diff --git "a/16800/metadata.json" "b/16800/metadata.json" new file mode 100644--- /dev/null +++ "b/16800/metadata.json" @@ -0,0 +1,51942 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "16800", + "quality_score": 0.9106, + "per_segment_quality_scores": [ + { + "start": 32.87, + "end": 34.74, + "probability": 0.3867 + }, + { + "start": 35.5, + "end": 37.08, + "probability": 0.3818 + }, + { + "start": 38.76, + "end": 42.46, + "probability": 0.75 + }, + { + "start": 43.02, + "end": 46.52, + "probability": 0.9844 + }, + { + "start": 46.94, + "end": 49.38, + "probability": 0.6299 + }, + { + "start": 50.12, + "end": 51.8, + "probability": 0.9586 + }, + { + "start": 52.36, + "end": 54.98, + "probability": 0.9961 + }, + { + "start": 55.96, + "end": 56.4, + "probability": 0.4044 + }, + { + "start": 56.9, + "end": 58.3, + "probability": 0.9913 + }, + { + "start": 59.02, + "end": 61.36, + "probability": 0.9119 + }, + { + "start": 62.54, + "end": 64.62, + "probability": 0.905 + }, + { + "start": 65.26, + "end": 67.18, + "probability": 0.6936 + }, + { + "start": 68.38, + "end": 72.94, + "probability": 0.9345 + }, + { + "start": 73.04, + "end": 76.0, + "probability": 0.5703 + }, + { + "start": 76.0, + "end": 77.32, + "probability": 0.4782 + }, + { + "start": 77.4, + "end": 80.28, + "probability": 0.9804 + }, + { + "start": 81.26, + "end": 84.38, + "probability": 0.7473 + }, + { + "start": 85.06, + "end": 89.74, + "probability": 0.9868 + }, + { + "start": 91.2, + "end": 91.74, + "probability": 0.7099 + }, + { + "start": 93.66, + "end": 94.24, + "probability": 0.3758 + }, + { + "start": 94.24, + "end": 94.24, + "probability": 0.7015 + }, + { + "start": 94.42, + "end": 94.94, + "probability": 0.8561 + }, + { + "start": 95.36, + "end": 95.88, + "probability": 0.9274 + }, + { + "start": 96.9, + "end": 99.66, + "probability": 0.9001 + }, + { + "start": 99.84, + "end": 105.16, + "probability": 0.9688 + }, + { + "start": 106.42, + "end": 107.9, + "probability": 0.8736 + }, + { + "start": 107.96, + "end": 111.04, + "probability": 0.9937 + }, + { + "start": 111.74, + "end": 113.59, + "probability": 0.9697 + }, + { + "start": 114.34, + "end": 115.98, + "probability": 0.9911 + }, + { + "start": 116.26, + "end": 118.06, + "probability": 0.9622 + }, + { + "start": 118.54, + "end": 118.88, + "probability": 0.6734 + }, + { + "start": 119.26, + "end": 119.36, + "probability": 0.0028 + }, + { + "start": 121.72, + "end": 121.82, + "probability": 0.3299 + }, + { + "start": 121.82, + "end": 121.82, + "probability": 0.1782 + }, + { + "start": 121.82, + "end": 122.02, + "probability": 0.1579 + }, + { + "start": 122.02, + "end": 122.02, + "probability": 0.1835 + }, + { + "start": 122.02, + "end": 123.56, + "probability": 0.3649 + }, + { + "start": 123.56, + "end": 128.14, + "probability": 0.9937 + }, + { + "start": 128.14, + "end": 131.26, + "probability": 0.9975 + }, + { + "start": 137.31, + "end": 140.56, + "probability": 0.8477 + }, + { + "start": 141.46, + "end": 143.64, + "probability": 0.2502 + }, + { + "start": 144.74, + "end": 148.88, + "probability": 0.9746 + }, + { + "start": 150.14, + "end": 154.1, + "probability": 0.9829 + }, + { + "start": 154.9, + "end": 155.24, + "probability": 0.5981 + }, + { + "start": 155.32, + "end": 158.86, + "probability": 0.8679 + }, + { + "start": 159.66, + "end": 160.62, + "probability": 0.991 + }, + { + "start": 161.56, + "end": 165.16, + "probability": 0.9966 + }, + { + "start": 165.82, + "end": 170.16, + "probability": 0.9493 + }, + { + "start": 171.44, + "end": 172.6, + "probability": 0.9819 + }, + { + "start": 173.38, + "end": 175.68, + "probability": 0.9946 + }, + { + "start": 175.78, + "end": 181.54, + "probability": 0.9922 + }, + { + "start": 182.44, + "end": 184.82, + "probability": 0.9132 + }, + { + "start": 185.48, + "end": 189.8, + "probability": 0.9551 + }, + { + "start": 190.46, + "end": 193.48, + "probability": 0.97 + }, + { + "start": 194.32, + "end": 199.72, + "probability": 0.9966 + }, + { + "start": 200.9, + "end": 207.18, + "probability": 0.984 + }, + { + "start": 207.84, + "end": 208.64, + "probability": 0.6137 + }, + { + "start": 208.76, + "end": 212.42, + "probability": 0.9972 + }, + { + "start": 213.6, + "end": 217.52, + "probability": 0.9337 + }, + { + "start": 218.24, + "end": 222.46, + "probability": 0.9949 + }, + { + "start": 223.02, + "end": 224.7, + "probability": 0.994 + }, + { + "start": 225.24, + "end": 229.06, + "probability": 0.8322 + }, + { + "start": 229.66, + "end": 231.36, + "probability": 0.9964 + }, + { + "start": 231.54, + "end": 234.78, + "probability": 0.9899 + }, + { + "start": 234.78, + "end": 236.9, + "probability": 0.9984 + }, + { + "start": 237.94, + "end": 238.46, + "probability": 0.6711 + }, + { + "start": 238.56, + "end": 242.66, + "probability": 0.9861 + }, + { + "start": 242.84, + "end": 245.42, + "probability": 0.9277 + }, + { + "start": 246.64, + "end": 247.92, + "probability": 0.9701 + }, + { + "start": 250.43, + "end": 252.92, + "probability": 0.7664 + }, + { + "start": 253.4, + "end": 257.22, + "probability": 0.9289 + }, + { + "start": 257.34, + "end": 258.44, + "probability": 0.8339 + }, + { + "start": 258.5, + "end": 262.22, + "probability": 0.951 + }, + { + "start": 263.34, + "end": 268.28, + "probability": 0.8911 + }, + { + "start": 269.1, + "end": 271.56, + "probability": 0.8548 + }, + { + "start": 272.18, + "end": 273.44, + "probability": 0.9091 + }, + { + "start": 273.54, + "end": 275.41, + "probability": 0.9663 + }, + { + "start": 276.16, + "end": 277.46, + "probability": 0.9569 + }, + { + "start": 278.02, + "end": 280.38, + "probability": 0.9909 + }, + { + "start": 281.02, + "end": 283.26, + "probability": 0.9929 + }, + { + "start": 283.86, + "end": 285.22, + "probability": 0.9474 + }, + { + "start": 285.44, + "end": 286.14, + "probability": 0.7027 + }, + { + "start": 286.62, + "end": 288.24, + "probability": 0.9466 + }, + { + "start": 288.78, + "end": 293.16, + "probability": 0.8612 + }, + { + "start": 293.84, + "end": 296.78, + "probability": 0.8296 + }, + { + "start": 297.54, + "end": 302.12, + "probability": 0.9436 + }, + { + "start": 302.28, + "end": 302.76, + "probability": 0.5137 + }, + { + "start": 302.9, + "end": 304.48, + "probability": 0.9968 + }, + { + "start": 305.16, + "end": 306.14, + "probability": 0.6029 + }, + { + "start": 306.14, + "end": 308.13, + "probability": 0.8958 + }, + { + "start": 309.32, + "end": 311.03, + "probability": 0.9883 + }, + { + "start": 312.1, + "end": 313.61, + "probability": 0.6541 + }, + { + "start": 313.78, + "end": 314.26, + "probability": 0.9441 + }, + { + "start": 314.42, + "end": 317.36, + "probability": 0.9258 + }, + { + "start": 317.86, + "end": 318.74, + "probability": 0.7559 + }, + { + "start": 319.26, + "end": 322.4, + "probability": 0.5658 + }, + { + "start": 322.54, + "end": 325.7, + "probability": 0.989 + }, + { + "start": 325.8, + "end": 326.06, + "probability": 0.5479 + }, + { + "start": 327.26, + "end": 328.18, + "probability": 0.6415 + }, + { + "start": 328.28, + "end": 330.66, + "probability": 0.9834 + }, + { + "start": 331.06, + "end": 332.66, + "probability": 0.9102 + }, + { + "start": 333.4, + "end": 334.02, + "probability": 0.7671 + }, + { + "start": 334.92, + "end": 336.18, + "probability": 0.6404 + }, + { + "start": 337.9, + "end": 340.42, + "probability": 0.7469 + }, + { + "start": 340.76, + "end": 340.96, + "probability": 0.8064 + }, + { + "start": 341.92, + "end": 345.62, + "probability": 0.6367 + }, + { + "start": 346.88, + "end": 347.2, + "probability": 0.5033 + }, + { + "start": 348.51, + "end": 350.58, + "probability": 0.9073 + }, + { + "start": 350.82, + "end": 352.68, + "probability": 0.9448 + }, + { + "start": 353.42, + "end": 355.1, + "probability": 0.8069 + }, + { + "start": 356.2, + "end": 358.54, + "probability": 0.9546 + }, + { + "start": 360.28, + "end": 362.44, + "probability": 0.9912 + }, + { + "start": 363.18, + "end": 363.5, + "probability": 0.8629 + }, + { + "start": 363.5, + "end": 363.7, + "probability": 0.0858 + }, + { + "start": 363.7, + "end": 365.26, + "probability": 0.5648 + }, + { + "start": 365.46, + "end": 367.68, + "probability": 0.6504 + }, + { + "start": 379.76, + "end": 381.46, + "probability": 0.2268 + }, + { + "start": 381.46, + "end": 382.63, + "probability": 0.4142 + }, + { + "start": 387.22, + "end": 390.06, + "probability": 0.9465 + }, + { + "start": 391.3, + "end": 395.08, + "probability": 0.993 + }, + { + "start": 395.66, + "end": 398.58, + "probability": 0.6489 + }, + { + "start": 399.32, + "end": 400.42, + "probability": 0.7502 + }, + { + "start": 401.0, + "end": 402.32, + "probability": 0.4462 + }, + { + "start": 403.02, + "end": 406.88, + "probability": 0.5105 + }, + { + "start": 406.96, + "end": 418.34, + "probability": 0.8257 + }, + { + "start": 418.98, + "end": 419.52, + "probability": 0.5685 + }, + { + "start": 420.16, + "end": 421.28, + "probability": 0.6674 + }, + { + "start": 422.06, + "end": 424.26, + "probability": 0.4303 + }, + { + "start": 425.3, + "end": 426.3, + "probability": 0.701 + }, + { + "start": 427.44, + "end": 430.58, + "probability": 0.9895 + }, + { + "start": 431.1, + "end": 438.78, + "probability": 0.9846 + }, + { + "start": 440.38, + "end": 445.5, + "probability": 0.9721 + }, + { + "start": 445.5, + "end": 451.1, + "probability": 0.9287 + }, + { + "start": 451.3, + "end": 453.58, + "probability": 0.9035 + }, + { + "start": 454.1, + "end": 455.82, + "probability": 0.8662 + }, + { + "start": 456.86, + "end": 458.14, + "probability": 0.5859 + }, + { + "start": 458.82, + "end": 464.42, + "probability": 0.9866 + }, + { + "start": 465.2, + "end": 468.26, + "probability": 0.998 + }, + { + "start": 469.08, + "end": 469.52, + "probability": 0.8353 + }, + { + "start": 470.32, + "end": 475.92, + "probability": 0.997 + }, + { + "start": 476.96, + "end": 479.54, + "probability": 0.983 + }, + { + "start": 480.22, + "end": 483.1, + "probability": 0.992 + }, + { + "start": 483.68, + "end": 487.02, + "probability": 0.9862 + }, + { + "start": 487.66, + "end": 493.48, + "probability": 0.9957 + }, + { + "start": 493.6, + "end": 494.18, + "probability": 0.4821 + }, + { + "start": 494.3, + "end": 494.4, + "probability": 0.775 + }, + { + "start": 496.99, + "end": 498.28, + "probability": 0.2012 + }, + { + "start": 498.46, + "end": 500.28, + "probability": 0.4244 + }, + { + "start": 500.64, + "end": 503.01, + "probability": 0.9624 + }, + { + "start": 503.58, + "end": 505.38, + "probability": 0.9958 + }, + { + "start": 506.16, + "end": 507.46, + "probability": 0.7206 + }, + { + "start": 513.82, + "end": 516.86, + "probability": 0.6541 + }, + { + "start": 517.14, + "end": 517.82, + "probability": 0.8552 + }, + { + "start": 518.52, + "end": 521.18, + "probability": 0.9744 + }, + { + "start": 522.02, + "end": 528.98, + "probability": 0.9818 + }, + { + "start": 529.62, + "end": 532.48, + "probability": 0.7933 + }, + { + "start": 533.2, + "end": 535.44, + "probability": 0.6764 + }, + { + "start": 536.6, + "end": 542.38, + "probability": 0.9778 + }, + { + "start": 543.0, + "end": 545.6, + "probability": 0.8587 + }, + { + "start": 545.6, + "end": 547.45, + "probability": 0.8435 + }, + { + "start": 547.98, + "end": 549.04, + "probability": 0.8827 + }, + { + "start": 549.12, + "end": 550.03, + "probability": 0.7809 + }, + { + "start": 550.2, + "end": 555.52, + "probability": 0.7445 + }, + { + "start": 555.94, + "end": 560.34, + "probability": 0.9839 + }, + { + "start": 560.72, + "end": 561.02, + "probability": 0.5206 + }, + { + "start": 561.22, + "end": 563.14, + "probability": 0.7471 + }, + { + "start": 563.14, + "end": 563.76, + "probability": 0.3562 + }, + { + "start": 563.76, + "end": 567.12, + "probability": 0.9863 + }, + { + "start": 567.12, + "end": 572.62, + "probability": 0.6403 + }, + { + "start": 572.92, + "end": 573.82, + "probability": 0.6257 + }, + { + "start": 575.3, + "end": 578.08, + "probability": 0.5983 + }, + { + "start": 578.24, + "end": 580.16, + "probability": 0.5566 + }, + { + "start": 580.6, + "end": 582.3, + "probability": 0.2673 + }, + { + "start": 582.74, + "end": 582.96, + "probability": 0.0824 + }, + { + "start": 583.06, + "end": 583.06, + "probability": 0.0424 + }, + { + "start": 583.06, + "end": 583.18, + "probability": 0.3239 + }, + { + "start": 588.1, + "end": 588.48, + "probability": 0.2511 + }, + { + "start": 589.36, + "end": 592.42, + "probability": 0.4582 + }, + { + "start": 592.7, + "end": 593.6, + "probability": 0.8093 + }, + { + "start": 593.9, + "end": 594.58, + "probability": 0.5287 + }, + { + "start": 594.74, + "end": 595.58, + "probability": 0.6718 + }, + { + "start": 595.82, + "end": 596.2, + "probability": 0.7265 + }, + { + "start": 596.32, + "end": 596.96, + "probability": 0.8365 + }, + { + "start": 597.24, + "end": 598.96, + "probability": 0.9712 + }, + { + "start": 601.58, + "end": 603.1, + "probability": 0.6889 + }, + { + "start": 603.24, + "end": 606.88, + "probability": 0.706 + }, + { + "start": 607.74, + "end": 612.54, + "probability": 0.9784 + }, + { + "start": 613.38, + "end": 615.94, + "probability": 0.9775 + }, + { + "start": 617.44, + "end": 621.88, + "probability": 0.9484 + }, + { + "start": 622.6, + "end": 626.86, + "probability": 0.9522 + }, + { + "start": 627.86, + "end": 628.82, + "probability": 0.8228 + }, + { + "start": 629.5, + "end": 632.26, + "probability": 0.9829 + }, + { + "start": 632.82, + "end": 634.92, + "probability": 0.8066 + }, + { + "start": 635.32, + "end": 635.72, + "probability": 0.3941 + }, + { + "start": 635.82, + "end": 636.82, + "probability": 0.688 + }, + { + "start": 637.26, + "end": 637.92, + "probability": 0.8689 + }, + { + "start": 638.24, + "end": 638.48, + "probability": 0.7957 + }, + { + "start": 639.42, + "end": 641.52, + "probability": 0.8351 + }, + { + "start": 641.9, + "end": 644.44, + "probability": 0.9488 + }, + { + "start": 644.44, + "end": 647.3, + "probability": 0.9512 + }, + { + "start": 647.66, + "end": 648.76, + "probability": 0.9101 + }, + { + "start": 648.84, + "end": 649.2, + "probability": 0.7947 + }, + { + "start": 649.42, + "end": 650.12, + "probability": 0.2826 + }, + { + "start": 650.24, + "end": 652.1, + "probability": 0.9884 + }, + { + "start": 653.9, + "end": 655.46, + "probability": 0.8971 + }, + { + "start": 655.66, + "end": 658.38, + "probability": 0.9259 + }, + { + "start": 659.43, + "end": 662.84, + "probability": 0.9423 + }, + { + "start": 663.26, + "end": 667.14, + "probability": 0.6586 + }, + { + "start": 667.74, + "end": 667.74, + "probability": 0.1682 + }, + { + "start": 669.48, + "end": 672.54, + "probability": 0.9125 + }, + { + "start": 672.9, + "end": 673.08, + "probability": 0.3845 + }, + { + "start": 673.12, + "end": 678.06, + "probability": 0.8846 + }, + { + "start": 678.18, + "end": 679.32, + "probability": 0.8442 + }, + { + "start": 679.42, + "end": 681.62, + "probability": 0.9834 + }, + { + "start": 682.74, + "end": 685.38, + "probability": 0.4353 + }, + { + "start": 685.48, + "end": 685.82, + "probability": 0.3781 + }, + { + "start": 686.4, + "end": 686.4, + "probability": 0.3665 + }, + { + "start": 686.52, + "end": 687.64, + "probability": 0.7518 + }, + { + "start": 687.8, + "end": 688.76, + "probability": 0.7772 + }, + { + "start": 688.78, + "end": 690.85, + "probability": 0.5791 + }, + { + "start": 691.32, + "end": 694.48, + "probability": 0.6933 + }, + { + "start": 694.64, + "end": 696.46, + "probability": 0.188 + }, + { + "start": 696.48, + "end": 698.3, + "probability": 0.5264 + }, + { + "start": 698.88, + "end": 699.43, + "probability": 0.0351 + }, + { + "start": 699.64, + "end": 701.82, + "probability": 0.8019 + }, + { + "start": 703.12, + "end": 704.68, + "probability": 0.3985 + }, + { + "start": 704.8, + "end": 707.18, + "probability": 0.8369 + }, + { + "start": 707.74, + "end": 708.64, + "probability": 0.9556 + }, + { + "start": 709.38, + "end": 712.04, + "probability": 0.8064 + }, + { + "start": 712.38, + "end": 715.98, + "probability": 0.1729 + }, + { + "start": 716.28, + "end": 716.28, + "probability": 0.2984 + }, + { + "start": 716.28, + "end": 716.28, + "probability": 0.1166 + }, + { + "start": 716.28, + "end": 717.12, + "probability": 0.0128 + }, + { + "start": 717.12, + "end": 717.8, + "probability": 0.2345 + }, + { + "start": 717.9, + "end": 718.78, + "probability": 0.7356 + }, + { + "start": 719.4, + "end": 722.32, + "probability": 0.9814 + }, + { + "start": 722.32, + "end": 725.78, + "probability": 0.9913 + }, + { + "start": 725.88, + "end": 727.76, + "probability": 0.261 + }, + { + "start": 728.36, + "end": 729.48, + "probability": 0.5909 + }, + { + "start": 730.74, + "end": 732.22, + "probability": 0.6745 + }, + { + "start": 732.42, + "end": 734.42, + "probability": 0.9413 + }, + { + "start": 734.46, + "end": 738.08, + "probability": 0.9768 + }, + { + "start": 738.22, + "end": 742.34, + "probability": 0.876 + }, + { + "start": 742.34, + "end": 745.1, + "probability": 0.9968 + }, + { + "start": 745.68, + "end": 746.98, + "probability": 0.8672 + }, + { + "start": 747.46, + "end": 752.64, + "probability": 0.8685 + }, + { + "start": 753.08, + "end": 754.54, + "probability": 0.9784 + }, + { + "start": 755.08, + "end": 756.08, + "probability": 0.9726 + }, + { + "start": 757.44, + "end": 757.44, + "probability": 0.109 + }, + { + "start": 757.44, + "end": 758.2, + "probability": 0.5421 + }, + { + "start": 763.64, + "end": 765.02, + "probability": 0.7731 + }, + { + "start": 765.7, + "end": 770.76, + "probability": 0.9893 + }, + { + "start": 771.34, + "end": 774.24, + "probability": 0.9899 + }, + { + "start": 774.82, + "end": 777.2, + "probability": 0.9819 + }, + { + "start": 778.24, + "end": 779.34, + "probability": 0.7864 + }, + { + "start": 779.74, + "end": 786.9, + "probability": 0.9761 + }, + { + "start": 787.1, + "end": 788.56, + "probability": 0.9937 + }, + { + "start": 789.5, + "end": 790.04, + "probability": 0.6918 + }, + { + "start": 790.22, + "end": 794.0, + "probability": 0.9951 + }, + { + "start": 794.34, + "end": 795.79, + "probability": 0.9409 + }, + { + "start": 796.6, + "end": 797.75, + "probability": 0.7617 + }, + { + "start": 797.98, + "end": 799.57, + "probability": 0.814 + }, + { + "start": 799.88, + "end": 800.32, + "probability": 0.6505 + }, + { + "start": 800.32, + "end": 800.62, + "probability": 0.7307 + }, + { + "start": 801.18, + "end": 802.05, + "probability": 0.7627 + }, + { + "start": 802.6, + "end": 804.66, + "probability": 0.9392 + }, + { + "start": 805.14, + "end": 805.8, + "probability": 0.6049 + }, + { + "start": 806.3, + "end": 808.46, + "probability": 0.4995 + }, + { + "start": 808.52, + "end": 809.87, + "probability": 0.9289 + }, + { + "start": 812.36, + "end": 816.92, + "probability": 0.9013 + }, + { + "start": 818.04, + "end": 819.84, + "probability": 0.7981 + }, + { + "start": 820.66, + "end": 821.94, + "probability": 0.7803 + }, + { + "start": 822.02, + "end": 824.22, + "probability": 0.8513 + }, + { + "start": 824.28, + "end": 825.74, + "probability": 0.8156 + }, + { + "start": 826.46, + "end": 828.86, + "probability": 0.9642 + }, + { + "start": 829.52, + "end": 831.6, + "probability": 0.9346 + }, + { + "start": 832.9, + "end": 838.64, + "probability": 0.9858 + }, + { + "start": 840.08, + "end": 846.72, + "probability": 0.9829 + }, + { + "start": 848.28, + "end": 856.26, + "probability": 0.9956 + }, + { + "start": 856.26, + "end": 860.18, + "probability": 0.9714 + }, + { + "start": 861.12, + "end": 864.98, + "probability": 0.9111 + }, + { + "start": 867.86, + "end": 869.52, + "probability": 0.5565 + }, + { + "start": 870.3, + "end": 879.28, + "probability": 0.962 + }, + { + "start": 880.34, + "end": 884.9, + "probability": 0.9569 + }, + { + "start": 885.86, + "end": 889.76, + "probability": 0.9917 + }, + { + "start": 890.36, + "end": 891.66, + "probability": 0.6733 + }, + { + "start": 892.24, + "end": 894.12, + "probability": 0.8725 + }, + { + "start": 894.32, + "end": 895.16, + "probability": 0.7621 + }, + { + "start": 895.22, + "end": 898.76, + "probability": 0.9689 + }, + { + "start": 899.94, + "end": 902.98, + "probability": 0.8546 + }, + { + "start": 904.24, + "end": 905.3, + "probability": 0.9375 + }, + { + "start": 907.08, + "end": 912.26, + "probability": 0.9561 + }, + { + "start": 912.84, + "end": 915.9, + "probability": 0.9956 + }, + { + "start": 916.0, + "end": 921.74, + "probability": 0.9927 + }, + { + "start": 923.79, + "end": 927.64, + "probability": 0.8423 + }, + { + "start": 928.66, + "end": 932.04, + "probability": 0.9077 + }, + { + "start": 933.12, + "end": 934.9, + "probability": 0.8994 + }, + { + "start": 936.12, + "end": 938.0, + "probability": 0.9304 + }, + { + "start": 939.18, + "end": 941.7, + "probability": 0.9976 + }, + { + "start": 942.62, + "end": 946.17, + "probability": 0.9863 + }, + { + "start": 946.88, + "end": 947.58, + "probability": 0.6944 + }, + { + "start": 948.42, + "end": 949.24, + "probability": 0.9673 + }, + { + "start": 950.4, + "end": 956.28, + "probability": 0.9917 + }, + { + "start": 956.6, + "end": 957.13, + "probability": 0.6402 + }, + { + "start": 958.6, + "end": 965.72, + "probability": 0.968 + }, + { + "start": 966.24, + "end": 967.7, + "probability": 0.818 + }, + { + "start": 967.76, + "end": 969.44, + "probability": 0.9819 + }, + { + "start": 969.9, + "end": 971.76, + "probability": 0.9515 + }, + { + "start": 972.18, + "end": 974.6, + "probability": 0.8299 + }, + { + "start": 975.08, + "end": 978.46, + "probability": 0.9941 + }, + { + "start": 979.86, + "end": 981.16, + "probability": 0.9624 + }, + { + "start": 982.2, + "end": 985.24, + "probability": 0.9847 + }, + { + "start": 985.24, + "end": 989.26, + "probability": 0.9954 + }, + { + "start": 989.68, + "end": 991.8, + "probability": 0.6828 + }, + { + "start": 992.78, + "end": 995.28, + "probability": 0.666 + }, + { + "start": 996.08, + "end": 997.78, + "probability": 0.9873 + }, + { + "start": 998.32, + "end": 1002.24, + "probability": 0.7299 + }, + { + "start": 1003.12, + "end": 1004.84, + "probability": 0.8914 + }, + { + "start": 1005.7, + "end": 1009.84, + "probability": 0.7642 + }, + { + "start": 1010.44, + "end": 1012.48, + "probability": 0.9941 + }, + { + "start": 1013.3, + "end": 1019.86, + "probability": 0.9912 + }, + { + "start": 1021.66, + "end": 1021.94, + "probability": 0.7115 + }, + { + "start": 1022.04, + "end": 1022.78, + "probability": 0.5783 + }, + { + "start": 1022.84, + "end": 1028.01, + "probability": 0.9922 + }, + { + "start": 1029.34, + "end": 1029.92, + "probability": 0.6832 + }, + { + "start": 1031.29, + "end": 1036.86, + "probability": 0.919 + }, + { + "start": 1037.46, + "end": 1038.52, + "probability": 0.9948 + }, + { + "start": 1039.38, + "end": 1040.8, + "probability": 0.9992 + }, + { + "start": 1041.69, + "end": 1043.52, + "probability": 0.7922 + }, + { + "start": 1043.92, + "end": 1045.72, + "probability": 0.9923 + }, + { + "start": 1045.82, + "end": 1049.08, + "probability": 0.9909 + }, + { + "start": 1049.36, + "end": 1049.8, + "probability": 0.2546 + }, + { + "start": 1051.48, + "end": 1055.58, + "probability": 0.9814 + }, + { + "start": 1055.72, + "end": 1057.42, + "probability": 0.6985 + }, + { + "start": 1057.46, + "end": 1061.18, + "probability": 0.8507 + }, + { + "start": 1061.18, + "end": 1064.48, + "probability": 0.9961 + }, + { + "start": 1066.3, + "end": 1068.3, + "probability": 0.6263 + }, + { + "start": 1068.86, + "end": 1070.26, + "probability": 0.6048 + }, + { + "start": 1070.62, + "end": 1072.72, + "probability": 0.9912 + }, + { + "start": 1073.54, + "end": 1074.56, + "probability": 0.9951 + }, + { + "start": 1075.24, + "end": 1078.86, + "probability": 0.9181 + }, + { + "start": 1079.68, + "end": 1082.16, + "probability": 0.5139 + }, + { + "start": 1082.76, + "end": 1086.92, + "probability": 0.9151 + }, + { + "start": 1087.04, + "end": 1087.56, + "probability": 0.2515 + }, + { + "start": 1088.34, + "end": 1094.16, + "probability": 0.6938 + }, + { + "start": 1095.96, + "end": 1097.54, + "probability": 0.3407 + }, + { + "start": 1098.34, + "end": 1099.81, + "probability": 0.5593 + }, + { + "start": 1100.5, + "end": 1101.52, + "probability": 0.8853 + }, + { + "start": 1101.6, + "end": 1103.74, + "probability": 0.9694 + }, + { + "start": 1104.44, + "end": 1104.6, + "probability": 0.2442 + }, + { + "start": 1105.72, + "end": 1109.18, + "probability": 0.8303 + }, + { + "start": 1109.78, + "end": 1111.6, + "probability": 0.7248 + }, + { + "start": 1111.82, + "end": 1115.16, + "probability": 0.9319 + }, + { + "start": 1116.12, + "end": 1120.08, + "probability": 0.9559 + }, + { + "start": 1120.9, + "end": 1122.78, + "probability": 0.9935 + }, + { + "start": 1123.0, + "end": 1126.68, + "probability": 0.9744 + }, + { + "start": 1127.46, + "end": 1127.86, + "probability": 0.6135 + }, + { + "start": 1128.0, + "end": 1130.11, + "probability": 0.9066 + }, + { + "start": 1131.16, + "end": 1131.56, + "probability": 0.6184 + }, + { + "start": 1132.28, + "end": 1134.2, + "probability": 0.7533 + }, + { + "start": 1136.46, + "end": 1137.44, + "probability": 0.9934 + }, + { + "start": 1139.22, + "end": 1142.86, + "probability": 0.7188 + }, + { + "start": 1142.86, + "end": 1145.02, + "probability": 0.8905 + }, + { + "start": 1146.78, + "end": 1147.52, + "probability": 0.915 + }, + { + "start": 1148.74, + "end": 1151.64, + "probability": 0.8083 + }, + { + "start": 1152.86, + "end": 1157.28, + "probability": 0.9647 + }, + { + "start": 1158.94, + "end": 1162.98, + "probability": 0.9771 + }, + { + "start": 1164.1, + "end": 1165.88, + "probability": 0.9726 + }, + { + "start": 1165.88, + "end": 1169.42, + "probability": 0.7603 + }, + { + "start": 1170.7, + "end": 1172.92, + "probability": 0.5306 + }, + { + "start": 1173.66, + "end": 1175.14, + "probability": 0.7221 + }, + { + "start": 1176.84, + "end": 1178.16, + "probability": 0.9534 + }, + { + "start": 1178.46, + "end": 1185.02, + "probability": 0.7913 + }, + { + "start": 1185.8, + "end": 1188.81, + "probability": 0.7764 + }, + { + "start": 1190.7, + "end": 1194.5, + "probability": 0.7662 + }, + { + "start": 1194.62, + "end": 1197.77, + "probability": 0.9475 + }, + { + "start": 1197.82, + "end": 1200.88, + "probability": 0.9974 + }, + { + "start": 1202.18, + "end": 1203.14, + "probability": 0.8746 + }, + { + "start": 1203.96, + "end": 1204.96, + "probability": 0.7985 + }, + { + "start": 1205.68, + "end": 1207.34, + "probability": 0.9891 + }, + { + "start": 1207.46, + "end": 1210.18, + "probability": 0.7274 + }, + { + "start": 1210.26, + "end": 1212.34, + "probability": 0.9821 + }, + { + "start": 1213.8, + "end": 1218.54, + "probability": 0.9782 + }, + { + "start": 1219.16, + "end": 1221.42, + "probability": 0.9829 + }, + { + "start": 1222.14, + "end": 1224.9, + "probability": 0.9568 + }, + { + "start": 1225.76, + "end": 1227.76, + "probability": 0.9726 + }, + { + "start": 1229.4, + "end": 1232.22, + "probability": 0.9945 + }, + { + "start": 1232.38, + "end": 1235.3, + "probability": 0.9717 + }, + { + "start": 1235.64, + "end": 1237.96, + "probability": 0.9031 + }, + { + "start": 1238.78, + "end": 1241.68, + "probability": 0.9914 + }, + { + "start": 1243.0, + "end": 1243.4, + "probability": 0.6626 + }, + { + "start": 1243.54, + "end": 1246.66, + "probability": 0.9884 + }, + { + "start": 1246.66, + "end": 1252.78, + "probability": 0.9896 + }, + { + "start": 1253.3, + "end": 1256.04, + "probability": 0.9943 + }, + { + "start": 1256.98, + "end": 1262.0, + "probability": 0.9855 + }, + { + "start": 1263.04, + "end": 1265.86, + "probability": 0.9864 + }, + { + "start": 1265.86, + "end": 1268.52, + "probability": 0.9338 + }, + { + "start": 1269.36, + "end": 1271.98, + "probability": 0.9956 + }, + { + "start": 1272.08, + "end": 1272.94, + "probability": 0.7392 + }, + { + "start": 1273.58, + "end": 1276.22, + "probability": 0.9834 + }, + { + "start": 1277.06, + "end": 1280.22, + "probability": 0.9103 + }, + { + "start": 1280.92, + "end": 1282.44, + "probability": 0.9919 + }, + { + "start": 1282.86, + "end": 1282.96, + "probability": 0.6166 + }, + { + "start": 1283.94, + "end": 1284.88, + "probability": 0.6237 + }, + { + "start": 1285.58, + "end": 1287.14, + "probability": 0.9475 + }, + { + "start": 1287.72, + "end": 1290.76, + "probability": 0.876 + }, + { + "start": 1291.42, + "end": 1293.28, + "probability": 0.9138 + }, + { + "start": 1294.36, + "end": 1295.68, + "probability": 0.3479 + }, + { + "start": 1296.16, + "end": 1300.38, + "probability": 0.9829 + }, + { + "start": 1300.72, + "end": 1305.94, + "probability": 0.3889 + }, + { + "start": 1306.34, + "end": 1307.1, + "probability": 0.9863 + }, + { + "start": 1307.18, + "end": 1307.86, + "probability": 0.9246 + }, + { + "start": 1308.92, + "end": 1309.66, + "probability": 0.6929 + }, + { + "start": 1311.1, + "end": 1315.44, + "probability": 0.6866 + }, + { + "start": 1315.58, + "end": 1315.86, + "probability": 0.6838 + }, + { + "start": 1315.9, + "end": 1317.16, + "probability": 0.8426 + }, + { + "start": 1319.02, + "end": 1321.72, + "probability": 0.7337 + }, + { + "start": 1322.26, + "end": 1322.84, + "probability": 0.8271 + }, + { + "start": 1322.92, + "end": 1328.88, + "probability": 0.8672 + }, + { + "start": 1329.04, + "end": 1329.18, + "probability": 0.416 + }, + { + "start": 1330.28, + "end": 1333.66, + "probability": 0.8647 + }, + { + "start": 1334.36, + "end": 1337.08, + "probability": 0.6895 + }, + { + "start": 1338.06, + "end": 1338.48, + "probability": 0.7122 + }, + { + "start": 1339.12, + "end": 1339.32, + "probability": 0.883 + }, + { + "start": 1340.72, + "end": 1342.7, + "probability": 0.5204 + }, + { + "start": 1343.24, + "end": 1344.57, + "probability": 0.9998 + }, + { + "start": 1345.38, + "end": 1346.36, + "probability": 0.3905 + }, + { + "start": 1347.26, + "end": 1348.16, + "probability": 0.704 + }, + { + "start": 1349.38, + "end": 1352.02, + "probability": 0.974 + }, + { + "start": 1352.52, + "end": 1355.74, + "probability": 0.9903 + }, + { + "start": 1357.7, + "end": 1358.26, + "probability": 0.4178 + }, + { + "start": 1358.3, + "end": 1358.82, + "probability": 0.4212 + }, + { + "start": 1359.22, + "end": 1360.92, + "probability": 0.7042 + }, + { + "start": 1361.14, + "end": 1364.0, + "probability": 0.8584 + }, + { + "start": 1364.78, + "end": 1367.14, + "probability": 0.713 + }, + { + "start": 1367.62, + "end": 1370.28, + "probability": 0.739 + }, + { + "start": 1370.96, + "end": 1376.28, + "probability": 0.9939 + }, + { + "start": 1377.02, + "end": 1378.28, + "probability": 0.8389 + }, + { + "start": 1379.24, + "end": 1380.4, + "probability": 0.773 + }, + { + "start": 1380.56, + "end": 1382.74, + "probability": 0.7957 + }, + { + "start": 1383.5, + "end": 1387.06, + "probability": 0.9671 + }, + { + "start": 1387.06, + "end": 1392.24, + "probability": 0.998 + }, + { + "start": 1392.88, + "end": 1393.24, + "probability": 0.6862 + }, + { + "start": 1393.64, + "end": 1397.42, + "probability": 0.9939 + }, + { + "start": 1397.98, + "end": 1404.08, + "probability": 0.9935 + }, + { + "start": 1404.54, + "end": 1407.14, + "probability": 0.995 + }, + { + "start": 1407.58, + "end": 1412.1, + "probability": 0.9871 + }, + { + "start": 1412.39, + "end": 1415.98, + "probability": 0.9519 + }, + { + "start": 1416.18, + "end": 1416.64, + "probability": 0.8371 + }, + { + "start": 1416.84, + "end": 1417.3, + "probability": 0.6599 + }, + { + "start": 1417.38, + "end": 1418.86, + "probability": 0.7959 + }, + { + "start": 1419.56, + "end": 1422.16, + "probability": 0.8105 + }, + { + "start": 1422.92, + "end": 1425.84, + "probability": 0.9176 + }, + { + "start": 1430.38, + "end": 1432.18, + "probability": 0.6341 + }, + { + "start": 1432.92, + "end": 1437.8, + "probability": 0.7157 + }, + { + "start": 1438.78, + "end": 1443.32, + "probability": 0.832 + }, + { + "start": 1444.1, + "end": 1444.88, + "probability": 0.88 + }, + { + "start": 1445.66, + "end": 1448.64, + "probability": 0.8062 + }, + { + "start": 1449.72, + "end": 1452.32, + "probability": 0.6948 + }, + { + "start": 1452.48, + "end": 1453.58, + "probability": 0.9583 + }, + { + "start": 1454.38, + "end": 1454.58, + "probability": 0.737 + }, + { + "start": 1455.26, + "end": 1457.84, + "probability": 0.9886 + }, + { + "start": 1458.72, + "end": 1462.38, + "probability": 0.9383 + }, + { + "start": 1462.8, + "end": 1467.02, + "probability": 0.8844 + }, + { + "start": 1467.12, + "end": 1468.4, + "probability": 0.8837 + }, + { + "start": 1469.1, + "end": 1472.98, + "probability": 0.9961 + }, + { + "start": 1473.36, + "end": 1477.42, + "probability": 0.9895 + }, + { + "start": 1477.42, + "end": 1482.46, + "probability": 0.9094 + }, + { + "start": 1482.62, + "end": 1483.72, + "probability": 0.7213 + }, + { + "start": 1484.0, + "end": 1485.52, + "probability": 0.9766 + }, + { + "start": 1486.74, + "end": 1487.3, + "probability": 0.7137 + }, + { + "start": 1487.82, + "end": 1489.54, + "probability": 0.9882 + }, + { + "start": 1490.42, + "end": 1491.7, + "probability": 0.9487 + }, + { + "start": 1493.7, + "end": 1495.06, + "probability": 0.7805 + }, + { + "start": 1495.18, + "end": 1499.82, + "probability": 0.7518 + }, + { + "start": 1500.76, + "end": 1503.52, + "probability": 0.7493 + }, + { + "start": 1505.11, + "end": 1508.66, + "probability": 0.8118 + }, + { + "start": 1509.38, + "end": 1511.46, + "probability": 0.9038 + }, + { + "start": 1512.74, + "end": 1515.34, + "probability": 0.7748 + }, + { + "start": 1515.62, + "end": 1519.24, + "probability": 0.9955 + }, + { + "start": 1521.12, + "end": 1525.32, + "probability": 0.7942 + }, + { + "start": 1525.64, + "end": 1527.76, + "probability": 0.0887 + }, + { + "start": 1528.96, + "end": 1532.92, + "probability": 0.9574 + }, + { + "start": 1533.46, + "end": 1539.66, + "probability": 0.7384 + }, + { + "start": 1540.44, + "end": 1541.08, + "probability": 0.6946 + }, + { + "start": 1541.2, + "end": 1541.88, + "probability": 0.5007 + }, + { + "start": 1542.0, + "end": 1544.98, + "probability": 0.9916 + }, + { + "start": 1545.06, + "end": 1545.88, + "probability": 0.7267 + }, + { + "start": 1547.08, + "end": 1548.9, + "probability": 0.8691 + }, + { + "start": 1548.92, + "end": 1553.46, + "probability": 0.9641 + }, + { + "start": 1553.54, + "end": 1554.46, + "probability": 0.6951 + }, + { + "start": 1555.04, + "end": 1560.5, + "probability": 0.9892 + }, + { + "start": 1561.54, + "end": 1563.18, + "probability": 0.8199 + }, + { + "start": 1563.4, + "end": 1565.94, + "probability": 0.9831 + }, + { + "start": 1566.28, + "end": 1566.72, + "probability": 0.5796 + }, + { + "start": 1567.4, + "end": 1567.92, + "probability": 0.6542 + }, + { + "start": 1568.56, + "end": 1571.94, + "probability": 0.8634 + }, + { + "start": 1572.58, + "end": 1574.6, + "probability": 0.7146 + }, + { + "start": 1575.48, + "end": 1576.7, + "probability": 0.8875 + }, + { + "start": 1576.86, + "end": 1577.32, + "probability": 0.8303 + }, + { + "start": 1577.32, + "end": 1580.08, + "probability": 0.957 + }, + { + "start": 1580.14, + "end": 1581.94, + "probability": 0.9751 + }, + { + "start": 1582.7, + "end": 1583.82, + "probability": 0.9905 + }, + { + "start": 1584.02, + "end": 1584.42, + "probability": 0.434 + }, + { + "start": 1585.52, + "end": 1585.96, + "probability": 0.4477 + }, + { + "start": 1587.04, + "end": 1588.86, + "probability": 0.494 + }, + { + "start": 1588.96, + "end": 1590.16, + "probability": 0.9702 + }, + { + "start": 1590.2, + "end": 1591.74, + "probability": 0.9482 + }, + { + "start": 1591.78, + "end": 1592.86, + "probability": 0.9958 + }, + { + "start": 1593.58, + "end": 1597.08, + "probability": 0.9832 + }, + { + "start": 1597.92, + "end": 1599.34, + "probability": 0.9772 + }, + { + "start": 1599.42, + "end": 1601.4, + "probability": 0.9395 + }, + { + "start": 1601.4, + "end": 1602.72, + "probability": 0.4266 + }, + { + "start": 1603.64, + "end": 1604.46, + "probability": 0.8842 + }, + { + "start": 1605.16, + "end": 1607.54, + "probability": 0.8006 + }, + { + "start": 1608.62, + "end": 1611.86, + "probability": 0.985 + }, + { + "start": 1612.7, + "end": 1614.13, + "probability": 0.9457 + }, + { + "start": 1614.88, + "end": 1616.3, + "probability": 0.9969 + }, + { + "start": 1616.44, + "end": 1616.96, + "probability": 0.9745 + }, + { + "start": 1617.86, + "end": 1619.94, + "probability": 0.9954 + }, + { + "start": 1620.14, + "end": 1624.78, + "probability": 0.815 + }, + { + "start": 1626.54, + "end": 1629.52, + "probability": 0.6823 + }, + { + "start": 1629.7, + "end": 1632.1, + "probability": 0.6644 + }, + { + "start": 1632.96, + "end": 1635.3, + "probability": 0.9805 + }, + { + "start": 1635.5, + "end": 1637.72, + "probability": 0.8197 + }, + { + "start": 1638.54, + "end": 1643.72, + "probability": 0.9897 + }, + { + "start": 1643.88, + "end": 1644.54, + "probability": 0.9006 + }, + { + "start": 1644.86, + "end": 1645.44, + "probability": 0.953 + }, + { + "start": 1646.04, + "end": 1647.86, + "probability": 0.7188 + }, + { + "start": 1648.64, + "end": 1648.98, + "probability": 0.2605 + }, + { + "start": 1648.98, + "end": 1652.66, + "probability": 0.9631 + }, + { + "start": 1653.12, + "end": 1653.7, + "probability": 0.7227 + }, + { + "start": 1653.82, + "end": 1660.56, + "probability": 0.8926 + }, + { + "start": 1661.44, + "end": 1663.92, + "probability": 0.7059 + }, + { + "start": 1664.54, + "end": 1665.34, + "probability": 0.6877 + }, + { + "start": 1666.32, + "end": 1668.22, + "probability": 0.9904 + }, + { + "start": 1668.82, + "end": 1669.98, + "probability": 0.7134 + }, + { + "start": 1670.38, + "end": 1673.23, + "probability": 0.9664 + }, + { + "start": 1673.44, + "end": 1674.42, + "probability": 0.9937 + }, + { + "start": 1675.08, + "end": 1676.14, + "probability": 0.9846 + }, + { + "start": 1677.0, + "end": 1677.94, + "probability": 0.983 + }, + { + "start": 1678.0, + "end": 1678.4, + "probability": 0.3685 + }, + { + "start": 1678.81, + "end": 1684.76, + "probability": 0.9893 + }, + { + "start": 1684.84, + "end": 1687.28, + "probability": 0.9616 + }, + { + "start": 1687.8, + "end": 1689.6, + "probability": 0.9443 + }, + { + "start": 1689.7, + "end": 1690.52, + "probability": 0.4626 + }, + { + "start": 1691.14, + "end": 1693.56, + "probability": 0.8276 + }, + { + "start": 1694.04, + "end": 1695.56, + "probability": 0.9768 + }, + { + "start": 1696.2, + "end": 1701.02, + "probability": 0.8796 + }, + { + "start": 1701.92, + "end": 1704.54, + "probability": 0.9551 + }, + { + "start": 1704.68, + "end": 1706.16, + "probability": 0.8154 + }, + { + "start": 1706.68, + "end": 1709.14, + "probability": 0.9857 + }, + { + "start": 1709.3, + "end": 1710.8, + "probability": 0.9968 + }, + { + "start": 1711.6, + "end": 1714.32, + "probability": 0.7498 + }, + { + "start": 1715.0, + "end": 1718.62, + "probability": 0.9669 + }, + { + "start": 1719.2, + "end": 1720.02, + "probability": 0.5461 + }, + { + "start": 1720.6, + "end": 1721.36, + "probability": 0.8265 + }, + { + "start": 1721.5, + "end": 1723.02, + "probability": 0.9772 + }, + { + "start": 1723.5, + "end": 1726.39, + "probability": 0.9854 + }, + { + "start": 1727.1, + "end": 1730.58, + "probability": 0.962 + }, + { + "start": 1730.74, + "end": 1733.5, + "probability": 0.9974 + }, + { + "start": 1733.94, + "end": 1736.98, + "probability": 0.7374 + }, + { + "start": 1737.56, + "end": 1741.3, + "probability": 0.9088 + }, + { + "start": 1742.1, + "end": 1743.9, + "probability": 0.979 + }, + { + "start": 1744.6, + "end": 1747.16, + "probability": 0.8157 + }, + { + "start": 1747.5, + "end": 1747.94, + "probability": 0.8329 + }, + { + "start": 1748.3, + "end": 1748.58, + "probability": 0.6992 + }, + { + "start": 1749.34, + "end": 1751.6, + "probability": 0.989 + }, + { + "start": 1752.42, + "end": 1754.38, + "probability": 0.8175 + }, + { + "start": 1754.44, + "end": 1757.0, + "probability": 0.6184 + }, + { + "start": 1757.5, + "end": 1761.49, + "probability": 0.8461 + }, + { + "start": 1762.82, + "end": 1766.76, + "probability": 0.6935 + }, + { + "start": 1767.34, + "end": 1767.78, + "probability": 0.0041 + }, + { + "start": 1768.8, + "end": 1772.04, + "probability": 0.5176 + }, + { + "start": 1773.06, + "end": 1775.9, + "probability": 0.8801 + }, + { + "start": 1776.6, + "end": 1784.4, + "probability": 0.7711 + }, + { + "start": 1784.96, + "end": 1787.38, + "probability": 0.74 + }, + { + "start": 1787.96, + "end": 1790.57, + "probability": 0.9876 + }, + { + "start": 1791.18, + "end": 1792.78, + "probability": 0.9178 + }, + { + "start": 1792.92, + "end": 1795.78, + "probability": 0.8918 + }, + { + "start": 1796.64, + "end": 1799.98, + "probability": 0.867 + }, + { + "start": 1800.34, + "end": 1803.04, + "probability": 0.6104 + }, + { + "start": 1803.32, + "end": 1804.35, + "probability": 0.9398 + }, + { + "start": 1804.7, + "end": 1805.08, + "probability": 0.8191 + }, + { + "start": 1805.78, + "end": 1806.66, + "probability": 0.5969 + }, + { + "start": 1806.74, + "end": 1807.98, + "probability": 0.818 + }, + { + "start": 1808.06, + "end": 1812.7, + "probability": 0.9727 + }, + { + "start": 1813.26, + "end": 1814.54, + "probability": 0.8991 + }, + { + "start": 1815.16, + "end": 1817.0, + "probability": 0.974 + }, + { + "start": 1818.96, + "end": 1822.08, + "probability": 0.9907 + }, + { + "start": 1822.26, + "end": 1823.4, + "probability": 0.3378 + }, + { + "start": 1824.06, + "end": 1826.6, + "probability": 0.9163 + }, + { + "start": 1827.98, + "end": 1831.82, + "probability": 0.8949 + }, + { + "start": 1832.96, + "end": 1834.28, + "probability": 0.9727 + }, + { + "start": 1834.4, + "end": 1839.72, + "probability": 0.9938 + }, + { + "start": 1840.26, + "end": 1842.74, + "probability": 0.988 + }, + { + "start": 1844.02, + "end": 1849.06, + "probability": 0.7964 + }, + { + "start": 1849.6, + "end": 1853.02, + "probability": 0.9539 + }, + { + "start": 1853.54, + "end": 1859.34, + "probability": 0.9316 + }, + { + "start": 1859.84, + "end": 1863.78, + "probability": 0.832 + }, + { + "start": 1864.3, + "end": 1873.3, + "probability": 0.7486 + }, + { + "start": 1873.5, + "end": 1877.34, + "probability": 0.9074 + }, + { + "start": 1877.34, + "end": 1880.14, + "probability": 0.9879 + }, + { + "start": 1880.22, + "end": 1885.12, + "probability": 0.9375 + }, + { + "start": 1888.6, + "end": 1889.68, + "probability": 0.3667 + }, + { + "start": 1889.8, + "end": 1890.54, + "probability": 0.5215 + }, + { + "start": 1890.72, + "end": 1892.94, + "probability": 0.8071 + }, + { + "start": 1896.36, + "end": 1897.26, + "probability": 0.828 + }, + { + "start": 1897.38, + "end": 1898.06, + "probability": 0.8054 + }, + { + "start": 1898.16, + "end": 1901.82, + "probability": 0.9839 + }, + { + "start": 1901.96, + "end": 1909.16, + "probability": 0.9631 + }, + { + "start": 1909.58, + "end": 1916.15, + "probability": 0.9388 + }, + { + "start": 1916.62, + "end": 1916.98, + "probability": 0.743 + }, + { + "start": 1917.3, + "end": 1920.88, + "probability": 0.776 + }, + { + "start": 1922.98, + "end": 1924.46, + "probability": 0.7733 + }, + { + "start": 1925.0, + "end": 1925.42, + "probability": 0.5605 + }, + { + "start": 1925.48, + "end": 1928.82, + "probability": 0.8937 + }, + { + "start": 1928.82, + "end": 1930.05, + "probability": 0.6516 + }, + { + "start": 1931.08, + "end": 1931.6, + "probability": 0.9081 + }, + { + "start": 1931.7, + "end": 1932.38, + "probability": 0.5416 + }, + { + "start": 1932.52, + "end": 1936.7, + "probability": 0.9756 + }, + { + "start": 1937.4, + "end": 1939.48, + "probability": 0.9937 + }, + { + "start": 1939.56, + "end": 1941.86, + "probability": 0.9593 + }, + { + "start": 1942.0, + "end": 1943.9, + "probability": 0.4175 + }, + { + "start": 1943.98, + "end": 1944.94, + "probability": 0.8931 + }, + { + "start": 1946.02, + "end": 1947.28, + "probability": 0.3381 + }, + { + "start": 1947.44, + "end": 1950.86, + "probability": 0.9961 + }, + { + "start": 1950.86, + "end": 1953.82, + "probability": 0.9869 + }, + { + "start": 1953.86, + "end": 1958.5, + "probability": 0.9668 + }, + { + "start": 1959.16, + "end": 1960.07, + "probability": 0.9946 + }, + { + "start": 1960.48, + "end": 1967.18, + "probability": 0.9724 + }, + { + "start": 1967.5, + "end": 1974.1, + "probability": 0.9924 + }, + { + "start": 1974.94, + "end": 1979.3, + "probability": 0.9943 + }, + { + "start": 1979.3, + "end": 1982.72, + "probability": 0.9907 + }, + { + "start": 1982.72, + "end": 1986.4, + "probability": 0.9927 + }, + { + "start": 1986.5, + "end": 1989.26, + "probability": 0.7369 + }, + { + "start": 1989.44, + "end": 1993.68, + "probability": 0.9107 + }, + { + "start": 1993.72, + "end": 1996.88, + "probability": 0.5801 + }, + { + "start": 1997.12, + "end": 1997.64, + "probability": 0.4317 + }, + { + "start": 1997.7, + "end": 1998.24, + "probability": 0.8838 + }, + { + "start": 1998.34, + "end": 2002.48, + "probability": 0.9995 + }, + { + "start": 2003.08, + "end": 2006.84, + "probability": 0.9725 + }, + { + "start": 2006.96, + "end": 2008.9, + "probability": 0.995 + }, + { + "start": 2009.52, + "end": 2010.98, + "probability": 0.4925 + }, + { + "start": 2011.26, + "end": 2012.7, + "probability": 0.8384 + }, + { + "start": 2012.8, + "end": 2014.0, + "probability": 0.8769 + }, + { + "start": 2014.14, + "end": 2016.7, + "probability": 0.7776 + }, + { + "start": 2017.3, + "end": 2017.74, + "probability": 0.8573 + }, + { + "start": 2017.82, + "end": 2020.42, + "probability": 0.9482 + }, + { + "start": 2021.22, + "end": 2023.48, + "probability": 0.856 + }, + { + "start": 2024.02, + "end": 2024.42, + "probability": 0.6521 + }, + { + "start": 2025.12, + "end": 2028.48, + "probability": 0.9895 + }, + { + "start": 2028.78, + "end": 2028.96, + "probability": 0.6918 + }, + { + "start": 2029.18, + "end": 2031.92, + "probability": 0.9961 + }, + { + "start": 2032.66, + "end": 2036.6, + "probability": 0.9949 + }, + { + "start": 2037.16, + "end": 2038.71, + "probability": 0.9469 + }, + { + "start": 2039.12, + "end": 2040.9, + "probability": 0.8475 + }, + { + "start": 2041.42, + "end": 2046.06, + "probability": 0.958 + }, + { + "start": 2046.28, + "end": 2046.98, + "probability": 0.3564 + }, + { + "start": 2047.22, + "end": 2048.16, + "probability": 0.9436 + }, + { + "start": 2048.9, + "end": 2049.96, + "probability": 0.9761 + }, + { + "start": 2050.44, + "end": 2051.9, + "probability": 0.8764 + }, + { + "start": 2052.54, + "end": 2053.7, + "probability": 0.9885 + }, + { + "start": 2054.6, + "end": 2056.7, + "probability": 0.8325 + }, + { + "start": 2057.06, + "end": 2058.3, + "probability": 0.9075 + }, + { + "start": 2059.18, + "end": 2061.66, + "probability": 0.7119 + }, + { + "start": 2062.24, + "end": 2064.2, + "probability": 0.5279 + }, + { + "start": 2064.72, + "end": 2066.95, + "probability": 0.6796 + }, + { + "start": 2067.32, + "end": 2068.16, + "probability": 0.9258 + }, + { + "start": 2068.3, + "end": 2068.3, + "probability": 0.7971 + }, + { + "start": 2068.5, + "end": 2068.78, + "probability": 0.4614 + }, + { + "start": 2068.98, + "end": 2069.08, + "probability": 0.2336 + }, + { + "start": 2069.26, + "end": 2071.54, + "probability": 0.8241 + }, + { + "start": 2071.9, + "end": 2072.96, + "probability": 0.7822 + }, + { + "start": 2073.04, + "end": 2074.92, + "probability": 0.9856 + }, + { + "start": 2075.32, + "end": 2077.72, + "probability": 0.9897 + }, + { + "start": 2078.22, + "end": 2079.8, + "probability": 0.9956 + }, + { + "start": 2080.18, + "end": 2080.88, + "probability": 0.6867 + }, + { + "start": 2081.1, + "end": 2082.86, + "probability": 0.9236 + }, + { + "start": 2083.1, + "end": 2087.12, + "probability": 0.8472 + }, + { + "start": 2087.56, + "end": 2090.62, + "probability": 0.9948 + }, + { + "start": 2090.62, + "end": 2094.12, + "probability": 0.9703 + }, + { + "start": 2094.4, + "end": 2096.4, + "probability": 0.9012 + }, + { + "start": 2096.88, + "end": 2097.34, + "probability": 0.276 + }, + { + "start": 2098.56, + "end": 2102.04, + "probability": 0.7832 + }, + { + "start": 2102.66, + "end": 2105.0, + "probability": 0.885 + }, + { + "start": 2105.7, + "end": 2108.32, + "probability": 0.9888 + }, + { + "start": 2108.68, + "end": 2111.28, + "probability": 0.9826 + }, + { + "start": 2111.42, + "end": 2112.12, + "probability": 0.3238 + }, + { + "start": 2112.32, + "end": 2113.14, + "probability": 0.479 + }, + { + "start": 2113.2, + "end": 2118.3, + "probability": 0.9839 + }, + { + "start": 2118.7, + "end": 2118.74, + "probability": 0.3922 + }, + { + "start": 2118.86, + "end": 2121.64, + "probability": 0.9919 + }, + { + "start": 2122.08, + "end": 2122.64, + "probability": 0.5246 + }, + { + "start": 2122.72, + "end": 2123.78, + "probability": 0.3602 + }, + { + "start": 2124.38, + "end": 2124.6, + "probability": 0.003 + }, + { + "start": 2124.6, + "end": 2125.68, + "probability": 0.2587 + }, + { + "start": 2125.8, + "end": 2128.0, + "probability": 0.8384 + }, + { + "start": 2128.16, + "end": 2129.4, + "probability": 0.5471 + }, + { + "start": 2130.24, + "end": 2134.64, + "probability": 0.9343 + }, + { + "start": 2135.18, + "end": 2136.06, + "probability": 0.9056 + }, + { + "start": 2136.72, + "end": 2138.6, + "probability": 0.978 + }, + { + "start": 2140.38, + "end": 2143.42, + "probability": 0.9979 + }, + { + "start": 2143.42, + "end": 2145.96, + "probability": 0.8131 + }, + { + "start": 2146.34, + "end": 2149.14, + "probability": 0.9889 + }, + { + "start": 2150.16, + "end": 2153.85, + "probability": 0.9574 + }, + { + "start": 2154.68, + "end": 2161.04, + "probability": 0.9408 + }, + { + "start": 2161.38, + "end": 2166.2, + "probability": 0.993 + }, + { + "start": 2166.66, + "end": 2168.58, + "probability": 0.7697 + }, + { + "start": 2169.3, + "end": 2169.68, + "probability": 0.6189 + }, + { + "start": 2169.74, + "end": 2170.2, + "probability": 0.8673 + }, + { + "start": 2170.3, + "end": 2172.2, + "probability": 0.9937 + }, + { + "start": 2172.54, + "end": 2174.64, + "probability": 0.9905 + }, + { + "start": 2174.64, + "end": 2177.04, + "probability": 0.998 + }, + { + "start": 2177.92, + "end": 2179.18, + "probability": 0.9516 + }, + { + "start": 2179.36, + "end": 2180.66, + "probability": 0.9959 + }, + { + "start": 2180.92, + "end": 2184.2, + "probability": 0.9831 + }, + { + "start": 2184.72, + "end": 2187.48, + "probability": 0.9393 + }, + { + "start": 2187.88, + "end": 2188.12, + "probability": 0.778 + }, + { + "start": 2190.0, + "end": 2192.2, + "probability": 0.2986 + }, + { + "start": 2192.2, + "end": 2193.08, + "probability": 0.6108 + }, + { + "start": 2193.58, + "end": 2195.96, + "probability": 0.9365 + }, + { + "start": 2196.72, + "end": 2198.14, + "probability": 0.9844 + }, + { + "start": 2198.3, + "end": 2199.6, + "probability": 0.6682 + }, + { + "start": 2200.02, + "end": 2203.2, + "probability": 0.9868 + }, + { + "start": 2203.2, + "end": 2206.62, + "probability": 0.8544 + }, + { + "start": 2206.94, + "end": 2209.38, + "probability": 0.9628 + }, + { + "start": 2209.86, + "end": 2211.54, + "probability": 0.998 + }, + { + "start": 2211.84, + "end": 2213.06, + "probability": 0.9539 + }, + { + "start": 2213.46, + "end": 2214.94, + "probability": 0.9816 + }, + { + "start": 2215.04, + "end": 2216.51, + "probability": 0.9019 + }, + { + "start": 2219.56, + "end": 2221.26, + "probability": 0.7693 + }, + { + "start": 2221.5, + "end": 2222.9, + "probability": 0.4953 + }, + { + "start": 2225.72, + "end": 2229.6, + "probability": 0.8714 + }, + { + "start": 2230.64, + "end": 2237.74, + "probability": 0.9891 + }, + { + "start": 2237.74, + "end": 2242.68, + "probability": 0.7999 + }, + { + "start": 2243.76, + "end": 2248.47, + "probability": 0.9924 + }, + { + "start": 2249.56, + "end": 2254.42, + "probability": 0.975 + }, + { + "start": 2255.06, + "end": 2257.62, + "probability": 0.8819 + }, + { + "start": 2258.24, + "end": 2263.1, + "probability": 0.9669 + }, + { + "start": 2263.74, + "end": 2263.76, + "probability": 0.0153 + }, + { + "start": 2263.76, + "end": 2266.72, + "probability": 0.6296 + }, + { + "start": 2266.88, + "end": 2269.04, + "probability": 0.7084 + }, + { + "start": 2270.41, + "end": 2272.38, + "probability": 0.7775 + }, + { + "start": 2273.26, + "end": 2275.38, + "probability": 0.5578 + }, + { + "start": 2276.66, + "end": 2279.88, + "probability": 0.9708 + }, + { + "start": 2281.34, + "end": 2283.44, + "probability": 0.7944 + }, + { + "start": 2284.16, + "end": 2287.82, + "probability": 0.9492 + }, + { + "start": 2289.18, + "end": 2291.12, + "probability": 0.9985 + }, + { + "start": 2291.36, + "end": 2293.86, + "probability": 0.914 + }, + { + "start": 2294.56, + "end": 2296.9, + "probability": 0.9514 + }, + { + "start": 2297.94, + "end": 2301.92, + "probability": 0.8769 + }, + { + "start": 2302.5, + "end": 2303.6, + "probability": 0.5878 + }, + { + "start": 2304.26, + "end": 2305.38, + "probability": 0.4959 + }, + { + "start": 2305.52, + "end": 2306.82, + "probability": 0.9016 + }, + { + "start": 2307.58, + "end": 2308.76, + "probability": 0.5795 + }, + { + "start": 2308.86, + "end": 2311.18, + "probability": 0.9959 + }, + { + "start": 2312.3, + "end": 2315.62, + "probability": 0.9675 + }, + { + "start": 2316.24, + "end": 2318.88, + "probability": 0.9806 + }, + { + "start": 2319.42, + "end": 2322.26, + "probability": 0.8591 + }, + { + "start": 2322.88, + "end": 2327.52, + "probability": 0.5853 + }, + { + "start": 2328.26, + "end": 2328.9, + "probability": 0.7138 + }, + { + "start": 2329.0, + "end": 2329.4, + "probability": 0.7863 + }, + { + "start": 2329.74, + "end": 2332.62, + "probability": 0.8514 + }, + { + "start": 2333.28, + "end": 2335.84, + "probability": 0.9641 + }, + { + "start": 2336.1, + "end": 2337.24, + "probability": 0.9025 + }, + { + "start": 2338.1, + "end": 2340.28, + "probability": 0.9359 + }, + { + "start": 2340.9, + "end": 2342.98, + "probability": 0.8086 + }, + { + "start": 2343.76, + "end": 2345.26, + "probability": 0.9013 + }, + { + "start": 2345.62, + "end": 2345.82, + "probability": 0.4958 + }, + { + "start": 2346.06, + "end": 2346.6, + "probability": 0.9329 + }, + { + "start": 2346.66, + "end": 2348.23, + "probability": 0.8849 + }, + { + "start": 2348.6, + "end": 2351.11, + "probability": 0.949 + }, + { + "start": 2352.42, + "end": 2356.2, + "probability": 0.9901 + }, + { + "start": 2357.12, + "end": 2357.24, + "probability": 0.1315 + }, + { + "start": 2357.36, + "end": 2358.18, + "probability": 0.7433 + }, + { + "start": 2358.84, + "end": 2362.0, + "probability": 0.8948 + }, + { + "start": 2362.6, + "end": 2363.84, + "probability": 0.9481 + }, + { + "start": 2364.08, + "end": 2365.45, + "probability": 0.9937 + }, + { + "start": 2365.58, + "end": 2368.3, + "probability": 0.9905 + }, + { + "start": 2368.3, + "end": 2373.52, + "probability": 0.9338 + }, + { + "start": 2374.18, + "end": 2376.98, + "probability": 0.8636 + }, + { + "start": 2377.16, + "end": 2380.86, + "probability": 0.9978 + }, + { + "start": 2381.74, + "end": 2384.84, + "probability": 0.7232 + }, + { + "start": 2387.02, + "end": 2391.52, + "probability": 0.8915 + }, + { + "start": 2391.56, + "end": 2394.54, + "probability": 0.9917 + }, + { + "start": 2395.1, + "end": 2397.48, + "probability": 0.9747 + }, + { + "start": 2397.98, + "end": 2399.66, + "probability": 0.9921 + }, + { + "start": 2399.82, + "end": 2400.64, + "probability": 0.8832 + }, + { + "start": 2401.28, + "end": 2402.38, + "probability": 0.7065 + }, + { + "start": 2402.84, + "end": 2404.68, + "probability": 0.968 + }, + { + "start": 2404.7, + "end": 2410.32, + "probability": 0.9601 + }, + { + "start": 2411.08, + "end": 2412.24, + "probability": 0.9967 + }, + { + "start": 2412.98, + "end": 2415.0, + "probability": 0.971 + }, + { + "start": 2415.2, + "end": 2418.3, + "probability": 0.9759 + }, + { + "start": 2418.38, + "end": 2419.26, + "probability": 0.9872 + }, + { + "start": 2419.34, + "end": 2423.44, + "probability": 0.9676 + }, + { + "start": 2423.96, + "end": 2426.58, + "probability": 0.6856 + }, + { + "start": 2427.45, + "end": 2433.3, + "probability": 0.885 + }, + { + "start": 2433.54, + "end": 2437.22, + "probability": 0.9473 + }, + { + "start": 2437.4, + "end": 2440.4, + "probability": 0.9971 + }, + { + "start": 2441.1, + "end": 2441.52, + "probability": 0.8488 + }, + { + "start": 2441.6, + "end": 2443.1, + "probability": 0.6662 + }, + { + "start": 2443.22, + "end": 2444.27, + "probability": 0.9649 + }, + { + "start": 2444.78, + "end": 2447.91, + "probability": 0.7771 + }, + { + "start": 2448.64, + "end": 2448.8, + "probability": 0.0647 + }, + { + "start": 2448.94, + "end": 2450.16, + "probability": 0.9904 + }, + { + "start": 2450.66, + "end": 2452.36, + "probability": 0.9845 + }, + { + "start": 2452.44, + "end": 2454.94, + "probability": 0.9169 + }, + { + "start": 2455.02, + "end": 2458.38, + "probability": 0.9739 + }, + { + "start": 2459.56, + "end": 2460.9, + "probability": 0.7089 + }, + { + "start": 2461.5, + "end": 2464.12, + "probability": 0.7004 + }, + { + "start": 2464.7, + "end": 2467.6, + "probability": 0.906 + }, + { + "start": 2467.64, + "end": 2469.06, + "probability": 0.9321 + }, + { + "start": 2469.66, + "end": 2475.78, + "probability": 0.9092 + }, + { + "start": 2477.46, + "end": 2479.0, + "probability": 0.1767 + }, + { + "start": 2479.0, + "end": 2479.0, + "probability": 0.2023 + }, + { + "start": 2479.0, + "end": 2479.0, + "probability": 0.163 + }, + { + "start": 2479.0, + "end": 2480.18, + "probability": 0.151 + }, + { + "start": 2480.3, + "end": 2485.71, + "probability": 0.9032 + }, + { + "start": 2486.36, + "end": 2489.16, + "probability": 0.7596 + }, + { + "start": 2489.64, + "end": 2493.26, + "probability": 0.8795 + }, + { + "start": 2494.14, + "end": 2496.78, + "probability": 0.9072 + }, + { + "start": 2497.38, + "end": 2497.98, + "probability": 0.8586 + }, + { + "start": 2498.22, + "end": 2500.18, + "probability": 0.9805 + }, + { + "start": 2500.4, + "end": 2503.26, + "probability": 0.8962 + }, + { + "start": 2503.4, + "end": 2505.24, + "probability": 0.9868 + }, + { + "start": 2505.66, + "end": 2506.18, + "probability": 0.6674 + }, + { + "start": 2506.68, + "end": 2508.04, + "probability": 0.9396 + }, + { + "start": 2508.14, + "end": 2509.04, + "probability": 0.4998 + }, + { + "start": 2509.68, + "end": 2510.14, + "probability": 0.9852 + }, + { + "start": 2510.16, + "end": 2510.36, + "probability": 0.4833 + }, + { + "start": 2510.46, + "end": 2510.8, + "probability": 0.6807 + }, + { + "start": 2511.02, + "end": 2511.42, + "probability": 0.4754 + }, + { + "start": 2511.54, + "end": 2514.9, + "probability": 0.989 + }, + { + "start": 2515.12, + "end": 2518.42, + "probability": 0.9742 + }, + { + "start": 2518.86, + "end": 2520.12, + "probability": 0.4666 + }, + { + "start": 2520.68, + "end": 2526.4, + "probability": 0.9633 + }, + { + "start": 2527.06, + "end": 2528.28, + "probability": 0.7125 + }, + { + "start": 2528.74, + "end": 2532.16, + "probability": 0.9944 + }, + { + "start": 2532.6, + "end": 2535.86, + "probability": 0.9752 + }, + { + "start": 2536.7, + "end": 2537.93, + "probability": 0.9934 + }, + { + "start": 2538.42, + "end": 2541.68, + "probability": 0.9002 + }, + { + "start": 2541.68, + "end": 2544.66, + "probability": 0.9963 + }, + { + "start": 2545.12, + "end": 2547.04, + "probability": 0.8629 + }, + { + "start": 2547.16, + "end": 2550.36, + "probability": 0.9518 + }, + { + "start": 2552.38, + "end": 2558.82, + "probability": 0.9972 + }, + { + "start": 2558.9, + "end": 2563.4, + "probability": 0.9977 + }, + { + "start": 2563.46, + "end": 2565.22, + "probability": 0.7423 + }, + { + "start": 2565.62, + "end": 2566.64, + "probability": 0.9437 + }, + { + "start": 2566.78, + "end": 2567.61, + "probability": 0.6997 + }, + { + "start": 2567.72, + "end": 2570.46, + "probability": 0.8267 + }, + { + "start": 2570.48, + "end": 2571.78, + "probability": 0.9875 + }, + { + "start": 2572.28, + "end": 2572.84, + "probability": 0.53 + }, + { + "start": 2573.24, + "end": 2575.96, + "probability": 0.7927 + }, + { + "start": 2576.46, + "end": 2577.92, + "probability": 0.8805 + }, + { + "start": 2578.48, + "end": 2579.88, + "probability": 0.9091 + }, + { + "start": 2580.3, + "end": 2583.09, + "probability": 0.9683 + }, + { + "start": 2584.82, + "end": 2587.02, + "probability": 0.9117 + }, + { + "start": 2587.46, + "end": 2591.4, + "probability": 0.9626 + }, + { + "start": 2591.54, + "end": 2592.56, + "probability": 0.9548 + }, + { + "start": 2593.64, + "end": 2595.0, + "probability": 0.8951 + }, + { + "start": 2600.72, + "end": 2601.24, + "probability": 0.5329 + }, + { + "start": 2601.34, + "end": 2601.62, + "probability": 0.4552 + }, + { + "start": 2601.68, + "end": 2602.34, + "probability": 0.7987 + }, + { + "start": 2602.42, + "end": 2603.78, + "probability": 0.8756 + }, + { + "start": 2603.9, + "end": 2604.58, + "probability": 0.8938 + }, + { + "start": 2605.1, + "end": 2606.74, + "probability": 0.9781 + }, + { + "start": 2608.64, + "end": 2613.54, + "probability": 0.8277 + }, + { + "start": 2614.1, + "end": 2616.5, + "probability": 0.8438 + }, + { + "start": 2617.06, + "end": 2619.76, + "probability": 0.9744 + }, + { + "start": 2620.6, + "end": 2621.62, + "probability": 0.9852 + }, + { + "start": 2622.22, + "end": 2625.02, + "probability": 0.9336 + }, + { + "start": 2625.16, + "end": 2627.36, + "probability": 0.9705 + }, + { + "start": 2629.16, + "end": 2629.6, + "probability": 0.1618 + }, + { + "start": 2630.36, + "end": 2635.96, + "probability": 0.9629 + }, + { + "start": 2636.38, + "end": 2643.86, + "probability": 0.9204 + }, + { + "start": 2644.7, + "end": 2645.96, + "probability": 0.7817 + }, + { + "start": 2646.04, + "end": 2646.86, + "probability": 0.8638 + }, + { + "start": 2647.32, + "end": 2648.62, + "probability": 0.8123 + }, + { + "start": 2649.64, + "end": 2650.08, + "probability": 0.7235 + }, + { + "start": 2650.34, + "end": 2654.66, + "probability": 0.9207 + }, + { + "start": 2654.66, + "end": 2662.14, + "probability": 0.9037 + }, + { + "start": 2662.86, + "end": 2665.54, + "probability": 0.994 + }, + { + "start": 2665.92, + "end": 2666.84, + "probability": 0.6798 + }, + { + "start": 2666.86, + "end": 2670.36, + "probability": 0.9869 + }, + { + "start": 2670.66, + "end": 2672.66, + "probability": 0.4497 + }, + { + "start": 2672.72, + "end": 2673.36, + "probability": 0.9912 + }, + { + "start": 2674.44, + "end": 2678.64, + "probability": 0.9659 + }, + { + "start": 2678.82, + "end": 2684.08, + "probability": 0.9678 + }, + { + "start": 2685.06, + "end": 2691.32, + "probability": 0.8333 + }, + { + "start": 2692.08, + "end": 2695.28, + "probability": 0.9897 + }, + { + "start": 2696.4, + "end": 2696.86, + "probability": 0.958 + }, + { + "start": 2697.42, + "end": 2699.32, + "probability": 0.9776 + }, + { + "start": 2700.2, + "end": 2703.44, + "probability": 0.999 + }, + { + "start": 2704.16, + "end": 2704.78, + "probability": 0.7977 + }, + { + "start": 2705.04, + "end": 2707.88, + "probability": 0.9984 + }, + { + "start": 2707.88, + "end": 2711.9, + "probability": 0.9938 + }, + { + "start": 2712.44, + "end": 2714.94, + "probability": 0.9893 + }, + { + "start": 2716.0, + "end": 2716.78, + "probability": 0.7632 + }, + { + "start": 2717.96, + "end": 2719.3, + "probability": 0.7119 + }, + { + "start": 2719.66, + "end": 2722.5, + "probability": 0.6732 + }, + { + "start": 2723.8, + "end": 2725.74, + "probability": 0.8227 + }, + { + "start": 2726.2, + "end": 2729.74, + "probability": 0.966 + }, + { + "start": 2732.82, + "end": 2733.84, + "probability": 0.8236 + }, + { + "start": 2734.56, + "end": 2739.64, + "probability": 0.9866 + }, + { + "start": 2739.64, + "end": 2745.72, + "probability": 0.9812 + }, + { + "start": 2746.56, + "end": 2748.28, + "probability": 0.8834 + }, + { + "start": 2748.94, + "end": 2751.4, + "probability": 0.6462 + }, + { + "start": 2751.74, + "end": 2758.12, + "probability": 0.9915 + }, + { + "start": 2759.32, + "end": 2762.0, + "probability": 0.9813 + }, + { + "start": 2762.08, + "end": 2765.72, + "probability": 0.9898 + }, + { + "start": 2766.74, + "end": 2767.96, + "probability": 0.7918 + }, + { + "start": 2768.74, + "end": 2769.62, + "probability": 0.6371 + }, + { + "start": 2770.54, + "end": 2774.18, + "probability": 0.9604 + }, + { + "start": 2775.98, + "end": 2776.5, + "probability": 0.146 + }, + { + "start": 2777.3, + "end": 2782.1, + "probability": 0.9624 + }, + { + "start": 2782.98, + "end": 2785.52, + "probability": 0.9775 + }, + { + "start": 2786.14, + "end": 2791.58, + "probability": 0.9727 + }, + { + "start": 2792.56, + "end": 2793.72, + "probability": 0.9163 + }, + { + "start": 2794.64, + "end": 2795.52, + "probability": 0.8871 + }, + { + "start": 2796.44, + "end": 2799.04, + "probability": 0.991 + }, + { + "start": 2800.56, + "end": 2801.18, + "probability": 0.6843 + }, + { + "start": 2801.32, + "end": 2802.0, + "probability": 0.5325 + }, + { + "start": 2802.02, + "end": 2805.88, + "probability": 0.9814 + }, + { + "start": 2805.88, + "end": 2810.3, + "probability": 0.9999 + }, + { + "start": 2810.3, + "end": 2815.38, + "probability": 0.9979 + }, + { + "start": 2816.54, + "end": 2820.0, + "probability": 0.9513 + }, + { + "start": 2820.58, + "end": 2821.9, + "probability": 0.9836 + }, + { + "start": 2823.18, + "end": 2823.26, + "probability": 0.0068 + }, + { + "start": 2824.4, + "end": 2825.0, + "probability": 0.8015 + }, + { + "start": 2825.94, + "end": 2827.8, + "probability": 0.4828 + }, + { + "start": 2829.02, + "end": 2831.34, + "probability": 0.4493 + }, + { + "start": 2832.34, + "end": 2834.3, + "probability": 0.5825 + }, + { + "start": 2834.94, + "end": 2835.12, + "probability": 0.3887 + }, + { + "start": 2842.58, + "end": 2844.28, + "probability": 0.1646 + }, + { + "start": 2844.82, + "end": 2848.24, + "probability": 0.9076 + }, + { + "start": 2849.12, + "end": 2851.35, + "probability": 0.9648 + }, + { + "start": 2853.97, + "end": 2860.72, + "probability": 0.3807 + }, + { + "start": 2861.2, + "end": 2862.32, + "probability": 0.429 + }, + { + "start": 2862.8, + "end": 2864.3, + "probability": 0.9677 + }, + { + "start": 2865.16, + "end": 2866.58, + "probability": 0.7874 + }, + { + "start": 2866.94, + "end": 2867.84, + "probability": 0.9927 + }, + { + "start": 2867.9, + "end": 2869.84, + "probability": 0.9946 + }, + { + "start": 2870.34, + "end": 2873.05, + "probability": 0.6731 + }, + { + "start": 2873.38, + "end": 2875.28, + "probability": 0.6162 + }, + { + "start": 2875.62, + "end": 2876.72, + "probability": 0.2799 + }, + { + "start": 2877.42, + "end": 2877.63, + "probability": 0.3796 + }, + { + "start": 2877.88, + "end": 2879.68, + "probability": 0.8224 + }, + { + "start": 2880.12, + "end": 2882.36, + "probability": 0.2886 + }, + { + "start": 2883.06, + "end": 2883.63, + "probability": 0.0235 + }, + { + "start": 2886.44, + "end": 2892.2, + "probability": 0.404 + }, + { + "start": 2892.64, + "end": 2893.02, + "probability": 0.4811 + }, + { + "start": 2893.2, + "end": 2893.86, + "probability": 0.5728 + }, + { + "start": 2893.86, + "end": 2896.24, + "probability": 0.3592 + }, + { + "start": 2896.66, + "end": 2896.66, + "probability": 0.0931 + }, + { + "start": 2896.66, + "end": 2897.04, + "probability": 0.461 + }, + { + "start": 2897.14, + "end": 2899.2, + "probability": 0.6973 + }, + { + "start": 2899.36, + "end": 2904.38, + "probability": 0.6091 + }, + { + "start": 2904.68, + "end": 2909.04, + "probability": 0.8566 + }, + { + "start": 2909.04, + "end": 2915.0, + "probability": 0.9862 + }, + { + "start": 2916.58, + "end": 2919.48, + "probability": 0.9128 + }, + { + "start": 2920.78, + "end": 2922.28, + "probability": 0.818 + }, + { + "start": 2923.26, + "end": 2926.58, + "probability": 0.8409 + }, + { + "start": 2927.74, + "end": 2930.62, + "probability": 0.7336 + }, + { + "start": 2931.6, + "end": 2937.2, + "probability": 0.9691 + }, + { + "start": 2938.66, + "end": 2941.94, + "probability": 0.9578 + }, + { + "start": 2943.12, + "end": 2943.74, + "probability": 0.6615 + }, + { + "start": 2944.38, + "end": 2947.64, + "probability": 0.5618 + }, + { + "start": 2948.4, + "end": 2951.1, + "probability": 0.9862 + }, + { + "start": 2951.72, + "end": 2953.82, + "probability": 0.805 + }, + { + "start": 2954.76, + "end": 2960.14, + "probability": 0.9717 + }, + { + "start": 2960.72, + "end": 2960.96, + "probability": 0.6067 + }, + { + "start": 2961.96, + "end": 2962.6, + "probability": 0.6902 + }, + { + "start": 2962.82, + "end": 2963.26, + "probability": 0.6756 + }, + { + "start": 2964.14, + "end": 2965.74, + "probability": 0.7784 + }, + { + "start": 2966.5, + "end": 2967.26, + "probability": 0.897 + }, + { + "start": 2968.72, + "end": 2973.86, + "probability": 0.9611 + }, + { + "start": 2974.7, + "end": 2976.08, + "probability": 0.8044 + }, + { + "start": 2977.04, + "end": 2978.12, + "probability": 0.7607 + }, + { + "start": 2978.76, + "end": 2979.98, + "probability": 0.6415 + }, + { + "start": 2980.2, + "end": 2982.76, + "probability": 0.7795 + }, + { + "start": 2983.94, + "end": 2986.74, + "probability": 0.9843 + }, + { + "start": 2986.9, + "end": 2989.92, + "probability": 0.9283 + }, + { + "start": 2990.56, + "end": 2990.92, + "probability": 0.2953 + }, + { + "start": 2991.68, + "end": 2993.16, + "probability": 0.7861 + }, + { + "start": 2994.02, + "end": 2998.36, + "probability": 0.9765 + }, + { + "start": 2998.46, + "end": 2999.04, + "probability": 0.8493 + }, + { + "start": 3000.12, + "end": 3002.32, + "probability": 0.9841 + }, + { + "start": 3003.14, + "end": 3004.6, + "probability": 0.949 + }, + { + "start": 3006.4, + "end": 3010.52, + "probability": 0.6529 + }, + { + "start": 3010.52, + "end": 3013.36, + "probability": 0.9876 + }, + { + "start": 3014.2, + "end": 3017.24, + "probability": 0.7884 + }, + { + "start": 3018.3, + "end": 3023.18, + "probability": 0.9897 + }, + { + "start": 3023.32, + "end": 3023.82, + "probability": 0.5798 + }, + { + "start": 3024.54, + "end": 3026.82, + "probability": 0.9776 + }, + { + "start": 3027.54, + "end": 3028.38, + "probability": 0.544 + }, + { + "start": 3028.5, + "end": 3029.3, + "probability": 0.7297 + }, + { + "start": 3029.5, + "end": 3031.71, + "probability": 0.8294 + }, + { + "start": 3032.56, + "end": 3033.16, + "probability": 0.7311 + }, + { + "start": 3034.12, + "end": 3034.66, + "probability": 0.2479 + }, + { + "start": 3034.66, + "end": 3037.6, + "probability": 0.8765 + }, + { + "start": 3038.88, + "end": 3043.24, + "probability": 0.9822 + }, + { + "start": 3044.04, + "end": 3045.48, + "probability": 0.8799 + }, + { + "start": 3046.28, + "end": 3048.82, + "probability": 0.8861 + }, + { + "start": 3050.02, + "end": 3050.58, + "probability": 0.763 + }, + { + "start": 3051.58, + "end": 3051.88, + "probability": 0.6278 + }, + { + "start": 3051.92, + "end": 3054.1, + "probability": 0.9185 + }, + { + "start": 3054.56, + "end": 3055.12, + "probability": 0.5615 + }, + { + "start": 3055.36, + "end": 3057.36, + "probability": 0.7524 + }, + { + "start": 3061.78, + "end": 3062.98, + "probability": 0.686 + }, + { + "start": 3063.08, + "end": 3064.26, + "probability": 0.6814 + }, + { + "start": 3064.48, + "end": 3064.68, + "probability": 0.8491 + }, + { + "start": 3064.78, + "end": 3066.56, + "probability": 0.92 + }, + { + "start": 3066.74, + "end": 3070.94, + "probability": 0.8698 + }, + { + "start": 3070.94, + "end": 3073.76, + "probability": 0.9591 + }, + { + "start": 3073.88, + "end": 3074.18, + "probability": 0.7407 + }, + { + "start": 3077.09, + "end": 3080.42, + "probability": 0.5064 + }, + { + "start": 3080.94, + "end": 3082.38, + "probability": 0.6919 + }, + { + "start": 3082.92, + "end": 3084.32, + "probability": 0.9967 + }, + { + "start": 3084.54, + "end": 3084.9, + "probability": 0.3493 + }, + { + "start": 3084.94, + "end": 3087.7, + "probability": 0.8628 + }, + { + "start": 3087.7, + "end": 3090.5, + "probability": 0.9706 + }, + { + "start": 3090.74, + "end": 3094.12, + "probability": 0.7675 + }, + { + "start": 3094.66, + "end": 3097.76, + "probability": 0.6998 + }, + { + "start": 3098.2, + "end": 3098.82, + "probability": 0.6769 + }, + { + "start": 3099.02, + "end": 3100.34, + "probability": 0.8505 + }, + { + "start": 3100.74, + "end": 3101.98, + "probability": 0.941 + }, + { + "start": 3102.04, + "end": 3105.48, + "probability": 0.9833 + }, + { + "start": 3105.9, + "end": 3109.14, + "probability": 0.9831 + }, + { + "start": 3109.62, + "end": 3111.6, + "probability": 0.9846 + }, + { + "start": 3111.68, + "end": 3113.94, + "probability": 0.8028 + }, + { + "start": 3114.4, + "end": 3115.34, + "probability": 0.935 + }, + { + "start": 3115.64, + "end": 3117.52, + "probability": 0.9717 + }, + { + "start": 3117.66, + "end": 3118.54, + "probability": 0.501 + }, + { + "start": 3118.68, + "end": 3119.18, + "probability": 0.78 + }, + { + "start": 3119.6, + "end": 3120.24, + "probability": 0.7913 + }, + { + "start": 3120.58, + "end": 3124.9, + "probability": 0.9902 + }, + { + "start": 3125.27, + "end": 3130.16, + "probability": 0.9406 + }, + { + "start": 3130.22, + "end": 3130.78, + "probability": 0.1371 + }, + { + "start": 3130.94, + "end": 3133.44, + "probability": 0.9968 + }, + { + "start": 3134.44, + "end": 3135.46, + "probability": 0.7822 + }, + { + "start": 3135.5, + "end": 3137.7, + "probability": 0.9416 + }, + { + "start": 3138.02, + "end": 3138.72, + "probability": 0.749 + }, + { + "start": 3139.76, + "end": 3141.92, + "probability": 0.9691 + }, + { + "start": 3142.5, + "end": 3143.16, + "probability": 0.9314 + }, + { + "start": 3143.24, + "end": 3145.94, + "probability": 0.8604 + }, + { + "start": 3146.4, + "end": 3149.72, + "probability": 0.8073 + }, + { + "start": 3149.94, + "end": 3153.76, + "probability": 0.8198 + }, + { + "start": 3154.6, + "end": 3155.54, + "probability": 0.7277 + }, + { + "start": 3156.3, + "end": 3161.85, + "probability": 0.357 + }, + { + "start": 3162.72, + "end": 3162.96, + "probability": 0.101 + }, + { + "start": 3162.96, + "end": 3166.1, + "probability": 0.8568 + }, + { + "start": 3166.74, + "end": 3170.26, + "probability": 0.7885 + }, + { + "start": 3170.26, + "end": 3173.76, + "probability": 0.9604 + }, + { + "start": 3174.02, + "end": 3174.6, + "probability": 0.77 + }, + { + "start": 3175.32, + "end": 3175.76, + "probability": 0.7394 + }, + { + "start": 3176.34, + "end": 3179.08, + "probability": 0.9943 + }, + { + "start": 3179.98, + "end": 3181.82, + "probability": 0.9877 + }, + { + "start": 3183.34, + "end": 3187.6, + "probability": 0.9552 + }, + { + "start": 3189.02, + "end": 3189.64, + "probability": 0.9756 + }, + { + "start": 3190.16, + "end": 3194.12, + "probability": 0.8926 + }, + { + "start": 3195.06, + "end": 3197.32, + "probability": 0.8737 + }, + { + "start": 3197.9, + "end": 3199.58, + "probability": 0.7691 + }, + { + "start": 3200.38, + "end": 3201.58, + "probability": 0.9922 + }, + { + "start": 3202.54, + "end": 3205.04, + "probability": 0.9658 + }, + { + "start": 3205.82, + "end": 3207.1, + "probability": 0.9641 + }, + { + "start": 3208.26, + "end": 3210.1, + "probability": 0.8412 + }, + { + "start": 3210.62, + "end": 3212.74, + "probability": 0.9897 + }, + { + "start": 3214.32, + "end": 3215.28, + "probability": 0.3352 + }, + { + "start": 3215.5, + "end": 3215.5, + "probability": 0.5144 + }, + { + "start": 3215.68, + "end": 3217.41, + "probability": 0.9697 + }, + { + "start": 3217.9, + "end": 3219.34, + "probability": 0.9812 + }, + { + "start": 3219.7, + "end": 3221.07, + "probability": 0.9795 + }, + { + "start": 3221.62, + "end": 3224.84, + "probability": 0.7872 + }, + { + "start": 3225.52, + "end": 3228.64, + "probability": 0.7056 + }, + { + "start": 3229.36, + "end": 3231.0, + "probability": 0.955 + }, + { + "start": 3231.52, + "end": 3233.78, + "probability": 0.962 + }, + { + "start": 3234.4, + "end": 3234.82, + "probability": 0.5965 + }, + { + "start": 3235.03, + "end": 3241.12, + "probability": 0.8992 + }, + { + "start": 3241.28, + "end": 3243.5, + "probability": 0.9933 + }, + { + "start": 3243.98, + "end": 3245.8, + "probability": 0.7192 + }, + { + "start": 3245.8, + "end": 3248.86, + "probability": 0.9772 + }, + { + "start": 3249.28, + "end": 3252.18, + "probability": 0.8868 + }, + { + "start": 3252.64, + "end": 3255.4, + "probability": 0.8043 + }, + { + "start": 3255.98, + "end": 3257.2, + "probability": 0.5908 + }, + { + "start": 3257.34, + "end": 3260.36, + "probability": 0.9557 + }, + { + "start": 3260.52, + "end": 3264.15, + "probability": 0.9297 + }, + { + "start": 3264.9, + "end": 3268.84, + "probability": 0.9893 + }, + { + "start": 3268.88, + "end": 3271.12, + "probability": 0.7595 + }, + { + "start": 3271.82, + "end": 3273.82, + "probability": 0.9032 + }, + { + "start": 3274.28, + "end": 3276.92, + "probability": 0.8711 + }, + { + "start": 3276.94, + "end": 3277.48, + "probability": 0.9001 + }, + { + "start": 3277.56, + "end": 3278.7, + "probability": 0.8291 + }, + { + "start": 3279.32, + "end": 3281.02, + "probability": 0.7471 + }, + { + "start": 3281.18, + "end": 3281.99, + "probability": 0.5451 + }, + { + "start": 3282.32, + "end": 3282.82, + "probability": 0.7443 + }, + { + "start": 3283.88, + "end": 3287.42, + "probability": 0.915 + }, + { + "start": 3287.72, + "end": 3287.94, + "probability": 0.5555 + }, + { + "start": 3288.76, + "end": 3289.16, + "probability": 0.5909 + }, + { + "start": 3289.28, + "end": 3292.4, + "probability": 0.3808 + }, + { + "start": 3292.66, + "end": 3293.58, + "probability": 0.696 + }, + { + "start": 3295.5, + "end": 3296.26, + "probability": 0.8295 + }, + { + "start": 3296.3, + "end": 3299.98, + "probability": 0.9767 + }, + { + "start": 3300.7, + "end": 3301.36, + "probability": 0.7766 + }, + { + "start": 3301.76, + "end": 3305.43, + "probability": 0.7473 + }, + { + "start": 3306.34, + "end": 3307.32, + "probability": 0.7793 + }, + { + "start": 3307.42, + "end": 3312.1, + "probability": 0.973 + }, + { + "start": 3312.7, + "end": 3316.88, + "probability": 0.8093 + }, + { + "start": 3317.66, + "end": 3318.29, + "probability": 0.8354 + }, + { + "start": 3320.04, + "end": 3322.86, + "probability": 0.9568 + }, + { + "start": 3323.02, + "end": 3325.74, + "probability": 0.9771 + }, + { + "start": 3326.18, + "end": 3327.06, + "probability": 0.8375 + }, + { + "start": 3327.8, + "end": 3328.34, + "probability": 0.284 + }, + { + "start": 3329.24, + "end": 3329.96, + "probability": 0.5803 + }, + { + "start": 3330.9, + "end": 3332.48, + "probability": 0.8304 + }, + { + "start": 3332.64, + "end": 3333.64, + "probability": 0.9862 + }, + { + "start": 3334.42, + "end": 3336.48, + "probability": 0.9983 + }, + { + "start": 3337.02, + "end": 3339.84, + "probability": 0.9566 + }, + { + "start": 3340.32, + "end": 3344.76, + "probability": 0.8734 + }, + { + "start": 3345.22, + "end": 3347.5, + "probability": 0.9529 + }, + { + "start": 3347.92, + "end": 3350.16, + "probability": 0.7708 + }, + { + "start": 3350.44, + "end": 3351.7, + "probability": 0.8394 + }, + { + "start": 3352.24, + "end": 3352.46, + "probability": 0.7026 + }, + { + "start": 3352.78, + "end": 3354.94, + "probability": 0.9106 + }, + { + "start": 3355.32, + "end": 3357.96, + "probability": 0.9092 + }, + { + "start": 3358.42, + "end": 3361.37, + "probability": 0.9761 + }, + { + "start": 3362.1, + "end": 3363.66, + "probability": 0.9085 + }, + { + "start": 3364.06, + "end": 3365.1, + "probability": 0.9458 + }, + { + "start": 3365.46, + "end": 3369.38, + "probability": 0.9529 + }, + { + "start": 3369.81, + "end": 3373.24, + "probability": 0.9742 + }, + { + "start": 3374.58, + "end": 3374.68, + "probability": 0.3747 + }, + { + "start": 3374.7, + "end": 3375.28, + "probability": 0.3076 + }, + { + "start": 3375.88, + "end": 3376.34, + "probability": 0.509 + }, + { + "start": 3376.92, + "end": 3377.28, + "probability": 0.6956 + }, + { + "start": 3377.28, + "end": 3377.28, + "probability": 0.4351 + }, + { + "start": 3377.28, + "end": 3377.8, + "probability": 0.6013 + }, + { + "start": 3377.86, + "end": 3379.58, + "probability": 0.8726 + }, + { + "start": 3380.76, + "end": 3382.48, + "probability": 0.7925 + }, + { + "start": 3382.62, + "end": 3383.98, + "probability": 0.7472 + }, + { + "start": 3384.24, + "end": 3384.88, + "probability": 0.7834 + }, + { + "start": 3384.96, + "end": 3388.34, + "probability": 0.9789 + }, + { + "start": 3389.26, + "end": 3394.12, + "probability": 0.9526 + }, + { + "start": 3394.9, + "end": 3395.66, + "probability": 0.8155 + }, + { + "start": 3396.3, + "end": 3399.2, + "probability": 0.9299 + }, + { + "start": 3399.38, + "end": 3400.84, + "probability": 0.9956 + }, + { + "start": 3402.16, + "end": 3403.32, + "probability": 0.6118 + }, + { + "start": 3403.5, + "end": 3405.36, + "probability": 0.9293 + }, + { + "start": 3405.5, + "end": 3407.34, + "probability": 0.9865 + }, + { + "start": 3408.18, + "end": 3410.18, + "probability": 0.9985 + }, + { + "start": 3410.8, + "end": 3413.08, + "probability": 0.8774 + }, + { + "start": 3413.56, + "end": 3415.66, + "probability": 0.9872 + }, + { + "start": 3416.84, + "end": 3419.66, + "probability": 0.9913 + }, + { + "start": 3419.94, + "end": 3421.86, + "probability": 0.9915 + }, + { + "start": 3422.88, + "end": 3425.3, + "probability": 0.8374 + }, + { + "start": 3425.66, + "end": 3427.68, + "probability": 0.8212 + }, + { + "start": 3427.8, + "end": 3429.94, + "probability": 0.9955 + }, + { + "start": 3430.64, + "end": 3431.46, + "probability": 0.7988 + }, + { + "start": 3432.16, + "end": 3436.26, + "probability": 0.8008 + }, + { + "start": 3437.1, + "end": 3437.4, + "probability": 0.5715 + }, + { + "start": 3437.42, + "end": 3438.08, + "probability": 0.8631 + }, + { + "start": 3438.22, + "end": 3444.34, + "probability": 0.9823 + }, + { + "start": 3444.72, + "end": 3447.4, + "probability": 0.9458 + }, + { + "start": 3447.84, + "end": 3449.06, + "probability": 0.1369 + }, + { + "start": 3450.12, + "end": 3451.24, + "probability": 0.5696 + }, + { + "start": 3451.34, + "end": 3453.26, + "probability": 0.7145 + }, + { + "start": 3453.46, + "end": 3454.02, + "probability": 0.4063 + }, + { + "start": 3454.04, + "end": 3454.24, + "probability": 0.2179 + }, + { + "start": 3454.32, + "end": 3455.1, + "probability": 0.819 + }, + { + "start": 3455.2, + "end": 3456.86, + "probability": 0.9087 + }, + { + "start": 3456.88, + "end": 3458.4, + "probability": 0.6635 + }, + { + "start": 3458.78, + "end": 3459.66, + "probability": 0.9049 + }, + { + "start": 3460.48, + "end": 3464.68, + "probability": 0.9412 + }, + { + "start": 3465.0, + "end": 3465.46, + "probability": 0.6211 + }, + { + "start": 3466.0, + "end": 3468.64, + "probability": 0.7002 + }, + { + "start": 3468.76, + "end": 3471.32, + "probability": 0.8312 + }, + { + "start": 3471.74, + "end": 3473.56, + "probability": 0.9653 + }, + { + "start": 3473.7, + "end": 3474.36, + "probability": 0.367 + }, + { + "start": 3474.54, + "end": 3477.62, + "probability": 0.9937 + }, + { + "start": 3477.78, + "end": 3480.66, + "probability": 0.9915 + }, + { + "start": 3480.84, + "end": 3482.36, + "probability": 0.8754 + }, + { + "start": 3482.66, + "end": 3484.02, + "probability": 0.9348 + }, + { + "start": 3484.12, + "end": 3484.38, + "probability": 0.6605 + }, + { + "start": 3485.26, + "end": 3485.84, + "probability": 0.245 + }, + { + "start": 3486.42, + "end": 3489.18, + "probability": 0.1249 + }, + { + "start": 3489.9, + "end": 3489.9, + "probability": 0.1389 + }, + { + "start": 3489.9, + "end": 3491.94, + "probability": 0.199 + }, + { + "start": 3492.26, + "end": 3493.14, + "probability": 0.5472 + }, + { + "start": 3493.78, + "end": 3497.56, + "probability": 0.8454 + }, + { + "start": 3497.66, + "end": 3498.96, + "probability": 0.5773 + }, + { + "start": 3498.98, + "end": 3500.2, + "probability": 0.6703 + }, + { + "start": 3500.62, + "end": 3501.74, + "probability": 0.6171 + }, + { + "start": 3501.9, + "end": 3503.78, + "probability": 0.9578 + }, + { + "start": 3504.04, + "end": 3509.88, + "probability": 0.9915 + }, + { + "start": 3511.74, + "end": 3513.68, + "probability": 0.6966 + }, + { + "start": 3515.06, + "end": 3516.34, + "probability": 0.9116 + }, + { + "start": 3517.62, + "end": 3518.74, + "probability": 0.9712 + }, + { + "start": 3519.52, + "end": 3519.9, + "probability": 0.7571 + }, + { + "start": 3520.12, + "end": 3524.46, + "probability": 0.9771 + }, + { + "start": 3525.08, + "end": 3525.82, + "probability": 0.8036 + }, + { + "start": 3527.0, + "end": 3530.32, + "probability": 0.9221 + }, + { + "start": 3530.84, + "end": 3531.72, + "probability": 0.9886 + }, + { + "start": 3532.94, + "end": 3534.46, + "probability": 0.9634 + }, + { + "start": 3535.52, + "end": 3536.1, + "probability": 0.4871 + }, + { + "start": 3537.48, + "end": 3540.68, + "probability": 0.6391 + }, + { + "start": 3541.54, + "end": 3542.62, + "probability": 0.6393 + }, + { + "start": 3543.08, + "end": 3549.02, + "probability": 0.8038 + }, + { + "start": 3549.94, + "end": 3550.32, + "probability": 0.6902 + }, + { + "start": 3550.38, + "end": 3555.3, + "probability": 0.9734 + }, + { + "start": 3556.0, + "end": 3559.84, + "probability": 0.9983 + }, + { + "start": 3560.92, + "end": 3564.56, + "probability": 0.6499 + }, + { + "start": 3564.82, + "end": 3566.4, + "probability": 0.7453 + }, + { + "start": 3567.16, + "end": 3568.62, + "probability": 0.6837 + }, + { + "start": 3569.42, + "end": 3570.98, + "probability": 0.7814 + }, + { + "start": 3571.92, + "end": 3572.53, + "probability": 0.4675 + }, + { + "start": 3573.76, + "end": 3577.76, + "probability": 0.7966 + }, + { + "start": 3577.88, + "end": 3580.18, + "probability": 0.7991 + }, + { + "start": 3580.58, + "end": 3583.28, + "probability": 0.9453 + }, + { + "start": 3584.34, + "end": 3586.42, + "probability": 0.6589 + }, + { + "start": 3587.18, + "end": 3589.16, + "probability": 0.96 + }, + { + "start": 3589.58, + "end": 3590.64, + "probability": 0.9233 + }, + { + "start": 3591.86, + "end": 3593.3, + "probability": 0.7817 + }, + { + "start": 3593.38, + "end": 3596.62, + "probability": 0.9758 + }, + { + "start": 3596.8, + "end": 3597.36, + "probability": 0.9721 + }, + { + "start": 3598.92, + "end": 3600.14, + "probability": 0.96 + }, + { + "start": 3600.72, + "end": 3601.34, + "probability": 0.9671 + }, + { + "start": 3602.76, + "end": 3608.56, + "probability": 0.9358 + }, + { + "start": 3609.54, + "end": 3613.26, + "probability": 0.966 + }, + { + "start": 3613.86, + "end": 3620.93, + "probability": 0.9783 + }, + { + "start": 3622.04, + "end": 3622.84, + "probability": 0.9851 + }, + { + "start": 3622.9, + "end": 3625.42, + "probability": 0.9966 + }, + { + "start": 3626.14, + "end": 3626.62, + "probability": 0.5902 + }, + { + "start": 3626.68, + "end": 3628.4, + "probability": 0.9404 + }, + { + "start": 3628.94, + "end": 3630.14, + "probability": 0.8618 + }, + { + "start": 3632.74, + "end": 3634.38, + "probability": 0.8556 + }, + { + "start": 3638.0, + "end": 3642.38, + "probability": 0.9948 + }, + { + "start": 3643.7, + "end": 3649.26, + "probability": 0.824 + }, + { + "start": 3650.14, + "end": 3651.34, + "probability": 0.8196 + }, + { + "start": 3655.82, + "end": 3659.1, + "probability": 0.9714 + }, + { + "start": 3659.64, + "end": 3661.4, + "probability": 0.8269 + }, + { + "start": 3662.38, + "end": 3670.24, + "probability": 0.9656 + }, + { + "start": 3671.1, + "end": 3673.84, + "probability": 0.9004 + }, + { + "start": 3673.92, + "end": 3674.62, + "probability": 0.6774 + }, + { + "start": 3674.76, + "end": 3675.5, + "probability": 0.9509 + }, + { + "start": 3675.56, + "end": 3676.4, + "probability": 0.6177 + }, + { + "start": 3677.72, + "end": 3683.36, + "probability": 0.9915 + }, + { + "start": 3683.84, + "end": 3686.16, + "probability": 0.8 + }, + { + "start": 3686.64, + "end": 3690.64, + "probability": 0.9622 + }, + { + "start": 3691.78, + "end": 3694.94, + "probability": 0.9962 + }, + { + "start": 3695.7, + "end": 3700.25, + "probability": 0.9207 + }, + { + "start": 3702.02, + "end": 3703.26, + "probability": 0.4961 + }, + { + "start": 3703.38, + "end": 3705.6, + "probability": 0.9664 + }, + { + "start": 3706.46, + "end": 3708.58, + "probability": 0.9777 + }, + { + "start": 3709.14, + "end": 3712.46, + "probability": 0.8029 + }, + { + "start": 3713.46, + "end": 3715.62, + "probability": 0.4807 + }, + { + "start": 3716.14, + "end": 3716.24, + "probability": 0.7663 + }, + { + "start": 3717.66, + "end": 3718.88, + "probability": 0.4941 + }, + { + "start": 3722.5, + "end": 3724.96, + "probability": 0.9887 + }, + { + "start": 3725.78, + "end": 3728.06, + "probability": 0.998 + }, + { + "start": 3728.84, + "end": 3729.84, + "probability": 0.9854 + }, + { + "start": 3730.68, + "end": 3731.1, + "probability": 0.4698 + }, + { + "start": 3731.94, + "end": 3736.6, + "probability": 0.846 + }, + { + "start": 3738.5, + "end": 3739.96, + "probability": 0.8895 + }, + { + "start": 3740.12, + "end": 3741.72, + "probability": 0.8419 + }, + { + "start": 3743.24, + "end": 3747.36, + "probability": 0.8928 + }, + { + "start": 3748.04, + "end": 3750.6, + "probability": 0.5321 + }, + { + "start": 3751.72, + "end": 3755.32, + "probability": 0.9842 + }, + { + "start": 3755.52, + "end": 3756.68, + "probability": 0.8646 + }, + { + "start": 3757.28, + "end": 3758.12, + "probability": 0.77 + }, + { + "start": 3759.54, + "end": 3761.68, + "probability": 0.8757 + }, + { + "start": 3762.96, + "end": 3764.3, + "probability": 0.9605 + }, + { + "start": 3765.2, + "end": 3766.94, + "probability": 0.8548 + }, + { + "start": 3767.96, + "end": 3771.82, + "probability": 0.9993 + }, + { + "start": 3771.82, + "end": 3775.66, + "probability": 0.9966 + }, + { + "start": 3776.78, + "end": 3778.9, + "probability": 0.8728 + }, + { + "start": 3780.86, + "end": 3786.38, + "probability": 0.9932 + }, + { + "start": 3787.28, + "end": 3791.38, + "probability": 0.9559 + }, + { + "start": 3792.76, + "end": 3796.16, + "probability": 0.9774 + }, + { + "start": 3798.18, + "end": 3800.6, + "probability": 0.8925 + }, + { + "start": 3801.84, + "end": 3803.72, + "probability": 0.8383 + }, + { + "start": 3804.7, + "end": 3806.28, + "probability": 0.705 + }, + { + "start": 3807.2, + "end": 3809.74, + "probability": 0.7937 + }, + { + "start": 3811.44, + "end": 3813.16, + "probability": 0.8384 + }, + { + "start": 3814.38, + "end": 3815.94, + "probability": 0.7649 + }, + { + "start": 3816.02, + "end": 3816.82, + "probability": 0.6928 + }, + { + "start": 3816.9, + "end": 3819.16, + "probability": 0.9865 + }, + { + "start": 3819.32, + "end": 3824.42, + "probability": 0.9521 + }, + { + "start": 3825.58, + "end": 3826.24, + "probability": 0.9207 + }, + { + "start": 3826.32, + "end": 3827.12, + "probability": 0.416 + }, + { + "start": 3827.24, + "end": 3827.88, + "probability": 0.045 + }, + { + "start": 3828.08, + "end": 3828.6, + "probability": 0.6888 + }, + { + "start": 3828.78, + "end": 3829.12, + "probability": 0.7611 + }, + { + "start": 3830.84, + "end": 3833.36, + "probability": 0.9272 + }, + { + "start": 3833.5, + "end": 3835.32, + "probability": 0.9292 + }, + { + "start": 3835.58, + "end": 3838.0, + "probability": 0.9961 + }, + { + "start": 3839.4, + "end": 3841.26, + "probability": 0.9829 + }, + { + "start": 3841.46, + "end": 3844.82, + "probability": 0.859 + }, + { + "start": 3845.44, + "end": 3846.5, + "probability": 0.9546 + }, + { + "start": 3846.64, + "end": 3847.34, + "probability": 0.7321 + }, + { + "start": 3847.4, + "end": 3847.8, + "probability": 0.2569 + }, + { + "start": 3847.88, + "end": 3848.1, + "probability": 0.5141 + }, + { + "start": 3848.86, + "end": 3851.5, + "probability": 0.9869 + }, + { + "start": 3851.58, + "end": 3853.42, + "probability": 0.9379 + }, + { + "start": 3853.48, + "end": 3856.48, + "probability": 0.9202 + }, + { + "start": 3856.64, + "end": 3858.2, + "probability": 0.9682 + }, + { + "start": 3859.22, + "end": 3862.24, + "probability": 0.8446 + }, + { + "start": 3863.24, + "end": 3868.98, + "probability": 0.6411 + }, + { + "start": 3869.68, + "end": 3870.86, + "probability": 0.9913 + }, + { + "start": 3871.64, + "end": 3873.18, + "probability": 0.5984 + }, + { + "start": 3873.26, + "end": 3874.02, + "probability": 0.8666 + }, + { + "start": 3874.12, + "end": 3875.2, + "probability": 0.9724 + }, + { + "start": 3875.92, + "end": 3876.7, + "probability": 0.6554 + }, + { + "start": 3877.34, + "end": 3878.54, + "probability": 0.9995 + }, + { + "start": 3879.06, + "end": 3882.22, + "probability": 0.9995 + }, + { + "start": 3882.74, + "end": 3884.94, + "probability": 0.992 + }, + { + "start": 3885.02, + "end": 3889.74, + "probability": 0.4435 + }, + { + "start": 3890.0, + "end": 3891.82, + "probability": 0.6699 + }, + { + "start": 3894.52, + "end": 3894.88, + "probability": 0.0333 + }, + { + "start": 3895.32, + "end": 3897.12, + "probability": 0.6171 + }, + { + "start": 3897.48, + "end": 3897.58, + "probability": 0.5544 + }, + { + "start": 3898.1, + "end": 3899.38, + "probability": 0.6707 + }, + { + "start": 3901.04, + "end": 3902.28, + "probability": 0.4335 + }, + { + "start": 3903.55, + "end": 3905.02, + "probability": 0.7642 + }, + { + "start": 3905.14, + "end": 3905.8, + "probability": 0.8443 + }, + { + "start": 3906.0, + "end": 3906.9, + "probability": 0.8966 + }, + { + "start": 3908.18, + "end": 3909.18, + "probability": 0.9729 + }, + { + "start": 3909.6, + "end": 3910.16, + "probability": 0.7867 + }, + { + "start": 3910.6, + "end": 3911.06, + "probability": 0.4629 + }, + { + "start": 3911.78, + "end": 3912.88, + "probability": 0.8104 + }, + { + "start": 3912.94, + "end": 3913.9, + "probability": 0.809 + }, + { + "start": 3913.94, + "end": 3915.66, + "probability": 0.9785 + }, + { + "start": 3915.76, + "end": 3916.25, + "probability": 0.9358 + }, + { + "start": 3917.9, + "end": 3920.42, + "probability": 0.9866 + }, + { + "start": 3920.42, + "end": 3924.16, + "probability": 0.9775 + }, + { + "start": 3925.0, + "end": 3925.88, + "probability": 0.9336 + }, + { + "start": 3926.02, + "end": 3928.34, + "probability": 0.9949 + }, + { + "start": 3928.34, + "end": 3932.18, + "probability": 0.9972 + }, + { + "start": 3932.4, + "end": 3933.6, + "probability": 0.9944 + }, + { + "start": 3934.18, + "end": 3936.26, + "probability": 0.96 + }, + { + "start": 3936.64, + "end": 3939.52, + "probability": 0.9595 + }, + { + "start": 3939.82, + "end": 3941.4, + "probability": 0.988 + }, + { + "start": 3941.76, + "end": 3942.52, + "probability": 0.9502 + }, + { + "start": 3942.62, + "end": 3943.26, + "probability": 0.8315 + }, + { + "start": 3944.64, + "end": 3945.32, + "probability": 0.9671 + }, + { + "start": 3947.44, + "end": 3948.18, + "probability": 0.8371 + }, + { + "start": 3949.7, + "end": 3951.0, + "probability": 0.9944 + }, + { + "start": 3951.94, + "end": 3955.44, + "probability": 0.9755 + }, + { + "start": 3955.96, + "end": 3959.16, + "probability": 0.9771 + }, + { + "start": 3960.36, + "end": 3967.74, + "probability": 0.9919 + }, + { + "start": 3968.14, + "end": 3968.68, + "probability": 0.973 + }, + { + "start": 3968.78, + "end": 3970.56, + "probability": 0.9202 + }, + { + "start": 3971.16, + "end": 3972.61, + "probability": 0.7997 + }, + { + "start": 3975.64, + "end": 3976.42, + "probability": 0.206 + }, + { + "start": 3976.86, + "end": 3976.86, + "probability": 0.1735 + }, + { + "start": 3976.88, + "end": 3977.88, + "probability": 0.7798 + }, + { + "start": 3978.42, + "end": 3979.68, + "probability": 0.8654 + }, + { + "start": 3979.78, + "end": 3982.18, + "probability": 0.9862 + }, + { + "start": 3986.36, + "end": 3988.8, + "probability": 0.3701 + }, + { + "start": 3988.8, + "end": 3988.8, + "probability": 0.092 + }, + { + "start": 3988.8, + "end": 3989.54, + "probability": 0.6685 + }, + { + "start": 3989.7, + "end": 3992.88, + "probability": 0.9846 + }, + { + "start": 3993.72, + "end": 3995.08, + "probability": 0.7617 + }, + { + "start": 3996.48, + "end": 3999.58, + "probability": 0.8802 + }, + { + "start": 4000.38, + "end": 4004.0, + "probability": 0.9761 + }, + { + "start": 4005.0, + "end": 4005.82, + "probability": 0.4261 + }, + { + "start": 4006.5, + "end": 4010.62, + "probability": 0.9852 + }, + { + "start": 4011.62, + "end": 4012.58, + "probability": 0.8783 + }, + { + "start": 4012.98, + "end": 4015.74, + "probability": 0.8018 + }, + { + "start": 4016.08, + "end": 4019.44, + "probability": 0.3758 + }, + { + "start": 4019.76, + "end": 4022.3, + "probability": 0.5456 + }, + { + "start": 4022.6, + "end": 4024.54, + "probability": 0.5093 + }, + { + "start": 4024.74, + "end": 4024.98, + "probability": 0.161 + }, + { + "start": 4024.98, + "end": 4025.64, + "probability": 0.3836 + }, + { + "start": 4025.74, + "end": 4028.5, + "probability": 0.7432 + }, + { + "start": 4028.6, + "end": 4029.58, + "probability": 0.6125 + }, + { + "start": 4029.6, + "end": 4030.28, + "probability": 0.9521 + }, + { + "start": 4030.64, + "end": 4031.46, + "probability": 0.6878 + }, + { + "start": 4031.6, + "end": 4032.02, + "probability": 0.9399 + }, + { + "start": 4032.34, + "end": 4032.6, + "probability": 0.0244 + }, + { + "start": 4032.78, + "end": 4034.08, + "probability": 0.3708 + }, + { + "start": 4034.86, + "end": 4036.42, + "probability": 0.7491 + }, + { + "start": 4036.78, + "end": 4039.34, + "probability": 0.5272 + }, + { + "start": 4040.08, + "end": 4042.82, + "probability": 0.8327 + }, + { + "start": 4043.24, + "end": 4044.4, + "probability": 0.3983 + }, + { + "start": 4044.56, + "end": 4045.46, + "probability": 0.3547 + }, + { + "start": 4045.46, + "end": 4046.02, + "probability": 0.3687 + }, + { + "start": 4046.04, + "end": 4047.56, + "probability": 0.6289 + }, + { + "start": 4047.62, + "end": 4050.1, + "probability": 0.372 + }, + { + "start": 4050.1, + "end": 4052.18, + "probability": 0.6797 + }, + { + "start": 4052.4, + "end": 4053.98, + "probability": 0.6914 + }, + { + "start": 4054.38, + "end": 4057.14, + "probability": 0.7065 + }, + { + "start": 4057.74, + "end": 4058.52, + "probability": 0.4044 + }, + { + "start": 4058.66, + "end": 4060.04, + "probability": 0.8982 + }, + { + "start": 4060.48, + "end": 4061.66, + "probability": 0.6631 + }, + { + "start": 4063.34, + "end": 4065.1, + "probability": 0.9966 + }, + { + "start": 4066.64, + "end": 4068.52, + "probability": 0.9984 + }, + { + "start": 4069.24, + "end": 4069.84, + "probability": 0.4773 + }, + { + "start": 4070.86, + "end": 4072.92, + "probability": 0.6545 + }, + { + "start": 4073.44, + "end": 4074.8, + "probability": 0.9394 + }, + { + "start": 4075.98, + "end": 4078.12, + "probability": 0.942 + }, + { + "start": 4078.22, + "end": 4078.34, + "probability": 0.1338 + }, + { + "start": 4078.44, + "end": 4078.74, + "probability": 0.5837 + }, + { + "start": 4079.18, + "end": 4081.32, + "probability": 0.9978 + }, + { + "start": 4081.48, + "end": 4081.98, + "probability": 0.8759 + }, + { + "start": 4082.68, + "end": 4084.38, + "probability": 0.9882 + }, + { + "start": 4085.3, + "end": 4086.32, + "probability": 0.5668 + }, + { + "start": 4086.88, + "end": 4087.48, + "probability": 0.4931 + }, + { + "start": 4087.58, + "end": 4090.72, + "probability": 0.9175 + }, + { + "start": 4091.6, + "end": 4094.32, + "probability": 0.9956 + }, + { + "start": 4094.42, + "end": 4097.5, + "probability": 0.9968 + }, + { + "start": 4098.04, + "end": 4099.1, + "probability": 0.9491 + }, + { + "start": 4099.32, + "end": 4102.5, + "probability": 0.9856 + }, + { + "start": 4103.58, + "end": 4105.6, + "probability": 0.9993 + }, + { + "start": 4105.7, + "end": 4108.16, + "probability": 0.9994 + }, + { + "start": 4108.18, + "end": 4110.73, + "probability": 0.9752 + }, + { + "start": 4111.7, + "end": 4116.32, + "probability": 0.9968 + }, + { + "start": 4116.44, + "end": 4118.92, + "probability": 0.9918 + }, + { + "start": 4118.92, + "end": 4121.1, + "probability": 0.9985 + }, + { + "start": 4121.54, + "end": 4122.26, + "probability": 0.1669 + }, + { + "start": 4122.86, + "end": 4124.73, + "probability": 0.988 + }, + { + "start": 4125.02, + "end": 4125.98, + "probability": 0.9101 + }, + { + "start": 4126.06, + "end": 4126.38, + "probability": 0.5118 + }, + { + "start": 4126.42, + "end": 4126.52, + "probability": 0.8133 + }, + { + "start": 4127.8, + "end": 4130.98, + "probability": 0.9792 + }, + { + "start": 4131.6, + "end": 4132.46, + "probability": 0.8974 + }, + { + "start": 4133.24, + "end": 4134.34, + "probability": 0.9758 + }, + { + "start": 4135.48, + "end": 4140.3, + "probability": 0.9976 + }, + { + "start": 4140.44, + "end": 4140.72, + "probability": 0.8178 + }, + { + "start": 4140.88, + "end": 4145.02, + "probability": 0.9456 + }, + { + "start": 4145.92, + "end": 4150.1, + "probability": 0.9951 + }, + { + "start": 4150.18, + "end": 4152.48, + "probability": 0.9977 + }, + { + "start": 4152.62, + "end": 4153.62, + "probability": 0.7866 + }, + { + "start": 4154.18, + "end": 4155.58, + "probability": 0.9513 + }, + { + "start": 4156.22, + "end": 4158.76, + "probability": 0.8896 + }, + { + "start": 4158.98, + "end": 4162.62, + "probability": 0.9004 + }, + { + "start": 4162.62, + "end": 4167.2, + "probability": 0.9331 + }, + { + "start": 4167.4, + "end": 4168.44, + "probability": 0.9436 + }, + { + "start": 4169.28, + "end": 4170.12, + "probability": 0.874 + }, + { + "start": 4171.94, + "end": 4172.02, + "probability": 0.0035 + }, + { + "start": 4172.04, + "end": 4175.94, + "probability": 0.9822 + }, + { + "start": 4176.3, + "end": 4179.0, + "probability": 0.8768 + }, + { + "start": 4180.14, + "end": 4181.88, + "probability": 0.9954 + }, + { + "start": 4182.16, + "end": 4184.94, + "probability": 0.9891 + }, + { + "start": 4185.02, + "end": 4186.29, + "probability": 0.8238 + }, + { + "start": 4186.98, + "end": 4189.7, + "probability": 0.9943 + }, + { + "start": 4189.8, + "end": 4190.62, + "probability": 0.8278 + }, + { + "start": 4191.46, + "end": 4192.46, + "probability": 0.8928 + }, + { + "start": 4193.14, + "end": 4194.1, + "probability": 0.8067 + }, + { + "start": 4194.26, + "end": 4197.9, + "probability": 0.7573 + }, + { + "start": 4198.68, + "end": 4202.0, + "probability": 0.8211 + }, + { + "start": 4202.56, + "end": 4206.2, + "probability": 0.9474 + }, + { + "start": 4207.14, + "end": 4207.86, + "probability": 0.6533 + }, + { + "start": 4208.08, + "end": 4209.72, + "probability": 0.9716 + }, + { + "start": 4209.72, + "end": 4210.28, + "probability": 0.8397 + }, + { + "start": 4210.34, + "end": 4211.02, + "probability": 0.3463 + }, + { + "start": 4211.84, + "end": 4214.7, + "probability": 0.9921 + }, + { + "start": 4215.24, + "end": 4216.0, + "probability": 0.7105 + }, + { + "start": 4217.04, + "end": 4220.34, + "probability": 0.9216 + }, + { + "start": 4221.32, + "end": 4222.8, + "probability": 0.9323 + }, + { + "start": 4223.38, + "end": 4226.14, + "probability": 0.9813 + }, + { + "start": 4226.76, + "end": 4228.64, + "probability": 0.8245 + }, + { + "start": 4228.68, + "end": 4231.78, + "probability": 0.981 + }, + { + "start": 4232.82, + "end": 4236.24, + "probability": 0.9141 + }, + { + "start": 4236.5, + "end": 4238.32, + "probability": 0.9856 + }, + { + "start": 4239.58, + "end": 4243.34, + "probability": 0.9585 + }, + { + "start": 4243.96, + "end": 4244.78, + "probability": 0.8168 + }, + { + "start": 4245.08, + "end": 4248.7, + "probability": 0.6925 + }, + { + "start": 4248.7, + "end": 4251.6, + "probability": 0.9697 + }, + { + "start": 4251.8, + "end": 4253.12, + "probability": 0.9039 + }, + { + "start": 4253.72, + "end": 4254.7, + "probability": 0.9379 + }, + { + "start": 4255.5, + "end": 4258.0, + "probability": 0.9783 + }, + { + "start": 4258.2, + "end": 4258.52, + "probability": 0.8286 + }, + { + "start": 4258.9, + "end": 4259.78, + "probability": 0.9879 + }, + { + "start": 4260.8, + "end": 4267.88, + "probability": 0.9464 + }, + { + "start": 4268.42, + "end": 4272.2, + "probability": 0.9564 + }, + { + "start": 4272.34, + "end": 4273.23, + "probability": 0.6624 + }, + { + "start": 4274.04, + "end": 4275.94, + "probability": 0.8018 + }, + { + "start": 4276.62, + "end": 4276.78, + "probability": 0.4093 + }, + { + "start": 4276.8, + "end": 4277.1, + "probability": 0.752 + }, + { + "start": 4277.2, + "end": 4278.56, + "probability": 0.7386 + }, + { + "start": 4278.68, + "end": 4283.04, + "probability": 0.7507 + }, + { + "start": 4283.38, + "end": 4284.68, + "probability": 0.6111 + }, + { + "start": 4285.32, + "end": 4287.14, + "probability": 0.9206 + }, + { + "start": 4287.56, + "end": 4289.98, + "probability": 0.8613 + }, + { + "start": 4290.1, + "end": 4292.16, + "probability": 0.8748 + }, + { + "start": 4292.84, + "end": 4296.84, + "probability": 0.8855 + }, + { + "start": 4297.76, + "end": 4298.56, + "probability": 0.6558 + }, + { + "start": 4299.16, + "end": 4299.82, + "probability": 0.8455 + }, + { + "start": 4299.96, + "end": 4300.76, + "probability": 0.8623 + }, + { + "start": 4300.84, + "end": 4301.82, + "probability": 0.8847 + }, + { + "start": 4302.6, + "end": 4303.4, + "probability": 0.9695 + }, + { + "start": 4304.12, + "end": 4306.04, + "probability": 0.7604 + }, + { + "start": 4306.64, + "end": 4307.76, + "probability": 0.9385 + }, + { + "start": 4307.84, + "end": 4309.24, + "probability": 0.988 + }, + { + "start": 4309.36, + "end": 4309.84, + "probability": 0.6627 + }, + { + "start": 4310.18, + "end": 4311.68, + "probability": 0.9901 + }, + { + "start": 4312.82, + "end": 4313.58, + "probability": 0.8438 + }, + { + "start": 4314.48, + "end": 4315.1, + "probability": 0.9794 + }, + { + "start": 4315.9, + "end": 4317.28, + "probability": 0.7397 + }, + { + "start": 4318.82, + "end": 4320.4, + "probability": 0.9513 + }, + { + "start": 4321.54, + "end": 4322.36, + "probability": 0.9122 + }, + { + "start": 4322.48, + "end": 4322.93, + "probability": 0.9519 + }, + { + "start": 4323.12, + "end": 4324.78, + "probability": 0.9609 + }, + { + "start": 4325.02, + "end": 4326.77, + "probability": 0.9795 + }, + { + "start": 4327.92, + "end": 4332.02, + "probability": 0.9383 + }, + { + "start": 4332.62, + "end": 4335.38, + "probability": 0.6683 + }, + { + "start": 4335.54, + "end": 4340.88, + "probability": 0.9875 + }, + { + "start": 4342.02, + "end": 4348.0, + "probability": 0.9839 + }, + { + "start": 4349.4, + "end": 4350.8, + "probability": 0.9922 + }, + { + "start": 4350.88, + "end": 4354.2, + "probability": 0.9792 + }, + { + "start": 4354.3, + "end": 4356.14, + "probability": 0.9389 + }, + { + "start": 4356.6, + "end": 4357.56, + "probability": 0.5435 + }, + { + "start": 4357.56, + "end": 4360.54, + "probability": 0.9377 + }, + { + "start": 4361.14, + "end": 4364.98, + "probability": 0.889 + }, + { + "start": 4365.74, + "end": 4367.9, + "probability": 0.965 + }, + { + "start": 4368.06, + "end": 4371.82, + "probability": 0.889 + }, + { + "start": 4372.42, + "end": 4376.8, + "probability": 0.9951 + }, + { + "start": 4377.92, + "end": 4378.22, + "probability": 0.6148 + }, + { + "start": 4380.42, + "end": 4382.1, + "probability": 0.7614 + }, + { + "start": 4382.42, + "end": 4383.04, + "probability": 0.9518 + }, + { + "start": 4383.32, + "end": 4385.47, + "probability": 0.9912 + }, + { + "start": 4386.92, + "end": 4390.2, + "probability": 0.9953 + }, + { + "start": 4390.56, + "end": 4392.56, + "probability": 0.1673 + }, + { + "start": 4392.76, + "end": 4395.04, + "probability": 0.4169 + }, + { + "start": 4395.54, + "end": 4397.2, + "probability": 0.88 + }, + { + "start": 4397.64, + "end": 4399.36, + "probability": 0.8599 + }, + { + "start": 4399.92, + "end": 4400.68, + "probability": 0.6584 + }, + { + "start": 4401.36, + "end": 4401.56, + "probability": 0.5311 + }, + { + "start": 4401.7, + "end": 4405.68, + "probability": 0.9668 + }, + { + "start": 4406.08, + "end": 4408.63, + "probability": 0.9855 + }, + { + "start": 4409.14, + "end": 4412.24, + "probability": 0.4967 + }, + { + "start": 4412.38, + "end": 4412.4, + "probability": 0.2029 + }, + { + "start": 4412.4, + "end": 4412.66, + "probability": 0.1215 + }, + { + "start": 4413.3, + "end": 4414.56, + "probability": 0.603 + }, + { + "start": 4420.26, + "end": 4422.38, + "probability": 0.5798 + }, + { + "start": 4425.44, + "end": 4427.36, + "probability": 0.918 + }, + { + "start": 4431.32, + "end": 4431.94, + "probability": 0.2155 + }, + { + "start": 4432.1, + "end": 4435.29, + "probability": 0.8793 + }, + { + "start": 4436.62, + "end": 4438.76, + "probability": 0.6911 + }, + { + "start": 4440.22, + "end": 4443.38, + "probability": 0.905 + }, + { + "start": 4443.48, + "end": 4444.24, + "probability": 0.5537 + }, + { + "start": 4444.38, + "end": 4444.92, + "probability": 0.6825 + }, + { + "start": 4445.42, + "end": 4448.86, + "probability": 0.4398 + }, + { + "start": 4448.86, + "end": 4451.22, + "probability": 0.4988 + }, + { + "start": 4451.36, + "end": 4452.76, + "probability": 0.4966 + }, + { + "start": 4452.8, + "end": 4453.12, + "probability": 0.5134 + }, + { + "start": 4453.32, + "end": 4456.42, + "probability": 0.519 + }, + { + "start": 4456.68, + "end": 4457.22, + "probability": 0.5252 + }, + { + "start": 4457.3, + "end": 4457.88, + "probability": 0.7747 + }, + { + "start": 4458.32, + "end": 4460.36, + "probability": 0.9829 + }, + { + "start": 4464.52, + "end": 4465.98, + "probability": 0.142 + }, + { + "start": 4465.98, + "end": 4474.08, + "probability": 0.6731 + }, + { + "start": 4474.88, + "end": 4475.3, + "probability": 0.5779 + }, + { + "start": 4475.38, + "end": 4475.92, + "probability": 0.7971 + }, + { + "start": 4476.22, + "end": 4477.09, + "probability": 0.9705 + }, + { + "start": 4477.38, + "end": 4479.42, + "probability": 0.9702 + }, + { + "start": 4479.74, + "end": 4481.28, + "probability": 0.9287 + }, + { + "start": 4481.76, + "end": 4482.74, + "probability": 0.9482 + }, + { + "start": 4483.78, + "end": 4485.82, + "probability": 0.9673 + }, + { + "start": 4485.82, + "end": 4491.0, + "probability": 0.9263 + }, + { + "start": 4491.62, + "end": 4493.74, + "probability": 0.9595 + }, + { + "start": 4494.02, + "end": 4501.2, + "probability": 0.8638 + }, + { + "start": 4502.4, + "end": 4504.44, + "probability": 0.4365 + }, + { + "start": 4505.24, + "end": 4510.74, + "probability": 0.9878 + }, + { + "start": 4510.86, + "end": 4512.52, + "probability": 0.8806 + }, + { + "start": 4514.24, + "end": 4515.91, + "probability": 0.9642 + }, + { + "start": 4518.22, + "end": 4519.74, + "probability": 0.9912 + }, + { + "start": 4520.4, + "end": 4523.01, + "probability": 0.9976 + }, + { + "start": 4524.16, + "end": 4525.12, + "probability": 0.9553 + }, + { + "start": 4526.82, + "end": 4528.9, + "probability": 0.9958 + }, + { + "start": 4530.32, + "end": 4531.6, + "probability": 0.7914 + }, + { + "start": 4532.0, + "end": 4538.0, + "probability": 0.9985 + }, + { + "start": 4538.48, + "end": 4539.16, + "probability": 0.5814 + }, + { + "start": 4539.4, + "end": 4540.33, + "probability": 0.9368 + }, + { + "start": 4542.46, + "end": 4547.42, + "probability": 0.9961 + }, + { + "start": 4548.8, + "end": 4549.76, + "probability": 0.8804 + }, + { + "start": 4551.95, + "end": 4553.64, + "probability": 0.8299 + }, + { + "start": 4553.66, + "end": 4553.66, + "probability": 0.0681 + }, + { + "start": 4553.66, + "end": 4555.76, + "probability": 0.6886 + }, + { + "start": 4556.8, + "end": 4557.99, + "probability": 0.7262 + }, + { + "start": 4560.94, + "end": 4563.24, + "probability": 0.9883 + }, + { + "start": 4564.98, + "end": 4567.38, + "probability": 0.9824 + }, + { + "start": 4568.34, + "end": 4572.22, + "probability": 0.9934 + }, + { + "start": 4573.42, + "end": 4576.44, + "probability": 0.7929 + }, + { + "start": 4578.34, + "end": 4582.08, + "probability": 0.9746 + }, + { + "start": 4583.96, + "end": 4584.1, + "probability": 0.4624 + }, + { + "start": 4584.18, + "end": 4586.0, + "probability": 0.957 + }, + { + "start": 4586.22, + "end": 4587.09, + "probability": 0.8789 + }, + { + "start": 4588.92, + "end": 4593.46, + "probability": 0.9872 + }, + { + "start": 4594.44, + "end": 4597.54, + "probability": 0.9736 + }, + { + "start": 4598.9, + "end": 4599.46, + "probability": 0.765 + }, + { + "start": 4601.1, + "end": 4601.28, + "probability": 0.3967 + }, + { + "start": 4601.62, + "end": 4602.92, + "probability": 0.5499 + }, + { + "start": 4602.92, + "end": 4603.66, + "probability": 0.4186 + }, + { + "start": 4603.92, + "end": 4606.46, + "probability": 0.7331 + }, + { + "start": 4606.54, + "end": 4609.54, + "probability": 0.9075 + }, + { + "start": 4609.9, + "end": 4610.84, + "probability": 0.578 + }, + { + "start": 4611.56, + "end": 4613.84, + "probability": 0.8707 + }, + { + "start": 4614.92, + "end": 4619.62, + "probability": 0.9673 + }, + { + "start": 4619.8, + "end": 4620.76, + "probability": 0.928 + }, + { + "start": 4621.42, + "end": 4623.34, + "probability": 0.9858 + }, + { + "start": 4625.18, + "end": 4626.52, + "probability": 0.8789 + }, + { + "start": 4629.02, + "end": 4631.66, + "probability": 0.8813 + }, + { + "start": 4631.82, + "end": 4635.6, + "probability": 0.957 + }, + { + "start": 4636.42, + "end": 4637.74, + "probability": 0.6556 + }, + { + "start": 4638.16, + "end": 4639.14, + "probability": 0.4242 + }, + { + "start": 4639.48, + "end": 4643.3, + "probability": 0.8454 + }, + { + "start": 4643.98, + "end": 4645.5, + "probability": 0.9937 + }, + { + "start": 4645.88, + "end": 4648.56, + "probability": 0.9523 + }, + { + "start": 4648.76, + "end": 4650.26, + "probability": 0.8907 + }, + { + "start": 4652.28, + "end": 4653.36, + "probability": 0.7498 + }, + { + "start": 4653.94, + "end": 4658.94, + "probability": 0.9456 + }, + { + "start": 4659.96, + "end": 4661.72, + "probability": 0.9302 + }, + { + "start": 4662.42, + "end": 4663.4, + "probability": 0.9841 + }, + { + "start": 4663.44, + "end": 4664.1, + "probability": 0.8376 + }, + { + "start": 4664.24, + "end": 4665.19, + "probability": 0.3432 + }, + { + "start": 4665.54, + "end": 4667.92, + "probability": 0.8319 + }, + { + "start": 4669.06, + "end": 4669.94, + "probability": 0.9517 + }, + { + "start": 4671.18, + "end": 4674.22, + "probability": 0.8069 + }, + { + "start": 4674.52, + "end": 4677.2, + "probability": 0.8152 + }, + { + "start": 4678.4, + "end": 4679.92, + "probability": 0.4617 + }, + { + "start": 4680.14, + "end": 4680.14, + "probability": 0.3623 + }, + { + "start": 4680.38, + "end": 4685.68, + "probability": 0.8992 + }, + { + "start": 4686.06, + "end": 4686.86, + "probability": 0.8161 + }, + { + "start": 4687.1, + "end": 4689.12, + "probability": 0.9764 + }, + { + "start": 4690.42, + "end": 4691.78, + "probability": 0.5994 + }, + { + "start": 4692.28, + "end": 4694.78, + "probability": 0.998 + }, + { + "start": 4695.68, + "end": 4697.56, + "probability": 0.7556 + }, + { + "start": 4698.5, + "end": 4700.82, + "probability": 0.9432 + }, + { + "start": 4701.54, + "end": 4702.46, + "probability": 0.6918 + }, + { + "start": 4703.9, + "end": 4704.86, + "probability": 0.9124 + }, + { + "start": 4707.32, + "end": 4714.88, + "probability": 0.9908 + }, + { + "start": 4715.74, + "end": 4716.22, + "probability": 0.6976 + }, + { + "start": 4716.24, + "end": 4720.44, + "probability": 0.99 + }, + { + "start": 4721.82, + "end": 4725.66, + "probability": 0.9837 + }, + { + "start": 4728.32, + "end": 4733.18, + "probability": 0.8843 + }, + { + "start": 4734.94, + "end": 4736.12, + "probability": 0.5059 + }, + { + "start": 4736.8, + "end": 4739.88, + "probability": 0.9495 + }, + { + "start": 4739.96, + "end": 4742.78, + "probability": 0.7366 + }, + { + "start": 4743.12, + "end": 4745.7, + "probability": 0.7244 + }, + { + "start": 4747.08, + "end": 4748.94, + "probability": 0.961 + }, + { + "start": 4749.06, + "end": 4749.76, + "probability": 0.947 + }, + { + "start": 4749.98, + "end": 4754.58, + "probability": 0.9873 + }, + { + "start": 4756.16, + "end": 4758.93, + "probability": 0.949 + }, + { + "start": 4760.18, + "end": 4760.46, + "probability": 0.7578 + }, + { + "start": 4760.76, + "end": 4766.74, + "probability": 0.9163 + }, + { + "start": 4767.36, + "end": 4769.08, + "probability": 0.9624 + }, + { + "start": 4770.12, + "end": 4773.54, + "probability": 0.7503 + }, + { + "start": 4775.66, + "end": 4777.16, + "probability": 0.9766 + }, + { + "start": 4777.38, + "end": 4779.36, + "probability": 0.9453 + }, + { + "start": 4779.44, + "end": 4780.64, + "probability": 0.9919 + }, + { + "start": 4782.78, + "end": 4785.04, + "probability": 0.9504 + }, + { + "start": 4785.56, + "end": 4788.82, + "probability": 0.8082 + }, + { + "start": 4793.76, + "end": 4796.5, + "probability": 0.4913 + }, + { + "start": 4797.5, + "end": 4797.84, + "probability": 0.2143 + }, + { + "start": 4798.93, + "end": 4802.12, + "probability": 0.1513 + }, + { + "start": 4802.24, + "end": 4806.48, + "probability": 0.6827 + }, + { + "start": 4806.66, + "end": 4807.26, + "probability": 0.8899 + }, + { + "start": 4807.32, + "end": 4808.24, + "probability": 0.6205 + }, + { + "start": 4810.72, + "end": 4813.76, + "probability": 0.9839 + }, + { + "start": 4813.8, + "end": 4815.82, + "probability": 0.8437 + }, + { + "start": 4815.88, + "end": 4816.9, + "probability": 0.7834 + }, + { + "start": 4817.3, + "end": 4818.8, + "probability": 0.3376 + }, + { + "start": 4819.36, + "end": 4821.86, + "probability": 0.5876 + }, + { + "start": 4821.96, + "end": 4825.1, + "probability": 0.9451 + }, + { + "start": 4825.5, + "end": 4826.2, + "probability": 0.9204 + }, + { + "start": 4826.36, + "end": 4826.36, + "probability": 0.4219 + }, + { + "start": 4827.04, + "end": 4829.42, + "probability": 0.7762 + }, + { + "start": 4830.72, + "end": 4833.08, + "probability": 0.9521 + }, + { + "start": 4833.84, + "end": 4835.88, + "probability": 0.5932 + }, + { + "start": 4835.96, + "end": 4837.28, + "probability": 0.6395 + }, + { + "start": 4837.54, + "end": 4838.4, + "probability": 0.7541 + }, + { + "start": 4838.46, + "end": 4840.14, + "probability": 0.9875 + }, + { + "start": 4840.26, + "end": 4841.15, + "probability": 0.9894 + }, + { + "start": 4843.16, + "end": 4843.66, + "probability": 0.9413 + }, + { + "start": 4844.22, + "end": 4844.44, + "probability": 0.367 + }, + { + "start": 4844.44, + "end": 4845.94, + "probability": 0.8774 + }, + { + "start": 4847.5, + "end": 4851.08, + "probability": 0.9868 + }, + { + "start": 4851.1, + "end": 4852.1, + "probability": 0.925 + }, + { + "start": 4852.18, + "end": 4853.04, + "probability": 0.7635 + }, + { + "start": 4853.2, + "end": 4856.56, + "probability": 0.9827 + }, + { + "start": 4858.68, + "end": 4860.84, + "probability": 0.8802 + }, + { + "start": 4861.16, + "end": 4862.64, + "probability": 0.9896 + }, + { + "start": 4862.72, + "end": 4863.7, + "probability": 0.9497 + }, + { + "start": 4864.0, + "end": 4866.52, + "probability": 0.9943 + }, + { + "start": 4867.46, + "end": 4871.18, + "probability": 0.9844 + }, + { + "start": 4872.08, + "end": 4873.58, + "probability": 0.7128 + }, + { + "start": 4875.1, + "end": 4875.78, + "probability": 0.591 + }, + { + "start": 4876.82, + "end": 4879.74, + "probability": 0.9757 + }, + { + "start": 4880.52, + "end": 4883.46, + "probability": 0.9735 + }, + { + "start": 4884.1, + "end": 4885.34, + "probability": 0.9844 + }, + { + "start": 4885.9, + "end": 4886.58, + "probability": 0.5075 + }, + { + "start": 4886.76, + "end": 4892.57, + "probability": 0.698 + }, + { + "start": 4893.56, + "end": 4895.58, + "probability": 0.7887 + }, + { + "start": 4895.86, + "end": 4897.04, + "probability": 0.717 + }, + { + "start": 4897.24, + "end": 4898.8, + "probability": 0.6567 + }, + { + "start": 4898.82, + "end": 4898.82, + "probability": 0.0703 + }, + { + "start": 4898.82, + "end": 4899.02, + "probability": 0.5815 + }, + { + "start": 4899.16, + "end": 4900.32, + "probability": 0.6829 + }, + { + "start": 4900.88, + "end": 4901.1, + "probability": 0.6995 + }, + { + "start": 4901.1, + "end": 4902.92, + "probability": 0.5884 + }, + { + "start": 4903.4, + "end": 4903.98, + "probability": 0.4947 + }, + { + "start": 4904.12, + "end": 4909.96, + "probability": 0.9773 + }, + { + "start": 4909.96, + "end": 4913.2, + "probability": 0.9922 + }, + { + "start": 4913.28, + "end": 4913.66, + "probability": 0.6287 + }, + { + "start": 4914.2, + "end": 4914.64, + "probability": 0.7181 + }, + { + "start": 4914.98, + "end": 4915.8, + "probability": 0.6149 + }, + { + "start": 4915.88, + "end": 4919.44, + "probability": 0.9454 + }, + { + "start": 4919.66, + "end": 4920.7, + "probability": 0.962 + }, + { + "start": 4921.72, + "end": 4922.74, + "probability": 0.8701 + }, + { + "start": 4924.28, + "end": 4927.06, + "probability": 0.9759 + }, + { + "start": 4927.56, + "end": 4930.52, + "probability": 0.9748 + }, + { + "start": 4930.52, + "end": 4933.38, + "probability": 0.7347 + }, + { + "start": 4933.5, + "end": 4937.0, + "probability": 0.7997 + }, + { + "start": 4938.46, + "end": 4942.48, + "probability": 0.9758 + }, + { + "start": 4944.27, + "end": 4945.76, + "probability": 0.5062 + }, + { + "start": 4946.02, + "end": 4948.76, + "probability": 0.8547 + }, + { + "start": 4949.24, + "end": 4949.24, + "probability": 0.1287 + }, + { + "start": 4949.24, + "end": 4949.42, + "probability": 0.572 + }, + { + "start": 4949.76, + "end": 4950.26, + "probability": 0.8397 + }, + { + "start": 4950.26, + "end": 4951.4, + "probability": 0.8379 + }, + { + "start": 4952.06, + "end": 4952.86, + "probability": 0.9109 + }, + { + "start": 4953.6, + "end": 4954.88, + "probability": 0.9968 + }, + { + "start": 4955.86, + "end": 4959.78, + "probability": 0.8118 + }, + { + "start": 4961.78, + "end": 4963.72, + "probability": 0.9993 + }, + { + "start": 4965.7, + "end": 4966.8, + "probability": 0.9446 + }, + { + "start": 4967.34, + "end": 4967.88, + "probability": 0.9438 + }, + { + "start": 4968.84, + "end": 4971.88, + "probability": 0.6122 + }, + { + "start": 4972.64, + "end": 4973.58, + "probability": 0.9146 + }, + { + "start": 4974.24, + "end": 4975.24, + "probability": 0.8813 + }, + { + "start": 4975.46, + "end": 4978.44, + "probability": 0.9891 + }, + { + "start": 4980.96, + "end": 4983.52, + "probability": 0.978 + }, + { + "start": 4983.78, + "end": 4984.48, + "probability": 0.7848 + }, + { + "start": 4984.54, + "end": 4985.54, + "probability": 0.9755 + }, + { + "start": 4987.38, + "end": 4988.28, + "probability": 0.8067 + }, + { + "start": 4989.49, + "end": 4991.8, + "probability": 0.7424 + }, + { + "start": 4993.4, + "end": 4993.42, + "probability": 0.814 + }, + { + "start": 4994.0, + "end": 4997.2, + "probability": 0.9966 + }, + { + "start": 4998.42, + "end": 5000.5, + "probability": 0.9425 + }, + { + "start": 5002.74, + "end": 5003.65, + "probability": 0.8892 + }, + { + "start": 5005.3, + "end": 5006.52, + "probability": 0.9837 + }, + { + "start": 5006.58, + "end": 5007.1, + "probability": 0.9364 + }, + { + "start": 5007.32, + "end": 5007.62, + "probability": 0.8245 + }, + { + "start": 5007.96, + "end": 5009.31, + "probability": 0.9849 + }, + { + "start": 5009.54, + "end": 5011.5, + "probability": 0.9365 + }, + { + "start": 5012.54, + "end": 5019.74, + "probability": 0.9927 + }, + { + "start": 5019.9, + "end": 5020.78, + "probability": 0.6244 + }, + { + "start": 5020.82, + "end": 5021.38, + "probability": 0.7614 + }, + { + "start": 5021.78, + "end": 5024.28, + "probability": 0.6453 + }, + { + "start": 5024.82, + "end": 5025.5, + "probability": 0.9383 + }, + { + "start": 5025.88, + "end": 5028.14, + "probability": 0.9945 + }, + { + "start": 5029.16, + "end": 5030.05, + "probability": 0.9807 + }, + { + "start": 5030.9, + "end": 5035.28, + "probability": 0.9966 + }, + { + "start": 5036.42, + "end": 5037.46, + "probability": 0.6823 + }, + { + "start": 5038.86, + "end": 5040.22, + "probability": 0.4427 + }, + { + "start": 5040.52, + "end": 5045.44, + "probability": 0.929 + }, + { + "start": 5045.5, + "end": 5046.16, + "probability": 0.9284 + }, + { + "start": 5046.28, + "end": 5046.74, + "probability": 0.9573 + }, + { + "start": 5046.8, + "end": 5047.62, + "probability": 0.8515 + }, + { + "start": 5047.76, + "end": 5048.36, + "probability": 0.8243 + }, + { + "start": 5049.82, + "end": 5051.8, + "probability": 0.8871 + }, + { + "start": 5052.14, + "end": 5054.72, + "probability": 0.9453 + }, + { + "start": 5055.32, + "end": 5057.34, + "probability": 0.8131 + }, + { + "start": 5058.3, + "end": 5062.46, + "probability": 0.9406 + }, + { + "start": 5063.06, + "end": 5065.52, + "probability": 0.9338 + }, + { + "start": 5065.64, + "end": 5066.84, + "probability": 0.9178 + }, + { + "start": 5067.6, + "end": 5071.32, + "probability": 0.9968 + }, + { + "start": 5073.06, + "end": 5074.6, + "probability": 0.6854 + }, + { + "start": 5075.3, + "end": 5077.9, + "probability": 0.9884 + }, + { + "start": 5078.2, + "end": 5080.36, + "probability": 0.9868 + }, + { + "start": 5080.44, + "end": 5085.32, + "probability": 0.9757 + }, + { + "start": 5085.8, + "end": 5086.02, + "probability": 0.8268 + }, + { + "start": 5086.16, + "end": 5086.78, + "probability": 0.6284 + }, + { + "start": 5087.28, + "end": 5087.74, + "probability": 0.7615 + }, + { + "start": 5087.94, + "end": 5089.0, + "probability": 0.8289 + }, + { + "start": 5089.36, + "end": 5089.64, + "probability": 0.3655 + }, + { + "start": 5089.68, + "end": 5090.96, + "probability": 0.952 + }, + { + "start": 5091.38, + "end": 5094.72, + "probability": 0.9015 + }, + { + "start": 5095.62, + "end": 5099.14, + "probability": 0.919 + }, + { + "start": 5099.54, + "end": 5101.96, + "probability": 0.991 + }, + { + "start": 5102.58, + "end": 5104.86, + "probability": 0.9693 + }, + { + "start": 5105.4, + "end": 5109.1, + "probability": 0.9922 + }, + { + "start": 5109.74, + "end": 5110.46, + "probability": 0.6807 + }, + { + "start": 5111.3, + "end": 5117.16, + "probability": 0.8592 + }, + { + "start": 5118.26, + "end": 5118.92, + "probability": 0.8978 + }, + { + "start": 5119.24, + "end": 5119.84, + "probability": 0.748 + }, + { + "start": 5120.43, + "end": 5123.92, + "probability": 0.8286 + }, + { + "start": 5124.86, + "end": 5126.44, + "probability": 0.9941 + }, + { + "start": 5127.26, + "end": 5129.88, + "probability": 0.9508 + }, + { + "start": 5130.48, + "end": 5132.36, + "probability": 0.9761 + }, + { + "start": 5133.84, + "end": 5135.5, + "probability": 0.6017 + }, + { + "start": 5135.6, + "end": 5137.2, + "probability": 0.7658 + }, + { + "start": 5137.64, + "end": 5138.9, + "probability": 0.9317 + }, + { + "start": 5138.98, + "end": 5140.82, + "probability": 0.8242 + }, + { + "start": 5141.02, + "end": 5142.62, + "probability": 0.6793 + }, + { + "start": 5142.76, + "end": 5143.44, + "probability": 0.5538 + }, + { + "start": 5143.9, + "end": 5144.44, + "probability": 0.733 + }, + { + "start": 5144.52, + "end": 5145.9, + "probability": 0.7607 + }, + { + "start": 5146.97, + "end": 5149.42, + "probability": 0.6865 + }, + { + "start": 5149.66, + "end": 5154.28, + "probability": 0.7143 + }, + { + "start": 5154.32, + "end": 5155.48, + "probability": 0.8046 + }, + { + "start": 5155.6, + "end": 5156.18, + "probability": 0.8563 + }, + { + "start": 5157.18, + "end": 5160.02, + "probability": 0.9902 + }, + { + "start": 5160.6, + "end": 5162.12, + "probability": 0.9963 + }, + { + "start": 5162.8, + "end": 5164.02, + "probability": 0.7028 + }, + { + "start": 5164.56, + "end": 5166.26, + "probability": 0.9557 + }, + { + "start": 5167.0, + "end": 5168.58, + "probability": 0.5916 + }, + { + "start": 5169.12, + "end": 5170.3, + "probability": 0.6494 + }, + { + "start": 5170.66, + "end": 5174.48, + "probability": 0.4581 + }, + { + "start": 5174.56, + "end": 5175.12, + "probability": 0.1852 + }, + { + "start": 5175.12, + "end": 5177.72, + "probability": 0.8326 + }, + { + "start": 5177.74, + "end": 5177.74, + "probability": 0.0535 + }, + { + "start": 5177.78, + "end": 5179.2, + "probability": 0.6971 + }, + { + "start": 5179.22, + "end": 5181.48, + "probability": 0.9749 + }, + { + "start": 5182.16, + "end": 5186.4, + "probability": 0.7979 + }, + { + "start": 5186.42, + "end": 5188.18, + "probability": 0.67 + }, + { + "start": 5188.74, + "end": 5189.38, + "probability": 0.9526 + }, + { + "start": 5189.58, + "end": 5190.18, + "probability": 0.7723 + }, + { + "start": 5190.26, + "end": 5191.3, + "probability": 0.4998 + }, + { + "start": 5191.44, + "end": 5193.2, + "probability": 0.9932 + }, + { + "start": 5195.12, + "end": 5197.38, + "probability": 0.6668 + }, + { + "start": 5198.52, + "end": 5198.52, + "probability": 0.1931 + }, + { + "start": 5198.52, + "end": 5199.66, + "probability": 0.9922 + }, + { + "start": 5200.34, + "end": 5202.64, + "probability": 0.9156 + }, + { + "start": 5203.4, + "end": 5204.62, + "probability": 0.9178 + }, + { + "start": 5204.8, + "end": 5206.42, + "probability": 0.9912 + }, + { + "start": 5207.97, + "end": 5210.09, + "probability": 0.8865 + }, + { + "start": 5211.02, + "end": 5212.98, + "probability": 0.9724 + }, + { + "start": 5213.24, + "end": 5214.26, + "probability": 0.6075 + }, + { + "start": 5214.38, + "end": 5218.7, + "probability": 0.7545 + }, + { + "start": 5218.72, + "end": 5219.14, + "probability": 0.8131 + }, + { + "start": 5219.14, + "end": 5221.16, + "probability": 0.8087 + }, + { + "start": 5221.26, + "end": 5223.06, + "probability": 0.8052 + }, + { + "start": 5223.22, + "end": 5225.98, + "probability": 0.9687 + }, + { + "start": 5227.06, + "end": 5229.68, + "probability": 0.8931 + }, + { + "start": 5230.36, + "end": 5230.86, + "probability": 0.9932 + }, + { + "start": 5231.96, + "end": 5237.54, + "probability": 0.5684 + }, + { + "start": 5238.1, + "end": 5239.84, + "probability": 0.9882 + }, + { + "start": 5240.78, + "end": 5242.88, + "probability": 0.8674 + }, + { + "start": 5243.56, + "end": 5244.3, + "probability": 0.9292 + }, + { + "start": 5244.78, + "end": 5245.98, + "probability": 0.9977 + }, + { + "start": 5246.12, + "end": 5247.62, + "probability": 0.9812 + }, + { + "start": 5247.64, + "end": 5248.52, + "probability": 0.8394 + }, + { + "start": 5249.6, + "end": 5249.84, + "probability": 0.7551 + }, + { + "start": 5250.6, + "end": 5252.29, + "probability": 0.9976 + }, + { + "start": 5252.76, + "end": 5253.66, + "probability": 0.6595 + }, + { + "start": 5253.8, + "end": 5254.38, + "probability": 0.5404 + }, + { + "start": 5254.44, + "end": 5255.14, + "probability": 0.7295 + }, + { + "start": 5255.34, + "end": 5257.12, + "probability": 0.9263 + }, + { + "start": 5257.24, + "end": 5258.43, + "probability": 0.8464 + }, + { + "start": 5258.94, + "end": 5261.28, + "probability": 0.9932 + }, + { + "start": 5262.04, + "end": 5264.14, + "probability": 0.8651 + }, + { + "start": 5264.58, + "end": 5269.29, + "probability": 0.9361 + }, + { + "start": 5269.66, + "end": 5270.66, + "probability": 0.9508 + }, + { + "start": 5270.78, + "end": 5271.08, + "probability": 0.928 + }, + { + "start": 5271.98, + "end": 5276.06, + "probability": 0.8198 + }, + { + "start": 5276.7, + "end": 5278.46, + "probability": 0.936 + }, + { + "start": 5278.46, + "end": 5279.38, + "probability": 0.9433 + }, + { + "start": 5279.48, + "end": 5279.7, + "probability": 0.7393 + }, + { + "start": 5279.78, + "end": 5280.08, + "probability": 0.3953 + }, + { + "start": 5280.73, + "end": 5282.9, + "probability": 0.6667 + }, + { + "start": 5283.1, + "end": 5286.92, + "probability": 0.9938 + }, + { + "start": 5287.18, + "end": 5288.86, + "probability": 0.8399 + }, + { + "start": 5289.9, + "end": 5292.22, + "probability": 0.722 + }, + { + "start": 5292.3, + "end": 5292.86, + "probability": 0.8403 + }, + { + "start": 5293.16, + "end": 5293.9, + "probability": 0.828 + }, + { + "start": 5294.06, + "end": 5297.5, + "probability": 0.9623 + }, + { + "start": 5297.62, + "end": 5300.08, + "probability": 0.9056 + }, + { + "start": 5300.48, + "end": 5301.64, + "probability": 0.9827 + }, + { + "start": 5302.76, + "end": 5303.68, + "probability": 0.9958 + }, + { + "start": 5304.5, + "end": 5307.7, + "probability": 0.9909 + }, + { + "start": 5308.36, + "end": 5312.24, + "probability": 0.9503 + }, + { + "start": 5312.72, + "end": 5313.28, + "probability": 0.7466 + }, + { + "start": 5314.14, + "end": 5314.58, + "probability": 0.6054 + }, + { + "start": 5314.74, + "end": 5316.8, + "probability": 0.7765 + }, + { + "start": 5316.88, + "end": 5317.5, + "probability": 0.8664 + }, + { + "start": 5318.0, + "end": 5318.9, + "probability": 0.6478 + }, + { + "start": 5319.36, + "end": 5320.98, + "probability": 0.7635 + }, + { + "start": 5321.06, + "end": 5322.3, + "probability": 0.6201 + }, + { + "start": 5323.36, + "end": 5324.84, + "probability": 0.9739 + }, + { + "start": 5324.98, + "end": 5326.0, + "probability": 0.9482 + }, + { + "start": 5327.04, + "end": 5330.16, + "probability": 0.9369 + }, + { + "start": 5330.72, + "end": 5332.84, + "probability": 0.999 + }, + { + "start": 5333.06, + "end": 5334.1, + "probability": 0.848 + }, + { + "start": 5334.2, + "end": 5334.76, + "probability": 0.8142 + }, + { + "start": 5336.84, + "end": 5338.12, + "probability": 0.9806 + }, + { + "start": 5339.58, + "end": 5342.5, + "probability": 0.963 + }, + { + "start": 5342.92, + "end": 5343.44, + "probability": 0.8336 + }, + { + "start": 5343.6, + "end": 5344.46, + "probability": 0.6725 + }, + { + "start": 5345.02, + "end": 5345.94, + "probability": 0.8307 + }, + { + "start": 5347.06, + "end": 5347.62, + "probability": 0.793 + }, + { + "start": 5347.66, + "end": 5348.23, + "probability": 0.6009 + }, + { + "start": 5348.56, + "end": 5352.74, + "probability": 0.9782 + }, + { + "start": 5353.34, + "end": 5353.98, + "probability": 0.7121 + }, + { + "start": 5354.1, + "end": 5354.66, + "probability": 0.8782 + }, + { + "start": 5356.2, + "end": 5357.1, + "probability": 0.5295 + }, + { + "start": 5357.18, + "end": 5360.64, + "probability": 0.832 + }, + { + "start": 5361.7, + "end": 5365.94, + "probability": 0.9407 + }, + { + "start": 5366.6, + "end": 5368.92, + "probability": 0.9939 + }, + { + "start": 5369.44, + "end": 5369.7, + "probability": 0.6327 + }, + { + "start": 5371.06, + "end": 5373.26, + "probability": 0.9196 + }, + { + "start": 5374.56, + "end": 5377.0, + "probability": 0.9463 + }, + { + "start": 5377.42, + "end": 5377.62, + "probability": 0.8509 + }, + { + "start": 5378.12, + "end": 5378.88, + "probability": 0.8204 + }, + { + "start": 5379.0, + "end": 5379.3, + "probability": 0.8001 + }, + { + "start": 5379.44, + "end": 5379.8, + "probability": 0.8812 + }, + { + "start": 5380.6, + "end": 5383.44, + "probability": 0.944 + }, + { + "start": 5384.12, + "end": 5385.56, + "probability": 0.8057 + }, + { + "start": 5386.16, + "end": 5387.86, + "probability": 0.9679 + }, + { + "start": 5389.76, + "end": 5391.4, + "probability": 0.9513 + }, + { + "start": 5391.48, + "end": 5394.76, + "probability": 0.7429 + }, + { + "start": 5395.28, + "end": 5399.32, + "probability": 0.9546 + }, + { + "start": 5400.98, + "end": 5402.52, + "probability": 0.8506 + }, + { + "start": 5403.78, + "end": 5406.36, + "probability": 0.9091 + }, + { + "start": 5406.48, + "end": 5407.42, + "probability": 0.7787 + }, + { + "start": 5408.16, + "end": 5411.88, + "probability": 0.9688 + }, + { + "start": 5412.58, + "end": 5414.06, + "probability": 0.9838 + }, + { + "start": 5415.72, + "end": 5417.04, + "probability": 0.7562 + }, + { + "start": 5418.82, + "end": 5420.44, + "probability": 0.7434 + }, + { + "start": 5421.3, + "end": 5427.0, + "probability": 0.9915 + }, + { + "start": 5427.04, + "end": 5428.08, + "probability": 0.6758 + }, + { + "start": 5428.34, + "end": 5429.12, + "probability": 0.7987 + }, + { + "start": 5431.46, + "end": 5433.1, + "probability": 0.8385 + }, + { + "start": 5434.1, + "end": 5437.08, + "probability": 0.9827 + }, + { + "start": 5438.28, + "end": 5440.16, + "probability": 0.8806 + }, + { + "start": 5440.38, + "end": 5440.64, + "probability": 0.4746 + }, + { + "start": 5440.72, + "end": 5440.95, + "probability": 0.8804 + }, + { + "start": 5441.22, + "end": 5442.18, + "probability": 0.746 + }, + { + "start": 5443.34, + "end": 5443.38, + "probability": 0.026 + }, + { + "start": 5443.44, + "end": 5447.52, + "probability": 0.9126 + }, + { + "start": 5449.08, + "end": 5452.4, + "probability": 0.9832 + }, + { + "start": 5453.46, + "end": 5455.04, + "probability": 0.9092 + }, + { + "start": 5456.3, + "end": 5459.54, + "probability": 0.9966 + }, + { + "start": 5462.34, + "end": 5463.86, + "probability": 0.8889 + }, + { + "start": 5463.9, + "end": 5464.24, + "probability": 0.2815 + }, + { + "start": 5464.32, + "end": 5465.34, + "probability": 0.9784 + }, + { + "start": 5465.56, + "end": 5466.08, + "probability": 0.8183 + }, + { + "start": 5466.8, + "end": 5468.88, + "probability": 0.9872 + }, + { + "start": 5470.92, + "end": 5471.82, + "probability": 0.8681 + }, + { + "start": 5471.82, + "end": 5473.68, + "probability": 0.84 + }, + { + "start": 5473.76, + "end": 5474.38, + "probability": 0.6197 + }, + { + "start": 5475.68, + "end": 5476.84, + "probability": 0.5161 + }, + { + "start": 5476.96, + "end": 5477.5, + "probability": 0.7355 + }, + { + "start": 5479.4, + "end": 5480.47, + "probability": 0.9795 + }, + { + "start": 5482.2, + "end": 5484.74, + "probability": 0.943 + }, + { + "start": 5484.88, + "end": 5485.46, + "probability": 0.525 + }, + { + "start": 5488.5, + "end": 5491.56, + "probability": 0.9909 + }, + { + "start": 5491.72, + "end": 5492.56, + "probability": 0.6412 + }, + { + "start": 5493.24, + "end": 5493.72, + "probability": 0.7349 + }, + { + "start": 5494.6, + "end": 5495.06, + "probability": 0.9098 + }, + { + "start": 5495.14, + "end": 5495.82, + "probability": 0.7596 + }, + { + "start": 5496.2, + "end": 5498.46, + "probability": 0.9868 + }, + { + "start": 5498.96, + "end": 5500.06, + "probability": 0.9696 + }, + { + "start": 5500.16, + "end": 5500.78, + "probability": 0.9508 + }, + { + "start": 5500.88, + "end": 5502.42, + "probability": 0.8074 + }, + { + "start": 5502.9, + "end": 5505.26, + "probability": 0.9933 + }, + { + "start": 5505.94, + "end": 5508.58, + "probability": 0.9755 + }, + { + "start": 5510.2, + "end": 5513.26, + "probability": 0.9685 + }, + { + "start": 5513.68, + "end": 5515.2, + "probability": 0.9122 + }, + { + "start": 5517.04, + "end": 5518.78, + "probability": 0.8704 + }, + { + "start": 5518.92, + "end": 5521.52, + "probability": 0.9578 + }, + { + "start": 5521.94, + "end": 5522.7, + "probability": 0.7701 + }, + { + "start": 5522.76, + "end": 5523.76, + "probability": 0.906 + }, + { + "start": 5523.82, + "end": 5525.26, + "probability": 0.9696 + }, + { + "start": 5525.68, + "end": 5526.54, + "probability": 0.9745 + }, + { + "start": 5526.66, + "end": 5526.96, + "probability": 0.6598 + }, + { + "start": 5527.2, + "end": 5528.4, + "probability": 0.8931 + }, + { + "start": 5529.4, + "end": 5530.76, + "probability": 0.7675 + }, + { + "start": 5531.56, + "end": 5533.18, + "probability": 0.0303 + }, + { + "start": 5533.8, + "end": 5539.12, + "probability": 0.3343 + }, + { + "start": 5539.42, + "end": 5539.8, + "probability": 0.5619 + }, + { + "start": 5539.8, + "end": 5540.26, + "probability": 0.0239 + }, + { + "start": 5540.26, + "end": 5541.49, + "probability": 0.897 + }, + { + "start": 5541.76, + "end": 5542.44, + "probability": 0.8575 + }, + { + "start": 5542.86, + "end": 5543.86, + "probability": 0.8774 + }, + { + "start": 5544.48, + "end": 5546.28, + "probability": 0.2063 + }, + { + "start": 5546.48, + "end": 5546.58, + "probability": 0.2224 + }, + { + "start": 5546.84, + "end": 5550.18, + "probability": 0.5277 + }, + { + "start": 5550.22, + "end": 5551.78, + "probability": 0.3692 + }, + { + "start": 5552.06, + "end": 5552.34, + "probability": 0.4251 + }, + { + "start": 5552.42, + "end": 5553.18, + "probability": 0.0944 + }, + { + "start": 5553.46, + "end": 5554.14, + "probability": 0.2121 + }, + { + "start": 5554.98, + "end": 5555.42, + "probability": 0.8062 + }, + { + "start": 5555.58, + "end": 5558.26, + "probability": 0.9946 + }, + { + "start": 5559.12, + "end": 5560.21, + "probability": 0.9947 + }, + { + "start": 5560.56, + "end": 5562.62, + "probability": 0.0563 + }, + { + "start": 5563.28, + "end": 5563.74, + "probability": 0.0122 + }, + { + "start": 5563.74, + "end": 5564.93, + "probability": 0.3727 + }, + { + "start": 5565.9, + "end": 5566.98, + "probability": 0.8108 + }, + { + "start": 5568.64, + "end": 5571.98, + "probability": 0.9963 + }, + { + "start": 5572.66, + "end": 5574.88, + "probability": 0.9692 + }, + { + "start": 5576.56, + "end": 5577.19, + "probability": 0.1599 + }, + { + "start": 5577.4, + "end": 5577.48, + "probability": 0.0417 + }, + { + "start": 5577.6, + "end": 5578.58, + "probability": 0.2001 + }, + { + "start": 5578.76, + "end": 5579.18, + "probability": 0.3407 + }, + { + "start": 5579.38, + "end": 5580.94, + "probability": 0.9021 + }, + { + "start": 5581.06, + "end": 5581.52, + "probability": 0.5379 + }, + { + "start": 5581.74, + "end": 5583.24, + "probability": 0.5104 + }, + { + "start": 5583.24, + "end": 5583.94, + "probability": 0.2301 + }, + { + "start": 5583.94, + "end": 5584.66, + "probability": 0.7524 + }, + { + "start": 5584.7, + "end": 5586.82, + "probability": 0.7124 + }, + { + "start": 5587.0, + "end": 5588.82, + "probability": 0.2407 + }, + { + "start": 5589.24, + "end": 5590.62, + "probability": 0.552 + }, + { + "start": 5590.82, + "end": 5592.85, + "probability": 0.8686 + }, + { + "start": 5593.86, + "end": 5598.5, + "probability": 0.9864 + }, + { + "start": 5598.5, + "end": 5599.16, + "probability": 0.2197 + }, + { + "start": 5599.86, + "end": 5601.46, + "probability": 0.8469 + }, + { + "start": 5601.72, + "end": 5606.5, + "probability": 0.5035 + }, + { + "start": 5609.0, + "end": 5609.56, + "probability": 0.7726 + }, + { + "start": 5609.96, + "end": 5612.06, + "probability": 0.9593 + }, + { + "start": 5613.1, + "end": 5614.76, + "probability": 0.9503 + }, + { + "start": 5615.0, + "end": 5616.08, + "probability": 0.9637 + }, + { + "start": 5616.88, + "end": 5618.34, + "probability": 0.9095 + }, + { + "start": 5619.16, + "end": 5620.32, + "probability": 0.8777 + }, + { + "start": 5620.54, + "end": 5622.44, + "probability": 0.9568 + }, + { + "start": 5623.16, + "end": 5624.04, + "probability": 0.8255 + }, + { + "start": 5624.8, + "end": 5626.56, + "probability": 0.9927 + }, + { + "start": 5626.64, + "end": 5627.8, + "probability": 0.9352 + }, + { + "start": 5628.12, + "end": 5628.76, + "probability": 0.9824 + }, + { + "start": 5629.08, + "end": 5630.23, + "probability": 0.9941 + }, + { + "start": 5630.6, + "end": 5631.6, + "probability": 0.8691 + }, + { + "start": 5631.64, + "end": 5632.44, + "probability": 0.7103 + }, + { + "start": 5632.76, + "end": 5635.18, + "probability": 0.8773 + }, + { + "start": 5635.3, + "end": 5635.82, + "probability": 0.1723 + }, + { + "start": 5636.1, + "end": 5637.36, + "probability": 0.9003 + }, + { + "start": 5637.4, + "end": 5638.12, + "probability": 0.7973 + }, + { + "start": 5640.24, + "end": 5641.38, + "probability": 0.9585 + }, + { + "start": 5643.6, + "end": 5645.1, + "probability": 0.9681 + }, + { + "start": 5647.88, + "end": 5649.1, + "probability": 0.8178 + }, + { + "start": 5650.22, + "end": 5651.74, + "probability": 0.9319 + }, + { + "start": 5652.98, + "end": 5654.22, + "probability": 0.9521 + }, + { + "start": 5655.04, + "end": 5656.59, + "probability": 0.9937 + }, + { + "start": 5657.24, + "end": 5660.02, + "probability": 0.9558 + }, + { + "start": 5661.12, + "end": 5662.84, + "probability": 0.9954 + }, + { + "start": 5663.6, + "end": 5665.24, + "probability": 0.9824 + }, + { + "start": 5665.92, + "end": 5667.54, + "probability": 0.997 + }, + { + "start": 5668.3, + "end": 5670.62, + "probability": 0.3449 + }, + { + "start": 5671.02, + "end": 5672.18, + "probability": 0.1895 + }, + { + "start": 5672.68, + "end": 5673.16, + "probability": 0.0215 + }, + { + "start": 5674.44, + "end": 5674.66, + "probability": 0.4708 + }, + { + "start": 5675.3, + "end": 5678.92, + "probability": 0.6383 + }, + { + "start": 5679.14, + "end": 5680.4, + "probability": 0.9755 + }, + { + "start": 5680.96, + "end": 5682.58, + "probability": 0.9333 + }, + { + "start": 5683.2, + "end": 5683.7, + "probability": 0.155 + }, + { + "start": 5685.94, + "end": 5686.98, + "probability": 0.584 + }, + { + "start": 5687.86, + "end": 5691.08, + "probability": 0.4994 + }, + { + "start": 5691.64, + "end": 5694.4, + "probability": 0.7513 + }, + { + "start": 5694.44, + "end": 5696.05, + "probability": 0.9831 + }, + { + "start": 5697.22, + "end": 5699.24, + "probability": 0.6361 + }, + { + "start": 5699.44, + "end": 5700.59, + "probability": 0.9553 + }, + { + "start": 5700.64, + "end": 5702.86, + "probability": 0.9252 + }, + { + "start": 5708.86, + "end": 5712.36, + "probability": 0.8716 + }, + { + "start": 5712.42, + "end": 5713.94, + "probability": 0.944 + }, + { + "start": 5714.06, + "end": 5715.4, + "probability": 0.9704 + }, + { + "start": 5715.48, + "end": 5716.16, + "probability": 0.877 + }, + { + "start": 5716.2, + "end": 5716.82, + "probability": 0.4137 + }, + { + "start": 5717.06, + "end": 5719.8, + "probability": 0.9828 + }, + { + "start": 5720.12, + "end": 5720.82, + "probability": 0.469 + }, + { + "start": 5721.18, + "end": 5722.08, + "probability": 0.6993 + }, + { + "start": 5722.18, + "end": 5726.7, + "probability": 0.9599 + }, + { + "start": 5727.24, + "end": 5728.68, + "probability": 0.8075 + }, + { + "start": 5729.4, + "end": 5732.06, + "probability": 0.9929 + }, + { + "start": 5732.94, + "end": 5734.8, + "probability": 0.5209 + }, + { + "start": 5734.98, + "end": 5736.34, + "probability": 0.8904 + }, + { + "start": 5738.03, + "end": 5738.46, + "probability": 0.934 + }, + { + "start": 5739.18, + "end": 5739.54, + "probability": 0.9617 + }, + { + "start": 5739.96, + "end": 5740.49, + "probability": 0.9504 + }, + { + "start": 5741.12, + "end": 5742.88, + "probability": 0.8662 + }, + { + "start": 5743.06, + "end": 5744.16, + "probability": 0.9834 + }, + { + "start": 5744.18, + "end": 5744.7, + "probability": 0.6523 + }, + { + "start": 5746.28, + "end": 5748.96, + "probability": 0.8742 + }, + { + "start": 5749.98, + "end": 5751.7, + "probability": 0.9489 + }, + { + "start": 5752.22, + "end": 5752.72, + "probability": 0.655 + }, + { + "start": 5753.92, + "end": 5756.54, + "probability": 0.996 + }, + { + "start": 5757.76, + "end": 5759.52, + "probability": 0.9945 + }, + { + "start": 5759.56, + "end": 5760.1, + "probability": 0.6968 + }, + { + "start": 5760.62, + "end": 5762.28, + "probability": 0.6777 + }, + { + "start": 5762.42, + "end": 5765.3, + "probability": 0.8696 + }, + { + "start": 5765.36, + "end": 5765.58, + "probability": 0.4622 + }, + { + "start": 5765.58, + "end": 5766.3, + "probability": 0.1196 + }, + { + "start": 5766.44, + "end": 5767.76, + "probability": 0.6283 + }, + { + "start": 5768.0, + "end": 5768.7, + "probability": 0.8522 + }, + { + "start": 5769.32, + "end": 5772.22, + "probability": 0.9918 + }, + { + "start": 5773.0, + "end": 5775.4, + "probability": 0.8525 + }, + { + "start": 5776.06, + "end": 5777.54, + "probability": 0.9961 + }, + { + "start": 5778.26, + "end": 5779.12, + "probability": 0.9829 + }, + { + "start": 5779.3, + "end": 5780.94, + "probability": 0.8667 + }, + { + "start": 5781.58, + "end": 5783.25, + "probability": 0.9839 + }, + { + "start": 5783.94, + "end": 5787.64, + "probability": 0.1451 + }, + { + "start": 5787.64, + "end": 5787.68, + "probability": 0.2414 + }, + { + "start": 5787.68, + "end": 5788.44, + "probability": 0.2336 + }, + { + "start": 5789.34, + "end": 5790.52, + "probability": 0.5489 + }, + { + "start": 5791.72, + "end": 5792.52, + "probability": 0.2975 + }, + { + "start": 5793.16, + "end": 5793.86, + "probability": 0.0177 + }, + { + "start": 5794.02, + "end": 5794.02, + "probability": 0.4318 + }, + { + "start": 5794.62, + "end": 5796.88, + "probability": 0.7305 + }, + { + "start": 5797.6, + "end": 5798.72, + "probability": 0.0261 + }, + { + "start": 5799.08, + "end": 5800.04, + "probability": 0.0527 + }, + { + "start": 5800.12, + "end": 5800.61, + "probability": 0.1769 + }, + { + "start": 5800.82, + "end": 5801.0, + "probability": 0.0289 + }, + { + "start": 5801.0, + "end": 5801.0, + "probability": 0.3919 + }, + { + "start": 5801.0, + "end": 5801.85, + "probability": 0.2525 + }, + { + "start": 5802.88, + "end": 5804.6, + "probability": 0.541 + }, + { + "start": 5804.62, + "end": 5805.18, + "probability": 0.7869 + }, + { + "start": 5805.68, + "end": 5806.96, + "probability": 0.7944 + }, + { + "start": 5807.0, + "end": 5809.62, + "probability": 0.7829 + }, + { + "start": 5809.96, + "end": 5811.18, + "probability": 0.9126 + }, + { + "start": 5811.98, + "end": 5812.52, + "probability": 0.8844 + }, + { + "start": 5812.7, + "end": 5816.07, + "probability": 0.9895 + }, + { + "start": 5816.22, + "end": 5818.88, + "probability": 0.9777 + }, + { + "start": 5818.96, + "end": 5820.08, + "probability": 0.9869 + }, + { + "start": 5820.2, + "end": 5821.14, + "probability": 0.9879 + }, + { + "start": 5822.7, + "end": 5824.3, + "probability": 0.8727 + }, + { + "start": 5825.14, + "end": 5828.18, + "probability": 0.9895 + }, + { + "start": 5828.7, + "end": 5829.0, + "probability": 0.0103 + }, + { + "start": 5829.04, + "end": 5830.24, + "probability": 0.7856 + }, + { + "start": 5830.74, + "end": 5832.54, + "probability": 0.7217 + }, + { + "start": 5833.04, + "end": 5834.12, + "probability": 0.7355 + }, + { + "start": 5834.2, + "end": 5834.96, + "probability": 0.7765 + }, + { + "start": 5835.04, + "end": 5836.14, + "probability": 0.7947 + }, + { + "start": 5836.18, + "end": 5837.34, + "probability": 0.832 + }, + { + "start": 5837.86, + "end": 5838.4, + "probability": 0.615 + }, + { + "start": 5838.52, + "end": 5839.33, + "probability": 0.8857 + }, + { + "start": 5839.38, + "end": 5841.96, + "probability": 0.9941 + }, + { + "start": 5842.0, + "end": 5842.88, + "probability": 0.7645 + }, + { + "start": 5842.88, + "end": 5845.6, + "probability": 0.2824 + }, + { + "start": 5847.2, + "end": 5848.8, + "probability": 0.0981 + }, + { + "start": 5848.82, + "end": 5849.78, + "probability": 0.4696 + }, + { + "start": 5849.9, + "end": 5853.82, + "probability": 0.9629 + }, + { + "start": 5853.92, + "end": 5857.58, + "probability": 0.8323 + }, + { + "start": 5857.92, + "end": 5861.19, + "probability": 0.7347 + }, + { + "start": 5861.84, + "end": 5864.62, + "probability": 0.7171 + }, + { + "start": 5865.32, + "end": 5866.08, + "probability": 0.8762 + }, + { + "start": 5875.16, + "end": 5877.28, + "probability": 0.6766 + }, + { + "start": 5878.82, + "end": 5883.68, + "probability": 0.8654 + }, + { + "start": 5883.82, + "end": 5887.14, + "probability": 0.9865 + }, + { + "start": 5888.16, + "end": 5890.5, + "probability": 0.9036 + }, + { + "start": 5891.96, + "end": 5894.46, + "probability": 0.8581 + }, + { + "start": 5895.06, + "end": 5896.0, + "probability": 0.6788 + }, + { + "start": 5896.72, + "end": 5898.54, + "probability": 0.6756 + }, + { + "start": 5898.54, + "end": 5901.62, + "probability": 0.9168 + }, + { + "start": 5902.82, + "end": 5905.78, + "probability": 0.7647 + }, + { + "start": 5907.14, + "end": 5912.78, + "probability": 0.9902 + }, + { + "start": 5912.9, + "end": 5915.92, + "probability": 0.9875 + }, + { + "start": 5916.22, + "end": 5917.38, + "probability": 0.5435 + }, + { + "start": 5918.38, + "end": 5921.16, + "probability": 0.751 + }, + { + "start": 5922.1, + "end": 5924.0, + "probability": 0.9815 + }, + { + "start": 5926.24, + "end": 5927.3, + "probability": 0.8065 + }, + { + "start": 5928.1, + "end": 5931.04, + "probability": 0.9575 + }, + { + "start": 5931.86, + "end": 5934.1, + "probability": 0.8733 + }, + { + "start": 5934.82, + "end": 5938.56, + "probability": 0.9931 + }, + { + "start": 5939.24, + "end": 5942.02, + "probability": 0.9307 + }, + { + "start": 5944.12, + "end": 5945.06, + "probability": 0.1726 + }, + { + "start": 5945.18, + "end": 5947.8, + "probability": 0.9645 + }, + { + "start": 5948.74, + "end": 5951.26, + "probability": 0.9688 + }, + { + "start": 5952.14, + "end": 5953.96, + "probability": 0.9783 + }, + { + "start": 5954.72, + "end": 5956.56, + "probability": 0.9289 + }, + { + "start": 5958.08, + "end": 5963.96, + "probability": 0.991 + }, + { + "start": 5964.96, + "end": 5968.92, + "probability": 0.9803 + }, + { + "start": 5969.46, + "end": 5970.08, + "probability": 0.7983 + }, + { + "start": 5970.26, + "end": 5971.04, + "probability": 0.7077 + }, + { + "start": 5971.1, + "end": 5973.66, + "probability": 0.9597 + }, + { + "start": 5973.74, + "end": 5974.44, + "probability": 0.7868 + }, + { + "start": 5975.08, + "end": 5975.86, + "probability": 0.9265 + }, + { + "start": 5975.98, + "end": 5976.62, + "probability": 0.7742 + }, + { + "start": 5977.42, + "end": 5979.02, + "probability": 0.9337 + }, + { + "start": 5979.84, + "end": 5983.2, + "probability": 0.9961 + }, + { + "start": 5983.43, + "end": 5986.18, + "probability": 0.998 + }, + { + "start": 5986.18, + "end": 5988.12, + "probability": 0.4799 + }, + { + "start": 5988.46, + "end": 5992.0, + "probability": 0.9867 + }, + { + "start": 5992.42, + "end": 5995.76, + "probability": 0.9418 + }, + { + "start": 5996.12, + "end": 5997.22, + "probability": 0.9471 + }, + { + "start": 5997.96, + "end": 6000.12, + "probability": 0.9308 + }, + { + "start": 6000.76, + "end": 6001.86, + "probability": 0.7689 + }, + { + "start": 6001.92, + "end": 6004.82, + "probability": 0.9128 + }, + { + "start": 6004.82, + "end": 6009.66, + "probability": 0.9941 + }, + { + "start": 6011.66, + "end": 6013.48, + "probability": 0.8945 + }, + { + "start": 6013.88, + "end": 6014.16, + "probability": 0.7791 + }, + { + "start": 6014.26, + "end": 6017.1, + "probability": 0.964 + }, + { + "start": 6017.98, + "end": 6019.4, + "probability": 0.7449 + }, + { + "start": 6019.7, + "end": 6019.98, + "probability": 0.9689 + }, + { + "start": 6020.12, + "end": 6022.78, + "probability": 0.9975 + }, + { + "start": 6022.78, + "end": 6028.1, + "probability": 0.9483 + }, + { + "start": 6028.66, + "end": 6029.1, + "probability": 0.3874 + }, + { + "start": 6029.82, + "end": 6031.74, + "probability": 0.9933 + }, + { + "start": 6031.88, + "end": 6035.48, + "probability": 0.9538 + }, + { + "start": 6035.68, + "end": 6036.98, + "probability": 0.8927 + }, + { + "start": 6037.04, + "end": 6037.58, + "probability": 0.4682 + }, + { + "start": 6037.72, + "end": 6038.16, + "probability": 0.7913 + }, + { + "start": 6038.36, + "end": 6039.54, + "probability": 0.7415 + }, + { + "start": 6040.24, + "end": 6043.62, + "probability": 0.9838 + }, + { + "start": 6043.68, + "end": 6044.44, + "probability": 0.8586 + }, + { + "start": 6045.32, + "end": 6051.78, + "probability": 0.9314 + }, + { + "start": 6052.38, + "end": 6055.06, + "probability": 0.9913 + }, + { + "start": 6055.7, + "end": 6056.78, + "probability": 0.6738 + }, + { + "start": 6057.74, + "end": 6062.66, + "probability": 0.9285 + }, + { + "start": 6062.72, + "end": 6063.3, + "probability": 0.9526 + }, + { + "start": 6064.16, + "end": 6069.03, + "probability": 0.9598 + }, + { + "start": 6070.4, + "end": 6071.63, + "probability": 0.7404 + }, + { + "start": 6071.9, + "end": 6074.28, + "probability": 0.9105 + }, + { + "start": 6074.48, + "end": 6075.82, + "probability": 0.6978 + }, + { + "start": 6077.29, + "end": 6082.6, + "probability": 0.9995 + }, + { + "start": 6082.6, + "end": 6087.76, + "probability": 0.9413 + }, + { + "start": 6088.48, + "end": 6092.28, + "probability": 0.9099 + }, + { + "start": 6092.44, + "end": 6092.68, + "probability": 0.1494 + }, + { + "start": 6092.8, + "end": 6095.0, + "probability": 0.9846 + }, + { + "start": 6095.12, + "end": 6096.88, + "probability": 0.7399 + }, + { + "start": 6097.04, + "end": 6100.64, + "probability": 0.9771 + }, + { + "start": 6102.26, + "end": 6102.8, + "probability": 0.9041 + }, + { + "start": 6102.88, + "end": 6104.23, + "probability": 0.783 + }, + { + "start": 6104.46, + "end": 6108.02, + "probability": 0.6757 + }, + { + "start": 6108.02, + "end": 6112.2, + "probability": 0.9745 + }, + { + "start": 6112.68, + "end": 6116.64, + "probability": 0.9096 + }, + { + "start": 6118.35, + "end": 6122.58, + "probability": 0.8428 + }, + { + "start": 6124.96, + "end": 6127.11, + "probability": 0.1108 + }, + { + "start": 6127.3, + "end": 6127.88, + "probability": 0.0966 + }, + { + "start": 6128.0, + "end": 6128.06, + "probability": 0.027 + }, + { + "start": 6128.06, + "end": 6129.66, + "probability": 0.1946 + }, + { + "start": 6131.52, + "end": 6131.54, + "probability": 0.4308 + }, + { + "start": 6139.98, + "end": 6141.24, + "probability": 0.0819 + }, + { + "start": 6141.38, + "end": 6141.94, + "probability": 0.1676 + }, + { + "start": 6142.58, + "end": 6145.18, + "probability": 0.4579 + }, + { + "start": 6145.7, + "end": 6151.54, + "probability": 0.7891 + }, + { + "start": 6151.56, + "end": 6151.9, + "probability": 0.4621 + }, + { + "start": 6153.08, + "end": 6155.2, + "probability": 0.8625 + }, + { + "start": 6155.66, + "end": 6158.62, + "probability": 0.911 + }, + { + "start": 6159.78, + "end": 6160.42, + "probability": 0.6603 + }, + { + "start": 6160.7, + "end": 6162.54, + "probability": 0.824 + }, + { + "start": 6162.9, + "end": 6163.54, + "probability": 0.0478 + }, + { + "start": 6164.84, + "end": 6168.56, + "probability": 0.8653 + }, + { + "start": 6169.0, + "end": 6171.46, + "probability": 0.6331 + }, + { + "start": 6172.14, + "end": 6178.24, + "probability": 0.9395 + }, + { + "start": 6179.14, + "end": 6181.28, + "probability": 0.7703 + }, + { + "start": 6182.04, + "end": 6186.52, + "probability": 0.6665 + }, + { + "start": 6186.52, + "end": 6188.38, + "probability": 0.7592 + }, + { + "start": 6197.72, + "end": 6200.78, + "probability": 0.5333 + }, + { + "start": 6201.16, + "end": 6201.98, + "probability": 0.702 + }, + { + "start": 6202.84, + "end": 6205.48, + "probability": 0.786 + }, + { + "start": 6206.58, + "end": 6209.2, + "probability": 0.5842 + }, + { + "start": 6210.52, + "end": 6213.8, + "probability": 0.7924 + }, + { + "start": 6214.68, + "end": 6219.28, + "probability": 0.802 + }, + { + "start": 6220.02, + "end": 6223.02, + "probability": 0.9008 + }, + { + "start": 6224.54, + "end": 6229.76, + "probability": 0.6995 + }, + { + "start": 6230.72, + "end": 6235.36, + "probability": 0.9801 + }, + { + "start": 6235.36, + "end": 6240.12, + "probability": 0.9941 + }, + { + "start": 6240.9, + "end": 6243.2, + "probability": 0.75 + }, + { + "start": 6243.86, + "end": 6246.1, + "probability": 0.9966 + }, + { + "start": 6246.74, + "end": 6249.78, + "probability": 0.9288 + }, + { + "start": 6250.48, + "end": 6253.32, + "probability": 0.8942 + }, + { + "start": 6253.98, + "end": 6255.34, + "probability": 0.9453 + }, + { + "start": 6255.68, + "end": 6259.74, + "probability": 0.9858 + }, + { + "start": 6260.26, + "end": 6261.4, + "probability": 0.9892 + }, + { + "start": 6263.14, + "end": 6266.96, + "probability": 0.9844 + }, + { + "start": 6266.96, + "end": 6269.6, + "probability": 0.9985 + }, + { + "start": 6270.2, + "end": 6272.48, + "probability": 0.9665 + }, + { + "start": 6274.0, + "end": 6275.52, + "probability": 0.7911 + }, + { + "start": 6275.9, + "end": 6279.02, + "probability": 0.9103 + }, + { + "start": 6280.06, + "end": 6282.14, + "probability": 0.9973 + }, + { + "start": 6282.76, + "end": 6285.38, + "probability": 0.9408 + }, + { + "start": 6286.54, + "end": 6287.78, + "probability": 0.794 + }, + { + "start": 6288.94, + "end": 6294.58, + "probability": 0.9899 + }, + { + "start": 6295.32, + "end": 6298.1, + "probability": 0.9595 + }, + { + "start": 6301.28, + "end": 6304.92, + "probability": 0.8871 + }, + { + "start": 6304.92, + "end": 6310.22, + "probability": 0.995 + }, + { + "start": 6312.14, + "end": 6316.28, + "probability": 0.9373 + }, + { + "start": 6316.28, + "end": 6321.4, + "probability": 0.9962 + }, + { + "start": 6323.06, + "end": 6328.56, + "probability": 0.9937 + }, + { + "start": 6329.1, + "end": 6332.36, + "probability": 0.8777 + }, + { + "start": 6333.46, + "end": 6334.82, + "probability": 0.6973 + }, + { + "start": 6335.7, + "end": 6336.38, + "probability": 0.9432 + }, + { + "start": 6337.38, + "end": 6339.02, + "probability": 0.9769 + }, + { + "start": 6339.22, + "end": 6343.53, + "probability": 0.9756 + }, + { + "start": 6344.5, + "end": 6349.56, + "probability": 0.9958 + }, + { + "start": 6349.9, + "end": 6358.36, + "probability": 0.9575 + }, + { + "start": 6358.42, + "end": 6364.32, + "probability": 0.9981 + }, + { + "start": 6365.28, + "end": 6368.5, + "probability": 0.9692 + }, + { + "start": 6369.34, + "end": 6370.72, + "probability": 0.9715 + }, + { + "start": 6372.02, + "end": 6374.0, + "probability": 0.9832 + }, + { + "start": 6375.44, + "end": 6379.14, + "probability": 0.9512 + }, + { + "start": 6379.14, + "end": 6382.38, + "probability": 0.9801 + }, + { + "start": 6383.16, + "end": 6387.62, + "probability": 0.9923 + }, + { + "start": 6389.58, + "end": 6390.56, + "probability": 0.9633 + }, + { + "start": 6390.82, + "end": 6391.62, + "probability": 0.6705 + }, + { + "start": 6391.82, + "end": 6392.86, + "probability": 0.9249 + }, + { + "start": 6393.58, + "end": 6400.62, + "probability": 0.8975 + }, + { + "start": 6401.58, + "end": 6404.88, + "probability": 0.8887 + }, + { + "start": 6405.68, + "end": 6407.34, + "probability": 0.9725 + }, + { + "start": 6408.16, + "end": 6409.8, + "probability": 0.7532 + }, + { + "start": 6410.46, + "end": 6412.16, + "probability": 0.7601 + }, + { + "start": 6412.82, + "end": 6415.66, + "probability": 0.9076 + }, + { + "start": 6416.28, + "end": 6416.92, + "probability": 0.7751 + }, + { + "start": 6417.76, + "end": 6422.62, + "probability": 0.9646 + }, + { + "start": 6423.44, + "end": 6426.36, + "probability": 0.9047 + }, + { + "start": 6427.42, + "end": 6430.02, + "probability": 0.99 + }, + { + "start": 6430.58, + "end": 6431.4, + "probability": 0.9945 + }, + { + "start": 6432.08, + "end": 6433.4, + "probability": 0.9997 + }, + { + "start": 6434.56, + "end": 6438.38, + "probability": 0.9907 + }, + { + "start": 6439.02, + "end": 6441.08, + "probability": 0.8417 + }, + { + "start": 6441.62, + "end": 6442.34, + "probability": 0.7398 + }, + { + "start": 6442.74, + "end": 6443.84, + "probability": 0.9901 + }, + { + "start": 6445.32, + "end": 6447.3, + "probability": 0.9971 + }, + { + "start": 6448.44, + "end": 6455.04, + "probability": 0.9466 + }, + { + "start": 6455.8, + "end": 6458.78, + "probability": 0.6905 + }, + { + "start": 6458.78, + "end": 6464.26, + "probability": 0.9801 + }, + { + "start": 6464.36, + "end": 6465.94, + "probability": 0.8454 + }, + { + "start": 6466.52, + "end": 6468.82, + "probability": 0.9954 + }, + { + "start": 6469.46, + "end": 6471.72, + "probability": 0.9867 + }, + { + "start": 6472.28, + "end": 6473.8, + "probability": 0.9746 + }, + { + "start": 6474.38, + "end": 6476.52, + "probability": 0.9847 + }, + { + "start": 6477.22, + "end": 6477.6, + "probability": 0.8823 + }, + { + "start": 6480.02, + "end": 6484.66, + "probability": 0.7126 + }, + { + "start": 6484.88, + "end": 6488.26, + "probability": 0.9918 + }, + { + "start": 6488.63, + "end": 6489.1, + "probability": 0.9651 + }, + { + "start": 6490.9, + "end": 6492.92, + "probability": 0.9862 + }, + { + "start": 6493.64, + "end": 6495.48, + "probability": 0.8744 + }, + { + "start": 6495.6, + "end": 6498.02, + "probability": 0.9919 + }, + { + "start": 6498.78, + "end": 6501.8, + "probability": 0.8896 + }, + { + "start": 6502.56, + "end": 6502.88, + "probability": 0.3474 + }, + { + "start": 6503.02, + "end": 6505.02, + "probability": 0.5823 + }, + { + "start": 6505.36, + "end": 6510.1, + "probability": 0.1176 + }, + { + "start": 6510.16, + "end": 6511.88, + "probability": 0.8357 + }, + { + "start": 6512.58, + "end": 6514.94, + "probability": 0.7114 + }, + { + "start": 6514.96, + "end": 6516.02, + "probability": 0.8689 + }, + { + "start": 6516.06, + "end": 6516.74, + "probability": 0.7368 + }, + { + "start": 6516.9, + "end": 6518.14, + "probability": 0.7932 + }, + { + "start": 6518.88, + "end": 6522.46, + "probability": 0.6649 + }, + { + "start": 6522.46, + "end": 6523.38, + "probability": 0.0466 + }, + { + "start": 6524.3, + "end": 6524.92, + "probability": 0.8108 + }, + { + "start": 6525.54, + "end": 6530.64, + "probability": 0.8847 + }, + { + "start": 6531.22, + "end": 6534.34, + "probability": 0.9973 + }, + { + "start": 6535.06, + "end": 6536.72, + "probability": 0.9438 + }, + { + "start": 6537.58, + "end": 6542.14, + "probability": 0.9945 + }, + { + "start": 6542.66, + "end": 6548.88, + "probability": 0.9867 + }, + { + "start": 6548.88, + "end": 6554.02, + "probability": 0.9316 + }, + { + "start": 6554.7, + "end": 6556.5, + "probability": 0.6772 + }, + { + "start": 6556.76, + "end": 6559.06, + "probability": 0.9734 + }, + { + "start": 6559.54, + "end": 6560.98, + "probability": 0.9672 + }, + { + "start": 6561.92, + "end": 6564.12, + "probability": 0.9967 + }, + { + "start": 6564.5, + "end": 6569.68, + "probability": 0.7419 + }, + { + "start": 6570.54, + "end": 6573.92, + "probability": 0.9897 + }, + { + "start": 6573.92, + "end": 6576.88, + "probability": 0.9878 + }, + { + "start": 6578.04, + "end": 6581.3, + "probability": 0.8841 + }, + { + "start": 6582.14, + "end": 6584.6, + "probability": 0.9994 + }, + { + "start": 6584.8, + "end": 6585.74, + "probability": 0.7097 + }, + { + "start": 6585.9, + "end": 6587.1, + "probability": 0.9482 + }, + { + "start": 6587.64, + "end": 6588.42, + "probability": 0.9633 + }, + { + "start": 6588.6, + "end": 6589.3, + "probability": 0.9308 + }, + { + "start": 6589.58, + "end": 6590.79, + "probability": 0.9379 + }, + { + "start": 6591.34, + "end": 6592.32, + "probability": 0.8984 + }, + { + "start": 6592.52, + "end": 6593.66, + "probability": 0.8516 + }, + { + "start": 6594.64, + "end": 6599.98, + "probability": 0.9749 + }, + { + "start": 6601.06, + "end": 6603.32, + "probability": 0.9744 + }, + { + "start": 6603.32, + "end": 6606.34, + "probability": 0.9441 + }, + { + "start": 6606.84, + "end": 6607.82, + "probability": 0.7672 + }, + { + "start": 6609.52, + "end": 6613.4, + "probability": 0.9576 + }, + { + "start": 6614.38, + "end": 6615.66, + "probability": 0.9928 + }, + { + "start": 6616.5, + "end": 6621.02, + "probability": 0.9908 + }, + { + "start": 6621.8, + "end": 6623.1, + "probability": 0.9107 + }, + { + "start": 6623.6, + "end": 6625.56, + "probability": 0.9884 + }, + { + "start": 6626.12, + "end": 6627.66, + "probability": 0.9935 + }, + { + "start": 6628.22, + "end": 6629.2, + "probability": 0.86 + }, + { + "start": 6629.86, + "end": 6632.44, + "probability": 0.9735 + }, + { + "start": 6634.12, + "end": 6635.08, + "probability": 0.9109 + }, + { + "start": 6635.91, + "end": 6637.88, + "probability": 0.9047 + }, + { + "start": 6638.82, + "end": 6642.96, + "probability": 0.9521 + }, + { + "start": 6644.66, + "end": 6647.12, + "probability": 0.9854 + }, + { + "start": 6647.9, + "end": 6650.02, + "probability": 0.6362 + }, + { + "start": 6650.02, + "end": 6653.56, + "probability": 0.9925 + }, + { + "start": 6654.0, + "end": 6656.44, + "probability": 0.9879 + }, + { + "start": 6657.06, + "end": 6659.96, + "probability": 0.9971 + }, + { + "start": 6661.3, + "end": 6664.56, + "probability": 0.9137 + }, + { + "start": 6664.58, + "end": 6667.0, + "probability": 0.7524 + }, + { + "start": 6667.62, + "end": 6670.3, + "probability": 0.9641 + }, + { + "start": 6671.6, + "end": 6674.92, + "probability": 0.8598 + }, + { + "start": 6676.06, + "end": 6679.88, + "probability": 0.841 + }, + { + "start": 6681.14, + "end": 6682.02, + "probability": 0.7365 + }, + { + "start": 6683.18, + "end": 6685.4, + "probability": 0.9865 + }, + { + "start": 6685.92, + "end": 6687.08, + "probability": 0.9885 + }, + { + "start": 6688.0, + "end": 6690.38, + "probability": 0.7351 + }, + { + "start": 6691.46, + "end": 6696.58, + "probability": 0.7775 + }, + { + "start": 6696.58, + "end": 6700.4, + "probability": 0.9238 + }, + { + "start": 6701.44, + "end": 6703.94, + "probability": 0.7028 + }, + { + "start": 6704.08, + "end": 6707.68, + "probability": 0.8251 + }, + { + "start": 6709.38, + "end": 6710.52, + "probability": 0.5459 + }, + { + "start": 6711.36, + "end": 6713.34, + "probability": 0.5685 + }, + { + "start": 6714.28, + "end": 6716.22, + "probability": 0.9641 + }, + { + "start": 6717.14, + "end": 6718.44, + "probability": 0.9664 + }, + { + "start": 6719.26, + "end": 6720.44, + "probability": 0.8495 + }, + { + "start": 6720.94, + "end": 6721.64, + "probability": 0.7676 + }, + { + "start": 6721.7, + "end": 6722.82, + "probability": 0.94 + }, + { + "start": 6723.26, + "end": 6726.48, + "probability": 0.9427 + }, + { + "start": 6727.18, + "end": 6729.02, + "probability": 0.8444 + }, + { + "start": 6730.28, + "end": 6732.1, + "probability": 0.1561 + }, + { + "start": 6733.1, + "end": 6735.64, + "probability": 0.7841 + }, + { + "start": 6735.84, + "end": 6738.3, + "probability": 0.8376 + }, + { + "start": 6739.1, + "end": 6740.2, + "probability": 0.984 + }, + { + "start": 6740.82, + "end": 6741.76, + "probability": 0.9305 + }, + { + "start": 6742.46, + "end": 6745.51, + "probability": 0.9842 + }, + { + "start": 6746.38, + "end": 6747.44, + "probability": 0.9294 + }, + { + "start": 6747.68, + "end": 6750.78, + "probability": 0.9901 + }, + { + "start": 6750.88, + "end": 6754.5, + "probability": 0.9946 + }, + { + "start": 6755.26, + "end": 6759.72, + "probability": 0.9341 + }, + { + "start": 6761.46, + "end": 6763.62, + "probability": 0.3364 + }, + { + "start": 6764.38, + "end": 6766.76, + "probability": 0.7482 + }, + { + "start": 6767.66, + "end": 6771.32, + "probability": 0.9792 + }, + { + "start": 6772.14, + "end": 6773.94, + "probability": 0.8032 + }, + { + "start": 6773.94, + "end": 6776.62, + "probability": 0.9961 + }, + { + "start": 6777.34, + "end": 6779.78, + "probability": 0.85 + }, + { + "start": 6780.34, + "end": 6782.88, + "probability": 0.996 + }, + { + "start": 6784.0, + "end": 6787.2, + "probability": 0.7148 + }, + { + "start": 6788.18, + "end": 6790.48, + "probability": 0.9963 + }, + { + "start": 6791.12, + "end": 6792.92, + "probability": 0.9623 + }, + { + "start": 6793.88, + "end": 6795.36, + "probability": 0.8199 + }, + { + "start": 6796.68, + "end": 6798.96, + "probability": 0.5026 + }, + { + "start": 6800.9, + "end": 6801.9, + "probability": 0.9316 + }, + { + "start": 6802.72, + "end": 6804.24, + "probability": 0.4498 + }, + { + "start": 6805.78, + "end": 6805.86, + "probability": 0.4084 + }, + { + "start": 6806.38, + "end": 6809.14, + "probability": 0.9849 + }, + { + "start": 6809.76, + "end": 6814.04, + "probability": 0.759 + }, + { + "start": 6814.74, + "end": 6818.22, + "probability": 0.7241 + }, + { + "start": 6818.86, + "end": 6821.24, + "probability": 0.9967 + }, + { + "start": 6821.78, + "end": 6823.38, + "probability": 0.971 + }, + { + "start": 6823.48, + "end": 6825.02, + "probability": 0.9917 + }, + { + "start": 6825.88, + "end": 6827.16, + "probability": 0.9016 + }, + { + "start": 6827.56, + "end": 6832.16, + "probability": 0.998 + }, + { + "start": 6832.34, + "end": 6832.58, + "probability": 0.7518 + }, + { + "start": 6833.68, + "end": 6835.92, + "probability": 0.6392 + }, + { + "start": 6836.14, + "end": 6838.56, + "probability": 0.6369 + }, + { + "start": 6838.82, + "end": 6840.24, + "probability": 0.8065 + }, + { + "start": 6840.5, + "end": 6844.14, + "probability": 0.9009 + }, + { + "start": 6844.26, + "end": 6847.54, + "probability": 0.9765 + }, + { + "start": 6848.58, + "end": 6851.22, + "probability": 0.8558 + }, + { + "start": 6851.22, + "end": 6853.74, + "probability": 0.8775 + }, + { + "start": 6853.9, + "end": 6856.04, + "probability": 0.2452 + }, + { + "start": 6856.68, + "end": 6860.8, + "probability": 0.9918 + }, + { + "start": 6861.38, + "end": 6864.24, + "probability": 0.8527 + }, + { + "start": 6864.3, + "end": 6866.36, + "probability": 0.9565 + }, + { + "start": 6867.06, + "end": 6867.82, + "probability": 0.3256 + }, + { + "start": 6867.84, + "end": 6868.2, + "probability": 0.857 + }, + { + "start": 6868.3, + "end": 6869.86, + "probability": 0.4274 + }, + { + "start": 6870.1, + "end": 6870.1, + "probability": 0.551 + }, + { + "start": 6870.1, + "end": 6870.9, + "probability": 0.6741 + }, + { + "start": 6870.98, + "end": 6873.58, + "probability": 0.8401 + }, + { + "start": 6874.16, + "end": 6874.7, + "probability": 0.8413 + }, + { + "start": 6874.78, + "end": 6875.38, + "probability": 0.7467 + }, + { + "start": 6875.64, + "end": 6877.12, + "probability": 0.8722 + }, + { + "start": 6877.66, + "end": 6881.84, + "probability": 0.9955 + }, + { + "start": 6882.46, + "end": 6883.02, + "probability": 0.9233 + }, + { + "start": 6883.2, + "end": 6885.78, + "probability": 0.9873 + }, + { + "start": 6885.78, + "end": 6889.62, + "probability": 0.9347 + }, + { + "start": 6889.92, + "end": 6894.5, + "probability": 0.9933 + }, + { + "start": 6894.62, + "end": 6897.38, + "probability": 0.9575 + }, + { + "start": 6898.04, + "end": 6899.02, + "probability": 0.5852 + }, + { + "start": 6899.18, + "end": 6900.42, + "probability": 0.6393 + }, + { + "start": 6900.48, + "end": 6905.7, + "probability": 0.9956 + }, + { + "start": 6905.78, + "end": 6909.66, + "probability": 0.9733 + }, + { + "start": 6910.4, + "end": 6913.18, + "probability": 0.9906 + }, + { + "start": 6914.52, + "end": 6915.36, + "probability": 0.4921 + }, + { + "start": 6915.44, + "end": 6916.25, + "probability": 0.9703 + }, + { + "start": 6916.84, + "end": 6920.88, + "probability": 0.9868 + }, + { + "start": 6921.18, + "end": 6927.5, + "probability": 0.9856 + }, + { + "start": 6927.74, + "end": 6928.3, + "probability": 0.3893 + }, + { + "start": 6928.56, + "end": 6928.9, + "probability": 0.9705 + }, + { + "start": 6929.24, + "end": 6929.66, + "probability": 0.5906 + }, + { + "start": 6930.06, + "end": 6931.7, + "probability": 0.7569 + }, + { + "start": 6932.18, + "end": 6935.06, + "probability": 0.8693 + }, + { + "start": 6935.28, + "end": 6937.08, + "probability": 0.7728 + }, + { + "start": 6937.18, + "end": 6938.06, + "probability": 0.9961 + }, + { + "start": 6938.22, + "end": 6941.22, + "probability": 0.9844 + }, + { + "start": 6941.22, + "end": 6944.4, + "probability": 0.9979 + }, + { + "start": 6945.16, + "end": 6949.84, + "probability": 0.9205 + }, + { + "start": 6949.92, + "end": 6951.26, + "probability": 0.6734 + }, + { + "start": 6951.34, + "end": 6952.6, + "probability": 0.7664 + }, + { + "start": 6953.12, + "end": 6953.7, + "probability": 0.8457 + }, + { + "start": 6953.84, + "end": 6955.02, + "probability": 0.8809 + }, + { + "start": 6955.52, + "end": 6959.84, + "probability": 0.957 + }, + { + "start": 6960.32, + "end": 6962.68, + "probability": 0.9917 + }, + { + "start": 6962.9, + "end": 6965.64, + "probability": 0.7762 + }, + { + "start": 6965.88, + "end": 6967.58, + "probability": 0.9392 + }, + { + "start": 6967.94, + "end": 6969.76, + "probability": 0.7759 + }, + { + "start": 6969.9, + "end": 6975.9, + "probability": 0.7286 + }, + { + "start": 6976.52, + "end": 6976.8, + "probability": 0.723 + }, + { + "start": 6977.56, + "end": 6978.82, + "probability": 0.6492 + }, + { + "start": 6979.58, + "end": 6980.38, + "probability": 0.7141 + }, + { + "start": 6980.7, + "end": 6983.92, + "probability": 0.877 + }, + { + "start": 6984.72, + "end": 6985.9, + "probability": 0.8753 + }, + { + "start": 6991.42, + "end": 6992.64, + "probability": 0.4367 + }, + { + "start": 6994.36, + "end": 6997.42, + "probability": 0.8948 + }, + { + "start": 6999.06, + "end": 7001.07, + "probability": 0.9779 + }, + { + "start": 7002.1, + "end": 7002.88, + "probability": 0.9734 + }, + { + "start": 7004.12, + "end": 7007.16, + "probability": 0.7271 + }, + { + "start": 7007.4, + "end": 7008.2, + "probability": 0.9023 + }, + { + "start": 7011.24, + "end": 7012.56, + "probability": 0.8842 + }, + { + "start": 7012.72, + "end": 7014.82, + "probability": 0.9426 + }, + { + "start": 7014.96, + "end": 7017.0, + "probability": 0.9868 + }, + { + "start": 7018.28, + "end": 7018.9, + "probability": 0.6436 + }, + { + "start": 7018.94, + "end": 7020.0, + "probability": 0.9666 + }, + { + "start": 7020.24, + "end": 7023.25, + "probability": 0.9464 + }, + { + "start": 7023.86, + "end": 7024.46, + "probability": 0.6567 + }, + { + "start": 7024.86, + "end": 7027.3, + "probability": 0.9628 + }, + { + "start": 7027.88, + "end": 7029.3, + "probability": 0.8406 + }, + { + "start": 7030.04, + "end": 7033.74, + "probability": 0.932 + }, + { + "start": 7034.8, + "end": 7039.4, + "probability": 0.9131 + }, + { + "start": 7039.46, + "end": 7042.75, + "probability": 0.9637 + }, + { + "start": 7045.44, + "end": 7045.54, + "probability": 0.664 + }, + { + "start": 7054.88, + "end": 7059.44, + "probability": 0.8236 + }, + { + "start": 7060.8, + "end": 7066.58, + "probability": 0.9954 + }, + { + "start": 7067.5, + "end": 7074.28, + "probability": 0.8563 + }, + { + "start": 7075.94, + "end": 7080.3, + "probability": 0.999 + }, + { + "start": 7080.3, + "end": 7085.02, + "probability": 0.9841 + }, + { + "start": 7086.2, + "end": 7090.44, + "probability": 0.9296 + }, + { + "start": 7091.28, + "end": 7093.66, + "probability": 0.9677 + }, + { + "start": 7094.46, + "end": 7099.28, + "probability": 0.9986 + }, + { + "start": 7100.4, + "end": 7105.52, + "probability": 0.958 + }, + { + "start": 7107.02, + "end": 7108.2, + "probability": 0.9504 + }, + { + "start": 7111.38, + "end": 7113.34, + "probability": 0.7373 + }, + { + "start": 7113.98, + "end": 7118.6, + "probability": 0.9512 + }, + { + "start": 7119.4, + "end": 7121.98, + "probability": 0.9729 + }, + { + "start": 7124.12, + "end": 7127.5, + "probability": 0.8716 + }, + { + "start": 7127.5, + "end": 7131.36, + "probability": 0.9528 + }, + { + "start": 7132.2, + "end": 7136.18, + "probability": 0.991 + }, + { + "start": 7136.76, + "end": 7140.82, + "probability": 0.9926 + }, + { + "start": 7142.04, + "end": 7145.5, + "probability": 0.8876 + }, + { + "start": 7146.16, + "end": 7154.18, + "probability": 0.9973 + }, + { + "start": 7155.18, + "end": 7160.38, + "probability": 0.9599 + }, + { + "start": 7161.26, + "end": 7165.88, + "probability": 0.9766 + }, + { + "start": 7166.6, + "end": 7171.66, + "probability": 0.9812 + }, + { + "start": 7172.36, + "end": 7176.94, + "probability": 0.9857 + }, + { + "start": 7177.48, + "end": 7179.02, + "probability": 0.9968 + }, + { + "start": 7180.16, + "end": 7182.04, + "probability": 0.6436 + }, + { + "start": 7182.66, + "end": 7186.34, + "probability": 0.9821 + }, + { + "start": 7186.94, + "end": 7189.18, + "probability": 0.9771 + }, + { + "start": 7190.16, + "end": 7190.86, + "probability": 0.8351 + }, + { + "start": 7193.22, + "end": 7196.68, + "probability": 0.8254 + }, + { + "start": 7198.16, + "end": 7198.88, + "probability": 0.9821 + }, + { + "start": 7199.64, + "end": 7200.9, + "probability": 0.756 + }, + { + "start": 7201.7, + "end": 7202.58, + "probability": 0.5759 + }, + { + "start": 7203.34, + "end": 7206.54, + "probability": 0.9694 + }, + { + "start": 7208.62, + "end": 7212.0, + "probability": 0.8765 + }, + { + "start": 7213.0, + "end": 7214.42, + "probability": 0.892 + }, + { + "start": 7215.28, + "end": 7218.34, + "probability": 0.9624 + }, + { + "start": 7219.12, + "end": 7223.46, + "probability": 0.9242 + }, + { + "start": 7224.1, + "end": 7224.96, + "probability": 0.9912 + }, + { + "start": 7226.22, + "end": 7228.44, + "probability": 0.9507 + }, + { + "start": 7229.06, + "end": 7232.12, + "probability": 0.9829 + }, + { + "start": 7234.22, + "end": 7234.99, + "probability": 0.9937 + }, + { + "start": 7235.84, + "end": 7239.42, + "probability": 0.9759 + }, + { + "start": 7240.88, + "end": 7247.5, + "probability": 0.9894 + }, + { + "start": 7247.52, + "end": 7254.12, + "probability": 0.9968 + }, + { + "start": 7254.88, + "end": 7260.56, + "probability": 0.9793 + }, + { + "start": 7261.5, + "end": 7264.1, + "probability": 0.9698 + }, + { + "start": 7265.38, + "end": 7270.72, + "probability": 0.9953 + }, + { + "start": 7271.46, + "end": 7277.64, + "probability": 0.986 + }, + { + "start": 7278.72, + "end": 7281.0, + "probability": 0.9924 + }, + { + "start": 7281.5, + "end": 7283.16, + "probability": 0.9453 + }, + { + "start": 7283.72, + "end": 7289.68, + "probability": 0.9941 + }, + { + "start": 7290.26, + "end": 7295.44, + "probability": 0.9905 + }, + { + "start": 7296.0, + "end": 7299.18, + "probability": 0.902 + }, + { + "start": 7300.42, + "end": 7303.26, + "probability": 0.9244 + }, + { + "start": 7303.86, + "end": 7308.34, + "probability": 0.9917 + }, + { + "start": 7309.16, + "end": 7310.84, + "probability": 0.9143 + }, + { + "start": 7311.36, + "end": 7316.4, + "probability": 0.999 + }, + { + "start": 7318.02, + "end": 7318.02, + "probability": 0.0981 + }, + { + "start": 7318.02, + "end": 7323.68, + "probability": 0.9967 + }, + { + "start": 7324.26, + "end": 7333.94, + "probability": 0.8732 + }, + { + "start": 7334.78, + "end": 7337.46, + "probability": 0.9514 + }, + { + "start": 7338.08, + "end": 7342.66, + "probability": 0.9973 + }, + { + "start": 7343.28, + "end": 7344.26, + "probability": 0.9041 + }, + { + "start": 7344.7, + "end": 7347.66, + "probability": 0.9658 + }, + { + "start": 7348.26, + "end": 7349.28, + "probability": 0.7957 + }, + { + "start": 7349.78, + "end": 7354.68, + "probability": 0.9934 + }, + { + "start": 7355.18, + "end": 7361.24, + "probability": 0.9973 + }, + { + "start": 7361.9, + "end": 7366.16, + "probability": 0.9941 + }, + { + "start": 7366.16, + "end": 7372.16, + "probability": 0.9977 + }, + { + "start": 7372.7, + "end": 7377.7, + "probability": 0.99 + }, + { + "start": 7377.7, + "end": 7382.7, + "probability": 0.994 + }, + { + "start": 7382.88, + "end": 7389.06, + "probability": 0.9834 + }, + { + "start": 7390.62, + "end": 7391.14, + "probability": 0.7266 + }, + { + "start": 7391.92, + "end": 7394.2, + "probability": 0.8184 + }, + { + "start": 7394.32, + "end": 7396.7, + "probability": 0.6421 + }, + { + "start": 7396.76, + "end": 7399.98, + "probability": 0.7264 + }, + { + "start": 7400.6, + "end": 7402.56, + "probability": 0.1236 + }, + { + "start": 7404.88, + "end": 7406.66, + "probability": 0.9712 + }, + { + "start": 7407.2, + "end": 7408.14, + "probability": 0.2562 + }, + { + "start": 7409.34, + "end": 7412.06, + "probability": 0.1412 + }, + { + "start": 7413.84, + "end": 7416.52, + "probability": 0.6656 + }, + { + "start": 7417.92, + "end": 7420.18, + "probability": 0.0285 + }, + { + "start": 7420.74, + "end": 7421.8, + "probability": 0.0753 + }, + { + "start": 7427.46, + "end": 7432.98, + "probability": 0.7271 + }, + { + "start": 7433.6, + "end": 7436.4, + "probability": 0.4363 + }, + { + "start": 7436.56, + "end": 7438.58, + "probability": 0.8268 + }, + { + "start": 7440.76, + "end": 7444.77, + "probability": 0.7383 + }, + { + "start": 7446.4, + "end": 7446.42, + "probability": 0.9336 + }, + { + "start": 7448.3, + "end": 7450.76, + "probability": 0.7895 + }, + { + "start": 7450.92, + "end": 7452.56, + "probability": 0.9769 + }, + { + "start": 7453.04, + "end": 7453.26, + "probability": 0.0257 + }, + { + "start": 7453.26, + "end": 7456.58, + "probability": 0.8293 + }, + { + "start": 7456.68, + "end": 7457.68, + "probability": 0.9262 + }, + { + "start": 7457.78, + "end": 7459.88, + "probability": 0.9961 + }, + { + "start": 7460.8, + "end": 7462.78, + "probability": 0.9299 + }, + { + "start": 7472.2, + "end": 7476.38, + "probability": 0.8907 + }, + { + "start": 7476.86, + "end": 7478.61, + "probability": 0.6933 + }, + { + "start": 7478.74, + "end": 7480.42, + "probability": 0.8009 + }, + { + "start": 7480.9, + "end": 7482.12, + "probability": 0.8354 + }, + { + "start": 7483.32, + "end": 7490.26, + "probability": 0.8522 + }, + { + "start": 7491.22, + "end": 7496.52, + "probability": 0.9751 + }, + { + "start": 7498.26, + "end": 7501.12, + "probability": 0.9863 + }, + { + "start": 7501.74, + "end": 7505.02, + "probability": 0.9744 + }, + { + "start": 7505.48, + "end": 7509.18, + "probability": 0.3626 + }, + { + "start": 7509.3, + "end": 7513.32, + "probability": 0.9681 + }, + { + "start": 7513.62, + "end": 7515.52, + "probability": 0.9813 + }, + { + "start": 7515.7, + "end": 7518.64, + "probability": 0.9734 + }, + { + "start": 7518.64, + "end": 7522.2, + "probability": 0.9985 + }, + { + "start": 7522.34, + "end": 7522.64, + "probability": 0.8167 + }, + { + "start": 7523.82, + "end": 7525.65, + "probability": 0.9077 + }, + { + "start": 7527.08, + "end": 7530.5, + "probability": 0.9846 + }, + { + "start": 7530.6, + "end": 7533.14, + "probability": 0.9153 + }, + { + "start": 7533.36, + "end": 7535.9, + "probability": 0.1003 + }, + { + "start": 7536.46, + "end": 7538.6, + "probability": 0.9669 + }, + { + "start": 7540.92, + "end": 7543.14, + "probability": 0.9963 + }, + { + "start": 7544.1, + "end": 7546.02, + "probability": 0.9954 + }, + { + "start": 7553.22, + "end": 7555.32, + "probability": 0.7885 + }, + { + "start": 7558.8, + "end": 7561.46, + "probability": 0.6631 + }, + { + "start": 7562.62, + "end": 7563.34, + "probability": 0.7747 + }, + { + "start": 7564.54, + "end": 7567.76, + "probability": 0.9985 + }, + { + "start": 7568.66, + "end": 7572.4, + "probability": 0.5791 + }, + { + "start": 7573.2, + "end": 7577.52, + "probability": 0.9221 + }, + { + "start": 7578.36, + "end": 7584.22, + "probability": 0.7193 + }, + { + "start": 7584.38, + "end": 7584.78, + "probability": 0.5324 + }, + { + "start": 7584.8, + "end": 7586.06, + "probability": 0.5676 + }, + { + "start": 7586.48, + "end": 7587.82, + "probability": 0.9089 + }, + { + "start": 7588.38, + "end": 7593.18, + "probability": 0.3689 + }, + { + "start": 7594.38, + "end": 7595.88, + "probability": 0.7827 + }, + { + "start": 7595.94, + "end": 7598.44, + "probability": 0.8842 + }, + { + "start": 7598.9, + "end": 7602.96, + "probability": 0.9825 + }, + { + "start": 7603.44, + "end": 7604.7, + "probability": 0.7262 + }, + { + "start": 7606.82, + "end": 7607.84, + "probability": 0.6117 + }, + { + "start": 7608.08, + "end": 7609.02, + "probability": 0.9437 + }, + { + "start": 7609.28, + "end": 7612.88, + "probability": 0.9937 + }, + { + "start": 7614.42, + "end": 7619.88, + "probability": 0.9922 + }, + { + "start": 7620.52, + "end": 7622.48, + "probability": 0.9766 + }, + { + "start": 7623.14, + "end": 7624.86, + "probability": 0.9995 + }, + { + "start": 7626.28, + "end": 7630.68, + "probability": 0.7938 + }, + { + "start": 7631.86, + "end": 7642.14, + "probability": 0.9741 + }, + { + "start": 7642.88, + "end": 7648.4, + "probability": 0.9867 + }, + { + "start": 7649.36, + "end": 7652.34, + "probability": 0.9691 + }, + { + "start": 7653.78, + "end": 7659.62, + "probability": 0.9918 + }, + { + "start": 7660.34, + "end": 7662.3, + "probability": 0.8889 + }, + { + "start": 7662.76, + "end": 7663.2, + "probability": 0.7871 + }, + { + "start": 7663.44, + "end": 7664.28, + "probability": 0.8624 + }, + { + "start": 7664.4, + "end": 7665.66, + "probability": 0.9487 + }, + { + "start": 7666.6, + "end": 7671.26, + "probability": 0.9726 + }, + { + "start": 7671.56, + "end": 7677.08, + "probability": 0.9783 + }, + { + "start": 7677.72, + "end": 7678.04, + "probability": 0.425 + }, + { + "start": 7678.22, + "end": 7683.52, + "probability": 0.9784 + }, + { + "start": 7683.78, + "end": 7689.16, + "probability": 0.91 + }, + { + "start": 7689.58, + "end": 7690.2, + "probability": 0.4918 + }, + { + "start": 7690.82, + "end": 7692.1, + "probability": 0.9941 + }, + { + "start": 7692.24, + "end": 7695.7, + "probability": 0.9907 + }, + { + "start": 7696.42, + "end": 7703.38, + "probability": 0.9866 + }, + { + "start": 7703.38, + "end": 7710.78, + "probability": 0.9792 + }, + { + "start": 7710.86, + "end": 7714.54, + "probability": 0.9934 + }, + { + "start": 7715.14, + "end": 7717.22, + "probability": 0.9607 + }, + { + "start": 7718.36, + "end": 7724.08, + "probability": 0.7327 + }, + { + "start": 7724.86, + "end": 7728.04, + "probability": 0.9871 + }, + { + "start": 7729.84, + "end": 7732.68, + "probability": 0.6803 + }, + { + "start": 7734.5, + "end": 7735.34, + "probability": 0.3659 + }, + { + "start": 7735.46, + "end": 7735.78, + "probability": 0.3296 + }, + { + "start": 7735.78, + "end": 7736.68, + "probability": 0.2793 + }, + { + "start": 7736.92, + "end": 7737.32, + "probability": 0.8157 + }, + { + "start": 7738.34, + "end": 7742.04, + "probability": 0.7164 + }, + { + "start": 7742.84, + "end": 7744.32, + "probability": 0.9731 + }, + { + "start": 7745.02, + "end": 7746.84, + "probability": 0.9761 + }, + { + "start": 7747.46, + "end": 7753.03, + "probability": 0.9933 + }, + { + "start": 7754.68, + "end": 7758.62, + "probability": 0.9805 + }, + { + "start": 7758.8, + "end": 7765.14, + "probability": 0.8486 + }, + { + "start": 7765.18, + "end": 7770.78, + "probability": 0.9915 + }, + { + "start": 7770.9, + "end": 7773.3, + "probability": 0.9014 + }, + { + "start": 7773.9, + "end": 7775.8, + "probability": 0.5876 + }, + { + "start": 7775.96, + "end": 7782.52, + "probability": 0.9814 + }, + { + "start": 7782.6, + "end": 7788.68, + "probability": 0.9955 + }, + { + "start": 7789.3, + "end": 7794.84, + "probability": 0.9798 + }, + { + "start": 7795.8, + "end": 7801.68, + "probability": 0.798 + }, + { + "start": 7802.36, + "end": 7802.96, + "probability": 0.7336 + }, + { + "start": 7803.06, + "end": 7804.14, + "probability": 0.9018 + }, + { + "start": 7804.32, + "end": 7806.3, + "probability": 0.9592 + }, + { + "start": 7806.46, + "end": 7807.55, + "probability": 0.989 + }, + { + "start": 7808.1, + "end": 7809.84, + "probability": 0.9951 + }, + { + "start": 7810.26, + "end": 7810.76, + "probability": 0.8674 + }, + { + "start": 7810.98, + "end": 7812.28, + "probability": 0.9198 + }, + { + "start": 7812.42, + "end": 7813.5, + "probability": 0.8712 + }, + { + "start": 7813.94, + "end": 7814.62, + "probability": 0.9709 + }, + { + "start": 7815.5, + "end": 7818.68, + "probability": 0.9415 + }, + { + "start": 7819.02, + "end": 7820.5, + "probability": 0.9908 + }, + { + "start": 7821.0, + "end": 7822.58, + "probability": 0.9908 + }, + { + "start": 7822.64, + "end": 7826.3, + "probability": 0.8625 + }, + { + "start": 7827.2, + "end": 7831.7, + "probability": 0.9377 + }, + { + "start": 7832.06, + "end": 7838.41, + "probability": 0.9375 + }, + { + "start": 7839.04, + "end": 7844.4, + "probability": 0.9963 + }, + { + "start": 7844.62, + "end": 7845.7, + "probability": 0.7199 + }, + { + "start": 7846.3, + "end": 7848.24, + "probability": 0.8518 + }, + { + "start": 7848.78, + "end": 7855.68, + "probability": 0.9871 + }, + { + "start": 7858.04, + "end": 7858.68, + "probability": 0.7181 + }, + { + "start": 7859.24, + "end": 7863.12, + "probability": 0.7798 + }, + { + "start": 7863.28, + "end": 7868.54, + "probability": 0.9269 + }, + { + "start": 7868.64, + "end": 7869.54, + "probability": 0.688 + }, + { + "start": 7869.9, + "end": 7871.4, + "probability": 0.6807 + }, + { + "start": 7872.04, + "end": 7879.44, + "probability": 0.9854 + }, + { + "start": 7880.4, + "end": 7883.14, + "probability": 0.9889 + }, + { + "start": 7883.48, + "end": 7889.54, + "probability": 0.784 + }, + { + "start": 7889.54, + "end": 7898.03, + "probability": 0.902 + }, + { + "start": 7899.76, + "end": 7902.16, + "probability": 0.984 + }, + { + "start": 7902.34, + "end": 7903.18, + "probability": 0.7955 + }, + { + "start": 7903.34, + "end": 7909.06, + "probability": 0.9569 + }, + { + "start": 7909.42, + "end": 7910.42, + "probability": 0.5364 + }, + { + "start": 7911.08, + "end": 7915.94, + "probability": 0.8671 + }, + { + "start": 7918.91, + "end": 7926.84, + "probability": 0.9238 + }, + { + "start": 7927.52, + "end": 7933.9, + "probability": 0.9966 + }, + { + "start": 7933.9, + "end": 7938.92, + "probability": 0.9836 + }, + { + "start": 7939.04, + "end": 7940.38, + "probability": 0.8157 + }, + { + "start": 7940.92, + "end": 7944.96, + "probability": 0.9461 + }, + { + "start": 7945.4, + "end": 7947.52, + "probability": 0.6824 + }, + { + "start": 7948.06, + "end": 7952.82, + "probability": 0.9969 + }, + { + "start": 7952.82, + "end": 7956.06, + "probability": 0.9965 + }, + { + "start": 7956.78, + "end": 7960.38, + "probability": 0.9333 + }, + { + "start": 7960.96, + "end": 7965.96, + "probability": 0.9914 + }, + { + "start": 7965.96, + "end": 7971.62, + "probability": 0.998 + }, + { + "start": 7971.78, + "end": 7972.41, + "probability": 0.9816 + }, + { + "start": 7972.9, + "end": 7973.62, + "probability": 0.9726 + }, + { + "start": 7974.08, + "end": 7974.98, + "probability": 0.2876 + }, + { + "start": 7975.76, + "end": 7982.1, + "probability": 0.9607 + }, + { + "start": 7982.18, + "end": 7987.88, + "probability": 0.9861 + }, + { + "start": 7989.08, + "end": 7995.64, + "probability": 0.975 + }, + { + "start": 7996.18, + "end": 7999.96, + "probability": 0.8784 + }, + { + "start": 8000.3, + "end": 8005.78, + "probability": 0.9358 + }, + { + "start": 8006.08, + "end": 8015.52, + "probability": 0.8012 + }, + { + "start": 8015.52, + "end": 8017.72, + "probability": 0.692 + }, + { + "start": 8017.76, + "end": 8017.98, + "probability": 0.367 + }, + { + "start": 8018.1, + "end": 8018.94, + "probability": 0.6734 + }, + { + "start": 8019.22, + "end": 8020.76, + "probability": 0.6438 + }, + { + "start": 8020.82, + "end": 8022.72, + "probability": 0.988 + }, + { + "start": 8023.02, + "end": 8031.9, + "probability": 0.8208 + }, + { + "start": 8032.72, + "end": 8037.16, + "probability": 0.9189 + }, + { + "start": 8038.32, + "end": 8040.04, + "probability": 0.6832 + }, + { + "start": 8040.2, + "end": 8044.64, + "probability": 0.8458 + }, + { + "start": 8045.02, + "end": 8052.08, + "probability": 0.8191 + }, + { + "start": 8052.08, + "end": 8057.34, + "probability": 0.961 + }, + { + "start": 8057.52, + "end": 8063.6, + "probability": 0.7662 + }, + { + "start": 8063.76, + "end": 8066.54, + "probability": 0.9878 + }, + { + "start": 8066.88, + "end": 8070.7, + "probability": 0.9738 + }, + { + "start": 8071.3, + "end": 8075.92, + "probability": 0.9821 + }, + { + "start": 8075.92, + "end": 8081.09, + "probability": 0.7061 + }, + { + "start": 8081.6, + "end": 8085.8, + "probability": 0.8298 + }, + { + "start": 8086.3, + "end": 8093.52, + "probability": 0.9967 + }, + { + "start": 8093.6, + "end": 8097.26, + "probability": 0.9967 + }, + { + "start": 8097.7, + "end": 8101.02, + "probability": 0.7016 + }, + { + "start": 8101.48, + "end": 8101.96, + "probability": 0.8024 + }, + { + "start": 8102.26, + "end": 8107.3, + "probability": 0.9551 + }, + { + "start": 8107.68, + "end": 8108.32, + "probability": 0.9317 + }, + { + "start": 8108.86, + "end": 8112.08, + "probability": 0.8527 + }, + { + "start": 8113.16, + "end": 8113.48, + "probability": 0.7034 + }, + { + "start": 8113.82, + "end": 8114.68, + "probability": 0.6208 + }, + { + "start": 8115.08, + "end": 8118.64, + "probability": 0.9885 + }, + { + "start": 8119.18, + "end": 8123.34, + "probability": 0.7063 + }, + { + "start": 8124.56, + "end": 8127.22, + "probability": 0.9644 + }, + { + "start": 8127.36, + "end": 8128.5, + "probability": 0.4887 + }, + { + "start": 8129.04, + "end": 8129.7, + "probability": 0.659 + }, + { + "start": 8130.08, + "end": 8131.9, + "probability": 0.9758 + }, + { + "start": 8132.06, + "end": 8137.1, + "probability": 0.991 + }, + { + "start": 8137.1, + "end": 8143.38, + "probability": 0.9927 + }, + { + "start": 8144.16, + "end": 8149.56, + "probability": 0.9323 + }, + { + "start": 8150.04, + "end": 8150.86, + "probability": 0.953 + }, + { + "start": 8151.02, + "end": 8151.66, + "probability": 0.9241 + }, + { + "start": 8152.0, + "end": 8159.34, + "probability": 0.7799 + }, + { + "start": 8159.9, + "end": 8166.02, + "probability": 0.9886 + }, + { + "start": 8166.64, + "end": 8166.92, + "probability": 0.7461 + }, + { + "start": 8167.2, + "end": 8169.2, + "probability": 0.5546 + }, + { + "start": 8169.68, + "end": 8172.56, + "probability": 0.8646 + }, + { + "start": 8173.12, + "end": 8175.76, + "probability": 0.9603 + }, + { + "start": 8175.76, + "end": 8178.2, + "probability": 0.9938 + }, + { + "start": 8178.42, + "end": 8179.9, + "probability": 0.3849 + }, + { + "start": 8181.08, + "end": 8184.76, + "probability": 0.8496 + }, + { + "start": 8185.98, + "end": 8188.08, + "probability": 0.9632 + }, + { + "start": 8188.62, + "end": 8190.02, + "probability": 0.9705 + }, + { + "start": 8202.84, + "end": 8207.88, + "probability": 0.7256 + }, + { + "start": 8209.54, + "end": 8210.66, + "probability": 0.4335 + }, + { + "start": 8212.96, + "end": 8217.72, + "probability": 0.8303 + }, + { + "start": 8219.1, + "end": 8224.16, + "probability": 0.9863 + }, + { + "start": 8226.1, + "end": 8230.48, + "probability": 0.9934 + }, + { + "start": 8231.7, + "end": 8233.02, + "probability": 0.9456 + }, + { + "start": 8234.68, + "end": 8235.62, + "probability": 0.9337 + }, + { + "start": 8236.72, + "end": 8239.7, + "probability": 0.9475 + }, + { + "start": 8240.88, + "end": 8243.18, + "probability": 0.9473 + }, + { + "start": 8244.28, + "end": 8245.86, + "probability": 0.9101 + }, + { + "start": 8246.86, + "end": 8248.42, + "probability": 0.9297 + }, + { + "start": 8248.6, + "end": 8251.22, + "probability": 0.9886 + }, + { + "start": 8253.26, + "end": 8253.7, + "probability": 0.6978 + }, + { + "start": 8254.54, + "end": 8257.0, + "probability": 0.9708 + }, + { + "start": 8257.74, + "end": 8258.62, + "probability": 0.7508 + }, + { + "start": 8260.02, + "end": 8263.94, + "probability": 0.5497 + }, + { + "start": 8264.56, + "end": 8265.96, + "probability": 0.9741 + }, + { + "start": 8267.8, + "end": 8270.66, + "probability": 0.9917 + }, + { + "start": 8272.14, + "end": 8273.2, + "probability": 0.3641 + }, + { + "start": 8273.86, + "end": 8275.94, + "probability": 0.9339 + }, + { + "start": 8276.0, + "end": 8276.72, + "probability": 0.9237 + }, + { + "start": 8277.31, + "end": 8279.02, + "probability": 0.7978 + }, + { + "start": 8279.46, + "end": 8280.92, + "probability": 0.9581 + }, + { + "start": 8282.28, + "end": 8283.84, + "probability": 0.6688 + }, + { + "start": 8284.94, + "end": 8285.4, + "probability": 0.7149 + }, + { + "start": 8286.42, + "end": 8288.84, + "probability": 0.9764 + }, + { + "start": 8290.54, + "end": 8294.76, + "probability": 0.8566 + }, + { + "start": 8294.88, + "end": 8295.7, + "probability": 0.4105 + }, + { + "start": 8295.78, + "end": 8296.88, + "probability": 0.9967 + }, + { + "start": 8297.56, + "end": 8298.56, + "probability": 0.8539 + }, + { + "start": 8301.88, + "end": 8304.48, + "probability": 0.9896 + }, + { + "start": 8305.74, + "end": 8310.18, + "probability": 0.8762 + }, + { + "start": 8311.66, + "end": 8316.64, + "probability": 0.9714 + }, + { + "start": 8317.18, + "end": 8322.04, + "probability": 0.9983 + }, + { + "start": 8322.04, + "end": 8324.48, + "probability": 0.9977 + }, + { + "start": 8328.3, + "end": 8332.4, + "probability": 0.9928 + }, + { + "start": 8335.52, + "end": 8336.86, + "probability": 0.9031 + }, + { + "start": 8336.98, + "end": 8339.46, + "probability": 0.7679 + }, + { + "start": 8341.7, + "end": 8344.1, + "probability": 0.9443 + }, + { + "start": 8344.22, + "end": 8347.08, + "probability": 0.9919 + }, + { + "start": 8347.78, + "end": 8349.34, + "probability": 0.9401 + }, + { + "start": 8351.1, + "end": 8355.1, + "probability": 0.8645 + }, + { + "start": 8356.34, + "end": 8359.04, + "probability": 0.7218 + }, + { + "start": 8361.0, + "end": 8366.34, + "probability": 0.8047 + }, + { + "start": 8367.26, + "end": 8370.28, + "probability": 0.9802 + }, + { + "start": 8371.9, + "end": 8371.9, + "probability": 0.0089 + }, + { + "start": 8372.18, + "end": 8376.26, + "probability": 0.8726 + }, + { + "start": 8376.64, + "end": 8377.08, + "probability": 0.1025 + }, + { + "start": 8378.18, + "end": 8381.82, + "probability": 0.338 + }, + { + "start": 8383.1, + "end": 8385.6, + "probability": 0.4818 + }, + { + "start": 8385.74, + "end": 8391.42, + "probability": 0.8379 + }, + { + "start": 8392.34, + "end": 8394.02, + "probability": 0.5751 + }, + { + "start": 8394.78, + "end": 8396.74, + "probability": 0.4336 + }, + { + "start": 8396.88, + "end": 8401.68, + "probability": 0.9494 + }, + { + "start": 8402.46, + "end": 8403.36, + "probability": 0.6993 + }, + { + "start": 8403.88, + "end": 8405.0, + "probability": 0.9444 + }, + { + "start": 8406.84, + "end": 8408.44, + "probability": 0.8825 + }, + { + "start": 8409.48, + "end": 8411.2, + "probability": 0.765 + }, + { + "start": 8412.52, + "end": 8412.96, + "probability": 0.7892 + }, + { + "start": 8413.58, + "end": 8415.82, + "probability": 0.834 + }, + { + "start": 8418.4, + "end": 8422.1, + "probability": 0.9199 + }, + { + "start": 8423.2, + "end": 8426.2, + "probability": 0.9429 + }, + { + "start": 8427.56, + "end": 8428.7, + "probability": 0.96 + }, + { + "start": 8428.88, + "end": 8429.66, + "probability": 0.6159 + }, + { + "start": 8429.76, + "end": 8433.26, + "probability": 0.9868 + }, + { + "start": 8433.78, + "end": 8435.22, + "probability": 0.9878 + }, + { + "start": 8435.82, + "end": 8437.24, + "probability": 0.7374 + }, + { + "start": 8438.42, + "end": 8438.78, + "probability": 0.3444 + }, + { + "start": 8439.3, + "end": 8440.6, + "probability": 0.8904 + }, + { + "start": 8441.54, + "end": 8442.58, + "probability": 0.7445 + }, + { + "start": 8443.78, + "end": 8446.54, + "probability": 0.7915 + }, + { + "start": 8447.14, + "end": 8450.24, + "probability": 0.9923 + }, + { + "start": 8450.28, + "end": 8453.0, + "probability": 0.8426 + }, + { + "start": 8453.54, + "end": 8457.92, + "probability": 0.9943 + }, + { + "start": 8458.76, + "end": 8459.54, + "probability": 0.6481 + }, + { + "start": 8459.64, + "end": 8461.06, + "probability": 0.8123 + }, + { + "start": 8461.26, + "end": 8467.1, + "probability": 0.9054 + }, + { + "start": 8480.88, + "end": 8481.28, + "probability": 0.5019 + }, + { + "start": 8487.58, + "end": 8487.74, + "probability": 0.1299 + }, + { + "start": 8487.74, + "end": 8488.54, + "probability": 0.2525 + }, + { + "start": 8489.26, + "end": 8491.7, + "probability": 0.9452 + }, + { + "start": 8493.26, + "end": 8494.36, + "probability": 0.861 + }, + { + "start": 8496.1, + "end": 8497.14, + "probability": 0.6976 + }, + { + "start": 8497.8, + "end": 8499.76, + "probability": 0.5603 + }, + { + "start": 8501.74, + "end": 8503.06, + "probability": 0.7014 + }, + { + "start": 8505.28, + "end": 8505.94, + "probability": 0.8185 + }, + { + "start": 8511.94, + "end": 8516.6, + "probability": 0.4822 + }, + { + "start": 8517.78, + "end": 8519.1, + "probability": 0.5261 + }, + { + "start": 8520.0, + "end": 8521.72, + "probability": 0.8257 + }, + { + "start": 8523.48, + "end": 8526.64, + "probability": 0.8524 + }, + { + "start": 8526.74, + "end": 8529.82, + "probability": 0.9728 + }, + { + "start": 8530.72, + "end": 8532.16, + "probability": 0.9798 + }, + { + "start": 8533.28, + "end": 8536.54, + "probability": 0.9968 + }, + { + "start": 8536.54, + "end": 8540.5, + "probability": 0.9895 + }, + { + "start": 8542.56, + "end": 8545.08, + "probability": 0.8403 + }, + { + "start": 8545.62, + "end": 8546.68, + "probability": 0.744 + }, + { + "start": 8547.22, + "end": 8552.38, + "probability": 0.95 + }, + { + "start": 8552.68, + "end": 8554.02, + "probability": 0.9377 + }, + { + "start": 8555.04, + "end": 8555.26, + "probability": 0.8273 + }, + { + "start": 8556.64, + "end": 8558.4, + "probability": 0.9911 + }, + { + "start": 8559.84, + "end": 8563.08, + "probability": 0.9917 + }, + { + "start": 8563.39, + "end": 8565.66, + "probability": 0.7358 + }, + { + "start": 8565.72, + "end": 8566.36, + "probability": 0.8591 + }, + { + "start": 8566.54, + "end": 8566.94, + "probability": 0.5352 + }, + { + "start": 8567.06, + "end": 8567.32, + "probability": 0.9622 + }, + { + "start": 8567.46, + "end": 8570.12, + "probability": 0.8726 + }, + { + "start": 8570.42, + "end": 8572.96, + "probability": 0.9639 + }, + { + "start": 8574.44, + "end": 8578.56, + "probability": 0.927 + }, + { + "start": 8579.66, + "end": 8581.08, + "probability": 0.7925 + }, + { + "start": 8582.54, + "end": 8585.66, + "probability": 0.7254 + }, + { + "start": 8586.58, + "end": 8588.32, + "probability": 0.881 + }, + { + "start": 8588.98, + "end": 8591.34, + "probability": 0.8661 + }, + { + "start": 8591.4, + "end": 8592.26, + "probability": 0.9224 + }, + { + "start": 8593.12, + "end": 8594.22, + "probability": 0.9338 + }, + { + "start": 8596.48, + "end": 8598.04, + "probability": 0.0189 + }, + { + "start": 8598.88, + "end": 8599.84, + "probability": 0.335 + }, + { + "start": 8599.84, + "end": 8599.84, + "probability": 0.0987 + }, + { + "start": 8599.84, + "end": 8601.35, + "probability": 0.3633 + }, + { + "start": 8602.18, + "end": 8604.18, + "probability": 0.6064 + }, + { + "start": 8604.28, + "end": 8605.5, + "probability": 0.843 + }, + { + "start": 8605.7, + "end": 8606.32, + "probability": 0.059 + }, + { + "start": 8607.82, + "end": 8608.7, + "probability": 0.4457 + }, + { + "start": 8609.24, + "end": 8609.7, + "probability": 0.0082 + }, + { + "start": 8610.04, + "end": 8611.88, + "probability": 0.4366 + }, + { + "start": 8612.6, + "end": 8614.36, + "probability": 0.7089 + }, + { + "start": 8615.22, + "end": 8616.98, + "probability": 0.7615 + }, + { + "start": 8617.56, + "end": 8619.88, + "probability": 0.7475 + }, + { + "start": 8621.24, + "end": 8621.94, + "probability": 0.9129 + }, + { + "start": 8622.66, + "end": 8624.3, + "probability": 0.9885 + }, + { + "start": 8624.46, + "end": 8626.21, + "probability": 0.9585 + }, + { + "start": 8626.78, + "end": 8627.17, + "probability": 0.9478 + }, + { + "start": 8628.12, + "end": 8629.47, + "probability": 0.995 + }, + { + "start": 8629.64, + "end": 8630.64, + "probability": 0.2915 + }, + { + "start": 8630.92, + "end": 8630.92, + "probability": 0.0014 + }, + { + "start": 8632.28, + "end": 8633.4, + "probability": 0.0493 + }, + { + "start": 8633.9, + "end": 8635.16, + "probability": 0.302 + }, + { + "start": 8635.24, + "end": 8636.7, + "probability": 0.7001 + }, + { + "start": 8636.78, + "end": 8638.23, + "probability": 0.6749 + }, + { + "start": 8643.46, + "end": 8648.7, + "probability": 0.6746 + }, + { + "start": 8649.41, + "end": 8651.94, + "probability": 0.6989 + }, + { + "start": 8652.12, + "end": 8653.42, + "probability": 0.9628 + }, + { + "start": 8653.8, + "end": 8657.02, + "probability": 0.6665 + }, + { + "start": 8657.14, + "end": 8657.16, + "probability": 0.9374 + }, + { + "start": 8657.16, + "end": 8657.94, + "probability": 0.9713 + }, + { + "start": 8658.0, + "end": 8659.98, + "probability": 0.4461 + }, + { + "start": 8660.86, + "end": 8661.76, + "probability": 0.9701 + }, + { + "start": 8662.36, + "end": 8662.78, + "probability": 0.4192 + }, + { + "start": 8663.76, + "end": 8664.36, + "probability": 0.9432 + }, + { + "start": 8664.68, + "end": 8666.12, + "probability": 0.9815 + }, + { + "start": 8666.18, + "end": 8667.97, + "probability": 0.9866 + }, + { + "start": 8668.48, + "end": 8669.38, + "probability": 0.5042 + }, + { + "start": 8669.42, + "end": 8672.0, + "probability": 0.9727 + }, + { + "start": 8672.76, + "end": 8673.86, + "probability": 0.6955 + }, + { + "start": 8674.0, + "end": 8674.9, + "probability": 0.9956 + }, + { + "start": 8674.94, + "end": 8675.37, + "probability": 0.7179 + }, + { + "start": 8675.74, + "end": 8676.64, + "probability": 0.7225 + }, + { + "start": 8680.02, + "end": 8685.06, + "probability": 0.585 + }, + { + "start": 8685.82, + "end": 8688.08, + "probability": 0.7192 + }, + { + "start": 8688.52, + "end": 8689.28, + "probability": 0.7809 + }, + { + "start": 8690.07, + "end": 8692.98, + "probability": 0.8504 + }, + { + "start": 8694.91, + "end": 8696.24, + "probability": 0.6553 + }, + { + "start": 8696.36, + "end": 8697.02, + "probability": 0.4997 + }, + { + "start": 8698.18, + "end": 8700.06, + "probability": 0.941 + }, + { + "start": 8701.28, + "end": 8701.84, + "probability": 0.606 + }, + { + "start": 8701.94, + "end": 8702.38, + "probability": 0.2404 + }, + { + "start": 8702.46, + "end": 8707.8, + "probability": 0.5862 + }, + { + "start": 8707.8, + "end": 8710.08, + "probability": 0.8943 + }, + { + "start": 8711.22, + "end": 8713.78, + "probability": 0.8366 + }, + { + "start": 8715.18, + "end": 8716.22, + "probability": 0.3545 + }, + { + "start": 8716.24, + "end": 8717.52, + "probability": 0.5657 + }, + { + "start": 8718.34, + "end": 8720.58, + "probability": 0.6979 + }, + { + "start": 8721.26, + "end": 8722.05, + "probability": 0.0181 + }, + { + "start": 8722.5, + "end": 8722.92, + "probability": 0.426 + }, + { + "start": 8724.42, + "end": 8724.84, + "probability": 0.6956 + }, + { + "start": 8728.02, + "end": 8729.4, + "probability": 0.1145 + }, + { + "start": 8729.44, + "end": 8730.1, + "probability": 0.1427 + }, + { + "start": 8730.22, + "end": 8730.73, + "probability": 0.95 + }, + { + "start": 8730.92, + "end": 8732.62, + "probability": 0.6991 + }, + { + "start": 8732.74, + "end": 8734.68, + "probability": 0.4943 + }, + { + "start": 8736.23, + "end": 8738.28, + "probability": 0.6672 + }, + { + "start": 8738.48, + "end": 8739.86, + "probability": 0.5463 + }, + { + "start": 8740.26, + "end": 8741.72, + "probability": 0.6333 + }, + { + "start": 8741.72, + "end": 8743.66, + "probability": 0.6669 + }, + { + "start": 8744.32, + "end": 8745.86, + "probability": 0.9091 + }, + { + "start": 8746.22, + "end": 8746.22, + "probability": 0.3812 + }, + { + "start": 8746.22, + "end": 8747.44, + "probability": 0.3198 + }, + { + "start": 8748.02, + "end": 8749.68, + "probability": 0.5137 + }, + { + "start": 8749.72, + "end": 8751.08, + "probability": 0.4615 + }, + { + "start": 8754.94, + "end": 8755.84, + "probability": 0.2699 + }, + { + "start": 8756.59, + "end": 8759.82, + "probability": 0.9993 + }, + { + "start": 8759.86, + "end": 8763.58, + "probability": 0.7521 + }, + { + "start": 8763.88, + "end": 8767.08, + "probability": 0.7358 + }, + { + "start": 8767.68, + "end": 8768.66, + "probability": 0.8914 + }, + { + "start": 8769.66, + "end": 8772.52, + "probability": 0.8108 + }, + { + "start": 8773.2, + "end": 8776.04, + "probability": 0.939 + }, + { + "start": 8776.12, + "end": 8776.93, + "probability": 0.9264 + }, + { + "start": 8777.04, + "end": 8777.7, + "probability": 0.7937 + }, + { + "start": 8778.86, + "end": 8780.12, + "probability": 0.6805 + }, + { + "start": 8781.0, + "end": 8781.5, + "probability": 0.268 + }, + { + "start": 8781.54, + "end": 8783.7, + "probability": 0.9727 + }, + { + "start": 8786.46, + "end": 8790.0, + "probability": 0.8439 + }, + { + "start": 8790.38, + "end": 8792.48, + "probability": 0.7757 + }, + { + "start": 8793.24, + "end": 8796.48, + "probability": 0.9202 + }, + { + "start": 8796.5, + "end": 8797.26, + "probability": 0.4051 + }, + { + "start": 8797.38, + "end": 8799.8, + "probability": 0.6661 + }, + { + "start": 8801.56, + "end": 8801.86, + "probability": 0.0356 + }, + { + "start": 8801.86, + "end": 8802.92, + "probability": 0.2051 + }, + { + "start": 8803.88, + "end": 8804.24, + "probability": 0.3363 + }, + { + "start": 8804.5, + "end": 8805.9, + "probability": 0.7106 + }, + { + "start": 8806.16, + "end": 8810.28, + "probability": 0.6755 + }, + { + "start": 8810.46, + "end": 8813.32, + "probability": 0.8835 + }, + { + "start": 8813.66, + "end": 8816.72, + "probability": 0.7892 + }, + { + "start": 8817.18, + "end": 8823.0, + "probability": 0.9833 + }, + { + "start": 8824.14, + "end": 8825.4, + "probability": 0.6886 + }, + { + "start": 8825.48, + "end": 8826.42, + "probability": 0.5344 + }, + { + "start": 8828.52, + "end": 8830.0, + "probability": 0.4733 + }, + { + "start": 8831.0, + "end": 8831.7, + "probability": 0.5403 + }, + { + "start": 8833.08, + "end": 8833.28, + "probability": 0.5105 + }, + { + "start": 8833.48, + "end": 8835.1, + "probability": 0.6743 + }, + { + "start": 8835.3, + "end": 8838.14, + "probability": 0.7936 + }, + { + "start": 8838.24, + "end": 8841.54, + "probability": 0.8992 + }, + { + "start": 8841.68, + "end": 8848.18, + "probability": 0.065 + }, + { + "start": 8848.18, + "end": 8849.4, + "probability": 0.7795 + }, + { + "start": 8850.66, + "end": 8855.84, + "probability": 0.8803 + }, + { + "start": 8856.16, + "end": 8860.32, + "probability": 0.9402 + }, + { + "start": 8860.6, + "end": 8865.3, + "probability": 0.365 + }, + { + "start": 8865.38, + "end": 8866.36, + "probability": 0.5841 + }, + { + "start": 8866.44, + "end": 8871.04, + "probability": 0.1446 + }, + { + "start": 8871.74, + "end": 8871.76, + "probability": 0.2983 + }, + { + "start": 8872.08, + "end": 8872.12, + "probability": 0.4175 + }, + { + "start": 8872.36, + "end": 8873.97, + "probability": 0.0453 + }, + { + "start": 8875.14, + "end": 8877.5, + "probability": 0.6053 + }, + { + "start": 8877.5, + "end": 8879.42, + "probability": 0.5229 + }, + { + "start": 8879.42, + "end": 8880.35, + "probability": 0.2992 + }, + { + "start": 8880.64, + "end": 8881.92, + "probability": 0.952 + }, + { + "start": 8881.98, + "end": 8888.64, + "probability": 0.9929 + }, + { + "start": 8889.18, + "end": 8892.76, + "probability": 0.3946 + }, + { + "start": 8893.1, + "end": 8895.4, + "probability": 0.8333 + }, + { + "start": 8896.16, + "end": 8897.28, + "probability": 0.0074 + }, + { + "start": 8897.28, + "end": 8897.28, + "probability": 0.0643 + }, + { + "start": 8897.28, + "end": 8898.16, + "probability": 0.5 + }, + { + "start": 8899.2, + "end": 8902.5, + "probability": 0.6726 + }, + { + "start": 8902.64, + "end": 8902.98, + "probability": 0.6095 + }, + { + "start": 8903.06, + "end": 8903.88, + "probability": 0.8796 + }, + { + "start": 8904.24, + "end": 8906.64, + "probability": 0.9651 + }, + { + "start": 8906.68, + "end": 8907.32, + "probability": 0.3441 + }, + { + "start": 8908.12, + "end": 8910.6, + "probability": 0.1667 + }, + { + "start": 8911.14, + "end": 8911.98, + "probability": 0.1979 + }, + { + "start": 8911.98, + "end": 8912.68, + "probability": 0.2136 + }, + { + "start": 8912.82, + "end": 8913.34, + "probability": 0.5269 + }, + { + "start": 8913.46, + "end": 8915.08, + "probability": 0.6908 + }, + { + "start": 8915.12, + "end": 8915.57, + "probability": 0.863 + }, + { + "start": 8915.84, + "end": 8917.48, + "probability": 0.8205 + }, + { + "start": 8917.98, + "end": 8921.46, + "probability": 0.7932 + }, + { + "start": 8921.66, + "end": 8924.44, + "probability": 0.9054 + }, + { + "start": 8924.48, + "end": 8924.88, + "probability": 0.5405 + }, + { + "start": 8925.1, + "end": 8927.71, + "probability": 0.894 + }, + { + "start": 8928.62, + "end": 8931.86, + "probability": 0.6806 + }, + { + "start": 8932.12, + "end": 8933.26, + "probability": 0.8061 + }, + { + "start": 8933.46, + "end": 8934.68, + "probability": 0.1062 + }, + { + "start": 8938.64, + "end": 8940.18, + "probability": 0.737 + }, + { + "start": 8957.5, + "end": 8959.56, + "probability": 0.5475 + }, + { + "start": 8959.56, + "end": 8962.02, + "probability": 0.6979 + }, + { + "start": 8962.38, + "end": 8965.18, + "probability": 0.0111 + }, + { + "start": 8965.6, + "end": 8966.36, + "probability": 0.0338 + }, + { + "start": 8966.36, + "end": 8966.36, + "probability": 0.0456 + }, + { + "start": 8966.66, + "end": 8970.8, + "probability": 0.0455 + }, + { + "start": 8987.8, + "end": 8990.26, + "probability": 0.6829 + }, + { + "start": 8991.68, + "end": 8994.12, + "probability": 0.854 + }, + { + "start": 8994.12, + "end": 8997.38, + "probability": 0.9925 + }, + { + "start": 8997.52, + "end": 8999.44, + "probability": 0.8075 + }, + { + "start": 9000.56, + "end": 9001.74, + "probability": 0.9944 + }, + { + "start": 9001.8, + "end": 9004.86, + "probability": 0.9766 + }, + { + "start": 9005.88, + "end": 9006.83, + "probability": 0.9915 + }, + { + "start": 9007.9, + "end": 9009.34, + "probability": 0.786 + }, + { + "start": 9009.58, + "end": 9012.82, + "probability": 0.9856 + }, + { + "start": 9013.22, + "end": 9016.08, + "probability": 0.9852 + }, + { + "start": 9016.66, + "end": 9018.48, + "probability": 0.9738 + }, + { + "start": 9019.8, + "end": 9020.82, + "probability": 0.8138 + }, + { + "start": 9021.46, + "end": 9023.6, + "probability": 0.926 + }, + { + "start": 9023.9, + "end": 9024.86, + "probability": 0.5856 + }, + { + "start": 9025.26, + "end": 9026.24, + "probability": 0.7801 + }, + { + "start": 9026.26, + "end": 9027.28, + "probability": 0.8765 + }, + { + "start": 9027.52, + "end": 9029.28, + "probability": 0.8527 + }, + { + "start": 9029.82, + "end": 9030.46, + "probability": 0.908 + }, + { + "start": 9030.96, + "end": 9032.04, + "probability": 0.9863 + }, + { + "start": 9033.0, + "end": 9035.46, + "probability": 0.7604 + }, + { + "start": 9036.54, + "end": 9039.04, + "probability": 0.9666 + }, + { + "start": 9039.18, + "end": 9040.54, + "probability": 0.8945 + }, + { + "start": 9041.72, + "end": 9044.32, + "probability": 0.9854 + }, + { + "start": 9045.54, + "end": 9046.16, + "probability": 0.5315 + }, + { + "start": 9046.76, + "end": 9048.96, + "probability": 0.8586 + }, + { + "start": 9049.96, + "end": 9052.74, + "probability": 0.9512 + }, + { + "start": 9052.82, + "end": 9054.48, + "probability": 0.8787 + }, + { + "start": 9055.1, + "end": 9058.28, + "probability": 0.9775 + }, + { + "start": 9059.3, + "end": 9061.95, + "probability": 0.9924 + }, + { + "start": 9062.62, + "end": 9065.74, + "probability": 0.988 + }, + { + "start": 9066.96, + "end": 9067.56, + "probability": 0.2348 + }, + { + "start": 9067.58, + "end": 9069.6, + "probability": 0.9502 + }, + { + "start": 9070.42, + "end": 9071.08, + "probability": 0.821 + }, + { + "start": 9072.04, + "end": 9074.26, + "probability": 0.9052 + }, + { + "start": 9074.6, + "end": 9076.16, + "probability": 0.8355 + }, + { + "start": 9076.86, + "end": 9077.7, + "probability": 0.8336 + }, + { + "start": 9078.1, + "end": 9081.74, + "probability": 0.7813 + }, + { + "start": 9082.58, + "end": 9083.8, + "probability": 0.6649 + }, + { + "start": 9083.86, + "end": 9085.56, + "probability": 0.7809 + }, + { + "start": 9086.7, + "end": 9088.78, + "probability": 0.5942 + }, + { + "start": 9089.0, + "end": 9089.28, + "probability": 0.7264 + }, + { + "start": 9089.3, + "end": 9092.84, + "probability": 0.9686 + }, + { + "start": 9092.86, + "end": 9095.86, + "probability": 0.9841 + }, + { + "start": 9096.18, + "end": 9096.8, + "probability": 0.0792 + }, + { + "start": 9097.6, + "end": 9101.44, + "probability": 0.9876 + }, + { + "start": 9102.12, + "end": 9103.72, + "probability": 0.8104 + }, + { + "start": 9104.6, + "end": 9106.48, + "probability": 0.9116 + }, + { + "start": 9107.46, + "end": 9108.74, + "probability": 0.9644 + }, + { + "start": 9109.56, + "end": 9111.68, + "probability": 0.9717 + }, + { + "start": 9112.3, + "end": 9113.7, + "probability": 0.8741 + }, + { + "start": 9113.88, + "end": 9117.1, + "probability": 0.8567 + }, + { + "start": 9117.82, + "end": 9118.5, + "probability": 0.6037 + }, + { + "start": 9118.58, + "end": 9119.16, + "probability": 0.942 + }, + { + "start": 9119.26, + "end": 9120.08, + "probability": 0.8702 + }, + { + "start": 9120.1, + "end": 9122.52, + "probability": 0.9315 + }, + { + "start": 9123.32, + "end": 9124.32, + "probability": 0.567 + }, + { + "start": 9124.48, + "end": 9125.72, + "probability": 0.8882 + }, + { + "start": 9126.02, + "end": 9126.28, + "probability": 0.9078 + }, + { + "start": 9126.42, + "end": 9127.2, + "probability": 0.7515 + }, + { + "start": 9128.06, + "end": 9129.48, + "probability": 0.9492 + }, + { + "start": 9130.38, + "end": 9131.5, + "probability": 0.9307 + }, + { + "start": 9131.68, + "end": 9132.66, + "probability": 0.9543 + }, + { + "start": 9133.16, + "end": 9134.26, + "probability": 0.9248 + }, + { + "start": 9134.36, + "end": 9135.12, + "probability": 0.7774 + }, + { + "start": 9136.24, + "end": 9136.6, + "probability": 0.6133 + }, + { + "start": 9136.84, + "end": 9137.96, + "probability": 0.6474 + }, + { + "start": 9138.0, + "end": 9139.82, + "probability": 0.9702 + }, + { + "start": 9139.92, + "end": 9143.7, + "probability": 0.9468 + }, + { + "start": 9144.04, + "end": 9145.4, + "probability": 0.8748 + }, + { + "start": 9146.3, + "end": 9146.62, + "probability": 0.45 + }, + { + "start": 9150.06, + "end": 9150.14, + "probability": 0.1762 + }, + { + "start": 9150.14, + "end": 9150.14, + "probability": 0.0376 + }, + { + "start": 9150.14, + "end": 9150.14, + "probability": 0.2672 + }, + { + "start": 9150.14, + "end": 9151.12, + "probability": 0.593 + }, + { + "start": 9151.48, + "end": 9152.92, + "probability": 0.9541 + }, + { + "start": 9159.96, + "end": 9164.3, + "probability": 0.204 + }, + { + "start": 9164.32, + "end": 9167.84, + "probability": 0.5387 + }, + { + "start": 9168.4, + "end": 9170.02, + "probability": 0.4486 + }, + { + "start": 9170.84, + "end": 9172.34, + "probability": 0.1507 + }, + { + "start": 9172.66, + "end": 9174.48, + "probability": 0.7513 + }, + { + "start": 9175.04, + "end": 9175.91, + "probability": 0.3074 + }, + { + "start": 9176.46, + "end": 9178.96, + "probability": 0.2156 + }, + { + "start": 9178.98, + "end": 9180.42, + "probability": 0.2043 + }, + { + "start": 9181.02, + "end": 9181.3, + "probability": 0.0922 + }, + { + "start": 9181.32, + "end": 9184.58, + "probability": 0.4538 + }, + { + "start": 9185.5, + "end": 9186.33, + "probability": 0.2097 + }, + { + "start": 9187.3, + "end": 9189.02, + "probability": 0.5922 + }, + { + "start": 9189.18, + "end": 9189.92, + "probability": 0.8333 + }, + { + "start": 9190.72, + "end": 9191.64, + "probability": 0.9516 + }, + { + "start": 9191.94, + "end": 9194.38, + "probability": 0.7866 + }, + { + "start": 9194.38, + "end": 9197.46, + "probability": 0.8496 + }, + { + "start": 9197.66, + "end": 9201.84, + "probability": 0.8555 + }, + { + "start": 9202.38, + "end": 9202.38, + "probability": 0.7221 + }, + { + "start": 9202.38, + "end": 9202.96, + "probability": 0.4321 + }, + { + "start": 9202.96, + "end": 9205.34, + "probability": 0.945 + }, + { + "start": 9206.32, + "end": 9209.5, + "probability": 0.8433 + }, + { + "start": 9210.34, + "end": 9213.36, + "probability": 0.8406 + }, + { + "start": 9213.36, + "end": 9215.8, + "probability": 0.9988 + }, + { + "start": 9215.8, + "end": 9216.54, + "probability": 0.0057 + }, + { + "start": 9216.88, + "end": 9217.42, + "probability": 0.5818 + }, + { + "start": 9217.5, + "end": 9219.3, + "probability": 0.685 + }, + { + "start": 9221.74, + "end": 9224.14, + "probability": 0.8775 + }, + { + "start": 9224.38, + "end": 9226.22, + "probability": 0.5018 + }, + { + "start": 9226.34, + "end": 9228.66, + "probability": 0.6211 + }, + { + "start": 9228.93, + "end": 9230.76, + "probability": 0.184 + }, + { + "start": 9230.76, + "end": 9233.62, + "probability": 0.411 + }, + { + "start": 9233.62, + "end": 9233.62, + "probability": 0.0844 + }, + { + "start": 9233.62, + "end": 9234.57, + "probability": 0.5896 + }, + { + "start": 9234.7, + "end": 9235.36, + "probability": 0.8843 + }, + { + "start": 9235.52, + "end": 9236.1, + "probability": 0.4261 + }, + { + "start": 9236.1, + "end": 9236.74, + "probability": 0.4074 + }, + { + "start": 9236.8, + "end": 9238.68, + "probability": 0.6604 + }, + { + "start": 9238.78, + "end": 9240.82, + "probability": 0.8381 + }, + { + "start": 9241.12, + "end": 9242.42, + "probability": 0.8819 + }, + { + "start": 9242.56, + "end": 9243.16, + "probability": 0.9608 + }, + { + "start": 9243.22, + "end": 9243.74, + "probability": 0.7367 + }, + { + "start": 9243.78, + "end": 9244.24, + "probability": 0.9072 + }, + { + "start": 9244.36, + "end": 9245.12, + "probability": 0.5521 + }, + { + "start": 9245.22, + "end": 9246.44, + "probability": 0.9644 + }, + { + "start": 9246.44, + "end": 9247.7, + "probability": 0.8096 + }, + { + "start": 9247.94, + "end": 9248.3, + "probability": 0.8154 + }, + { + "start": 9249.06, + "end": 9250.15, + "probability": 0.9032 + }, + { + "start": 9250.78, + "end": 9251.28, + "probability": 0.5622 + }, + { + "start": 9251.46, + "end": 9255.24, + "probability": 0.998 + }, + { + "start": 9255.34, + "end": 9258.08, + "probability": 0.991 + }, + { + "start": 9258.56, + "end": 9260.36, + "probability": 0.897 + }, + { + "start": 9260.94, + "end": 9263.6, + "probability": 0.8118 + }, + { + "start": 9264.66, + "end": 9265.46, + "probability": 0.5021 + }, + { + "start": 9265.58, + "end": 9266.36, + "probability": 0.8879 + }, + { + "start": 9266.82, + "end": 9268.82, + "probability": 0.6451 + }, + { + "start": 9268.88, + "end": 9271.24, + "probability": 0.6172 + }, + { + "start": 9271.68, + "end": 9272.72, + "probability": 0.9866 + }, + { + "start": 9272.96, + "end": 9273.7, + "probability": 0.2945 + }, + { + "start": 9273.82, + "end": 9273.98, + "probability": 0.7847 + }, + { + "start": 9274.02, + "end": 9274.74, + "probability": 0.7418 + }, + { + "start": 9275.18, + "end": 9275.4, + "probability": 0.3779 + }, + { + "start": 9275.96, + "end": 9279.32, + "probability": 0.7884 + }, + { + "start": 9279.4, + "end": 9280.16, + "probability": 0.8023 + }, + { + "start": 9280.16, + "end": 9282.12, + "probability": 0.9827 + }, + { + "start": 9282.22, + "end": 9283.24, + "probability": 0.762 + }, + { + "start": 9283.4, + "end": 9283.66, + "probability": 0.908 + }, + { + "start": 9283.66, + "end": 9285.92, + "probability": 0.9678 + }, + { + "start": 9286.12, + "end": 9287.94, + "probability": 0.9939 + }, + { + "start": 9288.02, + "end": 9289.13, + "probability": 0.9741 + }, + { + "start": 9289.36, + "end": 9289.66, + "probability": 0.0419 + }, + { + "start": 9289.74, + "end": 9291.63, + "probability": 0.4942 + }, + { + "start": 9291.72, + "end": 9293.22, + "probability": 0.8858 + }, + { + "start": 9293.38, + "end": 9297.22, + "probability": 0.4721 + }, + { + "start": 9297.72, + "end": 9298.18, + "probability": 0.3438 + }, + { + "start": 9298.28, + "end": 9301.94, + "probability": 0.7596 + }, + { + "start": 9302.08, + "end": 9303.38, + "probability": 0.9883 + }, + { + "start": 9303.98, + "end": 9305.13, + "probability": 0.9299 + }, + { + "start": 9305.72, + "end": 9307.54, + "probability": 0.7589 + }, + { + "start": 9307.64, + "end": 9312.72, + "probability": 0.87 + }, + { + "start": 9312.84, + "end": 9313.38, + "probability": 0.8454 + }, + { + "start": 9313.96, + "end": 9314.1, + "probability": 0.297 + }, + { + "start": 9314.22, + "end": 9314.82, + "probability": 0.3142 + }, + { + "start": 9315.24, + "end": 9318.02, + "probability": 0.8143 + }, + { + "start": 9318.24, + "end": 9319.0, + "probability": 0.7986 + }, + { + "start": 9319.32, + "end": 9324.34, + "probability": 0.936 + }, + { + "start": 9324.86, + "end": 9325.04, + "probability": 0.7995 + }, + { + "start": 9325.14, + "end": 9325.86, + "probability": 0.6772 + }, + { + "start": 9326.02, + "end": 9326.8, + "probability": 0.9871 + }, + { + "start": 9327.2, + "end": 9329.04, + "probability": 0.9076 + }, + { + "start": 9329.3, + "end": 9329.48, + "probability": 0.6696 + }, + { + "start": 9329.78, + "end": 9330.92, + "probability": 0.6068 + }, + { + "start": 9331.28, + "end": 9333.38, + "probability": 0.6912 + }, + { + "start": 9333.82, + "end": 9336.38, + "probability": 0.6657 + }, + { + "start": 9336.48, + "end": 9337.47, + "probability": 0.6257 + }, + { + "start": 9338.24, + "end": 9339.18, + "probability": 0.302 + }, + { + "start": 9340.38, + "end": 9343.91, + "probability": 0.9622 + }, + { + "start": 9349.37, + "end": 9350.92, + "probability": 0.6836 + }, + { + "start": 9352.96, + "end": 9356.5, + "probability": 0.7415 + }, + { + "start": 9357.4, + "end": 9359.1, + "probability": 0.4632 + }, + { + "start": 9363.02, + "end": 9367.16, + "probability": 0.9907 + }, + { + "start": 9367.3, + "end": 9370.96, + "probability": 0.9865 + }, + { + "start": 9370.96, + "end": 9375.06, + "probability": 0.9779 + }, + { + "start": 9375.28, + "end": 9379.34, + "probability": 0.9375 + }, + { + "start": 9379.44, + "end": 9382.18, + "probability": 0.9771 + }, + { + "start": 9382.76, + "end": 9384.24, + "probability": 0.8204 + }, + { + "start": 9385.64, + "end": 9388.58, + "probability": 0.8854 + }, + { + "start": 9388.64, + "end": 9389.5, + "probability": 0.6936 + }, + { + "start": 9389.7, + "end": 9393.84, + "probability": 0.9697 + }, + { + "start": 9394.34, + "end": 9398.34, + "probability": 0.9967 + }, + { + "start": 9399.06, + "end": 9401.94, + "probability": 0.9622 + }, + { + "start": 9403.7, + "end": 9407.2, + "probability": 0.1641 + }, + { + "start": 9408.86, + "end": 9410.88, + "probability": 0.6831 + }, + { + "start": 9411.2, + "end": 9413.82, + "probability": 0.9695 + }, + { + "start": 9415.06, + "end": 9418.98, + "probability": 0.9865 + }, + { + "start": 9418.98, + "end": 9422.9, + "probability": 0.9204 + }, + { + "start": 9423.76, + "end": 9425.36, + "probability": 0.9001 + }, + { + "start": 9425.4, + "end": 9425.76, + "probability": 0.6925 + }, + { + "start": 9425.86, + "end": 9426.42, + "probability": 0.9506 + }, + { + "start": 9426.72, + "end": 9427.76, + "probability": 0.8781 + }, + { + "start": 9427.8, + "end": 9428.22, + "probability": 0.6522 + }, + { + "start": 9428.53, + "end": 9431.39, + "probability": 0.9004 + }, + { + "start": 9431.94, + "end": 9433.6, + "probability": 0.9873 + }, + { + "start": 9434.38, + "end": 9437.14, + "probability": 0.9266 + }, + { + "start": 9438.28, + "end": 9441.1, + "probability": 0.988 + }, + { + "start": 9441.94, + "end": 9444.58, + "probability": 0.9785 + }, + { + "start": 9445.18, + "end": 9447.76, + "probability": 0.8539 + }, + { + "start": 9448.24, + "end": 9448.86, + "probability": 0.7436 + }, + { + "start": 9449.0, + "end": 9451.66, + "probability": 0.9683 + }, + { + "start": 9452.42, + "end": 9455.8, + "probability": 0.9897 + }, + { + "start": 9456.4, + "end": 9459.48, + "probability": 0.9116 + }, + { + "start": 9460.08, + "end": 9465.48, + "probability": 0.9811 + }, + { + "start": 9466.08, + "end": 9467.7, + "probability": 0.9761 + }, + { + "start": 9467.76, + "end": 9473.62, + "probability": 0.991 + }, + { + "start": 9474.08, + "end": 9474.8, + "probability": 0.749 + }, + { + "start": 9475.6, + "end": 9476.54, + "probability": 0.8675 + }, + { + "start": 9477.18, + "end": 9481.12, + "probability": 0.9819 + }, + { + "start": 9481.18, + "end": 9481.7, + "probability": 0.8442 + }, + { + "start": 9482.54, + "end": 9484.4, + "probability": 0.9976 + }, + { + "start": 9485.14, + "end": 9486.68, + "probability": 0.9718 + }, + { + "start": 9487.34, + "end": 9489.66, + "probability": 0.98 + }, + { + "start": 9489.76, + "end": 9490.2, + "probability": 0.391 + }, + { + "start": 9490.4, + "end": 9490.72, + "probability": 0.6243 + }, + { + "start": 9490.8, + "end": 9491.34, + "probability": 0.7216 + }, + { + "start": 9491.76, + "end": 9494.96, + "probability": 0.8685 + }, + { + "start": 9495.14, + "end": 9495.71, + "probability": 0.3203 + }, + { + "start": 9496.46, + "end": 9500.04, + "probability": 0.7885 + }, + { + "start": 9500.14, + "end": 9503.12, + "probability": 0.9816 + }, + { + "start": 9503.6, + "end": 9503.7, + "probability": 0.66 + }, + { + "start": 9503.72, + "end": 9507.7, + "probability": 0.821 + }, + { + "start": 9507.7, + "end": 9509.88, + "probability": 0.9587 + }, + { + "start": 9510.32, + "end": 9513.7, + "probability": 0.7603 + }, + { + "start": 9514.28, + "end": 9514.94, + "probability": 0.9421 + }, + { + "start": 9515.52, + "end": 9523.24, + "probability": 0.6941 + }, + { + "start": 9523.3, + "end": 9525.24, + "probability": 0.9082 + }, + { + "start": 9526.02, + "end": 9527.42, + "probability": 0.6716 + }, + { + "start": 9527.46, + "end": 9530.04, + "probability": 0.5998 + }, + { + "start": 9530.56, + "end": 9533.04, + "probability": 0.995 + }, + { + "start": 9533.58, + "end": 9539.14, + "probability": 0.9769 + }, + { + "start": 9539.86, + "end": 9544.24, + "probability": 0.9832 + }, + { + "start": 9544.24, + "end": 9547.46, + "probability": 0.8978 + }, + { + "start": 9547.76, + "end": 9552.12, + "probability": 0.9503 + }, + { + "start": 9552.68, + "end": 9558.52, + "probability": 0.9801 + }, + { + "start": 9558.9, + "end": 9562.86, + "probability": 0.8264 + }, + { + "start": 9563.14, + "end": 9563.7, + "probability": 0.6044 + }, + { + "start": 9563.76, + "end": 9564.02, + "probability": 0.811 + }, + { + "start": 9564.9, + "end": 9570.56, + "probability": 0.9558 + }, + { + "start": 9570.64, + "end": 9571.1, + "probability": 0.5006 + }, + { + "start": 9571.18, + "end": 9572.98, + "probability": 0.7133 + }, + { + "start": 9573.26, + "end": 9577.96, + "probability": 0.9611 + }, + { + "start": 9587.22, + "end": 9588.06, + "probability": 0.4126 + }, + { + "start": 9588.54, + "end": 9589.74, + "probability": 0.7617 + }, + { + "start": 9589.98, + "end": 9591.9, + "probability": 0.9973 + }, + { + "start": 9591.9, + "end": 9595.44, + "probability": 0.9813 + }, + { + "start": 9596.81, + "end": 9600.94, + "probability": 0.967 + }, + { + "start": 9601.14, + "end": 9606.02, + "probability": 0.7524 + }, + { + "start": 9610.88, + "end": 9612.8, + "probability": 0.9839 + }, + { + "start": 9612.94, + "end": 9618.2, + "probability": 0.9766 + }, + { + "start": 9618.38, + "end": 9621.56, + "probability": 0.9404 + }, + { + "start": 9621.64, + "end": 9622.5, + "probability": 0.5262 + }, + { + "start": 9622.7, + "end": 9623.7, + "probability": 0.9342 + }, + { + "start": 9623.88, + "end": 9624.66, + "probability": 0.7508 + }, + { + "start": 9624.76, + "end": 9625.8, + "probability": 0.9282 + }, + { + "start": 9626.4, + "end": 9626.76, + "probability": 0.7361 + }, + { + "start": 9629.3, + "end": 9629.82, + "probability": 0.1991 + }, + { + "start": 9629.86, + "end": 9629.94, + "probability": 0.567 + }, + { + "start": 9629.98, + "end": 9631.74, + "probability": 0.7697 + }, + { + "start": 9631.84, + "end": 9632.2, + "probability": 0.8678 + }, + { + "start": 9632.34, + "end": 9633.21, + "probability": 0.6509 + }, + { + "start": 9633.38, + "end": 9633.95, + "probability": 0.7944 + }, + { + "start": 9634.88, + "end": 9635.18, + "probability": 0.432 + }, + { + "start": 9635.28, + "end": 9635.84, + "probability": 0.7333 + }, + { + "start": 9636.7, + "end": 9637.88, + "probability": 0.9147 + }, + { + "start": 9638.4, + "end": 9640.16, + "probability": 0.8737 + }, + { + "start": 9641.04, + "end": 9642.54, + "probability": 0.3877 + }, + { + "start": 9648.3, + "end": 9648.3, + "probability": 0.2019 + }, + { + "start": 9648.3, + "end": 9648.3, + "probability": 0.7158 + }, + { + "start": 9648.3, + "end": 9648.4, + "probability": 0.2168 + }, + { + "start": 9648.4, + "end": 9650.5, + "probability": 0.0645 + }, + { + "start": 9651.06, + "end": 9651.5, + "probability": 0.906 + }, + { + "start": 9652.34, + "end": 9653.06, + "probability": 0.5024 + }, + { + "start": 9653.06, + "end": 9653.08, + "probability": 0.5993 + }, + { + "start": 9653.2, + "end": 9654.5, + "probability": 0.388 + }, + { + "start": 9656.08, + "end": 9656.96, + "probability": 0.35 + }, + { + "start": 9660.48, + "end": 9661.02, + "probability": 0.2004 + }, + { + "start": 9661.42, + "end": 9666.18, + "probability": 0.5504 + }, + { + "start": 9666.28, + "end": 9666.56, + "probability": 0.7129 + }, + { + "start": 9666.66, + "end": 9666.74, + "probability": 0.8429 + }, + { + "start": 9667.08, + "end": 9667.36, + "probability": 0.4021 + }, + { + "start": 9668.08, + "end": 9669.55, + "probability": 0.7721 + }, + { + "start": 9670.44, + "end": 9670.81, + "probability": 0.8942 + }, + { + "start": 9671.76, + "end": 9675.1, + "probability": 0.6256 + }, + { + "start": 9676.94, + "end": 9678.26, + "probability": 0.6819 + }, + { + "start": 9678.46, + "end": 9679.68, + "probability": 0.7509 + }, + { + "start": 9680.44, + "end": 9682.08, + "probability": 0.951 + }, + { + "start": 9683.78, + "end": 9688.1, + "probability": 0.9355 + }, + { + "start": 9688.1, + "end": 9692.12, + "probability": 0.9841 + }, + { + "start": 9692.32, + "end": 9694.02, + "probability": 0.4152 + }, + { + "start": 9694.06, + "end": 9694.48, + "probability": 0.4988 + }, + { + "start": 9694.52, + "end": 9696.23, + "probability": 0.9916 + }, + { + "start": 9697.04, + "end": 9702.22, + "probability": 0.7025 + }, + { + "start": 9703.44, + "end": 9707.78, + "probability": 0.8999 + }, + { + "start": 9708.36, + "end": 9710.08, + "probability": 0.802 + }, + { + "start": 9710.16, + "end": 9712.38, + "probability": 0.8408 + }, + { + "start": 9713.58, + "end": 9714.8, + "probability": 0.5032 + }, + { + "start": 9715.34, + "end": 9715.7, + "probability": 0.0774 + }, + { + "start": 9715.9, + "end": 9716.93, + "probability": 0.2831 + }, + { + "start": 9717.76, + "end": 9720.4, + "probability": 0.8457 + }, + { + "start": 9720.94, + "end": 9722.02, + "probability": 0.9302 + }, + { + "start": 9722.14, + "end": 9723.8, + "probability": 0.7209 + }, + { + "start": 9724.22, + "end": 9726.46, + "probability": 0.7394 + }, + { + "start": 9726.56, + "end": 9727.64, + "probability": 0.929 + }, + { + "start": 9730.04, + "end": 9733.04, + "probability": 0.4254 + }, + { + "start": 9733.86, + "end": 9735.62, + "probability": 0.3253 + }, + { + "start": 9735.96, + "end": 9736.5, + "probability": 0.1856 + }, + { + "start": 9736.52, + "end": 9740.74, + "probability": 0.4943 + }, + { + "start": 9740.74, + "end": 9743.5, + "probability": 0.9941 + }, + { + "start": 9743.62, + "end": 9744.38, + "probability": 0.9648 + }, + { + "start": 9745.7, + "end": 9746.55, + "probability": 0.9894 + }, + { + "start": 9746.92, + "end": 9748.12, + "probability": 0.724 + }, + { + "start": 9748.26, + "end": 9748.94, + "probability": 0.9993 + }, + { + "start": 9750.28, + "end": 9752.36, + "probability": 0.7427 + }, + { + "start": 9752.36, + "end": 9754.46, + "probability": 0.8548 + }, + { + "start": 9754.72, + "end": 9756.0, + "probability": 0.8969 + }, + { + "start": 9756.08, + "end": 9758.52, + "probability": 0.7946 + }, + { + "start": 9758.62, + "end": 9759.92, + "probability": 0.9674 + }, + { + "start": 9760.34, + "end": 9761.42, + "probability": 0.6964 + }, + { + "start": 9762.72, + "end": 9764.3, + "probability": 0.6891 + }, + { + "start": 9764.3, + "end": 9766.22, + "probability": 0.66 + }, + { + "start": 9767.32, + "end": 9769.0, + "probability": 0.7925 + }, + { + "start": 9769.34, + "end": 9772.36, + "probability": 0.9578 + }, + { + "start": 9773.6, + "end": 9775.8, + "probability": 0.7344 + }, + { + "start": 9775.88, + "end": 9776.28, + "probability": 0.5085 + }, + { + "start": 9776.34, + "end": 9777.5, + "probability": 0.8027 + }, + { + "start": 9777.6, + "end": 9780.72, + "probability": 0.9575 + }, + { + "start": 9780.72, + "end": 9782.76, + "probability": 0.7536 + }, + { + "start": 9783.76, + "end": 9784.68, + "probability": 0.9439 + }, + { + "start": 9784.84, + "end": 9786.76, + "probability": 0.6249 + }, + { + "start": 9786.86, + "end": 9787.38, + "probability": 0.7572 + }, + { + "start": 9787.96, + "end": 9789.23, + "probability": 0.6246 + }, + { + "start": 9790.24, + "end": 9792.8, + "probability": 0.8476 + }, + { + "start": 9792.8, + "end": 9797.46, + "probability": 0.5006 + }, + { + "start": 9800.52, + "end": 9803.08, + "probability": 0.6997 + }, + { + "start": 9803.08, + "end": 9806.12, + "probability": 0.8465 + }, + { + "start": 9806.5, + "end": 9807.82, + "probability": 0.584 + }, + { + "start": 9808.86, + "end": 9810.02, + "probability": 0.8669 + }, + { + "start": 9811.36, + "end": 9814.12, + "probability": 0.7886 + }, + { + "start": 9814.44, + "end": 9817.42, + "probability": 0.73 + }, + { + "start": 9817.92, + "end": 9819.12, + "probability": 0.7261 + }, + { + "start": 9819.66, + "end": 9822.98, + "probability": 0.8619 + }, + { + "start": 9823.04, + "end": 9823.28, + "probability": 0.7405 + }, + { + "start": 9823.66, + "end": 9824.01, + "probability": 0.9487 + }, + { + "start": 9825.08, + "end": 9826.4, + "probability": 0.7458 + }, + { + "start": 9826.64, + "end": 9828.52, + "probability": 0.8629 + }, + { + "start": 9830.06, + "end": 9831.62, + "probability": 0.9305 + }, + { + "start": 9831.88, + "end": 9832.44, + "probability": 0.8077 + }, + { + "start": 9832.82, + "end": 9833.7, + "probability": 0.9155 + }, + { + "start": 9833.82, + "end": 9836.64, + "probability": 0.8002 + }, + { + "start": 9836.72, + "end": 9839.29, + "probability": 0.9002 + }, + { + "start": 9839.8, + "end": 9840.7, + "probability": 0.9587 + }, + { + "start": 9841.42, + "end": 9842.14, + "probability": 0.7733 + }, + { + "start": 9842.48, + "end": 9844.18, + "probability": 0.9012 + }, + { + "start": 9844.3, + "end": 9845.44, + "probability": 0.8893 + }, + { + "start": 9847.18, + "end": 9849.72, + "probability": 0.9574 + }, + { + "start": 9849.78, + "end": 9850.52, + "probability": 0.6766 + }, + { + "start": 9851.34, + "end": 9853.84, + "probability": 0.9429 + }, + { + "start": 9854.5, + "end": 9856.12, + "probability": 0.9933 + }, + { + "start": 9856.22, + "end": 9857.32, + "probability": 0.8978 + }, + { + "start": 9858.76, + "end": 9859.86, + "probability": 0.0766 + }, + { + "start": 9859.86, + "end": 9861.82, + "probability": 0.4866 + }, + { + "start": 9862.0, + "end": 9863.54, + "probability": 0.7883 + }, + { + "start": 9863.78, + "end": 9866.46, + "probability": 0.9605 + }, + { + "start": 9867.1, + "end": 9868.1, + "probability": 0.8774 + }, + { + "start": 9868.18, + "end": 9868.96, + "probability": 0.0804 + }, + { + "start": 9870.64, + "end": 9871.9, + "probability": 0.8287 + }, + { + "start": 9872.42, + "end": 9873.12, + "probability": 0.77 + }, + { + "start": 9873.26, + "end": 9875.75, + "probability": 0.8307 + }, + { + "start": 9875.82, + "end": 9880.0, + "probability": 0.9161 + }, + { + "start": 9886.22, + "end": 9888.7, + "probability": 0.3379 + }, + { + "start": 9888.7, + "end": 9890.36, + "probability": 0.8438 + }, + { + "start": 9890.54, + "end": 9892.84, + "probability": 0.7671 + }, + { + "start": 9893.08, + "end": 9895.64, + "probability": 0.9424 + }, + { + "start": 9896.76, + "end": 9899.42, + "probability": 0.9934 + }, + { + "start": 9899.88, + "end": 9902.54, + "probability": 0.9431 + }, + { + "start": 9902.8, + "end": 9904.62, + "probability": 0.5158 + }, + { + "start": 9904.82, + "end": 9908.2, + "probability": 0.8896 + }, + { + "start": 9908.22, + "end": 9908.85, + "probability": 0.0683 + }, + { + "start": 9909.22, + "end": 9911.26, + "probability": 0.9092 + }, + { + "start": 9911.34, + "end": 9912.72, + "probability": 0.801 + }, + { + "start": 9913.61, + "end": 9927.3, + "probability": 0.0508 + }, + { + "start": 9927.38, + "end": 9928.3, + "probability": 0.0349 + }, + { + "start": 9928.3, + "end": 9929.84, + "probability": 0.0279 + }, + { + "start": 9930.96, + "end": 9931.82, + "probability": 0.259 + }, + { + "start": 9933.06, + "end": 9939.66, + "probability": 0.8789 + }, + { + "start": 9939.78, + "end": 9942.5, + "probability": 0.9265 + }, + { + "start": 9943.16, + "end": 9943.84, + "probability": 0.0346 + }, + { + "start": 9943.84, + "end": 9945.8, + "probability": 0.5355 + }, + { + "start": 9945.96, + "end": 9946.53, + "probability": 0.9365 + }, + { + "start": 9946.74, + "end": 9948.68, + "probability": 0.9963 + }, + { + "start": 9948.9, + "end": 9951.24, + "probability": 0.7218 + }, + { + "start": 9951.4, + "end": 9952.08, + "probability": 0.2236 + }, + { + "start": 9952.94, + "end": 9954.5, + "probability": 0.251 + }, + { + "start": 9954.68, + "end": 9956.03, + "probability": 0.9922 + }, + { + "start": 9957.02, + "end": 9959.54, + "probability": 0.9756 + }, + { + "start": 9959.9, + "end": 9962.74, + "probability": 0.0482 + }, + { + "start": 9963.7, + "end": 9966.76, + "probability": 0.331 + }, + { + "start": 9967.32, + "end": 9967.98, + "probability": 0.1599 + }, + { + "start": 9969.18, + "end": 9970.14, + "probability": 0.015 + }, + { + "start": 9971.22, + "end": 9972.34, + "probability": 0.0789 + }, + { + "start": 9974.0, + "end": 9977.96, + "probability": 0.5369 + }, + { + "start": 9977.98, + "end": 9979.18, + "probability": 0.5834 + }, + { + "start": 9979.58, + "end": 9980.04, + "probability": 0.1915 + }, + { + "start": 9980.14, + "end": 9984.36, + "probability": 0.8804 + }, + { + "start": 9986.3, + "end": 9992.48, + "probability": 0.676 + }, + { + "start": 9992.62, + "end": 9994.52, + "probability": 0.7979 + }, + { + "start": 9994.98, + "end": 9996.84, + "probability": 0.0973 + }, + { + "start": 9996.96, + "end": 9998.38, + "probability": 0.918 + }, + { + "start": 9998.84, + "end": 9999.88, + "probability": 0.9003 + }, + { + "start": 10002.4, + "end": 10003.82, + "probability": 0.5844 + }, + { + "start": 10004.52, + "end": 10005.65, + "probability": 0.6746 + }, + { + "start": 10006.78, + "end": 10010.32, + "probability": 0.9968 + }, + { + "start": 10011.18, + "end": 10013.36, + "probability": 0.8425 + }, + { + "start": 10013.46, + "end": 10014.08, + "probability": 0.9422 + }, + { + "start": 10015.14, + "end": 10017.42, + "probability": 0.998 + }, + { + "start": 10017.8, + "end": 10021.12, + "probability": 0.9239 + }, + { + "start": 10021.8, + "end": 10025.36, + "probability": 0.37 + }, + { + "start": 10028.82, + "end": 10029.7, + "probability": 0.7643 + }, + { + "start": 10029.96, + "end": 10030.56, + "probability": 0.2226 + }, + { + "start": 10031.48, + "end": 10033.14, + "probability": 0.5317 + }, + { + "start": 10033.4, + "end": 10033.6, + "probability": 0.6136 + }, + { + "start": 10033.68, + "end": 10036.0, + "probability": 0.7852 + }, + { + "start": 10036.1, + "end": 10036.72, + "probability": 0.8201 + }, + { + "start": 10037.32, + "end": 10039.06, + "probability": 0.5739 + }, + { + "start": 10039.24, + "end": 10041.86, + "probability": 0.9619 + }, + { + "start": 10041.98, + "end": 10042.52, + "probability": 0.7279 + }, + { + "start": 10042.58, + "end": 10043.22, + "probability": 0.4662 + }, + { + "start": 10043.32, + "end": 10043.42, + "probability": 0.6814 + }, + { + "start": 10043.94, + "end": 10044.62, + "probability": 0.0196 + }, + { + "start": 10045.48, + "end": 10047.28, + "probability": 0.8796 + }, + { + "start": 10047.84, + "end": 10048.6, + "probability": 0.7339 + }, + { + "start": 10048.7, + "end": 10050.7, + "probability": 0.9293 + }, + { + "start": 10051.31, + "end": 10054.0, + "probability": 0.8551 + }, + { + "start": 10054.74, + "end": 10056.0, + "probability": 0.6872 + }, + { + "start": 10056.2, + "end": 10060.7, + "probability": 0.9876 + }, + { + "start": 10061.14, + "end": 10062.02, + "probability": 0.6102 + }, + { + "start": 10062.1, + "end": 10063.16, + "probability": 0.8726 + }, + { + "start": 10063.24, + "end": 10065.28, + "probability": 0.9479 + }, + { + "start": 10066.36, + "end": 10071.04, + "probability": 0.9972 + }, + { + "start": 10071.8, + "end": 10075.26, + "probability": 0.9468 + }, + { + "start": 10075.34, + "end": 10075.6, + "probability": 0.8101 + }, + { + "start": 10075.68, + "end": 10077.62, + "probability": 0.7958 + }, + { + "start": 10077.92, + "end": 10078.7, + "probability": 0.49 + }, + { + "start": 10079.7, + "end": 10083.0, + "probability": 0.784 + }, + { + "start": 10083.66, + "end": 10084.32, + "probability": 0.7993 + }, + { + "start": 10085.02, + "end": 10085.18, + "probability": 0.5928 + }, + { + "start": 10085.28, + "end": 10085.66, + "probability": 0.8511 + }, + { + "start": 10085.72, + "end": 10087.02, + "probability": 0.7843 + }, + { + "start": 10087.34, + "end": 10088.64, + "probability": 0.9709 + }, + { + "start": 10089.36, + "end": 10091.54, + "probability": 0.8237 + }, + { + "start": 10092.12, + "end": 10094.82, + "probability": 0.874 + }, + { + "start": 10095.76, + "end": 10096.78, + "probability": 0.9865 + }, + { + "start": 10097.24, + "end": 10099.56, + "probability": 0.9653 + }, + { + "start": 10099.6, + "end": 10104.02, + "probability": 0.9877 + }, + { + "start": 10104.76, + "end": 10106.2, + "probability": 0.9648 + }, + { + "start": 10107.24, + "end": 10111.2, + "probability": 0.9688 + }, + { + "start": 10112.08, + "end": 10113.84, + "probability": 0.976 + }, + { + "start": 10114.04, + "end": 10117.8, + "probability": 0.995 + }, + { + "start": 10118.66, + "end": 10119.76, + "probability": 0.9753 + }, + { + "start": 10120.84, + "end": 10121.84, + "probability": 0.863 + }, + { + "start": 10122.56, + "end": 10124.62, + "probability": 0.991 + }, + { + "start": 10125.68, + "end": 10125.68, + "probability": 0.1649 + }, + { + "start": 10125.68, + "end": 10130.74, + "probability": 0.9597 + }, + { + "start": 10130.84, + "end": 10131.9, + "probability": 0.9591 + }, + { + "start": 10132.58, + "end": 10133.7, + "probability": 0.6737 + }, + { + "start": 10133.78, + "end": 10134.42, + "probability": 0.8033 + }, + { + "start": 10134.86, + "end": 10136.6, + "probability": 0.9355 + }, + { + "start": 10137.5, + "end": 10139.0, + "probability": 0.8186 + }, + { + "start": 10139.66, + "end": 10140.7, + "probability": 0.3629 + }, + { + "start": 10141.3, + "end": 10144.2, + "probability": 0.7076 + }, + { + "start": 10144.72, + "end": 10148.24, + "probability": 0.8665 + }, + { + "start": 10148.36, + "end": 10148.92, + "probability": 0.897 + }, + { + "start": 10149.3, + "end": 10149.95, + "probability": 0.9056 + }, + { + "start": 10150.76, + "end": 10152.46, + "probability": 0.9048 + }, + { + "start": 10153.36, + "end": 10157.58, + "probability": 0.9937 + }, + { + "start": 10157.62, + "end": 10159.04, + "probability": 0.9261 + }, + { + "start": 10159.38, + "end": 10160.82, + "probability": 0.985 + }, + { + "start": 10161.06, + "end": 10162.64, + "probability": 0.9756 + }, + { + "start": 10162.66, + "end": 10164.36, + "probability": 0.9878 + }, + { + "start": 10165.1, + "end": 10167.46, + "probability": 0.9821 + }, + { + "start": 10167.58, + "end": 10168.16, + "probability": 0.509 + }, + { + "start": 10168.24, + "end": 10168.66, + "probability": 0.9354 + }, + { + "start": 10168.74, + "end": 10169.44, + "probability": 0.6417 + }, + { + "start": 10169.96, + "end": 10171.3, + "probability": 0.9326 + }, + { + "start": 10171.66, + "end": 10172.48, + "probability": 0.8774 + }, + { + "start": 10172.72, + "end": 10174.44, + "probability": 0.7418 + }, + { + "start": 10174.9, + "end": 10175.12, + "probability": 0.2177 + }, + { + "start": 10175.18, + "end": 10175.7, + "probability": 0.843 + }, + { + "start": 10176.4, + "end": 10179.06, + "probability": 0.934 + }, + { + "start": 10179.18, + "end": 10179.86, + "probability": 0.7696 + }, + { + "start": 10180.3, + "end": 10180.64, + "probability": 0.8227 + }, + { + "start": 10180.8, + "end": 10181.3, + "probability": 0.699 + }, + { + "start": 10181.48, + "end": 10182.49, + "probability": 0.9686 + }, + { + "start": 10183.16, + "end": 10184.64, + "probability": 0.6177 + }, + { + "start": 10185.42, + "end": 10189.14, + "probability": 0.8516 + }, + { + "start": 10189.92, + "end": 10194.8, + "probability": 0.9696 + }, + { + "start": 10195.08, + "end": 10195.88, + "probability": 0.5893 + }, + { + "start": 10197.76, + "end": 10198.7, + "probability": 0.7206 + }, + { + "start": 10199.48, + "end": 10203.36, + "probability": 0.9932 + }, + { + "start": 10203.82, + "end": 10204.82, + "probability": 0.9034 + }, + { + "start": 10205.98, + "end": 10207.02, + "probability": 0.7886 + }, + { + "start": 10207.66, + "end": 10209.7, + "probability": 0.801 + }, + { + "start": 10210.94, + "end": 10211.4, + "probability": 0.6492 + }, + { + "start": 10212.42, + "end": 10214.66, + "probability": 0.8652 + }, + { + "start": 10215.12, + "end": 10215.6, + "probability": 0.8402 + }, + { + "start": 10216.26, + "end": 10218.0, + "probability": 0.9373 + }, + { + "start": 10218.42, + "end": 10219.34, + "probability": 0.6882 + }, + { + "start": 10220.12, + "end": 10223.06, + "probability": 0.8437 + }, + { + "start": 10224.06, + "end": 10224.42, + "probability": 0.4274 + }, + { + "start": 10225.62, + "end": 10228.36, + "probability": 0.8055 + }, + { + "start": 10229.4, + "end": 10231.1, + "probability": 0.8295 + }, + { + "start": 10232.02, + "end": 10233.4, + "probability": 0.9949 + }, + { + "start": 10234.18, + "end": 10236.16, + "probability": 0.7129 + }, + { + "start": 10236.68, + "end": 10238.1, + "probability": 0.8382 + }, + { + "start": 10238.5, + "end": 10239.18, + "probability": 0.2745 + }, + { + "start": 10239.74, + "end": 10242.94, + "probability": 0.7426 + }, + { + "start": 10243.88, + "end": 10245.97, + "probability": 0.9514 + }, + { + "start": 10246.7, + "end": 10249.14, + "probability": 0.9849 + }, + { + "start": 10249.22, + "end": 10249.69, + "probability": 0.938 + }, + { + "start": 10250.02, + "end": 10251.0, + "probability": 0.7758 + }, + { + "start": 10251.12, + "end": 10252.44, + "probability": 0.9733 + }, + { + "start": 10252.9, + "end": 10253.62, + "probability": 0.8171 + }, + { + "start": 10254.54, + "end": 10255.18, + "probability": 0.8206 + }, + { + "start": 10256.1, + "end": 10256.62, + "probability": 0.6413 + }, + { + "start": 10259.3, + "end": 10260.78, + "probability": 0.9492 + }, + { + "start": 10261.14, + "end": 10262.22, + "probability": 0.9655 + }, + { + "start": 10263.5, + "end": 10264.16, + "probability": 0.7942 + }, + { + "start": 10264.16, + "end": 10267.53, + "probability": 0.8107 + }, + { + "start": 10268.44, + "end": 10269.72, + "probability": 0.7035 + }, + { + "start": 10270.88, + "end": 10271.94, + "probability": 0.7009 + }, + { + "start": 10272.74, + "end": 10275.04, + "probability": 0.9645 + }, + { + "start": 10275.72, + "end": 10276.7, + "probability": 0.6054 + }, + { + "start": 10277.5, + "end": 10278.34, + "probability": 0.8028 + }, + { + "start": 10278.4, + "end": 10279.9, + "probability": 0.8706 + }, + { + "start": 10280.0, + "end": 10281.02, + "probability": 0.6568 + }, + { + "start": 10281.96, + "end": 10287.84, + "probability": 0.9628 + }, + { + "start": 10287.94, + "end": 10290.24, + "probability": 0.8738 + }, + { + "start": 10291.08, + "end": 10292.04, + "probability": 0.6862 + }, + { + "start": 10292.41, + "end": 10292.54, + "probability": 0.0259 + }, + { + "start": 10292.58, + "end": 10293.82, + "probability": 0.9449 + }, + { + "start": 10295.12, + "end": 10295.76, + "probability": 0.8464 + }, + { + "start": 10296.28, + "end": 10298.86, + "probability": 0.5979 + }, + { + "start": 10299.56, + "end": 10300.18, + "probability": 0.741 + }, + { + "start": 10300.98, + "end": 10301.92, + "probability": 0.9507 + }, + { + "start": 10302.84, + "end": 10303.4, + "probability": 0.758 + }, + { + "start": 10304.2, + "end": 10306.56, + "probability": 0.935 + }, + { + "start": 10307.1, + "end": 10309.7, + "probability": 0.8655 + }, + { + "start": 10310.52, + "end": 10311.1, + "probability": 0.3936 + }, + { + "start": 10311.76, + "end": 10313.08, + "probability": 0.8148 + }, + { + "start": 10313.96, + "end": 10316.6, + "probability": 0.9524 + }, + { + "start": 10316.88, + "end": 10318.52, + "probability": 0.716 + }, + { + "start": 10319.42, + "end": 10320.94, + "probability": 0.5349 + }, + { + "start": 10321.48, + "end": 10322.72, + "probability": 0.7356 + }, + { + "start": 10323.1, + "end": 10324.22, + "probability": 0.8955 + }, + { + "start": 10324.54, + "end": 10325.56, + "probability": 0.9785 + }, + { + "start": 10326.74, + "end": 10327.28, + "probability": 0.6924 + }, + { + "start": 10327.36, + "end": 10327.6, + "probability": 0.43 + }, + { + "start": 10327.64, + "end": 10328.34, + "probability": 0.7963 + }, + { + "start": 10328.38, + "end": 10329.4, + "probability": 0.9808 + }, + { + "start": 10329.44, + "end": 10330.42, + "probability": 0.7889 + }, + { + "start": 10331.0, + "end": 10331.66, + "probability": 0.2679 + }, + { + "start": 10332.46, + "end": 10333.06, + "probability": 0.7765 + }, + { + "start": 10333.34, + "end": 10334.2, + "probability": 0.9742 + }, + { + "start": 10334.72, + "end": 10340.16, + "probability": 0.7504 + }, + { + "start": 10340.84, + "end": 10341.45, + "probability": 0.9742 + }, + { + "start": 10342.22, + "end": 10343.37, + "probability": 0.7642 + }, + { + "start": 10344.22, + "end": 10346.46, + "probability": 0.9927 + }, + { + "start": 10347.08, + "end": 10351.2, + "probability": 0.6318 + }, + { + "start": 10351.9, + "end": 10353.71, + "probability": 0.8523 + }, + { + "start": 10354.22, + "end": 10354.76, + "probability": 0.1005 + }, + { + "start": 10354.98, + "end": 10356.68, + "probability": 0.9335 + }, + { + "start": 10356.78, + "end": 10358.02, + "probability": 0.9661 + }, + { + "start": 10358.74, + "end": 10362.1, + "probability": 0.8764 + }, + { + "start": 10362.4, + "end": 10362.84, + "probability": 0.8755 + }, + { + "start": 10363.76, + "end": 10364.12, + "probability": 0.6122 + }, + { + "start": 10364.26, + "end": 10366.48, + "probability": 0.6871 + }, + { + "start": 10366.82, + "end": 10367.68, + "probability": 0.759 + }, + { + "start": 10367.9, + "end": 10368.5, + "probability": 0.0497 + }, + { + "start": 10369.84, + "end": 10371.44, + "probability": 0.5693 + }, + { + "start": 10372.32, + "end": 10373.4, + "probability": 0.937 + }, + { + "start": 10373.82, + "end": 10375.72, + "probability": 0.7752 + }, + { + "start": 10376.26, + "end": 10377.96, + "probability": 0.0694 + }, + { + "start": 10380.13, + "end": 10381.4, + "probability": 0.8267 + }, + { + "start": 10381.62, + "end": 10382.92, + "probability": 0.9217 + }, + { + "start": 10383.02, + "end": 10383.65, + "probability": 0.4458 + }, + { + "start": 10383.94, + "end": 10384.8, + "probability": 0.1769 + }, + { + "start": 10384.84, + "end": 10385.34, + "probability": 0.4349 + }, + { + "start": 10385.7, + "end": 10387.62, + "probability": 0.8451 + }, + { + "start": 10388.18, + "end": 10389.76, + "probability": 0.5142 + }, + { + "start": 10390.24, + "end": 10391.38, + "probability": 0.3294 + }, + { + "start": 10391.48, + "end": 10393.78, + "probability": 0.6701 + }, + { + "start": 10395.08, + "end": 10395.46, + "probability": 0.2805 + }, + { + "start": 10396.3, + "end": 10397.34, + "probability": 0.0644 + }, + { + "start": 10397.92, + "end": 10399.12, + "probability": 0.0965 + }, + { + "start": 10399.46, + "end": 10401.68, + "probability": 0.978 + }, + { + "start": 10402.1, + "end": 10402.98, + "probability": 0.8723 + }, + { + "start": 10403.22, + "end": 10404.5, + "probability": 0.9059 + }, + { + "start": 10404.9, + "end": 10406.02, + "probability": 0.9598 + }, + { + "start": 10406.18, + "end": 10406.74, + "probability": 0.9253 + }, + { + "start": 10406.96, + "end": 10408.98, + "probability": 0.8813 + }, + { + "start": 10410.78, + "end": 10413.88, + "probability": 0.5981 + }, + { + "start": 10414.16, + "end": 10416.04, + "probability": 0.9388 + }, + { + "start": 10416.12, + "end": 10417.54, + "probability": 0.88 + }, + { + "start": 10417.68, + "end": 10419.24, + "probability": 0.7393 + }, + { + "start": 10419.38, + "end": 10419.77, + "probability": 0.096 + }, + { + "start": 10421.88, + "end": 10422.6, + "probability": 0.7989 + }, + { + "start": 10422.72, + "end": 10425.78, + "probability": 0.1082 + }, + { + "start": 10426.06, + "end": 10427.18, + "probability": 0.389 + }, + { + "start": 10427.5, + "end": 10428.32, + "probability": 0.6837 + }, + { + "start": 10428.36, + "end": 10431.3, + "probability": 0.6054 + }, + { + "start": 10431.42, + "end": 10432.64, + "probability": 0.9777 + }, + { + "start": 10433.36, + "end": 10435.52, + "probability": 0.9593 + }, + { + "start": 10435.64, + "end": 10435.9, + "probability": 0.2496 + }, + { + "start": 10435.98, + "end": 10436.51, + "probability": 0.79 + }, + { + "start": 10437.06, + "end": 10439.46, + "probability": 0.9564 + }, + { + "start": 10439.92, + "end": 10442.36, + "probability": 0.894 + }, + { + "start": 10443.24, + "end": 10448.92, + "probability": 0.9508 + }, + { + "start": 10448.92, + "end": 10452.58, + "probability": 0.9395 + }, + { + "start": 10452.6, + "end": 10453.4, + "probability": 0.7683 + }, + { + "start": 10453.82, + "end": 10455.34, + "probability": 0.9635 + }, + { + "start": 10455.4, + "end": 10455.82, + "probability": 0.5122 + }, + { + "start": 10456.54, + "end": 10458.0, + "probability": 0.9385 + }, + { + "start": 10458.38, + "end": 10459.74, + "probability": 0.9248 + }, + { + "start": 10459.8, + "end": 10460.32, + "probability": 0.9443 + }, + { + "start": 10461.06, + "end": 10463.22, + "probability": 0.9233 + }, + { + "start": 10463.88, + "end": 10465.64, + "probability": 0.9277 + }, + { + "start": 10466.06, + "end": 10469.82, + "probability": 0.8367 + }, + { + "start": 10471.2, + "end": 10472.64, + "probability": 0.8862 + }, + { + "start": 10472.86, + "end": 10474.18, + "probability": 0.4244 + }, + { + "start": 10474.68, + "end": 10476.58, + "probability": 0.8475 + }, + { + "start": 10477.54, + "end": 10481.34, + "probability": 0.9801 + }, + { + "start": 10481.64, + "end": 10482.36, + "probability": 0.8754 + }, + { + "start": 10482.8, + "end": 10484.02, + "probability": 0.7996 + }, + { + "start": 10484.1, + "end": 10484.92, + "probability": 0.4938 + }, + { + "start": 10484.96, + "end": 10487.56, + "probability": 0.9215 + }, + { + "start": 10488.16, + "end": 10490.26, + "probability": 0.674 + }, + { + "start": 10490.8, + "end": 10494.68, + "probability": 0.8561 + }, + { + "start": 10495.12, + "end": 10497.3, + "probability": 0.2768 + }, + { + "start": 10497.74, + "end": 10498.58, + "probability": 0.6936 + }, + { + "start": 10498.62, + "end": 10500.88, + "probability": 0.9933 + }, + { + "start": 10501.48, + "end": 10503.22, + "probability": 0.7925 + }, + { + "start": 10503.34, + "end": 10505.39, + "probability": 0.958 + }, + { + "start": 10506.34, + "end": 10509.08, + "probability": 0.9376 + }, + { + "start": 10509.48, + "end": 10509.98, + "probability": 0.8689 + }, + { + "start": 10510.48, + "end": 10511.16, + "probability": 0.2481 + }, + { + "start": 10511.28, + "end": 10512.04, + "probability": 0.8302 + }, + { + "start": 10512.2, + "end": 10514.38, + "probability": 0.9927 + }, + { + "start": 10514.76, + "end": 10518.38, + "probability": 0.9903 + }, + { + "start": 10519.5, + "end": 10519.92, + "probability": 0.7752 + }, + { + "start": 10520.1, + "end": 10523.4, + "probability": 0.9188 + }, + { + "start": 10524.28, + "end": 10528.92, + "probability": 0.8502 + }, + { + "start": 10529.98, + "end": 10531.01, + "probability": 0.9229 + }, + { + "start": 10531.88, + "end": 10533.08, + "probability": 0.9827 + }, + { + "start": 10533.22, + "end": 10534.84, + "probability": 0.9961 + }, + { + "start": 10535.42, + "end": 10536.23, + "probability": 0.9875 + }, + { + "start": 10536.92, + "end": 10537.62, + "probability": 0.8259 + }, + { + "start": 10537.78, + "end": 10538.64, + "probability": 0.9583 + }, + { + "start": 10538.74, + "end": 10539.56, + "probability": 0.833 + }, + { + "start": 10540.68, + "end": 10541.72, + "probability": 0.9955 + }, + { + "start": 10542.72, + "end": 10545.82, + "probability": 0.817 + }, + { + "start": 10546.84, + "end": 10548.22, + "probability": 0.9722 + }, + { + "start": 10548.7, + "end": 10549.77, + "probability": 0.9712 + }, + { + "start": 10550.64, + "end": 10550.94, + "probability": 0.4993 + }, + { + "start": 10552.26, + "end": 10553.08, + "probability": 0.8169 + }, + { + "start": 10553.58, + "end": 10554.66, + "probability": 0.9432 + }, + { + "start": 10554.74, + "end": 10555.84, + "probability": 0.9305 + }, + { + "start": 10555.88, + "end": 10556.24, + "probability": 0.2775 + }, + { + "start": 10557.2, + "end": 10560.06, + "probability": 0.9972 + }, + { + "start": 10560.3, + "end": 10561.92, + "probability": 0.8167 + }, + { + "start": 10562.48, + "end": 10563.57, + "probability": 0.9432 + }, + { + "start": 10564.48, + "end": 10565.38, + "probability": 0.6236 + }, + { + "start": 10565.66, + "end": 10565.94, + "probability": 0.9629 + }, + { + "start": 10566.08, + "end": 10566.38, + "probability": 0.962 + }, + { + "start": 10566.58, + "end": 10567.0, + "probability": 0.7704 + }, + { + "start": 10567.06, + "end": 10567.54, + "probability": 0.848 + }, + { + "start": 10567.96, + "end": 10570.68, + "probability": 0.3561 + }, + { + "start": 10571.82, + "end": 10572.5, + "probability": 0.6949 + }, + { + "start": 10573.06, + "end": 10575.76, + "probability": 0.9883 + }, + { + "start": 10575.76, + "end": 10581.34, + "probability": 0.5714 + }, + { + "start": 10581.44, + "end": 10588.16, + "probability": 0.9778 + }, + { + "start": 10588.38, + "end": 10588.72, + "probability": 0.538 + }, + { + "start": 10589.28, + "end": 10591.52, + "probability": 0.845 + }, + { + "start": 10592.24, + "end": 10598.92, + "probability": 0.9965 + }, + { + "start": 10599.02, + "end": 10599.4, + "probability": 0.8493 + }, + { + "start": 10599.88, + "end": 10600.92, + "probability": 0.974 + }, + { + "start": 10602.2, + "end": 10606.42, + "probability": 0.9951 + }, + { + "start": 10606.42, + "end": 10610.84, + "probability": 0.998 + }, + { + "start": 10611.38, + "end": 10612.66, + "probability": 0.8664 + }, + { + "start": 10612.8, + "end": 10614.52, + "probability": 0.979 + }, + { + "start": 10615.88, + "end": 10617.14, + "probability": 0.9413 + }, + { + "start": 10618.08, + "end": 10622.82, + "probability": 0.9659 + }, + { + "start": 10623.0, + "end": 10625.42, + "probability": 0.9909 + }, + { + "start": 10626.24, + "end": 10627.6, + "probability": 0.9395 + }, + { + "start": 10627.84, + "end": 10629.21, + "probability": 0.9199 + }, + { + "start": 10629.38, + "end": 10629.68, + "probability": 0.7947 + }, + { + "start": 10630.02, + "end": 10632.42, + "probability": 0.9034 + }, + { + "start": 10633.24, + "end": 10634.28, + "probability": 0.7788 + }, + { + "start": 10635.24, + "end": 10638.5, + "probability": 0.8634 + }, + { + "start": 10638.8, + "end": 10639.26, + "probability": 0.5116 + }, + { + "start": 10639.48, + "end": 10640.16, + "probability": 0.7109 + }, + { + "start": 10641.02, + "end": 10642.62, + "probability": 0.9711 + }, + { + "start": 10642.84, + "end": 10644.28, + "probability": 0.9883 + }, + { + "start": 10645.12, + "end": 10646.32, + "probability": 0.7479 + }, + { + "start": 10646.76, + "end": 10647.76, + "probability": 0.9866 + }, + { + "start": 10648.42, + "end": 10648.96, + "probability": 0.8778 + }, + { + "start": 10649.24, + "end": 10650.24, + "probability": 0.853 + }, + { + "start": 10650.32, + "end": 10650.94, + "probability": 0.8218 + }, + { + "start": 10651.02, + "end": 10651.72, + "probability": 0.5966 + }, + { + "start": 10652.72, + "end": 10654.94, + "probability": 0.721 + }, + { + "start": 10656.1, + "end": 10657.48, + "probability": 0.299 + }, + { + "start": 10657.48, + "end": 10658.74, + "probability": 0.7707 + }, + { + "start": 10659.04, + "end": 10659.72, + "probability": 0.9054 + }, + { + "start": 10660.54, + "end": 10662.4, + "probability": 0.9804 + }, + { + "start": 10663.02, + "end": 10666.64, + "probability": 0.8706 + }, + { + "start": 10667.16, + "end": 10669.12, + "probability": 0.9603 + }, + { + "start": 10669.42, + "end": 10670.28, + "probability": 0.8087 + }, + { + "start": 10671.02, + "end": 10675.94, + "probability": 0.9927 + }, + { + "start": 10677.16, + "end": 10679.06, + "probability": 0.9805 + }, + { + "start": 10679.2, + "end": 10682.24, + "probability": 0.9556 + }, + { + "start": 10682.92, + "end": 10684.14, + "probability": 0.9558 + }, + { + "start": 10684.34, + "end": 10688.3, + "probability": 0.9249 + }, + { + "start": 10689.9, + "end": 10691.34, + "probability": 0.4254 + }, + { + "start": 10691.34, + "end": 10694.1, + "probability": 0.8086 + }, + { + "start": 10695.69, + "end": 10698.28, + "probability": 0.8494 + }, + { + "start": 10701.12, + "end": 10705.82, + "probability": 0.4175 + }, + { + "start": 10706.82, + "end": 10707.34, + "probability": 0.6296 + }, + { + "start": 10707.78, + "end": 10709.66, + "probability": 0.9073 + }, + { + "start": 10709.94, + "end": 10710.7, + "probability": 0.8846 + }, + { + "start": 10711.32, + "end": 10713.28, + "probability": 0.6389 + }, + { + "start": 10714.05, + "end": 10715.62, + "probability": 0.9591 + }, + { + "start": 10716.02, + "end": 10716.98, + "probability": 0.9841 + }, + { + "start": 10718.08, + "end": 10721.88, + "probability": 0.8772 + }, + { + "start": 10723.06, + "end": 10724.6, + "probability": 0.7093 + }, + { + "start": 10724.64, + "end": 10729.0, + "probability": 0.9601 + }, + { + "start": 10730.1, + "end": 10732.24, + "probability": 0.9355 + }, + { + "start": 10732.82, + "end": 10734.06, + "probability": 0.9883 + }, + { + "start": 10735.02, + "end": 10735.16, + "probability": 0.9126 + }, + { + "start": 10735.68, + "end": 10739.26, + "probability": 0.9951 + }, + { + "start": 10739.26, + "end": 10742.7, + "probability": 0.9915 + }, + { + "start": 10742.88, + "end": 10743.5, + "probability": 0.9802 + }, + { + "start": 10743.66, + "end": 10744.23, + "probability": 0.674 + }, + { + "start": 10745.0, + "end": 10745.42, + "probability": 0.5662 + }, + { + "start": 10745.94, + "end": 10746.76, + "probability": 0.866 + }, + { + "start": 10747.56, + "end": 10749.64, + "probability": 0.9854 + }, + { + "start": 10749.86, + "end": 10753.36, + "probability": 0.9918 + }, + { + "start": 10753.5, + "end": 10756.6, + "probability": 0.9954 + }, + { + "start": 10757.4, + "end": 10758.7, + "probability": 0.7238 + }, + { + "start": 10759.38, + "end": 10763.8, + "probability": 0.7813 + }, + { + "start": 10763.88, + "end": 10765.2, + "probability": 0.2228 + }, + { + "start": 10765.62, + "end": 10766.94, + "probability": 0.9169 + }, + { + "start": 10767.04, + "end": 10767.6, + "probability": 0.4678 + }, + { + "start": 10767.7, + "end": 10768.6, + "probability": 0.5043 + }, + { + "start": 10769.04, + "end": 10770.98, + "probability": 0.8918 + }, + { + "start": 10771.56, + "end": 10773.06, + "probability": 0.9784 + }, + { + "start": 10773.5, + "end": 10775.2, + "probability": 0.7003 + }, + { + "start": 10780.87, + "end": 10783.99, + "probability": 0.6499 + }, + { + "start": 10784.72, + "end": 10789.46, + "probability": 0.9318 + }, + { + "start": 10792.7, + "end": 10793.88, + "probability": 0.6399 + }, + { + "start": 10794.04, + "end": 10797.42, + "probability": 0.917 + }, + { + "start": 10797.66, + "end": 10802.06, + "probability": 0.9849 + }, + { + "start": 10802.42, + "end": 10803.56, + "probability": 0.9945 + }, + { + "start": 10804.68, + "end": 10806.5, + "probability": 0.9878 + }, + { + "start": 10806.6, + "end": 10808.66, + "probability": 0.7205 + }, + { + "start": 10809.2, + "end": 10811.58, + "probability": 0.8296 + }, + { + "start": 10812.42, + "end": 10813.0, + "probability": 0.9146 + }, + { + "start": 10813.6, + "end": 10814.16, + "probability": 0.9081 + }, + { + "start": 10814.4, + "end": 10816.02, + "probability": 0.703 + }, + { + "start": 10816.12, + "end": 10816.55, + "probability": 0.9158 + }, + { + "start": 10817.96, + "end": 10819.62, + "probability": 0.3483 + }, + { + "start": 10821.72, + "end": 10822.16, + "probability": 0.0886 + }, + { + "start": 10822.16, + "end": 10822.16, + "probability": 0.0784 + }, + { + "start": 10822.16, + "end": 10822.38, + "probability": 0.4842 + }, + { + "start": 10822.54, + "end": 10822.92, + "probability": 0.4364 + }, + { + "start": 10822.94, + "end": 10823.48, + "probability": 0.6583 + }, + { + "start": 10823.48, + "end": 10824.24, + "probability": 0.6615 + }, + { + "start": 10824.82, + "end": 10827.78, + "probability": 0.4906 + }, + { + "start": 10827.78, + "end": 10828.44, + "probability": 0.5501 + }, + { + "start": 10828.92, + "end": 10830.66, + "probability": 0.1292 + }, + { + "start": 10830.66, + "end": 10830.66, + "probability": 0.1923 + }, + { + "start": 10830.66, + "end": 10831.44, + "probability": 0.4565 + }, + { + "start": 10831.6, + "end": 10831.96, + "probability": 0.7314 + }, + { + "start": 10832.36, + "end": 10833.06, + "probability": 0.7831 + }, + { + "start": 10833.12, + "end": 10833.66, + "probability": 0.0517 + }, + { + "start": 10833.9, + "end": 10835.42, + "probability": 0.3404 + }, + { + "start": 10835.96, + "end": 10838.12, + "probability": 0.344 + }, + { + "start": 10839.14, + "end": 10840.38, + "probability": 0.1927 + }, + { + "start": 10840.38, + "end": 10841.06, + "probability": 0.042 + }, + { + "start": 10841.29, + "end": 10841.85, + "probability": 0.0453 + }, + { + "start": 10842.6, + "end": 10842.66, + "probability": 0.0302 + }, + { + "start": 10843.34, + "end": 10843.41, + "probability": 0.182 + }, + { + "start": 10844.86, + "end": 10847.18, + "probability": 0.0284 + }, + { + "start": 10847.8, + "end": 10849.9, + "probability": 0.658 + }, + { + "start": 10850.78, + "end": 10852.08, + "probability": 0.9604 + }, + { + "start": 10853.36, + "end": 10855.78, + "probability": 0.9855 + }, + { + "start": 10855.98, + "end": 10859.08, + "probability": 0.8646 + }, + { + "start": 10859.08, + "end": 10861.64, + "probability": 0.985 + }, + { + "start": 10862.68, + "end": 10865.16, + "probability": 0.9663 + }, + { + "start": 10865.16, + "end": 10868.02, + "probability": 0.9553 + }, + { + "start": 10868.76, + "end": 10870.44, + "probability": 0.9868 + }, + { + "start": 10871.24, + "end": 10873.86, + "probability": 0.7279 + }, + { + "start": 10875.2, + "end": 10879.28, + "probability": 0.9886 + }, + { + "start": 10879.28, + "end": 10883.94, + "probability": 0.9794 + }, + { + "start": 10884.46, + "end": 10889.08, + "probability": 0.7845 + }, + { + "start": 10889.32, + "end": 10894.5, + "probability": 0.7963 + }, + { + "start": 10895.18, + "end": 10895.32, + "probability": 0.3904 + }, + { + "start": 10895.46, + "end": 10899.22, + "probability": 0.7516 + }, + { + "start": 10900.24, + "end": 10901.94, + "probability": 0.9274 + }, + { + "start": 10902.86, + "end": 10906.04, + "probability": 0.8976 + }, + { + "start": 10906.08, + "end": 10910.16, + "probability": 0.6513 + }, + { + "start": 10910.92, + "end": 10912.78, + "probability": 0.9785 + }, + { + "start": 10914.1, + "end": 10914.44, + "probability": 0.7534 + }, + { + "start": 10914.56, + "end": 10917.26, + "probability": 0.9138 + }, + { + "start": 10917.32, + "end": 10918.18, + "probability": 0.7793 + }, + { + "start": 10918.44, + "end": 10919.32, + "probability": 0.9484 + }, + { + "start": 10919.36, + "end": 10920.14, + "probability": 0.7502 + }, + { + "start": 10920.3, + "end": 10920.42, + "probability": 0.5675 + }, + { + "start": 10921.99, + "end": 10924.18, + "probability": 0.8887 + }, + { + "start": 10926.28, + "end": 10928.12, + "probability": 0.722 + }, + { + "start": 10928.32, + "end": 10929.2, + "probability": 0.823 + }, + { + "start": 10929.3, + "end": 10932.16, + "probability": 0.9614 + }, + { + "start": 10932.96, + "end": 10936.5, + "probability": 0.9982 + }, + { + "start": 10937.16, + "end": 10939.16, + "probability": 0.896 + }, + { + "start": 10939.56, + "end": 10941.4, + "probability": 0.0654 + }, + { + "start": 10941.6, + "end": 10945.7, + "probability": 0.5113 + }, + { + "start": 10945.7, + "end": 10948.54, + "probability": 0.8431 + }, + { + "start": 10949.28, + "end": 10950.32, + "probability": 0.6734 + }, + { + "start": 10951.38, + "end": 10952.64, + "probability": 0.069 + }, + { + "start": 10952.98, + "end": 10955.62, + "probability": 0.2027 + }, + { + "start": 10956.66, + "end": 10957.48, + "probability": 0.0006 + }, + { + "start": 10958.26, + "end": 10958.94, + "probability": 0.0381 + }, + { + "start": 10959.16, + "end": 10959.16, + "probability": 0.0147 + }, + { + "start": 10959.36, + "end": 10960.4, + "probability": 0.3739 + }, + { + "start": 10960.5, + "end": 10960.5, + "probability": 0.1877 + }, + { + "start": 10960.5, + "end": 10961.82, + "probability": 0.1781 + }, + { + "start": 10974.82, + "end": 10976.65, + "probability": 0.0669 + }, + { + "start": 10978.46, + "end": 10978.9, + "probability": 0.1557 + }, + { + "start": 10979.66, + "end": 10980.08, + "probability": 0.0241 + }, + { + "start": 10980.44, + "end": 10980.44, + "probability": 0.0334 + }, + { + "start": 10980.44, + "end": 10981.68, + "probability": 0.1099 + }, + { + "start": 10982.5, + "end": 10983.16, + "probability": 0.0269 + }, + { + "start": 10983.32, + "end": 10983.8, + "probability": 0.0086 + }, + { + "start": 10983.8, + "end": 10983.84, + "probability": 0.0121 + }, + { + "start": 10983.84, + "end": 10984.04, + "probability": 0.1806 + }, + { + "start": 10984.38, + "end": 10986.06, + "probability": 0.0127 + }, + { + "start": 10986.56, + "end": 10987.15, + "probability": 0.0217 + }, + { + "start": 10991.3, + "end": 10991.9, + "probability": 0.3212 + }, + { + "start": 10993.99, + "end": 10994.76, + "probability": 0.0492 + }, + { + "start": 10994.76, + "end": 10997.68, + "probability": 0.107 + }, + { + "start": 10998.12, + "end": 11000.74, + "probability": 0.1126 + }, + { + "start": 11001.0, + "end": 11002.84, + "probability": 0.0773 + }, + { + "start": 11002.84, + "end": 11002.88, + "probability": 0.2525 + }, + { + "start": 11003.58, + "end": 11005.76, + "probability": 0.0368 + }, + { + "start": 11005.76, + "end": 11010.4, + "probability": 0.0868 + }, + { + "start": 11010.72, + "end": 11012.72, + "probability": 0.1334 + }, + { + "start": 11012.96, + "end": 11013.18, + "probability": 0.0611 + }, + { + "start": 11013.22, + "end": 11013.78, + "probability": 0.0458 + }, + { + "start": 11013.78, + "end": 11013.78, + "probability": 0.0051 + }, + { + "start": 11014.04, + "end": 11014.04, + "probability": 0.2174 + }, + { + "start": 11014.04, + "end": 11014.38, + "probability": 0.0094 + }, + { + "start": 11014.38, + "end": 11015.5, + "probability": 0.2187 + }, + { + "start": 11015.5, + "end": 11015.5, + "probability": 0.1588 + }, + { + "start": 11015.88, + "end": 11016.88, + "probability": 0.1522 + }, + { + "start": 11017.0, + "end": 11017.0, + "probability": 0.0 + }, + { + "start": 11017.0, + "end": 11017.0, + "probability": 0.0 + }, + { + "start": 11017.0, + "end": 11017.0, + "probability": 0.0 + }, + { + "start": 11017.0, + "end": 11017.0, + "probability": 0.0 + }, + { + "start": 11017.0, + "end": 11017.0, + "probability": 0.0 + }, + { + "start": 11017.0, + "end": 11017.0, + "probability": 0.0 + }, + { + "start": 11017.0, + "end": 11017.0, + "probability": 0.0 + }, + { + "start": 11017.0, + "end": 11017.0, + "probability": 0.0 + }, + { + "start": 11017.0, + "end": 11017.0, + "probability": 0.0 + }, + { + "start": 11017.0, + "end": 11017.0, + "probability": 0.0 + }, + { + "start": 11017.0, + "end": 11017.0, + "probability": 0.0 + }, + { + "start": 11017.0, + "end": 11017.0, + "probability": 0.0 + }, + { + "start": 11017.26, + "end": 11017.26, + "probability": 0.1348 + }, + { + "start": 11017.26, + "end": 11017.82, + "probability": 0.0329 + }, + { + "start": 11017.88, + "end": 11018.68, + "probability": 0.2279 + }, + { + "start": 11018.82, + "end": 11021.24, + "probability": 0.6785 + }, + { + "start": 11021.76, + "end": 11022.68, + "probability": 0.3525 + }, + { + "start": 11022.76, + "end": 11023.84, + "probability": 0.4229 + }, + { + "start": 11023.92, + "end": 11024.56, + "probability": 0.4014 + }, + { + "start": 11024.62, + "end": 11025.21, + "probability": 0.4189 + }, + { + "start": 11027.57, + "end": 11028.4, + "probability": 0.2642 + }, + { + "start": 11028.4, + "end": 11033.14, + "probability": 0.9361 + }, + { + "start": 11033.28, + "end": 11035.66, + "probability": 0.5142 + }, + { + "start": 11036.24, + "end": 11037.68, + "probability": 0.829 + }, + { + "start": 11037.68, + "end": 11038.78, + "probability": 0.7058 + }, + { + "start": 11039.32, + "end": 11043.08, + "probability": 0.6588 + }, + { + "start": 11043.66, + "end": 11045.5, + "probability": 0.6706 + }, + { + "start": 11046.04, + "end": 11047.82, + "probability": 0.9707 + }, + { + "start": 11049.48, + "end": 11049.92, + "probability": 0.6452 + }, + { + "start": 11050.2, + "end": 11052.78, + "probability": 0.8704 + }, + { + "start": 11052.88, + "end": 11055.14, + "probability": 0.9796 + }, + { + "start": 11055.26, + "end": 11055.68, + "probability": 0.825 + }, + { + "start": 11055.78, + "end": 11058.1, + "probability": 0.7768 + }, + { + "start": 11058.86, + "end": 11060.0, + "probability": 0.9153 + }, + { + "start": 11060.06, + "end": 11061.06, + "probability": 0.9146 + }, + { + "start": 11063.1, + "end": 11066.18, + "probability": 0.6794 + }, + { + "start": 11067.74, + "end": 11068.3, + "probability": 0.8702 + }, + { + "start": 11068.48, + "end": 11069.18, + "probability": 0.9593 + }, + { + "start": 11069.62, + "end": 11072.02, + "probability": 0.9323 + }, + { + "start": 11073.24, + "end": 11076.54, + "probability": 0.9383 + }, + { + "start": 11076.8, + "end": 11077.14, + "probability": 0.9648 + }, + { + "start": 11077.64, + "end": 11078.25, + "probability": 0.9611 + }, + { + "start": 11078.56, + "end": 11081.88, + "probability": 0.7563 + }, + { + "start": 11082.06, + "end": 11084.92, + "probability": 0.9687 + }, + { + "start": 11085.0, + "end": 11086.16, + "probability": 0.8193 + }, + { + "start": 11086.7, + "end": 11087.62, + "probability": 0.9386 + }, + { + "start": 11088.02, + "end": 11092.14, + "probability": 0.9774 + }, + { + "start": 11092.68, + "end": 11093.5, + "probability": 0.7044 + }, + { + "start": 11093.9, + "end": 11095.28, + "probability": 0.8257 + }, + { + "start": 11095.4, + "end": 11095.94, + "probability": 0.9353 + }, + { + "start": 11097.3, + "end": 11098.2, + "probability": 0.236 + }, + { + "start": 11098.4, + "end": 11099.26, + "probability": 0.9364 + }, + { + "start": 11100.48, + "end": 11101.3, + "probability": 0.9793 + }, + { + "start": 11101.36, + "end": 11102.18, + "probability": 0.5652 + }, + { + "start": 11102.26, + "end": 11103.56, + "probability": 0.6696 + }, + { + "start": 11103.78, + "end": 11105.02, + "probability": 0.9325 + }, + { + "start": 11105.8, + "end": 11107.28, + "probability": 0.9614 + }, + { + "start": 11107.44, + "end": 11110.04, + "probability": 0.9839 + }, + { + "start": 11110.18, + "end": 11110.84, + "probability": 0.6007 + }, + { + "start": 11111.9, + "end": 11113.67, + "probability": 0.9924 + }, + { + "start": 11113.96, + "end": 11115.31, + "probability": 0.9854 + }, + { + "start": 11116.72, + "end": 11118.52, + "probability": 0.8343 + }, + { + "start": 11118.6, + "end": 11119.54, + "probability": 0.5911 + }, + { + "start": 11119.68, + "end": 11121.14, + "probability": 0.9004 + }, + { + "start": 11122.18, + "end": 11124.82, + "probability": 0.825 + }, + { + "start": 11126.04, + "end": 11127.3, + "probability": 0.9195 + }, + { + "start": 11128.2, + "end": 11128.86, + "probability": 0.4534 + }, + { + "start": 11129.74, + "end": 11131.74, + "probability": 0.8939 + }, + { + "start": 11132.6, + "end": 11134.55, + "probability": 0.8959 + }, + { + "start": 11135.6, + "end": 11138.17, + "probability": 0.8735 + }, + { + "start": 11139.36, + "end": 11145.38, + "probability": 0.961 + }, + { + "start": 11145.52, + "end": 11146.36, + "probability": 0.8362 + }, + { + "start": 11146.46, + "end": 11148.42, + "probability": 0.8216 + }, + { + "start": 11149.34, + "end": 11150.3, + "probability": 0.8197 + }, + { + "start": 11151.08, + "end": 11154.68, + "probability": 0.9136 + }, + { + "start": 11154.68, + "end": 11155.92, + "probability": 0.9072 + }, + { + "start": 11156.62, + "end": 11157.88, + "probability": 0.9929 + }, + { + "start": 11158.32, + "end": 11159.52, + "probability": 0.7348 + }, + { + "start": 11159.56, + "end": 11160.54, + "probability": 0.8309 + }, + { + "start": 11161.12, + "end": 11161.14, + "probability": 0.0253 + }, + { + "start": 11161.14, + "end": 11162.71, + "probability": 0.6195 + }, + { + "start": 11163.4, + "end": 11164.94, + "probability": 0.7049 + }, + { + "start": 11165.22, + "end": 11166.64, + "probability": 0.1764 + }, + { + "start": 11167.28, + "end": 11168.58, + "probability": 0.8913 + }, + { + "start": 11169.92, + "end": 11173.44, + "probability": 0.7216 + }, + { + "start": 11174.32, + "end": 11177.08, + "probability": 0.943 + }, + { + "start": 11177.7, + "end": 11180.12, + "probability": 0.7146 + }, + { + "start": 11180.38, + "end": 11181.48, + "probability": 0.8933 + }, + { + "start": 11182.04, + "end": 11184.16, + "probability": 0.8608 + }, + { + "start": 11184.58, + "end": 11185.18, + "probability": 0.5952 + }, + { + "start": 11185.9, + "end": 11191.34, + "probability": 0.8832 + }, + { + "start": 11191.42, + "end": 11193.14, + "probability": 0.8566 + }, + { + "start": 11193.66, + "end": 11195.14, + "probability": 0.978 + }, + { + "start": 11195.72, + "end": 11196.22, + "probability": 0.794 + }, + { + "start": 11196.98, + "end": 11198.98, + "probability": 0.9956 + }, + { + "start": 11199.72, + "end": 11200.68, + "probability": 0.7632 + }, + { + "start": 11201.32, + "end": 11202.86, + "probability": 0.7051 + }, + { + "start": 11203.56, + "end": 11208.06, + "probability": 0.9341 + }, + { + "start": 11208.28, + "end": 11209.12, + "probability": 0.3002 + }, + { + "start": 11209.2, + "end": 11210.0, + "probability": 0.8083 + }, + { + "start": 11210.7, + "end": 11212.72, + "probability": 0.8215 + }, + { + "start": 11213.28, + "end": 11215.2, + "probability": 0.9277 + }, + { + "start": 11215.32, + "end": 11215.74, + "probability": 0.8477 + }, + { + "start": 11216.16, + "end": 11217.82, + "probability": 0.9937 + }, + { + "start": 11218.04, + "end": 11219.22, + "probability": 0.959 + }, + { + "start": 11219.3, + "end": 11220.56, + "probability": 0.8103 + }, + { + "start": 11221.24, + "end": 11222.14, + "probability": 0.7199 + }, + { + "start": 11222.32, + "end": 11224.12, + "probability": 0.5055 + }, + { + "start": 11224.7, + "end": 11225.6, + "probability": 0.7149 + }, + { + "start": 11226.1, + "end": 11226.26, + "probability": 0.6251 + }, + { + "start": 11226.34, + "end": 11226.76, + "probability": 0.7366 + }, + { + "start": 11226.92, + "end": 11228.16, + "probability": 0.9722 + }, + { + "start": 11228.32, + "end": 11229.67, + "probability": 0.3905 + }, + { + "start": 11230.36, + "end": 11232.5, + "probability": 0.9058 + }, + { + "start": 11232.9, + "end": 11237.72, + "probability": 0.9819 + }, + { + "start": 11238.04, + "end": 11241.4, + "probability": 0.9915 + }, + { + "start": 11241.46, + "end": 11244.56, + "probability": 0.9651 + }, + { + "start": 11244.86, + "end": 11247.04, + "probability": 0.7255 + }, + { + "start": 11247.7, + "end": 11255.26, + "probability": 0.8979 + }, + { + "start": 11255.38, + "end": 11257.42, + "probability": 0.8837 + }, + { + "start": 11257.54, + "end": 11260.38, + "probability": 0.2551 + }, + { + "start": 11260.76, + "end": 11262.95, + "probability": 0.2655 + }, + { + "start": 11264.26, + "end": 11264.56, + "probability": 0.5068 + }, + { + "start": 11265.48, + "end": 11266.4, + "probability": 0.3722 + }, + { + "start": 11267.24, + "end": 11267.7, + "probability": 0.7886 + }, + { + "start": 11268.46, + "end": 11269.78, + "probability": 0.8734 + }, + { + "start": 11270.42, + "end": 11272.22, + "probability": 0.8024 + }, + { + "start": 11273.26, + "end": 11275.78, + "probability": 0.746 + }, + { + "start": 11276.64, + "end": 11279.12, + "probability": 0.9147 + }, + { + "start": 11279.9, + "end": 11280.32, + "probability": 0.9342 + }, + { + "start": 11281.38, + "end": 11282.38, + "probability": 0.9538 + }, + { + "start": 11283.48, + "end": 11285.08, + "probability": 0.758 + }, + { + "start": 11286.58, + "end": 11286.88, + "probability": 0.7485 + }, + { + "start": 11288.0, + "end": 11288.58, + "probability": 0.8301 + }, + { + "start": 11289.8, + "end": 11290.16, + "probability": 0.991 + }, + { + "start": 11290.68, + "end": 11291.44, + "probability": 0.796 + }, + { + "start": 11292.24, + "end": 11293.92, + "probability": 0.9316 + }, + { + "start": 11294.72, + "end": 11296.46, + "probability": 0.9873 + }, + { + "start": 11297.16, + "end": 11299.1, + "probability": 0.9639 + }, + { + "start": 11300.26, + "end": 11302.96, + "probability": 0.8621 + }, + { + "start": 11304.26, + "end": 11306.52, + "probability": 0.8636 + }, + { + "start": 11307.5, + "end": 11308.98, + "probability": 0.7476 + }, + { + "start": 11309.76, + "end": 11311.38, + "probability": 0.7788 + }, + { + "start": 11312.58, + "end": 11314.18, + "probability": 0.9674 + }, + { + "start": 11315.5, + "end": 11319.96, + "probability": 0.8875 + }, + { + "start": 11320.88, + "end": 11322.38, + "probability": 0.9793 + }, + { + "start": 11324.68, + "end": 11326.56, + "probability": 0.7854 + }, + { + "start": 11327.24, + "end": 11329.48, + "probability": 0.944 + }, + { + "start": 11331.86, + "end": 11332.92, + "probability": 0.8135 + }, + { + "start": 11334.1, + "end": 11334.84, + "probability": 0.5302 + }, + { + "start": 11339.72, + "end": 11340.5, + "probability": 0.9218 + }, + { + "start": 11341.36, + "end": 11342.06, + "probability": 0.8867 + }, + { + "start": 11343.96, + "end": 11345.9, + "probability": 0.8975 + }, + { + "start": 11347.4, + "end": 11348.98, + "probability": 0.9764 + }, + { + "start": 11350.76, + "end": 11353.38, + "probability": 0.862 + }, + { + "start": 11354.24, + "end": 11356.24, + "probability": 0.8888 + }, + { + "start": 11358.68, + "end": 11360.88, + "probability": 0.6354 + }, + { + "start": 11362.28, + "end": 11363.16, + "probability": 0.8333 + }, + { + "start": 11363.74, + "end": 11364.76, + "probability": 0.8668 + }, + { + "start": 11366.2, + "end": 11369.0, + "probability": 0.7765 + }, + { + "start": 11370.6, + "end": 11372.76, + "probability": 0.9422 + }, + { + "start": 11374.36, + "end": 11374.78, + "probability": 0.9841 + }, + { + "start": 11375.9, + "end": 11376.76, + "probability": 0.8935 + }, + { + "start": 11377.5, + "end": 11379.38, + "probability": 0.8962 + }, + { + "start": 11380.3, + "end": 11380.7, + "probability": 0.9284 + }, + { + "start": 11381.5, + "end": 11382.22, + "probability": 0.9137 + }, + { + "start": 11383.04, + "end": 11384.66, + "probability": 0.8345 + }, + { + "start": 11386.3, + "end": 11387.86, + "probability": 0.8088 + }, + { + "start": 11389.2, + "end": 11390.04, + "probability": 0.769 + }, + { + "start": 11390.62, + "end": 11392.74, + "probability": 0.8979 + }, + { + "start": 11393.88, + "end": 11395.6, + "probability": 0.9168 + }, + { + "start": 11396.52, + "end": 11400.16, + "probability": 0.9763 + }, + { + "start": 11400.88, + "end": 11402.56, + "probability": 0.9832 + }, + { + "start": 11403.34, + "end": 11409.86, + "probability": 0.977 + }, + { + "start": 11411.1, + "end": 11413.48, + "probability": 0.5906 + }, + { + "start": 11414.22, + "end": 11414.64, + "probability": 0.9292 + }, + { + "start": 11415.4, + "end": 11415.68, + "probability": 0.9441 + }, + { + "start": 11417.14, + "end": 11418.74, + "probability": 0.9503 + }, + { + "start": 11419.66, + "end": 11421.34, + "probability": 0.9847 + }, + { + "start": 11423.24, + "end": 11423.96, + "probability": 0.9777 + }, + { + "start": 11424.82, + "end": 11425.54, + "probability": 0.8071 + }, + { + "start": 11426.78, + "end": 11428.42, + "probability": 0.9078 + }, + { + "start": 11429.64, + "end": 11431.64, + "probability": 0.9485 + }, + { + "start": 11433.44, + "end": 11437.96, + "probability": 0.7684 + }, + { + "start": 11439.24, + "end": 11440.64, + "probability": 0.8346 + }, + { + "start": 11441.56, + "end": 11443.52, + "probability": 0.967 + }, + { + "start": 11444.54, + "end": 11446.36, + "probability": 0.9927 + }, + { + "start": 11446.98, + "end": 11448.68, + "probability": 0.9792 + }, + { + "start": 11450.7, + "end": 11452.28, + "probability": 0.9666 + }, + { + "start": 11453.28, + "end": 11455.42, + "probability": 0.9696 + }, + { + "start": 11456.14, + "end": 11456.38, + "probability": 0.5707 + }, + { + "start": 11456.98, + "end": 11457.94, + "probability": 0.2373 + }, + { + "start": 11459.12, + "end": 11461.54, + "probability": 0.6256 + }, + { + "start": 11462.86, + "end": 11464.72, + "probability": 0.7669 + }, + { + "start": 11466.1, + "end": 11470.06, + "probability": 0.9648 + }, + { + "start": 11471.94, + "end": 11473.06, + "probability": 0.971 + }, + { + "start": 11473.98, + "end": 11474.34, + "probability": 0.9099 + }, + { + "start": 11475.4, + "end": 11477.18, + "probability": 0.9777 + }, + { + "start": 11478.02, + "end": 11479.68, + "probability": 0.9596 + }, + { + "start": 11481.2, + "end": 11483.04, + "probability": 0.9783 + }, + { + "start": 11484.56, + "end": 11486.08, + "probability": 0.807 + }, + { + "start": 11486.98, + "end": 11488.5, + "probability": 0.909 + }, + { + "start": 11490.08, + "end": 11490.48, + "probability": 0.9373 + }, + { + "start": 11491.62, + "end": 11492.34, + "probability": 0.8842 + }, + { + "start": 11493.28, + "end": 11497.82, + "probability": 0.7971 + }, + { + "start": 11499.54, + "end": 11500.3, + "probability": 0.8183 + }, + { + "start": 11501.2, + "end": 11503.08, + "probability": 0.981 + }, + { + "start": 11504.74, + "end": 11505.46, + "probability": 0.9769 + }, + { + "start": 11506.12, + "end": 11507.0, + "probability": 0.7438 + }, + { + "start": 11507.58, + "end": 11508.42, + "probability": 0.7047 + }, + { + "start": 11509.22, + "end": 11509.94, + "probability": 0.8025 + }, + { + "start": 11510.98, + "end": 11512.5, + "probability": 0.8484 + }, + { + "start": 11513.28, + "end": 11513.76, + "probability": 0.9899 + }, + { + "start": 11514.84, + "end": 11515.8, + "probability": 0.5165 + }, + { + "start": 11516.72, + "end": 11517.34, + "probability": 0.5576 + }, + { + "start": 11518.22, + "end": 11519.56, + "probability": 0.9684 + }, + { + "start": 11521.06, + "end": 11521.52, + "probability": 0.9829 + }, + { + "start": 11522.04, + "end": 11522.74, + "probability": 0.8892 + }, + { + "start": 11524.0, + "end": 11524.44, + "probability": 0.9646 + }, + { + "start": 11525.08, + "end": 11525.94, + "probability": 0.9349 + }, + { + "start": 11526.56, + "end": 11529.02, + "probability": 0.8474 + }, + { + "start": 11529.68, + "end": 11531.66, + "probability": 0.9626 + }, + { + "start": 11532.58, + "end": 11537.14, + "probability": 0.8652 + }, + { + "start": 11538.46, + "end": 11538.94, + "probability": 0.9878 + }, + { + "start": 11539.64, + "end": 11542.7, + "probability": 0.9035 + }, + { + "start": 11543.96, + "end": 11546.12, + "probability": 0.9491 + }, + { + "start": 11548.72, + "end": 11549.44, + "probability": 0.9355 + }, + { + "start": 11550.1, + "end": 11550.82, + "probability": 0.8652 + }, + { + "start": 11551.98, + "end": 11552.48, + "probability": 0.9959 + }, + { + "start": 11553.24, + "end": 11554.16, + "probability": 0.9537 + }, + { + "start": 11555.74, + "end": 11557.9, + "probability": 0.9554 + }, + { + "start": 11559.06, + "end": 11560.6, + "probability": 0.5971 + }, + { + "start": 11562.12, + "end": 11563.82, + "probability": 0.7624 + }, + { + "start": 11564.9, + "end": 11566.92, + "probability": 0.5524 + }, + { + "start": 11569.26, + "end": 11571.5, + "probability": 0.9632 + }, + { + "start": 11572.24, + "end": 11573.74, + "probability": 0.786 + }, + { + "start": 11574.64, + "end": 11575.06, + "probability": 0.8538 + }, + { + "start": 11575.58, + "end": 11576.64, + "probability": 0.9492 + }, + { + "start": 11577.32, + "end": 11577.8, + "probability": 0.9587 + }, + { + "start": 11578.34, + "end": 11579.0, + "probability": 0.9447 + }, + { + "start": 11580.28, + "end": 11582.02, + "probability": 0.9651 + }, + { + "start": 11582.86, + "end": 11583.14, + "probability": 0.8872 + }, + { + "start": 11583.72, + "end": 11584.46, + "probability": 0.7548 + }, + { + "start": 11585.48, + "end": 11586.98, + "probability": 0.7542 + }, + { + "start": 11587.72, + "end": 11589.22, + "probability": 0.973 + }, + { + "start": 11589.78, + "end": 11591.82, + "probability": 0.9306 + }, + { + "start": 11593.4, + "end": 11595.06, + "probability": 0.8432 + }, + { + "start": 11598.1, + "end": 11600.68, + "probability": 0.8673 + }, + { + "start": 11601.84, + "end": 11603.86, + "probability": 0.9489 + }, + { + "start": 11604.42, + "end": 11605.66, + "probability": 0.8402 + }, + { + "start": 11610.64, + "end": 11611.6, + "probability": 0.8065 + }, + { + "start": 11612.68, + "end": 11614.06, + "probability": 0.701 + }, + { + "start": 11615.34, + "end": 11616.12, + "probability": 0.8117 + }, + { + "start": 11616.7, + "end": 11617.4, + "probability": 0.6621 + }, + { + "start": 11620.62, + "end": 11621.04, + "probability": 0.9102 + }, + { + "start": 11621.7, + "end": 11622.6, + "probability": 0.8935 + }, + { + "start": 11624.04, + "end": 11624.56, + "probability": 0.9598 + }, + { + "start": 11625.1, + "end": 11628.98, + "probability": 0.9424 + }, + { + "start": 11629.54, + "end": 11632.9, + "probability": 0.8545 + }, + { + "start": 11634.08, + "end": 11636.72, + "probability": 0.9343 + }, + { + "start": 11637.3, + "end": 11638.16, + "probability": 0.9486 + }, + { + "start": 11639.14, + "end": 11639.44, + "probability": 0.6892 + }, + { + "start": 11640.32, + "end": 11642.46, + "probability": 0.6615 + }, + { + "start": 11643.28, + "end": 11644.2, + "probability": 0.7917 + }, + { + "start": 11645.26, + "end": 11645.74, + "probability": 0.9863 + }, + { + "start": 11646.44, + "end": 11647.26, + "probability": 0.718 + }, + { + "start": 11648.12, + "end": 11649.8, + "probability": 0.8017 + }, + { + "start": 11652.02, + "end": 11654.14, + "probability": 0.6883 + }, + { + "start": 11655.9, + "end": 11656.26, + "probability": 0.8005 + }, + { + "start": 11657.4, + "end": 11658.91, + "probability": 0.7979 + }, + { + "start": 11661.66, + "end": 11661.78, + "probability": 0.0017 + }, + { + "start": 11662.3, + "end": 11667.46, + "probability": 0.979 + }, + { + "start": 11667.46, + "end": 11672.06, + "probability": 0.4935 + }, + { + "start": 11672.1, + "end": 11672.62, + "probability": 0.8007 + }, + { + "start": 11673.04, + "end": 11674.55, + "probability": 0.1751 + }, + { + "start": 11675.98, + "end": 11676.66, + "probability": 0.9296 + }, + { + "start": 11677.44, + "end": 11678.52, + "probability": 0.8389 + }, + { + "start": 11679.12, + "end": 11679.92, + "probability": 0.9673 + }, + { + "start": 11680.58, + "end": 11681.82, + "probability": 0.7854 + }, + { + "start": 11682.68, + "end": 11683.36, + "probability": 0.9099 + }, + { + "start": 11684.04, + "end": 11684.96, + "probability": 0.5994 + }, + { + "start": 11685.78, + "end": 11687.72, + "probability": 0.7309 + }, + { + "start": 11690.78, + "end": 11694.0, + "probability": 0.811 + }, + { + "start": 11694.66, + "end": 11696.52, + "probability": 0.9025 + }, + { + "start": 11697.62, + "end": 11699.66, + "probability": 0.9333 + }, + { + "start": 11700.64, + "end": 11702.6, + "probability": 0.9878 + }, + { + "start": 11703.72, + "end": 11704.44, + "probability": 0.9772 + }, + { + "start": 11705.0, + "end": 11706.1, + "probability": 0.9952 + }, + { + "start": 11707.26, + "end": 11707.98, + "probability": 0.9079 + }, + { + "start": 11708.56, + "end": 11709.72, + "probability": 0.8027 + }, + { + "start": 11710.9, + "end": 11711.52, + "probability": 0.7825 + }, + { + "start": 11712.3, + "end": 11712.74, + "probability": 0.8914 + }, + { + "start": 11713.94, + "end": 11715.74, + "probability": 0.9176 + }, + { + "start": 11716.98, + "end": 11717.72, + "probability": 0.9771 + }, + { + "start": 11718.74, + "end": 11719.58, + "probability": 0.734 + }, + { + "start": 11721.24, + "end": 11721.66, + "probability": 0.5218 + }, + { + "start": 11724.44, + "end": 11726.86, + "probability": 0.8125 + }, + { + "start": 11727.44, + "end": 11728.48, + "probability": 0.5649 + }, + { + "start": 11730.44, + "end": 11731.08, + "probability": 0.9429 + }, + { + "start": 11732.04, + "end": 11732.82, + "probability": 0.9815 + }, + { + "start": 11733.78, + "end": 11736.48, + "probability": 0.9231 + }, + { + "start": 11737.82, + "end": 11739.84, + "probability": 0.9596 + }, + { + "start": 11740.78, + "end": 11744.34, + "probability": 0.9669 + }, + { + "start": 11745.58, + "end": 11747.24, + "probability": 0.9848 + }, + { + "start": 11748.64, + "end": 11749.98, + "probability": 0.9093 + }, + { + "start": 11755.44, + "end": 11759.34, + "probability": 0.3976 + }, + { + "start": 11760.64, + "end": 11761.62, + "probability": 0.6243 + }, + { + "start": 11763.76, + "end": 11765.84, + "probability": 0.8125 + }, + { + "start": 11767.12, + "end": 11767.84, + "probability": 0.8612 + }, + { + "start": 11768.66, + "end": 11769.54, + "probability": 0.3041 + }, + { + "start": 11770.97, + "end": 11773.06, + "probability": 0.6919 + }, + { + "start": 11774.2, + "end": 11775.92, + "probability": 0.6146 + }, + { + "start": 11776.82, + "end": 11777.58, + "probability": 0.9134 + }, + { + "start": 11778.38, + "end": 11779.04, + "probability": 0.8251 + }, + { + "start": 11779.92, + "end": 11781.6, + "probability": 0.9806 + }, + { + "start": 11782.6, + "end": 11784.44, + "probability": 0.8726 + }, + { + "start": 11785.74, + "end": 11786.42, + "probability": 0.9766 + }, + { + "start": 11787.38, + "end": 11788.36, + "probability": 0.979 + }, + { + "start": 11789.54, + "end": 11790.32, + "probability": 0.9929 + }, + { + "start": 11791.13, + "end": 11795.88, + "probability": 0.9829 + }, + { + "start": 11797.04, + "end": 11797.76, + "probability": 0.9952 + }, + { + "start": 11798.38, + "end": 11799.3, + "probability": 0.9799 + }, + { + "start": 11800.44, + "end": 11802.1, + "probability": 0.8045 + }, + { + "start": 11803.5, + "end": 11804.26, + "probability": 0.9853 + }, + { + "start": 11805.26, + "end": 11806.0, + "probability": 0.7474 + }, + { + "start": 11807.38, + "end": 11811.36, + "probability": 0.5395 + }, + { + "start": 11812.38, + "end": 11814.22, + "probability": 0.8514 + }, + { + "start": 11816.31, + "end": 11818.86, + "probability": 0.8849 + }, + { + "start": 11819.52, + "end": 11820.26, + "probability": 0.9654 + }, + { + "start": 11821.38, + "end": 11822.54, + "probability": 0.8108 + }, + { + "start": 11829.22, + "end": 11830.66, + "probability": 0.2399 + }, + { + "start": 11842.8, + "end": 11848.14, + "probability": 0.8772 + }, + { + "start": 11848.36, + "end": 11849.02, + "probability": 0.3537 + }, + { + "start": 11850.22, + "end": 11851.69, + "probability": 0.3906 + }, + { + "start": 11852.88, + "end": 11859.34, + "probability": 0.9937 + }, + { + "start": 11860.16, + "end": 11862.22, + "probability": 0.8734 + }, + { + "start": 11862.32, + "end": 11866.38, + "probability": 0.959 + }, + { + "start": 11867.34, + "end": 11868.48, + "probability": 0.8902 + }, + { + "start": 11868.98, + "end": 11871.1, + "probability": 0.2793 + }, + { + "start": 11875.79, + "end": 11880.4, + "probability": 0.973 + }, + { + "start": 11880.86, + "end": 11882.1, + "probability": 0.5051 + }, + { + "start": 11882.7, + "end": 11884.86, + "probability": 0.0048 + }, + { + "start": 11885.5, + "end": 11886.3, + "probability": 0.1579 + }, + { + "start": 11888.7, + "end": 11888.86, + "probability": 0.0086 + }, + { + "start": 11889.19, + "end": 11891.78, + "probability": 0.0546 + }, + { + "start": 11899.8, + "end": 11900.8, + "probability": 0.0291 + }, + { + "start": 11985.0, + "end": 11985.0, + "probability": 0.0 + }, + { + "start": 11985.0, + "end": 11985.0, + "probability": 0.0 + }, + { + "start": 11985.0, + "end": 11985.0, + "probability": 0.0 + }, + { + "start": 11985.0, + "end": 11985.0, + "probability": 0.0 + }, + { + "start": 11985.0, + "end": 11985.0, + "probability": 0.0 + }, + { + "start": 11985.0, + "end": 11985.0, + "probability": 0.0 + }, + { + "start": 11985.0, + "end": 11985.0, + "probability": 0.0 + }, + { + "start": 11985.0, + "end": 11985.0, + "probability": 0.0 + }, + { + "start": 11985.0, + "end": 11985.0, + "probability": 0.0 + }, + { + "start": 11985.0, + "end": 11985.0, + "probability": 0.0 + }, + { + "start": 11985.0, + "end": 11985.0, + "probability": 0.0 + }, + { + "start": 11985.34, + "end": 11985.94, + "probability": 0.0 + }, + { + "start": 11987.66, + "end": 11992.92, + "probability": 0.6818 + }, + { + "start": 11992.96, + "end": 11995.08, + "probability": 0.9641 + }, + { + "start": 11995.28, + "end": 11996.5, + "probability": 0.2348 + }, + { + "start": 11996.5, + "end": 11999.82, + "probability": 0.8104 + }, + { + "start": 12000.32, + "end": 12002.48, + "probability": 0.9983 + }, + { + "start": 12003.46, + "end": 12005.8, + "probability": 0.7394 + }, + { + "start": 12006.12, + "end": 12007.1, + "probability": 0.371 + }, + { + "start": 12008.52, + "end": 12010.8, + "probability": 0.8931 + }, + { + "start": 12012.1, + "end": 12013.68, + "probability": 0.9691 + }, + { + "start": 12013.8, + "end": 12015.12, + "probability": 0.9873 + }, + { + "start": 12015.3, + "end": 12015.95, + "probability": 0.9412 + }, + { + "start": 12016.2, + "end": 12020.48, + "probability": 0.9954 + }, + { + "start": 12021.18, + "end": 12021.86, + "probability": 0.5313 + }, + { + "start": 12022.02, + "end": 12025.64, + "probability": 0.7153 + }, + { + "start": 12026.16, + "end": 12028.52, + "probability": 0.8373 + }, + { + "start": 12028.6, + "end": 12031.7, + "probability": 0.0128 + }, + { + "start": 12031.7, + "end": 12032.36, + "probability": 0.1952 + }, + { + "start": 12032.36, + "end": 12033.56, + "probability": 0.5085 + }, + { + "start": 12034.48, + "end": 12038.1, + "probability": 0.6292 + }, + { + "start": 12038.8, + "end": 12043.26, + "probability": 0.9635 + }, + { + "start": 12045.84, + "end": 12048.4, + "probability": 0.9945 + }, + { + "start": 12049.46, + "end": 12052.08, + "probability": 0.9626 + }, + { + "start": 12052.9, + "end": 12054.06, + "probability": 0.9903 + }, + { + "start": 12055.58, + "end": 12056.58, + "probability": 0.4677 + }, + { + "start": 12057.28, + "end": 12058.66, + "probability": 0.4691 + }, + { + "start": 12058.92, + "end": 12060.3, + "probability": 0.3759 + }, + { + "start": 12060.54, + "end": 12064.0, + "probability": 0.4281 + }, + { + "start": 12065.36, + "end": 12065.36, + "probability": 0.0003 + }, + { + "start": 12065.66, + "end": 12068.82, + "probability": 0.7378 + }, + { + "start": 12069.84, + "end": 12071.94, + "probability": 0.498 + }, + { + "start": 12072.14, + "end": 12074.62, + "probability": 0.3241 + }, + { + "start": 12076.44, + "end": 12079.04, + "probability": 0.0368 + }, + { + "start": 12079.52, + "end": 12081.02, + "probability": 0.1678 + }, + { + "start": 12082.14, + "end": 12084.48, + "probability": 0.4971 + }, + { + "start": 12084.54, + "end": 12085.14, + "probability": 0.8341 + }, + { + "start": 12085.26, + "end": 12088.68, + "probability": 0.6542 + }, + { + "start": 12089.34, + "end": 12092.32, + "probability": 0.9448 + }, + { + "start": 12092.9, + "end": 12093.67, + "probability": 0.851 + }, + { + "start": 12095.02, + "end": 12100.1, + "probability": 0.9832 + }, + { + "start": 12100.44, + "end": 12101.5, + "probability": 0.9857 + }, + { + "start": 12102.46, + "end": 12105.62, + "probability": 0.9751 + }, + { + "start": 12106.42, + "end": 12110.58, + "probability": 0.9513 + }, + { + "start": 12111.38, + "end": 12111.52, + "probability": 0.0907 + }, + { + "start": 12111.52, + "end": 12114.74, + "probability": 0.9782 + }, + { + "start": 12115.66, + "end": 12116.7, + "probability": 0.7729 + }, + { + "start": 12116.78, + "end": 12119.34, + "probability": 0.8549 + }, + { + "start": 12120.3, + "end": 12121.84, + "probability": 0.9016 + }, + { + "start": 12122.3, + "end": 12124.22, + "probability": 0.9912 + }, + { + "start": 12125.32, + "end": 12127.76, + "probability": 0.9396 + }, + { + "start": 12128.26, + "end": 12131.5, + "probability": 0.9073 + }, + { + "start": 12132.88, + "end": 12133.96, + "probability": 0.9521 + }, + { + "start": 12134.54, + "end": 12136.92, + "probability": 0.9888 + }, + { + "start": 12137.78, + "end": 12145.0, + "probability": 0.9802 + }, + { + "start": 12146.26, + "end": 12149.86, + "probability": 0.9951 + }, + { + "start": 12150.56, + "end": 12154.88, + "probability": 0.9933 + }, + { + "start": 12156.1, + "end": 12159.34, + "probability": 0.9795 + }, + { + "start": 12160.24, + "end": 12162.1, + "probability": 0.7593 + }, + { + "start": 12163.6, + "end": 12164.54, + "probability": 0.8855 + }, + { + "start": 12164.66, + "end": 12167.46, + "probability": 0.9818 + }, + { + "start": 12167.96, + "end": 12173.02, + "probability": 0.9064 + }, + { + "start": 12173.7, + "end": 12176.18, + "probability": 0.9087 + }, + { + "start": 12177.7, + "end": 12179.08, + "probability": 0.9213 + }, + { + "start": 12180.2, + "end": 12182.18, + "probability": 0.689 + }, + { + "start": 12183.74, + "end": 12186.78, + "probability": 0.9897 + }, + { + "start": 12187.2, + "end": 12189.52, + "probability": 0.9964 + }, + { + "start": 12189.96, + "end": 12193.34, + "probability": 0.9725 + }, + { + "start": 12193.48, + "end": 12194.98, + "probability": 0.9598 + }, + { + "start": 12196.4, + "end": 12196.4, + "probability": 0.0349 + }, + { + "start": 12196.48, + "end": 12199.16, + "probability": 0.7016 + }, + { + "start": 12199.86, + "end": 12202.68, + "probability": 0.7253 + }, + { + "start": 12203.58, + "end": 12206.68, + "probability": 0.4926 + }, + { + "start": 12206.8, + "end": 12208.44, + "probability": 0.6994 + }, + { + "start": 12208.9, + "end": 12209.4, + "probability": 0.8362 + }, + { + "start": 12209.5, + "end": 12210.2, + "probability": 0.8452 + }, + { + "start": 12210.26, + "end": 12213.96, + "probability": 0.7465 + }, + { + "start": 12214.14, + "end": 12214.34, + "probability": 0.3742 + }, + { + "start": 12214.94, + "end": 12220.26, + "probability": 0.8667 + }, + { + "start": 12220.72, + "end": 12223.84, + "probability": 0.8274 + }, + { + "start": 12224.24, + "end": 12226.66, + "probability": 0.9253 + }, + { + "start": 12227.42, + "end": 12228.54, + "probability": 0.9427 + }, + { + "start": 12228.88, + "end": 12229.46, + "probability": 0.8578 + }, + { + "start": 12229.74, + "end": 12235.66, + "probability": 0.9985 + }, + { + "start": 12235.66, + "end": 12242.18, + "probability": 0.9916 + }, + { + "start": 12242.58, + "end": 12245.96, + "probability": 0.9519 + }, + { + "start": 12246.48, + "end": 12248.28, + "probability": 0.9961 + }, + { + "start": 12249.12, + "end": 12252.94, + "probability": 0.9629 + }, + { + "start": 12253.56, + "end": 12258.26, + "probability": 0.9571 + }, + { + "start": 12258.94, + "end": 12262.88, + "probability": 0.75 + }, + { + "start": 12263.62, + "end": 12268.22, + "probability": 0.9611 + }, + { + "start": 12268.28, + "end": 12268.92, + "probability": 0.0982 + }, + { + "start": 12269.78, + "end": 12270.32, + "probability": 0.792 + }, + { + "start": 12270.75, + "end": 12274.68, + "probability": 0.9658 + }, + { + "start": 12275.36, + "end": 12276.88, + "probability": 0.8231 + }, + { + "start": 12277.12, + "end": 12277.72, + "probability": 0.4399 + }, + { + "start": 12277.76, + "end": 12278.22, + "probability": 0.7866 + }, + { + "start": 12279.02, + "end": 12280.86, + "probability": 0.939 + }, + { + "start": 12281.52, + "end": 12282.9, + "probability": 0.6885 + }, + { + "start": 12283.3, + "end": 12285.0, + "probability": 0.7451 + }, + { + "start": 12285.14, + "end": 12285.74, + "probability": 0.6853 + }, + { + "start": 12285.8, + "end": 12287.88, + "probability": 0.9821 + }, + { + "start": 12288.06, + "end": 12288.78, + "probability": 0.0769 + }, + { + "start": 12289.1, + "end": 12291.13, + "probability": 0.9048 + }, + { + "start": 12291.6, + "end": 12292.2, + "probability": 0.7288 + }, + { + "start": 12292.26, + "end": 12297.3, + "probability": 0.9861 + }, + { + "start": 12297.96, + "end": 12301.52, + "probability": 0.9526 + }, + { + "start": 12301.68, + "end": 12304.38, + "probability": 0.8764 + }, + { + "start": 12304.66, + "end": 12308.12, + "probability": 0.8117 + }, + { + "start": 12308.26, + "end": 12309.06, + "probability": 0.8356 + }, + { + "start": 12309.24, + "end": 12310.86, + "probability": 0.7611 + }, + { + "start": 12311.24, + "end": 12312.32, + "probability": 0.8447 + }, + { + "start": 12312.72, + "end": 12313.76, + "probability": 0.6147 + }, + { + "start": 12314.76, + "end": 12316.5, + "probability": 0.762 + }, + { + "start": 12316.5, + "end": 12316.96, + "probability": 0.9199 + }, + { + "start": 12317.0, + "end": 12318.92, + "probability": 0.7989 + }, + { + "start": 12319.02, + "end": 12323.2, + "probability": 0.9987 + }, + { + "start": 12323.2, + "end": 12326.6, + "probability": 0.9995 + }, + { + "start": 12327.6, + "end": 12330.7, + "probability": 0.9087 + }, + { + "start": 12331.64, + "end": 12333.62, + "probability": 0.8687 + }, + { + "start": 12335.02, + "end": 12336.21, + "probability": 0.4221 + }, + { + "start": 12336.52, + "end": 12337.9, + "probability": 0.255 + }, + { + "start": 12338.1, + "end": 12339.14, + "probability": 0.9712 + }, + { + "start": 12339.28, + "end": 12342.22, + "probability": 0.9805 + }, + { + "start": 12342.92, + "end": 12343.54, + "probability": 0.2067 + }, + { + "start": 12343.58, + "end": 12346.8, + "probability": 0.8691 + }, + { + "start": 12347.64, + "end": 12348.56, + "probability": 0.9839 + }, + { + "start": 12349.36, + "end": 12350.74, + "probability": 0.9832 + }, + { + "start": 12350.84, + "end": 12352.04, + "probability": 0.9053 + }, + { + "start": 12352.5, + "end": 12353.24, + "probability": 0.906 + }, + { + "start": 12353.68, + "end": 12354.58, + "probability": 0.9676 + }, + { + "start": 12354.78, + "end": 12355.84, + "probability": 0.8704 + }, + { + "start": 12355.92, + "end": 12357.28, + "probability": 0.9873 + }, + { + "start": 12357.46, + "end": 12358.24, + "probability": 0.7241 + }, + { + "start": 12358.42, + "end": 12358.94, + "probability": 0.9746 + }, + { + "start": 12360.22, + "end": 12361.44, + "probability": 0.9404 + }, + { + "start": 12361.6, + "end": 12366.44, + "probability": 0.9951 + }, + { + "start": 12366.84, + "end": 12368.88, + "probability": 0.8063 + }, + { + "start": 12369.06, + "end": 12370.78, + "probability": 0.4195 + }, + { + "start": 12371.86, + "end": 12374.11, + "probability": 0.9307 + }, + { + "start": 12374.72, + "end": 12376.38, + "probability": 0.9125 + }, + { + "start": 12376.82, + "end": 12378.58, + "probability": 0.959 + }, + { + "start": 12378.94, + "end": 12383.04, + "probability": 0.9951 + }, + { + "start": 12383.46, + "end": 12384.68, + "probability": 0.6299 + }, + { + "start": 12385.44, + "end": 12386.43, + "probability": 0.8694 + }, + { + "start": 12387.24, + "end": 12389.44, + "probability": 0.6841 + }, + { + "start": 12390.7, + "end": 12394.54, + "probability": 0.4953 + }, + { + "start": 12394.6, + "end": 12397.96, + "probability": 0.9768 + }, + { + "start": 12398.5, + "end": 12401.32, + "probability": 0.9922 + }, + { + "start": 12401.8, + "end": 12407.88, + "probability": 0.9841 + }, + { + "start": 12408.76, + "end": 12411.42, + "probability": 0.9993 + }, + { + "start": 12413.06, + "end": 12417.7, + "probability": 0.9871 + }, + { + "start": 12418.6, + "end": 12420.42, + "probability": 0.9658 + }, + { + "start": 12421.04, + "end": 12424.42, + "probability": 0.8483 + }, + { + "start": 12424.9, + "end": 12426.17, + "probability": 0.6797 + }, + { + "start": 12426.92, + "end": 12429.54, + "probability": 0.9186 + }, + { + "start": 12430.92, + "end": 12431.48, + "probability": 0.832 + }, + { + "start": 12431.7, + "end": 12433.16, + "probability": 0.9854 + }, + { + "start": 12433.34, + "end": 12434.49, + "probability": 0.8122 + }, + { + "start": 12435.12, + "end": 12436.6, + "probability": 0.9878 + }, + { + "start": 12437.98, + "end": 12439.78, + "probability": 0.9601 + }, + { + "start": 12440.44, + "end": 12441.98, + "probability": 0.9359 + }, + { + "start": 12442.36, + "end": 12446.24, + "probability": 0.9932 + }, + { + "start": 12446.6, + "end": 12447.14, + "probability": 0.3584 + }, + { + "start": 12447.16, + "end": 12448.06, + "probability": 0.5399 + }, + { + "start": 12448.46, + "end": 12449.84, + "probability": 0.9649 + }, + { + "start": 12450.38, + "end": 12453.26, + "probability": 0.8186 + }, + { + "start": 12453.96, + "end": 12456.54, + "probability": 0.999 + }, + { + "start": 12456.82, + "end": 12457.78, + "probability": 0.8129 + }, + { + "start": 12458.16, + "end": 12459.72, + "probability": 0.9814 + }, + { + "start": 12460.2, + "end": 12463.86, + "probability": 0.9928 + }, + { + "start": 12463.86, + "end": 12468.04, + "probability": 0.9653 + }, + { + "start": 12468.72, + "end": 12471.06, + "probability": 0.97 + }, + { + "start": 12472.28, + "end": 12473.24, + "probability": 0.9639 + }, + { + "start": 12473.64, + "end": 12478.32, + "probability": 0.9951 + }, + { + "start": 12478.96, + "end": 12479.48, + "probability": 0.4968 + }, + { + "start": 12479.64, + "end": 12480.6, + "probability": 0.894 + }, + { + "start": 12480.7, + "end": 12482.78, + "probability": 0.9922 + }, + { + "start": 12483.0, + "end": 12485.7, + "probability": 0.9929 + }, + { + "start": 12486.24, + "end": 12488.62, + "probability": 0.9988 + }, + { + "start": 12489.66, + "end": 12491.0, + "probability": 0.9915 + }, + { + "start": 12491.06, + "end": 12491.8, + "probability": 0.9106 + }, + { + "start": 12492.2, + "end": 12495.94, + "probability": 0.9409 + }, + { + "start": 12496.18, + "end": 12497.51, + "probability": 0.9312 + }, + { + "start": 12497.68, + "end": 12498.76, + "probability": 0.8545 + }, + { + "start": 12500.0, + "end": 12505.16, + "probability": 0.0363 + }, + { + "start": 12507.12, + "end": 12512.44, + "probability": 0.1729 + }, + { + "start": 12513.3, + "end": 12518.08, + "probability": 0.1076 + }, + { + "start": 12518.58, + "end": 12520.48, + "probability": 0.4874 + }, + { + "start": 12520.66, + "end": 12522.78, + "probability": 0.1477 + }, + { + "start": 12530.0, + "end": 12531.36, + "probability": 0.0449 + }, + { + "start": 12533.54, + "end": 12536.7, + "probability": 0.9372 + }, + { + "start": 12537.74, + "end": 12538.7, + "probability": 0.7586 + }, + { + "start": 12539.42, + "end": 12542.42, + "probability": 0.9978 + }, + { + "start": 12543.08, + "end": 12544.72, + "probability": 0.9984 + }, + { + "start": 12546.4, + "end": 12550.16, + "probability": 0.4961 + }, + { + "start": 12550.56, + "end": 12551.84, + "probability": 0.7793 + }, + { + "start": 12553.62, + "end": 12555.14, + "probability": 0.7243 + }, + { + "start": 12556.24, + "end": 12557.3, + "probability": 0.7739 + }, + { + "start": 12558.48, + "end": 12559.12, + "probability": 0.2042 + }, + { + "start": 12559.12, + "end": 12560.54, + "probability": 0.0449 + }, + { + "start": 12560.64, + "end": 12561.74, + "probability": 0.5877 + }, + { + "start": 12561.74, + "end": 12562.26, + "probability": 0.8276 + }, + { + "start": 12562.26, + "end": 12566.64, + "probability": 0.9912 + }, + { + "start": 12569.7, + "end": 12572.38, + "probability": 0.3464 + }, + { + "start": 12578.04, + "end": 12579.02, + "probability": 0.2779 + }, + { + "start": 12579.6, + "end": 12580.74, + "probability": 0.7286 + }, + { + "start": 12581.36, + "end": 12581.88, + "probability": 0.6361 + }, + { + "start": 12582.06, + "end": 12582.55, + "probability": 0.933 + }, + { + "start": 12582.8, + "end": 12583.34, + "probability": 0.7 + }, + { + "start": 12583.56, + "end": 12585.36, + "probability": 0.7399 + }, + { + "start": 12585.9, + "end": 12587.64, + "probability": 0.9283 + }, + { + "start": 12588.08, + "end": 12590.02, + "probability": 0.8213 + }, + { + "start": 12590.34, + "end": 12591.06, + "probability": 0.8778 + }, + { + "start": 12591.28, + "end": 12592.12, + "probability": 0.6037 + }, + { + "start": 12592.52, + "end": 12593.82, + "probability": 0.9849 + }, + { + "start": 12594.0, + "end": 12595.56, + "probability": 0.6028 + }, + { + "start": 12595.94, + "end": 12597.18, + "probability": 0.7329 + }, + { + "start": 12597.22, + "end": 12599.62, + "probability": 0.753 + }, + { + "start": 12599.72, + "end": 12600.06, + "probability": 0.612 + }, + { + "start": 12601.64, + "end": 12603.34, + "probability": 0.967 + }, + { + "start": 12604.34, + "end": 12606.94, + "probability": 0.8129 + }, + { + "start": 12607.3, + "end": 12610.58, + "probability": 0.9852 + }, + { + "start": 12610.8, + "end": 12613.6, + "probability": 0.9892 + }, + { + "start": 12614.22, + "end": 12614.58, + "probability": 0.7238 + }, + { + "start": 12614.7, + "end": 12615.34, + "probability": 0.9551 + }, + { + "start": 12615.82, + "end": 12618.12, + "probability": 0.7579 + }, + { + "start": 12619.44, + "end": 12620.76, + "probability": 0.4803 + }, + { + "start": 12620.92, + "end": 12622.0, + "probability": 0.1495 + }, + { + "start": 12622.18, + "end": 12622.78, + "probability": 0.7288 + }, + { + "start": 12623.02, + "end": 12623.98, + "probability": 0.7148 + }, + { + "start": 12624.28, + "end": 12626.0, + "probability": 0.6959 + }, + { + "start": 12626.58, + "end": 12629.68, + "probability": 0.9622 + }, + { + "start": 12629.86, + "end": 12632.72, + "probability": 0.9036 + }, + { + "start": 12633.32, + "end": 12635.08, + "probability": 0.9746 + }, + { + "start": 12635.84, + "end": 12635.94, + "probability": 0.0187 + }, + { + "start": 12635.94, + "end": 12638.44, + "probability": 0.5673 + }, + { + "start": 12639.08, + "end": 12642.66, + "probability": 0.8763 + }, + { + "start": 12642.66, + "end": 12645.54, + "probability": 0.754 + }, + { + "start": 12645.72, + "end": 12648.46, + "probability": 0.184 + }, + { + "start": 12648.46, + "end": 12650.16, + "probability": 0.1095 + }, + { + "start": 12650.28, + "end": 12651.1, + "probability": 0.5102 + }, + { + "start": 12651.18, + "end": 12654.24, + "probability": 0.3682 + }, + { + "start": 12654.78, + "end": 12656.12, + "probability": 0.601 + }, + { + "start": 12656.14, + "end": 12659.16, + "probability": 0.9927 + }, + { + "start": 12660.18, + "end": 12661.86, + "probability": 0.8718 + }, + { + "start": 12662.06, + "end": 12662.26, + "probability": 0.5486 + }, + { + "start": 12662.28, + "end": 12662.52, + "probability": 0.7489 + }, + { + "start": 12662.76, + "end": 12664.14, + "probability": 0.9824 + }, + { + "start": 12665.06, + "end": 12665.5, + "probability": 0.2528 + }, + { + "start": 12665.62, + "end": 12669.62, + "probability": 0.9665 + }, + { + "start": 12670.62, + "end": 12671.42, + "probability": 0.9805 + }, + { + "start": 12672.0, + "end": 12674.12, + "probability": 0.9995 + }, + { + "start": 12674.96, + "end": 12680.42, + "probability": 0.9788 + }, + { + "start": 12681.82, + "end": 12683.2, + "probability": 0.025 + }, + { + "start": 12683.52, + "end": 12683.52, + "probability": 0.1218 + }, + { + "start": 12683.52, + "end": 12683.92, + "probability": 0.1802 + }, + { + "start": 12684.44, + "end": 12685.14, + "probability": 0.5265 + }, + { + "start": 12685.76, + "end": 12687.2, + "probability": 0.7393 + }, + { + "start": 12687.52, + "end": 12688.88, + "probability": 0.26 + }, + { + "start": 12689.06, + "end": 12689.48, + "probability": 0.0184 + }, + { + "start": 12689.72, + "end": 12689.98, + "probability": 0.0823 + }, + { + "start": 12689.98, + "end": 12691.7, + "probability": 0.1213 + }, + { + "start": 12691.86, + "end": 12692.2, + "probability": 0.01 + }, + { + "start": 12693.96, + "end": 12694.58, + "probability": 0.6975 + }, + { + "start": 12694.78, + "end": 12696.3, + "probability": 0.2729 + }, + { + "start": 12696.4, + "end": 12697.36, + "probability": 0.102 + }, + { + "start": 12698.04, + "end": 12698.72, + "probability": 0.4564 + }, + { + "start": 12699.78, + "end": 12701.27, + "probability": 0.2037 + }, + { + "start": 12703.04, + "end": 12703.08, + "probability": 0.2395 + }, + { + "start": 12703.08, + "end": 12705.88, + "probability": 0.6255 + }, + { + "start": 12706.0, + "end": 12708.12, + "probability": 0.8982 + }, + { + "start": 12708.44, + "end": 12713.8, + "probability": 0.1373 + }, + { + "start": 12713.8, + "end": 12714.94, + "probability": 0.1872 + }, + { + "start": 12714.94, + "end": 12716.0, + "probability": 0.8969 + }, + { + "start": 12716.08, + "end": 12718.87, + "probability": 0.9957 + }, + { + "start": 12719.98, + "end": 12721.68, + "probability": 0.9908 + }, + { + "start": 12723.2, + "end": 12723.8, + "probability": 0.8441 + }, + { + "start": 12723.88, + "end": 12725.04, + "probability": 0.8545 + }, + { + "start": 12725.12, + "end": 12725.7, + "probability": 0.9624 + }, + { + "start": 12726.38, + "end": 12729.38, + "probability": 0.6653 + }, + { + "start": 12729.56, + "end": 12732.5, + "probability": 0.9683 + }, + { + "start": 12732.58, + "end": 12734.26, + "probability": 0.7493 + }, + { + "start": 12734.44, + "end": 12735.1, + "probability": 0.3643 + }, + { + "start": 12736.12, + "end": 12738.76, + "probability": 0.9915 + }, + { + "start": 12739.66, + "end": 12743.0, + "probability": 0.9979 + }, + { + "start": 12744.68, + "end": 12747.46, + "probability": 0.9315 + }, + { + "start": 12747.5, + "end": 12750.36, + "probability": 0.9696 + }, + { + "start": 12750.48, + "end": 12751.56, + "probability": 0.8802 + }, + { + "start": 12751.64, + "end": 12755.9, + "probability": 0.9923 + }, + { + "start": 12756.76, + "end": 12758.46, + "probability": 0.8398 + }, + { + "start": 12758.68, + "end": 12760.56, + "probability": 0.7544 + }, + { + "start": 12762.1, + "end": 12763.3, + "probability": 0.9919 + }, + { + "start": 12763.62, + "end": 12766.96, + "probability": 0.9668 + }, + { + "start": 12769.54, + "end": 12770.12, + "probability": 0.9602 + }, + { + "start": 12785.46, + "end": 12785.68, + "probability": 0.5136 + }, + { + "start": 12785.74, + "end": 12790.02, + "probability": 0.9636 + }, + { + "start": 12791.28, + "end": 12794.04, + "probability": 0.9818 + }, + { + "start": 12794.12, + "end": 12797.44, + "probability": 0.9219 + }, + { + "start": 12798.0, + "end": 12799.1, + "probability": 0.9444 + }, + { + "start": 12799.94, + "end": 12801.34, + "probability": 0.1268 + }, + { + "start": 12804.42, + "end": 12805.44, + "probability": 0.0583 + }, + { + "start": 12943.0, + "end": 12943.0, + "probability": 0.0 + }, + { + "start": 12943.08, + "end": 12943.1, + "probability": 0.0535 + }, + { + "start": 12943.1, + "end": 12947.76, + "probability": 0.8238 + }, + { + "start": 12948.64, + "end": 12948.94, + "probability": 0.8589 + }, + { + "start": 12949.64, + "end": 12950.88, + "probability": 0.7783 + }, + { + "start": 12951.02, + "end": 12952.3, + "probability": 0.8587 + }, + { + "start": 12952.44, + "end": 12954.17, + "probability": 0.7696 + }, + { + "start": 12955.18, + "end": 12955.86, + "probability": 0.9337 + }, + { + "start": 12956.34, + "end": 12957.34, + "probability": 0.6854 + }, + { + "start": 12957.7, + "end": 12959.76, + "probability": 0.5898 + }, + { + "start": 12959.76, + "end": 12964.36, + "probability": 0.7302 + }, + { + "start": 12964.92, + "end": 12966.48, + "probability": 0.9576 + }, + { + "start": 12966.88, + "end": 12971.08, + "probability": 0.9429 + }, + { + "start": 12971.68, + "end": 12973.72, + "probability": 0.3021 + }, + { + "start": 12974.46, + "end": 12976.12, + "probability": 0.8828 + }, + { + "start": 12976.82, + "end": 12977.1, + "probability": 0.6501 + }, + { + "start": 12977.2, + "end": 12983.48, + "probability": 0.9647 + }, + { + "start": 12983.48, + "end": 12988.74, + "probability": 0.9979 + }, + { + "start": 12992.76, + "end": 12995.2, + "probability": 0.769 + }, + { + "start": 12995.28, + "end": 12996.04, + "probability": 0.825 + }, + { + "start": 12996.7, + "end": 12997.02, + "probability": 0.6015 + }, + { + "start": 12997.06, + "end": 13001.36, + "probability": 0.8393 + }, + { + "start": 13001.88, + "end": 13005.96, + "probability": 0.9249 + }, + { + "start": 13006.52, + "end": 13009.52, + "probability": 0.9164 + }, + { + "start": 13010.14, + "end": 13011.66, + "probability": 0.6147 + }, + { + "start": 13011.96, + "end": 13012.34, + "probability": 0.897 + }, + { + "start": 13012.42, + "end": 13013.68, + "probability": 0.9481 + }, + { + "start": 13014.9, + "end": 13018.1, + "probability": 0.9371 + }, + { + "start": 13018.1, + "end": 13022.54, + "probability": 0.8765 + }, + { + "start": 13022.56, + "end": 13023.96, + "probability": 0.7901 + }, + { + "start": 13024.4, + "end": 13025.56, + "probability": 0.7547 + }, + { + "start": 13026.56, + "end": 13032.46, + "probability": 0.9336 + }, + { + "start": 13032.88, + "end": 13035.9, + "probability": 0.8891 + }, + { + "start": 13036.62, + "end": 13037.88, + "probability": 0.99 + }, + { + "start": 13038.1, + "end": 13044.62, + "probability": 0.9618 + }, + { + "start": 13045.04, + "end": 13046.26, + "probability": 0.8855 + }, + { + "start": 13046.82, + "end": 13047.48, + "probability": 0.6842 + }, + { + "start": 13048.22, + "end": 13050.28, + "probability": 0.9027 + }, + { + "start": 13050.38, + "end": 13051.96, + "probability": 0.6309 + }, + { + "start": 13052.1, + "end": 13052.26, + "probability": 0.6596 + }, + { + "start": 13052.42, + "end": 13052.76, + "probability": 0.4513 + }, + { + "start": 13054.46, + "end": 13056.0, + "probability": 0.7926 + }, + { + "start": 13057.26, + "end": 13057.98, + "probability": 0.7714 + }, + { + "start": 13060.1, + "end": 13065.26, + "probability": 0.9897 + }, + { + "start": 13066.14, + "end": 13068.38, + "probability": 0.9955 + }, + { + "start": 13068.42, + "end": 13073.52, + "probability": 0.9962 + }, + { + "start": 13074.86, + "end": 13075.26, + "probability": 0.6556 + }, + { + "start": 13076.74, + "end": 13078.62, + "probability": 0.9675 + }, + { + "start": 13079.7, + "end": 13081.48, + "probability": 0.9911 + }, + { + "start": 13082.42, + "end": 13082.98, + "probability": 0.932 + }, + { + "start": 13083.54, + "end": 13084.0, + "probability": 0.9789 + }, + { + "start": 13085.64, + "end": 13089.9, + "probability": 0.9785 + }, + { + "start": 13090.42, + "end": 13091.64, + "probability": 0.9729 + }, + { + "start": 13092.48, + "end": 13096.46, + "probability": 0.9428 + }, + { + "start": 13097.24, + "end": 13100.8, + "probability": 0.989 + }, + { + "start": 13102.66, + "end": 13106.18, + "probability": 0.9677 + }, + { + "start": 13106.18, + "end": 13110.26, + "probability": 0.9917 + }, + { + "start": 13111.5, + "end": 13112.31, + "probability": 0.9106 + }, + { + "start": 13113.92, + "end": 13115.2, + "probability": 0.7411 + }, + { + "start": 13116.32, + "end": 13118.56, + "probability": 0.917 + }, + { + "start": 13119.6, + "end": 13121.29, + "probability": 0.9154 + }, + { + "start": 13122.28, + "end": 13124.1, + "probability": 0.8491 + }, + { + "start": 13125.7, + "end": 13127.26, + "probability": 0.9373 + }, + { + "start": 13127.84, + "end": 13128.7, + "probability": 0.8109 + }, + { + "start": 13129.34, + "end": 13131.18, + "probability": 0.7593 + }, + { + "start": 13132.36, + "end": 13133.88, + "probability": 0.8985 + }, + { + "start": 13134.72, + "end": 13137.62, + "probability": 0.9532 + }, + { + "start": 13138.92, + "end": 13140.68, + "probability": 0.8906 + }, + { + "start": 13141.26, + "end": 13142.78, + "probability": 0.5028 + }, + { + "start": 13145.02, + "end": 13147.66, + "probability": 0.9866 + }, + { + "start": 13148.44, + "end": 13155.1, + "probability": 0.9938 + }, + { + "start": 13157.26, + "end": 13159.48, + "probability": 0.9303 + }, + { + "start": 13160.2, + "end": 13164.18, + "probability": 0.9768 + }, + { + "start": 13164.94, + "end": 13166.44, + "probability": 0.8782 + }, + { + "start": 13166.72, + "end": 13170.68, + "probability": 0.9952 + }, + { + "start": 13171.24, + "end": 13175.66, + "probability": 0.9901 + }, + { + "start": 13176.06, + "end": 13179.22, + "probability": 0.99 + }, + { + "start": 13180.96, + "end": 13184.8, + "probability": 0.867 + }, + { + "start": 13185.48, + "end": 13188.14, + "probability": 0.9191 + }, + { + "start": 13189.22, + "end": 13189.56, + "probability": 0.8681 + }, + { + "start": 13189.7, + "end": 13190.54, + "probability": 0.9861 + }, + { + "start": 13191.2, + "end": 13193.62, + "probability": 0.9974 + }, + { + "start": 13194.84, + "end": 13197.48, + "probability": 0.9778 + }, + { + "start": 13198.12, + "end": 13204.4, + "probability": 0.9945 + }, + { + "start": 13205.48, + "end": 13205.76, + "probability": 0.8195 + }, + { + "start": 13206.58, + "end": 13209.54, + "probability": 0.981 + }, + { + "start": 13210.44, + "end": 13214.56, + "probability": 0.9916 + }, + { + "start": 13215.76, + "end": 13216.7, + "probability": 0.9702 + }, + { + "start": 13217.18, + "end": 13217.88, + "probability": 0.9912 + }, + { + "start": 13218.32, + "end": 13224.36, + "probability": 0.9717 + }, + { + "start": 13224.96, + "end": 13226.06, + "probability": 0.9546 + }, + { + "start": 13227.12, + "end": 13229.22, + "probability": 0.8593 + }, + { + "start": 13230.7, + "end": 13233.46, + "probability": 0.929 + }, + { + "start": 13234.04, + "end": 13234.6, + "probability": 0.9729 + }, + { + "start": 13235.62, + "end": 13239.4, + "probability": 0.9696 + }, + { + "start": 13240.08, + "end": 13242.24, + "probability": 0.7554 + }, + { + "start": 13242.8, + "end": 13246.32, + "probability": 0.9811 + }, + { + "start": 13246.74, + "end": 13249.96, + "probability": 0.9923 + }, + { + "start": 13250.78, + "end": 13251.18, + "probability": 0.8528 + }, + { + "start": 13252.24, + "end": 13253.24, + "probability": 0.9653 + }, + { + "start": 13253.76, + "end": 13256.54, + "probability": 0.9865 + }, + { + "start": 13257.58, + "end": 13260.64, + "probability": 0.769 + }, + { + "start": 13261.06, + "end": 13265.82, + "probability": 0.9706 + }, + { + "start": 13266.24, + "end": 13267.68, + "probability": 0.8668 + }, + { + "start": 13269.1, + "end": 13269.16, + "probability": 0.0196 + }, + { + "start": 13269.24, + "end": 13270.28, + "probability": 0.8979 + }, + { + "start": 13270.46, + "end": 13271.32, + "probability": 0.8575 + }, + { + "start": 13271.52, + "end": 13275.34, + "probability": 0.9899 + }, + { + "start": 13275.84, + "end": 13277.37, + "probability": 0.9409 + }, + { + "start": 13277.92, + "end": 13281.42, + "probability": 0.975 + }, + { + "start": 13281.94, + "end": 13282.86, + "probability": 0.5946 + }, + { + "start": 13284.48, + "end": 13287.88, + "probability": 0.9026 + }, + { + "start": 13288.3, + "end": 13290.3, + "probability": 0.9585 + }, + { + "start": 13291.96, + "end": 13292.93, + "probability": 0.9514 + }, + { + "start": 13293.58, + "end": 13298.8, + "probability": 0.8806 + }, + { + "start": 13300.04, + "end": 13305.42, + "probability": 0.9801 + }, + { + "start": 13305.42, + "end": 13309.5, + "probability": 0.9839 + }, + { + "start": 13311.34, + "end": 13312.92, + "probability": 0.631 + }, + { + "start": 13314.1, + "end": 13314.68, + "probability": 0.8621 + }, + { + "start": 13315.28, + "end": 13315.9, + "probability": 0.9006 + }, + { + "start": 13318.9, + "end": 13320.84, + "probability": 0.8232 + }, + { + "start": 13321.5, + "end": 13322.2, + "probability": 0.9824 + }, + { + "start": 13322.78, + "end": 13326.04, + "probability": 0.9496 + }, + { + "start": 13327.06, + "end": 13329.48, + "probability": 0.7979 + }, + { + "start": 13330.64, + "end": 13335.4, + "probability": 0.9926 + }, + { + "start": 13336.44, + "end": 13338.38, + "probability": 0.872 + }, + { + "start": 13338.96, + "end": 13342.0, + "probability": 0.9966 + }, + { + "start": 13342.52, + "end": 13344.02, + "probability": 0.9827 + }, + { + "start": 13345.46, + "end": 13353.08, + "probability": 0.9883 + }, + { + "start": 13354.26, + "end": 13358.28, + "probability": 0.8288 + }, + { + "start": 13358.86, + "end": 13364.56, + "probability": 0.9863 + }, + { + "start": 13365.62, + "end": 13367.76, + "probability": 0.9886 + }, + { + "start": 13368.44, + "end": 13370.44, + "probability": 0.9488 + }, + { + "start": 13371.12, + "end": 13372.14, + "probability": 0.7138 + }, + { + "start": 13372.82, + "end": 13374.38, + "probability": 0.9797 + }, + { + "start": 13374.98, + "end": 13376.01, + "probability": 0.5163 + }, + { + "start": 13376.56, + "end": 13382.04, + "probability": 0.8695 + }, + { + "start": 13383.52, + "end": 13388.16, + "probability": 0.8976 + }, + { + "start": 13388.74, + "end": 13389.26, + "probability": 0.538 + }, + { + "start": 13389.44, + "end": 13390.06, + "probability": 0.9554 + }, + { + "start": 13390.52, + "end": 13393.9, + "probability": 0.9826 + }, + { + "start": 13394.3, + "end": 13396.28, + "probability": 0.9464 + }, + { + "start": 13397.46, + "end": 13398.08, + "probability": 0.7659 + }, + { + "start": 13398.66, + "end": 13400.02, + "probability": 0.9853 + }, + { + "start": 13400.62, + "end": 13403.24, + "probability": 0.9699 + }, + { + "start": 13403.92, + "end": 13404.8, + "probability": 0.9879 + }, + { + "start": 13405.54, + "end": 13408.8, + "probability": 0.9622 + }, + { + "start": 13409.64, + "end": 13412.76, + "probability": 0.9521 + }, + { + "start": 13413.46, + "end": 13418.34, + "probability": 0.9895 + }, + { + "start": 13419.78, + "end": 13421.36, + "probability": 0.981 + }, + { + "start": 13421.94, + "end": 13425.6, + "probability": 0.9814 + }, + { + "start": 13426.96, + "end": 13436.24, + "probability": 0.9868 + }, + { + "start": 13437.24, + "end": 13437.88, + "probability": 0.5307 + }, + { + "start": 13439.3, + "end": 13443.34, + "probability": 0.9855 + }, + { + "start": 13444.86, + "end": 13447.52, + "probability": 0.9721 + }, + { + "start": 13448.78, + "end": 13451.22, + "probability": 0.9965 + }, + { + "start": 13451.8, + "end": 13456.92, + "probability": 0.9989 + }, + { + "start": 13457.48, + "end": 13462.32, + "probability": 0.9992 + }, + { + "start": 13463.74, + "end": 13464.76, + "probability": 0.5277 + }, + { + "start": 13465.76, + "end": 13467.12, + "probability": 0.984 + }, + { + "start": 13468.22, + "end": 13469.1, + "probability": 0.9626 + }, + { + "start": 13470.2, + "end": 13472.02, + "probability": 0.9539 + }, + { + "start": 13472.4, + "end": 13475.84, + "probability": 0.9852 + }, + { + "start": 13476.36, + "end": 13479.56, + "probability": 0.9952 + }, + { + "start": 13480.12, + "end": 13483.84, + "probability": 0.9403 + }, + { + "start": 13484.36, + "end": 13485.96, + "probability": 0.9897 + }, + { + "start": 13486.54, + "end": 13490.7, + "probability": 0.6404 + }, + { + "start": 13491.4, + "end": 13496.88, + "probability": 0.929 + }, + { + "start": 13496.88, + "end": 13503.04, + "probability": 0.9968 + }, + { + "start": 13504.06, + "end": 13508.5, + "probability": 0.9891 + }, + { + "start": 13509.64, + "end": 13514.0, + "probability": 0.991 + }, + { + "start": 13514.98, + "end": 13517.9, + "probability": 0.8691 + }, + { + "start": 13518.4, + "end": 13520.56, + "probability": 0.9595 + }, + { + "start": 13522.12, + "end": 13523.58, + "probability": 0.8408 + }, + { + "start": 13524.76, + "end": 13525.66, + "probability": 0.9793 + }, + { + "start": 13526.36, + "end": 13527.7, + "probability": 0.9964 + }, + { + "start": 13528.55, + "end": 13529.0, + "probability": 0.9967 + }, + { + "start": 13530.08, + "end": 13531.96, + "probability": 0.9746 + }, + { + "start": 13532.6, + "end": 13536.6, + "probability": 0.9573 + }, + { + "start": 13537.58, + "end": 13538.55, + "probability": 0.9858 + }, + { + "start": 13539.36, + "end": 13540.5, + "probability": 0.9374 + }, + { + "start": 13541.2, + "end": 13542.04, + "probability": 0.9557 + }, + { + "start": 13542.78, + "end": 13546.0, + "probability": 0.9929 + }, + { + "start": 13546.54, + "end": 13552.58, + "probability": 0.974 + }, + { + "start": 13552.58, + "end": 13557.12, + "probability": 0.9966 + }, + { + "start": 13557.78, + "end": 13559.72, + "probability": 0.8909 + }, + { + "start": 13560.92, + "end": 13564.2, + "probability": 0.8516 + }, + { + "start": 13566.22, + "end": 13569.88, + "probability": 0.8288 + }, + { + "start": 13570.76, + "end": 13576.02, + "probability": 0.9897 + }, + { + "start": 13577.94, + "end": 13578.96, + "probability": 0.8819 + }, + { + "start": 13579.58, + "end": 13580.58, + "probability": 0.9737 + }, + { + "start": 13581.18, + "end": 13583.72, + "probability": 0.9982 + }, + { + "start": 13584.5, + "end": 13587.58, + "probability": 0.9986 + }, + { + "start": 13587.58, + "end": 13591.06, + "probability": 0.9927 + }, + { + "start": 13594.86, + "end": 13597.4, + "probability": 0.9283 + }, + { + "start": 13598.24, + "end": 13602.18, + "probability": 0.9976 + }, + { + "start": 13602.76, + "end": 13603.24, + "probability": 0.9994 + }, + { + "start": 13603.9, + "end": 13605.74, + "probability": 0.9888 + }, + { + "start": 13606.88, + "end": 13608.56, + "probability": 0.9985 + }, + { + "start": 13609.12, + "end": 13611.3, + "probability": 0.9941 + }, + { + "start": 13612.54, + "end": 13612.76, + "probability": 0.5584 + }, + { + "start": 13613.78, + "end": 13617.98, + "probability": 0.9928 + }, + { + "start": 13618.64, + "end": 13619.92, + "probability": 0.958 + }, + { + "start": 13620.44, + "end": 13621.96, + "probability": 0.8485 + }, + { + "start": 13622.74, + "end": 13625.04, + "probability": 0.9474 + }, + { + "start": 13626.04, + "end": 13627.54, + "probability": 0.986 + }, + { + "start": 13629.06, + "end": 13632.76, + "probability": 0.9927 + }, + { + "start": 13633.38, + "end": 13634.74, + "probability": 0.9605 + }, + { + "start": 13635.52, + "end": 13636.28, + "probability": 0.7153 + }, + { + "start": 13637.52, + "end": 13643.1, + "probability": 0.995 + }, + { + "start": 13643.74, + "end": 13644.46, + "probability": 0.382 + }, + { + "start": 13645.74, + "end": 13648.81, + "probability": 0.949 + }, + { + "start": 13649.6, + "end": 13652.18, + "probability": 0.9502 + }, + { + "start": 13653.1, + "end": 13655.52, + "probability": 0.9965 + }, + { + "start": 13656.08, + "end": 13657.3, + "probability": 0.4243 + }, + { + "start": 13658.7, + "end": 13661.14, + "probability": 0.9972 + }, + { + "start": 13661.94, + "end": 13663.64, + "probability": 0.7814 + }, + { + "start": 13664.82, + "end": 13667.94, + "probability": 0.9917 + }, + { + "start": 13668.5, + "end": 13670.06, + "probability": 0.9643 + }, + { + "start": 13670.58, + "end": 13671.82, + "probability": 0.9854 + }, + { + "start": 13673.08, + "end": 13673.94, + "probability": 0.9594 + }, + { + "start": 13674.68, + "end": 13679.52, + "probability": 0.9935 + }, + { + "start": 13680.52, + "end": 13684.28, + "probability": 0.9897 + }, + { + "start": 13685.36, + "end": 13686.52, + "probability": 0.968 + }, + { + "start": 13687.3, + "end": 13688.84, + "probability": 0.9502 + }, + { + "start": 13689.44, + "end": 13692.24, + "probability": 0.9513 + }, + { + "start": 13692.74, + "end": 13695.86, + "probability": 0.9834 + }, + { + "start": 13695.86, + "end": 13699.76, + "probability": 0.9949 + }, + { + "start": 13701.22, + "end": 13703.26, + "probability": 0.9503 + }, + { + "start": 13703.8, + "end": 13704.66, + "probability": 0.9629 + }, + { + "start": 13705.72, + "end": 13706.9, + "probability": 0.7383 + }, + { + "start": 13707.32, + "end": 13711.9, + "probability": 0.9897 + }, + { + "start": 13713.12, + "end": 13713.8, + "probability": 0.9507 + }, + { + "start": 13714.9, + "end": 13719.64, + "probability": 0.9822 + }, + { + "start": 13720.1, + "end": 13721.26, + "probability": 0.8924 + }, + { + "start": 13724.68, + "end": 13726.24, + "probability": 0.6357 + }, + { + "start": 13727.16, + "end": 13728.84, + "probability": 0.9098 + }, + { + "start": 13729.88, + "end": 13731.5, + "probability": 0.9265 + }, + { + "start": 13732.38, + "end": 13734.64, + "probability": 0.9634 + }, + { + "start": 13736.48, + "end": 13739.08, + "probability": 0.8651 + }, + { + "start": 13739.62, + "end": 13740.38, + "probability": 0.9169 + }, + { + "start": 13741.26, + "end": 13744.42, + "probability": 0.993 + }, + { + "start": 13745.64, + "end": 13749.78, + "probability": 0.9634 + }, + { + "start": 13751.3, + "end": 13751.96, + "probability": 0.9005 + }, + { + "start": 13752.92, + "end": 13756.94, + "probability": 0.9707 + }, + { + "start": 13757.34, + "end": 13763.14, + "probability": 0.9976 + }, + { + "start": 13765.26, + "end": 13767.94, + "probability": 0.8685 + }, + { + "start": 13769.08, + "end": 13769.44, + "probability": 0.726 + }, + { + "start": 13769.46, + "end": 13771.48, + "probability": 0.9001 + }, + { + "start": 13771.98, + "end": 13773.58, + "probability": 0.9288 + }, + { + "start": 13773.96, + "end": 13774.12, + "probability": 0.9181 + }, + { + "start": 13775.88, + "end": 13778.14, + "probability": 0.9252 + }, + { + "start": 13779.44, + "end": 13784.68, + "probability": 0.9788 + }, + { + "start": 13785.18, + "end": 13791.5, + "probability": 0.9837 + }, + { + "start": 13791.98, + "end": 13795.62, + "probability": 0.9947 + }, + { + "start": 13796.72, + "end": 13801.24, + "probability": 0.9871 + }, + { + "start": 13801.8, + "end": 13805.58, + "probability": 0.991 + }, + { + "start": 13807.26, + "end": 13808.24, + "probability": 0.872 + }, + { + "start": 13808.78, + "end": 13813.86, + "probability": 0.8333 + }, + { + "start": 13814.4, + "end": 13815.48, + "probability": 0.7715 + }, + { + "start": 13815.98, + "end": 13820.14, + "probability": 0.9689 + }, + { + "start": 13821.16, + "end": 13823.0, + "probability": 0.9938 + }, + { + "start": 13823.94, + "end": 13825.62, + "probability": 0.8302 + }, + { + "start": 13826.9, + "end": 13828.0, + "probability": 0.7796 + }, + { + "start": 13828.76, + "end": 13831.72, + "probability": 0.9925 + }, + { + "start": 13833.4, + "end": 13834.39, + "probability": 0.9796 + }, + { + "start": 13836.12, + "end": 13839.98, + "probability": 0.9812 + }, + { + "start": 13841.3, + "end": 13841.92, + "probability": 0.4707 + }, + { + "start": 13843.08, + "end": 13845.1, + "probability": 0.8407 + }, + { + "start": 13846.22, + "end": 13851.26, + "probability": 0.9929 + }, + { + "start": 13852.7, + "end": 13856.04, + "probability": 0.9693 + }, + { + "start": 13856.6, + "end": 13861.18, + "probability": 0.9987 + }, + { + "start": 13861.9, + "end": 13863.76, + "probability": 0.9922 + }, + { + "start": 13865.98, + "end": 13867.94, + "probability": 0.9802 + }, + { + "start": 13868.9, + "end": 13871.52, + "probability": 0.957 + }, + { + "start": 13872.18, + "end": 13872.8, + "probability": 0.9671 + }, + { + "start": 13873.02, + "end": 13873.75, + "probability": 0.9684 + }, + { + "start": 13874.06, + "end": 13877.24, + "probability": 0.934 + }, + { + "start": 13877.72, + "end": 13879.1, + "probability": 0.9758 + }, + { + "start": 13879.58, + "end": 13881.54, + "probability": 0.9818 + }, + { + "start": 13882.3, + "end": 13885.02, + "probability": 0.9911 + }, + { + "start": 13886.3, + "end": 13890.98, + "probability": 0.9816 + }, + { + "start": 13891.48, + "end": 13893.02, + "probability": 0.9644 + }, + { + "start": 13893.18, + "end": 13894.26, + "probability": 0.8848 + }, + { + "start": 13895.16, + "end": 13896.74, + "probability": 0.8021 + }, + { + "start": 13897.26, + "end": 13901.36, + "probability": 0.9831 + }, + { + "start": 13902.3, + "end": 13904.4, + "probability": 0.9982 + }, + { + "start": 13905.06, + "end": 13906.04, + "probability": 0.9836 + }, + { + "start": 13906.56, + "end": 13909.4, + "probability": 0.9711 + }, + { + "start": 13910.2, + "end": 13912.36, + "probability": 0.9923 + }, + { + "start": 13912.82, + "end": 13915.46, + "probability": 0.9458 + }, + { + "start": 13917.06, + "end": 13920.84, + "probability": 0.9567 + }, + { + "start": 13921.78, + "end": 13923.26, + "probability": 0.9668 + }, + { + "start": 13924.5, + "end": 13927.34, + "probability": 0.9883 + }, + { + "start": 13928.66, + "end": 13930.29, + "probability": 0.8342 + }, + { + "start": 13930.92, + "end": 13933.52, + "probability": 0.9841 + }, + { + "start": 13934.08, + "end": 13936.74, + "probability": 0.8552 + }, + { + "start": 13937.96, + "end": 13939.96, + "probability": 0.9059 + }, + { + "start": 13940.92, + "end": 13944.55, + "probability": 0.9797 + }, + { + "start": 13945.08, + "end": 13945.92, + "probability": 0.9152 + }, + { + "start": 13946.88, + "end": 13948.5, + "probability": 0.9336 + }, + { + "start": 13949.64, + "end": 13952.28, + "probability": 0.6978 + }, + { + "start": 13953.56, + "end": 13956.1, + "probability": 0.8971 + }, + { + "start": 13956.94, + "end": 13957.72, + "probability": 0.9331 + }, + { + "start": 13958.62, + "end": 13961.48, + "probability": 0.9785 + }, + { + "start": 13961.7, + "end": 13962.12, + "probability": 0.9475 + }, + { + "start": 13963.46, + "end": 13966.16, + "probability": 0.6325 + }, + { + "start": 13966.34, + "end": 13967.48, + "probability": 0.5066 + }, + { + "start": 13970.35, + "end": 13971.35, + "probability": 0.0508 + }, + { + "start": 13971.58, + "end": 13972.08, + "probability": 0.1149 + }, + { + "start": 13972.08, + "end": 13972.08, + "probability": 0.0543 + }, + { + "start": 13972.08, + "end": 13973.44, + "probability": 0.2559 + }, + { + "start": 13973.6, + "end": 13975.12, + "probability": 0.6885 + }, + { + "start": 13975.5, + "end": 13977.3, + "probability": 0.9927 + }, + { + "start": 13978.14, + "end": 13980.4, + "probability": 0.9038 + }, + { + "start": 13981.2, + "end": 13982.68, + "probability": 0.9944 + }, + { + "start": 13983.76, + "end": 13986.4, + "probability": 0.6233 + }, + { + "start": 13989.78, + "end": 13994.26, + "probability": 0.8947 + }, + { + "start": 13994.6, + "end": 13995.98, + "probability": 0.861 + }, + { + "start": 13996.58, + "end": 13997.0, + "probability": 0.7274 + }, + { + "start": 13997.56, + "end": 13998.3, + "probability": 0.7297 + }, + { + "start": 13998.96, + "end": 13999.0, + "probability": 0.4146 + }, + { + "start": 13999.0, + "end": 13999.84, + "probability": 0.914 + }, + { + "start": 14000.16, + "end": 14001.26, + "probability": 0.9398 + }, + { + "start": 14001.54, + "end": 14002.27, + "probability": 0.8216 + }, + { + "start": 14003.14, + "end": 14006.11, + "probability": 0.9843 + }, + { + "start": 14006.28, + "end": 14008.34, + "probability": 0.911 + }, + { + "start": 14008.66, + "end": 14012.18, + "probability": 0.3814 + }, + { + "start": 14012.32, + "end": 14013.36, + "probability": 0.9087 + }, + { + "start": 14013.84, + "end": 14014.22, + "probability": 0.4687 + }, + { + "start": 14014.6, + "end": 14014.76, + "probability": 0.6794 + }, + { + "start": 14017.26, + "end": 14018.43, + "probability": 0.0509 + }, + { + "start": 14018.78, + "end": 14020.44, + "probability": 0.0251 + }, + { + "start": 14020.58, + "end": 14023.3, + "probability": 0.1406 + }, + { + "start": 14023.8, + "end": 14024.32, + "probability": 0.111 + }, + { + "start": 14024.84, + "end": 14025.8, + "probability": 0.5962 + }, + { + "start": 14025.92, + "end": 14026.88, + "probability": 0.0308 + }, + { + "start": 14027.04, + "end": 14028.06, + "probability": 0.4949 + }, + { + "start": 14028.58, + "end": 14035.04, + "probability": 0.8492 + }, + { + "start": 14035.08, + "end": 14036.44, + "probability": 0.9619 + }, + { + "start": 14037.02, + "end": 14037.72, + "probability": 0.9194 + }, + { + "start": 14037.72, + "end": 14041.06, + "probability": 0.8813 + }, + { + "start": 14041.16, + "end": 14044.8, + "probability": 0.9871 + }, + { + "start": 14045.76, + "end": 14046.86, + "probability": 0.5746 + }, + { + "start": 14047.62, + "end": 14047.98, + "probability": 0.7768 + }, + { + "start": 14048.6, + "end": 14049.97, + "probability": 0.9624 + }, + { + "start": 14050.72, + "end": 14052.36, + "probability": 0.779 + }, + { + "start": 14054.12, + "end": 14054.96, + "probability": 0.2609 + }, + { + "start": 14054.96, + "end": 14055.64, + "probability": 0.1228 + }, + { + "start": 14055.64, + "end": 14056.32, + "probability": 0.5171 + }, + { + "start": 14056.38, + "end": 14060.48, + "probability": 0.9546 + }, + { + "start": 14061.42, + "end": 14064.86, + "probability": 0.9933 + }, + { + "start": 14065.26, + "end": 14065.84, + "probability": 0.658 + }, + { + "start": 14066.82, + "end": 14069.76, + "probability": 0.0196 + }, + { + "start": 14069.78, + "end": 14071.24, + "probability": 0.8691 + }, + { + "start": 14071.54, + "end": 14075.4, + "probability": 0.8926 + }, + { + "start": 14075.98, + "end": 14076.98, + "probability": 0.1003 + }, + { + "start": 14077.44, + "end": 14081.44, + "probability": 0.5475 + }, + { + "start": 14081.96, + "end": 14084.66, + "probability": 0.8525 + }, + { + "start": 14085.24, + "end": 14085.92, + "probability": 0.1531 + }, + { + "start": 14086.2, + "end": 14088.52, + "probability": 0.4824 + }, + { + "start": 14088.68, + "end": 14088.72, + "probability": 0.0655 + }, + { + "start": 14088.88, + "end": 14090.36, + "probability": 0.2491 + }, + { + "start": 14090.64, + "end": 14092.22, + "probability": 0.5438 + }, + { + "start": 14092.92, + "end": 14095.98, + "probability": 0.7275 + }, + { + "start": 14096.4, + "end": 14098.14, + "probability": 0.8298 + }, + { + "start": 14098.7, + "end": 14100.78, + "probability": 0.3467 + }, + { + "start": 14101.06, + "end": 14101.8, + "probability": 0.47 + }, + { + "start": 14102.17, + "end": 14103.82, + "probability": 0.5771 + }, + { + "start": 14104.08, + "end": 14105.22, + "probability": 0.9832 + }, + { + "start": 14105.54, + "end": 14108.12, + "probability": 0.9661 + }, + { + "start": 14108.4, + "end": 14108.68, + "probability": 0.6047 + }, + { + "start": 14109.66, + "end": 14110.22, + "probability": 0.6877 + }, + { + "start": 14110.48, + "end": 14112.08, + "probability": 0.8818 + }, + { + "start": 14112.08, + "end": 14112.64, + "probability": 0.7586 + }, + { + "start": 14112.78, + "end": 14113.52, + "probability": 0.7615 + }, + { + "start": 14114.5, + "end": 14115.48, + "probability": 0.7536 + }, + { + "start": 14115.76, + "end": 14118.86, + "probability": 0.992 + }, + { + "start": 14119.1, + "end": 14126.5, + "probability": 0.8395 + }, + { + "start": 14127.76, + "end": 14129.14, + "probability": 0.9968 + }, + { + "start": 14130.12, + "end": 14131.0, + "probability": 0.9927 + }, + { + "start": 14131.8, + "end": 14134.12, + "probability": 0.9048 + }, + { + "start": 14134.24, + "end": 14137.66, + "probability": 0.9927 + }, + { + "start": 14138.24, + "end": 14140.32, + "probability": 0.9979 + }, + { + "start": 14140.86, + "end": 14146.4, + "probability": 0.9614 + }, + { + "start": 14147.4, + "end": 14150.96, + "probability": 0.9617 + }, + { + "start": 14151.1, + "end": 14153.88, + "probability": 0.9932 + }, + { + "start": 14155.24, + "end": 14155.96, + "probability": 0.2638 + }, + { + "start": 14156.84, + "end": 14162.44, + "probability": 0.8769 + }, + { + "start": 14163.78, + "end": 14171.32, + "probability": 0.9912 + }, + { + "start": 14173.44, + "end": 14174.4, + "probability": 0.9349 + }, + { + "start": 14174.58, + "end": 14177.0, + "probability": 0.9626 + }, + { + "start": 14177.15, + "end": 14180.8, + "probability": 0.9961 + }, + { + "start": 14182.42, + "end": 14185.22, + "probability": 0.9971 + }, + { + "start": 14186.14, + "end": 14191.98, + "probability": 0.9953 + }, + { + "start": 14191.98, + "end": 14195.6, + "probability": 0.7658 + }, + { + "start": 14197.1, + "end": 14200.78, + "probability": 0.9829 + }, + { + "start": 14202.26, + "end": 14209.62, + "probability": 0.9604 + }, + { + "start": 14210.08, + "end": 14210.74, + "probability": 0.9915 + }, + { + "start": 14212.86, + "end": 14214.14, + "probability": 0.9653 + }, + { + "start": 14214.72, + "end": 14215.38, + "probability": 0.7804 + }, + { + "start": 14215.66, + "end": 14221.38, + "probability": 0.985 + }, + { + "start": 14221.38, + "end": 14225.7, + "probability": 0.9995 + }, + { + "start": 14227.34, + "end": 14228.52, + "probability": 0.9859 + }, + { + "start": 14229.66, + "end": 14232.06, + "probability": 0.9822 + }, + { + "start": 14232.88, + "end": 14238.04, + "probability": 0.9499 + }, + { + "start": 14239.88, + "end": 14247.16, + "probability": 0.998 + }, + { + "start": 14248.54, + "end": 14250.64, + "probability": 0.9919 + }, + { + "start": 14251.66, + "end": 14253.1, + "probability": 0.9756 + }, + { + "start": 14253.84, + "end": 14256.94, + "probability": 0.9932 + }, + { + "start": 14257.3, + "end": 14257.94, + "probability": 0.7297 + }, + { + "start": 14258.14, + "end": 14260.4, + "probability": 0.9929 + }, + { + "start": 14261.36, + "end": 14263.52, + "probability": 0.987 + }, + { + "start": 14264.2, + "end": 14265.42, + "probability": 0.9929 + }, + { + "start": 14266.14, + "end": 14270.48, + "probability": 0.9953 + }, + { + "start": 14271.16, + "end": 14276.56, + "probability": 0.9764 + }, + { + "start": 14278.1, + "end": 14282.8, + "probability": 0.9847 + }, + { + "start": 14283.14, + "end": 14283.56, + "probability": 0.5923 + }, + { + "start": 14283.72, + "end": 14284.7, + "probability": 0.7234 + }, + { + "start": 14284.96, + "end": 14287.08, + "probability": 0.8513 + }, + { + "start": 14288.3, + "end": 14291.02, + "probability": 0.9936 + }, + { + "start": 14293.1, + "end": 14295.08, + "probability": 0.8777 + }, + { + "start": 14295.82, + "end": 14297.85, + "probability": 0.9648 + }, + { + "start": 14298.02, + "end": 14302.04, + "probability": 0.9948 + }, + { + "start": 14302.12, + "end": 14303.56, + "probability": 0.8 + }, + { + "start": 14304.52, + "end": 14305.96, + "probability": 0.9512 + }, + { + "start": 14306.64, + "end": 14308.28, + "probability": 0.9917 + }, + { + "start": 14309.12, + "end": 14311.06, + "probability": 0.5513 + }, + { + "start": 14314.14, + "end": 14317.62, + "probability": 0.9941 + }, + { + "start": 14318.28, + "end": 14320.4, + "probability": 0.9995 + }, + { + "start": 14322.28, + "end": 14324.93, + "probability": 0.975 + }, + { + "start": 14325.04, + "end": 14327.02, + "probability": 0.8591 + }, + { + "start": 14328.66, + "end": 14330.82, + "probability": 0.9828 + }, + { + "start": 14332.04, + "end": 14339.56, + "probability": 0.9686 + }, + { + "start": 14340.98, + "end": 14341.3, + "probability": 0.8351 + }, + { + "start": 14342.24, + "end": 14342.98, + "probability": 0.9622 + }, + { + "start": 14343.72, + "end": 14344.98, + "probability": 0.9985 + }, + { + "start": 14346.6, + "end": 14349.08, + "probability": 0.8575 + }, + { + "start": 14350.22, + "end": 14352.15, + "probability": 0.8939 + }, + { + "start": 14352.9, + "end": 14355.38, + "probability": 0.8801 + }, + { + "start": 14356.88, + "end": 14357.64, + "probability": 0.9636 + }, + { + "start": 14358.44, + "end": 14361.94, + "probability": 0.9871 + }, + { + "start": 14363.32, + "end": 14368.18, + "probability": 0.9886 + }, + { + "start": 14368.84, + "end": 14372.34, + "probability": 0.9727 + }, + { + "start": 14373.16, + "end": 14376.62, + "probability": 0.9968 + }, + { + "start": 14377.14, + "end": 14378.72, + "probability": 0.9993 + }, + { + "start": 14380.52, + "end": 14384.38, + "probability": 0.9771 + }, + { + "start": 14385.68, + "end": 14388.38, + "probability": 0.9856 + }, + { + "start": 14388.46, + "end": 14392.48, + "probability": 0.946 + }, + { + "start": 14392.48, + "end": 14397.02, + "probability": 0.9956 + }, + { + "start": 14398.76, + "end": 14400.54, + "probability": 0.9883 + }, + { + "start": 14402.04, + "end": 14402.48, + "probability": 0.8369 + }, + { + "start": 14406.18, + "end": 14408.7, + "probability": 0.8081 + }, + { + "start": 14409.54, + "end": 14413.3, + "probability": 0.9976 + }, + { + "start": 14414.46, + "end": 14418.2, + "probability": 0.9956 + }, + { + "start": 14421.1, + "end": 14422.32, + "probability": 0.8981 + }, + { + "start": 14424.86, + "end": 14426.08, + "probability": 0.9995 + }, + { + "start": 14426.84, + "end": 14429.38, + "probability": 0.8909 + }, + { + "start": 14430.4, + "end": 14433.39, + "probability": 0.9941 + }, + { + "start": 14433.46, + "end": 14435.98, + "probability": 0.9767 + }, + { + "start": 14437.24, + "end": 14439.02, + "probability": 0.9989 + }, + { + "start": 14439.72, + "end": 14442.5, + "probability": 0.9739 + }, + { + "start": 14443.24, + "end": 14446.38, + "probability": 0.9246 + }, + { + "start": 14446.56, + "end": 14447.68, + "probability": 0.9037 + }, + { + "start": 14448.58, + "end": 14449.6, + "probability": 0.9774 + }, + { + "start": 14450.6, + "end": 14451.74, + "probability": 0.9273 + }, + { + "start": 14452.38, + "end": 14456.9, + "probability": 0.9033 + }, + { + "start": 14458.36, + "end": 14458.82, + "probability": 0.9301 + }, + { + "start": 14458.9, + "end": 14462.92, + "probability": 0.9945 + }, + { + "start": 14462.92, + "end": 14467.2, + "probability": 0.9968 + }, + { + "start": 14467.32, + "end": 14467.94, + "probability": 0.2522 + }, + { + "start": 14468.2, + "end": 14469.16, + "probability": 0.9893 + }, + { + "start": 14471.0, + "end": 14472.18, + "probability": 0.9563 + }, + { + "start": 14472.96, + "end": 14477.84, + "probability": 0.9951 + }, + { + "start": 14478.44, + "end": 14479.82, + "probability": 0.985 + }, + { + "start": 14481.96, + "end": 14487.7, + "probability": 0.99 + }, + { + "start": 14488.22, + "end": 14490.02, + "probability": 0.9645 + }, + { + "start": 14491.7, + "end": 14493.36, + "probability": 0.9126 + }, + { + "start": 14494.86, + "end": 14497.72, + "probability": 0.9669 + }, + { + "start": 14497.9, + "end": 14500.68, + "probability": 0.9971 + }, + { + "start": 14502.96, + "end": 14508.16, + "probability": 0.9889 + }, + { + "start": 14508.96, + "end": 14510.12, + "probability": 0.5796 + }, + { + "start": 14510.36, + "end": 14513.32, + "probability": 0.9871 + }, + { + "start": 14514.28, + "end": 14515.84, + "probability": 0.6671 + }, + { + "start": 14515.94, + "end": 14516.76, + "probability": 0.9697 + }, + { + "start": 14516.86, + "end": 14518.4, + "probability": 0.9729 + }, + { + "start": 14518.62, + "end": 14518.9, + "probability": 0.6433 + }, + { + "start": 14519.42, + "end": 14519.42, + "probability": 0.4679 + }, + { + "start": 14519.42, + "end": 14521.14, + "probability": 0.8928 + }, + { + "start": 14521.66, + "end": 14523.7, + "probability": 0.998 + }, + { + "start": 14525.7, + "end": 14527.12, + "probability": 0.8947 + }, + { + "start": 14527.22, + "end": 14529.3, + "probability": 0.9976 + }, + { + "start": 14530.16, + "end": 14532.36, + "probability": 0.8271 + }, + { + "start": 14533.18, + "end": 14534.94, + "probability": 0.8203 + }, + { + "start": 14534.96, + "end": 14537.18, + "probability": 0.9568 + }, + { + "start": 14537.62, + "end": 14538.82, + "probability": 0.8569 + }, + { + "start": 14539.14, + "end": 14542.34, + "probability": 0.8463 + }, + { + "start": 14542.64, + "end": 14546.12, + "probability": 0.9725 + }, + { + "start": 14546.82, + "end": 14550.74, + "probability": 0.8987 + }, + { + "start": 14551.16, + "end": 14553.16, + "probability": 0.5896 + }, + { + "start": 14553.42, + "end": 14557.2, + "probability": 0.9596 + }, + { + "start": 14558.56, + "end": 14561.72, + "probability": 0.8338 + }, + { + "start": 14562.5, + "end": 14563.56, + "probability": 0.833 + }, + { + "start": 14563.94, + "end": 14564.24, + "probability": 0.2539 + }, + { + "start": 14564.28, + "end": 14565.18, + "probability": 0.693 + }, + { + "start": 14565.22, + "end": 14566.58, + "probability": 0.962 + }, + { + "start": 14566.64, + "end": 14567.32, + "probability": 0.689 + }, + { + "start": 14567.66, + "end": 14568.58, + "probability": 0.9438 + }, + { + "start": 14569.28, + "end": 14569.8, + "probability": 0.6237 + }, + { + "start": 14569.88, + "end": 14572.06, + "probability": 0.7546 + }, + { + "start": 14572.08, + "end": 14575.28, + "probability": 0.9257 + }, + { + "start": 14575.58, + "end": 14576.34, + "probability": 0.7906 + }, + { + "start": 14582.52, + "end": 14583.1, + "probability": 0.702 + }, + { + "start": 14583.28, + "end": 14586.64, + "probability": 0.8654 + }, + { + "start": 14587.74, + "end": 14594.1, + "probability": 0.7407 + }, + { + "start": 14594.7, + "end": 14598.36, + "probability": 0.864 + }, + { + "start": 14599.2, + "end": 14600.42, + "probability": 0.727 + }, + { + "start": 14601.2, + "end": 14601.84, + "probability": 0.9385 + }, + { + "start": 14602.56, + "end": 14605.02, + "probability": 0.9912 + }, + { + "start": 14605.52, + "end": 14611.56, + "probability": 0.8674 + }, + { + "start": 14611.56, + "end": 14618.4, + "probability": 0.9764 + }, + { + "start": 14618.4, + "end": 14621.19, + "probability": 0.8307 + }, + { + "start": 14621.94, + "end": 14628.44, + "probability": 0.9286 + }, + { + "start": 14628.94, + "end": 14630.59, + "probability": 0.9914 + }, + { + "start": 14630.76, + "end": 14631.76, + "probability": 0.9956 + }, + { + "start": 14635.46, + "end": 14638.82, + "probability": 0.9884 + }, + { + "start": 14638.9, + "end": 14639.7, + "probability": 0.6956 + }, + { + "start": 14639.76, + "end": 14642.9, + "probability": 0.6842 + }, + { + "start": 14642.98, + "end": 14644.64, + "probability": 0.9938 + }, + { + "start": 14645.4, + "end": 14649.44, + "probability": 0.7684 + }, + { + "start": 14650.04, + "end": 14654.32, + "probability": 0.9798 + }, + { + "start": 14654.7, + "end": 14656.64, + "probability": 0.9971 + }, + { + "start": 14657.0, + "end": 14660.46, + "probability": 0.8889 + }, + { + "start": 14660.5, + "end": 14661.88, + "probability": 0.9252 + }, + { + "start": 14662.32, + "end": 14666.31, + "probability": 0.991 + }, + { + "start": 14666.64, + "end": 14670.06, + "probability": 0.8216 + }, + { + "start": 14670.62, + "end": 14674.76, + "probability": 0.9972 + }, + { + "start": 14674.76, + "end": 14680.08, + "probability": 0.936 + }, + { + "start": 14680.08, + "end": 14685.42, + "probability": 0.9676 + }, + { + "start": 14686.28, + "end": 14691.5, + "probability": 0.96 + }, + { + "start": 14692.44, + "end": 14695.0, + "probability": 0.2089 + }, + { + "start": 14695.7, + "end": 14696.62, + "probability": 0.3612 + }, + { + "start": 14696.74, + "end": 14696.8, + "probability": 0.025 + }, + { + "start": 14696.8, + "end": 14697.9, + "probability": 0.6576 + }, + { + "start": 14698.18, + "end": 14699.02, + "probability": 0.7034 + }, + { + "start": 14699.26, + "end": 14702.76, + "probability": 0.9971 + }, + { + "start": 14703.44, + "end": 14706.54, + "probability": 0.9898 + }, + { + "start": 14706.88, + "end": 14708.84, + "probability": 0.8066 + }, + { + "start": 14709.12, + "end": 14711.46, + "probability": 0.8626 + }, + { + "start": 14712.28, + "end": 14715.08, + "probability": 0.9479 + }, + { + "start": 14715.68, + "end": 14716.92, + "probability": 0.9142 + }, + { + "start": 14718.38, + "end": 14719.25, + "probability": 0.5098 + }, + { + "start": 14720.54, + "end": 14724.02, + "probability": 0.9843 + }, + { + "start": 14724.86, + "end": 14728.54, + "probability": 0.9951 + }, + { + "start": 14729.32, + "end": 14729.84, + "probability": 0.9575 + }, + { + "start": 14730.92, + "end": 14731.58, + "probability": 0.7174 + }, + { + "start": 14733.0, + "end": 14734.34, + "probability": 0.7705 + }, + { + "start": 14734.94, + "end": 14735.78, + "probability": 0.8202 + }, + { + "start": 14736.44, + "end": 14737.66, + "probability": 0.9987 + }, + { + "start": 14739.0, + "end": 14740.5, + "probability": 0.9604 + }, + { + "start": 14741.66, + "end": 14742.28, + "probability": 0.8328 + }, + { + "start": 14743.24, + "end": 14745.26, + "probability": 0.9974 + }, + { + "start": 14745.62, + "end": 14747.84, + "probability": 0.9897 + }, + { + "start": 14747.84, + "end": 14750.22, + "probability": 0.6355 + }, + { + "start": 14751.6, + "end": 14752.3, + "probability": 0.8372 + }, + { + "start": 14752.66, + "end": 14753.76, + "probability": 0.9967 + }, + { + "start": 14754.98, + "end": 14758.06, + "probability": 0.985 + }, + { + "start": 14759.9, + "end": 14763.86, + "probability": 0.892 + }, + { + "start": 14764.12, + "end": 14769.6, + "probability": 0.8404 + }, + { + "start": 14770.26, + "end": 14771.08, + "probability": 0.9642 + }, + { + "start": 14771.72, + "end": 14772.72, + "probability": 0.4312 + }, + { + "start": 14773.38, + "end": 14775.6, + "probability": 0.8649 + }, + { + "start": 14776.28, + "end": 14779.08, + "probability": 0.9498 + }, + { + "start": 14779.84, + "end": 14780.97, + "probability": 0.9363 + }, + { + "start": 14781.04, + "end": 14785.51, + "probability": 0.6864 + }, + { + "start": 14786.68, + "end": 14791.16, + "probability": 0.8161 + }, + { + "start": 14793.29, + "end": 14797.06, + "probability": 0.9985 + }, + { + "start": 14797.06, + "end": 14801.78, + "probability": 0.9937 + }, + { + "start": 14802.46, + "end": 14806.3, + "probability": 0.9929 + }, + { + "start": 14807.16, + "end": 14808.52, + "probability": 0.8926 + }, + { + "start": 14809.62, + "end": 14813.82, + "probability": 0.7483 + }, + { + "start": 14814.58, + "end": 14817.1, + "probability": 0.8691 + }, + { + "start": 14817.58, + "end": 14822.46, + "probability": 0.9946 + }, + { + "start": 14823.4, + "end": 14824.46, + "probability": 0.8903 + }, + { + "start": 14824.6, + "end": 14827.32, + "probability": 0.9148 + }, + { + "start": 14827.48, + "end": 14828.0, + "probability": 0.747 + }, + { + "start": 14828.04, + "end": 14830.9, + "probability": 0.9599 + }, + { + "start": 14830.9, + "end": 14834.96, + "probability": 0.9966 + }, + { + "start": 14835.8, + "end": 14837.76, + "probability": 0.9956 + }, + { + "start": 14838.88, + "end": 14843.6, + "probability": 0.9871 + }, + { + "start": 14844.72, + "end": 14851.4, + "probability": 0.8857 + }, + { + "start": 14851.56, + "end": 14852.34, + "probability": 0.6111 + }, + { + "start": 14852.46, + "end": 14852.6, + "probability": 0.5235 + }, + { + "start": 14853.64, + "end": 14859.32, + "probability": 0.9902 + }, + { + "start": 14859.74, + "end": 14865.18, + "probability": 0.9967 + }, + { + "start": 14865.18, + "end": 14870.9, + "probability": 0.9413 + }, + { + "start": 14873.32, + "end": 14876.14, + "probability": 0.9863 + }, + { + "start": 14876.78, + "end": 14877.7, + "probability": 0.9436 + }, + { + "start": 14879.36, + "end": 14882.72, + "probability": 0.9914 + }, + { + "start": 14882.72, + "end": 14886.56, + "probability": 0.924 + }, + { + "start": 14887.2, + "end": 14889.1, + "probability": 0.9912 + }, + { + "start": 14894.9, + "end": 14897.08, + "probability": 0.8915 + }, + { + "start": 14897.38, + "end": 14898.33, + "probability": 0.9536 + }, + { + "start": 14898.7, + "end": 14900.1, + "probability": 0.9826 + }, + { + "start": 14900.68, + "end": 14902.2, + "probability": 0.9875 + }, + { + "start": 14903.08, + "end": 14905.06, + "probability": 0.9655 + }, + { + "start": 14906.24, + "end": 14910.42, + "probability": 0.9857 + }, + { + "start": 14910.42, + "end": 14913.64, + "probability": 0.9717 + }, + { + "start": 14914.66, + "end": 14917.64, + "probability": 0.9396 + }, + { + "start": 14918.1, + "end": 14920.3, + "probability": 0.8839 + }, + { + "start": 14920.92, + "end": 14921.68, + "probability": 0.9292 + }, + { + "start": 14921.92, + "end": 14927.42, + "probability": 0.9866 + }, + { + "start": 14927.42, + "end": 14931.56, + "probability": 0.8988 + }, + { + "start": 14932.22, + "end": 14936.36, + "probability": 0.8458 + }, + { + "start": 14936.9, + "end": 14940.3, + "probability": 0.7727 + }, + { + "start": 14941.28, + "end": 14943.24, + "probability": 0.9967 + }, + { + "start": 14943.8, + "end": 14948.66, + "probability": 0.9669 + }, + { + "start": 14949.0, + "end": 14953.06, + "probability": 0.9349 + }, + { + "start": 14953.5, + "end": 14957.82, + "probability": 0.9562 + }, + { + "start": 14957.98, + "end": 14958.46, + "probability": 0.9214 + }, + { + "start": 14958.54, + "end": 14959.82, + "probability": 0.9875 + }, + { + "start": 14960.22, + "end": 14965.08, + "probability": 0.895 + }, + { + "start": 14966.56, + "end": 14970.28, + "probability": 0.9551 + }, + { + "start": 14970.42, + "end": 14971.14, + "probability": 0.5967 + }, + { + "start": 14972.22, + "end": 14973.82, + "probability": 0.6419 + }, + { + "start": 14974.44, + "end": 14976.9, + "probability": 0.9492 + }, + { + "start": 14978.0, + "end": 14979.06, + "probability": 0.7786 + }, + { + "start": 14980.06, + "end": 14982.2, + "probability": 0.7437 + }, + { + "start": 14992.12, + "end": 14992.22, + "probability": 0.0136 + }, + { + "start": 14994.14, + "end": 14996.58, + "probability": 0.7313 + }, + { + "start": 14997.44, + "end": 14998.9, + "probability": 0.8563 + }, + { + "start": 15000.18, + "end": 15002.8, + "probability": 0.9842 + }, + { + "start": 15003.62, + "end": 15006.22, + "probability": 0.9673 + }, + { + "start": 15006.98, + "end": 15007.16, + "probability": 0.5387 + }, + { + "start": 15007.98, + "end": 15009.14, + "probability": 0.7657 + }, + { + "start": 15009.8, + "end": 15011.92, + "probability": 0.8414 + }, + { + "start": 15012.88, + "end": 15012.9, + "probability": 0.2858 + }, + { + "start": 15013.0, + "end": 15013.46, + "probability": 0.6506 + }, + { + "start": 15013.54, + "end": 15015.2, + "probability": 0.9619 + }, + { + "start": 15016.14, + "end": 15017.46, + "probability": 0.7725 + }, + { + "start": 15018.24, + "end": 15022.3, + "probability": 0.6826 + }, + { + "start": 15022.44, + "end": 15024.62, + "probability": 0.9951 + }, + { + "start": 15025.3, + "end": 15026.12, + "probability": 0.9941 + }, + { + "start": 15026.86, + "end": 15027.46, + "probability": 0.7088 + }, + { + "start": 15027.54, + "end": 15029.13, + "probability": 0.7207 + }, + { + "start": 15029.84, + "end": 15032.7, + "probability": 0.989 + }, + { + "start": 15033.68, + "end": 15035.02, + "probability": 0.9997 + }, + { + "start": 15035.88, + "end": 15036.92, + "probability": 0.9382 + }, + { + "start": 15037.6, + "end": 15039.48, + "probability": 0.7954 + }, + { + "start": 15040.68, + "end": 15040.78, + "probability": 0.0464 + }, + { + "start": 15040.78, + "end": 15041.06, + "probability": 0.9136 + }, + { + "start": 15042.18, + "end": 15044.22, + "probability": 0.0511 + }, + { + "start": 15044.68, + "end": 15046.58, + "probability": 0.6625 + }, + { + "start": 15047.24, + "end": 15050.54, + "probability": 0.9911 + }, + { + "start": 15051.1, + "end": 15053.5, + "probability": 0.8585 + }, + { + "start": 15054.02, + "end": 15058.34, + "probability": 0.663 + }, + { + "start": 15059.32, + "end": 15060.96, + "probability": 0.9708 + }, + { + "start": 15061.42, + "end": 15064.14, + "probability": 0.9104 + }, + { + "start": 15064.7, + "end": 15065.76, + "probability": 0.7353 + }, + { + "start": 15065.88, + "end": 15068.04, + "probability": 0.9788 + }, + { + "start": 15068.8, + "end": 15070.54, + "probability": 0.7738 + }, + { + "start": 15071.42, + "end": 15074.28, + "probability": 0.8911 + }, + { + "start": 15074.44, + "end": 15075.08, + "probability": 0.9723 + }, + { + "start": 15075.64, + "end": 15078.06, + "probability": 0.6809 + }, + { + "start": 15078.9, + "end": 15079.36, + "probability": 0.0157 + }, + { + "start": 15079.36, + "end": 15080.0, + "probability": 0.8231 + }, + { + "start": 15081.38, + "end": 15083.26, + "probability": 0.9689 + }, + { + "start": 15084.0, + "end": 15085.42, + "probability": 0.7876 + }, + { + "start": 15085.42, + "end": 15087.98, + "probability": 0.7905 + }, + { + "start": 15088.1, + "end": 15089.54, + "probability": 0.7581 + }, + { + "start": 15090.08, + "end": 15091.64, + "probability": 0.8608 + }, + { + "start": 15092.28, + "end": 15093.36, + "probability": 0.9452 + }, + { + "start": 15094.1, + "end": 15096.26, + "probability": 0.9163 + }, + { + "start": 15096.8, + "end": 15098.5, + "probability": 0.9855 + }, + { + "start": 15099.42, + "end": 15100.94, + "probability": 0.9782 + }, + { + "start": 15101.46, + "end": 15102.09, + "probability": 0.8208 + }, + { + "start": 15102.88, + "end": 15104.79, + "probability": 0.6141 + }, + { + "start": 15105.38, + "end": 15106.4, + "probability": 0.5497 + }, + { + "start": 15106.66, + "end": 15108.2, + "probability": 0.9765 + }, + { + "start": 15108.98, + "end": 15110.92, + "probability": 0.7737 + }, + { + "start": 15111.58, + "end": 15114.12, + "probability": 0.9746 + }, + { + "start": 15117.74, + "end": 15117.9, + "probability": 0.1056 + }, + { + "start": 15117.9, + "end": 15118.38, + "probability": 0.2588 + }, + { + "start": 15118.92, + "end": 15121.26, + "probability": 0.8784 + }, + { + "start": 15121.8, + "end": 15124.3, + "probability": 0.957 + }, + { + "start": 15124.96, + "end": 15125.18, + "probability": 0.0141 + }, + { + "start": 15128.22, + "end": 15128.22, + "probability": 0.0077 + }, + { + "start": 15128.22, + "end": 15129.2, + "probability": 0.3367 + }, + { + "start": 15129.82, + "end": 15131.44, + "probability": 0.9573 + }, + { + "start": 15131.96, + "end": 15133.5, + "probability": 0.8827 + }, + { + "start": 15134.02, + "end": 15135.01, + "probability": 0.9775 + }, + { + "start": 15135.86, + "end": 15136.58, + "probability": 0.9764 + }, + { + "start": 15137.26, + "end": 15139.94, + "probability": 0.9963 + }, + { + "start": 15140.94, + "end": 15141.86, + "probability": 0.5885 + }, + { + "start": 15142.76, + "end": 15145.3, + "probability": 0.9862 + }, + { + "start": 15145.86, + "end": 15147.1, + "probability": 0.9104 + }, + { + "start": 15147.68, + "end": 15148.94, + "probability": 0.934 + }, + { + "start": 15149.3, + "end": 15152.68, + "probability": 0.9156 + }, + { + "start": 15153.14, + "end": 15153.98, + "probability": 0.9622 + }, + { + "start": 15154.3, + "end": 15154.65, + "probability": 0.6883 + }, + { + "start": 15155.7, + "end": 15157.28, + "probability": 0.9099 + }, + { + "start": 15157.8, + "end": 15160.4, + "probability": 0.9166 + }, + { + "start": 15160.86, + "end": 15162.9, + "probability": 0.9893 + }, + { + "start": 15163.36, + "end": 15164.04, + "probability": 0.5439 + }, + { + "start": 15164.32, + "end": 15165.28, + "probability": 0.7478 + }, + { + "start": 15165.58, + "end": 15166.28, + "probability": 0.816 + }, + { + "start": 15166.7, + "end": 15167.52, + "probability": 0.2931 + }, + { + "start": 15167.52, + "end": 15167.52, + "probability": 0.2759 + }, + { + "start": 15167.52, + "end": 15169.18, + "probability": 0.7003 + }, + { + "start": 15170.12, + "end": 15172.54, + "probability": 0.1999 + }, + { + "start": 15172.54, + "end": 15172.86, + "probability": 0.7791 + }, + { + "start": 15173.5, + "end": 15175.58, + "probability": 0.8398 + }, + { + "start": 15175.82, + "end": 15177.97, + "probability": 0.6151 + }, + { + "start": 15179.22, + "end": 15180.72, + "probability": 0.9275 + }, + { + "start": 15181.22, + "end": 15183.12, + "probability": 0.7824 + }, + { + "start": 15184.18, + "end": 15184.18, + "probability": 0.1319 + }, + { + "start": 15184.18, + "end": 15186.8, + "probability": 0.7925 + }, + { + "start": 15187.54, + "end": 15188.08, + "probability": 0.4525 + }, + { + "start": 15188.16, + "end": 15188.82, + "probability": 0.7042 + }, + { + "start": 15188.88, + "end": 15191.7, + "probability": 0.9118 + }, + { + "start": 15191.86, + "end": 15192.6, + "probability": 0.6837 + }, + { + "start": 15193.32, + "end": 15194.72, + "probability": 0.9549 + }, + { + "start": 15195.9, + "end": 15197.2, + "probability": 0.7812 + }, + { + "start": 15197.8, + "end": 15200.78, + "probability": 0.8938 + }, + { + "start": 15201.3, + "end": 15202.35, + "probability": 0.9683 + }, + { + "start": 15202.7, + "end": 15204.2, + "probability": 0.8305 + }, + { + "start": 15204.68, + "end": 15205.08, + "probability": 0.8133 + }, + { + "start": 15205.54, + "end": 15206.68, + "probability": 0.8395 + }, + { + "start": 15207.18, + "end": 15208.84, + "probability": 0.974 + }, + { + "start": 15209.26, + "end": 15210.06, + "probability": 0.9471 + }, + { + "start": 15210.56, + "end": 15213.42, + "probability": 0.7455 + }, + { + "start": 15213.96, + "end": 15214.96, + "probability": 0.2569 + }, + { + "start": 15215.92, + "end": 15216.9, + "probability": 0.0702 + }, + { + "start": 15216.9, + "end": 15218.6, + "probability": 0.7375 + }, + { + "start": 15218.9, + "end": 15219.8, + "probability": 0.8673 + }, + { + "start": 15220.02, + "end": 15220.5, + "probability": 0.4695 + }, + { + "start": 15220.5, + "end": 15220.92, + "probability": 0.8195 + }, + { + "start": 15220.98, + "end": 15223.0, + "probability": 0.9247 + }, + { + "start": 15223.26, + "end": 15224.12, + "probability": 0.9372 + }, + { + "start": 15224.88, + "end": 15226.26, + "probability": 0.7978 + }, + { + "start": 15226.3, + "end": 15227.1, + "probability": 0.5183 + }, + { + "start": 15227.58, + "end": 15228.84, + "probability": 0.8423 + }, + { + "start": 15229.58, + "end": 15231.5, + "probability": 0.984 + }, + { + "start": 15232.2, + "end": 15235.66, + "probability": 0.9106 + }, + { + "start": 15237.0, + "end": 15238.7, + "probability": 0.2069 + }, + { + "start": 15239.64, + "end": 15242.78, + "probability": 0.8727 + }, + { + "start": 15243.36, + "end": 15244.78, + "probability": 0.9097 + }, + { + "start": 15244.86, + "end": 15244.86, + "probability": 0.0743 + }, + { + "start": 15244.86, + "end": 15247.96, + "probability": 0.9031 + }, + { + "start": 15248.82, + "end": 15250.68, + "probability": 0.9983 + }, + { + "start": 15251.3, + "end": 15251.88, + "probability": 0.7293 + }, + { + "start": 15252.0, + "end": 15255.16, + "probability": 0.8922 + }, + { + "start": 15255.28, + "end": 15257.86, + "probability": 0.6693 + }, + { + "start": 15258.24, + "end": 15259.08, + "probability": 0.8446 + }, + { + "start": 15259.18, + "end": 15260.4, + "probability": 0.8823 + }, + { + "start": 15260.88, + "end": 15263.78, + "probability": 0.9459 + }, + { + "start": 15264.34, + "end": 15267.44, + "probability": 0.0002 + }, + { + "start": 15268.7, + "end": 15268.84, + "probability": 0.0942 + }, + { + "start": 15268.84, + "end": 15268.84, + "probability": 0.0159 + }, + { + "start": 15268.84, + "end": 15269.3, + "probability": 0.0249 + }, + { + "start": 15269.48, + "end": 15270.84, + "probability": 0.7001 + }, + { + "start": 15270.94, + "end": 15271.92, + "probability": 0.6245 + }, + { + "start": 15273.46, + "end": 15274.02, + "probability": 0.2187 + }, + { + "start": 15279.1, + "end": 15281.85, + "probability": 0.1439 + }, + { + "start": 15287.22, + "end": 15288.7, + "probability": 0.1289 + }, + { + "start": 15288.7, + "end": 15288.74, + "probability": 0.0697 + }, + { + "start": 15288.74, + "end": 15288.92, + "probability": 0.0911 + }, + { + "start": 15289.38, + "end": 15290.1, + "probability": 0.4561 + }, + { + "start": 15291.58, + "end": 15292.02, + "probability": 0.0676 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.0, + "end": 15380.0, + "probability": 0.0 + }, + { + "start": 15380.14, + "end": 15380.84, + "probability": 0.1919 + }, + { + "start": 15381.72, + "end": 15384.88, + "probability": 0.8835 + }, + { + "start": 15384.94, + "end": 15386.45, + "probability": 0.988 + }, + { + "start": 15388.66, + "end": 15390.38, + "probability": 0.1994 + }, + { + "start": 15390.66, + "end": 15391.14, + "probability": 0.5048 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.0, + "end": 15500.0, + "probability": 0.0 + }, + { + "start": 15500.3, + "end": 15502.9, + "probability": 0.3676 + }, + { + "start": 15502.9, + "end": 15504.0, + "probability": 0.6468 + }, + { + "start": 15504.4, + "end": 15505.47, + "probability": 0.858 + }, + { + "start": 15505.92, + "end": 15506.94, + "probability": 0.8605 + }, + { + "start": 15506.98, + "end": 15507.96, + "probability": 0.5992 + }, + { + "start": 15508.06, + "end": 15508.94, + "probability": 0.8589 + }, + { + "start": 15509.74, + "end": 15511.44, + "probability": 0.5637 + }, + { + "start": 15511.56, + "end": 15513.38, + "probability": 0.7441 + }, + { + "start": 15514.28, + "end": 15516.58, + "probability": 0.9354 + }, + { + "start": 15518.38, + "end": 15519.64, + "probability": 0.932 + }, + { + "start": 15519.76, + "end": 15521.18, + "probability": 0.9607 + }, + { + "start": 15521.26, + "end": 15523.04, + "probability": 0.73 + }, + { + "start": 15523.78, + "end": 15525.6, + "probability": 0.9431 + }, + { + "start": 15526.34, + "end": 15527.34, + "probability": 0.9956 + }, + { + "start": 15527.68, + "end": 15530.32, + "probability": 0.7849 + }, + { + "start": 15531.0, + "end": 15532.8, + "probability": 0.7655 + }, + { + "start": 15532.92, + "end": 15533.7, + "probability": 0.9424 + }, + { + "start": 15534.16, + "end": 15535.96, + "probability": 0.7061 + }, + { + "start": 15536.52, + "end": 15537.2, + "probability": 0.8396 + }, + { + "start": 15538.42, + "end": 15539.84, + "probability": 0.835 + }, + { + "start": 15540.38, + "end": 15541.64, + "probability": 0.7295 + }, + { + "start": 15542.22, + "end": 15543.2, + "probability": 0.998 + }, + { + "start": 15543.36, + "end": 15545.28, + "probability": 0.8529 + }, + { + "start": 15546.36, + "end": 15547.92, + "probability": 0.1466 + }, + { + "start": 15548.12, + "end": 15549.7, + "probability": 0.4071 + }, + { + "start": 15549.78, + "end": 15551.13, + "probability": 0.9263 + }, + { + "start": 15552.12, + "end": 15552.82, + "probability": 0.9532 + }, + { + "start": 15553.8, + "end": 15555.3, + "probability": 0.0054 + }, + { + "start": 15556.38, + "end": 15557.32, + "probability": 0.0533 + }, + { + "start": 15557.32, + "end": 15558.78, + "probability": 0.111 + }, + { + "start": 15559.2, + "end": 15560.12, + "probability": 0.175 + }, + { + "start": 15560.16, + "end": 15562.44, + "probability": 0.8478 + }, + { + "start": 15562.48, + "end": 15563.31, + "probability": 0.9795 + }, + { + "start": 15563.46, + "end": 15565.58, + "probability": 0.9521 + }, + { + "start": 15566.16, + "end": 15569.28, + "probability": 0.959 + }, + { + "start": 15569.46, + "end": 15572.88, + "probability": 0.9971 + }, + { + "start": 15573.42, + "end": 15574.0, + "probability": 0.6853 + }, + { + "start": 15574.08, + "end": 15575.1, + "probability": 0.5389 + }, + { + "start": 15575.16, + "end": 15577.29, + "probability": 0.9912 + }, + { + "start": 15578.08, + "end": 15580.37, + "probability": 0.5955 + }, + { + "start": 15582.96, + "end": 15585.46, + "probability": 0.9616 + }, + { + "start": 15585.54, + "end": 15586.16, + "probability": 0.6196 + }, + { + "start": 15586.64, + "end": 15589.14, + "probability": 0.9729 + }, + { + "start": 15589.24, + "end": 15589.6, + "probability": 0.857 + }, + { + "start": 15589.6, + "end": 15590.12, + "probability": 0.9701 + }, + { + "start": 15590.74, + "end": 15591.78, + "probability": 0.8256 + }, + { + "start": 15592.34, + "end": 15593.5, + "probability": 0.9854 + }, + { + "start": 15594.04, + "end": 15597.52, + "probability": 0.9963 + }, + { + "start": 15597.62, + "end": 15598.02, + "probability": 0.8402 + }, + { + "start": 15598.08, + "end": 15601.7, + "probability": 0.9134 + }, + { + "start": 15601.78, + "end": 15602.3, + "probability": 0.854 + }, + { + "start": 15602.36, + "end": 15603.62, + "probability": 0.9509 + }, + { + "start": 15604.5, + "end": 15605.34, + "probability": 0.76 + }, + { + "start": 15605.42, + "end": 15607.58, + "probability": 0.996 + }, + { + "start": 15608.58, + "end": 15610.5, + "probability": 0.7497 + }, + { + "start": 15611.2, + "end": 15612.14, + "probability": 0.8228 + }, + { + "start": 15612.2, + "end": 15617.52, + "probability": 0.9333 + }, + { + "start": 15617.52, + "end": 15621.02, + "probability": 0.9948 + }, + { + "start": 15621.74, + "end": 15622.82, + "probability": 0.9909 + }, + { + "start": 15623.5, + "end": 15624.4, + "probability": 0.7358 + }, + { + "start": 15624.44, + "end": 15626.12, + "probability": 0.9554 + }, + { + "start": 15626.84, + "end": 15628.2, + "probability": 0.6504 + }, + { + "start": 15628.68, + "end": 15631.72, + "probability": 0.9203 + }, + { + "start": 15632.83, + "end": 15635.36, + "probability": 0.8343 + }, + { + "start": 15636.74, + "end": 15639.36, + "probability": 0.7891 + }, + { + "start": 15640.86, + "end": 15643.96, + "probability": 0.9892 + }, + { + "start": 15643.96, + "end": 15648.82, + "probability": 0.9956 + }, + { + "start": 15649.28, + "end": 15650.84, + "probability": 0.8279 + }, + { + "start": 15651.48, + "end": 15651.56, + "probability": 0.027 + }, + { + "start": 15651.66, + "end": 15652.24, + "probability": 0.665 + }, + { + "start": 15652.3, + "end": 15653.36, + "probability": 0.9802 + }, + { + "start": 15653.36, + "end": 15654.41, + "probability": 0.9634 + }, + { + "start": 15654.64, + "end": 15657.8, + "probability": 0.8608 + }, + { + "start": 15658.36, + "end": 15659.68, + "probability": 0.938 + }, + { + "start": 15660.2, + "end": 15662.0, + "probability": 0.9896 + }, + { + "start": 15662.56, + "end": 15663.96, + "probability": 0.9805 + }, + { + "start": 15664.66, + "end": 15665.16, + "probability": 0.8197 + }, + { + "start": 15665.22, + "end": 15665.86, + "probability": 0.9727 + }, + { + "start": 15666.18, + "end": 15667.52, + "probability": 0.9938 + }, + { + "start": 15668.44, + "end": 15670.46, + "probability": 0.8415 + }, + { + "start": 15670.46, + "end": 15671.78, + "probability": 0.993 + }, + { + "start": 15673.06, + "end": 15674.5, + "probability": 0.9696 + }, + { + "start": 15675.42, + "end": 15676.18, + "probability": 0.9773 + }, + { + "start": 15676.82, + "end": 15677.84, + "probability": 0.9563 + }, + { + "start": 15678.26, + "end": 15679.16, + "probability": 0.9202 + }, + { + "start": 15679.28, + "end": 15681.1, + "probability": 0.9855 + }, + { + "start": 15681.2, + "end": 15682.16, + "probability": 0.9001 + }, + { + "start": 15682.22, + "end": 15684.83, + "probability": 0.8524 + }, + { + "start": 15685.42, + "end": 15688.68, + "probability": 0.9548 + }, + { + "start": 15688.78, + "end": 15689.6, + "probability": 0.8369 + }, + { + "start": 15689.68, + "end": 15690.26, + "probability": 0.9406 + }, + { + "start": 15691.02, + "end": 15691.66, + "probability": 0.9094 + }, + { + "start": 15691.76, + "end": 15692.4, + "probability": 0.9761 + }, + { + "start": 15692.58, + "end": 15695.38, + "probability": 0.893 + }, + { + "start": 15695.38, + "end": 15698.16, + "probability": 0.9584 + }, + { + "start": 15698.24, + "end": 15698.58, + "probability": 0.6668 + }, + { + "start": 15698.66, + "end": 15698.96, + "probability": 0.757 + }, + { + "start": 15699.0, + "end": 15699.44, + "probability": 0.4565 + }, + { + "start": 15699.54, + "end": 15699.72, + "probability": 0.536 + }, + { + "start": 15700.86, + "end": 15701.85, + "probability": 0.6787 + }, + { + "start": 15702.0, + "end": 15702.7, + "probability": 0.9692 + }, + { + "start": 15702.74, + "end": 15703.52, + "probability": 0.9821 + }, + { + "start": 15703.56, + "end": 15704.22, + "probability": 0.9506 + }, + { + "start": 15704.26, + "end": 15705.04, + "probability": 0.8123 + }, + { + "start": 15706.62, + "end": 15708.52, + "probability": 0.9851 + }, + { + "start": 15708.58, + "end": 15710.08, + "probability": 0.9571 + }, + { + "start": 15711.08, + "end": 15713.36, + "probability": 0.9638 + }, + { + "start": 15714.16, + "end": 15715.78, + "probability": 0.9531 + }, + { + "start": 15716.62, + "end": 15717.86, + "probability": 0.9944 + }, + { + "start": 15718.02, + "end": 15719.06, + "probability": 0.6919 + }, + { + "start": 15719.42, + "end": 15720.95, + "probability": 0.4362 + }, + { + "start": 15721.92, + "end": 15722.58, + "probability": 0.5961 + }, + { + "start": 15722.62, + "end": 15725.02, + "probability": 0.7029 + }, + { + "start": 15725.4, + "end": 15727.84, + "probability": 0.9814 + }, + { + "start": 15727.88, + "end": 15729.58, + "probability": 0.501 + }, + { + "start": 15730.46, + "end": 15733.24, + "probability": 0.9307 + }, + { + "start": 15734.22, + "end": 15734.96, + "probability": 0.9577 + }, + { + "start": 15735.42, + "end": 15736.41, + "probability": 0.9805 + }, + { + "start": 15737.22, + "end": 15738.26, + "probability": 0.9937 + }, + { + "start": 15738.88, + "end": 15740.32, + "probability": 0.9912 + }, + { + "start": 15741.8, + "end": 15743.36, + "probability": 0.9741 + }, + { + "start": 15744.22, + "end": 15744.88, + "probability": 0.9215 + }, + { + "start": 15745.02, + "end": 15747.0, + "probability": 0.9916 + }, + { + "start": 15747.4, + "end": 15749.0, + "probability": 0.9763 + }, + { + "start": 15749.6, + "end": 15750.02, + "probability": 0.9149 + }, + { + "start": 15750.66, + "end": 15752.08, + "probability": 0.6626 + }, + { + "start": 15752.18, + "end": 15753.76, + "probability": 0.9877 + }, + { + "start": 15754.56, + "end": 15755.16, + "probability": 0.7069 + }, + { + "start": 15763.28, + "end": 15765.5, + "probability": 0.0996 + }, + { + "start": 15766.34, + "end": 15768.66, + "probability": 0.1092 + }, + { + "start": 15779.56, + "end": 15780.22, + "probability": 0.3518 + }, + { + "start": 15782.1, + "end": 15792.02, + "probability": 0.9921 + }, + { + "start": 15792.86, + "end": 15797.68, + "probability": 0.9961 + }, + { + "start": 15799.46, + "end": 15802.78, + "probability": 0.9995 + }, + { + "start": 15806.2, + "end": 15809.08, + "probability": 0.9868 + }, + { + "start": 15809.18, + "end": 15809.86, + "probability": 0.7985 + }, + { + "start": 15810.34, + "end": 15812.16, + "probability": 0.9804 + }, + { + "start": 15812.86, + "end": 15818.54, + "probability": 0.8081 + }, + { + "start": 15818.92, + "end": 15822.58, + "probability": 0.9922 + }, + { + "start": 15822.9, + "end": 15824.56, + "probability": 0.9071 + }, + { + "start": 15826.92, + "end": 15829.76, + "probability": 0.6284 + }, + { + "start": 15830.02, + "end": 15832.94, + "probability": 0.9958 + }, + { + "start": 15834.48, + "end": 15835.84, + "probability": 0.9049 + }, + { + "start": 15836.88, + "end": 15840.24, + "probability": 0.9668 + }, + { + "start": 15840.76, + "end": 15844.38, + "probability": 0.9764 + }, + { + "start": 15845.04, + "end": 15845.58, + "probability": 0.703 + }, + { + "start": 15846.6, + "end": 15847.44, + "probability": 0.6472 + }, + { + "start": 15847.6, + "end": 15849.38, + "probability": 0.8478 + }, + { + "start": 15849.78, + "end": 15851.42, + "probability": 0.9482 + }, + { + "start": 15851.84, + "end": 15856.28, + "probability": 0.8858 + }, + { + "start": 15856.96, + "end": 15860.44, + "probability": 0.9469 + }, + { + "start": 15860.84, + "end": 15861.36, + "probability": 0.6677 + }, + { + "start": 15866.86, + "end": 15869.5, + "probability": 0.5621 + }, + { + "start": 15870.08, + "end": 15870.78, + "probability": 0.4532 + }, + { + "start": 15871.7, + "end": 15877.2, + "probability": 0.9653 + }, + { + "start": 15877.8, + "end": 15882.62, + "probability": 0.7734 + }, + { + "start": 15883.3, + "end": 15889.6, + "probability": 0.9822 + }, + { + "start": 15890.08, + "end": 15891.52, + "probability": 0.8729 + }, + { + "start": 15892.1, + "end": 15894.3, + "probability": 0.9436 + }, + { + "start": 15894.68, + "end": 15896.4, + "probability": 0.9636 + }, + { + "start": 15897.88, + "end": 15900.52, + "probability": 0.9464 + }, + { + "start": 15901.0, + "end": 15903.52, + "probability": 0.9966 + }, + { + "start": 15904.12, + "end": 15905.24, + "probability": 0.8792 + }, + { + "start": 15906.1, + "end": 15907.12, + "probability": 0.967 + }, + { + "start": 15907.3, + "end": 15909.56, + "probability": 0.984 + }, + { + "start": 15910.24, + "end": 15913.42, + "probability": 0.9559 + }, + { + "start": 15914.18, + "end": 15922.76, + "probability": 0.9218 + }, + { + "start": 15923.32, + "end": 15924.78, + "probability": 0.5083 + }, + { + "start": 15925.3, + "end": 15931.34, + "probability": 0.942 + }, + { + "start": 15932.72, + "end": 15935.08, + "probability": 0.4255 + }, + { + "start": 15938.06, + "end": 15940.16, + "probability": 0.6868 + }, + { + "start": 15940.74, + "end": 15945.2, + "probability": 0.9847 + }, + { + "start": 15945.28, + "end": 15945.38, + "probability": 0.3791 + }, + { + "start": 15945.52, + "end": 15945.72, + "probability": 0.7908 + }, + { + "start": 15946.0, + "end": 15946.58, + "probability": 0.9231 + }, + { + "start": 15946.82, + "end": 15948.7, + "probability": 0.9417 + }, + { + "start": 15948.88, + "end": 15951.54, + "probability": 0.9722 + }, + { + "start": 15952.06, + "end": 15954.04, + "probability": 0.9272 + }, + { + "start": 15955.18, + "end": 15959.14, + "probability": 0.9758 + }, + { + "start": 15959.6, + "end": 15961.92, + "probability": 0.7276 + }, + { + "start": 15962.3, + "end": 15966.98, + "probability": 0.9488 + }, + { + "start": 15967.46, + "end": 15968.38, + "probability": 0.9241 + }, + { + "start": 15968.74, + "end": 15970.36, + "probability": 0.9746 + }, + { + "start": 15971.58, + "end": 15972.46, + "probability": 0.6113 + }, + { + "start": 15972.96, + "end": 15973.77, + "probability": 0.9529 + }, + { + "start": 15974.58, + "end": 15978.2, + "probability": 0.8938 + }, + { + "start": 15979.0, + "end": 15984.72, + "probability": 0.9956 + }, + { + "start": 15986.2, + "end": 15990.5, + "probability": 0.9274 + }, + { + "start": 15991.1, + "end": 15993.12, + "probability": 0.6167 + }, + { + "start": 15993.24, + "end": 15994.84, + "probability": 0.843 + }, + { + "start": 15995.14, + "end": 15999.98, + "probability": 0.8828 + }, + { + "start": 16000.52, + "end": 16001.64, + "probability": 0.9922 + }, + { + "start": 16002.72, + "end": 16007.12, + "probability": 0.8479 + }, + { + "start": 16008.08, + "end": 16010.32, + "probability": 0.8628 + }, + { + "start": 16011.66, + "end": 16014.18, + "probability": 0.9724 + }, + { + "start": 16017.4, + "end": 16021.0, + "probability": 0.7917 + }, + { + "start": 16021.28, + "end": 16021.82, + "probability": 0.3687 + }, + { + "start": 16021.82, + "end": 16023.04, + "probability": 0.8298 + }, + { + "start": 16023.26, + "end": 16024.42, + "probability": 0.9422 + }, + { + "start": 16025.46, + "end": 16029.24, + "probability": 0.8369 + }, + { + "start": 16030.76, + "end": 16034.04, + "probability": 0.9028 + }, + { + "start": 16034.48, + "end": 16035.04, + "probability": 0.7467 + }, + { + "start": 16035.14, + "end": 16036.04, + "probability": 0.7286 + }, + { + "start": 16036.12, + "end": 16036.22, + "probability": 0.4758 + }, + { + "start": 16036.86, + "end": 16037.16, + "probability": 0.9043 + }, + { + "start": 16037.74, + "end": 16040.42, + "probability": 0.967 + }, + { + "start": 16041.24, + "end": 16043.94, + "probability": 0.8713 + }, + { + "start": 16044.38, + "end": 16049.44, + "probability": 0.9723 + }, + { + "start": 16049.44, + "end": 16054.4, + "probability": 0.9719 + }, + { + "start": 16055.1, + "end": 16059.28, + "probability": 0.9926 + }, + { + "start": 16059.48, + "end": 16063.58, + "probability": 0.8247 + }, + { + "start": 16064.2, + "end": 16065.0, + "probability": 0.2376 + }, + { + "start": 16065.0, + "end": 16068.1, + "probability": 0.4765 + }, + { + "start": 16068.74, + "end": 16072.78, + "probability": 0.9839 + }, + { + "start": 16073.06, + "end": 16076.14, + "probability": 0.4075 + }, + { + "start": 16077.16, + "end": 16078.76, + "probability": 0.683 + }, + { + "start": 16079.22, + "end": 16079.4, + "probability": 0.1644 + }, + { + "start": 16079.4, + "end": 16080.38, + "probability": 0.3502 + }, + { + "start": 16081.0, + "end": 16082.12, + "probability": 0.5804 + }, + { + "start": 16082.14, + "end": 16084.14, + "probability": 0.5758 + }, + { + "start": 16084.14, + "end": 16087.1, + "probability": 0.9783 + }, + { + "start": 16087.48, + "end": 16089.73, + "probability": 0.7507 + }, + { + "start": 16089.9, + "end": 16090.58, + "probability": 0.7878 + }, + { + "start": 16090.76, + "end": 16093.3, + "probability": 0.6258 + }, + { + "start": 16093.86, + "end": 16100.42, + "probability": 0.975 + }, + { + "start": 16100.68, + "end": 16102.38, + "probability": 0.9528 + }, + { + "start": 16103.12, + "end": 16106.78, + "probability": 0.7852 + }, + { + "start": 16106.78, + "end": 16110.92, + "probability": 0.8217 + }, + { + "start": 16111.14, + "end": 16114.2, + "probability": 0.9454 + }, + { + "start": 16114.62, + "end": 16116.48, + "probability": 0.999 + }, + { + "start": 16116.6, + "end": 16117.84, + "probability": 0.6941 + }, + { + "start": 16118.31, + "end": 16118.78, + "probability": 0.098 + }, + { + "start": 16118.78, + "end": 16120.16, + "probability": 0.4092 + }, + { + "start": 16120.24, + "end": 16120.66, + "probability": 0.1473 + }, + { + "start": 16120.84, + "end": 16121.48, + "probability": 0.8059 + }, + { + "start": 16121.78, + "end": 16121.9, + "probability": 0.3132 + }, + { + "start": 16123.32, + "end": 16124.54, + "probability": 0.1492 + }, + { + "start": 16124.54, + "end": 16124.64, + "probability": 0.1361 + }, + { + "start": 16124.64, + "end": 16125.34, + "probability": 0.293 + }, + { + "start": 16125.76, + "end": 16127.0, + "probability": 0.6857 + }, + { + "start": 16127.1, + "end": 16127.32, + "probability": 0.1529 + }, + { + "start": 16127.32, + "end": 16129.42, + "probability": 0.6152 + }, + { + "start": 16129.64, + "end": 16135.64, + "probability": 0.2873 + }, + { + "start": 16135.96, + "end": 16137.92, + "probability": 0.0261 + }, + { + "start": 16140.8, + "end": 16141.92, + "probability": 0.9041 + }, + { + "start": 16142.78, + "end": 16142.9, + "probability": 0.4254 + }, + { + "start": 16144.1, + "end": 16145.12, + "probability": 0.562 + }, + { + "start": 16146.54, + "end": 16147.48, + "probability": 0.6498 + }, + { + "start": 16147.8, + "end": 16149.18, + "probability": 0.5264 + }, + { + "start": 16149.18, + "end": 16150.02, + "probability": 0.7677 + }, + { + "start": 16150.24, + "end": 16151.68, + "probability": 0.6526 + }, + { + "start": 16151.7, + "end": 16152.94, + "probability": 0.1465 + }, + { + "start": 16153.52, + "end": 16154.45, + "probability": 0.3566 + }, + { + "start": 16155.1, + "end": 16158.72, + "probability": 0.4866 + }, + { + "start": 16158.94, + "end": 16161.36, + "probability": 0.9152 + }, + { + "start": 16162.28, + "end": 16166.6, + "probability": 0.9807 + }, + { + "start": 16167.14, + "end": 16171.12, + "probability": 0.9786 + }, + { + "start": 16171.22, + "end": 16174.14, + "probability": 0.9951 + }, + { + "start": 16174.5, + "end": 16177.28, + "probability": 0.9947 + }, + { + "start": 16177.64, + "end": 16179.78, + "probability": 0.9888 + }, + { + "start": 16180.0, + "end": 16181.5, + "probability": 0.9589 + }, + { + "start": 16182.12, + "end": 16183.9, + "probability": 0.9108 + }, + { + "start": 16184.5, + "end": 16186.32, + "probability": 0.9993 + }, + { + "start": 16186.44, + "end": 16190.62, + "probability": 0.846 + }, + { + "start": 16190.62, + "end": 16195.48, + "probability": 0.9971 + }, + { + "start": 16196.12, + "end": 16200.96, + "probability": 0.9895 + }, + { + "start": 16201.52, + "end": 16202.54, + "probability": 0.9894 + }, + { + "start": 16203.08, + "end": 16207.12, + "probability": 0.8037 + }, + { + "start": 16207.56, + "end": 16208.58, + "probability": 0.9777 + }, + { + "start": 16209.12, + "end": 16211.08, + "probability": 0.9973 + }, + { + "start": 16211.54, + "end": 16216.06, + "probability": 0.622 + }, + { + "start": 16216.18, + "end": 16220.48, + "probability": 0.9622 + }, + { + "start": 16220.76, + "end": 16221.02, + "probability": 0.486 + }, + { + "start": 16221.28, + "end": 16224.06, + "probability": 0.9397 + }, + { + "start": 16224.42, + "end": 16225.42, + "probability": 0.9751 + }, + { + "start": 16225.82, + "end": 16226.88, + "probability": 0.53 + }, + { + "start": 16227.04, + "end": 16228.32, + "probability": 0.8741 + }, + { + "start": 16228.68, + "end": 16229.11, + "probability": 0.9711 + }, + { + "start": 16229.46, + "end": 16229.85, + "probability": 0.8491 + }, + { + "start": 16230.32, + "end": 16233.32, + "probability": 0.8306 + }, + { + "start": 16233.64, + "end": 16235.68, + "probability": 0.9894 + }, + { + "start": 16236.06, + "end": 16237.86, + "probability": 0.8381 + }, + { + "start": 16238.22, + "end": 16242.5, + "probability": 0.998 + }, + { + "start": 16243.14, + "end": 16243.26, + "probability": 0.3641 + }, + { + "start": 16243.32, + "end": 16243.81, + "probability": 0.3927 + }, + { + "start": 16244.66, + "end": 16248.64, + "probability": 0.8144 + }, + { + "start": 16249.02, + "end": 16250.2, + "probability": 0.8682 + }, + { + "start": 16250.32, + "end": 16251.2, + "probability": 0.465 + }, + { + "start": 16251.44, + "end": 16252.31, + "probability": 0.6638 + }, + { + "start": 16252.74, + "end": 16252.76, + "probability": 0.3385 + }, + { + "start": 16252.76, + "end": 16253.85, + "probability": 0.7175 + }, + { + "start": 16254.78, + "end": 16257.36, + "probability": 0.822 + }, + { + "start": 16257.8, + "end": 16262.46, + "probability": 0.9967 + }, + { + "start": 16262.78, + "end": 16265.94, + "probability": 0.9952 + }, + { + "start": 16266.48, + "end": 16266.48, + "probability": 0.0688 + }, + { + "start": 16266.48, + "end": 16266.76, + "probability": 0.4472 + }, + { + "start": 16267.2, + "end": 16267.84, + "probability": 0.6256 + }, + { + "start": 16268.16, + "end": 16270.36, + "probability": 0.8702 + }, + { + "start": 16270.74, + "end": 16272.26, + "probability": 0.8372 + }, + { + "start": 16272.7, + "end": 16273.94, + "probability": 0.896 + }, + { + "start": 16274.06, + "end": 16275.0, + "probability": 0.7838 + }, + { + "start": 16275.0, + "end": 16275.2, + "probability": 0.5272 + }, + { + "start": 16275.24, + "end": 16275.74, + "probability": 0.4619 + }, + { + "start": 16275.74, + "end": 16276.14, + "probability": 0.6435 + }, + { + "start": 16276.14, + "end": 16279.4, + "probability": 0.6706 + }, + { + "start": 16279.44, + "end": 16281.36, + "probability": 0.8873 + }, + { + "start": 16282.34, + "end": 16284.2, + "probability": 0.7932 + }, + { + "start": 16284.9, + "end": 16285.62, + "probability": 0.5976 + }, + { + "start": 16285.7, + "end": 16287.48, + "probability": 0.7804 + }, + { + "start": 16287.54, + "end": 16289.26, + "probability": 0.6398 + }, + { + "start": 16290.14, + "end": 16291.8, + "probability": 0.9744 + }, + { + "start": 16292.44, + "end": 16293.1, + "probability": 0.8813 + }, + { + "start": 16311.92, + "end": 16312.98, + "probability": 0.6789 + }, + { + "start": 16313.56, + "end": 16314.4, + "probability": 0.8506 + }, + { + "start": 16319.34, + "end": 16321.4, + "probability": 0.8648 + }, + { + "start": 16322.84, + "end": 16324.9, + "probability": 0.9046 + }, + { + "start": 16326.6, + "end": 16327.66, + "probability": 0.9813 + }, + { + "start": 16330.1, + "end": 16335.74, + "probability": 0.9941 + }, + { + "start": 16335.88, + "end": 16336.37, + "probability": 0.927 + }, + { + "start": 16337.64, + "end": 16338.62, + "probability": 0.9678 + }, + { + "start": 16342.54, + "end": 16343.74, + "probability": 0.9758 + }, + { + "start": 16344.9, + "end": 16346.58, + "probability": 0.9978 + }, + { + "start": 16348.64, + "end": 16349.76, + "probability": 0.9837 + }, + { + "start": 16350.76, + "end": 16351.68, + "probability": 0.998 + }, + { + "start": 16352.62, + "end": 16354.3, + "probability": 0.8688 + }, + { + "start": 16355.84, + "end": 16356.88, + "probability": 0.6313 + }, + { + "start": 16358.98, + "end": 16362.06, + "probability": 0.9661 + }, + { + "start": 16363.22, + "end": 16365.18, + "probability": 0.4915 + }, + { + "start": 16365.28, + "end": 16366.76, + "probability": 0.6853 + }, + { + "start": 16368.03, + "end": 16369.6, + "probability": 0.8171 + }, + { + "start": 16370.44, + "end": 16373.4, + "probability": 0.6874 + }, + { + "start": 16375.24, + "end": 16379.22, + "probability": 0.9878 + }, + { + "start": 16380.12, + "end": 16382.0, + "probability": 0.9814 + }, + { + "start": 16382.62, + "end": 16383.24, + "probability": 0.8644 + }, + { + "start": 16383.9, + "end": 16387.38, + "probability": 0.9702 + }, + { + "start": 16388.42, + "end": 16391.32, + "probability": 0.9883 + }, + { + "start": 16392.56, + "end": 16394.4, + "probability": 0.7273 + }, + { + "start": 16395.4, + "end": 16397.12, + "probability": 0.9158 + }, + { + "start": 16397.3, + "end": 16398.12, + "probability": 0.8942 + }, + { + "start": 16399.16, + "end": 16402.24, + "probability": 0.9537 + }, + { + "start": 16403.0, + "end": 16405.7, + "probability": 0.8889 + }, + { + "start": 16406.38, + "end": 16408.0, + "probability": 0.9779 + }, + { + "start": 16408.42, + "end": 16408.92, + "probability": 0.8568 + }, + { + "start": 16409.2, + "end": 16409.71, + "probability": 0.6549 + }, + { + "start": 16410.72, + "end": 16410.88, + "probability": 0.1423 + }, + { + "start": 16410.88, + "end": 16411.86, + "probability": 0.9155 + }, + { + "start": 16413.44, + "end": 16416.86, + "probability": 0.7163 + }, + { + "start": 16418.66, + "end": 16421.32, + "probability": 0.7993 + }, + { + "start": 16422.78, + "end": 16424.76, + "probability": 0.4246 + }, + { + "start": 16424.78, + "end": 16425.02, + "probability": 0.6482 + }, + { + "start": 16425.02, + "end": 16427.08, + "probability": 0.9944 + }, + { + "start": 16428.26, + "end": 16430.1, + "probability": 0.791 + }, + { + "start": 16432.3, + "end": 16434.2, + "probability": 0.8625 + }, + { + "start": 16434.96, + "end": 16438.56, + "probability": 0.6564 + }, + { + "start": 16440.16, + "end": 16443.36, + "probability": 0.4964 + }, + { + "start": 16443.94, + "end": 16444.26, + "probability": 0.9659 + }, + { + "start": 16446.0, + "end": 16447.76, + "probability": 0.9712 + }, + { + "start": 16451.0, + "end": 16454.82, + "probability": 0.4222 + }, + { + "start": 16455.94, + "end": 16458.4, + "probability": 0.6433 + }, + { + "start": 16459.66, + "end": 16464.18, + "probability": 0.9125 + }, + { + "start": 16465.24, + "end": 16466.48, + "probability": 0.8787 + }, + { + "start": 16467.28, + "end": 16469.54, + "probability": 0.7949 + }, + { + "start": 16470.2, + "end": 16471.04, + "probability": 0.9277 + }, + { + "start": 16473.74, + "end": 16474.44, + "probability": 0.8977 + }, + { + "start": 16476.44, + "end": 16478.4, + "probability": 0.9882 + }, + { + "start": 16480.46, + "end": 16484.36, + "probability": 0.8931 + }, + { + "start": 16486.2, + "end": 16488.22, + "probability": 0.9417 + }, + { + "start": 16488.88, + "end": 16489.47, + "probability": 0.6097 + }, + { + "start": 16491.56, + "end": 16492.8, + "probability": 0.9273 + }, + { + "start": 16494.36, + "end": 16495.12, + "probability": 0.9531 + }, + { + "start": 16496.22, + "end": 16498.84, + "probability": 0.9401 + }, + { + "start": 16500.18, + "end": 16503.24, + "probability": 0.827 + }, + { + "start": 16504.22, + "end": 16505.8, + "probability": 0.9443 + }, + { + "start": 16506.48, + "end": 16508.54, + "probability": 0.9678 + }, + { + "start": 16508.88, + "end": 16509.84, + "probability": 0.7487 + }, + { + "start": 16511.0, + "end": 16513.08, + "probability": 0.9949 + }, + { + "start": 16514.02, + "end": 16514.96, + "probability": 0.7053 + }, + { + "start": 16515.36, + "end": 16516.36, + "probability": 0.7644 + }, + { + "start": 16517.04, + "end": 16519.98, + "probability": 0.9976 + }, + { + "start": 16520.9, + "end": 16522.84, + "probability": 0.8143 + }, + { + "start": 16527.76, + "end": 16530.19, + "probability": 0.7206 + }, + { + "start": 16531.6, + "end": 16532.42, + "probability": 0.8574 + }, + { + "start": 16533.7, + "end": 16534.35, + "probability": 0.9956 + }, + { + "start": 16535.74, + "end": 16539.24, + "probability": 0.9846 + }, + { + "start": 16540.74, + "end": 16541.62, + "probability": 0.9663 + }, + { + "start": 16542.0, + "end": 16543.98, + "probability": 0.9902 + }, + { + "start": 16544.4, + "end": 16545.08, + "probability": 0.0003 + }, + { + "start": 16545.58, + "end": 16548.76, + "probability": 0.9432 + }, + { + "start": 16549.86, + "end": 16552.86, + "probability": 0.8908 + }, + { + "start": 16553.78, + "end": 16554.9, + "probability": 0.6987 + }, + { + "start": 16555.52, + "end": 16555.52, + "probability": 0.0001 + }, + { + "start": 16557.14, + "end": 16559.24, + "probability": 0.1272 + }, + { + "start": 16560.5, + "end": 16561.81, + "probability": 0.4252 + }, + { + "start": 16563.02, + "end": 16564.24, + "probability": 0.7821 + }, + { + "start": 16564.56, + "end": 16567.4, + "probability": 0.5178 + }, + { + "start": 16567.4, + "end": 16568.98, + "probability": 0.2907 + }, + { + "start": 16570.28, + "end": 16570.74, + "probability": 0.1214 + }, + { + "start": 16570.74, + "end": 16570.74, + "probability": 0.3367 + }, + { + "start": 16570.74, + "end": 16570.74, + "probability": 0.0941 + }, + { + "start": 16570.74, + "end": 16572.32, + "probability": 0.2877 + }, + { + "start": 16572.98, + "end": 16576.14, + "probability": 0.6548 + }, + { + "start": 16576.98, + "end": 16580.74, + "probability": 0.9223 + }, + { + "start": 16581.6, + "end": 16583.16, + "probability": 0.9862 + }, + { + "start": 16584.24, + "end": 16587.92, + "probability": 0.9607 + }, + { + "start": 16589.08, + "end": 16590.36, + "probability": 0.8231 + }, + { + "start": 16590.88, + "end": 16592.42, + "probability": 0.2619 + }, + { + "start": 16592.5, + "end": 16592.61, + "probability": 0.3328 + }, + { + "start": 16593.32, + "end": 16594.64, + "probability": 0.8458 + }, + { + "start": 16595.28, + "end": 16596.52, + "probability": 0.9111 + }, + { + "start": 16596.7, + "end": 16596.7, + "probability": 0.2976 + }, + { + "start": 16596.7, + "end": 16597.17, + "probability": 0.4162 + }, + { + "start": 16598.06, + "end": 16598.42, + "probability": 0.2096 + }, + { + "start": 16598.58, + "end": 16598.62, + "probability": 0.6382 + }, + { + "start": 16598.62, + "end": 16605.28, + "probability": 0.9164 + }, + { + "start": 16607.24, + "end": 16608.15, + "probability": 0.9121 + }, + { + "start": 16609.74, + "end": 16610.56, + "probability": 0.8529 + }, + { + "start": 16611.44, + "end": 16616.54, + "probability": 0.8694 + }, + { + "start": 16616.6, + "end": 16617.66, + "probability": 0.8505 + }, + { + "start": 16618.24, + "end": 16619.44, + "probability": 0.7287 + }, + { + "start": 16620.02, + "end": 16624.64, + "probability": 0.7598 + }, + { + "start": 16625.24, + "end": 16626.38, + "probability": 0.5529 + }, + { + "start": 16627.2, + "end": 16629.72, + "probability": 0.9531 + }, + { + "start": 16630.18, + "end": 16632.22, + "probability": 0.9722 + }, + { + "start": 16633.94, + "end": 16635.22, + "probability": 0.9978 + }, + { + "start": 16636.72, + "end": 16638.49, + "probability": 0.9451 + }, + { + "start": 16639.48, + "end": 16640.54, + "probability": 0.98 + }, + { + "start": 16641.18, + "end": 16642.14, + "probability": 0.7944 + }, + { + "start": 16643.38, + "end": 16643.6, + "probability": 0.792 + }, + { + "start": 16644.44, + "end": 16646.46, + "probability": 0.9847 + }, + { + "start": 16647.1, + "end": 16650.5, + "probability": 0.9945 + }, + { + "start": 16651.02, + "end": 16654.3, + "probability": 0.9524 + }, + { + "start": 16655.34, + "end": 16657.44, + "probability": 0.9234 + }, + { + "start": 16658.94, + "end": 16661.46, + "probability": 0.9766 + }, + { + "start": 16662.02, + "end": 16665.12, + "probability": 0.9385 + }, + { + "start": 16665.62, + "end": 16667.31, + "probability": 0.9248 + }, + { + "start": 16668.38, + "end": 16668.92, + "probability": 0.7773 + }, + { + "start": 16668.98, + "end": 16669.91, + "probability": 0.9647 + }, + { + "start": 16670.5, + "end": 16673.18, + "probability": 0.9741 + }, + { + "start": 16673.92, + "end": 16675.08, + "probability": 0.786 + }, + { + "start": 16677.06, + "end": 16679.06, + "probability": 0.9099 + }, + { + "start": 16679.28, + "end": 16683.28, + "probability": 0.6946 + }, + { + "start": 16684.08, + "end": 16685.4, + "probability": 0.8233 + }, + { + "start": 16685.56, + "end": 16685.64, + "probability": 0.2684 + }, + { + "start": 16685.64, + "end": 16686.6, + "probability": 0.8295 + }, + { + "start": 16686.78, + "end": 16688.36, + "probability": 0.503 + }, + { + "start": 16689.24, + "end": 16691.84, + "probability": 0.9937 + }, + { + "start": 16692.54, + "end": 16694.79, + "probability": 0.915 + }, + { + "start": 16695.66, + "end": 16696.84, + "probability": 0.7593 + }, + { + "start": 16697.24, + "end": 16698.16, + "probability": 0.9493 + }, + { + "start": 16698.52, + "end": 16699.02, + "probability": 0.723 + }, + { + "start": 16699.62, + "end": 16703.82, + "probability": 0.141 + }, + { + "start": 16704.02, + "end": 16705.62, + "probability": 0.5555 + }, + { + "start": 16705.72, + "end": 16706.8, + "probability": 0.6839 + }, + { + "start": 16706.98, + "end": 16707.3, + "probability": 0.2962 + }, + { + "start": 16707.3, + "end": 16709.39, + "probability": 0.692 + }, + { + "start": 16709.92, + "end": 16712.18, + "probability": 0.9213 + }, + { + "start": 16712.42, + "end": 16714.58, + "probability": 0.5676 + }, + { + "start": 16714.68, + "end": 16714.68, + "probability": 0.5294 + }, + { + "start": 16714.7, + "end": 16716.39, + "probability": 0.7769 + }, + { + "start": 16717.28, + "end": 16718.42, + "probability": 0.4759 + }, + { + "start": 16719.2, + "end": 16722.24, + "probability": 0.8524 + }, + { + "start": 16723.24, + "end": 16724.64, + "probability": 0.9559 + }, + { + "start": 16724.7, + "end": 16726.66, + "probability": 0.9883 + }, + { + "start": 16727.08, + "end": 16729.94, + "probability": 0.9906 + }, + { + "start": 16730.58, + "end": 16731.88, + "probability": 0.8901 + }, + { + "start": 16732.64, + "end": 16734.42, + "probability": 0.9272 + }, + { + "start": 16735.06, + "end": 16738.36, + "probability": 0.5427 + }, + { + "start": 16739.08, + "end": 16740.89, + "probability": 0.9829 + }, + { + "start": 16741.38, + "end": 16742.52, + "probability": 0.9598 + }, + { + "start": 16742.86, + "end": 16743.72, + "probability": 0.9648 + }, + { + "start": 16744.04, + "end": 16745.1, + "probability": 0.96 + }, + { + "start": 16745.26, + "end": 16745.58, + "probability": 0.9123 + }, + { + "start": 16745.66, + "end": 16746.26, + "probability": 0.7649 + }, + { + "start": 16747.1, + "end": 16747.52, + "probability": 0.3945 + }, + { + "start": 16747.68, + "end": 16747.68, + "probability": 0.4916 + }, + { + "start": 16747.68, + "end": 16750.6, + "probability": 0.8376 + }, + { + "start": 16751.12, + "end": 16752.44, + "probability": 0.6936 + }, + { + "start": 16752.44, + "end": 16752.98, + "probability": 0.5969 + }, + { + "start": 16753.08, + "end": 16754.25, + "probability": 0.4413 + }, + { + "start": 16755.06, + "end": 16756.68, + "probability": 0.4365 + }, + { + "start": 16756.68, + "end": 16757.22, + "probability": 0.8198 + }, + { + "start": 16757.96, + "end": 16759.5, + "probability": 0.9578 + }, + { + "start": 16759.62, + "end": 16761.04, + "probability": 0.7663 + }, + { + "start": 16766.0, + "end": 16767.36, + "probability": 0.7671 + }, + { + "start": 16767.94, + "end": 16769.72, + "probability": 0.8331 + }, + { + "start": 16769.92, + "end": 16771.71, + "probability": 0.6026 + }, + { + "start": 16772.04, + "end": 16772.87, + "probability": 0.5332 + }, + { + "start": 16773.36, + "end": 16774.48, + "probability": 0.7245 + }, + { + "start": 16775.2, + "end": 16776.62, + "probability": 0.4691 + }, + { + "start": 16778.32, + "end": 16781.44, + "probability": 0.1644 + }, + { + "start": 16782.2, + "end": 16786.46, + "probability": 0.8406 + }, + { + "start": 16787.32, + "end": 16787.6, + "probability": 0.4968 + }, + { + "start": 16787.96, + "end": 16793.82, + "probability": 0.9894 + }, + { + "start": 16794.58, + "end": 16795.14, + "probability": 0.913 + }, + { + "start": 16795.22, + "end": 16795.6, + "probability": 0.9053 + }, + { + "start": 16795.66, + "end": 16798.44, + "probability": 0.9565 + }, + { + "start": 16798.74, + "end": 16800.56, + "probability": 0.992 + }, + { + "start": 16801.08, + "end": 16801.86, + "probability": 0.5338 + }, + { + "start": 16802.12, + "end": 16802.7, + "probability": 0.6321 + }, + { + "start": 16803.4, + "end": 16804.16, + "probability": 0.86 + }, + { + "start": 16804.9, + "end": 16805.72, + "probability": 0.9669 + }, + { + "start": 16806.32, + "end": 16807.32, + "probability": 0.9912 + }, + { + "start": 16807.88, + "end": 16808.96, + "probability": 0.9962 + }, + { + "start": 16809.54, + "end": 16810.1, + "probability": 0.8848 + }, + { + "start": 16811.02, + "end": 16811.66, + "probability": 0.9187 + }, + { + "start": 16812.54, + "end": 16814.62, + "probability": 0.9385 + }, + { + "start": 16815.92, + "end": 16818.3, + "probability": 0.9869 + }, + { + "start": 16819.02, + "end": 16820.54, + "probability": 0.9935 + }, + { + "start": 16821.12, + "end": 16822.71, + "probability": 0.9951 + }, + { + "start": 16823.24, + "end": 16827.5, + "probability": 0.9653 + }, + { + "start": 16828.2, + "end": 16830.9, + "probability": 0.9581 + }, + { + "start": 16833.38, + "end": 16834.68, + "probability": 0.6995 + }, + { + "start": 16834.8, + "end": 16835.62, + "probability": 0.9746 + }, + { + "start": 16835.84, + "end": 16838.58, + "probability": 0.5707 + }, + { + "start": 16839.38, + "end": 16841.17, + "probability": 0.6728 + }, + { + "start": 16841.9, + "end": 16842.64, + "probability": 0.8003 + }, + { + "start": 16844.04, + "end": 16845.52, + "probability": 0.769 + }, + { + "start": 16846.08, + "end": 16847.96, + "probability": 0.8044 + }, + { + "start": 16848.44, + "end": 16849.02, + "probability": 0.7838 + }, + { + "start": 16849.16, + "end": 16852.04, + "probability": 0.9896 + }, + { + "start": 16853.4, + "end": 16855.2, + "probability": 0.6515 + }, + { + "start": 16855.92, + "end": 16858.98, + "probability": 0.9922 + }, + { + "start": 16859.36, + "end": 16863.16, + "probability": 0.8855 + }, + { + "start": 16863.82, + "end": 16865.67, + "probability": 0.9437 + }, + { + "start": 16866.52, + "end": 16870.84, + "probability": 0.9719 + }, + { + "start": 16871.44, + "end": 16873.54, + "probability": 0.7452 + }, + { + "start": 16873.64, + "end": 16874.32, + "probability": 0.7129 + }, + { + "start": 16874.36, + "end": 16875.89, + "probability": 0.9977 + }, + { + "start": 16876.6, + "end": 16878.44, + "probability": 0.9642 + }, + { + "start": 16878.58, + "end": 16880.12, + "probability": 0.7687 + }, + { + "start": 16880.46, + "end": 16884.8, + "probability": 0.9554 + }, + { + "start": 16885.26, + "end": 16887.79, + "probability": 0.6584 + }, + { + "start": 16888.06, + "end": 16891.66, + "probability": 0.9692 + }, + { + "start": 16892.3, + "end": 16893.14, + "probability": 0.0835 + }, + { + "start": 16893.28, + "end": 16895.76, + "probability": 0.9927 + }, + { + "start": 16896.54, + "end": 16899.64, + "probability": 0.7441 + }, + { + "start": 16899.64, + "end": 16904.5, + "probability": 0.9939 + }, + { + "start": 16904.74, + "end": 16904.74, + "probability": 0.0032 + }, + { + "start": 16904.74, + "end": 16905.5, + "probability": 0.6783 + }, + { + "start": 16905.52, + "end": 16906.75, + "probability": 0.4025 + }, + { + "start": 16908.6, + "end": 16908.7, + "probability": 0.0119 + }, + { + "start": 16908.7, + "end": 16912.7, + "probability": 0.8609 + }, + { + "start": 16913.4, + "end": 16915.06, + "probability": 0.7179 + }, + { + "start": 16915.38, + "end": 16915.66, + "probability": 0.7223 + }, + { + "start": 16916.28, + "end": 16918.76, + "probability": 0.3351 + }, + { + "start": 16919.3, + "end": 16921.4, + "probability": 0.1558 + }, + { + "start": 16921.9, + "end": 16923.54, + "probability": 0.2568 + }, + { + "start": 16923.66, + "end": 16924.18, + "probability": 0.6845 + }, + { + "start": 16924.26, + "end": 16926.06, + "probability": 0.9922 + }, + { + "start": 16926.24, + "end": 16927.28, + "probability": 0.5228 + }, + { + "start": 16927.4, + "end": 16929.61, + "probability": 0.7911 + }, + { + "start": 16929.7, + "end": 16930.23, + "probability": 0.3183 + }, + { + "start": 16932.63, + "end": 16936.24, + "probability": 0.7965 + }, + { + "start": 16936.34, + "end": 16937.58, + "probability": 0.9041 + }, + { + "start": 16937.64, + "end": 16938.04, + "probability": 0.8157 + }, + { + "start": 16938.18, + "end": 16940.46, + "probability": 0.8947 + }, + { + "start": 16940.46, + "end": 16941.5, + "probability": 0.6773 + }, + { + "start": 16942.24, + "end": 16943.1, + "probability": 0.7669 + }, + { + "start": 16943.22, + "end": 16946.7, + "probability": 0.9617 + }, + { + "start": 16947.42, + "end": 16947.74, + "probability": 0.0402 + }, + { + "start": 16948.04, + "end": 16950.34, + "probability": 0.76 + }, + { + "start": 16951.52, + "end": 16952.38, + "probability": 0.0423 + }, + { + "start": 16952.38, + "end": 16952.42, + "probability": 0.0542 + }, + { + "start": 16952.42, + "end": 16953.34, + "probability": 0.3931 + }, + { + "start": 16954.14, + "end": 16955.16, + "probability": 0.7378 + }, + { + "start": 16960.8, + "end": 16963.82, + "probability": 0.636 + }, + { + "start": 16964.88, + "end": 16965.84, + "probability": 0.6997 + }, + { + "start": 16966.18, + "end": 16966.44, + "probability": 0.5426 + }, + { + "start": 16967.0, + "end": 16970.76, + "probability": 0.9932 + }, + { + "start": 16971.08, + "end": 16972.22, + "probability": 0.7127 + }, + { + "start": 16972.48, + "end": 16974.18, + "probability": 0.9924 + }, + { + "start": 16975.58, + "end": 16977.34, + "probability": 0.995 + }, + { + "start": 16978.46, + "end": 16979.62, + "probability": 0.5712 + }, + { + "start": 16979.8, + "end": 16981.12, + "probability": 0.9319 + }, + { + "start": 16981.2, + "end": 16981.84, + "probability": 0.7498 + }, + { + "start": 16982.14, + "end": 16982.76, + "probability": 0.9763 + }, + { + "start": 16983.9, + "end": 16986.24, + "probability": 0.9429 + }, + { + "start": 16986.56, + "end": 16989.98, + "probability": 0.9466 + }, + { + "start": 16990.16, + "end": 16990.8, + "probability": 0.8185 + }, + { + "start": 16991.42, + "end": 16991.44, + "probability": 0.171 + }, + { + "start": 16991.44, + "end": 16992.97, + "probability": 0.9429 + }, + { + "start": 16994.0, + "end": 16995.3, + "probability": 0.3885 + }, + { + "start": 16995.5, + "end": 16998.6, + "probability": 0.9666 + }, + { + "start": 16999.24, + "end": 17005.56, + "probability": 0.9479 + }, + { + "start": 17006.34, + "end": 17008.78, + "probability": 0.9326 + }, + { + "start": 17009.9, + "end": 17014.14, + "probability": 0.9878 + }, + { + "start": 17014.58, + "end": 17015.98, + "probability": 0.8842 + }, + { + "start": 17016.0, + "end": 17016.0, + "probability": 0.0 + }, + { + "start": 17016.0, + "end": 17016.0, + "probability": 0.0 + }, + { + "start": 17017.54, + "end": 17021.98, + "probability": 0.9326 + }, + { + "start": 17022.16, + "end": 17022.64, + "probability": 0.907 + }, + { + "start": 17022.8, + "end": 17023.94, + "probability": 0.8663 + }, + { + "start": 17024.06, + "end": 17025.84, + "probability": 0.902 + }, + { + "start": 17026.6, + "end": 17028.04, + "probability": 0.3287 + }, + { + "start": 17028.22, + "end": 17030.5, + "probability": 0.9952 + }, + { + "start": 17031.5, + "end": 17032.28, + "probability": 0.2789 + }, + { + "start": 17033.9, + "end": 17036.68, + "probability": 0.9894 + }, + { + "start": 17036.68, + "end": 17040.1, + "probability": 0.8905 + }, + { + "start": 17040.64, + "end": 17042.64, + "probability": 0.6022 + }, + { + "start": 17042.72, + "end": 17043.84, + "probability": 0.8728 + }, + { + "start": 17044.8, + "end": 17046.1, + "probability": 0.7786 + }, + { + "start": 17047.5, + "end": 17048.44, + "probability": 0.9342 + }, + { + "start": 17049.0, + "end": 17051.36, + "probability": 0.9522 + }, + { + "start": 17052.32, + "end": 17058.42, + "probability": 0.9961 + }, + { + "start": 17058.98, + "end": 17059.98, + "probability": 0.9741 + }, + { + "start": 17060.84, + "end": 17062.52, + "probability": 0.9878 + }, + { + "start": 17063.1, + "end": 17066.92, + "probability": 0.9865 + }, + { + "start": 17067.48, + "end": 17070.44, + "probability": 0.7696 + }, + { + "start": 17070.52, + "end": 17071.96, + "probability": 0.9704 + }, + { + "start": 17072.8, + "end": 17075.76, + "probability": 0.9744 + }, + { + "start": 17076.62, + "end": 17077.7, + "probability": 0.8125 + }, + { + "start": 17078.38, + "end": 17079.68, + "probability": 0.9859 + }, + { + "start": 17080.24, + "end": 17082.4, + "probability": 0.9723 + }, + { + "start": 17083.08, + "end": 17083.3, + "probability": 0.241 + }, + { + "start": 17083.3, + "end": 17083.96, + "probability": 0.9133 + }, + { + "start": 17084.9, + "end": 17088.04, + "probability": 0.9787 + }, + { + "start": 17089.6, + "end": 17091.34, + "probability": 0.9854 + }, + { + "start": 17091.5, + "end": 17094.18, + "probability": 0.9979 + }, + { + "start": 17094.76, + "end": 17098.64, + "probability": 0.9726 + }, + { + "start": 17099.34, + "end": 17102.06, + "probability": 0.9951 + }, + { + "start": 17102.06, + "end": 17105.34, + "probability": 0.993 + }, + { + "start": 17106.1, + "end": 17110.04, + "probability": 0.9958 + }, + { + "start": 17110.54, + "end": 17112.3, + "probability": 0.9405 + }, + { + "start": 17112.56, + "end": 17113.02, + "probability": 0.578 + }, + { + "start": 17114.16, + "end": 17115.44, + "probability": 0.9704 + }, + { + "start": 17116.48, + "end": 17117.82, + "probability": 0.8151 + }, + { + "start": 17118.4, + "end": 17118.5, + "probability": 0.5697 + }, + { + "start": 17119.02, + "end": 17120.16, + "probability": 0.9788 + }, + { + "start": 17121.9, + "end": 17123.18, + "probability": 0.4537 + }, + { + "start": 17123.94, + "end": 17125.44, + "probability": 0.4901 + }, + { + "start": 17126.34, + "end": 17127.29, + "probability": 0.1614 + }, + { + "start": 17128.56, + "end": 17132.82, + "probability": 0.4243 + }, + { + "start": 17137.38, + "end": 17138.34, + "probability": 0.6037 + }, + { + "start": 17138.8, + "end": 17139.42, + "probability": 0.6153 + }, + { + "start": 17139.8, + "end": 17140.9, + "probability": 0.7476 + }, + { + "start": 17141.62, + "end": 17144.98, + "probability": 0.0467 + }, + { + "start": 17146.46, + "end": 17148.44, + "probability": 0.1114 + }, + { + "start": 17148.84, + "end": 17150.22, + "probability": 0.2284 + }, + { + "start": 17150.22, + "end": 17151.08, + "probability": 0.2975 + }, + { + "start": 17151.86, + "end": 17154.8, + "probability": 0.2963 + }, + { + "start": 17155.2, + "end": 17158.32, + "probability": 0.9707 + }, + { + "start": 17165.04, + "end": 17167.61, + "probability": 0.6585 + }, + { + "start": 17167.74, + "end": 17170.31, + "probability": 0.8402 + }, + { + "start": 17171.08, + "end": 17171.78, + "probability": 0.0016 + }, + { + "start": 17171.78, + "end": 17171.82, + "probability": 0.4411 + }, + { + "start": 17171.86, + "end": 17172.06, + "probability": 0.8724 + }, + { + "start": 17172.6, + "end": 17174.78, + "probability": 0.5129 + }, + { + "start": 17177.24, + "end": 17180.48, + "probability": 0.6638 + }, + { + "start": 17180.5, + "end": 17181.98, + "probability": 0.7554 + }, + { + "start": 17182.12, + "end": 17182.38, + "probability": 0.9028 + }, + { + "start": 17183.2, + "end": 17184.94, + "probability": 0.719 + }, + { + "start": 17185.96, + "end": 17190.4, + "probability": 0.9852 + }, + { + "start": 17190.5, + "end": 17191.71, + "probability": 0.9569 + }, + { + "start": 17193.98, + "end": 17194.74, + "probability": 0.8636 + }, + { + "start": 17195.96, + "end": 17197.7, + "probability": 0.9921 + }, + { + "start": 17197.82, + "end": 17198.34, + "probability": 0.9862 + }, + { + "start": 17199.02, + "end": 17199.8, + "probability": 0.9978 + }, + { + "start": 17200.78, + "end": 17202.5, + "probability": 0.9885 + }, + { + "start": 17203.18, + "end": 17203.36, + "probability": 0.7411 + }, + { + "start": 17205.28, + "end": 17212.7, + "probability": 0.9849 + }, + { + "start": 17212.7, + "end": 17217.74, + "probability": 0.9962 + }, + { + "start": 17218.16, + "end": 17219.44, + "probability": 0.7816 + }, + { + "start": 17220.64, + "end": 17221.3, + "probability": 0.9108 + }, + { + "start": 17224.42, + "end": 17224.42, + "probability": 0.1336 + }, + { + "start": 17224.42, + "end": 17226.78, + "probability": 0.4244 + }, + { + "start": 17227.14, + "end": 17227.94, + "probability": 0.1719 + }, + { + "start": 17228.12, + "end": 17229.58, + "probability": 0.0964 + }, + { + "start": 17230.2, + "end": 17230.8, + "probability": 0.0457 + }, + { + "start": 17230.82, + "end": 17234.02, + "probability": 0.9065 + }, + { + "start": 17234.91, + "end": 17236.31, + "probability": 0.6257 + }, + { + "start": 17237.18, + "end": 17237.98, + "probability": 0.535 + }, + { + "start": 17238.58, + "end": 17241.92, + "probability": 0.9956 + }, + { + "start": 17241.92, + "end": 17244.84, + "probability": 0.9963 + }, + { + "start": 17244.94, + "end": 17245.48, + "probability": 0.4856 + }, + { + "start": 17246.1, + "end": 17248.66, + "probability": 0.9939 + }, + { + "start": 17250.9, + "end": 17251.26, + "probability": 0.113 + }, + { + "start": 17251.26, + "end": 17251.56, + "probability": 0.1808 + }, + { + "start": 17252.24, + "end": 17255.26, + "probability": 0.7741 + }, + { + "start": 17255.5, + "end": 17257.47, + "probability": 0.5097 + }, + { + "start": 17258.2, + "end": 17259.76, + "probability": 0.2915 + }, + { + "start": 17259.78, + "end": 17261.42, + "probability": 0.2159 + }, + { + "start": 17262.86, + "end": 17264.5, + "probability": 0.9661 + }, + { + "start": 17265.42, + "end": 17267.9, + "probability": 0.7951 + }, + { + "start": 17268.22, + "end": 17269.08, + "probability": 0.8219 + }, + { + "start": 17269.54, + "end": 17270.84, + "probability": 0.9432 + }, + { + "start": 17271.78, + "end": 17274.32, + "probability": 0.8029 + }, + { + "start": 17274.6, + "end": 17276.84, + "probability": 0.9938 + }, + { + "start": 17278.41, + "end": 17280.38, + "probability": 0.9922 + }, + { + "start": 17280.4, + "end": 17284.78, + "probability": 0.916 + }, + { + "start": 17285.18, + "end": 17286.66, + "probability": 0.2156 + }, + { + "start": 17288.26, + "end": 17289.64, + "probability": 0.9888 + }, + { + "start": 17289.96, + "end": 17290.2, + "probability": 0.7268 + }, + { + "start": 17291.14, + "end": 17292.34, + "probability": 0.5934 + }, + { + "start": 17293.62, + "end": 17295.82, + "probability": 0.5527 + }, + { + "start": 17296.92, + "end": 17304.54, + "probability": 0.813 + }, + { + "start": 17305.36, + "end": 17307.83, + "probability": 0.6319 + }, + { + "start": 17309.48, + "end": 17309.48, + "probability": 0.0315 + }, + { + "start": 17309.48, + "end": 17310.16, + "probability": 0.3613 + }, + { + "start": 17310.22, + "end": 17310.84, + "probability": 0.5562 + }, + { + "start": 17311.18, + "end": 17312.66, + "probability": 0.5795 + }, + { + "start": 17313.94, + "end": 17315.36, + "probability": 0.9821 + }, + { + "start": 17316.44, + "end": 17319.2, + "probability": 0.9845 + }, + { + "start": 17320.42, + "end": 17321.86, + "probability": 0.9656 + }, + { + "start": 17322.32, + "end": 17323.34, + "probability": 0.9857 + }, + { + "start": 17323.56, + "end": 17325.6, + "probability": 0.8204 + }, + { + "start": 17326.32, + "end": 17327.1, + "probability": 0.8792 + }, + { + "start": 17328.52, + "end": 17329.24, + "probability": 0.8848 + }, + { + "start": 17330.56, + "end": 17335.16, + "probability": 0.6856 + }, + { + "start": 17336.44, + "end": 17337.68, + "probability": 0.5128 + }, + { + "start": 17338.24, + "end": 17342.74, + "probability": 0.9883 + }, + { + "start": 17343.32, + "end": 17348.02, + "probability": 0.9661 + }, + { + "start": 17349.02, + "end": 17349.48, + "probability": 0.5856 + }, + { + "start": 17350.96, + "end": 17352.38, + "probability": 0.9961 + }, + { + "start": 17353.2, + "end": 17354.7, + "probability": 0.8953 + }, + { + "start": 17355.54, + "end": 17357.98, + "probability": 0.9965 + }, + { + "start": 17359.32, + "end": 17363.6, + "probability": 0.9865 + }, + { + "start": 17364.42, + "end": 17365.16, + "probability": 0.8806 + }, + { + "start": 17366.16, + "end": 17367.96, + "probability": 0.5135 + }, + { + "start": 17369.42, + "end": 17371.12, + "probability": 0.8113 + }, + { + "start": 17372.22, + "end": 17373.82, + "probability": 0.9893 + }, + { + "start": 17375.28, + "end": 17377.8, + "probability": 0.9961 + }, + { + "start": 17378.56, + "end": 17382.42, + "probability": 0.8838 + }, + { + "start": 17384.5, + "end": 17384.84, + "probability": 0.8403 + }, + { + "start": 17385.7, + "end": 17388.74, + "probability": 0.9792 + }, + { + "start": 17389.46, + "end": 17390.82, + "probability": 0.8019 + }, + { + "start": 17391.4, + "end": 17394.28, + "probability": 0.8888 + }, + { + "start": 17395.6, + "end": 17396.38, + "probability": 0.2842 + }, + { + "start": 17397.74, + "end": 17398.88, + "probability": 0.8359 + }, + { + "start": 17400.8, + "end": 17401.98, + "probability": 0.9885 + }, + { + "start": 17402.52, + "end": 17405.86, + "probability": 0.6897 + }, + { + "start": 17406.52, + "end": 17407.0, + "probability": 0.8621 + }, + { + "start": 17407.3, + "end": 17408.46, + "probability": 0.3583 + }, + { + "start": 17408.46, + "end": 17408.46, + "probability": 0.5198 + }, + { + "start": 17408.46, + "end": 17409.02, + "probability": 0.8125 + }, + { + "start": 17411.26, + "end": 17412.32, + "probability": 0.9362 + }, + { + "start": 17412.62, + "end": 17414.28, + "probability": 0.3244 + }, + { + "start": 17414.38, + "end": 17419.0, + "probability": 0.8628 + }, + { + "start": 17419.08, + "end": 17419.5, + "probability": 0.9478 + }, + { + "start": 17420.72, + "end": 17424.78, + "probability": 0.9059 + }, + { + "start": 17427.65, + "end": 17430.04, + "probability": 0.7229 + }, + { + "start": 17430.82, + "end": 17433.74, + "probability": 0.8005 + }, + { + "start": 17433.92, + "end": 17436.66, + "probability": 0.9824 + }, + { + "start": 17437.58, + "end": 17437.86, + "probability": 0.7443 + }, + { + "start": 17438.98, + "end": 17442.2, + "probability": 0.9162 + }, + { + "start": 17442.3, + "end": 17444.84, + "probability": 0.7742 + }, + { + "start": 17448.57, + "end": 17451.26, + "probability": 0.6669 + }, + { + "start": 17451.94, + "end": 17455.74, + "probability": 0.509 + }, + { + "start": 17456.04, + "end": 17457.74, + "probability": 0.9897 + }, + { + "start": 17458.94, + "end": 17461.24, + "probability": 0.9645 + }, + { + "start": 17462.14, + "end": 17463.6, + "probability": 0.9765 + }, + { + "start": 17465.04, + "end": 17468.33, + "probability": 0.5878 + }, + { + "start": 17469.32, + "end": 17471.58, + "probability": 0.9756 + }, + { + "start": 17471.9, + "end": 17473.82, + "probability": 0.7526 + }, + { + "start": 17474.22, + "end": 17475.92, + "probability": 0.9742 + }, + { + "start": 17476.6, + "end": 17477.88, + "probability": 0.8591 + }, + { + "start": 17479.02, + "end": 17482.4, + "probability": 0.8682 + }, + { + "start": 17485.0, + "end": 17485.91, + "probability": 0.1113 + }, + { + "start": 17489.14, + "end": 17490.52, + "probability": 0.0644 + }, + { + "start": 17490.52, + "end": 17492.74, + "probability": 0.2478 + }, + { + "start": 17494.04, + "end": 17496.67, + "probability": 0.9532 + }, + { + "start": 17499.6, + "end": 17500.88, + "probability": 0.896 + }, + { + "start": 17500.88, + "end": 17506.77, + "probability": 0.9907 + }, + { + "start": 17509.12, + "end": 17512.04, + "probability": 0.9855 + }, + { + "start": 17513.14, + "end": 17519.76, + "probability": 0.9842 + }, + { + "start": 17520.79, + "end": 17523.74, + "probability": 0.983 + }, + { + "start": 17524.34, + "end": 17526.08, + "probability": 0.9315 + }, + { + "start": 17527.02, + "end": 17529.98, + "probability": 0.7244 + }, + { + "start": 17530.34, + "end": 17532.84, + "probability": 0.9864 + }, + { + "start": 17532.94, + "end": 17534.48, + "probability": 0.8892 + }, + { + "start": 17534.94, + "end": 17537.8, + "probability": 0.7319 + }, + { + "start": 17538.1, + "end": 17543.2, + "probability": 0.9899 + }, + { + "start": 17543.7, + "end": 17545.24, + "probability": 0.9734 + }, + { + "start": 17545.5, + "end": 17546.26, + "probability": 0.0891 + }, + { + "start": 17547.32, + "end": 17548.24, + "probability": 0.6857 + }, + { + "start": 17548.78, + "end": 17548.78, + "probability": 0.0702 + }, + { + "start": 17548.78, + "end": 17550.48, + "probability": 0.6652 + }, + { + "start": 17550.68, + "end": 17554.8, + "probability": 0.9763 + }, + { + "start": 17555.2, + "end": 17557.1, + "probability": 0.9773 + }, + { + "start": 17557.56, + "end": 17559.74, + "probability": 0.8035 + }, + { + "start": 17560.72, + "end": 17561.38, + "probability": 0.5839 + }, + { + "start": 17561.4, + "end": 17561.5, + "probability": 0.5028 + }, + { + "start": 17562.56, + "end": 17563.22, + "probability": 0.9573 + }, + { + "start": 17563.98, + "end": 17566.36, + "probability": 0.6763 + }, + { + "start": 17567.36, + "end": 17568.5, + "probability": 0.6738 + }, + { + "start": 17569.32, + "end": 17570.36, + "probability": 0.2073 + }, + { + "start": 17570.42, + "end": 17574.6, + "probability": 0.2812 + }, + { + "start": 17574.6, + "end": 17575.84, + "probability": 0.9479 + }, + { + "start": 17576.44, + "end": 17580.74, + "probability": 0.9753 + }, + { + "start": 17581.2, + "end": 17581.72, + "probability": 0.7208 + }, + { + "start": 17581.84, + "end": 17582.04, + "probability": 0.8049 + }, + { + "start": 17582.12, + "end": 17582.52, + "probability": 0.5152 + }, + { + "start": 17582.96, + "end": 17585.6, + "probability": 0.6429 + }, + { + "start": 17585.86, + "end": 17586.92, + "probability": 0.822 + }, + { + "start": 17586.96, + "end": 17587.34, + "probability": 0.4217 + }, + { + "start": 17587.58, + "end": 17588.76, + "probability": 0.4877 + }, + { + "start": 17600.86, + "end": 17600.86, + "probability": 0.0728 + }, + { + "start": 17600.86, + "end": 17602.36, + "probability": 0.8746 + }, + { + "start": 17606.86, + "end": 17608.94, + "probability": 0.7481 + }, + { + "start": 17609.08, + "end": 17610.05, + "probability": 0.9661 + }, + { + "start": 17610.14, + "end": 17610.82, + "probability": 0.8467 + }, + { + "start": 17610.9, + "end": 17612.1, + "probability": 0.6906 + }, + { + "start": 17613.1, + "end": 17616.16, + "probability": 0.9875 + }, + { + "start": 17617.0, + "end": 17620.84, + "probability": 0.9582 + }, + { + "start": 17623.7, + "end": 17624.54, + "probability": 0.8104 + }, + { + "start": 17625.62, + "end": 17628.64, + "probability": 0.9939 + }, + { + "start": 17630.18, + "end": 17631.18, + "probability": 0.9672 + }, + { + "start": 17631.32, + "end": 17635.26, + "probability": 0.9523 + }, + { + "start": 17636.2, + "end": 17636.92, + "probability": 0.2679 + }, + { + "start": 17637.72, + "end": 17640.23, + "probability": 0.9904 + }, + { + "start": 17641.4, + "end": 17642.28, + "probability": 0.0454 + }, + { + "start": 17642.98, + "end": 17644.29, + "probability": 0.4534 + }, + { + "start": 17647.2, + "end": 17649.5, + "probability": 0.9875 + }, + { + "start": 17650.28, + "end": 17653.0, + "probability": 0.977 + }, + { + "start": 17654.8, + "end": 17659.44, + "probability": 0.9871 + }, + { + "start": 17659.92, + "end": 17660.22, + "probability": 0.8183 + }, + { + "start": 17660.32, + "end": 17660.96, + "probability": 0.7497 + }, + { + "start": 17661.1, + "end": 17662.78, + "probability": 0.9314 + }, + { + "start": 17664.02, + "end": 17666.2, + "probability": 0.9469 + }, + { + "start": 17666.28, + "end": 17668.4, + "probability": 0.9912 + }, + { + "start": 17668.92, + "end": 17673.42, + "probability": 0.9907 + }, + { + "start": 17674.52, + "end": 17677.18, + "probability": 0.808 + }, + { + "start": 17678.44, + "end": 17680.16, + "probability": 0.8978 + }, + { + "start": 17681.06, + "end": 17685.2, + "probability": 0.8887 + }, + { + "start": 17686.36, + "end": 17693.84, + "probability": 0.9721 + }, + { + "start": 17695.88, + "end": 17698.68, + "probability": 0.3672 + }, + { + "start": 17701.04, + "end": 17702.7, + "probability": 0.8389 + }, + { + "start": 17702.86, + "end": 17703.66, + "probability": 0.1335 + }, + { + "start": 17703.86, + "end": 17709.12, + "probability": 0.8898 + }, + { + "start": 17709.62, + "end": 17712.56, + "probability": 0.9748 + }, + { + "start": 17712.56, + "end": 17715.54, + "probability": 0.999 + }, + { + "start": 17716.4, + "end": 17718.36, + "probability": 0.806 + }, + { + "start": 17719.5, + "end": 17720.52, + "probability": 0.6388 + }, + { + "start": 17721.7, + "end": 17722.26, + "probability": 0.1593 + }, + { + "start": 17722.96, + "end": 17731.72, + "probability": 0.965 + }, + { + "start": 17732.54, + "end": 17735.6, + "probability": 0.9556 + }, + { + "start": 17736.68, + "end": 17737.92, + "probability": 0.9678 + }, + { + "start": 17738.12, + "end": 17740.64, + "probability": 0.9883 + }, + { + "start": 17742.18, + "end": 17744.12, + "probability": 0.9901 + }, + { + "start": 17745.0, + "end": 17746.48, + "probability": 0.9634 + }, + { + "start": 17746.84, + "end": 17747.58, + "probability": 0.9258 + }, + { + "start": 17747.66, + "end": 17748.52, + "probability": 0.9707 + }, + { + "start": 17748.64, + "end": 17749.65, + "probability": 0.9282 + }, + { + "start": 17750.58, + "end": 17753.58, + "probability": 0.9333 + }, + { + "start": 17754.3, + "end": 17756.26, + "probability": 0.9531 + }, + { + "start": 17756.58, + "end": 17758.86, + "probability": 0.9949 + }, + { + "start": 17759.28, + "end": 17762.72, + "probability": 0.9656 + }, + { + "start": 17762.76, + "end": 17764.76, + "probability": 0.9904 + }, + { + "start": 17766.24, + "end": 17771.06, + "probability": 0.9813 + }, + { + "start": 17771.06, + "end": 17774.2, + "probability": 0.9984 + }, + { + "start": 17774.82, + "end": 17779.82, + "probability": 0.9863 + }, + { + "start": 17779.82, + "end": 17784.96, + "probability": 0.989 + }, + { + "start": 17785.46, + "end": 17788.32, + "probability": 0.913 + }, + { + "start": 17788.46, + "end": 17789.54, + "probability": 0.8545 + }, + { + "start": 17790.44, + "end": 17792.84, + "probability": 0.9785 + }, + { + "start": 17794.24, + "end": 17794.7, + "probability": 0.977 + }, + { + "start": 17795.22, + "end": 17798.6, + "probability": 0.9818 + }, + { + "start": 17800.02, + "end": 17805.06, + "probability": 0.9973 + }, + { + "start": 17805.52, + "end": 17806.54, + "probability": 0.9031 + }, + { + "start": 17806.92, + "end": 17807.92, + "probability": 0.7793 + }, + { + "start": 17808.52, + "end": 17811.1, + "probability": 0.9688 + }, + { + "start": 17811.58, + "end": 17811.84, + "probability": 0.8503 + }, + { + "start": 17812.86, + "end": 17814.24, + "probability": 0.508 + }, + { + "start": 17814.5, + "end": 17816.0, + "probability": 0.8171 + }, + { + "start": 17816.5, + "end": 17817.74, + "probability": 0.6416 + }, + { + "start": 17817.84, + "end": 17818.38, + "probability": 0.5134 + }, + { + "start": 17818.42, + "end": 17819.8, + "probability": 0.8534 + }, + { + "start": 17829.04, + "end": 17830.22, + "probability": 0.7219 + }, + { + "start": 17831.1, + "end": 17833.64, + "probability": 0.8051 + }, + { + "start": 17834.58, + "end": 17837.95, + "probability": 0.9114 + }, + { + "start": 17838.8, + "end": 17842.9, + "probability": 0.9062 + }, + { + "start": 17843.54, + "end": 17844.62, + "probability": 0.913 + }, + { + "start": 17846.36, + "end": 17850.02, + "probability": 0.9988 + }, + { + "start": 17850.24, + "end": 17853.3, + "probability": 0.999 + }, + { + "start": 17853.9, + "end": 17859.08, + "probability": 0.9954 + }, + { + "start": 17859.24, + "end": 17861.2, + "probability": 0.7758 + }, + { + "start": 17861.84, + "end": 17863.22, + "probability": 0.9122 + }, + { + "start": 17863.28, + "end": 17863.66, + "probability": 0.8111 + }, + { + "start": 17863.74, + "end": 17868.18, + "probability": 0.7946 + }, + { + "start": 17868.26, + "end": 17870.32, + "probability": 0.7237 + }, + { + "start": 17870.42, + "end": 17871.66, + "probability": 0.7614 + }, + { + "start": 17871.78, + "end": 17875.88, + "probability": 0.9264 + }, + { + "start": 17875.9, + "end": 17877.04, + "probability": 0.498 + }, + { + "start": 17877.04, + "end": 17878.14, + "probability": 0.654 + }, + { + "start": 17879.1, + "end": 17881.46, + "probability": 0.5363 + }, + { + "start": 17881.54, + "end": 17883.68, + "probability": 0.57 + }, + { + "start": 17883.68, + "end": 17886.92, + "probability": 0.9231 + }, + { + "start": 17887.9, + "end": 17891.48, + "probability": 0.7932 + }, + { + "start": 17891.56, + "end": 17892.08, + "probability": 0.352 + }, + { + "start": 17892.26, + "end": 17894.56, + "probability": 0.567 + }, + { + "start": 17895.66, + "end": 17896.02, + "probability": 0.3548 + }, + { + "start": 17897.72, + "end": 17897.82, + "probability": 0.2242 + }, + { + "start": 17898.66, + "end": 17898.68, + "probability": 0.2815 + }, + { + "start": 17898.68, + "end": 17898.68, + "probability": 0.1755 + }, + { + "start": 17898.68, + "end": 17899.96, + "probability": 0.1692 + }, + { + "start": 17900.28, + "end": 17903.82, + "probability": 0.8299 + }, + { + "start": 17904.6, + "end": 17907.4, + "probability": 0.1979 + }, + { + "start": 17907.56, + "end": 17908.8, + "probability": 0.7464 + }, + { + "start": 17908.84, + "end": 17909.88, + "probability": 0.7739 + }, + { + "start": 17910.26, + "end": 17915.2, + "probability": 0.9058 + }, + { + "start": 17915.2, + "end": 17921.24, + "probability": 0.9968 + }, + { + "start": 17921.48, + "end": 17922.4, + "probability": 0.4036 + }, + { + "start": 17922.58, + "end": 17924.64, + "probability": 0.9469 + }, + { + "start": 17924.82, + "end": 17929.5, + "probability": 0.9539 + }, + { + "start": 17930.22, + "end": 17934.14, + "probability": 0.6398 + }, + { + "start": 17934.28, + "end": 17935.2, + "probability": 0.8459 + }, + { + "start": 17935.24, + "end": 17936.7, + "probability": 0.9878 + }, + { + "start": 17936.98, + "end": 17937.24, + "probability": 0.9055 + }, + { + "start": 17937.84, + "end": 17938.66, + "probability": 0.8541 + }, + { + "start": 17938.76, + "end": 17939.68, + "probability": 0.8681 + }, + { + "start": 17939.72, + "end": 17944.7, + "probability": 0.9777 + }, + { + "start": 17945.02, + "end": 17947.41, + "probability": 0.9988 + }, + { + "start": 17948.48, + "end": 17951.96, + "probability": 0.952 + }, + { + "start": 17952.04, + "end": 17956.02, + "probability": 0.9524 + }, + { + "start": 17956.22, + "end": 17958.02, + "probability": 0.9535 + }, + { + "start": 17958.8, + "end": 17965.52, + "probability": 0.9204 + }, + { + "start": 17965.76, + "end": 17967.35, + "probability": 0.9961 + }, + { + "start": 17968.68, + "end": 17969.68, + "probability": 0.3528 + }, + { + "start": 17969.78, + "end": 17970.53, + "probability": 0.9114 + }, + { + "start": 17970.72, + "end": 17972.74, + "probability": 0.7665 + }, + { + "start": 17972.84, + "end": 17974.1, + "probability": 0.8628 + }, + { + "start": 17974.58, + "end": 17976.27, + "probability": 0.5806 + }, + { + "start": 17976.96, + "end": 17978.3, + "probability": 0.9602 + }, + { + "start": 17978.68, + "end": 17979.64, + "probability": 0.708 + }, + { + "start": 17980.1, + "end": 17981.46, + "probability": 0.9604 + }, + { + "start": 17981.58, + "end": 17982.88, + "probability": 0.9452 + }, + { + "start": 17983.54, + "end": 17984.94, + "probability": 0.8804 + }, + { + "start": 17985.06, + "end": 17989.42, + "probability": 0.4708 + }, + { + "start": 17990.08, + "end": 17993.42, + "probability": 0.7161 + }, + { + "start": 17993.9, + "end": 17995.3, + "probability": 0.811 + }, + { + "start": 17995.78, + "end": 17997.14, + "probability": 0.9946 + }, + { + "start": 17997.8, + "end": 17998.92, + "probability": 0.9473 + }, + { + "start": 17999.02, + "end": 18000.3, + "probability": 0.8346 + }, + { + "start": 18000.32, + "end": 18002.04, + "probability": 0.8672 + }, + { + "start": 18003.1, + "end": 18007.88, + "probability": 0.8337 + }, + { + "start": 18007.88, + "end": 18010.2, + "probability": 0.7343 + }, + { + "start": 18010.8, + "end": 18013.1, + "probability": 0.8905 + }, + { + "start": 18014.06, + "end": 18019.78, + "probability": 0.972 + }, + { + "start": 18020.74, + "end": 18023.58, + "probability": 0.0215 + }, + { + "start": 18024.32, + "end": 18024.42, + "probability": 0.0899 + }, + { + "start": 18024.42, + "end": 18028.42, + "probability": 0.4582 + }, + { + "start": 18029.24, + "end": 18029.54, + "probability": 0.5161 + }, + { + "start": 18029.54, + "end": 18029.54, + "probability": 0.3333 + }, + { + "start": 18029.54, + "end": 18030.04, + "probability": 0.3906 + }, + { + "start": 18030.76, + "end": 18034.34, + "probability": 0.6376 + }, + { + "start": 18034.44, + "end": 18035.64, + "probability": 0.9434 + }, + { + "start": 18036.18, + "end": 18038.94, + "probability": 0.6146 + }, + { + "start": 18039.68, + "end": 18040.7, + "probability": 0.7578 + }, + { + "start": 18042.44, + "end": 18045.86, + "probability": 0.9697 + }, + { + "start": 18046.34, + "end": 18048.18, + "probability": 0.2793 + }, + { + "start": 18048.76, + "end": 18051.84, + "probability": 0.9906 + }, + { + "start": 18053.06, + "end": 18053.96, + "probability": 0.8226 + }, + { + "start": 18054.7, + "end": 18057.4, + "probability": 0.7667 + }, + { + "start": 18057.88, + "end": 18058.18, + "probability": 0.6248 + }, + { + "start": 18058.76, + "end": 18061.8, + "probability": 0.9683 + }, + { + "start": 18062.22, + "end": 18063.58, + "probability": 0.8015 + }, + { + "start": 18064.3, + "end": 18064.96, + "probability": 0.8566 + }, + { + "start": 18065.7, + "end": 18067.38, + "probability": 0.9166 + }, + { + "start": 18067.54, + "end": 18069.3, + "probability": 0.9349 + }, + { + "start": 18069.66, + "end": 18070.24, + "probability": 0.8888 + }, + { + "start": 18070.32, + "end": 18071.1, + "probability": 0.7571 + }, + { + "start": 18071.26, + "end": 18072.6, + "probability": 0.9871 + }, + { + "start": 18072.72, + "end": 18076.6, + "probability": 0.9859 + }, + { + "start": 18076.7, + "end": 18077.22, + "probability": 0.5102 + }, + { + "start": 18077.56, + "end": 18078.38, + "probability": 0.7058 + }, + { + "start": 18078.64, + "end": 18079.91, + "probability": 0.9843 + }, + { + "start": 18080.38, + "end": 18082.94, + "probability": 0.9888 + }, + { + "start": 18083.8, + "end": 18086.92, + "probability": 0.8181 + }, + { + "start": 18087.08, + "end": 18089.04, + "probability": 0.7503 + }, + { + "start": 18089.42, + "end": 18090.0, + "probability": 0.7811 + }, + { + "start": 18090.38, + "end": 18091.6, + "probability": 0.8431 + }, + { + "start": 18091.72, + "end": 18092.74, + "probability": 0.5833 + }, + { + "start": 18093.28, + "end": 18095.42, + "probability": 0.9839 + }, + { + "start": 18095.92, + "end": 18097.68, + "probability": 0.9624 + }, + { + "start": 18097.74, + "end": 18098.38, + "probability": 0.9733 + }, + { + "start": 18098.46, + "end": 18099.82, + "probability": 0.9482 + }, + { + "start": 18100.12, + "end": 18101.88, + "probability": 0.9966 + }, + { + "start": 18102.24, + "end": 18103.12, + "probability": 0.7984 + }, + { + "start": 18103.66, + "end": 18105.92, + "probability": 0.9863 + }, + { + "start": 18106.46, + "end": 18107.36, + "probability": 0.6802 + }, + { + "start": 18108.7, + "end": 18111.64, + "probability": 0.8834 + }, + { + "start": 18112.4, + "end": 18113.62, + "probability": 0.9542 + }, + { + "start": 18113.78, + "end": 18116.74, + "probability": 0.9027 + }, + { + "start": 18117.24, + "end": 18118.96, + "probability": 0.9783 + }, + { + "start": 18119.1, + "end": 18119.64, + "probability": 0.4553 + }, + { + "start": 18119.72, + "end": 18121.38, + "probability": 0.8575 + }, + { + "start": 18121.48, + "end": 18124.26, + "probability": 0.8091 + }, + { + "start": 18124.8, + "end": 18125.88, + "probability": 0.6281 + }, + { + "start": 18126.24, + "end": 18129.68, + "probability": 0.9663 + }, + { + "start": 18130.02, + "end": 18132.34, + "probability": 0.9803 + }, + { + "start": 18132.5, + "end": 18132.82, + "probability": 0.5119 + }, + { + "start": 18132.88, + "end": 18133.26, + "probability": 0.5156 + }, + { + "start": 18133.98, + "end": 18137.66, + "probability": 0.9917 + }, + { + "start": 18137.72, + "end": 18137.72, + "probability": 0.4424 + }, + { + "start": 18137.8, + "end": 18142.62, + "probability": 0.9921 + }, + { + "start": 18142.78, + "end": 18143.1, + "probability": 0.4778 + }, + { + "start": 18143.12, + "end": 18144.48, + "probability": 0.5347 + }, + { + "start": 18144.66, + "end": 18145.16, + "probability": 0.8683 + }, + { + "start": 18145.3, + "end": 18146.18, + "probability": 0.9651 + }, + { + "start": 18146.24, + "end": 18146.86, + "probability": 0.9665 + }, + { + "start": 18146.96, + "end": 18148.12, + "probability": 0.66 + }, + { + "start": 18148.82, + "end": 18150.96, + "probability": 0.884 + }, + { + "start": 18151.06, + "end": 18152.2, + "probability": 0.8014 + }, + { + "start": 18152.3, + "end": 18155.96, + "probability": 0.9881 + }, + { + "start": 18156.06, + "end": 18157.16, + "probability": 0.7069 + }, + { + "start": 18157.48, + "end": 18158.7, + "probability": 0.9219 + }, + { + "start": 18158.82, + "end": 18162.9, + "probability": 0.9974 + }, + { + "start": 18163.06, + "end": 18163.62, + "probability": 0.5451 + }, + { + "start": 18163.62, + "end": 18164.68, + "probability": 0.577 + }, + { + "start": 18164.76, + "end": 18166.22, + "probability": 0.8687 + }, + { + "start": 18166.26, + "end": 18166.96, + "probability": 0.4122 + }, + { + "start": 18167.38, + "end": 18168.48, + "probability": 0.8053 + }, + { + "start": 18168.62, + "end": 18169.54, + "probability": 0.9197 + }, + { + "start": 18176.22, + "end": 18177.96, + "probability": 0.238 + }, + { + "start": 18180.16, + "end": 18181.2, + "probability": 0.5759 + }, + { + "start": 18182.12, + "end": 18182.36, + "probability": 0.0012 + }, + { + "start": 18182.78, + "end": 18186.32, + "probability": 0.3247 + }, + { + "start": 18186.76, + "end": 18189.14, + "probability": 0.3888 + }, + { + "start": 18189.2, + "end": 18191.94, + "probability": 0.9258 + }, + { + "start": 18192.28, + "end": 18192.86, + "probability": 0.6243 + }, + { + "start": 18193.04, + "end": 18193.5, + "probability": 0.8046 + }, + { + "start": 18193.96, + "end": 18194.96, + "probability": 0.9573 + }, + { + "start": 18194.96, + "end": 18198.26, + "probability": 0.7305 + }, + { + "start": 18198.26, + "end": 18198.64, + "probability": 0.5271 + }, + { + "start": 18199.3, + "end": 18199.72, + "probability": 0.7651 + }, + { + "start": 18199.82, + "end": 18201.18, + "probability": 0.9639 + }, + { + "start": 18202.18, + "end": 18203.46, + "probability": 0.7227 + }, + { + "start": 18203.56, + "end": 18205.36, + "probability": 0.9536 + }, + { + "start": 18205.48, + "end": 18206.82, + "probability": 0.7629 + }, + { + "start": 18206.94, + "end": 18208.14, + "probability": 0.3966 + }, + { + "start": 18208.76, + "end": 18212.52, + "probability": 0.9938 + }, + { + "start": 18212.76, + "end": 18213.24, + "probability": 0.542 + }, + { + "start": 18214.08, + "end": 18215.48, + "probability": 0.9053 + }, + { + "start": 18215.6, + "end": 18217.31, + "probability": 0.9829 + }, + { + "start": 18218.18, + "end": 18219.34, + "probability": 0.8826 + }, + { + "start": 18220.06, + "end": 18222.24, + "probability": 0.7518 + }, + { + "start": 18222.68, + "end": 18225.48, + "probability": 0.9953 + }, + { + "start": 18225.96, + "end": 18231.78, + "probability": 0.7998 + }, + { + "start": 18231.82, + "end": 18232.46, + "probability": 0.814 + }, + { + "start": 18232.64, + "end": 18234.32, + "probability": 0.7748 + }, + { + "start": 18234.42, + "end": 18238.08, + "probability": 0.8527 + }, + { + "start": 18238.48, + "end": 18241.08, + "probability": 0.976 + }, + { + "start": 18243.02, + "end": 18243.44, + "probability": 0.8129 + }, + { + "start": 18244.1, + "end": 18244.73, + "probability": 0.5137 + }, + { + "start": 18245.45, + "end": 18248.24, + "probability": 0.9993 + }, + { + "start": 18248.34, + "end": 18249.8, + "probability": 0.9968 + }, + { + "start": 18249.8, + "end": 18250.48, + "probability": 0.9362 + }, + { + "start": 18250.54, + "end": 18251.41, + "probability": 0.9921 + }, + { + "start": 18251.5, + "end": 18252.42, + "probability": 0.6742 + }, + { + "start": 18252.68, + "end": 18254.64, + "probability": 0.8298 + }, + { + "start": 18255.12, + "end": 18255.83, + "probability": 0.6548 + }, + { + "start": 18256.16, + "end": 18257.1, + "probability": 0.6138 + }, + { + "start": 18257.38, + "end": 18257.38, + "probability": 0.1569 + }, + { + "start": 18257.38, + "end": 18259.7, + "probability": 0.6944 + }, + { + "start": 18259.7, + "end": 18263.14, + "probability": 0.9189 + }, + { + "start": 18263.96, + "end": 18265.02, + "probability": 0.855 + }, + { + "start": 18265.2, + "end": 18266.73, + "probability": 0.856 + }, + { + "start": 18266.85, + "end": 18269.4, + "probability": 0.9954 + }, + { + "start": 18269.4, + "end": 18270.4, + "probability": 0.8216 + }, + { + "start": 18270.58, + "end": 18272.78, + "probability": 0.8116 + }, + { + "start": 18272.9, + "end": 18274.02, + "probability": 0.9103 + }, + { + "start": 18274.64, + "end": 18276.6, + "probability": 0.9397 + }, + { + "start": 18278.44, + "end": 18281.14, + "probability": 0.2785 + }, + { + "start": 18281.74, + "end": 18283.66, + "probability": 0.0649 + }, + { + "start": 18283.8, + "end": 18284.9, + "probability": 0.6695 + }, + { + "start": 18285.38, + "end": 18287.04, + "probability": 0.3522 + }, + { + "start": 18287.12, + "end": 18287.54, + "probability": 0.1242 + }, + { + "start": 18287.98, + "end": 18289.8, + "probability": 0.7574 + }, + { + "start": 18289.98, + "end": 18291.88, + "probability": 0.8003 + }, + { + "start": 18295.22, + "end": 18296.0, + "probability": 0.4961 + }, + { + "start": 18296.7, + "end": 18298.94, + "probability": 0.8877 + }, + { + "start": 18299.1, + "end": 18302.96, + "probability": 0.9977 + }, + { + "start": 18303.68, + "end": 18307.52, + "probability": 0.9206 + }, + { + "start": 18307.58, + "end": 18308.14, + "probability": 0.9066 + }, + { + "start": 18308.36, + "end": 18309.38, + "probability": 0.9956 + }, + { + "start": 18309.52, + "end": 18310.02, + "probability": 0.5819 + }, + { + "start": 18310.5, + "end": 18312.1, + "probability": 0.995 + }, + { + "start": 18312.42, + "end": 18314.35, + "probability": 0.7484 + }, + { + "start": 18315.08, + "end": 18316.65, + "probability": 0.999 + }, + { + "start": 18316.96, + "end": 18317.16, + "probability": 0.0012 + }, + { + "start": 18318.53, + "end": 18320.14, + "probability": 0.1317 + }, + { + "start": 18320.38, + "end": 18320.46, + "probability": 0.2238 + }, + { + "start": 18320.56, + "end": 18322.09, + "probability": 0.6852 + }, + { + "start": 18323.26, + "end": 18324.42, + "probability": 0.7561 + }, + { + "start": 18324.84, + "end": 18328.52, + "probability": 0.9978 + }, + { + "start": 18329.04, + "end": 18333.92, + "probability": 0.9671 + }, + { + "start": 18334.58, + "end": 18335.38, + "probability": 0.8366 + }, + { + "start": 18335.94, + "end": 18337.8, + "probability": 0.926 + }, + { + "start": 18337.94, + "end": 18340.7, + "probability": 0.9564 + }, + { + "start": 18341.42, + "end": 18342.84, + "probability": 0.9834 + }, + { + "start": 18343.16, + "end": 18344.76, + "probability": 0.8391 + }, + { + "start": 18345.18, + "end": 18349.58, + "probability": 0.9952 + }, + { + "start": 18350.06, + "end": 18352.72, + "probability": 0.9912 + }, + { + "start": 18354.02, + "end": 18355.6, + "probability": 0.9849 + }, + { + "start": 18355.9, + "end": 18359.24, + "probability": 0.9852 + }, + { + "start": 18360.02, + "end": 18360.24, + "probability": 0.2088 + }, + { + "start": 18360.24, + "end": 18360.24, + "probability": 0.7322 + }, + { + "start": 18360.3, + "end": 18360.54, + "probability": 0.9252 + }, + { + "start": 18360.62, + "end": 18360.92, + "probability": 0.8916 + }, + { + "start": 18361.02, + "end": 18364.36, + "probability": 0.9801 + }, + { + "start": 18364.36, + "end": 18368.02, + "probability": 0.6595 + }, + { + "start": 18368.24, + "end": 18368.36, + "probability": 0.1416 + }, + { + "start": 18368.36, + "end": 18369.12, + "probability": 0.6189 + }, + { + "start": 18370.34, + "end": 18371.2, + "probability": 0.8937 + }, + { + "start": 18371.26, + "end": 18377.7, + "probability": 0.9955 + }, + { + "start": 18377.76, + "end": 18379.42, + "probability": 0.6721 + }, + { + "start": 18380.2, + "end": 18382.0, + "probability": 0.8541 + }, + { + "start": 18383.06, + "end": 18387.92, + "probability": 0.9945 + }, + { + "start": 18387.92, + "end": 18394.06, + "probability": 0.9974 + }, + { + "start": 18394.76, + "end": 18395.3, + "probability": 0.8517 + }, + { + "start": 18395.86, + "end": 18396.51, + "probability": 0.9722 + }, + { + "start": 18397.2, + "end": 18399.06, + "probability": 0.8579 + }, + { + "start": 18400.38, + "end": 18401.26, + "probability": 0.924 + }, + { + "start": 18402.02, + "end": 18404.86, + "probability": 0.9941 + }, + { + "start": 18404.96, + "end": 18407.36, + "probability": 0.9852 + }, + { + "start": 18407.86, + "end": 18412.08, + "probability": 0.9827 + }, + { + "start": 18412.08, + "end": 18415.34, + "probability": 0.9966 + }, + { + "start": 18415.84, + "end": 18419.82, + "probability": 0.9959 + }, + { + "start": 18420.18, + "end": 18422.52, + "probability": 0.8584 + }, + { + "start": 18423.02, + "end": 18424.84, + "probability": 0.9736 + }, + { + "start": 18425.22, + "end": 18426.84, + "probability": 0.9769 + }, + { + "start": 18427.26, + "end": 18428.96, + "probability": 0.9771 + }, + { + "start": 18429.0, + "end": 18430.08, + "probability": 0.9292 + }, + { + "start": 18430.6, + "end": 18432.7, + "probability": 0.9817 + }, + { + "start": 18433.3, + "end": 18436.62, + "probability": 0.9966 + }, + { + "start": 18436.62, + "end": 18440.04, + "probability": 0.9861 + }, + { + "start": 18440.16, + "end": 18443.3, + "probability": 0.9912 + }, + { + "start": 18444.9, + "end": 18447.12, + "probability": 0.8537 + }, + { + "start": 18447.66, + "end": 18453.12, + "probability": 0.9297 + }, + { + "start": 18454.34, + "end": 18458.78, + "probability": 0.9937 + }, + { + "start": 18458.9, + "end": 18460.42, + "probability": 0.9833 + }, + { + "start": 18460.68, + "end": 18461.99, + "probability": 0.9556 + }, + { + "start": 18462.66, + "end": 18465.18, + "probability": 0.9588 + }, + { + "start": 18465.58, + "end": 18469.1, + "probability": 0.9895 + }, + { + "start": 18469.78, + "end": 18472.3, + "probability": 0.9927 + }, + { + "start": 18472.8, + "end": 18476.76, + "probability": 0.9927 + }, + { + "start": 18477.28, + "end": 18481.76, + "probability": 0.997 + }, + { + "start": 18481.76, + "end": 18484.7, + "probability": 0.9955 + }, + { + "start": 18485.42, + "end": 18488.46, + "probability": 0.9982 + }, + { + "start": 18489.06, + "end": 18491.12, + "probability": 0.9851 + }, + { + "start": 18491.12, + "end": 18493.86, + "probability": 0.9871 + }, + { + "start": 18495.0, + "end": 18496.62, + "probability": 0.811 + }, + { + "start": 18497.4, + "end": 18501.58, + "probability": 0.9282 + }, + { + "start": 18501.94, + "end": 18503.8, + "probability": 0.9447 + }, + { + "start": 18504.28, + "end": 18506.12, + "probability": 0.9311 + }, + { + "start": 18506.48, + "end": 18508.86, + "probability": 0.7098 + }, + { + "start": 18509.66, + "end": 18511.78, + "probability": 0.9079 + }, + { + "start": 18512.22, + "end": 18514.32, + "probability": 0.9726 + }, + { + "start": 18514.44, + "end": 18518.28, + "probability": 0.9365 + }, + { + "start": 18518.84, + "end": 18520.66, + "probability": 0.765 + }, + { + "start": 18521.0, + "end": 18524.7, + "probability": 0.978 + }, + { + "start": 18526.0, + "end": 18528.38, + "probability": 0.9856 + }, + { + "start": 18529.0, + "end": 18530.58, + "probability": 0.9527 + }, + { + "start": 18530.72, + "end": 18532.3, + "probability": 0.8511 + }, + { + "start": 18533.6, + "end": 18537.42, + "probability": 0.9966 + }, + { + "start": 18537.84, + "end": 18539.1, + "probability": 0.8975 + }, + { + "start": 18539.18, + "end": 18540.34, + "probability": 0.7197 + }, + { + "start": 18540.78, + "end": 18542.6, + "probability": 0.9634 + }, + { + "start": 18543.08, + "end": 18544.48, + "probability": 0.7825 + }, + { + "start": 18545.02, + "end": 18545.96, + "probability": 0.8369 + }, + { + "start": 18546.12, + "end": 18551.58, + "probability": 0.9598 + }, + { + "start": 18552.16, + "end": 18553.42, + "probability": 0.917 + }, + { + "start": 18554.04, + "end": 18555.88, + "probability": 0.9805 + }, + { + "start": 18556.28, + "end": 18557.5, + "probability": 0.9745 + }, + { + "start": 18557.62, + "end": 18559.24, + "probability": 0.6661 + }, + { + "start": 18559.68, + "end": 18561.6, + "probability": 0.9331 + }, + { + "start": 18561.86, + "end": 18565.96, + "probability": 0.9914 + }, + { + "start": 18565.96, + "end": 18569.16, + "probability": 0.9893 + }, + { + "start": 18570.16, + "end": 18571.14, + "probability": 0.8588 + }, + { + "start": 18571.24, + "end": 18572.5, + "probability": 0.6962 + }, + { + "start": 18572.6, + "end": 18574.92, + "probability": 0.9161 + }, + { + "start": 18575.66, + "end": 18576.52, + "probability": 0.9957 + }, + { + "start": 18577.24, + "end": 18579.02, + "probability": 0.8281 + }, + { + "start": 18579.92, + "end": 18580.1, + "probability": 0.151 + }, + { + "start": 18580.1, + "end": 18583.84, + "probability": 0.9814 + }, + { + "start": 18584.38, + "end": 18586.94, + "probability": 0.9811 + }, + { + "start": 18587.52, + "end": 18589.5, + "probability": 0.6969 + }, + { + "start": 18590.36, + "end": 18591.18, + "probability": 0.6564 + }, + { + "start": 18591.8, + "end": 18595.24, + "probability": 0.7572 + }, + { + "start": 18596.02, + "end": 18597.94, + "probability": 0.8079 + }, + { + "start": 18598.42, + "end": 18600.56, + "probability": 0.9795 + }, + { + "start": 18601.04, + "end": 18604.0, + "probability": 0.9739 + }, + { + "start": 18604.5, + "end": 18606.42, + "probability": 0.9981 + }, + { + "start": 18606.98, + "end": 18610.32, + "probability": 0.9353 + }, + { + "start": 18610.6, + "end": 18611.12, + "probability": 0.0505 + }, + { + "start": 18611.26, + "end": 18615.72, + "probability": 0.8159 + }, + { + "start": 18615.72, + "end": 18619.98, + "probability": 0.9836 + }, + { + "start": 18620.1, + "end": 18620.89, + "probability": 0.9855 + }, + { + "start": 18621.6, + "end": 18624.82, + "probability": 0.9965 + }, + { + "start": 18625.4, + "end": 18627.6, + "probability": 0.9431 + }, + { + "start": 18628.12, + "end": 18630.16, + "probability": 0.9272 + }, + { + "start": 18630.78, + "end": 18632.46, + "probability": 0.8207 + }, + { + "start": 18632.7, + "end": 18634.46, + "probability": 0.6163 + }, + { + "start": 18635.14, + "end": 18637.3, + "probability": 0.9134 + }, + { + "start": 18641.24, + "end": 18641.72, + "probability": 0.8103 + }, + { + "start": 18655.76, + "end": 18656.08, + "probability": 0.3733 + }, + { + "start": 18656.12, + "end": 18656.6, + "probability": 0.4439 + }, + { + "start": 18656.6, + "end": 18657.58, + "probability": 0.5092 + }, + { + "start": 18657.62, + "end": 18659.98, + "probability": 0.6409 + }, + { + "start": 18661.44, + "end": 18665.86, + "probability": 0.9678 + }, + { + "start": 18666.04, + "end": 18666.8, + "probability": 0.5574 + }, + { + "start": 18666.86, + "end": 18668.72, + "probability": 0.9155 + }, + { + "start": 18669.76, + "end": 18674.28, + "probability": 0.8824 + }, + { + "start": 18675.12, + "end": 18678.79, + "probability": 0.9935 + }, + { + "start": 18679.1, + "end": 18685.82, + "probability": 0.9944 + }, + { + "start": 18686.84, + "end": 18691.22, + "probability": 0.9955 + }, + { + "start": 18692.86, + "end": 18695.3, + "probability": 0.9734 + }, + { + "start": 18696.88, + "end": 18698.58, + "probability": 0.9604 + }, + { + "start": 18699.48, + "end": 18705.44, + "probability": 0.9844 + }, + { + "start": 18706.1, + "end": 18710.58, + "probability": 0.9781 + }, + { + "start": 18711.18, + "end": 18712.04, + "probability": 0.9602 + }, + { + "start": 18712.62, + "end": 18716.18, + "probability": 0.9609 + }, + { + "start": 18716.24, + "end": 18717.18, + "probability": 0.4488 + }, + { + "start": 18718.12, + "end": 18719.26, + "probability": 0.8579 + }, + { + "start": 18720.36, + "end": 18722.56, + "probability": 0.9977 + }, + { + "start": 18723.04, + "end": 18725.72, + "probability": 0.842 + }, + { + "start": 18726.64, + "end": 18732.74, + "probability": 0.9979 + }, + { + "start": 18732.74, + "end": 18737.14, + "probability": 0.9972 + }, + { + "start": 18737.86, + "end": 18738.04, + "probability": 0.7544 + }, + { + "start": 18738.82, + "end": 18743.0, + "probability": 0.9812 + }, + { + "start": 18743.72, + "end": 18746.46, + "probability": 0.885 + }, + { + "start": 18747.02, + "end": 18751.34, + "probability": 0.8834 + }, + { + "start": 18751.68, + "end": 18752.46, + "probability": 0.9379 + }, + { + "start": 18752.74, + "end": 18753.3, + "probability": 0.6962 + }, + { + "start": 18754.08, + "end": 18758.22, + "probability": 0.9272 + }, + { + "start": 18758.44, + "end": 18759.9, + "probability": 0.8647 + }, + { + "start": 18760.36, + "end": 18762.32, + "probability": 0.5749 + }, + { + "start": 18763.12, + "end": 18766.9, + "probability": 0.9839 + }, + { + "start": 18768.22, + "end": 18768.44, + "probability": 0.7563 + }, + { + "start": 18770.16, + "end": 18772.22, + "probability": 0.6801 + }, + { + "start": 18772.52, + "end": 18775.94, + "probability": 0.9399 + }, + { + "start": 18777.88, + "end": 18779.18, + "probability": 0.842 + }, + { + "start": 18779.88, + "end": 18781.0, + "probability": 0.7782 + }, + { + "start": 18781.54, + "end": 18783.0, + "probability": 0.811 + }, + { + "start": 18783.96, + "end": 18788.72, + "probability": 0.9912 + }, + { + "start": 18789.24, + "end": 18792.46, + "probability": 0.9894 + }, + { + "start": 18793.08, + "end": 18793.18, + "probability": 0.644 + }, + { + "start": 18794.18, + "end": 18798.68, + "probability": 0.9788 + }, + { + "start": 18800.3, + "end": 18800.98, + "probability": 0.9456 + }, + { + "start": 18802.94, + "end": 18804.16, + "probability": 0.9191 + }, + { + "start": 18805.0, + "end": 18806.18, + "probability": 0.9744 + }, + { + "start": 18806.98, + "end": 18809.64, + "probability": 0.9954 + }, + { + "start": 18810.54, + "end": 18812.6, + "probability": 0.8891 + }, + { + "start": 18812.98, + "end": 18813.44, + "probability": 0.8346 + }, + { + "start": 18813.76, + "end": 18814.56, + "probability": 0.7975 + }, + { + "start": 18815.06, + "end": 18816.02, + "probability": 0.9855 + }, + { + "start": 18816.82, + "end": 18819.12, + "probability": 0.9868 + }, + { + "start": 18820.24, + "end": 18820.84, + "probability": 0.9155 + }, + { + "start": 18821.84, + "end": 18825.26, + "probability": 0.9927 + }, + { + "start": 18825.94, + "end": 18827.16, + "probability": 0.9976 + }, + { + "start": 18827.52, + "end": 18828.46, + "probability": 0.3033 + }, + { + "start": 18829.78, + "end": 18831.6, + "probability": 0.9698 + }, + { + "start": 18832.42, + "end": 18834.12, + "probability": 0.9539 + }, + { + "start": 18834.16, + "end": 18838.16, + "probability": 0.8356 + }, + { + "start": 18838.24, + "end": 18841.96, + "probability": 0.9931 + }, + { + "start": 18842.9, + "end": 18843.88, + "probability": 0.7314 + }, + { + "start": 18846.0, + "end": 18846.62, + "probability": 0.5448 + }, + { + "start": 18846.72, + "end": 18847.03, + "probability": 0.346 + }, + { + "start": 18847.18, + "end": 18848.26, + "probability": 0.9645 + }, + { + "start": 18849.98, + "end": 18851.28, + "probability": 0.9699 + }, + { + "start": 18851.7, + "end": 18853.16, + "probability": 0.8452 + }, + { + "start": 18853.18, + "end": 18854.86, + "probability": 0.8621 + }, + { + "start": 18856.38, + "end": 18856.78, + "probability": 0.1493 + }, + { + "start": 18856.94, + "end": 18856.94, + "probability": 0.0941 + }, + { + "start": 18856.94, + "end": 18857.88, + "probability": 0.5014 + }, + { + "start": 18858.14, + "end": 18860.34, + "probability": 0.3112 + }, + { + "start": 18861.86, + "end": 18862.16, + "probability": 0.1177 + }, + { + "start": 18862.34, + "end": 18862.58, + "probability": 0.3879 + }, + { + "start": 18863.38, + "end": 18864.06, + "probability": 0.3846 + }, + { + "start": 18865.08, + "end": 18865.72, + "probability": 0.934 + }, + { + "start": 18865.84, + "end": 18867.74, + "probability": 0.6016 + }, + { + "start": 18867.82, + "end": 18869.46, + "probability": 0.512 + }, + { + "start": 18869.54, + "end": 18870.9, + "probability": 0.6966 + }, + { + "start": 18871.98, + "end": 18872.32, + "probability": 0.4646 + }, + { + "start": 18872.38, + "end": 18872.84, + "probability": 0.9327 + }, + { + "start": 18873.16, + "end": 18877.48, + "probability": 0.9823 + }, + { + "start": 18877.76, + "end": 18878.26, + "probability": 0.6389 + }, + { + "start": 18879.76, + "end": 18881.82, + "probability": 0.9842 + }, + { + "start": 18881.9, + "end": 18882.62, + "probability": 0.8765 + }, + { + "start": 18883.92, + "end": 18884.99, + "probability": 0.9312 + }, + { + "start": 18885.28, + "end": 18887.68, + "probability": 0.8002 + }, + { + "start": 18887.94, + "end": 18888.7, + "probability": 0.6782 + }, + { + "start": 18889.04, + "end": 18892.2, + "probability": 0.9825 + }, + { + "start": 18894.32, + "end": 18896.08, + "probability": 0.9735 + }, + { + "start": 18896.32, + "end": 18897.66, + "probability": 0.8426 + }, + { + "start": 18899.2, + "end": 18901.44, + "probability": 0.9934 + }, + { + "start": 18902.06, + "end": 18903.52, + "probability": 0.9949 + }, + { + "start": 18904.1, + "end": 18905.14, + "probability": 0.9304 + }, + { + "start": 18905.68, + "end": 18906.78, + "probability": 0.8408 + }, + { + "start": 18906.9, + "end": 18907.72, + "probability": 0.8521 + }, + { + "start": 18907.98, + "end": 18909.3, + "probability": 0.9297 + }, + { + "start": 18909.4, + "end": 18911.32, + "probability": 0.9291 + }, + { + "start": 18911.92, + "end": 18912.88, + "probability": 0.9968 + }, + { + "start": 18914.62, + "end": 18915.22, + "probability": 0.5169 + }, + { + "start": 18915.38, + "end": 18919.46, + "probability": 0.995 + }, + { + "start": 18920.28, + "end": 18920.92, + "probability": 0.9215 + }, + { + "start": 18921.7, + "end": 18924.56, + "probability": 0.9125 + }, + { + "start": 18925.54, + "end": 18926.14, + "probability": 0.701 + }, + { + "start": 18926.26, + "end": 18931.92, + "probability": 0.9956 + }, + { + "start": 18932.0, + "end": 18932.62, + "probability": 0.723 + }, + { + "start": 18933.16, + "end": 18935.14, + "probability": 0.8251 + }, + { + "start": 18935.22, + "end": 18936.34, + "probability": 0.6641 + }, + { + "start": 18937.32, + "end": 18937.84, + "probability": 0.9513 + }, + { + "start": 18939.38, + "end": 18939.48, + "probability": 0.3432 + }, + { + "start": 18939.48, + "end": 18941.06, + "probability": 0.2584 + }, + { + "start": 18941.06, + "end": 18943.06, + "probability": 0.7301 + }, + { + "start": 18943.42, + "end": 18945.33, + "probability": 0.9907 + }, + { + "start": 18945.5, + "end": 18947.7, + "probability": 0.9956 + }, + { + "start": 18947.7, + "end": 18948.58, + "probability": 0.1786 + }, + { + "start": 18949.12, + "end": 18950.42, + "probability": 0.5222 + }, + { + "start": 18950.84, + "end": 18952.41, + "probability": 0.9509 + }, + { + "start": 18953.7, + "end": 18954.82, + "probability": 0.6746 + }, + { + "start": 18954.88, + "end": 18955.72, + "probability": 0.9145 + }, + { + "start": 18956.28, + "end": 18957.04, + "probability": 0.9265 + }, + { + "start": 18957.4, + "end": 18961.46, + "probability": 0.9885 + }, + { + "start": 18962.42, + "end": 18968.06, + "probability": 0.982 + }, + { + "start": 18968.36, + "end": 18968.64, + "probability": 0.6543 + }, + { + "start": 18968.72, + "end": 18970.14, + "probability": 0.8388 + }, + { + "start": 18970.32, + "end": 18970.76, + "probability": 0.0656 + }, + { + "start": 18972.14, + "end": 18972.56, + "probability": 0.1488 + }, + { + "start": 18973.25, + "end": 18974.14, + "probability": 0.3542 + }, + { + "start": 18980.72, + "end": 18990.1, + "probability": 0.2278 + }, + { + "start": 18991.74, + "end": 18993.12, + "probability": 0.0793 + }, + { + "start": 18994.76, + "end": 18995.56, + "probability": 0.6476 + }, + { + "start": 18995.76, + "end": 18996.34, + "probability": 0.8441 + }, + { + "start": 18997.08, + "end": 19000.64, + "probability": 0.7454 + }, + { + "start": 19001.28, + "end": 19003.38, + "probability": 0.9971 + }, + { + "start": 19004.98, + "end": 19006.24, + "probability": 0.9665 + }, + { + "start": 19006.86, + "end": 19010.54, + "probability": 0.9939 + }, + { + "start": 19011.42, + "end": 19012.98, + "probability": 0.8938 + }, + { + "start": 19013.8, + "end": 19017.24, + "probability": 0.9814 + }, + { + "start": 19017.86, + "end": 19020.06, + "probability": 0.9895 + }, + { + "start": 19021.04, + "end": 19021.82, + "probability": 0.6679 + }, + { + "start": 19023.26, + "end": 19028.16, + "probability": 0.9462 + }, + { + "start": 19028.56, + "end": 19032.08, + "probability": 0.9945 + }, + { + "start": 19032.16, + "end": 19033.22, + "probability": 0.9801 + }, + { + "start": 19034.68, + "end": 19036.8, + "probability": 0.945 + }, + { + "start": 19037.68, + "end": 19043.9, + "probability": 0.9643 + }, + { + "start": 19043.9, + "end": 19049.5, + "probability": 0.8447 + }, + { + "start": 19049.76, + "end": 19054.88, + "probability": 0.8984 + }, + { + "start": 19055.92, + "end": 19060.26, + "probability": 0.979 + }, + { + "start": 19061.02, + "end": 19063.38, + "probability": 0.9558 + }, + { + "start": 19065.22, + "end": 19066.18, + "probability": 0.6561 + }, + { + "start": 19066.34, + "end": 19069.22, + "probability": 0.9969 + }, + { + "start": 19069.5, + "end": 19074.58, + "probability": 0.8936 + }, + { + "start": 19075.18, + "end": 19078.42, + "probability": 0.9911 + }, + { + "start": 19079.96, + "end": 19083.22, + "probability": 0.9985 + }, + { + "start": 19083.54, + "end": 19086.54, + "probability": 0.9767 + }, + { + "start": 19087.24, + "end": 19091.98, + "probability": 0.9658 + }, + { + "start": 19092.42, + "end": 19094.26, + "probability": 0.778 + }, + { + "start": 19095.1, + "end": 19096.19, + "probability": 0.9912 + }, + { + "start": 19096.36, + "end": 19097.24, + "probability": 0.9296 + }, + { + "start": 19097.92, + "end": 19099.7, + "probability": 0.9264 + }, + { + "start": 19099.78, + "end": 19100.86, + "probability": 0.6968 + }, + { + "start": 19101.02, + "end": 19102.04, + "probability": 0.4677 + }, + { + "start": 19102.54, + "end": 19104.24, + "probability": 0.9173 + }, + { + "start": 19104.82, + "end": 19109.82, + "probability": 0.9574 + }, + { + "start": 19110.58, + "end": 19111.3, + "probability": 0.9311 + }, + { + "start": 19112.18, + "end": 19113.86, + "probability": 0.9968 + }, + { + "start": 19114.92, + "end": 19119.22, + "probability": 0.9709 + }, + { + "start": 19120.1, + "end": 19120.94, + "probability": 0.5349 + }, + { + "start": 19121.64, + "end": 19122.22, + "probability": 0.7019 + }, + { + "start": 19122.72, + "end": 19124.2, + "probability": 0.9191 + }, + { + "start": 19124.3, + "end": 19125.42, + "probability": 0.9894 + }, + { + "start": 19125.58, + "end": 19127.38, + "probability": 0.9583 + }, + { + "start": 19128.42, + "end": 19130.08, + "probability": 0.9905 + }, + { + "start": 19130.4, + "end": 19132.82, + "probability": 0.9383 + }, + { + "start": 19133.7, + "end": 19135.9, + "probability": 0.8582 + }, + { + "start": 19136.76, + "end": 19142.96, + "probability": 0.8527 + }, + { + "start": 19143.16, + "end": 19147.44, + "probability": 0.9951 + }, + { + "start": 19150.12, + "end": 19152.64, + "probability": 0.8286 + }, + { + "start": 19154.08, + "end": 19156.54, + "probability": 0.7583 + }, + { + "start": 19156.68, + "end": 19158.92, + "probability": 0.9752 + }, + { + "start": 19159.36, + "end": 19162.24, + "probability": 0.9972 + }, + { + "start": 19162.24, + "end": 19165.98, + "probability": 0.9982 + }, + { + "start": 19166.76, + "end": 19167.44, + "probability": 0.7264 + }, + { + "start": 19167.52, + "end": 19173.04, + "probability": 0.9543 + }, + { + "start": 19173.72, + "end": 19176.38, + "probability": 0.8635 + }, + { + "start": 19177.26, + "end": 19179.88, + "probability": 0.919 + }, + { + "start": 19179.96, + "end": 19180.96, + "probability": 0.9299 + }, + { + "start": 19181.36, + "end": 19182.01, + "probability": 0.9861 + }, + { + "start": 19183.02, + "end": 19187.76, + "probability": 0.9825 + }, + { + "start": 19187.76, + "end": 19191.46, + "probability": 0.9653 + }, + { + "start": 19192.32, + "end": 19194.72, + "probability": 0.9485 + }, + { + "start": 19196.3, + "end": 19197.4, + "probability": 0.9797 + }, + { + "start": 19197.5, + "end": 19198.38, + "probability": 0.8835 + }, + { + "start": 19198.48, + "end": 19201.26, + "probability": 0.7817 + }, + { + "start": 19201.82, + "end": 19209.68, + "probability": 0.9724 + }, + { + "start": 19210.24, + "end": 19211.82, + "probability": 0.8916 + }, + { + "start": 19212.46, + "end": 19213.14, + "probability": 0.6385 + }, + { + "start": 19213.62, + "end": 19218.68, + "probability": 0.9894 + }, + { + "start": 19219.06, + "end": 19220.44, + "probability": 0.7633 + }, + { + "start": 19220.44, + "end": 19220.96, + "probability": 0.6538 + }, + { + "start": 19221.67, + "end": 19227.16, + "probability": 0.7377 + }, + { + "start": 19229.48, + "end": 19231.46, + "probability": 0.1499 + }, + { + "start": 19231.46, + "end": 19232.46, + "probability": 0.6419 + }, + { + "start": 19232.56, + "end": 19233.26, + "probability": 0.9851 + }, + { + "start": 19233.34, + "end": 19239.12, + "probability": 0.9907 + }, + { + "start": 19239.68, + "end": 19240.82, + "probability": 0.7202 + }, + { + "start": 19241.84, + "end": 19243.9, + "probability": 0.9751 + }, + { + "start": 19244.32, + "end": 19246.24, + "probability": 0.9735 + }, + { + "start": 19246.62, + "end": 19249.74, + "probability": 0.998 + }, + { + "start": 19249.74, + "end": 19253.32, + "probability": 0.9361 + }, + { + "start": 19253.64, + "end": 19254.44, + "probability": 0.959 + }, + { + "start": 19254.46, + "end": 19256.26, + "probability": 0.7368 + }, + { + "start": 19256.36, + "end": 19259.38, + "probability": 0.9136 + }, + { + "start": 19259.38, + "end": 19261.74, + "probability": 0.908 + }, + { + "start": 19262.14, + "end": 19264.36, + "probability": 0.9891 + }, + { + "start": 19264.66, + "end": 19264.98, + "probability": 0.7723 + }, + { + "start": 19265.04, + "end": 19267.28, + "probability": 0.9085 + }, + { + "start": 19267.52, + "end": 19271.31, + "probability": 0.6536 + }, + { + "start": 19272.0, + "end": 19276.16, + "probability": 0.9799 + }, + { + "start": 19276.4, + "end": 19279.58, + "probability": 0.977 + }, + { + "start": 19279.86, + "end": 19281.1, + "probability": 0.9145 + }, + { + "start": 19282.24, + "end": 19282.76, + "probability": 0.848 + }, + { + "start": 19283.14, + "end": 19283.94, + "probability": 0.9834 + }, + { + "start": 19284.48, + "end": 19285.2, + "probability": 0.778 + }, + { + "start": 19286.84, + "end": 19287.08, + "probability": 0.6758 + }, + { + "start": 19287.14, + "end": 19288.74, + "probability": 0.6298 + }, + { + "start": 19288.74, + "end": 19291.06, + "probability": 0.8601 + }, + { + "start": 19291.18, + "end": 19291.77, + "probability": 0.8809 + }, + { + "start": 19293.0, + "end": 19293.99, + "probability": 0.9694 + }, + { + "start": 19294.36, + "end": 19296.74, + "probability": 0.9488 + }, + { + "start": 19297.06, + "end": 19298.72, + "probability": 0.8253 + }, + { + "start": 19299.0, + "end": 19301.58, + "probability": 0.6524 + }, + { + "start": 19301.86, + "end": 19302.22, + "probability": 0.7874 + }, + { + "start": 19302.3, + "end": 19306.8, + "probability": 0.9563 + }, + { + "start": 19306.94, + "end": 19307.74, + "probability": 0.6084 + }, + { + "start": 19308.02, + "end": 19310.94, + "probability": 0.6053 + }, + { + "start": 19311.76, + "end": 19313.12, + "probability": 0.8889 + }, + { + "start": 19313.44, + "end": 19314.57, + "probability": 0.8563 + }, + { + "start": 19315.1, + "end": 19317.76, + "probability": 0.9946 + }, + { + "start": 19318.4, + "end": 19320.18, + "probability": 0.9945 + }, + { + "start": 19321.06, + "end": 19324.44, + "probability": 0.9904 + }, + { + "start": 19325.72, + "end": 19329.46, + "probability": 0.986 + }, + { + "start": 19330.3, + "end": 19330.78, + "probability": 0.7917 + }, + { + "start": 19330.92, + "end": 19332.74, + "probability": 0.8115 + }, + { + "start": 19332.88, + "end": 19333.99, + "probability": 0.9848 + }, + { + "start": 19334.24, + "end": 19336.76, + "probability": 0.9464 + }, + { + "start": 19336.84, + "end": 19339.0, + "probability": 0.9123 + }, + { + "start": 19340.18, + "end": 19340.58, + "probability": 0.3346 + }, + { + "start": 19340.58, + "end": 19341.64, + "probability": 0.733 + }, + { + "start": 19341.78, + "end": 19342.76, + "probability": 0.8128 + }, + { + "start": 19342.94, + "end": 19346.64, + "probability": 0.9588 + }, + { + "start": 19347.34, + "end": 19350.86, + "probability": 0.9929 + }, + { + "start": 19350.94, + "end": 19352.0, + "probability": 0.6782 + }, + { + "start": 19352.06, + "end": 19352.32, + "probability": 0.7418 + }, + { + "start": 19352.82, + "end": 19353.16, + "probability": 0.9661 + }, + { + "start": 19353.26, + "end": 19353.94, + "probability": 0.9497 + }, + { + "start": 19354.06, + "end": 19356.46, + "probability": 0.9619 + }, + { + "start": 19356.94, + "end": 19359.36, + "probability": 0.8761 + }, + { + "start": 19359.44, + "end": 19360.24, + "probability": 0.8853 + }, + { + "start": 19360.58, + "end": 19361.24, + "probability": 0.902 + }, + { + "start": 19361.26, + "end": 19361.84, + "probability": 0.6973 + }, + { + "start": 19361.88, + "end": 19362.24, + "probability": 0.6082 + }, + { + "start": 19362.28, + "end": 19363.72, + "probability": 0.793 + }, + { + "start": 19363.82, + "end": 19365.11, + "probability": 0.9853 + }, + { + "start": 19365.18, + "end": 19368.14, + "probability": 0.6602 + }, + { + "start": 19368.26, + "end": 19370.64, + "probability": 0.7576 + }, + { + "start": 19370.78, + "end": 19371.1, + "probability": 0.6144 + }, + { + "start": 19371.16, + "end": 19374.06, + "probability": 0.9521 + }, + { + "start": 19374.2, + "end": 19374.98, + "probability": 0.8359 + }, + { + "start": 19375.12, + "end": 19375.78, + "probability": 0.9786 + }, + { + "start": 19375.78, + "end": 19376.98, + "probability": 0.7759 + }, + { + "start": 19377.22, + "end": 19378.02, + "probability": 0.8792 + }, + { + "start": 19378.6, + "end": 19380.32, + "probability": 0.9671 + }, + { + "start": 19380.4, + "end": 19381.71, + "probability": 0.9424 + }, + { + "start": 19381.78, + "end": 19382.26, + "probability": 0.5117 + }, + { + "start": 19382.28, + "end": 19383.66, + "probability": 0.9028 + }, + { + "start": 19385.45, + "end": 19387.58, + "probability": 0.9161 + }, + { + "start": 19388.04, + "end": 19390.88, + "probability": 0.5873 + }, + { + "start": 19391.7, + "end": 19395.04, + "probability": 0.7443 + }, + { + "start": 19395.12, + "end": 19397.46, + "probability": 0.8651 + }, + { + "start": 19398.0, + "end": 19400.22, + "probability": 0.9842 + }, + { + "start": 19400.86, + "end": 19401.23, + "probability": 0.9758 + }, + { + "start": 19401.76, + "end": 19402.62, + "probability": 0.9756 + }, + { + "start": 19402.62, + "end": 19404.24, + "probability": 0.8982 + }, + { + "start": 19404.42, + "end": 19407.54, + "probability": 0.9476 + }, + { + "start": 19408.66, + "end": 19412.32, + "probability": 0.9938 + }, + { + "start": 19413.26, + "end": 19413.93, + "probability": 0.9146 + }, + { + "start": 19414.52, + "end": 19418.7, + "probability": 0.9945 + }, + { + "start": 19418.7, + "end": 19423.22, + "probability": 0.9977 + }, + { + "start": 19423.48, + "end": 19424.24, + "probability": 0.6135 + }, + { + "start": 19424.36, + "end": 19424.56, + "probability": 0.4702 + }, + { + "start": 19424.76, + "end": 19425.04, + "probability": 0.7272 + }, + { + "start": 19425.38, + "end": 19427.2, + "probability": 0.9193 + }, + { + "start": 19427.8, + "end": 19430.84, + "probability": 0.9703 + }, + { + "start": 19431.04, + "end": 19432.86, + "probability": 0.9934 + }, + { + "start": 19433.86, + "end": 19437.56, + "probability": 0.9684 + }, + { + "start": 19438.06, + "end": 19441.2, + "probability": 0.9966 + }, + { + "start": 19441.44, + "end": 19443.94, + "probability": 0.8828 + }, + { + "start": 19444.22, + "end": 19447.22, + "probability": 0.981 + }, + { + "start": 19448.12, + "end": 19449.04, + "probability": 0.9915 + }, + { + "start": 19450.0, + "end": 19451.5, + "probability": 0.627 + }, + { + "start": 19451.9, + "end": 19453.76, + "probability": 0.991 + }, + { + "start": 19453.88, + "end": 19455.64, + "probability": 0.9214 + }, + { + "start": 19455.7, + "end": 19457.98, + "probability": 0.9933 + }, + { + "start": 19458.84, + "end": 19461.22, + "probability": 0.9811 + }, + { + "start": 19462.44, + "end": 19463.42, + "probability": 0.9763 + }, + { + "start": 19464.84, + "end": 19469.76, + "probability": 0.9952 + }, + { + "start": 19470.62, + "end": 19475.02, + "probability": 0.8174 + }, + { + "start": 19475.56, + "end": 19479.9, + "probability": 0.9924 + }, + { + "start": 19480.74, + "end": 19482.86, + "probability": 0.8964 + }, + { + "start": 19483.4, + "end": 19484.46, + "probability": 0.8367 + }, + { + "start": 19485.06, + "end": 19486.14, + "probability": 0.9524 + }, + { + "start": 19486.22, + "end": 19489.24, + "probability": 0.9421 + }, + { + "start": 19490.24, + "end": 19492.04, + "probability": 0.9889 + }, + { + "start": 19492.74, + "end": 19495.62, + "probability": 0.9949 + }, + { + "start": 19495.98, + "end": 19497.38, + "probability": 0.9979 + }, + { + "start": 19497.94, + "end": 19499.1, + "probability": 0.8691 + }, + { + "start": 19499.86, + "end": 19503.3, + "probability": 0.8762 + }, + { + "start": 19503.84, + "end": 19504.82, + "probability": 0.8507 + }, + { + "start": 19504.88, + "end": 19508.88, + "probability": 0.6736 + }, + { + "start": 19509.28, + "end": 19511.84, + "probability": 0.9905 + }, + { + "start": 19512.96, + "end": 19517.3, + "probability": 0.9897 + }, + { + "start": 19517.5, + "end": 19519.84, + "probability": 0.9971 + }, + { + "start": 19521.52, + "end": 19522.12, + "probability": 0.6285 + }, + { + "start": 19522.16, + "end": 19523.09, + "probability": 0.9097 + }, + { + "start": 19523.48, + "end": 19525.06, + "probability": 0.9854 + }, + { + "start": 19525.36, + "end": 19529.28, + "probability": 0.9891 + }, + { + "start": 19529.8, + "end": 19533.96, + "probability": 0.995 + }, + { + "start": 19534.4, + "end": 19536.22, + "probability": 0.9619 + }, + { + "start": 19536.86, + "end": 19541.36, + "probability": 0.9983 + }, + { + "start": 19541.82, + "end": 19543.14, + "probability": 0.9508 + }, + { + "start": 19543.76, + "end": 19543.92, + "probability": 0.3975 + }, + { + "start": 19544.14, + "end": 19545.46, + "probability": 0.5762 + }, + { + "start": 19545.58, + "end": 19547.44, + "probability": 0.9908 + }, + { + "start": 19547.58, + "end": 19548.62, + "probability": 0.2008 + }, + { + "start": 19548.7, + "end": 19548.8, + "probability": 0.812 + }, + { + "start": 19549.1, + "end": 19549.8, + "probability": 0.8777 + }, + { + "start": 19549.96, + "end": 19551.98, + "probability": 0.9658 + }, + { + "start": 19552.5, + "end": 19553.0, + "probability": 0.7506 + }, + { + "start": 19553.08, + "end": 19555.18, + "probability": 0.8889 + }, + { + "start": 19555.3, + "end": 19558.76, + "probability": 0.9775 + }, + { + "start": 19558.76, + "end": 19561.7, + "probability": 0.9798 + }, + { + "start": 19561.84, + "end": 19562.38, + "probability": 0.809 + }, + { + "start": 19563.94, + "end": 19566.38, + "probability": 0.9858 + }, + { + "start": 19566.58, + "end": 19569.22, + "probability": 0.9495 + }, + { + "start": 19569.9, + "end": 19573.78, + "probability": 0.9941 + }, + { + "start": 19574.08, + "end": 19578.2, + "probability": 0.9459 + }, + { + "start": 19578.2, + "end": 19584.96, + "probability": 0.9971 + }, + { + "start": 19585.66, + "end": 19587.62, + "probability": 0.9583 + }, + { + "start": 19588.38, + "end": 19594.12, + "probability": 0.9984 + }, + { + "start": 19594.12, + "end": 19600.38, + "probability": 0.9987 + }, + { + "start": 19601.1, + "end": 19603.22, + "probability": 0.9968 + }, + { + "start": 19603.4, + "end": 19604.64, + "probability": 0.999 + }, + { + "start": 19605.66, + "end": 19607.12, + "probability": 0.7959 + }, + { + "start": 19607.64, + "end": 19612.92, + "probability": 0.9873 + }, + { + "start": 19613.74, + "end": 19617.04, + "probability": 0.972 + }, + { + "start": 19617.72, + "end": 19621.44, + "probability": 0.9738 + }, + { + "start": 19621.56, + "end": 19622.84, + "probability": 0.961 + }, + { + "start": 19623.7, + "end": 19626.36, + "probability": 0.9946 + }, + { + "start": 19626.54, + "end": 19627.47, + "probability": 0.8403 + }, + { + "start": 19628.38, + "end": 19633.98, + "probability": 0.9982 + }, + { + "start": 19634.86, + "end": 19636.12, + "probability": 0.849 + }, + { + "start": 19636.72, + "end": 19637.56, + "probability": 0.7882 + }, + { + "start": 19637.84, + "end": 19640.42, + "probability": 0.9875 + }, + { + "start": 19640.58, + "end": 19641.13, + "probability": 0.8902 + }, + { + "start": 19641.56, + "end": 19643.03, + "probability": 0.9961 + }, + { + "start": 19643.72, + "end": 19648.86, + "probability": 0.9868 + }, + { + "start": 19649.0, + "end": 19650.64, + "probability": 0.8712 + }, + { + "start": 19651.1, + "end": 19654.18, + "probability": 0.776 + }, + { + "start": 19654.72, + "end": 19658.74, + "probability": 0.9929 + }, + { + "start": 19658.8, + "end": 19660.46, + "probability": 0.9404 + }, + { + "start": 19661.28, + "end": 19662.66, + "probability": 0.7778 + }, + { + "start": 19663.26, + "end": 19667.48, + "probability": 0.9963 + }, + { + "start": 19667.84, + "end": 19669.08, + "probability": 0.9883 + }, + { + "start": 19671.72, + "end": 19674.1, + "probability": 0.9814 + }, + { + "start": 19674.1, + "end": 19674.1, + "probability": 0.0673 + }, + { + "start": 19674.16, + "end": 19675.7, + "probability": 0.9209 + }, + { + "start": 19676.2, + "end": 19679.46, + "probability": 0.9963 + }, + { + "start": 19679.78, + "end": 19681.54, + "probability": 0.7696 + }, + { + "start": 19681.68, + "end": 19684.98, + "probability": 0.9928 + }, + { + "start": 19685.48, + "end": 19685.9, + "probability": 0.3858 + }, + { + "start": 19686.72, + "end": 19689.1, + "probability": 0.925 + }, + { + "start": 19689.18, + "end": 19690.02, + "probability": 0.7574 + }, + { + "start": 19690.26, + "end": 19692.18, + "probability": 0.9658 + }, + { + "start": 19692.66, + "end": 19698.04, + "probability": 0.8304 + }, + { + "start": 19698.34, + "end": 19699.68, + "probability": 0.7417 + }, + { + "start": 19701.0, + "end": 19702.78, + "probability": 0.9928 + }, + { + "start": 19703.22, + "end": 19705.02, + "probability": 0.9317 + }, + { + "start": 19705.64, + "end": 19707.6, + "probability": 0.9768 + }, + { + "start": 19708.12, + "end": 19709.77, + "probability": 0.8373 + }, + { + "start": 19710.44, + "end": 19716.72, + "probability": 0.9836 + }, + { + "start": 19717.24, + "end": 19720.64, + "probability": 0.9617 + }, + { + "start": 19720.86, + "end": 19721.48, + "probability": 0.5182 + }, + { + "start": 19721.48, + "end": 19724.42, + "probability": 0.7797 + }, + { + "start": 19724.82, + "end": 19728.8, + "probability": 0.7134 + }, + { + "start": 19729.46, + "end": 19730.64, + "probability": 0.9785 + }, + { + "start": 19735.89, + "end": 19738.9, + "probability": 0.8218 + }, + { + "start": 19740.88, + "end": 19741.9, + "probability": 0.944 + }, + { + "start": 19743.8, + "end": 19744.3, + "probability": 0.3182 + }, + { + "start": 19746.42, + "end": 19747.08, + "probability": 0.6125 + }, + { + "start": 19747.32, + "end": 19748.14, + "probability": 0.6606 + }, + { + "start": 19748.37, + "end": 19751.62, + "probability": 0.9253 + }, + { + "start": 19751.88, + "end": 19755.12, + "probability": 0.8567 + }, + { + "start": 19756.44, + "end": 19757.98, + "probability": 0.9928 + }, + { + "start": 19758.16, + "end": 19762.58, + "probability": 0.9777 + }, + { + "start": 19763.58, + "end": 19765.9, + "probability": 0.7658 + }, + { + "start": 19766.64, + "end": 19768.1, + "probability": 0.8399 + }, + { + "start": 19768.66, + "end": 19772.52, + "probability": 0.9198 + }, + { + "start": 19772.52, + "end": 19774.52, + "probability": 0.7121 + }, + { + "start": 19774.6, + "end": 19775.7, + "probability": 0.9028 + }, + { + "start": 19776.44, + "end": 19778.88, + "probability": 0.711 + }, + { + "start": 19779.02, + "end": 19781.17, + "probability": 0.6847 + }, + { + "start": 19782.12, + "end": 19785.92, + "probability": 0.8601 + }, + { + "start": 19786.0, + "end": 19787.14, + "probability": 0.5084 + }, + { + "start": 19787.58, + "end": 19789.2, + "probability": 0.3834 + }, + { + "start": 19789.36, + "end": 19790.64, + "probability": 0.652 + }, + { + "start": 19792.4, + "end": 19794.38, + "probability": 0.9841 + }, + { + "start": 19796.0, + "end": 19798.16, + "probability": 0.9997 + }, + { + "start": 19798.76, + "end": 19802.85, + "probability": 0.2199 + }, + { + "start": 19803.72, + "end": 19804.98, + "probability": 0.7944 + }, + { + "start": 19805.14, + "end": 19807.7, + "probability": 0.9976 + }, + { + "start": 19808.54, + "end": 19809.14, + "probability": 0.5197 + }, + { + "start": 19809.2, + "end": 19810.19, + "probability": 0.9438 + }, + { + "start": 19810.32, + "end": 19817.54, + "probability": 0.9948 + }, + { + "start": 19817.72, + "end": 19819.14, + "probability": 0.9927 + }, + { + "start": 19819.36, + "end": 19822.44, + "probability": 0.991 + }, + { + "start": 19823.02, + "end": 19823.85, + "probability": 0.3783 + }, + { + "start": 19824.4, + "end": 19825.9, + "probability": 0.6416 + }, + { + "start": 19826.44, + "end": 19828.54, + "probability": 0.8479 + }, + { + "start": 19828.94, + "end": 19831.0, + "probability": 0.8517 + }, + { + "start": 19831.0, + "end": 19832.92, + "probability": 0.9974 + }, + { + "start": 19833.54, + "end": 19834.58, + "probability": 0.7233 + }, + { + "start": 19834.82, + "end": 19838.62, + "probability": 0.4292 + }, + { + "start": 19838.72, + "end": 19839.42, + "probability": 0.5093 + }, + { + "start": 19839.52, + "end": 19841.68, + "probability": 0.689 + }, + { + "start": 19841.9, + "end": 19841.92, + "probability": 0.3606 + }, + { + "start": 19842.69, + "end": 19847.7, + "probability": 0.8784 + }, + { + "start": 19847.9, + "end": 19852.06, + "probability": 0.9392 + }, + { + "start": 19852.4, + "end": 19853.52, + "probability": 0.1835 + }, + { + "start": 19853.52, + "end": 19854.08, + "probability": 0.0467 + }, + { + "start": 19854.08, + "end": 19854.68, + "probability": 0.5546 + }, + { + "start": 19854.68, + "end": 19855.24, + "probability": 0.2469 + }, + { + "start": 19855.28, + "end": 19856.88, + "probability": 0.5124 + }, + { + "start": 19857.56, + "end": 19861.14, + "probability": 0.9265 + }, + { + "start": 19862.06, + "end": 19862.94, + "probability": 0.6684 + }, + { + "start": 19863.8, + "end": 19867.52, + "probability": 0.9895 + }, + { + "start": 19868.06, + "end": 19869.28, + "probability": 0.9199 + }, + { + "start": 19870.08, + "end": 19872.98, + "probability": 0.9621 + }, + { + "start": 19873.3, + "end": 19874.96, + "probability": 0.9226 + }, + { + "start": 19875.8, + "end": 19876.88, + "probability": 0.9552 + }, + { + "start": 19876.94, + "end": 19878.83, + "probability": 0.9897 + }, + { + "start": 19879.3, + "end": 19882.28, + "probability": 0.9951 + }, + { + "start": 19882.42, + "end": 19886.62, + "probability": 0.9906 + }, + { + "start": 19886.88, + "end": 19889.12, + "probability": 0.9925 + }, + { + "start": 19889.58, + "end": 19890.38, + "probability": 0.8181 + }, + { + "start": 19890.54, + "end": 19892.58, + "probability": 0.993 + }, + { + "start": 19892.82, + "end": 19894.68, + "probability": 0.9605 + }, + { + "start": 19896.4, + "end": 19900.62, + "probability": 0.9795 + }, + { + "start": 19900.74, + "end": 19901.7, + "probability": 0.7669 + }, + { + "start": 19902.8, + "end": 19905.62, + "probability": 0.9922 + }, + { + "start": 19906.12, + "end": 19907.48, + "probability": 0.6244 + }, + { + "start": 19908.46, + "end": 19909.44, + "probability": 0.9192 + }, + { + "start": 19909.56, + "end": 19910.64, + "probability": 0.9844 + }, + { + "start": 19910.74, + "end": 19911.36, + "probability": 0.798 + }, + { + "start": 19913.54, + "end": 19914.96, + "probability": 0.8892 + }, + { + "start": 19916.02, + "end": 19918.3, + "probability": 0.9956 + }, + { + "start": 19918.72, + "end": 19922.78, + "probability": 0.8463 + }, + { + "start": 19923.28, + "end": 19923.8, + "probability": 0.8796 + }, + { + "start": 19924.36, + "end": 19925.92, + "probability": 0.4931 + }, + { + "start": 19925.92, + "end": 19927.3, + "probability": 0.5092 + }, + { + "start": 19927.84, + "end": 19930.06, + "probability": 0.9513 + }, + { + "start": 19930.72, + "end": 19931.18, + "probability": 0.5979 + }, + { + "start": 19932.36, + "end": 19935.72, + "probability": 0.9408 + }, + { + "start": 19937.12, + "end": 19937.58, + "probability": 0.5291 + }, + { + "start": 19937.64, + "end": 19940.84, + "probability": 0.9248 + }, + { + "start": 19941.52, + "end": 19944.08, + "probability": 0.6663 + }, + { + "start": 19944.68, + "end": 19945.96, + "probability": 0.78 + }, + { + "start": 19946.36, + "end": 19946.58, + "probability": 0.8684 + }, + { + "start": 19946.66, + "end": 19947.0, + "probability": 0.0256 + }, + { + "start": 19947.26, + "end": 19948.92, + "probability": 0.6564 + }, + { + "start": 19948.96, + "end": 19951.58, + "probability": 0.8543 + }, + { + "start": 19951.74, + "end": 19955.92, + "probability": 0.9055 + }, + { + "start": 19955.92, + "end": 19959.06, + "probability": 0.9522 + }, + { + "start": 19959.14, + "end": 19961.88, + "probability": 0.9677 + }, + { + "start": 19962.56, + "end": 19964.8, + "probability": 0.0213 + }, + { + "start": 19964.9, + "end": 19965.38, + "probability": 0.0731 + }, + { + "start": 19965.38, + "end": 19965.86, + "probability": 0.1604 + }, + { + "start": 19965.86, + "end": 19965.86, + "probability": 0.1504 + }, + { + "start": 19965.86, + "end": 19968.1, + "probability": 0.0506 + }, + { + "start": 19968.52, + "end": 19972.26, + "probability": 0.723 + }, + { + "start": 19973.3, + "end": 19974.34, + "probability": 0.7197 + }, + { + "start": 19974.76, + "end": 19977.62, + "probability": 0.9895 + }, + { + "start": 19979.08, + "end": 19979.68, + "probability": 0.909 + }, + { + "start": 19980.38, + "end": 19981.66, + "probability": 0.6868 + }, + { + "start": 19983.24, + "end": 19985.5, + "probability": 0.9619 + }, + { + "start": 19986.28, + "end": 19989.74, + "probability": 0.9237 + }, + { + "start": 19989.74, + "end": 19992.12, + "probability": 0.9921 + }, + { + "start": 19992.16, + "end": 19994.11, + "probability": 0.6237 + }, + { + "start": 19995.22, + "end": 19995.98, + "probability": 0.5758 + }, + { + "start": 19996.5, + "end": 19998.9, + "probability": 0.9846 + }, + { + "start": 19999.04, + "end": 20004.2, + "probability": 0.9692 + }, + { + "start": 20004.74, + "end": 20005.58, + "probability": 0.6252 + }, + { + "start": 20005.7, + "end": 20007.25, + "probability": 0.9705 + }, + { + "start": 20007.86, + "end": 20008.68, + "probability": 0.6914 + }, + { + "start": 20008.74, + "end": 20009.84, + "probability": 0.8417 + }, + { + "start": 20009.94, + "end": 20010.84, + "probability": 0.8999 + }, + { + "start": 20010.9, + "end": 20011.44, + "probability": 0.7805 + }, + { + "start": 20012.14, + "end": 20012.84, + "probability": 0.3478 + }, + { + "start": 20013.48, + "end": 20015.22, + "probability": 0.9199 + }, + { + "start": 20019.06, + "end": 20020.04, + "probability": 0.7007 + }, + { + "start": 20020.26, + "end": 20021.9, + "probability": 0.6141 + }, + { + "start": 20022.1, + "end": 20023.66, + "probability": 0.5374 + }, + { + "start": 20023.84, + "end": 20024.88, + "probability": 0.6689 + }, + { + "start": 20027.38, + "end": 20031.54, + "probability": 0.8616 + }, + { + "start": 20031.54, + "end": 20033.3, + "probability": 0.5889 + }, + { + "start": 20035.4, + "end": 20037.54, + "probability": 0.9873 + }, + { + "start": 20038.22, + "end": 20040.88, + "probability": 0.991 + }, + { + "start": 20041.62, + "end": 20043.86, + "probability": 0.9988 + }, + { + "start": 20044.02, + "end": 20046.14, + "probability": 0.9939 + }, + { + "start": 20046.26, + "end": 20047.33, + "probability": 0.9159 + }, + { + "start": 20048.28, + "end": 20049.08, + "probability": 0.505 + }, + { + "start": 20049.18, + "end": 20051.56, + "probability": 0.9905 + }, + { + "start": 20051.78, + "end": 20052.04, + "probability": 0.9023 + }, + { + "start": 20052.56, + "end": 20054.48, + "probability": 0.9085 + }, + { + "start": 20054.64, + "end": 20055.66, + "probability": 0.9297 + }, + { + "start": 20055.74, + "end": 20058.03, + "probability": 0.9614 + }, + { + "start": 20058.72, + "end": 20060.34, + "probability": 0.9656 + }, + { + "start": 20060.84, + "end": 20064.3, + "probability": 0.7331 + }, + { + "start": 20064.3, + "end": 20067.48, + "probability": 0.9878 + }, + { + "start": 20067.56, + "end": 20068.64, + "probability": 0.9961 + }, + { + "start": 20068.76, + "end": 20071.7, + "probability": 0.8473 + }, + { + "start": 20071.76, + "end": 20073.72, + "probability": 0.7829 + }, + { + "start": 20074.02, + "end": 20076.16, + "probability": 0.811 + }, + { + "start": 20076.24, + "end": 20078.9, + "probability": 0.0648 + }, + { + "start": 20078.9, + "end": 20080.82, + "probability": 0.521 + }, + { + "start": 20081.34, + "end": 20082.46, + "probability": 0.8178 + }, + { + "start": 20082.66, + "end": 20083.68, + "probability": 0.1622 + }, + { + "start": 20083.68, + "end": 20087.86, + "probability": 0.8564 + }, + { + "start": 20088.04, + "end": 20088.64, + "probability": 0.7505 + }, + { + "start": 20089.04, + "end": 20089.94, + "probability": 0.8804 + }, + { + "start": 20090.02, + "end": 20092.54, + "probability": 0.827 + }, + { + "start": 20092.66, + "end": 20094.28, + "probability": 0.918 + }, + { + "start": 20094.8, + "end": 20095.66, + "probability": 0.9122 + }, + { + "start": 20096.3, + "end": 20097.28, + "probability": 0.9749 + }, + { + "start": 20097.4, + "end": 20098.18, + "probability": 0.9641 + }, + { + "start": 20099.02, + "end": 20101.08, + "probability": 0.9142 + }, + { + "start": 20101.24, + "end": 20105.02, + "probability": 0.8934 + }, + { + "start": 20105.18, + "end": 20106.64, + "probability": 0.6547 + }, + { + "start": 20107.62, + "end": 20108.06, + "probability": 0.1677 + }, + { + "start": 20109.96, + "end": 20110.96, + "probability": 0.6996 + }, + { + "start": 20111.08, + "end": 20113.68, + "probability": 0.844 + }, + { + "start": 20113.72, + "end": 20114.7, + "probability": 0.8762 + }, + { + "start": 20114.98, + "end": 20118.08, + "probability": 0.9762 + }, + { + "start": 20118.24, + "end": 20120.34, + "probability": 0.9572 + }, + { + "start": 20121.04, + "end": 20125.78, + "probability": 0.912 + }, + { + "start": 20126.12, + "end": 20128.94, + "probability": 0.8889 + }, + { + "start": 20129.14, + "end": 20131.02, + "probability": 0.9741 + }, + { + "start": 20131.36, + "end": 20132.66, + "probability": 0.7247 + }, + { + "start": 20133.02, + "end": 20135.72, + "probability": 0.9444 + }, + { + "start": 20136.14, + "end": 20138.98, + "probability": 0.98 + }, + { + "start": 20139.28, + "end": 20142.9, + "probability": 0.9883 + }, + { + "start": 20143.34, + "end": 20146.8, + "probability": 0.9512 + }, + { + "start": 20146.88, + "end": 20147.73, + "probability": 0.8413 + }, + { + "start": 20148.54, + "end": 20151.48, + "probability": 0.9657 + }, + { + "start": 20151.98, + "end": 20153.48, + "probability": 0.8947 + }, + { + "start": 20154.02, + "end": 20156.56, + "probability": 0.7979 + }, + { + "start": 20156.56, + "end": 20158.66, + "probability": 0.7348 + }, + { + "start": 20159.02, + "end": 20159.99, + "probability": 0.8503 + }, + { + "start": 20160.46, + "end": 20161.04, + "probability": 0.1159 + }, + { + "start": 20161.04, + "end": 20161.68, + "probability": 0.4276 + }, + { + "start": 20161.9, + "end": 20166.16, + "probability": 0.7209 + }, + { + "start": 20166.72, + "end": 20167.34, + "probability": 0.6364 + }, + { + "start": 20167.48, + "end": 20170.38, + "probability": 0.881 + }, + { + "start": 20171.2, + "end": 20171.7, + "probability": 0.7456 + }, + { + "start": 20171.9, + "end": 20172.36, + "probability": 0.8197 + }, + { + "start": 20172.76, + "end": 20173.82, + "probability": 0.823 + }, + { + "start": 20173.98, + "end": 20175.64, + "probability": 0.9646 + }, + { + "start": 20175.68, + "end": 20176.61, + "probability": 0.9622 + }, + { + "start": 20177.02, + "end": 20182.64, + "probability": 0.9495 + }, + { + "start": 20183.02, + "end": 20186.64, + "probability": 0.9903 + }, + { + "start": 20187.02, + "end": 20191.42, + "probability": 0.9451 + }, + { + "start": 20191.8, + "end": 20191.8, + "probability": 0.0275 + }, + { + "start": 20191.8, + "end": 20194.58, + "probability": 0.9784 + }, + { + "start": 20195.0, + "end": 20199.2, + "probability": 0.9879 + }, + { + "start": 20199.56, + "end": 20201.16, + "probability": 0.9236 + }, + { + "start": 20201.18, + "end": 20201.66, + "probability": 0.4765 + }, + { + "start": 20201.76, + "end": 20202.16, + "probability": 0.7523 + }, + { + "start": 20202.24, + "end": 20202.6, + "probability": 0.6404 + }, + { + "start": 20202.6, + "end": 20202.84, + "probability": 0.4921 + }, + { + "start": 20202.92, + "end": 20207.12, + "probability": 0.9868 + }, + { + "start": 20207.12, + "end": 20212.92, + "probability": 0.8852 + }, + { + "start": 20214.0, + "end": 20215.96, + "probability": 0.8546 + }, + { + "start": 20216.04, + "end": 20217.18, + "probability": 0.6545 + }, + { + "start": 20217.64, + "end": 20219.56, + "probability": 0.6456 + }, + { + "start": 20219.82, + "end": 20225.22, + "probability": 0.895 + }, + { + "start": 20225.54, + "end": 20226.56, + "probability": 0.8386 + }, + { + "start": 20226.68, + "end": 20232.0, + "probability": 0.913 + }, + { + "start": 20232.62, + "end": 20233.36, + "probability": 0.5733 + }, + { + "start": 20233.52, + "end": 20235.35, + "probability": 0.8973 + }, + { + "start": 20236.22, + "end": 20238.0, + "probability": 0.9529 + }, + { + "start": 20238.86, + "end": 20240.1, + "probability": 0.9463 + }, + { + "start": 20240.2, + "end": 20243.02, + "probability": 0.9989 + }, + { + "start": 20244.38, + "end": 20245.68, + "probability": 0.713 + }, + { + "start": 20246.4, + "end": 20247.58, + "probability": 0.687 + }, + { + "start": 20247.78, + "end": 20253.72, + "probability": 0.4215 + }, + { + "start": 20256.99, + "end": 20262.78, + "probability": 0.9915 + }, + { + "start": 20264.82, + "end": 20271.54, + "probability": 0.854 + }, + { + "start": 20272.08, + "end": 20273.52, + "probability": 0.8057 + }, + { + "start": 20273.62, + "end": 20274.4, + "probability": 0.6665 + }, + { + "start": 20274.8, + "end": 20277.98, + "probability": 0.9876 + }, + { + "start": 20278.72, + "end": 20282.41, + "probability": 0.8649 + }, + { + "start": 20283.02, + "end": 20287.68, + "probability": 0.9383 + }, + { + "start": 20288.18, + "end": 20288.8, + "probability": 0.7545 + }, + { + "start": 20288.94, + "end": 20291.56, + "probability": 0.2764 + }, + { + "start": 20291.78, + "end": 20291.78, + "probability": 0.0195 + }, + { + "start": 20292.5, + "end": 20294.4, + "probability": 0.8259 + }, + { + "start": 20295.56, + "end": 20298.5, + "probability": 0.9609 + }, + { + "start": 20298.5, + "end": 20300.94, + "probability": 0.9967 + }, + { + "start": 20301.0, + "end": 20302.1, + "probability": 0.576 + }, + { + "start": 20302.66, + "end": 20308.1, + "probability": 0.9596 + }, + { + "start": 20308.26, + "end": 20308.6, + "probability": 0.7427 + }, + { + "start": 20309.9, + "end": 20312.16, + "probability": 0.658 + }, + { + "start": 20313.16, + "end": 20314.14, + "probability": 0.7864 + }, + { + "start": 20314.22, + "end": 20314.72, + "probability": 0.7404 + }, + { + "start": 20316.3, + "end": 20317.04, + "probability": 0.6637 + }, + { + "start": 20317.16, + "end": 20317.94, + "probability": 0.8434 + }, + { + "start": 20318.1, + "end": 20320.88, + "probability": 0.9264 + }, + { + "start": 20322.88, + "end": 20323.92, + "probability": 0.9069 + }, + { + "start": 20325.78, + "end": 20329.74, + "probability": 0.9809 + }, + { + "start": 20329.92, + "end": 20330.32, + "probability": 0.602 + }, + { + "start": 20330.44, + "end": 20334.32, + "probability": 0.8451 + }, + { + "start": 20334.86, + "end": 20336.14, + "probability": 0.763 + }, + { + "start": 20338.24, + "end": 20339.82, + "probability": 0.9958 + }, + { + "start": 20341.36, + "end": 20344.54, + "probability": 0.9971 + }, + { + "start": 20347.66, + "end": 20350.18, + "probability": 0.8 + }, + { + "start": 20351.92, + "end": 20353.22, + "probability": 0.9563 + }, + { + "start": 20354.78, + "end": 20357.24, + "probability": 0.968 + }, + { + "start": 20358.84, + "end": 20360.32, + "probability": 0.5963 + }, + { + "start": 20360.52, + "end": 20363.94, + "probability": 0.9972 + }, + { + "start": 20367.74, + "end": 20373.56, + "probability": 0.9878 + }, + { + "start": 20377.32, + "end": 20378.46, + "probability": 0.9674 + }, + { + "start": 20380.66, + "end": 20383.96, + "probability": 0.9718 + }, + { + "start": 20385.72, + "end": 20391.26, + "probability": 0.9954 + }, + { + "start": 20396.33, + "end": 20399.24, + "probability": 0.9187 + }, + { + "start": 20400.66, + "end": 20404.46, + "probability": 0.9706 + }, + { + "start": 20405.02, + "end": 20406.84, + "probability": 0.9495 + }, + { + "start": 20407.58, + "end": 20408.1, + "probability": 0.7942 + }, + { + "start": 20409.76, + "end": 20410.98, + "probability": 0.9647 + }, + { + "start": 20411.18, + "end": 20415.5, + "probability": 0.9879 + }, + { + "start": 20417.62, + "end": 20419.34, + "probability": 0.7526 + }, + { + "start": 20420.04, + "end": 20421.3, + "probability": 0.6889 + }, + { + "start": 20423.78, + "end": 20426.46, + "probability": 0.9727 + }, + { + "start": 20427.88, + "end": 20433.9, + "probability": 0.9823 + }, + { + "start": 20434.54, + "end": 20437.12, + "probability": 0.9768 + }, + { + "start": 20437.24, + "end": 20439.02, + "probability": 0.9386 + }, + { + "start": 20439.12, + "end": 20441.78, + "probability": 0.9592 + }, + { + "start": 20443.28, + "end": 20444.1, + "probability": 0.6794 + }, + { + "start": 20446.28, + "end": 20447.26, + "probability": 0.9941 + }, + { + "start": 20447.9, + "end": 20448.68, + "probability": 0.9606 + }, + { + "start": 20451.46, + "end": 20452.78, + "probability": 0.9662 + }, + { + "start": 20452.84, + "end": 20457.35, + "probability": 0.9956 + }, + { + "start": 20458.62, + "end": 20459.82, + "probability": 0.8691 + }, + { + "start": 20461.68, + "end": 20462.44, + "probability": 0.6178 + }, + { + "start": 20462.92, + "end": 20467.12, + "probability": 0.9906 + }, + { + "start": 20468.66, + "end": 20474.28, + "probability": 0.9859 + }, + { + "start": 20475.36, + "end": 20476.58, + "probability": 0.9671 + }, + { + "start": 20478.0, + "end": 20479.84, + "probability": 0.9609 + }, + { + "start": 20481.7, + "end": 20484.2, + "probability": 0.9932 + }, + { + "start": 20484.44, + "end": 20487.02, + "probability": 0.9994 + }, + { + "start": 20488.54, + "end": 20490.92, + "probability": 0.7471 + }, + { + "start": 20491.52, + "end": 20491.7, + "probability": 0.5338 + }, + { + "start": 20493.12, + "end": 20494.03, + "probability": 0.9628 + }, + { + "start": 20495.08, + "end": 20495.68, + "probability": 0.8644 + }, + { + "start": 20497.54, + "end": 20500.34, + "probability": 0.9849 + }, + { + "start": 20501.22, + "end": 20502.54, + "probability": 0.999 + }, + { + "start": 20502.74, + "end": 20505.58, + "probability": 0.9771 + }, + { + "start": 20506.48, + "end": 20507.02, + "probability": 0.869 + }, + { + "start": 20508.02, + "end": 20512.7, + "probability": 0.9748 + }, + { + "start": 20513.28, + "end": 20515.12, + "probability": 0.9788 + }, + { + "start": 20516.98, + "end": 20521.62, + "probability": 0.9397 + }, + { + "start": 20523.62, + "end": 20526.4, + "probability": 0.9646 + }, + { + "start": 20526.6, + "end": 20529.32, + "probability": 0.9985 + }, + { + "start": 20530.54, + "end": 20532.38, + "probability": 0.8589 + }, + { + "start": 20533.58, + "end": 20539.86, + "probability": 0.981 + }, + { + "start": 20542.14, + "end": 20543.3, + "probability": 0.9255 + }, + { + "start": 20544.68, + "end": 20546.08, + "probability": 0.9818 + }, + { + "start": 20549.52, + "end": 20551.2, + "probability": 0.9752 + }, + { + "start": 20551.66, + "end": 20554.22, + "probability": 0.8972 + }, + { + "start": 20554.74, + "end": 20555.94, + "probability": 0.9995 + }, + { + "start": 20556.68, + "end": 20560.26, + "probability": 0.9571 + }, + { + "start": 20561.26, + "end": 20562.58, + "probability": 0.9668 + }, + { + "start": 20562.74, + "end": 20565.62, + "probability": 0.9293 + }, + { + "start": 20565.68, + "end": 20568.38, + "probability": 0.9925 + }, + { + "start": 20569.72, + "end": 20572.8, + "probability": 0.9982 + }, + { + "start": 20574.2, + "end": 20575.3, + "probability": 0.9984 + }, + { + "start": 20578.12, + "end": 20580.22, + "probability": 0.999 + }, + { + "start": 20580.38, + "end": 20584.02, + "probability": 0.9916 + }, + { + "start": 20584.16, + "end": 20584.61, + "probability": 0.8954 + }, + { + "start": 20586.44, + "end": 20587.38, + "probability": 0.9648 + }, + { + "start": 20588.82, + "end": 20594.5, + "probability": 0.9605 + }, + { + "start": 20594.74, + "end": 20596.36, + "probability": 0.7101 + }, + { + "start": 20597.08, + "end": 20598.32, + "probability": 0.6934 + }, + { + "start": 20598.92, + "end": 20602.02, + "probability": 0.9873 + }, + { + "start": 20602.74, + "end": 20604.5, + "probability": 0.9886 + }, + { + "start": 20606.12, + "end": 20608.52, + "probability": 0.9929 + }, + { + "start": 20608.58, + "end": 20609.62, + "probability": 0.8421 + }, + { + "start": 20610.56, + "end": 20612.16, + "probability": 0.7803 + }, + { + "start": 20614.42, + "end": 20615.5, + "probability": 0.9473 + }, + { + "start": 20616.66, + "end": 20618.84, + "probability": 0.9937 + }, + { + "start": 20620.2, + "end": 20621.5, + "probability": 0.9585 + }, + { + "start": 20623.78, + "end": 20624.92, + "probability": 0.9829 + }, + { + "start": 20627.18, + "end": 20629.34, + "probability": 0.9861 + }, + { + "start": 20630.5, + "end": 20631.08, + "probability": 0.387 + }, + { + "start": 20632.76, + "end": 20635.68, + "probability": 0.9684 + }, + { + "start": 20635.84, + "end": 20636.5, + "probability": 0.7224 + }, + { + "start": 20637.68, + "end": 20637.72, + "probability": 0.0917 + }, + { + "start": 20637.72, + "end": 20643.04, + "probability": 0.7736 + }, + { + "start": 20643.78, + "end": 20645.68, + "probability": 0.9707 + }, + { + "start": 20645.76, + "end": 20647.46, + "probability": 0.8789 + }, + { + "start": 20647.86, + "end": 20648.42, + "probability": 0.9017 + }, + { + "start": 20649.32, + "end": 20649.82, + "probability": 0.9443 + }, + { + "start": 20649.86, + "end": 20651.44, + "probability": 0.8517 + }, + { + "start": 20651.48, + "end": 20656.58, + "probability": 0.9932 + }, + { + "start": 20657.28, + "end": 20658.98, + "probability": 0.9438 + }, + { + "start": 20660.0, + "end": 20662.0, + "probability": 0.9979 + }, + { + "start": 20664.88, + "end": 20667.98, + "probability": 0.9775 + }, + { + "start": 20668.0, + "end": 20669.06, + "probability": 0.9917 + }, + { + "start": 20670.5, + "end": 20673.7, + "probability": 0.9971 + }, + { + "start": 20675.34, + "end": 20676.36, + "probability": 0.7421 + }, + { + "start": 20677.96, + "end": 20679.04, + "probability": 0.9607 + }, + { + "start": 20681.94, + "end": 20682.04, + "probability": 0.8627 + }, + { + "start": 20682.22, + "end": 20685.07, + "probability": 0.9927 + }, + { + "start": 20685.38, + "end": 20686.26, + "probability": 0.7446 + }, + { + "start": 20689.12, + "end": 20690.62, + "probability": 0.8335 + }, + { + "start": 20692.34, + "end": 20693.06, + "probability": 0.9614 + }, + { + "start": 20693.46, + "end": 20696.36, + "probability": 0.9984 + }, + { + "start": 20696.74, + "end": 20698.84, + "probability": 0.9957 + }, + { + "start": 20699.74, + "end": 20702.14, + "probability": 0.1327 + }, + { + "start": 20702.14, + "end": 20702.14, + "probability": 0.563 + }, + { + "start": 20702.14, + "end": 20703.56, + "probability": 0.6508 + }, + { + "start": 20703.94, + "end": 20706.76, + "probability": 0.7756 + }, + { + "start": 20707.16, + "end": 20710.0, + "probability": 0.4578 + }, + { + "start": 20711.34, + "end": 20715.3, + "probability": 0.8258 + }, + { + "start": 20715.66, + "end": 20716.36, + "probability": 0.6725 + }, + { + "start": 20716.36, + "end": 20716.52, + "probability": 0.9 + }, + { + "start": 20716.6, + "end": 20718.46, + "probability": 0.9456 + }, + { + "start": 20719.1, + "end": 20719.58, + "probability": 0.4939 + }, + { + "start": 20719.74, + "end": 20721.88, + "probability": 0.9375 + }, + { + "start": 20722.16, + "end": 20722.72, + "probability": 0.8984 + }, + { + "start": 20724.04, + "end": 20724.89, + "probability": 0.174 + }, + { + "start": 20725.94, + "end": 20727.24, + "probability": 0.5434 + }, + { + "start": 20728.5, + "end": 20730.18, + "probability": 0.8987 + }, + { + "start": 20731.98, + "end": 20733.74, + "probability": 0.7427 + }, + { + "start": 20734.4, + "end": 20735.04, + "probability": 0.9663 + }, + { + "start": 20737.0, + "end": 20739.06, + "probability": 0.9617 + }, + { + "start": 20740.76, + "end": 20742.74, + "probability": 0.786 + }, + { + "start": 20745.19, + "end": 20747.36, + "probability": 0.8756 + }, + { + "start": 20747.56, + "end": 20748.0, + "probability": 0.9639 + }, + { + "start": 20748.96, + "end": 20751.98, + "probability": 0.9941 + }, + { + "start": 20752.02, + "end": 20755.5, + "probability": 0.9956 + }, + { + "start": 20756.86, + "end": 20758.75, + "probability": 0.9857 + }, + { + "start": 20759.94, + "end": 20760.62, + "probability": 0.8369 + }, + { + "start": 20760.74, + "end": 20761.86, + "probability": 0.9524 + }, + { + "start": 20762.04, + "end": 20764.32, + "probability": 0.8503 + }, + { + "start": 20764.76, + "end": 20767.04, + "probability": 0.9897 + }, + { + "start": 20767.52, + "end": 20769.24, + "probability": 0.9949 + }, + { + "start": 20769.8, + "end": 20772.44, + "probability": 0.9582 + }, + { + "start": 20773.26, + "end": 20774.66, + "probability": 0.1988 + }, + { + "start": 20774.66, + "end": 20776.68, + "probability": 0.9727 + }, + { + "start": 20777.22, + "end": 20779.7, + "probability": 0.939 + }, + { + "start": 20780.28, + "end": 20781.22, + "probability": 0.9811 + }, + { + "start": 20781.82, + "end": 20783.8, + "probability": 0.9489 + }, + { + "start": 20784.86, + "end": 20786.96, + "probability": 0.9837 + }, + { + "start": 20788.04, + "end": 20793.78, + "probability": 0.9935 + }, + { + "start": 20795.96, + "end": 20796.3, + "probability": 0.635 + }, + { + "start": 20796.96, + "end": 20797.84, + "probability": 0.3565 + }, + { + "start": 20798.46, + "end": 20799.42, + "probability": 0.3202 + }, + { + "start": 20799.54, + "end": 20804.6, + "probability": 0.996 + }, + { + "start": 20804.66, + "end": 20806.16, + "probability": 0.9888 + }, + { + "start": 20807.92, + "end": 20808.92, + "probability": 0.993 + }, + { + "start": 20809.02, + "end": 20811.16, + "probability": 0.9379 + }, + { + "start": 20811.34, + "end": 20811.56, + "probability": 0.6478 + }, + { + "start": 20813.48, + "end": 20817.1, + "probability": 0.9792 + }, + { + "start": 20818.74, + "end": 20819.32, + "probability": 0.7319 + }, + { + "start": 20819.62, + "end": 20821.62, + "probability": 0.9959 + }, + { + "start": 20821.68, + "end": 20824.98, + "probability": 0.9219 + }, + { + "start": 20826.32, + "end": 20826.81, + "probability": 0.7959 + }, + { + "start": 20827.5, + "end": 20828.2, + "probability": 0.3184 + }, + { + "start": 20828.22, + "end": 20829.28, + "probability": 0.4857 + }, + { + "start": 20829.28, + "end": 20829.8, + "probability": 0.4217 + }, + { + "start": 20831.26, + "end": 20831.56, + "probability": 0.1581 + }, + { + "start": 20832.24, + "end": 20833.12, + "probability": 0.3136 + }, + { + "start": 20833.14, + "end": 20833.9, + "probability": 0.9714 + }, + { + "start": 20835.18, + "end": 20837.0, + "probability": 0.9941 + }, + { + "start": 20837.44, + "end": 20838.3, + "probability": 0.9906 + }, + { + "start": 20839.36, + "end": 20841.1, + "probability": 0.9983 + }, + { + "start": 20844.4, + "end": 20845.9, + "probability": 0.5643 + }, + { + "start": 20849.42, + "end": 20850.36, + "probability": 0.8059 + }, + { + "start": 20852.98, + "end": 20854.78, + "probability": 0.8833 + }, + { + "start": 20855.64, + "end": 20856.08, + "probability": 0.8457 + }, + { + "start": 20859.12, + "end": 20861.06, + "probability": 0.9557 + }, + { + "start": 20861.12, + "end": 20861.68, + "probability": 0.8894 + }, + { + "start": 20861.86, + "end": 20862.98, + "probability": 0.877 + }, + { + "start": 20864.46, + "end": 20868.6, + "probability": 0.9862 + }, + { + "start": 20869.3, + "end": 20872.64, + "probability": 0.9976 + }, + { + "start": 20875.14, + "end": 20876.76, + "probability": 0.9434 + }, + { + "start": 20876.88, + "end": 20879.64, + "probability": 0.9941 + }, + { + "start": 20881.66, + "end": 20885.2, + "probability": 0.9729 + }, + { + "start": 20886.26, + "end": 20889.16, + "probability": 0.9963 + }, + { + "start": 20890.7, + "end": 20892.05, + "probability": 0.9949 + }, + { + "start": 20894.16, + "end": 20896.14, + "probability": 0.9689 + }, + { + "start": 20897.66, + "end": 20899.99, + "probability": 0.9922 + }, + { + "start": 20903.8, + "end": 20904.54, + "probability": 0.8677 + }, + { + "start": 20906.52, + "end": 20907.5, + "probability": 0.5068 + }, + { + "start": 20909.7, + "end": 20911.61, + "probability": 0.9723 + }, + { + "start": 20913.24, + "end": 20915.56, + "probability": 0.9854 + }, + { + "start": 20916.64, + "end": 20919.3, + "probability": 0.998 + }, + { + "start": 20920.88, + "end": 20922.12, + "probability": 0.217 + }, + { + "start": 20923.66, + "end": 20925.64, + "probability": 0.7808 + }, + { + "start": 20926.0, + "end": 20927.24, + "probability": 0.8925 + }, + { + "start": 20927.46, + "end": 20928.34, + "probability": 0.5036 + }, + { + "start": 20928.58, + "end": 20929.9, + "probability": 0.5322 + }, + { + "start": 20931.36, + "end": 20936.5, + "probability": 0.9968 + }, + { + "start": 20936.62, + "end": 20939.94, + "probability": 0.9338 + }, + { + "start": 20940.16, + "end": 20943.3, + "probability": 0.9868 + }, + { + "start": 20945.66, + "end": 20947.7, + "probability": 0.9946 + }, + { + "start": 20951.0, + "end": 20955.78, + "probability": 0.9957 + }, + { + "start": 20961.28, + "end": 20962.08, + "probability": 0.9556 + }, + { + "start": 20964.42, + "end": 20964.7, + "probability": 0.9062 + }, + { + "start": 20966.0, + "end": 20967.7, + "probability": 0.9482 + }, + { + "start": 20969.6, + "end": 20971.5, + "probability": 0.9987 + }, + { + "start": 20973.04, + "end": 20974.92, + "probability": 0.938 + }, + { + "start": 20977.58, + "end": 20982.76, + "probability": 0.435 + }, + { + "start": 20983.18, + "end": 20984.18, + "probability": 0.4196 + }, + { + "start": 20984.44, + "end": 20986.26, + "probability": 0.7544 + }, + { + "start": 20987.16, + "end": 20987.26, + "probability": 0.4083 + }, + { + "start": 20987.26, + "end": 20989.18, + "probability": 0.9163 + }, + { + "start": 20989.48, + "end": 20991.08, + "probability": 0.9822 + }, + { + "start": 20991.54, + "end": 20993.52, + "probability": 0.9468 + }, + { + "start": 20993.58, + "end": 20993.64, + "probability": 0.0495 + }, + { + "start": 20993.64, + "end": 20994.02, + "probability": 0.0879 + }, + { + "start": 20994.08, + "end": 20995.54, + "probability": 0.9421 + }, + { + "start": 20996.3, + "end": 20998.62, + "probability": 0.7673 + }, + { + "start": 20998.98, + "end": 21002.78, + "probability": 0.5791 + }, + { + "start": 21002.96, + "end": 21003.86, + "probability": 0.5573 + }, + { + "start": 21005.28, + "end": 21006.88, + "probability": 0.4785 + }, + { + "start": 21007.02, + "end": 21007.6, + "probability": 0.1015 + }, + { + "start": 21007.6, + "end": 21007.64, + "probability": 0.6012 + }, + { + "start": 21007.64, + "end": 21008.08, + "probability": 0.7636 + }, + { + "start": 21008.72, + "end": 21013.3, + "probability": 0.9925 + }, + { + "start": 21016.54, + "end": 21018.46, + "probability": 0.9887 + }, + { + "start": 21020.46, + "end": 21022.29, + "probability": 0.8121 + }, + { + "start": 21024.16, + "end": 21027.32, + "probability": 0.941 + }, + { + "start": 21028.6, + "end": 21029.82, + "probability": 0.9495 + }, + { + "start": 21030.68, + "end": 21033.4, + "probability": 0.9325 + }, + { + "start": 21034.66, + "end": 21036.36, + "probability": 0.9532 + }, + { + "start": 21037.94, + "end": 21040.08, + "probability": 0.9712 + }, + { + "start": 21040.2, + "end": 21044.9, + "probability": 0.7687 + }, + { + "start": 21045.44, + "end": 21046.52, + "probability": 0.5752 + }, + { + "start": 21046.84, + "end": 21047.8, + "probability": 0.981 + }, + { + "start": 21050.48, + "end": 21053.92, + "probability": 0.7798 + }, + { + "start": 21054.66, + "end": 21055.37, + "probability": 0.7796 + }, + { + "start": 21055.62, + "end": 21056.28, + "probability": 0.2827 + }, + { + "start": 21056.36, + "end": 21057.58, + "probability": 0.7206 + }, + { + "start": 21058.22, + "end": 21060.02, + "probability": 0.9272 + }, + { + "start": 21060.8, + "end": 21063.84, + "probability": 0.9906 + }, + { + "start": 21064.26, + "end": 21064.42, + "probability": 0.9062 + }, + { + "start": 21064.46, + "end": 21065.12, + "probability": 0.9041 + }, + { + "start": 21065.26, + "end": 21066.32, + "probability": 0.9341 + }, + { + "start": 21066.86, + "end": 21068.3, + "probability": 0.7488 + }, + { + "start": 21068.4, + "end": 21069.18, + "probability": 0.8899 + }, + { + "start": 21071.78, + "end": 21074.61, + "probability": 0.9977 + }, + { + "start": 21076.7, + "end": 21077.76, + "probability": 0.967 + }, + { + "start": 21082.5, + "end": 21084.24, + "probability": 0.9949 + }, + { + "start": 21086.4, + "end": 21087.82, + "probability": 0.9983 + }, + { + "start": 21089.38, + "end": 21091.28, + "probability": 0.966 + }, + { + "start": 21091.98, + "end": 21092.72, + "probability": 0.7437 + }, + { + "start": 21093.96, + "end": 21095.38, + "probability": 0.9998 + }, + { + "start": 21097.78, + "end": 21098.2, + "probability": 0.5023 + }, + { + "start": 21098.72, + "end": 21099.66, + "probability": 0.9226 + }, + { + "start": 21101.5, + "end": 21102.5, + "probability": 0.8897 + }, + { + "start": 21104.08, + "end": 21105.02, + "probability": 0.9336 + }, + { + "start": 21105.84, + "end": 21106.56, + "probability": 0.4705 + }, + { + "start": 21106.58, + "end": 21107.36, + "probability": 0.6169 + }, + { + "start": 21108.78, + "end": 21110.42, + "probability": 0.9258 + }, + { + "start": 21114.42, + "end": 21117.52, + "probability": 0.9717 + }, + { + "start": 21118.0, + "end": 21119.78, + "probability": 0.9541 + }, + { + "start": 21120.56, + "end": 21121.26, + "probability": 0.9862 + }, + { + "start": 21121.78, + "end": 21122.62, + "probability": 0.9205 + }, + { + "start": 21122.82, + "end": 21124.42, + "probability": 0.9944 + }, + { + "start": 21124.7, + "end": 21125.32, + "probability": 0.8 + }, + { + "start": 21126.46, + "end": 21127.5, + "probability": 0.8212 + }, + { + "start": 21128.56, + "end": 21131.28, + "probability": 0.9918 + }, + { + "start": 21131.64, + "end": 21132.9, + "probability": 0.987 + }, + { + "start": 21135.0, + "end": 21136.08, + "probability": 0.8581 + }, + { + "start": 21136.7, + "end": 21137.84, + "probability": 0.8763 + }, + { + "start": 21138.7, + "end": 21141.42, + "probability": 0.9602 + }, + { + "start": 21142.5, + "end": 21143.56, + "probability": 0.576 + }, + { + "start": 21144.56, + "end": 21145.88, + "probability": 0.8644 + }, + { + "start": 21146.04, + "end": 21147.86, + "probability": 0.9967 + }, + { + "start": 21147.92, + "end": 21151.0, + "probability": 0.9692 + }, + { + "start": 21151.66, + "end": 21155.06, + "probability": 0.9988 + }, + { + "start": 21157.24, + "end": 21158.42, + "probability": 0.9897 + }, + { + "start": 21158.58, + "end": 21160.44, + "probability": 0.9091 + }, + { + "start": 21162.26, + "end": 21163.78, + "probability": 0.998 + }, + { + "start": 21164.7, + "end": 21166.09, + "probability": 0.9917 + }, + { + "start": 21169.28, + "end": 21171.08, + "probability": 0.9961 + }, + { + "start": 21171.18, + "end": 21171.26, + "probability": 0.1729 + }, + { + "start": 21172.8, + "end": 21175.4, + "probability": 0.7895 + }, + { + "start": 21175.44, + "end": 21177.18, + "probability": 0.8709 + }, + { + "start": 21177.46, + "end": 21178.1, + "probability": 0.9201 + }, + { + "start": 21179.28, + "end": 21180.7, + "probability": 0.9265 + }, + { + "start": 21180.8, + "end": 21181.62, + "probability": 0.8823 + }, + { + "start": 21182.7, + "end": 21186.68, + "probability": 0.9734 + }, + { + "start": 21188.0, + "end": 21189.44, + "probability": 0.9861 + }, + { + "start": 21189.84, + "end": 21190.58, + "probability": 0.2282 + }, + { + "start": 21191.1, + "end": 21191.5, + "probability": 0.3733 + }, + { + "start": 21191.5, + "end": 21191.98, + "probability": 0.3975 + }, + { + "start": 21192.44, + "end": 21199.12, + "probability": 0.7078 + }, + { + "start": 21200.36, + "end": 21202.72, + "probability": 0.8234 + }, + { + "start": 21203.6, + "end": 21204.42, + "probability": 0.9657 + }, + { + "start": 21205.98, + "end": 21211.36, + "probability": 0.9988 + }, + { + "start": 21217.0, + "end": 21219.32, + "probability": 0.9977 + }, + { + "start": 21219.8, + "end": 21220.7, + "probability": 0.8469 + }, + { + "start": 21221.58, + "end": 21222.28, + "probability": 0.5208 + }, + { + "start": 21222.56, + "end": 21223.28, + "probability": 0.9646 + }, + { + "start": 21224.74, + "end": 21225.52, + "probability": 0.9532 + }, + { + "start": 21226.58, + "end": 21228.0, + "probability": 0.9434 + }, + { + "start": 21232.56, + "end": 21234.8, + "probability": 0.9526 + }, + { + "start": 21235.66, + "end": 21240.5, + "probability": 0.9271 + }, + { + "start": 21241.68, + "end": 21245.62, + "probability": 0.9213 + }, + { + "start": 21246.14, + "end": 21247.4, + "probability": 0.1555 + }, + { + "start": 21254.37, + "end": 21256.08, + "probability": 0.5417 + }, + { + "start": 21256.66, + "end": 21258.3, + "probability": 0.7893 + }, + { + "start": 21258.94, + "end": 21260.64, + "probability": 0.8336 + }, + { + "start": 21260.94, + "end": 21260.94, + "probability": 0.2514 + }, + { + "start": 21260.94, + "end": 21263.26, + "probability": 0.5313 + }, + { + "start": 21264.74, + "end": 21266.36, + "probability": 0.8333 + }, + { + "start": 21266.84, + "end": 21268.5, + "probability": 0.9683 + }, + { + "start": 21268.8, + "end": 21269.42, + "probability": 0.8504 + }, + { + "start": 21269.78, + "end": 21271.7, + "probability": 0.1145 + }, + { + "start": 21271.7, + "end": 21272.74, + "probability": 0.3367 + }, + { + "start": 21272.96, + "end": 21273.62, + "probability": 0.4991 + }, + { + "start": 21273.62, + "end": 21273.8, + "probability": 0.2052 + }, + { + "start": 21274.04, + "end": 21276.38, + "probability": 0.8686 + }, + { + "start": 21276.94, + "end": 21278.98, + "probability": 0.8579 + }, + { + "start": 21279.16, + "end": 21280.04, + "probability": 0.8132 + }, + { + "start": 21280.16, + "end": 21280.3, + "probability": 0.5906 + }, + { + "start": 21280.9, + "end": 21281.5, + "probability": 0.5901 + }, + { + "start": 21281.52, + "end": 21282.2, + "probability": 0.6779 + }, + { + "start": 21282.22, + "end": 21282.65, + "probability": 0.7865 + }, + { + "start": 21284.02, + "end": 21287.0, + "probability": 0.9957 + }, + { + "start": 21289.06, + "end": 21290.13, + "probability": 0.8093 + }, + { + "start": 21293.36, + "end": 21297.96, + "probability": 0.995 + }, + { + "start": 21299.78, + "end": 21300.6, + "probability": 0.974 + }, + { + "start": 21304.46, + "end": 21305.21, + "probability": 0.7505 + }, + { + "start": 21307.04, + "end": 21307.82, + "probability": 0.8292 + }, + { + "start": 21309.06, + "end": 21310.23, + "probability": 0.9802 + }, + { + "start": 21312.58, + "end": 21314.58, + "probability": 0.8595 + }, + { + "start": 21315.9, + "end": 21318.4, + "probability": 0.6062 + }, + { + "start": 21322.08, + "end": 21325.9, + "probability": 0.9678 + }, + { + "start": 21326.0, + "end": 21327.56, + "probability": 0.951 + }, + { + "start": 21328.34, + "end": 21330.72, + "probability": 0.8066 + }, + { + "start": 21333.1, + "end": 21334.12, + "probability": 0.9486 + }, + { + "start": 21335.64, + "end": 21337.18, + "probability": 0.8224 + }, + { + "start": 21337.42, + "end": 21338.35, + "probability": 0.9567 + }, + { + "start": 21339.62, + "end": 21340.7, + "probability": 0.9382 + }, + { + "start": 21343.01, + "end": 21344.76, + "probability": 0.7574 + }, + { + "start": 21346.08, + "end": 21347.52, + "probability": 0.8347 + }, + { + "start": 21348.84, + "end": 21350.84, + "probability": 0.9517 + }, + { + "start": 21352.02, + "end": 21356.16, + "probability": 0.9883 + }, + { + "start": 21360.16, + "end": 21364.54, + "probability": 0.998 + }, + { + "start": 21364.68, + "end": 21365.52, + "probability": 0.4683 + }, + { + "start": 21366.52, + "end": 21367.72, + "probability": 0.9951 + }, + { + "start": 21369.08, + "end": 21372.56, + "probability": 0.9982 + }, + { + "start": 21373.88, + "end": 21375.14, + "probability": 0.9983 + }, + { + "start": 21377.98, + "end": 21379.54, + "probability": 0.8329 + }, + { + "start": 21381.3, + "end": 21382.18, + "probability": 0.726 + }, + { + "start": 21383.86, + "end": 21385.56, + "probability": 0.9126 + }, + { + "start": 21389.16, + "end": 21393.68, + "probability": 0.9772 + }, + { + "start": 21394.04, + "end": 21395.8, + "probability": 0.9821 + }, + { + "start": 21396.14, + "end": 21398.56, + "probability": 0.9717 + }, + { + "start": 21398.82, + "end": 21399.28, + "probability": 0.6174 + }, + { + "start": 21399.94, + "end": 21401.92, + "probability": 0.9317 + }, + { + "start": 21403.02, + "end": 21405.03, + "probability": 0.9492 + }, + { + "start": 21406.4, + "end": 21407.62, + "probability": 0.9893 + }, + { + "start": 21408.2, + "end": 21410.4, + "probability": 0.9839 + }, + { + "start": 21414.2, + "end": 21416.46, + "probability": 0.9976 + }, + { + "start": 21417.58, + "end": 21418.52, + "probability": 0.9922 + }, + { + "start": 21419.26, + "end": 21421.76, + "probability": 0.9982 + }, + { + "start": 21423.58, + "end": 21424.88, + "probability": 0.9276 + }, + { + "start": 21426.04, + "end": 21427.1, + "probability": 0.8124 + }, + { + "start": 21428.7, + "end": 21430.2, + "probability": 0.9871 + }, + { + "start": 21430.86, + "end": 21433.56, + "probability": 0.9849 + }, + { + "start": 21434.48, + "end": 21436.82, + "probability": 0.8957 + }, + { + "start": 21439.02, + "end": 21442.56, + "probability": 0.9928 + }, + { + "start": 21442.56, + "end": 21446.84, + "probability": 0.9967 + }, + { + "start": 21447.3, + "end": 21447.8, + "probability": 0.8936 + }, + { + "start": 21448.68, + "end": 21449.62, + "probability": 0.8195 + }, + { + "start": 21450.58, + "end": 21455.68, + "probability": 0.9976 + }, + { + "start": 21456.16, + "end": 21458.14, + "probability": 0.4699 + }, + { + "start": 21458.92, + "end": 21462.78, + "probability": 0.9535 + }, + { + "start": 21463.14, + "end": 21464.29, + "probability": 0.9879 + }, + { + "start": 21464.88, + "end": 21466.3, + "probability": 0.9436 + }, + { + "start": 21466.96, + "end": 21467.12, + "probability": 0.2933 + }, + { + "start": 21467.32, + "end": 21467.68, + "probability": 0.6306 + }, + { + "start": 21468.1, + "end": 21469.68, + "probability": 0.2719 + }, + { + "start": 21469.82, + "end": 21471.02, + "probability": 0.9462 + }, + { + "start": 21471.44, + "end": 21475.16, + "probability": 0.9518 + }, + { + "start": 21475.22, + "end": 21478.02, + "probability": 0.9897 + }, + { + "start": 21478.44, + "end": 21480.24, + "probability": 0.0431 + }, + { + "start": 21480.94, + "end": 21482.4, + "probability": 0.7273 + }, + { + "start": 21482.5, + "end": 21483.96, + "probability": 0.6383 + }, + { + "start": 21484.22, + "end": 21486.2, + "probability": 0.9176 + }, + { + "start": 21488.14, + "end": 21492.64, + "probability": 0.3009 + }, + { + "start": 21493.4, + "end": 21497.36, + "probability": 0.9199 + }, + { + "start": 21497.76, + "end": 21498.68, + "probability": 0.7895 + }, + { + "start": 21499.0, + "end": 21499.76, + "probability": 0.8052 + }, + { + "start": 21499.96, + "end": 21505.06, + "probability": 0.8169 + }, + { + "start": 21506.16, + "end": 21508.78, + "probability": 0.5029 + }, + { + "start": 21509.52, + "end": 21509.9, + "probability": 0.8632 + }, + { + "start": 21509.98, + "end": 21512.04, + "probability": 0.9919 + }, + { + "start": 21513.8, + "end": 21514.3, + "probability": 0.6946 + }, + { + "start": 21515.12, + "end": 21517.58, + "probability": 0.7674 + }, + { + "start": 21517.74, + "end": 21519.0, + "probability": 0.9801 + }, + { + "start": 21519.92, + "end": 21522.44, + "probability": 0.921 + }, + { + "start": 21523.54, + "end": 21525.54, + "probability": 0.9409 + }, + { + "start": 21526.6, + "end": 21528.44, + "probability": 0.6091 + }, + { + "start": 21529.22, + "end": 21529.26, + "probability": 0.1086 + }, + { + "start": 21529.36, + "end": 21529.56, + "probability": 0.3719 + }, + { + "start": 21529.56, + "end": 21531.46, + "probability": 0.9366 + }, + { + "start": 21532.24, + "end": 21533.2, + "probability": 0.6628 + }, + { + "start": 21535.23, + "end": 21538.36, + "probability": 0.4516 + }, + { + "start": 21539.64, + "end": 21540.94, + "probability": 0.8972 + }, + { + "start": 21541.52, + "end": 21547.1, + "probability": 0.0198 + }, + { + "start": 21547.4, + "end": 21549.46, + "probability": 0.8936 + }, + { + "start": 21551.24, + "end": 21552.76, + "probability": 0.379 + }, + { + "start": 21553.32, + "end": 21554.7, + "probability": 0.8408 + }, + { + "start": 21556.44, + "end": 21558.6, + "probability": 0.6678 + }, + { + "start": 21559.1, + "end": 21561.76, + "probability": 0.8942 + }, + { + "start": 21562.7, + "end": 21568.36, + "probability": 0.9102 + }, + { + "start": 21568.36, + "end": 21571.08, + "probability": 0.9996 + }, + { + "start": 21572.0, + "end": 21573.28, + "probability": 0.7412 + }, + { + "start": 21574.14, + "end": 21574.72, + "probability": 0.0969 + }, + { + "start": 21574.72, + "end": 21576.12, + "probability": 0.6912 + }, + { + "start": 21576.14, + "end": 21577.92, + "probability": 0.8113 + }, + { + "start": 21578.32, + "end": 21580.6, + "probability": 0.7301 + }, + { + "start": 21580.62, + "end": 21582.22, + "probability": 0.7319 + }, + { + "start": 21583.54, + "end": 21586.94, + "probability": 0.8491 + }, + { + "start": 21588.08, + "end": 21589.86, + "probability": 0.9987 + }, + { + "start": 21591.08, + "end": 21593.06, + "probability": 0.7719 + }, + { + "start": 21594.06, + "end": 21595.86, + "probability": 0.9932 + }, + { + "start": 21597.14, + "end": 21598.7, + "probability": 0.8535 + }, + { + "start": 21600.02, + "end": 21602.02, + "probability": 0.8223 + }, + { + "start": 21603.74, + "end": 21605.52, + "probability": 0.0582 + }, + { + "start": 21605.54, + "end": 21607.94, + "probability": 0.831 + }, + { + "start": 21609.12, + "end": 21611.95, + "probability": 0.9967 + }, + { + "start": 21612.78, + "end": 21613.72, + "probability": 0.8975 + }, + { + "start": 21613.82, + "end": 21617.6, + "probability": 0.814 + }, + { + "start": 21617.66, + "end": 21618.15, + "probability": 0.3998 + }, + { + "start": 21619.3, + "end": 21620.48, + "probability": 0.6398 + }, + { + "start": 21621.24, + "end": 21621.36, + "probability": 0.0206 + }, + { + "start": 21621.36, + "end": 21621.36, + "probability": 0.1231 + }, + { + "start": 21621.36, + "end": 21622.48, + "probability": 0.4129 + }, + { + "start": 21622.64, + "end": 21623.79, + "probability": 0.9482 + }, + { + "start": 21624.68, + "end": 21625.85, + "probability": 0.8726 + }, + { + "start": 21626.38, + "end": 21629.96, + "probability": 0.6879 + }, + { + "start": 21630.94, + "end": 21632.1, + "probability": 0.9734 + }, + { + "start": 21632.2, + "end": 21634.26, + "probability": 0.8444 + }, + { + "start": 21637.23, + "end": 21639.8, + "probability": 0.9131 + }, + { + "start": 21640.78, + "end": 21643.04, + "probability": 0.9973 + }, + { + "start": 21643.94, + "end": 21645.48, + "probability": 0.9639 + }, + { + "start": 21646.28, + "end": 21651.74, + "probability": 0.0444 + }, + { + "start": 21651.74, + "end": 21652.4, + "probability": 0.0749 + }, + { + "start": 21652.4, + "end": 21652.4, + "probability": 0.0735 + }, + { + "start": 21652.4, + "end": 21653.04, + "probability": 0.2742 + }, + { + "start": 21653.24, + "end": 21653.94, + "probability": 0.6582 + }, + { + "start": 21654.22, + "end": 21655.76, + "probability": 0.5345 + }, + { + "start": 21655.76, + "end": 21656.42, + "probability": 0.5327 + }, + { + "start": 21657.62, + "end": 21658.52, + "probability": 0.7014 + }, + { + "start": 21662.02, + "end": 21665.46, + "probability": 0.9072 + }, + { + "start": 21666.48, + "end": 21666.9, + "probability": 0.074 + }, + { + "start": 21666.9, + "end": 21667.18, + "probability": 0.4787 + }, + { + "start": 21667.18, + "end": 21668.7, + "probability": 0.8499 + }, + { + "start": 21669.68, + "end": 21671.98, + "probability": 0.686 + }, + { + "start": 21672.67, + "end": 21674.98, + "probability": 0.9313 + }, + { + "start": 21675.28, + "end": 21676.9, + "probability": 0.9336 + }, + { + "start": 21677.48, + "end": 21678.68, + "probability": 0.9083 + }, + { + "start": 21678.78, + "end": 21679.5, + "probability": 0.1422 + }, + { + "start": 21680.52, + "end": 21682.79, + "probability": 0.7362 + }, + { + "start": 21683.88, + "end": 21683.88, + "probability": 0.1178 + }, + { + "start": 21683.88, + "end": 21685.32, + "probability": 0.8402 + }, + { + "start": 21685.74, + "end": 21687.04, + "probability": 0.959 + }, + { + "start": 21688.62, + "end": 21690.18, + "probability": 0.0298 + }, + { + "start": 21690.9, + "end": 21693.44, + "probability": 0.9946 + }, + { + "start": 21693.7, + "end": 21694.46, + "probability": 0.7305 + }, + { + "start": 21695.1, + "end": 21698.33, + "probability": 0.9904 + }, + { + "start": 21699.36, + "end": 21700.18, + "probability": 0.6909 + }, + { + "start": 21701.04, + "end": 21702.68, + "probability": 0.9684 + }, + { + "start": 21702.68, + "end": 21705.82, + "probability": 0.9702 + }, + { + "start": 21705.82, + "end": 21706.72, + "probability": 0.0325 + }, + { + "start": 21706.98, + "end": 21708.7, + "probability": 0.7275 + }, + { + "start": 21708.72, + "end": 21709.78, + "probability": 0.1175 + }, + { + "start": 21709.86, + "end": 21711.42, + "probability": 0.2595 + }, + { + "start": 21711.58, + "end": 21711.9, + "probability": 0.5991 + }, + { + "start": 21712.1, + "end": 21713.26, + "probability": 0.4424 + }, + { + "start": 21713.38, + "end": 21714.26, + "probability": 0.6616 + }, + { + "start": 21714.26, + "end": 21715.56, + "probability": 0.8547 + }, + { + "start": 21715.7, + "end": 21716.1, + "probability": 0.6268 + }, + { + "start": 21716.14, + "end": 21718.32, + "probability": 0.846 + }, + { + "start": 21718.38, + "end": 21718.44, + "probability": 0.3487 + }, + { + "start": 21718.58, + "end": 21719.08, + "probability": 0.9144 + }, + { + "start": 21719.16, + "end": 21720.66, + "probability": 0.996 + }, + { + "start": 21720.78, + "end": 21722.42, + "probability": 0.9937 + }, + { + "start": 21723.38, + "end": 21723.56, + "probability": 0.0096 + }, + { + "start": 21724.38, + "end": 21725.04, + "probability": 0.0161 + }, + { + "start": 21725.04, + "end": 21725.85, + "probability": 0.8195 + }, + { + "start": 21726.74, + "end": 21729.24, + "probability": 0.8051 + }, + { + "start": 21729.52, + "end": 21732.54, + "probability": 0.9482 + }, + { + "start": 21732.96, + "end": 21733.8, + "probability": 0.7175 + }, + { + "start": 21734.88, + "end": 21735.0, + "probability": 0.1052 + }, + { + "start": 21735.0, + "end": 21735.0, + "probability": 0.0796 + }, + { + "start": 21735.0, + "end": 21736.05, + "probability": 0.6108 + }, + { + "start": 21736.92, + "end": 21738.02, + "probability": 0.8502 + }, + { + "start": 21738.14, + "end": 21739.92, + "probability": 0.8774 + }, + { + "start": 21740.6, + "end": 21740.6, + "probability": 0.0514 + }, + { + "start": 21740.6, + "end": 21740.6, + "probability": 0.0022 + }, + { + "start": 21740.6, + "end": 21741.12, + "probability": 0.5094 + }, + { + "start": 21741.86, + "end": 21743.68, + "probability": 0.8451 + }, + { + "start": 21743.98, + "end": 21746.94, + "probability": 0.986 + }, + { + "start": 21747.08, + "end": 21747.44, + "probability": 0.5779 + }, + { + "start": 21748.12, + "end": 21749.33, + "probability": 0.9937 + }, + { + "start": 21749.96, + "end": 21752.14, + "probability": 0.7162 + }, + { + "start": 21752.88, + "end": 21754.94, + "probability": 0.9665 + }, + { + "start": 21755.46, + "end": 21756.16, + "probability": 0.9314 + }, + { + "start": 21756.76, + "end": 21758.36, + "probability": 0.9922 + }, + { + "start": 21758.68, + "end": 21760.42, + "probability": 0.6177 + }, + { + "start": 21760.88, + "end": 21761.14, + "probability": 0.4612 + }, + { + "start": 21761.6, + "end": 21762.82, + "probability": 0.4312 + }, + { + "start": 21763.04, + "end": 21764.78, + "probability": 0.9795 + }, + { + "start": 21764.86, + "end": 21766.26, + "probability": 0.7702 + }, + { + "start": 21766.62, + "end": 21767.41, + "probability": 0.688 + }, + { + "start": 21767.52, + "end": 21769.4, + "probability": 0.9966 + }, + { + "start": 21769.46, + "end": 21772.62, + "probability": 0.9604 + }, + { + "start": 21772.98, + "end": 21774.83, + "probability": 0.8097 + }, + { + "start": 21775.72, + "end": 21778.72, + "probability": 0.9988 + }, + { + "start": 21779.2, + "end": 21780.84, + "probability": 0.8116 + }, + { + "start": 21781.6, + "end": 21783.1, + "probability": 0.5466 + }, + { + "start": 21783.58, + "end": 21786.66, + "probability": 0.995 + }, + { + "start": 21786.88, + "end": 21787.6, + "probability": 0.0256 + }, + { + "start": 21789.7, + "end": 21789.7, + "probability": 0.0552 + }, + { + "start": 21789.7, + "end": 21789.8, + "probability": 0.1504 + }, + { + "start": 21790.3, + "end": 21790.82, + "probability": 0.4021 + }, + { + "start": 21791.4, + "end": 21792.56, + "probability": 0.9954 + }, + { + "start": 21793.3, + "end": 21796.24, + "probability": 0.6484 + }, + { + "start": 21796.24, + "end": 21796.92, + "probability": 0.6452 + }, + { + "start": 21797.32, + "end": 21798.4, + "probability": 0.9551 + }, + { + "start": 21798.5, + "end": 21799.52, + "probability": 0.9368 + }, + { + "start": 21799.58, + "end": 21803.76, + "probability": 0.9442 + }, + { + "start": 21804.24, + "end": 21805.02, + "probability": 0.7512 + }, + { + "start": 21805.16, + "end": 21807.6, + "probability": 0.9797 + }, + { + "start": 21808.44, + "end": 21812.38, + "probability": 0.9406 + }, + { + "start": 21812.76, + "end": 21812.86, + "probability": 0.1727 + }, + { + "start": 21812.86, + "end": 21813.44, + "probability": 0.616 + }, + { + "start": 21813.84, + "end": 21815.0, + "probability": 0.6513 + }, + { + "start": 21815.0, + "end": 21818.44, + "probability": 0.9899 + }, + { + "start": 21818.84, + "end": 21820.06, + "probability": 0.9956 + }, + { + "start": 21820.7, + "end": 21821.94, + "probability": 0.9013 + }, + { + "start": 21822.86, + "end": 21824.58, + "probability": 0.9443 + }, + { + "start": 21825.08, + "end": 21826.56, + "probability": 0.5332 + }, + { + "start": 21827.12, + "end": 21827.84, + "probability": 0.8837 + }, + { + "start": 21828.68, + "end": 21829.54, + "probability": 0.0267 + }, + { + "start": 21829.54, + "end": 21829.7, + "probability": 0.1382 + }, + { + "start": 21829.7, + "end": 21830.24, + "probability": 0.6158 + }, + { + "start": 21830.7, + "end": 21831.86, + "probability": 0.8316 + }, + { + "start": 21831.98, + "end": 21833.02, + "probability": 0.1381 + }, + { + "start": 21833.02, + "end": 21833.36, + "probability": 0.2743 + }, + { + "start": 21833.5, + "end": 21837.24, + "probability": 0.8919 + }, + { + "start": 21838.06, + "end": 21838.66, + "probability": 0.5422 + }, + { + "start": 21838.8, + "end": 21839.8, + "probability": 0.4877 + }, + { + "start": 21840.02, + "end": 21842.38, + "probability": 0.9442 + }, + { + "start": 21843.04, + "end": 21844.0, + "probability": 0.4044 + }, + { + "start": 21844.64, + "end": 21848.84, + "probability": 0.9884 + }, + { + "start": 21850.18, + "end": 21850.18, + "probability": 0.1102 + }, + { + "start": 21850.44, + "end": 21850.54, + "probability": 0.1014 + }, + { + "start": 21850.54, + "end": 21851.04, + "probability": 0.4914 + }, + { + "start": 21853.02, + "end": 21858.58, + "probability": 0.5691 + }, + { + "start": 21859.14, + "end": 21864.76, + "probability": 0.9092 + }, + { + "start": 21865.08, + "end": 21867.42, + "probability": 0.5905 + }, + { + "start": 21868.66, + "end": 21869.6, + "probability": 0.732 + }, + { + "start": 21869.74, + "end": 21870.02, + "probability": 0.8484 + }, + { + "start": 21870.68, + "end": 21871.72, + "probability": 0.97 + }, + { + "start": 21872.52, + "end": 21873.52, + "probability": 0.7932 + }, + { + "start": 21874.1, + "end": 21875.0, + "probability": 0.7468 + }, + { + "start": 21875.66, + "end": 21876.56, + "probability": 0.6516 + }, + { + "start": 21878.54, + "end": 21880.96, + "probability": 0.9956 + }, + { + "start": 21882.1, + "end": 21886.48, + "probability": 0.9657 + }, + { + "start": 21887.31, + "end": 21888.47, + "probability": 0.4285 + }, + { + "start": 21890.14, + "end": 21893.7, + "probability": 0.7894 + }, + { + "start": 21895.3, + "end": 21898.68, + "probability": 0.9661 + }, + { + "start": 21899.38, + "end": 21904.12, + "probability": 0.9824 + }, + { + "start": 21905.98, + "end": 21909.5, + "probability": 0.6605 + }, + { + "start": 21910.7, + "end": 21913.2, + "probability": 0.5892 + }, + { + "start": 21913.3, + "end": 21915.16, + "probability": 0.1428 + }, + { + "start": 21915.54, + "end": 21918.26, + "probability": 0.4682 + }, + { + "start": 21919.0, + "end": 21919.0, + "probability": 0.1162 + }, + { + "start": 21919.0, + "end": 21919.0, + "probability": 0.426 + }, + { + "start": 21919.0, + "end": 21919.99, + "probability": 0.4894 + }, + { + "start": 21921.52, + "end": 21922.25, + "probability": 0.8879 + }, + { + "start": 21923.74, + "end": 21926.64, + "probability": 0.85 + }, + { + "start": 21927.38, + "end": 21928.3, + "probability": 0.9492 + }, + { + "start": 21929.12, + "end": 21929.96, + "probability": 0.5063 + }, + { + "start": 21930.52, + "end": 21931.68, + "probability": 0.8804 + }, + { + "start": 21933.7, + "end": 21936.42, + "probability": 0.6031 + }, + { + "start": 21937.66, + "end": 21939.16, + "probability": 0.9464 + }, + { + "start": 21939.92, + "end": 21942.52, + "probability": 0.9972 + }, + { + "start": 21943.3, + "end": 21945.36, + "probability": 0.9486 + }, + { + "start": 21946.4, + "end": 21950.2, + "probability": 0.9777 + }, + { + "start": 21950.78, + "end": 21955.08, + "probability": 0.9928 + }, + { + "start": 21957.1, + "end": 21963.22, + "probability": 0.9356 + }, + { + "start": 21964.12, + "end": 21966.68, + "probability": 0.9959 + }, + { + "start": 21968.04, + "end": 21970.4, + "probability": 0.9973 + }, + { + "start": 21971.54, + "end": 21974.32, + "probability": 0.8129 + }, + { + "start": 21975.18, + "end": 21978.72, + "probability": 0.8311 + }, + { + "start": 21978.72, + "end": 21979.38, + "probability": 0.8455 + }, + { + "start": 21979.62, + "end": 21981.62, + "probability": 0.7767 + }, + { + "start": 21982.62, + "end": 21986.94, + "probability": 0.7491 + }, + { + "start": 21987.52, + "end": 21989.16, + "probability": 0.7289 + }, + { + "start": 21989.84, + "end": 21990.18, + "probability": 0.4728 + }, + { + "start": 21991.24, + "end": 21993.08, + "probability": 0.7198 + }, + { + "start": 21994.2, + "end": 21998.2, + "probability": 0.9966 + }, + { + "start": 21999.5, + "end": 22003.46, + "probability": 0.9962 + }, + { + "start": 22003.46, + "end": 22006.86, + "probability": 0.999 + }, + { + "start": 22007.96, + "end": 22009.02, + "probability": 0.8612 + }, + { + "start": 22010.36, + "end": 22011.36, + "probability": 0.8889 + }, + { + "start": 22012.36, + "end": 22017.92, + "probability": 0.998 + }, + { + "start": 22018.7, + "end": 22022.4, + "probability": 0.9845 + }, + { + "start": 22023.34, + "end": 22026.52, + "probability": 0.9725 + }, + { + "start": 22026.88, + "end": 22031.22, + "probability": 0.9983 + }, + { + "start": 22031.32, + "end": 22033.22, + "probability": 0.7404 + }, + { + "start": 22033.74, + "end": 22034.33, + "probability": 0.8822 + }, + { + "start": 22035.06, + "end": 22036.14, + "probability": 0.8935 + }, + { + "start": 22036.62, + "end": 22037.96, + "probability": 0.9179 + }, + { + "start": 22038.28, + "end": 22039.82, + "probability": 0.9809 + }, + { + "start": 22039.9, + "end": 22041.28, + "probability": 0.9855 + }, + { + "start": 22041.36, + "end": 22042.24, + "probability": 0.9033 + }, + { + "start": 22042.5, + "end": 22042.96, + "probability": 0.9474 + }, + { + "start": 22044.5, + "end": 22045.32, + "probability": 0.9271 + }, + { + "start": 22047.06, + "end": 22051.36, + "probability": 0.9989 + }, + { + "start": 22051.36, + "end": 22057.18, + "probability": 0.9956 + }, + { + "start": 22058.4, + "end": 22062.5, + "probability": 0.5016 + }, + { + "start": 22062.62, + "end": 22063.16, + "probability": 0.0099 + }, + { + "start": 22063.26, + "end": 22064.06, + "probability": 0.5932 + }, + { + "start": 22064.73, + "end": 22065.92, + "probability": 0.0437 + }, + { + "start": 22065.92, + "end": 22067.22, + "probability": 0.7992 + }, + { + "start": 22068.46, + "end": 22070.54, + "probability": 0.3961 + }, + { + "start": 22070.54, + "end": 22070.54, + "probability": 0.5351 + }, + { + "start": 22070.54, + "end": 22070.54, + "probability": 0.0423 + }, + { + "start": 22070.54, + "end": 22070.54, + "probability": 0.119 + }, + { + "start": 22070.54, + "end": 22072.66, + "probability": 0.4345 + }, + { + "start": 22073.08, + "end": 22073.82, + "probability": 0.2243 + }, + { + "start": 22074.38, + "end": 22076.26, + "probability": 0.6632 + }, + { + "start": 22077.06, + "end": 22079.14, + "probability": 0.1876 + }, + { + "start": 22079.56, + "end": 22082.94, + "probability": 0.7629 + }, + { + "start": 22082.94, + "end": 22084.36, + "probability": 0.9946 + }, + { + "start": 22085.1, + "end": 22086.1, + "probability": 0.2291 + }, + { + "start": 22086.26, + "end": 22087.34, + "probability": 0.5704 + }, + { + "start": 22088.36, + "end": 22088.36, + "probability": 0.0141 + }, + { + "start": 22088.36, + "end": 22089.74, + "probability": 0.8028 + }, + { + "start": 22090.2, + "end": 22090.68, + "probability": 0.7941 + }, + { + "start": 22090.68, + "end": 22094.64, + "probability": 0.9862 + }, + { + "start": 22095.16, + "end": 22097.62, + "probability": 0.9958 + }, + { + "start": 22098.76, + "end": 22100.66, + "probability": 0.7238 + }, + { + "start": 22100.7, + "end": 22102.39, + "probability": 0.9014 + }, + { + "start": 22102.86, + "end": 22103.2, + "probability": 0.1848 + }, + { + "start": 22103.34, + "end": 22105.96, + "probability": 0.9843 + }, + { + "start": 22106.04, + "end": 22106.56, + "probability": 0.3048 + }, + { + "start": 22106.6, + "end": 22108.1, + "probability": 0.755 + }, + { + "start": 22108.32, + "end": 22109.52, + "probability": 0.8805 + }, + { + "start": 22110.08, + "end": 22110.08, + "probability": 0.1909 + }, + { + "start": 22110.08, + "end": 22111.32, + "probability": 0.6951 + }, + { + "start": 22112.08, + "end": 22113.06, + "probability": 0.012 + }, + { + "start": 22113.06, + "end": 22114.12, + "probability": 0.7689 + }, + { + "start": 22114.2, + "end": 22115.78, + "probability": 0.9884 + }, + { + "start": 22116.06, + "end": 22118.16, + "probability": 0.972 + }, + { + "start": 22119.26, + "end": 22120.9, + "probability": 0.7186 + }, + { + "start": 22122.57, + "end": 22124.62, + "probability": 0.9794 + }, + { + "start": 22124.98, + "end": 22126.78, + "probability": 0.1734 + }, + { + "start": 22126.8, + "end": 22128.16, + "probability": 0.9028 + }, + { + "start": 22128.38, + "end": 22128.44, + "probability": 0.0021 + }, + { + "start": 22129.2, + "end": 22129.44, + "probability": 0.1882 + }, + { + "start": 22129.5, + "end": 22129.64, + "probability": 0.904 + }, + { + "start": 22129.64, + "end": 22129.68, + "probability": 0.5902 + }, + { + "start": 22129.68, + "end": 22130.7, + "probability": 0.8749 + }, + { + "start": 22130.8, + "end": 22132.98, + "probability": 0.9764 + }, + { + "start": 22133.28, + "end": 22133.46, + "probability": 0.248 + }, + { + "start": 22133.5, + "end": 22134.96, + "probability": 0.9419 + }, + { + "start": 22135.3, + "end": 22137.6, + "probability": 0.8264 + }, + { + "start": 22137.66, + "end": 22139.68, + "probability": 0.9162 + }, + { + "start": 22140.52, + "end": 22141.96, + "probability": 0.8929 + }, + { + "start": 22142.6, + "end": 22142.6, + "probability": 0.0044 + }, + { + "start": 22143.06, + "end": 22144.24, + "probability": 0.2911 + }, + { + "start": 22144.28, + "end": 22145.84, + "probability": 0.8156 + }, + { + "start": 22146.34, + "end": 22146.9, + "probability": 0.8442 + }, + { + "start": 22146.92, + "end": 22147.94, + "probability": 0.9183 + }, + { + "start": 22147.96, + "end": 22148.64, + "probability": 0.9272 + }, + { + "start": 22149.52, + "end": 22149.7, + "probability": 0.1912 + }, + { + "start": 22150.44, + "end": 22150.44, + "probability": 0.3026 + }, + { + "start": 22150.64, + "end": 22154.58, + "probability": 0.9954 + }, + { + "start": 22154.7, + "end": 22157.6, + "probability": 0.894 + }, + { + "start": 22157.74, + "end": 22161.8, + "probability": 0.9233 + }, + { + "start": 22161.82, + "end": 22164.74, + "probability": 0.7584 + }, + { + "start": 22165.28, + "end": 22167.1, + "probability": 0.1249 + }, + { + "start": 22167.3, + "end": 22170.44, + "probability": 0.9697 + }, + { + "start": 22171.54, + "end": 22173.62, + "probability": 0.9796 + }, + { + "start": 22173.74, + "end": 22174.46, + "probability": 0.904 + }, + { + "start": 22174.5, + "end": 22175.34, + "probability": 0.9895 + }, + { + "start": 22175.5, + "end": 22176.08, + "probability": 0.9189 + }, + { + "start": 22176.98, + "end": 22177.86, + "probability": 0.8759 + }, + { + "start": 22178.02, + "end": 22178.78, + "probability": 0.4992 + }, + { + "start": 22179.16, + "end": 22180.34, + "probability": 0.8726 + }, + { + "start": 22180.48, + "end": 22185.32, + "probability": 0.9901 + }, + { + "start": 22185.44, + "end": 22189.12, + "probability": 0.9561 + }, + { + "start": 22189.34, + "end": 22190.38, + "probability": 0.6779 + }, + { + "start": 22190.76, + "end": 22191.86, + "probability": 0.9138 + }, + { + "start": 22192.3, + "end": 22193.16, + "probability": 0.221 + }, + { + "start": 22193.66, + "end": 22194.12, + "probability": 0.0202 + }, + { + "start": 22194.18, + "end": 22194.64, + "probability": 0.3959 + }, + { + "start": 22194.7, + "end": 22195.47, + "probability": 0.4802 + }, + { + "start": 22195.64, + "end": 22196.06, + "probability": 0.2033 + }, + { + "start": 22196.24, + "end": 22197.82, + "probability": 0.4873 + }, + { + "start": 22198.1, + "end": 22198.36, + "probability": 0.4206 + }, + { + "start": 22198.44, + "end": 22200.78, + "probability": 0.5957 + }, + { + "start": 22201.72, + "end": 22201.8, + "probability": 0.3061 + }, + { + "start": 22201.8, + "end": 22202.48, + "probability": 0.3177 + }, + { + "start": 22203.48, + "end": 22207.54, + "probability": 0.1787 + }, + { + "start": 22207.54, + "end": 22207.82, + "probability": 0.0282 + }, + { + "start": 22207.82, + "end": 22209.36, + "probability": 0.9355 + }, + { + "start": 22209.44, + "end": 22210.74, + "probability": 0.0281 + }, + { + "start": 22210.78, + "end": 22212.32, + "probability": 0.0755 + }, + { + "start": 22212.7, + "end": 22213.8, + "probability": 0.0457 + }, + { + "start": 22215.1, + "end": 22215.94, + "probability": 0.0312 + }, + { + "start": 22216.5, + "end": 22219.37, + "probability": 0.1102 + }, + { + "start": 22222.5, + "end": 22223.8, + "probability": 0.2164 + }, + { + "start": 22224.86, + "end": 22227.72, + "probability": 0.1611 + }, + { + "start": 22227.74, + "end": 22227.96, + "probability": 0.5841 + }, + { + "start": 22228.08, + "end": 22229.74, + "probability": 0.8273 + }, + { + "start": 22229.78, + "end": 22232.44, + "probability": 0.9823 + }, + { + "start": 22232.54, + "end": 22233.36, + "probability": 0.6845 + }, + { + "start": 22234.65, + "end": 22235.84, + "probability": 0.2349 + }, + { + "start": 22236.08, + "end": 22237.71, + "probability": 0.2625 + }, + { + "start": 22237.82, + "end": 22239.88, + "probability": 0.018 + }, + { + "start": 22239.92, + "end": 22241.58, + "probability": 0.6981 + }, + { + "start": 22241.88, + "end": 22244.36, + "probability": 0.7151 + }, + { + "start": 22244.4, + "end": 22244.88, + "probability": 0.4224 + }, + { + "start": 22244.88, + "end": 22246.18, + "probability": 0.555 + }, + { + "start": 22246.22, + "end": 22248.72, + "probability": 0.8997 + }, + { + "start": 22248.76, + "end": 22250.32, + "probability": 0.7045 + }, + { + "start": 22250.44, + "end": 22251.04, + "probability": 0.6424 + }, + { + "start": 22251.34, + "end": 22252.28, + "probability": 0.8659 + }, + { + "start": 22255.34, + "end": 22255.48, + "probability": 0.1831 + }, + { + "start": 22255.48, + "end": 22255.48, + "probability": 0.057 + }, + { + "start": 22255.48, + "end": 22255.48, + "probability": 0.1455 + }, + { + "start": 22255.48, + "end": 22258.75, + "probability": 0.1861 + }, + { + "start": 22259.26, + "end": 22260.24, + "probability": 0.9375 + }, + { + "start": 22260.32, + "end": 22261.18, + "probability": 0.9417 + }, + { + "start": 22261.94, + "end": 22265.34, + "probability": 0.993 + }, + { + "start": 22266.58, + "end": 22267.48, + "probability": 0.8266 + }, + { + "start": 22268.56, + "end": 22272.78, + "probability": 0.9946 + }, + { + "start": 22273.42, + "end": 22276.32, + "probability": 0.9421 + }, + { + "start": 22276.96, + "end": 22280.2, + "probability": 0.9917 + }, + { + "start": 22281.04, + "end": 22284.56, + "probability": 0.9729 + }, + { + "start": 22285.64, + "end": 22287.07, + "probability": 0.8918 + }, + { + "start": 22288.06, + "end": 22290.58, + "probability": 0.9694 + }, + { + "start": 22291.06, + "end": 22294.2, + "probability": 0.9556 + }, + { + "start": 22294.2, + "end": 22297.24, + "probability": 0.9895 + }, + { + "start": 22297.86, + "end": 22299.93, + "probability": 0.9837 + }, + { + "start": 22300.54, + "end": 22301.06, + "probability": 0.2493 + }, + { + "start": 22301.12, + "end": 22303.9, + "probability": 0.8297 + }, + { + "start": 22304.36, + "end": 22305.74, + "probability": 0.9265 + }, + { + "start": 22306.36, + "end": 22307.68, + "probability": 0.0234 + }, + { + "start": 22307.68, + "end": 22308.36, + "probability": 0.6247 + }, + { + "start": 22313.88, + "end": 22315.0, + "probability": 0.0467 + }, + { + "start": 22315.0, + "end": 22315.08, + "probability": 0.0289 + }, + { + "start": 22316.32, + "end": 22316.58, + "probability": 0.0201 + }, + { + "start": 22316.58, + "end": 22316.78, + "probability": 0.0492 + }, + { + "start": 22316.78, + "end": 22316.78, + "probability": 0.3009 + }, + { + "start": 22316.78, + "end": 22316.78, + "probability": 0.1032 + }, + { + "start": 22316.78, + "end": 22318.72, + "probability": 0.1561 + }, + { + "start": 22319.16, + "end": 22319.78, + "probability": 0.4887 + }, + { + "start": 22320.34, + "end": 22322.5, + "probability": 0.8485 + }, + { + "start": 22323.56, + "end": 22324.77, + "probability": 0.9897 + }, + { + "start": 22325.0, + "end": 22328.74, + "probability": 0.9709 + }, + { + "start": 22329.46, + "end": 22332.5, + "probability": 0.9963 + }, + { + "start": 22333.64, + "end": 22338.14, + "probability": 0.9969 + }, + { + "start": 22339.18, + "end": 22340.44, + "probability": 0.8586 + }, + { + "start": 22342.1, + "end": 22344.2, + "probability": 0.7965 + }, + { + "start": 22344.96, + "end": 22346.22, + "probability": 0.9737 + }, + { + "start": 22347.5, + "end": 22351.88, + "probability": 0.9948 + }, + { + "start": 22352.5, + "end": 22355.68, + "probability": 0.916 + }, + { + "start": 22357.12, + "end": 22358.6, + "probability": 0.8943 + }, + { + "start": 22359.78, + "end": 22361.68, + "probability": 0.9703 + }, + { + "start": 22362.42, + "end": 22362.96, + "probability": 0.9806 + }, + { + "start": 22363.76, + "end": 22365.3, + "probability": 0.6145 + }, + { + "start": 22365.88, + "end": 22370.06, + "probability": 0.9908 + }, + { + "start": 22370.3, + "end": 22372.24, + "probability": 0.3385 + }, + { + "start": 22372.32, + "end": 22375.0, + "probability": 0.7002 + }, + { + "start": 22375.24, + "end": 22376.5, + "probability": 0.8901 + }, + { + "start": 22378.08, + "end": 22379.24, + "probability": 0.9438 + }, + { + "start": 22379.36, + "end": 22380.46, + "probability": 0.3457 + }, + { + "start": 22380.64, + "end": 22382.58, + "probability": 0.9707 + }, + { + "start": 22382.68, + "end": 22383.85, + "probability": 0.999 + }, + { + "start": 22383.94, + "end": 22385.36, + "probability": 0.9651 + }, + { + "start": 22385.48, + "end": 22390.46, + "probability": 0.9846 + }, + { + "start": 22390.84, + "end": 22391.38, + "probability": 0.8226 + }, + { + "start": 22391.7, + "end": 22392.44, + "probability": 0.9099 + }, + { + "start": 22392.76, + "end": 22393.56, + "probability": 0.8798 + }, + { + "start": 22393.74, + "end": 22395.78, + "probability": 0.9668 + }, + { + "start": 22396.14, + "end": 22400.86, + "probability": 0.9944 + }, + { + "start": 22401.3, + "end": 22404.6, + "probability": 0.249 + }, + { + "start": 22405.22, + "end": 22406.82, + "probability": 0.2886 + }, + { + "start": 22406.88, + "end": 22410.38, + "probability": 0.0056 + }, + { + "start": 22411.8, + "end": 22413.22, + "probability": 0.3221 + }, + { + "start": 22413.22, + "end": 22413.36, + "probability": 0.0625 + }, + { + "start": 22413.36, + "end": 22413.36, + "probability": 0.2608 + }, + { + "start": 22413.36, + "end": 22413.36, + "probability": 0.0385 + }, + { + "start": 22413.36, + "end": 22416.9, + "probability": 0.9043 + }, + { + "start": 22417.1, + "end": 22418.72, + "probability": 0.9857 + }, + { + "start": 22420.1, + "end": 22422.14, + "probability": 0.9989 + }, + { + "start": 22422.22, + "end": 22426.8, + "probability": 0.9922 + }, + { + "start": 22426.91, + "end": 22428.24, + "probability": 0.6585 + }, + { + "start": 22429.16, + "end": 22433.48, + "probability": 0.7621 + }, + { + "start": 22434.26, + "end": 22434.32, + "probability": 0.4953 + }, + { + "start": 22434.32, + "end": 22435.6, + "probability": 0.6844 + }, + { + "start": 22435.62, + "end": 22436.66, + "probability": 0.3323 + }, + { + "start": 22436.78, + "end": 22437.5, + "probability": 0.5276 + }, + { + "start": 22437.82, + "end": 22437.9, + "probability": 0.1169 + }, + { + "start": 22437.9, + "end": 22439.24, + "probability": 0.6173 + }, + { + "start": 22439.6, + "end": 22440.52, + "probability": 0.2311 + }, + { + "start": 22440.76, + "end": 22441.73, + "probability": 0.4959 + }, + { + "start": 22441.98, + "end": 22443.15, + "probability": 0.3072 + }, + { + "start": 22443.84, + "end": 22446.72, + "probability": 0.8746 + }, + { + "start": 22447.06, + "end": 22452.4, + "probability": 0.9908 + }, + { + "start": 22452.42, + "end": 22453.12, + "probability": 0.5194 + }, + { + "start": 22453.7, + "end": 22456.72, + "probability": 0.2268 + }, + { + "start": 22456.94, + "end": 22457.44, + "probability": 0.2196 + }, + { + "start": 22457.76, + "end": 22457.76, + "probability": 0.0273 + }, + { + "start": 22457.76, + "end": 22458.39, + "probability": 0.1144 + }, + { + "start": 22458.48, + "end": 22458.92, + "probability": 0.1258 + }, + { + "start": 22458.92, + "end": 22459.22, + "probability": 0.2309 + }, + { + "start": 22459.22, + "end": 22459.4, + "probability": 0.0147 + }, + { + "start": 22459.66, + "end": 22464.76, + "probability": 0.7859 + }, + { + "start": 22465.48, + "end": 22466.38, + "probability": 0.8794 + }, + { + "start": 22466.56, + "end": 22468.32, + "probability": 0.8069 + }, + { + "start": 22468.5, + "end": 22469.44, + "probability": 0.4973 + }, + { + "start": 22469.56, + "end": 22470.12, + "probability": 0.5974 + }, + { + "start": 22471.14, + "end": 22473.86, + "probability": 0.9712 + }, + { + "start": 22474.18, + "end": 22475.92, + "probability": 0.5477 + }, + { + "start": 22476.28, + "end": 22481.59, + "probability": 0.804 + }, + { + "start": 22481.92, + "end": 22484.06, + "probability": 0.0376 + }, + { + "start": 22485.86, + "end": 22486.86, + "probability": 0.0207 + }, + { + "start": 22487.68, + "end": 22488.44, + "probability": 0.1298 + }, + { + "start": 22492.84, + "end": 22496.5, + "probability": 0.6924 + }, + { + "start": 22498.2, + "end": 22500.9, + "probability": 0.3376 + }, + { + "start": 22500.96, + "end": 22500.96, + "probability": 0.1158 + }, + { + "start": 22500.96, + "end": 22502.91, + "probability": 0.2661 + }, + { + "start": 22503.74, + "end": 22505.36, + "probability": 0.1453 + }, + { + "start": 22505.48, + "end": 22507.62, + "probability": 0.4119 + }, + { + "start": 22508.96, + "end": 22510.5, + "probability": 0.4714 + }, + { + "start": 22511.06, + "end": 22512.29, + "probability": 0.0481 + }, + { + "start": 22512.72, + "end": 22512.72, + "probability": 0.0888 + }, + { + "start": 22512.95, + "end": 22513.72, + "probability": 0.0889 + }, + { + "start": 22515.2, + "end": 22515.88, + "probability": 0.1325 + }, + { + "start": 22515.88, + "end": 22516.49, + "probability": 0.0778 + }, + { + "start": 22520.78, + "end": 22522.58, + "probability": 0.1174 + }, + { + "start": 22526.1, + "end": 22528.88, + "probability": 0.3684 + }, + { + "start": 22529.3, + "end": 22530.26, + "probability": 0.1389 + }, + { + "start": 22530.26, + "end": 22530.46, + "probability": 0.1445 + }, + { + "start": 22530.46, + "end": 22532.52, + "probability": 0.0755 + }, + { + "start": 22532.52, + "end": 22532.88, + "probability": 0.0962 + }, + { + "start": 22535.3, + "end": 22536.2, + "probability": 0.008 + }, + { + "start": 22537.6, + "end": 22539.88, + "probability": 0.0611 + }, + { + "start": 22539.88, + "end": 22540.88, + "probability": 0.0358 + }, + { + "start": 22542.1, + "end": 22543.9, + "probability": 0.0246 + }, + { + "start": 22544.02, + "end": 22544.8, + "probability": 0.0945 + }, + { + "start": 22544.96, + "end": 22546.46, + "probability": 0.1905 + }, + { + "start": 22547.0, + "end": 22547.0, + "probability": 0.0 + }, + { + "start": 22547.0, + "end": 22547.0, + "probability": 0.0 + }, + { + "start": 22547.0, + "end": 22547.0, + "probability": 0.0 + }, + { + "start": 22547.0, + "end": 22547.0, + "probability": 0.0 + }, + { + "start": 22547.0, + "end": 22547.0, + "probability": 0.0 + }, + { + "start": 22547.0, + "end": 22547.0, + "probability": 0.0 + }, + { + "start": 22547.0, + "end": 22547.0, + "probability": 0.0 + }, + { + "start": 22547.0, + "end": 22547.0, + "probability": 0.0 + }, + { + "start": 22547.0, + "end": 22547.0, + "probability": 0.0 + }, + { + "start": 22547.0, + "end": 22547.0, + "probability": 0.0 + }, + { + "start": 22547.0, + "end": 22547.0, + "probability": 0.0 + }, + { + "start": 22547.0, + "end": 22547.0, + "probability": 0.0 + }, + { + "start": 22547.0, + "end": 22547.0, + "probability": 0.0 + }, + { + "start": 22547.0, + "end": 22547.0, + "probability": 0.0 + }, + { + "start": 22547.0, + "end": 22547.0, + "probability": 0.0 + }, + { + "start": 22547.0, + "end": 22547.0, + "probability": 0.0 + }, + { + "start": 22547.0, + "end": 22547.0, + "probability": 0.0 + }, + { + "start": 22547.0, + "end": 22547.0, + "probability": 0.0 + }, + { + "start": 22547.0, + "end": 22547.0, + "probability": 0.0 + }, + { + "start": 22548.45, + "end": 22550.1, + "probability": 0.4668 + }, + { + "start": 22550.16, + "end": 22553.42, + "probability": 0.8833 + }, + { + "start": 22553.68, + "end": 22554.82, + "probability": 0.8171 + }, + { + "start": 22555.64, + "end": 22555.94, + "probability": 0.9395 + }, + { + "start": 22556.66, + "end": 22557.0, + "probability": 0.3262 + }, + { + "start": 22557.0, + "end": 22561.3, + "probability": 0.9951 + }, + { + "start": 22562.64, + "end": 22569.3, + "probability": 0.974 + }, + { + "start": 22569.98, + "end": 22571.54, + "probability": 0.663 + }, + { + "start": 22572.44, + "end": 22576.26, + "probability": 0.8622 + }, + { + "start": 22576.8, + "end": 22578.52, + "probability": 0.9031 + }, + { + "start": 22579.38, + "end": 22582.74, + "probability": 0.8608 + }, + { + "start": 22583.92, + "end": 22589.2, + "probability": 0.998 + }, + { + "start": 22589.6, + "end": 22589.82, + "probability": 0.7583 + }, + { + "start": 22589.9, + "end": 22593.36, + "probability": 0.7901 + }, + { + "start": 22593.84, + "end": 22595.9, + "probability": 0.842 + }, + { + "start": 22595.96, + "end": 22596.74, + "probability": 0.5267 + }, + { + "start": 22597.1, + "end": 22600.7, + "probability": 0.9985 + }, + { + "start": 22600.84, + "end": 22604.1, + "probability": 0.981 + }, + { + "start": 22604.1, + "end": 22607.58, + "probability": 0.9608 + }, + { + "start": 22607.68, + "end": 22608.84, + "probability": 0.7628 + }, + { + "start": 22611.62, + "end": 22614.2, + "probability": 0.1362 + }, + { + "start": 22614.52, + "end": 22615.98, + "probability": 0.0122 + }, + { + "start": 22616.2, + "end": 22618.2, + "probability": 0.0632 + }, + { + "start": 22618.24, + "end": 22619.52, + "probability": 0.8881 + }, + { + "start": 22621.0, + "end": 22621.71, + "probability": 0.1814 + }, + { + "start": 22621.92, + "end": 22624.88, + "probability": 0.9316 + }, + { + "start": 22626.52, + "end": 22629.2, + "probability": 0.9844 + }, + { + "start": 22629.48, + "end": 22630.66, + "probability": 0.9771 + }, + { + "start": 22630.88, + "end": 22632.08, + "probability": 0.7491 + }, + { + "start": 22632.32, + "end": 22634.56, + "probability": 0.9648 + }, + { + "start": 22635.1, + "end": 22635.64, + "probability": 0.7137 + }, + { + "start": 22635.7, + "end": 22636.46, + "probability": 0.971 + }, + { + "start": 22636.48, + "end": 22640.16, + "probability": 0.901 + }, + { + "start": 22642.5, + "end": 22642.99, + "probability": 0.2304 + }, + { + "start": 22643.34, + "end": 22646.54, + "probability": 0.9911 + }, + { + "start": 22647.08, + "end": 22648.6, + "probability": 0.9955 + }, + { + "start": 22648.94, + "end": 22651.0, + "probability": 0.8073 + }, + { + "start": 22651.12, + "end": 22651.72, + "probability": 0.5128 + }, + { + "start": 22651.78, + "end": 22652.82, + "probability": 0.812 + }, + { + "start": 22652.96, + "end": 22654.9, + "probability": 0.9194 + }, + { + "start": 22655.3, + "end": 22656.52, + "probability": 0.9601 + }, + { + "start": 22657.98, + "end": 22662.64, + "probability": 0.9948 + }, + { + "start": 22662.8, + "end": 22663.3, + "probability": 0.5626 + }, + { + "start": 22664.02, + "end": 22665.48, + "probability": 0.965 + }, + { + "start": 22665.66, + "end": 22666.14, + "probability": 0.8884 + }, + { + "start": 22666.66, + "end": 22670.34, + "probability": 0.9875 + }, + { + "start": 22670.34, + "end": 22673.68, + "probability": 0.9997 + }, + { + "start": 22674.6, + "end": 22677.2, + "probability": 0.9738 + }, + { + "start": 22677.9, + "end": 22679.4, + "probability": 0.8997 + }, + { + "start": 22680.34, + "end": 22683.46, + "probability": 0.9894 + }, + { + "start": 22684.02, + "end": 22685.38, + "probability": 0.7005 + }, + { + "start": 22685.64, + "end": 22689.08, + "probability": 0.8323 + }, + { + "start": 22689.12, + "end": 22689.52, + "probability": 0.9287 + }, + { + "start": 22689.98, + "end": 22690.64, + "probability": 0.8257 + }, + { + "start": 22691.62, + "end": 22692.1, + "probability": 0.7737 + }, + { + "start": 22692.38, + "end": 22693.56, + "probability": 0.8693 + }, + { + "start": 22694.02, + "end": 22696.62, + "probability": 0.9961 + }, + { + "start": 22697.08, + "end": 22700.4, + "probability": 0.9621 + }, + { + "start": 22700.98, + "end": 22706.16, + "probability": 0.9856 + }, + { + "start": 22706.76, + "end": 22707.3, + "probability": 0.7024 + }, + { + "start": 22707.32, + "end": 22710.42, + "probability": 0.9513 + }, + { + "start": 22710.92, + "end": 22711.2, + "probability": 0.8654 + }, + { + "start": 22711.34, + "end": 22712.72, + "probability": 0.9613 + }, + { + "start": 22713.2, + "end": 22713.78, + "probability": 0.6965 + }, + { + "start": 22714.46, + "end": 22717.38, + "probability": 0.9493 + }, + { + "start": 22717.92, + "end": 22719.72, + "probability": 0.9956 + }, + { + "start": 22719.8, + "end": 22723.22, + "probability": 0.9951 + }, + { + "start": 22723.22, + "end": 22727.76, + "probability": 0.8459 + }, + { + "start": 22727.94, + "end": 22729.32, + "probability": 0.7869 + }, + { + "start": 22729.8, + "end": 22733.66, + "probability": 0.9954 + }, + { + "start": 22734.16, + "end": 22734.23, + "probability": 0.0148 + }, + { + "start": 22734.82, + "end": 22734.82, + "probability": 0.2568 + }, + { + "start": 22734.82, + "end": 22734.82, + "probability": 0.1087 + }, + { + "start": 22734.82, + "end": 22736.78, + "probability": 0.543 + }, + { + "start": 22737.8, + "end": 22739.12, + "probability": 0.882 + }, + { + "start": 22739.2, + "end": 22740.68, + "probability": 0.9005 + }, + { + "start": 22740.84, + "end": 22741.7, + "probability": 0.8712 + }, + { + "start": 22742.36, + "end": 22743.98, + "probability": 0.7407 + }, + { + "start": 22744.22, + "end": 22745.89, + "probability": 0.9473 + }, + { + "start": 22748.3, + "end": 22748.98, + "probability": 0.8795 + }, + { + "start": 22749.04, + "end": 22749.94, + "probability": 0.9763 + }, + { + "start": 22750.58, + "end": 22752.34, + "probability": 0.9617 + }, + { + "start": 22752.86, + "end": 22753.9, + "probability": 0.9448 + }, + { + "start": 22754.86, + "end": 22756.6, + "probability": 0.9467 + }, + { + "start": 22756.94, + "end": 22759.08, + "probability": 0.8077 + }, + { + "start": 22760.16, + "end": 22762.68, + "probability": 0.9205 + }, + { + "start": 22764.18, + "end": 22767.9, + "probability": 0.9404 + }, + { + "start": 22767.9, + "end": 22771.22, + "probability": 0.9979 + }, + { + "start": 22771.7, + "end": 22773.3, + "probability": 0.8619 + }, + { + "start": 22773.9, + "end": 22775.2, + "probability": 0.6772 + }, + { + "start": 22775.56, + "end": 22778.34, + "probability": 0.9968 + }, + { + "start": 22779.38, + "end": 22780.78, + "probability": 0.8881 + }, + { + "start": 22781.02, + "end": 22783.3, + "probability": 0.9902 + }, + { + "start": 22783.88, + "end": 22785.42, + "probability": 0.5249 + }, + { + "start": 22785.6, + "end": 22787.96, + "probability": 0.7459 + }, + { + "start": 22788.48, + "end": 22792.2, + "probability": 0.9833 + }, + { + "start": 22792.48, + "end": 22792.62, + "probability": 0.4956 + }, + { + "start": 22792.84, + "end": 22794.06, + "probability": 0.6641 + }, + { + "start": 22794.1, + "end": 22795.9, + "probability": 0.9694 + }, + { + "start": 22796.62, + "end": 22799.34, + "probability": 0.9971 + }, + { + "start": 22799.54, + "end": 22800.0, + "probability": 0.8987 + }, + { + "start": 22800.72, + "end": 22802.64, + "probability": 0.9851 + }, + { + "start": 22803.34, + "end": 22805.9, + "probability": 0.9898 + }, + { + "start": 22806.02, + "end": 22810.32, + "probability": 0.9868 + }, + { + "start": 22811.64, + "end": 22815.74, + "probability": 0.9816 + }, + { + "start": 22816.52, + "end": 22820.34, + "probability": 0.9972 + }, + { + "start": 22821.22, + "end": 22824.14, + "probability": 0.9951 + }, + { + "start": 22824.14, + "end": 22828.02, + "probability": 0.9876 + }, + { + "start": 22828.74, + "end": 22829.56, + "probability": 0.7478 + }, + { + "start": 22829.8, + "end": 22832.9, + "probability": 0.8853 + }, + { + "start": 22833.56, + "end": 22836.82, + "probability": 0.9808 + }, + { + "start": 22837.82, + "end": 22839.1, + "probability": 0.9894 + }, + { + "start": 22839.84, + "end": 22841.28, + "probability": 0.9959 + }, + { + "start": 22842.18, + "end": 22849.5, + "probability": 0.9946 + }, + { + "start": 22850.24, + "end": 22856.34, + "probability": 0.998 + }, + { + "start": 22856.74, + "end": 22858.1, + "probability": 0.8761 + }, + { + "start": 22859.04, + "end": 22862.08, + "probability": 0.9717 + }, + { + "start": 22862.9, + "end": 22865.7, + "probability": 0.9943 + }, + { + "start": 22866.2, + "end": 22867.38, + "probability": 0.8339 + }, + { + "start": 22867.5, + "end": 22867.8, + "probability": 0.7386 + }, + { + "start": 22869.12, + "end": 22869.56, + "probability": 0.9775 + }, + { + "start": 22870.42, + "end": 22874.62, + "probability": 0.9868 + }, + { + "start": 22877.22, + "end": 22880.02, + "probability": 0.8675 + }, + { + "start": 22880.26, + "end": 22884.86, + "probability": 0.9689 + }, + { + "start": 22885.9, + "end": 22889.54, + "probability": 0.9871 + }, + { + "start": 22889.84, + "end": 22893.48, + "probability": 0.974 + }, + { + "start": 22893.8, + "end": 22896.14, + "probability": 0.9339 + }, + { + "start": 22896.36, + "end": 22898.2, + "probability": 0.9419 + }, + { + "start": 22898.78, + "end": 22904.98, + "probability": 0.9691 + }, + { + "start": 22906.2, + "end": 22909.42, + "probability": 0.9341 + }, + { + "start": 22910.44, + "end": 22912.8, + "probability": 0.9809 + }, + { + "start": 22913.18, + "end": 22916.86, + "probability": 0.9795 + }, + { + "start": 22916.86, + "end": 22919.98, + "probability": 0.9995 + }, + { + "start": 22921.46, + "end": 22925.84, + "probability": 0.9666 + }, + { + "start": 22925.84, + "end": 22928.8, + "probability": 0.9985 + }, + { + "start": 22928.84, + "end": 22929.56, + "probability": 0.8671 + }, + { + "start": 22930.38, + "end": 22934.12, + "probability": 0.9594 + }, + { + "start": 22934.74, + "end": 22937.76, + "probability": 0.9026 + }, + { + "start": 22938.76, + "end": 22939.42, + "probability": 0.7134 + }, + { + "start": 22939.5, + "end": 22940.66, + "probability": 0.9927 + }, + { + "start": 22940.74, + "end": 22945.02, + "probability": 0.9639 + }, + { + "start": 22945.56, + "end": 22948.58, + "probability": 0.8409 + }, + { + "start": 22949.44, + "end": 22955.0, + "probability": 0.9849 + }, + { + "start": 22957.08, + "end": 22959.92, + "probability": 0.9891 + }, + { + "start": 22961.26, + "end": 22965.38, + "probability": 0.8037 + }, + { + "start": 22966.02, + "end": 22968.04, + "probability": 0.9819 + }, + { + "start": 22968.32, + "end": 22970.56, + "probability": 0.999 + }, + { + "start": 22971.92, + "end": 22973.1, + "probability": 0.8152 + }, + { + "start": 22973.16, + "end": 22973.86, + "probability": 0.4917 + }, + { + "start": 22974.26, + "end": 22974.34, + "probability": 0.4655 + }, + { + "start": 22974.34, + "end": 22974.36, + "probability": 0.4814 + }, + { + "start": 22974.62, + "end": 22974.68, + "probability": 0.6154 + }, + { + "start": 22975.56, + "end": 22976.16, + "probability": 0.1166 + }, + { + "start": 22977.64, + "end": 22977.74, + "probability": 0.0189 + }, + { + "start": 22977.74, + "end": 22978.92, + "probability": 0.353 + }, + { + "start": 22979.02, + "end": 22980.32, + "probability": 0.9534 + }, + { + "start": 22980.36, + "end": 22980.74, + "probability": 0.1787 + }, + { + "start": 22980.74, + "end": 22980.76, + "probability": 0.0206 + }, + { + "start": 22980.78, + "end": 22981.2, + "probability": 0.1213 + }, + { + "start": 22981.44, + "end": 22982.8, + "probability": 0.5412 + }, + { + "start": 22982.88, + "end": 22984.24, + "probability": 0.15 + }, + { + "start": 22985.54, + "end": 22986.42, + "probability": 0.6418 + }, + { + "start": 22986.98, + "end": 22988.78, + "probability": 0.4714 + }, + { + "start": 22990.82, + "end": 22990.82, + "probability": 0.1466 + }, + { + "start": 22990.82, + "end": 22990.82, + "probability": 0.0085 + }, + { + "start": 22990.82, + "end": 22993.82, + "probability": 0.8152 + }, + { + "start": 22994.44, + "end": 22996.64, + "probability": 0.9893 + }, + { + "start": 22996.9, + "end": 22997.56, + "probability": 0.8896 + }, + { + "start": 22998.98, + "end": 23001.24, + "probability": 0.985 + }, + { + "start": 23001.36, + "end": 23004.58, + "probability": 0.9964 + }, + { + "start": 23005.68, + "end": 23008.0, + "probability": 0.9966 + }, + { + "start": 23008.86, + "end": 23008.88, + "probability": 0.0622 + }, + { + "start": 23008.88, + "end": 23012.44, + "probability": 0.991 + }, + { + "start": 23013.94, + "end": 23017.02, + "probability": 0.8391 + }, + { + "start": 23017.76, + "end": 23022.34, + "probability": 0.9219 + }, + { + "start": 23023.14, + "end": 23024.51, + "probability": 0.9531 + }, + { + "start": 23026.18, + "end": 23026.86, + "probability": 0.9995 + }, + { + "start": 23027.54, + "end": 23029.12, + "probability": 0.8276 + }, + { + "start": 23029.78, + "end": 23036.32, + "probability": 0.9956 + }, + { + "start": 23036.46, + "end": 23037.16, + "probability": 0.7134 + }, + { + "start": 23037.82, + "end": 23039.9, + "probability": 0.0139 + }, + { + "start": 23040.0, + "end": 23040.0, + "probability": 0.083 + }, + { + "start": 23040.0, + "end": 23040.21, + "probability": 0.6238 + }, + { + "start": 23041.92, + "end": 23042.8, + "probability": 0.3494 + }, + { + "start": 23042.96, + "end": 23043.12, + "probability": 0.0601 + }, + { + "start": 23043.14, + "end": 23043.14, + "probability": 0.4264 + }, + { + "start": 23043.22, + "end": 23043.81, + "probability": 0.8669 + }, + { + "start": 23044.66, + "end": 23045.32, + "probability": 0.6118 + }, + { + "start": 23045.34, + "end": 23049.98, + "probability": 0.7465 + }, + { + "start": 23050.08, + "end": 23051.9, + "probability": 0.086 + }, + { + "start": 23051.9, + "end": 23052.64, + "probability": 0.5664 + }, + { + "start": 23052.72, + "end": 23055.42, + "probability": 0.4681 + }, + { + "start": 23055.96, + "end": 23057.32, + "probability": 0.8547 + }, + { + "start": 23057.54, + "end": 23060.04, + "probability": 0.98 + }, + { + "start": 23060.7, + "end": 23063.3, + "probability": 0.9175 + }, + { + "start": 23063.48, + "end": 23067.94, + "probability": 0.967 + }, + { + "start": 23068.26, + "end": 23068.54, + "probability": 0.5228 + }, + { + "start": 23068.8, + "end": 23070.4, + "probability": 0.8077 + }, + { + "start": 23071.0, + "end": 23074.44, + "probability": 0.7511 + }, + { + "start": 23075.5, + "end": 23080.38, + "probability": 0.9835 + }, + { + "start": 23080.88, + "end": 23081.78, + "probability": 0.861 + }, + { + "start": 23081.82, + "end": 23084.56, + "probability": 0.9576 + }, + { + "start": 23084.74, + "end": 23085.3, + "probability": 0.7007 + }, + { + "start": 23086.37, + "end": 23092.08, + "probability": 0.9218 + }, + { + "start": 23092.08, + "end": 23096.46, + "probability": 0.956 + }, + { + "start": 23096.9, + "end": 23099.88, + "probability": 0.9661 + }, + { + "start": 23100.42, + "end": 23100.76, + "probability": 0.7001 + }, + { + "start": 23101.3, + "end": 23104.82, + "probability": 0.9837 + }, + { + "start": 23105.26, + "end": 23107.52, + "probability": 0.8771 + }, + { + "start": 23108.5, + "end": 23111.44, + "probability": 0.9732 + }, + { + "start": 23111.58, + "end": 23113.58, + "probability": 0.9769 + }, + { + "start": 23114.24, + "end": 23116.16, + "probability": 0.9317 + }, + { + "start": 23116.86, + "end": 23122.38, + "probability": 0.9736 + }, + { + "start": 23122.44, + "end": 23123.62, + "probability": 0.7969 + }, + { + "start": 23124.18, + "end": 23127.92, + "probability": 0.9912 + }, + { + "start": 23128.18, + "end": 23132.16, + "probability": 0.8107 + }, + { + "start": 23132.74, + "end": 23135.16, + "probability": 0.8614 + }, + { + "start": 23136.74, + "end": 23138.86, + "probability": 0.6616 + }, + { + "start": 23139.12, + "end": 23140.3, + "probability": 0.0891 + }, + { + "start": 23140.9, + "end": 23141.02, + "probability": 0.5036 + }, + { + "start": 23148.66, + "end": 23149.32, + "probability": 0.0229 + }, + { + "start": 23151.58, + "end": 23153.14, + "probability": 0.6696 + }, + { + "start": 23153.72, + "end": 23155.36, + "probability": 0.6255 + }, + { + "start": 23157.08, + "end": 23157.18, + "probability": 0.0829 + }, + { + "start": 23157.18, + "end": 23157.66, + "probability": 0.0593 + }, + { + "start": 23157.94, + "end": 23162.84, + "probability": 0.8379 + }, + { + "start": 23163.44, + "end": 23164.86, + "probability": 0.9431 + }, + { + "start": 23165.08, + "end": 23169.96, + "probability": 0.9849 + }, + { + "start": 23170.82, + "end": 23173.9, + "probability": 0.918 + }, + { + "start": 23174.14, + "end": 23175.48, + "probability": 0.9678 + }, + { + "start": 23176.04, + "end": 23176.52, + "probability": 0.6275 + }, + { + "start": 23176.56, + "end": 23178.4, + "probability": 0.7955 + }, + { + "start": 23179.34, + "end": 23180.88, + "probability": 0.86 + }, + { + "start": 23181.36, + "end": 23182.02, + "probability": 0.6509 + }, + { + "start": 23182.2, + "end": 23183.28, + "probability": 0.9596 + }, + { + "start": 23183.76, + "end": 23184.74, + "probability": 0.6318 + }, + { + "start": 23185.16, + "end": 23187.4, + "probability": 0.6954 + }, + { + "start": 23188.04, + "end": 23191.38, + "probability": 0.9658 + }, + { + "start": 23191.38, + "end": 23195.84, + "probability": 0.981 + }, + { + "start": 23196.5, + "end": 23198.38, + "probability": 0.3271 + }, + { + "start": 23199.64, + "end": 23199.74, + "probability": 0.2365 + }, + { + "start": 23199.8, + "end": 23199.8, + "probability": 0.2917 + }, + { + "start": 23199.8, + "end": 23199.8, + "probability": 0.3619 + }, + { + "start": 23199.8, + "end": 23199.8, + "probability": 0.321 + }, + { + "start": 23199.8, + "end": 23199.8, + "probability": 0.4306 + }, + { + "start": 23199.8, + "end": 23199.8, + "probability": 0.4047 + }, + { + "start": 23199.8, + "end": 23199.8, + "probability": 0.4057 + }, + { + "start": 23199.8, + "end": 23199.8, + "probability": 0.4185 + }, + { + "start": 23199.8, + "end": 23199.8, + "probability": 0.3644 + }, + { + "start": 23199.8, + "end": 23199.8, + "probability": 0.4801 + }, + { + "start": 23199.8, + "end": 23199.8, + "probability": 0.0581 + }, + { + "start": 23199.88, + "end": 23201.42, + "probability": 0.8488 + }, + { + "start": 23201.76, + "end": 23203.5, + "probability": 0.6933 + }, + { + "start": 23203.94, + "end": 23205.48, + "probability": 0.7157 + }, + { + "start": 23205.94, + "end": 23212.46, + "probability": 0.8075 + }, + { + "start": 23222.32, + "end": 23224.32, + "probability": 0.6145 + }, + { + "start": 23224.96, + "end": 23229.58, + "probability": 0.7481 + }, + { + "start": 23230.06, + "end": 23233.18, + "probability": 0.97 + }, + { + "start": 23233.4, + "end": 23235.44, + "probability": 0.8685 + }, + { + "start": 23239.42, + "end": 23241.22, + "probability": 0.7896 + }, + { + "start": 23241.98, + "end": 23242.26, + "probability": 0.398 + }, + { + "start": 23244.86, + "end": 23245.24, + "probability": 0.3217 + }, + { + "start": 23248.24, + "end": 23249.97, + "probability": 0.5459 + }, + { + "start": 23251.08, + "end": 23252.24, + "probability": 0.8949 + }, + { + "start": 23252.3, + "end": 23255.88, + "probability": 0.9324 + }, + { + "start": 23255.98, + "end": 23256.86, + "probability": 0.8032 + }, + { + "start": 23257.32, + "end": 23257.9, + "probability": 0.8164 + }, + { + "start": 23258.04, + "end": 23259.26, + "probability": 0.6736 + }, + { + "start": 23259.72, + "end": 23259.8, + "probability": 0.0804 + }, + { + "start": 23260.44, + "end": 23263.6, + "probability": 0.1226 + }, + { + "start": 23263.6, + "end": 23263.6, + "probability": 0.0198 + }, + { + "start": 23265.32, + "end": 23265.64, + "probability": 0.1312 + }, + { + "start": 23265.74, + "end": 23265.86, + "probability": 0.0905 + }, + { + "start": 23265.86, + "end": 23267.1, + "probability": 0.0836 + }, + { + "start": 23267.28, + "end": 23268.92, + "probability": 0.0457 + }, + { + "start": 23269.66, + "end": 23271.3, + "probability": 0.6456 + }, + { + "start": 23271.42, + "end": 23272.97, + "probability": 0.4902 + }, + { + "start": 23275.76, + "end": 23275.96, + "probability": 0.3128 + }, + { + "start": 23276.6, + "end": 23282.28, + "probability": 0.8314 + }, + { + "start": 23282.4, + "end": 23287.58, + "probability": 0.9582 + }, + { + "start": 23287.74, + "end": 23287.94, + "probability": 0.9027 + }, + { + "start": 23289.86, + "end": 23291.04, + "probability": 0.8509 + }, + { + "start": 23291.1, + "end": 23292.74, + "probability": 0.6544 + }, + { + "start": 23292.76, + "end": 23293.12, + "probability": 0.3839 + }, + { + "start": 23293.2, + "end": 23294.04, + "probability": 0.7236 + }, + { + "start": 23294.14, + "end": 23295.22, + "probability": 0.7532 + }, + { + "start": 23295.24, + "end": 23295.86, + "probability": 0.8232 + }, + { + "start": 23296.7, + "end": 23297.46, + "probability": 0.517 + }, + { + "start": 23297.6, + "end": 23299.22, + "probability": 0.9842 + }, + { + "start": 23300.58, + "end": 23304.64, + "probability": 0.9902 + }, + { + "start": 23304.64, + "end": 23309.08, + "probability": 0.9979 + }, + { + "start": 23309.88, + "end": 23315.58, + "probability": 0.9442 + }, + { + "start": 23316.26, + "end": 23319.22, + "probability": 0.7757 + }, + { + "start": 23320.34, + "end": 23322.7, + "probability": 0.9496 + }, + { + "start": 23323.94, + "end": 23328.72, + "probability": 0.9966 + }, + { + "start": 23329.68, + "end": 23330.14, + "probability": 0.5247 + }, + { + "start": 23330.4, + "end": 23331.46, + "probability": 0.9543 + }, + { + "start": 23331.52, + "end": 23336.26, + "probability": 0.995 + }, + { + "start": 23337.3, + "end": 23339.18, + "probability": 0.7977 + }, + { + "start": 23339.8, + "end": 23343.38, + "probability": 0.9528 + }, + { + "start": 23343.52, + "end": 23345.17, + "probability": 0.8398 + }, + { + "start": 23345.88, + "end": 23349.94, + "probability": 0.9943 + }, + { + "start": 23351.34, + "end": 23352.46, + "probability": 0.9347 + }, + { + "start": 23353.76, + "end": 23359.12, + "probability": 0.9867 + }, + { + "start": 23360.08, + "end": 23362.68, + "probability": 0.9341 + }, + { + "start": 23364.22, + "end": 23367.24, + "probability": 0.9624 + }, + { + "start": 23367.54, + "end": 23368.4, + "probability": 0.7708 + }, + { + "start": 23369.44, + "end": 23372.22, + "probability": 0.9966 + }, + { + "start": 23372.76, + "end": 23377.38, + "probability": 0.9929 + }, + { + "start": 23378.72, + "end": 23380.86, + "probability": 0.9294 + }, + { + "start": 23381.04, + "end": 23385.76, + "probability": 0.9987 + }, + { + "start": 23386.52, + "end": 23387.88, + "probability": 0.9753 + }, + { + "start": 23388.54, + "end": 23390.0, + "probability": 0.9807 + }, + { + "start": 23391.22, + "end": 23391.46, + "probability": 0.8672 + }, + { + "start": 23392.3, + "end": 23393.64, + "probability": 0.9861 + }, + { + "start": 23394.44, + "end": 23397.34, + "probability": 0.9087 + }, + { + "start": 23397.86, + "end": 23401.9, + "probability": 0.965 + }, + { + "start": 23403.0, + "end": 23406.28, + "probability": 0.9504 + }, + { + "start": 23407.16, + "end": 23408.8, + "probability": 0.884 + }, + { + "start": 23409.56, + "end": 23411.82, + "probability": 0.913 + }, + { + "start": 23412.66, + "end": 23414.54, + "probability": 0.9727 + }, + { + "start": 23415.06, + "end": 23416.74, + "probability": 0.5796 + }, + { + "start": 23417.3, + "end": 23420.54, + "probability": 0.9103 + }, + { + "start": 23421.02, + "end": 23423.13, + "probability": 0.9062 + }, + { + "start": 23424.06, + "end": 23425.44, + "probability": 0.4331 + }, + { + "start": 23426.74, + "end": 23427.88, + "probability": 0.8845 + }, + { + "start": 23428.44, + "end": 23430.34, + "probability": 0.9309 + }, + { + "start": 23431.14, + "end": 23433.24, + "probability": 0.8649 + }, + { + "start": 23433.52, + "end": 23434.78, + "probability": 0.9677 + }, + { + "start": 23434.86, + "end": 23435.84, + "probability": 0.7169 + }, + { + "start": 23436.42, + "end": 23437.4, + "probability": 0.8996 + }, + { + "start": 23438.06, + "end": 23441.48, + "probability": 0.8727 + }, + { + "start": 23442.0, + "end": 23449.68, + "probability": 0.9984 + }, + { + "start": 23450.54, + "end": 23454.58, + "probability": 0.9513 + }, + { + "start": 23455.6, + "end": 23457.39, + "probability": 0.9296 + }, + { + "start": 23458.1, + "end": 23462.09, + "probability": 0.9485 + }, + { + "start": 23463.34, + "end": 23463.96, + "probability": 0.9773 + }, + { + "start": 23464.56, + "end": 23467.26, + "probability": 0.9971 + }, + { + "start": 23467.96, + "end": 23469.62, + "probability": 0.6838 + }, + { + "start": 23470.94, + "end": 23474.0, + "probability": 0.7559 + }, + { + "start": 23474.9, + "end": 23476.76, + "probability": 0.9967 + }, + { + "start": 23477.3, + "end": 23479.2, + "probability": 0.8183 + }, + { + "start": 23480.0, + "end": 23480.94, + "probability": 0.9764 + }, + { + "start": 23480.98, + "end": 23481.44, + "probability": 0.9483 + }, + { + "start": 23481.66, + "end": 23485.62, + "probability": 0.9609 + }, + { + "start": 23486.12, + "end": 23487.74, + "probability": 0.8601 + }, + { + "start": 23488.26, + "end": 23490.5, + "probability": 0.9887 + }, + { + "start": 23491.28, + "end": 23492.32, + "probability": 0.9847 + }, + { + "start": 23492.88, + "end": 23494.7, + "probability": 0.9739 + }, + { + "start": 23495.44, + "end": 23497.94, + "probability": 0.8428 + }, + { + "start": 23499.81, + "end": 23502.66, + "probability": 0.7021 + }, + { + "start": 23504.18, + "end": 23505.18, + "probability": 0.723 + }, + { + "start": 23505.94, + "end": 23508.7, + "probability": 0.9465 + }, + { + "start": 23509.44, + "end": 23511.66, + "probability": 0.9945 + }, + { + "start": 23511.84, + "end": 23515.28, + "probability": 0.9327 + }, + { + "start": 23516.06, + "end": 23520.26, + "probability": 0.9634 + }, + { + "start": 23520.72, + "end": 23521.56, + "probability": 0.7141 + }, + { + "start": 23522.46, + "end": 23525.9, + "probability": 0.7982 + }, + { + "start": 23525.92, + "end": 23527.23, + "probability": 0.9985 + }, + { + "start": 23528.42, + "end": 23529.46, + "probability": 0.8094 + }, + { + "start": 23529.66, + "end": 23531.18, + "probability": 0.9771 + }, + { + "start": 23531.44, + "end": 23534.42, + "probability": 0.9929 + }, + { + "start": 23534.62, + "end": 23537.4, + "probability": 0.908 + }, + { + "start": 23537.5, + "end": 23538.41, + "probability": 0.9851 + }, + { + "start": 23538.62, + "end": 23539.91, + "probability": 0.9146 + }, + { + "start": 23541.48, + "end": 23541.48, + "probability": 0.2216 + }, + { + "start": 23541.48, + "end": 23543.84, + "probability": 0.5345 + }, + { + "start": 23545.2, + "end": 23545.78, + "probability": 0.847 + }, + { + "start": 23546.12, + "end": 23547.78, + "probability": 0.7929 + }, + { + "start": 23547.86, + "end": 23549.54, + "probability": 0.9862 + }, + { + "start": 23550.04, + "end": 23551.62, + "probability": 0.8199 + }, + { + "start": 23552.18, + "end": 23553.42, + "probability": 0.9746 + }, + { + "start": 23553.7, + "end": 23555.48, + "probability": 0.8489 + }, + { + "start": 23556.42, + "end": 23559.56, + "probability": 0.9982 + }, + { + "start": 23560.08, + "end": 23560.58, + "probability": 0.9184 + }, + { + "start": 23560.66, + "end": 23564.56, + "probability": 0.9897 + }, + { + "start": 23565.0, + "end": 23567.12, + "probability": 0.9764 + }, + { + "start": 23568.02, + "end": 23570.56, + "probability": 0.9736 + }, + { + "start": 23570.66, + "end": 23574.42, + "probability": 0.9728 + }, + { + "start": 23576.02, + "end": 23576.82, + "probability": 0.514 + }, + { + "start": 23578.22, + "end": 23580.84, + "probability": 0.907 + }, + { + "start": 23592.14, + "end": 23593.3, + "probability": 0.7295 + }, + { + "start": 23594.26, + "end": 23595.62, + "probability": 0.7576 + }, + { + "start": 23597.06, + "end": 23597.9, + "probability": 0.9672 + }, + { + "start": 23598.4, + "end": 23601.68, + "probability": 0.8015 + }, + { + "start": 23601.78, + "end": 23603.12, + "probability": 0.9208 + }, + { + "start": 23603.96, + "end": 23605.69, + "probability": 0.9924 + }, + { + "start": 23606.24, + "end": 23609.32, + "probability": 0.8942 + }, + { + "start": 23609.44, + "end": 23610.46, + "probability": 0.9805 + }, + { + "start": 23611.44, + "end": 23612.5, + "probability": 0.6444 + }, + { + "start": 23614.68, + "end": 23617.84, + "probability": 0.8979 + }, + { + "start": 23619.08, + "end": 23619.72, + "probability": 0.8981 + }, + { + "start": 23619.82, + "end": 23620.78, + "probability": 0.845 + }, + { + "start": 23620.9, + "end": 23627.74, + "probability": 0.9839 + }, + { + "start": 23629.1, + "end": 23634.46, + "probability": 0.6699 + }, + { + "start": 23635.9, + "end": 23637.74, + "probability": 0.9004 + }, + { + "start": 23638.68, + "end": 23642.22, + "probability": 0.9657 + }, + { + "start": 23643.74, + "end": 23645.04, + "probability": 0.7583 + }, + { + "start": 23646.02, + "end": 23648.44, + "probability": 0.9979 + }, + { + "start": 23650.1, + "end": 23651.24, + "probability": 0.9549 + }, + { + "start": 23651.3, + "end": 23652.28, + "probability": 0.858 + }, + { + "start": 23652.32, + "end": 23653.82, + "probability": 0.6982 + }, + { + "start": 23655.18, + "end": 23657.56, + "probability": 0.9524 + }, + { + "start": 23659.86, + "end": 23660.68, + "probability": 0.7856 + }, + { + "start": 23661.42, + "end": 23666.02, + "probability": 0.6865 + }, + { + "start": 23667.74, + "end": 23669.03, + "probability": 0.8428 + }, + { + "start": 23669.82, + "end": 23670.52, + "probability": 0.8693 + }, + { + "start": 23671.84, + "end": 23673.56, + "probability": 0.7615 + }, + { + "start": 23674.42, + "end": 23678.7, + "probability": 0.9729 + }, + { + "start": 23680.84, + "end": 23681.98, + "probability": 0.6432 + }, + { + "start": 23684.48, + "end": 23685.88, + "probability": 0.9699 + }, + { + "start": 23686.34, + "end": 23687.76, + "probability": 0.9468 + }, + { + "start": 23688.62, + "end": 23689.9, + "probability": 0.9742 + }, + { + "start": 23690.54, + "end": 23691.42, + "probability": 0.4853 + }, + { + "start": 23692.06, + "end": 23696.06, + "probability": 0.9302 + }, + { + "start": 23697.94, + "end": 23698.7, + "probability": 0.8666 + }, + { + "start": 23699.48, + "end": 23702.86, + "probability": 0.9902 + }, + { + "start": 23703.5, + "end": 23706.52, + "probability": 0.9896 + }, + { + "start": 23708.88, + "end": 23712.88, + "probability": 0.9738 + }, + { + "start": 23715.0, + "end": 23717.52, + "probability": 0.7541 + }, + { + "start": 23718.18, + "end": 23720.5, + "probability": 0.9757 + }, + { + "start": 23723.78, + "end": 23726.1, + "probability": 0.3888 + }, + { + "start": 23727.02, + "end": 23728.4, + "probability": 0.7899 + }, + { + "start": 23728.52, + "end": 23730.96, + "probability": 0.8053 + }, + { + "start": 23731.84, + "end": 23733.16, + "probability": 0.9307 + }, + { + "start": 23734.34, + "end": 23736.38, + "probability": 0.9604 + }, + { + "start": 23737.92, + "end": 23740.14, + "probability": 0.6252 + }, + { + "start": 23742.1, + "end": 23746.32, + "probability": 0.9438 + }, + { + "start": 23746.4, + "end": 23747.82, + "probability": 0.9181 + }, + { + "start": 23747.92, + "end": 23753.48, + "probability": 0.9645 + }, + { + "start": 23753.48, + "end": 23758.06, + "probability": 0.9983 + }, + { + "start": 23758.46, + "end": 23760.56, + "probability": 0.9207 + }, + { + "start": 23760.96, + "end": 23763.12, + "probability": 0.969 + }, + { + "start": 23764.18, + "end": 23766.36, + "probability": 0.9967 + }, + { + "start": 23767.08, + "end": 23768.08, + "probability": 0.9852 + }, + { + "start": 23768.86, + "end": 23771.92, + "probability": 0.98 + }, + { + "start": 23772.68, + "end": 23773.26, + "probability": 0.3293 + }, + { + "start": 23774.42, + "end": 23776.62, + "probability": 0.6815 + }, + { + "start": 23777.24, + "end": 23780.0, + "probability": 0.9762 + }, + { + "start": 23780.46, + "end": 23781.72, + "probability": 0.9728 + }, + { + "start": 23782.1, + "end": 23783.38, + "probability": 0.9951 + }, + { + "start": 23784.46, + "end": 23792.16, + "probability": 0.9033 + }, + { + "start": 23792.38, + "end": 23795.2, + "probability": 0.8328 + }, + { + "start": 23795.72, + "end": 23797.24, + "probability": 0.9236 + }, + { + "start": 23797.8, + "end": 23800.0, + "probability": 0.9305 + }, + { + "start": 23801.34, + "end": 23802.62, + "probability": 0.8208 + }, + { + "start": 23802.7, + "end": 23803.59, + "probability": 0.9272 + }, + { + "start": 23804.12, + "end": 23805.34, + "probability": 0.9058 + }, + { + "start": 23805.94, + "end": 23810.58, + "probability": 0.9405 + }, + { + "start": 23811.48, + "end": 23813.92, + "probability": 0.9536 + }, + { + "start": 23814.44, + "end": 23816.24, + "probability": 0.9797 + }, + { + "start": 23817.2, + "end": 23817.54, + "probability": 0.4447 + }, + { + "start": 23818.86, + "end": 23820.9, + "probability": 0.7002 + }, + { + "start": 23821.42, + "end": 23823.78, + "probability": 0.9856 + }, + { + "start": 23836.72, + "end": 23839.24, + "probability": 0.6615 + }, + { + "start": 23840.1, + "end": 23840.72, + "probability": 0.4207 + }, + { + "start": 23841.28, + "end": 23843.66, + "probability": 0.8538 + }, + { + "start": 23843.92, + "end": 23844.84, + "probability": 0.7587 + }, + { + "start": 23845.48, + "end": 23847.42, + "probability": 0.5523 + }, + { + "start": 23848.74, + "end": 23850.42, + "probability": 0.8149 + }, + { + "start": 23851.92, + "end": 23852.96, + "probability": 0.8395 + }, + { + "start": 23854.46, + "end": 23855.92, + "probability": 0.6303 + }, + { + "start": 23857.48, + "end": 23858.76, + "probability": 0.9085 + }, + { + "start": 23859.72, + "end": 23861.15, + "probability": 0.6989 + }, + { + "start": 23861.36, + "end": 23862.67, + "probability": 0.7493 + }, + { + "start": 23863.76, + "end": 23867.06, + "probability": 0.8345 + }, + { + "start": 23868.84, + "end": 23869.84, + "probability": 0.8737 + }, + { + "start": 23870.24, + "end": 23872.22, + "probability": 0.9661 + }, + { + "start": 23872.34, + "end": 23872.92, + "probability": 0.7713 + }, + { + "start": 23873.66, + "end": 23875.28, + "probability": 0.8705 + }, + { + "start": 23877.52, + "end": 23883.16, + "probability": 0.7494 + }, + { + "start": 23884.96, + "end": 23885.8, + "probability": 0.9937 + }, + { + "start": 23886.64, + "end": 23888.46, + "probability": 0.9296 + }, + { + "start": 23889.54, + "end": 23892.22, + "probability": 0.9448 + }, + { + "start": 23893.26, + "end": 23894.53, + "probability": 0.9989 + }, + { + "start": 23895.38, + "end": 23895.38, + "probability": 0.2292 + }, + { + "start": 23895.38, + "end": 23897.96, + "probability": 0.9346 + }, + { + "start": 23898.1, + "end": 23898.61, + "probability": 0.9969 + }, + { + "start": 23899.9, + "end": 23906.02, + "probability": 0.7649 + }, + { + "start": 23906.72, + "end": 23907.6, + "probability": 0.6411 + }, + { + "start": 23907.68, + "end": 23907.96, + "probability": 0.7775 + }, + { + "start": 23908.04, + "end": 23908.46, + "probability": 0.4798 + }, + { + "start": 23908.56, + "end": 23910.04, + "probability": 0.6883 + }, + { + "start": 23910.98, + "end": 23915.56, + "probability": 0.8826 + }, + { + "start": 23915.82, + "end": 23917.82, + "probability": 0.7898 + }, + { + "start": 23918.56, + "end": 23921.16, + "probability": 0.8616 + }, + { + "start": 23921.18, + "end": 23922.42, + "probability": 0.9927 + }, + { + "start": 23923.18, + "end": 23923.86, + "probability": 0.964 + }, + { + "start": 23925.14, + "end": 23928.82, + "probability": 0.965 + }, + { + "start": 23929.38, + "end": 23929.84, + "probability": 0.6775 + }, + { + "start": 23930.98, + "end": 23935.14, + "probability": 0.7893 + }, + { + "start": 23936.44, + "end": 23938.36, + "probability": 0.7605 + }, + { + "start": 23939.76, + "end": 23941.78, + "probability": 0.8195 + }, + { + "start": 23942.02, + "end": 23943.34, + "probability": 0.2687 + }, + { + "start": 23946.33, + "end": 23949.77, + "probability": 0.2732 + }, + { + "start": 23951.24, + "end": 23952.48, + "probability": 0.9254 + }, + { + "start": 23953.4, + "end": 23955.64, + "probability": 0.9871 + }, + { + "start": 23956.78, + "end": 23959.84, + "probability": 0.9789 + }, + { + "start": 23960.58, + "end": 23962.62, + "probability": 0.7825 + }, + { + "start": 23964.05, + "end": 23967.06, + "probability": 0.9943 + }, + { + "start": 23968.36, + "end": 23970.06, + "probability": 0.6865 + }, + { + "start": 23970.38, + "end": 23972.26, + "probability": 0.5408 + }, + { + "start": 23972.42, + "end": 23973.9, + "probability": 0.8174 + }, + { + "start": 23975.06, + "end": 23976.78, + "probability": 0.9961 + }, + { + "start": 23977.24, + "end": 23977.92, + "probability": 0.6223 + }, + { + "start": 23978.34, + "end": 23979.18, + "probability": 0.7616 + }, + { + "start": 23979.84, + "end": 23982.38, + "probability": 0.938 + }, + { + "start": 23983.52, + "end": 23985.5, + "probability": 0.9907 + }, + { + "start": 23986.14, + "end": 23986.98, + "probability": 0.797 + }, + { + "start": 23987.06, + "end": 23990.64, + "probability": 0.9064 + }, + { + "start": 23991.12, + "end": 23995.6, + "probability": 0.9868 + }, + { + "start": 23996.68, + "end": 23997.26, + "probability": 0.9543 + }, + { + "start": 23997.38, + "end": 23997.72, + "probability": 0.6968 + }, + { + "start": 23998.0, + "end": 23999.84, + "probability": 0.8478 + }, + { + "start": 24000.48, + "end": 24003.54, + "probability": 0.8794 + }, + { + "start": 24003.6, + "end": 24007.08, + "probability": 0.9833 + }, + { + "start": 24007.92, + "end": 24010.0, + "probability": 0.787 + }, + { + "start": 24010.5, + "end": 24011.02, + "probability": 0.6708 + }, + { + "start": 24011.48, + "end": 24015.12, + "probability": 0.9695 + }, + { + "start": 24015.46, + "end": 24017.64, + "probability": 0.957 + }, + { + "start": 24018.24, + "end": 24019.44, + "probability": 0.6411 + }, + { + "start": 24020.62, + "end": 24021.72, + "probability": 0.6432 + }, + { + "start": 24022.14, + "end": 24025.5, + "probability": 0.8794 + }, + { + "start": 24025.5, + "end": 24027.92, + "probability": 0.9351 + }, + { + "start": 24028.4, + "end": 24032.2, + "probability": 0.9225 + }, + { + "start": 24033.04, + "end": 24034.78, + "probability": 0.9707 + }, + { + "start": 24036.26, + "end": 24037.22, + "probability": 0.8944 + }, + { + "start": 24037.32, + "end": 24040.14, + "probability": 0.9889 + }, + { + "start": 24040.22, + "end": 24042.92, + "probability": 0.7644 + }, + { + "start": 24043.04, + "end": 24044.52, + "probability": 0.9839 + }, + { + "start": 24045.18, + "end": 24047.38, + "probability": 0.9336 + }, + { + "start": 24047.98, + "end": 24050.26, + "probability": 0.9702 + }, + { + "start": 24051.04, + "end": 24056.32, + "probability": 0.8647 + }, + { + "start": 24057.12, + "end": 24058.31, + "probability": 0.9267 + }, + { + "start": 24059.1, + "end": 24060.28, + "probability": 0.9435 + }, + { + "start": 24062.18, + "end": 24062.82, + "probability": 0.871 + }, + { + "start": 24064.8, + "end": 24066.84, + "probability": 0.9378 + }, + { + "start": 24082.64, + "end": 24083.66, + "probability": 0.9463 + }, + { + "start": 24085.48, + "end": 24087.22, + "probability": 0.6853 + }, + { + "start": 24087.44, + "end": 24087.44, + "probability": 0.5811 + }, + { + "start": 24087.44, + "end": 24088.28, + "probability": 0.8272 + }, + { + "start": 24088.4, + "end": 24089.32, + "probability": 0.7476 + }, + { + "start": 24090.3, + "end": 24096.48, + "probability": 0.9857 + }, + { + "start": 24096.48, + "end": 24102.68, + "probability": 0.9907 + }, + { + "start": 24104.02, + "end": 24106.82, + "probability": 0.9993 + }, + { + "start": 24107.34, + "end": 24109.26, + "probability": 0.9973 + }, + { + "start": 24109.84, + "end": 24110.84, + "probability": 0.9816 + }, + { + "start": 24111.94, + "end": 24113.94, + "probability": 0.9365 + }, + { + "start": 24115.54, + "end": 24117.14, + "probability": 0.9941 + }, + { + "start": 24118.68, + "end": 24121.92, + "probability": 0.9761 + }, + { + "start": 24121.92, + "end": 24126.92, + "probability": 0.999 + }, + { + "start": 24128.56, + "end": 24130.46, + "probability": 0.8058 + }, + { + "start": 24131.0, + "end": 24133.26, + "probability": 0.9737 + }, + { + "start": 24134.48, + "end": 24137.58, + "probability": 0.9973 + }, + { + "start": 24138.34, + "end": 24139.82, + "probability": 0.9631 + }, + { + "start": 24141.74, + "end": 24142.44, + "probability": 0.6677 + }, + { + "start": 24143.18, + "end": 24144.32, + "probability": 0.9046 + }, + { + "start": 24145.2, + "end": 24148.8, + "probability": 0.9946 + }, + { + "start": 24149.16, + "end": 24152.26, + "probability": 0.9937 + }, + { + "start": 24153.6, + "end": 24156.8, + "probability": 0.8579 + }, + { + "start": 24157.46, + "end": 24158.36, + "probability": 0.5 + }, + { + "start": 24159.06, + "end": 24161.3, + "probability": 0.9888 + }, + { + "start": 24162.12, + "end": 24165.74, + "probability": 0.9927 + }, + { + "start": 24166.74, + "end": 24168.98, + "probability": 0.9556 + }, + { + "start": 24169.08, + "end": 24169.6, + "probability": 0.9674 + }, + { + "start": 24170.18, + "end": 24171.86, + "probability": 0.8691 + }, + { + "start": 24173.8, + "end": 24176.48, + "probability": 0.8577 + }, + { + "start": 24177.38, + "end": 24181.24, + "probability": 0.7437 + }, + { + "start": 24182.48, + "end": 24183.5, + "probability": 0.7076 + }, + { + "start": 24183.92, + "end": 24185.04, + "probability": 0.9201 + }, + { + "start": 24185.16, + "end": 24185.4, + "probability": 0.8446 + }, + { + "start": 24185.62, + "end": 24187.5, + "probability": 0.9945 + }, + { + "start": 24188.92, + "end": 24194.64, + "probability": 0.9917 + }, + { + "start": 24195.02, + "end": 24196.04, + "probability": 0.6684 + }, + { + "start": 24196.16, + "end": 24198.26, + "probability": 0.5184 + }, + { + "start": 24198.7, + "end": 24200.64, + "probability": 0.8851 + }, + { + "start": 24201.12, + "end": 24203.08, + "probability": 0.9678 + }, + { + "start": 24203.44, + "end": 24205.08, + "probability": 0.9884 + }, + { + "start": 24205.16, + "end": 24206.06, + "probability": 0.764 + }, + { + "start": 24206.44, + "end": 24210.36, + "probability": 0.9835 + }, + { + "start": 24210.98, + "end": 24212.12, + "probability": 0.8538 + }, + { + "start": 24212.48, + "end": 24213.92, + "probability": 0.9444 + }, + { + "start": 24214.04, + "end": 24217.14, + "probability": 0.9739 + }, + { + "start": 24218.84, + "end": 24220.08, + "probability": 0.8752 + }, + { + "start": 24220.6, + "end": 24222.26, + "probability": 0.9901 + }, + { + "start": 24223.06, + "end": 24224.46, + "probability": 0.8838 + }, + { + "start": 24225.92, + "end": 24228.06, + "probability": 0.9963 + }, + { + "start": 24228.06, + "end": 24231.1, + "probability": 0.9906 + }, + { + "start": 24232.12, + "end": 24235.5, + "probability": 0.965 + }, + { + "start": 24235.9, + "end": 24237.77, + "probability": 0.822 + }, + { + "start": 24238.86, + "end": 24240.34, + "probability": 0.9585 + }, + { + "start": 24241.38, + "end": 24243.24, + "probability": 0.9979 + }, + { + "start": 24244.0, + "end": 24247.24, + "probability": 0.9845 + }, + { + "start": 24247.24, + "end": 24249.76, + "probability": 0.9916 + }, + { + "start": 24250.44, + "end": 24253.21, + "probability": 0.999 + }, + { + "start": 24253.3, + "end": 24256.26, + "probability": 0.9985 + }, + { + "start": 24258.1, + "end": 24258.94, + "probability": 0.7634 + }, + { + "start": 24259.52, + "end": 24264.62, + "probability": 0.6537 + }, + { + "start": 24265.58, + "end": 24267.92, + "probability": 0.7658 + }, + { + "start": 24268.6, + "end": 24270.5, + "probability": 0.968 + }, + { + "start": 24271.56, + "end": 24273.64, + "probability": 0.7422 + }, + { + "start": 24274.48, + "end": 24281.65, + "probability": 0.9668 + }, + { + "start": 24284.92, + "end": 24287.3, + "probability": 0.6311 + }, + { + "start": 24288.52, + "end": 24290.4, + "probability": 0.9932 + }, + { + "start": 24291.18, + "end": 24292.38, + "probability": 0.9591 + }, + { + "start": 24292.74, + "end": 24297.68, + "probability": 0.5174 + }, + { + "start": 24297.68, + "end": 24298.56, + "probability": 0.2979 + }, + { + "start": 24298.78, + "end": 24300.2, + "probability": 0.4977 + }, + { + "start": 24301.32, + "end": 24302.72, + "probability": 0.9616 + }, + { + "start": 24303.62, + "end": 24305.92, + "probability": 0.9854 + }, + { + "start": 24306.72, + "end": 24307.33, + "probability": 0.9638 + }, + { + "start": 24308.38, + "end": 24309.06, + "probability": 0.9151 + }, + { + "start": 24310.1, + "end": 24311.88, + "probability": 0.9209 + }, + { + "start": 24312.66, + "end": 24314.74, + "probability": 0.9941 + }, + { + "start": 24315.62, + "end": 24318.84, + "probability": 0.9922 + }, + { + "start": 24319.74, + "end": 24321.72, + "probability": 0.8659 + }, + { + "start": 24322.74, + "end": 24328.74, + "probability": 0.995 + }, + { + "start": 24329.6, + "end": 24331.14, + "probability": 0.9827 + }, + { + "start": 24331.66, + "end": 24333.28, + "probability": 0.9818 + }, + { + "start": 24333.62, + "end": 24337.58, + "probability": 0.8916 + }, + { + "start": 24337.7, + "end": 24338.34, + "probability": 0.5854 + }, + { + "start": 24338.94, + "end": 24340.42, + "probability": 0.5611 + }, + { + "start": 24341.78, + "end": 24344.78, + "probability": 0.9553 + }, + { + "start": 24345.5, + "end": 24347.16, + "probability": 0.9753 + }, + { + "start": 24353.42, + "end": 24353.9, + "probability": 0.5246 + }, + { + "start": 24354.34, + "end": 24356.74, + "probability": 0.6877 + }, + { + "start": 24357.92, + "end": 24364.24, + "probability": 0.9878 + }, + { + "start": 24364.24, + "end": 24369.82, + "probability": 0.9894 + }, + { + "start": 24370.58, + "end": 24375.24, + "probability": 0.986 + }, + { + "start": 24376.54, + "end": 24377.36, + "probability": 0.9879 + }, + { + "start": 24378.02, + "end": 24378.96, + "probability": 0.8855 + }, + { + "start": 24380.5, + "end": 24381.5, + "probability": 0.9727 + }, + { + "start": 24381.66, + "end": 24383.72, + "probability": 0.9053 + }, + { + "start": 24384.04, + "end": 24385.9, + "probability": 0.999 + }, + { + "start": 24386.84, + "end": 24387.6, + "probability": 0.8325 + }, + { + "start": 24388.04, + "end": 24388.24, + "probability": 0.6917 + }, + { + "start": 24388.72, + "end": 24390.52, + "probability": 0.9069 + }, + { + "start": 24390.72, + "end": 24391.1, + "probability": 0.8502 + }, + { + "start": 24392.04, + "end": 24392.66, + "probability": 0.6574 + }, + { + "start": 24393.64, + "end": 24396.2, + "probability": 0.9277 + }, + { + "start": 24396.3, + "end": 24397.6, + "probability": 0.9202 + }, + { + "start": 24397.74, + "end": 24399.44, + "probability": 0.952 + }, + { + "start": 24400.08, + "end": 24401.42, + "probability": 0.8073 + }, + { + "start": 24402.22, + "end": 24406.6, + "probability": 0.9642 + }, + { + "start": 24407.14, + "end": 24407.52, + "probability": 0.8086 + }, + { + "start": 24408.12, + "end": 24412.17, + "probability": 0.8905 + }, + { + "start": 24413.56, + "end": 24414.1, + "probability": 0.265 + }, + { + "start": 24414.14, + "end": 24415.16, + "probability": 0.9614 + }, + { + "start": 24415.8, + "end": 24416.55, + "probability": 0.73 + }, + { + "start": 24416.94, + "end": 24420.29, + "probability": 0.9766 + }, + { + "start": 24420.52, + "end": 24421.92, + "probability": 0.7886 + }, + { + "start": 24422.24, + "end": 24422.54, + "probability": 0.6979 + }, + { + "start": 24422.6, + "end": 24424.02, + "probability": 0.4056 + }, + { + "start": 24424.86, + "end": 24433.56, + "probability": 0.9404 + }, + { + "start": 24434.1, + "end": 24437.57, + "probability": 0.9992 + }, + { + "start": 24438.3, + "end": 24439.28, + "probability": 0.938 + }, + { + "start": 24439.58, + "end": 24441.46, + "probability": 0.9896 + }, + { + "start": 24442.12, + "end": 24444.94, + "probability": 0.9243 + }, + { + "start": 24445.8, + "end": 24448.36, + "probability": 0.7409 + }, + { + "start": 24449.1, + "end": 24450.44, + "probability": 0.8654 + }, + { + "start": 24450.56, + "end": 24452.01, + "probability": 0.9814 + }, + { + "start": 24452.22, + "end": 24452.82, + "probability": 0.7504 + }, + { + "start": 24453.68, + "end": 24457.46, + "probability": 0.8755 + }, + { + "start": 24457.56, + "end": 24458.5, + "probability": 0.6042 + }, + { + "start": 24459.2, + "end": 24461.88, + "probability": 0.958 + }, + { + "start": 24462.0, + "end": 24462.62, + "probability": 0.7524 + }, + { + "start": 24463.08, + "end": 24463.4, + "probability": 0.577 + }, + { + "start": 24463.68, + "end": 24466.92, + "probability": 0.9844 + }, + { + "start": 24467.52, + "end": 24468.5, + "probability": 0.9467 + }, + { + "start": 24468.62, + "end": 24469.08, + "probability": 0.9355 + }, + { + "start": 24469.24, + "end": 24470.01, + "probability": 0.9131 + }, + { + "start": 24470.76, + "end": 24474.02, + "probability": 0.9922 + }, + { + "start": 24474.62, + "end": 24478.12, + "probability": 0.8347 + }, + { + "start": 24478.12, + "end": 24481.78, + "probability": 0.983 + }, + { + "start": 24482.42, + "end": 24483.82, + "probability": 0.9359 + }, + { + "start": 24484.72, + "end": 24488.16, + "probability": 0.9875 + }, + { + "start": 24488.38, + "end": 24489.7, + "probability": 0.5842 + }, + { + "start": 24489.84, + "end": 24491.36, + "probability": 0.9568 + }, + { + "start": 24491.96, + "end": 24494.84, + "probability": 0.9491 + }, + { + "start": 24495.44, + "end": 24499.28, + "probability": 0.9956 + }, + { + "start": 24499.54, + "end": 24501.9, + "probability": 0.9942 + }, + { + "start": 24502.84, + "end": 24504.36, + "probability": 0.9182 + }, + { + "start": 24505.78, + "end": 24506.98, + "probability": 0.9849 + }, + { + "start": 24508.18, + "end": 24509.16, + "probability": 0.9616 + }, + { + "start": 24510.22, + "end": 24511.14, + "probability": 0.969 + }, + { + "start": 24512.04, + "end": 24514.22, + "probability": 0.9375 + }, + { + "start": 24514.5, + "end": 24516.94, + "probability": 0.9723 + }, + { + "start": 24517.46, + "end": 24521.88, + "probability": 0.999 + }, + { + "start": 24522.62, + "end": 24525.6, + "probability": 0.9939 + }, + { + "start": 24525.6, + "end": 24529.3, + "probability": 0.9946 + }, + { + "start": 24529.42, + "end": 24529.98, + "probability": 0.5025 + }, + { + "start": 24530.64, + "end": 24532.66, + "probability": 0.9515 + }, + { + "start": 24533.4, + "end": 24534.28, + "probability": 0.9001 + }, + { + "start": 24534.94, + "end": 24538.26, + "probability": 0.9104 + }, + { + "start": 24539.0, + "end": 24540.6, + "probability": 0.8279 + }, + { + "start": 24541.68, + "end": 24543.4, + "probability": 0.9875 + }, + { + "start": 24543.48, + "end": 24545.7, + "probability": 0.9816 + }, + { + "start": 24546.7, + "end": 24548.12, + "probability": 0.9419 + }, + { + "start": 24548.12, + "end": 24550.94, + "probability": 0.9753 + }, + { + "start": 24551.64, + "end": 24556.2, + "probability": 0.9946 + }, + { + "start": 24557.06, + "end": 24560.0, + "probability": 0.9852 + }, + { + "start": 24560.0, + "end": 24562.68, + "probability": 0.9937 + }, + { + "start": 24562.88, + "end": 24563.08, + "probability": 0.6759 + }, + { + "start": 24564.34, + "end": 24566.16, + "probability": 0.9487 + }, + { + "start": 24567.04, + "end": 24567.88, + "probability": 0.5346 + }, + { + "start": 24568.64, + "end": 24573.94, + "probability": 0.9932 + }, + { + "start": 24574.4, + "end": 24576.24, + "probability": 0.9624 + }, + { + "start": 24577.4, + "end": 24578.72, + "probability": 0.8473 + }, + { + "start": 24579.64, + "end": 24581.46, + "probability": 0.9683 + }, + { + "start": 24581.58, + "end": 24585.48, + "probability": 0.9879 + }, + { + "start": 24585.58, + "end": 24586.48, + "probability": 0.7562 + }, + { + "start": 24587.12, + "end": 24588.56, + "probability": 0.4162 + }, + { + "start": 24588.94, + "end": 24590.6, + "probability": 0.7023 + }, + { + "start": 24591.38, + "end": 24593.74, + "probability": 0.918 + }, + { + "start": 24594.8, + "end": 24598.8, + "probability": 0.9338 + }, + { + "start": 24601.74, + "end": 24605.12, + "probability": 0.9077 + }, + { + "start": 24615.28, + "end": 24615.5, + "probability": 0.4316 + }, + { + "start": 24615.82, + "end": 24616.92, + "probability": 0.8987 + }, + { + "start": 24622.74, + "end": 24626.32, + "probability": 0.7548 + }, + { + "start": 24630.2, + "end": 24630.7, + "probability": 0.6277 + }, + { + "start": 24632.96, + "end": 24635.82, + "probability": 0.7532 + }, + { + "start": 24636.88, + "end": 24637.78, + "probability": 0.9449 + }, + { + "start": 24639.48, + "end": 24642.74, + "probability": 0.949 + }, + { + "start": 24644.54, + "end": 24645.76, + "probability": 0.7224 + }, + { + "start": 24646.34, + "end": 24649.66, + "probability": 0.9496 + }, + { + "start": 24650.78, + "end": 24652.28, + "probability": 0.9746 + }, + { + "start": 24653.7, + "end": 24654.54, + "probability": 0.8386 + }, + { + "start": 24655.7, + "end": 24659.64, + "probability": 0.9847 + }, + { + "start": 24659.84, + "end": 24661.76, + "probability": 0.9885 + }, + { + "start": 24662.4, + "end": 24663.4, + "probability": 0.8864 + }, + { + "start": 24663.7, + "end": 24664.2, + "probability": 0.3718 + }, + { + "start": 24664.34, + "end": 24668.78, + "probability": 0.9634 + }, + { + "start": 24670.52, + "end": 24674.6, + "probability": 0.8399 + }, + { + "start": 24675.4, + "end": 24676.72, + "probability": 0.9658 + }, + { + "start": 24677.16, + "end": 24682.42, + "probability": 0.9949 + }, + { + "start": 24683.6, + "end": 24684.92, + "probability": 0.5819 + }, + { + "start": 24685.1, + "end": 24687.3, + "probability": 0.9863 + }, + { + "start": 24687.36, + "end": 24688.3, + "probability": 0.9954 + }, + { + "start": 24690.12, + "end": 24695.7, + "probability": 0.9951 + }, + { + "start": 24696.1, + "end": 24696.82, + "probability": 0.7593 + }, + { + "start": 24697.82, + "end": 24701.3, + "probability": 0.905 + }, + { + "start": 24703.46, + "end": 24708.04, + "probability": 0.9367 + }, + { + "start": 24708.22, + "end": 24708.68, + "probability": 0.9183 + }, + { + "start": 24708.84, + "end": 24712.02, + "probability": 0.9756 + }, + { + "start": 24712.72, + "end": 24716.24, + "probability": 0.9971 + }, + { + "start": 24717.6, + "end": 24717.6, + "probability": 0.5321 + }, + { + "start": 24717.78, + "end": 24718.44, + "probability": 0.6666 + }, + { + "start": 24718.54, + "end": 24722.12, + "probability": 0.9641 + }, + { + "start": 24722.4, + "end": 24730.38, + "probability": 0.9599 + }, + { + "start": 24731.02, + "end": 24732.1, + "probability": 0.7852 + }, + { + "start": 24732.74, + "end": 24734.24, + "probability": 0.8056 + }, + { + "start": 24735.46, + "end": 24738.3, + "probability": 0.9585 + }, + { + "start": 24739.68, + "end": 24741.82, + "probability": 0.9106 + }, + { + "start": 24742.98, + "end": 24745.66, + "probability": 0.9771 + }, + { + "start": 24745.66, + "end": 24749.22, + "probability": 0.9331 + }, + { + "start": 24750.12, + "end": 24751.1, + "probability": 0.759 + }, + { + "start": 24751.24, + "end": 24754.54, + "probability": 0.5981 + }, + { + "start": 24755.18, + "end": 24755.88, + "probability": 0.871 + }, + { + "start": 24756.0, + "end": 24761.5, + "probability": 0.8727 + }, + { + "start": 24762.22, + "end": 24765.42, + "probability": 0.9198 + }, + { + "start": 24766.12, + "end": 24767.0, + "probability": 0.7705 + }, + { + "start": 24767.3, + "end": 24769.34, + "probability": 0.9311 + }, + { + "start": 24769.4, + "end": 24770.56, + "probability": 0.9421 + }, + { + "start": 24771.31, + "end": 24775.34, + "probability": 0.9681 + }, + { + "start": 24775.92, + "end": 24779.68, + "probability": 0.9955 + }, + { + "start": 24780.2, + "end": 24781.94, + "probability": 0.8308 + }, + { + "start": 24782.04, + "end": 24785.12, + "probability": 0.9906 + }, + { + "start": 24785.12, + "end": 24787.4, + "probability": 0.9888 + }, + { + "start": 24788.22, + "end": 24789.5, + "probability": 0.8632 + }, + { + "start": 24790.16, + "end": 24792.49, + "probability": 0.9961 + }, + { + "start": 24793.68, + "end": 24796.3, + "probability": 0.9902 + }, + { + "start": 24796.84, + "end": 24798.9, + "probability": 0.9976 + }, + { + "start": 24799.0, + "end": 24802.92, + "probability": 0.9931 + }, + { + "start": 24803.26, + "end": 24804.14, + "probability": 0.6146 + }, + { + "start": 24804.94, + "end": 24805.1, + "probability": 0.4614 + }, + { + "start": 24805.7, + "end": 24807.3, + "probability": 0.9924 + }, + { + "start": 24807.38, + "end": 24812.06, + "probability": 0.9463 + }, + { + "start": 24812.42, + "end": 24817.66, + "probability": 0.9915 + }, + { + "start": 24817.8, + "end": 24818.4, + "probability": 0.3827 + }, + { + "start": 24818.48, + "end": 24818.76, + "probability": 0.8021 + }, + { + "start": 24818.8, + "end": 24819.98, + "probability": 0.9749 + }, + { + "start": 24820.68, + "end": 24821.56, + "probability": 0.6579 + }, + { + "start": 24822.42, + "end": 24824.72, + "probability": 0.4904 + }, + { + "start": 24824.78, + "end": 24825.32, + "probability": 0.5787 + }, + { + "start": 24826.1, + "end": 24826.9, + "probability": 0.765 + }, + { + "start": 24828.4, + "end": 24829.14, + "probability": 0.5232 + }, + { + "start": 24834.25, + "end": 24843.74, + "probability": 0.8021 + }, + { + "start": 24844.26, + "end": 24846.48, + "probability": 0.5387 + }, + { + "start": 24847.24, + "end": 24851.2, + "probability": 0.9832 + }, + { + "start": 24851.28, + "end": 24852.48, + "probability": 0.5004 + }, + { + "start": 24853.4, + "end": 24855.66, + "probability": 0.8483 + }, + { + "start": 24855.66, + "end": 24860.86, + "probability": 0.996 + }, + { + "start": 24862.26, + "end": 24864.42, + "probability": 0.9804 + }, + { + "start": 24865.06, + "end": 24866.75, + "probability": 0.9401 + }, + { + "start": 24867.26, + "end": 24870.1, + "probability": 0.9626 + }, + { + "start": 24872.44, + "end": 24874.06, + "probability": 0.6897 + }, + { + "start": 24874.88, + "end": 24875.6, + "probability": 0.9136 + }, + { + "start": 24876.7, + "end": 24877.68, + "probability": 0.8087 + }, + { + "start": 24878.2, + "end": 24879.63, + "probability": 0.6659 + }, + { + "start": 24880.8, + "end": 24881.5, + "probability": 0.9379 + }, + { + "start": 24882.5, + "end": 24886.7, + "probability": 0.7897 + }, + { + "start": 24887.3, + "end": 24888.08, + "probability": 0.6656 + }, + { + "start": 24888.08, + "end": 24891.41, + "probability": 0.8701 + }, + { + "start": 24891.68, + "end": 24892.88, + "probability": 0.9701 + }, + { + "start": 24893.44, + "end": 24898.84, + "probability": 0.861 + }, + { + "start": 24899.92, + "end": 24900.96, + "probability": 0.8023 + }, + { + "start": 24901.84, + "end": 24904.72, + "probability": 0.9004 + }, + { + "start": 24904.82, + "end": 24909.52, + "probability": 0.978 + }, + { + "start": 24910.74, + "end": 24912.74, + "probability": 0.9841 + }, + { + "start": 24913.38, + "end": 24915.68, + "probability": 0.8344 + }, + { + "start": 24916.42, + "end": 24918.46, + "probability": 0.9514 + }, + { + "start": 24918.56, + "end": 24920.62, + "probability": 0.8641 + }, + { + "start": 24921.42, + "end": 24924.94, + "probability": 0.9922 + }, + { + "start": 24925.74, + "end": 24929.96, + "probability": 0.9792 + }, + { + "start": 24930.18, + "end": 24932.98, + "probability": 0.8978 + }, + { + "start": 24933.2, + "end": 24936.94, + "probability": 0.9863 + }, + { + "start": 24937.5, + "end": 24938.92, + "probability": 0.5187 + }, + { + "start": 24939.84, + "end": 24940.76, + "probability": 0.6068 + }, + { + "start": 24940.78, + "end": 24945.24, + "probability": 0.9932 + }, + { + "start": 24945.84, + "end": 24948.68, + "probability": 0.9834 + }, + { + "start": 24950.14, + "end": 24954.3, + "probability": 0.9592 + }, + { + "start": 24954.3, + "end": 24957.72, + "probability": 0.8179 + }, + { + "start": 24958.86, + "end": 24961.74, + "probability": 0.9118 + }, + { + "start": 24962.38, + "end": 24963.02, + "probability": 0.7311 + }, + { + "start": 24963.78, + "end": 24964.7, + "probability": 0.9183 + }, + { + "start": 24966.32, + "end": 24971.32, + "probability": 0.9726 + }, + { + "start": 24971.32, + "end": 24975.56, + "probability": 0.9954 + }, + { + "start": 24975.66, + "end": 24977.02, + "probability": 0.4145 + }, + { + "start": 24978.12, + "end": 24979.74, + "probability": 0.9377 + }, + { + "start": 24980.6, + "end": 24983.7, + "probability": 0.9878 + }, + { + "start": 24983.78, + "end": 24985.64, + "probability": 0.8673 + }, + { + "start": 24986.36, + "end": 24990.66, + "probability": 0.993 + }, + { + "start": 24990.92, + "end": 24998.02, + "probability": 0.8126 + }, + { + "start": 24998.14, + "end": 25005.26, + "probability": 0.9965 + }, + { + "start": 25006.8, + "end": 25009.02, + "probability": 0.3415 + }, + { + "start": 25009.18, + "end": 25014.22, + "probability": 0.7309 + }, + { + "start": 25014.42, + "end": 25015.28, + "probability": 0.9548 + }, + { + "start": 25015.98, + "end": 25017.59, + "probability": 0.7825 + }, + { + "start": 25018.34, + "end": 25019.18, + "probability": 0.7563 + }, + { + "start": 25019.26, + "end": 25020.34, + "probability": 0.749 + }, + { + "start": 25020.48, + "end": 25021.0, + "probability": 0.8954 + }, + { + "start": 25021.06, + "end": 25024.5, + "probability": 0.8958 + }, + { + "start": 25025.06, + "end": 25026.7, + "probability": 0.9238 + }, + { + "start": 25027.9, + "end": 25029.98, + "probability": 0.9878 + }, + { + "start": 25030.5, + "end": 25034.08, + "probability": 0.996 + }, + { + "start": 25034.84, + "end": 25036.94, + "probability": 0.7299 + }, + { + "start": 25038.14, + "end": 25039.28, + "probability": 0.9218 + }, + { + "start": 25039.48, + "end": 25043.46, + "probability": 0.965 + }, + { + "start": 25043.74, + "end": 25045.38, + "probability": 0.826 + }, + { + "start": 25045.94, + "end": 25046.76, + "probability": 0.9087 + }, + { + "start": 25047.68, + "end": 25048.04, + "probability": 0.7124 + }, + { + "start": 25048.78, + "end": 25050.66, + "probability": 0.887 + }, + { + "start": 25051.4, + "end": 25052.98, + "probability": 0.9538 + }, + { + "start": 25053.48, + "end": 25059.18, + "probability": 0.9825 + }, + { + "start": 25059.72, + "end": 25063.2, + "probability": 0.9075 + }, + { + "start": 25064.16, + "end": 25066.04, + "probability": 0.6649 + }, + { + "start": 25066.82, + "end": 25070.28, + "probability": 0.8953 + }, + { + "start": 25070.84, + "end": 25076.66, + "probability": 0.8703 + }, + { + "start": 25077.38, + "end": 25081.82, + "probability": 0.9717 + }, + { + "start": 25082.66, + "end": 25084.54, + "probability": 0.7306 + }, + { + "start": 25085.16, + "end": 25085.76, + "probability": 0.8838 + }, + { + "start": 25086.3, + "end": 25086.4, + "probability": 0.8547 + }, + { + "start": 25087.4, + "end": 25088.86, + "probability": 0.4985 + }, + { + "start": 25090.0, + "end": 25091.08, + "probability": 0.2596 + }, + { + "start": 25091.52, + "end": 25093.82, + "probability": 0.7745 + }, + { + "start": 25105.54, + "end": 25105.54, + "probability": 0.7066 + }, + { + "start": 25105.54, + "end": 25106.12, + "probability": 0.5011 + }, + { + "start": 25106.12, + "end": 25106.24, + "probability": 0.7625 + }, + { + "start": 25107.78, + "end": 25111.2, + "probability": 0.7306 + }, + { + "start": 25112.42, + "end": 25115.14, + "probability": 0.9229 + }, + { + "start": 25116.02, + "end": 25119.7, + "probability": 0.925 + }, + { + "start": 25121.02, + "end": 25122.36, + "probability": 0.9971 + }, + { + "start": 25122.58, + "end": 25126.26, + "probability": 0.9745 + }, + { + "start": 25127.76, + "end": 25130.9, + "probability": 0.9972 + }, + { + "start": 25130.9, + "end": 25135.8, + "probability": 0.9983 + }, + { + "start": 25136.24, + "end": 25136.38, + "probability": 0.8049 + }, + { + "start": 25136.58, + "end": 25145.22, + "probability": 0.9991 + }, + { + "start": 25145.82, + "end": 25147.1, + "probability": 0.8344 + }, + { + "start": 25147.62, + "end": 25151.46, + "probability": 0.9918 + }, + { + "start": 25152.02, + "end": 25153.32, + "probability": 0.9985 + }, + { + "start": 25153.84, + "end": 25155.8, + "probability": 0.9539 + }, + { + "start": 25156.5, + "end": 25158.24, + "probability": 0.5906 + }, + { + "start": 25163.68, + "end": 25165.18, + "probability": 0.3439 + }, + { + "start": 25165.18, + "end": 25165.32, + "probability": 0.2693 + }, + { + "start": 25165.68, + "end": 25166.7, + "probability": 0.5784 + }, + { + "start": 25166.7, + "end": 25167.46, + "probability": 0.2658 + }, + { + "start": 25167.78, + "end": 25170.02, + "probability": 0.7902 + }, + { + "start": 25170.18, + "end": 25170.54, + "probability": 0.4893 + }, + { + "start": 25170.58, + "end": 25173.9, + "probability": 0.9946 + }, + { + "start": 25174.54, + "end": 25176.62, + "probability": 0.868 + }, + { + "start": 25177.58, + "end": 25179.78, + "probability": 0.9993 + }, + { + "start": 25180.24, + "end": 25185.48, + "probability": 0.988 + }, + { + "start": 25186.02, + "end": 25187.18, + "probability": 0.9122 + }, + { + "start": 25187.82, + "end": 25192.14, + "probability": 0.9968 + }, + { + "start": 25192.26, + "end": 25194.02, + "probability": 0.9391 + }, + { + "start": 25194.1, + "end": 25195.52, + "probability": 0.9557 + }, + { + "start": 25196.36, + "end": 25198.68, + "probability": 0.9858 + }, + { + "start": 25199.28, + "end": 25203.72, + "probability": 0.9958 + }, + { + "start": 25204.16, + "end": 25204.3, + "probability": 0.8151 + }, + { + "start": 25204.52, + "end": 25207.96, + "probability": 0.9979 + }, + { + "start": 25207.96, + "end": 25211.18, + "probability": 0.9977 + }, + { + "start": 25211.48, + "end": 25213.0, + "probability": 0.9922 + }, + { + "start": 25214.22, + "end": 25218.55, + "probability": 0.9961 + }, + { + "start": 25219.14, + "end": 25221.6, + "probability": 0.9825 + }, + { + "start": 25223.18, + "end": 25223.5, + "probability": 0.2747 + }, + { + "start": 25224.08, + "end": 25225.84, + "probability": 0.9796 + }, + { + "start": 25226.52, + "end": 25228.88, + "probability": 0.9969 + }, + { + "start": 25229.34, + "end": 25230.22, + "probability": 0.6579 + }, + { + "start": 25230.76, + "end": 25230.98, + "probability": 0.8722 + }, + { + "start": 25231.72, + "end": 25238.14, + "probability": 0.9959 + }, + { + "start": 25238.78, + "end": 25243.36, + "probability": 0.9883 + }, + { + "start": 25244.12, + "end": 25245.8, + "probability": 0.9725 + }, + { + "start": 25246.12, + "end": 25247.76, + "probability": 0.991 + }, + { + "start": 25248.54, + "end": 25249.92, + "probability": 0.9875 + }, + { + "start": 25250.4, + "end": 25252.58, + "probability": 0.8169 + }, + { + "start": 25254.2, + "end": 25255.68, + "probability": 0.9695 + }, + { + "start": 25255.86, + "end": 25256.64, + "probability": 0.9031 + }, + { + "start": 25257.54, + "end": 25258.72, + "probability": 0.9706 + }, + { + "start": 25259.58, + "end": 25260.54, + "probability": 0.932 + }, + { + "start": 25260.72, + "end": 25264.1, + "probability": 0.9595 + }, + { + "start": 25264.56, + "end": 25265.66, + "probability": 0.9901 + }, + { + "start": 25266.56, + "end": 25271.58, + "probability": 0.9752 + }, + { + "start": 25272.6, + "end": 25277.3, + "probability": 0.8718 + }, + { + "start": 25277.98, + "end": 25278.6, + "probability": 0.2782 + }, + { + "start": 25279.46, + "end": 25284.26, + "probability": 0.9785 + }, + { + "start": 25284.74, + "end": 25287.3, + "probability": 0.9868 + }, + { + "start": 25287.3, + "end": 25291.04, + "probability": 0.994 + }, + { + "start": 25291.38, + "end": 25292.38, + "probability": 0.6658 + }, + { + "start": 25292.86, + "end": 25295.9, + "probability": 0.9937 + }, + { + "start": 25296.62, + "end": 25297.44, + "probability": 0.7119 + }, + { + "start": 25298.32, + "end": 25301.18, + "probability": 0.992 + }, + { + "start": 25301.88, + "end": 25306.14, + "probability": 0.9663 + }, + { + "start": 25307.02, + "end": 25308.04, + "probability": 0.9364 + }, + { + "start": 25309.1, + "end": 25309.5, + "probability": 0.6449 + }, + { + "start": 25310.52, + "end": 25311.52, + "probability": 0.9433 + }, + { + "start": 25311.7, + "end": 25314.06, + "probability": 0.9705 + }, + { + "start": 25314.82, + "end": 25316.26, + "probability": 0.9355 + }, + { + "start": 25316.96, + "end": 25318.92, + "probability": 0.9249 + }, + { + "start": 25319.46, + "end": 25321.9, + "probability": 0.9122 + }, + { + "start": 25322.62, + "end": 25327.2, + "probability": 0.9971 + }, + { + "start": 25327.38, + "end": 25327.68, + "probability": 0.7743 + }, + { + "start": 25328.16, + "end": 25329.58, + "probability": 0.8184 + }, + { + "start": 25330.12, + "end": 25331.34, + "probability": 0.9953 + }, + { + "start": 25332.64, + "end": 25334.5, + "probability": 0.9466 + }, + { + "start": 25335.42, + "end": 25338.36, + "probability": 0.9919 + }, + { + "start": 25338.94, + "end": 25339.38, + "probability": 0.5643 + }, + { + "start": 25339.38, + "end": 25339.54, + "probability": 0.1455 + }, + { + "start": 25339.78, + "end": 25342.53, + "probability": 0.874 + }, + { + "start": 25342.84, + "end": 25345.76, + "probability": 0.8096 + }, + { + "start": 25346.48, + "end": 25348.26, + "probability": 0.6378 + }, + { + "start": 25348.4, + "end": 25349.7, + "probability": 0.7004 + }, + { + "start": 25350.2, + "end": 25351.8, + "probability": 0.6783 + }, + { + "start": 25352.4, + "end": 25357.44, + "probability": 0.8461 + }, + { + "start": 25357.64, + "end": 25360.44, + "probability": 0.9875 + }, + { + "start": 25361.1, + "end": 25362.14, + "probability": 0.9839 + }, + { + "start": 25362.74, + "end": 25364.0, + "probability": 0.937 + }, + { + "start": 25364.16, + "end": 25368.84, + "probability": 0.9977 + }, + { + "start": 25369.46, + "end": 25373.88, + "probability": 0.9924 + }, + { + "start": 25373.88, + "end": 25374.36, + "probability": 0.6218 + }, + { + "start": 25374.58, + "end": 25377.01, + "probability": 0.8877 + }, + { + "start": 25377.68, + "end": 25381.2, + "probability": 0.5368 + }, + { + "start": 25381.24, + "end": 25381.56, + "probability": 0.5476 + }, + { + "start": 25381.56, + "end": 25382.76, + "probability": 0.7766 + }, + { + "start": 25382.87, + "end": 25384.15, + "probability": 0.7261 + }, + { + "start": 25385.14, + "end": 25385.78, + "probability": 0.2256 + }, + { + "start": 25385.78, + "end": 25388.82, + "probability": 0.5226 + }, + { + "start": 25388.92, + "end": 25389.24, + "probability": 0.8257 + }, + { + "start": 25389.3, + "end": 25390.38, + "probability": 0.7733 + }, + { + "start": 25393.14, + "end": 25395.42, + "probability": 0.8483 + }, + { + "start": 25396.02, + "end": 25396.9, + "probability": 0.585 + }, + { + "start": 25409.2, + "end": 25409.26, + "probability": 0.6124 + }, + { + "start": 25409.26, + "end": 25411.8, + "probability": 0.9761 + }, + { + "start": 25412.06, + "end": 25413.24, + "probability": 0.918 + }, + { + "start": 25414.64, + "end": 25416.22, + "probability": 0.8643 + }, + { + "start": 25416.3, + "end": 25416.84, + "probability": 0.935 + }, + { + "start": 25416.88, + "end": 25416.88, + "probability": 0.578 + }, + { + "start": 25417.32, + "end": 25419.62, + "probability": 0.7576 + }, + { + "start": 25420.42, + "end": 25421.1, + "probability": 0.5168 + }, + { + "start": 25421.9, + "end": 25424.23, + "probability": 0.9244 + }, + { + "start": 25425.28, + "end": 25428.42, + "probability": 0.9968 + }, + { + "start": 25429.34, + "end": 25430.08, + "probability": 0.9121 + }, + { + "start": 25430.16, + "end": 25430.76, + "probability": 0.8619 + }, + { + "start": 25430.86, + "end": 25434.04, + "probability": 0.9127 + }, + { + "start": 25434.96, + "end": 25440.14, + "probability": 0.9785 + }, + { + "start": 25440.82, + "end": 25441.04, + "probability": 0.3836 + }, + { + "start": 25441.04, + "end": 25442.46, + "probability": 0.4134 + }, + { + "start": 25444.64, + "end": 25447.14, + "probability": 0.8722 + }, + { + "start": 25447.26, + "end": 25449.06, + "probability": 0.6588 + }, + { + "start": 25450.12, + "end": 25454.81, + "probability": 0.6576 + }, + { + "start": 25455.48, + "end": 25458.45, + "probability": 0.9526 + }, + { + "start": 25459.32, + "end": 25459.68, + "probability": 0.6533 + }, + { + "start": 25459.84, + "end": 25462.0, + "probability": 0.8021 + }, + { + "start": 25462.12, + "end": 25464.45, + "probability": 0.9303 + }, + { + "start": 25466.16, + "end": 25467.04, + "probability": 0.8408 + }, + { + "start": 25467.16, + "end": 25469.53, + "probability": 0.9941 + }, + { + "start": 25470.12, + "end": 25471.46, + "probability": 0.3391 + }, + { + "start": 25471.56, + "end": 25473.34, + "probability": 0.9703 + }, + { + "start": 25474.06, + "end": 25477.14, + "probability": 0.9789 + }, + { + "start": 25477.74, + "end": 25482.82, + "probability": 0.794 + }, + { + "start": 25483.3, + "end": 25486.01, + "probability": 0.9941 + }, + { + "start": 25486.54, + "end": 25490.02, + "probability": 0.9961 + }, + { + "start": 25490.4, + "end": 25492.8, + "probability": 0.9961 + }, + { + "start": 25492.8, + "end": 25495.44, + "probability": 0.9822 + }, + { + "start": 25496.32, + "end": 25498.2, + "probability": 0.9668 + }, + { + "start": 25498.2, + "end": 25501.16, + "probability": 0.9882 + }, + { + "start": 25501.94, + "end": 25504.84, + "probability": 0.9929 + }, + { + "start": 25504.94, + "end": 25509.98, + "probability": 0.9882 + }, + { + "start": 25510.38, + "end": 25511.38, + "probability": 0.8959 + }, + { + "start": 25511.46, + "end": 25513.73, + "probability": 0.9949 + }, + { + "start": 25513.9, + "end": 25517.12, + "probability": 0.9818 + }, + { + "start": 25517.32, + "end": 25519.92, + "probability": 0.47 + }, + { + "start": 25520.58, + "end": 25523.24, + "probability": 0.609 + }, + { + "start": 25523.9, + "end": 25525.54, + "probability": 0.9661 + }, + { + "start": 25526.46, + "end": 25527.97, + "probability": 0.9814 + }, + { + "start": 25529.34, + "end": 25530.58, + "probability": 0.8421 + }, + { + "start": 25530.92, + "end": 25533.6, + "probability": 0.8984 + }, + { + "start": 25533.64, + "end": 25537.42, + "probability": 0.9346 + }, + { + "start": 25537.86, + "end": 25538.49, + "probability": 0.5859 + }, + { + "start": 25538.78, + "end": 25539.5, + "probability": 0.8022 + }, + { + "start": 25539.64, + "end": 25540.32, + "probability": 0.9493 + }, + { + "start": 25540.58, + "end": 25543.86, + "probability": 0.7239 + }, + { + "start": 25544.22, + "end": 25548.46, + "probability": 0.9297 + }, + { + "start": 25550.02, + "end": 25554.8, + "probability": 0.9831 + }, + { + "start": 25554.92, + "end": 25555.56, + "probability": 0.9622 + }, + { + "start": 25556.32, + "end": 25558.41, + "probability": 0.9143 + }, + { + "start": 25559.16, + "end": 25562.1, + "probability": 0.9976 + }, + { + "start": 25563.28, + "end": 25566.61, + "probability": 0.9934 + }, + { + "start": 25566.68, + "end": 25567.9, + "probability": 0.7087 + }, + { + "start": 25570.16, + "end": 25572.4, + "probability": 0.9653 + }, + { + "start": 25572.52, + "end": 25573.73, + "probability": 0.97 + }, + { + "start": 25574.4, + "end": 25576.32, + "probability": 0.755 + }, + { + "start": 25576.4, + "end": 25578.3, + "probability": 0.597 + }, + { + "start": 25579.12, + "end": 25579.74, + "probability": 0.782 + }, + { + "start": 25579.82, + "end": 25580.12, + "probability": 0.5191 + }, + { + "start": 25580.2, + "end": 25580.66, + "probability": 0.4644 + }, + { + "start": 25580.68, + "end": 25584.15, + "probability": 0.8353 + }, + { + "start": 25585.1, + "end": 25585.88, + "probability": 0.7948 + }, + { + "start": 25586.12, + "end": 25587.32, + "probability": 0.9711 + }, + { + "start": 25587.62, + "end": 25588.3, + "probability": 0.8314 + }, + { + "start": 25588.38, + "end": 25591.1, + "probability": 0.9313 + }, + { + "start": 25591.78, + "end": 25593.3, + "probability": 0.9789 + }, + { + "start": 25593.98, + "end": 25596.04, + "probability": 0.9308 + }, + { + "start": 25596.64, + "end": 25599.8, + "probability": 0.9971 + }, + { + "start": 25600.96, + "end": 25603.68, + "probability": 0.9959 + }, + { + "start": 25604.08, + "end": 25605.3, + "probability": 0.842 + }, + { + "start": 25605.34, + "end": 25607.24, + "probability": 0.6671 + }, + { + "start": 25608.04, + "end": 25610.18, + "probability": 0.933 + }, + { + "start": 25611.14, + "end": 25611.46, + "probability": 0.4398 + }, + { + "start": 25611.7, + "end": 25613.48, + "probability": 0.0001 + }, + { + "start": 25615.68, + "end": 25616.72, + "probability": 0.9385 + }, + { + "start": 25617.85, + "end": 25622.46, + "probability": 0.6095 + }, + { + "start": 25623.0, + "end": 25623.58, + "probability": 0.4265 + }, + { + "start": 25624.94, + "end": 25626.24, + "probability": 0.9873 + }, + { + "start": 25627.32, + "end": 25629.84, + "probability": 0.9371 + }, + { + "start": 25630.42, + "end": 25632.98, + "probability": 0.9438 + }, + { + "start": 25633.16, + "end": 25635.14, + "probability": 0.979 + }, + { + "start": 25636.36, + "end": 25638.39, + "probability": 0.8161 + }, + { + "start": 25639.22, + "end": 25642.24, + "probability": 0.989 + }, + { + "start": 25642.32, + "end": 25643.68, + "probability": 0.7393 + }, + { + "start": 25644.06, + "end": 25644.9, + "probability": 0.5038 + }, + { + "start": 25645.32, + "end": 25647.04, + "probability": 0.993 + }, + { + "start": 25648.08, + "end": 25650.36, + "probability": 0.8186 + }, + { + "start": 25651.98, + "end": 25653.74, + "probability": 0.5716 + }, + { + "start": 25653.8, + "end": 25655.14, + "probability": 0.8204 + }, + { + "start": 25655.84, + "end": 25656.4, + "probability": 0.7559 + }, + { + "start": 25656.74, + "end": 25659.18, + "probability": 0.735 + }, + { + "start": 25659.28, + "end": 25659.58, + "probability": 0.7005 + }, + { + "start": 25659.76, + "end": 25662.74, + "probability": 0.891 + }, + { + "start": 25662.86, + "end": 25666.26, + "probability": 0.9982 + }, + { + "start": 25666.56, + "end": 25667.18, + "probability": 0.8691 + }, + { + "start": 25667.74, + "end": 25669.02, + "probability": 0.9124 + }, + { + "start": 25669.74, + "end": 25671.06, + "probability": 0.9443 + }, + { + "start": 25671.08, + "end": 25672.78, + "probability": 0.9626 + }, + { + "start": 25672.9, + "end": 25674.68, + "probability": 0.922 + }, + { + "start": 25675.2, + "end": 25678.62, + "probability": 0.9916 + }, + { + "start": 25679.94, + "end": 25682.1, + "probability": 0.9943 + }, + { + "start": 25683.1, + "end": 25685.56, + "probability": 0.959 + }, + { + "start": 25686.42, + "end": 25686.9, + "probability": 0.8279 + }, + { + "start": 25688.8, + "end": 25689.98, + "probability": 0.8934 + }, + { + "start": 25690.08, + "end": 25692.18, + "probability": 0.9995 + }, + { + "start": 25692.98, + "end": 25695.92, + "probability": 0.981 + }, + { + "start": 25696.7, + "end": 25698.08, + "probability": 0.8048 + }, + { + "start": 25698.18, + "end": 25702.34, + "probability": 0.9944 + }, + { + "start": 25702.84, + "end": 25706.06, + "probability": 0.9927 + }, + { + "start": 25706.76, + "end": 25709.34, + "probability": 0.7429 + }, + { + "start": 25709.74, + "end": 25710.28, + "probability": 0.707 + }, + { + "start": 25710.79, + "end": 25714.96, + "probability": 0.7357 + }, + { + "start": 25715.52, + "end": 25718.28, + "probability": 0.9979 + }, + { + "start": 25718.28, + "end": 25721.78, + "probability": 0.9369 + }, + { + "start": 25722.24, + "end": 25728.48, + "probability": 0.9917 + }, + { + "start": 25729.1, + "end": 25731.6, + "probability": 0.8511 + }, + { + "start": 25731.73, + "end": 25732.18, + "probability": 0.9255 + }, + { + "start": 25732.44, + "end": 25734.54, + "probability": 0.8716 + }, + { + "start": 25735.14, + "end": 25736.96, + "probability": 0.939 + }, + { + "start": 25737.52, + "end": 25738.66, + "probability": 0.8694 + }, + { + "start": 25738.94, + "end": 25739.38, + "probability": 0.697 + }, + { + "start": 25739.4, + "end": 25743.56, + "probability": 0.989 + }, + { + "start": 25744.34, + "end": 25747.64, + "probability": 0.8407 + }, + { + "start": 25747.84, + "end": 25752.21, + "probability": 0.9756 + }, + { + "start": 25752.9, + "end": 25754.62, + "probability": 0.552 + }, + { + "start": 25754.76, + "end": 25758.76, + "probability": 0.9891 + }, + { + "start": 25758.9, + "end": 25761.2, + "probability": 0.6931 + }, + { + "start": 25761.76, + "end": 25763.32, + "probability": 0.6788 + }, + { + "start": 25763.78, + "end": 25765.78, + "probability": 0.6992 + }, + { + "start": 25766.28, + "end": 25768.25, + "probability": 0.9927 + }, + { + "start": 25768.66, + "end": 25769.24, + "probability": 0.983 + }, + { + "start": 25769.92, + "end": 25771.98, + "probability": 0.993 + }, + { + "start": 25772.42, + "end": 25776.02, + "probability": 0.9953 + }, + { + "start": 25776.78, + "end": 25776.96, + "probability": 0.3439 + }, + { + "start": 25777.56, + "end": 25781.36, + "probability": 0.8789 + }, + { + "start": 25781.8, + "end": 25786.0, + "probability": 0.5535 + }, + { + "start": 25786.0, + "end": 25789.22, + "probability": 0.7185 + }, + { + "start": 25789.28, + "end": 25789.96, + "probability": 0.8242 + }, + { + "start": 25791.12, + "end": 25791.12, + "probability": 0.3453 + }, + { + "start": 25791.12, + "end": 25795.62, + "probability": 0.57 + }, + { + "start": 25807.68, + "end": 25807.7, + "probability": 0.5706 + }, + { + "start": 25807.7, + "end": 25810.5, + "probability": 0.739 + }, + { + "start": 25811.78, + "end": 25812.78, + "probability": 0.1225 + }, + { + "start": 25813.32, + "end": 25814.32, + "probability": 0.5525 + }, + { + "start": 25814.58, + "end": 25817.4, + "probability": 0.5565 + }, + { + "start": 25817.6, + "end": 25818.36, + "probability": 0.9407 + }, + { + "start": 25819.74, + "end": 25821.3, + "probability": 0.6912 + }, + { + "start": 25822.3, + "end": 25825.78, + "probability": 0.4246 + }, + { + "start": 25827.8, + "end": 25832.78, + "probability": 0.8482 + }, + { + "start": 25833.46, + "end": 25836.61, + "probability": 0.823 + }, + { + "start": 25837.32, + "end": 25838.4, + "probability": 0.947 + }, + { + "start": 25838.6, + "end": 25841.7, + "probability": 0.2987 + }, + { + "start": 25841.8, + "end": 25846.72, + "probability": 0.8804 + }, + { + "start": 25847.64, + "end": 25848.5, + "probability": 0.8789 + }, + { + "start": 25848.6, + "end": 25851.65, + "probability": 0.9885 + }, + { + "start": 25852.02, + "end": 25853.04, + "probability": 0.7338 + }, + { + "start": 25853.3, + "end": 25858.29, + "probability": 0.9619 + }, + { + "start": 25860.16, + "end": 25862.06, + "probability": 0.979 + }, + { + "start": 25862.72, + "end": 25864.22, + "probability": 0.8144 + }, + { + "start": 25865.4, + "end": 25865.77, + "probability": 0.4992 + }, + { + "start": 25866.22, + "end": 25866.5, + "probability": 0.3414 + }, + { + "start": 25866.5, + "end": 25867.02, + "probability": 0.4483 + }, + { + "start": 25867.34, + "end": 25873.76, + "probability": 0.7994 + }, + { + "start": 25873.92, + "end": 25874.02, + "probability": 0.4212 + }, + { + "start": 25875.28, + "end": 25879.9, + "probability": 0.9515 + }, + { + "start": 25880.27, + "end": 25886.46, + "probability": 0.9902 + }, + { + "start": 25887.3, + "end": 25887.66, + "probability": 0.7737 + }, + { + "start": 25887.78, + "end": 25889.16, + "probability": 0.9513 + }, + { + "start": 25889.16, + "end": 25890.54, + "probability": 0.8372 + }, + { + "start": 25891.02, + "end": 25895.98, + "probability": 0.8788 + }, + { + "start": 25896.62, + "end": 25897.56, + "probability": 0.4974 + }, + { + "start": 25897.68, + "end": 25898.54, + "probability": 0.796 + }, + { + "start": 25898.72, + "end": 25905.06, + "probability": 0.9695 + }, + { + "start": 25905.06, + "end": 25909.58, + "probability": 0.9844 + }, + { + "start": 25910.32, + "end": 25913.28, + "probability": 0.3501 + }, + { + "start": 25913.86, + "end": 25914.3, + "probability": 0.9438 + }, + { + "start": 25914.96, + "end": 25915.34, + "probability": 0.8138 + }, + { + "start": 25915.46, + "end": 25918.16, + "probability": 0.979 + }, + { + "start": 25918.24, + "end": 25921.5, + "probability": 0.9884 + }, + { + "start": 25922.36, + "end": 25923.92, + "probability": 0.9957 + }, + { + "start": 25924.94, + "end": 25925.34, + "probability": 0.8248 + }, + { + "start": 25925.54, + "end": 25930.38, + "probability": 0.8919 + }, + { + "start": 25930.74, + "end": 25933.3, + "probability": 0.9691 + }, + { + "start": 25934.06, + "end": 25939.74, + "probability": 0.9852 + }, + { + "start": 25939.96, + "end": 25940.69, + "probability": 0.9854 + }, + { + "start": 25941.28, + "end": 25941.92, + "probability": 0.0125 + }, + { + "start": 25942.06, + "end": 25950.68, + "probability": 0.9868 + }, + { + "start": 25951.48, + "end": 25952.62, + "probability": 0.9125 + }, + { + "start": 25953.04, + "end": 25954.9, + "probability": 0.6144 + }, + { + "start": 25955.12, + "end": 25955.36, + "probability": 0.8911 + }, + { + "start": 25956.06, + "end": 25959.94, + "probability": 0.7634 + }, + { + "start": 25960.52, + "end": 25962.4, + "probability": 0.9829 + }, + { + "start": 25964.6, + "end": 25965.06, + "probability": 0.0627 + }, + { + "start": 25966.78, + "end": 25971.04, + "probability": 0.9408 + }, + { + "start": 25971.3, + "end": 25972.7, + "probability": 0.8229 + }, + { + "start": 25973.68, + "end": 25975.23, + "probability": 0.9198 + }, + { + "start": 25976.36, + "end": 25981.6, + "probability": 0.9827 + }, + { + "start": 25982.64, + "end": 25983.44, + "probability": 0.5385 + }, + { + "start": 25983.44, + "end": 25989.78, + "probability": 0.9888 + }, + { + "start": 25990.46, + "end": 25995.32, + "probability": 0.9829 + }, + { + "start": 25995.32, + "end": 25999.32, + "probability": 0.9963 + }, + { + "start": 25999.92, + "end": 26002.36, + "probability": 0.9977 + }, + { + "start": 26002.36, + "end": 26006.2, + "probability": 0.9946 + }, + { + "start": 26006.92, + "end": 26009.48, + "probability": 0.9825 + }, + { + "start": 26009.78, + "end": 26012.48, + "probability": 0.9441 + }, + { + "start": 26013.76, + "end": 26014.74, + "probability": 0.6047 + }, + { + "start": 26015.4, + "end": 26016.7, + "probability": 0.9967 + }, + { + "start": 26017.36, + "end": 26021.94, + "probability": 0.9919 + }, + { + "start": 26022.58, + "end": 26028.34, + "probability": 0.8739 + }, + { + "start": 26029.08, + "end": 26030.98, + "probability": 0.9434 + }, + { + "start": 26031.54, + "end": 26033.38, + "probability": 0.7984 + }, + { + "start": 26034.72, + "end": 26035.82, + "probability": 0.9827 + }, + { + "start": 26036.42, + "end": 26039.04, + "probability": 0.937 + }, + { + "start": 26039.58, + "end": 26045.91, + "probability": 0.9971 + }, + { + "start": 26046.54, + "end": 26052.2, + "probability": 0.9902 + }, + { + "start": 26053.02, + "end": 26053.76, + "probability": 0.7795 + }, + { + "start": 26054.68, + "end": 26062.16, + "probability": 0.9967 + }, + { + "start": 26063.08, + "end": 26064.66, + "probability": 0.9964 + }, + { + "start": 26065.18, + "end": 26066.66, + "probability": 0.999 + }, + { + "start": 26067.44, + "end": 26072.6, + "probability": 0.9895 + }, + { + "start": 26073.36, + "end": 26078.2, + "probability": 0.9492 + }, + { + "start": 26078.98, + "end": 26084.94, + "probability": 0.9862 + }, + { + "start": 26084.94, + "end": 26087.08, + "probability": 0.7961 + }, + { + "start": 26087.74, + "end": 26091.2, + "probability": 0.9976 + }, + { + "start": 26092.86, + "end": 26099.06, + "probability": 0.9564 + }, + { + "start": 26099.9, + "end": 26103.74, + "probability": 0.8383 + }, + { + "start": 26104.32, + "end": 26107.42, + "probability": 0.7691 + }, + { + "start": 26107.5, + "end": 26113.36, + "probability": 0.9827 + }, + { + "start": 26114.18, + "end": 26119.08, + "probability": 0.9673 + }, + { + "start": 26119.08, + "end": 26126.04, + "probability": 0.828 + }, + { + "start": 26126.8, + "end": 26130.82, + "probability": 0.9793 + }, + { + "start": 26131.34, + "end": 26134.04, + "probability": 0.9985 + }, + { + "start": 26134.84, + "end": 26138.72, + "probability": 0.8456 + }, + { + "start": 26139.56, + "end": 26144.2, + "probability": 0.997 + }, + { + "start": 26144.84, + "end": 26145.48, + "probability": 0.894 + }, + { + "start": 26146.3, + "end": 26149.64, + "probability": 0.947 + }, + { + "start": 26150.24, + "end": 26153.34, + "probability": 0.8318 + }, + { + "start": 26153.82, + "end": 26158.38, + "probability": 0.9955 + }, + { + "start": 26158.58, + "end": 26159.58, + "probability": 0.9919 + }, + { + "start": 26159.9, + "end": 26160.1, + "probability": 0.9633 + }, + { + "start": 26161.24, + "end": 26161.46, + "probability": 0.8442 + }, + { + "start": 26162.6, + "end": 26165.62, + "probability": 0.9858 + }, + { + "start": 26166.94, + "end": 26170.54, + "probability": 0.9694 + }, + { + "start": 26170.88, + "end": 26173.44, + "probability": 0.9994 + }, + { + "start": 26174.06, + "end": 26176.32, + "probability": 0.9959 + }, + { + "start": 26177.43, + "end": 26180.86, + "probability": 0.5412 + }, + { + "start": 26180.86, + "end": 26182.76, + "probability": 0.997 + }, + { + "start": 26183.32, + "end": 26185.42, + "probability": 0.9568 + }, + { + "start": 26185.8, + "end": 26186.56, + "probability": 0.8066 + }, + { + "start": 26186.94, + "end": 26189.24, + "probability": 0.9952 + }, + { + "start": 26189.96, + "end": 26190.68, + "probability": 0.9941 + }, + { + "start": 26191.4, + "end": 26195.06, + "probability": 0.9969 + }, + { + "start": 26195.06, + "end": 26199.04, + "probability": 0.8563 + }, + { + "start": 26199.2, + "end": 26203.06, + "probability": 0.9962 + }, + { + "start": 26203.62, + "end": 26208.2, + "probability": 0.9819 + }, + { + "start": 26209.14, + "end": 26209.28, + "probability": 0.7636 + }, + { + "start": 26209.94, + "end": 26211.12, + "probability": 0.9893 + }, + { + "start": 26211.58, + "end": 26212.43, + "probability": 0.7878 + }, + { + "start": 26214.04, + "end": 26216.76, + "probability": 0.9001 + }, + { + "start": 26217.08, + "end": 26219.94, + "probability": 0.7845 + }, + { + "start": 26220.54, + "end": 26223.12, + "probability": 0.9896 + }, + { + "start": 26223.26, + "end": 26223.92, + "probability": 0.5617 + }, + { + "start": 26224.0, + "end": 26224.48, + "probability": 0.8408 + }, + { + "start": 26224.64, + "end": 26228.5, + "probability": 0.9552 + }, + { + "start": 26228.96, + "end": 26231.68, + "probability": 0.959 + }, + { + "start": 26233.38, + "end": 26238.39, + "probability": 0.9507 + }, + { + "start": 26238.76, + "end": 26245.04, + "probability": 0.966 + }, + { + "start": 26245.6, + "end": 26247.68, + "probability": 0.982 + }, + { + "start": 26247.98, + "end": 26249.77, + "probability": 0.98 + }, + { + "start": 26251.98, + "end": 26252.18, + "probability": 0.4442 + }, + { + "start": 26252.28, + "end": 26257.36, + "probability": 0.9427 + }, + { + "start": 26257.82, + "end": 26261.5, + "probability": 0.9565 + }, + { + "start": 26261.62, + "end": 26262.36, + "probability": 0.3212 + }, + { + "start": 26263.4, + "end": 26266.44, + "probability": 0.7514 + }, + { + "start": 26267.54, + "end": 26269.8, + "probability": 0.9837 + }, + { + "start": 26270.58, + "end": 26273.64, + "probability": 0.998 + }, + { + "start": 26274.86, + "end": 26275.78, + "probability": 0.8921 + }, + { + "start": 26276.44, + "end": 26279.26, + "probability": 0.9689 + }, + { + "start": 26279.28, + "end": 26282.4, + "probability": 0.9994 + }, + { + "start": 26282.88, + "end": 26284.5, + "probability": 0.7443 + }, + { + "start": 26285.16, + "end": 26290.44, + "probability": 0.9711 + }, + { + "start": 26291.02, + "end": 26292.24, + "probability": 0.8367 + }, + { + "start": 26293.42, + "end": 26297.92, + "probability": 0.9756 + }, + { + "start": 26298.7, + "end": 26302.22, + "probability": 0.9867 + }, + { + "start": 26302.6, + "end": 26306.28, + "probability": 0.9985 + }, + { + "start": 26306.84, + "end": 26308.72, + "probability": 0.9976 + }, + { + "start": 26309.96, + "end": 26313.7, + "probability": 0.7716 + }, + { + "start": 26314.56, + "end": 26316.1, + "probability": 0.9993 + }, + { + "start": 26316.64, + "end": 26321.16, + "probability": 0.9918 + }, + { + "start": 26321.8, + "end": 26323.28, + "probability": 0.9958 + }, + { + "start": 26324.64, + "end": 26328.48, + "probability": 0.5248 + }, + { + "start": 26329.2, + "end": 26331.74, + "probability": 0.6861 + }, + { + "start": 26332.72, + "end": 26334.88, + "probability": 0.5514 + }, + { + "start": 26335.28, + "end": 26339.86, + "probability": 0.8566 + }, + { + "start": 26340.38, + "end": 26340.7, + "probability": 0.9094 + }, + { + "start": 26341.46, + "end": 26342.16, + "probability": 0.7974 + }, + { + "start": 26342.92, + "end": 26345.04, + "probability": 0.6417 + }, + { + "start": 26345.74, + "end": 26349.28, + "probability": 0.7573 + }, + { + "start": 26350.3, + "end": 26351.08, + "probability": 0.6183 + }, + { + "start": 26352.46, + "end": 26352.9, + "probability": 0.4755 + }, + { + "start": 26352.9, + "end": 26354.16, + "probability": 0.2976 + }, + { + "start": 26354.42, + "end": 26355.02, + "probability": 0.315 + }, + { + "start": 26355.16, + "end": 26356.24, + "probability": 0.4823 + }, + { + "start": 26358.6, + "end": 26362.6, + "probability": 0.9669 + }, + { + "start": 26364.1, + "end": 26365.64, + "probability": 0.9705 + }, + { + "start": 26367.7, + "end": 26368.74, + "probability": 0.5183 + }, + { + "start": 26368.74, + "end": 26368.74, + "probability": 0.1376 + }, + { + "start": 26368.74, + "end": 26370.88, + "probability": 0.695 + }, + { + "start": 26371.12, + "end": 26372.62, + "probability": 0.2365 + }, + { + "start": 26374.72, + "end": 26375.64, + "probability": 0.4945 + }, + { + "start": 26377.94, + "end": 26378.58, + "probability": 0.8387 + }, + { + "start": 26379.86, + "end": 26381.66, + "probability": 0.6151 + }, + { + "start": 26384.08, + "end": 26386.08, + "probability": 0.8428 + }, + { + "start": 26396.1, + "end": 26396.12, + "probability": 0.3885 + }, + { + "start": 26396.12, + "end": 26396.48, + "probability": 0.2571 + }, + { + "start": 26397.16, + "end": 26398.2, + "probability": 0.3183 + }, + { + "start": 26399.2, + "end": 26403.6, + "probability": 0.9384 + }, + { + "start": 26404.22, + "end": 26404.7, + "probability": 0.7803 + }, + { + "start": 26406.56, + "end": 26408.0, + "probability": 0.558 + }, + { + "start": 26414.8, + "end": 26416.44, + "probability": 0.6389 + }, + { + "start": 26418.58, + "end": 26419.46, + "probability": 0.0461 + }, + { + "start": 26419.46, + "end": 26423.44, + "probability": 0.6742 + }, + { + "start": 26438.78, + "end": 26440.22, + "probability": 0.696 + }, + { + "start": 26440.42, + "end": 26440.7, + "probability": 0.5165 + }, + { + "start": 26441.42, + "end": 26443.2, + "probability": 0.7242 + }, + { + "start": 26443.32, + "end": 26443.5, + "probability": 0.7378 + }, + { + "start": 26444.74, + "end": 26446.22, + "probability": 0.8086 + }, + { + "start": 26447.0, + "end": 26447.2, + "probability": 0.5805 + }, + { + "start": 26447.8, + "end": 26448.38, + "probability": 0.6904 + }, + { + "start": 26448.5, + "end": 26449.1, + "probability": 0.8497 + }, + { + "start": 26449.18, + "end": 26449.98, + "probability": 0.735 + }, + { + "start": 26450.44, + "end": 26451.8, + "probability": 0.8672 + }, + { + "start": 26451.82, + "end": 26452.02, + "probability": 0.7481 + }, + { + "start": 26452.12, + "end": 26453.52, + "probability": 0.9956 + }, + { + "start": 26454.54, + "end": 26454.76, + "probability": 0.6924 + }, + { + "start": 26454.86, + "end": 26457.06, + "probability": 0.9877 + }, + { + "start": 26457.06, + "end": 26460.24, + "probability": 0.9886 + }, + { + "start": 26460.8, + "end": 26462.88, + "probability": 0.9834 + }, + { + "start": 26463.68, + "end": 26464.64, + "probability": 0.8958 + }, + { + "start": 26465.22, + "end": 26466.76, + "probability": 0.7091 + }, + { + "start": 26466.84, + "end": 26468.89, + "probability": 0.995 + }, + { + "start": 26469.98, + "end": 26471.2, + "probability": 0.932 + }, + { + "start": 26471.4, + "end": 26473.38, + "probability": 0.8311 + }, + { + "start": 26474.24, + "end": 26476.58, + "probability": 0.7317 + }, + { + "start": 26476.82, + "end": 26481.52, + "probability": 0.9565 + }, + { + "start": 26482.04, + "end": 26483.84, + "probability": 0.9951 + }, + { + "start": 26483.96, + "end": 26484.98, + "probability": 0.9526 + }, + { + "start": 26485.54, + "end": 26487.24, + "probability": 0.9728 + }, + { + "start": 26487.38, + "end": 26489.84, + "probability": 0.9625 + }, + { + "start": 26490.12, + "end": 26492.68, + "probability": 0.9457 + }, + { + "start": 26493.22, + "end": 26495.98, + "probability": 0.9921 + }, + { + "start": 26496.26, + "end": 26497.38, + "probability": 0.6732 + }, + { + "start": 26497.96, + "end": 26499.28, + "probability": 0.7805 + }, + { + "start": 26499.82, + "end": 26500.66, + "probability": 0.8079 + }, + { + "start": 26501.02, + "end": 26501.93, + "probability": 0.4817 + }, + { + "start": 26502.7, + "end": 26504.88, + "probability": 0.9557 + }, + { + "start": 26504.88, + "end": 26507.22, + "probability": 0.9986 + }, + { + "start": 26507.76, + "end": 26510.48, + "probability": 0.9892 + }, + { + "start": 26511.1, + "end": 26515.12, + "probability": 0.9877 + }, + { + "start": 26515.68, + "end": 26517.44, + "probability": 0.9866 + }, + { + "start": 26517.52, + "end": 26521.72, + "probability": 0.8859 + }, + { + "start": 26522.26, + "end": 26523.42, + "probability": 0.9874 + }, + { + "start": 26523.78, + "end": 26524.98, + "probability": 0.8459 + }, + { + "start": 26525.8, + "end": 26528.02, + "probability": 0.9969 + }, + { + "start": 26528.98, + "end": 26532.56, + "probability": 0.9731 + }, + { + "start": 26532.98, + "end": 26537.52, + "probability": 0.9906 + }, + { + "start": 26538.1, + "end": 26539.56, + "probability": 0.7402 + }, + { + "start": 26540.66, + "end": 26543.14, + "probability": 0.9811 + }, + { + "start": 26543.68, + "end": 26543.78, + "probability": 0.1895 + }, + { + "start": 26543.82, + "end": 26544.28, + "probability": 0.7117 + }, + { + "start": 26544.68, + "end": 26549.72, + "probability": 0.9898 + }, + { + "start": 26550.48, + "end": 26553.46, + "probability": 0.986 + }, + { + "start": 26553.46, + "end": 26556.32, + "probability": 0.9925 + }, + { + "start": 26556.8, + "end": 26560.02, + "probability": 0.9285 + }, + { + "start": 26560.2, + "end": 26561.08, + "probability": 0.7502 + }, + { + "start": 26561.84, + "end": 26563.2, + "probability": 0.9988 + }, + { + "start": 26563.76, + "end": 26567.38, + "probability": 0.9948 + }, + { + "start": 26567.8, + "end": 26569.3, + "probability": 0.7951 + }, + { + "start": 26569.34, + "end": 26569.94, + "probability": 0.9535 + }, + { + "start": 26570.66, + "end": 26573.38, + "probability": 0.8013 + }, + { + "start": 26573.92, + "end": 26577.82, + "probability": 0.9973 + }, + { + "start": 26578.24, + "end": 26579.42, + "probability": 0.9966 + }, + { + "start": 26580.1, + "end": 26582.42, + "probability": 0.938 + }, + { + "start": 26582.92, + "end": 26584.96, + "probability": 0.9833 + }, + { + "start": 26585.1, + "end": 26586.14, + "probability": 0.567 + }, + { + "start": 26586.66, + "end": 26589.52, + "probability": 0.9264 + }, + { + "start": 26590.38, + "end": 26592.68, + "probability": 0.8403 + }, + { + "start": 26592.98, + "end": 26595.04, + "probability": 0.9395 + }, + { + "start": 26595.58, + "end": 26597.14, + "probability": 0.9984 + }, + { + "start": 26597.66, + "end": 26599.44, + "probability": 0.9841 + }, + { + "start": 26600.04, + "end": 26600.66, + "probability": 0.9966 + }, + { + "start": 26601.26, + "end": 26603.68, + "probability": 0.9434 + }, + { + "start": 26604.3, + "end": 26607.42, + "probability": 0.9704 + }, + { + "start": 26608.14, + "end": 26610.04, + "probability": 0.8316 + }, + { + "start": 26610.18, + "end": 26612.36, + "probability": 0.9338 + }, + { + "start": 26613.1, + "end": 26615.56, + "probability": 0.9957 + }, + { + "start": 26615.68, + "end": 26618.78, + "probability": 0.9828 + }, + { + "start": 26619.26, + "end": 26621.96, + "probability": 0.9976 + }, + { + "start": 26622.46, + "end": 26623.14, + "probability": 0.9235 + }, + { + "start": 26623.48, + "end": 26625.38, + "probability": 0.6677 + }, + { + "start": 26625.54, + "end": 26626.69, + "probability": 0.9775 + }, + { + "start": 26627.44, + "end": 26628.08, + "probability": 0.8495 + }, + { + "start": 26628.8, + "end": 26633.27, + "probability": 0.6286 + }, + { + "start": 26633.76, + "end": 26636.78, + "probability": 0.8172 + }, + { + "start": 26637.24, + "end": 26640.14, + "probability": 0.8804 + }, + { + "start": 26640.44, + "end": 26646.46, + "probability": 0.9788 + }, + { + "start": 26646.52, + "end": 26650.24, + "probability": 0.8502 + }, + { + "start": 26651.46, + "end": 26654.22, + "probability": 0.9883 + }, + { + "start": 26654.9, + "end": 26657.24, + "probability": 0.996 + }, + { + "start": 26657.8, + "end": 26660.3, + "probability": 0.8791 + }, + { + "start": 26660.94, + "end": 26662.78, + "probability": 0.958 + }, + { + "start": 26663.46, + "end": 26665.96, + "probability": 0.9739 + }, + { + "start": 26666.58, + "end": 26669.84, + "probability": 0.9836 + }, + { + "start": 26670.72, + "end": 26673.18, + "probability": 0.9809 + }, + { + "start": 26673.62, + "end": 26677.82, + "probability": 0.855 + }, + { + "start": 26677.94, + "end": 26680.68, + "probability": 0.7567 + }, + { + "start": 26680.94, + "end": 26681.38, + "probability": 0.7375 + }, + { + "start": 26681.74, + "end": 26683.92, + "probability": 0.7172 + }, + { + "start": 26684.22, + "end": 26685.88, + "probability": 0.1997 + }, + { + "start": 26687.16, + "end": 26689.65, + "probability": 0.8789 + }, + { + "start": 26690.14, + "end": 26692.24, + "probability": 0.9877 + }, + { + "start": 26692.66, + "end": 26695.66, + "probability": 0.9258 + }, + { + "start": 26696.04, + "end": 26698.78, + "probability": 0.999 + }, + { + "start": 26699.18, + "end": 26700.84, + "probability": 0.9067 + }, + { + "start": 26701.08, + "end": 26702.58, + "probability": 0.6571 + }, + { + "start": 26703.32, + "end": 26704.94, + "probability": 0.9709 + }, + { + "start": 26705.3, + "end": 26709.3, + "probability": 0.8857 + }, + { + "start": 26709.62, + "end": 26712.82, + "probability": 0.9744 + }, + { + "start": 26713.12, + "end": 26713.76, + "probability": 0.7094 + }, + { + "start": 26714.1, + "end": 26714.8, + "probability": 0.4044 + }, + { + "start": 26716.14, + "end": 26717.94, + "probability": 0.8865 + }, + { + "start": 26722.06, + "end": 26724.22, + "probability": 0.9683 + }, + { + "start": 26732.54, + "end": 26733.85, + "probability": 0.7699 + }, + { + "start": 26735.64, + "end": 26736.9, + "probability": 0.6672 + }, + { + "start": 26738.06, + "end": 26738.63, + "probability": 0.7057 + }, + { + "start": 26740.4, + "end": 26741.12, + "probability": 0.5238 + }, + { + "start": 26742.62, + "end": 26743.34, + "probability": 0.9106 + }, + { + "start": 26744.52, + "end": 26745.14, + "probability": 0.6931 + }, + { + "start": 26746.18, + "end": 26748.58, + "probability": 0.9764 + }, + { + "start": 26749.3, + "end": 26750.88, + "probability": 0.782 + }, + { + "start": 26751.66, + "end": 26752.47, + "probability": 0.9321 + }, + { + "start": 26753.88, + "end": 26755.12, + "probability": 0.7426 + }, + { + "start": 26755.98, + "end": 26757.5, + "probability": 0.9036 + }, + { + "start": 26759.0, + "end": 26759.81, + "probability": 0.9974 + }, + { + "start": 26761.4, + "end": 26762.2, + "probability": 0.4353 + }, + { + "start": 26762.86, + "end": 26764.82, + "probability": 0.8378 + }, + { + "start": 26766.56, + "end": 26767.08, + "probability": 0.9002 + }, + { + "start": 26768.58, + "end": 26769.03, + "probability": 0.8578 + }, + { + "start": 26769.82, + "end": 26770.72, + "probability": 0.8429 + }, + { + "start": 26771.26, + "end": 26774.04, + "probability": 0.8706 + }, + { + "start": 26774.3, + "end": 26774.98, + "probability": 0.8643 + }, + { + "start": 26775.92, + "end": 26776.88, + "probability": 0.9554 + }, + { + "start": 26777.02, + "end": 26779.33, + "probability": 0.7967 + }, + { + "start": 26780.26, + "end": 26781.06, + "probability": 0.6815 + }, + { + "start": 26782.6, + "end": 26783.42, + "probability": 0.9896 + }, + { + "start": 26785.38, + "end": 26789.79, + "probability": 0.8359 + }, + { + "start": 26790.82, + "end": 26794.14, + "probability": 0.9856 + }, + { + "start": 26796.32, + "end": 26797.08, + "probability": 0.8001 + }, + { + "start": 26797.7, + "end": 26799.8, + "probability": 0.7684 + }, + { + "start": 26802.0, + "end": 26804.3, + "probability": 0.9334 + }, + { + "start": 26805.72, + "end": 26808.46, + "probability": 0.9844 + }, + { + "start": 26809.68, + "end": 26813.94, + "probability": 0.7765 + }, + { + "start": 26814.98, + "end": 26822.84, + "probability": 0.825 + }, + { + "start": 26822.84, + "end": 26826.81, + "probability": 0.9777 + }, + { + "start": 26827.84, + "end": 26830.54, + "probability": 0.9513 + }, + { + "start": 26832.52, + "end": 26833.16, + "probability": 0.7558 + }, + { + "start": 26833.52, + "end": 26835.2, + "probability": 0.6281 + }, + { + "start": 26836.46, + "end": 26841.24, + "probability": 0.7688 + }, + { + "start": 26841.76, + "end": 26843.52, + "probability": 0.9642 + }, + { + "start": 26844.6, + "end": 26846.96, + "probability": 0.8784 + }, + { + "start": 26847.06, + "end": 26849.38, + "probability": 0.978 + }, + { + "start": 26850.06, + "end": 26851.18, + "probability": 0.8156 + }, + { + "start": 26851.68, + "end": 26853.12, + "probability": 0.8687 + }, + { + "start": 26854.38, + "end": 26856.72, + "probability": 0.9771 + }, + { + "start": 26857.27, + "end": 26858.4, + "probability": 0.0793 + }, + { + "start": 26858.42, + "end": 26860.54, + "probability": 0.9073 + }, + { + "start": 26861.02, + "end": 26863.0, + "probability": 0.6669 + }, + { + "start": 26863.38, + "end": 26864.9, + "probability": 0.975 + }, + { + "start": 26865.38, + "end": 26869.4, + "probability": 0.9751 + }, + { + "start": 26870.28, + "end": 26873.6, + "probability": 0.9589 + }, + { + "start": 26874.2, + "end": 26875.38, + "probability": 0.9893 + }, + { + "start": 26876.22, + "end": 26878.64, + "probability": 0.81 + }, + { + "start": 26878.8, + "end": 26880.76, + "probability": 0.7723 + }, + { + "start": 26880.96, + "end": 26882.14, + "probability": 0.8237 + }, + { + "start": 26883.2, + "end": 26884.16, + "probability": 0.8461 + }, + { + "start": 26884.7, + "end": 26885.88, + "probability": 0.9515 + }, + { + "start": 26885.96, + "end": 26886.24, + "probability": 0.9072 + }, + { + "start": 26887.74, + "end": 26894.44, + "probability": 0.9953 + }, + { + "start": 26894.76, + "end": 26895.44, + "probability": 0.5276 + }, + { + "start": 26895.74, + "end": 26898.54, + "probability": 0.843 + }, + { + "start": 26899.2, + "end": 26899.56, + "probability": 0.5777 + }, + { + "start": 26900.32, + "end": 26902.44, + "probability": 0.9961 + }, + { + "start": 26902.62, + "end": 26906.68, + "probability": 0.9659 + }, + { + "start": 26907.42, + "end": 26908.92, + "probability": 0.9883 + }, + { + "start": 26908.96, + "end": 26910.98, + "probability": 0.8307 + }, + { + "start": 26911.22, + "end": 26911.98, + "probability": 0.9786 + }, + { + "start": 26912.44, + "end": 26913.84, + "probability": 0.6113 + }, + { + "start": 26914.54, + "end": 26918.64, + "probability": 0.9507 + }, + { + "start": 26918.88, + "end": 26919.76, + "probability": 0.9409 + }, + { + "start": 26919.8, + "end": 26921.18, + "probability": 0.9404 + }, + { + "start": 26921.34, + "end": 26922.84, + "probability": 0.6915 + }, + { + "start": 26923.9, + "end": 26927.8, + "probability": 0.9009 + }, + { + "start": 26927.9, + "end": 26928.68, + "probability": 0.5388 + }, + { + "start": 26928.82, + "end": 26932.56, + "probability": 0.9669 + }, + { + "start": 26932.92, + "end": 26934.0, + "probability": 0.9629 + }, + { + "start": 26934.52, + "end": 26937.72, + "probability": 0.966 + }, + { + "start": 26937.8, + "end": 26938.92, + "probability": 0.7805 + }, + { + "start": 26939.64, + "end": 26941.38, + "probability": 0.732 + }, + { + "start": 26941.56, + "end": 26942.26, + "probability": 0.8019 + }, + { + "start": 26942.9, + "end": 26943.46, + "probability": 0.4587 + }, + { + "start": 26944.04, + "end": 26944.9, + "probability": 0.9839 + }, + { + "start": 26945.8, + "end": 26947.62, + "probability": 0.9689 + }, + { + "start": 26948.04, + "end": 26949.0, + "probability": 0.9006 + }, + { + "start": 26949.06, + "end": 26950.68, + "probability": 0.9966 + }, + { + "start": 26950.9, + "end": 26954.8, + "probability": 0.7819 + }, + { + "start": 26955.26, + "end": 26955.86, + "probability": 0.9813 + }, + { + "start": 26956.46, + "end": 26956.46, + "probability": 0.875 + }, + { + "start": 26957.22, + "end": 26957.72, + "probability": 0.7608 + }, + { + "start": 26958.48, + "end": 26960.44, + "probability": 0.9468 + }, + { + "start": 26960.84, + "end": 26964.26, + "probability": 0.9817 + }, + { + "start": 26965.0, + "end": 26967.78, + "probability": 0.706 + }, + { + "start": 26968.4, + "end": 26970.84, + "probability": 0.9575 + }, + { + "start": 26970.96, + "end": 26971.52, + "probability": 0.6554 + }, + { + "start": 26971.9, + "end": 26972.3, + "probability": 0.6538 + }, + { + "start": 26972.71, + "end": 26974.2, + "probability": 0.324 + }, + { + "start": 26974.44, + "end": 26974.7, + "probability": 0.7641 + }, + { + "start": 26974.8, + "end": 26974.94, + "probability": 0.436 + }, + { + "start": 26974.94, + "end": 26976.38, + "probability": 0.4152 + }, + { + "start": 26976.58, + "end": 26978.16, + "probability": 0.9785 + }, + { + "start": 26978.7, + "end": 26979.08, + "probability": 0.5502 + }, + { + "start": 26979.28, + "end": 26980.54, + "probability": 0.5301 + }, + { + "start": 26980.64, + "end": 26981.12, + "probability": 0.8867 + }, + { + "start": 26981.92, + "end": 26982.6, + "probability": 0.8041 + }, + { + "start": 26983.16, + "end": 26986.92, + "probability": 0.9487 + }, + { + "start": 26987.8, + "end": 26988.82, + "probability": 0.7414 + }, + { + "start": 26989.2, + "end": 26990.4, + "probability": 0.6704 + }, + { + "start": 26990.66, + "end": 26990.76, + "probability": 0.607 + }, + { + "start": 26990.82, + "end": 26991.62, + "probability": 0.8334 + }, + { + "start": 26991.7, + "end": 26993.12, + "probability": 0.8684 + }, + { + "start": 26993.14, + "end": 26993.78, + "probability": 0.7066 + }, + { + "start": 26994.68, + "end": 26996.56, + "probability": 0.9934 + }, + { + "start": 26996.74, + "end": 26999.14, + "probability": 0.9902 + }, + { + "start": 26999.28, + "end": 27000.02, + "probability": 0.882 + }, + { + "start": 27000.18, + "end": 27003.04, + "probability": 0.7882 + }, + { + "start": 27003.64, + "end": 27005.68, + "probability": 0.9905 + }, + { + "start": 27005.78, + "end": 27006.62, + "probability": 0.988 + }, + { + "start": 27006.88, + "end": 27007.72, + "probability": 0.8008 + }, + { + "start": 27007.96, + "end": 27009.2, + "probability": 0.9538 + }, + { + "start": 27009.66, + "end": 27012.02, + "probability": 0.8933 + }, + { + "start": 27012.44, + "end": 27013.76, + "probability": 0.859 + }, + { + "start": 27013.9, + "end": 27016.04, + "probability": 0.9556 + }, + { + "start": 27016.56, + "end": 27018.46, + "probability": 0.9913 + }, + { + "start": 27018.98, + "end": 27019.6, + "probability": 0.6618 + }, + { + "start": 27019.6, + "end": 27020.34, + "probability": 0.6934 + }, + { + "start": 27020.74, + "end": 27021.74, + "probability": 0.984 + }, + { + "start": 27022.26, + "end": 27024.78, + "probability": 0.9042 + }, + { + "start": 27024.88, + "end": 27025.1, + "probability": 0.8069 + }, + { + "start": 27025.28, + "end": 27026.26, + "probability": 0.8541 + }, + { + "start": 27027.2, + "end": 27030.16, + "probability": 0.9728 + }, + { + "start": 27032.64, + "end": 27032.78, + "probability": 0.474 + }, + { + "start": 27032.78, + "end": 27032.78, + "probability": 0.0025 + }, + { + "start": 27059.28, + "end": 27060.32, + "probability": 0.4399 + }, + { + "start": 27060.86, + "end": 27063.24, + "probability": 0.8796 + }, + { + "start": 27063.24, + "end": 27065.94, + "probability": 0.9728 + }, + { + "start": 27067.02, + "end": 27071.74, + "probability": 0.8341 + }, + { + "start": 27072.5, + "end": 27076.16, + "probability": 0.9926 + }, + { + "start": 27076.6, + "end": 27077.88, + "probability": 0.9866 + }, + { + "start": 27078.72, + "end": 27082.38, + "probability": 0.991 + }, + { + "start": 27082.5, + "end": 27084.26, + "probability": 0.994 + }, + { + "start": 27085.08, + "end": 27087.74, + "probability": 0.9865 + }, + { + "start": 27088.9, + "end": 27090.15, + "probability": 0.6295 + }, + { + "start": 27091.38, + "end": 27091.62, + "probability": 0.6677 + }, + { + "start": 27092.36, + "end": 27093.6, + "probability": 0.8111 + }, + { + "start": 27093.66, + "end": 27096.94, + "probability": 0.9824 + }, + { + "start": 27097.56, + "end": 27098.52, + "probability": 0.8899 + }, + { + "start": 27099.24, + "end": 27102.2, + "probability": 0.8392 + }, + { + "start": 27102.2, + "end": 27105.2, + "probability": 0.9902 + }, + { + "start": 27105.9, + "end": 27108.44, + "probability": 0.9944 + }, + { + "start": 27109.52, + "end": 27113.58, + "probability": 0.9258 + }, + { + "start": 27113.84, + "end": 27118.26, + "probability": 0.9863 + }, + { + "start": 27118.88, + "end": 27120.96, + "probability": 0.9816 + }, + { + "start": 27121.92, + "end": 27124.82, + "probability": 0.8142 + }, + { + "start": 27125.4, + "end": 27129.28, + "probability": 0.9432 + }, + { + "start": 27129.28, + "end": 27131.9, + "probability": 0.9709 + }, + { + "start": 27132.8, + "end": 27134.82, + "probability": 0.9972 + }, + { + "start": 27136.24, + "end": 27137.73, + "probability": 0.7511 + }, + { + "start": 27137.88, + "end": 27139.28, + "probability": 0.8613 + }, + { + "start": 27139.34, + "end": 27142.02, + "probability": 0.9189 + }, + { + "start": 27142.16, + "end": 27142.88, + "probability": 0.8148 + }, + { + "start": 27143.04, + "end": 27143.38, + "probability": 0.5785 + }, + { + "start": 27143.98, + "end": 27146.66, + "probability": 0.9731 + }, + { + "start": 27147.22, + "end": 27151.84, + "probability": 0.9758 + }, + { + "start": 27152.3, + "end": 27152.56, + "probability": 0.7674 + }, + { + "start": 27153.62, + "end": 27154.1, + "probability": 0.7321 + }, + { + "start": 27154.26, + "end": 27155.86, + "probability": 0.7938 + }, + { + "start": 27156.44, + "end": 27157.1, + "probability": 0.6773 + }, + { + "start": 27157.18, + "end": 27157.63, + "probability": 0.9447 + }, + { + "start": 27159.8, + "end": 27161.58, + "probability": 0.9077 + }, + { + "start": 27162.76, + "end": 27163.32, + "probability": 0.4296 + }, + { + "start": 27163.34, + "end": 27164.2, + "probability": 0.8478 + }, + { + "start": 27164.52, + "end": 27165.68, + "probability": 0.8383 + }, + { + "start": 27166.1, + "end": 27168.88, + "probability": 0.9478 + }, + { + "start": 27169.26, + "end": 27169.48, + "probability": 0.1165 + }, + { + "start": 27172.26, + "end": 27172.72, + "probability": 0.5469 + }, + { + "start": 27172.78, + "end": 27172.78, + "probability": 0.5555 + }, + { + "start": 27172.78, + "end": 27173.0, + "probability": 0.3402 + }, + { + "start": 27173.6, + "end": 27175.24, + "probability": 0.7446 + }, + { + "start": 27176.14, + "end": 27180.58, + "probability": 0.354 + }, + { + "start": 27180.78, + "end": 27181.3, + "probability": 0.1372 + }, + { + "start": 27181.84, + "end": 27186.73, + "probability": 0.4384 + }, + { + "start": 27188.68, + "end": 27188.8, + "probability": 0.1676 + }, + { + "start": 27188.8, + "end": 27190.42, + "probability": 0.0149 + }, + { + "start": 27190.42, + "end": 27190.42, + "probability": 0.0314 + }, + { + "start": 27190.42, + "end": 27190.42, + "probability": 0.3544 + }, + { + "start": 27190.42, + "end": 27191.93, + "probability": 0.0981 + }, + { + "start": 27192.52, + "end": 27195.36, + "probability": 0.3681 + }, + { + "start": 27195.98, + "end": 27197.7, + "probability": 0.7846 + }, + { + "start": 27200.28, + "end": 27201.58, + "probability": 0.4808 + }, + { + "start": 27202.72, + "end": 27203.96, + "probability": 0.8111 + }, + { + "start": 27205.1, + "end": 27208.6, + "probability": 0.9594 + }, + { + "start": 27212.5, + "end": 27212.5, + "probability": 0.3494 + }, + { + "start": 27212.5, + "end": 27214.62, + "probability": 0.3493 + }, + { + "start": 27215.52, + "end": 27222.0, + "probability": 0.8627 + }, + { + "start": 27222.56, + "end": 27222.9, + "probability": 0.6059 + }, + { + "start": 27225.4, + "end": 27230.16, + "probability": 0.4729 + }, + { + "start": 27230.16, + "end": 27230.16, + "probability": 0.2071 + }, + { + "start": 27230.16, + "end": 27232.42, + "probability": 0.687 + }, + { + "start": 27234.54, + "end": 27237.34, + "probability": 0.6179 + }, + { + "start": 27238.4, + "end": 27239.54, + "probability": 0.0039 + }, + { + "start": 27266.4, + "end": 27266.56, + "probability": 0.0319 + }, + { + "start": 27266.56, + "end": 27268.48, + "probability": 0.635 + }, + { + "start": 27272.74, + "end": 27273.18, + "probability": 0.8492 + }, + { + "start": 27275.26, + "end": 27277.38, + "probability": 0.7364 + }, + { + "start": 27278.54, + "end": 27281.38, + "probability": 0.8901 + }, + { + "start": 27282.22, + "end": 27284.36, + "probability": 0.5729 + }, + { + "start": 27287.1, + "end": 27287.38, + "probability": 0.044 + }, + { + "start": 27287.42, + "end": 27292.9, + "probability": 0.8492 + }, + { + "start": 27293.56, + "end": 27297.14, + "probability": 0.8337 + }, + { + "start": 27298.14, + "end": 27306.06, + "probability": 0.9915 + }, + { + "start": 27306.76, + "end": 27307.38, + "probability": 0.7878 + }, + { + "start": 27307.5, + "end": 27308.32, + "probability": 0.6762 + }, + { + "start": 27308.82, + "end": 27310.7, + "probability": 0.9454 + }, + { + "start": 27310.82, + "end": 27312.1, + "probability": 0.992 + }, + { + "start": 27312.9, + "end": 27316.26, + "probability": 0.979 + }, + { + "start": 27316.26, + "end": 27320.36, + "probability": 0.9839 + }, + { + "start": 27320.52, + "end": 27321.3, + "probability": 0.8909 + }, + { + "start": 27323.18, + "end": 27324.24, + "probability": 0.6131 + }, + { + "start": 27324.4, + "end": 27326.62, + "probability": 0.9814 + }, + { + "start": 27327.08, + "end": 27328.98, + "probability": 0.7474 + }, + { + "start": 27329.94, + "end": 27332.42, + "probability": 0.9813 + }, + { + "start": 27333.04, + "end": 27334.7, + "probability": 0.9952 + }, + { + "start": 27334.92, + "end": 27336.02, + "probability": 0.916 + }, + { + "start": 27336.18, + "end": 27337.4, + "probability": 0.8681 + }, + { + "start": 27338.02, + "end": 27343.8, + "probability": 0.9579 + }, + { + "start": 27343.8, + "end": 27349.66, + "probability": 0.994 + }, + { + "start": 27349.84, + "end": 27350.66, + "probability": 0.5187 + }, + { + "start": 27350.74, + "end": 27351.32, + "probability": 0.4621 + }, + { + "start": 27351.76, + "end": 27353.86, + "probability": 0.9406 + }, + { + "start": 27354.36, + "end": 27356.2, + "probability": 0.9523 + }, + { + "start": 27356.3, + "end": 27359.42, + "probability": 0.8832 + }, + { + "start": 27359.94, + "end": 27362.88, + "probability": 0.9964 + }, + { + "start": 27362.88, + "end": 27366.18, + "probability": 0.9896 + }, + { + "start": 27366.94, + "end": 27370.72, + "probability": 0.8359 + }, + { + "start": 27371.58, + "end": 27374.48, + "probability": 0.9894 + }, + { + "start": 27375.48, + "end": 27377.76, + "probability": 0.9771 + }, + { + "start": 27377.78, + "end": 27380.52, + "probability": 0.8774 + }, + { + "start": 27380.52, + "end": 27383.92, + "probability": 0.9926 + }, + { + "start": 27384.16, + "end": 27386.02, + "probability": 0.96 + }, + { + "start": 27386.14, + "end": 27387.14, + "probability": 0.8289 + }, + { + "start": 27387.28, + "end": 27388.92, + "probability": 0.8853 + }, + { + "start": 27389.02, + "end": 27389.48, + "probability": 0.7517 + }, + { + "start": 27389.76, + "end": 27394.37, + "probability": 0.979 + }, + { + "start": 27394.7, + "end": 27396.82, + "probability": 0.923 + }, + { + "start": 27397.02, + "end": 27397.72, + "probability": 0.8051 + }, + { + "start": 27398.14, + "end": 27400.84, + "probability": 0.9974 + }, + { + "start": 27400.86, + "end": 27403.1, + "probability": 0.9972 + }, + { + "start": 27404.8, + "end": 27407.76, + "probability": 0.7834 + }, + { + "start": 27408.36, + "end": 27410.92, + "probability": 0.9884 + }, + { + "start": 27410.92, + "end": 27414.42, + "probability": 0.9904 + }, + { + "start": 27414.88, + "end": 27415.44, + "probability": 0.3705 + }, + { + "start": 27415.62, + "end": 27421.93, + "probability": 0.9764 + }, + { + "start": 27422.12, + "end": 27424.42, + "probability": 0.9874 + }, + { + "start": 27424.64, + "end": 27426.54, + "probability": 0.9946 + }, + { + "start": 27426.8, + "end": 27428.72, + "probability": 0.9352 + }, + { + "start": 27429.2, + "end": 27430.0, + "probability": 0.6473 + }, + { + "start": 27430.08, + "end": 27433.12, + "probability": 0.9774 + }, + { + "start": 27433.82, + "end": 27437.36, + "probability": 0.96 + }, + { + "start": 27437.92, + "end": 27439.8, + "probability": 0.9697 + }, + { + "start": 27439.9, + "end": 27445.3, + "probability": 0.9861 + }, + { + "start": 27445.7, + "end": 27448.05, + "probability": 0.9991 + }, + { + "start": 27448.68, + "end": 27449.52, + "probability": 0.8115 + }, + { + "start": 27452.14, + "end": 27455.35, + "probability": 0.9332 + }, + { + "start": 27455.52, + "end": 27459.28, + "probability": 0.9757 + }, + { + "start": 27459.58, + "end": 27461.92, + "probability": 0.9851 + }, + { + "start": 27462.16, + "end": 27465.58, + "probability": 0.9933 + }, + { + "start": 27465.58, + "end": 27468.5, + "probability": 0.9854 + }, + { + "start": 27468.6, + "end": 27471.0, + "probability": 0.995 + }, + { + "start": 27471.42, + "end": 27473.92, + "probability": 0.7887 + }, + { + "start": 27474.84, + "end": 27476.1, + "probability": 0.833 + }, + { + "start": 27476.98, + "end": 27478.6, + "probability": 0.9878 + }, + { + "start": 27478.78, + "end": 27479.42, + "probability": 0.8286 + }, + { + "start": 27479.66, + "end": 27480.84, + "probability": 0.8528 + }, + { + "start": 27482.36, + "end": 27483.28, + "probability": 0.9656 + }, + { + "start": 27492.62, + "end": 27494.9, + "probability": 0.7588 + }, + { + "start": 27494.9, + "end": 27495.22, + "probability": 0.5298 + }, + { + "start": 27496.38, + "end": 27497.22, + "probability": 0.78 + }, + { + "start": 27499.7, + "end": 27503.56, + "probability": 0.6742 + }, + { + "start": 27503.78, + "end": 27504.4, + "probability": 0.8708 + }, + { + "start": 27507.42, + "end": 27508.88, + "probability": 0.9991 + }, + { + "start": 27509.66, + "end": 27517.26, + "probability": 0.9902 + }, + { + "start": 27518.06, + "end": 27520.66, + "probability": 0.6831 + }, + { + "start": 27522.74, + "end": 27532.98, + "probability": 0.9697 + }, + { + "start": 27533.18, + "end": 27535.3, + "probability": 0.8016 + }, + { + "start": 27535.72, + "end": 27537.38, + "probability": 0.8711 + }, + { + "start": 27539.4, + "end": 27541.3, + "probability": 0.9193 + }, + { + "start": 27542.76, + "end": 27543.12, + "probability": 0.8327 + }, + { + "start": 27543.96, + "end": 27543.96, + "probability": 0.6326 + }, + { + "start": 27544.42, + "end": 27551.0, + "probability": 0.2516 + }, + { + "start": 27552.26, + "end": 27555.5, + "probability": 0.8174 + }, + { + "start": 27557.36, + "end": 27561.66, + "probability": 0.9634 + }, + { + "start": 27563.1, + "end": 27564.94, + "probability": 0.8979 + }, + { + "start": 27568.48, + "end": 27574.5, + "probability": 0.9868 + }, + { + "start": 27575.7, + "end": 27579.82, + "probability": 0.9001 + }, + { + "start": 27580.36, + "end": 27586.32, + "probability": 0.9894 + }, + { + "start": 27588.1, + "end": 27588.44, + "probability": 0.5195 + }, + { + "start": 27588.64, + "end": 27590.68, + "probability": 0.8447 + }, + { + "start": 27591.1, + "end": 27593.6, + "probability": 0.9123 + }, + { + "start": 27593.74, + "end": 27594.88, + "probability": 0.8788 + }, + { + "start": 27596.04, + "end": 27597.02, + "probability": 0.9591 + }, + { + "start": 27597.46, + "end": 27597.92, + "probability": 0.9568 + }, + { + "start": 27598.84, + "end": 27600.56, + "probability": 0.9897 + }, + { + "start": 27601.42, + "end": 27606.16, + "probability": 0.8723 + }, + { + "start": 27607.34, + "end": 27613.0, + "probability": 0.9945 + }, + { + "start": 27614.32, + "end": 27615.64, + "probability": 0.9011 + }, + { + "start": 27616.58, + "end": 27623.7, + "probability": 0.9972 + }, + { + "start": 27624.48, + "end": 27625.74, + "probability": 0.9306 + }, + { + "start": 27626.82, + "end": 27629.56, + "probability": 0.4615 + }, + { + "start": 27630.32, + "end": 27632.82, + "probability": 0.7532 + }, + { + "start": 27634.7, + "end": 27637.2, + "probability": 0.79 + }, + { + "start": 27637.24, + "end": 27642.8, + "probability": 0.9367 + }, + { + "start": 27643.48, + "end": 27644.16, + "probability": 0.9363 + }, + { + "start": 27644.7, + "end": 27645.3, + "probability": 0.7335 + }, + { + "start": 27647.5, + "end": 27653.64, + "probability": 0.8721 + }, + { + "start": 27653.82, + "end": 27656.71, + "probability": 0.9751 + }, + { + "start": 27657.3, + "end": 27664.42, + "probability": 0.9956 + }, + { + "start": 27665.0, + "end": 27668.86, + "probability": 0.7434 + }, + { + "start": 27668.94, + "end": 27674.81, + "probability": 0.92 + }, + { + "start": 27675.62, + "end": 27677.72, + "probability": 0.9589 + }, + { + "start": 27678.56, + "end": 27679.04, + "probability": 0.4249 + }, + { + "start": 27679.68, + "end": 27682.46, + "probability": 0.8534 + }, + { + "start": 27683.52, + "end": 27685.98, + "probability": 0.7627 + }, + { + "start": 27689.64, + "end": 27691.02, + "probability": 0.97 + }, + { + "start": 27692.36, + "end": 27694.62, + "probability": 0.8221 + }, + { + "start": 27695.98, + "end": 27696.92, + "probability": 0.8948 + }, + { + "start": 27698.58, + "end": 27701.18, + "probability": 0.9829 + }, + { + "start": 27705.84, + "end": 27707.44, + "probability": 0.3407 + }, + { + "start": 27708.56, + "end": 27709.36, + "probability": 0.617 + }, + { + "start": 27710.3, + "end": 27712.39, + "probability": 0.9673 + }, + { + "start": 27713.2, + "end": 27713.86, + "probability": 0.9458 + }, + { + "start": 27714.48, + "end": 27721.26, + "probability": 0.9683 + }, + { + "start": 27722.66, + "end": 27722.92, + "probability": 0.7925 + }, + { + "start": 27725.18, + "end": 27726.84, + "probability": 0.7993 + }, + { + "start": 27727.62, + "end": 27728.4, + "probability": 0.8269 + }, + { + "start": 27729.18, + "end": 27729.82, + "probability": 0.9034 + }, + { + "start": 27730.66, + "end": 27731.7, + "probability": 0.6736 + }, + { + "start": 27733.48, + "end": 27734.68, + "probability": 0.998 + }, + { + "start": 27735.92, + "end": 27736.7, + "probability": 0.9552 + }, + { + "start": 27737.6, + "end": 27738.58, + "probability": 0.9803 + }, + { + "start": 27743.52, + "end": 27746.48, + "probability": 0.9917 + }, + { + "start": 27747.7, + "end": 27748.6, + "probability": 0.8042 + }, + { + "start": 27750.52, + "end": 27751.32, + "probability": 0.6297 + }, + { + "start": 27752.94, + "end": 27754.72, + "probability": 0.9626 + }, + { + "start": 27755.6, + "end": 27757.14, + "probability": 0.5063 + }, + { + "start": 27757.94, + "end": 27759.38, + "probability": 0.9377 + }, + { + "start": 27760.32, + "end": 27762.04, + "probability": 0.9194 + }, + { + "start": 27763.96, + "end": 27766.04, + "probability": 0.9774 + }, + { + "start": 27767.44, + "end": 27768.78, + "probability": 0.9237 + }, + { + "start": 27770.42, + "end": 27773.92, + "probability": 0.9634 + }, + { + "start": 27774.72, + "end": 27777.68, + "probability": 0.7108 + }, + { + "start": 27779.5, + "end": 27784.22, + "probability": 0.9787 + }, + { + "start": 27786.18, + "end": 27790.38, + "probability": 0.5367 + }, + { + "start": 27790.68, + "end": 27793.32, + "probability": 0.9087 + }, + { + "start": 27794.52, + "end": 27797.2, + "probability": 0.8267 + }, + { + "start": 27798.36, + "end": 27799.6, + "probability": 0.5914 + }, + { + "start": 27799.68, + "end": 27801.66, + "probability": 0.6337 + }, + { + "start": 27802.7, + "end": 27803.1, + "probability": 0.9292 + }, + { + "start": 27820.2, + "end": 27820.82, + "probability": 0.4036 + }, + { + "start": 27821.34, + "end": 27821.76, + "probability": 0.7415 + }, + { + "start": 27824.3, + "end": 27825.82, + "probability": 0.9232 + }, + { + "start": 27826.22, + "end": 27828.48, + "probability": 0.9638 + }, + { + "start": 27828.76, + "end": 27829.64, + "probability": 0.7856 + }, + { + "start": 27831.04, + "end": 27834.52, + "probability": 0.8866 + }, + { + "start": 27834.8, + "end": 27836.76, + "probability": 0.9977 + }, + { + "start": 27837.28, + "end": 27838.36, + "probability": 0.8246 + }, + { + "start": 27839.24, + "end": 27841.54, + "probability": 0.7893 + }, + { + "start": 27841.54, + "end": 27844.62, + "probability": 0.9411 + }, + { + "start": 27845.5, + "end": 27846.24, + "probability": 0.9398 + }, + { + "start": 27846.64, + "end": 27848.2, + "probability": 0.7037 + }, + { + "start": 27848.66, + "end": 27849.68, + "probability": 0.4973 + }, + { + "start": 27849.86, + "end": 27850.82, + "probability": 0.9503 + }, + { + "start": 27852.24, + "end": 27852.85, + "probability": 0.2969 + }, + { + "start": 27854.64, + "end": 27855.36, + "probability": 0.9883 + }, + { + "start": 27856.34, + "end": 27862.34, + "probability": 0.9844 + }, + { + "start": 27863.24, + "end": 27867.08, + "probability": 0.7183 + }, + { + "start": 27868.06, + "end": 27870.74, + "probability": 0.9607 + }, + { + "start": 27871.98, + "end": 27877.28, + "probability": 0.9688 + }, + { + "start": 27877.8, + "end": 27882.04, + "probability": 0.8311 + }, + { + "start": 27882.62, + "end": 27888.26, + "probability": 0.6502 + }, + { + "start": 27889.48, + "end": 27894.48, + "probability": 0.9149 + }, + { + "start": 27894.9, + "end": 27895.28, + "probability": 0.0639 + }, + { + "start": 27895.32, + "end": 27897.14, + "probability": 0.8544 + }, + { + "start": 27897.44, + "end": 27902.8, + "probability": 0.8962 + }, + { + "start": 27903.64, + "end": 27903.74, + "probability": 0.2884 + }, + { + "start": 27903.74, + "end": 27903.74, + "probability": 0.1915 + }, + { + "start": 27903.74, + "end": 27905.2, + "probability": 0.7795 + }, + { + "start": 27905.2, + "end": 27906.96, + "probability": 0.986 + }, + { + "start": 27907.28, + "end": 27909.28, + "probability": 0.9646 + }, + { + "start": 27909.62, + "end": 27913.46, + "probability": 0.9517 + }, + { + "start": 27913.82, + "end": 27914.62, + "probability": 0.9563 + }, + { + "start": 27914.94, + "end": 27916.78, + "probability": 0.6145 + }, + { + "start": 27917.16, + "end": 27918.78, + "probability": 0.7919 + }, + { + "start": 27920.14, + "end": 27928.8, + "probability": 0.9926 + }, + { + "start": 27929.66, + "end": 27932.82, + "probability": 0.9374 + }, + { + "start": 27933.06, + "end": 27934.19, + "probability": 0.9084 + }, + { + "start": 27934.96, + "end": 27938.36, + "probability": 0.7793 + }, + { + "start": 27939.02, + "end": 27941.76, + "probability": 0.8107 + }, + { + "start": 27942.34, + "end": 27946.22, + "probability": 0.9932 + }, + { + "start": 27946.5, + "end": 27948.12, + "probability": 0.8911 + }, + { + "start": 27948.24, + "end": 27949.98, + "probability": 0.8993 + }, + { + "start": 27950.72, + "end": 27954.74, + "probability": 0.9094 + }, + { + "start": 27955.52, + "end": 27960.12, + "probability": 0.9849 + }, + { + "start": 27960.88, + "end": 27963.2, + "probability": 0.9812 + }, + { + "start": 27963.64, + "end": 27964.46, + "probability": 0.946 + }, + { + "start": 27964.72, + "end": 27965.12, + "probability": 0.6549 + }, + { + "start": 27965.32, + "end": 27966.86, + "probability": 0.9806 + }, + { + "start": 27966.98, + "end": 27968.32, + "probability": 0.7323 + }, + { + "start": 27968.96, + "end": 27969.82, + "probability": 0.9797 + }, + { + "start": 27971.06, + "end": 27972.44, + "probability": 0.9005 + }, + { + "start": 27973.08, + "end": 27980.28, + "probability": 0.9902 + }, + { + "start": 27980.92, + "end": 27983.72, + "probability": 0.9382 + }, + { + "start": 27983.88, + "end": 27983.98, + "probability": 0.3571 + }, + { + "start": 27984.2, + "end": 27985.2, + "probability": 0.8875 + }, + { + "start": 27985.48, + "end": 27987.28, + "probability": 0.8427 + }, + { + "start": 27987.56, + "end": 27989.44, + "probability": 0.7224 + }, + { + "start": 27989.88, + "end": 27991.27, + "probability": 0.8272 + }, + { + "start": 27991.78, + "end": 27994.19, + "probability": 0.9826 + }, + { + "start": 27997.12, + "end": 28001.78, + "probability": 0.6644 + }, + { + "start": 28002.36, + "end": 28006.68, + "probability": 0.9226 + }, + { + "start": 28006.68, + "end": 28011.62, + "probability": 0.8846 + }, + { + "start": 28011.86, + "end": 28013.46, + "probability": 0.9149 + }, + { + "start": 28013.74, + "end": 28014.32, + "probability": 0.5786 + }, + { + "start": 28015.12, + "end": 28015.61, + "probability": 0.9072 + }, + { + "start": 28016.74, + "end": 28016.9, + "probability": 0.0164 + }, + { + "start": 28016.9, + "end": 28021.24, + "probability": 0.7455 + }, + { + "start": 28021.24, + "end": 28025.06, + "probability": 0.9736 + }, + { + "start": 28025.38, + "end": 28026.17, + "probability": 0.8373 + }, + { + "start": 28026.86, + "end": 28027.44, + "probability": 0.9165 + }, + { + "start": 28028.4, + "end": 28029.46, + "probability": 0.6389 + }, + { + "start": 28030.14, + "end": 28032.38, + "probability": 0.7903 + }, + { + "start": 28032.58, + "end": 28037.18, + "probability": 0.9028 + }, + { + "start": 28037.32, + "end": 28038.18, + "probability": 0.9709 + }, + { + "start": 28038.24, + "end": 28039.56, + "probability": 0.7415 + }, + { + "start": 28039.62, + "end": 28040.52, + "probability": 0.8277 + }, + { + "start": 28040.68, + "end": 28041.5, + "probability": 0.9455 + }, + { + "start": 28041.56, + "end": 28042.4, + "probability": 0.9627 + }, + { + "start": 28042.6, + "end": 28043.34, + "probability": 0.4479 + }, + { + "start": 28043.66, + "end": 28043.82, + "probability": 0.0276 + }, + { + "start": 28043.82, + "end": 28043.82, + "probability": 0.0572 + }, + { + "start": 28043.82, + "end": 28048.48, + "probability": 0.7666 + }, + { + "start": 28049.02, + "end": 28052.02, + "probability": 0.888 + }, + { + "start": 28052.36, + "end": 28054.06, + "probability": 0.8657 + }, + { + "start": 28054.56, + "end": 28057.84, + "probability": 0.9896 + }, + { + "start": 28058.78, + "end": 28061.62, + "probability": 0.9421 + }, + { + "start": 28062.02, + "end": 28063.56, + "probability": 0.834 + }, + { + "start": 28064.02, + "end": 28068.86, + "probability": 0.9978 + }, + { + "start": 28069.58, + "end": 28072.46, + "probability": 0.72 + }, + { + "start": 28073.08, + "end": 28075.78, + "probability": 0.7887 + }, + { + "start": 28075.78, + "end": 28078.68, + "probability": 0.9405 + }, + { + "start": 28079.2, + "end": 28082.68, + "probability": 0.9283 + }, + { + "start": 28082.96, + "end": 28084.74, + "probability": 0.8855 + }, + { + "start": 28085.56, + "end": 28087.93, + "probability": 0.9883 + }, + { + "start": 28088.64, + "end": 28091.88, + "probability": 0.9543 + }, + { + "start": 28092.28, + "end": 28096.36, + "probability": 0.9097 + }, + { + "start": 28096.36, + "end": 28100.18, + "probability": 0.9549 + }, + { + "start": 28100.68, + "end": 28107.96, + "probability": 0.9867 + }, + { + "start": 28108.56, + "end": 28113.68, + "probability": 0.9494 + }, + { + "start": 28113.84, + "end": 28118.28, + "probability": 0.8763 + }, + { + "start": 28118.76, + "end": 28121.32, + "probability": 0.8445 + }, + { + "start": 28122.02, + "end": 28122.88, + "probability": 0.8324 + }, + { + "start": 28123.08, + "end": 28124.44, + "probability": 0.8846 + }, + { + "start": 28124.58, + "end": 28126.28, + "probability": 0.9707 + }, + { + "start": 28126.6, + "end": 28128.68, + "probability": 0.9561 + }, + { + "start": 28129.06, + "end": 28134.18, + "probability": 0.0162 + }, + { + "start": 28136.48, + "end": 28136.68, + "probability": 0.0718 + }, + { + "start": 28136.68, + "end": 28136.68, + "probability": 0.0188 + }, + { + "start": 28136.68, + "end": 28136.68, + "probability": 0.0163 + }, + { + "start": 28136.68, + "end": 28137.02, + "probability": 0.0096 + }, + { + "start": 28137.02, + "end": 28137.02, + "probability": 0.0585 + }, + { + "start": 28137.02, + "end": 28137.02, + "probability": 0.2398 + }, + { + "start": 28137.02, + "end": 28137.02, + "probability": 0.1107 + }, + { + "start": 28137.02, + "end": 28142.12, + "probability": 0.4293 + }, + { + "start": 28142.52, + "end": 28143.38, + "probability": 0.1249 + }, + { + "start": 28145.42, + "end": 28147.98, + "probability": 0.9937 + }, + { + "start": 28148.74, + "end": 28151.38, + "probability": 0.812 + }, + { + "start": 28151.8, + "end": 28155.14, + "probability": 0.9979 + }, + { + "start": 28155.34, + "end": 28157.86, + "probability": 0.9884 + }, + { + "start": 28158.2, + "end": 28160.48, + "probability": 0.8316 + }, + { + "start": 28161.22, + "end": 28162.42, + "probability": 0.8516 + }, + { + "start": 28162.96, + "end": 28165.78, + "probability": 0.5983 + }, + { + "start": 28166.2, + "end": 28167.62, + "probability": 0.9895 + }, + { + "start": 28167.7, + "end": 28168.52, + "probability": 0.7941 + }, + { + "start": 28168.86, + "end": 28171.03, + "probability": 0.9719 + }, + { + "start": 28172.0, + "end": 28172.56, + "probability": 0.7753 + }, + { + "start": 28173.6, + "end": 28176.58, + "probability": 0.7642 + }, + { + "start": 28176.78, + "end": 28177.34, + "probability": 0.4709 + }, + { + "start": 28177.9, + "end": 28178.18, + "probability": 0.3113 + }, + { + "start": 28178.18, + "end": 28179.34, + "probability": 0.9512 + }, + { + "start": 28180.22, + "end": 28180.78, + "probability": 0.6612 + }, + { + "start": 28181.4, + "end": 28182.46, + "probability": 0.2707 + }, + { + "start": 28184.26, + "end": 28185.51, + "probability": 0.8901 + }, + { + "start": 28186.42, + "end": 28189.88, + "probability": 0.9766 + }, + { + "start": 28190.06, + "end": 28191.33, + "probability": 0.8276 + }, + { + "start": 28192.36, + "end": 28196.58, + "probability": 0.5463 + }, + { + "start": 28197.78, + "end": 28197.78, + "probability": 0.0919 + }, + { + "start": 28200.5, + "end": 28201.24, + "probability": 0.3799 + }, + { + "start": 28201.58, + "end": 28202.76, + "probability": 0.8044 + }, + { + "start": 28202.9, + "end": 28205.62, + "probability": 0.9587 + }, + { + "start": 28206.4, + "end": 28207.34, + "probability": 0.8518 + }, + { + "start": 28208.1, + "end": 28209.56, + "probability": 0.8512 + }, + { + "start": 28211.96, + "end": 28212.44, + "probability": 0.8838 + }, + { + "start": 28212.66, + "end": 28213.2, + "probability": 0.56 + }, + { + "start": 28214.92, + "end": 28216.3, + "probability": 0.8228 + }, + { + "start": 28216.56, + "end": 28218.88, + "probability": 0.9882 + }, + { + "start": 28219.2, + "end": 28220.18, + "probability": 0.6177 + }, + { + "start": 28220.3, + "end": 28220.9, + "probability": 0.7764 + }, + { + "start": 28221.48, + "end": 28224.18, + "probability": 0.8578 + }, + { + "start": 28224.78, + "end": 28226.3, + "probability": 0.6047 + }, + { + "start": 28226.72, + "end": 28228.04, + "probability": 0.97 + }, + { + "start": 28228.46, + "end": 28229.7, + "probability": 0.9704 + }, + { + "start": 28230.18, + "end": 28230.74, + "probability": 0.9543 + }, + { + "start": 28231.32, + "end": 28236.18, + "probability": 0.0343 + }, + { + "start": 28252.38, + "end": 28252.54, + "probability": 0.1294 + }, + { + "start": 28252.54, + "end": 28255.38, + "probability": 0.383 + }, + { + "start": 28255.72, + "end": 28257.16, + "probability": 0.7114 + }, + { + "start": 28261.58, + "end": 28263.16, + "probability": 0.8965 + }, + { + "start": 28264.84, + "end": 28268.16, + "probability": 0.9841 + }, + { + "start": 28269.28, + "end": 28269.88, + "probability": 0.6042 + }, + { + "start": 28272.78, + "end": 28275.88, + "probability": 0.768 + }, + { + "start": 28277.08, + "end": 28279.52, + "probability": 0.7483 + }, + { + "start": 28280.12, + "end": 28281.7, + "probability": 0.8929 + }, + { + "start": 28282.24, + "end": 28283.86, + "probability": 0.9399 + }, + { + "start": 28284.46, + "end": 28287.14, + "probability": 0.8501 + }, + { + "start": 28289.26, + "end": 28292.7, + "probability": 0.733 + }, + { + "start": 28294.26, + "end": 28295.9, + "probability": 0.7178 + }, + { + "start": 28301.5, + "end": 28302.54, + "probability": 0.7929 + }, + { + "start": 28304.22, + "end": 28306.18, + "probability": 0.7756 + }, + { + "start": 28306.86, + "end": 28307.62, + "probability": 0.3033 + }, + { + "start": 28313.66, + "end": 28315.5, + "probability": 0.7653 + }, + { + "start": 28316.98, + "end": 28320.32, + "probability": 0.7332 + }, + { + "start": 28321.5, + "end": 28321.96, + "probability": 0.9451 + }, + { + "start": 28322.66, + "end": 28324.78, + "probability": 0.9174 + }, + { + "start": 28325.64, + "end": 28327.56, + "probability": 0.6705 + }, + { + "start": 28328.72, + "end": 28330.42, + "probability": 0.7401 + }, + { + "start": 28330.98, + "end": 28333.22, + "probability": 0.653 + }, + { + "start": 28333.58, + "end": 28333.68, + "probability": 0.5024 + }, + { + "start": 28333.68, + "end": 28337.68, + "probability": 0.9923 + }, + { + "start": 28337.78, + "end": 28340.74, + "probability": 0.922 + }, + { + "start": 28341.32, + "end": 28341.68, + "probability": 0.5415 + }, + { + "start": 28341.88, + "end": 28344.78, + "probability": 0.9663 + }, + { + "start": 28345.34, + "end": 28349.88, + "probability": 0.9955 + }, + { + "start": 28350.4, + "end": 28352.92, + "probability": 0.9629 + }, + { + "start": 28353.6, + "end": 28354.06, + "probability": 0.1889 + }, + { + "start": 28354.56, + "end": 28355.1, + "probability": 0.6915 + }, + { + "start": 28355.9, + "end": 28359.29, + "probability": 0.7575 + }, + { + "start": 28374.57, + "end": 28379.28, + "probability": 0.6206 + }, + { + "start": 28379.4, + "end": 28381.24, + "probability": 0.8398 + }, + { + "start": 28382.16, + "end": 28385.82, + "probability": 0.9927 + }, + { + "start": 28386.72, + "end": 28391.28, + "probability": 0.9793 + }, + { + "start": 28391.88, + "end": 28393.46, + "probability": 0.9796 + }, + { + "start": 28394.52, + "end": 28397.3, + "probability": 0.998 + }, + { + "start": 28397.5, + "end": 28402.44, + "probability": 0.8625 + }, + { + "start": 28403.1, + "end": 28404.04, + "probability": 0.8048 + }, + { + "start": 28404.98, + "end": 28407.3, + "probability": 0.9816 + }, + { + "start": 28407.52, + "end": 28407.94, + "probability": 0.5852 + }, + { + "start": 28407.98, + "end": 28412.82, + "probability": 0.8022 + }, + { + "start": 28413.3, + "end": 28417.6, + "probability": 0.9213 + }, + { + "start": 28418.22, + "end": 28418.98, + "probability": 0.758 + }, + { + "start": 28419.8, + "end": 28423.46, + "probability": 0.9797 + }, + { + "start": 28424.28, + "end": 28428.64, + "probability": 0.6639 + }, + { + "start": 28429.56, + "end": 28433.24, + "probability": 0.8958 + }, + { + "start": 28433.3, + "end": 28434.56, + "probability": 0.5619 + }, + { + "start": 28435.79, + "end": 28440.96, + "probability": 0.8384 + }, + { + "start": 28441.7, + "end": 28445.14, + "probability": 0.7264 + }, + { + "start": 28445.46, + "end": 28449.2, + "probability": 0.6406 + }, + { + "start": 28449.74, + "end": 28452.54, + "probability": 0.7108 + }, + { + "start": 28453.2, + "end": 28456.8, + "probability": 0.8846 + }, + { + "start": 28457.44, + "end": 28460.18, + "probability": 0.5782 + }, + { + "start": 28460.7, + "end": 28464.38, + "probability": 0.957 + }, + { + "start": 28465.18, + "end": 28469.16, + "probability": 0.996 + }, + { + "start": 28470.08, + "end": 28474.28, + "probability": 0.9175 + }, + { + "start": 28474.28, + "end": 28479.52, + "probability": 0.939 + }, + { + "start": 28481.2, + "end": 28487.14, + "probability": 0.9191 + }, + { + "start": 28488.66, + "end": 28489.22, + "probability": 0.6896 + }, + { + "start": 28489.78, + "end": 28489.78, + "probability": 0.0028 + }, + { + "start": 28489.78, + "end": 28490.96, + "probability": 0.1674 + }, + { + "start": 28491.04, + "end": 28492.74, + "probability": 0.6711 + }, + { + "start": 28493.22, + "end": 28496.38, + "probability": 0.9822 + }, + { + "start": 28496.38, + "end": 28499.22, + "probability": 0.9937 + }, + { + "start": 28499.96, + "end": 28506.0, + "probability": 0.8656 + }, + { + "start": 28506.56, + "end": 28510.44, + "probability": 0.9473 + }, + { + "start": 28511.0, + "end": 28512.44, + "probability": 0.6556 + }, + { + "start": 28512.5, + "end": 28513.38, + "probability": 0.4917 + }, + { + "start": 28513.48, + "end": 28514.48, + "probability": 0.9141 + }, + { + "start": 28515.14, + "end": 28517.5, + "probability": 0.9752 + }, + { + "start": 28517.5, + "end": 28521.52, + "probability": 0.9926 + }, + { + "start": 28521.56, + "end": 28524.06, + "probability": 0.845 + }, + { + "start": 28524.1, + "end": 28527.14, + "probability": 0.8343 + }, + { + "start": 28527.72, + "end": 28528.62, + "probability": 0.9262 + }, + { + "start": 28529.06, + "end": 28529.22, + "probability": 0.534 + }, + { + "start": 28531.2, + "end": 28532.5, + "probability": 0.8124 + }, + { + "start": 28535.2, + "end": 28538.14, + "probability": 0.6655 + }, + { + "start": 28540.46, + "end": 28542.98, + "probability": 0.6591 + }, + { + "start": 28543.22, + "end": 28544.02, + "probability": 0.7083 + }, + { + "start": 28544.66, + "end": 28547.54, + "probability": 0.8179 + }, + { + "start": 28548.94, + "end": 28551.74, + "probability": 0.9563 + }, + { + "start": 28552.14, + "end": 28554.52, + "probability": 0.7962 + }, + { + "start": 28554.9, + "end": 28557.96, + "probability": 0.9956 + }, + { + "start": 28558.52, + "end": 28562.56, + "probability": 0.9495 + }, + { + "start": 28564.12, + "end": 28568.58, + "probability": 0.6841 + }, + { + "start": 28568.95, + "end": 28573.76, + "probability": 0.9966 + }, + { + "start": 28574.3, + "end": 28575.56, + "probability": 0.9965 + }, + { + "start": 28576.18, + "end": 28582.16, + "probability": 0.8817 + }, + { + "start": 28583.34, + "end": 28584.74, + "probability": 0.6696 + }, + { + "start": 28585.86, + "end": 28590.92, + "probability": 0.9099 + }, + { + "start": 28592.64, + "end": 28596.26, + "probability": 0.9784 + }, + { + "start": 28597.22, + "end": 28599.14, + "probability": 0.0415 + }, + { + "start": 28599.14, + "end": 28599.58, + "probability": 0.4265 + }, + { + "start": 28600.04, + "end": 28600.7, + "probability": 0.7275 + }, + { + "start": 28600.9, + "end": 28601.4, + "probability": 0.6843 + }, + { + "start": 28601.5, + "end": 28602.02, + "probability": 0.753 + }, + { + "start": 28602.2, + "end": 28604.44, + "probability": 0.874 + }, + { + "start": 28605.38, + "end": 28608.96, + "probability": 0.9731 + }, + { + "start": 28609.48, + "end": 28614.58, + "probability": 0.7411 + }, + { + "start": 28614.72, + "end": 28617.38, + "probability": 0.8581 + }, + { + "start": 28617.4, + "end": 28618.78, + "probability": 0.6559 + }, + { + "start": 28619.0, + "end": 28619.86, + "probability": 0.7253 + }, + { + "start": 28620.06, + "end": 28620.28, + "probability": 0.7886 + }, + { + "start": 28620.4, + "end": 28621.12, + "probability": 0.8276 + }, + { + "start": 28621.14, + "end": 28625.2, + "probability": 0.9681 + }, + { + "start": 28625.6, + "end": 28626.02, + "probability": 0.5776 + }, + { + "start": 28626.18, + "end": 28627.26, + "probability": 0.7827 + }, + { + "start": 28627.96, + "end": 28628.18, + "probability": 0.6622 + }, + { + "start": 28628.28, + "end": 28629.32, + "probability": 0.6905 + }, + { + "start": 28629.68, + "end": 28630.0, + "probability": 0.8914 + }, + { + "start": 28630.5, + "end": 28632.38, + "probability": 0.7994 + }, + { + "start": 28632.68, + "end": 28633.54, + "probability": 0.962 + }, + { + "start": 28642.74, + "end": 28645.32, + "probability": 0.4979 + }, + { + "start": 28645.4, + "end": 28647.66, + "probability": 0.7842 + }, + { + "start": 28648.36, + "end": 28652.52, + "probability": 0.9612 + }, + { + "start": 28653.26, + "end": 28656.34, + "probability": 0.9717 + }, + { + "start": 28656.34, + "end": 28660.48, + "probability": 0.9522 + }, + { + "start": 28661.48, + "end": 28666.9, + "probability": 0.9893 + }, + { + "start": 28667.46, + "end": 28671.3, + "probability": 0.9564 + }, + { + "start": 28672.0, + "end": 28673.66, + "probability": 0.9263 + }, + { + "start": 28674.14, + "end": 28676.46, + "probability": 0.8886 + }, + { + "start": 28677.14, + "end": 28678.96, + "probability": 0.9806 + }, + { + "start": 28679.58, + "end": 28684.12, + "probability": 0.9543 + }, + { + "start": 28684.12, + "end": 28689.82, + "probability": 0.9092 + }, + { + "start": 28690.3, + "end": 28692.52, + "probability": 0.947 + }, + { + "start": 28693.94, + "end": 28694.7, + "probability": 0.8956 + }, + { + "start": 28695.58, + "end": 28698.86, + "probability": 0.9814 + }, + { + "start": 28698.86, + "end": 28701.76, + "probability": 0.801 + }, + { + "start": 28702.88, + "end": 28706.74, + "probability": 0.9681 + }, + { + "start": 28707.9, + "end": 28712.38, + "probability": 0.9394 + }, + { + "start": 28713.0, + "end": 28716.1, + "probability": 0.9889 + }, + { + "start": 28717.2, + "end": 28719.28, + "probability": 0.9696 + }, + { + "start": 28720.54, + "end": 28723.72, + "probability": 0.9612 + }, + { + "start": 28724.3, + "end": 28733.19, + "probability": 0.9697 + }, + { + "start": 28734.58, + "end": 28737.2, + "probability": 0.9965 + }, + { + "start": 28738.08, + "end": 28739.84, + "probability": 0.9155 + }, + { + "start": 28740.46, + "end": 28747.14, + "probability": 0.9882 + }, + { + "start": 28760.08, + "end": 28761.1, + "probability": 0.5381 + }, + { + "start": 28761.44, + "end": 28766.78, + "probability": 0.8842 + }, + { + "start": 28766.78, + "end": 28771.64, + "probability": 0.9955 + }, + { + "start": 28776.08, + "end": 28780.82, + "probability": 0.6503 + }, + { + "start": 28781.74, + "end": 28783.3, + "probability": 0.7292 + }, + { + "start": 28783.46, + "end": 28785.7, + "probability": 0.9852 + }, + { + "start": 28787.22, + "end": 28787.86, + "probability": 0.855 + }, + { + "start": 28788.06, + "end": 28791.3, + "probability": 0.9167 + }, + { + "start": 28791.3, + "end": 28795.02, + "probability": 0.937 + }, + { + "start": 28796.1, + "end": 28802.62, + "probability": 0.8872 + }, + { + "start": 28803.74, + "end": 28804.58, + "probability": 0.315 + }, + { + "start": 28804.68, + "end": 28807.92, + "probability": 0.8616 + }, + { + "start": 28807.92, + "end": 28812.38, + "probability": 0.8509 + }, + { + "start": 28814.16, + "end": 28815.59, + "probability": 0.8628 + }, + { + "start": 28816.22, + "end": 28818.58, + "probability": 0.6937 + }, + { + "start": 28819.1, + "end": 28821.86, + "probability": 0.6574 + }, + { + "start": 28822.04, + "end": 28823.08, + "probability": 0.8108 + }, + { + "start": 28823.7, + "end": 28824.52, + "probability": 0.5601 + }, + { + "start": 28824.9, + "end": 28827.68, + "probability": 0.9396 + }, + { + "start": 28827.76, + "end": 28829.36, + "probability": 0.7871 + }, + { + "start": 28830.22, + "end": 28831.86, + "probability": 0.8604 + }, + { + "start": 28831.98, + "end": 28835.74, + "probability": 0.9435 + }, + { + "start": 28836.36, + "end": 28837.24, + "probability": 0.961 + }, + { + "start": 28838.02, + "end": 28841.56, + "probability": 0.8069 + }, + { + "start": 28841.88, + "end": 28843.2, + "probability": 0.9454 + }, + { + "start": 28843.88, + "end": 28848.46, + "probability": 0.9287 + }, + { + "start": 28849.04, + "end": 28849.26, + "probability": 0.7617 + }, + { + "start": 28849.84, + "end": 28851.52, + "probability": 0.8479 + }, + { + "start": 28853.28, + "end": 28858.6, + "probability": 0.9797 + }, + { + "start": 28863.46, + "end": 28868.14, + "probability": 0.2332 + }, + { + "start": 28868.74, + "end": 28871.22, + "probability": 0.6121 + }, + { + "start": 28872.3, + "end": 28878.68, + "probability": 0.5825 + }, + { + "start": 28878.68, + "end": 28880.3, + "probability": 0.415 + }, + { + "start": 28880.3, + "end": 28881.54, + "probability": 0.5935 + }, + { + "start": 28882.82, + "end": 28882.82, + "probability": 0.1331 + }, + { + "start": 28882.82, + "end": 28882.82, + "probability": 0.073 + }, + { + "start": 28882.82, + "end": 28886.1, + "probability": 0.6446 + }, + { + "start": 28887.1, + "end": 28890.8, + "probability": 0.8842 + }, + { + "start": 28891.86, + "end": 28897.2, + "probability": 0.8521 + }, + { + "start": 28897.98, + "end": 28900.96, + "probability": 0.6447 + }, + { + "start": 28901.28, + "end": 28903.74, + "probability": 0.7579 + }, + { + "start": 28903.92, + "end": 28904.4, + "probability": 0.8778 + }, + { + "start": 28908.68, + "end": 28912.06, + "probability": 0.9432 + }, + { + "start": 28912.9, + "end": 28916.0, + "probability": 0.9014 + }, + { + "start": 28917.08, + "end": 28918.86, + "probability": 0.9795 + }, + { + "start": 28919.94, + "end": 28921.04, + "probability": 0.9775 + }, + { + "start": 28921.18, + "end": 28922.12, + "probability": 0.9162 + }, + { + "start": 28922.26, + "end": 28923.04, + "probability": 0.9567 + }, + { + "start": 28923.2, + "end": 28925.36, + "probability": 0.9814 + }, + { + "start": 28926.3, + "end": 28927.34, + "probability": 0.5522 + }, + { + "start": 28927.6, + "end": 28928.94, + "probability": 0.7282 + }, + { + "start": 28929.1, + "end": 28932.24, + "probability": 0.9572 + }, + { + "start": 28932.34, + "end": 28933.02, + "probability": 0.8785 + }, + { + "start": 28934.22, + "end": 28936.08, + "probability": 0.3082 + }, + { + "start": 28936.34, + "end": 28939.18, + "probability": 0.4719 + }, + { + "start": 28939.24, + "end": 28940.22, + "probability": 0.5175 + }, + { + "start": 28940.28, + "end": 28940.4, + "probability": 0.842 + }, + { + "start": 28940.92, + "end": 28941.5, + "probability": 0.7625 + }, + { + "start": 28942.0, + "end": 28946.72, + "probability": 0.9988 + }, + { + "start": 28947.56, + "end": 28954.1, + "probability": 0.9805 + }, + { + "start": 28954.76, + "end": 28960.2, + "probability": 0.9525 + }, + { + "start": 28961.46, + "end": 28964.82, + "probability": 0.9725 + }, + { + "start": 28965.64, + "end": 28970.76, + "probability": 0.9888 + }, + { + "start": 28971.26, + "end": 28976.48, + "probability": 0.9799 + }, + { + "start": 28977.16, + "end": 28980.6, + "probability": 0.9932 + }, + { + "start": 28981.76, + "end": 28983.5, + "probability": 0.7275 + }, + { + "start": 28984.34, + "end": 28988.08, + "probability": 0.987 + }, + { + "start": 28988.64, + "end": 28990.24, + "probability": 0.9728 + }, + { + "start": 28991.58, + "end": 28995.32, + "probability": 0.99 + }, + { + "start": 28996.42, + "end": 29000.88, + "probability": 0.998 + }, + { + "start": 29001.42, + "end": 29003.98, + "probability": 0.9694 + }, + { + "start": 29004.48, + "end": 29008.34, + "probability": 0.991 + }, + { + "start": 29009.08, + "end": 29012.3, + "probability": 0.9878 + }, + { + "start": 29012.3, + "end": 29016.04, + "probability": 0.9869 + }, + { + "start": 29016.14, + "end": 29016.76, + "probability": 0.9714 + }, + { + "start": 29019.64, + "end": 29025.4, + "probability": 0.9993 + }, + { + "start": 29025.96, + "end": 29028.96, + "probability": 0.9993 + }, + { + "start": 29029.4, + "end": 29033.44, + "probability": 0.9973 + }, + { + "start": 29033.94, + "end": 29036.2, + "probability": 0.9947 + }, + { + "start": 29036.8, + "end": 29037.78, + "probability": 0.9812 + }, + { + "start": 29038.74, + "end": 29043.76, + "probability": 0.9847 + }, + { + "start": 29043.76, + "end": 29047.28, + "probability": 0.9692 + }, + { + "start": 29047.96, + "end": 29051.92, + "probability": 0.9983 + }, + { + "start": 29051.92, + "end": 29057.08, + "probability": 0.9984 + }, + { + "start": 29059.3, + "end": 29061.28, + "probability": 0.9078 + }, + { + "start": 29062.6, + "end": 29066.78, + "probability": 0.8375 + }, + { + "start": 29067.44, + "end": 29070.32, + "probability": 0.9959 + }, + { + "start": 29070.92, + "end": 29074.88, + "probability": 0.9948 + }, + { + "start": 29076.04, + "end": 29079.24, + "probability": 0.979 + }, + { + "start": 29079.56, + "end": 29080.82, + "probability": 0.908 + }, + { + "start": 29081.52, + "end": 29084.96, + "probability": 0.9945 + }, + { + "start": 29085.98, + "end": 29089.82, + "probability": 0.9981 + }, + { + "start": 29089.82, + "end": 29094.44, + "probability": 0.999 + }, + { + "start": 29094.58, + "end": 29098.52, + "probability": 0.9797 + }, + { + "start": 29099.18, + "end": 29102.86, + "probability": 0.9827 + }, + { + "start": 29103.82, + "end": 29107.72, + "probability": 0.9958 + }, + { + "start": 29107.8, + "end": 29112.35, + "probability": 0.9919 + }, + { + "start": 29113.04, + "end": 29115.48, + "probability": 0.9836 + }, + { + "start": 29115.48, + "end": 29118.64, + "probability": 0.9934 + }, + { + "start": 29119.28, + "end": 29123.72, + "probability": 0.3336 + }, + { + "start": 29124.14, + "end": 29126.54, + "probability": 0.9781 + }, + { + "start": 29127.94, + "end": 29130.84, + "probability": 0.9843 + }, + { + "start": 29131.24, + "end": 29133.0, + "probability": 0.995 + }, + { + "start": 29133.2, + "end": 29134.72, + "probability": 0.8192 + }, + { + "start": 29135.38, + "end": 29137.46, + "probability": 0.991 + }, + { + "start": 29137.6, + "end": 29140.82, + "probability": 0.9889 + }, + { + "start": 29140.98, + "end": 29143.06, + "probability": 0.9711 + }, + { + "start": 29143.96, + "end": 29145.3, + "probability": 0.9106 + }, + { + "start": 29145.48, + "end": 29148.0, + "probability": 0.995 + }, + { + "start": 29148.5, + "end": 29152.22, + "probability": 0.9985 + }, + { + "start": 29152.4, + "end": 29155.84, + "probability": 0.9948 + }, + { + "start": 29156.74, + "end": 29160.06, + "probability": 0.9829 + }, + { + "start": 29160.64, + "end": 29164.88, + "probability": 0.9791 + }, + { + "start": 29165.64, + "end": 29168.64, + "probability": 0.9941 + }, + { + "start": 29169.16, + "end": 29172.38, + "probability": 0.9634 + }, + { + "start": 29173.38, + "end": 29173.78, + "probability": 0.7973 + }, + { + "start": 29173.88, + "end": 29177.76, + "probability": 0.991 + }, + { + "start": 29177.76, + "end": 29181.9, + "probability": 0.9977 + }, + { + "start": 29181.9, + "end": 29185.33, + "probability": 0.9918 + }, + { + "start": 29187.02, + "end": 29189.74, + "probability": 0.9905 + }, + { + "start": 29189.98, + "end": 29191.98, + "probability": 0.9971 + }, + { + "start": 29193.22, + "end": 29197.92, + "probability": 0.998 + }, + { + "start": 29198.14, + "end": 29198.16, + "probability": 0.1422 + }, + { + "start": 29198.84, + "end": 29199.58, + "probability": 0.7434 + }, + { + "start": 29200.0, + "end": 29202.1, + "probability": 0.9872 + }, + { + "start": 29202.1, + "end": 29204.84, + "probability": 0.9976 + }, + { + "start": 29204.92, + "end": 29205.68, + "probability": 0.9041 + }, + { + "start": 29206.22, + "end": 29206.95, + "probability": 0.9974 + }, + { + "start": 29207.66, + "end": 29209.4, + "probability": 0.9968 + }, + { + "start": 29209.88, + "end": 29212.18, + "probability": 0.9973 + }, + { + "start": 29212.36, + "end": 29214.14, + "probability": 0.9945 + }, + { + "start": 29214.88, + "end": 29218.3, + "probability": 0.9784 + }, + { + "start": 29218.3, + "end": 29221.52, + "probability": 0.4871 + }, + { + "start": 29222.2, + "end": 29224.9, + "probability": 0.9855 + }, + { + "start": 29225.5, + "end": 29226.92, + "probability": 0.8308 + }, + { + "start": 29227.68, + "end": 29229.78, + "probability": 0.7612 + }, + { + "start": 29230.62, + "end": 29232.62, + "probability": 0.7042 + }, + { + "start": 29233.32, + "end": 29235.04, + "probability": 0.5044 + }, + { + "start": 29237.7, + "end": 29239.12, + "probability": 0.1603 + }, + { + "start": 29239.68, + "end": 29240.44, + "probability": 0.4032 + }, + { + "start": 29242.28, + "end": 29245.12, + "probability": 0.7528 + }, + { + "start": 29246.38, + "end": 29249.52, + "probability": 0.7513 + }, + { + "start": 29251.04, + "end": 29253.88, + "probability": 0.3841 + }, + { + "start": 29254.06, + "end": 29254.22, + "probability": 0.6799 + }, + { + "start": 29254.28, + "end": 29257.17, + "probability": 0.3677 + }, + { + "start": 29257.32, + "end": 29258.66, + "probability": 0.9562 + }, + { + "start": 29258.82, + "end": 29259.0, + "probability": 0.6598 + }, + { + "start": 29259.49, + "end": 29261.62, + "probability": 0.8092 + }, + { + "start": 29261.74, + "end": 29263.02, + "probability": 0.5144 + }, + { + "start": 29263.7, + "end": 29264.88, + "probability": 0.3519 + }, + { + "start": 29265.82, + "end": 29267.02, + "probability": 0.9573 + }, + { + "start": 29267.16, + "end": 29269.6, + "probability": 0.9842 + }, + { + "start": 29269.8, + "end": 29270.28, + "probability": 0.3824 + }, + { + "start": 29270.54, + "end": 29270.54, + "probability": 0.4847 + }, + { + "start": 29270.64, + "end": 29276.78, + "probability": 0.5667 + }, + { + "start": 29277.56, + "end": 29279.85, + "probability": 0.8482 + }, + { + "start": 29281.84, + "end": 29284.32, + "probability": 0.4749 + }, + { + "start": 29284.32, + "end": 29285.9, + "probability": 0.5798 + }, + { + "start": 29288.8, + "end": 29291.92, + "probability": 0.7424 + }, + { + "start": 29292.14, + "end": 29295.08, + "probability": 0.8873 + }, + { + "start": 29296.54, + "end": 29297.14, + "probability": 0.6228 + }, + { + "start": 29297.38, + "end": 29297.86, + "probability": 0.8758 + }, + { + "start": 29298.02, + "end": 29301.32, + "probability": 0.601 + }, + { + "start": 29301.44, + "end": 29302.84, + "probability": 0.7926 + }, + { + "start": 29303.78, + "end": 29309.36, + "probability": 0.7571 + }, + { + "start": 29310.78, + "end": 29313.66, + "probability": 0.5231 + }, + { + "start": 29314.34, + "end": 29315.25, + "probability": 0.7178 + }, + { + "start": 29315.98, + "end": 29317.78, + "probability": 0.9932 + }, + { + "start": 29317.9, + "end": 29318.1, + "probability": 0.4948 + }, + { + "start": 29318.24, + "end": 29320.32, + "probability": 0.7873 + }, + { + "start": 29320.84, + "end": 29321.66, + "probability": 0.5447 + }, + { + "start": 29321.82, + "end": 29322.9, + "probability": 0.7998 + }, + { + "start": 29323.6, + "end": 29325.56, + "probability": 0.6994 + }, + { + "start": 29325.92, + "end": 29326.51, + "probability": 0.1805 + }, + { + "start": 29327.84, + "end": 29328.82, + "probability": 0.2892 + }, + { + "start": 29329.38, + "end": 29330.26, + "probability": 0.7532 + }, + { + "start": 29331.24, + "end": 29334.58, + "probability": 0.9181 + }, + { + "start": 29335.32, + "end": 29336.68, + "probability": 0.8794 + }, + { + "start": 29337.02, + "end": 29337.56, + "probability": 0.1918 + }, + { + "start": 29338.58, + "end": 29339.54, + "probability": 0.516 + }, + { + "start": 29340.56, + "end": 29342.8, + "probability": 0.5107 + }, + { + "start": 29343.04, + "end": 29344.18, + "probability": 0.0066 + }, + { + "start": 29345.22, + "end": 29346.44, + "probability": 0.5539 + }, + { + "start": 29347.24, + "end": 29349.6, + "probability": 0.9565 + }, + { + "start": 29349.82, + "end": 29351.42, + "probability": 0.3864 + }, + { + "start": 29352.12, + "end": 29355.7, + "probability": 0.875 + }, + { + "start": 29356.06, + "end": 29359.1, + "probability": 0.6754 + }, + { + "start": 29359.66, + "end": 29360.08, + "probability": 0.0275 + } + ], + "segments_count": 10385, + "words_count": 51278, + "avg_words_per_segment": 4.9377, + "avg_segment_duration": 2.0663, + "avg_words_per_minute": 104.5532, + "plenum_id": "16800", + "duration": 29426.93, + "title": null, + "plenum_date": "2011-11-23" +} \ No newline at end of file