + "start": 29997.52, + "end": 29998.44, + "probability": 0.8972 + }, + { + "start": 29999.6, + "end": 30000.18, + "probability": 0.908 + }, + { + "start": 30001.12, + "end": 30006.26, + "probability": 0.9782 + }, + { + "start": 30007.24, + "end": 30008.56, + "probability": 0.9345 + }, + { + "start": 30010.32, + "end": 30011.42, + "probability": 0.7292 + }, + { + "start": 30012.4, + "end": 30016.08, + "probability": 0.9938 + }, + { + "start": 30017.56, + "end": 30018.3, + "probability": 0.9733 + }, + { + "start": 30019.46, + "end": 30022.34, + "probability": 0.9829 + }, + { + "start": 30023.3, + "end": 30025.12, + "probability": 0.9653 + }, + { + "start": 30026.44, + "end": 30029.78, + "probability": 0.6979 + }, + { + "start": 30031.42, + "end": 30032.49, + "probability": 0.9557 + }, + { + "start": 30034.18, + "end": 30037.62, + "probability": 0.9827 + }, + { + "start": 30039.5, + "end": 30042.18, + "probability": 0.895 + }, + { + "start": 30042.8, + "end": 30043.3, + "probability": 0.9787 + }, + { + "start": 30044.26, + "end": 30048.5, + "probability": 0.8102 + }, + { + "start": 30049.5, + "end": 30053.0, + "probability": 0.9583 + }, + { + "start": 30053.62, + "end": 30054.16, + "probability": 0.7772 + }, + { + "start": 30055.2, + "end": 30055.84, + "probability": 0.9585 + }, + { + "start": 30056.36, + "end": 30057.14, + "probability": 0.9824 + }, + { + "start": 30058.3, + "end": 30059.04, + "probability": 0.9119 + }, + { + "start": 30060.3, + "end": 30062.02, + "probability": 0.9138 + }, + { + "start": 30062.94, + "end": 30063.94, + "probability": 0.9161 + }, + { + "start": 30064.68, + "end": 30065.9, + "probability": 0.9979 + }, + { + "start": 30066.44, + "end": 30068.98, + "probability": 0.9529 + }, + { + "start": 30069.78, + "end": 30071.38, + "probability": 0.9599 + }, + { + "start": 30073.78, + "end": 30081.2, + "probability": 0.9903 + }, + { + "start": 30083.6, + "end": 30084.78, + "probability": 0.8719 + }, + { + "start": 30085.44, + "end": 30087.66, + "probability": 0.9601 + }, + { + "start": 30087.78, + "end": 30090.38, + "probability": 0.85 + }, + { + "start": 30090.92, + "end": 30091.7, + "probability": 0.7841 + }, + { + "start": 30093.32, + "end": 30094.74, + "probability": 0.9569 + }, + { + "start": 30095.24, + "end": 30103.7, + "probability": 0.9946 + }, + { + "start": 30104.38, + "end": 30106.26, + "probability": 0.8487 + }, + { + "start": 30106.96, + "end": 30108.9, + "probability": 0.9979 + }, + { + "start": 30109.64, + "end": 30111.5, + "probability": 0.8947 + }, + { + "start": 30115.08, + "end": 30115.86, + "probability": 0.6482 + }, + { + "start": 30116.4, + "end": 30116.94, + "probability": 0.7937 + }, + { + "start": 30117.86, + "end": 30118.54, + "probability": 0.8926 + }, + { + "start": 30119.18, + "end": 30120.76, + "probability": 0.7948 + }, + { + "start": 30121.04, + "end": 30122.16, + "probability": 0.9377 + }, + { + "start": 30123.56, + "end": 30125.14, + "probability": 0.9132 + }, + { + "start": 30126.88, + "end": 30128.18, + "probability": 0.978 + }, + { + "start": 30130.44, + "end": 30131.0, + "probability": 0.7547 + }, + { + "start": 30132.22, + "end": 30133.13, + "probability": 0.9128 + }, + { + "start": 30134.16, + "end": 30136.62, + "probability": 0.8959 + }, + { + "start": 30137.52, + "end": 30138.72, + "probability": 0.7108 + }, + { + "start": 30140.12, + "end": 30141.42, + "probability": 0.6641 + }, + { + "start": 30142.5, + "end": 30143.64, + "probability": 0.9779 + }, + { + "start": 30144.56, + "end": 30147.06, + "probability": 0.9941 + }, + { + "start": 30148.22, + "end": 30150.72, + "probability": 0.7273 + }, + { + "start": 30151.48, + "end": 30152.3, + "probability": 0.986 + }, + { + "start": 30153.6, + "end": 30161.26, + "probability": 0.9706 + }, + { + "start": 30162.1, + "end": 30164.88, + "probability": 0.9681 + }, + { + "start": 30165.9, + "end": 30169.4, + "probability": 0.9811 + }, + { + "start": 30170.8, + "end": 30171.56, + "probability": 0.9726 + }, + { + "start": 30172.14, + "end": 30172.94, + "probability": 0.9985 + }, + { + "start": 30173.88, + "end": 30176.18, + "probability": 0.9913 + }, + { + "start": 30180.38, + "end": 30183.06, + "probability": 0.9989 + }, + { + "start": 30184.46, + "end": 30185.8, + "probability": 0.9961 + }, + { + "start": 30187.16, + "end": 30190.16, + "probability": 0.998 + }, + { + "start": 30190.16, + "end": 30194.18, + "probability": 0.8792 + }, + { + "start": 30194.84, + "end": 30196.56, + "probability": 0.9985 + }, + { + "start": 30196.56, + "end": 30201.34, + "probability": 0.9968 + }, + { + "start": 30202.42, + "end": 30203.04, + "probability": 0.73 + }, + { + "start": 30203.92, + "end": 30208.16, + "probability": 0.9949 + }, + { + "start": 30211.84, + "end": 30212.7, + "probability": 0.8016 + }, + { + "start": 30214.02, + "end": 30215.28, + "probability": 0.9771 + }, + { + "start": 30215.88, + "end": 30223.28, + "probability": 0.9971 + }, + { + "start": 30224.8, + "end": 30227.04, + "probability": 0.6882 + }, + { + "start": 30227.28, + "end": 30229.72, + "probability": 0.7296 + }, + { + "start": 30229.74, + "end": 30230.44, + "probability": 0.9699 + }, + { + "start": 30231.26, + "end": 30233.26, + "probability": 0.9902 + }, + { + "start": 30234.46, + "end": 30235.02, + "probability": 0.8527 + }, + { + "start": 30236.26, + "end": 30237.06, + "probability": 0.7339 + }, + { + "start": 30238.2, + "end": 30238.78, + "probability": 0.7268 + }, + { + "start": 30239.72, + "end": 30242.04, + "probability": 0.9971 + }, + { + "start": 30242.76, + "end": 30243.56, + "probability": 0.8942 + }, + { + "start": 30245.4, + "end": 30245.84, + "probability": 0.6659 + }, + { + "start": 30247.32, + "end": 30248.02, + "probability": 0.9154 + }, + { + "start": 30250.4, + "end": 30252.34, + "probability": 0.978 + }, + { + "start": 30253.06, + "end": 30254.32, + "probability": 0.7852 + }, + { + "start": 30255.76, + "end": 30256.38, + "probability": 0.6591 + }, + { + "start": 30257.34, + "end": 30260.42, + "probability": 0.9951 + }, + { + "start": 30262.34, + "end": 30265.72, + "probability": 0.981 + }, + { + "start": 30266.24, + "end": 30267.86, + "probability": 0.6726 + }, + { + "start": 30268.56, + "end": 30269.4, + "probability": 0.9354 + }, + { + "start": 30271.24, + "end": 30277.8, + "probability": 0.9941 + }, + { + "start": 30278.72, + "end": 30284.74, + "probability": 0.9941 + }, + { + "start": 30286.86, + "end": 30289.24, + "probability": 0.9836 + }, + { + "start": 30289.88, + "end": 30291.58, + "probability": 0.9641 + }, + { + "start": 30292.34, + "end": 30295.58, + "probability": 0.8397 + }, + { + "start": 30296.62, + "end": 30297.32, + "probability": 0.8861 + }, + { + "start": 30298.72, + "end": 30300.64, + "probability": 0.9986 + }, + { + "start": 30301.78, + "end": 30305.1, + "probability": 0.8706 + }, + { + "start": 30305.8, + "end": 30306.48, + "probability": 0.9287 + }, + { + "start": 30308.76, + "end": 30309.46, + "probability": 0.7147 + }, + { + "start": 30310.24, + "end": 30310.9, + "probability": 0.5666 + }, + { + "start": 30311.66, + "end": 30312.5, + "probability": 0.9862 + }, + { + "start": 30314.8, + "end": 30316.78, + "probability": 0.8174 + }, + { + "start": 30317.62, + "end": 30319.54, + "probability": 0.8704 + }, + { + "start": 30320.8, + "end": 30322.78, + "probability": 0.4845 + }, + { + "start": 30323.56, + "end": 30325.38, + "probability": 0.981 + }, + { + "start": 30326.16, + "end": 30328.12, + "probability": 0.8804 + }, + { + "start": 30329.0, + "end": 30329.9, + "probability": 0.8337 + }, + { + "start": 30331.8, + "end": 30332.6, + "probability": 0.8712 + }, + { + "start": 30333.2, + "end": 30334.94, + "probability": 0.8426 + }, + { + "start": 30335.56, + "end": 30339.16, + "probability": 0.9753 + }, + { + "start": 30339.25, + "end": 30341.06, + "probability": 0.9479 + }, + { + "start": 30341.86, + "end": 30343.12, + "probability": 0.938 + }, + { + "start": 30344.44, + "end": 30347.9, + "probability": 0.998 + }, + { + "start": 30347.9, + "end": 30352.47, + "probability": 0.9871 + }, + { + "start": 30352.68, + "end": 30352.98, + "probability": 0.6729 + }, + { + "start": 30354.2, + "end": 30356.56, + "probability": 0.8692 + }, + { + "start": 30357.14, + "end": 30358.09, + "probability": 0.981 + }, + { + "start": 30358.94, + "end": 30366.1, + "probability": 0.9815 + }, + { + "start": 30367.48, + "end": 30368.52, + "probability": 0.9645 + }, + { + "start": 30368.7, + "end": 30369.52, + "probability": 0.7943 + }, + { + "start": 30369.9, + "end": 30373.38, + "probability": 0.9846 + }, + { + "start": 30374.72, + "end": 30381.04, + "probability": 0.981 + }, + { + "start": 30381.42, + "end": 30385.32, + "probability": 0.7766 + }, + { + "start": 30386.66, + "end": 30390.02, + "probability": 0.9854 + }, + { + "start": 30390.62, + "end": 30394.34, + "probability": 0.8801 + }, + { + "start": 30394.96, + "end": 30395.32, + "probability": 0.3989 + }, + { + "start": 30396.66, + "end": 30399.48, + "probability": 0.9977 + }, + { + "start": 30399.48, + "end": 30403.54, + "probability": 0.9973 + }, + { + "start": 30404.1, + "end": 30405.2, + "probability": 0.7908 + }, + { + "start": 30406.1, + "end": 30408.4, + "probability": 0.9856 + }, + { + "start": 30409.56, + "end": 30413.44, + "probability": 0.9993 + }, + { + "start": 30413.44, + "end": 30417.76, + "probability": 0.9984 + }, + { + "start": 30418.38, + "end": 30422.86, + "probability": 0.9245 + }, + { + "start": 30423.26, + "end": 30424.3, + "probability": 0.874 + }, + { + "start": 30424.3, + "end": 30428.34, + "probability": 0.8687 + }, + { + "start": 30428.64, + "end": 30432.0, + "probability": 0.9982 + }, + { + "start": 30432.0, + "end": 30435.52, + "probability": 0.9887 + }, + { + "start": 30436.3, + "end": 30436.94, + "probability": 0.9598 + }, + { + "start": 30437.76, + "end": 30440.38, + "probability": 0.7275 + }, + { + "start": 30441.18, + "end": 30443.08, + "probability": 0.9391 + }, + { + "start": 30443.34, + "end": 30449.3, + "probability": 0.9938 + }, + { + "start": 30449.74, + "end": 30451.18, + "probability": 0.9964 + }, + { + "start": 30451.22, + "end": 30451.72, + "probability": 0.6497 + }, + { + "start": 30452.48, + "end": 30454.18, + "probability": 0.9965 + }, + { + "start": 30454.56, + "end": 30456.38, + "probability": 0.9985 + }, + { + "start": 30457.36, + "end": 30462.6, + "probability": 0.9019 + }, + { + "start": 30463.26, + "end": 30466.56, + "probability": 0.7871 + }, + { + "start": 30467.28, + "end": 30469.48, + "probability": 0.7957 + }, + { + "start": 30470.52, + "end": 30476.08, + "probability": 0.99 + }, + { + "start": 30476.28, + "end": 30481.08, + "probability": 0.9866 + }, + { + "start": 30482.44, + "end": 30486.54, + "probability": 0.8853 + }, + { + "start": 30487.46, + "end": 30489.3, + "probability": 0.9817 + }, + { + "start": 30489.88, + "end": 30492.78, + "probability": 0.7719 + }, + { + "start": 30493.74, + "end": 30497.08, + "probability": 0.9697 + }, + { + "start": 30497.38, + "end": 30499.0, + "probability": 0.7295 + }, + { + "start": 30499.86, + "end": 30504.1, + "probability": 0.9159 + }, + { + "start": 30504.18, + "end": 30509.42, + "probability": 0.9988 + }, + { + "start": 30510.2, + "end": 30513.36, + "probability": 0.9666 + }, + { + "start": 30515.62, + "end": 30516.78, + "probability": 0.963 + }, + { + "start": 30517.52, + "end": 30521.05, + "probability": 0.9938 + }, + { + "start": 30522.06, + "end": 30525.74, + "probability": 0.9952 + }, + { + "start": 30526.5, + "end": 30529.48, + "probability": 0.9821 + }, + { + "start": 30530.48, + "end": 30531.16, + "probability": 0.78 + }, + { + "start": 30531.76, + "end": 30534.74, + "probability": 0.998 + }, + { + "start": 30535.24, + "end": 30537.22, + "probability": 0.8196 + }, + { + "start": 30537.82, + "end": 30540.82, + "probability": 0.9714 + }, + { + "start": 30542.22, + "end": 30543.82, + "probability": 0.8865 + }, + { + "start": 30543.98, + "end": 30546.92, + "probability": 0.969 + }, + { + "start": 30546.96, + "end": 30550.32, + "probability": 0.9861 + }, + { + "start": 30552.12, + "end": 30556.9, + "probability": 0.9941 + }, + { + "start": 30556.9, + "end": 30561.42, + "probability": 0.9491 + }, + { + "start": 30562.32, + "end": 30563.82, + "probability": 0.9533 + }, + { + "start": 30564.48, + "end": 30569.34, + "probability": 0.7805 + }, + { + "start": 30570.38, + "end": 30572.8, + "probability": 0.9624 + }, + { + "start": 30573.26, + "end": 30575.18, + "probability": 0.831 + }, + { + "start": 30575.56, + "end": 30578.36, + "probability": 0.9956 + }, + { + "start": 30578.86, + "end": 30580.46, + "probability": 0.8558 + }, + { + "start": 30580.58, + "end": 30581.24, + "probability": 0.7576 + }, + { + "start": 30581.68, + "end": 30584.22, + "probability": 0.9902 + }, + { + "start": 30585.22, + "end": 30586.86, + "probability": 0.9545 + }, + { + "start": 30587.3, + "end": 30592.16, + "probability": 0.996 + }, + { + "start": 30592.98, + "end": 30594.76, + "probability": 0.9985 + }, + { + "start": 30594.76, + "end": 30597.76, + "probability": 0.9977 + }, + { + "start": 30597.92, + "end": 30601.28, + "probability": 0.9604 + }, + { + "start": 30601.28, + "end": 30605.4, + "probability": 0.9985 + }, + { + "start": 30605.82, + "end": 30608.2, + "probability": 0.7573 + }, + { + "start": 30609.08, + "end": 30610.08, + "probability": 0.7046 + }, + { + "start": 30610.6, + "end": 30612.62, + "probability": 0.6951 + }, + { + "start": 30613.56, + "end": 30616.1, + "probability": 0.977 + }, + { + "start": 30616.62, + "end": 30619.38, + "probability": 0.8734 + }, + { + "start": 30619.86, + "end": 30621.82, + "probability": 0.9885 + }, + { + "start": 30622.32, + "end": 30625.02, + "probability": 0.9784 + }, + { + "start": 30625.94, + "end": 30628.12, + "probability": 0.9259 + }, + { + "start": 30629.12, + "end": 30630.32, + "probability": 0.6812 + }, + { + "start": 30631.34, + "end": 30634.48, + "probability": 0.997 + }, + { + "start": 30635.02, + "end": 30638.6, + "probability": 0.9496 + }, + { + "start": 30639.54, + "end": 30642.62, + "probability": 0.9669 + }, + { + "start": 30643.68, + "end": 30644.74, + "probability": 0.9912 + }, + { + "start": 30645.38, + "end": 30646.32, + "probability": 0.9766 + }, + { + "start": 30647.46, + "end": 30650.38, + "probability": 0.9871 + }, + { + "start": 30651.28, + "end": 30652.28, + "probability": 0.8691 + }, + { + "start": 30653.7, + "end": 30654.96, + "probability": 0.9386 + }, + { + "start": 30656.2, + "end": 30657.72, + "probability": 0.8604 + }, + { + "start": 30660.11, + "end": 30662.34, + "probability": 0.9114 + }, + { + "start": 30663.72, + "end": 30666.12, + "probability": 0.9607 + }, + { + "start": 30666.98, + "end": 30670.38, + "probability": 0.8392 + }, + { + "start": 30670.98, + "end": 30673.54, + "probability": 0.8738 + }, + { + "start": 30674.74, + "end": 30677.77, + "probability": 0.7179 + }, + { + "start": 30678.82, + "end": 30684.42, + "probability": 0.9473 + }, + { + "start": 30685.34, + "end": 30688.34, + "probability": 0.9223 + }, + { + "start": 30689.72, + "end": 30691.52, + "probability": 0.8292 + }, + { + "start": 30691.52, + "end": 30692.6, + "probability": 0.5086 + }, + { + "start": 30693.04, + "end": 30694.56, + "probability": 0.3094 + }, + { + "start": 30694.74, + "end": 30695.52, + "probability": 0.9726 + }, + { + "start": 30695.66, + "end": 30700.04, + "probability": 0.7964 + }, + { + "start": 30701.0, + "end": 30705.76, + "probability": 0.9969 + }, + { + "start": 30707.24, + "end": 30711.06, + "probability": 0.9833 + }, + { + "start": 30712.42, + "end": 30714.96, + "probability": 0.8794 + }, + { + "start": 30715.68, + "end": 30718.04, + "probability": 0.748 + }, + { + "start": 30719.02, + "end": 30720.4, + "probability": 0.9578 + }, + { + "start": 30720.8, + "end": 30722.62, + "probability": 0.9662 + }, + { + "start": 30723.28, + "end": 30729.4, + "probability": 0.9797 + }, + { + "start": 30730.16, + "end": 30731.16, + "probability": 0.9946 + }, + { + "start": 30732.34, + "end": 30732.7, + "probability": 0.7519 + }, + { + "start": 30733.22, + "end": 30733.86, + "probability": 0.7686 + }, + { + "start": 30734.92, + "end": 30735.7, + "probability": 0.6704 + }, + { + "start": 30736.92, + "end": 30738.5, + "probability": 0.9922 + }, + { + "start": 30738.6, + "end": 30740.76, + "probability": 0.889 + }, + { + "start": 30741.88, + "end": 30744.64, + "probability": 0.8688 + }, + { + "start": 30746.16, + "end": 30746.4, + "probability": 0.7962 + }, + { + "start": 30755.28, + "end": 30755.96, + "probability": 0.6618 + }, + { + "start": 30757.5, + "end": 30759.48, + "probability": 0.8254 + }, + { + "start": 30762.88, + "end": 30764.57, + "probability": 0.9429 + }, + { + "start": 30767.23, + "end": 30771.16, + "probability": 0.8196 + }, + { + "start": 30773.02, + "end": 30774.14, + "probability": 0.6996 + }, + { + "start": 30774.28, + "end": 30777.32, + "probability": 0.8763 + }, + { + "start": 30778.92, + "end": 30780.7, + "probability": 0.9421 + }, + { + "start": 30783.0, + "end": 30785.76, + "probability": 0.9897 + }, + { + "start": 30787.34, + "end": 30791.1, + "probability": 0.9768 + }, + { + "start": 30792.9, + "end": 30794.58, + "probability": 0.9673 + }, + { + "start": 30795.38, + "end": 30795.48, + "probability": 0.7094 + }, + { + "start": 30798.06, + "end": 30799.28, + "probability": 0.9361 + }, + { + "start": 30800.14, + "end": 30803.72, + "probability": 0.9897 + }, + { + "start": 30804.84, + "end": 30807.18, + "probability": 0.9617 + }, + { + "start": 30809.54, + "end": 30810.88, + "probability": 0.8623 + }, + { + "start": 30811.8, + "end": 30812.42, + "probability": 0.8036 + }, + { + "start": 30814.0, + "end": 30814.68, + "probability": 0.9207 + }, + { + "start": 30816.82, + "end": 30817.52, + "probability": 0.9966 + }, + { + "start": 30819.36, + "end": 30820.68, + "probability": 0.949 + }, + { + "start": 30822.66, + "end": 30824.1, + "probability": 0.9592 + }, + { + "start": 30826.58, + "end": 30827.96, + "probability": 0.7969 + }, + { + "start": 30829.3, + "end": 30829.88, + "probability": 0.9922 + }, + { + "start": 30830.98, + "end": 30831.58, + "probability": 0.9929 + }, + { + "start": 30834.06, + "end": 30835.72, + "probability": 0.7362 + }, + { + "start": 30836.52, + "end": 30837.4, + "probability": 0.8418 + }, + { + "start": 30838.78, + "end": 30842.74, + "probability": 0.9963 + }, + { + "start": 30843.26, + "end": 30847.22, + "probability": 0.9343 + }, + { + "start": 30850.68, + "end": 30852.4, + "probability": 0.9968 + }, + { + "start": 30854.72, + "end": 30856.66, + "probability": 0.9836 + }, + { + "start": 30856.92, + "end": 30858.22, + "probability": 0.9858 + }, + { + "start": 30858.24, + "end": 30858.54, + "probability": 0.8188 + }, + { + "start": 30859.12, + "end": 30860.18, + "probability": 0.5842 + }, + { + "start": 30862.8, + "end": 30864.36, + "probability": 0.988 + }, + { + "start": 30865.5, + "end": 30868.82, + "probability": 0.8126 + }, + { + "start": 30870.34, + "end": 30871.04, + "probability": 0.8352 + }, + { + "start": 30873.54, + "end": 30874.1, + "probability": 0.9722 + }, + { + "start": 30875.62, + "end": 30876.88, + "probability": 0.9833 + }, + { + "start": 30878.64, + "end": 30880.09, + "probability": 0.9974 + }, + { + "start": 30881.84, + "end": 30883.36, + "probability": 0.9868 + }, + { + "start": 30883.94, + "end": 30884.56, + "probability": 0.7226 + }, + { + "start": 30885.86, + "end": 30886.96, + "probability": 0.5776 + }, + { + "start": 30888.32, + "end": 30889.16, + "probability": 0.5977 + }, + { + "start": 30891.58, + "end": 30893.0, + "probability": 0.8459 + }, + { + "start": 30895.04, + "end": 30895.9, + "probability": 0.8824 + }, + { + "start": 30897.58, + "end": 30900.36, + "probability": 0.9889 + }, + { + "start": 30901.72, + "end": 30904.02, + "probability": 0.9729 + }, + { + "start": 30904.94, + "end": 30906.68, + "probability": 0.8223 + }, + { + "start": 30906.72, + "end": 30907.04, + "probability": 0.9547 + }, + { + "start": 30908.9, + "end": 30909.12, + "probability": 0.7645 + }, + { + "start": 30910.1, + "end": 30910.8, + "probability": 0.8693 + }, + { + "start": 30912.5, + "end": 30916.04, + "probability": 0.8827 + }, + { + "start": 30917.04, + "end": 30918.32, + "probability": 0.9837 + }, + { + "start": 30919.52, + "end": 30920.42, + "probability": 0.8236 + }, + { + "start": 30921.68, + "end": 30922.02, + "probability": 0.5345 + }, + { + "start": 30923.48, + "end": 30924.62, + "probability": 0.9956 + }, + { + "start": 30925.94, + "end": 30927.12, + "probability": 0.9866 + }, + { + "start": 30928.4, + "end": 30928.92, + "probability": 0.7942 + }, + { + "start": 30930.78, + "end": 30933.76, + "probability": 0.9446 + }, + { + "start": 30934.44, + "end": 30935.88, + "probability": 0.7761 + }, + { + "start": 30937.48, + "end": 30938.74, + "probability": 0.9553 + }, + { + "start": 30940.14, + "end": 30940.78, + "probability": 0.7053 + }, + { + "start": 30940.86, + "end": 30941.78, + "probability": 0.5901 + }, + { + "start": 30941.98, + "end": 30943.76, + "probability": 0.9471 + }, + { + "start": 30945.04, + "end": 30945.9, + "probability": 0.9073 + }, + { + "start": 30947.26, + "end": 30948.24, + "probability": 0.7582 + }, + { + "start": 30949.96, + "end": 30951.26, + "probability": 0.9814 + }, + { + "start": 30951.34, + "end": 30951.96, + "probability": 0.9715 + }, + { + "start": 30952.94, + "end": 30955.22, + "probability": 0.912 + }, + { + "start": 30956.2, + "end": 30956.8, + "probability": 0.9452 + }, + { + "start": 30957.4, + "end": 30959.94, + "probability": 0.9871 + }, + { + "start": 30961.14, + "end": 30961.8, + "probability": 0.9834 + }, + { + "start": 30962.48, + "end": 30964.42, + "probability": 0.9237 + }, + { + "start": 30965.72, + "end": 30967.16, + "probability": 0.9636 + }, + { + "start": 30967.64, + "end": 30968.18, + "probability": 0.7491 + }, + { + "start": 30969.86, + "end": 30971.52, + "probability": 0.8908 + }, + { + "start": 30971.6, + "end": 30972.04, + "probability": 0.8052 + }, + { + "start": 30972.1, + "end": 30972.8, + "probability": 0.9602 + }, + { + "start": 30972.82, + "end": 30975.16, + "probability": 0.9297 + }, + { + "start": 30975.64, + "end": 30976.04, + "probability": 0.897 + }, + { + "start": 30976.74, + "end": 30977.42, + "probability": 0.9673 + }, + { + "start": 30978.0, + "end": 30978.8, + "probability": 0.3697 + }, + { + "start": 30980.1, + "end": 30984.44, + "probability": 0.9645 + }, + { + "start": 30984.86, + "end": 30985.2, + "probability": 0.5402 + }, + { + "start": 30986.38, + "end": 30989.28, + "probability": 0.9556 + }, + { + "start": 30990.5, + "end": 30991.94, + "probability": 0.9919 + }, + { + "start": 30993.08, + "end": 30993.94, + "probability": 0.9079 + }, + { + "start": 30994.94, + "end": 30995.56, + "probability": 0.8646 + }, + { + "start": 30997.0, + "end": 30998.44, + "probability": 0.8325 + }, + { + "start": 30999.74, + "end": 31001.38, + "probability": 0.9888 + }, + { + "start": 31002.28, + "end": 31003.08, + "probability": 0.9364 + }, + { + "start": 31004.32, + "end": 31006.66, + "probability": 0.904 + }, + { + "start": 31006.72, + "end": 31008.68, + "probability": 0.8305 + }, + { + "start": 31009.92, + "end": 31012.4, + "probability": 0.9901 + }, + { + "start": 31013.28, + "end": 31013.6, + "probability": 0.991 + }, + { + "start": 31014.14, + "end": 31015.42, + "probability": 0.8017 + }, + { + "start": 31017.28, + "end": 31018.16, + "probability": 0.7448 + }, + { + "start": 31020.4, + "end": 31021.9, + "probability": 0.6377 + }, + { + "start": 31023.28, + "end": 31026.86, + "probability": 0.9984 + }, + { + "start": 31027.38, + "end": 31028.18, + "probability": 0.9339 + }, + { + "start": 31029.42, + "end": 31030.9, + "probability": 0.9943 + }, + { + "start": 31032.26, + "end": 31032.8, + "probability": 0.9429 + }, + { + "start": 31032.88, + "end": 31033.62, + "probability": 0.9458 + }, + { + "start": 31033.7, + "end": 31034.44, + "probability": 0.6426 + }, + { + "start": 31034.48, + "end": 31035.32, + "probability": 0.7737 + }, + { + "start": 31036.32, + "end": 31039.24, + "probability": 0.9112 + }, + { + "start": 31041.36, + "end": 31043.28, + "probability": 0.8728 + }, + { + "start": 31044.4, + "end": 31044.82, + "probability": 0.8985 + }, + { + "start": 31046.18, + "end": 31046.98, + "probability": 0.9536 + }, + { + "start": 31048.04, + "end": 31049.78, + "probability": 0.8029 + }, + { + "start": 31052.36, + "end": 31053.14, + "probability": 0.9695 + }, + { + "start": 31055.26, + "end": 31057.7, + "probability": 0.8302 + }, + { + "start": 31057.8, + "end": 31058.46, + "probability": 0.8467 + }, + { + "start": 31058.9, + "end": 31060.42, + "probability": 0.9941 + }, + { + "start": 31062.42, + "end": 31063.56, + "probability": 0.9574 + }, + { + "start": 31065.42, + "end": 31066.46, + "probability": 0.9206 + }, + { + "start": 31068.88, + "end": 31070.04, + "probability": 0.9834 + }, + { + "start": 31070.66, + "end": 31070.92, + "probability": 0.6976 + }, + { + "start": 31070.96, + "end": 31073.78, + "probability": 0.9937 + }, + { + "start": 31073.84, + "end": 31074.7, + "probability": 0.85 + }, + { + "start": 31076.2, + "end": 31076.3, + "probability": 0.4324 + }, + { + "start": 31076.96, + "end": 31080.2, + "probability": 0.9882 + }, + { + "start": 31082.1, + "end": 31083.18, + "probability": 0.9303 + }, + { + "start": 31084.2, + "end": 31086.08, + "probability": 0.8304 + }, + { + "start": 31087.24, + "end": 31090.08, + "probability": 0.7973 + }, + { + "start": 31090.72, + "end": 31091.62, + "probability": 0.4509 + }, + { + "start": 31091.66, + "end": 31091.86, + "probability": 0.4797 + }, + { + "start": 31094.46, + "end": 31094.5, + "probability": 0.7085 + }, + { + "start": 31095.88, + "end": 31097.96, + "probability": 0.9016 + }, + { + "start": 31098.16, + "end": 31098.8, + "probability": 0.8835 + }, + { + "start": 31098.92, + "end": 31099.52, + "probability": 0.5729 + }, + { + "start": 31101.78, + "end": 31102.74, + "probability": 0.984 + }, + { + "start": 31106.2, + "end": 31106.96, + "probability": 0.7801 + }, + { + "start": 31108.28, + "end": 31110.8, + "probability": 0.834 + }, + { + "start": 31111.42, + "end": 31113.64, + "probability": 0.9961 + }, + { + "start": 31114.64, + "end": 31114.9, + "probability": 0.8623 + }, + { + "start": 31117.88, + "end": 31118.42, + "probability": 0.4771 + }, + { + "start": 31121.42, + "end": 31123.88, + "probability": 0.9916 + }, + { + "start": 31125.36, + "end": 31126.76, + "probability": 0.9989 + }, + { + "start": 31127.92, + "end": 31128.7, + "probability": 0.8501 + }, + { + "start": 31130.48, + "end": 31132.36, + "probability": 0.9766 + }, + { + "start": 31134.56, + "end": 31135.56, + "probability": 0.9785 + }, + { + "start": 31136.34, + "end": 31136.88, + "probability": 0.724 + }, + { + "start": 31139.78, + "end": 31144.12, + "probability": 0.998 + }, + { + "start": 31144.28, + "end": 31147.38, + "probability": 0.994 + }, + { + "start": 31148.26, + "end": 31148.75, + "probability": 0.879 + }, + { + "start": 31150.32, + "end": 31150.86, + "probability": 0.8916 + }, + { + "start": 31152.42, + "end": 31154.5, + "probability": 0.9941 + }, + { + "start": 31154.76, + "end": 31156.34, + "probability": 0.9778 + }, + { + "start": 31157.92, + "end": 31158.44, + "probability": 0.7397 + }, + { + "start": 31159.68, + "end": 31160.34, + "probability": 0.7217 + }, + { + "start": 31162.18, + "end": 31163.78, + "probability": 0.8631 + }, + { + "start": 31164.5, + "end": 31165.7, + "probability": 0.9408 + }, + { + "start": 31165.76, + "end": 31168.84, + "probability": 0.9887 + }, + { + "start": 31169.02, + "end": 31170.4, + "probability": 0.43 + }, + { + "start": 31171.82, + "end": 31172.04, + "probability": 0.6773 + }, + { + "start": 31173.76, + "end": 31180.8, + "probability": 0.9875 + }, + { + "start": 31181.82, + "end": 31182.12, + "probability": 0.8594 + }, + { + "start": 31183.54, + "end": 31183.98, + "probability": 0.8973 + }, + { + "start": 31187.42, + "end": 31188.72, + "probability": 0.676 + }, + { + "start": 31190.68, + "end": 31196.42, + "probability": 0.9766 + }, + { + "start": 31197.72, + "end": 31199.78, + "probability": 0.9686 + }, + { + "start": 31199.8, + "end": 31200.26, + "probability": 0.8418 + }, + { + "start": 31200.3, + "end": 31201.16, + "probability": 0.9318 + }, + { + "start": 31202.64, + "end": 31206.1, + "probability": 0.9492 + }, + { + "start": 31208.28, + "end": 31213.94, + "probability": 0.9992 + }, + { + "start": 31215.0, + "end": 31216.16, + "probability": 0.9846 + }, + { + "start": 31216.7, + "end": 31218.74, + "probability": 0.9986 + }, + { + "start": 31220.34, + "end": 31221.78, + "probability": 0.9481 + }, + { + "start": 31223.64, + "end": 31225.92, + "probability": 0.9967 + }, + { + "start": 31227.8, + "end": 31230.58, + "probability": 0.9982 + }, + { + "start": 31231.78, + "end": 31232.66, + "probability": 0.9072 + }, + { + "start": 31234.84, + "end": 31236.14, + "probability": 0.9855 + }, + { + "start": 31237.24, + "end": 31238.44, + "probability": 0.9886 + }, + { + "start": 31239.4, + "end": 31242.2, + "probability": 0.9937 + }, + { + "start": 31244.2, + "end": 31245.66, + "probability": 0.9815 + }, + { + "start": 31246.46, + "end": 31246.98, + "probability": 0.4297 + }, + { + "start": 31247.76, + "end": 31248.98, + "probability": 0.9383 + }, + { + "start": 31250.36, + "end": 31250.78, + "probability": 0.9829 + }, + { + "start": 31253.16, + "end": 31254.02, + "probability": 0.9248 + }, + { + "start": 31255.62, + "end": 31256.58, + "probability": 0.5924 + }, + { + "start": 31257.08, + "end": 31258.14, + "probability": 0.998 + }, + { + "start": 31260.36, + "end": 31262.18, + "probability": 0.8976 + }, + { + "start": 31262.82, + "end": 31264.04, + "probability": 0.8303 + }, + { + "start": 31267.02, + "end": 31268.84, + "probability": 0.9807 + }, + { + "start": 31270.4, + "end": 31272.5, + "probability": 0.9991 + }, + { + "start": 31274.3, + "end": 31275.46, + "probability": 0.9997 + }, + { + "start": 31277.26, + "end": 31279.48, + "probability": 0.7415 + }, + { + "start": 31281.02, + "end": 31282.12, + "probability": 0.9521 + }, + { + "start": 31283.08, + "end": 31283.4, + "probability": 0.735 + }, + { + "start": 31285.42, + "end": 31286.52, + "probability": 0.9668 + }, + { + "start": 31287.2, + "end": 31288.22, + "probability": 0.7483 + }, + { + "start": 31289.44, + "end": 31289.98, + "probability": 0.9961 + }, + { + "start": 31292.78, + "end": 31294.68, + "probability": 0.8974 + }, + { + "start": 31297.98, + "end": 31299.36, + "probability": 0.9775 + }, + { + "start": 31300.5, + "end": 31301.5, + "probability": 0.9176 + }, + { + "start": 31302.82, + "end": 31304.5, + "probability": 0.8816 + }, + { + "start": 31307.88, + "end": 31310.66, + "probability": 0.96 + }, + { + "start": 31312.38, + "end": 31313.1, + "probability": 0.9985 + }, + { + "start": 31316.08, + "end": 31317.3, + "probability": 0.7615 + }, + { + "start": 31319.84, + "end": 31322.74, + "probability": 0.9927 + }, + { + "start": 31325.0, + "end": 31326.96, + "probability": 0.9897 + }, + { + "start": 31327.86, + "end": 31330.24, + "probability": 0.9915 + }, + { + "start": 31332.9, + "end": 31334.68, + "probability": 0.9915 + }, + { + "start": 31336.66, + "end": 31338.82, + "probability": 0.8387 + }, + { + "start": 31340.38, + "end": 31340.78, + "probability": 0.8278 + }, + { + "start": 31342.46, + "end": 31343.34, + "probability": 0.9912 + }, + { + "start": 31345.34, + "end": 31347.79, + "probability": 0.9599 + }, + { + "start": 31348.86, + "end": 31349.38, + "probability": 0.788 + }, + { + "start": 31350.94, + "end": 31354.32, + "probability": 0.9606 + }, + { + "start": 31354.94, + "end": 31355.48, + "probability": 0.7428 + }, + { + "start": 31358.3, + "end": 31359.48, + "probability": 0.9725 + }, + { + "start": 31360.02, + "end": 31360.84, + "probability": 0.8077 + }, + { + "start": 31362.32, + "end": 31363.24, + "probability": 0.9193 + }, + { + "start": 31364.0, + "end": 31364.62, + "probability": 0.9808 + }, + { + "start": 31365.22, + "end": 31365.8, + "probability": 0.9889 + }, + { + "start": 31366.8, + "end": 31368.8, + "probability": 0.9875 + }, + { + "start": 31370.38, + "end": 31371.35, + "probability": 0.9712 + }, + { + "start": 31373.22, + "end": 31374.4, + "probability": 0.853 + }, + { + "start": 31375.04, + "end": 31375.7, + "probability": 0.8006 + }, + { + "start": 31376.38, + "end": 31377.46, + "probability": 0.9779 + }, + { + "start": 31378.38, + "end": 31380.7, + "probability": 0.9947 + }, + { + "start": 31381.82, + "end": 31383.0, + "probability": 0.9453 + }, + { + "start": 31384.02, + "end": 31385.62, + "probability": 0.9987 + }, + { + "start": 31386.88, + "end": 31389.2, + "probability": 0.9849 + }, + { + "start": 31390.9, + "end": 31393.3, + "probability": 0.9985 + }, + { + "start": 31394.58, + "end": 31395.29, + "probability": 0.7713 + }, + { + "start": 31395.48, + "end": 31398.4, + "probability": 0.9972 + }, + { + "start": 31400.08, + "end": 31401.03, + "probability": 0.9411 + }, + { + "start": 31402.04, + "end": 31403.46, + "probability": 0.9973 + }, + { + "start": 31405.12, + "end": 31407.56, + "probability": 0.9181 + }, + { + "start": 31409.72, + "end": 31412.08, + "probability": 0.925 + }, + { + "start": 31413.16, + "end": 31415.12, + "probability": 0.9961 + }, + { + "start": 31416.64, + "end": 31417.82, + "probability": 0.9934 + }, + { + "start": 31418.62, + "end": 31419.22, + "probability": 0.9517 + }, + { + "start": 31421.16, + "end": 31423.52, + "probability": 0.9927 + }, + { + "start": 31424.58, + "end": 31425.54, + "probability": 0.9967 + }, + { + "start": 31426.06, + "end": 31426.74, + "probability": 0.3528 + }, + { + "start": 31426.86, + "end": 31427.9, + "probability": 0.8179 + }, + { + "start": 31427.92, + "end": 31428.84, + "probability": 0.9956 + }, + { + "start": 31429.76, + "end": 31430.82, + "probability": 0.9423 + }, + { + "start": 31433.46, + "end": 31437.0, + "probability": 0.9792 + }, + { + "start": 31437.04, + "end": 31438.16, + "probability": 0.985 + }, + { + "start": 31439.02, + "end": 31441.68, + "probability": 0.9812 + }, + { + "start": 31442.92, + "end": 31446.06, + "probability": 0.9907 + }, + { + "start": 31447.56, + "end": 31449.44, + "probability": 0.9963 + }, + { + "start": 31450.32, + "end": 31451.08, + "probability": 0.7484 + }, + { + "start": 31451.68, + "end": 31454.6, + "probability": 0.9957 + }, + { + "start": 31455.7, + "end": 31456.76, + "probability": 0.9431 + }, + { + "start": 31457.58, + "end": 31458.24, + "probability": 0.9691 + }, + { + "start": 31459.18, + "end": 31462.08, + "probability": 0.9938 + }, + { + "start": 31463.34, + "end": 31464.69, + "probability": 0.7864 + }, + { + "start": 31466.12, + "end": 31467.62, + "probability": 0.7234 + }, + { + "start": 31468.52, + "end": 31469.26, + "probability": 0.9352 + }, + { + "start": 31470.88, + "end": 31471.38, + "probability": 0.973 + }, + { + "start": 31471.44, + "end": 31472.32, + "probability": 0.6996 + }, + { + "start": 31473.06, + "end": 31474.72, + "probability": 0.9752 + }, + { + "start": 31475.68, + "end": 31476.5, + "probability": 0.8525 + }, + { + "start": 31477.14, + "end": 31478.46, + "probability": 0.5785 + }, + { + "start": 31479.92, + "end": 31481.28, + "probability": 0.6433 + }, + { + "start": 31481.64, + "end": 31482.08, + "probability": 0.2669 + }, + { + "start": 31482.34, + "end": 31484.1, + "probability": 0.9783 + }, + { + "start": 31484.86, + "end": 31487.04, + "probability": 0.9484 + }, + { + "start": 31488.52, + "end": 31490.18, + "probability": 0.9091 + }, + { + "start": 31491.08, + "end": 31492.16, + "probability": 0.9468 + }, + { + "start": 31492.78, + "end": 31493.72, + "probability": 0.9878 + }, + { + "start": 31494.86, + "end": 31497.88, + "probability": 0.6553 + }, + { + "start": 31498.96, + "end": 31499.26, + "probability": 0.6985 + }, + { + "start": 31500.0, + "end": 31501.24, + "probability": 0.8443 + }, + { + "start": 31502.18, + "end": 31505.6, + "probability": 0.8755 + }, + { + "start": 31506.22, + "end": 31509.18, + "probability": 0.9911 + }, + { + "start": 31509.98, + "end": 31510.72, + "probability": 0.9788 + }, + { + "start": 31511.5, + "end": 31512.22, + "probability": 0.9826 + }, + { + "start": 31512.8, + "end": 31513.82, + "probability": 0.4666 + }, + { + "start": 31515.16, + "end": 31515.9, + "probability": 0.9983 + }, + { + "start": 31516.64, + "end": 31517.28, + "probability": 0.98 + }, + { + "start": 31517.66, + "end": 31518.64, + "probability": 0.779 + }, + { + "start": 31519.38, + "end": 31520.72, + "probability": 0.8781 + }, + { + "start": 31522.02, + "end": 31525.04, + "probability": 0.9753 + }, + { + "start": 31525.28, + "end": 31526.74, + "probability": 0.9565 + }, + { + "start": 31526.78, + "end": 31529.18, + "probability": 0.9595 + }, + { + "start": 31529.4, + "end": 31530.26, + "probability": 0.5883 + }, + { + "start": 31530.38, + "end": 31531.76, + "probability": 0.9544 + }, + { + "start": 31532.1, + "end": 31532.32, + "probability": 0.7381 + }, + { + "start": 31533.02, + "end": 31535.74, + "probability": 0.9476 + }, + { + "start": 31537.22, + "end": 31537.36, + "probability": 0.0575 + }, + { + "start": 31537.36, + "end": 31538.4, + "probability": 0.9404 + }, + { + "start": 31538.42, + "end": 31540.36, + "probability": 0.9647 + }, + { + "start": 31540.4, + "end": 31541.11, + "probability": 0.9758 + }, + { + "start": 31541.54, + "end": 31542.2, + "probability": 0.8418 + }, + { + "start": 31543.4, + "end": 31544.32, + "probability": 0.6799 + }, + { + "start": 31545.04, + "end": 31549.0, + "probability": 0.9613 + }, + { + "start": 31550.92, + "end": 31552.92, + "probability": 0.6081 + }, + { + "start": 31553.14, + "end": 31554.06, + "probability": 0.7268 + }, + { + "start": 31554.66, + "end": 31555.36, + "probability": 0.9829 + }, + { + "start": 31556.98, + "end": 31559.32, + "probability": 0.9976 + }, + { + "start": 31559.78, + "end": 31562.76, + "probability": 0.9971 + }, + { + "start": 31562.92, + "end": 31565.76, + "probability": 0.9855 + }, + { + "start": 31566.36, + "end": 31568.32, + "probability": 0.9281 + }, + { + "start": 31568.54, + "end": 31568.86, + "probability": 0.8503 + }, + { + "start": 31569.38, + "end": 31570.18, + "probability": 0.6886 + }, + { + "start": 31570.3, + "end": 31570.8, + "probability": 0.8251 + }, + { + "start": 31570.92, + "end": 31573.36, + "probability": 0.9697 + }, + { + "start": 31573.98, + "end": 31574.7, + "probability": 0.3206 + }, + { + "start": 31575.46, + "end": 31578.76, + "probability": 0.9385 + }, + { + "start": 31580.23, + "end": 31583.84, + "probability": 0.7393 + }, + { + "start": 31583.94, + "end": 31584.82, + "probability": 0.8145 + }, + { + "start": 31585.34, + "end": 31586.26, + "probability": 0.5936 + }, + { + "start": 31586.94, + "end": 31587.92, + "probability": 0.9837 + }, + { + "start": 31593.96, + "end": 31594.16, + "probability": 0.687 + }, + { + "start": 31594.89, + "end": 31596.14, + "probability": 0.4602 + }, + { + "start": 31596.3, + "end": 31596.88, + "probability": 0.7384 + }, + { + "start": 31598.0, + "end": 31599.54, + "probability": 0.8285 + }, + { + "start": 31600.34, + "end": 31605.0, + "probability": 0.9817 + }, + { + "start": 31605.72, + "end": 31607.22, + "probability": 0.9631 + }, + { + "start": 31608.46, + "end": 31610.08, + "probability": 0.7155 + }, + { + "start": 31610.96, + "end": 31612.5, + "probability": 0.7311 + }, + { + "start": 31613.34, + "end": 31617.78, + "probability": 0.9891 + }, + { + "start": 31618.22, + "end": 31619.56, + "probability": 0.8509 + }, + { + "start": 31620.72, + "end": 31625.46, + "probability": 0.9934 + }, + { + "start": 31626.46, + "end": 31630.14, + "probability": 0.9317 + }, + { + "start": 31631.0, + "end": 31634.16, + "probability": 0.9542 + }, + { + "start": 31634.82, + "end": 31638.04, + "probability": 0.8721 + }, + { + "start": 31639.22, + "end": 31643.2, + "probability": 0.9872 + }, + { + "start": 31644.04, + "end": 31647.1, + "probability": 0.9921 + }, + { + "start": 31648.42, + "end": 31652.86, + "probability": 0.9962 + }, + { + "start": 31653.5, + "end": 31654.56, + "probability": 0.9893 + }, + { + "start": 31655.38, + "end": 31658.68, + "probability": 0.9944 + }, + { + "start": 31659.68, + "end": 31661.2, + "probability": 0.8994 + }, + { + "start": 31661.88, + "end": 31663.76, + "probability": 0.9025 + }, + { + "start": 31664.62, + "end": 31665.62, + "probability": 0.9511 + }, + { + "start": 31666.5, + "end": 31668.0, + "probability": 0.9582 + }, + { + "start": 31669.22, + "end": 31669.62, + "probability": 0.9678 + }, + { + "start": 31671.24, + "end": 31672.48, + "probability": 0.9741 + }, + { + "start": 31673.14, + "end": 31676.28, + "probability": 0.9743 + }, + { + "start": 31677.0, + "end": 31678.42, + "probability": 0.989 + }, + { + "start": 31679.32, + "end": 31681.12, + "probability": 0.9675 + }, + { + "start": 31681.94, + "end": 31683.52, + "probability": 0.9656 + }, + { + "start": 31684.12, + "end": 31688.74, + "probability": 0.8334 + }, + { + "start": 31688.94, + "end": 31689.6, + "probability": 0.9902 + }, + { + "start": 31690.96, + "end": 31693.76, + "probability": 0.9458 + }, + { + "start": 31694.42, + "end": 31697.1, + "probability": 0.9946 + }, + { + "start": 31697.94, + "end": 31701.98, + "probability": 0.9956 + }, + { + "start": 31702.94, + "end": 31705.4, + "probability": 0.9345 + }, + { + "start": 31706.96, + "end": 31710.62, + "probability": 0.977 + }, + { + "start": 31711.64, + "end": 31713.84, + "probability": 0.9978 + }, + { + "start": 31714.26, + "end": 31719.76, + "probability": 0.9815 + }, + { + "start": 31721.04, + "end": 31727.46, + "probability": 0.9668 + }, + { + "start": 31727.54, + "end": 31728.38, + "probability": 0.4762 + }, + { + "start": 31729.66, + "end": 31732.88, + "probability": 0.8928 + }, + { + "start": 31733.84, + "end": 31737.4, + "probability": 0.9971 + }, + { + "start": 31737.4, + "end": 31741.56, + "probability": 0.9848 + }, + { + "start": 31742.64, + "end": 31746.86, + "probability": 0.9956 + }, + { + "start": 31748.02, + "end": 31750.04, + "probability": 0.9983 + }, + { + "start": 31750.76, + "end": 31751.68, + "probability": 0.9701 + }, + { + "start": 31752.9, + "end": 31756.66, + "probability": 0.98 + }, + { + "start": 31757.88, + "end": 31759.22, + "probability": 0.9754 + }, + { + "start": 31759.92, + "end": 31761.25, + "probability": 0.9346 + }, + { + "start": 31762.28, + "end": 31766.2, + "probability": 0.7486 + }, + { + "start": 31767.22, + "end": 31768.88, + "probability": 0.8921 + }, + { + "start": 31769.34, + "end": 31771.16, + "probability": 0.9822 + }, + { + "start": 31771.76, + "end": 31775.38, + "probability": 0.9841 + }, + { + "start": 31776.34, + "end": 31780.34, + "probability": 0.9567 + }, + { + "start": 31782.98, + "end": 31783.74, + "probability": 0.6423 + }, + { + "start": 31784.68, + "end": 31786.12, + "probability": 0.5659 + }, + { + "start": 31786.46, + "end": 31790.02, + "probability": 0.9732 + }, + { + "start": 31790.5, + "end": 31792.52, + "probability": 0.6431 + }, + { + "start": 31793.62, + "end": 31798.1, + "probability": 0.995 + }, + { + "start": 31799.02, + "end": 31800.48, + "probability": 0.997 + }, + { + "start": 31801.18, + "end": 31804.94, + "probability": 0.9928 + }, + { + "start": 31805.8, + "end": 31807.04, + "probability": 0.9871 + }, + { + "start": 31807.84, + "end": 31814.08, + "probability": 0.9951 + }, + { + "start": 31814.62, + "end": 31816.42, + "probability": 0.7908 + }, + { + "start": 31816.98, + "end": 31819.5, + "probability": 0.9561 + }, + { + "start": 31820.68, + "end": 31821.31, + "probability": 0.5736 + }, + { + "start": 31822.82, + "end": 31823.68, + "probability": 0.8158 + }, + { + "start": 31823.98, + "end": 31824.7, + "probability": 0.9399 + }, + { + "start": 31825.7, + "end": 31829.36, + "probability": 0.9877 + }, + { + "start": 31830.5, + "end": 31832.42, + "probability": 0.9941 + }, + { + "start": 31833.0, + "end": 31834.0, + "probability": 0.8436 + }, + { + "start": 31834.62, + "end": 31837.12, + "probability": 0.9954 + }, + { + "start": 31838.16, + "end": 31840.02, + "probability": 0.9929 + }, + { + "start": 31841.88, + "end": 31844.76, + "probability": 0.8097 + }, + { + "start": 31845.42, + "end": 31846.12, + "probability": 0.8731 + }, + { + "start": 31847.16, + "end": 31850.13, + "probability": 0.9836 + }, + { + "start": 31850.82, + "end": 31851.74, + "probability": 0.9533 + }, + { + "start": 31852.88, + "end": 31854.06, + "probability": 0.991 + }, + { + "start": 31854.64, + "end": 31857.08, + "probability": 0.9879 + }, + { + "start": 31857.6, + "end": 31859.16, + "probability": 0.9926 + }, + { + "start": 31859.7, + "end": 31861.14, + "probability": 0.9111 + }, + { + "start": 31862.08, + "end": 31864.44, + "probability": 0.9543 + }, + { + "start": 31864.96, + "end": 31866.52, + "probability": 0.871 + }, + { + "start": 31867.36, + "end": 31870.46, + "probability": 0.9934 + }, + { + "start": 31871.1, + "end": 31874.02, + "probability": 0.986 + }, + { + "start": 31874.74, + "end": 31876.66, + "probability": 0.9913 + }, + { + "start": 31877.62, + "end": 31879.94, + "probability": 0.9674 + }, + { + "start": 31880.54, + "end": 31882.4, + "probability": 0.9638 + }, + { + "start": 31883.3, + "end": 31884.58, + "probability": 0.9966 + }, + { + "start": 31885.18, + "end": 31889.68, + "probability": 0.971 + }, + { + "start": 31890.5, + "end": 31892.52, + "probability": 0.91 + }, + { + "start": 31893.82, + "end": 31897.24, + "probability": 0.939 + }, + { + "start": 31898.22, + "end": 31900.48, + "probability": 0.9297 + }, + { + "start": 31901.08, + "end": 31902.24, + "probability": 0.9378 + }, + { + "start": 31903.24, + "end": 31907.24, + "probability": 0.9932 + }, + { + "start": 31907.94, + "end": 31908.28, + "probability": 0.5992 + }, + { + "start": 31908.34, + "end": 31910.42, + "probability": 0.8404 + }, + { + "start": 31910.92, + "end": 31912.6, + "probability": 0.9883 + }, + { + "start": 31913.66, + "end": 31915.1, + "probability": 0.9866 + }, + { + "start": 31915.7, + "end": 31917.3, + "probability": 0.8982 + }, + { + "start": 31918.5, + "end": 31924.3, + "probability": 0.9305 + }, + { + "start": 31925.18, + "end": 31928.82, + "probability": 0.9971 + }, + { + "start": 31929.9, + "end": 31935.32, + "probability": 0.9978 + }, + { + "start": 31936.5, + "end": 31937.32, + "probability": 0.6454 + }, + { + "start": 31937.54, + "end": 31942.46, + "probability": 0.9731 + }, + { + "start": 31943.2, + "end": 31944.38, + "probability": 0.7933 + }, + { + "start": 31945.06, + "end": 31947.2, + "probability": 0.9858 + }, + { + "start": 31948.16, + "end": 31952.8, + "probability": 0.9753 + }, + { + "start": 31953.88, + "end": 31957.74, + "probability": 0.9921 + }, + { + "start": 31958.76, + "end": 31959.96, + "probability": 0.9568 + }, + { + "start": 31960.5, + "end": 31963.18, + "probability": 0.998 + }, + { + "start": 31964.02, + "end": 31966.32, + "probability": 0.9808 + }, + { + "start": 31967.14, + "end": 31969.04, + "probability": 0.9797 + }, + { + "start": 31970.5, + "end": 31972.16, + "probability": 0.868 + }, + { + "start": 31973.1, + "end": 31977.42, + "probability": 0.9958 + }, + { + "start": 31978.34, + "end": 31980.76, + "probability": 0.9794 + }, + { + "start": 31982.18, + "end": 31982.74, + "probability": 0.7839 + }, + { + "start": 31984.38, + "end": 31987.72, + "probability": 0.9613 + }, + { + "start": 31988.26, + "end": 31990.42, + "probability": 0.9937 + }, + { + "start": 31990.94, + "end": 31992.66, + "probability": 0.9059 + }, + { + "start": 31992.78, + "end": 31994.48, + "probability": 0.9858 + }, + { + "start": 31995.6, + "end": 31999.84, + "probability": 0.9976 + }, + { + "start": 31999.84, + "end": 32004.4, + "probability": 0.9967 + }, + { + "start": 32005.62, + "end": 32008.14, + "probability": 0.9967 + }, + { + "start": 32008.98, + "end": 32010.68, + "probability": 0.8722 + }, + { + "start": 32012.72, + "end": 32015.82, + "probability": 0.9161 + }, + { + "start": 32016.82, + "end": 32017.62, + "probability": 0.8535 + }, + { + "start": 32018.74, + "end": 32019.84, + "probability": 0.9829 + }, + { + "start": 32021.54, + "end": 32026.62, + "probability": 0.9891 + }, + { + "start": 32026.72, + "end": 32027.32, + "probability": 0.8536 + }, + { + "start": 32028.32, + "end": 32029.6, + "probability": 0.993 + }, + { + "start": 32030.66, + "end": 32032.68, + "probability": 0.988 + }, + { + "start": 32033.3, + "end": 32035.36, + "probability": 0.8958 + }, + { + "start": 32035.8, + "end": 32037.4, + "probability": 0.9475 + }, + { + "start": 32038.82, + "end": 32043.44, + "probability": 0.998 + }, + { + "start": 32044.56, + "end": 32045.92, + "probability": 0.8736 + }, + { + "start": 32047.32, + "end": 32049.34, + "probability": 0.8949 + }, + { + "start": 32049.4, + "end": 32049.74, + "probability": 0.8755 + }, + { + "start": 32050.64, + "end": 32055.02, + "probability": 0.9978 + }, + { + "start": 32056.12, + "end": 32058.64, + "probability": 0.8916 + }, + { + "start": 32060.24, + "end": 32064.3, + "probability": 0.9907 + }, + { + "start": 32064.74, + "end": 32065.6, + "probability": 0.8853 + }, + { + "start": 32066.46, + "end": 32068.7, + "probability": 0.9325 + }, + { + "start": 32069.8, + "end": 32071.8, + "probability": 0.9209 + }, + { + "start": 32072.88, + "end": 32076.32, + "probability": 0.9639 + }, + { + "start": 32077.02, + "end": 32080.82, + "probability": 0.9258 + }, + { + "start": 32081.78, + "end": 32083.72, + "probability": 0.9913 + }, + { + "start": 32084.5, + "end": 32088.26, + "probability": 0.9992 + }, + { + "start": 32089.26, + "end": 32091.18, + "probability": 0.9901 + }, + { + "start": 32092.02, + "end": 32094.04, + "probability": 0.9732 + }, + { + "start": 32094.72, + "end": 32095.39, + "probability": 0.9551 + }, + { + "start": 32096.48, + "end": 32099.38, + "probability": 0.9864 + }, + { + "start": 32099.7, + "end": 32100.7, + "probability": 0.9028 + }, + { + "start": 32102.62, + "end": 32103.74, + "probability": 0.8918 + }, + { + "start": 32103.82, + "end": 32104.5, + "probability": 0.9225 + }, + { + "start": 32104.74, + "end": 32106.14, + "probability": 0.8883 + }, + { + "start": 32106.94, + "end": 32107.38, + "probability": 0.9286 + }, + { + "start": 32108.34, + "end": 32112.12, + "probability": 0.9652 + }, + { + "start": 32112.6, + "end": 32113.72, + "probability": 0.9824 + }, + { + "start": 32113.92, + "end": 32114.2, + "probability": 0.3729 + }, + { + "start": 32114.5, + "end": 32115.5, + "probability": 0.9721 + }, + { + "start": 32116.44, + "end": 32117.94, + "probability": 0.9896 + }, + { + "start": 32118.74, + "end": 32122.58, + "probability": 0.9991 + }, + { + "start": 32123.34, + "end": 32126.06, + "probability": 0.9851 + }, + { + "start": 32127.18, + "end": 32132.12, + "probability": 0.9984 + }, + { + "start": 32132.72, + "end": 32133.2, + "probability": 0.517 + }, + { + "start": 32134.08, + "end": 32135.38, + "probability": 0.8623 + }, + { + "start": 32136.88, + "end": 32137.68, + "probability": 0.7648 + }, + { + "start": 32137.84, + "end": 32143.1, + "probability": 0.9198 + }, + { + "start": 32143.96, + "end": 32146.66, + "probability": 0.9805 + }, + { + "start": 32147.66, + "end": 32151.52, + "probability": 0.9397 + }, + { + "start": 32152.32, + "end": 32156.72, + "probability": 0.9794 + }, + { + "start": 32156.82, + "end": 32160.9, + "probability": 0.9798 + }, + { + "start": 32162.14, + "end": 32164.8, + "probability": 0.8273 + }, + { + "start": 32166.08, + "end": 32167.6, + "probability": 0.9011 + }, + { + "start": 32168.56, + "end": 32170.94, + "probability": 0.9956 + }, + { + "start": 32170.94, + "end": 32175.0, + "probability": 0.9464 + }, + { + "start": 32176.04, + "end": 32183.0, + "probability": 0.998 + }, + { + "start": 32183.64, + "end": 32189.32, + "probability": 0.8949 + }, + { + "start": 32189.32, + "end": 32195.38, + "probability": 0.9848 + }, + { + "start": 32196.58, + "end": 32198.2, + "probability": 0.8159 + }, + { + "start": 32198.92, + "end": 32201.1, + "probability": 0.9799 + }, + { + "start": 32204.34, + "end": 32204.68, + "probability": 0.6055 + }, + { + "start": 32205.28, + "end": 32206.12, + "probability": 0.5874 + }, + { + "start": 32206.76, + "end": 32208.58, + "probability": 0.9015 + }, + { + "start": 32212.18, + "end": 32214.06, + "probability": 0.6392 + }, + { + "start": 32240.14, + "end": 32242.5, + "probability": 0.7635 + }, + { + "start": 32244.06, + "end": 32253.88, + "probability": 0.9558 + }, + { + "start": 32254.92, + "end": 32257.28, + "probability": 0.9424 + }, + { + "start": 32258.58, + "end": 32262.76, + "probability": 0.985 + }, + { + "start": 32263.22, + "end": 32265.74, + "probability": 0.9892 + }, + { + "start": 32266.04, + "end": 32267.04, + "probability": 0.8573 + }, + { + "start": 32267.6, + "end": 32268.62, + "probability": 0.7654 + }, + { + "start": 32270.04, + "end": 32272.7, + "probability": 0.8167 + }, + { + "start": 32273.96, + "end": 32281.04, + "probability": 0.9877 + }, + { + "start": 32281.12, + "end": 32282.62, + "probability": 0.9497 + }, + { + "start": 32283.46, + "end": 32288.0, + "probability": 0.9863 + }, + { + "start": 32288.7, + "end": 32294.3, + "probability": 0.9592 + }, + { + "start": 32294.3, + "end": 32296.88, + "probability": 0.9953 + }, + { + "start": 32297.82, + "end": 32300.98, + "probability": 0.9759 + }, + { + "start": 32301.5, + "end": 32303.1, + "probability": 0.8199 + }, + { + "start": 32303.72, + "end": 32305.84, + "probability": 0.9373 + }, + { + "start": 32309.65, + "end": 32314.26, + "probability": 0.996 + }, + { + "start": 32314.38, + "end": 32314.74, + "probability": 0.8542 + }, + { + "start": 32314.78, + "end": 32318.24, + "probability": 0.9236 + }, + { + "start": 32319.02, + "end": 32322.52, + "probability": 0.5548 + }, + { + "start": 32324.9, + "end": 32325.76, + "probability": 0.851 + }, + { + "start": 32325.86, + "end": 32326.04, + "probability": 0.6121 + }, + { + "start": 32326.24, + "end": 32326.68, + "probability": 0.5871 + }, + { + "start": 32326.98, + "end": 32328.96, + "probability": 0.9385 + }, + { + "start": 32329.44, + "end": 32330.54, + "probability": 0.8346 + }, + { + "start": 32331.16, + "end": 32332.38, + "probability": 0.9702 + }, + { + "start": 32333.18, + "end": 32337.12, + "probability": 0.8855 + }, + { + "start": 32338.8, + "end": 32339.78, + "probability": 0.752 + }, + { + "start": 32339.86, + "end": 32340.74, + "probability": 0.9832 + }, + { + "start": 32340.84, + "end": 32343.4, + "probability": 0.9952 + }, + { + "start": 32343.58, + "end": 32343.68, + "probability": 0.599 + }, + { + "start": 32344.84, + "end": 32347.6, + "probability": 0.96 + }, + { + "start": 32348.88, + "end": 32349.4, + "probability": 0.7332 + }, + { + "start": 32350.9, + "end": 32353.62, + "probability": 0.9592 + }, + { + "start": 32354.16, + "end": 32355.48, + "probability": 0.9927 + }, + { + "start": 32358.64, + "end": 32359.06, + "probability": 0.8888 + }, + { + "start": 32359.86, + "end": 32366.6, + "probability": 0.9883 + }, + { + "start": 32367.24, + "end": 32368.0, + "probability": 0.8807 + }, + { + "start": 32371.38, + "end": 32374.86, + "probability": 0.6629 + }, + { + "start": 32375.12, + "end": 32375.54, + "probability": 0.7796 + }, + { + "start": 32375.76, + "end": 32376.16, + "probability": 0.7485 + }, + { + "start": 32376.26, + "end": 32377.22, + "probability": 0.9341 + }, + { + "start": 32377.58, + "end": 32380.3, + "probability": 0.9727 + }, + { + "start": 32380.3, + "end": 32382.96, + "probability": 0.9856 + }, + { + "start": 32383.54, + "end": 32385.08, + "probability": 0.9898 + }, + { + "start": 32385.69, + "end": 32386.9, + "probability": 0.8904 + }, + { + "start": 32387.86, + "end": 32390.72, + "probability": 0.9336 + }, + { + "start": 32391.6, + "end": 32392.88, + "probability": 0.8957 + }, + { + "start": 32394.04, + "end": 32397.68, + "probability": 0.9384 + }, + { + "start": 32398.75, + "end": 32402.26, + "probability": 0.9462 + }, + { + "start": 32402.96, + "end": 32403.4, + "probability": 0.8257 + }, + { + "start": 32403.94, + "end": 32405.26, + "probability": 0.9692 + }, + { + "start": 32405.88, + "end": 32408.28, + "probability": 0.9632 + }, + { + "start": 32409.32, + "end": 32414.26, + "probability": 0.9673 + }, + { + "start": 32414.6, + "end": 32421.34, + "probability": 0.9968 + }, + { + "start": 32421.5, + "end": 32422.7, + "probability": 0.7801 + }, + { + "start": 32427.16, + "end": 32428.22, + "probability": 0.8849 + }, + { + "start": 32428.9, + "end": 32431.58, + "probability": 0.72 + }, + { + "start": 32431.98, + "end": 32435.98, + "probability": 0.99 + }, + { + "start": 32436.04, + "end": 32440.8, + "probability": 0.9963 + }, + { + "start": 32443.62, + "end": 32447.68, + "probability": 0.7506 + }, + { + "start": 32447.86, + "end": 32448.48, + "probability": 0.3719 + }, + { + "start": 32448.64, + "end": 32449.28, + "probability": 0.6319 + }, + { + "start": 32449.34, + "end": 32450.32, + "probability": 0.9849 + }, + { + "start": 32451.12, + "end": 32452.34, + "probability": 0.939 + }, + { + "start": 32452.48, + "end": 32453.4, + "probability": 0.9709 + }, + { + "start": 32453.48, + "end": 32454.6, + "probability": 0.9819 + }, + { + "start": 32455.58, + "end": 32458.06, + "probability": 0.639 + }, + { + "start": 32458.58, + "end": 32460.5, + "probability": 0.9016 + }, + { + "start": 32461.52, + "end": 32462.12, + "probability": 0.9969 + }, + { + "start": 32463.38, + "end": 32468.64, + "probability": 0.988 + }, + { + "start": 32470.22, + "end": 32474.7, + "probability": 0.8699 + }, + { + "start": 32475.34, + "end": 32477.16, + "probability": 0.8525 + }, + { + "start": 32477.76, + "end": 32479.12, + "probability": 0.9659 + }, + { + "start": 32480.42, + "end": 32480.8, + "probability": 0.5593 + }, + { + "start": 32480.88, + "end": 32484.26, + "probability": 0.977 + }, + { + "start": 32484.3, + "end": 32485.22, + "probability": 0.6331 + }, + { + "start": 32486.14, + "end": 32489.16, + "probability": 0.8963 + }, + { + "start": 32489.84, + "end": 32490.22, + "probability": 0.7718 + }, + { + "start": 32491.94, + "end": 32492.76, + "probability": 0.9091 + }, + { + "start": 32493.1, + "end": 32495.08, + "probability": 0.852 + }, + { + "start": 32495.88, + "end": 32496.72, + "probability": 0.8287 + }, + { + "start": 32497.62, + "end": 32499.04, + "probability": 0.9946 + }, + { + "start": 32500.8, + "end": 32503.42, + "probability": 0.9956 + }, + { + "start": 32506.52, + "end": 32508.6, + "probability": 0.0915 + }, + { + "start": 32512.82, + "end": 32513.46, + "probability": 0.5153 + }, + { + "start": 32513.98, + "end": 32519.6, + "probability": 0.9593 + }, + { + "start": 32519.82, + "end": 32521.3, + "probability": 0.7939 + }, + { + "start": 32521.42, + "end": 32521.82, + "probability": 0.8516 + }, + { + "start": 32522.38, + "end": 32522.78, + "probability": 0.9014 + }, + { + "start": 32523.68, + "end": 32527.74, + "probability": 0.9934 + }, + { + "start": 32529.14, + "end": 32530.54, + "probability": 0.9681 + }, + { + "start": 32531.48, + "end": 32532.06, + "probability": 0.019 + }, + { + "start": 32532.64, + "end": 32533.22, + "probability": 0.8972 + }, + { + "start": 32533.8, + "end": 32536.54, + "probability": 0.9697 + }, + { + "start": 32536.98, + "end": 32541.9, + "probability": 0.987 + }, + { + "start": 32542.1, + "end": 32547.82, + "probability": 0.999 + }, + { + "start": 32548.64, + "end": 32550.16, + "probability": 0.8914 + }, + { + "start": 32550.32, + "end": 32551.48, + "probability": 0.9869 + }, + { + "start": 32551.82, + "end": 32553.56, + "probability": 0.8615 + }, + { + "start": 32554.48, + "end": 32558.24, + "probability": 0.9968 + }, + { + "start": 32558.76, + "end": 32560.12, + "probability": 0.985 + }, + { + "start": 32560.96, + "end": 32562.0, + "probability": 0.714 + }, + { + "start": 32562.64, + "end": 32564.48, + "probability": 0.9694 + }, + { + "start": 32564.48, + "end": 32566.0, + "probability": 0.9983 + }, + { + "start": 32567.92, + "end": 32569.7, + "probability": 0.5951 + }, + { + "start": 32569.86, + "end": 32572.12, + "probability": 0.9 + }, + { + "start": 32572.2, + "end": 32577.44, + "probability": 0.9857 + }, + { + "start": 32577.6, + "end": 32579.58, + "probability": 0.461 + }, + { + "start": 32580.62, + "end": 32588.16, + "probability": 0.9968 + }, + { + "start": 32590.16, + "end": 32593.65, + "probability": 0.9764 + }, + { + "start": 32595.9, + "end": 32601.28, + "probability": 0.9977 + }, + { + "start": 32601.82, + "end": 32603.44, + "probability": 0.8 + }, + { + "start": 32604.06, + "end": 32605.38, + "probability": 0.9961 + }, + { + "start": 32605.68, + "end": 32609.08, + "probability": 0.9927 + }, + { + "start": 32609.36, + "end": 32611.22, + "probability": 0.9756 + }, + { + "start": 32611.74, + "end": 32614.32, + "probability": 0.9767 + }, + { + "start": 32614.5, + "end": 32615.72, + "probability": 0.8807 + }, + { + "start": 32617.1, + "end": 32619.13, + "probability": 0.9551 + }, + { + "start": 32619.72, + "end": 32623.0, + "probability": 0.9838 + }, + { + "start": 32624.18, + "end": 32624.78, + "probability": 0.9982 + }, + { + "start": 32625.66, + "end": 32628.0, + "probability": 0.9923 + }, + { + "start": 32629.62, + "end": 32631.06, + "probability": 0.9635 + }, + { + "start": 32631.14, + "end": 32632.28, + "probability": 0.9961 + }, + { + "start": 32633.56, + "end": 32635.82, + "probability": 0.669 + }, + { + "start": 32637.0, + "end": 32639.96, + "probability": 0.9795 + }, + { + "start": 32641.62, + "end": 32644.54, + "probability": 0.9032 + }, + { + "start": 32644.62, + "end": 32650.36, + "probability": 0.9939 + }, + { + "start": 32650.48, + "end": 32651.02, + "probability": 0.5713 + }, + { + "start": 32651.84, + "end": 32656.06, + "probability": 0.9937 + }, + { + "start": 32657.52, + "end": 32660.1, + "probability": 0.8252 + }, + { + "start": 32661.2, + "end": 32662.02, + "probability": 0.6898 + }, + { + "start": 32663.82, + "end": 32664.0, + "probability": 0.7284 + }, + { + "start": 32664.8, + "end": 32666.08, + "probability": 0.4468 + }, + { + "start": 32666.08, + "end": 32667.5, + "probability": 0.8407 + }, + { + "start": 32668.16, + "end": 32669.46, + "probability": 0.9937 + }, + { + "start": 32670.44, + "end": 32671.04, + "probability": 0.5705 + }, + { + "start": 32672.44, + "end": 32674.58, + "probability": 0.9734 + }, + { + "start": 32675.2, + "end": 32675.74, + "probability": 0.9984 + }, + { + "start": 32679.02, + "end": 32680.0, + "probability": 0.7558 + }, + { + "start": 32681.82, + "end": 32683.11, + "probability": 0.9989 + }, + { + "start": 32683.82, + "end": 32686.3, + "probability": 0.9875 + }, + { + "start": 32687.54, + "end": 32690.26, + "probability": 0.9606 + }, + { + "start": 32691.8, + "end": 32693.14, + "probability": 0.9978 + }, + { + "start": 32695.48, + "end": 32700.96, + "probability": 0.9651 + }, + { + "start": 32702.54, + "end": 32703.96, + "probability": 0.626 + }, + { + "start": 32704.66, + "end": 32707.32, + "probability": 0.9832 + }, + { + "start": 32708.02, + "end": 32711.76, + "probability": 0.859 + }, + { + "start": 32712.46, + "end": 32713.02, + "probability": 0.8289 + }, + { + "start": 32714.04, + "end": 32716.4, + "probability": 0.7358 + }, + { + "start": 32716.44, + "end": 32719.54, + "probability": 0.995 + }, + { + "start": 32720.06, + "end": 32723.96, + "probability": 0.9395 + }, + { + "start": 32723.96, + "end": 32728.46, + "probability": 0.998 + }, + { + "start": 32728.56, + "end": 32732.6, + "probability": 0.9983 + }, + { + "start": 32733.1, + "end": 32733.36, + "probability": 0.7583 + }, + { + "start": 32734.8, + "end": 32735.68, + "probability": 0.5958 + }, + { + "start": 32736.44, + "end": 32739.04, + "probability": 0.5464 + }, + { + "start": 32744.34, + "end": 32744.7, + "probability": 0.3591 + }, + { + "start": 32744.7, + "end": 32746.54, + "probability": 0.5927 + }, + { + "start": 32760.98, + "end": 32762.86, + "probability": 0.3655 + }, + { + "start": 32765.1, + "end": 32766.06, + "probability": 0.6045 + }, + { + "start": 32767.72, + "end": 32773.62, + "probability": 0.9847 + }, + { + "start": 32774.46, + "end": 32775.03, + "probability": 0.0143 + }, + { + "start": 32775.86, + "end": 32779.42, + "probability": 0.7852 + }, + { + "start": 32780.22, + "end": 32782.81, + "probability": 0.8898 + }, + { + "start": 32783.94, + "end": 32785.24, + "probability": 0.9042 + }, + { + "start": 32786.34, + "end": 32787.5, + "probability": 0.9963 + }, + { + "start": 32788.36, + "end": 32790.28, + "probability": 0.9766 + }, + { + "start": 32790.88, + "end": 32792.04, + "probability": 0.9858 + }, + { + "start": 32793.14, + "end": 32798.51, + "probability": 0.9131 + }, + { + "start": 32800.1, + "end": 32802.4, + "probability": 0.967 + }, + { + "start": 32803.0, + "end": 32803.76, + "probability": 0.702 + }, + { + "start": 32804.38, + "end": 32806.07, + "probability": 0.6371 + }, + { + "start": 32807.22, + "end": 32813.18, + "probability": 0.9817 + }, + { + "start": 32813.64, + "end": 32815.48, + "probability": 0.886 + }, + { + "start": 32816.18, + "end": 32818.02, + "probability": 0.881 + }, + { + "start": 32819.62, + "end": 32823.94, + "probability": 0.9963 + }, + { + "start": 32823.94, + "end": 32828.6, + "probability": 0.9907 + }, + { + "start": 32829.86, + "end": 32830.89, + "probability": 0.7032 + }, + { + "start": 32832.04, + "end": 32832.66, + "probability": 0.6301 + }, + { + "start": 32834.24, + "end": 32835.56, + "probability": 0.9877 + }, + { + "start": 32836.08, + "end": 32836.64, + "probability": 0.7517 + }, + { + "start": 32837.74, + "end": 32839.86, + "probability": 0.903 + }, + { + "start": 32841.26, + "end": 32843.56, + "probability": 0.9365 + }, + { + "start": 32844.3, + "end": 32846.6, + "probability": 0.7197 + }, + { + "start": 32847.94, + "end": 32851.5, + "probability": 0.9913 + }, + { + "start": 32852.64, + "end": 32856.78, + "probability": 0.9964 + }, + { + "start": 32857.7, + "end": 32859.82, + "probability": 0.9897 + }, + { + "start": 32861.08, + "end": 32863.74, + "probability": 0.9832 + }, + { + "start": 32864.88, + "end": 32868.06, + "probability": 0.281 + }, + { + "start": 32868.88, + "end": 32868.98, + "probability": 0.4828 + }, + { + "start": 32868.98, + "end": 32871.04, + "probability": 0.4835 + }, + { + "start": 32871.04, + "end": 32871.48, + "probability": 0.747 + }, + { + "start": 32871.6, + "end": 32871.7, + "probability": 0.6445 + }, + { + "start": 32871.88, + "end": 32872.22, + "probability": 0.7087 + }, + { + "start": 32873.78, + "end": 32876.0, + "probability": 0.8655 + }, + { + "start": 32876.68, + "end": 32879.56, + "probability": 0.9856 + }, + { + "start": 32880.42, + "end": 32884.66, + "probability": 0.994 + }, + { + "start": 32885.18, + "end": 32887.74, + "probability": 0.9932 + }, + { + "start": 32888.68, + "end": 32893.94, + "probability": 0.9946 + }, + { + "start": 32895.98, + "end": 32900.56, + "probability": 0.9883 + }, + { + "start": 32901.14, + "end": 32906.22, + "probability": 0.9868 + }, + { + "start": 32907.92, + "end": 32909.04, + "probability": 0.6864 + }, + { + "start": 32909.9, + "end": 32911.26, + "probability": 0.7613 + }, + { + "start": 32911.86, + "end": 32914.73, + "probability": 0.9936 + }, + { + "start": 32915.72, + "end": 32915.96, + "probability": 0.8174 + }, + { + "start": 32916.92, + "end": 32917.5, + "probability": 0.94 + }, + { + "start": 32918.5, + "end": 32919.58, + "probability": 0.9995 + }, + { + "start": 32920.28, + "end": 32922.2, + "probability": 0.7142 + }, + { + "start": 32922.82, + "end": 32925.24, + "probability": 0.7526 + }, + { + "start": 32926.24, + "end": 32929.06, + "probability": 0.9707 + }, + { + "start": 32930.2, + "end": 32935.08, + "probability": 0.9875 + }, + { + "start": 32935.8, + "end": 32937.71, + "probability": 0.897 + }, + { + "start": 32938.68, + "end": 32939.1, + "probability": 0.8912 + }, + { + "start": 32939.78, + "end": 32940.5, + "probability": 0.5696 + }, + { + "start": 32941.04, + "end": 32943.36, + "probability": 0.9302 + }, + { + "start": 32944.54, + "end": 32948.6, + "probability": 0.9047 + }, + { + "start": 32948.68, + "end": 32952.5, + "probability": 0.9936 + }, + { + "start": 32954.02, + "end": 32959.65, + "probability": 0.9988 + }, + { + "start": 32961.16, + "end": 32962.26, + "probability": 0.6855 + }, + { + "start": 32963.04, + "end": 32964.46, + "probability": 0.6836 + }, + { + "start": 32965.22, + "end": 32966.0, + "probability": 0.8252 + }, + { + "start": 32967.42, + "end": 32969.36, + "probability": 0.6648 + }, + { + "start": 32970.14, + "end": 32972.86, + "probability": 0.9143 + }, + { + "start": 32973.46, + "end": 32974.86, + "probability": 0.5365 + }, + { + "start": 32976.32, + "end": 32978.66, + "probability": 0.7657 + }, + { + "start": 32980.56, + "end": 32983.26, + "probability": 0.572 + }, + { + "start": 32984.74, + "end": 32985.96, + "probability": 0.9525 + }, + { + "start": 32986.16, + "end": 32987.24, + "probability": 0.9836 + }, + { + "start": 32988.06, + "end": 32991.2, + "probability": 0.9706 + }, + { + "start": 32993.4, + "end": 32997.58, + "probability": 0.7834 + }, + { + "start": 32998.56, + "end": 32999.24, + "probability": 0.6241 + }, + { + "start": 33000.42, + "end": 33001.74, + "probability": 0.9963 + }, + { + "start": 33002.42, + "end": 33003.44, + "probability": 0.5827 + }, + { + "start": 33004.44, + "end": 33006.23, + "probability": 0.9697 + }, + { + "start": 33007.08, + "end": 33009.9, + "probability": 0.9124 + }, + { + "start": 33010.94, + "end": 33014.6, + "probability": 0.9978 + }, + { + "start": 33014.6, + "end": 33019.62, + "probability": 0.976 + }, + { + "start": 33020.74, + "end": 33024.62, + "probability": 0.9613 + }, + { + "start": 33026.8, + "end": 33032.16, + "probability": 0.9688 + }, + { + "start": 33033.22, + "end": 33035.58, + "probability": 0.9934 + }, + { + "start": 33036.84, + "end": 33037.46, + "probability": 0.9707 + }, + { + "start": 33038.66, + "end": 33041.34, + "probability": 0.9276 + }, + { + "start": 33042.58, + "end": 33046.08, + "probability": 0.8828 + }, + { + "start": 33046.64, + "end": 33048.98, + "probability": 0.9946 + }, + { + "start": 33049.54, + "end": 33053.12, + "probability": 0.9897 + }, + { + "start": 33055.1, + "end": 33056.86, + "probability": 0.9928 + }, + { + "start": 33057.5, + "end": 33058.9, + "probability": 0.966 + }, + { + "start": 33059.38, + "end": 33061.06, + "probability": 0.9519 + }, + { + "start": 33061.42, + "end": 33062.06, + "probability": 0.9733 + }, + { + "start": 33062.32, + "end": 33062.92, + "probability": 0.7238 + }, + { + "start": 33064.02, + "end": 33068.38, + "probability": 0.9875 + }, + { + "start": 33069.64, + "end": 33074.58, + "probability": 0.9937 + }, + { + "start": 33075.14, + "end": 33078.66, + "probability": 0.9881 + }, + { + "start": 33079.64, + "end": 33080.62, + "probability": 0.9599 + }, + { + "start": 33081.82, + "end": 33083.18, + "probability": 0.9099 + }, + { + "start": 33083.94, + "end": 33088.58, + "probability": 0.9866 + }, + { + "start": 33089.56, + "end": 33091.24, + "probability": 0.9966 + }, + { + "start": 33092.72, + "end": 33096.54, + "probability": 0.9795 + }, + { + "start": 33097.24, + "end": 33101.5, + "probability": 0.9636 + }, + { + "start": 33102.02, + "end": 33106.54, + "probability": 0.8922 + }, + { + "start": 33107.36, + "end": 33113.56, + "probability": 0.9937 + }, + { + "start": 33114.38, + "end": 33119.08, + "probability": 0.9557 + }, + { + "start": 33119.6, + "end": 33120.64, + "probability": 0.976 + }, + { + "start": 33122.14, + "end": 33126.56, + "probability": 0.9916 + }, + { + "start": 33127.38, + "end": 33130.08, + "probability": 0.9978 + }, + { + "start": 33131.36, + "end": 33133.17, + "probability": 0.9702 + }, + { + "start": 33134.6, + "end": 33135.7, + "probability": 0.9348 + }, + { + "start": 33137.04, + "end": 33138.34, + "probability": 0.7698 + }, + { + "start": 33139.42, + "end": 33144.6, + "probability": 0.9877 + }, + { + "start": 33145.86, + "end": 33150.04, + "probability": 0.9658 + }, + { + "start": 33150.7, + "end": 33152.76, + "probability": 0.992 + }, + { + "start": 33153.62, + "end": 33156.98, + "probability": 0.9624 + }, + { + "start": 33157.88, + "end": 33163.98, + "probability": 0.9019 + }, + { + "start": 33163.98, + "end": 33169.26, + "probability": 0.9933 + }, + { + "start": 33170.76, + "end": 33178.26, + "probability": 0.9874 + }, + { + "start": 33179.48, + "end": 33184.38, + "probability": 0.8983 + }, + { + "start": 33185.12, + "end": 33189.52, + "probability": 0.9976 + }, + { + "start": 33190.36, + "end": 33191.78, + "probability": 0.9824 + }, + { + "start": 33192.34, + "end": 33193.16, + "probability": 0.8232 + }, + { + "start": 33194.0, + "end": 33197.44, + "probability": 0.9792 + }, + { + "start": 33198.04, + "end": 33198.32, + "probability": 0.2991 + }, + { + "start": 33199.86, + "end": 33202.72, + "probability": 0.9945 + }, + { + "start": 33203.4, + "end": 33206.38, + "probability": 0.9768 + }, + { + "start": 33207.96, + "end": 33211.2, + "probability": 0.9897 + }, + { + "start": 33211.86, + "end": 33214.54, + "probability": 0.9275 + }, + { + "start": 33216.7, + "end": 33217.34, + "probability": 0.5101 + }, + { + "start": 33217.88, + "end": 33223.6, + "probability": 0.9899 + }, + { + "start": 33224.92, + "end": 33227.1, + "probability": 0.998 + }, + { + "start": 33227.9, + "end": 33230.74, + "probability": 0.9748 + }, + { + "start": 33232.76, + "end": 33233.58, + "probability": 0.99 + }, + { + "start": 33234.36, + "end": 33240.02, + "probability": 0.9964 + }, + { + "start": 33241.08, + "end": 33246.42, + "probability": 0.9658 + }, + { + "start": 33247.5, + "end": 33248.4, + "probability": 0.8666 + }, + { + "start": 33249.2, + "end": 33251.02, + "probability": 0.9845 + }, + { + "start": 33252.7, + "end": 33254.66, + "probability": 0.9781 + }, + { + "start": 33255.56, + "end": 33258.96, + "probability": 0.989 + }, + { + "start": 33261.2, + "end": 33264.14, + "probability": 0.5816 + }, + { + "start": 33265.22, + "end": 33266.7, + "probability": 0.7697 + }, + { + "start": 33267.64, + "end": 33268.36, + "probability": 0.7768 + }, + { + "start": 33269.24, + "end": 33273.36, + "probability": 0.9863 + }, + { + "start": 33274.86, + "end": 33276.16, + "probability": 0.8912 + }, + { + "start": 33277.6, + "end": 33280.28, + "probability": 0.8353 + }, + { + "start": 33281.34, + "end": 33282.58, + "probability": 0.9745 + }, + { + "start": 33283.54, + "end": 33288.42, + "probability": 0.9835 + }, + { + "start": 33289.38, + "end": 33297.48, + "probability": 0.9819 + }, + { + "start": 33298.28, + "end": 33298.92, + "probability": 0.7188 + }, + { + "start": 33299.74, + "end": 33300.24, + "probability": 0.8564 + }, + { + "start": 33301.36, + "end": 33304.24, + "probability": 0.9902 + }, + { + "start": 33305.1, + "end": 33305.36, + "probability": 0.8969 + }, + { + "start": 33306.5, + "end": 33307.27, + "probability": 0.4167 + }, + { + "start": 33307.66, + "end": 33308.02, + "probability": 0.8438 + }, + { + "start": 33308.42, + "end": 33311.56, + "probability": 0.3927 + }, + { + "start": 33311.56, + "end": 33312.24, + "probability": 0.6218 + }, + { + "start": 33316.62, + "end": 33317.9, + "probability": 0.5401 + }, + { + "start": 33319.38, + "end": 33319.64, + "probability": 0.0213 + }, + { + "start": 33319.64, + "end": 33319.64, + "probability": 0.4334 + }, + { + "start": 33319.64, + "end": 33321.72, + "probability": 0.9582 + }, + { + "start": 33323.7, + "end": 33325.58, + "probability": 0.7331 + }, + { + "start": 33327.22, + "end": 33328.31, + "probability": 0.8682 + }, + { + "start": 33328.56, + "end": 33329.22, + "probability": 0.7988 + }, + { + "start": 33329.74, + "end": 33331.64, + "probability": 0.8683 + }, + { + "start": 33333.92, + "end": 33335.2, + "probability": 0.716 + }, + { + "start": 33338.32, + "end": 33339.1, + "probability": 0.7673 + }, + { + "start": 33340.56, + "end": 33343.24, + "probability": 0.8325 + }, + { + "start": 33344.02, + "end": 33347.84, + "probability": 0.9924 + }, + { + "start": 33347.84, + "end": 33350.28, + "probability": 0.9927 + }, + { + "start": 33350.88, + "end": 33352.82, + "probability": 0.6511 + }, + { + "start": 33353.54, + "end": 33354.98, + "probability": 0.7459 + }, + { + "start": 33355.2, + "end": 33356.3, + "probability": 0.9088 + }, + { + "start": 33356.38, + "end": 33359.96, + "probability": 0.9847 + }, + { + "start": 33360.22, + "end": 33361.26, + "probability": 0.7093 + }, + { + "start": 33361.34, + "end": 33362.96, + "probability": 0.9207 + }, + { + "start": 33363.5, + "end": 33370.14, + "probability": 0.9946 + }, + { + "start": 33370.28, + "end": 33373.88, + "probability": 0.965 + }, + { + "start": 33374.36, + "end": 33375.2, + "probability": 0.8684 + }, + { + "start": 33375.4, + "end": 33376.66, + "probability": 0.8667 + }, + { + "start": 33377.08, + "end": 33379.62, + "probability": 0.7236 + }, + { + "start": 33379.88, + "end": 33380.72, + "probability": 0.9375 + }, + { + "start": 33381.12, + "end": 33384.18, + "probability": 0.9907 + }, + { + "start": 33385.0, + "end": 33387.07, + "probability": 0.502 + }, + { + "start": 33387.9, + "end": 33388.56, + "probability": 0.1267 + }, + { + "start": 33388.66, + "end": 33389.4, + "probability": 0.8324 + }, + { + "start": 33390.14, + "end": 33391.76, + "probability": 0.9384 + }, + { + "start": 33392.26, + "end": 33395.04, + "probability": 0.9326 + }, + { + "start": 33395.46, + "end": 33397.78, + "probability": 0.9833 + }, + { + "start": 33398.12, + "end": 33399.12, + "probability": 0.7394 + }, + { + "start": 33399.28, + "end": 33400.14, + "probability": 0.969 + }, + { + "start": 33400.8, + "end": 33407.92, + "probability": 0.9929 + }, + { + "start": 33408.24, + "end": 33410.3, + "probability": 0.7552 + }, + { + "start": 33410.98, + "end": 33412.5, + "probability": 0.9804 + }, + { + "start": 33413.1, + "end": 33416.44, + "probability": 0.9563 + }, + { + "start": 33416.9, + "end": 33417.52, + "probability": 0.803 + }, + { + "start": 33417.72, + "end": 33418.72, + "probability": 0.8985 + }, + { + "start": 33419.32, + "end": 33421.04, + "probability": 0.9141 + }, + { + "start": 33421.44, + "end": 33422.66, + "probability": 0.8655 + }, + { + "start": 33422.96, + "end": 33427.28, + "probability": 0.9756 + }, + { + "start": 33427.82, + "end": 33427.82, + "probability": 0.0004 + }, + { + "start": 33428.38, + "end": 33428.48, + "probability": 0.0733 + }, + { + "start": 33428.48, + "end": 33432.18, + "probability": 0.6107 + }, + { + "start": 33432.18, + "end": 33435.42, + "probability": 0.9968 + }, + { + "start": 33436.58, + "end": 33441.28, + "probability": 0.9655 + }, + { + "start": 33441.74, + "end": 33442.58, + "probability": 0.925 + }, + { + "start": 33442.74, + "end": 33447.72, + "probability": 0.8239 + }, + { + "start": 33447.72, + "end": 33450.68, + "probability": 0.9722 + }, + { + "start": 33451.22, + "end": 33451.74, + "probability": 0.5398 + }, + { + "start": 33451.76, + "end": 33455.64, + "probability": 0.939 + }, + { + "start": 33455.7, + "end": 33455.88, + "probability": 0.5294 + }, + { + "start": 33456.22, + "end": 33457.62, + "probability": 0.9939 + }, + { + "start": 33457.7, + "end": 33460.66, + "probability": 0.9937 + }, + { + "start": 33461.62, + "end": 33461.92, + "probability": 0.0011 + }, + { + "start": 33461.92, + "end": 33461.92, + "probability": 0.05 + }, + { + "start": 33461.92, + "end": 33464.26, + "probability": 0.9002 + }, + { + "start": 33464.74, + "end": 33467.0, + "probability": 0.9542 + }, + { + "start": 33467.36, + "end": 33472.78, + "probability": 0.7392 + }, + { + "start": 33472.88, + "end": 33475.2, + "probability": 0.9727 + }, + { + "start": 33475.76, + "end": 33476.62, + "probability": 0.4635 + }, + { + "start": 33476.78, + "end": 33478.16, + "probability": 0.9636 + }, + { + "start": 33478.88, + "end": 33479.82, + "probability": 0.4862 + }, + { + "start": 33480.1, + "end": 33483.02, + "probability": 0.9778 + }, + { + "start": 33483.02, + "end": 33483.5, + "probability": 0.5947 + }, + { + "start": 33483.54, + "end": 33483.9, + "probability": 0.3022 + }, + { + "start": 33483.92, + "end": 33484.34, + "probability": 0.769 + }, + { + "start": 33484.56, + "end": 33484.56, + "probability": 0.3741 + }, + { + "start": 33484.56, + "end": 33486.44, + "probability": 0.8449 + }, + { + "start": 33498.44, + "end": 33500.44, + "probability": 0.6869 + }, + { + "start": 33501.82, + "end": 33502.36, + "probability": 0.7849 + }, + { + "start": 33502.54, + "end": 33507.18, + "probability": 0.9158 + }, + { + "start": 33507.96, + "end": 33509.08, + "probability": 0.9702 + }, + { + "start": 33509.58, + "end": 33514.02, + "probability": 0.9524 + }, + { + "start": 33514.02, + "end": 33516.36, + "probability": 0.9932 + }, + { + "start": 33517.72, + "end": 33520.48, + "probability": 0.9865 + }, + { + "start": 33520.66, + "end": 33521.88, + "probability": 0.8507 + }, + { + "start": 33521.92, + "end": 33524.52, + "probability": 0.96 + }, + { + "start": 33524.74, + "end": 33525.24, + "probability": 0.9133 + }, + { + "start": 33525.96, + "end": 33530.26, + "probability": 0.974 + }, + { + "start": 33531.18, + "end": 33531.68, + "probability": 0.7737 + }, + { + "start": 33532.62, + "end": 33539.94, + "probability": 0.9944 + }, + { + "start": 33540.46, + "end": 33544.02, + "probability": 0.9429 + }, + { + "start": 33545.0, + "end": 33546.3, + "probability": 0.9922 + }, + { + "start": 33548.0, + "end": 33550.35, + "probability": 0.9784 + }, + { + "start": 33551.98, + "end": 33553.26, + "probability": 0.9971 + }, + { + "start": 33554.58, + "end": 33558.1, + "probability": 0.8533 + }, + { + "start": 33559.5, + "end": 33562.04, + "probability": 0.983 + }, + { + "start": 33563.0, + "end": 33563.56, + "probability": 0.8913 + }, + { + "start": 33564.18, + "end": 33570.24, + "probability": 0.9956 + }, + { + "start": 33571.04, + "end": 33572.0, + "probability": 0.6453 + }, + { + "start": 33572.96, + "end": 33576.18, + "probability": 0.9855 + }, + { + "start": 33577.66, + "end": 33578.24, + "probability": 0.8662 + }, + { + "start": 33580.56, + "end": 33582.16, + "probability": 0.8798 + }, + { + "start": 33583.88, + "end": 33585.56, + "probability": 0.9679 + }, + { + "start": 33586.58, + "end": 33587.98, + "probability": 0.9958 + }, + { + "start": 33588.8, + "end": 33591.32, + "probability": 0.9395 + }, + { + "start": 33592.0, + "end": 33598.02, + "probability": 0.9766 + }, + { + "start": 33598.6, + "end": 33602.24, + "probability": 0.8345 + }, + { + "start": 33602.98, + "end": 33604.16, + "probability": 0.9714 + }, + { + "start": 33605.44, + "end": 33607.86, + "probability": 0.9934 + }, + { + "start": 33609.14, + "end": 33610.64, + "probability": 0.9914 + }, + { + "start": 33611.4, + "end": 33613.18, + "probability": 0.9961 + }, + { + "start": 33613.76, + "end": 33619.1, + "probability": 0.9985 + }, + { + "start": 33620.3, + "end": 33620.96, + "probability": 0.8737 + }, + { + "start": 33622.16, + "end": 33624.8, + "probability": 0.9462 + }, + { + "start": 33626.24, + "end": 33634.06, + "probability": 0.9952 + }, + { + "start": 33635.46, + "end": 33639.94, + "probability": 0.9971 + }, + { + "start": 33640.54, + "end": 33643.5, + "probability": 0.9914 + }, + { + "start": 33644.82, + "end": 33646.06, + "probability": 0.5723 + }, + { + "start": 33646.88, + "end": 33648.44, + "probability": 0.9915 + }, + { + "start": 33649.78, + "end": 33655.98, + "probability": 0.98 + }, + { + "start": 33657.3, + "end": 33658.46, + "probability": 0.98 + }, + { + "start": 33659.62, + "end": 33659.98, + "probability": 0.5171 + }, + { + "start": 33660.76, + "end": 33663.1, + "probability": 0.9977 + }, + { + "start": 33663.58, + "end": 33664.08, + "probability": 0.4903 + }, + { + "start": 33664.56, + "end": 33666.66, + "probability": 0.9815 + }, + { + "start": 33667.88, + "end": 33669.84, + "probability": 0.9949 + }, + { + "start": 33670.92, + "end": 33674.64, + "probability": 0.9838 + }, + { + "start": 33675.84, + "end": 33677.74, + "probability": 0.9834 + }, + { + "start": 33678.44, + "end": 33680.46, + "probability": 0.9893 + }, + { + "start": 33681.3, + "end": 33682.9, + "probability": 0.9917 + }, + { + "start": 33683.82, + "end": 33685.2, + "probability": 0.8296 + }, + { + "start": 33686.56, + "end": 33690.64, + "probability": 0.9993 + }, + { + "start": 33691.3, + "end": 33692.22, + "probability": 0.792 + }, + { + "start": 33693.34, + "end": 33695.98, + "probability": 0.9697 + }, + { + "start": 33696.7, + "end": 33702.52, + "probability": 0.9968 + }, + { + "start": 33702.96, + "end": 33706.38, + "probability": 0.9829 + }, + { + "start": 33708.52, + "end": 33709.36, + "probability": 0.999 + }, + { + "start": 33710.5, + "end": 33716.36, + "probability": 0.9976 + }, + { + "start": 33716.82, + "end": 33718.16, + "probability": 0.6209 + }, + { + "start": 33718.34, + "end": 33718.64, + "probability": 0.6362 + }, + { + "start": 33719.04, + "end": 33725.26, + "probability": 0.9918 + }, + { + "start": 33727.68, + "end": 33728.32, + "probability": 0.0204 + }, + { + "start": 33730.5, + "end": 33733.26, + "probability": 0.8937 + }, + { + "start": 33734.3, + "end": 33735.92, + "probability": 0.6671 + }, + { + "start": 33736.36, + "end": 33737.96, + "probability": 0.7946 + }, + { + "start": 33738.56, + "end": 33739.84, + "probability": 0.9883 + }, + { + "start": 33740.64, + "end": 33743.06, + "probability": 0.7018 + }, + { + "start": 33743.66, + "end": 33745.06, + "probability": 0.9971 + }, + { + "start": 33746.42, + "end": 33746.42, + "probability": 0.6245 + }, + { + "start": 33747.98, + "end": 33748.56, + "probability": 0.758 + }, + { + "start": 33749.36, + "end": 33750.84, + "probability": 0.9 + }, + { + "start": 33751.36, + "end": 33754.58, + "probability": 0.9827 + }, + { + "start": 33755.06, + "end": 33758.44, + "probability": 0.9973 + }, + { + "start": 33758.92, + "end": 33762.56, + "probability": 0.9993 + }, + { + "start": 33762.92, + "end": 33763.5, + "probability": 0.9763 + }, + { + "start": 33763.66, + "end": 33765.3, + "probability": 0.7264 + }, + { + "start": 33765.36, + "end": 33767.06, + "probability": 0.9956 + }, + { + "start": 33767.36, + "end": 33769.0, + "probability": 0.7303 + }, + { + "start": 33770.38, + "end": 33771.64, + "probability": 0.9736 + }, + { + "start": 33772.28, + "end": 33773.62, + "probability": 0.9258 + }, + { + "start": 33774.3, + "end": 33775.54, + "probability": 0.6589 + }, + { + "start": 33779.64, + "end": 33779.94, + "probability": 0.1229 + }, + { + "start": 33779.94, + "end": 33783.36, + "probability": 0.563 + }, + { + "start": 33785.22, + "end": 33787.6, + "probability": 0.8223 + }, + { + "start": 33788.26, + "end": 33791.7, + "probability": 0.9819 + }, + { + "start": 33792.2, + "end": 33796.76, + "probability": 0.6563 + }, + { + "start": 33797.92, + "end": 33802.94, + "probability": 0.9771 + }, + { + "start": 33803.82, + "end": 33807.64, + "probability": 0.996 + }, + { + "start": 33808.88, + "end": 33810.38, + "probability": 0.9941 + }, + { + "start": 33811.62, + "end": 33812.44, + "probability": 0.7763 + }, + { + "start": 33813.52, + "end": 33818.84, + "probability": 0.9956 + }, + { + "start": 33820.74, + "end": 33823.33, + "probability": 0.9194 + }, + { + "start": 33825.48, + "end": 33827.16, + "probability": 0.6849 + }, + { + "start": 33828.54, + "end": 33831.08, + "probability": 0.997 + }, + { + "start": 33832.2, + "end": 33834.46, + "probability": 0.971 + }, + { + "start": 33834.52, + "end": 33836.4, + "probability": 0.9906 + }, + { + "start": 33837.5, + "end": 33838.94, + "probability": 0.9889 + }, + { + "start": 33839.68, + "end": 33840.98, + "probability": 0.8499 + }, + { + "start": 33841.08, + "end": 33844.08, + "probability": 0.9336 + }, + { + "start": 33845.76, + "end": 33848.32, + "probability": 0.9964 + }, + { + "start": 33848.84, + "end": 33849.47, + "probability": 0.9694 + }, + { + "start": 33850.64, + "end": 33853.4, + "probability": 0.9971 + }, + { + "start": 33853.92, + "end": 33856.48, + "probability": 0.991 + }, + { + "start": 33857.64, + "end": 33860.76, + "probability": 0.8931 + }, + { + "start": 33861.36, + "end": 33863.72, + "probability": 0.9995 + }, + { + "start": 33864.46, + "end": 33866.4, + "probability": 0.998 + }, + { + "start": 33866.88, + "end": 33867.58, + "probability": 0.8459 + }, + { + "start": 33868.82, + "end": 33869.3, + "probability": 0.7734 + }, + { + "start": 33870.66, + "end": 33871.86, + "probability": 0.7821 + }, + { + "start": 33873.74, + "end": 33875.46, + "probability": 0.7138 + }, + { + "start": 33876.14, + "end": 33878.14, + "probability": 0.9242 + }, + { + "start": 33880.5, + "end": 33881.9, + "probability": 0.8488 + }, + { + "start": 33882.44, + "end": 33884.06, + "probability": 0.9961 + }, + { + "start": 33884.66, + "end": 33886.92, + "probability": 0.8192 + }, + { + "start": 33887.44, + "end": 33888.34, + "probability": 0.8338 + }, + { + "start": 33889.54, + "end": 33891.5, + "probability": 0.8664 + }, + { + "start": 33894.26, + "end": 33898.66, + "probability": 0.827 + }, + { + "start": 33898.86, + "end": 33899.2, + "probability": 0.2305 + }, + { + "start": 33899.58, + "end": 33900.94, + "probability": 0.9996 + }, + { + "start": 33901.96, + "end": 33903.58, + "probability": 0.999 + }, + { + "start": 33903.94, + "end": 33904.72, + "probability": 0.8278 + }, + { + "start": 33904.86, + "end": 33907.09, + "probability": 0.6621 + }, + { + "start": 33908.98, + "end": 33911.3, + "probability": 0.8348 + }, + { + "start": 33912.48, + "end": 33914.6, + "probability": 0.9973 + }, + { + "start": 33916.08, + "end": 33919.16, + "probability": 0.9782 + }, + { + "start": 33919.26, + "end": 33923.38, + "probability": 0.9653 + }, + { + "start": 33923.58, + "end": 33926.34, + "probability": 0.986 + }, + { + "start": 33927.76, + "end": 33933.16, + "probability": 0.9987 + }, + { + "start": 33934.48, + "end": 33936.8, + "probability": 0.89 + }, + { + "start": 33937.58, + "end": 33943.76, + "probability": 0.979 + }, + { + "start": 33944.28, + "end": 33947.36, + "probability": 0.9944 + }, + { + "start": 33950.48, + "end": 33950.64, + "probability": 0.3937 + }, + { + "start": 33951.88, + "end": 33952.86, + "probability": 0.9863 + }, + { + "start": 33954.26, + "end": 33955.84, + "probability": 0.9956 + }, + { + "start": 33955.88, + "end": 33955.98, + "probability": 0.4852 + }, + { + "start": 33956.12, + "end": 33956.84, + "probability": 0.8589 + }, + { + "start": 33957.0, + "end": 33958.32, + "probability": 0.7917 + }, + { + "start": 33958.38, + "end": 33959.8, + "probability": 0.98 + }, + { + "start": 33960.22, + "end": 33960.62, + "probability": 0.8212 + }, + { + "start": 33961.72, + "end": 33965.46, + "probability": 0.8792 + }, + { + "start": 33965.46, + "end": 33965.86, + "probability": 0.1544 + }, + { + "start": 33967.8, + "end": 33967.94, + "probability": 0.0477 + }, + { + "start": 33967.94, + "end": 33967.94, + "probability": 0.0733 + }, + { + "start": 33969.1, + "end": 33969.86, + "probability": 0.981 + }, + { + "start": 33972.15, + "end": 33976.2, + "probability": 0.9876 + }, + { + "start": 33977.88, + "end": 33981.74, + "probability": 0.9222 + }, + { + "start": 33982.48, + "end": 33984.48, + "probability": 0.9372 + }, + { + "start": 33985.46, + "end": 33986.23, + "probability": 0.9793 + }, + { + "start": 33988.08, + "end": 33988.52, + "probability": 0.9727 + }, + { + "start": 33989.78, + "end": 33990.8, + "probability": 0.3602 + }, + { + "start": 33991.2, + "end": 33994.2, + "probability": 0.8618 + }, + { + "start": 33994.88, + "end": 33997.24, + "probability": 0.9524 + }, + { + "start": 33999.64, + "end": 34001.06, + "probability": 0.8735 + }, + { + "start": 34001.86, + "end": 34002.32, + "probability": 0.9048 + }, + { + "start": 34003.7, + "end": 34004.08, + "probability": 0.8713 + }, + { + "start": 34004.8, + "end": 34005.58, + "probability": 0.8791 + }, + { + "start": 34006.6, + "end": 34007.68, + "probability": 0.9919 + }, + { + "start": 34009.2, + "end": 34011.74, + "probability": 0.9971 + }, + { + "start": 34012.48, + "end": 34014.0, + "probability": 0.9891 + }, + { + "start": 34016.12, + "end": 34021.64, + "probability": 0.9943 + }, + { + "start": 34021.8, + "end": 34022.62, + "probability": 0.9115 + }, + { + "start": 34023.16, + "end": 34023.66, + "probability": 0.8495 + }, + { + "start": 34023.86, + "end": 34025.24, + "probability": 0.976 + }, + { + "start": 34025.74, + "end": 34029.58, + "probability": 0.9767 + }, + { + "start": 34030.94, + "end": 34034.52, + "probability": 0.8575 + }, + { + "start": 34035.1, + "end": 34035.92, + "probability": 0.8207 + }, + { + "start": 34036.86, + "end": 34037.26, + "probability": 0.7483 + }, + { + "start": 34037.42, + "end": 34039.98, + "probability": 0.9909 + }, + { + "start": 34040.52, + "end": 34044.28, + "probability": 0.9862 + }, + { + "start": 34045.88, + "end": 34047.24, + "probability": 0.9951 + }, + { + "start": 34048.28, + "end": 34050.22, + "probability": 0.7864 + }, + { + "start": 34050.82, + "end": 34051.54, + "probability": 0.6724 + }, + { + "start": 34052.16, + "end": 34053.2, + "probability": 0.9502 + }, + { + "start": 34054.02, + "end": 34054.72, + "probability": 0.9816 + }, + { + "start": 34055.42, + "end": 34057.48, + "probability": 0.9947 + }, + { + "start": 34058.08, + "end": 34060.26, + "probability": 0.8619 + }, + { + "start": 34060.6, + "end": 34063.48, + "probability": 0.9202 + }, + { + "start": 34063.8, + "end": 34064.96, + "probability": 0.9919 + }, + { + "start": 34065.62, + "end": 34066.24, + "probability": 0.6035 + }, + { + "start": 34066.28, + "end": 34066.96, + "probability": 0.4798 + }, + { + "start": 34067.22, + "end": 34068.46, + "probability": 0.3069 + }, + { + "start": 34069.26, + "end": 34071.38, + "probability": 0.8232 + }, + { + "start": 34072.76, + "end": 34076.56, + "probability": 0.9381 + }, + { + "start": 34079.52, + "end": 34081.24, + "probability": 0.9848 + }, + { + "start": 34083.0, + "end": 34087.68, + "probability": 0.9962 + }, + { + "start": 34087.84, + "end": 34093.86, + "probability": 0.9966 + }, + { + "start": 34095.04, + "end": 34097.44, + "probability": 0.8422 + }, + { + "start": 34099.0, + "end": 34101.26, + "probability": 0.9993 + }, + { + "start": 34101.26, + "end": 34103.12, + "probability": 0.9997 + }, + { + "start": 34105.16, + "end": 34107.08, + "probability": 0.8764 + }, + { + "start": 34107.76, + "end": 34111.22, + "probability": 0.9917 + }, + { + "start": 34111.54, + "end": 34111.9, + "probability": 0.4996 + }, + { + "start": 34111.98, + "end": 34113.72, + "probability": 0.9932 + }, + { + "start": 34114.58, + "end": 34120.46, + "probability": 0.9975 + }, + { + "start": 34121.0, + "end": 34121.74, + "probability": 0.7479 + }, + { + "start": 34121.92, + "end": 34125.38, + "probability": 0.9559 + }, + { + "start": 34125.8, + "end": 34128.4, + "probability": 0.9909 + }, + { + "start": 34128.78, + "end": 34130.14, + "probability": 0.9714 + }, + { + "start": 34130.68, + "end": 34131.52, + "probability": 0.7242 + }, + { + "start": 34131.9, + "end": 34134.16, + "probability": 0.9297 + }, + { + "start": 34134.4, + "end": 34137.72, + "probability": 0.9587 + }, + { + "start": 34137.8, + "end": 34138.68, + "probability": 0.5551 + }, + { + "start": 34138.72, + "end": 34139.5, + "probability": 0.5816 + }, + { + "start": 34140.94, + "end": 34141.62, + "probability": 0.8726 + }, + { + "start": 34143.36, + "end": 34144.6, + "probability": 0.6044 + }, + { + "start": 34150.96, + "end": 34151.33, + "probability": 0.0927 + }, + { + "start": 34153.94, + "end": 34154.3, + "probability": 0.3008 + }, + { + "start": 34157.04, + "end": 34157.48, + "probability": 0.1568 + }, + { + "start": 34160.14, + "end": 34161.32, + "probability": 0.2856 + }, + { + "start": 34161.92, + "end": 34162.02, + "probability": 0.4866 + }, + { + "start": 34162.1, + "end": 34163.14, + "probability": 0.8497 + }, + { + "start": 34163.18, + "end": 34165.52, + "probability": 0.8631 + }, + { + "start": 34165.88, + "end": 34166.1, + "probability": 0.2374 + }, + { + "start": 34166.64, + "end": 34168.44, + "probability": 0.2998 + }, + { + "start": 34177.84, + "end": 34178.26, + "probability": 0.1746 + }, + { + "start": 34178.26, + "end": 34178.98, + "probability": 0.3795 + }, + { + "start": 34180.14, + "end": 34181.1, + "probability": 0.0343 + }, + { + "start": 34182.7, + "end": 34182.7, + "probability": 0.0438 + }, + { + "start": 34182.7, + "end": 34182.7, + "probability": 0.1584 + }, + { + "start": 34182.7, + "end": 34182.7, + "probability": 0.0265 + }, + { + "start": 34182.7, + "end": 34182.7, + "probability": 0.043 + }, + { + "start": 34182.7, + "end": 34182.7, + "probability": 0.0351 + }, + { + "start": 34182.7, + "end": 34183.28, + "probability": 0.1833 + }, + { + "start": 34184.78, + "end": 34188.74, + "probability": 0.847 + }, + { + "start": 34190.1, + "end": 34197.24, + "probability": 0.9372 + }, + { + "start": 34197.82, + "end": 34201.66, + "probability": 0.9976 + }, + { + "start": 34202.56, + "end": 34206.18, + "probability": 0.9855 + }, + { + "start": 34207.5, + "end": 34208.92, + "probability": 0.9221 + }, + { + "start": 34209.7, + "end": 34212.06, + "probability": 0.9984 + }, + { + "start": 34213.36, + "end": 34214.54, + "probability": 0.9988 + }, + { + "start": 34215.1, + "end": 34219.64, + "probability": 0.9532 + }, + { + "start": 34220.6, + "end": 34226.86, + "probability": 0.9964 + }, + { + "start": 34227.46, + "end": 34228.74, + "probability": 0.864 + }, + { + "start": 34229.42, + "end": 34232.28, + "probability": 0.9966 + }, + { + "start": 34233.22, + "end": 34238.78, + "probability": 0.9606 + }, + { + "start": 34239.96, + "end": 34243.88, + "probability": 0.9949 + }, + { + "start": 34244.5, + "end": 34248.76, + "probability": 0.9802 + }, + { + "start": 34249.16, + "end": 34250.12, + "probability": 0.5478 + }, + { + "start": 34250.12, + "end": 34251.28, + "probability": 0.7153 + }, + { + "start": 34251.46, + "end": 34255.42, + "probability": 0.9819 + }, + { + "start": 34256.28, + "end": 34257.5, + "probability": 0.8537 + }, + { + "start": 34258.26, + "end": 34261.26, + "probability": 0.9676 + }, + { + "start": 34261.3, + "end": 34265.7, + "probability": 0.9335 + }, + { + "start": 34266.02, + "end": 34268.04, + "probability": 0.9682 + }, + { + "start": 34269.36, + "end": 34270.41, + "probability": 0.8422 + }, + { + "start": 34271.52, + "end": 34274.82, + "probability": 0.9718 + }, + { + "start": 34275.6, + "end": 34278.56, + "probability": 0.9792 + }, + { + "start": 34279.36, + "end": 34281.5, + "probability": 0.921 + }, + { + "start": 34282.66, + "end": 34286.24, + "probability": 0.9975 + }, + { + "start": 34286.88, + "end": 34288.38, + "probability": 0.9678 + }, + { + "start": 34288.98, + "end": 34292.02, + "probability": 0.7803 + }, + { + "start": 34293.6, + "end": 34297.44, + "probability": 0.958 + }, + { + "start": 34298.06, + "end": 34301.8, + "probability": 0.998 + }, + { + "start": 34302.8, + "end": 34310.26, + "probability": 0.9579 + }, + { + "start": 34310.84, + "end": 34311.98, + "probability": 0.673 + }, + { + "start": 34312.6, + "end": 34312.96, + "probability": 0.4682 + }, + { + "start": 34314.52, + "end": 34317.36, + "probability": 0.938 + }, + { + "start": 34318.26, + "end": 34320.52, + "probability": 0.9707 + }, + { + "start": 34321.0, + "end": 34323.86, + "probability": 0.6419 + }, + { + "start": 34324.28, + "end": 34326.66, + "probability": 0.0273 + }, + { + "start": 34327.56, + "end": 34327.56, + "probability": 0.1248 + }, + { + "start": 34327.56, + "end": 34333.14, + "probability": 0.7436 + }, + { + "start": 34333.96, + "end": 34335.56, + "probability": 0.5869 + }, + { + "start": 34336.62, + "end": 34339.46, + "probability": 0.9022 + }, + { + "start": 34340.74, + "end": 34342.9, + "probability": 0.49 + }, + { + "start": 34343.24, + "end": 34346.44, + "probability": 0.5612 + }, + { + "start": 34347.14, + "end": 34353.08, + "probability": 0.999 + }, + { + "start": 34353.68, + "end": 34354.26, + "probability": 0.8237 + }, + { + "start": 34354.98, + "end": 34359.28, + "probability": 0.9513 + }, + { + "start": 34360.02, + "end": 34361.4, + "probability": 0.751 + }, + { + "start": 34361.78, + "end": 34366.36, + "probability": 0.9918 + }, + { + "start": 34366.86, + "end": 34371.66, + "probability": 0.9652 + }, + { + "start": 34372.2, + "end": 34374.38, + "probability": 0.7023 + }, + { + "start": 34374.86, + "end": 34376.36, + "probability": 0.9792 + }, + { + "start": 34376.8, + "end": 34379.74, + "probability": 0.9655 + }, + { + "start": 34379.8, + "end": 34380.72, + "probability": 0.8456 + }, + { + "start": 34381.24, + "end": 34382.7, + "probability": 0.5444 + }, + { + "start": 34382.88, + "end": 34386.14, + "probability": 0.984 + }, + { + "start": 34386.28, + "end": 34390.88, + "probability": 0.988 + }, + { + "start": 34391.74, + "end": 34392.86, + "probability": 0.6761 + }, + { + "start": 34393.56, + "end": 34397.08, + "probability": 0.8243 + }, + { + "start": 34397.92, + "end": 34398.92, + "probability": 0.5102 + }, + { + "start": 34399.12, + "end": 34402.56, + "probability": 0.9204 + }, + { + "start": 34402.56, + "end": 34406.04, + "probability": 0.985 + }, + { + "start": 34406.16, + "end": 34407.22, + "probability": 0.7509 + }, + { + "start": 34407.76, + "end": 34408.7, + "probability": 0.811 + }, + { + "start": 34409.48, + "end": 34414.7, + "probability": 0.9972 + }, + { + "start": 34414.7, + "end": 34420.88, + "probability": 0.9988 + }, + { + "start": 34421.88, + "end": 34425.66, + "probability": 0.9445 + }, + { + "start": 34426.2, + "end": 34427.94, + "probability": 0.9216 + }, + { + "start": 34429.12, + "end": 34433.18, + "probability": 0.9851 + }, + { + "start": 34433.9, + "end": 34436.36, + "probability": 0.7646 + }, + { + "start": 34436.7, + "end": 34439.28, + "probability": 0.866 + }, + { + "start": 34439.34, + "end": 34440.26, + "probability": 0.5449 + }, + { + "start": 34440.38, + "end": 34443.24, + "probability": 0.8836 + }, + { + "start": 34443.28, + "end": 34444.54, + "probability": 0.8813 + }, + { + "start": 34445.12, + "end": 34446.88, + "probability": 0.667 + }, + { + "start": 34447.66, + "end": 34448.64, + "probability": 0.6537 + }, + { + "start": 34449.02, + "end": 34450.82, + "probability": 0.3917 + }, + { + "start": 34451.14, + "end": 34451.96, + "probability": 0.6919 + }, + { + "start": 34452.32, + "end": 34454.28, + "probability": 0.9291 + }, + { + "start": 34455.1, + "end": 34456.1, + "probability": 0.7583 + }, + { + "start": 34456.82, + "end": 34459.32, + "probability": 0.9576 + }, + { + "start": 34460.02, + "end": 34461.08, + "probability": 0.7464 + }, + { + "start": 34461.58, + "end": 34466.34, + "probability": 0.8327 + }, + { + "start": 34466.46, + "end": 34468.0, + "probability": 0.9321 + }, + { + "start": 34468.34, + "end": 34469.78, + "probability": 0.843 + }, + { + "start": 34470.16, + "end": 34471.34, + "probability": 0.8112 + }, + { + "start": 34472.52, + "end": 34478.04, + "probability": 0.9924 + }, + { + "start": 34479.0, + "end": 34481.14, + "probability": 0.9696 + }, + { + "start": 34481.9, + "end": 34482.94, + "probability": 0.7419 + }, + { + "start": 34483.66, + "end": 34484.8, + "probability": 0.8229 + }, + { + "start": 34485.4, + "end": 34490.44, + "probability": 0.9829 + }, + { + "start": 34491.36, + "end": 34492.58, + "probability": 0.8464 + }, + { + "start": 34493.08, + "end": 34496.04, + "probability": 0.9966 + }, + { + "start": 34496.7, + "end": 34500.04, + "probability": 0.9198 + }, + { + "start": 34500.78, + "end": 34502.71, + "probability": 0.9883 + }, + { + "start": 34503.96, + "end": 34506.84, + "probability": 0.7848 + }, + { + "start": 34507.4, + "end": 34513.36, + "probability": 0.9134 + }, + { + "start": 34513.82, + "end": 34516.26, + "probability": 0.9854 + }, + { + "start": 34516.44, + "end": 34520.08, + "probability": 0.751 + }, + { + "start": 34520.58, + "end": 34522.76, + "probability": 0.7203 + }, + { + "start": 34523.88, + "end": 34524.26, + "probability": 0.7778 + }, + { + "start": 34524.34, + "end": 34526.18, + "probability": 0.9935 + }, + { + "start": 34526.3, + "end": 34529.64, + "probability": 0.9827 + }, + { + "start": 34530.16, + "end": 34534.54, + "probability": 0.9643 + }, + { + "start": 34535.66, + "end": 34538.92, + "probability": 0.7836 + }, + { + "start": 34539.52, + "end": 34545.58, + "probability": 0.6122 + }, + { + "start": 34546.24, + "end": 34548.96, + "probability": 0.9707 + }, + { + "start": 34549.96, + "end": 34553.04, + "probability": 0.998 + }, + { + "start": 34553.5, + "end": 34557.18, + "probability": 0.9739 + }, + { + "start": 34557.9, + "end": 34559.08, + "probability": 0.9891 + }, + { + "start": 34559.62, + "end": 34560.0, + "probability": 0.8024 + }, + { + "start": 34560.52, + "end": 34563.12, + "probability": 0.9985 + }, + { + "start": 34563.96, + "end": 34565.68, + "probability": 0.968 + }, + { + "start": 34565.8, + "end": 34566.56, + "probability": 0.9611 + }, + { + "start": 34566.78, + "end": 34567.56, + "probability": 0.9235 + }, + { + "start": 34568.04, + "end": 34569.04, + "probability": 0.9109 + }, + { + "start": 34569.42, + "end": 34572.5, + "probability": 0.9902 + }, + { + "start": 34572.5, + "end": 34576.02, + "probability": 0.9977 + }, + { + "start": 34577.12, + "end": 34577.76, + "probability": 0.5371 + }, + { + "start": 34578.38, + "end": 34580.06, + "probability": 0.9217 + }, + { + "start": 34580.94, + "end": 34584.28, + "probability": 0.9951 + }, + { + "start": 34585.62, + "end": 34587.18, + "probability": 0.7062 + }, + { + "start": 34588.12, + "end": 34590.14, + "probability": 0.9432 + }, + { + "start": 34590.4, + "end": 34592.67, + "probability": 0.9009 + }, + { + "start": 34593.72, + "end": 34597.7, + "probability": 0.9619 + }, + { + "start": 34597.7, + "end": 34602.24, + "probability": 0.9968 + }, + { + "start": 34602.66, + "end": 34605.18, + "probability": 0.949 + }, + { + "start": 34605.54, + "end": 34606.18, + "probability": 0.7368 + }, + { + "start": 34606.96, + "end": 34607.34, + "probability": 0.6197 + }, + { + "start": 34608.08, + "end": 34608.36, + "probability": 0.7206 + }, + { + "start": 34609.04, + "end": 34609.88, + "probability": 0.9644 + }, + { + "start": 34610.7, + "end": 34617.16, + "probability": 0.8002 + }, + { + "start": 34617.76, + "end": 34618.2, + "probability": 0.4697 + }, + { + "start": 34619.64, + "end": 34623.8, + "probability": 0.9984 + }, + { + "start": 34624.48, + "end": 34625.8, + "probability": 0.9872 + }, + { + "start": 34627.02, + "end": 34630.1, + "probability": 0.9941 + }, + { + "start": 34630.62, + "end": 34634.14, + "probability": 0.9756 + }, + { + "start": 34635.02, + "end": 34637.96, + "probability": 0.9763 + }, + { + "start": 34638.02, + "end": 34639.0, + "probability": 0.7106 + }, + { + "start": 34639.48, + "end": 34644.28, + "probability": 0.9651 + }, + { + "start": 34645.1, + "end": 34651.18, + "probability": 0.9569 + }, + { + "start": 34651.58, + "end": 34656.52, + "probability": 0.9943 + }, + { + "start": 34657.06, + "end": 34662.46, + "probability": 0.9785 + }, + { + "start": 34663.28, + "end": 34668.28, + "probability": 0.9921 + }, + { + "start": 34669.08, + "end": 34671.8, + "probability": 0.9932 + }, + { + "start": 34672.42, + "end": 34677.8, + "probability": 0.8269 + }, + { + "start": 34678.88, + "end": 34681.94, + "probability": 0.7774 + }, + { + "start": 34682.46, + "end": 34684.28, + "probability": 0.907 + }, + { + "start": 34685.38, + "end": 34689.0, + "probability": 0.9975 + }, + { + "start": 34690.36, + "end": 34692.5, + "probability": 0.9968 + }, + { + "start": 34692.9, + "end": 34696.62, + "probability": 0.9897 + }, + { + "start": 34697.66, + "end": 34703.96, + "probability": 0.9956 + }, + { + "start": 34704.44, + "end": 34709.08, + "probability": 0.9818 + }, + { + "start": 34709.2, + "end": 34716.56, + "probability": 0.9618 + }, + { + "start": 34717.56, + "end": 34721.28, + "probability": 0.9551 + }, + { + "start": 34721.8, + "end": 34725.86, + "probability": 0.98 + }, + { + "start": 34727.08, + "end": 34729.18, + "probability": 0.9844 + }, + { + "start": 34729.68, + "end": 34735.2, + "probability": 0.6088 + }, + { + "start": 34737.28, + "end": 34739.08, + "probability": 0.5375 + }, + { + "start": 34739.62, + "end": 34744.06, + "probability": 0.9958 + }, + { + "start": 34744.7, + "end": 34746.7, + "probability": 0.991 + }, + { + "start": 34748.12, + "end": 34752.98, + "probability": 0.9888 + }, + { + "start": 34754.2, + "end": 34759.9, + "probability": 0.9886 + }, + { + "start": 34760.68, + "end": 34761.84, + "probability": 0.903 + }, + { + "start": 34762.46, + "end": 34763.26, + "probability": 0.8394 + }, + { + "start": 34763.88, + "end": 34764.56, + "probability": 0.8006 + }, + { + "start": 34765.3, + "end": 34766.3, + "probability": 0.7015 + }, + { + "start": 34767.0, + "end": 34770.12, + "probability": 0.7887 + }, + { + "start": 34770.58, + "end": 34772.52, + "probability": 0.9724 + }, + { + "start": 34773.6, + "end": 34774.82, + "probability": 0.9937 + }, + { + "start": 34775.5, + "end": 34778.76, + "probability": 0.999 + }, + { + "start": 34779.72, + "end": 34783.82, + "probability": 0.9647 + }, + { + "start": 34784.88, + "end": 34786.68, + "probability": 0.9718 + }, + { + "start": 34787.5, + "end": 34790.74, + "probability": 0.9347 + }, + { + "start": 34791.46, + "end": 34797.0, + "probability": 0.9831 + }, + { + "start": 34798.8, + "end": 34801.72, + "probability": 0.8099 + }, + { + "start": 34803.58, + "end": 34805.88, + "probability": 0.9995 + }, + { + "start": 34807.1, + "end": 34808.1, + "probability": 0.2885 + }, + { + "start": 34808.76, + "end": 34813.18, + "probability": 0.6919 + }, + { + "start": 34813.62, + "end": 34815.64, + "probability": 0.6148 + }, + { + "start": 34815.64, + "end": 34818.46, + "probability": 0.8346 + }, + { + "start": 34818.94, + "end": 34820.94, + "probability": 0.9979 + }, + { + "start": 34821.74, + "end": 34824.76, + "probability": 0.9463 + }, + { + "start": 34825.26, + "end": 34827.34, + "probability": 0.8825 + }, + { + "start": 34827.92, + "end": 34828.56, + "probability": 0.9048 + }, + { + "start": 34829.46, + "end": 34832.86, + "probability": 0.9434 + }, + { + "start": 34833.66, + "end": 34834.84, + "probability": 0.8979 + }, + { + "start": 34835.02, + "end": 34836.22, + "probability": 0.6358 + }, + { + "start": 34836.46, + "end": 34840.58, + "probability": 0.9912 + }, + { + "start": 34841.18, + "end": 34843.28, + "probability": 0.9586 + }, + { + "start": 34843.9, + "end": 34846.96, + "probability": 0.8032 + }, + { + "start": 34847.52, + "end": 34848.32, + "probability": 0.892 + }, + { + "start": 34849.24, + "end": 34851.86, + "probability": 0.9671 + }, + { + "start": 34852.28, + "end": 34853.78, + "probability": 0.878 + }, + { + "start": 34853.98, + "end": 34854.84, + "probability": 0.7365 + }, + { + "start": 34854.94, + "end": 34856.62, + "probability": 0.8417 + }, + { + "start": 34857.18, + "end": 34860.44, + "probability": 0.8545 + }, + { + "start": 34860.94, + "end": 34862.96, + "probability": 0.9899 + }, + { + "start": 34863.56, + "end": 34867.92, + "probability": 0.9054 + }, + { + "start": 34868.6, + "end": 34873.68, + "probability": 0.9971 + }, + { + "start": 34874.3, + "end": 34876.44, + "probability": 0.9647 + }, + { + "start": 34877.3, + "end": 34879.24, + "probability": 0.886 + }, + { + "start": 34879.94, + "end": 34882.18, + "probability": 0.941 + }, + { + "start": 34882.9, + "end": 34890.84, + "probability": 0.9911 + }, + { + "start": 34891.66, + "end": 34894.0, + "probability": 0.9693 + }, + { + "start": 34894.58, + "end": 34900.76, + "probability": 0.998 + }, + { + "start": 34901.68, + "end": 34907.42, + "probability": 0.9977 + }, + { + "start": 34907.86, + "end": 34908.3, + "probability": 0.9026 + }, + { + "start": 34908.34, + "end": 34909.1, + "probability": 0.7847 + }, + { + "start": 34909.68, + "end": 34910.16, + "probability": 0.752 + }, + { + "start": 34911.3, + "end": 34913.4, + "probability": 0.793 + }, + { + "start": 34928.18, + "end": 34929.74, + "probability": 0.421 + }, + { + "start": 34929.94, + "end": 34930.16, + "probability": 0.6247 + }, + { + "start": 34930.16, + "end": 34930.2, + "probability": 0.4295 + }, + { + "start": 34930.22, + "end": 34933.32, + "probability": 0.9849 + }, + { + "start": 34933.96, + "end": 34937.12, + "probability": 0.8947 + }, + { + "start": 34937.42, + "end": 34937.8, + "probability": 0.8112 + }, + { + "start": 34937.92, + "end": 34942.62, + "probability": 0.9907 + }, + { + "start": 34942.62, + "end": 34946.57, + "probability": 0.9915 + }, + { + "start": 34947.74, + "end": 34951.3, + "probability": 0.9751 + }, + { + "start": 34952.28, + "end": 34953.02, + "probability": 0.9633 + }, + { + "start": 34954.12, + "end": 34956.46, + "probability": 0.8301 + }, + { + "start": 34956.7, + "end": 34958.08, + "probability": 0.4635 + }, + { + "start": 34958.38, + "end": 34958.86, + "probability": 0.2746 + }, + { + "start": 34960.96, + "end": 34963.58, + "probability": 0.9304 + }, + { + "start": 34964.02, + "end": 34965.86, + "probability": 0.6699 + }, + { + "start": 34966.26, + "end": 34967.06, + "probability": 0.5107 + }, + { + "start": 34969.72, + "end": 34971.1, + "probability": 0.8545 + }, + { + "start": 34973.48, + "end": 34975.9, + "probability": 0.6324 + }, + { + "start": 34976.46, + "end": 34980.82, + "probability": 0.7589 + }, + { + "start": 34981.08, + "end": 34983.1, + "probability": 0.8323 + }, + { + "start": 34983.88, + "end": 34984.9, + "probability": 0.7481 + }, + { + "start": 34985.36, + "end": 34987.39, + "probability": 0.9789 + }, + { + "start": 34987.86, + "end": 34989.24, + "probability": 0.9794 + }, + { + "start": 34990.28, + "end": 34991.2, + "probability": 0.9939 + }, + { + "start": 34992.2, + "end": 34994.1, + "probability": 0.769 + }, + { + "start": 34995.28, + "end": 34997.02, + "probability": 0.7407 + }, + { + "start": 34998.96, + "end": 35000.18, + "probability": 0.9775 + }, + { + "start": 35000.84, + "end": 35004.9, + "probability": 0.9993 + }, + { + "start": 35006.42, + "end": 35008.04, + "probability": 0.8905 + }, + { + "start": 35010.24, + "end": 35012.68, + "probability": 0.7749 + }, + { + "start": 35013.22, + "end": 35014.86, + "probability": 0.9873 + }, + { + "start": 35016.04, + "end": 35017.26, + "probability": 0.8801 + }, + { + "start": 35018.84, + "end": 35020.56, + "probability": 0.7962 + }, + { + "start": 35021.32, + "end": 35021.98, + "probability": 0.6847 + }, + { + "start": 35023.84, + "end": 35026.44, + "probability": 0.9878 + }, + { + "start": 35027.38, + "end": 35029.72, + "probability": 0.9952 + }, + { + "start": 35030.8, + "end": 35035.73, + "probability": 0.9986 + }, + { + "start": 35036.02, + "end": 35039.14, + "probability": 0.9523 + }, + { + "start": 35040.92, + "end": 35043.68, + "probability": 0.999 + }, + { + "start": 35045.12, + "end": 35046.26, + "probability": 0.3214 + }, + { + "start": 35047.08, + "end": 35048.68, + "probability": 0.923 + }, + { + "start": 35049.48, + "end": 35050.62, + "probability": 0.9368 + }, + { + "start": 35052.44, + "end": 35056.28, + "probability": 0.9412 + }, + { + "start": 35056.8, + "end": 35059.3, + "probability": 0.7223 + }, + { + "start": 35059.5, + "end": 35060.66, + "probability": 0.7644 + }, + { + "start": 35061.48, + "end": 35065.92, + "probability": 0.8946 + }, + { + "start": 35067.56, + "end": 35069.5, + "probability": 0.9937 + }, + { + "start": 35070.9, + "end": 35073.8, + "probability": 0.959 + }, + { + "start": 35075.76, + "end": 35078.2, + "probability": 0.9865 + }, + { + "start": 35078.58, + "end": 35078.98, + "probability": 0.0165 + }, + { + "start": 35079.4, + "end": 35081.58, + "probability": 0.9079 + }, + { + "start": 35081.98, + "end": 35084.6, + "probability": 0.9653 + }, + { + "start": 35084.96, + "end": 35086.1, + "probability": 0.8232 + }, + { + "start": 35086.74, + "end": 35087.36, + "probability": 0.9598 + }, + { + "start": 35088.8, + "end": 35089.1, + "probability": 0.0169 + }, + { + "start": 35089.1, + "end": 35090.33, + "probability": 0.6714 + }, + { + "start": 35090.6, + "end": 35093.2, + "probability": 0.9354 + }, + { + "start": 35095.44, + "end": 35096.96, + "probability": 0.9574 + }, + { + "start": 35098.6, + "end": 35101.32, + "probability": 0.984 + }, + { + "start": 35101.74, + "end": 35102.4, + "probability": 0.8586 + }, + { + "start": 35102.62, + "end": 35107.22, + "probability": 0.9723 + }, + { + "start": 35108.44, + "end": 35109.34, + "probability": 0.7356 + }, + { + "start": 35111.32, + "end": 35113.06, + "probability": 0.6203 + }, + { + "start": 35113.28, + "end": 35117.52, + "probability": 0.757 + }, + { + "start": 35118.96, + "end": 35120.36, + "probability": 0.9982 + }, + { + "start": 35122.08, + "end": 35127.8, + "probability": 0.9967 + }, + { + "start": 35128.86, + "end": 35131.66, + "probability": 0.9995 + }, + { + "start": 35132.46, + "end": 35134.52, + "probability": 0.894 + }, + { + "start": 35134.68, + "end": 35137.34, + "probability": 0.9162 + }, + { + "start": 35139.0, + "end": 35141.0, + "probability": 0.6229 + }, + { + "start": 35142.32, + "end": 35144.2, + "probability": 0.8319 + }, + { + "start": 35146.8, + "end": 35146.8, + "probability": 0.1193 + }, + { + "start": 35146.8, + "end": 35146.8, + "probability": 0.3851 + }, + { + "start": 35146.8, + "end": 35150.42, + "probability": 0.9775 + }, + { + "start": 35151.92, + "end": 35156.2, + "probability": 0.9968 + }, + { + "start": 35157.94, + "end": 35160.18, + "probability": 0.9973 + }, + { + "start": 35161.44, + "end": 35162.76, + "probability": 0.974 + }, + { + "start": 35163.46, + "end": 35166.14, + "probability": 0.9863 + }, + { + "start": 35166.96, + "end": 35168.46, + "probability": 0.9995 + }, + { + "start": 35169.16, + "end": 35173.34, + "probability": 0.9709 + }, + { + "start": 35173.84, + "end": 35174.8, + "probability": 0.999 + }, + { + "start": 35177.68, + "end": 35181.14, + "probability": 0.9971 + }, + { + "start": 35182.66, + "end": 35186.1, + "probability": 0.8275 + }, + { + "start": 35186.24, + "end": 35190.1, + "probability": 0.6738 + }, + { + "start": 35190.78, + "end": 35193.2, + "probability": 0.9012 + }, + { + "start": 35194.18, + "end": 35196.48, + "probability": 0.9906 + }, + { + "start": 35197.94, + "end": 35200.16, + "probability": 0.9888 + }, + { + "start": 35200.72, + "end": 35202.5, + "probability": 0.9911 + }, + { + "start": 35203.38, + "end": 35205.28, + "probability": 0.9469 + }, + { + "start": 35206.14, + "end": 35211.32, + "probability": 0.9959 + }, + { + "start": 35212.0, + "end": 35217.76, + "probability": 0.8799 + }, + { + "start": 35218.6, + "end": 35219.98, + "probability": 0.881 + }, + { + "start": 35220.72, + "end": 35224.02, + "probability": 0.9069 + }, + { + "start": 35225.0, + "end": 35225.82, + "probability": 0.9782 + }, + { + "start": 35226.46, + "end": 35227.34, + "probability": 0.9853 + }, + { + "start": 35227.88, + "end": 35231.58, + "probability": 0.9972 + }, + { + "start": 35232.2, + "end": 35233.95, + "probability": 0.7639 + }, + { + "start": 35235.64, + "end": 35237.26, + "probability": 0.9917 + }, + { + "start": 35238.36, + "end": 35240.12, + "probability": 0.9962 + }, + { + "start": 35242.34, + "end": 35247.52, + "probability": 0.9969 + }, + { + "start": 35247.94, + "end": 35252.92, + "probability": 0.9966 + }, + { + "start": 35254.04, + "end": 35254.04, + "probability": 0.0116 + }, + { + "start": 35254.58, + "end": 35257.84, + "probability": 0.9626 + }, + { + "start": 35258.32, + "end": 35260.72, + "probability": 0.9292 + }, + { + "start": 35260.94, + "end": 35261.56, + "probability": 0.9224 + }, + { + "start": 35261.74, + "end": 35262.2, + "probability": 0.8341 + }, + { + "start": 35262.38, + "end": 35262.9, + "probability": 0.8594 + }, + { + "start": 35264.3, + "end": 35268.04, + "probability": 0.9119 + }, + { + "start": 35268.46, + "end": 35272.4, + "probability": 0.9952 + }, + { + "start": 35273.08, + "end": 35275.28, + "probability": 0.9616 + }, + { + "start": 35275.94, + "end": 35277.16, + "probability": 0.9815 + }, + { + "start": 35277.34, + "end": 35278.84, + "probability": 0.8495 + }, + { + "start": 35279.24, + "end": 35282.9, + "probability": 0.9858 + }, + { + "start": 35283.42, + "end": 35285.1, + "probability": 0.9858 + }, + { + "start": 35285.22, + "end": 35285.7, + "probability": 0.4824 + }, + { + "start": 35286.18, + "end": 35287.08, + "probability": 0.5718 + }, + { + "start": 35287.62, + "end": 35288.94, + "probability": 0.9756 + }, + { + "start": 35289.58, + "end": 35291.5, + "probability": 0.8393 + }, + { + "start": 35292.12, + "end": 35293.0, + "probability": 0.9875 + }, + { + "start": 35294.3, + "end": 35295.42, + "probability": 0.7241 + }, + { + "start": 35302.24, + "end": 35303.26, + "probability": 0.7787 + }, + { + "start": 35308.94, + "end": 35310.04, + "probability": 0.5585 + }, + { + "start": 35310.8, + "end": 35312.26, + "probability": 0.7527 + }, + { + "start": 35325.6, + "end": 35326.24, + "probability": 0.4886 + }, + { + "start": 35328.9, + "end": 35332.42, + "probability": 0.737 + }, + { + "start": 35332.48, + "end": 35335.24, + "probability": 0.6445 + }, + { + "start": 35336.04, + "end": 35337.1, + "probability": 0.8877 + }, + { + "start": 35337.4, + "end": 35339.96, + "probability": 0.9897 + }, + { + "start": 35340.08, + "end": 35341.0, + "probability": 0.7331 + }, + { + "start": 35342.32, + "end": 35342.32, + "probability": 0.0787 + }, + { + "start": 35342.32, + "end": 35342.72, + "probability": 0.5239 + }, + { + "start": 35343.34, + "end": 35344.44, + "probability": 0.104 + }, + { + "start": 35344.98, + "end": 35346.2, + "probability": 0.732 + }, + { + "start": 35346.88, + "end": 35347.36, + "probability": 0.8433 + }, + { + "start": 35349.04, + "end": 35350.24, + "probability": 0.9365 + }, + { + "start": 35351.94, + "end": 35355.96, + "probability": 0.9883 + }, + { + "start": 35356.12, + "end": 35357.2, + "probability": 0.9084 + }, + { + "start": 35357.42, + "end": 35357.74, + "probability": 0.5276 + }, + { + "start": 35358.1, + "end": 35360.42, + "probability": 0.9907 + }, + { + "start": 35361.0, + "end": 35362.66, + "probability": 0.9743 + }, + { + "start": 35363.74, + "end": 35364.68, + "probability": 0.9987 + }, + { + "start": 35365.62, + "end": 35368.34, + "probability": 0.9325 + }, + { + "start": 35369.18, + "end": 35370.96, + "probability": 0.9637 + }, + { + "start": 35371.8, + "end": 35374.52, + "probability": 0.9534 + }, + { + "start": 35375.84, + "end": 35378.38, + "probability": 0.8613 + }, + { + "start": 35379.12, + "end": 35379.63, + "probability": 0.925 + }, + { + "start": 35380.62, + "end": 35381.04, + "probability": 0.9848 + }, + { + "start": 35381.74, + "end": 35383.17, + "probability": 0.9895 + }, + { + "start": 35384.62, + "end": 35385.42, + "probability": 0.7437 + }, + { + "start": 35386.2, + "end": 35387.87, + "probability": 0.9688 + }, + { + "start": 35388.86, + "end": 35392.6, + "probability": 0.9967 + }, + { + "start": 35394.06, + "end": 35395.68, + "probability": 0.7654 + }, + { + "start": 35396.96, + "end": 35400.52, + "probability": 0.9814 + }, + { + "start": 35401.54, + "end": 35404.12, + "probability": 0.9922 + }, + { + "start": 35405.48, + "end": 35406.7, + "probability": 0.6227 + }, + { + "start": 35407.52, + "end": 35409.52, + "probability": 0.8965 + }, + { + "start": 35413.72, + "end": 35419.02, + "probability": 0.7983 + }, + { + "start": 35419.78, + "end": 35423.4, + "probability": 0.7195 + }, + { + "start": 35424.12, + "end": 35425.82, + "probability": 0.9874 + }, + { + "start": 35426.82, + "end": 35430.9, + "probability": 0.9875 + }, + { + "start": 35432.08, + "end": 35432.92, + "probability": 0.808 + }, + { + "start": 35433.96, + "end": 35435.04, + "probability": 0.8943 + }, + { + "start": 35435.6, + "end": 35436.58, + "probability": 0.9387 + }, + { + "start": 35437.26, + "end": 35439.97, + "probability": 0.9292 + }, + { + "start": 35441.16, + "end": 35443.08, + "probability": 0.7664 + }, + { + "start": 35444.2, + "end": 35447.34, + "probability": 0.9893 + }, + { + "start": 35448.48, + "end": 35449.34, + "probability": 0.9512 + }, + { + "start": 35450.32, + "end": 35452.6, + "probability": 0.9889 + }, + { + "start": 35454.76, + "end": 35455.64, + "probability": 0.7686 + }, + { + "start": 35455.72, + "end": 35456.1, + "probability": 0.7477 + }, + { + "start": 35456.14, + "end": 35456.74, + "probability": 0.9317 + }, + { + "start": 35456.86, + "end": 35458.62, + "probability": 0.9794 + }, + { + "start": 35459.04, + "end": 35460.4, + "probability": 0.6678 + }, + { + "start": 35460.44, + "end": 35461.98, + "probability": 0.9574 + }, + { + "start": 35462.16, + "end": 35462.62, + "probability": 0.8333 + }, + { + "start": 35462.68, + "end": 35463.18, + "probability": 0.9948 + }, + { + "start": 35463.7, + "end": 35465.48, + "probability": 0.8664 + }, + { + "start": 35466.1, + "end": 35467.54, + "probability": 0.8724 + }, + { + "start": 35468.16, + "end": 35470.2, + "probability": 0.8688 + }, + { + "start": 35471.7, + "end": 35472.88, + "probability": 0.9307 + }, + { + "start": 35474.26, + "end": 35474.7, + "probability": 0.972 + }, + { + "start": 35475.66, + "end": 35476.11, + "probability": 0.6119 + }, + { + "start": 35477.32, + "end": 35481.06, + "probability": 0.9904 + }, + { + "start": 35483.02, + "end": 35485.2, + "probability": 0.8951 + }, + { + "start": 35486.48, + "end": 35486.5, + "probability": 0.0013 + }, + { + "start": 35487.38, + "end": 35488.0, + "probability": 0.9427 + }, + { + "start": 35489.04, + "end": 35490.64, + "probability": 0.9319 + }, + { + "start": 35493.16, + "end": 35493.8, + "probability": 0.9802 + }, + { + "start": 35494.86, + "end": 35495.42, + "probability": 0.8911 + }, + { + "start": 35496.68, + "end": 35499.56, + "probability": 0.9952 + }, + { + "start": 35500.18, + "end": 35502.36, + "probability": 0.6989 + }, + { + "start": 35503.48, + "end": 35506.48, + "probability": 0.5082 + }, + { + "start": 35507.64, + "end": 35508.2, + "probability": 0.9371 + }, + { + "start": 35508.86, + "end": 35511.46, + "probability": 0.7691 + }, + { + "start": 35511.98, + "end": 35513.34, + "probability": 0.643 + }, + { + "start": 35514.4, + "end": 35516.42, + "probability": 0.9932 + }, + { + "start": 35517.48, + "end": 35521.28, + "probability": 0.7729 + }, + { + "start": 35521.28, + "end": 35523.88, + "probability": 0.9976 + }, + { + "start": 35525.38, + "end": 35526.68, + "probability": 0.9984 + }, + { + "start": 35527.42, + "end": 35530.14, + "probability": 0.9941 + }, + { + "start": 35531.38, + "end": 35534.58, + "probability": 0.9982 + }, + { + "start": 35535.98, + "end": 35541.08, + "probability": 0.9849 + }, + { + "start": 35542.16, + "end": 35546.52, + "probability": 0.994 + }, + { + "start": 35548.34, + "end": 35548.86, + "probability": 0.813 + }, + { + "start": 35549.46, + "end": 35554.14, + "probability": 0.9966 + }, + { + "start": 35555.74, + "end": 35557.52, + "probability": 0.9989 + }, + { + "start": 35557.56, + "end": 35560.24, + "probability": 0.9911 + }, + { + "start": 35560.56, + "end": 35560.66, + "probability": 0.2445 + }, + { + "start": 35561.72, + "end": 35564.3, + "probability": 0.9873 + }, + { + "start": 35566.0, + "end": 35571.18, + "probability": 0.9927 + }, + { + "start": 35572.39, + "end": 35574.78, + "probability": 0.9458 + }, + { + "start": 35576.26, + "end": 35577.28, + "probability": 0.7643 + }, + { + "start": 35577.82, + "end": 35579.02, + "probability": 0.7948 + }, + { + "start": 35579.94, + "end": 35581.38, + "probability": 0.8795 + }, + { + "start": 35581.72, + "end": 35585.08, + "probability": 0.9963 + }, + { + "start": 35586.02, + "end": 35586.4, + "probability": 0.7917 + }, + { + "start": 35587.34, + "end": 35587.8, + "probability": 0.9897 + }, + { + "start": 35588.36, + "end": 35589.6, + "probability": 0.9775 + }, + { + "start": 35590.26, + "end": 35591.05, + "probability": 0.8615 + }, + { + "start": 35592.2, + "end": 35593.18, + "probability": 0.974 + }, + { + "start": 35594.0, + "end": 35595.22, + "probability": 0.9409 + }, + { + "start": 35595.88, + "end": 35596.67, + "probability": 0.8709 + }, + { + "start": 35599.72, + "end": 35602.04, + "probability": 0.7749 + }, + { + "start": 35602.84, + "end": 35608.46, + "probability": 0.9963 + }, + { + "start": 35608.48, + "end": 35610.36, + "probability": 0.8127 + }, + { + "start": 35610.98, + "end": 35613.9, + "probability": 0.9703 + }, + { + "start": 35615.2, + "end": 35615.81, + "probability": 0.9951 + }, + { + "start": 35617.18, + "end": 35619.44, + "probability": 0.9967 + }, + { + "start": 35620.58, + "end": 35623.94, + "probability": 0.9968 + }, + { + "start": 35624.74, + "end": 35626.32, + "probability": 0.9836 + }, + { + "start": 35626.52, + "end": 35627.2, + "probability": 0.6446 + }, + { + "start": 35628.0, + "end": 35628.92, + "probability": 0.7902 + }, + { + "start": 35628.92, + "end": 35631.22, + "probability": 0.8879 + }, + { + "start": 35657.02, + "end": 35657.88, + "probability": 0.7221 + }, + { + "start": 35658.44, + "end": 35659.6, + "probability": 0.8319 + }, + { + "start": 35661.04, + "end": 35662.3, + "probability": 0.8154 + }, + { + "start": 35664.04, + "end": 35667.38, + "probability": 0.9243 + }, + { + "start": 35668.28, + "end": 35670.68, + "probability": 0.6613 + }, + { + "start": 35671.9, + "end": 35673.8, + "probability": 0.9758 + }, + { + "start": 35677.34, + "end": 35681.1, + "probability": 0.9926 + }, + { + "start": 35684.82, + "end": 35687.2, + "probability": 0.7385 + }, + { + "start": 35687.52, + "end": 35691.62, + "probability": 0.9947 + }, + { + "start": 35692.16, + "end": 35695.8, + "probability": 0.9903 + }, + { + "start": 35696.2, + "end": 35699.06, + "probability": 0.0384 + }, + { + "start": 35699.59, + "end": 35703.64, + "probability": 0.6859 + }, + { + "start": 35704.48, + "end": 35707.14, + "probability": 0.7092 + }, + { + "start": 35709.78, + "end": 35712.06, + "probability": 0.7417 + }, + { + "start": 35712.86, + "end": 35717.5, + "probability": 0.6683 + }, + { + "start": 35720.52, + "end": 35722.56, + "probability": 0.9868 + }, + { + "start": 35724.2, + "end": 35724.8, + "probability": 0.6927 + }, + { + "start": 35725.48, + "end": 35727.62, + "probability": 0.7672 + }, + { + "start": 35727.86, + "end": 35729.06, + "probability": 0.8138 + }, + { + "start": 35734.14, + "end": 35736.74, + "probability": 0.98 + }, + { + "start": 35736.98, + "end": 35737.52, + "probability": 0.8517 + }, + { + "start": 35739.88, + "end": 35740.56, + "probability": 0.6821 + }, + { + "start": 35740.78, + "end": 35746.4, + "probability": 0.9847 + }, + { + "start": 35747.46, + "end": 35751.58, + "probability": 0.9951 + }, + { + "start": 35752.9, + "end": 35754.08, + "probability": 0.7024 + }, + { + "start": 35755.06, + "end": 35758.38, + "probability": 0.999 + }, + { + "start": 35759.6, + "end": 35762.32, + "probability": 0.9769 + }, + { + "start": 35763.56, + "end": 35768.56, + "probability": 0.9867 + }, + { + "start": 35770.32, + "end": 35772.76, + "probability": 0.999 + }, + { + "start": 35773.68, + "end": 35778.12, + "probability": 0.8913 + }, + { + "start": 35779.5, + "end": 35784.78, + "probability": 0.9904 + }, + { + "start": 35786.46, + "end": 35789.4, + "probability": 0.9867 + }, + { + "start": 35790.04, + "end": 35793.42, + "probability": 0.9958 + }, + { + "start": 35794.42, + "end": 35797.5, + "probability": 0.9987 + }, + { + "start": 35799.42, + "end": 35804.18, + "probability": 0.9963 + }, + { + "start": 35804.76, + "end": 35807.42, + "probability": 0.913 + }, + { + "start": 35807.6, + "end": 35811.86, + "probability": 0.9979 + }, + { + "start": 35812.92, + "end": 35817.72, + "probability": 0.9852 + }, + { + "start": 35817.96, + "end": 35818.8, + "probability": 0.6152 + }, + { + "start": 35819.34, + "end": 35820.86, + "probability": 0.9761 + }, + { + "start": 35822.06, + "end": 35824.88, + "probability": 0.9927 + }, + { + "start": 35824.88, + "end": 35828.7, + "probability": 0.9932 + }, + { + "start": 35830.58, + "end": 35835.5, + "probability": 0.9866 + }, + { + "start": 35836.62, + "end": 35839.24, + "probability": 0.9788 + }, + { + "start": 35839.24, + "end": 35842.26, + "probability": 0.9824 + }, + { + "start": 35843.54, + "end": 35845.92, + "probability": 0.9974 + }, + { + "start": 35846.5, + "end": 35851.2, + "probability": 0.994 + }, + { + "start": 35851.2, + "end": 35855.82, + "probability": 0.9293 + }, + { + "start": 35856.8, + "end": 35860.78, + "probability": 0.9837 + }, + { + "start": 35861.56, + "end": 35865.34, + "probability": 0.9932 + }, + { + "start": 35865.96, + "end": 35867.1, + "probability": 0.9142 + }, + { + "start": 35870.52, + "end": 35873.76, + "probability": 0.9894 + }, + { + "start": 35874.52, + "end": 35878.02, + "probability": 0.9894 + }, + { + "start": 35878.84, + "end": 35881.78, + "probability": 0.9819 + }, + { + "start": 35882.5, + "end": 35883.66, + "probability": 0.9733 + }, + { + "start": 35885.46, + "end": 35886.8, + "probability": 0.7466 + }, + { + "start": 35887.64, + "end": 35889.04, + "probability": 0.9774 + }, + { + "start": 35889.94, + "end": 35890.94, + "probability": 0.8886 + }, + { + "start": 35891.66, + "end": 35894.66, + "probability": 0.9718 + }, + { + "start": 35895.86, + "end": 35900.42, + "probability": 0.9978 + }, + { + "start": 35901.2, + "end": 35903.7, + "probability": 0.9969 + }, + { + "start": 35904.4, + "end": 35906.06, + "probability": 0.9486 + }, + { + "start": 35906.76, + "end": 35908.16, + "probability": 0.9029 + }, + { + "start": 35908.82, + "end": 35911.0, + "probability": 0.9612 + }, + { + "start": 35912.36, + "end": 35914.82, + "probability": 0.7361 + }, + { + "start": 35915.56, + "end": 35916.66, + "probability": 0.8343 + }, + { + "start": 35916.86, + "end": 35917.12, + "probability": 0.5109 + }, + { + "start": 35918.1, + "end": 35918.98, + "probability": 0.6378 + }, + { + "start": 35920.18, + "end": 35921.9, + "probability": 0.9561 + }, + { + "start": 35927.34, + "end": 35928.36, + "probability": 0.9949 + }, + { + "start": 35931.6, + "end": 35932.46, + "probability": 0.7136 + }, + { + "start": 35934.7, + "end": 35935.32, + "probability": 0.4417 + }, + { + "start": 35937.14, + "end": 35937.92, + "probability": 0.4528 + }, + { + "start": 35938.3, + "end": 35941.77, + "probability": 0.4016 + }, + { + "start": 35949.78, + "end": 35950.14, + "probability": 0.2367 + }, + { + "start": 35950.14, + "end": 35952.42, + "probability": 0.6753 + }, + { + "start": 35959.32, + "end": 35962.46, + "probability": 0.9395 + }, + { + "start": 35964.3, + "end": 35968.22, + "probability": 0.8677 + }, + { + "start": 35969.8, + "end": 35973.26, + "probability": 0.9948 + }, + { + "start": 35975.18, + "end": 35976.58, + "probability": 0.9385 + }, + { + "start": 35976.7, + "end": 35980.5, + "probability": 0.9837 + }, + { + "start": 35980.5, + "end": 35985.72, + "probability": 0.9897 + }, + { + "start": 35990.36, + "end": 35991.48, + "probability": 0.6104 + }, + { + "start": 35991.66, + "end": 35996.0, + "probability": 0.995 + }, + { + "start": 35997.02, + "end": 35999.32, + "probability": 0.7483 + }, + { + "start": 35999.38, + "end": 36003.46, + "probability": 0.9962 + }, + { + "start": 36004.88, + "end": 36006.38, + "probability": 0.9832 + }, + { + "start": 36006.44, + "end": 36009.04, + "probability": 0.9948 + }, + { + "start": 36010.56, + "end": 36014.78, + "probability": 0.9792 + }, + { + "start": 36015.0, + "end": 36015.98, + "probability": 0.7933 + }, + { + "start": 36017.82, + "end": 36020.14, + "probability": 0.9705 + }, + { + "start": 36022.84, + "end": 36025.28, + "probability": 0.9377 + }, + { + "start": 36025.66, + "end": 36026.94, + "probability": 0.4702 + }, + { + "start": 36027.72, + "end": 36031.36, + "probability": 0.9851 + }, + { + "start": 36032.62, + "end": 36035.84, + "probability": 0.998 + }, + { + "start": 36037.3, + "end": 36039.48, + "probability": 0.9844 + }, + { + "start": 36040.56, + "end": 36048.62, + "probability": 0.9663 + }, + { + "start": 36050.1, + "end": 36051.52, + "probability": 0.8238 + }, + { + "start": 36052.12, + "end": 36054.02, + "probability": 0.908 + }, + { + "start": 36055.89, + "end": 36062.9, + "probability": 0.9624 + }, + { + "start": 36063.02, + "end": 36064.2, + "probability": 0.9493 + }, + { + "start": 36065.62, + "end": 36070.76, + "probability": 0.9775 + }, + { + "start": 36071.64, + "end": 36073.22, + "probability": 0.7715 + }, + { + "start": 36074.44, + "end": 36081.82, + "probability": 0.921 + }, + { + "start": 36082.42, + "end": 36083.72, + "probability": 0.4363 + }, + { + "start": 36084.48, + "end": 36086.72, + "probability": 0.4963 + }, + { + "start": 36086.86, + "end": 36090.72, + "probability": 0.627 + }, + { + "start": 36091.9, + "end": 36093.9, + "probability": 0.9575 + }, + { + "start": 36096.06, + "end": 36101.64, + "probability": 0.9119 + }, + { + "start": 36104.07, + "end": 36108.58, + "probability": 0.9623 + }, + { + "start": 36110.34, + "end": 36112.96, + "probability": 0.9602 + }, + { + "start": 36113.1, + "end": 36114.7, + "probability": 0.9952 + }, + { + "start": 36115.86, + "end": 36117.84, + "probability": 0.9379 + }, + { + "start": 36118.46, + "end": 36120.18, + "probability": 0.9583 + }, + { + "start": 36122.22, + "end": 36130.16, + "probability": 0.969 + }, + { + "start": 36131.26, + "end": 36131.48, + "probability": 0.3855 + }, + { + "start": 36131.68, + "end": 36134.96, + "probability": 0.9897 + }, + { + "start": 36134.96, + "end": 36139.14, + "probability": 0.9924 + }, + { + "start": 36140.26, + "end": 36141.98, + "probability": 0.9884 + }, + { + "start": 36143.42, + "end": 36149.24, + "probability": 0.994 + }, + { + "start": 36149.34, + "end": 36150.96, + "probability": 0.6867 + }, + { + "start": 36151.54, + "end": 36153.2, + "probability": 0.4366 + }, + { + "start": 36153.98, + "end": 36156.78, + "probability": 0.8665 + }, + { + "start": 36157.16, + "end": 36160.1, + "probability": 0.998 + }, + { + "start": 36160.1, + "end": 36164.7, + "probability": 0.9977 + }, + { + "start": 36167.66, + "end": 36172.66, + "probability": 0.9734 + }, + { + "start": 36173.92, + "end": 36174.52, + "probability": 0.9844 + }, + { + "start": 36176.5, + "end": 36176.82, + "probability": 0.555 + }, + { + "start": 36180.0, + "end": 36182.14, + "probability": 0.9793 + }, + { + "start": 36183.56, + "end": 36183.96, + "probability": 0.7348 + }, + { + "start": 36185.16, + "end": 36188.16, + "probability": 0.9752 + }, + { + "start": 36189.1, + "end": 36192.44, + "probability": 0.9816 + }, + { + "start": 36193.78, + "end": 36196.0, + "probability": 0.9391 + }, + { + "start": 36198.2, + "end": 36199.36, + "probability": 0.9792 + }, + { + "start": 36200.32, + "end": 36201.48, + "probability": 0.862 + }, + { + "start": 36202.46, + "end": 36206.6, + "probability": 0.9689 + }, + { + "start": 36207.7, + "end": 36211.88, + "probability": 0.9626 + }, + { + "start": 36212.82, + "end": 36214.68, + "probability": 0.95 + }, + { + "start": 36216.2, + "end": 36217.84, + "probability": 0.7836 + }, + { + "start": 36219.12, + "end": 36223.02, + "probability": 0.9918 + }, + { + "start": 36223.02, + "end": 36228.3, + "probability": 0.9733 + }, + { + "start": 36229.18, + "end": 36229.84, + "probability": 0.9841 + }, + { + "start": 36232.48, + "end": 36236.56, + "probability": 0.9947 + }, + { + "start": 36236.56, + "end": 36241.0, + "probability": 0.9827 + }, + { + "start": 36242.78, + "end": 36243.74, + "probability": 0.5917 + }, + { + "start": 36244.82, + "end": 36245.74, + "probability": 0.8611 + }, + { + "start": 36246.48, + "end": 36249.02, + "probability": 0.9543 + }, + { + "start": 36249.14, + "end": 36251.92, + "probability": 0.9664 + }, + { + "start": 36253.82, + "end": 36256.94, + "probability": 0.9358 + }, + { + "start": 36257.68, + "end": 36259.3, + "probability": 0.7231 + }, + { + "start": 36260.2, + "end": 36264.28, + "probability": 0.9767 + }, + { + "start": 36264.8, + "end": 36265.46, + "probability": 0.6139 + }, + { + "start": 36266.42, + "end": 36267.24, + "probability": 0.9578 + }, + { + "start": 36269.82, + "end": 36275.88, + "probability": 0.9497 + }, + { + "start": 36276.92, + "end": 36279.7, + "probability": 0.9568 + }, + { + "start": 36280.08, + "end": 36282.34, + "probability": 0.7624 + }, + { + "start": 36282.7, + "end": 36283.14, + "probability": 0.7718 + }, + { + "start": 36284.38, + "end": 36287.66, + "probability": 0.9876 + }, + { + "start": 36287.66, + "end": 36293.28, + "probability": 0.8791 + }, + { + "start": 36294.28, + "end": 36295.74, + "probability": 0.7618 + }, + { + "start": 36296.54, + "end": 36297.88, + "probability": 0.8107 + }, + { + "start": 36298.08, + "end": 36301.48, + "probability": 0.8369 + }, + { + "start": 36301.56, + "end": 36307.5, + "probability": 0.9641 + }, + { + "start": 36309.64, + "end": 36312.8, + "probability": 0.97 + }, + { + "start": 36313.44, + "end": 36314.08, + "probability": 0.9618 + }, + { + "start": 36314.68, + "end": 36317.0, + "probability": 0.9897 + }, + { + "start": 36318.28, + "end": 36318.34, + "probability": 0.4718 + }, + { + "start": 36318.34, + "end": 36321.52, + "probability": 0.9626 + }, + { + "start": 36322.58, + "end": 36324.8, + "probability": 0.9306 + }, + { + "start": 36326.56, + "end": 36330.3, + "probability": 0.6803 + }, + { + "start": 36330.44, + "end": 36337.66, + "probability": 0.9637 + }, + { + "start": 36338.38, + "end": 36340.88, + "probability": 0.7404 + }, + { + "start": 36342.0, + "end": 36344.06, + "probability": 0.9919 + }, + { + "start": 36346.76, + "end": 36351.74, + "probability": 0.985 + }, + { + "start": 36352.32, + "end": 36353.4, + "probability": 0.8738 + }, + { + "start": 36354.58, + "end": 36361.64, + "probability": 0.6945 + }, + { + "start": 36362.34, + "end": 36364.2, + "probability": 0.7417 + }, + { + "start": 36364.76, + "end": 36367.22, + "probability": 0.9283 + }, + { + "start": 36368.22, + "end": 36370.58, + "probability": 0.9022 + }, + { + "start": 36371.2, + "end": 36371.86, + "probability": 0.7398 + }, + { + "start": 36372.3, + "end": 36374.06, + "probability": 0.9932 + }, + { + "start": 36374.1, + "end": 36375.28, + "probability": 0.9828 + }, + { + "start": 36375.64, + "end": 36376.83, + "probability": 0.9513 + }, + { + "start": 36377.46, + "end": 36379.82, + "probability": 0.9313 + }, + { + "start": 36381.2, + "end": 36381.82, + "probability": 0.9687 + }, + { + "start": 36383.16, + "end": 36384.38, + "probability": 0.9166 + }, + { + "start": 36385.4, + "end": 36389.6, + "probability": 0.9908 + }, + { + "start": 36390.42, + "end": 36396.46, + "probability": 0.9712 + }, + { + "start": 36396.6, + "end": 36397.64, + "probability": 0.9583 + }, + { + "start": 36397.78, + "end": 36398.78, + "probability": 0.8272 + }, + { + "start": 36404.88, + "end": 36407.53, + "probability": 0.7358 + }, + { + "start": 36408.98, + "end": 36411.66, + "probability": 0.6831 + }, + { + "start": 36413.82, + "end": 36418.78, + "probability": 0.9795 + }, + { + "start": 36419.0, + "end": 36426.66, + "probability": 0.9797 + }, + { + "start": 36428.32, + "end": 36429.25, + "probability": 0.5085 + }, + { + "start": 36429.4, + "end": 36430.5, + "probability": 0.7835 + }, + { + "start": 36430.68, + "end": 36432.7, + "probability": 0.8271 + }, + { + "start": 36432.72, + "end": 36434.04, + "probability": 0.9382 + }, + { + "start": 36434.36, + "end": 36435.54, + "probability": 0.9284 + }, + { + "start": 36435.54, + "end": 36435.66, + "probability": 0.3679 + }, + { + "start": 36435.76, + "end": 36436.32, + "probability": 0.8801 + }, + { + "start": 36437.64, + "end": 36439.52, + "probability": 0.9961 + }, + { + "start": 36439.72, + "end": 36441.42, + "probability": 0.9913 + }, + { + "start": 36442.56, + "end": 36447.24, + "probability": 0.877 + }, + { + "start": 36447.7, + "end": 36449.54, + "probability": 0.6458 + }, + { + "start": 36451.24, + "end": 36454.98, + "probability": 0.9858 + }, + { + "start": 36455.8, + "end": 36458.42, + "probability": 0.8873 + }, + { + "start": 36459.4, + "end": 36460.54, + "probability": 0.7255 + }, + { + "start": 36461.66, + "end": 36464.68, + "probability": 0.9833 + }, + { + "start": 36465.42, + "end": 36465.88, + "probability": 0.9793 + }, + { + "start": 36466.76, + "end": 36468.0, + "probability": 0.9316 + }, + { + "start": 36468.82, + "end": 36470.51, + "probability": 0.8651 + }, + { + "start": 36471.44, + "end": 36474.42, + "probability": 0.9941 + }, + { + "start": 36474.62, + "end": 36475.1, + "probability": 0.6643 + }, + { + "start": 36475.2, + "end": 36477.86, + "probability": 0.9792 + }, + { + "start": 36478.52, + "end": 36483.4, + "probability": 0.9948 + }, + { + "start": 36484.16, + "end": 36486.06, + "probability": 0.9176 + }, + { + "start": 36486.94, + "end": 36489.4, + "probability": 0.9932 + }, + { + "start": 36490.36, + "end": 36490.44, + "probability": 0.0682 + }, + { + "start": 36491.32, + "end": 36493.82, + "probability": 0.988 + }, + { + "start": 36494.98, + "end": 36497.04, + "probability": 0.8843 + }, + { + "start": 36497.86, + "end": 36501.84, + "probability": 0.9121 + }, + { + "start": 36502.36, + "end": 36503.98, + "probability": 0.979 + }, + { + "start": 36504.84, + "end": 36514.5, + "probability": 0.8417 + }, + { + "start": 36514.72, + "end": 36519.84, + "probability": 0.9994 + }, + { + "start": 36519.84, + "end": 36524.56, + "probability": 0.9293 + }, + { + "start": 36524.94, + "end": 36525.2, + "probability": 0.3714 + }, + { + "start": 36525.6, + "end": 36526.48, + "probability": 0.4225 + }, + { + "start": 36526.5, + "end": 36528.28, + "probability": 0.9026 + }, + { + "start": 36547.13, + "end": 36547.84, + "probability": 0.7349 + }, + { + "start": 36551.82, + "end": 36554.4, + "probability": 0.6527 + }, + { + "start": 36555.34, + "end": 36556.6, + "probability": 0.8148 + }, + { + "start": 36557.46, + "end": 36559.68, + "probability": 0.9987 + }, + { + "start": 36560.88, + "end": 36562.38, + "probability": 0.9948 + }, + { + "start": 36563.7, + "end": 36565.32, + "probability": 0.9993 + }, + { + "start": 36566.42, + "end": 36569.4, + "probability": 0.9986 + }, + { + "start": 36571.02, + "end": 36571.74, + "probability": 0.6328 + }, + { + "start": 36573.0, + "end": 36577.44, + "probability": 0.9831 + }, + { + "start": 36579.54, + "end": 36584.34, + "probability": 0.9635 + }, + { + "start": 36585.48, + "end": 36589.24, + "probability": 0.9949 + }, + { + "start": 36590.08, + "end": 36590.84, + "probability": 0.5261 + }, + { + "start": 36591.72, + "end": 36592.86, + "probability": 0.6119 + }, + { + "start": 36594.38, + "end": 36597.7, + "probability": 0.9771 + }, + { + "start": 36598.26, + "end": 36601.51, + "probability": 0.9645 + }, + { + "start": 36603.1, + "end": 36603.98, + "probability": 0.9608 + }, + { + "start": 36606.02, + "end": 36607.38, + "probability": 0.98 + }, + { + "start": 36608.26, + "end": 36610.62, + "probability": 0.4978 + }, + { + "start": 36611.2, + "end": 36613.68, + "probability": 0.9157 + }, + { + "start": 36614.36, + "end": 36615.92, + "probability": 0.9818 + }, + { + "start": 36617.74, + "end": 36620.01, + "probability": 0.9972 + }, + { + "start": 36621.12, + "end": 36622.04, + "probability": 0.5369 + }, + { + "start": 36625.36, + "end": 36627.12, + "probability": 0.7958 + }, + { + "start": 36627.42, + "end": 36629.42, + "probability": 0.8497 + }, + { + "start": 36630.1, + "end": 36631.92, + "probability": 0.8094 + }, + { + "start": 36633.02, + "end": 36633.76, + "probability": 0.4875 + }, + { + "start": 36634.34, + "end": 36635.72, + "probability": 0.9978 + }, + { + "start": 36636.9, + "end": 36638.96, + "probability": 0.8814 + }, + { + "start": 36639.76, + "end": 36641.8, + "probability": 0.7817 + }, + { + "start": 36643.48, + "end": 36646.96, + "probability": 0.99 + }, + { + "start": 36647.64, + "end": 36649.82, + "probability": 0.9778 + }, + { + "start": 36651.16, + "end": 36653.67, + "probability": 0.8838 + }, + { + "start": 36654.74, + "end": 36655.9, + "probability": 0.7253 + }, + { + "start": 36656.1, + "end": 36657.1, + "probability": 0.862 + }, + { + "start": 36657.24, + "end": 36658.42, + "probability": 0.8667 + }, + { + "start": 36659.24, + "end": 36664.72, + "probability": 0.9967 + }, + { + "start": 36666.3, + "end": 36667.8, + "probability": 0.9415 + }, + { + "start": 36669.3, + "end": 36671.58, + "probability": 0.9917 + }, + { + "start": 36672.26, + "end": 36676.12, + "probability": 0.9933 + }, + { + "start": 36677.1, + "end": 36682.38, + "probability": 0.9459 + }, + { + "start": 36683.84, + "end": 36686.08, + "probability": 0.7051 + }, + { + "start": 36687.98, + "end": 36689.88, + "probability": 0.8037 + }, + { + "start": 36690.08, + "end": 36690.66, + "probability": 0.9342 + }, + { + "start": 36690.8, + "end": 36691.79, + "probability": 0.7964 + }, + { + "start": 36692.98, + "end": 36694.44, + "probability": 0.8433 + }, + { + "start": 36695.16, + "end": 36695.96, + "probability": 0.8599 + }, + { + "start": 36697.02, + "end": 36697.32, + "probability": 0.9651 + }, + { + "start": 36698.58, + "end": 36698.86, + "probability": 0.366 + }, + { + "start": 36698.94, + "end": 36701.74, + "probability": 0.9809 + }, + { + "start": 36702.46, + "end": 36706.08, + "probability": 0.9401 + }, + { + "start": 36706.74, + "end": 36710.13, + "probability": 0.9222 + }, + { + "start": 36710.16, + "end": 36710.78, + "probability": 0.9671 + }, + { + "start": 36710.94, + "end": 36711.49, + "probability": 0.87 + }, + { + "start": 36712.52, + "end": 36714.4, + "probability": 0.7866 + }, + { + "start": 36714.8, + "end": 36718.64, + "probability": 0.967 + }, + { + "start": 36718.82, + "end": 36720.24, + "probability": 0.9106 + }, + { + "start": 36721.38, + "end": 36724.86, + "probability": 0.9915 + }, + { + "start": 36725.6, + "end": 36727.68, + "probability": 0.9993 + }, + { + "start": 36728.38, + "end": 36732.18, + "probability": 0.992 + }, + { + "start": 36733.04, + "end": 36737.22, + "probability": 0.9517 + }, + { + "start": 36738.4, + "end": 36741.92, + "probability": 0.9904 + }, + { + "start": 36742.96, + "end": 36745.56, + "probability": 0.9993 + }, + { + "start": 36746.38, + "end": 36747.92, + "probability": 0.9919 + }, + { + "start": 36749.14, + "end": 36750.42, + "probability": 0.9725 + }, + { + "start": 36751.88, + "end": 36754.64, + "probability": 0.9863 + }, + { + "start": 36755.74, + "end": 36757.36, + "probability": 0.9966 + }, + { + "start": 36758.18, + "end": 36759.69, + "probability": 0.7418 + }, + { + "start": 36760.74, + "end": 36761.86, + "probability": 0.8611 + }, + { + "start": 36762.86, + "end": 36763.76, + "probability": 0.9432 + }, + { + "start": 36764.3, + "end": 36767.0, + "probability": 0.8849 + }, + { + "start": 36767.82, + "end": 36768.74, + "probability": 0.514 + }, + { + "start": 36769.28, + "end": 36772.36, + "probability": 0.9673 + }, + { + "start": 36772.4, + "end": 36773.16, + "probability": 0.6581 + }, + { + "start": 36773.88, + "end": 36776.42, + "probability": 0.774 + }, + { + "start": 36776.42, + "end": 36778.42, + "probability": 0.9976 + }, + { + "start": 36778.58, + "end": 36779.18, + "probability": 0.6165 + }, + { + "start": 36779.64, + "end": 36780.34, + "probability": 0.8353 + }, + { + "start": 36781.3, + "end": 36782.02, + "probability": 0.7213 + }, + { + "start": 36782.52, + "end": 36783.14, + "probability": 0.946 + }, + { + "start": 36783.36, + "end": 36785.72, + "probability": 0.9736 + }, + { + "start": 36786.14, + "end": 36787.38, + "probability": 0.9445 + }, + { + "start": 36788.68, + "end": 36789.76, + "probability": 0.9637 + }, + { + "start": 36790.8, + "end": 36795.58, + "probability": 0.7365 + }, + { + "start": 36796.0, + "end": 36797.22, + "probability": 0.7269 + }, + { + "start": 36797.74, + "end": 36800.26, + "probability": 0.7928 + }, + { + "start": 36801.2, + "end": 36802.28, + "probability": 0.5014 + }, + { + "start": 36804.14, + "end": 36807.34, + "probability": 0.9056 + }, + { + "start": 36808.42, + "end": 36812.18, + "probability": 0.991 + }, + { + "start": 36814.8, + "end": 36819.1, + "probability": 0.8561 + }, + { + "start": 36820.08, + "end": 36822.82, + "probability": 0.9269 + }, + { + "start": 36824.54, + "end": 36825.82, + "probability": 0.731 + }, + { + "start": 36826.38, + "end": 36826.38, + "probability": 0.5375 + }, + { + "start": 36826.38, + "end": 36826.92, + "probability": 0.5318 + }, + { + "start": 36827.88, + "end": 36832.48, + "probability": 0.9345 + }, + { + "start": 36832.58, + "end": 36833.46, + "probability": 0.8974 + }, + { + "start": 36833.96, + "end": 36834.34, + "probability": 0.8078 + }, + { + "start": 36834.52, + "end": 36836.38, + "probability": 0.8232 + }, + { + "start": 36837.08, + "end": 36839.24, + "probability": 0.7489 + }, + { + "start": 36840.38, + "end": 36840.96, + "probability": 0.6492 + }, + { + "start": 36841.92, + "end": 36845.42, + "probability": 0.6712 + }, + { + "start": 36846.2, + "end": 36848.52, + "probability": 0.8953 + }, + { + "start": 36848.98, + "end": 36849.94, + "probability": 0.5587 + }, + { + "start": 36850.46, + "end": 36851.48, + "probability": 0.7411 + }, + { + "start": 36852.08, + "end": 36852.88, + "probability": 0.9045 + }, + { + "start": 36852.98, + "end": 36858.46, + "probability": 0.9637 + }, + { + "start": 36859.02, + "end": 36860.92, + "probability": 0.9749 + }, + { + "start": 36861.46, + "end": 36862.38, + "probability": 0.9654 + }, + { + "start": 36863.02, + "end": 36864.7, + "probability": 0.9982 + }, + { + "start": 36865.5, + "end": 36865.74, + "probability": 0.2987 + }, + { + "start": 36866.08, + "end": 36866.6, + "probability": 0.6093 + }, + { + "start": 36867.0, + "end": 36870.44, + "probability": 0.9854 + }, + { + "start": 36871.6, + "end": 36875.06, + "probability": 0.979 + }, + { + "start": 36875.74, + "end": 36880.18, + "probability": 0.9872 + }, + { + "start": 36881.16, + "end": 36882.68, + "probability": 0.8877 + }, + { + "start": 36883.6, + "end": 36886.71, + "probability": 0.8707 + }, + { + "start": 36888.46, + "end": 36893.4, + "probability": 0.9854 + }, + { + "start": 36894.18, + "end": 36896.02, + "probability": 0.8679 + }, + { + "start": 36896.54, + "end": 36897.48, + "probability": 0.8329 + }, + { + "start": 36898.34, + "end": 36901.04, + "probability": 0.9866 + }, + { + "start": 36902.06, + "end": 36903.22, + "probability": 0.8975 + }, + { + "start": 36903.8, + "end": 36904.95, + "probability": 0.9927 + }, + { + "start": 36905.62, + "end": 36906.9, + "probability": 0.7671 + }, + { + "start": 36907.08, + "end": 36909.56, + "probability": 0.9717 + }, + { + "start": 36910.32, + "end": 36914.0, + "probability": 0.9932 + }, + { + "start": 36914.62, + "end": 36920.02, + "probability": 0.9538 + }, + { + "start": 36920.72, + "end": 36921.58, + "probability": 0.9153 + }, + { + "start": 36922.28, + "end": 36925.12, + "probability": 0.9541 + }, + { + "start": 36925.8, + "end": 36927.0, + "probability": 0.9391 + }, + { + "start": 36927.84, + "end": 36929.78, + "probability": 0.9749 + }, + { + "start": 36931.06, + "end": 36932.76, + "probability": 0.6975 + }, + { + "start": 36932.98, + "end": 36935.34, + "probability": 0.9434 + }, + { + "start": 36935.86, + "end": 36938.28, + "probability": 0.9192 + }, + { + "start": 36938.84, + "end": 36939.66, + "probability": 0.9111 + }, + { + "start": 36940.22, + "end": 36943.78, + "probability": 0.7313 + }, + { + "start": 36945.52, + "end": 36946.42, + "probability": 0.4282 + }, + { + "start": 36946.76, + "end": 36948.69, + "probability": 0.7733 + }, + { + "start": 36957.48, + "end": 36959.38, + "probability": 0.9739 + }, + { + "start": 36959.56, + "end": 36959.9, + "probability": 0.3365 + }, + { + "start": 36960.4, + "end": 36962.96, + "probability": 0.9662 + }, + { + "start": 36964.7, + "end": 36969.26, + "probability": 0.8649 + }, + { + "start": 36969.84, + "end": 36971.4, + "probability": 0.9878 + }, + { + "start": 36972.12, + "end": 36978.08, + "probability": 0.9772 + }, + { + "start": 36979.74, + "end": 36981.7, + "probability": 0.8924 + }, + { + "start": 36981.76, + "end": 36986.96, + "probability": 0.9574 + }, + { + "start": 36986.96, + "end": 36989.44, + "probability": 0.999 + }, + { + "start": 36989.94, + "end": 36991.1, + "probability": 0.9878 + }, + { + "start": 36991.26, + "end": 36992.98, + "probability": 0.9756 + }, + { + "start": 36993.4, + "end": 36994.76, + "probability": 0.9596 + }, + { + "start": 36996.72, + "end": 36999.72, + "probability": 0.9976 + }, + { + "start": 37001.18, + "end": 37001.34, + "probability": 0.8411 + }, + { + "start": 37001.36, + "end": 37001.68, + "probability": 0.7771 + }, + { + "start": 37001.78, + "end": 37003.14, + "probability": 0.6984 + }, + { + "start": 37003.3, + "end": 37005.72, + "probability": 0.9873 + }, + { + "start": 37007.02, + "end": 37007.64, + "probability": 0.9528 + }, + { + "start": 37008.02, + "end": 37009.56, + "probability": 0.7496 + }, + { + "start": 37009.68, + "end": 37011.82, + "probability": 0.9925 + }, + { + "start": 37011.82, + "end": 37015.1, + "probability": 0.9928 + }, + { + "start": 37015.94, + "end": 37017.46, + "probability": 0.5681 + }, + { + "start": 37018.16, + "end": 37021.2, + "probability": 0.9946 + }, + { + "start": 37023.48, + "end": 37025.96, + "probability": 0.969 + }, + { + "start": 37027.7, + "end": 37030.48, + "probability": 0.9984 + }, + { + "start": 37031.32, + "end": 37033.76, + "probability": 0.9861 + }, + { + "start": 37033.82, + "end": 37036.06, + "probability": 0.9653 + }, + { + "start": 37036.66, + "end": 37038.68, + "probability": 0.9963 + }, + { + "start": 37038.88, + "end": 37040.56, + "probability": 0.9985 + }, + { + "start": 37042.04, + "end": 37045.12, + "probability": 0.9517 + }, + { + "start": 37046.66, + "end": 37051.04, + "probability": 0.9966 + }, + { + "start": 37051.38, + "end": 37052.58, + "probability": 0.9951 + }, + { + "start": 37053.36, + "end": 37054.64, + "probability": 0.9946 + }, + { + "start": 37054.64, + "end": 37056.1, + "probability": 0.9736 + }, + { + "start": 37057.54, + "end": 37059.08, + "probability": 0.9976 + }, + { + "start": 37059.16, + "end": 37060.88, + "probability": 0.9802 + }, + { + "start": 37061.14, + "end": 37063.06, + "probability": 0.9921 + }, + { + "start": 37064.76, + "end": 37068.36, + "probability": 0.9141 + }, + { + "start": 37069.4, + "end": 37070.6, + "probability": 0.9869 + }, + { + "start": 37070.98, + "end": 37072.69, + "probability": 0.9722 + }, + { + "start": 37072.96, + "end": 37074.7, + "probability": 0.9937 + }, + { + "start": 37075.26, + "end": 37076.28, + "probability": 0.9979 + }, + { + "start": 37077.16, + "end": 37077.8, + "probability": 0.8598 + }, + { + "start": 37079.5, + "end": 37081.8, + "probability": 0.9927 + }, + { + "start": 37081.92, + "end": 37082.88, + "probability": 0.9758 + }, + { + "start": 37083.12, + "end": 37084.44, + "probability": 0.8481 + }, + { + "start": 37085.66, + "end": 37088.0, + "probability": 0.9661 + }, + { + "start": 37088.08, + "end": 37090.84, + "probability": 0.9984 + }, + { + "start": 37090.84, + "end": 37093.62, + "probability": 0.8608 + }, + { + "start": 37093.98, + "end": 37094.82, + "probability": 0.7074 + }, + { + "start": 37094.9, + "end": 37096.09, + "probability": 0.982 + }, + { + "start": 37097.68, + "end": 37099.26, + "probability": 0.9639 + }, + { + "start": 37100.38, + "end": 37104.28, + "probability": 0.9829 + }, + { + "start": 37106.18, + "end": 37108.74, + "probability": 0.9785 + }, + { + "start": 37108.8, + "end": 37110.64, + "probability": 0.9309 + }, + { + "start": 37111.84, + "end": 37113.2, + "probability": 0.8156 + }, + { + "start": 37113.34, + "end": 37114.78, + "probability": 0.999 + }, + { + "start": 37114.8, + "end": 37117.42, + "probability": 0.9634 + }, + { + "start": 37118.82, + "end": 37121.84, + "probability": 0.9863 + }, + { + "start": 37122.0, + "end": 37124.76, + "probability": 0.9331 + }, + { + "start": 37125.34, + "end": 37127.74, + "probability": 0.9884 + }, + { + "start": 37128.02, + "end": 37129.6, + "probability": 0.9612 + }, + { + "start": 37131.86, + "end": 37134.08, + "probability": 0.999 + }, + { + "start": 37134.08, + "end": 37137.48, + "probability": 0.9983 + }, + { + "start": 37139.02, + "end": 37140.36, + "probability": 0.803 + }, + { + "start": 37141.06, + "end": 37141.86, + "probability": 0.9441 + }, + { + "start": 37142.28, + "end": 37145.72, + "probability": 0.991 + }, + { + "start": 37146.0, + "end": 37147.11, + "probability": 0.9712 + }, + { + "start": 37148.66, + "end": 37150.96, + "probability": 0.0159 + }, + { + "start": 37150.96, + "end": 37150.96, + "probability": 0.3786 + }, + { + "start": 37150.96, + "end": 37150.96, + "probability": 0.1106 + }, + { + "start": 37150.96, + "end": 37151.36, + "probability": 0.2774 + }, + { + "start": 37151.36, + "end": 37152.14, + "probability": 0.3916 + }, + { + "start": 37152.24, + "end": 37155.04, + "probability": 0.9042 + }, + { + "start": 37156.44, + "end": 37158.98, + "probability": 0.9123 + }, + { + "start": 37159.5, + "end": 37164.0, + "probability": 0.9817 + }, + { + "start": 37164.28, + "end": 37166.52, + "probability": 0.9987 + }, + { + "start": 37166.68, + "end": 37168.08, + "probability": 0.8147 + }, + { + "start": 37168.4, + "end": 37169.28, + "probability": 0.7869 + }, + { + "start": 37169.86, + "end": 37172.52, + "probability": 0.9708 + }, + { + "start": 37172.88, + "end": 37175.96, + "probability": 0.9942 + }, + { + "start": 37176.58, + "end": 37178.98, + "probability": 0.9056 + }, + { + "start": 37179.38, + "end": 37180.58, + "probability": 0.7716 + }, + { + "start": 37181.1, + "end": 37181.84, + "probability": 0.8951 + }, + { + "start": 37181.96, + "end": 37185.4, + "probability": 0.9879 + }, + { + "start": 37185.72, + "end": 37186.8, + "probability": 0.9755 + }, + { + "start": 37187.04, + "end": 37187.86, + "probability": 0.4767 + }, + { + "start": 37188.28, + "end": 37191.92, + "probability": 0.9959 + }, + { + "start": 37192.0, + "end": 37192.28, + "probability": 0.7915 + }, + { + "start": 37193.16, + "end": 37193.94, + "probability": 0.5222 + }, + { + "start": 37193.98, + "end": 37195.72, + "probability": 0.9495 + }, + { + "start": 37196.58, + "end": 37197.22, + "probability": 0.3066 + }, + { + "start": 37197.82, + "end": 37197.82, + "probability": 0.1403 + }, + { + "start": 37201.02, + "end": 37201.02, + "probability": 0.0291 + }, + { + "start": 37224.04, + "end": 37225.44, + "probability": 0.0683 + }, + { + "start": 37225.98, + "end": 37227.64, + "probability": 0.7742 + }, + { + "start": 37229.1, + "end": 37230.4, + "probability": 0.7631 + }, + { + "start": 37231.76, + "end": 37233.82, + "probability": 0.9759 + }, + { + "start": 37235.04, + "end": 37236.9, + "probability": 0.999 + }, + { + "start": 37239.18, + "end": 37243.3, + "probability": 0.9703 + }, + { + "start": 37244.34, + "end": 37245.74, + "probability": 0.987 + }, + { + "start": 37246.76, + "end": 37248.98, + "probability": 0.9958 + }, + { + "start": 37250.14, + "end": 37254.62, + "probability": 0.8761 + }, + { + "start": 37255.24, + "end": 37259.1, + "probability": 0.8779 + }, + { + "start": 37259.72, + "end": 37260.5, + "probability": 0.9075 + }, + { + "start": 37260.86, + "end": 37263.04, + "probability": 0.9961 + }, + { + "start": 37264.3, + "end": 37267.52, + "probability": 0.9979 + }, + { + "start": 37268.44, + "end": 37269.16, + "probability": 0.97 + }, + { + "start": 37270.08, + "end": 37274.72, + "probability": 0.964 + }, + { + "start": 37276.4, + "end": 37279.96, + "probability": 0.9787 + }, + { + "start": 37280.52, + "end": 37281.62, + "probability": 0.9977 + }, + { + "start": 37282.16, + "end": 37284.66, + "probability": 0.9824 + }, + { + "start": 37285.28, + "end": 37288.0, + "probability": 0.9673 + }, + { + "start": 37288.2, + "end": 37288.74, + "probability": 0.7869 + }, + { + "start": 37289.1, + "end": 37292.2, + "probability": 0.9902 + }, + { + "start": 37293.18, + "end": 37294.3, + "probability": 0.5992 + }, + { + "start": 37295.6, + "end": 37299.74, + "probability": 0.9929 + }, + { + "start": 37300.3, + "end": 37301.96, + "probability": 0.9736 + }, + { + "start": 37302.58, + "end": 37305.24, + "probability": 0.9863 + }, + { + "start": 37305.82, + "end": 37308.16, + "probability": 0.9888 + }, + { + "start": 37308.68, + "end": 37310.24, + "probability": 0.9902 + }, + { + "start": 37310.92, + "end": 37316.4, + "probability": 0.9962 + }, + { + "start": 37317.34, + "end": 37319.14, + "probability": 0.9959 + }, + { + "start": 37319.92, + "end": 37321.52, + "probability": 0.998 + }, + { + "start": 37322.66, + "end": 37323.02, + "probability": 0.9648 + }, + { + "start": 37323.6, + "end": 37325.72, + "probability": 0.9971 + }, + { + "start": 37326.68, + "end": 37327.48, + "probability": 0.7059 + }, + { + "start": 37328.14, + "end": 37330.6, + "probability": 0.8215 + }, + { + "start": 37331.18, + "end": 37331.86, + "probability": 0.7455 + }, + { + "start": 37332.78, + "end": 37334.58, + "probability": 0.989 + }, + { + "start": 37335.4, + "end": 37336.86, + "probability": 0.9924 + }, + { + "start": 37337.6, + "end": 37339.0, + "probability": 0.9954 + }, + { + "start": 37339.78, + "end": 37341.26, + "probability": 0.9243 + }, + { + "start": 37342.0, + "end": 37344.5, + "probability": 0.9598 + }, + { + "start": 37346.52, + "end": 37347.46, + "probability": 0.2382 + }, + { + "start": 37348.24, + "end": 37350.16, + "probability": 0.9856 + }, + { + "start": 37350.32, + "end": 37351.9, + "probability": 0.8921 + }, + { + "start": 37352.04, + "end": 37352.48, + "probability": 0.226 + }, + { + "start": 37355.62, + "end": 37357.26, + "probability": 0.689 + }, + { + "start": 37358.82, + "end": 37364.96, + "probability": 0.9961 + }, + { + "start": 37366.02, + "end": 37367.28, + "probability": 0.8471 + }, + { + "start": 37367.82, + "end": 37372.0, + "probability": 0.9957 + }, + { + "start": 37372.78, + "end": 37373.58, + "probability": 0.7104 + }, + { + "start": 37374.84, + "end": 37375.86, + "probability": 0.9884 + }, + { + "start": 37376.88, + "end": 37379.26, + "probability": 0.993 + }, + { + "start": 37379.9, + "end": 37383.12, + "probability": 0.9863 + }, + { + "start": 37383.56, + "end": 37385.0, + "probability": 0.9689 + }, + { + "start": 37385.44, + "end": 37388.12, + "probability": 0.9618 + }, + { + "start": 37388.58, + "end": 37390.66, + "probability": 0.9973 + }, + { + "start": 37391.46, + "end": 37392.5, + "probability": 0.9842 + }, + { + "start": 37393.86, + "end": 37397.08, + "probability": 0.9802 + }, + { + "start": 37397.74, + "end": 37400.06, + "probability": 0.8656 + }, + { + "start": 37400.74, + "end": 37402.58, + "probability": 0.9933 + }, + { + "start": 37403.12, + "end": 37403.88, + "probability": 0.9836 + }, + { + "start": 37404.48, + "end": 37406.92, + "probability": 0.9474 + }, + { + "start": 37408.48, + "end": 37410.84, + "probability": 0.9795 + }, + { + "start": 37411.4, + "end": 37413.94, + "probability": 0.7086 + }, + { + "start": 37415.14, + "end": 37416.94, + "probability": 0.8142 + }, + { + "start": 37417.9, + "end": 37420.68, + "probability": 0.9495 + }, + { + "start": 37421.34, + "end": 37424.12, + "probability": 0.8916 + }, + { + "start": 37424.98, + "end": 37427.56, + "probability": 0.885 + }, + { + "start": 37428.24, + "end": 37429.0, + "probability": 0.5872 + }, + { + "start": 37429.6, + "end": 37433.2, + "probability": 0.9831 + }, + { + "start": 37434.02, + "end": 37434.82, + "probability": 0.9707 + }, + { + "start": 37435.56, + "end": 37440.14, + "probability": 0.9429 + }, + { + "start": 37440.58, + "end": 37441.76, + "probability": 0.9042 + }, + { + "start": 37442.72, + "end": 37444.28, + "probability": 0.8032 + }, + { + "start": 37444.32, + "end": 37446.16, + "probability": 0.9943 + }, + { + "start": 37446.56, + "end": 37447.82, + "probability": 0.8482 + }, + { + "start": 37448.42, + "end": 37450.96, + "probability": 0.0873 + }, + { + "start": 37451.54, + "end": 37453.58, + "probability": 0.2041 + }, + { + "start": 37454.04, + "end": 37455.28, + "probability": 0.0582 + }, + { + "start": 37456.14, + "end": 37459.86, + "probability": 0.2919 + }, + { + "start": 37459.96, + "end": 37461.54, + "probability": 0.7231 + }, + { + "start": 37461.54, + "end": 37463.08, + "probability": 0.9951 + }, + { + "start": 37464.54, + "end": 37465.18, + "probability": 0.5932 + }, + { + "start": 37465.72, + "end": 37466.68, + "probability": 0.6971 + }, + { + "start": 37467.54, + "end": 37470.03, + "probability": 0.9976 + }, + { + "start": 37471.32, + "end": 37472.52, + "probability": 0.856 + }, + { + "start": 37477.26, + "end": 37483.28, + "probability": 0.9972 + }, + { + "start": 37485.16, + "end": 37487.12, + "probability": 0.9992 + }, + { + "start": 37488.0, + "end": 37488.66, + "probability": 0.9539 + }, + { + "start": 37489.54, + "end": 37492.36, + "probability": 0.9396 + }, + { + "start": 37492.66, + "end": 37494.18, + "probability": 0.877 + }, + { + "start": 37495.68, + "end": 37495.86, + "probability": 0.5928 + }, + { + "start": 37497.28, + "end": 37501.32, + "probability": 0.9773 + }, + { + "start": 37502.54, + "end": 37503.54, + "probability": 0.9724 + }, + { + "start": 37504.78, + "end": 37506.46, + "probability": 0.8804 + }, + { + "start": 37507.38, + "end": 37508.4, + "probability": 0.8969 + }, + { + "start": 37508.52, + "end": 37509.18, + "probability": 0.7275 + }, + { + "start": 37509.24, + "end": 37509.66, + "probability": 0.9038 + }, + { + "start": 37510.54, + "end": 37512.28, + "probability": 0.999 + }, + { + "start": 37512.94, + "end": 37516.46, + "probability": 0.9336 + }, + { + "start": 37517.16, + "end": 37520.86, + "probability": 0.9774 + }, + { + "start": 37521.04, + "end": 37524.34, + "probability": 0.9894 + }, + { + "start": 37524.92, + "end": 37528.28, + "probability": 0.9834 + }, + { + "start": 37529.52, + "end": 37530.72, + "probability": 0.9332 + }, + { + "start": 37530.88, + "end": 37532.18, + "probability": 0.9926 + }, + { + "start": 37533.38, + "end": 37533.98, + "probability": 0.9126 + }, + { + "start": 37534.42, + "end": 37537.29, + "probability": 0.7954 + }, + { + "start": 37537.42, + "end": 37539.84, + "probability": 0.9955 + }, + { + "start": 37540.58, + "end": 37541.76, + "probability": 0.994 + }, + { + "start": 37542.28, + "end": 37544.34, + "probability": 0.9686 + }, + { + "start": 37544.98, + "end": 37547.38, + "probability": 0.9636 + }, + { + "start": 37547.7, + "end": 37550.44, + "probability": 0.9966 + }, + { + "start": 37551.44, + "end": 37552.0, + "probability": 0.4388 + }, + { + "start": 37552.4, + "end": 37552.76, + "probability": 0.5209 + }, + { + "start": 37553.52, + "end": 37554.2, + "probability": 0.8513 + }, + { + "start": 37554.82, + "end": 37558.32, + "probability": 0.9484 + }, + { + "start": 37559.22, + "end": 37563.2, + "probability": 0.9502 + }, + { + "start": 37563.62, + "end": 37564.5, + "probability": 0.7753 + }, + { + "start": 37564.68, + "end": 37565.72, + "probability": 0.9485 + }, + { + "start": 37566.16, + "end": 37566.96, + "probability": 0.9704 + }, + { + "start": 37567.26, + "end": 37567.84, + "probability": 0.9558 + }, + { + "start": 37568.22, + "end": 37568.78, + "probability": 0.9153 + }, + { + "start": 37569.08, + "end": 37569.82, + "probability": 0.9549 + }, + { + "start": 37570.08, + "end": 37572.18, + "probability": 0.987 + }, + { + "start": 37573.72, + "end": 37577.0, + "probability": 0.9403 + }, + { + "start": 37577.44, + "end": 37578.01, + "probability": 0.9841 + }, + { + "start": 37578.54, + "end": 37579.54, + "probability": 0.9926 + }, + { + "start": 37580.02, + "end": 37580.44, + "probability": 0.6435 + }, + { + "start": 37580.76, + "end": 37584.74, + "probability": 0.9874 + }, + { + "start": 37585.7, + "end": 37586.84, + "probability": 0.9935 + }, + { + "start": 37587.38, + "end": 37588.7, + "probability": 0.9645 + }, + { + "start": 37589.2, + "end": 37591.3, + "probability": 0.9954 + }, + { + "start": 37592.02, + "end": 37594.48, + "probability": 0.8835 + }, + { + "start": 37594.56, + "end": 37596.86, + "probability": 0.99 + }, + { + "start": 37596.98, + "end": 37597.46, + "probability": 0.9652 + }, + { + "start": 37598.1, + "end": 37598.78, + "probability": 0.4385 + }, + { + "start": 37598.78, + "end": 37601.6, + "probability": 0.8664 + }, + { + "start": 37601.72, + "end": 37604.74, + "probability": 0.6968 + }, + { + "start": 37608.12, + "end": 37610.16, + "probability": 0.9662 + }, + { + "start": 37615.96, + "end": 37616.54, + "probability": 0.1099 + }, + { + "start": 37617.4, + "end": 37618.02, + "probability": 0.2792 + }, + { + "start": 37618.32, + "end": 37620.49, + "probability": 0.3377 + }, + { + "start": 37622.45, + "end": 37625.98, + "probability": 0.9895 + }, + { + "start": 37626.28, + "end": 37628.08, + "probability": 0.9243 + }, + { + "start": 37628.48, + "end": 37629.06, + "probability": 0.9387 + }, + { + "start": 37629.22, + "end": 37631.97, + "probability": 0.9985 + }, + { + "start": 37632.84, + "end": 37637.14, + "probability": 0.9863 + }, + { + "start": 37637.82, + "end": 37641.92, + "probability": 0.994 + }, + { + "start": 37642.75, + "end": 37647.32, + "probability": 0.9883 + }, + { + "start": 37648.36, + "end": 37650.42, + "probability": 0.9299 + }, + { + "start": 37650.5, + "end": 37650.56, + "probability": 0.8786 + }, + { + "start": 37650.62, + "end": 37653.0, + "probability": 0.7258 + }, + { + "start": 37654.08, + "end": 37655.84, + "probability": 0.9554 + }, + { + "start": 37655.98, + "end": 37656.62, + "probability": 0.9235 + }, + { + "start": 37657.38, + "end": 37658.7, + "probability": 0.7396 + }, + { + "start": 37659.14, + "end": 37660.52, + "probability": 0.9938 + }, + { + "start": 37661.38, + "end": 37662.64, + "probability": 0.9796 + }, + { + "start": 37662.64, + "end": 37663.68, + "probability": 0.5051 + }, + { + "start": 37664.02, + "end": 37667.35, + "probability": 0.9949 + }, + { + "start": 37670.44, + "end": 37672.38, + "probability": 0.7603 + }, + { + "start": 37673.14, + "end": 37674.78, + "probability": 0.7953 + }, + { + "start": 37675.38, + "end": 37676.26, + "probability": 0.1157 + }, + { + "start": 37676.56, + "end": 37679.18, + "probability": 0.4399 + }, + { + "start": 37680.62, + "end": 37683.1, + "probability": 0.8765 + }, + { + "start": 37683.46, + "end": 37684.54, + "probability": 0.4696 + }, + { + "start": 37684.66, + "end": 37686.4, + "probability": 0.5454 + }, + { + "start": 37686.98, + "end": 37687.72, + "probability": 0.0394 + }, + { + "start": 37688.4, + "end": 37689.69, + "probability": 0.0377 + }, + { + "start": 37690.22, + "end": 37691.62, + "probability": 0.0205 + }, + { + "start": 37691.74, + "end": 37692.62, + "probability": 0.2325 + }, + { + "start": 37693.46, + "end": 37694.56, + "probability": 0.0527 + }, + { + "start": 37694.56, + "end": 37695.18, + "probability": 0.062 + }, + { + "start": 37695.18, + "end": 37696.2, + "probability": 0.1687 + }, + { + "start": 37696.92, + "end": 37698.07, + "probability": 0.266 + }, + { + "start": 37698.56, + "end": 37698.94, + "probability": 0.4359 + }, + { + "start": 37699.6, + "end": 37701.24, + "probability": 0.118 + }, + { + "start": 37701.44, + "end": 37702.32, + "probability": 0.5474 + }, + { + "start": 37702.36, + "end": 37704.26, + "probability": 0.2754 + }, + { + "start": 37706.36, + "end": 37709.02, + "probability": 0.9101 + }, + { + "start": 37709.12, + "end": 37710.98, + "probability": 0.9047 + }, + { + "start": 37711.34, + "end": 37715.34, + "probability": 0.9001 + }, + { + "start": 37715.9, + "end": 37716.86, + "probability": 0.6878 + }, + { + "start": 37716.96, + "end": 37718.36, + "probability": 0.6632 + }, + { + "start": 37718.4, + "end": 37719.4, + "probability": 0.66 + }, + { + "start": 37719.62, + "end": 37721.68, + "probability": 0.9542 + }, + { + "start": 37722.01, + "end": 37722.52, + "probability": 0.7685 + }, + { + "start": 37722.7, + "end": 37723.34, + "probability": 0.8081 + }, + { + "start": 37725.28, + "end": 37729.98, + "probability": 0.6828 + }, + { + "start": 37730.76, + "end": 37732.0, + "probability": 0.8191 + }, + { + "start": 37733.54, + "end": 37737.3, + "probability": 0.9863 + }, + { + "start": 37737.84, + "end": 37739.1, + "probability": 0.9879 + }, + { + "start": 37739.5, + "end": 37740.64, + "probability": 0.6756 + }, + { + "start": 37740.72, + "end": 37741.5, + "probability": 0.5454 + }, + { + "start": 37741.5, + "end": 37743.06, + "probability": 0.8223 + }, + { + "start": 37743.06, + "end": 37743.92, + "probability": 0.5881 + }, + { + "start": 37743.94, + "end": 37744.1, + "probability": 0.9106 + }, + { + "start": 37744.72, + "end": 37749.52, + "probability": 0.9766 + }, + { + "start": 37749.62, + "end": 37752.04, + "probability": 0.8449 + }, + { + "start": 37752.58, + "end": 37753.24, + "probability": 0.6241 + }, + { + "start": 37753.56, + "end": 37756.32, + "probability": 0.7642 + }, + { + "start": 37757.3, + "end": 37757.8, + "probability": 0.5665 + }, + { + "start": 37758.0, + "end": 37760.44, + "probability": 0.2407 + }, + { + "start": 37760.52, + "end": 37762.9, + "probability": 0.7157 + }, + { + "start": 37763.42, + "end": 37763.96, + "probability": 0.6617 + }, + { + "start": 37763.96, + "end": 37764.28, + "probability": 0.3669 + }, + { + "start": 37764.28, + "end": 37765.0, + "probability": 0.4305 + }, + { + "start": 37765.0, + "end": 37765.96, + "probability": 0.7711 + }, + { + "start": 37766.04, + "end": 37768.16, + "probability": 0.7934 + }, + { + "start": 37769.12, + "end": 37771.82, + "probability": 0.9122 + }, + { + "start": 37771.82, + "end": 37772.46, + "probability": 0.8311 + }, + { + "start": 37773.46, + "end": 37773.9, + "probability": 0.6836 + }, + { + "start": 37774.44, + "end": 37775.28, + "probability": 0.8818 + }, + { + "start": 37779.9, + "end": 37781.04, + "probability": 0.9403 + }, + { + "start": 37781.28, + "end": 37783.98, + "probability": 0.5684 + }, + { + "start": 37784.16, + "end": 37784.96, + "probability": 0.3639 + }, + { + "start": 37785.04, + "end": 37785.66, + "probability": 0.5621 + }, + { + "start": 37785.82, + "end": 37786.76, + "probability": 0.2772 + }, + { + "start": 37787.8, + "end": 37790.16, + "probability": 0.9972 + }, + { + "start": 37790.48, + "end": 37792.3, + "probability": 0.3916 + }, + { + "start": 37792.32, + "end": 37796.74, + "probability": 0.353 + }, + { + "start": 37797.46, + "end": 37798.46, + "probability": 0.0159 + }, + { + "start": 37798.46, + "end": 37798.46, + "probability": 0.0505 + }, + { + "start": 37798.46, + "end": 37799.72, + "probability": 0.6189 + }, + { + "start": 37799.72, + "end": 37800.69, + "probability": 0.5538 + }, + { + "start": 37801.23, + "end": 37803.2, + "probability": 0.1401 + }, + { + "start": 37803.26, + "end": 37803.96, + "probability": 0.6802 + }, + { + "start": 37804.48, + "end": 37806.84, + "probability": 0.7124 + }, + { + "start": 37807.08, + "end": 37807.4, + "probability": 0.0594 + }, + { + "start": 37807.4, + "end": 37807.4, + "probability": 0.107 + }, + { + "start": 37807.4, + "end": 37808.6, + "probability": 0.6115 + }, + { + "start": 37808.7, + "end": 37809.2, + "probability": 0.33 + }, + { + "start": 37809.2, + "end": 37809.36, + "probability": 0.3886 + }, + { + "start": 37809.4, + "end": 37809.92, + "probability": 0.7075 + }, + { + "start": 37810.46, + "end": 37812.16, + "probability": 0.4206 + }, + { + "start": 37815.22, + "end": 37816.98, + "probability": 0.751 + }, + { + "start": 37817.78, + "end": 37817.98, + "probability": 0.0768 + }, + { + "start": 37817.98, + "end": 37818.08, + "probability": 0.1111 + }, + { + "start": 37818.08, + "end": 37818.08, + "probability": 0.0966 + }, + { + "start": 37818.08, + "end": 37819.42, + "probability": 0.0825 + }, + { + "start": 37819.66, + "end": 37820.12, + "probability": 0.4775 + }, + { + "start": 37820.52, + "end": 37822.5, + "probability": 0.4637 + }, + { + "start": 37822.52, + "end": 37822.86, + "probability": 0.7988 + }, + { + "start": 37823.0, + "end": 37824.38, + "probability": 0.7464 + }, + { + "start": 37824.38, + "end": 37828.76, + "probability": 0.8255 + }, + { + "start": 37828.86, + "end": 37830.02, + "probability": 0.3952 + }, + { + "start": 37830.12, + "end": 37830.12, + "probability": 0.8155 + }, + { + "start": 37830.12, + "end": 37830.12, + "probability": 0.2184 + }, + { + "start": 37830.12, + "end": 37830.66, + "probability": 0.7783 + }, + { + "start": 37831.64, + "end": 37831.9, + "probability": 0.7427 + }, + { + "start": 37831.98, + "end": 37832.18, + "probability": 0.4933 + }, + { + "start": 37832.2, + "end": 37834.28, + "probability": 0.4938 + }, + { + "start": 37834.28, + "end": 37834.44, + "probability": 0.7379 + }, + { + "start": 37834.48, + "end": 37834.92, + "probability": 0.2442 + }, + { + "start": 37835.08, + "end": 37836.48, + "probability": 0.913 + }, + { + "start": 37837.2, + "end": 37838.9, + "probability": 0.3138 + }, + { + "start": 37840.88, + "end": 37840.9, + "probability": 0.0214 + }, + { + "start": 37840.9, + "end": 37840.9, + "probability": 0.6627 + }, + { + "start": 37840.9, + "end": 37840.9, + "probability": 0.257 + }, + { + "start": 37840.9, + "end": 37841.06, + "probability": 0.1051 + }, + { + "start": 37841.06, + "end": 37841.34, + "probability": 0.0382 + }, + { + "start": 37841.74, + "end": 37844.84, + "probability": 0.5738 + }, + { + "start": 37845.08, + "end": 37845.08, + "probability": 0.422 + }, + { + "start": 37845.08, + "end": 37845.73, + "probability": 0.9138 + }, + { + "start": 37845.94, + "end": 37846.78, + "probability": 0.7359 + }, + { + "start": 37847.66, + "end": 37849.72, + "probability": 0.4926 + }, + { + "start": 37849.72, + "end": 37850.28, + "probability": 0.3167 + }, + { + "start": 37851.54, + "end": 37853.06, + "probability": 0.993 + }, + { + "start": 37853.18, + "end": 37853.78, + "probability": 0.7413 + }, + { + "start": 37853.88, + "end": 37854.68, + "probability": 0.8772 + }, + { + "start": 37854.94, + "end": 37855.64, + "probability": 0.4719 + }, + { + "start": 37855.74, + "end": 37856.32, + "probability": 0.755 + }, + { + "start": 37856.38, + "end": 37856.92, + "probability": 0.6779 + }, + { + "start": 37856.92, + "end": 37858.16, + "probability": 0.8829 + }, + { + "start": 37859.52, + "end": 37859.92, + "probability": 0.2775 + }, + { + "start": 37863.7, + "end": 37865.26, + "probability": 0.0555 + }, + { + "start": 37865.26, + "end": 37865.34, + "probability": 0.088 + }, + { + "start": 37865.34, + "end": 37865.34, + "probability": 0.0292 + }, + { + "start": 37865.34, + "end": 37865.42, + "probability": 0.1398 + }, + { + "start": 37865.42, + "end": 37865.42, + "probability": 0.1207 + }, + { + "start": 37865.42, + "end": 37866.1, + "probability": 0.3548 + }, + { + "start": 37866.86, + "end": 37867.5, + "probability": 0.2418 + }, + { + "start": 37868.48, + "end": 37871.24, + "probability": 0.6518 + }, + { + "start": 37871.28, + "end": 37871.86, + "probability": 0.6696 + }, + { + "start": 37871.86, + "end": 37872.32, + "probability": 0.5565 + }, + { + "start": 37873.2, + "end": 37873.92, + "probability": 0.1335 + }, + { + "start": 37873.92, + "end": 37876.8, + "probability": 0.7164 + }, + { + "start": 37876.82, + "end": 37877.44, + "probability": 0.6743 + }, + { + "start": 37877.58, + "end": 37879.48, + "probability": 0.8434 + }, + { + "start": 37879.56, + "end": 37879.96, + "probability": 0.7288 + }, + { + "start": 37880.06, + "end": 37880.91, + "probability": 0.595 + }, + { + "start": 37881.02, + "end": 37881.44, + "probability": 0.7501 + }, + { + "start": 37881.44, + "end": 37882.42, + "probability": 0.7706 + }, + { + "start": 37883.3, + "end": 37883.86, + "probability": 0.7322 + }, + { + "start": 37885.22, + "end": 37886.42, + "probability": 0.8962 + }, + { + "start": 37887.4, + "end": 37890.14, + "probability": 0.9941 + }, + { + "start": 37890.52, + "end": 37893.08, + "probability": 0.9971 + }, + { + "start": 37893.98, + "end": 37896.29, + "probability": 0.9319 + }, + { + "start": 37897.62, + "end": 37897.76, + "probability": 0.1626 + }, + { + "start": 37900.1, + "end": 37900.8, + "probability": 0.098 + }, + { + "start": 37900.8, + "end": 37900.8, + "probability": 0.0323 + }, + { + "start": 37900.8, + "end": 37900.8, + "probability": 0.2378 + }, + { + "start": 37900.8, + "end": 37903.84, + "probability": 0.9202 + }, + { + "start": 37904.88, + "end": 37906.68, + "probability": 0.8052 + }, + { + "start": 37908.06, + "end": 37910.66, + "probability": 0.0514 + }, + { + "start": 37911.2, + "end": 37912.12, + "probability": 0.4612 + }, + { + "start": 37912.22, + "end": 37912.5, + "probability": 0.0249 + }, + { + "start": 37912.5, + "end": 37912.5, + "probability": 0.0468 + }, + { + "start": 37912.5, + "end": 37912.5, + "probability": 0.1442 + }, + { + "start": 37912.5, + "end": 37913.58, + "probability": 0.1151 + }, + { + "start": 37913.8, + "end": 37916.42, + "probability": 0.7484 + }, + { + "start": 37916.92, + "end": 37917.2, + "probability": 0.4164 + }, + { + "start": 37917.2, + "end": 37918.1, + "probability": 0.7874 + }, + { + "start": 37918.42, + "end": 37918.52, + "probability": 0.2504 + }, + { + "start": 37919.3, + "end": 37920.18, + "probability": 0.7363 + }, + { + "start": 37920.78, + "end": 37922.54, + "probability": 0.9644 + }, + { + "start": 37922.96, + "end": 37923.42, + "probability": 0.7473 + }, + { + "start": 37924.24, + "end": 37924.31, + "probability": 0.382 + }, + { + "start": 37924.86, + "end": 37926.06, + "probability": 0.9465 + }, + { + "start": 37926.12, + "end": 37927.5, + "probability": 0.9036 + }, + { + "start": 37927.76, + "end": 37929.46, + "probability": 0.3744 + }, + { + "start": 37931.18, + "end": 37932.36, + "probability": 0.0085 + }, + { + "start": 37932.92, + "end": 37933.16, + "probability": 0.1311 + }, + { + "start": 37933.16, + "end": 37934.24, + "probability": 0.1049 + }, + { + "start": 37934.24, + "end": 37936.55, + "probability": 0.628 + }, + { + "start": 37937.22, + "end": 37937.58, + "probability": 0.4169 + }, + { + "start": 37937.7, + "end": 37937.76, + "probability": 0.1565 + }, + { + "start": 37937.8, + "end": 37938.54, + "probability": 0.8152 + }, + { + "start": 37938.72, + "end": 37939.58, + "probability": 0.679 + }, + { + "start": 37939.68, + "end": 37941.98, + "probability": 0.9849 + }, + { + "start": 37942.58, + "end": 37943.06, + "probability": 0.2023 + }, + { + "start": 37943.17, + "end": 37943.92, + "probability": 0.5107 + }, + { + "start": 37944.02, + "end": 37945.36, + "probability": 0.9866 + }, + { + "start": 37945.62, + "end": 37946.8, + "probability": 0.97 + }, + { + "start": 37946.84, + "end": 37951.22, + "probability": 0.4388 + }, + { + "start": 37952.2, + "end": 37954.86, + "probability": 0.9792 + }, + { + "start": 37955.56, + "end": 37957.64, + "probability": 0.3969 + }, + { + "start": 37957.64, + "end": 37958.32, + "probability": 0.7184 + }, + { + "start": 37958.62, + "end": 37959.08, + "probability": 0.1592 + }, + { + "start": 37959.08, + "end": 37959.69, + "probability": 0.0826 + }, + { + "start": 37961.9, + "end": 37961.92, + "probability": 0.0499 + }, + { + "start": 37961.92, + "end": 37963.76, + "probability": 0.0589 + }, + { + "start": 37964.34, + "end": 37966.68, + "probability": 0.9907 + }, + { + "start": 37966.68, + "end": 37969.89, + "probability": 0.9366 + }, + { + "start": 37970.36, + "end": 37971.34, + "probability": 0.7958 + }, + { + "start": 37971.42, + "end": 37972.86, + "probability": 0.9933 + }, + { + "start": 37972.94, + "end": 37973.8, + "probability": 0.9979 + }, + { + "start": 37974.26, + "end": 37974.84, + "probability": 0.8497 + }, + { + "start": 37974.88, + "end": 37975.54, + "probability": 0.8572 + }, + { + "start": 37975.62, + "end": 37979.0, + "probability": 0.987 + }, + { + "start": 37979.34, + "end": 37981.94, + "probability": 0.1913 + }, + { + "start": 37981.94, + "end": 37981.94, + "probability": 0.0584 + }, + { + "start": 37981.94, + "end": 37983.14, + "probability": 0.7475 + }, + { + "start": 37983.16, + "end": 37985.8, + "probability": 0.9536 + }, + { + "start": 37986.12, + "end": 37988.3, + "probability": 0.9813 + }, + { + "start": 37988.52, + "end": 37990.78, + "probability": 0.9829 + }, + { + "start": 37991.22, + "end": 37992.36, + "probability": 0.623 + }, + { + "start": 37992.4, + "end": 37997.3, + "probability": 0.9826 + }, + { + "start": 37997.58, + "end": 37999.86, + "probability": 0.3417 + }, + { + "start": 38000.44, + "end": 38000.74, + "probability": 0.2996 + }, + { + "start": 38000.74, + "end": 38002.92, + "probability": 0.8584 + }, + { + "start": 38003.96, + "end": 38005.2, + "probability": 0.7466 + }, + { + "start": 38005.54, + "end": 38007.32, + "probability": 0.3702 + }, + { + "start": 38007.9, + "end": 38008.26, + "probability": 0.4868 + }, + { + "start": 38008.96, + "end": 38009.2, + "probability": 0.5015 + }, + { + "start": 38009.4, + "end": 38010.1, + "probability": 0.6603 + }, + { + "start": 38010.26, + "end": 38011.22, + "probability": 0.0779 + }, + { + "start": 38013.0, + "end": 38014.96, + "probability": 0.3481 + }, + { + "start": 38014.96, + "end": 38016.68, + "probability": 0.8726 + }, + { + "start": 38017.4, + "end": 38018.18, + "probability": 0.5319 + }, + { + "start": 38019.0, + "end": 38020.7, + "probability": 0.3393 + }, + { + "start": 38022.4, + "end": 38023.92, + "probability": 0.0019 + }, + { + "start": 38026.19, + "end": 38026.97, + "probability": 0.0166 + }, + { + "start": 38030.96, + "end": 38037.16, + "probability": 0.0778 + }, + { + "start": 38039.78, + "end": 38040.22, + "probability": 0.0816 + }, + { + "start": 38040.51, + "end": 38042.36, + "probability": 0.2258 + }, + { + "start": 38042.36, + "end": 38042.36, + "probability": 0.0963 + }, + { + "start": 38042.36, + "end": 38042.8, + "probability": 0.1246 + }, + { + "start": 38045.12, + "end": 38046.92, + "probability": 0.063 + }, + { + "start": 38049.66, + "end": 38050.34, + "probability": 0.0073 + }, + { + "start": 38050.88, + "end": 38053.88, + "probability": 0.0914 + }, + { + "start": 38054.02, + "end": 38054.78, + "probability": 0.1186 + }, + { + "start": 38055.74, + "end": 38056.0, + "probability": 0.1192 + }, + { + "start": 38056.02, + "end": 38056.44, + "probability": 0.0629 + }, + { + "start": 38056.44, + "end": 38057.06, + "probability": 0.0329 + }, + { + "start": 38057.16, + "end": 38058.38, + "probability": 0.095 + }, + { + "start": 38059.0, + "end": 38059.14, + "probability": 0.2838 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.0, + "end": 38107.0, + "probability": 0.0 + }, + { + "start": 38107.08, + "end": 38107.94, + "probability": 0.2058 + }, + { + "start": 38107.94, + "end": 38108.68, + "probability": 0.0843 + }, + { + "start": 38109.44, + "end": 38111.26, + "probability": 0.3788 + }, + { + "start": 38111.64, + "end": 38112.5, + "probability": 0.9465 + }, + { + "start": 38112.98, + "end": 38114.66, + "probability": 0.4556 + }, + { + "start": 38114.66, + "end": 38115.78, + "probability": 0.7845 + }, + { + "start": 38116.12, + "end": 38117.88, + "probability": 0.9928 + }, + { + "start": 38118.36, + "end": 38119.26, + "probability": 0.1375 + }, + { + "start": 38119.28, + "end": 38125.2, + "probability": 0.8973 + }, + { + "start": 38125.2, + "end": 38128.06, + "probability": 0.8309 + }, + { + "start": 38128.6, + "end": 38129.6, + "probability": 0.9968 + }, + { + "start": 38130.22, + "end": 38132.92, + "probability": 0.3447 + }, + { + "start": 38134.1, + "end": 38134.26, + "probability": 0.0316 + }, + { + "start": 38134.26, + "end": 38134.26, + "probability": 0.0218 + }, + { + "start": 38134.26, + "end": 38134.26, + "probability": 0.1158 + }, + { + "start": 38134.26, + "end": 38134.26, + "probability": 0.0947 + }, + { + "start": 38134.26, + "end": 38134.26, + "probability": 0.2803 + }, + { + "start": 38134.26, + "end": 38134.26, + "probability": 0.2281 + }, + { + "start": 38134.26, + "end": 38134.26, + "probability": 0.1066 + }, + { + "start": 38134.26, + "end": 38139.62, + "probability": 0.8992 + }, + { + "start": 38139.68, + "end": 38140.0, + "probability": 0.5104 + }, + { + "start": 38141.02, + "end": 38141.8, + "probability": 0.1935 + }, + { + "start": 38141.9, + "end": 38143.86, + "probability": 0.8118 + }, + { + "start": 38143.94, + "end": 38144.98, + "probability": 0.9319 + }, + { + "start": 38145.58, + "end": 38146.17, + "probability": 0.9956 + }, + { + "start": 38147.14, + "end": 38148.5, + "probability": 0.9961 + }, + { + "start": 38148.62, + "end": 38148.78, + "probability": 0.5621 + }, + { + "start": 38148.9, + "end": 38150.26, + "probability": 0.8047 + }, + { + "start": 38150.38, + "end": 38151.2, + "probability": 0.0616 + }, + { + "start": 38151.6, + "end": 38151.6, + "probability": 0.0026 + }, + { + "start": 38151.6, + "end": 38151.94, + "probability": 0.3993 + }, + { + "start": 38151.96, + "end": 38154.18, + "probability": 0.4293 + }, + { + "start": 38154.92, + "end": 38155.28, + "probability": 0.311 + }, + { + "start": 38155.32, + "end": 38156.62, + "probability": 0.2688 + }, + { + "start": 38156.9, + "end": 38160.1, + "probability": 0.9688 + }, + { + "start": 38160.1, + "end": 38161.56, + "probability": 0.6911 + }, + { + "start": 38164.14, + "end": 38164.14, + "probability": 0.3883 + }, + { + "start": 38164.14, + "end": 38165.42, + "probability": 0.1822 + }, + { + "start": 38165.42, + "end": 38166.38, + "probability": 0.6975 + }, + { + "start": 38166.76, + "end": 38167.32, + "probability": 0.1087 + }, + { + "start": 38167.84, + "end": 38169.22, + "probability": 0.0828 + }, + { + "start": 38169.54, + "end": 38171.84, + "probability": 0.9611 + }, + { + "start": 38171.94, + "end": 38173.78, + "probability": 0.9174 + }, + { + "start": 38173.82, + "end": 38175.52, + "probability": 0.9786 + }, + { + "start": 38175.64, + "end": 38179.58, + "probability": 0.6631 + }, + { + "start": 38179.6, + "end": 38180.34, + "probability": 0.2918 + }, + { + "start": 38180.48, + "end": 38180.96, + "probability": 0.7927 + }, + { + "start": 38181.36, + "end": 38184.94, + "probability": 0.929 + }, + { + "start": 38185.14, + "end": 38185.4, + "probability": 0.8815 + }, + { + "start": 38185.44, + "end": 38185.6, + "probability": 0.8798 + }, + { + "start": 38185.64, + "end": 38186.73, + "probability": 0.8583 + }, + { + "start": 38187.73, + "end": 38190.36, + "probability": 0.8782 + }, + { + "start": 38190.74, + "end": 38194.82, + "probability": 0.9299 + }, + { + "start": 38194.92, + "end": 38195.28, + "probability": 0.1113 + }, + { + "start": 38195.34, + "end": 38197.94, + "probability": 0.2068 + }, + { + "start": 38198.26, + "end": 38198.36, + "probability": 0.0394 + }, + { + "start": 38198.36, + "end": 38198.36, + "probability": 0.099 + }, + { + "start": 38198.36, + "end": 38198.36, + "probability": 0.353 + }, + { + "start": 38198.36, + "end": 38198.36, + "probability": 0.1286 + }, + { + "start": 38198.36, + "end": 38199.0, + "probability": 0.0851 + }, + { + "start": 38199.12, + "end": 38200.59, + "probability": 0.3521 + }, + { + "start": 38201.5, + "end": 38203.12, + "probability": 0.5707 + }, + { + "start": 38203.88, + "end": 38205.6, + "probability": 0.0555 + }, + { + "start": 38206.81, + "end": 38208.48, + "probability": 0.1756 + }, + { + "start": 38208.62, + "end": 38208.62, + "probability": 0.0602 + }, + { + "start": 38208.62, + "end": 38208.92, + "probability": 0.5171 + }, + { + "start": 38209.0, + "end": 38210.82, + "probability": 0.3098 + }, + { + "start": 38211.3, + "end": 38213.76, + "probability": 0.7156 + }, + { + "start": 38213.94, + "end": 38215.84, + "probability": 0.9541 + }, + { + "start": 38215.84, + "end": 38216.62, + "probability": 0.7382 + }, + { + "start": 38216.94, + "end": 38220.12, + "probability": 0.9511 + }, + { + "start": 38220.42, + "end": 38223.72, + "probability": 0.677 + }, + { + "start": 38223.94, + "end": 38224.9, + "probability": 0.6454 + }, + { + "start": 38225.86, + "end": 38228.78, + "probability": 0.7394 + }, + { + "start": 38230.0, + "end": 38231.08, + "probability": 0.2368 + }, + { + "start": 38231.26, + "end": 38231.76, + "probability": 0.8671 + }, + { + "start": 38231.82, + "end": 38232.88, + "probability": 0.485 + }, + { + "start": 38232.9, + "end": 38234.08, + "probability": 0.929 + }, + { + "start": 38234.56, + "end": 38236.84, + "probability": 0.7961 + }, + { + "start": 38237.02, + "end": 38237.44, + "probability": 0.8126 + }, + { + "start": 38237.82, + "end": 38240.04, + "probability": 0.9873 + }, + { + "start": 38240.56, + "end": 38242.22, + "probability": 0.9937 + }, + { + "start": 38242.28, + "end": 38242.68, + "probability": 0.7342 + }, + { + "start": 38243.24, + "end": 38244.0, + "probability": 0.6767 + }, + { + "start": 38244.4, + "end": 38244.86, + "probability": 0.7646 + }, + { + "start": 38245.6, + "end": 38248.0, + "probability": 0.9575 + }, + { + "start": 38248.08, + "end": 38248.92, + "probability": 0.8079 + }, + { + "start": 38248.94, + "end": 38249.5, + "probability": 0.8423 + }, + { + "start": 38249.88, + "end": 38251.88, + "probability": 0.2483 + }, + { + "start": 38251.88, + "end": 38252.08, + "probability": 0.5158 + }, + { + "start": 38252.12, + "end": 38252.66, + "probability": 0.6467 + }, + { + "start": 38252.98, + "end": 38256.58, + "probability": 0.9961 + }, + { + "start": 38256.7, + "end": 38256.86, + "probability": 0.1525 + }, + { + "start": 38256.86, + "end": 38256.86, + "probability": 0.0543 + }, + { + "start": 38256.86, + "end": 38256.86, + "probability": 0.0169 + }, + { + "start": 38256.86, + "end": 38257.4, + "probability": 0.4883 + }, + { + "start": 38257.62, + "end": 38258.2, + "probability": 0.7673 + }, + { + "start": 38258.5, + "end": 38258.9, + "probability": 0.4318 + }, + { + "start": 38259.78, + "end": 38261.26, + "probability": 0.6119 + }, + { + "start": 38261.86, + "end": 38264.22, + "probability": 0.1534 + }, + { + "start": 38264.22, + "end": 38264.22, + "probability": 0.0477 + }, + { + "start": 38264.22, + "end": 38265.12, + "probability": 0.657 + }, + { + "start": 38266.12, + "end": 38269.08, + "probability": 0.6475 + }, + { + "start": 38269.12, + "end": 38270.96, + "probability": 0.9693 + }, + { + "start": 38270.96, + "end": 38273.02, + "probability": 0.9643 + }, + { + "start": 38273.36, + "end": 38273.56, + "probability": 0.3904 + }, + { + "start": 38274.12, + "end": 38274.8, + "probability": 0.6283 + }, + { + "start": 38275.2, + "end": 38276.14, + "probability": 0.8851 + }, + { + "start": 38276.22, + "end": 38276.52, + "probability": 0.3561 + }, + { + "start": 38276.54, + "end": 38277.14, + "probability": 0.4332 + }, + { + "start": 38277.28, + "end": 38278.58, + "probability": 0.9571 + }, + { + "start": 38278.88, + "end": 38279.42, + "probability": 0.9211 + }, + { + "start": 38280.58, + "end": 38282.18, + "probability": 0.5531 + }, + { + "start": 38283.48, + "end": 38285.04, + "probability": 0.9897 + }, + { + "start": 38285.52, + "end": 38287.9, + "probability": 0.9945 + }, + { + "start": 38288.44, + "end": 38289.44, + "probability": 0.7558 + }, + { + "start": 38289.5, + "end": 38291.23, + "probability": 0.7316 + }, + { + "start": 38291.92, + "end": 38292.92, + "probability": 0.687 + }, + { + "start": 38293.02, + "end": 38293.5, + "probability": 0.7319 + }, + { + "start": 38293.7, + "end": 38294.76, + "probability": 0.9191 + }, + { + "start": 38294.92, + "end": 38295.32, + "probability": 0.6903 + }, + { + "start": 38295.42, + "end": 38298.22, + "probability": 0.9941 + }, + { + "start": 38298.38, + "end": 38298.86, + "probability": 0.286 + }, + { + "start": 38299.44, + "end": 38301.68, + "probability": 0.9634 + }, + { + "start": 38301.94, + "end": 38304.22, + "probability": 0.9358 + }, + { + "start": 38304.66, + "end": 38306.18, + "probability": 0.9937 + }, + { + "start": 38306.22, + "end": 38308.86, + "probability": 0.9907 + }, + { + "start": 38308.98, + "end": 38309.47, + "probability": 0.812 + }, + { + "start": 38309.82, + "end": 38311.35, + "probability": 0.8667 + }, + { + "start": 38311.6, + "end": 38312.58, + "probability": 0.9208 + }, + { + "start": 38313.24, + "end": 38313.7, + "probability": 0.7961 + }, + { + "start": 38314.3, + "end": 38315.3, + "probability": 0.938 + }, + { + "start": 38315.38, + "end": 38315.45, + "probability": 0.0079 + }, + { + "start": 38316.0, + "end": 38317.96, + "probability": 0.734 + }, + { + "start": 38318.32, + "end": 38319.26, + "probability": 0.8859 + }, + { + "start": 38319.38, + "end": 38323.42, + "probability": 0.9698 + }, + { + "start": 38323.42, + "end": 38323.56, + "probability": 0.3056 + }, + { + "start": 38323.56, + "end": 38323.66, + "probability": 0.0128 + }, + { + "start": 38323.66, + "end": 38324.9, + "probability": 0.5903 + }, + { + "start": 38325.04, + "end": 38325.64, + "probability": 0.36 + }, + { + "start": 38325.8, + "end": 38328.02, + "probability": 0.6681 + }, + { + "start": 38328.1, + "end": 38329.05, + "probability": 0.9235 + }, + { + "start": 38329.36, + "end": 38329.88, + "probability": 0.0848 + }, + { + "start": 38330.92, + "end": 38330.94, + "probability": 0.1737 + }, + { + "start": 38330.94, + "end": 38332.32, + "probability": 0.1089 + }, + { + "start": 38332.58, + "end": 38334.94, + "probability": 0.9109 + }, + { + "start": 38335.0, + "end": 38336.1, + "probability": 0.97 + }, + { + "start": 38336.22, + "end": 38337.38, + "probability": 0.9256 + }, + { + "start": 38338.38, + "end": 38339.2, + "probability": 0.4679 + }, + { + "start": 38339.22, + "end": 38339.64, + "probability": 0.1317 + }, + { + "start": 38339.64, + "end": 38339.64, + "probability": 0.0246 + }, + { + "start": 38339.64, + "end": 38339.64, + "probability": 0.1384 + }, + { + "start": 38339.64, + "end": 38341.1, + "probability": 0.772 + }, + { + "start": 38341.5, + "end": 38342.5, + "probability": 0.9359 + }, + { + "start": 38342.64, + "end": 38343.15, + "probability": 0.7716 + }, + { + "start": 38344.04, + "end": 38349.54, + "probability": 0.9808 + }, + { + "start": 38349.78, + "end": 38351.46, + "probability": 0.9982 + }, + { + "start": 38351.5, + "end": 38351.96, + "probability": 0.1734 + }, + { + "start": 38352.22, + "end": 38353.61, + "probability": 0.9905 + }, + { + "start": 38353.64, + "end": 38353.9, + "probability": 0.5556 + }, + { + "start": 38353.96, + "end": 38354.33, + "probability": 0.9285 + }, + { + "start": 38354.58, + "end": 38357.28, + "probability": 0.7048 + }, + { + "start": 38359.22, + "end": 38359.22, + "probability": 0.097 + }, + { + "start": 38359.22, + "end": 38360.08, + "probability": 0.4976 + }, + { + "start": 38360.34, + "end": 38361.7, + "probability": 0.9841 + }, + { + "start": 38361.8, + "end": 38364.11, + "probability": 0.9823 + }, + { + "start": 38364.32, + "end": 38364.66, + "probability": 0.9236 + }, + { + "start": 38364.72, + "end": 38365.52, + "probability": 0.9194 + }, + { + "start": 38366.08, + "end": 38368.18, + "probability": 0.9971 + }, + { + "start": 38368.78, + "end": 38371.12, + "probability": 0.5208 + }, + { + "start": 38371.4, + "end": 38372.08, + "probability": 0.8191 + }, + { + "start": 38372.56, + "end": 38374.44, + "probability": 0.9469 + }, + { + "start": 38374.48, + "end": 38375.44, + "probability": 0.9813 + }, + { + "start": 38375.56, + "end": 38377.88, + "probability": 0.9561 + }, + { + "start": 38377.98, + "end": 38378.38, + "probability": 0.3897 + }, + { + "start": 38378.6, + "end": 38379.26, + "probability": 0.8432 + }, + { + "start": 38379.64, + "end": 38380.58, + "probability": 0.7946 + }, + { + "start": 38381.08, + "end": 38383.24, + "probability": 0.7344 + }, + { + "start": 38383.6, + "end": 38385.42, + "probability": 0.5879 + }, + { + "start": 38385.76, + "end": 38386.06, + "probability": 0.4419 + }, + { + "start": 38386.22, + "end": 38386.32, + "probability": 0.0426 + }, + { + "start": 38386.32, + "end": 38387.56, + "probability": 0.5803 + }, + { + "start": 38387.56, + "end": 38389.45, + "probability": 0.771 + }, + { + "start": 38394.56, + "end": 38396.28, + "probability": 0.5213 + }, + { + "start": 38396.28, + "end": 38397.48, + "probability": 0.2295 + }, + { + "start": 38398.28, + "end": 38398.86, + "probability": 0.1248 + }, + { + "start": 38400.57, + "end": 38402.88, + "probability": 0.6109 + }, + { + "start": 38403.06, + "end": 38403.34, + "probability": 0.0155 + }, + { + "start": 38403.34, + "end": 38403.34, + "probability": 0.043 + }, + { + "start": 38403.34, + "end": 38403.34, + "probability": 0.058 + }, + { + "start": 38403.34, + "end": 38403.34, + "probability": 0.0831 + }, + { + "start": 38403.34, + "end": 38403.34, + "probability": 0.0906 + }, + { + "start": 38403.34, + "end": 38403.34, + "probability": 0.0393 + }, + { + "start": 38403.34, + "end": 38404.26, + "probability": 0.4945 + }, + { + "start": 38405.06, + "end": 38408.32, + "probability": 0.8797 + }, + { + "start": 38408.64, + "end": 38409.18, + "probability": 0.0876 + }, + { + "start": 38409.18, + "end": 38412.2, + "probability": 0.8379 + }, + { + "start": 38412.22, + "end": 38412.84, + "probability": 0.138 + }, + { + "start": 38413.02, + "end": 38418.46, + "probability": 0.9548 + }, + { + "start": 38418.54, + "end": 38420.16, + "probability": 0.8397 + }, + { + "start": 38420.26, + "end": 38420.8, + "probability": 0.4355 + }, + { + "start": 38420.8, + "end": 38422.26, + "probability": 0.2976 + }, + { + "start": 38422.55, + "end": 38423.9, + "probability": 0.0621 + }, + { + "start": 38424.28, + "end": 38425.06, + "probability": 0.7998 + }, + { + "start": 38425.14, + "end": 38425.16, + "probability": 0.3301 + }, + { + "start": 38425.68, + "end": 38427.84, + "probability": 0.9153 + }, + { + "start": 38427.94, + "end": 38428.8, + "probability": 0.8141 + }, + { + "start": 38429.2, + "end": 38430.44, + "probability": 0.7998 + }, + { + "start": 38430.56, + "end": 38431.18, + "probability": 0.4956 + }, + { + "start": 38431.18, + "end": 38431.3, + "probability": 0.5129 + }, + { + "start": 38431.75, + "end": 38431.9, + "probability": 0.4199 + }, + { + "start": 38431.92, + "end": 38435.2, + "probability": 0.6379 + }, + { + "start": 38435.24, + "end": 38436.9, + "probability": 0.4813 + }, + { + "start": 38436.9, + "end": 38438.0, + "probability": 0.9302 + }, + { + "start": 38438.3, + "end": 38439.48, + "probability": 0.9927 + }, + { + "start": 38439.9, + "end": 38440.82, + "probability": 0.9 + }, + { + "start": 38441.18, + "end": 38442.96, + "probability": 0.9919 + }, + { + "start": 38443.02, + "end": 38446.3, + "probability": 0.9487 + }, + { + "start": 38446.38, + "end": 38448.45, + "probability": 0.9712 + }, + { + "start": 38448.7, + "end": 38449.24, + "probability": 0.6762 + }, + { + "start": 38449.38, + "end": 38450.26, + "probability": 0.8819 + }, + { + "start": 38450.62, + "end": 38450.62, + "probability": 0.2839 + }, + { + "start": 38450.62, + "end": 38450.62, + "probability": 0.0835 + }, + { + "start": 38450.62, + "end": 38450.62, + "probability": 0.1321 + }, + { + "start": 38450.62, + "end": 38452.78, + "probability": 0.9114 + }, + { + "start": 38453.08, + "end": 38455.18, + "probability": 0.9985 + }, + { + "start": 38455.22, + "end": 38455.84, + "probability": 0.6004 + }, + { + "start": 38456.14, + "end": 38457.61, + "probability": 0.8549 + }, + { + "start": 38458.08, + "end": 38460.28, + "probability": 0.2945 + }, + { + "start": 38460.38, + "end": 38463.36, + "probability": 0.793 + }, + { + "start": 38463.97, + "end": 38464.24, + "probability": 0.0939 + }, + { + "start": 38464.24, + "end": 38465.62, + "probability": 0.5491 + }, + { + "start": 38465.9, + "end": 38467.18, + "probability": 0.8245 + }, + { + "start": 38467.77, + "end": 38469.52, + "probability": 0.7099 + }, + { + "start": 38469.62, + "end": 38471.98, + "probability": 0.7836 + }, + { + "start": 38472.04, + "end": 38473.22, + "probability": 0.7231 + }, + { + "start": 38473.62, + "end": 38475.15, + "probability": 0.9923 + }, + { + "start": 38475.96, + "end": 38476.86, + "probability": 0.8409 + }, + { + "start": 38476.94, + "end": 38479.12, + "probability": 0.5801 + }, + { + "start": 38480.44, + "end": 38484.74, + "probability": 0.6546 + }, + { + "start": 38485.52, + "end": 38485.94, + "probability": 0.6452 + }, + { + "start": 38486.06, + "end": 38486.5, + "probability": 0.6987 + }, + { + "start": 38486.9, + "end": 38488.58, + "probability": 0.9044 + }, + { + "start": 38488.68, + "end": 38490.86, + "probability": 0.8542 + }, + { + "start": 38492.1, + "end": 38494.27, + "probability": 0.8173 + }, + { + "start": 38495.26, + "end": 38497.8, + "probability": 0.98 + }, + { + "start": 38499.06, + "end": 38502.14, + "probability": 0.8416 + }, + { + "start": 38503.56, + "end": 38503.94, + "probability": 0.615 + }, + { + "start": 38503.94, + "end": 38504.38, + "probability": 0.8021 + }, + { + "start": 38504.94, + "end": 38506.48, + "probability": 0.9858 + }, + { + "start": 38508.42, + "end": 38511.62, + "probability": 0.9683 + }, + { + "start": 38514.1, + "end": 38514.3, + "probability": 0.1117 + }, + { + "start": 38514.3, + "end": 38515.28, + "probability": 0.0646 + }, + { + "start": 38515.42, + "end": 38517.32, + "probability": 0.647 + }, + { + "start": 38517.54, + "end": 38519.56, + "probability": 0.8277 + }, + { + "start": 38520.18, + "end": 38524.12, + "probability": 0.9532 + }, + { + "start": 38524.72, + "end": 38525.32, + "probability": 0.9692 + }, + { + "start": 38525.44, + "end": 38527.47, + "probability": 0.7812 + }, + { + "start": 38528.04, + "end": 38528.96, + "probability": 0.9629 + }, + { + "start": 38529.1, + "end": 38529.22, + "probability": 0.7356 + }, + { + "start": 38529.7, + "end": 38532.18, + "probability": 0.8047 + }, + { + "start": 38532.4, + "end": 38532.56, + "probability": 0.3203 + }, + { + "start": 38532.66, + "end": 38536.2, + "probability": 0.7334 + }, + { + "start": 38536.28, + "end": 38537.46, + "probability": 0.894 + }, + { + "start": 38537.56, + "end": 38538.7, + "probability": 0.9963 + }, + { + "start": 38539.48, + "end": 38541.2, + "probability": 0.4676 + }, + { + "start": 38541.78, + "end": 38547.4, + "probability": 0.8503 + }, + { + "start": 38547.58, + "end": 38547.98, + "probability": 0.1516 + }, + { + "start": 38548.08, + "end": 38549.36, + "probability": 0.5098 + }, + { + "start": 38549.96, + "end": 38552.38, + "probability": 0.9976 + }, + { + "start": 38552.38, + "end": 38553.86, + "probability": 0.7461 + }, + { + "start": 38554.54, + "end": 38558.16, + "probability": 0.8584 + }, + { + "start": 38558.16, + "end": 38558.5, + "probability": 0.5387 + }, + { + "start": 38558.58, + "end": 38559.02, + "probability": 0.9079 + }, + { + "start": 38559.68, + "end": 38561.76, + "probability": 0.8988 + }, + { + "start": 38561.82, + "end": 38562.14, + "probability": 0.9482 + }, + { + "start": 38562.56, + "end": 38562.96, + "probability": 0.6742 + }, + { + "start": 38563.54, + "end": 38566.54, + "probability": 0.9861 + }, + { + "start": 38566.6, + "end": 38568.16, + "probability": 0.7846 + }, + { + "start": 38568.72, + "end": 38569.9, + "probability": 0.9858 + }, + { + "start": 38570.14, + "end": 38570.32, + "probability": 0.7073 + }, + { + "start": 38570.32, + "end": 38570.96, + "probability": 0.8914 + }, + { + "start": 38571.42, + "end": 38574.2, + "probability": 0.6947 + }, + { + "start": 38574.24, + "end": 38575.82, + "probability": 0.5496 + }, + { + "start": 38575.86, + "end": 38576.48, + "probability": 0.7594 + }, + { + "start": 38576.54, + "end": 38577.24, + "probability": 0.8849 + }, + { + "start": 38577.62, + "end": 38580.6, + "probability": 0.8799 + }, + { + "start": 38581.1, + "end": 38581.38, + "probability": 0.2404 + }, + { + "start": 38581.38, + "end": 38581.66, + "probability": 0.1547 + }, + { + "start": 38581.74, + "end": 38583.71, + "probability": 0.2806 + }, + { + "start": 38584.34, + "end": 38586.12, + "probability": 0.2891 + }, + { + "start": 38586.28, + "end": 38587.52, + "probability": 0.5483 + }, + { + "start": 38587.72, + "end": 38588.72, + "probability": 0.9507 + }, + { + "start": 38589.28, + "end": 38594.28, + "probability": 0.949 + }, + { + "start": 38594.78, + "end": 38599.42, + "probability": 0.9845 + }, + { + "start": 38599.52, + "end": 38604.58, + "probability": 0.9984 + }, + { + "start": 38604.58, + "end": 38608.1, + "probability": 0.9966 + }, + { + "start": 38608.28, + "end": 38608.69, + "probability": 0.9494 + }, + { + "start": 38609.44, + "end": 38610.56, + "probability": 0.8512 + }, + { + "start": 38610.7, + "end": 38612.1, + "probability": 0.5591 + }, + { + "start": 38612.2, + "end": 38614.72, + "probability": 0.9954 + }, + { + "start": 38614.92, + "end": 38615.7, + "probability": 0.6169 + }, + { + "start": 38616.0, + "end": 38616.0, + "probability": 0.2658 + }, + { + "start": 38616.0, + "end": 38617.98, + "probability": 0.345 + }, + { + "start": 38620.24, + "end": 38621.68, + "probability": 0.5898 + }, + { + "start": 38622.06, + "end": 38625.26, + "probability": 0.9934 + }, + { + "start": 38625.32, + "end": 38625.62, + "probability": 0.7192 + }, + { + "start": 38626.16, + "end": 38628.84, + "probability": 0.9248 + }, + { + "start": 38628.84, + "end": 38628.86, + "probability": 0.2395 + }, + { + "start": 38629.0, + "end": 38629.34, + "probability": 0.2583 + }, + { + "start": 38629.34, + "end": 38629.82, + "probability": 0.6749 + }, + { + "start": 38629.98, + "end": 38632.98, + "probability": 0.9219 + }, + { + "start": 38633.08, + "end": 38633.45, + "probability": 0.8154 + }, + { + "start": 38634.66, + "end": 38635.68, + "probability": 0.1626 + }, + { + "start": 38636.5, + "end": 38637.52, + "probability": 0.4479 + }, + { + "start": 38637.76, + "end": 38638.12, + "probability": 0.037 + }, + { + "start": 38639.48, + "end": 38641.08, + "probability": 0.5506 + }, + { + "start": 38641.58, + "end": 38647.24, + "probability": 0.5775 + }, + { + "start": 38647.24, + "end": 38650.52, + "probability": 0.7055 + }, + { + "start": 38650.64, + "end": 38653.52, + "probability": 0.902 + }, + { + "start": 38653.52, + "end": 38655.82, + "probability": 0.7228 + }, + { + "start": 38656.04, + "end": 38657.14, + "probability": 0.7793 + }, + { + "start": 38657.2, + "end": 38657.96, + "probability": 0.8849 + }, + { + "start": 38658.08, + "end": 38660.4, + "probability": 0.9937 + }, + { + "start": 38660.78, + "end": 38662.32, + "probability": 0.832 + }, + { + "start": 38662.42, + "end": 38662.98, + "probability": 0.5612 + }, + { + "start": 38663.54, + "end": 38664.8, + "probability": 0.9833 + }, + { + "start": 38664.82, + "end": 38670.58, + "probability": 0.9869 + }, + { + "start": 38670.66, + "end": 38671.2, + "probability": 0.3034 + }, + { + "start": 38671.6, + "end": 38672.42, + "probability": 0.8002 + }, + { + "start": 38672.6, + "end": 38675.9, + "probability": 0.8894 + }, + { + "start": 38676.02, + "end": 38677.06, + "probability": 0.9854 + }, + { + "start": 38677.08, + "end": 38679.46, + "probability": 0.9949 + }, + { + "start": 38679.46, + "end": 38681.04, + "probability": 0.8654 + }, + { + "start": 38681.1, + "end": 38682.38, + "probability": 0.9541 + }, + { + "start": 38682.42, + "end": 38683.88, + "probability": 0.9902 + }, + { + "start": 38683.92, + "end": 38685.14, + "probability": 0.9837 + }, + { + "start": 38685.38, + "end": 38685.7, + "probability": 0.3452 + }, + { + "start": 38686.02, + "end": 38687.04, + "probability": 0.418 + }, + { + "start": 38687.04, + "end": 38688.02, + "probability": 0.7538 + }, + { + "start": 38688.2, + "end": 38689.6, + "probability": 0.0541 + }, + { + "start": 38690.64, + "end": 38691.3, + "probability": 0.179 + }, + { + "start": 38691.58, + "end": 38691.92, + "probability": 0.3266 + }, + { + "start": 38691.92, + "end": 38694.04, + "probability": 0.4862 + }, + { + "start": 38694.04, + "end": 38694.48, + "probability": 0.0596 + }, + { + "start": 38695.02, + "end": 38695.12, + "probability": 0.0198 + }, + { + "start": 38695.12, + "end": 38696.26, + "probability": 0.9468 + }, + { + "start": 38696.89, + "end": 38698.3, + "probability": 0.7168 + }, + { + "start": 38698.7, + "end": 38700.24, + "probability": 0.9727 + }, + { + "start": 38700.42, + "end": 38701.12, + "probability": 0.5264 + }, + { + "start": 38701.8, + "end": 38702.12, + "probability": 0.0628 + }, + { + "start": 38702.74, + "end": 38704.76, + "probability": 0.4983 + }, + { + "start": 38704.98, + "end": 38705.89, + "probability": 0.9775 + }, + { + "start": 38706.18, + "end": 38707.24, + "probability": 0.9082 + }, + { + "start": 38707.32, + "end": 38708.48, + "probability": 0.5532 + }, + { + "start": 38708.56, + "end": 38709.94, + "probability": 0.8303 + }, + { + "start": 38710.3, + "end": 38713.08, + "probability": 0.9976 + }, + { + "start": 38713.4, + "end": 38715.9, + "probability": 0.7935 + }, + { + "start": 38716.22, + "end": 38718.7, + "probability": 0.9984 + }, + { + "start": 38718.7, + "end": 38721.44, + "probability": 0.9941 + }, + { + "start": 38721.52, + "end": 38721.7, + "probability": 0.452 + }, + { + "start": 38722.14, + "end": 38723.16, + "probability": 0.9951 + }, + { + "start": 38723.32, + "end": 38725.08, + "probability": 0.0217 + }, + { + "start": 38725.08, + "end": 38725.08, + "probability": 0.0121 + }, + { + "start": 38725.08, + "end": 38725.68, + "probability": 0.1025 + }, + { + "start": 38725.68, + "end": 38727.06, + "probability": 0.8115 + }, + { + "start": 38727.16, + "end": 38728.84, + "probability": 0.8729 + }, + { + "start": 38728.88, + "end": 38729.8, + "probability": 0.9352 + }, + { + "start": 38730.02, + "end": 38732.24, + "probability": 0.267 + }, + { + "start": 38732.24, + "end": 38733.64, + "probability": 0.8992 + }, + { + "start": 38733.7, + "end": 38734.48, + "probability": 0.3836 + }, + { + "start": 38734.5, + "end": 38734.74, + "probability": 0.0411 + }, + { + "start": 38734.74, + "end": 38734.74, + "probability": 0.7018 + }, + { + "start": 38734.74, + "end": 38734.74, + "probability": 0.3835 + }, + { + "start": 38734.74, + "end": 38736.52, + "probability": 0.7371 + }, + { + "start": 38736.72, + "end": 38737.24, + "probability": 0.9825 + }, + { + "start": 38737.92, + "end": 38739.94, + "probability": 0.9353 + }, + { + "start": 38740.04, + "end": 38740.44, + "probability": 0.8333 + }, + { + "start": 38741.0, + "end": 38742.22, + "probability": 0.9869 + }, + { + "start": 38742.38, + "end": 38743.48, + "probability": 0.8459 + }, + { + "start": 38743.66, + "end": 38744.22, + "probability": 0.3577 + }, + { + "start": 38744.24, + "end": 38745.3, + "probability": 0.8729 + }, + { + "start": 38745.54, + "end": 38747.2, + "probability": 0.7313 + }, + { + "start": 38747.82, + "end": 38752.24, + "probability": 0.6055 + }, + { + "start": 38752.24, + "end": 38756.22, + "probability": 0.989 + }, + { + "start": 38756.66, + "end": 38757.52, + "probability": 0.7245 + }, + { + "start": 38758.28, + "end": 38761.48, + "probability": 0.9874 + }, + { + "start": 38761.56, + "end": 38763.02, + "probability": 0.8705 + }, + { + "start": 38763.38, + "end": 38764.48, + "probability": 0.8521 + }, + { + "start": 38764.54, + "end": 38764.88, + "probability": 0.9137 + }, + { + "start": 38764.94, + "end": 38766.28, + "probability": 0.8688 + }, + { + "start": 38766.7, + "end": 38767.48, + "probability": 0.4414 + }, + { + "start": 38767.52, + "end": 38767.68, + "probability": 0.8302 + }, + { + "start": 38767.8, + "end": 38768.5, + "probability": 0.4703 + }, + { + "start": 38768.54, + "end": 38770.3, + "probability": 0.9808 + }, + { + "start": 38770.3, + "end": 38771.06, + "probability": 0.1596 + }, + { + "start": 38772.46, + "end": 38774.06, + "probability": 0.874 + }, + { + "start": 38774.08, + "end": 38775.28, + "probability": 0.2296 + }, + { + "start": 38775.38, + "end": 38777.15, + "probability": 0.8767 + }, + { + "start": 38779.22, + "end": 38781.68, + "probability": 0.6647 + }, + { + "start": 38781.68, + "end": 38782.16, + "probability": 0.7739 + }, + { + "start": 38782.3, + "end": 38785.82, + "probability": 0.9961 + }, + { + "start": 38785.82, + "end": 38788.84, + "probability": 0.9798 + }, + { + "start": 38788.94, + "end": 38789.96, + "probability": 0.8565 + }, + { + "start": 38790.08, + "end": 38790.78, + "probability": 0.9772 + }, + { + "start": 38791.0, + "end": 38791.86, + "probability": 0.0399 + }, + { + "start": 38791.94, + "end": 38792.9, + "probability": 0.6848 + }, + { + "start": 38792.98, + "end": 38794.1, + "probability": 0.95 + }, + { + "start": 38794.22, + "end": 38795.18, + "probability": 0.9862 + }, + { + "start": 38795.78, + "end": 38796.48, + "probability": 0.7726 + }, + { + "start": 38796.9, + "end": 38799.24, + "probability": 0.9685 + }, + { + "start": 38799.3, + "end": 38800.54, + "probability": 0.9905 + }, + { + "start": 38800.68, + "end": 38802.81, + "probability": 0.9962 + }, + { + "start": 38803.24, + "end": 38805.14, + "probability": 0.8488 + }, + { + "start": 38805.34, + "end": 38806.08, + "probability": 0.4505 + }, + { + "start": 38806.2, + "end": 38809.34, + "probability": 0.9492 + }, + { + "start": 38809.5, + "end": 38811.92, + "probability": 0.9629 + }, + { + "start": 38812.54, + "end": 38816.34, + "probability": 0.9994 + }, + { + "start": 38816.36, + "end": 38817.08, + "probability": 0.5442 + }, + { + "start": 38817.2, + "end": 38817.6, + "probability": 0.7882 + }, + { + "start": 38817.64, + "end": 38818.12, + "probability": 0.7389 + }, + { + "start": 38818.18, + "end": 38820.64, + "probability": 0.9902 + }, + { + "start": 38821.18, + "end": 38825.16, + "probability": 0.9768 + }, + { + "start": 38825.34, + "end": 38828.24, + "probability": 0.9666 + }, + { + "start": 38828.4, + "end": 38829.08, + "probability": 0.9995 + }, + { + "start": 38829.74, + "end": 38834.28, + "probability": 0.9897 + }, + { + "start": 38834.56, + "end": 38836.14, + "probability": 0.8404 + }, + { + "start": 38836.36, + "end": 38838.04, + "probability": 0.7477 + }, + { + "start": 38838.04, + "end": 38838.56, + "probability": 0.6468 + }, + { + "start": 38839.29, + "end": 38841.3, + "probability": 0.9383 + }, + { + "start": 38841.38, + "end": 38843.6, + "probability": 0.9866 + }, + { + "start": 38844.04, + "end": 38847.16, + "probability": 0.9634 + }, + { + "start": 38848.38, + "end": 38850.78, + "probability": 0.7675 + }, + { + "start": 38853.08, + "end": 38853.77, + "probability": 0.9976 + }, + { + "start": 38854.5, + "end": 38858.78, + "probability": 0.9923 + }, + { + "start": 38859.8, + "end": 38860.4, + "probability": 0.998 + }, + { + "start": 38861.04, + "end": 38864.34, + "probability": 0.9639 + }, + { + "start": 38865.04, + "end": 38867.64, + "probability": 0.7327 + }, + { + "start": 38867.72, + "end": 38871.1, + "probability": 0.9945 + }, + { + "start": 38871.2, + "end": 38873.62, + "probability": 0.7888 + }, + { + "start": 38874.3, + "end": 38878.22, + "probability": 0.9974 + }, + { + "start": 38878.28, + "end": 38879.76, + "probability": 0.8529 + }, + { + "start": 38880.44, + "end": 38881.76, + "probability": 0.9738 + }, + { + "start": 38882.42, + "end": 38883.54, + "probability": 0.8179 + }, + { + "start": 38884.38, + "end": 38886.1, + "probability": 0.9945 + }, + { + "start": 38886.7, + "end": 38887.81, + "probability": 0.6617 + }, + { + "start": 38888.32, + "end": 38888.34, + "probability": 0.4502 + }, + { + "start": 38888.68, + "end": 38892.0, + "probability": 0.1716 + }, + { + "start": 38892.32, + "end": 38893.86, + "probability": 0.6961 + }, + { + "start": 38893.98, + "end": 38894.64, + "probability": 0.42 + }, + { + "start": 38895.26, + "end": 38896.32, + "probability": 0.4156 + }, + { + "start": 38896.4, + "end": 38898.04, + "probability": 0.5805 + }, + { + "start": 38898.9, + "end": 38904.1, + "probability": 0.9304 + }, + { + "start": 38904.2, + "end": 38904.4, + "probability": 0.2989 + }, + { + "start": 38904.46, + "end": 38905.14, + "probability": 0.5187 + }, + { + "start": 38905.32, + "end": 38906.78, + "probability": 0.9814 + }, + { + "start": 38907.18, + "end": 38908.1, + "probability": 0.8628 + }, + { + "start": 38908.24, + "end": 38910.28, + "probability": 0.896 + }, + { + "start": 38910.32, + "end": 38913.56, + "probability": 0.9858 + }, + { + "start": 38914.82, + "end": 38915.6, + "probability": 0.6947 + }, + { + "start": 38915.7, + "end": 38917.98, + "probability": 0.7734 + }, + { + "start": 38918.36, + "end": 38920.56, + "probability": 0.1084 + }, + { + "start": 38923.24, + "end": 38923.44, + "probability": 0.1186 + }, + { + "start": 38923.44, + "end": 38925.74, + "probability": 0.5308 + }, + { + "start": 38925.74, + "end": 38927.08, + "probability": 0.6796 + }, + { + "start": 38927.52, + "end": 38931.46, + "probability": 0.9312 + }, + { + "start": 38931.58, + "end": 38934.53, + "probability": 0.9808 + }, + { + "start": 38934.94, + "end": 38938.22, + "probability": 0.3333 + }, + { + "start": 38938.72, + "end": 38939.7, + "probability": 0.2624 + }, + { + "start": 38940.22, + "end": 38941.4, + "probability": 0.7049 + }, + { + "start": 38941.82, + "end": 38944.67, + "probability": 0.929 + }, + { + "start": 38945.02, + "end": 38945.44, + "probability": 0.7791 + }, + { + "start": 38945.66, + "end": 38950.76, + "probability": 0.8312 + }, + { + "start": 38951.22, + "end": 38952.96, + "probability": 0.4651 + }, + { + "start": 38953.76, + "end": 38953.88, + "probability": 0.1228 + }, + { + "start": 38953.88, + "end": 38958.36, + "probability": 0.9505 + }, + { + "start": 38959.78, + "end": 38959.98, + "probability": 0.6264 + }, + { + "start": 38960.0, + "end": 38961.64, + "probability": 0.9991 + }, + { + "start": 38961.76, + "end": 38963.2, + "probability": 0.9565 + }, + { + "start": 38963.6, + "end": 38963.6, + "probability": 0.0515 + }, + { + "start": 38963.6, + "end": 38967.38, + "probability": 0.9901 + }, + { + "start": 38967.48, + "end": 38968.04, + "probability": 0.9382 + }, + { + "start": 38969.02, + "end": 38971.32, + "probability": 0.94 + }, + { + "start": 38971.66, + "end": 38977.44, + "probability": 0.9915 + }, + { + "start": 38978.0, + "end": 38979.46, + "probability": 0.9985 + }, + { + "start": 38979.9, + "end": 38979.9, + "probability": 0.3813 + }, + { + "start": 38979.9, + "end": 38983.4, + "probability": 0.8136 + }, + { + "start": 38983.52, + "end": 38984.52, + "probability": 0.4041 + }, + { + "start": 38984.52, + "end": 38984.9, + "probability": 0.0145 + }, + { + "start": 38985.06, + "end": 38985.56, + "probability": 0.4547 + }, + { + "start": 38985.98, + "end": 38988.72, + "probability": 0.2805 + }, + { + "start": 38988.72, + "end": 38990.14, + "probability": 0.7788 + }, + { + "start": 38990.38, + "end": 38990.48, + "probability": 0.4126 + }, + { + "start": 38990.82, + "end": 38996.56, + "probability": 0.6724 + }, + { + "start": 38997.0, + "end": 38998.2, + "probability": 0.542 + }, + { + "start": 38998.56, + "end": 38999.64, + "probability": 0.5166 + }, + { + "start": 38999.64, + "end": 39000.38, + "probability": 0.5136 + }, + { + "start": 39000.48, + "end": 39001.28, + "probability": 0.5463 + }, + { + "start": 39001.84, + "end": 39002.48, + "probability": 0.4033 + }, + { + "start": 39002.48, + "end": 39002.7, + "probability": 0.1092 + }, + { + "start": 39002.7, + "end": 39004.48, + "probability": 0.8262 + }, + { + "start": 39007.72, + "end": 39009.8, + "probability": 0.5138 + }, + { + "start": 39009.84, + "end": 39010.24, + "probability": 0.3276 + }, + { + "start": 39010.26, + "end": 39010.26, + "probability": 0.3631 + }, + { + "start": 39010.32, + "end": 39010.32, + "probability": 0.3377 + }, + { + "start": 39010.32, + "end": 39012.06, + "probability": 0.0865 + }, + { + "start": 39012.42, + "end": 39012.42, + "probability": 0.2326 + }, + { + "start": 39012.46, + "end": 39012.7, + "probability": 0.1159 + }, + { + "start": 39012.76, + "end": 39013.78, + "probability": 0.2252 + }, + { + "start": 39014.42, + "end": 39017.1, + "probability": 0.5189 + }, + { + "start": 39017.1, + "end": 39024.74, + "probability": 0.128 + }, + { + "start": 39024.74, + "end": 39025.59, + "probability": 0.0458 + }, + { + "start": 39026.4, + "end": 39026.4, + "probability": 0.0489 + }, + { + "start": 39026.88, + "end": 39030.08, + "probability": 0.1677 + }, + { + "start": 39035.22, + "end": 39043.8, + "probability": 0.0464 + }, + { + "start": 39043.8, + "end": 39044.46, + "probability": 0.1811 + }, + { + "start": 39046.27, + "end": 39048.02, + "probability": 0.0166 + }, + { + "start": 39049.63, + "end": 39051.86, + "probability": 0.1545 + }, + { + "start": 39052.28, + "end": 39055.61, + "probability": 0.0975 + }, + { + "start": 39060.58, + "end": 39062.02, + "probability": 0.0332 + }, + { + "start": 39087.0, + "end": 39087.0, + "probability": 0.0 + }, + { + "start": 39087.0, + "end": 39087.0, + "probability": 0.0 + }, + { + "start": 39087.0, + "end": 39087.0, + "probability": 0.0 + }, + { + "start": 39087.0, + "end": 39087.0, + "probability": 0.0 + }, + { + "start": 39087.0, + "end": 39087.0, + "probability": 0.0 + }, + { + "start": 39087.0, + "end": 39087.0, + "probability": 0.0 + }, + { + "start": 39087.0, + "end": 39087.0, + "probability": 0.0 + }, + { + "start": 39087.0, + "end": 39087.0, + "probability": 0.0 + }, + { + "start": 39087.0, + "end": 39087.0, + "probability": 0.0 + }, + { + "start": 39087.0, + "end": 39087.0, + "probability": 0.0 + }, + { + "start": 39087.0, + "end": 39087.0, + "probability": 0.0 + }, + { + "start": 39087.0, + "end": 39087.0, + "probability": 0.0 + }, + { + "start": 39087.0, + "end": 39087.0, + "probability": 0.0 + }, + { + "start": 39087.0, + "end": 39087.0, + "probability": 0.0 + }, + { + "start": 39087.0, + "end": 39087.0, + "probability": 0.0 + }, + { + "start": 39087.0, + "end": 39087.0, + "probability": 0.0 + }, + { + "start": 39087.0, + "end": 39087.0, + "probability": 0.0 + }, + { + "start": 39087.0, + "end": 39087.0, + "probability": 0.0 + }, + { + "start": 39087.0, + "end": 39087.0, + "probability": 0.0 + }, + { + "start": 39087.0, + "end": 39087.0, + "probability": 0.0 + }, + { + "start": 39087.0, + "end": 39087.0, + "probability": 0.0 + }, + { + "start": 39087.0, + "end": 39087.0, + "probability": 0.0 + }, + { + "start": 39087.0, + "end": 39087.0, + "probability": 0.0 + }, + { + "start": 39089.06, + "end": 39090.84, + "probability": 0.1633 + }, + { + "start": 39091.08, + "end": 39091.46, + "probability": 0.0444 + }, + { + "start": 39091.46, + "end": 39091.46, + "probability": 0.0846 + }, + { + "start": 39091.46, + "end": 39091.56, + "probability": 0.0179 + }, + { + "start": 39091.86, + "end": 39092.91, + "probability": 0.0113 + }, + { + "start": 39097.29, + "end": 39097.36, + "probability": 0.1635 + }, + { + "start": 39097.36, + "end": 39098.24, + "probability": 0.1039 + }, + { + "start": 39098.24, + "end": 39098.24, + "probability": 0.087 + }, + { + "start": 39098.24, + "end": 39098.96, + "probability": 0.051 + }, + { + "start": 39098.96, + "end": 39099.98, + "probability": 0.5985 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.0, + "probability": 0.0 + }, + { + "start": 39219.0, + "end": 39219.44, + "probability": 0.184 + }, + { + "start": 39219.54, + "end": 39220.92, + "probability": 0.1608 + }, + { + "start": 39221.72, + "end": 39226.1, + "probability": 0.1755 + }, + { + "start": 39226.42, + "end": 39226.94, + "probability": 0.072 + }, + { + "start": 39226.94, + "end": 39226.94, + "probability": 0.0601 + }, + { + "start": 39227.52, + "end": 39229.56, + "probability": 0.15 + }, + { + "start": 39230.44, + "end": 39231.56, + "probability": 0.0786 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39347.0, + "end": 39347.0, + "probability": 0.0 + }, + { + "start": 39349.76, + "end": 39350.6, + "probability": 0.0065 + }, + { + "start": 39353.79, + "end": 39357.6, + "probability": 0.1448 + }, + { + "start": 39357.6, + "end": 39359.16, + "probability": 0.0371 + }, + { + "start": 39359.3, + "end": 39364.66, + "probability": 0.1718 + }, + { + "start": 39365.41, + "end": 39368.44, + "probability": 0.0759 + }, + { + "start": 39370.23, + "end": 39372.96, + "probability": 0.0485 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.0, + "end": 39468.0, + "probability": 0.0 + }, + { + "start": 39468.12, + "end": 39468.74, + "probability": 0.076 + }, + { + "start": 39468.74, + "end": 39468.74, + "probability": 0.5027 + }, + { + "start": 39468.74, + "end": 39469.7, + "probability": 0.4051 + }, + { + "start": 39470.08, + "end": 39470.18, + "probability": 0.261 + }, + { + "start": 39470.36, + "end": 39470.68, + "probability": 0.8038 + }, + { + "start": 39471.04, + "end": 39472.68, + "probability": 0.8796 + }, + { + "start": 39473.3, + "end": 39473.66, + "probability": 0.1664 + }, + { + "start": 39473.86, + "end": 39475.44, + "probability": 0.9193 + }, + { + "start": 39476.9, + "end": 39481.79, + "probability": 0.9961 + }, + { + "start": 39482.62, + "end": 39484.78, + "probability": 0.5616 + }, + { + "start": 39484.86, + "end": 39488.33, + "probability": 0.9873 + }, + { + "start": 39489.22, + "end": 39491.96, + "probability": 0.9878 + }, + { + "start": 39492.02, + "end": 39492.38, + "probability": 0.7583 + }, + { + "start": 39492.5, + "end": 39493.19, + "probability": 0.998 + }, + { + "start": 39493.48, + "end": 39493.7, + "probability": 0.8158 + }, + { + "start": 39494.32, + "end": 39496.18, + "probability": 0.9453 + }, + { + "start": 39496.32, + "end": 39497.22, + "probability": 0.9319 + }, + { + "start": 39497.38, + "end": 39501.18, + "probability": 0.9863 + }, + { + "start": 39501.7, + "end": 39503.66, + "probability": 0.7998 + }, + { + "start": 39504.18, + "end": 39505.7, + "probability": 0.9944 + }, + { + "start": 39506.76, + "end": 39508.62, + "probability": 0.968 + }, + { + "start": 39509.44, + "end": 39510.38, + "probability": 0.0858 + }, + { + "start": 39510.5, + "end": 39510.6, + "probability": 0.0022 + }, + { + "start": 39510.6, + "end": 39512.23, + "probability": 0.9404 + }, + { + "start": 39512.42, + "end": 39512.78, + "probability": 0.8125 + }, + { + "start": 39513.06, + "end": 39513.87, + "probability": 0.9912 + }, + { + "start": 39514.72, + "end": 39516.22, + "probability": 0.8755 + }, + { + "start": 39517.32, + "end": 39518.62, + "probability": 0.5239 + }, + { + "start": 39518.92, + "end": 39519.46, + "probability": 0.7661 + }, + { + "start": 39519.98, + "end": 39521.3, + "probability": 0.9054 + }, + { + "start": 39522.34, + "end": 39524.04, + "probability": 0.6533 + }, + { + "start": 39524.14, + "end": 39525.82, + "probability": 0.9977 + }, + { + "start": 39526.04, + "end": 39529.44, + "probability": 0.9819 + }, + { + "start": 39529.5, + "end": 39534.46, + "probability": 0.9957 + }, + { + "start": 39534.9, + "end": 39536.0, + "probability": 0.9951 + }, + { + "start": 39536.44, + "end": 39536.8, + "probability": 0.1028 + }, + { + "start": 39538.24, + "end": 39539.0, + "probability": 0.396 + }, + { + "start": 39539.2, + "end": 39540.52, + "probability": 0.5908 + }, + { + "start": 39540.82, + "end": 39541.88, + "probability": 0.5232 + }, + { + "start": 39542.08, + "end": 39548.62, + "probability": 0.4875 + }, + { + "start": 39549.1, + "end": 39550.44, + "probability": 0.7789 + }, + { + "start": 39550.7, + "end": 39552.02, + "probability": 0.3433 + }, + { + "start": 39552.4, + "end": 39553.62, + "probability": 0.1647 + }, + { + "start": 39553.62, + "end": 39555.6, + "probability": 0.78 + }, + { + "start": 39555.6, + "end": 39559.14, + "probability": 0.1023 + }, + { + "start": 39559.28, + "end": 39559.66, + "probability": 0.4363 + }, + { + "start": 39560.0, + "end": 39561.04, + "probability": 0.9775 + }, + { + "start": 39563.78, + "end": 39564.7, + "probability": 0.1028 + }, + { + "start": 39564.86, + "end": 39565.76, + "probability": 0.7875 + }, + { + "start": 39566.0, + "end": 39566.38, + "probability": 0.2345 + }, + { + "start": 39566.38, + "end": 39566.52, + "probability": 0.503 + }, + { + "start": 39566.54, + "end": 39566.74, + "probability": 0.3266 + }, + { + "start": 39566.84, + "end": 39567.61, + "probability": 0.896 + }, + { + "start": 39568.0, + "end": 39568.94, + "probability": 0.0157 + }, + { + "start": 39569.22, + "end": 39570.92, + "probability": 0.8973 + }, + { + "start": 39570.94, + "end": 39571.92, + "probability": 0.8106 + }, + { + "start": 39572.0, + "end": 39575.58, + "probability": 0.9922 + }, + { + "start": 39575.78, + "end": 39576.8, + "probability": 0.9989 + }, + { + "start": 39577.58, + "end": 39582.58, + "probability": 0.9668 + }, + { + "start": 39582.6, + "end": 39584.32, + "probability": 0.9016 + }, + { + "start": 39584.44, + "end": 39588.14, + "probability": 0.9751 + }, + { + "start": 39588.2, + "end": 39590.87, + "probability": 0.9134 + }, + { + "start": 39591.0, + "end": 39591.74, + "probability": 0.6306 + }, + { + "start": 39592.34, + "end": 39595.9, + "probability": 0.9976 + }, + { + "start": 39596.0, + "end": 39598.86, + "probability": 0.9022 + }, + { + "start": 39599.46, + "end": 39603.22, + "probability": 0.7019 + }, + { + "start": 39603.32, + "end": 39606.22, + "probability": 0.918 + }, + { + "start": 39606.5, + "end": 39607.58, + "probability": 0.7877 + }, + { + "start": 39607.98, + "end": 39608.54, + "probability": 0.6846 + }, + { + "start": 39608.96, + "end": 39610.44, + "probability": 0.9526 + }, + { + "start": 39610.66, + "end": 39610.86, + "probability": 0.1192 + }, + { + "start": 39610.86, + "end": 39616.06, + "probability": 0.9808 + }, + { + "start": 39616.54, + "end": 39620.44, + "probability": 0.998 + }, + { + "start": 39620.5, + "end": 39621.7, + "probability": 0.9609 + }, + { + "start": 39622.1, + "end": 39622.8, + "probability": 0.9213 + }, + { + "start": 39623.06, + "end": 39624.18, + "probability": 0.998 + }, + { + "start": 39624.56, + "end": 39625.14, + "probability": 0.7573 + }, + { + "start": 39625.28, + "end": 39626.42, + "probability": 0.9796 + }, + { + "start": 39627.02, + "end": 39627.32, + "probability": 0.2161 + }, + { + "start": 39628.02, + "end": 39629.32, + "probability": 0.5894 + }, + { + "start": 39629.77, + "end": 39631.52, + "probability": 0.1272 + }, + { + "start": 39631.52, + "end": 39632.56, + "probability": 0.5186 + }, + { + "start": 39632.56, + "end": 39633.4, + "probability": 0.6482 + }, + { + "start": 39634.36, + "end": 39635.42, + "probability": 0.5653 + }, + { + "start": 39636.26, + "end": 39637.9, + "probability": 0.5517 + }, + { + "start": 39638.02, + "end": 39638.16, + "probability": 0.7486 + }, + { + "start": 39638.39, + "end": 39639.52, + "probability": 0.0657 + }, + { + "start": 39639.52, + "end": 39640.52, + "probability": 0.6431 + }, + { + "start": 39640.98, + "end": 39641.5, + "probability": 0.5095 + }, + { + "start": 39641.98, + "end": 39642.84, + "probability": 0.9577 + }, + { + "start": 39643.52, + "end": 39645.92, + "probability": 0.9346 + }, + { + "start": 39646.28, + "end": 39646.73, + "probability": 0.9731 + }, + { + "start": 39647.62, + "end": 39648.78, + "probability": 0.8491 + }, + { + "start": 39649.28, + "end": 39652.6, + "probability": 0.9922 + }, + { + "start": 39652.73, + "end": 39654.42, + "probability": 0.5917 + }, + { + "start": 39654.62, + "end": 39654.86, + "probability": 0.7104 + }, + { + "start": 39654.96, + "end": 39655.58, + "probability": 0.5106 + }, + { + "start": 39655.96, + "end": 39659.32, + "probability": 0.9054 + }, + { + "start": 39659.32, + "end": 39662.22, + "probability": 0.9682 + }, + { + "start": 39662.28, + "end": 39665.08, + "probability": 0.9519 + }, + { + "start": 39665.66, + "end": 39666.16, + "probability": 0.7635 + }, + { + "start": 39666.84, + "end": 39670.92, + "probability": 0.9612 + }, + { + "start": 39671.62, + "end": 39674.18, + "probability": 0.769 + }, + { + "start": 39674.72, + "end": 39675.34, + "probability": 0.6344 + }, + { + "start": 39675.36, + "end": 39676.92, + "probability": 0.8442 + }, + { + "start": 39676.96, + "end": 39677.4, + "probability": 0.8994 + }, + { + "start": 39677.6, + "end": 39678.66, + "probability": 0.8719 + }, + { + "start": 39678.66, + "end": 39679.52, + "probability": 0.811 + }, + { + "start": 39679.58, + "end": 39682.14, + "probability": 0.5796 + }, + { + "start": 39682.3, + "end": 39682.62, + "probability": 0.6233 + }, + { + "start": 39683.38, + "end": 39686.28, + "probability": 0.8281 + }, + { + "start": 39687.46, + "end": 39689.46, + "probability": 0.8779 + }, + { + "start": 39691.1, + "end": 39693.04, + "probability": 0.8202 + }, + { + "start": 39693.66, + "end": 39698.92, + "probability": 0.9862 + }, + { + "start": 39699.0, + "end": 39699.74, + "probability": 0.8537 + }, + { + "start": 39699.82, + "end": 39701.5, + "probability": 0.9961 + }, + { + "start": 39701.82, + "end": 39702.5, + "probability": 0.9807 + }, + { + "start": 39703.08, + "end": 39703.64, + "probability": 0.9064 + }, + { + "start": 39704.44, + "end": 39709.78, + "probability": 0.9691 + }, + { + "start": 39710.26, + "end": 39712.24, + "probability": 0.8625 + }, + { + "start": 39712.36, + "end": 39713.32, + "probability": 0.9965 + }, + { + "start": 39714.46, + "end": 39716.48, + "probability": 0.9551 + }, + { + "start": 39716.72, + "end": 39717.98, + "probability": 0.9758 + }, + { + "start": 39718.36, + "end": 39718.78, + "probability": 0.5864 + }, + { + "start": 39719.08, + "end": 39724.04, + "probability": 0.9873 + }, + { + "start": 39724.26, + "end": 39725.12, + "probability": 0.9119 + }, + { + "start": 39725.62, + "end": 39725.62, + "probability": 0.1842 + }, + { + "start": 39725.62, + "end": 39727.66, + "probability": 0.8023 + }, + { + "start": 39728.88, + "end": 39729.38, + "probability": 0.1928 + }, + { + "start": 39729.38, + "end": 39729.38, + "probability": 0.0467 + }, + { + "start": 39729.38, + "end": 39730.16, + "probability": 0.2686 + }, + { + "start": 39731.72, + "end": 39732.56, + "probability": 0.1259 + }, + { + "start": 39732.56, + "end": 39732.56, + "probability": 0.0389 + }, + { + "start": 39732.56, + "end": 39733.56, + "probability": 0.7388 + }, + { + "start": 39733.56, + "end": 39736.28, + "probability": 0.6362 + }, + { + "start": 39736.3, + "end": 39736.94, + "probability": 0.6102 + }, + { + "start": 39737.56, + "end": 39739.62, + "probability": 0.627 + }, + { + "start": 39739.64, + "end": 39740.5, + "probability": 0.7816 + }, + { + "start": 39741.3, + "end": 39744.88, + "probability": 0.5634 + }, + { + "start": 39745.7, + "end": 39748.48, + "probability": 0.2189 + }, + { + "start": 39748.48, + "end": 39753.7, + "probability": 0.3183 + }, + { + "start": 39754.9, + "end": 39756.36, + "probability": 0.7769 + }, + { + "start": 39757.08, + "end": 39758.14, + "probability": 0.9775 + }, + { + "start": 39758.38, + "end": 39762.96, + "probability": 0.7401 + }, + { + "start": 39764.26, + "end": 39765.88, + "probability": 0.2668 + }, + { + "start": 39766.7, + "end": 39769.68, + "probability": 0.9683 + }, + { + "start": 39770.24, + "end": 39771.18, + "probability": 0.9865 + }, + { + "start": 39771.82, + "end": 39778.24, + "probability": 0.954 + }, + { + "start": 39780.14, + "end": 39780.22, + "probability": 0.0059 + }, + { + "start": 39781.26, + "end": 39784.86, + "probability": 0.9758 + }, + { + "start": 39785.84, + "end": 39788.9, + "probability": 0.877 + }, + { + "start": 39789.42, + "end": 39790.56, + "probability": 0.6452 + }, + { + "start": 39791.42, + "end": 39792.46, + "probability": 0.772 + }, + { + "start": 39792.56, + "end": 39793.88, + "probability": 0.9951 + }, + { + "start": 39794.36, + "end": 39799.56, + "probability": 0.8628 + }, + { + "start": 39800.16, + "end": 39800.7, + "probability": 0.8615 + }, + { + "start": 39801.6, + "end": 39803.54, + "probability": 0.9766 + }, + { + "start": 39804.34, + "end": 39809.54, + "probability": 0.9166 + }, + { + "start": 39810.08, + "end": 39815.88, + "probability": 0.9656 + }, + { + "start": 39816.84, + "end": 39817.76, + "probability": 0.7223 + }, + { + "start": 39818.34, + "end": 39819.02, + "probability": 0.9084 + }, + { + "start": 39819.1, + "end": 39820.5, + "probability": 0.626 + }, + { + "start": 39820.94, + "end": 39824.16, + "probability": 0.9883 + }, + { + "start": 39824.76, + "end": 39827.5, + "probability": 0.9935 + }, + { + "start": 39827.82, + "end": 39829.88, + "probability": 0.989 + }, + { + "start": 39830.38, + "end": 39831.62, + "probability": 0.9331 + }, + { + "start": 39832.42, + "end": 39835.28, + "probability": 0.9921 + }, + { + "start": 39835.84, + "end": 39837.58, + "probability": 0.958 + }, + { + "start": 39838.24, + "end": 39841.24, + "probability": 0.9878 + }, + { + "start": 39841.24, + "end": 39844.38, + "probability": 0.9974 + }, + { + "start": 39844.8, + "end": 39849.64, + "probability": 0.9876 + }, + { + "start": 39850.38, + "end": 39853.34, + "probability": 0.9902 + }, + { + "start": 39854.1, + "end": 39855.14, + "probability": 0.8592 + }, + { + "start": 39855.72, + "end": 39855.9, + "probability": 0.4844 + }, + { + "start": 39855.9, + "end": 39857.08, + "probability": 0.811 + }, + { + "start": 39857.46, + "end": 39859.96, + "probability": 0.9961 + }, + { + "start": 39860.54, + "end": 39864.34, + "probability": 0.9538 + }, + { + "start": 39864.72, + "end": 39868.16, + "probability": 0.9981 + }, + { + "start": 39868.54, + "end": 39869.04, + "probability": 0.7846 + }, + { + "start": 39869.7, + "end": 39871.4, + "probability": 0.9684 + }, + { + "start": 39872.58, + "end": 39873.3, + "probability": 0.3247 + }, + { + "start": 39874.48, + "end": 39875.6, + "probability": 0.3155 + }, + { + "start": 39875.7, + "end": 39876.18, + "probability": 0.6245 + }, + { + "start": 39876.48, + "end": 39877.54, + "probability": 0.8585 + }, + { + "start": 39877.98, + "end": 39880.48, + "probability": 0.9883 + }, + { + "start": 39880.8, + "end": 39882.1, + "probability": 0.9551 + }, + { + "start": 39882.16, + "end": 39883.32, + "probability": 0.9419 + }, + { + "start": 39883.74, + "end": 39884.6, + "probability": 0.4822 + }, + { + "start": 39885.34, + "end": 39886.12, + "probability": 0.9208 + }, + { + "start": 39886.9, + "end": 39889.18, + "probability": 0.936 + }, + { + "start": 39889.24, + "end": 39890.12, + "probability": 0.6592 + }, + { + "start": 39890.54, + "end": 39890.86, + "probability": 0.7806 + }, + { + "start": 39891.24, + "end": 39894.1, + "probability": 0.821 + }, + { + "start": 39894.52, + "end": 39896.0, + "probability": 0.7003 + }, + { + "start": 39896.44, + "end": 39897.64, + "probability": 0.8372 + }, + { + "start": 39897.88, + "end": 39898.06, + "probability": 0.9789 + }, + { + "start": 39898.24, + "end": 39899.2, + "probability": 0.7408 + }, + { + "start": 39899.98, + "end": 39903.46, + "probability": 0.9674 + }, + { + "start": 39904.1, + "end": 39912.18, + "probability": 0.9898 + }, + { + "start": 39912.78, + "end": 39917.38, + "probability": 0.9927 + }, + { + "start": 39917.86, + "end": 39923.78, + "probability": 0.9951 + }, + { + "start": 39924.04, + "end": 39928.88, + "probability": 0.9977 + }, + { + "start": 39929.2, + "end": 39929.98, + "probability": 0.5512 + }, + { + "start": 39931.02, + "end": 39934.66, + "probability": 0.9849 + }, + { + "start": 39935.06, + "end": 39936.78, + "probability": 0.9937 + }, + { + "start": 39937.18, + "end": 39939.06, + "probability": 0.9946 + }, + { + "start": 39940.74, + "end": 39942.34, + "probability": 0.2626 + }, + { + "start": 39942.84, + "end": 39949.51, + "probability": 0.9825 + }, + { + "start": 39950.12, + "end": 39955.04, + "probability": 0.9995 + }, + { + "start": 39955.64, + "end": 39958.48, + "probability": 0.8867 + }, + { + "start": 39959.38, + "end": 39960.58, + "probability": 0.8214 + }, + { + "start": 39961.44, + "end": 39962.8, + "probability": 0.9097 + }, + { + "start": 39963.52, + "end": 39965.8, + "probability": 0.9971 + }, + { + "start": 39966.24, + "end": 39967.04, + "probability": 0.4662 + }, + { + "start": 39967.22, + "end": 39967.84, + "probability": 0.8256 + }, + { + "start": 39968.4, + "end": 39971.18, + "probability": 0.8782 + }, + { + "start": 39971.84, + "end": 39973.96, + "probability": 0.9838 + }, + { + "start": 39974.76, + "end": 39976.14, + "probability": 0.9546 + }, + { + "start": 39976.58, + "end": 39978.38, + "probability": 0.9785 + }, + { + "start": 39978.98, + "end": 39982.84, + "probability": 0.9453 + }, + { + "start": 39982.98, + "end": 39983.6, + "probability": 0.57 + }, + { + "start": 39987.26, + "end": 39987.46, + "probability": 0.004 + }, + { + "start": 39987.46, + "end": 39987.46, + "probability": 0.0399 + }, + { + "start": 39987.46, + "end": 39987.96, + "probability": 0.1251 + }, + { + "start": 39988.0, + "end": 39989.1, + "probability": 0.4729 + }, + { + "start": 39989.12, + "end": 39991.04, + "probability": 0.1618 + }, + { + "start": 39991.12, + "end": 39992.98, + "probability": 0.8946 + }, + { + "start": 39993.3, + "end": 39993.52, + "probability": 0.731 + }, + { + "start": 39993.66, + "end": 39995.64, + "probability": 0.9715 + }, + { + "start": 39996.2, + "end": 39997.26, + "probability": 0.0333 + }, + { + "start": 39997.26, + "end": 40000.26, + "probability": 0.9663 + }, + { + "start": 40000.36, + "end": 40001.08, + "probability": 0.8431 + }, + { + "start": 40001.46, + "end": 40003.88, + "probability": 0.9902 + }, + { + "start": 40004.92, + "end": 40005.48, + "probability": 0.6671 + }, + { + "start": 40006.38, + "end": 40007.14, + "probability": 0.4964 + }, + { + "start": 40008.56, + "end": 40013.34, + "probability": 0.9843 + }, + { + "start": 40013.34, + "end": 40016.26, + "probability": 0.9987 + }, + { + "start": 40018.28, + "end": 40021.66, + "probability": 0.1461 + }, + { + "start": 40021.66, + "end": 40025.12, + "probability": 0.2141 + }, + { + "start": 40026.36, + "end": 40026.38, + "probability": 0.0756 + }, + { + "start": 40026.38, + "end": 40027.0, + "probability": 0.1459 + }, + { + "start": 40027.64, + "end": 40033.94, + "probability": 0.2787 + }, + { + "start": 40035.1, + "end": 40038.6, + "probability": 0.5504 + }, + { + "start": 40039.44, + "end": 40041.74, + "probability": 0.9822 + }, + { + "start": 40041.94, + "end": 40043.04, + "probability": 0.7192 + }, + { + "start": 40043.06, + "end": 40043.68, + "probability": 0.7274 + }, + { + "start": 40043.68, + "end": 40044.72, + "probability": 0.7882 + }, + { + "start": 40044.86, + "end": 40045.18, + "probability": 0.1962 + }, + { + "start": 40045.28, + "end": 40049.06, + "probability": 0.9896 + }, + { + "start": 40049.76, + "end": 40053.1, + "probability": 0.6755 + }, + { + "start": 40054.24, + "end": 40054.34, + "probability": 0.5436 + }, + { + "start": 40054.4, + "end": 40055.08, + "probability": 0.743 + }, + { + "start": 40055.68, + "end": 40056.72, + "probability": 0.5456 + }, + { + "start": 40056.78, + "end": 40057.32, + "probability": 0.6109 + }, + { + "start": 40057.48, + "end": 40058.56, + "probability": 0.8203 + }, + { + "start": 40058.56, + "end": 40059.0, + "probability": 0.1839 + }, + { + "start": 40059.02, + "end": 40062.06, + "probability": 0.8552 + }, + { + "start": 40062.1, + "end": 40063.44, + "probability": 0.5032 + }, + { + "start": 40063.5, + "end": 40067.46, + "probability": 0.0802 + }, + { + "start": 40067.66, + "end": 40071.04, + "probability": 0.7882 + }, + { + "start": 40071.64, + "end": 40071.84, + "probability": 0.7561 + }, + { + "start": 40072.86, + "end": 40075.8, + "probability": 0.7704 + }, + { + "start": 40076.0, + "end": 40077.34, + "probability": 0.9922 + }, + { + "start": 40077.86, + "end": 40077.96, + "probability": 0.1328 + }, + { + "start": 40078.43, + "end": 40081.86, + "probability": 0.9412 + }, + { + "start": 40081.92, + "end": 40085.44, + "probability": 0.3983 + }, + { + "start": 40085.6, + "end": 40085.7, + "probability": 0.0036 + }, + { + "start": 40085.7, + "end": 40085.7, + "probability": 0.1031 + }, + { + "start": 40085.7, + "end": 40086.66, + "probability": 0.4546 + }, + { + "start": 40086.78, + "end": 40087.18, + "probability": 0.0581 + }, + { + "start": 40087.2, + "end": 40088.5, + "probability": 0.8389 + }, + { + "start": 40088.78, + "end": 40090.24, + "probability": 0.9968 + }, + { + "start": 40090.34, + "end": 40092.08, + "probability": 0.926 + }, + { + "start": 40092.54, + "end": 40096.38, + "probability": 0.7696 + }, + { + "start": 40097.0, + "end": 40101.06, + "probability": 0.994 + }, + { + "start": 40101.52, + "end": 40103.7, + "probability": 0.9738 + }, + { + "start": 40103.94, + "end": 40104.62, + "probability": 0.738 + }, + { + "start": 40105.2, + "end": 40107.96, + "probability": 0.9986 + }, + { + "start": 40107.96, + "end": 40111.16, + "probability": 0.9974 + }, + { + "start": 40111.54, + "end": 40113.54, + "probability": 0.7657 + }, + { + "start": 40114.26, + "end": 40115.68, + "probability": 0.9429 + }, + { + "start": 40116.24, + "end": 40119.48, + "probability": 0.9871 + }, + { + "start": 40119.98, + "end": 40121.66, + "probability": 0.8188 + }, + { + "start": 40122.06, + "end": 40122.62, + "probability": 0.0015 + }, + { + "start": 40122.62, + "end": 40124.74, + "probability": 0.557 + }, + { + "start": 40124.74, + "end": 40128.58, + "probability": 0.9303 + }, + { + "start": 40129.24, + "end": 40130.66, + "probability": 0.9951 + }, + { + "start": 40131.42, + "end": 40135.52, + "probability": 0.9587 + }, + { + "start": 40136.16, + "end": 40136.52, + "probability": 0.3428 + }, + { + "start": 40136.58, + "end": 40137.56, + "probability": 0.8674 + }, + { + "start": 40138.06, + "end": 40139.52, + "probability": 0.9113 + }, + { + "start": 40139.66, + "end": 40140.32, + "probability": 0.7724 + }, + { + "start": 40140.72, + "end": 40141.63, + "probability": 0.9785 + }, + { + "start": 40141.76, + "end": 40144.4, + "probability": 0.8512 + }, + { + "start": 40144.62, + "end": 40146.5, + "probability": 0.9355 + }, + { + "start": 40146.98, + "end": 40148.18, + "probability": 0.9552 + }, + { + "start": 40148.32, + "end": 40149.0, + "probability": 0.8673 + }, + { + "start": 40149.3, + "end": 40150.3, + "probability": 0.7079 + }, + { + "start": 40150.96, + "end": 40154.44, + "probability": 0.9935 + }, + { + "start": 40154.46, + "end": 40158.78, + "probability": 0.9974 + }, + { + "start": 40159.94, + "end": 40166.02, + "probability": 0.7907 + }, + { + "start": 40166.48, + "end": 40167.16, + "probability": 0.4512 + }, + { + "start": 40167.28, + "end": 40167.42, + "probability": 0.0416 + }, + { + "start": 40167.42, + "end": 40170.16, + "probability": 0.7121 + }, + { + "start": 40170.32, + "end": 40170.68, + "probability": 0.9332 + }, + { + "start": 40171.02, + "end": 40172.12, + "probability": 0.9457 + }, + { + "start": 40172.5, + "end": 40176.86, + "probability": 0.9155 + }, + { + "start": 40176.98, + "end": 40178.56, + "probability": 0.8487 + }, + { + "start": 40178.62, + "end": 40179.76, + "probability": 0.0475 + }, + { + "start": 40179.96, + "end": 40180.1, + "probability": 0.0782 + }, + { + "start": 40181.04, + "end": 40181.28, + "probability": 0.0286 + }, + { + "start": 40181.28, + "end": 40181.28, + "probability": 0.1484 + }, + { + "start": 40181.28, + "end": 40183.9, + "probability": 0.4369 + }, + { + "start": 40184.94, + "end": 40185.37, + "probability": 0.1413 + }, + { + "start": 40186.28, + "end": 40187.24, + "probability": 0.3753 + }, + { + "start": 40187.52, + "end": 40190.08, + "probability": 0.6271 + }, + { + "start": 40190.6, + "end": 40190.6, + "probability": 0.0454 + }, + { + "start": 40190.6, + "end": 40190.6, + "probability": 0.1079 + }, + { + "start": 40190.6, + "end": 40194.56, + "probability": 0.8771 + }, + { + "start": 40194.56, + "end": 40200.52, + "probability": 0.9897 + }, + { + "start": 40201.04, + "end": 40203.82, + "probability": 0.8077 + }, + { + "start": 40203.82, + "end": 40204.68, + "probability": 0.2972 + }, + { + "start": 40205.38, + "end": 40205.84, + "probability": 0.8255 + }, + { + "start": 40205.9, + "end": 40207.18, + "probability": 0.6506 + }, + { + "start": 40207.44, + "end": 40210.1, + "probability": 0.637 + }, + { + "start": 40210.1, + "end": 40211.92, + "probability": 0.7651 + }, + { + "start": 40212.16, + "end": 40212.16, + "probability": 0.187 + }, + { + "start": 40212.16, + "end": 40212.16, + "probability": 0.2315 + }, + { + "start": 40212.42, + "end": 40212.42, + "probability": 0.0741 + }, + { + "start": 40212.42, + "end": 40217.88, + "probability": 0.3926 + }, + { + "start": 40217.94, + "end": 40219.9, + "probability": 0.8209 + }, + { + "start": 40220.12, + "end": 40221.56, + "probability": 0.6009 + }, + { + "start": 40221.84, + "end": 40222.7, + "probability": 0.1768 + }, + { + "start": 40222.92, + "end": 40222.94, + "probability": 0.1339 + }, + { + "start": 40222.94, + "end": 40223.52, + "probability": 0.0323 + }, + { + "start": 40223.74, + "end": 40224.02, + "probability": 0.5286 + }, + { + "start": 40224.34, + "end": 40225.44, + "probability": 0.3323 + }, + { + "start": 40225.46, + "end": 40226.72, + "probability": 0.7043 + }, + { + "start": 40226.92, + "end": 40228.12, + "probability": 0.7564 + }, + { + "start": 40228.16, + "end": 40229.78, + "probability": 0.8956 + }, + { + "start": 40230.18, + "end": 40230.18, + "probability": 0.0272 + }, + { + "start": 40230.18, + "end": 40231.1, + "probability": 0.7948 + }, + { + "start": 40231.46, + "end": 40235.84, + "probability": 0.9663 + }, + { + "start": 40235.94, + "end": 40236.08, + "probability": 0.6641 + }, + { + "start": 40236.18, + "end": 40238.38, + "probability": 0.9671 + }, + { + "start": 40238.66, + "end": 40239.74, + "probability": 0.9819 + }, + { + "start": 40240.48, + "end": 40243.32, + "probability": 0.8266 + }, + { + "start": 40243.34, + "end": 40246.12, + "probability": 0.0863 + }, + { + "start": 40246.12, + "end": 40246.74, + "probability": 0.5853 + }, + { + "start": 40248.06, + "end": 40249.04, + "probability": 0.7284 + }, + { + "start": 40249.06, + "end": 40249.12, + "probability": 0.0036 + }, + { + "start": 40250.0, + "end": 40250.1, + "probability": 0.002 + }, + { + "start": 40251.89, + "end": 40252.74, + "probability": 0.1188 + }, + { + "start": 40252.88, + "end": 40253.18, + "probability": 0.6353 + }, + { + "start": 40253.18, + "end": 40253.64, + "probability": 0.6279 + }, + { + "start": 40253.7, + "end": 40253.88, + "probability": 0.0344 + }, + { + "start": 40253.88, + "end": 40254.68, + "probability": 0.7305 + }, + { + "start": 40254.82, + "end": 40260.18, + "probability": 0.9807 + }, + { + "start": 40260.58, + "end": 40261.12, + "probability": 0.2624 + }, + { + "start": 40261.12, + "end": 40266.22, + "probability": 0.9018 + }, + { + "start": 40266.42, + "end": 40267.44, + "probability": 0.6369 + }, + { + "start": 40267.54, + "end": 40270.52, + "probability": 0.9857 + }, + { + "start": 40270.6, + "end": 40271.22, + "probability": 0.9747 + }, + { + "start": 40271.62, + "end": 40272.54, + "probability": 0.9595 + }, + { + "start": 40273.24, + "end": 40273.52, + "probability": 0.9822 + }, + { + "start": 40275.24, + "end": 40277.18, + "probability": 0.7692 + }, + { + "start": 40277.34, + "end": 40277.72, + "probability": 0.7447 + }, + { + "start": 40278.14, + "end": 40278.74, + "probability": 0.8966 + }, + { + "start": 40279.1, + "end": 40280.44, + "probability": 0.975 + }, + { + "start": 40281.38, + "end": 40281.54, + "probability": 0.7212 + }, + { + "start": 40282.06, + "end": 40283.86, + "probability": 0.9066 + }, + { + "start": 40284.72, + "end": 40287.88, + "probability": 0.9901 + }, + { + "start": 40288.22, + "end": 40292.8, + "probability": 0.929 + }, + { + "start": 40293.62, + "end": 40297.88, + "probability": 0.9891 + }, + { + "start": 40298.44, + "end": 40299.6, + "probability": 0.9602 + }, + { + "start": 40300.1, + "end": 40300.22, + "probability": 0.6284 + }, + { + "start": 40300.64, + "end": 40303.76, + "probability": 0.9971 + }, + { + "start": 40304.62, + "end": 40306.64, + "probability": 0.7788 + }, + { + "start": 40307.38, + "end": 40309.38, + "probability": 0.8724 + }, + { + "start": 40309.9, + "end": 40311.64, + "probability": 0.442 + }, + { + "start": 40312.24, + "end": 40317.44, + "probability": 0.956 + }, + { + "start": 40317.44, + "end": 40321.06, + "probability": 0.9976 + }, + { + "start": 40321.68, + "end": 40323.22, + "probability": 0.9584 + }, + { + "start": 40325.22, + "end": 40329.22, + "probability": 0.7838 + }, + { + "start": 40329.7, + "end": 40333.38, + "probability": 0.985 + }, + { + "start": 40333.38, + "end": 40336.64, + "probability": 0.9938 + }, + { + "start": 40339.14, + "end": 40340.74, + "probability": 0.9967 + }, + { + "start": 40341.32, + "end": 40341.7, + "probability": 0.5985 + }, + { + "start": 40342.48, + "end": 40344.98, + "probability": 0.9989 + }, + { + "start": 40345.52, + "end": 40346.86, + "probability": 0.8997 + }, + { + "start": 40347.36, + "end": 40347.96, + "probability": 0.6464 + }, + { + "start": 40348.04, + "end": 40349.14, + "probability": 0.9411 + }, + { + "start": 40349.54, + "end": 40354.6, + "probability": 0.9984 + }, + { + "start": 40355.44, + "end": 40356.48, + "probability": 0.9893 + }, + { + "start": 40356.86, + "end": 40357.26, + "probability": 0.5768 + }, + { + "start": 40357.64, + "end": 40359.24, + "probability": 0.9938 + }, + { + "start": 40359.48, + "end": 40363.6, + "probability": 0.9609 + }, + { + "start": 40364.0, + "end": 40366.46, + "probability": 0.8235 + }, + { + "start": 40366.72, + "end": 40367.86, + "probability": 0.9683 + }, + { + "start": 40368.3, + "end": 40369.06, + "probability": 0.8486 + }, + { + "start": 40369.58, + "end": 40370.76, + "probability": 0.5409 + }, + { + "start": 40372.2, + "end": 40374.7, + "probability": 0.9917 + }, + { + "start": 40375.26, + "end": 40376.04, + "probability": 0.7957 + }, + { + "start": 40376.64, + "end": 40379.96, + "probability": 0.9673 + }, + { + "start": 40380.88, + "end": 40383.88, + "probability": 0.7032 + }, + { + "start": 40384.5, + "end": 40388.52, + "probability": 0.9725 + }, + { + "start": 40389.02, + "end": 40394.74, + "probability": 0.9985 + }, + { + "start": 40394.98, + "end": 40396.06, + "probability": 0.9641 + }, + { + "start": 40396.52, + "end": 40399.4, + "probability": 0.9831 + }, + { + "start": 40399.5, + "end": 40400.36, + "probability": 0.9727 + }, + { + "start": 40400.78, + "end": 40401.52, + "probability": 0.9549 + }, + { + "start": 40401.6, + "end": 40402.14, + "probability": 0.991 + }, + { + "start": 40402.96, + "end": 40405.46, + "probability": 0.9961 + }, + { + "start": 40405.5, + "end": 40408.1, + "probability": 0.999 + }, + { + "start": 40408.56, + "end": 40410.02, + "probability": 0.9605 + }, + { + "start": 40410.12, + "end": 40412.36, + "probability": 0.5423 + }, + { + "start": 40412.44, + "end": 40414.34, + "probability": 0.9854 + }, + { + "start": 40415.16, + "end": 40417.18, + "probability": 0.9709 + }, + { + "start": 40417.8, + "end": 40419.48, + "probability": 0.0398 + }, + { + "start": 40421.98, + "end": 40422.26, + "probability": 0.1382 + }, + { + "start": 40422.26, + "end": 40422.26, + "probability": 0.1553 + }, + { + "start": 40422.26, + "end": 40422.26, + "probability": 0.1011 + }, + { + "start": 40422.26, + "end": 40423.26, + "probability": 0.0596 + }, + { + "start": 40424.66, + "end": 40426.16, + "probability": 0.599 + }, + { + "start": 40426.7, + "end": 40428.08, + "probability": 0.9585 + }, + { + "start": 40429.1, + "end": 40430.14, + "probability": 0.8273 + }, + { + "start": 40430.18, + "end": 40433.43, + "probability": 0.8965 + }, + { + "start": 40434.16, + "end": 40435.42, + "probability": 0.852 + }, + { + "start": 40437.08, + "end": 40438.55, + "probability": 0.9155 + }, + { + "start": 40439.82, + "end": 40442.46, + "probability": 0.9536 + }, + { + "start": 40442.84, + "end": 40443.86, + "probability": 0.8901 + }, + { + "start": 40444.2, + "end": 40444.3, + "probability": 0.8515 + }, + { + "start": 40444.96, + "end": 40445.66, + "probability": 0.6962 + }, + { + "start": 40446.28, + "end": 40447.36, + "probability": 0.9688 + }, + { + "start": 40447.72, + "end": 40448.52, + "probability": 0.9349 + }, + { + "start": 40449.0, + "end": 40450.88, + "probability": 0.9954 + }, + { + "start": 40451.7, + "end": 40453.3, + "probability": 0.9869 + }, + { + "start": 40453.86, + "end": 40455.48, + "probability": 0.9914 + }, + { + "start": 40455.86, + "end": 40458.74, + "probability": 0.96 + }, + { + "start": 40460.28, + "end": 40460.66, + "probability": 0.5364 + }, + { + "start": 40460.82, + "end": 40462.24, + "probability": 0.2132 + }, + { + "start": 40462.7, + "end": 40464.44, + "probability": 0.8652 + }, + { + "start": 40464.44, + "end": 40465.93, + "probability": 0.612 + }, + { + "start": 40466.36, + "end": 40468.2, + "probability": 0.6748 + }, + { + "start": 40470.25, + "end": 40471.5, + "probability": 0.3308 + }, + { + "start": 40471.5, + "end": 40472.84, + "probability": 0.2661 + }, + { + "start": 40473.34, + "end": 40473.46, + "probability": 0.1446 + }, + { + "start": 40473.46, + "end": 40473.6, + "probability": 0.2361 + }, + { + "start": 40473.8, + "end": 40476.4, + "probability": 0.8135 + }, + { + "start": 40490.34, + "end": 40491.76, + "probability": 0.757 + }, + { + "start": 40495.42, + "end": 40496.5, + "probability": 0.7102 + }, + { + "start": 40501.42, + "end": 40502.24, + "probability": 0.6881 + }, + { + "start": 40503.38, + "end": 40505.36, + "probability": 0.8529 + }, + { + "start": 40505.78, + "end": 40507.14, + "probability": 0.7441 + }, + { + "start": 40510.3, + "end": 40511.0, + "probability": 0.9941 + }, + { + "start": 40512.26, + "end": 40512.84, + "probability": 0.9866 + }, + { + "start": 40514.74, + "end": 40515.24, + "probability": 0.9913 + }, + { + "start": 40518.24, + "end": 40522.08, + "probability": 0.9975 + }, + { + "start": 40523.14, + "end": 40523.96, + "probability": 0.7734 + }, + { + "start": 40525.18, + "end": 40526.98, + "probability": 0.9795 + }, + { + "start": 40527.94, + "end": 40530.4, + "probability": 0.9628 + }, + { + "start": 40532.58, + "end": 40534.7, + "probability": 0.5077 + }, + { + "start": 40534.7, + "end": 40536.38, + "probability": 0.98 + }, + { + "start": 40536.5, + "end": 40537.14, + "probability": 0.5582 + }, + { + "start": 40537.18, + "end": 40537.74, + "probability": 0.6716 + }, + { + "start": 40537.98, + "end": 40538.64, + "probability": 0.8072 + }, + { + "start": 40539.78, + "end": 40541.1, + "probability": 0.4666 + }, + { + "start": 40542.16, + "end": 40543.02, + "probability": 0.9423 + }, + { + "start": 40543.85, + "end": 40546.12, + "probability": 0.9912 + }, + { + "start": 40547.08, + "end": 40548.36, + "probability": 0.6736 + }, + { + "start": 40548.42, + "end": 40549.9, + "probability": 0.9907 + }, + { + "start": 40550.14, + "end": 40551.22, + "probability": 0.9971 + }, + { + "start": 40551.84, + "end": 40552.5, + "probability": 0.876 + }, + { + "start": 40554.52, + "end": 40554.68, + "probability": 0.0272 + }, + { + "start": 40555.48, + "end": 40555.58, + "probability": 0.1477 + }, + { + "start": 40556.94, + "end": 40558.12, + "probability": 0.1884 + }, + { + "start": 40558.42, + "end": 40559.4, + "probability": 0.1806 + }, + { + "start": 40560.18, + "end": 40563.38, + "probability": 0.9805 + }, + { + "start": 40565.4, + "end": 40566.22, + "probability": 0.8434 + }, + { + "start": 40568.0, + "end": 40571.82, + "probability": 0.9976 + }, + { + "start": 40572.52, + "end": 40577.86, + "probability": 0.9925 + }, + { + "start": 40578.46, + "end": 40579.52, + "probability": 0.5719 + }, + { + "start": 40580.38, + "end": 40581.66, + "probability": 0.803 + }, + { + "start": 40582.26, + "end": 40583.48, + "probability": 0.9974 + }, + { + "start": 40585.56, + "end": 40586.18, + "probability": 0.8255 + }, + { + "start": 40587.04, + "end": 40587.92, + "probability": 0.9232 + }, + { + "start": 40589.66, + "end": 40590.06, + "probability": 0.8991 + }, + { + "start": 40591.38, + "end": 40597.0, + "probability": 0.9919 + }, + { + "start": 40598.04, + "end": 40600.22, + "probability": 0.9939 + }, + { + "start": 40602.86, + "end": 40603.58, + "probability": 0.7607 + }, + { + "start": 40604.12, + "end": 40604.86, + "probability": 0.7065 + }, + { + "start": 40605.8, + "end": 40606.78, + "probability": 0.9606 + }, + { + "start": 40609.14, + "end": 40613.92, + "probability": 0.8857 + }, + { + "start": 40614.64, + "end": 40615.84, + "probability": 0.9595 + }, + { + "start": 40617.54, + "end": 40619.46, + "probability": 0.9508 + }, + { + "start": 40621.34, + "end": 40623.84, + "probability": 0.8026 + }, + { + "start": 40624.56, + "end": 40625.56, + "probability": 0.559 + }, + { + "start": 40626.26, + "end": 40627.24, + "probability": 0.7742 + }, + { + "start": 40629.36, + "end": 40633.12, + "probability": 0.9974 + }, + { + "start": 40634.52, + "end": 40635.39, + "probability": 0.9795 + }, + { + "start": 40638.54, + "end": 40638.98, + "probability": 0.5982 + }, + { + "start": 40641.7, + "end": 40643.78, + "probability": 0.9628 + }, + { + "start": 40645.34, + "end": 40645.44, + "probability": 0.4705 + }, + { + "start": 40658.75, + "end": 40658.98, + "probability": 0.3231 + }, + { + "start": 40660.04, + "end": 40661.66, + "probability": 0.803 + }, + { + "start": 40663.08, + "end": 40664.74, + "probability": 0.7064 + }, + { + "start": 40666.31, + "end": 40666.75, + "probability": 0.7457 + }, + { + "start": 40667.68, + "end": 40671.11, + "probability": 0.991 + }, + { + "start": 40671.74, + "end": 40672.65, + "probability": 0.9118 + }, + { + "start": 40672.75, + "end": 40674.72, + "probability": 0.7756 + }, + { + "start": 40674.87, + "end": 40677.21, + "probability": 0.342 + }, + { + "start": 40677.97, + "end": 40685.6, + "probability": 0.8724 + }, + { + "start": 40685.77, + "end": 40686.55, + "probability": 0.7916 + }, + { + "start": 40686.89, + "end": 40687.41, + "probability": 0.4159 + }, + { + "start": 40687.63, + "end": 40688.27, + "probability": 0.8348 + }, + { + "start": 40690.61, + "end": 40690.85, + "probability": 0.4581 + }, + { + "start": 40691.07, + "end": 40691.89, + "probability": 0.4179 + }, + { + "start": 40692.15, + "end": 40693.57, + "probability": 0.9651 + }, + { + "start": 40696.41, + "end": 40698.73, + "probability": 0.9891 + }, + { + "start": 40699.93, + "end": 40703.63, + "probability": 0.8345 + }, + { + "start": 40704.93, + "end": 40706.31, + "probability": 0.8882 + }, + { + "start": 40707.03, + "end": 40707.61, + "probability": 0.9326 + }, + { + "start": 40708.49, + "end": 40713.15, + "probability": 0.9849 + }, + { + "start": 40714.41, + "end": 40716.35, + "probability": 0.7783 + }, + { + "start": 40717.59, + "end": 40717.97, + "probability": 0.9077 + }, + { + "start": 40719.27, + "end": 40720.77, + "probability": 0.9949 + }, + { + "start": 40721.49, + "end": 40724.69, + "probability": 0.9821 + }, + { + "start": 40727.29, + "end": 40728.23, + "probability": 0.9709 + }, + { + "start": 40732.15, + "end": 40736.27, + "probability": 0.9974 + }, + { + "start": 40736.59, + "end": 40737.51, + "probability": 0.95 + }, + { + "start": 40738.91, + "end": 40741.13, + "probability": 0.7153 + }, + { + "start": 40742.41, + "end": 40746.03, + "probability": 0.9303 + }, + { + "start": 40746.67, + "end": 40747.75, + "probability": 0.9248 + }, + { + "start": 40748.59, + "end": 40750.37, + "probability": 0.9712 + }, + { + "start": 40751.45, + "end": 40754.51, + "probability": 0.9763 + }, + { + "start": 40756.53, + "end": 40757.53, + "probability": 0.9912 + }, + { + "start": 40758.11, + "end": 40760.43, + "probability": 0.6317 + }, + { + "start": 40762.43, + "end": 40765.03, + "probability": 0.9865 + }, + { + "start": 40765.75, + "end": 40766.85, + "probability": 0.9744 + }, + { + "start": 40769.15, + "end": 40770.67, + "probability": 0.9438 + }, + { + "start": 40772.09, + "end": 40774.35, + "probability": 0.9914 + }, + { + "start": 40776.37, + "end": 40777.65, + "probability": 0.8307 + }, + { + "start": 40780.97, + "end": 40782.99, + "probability": 0.9953 + }, + { + "start": 40784.91, + "end": 40787.59, + "probability": 0.875 + }, + { + "start": 40789.19, + "end": 40791.87, + "probability": 0.9976 + }, + { + "start": 40791.87, + "end": 40797.09, + "probability": 0.995 + }, + { + "start": 40798.85, + "end": 40804.41, + "probability": 0.9961 + }, + { + "start": 40805.33, + "end": 40806.07, + "probability": 0.7809 + }, + { + "start": 40807.87, + "end": 40816.19, + "probability": 0.9463 + }, + { + "start": 40816.49, + "end": 40817.45, + "probability": 0.7689 + }, + { + "start": 40818.83, + "end": 40820.69, + "probability": 0.9553 + }, + { + "start": 40821.79, + "end": 40823.89, + "probability": 0.9348 + }, + { + "start": 40824.91, + "end": 40827.45, + "probability": 0.689 + }, + { + "start": 40829.07, + "end": 40829.77, + "probability": 0.998 + }, + { + "start": 40832.07, + "end": 40834.07, + "probability": 0.985 + }, + { + "start": 40837.83, + "end": 40840.37, + "probability": 0.984 + }, + { + "start": 40842.15, + "end": 40843.85, + "probability": 0.9713 + }, + { + "start": 40844.85, + "end": 40845.67, + "probability": 0.9369 + }, + { + "start": 40847.75, + "end": 40850.73, + "probability": 0.9952 + }, + { + "start": 40853.05, + "end": 40854.31, + "probability": 0.7994 + }, + { + "start": 40857.85, + "end": 40862.35, + "probability": 0.99 + }, + { + "start": 40863.41, + "end": 40866.44, + "probability": 0.7497 + }, + { + "start": 40867.69, + "end": 40869.33, + "probability": 0.9976 + }, + { + "start": 40869.95, + "end": 40870.75, + "probability": 0.7962 + }, + { + "start": 40872.91, + "end": 40873.79, + "probability": 0.8694 + }, + { + "start": 40874.89, + "end": 40875.97, + "probability": 0.9943 + }, + { + "start": 40876.65, + "end": 40877.43, + "probability": 0.9655 + }, + { + "start": 40879.93, + "end": 40883.13, + "probability": 0.9966 + }, + { + "start": 40885.09, + "end": 40886.05, + "probability": 0.978 + }, + { + "start": 40887.29, + "end": 40891.87, + "probability": 0.9709 + }, + { + "start": 40894.73, + "end": 40895.61, + "probability": 0.7204 + }, + { + "start": 40897.11, + "end": 40898.25, + "probability": 0.8806 + }, + { + "start": 40899.41, + "end": 40900.89, + "probability": 0.9292 + }, + { + "start": 40902.41, + "end": 40903.99, + "probability": 0.8843 + }, + { + "start": 40906.37, + "end": 40907.67, + "probability": 0.9997 + }, + { + "start": 40908.91, + "end": 40909.37, + "probability": 0.9523 + }, + { + "start": 40910.11, + "end": 40911.91, + "probability": 0.9757 + }, + { + "start": 40913.03, + "end": 40913.73, + "probability": 0.7769 + }, + { + "start": 40916.35, + "end": 40917.47, + "probability": 0.7468 + }, + { + "start": 40920.49, + "end": 40923.93, + "probability": 0.9889 + }, + { + "start": 40925.31, + "end": 40929.39, + "probability": 0.9821 + }, + { + "start": 40930.27, + "end": 40931.93, + "probability": 0.9329 + }, + { + "start": 40932.79, + "end": 40934.95, + "probability": 0.9552 + }, + { + "start": 40936.05, + "end": 40936.63, + "probability": 0.9434 + }, + { + "start": 40937.33, + "end": 40938.01, + "probability": 0.7178 + }, + { + "start": 40938.75, + "end": 40939.43, + "probability": 0.5428 + }, + { + "start": 40940.03, + "end": 40941.31, + "probability": 0.8808 + }, + { + "start": 40941.97, + "end": 40945.27, + "probability": 0.9576 + }, + { + "start": 40948.97, + "end": 40950.61, + "probability": 0.4608 + }, + { + "start": 40952.17, + "end": 40952.71, + "probability": 0.8768 + }, + { + "start": 40953.83, + "end": 40955.55, + "probability": 0.9831 + }, + { + "start": 40956.59, + "end": 40958.23, + "probability": 0.9937 + }, + { + "start": 40958.83, + "end": 40959.35, + "probability": 0.877 + }, + { + "start": 40962.27, + "end": 40963.25, + "probability": 0.999 + }, + { + "start": 40964.77, + "end": 40966.88, + "probability": 0.7816 + }, + { + "start": 40967.83, + "end": 40969.15, + "probability": 0.8903 + }, + { + "start": 40969.51, + "end": 40970.51, + "probability": 0.9667 + }, + { + "start": 40970.81, + "end": 40971.89, + "probability": 0.926 + }, + { + "start": 40972.19, + "end": 40972.91, + "probability": 0.8884 + }, + { + "start": 40973.07, + "end": 40973.7, + "probability": 0.7148 + }, + { + "start": 40975.07, + "end": 40975.68, + "probability": 0.9827 + }, + { + "start": 40977.73, + "end": 40980.49, + "probability": 0.985 + }, + { + "start": 40981.25, + "end": 40981.73, + "probability": 0.9877 + }, + { + "start": 40983.57, + "end": 40987.39, + "probability": 0.9793 + }, + { + "start": 40987.49, + "end": 40988.73, + "probability": 0.92 + }, + { + "start": 40992.13, + "end": 40993.11, + "probability": 0.89 + }, + { + "start": 40996.13, + "end": 40997.39, + "probability": 0.991 + }, + { + "start": 41001.91, + "end": 41002.73, + "probability": 0.9316 + }, + { + "start": 41004.51, + "end": 41005.37, + "probability": 0.7385 + }, + { + "start": 41007.95, + "end": 41009.93, + "probability": 0.9971 + }, + { + "start": 41011.69, + "end": 41012.27, + "probability": 0.6263 + }, + { + "start": 41014.83, + "end": 41016.33, + "probability": 0.971 + }, + { + "start": 41018.33, + "end": 41022.71, + "probability": 0.9095 + }, + { + "start": 41023.29, + "end": 41024.79, + "probability": 0.9764 + }, + { + "start": 41025.65, + "end": 41027.11, + "probability": 0.9386 + }, + { + "start": 41028.15, + "end": 41029.93, + "probability": 0.9556 + }, + { + "start": 41030.53, + "end": 41032.71, + "probability": 0.9795 + }, + { + "start": 41034.05, + "end": 41035.27, + "probability": 0.7793 + }, + { + "start": 41036.39, + "end": 41037.55, + "probability": 0.9284 + }, + { + "start": 41038.41, + "end": 41039.79, + "probability": 0.993 + }, + { + "start": 41041.37, + "end": 41049.19, + "probability": 0.8009 + }, + { + "start": 41050.81, + "end": 41052.77, + "probability": 0.969 + }, + { + "start": 41053.47, + "end": 41054.83, + "probability": 0.9724 + }, + { + "start": 41055.71, + "end": 41060.69, + "probability": 0.992 + }, + { + "start": 41062.17, + "end": 41062.75, + "probability": 0.9344 + }, + { + "start": 41065.35, + "end": 41068.65, + "probability": 0.9217 + }, + { + "start": 41070.59, + "end": 41070.89, + "probability": 0.9116 + }, + { + "start": 41072.13, + "end": 41074.81, + "probability": 0.9846 + }, + { + "start": 41076.97, + "end": 41078.11, + "probability": 0.92 + }, + { + "start": 41079.57, + "end": 41080.27, + "probability": 0.9529 + }, + { + "start": 41080.87, + "end": 41081.93, + "probability": 0.9902 + }, + { + "start": 41082.45, + "end": 41084.91, + "probability": 0.2845 + }, + { + "start": 41084.99, + "end": 41084.99, + "probability": 0.0958 + }, + { + "start": 41084.99, + "end": 41085.23, + "probability": 0.0573 + }, + { + "start": 41086.05, + "end": 41087.83, + "probability": 0.8866 + }, + { + "start": 41088.73, + "end": 41090.15, + "probability": 0.735 + }, + { + "start": 41091.01, + "end": 41093.09, + "probability": 0.9944 + }, + { + "start": 41093.75, + "end": 41095.03, + "probability": 0.9888 + }, + { + "start": 41095.81, + "end": 41096.81, + "probability": 0.9491 + }, + { + "start": 41097.55, + "end": 41098.61, + "probability": 0.8194 + }, + { + "start": 41100.23, + "end": 41101.83, + "probability": 0.9897 + }, + { + "start": 41102.03, + "end": 41105.69, + "probability": 0.9806 + }, + { + "start": 41107.57, + "end": 41108.09, + "probability": 0.7409 + }, + { + "start": 41110.49, + "end": 41112.71, + "probability": 0.881 + }, + { + "start": 41113.63, + "end": 41115.97, + "probability": 0.9908 + }, + { + "start": 41116.53, + "end": 41118.71, + "probability": 0.9762 + }, + { + "start": 41119.77, + "end": 41122.65, + "probability": 0.9752 + }, + { + "start": 41123.71, + "end": 41124.79, + "probability": 0.9679 + }, + { + "start": 41128.77, + "end": 41129.71, + "probability": 0.9858 + }, + { + "start": 41129.93, + "end": 41133.73, + "probability": 0.9892 + }, + { + "start": 41134.79, + "end": 41136.87, + "probability": 0.5381 + }, + { + "start": 41137.93, + "end": 41138.31, + "probability": 0.6777 + }, + { + "start": 41139.47, + "end": 41141.01, + "probability": 0.7343 + }, + { + "start": 41142.35, + "end": 41144.49, + "probability": 0.9873 + }, + { + "start": 41145.41, + "end": 41147.33, + "probability": 0.9956 + }, + { + "start": 41148.37, + "end": 41151.99, + "probability": 0.8903 + }, + { + "start": 41152.41, + "end": 41153.43, + "probability": 0.9535 + }, + { + "start": 41154.93, + "end": 41155.31, + "probability": 0.6103 + }, + { + "start": 41157.99, + "end": 41162.13, + "probability": 0.9943 + }, + { + "start": 41163.49, + "end": 41164.87, + "probability": 0.9476 + }, + { + "start": 41165.71, + "end": 41173.23, + "probability": 0.9946 + }, + { + "start": 41173.91, + "end": 41174.27, + "probability": 0.4999 + }, + { + "start": 41176.31, + "end": 41180.73, + "probability": 0.9216 + }, + { + "start": 41181.63, + "end": 41182.85, + "probability": 0.6711 + }, + { + "start": 41183.55, + "end": 41184.93, + "probability": 0.7529 + }, + { + "start": 41186.25, + "end": 41186.93, + "probability": 0.9678 + }, + { + "start": 41188.11, + "end": 41188.65, + "probability": 0.9048 + }, + { + "start": 41189.23, + "end": 41190.09, + "probability": 0.8741 + }, + { + "start": 41192.77, + "end": 41193.55, + "probability": 0.9742 + }, + { + "start": 41195.95, + "end": 41200.19, + "probability": 0.9851 + }, + { + "start": 41201.41, + "end": 41205.53, + "probability": 0.9821 + }, + { + "start": 41205.94, + "end": 41208.97, + "probability": 0.955 + }, + { + "start": 41210.39, + "end": 41212.39, + "probability": 0.9685 + }, + { + "start": 41213.95, + "end": 41215.69, + "probability": 0.9395 + }, + { + "start": 41217.67, + "end": 41219.15, + "probability": 0.9759 + }, + { + "start": 41221.21, + "end": 41222.09, + "probability": 0.9688 + }, + { + "start": 41222.81, + "end": 41225.33, + "probability": 0.9632 + }, + { + "start": 41225.91, + "end": 41227.97, + "probability": 0.9852 + }, + { + "start": 41229.41, + "end": 41230.01, + "probability": 0.5001 + }, + { + "start": 41234.71, + "end": 41235.49, + "probability": 0.8173 + }, + { + "start": 41236.25, + "end": 41237.87, + "probability": 0.7087 + }, + { + "start": 41239.35, + "end": 41241.55, + "probability": 0.9938 + }, + { + "start": 41247.85, + "end": 41251.41, + "probability": 0.9033 + }, + { + "start": 41251.99, + "end": 41253.25, + "probability": 0.9766 + }, + { + "start": 41256.27, + "end": 41256.65, + "probability": 0.9135 + }, + { + "start": 41257.93, + "end": 41259.11, + "probability": 0.9993 + }, + { + "start": 41260.59, + "end": 41262.59, + "probability": 0.9435 + }, + { + "start": 41263.67, + "end": 41265.81, + "probability": 0.3084 + }, + { + "start": 41267.35, + "end": 41272.71, + "probability": 0.9479 + }, + { + "start": 41272.89, + "end": 41274.11, + "probability": 0.894 + }, + { + "start": 41275.25, + "end": 41277.81, + "probability": 0.8888 + }, + { + "start": 41278.93, + "end": 41280.45, + "probability": 0.9922 + }, + { + "start": 41281.35, + "end": 41282.65, + "probability": 0.9746 + }, + { + "start": 41284.13, + "end": 41285.77, + "probability": 0.7474 + }, + { + "start": 41287.95, + "end": 41288.35, + "probability": 0.8066 + }, + { + "start": 41289.21, + "end": 41289.45, + "probability": 0.4619 + }, + { + "start": 41289.75, + "end": 41290.65, + "probability": 0.8848 + }, + { + "start": 41291.39, + "end": 41292.35, + "probability": 0.9346 + }, + { + "start": 41293.99, + "end": 41297.39, + "probability": 0.9989 + }, + { + "start": 41298.89, + "end": 41301.71, + "probability": 0.9956 + }, + { + "start": 41303.03, + "end": 41304.95, + "probability": 0.9401 + }, + { + "start": 41305.97, + "end": 41307.97, + "probability": 0.9925 + }, + { + "start": 41308.87, + "end": 41311.05, + "probability": 0.7936 + }, + { + "start": 41313.43, + "end": 41317.55, + "probability": 0.8299 + }, + { + "start": 41320.19, + "end": 41322.23, + "probability": 0.7218 + }, + { + "start": 41323.39, + "end": 41326.33, + "probability": 0.7984 + }, + { + "start": 41327.63, + "end": 41331.19, + "probability": 0.7446 + }, + { + "start": 41331.31, + "end": 41332.81, + "probability": 0.6135 + }, + { + "start": 41334.61, + "end": 41334.65, + "probability": 0.008 + }, + { + "start": 41334.65, + "end": 41335.35, + "probability": 0.9529 + }, + { + "start": 41339.91, + "end": 41343.17, + "probability": 0.7424 + }, + { + "start": 41346.01, + "end": 41348.41, + "probability": 0.9668 + }, + { + "start": 41349.13, + "end": 41351.13, + "probability": 0.8474 + }, + { + "start": 41352.85, + "end": 41353.63, + "probability": 0.8146 + }, + { + "start": 41354.61, + "end": 41357.51, + "probability": 0.9578 + }, + { + "start": 41358.55, + "end": 41359.97, + "probability": 0.9745 + }, + { + "start": 41360.91, + "end": 41362.27, + "probability": 0.9868 + }, + { + "start": 41363.29, + "end": 41364.57, + "probability": 0.9701 + }, + { + "start": 41366.97, + "end": 41369.81, + "probability": 0.9994 + }, + { + "start": 41370.35, + "end": 41372.55, + "probability": 0.57 + }, + { + "start": 41373.39, + "end": 41374.99, + "probability": 0.9194 + }, + { + "start": 41376.13, + "end": 41376.67, + "probability": 0.9792 + }, + { + "start": 41377.99, + "end": 41381.73, + "probability": 0.9938 + }, + { + "start": 41383.65, + "end": 41384.69, + "probability": 0.9839 + }, + { + "start": 41385.01, + "end": 41387.39, + "probability": 0.9663 + }, + { + "start": 41388.19, + "end": 41389.43, + "probability": 0.3355 + }, + { + "start": 41390.65, + "end": 41392.85, + "probability": 0.8635 + }, + { + "start": 41394.73, + "end": 41396.11, + "probability": 0.7269 + }, + { + "start": 41398.59, + "end": 41400.21, + "probability": 0.7103 + }, + { + "start": 41400.73, + "end": 41401.01, + "probability": 0.6722 + }, + { + "start": 41403.69, + "end": 41405.09, + "probability": 0.979 + }, + { + "start": 41405.87, + "end": 41407.07, + "probability": 0.9956 + }, + { + "start": 41409.23, + "end": 41410.53, + "probability": 0.9268 + }, + { + "start": 41411.69, + "end": 41413.97, + "probability": 0.9536 + }, + { + "start": 41414.03, + "end": 41415.81, + "probability": 0.6508 + }, + { + "start": 41416.89, + "end": 41419.45, + "probability": 0.7693 + }, + { + "start": 41420.49, + "end": 41424.07, + "probability": 0.9904 + }, + { + "start": 41424.59, + "end": 41425.53, + "probability": 0.5223 + }, + { + "start": 41426.43, + "end": 41427.33, + "probability": 0.6284 + }, + { + "start": 41428.31, + "end": 41431.04, + "probability": 0.9795 + }, + { + "start": 41431.89, + "end": 41433.13, + "probability": 0.8249 + }, + { + "start": 41434.77, + "end": 41438.07, + "probability": 0.6347 + }, + { + "start": 41439.89, + "end": 41441.61, + "probability": 0.9622 + }, + { + "start": 41443.17, + "end": 41444.93, + "probability": 0.9604 + }, + { + "start": 41446.65, + "end": 41447.99, + "probability": 0.9688 + }, + { + "start": 41449.85, + "end": 41451.95, + "probability": 0.9493 + }, + { + "start": 41452.95, + "end": 41454.15, + "probability": 0.9103 + }, + { + "start": 41454.57, + "end": 41457.47, + "probability": 0.9832 + }, + { + "start": 41458.65, + "end": 41459.67, + "probability": 0.6757 + }, + { + "start": 41461.65, + "end": 41462.81, + "probability": 0.9613 + }, + { + "start": 41462.87, + "end": 41463.75, + "probability": 0.815 + }, + { + "start": 41465.29, + "end": 41467.09, + "probability": 0.692 + }, + { + "start": 41470.17, + "end": 41470.91, + "probability": 0.9717 + }, + { + "start": 41472.77, + "end": 41474.83, + "probability": 0.9927 + }, + { + "start": 41476.79, + "end": 41477.93, + "probability": 0.9364 + }, + { + "start": 41480.39, + "end": 41481.53, + "probability": 0.8879 + }, + { + "start": 41485.73, + "end": 41486.69, + "probability": 0.7505 + }, + { + "start": 41489.17, + "end": 41492.13, + "probability": 0.9755 + }, + { + "start": 41492.75, + "end": 41496.81, + "probability": 0.9965 + }, + { + "start": 41498.43, + "end": 41500.05, + "probability": 0.9938 + }, + { + "start": 41502.63, + "end": 41506.91, + "probability": 0.9967 + }, + { + "start": 41509.05, + "end": 41509.97, + "probability": 0.7768 + }, + { + "start": 41510.09, + "end": 41511.03, + "probability": 0.962 + }, + { + "start": 41512.09, + "end": 41512.51, + "probability": 0.9884 + }, + { + "start": 41513.45, + "end": 41516.37, + "probability": 0.9648 + }, + { + "start": 41517.85, + "end": 41520.65, + "probability": 0.998 + }, + { + "start": 41524.27, + "end": 41524.85, + "probability": 0.9424 + }, + { + "start": 41526.43, + "end": 41529.31, + "probability": 0.9929 + }, + { + "start": 41529.85, + "end": 41531.15, + "probability": 0.9143 + }, + { + "start": 41532.55, + "end": 41534.51, + "probability": 0.857 + }, + { + "start": 41535.55, + "end": 41535.85, + "probability": 0.4884 + }, + { + "start": 41536.45, + "end": 41537.59, + "probability": 0.8792 + }, + { + "start": 41538.49, + "end": 41539.19, + "probability": 0.8853 + }, + { + "start": 41540.83, + "end": 41543.61, + "probability": 0.8582 + }, + { + "start": 41544.29, + "end": 41546.41, + "probability": 0.7389 + }, + { + "start": 41546.73, + "end": 41548.21, + "probability": 0.7327 + }, + { + "start": 41550.07, + "end": 41552.25, + "probability": 0.8446 + }, + { + "start": 41553.31, + "end": 41553.99, + "probability": 0.6524 + }, + { + "start": 41555.23, + "end": 41555.99, + "probability": 0.754 + }, + { + "start": 41556.69, + "end": 41557.19, + "probability": 0.6764 + }, + { + "start": 41559.11, + "end": 41559.47, + "probability": 0.9604 + }, + { + "start": 41561.15, + "end": 41562.53, + "probability": 0.9976 + }, + { + "start": 41563.75, + "end": 41564.95, + "probability": 0.9808 + }, + { + "start": 41567.63, + "end": 41569.13, + "probability": 0.6534 + }, + { + "start": 41570.99, + "end": 41571.43, + "probability": 0.975 + }, + { + "start": 41572.81, + "end": 41573.73, + "probability": 0.9023 + }, + { + "start": 41574.49, + "end": 41575.71, + "probability": 0.9972 + }, + { + "start": 41576.53, + "end": 41580.15, + "probability": 0.9797 + }, + { + "start": 41580.89, + "end": 41583.33, + "probability": 0.8118 + }, + { + "start": 41583.87, + "end": 41585.59, + "probability": 0.7332 + }, + { + "start": 41586.19, + "end": 41587.63, + "probability": 0.9841 + }, + { + "start": 41588.61, + "end": 41591.81, + "probability": 0.995 + }, + { + "start": 41593.05, + "end": 41593.49, + "probability": 0.9512 + }, + { + "start": 41594.41, + "end": 41595.77, + "probability": 0.9855 + }, + { + "start": 41596.33, + "end": 41599.05, + "probability": 0.6757 + }, + { + "start": 41599.05, + "end": 41599.05, + "probability": 0.2796 + }, + { + "start": 41599.05, + "end": 41599.69, + "probability": 0.7457 + }, + { + "start": 41600.07, + "end": 41600.95, + "probability": 0.9943 + }, + { + "start": 41601.85, + "end": 41602.95, + "probability": 0.7866 + }, + { + "start": 41603.87, + "end": 41605.09, + "probability": 0.9976 + }, + { + "start": 41606.09, + "end": 41607.81, + "probability": 0.6963 + }, + { + "start": 41608.45, + "end": 41609.01, + "probability": 0.8148 + }, + { + "start": 41609.85, + "end": 41613.27, + "probability": 0.9513 + }, + { + "start": 41614.11, + "end": 41618.21, + "probability": 0.9715 + }, + { + "start": 41619.35, + "end": 41621.19, + "probability": 0.9467 + }, + { + "start": 41622.17, + "end": 41623.67, + "probability": 0.4292 + }, + { + "start": 41624.55, + "end": 41625.27, + "probability": 0.4314 + }, + { + "start": 41627.67, + "end": 41628.45, + "probability": 0.8314 + }, + { + "start": 41629.67, + "end": 41633.17, + "probability": 0.8955 + }, + { + "start": 41633.71, + "end": 41635.33, + "probability": 0.5142 + }, + { + "start": 41635.71, + "end": 41636.53, + "probability": 0.9343 + }, + { + "start": 41638.53, + "end": 41642.17, + "probability": 0.9408 + }, + { + "start": 41642.93, + "end": 41644.07, + "probability": 0.8752 + }, + { + "start": 41645.31, + "end": 41646.67, + "probability": 0.9572 + }, + { + "start": 41649.57, + "end": 41650.97, + "probability": 0.8002 + }, + { + "start": 41650.97, + "end": 41653.03, + "probability": 0.9492 + }, + { + "start": 41654.19, + "end": 41656.35, + "probability": 0.7345 + }, + { + "start": 41657.41, + "end": 41661.59, + "probability": 0.9754 + }, + { + "start": 41662.07, + "end": 41662.67, + "probability": 0.3109 + }, + { + "start": 41664.01, + "end": 41666.53, + "probability": 0.9718 + }, + { + "start": 41666.59, + "end": 41669.27, + "probability": 0.9271 + }, + { + "start": 41670.53, + "end": 41672.31, + "probability": 0.9648 + }, + { + "start": 41673.03, + "end": 41673.73, + "probability": 0.9757 + }, + { + "start": 41674.33, + "end": 41678.15, + "probability": 0.9692 + }, + { + "start": 41678.73, + "end": 41680.15, + "probability": 0.8104 + }, + { + "start": 41680.99, + "end": 41683.07, + "probability": 0.9531 + }, + { + "start": 41683.57, + "end": 41684.15, + "probability": 0.7431 + }, + { + "start": 41684.25, + "end": 41685.46, + "probability": 0.9867 + }, + { + "start": 41685.91, + "end": 41687.75, + "probability": 0.9231 + }, + { + "start": 41688.51, + "end": 41689.95, + "probability": 0.8945 + }, + { + "start": 41693.09, + "end": 41698.95, + "probability": 0.0822 + }, + { + "start": 41699.15, + "end": 41699.31, + "probability": 0.23 + }, + { + "start": 41699.31, + "end": 41700.59, + "probability": 0.9087 + }, + { + "start": 41700.73, + "end": 41701.99, + "probability": 0.9429 + }, + { + "start": 41702.65, + "end": 41703.33, + "probability": 0.9937 + }, + { + "start": 41704.81, + "end": 41706.95, + "probability": 0.4808 + }, + { + "start": 41709.23, + "end": 41709.93, + "probability": 0.007 + }, + { + "start": 41710.03, + "end": 41710.33, + "probability": 0.5554 + }, + { + "start": 41711.53, + "end": 41717.41, + "probability": 0.9063 + }, + { + "start": 41718.17, + "end": 41718.77, + "probability": 0.4742 + }, + { + "start": 41721.41, + "end": 41722.03, + "probability": 0.79 + }, + { + "start": 41723.21, + "end": 41726.53, + "probability": 0.3734 + }, + { + "start": 41726.75, + "end": 41731.69, + "probability": 0.0239 + }, + { + "start": 41737.15, + "end": 41737.39, + "probability": 0.0158 + }, + { + "start": 41737.39, + "end": 41737.39, + "probability": 0.0611 + }, + { + "start": 41737.39, + "end": 41739.09, + "probability": 0.8588 + }, + { + "start": 41740.33, + "end": 41740.69, + "probability": 0.9546 + }, + { + "start": 41741.19, + "end": 41741.4, + "probability": 0.4644 + }, + { + "start": 41742.19, + "end": 41744.93, + "probability": 0.3908 + }, + { + "start": 41744.93, + "end": 41745.81, + "probability": 0.3822 + }, + { + "start": 41746.21, + "end": 41747.45, + "probability": 0.2828 + }, + { + "start": 41747.79, + "end": 41748.59, + "probability": 0.0168 + }, + { + "start": 41749.21, + "end": 41750.51, + "probability": 0.1266 + }, + { + "start": 41751.09, + "end": 41756.65, + "probability": 0.6339 + }, + { + "start": 41757.35, + "end": 41758.55, + "probability": 0.2542 + }, + { + "start": 41758.55, + "end": 41761.35, + "probability": 0.5807 + }, + { + "start": 41762.55, + "end": 41764.73, + "probability": 0.5722 + }, + { + "start": 41765.61, + "end": 41767.09, + "probability": 0.9438 + }, + { + "start": 41767.37, + "end": 41768.03, + "probability": 0.9396 + }, + { + "start": 41769.19, + "end": 41769.31, + "probability": 0.1018 + }, + { + "start": 41769.31, + "end": 41769.55, + "probability": 0.4301 + }, + { + "start": 41770.21, + "end": 41770.45, + "probability": 0.8644 + }, + { + "start": 41771.63, + "end": 41772.31, + "probability": 0.5497 + }, + { + "start": 41773.67, + "end": 41774.03, + "probability": 0.7228 + }, + { + "start": 41775.11, + "end": 41775.64, + "probability": 0.9287 + }, + { + "start": 41776.23, + "end": 41778.37, + "probability": 0.9946 + }, + { + "start": 41781.47, + "end": 41783.83, + "probability": 0.935 + }, + { + "start": 41785.69, + "end": 41786.09, + "probability": 0.4501 + }, + { + "start": 41786.99, + "end": 41788.18, + "probability": 0.8953 + }, + { + "start": 41788.99, + "end": 41791.09, + "probability": 0.9347 + }, + { + "start": 41793.21, + "end": 41794.27, + "probability": 0.9723 + }, + { + "start": 41794.97, + "end": 41796.25, + "probability": 0.8884 + }, + { + "start": 41797.61, + "end": 41799.23, + "probability": 0.6681 + }, + { + "start": 41800.57, + "end": 41805.05, + "probability": 0.9878 + }, + { + "start": 41806.73, + "end": 41807.37, + "probability": 0.9194 + }, + { + "start": 41808.61, + "end": 41809.27, + "probability": 0.9917 + }, + { + "start": 41811.33, + "end": 41812.19, + "probability": 0.5924 + }, + { + "start": 41812.29, + "end": 41815.19, + "probability": 0.7837 + }, + { + "start": 41815.29, + "end": 41817.53, + "probability": 0.6677 + }, + { + "start": 41818.03, + "end": 41823.83, + "probability": 0.9965 + }, + { + "start": 41824.59, + "end": 41826.38, + "probability": 0.9542 + }, + { + "start": 41827.65, + "end": 41829.13, + "probability": 0.9961 + }, + { + "start": 41830.07, + "end": 41831.29, + "probability": 0.6283 + }, + { + "start": 41831.81, + "end": 41832.63, + "probability": 0.8157 + }, + { + "start": 41832.69, + "end": 41833.03, + "probability": 0.9678 + }, + { + "start": 41833.11, + "end": 41833.75, + "probability": 0.9304 + }, + { + "start": 41833.95, + "end": 41834.21, + "probability": 0.5338 + }, + { + "start": 41835.19, + "end": 41837.55, + "probability": 0.9689 + }, + { + "start": 41837.71, + "end": 41838.39, + "probability": 0.9692 + }, + { + "start": 41838.85, + "end": 41840.03, + "probability": 0.9729 + }, + { + "start": 41841.53, + "end": 41842.13, + "probability": 0.7925 + }, + { + "start": 41842.19, + "end": 41842.71, + "probability": 0.8652 + }, + { + "start": 41842.75, + "end": 41847.89, + "probability": 0.9259 + }, + { + "start": 41849.61, + "end": 41851.05, + "probability": 0.4016 + }, + { + "start": 41851.73, + "end": 41852.23, + "probability": 0.8545 + }, + { + "start": 41852.37, + "end": 41853.51, + "probability": 0.9916 + }, + { + "start": 41855.85, + "end": 41856.63, + "probability": 0.3788 + }, + { + "start": 41856.63, + "end": 41858.53, + "probability": 0.74 + }, + { + "start": 41859.15, + "end": 41860.93, + "probability": 0.462 + }, + { + "start": 41862.21, + "end": 41864.43, + "probability": 0.9104 + }, + { + "start": 41867.13, + "end": 41868.59, + "probability": 0.9052 + }, + { + "start": 41869.49, + "end": 41869.95, + "probability": 0.8157 + }, + { + "start": 41870.95, + "end": 41871.85, + "probability": 0.9784 + }, + { + "start": 41873.09, + "end": 41873.95, + "probability": 0.9703 + }, + { + "start": 41874.93, + "end": 41876.49, + "probability": 0.5398 + }, + { + "start": 41877.65, + "end": 41880.39, + "probability": 0.5805 + }, + { + "start": 41880.45, + "end": 41880.73, + "probability": 0.3207 + }, + { + "start": 41880.96, + "end": 41882.41, + "probability": 0.7686 + }, + { + "start": 41882.61, + "end": 41887.91, + "probability": 0.972 + }, + { + "start": 41888.39, + "end": 41893.99, + "probability": 0.9565 + }, + { + "start": 41894.87, + "end": 41898.65, + "probability": 0.9757 + }, + { + "start": 41900.29, + "end": 41902.93, + "probability": 0.9727 + }, + { + "start": 41902.99, + "end": 41903.55, + "probability": 0.9058 + }, + { + "start": 41904.99, + "end": 41907.01, + "probability": 0.9523 + }, + { + "start": 41908.67, + "end": 41909.27, + "probability": 0.9737 + }, + { + "start": 41909.87, + "end": 41911.93, + "probability": 0.9072 + }, + { + "start": 41912.65, + "end": 41913.29, + "probability": 0.3986 + }, + { + "start": 41914.17, + "end": 41916.73, + "probability": 0.7729 + }, + { + "start": 41917.45, + "end": 41919.01, + "probability": 0.9709 + }, + { + "start": 41919.49, + "end": 41921.63, + "probability": 0.9919 + }, + { + "start": 41923.33, + "end": 41924.37, + "probability": 0.978 + }, + { + "start": 41925.77, + "end": 41928.21, + "probability": 0.9828 + }, + { + "start": 41928.87, + "end": 41930.75, + "probability": 0.84 + }, + { + "start": 41930.87, + "end": 41934.89, + "probability": 0.9933 + }, + { + "start": 41935.99, + "end": 41936.61, + "probability": 0.6266 + }, + { + "start": 41937.42, + "end": 41940.43, + "probability": 0.7466 + }, + { + "start": 41941.83, + "end": 41943.81, + "probability": 0.9301 + }, + { + "start": 41945.07, + "end": 41946.23, + "probability": 0.6313 + }, + { + "start": 41946.93, + "end": 41949.73, + "probability": 0.7399 + }, + { + "start": 41949.99, + "end": 41951.63, + "probability": 0.6655 + }, + { + "start": 41951.91, + "end": 41952.57, + "probability": 0.8956 + }, + { + "start": 41952.71, + "end": 41954.41, + "probability": 0.4685 + }, + { + "start": 41955.07, + "end": 41959.63, + "probability": 0.9411 + }, + { + "start": 41959.97, + "end": 41960.71, + "probability": 0.9933 + }, + { + "start": 41965.01, + "end": 41965.85, + "probability": 0.6421 + }, + { + "start": 41966.55, + "end": 41969.77, + "probability": 0.7044 + }, + { + "start": 41972.51, + "end": 41973.97, + "probability": 0.8659 + }, + { + "start": 41975.21, + "end": 41976.07, + "probability": 0.6725 + }, + { + "start": 41976.57, + "end": 41977.35, + "probability": 0.8256 + }, + { + "start": 41977.55, + "end": 41978.17, + "probability": 0.9593 + }, + { + "start": 41978.61, + "end": 41979.29, + "probability": 0.9706 + }, + { + "start": 41979.79, + "end": 41982.79, + "probability": 0.0255 + }, + { + "start": 41984.21, + "end": 41984.37, + "probability": 0.1369 + }, + { + "start": 41987.53, + "end": 41989.81, + "probability": 0.6713 + }, + { + "start": 41990.57, + "end": 41992.11, + "probability": 0.4439 + }, + { + "start": 41994.05, + "end": 41998.29, + "probability": 0.67 + }, + { + "start": 41999.63, + "end": 42001.57, + "probability": 0.8428 + }, + { + "start": 42003.17, + "end": 42008.69, + "probability": 0.4549 + }, + { + "start": 42009.59, + "end": 42010.09, + "probability": 0.3925 + }, + { + "start": 42011.81, + "end": 42012.75, + "probability": 0.9456 + }, + { + "start": 42014.05, + "end": 42017.01, + "probability": 0.839 + }, + { + "start": 42017.87, + "end": 42018.23, + "probability": 0.2651 + }, + { + "start": 42018.23, + "end": 42019.21, + "probability": 0.8584 + }, + { + "start": 42020.77, + "end": 42023.25, + "probability": 0.8546 + }, + { + "start": 42024.29, + "end": 42028.71, + "probability": 0.9861 + }, + { + "start": 42029.38, + "end": 42033.15, + "probability": 0.7996 + }, + { + "start": 42033.17, + "end": 42034.29, + "probability": 0.8778 + }, + { + "start": 42035.15, + "end": 42036.19, + "probability": 0.7624 + }, + { + "start": 42040.01, + "end": 42040.29, + "probability": 0.9575 + }, + { + "start": 42040.97, + "end": 42041.51, + "probability": 0.8553 + }, + { + "start": 42042.13, + "end": 42047.61, + "probability": 0.9061 + }, + { + "start": 42048.49, + "end": 42048.69, + "probability": 0.0215 + }, + { + "start": 42048.69, + "end": 42049.62, + "probability": 0.9418 + }, + { + "start": 42049.81, + "end": 42051.03, + "probability": 0.9526 + }, + { + "start": 42051.19, + "end": 42052.03, + "probability": 0.3044 + }, + { + "start": 42052.09, + "end": 42053.51, + "probability": 0.9336 + }, + { + "start": 42054.63, + "end": 42055.87, + "probability": 0.5532 + }, + { + "start": 42056.83, + "end": 42058.23, + "probability": 0.9452 + }, + { + "start": 42058.35, + "end": 42059.59, + "probability": 0.8341 + }, + { + "start": 42060.57, + "end": 42062.75, + "probability": 0.9915 + }, + { + "start": 42063.55, + "end": 42065.99, + "probability": 0.9259 + }, + { + "start": 42066.55, + "end": 42068.17, + "probability": 0.9945 + }, + { + "start": 42081.5, + "end": 42081.83, + "probability": 0.2859 + }, + { + "start": 42081.83, + "end": 42081.83, + "probability": 0.039 + }, + { + "start": 42081.83, + "end": 42082.6, + "probability": 0.4226 + }, + { + "start": 42083.25, + "end": 42084.07, + "probability": 0.0694 + }, + { + "start": 42084.07, + "end": 42084.07, + "probability": 0.0154 + }, + { + "start": 42084.07, + "end": 42084.19, + "probability": 0.1882 + }, + { + "start": 42084.29, + "end": 42085.27, + "probability": 0.9489 + }, + { + "start": 42085.39, + "end": 42086.83, + "probability": 0.3349 + }, + { + "start": 42087.33, + "end": 42088.27, + "probability": 0.4101 + }, + { + "start": 42089.21, + "end": 42090.07, + "probability": 0.7891 + }, + { + "start": 42090.87, + "end": 42092.17, + "probability": 0.2904 + }, + { + "start": 42092.91, + "end": 42093.81, + "probability": 0.6247 + }, + { + "start": 42094.71, + "end": 42096.27, + "probability": 0.7701 + }, + { + "start": 42097.43, + "end": 42099.79, + "probability": 0.9041 + }, + { + "start": 42100.35, + "end": 42100.77, + "probability": 0.7032 + }, + { + "start": 42101.15, + "end": 42102.57, + "probability": 0.9852 + }, + { + "start": 42103.49, + "end": 42106.34, + "probability": 0.7853 + }, + { + "start": 42107.51, + "end": 42108.81, + "probability": 0.268 + }, + { + "start": 42109.01, + "end": 42109.95, + "probability": 0.9247 + }, + { + "start": 42111.53, + "end": 42112.79, + "probability": 0.6922 + }, + { + "start": 42113.59, + "end": 42115.23, + "probability": 0.8413 + }, + { + "start": 42116.27, + "end": 42116.83, + "probability": 0.9737 + }, + { + "start": 42116.87, + "end": 42117.51, + "probability": 0.9385 + }, + { + "start": 42117.61, + "end": 42118.13, + "probability": 0.8888 + }, + { + "start": 42118.19, + "end": 42118.63, + "probability": 0.8689 + }, + { + "start": 42119.73, + "end": 42121.83, + "probability": 0.9307 + }, + { + "start": 42121.91, + "end": 42123.03, + "probability": 0.9697 + }, + { + "start": 42123.89, + "end": 42125.81, + "probability": 0.9779 + }, + { + "start": 42126.65, + "end": 42127.11, + "probability": 0.8955 + }, + { + "start": 42127.91, + "end": 42130.39, + "probability": 0.8023 + }, + { + "start": 42131.87, + "end": 42132.15, + "probability": 0.8088 + }, + { + "start": 42132.69, + "end": 42133.11, + "probability": 0.8535 + }, + { + "start": 42133.87, + "end": 42134.97, + "probability": 0.8625 + }, + { + "start": 42135.17, + "end": 42136.15, + "probability": 0.9934 + }, + { + "start": 42137.23, + "end": 42141.07, + "probability": 0.9915 + }, + { + "start": 42141.35, + "end": 42142.73, + "probability": 0.7942 + }, + { + "start": 42143.37, + "end": 42144.53, + "probability": 0.1121 + }, + { + "start": 42147.39, + "end": 42148.03, + "probability": 0.4263 + }, + { + "start": 42149.45, + "end": 42151.21, + "probability": 0.9713 + }, + { + "start": 42151.87, + "end": 42152.63, + "probability": 0.7486 + }, + { + "start": 42153.29, + "end": 42156.87, + "probability": 0.9653 + }, + { + "start": 42157.97, + "end": 42158.39, + "probability": 0.8341 + }, + { + "start": 42159.45, + "end": 42162.43, + "probability": 0.9724 + }, + { + "start": 42163.07, + "end": 42164.33, + "probability": 0.972 + }, + { + "start": 42165.61, + "end": 42169.67, + "probability": 0.6882 + }, + { + "start": 42171.11, + "end": 42172.42, + "probability": 0.8766 + }, + { + "start": 42191.99, + "end": 42193.55, + "probability": 0.7906 + }, + { + "start": 42199.54, + "end": 42201.83, + "probability": 0.6134 + }, + { + "start": 42202.47, + "end": 42203.73, + "probability": 0.5785 + }, + { + "start": 42203.93, + "end": 42205.33, + "probability": 0.4872 + }, + { + "start": 42206.29, + "end": 42212.17, + "probability": 0.9229 + }, + { + "start": 42212.51, + "end": 42213.35, + "probability": 0.816 + }, + { + "start": 42213.47, + "end": 42214.37, + "probability": 0.5522 + }, + { + "start": 42214.53, + "end": 42216.39, + "probability": 0.8282 + }, + { + "start": 42216.59, + "end": 42218.57, + "probability": 0.9326 + }, + { + "start": 42219.09, + "end": 42220.09, + "probability": 0.9748 + }, + { + "start": 42220.25, + "end": 42223.73, + "probability": 0.813 + }, + { + "start": 42224.49, + "end": 42226.05, + "probability": 0.6501 + }, + { + "start": 42227.33, + "end": 42228.27, + "probability": 0.4092 + }, + { + "start": 42228.75, + "end": 42232.25, + "probability": 0.9333 + }, + { + "start": 42232.79, + "end": 42234.44, + "probability": 0.9812 + }, + { + "start": 42236.77, + "end": 42237.69, + "probability": 0.8233 + }, + { + "start": 42237.69, + "end": 42237.91, + "probability": 0.8229 + }, + { + "start": 42238.03, + "end": 42238.35, + "probability": 0.9037 + }, + { + "start": 42238.35, + "end": 42238.63, + "probability": 0.8997 + }, + { + "start": 42238.73, + "end": 42239.79, + "probability": 0.9972 + }, + { + "start": 42239.89, + "end": 42240.15, + "probability": 0.7481 + }, + { + "start": 42240.15, + "end": 42240.65, + "probability": 0.9459 + }, + { + "start": 42240.99, + "end": 42242.15, + "probability": 0.9212 + }, + { + "start": 42242.27, + "end": 42246.67, + "probability": 0.8236 + }, + { + "start": 42248.23, + "end": 42249.47, + "probability": 0.89 + }, + { + "start": 42250.47, + "end": 42251.65, + "probability": 0.9089 + }, + { + "start": 42252.97, + "end": 42254.45, + "probability": 0.9559 + }, + { + "start": 42255.87, + "end": 42259.39, + "probability": 0.9963 + }, + { + "start": 42261.93, + "end": 42264.35, + "probability": 0.8866 + }, + { + "start": 42265.69, + "end": 42268.21, + "probability": 0.6785 + }, + { + "start": 42269.38, + "end": 42272.11, + "probability": 0.9281 + }, + { + "start": 42272.71, + "end": 42273.13, + "probability": 0.6887 + }, + { + "start": 42276.15, + "end": 42277.41, + "probability": 0.1819 + }, + { + "start": 42277.85, + "end": 42278.41, + "probability": 0.2139 + }, + { + "start": 42280.01, + "end": 42280.77, + "probability": 0.2465 + }, + { + "start": 42281.93, + "end": 42282.87, + "probability": 0.9477 + }, + { + "start": 42284.75, + "end": 42287.09, + "probability": 0.9788 + }, + { + "start": 42288.87, + "end": 42293.95, + "probability": 0.9581 + }, + { + "start": 42295.21, + "end": 42298.35, + "probability": 0.9581 + }, + { + "start": 42299.27, + "end": 42301.93, + "probability": 0.9952 + }, + { + "start": 42303.01, + "end": 42304.37, + "probability": 0.9313 + }, + { + "start": 42305.23, + "end": 42307.67, + "probability": 0.8796 + }, + { + "start": 42309.63, + "end": 42312.15, + "probability": 0.765 + }, + { + "start": 42312.39, + "end": 42315.39, + "probability": 0.9613 + }, + { + "start": 42316.21, + "end": 42320.33, + "probability": 0.981 + }, + { + "start": 42321.45, + "end": 42322.73, + "probability": 0.6894 + }, + { + "start": 42323.67, + "end": 42324.57, + "probability": 0.7277 + }, + { + "start": 42324.65, + "end": 42326.63, + "probability": 0.9902 + }, + { + "start": 42327.91, + "end": 42329.41, + "probability": 0.9871 + }, + { + "start": 42331.31, + "end": 42332.65, + "probability": 0.8785 + }, + { + "start": 42335.43, + "end": 42336.33, + "probability": 0.9639 + }, + { + "start": 42336.59, + "end": 42337.53, + "probability": 0.7095 + }, + { + "start": 42338.43, + "end": 42339.01, + "probability": 0.6072 + }, + { + "start": 42339.09, + "end": 42339.49, + "probability": 0.5969 + }, + { + "start": 42339.59, + "end": 42341.21, + "probability": 0.9672 + }, + { + "start": 42342.97, + "end": 42346.07, + "probability": 0.6252 + }, + { + "start": 42347.15, + "end": 42347.51, + "probability": 0.8511 + }, + { + "start": 42347.68, + "end": 42351.17, + "probability": 0.6714 + }, + { + "start": 42351.17, + "end": 42353.13, + "probability": 0.9865 + }, + { + "start": 42354.09, + "end": 42357.94, + "probability": 0.7423 + }, + { + "start": 42359.49, + "end": 42361.51, + "probability": 0.9834 + }, + { + "start": 42361.53, + "end": 42365.07, + "probability": 0.9856 + }, + { + "start": 42365.23, + "end": 42367.81, + "probability": 0.9351 + }, + { + "start": 42369.15, + "end": 42372.01, + "probability": 0.8298 + }, + { + "start": 42373.05, + "end": 42376.19, + "probability": 0.9313 + }, + { + "start": 42376.27, + "end": 42376.91, + "probability": 0.7799 + }, + { + "start": 42377.77, + "end": 42378.69, + "probability": 0.8403 + }, + { + "start": 42379.25, + "end": 42380.41, + "probability": 0.7555 + }, + { + "start": 42380.99, + "end": 42382.95, + "probability": 0.9941 + }, + { + "start": 42383.41, + "end": 42387.83, + "probability": 0.9292 + }, + { + "start": 42387.95, + "end": 42390.57, + "probability": 0.8092 + }, + { + "start": 42391.41, + "end": 42392.69, + "probability": 0.8266 + }, + { + "start": 42392.83, + "end": 42395.21, + "probability": 0.8709 + }, + { + "start": 42396.31, + "end": 42402.41, + "probability": 0.3907 + }, + { + "start": 42403.61, + "end": 42404.85, + "probability": 0.7783 + }, + { + "start": 42405.67, + "end": 42407.03, + "probability": 0.958 + }, + { + "start": 42407.07, + "end": 42408.77, + "probability": 0.9961 + }, + { + "start": 42409.19, + "end": 42410.75, + "probability": 0.9941 + }, + { + "start": 42411.51, + "end": 42412.25, + "probability": 0.9504 + }, + { + "start": 42412.31, + "end": 42412.97, + "probability": 0.7292 + }, + { + "start": 42413.07, + "end": 42413.93, + "probability": 0.7618 + }, + { + "start": 42414.43, + "end": 42415.65, + "probability": 0.9951 + }, + { + "start": 42416.07, + "end": 42417.75, + "probability": 0.9263 + }, + { + "start": 42420.69, + "end": 42423.17, + "probability": 0.9468 + }, + { + "start": 42423.67, + "end": 42427.11, + "probability": 0.963 + }, + { + "start": 42427.53, + "end": 42430.29, + "probability": 0.9736 + }, + { + "start": 42431.29, + "end": 42433.63, + "probability": 0.84 + }, + { + "start": 42433.73, + "end": 42434.55, + "probability": 0.7518 + }, + { + "start": 42435.07, + "end": 42437.11, + "probability": 0.9168 + }, + { + "start": 42437.19, + "end": 42437.82, + "probability": 0.8115 + }, + { + "start": 42438.37, + "end": 42438.61, + "probability": 0.9122 + }, + { + "start": 42438.75, + "end": 42443.53, + "probability": 0.813 + }, + { + "start": 42443.71, + "end": 42444.51, + "probability": 0.6016 + }, + { + "start": 42445.11, + "end": 42446.61, + "probability": 0.9401 + }, + { + "start": 42448.09, + "end": 42449.31, + "probability": 0.9001 + }, + { + "start": 42450.27, + "end": 42452.7, + "probability": 0.9802 + }, + { + "start": 42454.25, + "end": 42455.67, + "probability": 0.7097 + }, + { + "start": 42457.43, + "end": 42463.83, + "probability": 0.9941 + }, + { + "start": 42464.41, + "end": 42467.29, + "probability": 0.98 + }, + { + "start": 42469.53, + "end": 42472.39, + "probability": 0.9076 + }, + { + "start": 42473.09, + "end": 42477.15, + "probability": 0.7732 + }, + { + "start": 42478.73, + "end": 42480.25, + "probability": 0.9441 + }, + { + "start": 42483.29, + "end": 42486.03, + "probability": 0.9366 + }, + { + "start": 42486.57, + "end": 42487.31, + "probability": 0.6582 + }, + { + "start": 42487.47, + "end": 42487.99, + "probability": 0.3762 + }, + { + "start": 42488.59, + "end": 42490.41, + "probability": 0.7399 + }, + { + "start": 42490.55, + "end": 42491.77, + "probability": 0.8621 + }, + { + "start": 42492.6, + "end": 42494.63, + "probability": 0.9775 + }, + { + "start": 42496.07, + "end": 42499.29, + "probability": 0.8972 + }, + { + "start": 42499.69, + "end": 42502.55, + "probability": 0.8455 + }, + { + "start": 42502.59, + "end": 42502.75, + "probability": 0.8743 + }, + { + "start": 42503.75, + "end": 42504.19, + "probability": 0.1237 + }, + { + "start": 42505.72, + "end": 42511.11, + "probability": 0.932 + }, + { + "start": 42511.27, + "end": 42512.07, + "probability": 0.6368 + }, + { + "start": 42512.17, + "end": 42512.45, + "probability": 0.8495 + }, + { + "start": 42512.53, + "end": 42513.87, + "probability": 0.7573 + }, + { + "start": 42514.27, + "end": 42515.77, + "probability": 0.9336 + }, + { + "start": 42516.49, + "end": 42518.41, + "probability": 0.9429 + }, + { + "start": 42518.45, + "end": 42520.01, + "probability": 0.9741 + }, + { + "start": 42520.75, + "end": 42522.19, + "probability": 0.4086 + }, + { + "start": 42522.29, + "end": 42524.43, + "probability": 0.9717 + }, + { + "start": 42525.15, + "end": 42526.71, + "probability": 0.7814 + }, + { + "start": 42526.79, + "end": 42528.41, + "probability": 0.9705 + }, + { + "start": 42528.45, + "end": 42530.03, + "probability": 0.5477 + }, + { + "start": 42530.03, + "end": 42530.03, + "probability": 0.0205 + }, + { + "start": 42532.01, + "end": 42532.67, + "probability": 0.0015 + }, + { + "start": 42533.39, + "end": 42535.99, + "probability": 0.1434 + }, + { + "start": 42536.52, + "end": 42538.67, + "probability": 0.6851 + }, + { + "start": 42538.69, + "end": 42542.83, + "probability": 0.5819 + }, + { + "start": 42543.05, + "end": 42543.33, + "probability": 0.5294 + }, + { + "start": 42544.23, + "end": 42545.03, + "probability": 0.6835 + }, + { + "start": 42545.79, + "end": 42549.37, + "probability": 0.917 + }, + { + "start": 42550.13, + "end": 42555.11, + "probability": 0.877 + }, + { + "start": 42555.11, + "end": 42555.53, + "probability": 0.2289 + }, + { + "start": 42556.29, + "end": 42556.83, + "probability": 0.5867 + }, + { + "start": 42558.63, + "end": 42559.45, + "probability": 0.643 + }, + { + "start": 42560.53, + "end": 42562.93, + "probability": 0.709 + }, + { + "start": 42563.43, + "end": 42563.73, + "probability": 0.6873 + }, + { + "start": 42564.05, + "end": 42565.14, + "probability": 0.9731 + }, + { + "start": 42565.39, + "end": 42566.05, + "probability": 0.423 + }, + { + "start": 42568.01, + "end": 42571.49, + "probability": 0.9955 + }, + { + "start": 42571.49, + "end": 42575.27, + "probability": 0.995 + }, + { + "start": 42575.35, + "end": 42576.15, + "probability": 0.8784 + }, + { + "start": 42577.62, + "end": 42577.69, + "probability": 0.5166 + }, + { + "start": 42578.81, + "end": 42578.99, + "probability": 0.0209 + }, + { + "start": 42578.99, + "end": 42578.99, + "probability": 0.5687 + }, + { + "start": 42578.99, + "end": 42579.83, + "probability": 0.0949 + }, + { + "start": 42580.29, + "end": 42581.91, + "probability": 0.6521 + }, + { + "start": 42582.77, + "end": 42583.31, + "probability": 0.7911 + }, + { + "start": 42583.35, + "end": 42584.64, + "probability": 0.9111 + }, + { + "start": 42585.61, + "end": 42586.29, + "probability": 0.9203 + }, + { + "start": 42586.33, + "end": 42587.6, + "probability": 0.9858 + }, + { + "start": 42588.67, + "end": 42592.37, + "probability": 0.995 + }, + { + "start": 42593.91, + "end": 42596.49, + "probability": 0.6943 + }, + { + "start": 42597.01, + "end": 42599.87, + "probability": 0.9401 + }, + { + "start": 42600.65, + "end": 42605.31, + "probability": 0.9348 + }, + { + "start": 42608.55, + "end": 42610.01, + "probability": 0.9289 + }, + { + "start": 42610.57, + "end": 42612.77, + "probability": 0.9271 + }, + { + "start": 42612.97, + "end": 42615.49, + "probability": 0.7922 + }, + { + "start": 42616.31, + "end": 42618.79, + "probability": 0.8848 + }, + { + "start": 42619.27, + "end": 42619.95, + "probability": 0.4356 + }, + { + "start": 42620.09, + "end": 42620.83, + "probability": 0.6651 + }, + { + "start": 42620.87, + "end": 42622.41, + "probability": 0.601 + }, + { + "start": 42622.57, + "end": 42626.04, + "probability": 0.845 + }, + { + "start": 42627.27, + "end": 42628.49, + "probability": 0.145 + }, + { + "start": 42629.41, + "end": 42631.15, + "probability": 0.9858 + }, + { + "start": 42631.25, + "end": 42632.03, + "probability": 0.6914 + }, + { + "start": 42632.11, + "end": 42632.77, + "probability": 0.7744 + }, + { + "start": 42633.11, + "end": 42633.99, + "probability": 0.676 + }, + { + "start": 42635.41, + "end": 42638.61, + "probability": 0.8857 + }, + { + "start": 42639.44, + "end": 42642.68, + "probability": 0.3767 + }, + { + "start": 42643.47, + "end": 42646.24, + "probability": 0.9058 + }, + { + "start": 42647.61, + "end": 42651.63, + "probability": 0.9839 + }, + { + "start": 42652.73, + "end": 42653.84, + "probability": 0.6027 + }, + { + "start": 42655.11, + "end": 42660.92, + "probability": 0.7191 + }, + { + "start": 42661.23, + "end": 42661.31, + "probability": 0.0468 + }, + { + "start": 42661.31, + "end": 42662.27, + "probability": 0.5777 + }, + { + "start": 42662.37, + "end": 42663.93, + "probability": 0.3302 + }, + { + "start": 42663.95, + "end": 42665.29, + "probability": 0.5099 + }, + { + "start": 42665.47, + "end": 42669.33, + "probability": 0.9242 + }, + { + "start": 42670.75, + "end": 42672.75, + "probability": 0.9988 + }, + { + "start": 42673.97, + "end": 42677.37, + "probability": 0.9282 + }, + { + "start": 42677.51, + "end": 42678.57, + "probability": 0.8885 + }, + { + "start": 42678.93, + "end": 42680.77, + "probability": 0.8169 + }, + { + "start": 42681.91, + "end": 42683.85, + "probability": 0.5968 + }, + { + "start": 42684.91, + "end": 42685.91, + "probability": 0.7512 + }, + { + "start": 42686.53, + "end": 42687.97, + "probability": 0.9971 + }, + { + "start": 42688.87, + "end": 42691.13, + "probability": 0.8594 + }, + { + "start": 42691.21, + "end": 42691.63, + "probability": 0.8116 + }, + { + "start": 42692.67, + "end": 42693.83, + "probability": 0.9089 + }, + { + "start": 42694.03, + "end": 42695.51, + "probability": 0.968 + }, + { + "start": 42695.79, + "end": 42698.77, + "probability": 0.9454 + }, + { + "start": 42700.17, + "end": 42701.47, + "probability": 0.9556 + }, + { + "start": 42701.57, + "end": 42704.45, + "probability": 0.9504 + }, + { + "start": 42704.99, + "end": 42705.23, + "probability": 0.813 + }, + { + "start": 42705.81, + "end": 42706.99, + "probability": 0.9975 + }, + { + "start": 42707.03, + "end": 42707.81, + "probability": 0.9867 + }, + { + "start": 42708.39, + "end": 42709.29, + "probability": 0.9317 + }, + { + "start": 42709.45, + "end": 42710.87, + "probability": 0.7508 + }, + { + "start": 42711.06, + "end": 42714.35, + "probability": 0.8689 + }, + { + "start": 42715.11, + "end": 42718.71, + "probability": 0.937 + }, + { + "start": 42719.49, + "end": 42720.35, + "probability": 0.8583 + }, + { + "start": 42720.73, + "end": 42721.65, + "probability": 0.8203 + }, + { + "start": 42721.87, + "end": 42723.45, + "probability": 0.793 + }, + { + "start": 42724.01, + "end": 42724.36, + "probability": 0.8961 + }, + { + "start": 42726.09, + "end": 42727.41, + "probability": 0.9503 + }, + { + "start": 42736.95, + "end": 42738.23, + "probability": 0.8227 + }, + { + "start": 42738.75, + "end": 42739.71, + "probability": 0.7088 + }, + { + "start": 42740.23, + "end": 42742.66, + "probability": 0.9801 + }, + { + "start": 42744.05, + "end": 42744.99, + "probability": 0.9727 + }, + { + "start": 42745.07, + "end": 42747.59, + "probability": 0.78 + }, + { + "start": 42748.99, + "end": 42750.25, + "probability": 0.9611 + }, + { + "start": 42750.43, + "end": 42750.71, + "probability": 0.7159 + }, + { + "start": 42750.83, + "end": 42752.67, + "probability": 0.7814 + }, + { + "start": 42752.73, + "end": 42753.23, + "probability": 0.9743 + }, + { + "start": 42753.27, + "end": 42753.87, + "probability": 0.9644 + }, + { + "start": 42754.59, + "end": 42755.39, + "probability": 0.9778 + }, + { + "start": 42755.69, + "end": 42757.11, + "probability": 0.9844 + }, + { + "start": 42757.25, + "end": 42758.05, + "probability": 0.9363 + }, + { + "start": 42758.49, + "end": 42758.77, + "probability": 0.5873 + }, + { + "start": 42758.85, + "end": 42759.95, + "probability": 0.9097 + }, + { + "start": 42759.99, + "end": 42760.45, + "probability": 0.4084 + }, + { + "start": 42761.85, + "end": 42764.39, + "probability": 0.9644 + }, + { + "start": 42766.15, + "end": 42768.52, + "probability": 0.6858 + }, + { + "start": 42769.49, + "end": 42772.87, + "probability": 0.6707 + }, + { + "start": 42775.75, + "end": 42776.61, + "probability": 0.8122 + }, + { + "start": 42778.51, + "end": 42781.57, + "probability": 0.9985 + }, + { + "start": 42781.75, + "end": 42784.21, + "probability": 0.6565 + }, + { + "start": 42785.61, + "end": 42788.09, + "probability": 0.7907 + }, + { + "start": 42788.19, + "end": 42788.77, + "probability": 0.7073 + }, + { + "start": 42788.85, + "end": 42789.87, + "probability": 0.742 + }, + { + "start": 42790.03, + "end": 42792.23, + "probability": 0.8804 + }, + { + "start": 42792.65, + "end": 42798.17, + "probability": 0.7852 + }, + { + "start": 42799.71, + "end": 42801.79, + "probability": 0.664 + }, + { + "start": 42801.87, + "end": 42803.57, + "probability": 0.9318 + }, + { + "start": 42805.32, + "end": 42810.59, + "probability": 0.994 + }, + { + "start": 42811.89, + "end": 42813.11, + "probability": 0.9627 + }, + { + "start": 42814.27, + "end": 42815.75, + "probability": 0.9036 + }, + { + "start": 42816.51, + "end": 42817.51, + "probability": 0.9851 + }, + { + "start": 42818.07, + "end": 42820.37, + "probability": 0.7739 + }, + { + "start": 42820.91, + "end": 42822.83, + "probability": 0.5545 + }, + { + "start": 42823.47, + "end": 42826.03, + "probability": 0.9595 + }, + { + "start": 42826.93, + "end": 42829.21, + "probability": 0.0586 + }, + { + "start": 42829.33, + "end": 42829.95, + "probability": 0.706 + }, + { + "start": 42830.17, + "end": 42832.53, + "probability": 0.1015 + }, + { + "start": 42832.53, + "end": 42834.47, + "probability": 0.7827 + }, + { + "start": 42834.79, + "end": 42835.23, + "probability": 0.003 + }, + { + "start": 42835.29, + "end": 42835.35, + "probability": 0.0194 + }, + { + "start": 42835.35, + "end": 42835.99, + "probability": 0.4953 + }, + { + "start": 42836.31, + "end": 42837.49, + "probability": 0.8997 + }, + { + "start": 42838.13, + "end": 42838.81, + "probability": 0.5447 + }, + { + "start": 42839.45, + "end": 42839.51, + "probability": 0.1051 + }, + { + "start": 42839.51, + "end": 42841.33, + "probability": 0.8301 + }, + { + "start": 42841.61, + "end": 42843.09, + "probability": 0.8311 + }, + { + "start": 42846.39, + "end": 42846.49, + "probability": 0.0044 + }, + { + "start": 42848.43, + "end": 42848.69, + "probability": 0.0741 + }, + { + "start": 42848.69, + "end": 42849.03, + "probability": 0.072 + }, + { + "start": 42849.71, + "end": 42852.79, + "probability": 0.6761 + }, + { + "start": 42854.97, + "end": 42854.97, + "probability": 0.0374 + }, + { + "start": 42854.97, + "end": 42854.97, + "probability": 0.3055 + }, + { + "start": 42854.97, + "end": 42855.46, + "probability": 0.3422 + }, + { + "start": 42856.91, + "end": 42859.11, + "probability": 0.0381 + }, + { + "start": 42859.11, + "end": 42859.11, + "probability": 0.0395 + }, + { + "start": 42859.11, + "end": 42859.11, + "probability": 0.1086 + }, + { + "start": 42859.11, + "end": 42860.91, + "probability": 0.1066 + }, + { + "start": 42860.91, + "end": 42861.19, + "probability": 0.5629 + }, + { + "start": 42862.51, + "end": 42863.31, + "probability": 0.4117 + }, + { + "start": 42867.05, + "end": 42867.49, + "probability": 0.0449 + }, + { + "start": 42870.89, + "end": 42873.55, + "probability": 0.0017 + }, + { + "start": 42873.67, + "end": 42878.31, + "probability": 0.3429 + }, + { + "start": 42878.37, + "end": 42881.47, + "probability": 0.0881 + }, + { + "start": 42881.83, + "end": 42882.75, + "probability": 0.3438 + }, + { + "start": 42882.75, + "end": 42882.98, + "probability": 0.0151 + }, + { + "start": 42886.73, + "end": 42889.79, + "probability": 0.0571 + }, + { + "start": 42889.79, + "end": 42892.81, + "probability": 0.0777 + }, + { + "start": 42893.41, + "end": 42895.07, + "probability": 0.3079 + }, + { + "start": 42895.67, + "end": 42898.13, + "probability": 0.3472 + }, + { + "start": 42898.19, + "end": 42898.89, + "probability": 0.3906 + }, + { + "start": 42898.89, + "end": 42899.05, + "probability": 0.1701 + }, + { + "start": 42899.15, + "end": 42899.67, + "probability": 0.03 + }, + { + "start": 42899.67, + "end": 42900.19, + "probability": 0.0733 + }, + { + "start": 42900.61, + "end": 42901.81, + "probability": 0.0781 + }, + { + "start": 42903.29, + "end": 42904.07, + "probability": 0.116 + }, + { + "start": 42919.19, + "end": 42921.01, + "probability": 0.0529 + }, + { + "start": 42942.0, + "end": 42942.0, + "probability": 0.0 + }, + { + "start": 42942.0, + "end": 42942.0, + "probability": 0.0 + }, + { + "start": 42942.0, + "end": 42942.0, + "probability": 0.0 + }, + { + "start": 42942.0, + "end": 42942.0, + "probability": 0.0 + }, + { + "start": 42942.0, + "end": 42942.0, + "probability": 0.0 + }, + { + "start": 42942.0, + "end": 42942.0, + "probability": 0.0 + }, + { + "start": 42942.0, + "end": 42942.0, + "probability": 0.0 + }, + { + "start": 42942.0, + "end": 42942.0, + "probability": 0.0 + }, + { + "start": 42942.0, + "end": 42942.0, + "probability": 0.0 + }, + { + "start": 42942.0, + "end": 42942.0, + "probability": 0.0 + }, + { + "start": 42942.0, + "end": 42942.0, + "probability": 0.0 + }, + { + "start": 42942.0, + "end": 42942.0, + "probability": 0.0 + }, + { + "start": 42942.32, + "end": 42944.42, + "probability": 0.4059 + }, + { + "start": 42944.58, + "end": 42944.88, + "probability": 0.5213 + }, + { + "start": 42949.52, + "end": 42951.84, + "probability": 0.8091 + }, + { + "start": 42952.84, + "end": 42955.4, + "probability": 0.9964 + }, + { + "start": 42959.82, + "end": 42960.6, + "probability": 0.9419 + }, + { + "start": 42960.74, + "end": 42961.52, + "probability": 0.9695 + }, + { + "start": 42963.36, + "end": 42965.22, + "probability": 0.8772 + }, + { + "start": 42965.96, + "end": 42966.66, + "probability": 0.9352 + }, + { + "start": 42967.44, + "end": 42968.02, + "probability": 0.9609 + }, + { + "start": 42968.74, + "end": 42969.04, + "probability": 0.7624 + }, + { + "start": 42969.78, + "end": 42970.7, + "probability": 0.9831 + }, + { + "start": 42971.56, + "end": 42974.08, + "probability": 0.9758 + }, + { + "start": 42975.36, + "end": 42976.94, + "probability": 0.9651 + }, + { + "start": 42977.0, + "end": 42977.58, + "probability": 0.7381 + }, + { + "start": 42977.6, + "end": 42978.46, + "probability": 0.8869 + }, + { + "start": 42978.62, + "end": 42979.32, + "probability": 0.8852 + }, + { + "start": 42980.58, + "end": 42981.56, + "probability": 0.9608 + }, + { + "start": 42982.8, + "end": 42985.26, + "probability": 0.9921 + }, + { + "start": 42985.6, + "end": 42986.5, + "probability": 0.9277 + }, + { + "start": 42987.48, + "end": 42989.24, + "probability": 0.9822 + }, + { + "start": 42989.9, + "end": 42992.02, + "probability": 0.7378 + }, + { + "start": 42994.02, + "end": 42995.74, + "probability": 0.8828 + }, + { + "start": 42996.86, + "end": 42997.44, + "probability": 0.9904 + }, + { + "start": 42997.88, + "end": 42999.56, + "probability": 0.8679 + }, + { + "start": 42999.62, + "end": 42999.98, + "probability": 0.1167 + }, + { + "start": 43000.06, + "end": 43006.18, + "probability": 0.6943 + }, + { + "start": 43007.44, + "end": 43008.2, + "probability": 0.7582 + }, + { + "start": 43008.94, + "end": 43010.83, + "probability": 0.9966 + }, + { + "start": 43013.16, + "end": 43015.38, + "probability": 0.1416 + }, + { + "start": 43015.92, + "end": 43016.6, + "probability": 0.6542 + }, + { + "start": 43017.04, + "end": 43020.46, + "probability": 0.9702 + }, + { + "start": 43021.0, + "end": 43021.76, + "probability": 0.8553 + }, + { + "start": 43021.76, + "end": 43022.53, + "probability": 0.3625 + }, + { + "start": 43022.62, + "end": 43024.08, + "probability": 0.9822 + }, + { + "start": 43024.16, + "end": 43025.9, + "probability": 0.8135 + }, + { + "start": 43026.1, + "end": 43026.98, + "probability": 0.1132 + }, + { + "start": 43027.38, + "end": 43029.06, + "probability": 0.5582 + }, + { + "start": 43029.52, + "end": 43031.1, + "probability": 0.9806 + }, + { + "start": 43031.54, + "end": 43032.04, + "probability": 0.9194 + }, + { + "start": 43032.44, + "end": 43034.06, + "probability": 0.9853 + }, + { + "start": 43034.32, + "end": 43035.86, + "probability": 0.8507 + }, + { + "start": 43037.1, + "end": 43038.08, + "probability": 0.8172 + }, + { + "start": 43038.14, + "end": 43038.52, + "probability": 0.952 + }, + { + "start": 43038.66, + "end": 43039.66, + "probability": 0.9574 + }, + { + "start": 43040.82, + "end": 43042.86, + "probability": 0.9932 + }, + { + "start": 43043.0, + "end": 43043.49, + "probability": 0.9357 + }, + { + "start": 43043.64, + "end": 43044.01, + "probability": 0.9115 + }, + { + "start": 43044.26, + "end": 43044.68, + "probability": 0.929 + }, + { + "start": 43044.7, + "end": 43045.22, + "probability": 0.5817 + }, + { + "start": 43045.5, + "end": 43046.16, + "probability": 0.8388 + }, + { + "start": 43046.22, + "end": 43046.66, + "probability": 0.4851 + }, + { + "start": 43046.96, + "end": 43047.24, + "probability": 0.8108 + }, + { + "start": 43047.36, + "end": 43048.36, + "probability": 0.6937 + }, + { + "start": 43049.48, + "end": 43051.28, + "probability": 0.9507 + }, + { + "start": 43052.02, + "end": 43053.1, + "probability": 0.6963 + }, + { + "start": 43053.18, + "end": 43054.82, + "probability": 0.8122 + }, + { + "start": 43057.74, + "end": 43062.3, + "probability": 0.9946 + }, + { + "start": 43062.4, + "end": 43063.82, + "probability": 0.8942 + }, + { + "start": 43065.68, + "end": 43066.12, + "probability": 0.9404 + }, + { + "start": 43066.88, + "end": 43067.42, + "probability": 0.9635 + }, + { + "start": 43068.62, + "end": 43069.74, + "probability": 0.9922 + }, + { + "start": 43069.84, + "end": 43072.1, + "probability": 0.8463 + }, + { + "start": 43073.92, + "end": 43074.5, + "probability": 0.7993 + }, + { + "start": 43075.62, + "end": 43077.36, + "probability": 0.9969 + }, + { + "start": 43078.2, + "end": 43079.14, + "probability": 0.9281 + }, + { + "start": 43080.42, + "end": 43084.56, + "probability": 0.9965 + }, + { + "start": 43085.22, + "end": 43087.28, + "probability": 0.9978 + }, + { + "start": 43090.26, + "end": 43092.06, + "probability": 0.619 + }, + { + "start": 43092.16, + "end": 43092.46, + "probability": 0.7104 + }, + { + "start": 43094.98, + "end": 43097.0, + "probability": 0.6575 + }, + { + "start": 43097.06, + "end": 43098.32, + "probability": 0.9009 + }, + { + "start": 43107.16, + "end": 43107.9, + "probability": 0.4403 + }, + { + "start": 43110.48, + "end": 43111.14, + "probability": 0.8588 + }, + { + "start": 43112.04, + "end": 43114.56, + "probability": 0.8454 + }, + { + "start": 43115.28, + "end": 43116.74, + "probability": 0.872 + }, + { + "start": 43116.76, + "end": 43119.34, + "probability": 0.9662 + }, + { + "start": 43120.52, + "end": 43123.18, + "probability": 0.9932 + }, + { + "start": 43124.38, + "end": 43127.18, + "probability": 0.6664 + }, + { + "start": 43127.9, + "end": 43129.08, + "probability": 0.7325 + }, + { + "start": 43129.76, + "end": 43134.28, + "probability": 0.9878 + }, + { + "start": 43136.8, + "end": 43139.94, + "probability": 0.9872 + }, + { + "start": 43140.54, + "end": 43141.66, + "probability": 0.9409 + }, + { + "start": 43142.66, + "end": 43145.58, + "probability": 0.8655 + }, + { + "start": 43146.1, + "end": 43147.86, + "probability": 0.9803 + }, + { + "start": 43149.18, + "end": 43150.2, + "probability": 0.5428 + }, + { + "start": 43151.16, + "end": 43152.36, + "probability": 0.9983 + }, + { + "start": 43153.32, + "end": 43157.02, + "probability": 0.9958 + }, + { + "start": 43157.14, + "end": 43160.52, + "probability": 0.6799 + }, + { + "start": 43160.8, + "end": 43165.14, + "probability": 0.7212 + }, + { + "start": 43166.08, + "end": 43170.82, + "probability": 0.9963 + }, + { + "start": 43171.06, + "end": 43174.9, + "probability": 0.9858 + }, + { + "start": 43175.04, + "end": 43175.53, + "probability": 0.9423 + }, + { + "start": 43176.86, + "end": 43177.66, + "probability": 0.9658 + }, + { + "start": 43180.04, + "end": 43180.82, + "probability": 0.5039 + }, + { + "start": 43181.42, + "end": 43182.02, + "probability": 0.8252 + }, + { + "start": 43183.68, + "end": 43185.4, + "probability": 0.9971 + }, + { + "start": 43186.3, + "end": 43186.8, + "probability": 0.7327 + }, + { + "start": 43187.54, + "end": 43192.82, + "probability": 0.964 + }, + { + "start": 43194.52, + "end": 43196.58, + "probability": 0.9578 + }, + { + "start": 43196.92, + "end": 43197.44, + "probability": 0.5395 + }, + { + "start": 43197.72, + "end": 43198.42, + "probability": 0.9001 + }, + { + "start": 43199.22, + "end": 43199.9, + "probability": 0.9961 + }, + { + "start": 43201.46, + "end": 43204.34, + "probability": 0.9818 + }, + { + "start": 43204.94, + "end": 43209.04, + "probability": 0.9945 + }, + { + "start": 43209.3, + "end": 43210.5, + "probability": 0.8387 + }, + { + "start": 43211.22, + "end": 43213.94, + "probability": 0.9898 + }, + { + "start": 43214.54, + "end": 43217.36, + "probability": 0.94 + }, + { + "start": 43217.38, + "end": 43219.04, + "probability": 0.8906 + }, + { + "start": 43219.08, + "end": 43220.54, + "probability": 0.8774 + }, + { + "start": 43221.54, + "end": 43223.18, + "probability": 0.8701 + }, + { + "start": 43236.76, + "end": 43237.68, + "probability": 0.1782 + }, + { + "start": 43237.68, + "end": 43237.68, + "probability": 0.0746 + }, + { + "start": 43237.68, + "end": 43237.68, + "probability": 0.0803 + }, + { + "start": 43237.68, + "end": 43237.68, + "probability": 0.0805 + }, + { + "start": 43237.68, + "end": 43238.68, + "probability": 0.1771 + }, + { + "start": 43238.7, + "end": 43239.94, + "probability": 0.9601 + }, + { + "start": 43240.36, + "end": 43242.18, + "probability": 0.9125 + }, + { + "start": 43243.0, + "end": 43246.58, + "probability": 0.9744 + }, + { + "start": 43247.34, + "end": 43253.66, + "probability": 0.7531 + }, + { + "start": 43253.82, + "end": 43255.38, + "probability": 0.8052 + }, + { + "start": 43255.5, + "end": 43255.76, + "probability": 0.7358 + }, + { + "start": 43256.22, + "end": 43258.73, + "probability": 0.9968 + }, + { + "start": 43261.4, + "end": 43262.4, + "probability": 0.9193 + }, + { + "start": 43262.46, + "end": 43263.6, + "probability": 0.969 + }, + { + "start": 43264.06, + "end": 43265.0, + "probability": 0.9156 + }, + { + "start": 43265.4, + "end": 43266.28, + "probability": 0.962 + }, + { + "start": 43267.04, + "end": 43270.46, + "probability": 0.9272 + }, + { + "start": 43271.16, + "end": 43272.14, + "probability": 0.9918 + }, + { + "start": 43272.18, + "end": 43272.74, + "probability": 0.9857 + }, + { + "start": 43272.94, + "end": 43273.62, + "probability": 0.9744 + }, + { + "start": 43274.04, + "end": 43274.88, + "probability": 0.9728 + }, + { + "start": 43275.32, + "end": 43277.4, + "probability": 0.8488 + }, + { + "start": 43277.72, + "end": 43279.2, + "probability": 0.9686 + }, + { + "start": 43279.9, + "end": 43280.92, + "probability": 0.8761 + }, + { + "start": 43284.24, + "end": 43284.62, + "probability": 0.9429 + }, + { + "start": 43286.44, + "end": 43290.04, + "probability": 0.9307 + }, + { + "start": 43292.64, + "end": 43296.0, + "probability": 0.9987 + }, + { + "start": 43297.46, + "end": 43298.34, + "probability": 0.7416 + }, + { + "start": 43299.62, + "end": 43299.94, + "probability": 0.5605 + }, + { + "start": 43300.9, + "end": 43301.58, + "probability": 0.9924 + }, + { + "start": 43302.64, + "end": 43303.34, + "probability": 0.8988 + }, + { + "start": 43304.78, + "end": 43310.98, + "probability": 0.9751 + }, + { + "start": 43312.06, + "end": 43313.4, + "probability": 0.9593 + }, + { + "start": 43313.58, + "end": 43316.56, + "probability": 0.9766 + }, + { + "start": 43316.68, + "end": 43318.94, + "probability": 0.8615 + }, + { + "start": 43319.64, + "end": 43320.42, + "probability": 0.6801 + }, + { + "start": 43320.48, + "end": 43322.64, + "probability": 0.9741 + }, + { + "start": 43322.74, + "end": 43323.28, + "probability": 0.8979 + }, + { + "start": 43324.96, + "end": 43325.78, + "probability": 0.8082 + }, + { + "start": 43326.4, + "end": 43326.88, + "probability": 0.998 + }, + { + "start": 43327.42, + "end": 43328.6, + "probability": 0.9595 + }, + { + "start": 43329.7, + "end": 43331.43, + "probability": 0.8732 + }, + { + "start": 43332.5, + "end": 43335.48, + "probability": 0.5665 + }, + { + "start": 43336.52, + "end": 43340.26, + "probability": 0.8627 + }, + { + "start": 43341.16, + "end": 43343.28, + "probability": 0.8237 + }, + { + "start": 43343.4, + "end": 43346.1, + "probability": 0.9706 + }, + { + "start": 43346.26, + "end": 43346.86, + "probability": 0.9111 + }, + { + "start": 43347.24, + "end": 43348.12, + "probability": 0.9702 + }, + { + "start": 43348.14, + "end": 43349.5, + "probability": 0.9843 + }, + { + "start": 43356.3, + "end": 43357.68, + "probability": 0.5046 + }, + { + "start": 43365.04, + "end": 43365.06, + "probability": 0.4165 + }, + { + "start": 43365.08, + "end": 43365.64, + "probability": 0.568 + }, + { + "start": 43366.32, + "end": 43370.44, + "probability": 0.8982 + }, + { + "start": 43370.44, + "end": 43374.5, + "probability": 0.9985 + }, + { + "start": 43375.32, + "end": 43379.44, + "probability": 0.9224 + }, + { + "start": 43379.44, + "end": 43383.1, + "probability": 0.9753 + }, + { + "start": 43383.36, + "end": 43384.95, + "probability": 0.9354 + }, + { + "start": 43385.82, + "end": 43386.52, + "probability": 0.8178 + }, + { + "start": 43387.38, + "end": 43387.84, + "probability": 0.6359 + }, + { + "start": 43388.52, + "end": 43390.0, + "probability": 0.6048 + }, + { + "start": 43390.94, + "end": 43393.34, + "probability": 0.7265 + }, + { + "start": 43396.2, + "end": 43397.54, + "probability": 0.769 + }, + { + "start": 43398.5, + "end": 43400.66, + "probability": 0.767 + }, + { + "start": 43402.96, + "end": 43406.3, + "probability": 0.8995 + }, + { + "start": 43406.46, + "end": 43407.84, + "probability": 0.9294 + }, + { + "start": 43408.62, + "end": 43410.86, + "probability": 0.9703 + }, + { + "start": 43410.86, + "end": 43414.66, + "probability": 0.9848 + }, + { + "start": 43415.12, + "end": 43416.02, + "probability": 0.6362 + }, + { + "start": 43416.1, + "end": 43416.32, + "probability": 0.763 + }, + { + "start": 43417.5, + "end": 43420.0, + "probability": 0.8174 + }, + { + "start": 43420.8, + "end": 43420.9, + "probability": 0.8457 + }, + { + "start": 43422.3, + "end": 43422.92, + "probability": 0.6958 + }, + { + "start": 43423.26, + "end": 43423.48, + "probability": 0.2974 + }, + { + "start": 43423.82, + "end": 43424.66, + "probability": 0.9973 + }, + { + "start": 43425.3, + "end": 43427.05, + "probability": 0.9193 + }, + { + "start": 43427.14, + "end": 43428.56, + "probability": 0.9761 + }, + { + "start": 43428.72, + "end": 43430.02, + "probability": 0.9969 + }, + { + "start": 43430.06, + "end": 43430.9, + "probability": 0.9791 + }, + { + "start": 43431.88, + "end": 43431.88, + "probability": 0.7847 + }, + { + "start": 43432.88, + "end": 43435.46, + "probability": 0.9913 + }, + { + "start": 43436.1, + "end": 43437.43, + "probability": 0.8176 + }, + { + "start": 43439.0, + "end": 43443.72, + "probability": 0.9712 + }, + { + "start": 43443.96, + "end": 43444.46, + "probability": 0.9396 + }, + { + "start": 43444.64, + "end": 43444.88, + "probability": 0.4512 + }, + { + "start": 43445.62, + "end": 43446.2, + "probability": 0.4366 + }, + { + "start": 43446.22, + "end": 43446.92, + "probability": 0.825 + }, + { + "start": 43447.02, + "end": 43448.78, + "probability": 0.8517 + }, + { + "start": 43449.4, + "end": 43451.16, + "probability": 0.8662 + }, + { + "start": 43463.42, + "end": 43464.5, + "probability": 0.7189 + }, + { + "start": 43466.14, + "end": 43466.74, + "probability": 0.5914 + }, + { + "start": 43466.9, + "end": 43467.92, + "probability": 0.6696 + }, + { + "start": 43472.01, + "end": 43474.1, + "probability": 0.8641 + }, + { + "start": 43479.5, + "end": 43480.5, + "probability": 0.7402 + }, + { + "start": 43481.34, + "end": 43483.32, + "probability": 0.8983 + }, + { + "start": 43486.62, + "end": 43487.08, + "probability": 0.9724 + }, + { + "start": 43487.72, + "end": 43488.52, + "probability": 0.8469 + }, + { + "start": 43489.38, + "end": 43492.0, + "probability": 0.9964 + }, + { + "start": 43492.88, + "end": 43494.9, + "probability": 0.9982 + }, + { + "start": 43494.9, + "end": 43499.08, + "probability": 0.9808 + }, + { + "start": 43499.52, + "end": 43500.42, + "probability": 0.8616 + }, + { + "start": 43500.54, + "end": 43501.36, + "probability": 0.8942 + }, + { + "start": 43501.44, + "end": 43502.04, + "probability": 0.9042 + }, + { + "start": 43504.56, + "end": 43506.56, + "probability": 0.7497 + }, + { + "start": 43509.22, + "end": 43513.94, + "probability": 0.9824 + }, + { + "start": 43515.02, + "end": 43517.68, + "probability": 0.9823 + }, + { + "start": 43518.76, + "end": 43519.46, + "probability": 0.8799 + }, + { + "start": 43520.32, + "end": 43522.18, + "probability": 0.988 + }, + { + "start": 43523.3, + "end": 43526.68, + "probability": 0.999 + }, + { + "start": 43528.12, + "end": 43531.3, + "probability": 0.9966 + }, + { + "start": 43531.68, + "end": 43533.41, + "probability": 0.9397 + }, + { + "start": 43533.6, + "end": 43534.44, + "probability": 0.7781 + }, + { + "start": 43535.2, + "end": 43537.02, + "probability": 0.9941 + }, + { + "start": 43538.62, + "end": 43540.52, + "probability": 0.9965 + }, + { + "start": 43541.82, + "end": 43543.76, + "probability": 0.9933 + }, + { + "start": 43544.32, + "end": 43545.32, + "probability": 0.8143 + }, + { + "start": 43545.9, + "end": 43548.84, + "probability": 0.9858 + }, + { + "start": 43552.68, + "end": 43555.44, + "probability": 0.7668 + }, + { + "start": 43555.44, + "end": 43558.06, + "probability": 0.9813 + }, + { + "start": 43558.84, + "end": 43560.28, + "probability": 0.9963 + }, + { + "start": 43560.28, + "end": 43561.42, + "probability": 0.9231 + }, + { + "start": 43562.2, + "end": 43564.6, + "probability": 0.9388 + }, + { + "start": 43566.18, + "end": 43568.8, + "probability": 0.9797 + }, + { + "start": 43570.28, + "end": 43570.98, + "probability": 0.7357 + }, + { + "start": 43572.22, + "end": 43575.16, + "probability": 0.9771 + }, + { + "start": 43575.32, + "end": 43579.26, + "probability": 0.9867 + }, + { + "start": 43580.26, + "end": 43583.06, + "probability": 0.8188 + }, + { + "start": 43584.3, + "end": 43585.64, + "probability": 0.9635 + }, + { + "start": 43587.08, + "end": 43588.18, + "probability": 0.9555 + }, + { + "start": 43589.56, + "end": 43592.26, + "probability": 0.8901 + }, + { + "start": 43592.92, + "end": 43594.1, + "probability": 0.9889 + }, + { + "start": 43594.82, + "end": 43596.18, + "probability": 0.713 + }, + { + "start": 43596.34, + "end": 43597.82, + "probability": 0.5218 + }, + { + "start": 43598.62, + "end": 43600.68, + "probability": 0.8846 + }, + { + "start": 43601.88, + "end": 43603.62, + "probability": 0.9802 + }, + { + "start": 43603.78, + "end": 43605.0, + "probability": 0.7976 + }, + { + "start": 43606.3, + "end": 43608.14, + "probability": 0.9919 + }, + { + "start": 43608.98, + "end": 43610.92, + "probability": 0.9951 + }, + { + "start": 43610.96, + "end": 43612.33, + "probability": 0.651 + }, + { + "start": 43613.02, + "end": 43614.14, + "probability": 0.828 + }, + { + "start": 43614.62, + "end": 43616.53, + "probability": 0.9814 + }, + { + "start": 43616.78, + "end": 43617.88, + "probability": 0.8525 + }, + { + "start": 43618.88, + "end": 43619.84, + "probability": 0.9319 + }, + { + "start": 43619.96, + "end": 43620.2, + "probability": 0.7971 + }, + { + "start": 43620.3, + "end": 43621.82, + "probability": 0.9694 + }, + { + "start": 43621.88, + "end": 43622.44, + "probability": 0.8594 + }, + { + "start": 43623.8, + "end": 43627.0, + "probability": 0.6566 + }, + { + "start": 43628.8, + "end": 43629.84, + "probability": 0.9412 + }, + { + "start": 43630.06, + "end": 43631.43, + "probability": 0.6634 + }, + { + "start": 43632.52, + "end": 43634.28, + "probability": 0.8909 + }, + { + "start": 43634.98, + "end": 43638.21, + "probability": 0.9204 + }, + { + "start": 43639.1, + "end": 43639.36, + "probability": 0.5184 + }, + { + "start": 43640.1, + "end": 43642.16, + "probability": 0.9407 + }, + { + "start": 43643.6, + "end": 43647.26, + "probability": 0.9735 + }, + { + "start": 43647.36, + "end": 43649.17, + "probability": 0.98 + }, + { + "start": 43649.64, + "end": 43650.14, + "probability": 0.7427 + }, + { + "start": 43650.22, + "end": 43651.03, + "probability": 0.8873 + }, + { + "start": 43652.02, + "end": 43652.68, + "probability": 0.5003 + }, + { + "start": 43653.48, + "end": 43654.96, + "probability": 0.9093 + }, + { + "start": 43655.9, + "end": 43656.92, + "probability": 0.5827 + }, + { + "start": 43657.64, + "end": 43661.52, + "probability": 0.9748 + }, + { + "start": 43662.56, + "end": 43665.28, + "probability": 0.7038 + }, + { + "start": 43666.72, + "end": 43667.76, + "probability": 0.8103 + }, + { + "start": 43668.64, + "end": 43670.08, + "probability": 0.9937 + }, + { + "start": 43671.0, + "end": 43673.34, + "probability": 0.8069 + }, + { + "start": 43674.54, + "end": 43678.06, + "probability": 0.7891 + }, + { + "start": 43679.6, + "end": 43680.58, + "probability": 0.9232 + }, + { + "start": 43681.42, + "end": 43684.28, + "probability": 0.9921 + }, + { + "start": 43687.12, + "end": 43687.88, + "probability": 0.8662 + }, + { + "start": 43690.44, + "end": 43693.6, + "probability": 0.9946 + }, + { + "start": 43694.78, + "end": 43698.7, + "probability": 0.994 + }, + { + "start": 43698.7, + "end": 43702.26, + "probability": 0.9891 + }, + { + "start": 43703.68, + "end": 43706.72, + "probability": 0.7748 + }, + { + "start": 43706.82, + "end": 43710.91, + "probability": 0.9091 + }, + { + "start": 43712.3, + "end": 43714.76, + "probability": 0.9775 + }, + { + "start": 43717.22, + "end": 43718.7, + "probability": 0.9884 + }, + { + "start": 43719.28, + "end": 43721.78, + "probability": 0.9209 + }, + { + "start": 43722.96, + "end": 43724.0, + "probability": 0.8541 + }, + { + "start": 43724.96, + "end": 43726.34, + "probability": 0.9032 + }, + { + "start": 43727.84, + "end": 43729.44, + "probability": 0.9691 + }, + { + "start": 43731.9, + "end": 43733.52, + "probability": 0.3435 + }, + { + "start": 43733.56, + "end": 43735.98, + "probability": 0.5739 + }, + { + "start": 43737.02, + "end": 43739.18, + "probability": 0.8193 + }, + { + "start": 43739.24, + "end": 43739.9, + "probability": 0.5559 + }, + { + "start": 43739.98, + "end": 43742.68, + "probability": 0.9819 + }, + { + "start": 43743.88, + "end": 43744.72, + "probability": 0.4949 + }, + { + "start": 43744.82, + "end": 43745.18, + "probability": 0.4486 + }, + { + "start": 43745.34, + "end": 43746.02, + "probability": 0.7251 + }, + { + "start": 43746.14, + "end": 43747.22, + "probability": 0.8272 + }, + { + "start": 43748.46, + "end": 43750.98, + "probability": 0.7476 + }, + { + "start": 43752.52, + "end": 43752.72, + "probability": 0.4812 + }, + { + "start": 43752.72, + "end": 43753.58, + "probability": 0.7901 + }, + { + "start": 43753.8, + "end": 43757.8, + "probability": 0.6092 + }, + { + "start": 43757.9, + "end": 43758.85, + "probability": 0.7979 + }, + { + "start": 43759.7, + "end": 43762.73, + "probability": 0.9332 + }, + { + "start": 43764.52, + "end": 43768.08, + "probability": 0.9935 + }, + { + "start": 43768.66, + "end": 43769.34, + "probability": 0.4783 + }, + { + "start": 43770.48, + "end": 43771.88, + "probability": 0.7668 + }, + { + "start": 43772.52, + "end": 43773.82, + "probability": 0.9141 + }, + { + "start": 43775.5, + "end": 43779.98, + "probability": 0.3566 + }, + { + "start": 43781.7, + "end": 43783.24, + "probability": 0.976 + }, + { + "start": 43784.14, + "end": 43787.26, + "probability": 0.9663 + }, + { + "start": 43787.4, + "end": 43789.32, + "probability": 0.7945 + }, + { + "start": 43789.48, + "end": 43792.38, + "probability": 0.6775 + }, + { + "start": 43792.68, + "end": 43794.94, + "probability": 0.6753 + }, + { + "start": 43802.96, + "end": 43803.68, + "probability": 0.6315 + }, + { + "start": 43804.2, + "end": 43808.82, + "probability": 0.9922 + }, + { + "start": 43810.3, + "end": 43815.26, + "probability": 0.9757 + }, + { + "start": 43815.48, + "end": 43817.49, + "probability": 0.8401 + }, + { + "start": 43818.58, + "end": 43822.18, + "probability": 0.9769 + }, + { + "start": 43822.18, + "end": 43826.32, + "probability": 0.9974 + }, + { + "start": 43827.16, + "end": 43828.62, + "probability": 0.9635 + }, + { + "start": 43830.1, + "end": 43830.64, + "probability": 0.6622 + }, + { + "start": 43830.7, + "end": 43834.18, + "probability": 0.9888 + }, + { + "start": 43834.42, + "end": 43835.06, + "probability": 0.7839 + }, + { + "start": 43837.02, + "end": 43838.84, + "probability": 0.7622 + }, + { + "start": 43840.77, + "end": 43843.26, + "probability": 0.7385 + }, + { + "start": 43845.08, + "end": 43846.74, + "probability": 0.9735 + }, + { + "start": 43847.86, + "end": 43848.76, + "probability": 0.7756 + }, + { + "start": 43849.48, + "end": 43852.5, + "probability": 0.97 + }, + { + "start": 43853.38, + "end": 43859.7, + "probability": 0.6875 + }, + { + "start": 43860.82, + "end": 43863.38, + "probability": 0.9367 + }, + { + "start": 43864.42, + "end": 43865.86, + "probability": 0.9649 + }, + { + "start": 43866.46, + "end": 43868.15, + "probability": 0.9598 + }, + { + "start": 43869.78, + "end": 43872.76, + "probability": 0.9828 + }, + { + "start": 43874.22, + "end": 43876.52, + "probability": 0.9935 + }, + { + "start": 43877.64, + "end": 43879.02, + "probability": 0.6452 + }, + { + "start": 43882.42, + "end": 43884.18, + "probability": 0.9932 + }, + { + "start": 43884.98, + "end": 43886.92, + "probability": 0.7661 + }, + { + "start": 43887.08, + "end": 43888.32, + "probability": 0.9927 + }, + { + "start": 43890.72, + "end": 43893.1, + "probability": 0.9136 + }, + { + "start": 43894.2, + "end": 43896.94, + "probability": 0.6461 + }, + { + "start": 43897.04, + "end": 43897.84, + "probability": 0.6638 + }, + { + "start": 43899.44, + "end": 43900.93, + "probability": 0.8643 + }, + { + "start": 43901.0, + "end": 43901.34, + "probability": 0.6077 + }, + { + "start": 43902.02, + "end": 43902.8, + "probability": 0.6879 + }, + { + "start": 43903.84, + "end": 43905.83, + "probability": 0.8599 + }, + { + "start": 43908.86, + "end": 43913.76, + "probability": 0.7485 + }, + { + "start": 43914.68, + "end": 43917.6, + "probability": 0.993 + }, + { + "start": 43917.86, + "end": 43918.34, + "probability": 0.4792 + }, + { + "start": 43918.5, + "end": 43919.28, + "probability": 0.5741 + }, + { + "start": 43920.42, + "end": 43922.56, + "probability": 0.9819 + }, + { + "start": 43923.9, + "end": 43925.64, + "probability": 0.9963 + }, + { + "start": 43925.84, + "end": 43927.82, + "probability": 0.4257 + }, + { + "start": 43928.9, + "end": 43930.78, + "probability": 0.9331 + }, + { + "start": 43930.96, + "end": 43931.68, + "probability": 0.5211 + }, + { + "start": 43931.8, + "end": 43932.96, + "probability": 0.8626 + }, + { + "start": 43934.52, + "end": 43938.38, + "probability": 0.9495 + }, + { + "start": 43939.16, + "end": 43940.64, + "probability": 0.9956 + }, + { + "start": 43941.9, + "end": 43943.08, + "probability": 0.8149 + }, + { + "start": 43943.66, + "end": 43944.34, + "probability": 0.9422 + }, + { + "start": 43944.8, + "end": 43945.26, + "probability": 0.9043 + }, + { + "start": 43947.82, + "end": 43949.26, + "probability": 0.7652 + }, + { + "start": 43951.0, + "end": 43952.34, + "probability": 0.6316 + }, + { + "start": 43952.82, + "end": 43953.32, + "probability": 0.4574 + }, + { + "start": 43955.14, + "end": 43956.16, + "probability": 0.9128 + }, + { + "start": 43956.92, + "end": 43960.56, + "probability": 0.9971 + }, + { + "start": 43961.28, + "end": 43962.98, + "probability": 0.9567 + }, + { + "start": 43963.86, + "end": 43967.08, + "probability": 0.9964 + }, + { + "start": 43968.12, + "end": 43969.8, + "probability": 0.8359 + }, + { + "start": 43970.7, + "end": 43974.64, + "probability": 0.9495 + }, + { + "start": 43975.22, + "end": 43977.76, + "probability": 0.981 + }, + { + "start": 43980.06, + "end": 43982.44, + "probability": 0.6344 + }, + { + "start": 43983.06, + "end": 43985.24, + "probability": 0.8901 + }, + { + "start": 43985.28, + "end": 43985.7, + "probability": 0.7727 + }, + { + "start": 43985.9, + "end": 43988.78, + "probability": 0.9565 + }, + { + "start": 43988.84, + "end": 43992.82, + "probability": 0.9941 + }, + { + "start": 43993.48, + "end": 43995.62, + "probability": 0.9966 + }, + { + "start": 43996.2, + "end": 43999.04, + "probability": 0.9501 + }, + { + "start": 43999.18, + "end": 44001.91, + "probability": 0.9899 + }, + { + "start": 44002.78, + "end": 44007.46, + "probability": 0.9992 + }, + { + "start": 44008.14, + "end": 44008.85, + "probability": 0.8044 + }, + { + "start": 44009.9, + "end": 44013.22, + "probability": 0.9285 + }, + { + "start": 44013.74, + "end": 44017.52, + "probability": 0.9474 + }, + { + "start": 44018.38, + "end": 44020.88, + "probability": 0.836 + }, + { + "start": 44021.54, + "end": 44022.66, + "probability": 0.9161 + }, + { + "start": 44023.48, + "end": 44026.0, + "probability": 0.921 + }, + { + "start": 44027.22, + "end": 44028.68, + "probability": 0.5935 + }, + { + "start": 44030.96, + "end": 44034.64, + "probability": 0.9771 + }, + { + "start": 44035.86, + "end": 44039.84, + "probability": 0.9966 + }, + { + "start": 44040.38, + "end": 44040.74, + "probability": 0.759 + }, + { + "start": 44042.46, + "end": 44043.72, + "probability": 0.9975 + }, + { + "start": 44043.78, + "end": 44045.48, + "probability": 0.6708 + }, + { + "start": 44045.94, + "end": 44046.62, + "probability": 0.9209 + }, + { + "start": 44046.68, + "end": 44048.46, + "probability": 0.8714 + }, + { + "start": 44049.38, + "end": 44049.94, + "probability": 0.5442 + }, + { + "start": 44050.08, + "end": 44050.44, + "probability": 0.3316 + }, + { + "start": 44050.48, + "end": 44053.12, + "probability": 0.9858 + }, + { + "start": 44053.88, + "end": 44056.64, + "probability": 0.9937 + }, + { + "start": 44056.7, + "end": 44057.32, + "probability": 0.7632 + }, + { + "start": 44057.5, + "end": 44058.16, + "probability": 0.7723 + }, + { + "start": 44058.94, + "end": 44059.92, + "probability": 0.929 + }, + { + "start": 44060.24, + "end": 44061.66, + "probability": 0.9966 + }, + { + "start": 44062.78, + "end": 44065.24, + "probability": 0.9071 + }, + { + "start": 44065.84, + "end": 44067.6, + "probability": 0.8608 + }, + { + "start": 44067.66, + "end": 44068.27, + "probability": 0.9867 + }, + { + "start": 44069.6, + "end": 44073.42, + "probability": 0.9888 + }, + { + "start": 44073.88, + "end": 44078.58, + "probability": 0.9114 + }, + { + "start": 44079.02, + "end": 44083.72, + "probability": 0.9395 + }, + { + "start": 44085.36, + "end": 44087.58, + "probability": 0.8215 + }, + { + "start": 44088.16, + "end": 44091.72, + "probability": 0.8804 + }, + { + "start": 44092.34, + "end": 44093.84, + "probability": 0.9917 + }, + { + "start": 44094.6, + "end": 44099.08, + "probability": 0.9934 + }, + { + "start": 44099.68, + "end": 44103.78, + "probability": 0.8578 + }, + { + "start": 44105.36, + "end": 44107.14, + "probability": 0.9884 + }, + { + "start": 44108.0, + "end": 44113.54, + "probability": 0.9942 + }, + { + "start": 44114.0, + "end": 44118.0, + "probability": 0.915 + }, + { + "start": 44118.04, + "end": 44118.94, + "probability": 0.5668 + }, + { + "start": 44119.06, + "end": 44123.44, + "probability": 0.9121 + }, + { + "start": 44125.4, + "end": 44128.84, + "probability": 0.9424 + }, + { + "start": 44129.14, + "end": 44135.0, + "probability": 0.9165 + }, + { + "start": 44135.04, + "end": 44135.68, + "probability": 0.8071 + }, + { + "start": 44136.7, + "end": 44137.85, + "probability": 0.8608 + }, + { + "start": 44139.08, + "end": 44139.92, + "probability": 0.8665 + }, + { + "start": 44140.7, + "end": 44141.66, + "probability": 0.7275 + }, + { + "start": 44142.36, + "end": 44142.68, + "probability": 0.651 + }, + { + "start": 44143.8, + "end": 44146.46, + "probability": 0.9872 + }, + { + "start": 44147.02, + "end": 44151.1, + "probability": 0.981 + }, + { + "start": 44152.38, + "end": 44156.82, + "probability": 0.9868 + }, + { + "start": 44157.12, + "end": 44160.6, + "probability": 0.6994 + }, + { + "start": 44161.14, + "end": 44164.44, + "probability": 0.7715 + }, + { + "start": 44166.54, + "end": 44167.15, + "probability": 0.9869 + }, + { + "start": 44168.06, + "end": 44168.52, + "probability": 0.8631 + }, + { + "start": 44168.66, + "end": 44172.28, + "probability": 0.8945 + }, + { + "start": 44172.9, + "end": 44173.7, + "probability": 0.7515 + }, + { + "start": 44174.4, + "end": 44177.16, + "probability": 0.9932 + }, + { + "start": 44178.54, + "end": 44179.44, + "probability": 0.7727 + }, + { + "start": 44179.48, + "end": 44181.16, + "probability": 0.9861 + }, + { + "start": 44181.24, + "end": 44182.3, + "probability": 0.9375 + }, + { + "start": 44183.7, + "end": 44187.94, + "probability": 0.8326 + }, + { + "start": 44188.58, + "end": 44189.88, + "probability": 0.355 + }, + { + "start": 44190.52, + "end": 44191.14, + "probability": 0.9135 + }, + { + "start": 44191.54, + "end": 44192.76, + "probability": 0.9867 + }, + { + "start": 44192.84, + "end": 44196.16, + "probability": 0.9912 + }, + { + "start": 44196.82, + "end": 44200.66, + "probability": 0.9951 + }, + { + "start": 44201.28, + "end": 44204.98, + "probability": 0.96 + }, + { + "start": 44206.0, + "end": 44208.38, + "probability": 0.9839 + }, + { + "start": 44208.38, + "end": 44211.04, + "probability": 0.8354 + }, + { + "start": 44212.08, + "end": 44213.44, + "probability": 0.9907 + }, + { + "start": 44214.7, + "end": 44215.28, + "probability": 0.5882 + }, + { + "start": 44216.2, + "end": 44219.7, + "probability": 0.9849 + }, + { + "start": 44221.26, + "end": 44222.28, + "probability": 0.776 + }, + { + "start": 44222.34, + "end": 44224.42, + "probability": 0.9936 + }, + { + "start": 44225.46, + "end": 44229.94, + "probability": 0.9588 + }, + { + "start": 44230.48, + "end": 44233.44, + "probability": 0.8224 + }, + { + "start": 44234.86, + "end": 44235.76, + "probability": 0.9649 + }, + { + "start": 44236.5, + "end": 44239.56, + "probability": 0.9854 + }, + { + "start": 44240.88, + "end": 44242.9, + "probability": 0.9828 + }, + { + "start": 44244.14, + "end": 44245.0, + "probability": 0.9167 + }, + { + "start": 44245.38, + "end": 44248.16, + "probability": 0.9753 + }, + { + "start": 44249.18, + "end": 44249.8, + "probability": 0.2023 + }, + { + "start": 44249.86, + "end": 44252.94, + "probability": 0.9512 + }, + { + "start": 44253.76, + "end": 44255.82, + "probability": 0.8195 + }, + { + "start": 44256.52, + "end": 44257.78, + "probability": 0.8309 + }, + { + "start": 44258.66, + "end": 44261.44, + "probability": 0.8611 + }, + { + "start": 44262.2, + "end": 44264.5, + "probability": 0.9847 + }, + { + "start": 44265.62, + "end": 44267.28, + "probability": 0.9803 + }, + { + "start": 44267.94, + "end": 44272.04, + "probability": 0.988 + }, + { + "start": 44272.7, + "end": 44273.48, + "probability": 0.4982 + }, + { + "start": 44274.4, + "end": 44277.18, + "probability": 0.9886 + }, + { + "start": 44277.18, + "end": 44281.18, + "probability": 0.7964 + }, + { + "start": 44281.42, + "end": 44283.98, + "probability": 0.7344 + }, + { + "start": 44284.26, + "end": 44286.78, + "probability": 0.9807 + }, + { + "start": 44286.84, + "end": 44288.96, + "probability": 0.9983 + }, + { + "start": 44289.74, + "end": 44291.76, + "probability": 0.8466 + }, + { + "start": 44292.7, + "end": 44295.78, + "probability": 0.8064 + }, + { + "start": 44297.52, + "end": 44300.48, + "probability": 0.9971 + }, + { + "start": 44300.52, + "end": 44301.34, + "probability": 0.9539 + }, + { + "start": 44302.18, + "end": 44304.36, + "probability": 0.9815 + }, + { + "start": 44305.36, + "end": 44306.86, + "probability": 0.87 + }, + { + "start": 44307.64, + "end": 44309.6, + "probability": 0.9336 + }, + { + "start": 44311.04, + "end": 44314.36, + "probability": 0.9056 + }, + { + "start": 44317.44, + "end": 44319.08, + "probability": 0.9636 + }, + { + "start": 44319.68, + "end": 44320.04, + "probability": 0.0572 + }, + { + "start": 44320.6, + "end": 44323.44, + "probability": 0.9391 + }, + { + "start": 44328.3, + "end": 44332.36, + "probability": 0.9924 + }, + { + "start": 44333.26, + "end": 44337.2, + "probability": 0.9985 + }, + { + "start": 44337.84, + "end": 44338.76, + "probability": 0.9755 + }, + { + "start": 44339.14, + "end": 44339.88, + "probability": 0.8393 + }, + { + "start": 44340.18, + "end": 44341.56, + "probability": 0.9976 + }, + { + "start": 44343.4, + "end": 44347.86, + "probability": 0.9983 + }, + { + "start": 44347.96, + "end": 44351.42, + "probability": 0.9762 + }, + { + "start": 44351.82, + "end": 44352.78, + "probability": 0.9907 + }, + { + "start": 44352.88, + "end": 44353.62, + "probability": 0.7776 + }, + { + "start": 44354.84, + "end": 44358.58, + "probability": 0.9907 + }, + { + "start": 44359.6, + "end": 44362.92, + "probability": 0.8848 + }, + { + "start": 44363.88, + "end": 44367.12, + "probability": 0.9849 + }, + { + "start": 44368.42, + "end": 44370.52, + "probability": 0.8857 + }, + { + "start": 44370.86, + "end": 44373.82, + "probability": 0.9929 + }, + { + "start": 44376.76, + "end": 44381.18, + "probability": 0.9629 + }, + { + "start": 44384.32, + "end": 44385.94, + "probability": 0.9978 + }, + { + "start": 44386.04, + "end": 44387.02, + "probability": 0.8365 + }, + { + "start": 44387.76, + "end": 44388.62, + "probability": 0.8944 + }, + { + "start": 44389.16, + "end": 44391.4, + "probability": 0.9501 + }, + { + "start": 44391.46, + "end": 44393.08, + "probability": 0.6811 + }, + { + "start": 44393.3, + "end": 44394.9, + "probability": 0.9118 + }, + { + "start": 44395.3, + "end": 44396.52, + "probability": 0.9796 + }, + { + "start": 44397.0, + "end": 44398.7, + "probability": 0.6796 + }, + { + "start": 44398.88, + "end": 44399.68, + "probability": 0.8328 + }, + { + "start": 44400.12, + "end": 44401.12, + "probability": 0.9162 + }, + { + "start": 44401.44, + "end": 44403.9, + "probability": 0.9705 + }, + { + "start": 44404.78, + "end": 44405.32, + "probability": 0.9599 + }, + { + "start": 44407.22, + "end": 44407.8, + "probability": 0.8086 + }, + { + "start": 44408.04, + "end": 44408.38, + "probability": 0.5881 + }, + { + "start": 44408.44, + "end": 44410.78, + "probability": 0.9619 + }, + { + "start": 44411.6, + "end": 44412.6, + "probability": 0.5088 + }, + { + "start": 44413.66, + "end": 44414.8, + "probability": 0.8242 + }, + { + "start": 44415.26, + "end": 44415.96, + "probability": 0.8525 + }, + { + "start": 44416.02, + "end": 44417.48, + "probability": 0.8276 + }, + { + "start": 44417.52, + "end": 44420.42, + "probability": 0.9904 + }, + { + "start": 44422.3, + "end": 44424.68, + "probability": 0.9351 + }, + { + "start": 44426.7, + "end": 44431.78, + "probability": 0.9807 + }, + { + "start": 44431.86, + "end": 44435.36, + "probability": 0.9966 + }, + { + "start": 44435.86, + "end": 44441.24, + "probability": 0.7379 + }, + { + "start": 44441.24, + "end": 44444.8, + "probability": 0.6194 + }, + { + "start": 44445.82, + "end": 44448.34, + "probability": 0.9452 + }, + { + "start": 44450.8, + "end": 44451.32, + "probability": 0.8876 + }, + { + "start": 44452.4, + "end": 44454.56, + "probability": 0.9741 + }, + { + "start": 44455.02, + "end": 44456.86, + "probability": 0.9902 + }, + { + "start": 44457.34, + "end": 44457.8, + "probability": 0.7626 + }, + { + "start": 44458.74, + "end": 44460.42, + "probability": 0.9845 + }, + { + "start": 44460.86, + "end": 44465.7, + "probability": 0.8968 + }, + { + "start": 44467.34, + "end": 44467.96, + "probability": 0.999 + }, + { + "start": 44471.68, + "end": 44472.36, + "probability": 0.503 + }, + { + "start": 44472.46, + "end": 44474.22, + "probability": 0.8509 + }, + { + "start": 44474.42, + "end": 44477.0, + "probability": 0.8853 + }, + { + "start": 44477.72, + "end": 44480.12, + "probability": 0.9387 + }, + { + "start": 44480.68, + "end": 44480.96, + "probability": 0.8478 + }, + { + "start": 44480.98, + "end": 44482.0, + "probability": 0.9528 + }, + { + "start": 44482.62, + "end": 44484.02, + "probability": 0.9141 + }, + { + "start": 44485.48, + "end": 44486.36, + "probability": 0.5948 + }, + { + "start": 44489.4, + "end": 44492.18, + "probability": 0.9165 + }, + { + "start": 44492.18, + "end": 44495.44, + "probability": 0.943 + }, + { + "start": 44495.62, + "end": 44498.8, + "probability": 0.9971 + }, + { + "start": 44499.0, + "end": 44499.46, + "probability": 0.5242 + }, + { + "start": 44499.48, + "end": 44500.88, + "probability": 0.6423 + }, + { + "start": 44501.54, + "end": 44502.14, + "probability": 0.7548 + }, + { + "start": 44506.36, + "end": 44509.12, + "probability": 0.9429 + }, + { + "start": 44509.86, + "end": 44510.96, + "probability": 0.8674 + }, + { + "start": 44511.72, + "end": 44513.96, + "probability": 0.9933 + }, + { + "start": 44514.5, + "end": 44517.92, + "probability": 0.9631 + }, + { + "start": 44519.0, + "end": 44521.88, + "probability": 0.9696 + }, + { + "start": 44522.0, + "end": 44524.04, + "probability": 0.9941 + }, + { + "start": 44524.64, + "end": 44526.42, + "probability": 0.7003 + }, + { + "start": 44526.86, + "end": 44529.2, + "probability": 0.972 + }, + { + "start": 44529.34, + "end": 44533.08, + "probability": 0.9752 + }, + { + "start": 44534.8, + "end": 44537.64, + "probability": 0.9937 + }, + { + "start": 44537.74, + "end": 44538.58, + "probability": 0.9232 + }, + { + "start": 44538.84, + "end": 44539.48, + "probability": 0.6667 + }, + { + "start": 44544.9, + "end": 44548.68, + "probability": 0.9949 + }, + { + "start": 44548.74, + "end": 44549.98, + "probability": 0.963 + }, + { + "start": 44550.74, + "end": 44552.16, + "probability": 0.8419 + }, + { + "start": 44554.06, + "end": 44556.38, + "probability": 0.9961 + }, + { + "start": 44557.18, + "end": 44557.67, + "probability": 0.8188 + }, + { + "start": 44558.78, + "end": 44563.37, + "probability": 0.9697 + }, + { + "start": 44565.1, + "end": 44566.46, + "probability": 0.6943 + }, + { + "start": 44567.22, + "end": 44571.56, + "probability": 0.998 + }, + { + "start": 44574.56, + "end": 44576.98, + "probability": 0.9966 + }, + { + "start": 44578.36, + "end": 44582.3, + "probability": 0.9959 + }, + { + "start": 44582.66, + "end": 44583.64, + "probability": 0.9703 + }, + { + "start": 44584.78, + "end": 44586.16, + "probability": 0.5429 + }, + { + "start": 44586.9, + "end": 44590.31, + "probability": 0.9523 + }, + { + "start": 44591.0, + "end": 44593.63, + "probability": 0.959 + }, + { + "start": 44594.32, + "end": 44594.56, + "probability": 0.4509 + }, + { + "start": 44594.68, + "end": 44597.12, + "probability": 0.9757 + }, + { + "start": 44599.56, + "end": 44601.26, + "probability": 0.4984 + }, + { + "start": 44601.26, + "end": 44602.14, + "probability": 0.1826 + }, + { + "start": 44602.94, + "end": 44606.12, + "probability": 0.9614 + }, + { + "start": 44607.42, + "end": 44608.47, + "probability": 0.9751 + }, + { + "start": 44611.64, + "end": 44613.93, + "probability": 0.9177 + }, + { + "start": 44615.28, + "end": 44617.18, + "probability": 0.9958 + }, + { + "start": 44617.62, + "end": 44620.2, + "probability": 0.9979 + }, + { + "start": 44620.98, + "end": 44622.88, + "probability": 0.7035 + }, + { + "start": 44623.56, + "end": 44625.1, + "probability": 0.8484 + }, + { + "start": 44625.82, + "end": 44626.94, + "probability": 0.9022 + }, + { + "start": 44627.68, + "end": 44628.84, + "probability": 0.9575 + }, + { + "start": 44629.08, + "end": 44630.5, + "probability": 0.9771 + }, + { + "start": 44630.54, + "end": 44634.04, + "probability": 0.9791 + }, + { + "start": 44634.04, + "end": 44636.06, + "probability": 0.9557 + }, + { + "start": 44637.36, + "end": 44639.18, + "probability": 0.9819 + }, + { + "start": 44640.24, + "end": 44641.42, + "probability": 0.9875 + }, + { + "start": 44642.48, + "end": 44644.52, + "probability": 0.8491 + }, + { + "start": 44645.2, + "end": 44652.06, + "probability": 0.9991 + }, + { + "start": 44652.62, + "end": 44655.54, + "probability": 0.9441 + }, + { + "start": 44655.94, + "end": 44657.16, + "probability": 0.6009 + }, + { + "start": 44657.84, + "end": 44660.5, + "probability": 0.9187 + }, + { + "start": 44661.04, + "end": 44663.6, + "probability": 0.9707 + }, + { + "start": 44665.74, + "end": 44667.48, + "probability": 0.8141 + }, + { + "start": 44673.0, + "end": 44673.82, + "probability": 0.5714 + }, + { + "start": 44674.6, + "end": 44677.24, + "probability": 0.7894 + }, + { + "start": 44678.46, + "end": 44683.28, + "probability": 0.9731 + }, + { + "start": 44683.34, + "end": 44687.12, + "probability": 0.9953 + }, + { + "start": 44687.8, + "end": 44693.08, + "probability": 0.9879 + }, + { + "start": 44697.86, + "end": 44699.84, + "probability": 0.8479 + }, + { + "start": 44701.48, + "end": 44704.52, + "probability": 0.4517 + }, + { + "start": 44705.82, + "end": 44706.52, + "probability": 0.5195 + }, + { + "start": 44706.52, + "end": 44707.54, + "probability": 0.5253 + }, + { + "start": 44707.84, + "end": 44709.09, + "probability": 0.9155 + }, + { + "start": 44709.28, + "end": 44714.72, + "probability": 0.5598 + }, + { + "start": 44714.76, + "end": 44714.86, + "probability": 0.6361 + }, + { + "start": 44716.14, + "end": 44719.44, + "probability": 0.7236 + }, + { + "start": 44720.86, + "end": 44722.08, + "probability": 0.792 + }, + { + "start": 44722.82, + "end": 44723.02, + "probability": 0.4246 + }, + { + "start": 44723.12, + "end": 44723.42, + "probability": 0.544 + }, + { + "start": 44723.44, + "end": 44725.76, + "probability": 0.662 + }, + { + "start": 44725.78, + "end": 44725.92, + "probability": 0.447 + }, + { + "start": 44725.92, + "end": 44730.72, + "probability": 0.9988 + }, + { + "start": 44731.38, + "end": 44736.04, + "probability": 0.9871 + }, + { + "start": 44737.24, + "end": 44740.32, + "probability": 0.9927 + }, + { + "start": 44741.06, + "end": 44742.76, + "probability": 0.9963 + }, + { + "start": 44743.32, + "end": 44747.6, + "probability": 0.9625 + }, + { + "start": 44748.52, + "end": 44751.12, + "probability": 0.968 + }, + { + "start": 44752.22, + "end": 44755.62, + "probability": 0.8143 + }, + { + "start": 44756.12, + "end": 44758.12, + "probability": 0.7402 + }, + { + "start": 44759.12, + "end": 44761.78, + "probability": 0.9006 + }, + { + "start": 44762.3, + "end": 44764.72, + "probability": 0.3932 + }, + { + "start": 44765.8, + "end": 44767.56, + "probability": 0.7771 + }, + { + "start": 44768.32, + "end": 44771.7, + "probability": 0.9329 + }, + { + "start": 44772.32, + "end": 44776.35, + "probability": 0.9737 + }, + { + "start": 44777.38, + "end": 44778.32, + "probability": 0.6864 + }, + { + "start": 44778.98, + "end": 44782.34, + "probability": 0.9883 + }, + { + "start": 44783.6, + "end": 44784.78, + "probability": 0.9733 + }, + { + "start": 44785.2, + "end": 44789.12, + "probability": 0.9647 + }, + { + "start": 44790.32, + "end": 44791.64, + "probability": 0.5236 + }, + { + "start": 44792.58, + "end": 44798.28, + "probability": 0.9848 + }, + { + "start": 44799.24, + "end": 44801.58, + "probability": 0.9904 + }, + { + "start": 44801.72, + "end": 44804.56, + "probability": 0.979 + }, + { + "start": 44805.16, + "end": 44805.88, + "probability": 0.6798 + }, + { + "start": 44806.22, + "end": 44806.6, + "probability": 0.8284 + }, + { + "start": 44806.8, + "end": 44807.4, + "probability": 0.9789 + }, + { + "start": 44807.64, + "end": 44808.1, + "probability": 0.9585 + }, + { + "start": 44808.12, + "end": 44808.76, + "probability": 0.899 + }, + { + "start": 44809.24, + "end": 44810.08, + "probability": 0.8654 + }, + { + "start": 44810.52, + "end": 44812.76, + "probability": 0.9818 + }, + { + "start": 44813.56, + "end": 44818.52, + "probability": 0.9149 + }, + { + "start": 44818.66, + "end": 44819.08, + "probability": 0.4742 + }, + { + "start": 44819.14, + "end": 44821.22, + "probability": 0.9772 + }, + { + "start": 44821.72, + "end": 44822.52, + "probability": 0.9475 + }, + { + "start": 44823.14, + "end": 44826.92, + "probability": 0.9717 + }, + { + "start": 44827.64, + "end": 44830.7, + "probability": 0.9839 + }, + { + "start": 44831.24, + "end": 44835.76, + "probability": 0.9515 + }, + { + "start": 44836.5, + "end": 44839.36, + "probability": 0.8677 + }, + { + "start": 44839.92, + "end": 44841.78, + "probability": 0.9915 + }, + { + "start": 44841.78, + "end": 44844.58, + "probability": 0.9964 + }, + { + "start": 44845.2, + "end": 44850.64, + "probability": 0.876 + }, + { + "start": 44852.48, + "end": 44853.4, + "probability": 0.6476 + }, + { + "start": 44858.26, + "end": 44861.8, + "probability": 0.9741 + }, + { + "start": 44861.88, + "end": 44862.78, + "probability": 0.9181 + }, + { + "start": 44863.58, + "end": 44864.12, + "probability": 0.8919 + }, + { + "start": 44864.28, + "end": 44867.12, + "probability": 0.9597 + }, + { + "start": 44867.16, + "end": 44869.24, + "probability": 0.9919 + }, + { + "start": 44870.32, + "end": 44871.8, + "probability": 0.5529 + }, + { + "start": 44871.98, + "end": 44871.98, + "probability": 0.0243 + }, + { + "start": 44871.98, + "end": 44872.62, + "probability": 0.1373 + }, + { + "start": 44872.86, + "end": 44874.34, + "probability": 0.4712 + }, + { + "start": 44874.7, + "end": 44876.24, + "probability": 0.7734 + }, + { + "start": 44876.3, + "end": 44876.54, + "probability": 0.7772 + }, + { + "start": 44876.54, + "end": 44876.9, + "probability": 0.961 + }, + { + "start": 44876.9, + "end": 44877.08, + "probability": 0.6003 + }, + { + "start": 44877.16, + "end": 44877.8, + "probability": 0.763 + }, + { + "start": 44879.52, + "end": 44881.96, + "probability": 0.9946 + }, + { + "start": 44881.98, + "end": 44883.34, + "probability": 0.9854 + }, + { + "start": 44883.4, + "end": 44884.7, + "probability": 0.9968 + }, + { + "start": 44885.04, + "end": 44886.44, + "probability": 0.9863 + }, + { + "start": 44887.32, + "end": 44891.8, + "probability": 0.975 + }, + { + "start": 44892.12, + "end": 44893.1, + "probability": 0.9878 + }, + { + "start": 44893.5, + "end": 44894.12, + "probability": 0.7427 + }, + { + "start": 44894.42, + "end": 44896.84, + "probability": 0.8223 + }, + { + "start": 44897.1, + "end": 44900.48, + "probability": 0.972 + }, + { + "start": 44901.08, + "end": 44902.26, + "probability": 0.8705 + }, + { + "start": 44902.94, + "end": 44906.42, + "probability": 0.9827 + }, + { + "start": 44908.1, + "end": 44911.0, + "probability": 0.9429 + }, + { + "start": 44911.06, + "end": 44911.92, + "probability": 0.8055 + }, + { + "start": 44912.64, + "end": 44912.66, + "probability": 0.0446 + }, + { + "start": 44912.66, + "end": 44914.9, + "probability": 0.6388 + }, + { + "start": 44915.18, + "end": 44915.74, + "probability": 0.3945 + }, + { + "start": 44915.74, + "end": 44916.16, + "probability": 0.5538 + }, + { + "start": 44916.64, + "end": 44919.6, + "probability": 0.6997 + }, + { + "start": 44920.18, + "end": 44922.6, + "probability": 0.974 + }, + { + "start": 44922.92, + "end": 44923.16, + "probability": 0.4347 + }, + { + "start": 44923.24, + "end": 44923.82, + "probability": 0.6017 + }, + { + "start": 44926.28, + "end": 44928.84, + "probability": 0.9946 + }, + { + "start": 44929.72, + "end": 44930.32, + "probability": 0.4503 + }, + { + "start": 44930.98, + "end": 44933.44, + "probability": 0.9099 + }, + { + "start": 44934.28, + "end": 44935.78, + "probability": 0.5866 + }, + { + "start": 44935.86, + "end": 44936.64, + "probability": 0.7428 + }, + { + "start": 44936.68, + "end": 44937.38, + "probability": 0.957 + }, + { + "start": 44938.12, + "end": 44941.51, + "probability": 0.9594 + }, + { + "start": 44942.46, + "end": 44942.52, + "probability": 0.0125 + }, + { + "start": 44942.52, + "end": 44945.94, + "probability": 0.7608 + }, + { + "start": 44946.88, + "end": 44947.94, + "probability": 0.5421 + }, + { + "start": 44948.71, + "end": 44950.51, + "probability": 0.9224 + }, + { + "start": 44951.06, + "end": 44956.71, + "probability": 0.9679 + }, + { + "start": 44957.3, + "end": 44958.48, + "probability": 0.8777 + }, + { + "start": 44958.78, + "end": 44960.96, + "probability": 0.9938 + }, + { + "start": 44961.16, + "end": 44962.01, + "probability": 0.9778 + }, + { + "start": 44962.64, + "end": 44965.48, + "probability": 0.8887 + }, + { + "start": 44966.08, + "end": 44967.38, + "probability": 0.7338 + }, + { + "start": 44968.04, + "end": 44968.1, + "probability": 0.4609 + }, + { + "start": 44968.12, + "end": 44971.4, + "probability": 0.6503 + }, + { + "start": 44972.92, + "end": 44972.92, + "probability": 0.1983 + }, + { + "start": 44972.94, + "end": 44973.22, + "probability": 0.3095 + }, + { + "start": 44973.3, + "end": 44973.42, + "probability": 0.5673 + }, + { + "start": 44973.6, + "end": 44976.92, + "probability": 0.914 + }, + { + "start": 44977.7, + "end": 44980.64, + "probability": 0.9082 + }, + { + "start": 44981.34, + "end": 44982.28, + "probability": 0.9153 + }, + { + "start": 44983.7, + "end": 44987.54, + "probability": 0.9233 + }, + { + "start": 44988.32, + "end": 44991.48, + "probability": 0.9122 + }, + { + "start": 44991.48, + "end": 44994.46, + "probability": 0.9973 + }, + { + "start": 44994.94, + "end": 44996.82, + "probability": 0.9559 + }, + { + "start": 44997.18, + "end": 45001.1, + "probability": 0.978 + }, + { + "start": 45001.38, + "end": 45003.25, + "probability": 0.9429 + }, + { + "start": 45003.82, + "end": 45004.87, + "probability": 0.9971 + }, + { + "start": 45005.24, + "end": 45007.86, + "probability": 0.9946 + }, + { + "start": 45008.4, + "end": 45011.86, + "probability": 0.9849 + }, + { + "start": 45012.26, + "end": 45015.28, + "probability": 0.9845 + }, + { + "start": 45016.98, + "end": 45021.76, + "probability": 0.8746 + }, + { + "start": 45022.12, + "end": 45023.44, + "probability": 0.5146 + }, + { + "start": 45023.54, + "end": 45024.34, + "probability": 0.9445 + }, + { + "start": 45024.82, + "end": 45027.04, + "probability": 0.8583 + }, + { + "start": 45027.48, + "end": 45028.64, + "probability": 0.9657 + }, + { + "start": 45028.7, + "end": 45029.72, + "probability": 0.8167 + }, + { + "start": 45030.1, + "end": 45031.0, + "probability": 0.8223 + }, + { + "start": 45031.28, + "end": 45034.98, + "probability": 0.9634 + }, + { + "start": 45035.42, + "end": 45038.68, + "probability": 0.9856 + }, + { + "start": 45039.02, + "end": 45041.76, + "probability": 0.9972 + }, + { + "start": 45042.46, + "end": 45044.58, + "probability": 0.9684 + }, + { + "start": 45045.1, + "end": 45046.84, + "probability": 0.9684 + }, + { + "start": 45047.34, + "end": 45048.44, + "probability": 0.7744 + }, + { + "start": 45048.92, + "end": 45050.42, + "probability": 0.7462 + }, + { + "start": 45050.86, + "end": 45052.24, + "probability": 0.9939 + }, + { + "start": 45052.48, + "end": 45054.44, + "probability": 0.96 + }, + { + "start": 45055.4, + "end": 45059.0, + "probability": 0.9907 + }, + { + "start": 45059.44, + "end": 45061.52, + "probability": 0.9644 + }, + { + "start": 45061.98, + "end": 45062.92, + "probability": 0.9951 + }, + { + "start": 45063.56, + "end": 45064.32, + "probability": 0.596 + }, + { + "start": 45064.4, + "end": 45065.22, + "probability": 0.7093 + }, + { + "start": 45065.78, + "end": 45066.26, + "probability": 0.8452 + }, + { + "start": 45066.7, + "end": 45070.8, + "probability": 0.9421 + }, + { + "start": 45071.32, + "end": 45073.0, + "probability": 0.8648 + }, + { + "start": 45073.54, + "end": 45073.92, + "probability": 0.5634 + }, + { + "start": 45074.38, + "end": 45075.2, + "probability": 0.9113 + }, + { + "start": 45075.2, + "end": 45076.46, + "probability": 0.9436 + }, + { + "start": 45076.88, + "end": 45078.7, + "probability": 0.9658 + }, + { + "start": 45079.38, + "end": 45080.9, + "probability": 0.9779 + }, + { + "start": 45081.36, + "end": 45085.04, + "probability": 0.9966 + }, + { + "start": 45085.66, + "end": 45088.04, + "probability": 0.9899 + }, + { + "start": 45088.7, + "end": 45090.42, + "probability": 0.9443 + }, + { + "start": 45091.12, + "end": 45092.36, + "probability": 0.8352 + }, + { + "start": 45092.92, + "end": 45093.64, + "probability": 0.8451 + }, + { + "start": 45094.84, + "end": 45097.22, + "probability": 0.5 + }, + { + "start": 45097.5, + "end": 45097.7, + "probability": 0.8294 + }, + { + "start": 45097.84, + "end": 45098.02, + "probability": 0.2467 + }, + { + "start": 45098.18, + "end": 45098.62, + "probability": 0.4601 + }, + { + "start": 45098.7, + "end": 45103.24, + "probability": 0.9648 + }, + { + "start": 45103.8, + "end": 45104.76, + "probability": 0.8522 + }, + { + "start": 45105.14, + "end": 45109.42, + "probability": 0.844 + }, + { + "start": 45109.42, + "end": 45112.84, + "probability": 0.9984 + }, + { + "start": 45114.96, + "end": 45116.9, + "probability": 0.8813 + }, + { + "start": 45117.74, + "end": 45119.62, + "probability": 0.7227 + }, + { + "start": 45120.96, + "end": 45121.94, + "probability": 0.8635 + }, + { + "start": 45122.56, + "end": 45126.44, + "probability": 0.9929 + }, + { + "start": 45126.96, + "end": 45131.68, + "probability": 0.9793 + }, + { + "start": 45133.22, + "end": 45136.76, + "probability": 0.9862 + }, + { + "start": 45136.88, + "end": 45138.44, + "probability": 0.8135 + }, + { + "start": 45139.46, + "end": 45141.76, + "probability": 0.9617 + }, + { + "start": 45142.22, + "end": 45144.94, + "probability": 0.9778 + }, + { + "start": 45146.02, + "end": 45149.1, + "probability": 0.7702 + }, + { + "start": 45150.3, + "end": 45151.62, + "probability": 0.8512 + }, + { + "start": 45151.74, + "end": 45153.48, + "probability": 0.9612 + }, + { + "start": 45153.88, + "end": 45156.22, + "probability": 0.9467 + }, + { + "start": 45157.3, + "end": 45159.8, + "probability": 0.9707 + }, + { + "start": 45160.4, + "end": 45164.34, + "probability": 0.9473 + }, + { + "start": 45164.7, + "end": 45167.84, + "probability": 0.8753 + }, + { + "start": 45168.58, + "end": 45170.16, + "probability": 0.9163 + }, + { + "start": 45170.24, + "end": 45171.64, + "probability": 0.8796 + }, + { + "start": 45171.74, + "end": 45171.9, + "probability": 0.7998 + }, + { + "start": 45172.0, + "end": 45172.98, + "probability": 0.5185 + }, + { + "start": 45173.1, + "end": 45178.64, + "probability": 0.9923 + }, + { + "start": 45178.68, + "end": 45180.72, + "probability": 0.8137 + }, + { + "start": 45180.74, + "end": 45181.22, + "probability": 0.8353 + }, + { + "start": 45195.78, + "end": 45196.68, + "probability": 0.6541 + }, + { + "start": 45198.2, + "end": 45199.36, + "probability": 0.7673 + }, + { + "start": 45204.26, + "end": 45204.78, + "probability": 0.3325 + }, + { + "start": 45207.0, + "end": 45207.9, + "probability": 0.7669 + }, + { + "start": 45208.4, + "end": 45208.9, + "probability": 0.6707 + }, + { + "start": 45213.42, + "end": 45214.46, + "probability": 0.721 + }, + { + "start": 45215.84, + "end": 45217.08, + "probability": 0.8651 + }, + { + "start": 45219.38, + "end": 45220.64, + "probability": 0.9968 + }, + { + "start": 45223.14, + "end": 45225.48, + "probability": 0.9995 + }, + { + "start": 45226.94, + "end": 45228.82, + "probability": 0.9931 + }, + { + "start": 45232.58, + "end": 45232.88, + "probability": 0.5703 + }, + { + "start": 45234.42, + "end": 45235.58, + "probability": 0.9426 + }, + { + "start": 45239.22, + "end": 45240.4, + "probability": 0.7311 + }, + { + "start": 45243.02, + "end": 45244.18, + "probability": 0.7127 + }, + { + "start": 45244.74, + "end": 45245.88, + "probability": 0.9294 + }, + { + "start": 45247.84, + "end": 45250.74, + "probability": 0.9952 + }, + { + "start": 45252.76, + "end": 45254.7, + "probability": 0.7532 + }, + { + "start": 45255.56, + "end": 45256.96, + "probability": 0.8398 + }, + { + "start": 45258.9, + "end": 45259.34, + "probability": 0.7611 + }, + { + "start": 45260.48, + "end": 45261.22, + "probability": 0.8519 + }, + { + "start": 45264.14, + "end": 45264.84, + "probability": 0.9182 + }, + { + "start": 45265.84, + "end": 45266.46, + "probability": 0.7771 + }, + { + "start": 45271.54, + "end": 45272.71, + "probability": 0.9633 + }, + { + "start": 45275.12, + "end": 45276.31, + "probability": 0.5819 + }, + { + "start": 45278.38, + "end": 45279.8, + "probability": 0.9897 + }, + { + "start": 45281.5, + "end": 45283.44, + "probability": 0.3446 + }, + { + "start": 45284.48, + "end": 45286.28, + "probability": 0.9989 + }, + { + "start": 45287.14, + "end": 45288.5, + "probability": 0.9969 + }, + { + "start": 45289.38, + "end": 45292.12, + "probability": 0.94 + }, + { + "start": 45297.12, + "end": 45298.78, + "probability": 0.7444 + }, + { + "start": 45299.86, + "end": 45303.24, + "probability": 0.9659 + }, + { + "start": 45303.84, + "end": 45306.62, + "probability": 0.9885 + }, + { + "start": 45308.56, + "end": 45310.3, + "probability": 0.9229 + }, + { + "start": 45312.38, + "end": 45314.19, + "probability": 0.9236 + }, + { + "start": 45316.24, + "end": 45317.66, + "probability": 0.9965 + }, + { + "start": 45318.78, + "end": 45320.9, + "probability": 0.8107 + }, + { + "start": 45322.24, + "end": 45323.68, + "probability": 0.9218 + }, + { + "start": 45324.5, + "end": 45326.48, + "probability": 0.9836 + }, + { + "start": 45327.48, + "end": 45329.3, + "probability": 0.9526 + }, + { + "start": 45331.28, + "end": 45332.18, + "probability": 0.7091 + }, + { + "start": 45333.2, + "end": 45333.98, + "probability": 0.6327 + }, + { + "start": 45335.2, + "end": 45336.38, + "probability": 0.725 + }, + { + "start": 45336.98, + "end": 45338.02, + "probability": 0.9757 + }, + { + "start": 45339.14, + "end": 45343.0, + "probability": 0.8872 + }, + { + "start": 45343.98, + "end": 45345.08, + "probability": 0.9697 + }, + { + "start": 45345.78, + "end": 45347.3, + "probability": 0.9911 + }, + { + "start": 45348.08, + "end": 45349.78, + "probability": 0.9674 + }, + { + "start": 45350.38, + "end": 45353.02, + "probability": 0.7588 + }, + { + "start": 45353.76, + "end": 45354.8, + "probability": 0.6825 + }, + { + "start": 45355.44, + "end": 45356.52, + "probability": 0.9724 + }, + { + "start": 45359.92, + "end": 45360.88, + "probability": 0.8878 + }, + { + "start": 45362.96, + "end": 45364.66, + "probability": 0.9971 + }, + { + "start": 45365.98, + "end": 45368.44, + "probability": 0.9873 + }, + { + "start": 45369.28, + "end": 45370.76, + "probability": 0.6081 + }, + { + "start": 45371.44, + "end": 45375.34, + "probability": 0.9977 + }, + { + "start": 45378.7, + "end": 45380.54, + "probability": 0.9854 + }, + { + "start": 45382.02, + "end": 45386.42, + "probability": 0.9126 + }, + { + "start": 45387.5, + "end": 45389.46, + "probability": 0.9661 + }, + { + "start": 45390.5, + "end": 45395.12, + "probability": 0.988 + }, + { + "start": 45395.12, + "end": 45397.06, + "probability": 0.9933 + }, + { + "start": 45398.76, + "end": 45399.36, + "probability": 0.8067 + }, + { + "start": 45399.98, + "end": 45400.56, + "probability": 0.9197 + }, + { + "start": 45402.86, + "end": 45404.72, + "probability": 0.7769 + }, + { + "start": 45406.66, + "end": 45407.94, + "probability": 0.8269 + }, + { + "start": 45409.96, + "end": 45412.64, + "probability": 0.9937 + }, + { + "start": 45413.92, + "end": 45415.79, + "probability": 0.998 + }, + { + "start": 45416.84, + "end": 45418.82, + "probability": 0.9994 + }, + { + "start": 45420.52, + "end": 45423.62, + "probability": 0.9964 + }, + { + "start": 45423.74, + "end": 45424.74, + "probability": 0.8202 + }, + { + "start": 45425.76, + "end": 45432.06, + "probability": 0.7465 + }, + { + "start": 45433.36, + "end": 45436.02, + "probability": 0.9964 + }, + { + "start": 45437.08, + "end": 45441.66, + "probability": 0.9952 + }, + { + "start": 45441.66, + "end": 45443.96, + "probability": 0.9966 + }, + { + "start": 45444.86, + "end": 45447.02, + "probability": 0.97 + }, + { + "start": 45448.14, + "end": 45450.3, + "probability": 0.9914 + }, + { + "start": 45451.92, + "end": 45453.04, + "probability": 0.9907 + }, + { + "start": 45453.74, + "end": 45454.3, + "probability": 0.9261 + }, + { + "start": 45458.5, + "end": 45461.72, + "probability": 0.966 + }, + { + "start": 45463.08, + "end": 45469.52, + "probability": 0.9491 + }, + { + "start": 45471.98, + "end": 45473.28, + "probability": 0.6814 + }, + { + "start": 45474.44, + "end": 45477.52, + "probability": 0.9956 + }, + { + "start": 45478.58, + "end": 45479.78, + "probability": 0.9777 + }, + { + "start": 45480.8, + "end": 45481.48, + "probability": 0.6057 + }, + { + "start": 45482.64, + "end": 45484.68, + "probability": 0.8819 + }, + { + "start": 45485.58, + "end": 45487.14, + "probability": 0.6574 + }, + { + "start": 45488.02, + "end": 45489.38, + "probability": 0.9983 + }, + { + "start": 45490.8, + "end": 45493.16, + "probability": 0.9689 + }, + { + "start": 45494.76, + "end": 45496.45, + "probability": 0.9302 + }, + { + "start": 45497.54, + "end": 45498.12, + "probability": 0.8187 + }, + { + "start": 45499.06, + "end": 45501.4, + "probability": 0.9976 + }, + { + "start": 45502.46, + "end": 45503.56, + "probability": 0.9984 + }, + { + "start": 45504.68, + "end": 45505.88, + "probability": 0.541 + }, + { + "start": 45507.36, + "end": 45508.54, + "probability": 0.968 + }, + { + "start": 45508.84, + "end": 45509.56, + "probability": 0.8958 + }, + { + "start": 45510.06, + "end": 45510.68, + "probability": 0.9836 + }, + { + "start": 45511.52, + "end": 45514.06, + "probability": 0.9941 + }, + { + "start": 45515.8, + "end": 45516.77, + "probability": 0.9971 + }, + { + "start": 45517.76, + "end": 45519.23, + "probability": 0.0437 + }, + { + "start": 45520.44, + "end": 45522.9, + "probability": 0.9863 + }, + { + "start": 45524.6, + "end": 45526.06, + "probability": 0.9958 + }, + { + "start": 45527.4, + "end": 45528.16, + "probability": 0.708 + }, + { + "start": 45529.28, + "end": 45530.02, + "probability": 0.8366 + }, + { + "start": 45530.56, + "end": 45534.98, + "probability": 0.9938 + }, + { + "start": 45536.24, + "end": 45540.1, + "probability": 0.9881 + }, + { + "start": 45542.74, + "end": 45544.84, + "probability": 1.0 + }, + { + "start": 45544.92, + "end": 45546.98, + "probability": 0.999 + }, + { + "start": 45547.74, + "end": 45550.12, + "probability": 0.9963 + }, + { + "start": 45552.06, + "end": 45552.58, + "probability": 0.8843 + }, + { + "start": 45554.2, + "end": 45555.18, + "probability": 0.9869 + }, + { + "start": 45556.46, + "end": 45557.48, + "probability": 0.9616 + }, + { + "start": 45559.06, + "end": 45559.62, + "probability": 0.9902 + }, + { + "start": 45560.32, + "end": 45561.88, + "probability": 0.7621 + }, + { + "start": 45565.56, + "end": 45568.72, + "probability": 0.8838 + }, + { + "start": 45570.34, + "end": 45571.76, + "probability": 0.9014 + }, + { + "start": 45573.38, + "end": 45574.14, + "probability": 0.6797 + }, + { + "start": 45575.14, + "end": 45575.62, + "probability": 0.1994 + }, + { + "start": 45575.84, + "end": 45575.84, + "probability": 0.1017 + }, + { + "start": 45576.06, + "end": 45581.82, + "probability": 0.9956 + }, + { + "start": 45582.54, + "end": 45585.62, + "probability": 0.9976 + }, + { + "start": 45586.4, + "end": 45588.84, + "probability": 0.9948 + }, + { + "start": 45589.54, + "end": 45592.3, + "probability": 0.9985 + }, + { + "start": 45595.88, + "end": 45596.7, + "probability": 0.7874 + }, + { + "start": 45598.0, + "end": 45598.48, + "probability": 0.74 + }, + { + "start": 45600.74, + "end": 45601.4, + "probability": 0.8552 + }, + { + "start": 45605.82, + "end": 45608.64, + "probability": 0.9968 + }, + { + "start": 45610.5, + "end": 45611.34, + "probability": 0.0149 + }, + { + "start": 45612.84, + "end": 45614.6, + "probability": 0.908 + }, + { + "start": 45616.02, + "end": 45616.64, + "probability": 0.5942 + }, + { + "start": 45618.3, + "end": 45619.22, + "probability": 0.8161 + }, + { + "start": 45620.7, + "end": 45621.44, + "probability": 0.6538 + }, + { + "start": 45622.52, + "end": 45623.3, + "probability": 0.9764 + }, + { + "start": 45623.9, + "end": 45624.62, + "probability": 0.7514 + }, + { + "start": 45625.76, + "end": 45627.38, + "probability": 0.9791 + }, + { + "start": 45628.54, + "end": 45630.32, + "probability": 0.949 + }, + { + "start": 45631.1, + "end": 45631.68, + "probability": 0.7843 + }, + { + "start": 45632.5, + "end": 45635.06, + "probability": 0.9966 + }, + { + "start": 45635.98, + "end": 45636.18, + "probability": 0.1825 + }, + { + "start": 45636.18, + "end": 45637.94, + "probability": 0.9969 + }, + { + "start": 45637.98, + "end": 45638.8, + "probability": 0.9561 + }, + { + "start": 45640.52, + "end": 45642.36, + "probability": 0.9578 + }, + { + "start": 45643.42, + "end": 45644.7, + "probability": 0.98 + }, + { + "start": 45645.3, + "end": 45648.03, + "probability": 0.978 + }, + { + "start": 45660.82, + "end": 45661.74, + "probability": 0.9697 + }, + { + "start": 45662.46, + "end": 45662.66, + "probability": 0.0031 + }, + { + "start": 45662.66, + "end": 45662.66, + "probability": 0.3142 + }, + { + "start": 45662.66, + "end": 45662.66, + "probability": 0.7159 + }, + { + "start": 45662.66, + "end": 45663.9, + "probability": 0.0784 + }, + { + "start": 45666.3, + "end": 45669.46, + "probability": 0.9736 + }, + { + "start": 45671.18, + "end": 45673.92, + "probability": 0.9241 + }, + { + "start": 45676.76, + "end": 45677.72, + "probability": 0.0041 + }, + { + "start": 45680.2, + "end": 45680.88, + "probability": 0.0178 + }, + { + "start": 45681.46, + "end": 45681.62, + "probability": 0.0857 + }, + { + "start": 45681.62, + "end": 45682.12, + "probability": 0.1392 + }, + { + "start": 45682.44, + "end": 45683.68, + "probability": 0.0795 + }, + { + "start": 45684.54, + "end": 45685.48, + "probability": 0.6315 + }, + { + "start": 45686.54, + "end": 45688.62, + "probability": 0.9349 + }, + { + "start": 45689.38, + "end": 45691.24, + "probability": 0.7842 + }, + { + "start": 45694.38, + "end": 45695.21, + "probability": 0.9398 + }, + { + "start": 45698.72, + "end": 45698.72, + "probability": 0.3329 + }, + { + "start": 45699.04, + "end": 45699.22, + "probability": 0.7442 + }, + { + "start": 45700.64, + "end": 45702.78, + "probability": 0.1818 + }, + { + "start": 45702.8, + "end": 45702.8, + "probability": 0.0687 + }, + { + "start": 45702.8, + "end": 45708.74, + "probability": 0.6048 + }, + { + "start": 45710.96, + "end": 45715.98, + "probability": 0.9688 + }, + { + "start": 45718.93, + "end": 45719.42, + "probability": 0.0378 + }, + { + "start": 45719.42, + "end": 45719.42, + "probability": 0.0956 + }, + { + "start": 45719.42, + "end": 45721.84, + "probability": 0.5966 + }, + { + "start": 45721.84, + "end": 45725.68, + "probability": 0.9744 + }, + { + "start": 45727.04, + "end": 45730.66, + "probability": 0.9827 + }, + { + "start": 45732.08, + "end": 45733.92, + "probability": 0.0957 + }, + { + "start": 45735.18, + "end": 45735.4, + "probability": 0.0732 + }, + { + "start": 45735.4, + "end": 45735.4, + "probability": 0.5778 + }, + { + "start": 45735.4, + "end": 45736.96, + "probability": 0.723 + }, + { + "start": 45737.62, + "end": 45738.9, + "probability": 0.9072 + }, + { + "start": 45739.72, + "end": 45743.7, + "probability": 0.9954 + }, + { + "start": 45744.48, + "end": 45746.96, + "probability": 0.9271 + }, + { + "start": 45747.46, + "end": 45749.26, + "probability": 0.9553 + }, + { + "start": 45749.88, + "end": 45751.38, + "probability": 0.0185 + }, + { + "start": 45751.96, + "end": 45751.96, + "probability": 0.2157 + }, + { + "start": 45752.26, + "end": 45752.26, + "probability": 0.1012 + }, + { + "start": 45752.3, + "end": 45752.8, + "probability": 0.6869 + }, + { + "start": 45753.78, + "end": 45756.4, + "probability": 0.9836 + }, + { + "start": 45757.16, + "end": 45757.78, + "probability": 0.9464 + }, + { + "start": 45759.68, + "end": 45763.24, + "probability": 0.9977 + }, + { + "start": 45764.56, + "end": 45766.14, + "probability": 0.6667 + }, + { + "start": 45766.78, + "end": 45767.88, + "probability": 0.9913 + }, + { + "start": 45768.58, + "end": 45771.14, + "probability": 0.9954 + }, + { + "start": 45771.58, + "end": 45771.6, + "probability": 0.1052 + }, + { + "start": 45773.52, + "end": 45776.14, + "probability": 0.0734 + }, + { + "start": 45776.92, + "end": 45779.09, + "probability": 0.1411 + }, + { + "start": 45779.75, + "end": 45781.6, + "probability": 0.2243 + }, + { + "start": 45781.9, + "end": 45783.02, + "probability": 0.2675 + }, + { + "start": 45783.26, + "end": 45788.68, + "probability": 0.6343 + }, + { + "start": 45789.96, + "end": 45790.64, + "probability": 0.9985 + }, + { + "start": 45791.62, + "end": 45792.2, + "probability": 0.465 + }, + { + "start": 45792.92, + "end": 45793.88, + "probability": 0.7274 + }, + { + "start": 45794.38, + "end": 45797.18, + "probability": 0.0282 + }, + { + "start": 45797.34, + "end": 45799.34, + "probability": 0.3279 + }, + { + "start": 45799.58, + "end": 45801.22, + "probability": 0.0202 + }, + { + "start": 45802.08, + "end": 45802.08, + "probability": 0.0964 + }, + { + "start": 45802.64, + "end": 45803.68, + "probability": 0.7325 + }, + { + "start": 45803.68, + "end": 45808.36, + "probability": 0.9987 + }, + { + "start": 45808.88, + "end": 45809.36, + "probability": 0.0732 + }, + { + "start": 45809.36, + "end": 45809.36, + "probability": 0.4408 + }, + { + "start": 45809.36, + "end": 45811.24, + "probability": 0.7536 + }, + { + "start": 45811.64, + "end": 45814.46, + "probability": 0.99 + }, + { + "start": 45814.6, + "end": 45815.12, + "probability": 0.041 + }, + { + "start": 45815.82, + "end": 45815.94, + "probability": 0.0797 + }, + { + "start": 45815.94, + "end": 45821.0, + "probability": 0.9641 + }, + { + "start": 45821.08, + "end": 45821.64, + "probability": 0.417 + }, + { + "start": 45822.16, + "end": 45827.2, + "probability": 0.7138 + }, + { + "start": 45827.76, + "end": 45830.24, + "probability": 0.9683 + }, + { + "start": 45831.52, + "end": 45835.28, + "probability": 0.8023 + }, + { + "start": 45835.34, + "end": 45840.12, + "probability": 0.99 + }, + { + "start": 45841.24, + "end": 45845.88, + "probability": 0.9938 + }, + { + "start": 45846.02, + "end": 45850.3, + "probability": 0.979 + }, + { + "start": 45850.94, + "end": 45853.84, + "probability": 0.1173 + }, + { + "start": 45855.68, + "end": 45857.24, + "probability": 0.376 + }, + { + "start": 45857.24, + "end": 45858.05, + "probability": 0.8254 + }, + { + "start": 45859.82, + "end": 45862.42, + "probability": 0.9457 + }, + { + "start": 45863.02, + "end": 45865.38, + "probability": 0.9641 + }, + { + "start": 45866.18, + "end": 45867.78, + "probability": 0.9675 + }, + { + "start": 45868.58, + "end": 45871.36, + "probability": 0.0685 + }, + { + "start": 45871.36, + "end": 45871.42, + "probability": 0.2337 + }, + { + "start": 45871.42, + "end": 45871.6, + "probability": 0.2912 + }, + { + "start": 45873.0, + "end": 45876.82, + "probability": 0.8193 + }, + { + "start": 45876.86, + "end": 45877.84, + "probability": 0.9012 + }, + { + "start": 45878.42, + "end": 45879.08, + "probability": 0.9603 + }, + { + "start": 45879.82, + "end": 45880.82, + "probability": 0.9798 + }, + { + "start": 45881.98, + "end": 45884.1, + "probability": 0.824 + }, + { + "start": 45885.12, + "end": 45885.84, + "probability": 0.5241 + }, + { + "start": 45886.5, + "end": 45887.32, + "probability": 0.9392 + }, + { + "start": 45888.14, + "end": 45890.0, + "probability": 0.9904 + }, + { + "start": 45891.26, + "end": 45897.02, + "probability": 0.9893 + }, + { + "start": 45898.18, + "end": 45900.84, + "probability": 0.9877 + }, + { + "start": 45902.1, + "end": 45902.72, + "probability": 0.9934 + }, + { + "start": 45903.98, + "end": 45904.86, + "probability": 0.7927 + }, + { + "start": 45906.7, + "end": 45907.82, + "probability": 0.9849 + }, + { + "start": 45908.56, + "end": 45910.04, + "probability": 0.9352 + }, + { + "start": 45911.22, + "end": 45912.88, + "probability": 0.9813 + }, + { + "start": 45913.72, + "end": 45915.22, + "probability": 0.9295 + }, + { + "start": 45916.4, + "end": 45917.2, + "probability": 0.7535 + }, + { + "start": 45917.86, + "end": 45918.22, + "probability": 0.6442 + }, + { + "start": 45920.32, + "end": 45921.84, + "probability": 0.4706 + }, + { + "start": 45922.5, + "end": 45925.46, + "probability": 0.9768 + }, + { + "start": 45926.56, + "end": 45930.34, + "probability": 0.9536 + }, + { + "start": 45930.76, + "end": 45932.48, + "probability": 0.9259 + }, + { + "start": 45932.72, + "end": 45933.98, + "probability": 0.4892 + }, + { + "start": 45934.1, + "end": 45940.08, + "probability": 0.9656 + }, + { + "start": 45940.9, + "end": 45943.0, + "probability": 0.9842 + }, + { + "start": 45944.12, + "end": 45945.72, + "probability": 0.9707 + }, + { + "start": 45946.34, + "end": 45948.4, + "probability": 0.8155 + }, + { + "start": 45948.94, + "end": 45953.02, + "probability": 0.8498 + }, + { + "start": 45953.74, + "end": 45955.74, + "probability": 0.9919 + }, + { + "start": 45956.6, + "end": 45957.84, + "probability": 0.7342 + }, + { + "start": 45958.52, + "end": 45959.46, + "probability": 0.9827 + }, + { + "start": 45960.1, + "end": 45961.59, + "probability": 0.9937 + }, + { + "start": 45962.0, + "end": 45964.26, + "probability": 0.9375 + }, + { + "start": 45965.12, + "end": 45967.26, + "probability": 0.9377 + }, + { + "start": 45968.46, + "end": 45969.48, + "probability": 0.9863 + }, + { + "start": 45970.38, + "end": 45972.2, + "probability": 0.9541 + }, + { + "start": 45972.26, + "end": 45975.38, + "probability": 0.9792 + }, + { + "start": 45975.64, + "end": 45978.2, + "probability": 0.998 + }, + { + "start": 45978.74, + "end": 45981.02, + "probability": 0.9964 + }, + { + "start": 45981.5, + "end": 45984.48, + "probability": 0.9983 + }, + { + "start": 45984.74, + "end": 45986.14, + "probability": 0.9902 + }, + { + "start": 45986.76, + "end": 45988.88, + "probability": 0.9453 + }, + { + "start": 45989.08, + "end": 45989.42, + "probability": 0.8721 + }, + { + "start": 45989.62, + "end": 45991.74, + "probability": 0.0717 + }, + { + "start": 45992.44, + "end": 45992.44, + "probability": 0.0055 + }, + { + "start": 45992.62, + "end": 45993.18, + "probability": 0.6357 + }, + { + "start": 45994.14, + "end": 45995.14, + "probability": 0.9604 + }, + { + "start": 45995.2, + "end": 45999.54, + "probability": 0.8638 + }, + { + "start": 45999.66, + "end": 46001.86, + "probability": 0.8779 + }, + { + "start": 46002.55, + "end": 46005.14, + "probability": 0.8984 + }, + { + "start": 46006.04, + "end": 46007.4, + "probability": 0.949 + }, + { + "start": 46007.98, + "end": 46011.2, + "probability": 0.8923 + }, + { + "start": 46011.48, + "end": 46012.3, + "probability": 0.8083 + }, + { + "start": 46012.3, + "end": 46013.94, + "probability": 0.9615 + }, + { + "start": 46014.1, + "end": 46018.42, + "probability": 0.9697 + }, + { + "start": 46018.74, + "end": 46020.34, + "probability": 0.0859 + }, + { + "start": 46021.2, + "end": 46021.56, + "probability": 0.1818 + }, + { + "start": 46021.56, + "end": 46021.56, + "probability": 0.0112 + }, + { + "start": 46021.56, + "end": 46021.56, + "probability": 0.2934 + }, + { + "start": 46021.56, + "end": 46022.84, + "probability": 0.7993 + }, + { + "start": 46023.04, + "end": 46023.6, + "probability": 0.8786 + }, + { + "start": 46024.04, + "end": 46024.44, + "probability": 0.6862 + }, + { + "start": 46025.62, + "end": 46026.18, + "probability": 0.7587 + }, + { + "start": 46026.9, + "end": 46026.92, + "probability": 0.0324 + }, + { + "start": 46026.92, + "end": 46026.92, + "probability": 0.0641 + }, + { + "start": 46026.92, + "end": 46026.92, + "probability": 0.6778 + }, + { + "start": 46026.92, + "end": 46028.74, + "probability": 0.7909 + }, + { + "start": 46029.54, + "end": 46031.74, + "probability": 0.6909 + }, + { + "start": 46032.7, + "end": 46036.19, + "probability": 0.6943 + }, + { + "start": 46036.84, + "end": 46036.96, + "probability": 0.0599 + }, + { + "start": 46036.96, + "end": 46037.04, + "probability": 0.2091 + }, + { + "start": 46037.04, + "end": 46041.44, + "probability": 0.9958 + }, + { + "start": 46044.45, + "end": 46049.56, + "probability": 0.9449 + }, + { + "start": 46050.58, + "end": 46054.9, + "probability": 0.9719 + }, + { + "start": 46055.46, + "end": 46057.54, + "probability": 0.9187 + }, + { + "start": 46058.1, + "end": 46058.86, + "probability": 0.8369 + }, + { + "start": 46059.3, + "end": 46068.08, + "probability": 0.9042 + }, + { + "start": 46068.22, + "end": 46070.58, + "probability": 0.8794 + }, + { + "start": 46070.72, + "end": 46071.72, + "probability": 0.8008 + }, + { + "start": 46071.94, + "end": 46072.72, + "probability": 0.6235 + }, + { + "start": 46073.06, + "end": 46073.92, + "probability": 0.6416 + }, + { + "start": 46074.46, + "end": 46076.32, + "probability": 0.7684 + }, + { + "start": 46077.16, + "end": 46077.76, + "probability": 0.4181 + }, + { + "start": 46109.58, + "end": 46112.4, + "probability": 0.8624 + }, + { + "start": 46113.86, + "end": 46114.6, + "probability": 0.6626 + }, + { + "start": 46114.92, + "end": 46116.44, + "probability": 0.0652 + }, + { + "start": 46117.46, + "end": 46118.26, + "probability": 0.1334 + }, + { + "start": 46119.16, + "end": 46120.48, + "probability": 0.0569 + }, + { + "start": 46120.9, + "end": 46120.9, + "probability": 0.0035 + }, + { + "start": 46161.28, + "end": 46164.18, + "probability": 0.7578 + }, + { + "start": 46164.42, + "end": 46167.84, + "probability": 0.9181 + }, + { + "start": 46167.9, + "end": 46173.08, + "probability": 0.9202 + }, + { + "start": 46174.08, + "end": 46178.26, + "probability": 0.999 + }, + { + "start": 46178.6, + "end": 46181.36, + "probability": 0.9908 + }, + { + "start": 46182.18, + "end": 46183.18, + "probability": 0.8771 + }, + { + "start": 46183.72, + "end": 46184.22, + "probability": 0.8011 + }, + { + "start": 46184.58, + "end": 46185.72, + "probability": 0.9684 + }, + { + "start": 46186.0, + "end": 46187.74, + "probability": 0.6912 + }, + { + "start": 46188.24, + "end": 46191.2, + "probability": 0.9872 + }, + { + "start": 46191.48, + "end": 46192.46, + "probability": 0.766 + }, + { + "start": 46193.06, + "end": 46193.64, + "probability": 0.6145 + }, + { + "start": 46194.06, + "end": 46194.68, + "probability": 0.8986 + }, + { + "start": 46194.7, + "end": 46198.99, + "probability": 0.8209 + }, + { + "start": 46199.22, + "end": 46199.88, + "probability": 0.6908 + }, + { + "start": 46200.48, + "end": 46201.48, + "probability": 0.8075 + }, + { + "start": 46203.18, + "end": 46206.94, + "probability": 0.7224 + }, + { + "start": 46207.64, + "end": 46213.6, + "probability": 0.9911 + }, + { + "start": 46214.52, + "end": 46214.76, + "probability": 0.8348 + }, + { + "start": 46215.58, + "end": 46217.84, + "probability": 0.9793 + }, + { + "start": 46218.36, + "end": 46222.14, + "probability": 0.8738 + }, + { + "start": 46222.62, + "end": 46224.68, + "probability": 0.9651 + }, + { + "start": 46224.88, + "end": 46225.74, + "probability": 0.9615 + }, + { + "start": 46227.34, + "end": 46228.7, + "probability": 0.8836 + }, + { + "start": 46229.56, + "end": 46230.34, + "probability": 0.7987 + }, + { + "start": 46230.56, + "end": 46232.3, + "probability": 0.9722 + }, + { + "start": 46232.38, + "end": 46234.84, + "probability": 0.956 + }, + { + "start": 46235.04, + "end": 46235.86, + "probability": 0.97 + }, + { + "start": 46236.6, + "end": 46239.58, + "probability": 0.9888 + }, + { + "start": 46240.14, + "end": 46240.24, + "probability": 0.2892 + }, + { + "start": 46241.98, + "end": 46243.54, + "probability": 0.8188 + }, + { + "start": 46243.84, + "end": 46244.36, + "probability": 0.4163 + }, + { + "start": 46244.6, + "end": 46245.5, + "probability": 0.7716 + }, + { + "start": 46245.54, + "end": 46248.4, + "probability": 0.6107 + }, + { + "start": 46248.92, + "end": 46249.96, + "probability": 0.9692 + }, + { + "start": 46250.48, + "end": 46252.64, + "probability": 0.9902 + }, + { + "start": 46253.14, + "end": 46257.04, + "probability": 0.973 + }, + { + "start": 46257.18, + "end": 46258.08, + "probability": 0.8548 + }, + { + "start": 46259.16, + "end": 46262.44, + "probability": 0.7744 + }, + { + "start": 46262.98, + "end": 46265.32, + "probability": 0.9575 + }, + { + "start": 46266.0, + "end": 46269.64, + "probability": 0.936 + }, + { + "start": 46270.04, + "end": 46271.04, + "probability": 0.8694 + }, + { + "start": 46271.62, + "end": 46272.86, + "probability": 0.8218 + }, + { + "start": 46278.54, + "end": 46280.44, + "probability": 0.9252 + }, + { + "start": 46280.98, + "end": 46283.88, + "probability": 0.9875 + }, + { + "start": 46284.34, + "end": 46290.88, + "probability": 0.9832 + }, + { + "start": 46291.06, + "end": 46293.0, + "probability": 0.7815 + }, + { + "start": 46293.4, + "end": 46293.96, + "probability": 0.9042 + }, + { + "start": 46294.06, + "end": 46297.9, + "probability": 0.9854 + }, + { + "start": 46300.97, + "end": 46301.77, + "probability": 0.2444 + }, + { + "start": 46302.82, + "end": 46303.88, + "probability": 0.5878 + }, + { + "start": 46304.58, + "end": 46305.89, + "probability": 0.6534 + }, + { + "start": 46307.0, + "end": 46308.9, + "probability": 0.5009 + }, + { + "start": 46308.9, + "end": 46308.9, + "probability": 0.0324 + }, + { + "start": 46309.86, + "end": 46310.24, + "probability": 0.0825 + }, + { + "start": 46310.26, + "end": 46310.3, + "probability": 0.0183 + }, + { + "start": 46311.04, + "end": 46311.94, + "probability": 0.3685 + }, + { + "start": 46312.74, + "end": 46317.86, + "probability": 0.7087 + }, + { + "start": 46319.3, + "end": 46323.78, + "probability": 0.8447 + }, + { + "start": 46324.46, + "end": 46325.56, + "probability": 0.8667 + }, + { + "start": 46326.44, + "end": 46329.96, + "probability": 0.9133 + }, + { + "start": 46330.54, + "end": 46331.6, + "probability": 0.6997 + }, + { + "start": 46332.28, + "end": 46334.54, + "probability": 0.7346 + }, + { + "start": 46335.38, + "end": 46335.86, + "probability": 0.9785 + }, + { + "start": 46336.48, + "end": 46337.46, + "probability": 0.9609 + }, + { + "start": 46338.64, + "end": 46339.14, + "probability": 0.9588 + }, + { + "start": 46339.9, + "end": 46340.82, + "probability": 0.9377 + }, + { + "start": 46341.7, + "end": 46344.44, + "probability": 0.9779 + }, + { + "start": 46345.1, + "end": 46346.06, + "probability": 0.9897 + }, + { + "start": 46347.0, + "end": 46348.04, + "probability": 0.8796 + }, + { + "start": 46348.86, + "end": 46350.54, + "probability": 0.8804 + }, + { + "start": 46351.96, + "end": 46352.36, + "probability": 0.9728 + }, + { + "start": 46352.88, + "end": 46353.84, + "probability": 0.8994 + }, + { + "start": 46354.76, + "end": 46356.6, + "probability": 0.8957 + }, + { + "start": 46357.46, + "end": 46357.82, + "probability": 0.5369 + }, + { + "start": 46358.62, + "end": 46359.68, + "probability": 0.7646 + }, + { + "start": 46360.44, + "end": 46360.88, + "probability": 0.9108 + }, + { + "start": 46361.64, + "end": 46362.44, + "probability": 0.8598 + }, + { + "start": 46363.2, + "end": 46365.32, + "probability": 0.9602 + }, + { + "start": 46365.94, + "end": 46367.56, + "probability": 0.9847 + }, + { + "start": 46368.58, + "end": 46372.14, + "probability": 0.9586 + }, + { + "start": 46372.8, + "end": 46376.46, + "probability": 0.9774 + }, + { + "start": 46377.0, + "end": 46378.38, + "probability": 0.9876 + }, + { + "start": 46379.9, + "end": 46384.16, + "probability": 0.9313 + }, + { + "start": 46385.0, + "end": 46386.96, + "probability": 0.6219 + }, + { + "start": 46387.64, + "end": 46389.4, + "probability": 0.9861 + }, + { + "start": 46390.04, + "end": 46391.12, + "probability": 0.9214 + }, + { + "start": 46391.94, + "end": 46395.36, + "probability": 0.9382 + }, + { + "start": 46395.96, + "end": 46398.62, + "probability": 0.97 + }, + { + "start": 46399.64, + "end": 46402.04, + "probability": 0.9753 + }, + { + "start": 46402.68, + "end": 46404.86, + "probability": 0.9811 + }, + { + "start": 46405.42, + "end": 46410.68, + "probability": 0.9824 + }, + { + "start": 46411.28, + "end": 46412.14, + "probability": 0.6823 + }, + { + "start": 46413.04, + "end": 46418.64, + "probability": 0.8229 + }, + { + "start": 46419.32, + "end": 46421.08, + "probability": 0.5425 + }, + { + "start": 46422.2, + "end": 46424.8, + "probability": 0.9522 + }, + { + "start": 46425.44, + "end": 46427.26, + "probability": 0.9816 + }, + { + "start": 46427.82, + "end": 46430.2, + "probability": 0.9552 + }, + { + "start": 46430.81, + "end": 46433.26, + "probability": 0.7093 + }, + { + "start": 46434.34, + "end": 46435.58, + "probability": 0.9683 + }, + { + "start": 46436.1, + "end": 46437.08, + "probability": 0.7136 + }, + { + "start": 46437.08, + "end": 46442.64, + "probability": 0.6395 + }, + { + "start": 46443.32, + "end": 46448.18, + "probability": 0.9648 + }, + { + "start": 46448.9, + "end": 46450.62, + "probability": 0.9552 + }, + { + "start": 46451.3, + "end": 46451.82, + "probability": 0.9964 + }, + { + "start": 46452.82, + "end": 46454.3, + "probability": 0.7629 + }, + { + "start": 46455.0, + "end": 46455.52, + "probability": 0.9951 + }, + { + "start": 46456.22, + "end": 46457.24, + "probability": 0.9743 + }, + { + "start": 46458.4, + "end": 46458.62, + "probability": 0.546 + }, + { + "start": 46459.78, + "end": 46460.72, + "probability": 0.4915 + }, + { + "start": 46461.6, + "end": 46464.22, + "probability": 0.6427 + }, + { + "start": 46465.1, + "end": 46468.12, + "probability": 0.9009 + }, + { + "start": 46469.14, + "end": 46469.64, + "probability": 0.9963 + }, + { + "start": 46470.2, + "end": 46471.28, + "probability": 0.5522 + }, + { + "start": 46471.88, + "end": 46472.5, + "probability": 0.9891 + }, + { + "start": 46473.34, + "end": 46474.2, + "probability": 0.8797 + }, + { + "start": 46474.88, + "end": 46475.74, + "probability": 0.9929 + }, + { + "start": 46476.7, + "end": 46477.46, + "probability": 0.9707 + }, + { + "start": 46478.26, + "end": 46478.64, + "probability": 0.9949 + }, + { + "start": 46479.42, + "end": 46480.12, + "probability": 0.8226 + }, + { + "start": 46480.82, + "end": 46481.3, + "probability": 0.966 + }, + { + "start": 46483.0, + "end": 46483.92, + "probability": 0.9676 + }, + { + "start": 46484.98, + "end": 46485.34, + "probability": 0.9914 + }, + { + "start": 46486.38, + "end": 46487.08, + "probability": 0.9087 + }, + { + "start": 46488.42, + "end": 46490.6, + "probability": 0.5862 + }, + { + "start": 46491.66, + "end": 46493.22, + "probability": 0.9644 + }, + { + "start": 46493.78, + "end": 46494.78, + "probability": 0.9135 + }, + { + "start": 46495.82, + "end": 46497.88, + "probability": 0.9895 + }, + { + "start": 46498.58, + "end": 46500.7, + "probability": 0.9919 + }, + { + "start": 46501.56, + "end": 46504.2, + "probability": 0.9175 + }, + { + "start": 46505.02, + "end": 46505.46, + "probability": 0.9808 + }, + { + "start": 46506.14, + "end": 46507.26, + "probability": 0.947 + }, + { + "start": 46507.82, + "end": 46510.5, + "probability": 0.9308 + }, + { + "start": 46511.18, + "end": 46513.44, + "probability": 0.9566 + }, + { + "start": 46514.08, + "end": 46516.48, + "probability": 0.9902 + }, + { + "start": 46517.68, + "end": 46519.48, + "probability": 0.5492 + }, + { + "start": 46520.66, + "end": 46522.0, + "probability": 0.8947 + }, + { + "start": 46522.84, + "end": 46526.74, + "probability": 0.4703 + }, + { + "start": 46527.66, + "end": 46528.66, + "probability": 0.7694 + }, + { + "start": 46529.66, + "end": 46532.26, + "probability": 0.9717 + }, + { + "start": 46532.94, + "end": 46535.24, + "probability": 0.9471 + }, + { + "start": 46535.6, + "end": 46538.0, + "probability": 0.9795 + }, + { + "start": 46538.48, + "end": 46541.2, + "probability": 0.9906 + }, + { + "start": 46541.48, + "end": 46542.38, + "probability": 0.9961 + }, + { + "start": 46544.48, + "end": 46545.82, + "probability": 0.7083 + }, + { + "start": 46546.7, + "end": 46549.84, + "probability": 0.7148 + }, + { + "start": 46550.36, + "end": 46552.8, + "probability": 0.905 + }, + { + "start": 46553.32, + "end": 46561.48, + "probability": 0.8445 + }, + { + "start": 46562.28, + "end": 46566.68, + "probability": 0.9734 + }, + { + "start": 46567.36, + "end": 46569.5, + "probability": 0.9661 + }, + { + "start": 46570.32, + "end": 46575.46, + "probability": 0.5886 + }, + { + "start": 46576.54, + "end": 46578.4, + "probability": 0.8961 + }, + { + "start": 46579.0, + "end": 46581.48, + "probability": 0.9637 + }, + { + "start": 46582.62, + "end": 46585.46, + "probability": 0.9204 + }, + { + "start": 46586.44, + "end": 46588.76, + "probability": 0.5518 + }, + { + "start": 46589.4, + "end": 46591.88, + "probability": 0.9062 + }, + { + "start": 46593.76, + "end": 46598.56, + "probability": 0.8934 + }, + { + "start": 46601.3, + "end": 46602.46, + "probability": 0.74 + }, + { + "start": 46603.18, + "end": 46603.86, + "probability": 0.9031 + }, + { + "start": 46604.76, + "end": 46605.88, + "probability": 0.7488 + }, + { + "start": 46607.02, + "end": 46612.18, + "probability": 0.8178 + }, + { + "start": 46612.74, + "end": 46615.86, + "probability": 0.9779 + }, + { + "start": 46616.54, + "end": 46622.5, + "probability": 0.9731 + }, + { + "start": 46623.9, + "end": 46626.2, + "probability": 0.9461 + }, + { + "start": 46626.72, + "end": 46629.76, + "probability": 0.9789 + }, + { + "start": 46630.64, + "end": 46630.96, + "probability": 0.6721 + }, + { + "start": 46631.9, + "end": 46632.96, + "probability": 0.6098 + }, + { + "start": 46633.62, + "end": 46639.84, + "probability": 0.9827 + }, + { + "start": 46640.7, + "end": 46643.12, + "probability": 0.9795 + }, + { + "start": 46644.28, + "end": 46646.86, + "probability": 0.8958 + }, + { + "start": 46647.84, + "end": 46650.4, + "probability": 0.9577 + }, + { + "start": 46651.36, + "end": 46655.58, + "probability": 0.8986 + }, + { + "start": 46657.22, + "end": 46658.3, + "probability": 0.611 + }, + { + "start": 46659.16, + "end": 46661.72, + "probability": 0.8219 + }, + { + "start": 46662.48, + "end": 46663.1, + "probability": 0.9954 + }, + { + "start": 46663.74, + "end": 46664.52, + "probability": 0.9403 + }, + { + "start": 46665.14, + "end": 46667.14, + "probability": 0.9895 + }, + { + "start": 46667.72, + "end": 46669.0, + "probability": 0.8758 + }, + { + "start": 46670.0, + "end": 46672.68, + "probability": 0.962 + }, + { + "start": 46673.6, + "end": 46675.88, + "probability": 0.9766 + }, + { + "start": 46676.76, + "end": 46678.74, + "probability": 0.6393 + }, + { + "start": 46679.44, + "end": 46682.72, + "probability": 0.7024 + }, + { + "start": 46683.52, + "end": 46685.38, + "probability": 0.9176 + }, + { + "start": 46688.04, + "end": 46690.02, + "probability": 0.556 + }, + { + "start": 46690.66, + "end": 46693.78, + "probability": 0.2898 + }, + { + "start": 46694.46, + "end": 46695.42, + "probability": 0.6437 + }, + { + "start": 46696.1, + "end": 46696.48, + "probability": 0.9248 + }, + { + "start": 46698.61, + "end": 46703.18, + "probability": 0.5417 + }, + { + "start": 46703.98, + "end": 46706.54, + "probability": 0.5886 + }, + { + "start": 46707.9, + "end": 46710.16, + "probability": 0.6331 + }, + { + "start": 46711.04, + "end": 46711.58, + "probability": 0.9935 + }, + { + "start": 46714.56, + "end": 46716.68, + "probability": 0.8223 + }, + { + "start": 46716.8, + "end": 46719.72, + "probability": 0.9874 + }, + { + "start": 46720.8, + "end": 46721.39, + "probability": 0.3959 + }, + { + "start": 46724.02, + "end": 46724.7, + "probability": 0.9273 + }, + { + "start": 46728.98, + "end": 46729.82, + "probability": 0.615 + }, + { + "start": 46729.88, + "end": 46733.78, + "probability": 0.9712 + }, + { + "start": 46734.52, + "end": 46735.38, + "probability": 0.792 + }, + { + "start": 46735.82, + "end": 46738.0, + "probability": 0.8369 + }, + { + "start": 46738.06, + "end": 46740.54, + "probability": 0.9872 + }, + { + "start": 46772.18, + "end": 46775.72, + "probability": 0.0209 + }, + { + "start": 46778.98, + "end": 46782.1, + "probability": 0.1149 + }, + { + "start": 46783.36, + "end": 46784.44, + "probability": 0.9162 + }, + { + "start": 46785.02, + "end": 46785.5, + "probability": 0.7968 + }, + { + "start": 46787.4, + "end": 46793.2, + "probability": 0.414 + }, + { + "start": 46803.24, + "end": 46803.62, + "probability": 0.0092 + }, + { + "start": 46865.08, + "end": 46865.72, + "probability": 0.2962 + }, + { + "start": 46867.49, + "end": 46868.52, + "probability": 0.0108 + }, + { + "start": 46869.02, + "end": 46869.28, + "probability": 0.0809 + }, + { + "start": 46869.28, + "end": 46870.48, + "probability": 0.3382 + }, + { + "start": 46881.02, + "end": 46883.22, + "probability": 0.2704 + }, + { + "start": 46897.3, + "end": 46897.62, + "probability": 0.2006 + }, + { + "start": 46898.72, + "end": 46901.64, + "probability": 0.0796 + }, + { + "start": 46901.64, + "end": 46902.22, + "probability": 0.1385 + }, + { + "start": 46903.24, + "end": 46903.52, + "probability": 0.0571 + }, + { + "start": 46903.52, + "end": 46903.52, + "probability": 0.2207 + }, + { + "start": 46907.12, + "end": 46907.44, + "probability": 0.0161 + }, + { + "start": 46907.44, + "end": 46907.44, + "probability": 0.0204 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47099.0, + "end": 47099.0, + "probability": 0.0 + }, + { + "start": 47111.18, + "end": 47112.64, + "probability": 0.5822 + }, + { + "start": 47113.58, + "end": 47115.38, + "probability": 0.7114 + }, + { + "start": 47120.18, + "end": 47120.28, + "probability": 0.7657 + }, + { + "start": 47121.42, + "end": 47122.3, + "probability": 0.8109 + }, + { + "start": 47123.38, + "end": 47125.52, + "probability": 0.9775 + }, + { + "start": 47126.68, + "end": 47129.2, + "probability": 0.9839 + }, + { + "start": 47130.14, + "end": 47132.5, + "probability": 0.9876 + }, + { + "start": 47133.38, + "end": 47136.06, + "probability": 0.7019 + }, + { + "start": 47137.1, + "end": 47137.56, + "probability": 0.9905 + }, + { + "start": 47138.84, + "end": 47139.76, + "probability": 0.8089 + }, + { + "start": 47140.7, + "end": 47143.36, + "probability": 0.9543 + }, + { + "start": 47143.94, + "end": 47144.24, + "probability": 0.9951 + }, + { + "start": 47145.02, + "end": 47149.42, + "probability": 0.7161 + }, + { + "start": 47150.14, + "end": 47153.42, + "probability": 0.9505 + }, + { + "start": 47154.16, + "end": 47155.82, + "probability": 0.6496 + }, + { + "start": 47156.58, + "end": 47157.1, + "probability": 0.8989 + }, + { + "start": 47157.72, + "end": 47159.0, + "probability": 0.8883 + }, + { + "start": 47159.7, + "end": 47161.94, + "probability": 0.9457 + }, + { + "start": 47162.56, + "end": 47163.62, + "probability": 0.9966 + }, + { + "start": 47164.4, + "end": 47165.56, + "probability": 0.9334 + }, + { + "start": 47170.82, + "end": 47178.6, + "probability": 0.7917 + }, + { + "start": 47179.24, + "end": 47181.62, + "probability": 0.9663 + }, + { + "start": 47183.44, + "end": 47187.06, + "probability": 0.9849 + }, + { + "start": 47188.12, + "end": 47193.36, + "probability": 0.8783 + }, + { + "start": 47194.3, + "end": 47199.98, + "probability": 0.8575 + }, + { + "start": 47201.3, + "end": 47203.8, + "probability": 0.7534 + }, + { + "start": 47204.78, + "end": 47207.18, + "probability": 0.5513 + }, + { + "start": 47207.8, + "end": 47215.1, + "probability": 0.9472 + }, + { + "start": 47216.78, + "end": 47220.78, + "probability": 0.9836 + }, + { + "start": 47221.66, + "end": 47224.2, + "probability": 0.9142 + }, + { + "start": 47225.46, + "end": 47228.86, + "probability": 0.7149 + }, + { + "start": 47229.56, + "end": 47230.48, + "probability": 0.7383 + }, + { + "start": 47231.32, + "end": 47234.1, + "probability": 0.9539 + }, + { + "start": 47235.0, + "end": 47237.3, + "probability": 0.9608 + }, + { + "start": 47237.9, + "end": 47238.96, + "probability": 0.9956 + }, + { + "start": 47239.86, + "end": 47241.34, + "probability": 0.8843 + }, + { + "start": 47242.16, + "end": 47244.62, + "probability": 0.9601 + }, + { + "start": 47245.9, + "end": 47248.36, + "probability": 0.917 + }, + { + "start": 47250.08, + "end": 47251.22, + "probability": 0.9882 + }, + { + "start": 47251.98, + "end": 47254.18, + "probability": 0.9282 + }, + { + "start": 47255.04, + "end": 47262.02, + "probability": 0.916 + }, + { + "start": 47262.88, + "end": 47265.1, + "probability": 0.9556 + }, + { + "start": 47266.28, + "end": 47266.8, + "probability": 0.9813 + }, + { + "start": 47267.4, + "end": 47268.24, + "probability": 0.7266 + }, + { + "start": 47269.5, + "end": 47270.02, + "probability": 0.994 + }, + { + "start": 47270.62, + "end": 47271.66, + "probability": 0.9214 + }, + { + "start": 47272.32, + "end": 47272.8, + "probability": 0.9958 + }, + { + "start": 47273.5, + "end": 47274.64, + "probability": 0.7319 + }, + { + "start": 47275.32, + "end": 47277.84, + "probability": 0.9785 + }, + { + "start": 47278.96, + "end": 47281.86, + "probability": 0.7389 + }, + { + "start": 47282.94, + "end": 47289.56, + "probability": 0.7925 + }, + { + "start": 47290.6, + "end": 47297.18, + "probability": 0.9647 + }, + { + "start": 47298.18, + "end": 47304.2, + "probability": 0.6524 + }, + { + "start": 47305.36, + "end": 47307.54, + "probability": 0.9715 + }, + { + "start": 47308.7, + "end": 47310.8, + "probability": 0.6584 + }, + { + "start": 47312.0, + "end": 47317.86, + "probability": 0.8103 + }, + { + "start": 47318.94, + "end": 47321.46, + "probability": 0.8278 + }, + { + "start": 47322.08, + "end": 47325.58, + "probability": 0.614 + }, + { + "start": 47325.64, + "end": 47329.42, + "probability": 0.9252 + }, + { + "start": 47329.98, + "end": 47331.16, + "probability": 0.3549 + }, + { + "start": 47332.22, + "end": 47332.94, + "probability": 0.8902 + }, + { + "start": 47335.06, + "end": 47335.66, + "probability": 0.0668 + }, + { + "start": 47335.66, + "end": 47336.8, + "probability": 0.4475 + }, + { + "start": 47336.96, + "end": 47338.34, + "probability": 0.9907 + }, + { + "start": 47339.56, + "end": 47339.56, + "probability": 0.0669 + }, + { + "start": 47339.56, + "end": 47339.56, + "probability": 0.1457 + }, + { + "start": 47339.56, + "end": 47345.86, + "probability": 0.7049 + }, + { + "start": 47347.0, + "end": 47348.6, + "probability": 0.9336 + }, + { + "start": 47348.74, + "end": 47350.42, + "probability": 0.6279 + }, + { + "start": 47350.44, + "end": 47351.48, + "probability": 0.9673 + }, + { + "start": 47366.02, + "end": 47366.06, + "probability": 0.0226 + }, + { + "start": 47368.5, + "end": 47369.88, + "probability": 0.1166 + }, + { + "start": 47370.48, + "end": 47370.96, + "probability": 0.0191 + }, + { + "start": 47427.42, + "end": 47432.7, + "probability": 0.268 + }, + { + "start": 47433.26, + "end": 47434.32, + "probability": 0.7318 + }, + { + "start": 47435.2, + "end": 47438.28, + "probability": 0.6406 + }, + { + "start": 47439.14, + "end": 47443.58, + "probability": 0.9915 + }, + { + "start": 47444.58, + "end": 47445.38, + "probability": 0.9229 + }, + { + "start": 47454.45, + "end": 47455.06, + "probability": 0.0307 + }, + { + "start": 47455.06, + "end": 47455.06, + "probability": 0.1238 + }, + { + "start": 47455.06, + "end": 47455.06, + "probability": 0.1064 + }, + { + "start": 47455.06, + "end": 47455.06, + "probability": 0.0102 + }, + { + "start": 47455.06, + "end": 47455.06, + "probability": 0.2026 + }, + { + "start": 47455.06, + "end": 47456.32, + "probability": 0.7325 + }, + { + "start": 47456.9, + "end": 47461.46, + "probability": 0.9355 + }, + { + "start": 47461.88, + "end": 47465.6, + "probability": 0.7802 + }, + { + "start": 47465.74, + "end": 47467.36, + "probability": 0.959 + }, + { + "start": 47468.7, + "end": 47468.74, + "probability": 0.0996 + } + ], + "segments_count": 16695, + "words_count": 79605, + "avg_words_per_segment": 4.7682, + "avg_segment_duration": 1.8976, + "avg_words_per_minute": 98.6081, + "plenum_id": "80879", + "duration": 48437.19, + "title": null, + "plenum_date": "2019-05-29" +} \ No newline at end of file