diff --git "a/18442/metadata.json" "b/18442/metadata.json" new file mode 100644--- /dev/null +++ "b/18442/metadata.json" @@ -0,0 +1,28837 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "18442", + "quality_score": 0.9025, + "per_segment_quality_scores": [ + { + "start": 40.72, + "end": 45.02, + "probability": 0.199 + }, + { + "start": 56.24, + "end": 59.94, + "probability": 0.0654 + }, + { + "start": 61.56, + "end": 65.0, + "probability": 0.0201 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 130.76, + "end": 134.64, + "probability": 0.0888 + }, + { + "start": 134.64, + "end": 136.48, + "probability": 0.058 + }, + { + "start": 136.48, + "end": 138.64, + "probability": 0.2283 + }, + { + "start": 140.17, + "end": 140.48, + "probability": 0.0386 + }, + { + "start": 140.48, + "end": 140.9, + "probability": 0.1026 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.52, + "end": 259.76, + "probability": 0.0123 + }, + { + "start": 260.24, + "end": 265.02, + "probability": 0.0471 + }, + { + "start": 265.7, + "end": 266.3, + "probability": 0.1494 + }, + { + "start": 266.92, + "end": 270.76, + "probability": 0.1127 + }, + { + "start": 273.66, + "end": 275.62, + "probability": 0.0644 + }, + { + "start": 276.18, + "end": 278.6, + "probability": 0.0471 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.24, + "end": 384.32, + "probability": 0.2569 + }, + { + "start": 384.44, + "end": 385.68, + "probability": 0.85 + }, + { + "start": 385.76, + "end": 386.68, + "probability": 0.841 + }, + { + "start": 386.78, + "end": 390.94, + "probability": 0.957 + }, + { + "start": 391.78, + "end": 393.44, + "probability": 0.7552 + }, + { + "start": 393.88, + "end": 394.48, + "probability": 0.7758 + }, + { + "start": 394.52, + "end": 394.7, + "probability": 0.5211 + }, + { + "start": 394.7, + "end": 395.26, + "probability": 0.5511 + }, + { + "start": 395.26, + "end": 396.18, + "probability": 0.6486 + }, + { + "start": 396.28, + "end": 397.5, + "probability": 0.8862 + }, + { + "start": 397.6, + "end": 400.02, + "probability": 0.0118 + }, + { + "start": 400.02, + "end": 400.86, + "probability": 0.3024 + }, + { + "start": 401.18, + "end": 403.6, + "probability": 0.9039 + }, + { + "start": 404.02, + "end": 405.27, + "probability": 0.9907 + }, + { + "start": 407.84, + "end": 408.76, + "probability": 0.7584 + }, + { + "start": 409.42, + "end": 410.46, + "probability": 0.8128 + }, + { + "start": 410.56, + "end": 411.42, + "probability": 0.9593 + }, + { + "start": 411.82, + "end": 413.66, + "probability": 0.9546 + }, + { + "start": 414.58, + "end": 416.18, + "probability": 0.5089 + }, + { + "start": 416.74, + "end": 417.4, + "probability": 0.6913 + }, + { + "start": 418.16, + "end": 421.14, + "probability": 0.9613 + }, + { + "start": 421.34, + "end": 421.74, + "probability": 0.7151 + }, + { + "start": 421.8, + "end": 422.36, + "probability": 0.8916 + }, + { + "start": 422.36, + "end": 427.16, + "probability": 0.9862 + }, + { + "start": 427.72, + "end": 432.82, + "probability": 0.9977 + }, + { + "start": 433.52, + "end": 435.44, + "probability": 0.9709 + }, + { + "start": 435.58, + "end": 439.36, + "probability": 0.9699 + }, + { + "start": 440.18, + "end": 444.68, + "probability": 0.9858 + }, + { + "start": 445.36, + "end": 449.36, + "probability": 0.9966 + }, + { + "start": 449.7, + "end": 452.46, + "probability": 0.5879 + }, + { + "start": 453.04, + "end": 453.1, + "probability": 0.117 + }, + { + "start": 453.1, + "end": 454.32, + "probability": 0.2751 + }, + { + "start": 454.36, + "end": 462.84, + "probability": 0.9819 + }, + { + "start": 463.38, + "end": 465.96, + "probability": 0.9829 + }, + { + "start": 467.28, + "end": 469.3, + "probability": 0.5191 + }, + { + "start": 469.3, + "end": 470.52, + "probability": 0.9392 + }, + { + "start": 471.32, + "end": 473.44, + "probability": 0.8467 + }, + { + "start": 473.9, + "end": 474.44, + "probability": 0.9443 + }, + { + "start": 474.5, + "end": 475.02, + "probability": 0.8732 + }, + { + "start": 475.34, + "end": 476.18, + "probability": 0.9298 + }, + { + "start": 476.34, + "end": 477.38, + "probability": 0.9589 + }, + { + "start": 477.72, + "end": 478.28, + "probability": 0.6633 + }, + { + "start": 478.3, + "end": 481.0, + "probability": 0.9943 + }, + { + "start": 481.26, + "end": 483.3, + "probability": 0.974 + }, + { + "start": 483.38, + "end": 483.64, + "probability": 0.716 + }, + { + "start": 483.88, + "end": 486.18, + "probability": 0.7558 + }, + { + "start": 486.3, + "end": 487.46, + "probability": 0.9866 + }, + { + "start": 488.08, + "end": 489.2, + "probability": 0.8117 + }, + { + "start": 496.32, + "end": 497.36, + "probability": 0.7008 + }, + { + "start": 497.56, + "end": 498.38, + "probability": 0.6807 + }, + { + "start": 498.48, + "end": 499.28, + "probability": 0.9905 + }, + { + "start": 499.74, + "end": 501.94, + "probability": 0.9914 + }, + { + "start": 501.94, + "end": 505.88, + "probability": 0.9756 + }, + { + "start": 506.48, + "end": 509.04, + "probability": 0.8609 + }, + { + "start": 509.68, + "end": 512.32, + "probability": 0.8886 + }, + { + "start": 513.0, + "end": 516.62, + "probability": 0.9868 + }, + { + "start": 516.62, + "end": 520.46, + "probability": 0.8783 + }, + { + "start": 521.1, + "end": 523.7, + "probability": 0.7233 + }, + { + "start": 524.86, + "end": 527.88, + "probability": 0.9932 + }, + { + "start": 529.38, + "end": 533.44, + "probability": 0.977 + }, + { + "start": 534.78, + "end": 540.32, + "probability": 0.9702 + }, + { + "start": 541.32, + "end": 545.48, + "probability": 0.9863 + }, + { + "start": 545.5, + "end": 549.9, + "probability": 0.9966 + }, + { + "start": 551.06, + "end": 555.86, + "probability": 0.9961 + }, + { + "start": 556.9, + "end": 558.36, + "probability": 0.8987 + }, + { + "start": 559.14, + "end": 560.42, + "probability": 0.961 + }, + { + "start": 562.04, + "end": 565.8, + "probability": 0.9731 + }, + { + "start": 566.0, + "end": 567.24, + "probability": 0.3455 + }, + { + "start": 568.12, + "end": 571.96, + "probability": 0.9889 + }, + { + "start": 571.96, + "end": 575.46, + "probability": 0.9976 + }, + { + "start": 576.46, + "end": 578.96, + "probability": 0.9671 + }, + { + "start": 579.82, + "end": 587.5, + "probability": 0.9235 + }, + { + "start": 588.52, + "end": 592.36, + "probability": 0.917 + }, + { + "start": 592.38, + "end": 593.26, + "probability": 0.4176 + }, + { + "start": 593.96, + "end": 598.2, + "probability": 0.9615 + }, + { + "start": 598.96, + "end": 601.78, + "probability": 0.9179 + }, + { + "start": 601.94, + "end": 603.88, + "probability": 0.5912 + }, + { + "start": 603.88, + "end": 604.58, + "probability": 0.6091 + }, + { + "start": 604.9, + "end": 606.58, + "probability": 0.9617 + }, + { + "start": 606.64, + "end": 607.56, + "probability": 0.9585 + }, + { + "start": 607.68, + "end": 609.08, + "probability": 0.7125 + }, + { + "start": 609.6, + "end": 611.54, + "probability": 0.9861 + }, + { + "start": 612.0, + "end": 613.84, + "probability": 0.8357 + }, + { + "start": 614.42, + "end": 615.82, + "probability": 0.7082 + }, + { + "start": 618.0, + "end": 618.7, + "probability": 0.9355 + }, + { + "start": 623.18, + "end": 624.44, + "probability": 0.7544 + }, + { + "start": 625.72, + "end": 633.26, + "probability": 0.9269 + }, + { + "start": 633.32, + "end": 638.0, + "probability": 0.9962 + }, + { + "start": 639.62, + "end": 642.7, + "probability": 0.8346 + }, + { + "start": 643.34, + "end": 647.34, + "probability": 0.9946 + }, + { + "start": 647.34, + "end": 650.92, + "probability": 0.8597 + }, + { + "start": 651.54, + "end": 653.6, + "probability": 0.9577 + }, + { + "start": 654.42, + "end": 655.58, + "probability": 0.9677 + }, + { + "start": 656.1, + "end": 658.44, + "probability": 0.9919 + }, + { + "start": 659.2, + "end": 660.96, + "probability": 0.915 + }, + { + "start": 661.54, + "end": 666.4, + "probability": 0.9963 + }, + { + "start": 667.18, + "end": 671.52, + "probability": 0.9738 + }, + { + "start": 671.66, + "end": 672.56, + "probability": 0.927 + }, + { + "start": 673.2, + "end": 678.06, + "probability": 0.9939 + }, + { + "start": 678.42, + "end": 678.52, + "probability": 0.5875 + }, + { + "start": 678.66, + "end": 680.48, + "probability": 0.97 + }, + { + "start": 680.56, + "end": 681.48, + "probability": 0.9731 + }, + { + "start": 682.02, + "end": 684.64, + "probability": 0.9082 + }, + { + "start": 686.04, + "end": 686.36, + "probability": 0.3082 + }, + { + "start": 686.36, + "end": 687.48, + "probability": 0.4701 + }, + { + "start": 687.64, + "end": 694.78, + "probability": 0.9795 + }, + { + "start": 695.34, + "end": 699.34, + "probability": 0.912 + }, + { + "start": 700.26, + "end": 706.08, + "probability": 0.6578 + }, + { + "start": 707.1, + "end": 708.34, + "probability": 0.2603 + }, + { + "start": 709.14, + "end": 710.12, + "probability": 0.9785 + }, + { + "start": 711.57, + "end": 714.1, + "probability": 0.8859 + }, + { + "start": 714.22, + "end": 718.84, + "probability": 0.6717 + }, + { + "start": 719.96, + "end": 725.9, + "probability": 0.9629 + }, + { + "start": 726.7, + "end": 730.06, + "probability": 0.9968 + }, + { + "start": 731.18, + "end": 736.12, + "probability": 0.7526 + }, + { + "start": 737.02, + "end": 740.14, + "probability": 0.9758 + }, + { + "start": 740.26, + "end": 742.76, + "probability": 0.8128 + }, + { + "start": 742.92, + "end": 748.32, + "probability": 0.9167 + }, + { + "start": 748.32, + "end": 752.42, + "probability": 0.9413 + }, + { + "start": 752.66, + "end": 754.16, + "probability": 0.9438 + }, + { + "start": 754.26, + "end": 755.02, + "probability": 0.5403 + }, + { + "start": 755.92, + "end": 757.9, + "probability": 0.9828 + }, + { + "start": 757.98, + "end": 759.16, + "probability": 0.9411 + }, + { + "start": 759.48, + "end": 760.68, + "probability": 0.8031 + }, + { + "start": 760.7, + "end": 760.94, + "probability": 0.6608 + }, + { + "start": 761.06, + "end": 762.94, + "probability": 0.533 + }, + { + "start": 763.14, + "end": 765.06, + "probability": 0.9213 + }, + { + "start": 771.72, + "end": 772.06, + "probability": 0.1099 + }, + { + "start": 772.08, + "end": 772.52, + "probability": 0.5504 + }, + { + "start": 773.9, + "end": 775.48, + "probability": 0.7635 + }, + { + "start": 776.42, + "end": 779.96, + "probability": 0.9489 + }, + { + "start": 781.48, + "end": 785.1, + "probability": 0.8993 + }, + { + "start": 786.56, + "end": 787.5, + "probability": 0.545 + }, + { + "start": 788.7, + "end": 791.08, + "probability": 0.6389 + }, + { + "start": 791.96, + "end": 795.64, + "probability": 0.9741 + }, + { + "start": 796.56, + "end": 798.8, + "probability": 0.7878 + }, + { + "start": 799.84, + "end": 802.44, + "probability": 0.7731 + }, + { + "start": 804.1, + "end": 808.02, + "probability": 0.8402 + }, + { + "start": 808.56, + "end": 813.16, + "probability": 0.9646 + }, + { + "start": 813.5, + "end": 814.24, + "probability": 0.8915 + }, + { + "start": 815.02, + "end": 817.66, + "probability": 0.8328 + }, + { + "start": 818.2, + "end": 820.94, + "probability": 0.9368 + }, + { + "start": 820.94, + "end": 825.68, + "probability": 0.9395 + }, + { + "start": 827.48, + "end": 829.96, + "probability": 0.8951 + }, + { + "start": 830.52, + "end": 831.4, + "probability": 0.9438 + }, + { + "start": 832.1, + "end": 834.52, + "probability": 0.8475 + }, + { + "start": 835.34, + "end": 836.3, + "probability": 0.9878 + }, + { + "start": 836.36, + "end": 838.14, + "probability": 0.9882 + }, + { + "start": 838.18, + "end": 839.89, + "probability": 0.4586 + }, + { + "start": 839.94, + "end": 840.5, + "probability": 0.4112 + }, + { + "start": 840.6, + "end": 842.98, + "probability": 0.9973 + }, + { + "start": 844.04, + "end": 845.94, + "probability": 0.6019 + }, + { + "start": 846.42, + "end": 846.42, + "probability": 0.2785 + }, + { + "start": 846.42, + "end": 846.42, + "probability": 0.5607 + }, + { + "start": 846.42, + "end": 846.48, + "probability": 0.0713 + }, + { + "start": 846.48, + "end": 847.6, + "probability": 0.5814 + }, + { + "start": 847.6, + "end": 848.56, + "probability": 0.9272 + }, + { + "start": 850.14, + "end": 851.0, + "probability": 0.5972 + }, + { + "start": 852.14, + "end": 853.09, + "probability": 0.2704 + }, + { + "start": 854.72, + "end": 855.78, + "probability": 0.4633 + }, + { + "start": 856.06, + "end": 858.88, + "probability": 0.2495 + }, + { + "start": 858.88, + "end": 858.88, + "probability": 0.0415 + }, + { + "start": 858.88, + "end": 858.88, + "probability": 0.0285 + }, + { + "start": 858.88, + "end": 859.34, + "probability": 0.0731 + }, + { + "start": 859.34, + "end": 860.79, + "probability": 0.8964 + }, + { + "start": 861.94, + "end": 864.28, + "probability": 0.8308 + }, + { + "start": 886.4, + "end": 893.22, + "probability": 0.1809 + }, + { + "start": 893.93, + "end": 895.14, + "probability": 0.3677 + }, + { + "start": 895.4, + "end": 899.54, + "probability": 0.0357 + }, + { + "start": 900.86, + "end": 904.06, + "probability": 0.0178 + }, + { + "start": 906.45, + "end": 906.74, + "probability": 0.1286 + }, + { + "start": 906.9, + "end": 907.32, + "probability": 0.0731 + }, + { + "start": 907.52, + "end": 909.06, + "probability": 0.0917 + }, + { + "start": 909.06, + "end": 911.12, + "probability": 0.1045 + }, + { + "start": 911.12, + "end": 911.74, + "probability": 0.2617 + }, + { + "start": 911.74, + "end": 912.38, + "probability": 0.5293 + }, + { + "start": 912.56, + "end": 913.12, + "probability": 0.0936 + }, + { + "start": 913.12, + "end": 914.58, + "probability": 0.0485 + }, + { + "start": 914.58, + "end": 917.46, + "probability": 0.0977 + }, + { + "start": 917.46, + "end": 917.46, + "probability": 0.2538 + }, + { + "start": 917.46, + "end": 917.62, + "probability": 0.1182 + }, + { + "start": 917.62, + "end": 917.62, + "probability": 0.0974 + }, + { + "start": 917.62, + "end": 917.86, + "probability": 0.0551 + }, + { + "start": 917.86, + "end": 917.86, + "probability": 0.4711 + }, + { + "start": 917.86, + "end": 917.86, + "probability": 0.2519 + }, + { + "start": 917.86, + "end": 918.48, + "probability": 0.0933 + }, + { + "start": 918.84, + "end": 918.94, + "probability": 0.0346 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 919.0, + "end": 919.0, + "probability": 0.0 + }, + { + "start": 926.48, + "end": 929.42, + "probability": 0.7862 + }, + { + "start": 929.52, + "end": 931.64, + "probability": 0.9894 + }, + { + "start": 932.9, + "end": 934.26, + "probability": 0.9155 + }, + { + "start": 936.5, + "end": 938.46, + "probability": 0.8876 + }, + { + "start": 942.48, + "end": 944.8, + "probability": 0.9899 + }, + { + "start": 944.88, + "end": 945.74, + "probability": 0.9258 + }, + { + "start": 948.72, + "end": 950.06, + "probability": 0.6941 + }, + { + "start": 952.06, + "end": 956.14, + "probability": 0.9268 + }, + { + "start": 956.76, + "end": 959.91, + "probability": 0.8873 + }, + { + "start": 960.18, + "end": 961.04, + "probability": 0.6716 + }, + { + "start": 961.2, + "end": 963.46, + "probability": 0.6316 + }, + { + "start": 965.4, + "end": 966.26, + "probability": 0.8017 + }, + { + "start": 966.26, + "end": 966.46, + "probability": 0.8202 + }, + { + "start": 967.28, + "end": 969.22, + "probability": 0.9752 + }, + { + "start": 970.4, + "end": 973.52, + "probability": 0.9783 + }, + { + "start": 974.98, + "end": 976.92, + "probability": 0.9614 + }, + { + "start": 977.44, + "end": 980.94, + "probability": 0.993 + }, + { + "start": 981.7, + "end": 985.72, + "probability": 0.9987 + }, + { + "start": 985.72, + "end": 988.84, + "probability": 0.9989 + }, + { + "start": 988.94, + "end": 990.46, + "probability": 0.8344 + }, + { + "start": 990.92, + "end": 991.96, + "probability": 0.989 + }, + { + "start": 992.68, + "end": 994.62, + "probability": 0.9973 + }, + { + "start": 995.28, + "end": 1000.14, + "probability": 0.9987 + }, + { + "start": 1000.7, + "end": 1003.98, + "probability": 0.9965 + }, + { + "start": 1004.14, + "end": 1005.3, + "probability": 0.9399 + }, + { + "start": 1005.72, + "end": 1008.34, + "probability": 0.8992 + }, + { + "start": 1008.66, + "end": 1010.66, + "probability": 0.8853 + }, + { + "start": 1011.8, + "end": 1011.98, + "probability": 0.2729 + }, + { + "start": 1012.14, + "end": 1016.5, + "probability": 0.9941 + }, + { + "start": 1016.86, + "end": 1019.36, + "probability": 0.9956 + }, + { + "start": 1019.9, + "end": 1021.66, + "probability": 0.97 + }, + { + "start": 1021.94, + "end": 1022.78, + "probability": 0.8263 + }, + { + "start": 1023.04, + "end": 1025.62, + "probability": 0.9736 + }, + { + "start": 1026.2, + "end": 1028.78, + "probability": 0.8704 + }, + { + "start": 1029.3, + "end": 1030.98, + "probability": 0.7734 + }, + { + "start": 1040.44, + "end": 1041.2, + "probability": 0.6111 + }, + { + "start": 1041.38, + "end": 1042.08, + "probability": 0.6419 + }, + { + "start": 1042.22, + "end": 1048.76, + "probability": 0.9615 + }, + { + "start": 1049.7, + "end": 1055.38, + "probability": 0.9984 + }, + { + "start": 1056.04, + "end": 1057.6, + "probability": 0.6041 + }, + { + "start": 1058.56, + "end": 1061.42, + "probability": 0.9429 + }, + { + "start": 1062.76, + "end": 1063.1, + "probability": 0.9095 + }, + { + "start": 1063.26, + "end": 1065.28, + "probability": 0.9829 + }, + { + "start": 1065.78, + "end": 1068.64, + "probability": 0.9009 + }, + { + "start": 1069.18, + "end": 1070.66, + "probability": 0.8485 + }, + { + "start": 1071.3, + "end": 1074.14, + "probability": 0.944 + }, + { + "start": 1074.72, + "end": 1076.84, + "probability": 0.9932 + }, + { + "start": 1077.4, + "end": 1078.88, + "probability": 0.6522 + }, + { + "start": 1079.34, + "end": 1084.48, + "probability": 0.9758 + }, + { + "start": 1085.6, + "end": 1088.92, + "probability": 0.9969 + }, + { + "start": 1089.54, + "end": 1093.54, + "probability": 0.9839 + }, + { + "start": 1093.98, + "end": 1096.7, + "probability": 0.7863 + }, + { + "start": 1098.86, + "end": 1100.92, + "probability": 0.6619 + }, + { + "start": 1101.78, + "end": 1103.98, + "probability": 0.9658 + }, + { + "start": 1113.0, + "end": 1114.14, + "probability": 0.6938 + }, + { + "start": 1114.88, + "end": 1115.9, + "probability": 0.8725 + }, + { + "start": 1116.54, + "end": 1117.38, + "probability": 0.9237 + }, + { + "start": 1118.54, + "end": 1124.92, + "probability": 0.9962 + }, + { + "start": 1125.6, + "end": 1128.64, + "probability": 0.995 + }, + { + "start": 1129.56, + "end": 1131.45, + "probability": 0.9929 + }, + { + "start": 1132.52, + "end": 1133.6, + "probability": 0.9355 + }, + { + "start": 1134.08, + "end": 1137.84, + "probability": 0.985 + }, + { + "start": 1138.58, + "end": 1141.92, + "probability": 0.9738 + }, + { + "start": 1142.18, + "end": 1144.34, + "probability": 0.9682 + }, + { + "start": 1145.04, + "end": 1149.86, + "probability": 0.9983 + }, + { + "start": 1150.82, + "end": 1153.96, + "probability": 0.8466 + }, + { + "start": 1155.44, + "end": 1156.26, + "probability": 0.9072 + }, + { + "start": 1156.64, + "end": 1157.48, + "probability": 0.872 + }, + { + "start": 1157.54, + "end": 1158.76, + "probability": 0.8706 + }, + { + "start": 1159.12, + "end": 1160.76, + "probability": 0.6884 + }, + { + "start": 1160.8, + "end": 1161.28, + "probability": 0.5258 + }, + { + "start": 1161.36, + "end": 1164.1, + "probability": 0.903 + }, + { + "start": 1164.58, + "end": 1165.62, + "probability": 0.5026 + }, + { + "start": 1166.08, + "end": 1171.32, + "probability": 0.7542 + }, + { + "start": 1171.96, + "end": 1173.62, + "probability": 0.8425 + }, + { + "start": 1174.32, + "end": 1176.62, + "probability": 0.9124 + }, + { + "start": 1176.8, + "end": 1177.29, + "probability": 0.7856 + }, + { + "start": 1178.24, + "end": 1180.6, + "probability": 0.99 + }, + { + "start": 1180.98, + "end": 1184.24, + "probability": 0.9934 + }, + { + "start": 1184.48, + "end": 1186.2, + "probability": 0.995 + }, + { + "start": 1186.48, + "end": 1187.4, + "probability": 0.8369 + }, + { + "start": 1187.8, + "end": 1188.22, + "probability": 0.9193 + }, + { + "start": 1189.04, + "end": 1189.8, + "probability": 0.9028 + }, + { + "start": 1189.86, + "end": 1191.98, + "probability": 0.9783 + }, + { + "start": 1192.42, + "end": 1193.74, + "probability": 0.7091 + }, + { + "start": 1194.2, + "end": 1195.48, + "probability": 0.912 + }, + { + "start": 1195.76, + "end": 1197.56, + "probability": 0.9803 + }, + { + "start": 1197.78, + "end": 1198.22, + "probability": 0.8062 + }, + { + "start": 1198.32, + "end": 1201.62, + "probability": 0.916 + }, + { + "start": 1202.04, + "end": 1205.96, + "probability": 0.9393 + }, + { + "start": 1211.88, + "end": 1212.3, + "probability": 0.0411 + }, + { + "start": 1212.48, + "end": 1212.62, + "probability": 0.109 + }, + { + "start": 1213.68, + "end": 1213.92, + "probability": 0.1656 + }, + { + "start": 1214.22, + "end": 1214.3, + "probability": 0.1007 + }, + { + "start": 1214.66, + "end": 1214.66, + "probability": 0.3205 + }, + { + "start": 1214.86, + "end": 1216.58, + "probability": 0.0129 + }, + { + "start": 1217.08, + "end": 1217.3, + "probability": 0.0719 + }, + { + "start": 1217.98, + "end": 1220.52, + "probability": 0.5514 + }, + { + "start": 1220.86, + "end": 1223.38, + "probability": 0.7536 + }, + { + "start": 1223.42, + "end": 1225.36, + "probability": 0.9708 + }, + { + "start": 1225.86, + "end": 1226.68, + "probability": 0.6977 + }, + { + "start": 1227.64, + "end": 1228.92, + "probability": 0.7802 + }, + { + "start": 1229.9, + "end": 1233.0, + "probability": 0.9105 + }, + { + "start": 1233.88, + "end": 1234.96, + "probability": 0.5938 + }, + { + "start": 1235.12, + "end": 1235.12, + "probability": 0.5193 + }, + { + "start": 1235.12, + "end": 1236.66, + "probability": 0.8652 + }, + { + "start": 1237.6, + "end": 1238.66, + "probability": 0.9919 + }, + { + "start": 1239.88, + "end": 1243.02, + "probability": 0.9935 + }, + { + "start": 1243.72, + "end": 1248.9, + "probability": 0.9784 + }, + { + "start": 1249.42, + "end": 1252.84, + "probability": 0.9905 + }, + { + "start": 1253.8, + "end": 1254.94, + "probability": 0.8982 + }, + { + "start": 1255.44, + "end": 1256.34, + "probability": 0.9382 + }, + { + "start": 1256.82, + "end": 1261.8, + "probability": 0.9854 + }, + { + "start": 1262.32, + "end": 1263.02, + "probability": 0.7096 + }, + { + "start": 1263.58, + "end": 1264.02, + "probability": 0.6983 + }, + { + "start": 1264.72, + "end": 1265.02, + "probability": 0.669 + }, + { + "start": 1265.08, + "end": 1266.02, + "probability": 0.9634 + }, + { + "start": 1266.06, + "end": 1267.82, + "probability": 0.8853 + }, + { + "start": 1269.3, + "end": 1269.9, + "probability": 0.1121 + }, + { + "start": 1270.46, + "end": 1273.14, + "probability": 0.7521 + }, + { + "start": 1274.14, + "end": 1276.32, + "probability": 0.968 + }, + { + "start": 1277.78, + "end": 1278.88, + "probability": 0.9224 + }, + { + "start": 1279.8, + "end": 1280.66, + "probability": 0.7298 + }, + { + "start": 1281.36, + "end": 1282.28, + "probability": 0.877 + }, + { + "start": 1283.52, + "end": 1285.74, + "probability": 0.9646 + }, + { + "start": 1285.8, + "end": 1287.02, + "probability": 0.9978 + }, + { + "start": 1288.06, + "end": 1291.04, + "probability": 0.9903 + }, + { + "start": 1292.38, + "end": 1295.04, + "probability": 0.9876 + }, + { + "start": 1296.72, + "end": 1300.04, + "probability": 0.7044 + }, + { + "start": 1300.58, + "end": 1302.8, + "probability": 0.981 + }, + { + "start": 1302.94, + "end": 1304.58, + "probability": 0.9194 + }, + { + "start": 1304.62, + "end": 1305.52, + "probability": 0.8908 + }, + { + "start": 1306.26, + "end": 1309.48, + "probability": 0.6319 + }, + { + "start": 1309.48, + "end": 1311.84, + "probability": 0.8013 + }, + { + "start": 1312.32, + "end": 1313.08, + "probability": 0.889 + }, + { + "start": 1313.74, + "end": 1314.72, + "probability": 0.8589 + }, + { + "start": 1315.46, + "end": 1317.84, + "probability": 0.993 + }, + { + "start": 1318.0, + "end": 1318.42, + "probability": 0.9038 + }, + { + "start": 1319.02, + "end": 1319.54, + "probability": 0.7144 + }, + { + "start": 1319.54, + "end": 1325.32, + "probability": 0.9392 + }, + { + "start": 1326.12, + "end": 1327.46, + "probability": 0.7005 + }, + { + "start": 1327.88, + "end": 1328.34, + "probability": 0.785 + }, + { + "start": 1328.42, + "end": 1330.22, + "probability": 0.8877 + }, + { + "start": 1330.6, + "end": 1333.0, + "probability": 0.9847 + }, + { + "start": 1333.56, + "end": 1337.24, + "probability": 0.9475 + }, + { + "start": 1343.14, + "end": 1343.62, + "probability": 0.4768 + }, + { + "start": 1344.34, + "end": 1347.7, + "probability": 0.6967 + }, + { + "start": 1348.22, + "end": 1349.06, + "probability": 0.9296 + }, + { + "start": 1350.0, + "end": 1353.66, + "probability": 0.7227 + }, + { + "start": 1354.88, + "end": 1357.44, + "probability": 0.9519 + }, + { + "start": 1358.1, + "end": 1364.58, + "probability": 0.9888 + }, + { + "start": 1365.1, + "end": 1365.98, + "probability": 0.7272 + }, + { + "start": 1367.15, + "end": 1371.4, + "probability": 0.9636 + }, + { + "start": 1372.66, + "end": 1375.66, + "probability": 0.6632 + }, + { + "start": 1376.76, + "end": 1380.32, + "probability": 0.8547 + }, + { + "start": 1381.06, + "end": 1385.22, + "probability": 0.8912 + }, + { + "start": 1386.3, + "end": 1389.73, + "probability": 0.9966 + }, + { + "start": 1389.88, + "end": 1392.74, + "probability": 0.9715 + }, + { + "start": 1393.3, + "end": 1393.74, + "probability": 0.5757 + }, + { + "start": 1393.74, + "end": 1395.22, + "probability": 0.782 + }, + { + "start": 1395.32, + "end": 1396.82, + "probability": 0.9515 + }, + { + "start": 1398.22, + "end": 1398.6, + "probability": 0.9613 + }, + { + "start": 1400.46, + "end": 1401.16, + "probability": 0.8407 + }, + { + "start": 1401.22, + "end": 1401.56, + "probability": 0.4717 + }, + { + "start": 1401.6, + "end": 1404.28, + "probability": 0.9658 + }, + { + "start": 1405.12, + "end": 1406.02, + "probability": 0.9717 + }, + { + "start": 1406.84, + "end": 1408.4, + "probability": 0.9762 + }, + { + "start": 1409.74, + "end": 1410.42, + "probability": 0.7363 + }, + { + "start": 1410.86, + "end": 1412.48, + "probability": 0.9353 + }, + { + "start": 1413.72, + "end": 1419.46, + "probability": 0.9712 + }, + { + "start": 1420.66, + "end": 1424.58, + "probability": 0.9974 + }, + { + "start": 1424.58, + "end": 1431.86, + "probability": 0.9869 + }, + { + "start": 1432.72, + "end": 1435.3, + "probability": 0.9391 + }, + { + "start": 1436.04, + "end": 1436.36, + "probability": 0.0549 + }, + { + "start": 1436.36, + "end": 1440.68, + "probability": 0.886 + }, + { + "start": 1441.32, + "end": 1445.44, + "probability": 0.9778 + }, + { + "start": 1445.56, + "end": 1446.07, + "probability": 0.9441 + }, + { + "start": 1449.38, + "end": 1449.38, + "probability": 0.022 + }, + { + "start": 1449.38, + "end": 1451.36, + "probability": 0.5519 + }, + { + "start": 1452.18, + "end": 1452.54, + "probability": 0.4141 + }, + { + "start": 1452.66, + "end": 1454.8, + "probability": 0.8132 + }, + { + "start": 1454.86, + "end": 1455.42, + "probability": 0.5923 + }, + { + "start": 1457.46, + "end": 1458.42, + "probability": 0.4516 + }, + { + "start": 1458.44, + "end": 1463.42, + "probability": 0.7664 + }, + { + "start": 1464.02, + "end": 1466.64, + "probability": 0.9036 + }, + { + "start": 1467.28, + "end": 1468.34, + "probability": 0.9364 + }, + { + "start": 1468.4, + "end": 1469.58, + "probability": 0.9645 + }, + { + "start": 1469.92, + "end": 1471.9, + "probability": 0.9651 + }, + { + "start": 1471.96, + "end": 1473.44, + "probability": 0.853 + }, + { + "start": 1474.2, + "end": 1475.16, + "probability": 0.9769 + }, + { + "start": 1475.46, + "end": 1476.42, + "probability": 0.9865 + }, + { + "start": 1476.66, + "end": 1477.62, + "probability": 0.9218 + }, + { + "start": 1477.98, + "end": 1481.42, + "probability": 0.9753 + }, + { + "start": 1481.56, + "end": 1482.06, + "probability": 0.8014 + }, + { + "start": 1482.2, + "end": 1488.86, + "probability": 0.9832 + }, + { + "start": 1489.02, + "end": 1489.84, + "probability": 0.4055 + }, + { + "start": 1491.14, + "end": 1491.52, + "probability": 0.6199 + }, + { + "start": 1491.8, + "end": 1493.04, + "probability": 0.9642 + }, + { + "start": 1493.08, + "end": 1494.08, + "probability": 0.9191 + }, + { + "start": 1494.28, + "end": 1494.98, + "probability": 0.265 + }, + { + "start": 1495.04, + "end": 1495.76, + "probability": 0.97 + }, + { + "start": 1495.84, + "end": 1496.44, + "probability": 0.3293 + }, + { + "start": 1497.0, + "end": 1501.36, + "probability": 0.9402 + }, + { + "start": 1501.5, + "end": 1503.14, + "probability": 0.652 + }, + { + "start": 1503.66, + "end": 1504.92, + "probability": 0.8519 + }, + { + "start": 1505.18, + "end": 1508.8, + "probability": 0.9799 + }, + { + "start": 1508.98, + "end": 1509.18, + "probability": 0.5278 + }, + { + "start": 1509.26, + "end": 1510.82, + "probability": 0.957 + }, + { + "start": 1511.36, + "end": 1514.0, + "probability": 0.6501 + }, + { + "start": 1518.3, + "end": 1518.32, + "probability": 0.1513 + }, + { + "start": 1518.32, + "end": 1519.02, + "probability": 0.4246 + }, + { + "start": 1519.18, + "end": 1520.26, + "probability": 0.6762 + }, + { + "start": 1520.96, + "end": 1523.6, + "probability": 0.9962 + }, + { + "start": 1523.6, + "end": 1527.92, + "probability": 0.9978 + }, + { + "start": 1528.68, + "end": 1531.0, + "probability": 0.8546 + }, + { + "start": 1532.02, + "end": 1533.14, + "probability": 0.9231 + }, + { + "start": 1533.28, + "end": 1535.88, + "probability": 0.8877 + }, + { + "start": 1536.86, + "end": 1537.54, + "probability": 0.0003 + }, + { + "start": 1537.7, + "end": 1538.18, + "probability": 0.0828 + }, + { + "start": 1538.26, + "end": 1538.26, + "probability": 0.3295 + }, + { + "start": 1538.28, + "end": 1539.1, + "probability": 0.4324 + }, + { + "start": 1539.34, + "end": 1540.54, + "probability": 0.2008 + }, + { + "start": 1540.64, + "end": 1542.0, + "probability": 0.7959 + }, + { + "start": 1542.26, + "end": 1542.5, + "probability": 0.5361 + }, + { + "start": 1542.98, + "end": 1544.24, + "probability": 0.875 + }, + { + "start": 1545.02, + "end": 1547.92, + "probability": 0.9282 + }, + { + "start": 1548.62, + "end": 1552.25, + "probability": 0.8193 + }, + { + "start": 1554.26, + "end": 1555.42, + "probability": 0.4369 + }, + { + "start": 1557.26, + "end": 1559.98, + "probability": 0.9805 + }, + { + "start": 1560.32, + "end": 1562.78, + "probability": 0.6421 + }, + { + "start": 1563.42, + "end": 1565.98, + "probability": 0.8158 + }, + { + "start": 1568.16, + "end": 1572.32, + "probability": 0.9388 + }, + { + "start": 1573.6, + "end": 1579.24, + "probability": 0.979 + }, + { + "start": 1579.84, + "end": 1580.58, + "probability": 0.9168 + }, + { + "start": 1581.06, + "end": 1583.32, + "probability": 0.8479 + }, + { + "start": 1583.86, + "end": 1585.24, + "probability": 0.9253 + }, + { + "start": 1585.82, + "end": 1592.86, + "probability": 0.9741 + }, + { + "start": 1593.94, + "end": 1595.58, + "probability": 0.9744 + }, + { + "start": 1595.7, + "end": 1598.32, + "probability": 0.9011 + }, + { + "start": 1599.62, + "end": 1601.28, + "probability": 0.7341 + }, + { + "start": 1601.3, + "end": 1602.5, + "probability": 0.7759 + }, + { + "start": 1603.52, + "end": 1605.1, + "probability": 0.756 + }, + { + "start": 1606.14, + "end": 1607.52, + "probability": 0.9007 + }, + { + "start": 1608.84, + "end": 1613.54, + "probability": 0.9746 + }, + { + "start": 1614.9, + "end": 1618.24, + "probability": 0.752 + }, + { + "start": 1618.24, + "end": 1621.0, + "probability": 0.7247 + }, + { + "start": 1622.54, + "end": 1625.52, + "probability": 0.9312 + }, + { + "start": 1626.38, + "end": 1628.66, + "probability": 0.9413 + }, + { + "start": 1629.24, + "end": 1633.22, + "probability": 0.9526 + }, + { + "start": 1633.74, + "end": 1637.4, + "probability": 0.9478 + }, + { + "start": 1638.48, + "end": 1639.08, + "probability": 0.3042 + }, + { + "start": 1639.18, + "end": 1644.6, + "probability": 0.8769 + }, + { + "start": 1645.32, + "end": 1650.54, + "probability": 0.9852 + }, + { + "start": 1651.44, + "end": 1655.76, + "probability": 0.974 + }, + { + "start": 1656.84, + "end": 1657.6, + "probability": 0.3689 + }, + { + "start": 1657.66, + "end": 1659.24, + "probability": 0.4916 + }, + { + "start": 1659.24, + "end": 1659.64, + "probability": 0.3445 + }, + { + "start": 1660.06, + "end": 1666.1, + "probability": 0.962 + }, + { + "start": 1666.4, + "end": 1670.22, + "probability": 0.3556 + }, + { + "start": 1670.68, + "end": 1675.7, + "probability": 0.8748 + }, + { + "start": 1677.02, + "end": 1678.42, + "probability": 0.9197 + }, + { + "start": 1678.94, + "end": 1680.94, + "probability": 0.515 + }, + { + "start": 1681.32, + "end": 1685.46, + "probability": 0.9872 + }, + { + "start": 1685.88, + "end": 1689.58, + "probability": 0.9585 + }, + { + "start": 1690.36, + "end": 1692.32, + "probability": 0.6095 + }, + { + "start": 1693.04, + "end": 1696.0, + "probability": 0.938 + }, + { + "start": 1696.4, + "end": 1700.14, + "probability": 0.5748 + }, + { + "start": 1700.24, + "end": 1701.14, + "probability": 0.741 + }, + { + "start": 1701.54, + "end": 1704.18, + "probability": 0.939 + }, + { + "start": 1704.6, + "end": 1710.0, + "probability": 0.9239 + }, + { + "start": 1710.1, + "end": 1710.62, + "probability": 0.6002 + }, + { + "start": 1711.16, + "end": 1716.6, + "probability": 0.9362 + }, + { + "start": 1716.76, + "end": 1717.06, + "probability": 0.3744 + }, + { + "start": 1717.3, + "end": 1718.06, + "probability": 0.7282 + }, + { + "start": 1718.14, + "end": 1721.84, + "probability": 0.9294 + }, + { + "start": 1721.9, + "end": 1722.08, + "probability": 0.7118 + }, + { + "start": 1722.38, + "end": 1724.56, + "probability": 0.8011 + }, + { + "start": 1725.22, + "end": 1728.22, + "probability": 0.7356 + }, + { + "start": 1733.96, + "end": 1734.9, + "probability": 0.8426 + }, + { + "start": 1735.97, + "end": 1742.72, + "probability": 0.9539 + }, + { + "start": 1743.6, + "end": 1746.78, + "probability": 0.8949 + }, + { + "start": 1747.82, + "end": 1748.78, + "probability": 0.6671 + }, + { + "start": 1749.88, + "end": 1752.46, + "probability": 0.9533 + }, + { + "start": 1753.18, + "end": 1753.86, + "probability": 0.8557 + }, + { + "start": 1755.08, + "end": 1760.58, + "probability": 0.9882 + }, + { + "start": 1761.16, + "end": 1762.02, + "probability": 0.8385 + }, + { + "start": 1763.18, + "end": 1764.22, + "probability": 0.9708 + }, + { + "start": 1764.92, + "end": 1769.82, + "probability": 0.9943 + }, + { + "start": 1771.04, + "end": 1774.18, + "probability": 0.9721 + }, + { + "start": 1775.44, + "end": 1779.32, + "probability": 0.9147 + }, + { + "start": 1779.88, + "end": 1781.16, + "probability": 0.8018 + }, + { + "start": 1781.68, + "end": 1784.72, + "probability": 0.9883 + }, + { + "start": 1784.94, + "end": 1786.02, + "probability": 0.7366 + }, + { + "start": 1786.96, + "end": 1788.6, + "probability": 0.832 + }, + { + "start": 1790.12, + "end": 1791.82, + "probability": 0.9805 + }, + { + "start": 1792.66, + "end": 1794.6, + "probability": 0.9956 + }, + { + "start": 1795.32, + "end": 1799.92, + "probability": 0.969 + }, + { + "start": 1800.62, + "end": 1804.18, + "probability": 0.6569 + }, + { + "start": 1804.86, + "end": 1806.15, + "probability": 0.9939 + }, + { + "start": 1806.96, + "end": 1807.26, + "probability": 0.7334 + }, + { + "start": 1807.34, + "end": 1808.16, + "probability": 0.753 + }, + { + "start": 1808.52, + "end": 1809.62, + "probability": 0.9502 + }, + { + "start": 1810.02, + "end": 1812.14, + "probability": 0.9683 + }, + { + "start": 1814.13, + "end": 1816.14, + "probability": 0.9453 + }, + { + "start": 1816.18, + "end": 1816.18, + "probability": 0.142 + }, + { + "start": 1816.18, + "end": 1816.72, + "probability": 0.426 + }, + { + "start": 1818.24, + "end": 1819.66, + "probability": 0.6085 + }, + { + "start": 1821.72, + "end": 1822.62, + "probability": 0.928 + }, + { + "start": 1822.92, + "end": 1827.02, + "probability": 0.962 + }, + { + "start": 1827.23, + "end": 1834.26, + "probability": 0.9632 + }, + { + "start": 1835.23, + "end": 1838.42, + "probability": 0.968 + }, + { + "start": 1838.64, + "end": 1840.12, + "probability": 0.8465 + }, + { + "start": 1840.96, + "end": 1843.86, + "probability": 0.9168 + }, + { + "start": 1844.02, + "end": 1848.4, + "probability": 0.9937 + }, + { + "start": 1848.4, + "end": 1852.2, + "probability": 0.9359 + }, + { + "start": 1852.86, + "end": 1855.0, + "probability": 0.9612 + }, + { + "start": 1855.54, + "end": 1857.08, + "probability": 0.9779 + }, + { + "start": 1857.76, + "end": 1861.46, + "probability": 0.9695 + }, + { + "start": 1862.16, + "end": 1864.86, + "probability": 0.9408 + }, + { + "start": 1865.4, + "end": 1866.58, + "probability": 0.8753 + }, + { + "start": 1867.22, + "end": 1868.16, + "probability": 0.8311 + }, + { + "start": 1868.6, + "end": 1869.9, + "probability": 0.6717 + }, + { + "start": 1870.28, + "end": 1873.0, + "probability": 0.9338 + }, + { + "start": 1873.54, + "end": 1874.46, + "probability": 0.797 + }, + { + "start": 1875.04, + "end": 1877.56, + "probability": 0.8286 + }, + { + "start": 1877.84, + "end": 1881.32, + "probability": 0.8713 + }, + { + "start": 1881.36, + "end": 1884.68, + "probability": 0.9692 + }, + { + "start": 1884.76, + "end": 1888.96, + "probability": 0.977 + }, + { + "start": 1889.38, + "end": 1890.18, + "probability": 0.7543 + }, + { + "start": 1890.36, + "end": 1893.12, + "probability": 0.9481 + }, + { + "start": 1893.54, + "end": 1895.76, + "probability": 0.9583 + }, + { + "start": 1895.82, + "end": 1896.72, + "probability": 0.9694 + }, + { + "start": 1897.22, + "end": 1898.2, + "probability": 0.9111 + }, + { + "start": 1899.14, + "end": 1902.7, + "probability": 0.9678 + }, + { + "start": 1903.58, + "end": 1908.54, + "probability": 0.9762 + }, + { + "start": 1909.2, + "end": 1910.79, + "probability": 0.9084 + }, + { + "start": 1911.38, + "end": 1912.64, + "probability": 0.9246 + }, + { + "start": 1913.08, + "end": 1915.24, + "probability": 0.6237 + }, + { + "start": 1915.4, + "end": 1917.18, + "probability": 0.9595 + }, + { + "start": 1917.72, + "end": 1921.08, + "probability": 0.9869 + }, + { + "start": 1921.08, + "end": 1924.74, + "probability": 0.9491 + }, + { + "start": 1924.84, + "end": 1929.08, + "probability": 0.9939 + }, + { + "start": 1929.14, + "end": 1929.38, + "probability": 0.9531 + }, + { + "start": 1930.14, + "end": 1931.72, + "probability": 0.7162 + }, + { + "start": 1931.86, + "end": 1933.9, + "probability": 0.9209 + }, + { + "start": 1934.0, + "end": 1934.54, + "probability": 0.4542 + }, + { + "start": 1934.66, + "end": 1936.02, + "probability": 0.945 + }, + { + "start": 1937.1, + "end": 1938.28, + "probability": 0.8066 + }, + { + "start": 1938.46, + "end": 1939.08, + "probability": 0.8535 + }, + { + "start": 1939.18, + "end": 1942.84, + "probability": 0.9905 + }, + { + "start": 1943.62, + "end": 1946.56, + "probability": 0.9077 + }, + { + "start": 1946.68, + "end": 1947.2, + "probability": 0.9112 + }, + { + "start": 1947.54, + "end": 1951.86, + "probability": 0.985 + }, + { + "start": 1952.54, + "end": 1954.8, + "probability": 0.9215 + }, + { + "start": 1954.98, + "end": 1955.92, + "probability": 0.855 + }, + { + "start": 1956.04, + "end": 1956.9, + "probability": 0.7452 + }, + { + "start": 1956.98, + "end": 1961.18, + "probability": 0.813 + }, + { + "start": 1961.54, + "end": 1964.1, + "probability": 0.9941 + }, + { + "start": 1964.1, + "end": 1966.28, + "probability": 0.9871 + }, + { + "start": 1966.96, + "end": 1969.1, + "probability": 0.9985 + }, + { + "start": 1969.1, + "end": 1972.0, + "probability": 0.9424 + }, + { + "start": 1972.18, + "end": 1974.5, + "probability": 0.9932 + }, + { + "start": 1974.64, + "end": 1976.46, + "probability": 0.9385 + }, + { + "start": 1976.58, + "end": 1977.68, + "probability": 0.8902 + }, + { + "start": 1978.1, + "end": 1980.72, + "probability": 0.9546 + }, + { + "start": 1980.76, + "end": 1982.54, + "probability": 0.9631 + }, + { + "start": 1983.3, + "end": 1985.42, + "probability": 0.665 + }, + { + "start": 1986.16, + "end": 1989.44, + "probability": 0.9801 + }, + { + "start": 1989.54, + "end": 1991.88, + "probability": 0.994 + }, + { + "start": 1992.34, + "end": 1996.26, + "probability": 0.9875 + }, + { + "start": 1996.34, + "end": 1998.98, + "probability": 0.8431 + }, + { + "start": 1999.2, + "end": 2002.28, + "probability": 0.9584 + }, + { + "start": 2002.88, + "end": 2008.14, + "probability": 0.9406 + }, + { + "start": 2008.3, + "end": 2010.0, + "probability": 0.8938 + }, + { + "start": 2010.44, + "end": 2011.83, + "probability": 0.9935 + }, + { + "start": 2012.06, + "end": 2015.06, + "probability": 0.989 + }, + { + "start": 2015.18, + "end": 2015.38, + "probability": 0.7992 + }, + { + "start": 2015.62, + "end": 2016.82, + "probability": 0.9429 + }, + { + "start": 2017.58, + "end": 2018.36, + "probability": 0.7109 + }, + { + "start": 2018.46, + "end": 2019.86, + "probability": 0.9801 + }, + { + "start": 2020.16, + "end": 2020.76, + "probability": 0.401 + }, + { + "start": 2020.78, + "end": 2022.1, + "probability": 0.8421 + }, + { + "start": 2022.48, + "end": 2027.24, + "probability": 0.7288 + }, + { + "start": 2030.62, + "end": 2031.22, + "probability": 0.5631 + }, + { + "start": 2032.1, + "end": 2032.78, + "probability": 0.5817 + }, + { + "start": 2032.84, + "end": 2034.28, + "probability": 0.7816 + }, + { + "start": 2035.36, + "end": 2038.14, + "probability": 0.9979 + }, + { + "start": 2039.32, + "end": 2040.96, + "probability": 0.9963 + }, + { + "start": 2041.66, + "end": 2046.84, + "probability": 0.9116 + }, + { + "start": 2048.36, + "end": 2053.02, + "probability": 0.9312 + }, + { + "start": 2053.32, + "end": 2055.02, + "probability": 0.9102 + }, + { + "start": 2055.92, + "end": 2060.06, + "probability": 0.7341 + }, + { + "start": 2061.02, + "end": 2061.02, + "probability": 0.0177 + }, + { + "start": 2061.02, + "end": 2064.3, + "probability": 0.9753 + }, + { + "start": 2065.0, + "end": 2068.5, + "probability": 0.957 + }, + { + "start": 2069.06, + "end": 2070.68, + "probability": 0.9302 + }, + { + "start": 2071.34, + "end": 2074.12, + "probability": 0.9972 + }, + { + "start": 2074.84, + "end": 2076.88, + "probability": 0.9495 + }, + { + "start": 2076.94, + "end": 2079.04, + "probability": 0.8769 + }, + { + "start": 2079.46, + "end": 2080.66, + "probability": 0.9513 + }, + { + "start": 2081.46, + "end": 2083.32, + "probability": 0.6648 + }, + { + "start": 2083.5, + "end": 2087.76, + "probability": 0.7971 + }, + { + "start": 2090.98, + "end": 2092.68, + "probability": 0.7939 + }, + { + "start": 2093.88, + "end": 2097.66, + "probability": 0.9955 + }, + { + "start": 2098.22, + "end": 2098.76, + "probability": 0.8833 + }, + { + "start": 2099.48, + "end": 2100.62, + "probability": 0.8062 + }, + { + "start": 2101.12, + "end": 2106.42, + "probability": 0.9188 + }, + { + "start": 2108.4, + "end": 2112.36, + "probability": 0.9279 + }, + { + "start": 2112.36, + "end": 2117.4, + "probability": 0.9974 + }, + { + "start": 2118.26, + "end": 2121.98, + "probability": 0.98 + }, + { + "start": 2122.42, + "end": 2123.48, + "probability": 0.9793 + }, + { + "start": 2123.54, + "end": 2124.58, + "probability": 0.7495 + }, + { + "start": 2125.08, + "end": 2127.18, + "probability": 0.9872 + }, + { + "start": 2127.7, + "end": 2130.22, + "probability": 0.9929 + }, + { + "start": 2131.0, + "end": 2132.34, + "probability": 0.765 + }, + { + "start": 2132.4, + "end": 2136.78, + "probability": 0.9567 + }, + { + "start": 2137.26, + "end": 2139.18, + "probability": 0.7357 + }, + { + "start": 2139.2, + "end": 2140.82, + "probability": 0.8605 + }, + { + "start": 2141.4, + "end": 2144.62, + "probability": 0.8677 + }, + { + "start": 2145.24, + "end": 2149.08, + "probability": 0.9449 + }, + { + "start": 2149.6, + "end": 2150.4, + "probability": 0.5595 + }, + { + "start": 2151.26, + "end": 2153.44, + "probability": 0.8188 + }, + { + "start": 2153.6, + "end": 2155.54, + "probability": 0.9111 + }, + { + "start": 2155.6, + "end": 2159.2, + "probability": 0.9843 + }, + { + "start": 2159.62, + "end": 2161.16, + "probability": 0.9738 + }, + { + "start": 2161.72, + "end": 2163.66, + "probability": 0.8411 + }, + { + "start": 2163.74, + "end": 2165.0, + "probability": 0.7061 + }, + { + "start": 2175.78, + "end": 2176.66, + "probability": 0.7228 + }, + { + "start": 2177.52, + "end": 2179.6, + "probability": 0.9574 + }, + { + "start": 2181.22, + "end": 2181.91, + "probability": 0.9807 + }, + { + "start": 2182.7, + "end": 2185.49, + "probability": 0.8811 + }, + { + "start": 2186.24, + "end": 2187.3, + "probability": 0.6633 + }, + { + "start": 2187.46, + "end": 2191.58, + "probability": 0.9777 + }, + { + "start": 2192.1, + "end": 2193.42, + "probability": 0.6898 + }, + { + "start": 2194.36, + "end": 2196.18, + "probability": 0.8557 + }, + { + "start": 2196.88, + "end": 2197.68, + "probability": 0.8257 + }, + { + "start": 2198.2, + "end": 2200.08, + "probability": 0.9863 + }, + { + "start": 2201.2, + "end": 2204.6, + "probability": 0.9876 + }, + { + "start": 2205.84, + "end": 2209.0, + "probability": 0.7881 + }, + { + "start": 2209.9, + "end": 2213.0, + "probability": 0.9966 + }, + { + "start": 2215.42, + "end": 2217.64, + "probability": 0.8552 + }, + { + "start": 2218.38, + "end": 2221.71, + "probability": 0.998 + }, + { + "start": 2222.86, + "end": 2226.72, + "probability": 0.9976 + }, + { + "start": 2227.54, + "end": 2229.48, + "probability": 0.915 + }, + { + "start": 2230.18, + "end": 2232.9, + "probability": 0.9968 + }, + { + "start": 2233.5, + "end": 2236.0, + "probability": 0.8219 + }, + { + "start": 2236.92, + "end": 2240.98, + "probability": 0.9824 + }, + { + "start": 2241.76, + "end": 2244.48, + "probability": 0.9645 + }, + { + "start": 2245.64, + "end": 2250.62, + "probability": 0.9858 + }, + { + "start": 2251.18, + "end": 2252.8, + "probability": 0.7376 + }, + { + "start": 2253.22, + "end": 2258.46, + "probability": 0.9834 + }, + { + "start": 2259.1, + "end": 2262.08, + "probability": 0.9883 + }, + { + "start": 2262.46, + "end": 2262.64, + "probability": 0.5684 + }, + { + "start": 2263.76, + "end": 2264.16, + "probability": 0.0223 + }, + { + "start": 2264.36, + "end": 2264.36, + "probability": 0.2823 + }, + { + "start": 2264.36, + "end": 2264.72, + "probability": 0.253 + }, + { + "start": 2264.72, + "end": 2265.62, + "probability": 0.5034 + }, + { + "start": 2265.9, + "end": 2267.12, + "probability": 0.7118 + }, + { + "start": 2275.14, + "end": 2276.68, + "probability": 0.7956 + }, + { + "start": 2278.02, + "end": 2279.3, + "probability": 0.9949 + }, + { + "start": 2279.98, + "end": 2281.96, + "probability": 0.9793 + }, + { + "start": 2283.2, + "end": 2286.76, + "probability": 0.9664 + }, + { + "start": 2287.8, + "end": 2288.56, + "probability": 0.9136 + }, + { + "start": 2289.24, + "end": 2290.94, + "probability": 0.9778 + }, + { + "start": 2291.56, + "end": 2294.86, + "probability": 0.9913 + }, + { + "start": 2295.5, + "end": 2296.38, + "probability": 0.8696 + }, + { + "start": 2298.08, + "end": 2300.92, + "probability": 0.9926 + }, + { + "start": 2301.7, + "end": 2306.34, + "probability": 0.9925 + }, + { + "start": 2307.5, + "end": 2312.96, + "probability": 0.9937 + }, + { + "start": 2313.08, + "end": 2313.86, + "probability": 0.6539 + }, + { + "start": 2314.94, + "end": 2316.9, + "probability": 0.984 + }, + { + "start": 2317.58, + "end": 2321.82, + "probability": 0.9885 + }, + { + "start": 2322.54, + "end": 2326.48, + "probability": 0.9979 + }, + { + "start": 2326.63, + "end": 2329.76, + "probability": 0.9978 + }, + { + "start": 2330.48, + "end": 2334.46, + "probability": 0.9947 + }, + { + "start": 2335.0, + "end": 2335.56, + "probability": 0.9924 + }, + { + "start": 2336.24, + "end": 2337.24, + "probability": 0.8387 + }, + { + "start": 2337.86, + "end": 2340.26, + "probability": 0.9789 + }, + { + "start": 2340.7, + "end": 2341.5, + "probability": 0.4822 + }, + { + "start": 2341.6, + "end": 2343.4, + "probability": 0.9827 + }, + { + "start": 2344.08, + "end": 2346.58, + "probability": 0.9675 + }, + { + "start": 2347.06, + "end": 2349.34, + "probability": 0.9725 + }, + { + "start": 2350.0, + "end": 2354.1, + "probability": 0.9995 + }, + { + "start": 2354.64, + "end": 2358.34, + "probability": 0.9977 + }, + { + "start": 2358.74, + "end": 2358.94, + "probability": 0.7092 + }, + { + "start": 2359.36, + "end": 2360.98, + "probability": 0.8835 + }, + { + "start": 2361.48, + "end": 2361.84, + "probability": 0.5646 + }, + { + "start": 2361.84, + "end": 2365.16, + "probability": 0.9644 + }, + { + "start": 2365.36, + "end": 2369.34, + "probability": 0.8729 + }, + { + "start": 2369.4, + "end": 2371.22, + "probability": 0.9419 + }, + { + "start": 2383.94, + "end": 2385.22, + "probability": 0.6482 + }, + { + "start": 2385.32, + "end": 2385.32, + "probability": 0.4177 + }, + { + "start": 2385.32, + "end": 2385.7, + "probability": 0.5118 + }, + { + "start": 2385.78, + "end": 2387.02, + "probability": 0.754 + }, + { + "start": 2387.18, + "end": 2389.34, + "probability": 0.9057 + }, + { + "start": 2389.6, + "end": 2393.9, + "probability": 0.9875 + }, + { + "start": 2394.48, + "end": 2395.46, + "probability": 0.2283 + }, + { + "start": 2395.82, + "end": 2398.94, + "probability": 0.9581 + }, + { + "start": 2399.46, + "end": 2401.9, + "probability": 0.234 + }, + { + "start": 2402.38, + "end": 2402.58, + "probability": 0.9326 + }, + { + "start": 2403.68, + "end": 2407.04, + "probability": 0.9177 + }, + { + "start": 2407.46, + "end": 2408.12, + "probability": 0.9966 + }, + { + "start": 2408.72, + "end": 2409.76, + "probability": 0.9636 + }, + { + "start": 2410.4, + "end": 2411.68, + "probability": 0.9617 + }, + { + "start": 2412.6, + "end": 2413.64, + "probability": 0.7097 + }, + { + "start": 2414.1, + "end": 2414.18, + "probability": 0.1655 + }, + { + "start": 2415.1, + "end": 2417.98, + "probability": 0.9263 + }, + { + "start": 2419.0, + "end": 2420.1, + "probability": 0.6715 + }, + { + "start": 2420.9, + "end": 2423.26, + "probability": 0.9497 + }, + { + "start": 2424.08, + "end": 2424.26, + "probability": 0.3358 + }, + { + "start": 2424.96, + "end": 2430.68, + "probability": 0.017 + }, + { + "start": 2450.03, + "end": 2455.0, + "probability": 0.9964 + }, + { + "start": 2455.1, + "end": 2459.14, + "probability": 0.9969 + }, + { + "start": 2459.98, + "end": 2460.64, + "probability": 0.6262 + }, + { + "start": 2461.48, + "end": 2462.04, + "probability": 0.8193 + }, + { + "start": 2462.12, + "end": 2466.56, + "probability": 0.9283 + }, + { + "start": 2468.5, + "end": 2471.62, + "probability": 0.6907 + }, + { + "start": 2472.32, + "end": 2473.24, + "probability": 0.9705 + }, + { + "start": 2473.62, + "end": 2475.78, + "probability": 0.6853 + }, + { + "start": 2475.94, + "end": 2476.74, + "probability": 0.7367 + }, + { + "start": 2477.2, + "end": 2482.1, + "probability": 0.7053 + }, + { + "start": 2482.4, + "end": 2484.88, + "probability": 0.8721 + }, + { + "start": 2485.98, + "end": 2491.12, + "probability": 0.7863 + }, + { + "start": 2492.56, + "end": 2496.6, + "probability": 0.7674 + }, + { + "start": 2496.84, + "end": 2497.16, + "probability": 0.5916 + }, + { + "start": 2497.78, + "end": 2500.22, + "probability": 0.9703 + }, + { + "start": 2501.22, + "end": 2505.5, + "probability": 0.9812 + }, + { + "start": 2505.5, + "end": 2511.48, + "probability": 0.9969 + }, + { + "start": 2511.98, + "end": 2515.28, + "probability": 0.9595 + }, + { + "start": 2516.58, + "end": 2519.18, + "probability": 0.9086 + }, + { + "start": 2519.36, + "end": 2520.0, + "probability": 0.5485 + }, + { + "start": 2520.16, + "end": 2521.24, + "probability": 0.6011 + }, + { + "start": 2522.5, + "end": 2522.98, + "probability": 0.0626 + }, + { + "start": 2524.34, + "end": 2526.26, + "probability": 0.2491 + }, + { + "start": 2526.94, + "end": 2531.06, + "probability": 0.3276 + }, + { + "start": 2531.7, + "end": 2537.38, + "probability": 0.7631 + }, + { + "start": 2538.6, + "end": 2541.26, + "probability": 0.9552 + }, + { + "start": 2542.32, + "end": 2546.68, + "probability": 0.8366 + }, + { + "start": 2546.72, + "end": 2550.96, + "probability": 0.7508 + }, + { + "start": 2551.58, + "end": 2556.0, + "probability": 0.8055 + }, + { + "start": 2556.28, + "end": 2557.5, + "probability": 0.7889 + }, + { + "start": 2557.96, + "end": 2563.98, + "probability": 0.9206 + }, + { + "start": 2564.14, + "end": 2568.56, + "probability": 0.7791 + }, + { + "start": 2570.18, + "end": 2573.62, + "probability": 0.6919 + }, + { + "start": 2573.78, + "end": 2576.88, + "probability": 0.6353 + }, + { + "start": 2576.88, + "end": 2579.68, + "probability": 0.9875 + }, + { + "start": 2580.6, + "end": 2584.1, + "probability": 0.7598 + }, + { + "start": 2584.1, + "end": 2586.08, + "probability": 0.9799 + }, + { + "start": 2586.32, + "end": 2588.88, + "probability": 0.6503 + }, + { + "start": 2588.88, + "end": 2592.26, + "probability": 0.5104 + }, + { + "start": 2593.06, + "end": 2595.92, + "probability": 0.9746 + }, + { + "start": 2596.46, + "end": 2600.52, + "probability": 0.7295 + }, + { + "start": 2600.64, + "end": 2601.94, + "probability": 0.6239 + }, + { + "start": 2602.92, + "end": 2605.26, + "probability": 0.9883 + }, + { + "start": 2605.4, + "end": 2609.98, + "probability": 0.9522 + }, + { + "start": 2610.18, + "end": 2610.5, + "probability": 0.5284 + }, + { + "start": 2611.14, + "end": 2612.7, + "probability": 0.7376 + }, + { + "start": 2621.48, + "end": 2625.16, + "probability": 0.9873 + }, + { + "start": 2625.3, + "end": 2628.22, + "probability": 0.9959 + }, + { + "start": 2628.22, + "end": 2631.3, + "probability": 0.98 + }, + { + "start": 2631.56, + "end": 2632.26, + "probability": 0.8177 + }, + { + "start": 2632.3, + "end": 2633.04, + "probability": 0.5263 + }, + { + "start": 2633.04, + "end": 2633.98, + "probability": 0.8236 + }, + { + "start": 2634.1, + "end": 2636.7, + "probability": 0.8982 + }, + { + "start": 2636.7, + "end": 2638.56, + "probability": 0.9959 + }, + { + "start": 2639.3, + "end": 2640.94, + "probability": 0.9701 + }, + { + "start": 2641.58, + "end": 2642.36, + "probability": 0.9868 + }, + { + "start": 2642.64, + "end": 2643.4, + "probability": 0.8633 + }, + { + "start": 2643.44, + "end": 2646.43, + "probability": 0.9932 + }, + { + "start": 2646.68, + "end": 2648.5, + "probability": 0.9814 + }, + { + "start": 2648.62, + "end": 2649.17, + "probability": 0.8611 + }, + { + "start": 2649.74, + "end": 2652.34, + "probability": 0.99 + }, + { + "start": 2654.37, + "end": 2656.86, + "probability": 0.5666 + }, + { + "start": 2657.0, + "end": 2657.24, + "probability": 0.2533 + }, + { + "start": 2659.22, + "end": 2660.48, + "probability": 0.4783 + }, + { + "start": 2662.68, + "end": 2664.08, + "probability": 0.3855 + }, + { + "start": 2664.62, + "end": 2667.1, + "probability": 0.8428 + }, + { + "start": 2667.88, + "end": 2670.28, + "probability": 0.9366 + }, + { + "start": 2670.98, + "end": 2673.66, + "probability": 0.9912 + }, + { + "start": 2674.56, + "end": 2676.33, + "probability": 0.9231 + }, + { + "start": 2676.6, + "end": 2678.38, + "probability": 0.8743 + }, + { + "start": 2678.9, + "end": 2681.14, + "probability": 0.8089 + }, + { + "start": 2682.18, + "end": 2684.48, + "probability": 0.677 + }, + { + "start": 2685.34, + "end": 2687.88, + "probability": 0.9035 + }, + { + "start": 2688.54, + "end": 2691.8, + "probability": 0.7401 + }, + { + "start": 2693.74, + "end": 2696.34, + "probability": 0.8032 + }, + { + "start": 2697.3, + "end": 2698.12, + "probability": 0.9312 + }, + { + "start": 2699.34, + "end": 2704.18, + "probability": 0.7161 + }, + { + "start": 2704.44, + "end": 2706.82, + "probability": 0.8839 + }, + { + "start": 2706.82, + "end": 2712.38, + "probability": 0.6347 + }, + { + "start": 2712.99, + "end": 2714.57, + "probability": 0.9461 + }, + { + "start": 2715.5, + "end": 2716.44, + "probability": 0.7194 + }, + { + "start": 2717.04, + "end": 2718.44, + "probability": 0.8891 + }, + { + "start": 2719.74, + "end": 2723.46, + "probability": 0.8887 + }, + { + "start": 2723.66, + "end": 2726.5, + "probability": 0.6809 + }, + { + "start": 2726.6, + "end": 2728.03, + "probability": 0.9458 + }, + { + "start": 2728.7, + "end": 2729.58, + "probability": 0.7633 + }, + { + "start": 2730.48, + "end": 2731.57, + "probability": 0.9121 + }, + { + "start": 2733.95, + "end": 2736.46, + "probability": 0.5118 + }, + { + "start": 2737.06, + "end": 2739.1, + "probability": 0.8719 + }, + { + "start": 2739.4, + "end": 2741.48, + "probability": 0.7273 + }, + { + "start": 2743.46, + "end": 2747.06, + "probability": 0.9136 + }, + { + "start": 2748.12, + "end": 2749.28, + "probability": 0.7509 + }, + { + "start": 2749.34, + "end": 2752.38, + "probability": 0.8227 + }, + { + "start": 2753.04, + "end": 2755.42, + "probability": 0.9588 + }, + { + "start": 2755.46, + "end": 2757.34, + "probability": 0.3882 + }, + { + "start": 2757.4, + "end": 2759.48, + "probability": 0.7585 + }, + { + "start": 2759.56, + "end": 2760.86, + "probability": 0.8302 + }, + { + "start": 2761.51, + "end": 2763.42, + "probability": 0.8565 + }, + { + "start": 2763.46, + "end": 2764.76, + "probability": 0.497 + }, + { + "start": 2764.92, + "end": 2767.36, + "probability": 0.9763 + }, + { + "start": 2771.07, + "end": 2771.59, + "probability": 0.0229 + }, + { + "start": 2774.8, + "end": 2777.76, + "probability": 0.6912 + }, + { + "start": 2780.68, + "end": 2781.8, + "probability": 0.0066 + }, + { + "start": 2782.06, + "end": 2785.44, + "probability": 0.6271 + }, + { + "start": 2785.84, + "end": 2786.76, + "probability": 0.8784 + }, + { + "start": 2786.8, + "end": 2789.08, + "probability": 0.9213 + }, + { + "start": 2789.18, + "end": 2790.9, + "probability": 0.9978 + }, + { + "start": 2790.96, + "end": 2792.42, + "probability": 0.9208 + }, + { + "start": 2792.8, + "end": 2795.1, + "probability": 0.9937 + }, + { + "start": 2795.56, + "end": 2797.52, + "probability": 0.682 + }, + { + "start": 2798.16, + "end": 2800.05, + "probability": 0.9868 + }, + { + "start": 2800.46, + "end": 2802.68, + "probability": 0.9951 + }, + { + "start": 2803.2, + "end": 2805.6, + "probability": 0.9861 + }, + { + "start": 2806.8, + "end": 2811.26, + "probability": 0.9598 + }, + { + "start": 2812.4, + "end": 2813.94, + "probability": 0.301 + }, + { + "start": 2813.94, + "end": 2814.46, + "probability": 0.7019 + }, + { + "start": 2816.52, + "end": 2819.46, + "probability": 0.5374 + }, + { + "start": 2820.1, + "end": 2820.28, + "probability": 0.0847 + }, + { + "start": 2820.36, + "end": 2823.1, + "probability": 0.9948 + }, + { + "start": 2823.24, + "end": 2823.84, + "probability": 0.9051 + }, + { + "start": 2823.92, + "end": 2828.46, + "probability": 0.9637 + }, + { + "start": 2828.96, + "end": 2831.1, + "probability": 0.8744 + }, + { + "start": 2831.4, + "end": 2834.2, + "probability": 0.99 + }, + { + "start": 2834.3, + "end": 2835.5, + "probability": 0.9888 + }, + { + "start": 2835.84, + "end": 2839.04, + "probability": 0.9692 + }, + { + "start": 2839.14, + "end": 2840.16, + "probability": 0.9473 + }, + { + "start": 2840.68, + "end": 2844.28, + "probability": 0.9961 + }, + { + "start": 2844.54, + "end": 2845.32, + "probability": 0.8756 + }, + { + "start": 2845.72, + "end": 2846.96, + "probability": 0.8167 + }, + { + "start": 2848.32, + "end": 2849.68, + "probability": 0.9424 + }, + { + "start": 2849.9, + "end": 2854.13, + "probability": 0.9771 + }, + { + "start": 2854.54, + "end": 2857.24, + "probability": 0.7538 + }, + { + "start": 2858.1, + "end": 2860.72, + "probability": 0.9926 + }, + { + "start": 2860.72, + "end": 2864.26, + "probability": 0.9445 + }, + { + "start": 2864.5, + "end": 2864.72, + "probability": 0.6151 + }, + { + "start": 2864.84, + "end": 2866.65, + "probability": 0.8833 + }, + { + "start": 2866.82, + "end": 2868.42, + "probability": 0.587 + }, + { + "start": 2868.7, + "end": 2871.36, + "probability": 0.5642 + }, + { + "start": 2871.76, + "end": 2875.08, + "probability": 0.8224 + }, + { + "start": 2875.82, + "end": 2877.68, + "probability": 0.8181 + }, + { + "start": 2878.4, + "end": 2882.88, + "probability": 0.9629 + }, + { + "start": 2883.72, + "end": 2884.64, + "probability": 0.8819 + }, + { + "start": 2885.42, + "end": 2886.58, + "probability": 0.9763 + }, + { + "start": 2887.3, + "end": 2888.82, + "probability": 0.9758 + }, + { + "start": 2889.1, + "end": 2890.36, + "probability": 0.9896 + }, + { + "start": 2891.7, + "end": 2892.46, + "probability": 0.8387 + }, + { + "start": 2892.54, + "end": 2895.32, + "probability": 0.9691 + }, + { + "start": 2895.82, + "end": 2897.68, + "probability": 0.8766 + }, + { + "start": 2897.9, + "end": 2900.12, + "probability": 0.9941 + }, + { + "start": 2900.96, + "end": 2904.6, + "probability": 0.9941 + }, + { + "start": 2905.16, + "end": 2907.22, + "probability": 0.9974 + }, + { + "start": 2907.4, + "end": 2909.66, + "probability": 0.999 + }, + { + "start": 2910.14, + "end": 2913.14, + "probability": 0.9983 + }, + { + "start": 2913.7, + "end": 2918.1, + "probability": 0.9993 + }, + { + "start": 2918.14, + "end": 2920.62, + "probability": 0.9497 + }, + { + "start": 2921.18, + "end": 2924.98, + "probability": 0.9961 + }, + { + "start": 2925.73, + "end": 2928.38, + "probability": 0.9862 + }, + { + "start": 2928.62, + "end": 2930.2, + "probability": 0.782 + }, + { + "start": 2930.64, + "end": 2931.8, + "probability": 0.3297 + }, + { + "start": 2931.8, + "end": 2933.01, + "probability": 0.584 + }, + { + "start": 2933.96, + "end": 2936.16, + "probability": 0.9749 + }, + { + "start": 2936.84, + "end": 2939.62, + "probability": 0.7991 + }, + { + "start": 2941.12, + "end": 2943.46, + "probability": 0.9362 + }, + { + "start": 2944.01, + "end": 2944.96, + "probability": 0.8045 + }, + { + "start": 2945.46, + "end": 2946.23, + "probability": 0.2177 + }, + { + "start": 2947.28, + "end": 2951.96, + "probability": 0.4349 + }, + { + "start": 2952.48, + "end": 2953.89, + "probability": 0.9868 + }, + { + "start": 2954.08, + "end": 2954.78, + "probability": 0.9932 + }, + { + "start": 2955.6, + "end": 2955.94, + "probability": 0.9693 + }, + { + "start": 2956.72, + "end": 2959.02, + "probability": 0.9139 + }, + { + "start": 2959.98, + "end": 2961.84, + "probability": 0.5814 + }, + { + "start": 2963.0, + "end": 2964.26, + "probability": 0.1096 + }, + { + "start": 2967.48, + "end": 2969.96, + "probability": 0.9738 + }, + { + "start": 2969.98, + "end": 2973.36, + "probability": 0.8045 + }, + { + "start": 2974.48, + "end": 2975.68, + "probability": 0.8052 + }, + { + "start": 2975.82, + "end": 2978.78, + "probability": 0.8941 + }, + { + "start": 2979.78, + "end": 2985.28, + "probability": 0.9176 + }, + { + "start": 2985.96, + "end": 2989.7, + "probability": 0.805 + }, + { + "start": 2991.02, + "end": 2996.3, + "probability": 0.658 + }, + { + "start": 2998.1, + "end": 3000.18, + "probability": 0.8829 + }, + { + "start": 3000.18, + "end": 3003.28, + "probability": 0.876 + }, + { + "start": 3003.78, + "end": 3008.08, + "probability": 0.9818 + }, + { + "start": 3008.82, + "end": 3010.86, + "probability": 0.741 + }, + { + "start": 3011.42, + "end": 3012.04, + "probability": 0.9118 + }, + { + "start": 3012.66, + "end": 3014.46, + "probability": 0.8183 + }, + { + "start": 3014.64, + "end": 3017.58, + "probability": 0.988 + }, + { + "start": 3018.1, + "end": 3018.5, + "probability": 0.6536 + }, + { + "start": 3018.64, + "end": 3019.06, + "probability": 0.939 + }, + { + "start": 3019.12, + "end": 3020.08, + "probability": 0.8814 + }, + { + "start": 3020.2, + "end": 3023.78, + "probability": 0.9691 + }, + { + "start": 3024.48, + "end": 3026.34, + "probability": 0.9304 + }, + { + "start": 3026.84, + "end": 3028.2, + "probability": 0.9344 + }, + { + "start": 3028.5, + "end": 3029.48, + "probability": 0.7022 + }, + { + "start": 3030.04, + "end": 3031.06, + "probability": 0.9495 + }, + { + "start": 3031.18, + "end": 3033.46, + "probability": 0.716 + }, + { + "start": 3033.8, + "end": 3035.22, + "probability": 0.6925 + }, + { + "start": 3035.58, + "end": 3036.28, + "probability": 0.8312 + }, + { + "start": 3037.18, + "end": 3039.9, + "probability": 0.9753 + }, + { + "start": 3040.34, + "end": 3042.53, + "probability": 0.8691 + }, + { + "start": 3043.18, + "end": 3048.56, + "probability": 0.8542 + }, + { + "start": 3049.12, + "end": 3051.86, + "probability": 0.9967 + }, + { + "start": 3053.04, + "end": 3055.18, + "probability": 0.896 + }, + { + "start": 3055.34, + "end": 3057.14, + "probability": 0.5616 + }, + { + "start": 3057.78, + "end": 3060.66, + "probability": 0.9183 + }, + { + "start": 3062.3, + "end": 3063.18, + "probability": 0.7373 + }, + { + "start": 3063.6, + "end": 3066.98, + "probability": 0.5705 + }, + { + "start": 3067.14, + "end": 3070.94, + "probability": 0.9606 + }, + { + "start": 3071.38, + "end": 3076.18, + "probability": 0.8925 + }, + { + "start": 3076.78, + "end": 3079.66, + "probability": 0.9813 + }, + { + "start": 3079.68, + "end": 3081.96, + "probability": 0.7687 + }, + { + "start": 3082.96, + "end": 3083.56, + "probability": 0.5277 + }, + { + "start": 3083.74, + "end": 3086.48, + "probability": 0.9849 + }, + { + "start": 3089.62, + "end": 3091.36, + "probability": 0.7348 + }, + { + "start": 3091.62, + "end": 3092.72, + "probability": 0.8098 + }, + { + "start": 3093.22, + "end": 3094.4, + "probability": 0.9724 + }, + { + "start": 3094.88, + "end": 3096.0, + "probability": 0.7653 + }, + { + "start": 3097.68, + "end": 3099.1, + "probability": 0.8632 + }, + { + "start": 3099.78, + "end": 3101.42, + "probability": 0.6781 + }, + { + "start": 3103.04, + "end": 3105.36, + "probability": 0.8543 + }, + { + "start": 3106.38, + "end": 3108.28, + "probability": 0.9968 + }, + { + "start": 3108.84, + "end": 3111.86, + "probability": 0.9937 + }, + { + "start": 3113.52, + "end": 3114.44, + "probability": 0.8905 + }, + { + "start": 3114.54, + "end": 3115.12, + "probability": 0.708 + }, + { + "start": 3115.22, + "end": 3116.68, + "probability": 0.9692 + }, + { + "start": 3117.4, + "end": 3119.55, + "probability": 0.975 + }, + { + "start": 3120.14, + "end": 3121.6, + "probability": 0.6843 + }, + { + "start": 3122.14, + "end": 3123.42, + "probability": 0.6387 + }, + { + "start": 3123.74, + "end": 3124.74, + "probability": 0.9841 + }, + { + "start": 3125.02, + "end": 3125.46, + "probability": 0.7251 + }, + { + "start": 3125.52, + "end": 3126.3, + "probability": 0.9438 + }, + { + "start": 3126.86, + "end": 3127.52, + "probability": 0.8914 + }, + { + "start": 3128.12, + "end": 3128.76, + "probability": 0.5121 + }, + { + "start": 3129.78, + "end": 3132.12, + "probability": 0.7415 + }, + { + "start": 3133.62, + "end": 3134.12, + "probability": 0.9534 + }, + { + "start": 3134.76, + "end": 3136.1, + "probability": 0.9702 + }, + { + "start": 3136.66, + "end": 3138.62, + "probability": 0.8437 + }, + { + "start": 3138.88, + "end": 3139.44, + "probability": 0.7122 + }, + { + "start": 3139.62, + "end": 3140.22, + "probability": 0.7168 + }, + { + "start": 3140.88, + "end": 3142.34, + "probability": 0.9761 + }, + { + "start": 3143.1, + "end": 3144.88, + "probability": 0.8721 + }, + { + "start": 3145.86, + "end": 3148.36, + "probability": 0.6526 + }, + { + "start": 3149.08, + "end": 3150.92, + "probability": 0.5875 + }, + { + "start": 3151.04, + "end": 3153.07, + "probability": 0.9881 + }, + { + "start": 3153.26, + "end": 3154.4, + "probability": 0.9491 + }, + { + "start": 3154.98, + "end": 3159.46, + "probability": 0.8955 + }, + { + "start": 3160.2, + "end": 3161.34, + "probability": 0.5806 + }, + { + "start": 3162.28, + "end": 3165.4, + "probability": 0.4551 + }, + { + "start": 3165.4, + "end": 3169.8, + "probability": 0.8994 + }, + { + "start": 3170.08, + "end": 3171.36, + "probability": 0.8207 + }, + { + "start": 3173.5, + "end": 3175.46, + "probability": 0.9114 + }, + { + "start": 3175.52, + "end": 3176.15, + "probability": 0.9821 + }, + { + "start": 3176.42, + "end": 3179.54, + "probability": 0.854 + }, + { + "start": 3180.38, + "end": 3182.82, + "probability": 0.9467 + }, + { + "start": 3183.85, + "end": 3188.78, + "probability": 0.5796 + }, + { + "start": 3189.68, + "end": 3190.54, + "probability": 0.539 + }, + { + "start": 3190.62, + "end": 3193.32, + "probability": 0.8027 + }, + { + "start": 3194.3, + "end": 3195.74, + "probability": 0.9844 + }, + { + "start": 3197.46, + "end": 3202.14, + "probability": 0.5441 + }, + { + "start": 3202.56, + "end": 3204.22, + "probability": 0.9951 + }, + { + "start": 3208.92, + "end": 3211.06, + "probability": 0.6788 + }, + { + "start": 3211.74, + "end": 3214.22, + "probability": 0.555 + }, + { + "start": 3217.5, + "end": 3219.04, + "probability": 0.4535 + }, + { + "start": 3220.18, + "end": 3221.3, + "probability": 0.4814 + }, + { + "start": 3221.52, + "end": 3222.6, + "probability": 0.9453 + }, + { + "start": 3222.8, + "end": 3223.8, + "probability": 0.801 + }, + { + "start": 3224.88, + "end": 3225.9, + "probability": 0.9115 + }, + { + "start": 3227.02, + "end": 3228.14, + "probability": 0.9406 + }, + { + "start": 3228.82, + "end": 3229.34, + "probability": 0.9172 + }, + { + "start": 3230.22, + "end": 3233.14, + "probability": 0.2738 + }, + { + "start": 3234.26, + "end": 3235.73, + "probability": 0.6175 + }, + { + "start": 3236.58, + "end": 3237.04, + "probability": 0.7568 + }, + { + "start": 3238.14, + "end": 3241.28, + "probability": 0.9004 + }, + { + "start": 3241.98, + "end": 3242.18, + "probability": 0.6622 + }, + { + "start": 3242.72, + "end": 3243.96, + "probability": 0.665 + }, + { + "start": 3244.18, + "end": 3244.56, + "probability": 0.5754 + }, + { + "start": 3244.7, + "end": 3245.28, + "probability": 0.777 + }, + { + "start": 3245.58, + "end": 3246.38, + "probability": 0.6696 + }, + { + "start": 3246.64, + "end": 3247.88, + "probability": 0.9348 + }, + { + "start": 3248.32, + "end": 3250.06, + "probability": 0.9121 + }, + { + "start": 3253.98, + "end": 3255.06, + "probability": 0.8224 + }, + { + "start": 3255.64, + "end": 3259.76, + "probability": 0.5519 + }, + { + "start": 3260.4, + "end": 3263.58, + "probability": 0.6029 + }, + { + "start": 3263.7, + "end": 3264.78, + "probability": 0.9058 + }, + { + "start": 3265.7, + "end": 3269.7, + "probability": 0.9678 + }, + { + "start": 3270.24, + "end": 3272.96, + "probability": 0.8712 + }, + { + "start": 3273.98, + "end": 3276.0, + "probability": 0.3657 + }, + { + "start": 3276.76, + "end": 3278.44, + "probability": 0.5356 + }, + { + "start": 3278.92, + "end": 3280.78, + "probability": 0.8181 + }, + { + "start": 3281.08, + "end": 3281.84, + "probability": 0.9125 + }, + { + "start": 3282.1, + "end": 3282.74, + "probability": 0.6106 + }, + { + "start": 3283.36, + "end": 3284.72, + "probability": 0.5395 + }, + { + "start": 3285.26, + "end": 3285.84, + "probability": 0.5576 + }, + { + "start": 3286.48, + "end": 3287.22, + "probability": 0.703 + }, + { + "start": 3292.5, + "end": 3295.36, + "probability": 0.8464 + }, + { + "start": 3296.46, + "end": 3300.86, + "probability": 0.9795 + }, + { + "start": 3301.54, + "end": 3302.92, + "probability": 0.9726 + }, + { + "start": 3303.14, + "end": 3308.26, + "probability": 0.9772 + }, + { + "start": 3309.1, + "end": 3311.06, + "probability": 0.9294 + }, + { + "start": 3311.3, + "end": 3315.16, + "probability": 0.9809 + }, + { + "start": 3316.52, + "end": 3319.66, + "probability": 0.9945 + }, + { + "start": 3320.1, + "end": 3322.18, + "probability": 0.908 + }, + { + "start": 3323.26, + "end": 3325.54, + "probability": 0.7873 + }, + { + "start": 3326.12, + "end": 3329.0, + "probability": 0.8105 + }, + { + "start": 3329.16, + "end": 3330.4, + "probability": 0.9096 + }, + { + "start": 3331.08, + "end": 3335.84, + "probability": 0.9803 + }, + { + "start": 3336.5, + "end": 3340.82, + "probability": 0.9958 + }, + { + "start": 3341.38, + "end": 3343.94, + "probability": 0.9974 + }, + { + "start": 3345.14, + "end": 3349.68, + "probability": 0.9969 + }, + { + "start": 3350.06, + "end": 3352.98, + "probability": 0.993 + }, + { + "start": 3354.28, + "end": 3354.38, + "probability": 0.627 + }, + { + "start": 3355.34, + "end": 3355.62, + "probability": 0.3355 + }, + { + "start": 3355.68, + "end": 3358.72, + "probability": 0.7017 + }, + { + "start": 3359.42, + "end": 3362.26, + "probability": 0.6637 + }, + { + "start": 3364.24, + "end": 3364.46, + "probability": 0.7799 + }, + { + "start": 3367.15, + "end": 3368.21, + "probability": 0.2061 + }, + { + "start": 3369.16, + "end": 3369.64, + "probability": 0.5041 + }, + { + "start": 3370.84, + "end": 3371.38, + "probability": 0.5306 + }, + { + "start": 3371.44, + "end": 3372.1, + "probability": 0.4773 + }, + { + "start": 3372.24, + "end": 3372.78, + "probability": 0.6514 + }, + { + "start": 3372.78, + "end": 3373.54, + "probability": 0.4076 + }, + { + "start": 3374.22, + "end": 3375.68, + "probability": 0.5679 + }, + { + "start": 3377.32, + "end": 3379.04, + "probability": 0.1805 + }, + { + "start": 3379.2, + "end": 3380.56, + "probability": 0.7583 + }, + { + "start": 3380.74, + "end": 3382.24, + "probability": 0.5936 + }, + { + "start": 3382.26, + "end": 3382.48, + "probability": 0.3776 + }, + { + "start": 3382.5, + "end": 3383.82, + "probability": 0.4754 + }, + { + "start": 3383.92, + "end": 3384.4, + "probability": 0.7203 + }, + { + "start": 3386.6, + "end": 3389.12, + "probability": 0.7614 + }, + { + "start": 3389.82, + "end": 3390.72, + "probability": 0.1909 + }, + { + "start": 3392.58, + "end": 3393.86, + "probability": 0.771 + }, + { + "start": 3393.96, + "end": 3397.18, + "probability": 0.9348 + }, + { + "start": 3397.88, + "end": 3399.38, + "probability": 0.8813 + }, + { + "start": 3400.2, + "end": 3404.82, + "probability": 0.8116 + }, + { + "start": 3405.94, + "end": 3409.64, + "probability": 0.6383 + }, + { + "start": 3410.5, + "end": 3413.4, + "probability": 0.9962 + }, + { + "start": 3413.56, + "end": 3417.14, + "probability": 0.9918 + }, + { + "start": 3418.6, + "end": 3420.1, + "probability": 0.931 + }, + { + "start": 3421.36, + "end": 3422.12, + "probability": 0.3403 + }, + { + "start": 3423.64, + "end": 3427.72, + "probability": 0.9464 + }, + { + "start": 3428.28, + "end": 3432.02, + "probability": 0.9519 + }, + { + "start": 3432.48, + "end": 3439.48, + "probability": 0.9775 + }, + { + "start": 3441.14, + "end": 3445.46, + "probability": 0.8675 + }, + { + "start": 3446.72, + "end": 3449.68, + "probability": 0.8002 + }, + { + "start": 3450.94, + "end": 3452.44, + "probability": 0.729 + }, + { + "start": 3453.26, + "end": 3456.02, + "probability": 0.9484 + }, + { + "start": 3456.62, + "end": 3458.2, + "probability": 0.8815 + }, + { + "start": 3459.48, + "end": 3462.88, + "probability": 0.9625 + }, + { + "start": 3462.88, + "end": 3467.14, + "probability": 0.9493 + }, + { + "start": 3468.38, + "end": 3472.72, + "probability": 0.9978 + }, + { + "start": 3472.98, + "end": 3474.26, + "probability": 0.8034 + }, + { + "start": 3475.14, + "end": 3476.56, + "probability": 0.9568 + }, + { + "start": 3477.8, + "end": 3480.82, + "probability": 0.994 + }, + { + "start": 3480.9, + "end": 3482.92, + "probability": 0.9604 + }, + { + "start": 3483.4, + "end": 3485.38, + "probability": 0.8987 + }, + { + "start": 3485.58, + "end": 3488.66, + "probability": 0.8901 + }, + { + "start": 3489.44, + "end": 3490.24, + "probability": 0.5942 + }, + { + "start": 3491.2, + "end": 3492.58, + "probability": 0.7693 + }, + { + "start": 3495.53, + "end": 3496.77, + "probability": 0.8828 + }, + { + "start": 3498.4, + "end": 3498.88, + "probability": 0.2918 + }, + { + "start": 3499.1, + "end": 3499.72, + "probability": 0.7838 + }, + { + "start": 3499.98, + "end": 3501.54, + "probability": 0.9156 + }, + { + "start": 3508.18, + "end": 3508.7, + "probability": 0.3235 + }, + { + "start": 3513.22, + "end": 3515.06, + "probability": 0.8485 + }, + { + "start": 3515.28, + "end": 3518.02, + "probability": 0.5621 + }, + { + "start": 3518.68, + "end": 3524.1, + "probability": 0.979 + }, + { + "start": 3524.74, + "end": 3526.8, + "probability": 0.587 + }, + { + "start": 3527.14, + "end": 3528.5, + "probability": 0.6555 + }, + { + "start": 3528.5, + "end": 3529.96, + "probability": 0.9175 + }, + { + "start": 3530.04, + "end": 3531.56, + "probability": 0.8781 + }, + { + "start": 3532.26, + "end": 3534.2, + "probability": 0.9348 + }, + { + "start": 3534.24, + "end": 3534.72, + "probability": 0.7254 + }, + { + "start": 3534.74, + "end": 3537.38, + "probability": 0.9105 + }, + { + "start": 3538.08, + "end": 3541.24, + "probability": 0.9153 + }, + { + "start": 3542.48, + "end": 3542.48, + "probability": 0.3365 + }, + { + "start": 3542.48, + "end": 3544.14, + "probability": 0.9855 + }, + { + "start": 3544.78, + "end": 3545.64, + "probability": 0.5684 + }, + { + "start": 3546.18, + "end": 3547.94, + "probability": 0.6941 + }, + { + "start": 3548.44, + "end": 3549.62, + "probability": 0.9811 + }, + { + "start": 3550.22, + "end": 3551.28, + "probability": 0.9312 + }, + { + "start": 3551.7, + "end": 3551.84, + "probability": 0.1201 + }, + { + "start": 3553.42, + "end": 3553.56, + "probability": 0.2505 + }, + { + "start": 3553.56, + "end": 3553.7, + "probability": 0.139 + }, + { + "start": 3553.78, + "end": 3554.48, + "probability": 0.7982 + }, + { + "start": 3557.94, + "end": 3559.38, + "probability": 0.8086 + }, + { + "start": 3559.56, + "end": 3563.64, + "probability": 0.968 + }, + { + "start": 3563.64, + "end": 3566.64, + "probability": 0.6936 + }, + { + "start": 3567.92, + "end": 3572.82, + "probability": 0.4548 + }, + { + "start": 3573.56, + "end": 3580.44, + "probability": 0.5912 + }, + { + "start": 3581.76, + "end": 3583.06, + "probability": 0.3943 + }, + { + "start": 3583.34, + "end": 3583.78, + "probability": 0.6812 + }, + { + "start": 3584.04, + "end": 3585.92, + "probability": 0.9902 + }, + { + "start": 3586.02, + "end": 3586.85, + "probability": 0.0225 + }, + { + "start": 3589.46, + "end": 3591.07, + "probability": 0.324 + }, + { + "start": 3591.5, + "end": 3592.01, + "probability": 0.6034 + }, + { + "start": 3592.34, + "end": 3592.86, + "probability": 0.9153 + }, + { + "start": 3592.86, + "end": 3593.34, + "probability": 0.7367 + }, + { + "start": 3593.62, + "end": 3595.38, + "probability": 0.6516 + }, + { + "start": 3595.48, + "end": 3598.9, + "probability": 0.8453 + }, + { + "start": 3599.3, + "end": 3600.88, + "probability": 0.904 + }, + { + "start": 3608.82, + "end": 3611.58, + "probability": 0.8463 + }, + { + "start": 3612.44, + "end": 3616.3, + "probability": 0.9507 + }, + { + "start": 3616.3, + "end": 3621.68, + "probability": 0.8236 + }, + { + "start": 3622.18, + "end": 3627.78, + "probability": 0.9619 + }, + { + "start": 3629.44, + "end": 3630.38, + "probability": 0.8568 + }, + { + "start": 3630.48, + "end": 3633.68, + "probability": 0.9971 + }, + { + "start": 3633.68, + "end": 3637.42, + "probability": 0.9745 + }, + { + "start": 3637.48, + "end": 3638.56, + "probability": 0.9784 + }, + { + "start": 3639.12, + "end": 3644.3, + "probability": 0.9802 + }, + { + "start": 3645.06, + "end": 3649.18, + "probability": 0.9616 + }, + { + "start": 3649.18, + "end": 3653.72, + "probability": 0.9988 + }, + { + "start": 3653.72, + "end": 3658.4, + "probability": 0.9896 + }, + { + "start": 3658.54, + "end": 3660.24, + "probability": 0.9758 + }, + { + "start": 3661.28, + "end": 3662.32, + "probability": 0.7901 + }, + { + "start": 3662.38, + "end": 3663.68, + "probability": 0.6281 + }, + { + "start": 3663.86, + "end": 3663.86, + "probability": 0.6968 + }, + { + "start": 3663.86, + "end": 3665.1, + "probability": 0.9729 + }, + { + "start": 3665.66, + "end": 3667.76, + "probability": 0.9726 + }, + { + "start": 3669.18, + "end": 3673.7, + "probability": 0.8738 + }, + { + "start": 3674.6, + "end": 3678.06, + "probability": 0.9575 + }, + { + "start": 3679.72, + "end": 3682.8, + "probability": 0.7313 + }, + { + "start": 3682.92, + "end": 3683.2, + "probability": 0.9173 + }, + { + "start": 3683.3, + "end": 3688.0, + "probability": 0.9882 + }, + { + "start": 3688.0, + "end": 3692.2, + "probability": 0.9749 + }, + { + "start": 3693.0, + "end": 3696.4, + "probability": 0.9311 + }, + { + "start": 3696.94, + "end": 3703.24, + "probability": 0.9729 + }, + { + "start": 3703.24, + "end": 3708.48, + "probability": 0.9865 + }, + { + "start": 3710.1, + "end": 3711.42, + "probability": 0.9414 + }, + { + "start": 3712.3, + "end": 3716.56, + "probability": 0.8927 + }, + { + "start": 3717.48, + "end": 3721.66, + "probability": 0.9841 + }, + { + "start": 3721.66, + "end": 3725.3, + "probability": 0.9898 + }, + { + "start": 3725.46, + "end": 3726.86, + "probability": 0.9922 + }, + { + "start": 3727.6, + "end": 3732.48, + "probability": 0.9845 + }, + { + "start": 3733.3, + "end": 3736.58, + "probability": 0.9753 + }, + { + "start": 3737.4, + "end": 3741.38, + "probability": 0.9823 + }, + { + "start": 3742.38, + "end": 3747.6, + "probability": 0.9937 + }, + { + "start": 3748.38, + "end": 3750.56, + "probability": 0.9415 + }, + { + "start": 3750.56, + "end": 3754.74, + "probability": 0.95 + }, + { + "start": 3755.28, + "end": 3755.56, + "probability": 0.6613 + }, + { + "start": 3756.9, + "end": 3758.03, + "probability": 0.5041 + }, + { + "start": 3758.88, + "end": 3761.98, + "probability": 0.833 + }, + { + "start": 3763.24, + "end": 3766.12, + "probability": 0.8403 + }, + { + "start": 3766.12, + "end": 3769.5, + "probability": 0.9089 + }, + { + "start": 3770.14, + "end": 3772.7, + "probability": 0.9604 + }, + { + "start": 3772.7, + "end": 3775.52, + "probability": 0.9911 + }, + { + "start": 3776.32, + "end": 3777.78, + "probability": 0.8861 + }, + { + "start": 3778.24, + "end": 3782.58, + "probability": 0.9839 + }, + { + "start": 3783.04, + "end": 3786.58, + "probability": 0.8514 + }, + { + "start": 3786.58, + "end": 3789.46, + "probability": 0.9307 + }, + { + "start": 3789.94, + "end": 3794.14, + "probability": 0.7471 + }, + { + "start": 3794.82, + "end": 3799.36, + "probability": 0.9453 + }, + { + "start": 3800.74, + "end": 3805.68, + "probability": 0.7787 + }, + { + "start": 3805.68, + "end": 3809.58, + "probability": 0.853 + }, + { + "start": 3809.66, + "end": 3813.16, + "probability": 0.7058 + }, + { + "start": 3813.16, + "end": 3816.16, + "probability": 0.7429 + }, + { + "start": 3816.68, + "end": 3819.62, + "probability": 0.8747 + }, + { + "start": 3820.22, + "end": 3825.0, + "probability": 0.7429 + }, + { + "start": 3825.72, + "end": 3826.8, + "probability": 0.9244 + }, + { + "start": 3828.02, + "end": 3828.5, + "probability": 0.6968 + }, + { + "start": 3829.98, + "end": 3830.86, + "probability": 0.6943 + }, + { + "start": 3834.5, + "end": 3835.08, + "probability": 0.4809 + }, + { + "start": 3835.62, + "end": 3839.24, + "probability": 0.7913 + }, + { + "start": 3840.46, + "end": 3842.34, + "probability": 0.4132 + }, + { + "start": 3842.46, + "end": 3845.98, + "probability": 0.5606 + }, + { + "start": 3845.98, + "end": 3846.5, + "probability": 0.7116 + }, + { + "start": 3846.76, + "end": 3847.7, + "probability": 0.9406 + }, + { + "start": 3847.7, + "end": 3850.18, + "probability": 0.3663 + }, + { + "start": 3852.34, + "end": 3855.8, + "probability": 0.6601 + }, + { + "start": 3856.6, + "end": 3858.1, + "probability": 0.8469 + }, + { + "start": 3858.1, + "end": 3858.5, + "probability": 0.7325 + }, + { + "start": 3858.56, + "end": 3859.86, + "probability": 0.7989 + }, + { + "start": 3859.86, + "end": 3860.86, + "probability": 0.7479 + }, + { + "start": 3861.18, + "end": 3862.78, + "probability": 0.6613 + }, + { + "start": 3862.8, + "end": 3863.04, + "probability": 0.6035 + }, + { + "start": 3863.12, + "end": 3868.1, + "probability": 0.9819 + }, + { + "start": 3868.8, + "end": 3870.48, + "probability": 0.9201 + }, + { + "start": 3870.7, + "end": 3875.82, + "probability": 0.9591 + }, + { + "start": 3876.34, + "end": 3877.14, + "probability": 0.6604 + }, + { + "start": 3877.26, + "end": 3880.9, + "probability": 0.9044 + }, + { + "start": 3881.64, + "end": 3885.52, + "probability": 0.7673 + }, + { + "start": 3885.76, + "end": 3888.44, + "probability": 0.9648 + }, + { + "start": 3890.06, + "end": 3893.38, + "probability": 0.8999 + }, + { + "start": 3893.48, + "end": 3894.16, + "probability": 0.9253 + }, + { + "start": 3894.36, + "end": 3894.74, + "probability": 0.5141 + }, + { + "start": 3894.98, + "end": 3895.3, + "probability": 0.9253 + }, + { + "start": 3895.32, + "end": 3897.38, + "probability": 0.7402 + }, + { + "start": 3897.44, + "end": 3899.84, + "probability": 0.9229 + }, + { + "start": 3900.56, + "end": 3901.79, + "probability": 0.9917 + }, + { + "start": 3902.08, + "end": 3905.38, + "probability": 0.9836 + }, + { + "start": 3905.5, + "end": 3908.32, + "probability": 0.8086 + }, + { + "start": 3908.72, + "end": 3909.62, + "probability": 0.6859 + }, + { + "start": 3909.72, + "end": 3912.28, + "probability": 0.7854 + }, + { + "start": 3912.34, + "end": 3912.6, + "probability": 0.951 + }, + { + "start": 3913.04, + "end": 3913.68, + "probability": 0.4958 + }, + { + "start": 3914.44, + "end": 3915.26, + "probability": 0.6709 + }, + { + "start": 3915.44, + "end": 3917.48, + "probability": 0.1371 + }, + { + "start": 3917.48, + "end": 3918.84, + "probability": 0.8471 + }, + { + "start": 3919.23, + "end": 3920.84, + "probability": 0.8698 + }, + { + "start": 3921.96, + "end": 3923.96, + "probability": 0.8159 + }, + { + "start": 3925.22, + "end": 3927.76, + "probability": 0.9142 + }, + { + "start": 3928.9, + "end": 3930.38, + "probability": 0.876 + }, + { + "start": 3931.6, + "end": 3934.7, + "probability": 0.9002 + }, + { + "start": 3936.04, + "end": 3940.92, + "probability": 0.6041 + }, + { + "start": 3941.66, + "end": 3943.96, + "probability": 0.7873 + }, + { + "start": 3944.48, + "end": 3945.42, + "probability": 0.7955 + }, + { + "start": 3945.9, + "end": 3948.16, + "probability": 0.8776 + }, + { + "start": 3949.04, + "end": 3950.08, + "probability": 0.9624 + }, + { + "start": 3950.26, + "end": 3950.72, + "probability": 0.6586 + }, + { + "start": 3951.54, + "end": 3954.32, + "probability": 0.8869 + }, + { + "start": 3954.74, + "end": 3957.36, + "probability": 0.9862 + }, + { + "start": 3958.02, + "end": 3961.4, + "probability": 0.9155 + }, + { + "start": 3962.08, + "end": 3964.24, + "probability": 0.7862 + }, + { + "start": 3965.44, + "end": 3968.24, + "probability": 0.7805 + }, + { + "start": 3968.88, + "end": 3971.7, + "probability": 0.877 + }, + { + "start": 3972.32, + "end": 3973.7, + "probability": 0.8423 + }, + { + "start": 3973.88, + "end": 3975.02, + "probability": 0.8059 + }, + { + "start": 3975.44, + "end": 3978.28, + "probability": 0.9641 + }, + { + "start": 3978.48, + "end": 3979.0, + "probability": 0.7775 + }, + { + "start": 3979.32, + "end": 3981.26, + "probability": 0.8669 + }, + { + "start": 3981.92, + "end": 3982.76, + "probability": 0.6442 + }, + { + "start": 3983.0, + "end": 3985.08, + "probability": 0.8884 + }, + { + "start": 3992.54, + "end": 3994.26, + "probability": 0.8438 + }, + { + "start": 3995.72, + "end": 3997.44, + "probability": 0.9866 + }, + { + "start": 3998.58, + "end": 4002.88, + "probability": 0.9669 + }, + { + "start": 4003.44, + "end": 4005.7, + "probability": 0.9007 + }, + { + "start": 4006.58, + "end": 4007.04, + "probability": 0.6964 + }, + { + "start": 4007.06, + "end": 4009.86, + "probability": 0.9753 + }, + { + "start": 4009.86, + "end": 4013.6, + "probability": 0.9962 + }, + { + "start": 4014.7, + "end": 4019.56, + "probability": 0.9977 + }, + { + "start": 4020.14, + "end": 4022.58, + "probability": 0.9984 + }, + { + "start": 4023.14, + "end": 4025.74, + "probability": 0.9951 + }, + { + "start": 4026.96, + "end": 4028.88, + "probability": 0.7613 + }, + { + "start": 4028.98, + "end": 4029.46, + "probability": 0.6375 + }, + { + "start": 4029.52, + "end": 4032.98, + "probability": 0.9839 + }, + { + "start": 4033.6, + "end": 4036.6, + "probability": 0.9909 + }, + { + "start": 4036.6, + "end": 4039.92, + "probability": 0.931 + }, + { + "start": 4040.34, + "end": 4044.34, + "probability": 0.9988 + }, + { + "start": 4044.34, + "end": 4047.68, + "probability": 0.9912 + }, + { + "start": 4047.96, + "end": 4048.36, + "probability": 0.6757 + }, + { + "start": 4049.36, + "end": 4053.76, + "probability": 0.8224 + }, + { + "start": 4055.96, + "end": 4055.96, + "probability": 0.026 + }, + { + "start": 4055.96, + "end": 4055.96, + "probability": 0.1629 + }, + { + "start": 4055.96, + "end": 4055.96, + "probability": 0.2062 + }, + { + "start": 4055.96, + "end": 4059.5, + "probability": 0.7904 + }, + { + "start": 4059.7, + "end": 4061.92, + "probability": 0.8849 + }, + { + "start": 4062.64, + "end": 4067.5, + "probability": 0.9337 + }, + { + "start": 4067.78, + "end": 4070.9, + "probability": 0.9563 + }, + { + "start": 4072.55, + "end": 4073.66, + "probability": 0.8685 + }, + { + "start": 4074.0, + "end": 4077.38, + "probability": 0.9403 + }, + { + "start": 4078.08, + "end": 4080.08, + "probability": 0.9374 + }, + { + "start": 4080.08, + "end": 4082.62, + "probability": 0.9767 + }, + { + "start": 4083.64, + "end": 4084.52, + "probability": 0.7763 + }, + { + "start": 4084.64, + "end": 4087.4, + "probability": 0.8092 + }, + { + "start": 4089.56, + "end": 4093.6, + "probability": 0.8931 + }, + { + "start": 4093.7, + "end": 4094.04, + "probability": 0.5423 + }, + { + "start": 4094.62, + "end": 4094.9, + "probability": 0.741 + }, + { + "start": 4095.48, + "end": 4097.22, + "probability": 0.6775 + }, + { + "start": 4098.06, + "end": 4098.84, + "probability": 0.4725 + }, + { + "start": 4099.92, + "end": 4100.7, + "probability": 0.8362 + }, + { + "start": 4102.28, + "end": 4105.02, + "probability": 0.88 + }, + { + "start": 4105.74, + "end": 4106.66, + "probability": 0.9348 + }, + { + "start": 4106.78, + "end": 4107.02, + "probability": 0.5444 + }, + { + "start": 4107.16, + "end": 4107.81, + "probability": 0.8159 + }, + { + "start": 4108.34, + "end": 4109.5, + "probability": 0.9448 + }, + { + "start": 4110.76, + "end": 4113.3, + "probability": 0.797 + }, + { + "start": 4114.42, + "end": 4115.48, + "probability": 0.5977 + }, + { + "start": 4116.38, + "end": 4118.18, + "probability": 0.8962 + }, + { + "start": 4119.24, + "end": 4120.08, + "probability": 0.689 + }, + { + "start": 4121.4, + "end": 4122.44, + "probability": 0.822 + }, + { + "start": 4122.96, + "end": 4124.92, + "probability": 0.7517 + }, + { + "start": 4125.24, + "end": 4128.66, + "probability": 0.9355 + }, + { + "start": 4129.28, + "end": 4131.1, + "probability": 0.9927 + }, + { + "start": 4132.68, + "end": 4133.8, + "probability": 0.713 + }, + { + "start": 4135.38, + "end": 4141.09, + "probability": 0.7187 + }, + { + "start": 4141.9, + "end": 4144.98, + "probability": 0.79 + }, + { + "start": 4145.06, + "end": 4149.1, + "probability": 0.9837 + }, + { + "start": 4149.26, + "end": 4152.48, + "probability": 0.8084 + }, + { + "start": 4152.74, + "end": 4155.6, + "probability": 0.95 + }, + { + "start": 4156.06, + "end": 4157.78, + "probability": 0.8174 + }, + { + "start": 4157.94, + "end": 4158.18, + "probability": 0.5284 + }, + { + "start": 4158.5, + "end": 4158.6, + "probability": 0.8947 + }, + { + "start": 4159.02, + "end": 4159.52, + "probability": 0.7996 + }, + { + "start": 4160.04, + "end": 4160.92, + "probability": 0.6388 + }, + { + "start": 4160.96, + "end": 4162.12, + "probability": 0.9695 + }, + { + "start": 4162.76, + "end": 4166.62, + "probability": 0.8204 + }, + { + "start": 4166.88, + "end": 4167.46, + "probability": 0.5125 + }, + { + "start": 4168.16, + "end": 4170.0, + "probability": 0.7381 + }, + { + "start": 4170.18, + "end": 4172.9, + "probability": 0.6859 + }, + { + "start": 4172.9, + "end": 4176.54, + "probability": 0.99 + }, + { + "start": 4177.26, + "end": 4178.24, + "probability": 0.9429 + }, + { + "start": 4178.94, + "end": 4181.08, + "probability": 0.9752 + }, + { + "start": 4181.16, + "end": 4184.98, + "probability": 0.9287 + }, + { + "start": 4185.82, + "end": 4187.58, + "probability": 0.6917 + }, + { + "start": 4188.98, + "end": 4194.02, + "probability": 0.9217 + }, + { + "start": 4194.36, + "end": 4195.14, + "probability": 0.8919 + }, + { + "start": 4195.26, + "end": 4196.32, + "probability": 0.6888 + }, + { + "start": 4196.72, + "end": 4200.82, + "probability": 0.9199 + }, + { + "start": 4201.68, + "end": 4203.38, + "probability": 0.7192 + }, + { + "start": 4204.24, + "end": 4205.18, + "probability": 0.7404 + }, + { + "start": 4205.98, + "end": 4208.68, + "probability": 0.7601 + }, + { + "start": 4208.68, + "end": 4209.82, + "probability": 0.7696 + }, + { + "start": 4210.02, + "end": 4210.66, + "probability": 0.8104 + }, + { + "start": 4211.62, + "end": 4212.96, + "probability": 0.8831 + }, + { + "start": 4213.02, + "end": 4213.9, + "probability": 0.9783 + }, + { + "start": 4214.98, + "end": 4216.58, + "probability": 0.5276 + }, + { + "start": 4217.66, + "end": 4221.26, + "probability": 0.9209 + }, + { + "start": 4222.34, + "end": 4223.9, + "probability": 0.6083 + }, + { + "start": 4223.92, + "end": 4225.04, + "probability": 0.9776 + }, + { + "start": 4225.14, + "end": 4227.08, + "probability": 0.8824 + }, + { + "start": 4227.6, + "end": 4230.14, + "probability": 0.9014 + }, + { + "start": 4230.98, + "end": 4234.28, + "probability": 0.888 + }, + { + "start": 4235.1, + "end": 4236.61, + "probability": 0.9604 + }, + { + "start": 4237.0, + "end": 4239.36, + "probability": 0.9301 + }, + { + "start": 4239.78, + "end": 4240.08, + "probability": 0.7003 + }, + { + "start": 4240.16, + "end": 4241.98, + "probability": 0.8645 + }, + { + "start": 4242.56, + "end": 4243.72, + "probability": 0.8536 + }, + { + "start": 4243.98, + "end": 4246.64, + "probability": 0.9902 + }, + { + "start": 4247.26, + "end": 4247.72, + "probability": 0.6467 + }, + { + "start": 4248.94, + "end": 4252.12, + "probability": 0.6318 + }, + { + "start": 4253.3, + "end": 4258.7, + "probability": 0.8988 + }, + { + "start": 4259.42, + "end": 4261.14, + "probability": 0.8193 + }, + { + "start": 4261.88, + "end": 4262.76, + "probability": 0.8483 + }, + { + "start": 4263.44, + "end": 4265.7, + "probability": 0.8064 + }, + { + "start": 4266.56, + "end": 4268.2, + "probability": 0.75 + }, + { + "start": 4268.52, + "end": 4268.66, + "probability": 0.8203 + }, + { + "start": 4269.18, + "end": 4270.26, + "probability": 0.813 + }, + { + "start": 4270.34, + "end": 4272.06, + "probability": 0.8571 + }, + { + "start": 4272.18, + "end": 4273.2, + "probability": 0.8975 + }, + { + "start": 4278.68, + "end": 4279.1, + "probability": 0.6522 + }, + { + "start": 4279.18, + "end": 4279.82, + "probability": 0.855 + }, + { + "start": 4280.06, + "end": 4280.3, + "probability": 0.7662 + }, + { + "start": 4280.42, + "end": 4288.08, + "probability": 0.9954 + }, + { + "start": 4288.5, + "end": 4291.88, + "probability": 0.9624 + }, + { + "start": 4292.06, + "end": 4292.42, + "probability": 0.8526 + }, + { + "start": 4292.58, + "end": 4293.7, + "probability": 0.9423 + }, + { + "start": 4294.4, + "end": 4297.46, + "probability": 0.9979 + }, + { + "start": 4297.5, + "end": 4298.54, + "probability": 0.987 + }, + { + "start": 4299.12, + "end": 4301.0, + "probability": 0.9866 + }, + { + "start": 4301.06, + "end": 4302.52, + "probability": 0.9776 + }, + { + "start": 4303.84, + "end": 4304.48, + "probability": 0.651 + }, + { + "start": 4304.7, + "end": 4305.16, + "probability": 0.7468 + }, + { + "start": 4305.32, + "end": 4306.42, + "probability": 0.6223 + }, + { + "start": 4306.48, + "end": 4309.32, + "probability": 0.9444 + }, + { + "start": 4310.72, + "end": 4316.18, + "probability": 0.7235 + }, + { + "start": 4317.28, + "end": 4318.42, + "probability": 0.7025 + }, + { + "start": 4320.38, + "end": 4327.5, + "probability": 0.6936 + }, + { + "start": 4328.16, + "end": 4330.62, + "probability": 0.8332 + }, + { + "start": 4330.82, + "end": 4331.74, + "probability": 0.863 + }, + { + "start": 4332.52, + "end": 4334.62, + "probability": 0.5638 + }, + { + "start": 4335.24, + "end": 4339.94, + "probability": 0.6885 + }, + { + "start": 4340.46, + "end": 4341.9, + "probability": 0.7622 + }, + { + "start": 4342.58, + "end": 4343.35, + "probability": 0.4482 + }, + { + "start": 4343.44, + "end": 4344.7, + "probability": 0.9787 + }, + { + "start": 4344.78, + "end": 4345.32, + "probability": 0.7605 + }, + { + "start": 4345.66, + "end": 4346.2, + "probability": 0.7477 + }, + { + "start": 4346.3, + "end": 4347.7, + "probability": 0.999 + }, + { + "start": 4348.36, + "end": 4351.04, + "probability": 0.9819 + }, + { + "start": 4354.08, + "end": 4356.22, + "probability": 0.8629 + }, + { + "start": 4356.76, + "end": 4362.84, + "probability": 0.9561 + }, + { + "start": 4363.8, + "end": 4364.4, + "probability": 0.8563 + }, + { + "start": 4364.6, + "end": 4365.0, + "probability": 0.8508 + }, + { + "start": 4365.42, + "end": 4366.52, + "probability": 0.7816 + }, + { + "start": 4366.62, + "end": 4368.38, + "probability": 0.9207 + }, + { + "start": 4368.44, + "end": 4370.6, + "probability": 0.5846 + }, + { + "start": 4371.56, + "end": 4373.48, + "probability": 0.6153 + }, + { + "start": 4380.1, + "end": 4382.5, + "probability": 0.7508 + }, + { + "start": 4383.9, + "end": 4388.47, + "probability": 0.9665 + }, + { + "start": 4389.42, + "end": 4392.32, + "probability": 0.9882 + }, + { + "start": 4392.32, + "end": 4394.92, + "probability": 0.9943 + }, + { + "start": 4395.54, + "end": 4396.96, + "probability": 0.8548 + }, + { + "start": 4398.9, + "end": 4400.74, + "probability": 0.8594 + }, + { + "start": 4401.72, + "end": 4402.38, + "probability": 0.5585 + }, + { + "start": 4405.26, + "end": 4406.62, + "probability": 0.8888 + }, + { + "start": 4407.22, + "end": 4412.74, + "probability": 0.9982 + }, + { + "start": 4412.88, + "end": 4413.06, + "probability": 0.4774 + }, + { + "start": 4413.18, + "end": 4413.3, + "probability": 0.5768 + }, + { + "start": 4414.24, + "end": 4416.7, + "probability": 0.8171 + }, + { + "start": 4417.5, + "end": 4420.62, + "probability": 0.8583 + }, + { + "start": 4422.48, + "end": 4426.08, + "probability": 0.9214 + }, + { + "start": 4426.9, + "end": 4427.84, + "probability": 0.8918 + }, + { + "start": 4428.44, + "end": 4430.06, + "probability": 0.7305 + }, + { + "start": 4431.2, + "end": 4433.46, + "probability": 0.8328 + }, + { + "start": 4434.56, + "end": 4435.22, + "probability": 0.6063 + }, + { + "start": 4437.42, + "end": 4440.66, + "probability": 0.7933 + }, + { + "start": 4442.08, + "end": 4443.58, + "probability": 0.4613 + }, + { + "start": 4445.26, + "end": 4447.92, + "probability": 0.9054 + }, + { + "start": 4448.2, + "end": 4450.02, + "probability": 0.9872 + }, + { + "start": 4451.6, + "end": 4455.28, + "probability": 0.8545 + }, + { + "start": 4456.68, + "end": 4460.26, + "probability": 0.9061 + }, + { + "start": 4460.26, + "end": 4464.22, + "probability": 0.7511 + }, + { + "start": 4465.18, + "end": 4474.2, + "probability": 0.8616 + }, + { + "start": 4476.4, + "end": 4478.1, + "probability": 0.8762 + }, + { + "start": 4480.04, + "end": 4482.37, + "probability": 0.908 + }, + { + "start": 4483.46, + "end": 4485.01, + "probability": 0.9819 + }, + { + "start": 4485.9, + "end": 4486.46, + "probability": 0.4301 + }, + { + "start": 4486.96, + "end": 4487.62, + "probability": 0.8569 + }, + { + "start": 4488.34, + "end": 4488.8, + "probability": 0.9134 + }, + { + "start": 4489.32, + "end": 4490.38, + "probability": 0.987 + }, + { + "start": 4491.44, + "end": 4492.06, + "probability": 0.828 + }, + { + "start": 4496.1, + "end": 4500.14, + "probability": 0.8355 + }, + { + "start": 4501.7, + "end": 4502.28, + "probability": 0.8362 + }, + { + "start": 4505.08, + "end": 4509.32, + "probability": 0.9917 + }, + { + "start": 4510.5, + "end": 4511.52, + "probability": 0.7339 + }, + { + "start": 4513.52, + "end": 4515.42, + "probability": 0.9622 + }, + { + "start": 4516.82, + "end": 4518.52, + "probability": 0.4703 + }, + { + "start": 4519.16, + "end": 4521.6, + "probability": 0.6173 + }, + { + "start": 4522.92, + "end": 4523.5, + "probability": 0.8471 + }, + { + "start": 4524.7, + "end": 4525.36, + "probability": 0.8527 + }, + { + "start": 4526.44, + "end": 4528.16, + "probability": 0.6406 + }, + { + "start": 4529.04, + "end": 4532.3, + "probability": 0.7835 + }, + { + "start": 4532.92, + "end": 4534.8, + "probability": 0.9375 + }, + { + "start": 4534.82, + "end": 4536.54, + "probability": 0.6682 + }, + { + "start": 4536.9, + "end": 4538.14, + "probability": 0.969 + }, + { + "start": 4538.52, + "end": 4540.14, + "probability": 0.0075 + }, + { + "start": 4540.24, + "end": 4540.4, + "probability": 0.857 + }, + { + "start": 4541.34, + "end": 4543.22, + "probability": 0.6 + }, + { + "start": 4544.02, + "end": 4544.94, + "probability": 0.8279 + }, + { + "start": 4545.64, + "end": 4546.52, + "probability": 0.9722 + }, + { + "start": 4548.08, + "end": 4550.7, + "probability": 0.9019 + }, + { + "start": 4551.32, + "end": 4551.34, + "probability": 0.8521 + }, + { + "start": 4553.08, + "end": 4554.66, + "probability": 0.29 + }, + { + "start": 4555.18, + "end": 4556.94, + "probability": 0.6425 + }, + { + "start": 4558.54, + "end": 4560.5, + "probability": 0.8914 + }, + { + "start": 4561.36, + "end": 4562.38, + "probability": 0.8986 + }, + { + "start": 4562.92, + "end": 4564.18, + "probability": 0.7978 + }, + { + "start": 4564.82, + "end": 4567.58, + "probability": 0.8729 + }, + { + "start": 4567.86, + "end": 4570.18, + "probability": 0.8418 + }, + { + "start": 4570.74, + "end": 4572.98, + "probability": 0.8476 + }, + { + "start": 4574.56, + "end": 4575.48, + "probability": 0.6256 + }, + { + "start": 4575.84, + "end": 4576.4, + "probability": 0.7223 + }, + { + "start": 4577.64, + "end": 4577.92, + "probability": 0.7644 + }, + { + "start": 4578.98, + "end": 4579.66, + "probability": 0.9712 + }, + { + "start": 4580.62, + "end": 4583.38, + "probability": 0.7641 + }, + { + "start": 4583.76, + "end": 4586.3, + "probability": 0.9882 + }, + { + "start": 4588.5, + "end": 4591.63, + "probability": 0.8197 + }, + { + "start": 4591.74, + "end": 4592.74, + "probability": 0.95 + }, + { + "start": 4594.26, + "end": 4597.46, + "probability": 0.8285 + }, + { + "start": 4597.54, + "end": 4599.26, + "probability": 0.8225 + }, + { + "start": 4599.94, + "end": 4602.42, + "probability": 0.957 + }, + { + "start": 4602.74, + "end": 4605.58, + "probability": 0.6258 + }, + { + "start": 4609.92, + "end": 4611.92, + "probability": 0.8999 + }, + { + "start": 4612.1, + "end": 4613.16, + "probability": 0.5208 + }, + { + "start": 4613.26, + "end": 4615.24, + "probability": 0.6725 + }, + { + "start": 4616.56, + "end": 4619.42, + "probability": 0.9182 + }, + { + "start": 4620.14, + "end": 4623.82, + "probability": 0.8013 + }, + { + "start": 4624.82, + "end": 4625.5, + "probability": 0.8264 + }, + { + "start": 4626.38, + "end": 4627.9, + "probability": 0.9407 + }, + { + "start": 4628.8, + "end": 4632.34, + "probability": 0.4878 + }, + { + "start": 4632.38, + "end": 4633.88, + "probability": 0.1125 + }, + { + "start": 4634.26, + "end": 4635.14, + "probability": 0.8679 + }, + { + "start": 4635.64, + "end": 4636.66, + "probability": 0.8056 + }, + { + "start": 4637.34, + "end": 4637.5, + "probability": 0.9566 + }, + { + "start": 4639.6, + "end": 4643.08, + "probability": 0.9282 + }, + { + "start": 4644.1, + "end": 4648.44, + "probability": 0.7941 + }, + { + "start": 4649.24, + "end": 4653.0, + "probability": 0.7999 + }, + { + "start": 4654.34, + "end": 4656.82, + "probability": 0.8087 + }, + { + "start": 4656.82, + "end": 4659.14, + "probability": 0.8824 + }, + { + "start": 4659.82, + "end": 4663.08, + "probability": 0.8221 + }, + { + "start": 4664.48, + "end": 4667.12, + "probability": 0.8036 + }, + { + "start": 4667.12, + "end": 4670.64, + "probability": 0.7498 + }, + { + "start": 4672.28, + "end": 4674.08, + "probability": 0.4891 + }, + { + "start": 4674.8, + "end": 4677.3, + "probability": 0.728 + }, + { + "start": 4678.79, + "end": 4682.6, + "probability": 0.8239 + }, + { + "start": 4684.12, + "end": 4685.22, + "probability": 0.9277 + }, + { + "start": 4685.34, + "end": 4685.66, + "probability": 0.5647 + }, + { + "start": 4685.68, + "end": 4688.84, + "probability": 0.5014 + }, + { + "start": 4689.46, + "end": 4692.18, + "probability": 0.6037 + }, + { + "start": 4693.52, + "end": 4696.66, + "probability": 0.8799 + }, + { + "start": 4697.7, + "end": 4699.24, + "probability": 0.9771 + }, + { + "start": 4700.78, + "end": 4707.16, + "probability": 0.9138 + }, + { + "start": 4707.16, + "end": 4713.46, + "probability": 0.9541 + }, + { + "start": 4714.52, + "end": 4717.48, + "probability": 0.7836 + }, + { + "start": 4718.14, + "end": 4718.98, + "probability": 0.5294 + }, + { + "start": 4719.56, + "end": 4720.1, + "probability": 0.7021 + }, + { + "start": 4720.86, + "end": 4722.28, + "probability": 0.9043 + }, + { + "start": 4722.36, + "end": 4725.04, + "probability": 0.919 + }, + { + "start": 4726.26, + "end": 4729.34, + "probability": 0.8816 + }, + { + "start": 4730.1, + "end": 4732.08, + "probability": 0.855 + }, + { + "start": 4733.16, + "end": 4736.0, + "probability": 0.915 + }, + { + "start": 4736.28, + "end": 4737.66, + "probability": 0.9545 + }, + { + "start": 4737.8, + "end": 4739.06, + "probability": 0.9398 + }, + { + "start": 4740.08, + "end": 4742.44, + "probability": 0.894 + }, + { + "start": 4743.3, + "end": 4745.0, + "probability": 0.9443 + }, + { + "start": 4745.08, + "end": 4748.84, + "probability": 0.7488 + }, + { + "start": 4749.54, + "end": 4752.52, + "probability": 0.7762 + }, + { + "start": 4753.34, + "end": 4754.72, + "probability": 0.799 + }, + { + "start": 4755.62, + "end": 4758.0, + "probability": 0.6704 + }, + { + "start": 4758.18, + "end": 4758.34, + "probability": 0.9495 + }, + { + "start": 4759.52, + "end": 4762.16, + "probability": 0.9607 + }, + { + "start": 4762.22, + "end": 4765.44, + "probability": 0.7178 + }, + { + "start": 4765.6, + "end": 4767.16, + "probability": 0.8152 + }, + { + "start": 4767.8, + "end": 4768.28, + "probability": 0.6448 + }, + { + "start": 4769.0, + "end": 4770.92, + "probability": 0.6896 + }, + { + "start": 4771.78, + "end": 4774.86, + "probability": 0.9022 + }, + { + "start": 4775.56, + "end": 4777.9, + "probability": 0.9075 + }, + { + "start": 4779.28, + "end": 4779.64, + "probability": 0.5984 + }, + { + "start": 4780.14, + "end": 4780.84, + "probability": 0.6586 + }, + { + "start": 4781.14, + "end": 4783.04, + "probability": 0.8465 + }, + { + "start": 4783.96, + "end": 4786.64, + "probability": 0.9487 + }, + { + "start": 4786.64, + "end": 4790.42, + "probability": 0.9819 + }, + { + "start": 4791.46, + "end": 4795.96, + "probability": 0.9974 + }, + { + "start": 4796.72, + "end": 4799.56, + "probability": 0.9958 + }, + { + "start": 4800.42, + "end": 4804.32, + "probability": 0.9932 + }, + { + "start": 4804.36, + "end": 4809.58, + "probability": 0.9917 + }, + { + "start": 4810.38, + "end": 4817.32, + "probability": 0.9678 + }, + { + "start": 4817.32, + "end": 4821.7, + "probability": 0.9902 + }, + { + "start": 4822.78, + "end": 4826.36, + "probability": 0.9958 + }, + { + "start": 4827.9, + "end": 4830.44, + "probability": 0.9785 + }, + { + "start": 4831.46, + "end": 4832.1, + "probability": 0.788 + }, + { + "start": 4832.52, + "end": 4834.68, + "probability": 0.8691 + }, + { + "start": 4834.8, + "end": 4839.1, + "probability": 0.9642 + }, + { + "start": 4839.1, + "end": 4843.82, + "probability": 0.9584 + }, + { + "start": 4844.18, + "end": 4848.24, + "probability": 0.9614 + }, + { + "start": 4848.34, + "end": 4850.84, + "probability": 0.9906 + }, + { + "start": 4851.5, + "end": 4852.84, + "probability": 0.9679 + }, + { + "start": 4853.44, + "end": 4854.54, + "probability": 0.7129 + }, + { + "start": 4855.0, + "end": 4859.64, + "probability": 0.6518 + }, + { + "start": 4859.64, + "end": 4863.42, + "probability": 0.9727 + }, + { + "start": 4864.0, + "end": 4864.16, + "probability": 0.0443 + }, + { + "start": 4867.02, + "end": 4869.3, + "probability": 0.5583 + }, + { + "start": 4869.96, + "end": 4874.68, + "probability": 0.9546 + }, + { + "start": 4876.44, + "end": 4876.78, + "probability": 0.3135 + }, + { + "start": 4876.9, + "end": 4880.06, + "probability": 0.4862 + }, + { + "start": 4881.3, + "end": 4885.94, + "probability": 0.8659 + }, + { + "start": 4886.2, + "end": 4887.12, + "probability": 0.832 + }, + { + "start": 4887.24, + "end": 4889.14, + "probability": 0.6684 + }, + { + "start": 4889.74, + "end": 4890.9, + "probability": 0.9543 + }, + { + "start": 4891.48, + "end": 4893.68, + "probability": 0.5709 + }, + { + "start": 4894.02, + "end": 4896.04, + "probability": 0.9111 + }, + { + "start": 4896.72, + "end": 4897.12, + "probability": 0.6296 + }, + { + "start": 4898.04, + "end": 4900.2, + "probability": 0.7833 + }, + { + "start": 4900.96, + "end": 4902.67, + "probability": 0.8628 + }, + { + "start": 4903.38, + "end": 4904.86, + "probability": 0.934 + }, + { + "start": 4905.0, + "end": 4905.8, + "probability": 0.8686 + }, + { + "start": 4906.08, + "end": 4907.38, + "probability": 0.9167 + }, + { + "start": 4908.64, + "end": 4910.02, + "probability": 0.9488 + }, + { + "start": 4910.32, + "end": 4913.94, + "probability": 0.9246 + }, + { + "start": 4914.8, + "end": 4918.84, + "probability": 0.9461 + }, + { + "start": 4919.48, + "end": 4922.82, + "probability": 0.9368 + }, + { + "start": 4923.22, + "end": 4924.72, + "probability": 0.9768 + }, + { + "start": 4926.24, + "end": 4927.48, + "probability": 0.9832 + }, + { + "start": 4928.02, + "end": 4928.02, + "probability": 0.0021 + }, + { + "start": 4928.02, + "end": 4931.8, + "probability": 0.867 + }, + { + "start": 4932.48, + "end": 4933.22, + "probability": 0.2979 + }, + { + "start": 4934.52, + "end": 4935.56, + "probability": 0.5807 + }, + { + "start": 4935.64, + "end": 4937.22, + "probability": 0.8196 + }, + { + "start": 4937.76, + "end": 4939.24, + "probability": 0.5298 + }, + { + "start": 4939.42, + "end": 4943.16, + "probability": 0.7955 + }, + { + "start": 4943.72, + "end": 4945.9, + "probability": 0.5754 + }, + { + "start": 4946.18, + "end": 4949.24, + "probability": 0.9295 + }, + { + "start": 4949.34, + "end": 4950.62, + "probability": 0.862 + }, + { + "start": 4950.9, + "end": 4952.36, + "probability": 0.6135 + }, + { + "start": 4952.36, + "end": 4952.88, + "probability": 0.9338 + }, + { + "start": 4953.88, + "end": 4959.58, + "probability": 0.7294 + }, + { + "start": 4960.1, + "end": 4963.41, + "probability": 0.456 + }, + { + "start": 4963.58, + "end": 4966.58, + "probability": 0.6987 + }, + { + "start": 4967.12, + "end": 4968.28, + "probability": 0.637 + }, + { + "start": 4969.04, + "end": 4971.3, + "probability": 0.4115 + }, + { + "start": 4971.54, + "end": 4973.67, + "probability": 0.9723 + }, + { + "start": 4975.46, + "end": 4975.6, + "probability": 0.2828 + }, + { + "start": 4975.78, + "end": 4981.92, + "probability": 0.8045 + }, + { + "start": 4982.72, + "end": 4984.0, + "probability": 0.8252 + }, + { + "start": 4984.3, + "end": 4986.34, + "probability": 0.9479 + }, + { + "start": 4987.7, + "end": 4988.8, + "probability": 0.6086 + }, + { + "start": 4990.02, + "end": 4993.12, + "probability": 0.7 + }, + { + "start": 4993.2, + "end": 4994.04, + "probability": 0.7849 + }, + { + "start": 4994.4, + "end": 4996.26, + "probability": 0.9788 + }, + { + "start": 4996.82, + "end": 5001.38, + "probability": 0.7978 + }, + { + "start": 5002.54, + "end": 5004.7, + "probability": 0.941 + }, + { + "start": 5005.66, + "end": 5007.22, + "probability": 0.9329 + }, + { + "start": 5007.3, + "end": 5008.76, + "probability": 0.9892 + }, + { + "start": 5009.74, + "end": 5013.0, + "probability": 0.8765 + }, + { + "start": 5013.8, + "end": 5018.88, + "probability": 0.7016 + }, + { + "start": 5019.14, + "end": 5019.66, + "probability": 0.8713 + }, + { + "start": 5019.7, + "end": 5021.84, + "probability": 0.662 + }, + { + "start": 5022.56, + "end": 5024.6, + "probability": 0.5731 + }, + { + "start": 5025.82, + "end": 5030.1, + "probability": 0.5493 + }, + { + "start": 5030.26, + "end": 5031.8, + "probability": 0.6272 + }, + { + "start": 5032.38, + "end": 5033.0, + "probability": 0.9537 + }, + { + "start": 5034.66, + "end": 5038.24, + "probability": 0.8716 + }, + { + "start": 5039.12, + "end": 5042.1, + "probability": 0.7362 + }, + { + "start": 5042.6, + "end": 5043.35, + "probability": 0.7305 + }, + { + "start": 5043.64, + "end": 5044.97, + "probability": 0.6317 + }, + { + "start": 5046.26, + "end": 5046.48, + "probability": 0.541 + }, + { + "start": 5046.62, + "end": 5047.22, + "probability": 0.8855 + }, + { + "start": 5047.38, + "end": 5048.19, + "probability": 0.9398 + }, + { + "start": 5048.76, + "end": 5051.06, + "probability": 0.7427 + }, + { + "start": 5051.26, + "end": 5052.5, + "probability": 0.505 + }, + { + "start": 5054.14, + "end": 5056.5, + "probability": 0.8945 + }, + { + "start": 5059.48, + "end": 5060.1, + "probability": 0.681 + }, + { + "start": 5060.26, + "end": 5068.66, + "probability": 0.9424 + }, + { + "start": 5068.66, + "end": 5073.64, + "probability": 0.9806 + }, + { + "start": 5074.44, + "end": 5080.64, + "probability": 0.9788 + }, + { + "start": 5081.34, + "end": 5087.28, + "probability": 0.9552 + }, + { + "start": 5087.86, + "end": 5090.14, + "probability": 0.9888 + }, + { + "start": 5090.26, + "end": 5094.9, + "probability": 0.9988 + }, + { + "start": 5095.56, + "end": 5097.93, + "probability": 0.9302 + }, + { + "start": 5098.6, + "end": 5100.82, + "probability": 0.8682 + }, + { + "start": 5100.92, + "end": 5103.76, + "probability": 0.9912 + }, + { + "start": 5104.7, + "end": 5114.1, + "probability": 0.788 + }, + { + "start": 5114.56, + "end": 5120.24, + "probability": 0.9891 + }, + { + "start": 5120.48, + "end": 5123.82, + "probability": 0.8898 + }, + { + "start": 5124.12, + "end": 5131.18, + "probability": 0.9536 + }, + { + "start": 5131.34, + "end": 5135.38, + "probability": 0.9841 + }, + { + "start": 5135.9, + "end": 5142.72, + "probability": 0.9296 + }, + { + "start": 5143.3, + "end": 5146.5, + "probability": 0.9888 + }, + { + "start": 5146.94, + "end": 5148.66, + "probability": 0.5302 + }, + { + "start": 5148.66, + "end": 5152.44, + "probability": 0.4682 + }, + { + "start": 5153.16, + "end": 5155.02, + "probability": 0.6665 + }, + { + "start": 5155.94, + "end": 5157.8, + "probability": 0.71 + }, + { + "start": 5158.69, + "end": 5161.76, + "probability": 0.3056 + }, + { + "start": 5162.3, + "end": 5165.02, + "probability": 0.9908 + }, + { + "start": 5165.02, + "end": 5167.96, + "probability": 0.8929 + }, + { + "start": 5168.84, + "end": 5170.92, + "probability": 0.8 + }, + { + "start": 5171.46, + "end": 5171.72, + "probability": 0.8409 + }, + { + "start": 5172.82, + "end": 5173.91, + "probability": 0.9096 + }, + { + "start": 5174.7, + "end": 5178.56, + "probability": 0.7802 + }, + { + "start": 5178.72, + "end": 5179.58, + "probability": 0.9811 + }, + { + "start": 5179.94, + "end": 5181.5, + "probability": 0.6723 + }, + { + "start": 5182.68, + "end": 5183.04, + "probability": 0.8173 + }, + { + "start": 5183.24, + "end": 5184.02, + "probability": 0.7305 + }, + { + "start": 5184.26, + "end": 5185.81, + "probability": 0.6545 + }, + { + "start": 5186.52, + "end": 5189.14, + "probability": 0.9471 + }, + { + "start": 5190.6, + "end": 5190.66, + "probability": 0.2459 + }, + { + "start": 5190.66, + "end": 5192.24, + "probability": 0.5055 + }, + { + "start": 5192.8, + "end": 5195.3, + "probability": 0.9302 + }, + { + "start": 5195.98, + "end": 5197.22, + "probability": 0.9673 + }, + { + "start": 5197.76, + "end": 5201.46, + "probability": 0.9834 + }, + { + "start": 5202.02, + "end": 5203.02, + "probability": 0.9113 + }, + { + "start": 5205.51, + "end": 5207.9, + "probability": 0.0466 + }, + { + "start": 5207.9, + "end": 5208.47, + "probability": 0.0954 + }, + { + "start": 5209.04, + "end": 5209.92, + "probability": 0.6207 + }, + { + "start": 5210.4, + "end": 5211.6, + "probability": 0.9821 + }, + { + "start": 5213.02, + "end": 5214.59, + "probability": 0.9246 + }, + { + "start": 5215.54, + "end": 5219.98, + "probability": 0.8091 + }, + { + "start": 5221.5, + "end": 5222.64, + "probability": 0.7209 + }, + { + "start": 5224.7, + "end": 5226.94, + "probability": 0.5965 + }, + { + "start": 5227.62, + "end": 5230.54, + "probability": 0.706 + }, + { + "start": 5232.34, + "end": 5235.0, + "probability": 0.9377 + }, + { + "start": 5236.1, + "end": 5238.9, + "probability": 0.1313 + }, + { + "start": 5240.68, + "end": 5240.78, + "probability": 0.5405 + }, + { + "start": 5243.48, + "end": 5245.18, + "probability": 0.3453 + }, + { + "start": 5245.96, + "end": 5246.82, + "probability": 0.0928 + }, + { + "start": 5247.76, + "end": 5250.93, + "probability": 0.3032 + }, + { + "start": 5252.56, + "end": 5253.86, + "probability": 0.8131 + }, + { + "start": 5253.88, + "end": 5255.26, + "probability": 0.6592 + }, + { + "start": 5255.64, + "end": 5259.6, + "probability": 0.5387 + }, + { + "start": 5260.0, + "end": 5261.8, + "probability": 0.9734 + }, + { + "start": 5262.8, + "end": 5265.42, + "probability": 0.9174 + }, + { + "start": 5265.52, + "end": 5266.46, + "probability": 0.7289 + }, + { + "start": 5266.7, + "end": 5267.64, + "probability": 0.9521 + }, + { + "start": 5267.94, + "end": 5269.18, + "probability": 0.7347 + }, + { + "start": 5270.54, + "end": 5271.68, + "probability": 0.9155 + }, + { + "start": 5272.0, + "end": 5273.36, + "probability": 0.9026 + }, + { + "start": 5274.68, + "end": 5277.9, + "probability": 0.898 + }, + { + "start": 5278.26, + "end": 5279.08, + "probability": 0.8376 + }, + { + "start": 5279.12, + "end": 5281.15, + "probability": 0.7124 + }, + { + "start": 5282.54, + "end": 5283.32, + "probability": 0.4855 + }, + { + "start": 5283.46, + "end": 5284.14, + "probability": 0.5155 + }, + { + "start": 5284.22, + "end": 5285.24, + "probability": 0.7193 + }, + { + "start": 5285.34, + "end": 5288.04, + "probability": 0.6099 + }, + { + "start": 5288.88, + "end": 5293.42, + "probability": 0.7661 + }, + { + "start": 5293.98, + "end": 5296.24, + "probability": 0.9761 + }, + { + "start": 5296.86, + "end": 5297.7, + "probability": 0.7939 + }, + { + "start": 5298.22, + "end": 5299.26, + "probability": 0.8486 + }, + { + "start": 5299.94, + "end": 5304.28, + "probability": 0.5731 + }, + { + "start": 5305.88, + "end": 5307.3, + "probability": 0.4238 + }, + { + "start": 5307.36, + "end": 5308.56, + "probability": 0.8975 + }, + { + "start": 5309.02, + "end": 5310.36, + "probability": 0.7051 + }, + { + "start": 5311.28, + "end": 5311.96, + "probability": 0.6073 + }, + { + "start": 5312.0, + "end": 5315.08, + "probability": 0.989 + }, + { + "start": 5315.72, + "end": 5316.86, + "probability": 0.9473 + }, + { + "start": 5318.16, + "end": 5320.16, + "probability": 0.8852 + }, + { + "start": 5322.32, + "end": 5323.68, + "probability": 0.9633 + }, + { + "start": 5324.34, + "end": 5326.8, + "probability": 0.9707 + }, + { + "start": 5327.9, + "end": 5332.27, + "probability": 0.8544 + }, + { + "start": 5335.26, + "end": 5337.68, + "probability": 0.7424 + }, + { + "start": 5338.44, + "end": 5340.72, + "probability": 0.7498 + }, + { + "start": 5341.06, + "end": 5343.34, + "probability": 0.8205 + }, + { + "start": 5343.98, + "end": 5347.98, + "probability": 0.969 + }, + { + "start": 5348.42, + "end": 5351.64, + "probability": 0.5883 + }, + { + "start": 5352.16, + "end": 5353.12, + "probability": 0.9546 + }, + { + "start": 5354.56, + "end": 5356.32, + "probability": 0.7562 + }, + { + "start": 5357.0, + "end": 5357.8, + "probability": 0.5994 + }, + { + "start": 5358.22, + "end": 5359.02, + "probability": 0.729 + }, + { + "start": 5359.12, + "end": 5359.52, + "probability": 0.6526 + }, + { + "start": 5359.8, + "end": 5361.02, + "probability": 0.4297 + }, + { + "start": 5362.34, + "end": 5366.59, + "probability": 0.77 + }, + { + "start": 5367.7, + "end": 5369.88, + "probability": 0.5162 + }, + { + "start": 5371.3, + "end": 5376.12, + "probability": 0.8313 + }, + { + "start": 5376.72, + "end": 5377.56, + "probability": 0.8303 + }, + { + "start": 5378.08, + "end": 5379.72, + "probability": 0.7537 + }, + { + "start": 5380.38, + "end": 5381.06, + "probability": 0.8722 + }, + { + "start": 5381.08, + "end": 5381.66, + "probability": 0.9621 + }, + { + "start": 5381.92, + "end": 5382.28, + "probability": 0.8604 + }, + { + "start": 5382.36, + "end": 5382.88, + "probability": 0.9428 + }, + { + "start": 5382.96, + "end": 5383.4, + "probability": 0.9393 + }, + { + "start": 5383.48, + "end": 5383.96, + "probability": 0.4739 + }, + { + "start": 5384.66, + "end": 5385.98, + "probability": 0.4941 + }, + { + "start": 5387.18, + "end": 5388.56, + "probability": 0.8006 + }, + { + "start": 5389.6, + "end": 5390.82, + "probability": 0.9804 + }, + { + "start": 5392.36, + "end": 5393.36, + "probability": 0.471 + }, + { + "start": 5394.4, + "end": 5395.14, + "probability": 0.7344 + }, + { + "start": 5396.34, + "end": 5397.46, + "probability": 0.5825 + }, + { + "start": 5397.8, + "end": 5399.78, + "probability": 0.9527 + }, + { + "start": 5400.4, + "end": 5401.48, + "probability": 0.8668 + }, + { + "start": 5402.96, + "end": 5404.56, + "probability": 0.5744 + }, + { + "start": 5405.26, + "end": 5406.3, + "probability": 0.8442 + }, + { + "start": 5406.88, + "end": 5408.3, + "probability": 0.9889 + }, + { + "start": 5409.06, + "end": 5409.86, + "probability": 0.9601 + }, + { + "start": 5410.86, + "end": 5412.0, + "probability": 0.7706 + }, + { + "start": 5413.02, + "end": 5416.2, + "probability": 0.9406 + }, + { + "start": 5417.38, + "end": 5421.3, + "probability": 0.9813 + }, + { + "start": 5424.04, + "end": 5427.12, + "probability": 0.8374 + }, + { + "start": 5427.36, + "end": 5428.8, + "probability": 0.84 + }, + { + "start": 5428.88, + "end": 5430.66, + "probability": 0.8284 + }, + { + "start": 5431.3, + "end": 5433.32, + "probability": 0.8491 + }, + { + "start": 5433.44, + "end": 5434.94, + "probability": 0.842 + }, + { + "start": 5435.3, + "end": 5436.48, + "probability": 0.7551 + }, + { + "start": 5438.17, + "end": 5443.72, + "probability": 0.9946 + }, + { + "start": 5444.96, + "end": 5445.38, + "probability": 0.0002 + }, + { + "start": 5448.88, + "end": 5449.47, + "probability": 0.0027 + }, + { + "start": 5449.68, + "end": 5452.64, + "probability": 0.4209 + }, + { + "start": 5453.66, + "end": 5456.54, + "probability": 0.0509 + }, + { + "start": 5456.78, + "end": 5461.76, + "probability": 0.9336 + }, + { + "start": 5462.44, + "end": 5465.12, + "probability": 0.911 + }, + { + "start": 5465.34, + "end": 5467.03, + "probability": 0.9792 + }, + { + "start": 5467.74, + "end": 5469.32, + "probability": 0.9038 + }, + { + "start": 5470.24, + "end": 5470.7, + "probability": 0.8922 + }, + { + "start": 5470.96, + "end": 5472.26, + "probability": 0.9115 + }, + { + "start": 5472.46, + "end": 5474.0, + "probability": 0.8786 + }, + { + "start": 5474.8, + "end": 5477.68, + "probability": 0.4913 + }, + { + "start": 5477.76, + "end": 5478.14, + "probability": 0.4087 + }, + { + "start": 5478.74, + "end": 5480.6, + "probability": 0.8709 + }, + { + "start": 5481.38, + "end": 5483.44, + "probability": 0.7781 + }, + { + "start": 5485.0, + "end": 5487.9, + "probability": 0.8549 + }, + { + "start": 5488.06, + "end": 5491.64, + "probability": 0.9948 + }, + { + "start": 5492.04, + "end": 5494.96, + "probability": 0.9563 + }, + { + "start": 5495.04, + "end": 5495.94, + "probability": 0.0221 + }, + { + "start": 5497.3, + "end": 5500.19, + "probability": 0.0577 + }, + { + "start": 5500.54, + "end": 5501.88, + "probability": 0.208 + }, + { + "start": 5503.08, + "end": 5506.3, + "probability": 0.4212 + }, + { + "start": 5507.34, + "end": 5508.52, + "probability": 0.2236 + }, + { + "start": 5509.08, + "end": 5512.2, + "probability": 0.5062 + }, + { + "start": 5512.9, + "end": 5517.24, + "probability": 0.83 + }, + { + "start": 5517.64, + "end": 5517.88, + "probability": 0.9883 + }, + { + "start": 5518.66, + "end": 5519.34, + "probability": 0.9761 + }, + { + "start": 5520.54, + "end": 5525.22, + "probability": 0.9377 + }, + { + "start": 5526.36, + "end": 5528.96, + "probability": 0.647 + }, + { + "start": 5529.26, + "end": 5530.2, + "probability": 0.48 + }, + { + "start": 5530.36, + "end": 5532.34, + "probability": 0.6926 + }, + { + "start": 5533.26, + "end": 5534.02, + "probability": 0.5641 + }, + { + "start": 5534.46, + "end": 5537.0, + "probability": 0.5002 + }, + { + "start": 5537.22, + "end": 5539.04, + "probability": 0.917 + }, + { + "start": 5539.56, + "end": 5542.34, + "probability": 0.8867 + }, + { + "start": 5543.14, + "end": 5544.54, + "probability": 0.7783 + }, + { + "start": 5547.44, + "end": 5548.66, + "probability": 0.9855 + }, + { + "start": 5549.1, + "end": 5550.54, + "probability": 0.8539 + }, + { + "start": 5550.72, + "end": 5551.54, + "probability": 0.4374 + }, + { + "start": 5551.6, + "end": 5553.86, + "probability": 0.545 + }, + { + "start": 5554.84, + "end": 5559.02, + "probability": 0.6706 + }, + { + "start": 5560.16, + "end": 5565.26, + "probability": 0.9719 + }, + { + "start": 5565.26, + "end": 5568.26, + "probability": 0.8809 + }, + { + "start": 5570.48, + "end": 5571.78, + "probability": 0.6961 + }, + { + "start": 5572.1, + "end": 5572.96, + "probability": 0.6445 + }, + { + "start": 5573.0, + "end": 5573.22, + "probability": 0.524 + }, + { + "start": 5573.6, + "end": 5574.74, + "probability": 0.6689 + }, + { + "start": 5574.74, + "end": 5575.98, + "probability": 0.7798 + }, + { + "start": 5576.78, + "end": 5577.66, + "probability": 0.7608 + }, + { + "start": 5578.88, + "end": 5579.84, + "probability": 0.859 + }, + { + "start": 5582.48, + "end": 5585.84, + "probability": 0.8142 + }, + { + "start": 5586.72, + "end": 5589.68, + "probability": 0.9778 + }, + { + "start": 5591.3, + "end": 5593.54, + "probability": 0.9329 + }, + { + "start": 5593.8, + "end": 5594.4, + "probability": 0.4712 + }, + { + "start": 5594.56, + "end": 5597.6, + "probability": 0.9926 + }, + { + "start": 5598.22, + "end": 5600.38, + "probability": 0.9624 + }, + { + "start": 5601.34, + "end": 5602.08, + "probability": 0.3753 + }, + { + "start": 5604.92, + "end": 5608.36, + "probability": 0.9187 + }, + { + "start": 5608.61, + "end": 5612.14, + "probability": 0.9917 + }, + { + "start": 5612.32, + "end": 5613.26, + "probability": 0.8265 + }, + { + "start": 5614.3, + "end": 5616.74, + "probability": 0.9546 + }, + { + "start": 5616.74, + "end": 5619.86, + "probability": 0.9045 + }, + { + "start": 5621.36, + "end": 5624.74, + "probability": 0.8937 + }, + { + "start": 5625.22, + "end": 5626.46, + "probability": 0.7285 + }, + { + "start": 5627.46, + "end": 5628.47, + "probability": 0.9932 + }, + { + "start": 5630.5, + "end": 5632.96, + "probability": 0.991 + }, + { + "start": 5632.96, + "end": 5635.6, + "probability": 0.8421 + }, + { + "start": 5636.68, + "end": 5639.04, + "probability": 0.8839 + }, + { + "start": 5639.8, + "end": 5640.22, + "probability": 0.6476 + }, + { + "start": 5640.72, + "end": 5642.44, + "probability": 0.9376 + }, + { + "start": 5643.74, + "end": 5644.82, + "probability": 0.8056 + }, + { + "start": 5645.46, + "end": 5648.5, + "probability": 0.9932 + }, + { + "start": 5649.04, + "end": 5651.36, + "probability": 0.4379 + }, + { + "start": 5651.98, + "end": 5653.66, + "probability": 0.9224 + }, + { + "start": 5653.92, + "end": 5654.98, + "probability": 0.9216 + }, + { + "start": 5656.06, + "end": 5656.7, + "probability": 0.7232 + }, + { + "start": 5658.14, + "end": 5661.78, + "probability": 0.7795 + }, + { + "start": 5662.1, + "end": 5663.34, + "probability": 0.8518 + }, + { + "start": 5663.78, + "end": 5665.9, + "probability": 0.9817 + }, + { + "start": 5666.3, + "end": 5668.22, + "probability": 0.9484 + }, + { + "start": 5668.74, + "end": 5671.26, + "probability": 0.9985 + }, + { + "start": 5671.26, + "end": 5674.98, + "probability": 0.9255 + }, + { + "start": 5675.8, + "end": 5676.54, + "probability": 0.4469 + }, + { + "start": 5677.4, + "end": 5680.26, + "probability": 0.9337 + }, + { + "start": 5681.08, + "end": 5684.4, + "probability": 0.9855 + }, + { + "start": 5684.86, + "end": 5686.76, + "probability": 0.9664 + }, + { + "start": 5687.42, + "end": 5689.96, + "probability": 0.9895 + }, + { + "start": 5690.06, + "end": 5694.16, + "probability": 0.9779 + }, + { + "start": 5695.36, + "end": 5699.12, + "probability": 0.6791 + }, + { + "start": 5699.68, + "end": 5702.34, + "probability": 0.9454 + }, + { + "start": 5702.34, + "end": 5704.9, + "probability": 0.9888 + }, + { + "start": 5705.54, + "end": 5706.92, + "probability": 0.9165 + }, + { + "start": 5707.86, + "end": 5711.18, + "probability": 0.9906 + }, + { + "start": 5711.18, + "end": 5714.48, + "probability": 0.8953 + }, + { + "start": 5717.12, + "end": 5719.21, + "probability": 0.8303 + }, + { + "start": 5719.44, + "end": 5722.6, + "probability": 0.471 + }, + { + "start": 5724.3, + "end": 5724.96, + "probability": 0.5868 + }, + { + "start": 5725.04, + "end": 5727.92, + "probability": 0.9265 + }, + { + "start": 5727.92, + "end": 5732.0, + "probability": 0.8479 + }, + { + "start": 5732.34, + "end": 5735.68, + "probability": 0.9408 + }, + { + "start": 5736.1, + "end": 5738.46, + "probability": 0.6061 + }, + { + "start": 5739.38, + "end": 5743.66, + "probability": 0.8068 + }, + { + "start": 5744.36, + "end": 5748.38, + "probability": 0.9852 + }, + { + "start": 5749.02, + "end": 5753.02, + "probability": 0.969 + }, + { + "start": 5761.48, + "end": 5762.7, + "probability": 0.7464 + }, + { + "start": 5762.88, + "end": 5767.36, + "probability": 0.9489 + }, + { + "start": 5767.92, + "end": 5771.56, + "probability": 0.9494 + }, + { + "start": 5772.1, + "end": 5775.22, + "probability": 0.9357 + }, + { + "start": 5776.02, + "end": 5780.08, + "probability": 0.7925 + }, + { + "start": 5780.16, + "end": 5784.76, + "probability": 0.8624 + }, + { + "start": 5785.18, + "end": 5788.78, + "probability": 0.7917 + }, + { + "start": 5788.92, + "end": 5794.62, + "probability": 0.9661 + }, + { + "start": 5794.62, + "end": 5798.5, + "probability": 0.9946 + }, + { + "start": 5799.14, + "end": 5801.94, + "probability": 0.7432 + }, + { + "start": 5802.6, + "end": 5807.48, + "probability": 0.8705 + }, + { + "start": 5808.86, + "end": 5811.9, + "probability": 0.7079 + }, + { + "start": 5811.96, + "end": 5815.74, + "probability": 0.817 + }, + { + "start": 5815.74, + "end": 5818.38, + "probability": 0.9356 + }, + { + "start": 5819.5, + "end": 5820.56, + "probability": 0.7799 + }, + { + "start": 5821.48, + "end": 5822.94, + "probability": 0.6751 + }, + { + "start": 5823.7, + "end": 5826.12, + "probability": 0.7394 + }, + { + "start": 5826.72, + "end": 5830.62, + "probability": 0.887 + }, + { + "start": 5830.62, + "end": 5834.92, + "probability": 0.993 + }, + { + "start": 5835.16, + "end": 5835.32, + "probability": 0.4238 + }, + { + "start": 5835.44, + "end": 5836.94, + "probability": 0.9489 + }, + { + "start": 5837.34, + "end": 5838.36, + "probability": 0.7852 + }, + { + "start": 5840.32, + "end": 5841.64, + "probability": 0.8188 + }, + { + "start": 5842.04, + "end": 5844.84, + "probability": 0.8359 + }, + { + "start": 5845.96, + "end": 5850.68, + "probability": 0.7436 + }, + { + "start": 5851.24, + "end": 5853.38, + "probability": 0.3826 + }, + { + "start": 5854.24, + "end": 5854.66, + "probability": 0.8431 + }, + { + "start": 5855.26, + "end": 5859.22, + "probability": 0.7434 + }, + { + "start": 5860.28, + "end": 5861.08, + "probability": 0.8836 + }, + { + "start": 5862.1, + "end": 5863.6, + "probability": 0.7921 + }, + { + "start": 5869.12, + "end": 5869.84, + "probability": 0.5534 + }, + { + "start": 5871.1, + "end": 5873.7, + "probability": 0.9432 + }, + { + "start": 5875.06, + "end": 5875.94, + "probability": 0.7632 + }, + { + "start": 5877.16, + "end": 5879.86, + "probability": 0.8174 + }, + { + "start": 5882.5, + "end": 5883.66, + "probability": 0.6448 + }, + { + "start": 5884.74, + "end": 5886.28, + "probability": 0.6676 + }, + { + "start": 5887.7, + "end": 5888.74, + "probability": 0.8899 + }, + { + "start": 5889.34, + "end": 5889.74, + "probability": 0.7035 + }, + { + "start": 5890.32, + "end": 5890.7, + "probability": 0.6412 + }, + { + "start": 5891.44, + "end": 5896.08, + "probability": 0.5973 + }, + { + "start": 5899.67, + "end": 5900.84, + "probability": 0.9545 + }, + { + "start": 5902.84, + "end": 5903.64, + "probability": 0.8586 + }, + { + "start": 5904.96, + "end": 5905.54, + "probability": 0.6598 + }, + { + "start": 5905.58, + "end": 5909.42, + "probability": 0.7153 + }, + { + "start": 5909.52, + "end": 5911.1, + "probability": 0.7402 + }, + { + "start": 5912.1, + "end": 5913.34, + "probability": 0.3341 + }, + { + "start": 5914.92, + "end": 5916.5, + "probability": 0.949 + }, + { + "start": 5917.28, + "end": 5921.64, + "probability": 0.747 + }, + { + "start": 5921.8, + "end": 5922.66, + "probability": 0.5072 + }, + { + "start": 5923.46, + "end": 5924.67, + "probability": 0.6681 + }, + { + "start": 5924.98, + "end": 5925.4, + "probability": 0.5941 + }, + { + "start": 5925.58, + "end": 5926.46, + "probability": 0.3163 + }, + { + "start": 5927.76, + "end": 5928.86, + "probability": 0.9722 + }, + { + "start": 5930.38, + "end": 5931.02, + "probability": 0.9079 + }, + { + "start": 5932.02, + "end": 5933.38, + "probability": 0.5219 + }, + { + "start": 5934.36, + "end": 5935.42, + "probability": 0.9116 + }, + { + "start": 5936.46, + "end": 5938.62, + "probability": 0.9931 + }, + { + "start": 5938.78, + "end": 5940.0, + "probability": 0.7524 + }, + { + "start": 5940.78, + "end": 5940.9, + "probability": 0.4666 + }, + { + "start": 5940.9, + "end": 5941.32, + "probability": 0.5992 + }, + { + "start": 5942.48, + "end": 5947.94, + "probability": 0.9821 + }, + { + "start": 5948.46, + "end": 5949.06, + "probability": 0.557 + }, + { + "start": 5949.66, + "end": 5951.98, + "probability": 0.9849 + }, + { + "start": 5952.66, + "end": 5954.7, + "probability": 0.7969 + }, + { + "start": 5955.88, + "end": 5957.4, + "probability": 0.9974 + }, + { + "start": 5957.44, + "end": 5959.06, + "probability": 0.9893 + }, + { + "start": 5959.3, + "end": 5961.11, + "probability": 0.6063 + }, + { + "start": 5962.26, + "end": 5964.04, + "probability": 0.869 + }, + { + "start": 5965.28, + "end": 5970.74, + "probability": 0.7881 + }, + { + "start": 5971.22, + "end": 5971.82, + "probability": 0.5214 + }, + { + "start": 5972.0, + "end": 5973.13, + "probability": 0.7461 + }, + { + "start": 5973.72, + "end": 5975.04, + "probability": 0.9919 + }, + { + "start": 5975.58, + "end": 5976.6, + "probability": 0.9048 + }, + { + "start": 5978.84, + "end": 5979.48, + "probability": 0.6725 + }, + { + "start": 5979.9, + "end": 5980.58, + "probability": 0.7708 + }, + { + "start": 5980.82, + "end": 5982.41, + "probability": 0.5719 + }, + { + "start": 5983.02, + "end": 5983.96, + "probability": 0.7106 + }, + { + "start": 5984.4, + "end": 5988.76, + "probability": 0.7702 + }, + { + "start": 5989.08, + "end": 5989.24, + "probability": 0.2425 + }, + { + "start": 5990.1, + "end": 5993.26, + "probability": 0.9829 + }, + { + "start": 5993.48, + "end": 5996.62, + "probability": 0.716 + }, + { + "start": 5997.42, + "end": 6001.52, + "probability": 0.7457 + }, + { + "start": 6002.06, + "end": 6004.26, + "probability": 0.988 + }, + { + "start": 6005.46, + "end": 6008.6, + "probability": 0.969 + }, + { + "start": 6010.84, + "end": 6011.48, + "probability": 0.7249 + }, + { + "start": 6011.58, + "end": 6014.24, + "probability": 0.6413 + }, + { + "start": 6014.58, + "end": 6017.7, + "probability": 0.858 + }, + { + "start": 6018.14, + "end": 6020.9, + "probability": 0.701 + }, + { + "start": 6021.64, + "end": 6023.32, + "probability": 0.9117 + }, + { + "start": 6024.52, + "end": 6027.88, + "probability": 0.9551 + }, + { + "start": 6028.62, + "end": 6033.4, + "probability": 0.9463 + }, + { + "start": 6033.52, + "end": 6034.38, + "probability": 0.9692 + }, + { + "start": 6035.0, + "end": 6036.86, + "probability": 0.8337 + }, + { + "start": 6037.36, + "end": 6039.54, + "probability": 0.9463 + }, + { + "start": 6039.54, + "end": 6041.56, + "probability": 0.9894 + }, + { + "start": 6042.34, + "end": 6043.42, + "probability": 0.6715 + }, + { + "start": 6043.86, + "end": 6046.36, + "probability": 0.9919 + }, + { + "start": 6047.5, + "end": 6050.44, + "probability": 0.9511 + }, + { + "start": 6050.54, + "end": 6052.1, + "probability": 0.8164 + }, + { + "start": 6052.74, + "end": 6053.1, + "probability": 0.9725 + }, + { + "start": 6053.32, + "end": 6056.78, + "probability": 0.6981 + }, + { + "start": 6057.32, + "end": 6058.72, + "probability": 0.7871 + }, + { + "start": 6059.3, + "end": 6063.18, + "probability": 0.9446 + }, + { + "start": 6063.74, + "end": 6063.96, + "probability": 0.321 + }, + { + "start": 6064.02, + "end": 6067.2, + "probability": 0.922 + }, + { + "start": 6069.0, + "end": 6072.06, + "probability": 0.8533 + }, + { + "start": 6072.76, + "end": 6074.7, + "probability": 0.7189 + }, + { + "start": 6075.56, + "end": 6076.72, + "probability": 0.8164 + }, + { + "start": 6077.0, + "end": 6079.68, + "probability": 0.7479 + }, + { + "start": 6079.68, + "end": 6082.74, + "probability": 0.8128 + }, + { + "start": 6083.46, + "end": 6087.18, + "probability": 0.9365 + }, + { + "start": 6087.18, + "end": 6090.6, + "probability": 0.9786 + }, + { + "start": 6091.06, + "end": 6091.3, + "probability": 0.6532 + }, + { + "start": 6091.46, + "end": 6093.33, + "probability": 0.9767 + }, + { + "start": 6093.64, + "end": 6096.28, + "probability": 0.9633 + }, + { + "start": 6096.78, + "end": 6099.54, + "probability": 0.8425 + }, + { + "start": 6100.04, + "end": 6103.04, + "probability": 0.9969 + }, + { + "start": 6103.12, + "end": 6106.52, + "probability": 0.8878 + }, + { + "start": 6107.54, + "end": 6110.08, + "probability": 0.8625 + }, + { + "start": 6110.74, + "end": 6111.0, + "probability": 0.7373 + }, + { + "start": 6111.56, + "end": 6113.01, + "probability": 0.9073 + }, + { + "start": 6113.64, + "end": 6117.36, + "probability": 0.6776 + }, + { + "start": 6118.22, + "end": 6121.4, + "probability": 0.8112 + }, + { + "start": 6121.4, + "end": 6126.64, + "probability": 0.9456 + }, + { + "start": 6128.62, + "end": 6131.86, + "probability": 0.877 + }, + { + "start": 6131.86, + "end": 6134.72, + "probability": 0.8648 + }, + { + "start": 6135.32, + "end": 6139.66, + "probability": 0.8164 + }, + { + "start": 6140.12, + "end": 6142.4, + "probability": 0.5779 + }, + { + "start": 6142.48, + "end": 6145.18, + "probability": 0.6846 + }, + { + "start": 6145.74, + "end": 6146.7, + "probability": 0.3401 + }, + { + "start": 6147.02, + "end": 6151.14, + "probability": 0.8541 + }, + { + "start": 6151.26, + "end": 6152.62, + "probability": 0.5616 + }, + { + "start": 6152.84, + "end": 6154.2, + "probability": 0.7705 + }, + { + "start": 6154.46, + "end": 6157.32, + "probability": 0.8309 + }, + { + "start": 6158.04, + "end": 6161.94, + "probability": 0.9353 + }, + { + "start": 6162.76, + "end": 6165.74, + "probability": 0.8828 + }, + { + "start": 6166.14, + "end": 6170.26, + "probability": 0.9847 + }, + { + "start": 6170.88, + "end": 6171.26, + "probability": 0.5486 + }, + { + "start": 6171.36, + "end": 6175.58, + "probability": 0.9929 + }, + { + "start": 6175.72, + "end": 6176.28, + "probability": 0.7689 + }, + { + "start": 6176.32, + "end": 6182.96, + "probability": 0.4772 + }, + { + "start": 6183.0, + "end": 6183.52, + "probability": 0.2857 + }, + { + "start": 6183.62, + "end": 6186.26, + "probability": 0.9705 + }, + { + "start": 6186.88, + "end": 6189.78, + "probability": 0.4917 + }, + { + "start": 6190.2, + "end": 6190.2, + "probability": 0.2762 + }, + { + "start": 6190.2, + "end": 6191.72, + "probability": 0.6435 + }, + { + "start": 6191.86, + "end": 6195.12, + "probability": 0.8258 + }, + { + "start": 6195.4, + "end": 6198.18, + "probability": 0.9712 + }, + { + "start": 6198.86, + "end": 6200.54, + "probability": 0.704 + }, + { + "start": 6201.1, + "end": 6204.36, + "probability": 0.9649 + }, + { + "start": 6205.62, + "end": 6209.7, + "probability": 0.895 + }, + { + "start": 6209.78, + "end": 6214.08, + "probability": 0.832 + }, + { + "start": 6214.76, + "end": 6222.14, + "probability": 0.8327 + }, + { + "start": 6222.7, + "end": 6227.32, + "probability": 0.6618 + }, + { + "start": 6227.4, + "end": 6230.54, + "probability": 0.7939 + }, + { + "start": 6231.94, + "end": 6234.5, + "probability": 0.6561 + }, + { + "start": 6234.6, + "end": 6236.14, + "probability": 0.3654 + }, + { + "start": 6236.92, + "end": 6238.68, + "probability": 0.6814 + }, + { + "start": 6239.24, + "end": 6243.54, + "probability": 0.8566 + }, + { + "start": 6243.98, + "end": 6246.92, + "probability": 0.7847 + }, + { + "start": 6247.5, + "end": 6252.26, + "probability": 0.9225 + }, + { + "start": 6252.26, + "end": 6257.04, + "probability": 0.7165 + }, + { + "start": 6257.22, + "end": 6257.48, + "probability": 0.3767 + }, + { + "start": 6258.24, + "end": 6263.84, + "probability": 0.9279 + }, + { + "start": 6265.84, + "end": 6269.74, + "probability": 0.7563 + }, + { + "start": 6270.3, + "end": 6270.84, + "probability": 0.9043 + }, + { + "start": 6271.64, + "end": 6276.54, + "probability": 0.748 + }, + { + "start": 6276.54, + "end": 6280.14, + "probability": 0.8581 + }, + { + "start": 6283.28, + "end": 6283.48, + "probability": 0.0968 + }, + { + "start": 6283.48, + "end": 6286.38, + "probability": 0.6097 + }, + { + "start": 6287.4, + "end": 6287.96, + "probability": 0.6531 + }, + { + "start": 6288.12, + "end": 6290.14, + "probability": 0.8167 + }, + { + "start": 6290.34, + "end": 6293.15, + "probability": 0.8785 + }, + { + "start": 6293.58, + "end": 6294.94, + "probability": 0.8391 + }, + { + "start": 6295.72, + "end": 6296.96, + "probability": 0.6356 + }, + { + "start": 6297.62, + "end": 6298.38, + "probability": 0.5273 + }, + { + "start": 6299.15, + "end": 6301.7, + "probability": 0.6799 + }, + { + "start": 6302.66, + "end": 6304.6, + "probability": 0.6578 + }, + { + "start": 6306.01, + "end": 6308.16, + "probability": 0.5221 + }, + { + "start": 6309.12, + "end": 6309.9, + "probability": 0.775 + }, + { + "start": 6310.46, + "end": 6311.68, + "probability": 0.9749 + }, + { + "start": 6311.92, + "end": 6312.3, + "probability": 0.5135 + }, + { + "start": 6312.88, + "end": 6314.64, + "probability": 0.9899 + }, + { + "start": 6314.82, + "end": 6316.46, + "probability": 0.9471 + }, + { + "start": 6316.76, + "end": 6318.04, + "probability": 0.8311 + }, + { + "start": 6318.88, + "end": 6323.98, + "probability": 0.9788 + }, + { + "start": 6324.18, + "end": 6325.18, + "probability": 0.4036 + }, + { + "start": 6325.66, + "end": 6327.3, + "probability": 0.9632 + }, + { + "start": 6327.46, + "end": 6328.58, + "probability": 0.991 + }, + { + "start": 6329.72, + "end": 6331.4, + "probability": 0.9014 + }, + { + "start": 6331.52, + "end": 6332.18, + "probability": 0.8809 + }, + { + "start": 6332.26, + "end": 6334.04, + "probability": 0.8798 + }, + { + "start": 6346.4, + "end": 6347.46, + "probability": 0.7523 + }, + { + "start": 6351.76, + "end": 6352.7, + "probability": 0.6411 + }, + { + "start": 6355.46, + "end": 6356.46, + "probability": 0.8787 + }, + { + "start": 6356.58, + "end": 6357.14, + "probability": 0.9281 + }, + { + "start": 6357.24, + "end": 6359.84, + "probability": 0.989 + }, + { + "start": 6359.84, + "end": 6362.88, + "probability": 0.9773 + }, + { + "start": 6363.66, + "end": 6368.24, + "probability": 0.8703 + }, + { + "start": 6368.24, + "end": 6372.28, + "probability": 0.9863 + }, + { + "start": 6373.42, + "end": 6376.36, + "probability": 0.9987 + }, + { + "start": 6376.36, + "end": 6380.34, + "probability": 0.9362 + }, + { + "start": 6381.16, + "end": 6383.86, + "probability": 0.8464 + }, + { + "start": 6384.38, + "end": 6386.74, + "probability": 0.984 + }, + { + "start": 6388.78, + "end": 6392.92, + "probability": 0.9946 + }, + { + "start": 6393.6, + "end": 6396.44, + "probability": 0.9715 + }, + { + "start": 6396.52, + "end": 6398.24, + "probability": 0.9879 + }, + { + "start": 6399.7, + "end": 6401.92, + "probability": 0.8455 + }, + { + "start": 6401.92, + "end": 6404.98, + "probability": 0.9826 + }, + { + "start": 6405.12, + "end": 6409.78, + "probability": 0.8741 + }, + { + "start": 6410.98, + "end": 6412.84, + "probability": 0.8777 + }, + { + "start": 6413.46, + "end": 6417.26, + "probability": 0.9829 + }, + { + "start": 6418.06, + "end": 6421.18, + "probability": 0.9516 + }, + { + "start": 6421.18, + "end": 6425.66, + "probability": 0.999 + }, + { + "start": 6426.74, + "end": 6429.38, + "probability": 0.9942 + }, + { + "start": 6429.38, + "end": 6431.86, + "probability": 0.9956 + }, + { + "start": 6432.4, + "end": 6434.48, + "probability": 0.9349 + }, + { + "start": 6434.48, + "end": 6437.96, + "probability": 0.9982 + }, + { + "start": 6438.04, + "end": 6441.22, + "probability": 0.9897 + }, + { + "start": 6442.1, + "end": 6444.15, + "probability": 0.9742 + }, + { + "start": 6445.88, + "end": 6449.84, + "probability": 0.9877 + }, + { + "start": 6450.74, + "end": 6453.86, + "probability": 0.9355 + }, + { + "start": 6453.86, + "end": 6457.18, + "probability": 0.4688 + }, + { + "start": 6457.64, + "end": 6460.56, + "probability": 0.8698 + }, + { + "start": 6461.22, + "end": 6461.82, + "probability": 0.8448 + }, + { + "start": 6464.12, + "end": 6466.32, + "probability": 0.9873 + }, + { + "start": 6466.32, + "end": 6468.76, + "probability": 0.8865 + }, + { + "start": 6468.8, + "end": 6471.38, + "probability": 0.9659 + }, + { + "start": 6471.38, + "end": 6475.28, + "probability": 0.9956 + }, + { + "start": 6475.88, + "end": 6476.18, + "probability": 0.4401 + }, + { + "start": 6476.32, + "end": 6477.96, + "probability": 0.9797 + }, + { + "start": 6478.16, + "end": 6481.66, + "probability": 0.9609 + }, + { + "start": 6481.66, + "end": 6484.38, + "probability": 0.9812 + }, + { + "start": 6484.9, + "end": 6488.18, + "probability": 0.9575 + }, + { + "start": 6489.12, + "end": 6491.92, + "probability": 0.9891 + }, + { + "start": 6492.88, + "end": 6496.1, + "probability": 0.9524 + }, + { + "start": 6496.18, + "end": 6498.58, + "probability": 0.9855 + }, + { + "start": 6498.58, + "end": 6500.66, + "probability": 0.9943 + }, + { + "start": 6501.0, + "end": 6503.76, + "probability": 0.9962 + }, + { + "start": 6503.76, + "end": 6507.98, + "probability": 0.9977 + }, + { + "start": 6508.7, + "end": 6510.35, + "probability": 0.9802 + }, + { + "start": 6510.6, + "end": 6513.52, + "probability": 0.9908 + }, + { + "start": 6514.0, + "end": 6515.76, + "probability": 0.9958 + }, + { + "start": 6516.52, + "end": 6519.7, + "probability": 0.8026 + }, + { + "start": 6519.76, + "end": 6522.18, + "probability": 0.9089 + }, + { + "start": 6522.24, + "end": 6522.92, + "probability": 0.7806 + }, + { + "start": 6523.28, + "end": 6525.22, + "probability": 0.7375 + }, + { + "start": 6525.68, + "end": 6527.76, + "probability": 0.9484 + }, + { + "start": 6528.18, + "end": 6529.6, + "probability": 0.9887 + }, + { + "start": 6530.9, + "end": 6531.54, + "probability": 0.7827 + }, + { + "start": 6531.66, + "end": 6535.82, + "probability": 0.7722 + }, + { + "start": 6536.42, + "end": 6538.02, + "probability": 0.5044 + }, + { + "start": 6538.16, + "end": 6539.62, + "probability": 0.8483 + }, + { + "start": 6540.54, + "end": 6540.96, + "probability": 0.6098 + }, + { + "start": 6540.98, + "end": 6541.36, + "probability": 0.6957 + }, + { + "start": 6541.42, + "end": 6543.1, + "probability": 0.9563 + }, + { + "start": 6543.1, + "end": 6547.1, + "probability": 0.6877 + }, + { + "start": 6547.26, + "end": 6548.16, + "probability": 0.396 + }, + { + "start": 6548.38, + "end": 6549.36, + "probability": 0.7392 + }, + { + "start": 6549.38, + "end": 6550.84, + "probability": 0.8159 + }, + { + "start": 6551.42, + "end": 6552.38, + "probability": 0.7251 + }, + { + "start": 6569.78, + "end": 6569.82, + "probability": 0.0964 + }, + { + "start": 6569.82, + "end": 6569.82, + "probability": 0.2752 + }, + { + "start": 6569.82, + "end": 6569.82, + "probability": 0.0869 + }, + { + "start": 6569.82, + "end": 6569.82, + "probability": 0.1662 + }, + { + "start": 6569.82, + "end": 6569.82, + "probability": 0.0473 + }, + { + "start": 6569.82, + "end": 6569.82, + "probability": 0.0026 + }, + { + "start": 6569.82, + "end": 6571.44, + "probability": 0.3876 + }, + { + "start": 6571.72, + "end": 6572.18, + "probability": 0.7881 + }, + { + "start": 6573.08, + "end": 6573.3, + "probability": 0.609 + }, + { + "start": 6573.34, + "end": 6574.12, + "probability": 0.8467 + }, + { + "start": 6574.26, + "end": 6578.52, + "probability": 0.9424 + }, + { + "start": 6578.54, + "end": 6580.8, + "probability": 0.8969 + }, + { + "start": 6582.24, + "end": 6583.69, + "probability": 0.4084 + }, + { + "start": 6584.58, + "end": 6587.98, + "probability": 0.0391 + }, + { + "start": 6588.9, + "end": 6588.92, + "probability": 0.0847 + }, + { + "start": 6588.92, + "end": 6591.48, + "probability": 0.6023 + }, + { + "start": 6591.62, + "end": 6593.5, + "probability": 0.829 + }, + { + "start": 6594.08, + "end": 6594.66, + "probability": 0.1946 + }, + { + "start": 6594.66, + "end": 6595.04, + "probability": 0.757 + }, + { + "start": 6595.3, + "end": 6598.66, + "probability": 0.6663 + }, + { + "start": 6598.82, + "end": 6599.08, + "probability": 0.1805 + }, + { + "start": 6599.1, + "end": 6599.92, + "probability": 0.7263 + }, + { + "start": 6600.02, + "end": 6600.52, + "probability": 0.3124 + }, + { + "start": 6600.9, + "end": 6601.42, + "probability": 0.8348 + }, + { + "start": 6601.82, + "end": 6602.58, + "probability": 0.7696 + }, + { + "start": 6620.3, + "end": 6620.7, + "probability": 0.028 + }, + { + "start": 6620.7, + "end": 6620.7, + "probability": 0.0206 + }, + { + "start": 6620.7, + "end": 6620.7, + "probability": 0.1208 + }, + { + "start": 6620.7, + "end": 6622.31, + "probability": 0.7352 + }, + { + "start": 6623.46, + "end": 6625.74, + "probability": 0.7282 + }, + { + "start": 6627.1, + "end": 6630.04, + "probability": 0.9998 + }, + { + "start": 6631.82, + "end": 6633.63, + "probability": 0.7671 + }, + { + "start": 6634.02, + "end": 6636.5, + "probability": 0.0111 + }, + { + "start": 6636.5, + "end": 6636.96, + "probability": 0.4573 + }, + { + "start": 6644.56, + "end": 6645.08, + "probability": 0.4395 + }, + { + "start": 6645.12, + "end": 6646.0, + "probability": 0.7023 + }, + { + "start": 6646.2, + "end": 6646.76, + "probability": 0.7482 + }, + { + "start": 6646.82, + "end": 6647.92, + "probability": 0.8463 + }, + { + "start": 6648.08, + "end": 6648.73, + "probability": 0.832 + }, + { + "start": 6649.68, + "end": 6652.36, + "probability": 0.9717 + }, + { + "start": 6652.94, + "end": 6654.38, + "probability": 0.9836 + }, + { + "start": 6655.18, + "end": 6656.74, + "probability": 0.7095 + }, + { + "start": 6656.92, + "end": 6657.2, + "probability": 0.825 + }, + { + "start": 6657.3, + "end": 6661.56, + "probability": 0.9851 + }, + { + "start": 6661.56, + "end": 6665.28, + "probability": 0.9983 + }, + { + "start": 6666.1, + "end": 6669.78, + "probability": 0.9916 + }, + { + "start": 6670.42, + "end": 6673.04, + "probability": 0.998 + }, + { + "start": 6673.2, + "end": 6673.83, + "probability": 0.7744 + }, + { + "start": 6674.04, + "end": 6675.43, + "probability": 0.7668 + }, + { + "start": 6676.28, + "end": 6679.7, + "probability": 0.8875 + }, + { + "start": 6681.46, + "end": 6684.94, + "probability": 0.9851 + }, + { + "start": 6684.94, + "end": 6688.06, + "probability": 0.9932 + }, + { + "start": 6688.26, + "end": 6692.68, + "probability": 0.9933 + }, + { + "start": 6694.4, + "end": 6697.2, + "probability": 0.7657 + }, + { + "start": 6697.72, + "end": 6699.0, + "probability": 0.679 + }, + { + "start": 6699.7, + "end": 6705.44, + "probability": 0.8438 + }, + { + "start": 6705.98, + "end": 6707.72, + "probability": 0.9982 + }, + { + "start": 6708.26, + "end": 6710.36, + "probability": 0.9921 + }, + { + "start": 6710.48, + "end": 6711.86, + "probability": 0.8185 + }, + { + "start": 6712.82, + "end": 6715.06, + "probability": 0.9436 + }, + { + "start": 6715.98, + "end": 6716.82, + "probability": 0.8224 + }, + { + "start": 6716.92, + "end": 6717.48, + "probability": 0.9535 + }, + { + "start": 6717.62, + "end": 6719.0, + "probability": 0.9806 + }, + { + "start": 6719.52, + "end": 6722.12, + "probability": 0.9985 + }, + { + "start": 6722.18, + "end": 6723.26, + "probability": 0.686 + }, + { + "start": 6724.16, + "end": 6727.3, + "probability": 0.9884 + }, + { + "start": 6727.3, + "end": 6732.7, + "probability": 0.9716 + }, + { + "start": 6732.86, + "end": 6734.62, + "probability": 0.9974 + }, + { + "start": 6734.72, + "end": 6739.8, + "probability": 0.9858 + }, + { + "start": 6740.1, + "end": 6741.26, + "probability": 0.6008 + }, + { + "start": 6741.36, + "end": 6742.26, + "probability": 0.8201 + }, + { + "start": 6742.58, + "end": 6744.6, + "probability": 0.8288 + }, + { + "start": 6745.1, + "end": 6745.38, + "probability": 0.932 + }, + { + "start": 6745.46, + "end": 6745.78, + "probability": 0.8292 + }, + { + "start": 6745.82, + "end": 6749.44, + "probability": 0.9419 + }, + { + "start": 6750.12, + "end": 6752.26, + "probability": 0.5138 + }, + { + "start": 6752.36, + "end": 6753.86, + "probability": 0.4805 + }, + { + "start": 6753.98, + "end": 6755.62, + "probability": 0.9008 + }, + { + "start": 6756.26, + "end": 6757.44, + "probability": 0.9424 + }, + { + "start": 6757.58, + "end": 6760.86, + "probability": 0.8329 + }, + { + "start": 6761.28, + "end": 6762.76, + "probability": 0.9315 + }, + { + "start": 6762.92, + "end": 6768.96, + "probability": 0.9459 + }, + { + "start": 6769.26, + "end": 6770.91, + "probability": 0.7109 + }, + { + "start": 6773.6, + "end": 6773.6, + "probability": 0.2677 + }, + { + "start": 6773.6, + "end": 6777.43, + "probability": 0.0306 + }, + { + "start": 6781.28, + "end": 6781.28, + "probability": 0.0021 + }, + { + "start": 6781.28, + "end": 6782.28, + "probability": 0.0913 + }, + { + "start": 6782.3, + "end": 6784.5, + "probability": 0.2416 + }, + { + "start": 6784.9, + "end": 6785.62, + "probability": 0.2481 + }, + { + "start": 6787.72, + "end": 6789.24, + "probability": 0.3377 + }, + { + "start": 6790.24, + "end": 6792.98, + "probability": 0.9906 + }, + { + "start": 6793.78, + "end": 6796.16, + "probability": 0.9851 + }, + { + "start": 6796.96, + "end": 6801.78, + "probability": 0.9226 + }, + { + "start": 6802.08, + "end": 6804.44, + "probability": 0.3662 + }, + { + "start": 6805.14, + "end": 6806.68, + "probability": 0.9987 + }, + { + "start": 6807.6, + "end": 6811.05, + "probability": 0.9969 + }, + { + "start": 6811.72, + "end": 6812.38, + "probability": 0.4932 + }, + { + "start": 6813.16, + "end": 6814.12, + "probability": 0.5847 + }, + { + "start": 6814.68, + "end": 6817.42, + "probability": 0.946 + }, + { + "start": 6818.34, + "end": 6820.12, + "probability": 0.9384 + }, + { + "start": 6820.84, + "end": 6822.42, + "probability": 0.9058 + }, + { + "start": 6823.24, + "end": 6827.02, + "probability": 0.9847 + }, + { + "start": 6828.1, + "end": 6831.58, + "probability": 0.7639 + }, + { + "start": 6832.3, + "end": 6833.74, + "probability": 0.5732 + }, + { + "start": 6833.92, + "end": 6835.14, + "probability": 0.9327 + }, + { + "start": 6835.98, + "end": 6837.32, + "probability": 0.9194 + }, + { + "start": 6838.76, + "end": 6839.54, + "probability": 0.6187 + }, + { + "start": 6840.4, + "end": 6843.66, + "probability": 0.7077 + }, + { + "start": 6846.02, + "end": 6846.74, + "probability": 0.6503 + }, + { + "start": 6846.74, + "end": 6847.56, + "probability": 0.379 + }, + { + "start": 6847.64, + "end": 6849.98, + "probability": 0.5625 + }, + { + "start": 6850.08, + "end": 6851.58, + "probability": 0.7424 + }, + { + "start": 6852.32, + "end": 6853.66, + "probability": 0.9873 + }, + { + "start": 6854.46, + "end": 6854.86, + "probability": 0.4275 + }, + { + "start": 6855.82, + "end": 6857.22, + "probability": 0.9856 + }, + { + "start": 6858.06, + "end": 6861.72, + "probability": 0.9782 + }, + { + "start": 6861.72, + "end": 6864.82, + "probability": 0.8472 + }, + { + "start": 6865.1, + "end": 6869.48, + "probability": 0.9949 + }, + { + "start": 6870.08, + "end": 6873.14, + "probability": 0.9913 + }, + { + "start": 6873.14, + "end": 6876.06, + "probability": 0.9888 + }, + { + "start": 6876.9, + "end": 6879.0, + "probability": 0.9849 + }, + { + "start": 6879.76, + "end": 6882.12, + "probability": 0.9687 + }, + { + "start": 6882.98, + "end": 6886.22, + "probability": 0.9402 + }, + { + "start": 6886.22, + "end": 6889.88, + "probability": 0.9816 + }, + { + "start": 6890.8, + "end": 6896.48, + "probability": 0.6615 + }, + { + "start": 6897.12, + "end": 6898.54, + "probability": 0.9521 + }, + { + "start": 6899.26, + "end": 6905.12, + "probability": 0.9876 + }, + { + "start": 6905.68, + "end": 6909.14, + "probability": 0.9954 + }, + { + "start": 6910.18, + "end": 6911.68, + "probability": 0.9128 + }, + { + "start": 6912.34, + "end": 6918.6, + "probability": 0.9668 + }, + { + "start": 6919.06, + "end": 6920.14, + "probability": 0.8256 + }, + { + "start": 6920.94, + "end": 6921.62, + "probability": 0.9218 + }, + { + "start": 6922.12, + "end": 6927.7, + "probability": 0.9509 + }, + { + "start": 6928.24, + "end": 6929.86, + "probability": 0.9987 + }, + { + "start": 6930.5, + "end": 6932.92, + "probability": 0.9742 + }, + { + "start": 6933.56, + "end": 6934.38, + "probability": 0.757 + }, + { + "start": 6934.52, + "end": 6939.84, + "probability": 0.9771 + }, + { + "start": 6939.84, + "end": 6944.82, + "probability": 0.9956 + }, + { + "start": 6945.66, + "end": 6950.82, + "probability": 0.9915 + }, + { + "start": 6951.32, + "end": 6951.82, + "probability": 0.8905 + }, + { + "start": 6952.42, + "end": 6954.12, + "probability": 0.9956 + }, + { + "start": 6955.06, + "end": 6962.22, + "probability": 0.9642 + }, + { + "start": 6962.22, + "end": 6967.2, + "probability": 0.9945 + }, + { + "start": 6969.28, + "end": 6974.62, + "probability": 0.9889 + }, + { + "start": 6975.18, + "end": 6978.38, + "probability": 0.9214 + }, + { + "start": 6978.38, + "end": 6982.68, + "probability": 0.9946 + }, + { + "start": 6983.24, + "end": 6984.28, + "probability": 0.9697 + }, + { + "start": 6985.82, + "end": 6990.56, + "probability": 0.9974 + }, + { + "start": 6991.48, + "end": 6996.4, + "probability": 0.9258 + }, + { + "start": 6997.62, + "end": 7002.12, + "probability": 0.9912 + }, + { + "start": 7003.2, + "end": 7008.52, + "probability": 0.9925 + }, + { + "start": 7010.86, + "end": 7014.48, + "probability": 0.884 + }, + { + "start": 7015.78, + "end": 7021.56, + "probability": 0.9551 + }, + { + "start": 7022.26, + "end": 7026.48, + "probability": 0.9378 + }, + { + "start": 7027.2, + "end": 7028.28, + "probability": 0.9703 + }, + { + "start": 7028.86, + "end": 7032.66, + "probability": 0.9922 + }, + { + "start": 7034.26, + "end": 7038.12, + "probability": 0.9954 + }, + { + "start": 7038.84, + "end": 7039.46, + "probability": 0.8157 + }, + { + "start": 7040.02, + "end": 7046.48, + "probability": 0.9989 + }, + { + "start": 7046.74, + "end": 7047.78, + "probability": 0.8585 + }, + { + "start": 7048.46, + "end": 7050.42, + "probability": 0.9757 + }, + { + "start": 7051.12, + "end": 7055.42, + "probability": 0.9943 + }, + { + "start": 7056.64, + "end": 7057.84, + "probability": 0.9548 + }, + { + "start": 7057.86, + "end": 7062.1, + "probability": 0.9976 + }, + { + "start": 7062.92, + "end": 7065.18, + "probability": 0.9984 + }, + { + "start": 7065.74, + "end": 7071.58, + "probability": 0.9985 + }, + { + "start": 7071.7, + "end": 7078.78, + "probability": 0.9237 + }, + { + "start": 7079.26, + "end": 7083.1, + "probability": 0.9978 + }, + { + "start": 7083.22, + "end": 7088.22, + "probability": 0.9907 + }, + { + "start": 7089.06, + "end": 7091.52, + "probability": 0.902 + }, + { + "start": 7092.12, + "end": 7094.3, + "probability": 0.8231 + }, + { + "start": 7094.98, + "end": 7097.4, + "probability": 0.7986 + }, + { + "start": 7098.5, + "end": 7102.2, + "probability": 0.9937 + }, + { + "start": 7102.58, + "end": 7105.72, + "probability": 0.9889 + }, + { + "start": 7106.3, + "end": 7110.48, + "probability": 0.9365 + }, + { + "start": 7110.48, + "end": 7114.18, + "probability": 0.9645 + }, + { + "start": 7114.68, + "end": 7118.4, + "probability": 0.998 + }, + { + "start": 7118.4, + "end": 7123.3, + "probability": 0.9971 + }, + { + "start": 7124.26, + "end": 7125.54, + "probability": 0.6749 + }, + { + "start": 7126.66, + "end": 7132.24, + "probability": 0.9746 + }, + { + "start": 7132.24, + "end": 7137.16, + "probability": 0.9977 + }, + { + "start": 7138.04, + "end": 7141.82, + "probability": 0.9985 + }, + { + "start": 7142.34, + "end": 7144.02, + "probability": 0.879 + }, + { + "start": 7145.12, + "end": 7146.2, + "probability": 0.9569 + }, + { + "start": 7146.26, + "end": 7147.02, + "probability": 0.9836 + }, + { + "start": 7147.2, + "end": 7148.42, + "probability": 0.8937 + }, + { + "start": 7149.28, + "end": 7151.3, + "probability": 0.9974 + }, + { + "start": 7151.94, + "end": 7153.86, + "probability": 0.9463 + }, + { + "start": 7154.22, + "end": 7154.88, + "probability": 0.7866 + }, + { + "start": 7155.2, + "end": 7157.16, + "probability": 0.9297 + }, + { + "start": 7157.46, + "end": 7159.72, + "probability": 0.7906 + }, + { + "start": 7160.8, + "end": 7163.24, + "probability": 0.9412 + }, + { + "start": 7163.9, + "end": 7165.06, + "probability": 0.9229 + }, + { + "start": 7165.74, + "end": 7166.08, + "probability": 0.8171 + }, + { + "start": 7167.04, + "end": 7170.7, + "probability": 0.9574 + }, + { + "start": 7171.5, + "end": 7176.61, + "probability": 0.9033 + }, + { + "start": 7178.38, + "end": 7181.6, + "probability": 0.9418 + }, + { + "start": 7181.88, + "end": 7182.34, + "probability": 0.5477 + }, + { + "start": 7182.52, + "end": 7185.7, + "probability": 0.9882 + }, + { + "start": 7185.9, + "end": 7187.34, + "probability": 0.9656 + }, + { + "start": 7187.8, + "end": 7188.28, + "probability": 0.9176 + }, + { + "start": 7188.9, + "end": 7189.32, + "probability": 0.9248 + }, + { + "start": 7189.86, + "end": 7192.46, + "probability": 0.9831 + }, + { + "start": 7193.06, + "end": 7194.2, + "probability": 0.9971 + }, + { + "start": 7194.72, + "end": 7195.82, + "probability": 0.8318 + }, + { + "start": 7198.68, + "end": 7198.7, + "probability": 0.3692 + }, + { + "start": 7198.7, + "end": 7201.44, + "probability": 0.1397 + }, + { + "start": 7202.08, + "end": 7204.5, + "probability": 0.7127 + }, + { + "start": 7204.58, + "end": 7205.12, + "probability": 0.8093 + }, + { + "start": 7205.52, + "end": 7206.14, + "probability": 0.8921 + }, + { + "start": 7210.38, + "end": 7211.62, + "probability": 0.0019 + }, + { + "start": 7224.7, + "end": 7225.26, + "probability": 0.0135 + }, + { + "start": 7225.26, + "end": 7227.96, + "probability": 0.6996 + }, + { + "start": 7228.56, + "end": 7230.18, + "probability": 0.9898 + }, + { + "start": 7230.82, + "end": 7232.12, + "probability": 0.6956 + }, + { + "start": 7232.88, + "end": 7234.58, + "probability": 0.9075 + }, + { + "start": 7235.02, + "end": 7237.44, + "probability": 0.8092 + }, + { + "start": 7237.98, + "end": 7242.5, + "probability": 0.6221 + }, + { + "start": 7242.88, + "end": 7243.6, + "probability": 0.8855 + }, + { + "start": 7243.88, + "end": 7244.64, + "probability": 0.8565 + }, + { + "start": 7245.82, + "end": 7247.3, + "probability": 0.2222 + }, + { + "start": 7248.92, + "end": 7248.94, + "probability": 0.0001 + }, + { + "start": 7262.52, + "end": 7262.88, + "probability": 0.0461 + }, + { + "start": 7262.88, + "end": 7265.32, + "probability": 0.6826 + }, + { + "start": 7265.38, + "end": 7265.48, + "probability": 0.1572 + }, + { + "start": 7265.6, + "end": 7266.18, + "probability": 0.638 + }, + { + "start": 7266.4, + "end": 7271.62, + "probability": 0.8975 + }, + { + "start": 7272.5, + "end": 7274.1, + "probability": 0.8218 + }, + { + "start": 7274.78, + "end": 7275.86, + "probability": 0.7932 + }, + { + "start": 7279.24, + "end": 7281.92, + "probability": 0.849 + }, + { + "start": 7282.22, + "end": 7283.06, + "probability": 0.6656 + }, + { + "start": 7283.9, + "end": 7286.38, + "probability": 0.8312 + }, + { + "start": 7287.48, + "end": 7293.72, + "probability": 0.9831 + }, + { + "start": 7294.08, + "end": 7295.34, + "probability": 0.6386 + }, + { + "start": 7295.86, + "end": 7298.72, + "probability": 0.9819 + }, + { + "start": 7299.44, + "end": 7302.5, + "probability": 0.865 + }, + { + "start": 7303.26, + "end": 7306.4, + "probability": 0.7736 + }, + { + "start": 7306.64, + "end": 7307.62, + "probability": 0.7505 + }, + { + "start": 7308.12, + "end": 7310.82, + "probability": 0.6477 + }, + { + "start": 7310.92, + "end": 7312.1, + "probability": 0.7977 + }, + { + "start": 7313.2, + "end": 7314.32, + "probability": 0.8382 + }, + { + "start": 7314.4, + "end": 7319.34, + "probability": 0.9788 + }, + { + "start": 7319.34, + "end": 7324.38, + "probability": 0.9722 + }, + { + "start": 7325.14, + "end": 7329.28, + "probability": 0.9938 + }, + { + "start": 7329.9, + "end": 7331.22, + "probability": 0.7405 + }, + { + "start": 7332.08, + "end": 7333.04, + "probability": 0.7147 + }, + { + "start": 7333.14, + "end": 7337.84, + "probability": 0.9044 + }, + { + "start": 7338.44, + "end": 7339.08, + "probability": 0.5635 + }, + { + "start": 7340.28, + "end": 7345.72, + "probability": 0.9725 + }, + { + "start": 7346.04, + "end": 7347.64, + "probability": 0.9926 + }, + { + "start": 7348.24, + "end": 7351.28, + "probability": 0.9629 + }, + { + "start": 7352.2, + "end": 7352.78, + "probability": 0.8407 + }, + { + "start": 7353.76, + "end": 7359.12, + "probability": 0.9957 + }, + { + "start": 7359.66, + "end": 7362.2, + "probability": 0.9791 + }, + { + "start": 7363.04, + "end": 7364.0, + "probability": 0.7765 + }, + { + "start": 7364.78, + "end": 7367.16, + "probability": 0.7459 + }, + { + "start": 7367.26, + "end": 7371.36, + "probability": 0.92 + }, + { + "start": 7372.42, + "end": 7373.66, + "probability": 0.5228 + }, + { + "start": 7374.48, + "end": 7382.68, + "probability": 0.9685 + }, + { + "start": 7383.04, + "end": 7384.0, + "probability": 0.8224 + }, + { + "start": 7384.14, + "end": 7385.9, + "probability": 0.9976 + }, + { + "start": 7386.48, + "end": 7389.08, + "probability": 0.978 + }, + { + "start": 7389.18, + "end": 7392.84, + "probability": 0.9877 + }, + { + "start": 7393.5, + "end": 7394.02, + "probability": 0.6332 + }, + { + "start": 7394.14, + "end": 7397.94, + "probability": 0.9127 + }, + { + "start": 7398.14, + "end": 7400.92, + "probability": 0.8004 + }, + { + "start": 7401.02, + "end": 7402.16, + "probability": 0.8818 + }, + { + "start": 7402.78, + "end": 7405.44, + "probability": 0.9459 + }, + { + "start": 7405.7, + "end": 7409.65, + "probability": 0.8467 + }, + { + "start": 7411.04, + "end": 7412.86, + "probability": 0.9981 + }, + { + "start": 7413.58, + "end": 7417.56, + "probability": 0.8747 + }, + { + "start": 7418.26, + "end": 7418.99, + "probability": 0.682 + }, + { + "start": 7419.18, + "end": 7420.36, + "probability": 0.8533 + }, + { + "start": 7420.42, + "end": 7422.28, + "probability": 0.7498 + }, + { + "start": 7422.74, + "end": 7425.02, + "probability": 0.951 + }, + { + "start": 7425.22, + "end": 7430.54, + "probability": 0.9646 + }, + { + "start": 7430.96, + "end": 7435.02, + "probability": 0.9989 + }, + { + "start": 7435.84, + "end": 7439.34, + "probability": 0.8999 + }, + { + "start": 7440.02, + "end": 7440.96, + "probability": 0.8501 + }, + { + "start": 7441.04, + "end": 7441.3, + "probability": 0.8764 + }, + { + "start": 7441.9, + "end": 7444.12, + "probability": 0.9657 + }, + { + "start": 7444.24, + "end": 7446.74, + "probability": 0.5206 + }, + { + "start": 7447.36, + "end": 7447.36, + "probability": 0.1707 + }, + { + "start": 7447.36, + "end": 7447.62, + "probability": 0.6265 + }, + { + "start": 7448.52, + "end": 7451.52, + "probability": 0.6284 + }, + { + "start": 7451.62, + "end": 7453.28, + "probability": 0.7187 + }, + { + "start": 7453.38, + "end": 7456.1, + "probability": 0.7627 + }, + { + "start": 7456.62, + "end": 7460.32, + "probability": 0.9959 + }, + { + "start": 7461.28, + "end": 7465.28, + "probability": 0.6066 + }, + { + "start": 7465.42, + "end": 7467.2, + "probability": 0.7382 + }, + { + "start": 7467.3, + "end": 7468.02, + "probability": 0.7388 + }, + { + "start": 7468.12, + "end": 7469.54, + "probability": 0.8633 + }, + { + "start": 7469.54, + "end": 7470.04, + "probability": 0.5766 + }, + { + "start": 7470.12, + "end": 7473.32, + "probability": 0.9352 + }, + { + "start": 7473.46, + "end": 7473.7, + "probability": 0.8174 + }, + { + "start": 7476.47, + "end": 7477.66, + "probability": 0.0767 + }, + { + "start": 7482.32, + "end": 7483.42, + "probability": 0.7089 + }, + { + "start": 7483.52, + "end": 7485.4, + "probability": 0.8527 + }, + { + "start": 7486.06, + "end": 7488.06, + "probability": 0.9563 + }, + { + "start": 7488.66, + "end": 7489.66, + "probability": 0.9595 + }, + { + "start": 7490.72, + "end": 7493.12, + "probability": 0.7924 + }, + { + "start": 7496.1, + "end": 7497.06, + "probability": 0.7081 + }, + { + "start": 7497.18, + "end": 7503.92, + "probability": 0.9641 + }, + { + "start": 7504.04, + "end": 7504.86, + "probability": 0.6646 + }, + { + "start": 7505.62, + "end": 7507.96, + "probability": 0.8929 + }, + { + "start": 7508.12, + "end": 7509.58, + "probability": 0.3081 + }, + { + "start": 7510.4, + "end": 7512.07, + "probability": 0.4139 + }, + { + "start": 7514.4, + "end": 7517.42, + "probability": 0.6297 + }, + { + "start": 7517.54, + "end": 7518.26, + "probability": 0.8199 + }, + { + "start": 7518.26, + "end": 7520.86, + "probability": 0.9192 + }, + { + "start": 7521.48, + "end": 7522.82, + "probability": 0.9788 + }, + { + "start": 7522.9, + "end": 7526.14, + "probability": 0.9831 + }, + { + "start": 7526.26, + "end": 7528.2, + "probability": 0.1502 + }, + { + "start": 7528.2, + "end": 7531.86, + "probability": 0.9846 + }, + { + "start": 7532.42, + "end": 7535.7, + "probability": 0.9268 + }, + { + "start": 7536.28, + "end": 7536.88, + "probability": 0.5647 + }, + { + "start": 7538.26, + "end": 7540.8, + "probability": 0.9489 + }, + { + "start": 7541.36, + "end": 7542.76, + "probability": 0.9682 + }, + { + "start": 7542.86, + "end": 7545.28, + "probability": 0.9354 + }, + { + "start": 7546.32, + "end": 7547.16, + "probability": 0.8576 + }, + { + "start": 7547.24, + "end": 7549.94, + "probability": 0.9843 + }, + { + "start": 7550.7, + "end": 7553.88, + "probability": 0.6371 + }, + { + "start": 7554.96, + "end": 7558.82, + "probability": 0.6506 + }, + { + "start": 7559.34, + "end": 7561.46, + "probability": 0.8992 + }, + { + "start": 7561.62, + "end": 7563.03, + "probability": 0.7217 + }, + { + "start": 7564.0, + "end": 7565.32, + "probability": 0.7949 + }, + { + "start": 7565.52, + "end": 7568.6, + "probability": 0.9059 + }, + { + "start": 7569.26, + "end": 7570.96, + "probability": 0.8648 + }, + { + "start": 7571.06, + "end": 7577.1, + "probability": 0.9849 + }, + { + "start": 7577.38, + "end": 7580.4, + "probability": 0.9901 + }, + { + "start": 7580.96, + "end": 7583.96, + "probability": 0.9591 + }, + { + "start": 7584.62, + "end": 7586.31, + "probability": 0.7263 + }, + { + "start": 7586.44, + "end": 7587.62, + "probability": 0.8141 + }, + { + "start": 7588.18, + "end": 7590.98, + "probability": 0.676 + }, + { + "start": 7591.14, + "end": 7592.76, + "probability": 0.9308 + }, + { + "start": 7593.72, + "end": 7593.74, + "probability": 0.1309 + }, + { + "start": 7593.86, + "end": 7594.34, + "probability": 0.5898 + }, + { + "start": 7594.42, + "end": 7595.9, + "probability": 0.5518 + }, + { + "start": 7596.34, + "end": 7596.48, + "probability": 0.76 + }, + { + "start": 7596.66, + "end": 7598.78, + "probability": 0.8496 + }, + { + "start": 7598.8, + "end": 7599.04, + "probability": 0.7749 + }, + { + "start": 7599.06, + "end": 7599.34, + "probability": 0.8292 + }, + { + "start": 7599.44, + "end": 7601.66, + "probability": 0.9758 + }, + { + "start": 7601.72, + "end": 7603.44, + "probability": 0.886 + }, + { + "start": 7604.08, + "end": 7606.02, + "probability": 0.9912 + }, + { + "start": 7606.06, + "end": 7607.38, + "probability": 0.4083 + }, + { + "start": 7607.44, + "end": 7607.96, + "probability": 0.29 + }, + { + "start": 7608.42, + "end": 7609.0, + "probability": 0.8349 + }, + { + "start": 7609.5, + "end": 7610.24, + "probability": 0.941 + }, + { + "start": 7629.33, + "end": 7631.74, + "probability": 0.655 + }, + { + "start": 7631.86, + "end": 7633.74, + "probability": 0.0664 + }, + { + "start": 7633.74, + "end": 7633.74, + "probability": 0.0676 + }, + { + "start": 7633.74, + "end": 7634.06, + "probability": 0.1531 + }, + { + "start": 7637.18, + "end": 7639.2, + "probability": 0.036 + }, + { + "start": 7639.76, + "end": 7640.14, + "probability": 0.0774 + }, + { + "start": 7650.8, + "end": 7652.46, + "probability": 0.1549 + }, + { + "start": 7654.02, + "end": 7656.78, + "probability": 0.3021 + }, + { + "start": 7657.56, + "end": 7657.91, + "probability": 0.0901 + }, + { + "start": 7658.4, + "end": 7658.4, + "probability": 0.1211 + }, + { + "start": 7658.4, + "end": 7658.4, + "probability": 0.0341 + }, + { + "start": 7659.3, + "end": 7660.14, + "probability": 0.0157 + }, + { + "start": 7660.14, + "end": 7663.3, + "probability": 0.0575 + }, + { + "start": 7670.42, + "end": 7670.72, + "probability": 0.0528 + }, + { + "start": 7671.2, + "end": 7673.6, + "probability": 0.0758 + }, + { + "start": 7673.92, + "end": 7674.62, + "probability": 0.083 + }, + { + "start": 7674.8, + "end": 7675.16, + "probability": 0.0464 + }, + { + "start": 7676.34, + "end": 7677.1, + "probability": 0.0443 + }, + { + "start": 7677.38, + "end": 7678.16, + "probability": 0.0662 + }, + { + "start": 7679.0, + "end": 7679.66, + "probability": 0.0624 + }, + { + "start": 7681.36, + "end": 7682.82, + "probability": 0.108 + }, + { + "start": 7682.82, + "end": 7682.82, + "probability": 0.0583 + }, + { + "start": 7682.82, + "end": 7684.96, + "probability": 0.1055 + }, + { + "start": 7686.2, + "end": 7686.58, + "probability": 0.0162 + }, + { + "start": 7686.58, + "end": 7687.5, + "probability": 0.0445 + }, + { + "start": 7687.98, + "end": 7688.88, + "probability": 0.1138 + }, + { + "start": 7688.88, + "end": 7688.98, + "probability": 0.168 + }, + { + "start": 7689.0, + "end": 7689.0, + "probability": 0.0 + }, + { + "start": 7689.0, + "end": 7689.0, + "probability": 0.0 + }, + { + "start": 7689.0, + "end": 7689.0, + "probability": 0.0 + }, + { + "start": 7689.0, + "end": 7689.0, + "probability": 0.0 + }, + { + "start": 7692.26, + "end": 7693.62, + "probability": 0.7014 + }, + { + "start": 7694.74, + "end": 7697.52, + "probability": 0.7963 + }, + { + "start": 7699.1, + "end": 7702.1, + "probability": 0.9897 + }, + { + "start": 7702.74, + "end": 7705.0, + "probability": 0.8975 + }, + { + "start": 7705.98, + "end": 7706.98, + "probability": 0.6849 + }, + { + "start": 7707.82, + "end": 7714.84, + "probability": 0.9754 + }, + { + "start": 7715.78, + "end": 7717.12, + "probability": 0.7579 + }, + { + "start": 7717.82, + "end": 7719.34, + "probability": 0.8311 + }, + { + "start": 7719.86, + "end": 7720.9, + "probability": 0.9786 + }, + { + "start": 7722.66, + "end": 7723.76, + "probability": 0.7822 + }, + { + "start": 7724.88, + "end": 7729.7, + "probability": 0.987 + }, + { + "start": 7731.74, + "end": 7732.46, + "probability": 0.9725 + }, + { + "start": 7733.78, + "end": 7736.1, + "probability": 0.9719 + }, + { + "start": 7737.36, + "end": 7739.54, + "probability": 0.7708 + }, + { + "start": 7741.54, + "end": 7744.34, + "probability": 0.6234 + }, + { + "start": 7745.9, + "end": 7748.62, + "probability": 0.998 + }, + { + "start": 7748.62, + "end": 7752.98, + "probability": 0.9647 + }, + { + "start": 7754.86, + "end": 7756.02, + "probability": 0.9648 + }, + { + "start": 7756.16, + "end": 7758.56, + "probability": 0.6318 + }, + { + "start": 7758.76, + "end": 7762.38, + "probability": 0.9941 + }, + { + "start": 7764.04, + "end": 7766.56, + "probability": 0.9683 + }, + { + "start": 7766.56, + "end": 7770.74, + "probability": 0.7941 + }, + { + "start": 7772.56, + "end": 7772.68, + "probability": 0.5875 + }, + { + "start": 7773.94, + "end": 7775.26, + "probability": 0.7932 + }, + { + "start": 7776.02, + "end": 7777.84, + "probability": 0.8305 + }, + { + "start": 7779.2, + "end": 7782.04, + "probability": 0.8179 + }, + { + "start": 7783.16, + "end": 7786.82, + "probability": 0.9872 + }, + { + "start": 7788.0, + "end": 7793.22, + "probability": 0.9773 + }, + { + "start": 7794.24, + "end": 7795.96, + "probability": 0.8746 + }, + { + "start": 7797.02, + "end": 7797.76, + "probability": 0.9678 + }, + { + "start": 7798.64, + "end": 7799.48, + "probability": 0.9792 + }, + { + "start": 7800.36, + "end": 7801.62, + "probability": 0.942 + }, + { + "start": 7802.28, + "end": 7802.88, + "probability": 0.8285 + }, + { + "start": 7806.36, + "end": 7809.44, + "probability": 0.9814 + }, + { + "start": 7811.8, + "end": 7814.2, + "probability": 0.9958 + }, + { + "start": 7815.44, + "end": 7816.24, + "probability": 0.7681 + }, + { + "start": 7817.22, + "end": 7819.34, + "probability": 0.9645 + }, + { + "start": 7820.34, + "end": 7821.88, + "probability": 0.9044 + }, + { + "start": 7823.08, + "end": 7823.5, + "probability": 0.3927 + }, + { + "start": 7823.6, + "end": 7824.08, + "probability": 0.8439 + }, + { + "start": 7824.18, + "end": 7828.48, + "probability": 0.9336 + }, + { + "start": 7829.98, + "end": 7830.66, + "probability": 0.8103 + }, + { + "start": 7830.8, + "end": 7831.59, + "probability": 0.9167 + }, + { + "start": 7831.72, + "end": 7832.9, + "probability": 0.858 + }, + { + "start": 7833.5, + "end": 7834.74, + "probability": 0.4956 + }, + { + "start": 7835.52, + "end": 7840.52, + "probability": 0.7061 + }, + { + "start": 7841.44, + "end": 7842.88, + "probability": 0.9851 + }, + { + "start": 7844.1, + "end": 7849.26, + "probability": 0.8914 + }, + { + "start": 7850.64, + "end": 7850.9, + "probability": 0.8766 + }, + { + "start": 7851.86, + "end": 7852.68, + "probability": 0.8609 + }, + { + "start": 7853.68, + "end": 7855.31, + "probability": 0.8604 + }, + { + "start": 7856.22, + "end": 7858.16, + "probability": 0.9067 + }, + { + "start": 7859.22, + "end": 7864.56, + "probability": 0.8929 + }, + { + "start": 7865.48, + "end": 7869.24, + "probability": 0.7491 + }, + { + "start": 7870.66, + "end": 7873.04, + "probability": 0.9897 + }, + { + "start": 7873.74, + "end": 7874.88, + "probability": 0.8124 + }, + { + "start": 7877.1, + "end": 7880.94, + "probability": 0.7523 + }, + { + "start": 7881.86, + "end": 7883.7, + "probability": 0.5571 + }, + { + "start": 7883.7, + "end": 7885.46, + "probability": 0.5218 + }, + { + "start": 7885.56, + "end": 7888.52, + "probability": 0.967 + }, + { + "start": 7889.32, + "end": 7890.74, + "probability": 0.9707 + }, + { + "start": 7892.32, + "end": 7899.62, + "probability": 0.8773 + }, + { + "start": 7900.7, + "end": 7903.24, + "probability": 0.7439 + }, + { + "start": 7904.12, + "end": 7905.68, + "probability": 0.7819 + }, + { + "start": 7906.58, + "end": 7910.66, + "probability": 0.762 + }, + { + "start": 7910.8, + "end": 7912.24, + "probability": 0.5348 + }, + { + "start": 7912.96, + "end": 7913.52, + "probability": 0.9122 + }, + { + "start": 7913.66, + "end": 7914.54, + "probability": 0.8588 + }, + { + "start": 7915.08, + "end": 7919.72, + "probability": 0.9659 + }, + { + "start": 7920.86, + "end": 7921.68, + "probability": 0.5903 + }, + { + "start": 7922.42, + "end": 7924.92, + "probability": 0.915 + }, + { + "start": 7926.2, + "end": 7930.2, + "probability": 0.9443 + }, + { + "start": 7931.42, + "end": 7934.64, + "probability": 0.9342 + }, + { + "start": 7936.04, + "end": 7939.74, + "probability": 0.9825 + }, + { + "start": 7940.4, + "end": 7945.64, + "probability": 0.9949 + }, + { + "start": 7945.78, + "end": 7948.46, + "probability": 0.9862 + }, + { + "start": 7950.56, + "end": 7951.36, + "probability": 0.8101 + }, + { + "start": 7951.92, + "end": 7954.62, + "probability": 0.8365 + }, + { + "start": 7955.3, + "end": 7956.84, + "probability": 0.4865 + }, + { + "start": 7957.56, + "end": 7960.84, + "probability": 0.8244 + }, + { + "start": 7960.94, + "end": 7963.92, + "probability": 0.8554 + }, + { + "start": 7965.06, + "end": 7967.98, + "probability": 0.9309 + }, + { + "start": 7968.58, + "end": 7970.84, + "probability": 0.8896 + }, + { + "start": 7971.74, + "end": 7973.4, + "probability": 0.6398 + }, + { + "start": 7974.4, + "end": 7976.18, + "probability": 0.9744 + }, + { + "start": 7976.42, + "end": 7976.78, + "probability": 0.6937 + }, + { + "start": 7977.18, + "end": 7977.9, + "probability": 0.8892 + }, + { + "start": 7978.22, + "end": 7979.74, + "probability": 0.9503 + }, + { + "start": 7980.1, + "end": 7983.02, + "probability": 0.7954 + }, + { + "start": 7986.06, + "end": 7987.54, + "probability": 0.8887 + }, + { + "start": 7987.88, + "end": 7991.44, + "probability": 0.8942 + }, + { + "start": 7992.16, + "end": 7994.44, + "probability": 0.6059 + }, + { + "start": 7995.66, + "end": 7998.38, + "probability": 0.941 + }, + { + "start": 7998.9, + "end": 8001.82, + "probability": 0.8819 + }, + { + "start": 8002.34, + "end": 8005.98, + "probability": 0.9109 + }, + { + "start": 8006.2, + "end": 8007.0, + "probability": 0.9568 + }, + { + "start": 8007.76, + "end": 8008.3, + "probability": 0.9438 + }, + { + "start": 8008.86, + "end": 8012.52, + "probability": 0.9429 + }, + { + "start": 8013.62, + "end": 8016.38, + "probability": 0.7454 + }, + { + "start": 8016.94, + "end": 8017.96, + "probability": 0.955 + }, + { + "start": 8018.38, + "end": 8020.8, + "probability": 0.9968 + }, + { + "start": 8021.4, + "end": 8022.16, + "probability": 0.9747 + }, + { + "start": 8022.26, + "end": 8024.7, + "probability": 0.9238 + }, + { + "start": 8025.5, + "end": 8027.18, + "probability": 0.965 + }, + { + "start": 8028.12, + "end": 8030.68, + "probability": 0.9974 + }, + { + "start": 8030.76, + "end": 8034.81, + "probability": 0.8225 + }, + { + "start": 8035.4, + "end": 8038.82, + "probability": 0.7983 + }, + { + "start": 8039.34, + "end": 8041.4, + "probability": 0.9991 + }, + { + "start": 8041.5, + "end": 8043.44, + "probability": 0.6493 + }, + { + "start": 8044.04, + "end": 8047.44, + "probability": 0.9712 + }, + { + "start": 8049.02, + "end": 8052.22, + "probability": 0.8519 + }, + { + "start": 8052.88, + "end": 8053.56, + "probability": 0.7644 + }, + { + "start": 8054.66, + "end": 8055.54, + "probability": 0.9955 + }, + { + "start": 8056.14, + "end": 8061.7, + "probability": 0.8086 + }, + { + "start": 8062.02, + "end": 8063.66, + "probability": 0.8701 + }, + { + "start": 8063.7, + "end": 8066.2, + "probability": 0.7088 + }, + { + "start": 8067.94, + "end": 8068.82, + "probability": 0.6813 + }, + { + "start": 8069.8, + "end": 8072.04, + "probability": 0.8802 + }, + { + "start": 8072.36, + "end": 8073.9, + "probability": 0.8358 + }, + { + "start": 8074.0, + "end": 8074.78, + "probability": 0.6591 + }, + { + "start": 8075.54, + "end": 8078.16, + "probability": 0.728 + }, + { + "start": 8078.76, + "end": 8081.0, + "probability": 0.6396 + }, + { + "start": 8081.7, + "end": 8082.16, + "probability": 0.3514 + }, + { + "start": 8083.04, + "end": 8085.14, + "probability": 0.9896 + }, + { + "start": 8085.74, + "end": 8089.4, + "probability": 0.9014 + }, + { + "start": 8089.46, + "end": 8093.8, + "probability": 0.974 + }, + { + "start": 8094.78, + "end": 8095.7, + "probability": 0.6672 + }, + { + "start": 8096.76, + "end": 8100.16, + "probability": 0.8531 + }, + { + "start": 8101.26, + "end": 8103.36, + "probability": 0.8623 + }, + { + "start": 8105.1, + "end": 8105.92, + "probability": 0.6218 + }, + { + "start": 8106.14, + "end": 8110.8, + "probability": 0.9198 + }, + { + "start": 8111.4, + "end": 8113.54, + "probability": 0.9495 + }, + { + "start": 8114.1, + "end": 8115.28, + "probability": 0.9986 + }, + { + "start": 8116.1, + "end": 8118.1, + "probability": 0.5067 + }, + { + "start": 8119.64, + "end": 8124.3, + "probability": 0.9604 + }, + { + "start": 8124.56, + "end": 8125.72, + "probability": 0.5106 + }, + { + "start": 8125.8, + "end": 8126.42, + "probability": 0.5034 + }, + { + "start": 8126.94, + "end": 8130.44, + "probability": 0.9609 + }, + { + "start": 8131.06, + "end": 8134.26, + "probability": 0.9873 + }, + { + "start": 8135.1, + "end": 8137.38, + "probability": 0.7869 + }, + { + "start": 8137.42, + "end": 8139.37, + "probability": 0.8354 + }, + { + "start": 8140.24, + "end": 8140.76, + "probability": 0.8066 + }, + { + "start": 8140.88, + "end": 8145.84, + "probability": 0.9278 + }, + { + "start": 8145.84, + "end": 8149.24, + "probability": 0.7852 + }, + { + "start": 8152.12, + "end": 8153.8, + "probability": 0.7096 + }, + { + "start": 8155.74, + "end": 8157.28, + "probability": 0.4683 + }, + { + "start": 8158.82, + "end": 8160.72, + "probability": 0.9102 + }, + { + "start": 8161.64, + "end": 8163.8, + "probability": 0.9949 + }, + { + "start": 8164.34, + "end": 8170.74, + "probability": 0.9357 + }, + { + "start": 8171.86, + "end": 8172.98, + "probability": 0.9941 + }, + { + "start": 8174.26, + "end": 8181.42, + "probability": 0.8291 + }, + { + "start": 8182.62, + "end": 8184.28, + "probability": 0.9832 + }, + { + "start": 8184.88, + "end": 8185.84, + "probability": 0.9273 + }, + { + "start": 8186.8, + "end": 8187.82, + "probability": 0.3327 + }, + { + "start": 8188.02, + "end": 8191.42, + "probability": 0.9819 + }, + { + "start": 8192.54, + "end": 8196.4, + "probability": 0.9933 + }, + { + "start": 8196.62, + "end": 8197.74, + "probability": 0.8466 + }, + { + "start": 8200.36, + "end": 8205.42, + "probability": 0.969 + }, + { + "start": 8206.5, + "end": 8206.99, + "probability": 0.9795 + }, + { + "start": 8207.38, + "end": 8210.58, + "probability": 0.9982 + }, + { + "start": 8211.4, + "end": 8213.26, + "probability": 0.9993 + }, + { + "start": 8213.86, + "end": 8218.2, + "probability": 0.9874 + }, + { + "start": 8219.38, + "end": 8222.52, + "probability": 0.9961 + }, + { + "start": 8223.38, + "end": 8225.26, + "probability": 0.7762 + }, + { + "start": 8225.54, + "end": 8227.16, + "probability": 0.8491 + }, + { + "start": 8227.54, + "end": 8230.4, + "probability": 0.8883 + }, + { + "start": 8231.52, + "end": 8231.74, + "probability": 0.2259 + }, + { + "start": 8231.74, + "end": 8232.06, + "probability": 0.9012 + }, + { + "start": 8232.6, + "end": 8232.7, + "probability": 0.4776 + }, + { + "start": 8232.7, + "end": 8235.19, + "probability": 0.9955 + }, + { + "start": 8236.02, + "end": 8236.02, + "probability": 0.1723 + }, + { + "start": 8236.06, + "end": 8238.0, + "probability": 0.9692 + }, + { + "start": 8238.2, + "end": 8239.34, + "probability": 0.9126 + }, + { + "start": 8240.3, + "end": 8241.62, + "probability": 0.8275 + }, + { + "start": 8255.76, + "end": 8256.1, + "probability": 0.0592 + }, + { + "start": 8256.1, + "end": 8256.1, + "probability": 0.0067 + }, + { + "start": 8256.1, + "end": 8256.1, + "probability": 0.077 + }, + { + "start": 8256.1, + "end": 8256.32, + "probability": 0.1722 + }, + { + "start": 8256.32, + "end": 8256.32, + "probability": 0.0594 + }, + { + "start": 8256.32, + "end": 8256.32, + "probability": 0.0471 + }, + { + "start": 8256.32, + "end": 8256.88, + "probability": 0.3212 + }, + { + "start": 8258.06, + "end": 8264.56, + "probability": 0.5458 + }, + { + "start": 8264.62, + "end": 8266.22, + "probability": 0.7359 + }, + { + "start": 8266.42, + "end": 8268.12, + "probability": 0.979 + }, + { + "start": 8268.98, + "end": 8270.64, + "probability": 0.9443 + }, + { + "start": 8271.56, + "end": 8275.24, + "probability": 0.5554 + }, + { + "start": 8276.16, + "end": 8278.88, + "probability": 0.8306 + }, + { + "start": 8279.9, + "end": 8282.98, + "probability": 0.9547 + }, + { + "start": 8283.8, + "end": 8284.84, + "probability": 0.7747 + }, + { + "start": 8285.42, + "end": 8288.72, + "probability": 0.9816 + }, + { + "start": 8289.12, + "end": 8289.72, + "probability": 0.6268 + }, + { + "start": 8289.78, + "end": 8291.46, + "probability": 0.9494 + }, + { + "start": 8291.94, + "end": 8295.3, + "probability": 0.8962 + }, + { + "start": 8295.4, + "end": 8296.86, + "probability": 0.5658 + }, + { + "start": 8296.92, + "end": 8297.42, + "probability": 0.5073 + }, + { + "start": 8297.5, + "end": 8300.5, + "probability": 0.8617 + }, + { + "start": 8300.96, + "end": 8301.82, + "probability": 0.8364 + }, + { + "start": 8302.16, + "end": 8302.78, + "probability": 0.2179 + }, + { + "start": 8302.92, + "end": 8304.35, + "probability": 0.7454 + }, + { + "start": 8304.84, + "end": 8307.6, + "probability": 0.8979 + }, + { + "start": 8308.57, + "end": 8313.14, + "probability": 0.6419 + }, + { + "start": 8313.44, + "end": 8314.5, + "probability": 0.5546 + }, + { + "start": 8315.16, + "end": 8317.6, + "probability": 0.9758 + }, + { + "start": 8318.16, + "end": 8319.52, + "probability": 0.9849 + }, + { + "start": 8320.02, + "end": 8321.3, + "probability": 0.7516 + }, + { + "start": 8321.4, + "end": 8321.76, + "probability": 0.5003 + }, + { + "start": 8321.86, + "end": 8323.92, + "probability": 0.6104 + }, + { + "start": 8324.42, + "end": 8325.46, + "probability": 0.6328 + }, + { + "start": 8325.62, + "end": 8327.5, + "probability": 0.9084 + }, + { + "start": 8327.86, + "end": 8329.32, + "probability": 0.945 + }, + { + "start": 8329.7, + "end": 8332.82, + "probability": 0.9635 + }, + { + "start": 8332.86, + "end": 8334.34, + "probability": 0.724 + }, + { + "start": 8334.62, + "end": 8336.16, + "probability": 0.5599 + }, + { + "start": 8336.22, + "end": 8336.42, + "probability": 0.5244 + }, + { + "start": 8336.5, + "end": 8337.08, + "probability": 0.7611 + }, + { + "start": 8337.4, + "end": 8339.96, + "probability": 0.8526 + }, + { + "start": 8340.6, + "end": 8342.08, + "probability": 0.6568 + }, + { + "start": 8342.16, + "end": 8347.4, + "probability": 0.8997 + }, + { + "start": 8348.72, + "end": 8350.38, + "probability": 0.9467 + }, + { + "start": 8355.56, + "end": 8358.34, + "probability": 0.6626 + }, + { + "start": 8358.96, + "end": 8359.6, + "probability": 0.5498 + }, + { + "start": 8361.22, + "end": 8364.06, + "probability": 0.7495 + }, + { + "start": 8365.54, + "end": 8366.64, + "probability": 0.9312 + }, + { + "start": 8366.96, + "end": 8369.04, + "probability": 0.6778 + }, + { + "start": 8370.58, + "end": 8377.58, + "probability": 0.9411 + }, + { + "start": 8378.26, + "end": 8379.24, + "probability": 0.9421 + }, + { + "start": 8381.96, + "end": 8387.89, + "probability": 0.9985 + }, + { + "start": 8388.04, + "end": 8394.16, + "probability": 0.9986 + }, + { + "start": 8395.52, + "end": 8397.54, + "probability": 0.9969 + }, + { + "start": 8398.74, + "end": 8401.52, + "probability": 0.9646 + }, + { + "start": 8402.3, + "end": 8407.78, + "probability": 0.7633 + }, + { + "start": 8408.54, + "end": 8412.4, + "probability": 0.9608 + }, + { + "start": 8413.34, + "end": 8418.54, + "probability": 0.9889 + }, + { + "start": 8421.26, + "end": 8424.06, + "probability": 0.9146 + }, + { + "start": 8426.84, + "end": 8428.22, + "probability": 0.5079 + }, + { + "start": 8428.34, + "end": 8433.34, + "probability": 0.9369 + }, + { + "start": 8434.62, + "end": 8438.16, + "probability": 0.9932 + }, + { + "start": 8439.7, + "end": 8442.76, + "probability": 0.8803 + }, + { + "start": 8443.8, + "end": 8446.1, + "probability": 0.6955 + }, + { + "start": 8447.06, + "end": 8449.64, + "probability": 0.9714 + }, + { + "start": 8449.8, + "end": 8454.84, + "probability": 0.9367 + }, + { + "start": 8456.64, + "end": 8459.46, + "probability": 0.9766 + }, + { + "start": 8460.06, + "end": 8462.32, + "probability": 0.8655 + }, + { + "start": 8462.82, + "end": 8467.28, + "probability": 0.9791 + }, + { + "start": 8469.98, + "end": 8471.34, + "probability": 0.3639 + }, + { + "start": 8471.42, + "end": 8472.38, + "probability": 0.787 + }, + { + "start": 8472.56, + "end": 8473.47, + "probability": 0.6562 + }, + { + "start": 8475.02, + "end": 8476.48, + "probability": 0.9556 + }, + { + "start": 8477.0, + "end": 8478.32, + "probability": 0.9341 + }, + { + "start": 8479.22, + "end": 8480.2, + "probability": 0.9447 + }, + { + "start": 8481.4, + "end": 8482.94, + "probability": 0.9819 + }, + { + "start": 8483.52, + "end": 8487.68, + "probability": 0.9355 + }, + { + "start": 8488.46, + "end": 8489.46, + "probability": 0.7347 + }, + { + "start": 8490.04, + "end": 8492.8, + "probability": 0.981 + }, + { + "start": 8492.96, + "end": 8498.08, + "probability": 0.9503 + }, + { + "start": 8498.64, + "end": 8500.82, + "probability": 0.0119 + }, + { + "start": 8500.84, + "end": 8507.5, + "probability": 0.5105 + }, + { + "start": 8507.92, + "end": 8509.56, + "probability": 0.7025 + }, + { + "start": 8512.42, + "end": 8515.06, + "probability": 0.8823 + }, + { + "start": 8515.24, + "end": 8519.6, + "probability": 0.9847 + }, + { + "start": 8520.02, + "end": 8522.14, + "probability": 0.8831 + }, + { + "start": 8522.5, + "end": 8524.1, + "probability": 0.9912 + }, + { + "start": 8524.74, + "end": 8529.32, + "probability": 0.9572 + }, + { + "start": 8530.06, + "end": 8533.98, + "probability": 0.9398 + }, + { + "start": 8535.06, + "end": 8536.7, + "probability": 0.9742 + }, + { + "start": 8537.44, + "end": 8537.84, + "probability": 0.8774 + }, + { + "start": 8538.32, + "end": 8539.72, + "probability": 0.9463 + }, + { + "start": 8540.36, + "end": 8542.58, + "probability": 0.9954 + }, + { + "start": 8543.38, + "end": 8544.84, + "probability": 0.9807 + }, + { + "start": 8545.74, + "end": 8550.62, + "probability": 0.9635 + }, + { + "start": 8551.6, + "end": 8553.2, + "probability": 0.7619 + }, + { + "start": 8553.32, + "end": 8556.98, + "probability": 0.9342 + }, + { + "start": 8558.82, + "end": 8561.01, + "probability": 0.9971 + }, + { + "start": 8561.66, + "end": 8561.74, + "probability": 0.0372 + }, + { + "start": 8561.74, + "end": 8563.62, + "probability": 0.7707 + }, + { + "start": 8564.58, + "end": 8566.29, + "probability": 0.8102 + }, + { + "start": 8566.88, + "end": 8568.76, + "probability": 0.9863 + }, + { + "start": 8569.4, + "end": 8570.3, + "probability": 0.0022 + }, + { + "start": 8570.3, + "end": 8575.96, + "probability": 0.82 + }, + { + "start": 8576.52, + "end": 8577.52, + "probability": 0.7289 + }, + { + "start": 8577.64, + "end": 8581.14, + "probability": 0.9978 + }, + { + "start": 8581.16, + "end": 8584.72, + "probability": 0.9995 + }, + { + "start": 8585.46, + "end": 8586.42, + "probability": 0.7393 + }, + { + "start": 8587.94, + "end": 8587.94, + "probability": 0.0034 + }, + { + "start": 8587.94, + "end": 8588.54, + "probability": 0.3742 + }, + { + "start": 8588.66, + "end": 8589.22, + "probability": 0.6176 + }, + { + "start": 8589.54, + "end": 8593.62, + "probability": 0.6424 + }, + { + "start": 8593.62, + "end": 8594.2, + "probability": 0.207 + }, + { + "start": 8595.56, + "end": 8597.74, + "probability": 0.5921 + }, + { + "start": 8598.02, + "end": 8601.76, + "probability": 0.8174 + }, + { + "start": 8602.9, + "end": 8608.08, + "probability": 0.9871 + }, + { + "start": 8608.58, + "end": 8610.16, + "probability": 0.9713 + }, + { + "start": 8611.14, + "end": 8617.18, + "probability": 0.8196 + }, + { + "start": 8619.12, + "end": 8624.44, + "probability": 0.9823 + }, + { + "start": 8624.44, + "end": 8630.4, + "probability": 0.9517 + }, + { + "start": 8631.14, + "end": 8635.12, + "probability": 0.7903 + }, + { + "start": 8635.12, + "end": 8640.88, + "probability": 0.9893 + }, + { + "start": 8641.64, + "end": 8646.76, + "probability": 0.9811 + }, + { + "start": 8646.76, + "end": 8651.92, + "probability": 0.9014 + }, + { + "start": 8652.48, + "end": 8653.98, + "probability": 0.7227 + }, + { + "start": 8654.84, + "end": 8655.64, + "probability": 0.5981 + }, + { + "start": 8657.14, + "end": 8657.6, + "probability": 0.3935 + }, + { + "start": 8657.68, + "end": 8659.18, + "probability": 0.8475 + }, + { + "start": 8659.32, + "end": 8660.0, + "probability": 0.5853 + }, + { + "start": 8660.42, + "end": 8661.64, + "probability": 0.5812 + }, + { + "start": 8669.58, + "end": 8671.02, + "probability": 0.6823 + }, + { + "start": 8671.88, + "end": 8673.96, + "probability": 0.8481 + }, + { + "start": 8675.32, + "end": 8676.26, + "probability": 0.8481 + }, + { + "start": 8677.44, + "end": 8683.72, + "probability": 0.9641 + }, + { + "start": 8684.82, + "end": 8685.68, + "probability": 0.8874 + }, + { + "start": 8686.38, + "end": 8688.28, + "probability": 0.998 + }, + { + "start": 8688.98, + "end": 8691.98, + "probability": 0.9961 + }, + { + "start": 8693.64, + "end": 8698.4, + "probability": 0.8652 + }, + { + "start": 8699.24, + "end": 8700.32, + "probability": 0.976 + }, + { + "start": 8700.66, + "end": 8702.68, + "probability": 0.9956 + }, + { + "start": 8703.9, + "end": 8704.82, + "probability": 0.8595 + }, + { + "start": 8705.6, + "end": 8706.67, + "probability": 0.9834 + }, + { + "start": 8707.32, + "end": 8708.6, + "probability": 0.9155 + }, + { + "start": 8711.64, + "end": 8718.94, + "probability": 0.9109 + }, + { + "start": 8720.64, + "end": 8722.68, + "probability": 0.5551 + }, + { + "start": 8723.58, + "end": 8725.86, + "probability": 0.8768 + }, + { + "start": 8725.88, + "end": 8728.2, + "probability": 0.991 + }, + { + "start": 8729.3, + "end": 8736.66, + "probability": 0.9838 + }, + { + "start": 8737.6, + "end": 8738.98, + "probability": 0.7517 + }, + { + "start": 8739.88, + "end": 8742.74, + "probability": 0.696 + }, + { + "start": 8742.86, + "end": 8744.1, + "probability": 0.9919 + }, + { + "start": 8744.24, + "end": 8744.6, + "probability": 0.9508 + }, + { + "start": 8746.12, + "end": 8753.76, + "probability": 0.983 + }, + { + "start": 8753.86, + "end": 8754.68, + "probability": 0.8944 + }, + { + "start": 8754.8, + "end": 8755.52, + "probability": 0.875 + }, + { + "start": 8755.6, + "end": 8756.54, + "probability": 0.7641 + }, + { + "start": 8758.0, + "end": 8760.96, + "probability": 0.7483 + }, + { + "start": 8762.0, + "end": 8764.86, + "probability": 0.9715 + }, + { + "start": 8765.76, + "end": 8766.9, + "probability": 0.7559 + }, + { + "start": 8767.98, + "end": 8772.92, + "probability": 0.8359 + }, + { + "start": 8773.84, + "end": 8776.9, + "probability": 0.9575 + }, + { + "start": 8778.14, + "end": 8780.22, + "probability": 0.9961 + }, + { + "start": 8780.6, + "end": 8782.12, + "probability": 0.9916 + }, + { + "start": 8782.82, + "end": 8785.08, + "probability": 0.9841 + }, + { + "start": 8786.28, + "end": 8790.52, + "probability": 0.9255 + }, + { + "start": 8790.76, + "end": 8793.04, + "probability": 0.7308 + }, + { + "start": 8793.9, + "end": 8799.06, + "probability": 0.9742 + }, + { + "start": 8800.54, + "end": 8801.34, + "probability": 0.9218 + }, + { + "start": 8802.38, + "end": 8803.34, + "probability": 0.9839 + }, + { + "start": 8804.94, + "end": 8809.48, + "probability": 0.8618 + }, + { + "start": 8811.26, + "end": 8812.0, + "probability": 0.9892 + }, + { + "start": 8812.76, + "end": 8815.78, + "probability": 0.9644 + }, + { + "start": 8817.28, + "end": 8818.62, + "probability": 0.7643 + }, + { + "start": 8819.6, + "end": 8820.64, + "probability": 0.9753 + }, + { + "start": 8821.7, + "end": 8822.6, + "probability": 0.9932 + }, + { + "start": 8823.54, + "end": 8826.54, + "probability": 0.9976 + }, + { + "start": 8827.46, + "end": 8830.02, + "probability": 0.9923 + }, + { + "start": 8831.04, + "end": 8834.88, + "probability": 0.9973 + }, + { + "start": 8836.28, + "end": 8842.72, + "probability": 0.9976 + }, + { + "start": 8843.68, + "end": 8844.78, + "probability": 0.9639 + }, + { + "start": 8845.38, + "end": 8845.86, + "probability": 0.535 + }, + { + "start": 8846.76, + "end": 8847.82, + "probability": 0.6806 + }, + { + "start": 8848.86, + "end": 8851.72, + "probability": 0.9858 + }, + { + "start": 8852.54, + "end": 8856.58, + "probability": 0.9878 + }, + { + "start": 8857.5, + "end": 8861.14, + "probability": 0.9851 + }, + { + "start": 8861.9, + "end": 8864.36, + "probability": 0.9481 + }, + { + "start": 8865.9, + "end": 8868.62, + "probability": 0.5024 + }, + { + "start": 8869.28, + "end": 8870.82, + "probability": 0.4131 + }, + { + "start": 8871.12, + "end": 8873.24, + "probability": 0.9875 + }, + { + "start": 8874.32, + "end": 8879.26, + "probability": 0.9705 + }, + { + "start": 8879.26, + "end": 8881.68, + "probability": 0.9786 + }, + { + "start": 8883.02, + "end": 8883.52, + "probability": 0.9679 + }, + { + "start": 8884.94, + "end": 8887.06, + "probability": 0.7353 + }, + { + "start": 8888.62, + "end": 8889.32, + "probability": 0.9089 + }, + { + "start": 8890.16, + "end": 8892.06, + "probability": 0.8424 + }, + { + "start": 8892.92, + "end": 8893.68, + "probability": 0.8625 + }, + { + "start": 8894.5, + "end": 8895.34, + "probability": 0.9839 + }, + { + "start": 8896.26, + "end": 8898.66, + "probability": 0.9967 + }, + { + "start": 8900.62, + "end": 8902.04, + "probability": 0.8881 + }, + { + "start": 8902.3, + "end": 8903.8, + "probability": 0.9799 + }, + { + "start": 8904.14, + "end": 8907.54, + "probability": 0.9748 + }, + { + "start": 8908.56, + "end": 8911.2, + "probability": 0.9978 + }, + { + "start": 8913.36, + "end": 8919.22, + "probability": 0.9699 + }, + { + "start": 8919.62, + "end": 8920.72, + "probability": 0.8042 + }, + { + "start": 8921.4, + "end": 8922.22, + "probability": 0.9912 + }, + { + "start": 8923.34, + "end": 8926.6, + "probability": 0.9944 + }, + { + "start": 8927.36, + "end": 8928.4, + "probability": 0.9753 + }, + { + "start": 8928.62, + "end": 8931.6, + "probability": 0.9887 + }, + { + "start": 8933.04, + "end": 8935.86, + "probability": 0.8447 + }, + { + "start": 8936.16, + "end": 8940.96, + "probability": 0.9813 + }, + { + "start": 8941.08, + "end": 8941.82, + "probability": 0.9415 + }, + { + "start": 8943.32, + "end": 8949.64, + "probability": 0.9816 + }, + { + "start": 8950.48, + "end": 8951.62, + "probability": 0.9989 + }, + { + "start": 8952.26, + "end": 8952.56, + "probability": 0.4115 + }, + { + "start": 8952.64, + "end": 8953.48, + "probability": 0.6534 + }, + { + "start": 8953.84, + "end": 8956.18, + "probability": 0.8435 + }, + { + "start": 8957.28, + "end": 8958.44, + "probability": 0.9932 + }, + { + "start": 8959.08, + "end": 8960.0, + "probability": 0.7508 + }, + { + "start": 8961.1, + "end": 8964.92, + "probability": 0.9956 + }, + { + "start": 8965.56, + "end": 8965.98, + "probability": 0.8937 + }, + { + "start": 8966.28, + "end": 8966.56, + "probability": 0.8371 + }, + { + "start": 8966.6, + "end": 8967.58, + "probability": 0.5104 + }, + { + "start": 8967.84, + "end": 8970.1, + "probability": 0.9017 + }, + { + "start": 8971.18, + "end": 8972.32, + "probability": 0.7722 + }, + { + "start": 8974.4, + "end": 8975.06, + "probability": 0.8184 + }, + { + "start": 8976.3, + "end": 8977.0, + "probability": 0.497 + }, + { + "start": 8977.28, + "end": 8977.82, + "probability": 0.968 + }, + { + "start": 8978.96, + "end": 8980.78, + "probability": 0.972 + }, + { + "start": 8981.5, + "end": 8982.32, + "probability": 0.9526 + }, + { + "start": 8982.48, + "end": 8985.04, + "probability": 0.6367 + }, + { + "start": 8985.82, + "end": 8987.7, + "probability": 0.6081 + }, + { + "start": 8987.96, + "end": 8989.1, + "probability": 0.8037 + }, + { + "start": 8991.04, + "end": 8992.18, + "probability": 0.8523 + }, + { + "start": 8993.8, + "end": 8994.58, + "probability": 0.9753 + }, + { + "start": 8996.22, + "end": 8997.08, + "probability": 0.7072 + }, + { + "start": 9000.2, + "end": 9001.72, + "probability": 0.918 + }, + { + "start": 9002.98, + "end": 9010.16, + "probability": 0.9834 + }, + { + "start": 9011.0, + "end": 9013.43, + "probability": 0.9841 + }, + { + "start": 9014.9, + "end": 9015.44, + "probability": 0.9613 + }, + { + "start": 9016.74, + "end": 9017.58, + "probability": 0.0834 + }, + { + "start": 9017.8, + "end": 9018.82, + "probability": 0.603 + }, + { + "start": 9019.56, + "end": 9020.43, + "probability": 0.0283 + }, + { + "start": 9021.54, + "end": 9021.86, + "probability": 0.0806 + }, + { + "start": 9022.78, + "end": 9025.3, + "probability": 0.1975 + }, + { + "start": 9025.64, + "end": 9025.76, + "probability": 0.0194 + }, + { + "start": 9025.76, + "end": 9025.76, + "probability": 0.0505 + }, + { + "start": 9025.76, + "end": 9025.76, + "probability": 0.4611 + }, + { + "start": 9025.76, + "end": 9025.76, + "probability": 0.1864 + }, + { + "start": 9025.76, + "end": 9025.76, + "probability": 0.3934 + }, + { + "start": 9025.76, + "end": 9025.76, + "probability": 0.0093 + }, + { + "start": 9025.76, + "end": 9026.08, + "probability": 0.4996 + }, + { + "start": 9026.24, + "end": 9030.5, + "probability": 0.9634 + }, + { + "start": 9030.72, + "end": 9031.85, + "probability": 0.2378 + }, + { + "start": 9032.18, + "end": 9032.44, + "probability": 0.7107 + }, + { + "start": 9034.4, + "end": 9036.76, + "probability": 0.9484 + }, + { + "start": 9041.0, + "end": 9043.1, + "probability": 0.8604 + }, + { + "start": 9044.78, + "end": 9048.06, + "probability": 0.8771 + }, + { + "start": 9049.1, + "end": 9054.0, + "probability": 0.888 + }, + { + "start": 9055.68, + "end": 9059.66, + "probability": 0.9482 + }, + { + "start": 9061.74, + "end": 9067.52, + "probability": 0.8569 + }, + { + "start": 9067.72, + "end": 9069.72, + "probability": 0.359 + }, + { + "start": 9069.98, + "end": 9072.22, + "probability": 0.453 + }, + { + "start": 9072.48, + "end": 9076.84, + "probability": 0.9137 + }, + { + "start": 9077.61, + "end": 9078.21, + "probability": 0.1416 + }, + { + "start": 9078.7, + "end": 9080.74, + "probability": 0.7969 + }, + { + "start": 9081.54, + "end": 9083.06, + "probability": 0.5533 + }, + { + "start": 9084.96, + "end": 9085.66, + "probability": 0.7246 + }, + { + "start": 9085.88, + "end": 9086.38, + "probability": 0.7813 + }, + { + "start": 9087.92, + "end": 9090.3, + "probability": 0.9922 + }, + { + "start": 9090.56, + "end": 9092.62, + "probability": 0.9574 + }, + { + "start": 9093.98, + "end": 9098.02, + "probability": 0.994 + }, + { + "start": 9099.26, + "end": 9099.78, + "probability": 0.5919 + }, + { + "start": 9100.76, + "end": 9103.04, + "probability": 0.9966 + }, + { + "start": 9103.32, + "end": 9104.46, + "probability": 0.5543 + }, + { + "start": 9104.86, + "end": 9106.46, + "probability": 0.5624 + }, + { + "start": 9107.58, + "end": 9110.22, + "probability": 0.6494 + }, + { + "start": 9111.58, + "end": 9114.93, + "probability": 0.7406 + }, + { + "start": 9115.7, + "end": 9116.28, + "probability": 0.5805 + }, + { + "start": 9116.4, + "end": 9119.34, + "probability": 0.6543 + }, + { + "start": 9119.94, + "end": 9120.7, + "probability": 0.3404 + }, + { + "start": 9121.38, + "end": 9125.48, + "probability": 0.9015 + }, + { + "start": 9126.66, + "end": 9131.5, + "probability": 0.9255 + }, + { + "start": 9133.52, + "end": 9134.2, + "probability": 0.9084 + }, + { + "start": 9135.04, + "end": 9138.82, + "probability": 0.9898 + }, + { + "start": 9140.38, + "end": 9144.24, + "probability": 0.9771 + }, + { + "start": 9146.74, + "end": 9146.82, + "probability": 0.1456 + }, + { + "start": 9146.82, + "end": 9147.78, + "probability": 0.7991 + }, + { + "start": 9148.3, + "end": 9149.96, + "probability": 0.998 + }, + { + "start": 9150.5, + "end": 9154.9, + "probability": 0.9986 + }, + { + "start": 9155.94, + "end": 9156.48, + "probability": 0.8079 + }, + { + "start": 9157.66, + "end": 9158.98, + "probability": 0.9655 + }, + { + "start": 9159.76, + "end": 9160.02, + "probability": 0.8166 + }, + { + "start": 9161.3, + "end": 9165.54, + "probability": 0.998 + }, + { + "start": 9166.72, + "end": 9167.35, + "probability": 0.4037 + }, + { + "start": 9169.18, + "end": 9170.14, + "probability": 0.8381 + }, + { + "start": 9170.34, + "end": 9171.82, + "probability": 0.8791 + }, + { + "start": 9172.14, + "end": 9174.28, + "probability": 0.9701 + }, + { + "start": 9174.7, + "end": 9175.42, + "probability": 0.8614 + }, + { + "start": 9175.52, + "end": 9178.28, + "probability": 0.9946 + }, + { + "start": 9178.76, + "end": 9184.64, + "probability": 0.4984 + }, + { + "start": 9185.4, + "end": 9186.84, + "probability": 0.9032 + }, + { + "start": 9187.42, + "end": 9188.74, + "probability": 0.9914 + }, + { + "start": 9189.24, + "end": 9190.02, + "probability": 0.9807 + }, + { + "start": 9191.8, + "end": 9192.6, + "probability": 0.925 + }, + { + "start": 9193.06, + "end": 9195.65, + "probability": 0.9987 + }, + { + "start": 9195.9, + "end": 9197.22, + "probability": 0.9059 + }, + { + "start": 9197.76, + "end": 9200.47, + "probability": 0.9958 + }, + { + "start": 9200.96, + "end": 9202.5, + "probability": 0.8446 + }, + { + "start": 9202.6, + "end": 9203.3, + "probability": 0.8977 + }, + { + "start": 9203.48, + "end": 9205.48, + "probability": 0.8254 + }, + { + "start": 9205.62, + "end": 9207.19, + "probability": 0.9761 + }, + { + "start": 9207.7, + "end": 9208.78, + "probability": 0.481 + }, + { + "start": 9209.02, + "end": 9212.92, + "probability": 0.5628 + }, + { + "start": 9213.0, + "end": 9213.92, + "probability": 0.9485 + }, + { + "start": 9213.94, + "end": 9214.72, + "probability": 0.2083 + }, + { + "start": 9214.94, + "end": 9215.62, + "probability": 0.9606 + }, + { + "start": 9215.68, + "end": 9218.3, + "probability": 0.6179 + }, + { + "start": 9218.38, + "end": 9219.96, + "probability": 0.8567 + }, + { + "start": 9220.06, + "end": 9220.18, + "probability": 0.1916 + }, + { + "start": 9220.18, + "end": 9223.02, + "probability": 0.5118 + }, + { + "start": 9223.88, + "end": 9224.44, + "probability": 0.2812 + }, + { + "start": 9224.52, + "end": 9225.18, + "probability": 0.8655 + }, + { + "start": 9227.0, + "end": 9228.22, + "probability": 0.9535 + }, + { + "start": 9229.64, + "end": 9235.02, + "probability": 0.953 + }, + { + "start": 9236.0, + "end": 9236.28, + "probability": 0.8141 + }, + { + "start": 9237.86, + "end": 9240.46, + "probability": 0.9697 + }, + { + "start": 9241.14, + "end": 9247.5, + "probability": 0.9971 + }, + { + "start": 9248.0, + "end": 9248.58, + "probability": 0.641 + }, + { + "start": 9249.14, + "end": 9252.78, + "probability": 0.9978 + }, + { + "start": 9253.0, + "end": 9257.32, + "probability": 0.9674 + }, + { + "start": 9257.32, + "end": 9259.44, + "probability": 0.992 + }, + { + "start": 9260.4, + "end": 9260.76, + "probability": 0.8098 + }, + { + "start": 9260.94, + "end": 9261.94, + "probability": 0.5626 + }, + { + "start": 9262.46, + "end": 9265.0, + "probability": 0.7352 + }, + { + "start": 9265.76, + "end": 9268.12, + "probability": 0.8888 + }, + { + "start": 9269.15, + "end": 9273.1, + "probability": 0.9745 + }, + { + "start": 9273.38, + "end": 9275.2, + "probability": 0.9418 + }, + { + "start": 9275.72, + "end": 9277.26, + "probability": 0.8469 + }, + { + "start": 9277.96, + "end": 9279.96, + "probability": 0.914 + }, + { + "start": 9280.58, + "end": 9283.66, + "probability": 0.9298 + }, + { + "start": 9284.1, + "end": 9284.14, + "probability": 0.2591 + }, + { + "start": 9284.14, + "end": 9284.92, + "probability": 0.7219 + }, + { + "start": 9285.0, + "end": 9286.66, + "probability": 0.9829 + }, + { + "start": 9286.8, + "end": 9286.8, + "probability": 0.6183 + }, + { + "start": 9286.8, + "end": 9291.38, + "probability": 0.9131 + }, + { + "start": 9291.38, + "end": 9292.02, + "probability": 0.6817 + }, + { + "start": 9293.32, + "end": 9293.32, + "probability": 0.1701 + }, + { + "start": 9293.32, + "end": 9293.32, + "probability": 0.0783 + }, + { + "start": 9293.32, + "end": 9293.32, + "probability": 0.3949 + }, + { + "start": 9293.32, + "end": 9294.14, + "probability": 0.6439 + }, + { + "start": 9294.22, + "end": 9294.7, + "probability": 0.3398 + }, + { + "start": 9294.82, + "end": 9296.1, + "probability": 0.8218 + }, + { + "start": 9296.84, + "end": 9297.4, + "probability": 0.3897 + }, + { + "start": 9297.98, + "end": 9300.62, + "probability": 0.958 + }, + { + "start": 9301.52, + "end": 9303.38, + "probability": 0.9854 + }, + { + "start": 9304.3, + "end": 9305.12, + "probability": 0.8536 + }, + { + "start": 9306.38, + "end": 9307.3, + "probability": 0.3025 + }, + { + "start": 9307.68, + "end": 9308.28, + "probability": 0.632 + }, + { + "start": 9310.69, + "end": 9313.84, + "probability": 0.9316 + }, + { + "start": 9314.46, + "end": 9317.24, + "probability": 0.9727 + }, + { + "start": 9318.26, + "end": 9320.38, + "probability": 0.9026 + }, + { + "start": 9321.38, + "end": 9322.58, + "probability": 0.909 + }, + { + "start": 9323.84, + "end": 9325.16, + "probability": 0.9673 + }, + { + "start": 9326.62, + "end": 9327.78, + "probability": 0.8914 + }, + { + "start": 9328.4, + "end": 9329.78, + "probability": 0.6464 + }, + { + "start": 9330.96, + "end": 9333.54, + "probability": 0.5348 + }, + { + "start": 9335.76, + "end": 9336.46, + "probability": 0.7218 + }, + { + "start": 9336.58, + "end": 9341.84, + "probability": 0.9941 + }, + { + "start": 9341.94, + "end": 9343.2, + "probability": 0.7904 + }, + { + "start": 9344.24, + "end": 9344.32, + "probability": 0.4433 + }, + { + "start": 9344.46, + "end": 9345.68, + "probability": 0.8597 + }, + { + "start": 9345.74, + "end": 9350.74, + "probability": 0.9802 + }, + { + "start": 9350.74, + "end": 9354.5, + "probability": 0.9835 + }, + { + "start": 9355.12, + "end": 9356.32, + "probability": 0.7808 + }, + { + "start": 9357.34, + "end": 9358.7, + "probability": 0.6711 + }, + { + "start": 9358.94, + "end": 9363.02, + "probability": 0.9347 + }, + { + "start": 9363.56, + "end": 9366.96, + "probability": 0.9961 + }, + { + "start": 9367.86, + "end": 9371.44, + "probability": 0.8859 + }, + { + "start": 9372.1, + "end": 9375.16, + "probability": 0.9838 + }, + { + "start": 9375.88, + "end": 9375.88, + "probability": 0.1554 + }, + { + "start": 9375.88, + "end": 9377.58, + "probability": 0.7072 + }, + { + "start": 9378.42, + "end": 9379.36, + "probability": 0.8272 + }, + { + "start": 9379.5, + "end": 9381.06, + "probability": 0.8494 + }, + { + "start": 9381.28, + "end": 9384.9, + "probability": 0.9946 + }, + { + "start": 9385.46, + "end": 9389.04, + "probability": 0.9937 + }, + { + "start": 9389.04, + "end": 9393.52, + "probability": 0.999 + }, + { + "start": 9394.18, + "end": 9395.7, + "probability": 0.9375 + }, + { + "start": 9396.48, + "end": 9399.04, + "probability": 0.8965 + }, + { + "start": 9400.32, + "end": 9402.32, + "probability": 0.8547 + }, + { + "start": 9403.0, + "end": 9406.62, + "probability": 0.9492 + }, + { + "start": 9409.3, + "end": 9411.46, + "probability": 0.7425 + }, + { + "start": 9411.92, + "end": 9413.34, + "probability": 0.9856 + }, + { + "start": 9414.38, + "end": 9415.58, + "probability": 0.8382 + }, + { + "start": 9416.42, + "end": 9417.38, + "probability": 0.8971 + }, + { + "start": 9417.52, + "end": 9418.28, + "probability": 0.9839 + }, + { + "start": 9419.04, + "end": 9426.62, + "probability": 0.9491 + }, + { + "start": 9426.9, + "end": 9429.92, + "probability": 0.9517 + }, + { + "start": 9430.4, + "end": 9432.7, + "probability": 0.9966 + }, + { + "start": 9433.58, + "end": 9435.26, + "probability": 0.936 + }, + { + "start": 9435.92, + "end": 9437.9, + "probability": 0.9174 + }, + { + "start": 9438.42, + "end": 9443.16, + "probability": 0.912 + }, + { + "start": 9444.58, + "end": 9445.26, + "probability": 0.9506 + }, + { + "start": 9445.82, + "end": 9449.74, + "probability": 0.9939 + }, + { + "start": 9450.56, + "end": 9451.19, + "probability": 0.559 + }, + { + "start": 9452.88, + "end": 9455.68, + "probability": 0.8981 + }, + { + "start": 9455.82, + "end": 9457.52, + "probability": 0.9744 + }, + { + "start": 9457.76, + "end": 9459.86, + "probability": 0.9731 + }, + { + "start": 9460.04, + "end": 9460.58, + "probability": 0.7193 + }, + { + "start": 9460.64, + "end": 9461.42, + "probability": 0.9586 + }, + { + "start": 9462.04, + "end": 9465.26, + "probability": 0.9538 + }, + { + "start": 9465.86, + "end": 9468.12, + "probability": 0.9903 + }, + { + "start": 9468.12, + "end": 9471.12, + "probability": 0.9033 + }, + { + "start": 9471.78, + "end": 9476.41, + "probability": 0.9849 + }, + { + "start": 9477.28, + "end": 9478.4, + "probability": 0.5153 + }, + { + "start": 9479.3, + "end": 9483.62, + "probability": 0.9793 + }, + { + "start": 9484.34, + "end": 9487.12, + "probability": 0.9118 + }, + { + "start": 9487.26, + "end": 9490.82, + "probability": 0.9891 + }, + { + "start": 9491.86, + "end": 9494.84, + "probability": 0.9977 + }, + { + "start": 9495.74, + "end": 9499.44, + "probability": 0.9974 + }, + { + "start": 9499.96, + "end": 9505.64, + "probability": 0.969 + }, + { + "start": 9506.46, + "end": 9509.78, + "probability": 0.9812 + }, + { + "start": 9509.78, + "end": 9512.78, + "probability": 0.9648 + }, + { + "start": 9513.26, + "end": 9514.14, + "probability": 0.9803 + }, + { + "start": 9515.18, + "end": 9516.6, + "probability": 0.972 + }, + { + "start": 9517.34, + "end": 9518.26, + "probability": 0.7442 + }, + { + "start": 9518.44, + "end": 9522.52, + "probability": 0.933 + }, + { + "start": 9523.18, + "end": 9528.04, + "probability": 0.9795 + }, + { + "start": 9528.04, + "end": 9532.86, + "probability": 0.9961 + }, + { + "start": 9533.54, + "end": 9534.6, + "probability": 0.7918 + }, + { + "start": 9535.06, + "end": 9538.84, + "probability": 0.9521 + }, + { + "start": 9539.38, + "end": 9541.0, + "probability": 0.7632 + }, + { + "start": 9541.9, + "end": 9544.06, + "probability": 0.9859 + }, + { + "start": 9544.58, + "end": 9547.72, + "probability": 0.9969 + }, + { + "start": 9548.1, + "end": 9548.88, + "probability": 0.5066 + }, + { + "start": 9549.46, + "end": 9552.24, + "probability": 0.9138 + }, + { + "start": 9552.6, + "end": 9553.88, + "probability": 0.9053 + }, + { + "start": 9553.96, + "end": 9555.8, + "probability": 0.9829 + }, + { + "start": 9556.2, + "end": 9557.58, + "probability": 0.6091 + }, + { + "start": 9557.64, + "end": 9557.76, + "probability": 0.1265 + }, + { + "start": 9557.78, + "end": 9560.82, + "probability": 0.9818 + }, + { + "start": 9560.86, + "end": 9561.6, + "probability": 0.8237 + }, + { + "start": 9561.72, + "end": 9563.58, + "probability": 0.8187 + }, + { + "start": 9563.94, + "end": 9564.18, + "probability": 0.2352 + }, + { + "start": 9564.32, + "end": 9567.58, + "probability": 0.9898 + }, + { + "start": 9567.58, + "end": 9569.64, + "probability": 0.9559 + }, + { + "start": 9570.06, + "end": 9570.16, + "probability": 0.1334 + }, + { + "start": 9570.26, + "end": 9570.76, + "probability": 0.9929 + }, + { + "start": 9571.36, + "end": 9573.16, + "probability": 0.8628 + }, + { + "start": 9573.64, + "end": 9574.76, + "probability": 0.7477 + }, + { + "start": 9574.8, + "end": 9576.8, + "probability": 0.9308 + }, + { + "start": 9577.36, + "end": 9579.0, + "probability": 0.9002 + }, + { + "start": 9579.34, + "end": 9580.34, + "probability": 0.6772 + }, + { + "start": 9580.68, + "end": 9583.42, + "probability": 0.993 + }, + { + "start": 9583.52, + "end": 9583.92, + "probability": 0.4213 + }, + { + "start": 9583.92, + "end": 9583.92, + "probability": 0.3306 + }, + { + "start": 9583.92, + "end": 9585.5, + "probability": 0.5282 + }, + { + "start": 9585.64, + "end": 9586.5, + "probability": 0.9927 + }, + { + "start": 9587.32, + "end": 9589.58, + "probability": 0.8114 + }, + { + "start": 9591.18, + "end": 9592.56, + "probability": 0.5493 + }, + { + "start": 9593.18, + "end": 9596.2, + "probability": 0.7375 + }, + { + "start": 9598.28, + "end": 9600.84, + "probability": 0.845 + }, + { + "start": 9601.36, + "end": 9603.12, + "probability": 0.7303 + }, + { + "start": 9604.14, + "end": 9604.78, + "probability": 0.4339 + }, + { + "start": 9606.24, + "end": 9606.82, + "probability": 0.798 + }, + { + "start": 9612.08, + "end": 9612.98, + "probability": 0.7752 + }, + { + "start": 9614.04, + "end": 9614.92, + "probability": 0.942 + }, + { + "start": 9615.84, + "end": 9616.82, + "probability": 0.7975 + }, + { + "start": 9617.72, + "end": 9619.38, + "probability": 0.7851 + }, + { + "start": 9620.42, + "end": 9622.16, + "probability": 0.897 + }, + { + "start": 9623.22, + "end": 9624.24, + "probability": 0.8361 + }, + { + "start": 9624.64, + "end": 9628.16, + "probability": 0.9638 + }, + { + "start": 9628.34, + "end": 9629.3, + "probability": 0.9224 + }, + { + "start": 9629.4, + "end": 9631.4, + "probability": 0.9531 + }, + { + "start": 9632.02, + "end": 9632.6, + "probability": 0.8354 + }, + { + "start": 9633.68, + "end": 9634.37, + "probability": 0.9963 + }, + { + "start": 9635.48, + "end": 9637.06, + "probability": 0.9515 + }, + { + "start": 9638.64, + "end": 9639.78, + "probability": 0.7495 + }, + { + "start": 9640.68, + "end": 9644.72, + "probability": 0.9956 + }, + { + "start": 9645.76, + "end": 9647.48, + "probability": 0.9259 + }, + { + "start": 9648.86, + "end": 9649.52, + "probability": 0.9548 + }, + { + "start": 9651.0, + "end": 9653.64, + "probability": 0.9972 + }, + { + "start": 9655.04, + "end": 9658.06, + "probability": 0.9834 + }, + { + "start": 9659.3, + "end": 9664.42, + "probability": 0.9631 + }, + { + "start": 9666.3, + "end": 9670.48, + "probability": 0.7349 + }, + { + "start": 9671.66, + "end": 9673.24, + "probability": 0.9915 + }, + { + "start": 9674.88, + "end": 9678.16, + "probability": 0.7675 + }, + { + "start": 9679.48, + "end": 9681.84, + "probability": 0.9463 + }, + { + "start": 9683.6, + "end": 9685.14, + "probability": 0.8118 + }, + { + "start": 9686.82, + "end": 9689.9, + "probability": 0.9943 + }, + { + "start": 9691.32, + "end": 9694.3, + "probability": 0.7763 + }, + { + "start": 9695.46, + "end": 9696.94, + "probability": 0.7526 + }, + { + "start": 9698.58, + "end": 9703.32, + "probability": 0.8076 + }, + { + "start": 9704.12, + "end": 9705.02, + "probability": 0.958 + }, + { + "start": 9705.78, + "end": 9707.1, + "probability": 0.9989 + }, + { + "start": 9707.98, + "end": 9709.4, + "probability": 0.9253 + }, + { + "start": 9710.36, + "end": 9713.7, + "probability": 0.9982 + }, + { + "start": 9714.22, + "end": 9714.64, + "probability": 0.6013 + }, + { + "start": 9715.5, + "end": 9717.68, + "probability": 0.8744 + }, + { + "start": 9717.94, + "end": 9718.92, + "probability": 0.6003 + }, + { + "start": 9719.02, + "end": 9719.62, + "probability": 0.8512 + }, + { + "start": 9720.64, + "end": 9722.22, + "probability": 0.4486 + }, + { + "start": 9722.86, + "end": 9725.12, + "probability": 0.9961 + }, + { + "start": 9725.76, + "end": 9729.3, + "probability": 0.8345 + }, + { + "start": 9730.38, + "end": 9732.26, + "probability": 0.8318 + }, + { + "start": 9733.08, + "end": 9734.04, + "probability": 0.8833 + }, + { + "start": 9735.44, + "end": 9740.32, + "probability": 0.8906 + }, + { + "start": 9741.36, + "end": 9746.46, + "probability": 0.894 + }, + { + "start": 9748.7, + "end": 9750.78, + "probability": 0.9929 + }, + { + "start": 9751.4, + "end": 9752.7, + "probability": 0.8701 + }, + { + "start": 9753.8, + "end": 9754.5, + "probability": 0.6699 + }, + { + "start": 9756.1, + "end": 9761.48, + "probability": 0.9458 + }, + { + "start": 9762.48, + "end": 9763.98, + "probability": 0.9946 + }, + { + "start": 9765.12, + "end": 9767.44, + "probability": 0.9971 + }, + { + "start": 9768.3, + "end": 9771.98, + "probability": 0.9575 + }, + { + "start": 9774.92, + "end": 9779.24, + "probability": 0.9818 + }, + { + "start": 9780.28, + "end": 9784.12, + "probability": 0.9623 + }, + { + "start": 9785.02, + "end": 9788.32, + "probability": 0.9975 + }, + { + "start": 9789.56, + "end": 9790.36, + "probability": 0.8738 + }, + { + "start": 9791.64, + "end": 9792.54, + "probability": 0.8853 + }, + { + "start": 9793.84, + "end": 9794.04, + "probability": 0.5796 + }, + { + "start": 9794.14, + "end": 9799.14, + "probability": 0.9167 + }, + { + "start": 9800.8, + "end": 9803.04, + "probability": 0.937 + }, + { + "start": 9804.34, + "end": 9809.56, + "probability": 0.9878 + }, + { + "start": 9811.1, + "end": 9812.38, + "probability": 0.9336 + }, + { + "start": 9812.68, + "end": 9813.54, + "probability": 0.7417 + }, + { + "start": 9814.68, + "end": 9815.38, + "probability": 0.9517 + }, + { + "start": 9816.64, + "end": 9818.94, + "probability": 0.9788 + }, + { + "start": 9820.6, + "end": 9822.78, + "probability": 0.999 + }, + { + "start": 9824.02, + "end": 9825.4, + "probability": 0.9819 + }, + { + "start": 9826.3, + "end": 9827.7, + "probability": 0.8025 + }, + { + "start": 9828.52, + "end": 9829.96, + "probability": 0.9695 + }, + { + "start": 9830.46, + "end": 9831.78, + "probability": 0.4823 + }, + { + "start": 9833.56, + "end": 9835.06, + "probability": 0.7779 + }, + { + "start": 9835.32, + "end": 9837.08, + "probability": 0.9977 + }, + { + "start": 9837.68, + "end": 9840.14, + "probability": 0.9841 + }, + { + "start": 9841.04, + "end": 9842.3, + "probability": 0.8624 + }, + { + "start": 9843.28, + "end": 9845.81, + "probability": 0.9937 + }, + { + "start": 9845.98, + "end": 9847.58, + "probability": 0.8794 + }, + { + "start": 9849.3, + "end": 9851.94, + "probability": 0.9001 + }, + { + "start": 9854.22, + "end": 9855.9, + "probability": 0.9437 + }, + { + "start": 9856.48, + "end": 9857.62, + "probability": 0.9801 + }, + { + "start": 9858.2, + "end": 9861.12, + "probability": 0.6693 + }, + { + "start": 9862.5, + "end": 9865.08, + "probability": 0.797 + }, + { + "start": 9865.26, + "end": 9866.14, + "probability": 0.6123 + }, + { + "start": 9866.58, + "end": 9870.78, + "probability": 0.7256 + }, + { + "start": 9872.08, + "end": 9874.36, + "probability": 0.9344 + }, + { + "start": 9875.38, + "end": 9876.88, + "probability": 0.8486 + }, + { + "start": 9878.42, + "end": 9879.94, + "probability": 0.9751 + }, + { + "start": 9881.04, + "end": 9881.8, + "probability": 0.4184 + }, + { + "start": 9883.18, + "end": 9883.88, + "probability": 0.9883 + }, + { + "start": 9884.64, + "end": 9886.59, + "probability": 0.9922 + }, + { + "start": 9888.56, + "end": 9891.1, + "probability": 0.8756 + }, + { + "start": 9892.72, + "end": 9894.66, + "probability": 0.9709 + }, + { + "start": 9896.14, + "end": 9897.48, + "probability": 0.8931 + }, + { + "start": 9900.6, + "end": 9901.44, + "probability": 0.3825 + }, + { + "start": 9902.04, + "end": 9902.46, + "probability": 0.6538 + }, + { + "start": 9903.14, + "end": 9903.86, + "probability": 0.9673 + }, + { + "start": 9904.36, + "end": 9905.06, + "probability": 0.9467 + }, + { + "start": 9905.26, + "end": 9905.68, + "probability": 0.5156 + }, + { + "start": 9905.7, + "end": 9905.74, + "probability": 0.4317 + }, + { + "start": 9906.0, + "end": 9906.92, + "probability": 0.8254 + }, + { + "start": 9908.1, + "end": 9908.6, + "probability": 0.6854 + }, + { + "start": 9909.68, + "end": 9910.26, + "probability": 0.3373 + }, + { + "start": 9910.26, + "end": 9911.42, + "probability": 0.5813 + }, + { + "start": 9912.58, + "end": 9914.14, + "probability": 0.9963 + }, + { + "start": 9915.28, + "end": 9915.6, + "probability": 0.9553 + }, + { + "start": 9917.0, + "end": 9918.38, + "probability": 0.9937 + }, + { + "start": 9918.98, + "end": 9920.1, + "probability": 0.9789 + }, + { + "start": 9921.08, + "end": 9922.0, + "probability": 0.8701 + }, + { + "start": 9923.58, + "end": 9926.05, + "probability": 0.8796 + }, + { + "start": 9927.06, + "end": 9927.68, + "probability": 0.8864 + }, + { + "start": 9929.1, + "end": 9930.2, + "probability": 0.8925 + }, + { + "start": 9931.42, + "end": 9932.78, + "probability": 0.9409 + }, + { + "start": 9934.28, + "end": 9935.4, + "probability": 0.9766 + }, + { + "start": 9936.94, + "end": 9939.14, + "probability": 0.7873 + }, + { + "start": 9939.98, + "end": 9941.58, + "probability": 0.7362 + }, + { + "start": 9941.96, + "end": 9942.22, + "probability": 0.338 + }, + { + "start": 9942.3, + "end": 9943.1, + "probability": 0.9684 + }, + { + "start": 9944.02, + "end": 9948.16, + "probability": 0.9959 + }, + { + "start": 9948.9, + "end": 9949.72, + "probability": 0.8603 + }, + { + "start": 9949.88, + "end": 9952.64, + "probability": 0.8894 + }, + { + "start": 9953.4, + "end": 9954.38, + "probability": 0.9939 + }, + { + "start": 9954.6, + "end": 9954.9, + "probability": 0.303 + }, + { + "start": 9954.9, + "end": 9955.74, + "probability": 0.5509 + }, + { + "start": 9956.44, + "end": 9959.2, + "probability": 0.9665 + }, + { + "start": 9960.08, + "end": 9962.92, + "probability": 0.9295 + }, + { + "start": 9963.64, + "end": 9964.3, + "probability": 0.6876 + }, + { + "start": 9965.34, + "end": 9966.2, + "probability": 0.9546 + }, + { + "start": 9967.62, + "end": 9968.44, + "probability": 0.8037 + }, + { + "start": 9969.2, + "end": 9970.96, + "probability": 0.5723 + }, + { + "start": 9971.08, + "end": 9972.04, + "probability": 0.9642 + }, + { + "start": 9972.38, + "end": 9974.32, + "probability": 0.7463 + }, + { + "start": 9974.56, + "end": 9975.48, + "probability": 0.7595 + }, + { + "start": 9976.22, + "end": 9977.06, + "probability": 0.9061 + }, + { + "start": 9977.56, + "end": 9980.62, + "probability": 0.7629 + }, + { + "start": 9982.04, + "end": 9986.48, + "probability": 0.9901 + }, + { + "start": 9989.0, + "end": 9992.88, + "probability": 0.9901 + }, + { + "start": 9994.0, + "end": 9995.46, + "probability": 0.9714 + }, + { + "start": 9996.74, + "end": 9998.28, + "probability": 0.7156 + }, + { + "start": 9998.42, + "end": 9999.78, + "probability": 0.4652 + }, + { + "start": 9999.94, + "end": 10000.46, + "probability": 0.6858 + }, + { + "start": 10000.5, + "end": 10000.84, + "probability": 0.7716 + }, + { + "start": 10000.94, + "end": 10001.56, + "probability": 0.8216 + }, + { + "start": 10001.64, + "end": 10002.22, + "probability": 0.9077 + }, + { + "start": 10002.68, + "end": 10003.54, + "probability": 0.8901 + }, + { + "start": 10003.84, + "end": 10005.1, + "probability": 0.9888 + }, + { + "start": 10006.78, + "end": 10007.84, + "probability": 0.9894 + }, + { + "start": 10008.12, + "end": 10012.52, + "probability": 0.9639 + }, + { + "start": 10013.14, + "end": 10015.96, + "probability": 0.9215 + }, + { + "start": 10016.62, + "end": 10016.8, + "probability": 0.8124 + }, + { + "start": 10017.7, + "end": 10021.1, + "probability": 0.9414 + }, + { + "start": 10021.96, + "end": 10023.42, + "probability": 0.9902 + }, + { + "start": 10024.84, + "end": 10026.3, + "probability": 0.9717 + }, + { + "start": 10027.42, + "end": 10031.26, + "probability": 0.979 + }, + { + "start": 10032.62, + "end": 10033.34, + "probability": 0.7997 + }, + { + "start": 10034.68, + "end": 10036.07, + "probability": 0.8492 + }, + { + "start": 10037.2, + "end": 10038.6, + "probability": 0.923 + }, + { + "start": 10039.38, + "end": 10041.48, + "probability": 0.9808 + }, + { + "start": 10041.6, + "end": 10043.56, + "probability": 0.9894 + }, + { + "start": 10043.92, + "end": 10045.24, + "probability": 0.8179 + }, + { + "start": 10045.5, + "end": 10046.72, + "probability": 0.9555 + }, + { + "start": 10046.96, + "end": 10048.12, + "probability": 0.9785 + }, + { + "start": 10048.42, + "end": 10049.06, + "probability": 0.7411 + }, + { + "start": 10049.32, + "end": 10051.1, + "probability": 0.5155 + }, + { + "start": 10052.38, + "end": 10057.22, + "probability": 0.9821 + }, + { + "start": 10058.1, + "end": 10063.46, + "probability": 0.9889 + }, + { + "start": 10064.92, + "end": 10066.2, + "probability": 0.8083 + }, + { + "start": 10066.92, + "end": 10067.72, + "probability": 0.7192 + }, + { + "start": 10068.78, + "end": 10073.0, + "probability": 0.9224 + }, + { + "start": 10073.64, + "end": 10074.3, + "probability": 0.5381 + }, + { + "start": 10075.94, + "end": 10076.92, + "probability": 0.9273 + }, + { + "start": 10078.68, + "end": 10080.84, + "probability": 0.9366 + }, + { + "start": 10081.95, + "end": 10085.96, + "probability": 0.7556 + }, + { + "start": 10086.22, + "end": 10087.3, + "probability": 0.7914 + }, + { + "start": 10088.1, + "end": 10090.24, + "probability": 0.9339 + }, + { + "start": 10091.32, + "end": 10091.56, + "probability": 0.8384 + }, + { + "start": 10092.48, + "end": 10097.62, + "probability": 0.9791 + }, + { + "start": 10098.06, + "end": 10098.76, + "probability": 0.4716 + }, + { + "start": 10099.2, + "end": 10100.54, + "probability": 0.9688 + }, + { + "start": 10100.78, + "end": 10101.46, + "probability": 0.758 + }, + { + "start": 10102.6, + "end": 10103.22, + "probability": 0.8506 + }, + { + "start": 10103.26, + "end": 10105.94, + "probability": 0.9883 + }, + { + "start": 10106.68, + "end": 10110.26, + "probability": 0.9851 + }, + { + "start": 10112.16, + "end": 10113.68, + "probability": 0.9845 + }, + { + "start": 10113.78, + "end": 10115.8, + "probability": 0.9919 + }, + { + "start": 10116.04, + "end": 10118.86, + "probability": 0.5754 + }, + { + "start": 10120.28, + "end": 10122.48, + "probability": 0.734 + }, + { + "start": 10122.68, + "end": 10124.91, + "probability": 0.992 + }, + { + "start": 10125.24, + "end": 10127.14, + "probability": 0.9189 + }, + { + "start": 10128.96, + "end": 10131.02, + "probability": 0.978 + }, + { + "start": 10131.22, + "end": 10131.54, + "probability": 0.8118 + }, + { + "start": 10131.7, + "end": 10132.2, + "probability": 0.8722 + }, + { + "start": 10132.78, + "end": 10132.98, + "probability": 0.2831 + }, + { + "start": 10133.16, + "end": 10135.08, + "probability": 0.669 + }, + { + "start": 10135.22, + "end": 10135.38, + "probability": 0.1868 + }, + { + "start": 10135.4, + "end": 10135.46, + "probability": 0.523 + }, + { + "start": 10135.48, + "end": 10136.7, + "probability": 0.7848 + }, + { + "start": 10137.8, + "end": 10139.18, + "probability": 0.877 + }, + { + "start": 10139.3, + "end": 10140.86, + "probability": 0.4058 + }, + { + "start": 10140.86, + "end": 10142.42, + "probability": 0.8994 + }, + { + "start": 10142.68, + "end": 10145.52, + "probability": 0.9788 + }, + { + "start": 10145.62, + "end": 10146.48, + "probability": 0.7382 + }, + { + "start": 10146.96, + "end": 10149.5, + "probability": 0.826 + }, + { + "start": 10150.02, + "end": 10150.92, + "probability": 0.5705 + }, + { + "start": 10152.06, + "end": 10153.44, + "probability": 0.9503 + }, + { + "start": 10153.98, + "end": 10155.34, + "probability": 0.9429 + }, + { + "start": 10158.4, + "end": 10161.66, + "probability": 0.9849 + }, + { + "start": 10163.1, + "end": 10165.28, + "probability": 0.6119 + }, + { + "start": 10166.28, + "end": 10167.58, + "probability": 0.7524 + }, + { + "start": 10169.44, + "end": 10170.06, + "probability": 0.992 + }, + { + "start": 10170.82, + "end": 10176.44, + "probability": 0.9933 + }, + { + "start": 10177.94, + "end": 10179.86, + "probability": 0.905 + }, + { + "start": 10181.4, + "end": 10183.24, + "probability": 0.9894 + }, + { + "start": 10183.9, + "end": 10186.02, + "probability": 0.8583 + }, + { + "start": 10187.66, + "end": 10190.76, + "probability": 0.9952 + }, + { + "start": 10190.8, + "end": 10195.24, + "probability": 0.9862 + }, + { + "start": 10196.84, + "end": 10197.93, + "probability": 0.8814 + }, + { + "start": 10199.7, + "end": 10206.86, + "probability": 0.9967 + }, + { + "start": 10207.64, + "end": 10208.34, + "probability": 0.9937 + }, + { + "start": 10209.06, + "end": 10211.84, + "probability": 0.9802 + }, + { + "start": 10212.54, + "end": 10215.32, + "probability": 0.9697 + }, + { + "start": 10216.04, + "end": 10216.76, + "probability": 0.9147 + }, + { + "start": 10218.42, + "end": 10220.4, + "probability": 0.9862 + }, + { + "start": 10220.64, + "end": 10220.9, + "probability": 0.8274 + }, + { + "start": 10221.14, + "end": 10221.76, + "probability": 0.5877 + }, + { + "start": 10221.9, + "end": 10225.3, + "probability": 0.7312 + }, + { + "start": 10225.38, + "end": 10226.08, + "probability": 0.9497 + }, + { + "start": 10226.8, + "end": 10227.3, + "probability": 0.9423 + }, + { + "start": 10227.84, + "end": 10229.48, + "probability": 0.9964 + }, + { + "start": 10230.34, + "end": 10230.54, + "probability": 0.7635 + }, + { + "start": 10231.78, + "end": 10232.44, + "probability": 0.3861 + }, + { + "start": 10233.78, + "end": 10236.92, + "probability": 0.884 + }, + { + "start": 10237.22, + "end": 10239.22, + "probability": 0.7584 + }, + { + "start": 10240.12, + "end": 10241.46, + "probability": 0.7693 + }, + { + "start": 10242.1, + "end": 10243.24, + "probability": 0.6755 + }, + { + "start": 10243.54, + "end": 10245.08, + "probability": 0.8009 + }, + { + "start": 10247.4, + "end": 10248.5, + "probability": 0.4104 + }, + { + "start": 10248.78, + "end": 10249.5, + "probability": 0.8775 + }, + { + "start": 10250.08, + "end": 10251.74, + "probability": 0.7949 + }, + { + "start": 10252.68, + "end": 10255.78, + "probability": 0.9954 + }, + { + "start": 10256.8, + "end": 10259.4, + "probability": 0.9852 + }, + { + "start": 10261.12, + "end": 10265.32, + "probability": 0.9913 + }, + { + "start": 10266.55, + "end": 10269.5, + "probability": 0.9377 + }, + { + "start": 10269.6, + "end": 10271.36, + "probability": 0.9805 + }, + { + "start": 10272.06, + "end": 10272.64, + "probability": 0.9235 + }, + { + "start": 10272.72, + "end": 10273.36, + "probability": 0.4752 + }, + { + "start": 10274.44, + "end": 10278.2, + "probability": 0.9126 + }, + { + "start": 10278.9, + "end": 10279.6, + "probability": 0.9308 + }, + { + "start": 10279.7, + "end": 10281.54, + "probability": 0.9316 + }, + { + "start": 10281.68, + "end": 10282.72, + "probability": 0.9933 + }, + { + "start": 10284.0, + "end": 10285.0, + "probability": 0.993 + }, + { + "start": 10285.72, + "end": 10288.24, + "probability": 0.9836 + }, + { + "start": 10288.98, + "end": 10291.16, + "probability": 0.9595 + }, + { + "start": 10291.3, + "end": 10291.62, + "probability": 0.6819 + }, + { + "start": 10291.74, + "end": 10292.62, + "probability": 0.7752 + }, + { + "start": 10293.1, + "end": 10293.88, + "probability": 0.9499 + }, + { + "start": 10295.08, + "end": 10296.42, + "probability": 0.7686 + }, + { + "start": 10297.68, + "end": 10304.22, + "probability": 0.9403 + }, + { + "start": 10305.88, + "end": 10306.36, + "probability": 0.8959 + }, + { + "start": 10307.16, + "end": 10307.66, + "probability": 0.7949 + }, + { + "start": 10310.32, + "end": 10315.22, + "probability": 0.9937 + }, + { + "start": 10316.16, + "end": 10317.7, + "probability": 0.8834 + }, + { + "start": 10319.46, + "end": 10321.76, + "probability": 0.9455 + }, + { + "start": 10322.02, + "end": 10325.02, + "probability": 0.8063 + }, + { + "start": 10326.48, + "end": 10328.96, + "probability": 0.7808 + }, + { + "start": 10329.6, + "end": 10331.56, + "probability": 0.9919 + }, + { + "start": 10332.58, + "end": 10335.02, + "probability": 0.9153 + }, + { + "start": 10336.38, + "end": 10339.18, + "probability": 0.9564 + }, + { + "start": 10340.0, + "end": 10342.82, + "probability": 0.9832 + }, + { + "start": 10344.82, + "end": 10347.74, + "probability": 0.9779 + }, + { + "start": 10348.24, + "end": 10349.88, + "probability": 0.5227 + }, + { + "start": 10350.06, + "end": 10350.6, + "probability": 0.9709 + }, + { + "start": 10351.14, + "end": 10351.77, + "probability": 0.8916 + }, + { + "start": 10352.1, + "end": 10352.42, + "probability": 0.6975 + }, + { + "start": 10352.7, + "end": 10354.62, + "probability": 0.9936 + }, + { + "start": 10355.16, + "end": 10356.94, + "probability": 0.8683 + }, + { + "start": 10357.68, + "end": 10363.22, + "probability": 0.5972 + }, + { + "start": 10364.1, + "end": 10365.9, + "probability": 0.9962 + }, + { + "start": 10367.76, + "end": 10368.84, + "probability": 0.9589 + }, + { + "start": 10370.54, + "end": 10371.7, + "probability": 0.7767 + }, + { + "start": 10372.74, + "end": 10375.1, + "probability": 0.9432 + }, + { + "start": 10376.0, + "end": 10377.34, + "probability": 0.9901 + }, + { + "start": 10378.28, + "end": 10381.42, + "probability": 0.8706 + }, + { + "start": 10382.02, + "end": 10383.16, + "probability": 0.8138 + }, + { + "start": 10383.26, + "end": 10383.9, + "probability": 0.5646 + }, + { + "start": 10384.02, + "end": 10384.88, + "probability": 0.6987 + }, + { + "start": 10386.16, + "end": 10388.64, + "probability": 0.7536 + }, + { + "start": 10389.22, + "end": 10393.2, + "probability": 0.9772 + }, + { + "start": 10393.3, + "end": 10394.72, + "probability": 0.9716 + }, + { + "start": 10397.66, + "end": 10398.64, + "probability": 0.2519 + }, + { + "start": 10398.8, + "end": 10399.5, + "probability": 0.5205 + }, + { + "start": 10401.08, + "end": 10403.12, + "probability": 0.7675 + }, + { + "start": 10404.2, + "end": 10404.92, + "probability": 0.7535 + }, + { + "start": 10406.18, + "end": 10406.84, + "probability": 0.87 + }, + { + "start": 10407.66, + "end": 10409.76, + "probability": 0.9961 + }, + { + "start": 10411.36, + "end": 10413.36, + "probability": 0.9976 + }, + { + "start": 10415.26, + "end": 10421.02, + "probability": 0.8707 + }, + { + "start": 10422.2, + "end": 10424.12, + "probability": 0.8664 + }, + { + "start": 10424.32, + "end": 10425.14, + "probability": 0.9873 + }, + { + "start": 10425.76, + "end": 10426.5, + "probability": 0.988 + }, + { + "start": 10427.22, + "end": 10429.22, + "probability": 0.9675 + }, + { + "start": 10429.32, + "end": 10429.92, + "probability": 0.9418 + }, + { + "start": 10430.0, + "end": 10430.74, + "probability": 0.752 + }, + { + "start": 10432.55, + "end": 10434.52, + "probability": 0.8051 + }, + { + "start": 10435.4, + "end": 10436.08, + "probability": 0.9907 + }, + { + "start": 10437.5, + "end": 10438.28, + "probability": 0.8918 + }, + { + "start": 10438.44, + "end": 10442.2, + "probability": 0.8 + }, + { + "start": 10442.82, + "end": 10443.92, + "probability": 0.8563 + }, + { + "start": 10444.94, + "end": 10446.54, + "probability": 0.9862 + }, + { + "start": 10446.92, + "end": 10448.5, + "probability": 0.8945 + }, + { + "start": 10450.08, + "end": 10451.36, + "probability": 0.9442 + }, + { + "start": 10452.14, + "end": 10452.92, + "probability": 0.8965 + }, + { + "start": 10454.56, + "end": 10455.96, + "probability": 0.8561 + }, + { + "start": 10456.62, + "end": 10458.9, + "probability": 0.8923 + }, + { + "start": 10460.6, + "end": 10462.76, + "probability": 0.6605 + }, + { + "start": 10463.46, + "end": 10465.9, + "probability": 0.8923 + }, + { + "start": 10465.98, + "end": 10467.72, + "probability": 0.8673 + }, + { + "start": 10468.3, + "end": 10470.76, + "probability": 0.8626 + }, + { + "start": 10471.3, + "end": 10472.66, + "probability": 0.8739 + }, + { + "start": 10473.1, + "end": 10473.82, + "probability": 0.9001 + }, + { + "start": 10474.22, + "end": 10475.0, + "probability": 0.8732 + }, + { + "start": 10475.06, + "end": 10475.63, + "probability": 0.6231 + }, + { + "start": 10476.1, + "end": 10476.73, + "probability": 0.9841 + }, + { + "start": 10477.34, + "end": 10478.41, + "probability": 0.6746 + }, + { + "start": 10479.36, + "end": 10479.74, + "probability": 0.9922 + }, + { + "start": 10480.54, + "end": 10483.36, + "probability": 0.98 + }, + { + "start": 10483.96, + "end": 10486.14, + "probability": 0.9571 + }, + { + "start": 10486.96, + "end": 10487.88, + "probability": 0.5444 + }, + { + "start": 10488.46, + "end": 10492.06, + "probability": 0.9885 + }, + { + "start": 10492.52, + "end": 10492.86, + "probability": 0.9534 + }, + { + "start": 10493.7, + "end": 10497.5, + "probability": 0.9226 + }, + { + "start": 10498.0, + "end": 10499.68, + "probability": 0.9996 + }, + { + "start": 10500.56, + "end": 10502.26, + "probability": 0.8261 + }, + { + "start": 10502.8, + "end": 10504.33, + "probability": 0.5015 + }, + { + "start": 10504.54, + "end": 10505.18, + "probability": 0.786 + }, + { + "start": 10505.64, + "end": 10508.48, + "probability": 0.9624 + }, + { + "start": 10508.64, + "end": 10509.46, + "probability": 0.9508 + }, + { + "start": 10509.92, + "end": 10513.12, + "probability": 0.9957 + }, + { + "start": 10513.36, + "end": 10513.8, + "probability": 0.9335 + }, + { + "start": 10514.18, + "end": 10515.04, + "probability": 0.5477 + }, + { + "start": 10515.54, + "end": 10519.68, + "probability": 0.9011 + }, + { + "start": 10519.76, + "end": 10520.56, + "probability": 0.846 + }, + { + "start": 10522.02, + "end": 10524.64, + "probability": 0.999 + }, + { + "start": 10525.56, + "end": 10529.14, + "probability": 0.652 + }, + { + "start": 10530.62, + "end": 10531.46, + "probability": 0.844 + }, + { + "start": 10532.6, + "end": 10533.46, + "probability": 0.7907 + }, + { + "start": 10534.9, + "end": 10536.84, + "probability": 0.7633 + }, + { + "start": 10537.64, + "end": 10538.78, + "probability": 0.8378 + }, + { + "start": 10540.0, + "end": 10540.54, + "probability": 0.6276 + }, + { + "start": 10546.32, + "end": 10554.2, + "probability": 0.9948 + }, + { + "start": 10555.72, + "end": 10556.56, + "probability": 0.9128 + }, + { + "start": 10558.84, + "end": 10562.8, + "probability": 0.9705 + }, + { + "start": 10564.18, + "end": 10565.62, + "probability": 0.9893 + }, + { + "start": 10567.5, + "end": 10568.9, + "probability": 0.7266 + }, + { + "start": 10570.74, + "end": 10576.74, + "probability": 0.959 + }, + { + "start": 10578.56, + "end": 10580.02, + "probability": 0.814 + }, + { + "start": 10584.5, + "end": 10586.02, + "probability": 0.7844 + }, + { + "start": 10586.18, + "end": 10586.62, + "probability": 0.5029 + }, + { + "start": 10586.62, + "end": 10591.14, + "probability": 0.9875 + }, + { + "start": 10592.34, + "end": 10592.92, + "probability": 0.9521 + }, + { + "start": 10593.94, + "end": 10595.36, + "probability": 0.9885 + }, + { + "start": 10595.98, + "end": 10596.74, + "probability": 0.9687 + }, + { + "start": 10597.54, + "end": 10598.18, + "probability": 0.7446 + }, + { + "start": 10599.0, + "end": 10600.02, + "probability": 0.8876 + }, + { + "start": 10601.3, + "end": 10603.94, + "probability": 0.9958 + }, + { + "start": 10604.94, + "end": 10605.82, + "probability": 0.7419 + }, + { + "start": 10606.08, + "end": 10607.94, + "probability": 0.5548 + }, + { + "start": 10608.04, + "end": 10609.9, + "probability": 0.9188 + }, + { + "start": 10611.46, + "end": 10614.82, + "probability": 0.9766 + }, + { + "start": 10616.14, + "end": 10620.24, + "probability": 0.9692 + }, + { + "start": 10622.04, + "end": 10622.42, + "probability": 0.8793 + }, + { + "start": 10623.44, + "end": 10626.62, + "probability": 0.865 + }, + { + "start": 10627.62, + "end": 10632.82, + "probability": 0.9401 + }, + { + "start": 10634.02, + "end": 10637.18, + "probability": 0.7959 + }, + { + "start": 10638.66, + "end": 10639.34, + "probability": 0.8008 + }, + { + "start": 10640.06, + "end": 10642.2, + "probability": 0.7111 + }, + { + "start": 10643.24, + "end": 10649.58, + "probability": 0.6203 + }, + { + "start": 10649.94, + "end": 10650.56, + "probability": 0.8457 + }, + { + "start": 10650.64, + "end": 10651.54, + "probability": 0.752 + }, + { + "start": 10652.12, + "end": 10654.9, + "probability": 0.91 + }, + { + "start": 10655.48, + "end": 10656.65, + "probability": 0.6242 + }, + { + "start": 10659.06, + "end": 10662.22, + "probability": 0.8982 + }, + { + "start": 10662.88, + "end": 10664.52, + "probability": 0.9442 + }, + { + "start": 10666.04, + "end": 10667.18, + "probability": 0.7026 + }, + { + "start": 10667.86, + "end": 10668.44, + "probability": 0.7449 + }, + { + "start": 10669.18, + "end": 10671.62, + "probability": 0.9525 + }, + { + "start": 10672.92, + "end": 10675.18, + "probability": 0.9818 + }, + { + "start": 10676.3, + "end": 10679.0, + "probability": 0.9972 + }, + { + "start": 10679.86, + "end": 10682.3, + "probability": 0.7245 + }, + { + "start": 10683.14, + "end": 10686.8, + "probability": 0.751 + }, + { + "start": 10687.6, + "end": 10689.46, + "probability": 0.9992 + }, + { + "start": 10690.2, + "end": 10691.04, + "probability": 0.6772 + }, + { + "start": 10691.66, + "end": 10692.94, + "probability": 0.8395 + }, + { + "start": 10693.76, + "end": 10696.72, + "probability": 0.8437 + }, + { + "start": 10697.72, + "end": 10698.96, + "probability": 0.9338 + }, + { + "start": 10700.22, + "end": 10705.34, + "probability": 0.9932 + }, + { + "start": 10706.62, + "end": 10707.64, + "probability": 0.9463 + }, + { + "start": 10708.66, + "end": 10709.78, + "probability": 0.9285 + }, + { + "start": 10710.68, + "end": 10711.82, + "probability": 0.9917 + }, + { + "start": 10712.98, + "end": 10713.9, + "probability": 0.8562 + }, + { + "start": 10715.88, + "end": 10717.02, + "probability": 0.9953 + }, + { + "start": 10717.74, + "end": 10719.74, + "probability": 0.9961 + }, + { + "start": 10720.64, + "end": 10723.14, + "probability": 0.6428 + }, + { + "start": 10723.86, + "end": 10725.0, + "probability": 0.9489 + }, + { + "start": 10725.76, + "end": 10727.34, + "probability": 0.9556 + }, + { + "start": 10728.08, + "end": 10729.32, + "probability": 0.7717 + }, + { + "start": 10730.5, + "end": 10733.9, + "probability": 0.9963 + }, + { + "start": 10735.1, + "end": 10735.76, + "probability": 0.8379 + }, + { + "start": 10737.6, + "end": 10740.58, + "probability": 0.9973 + }, + { + "start": 10741.54, + "end": 10742.78, + "probability": 0.8934 + }, + { + "start": 10743.54, + "end": 10745.22, + "probability": 0.8273 + }, + { + "start": 10747.46, + "end": 10748.84, + "probability": 0.863 + }, + { + "start": 10750.04, + "end": 10752.56, + "probability": 0.9973 + }, + { + "start": 10752.56, + "end": 10757.34, + "probability": 0.96 + }, + { + "start": 10758.48, + "end": 10760.24, + "probability": 0.9854 + }, + { + "start": 10760.9, + "end": 10763.12, + "probability": 0.8418 + }, + { + "start": 10763.82, + "end": 10765.78, + "probability": 0.8228 + }, + { + "start": 10766.68, + "end": 10769.12, + "probability": 0.6481 + }, + { + "start": 10770.6, + "end": 10774.76, + "probability": 0.9894 + }, + { + "start": 10775.12, + "end": 10776.0, + "probability": 0.8327 + }, + { + "start": 10776.38, + "end": 10777.41, + "probability": 0.6867 + }, + { + "start": 10778.46, + "end": 10780.38, + "probability": 0.9979 + }, + { + "start": 10781.16, + "end": 10782.06, + "probability": 0.9775 + }, + { + "start": 10782.42, + "end": 10783.5, + "probability": 0.9434 + }, + { + "start": 10784.3, + "end": 10784.94, + "probability": 0.6779 + }, + { + "start": 10786.04, + "end": 10786.68, + "probability": 0.5778 + }, + { + "start": 10787.76, + "end": 10789.51, + "probability": 0.8892 + }, + { + "start": 10790.64, + "end": 10793.38, + "probability": 0.9762 + }, + { + "start": 10794.52, + "end": 10796.04, + "probability": 0.997 + }, + { + "start": 10796.64, + "end": 10800.96, + "probability": 0.8494 + }, + { + "start": 10802.02, + "end": 10803.18, + "probability": 0.9841 + }, + { + "start": 10804.16, + "end": 10808.56, + "probability": 0.9846 + }, + { + "start": 10808.56, + "end": 10813.0, + "probability": 0.9978 + }, + { + "start": 10814.42, + "end": 10815.96, + "probability": 0.9756 + }, + { + "start": 10816.82, + "end": 10818.08, + "probability": 0.9341 + }, + { + "start": 10818.94, + "end": 10819.88, + "probability": 0.9647 + }, + { + "start": 10820.46, + "end": 10823.86, + "probability": 0.9833 + }, + { + "start": 10824.86, + "end": 10828.02, + "probability": 0.7289 + }, + { + "start": 10828.9, + "end": 10831.52, + "probability": 0.9415 + }, + { + "start": 10832.26, + "end": 10836.12, + "probability": 0.9299 + }, + { + "start": 10837.1, + "end": 10839.32, + "probability": 0.989 + }, + { + "start": 10840.0, + "end": 10840.4, + "probability": 0.8781 + }, + { + "start": 10841.04, + "end": 10841.48, + "probability": 0.5635 + }, + { + "start": 10842.18, + "end": 10844.38, + "probability": 0.999 + }, + { + "start": 10845.34, + "end": 10845.98, + "probability": 0.9015 + }, + { + "start": 10847.0, + "end": 10847.28, + "probability": 0.5243 + }, + { + "start": 10847.4, + "end": 10848.7, + "probability": 0.9377 + }, + { + "start": 10848.96, + "end": 10849.61, + "probability": 0.9599 + }, + { + "start": 10850.34, + "end": 10853.0, + "probability": 0.967 + }, + { + "start": 10853.78, + "end": 10855.78, + "probability": 0.9283 + }, + { + "start": 10856.36, + "end": 10858.04, + "probability": 0.9281 + }, + { + "start": 10858.78, + "end": 10860.24, + "probability": 0.998 + }, + { + "start": 10861.16, + "end": 10863.06, + "probability": 0.7243 + }, + { + "start": 10864.0, + "end": 10864.8, + "probability": 0.5986 + }, + { + "start": 10865.42, + "end": 10867.94, + "probability": 0.9875 + }, + { + "start": 10868.6, + "end": 10870.36, + "probability": 0.9292 + }, + { + "start": 10870.9, + "end": 10871.46, + "probability": 0.7998 + }, + { + "start": 10871.72, + "end": 10872.56, + "probability": 0.5246 + }, + { + "start": 10873.36, + "end": 10877.12, + "probability": 0.7931 + }, + { + "start": 10877.62, + "end": 10879.78, + "probability": 0.8564 + }, + { + "start": 10890.43, + "end": 10894.34, + "probability": 0.9315 + }, + { + "start": 10898.18, + "end": 10902.58, + "probability": 0.7117 + }, + { + "start": 10904.98, + "end": 10905.94, + "probability": 0.9926 + }, + { + "start": 10907.28, + "end": 10908.7, + "probability": 0.8832 + }, + { + "start": 10910.08, + "end": 10911.36, + "probability": 0.8049 + }, + { + "start": 10911.44, + "end": 10913.62, + "probability": 0.9958 + }, + { + "start": 10914.64, + "end": 10915.56, + "probability": 0.4935 + }, + { + "start": 10916.18, + "end": 10918.96, + "probability": 0.948 + }, + { + "start": 10920.06, + "end": 10922.62, + "probability": 0.9939 + }, + { + "start": 10922.72, + "end": 10923.7, + "probability": 0.7018 + }, + { + "start": 10924.0, + "end": 10924.88, + "probability": 0.9053 + }, + { + "start": 10924.94, + "end": 10926.4, + "probability": 0.9318 + }, + { + "start": 10926.9, + "end": 10930.92, + "probability": 0.9963 + }, + { + "start": 10931.48, + "end": 10932.94, + "probability": 0.836 + }, + { + "start": 10933.66, + "end": 10937.18, + "probability": 0.929 + }, + { + "start": 10938.36, + "end": 10941.98, + "probability": 0.7065 + }, + { + "start": 10942.58, + "end": 10943.86, + "probability": 0.7066 + }, + { + "start": 10943.96, + "end": 10945.36, + "probability": 0.8486 + }, + { + "start": 10947.16, + "end": 10949.22, + "probability": 0.9807 + }, + { + "start": 10950.18, + "end": 10950.42, + "probability": 0.7589 + }, + { + "start": 10950.46, + "end": 10952.0, + "probability": 0.9924 + }, + { + "start": 10952.28, + "end": 10952.8, + "probability": 0.7134 + }, + { + "start": 10952.92, + "end": 10954.08, + "probability": 0.9839 + }, + { + "start": 10954.64, + "end": 10956.24, + "probability": 0.774 + }, + { + "start": 10956.34, + "end": 10958.52, + "probability": 0.5566 + }, + { + "start": 10958.88, + "end": 10960.28, + "probability": 0.7189 + }, + { + "start": 10961.12, + "end": 10962.44, + "probability": 0.9648 + }, + { + "start": 10963.76, + "end": 10965.0, + "probability": 0.9346 + }, + { + "start": 10965.06, + "end": 10967.84, + "probability": 0.9346 + }, + { + "start": 10967.86, + "end": 10970.28, + "probability": 0.9005 + }, + { + "start": 10971.22, + "end": 10973.36, + "probability": 0.9061 + }, + { + "start": 10974.08, + "end": 10976.36, + "probability": 0.9009 + }, + { + "start": 10977.18, + "end": 10981.42, + "probability": 0.9376 + }, + { + "start": 10982.46, + "end": 10984.18, + "probability": 0.9107 + }, + { + "start": 10984.98, + "end": 10986.66, + "probability": 0.6437 + }, + { + "start": 10987.32, + "end": 10988.92, + "probability": 0.8799 + }, + { + "start": 10989.36, + "end": 10990.92, + "probability": 0.9688 + }, + { + "start": 10991.46, + "end": 10994.22, + "probability": 0.9447 + }, + { + "start": 10994.8, + "end": 10996.7, + "probability": 0.8754 + }, + { + "start": 10997.44, + "end": 10998.84, + "probability": 0.5191 + }, + { + "start": 10999.34, + "end": 11000.84, + "probability": 0.994 + }, + { + "start": 11001.8, + "end": 11003.34, + "probability": 0.984 + }, + { + "start": 11003.74, + "end": 11006.5, + "probability": 0.9401 + }, + { + "start": 11006.92, + "end": 11007.04, + "probability": 0.6666 + }, + { + "start": 11007.76, + "end": 11008.32, + "probability": 0.9813 + }, + { + "start": 11008.42, + "end": 11010.96, + "probability": 0.9741 + }, + { + "start": 11011.04, + "end": 11011.81, + "probability": 0.968 + }, + { + "start": 11012.46, + "end": 11014.42, + "probability": 0.9553 + }, + { + "start": 11015.14, + "end": 11017.02, + "probability": 0.9974 + }, + { + "start": 11017.56, + "end": 11019.94, + "probability": 0.9845 + }, + { + "start": 11020.52, + "end": 11024.12, + "probability": 0.937 + }, + { + "start": 11024.92, + "end": 11025.82, + "probability": 0.9869 + }, + { + "start": 11026.26, + "end": 11027.24, + "probability": 0.9728 + }, + { + "start": 11027.38, + "end": 11027.98, + "probability": 0.8228 + }, + { + "start": 11028.16, + "end": 11028.34, + "probability": 0.5072 + }, + { + "start": 11028.88, + "end": 11029.65, + "probability": 0.6113 + }, + { + "start": 11029.84, + "end": 11031.56, + "probability": 0.9395 + }, + { + "start": 11032.98, + "end": 11033.98, + "probability": 0.8878 + }, + { + "start": 11034.02, + "end": 11034.46, + "probability": 0.9238 + }, + { + "start": 11034.56, + "end": 11035.71, + "probability": 0.87 + }, + { + "start": 11037.58, + "end": 11038.85, + "probability": 0.9661 + }, + { + "start": 11040.74, + "end": 11041.38, + "probability": 0.6136 + }, + { + "start": 11042.22, + "end": 11042.82, + "probability": 0.9022 + }, + { + "start": 11044.0, + "end": 11045.04, + "probability": 0.9097 + }, + { + "start": 11045.98, + "end": 11047.4, + "probability": 0.5434 + }, + { + "start": 11047.52, + "end": 11048.76, + "probability": 0.8599 + }, + { + "start": 11049.04, + "end": 11050.32, + "probability": 0.8077 + }, + { + "start": 11051.06, + "end": 11051.2, + "probability": 0.6949 + }, + { + "start": 11051.24, + "end": 11051.52, + "probability": 0.7927 + }, + { + "start": 11051.58, + "end": 11053.22, + "probability": 0.9502 + }, + { + "start": 11055.9, + "end": 11061.92, + "probability": 0.8529 + }, + { + "start": 11062.28, + "end": 11062.66, + "probability": 0.3266 + }, + { + "start": 11062.84, + "end": 11063.36, + "probability": 0.9547 + }, + { + "start": 11063.46, + "end": 11063.78, + "probability": 0.886 + }, + { + "start": 11063.92, + "end": 11065.72, + "probability": 0.6863 + }, + { + "start": 11066.88, + "end": 11069.04, + "probability": 0.407 + }, + { + "start": 11069.14, + "end": 11070.5, + "probability": 0.9792 + }, + { + "start": 11070.56, + "end": 11072.18, + "probability": 0.9944 + }, + { + "start": 11073.3, + "end": 11075.86, + "probability": 0.8621 + }, + { + "start": 11076.1, + "end": 11076.7, + "probability": 0.5973 + }, + { + "start": 11076.78, + "end": 11078.64, + "probability": 0.9725 + }, + { + "start": 11078.64, + "end": 11080.5, + "probability": 0.9808 + }, + { + "start": 11081.2, + "end": 11082.84, + "probability": 0.9856 + }, + { + "start": 11083.0, + "end": 11084.52, + "probability": 0.9603 + }, + { + "start": 11084.98, + "end": 11087.38, + "probability": 0.94 + }, + { + "start": 11088.02, + "end": 11089.02, + "probability": 0.8735 + }, + { + "start": 11089.32, + "end": 11090.06, + "probability": 0.5145 + }, + { + "start": 11090.16, + "end": 11092.8, + "probability": 0.975 + }, + { + "start": 11092.8, + "end": 11095.62, + "probability": 0.9568 + }, + { + "start": 11095.82, + "end": 11095.98, + "probability": 0.1892 + }, + { + "start": 11096.04, + "end": 11098.84, + "probability": 0.9109 + }, + { + "start": 11098.9, + "end": 11101.36, + "probability": 0.7495 + }, + { + "start": 11101.4, + "end": 11102.74, + "probability": 0.881 + }, + { + "start": 11104.25, + "end": 11105.02, + "probability": 0.1401 + }, + { + "start": 11105.22, + "end": 11106.6, + "probability": 0.7159 + }, + { + "start": 11107.14, + "end": 11110.1, + "probability": 0.9692 + }, + { + "start": 11110.1, + "end": 11113.26, + "probability": 0.9641 + }, + { + "start": 11114.16, + "end": 11115.5, + "probability": 0.8804 + }, + { + "start": 11115.62, + "end": 11116.52, + "probability": 0.9635 + }, + { + "start": 11117.56, + "end": 11120.38, + "probability": 0.8858 + }, + { + "start": 11121.02, + "end": 11122.48, + "probability": 0.7933 + }, + { + "start": 11122.58, + "end": 11126.62, + "probability": 0.9873 + }, + { + "start": 11126.66, + "end": 11128.04, + "probability": 0.9402 + }, + { + "start": 11128.72, + "end": 11128.92, + "probability": 0.8242 + }, + { + "start": 11129.04, + "end": 11130.22, + "probability": 0.9824 + }, + { + "start": 11130.42, + "end": 11132.4, + "probability": 0.9429 + }, + { + "start": 11133.12, + "end": 11134.54, + "probability": 0.9922 + }, + { + "start": 11135.4, + "end": 11137.08, + "probability": 0.8154 + }, + { + "start": 11137.2, + "end": 11138.68, + "probability": 0.9786 + }, + { + "start": 11139.14, + "end": 11139.98, + "probability": 0.9902 + }, + { + "start": 11140.38, + "end": 11141.02, + "probability": 0.7456 + }, + { + "start": 11141.48, + "end": 11142.02, + "probability": 0.975 + }, + { + "start": 11142.08, + "end": 11143.98, + "probability": 0.6265 + }, + { + "start": 11144.14, + "end": 11146.0, + "probability": 0.9597 + }, + { + "start": 11146.9, + "end": 11147.93, + "probability": 0.9955 + }, + { + "start": 11148.58, + "end": 11149.42, + "probability": 0.5017 + }, + { + "start": 11149.52, + "end": 11150.44, + "probability": 0.9678 + }, + { + "start": 11150.78, + "end": 11153.12, + "probability": 0.8999 + }, + { + "start": 11154.86, + "end": 11155.04, + "probability": 0.1722 + }, + { + "start": 11155.04, + "end": 11155.53, + "probability": 0.9304 + }, + { + "start": 11155.8, + "end": 11156.24, + "probability": 0.5612 + }, + { + "start": 11156.36, + "end": 11157.2, + "probability": 0.4799 + }, + { + "start": 11157.58, + "end": 11158.92, + "probability": 0.9958 + }, + { + "start": 11158.94, + "end": 11160.14, + "probability": 0.9697 + }, + { + "start": 11161.02, + "end": 11163.08, + "probability": 0.4912 + }, + { + "start": 11163.2, + "end": 11163.92, + "probability": 0.8898 + }, + { + "start": 11163.92, + "end": 11165.76, + "probability": 0.95 + }, + { + "start": 11165.84, + "end": 11166.52, + "probability": 0.8789 + }, + { + "start": 11166.8, + "end": 11167.94, + "probability": 0.8777 + }, + { + "start": 11168.12, + "end": 11171.08, + "probability": 0.9637 + }, + { + "start": 11171.78, + "end": 11177.34, + "probability": 0.9652 + }, + { + "start": 11177.42, + "end": 11177.88, + "probability": 0.7853 + }, + { + "start": 11178.0, + "end": 11179.24, + "probability": 0.7076 + }, + { + "start": 11179.48, + "end": 11182.46, + "probability": 0.9805 + }, + { + "start": 11182.56, + "end": 11183.88, + "probability": 0.9915 + }, + { + "start": 11184.0, + "end": 11184.2, + "probability": 0.6824 + }, + { + "start": 11184.88, + "end": 11186.76, + "probability": 0.6635 + }, + { + "start": 11187.22, + "end": 11189.44, + "probability": 0.9535 + }, + { + "start": 11189.56, + "end": 11192.54, + "probability": 0.9302 + }, + { + "start": 11192.62, + "end": 11193.73, + "probability": 0.9862 + }, + { + "start": 11193.98, + "end": 11198.14, + "probability": 0.9253 + }, + { + "start": 11198.24, + "end": 11200.64, + "probability": 0.78 + }, + { + "start": 11201.3, + "end": 11201.78, + "probability": 0.2141 + }, + { + "start": 11201.88, + "end": 11203.86, + "probability": 0.8758 + }, + { + "start": 11203.92, + "end": 11204.74, + "probability": 0.968 + }, + { + "start": 11204.94, + "end": 11206.9, + "probability": 0.9983 + }, + { + "start": 11206.98, + "end": 11207.24, + "probability": 0.7099 + }, + { + "start": 11207.3, + "end": 11208.0, + "probability": 0.988 + }, + { + "start": 11209.16, + "end": 11209.8, + "probability": 0.9283 + }, + { + "start": 11211.14, + "end": 11212.72, + "probability": 0.4038 + }, + { + "start": 11213.04, + "end": 11216.8, + "probability": 0.9446 + }, + { + "start": 11216.8, + "end": 11217.89, + "probability": 0.9463 + }, + { + "start": 11218.78, + "end": 11219.26, + "probability": 0.6843 + }, + { + "start": 11219.32, + "end": 11219.84, + "probability": 0.7487 + }, + { + "start": 11219.84, + "end": 11220.74, + "probability": 0.7766 + }, + { + "start": 11221.26, + "end": 11224.1, + "probability": 0.9562 + }, + { + "start": 11224.94, + "end": 11227.1, + "probability": 0.9867 + }, + { + "start": 11227.48, + "end": 11228.58, + "probability": 0.8867 + }, + { + "start": 11229.1, + "end": 11229.62, + "probability": 0.9389 + }, + { + "start": 11230.27, + "end": 11232.56, + "probability": 0.8451 + }, + { + "start": 11233.1, + "end": 11234.34, + "probability": 0.7904 + }, + { + "start": 11238.96, + "end": 11243.38, + "probability": 0.9328 + }, + { + "start": 11244.1, + "end": 11245.1, + "probability": 0.8153 + }, + { + "start": 11245.94, + "end": 11247.98, + "probability": 0.8556 + }, + { + "start": 11249.38, + "end": 11253.56, + "probability": 0.993 + }, + { + "start": 11254.24, + "end": 11254.72, + "probability": 0.7837 + }, + { + "start": 11255.28, + "end": 11256.7, + "probability": 0.8199 + }, + { + "start": 11258.52, + "end": 11261.82, + "probability": 0.9141 + }, + { + "start": 11262.58, + "end": 11263.1, + "probability": 0.2908 + }, + { + "start": 11263.76, + "end": 11264.56, + "probability": 0.7719 + }, + { + "start": 11265.9, + "end": 11269.76, + "probability": 0.7024 + }, + { + "start": 11270.38, + "end": 11273.0, + "probability": 0.9902 + }, + { + "start": 11273.72, + "end": 11274.96, + "probability": 0.9486 + }, + { + "start": 11276.6, + "end": 11280.52, + "probability": 0.8589 + }, + { + "start": 11280.96, + "end": 11281.86, + "probability": 0.7061 + }, + { + "start": 11283.34, + "end": 11283.4, + "probability": 0.2711 + }, + { + "start": 11283.4, + "end": 11284.16, + "probability": 0.8474 + }, + { + "start": 11285.98, + "end": 11289.03, + "probability": 0.9682 + }, + { + "start": 11289.98, + "end": 11294.06, + "probability": 0.993 + }, + { + "start": 11294.98, + "end": 11295.81, + "probability": 0.6199 + }, + { + "start": 11297.04, + "end": 11297.74, + "probability": 0.9319 + }, + { + "start": 11298.84, + "end": 11299.8, + "probability": 0.7982 + }, + { + "start": 11300.64, + "end": 11303.55, + "probability": 0.9576 + }, + { + "start": 11303.58, + "end": 11304.3, + "probability": 0.8129 + }, + { + "start": 11306.06, + "end": 11306.86, + "probability": 0.8253 + }, + { + "start": 11308.2, + "end": 11310.9, + "probability": 0.983 + }, + { + "start": 11312.24, + "end": 11316.58, + "probability": 0.9963 + }, + { + "start": 11320.39, + "end": 11322.78, + "probability": 0.9985 + }, + { + "start": 11323.9, + "end": 11326.72, + "probability": 0.999 + }, + { + "start": 11327.46, + "end": 11328.58, + "probability": 0.8192 + }, + { + "start": 11329.44, + "end": 11330.96, + "probability": 0.5798 + }, + { + "start": 11333.18, + "end": 11334.96, + "probability": 0.9697 + }, + { + "start": 11336.26, + "end": 11338.2, + "probability": 0.8434 + }, + { + "start": 11339.26, + "end": 11340.78, + "probability": 0.666 + }, + { + "start": 11342.32, + "end": 11343.18, + "probability": 0.5983 + }, + { + "start": 11344.14, + "end": 11347.5, + "probability": 0.7666 + }, + { + "start": 11350.16, + "end": 11351.12, + "probability": 0.9484 + }, + { + "start": 11352.0, + "end": 11353.0, + "probability": 0.7579 + }, + { + "start": 11353.82, + "end": 11356.44, + "probability": 0.9316 + }, + { + "start": 11357.5, + "end": 11359.32, + "probability": 0.8806 + }, + { + "start": 11360.04, + "end": 11360.34, + "probability": 0.8491 + }, + { + "start": 11362.02, + "end": 11366.22, + "probability": 0.9754 + }, + { + "start": 11368.36, + "end": 11370.14, + "probability": 0.991 + }, + { + "start": 11371.14, + "end": 11372.08, + "probability": 0.9802 + }, + { + "start": 11372.88, + "end": 11373.74, + "probability": 0.9514 + }, + { + "start": 11373.82, + "end": 11374.72, + "probability": 0.9186 + }, + { + "start": 11374.78, + "end": 11376.14, + "probability": 0.3349 + }, + { + "start": 11377.0, + "end": 11378.52, + "probability": 0.9587 + }, + { + "start": 11379.84, + "end": 11380.92, + "probability": 0.9763 + }, + { + "start": 11381.58, + "end": 11382.27, + "probability": 0.8823 + }, + { + "start": 11383.24, + "end": 11385.06, + "probability": 0.6855 + }, + { + "start": 11386.34, + "end": 11392.46, + "probability": 0.97 + }, + { + "start": 11393.44, + "end": 11394.56, + "probability": 0.8573 + }, + { + "start": 11396.1, + "end": 11396.54, + "probability": 0.9702 + }, + { + "start": 11396.6, + "end": 11400.1, + "probability": 0.9868 + }, + { + "start": 11402.32, + "end": 11403.27, + "probability": 0.9995 + }, + { + "start": 11404.04, + "end": 11405.04, + "probability": 0.6801 + }, + { + "start": 11405.74, + "end": 11406.68, + "probability": 0.9013 + }, + { + "start": 11406.76, + "end": 11407.84, + "probability": 0.9561 + }, + { + "start": 11408.08, + "end": 11409.14, + "probability": 0.8273 + }, + { + "start": 11409.32, + "end": 11409.32, + "probability": 0.0785 + }, + { + "start": 11411.44, + "end": 11413.04, + "probability": 0.0889 + }, + { + "start": 11413.46, + "end": 11416.38, + "probability": 0.1999 + }, + { + "start": 11417.8, + "end": 11419.08, + "probability": 0.6304 + }, + { + "start": 11420.0, + "end": 11420.24, + "probability": 0.1087 + }, + { + "start": 11420.24, + "end": 11420.24, + "probability": 0.0386 + }, + { + "start": 11420.24, + "end": 11420.24, + "probability": 0.1656 + }, + { + "start": 11420.24, + "end": 11422.76, + "probability": 0.3596 + }, + { + "start": 11424.02, + "end": 11425.18, + "probability": 0.975 + }, + { + "start": 11426.06, + "end": 11428.34, + "probability": 0.9885 + }, + { + "start": 11429.14, + "end": 11430.58, + "probability": 0.9553 + }, + { + "start": 11431.76, + "end": 11435.44, + "probability": 0.8337 + }, + { + "start": 11436.98, + "end": 11443.28, + "probability": 0.9903 + }, + { + "start": 11444.18, + "end": 11445.94, + "probability": 0.9204 + }, + { + "start": 11447.34, + "end": 11450.76, + "probability": 0.7596 + }, + { + "start": 11451.68, + "end": 11453.34, + "probability": 0.9731 + }, + { + "start": 11453.64, + "end": 11455.5, + "probability": 0.9919 + }, + { + "start": 11456.64, + "end": 11457.74, + "probability": 0.9854 + }, + { + "start": 11458.72, + "end": 11463.62, + "probability": 0.6763 + }, + { + "start": 11464.74, + "end": 11466.3, + "probability": 0.9674 + }, + { + "start": 11468.38, + "end": 11471.74, + "probability": 0.7975 + }, + { + "start": 11472.2, + "end": 11473.86, + "probability": 0.9969 + }, + { + "start": 11475.1, + "end": 11475.83, + "probability": 0.6608 + }, + { + "start": 11477.34, + "end": 11484.0, + "probability": 0.8804 + }, + { + "start": 11484.86, + "end": 11487.66, + "probability": 0.9891 + }, + { + "start": 11487.8, + "end": 11488.98, + "probability": 0.8315 + }, + { + "start": 11490.4, + "end": 11493.38, + "probability": 0.9677 + }, + { + "start": 11495.46, + "end": 11497.78, + "probability": 0.9521 + }, + { + "start": 11498.92, + "end": 11504.46, + "probability": 0.9363 + }, + { + "start": 11504.58, + "end": 11505.26, + "probability": 0.8444 + }, + { + "start": 11505.96, + "end": 11508.13, + "probability": 0.4952 + }, + { + "start": 11510.08, + "end": 11513.68, + "probability": 0.9965 + }, + { + "start": 11515.3, + "end": 11516.84, + "probability": 0.7227 + }, + { + "start": 11517.7, + "end": 11519.68, + "probability": 0.7641 + }, + { + "start": 11521.72, + "end": 11523.27, + "probability": 0.9373 + }, + { + "start": 11524.64, + "end": 11526.6, + "probability": 0.9117 + }, + { + "start": 11528.1, + "end": 11532.38, + "probability": 0.9544 + }, + { + "start": 11533.02, + "end": 11535.1, + "probability": 0.8181 + }, + { + "start": 11536.0, + "end": 11536.24, + "probability": 0.817 + }, + { + "start": 11536.36, + "end": 11540.86, + "probability": 0.9085 + }, + { + "start": 11541.34, + "end": 11542.54, + "probability": 0.7152 + }, + { + "start": 11543.24, + "end": 11545.6, + "probability": 0.9667 + }, + { + "start": 11545.76, + "end": 11549.86, + "probability": 0.973 + }, + { + "start": 11550.42, + "end": 11551.56, + "probability": 0.8142 + }, + { + "start": 11552.32, + "end": 11553.3, + "probability": 0.8976 + }, + { + "start": 11553.9, + "end": 11555.46, + "probability": 0.9897 + }, + { + "start": 11556.56, + "end": 11561.14, + "probability": 0.9926 + }, + { + "start": 11561.48, + "end": 11562.28, + "probability": 0.566 + }, + { + "start": 11563.28, + "end": 11564.28, + "probability": 0.5034 + }, + { + "start": 11564.88, + "end": 11564.88, + "probability": 0.2002 + }, + { + "start": 11564.96, + "end": 11567.32, + "probability": 0.7686 + }, + { + "start": 11568.68, + "end": 11569.4, + "probability": 0.5368 + }, + { + "start": 11570.58, + "end": 11572.32, + "probability": 0.9517 + }, + { + "start": 11574.02, + "end": 11575.94, + "probability": 0.7616 + }, + { + "start": 11576.76, + "end": 11577.7, + "probability": 0.8013 + }, + { + "start": 11578.5, + "end": 11584.32, + "probability": 0.966 + }, + { + "start": 11585.66, + "end": 11585.76, + "probability": 0.7042 + }, + { + "start": 11586.58, + "end": 11586.92, + "probability": 0.7709 + }, + { + "start": 11592.58, + "end": 11595.16, + "probability": 0.7775 + }, + { + "start": 11595.94, + "end": 11599.94, + "probability": 0.7367 + }, + { + "start": 11600.48, + "end": 11602.1, + "probability": 0.8901 + }, + { + "start": 11602.72, + "end": 11604.76, + "probability": 0.8801 + }, + { + "start": 11605.66, + "end": 11608.36, + "probability": 0.9707 + }, + { + "start": 11609.22, + "end": 11613.46, + "probability": 0.9459 + }, + { + "start": 11614.88, + "end": 11618.68, + "probability": 0.9408 + }, + { + "start": 11620.1, + "end": 11623.06, + "probability": 0.969 + }, + { + "start": 11623.78, + "end": 11624.48, + "probability": 0.7964 + }, + { + "start": 11625.28, + "end": 11627.92, + "probability": 0.9167 + }, + { + "start": 11628.9, + "end": 11630.0, + "probability": 0.9661 + }, + { + "start": 11631.2, + "end": 11633.0, + "probability": 0.8978 + }, + { + "start": 11633.58, + "end": 11635.58, + "probability": 0.7498 + }, + { + "start": 11636.2, + "end": 11638.06, + "probability": 0.5006 + }, + { + "start": 11638.6, + "end": 11642.08, + "probability": 0.9849 + }, + { + "start": 11642.68, + "end": 11646.46, + "probability": 0.8947 + }, + { + "start": 11647.3, + "end": 11655.24, + "probability": 0.9894 + }, + { + "start": 11655.86, + "end": 11656.66, + "probability": 0.5885 + }, + { + "start": 11657.18, + "end": 11658.0, + "probability": 0.8949 + }, + { + "start": 11658.6, + "end": 11659.06, + "probability": 0.5858 + }, + { + "start": 11659.64, + "end": 11660.14, + "probability": 0.5873 + }, + { + "start": 11660.98, + "end": 11662.64, + "probability": 0.9503 + }, + { + "start": 11663.26, + "end": 11667.5, + "probability": 0.9817 + }, + { + "start": 11668.3, + "end": 11668.98, + "probability": 0.857 + }, + { + "start": 11669.74, + "end": 11672.28, + "probability": 0.7122 + }, + { + "start": 11673.54, + "end": 11677.98, + "probability": 0.9094 + }, + { + "start": 11678.5, + "end": 11682.73, + "probability": 0.9291 + }, + { + "start": 11683.3, + "end": 11684.6, + "probability": 0.8682 + }, + { + "start": 11685.46, + "end": 11687.74, + "probability": 0.9001 + }, + { + "start": 11688.2, + "end": 11688.92, + "probability": 0.6308 + }, + { + "start": 11688.98, + "end": 11692.56, + "probability": 0.937 + }, + { + "start": 11693.18, + "end": 11695.76, + "probability": 0.9297 + }, + { + "start": 11696.24, + "end": 11697.88, + "probability": 0.9517 + }, + { + "start": 11698.22, + "end": 11699.22, + "probability": 0.7486 + }, + { + "start": 11699.74, + "end": 11701.0, + "probability": 0.9747 + }, + { + "start": 11701.42, + "end": 11703.84, + "probability": 0.9888 + }, + { + "start": 11704.24, + "end": 11704.72, + "probability": 0.7808 + }, + { + "start": 11705.3, + "end": 11706.62, + "probability": 0.9369 + }, + { + "start": 11706.98, + "end": 11708.56, + "probability": 0.9375 + }, + { + "start": 11709.42, + "end": 11711.9, + "probability": 0.6428 + }, + { + "start": 11712.42, + "end": 11712.9, + "probability": 0.8466 + }, + { + "start": 11712.98, + "end": 11714.94, + "probability": 0.8353 + }, + { + "start": 11715.0, + "end": 11716.76, + "probability": 0.9106 + }, + { + "start": 11717.38, + "end": 11720.18, + "probability": 0.8731 + }, + { + "start": 11720.82, + "end": 11723.8, + "probability": 0.9183 + }, + { + "start": 11724.5, + "end": 11728.96, + "probability": 0.4663 + }, + { + "start": 11729.52, + "end": 11730.36, + "probability": 0.7511 + }, + { + "start": 11731.34, + "end": 11733.46, + "probability": 0.7323 + }, + { + "start": 11734.06, + "end": 11735.34, + "probability": 0.5689 + }, + { + "start": 11736.2, + "end": 11737.14, + "probability": 0.8299 + }, + { + "start": 11737.82, + "end": 11739.12, + "probability": 0.5859 + }, + { + "start": 11740.04, + "end": 11741.58, + "probability": 0.895 + }, + { + "start": 11742.38, + "end": 11745.7, + "probability": 0.3421 + }, + { + "start": 11746.38, + "end": 11748.1, + "probability": 0.2508 + }, + { + "start": 11748.64, + "end": 11749.62, + "probability": 0.7638 + }, + { + "start": 11750.22, + "end": 11752.98, + "probability": 0.9951 + }, + { + "start": 11753.88, + "end": 11755.84, + "probability": 0.9851 + }, + { + "start": 11756.42, + "end": 11757.62, + "probability": 0.8267 + }, + { + "start": 11758.04, + "end": 11759.28, + "probability": 0.9627 + }, + { + "start": 11759.6, + "end": 11763.28, + "probability": 0.9226 + }, + { + "start": 11763.7, + "end": 11768.8, + "probability": 0.9736 + }, + { + "start": 11769.14, + "end": 11769.62, + "probability": 0.5102 + }, + { + "start": 11769.96, + "end": 11770.82, + "probability": 0.5469 + }, + { + "start": 11771.54, + "end": 11773.16, + "probability": 0.6215 + }, + { + "start": 11773.64, + "end": 11775.86, + "probability": 0.7152 + }, + { + "start": 11777.52, + "end": 11783.54, + "probability": 0.9751 + }, + { + "start": 11784.5, + "end": 11786.54, + "probability": 0.7285 + }, + { + "start": 11786.64, + "end": 11787.32, + "probability": 0.6897 + }, + { + "start": 11787.94, + "end": 11789.12, + "probability": 0.9471 + }, + { + "start": 11790.22, + "end": 11791.5, + "probability": 0.5336 + }, + { + "start": 11792.02, + "end": 11792.72, + "probability": 0.7309 + }, + { + "start": 11793.68, + "end": 11795.0, + "probability": 0.8581 + }, + { + "start": 11795.92, + "end": 11802.02, + "probability": 0.9891 + }, + { + "start": 11802.98, + "end": 11804.68, + "probability": 0.8499 + }, + { + "start": 11806.18, + "end": 11808.44, + "probability": 0.9873 + }, + { + "start": 11809.4, + "end": 11812.25, + "probability": 0.9784 + }, + { + "start": 11812.28, + "end": 11816.66, + "probability": 0.9419 + }, + { + "start": 11817.58, + "end": 11820.08, + "probability": 0.9966 + }, + { + "start": 11820.14, + "end": 11822.39, + "probability": 0.9677 + }, + { + "start": 11823.38, + "end": 11824.52, + "probability": 0.6565 + }, + { + "start": 11825.44, + "end": 11829.42, + "probability": 0.5816 + }, + { + "start": 11829.94, + "end": 11832.72, + "probability": 0.832 + }, + { + "start": 11833.7, + "end": 11839.0, + "probability": 0.9539 + }, + { + "start": 11840.12, + "end": 11845.24, + "probability": 0.9934 + }, + { + "start": 11845.94, + "end": 11849.44, + "probability": 0.7867 + }, + { + "start": 11850.1, + "end": 11851.03, + "probability": 0.4979 + }, + { + "start": 11851.68, + "end": 11853.84, + "probability": 0.8341 + }, + { + "start": 11853.94, + "end": 11857.8, + "probability": 0.9802 + }, + { + "start": 11858.98, + "end": 11861.06, + "probability": 0.9701 + }, + { + "start": 11861.8, + "end": 11862.76, + "probability": 0.7901 + }, + { + "start": 11863.52, + "end": 11866.62, + "probability": 0.9689 + }, + { + "start": 11867.58, + "end": 11869.62, + "probability": 0.9897 + }, + { + "start": 11871.04, + "end": 11872.88, + "probability": 0.657 + }, + { + "start": 11873.9, + "end": 11875.66, + "probability": 0.9598 + }, + { + "start": 11876.12, + "end": 11880.84, + "probability": 0.9854 + }, + { + "start": 11881.76, + "end": 11883.32, + "probability": 0.8625 + }, + { + "start": 11883.74, + "end": 11883.94, + "probability": 0.178 + }, + { + "start": 11883.94, + "end": 11884.92, + "probability": 0.7313 + }, + { + "start": 11885.0, + "end": 11885.7, + "probability": 0.8052 + }, + { + "start": 11886.42, + "end": 11888.76, + "probability": 0.9922 + }, + { + "start": 11890.42, + "end": 11894.4, + "probability": 0.9739 + }, + { + "start": 11895.06, + "end": 11896.84, + "probability": 0.7965 + }, + { + "start": 11897.12, + "end": 11898.22, + "probability": 0.28 + }, + { + "start": 11898.76, + "end": 11901.24, + "probability": 0.7362 + }, + { + "start": 11901.4, + "end": 11902.03, + "probability": 0.8779 + }, + { + "start": 11903.4, + "end": 11906.02, + "probability": 0.9791 + }, + { + "start": 11908.86, + "end": 11911.62, + "probability": 0.9348 + }, + { + "start": 11912.66, + "end": 11914.76, + "probability": 0.9811 + }, + { + "start": 11915.36, + "end": 11917.24, + "probability": 0.9637 + }, + { + "start": 11918.02, + "end": 11920.4, + "probability": 0.8989 + }, + { + "start": 11922.16, + "end": 11923.08, + "probability": 0.602 + }, + { + "start": 11923.24, + "end": 11925.88, + "probability": 0.9738 + }, + { + "start": 11926.04, + "end": 11926.84, + "probability": 0.8418 + }, + { + "start": 11927.54, + "end": 11928.3, + "probability": 0.9575 + }, + { + "start": 11928.84, + "end": 11931.34, + "probability": 0.8634 + }, + { + "start": 11932.18, + "end": 11933.14, + "probability": 0.8437 + }, + { + "start": 11933.72, + "end": 11935.36, + "probability": 0.9872 + }, + { + "start": 11936.28, + "end": 11940.44, + "probability": 0.9989 + }, + { + "start": 11941.58, + "end": 11942.42, + "probability": 0.7211 + }, + { + "start": 11944.26, + "end": 11948.26, + "probability": 0.9829 + }, + { + "start": 11948.66, + "end": 11949.74, + "probability": 0.9761 + }, + { + "start": 11950.34, + "end": 11952.96, + "probability": 0.9902 + }, + { + "start": 11953.1, + "end": 11953.62, + "probability": 0.8345 + }, + { + "start": 11954.74, + "end": 11958.4, + "probability": 0.9163 + }, + { + "start": 11959.42, + "end": 11962.24, + "probability": 0.8683 + }, + { + "start": 11963.16, + "end": 11966.76, + "probability": 0.9412 + }, + { + "start": 11967.48, + "end": 11969.44, + "probability": 0.945 + }, + { + "start": 11970.66, + "end": 11974.92, + "probability": 0.9961 + }, + { + "start": 11974.92, + "end": 11978.74, + "probability": 0.981 + }, + { + "start": 11978.96, + "end": 11980.54, + "probability": 0.8606 + }, + { + "start": 11980.7, + "end": 11982.3, + "probability": 0.992 + }, + { + "start": 11982.42, + "end": 11983.72, + "probability": 0.915 + }, + { + "start": 11983.8, + "end": 11984.86, + "probability": 0.9884 + }, + { + "start": 11985.88, + "end": 11989.3, + "probability": 0.8056 + }, + { + "start": 11989.66, + "end": 11992.68, + "probability": 0.9557 + }, + { + "start": 11994.24, + "end": 11996.16, + "probability": 0.9634 + }, + { + "start": 11996.3, + "end": 11998.79, + "probability": 0.748 + }, + { + "start": 11999.6, + "end": 12001.3, + "probability": 0.9702 + }, + { + "start": 12002.5, + "end": 12005.74, + "probability": 0.9949 + }, + { + "start": 12006.86, + "end": 12007.84, + "probability": 0.7794 + }, + { + "start": 12008.86, + "end": 12009.96, + "probability": 0.792 + }, + { + "start": 12010.96, + "end": 12013.82, + "probability": 0.9863 + }, + { + "start": 12013.82, + "end": 12017.3, + "probability": 0.9813 + }, + { + "start": 12018.34, + "end": 12021.5, + "probability": 0.7847 + }, + { + "start": 12022.18, + "end": 12023.56, + "probability": 0.8652 + }, + { + "start": 12026.48, + "end": 12028.48, + "probability": 0.9981 + }, + { + "start": 12028.58, + "end": 12031.22, + "probability": 0.9188 + }, + { + "start": 12031.22, + "end": 12034.72, + "probability": 0.9434 + }, + { + "start": 12034.94, + "end": 12035.88, + "probability": 0.2951 + }, + { + "start": 12035.94, + "end": 12036.56, + "probability": 0.5661 + }, + { + "start": 12036.78, + "end": 12039.02, + "probability": 0.984 + }, + { + "start": 12039.22, + "end": 12041.12, + "probability": 0.9865 + }, + { + "start": 12041.9, + "end": 12043.3, + "probability": 0.8995 + }, + { + "start": 12045.38, + "end": 12050.06, + "probability": 0.8494 + }, + { + "start": 12051.52, + "end": 12057.76, + "probability": 0.9251 + }, + { + "start": 12058.78, + "end": 12058.9, + "probability": 0.6912 + }, + { + "start": 12060.16, + "end": 12061.12, + "probability": 0.6597 + }, + { + "start": 12061.18, + "end": 12062.1, + "probability": 0.9474 + }, + { + "start": 12062.5, + "end": 12064.2, + "probability": 0.9255 + }, + { + "start": 12064.28, + "end": 12064.66, + "probability": 0.8095 + }, + { + "start": 12064.7, + "end": 12065.64, + "probability": 0.8056 + }, + { + "start": 12065.82, + "end": 12066.54, + "probability": 0.941 + }, + { + "start": 12066.64, + "end": 12067.36, + "probability": 0.8929 + }, + { + "start": 12067.76, + "end": 12071.08, + "probability": 0.9872 + }, + { + "start": 12071.74, + "end": 12074.76, + "probability": 0.8781 + }, + { + "start": 12074.96, + "end": 12076.02, + "probability": 0.8121 + }, + { + "start": 12076.4, + "end": 12077.42, + "probability": 0.9837 + }, + { + "start": 12078.08, + "end": 12079.7, + "probability": 0.9253 + }, + { + "start": 12079.92, + "end": 12082.3, + "probability": 0.9623 + }, + { + "start": 12082.92, + "end": 12084.52, + "probability": 0.9609 + }, + { + "start": 12085.14, + "end": 12087.28, + "probability": 0.9416 + }, + { + "start": 12087.54, + "end": 12088.76, + "probability": 0.9923 + }, + { + "start": 12089.52, + "end": 12090.58, + "probability": 0.9388 + }, + { + "start": 12091.8, + "end": 12094.56, + "probability": 0.9185 + }, + { + "start": 12095.38, + "end": 12098.26, + "probability": 0.9427 + }, + { + "start": 12098.7, + "end": 12099.42, + "probability": 0.7499 + }, + { + "start": 12099.66, + "end": 12100.9, + "probability": 0.9962 + }, + { + "start": 12101.08, + "end": 12102.66, + "probability": 0.5101 + }, + { + "start": 12102.72, + "end": 12103.48, + "probability": 0.84 + }, + { + "start": 12103.6, + "end": 12105.18, + "probability": 0.4984 + }, + { + "start": 12106.18, + "end": 12110.24, + "probability": 0.9441 + }, + { + "start": 12110.88, + "end": 12111.38, + "probability": 0.7794 + }, + { + "start": 12111.5, + "end": 12112.42, + "probability": 0.9324 + }, + { + "start": 12112.58, + "end": 12113.3, + "probability": 0.7488 + }, + { + "start": 12113.8, + "end": 12114.46, + "probability": 0.9579 + }, + { + "start": 12115.02, + "end": 12118.14, + "probability": 0.6595 + }, + { + "start": 12118.14, + "end": 12121.92, + "probability": 0.8478 + }, + { + "start": 12122.18, + "end": 12122.48, + "probability": 0.6911 + }, + { + "start": 12122.5, + "end": 12123.24, + "probability": 0.584 + }, + { + "start": 12123.28, + "end": 12123.79, + "probability": 0.9076 + }, + { + "start": 12124.66, + "end": 12127.56, + "probability": 0.9858 + }, + { + "start": 12129.16, + "end": 12129.6, + "probability": 0.0538 + }, + { + "start": 12130.92, + "end": 12134.9, + "probability": 0.9025 + }, + { + "start": 12136.7, + "end": 12137.74, + "probability": 0.792 + }, + { + "start": 12138.62, + "end": 12139.14, + "probability": 0.758 + }, + { + "start": 12140.24, + "end": 12140.98, + "probability": 0.7668 + }, + { + "start": 12141.04, + "end": 12143.02, + "probability": 0.9655 + }, + { + "start": 12143.06, + "end": 12143.46, + "probability": 0.8438 + }, + { + "start": 12143.48, + "end": 12145.8, + "probability": 0.9878 + }, + { + "start": 12146.04, + "end": 12146.68, + "probability": 0.979 + }, + { + "start": 12147.9, + "end": 12148.22, + "probability": 0.7855 + }, + { + "start": 12148.28, + "end": 12148.76, + "probability": 0.8592 + }, + { + "start": 12148.78, + "end": 12149.66, + "probability": 0.4965 + }, + { + "start": 12149.74, + "end": 12152.8, + "probability": 0.9353 + }, + { + "start": 12152.98, + "end": 12155.14, + "probability": 0.8784 + }, + { + "start": 12155.86, + "end": 12161.66, + "probability": 0.9272 + }, + { + "start": 12161.9, + "end": 12164.34, + "probability": 0.707 + }, + { + "start": 12164.84, + "end": 12167.86, + "probability": 0.7901 + }, + { + "start": 12168.24, + "end": 12169.08, + "probability": 0.6888 + }, + { + "start": 12169.54, + "end": 12169.84, + "probability": 0.4555 + }, + { + "start": 12170.38, + "end": 12172.36, + "probability": 0.8716 + }, + { + "start": 12173.52, + "end": 12177.22, + "probability": 0.9631 + }, + { + "start": 12178.28, + "end": 12179.46, + "probability": 0.9854 + }, + { + "start": 12180.32, + "end": 12181.78, + "probability": 0.6861 + }, + { + "start": 12183.0, + "end": 12183.9, + "probability": 0.934 + }, + { + "start": 12185.3, + "end": 12187.4, + "probability": 0.8997 + }, + { + "start": 12188.12, + "end": 12190.54, + "probability": 0.9451 + }, + { + "start": 12191.86, + "end": 12192.98, + "probability": 0.967 + }, + { + "start": 12193.84, + "end": 12197.8, + "probability": 0.9372 + }, + { + "start": 12198.72, + "end": 12203.56, + "probability": 0.8058 + }, + { + "start": 12203.62, + "end": 12204.5, + "probability": 0.7895 + }, + { + "start": 12206.3, + "end": 12209.98, + "probability": 0.9565 + }, + { + "start": 12210.06, + "end": 12212.68, + "probability": 0.882 + }, + { + "start": 12212.9, + "end": 12215.36, + "probability": 0.8916 + }, + { + "start": 12215.36, + "end": 12215.62, + "probability": 0.7045 + }, + { + "start": 12215.8, + "end": 12215.9, + "probability": 0.4526 + }, + { + "start": 12216.38, + "end": 12217.12, + "probability": 0.7688 + }, + { + "start": 12217.66, + "end": 12222.26, + "probability": 0.9642 + }, + { + "start": 12222.54, + "end": 12225.0, + "probability": 0.9089 + }, + { + "start": 12225.74, + "end": 12228.62, + "probability": 0.7493 + }, + { + "start": 12229.36, + "end": 12231.41, + "probability": 0.9979 + }, + { + "start": 12232.2, + "end": 12233.1, + "probability": 0.856 + }, + { + "start": 12233.96, + "end": 12237.24, + "probability": 0.9731 + }, + { + "start": 12237.42, + "end": 12239.84, + "probability": 0.5507 + }, + { + "start": 12239.9, + "end": 12241.64, + "probability": 0.9956 + }, + { + "start": 12242.22, + "end": 12243.3, + "probability": 0.6509 + }, + { + "start": 12243.34, + "end": 12247.28, + "probability": 0.7078 + }, + { + "start": 12247.78, + "end": 12248.34, + "probability": 0.7327 + }, + { + "start": 12249.26, + "end": 12250.14, + "probability": 0.4255 + }, + { + "start": 12251.28, + "end": 12252.28, + "probability": 0.9501 + }, + { + "start": 12252.56, + "end": 12253.14, + "probability": 0.8168 + }, + { + "start": 12253.52, + "end": 12255.32, + "probability": 0.9041 + }, + { + "start": 12255.66, + "end": 12260.58, + "probability": 0.8657 + }, + { + "start": 12261.46, + "end": 12265.44, + "probability": 0.9935 + }, + { + "start": 12266.22, + "end": 12269.82, + "probability": 0.8266 + }, + { + "start": 12270.38, + "end": 12271.64, + "probability": 0.6948 + }, + { + "start": 12272.84, + "end": 12274.88, + "probability": 0.8943 + }, + { + "start": 12276.4, + "end": 12278.46, + "probability": 0.9938 + }, + { + "start": 12279.4, + "end": 12280.5, + "probability": 0.979 + }, + { + "start": 12282.38, + "end": 12284.26, + "probability": 0.9472 + }, + { + "start": 12284.94, + "end": 12286.04, + "probability": 0.9868 + }, + { + "start": 12287.02, + "end": 12288.8, + "probability": 0.9941 + }, + { + "start": 12289.34, + "end": 12291.58, + "probability": 0.9517 + }, + { + "start": 12292.54, + "end": 12295.76, + "probability": 0.5789 + }, + { + "start": 12296.66, + "end": 12299.46, + "probability": 0.8448 + }, + { + "start": 12299.56, + "end": 12300.14, + "probability": 0.776 + }, + { + "start": 12300.58, + "end": 12306.08, + "probability": 0.9727 + }, + { + "start": 12306.3, + "end": 12307.88, + "probability": 0.7909 + }, + { + "start": 12308.12, + "end": 12311.08, + "probability": 0.9803 + }, + { + "start": 12311.3, + "end": 12312.38, + "probability": 0.7318 + }, + { + "start": 12312.76, + "end": 12313.63, + "probability": 0.7964 + }, + { + "start": 12314.64, + "end": 12316.72, + "probability": 0.949 + }, + { + "start": 12317.4, + "end": 12318.42, + "probability": 0.8491 + }, + { + "start": 12319.36, + "end": 12321.16, + "probability": 0.0736 + }, + { + "start": 12321.16, + "end": 12321.75, + "probability": 0.3157 + }, + { + "start": 12323.16, + "end": 12325.14, + "probability": 0.8555 + }, + { + "start": 12325.2, + "end": 12325.36, + "probability": 0.5639 + }, + { + "start": 12326.02, + "end": 12327.02, + "probability": 0.673 + }, + { + "start": 12327.6, + "end": 12329.0, + "probability": 0.5211 + }, + { + "start": 12330.54, + "end": 12337.06, + "probability": 0.8456 + }, + { + "start": 12338.58, + "end": 12341.02, + "probability": 0.7073 + }, + { + "start": 12342.92, + "end": 12343.42, + "probability": 0.8631 + }, + { + "start": 12348.1, + "end": 12349.5, + "probability": 0.6605 + }, + { + "start": 12350.96, + "end": 12353.3, + "probability": 0.6503 + }, + { + "start": 12355.1, + "end": 12356.44, + "probability": 0.9709 + }, + { + "start": 12357.88, + "end": 12358.94, + "probability": 0.9697 + }, + { + "start": 12359.68, + "end": 12360.16, + "probability": 0.9796 + }, + { + "start": 12361.1, + "end": 12363.92, + "probability": 0.9968 + }, + { + "start": 12365.32, + "end": 12365.94, + "probability": 0.7494 + }, + { + "start": 12366.12, + "end": 12366.74, + "probability": 0.8804 + }, + { + "start": 12367.0, + "end": 12371.72, + "probability": 0.5339 + }, + { + "start": 12371.84, + "end": 12373.24, + "probability": 0.65 + }, + { + "start": 12374.76, + "end": 12377.78, + "probability": 0.7589 + }, + { + "start": 12378.96, + "end": 12381.49, + "probability": 0.9402 + }, + { + "start": 12382.94, + "end": 12384.28, + "probability": 0.8389 + }, + { + "start": 12385.06, + "end": 12387.94, + "probability": 0.3039 + }, + { + "start": 12388.64, + "end": 12388.96, + "probability": 0.8533 + }, + { + "start": 12389.56, + "end": 12391.18, + "probability": 0.2078 + }, + { + "start": 12394.14, + "end": 12396.56, + "probability": 0.9199 + }, + { + "start": 12397.6, + "end": 12400.82, + "probability": 0.991 + }, + { + "start": 12402.0, + "end": 12403.62, + "probability": 0.8466 + }, + { + "start": 12404.44, + "end": 12405.63, + "probability": 0.9861 + }, + { + "start": 12407.64, + "end": 12409.78, + "probability": 0.8457 + }, + { + "start": 12411.04, + "end": 12412.64, + "probability": 0.8679 + }, + { + "start": 12413.7, + "end": 12415.66, + "probability": 0.9853 + }, + { + "start": 12416.46, + "end": 12418.12, + "probability": 0.8593 + }, + { + "start": 12420.34, + "end": 12421.2, + "probability": 0.5783 + }, + { + "start": 12421.76, + "end": 12422.54, + "probability": 0.7268 + }, + { + "start": 12422.62, + "end": 12422.9, + "probability": 0.9567 + }, + { + "start": 12423.52, + "end": 12424.62, + "probability": 0.9739 + }, + { + "start": 12425.46, + "end": 12426.68, + "probability": 0.1637 + }, + { + "start": 12428.04, + "end": 12429.38, + "probability": 0.7991 + }, + { + "start": 12430.5, + "end": 12431.96, + "probability": 0.7582 + }, + { + "start": 12432.08, + "end": 12433.86, + "probability": 0.9545 + }, + { + "start": 12434.78, + "end": 12439.06, + "probability": 0.9551 + }, + { + "start": 12440.68, + "end": 12444.08, + "probability": 0.9922 + }, + { + "start": 12446.04, + "end": 12449.14, + "probability": 0.9354 + }, + { + "start": 12450.1, + "end": 12451.54, + "probability": 0.9629 + }, + { + "start": 12452.32, + "end": 12453.79, + "probability": 0.917 + }, + { + "start": 12455.04, + "end": 12455.16, + "probability": 0.7946 + }, + { + "start": 12455.22, + "end": 12458.0, + "probability": 0.9907 + }, + { + "start": 12458.18, + "end": 12459.0, + "probability": 0.5779 + }, + { + "start": 12461.54, + "end": 12465.54, + "probability": 0.8738 + }, + { + "start": 12467.08, + "end": 12467.42, + "probability": 0.9612 + }, + { + "start": 12468.02, + "end": 12468.72, + "probability": 0.8275 + }, + { + "start": 12471.92, + "end": 12475.74, + "probability": 0.82 + }, + { + "start": 12476.48, + "end": 12477.6, + "probability": 0.6247 + }, + { + "start": 12478.24, + "end": 12481.14, + "probability": 0.8623 + }, + { + "start": 12482.14, + "end": 12486.76, + "probability": 0.8807 + }, + { + "start": 12488.1, + "end": 12488.8, + "probability": 0.0849 + }, + { + "start": 12489.48, + "end": 12491.36, + "probability": 0.8948 + }, + { + "start": 12492.72, + "end": 12495.0, + "probability": 0.9727 + }, + { + "start": 12496.4, + "end": 12498.78, + "probability": 0.8986 + }, + { + "start": 12499.78, + "end": 12500.58, + "probability": 0.772 + }, + { + "start": 12501.6, + "end": 12505.18, + "probability": 0.9407 + }, + { + "start": 12506.62, + "end": 12508.72, + "probability": 0.9609 + }, + { + "start": 12510.12, + "end": 12512.68, + "probability": 0.9798 + }, + { + "start": 12513.64, + "end": 12515.01, + "probability": 0.9901 + }, + { + "start": 12515.98, + "end": 12516.3, + "probability": 0.8406 + }, + { + "start": 12517.38, + "end": 12518.5, + "probability": 0.425 + }, + { + "start": 12519.98, + "end": 12522.54, + "probability": 0.8409 + }, + { + "start": 12523.88, + "end": 12525.36, + "probability": 0.869 + }, + { + "start": 12525.44, + "end": 12528.49, + "probability": 0.9252 + }, + { + "start": 12528.78, + "end": 12529.34, + "probability": 0.8821 + }, + { + "start": 12529.38, + "end": 12530.06, + "probability": 0.8751 + }, + { + "start": 12530.7, + "end": 12533.34, + "probability": 0.8823 + }, + { + "start": 12534.62, + "end": 12536.82, + "probability": 0.9391 + }, + { + "start": 12537.44, + "end": 12537.5, + "probability": 0.0813 + }, + { + "start": 12537.84, + "end": 12538.97, + "probability": 0.832 + }, + { + "start": 12540.28, + "end": 12545.52, + "probability": 0.9426 + }, + { + "start": 12546.16, + "end": 12549.9, + "probability": 0.9731 + }, + { + "start": 12550.62, + "end": 12553.48, + "probability": 0.72 + }, + { + "start": 12554.2, + "end": 12555.36, + "probability": 0.9644 + }, + { + "start": 12555.92, + "end": 12557.56, + "probability": 0.8165 + }, + { + "start": 12558.36, + "end": 12565.24, + "probability": 0.9056 + }, + { + "start": 12565.56, + "end": 12566.44, + "probability": 0.8149 + }, + { + "start": 12567.24, + "end": 12569.64, + "probability": 0.9912 + }, + { + "start": 12569.96, + "end": 12569.96, + "probability": 0.322 + }, + { + "start": 12569.96, + "end": 12569.96, + "probability": 0.28 + }, + { + "start": 12569.96, + "end": 12570.32, + "probability": 0.4204 + }, + { + "start": 12570.9, + "end": 12572.98, + "probability": 0.9592 + }, + { + "start": 12573.98, + "end": 12575.94, + "probability": 0.7709 + }, + { + "start": 12576.8, + "end": 12581.24, + "probability": 0.9392 + }, + { + "start": 12581.5, + "end": 12581.78, + "probability": 0.5402 + }, + { + "start": 12582.74, + "end": 12585.41, + "probability": 0.9273 + }, + { + "start": 12586.22, + "end": 12587.26, + "probability": 0.8013 + }, + { + "start": 12587.84, + "end": 12588.6, + "probability": 0.9976 + }, + { + "start": 12590.08, + "end": 12592.2, + "probability": 0.9824 + }, + { + "start": 12592.76, + "end": 12597.42, + "probability": 0.7329 + }, + { + "start": 12597.56, + "end": 12599.2, + "probability": 0.8013 + }, + { + "start": 12599.7, + "end": 12600.2, + "probability": 0.5708 + }, + { + "start": 12600.74, + "end": 12601.85, + "probability": 0.592 + }, + { + "start": 12604.28, + "end": 12607.68, + "probability": 0.5159 + }, + { + "start": 12609.68, + "end": 12610.36, + "probability": 0.511 + }, + { + "start": 12610.46, + "end": 12612.08, + "probability": 0.983 + }, + { + "start": 12612.12, + "end": 12615.6, + "probability": 0.8931 + }, + { + "start": 12615.7, + "end": 12616.54, + "probability": 0.3893 + }, + { + "start": 12616.82, + "end": 12617.8, + "probability": 0.7777 + }, + { + "start": 12618.5, + "end": 12619.2, + "probability": 0.8497 + }, + { + "start": 12619.8, + "end": 12621.56, + "probability": 0.8912 + }, + { + "start": 12622.36, + "end": 12622.82, + "probability": 0.4949 + }, + { + "start": 12622.82, + "end": 12623.26, + "probability": 0.7281 + }, + { + "start": 12623.32, + "end": 12624.64, + "probability": 0.7526 + }, + { + "start": 12624.84, + "end": 12625.58, + "probability": 0.7689 + }, + { + "start": 12626.52, + "end": 12629.2, + "probability": 0.2685 + }, + { + "start": 12631.46, + "end": 12633.6, + "probability": 0.6882 + }, + { + "start": 12635.22, + "end": 12636.8, + "probability": 0.5676 + }, + { + "start": 12637.96, + "end": 12639.14, + "probability": 0.6452 + }, + { + "start": 12640.32, + "end": 12641.2, + "probability": 0.936 + }, + { + "start": 12642.24, + "end": 12642.52, + "probability": 0.9329 + }, + { + "start": 12643.16, + "end": 12643.96, + "probability": 0.9854 + }, + { + "start": 12645.38, + "end": 12646.58, + "probability": 0.9777 + }, + { + "start": 12648.8, + "end": 12649.26, + "probability": 0.9498 + }, + { + "start": 12649.98, + "end": 12650.68, + "probability": 0.9404 + }, + { + "start": 12652.02, + "end": 12652.64, + "probability": 0.6663 + }, + { + "start": 12653.4, + "end": 12655.32, + "probability": 0.991 + }, + { + "start": 12656.26, + "end": 12659.08, + "probability": 0.993 + }, + { + "start": 12661.94, + "end": 12662.39, + "probability": 0.3515 + }, + { + "start": 12664.54, + "end": 12666.5, + "probability": 0.8815 + }, + { + "start": 12669.24, + "end": 12669.84, + "probability": 0.7551 + }, + { + "start": 12670.44, + "end": 12671.76, + "probability": 0.8887 + }, + { + "start": 12673.48, + "end": 12675.9, + "probability": 0.9739 + }, + { + "start": 12676.7, + "end": 12678.06, + "probability": 0.9954 + }, + { + "start": 12679.18, + "end": 12679.82, + "probability": 0.2896 + }, + { + "start": 12680.7, + "end": 12682.75, + "probability": 0.8068 + }, + { + "start": 12684.64, + "end": 12691.26, + "probability": 0.9713 + }, + { + "start": 12692.62, + "end": 12693.16, + "probability": 0.9888 + }, + { + "start": 12694.44, + "end": 12696.02, + "probability": 0.9642 + }, + { + "start": 12698.14, + "end": 12698.78, + "probability": 0.7689 + }, + { + "start": 12699.44, + "end": 12703.01, + "probability": 0.6291 + }, + { + "start": 12703.82, + "end": 12705.7, + "probability": 0.929 + }, + { + "start": 12707.96, + "end": 12709.58, + "probability": 0.9705 + }, + { + "start": 12710.92, + "end": 12711.92, + "probability": 0.9963 + }, + { + "start": 12712.98, + "end": 12714.34, + "probability": 0.8595 + }, + { + "start": 12715.44, + "end": 12716.8, + "probability": 0.0833 + }, + { + "start": 12717.7, + "end": 12720.5, + "probability": 0.1048 + }, + { + "start": 12720.5, + "end": 12722.72, + "probability": 0.3855 + }, + { + "start": 12722.84, + "end": 12723.02, + "probability": 0.384 + }, + { + "start": 12723.02, + "end": 12723.96, + "probability": 0.9556 + }, + { + "start": 12725.18, + "end": 12726.18, + "probability": 0.9743 + }, + { + "start": 12727.44, + "end": 12728.24, + "probability": 0.9971 + }, + { + "start": 12728.76, + "end": 12729.66, + "probability": 0.6646 + }, + { + "start": 12731.0, + "end": 12731.54, + "probability": 0.8429 + }, + { + "start": 12732.1, + "end": 12733.18, + "probability": 0.958 + }, + { + "start": 12734.84, + "end": 12737.66, + "probability": 0.9422 + }, + { + "start": 12739.1, + "end": 12740.9, + "probability": 0.7133 + }, + { + "start": 12742.3, + "end": 12743.58, + "probability": 0.8916 + }, + { + "start": 12744.52, + "end": 12746.36, + "probability": 0.8685 + }, + { + "start": 12747.51, + "end": 12751.14, + "probability": 0.7085 + }, + { + "start": 12751.76, + "end": 12752.48, + "probability": 0.7296 + }, + { + "start": 12753.52, + "end": 12755.12, + "probability": 0.9757 + }, + { + "start": 12756.0, + "end": 12756.72, + "probability": 0.9133 + }, + { + "start": 12759.02, + "end": 12759.38, + "probability": 0.7535 + }, + { + "start": 12760.0, + "end": 12760.6, + "probability": 0.97 + }, + { + "start": 12762.2, + "end": 12763.58, + "probability": 0.7805 + }, + { + "start": 12764.56, + "end": 12765.04, + "probability": 0.7125 + }, + { + "start": 12765.6, + "end": 12768.18, + "probability": 0.9849 + }, + { + "start": 12768.92, + "end": 12772.5, + "probability": 0.9889 + }, + { + "start": 12773.04, + "end": 12777.04, + "probability": 0.9027 + }, + { + "start": 12777.66, + "end": 12781.28, + "probability": 0.8373 + }, + { + "start": 12782.56, + "end": 12784.2, + "probability": 0.9993 + }, + { + "start": 12784.84, + "end": 12785.66, + "probability": 0.9937 + }, + { + "start": 12787.84, + "end": 12788.32, + "probability": 0.9391 + }, + { + "start": 12789.0, + "end": 12793.18, + "probability": 0.9611 + }, + { + "start": 12793.3, + "end": 12793.74, + "probability": 0.9106 + }, + { + "start": 12793.92, + "end": 12794.88, + "probability": 0.7275 + }, + { + "start": 12795.62, + "end": 12798.06, + "probability": 0.8621 + }, + { + "start": 12799.34, + "end": 12799.54, + "probability": 0.3123 + }, + { + "start": 12800.8, + "end": 12801.04, + "probability": 0.0367 + }, + { + "start": 12801.8, + "end": 12803.37, + "probability": 0.1802 + }, + { + "start": 12803.7, + "end": 12805.06, + "probability": 0.4277 + }, + { + "start": 12806.22, + "end": 12807.84, + "probability": 0.729 + }, + { + "start": 12807.92, + "end": 12809.12, + "probability": 0.1883 + }, + { + "start": 12809.14, + "end": 12810.68, + "probability": 0.1788 + }, + { + "start": 12810.94, + "end": 12811.66, + "probability": 0.4678 + }, + { + "start": 12811.74, + "end": 12813.54, + "probability": 0.9528 + }, + { + "start": 12813.64, + "end": 12815.7, + "probability": 0.9541 + }, + { + "start": 12816.52, + "end": 12818.49, + "probability": 0.5709 + }, + { + "start": 12818.58, + "end": 12820.74, + "probability": 0.9941 + }, + { + "start": 12821.34, + "end": 12824.54, + "probability": 0.8196 + }, + { + "start": 12825.6, + "end": 12828.86, + "probability": 0.9756 + }, + { + "start": 12829.82, + "end": 12830.78, + "probability": 0.2403 + }, + { + "start": 12830.98, + "end": 12833.16, + "probability": 0.8875 + }, + { + "start": 12834.4, + "end": 12837.72, + "probability": 0.7693 + }, + { + "start": 12840.4, + "end": 12840.98, + "probability": 0.7331 + }, + { + "start": 12841.5, + "end": 12844.2, + "probability": 0.8458 + }, + { + "start": 12848.64, + "end": 12850.24, + "probability": 0.775 + }, + { + "start": 12851.06, + "end": 12852.58, + "probability": 0.5282 + }, + { + "start": 12854.08, + "end": 12855.36, + "probability": 0.7157 + }, + { + "start": 12855.5, + "end": 12856.7, + "probability": 0.8539 + }, + { + "start": 12856.82, + "end": 12857.1, + "probability": 0.3159 + }, + { + "start": 12857.12, + "end": 12859.52, + "probability": 0.601 + }, + { + "start": 12860.28, + "end": 12860.4, + "probability": 0.7142 + }, + { + "start": 12860.4, + "end": 12861.08, + "probability": 0.501 + }, + { + "start": 12861.82, + "end": 12863.93, + "probability": 0.7655 + }, + { + "start": 12864.14, + "end": 12865.82, + "probability": 0.7211 + }, + { + "start": 12865.88, + "end": 12866.94, + "probability": 0.9084 + }, + { + "start": 12867.0, + "end": 12867.4, + "probability": 0.9315 + }, + { + "start": 12867.48, + "end": 12867.92, + "probability": 0.9962 + }, + { + "start": 12869.16, + "end": 12870.56, + "probability": 0.9981 + }, + { + "start": 12871.52, + "end": 12871.96, + "probability": 0.8339 + }, + { + "start": 12872.06, + "end": 12875.1, + "probability": 0.9727 + }, + { + "start": 12875.2, + "end": 12875.58, + "probability": 0.7273 + }, + { + "start": 12876.3, + "end": 12879.16, + "probability": 0.9797 + }, + { + "start": 12879.76, + "end": 12880.72, + "probability": 0.9601 + }, + { + "start": 12881.14, + "end": 12881.5, + "probability": 0.6742 + }, + { + "start": 12881.58, + "end": 12882.46, + "probability": 0.9812 + }, + { + "start": 12882.5, + "end": 12883.02, + "probability": 0.7311 + }, + { + "start": 12885.26, + "end": 12886.16, + "probability": 0.9775 + }, + { + "start": 12886.34, + "end": 12887.84, + "probability": 0.715 + }, + { + "start": 12887.84, + "end": 12891.58, + "probability": 0.9241 + }, + { + "start": 12891.62, + "end": 12892.48, + "probability": 0.8677 + }, + { + "start": 12892.62, + "end": 12893.33, + "probability": 0.4651 + }, + { + "start": 12894.74, + "end": 12897.78, + "probability": 0.9893 + }, + { + "start": 12898.96, + "end": 12900.82, + "probability": 0.992 + }, + { + "start": 12902.22, + "end": 12904.9, + "probability": 0.7855 + }, + { + "start": 12905.02, + "end": 12907.12, + "probability": 0.8867 + }, + { + "start": 12907.98, + "end": 12908.68, + "probability": 0.9365 + }, + { + "start": 12908.86, + "end": 12910.0, + "probability": 0.9993 + }, + { + "start": 12911.0, + "end": 12911.5, + "probability": 0.7897 + }, + { + "start": 12912.76, + "end": 12913.86, + "probability": 0.5173 + }, + { + "start": 12914.76, + "end": 12914.96, + "probability": 0.3235 + }, + { + "start": 12914.98, + "end": 12915.14, + "probability": 0.8226 + }, + { + "start": 12915.22, + "end": 12915.96, + "probability": 0.8591 + }, + { + "start": 12916.0, + "end": 12918.88, + "probability": 0.9843 + }, + { + "start": 12918.94, + "end": 12921.6, + "probability": 0.9495 + }, + { + "start": 12921.6, + "end": 12923.38, + "probability": 0.7605 + }, + { + "start": 12924.16, + "end": 12924.98, + "probability": 0.9966 + }, + { + "start": 12925.78, + "end": 12928.7, + "probability": 0.886 + }, + { + "start": 12929.44, + "end": 12930.5, + "probability": 0.7504 + }, + { + "start": 12930.8, + "end": 12933.98, + "probability": 0.8124 + }, + { + "start": 12934.58, + "end": 12938.12, + "probability": 0.9877 + }, + { + "start": 12938.18, + "end": 12938.9, + "probability": 0.3789 + }, + { + "start": 12938.92, + "end": 12939.58, + "probability": 0.5827 + }, + { + "start": 12939.9, + "end": 12941.94, + "probability": 0.7419 + }, + { + "start": 12942.3, + "end": 12942.46, + "probability": 0.2148 + }, + { + "start": 12942.46, + "end": 12942.9, + "probability": 0.6119 + }, + { + "start": 12943.16, + "end": 12943.74, + "probability": 0.4155 + }, + { + "start": 12943.82, + "end": 12945.1, + "probability": 0.9601 + }, + { + "start": 12945.72, + "end": 12948.98, + "probability": 0.981 + }, + { + "start": 12949.4, + "end": 12952.26, + "probability": 0.9545 + }, + { + "start": 12953.6, + "end": 12954.72, + "probability": 0.9801 + }, + { + "start": 12954.84, + "end": 12955.52, + "probability": 0.6435 + }, + { + "start": 12955.7, + "end": 12958.18, + "probability": 0.9847 + }, + { + "start": 12959.46, + "end": 12960.76, + "probability": 0.9549 + }, + { + "start": 12961.34, + "end": 12965.25, + "probability": 0.9946 + }, + { + "start": 12966.42, + "end": 12967.46, + "probability": 0.9849 + }, + { + "start": 12968.04, + "end": 12968.08, + "probability": 0.3619 + }, + { + "start": 12968.08, + "end": 12968.1, + "probability": 0.0681 + }, + { + "start": 12968.2, + "end": 12969.48, + "probability": 0.7704 + }, + { + "start": 12969.68, + "end": 12971.48, + "probability": 0.8656 + }, + { + "start": 12972.06, + "end": 12977.0, + "probability": 0.92 + }, + { + "start": 12977.44, + "end": 12978.48, + "probability": 0.9744 + }, + { + "start": 12979.26, + "end": 12980.56, + "probability": 0.8267 + }, + { + "start": 12981.1, + "end": 12983.58, + "probability": 0.9938 + }, + { + "start": 12984.1, + "end": 12986.42, + "probability": 0.9709 + }, + { + "start": 12986.56, + "end": 12987.78, + "probability": 0.9463 + }, + { + "start": 12988.22, + "end": 12990.44, + "probability": 0.9874 + }, + { + "start": 12990.64, + "end": 12992.36, + "probability": 0.9512 + }, + { + "start": 12992.56, + "end": 12993.4, + "probability": 0.6582 + }, + { + "start": 12994.48, + "end": 12994.62, + "probability": 0.0448 + }, + { + "start": 12994.62, + "end": 12995.64, + "probability": 0.8138 + }, + { + "start": 12995.68, + "end": 12998.58, + "probability": 0.941 + }, + { + "start": 12998.58, + "end": 13001.56, + "probability": 0.9973 + }, + { + "start": 13002.2, + "end": 13002.5, + "probability": 0.6636 + }, + { + "start": 13002.86, + "end": 13004.52, + "probability": 0.9839 + }, + { + "start": 13004.72, + "end": 13007.08, + "probability": 0.8459 + }, + { + "start": 13007.78, + "end": 13009.24, + "probability": 0.6248 + }, + { + "start": 13009.4, + "end": 13009.77, + "probability": 0.9219 + }, + { + "start": 13010.54, + "end": 13012.58, + "probability": 0.9785 + }, + { + "start": 13013.08, + "end": 13016.92, + "probability": 0.9413 + }, + { + "start": 13017.1, + "end": 13017.82, + "probability": 0.9687 + }, + { + "start": 13018.16, + "end": 13018.32, + "probability": 0.5298 + }, + { + "start": 13018.4, + "end": 13019.52, + "probability": 0.9706 + }, + { + "start": 13019.94, + "end": 13023.0, + "probability": 0.9965 + }, + { + "start": 13023.44, + "end": 13025.16, + "probability": 0.7023 + }, + { + "start": 13025.54, + "end": 13028.78, + "probability": 0.8826 + }, + { + "start": 13029.16, + "end": 13029.73, + "probability": 0.7304 + }, + { + "start": 13030.64, + "end": 13032.6, + "probability": 0.9372 + }, + { + "start": 13033.52, + "end": 13034.26, + "probability": 0.9624 + }, + { + "start": 13035.26, + "end": 13036.85, + "probability": 0.9464 + }, + { + "start": 13037.04, + "end": 13037.22, + "probability": 0.3844 + }, + { + "start": 13037.38, + "end": 13039.52, + "probability": 0.9747 + }, + { + "start": 13039.92, + "end": 13042.58, + "probability": 0.9102 + }, + { + "start": 13042.62, + "end": 13044.02, + "probability": 0.952 + }, + { + "start": 13044.44, + "end": 13048.54, + "probability": 0.9941 + }, + { + "start": 13048.54, + "end": 13052.22, + "probability": 0.9772 + }, + { + "start": 13052.74, + "end": 13053.46, + "probability": 0.5398 + }, + { + "start": 13053.62, + "end": 13057.66, + "probability": 0.9313 + }, + { + "start": 13057.86, + "end": 13058.4, + "probability": 0.8526 + }, + { + "start": 13058.66, + "end": 13058.88, + "probability": 0.6412 + }, + { + "start": 13059.22, + "end": 13060.28, + "probability": 0.9075 + }, + { + "start": 13060.44, + "end": 13063.18, + "probability": 0.4146 + }, + { + "start": 13063.38, + "end": 13064.2, + "probability": 0.9474 + }, + { + "start": 13065.38, + "end": 13066.26, + "probability": 0.9789 + }, + { + "start": 13075.68, + "end": 13075.86, + "probability": 0.3344 + }, + { + "start": 13075.88, + "end": 13075.98, + "probability": 0.7233 + }, + { + "start": 13078.32, + "end": 13080.98, + "probability": 0.4984 + }, + { + "start": 13080.98, + "end": 13082.2, + "probability": 0.5842 + }, + { + "start": 13082.46, + "end": 13083.3, + "probability": 0.7534 + }, + { + "start": 13083.56, + "end": 13086.0, + "probability": 0.8772 + }, + { + "start": 13087.0, + "end": 13091.21, + "probability": 0.7989 + }, + { + "start": 13092.08, + "end": 13093.54, + "probability": 0.6598 + }, + { + "start": 13094.96, + "end": 13096.26, + "probability": 0.7935 + }, + { + "start": 13096.8, + "end": 13097.96, + "probability": 0.9055 + }, + { + "start": 13099.28, + "end": 13103.22, + "probability": 0.9253 + }, + { + "start": 13104.2, + "end": 13104.62, + "probability": 0.4523 + }, + { + "start": 13105.3, + "end": 13106.92, + "probability": 0.9261 + }, + { + "start": 13107.5, + "end": 13108.62, + "probability": 0.6891 + }, + { + "start": 13109.8, + "end": 13110.64, + "probability": 0.4935 + }, + { + "start": 13111.2, + "end": 13112.4, + "probability": 0.7647 + }, + { + "start": 13113.56, + "end": 13115.5, + "probability": 0.543 + }, + { + "start": 13116.62, + "end": 13117.82, + "probability": 0.8176 + }, + { + "start": 13118.22, + "end": 13119.16, + "probability": 0.6627 + }, + { + "start": 13120.94, + "end": 13122.62, + "probability": 0.9982 + }, + { + "start": 13124.02, + "end": 13129.86, + "probability": 0.9933 + }, + { + "start": 13131.98, + "end": 13138.02, + "probability": 0.9932 + }, + { + "start": 13139.36, + "end": 13140.68, + "probability": 0.8691 + }, + { + "start": 13142.46, + "end": 13144.6, + "probability": 0.9971 + }, + { + "start": 13145.34, + "end": 13146.4, + "probability": 0.9634 + }, + { + "start": 13147.62, + "end": 13148.58, + "probability": 0.8735 + }, + { + "start": 13150.46, + "end": 13151.7, + "probability": 0.9455 + }, + { + "start": 13152.32, + "end": 13154.98, + "probability": 0.8021 + }, + { + "start": 13156.86, + "end": 13159.36, + "probability": 0.7177 + }, + { + "start": 13159.92, + "end": 13161.16, + "probability": 0.9209 + }, + { + "start": 13161.6, + "end": 13163.7, + "probability": 0.9945 + }, + { + "start": 13166.06, + "end": 13174.7, + "probability": 0.829 + }, + { + "start": 13176.04, + "end": 13176.14, + "probability": 0.2997 + }, + { + "start": 13176.2, + "end": 13178.04, + "probability": 0.8035 + }, + { + "start": 13178.04, + "end": 13180.74, + "probability": 0.9983 + }, + { + "start": 13180.86, + "end": 13181.8, + "probability": 0.9052 + }, + { + "start": 13181.92, + "end": 13182.54, + "probability": 0.8504 + }, + { + "start": 13183.68, + "end": 13186.4, + "probability": 0.9585 + }, + { + "start": 13186.54, + "end": 13187.84, + "probability": 0.7928 + }, + { + "start": 13189.16, + "end": 13191.46, + "probability": 0.9086 + }, + { + "start": 13192.52, + "end": 13197.92, + "probability": 0.9893 + }, + { + "start": 13198.02, + "end": 13199.02, + "probability": 0.5669 + }, + { + "start": 13199.72, + "end": 13199.92, + "probability": 0.447 + }, + { + "start": 13200.04, + "end": 13200.86, + "probability": 0.9418 + }, + { + "start": 13200.94, + "end": 13202.83, + "probability": 0.9956 + }, + { + "start": 13203.94, + "end": 13206.34, + "probability": 0.5338 + }, + { + "start": 13206.4, + "end": 13206.8, + "probability": 0.4501 + }, + { + "start": 13206.86, + "end": 13207.84, + "probability": 0.7526 + }, + { + "start": 13208.16, + "end": 13208.42, + "probability": 0.9533 + }, + { + "start": 13211.46, + "end": 13212.68, + "probability": 0.9001 + }, + { + "start": 13213.2, + "end": 13216.04, + "probability": 0.917 + }, + { + "start": 13217.22, + "end": 13219.82, + "probability": 0.8387 + }, + { + "start": 13220.64, + "end": 13221.1, + "probability": 0.2851 + }, + { + "start": 13221.2, + "end": 13222.4, + "probability": 0.9136 + }, + { + "start": 13222.56, + "end": 13223.18, + "probability": 0.82 + }, + { + "start": 13223.28, + "end": 13226.86, + "probability": 0.9896 + }, + { + "start": 13227.62, + "end": 13229.14, + "probability": 0.9822 + }, + { + "start": 13229.72, + "end": 13230.94, + "probability": 0.9937 + }, + { + "start": 13231.4, + "end": 13236.78, + "probability": 0.9848 + }, + { + "start": 13237.12, + "end": 13238.22, + "probability": 0.9669 + }, + { + "start": 13238.78, + "end": 13239.96, + "probability": 0.957 + }, + { + "start": 13240.6, + "end": 13243.18, + "probability": 0.967 + }, + { + "start": 13243.54, + "end": 13244.72, + "probability": 0.8737 + }, + { + "start": 13244.88, + "end": 13247.56, + "probability": 0.9189 + }, + { + "start": 13248.56, + "end": 13249.72, + "probability": 0.896 + }, + { + "start": 13250.35, + "end": 13255.22, + "probability": 0.9746 + }, + { + "start": 13258.0, + "end": 13258.52, + "probability": 0.789 + }, + { + "start": 13259.04, + "end": 13259.86, + "probability": 0.8594 + }, + { + "start": 13260.08, + "end": 13261.74, + "probability": 0.99 + }, + { + "start": 13262.34, + "end": 13264.48, + "probability": 0.9513 + }, + { + "start": 13264.48, + "end": 13266.4, + "probability": 0.5105 + }, + { + "start": 13267.28, + "end": 13268.34, + "probability": 0.7573 + }, + { + "start": 13269.12, + "end": 13271.0, + "probability": 0.9926 + }, + { + "start": 13271.48, + "end": 13272.52, + "probability": 0.8306 + }, + { + "start": 13273.5, + "end": 13275.8, + "probability": 0.9976 + }, + { + "start": 13276.54, + "end": 13277.63, + "probability": 0.9336 + }, + { + "start": 13278.0, + "end": 13279.0, + "probability": 0.8164 + }, + { + "start": 13279.0, + "end": 13281.48, + "probability": 0.9594 + }, + { + "start": 13282.0, + "end": 13285.16, + "probability": 0.9736 + }, + { + "start": 13285.6, + "end": 13289.08, + "probability": 0.9805 + }, + { + "start": 13289.8, + "end": 13290.98, + "probability": 0.9352 + }, + { + "start": 13291.26, + "end": 13292.3, + "probability": 0.9555 + }, + { + "start": 13292.32, + "end": 13293.3, + "probability": 0.9469 + }, + { + "start": 13293.64, + "end": 13294.56, + "probability": 0.957 + }, + { + "start": 13295.4, + "end": 13297.05, + "probability": 0.801 + }, + { + "start": 13298.4, + "end": 13299.3, + "probability": 0.671 + }, + { + "start": 13299.84, + "end": 13302.1, + "probability": 0.8621 + }, + { + "start": 13302.32, + "end": 13304.5, + "probability": 0.9332 + }, + { + "start": 13305.12, + "end": 13306.11, + "probability": 0.8505 + }, + { + "start": 13306.28, + "end": 13308.68, + "probability": 0.499 + }, + { + "start": 13310.22, + "end": 13312.3, + "probability": 0.8694 + }, + { + "start": 13313.06, + "end": 13314.6, + "probability": 0.8883 + }, + { + "start": 13316.44, + "end": 13318.94, + "probability": 0.8443 + }, + { + "start": 13320.28, + "end": 13320.88, + "probability": 0.7224 + }, + { + "start": 13320.96, + "end": 13321.26, + "probability": 0.8911 + }, + { + "start": 13321.36, + "end": 13321.9, + "probability": 0.9397 + }, + { + "start": 13322.3, + "end": 13323.13, + "probability": 0.9956 + }, + { + "start": 13323.94, + "end": 13325.86, + "probability": 0.998 + }, + { + "start": 13326.7, + "end": 13329.94, + "probability": 0.9639 + }, + { + "start": 13330.56, + "end": 13332.3, + "probability": 0.9914 + }, + { + "start": 13332.82, + "end": 13333.38, + "probability": 0.7885 + }, + { + "start": 13333.66, + "end": 13335.48, + "probability": 0.6947 + }, + { + "start": 13335.9, + "end": 13340.82, + "probability": 0.9946 + }, + { + "start": 13341.16, + "end": 13342.0, + "probability": 0.9048 + }, + { + "start": 13342.18, + "end": 13342.54, + "probability": 0.8602 + }, + { + "start": 13342.72, + "end": 13343.72, + "probability": 0.6643 + }, + { + "start": 13344.68, + "end": 13348.74, + "probability": 0.6936 + }, + { + "start": 13349.36, + "end": 13350.0, + "probability": 0.3737 + }, + { + "start": 13350.94, + "end": 13352.68, + "probability": 0.8352 + }, + { + "start": 13352.8, + "end": 13354.38, + "probability": 0.7753 + }, + { + "start": 13354.42, + "end": 13354.82, + "probability": 0.9383 + }, + { + "start": 13355.0, + "end": 13356.22, + "probability": 0.7455 + }, + { + "start": 13356.44, + "end": 13361.34, + "probability": 0.745 + }, + { + "start": 13361.96, + "end": 13365.1, + "probability": 0.8934 + }, + { + "start": 13366.04, + "end": 13367.7, + "probability": 0.6148 + }, + { + "start": 13367.8, + "end": 13368.6, + "probability": 0.735 + }, + { + "start": 13369.24, + "end": 13372.16, + "probability": 0.9863 + }, + { + "start": 13372.88, + "end": 13375.26, + "probability": 0.809 + }, + { + "start": 13376.36, + "end": 13379.07, + "probability": 0.9457 + }, + { + "start": 13380.26, + "end": 13381.42, + "probability": 0.5966 + }, + { + "start": 13382.0, + "end": 13383.62, + "probability": 0.6817 + }, + { + "start": 13386.19, + "end": 13389.72, + "probability": 0.9362 + }, + { + "start": 13390.24, + "end": 13392.16, + "probability": 0.9875 + }, + { + "start": 13393.36, + "end": 13393.76, + "probability": 0.9283 + }, + { + "start": 13405.0, + "end": 13405.54, + "probability": 0.2724 + }, + { + "start": 13405.94, + "end": 13407.78, + "probability": 0.6064 + }, + { + "start": 13407.94, + "end": 13414.4, + "probability": 0.9348 + }, + { + "start": 13415.88, + "end": 13417.62, + "probability": 0.5524 + }, + { + "start": 13418.0, + "end": 13418.06, + "probability": 0.9348 + }, + { + "start": 13418.06, + "end": 13418.83, + "probability": 0.9849 + }, + { + "start": 13418.9, + "end": 13419.7, + "probability": 0.6625 + }, + { + "start": 13419.84, + "end": 13424.86, + "probability": 0.9899 + }, + { + "start": 13425.58, + "end": 13427.8, + "probability": 0.9996 + }, + { + "start": 13428.76, + "end": 13429.5, + "probability": 0.9528 + }, + { + "start": 13429.68, + "end": 13430.48, + "probability": 0.7875 + }, + { + "start": 13430.54, + "end": 13435.84, + "probability": 0.9878 + }, + { + "start": 13437.2, + "end": 13443.06, + "probability": 0.9976 + }, + { + "start": 13443.74, + "end": 13445.24, + "probability": 0.8551 + }, + { + "start": 13446.58, + "end": 13449.28, + "probability": 0.9937 + }, + { + "start": 13449.96, + "end": 13455.56, + "probability": 0.9507 + }, + { + "start": 13455.64, + "end": 13457.17, + "probability": 0.9982 + }, + { + "start": 13457.7, + "end": 13459.3, + "probability": 0.6833 + }, + { + "start": 13459.38, + "end": 13459.66, + "probability": 0.0117 + }, + { + "start": 13459.66, + "end": 13463.05, + "probability": 0.9639 + }, + { + "start": 13465.66, + "end": 13468.94, + "probability": 0.9765 + }, + { + "start": 13469.14, + "end": 13474.82, + "probability": 0.6168 + }, + { + "start": 13475.7, + "end": 13479.76, + "probability": 0.9585 + }, + { + "start": 13480.3, + "end": 13480.94, + "probability": 0.4792 + }, + { + "start": 13481.26, + "end": 13481.74, + "probability": 0.8705 + }, + { + "start": 13482.42, + "end": 13484.22, + "probability": 0.8403 + }, + { + "start": 13484.72, + "end": 13489.3, + "probability": 0.937 + }, + { + "start": 13489.3, + "end": 13492.42, + "probability": 0.9979 + }, + { + "start": 13493.14, + "end": 13498.28, + "probability": 0.9559 + }, + { + "start": 13499.54, + "end": 13502.28, + "probability": 0.9976 + }, + { + "start": 13502.6, + "end": 13507.44, + "probability": 0.9993 + }, + { + "start": 13508.08, + "end": 13510.28, + "probability": 0.9979 + }, + { + "start": 13510.92, + "end": 13512.66, + "probability": 0.9989 + }, + { + "start": 13513.74, + "end": 13514.7, + "probability": 0.8482 + }, + { + "start": 13514.84, + "end": 13517.02, + "probability": 0.9882 + }, + { + "start": 13517.02, + "end": 13519.46, + "probability": 0.8668 + }, + { + "start": 13520.98, + "end": 13521.8, + "probability": 0.7501 + }, + { + "start": 13521.94, + "end": 13522.88, + "probability": 0.9686 + }, + { + "start": 13523.14, + "end": 13525.1, + "probability": 0.9008 + }, + { + "start": 13525.28, + "end": 13527.68, + "probability": 0.9937 + }, + { + "start": 13529.5, + "end": 13533.94, + "probability": 0.8683 + }, + { + "start": 13534.74, + "end": 13540.02, + "probability": 0.9972 + }, + { + "start": 13540.02, + "end": 13544.68, + "probability": 0.9979 + }, + { + "start": 13545.62, + "end": 13552.92, + "probability": 0.8675 + }, + { + "start": 13553.2, + "end": 13555.66, + "probability": 0.9941 + }, + { + "start": 13556.12, + "end": 13558.22, + "probability": 0.7641 + }, + { + "start": 13559.34, + "end": 13561.8, + "probability": 0.8729 + }, + { + "start": 13562.36, + "end": 13566.3, + "probability": 0.9846 + }, + { + "start": 13567.1, + "end": 13568.0, + "probability": 0.6951 + }, + { + "start": 13569.1, + "end": 13574.36, + "probability": 0.9947 + }, + { + "start": 13575.52, + "end": 13577.32, + "probability": 0.9655 + }, + { + "start": 13577.5, + "end": 13579.02, + "probability": 0.9878 + }, + { + "start": 13579.26, + "end": 13583.9, + "probability": 0.994 + }, + { + "start": 13584.5, + "end": 13586.7, + "probability": 0.9941 + }, + { + "start": 13586.76, + "end": 13589.34, + "probability": 0.96 + }, + { + "start": 13589.46, + "end": 13590.08, + "probability": 0.7497 + }, + { + "start": 13590.64, + "end": 13595.32, + "probability": 0.98 + }, + { + "start": 13595.88, + "end": 13599.68, + "probability": 0.9967 + }, + { + "start": 13600.52, + "end": 13603.2, + "probability": 0.9976 + }, + { + "start": 13603.8, + "end": 13604.5, + "probability": 0.896 + }, + { + "start": 13605.34, + "end": 13606.42, + "probability": 0.9693 + }, + { + "start": 13607.3, + "end": 13609.38, + "probability": 0.9887 + }, + { + "start": 13610.18, + "end": 13610.79, + "probability": 0.7834 + }, + { + "start": 13611.8, + "end": 13612.26, + "probability": 0.6411 + }, + { + "start": 13612.88, + "end": 13616.12, + "probability": 0.9578 + }, + { + "start": 13617.36, + "end": 13622.48, + "probability": 0.9865 + }, + { + "start": 13622.52, + "end": 13625.18, + "probability": 0.9754 + }, + { + "start": 13625.66, + "end": 13627.52, + "probability": 0.9905 + }, + { + "start": 13628.4, + "end": 13632.3, + "probability": 0.6814 + }, + { + "start": 13632.32, + "end": 13634.36, + "probability": 0.9546 + }, + { + "start": 13634.48, + "end": 13636.16, + "probability": 0.9902 + }, + { + "start": 13636.78, + "end": 13641.06, + "probability": 0.991 + }, + { + "start": 13641.12, + "end": 13643.59, + "probability": 0.9878 + }, + { + "start": 13644.14, + "end": 13645.91, + "probability": 0.8896 + }, + { + "start": 13646.44, + "end": 13649.02, + "probability": 0.898 + }, + { + "start": 13649.48, + "end": 13653.02, + "probability": 0.9954 + }, + { + "start": 13653.34, + "end": 13655.02, + "probability": 0.9818 + }, + { + "start": 13656.6, + "end": 13659.42, + "probability": 0.9403 + }, + { + "start": 13660.36, + "end": 13663.44, + "probability": 0.9729 + }, + { + "start": 13664.26, + "end": 13667.2, + "probability": 0.9958 + }, + { + "start": 13667.2, + "end": 13673.4, + "probability": 0.9933 + }, + { + "start": 13674.58, + "end": 13676.82, + "probability": 0.9529 + }, + { + "start": 13677.6, + "end": 13682.14, + "probability": 0.9736 + }, + { + "start": 13682.72, + "end": 13688.28, + "probability": 0.9797 + }, + { + "start": 13688.38, + "end": 13689.6, + "probability": 0.8819 + }, + { + "start": 13692.46, + "end": 13693.08, + "probability": 0.6587 + }, + { + "start": 13693.24, + "end": 13696.28, + "probability": 0.998 + }, + { + "start": 13696.42, + "end": 13702.02, + "probability": 0.9921 + }, + { + "start": 13702.86, + "end": 13706.4, + "probability": 0.9937 + }, + { + "start": 13708.51, + "end": 13713.04, + "probability": 0.9875 + }, + { + "start": 13713.04, + "end": 13715.72, + "probability": 0.9884 + }, + { + "start": 13717.06, + "end": 13717.06, + "probability": 0.123 + }, + { + "start": 13717.24, + "end": 13718.1, + "probability": 0.8888 + }, + { + "start": 13718.18, + "end": 13721.48, + "probability": 0.9927 + }, + { + "start": 13722.06, + "end": 13725.69, + "probability": 0.9961 + }, + { + "start": 13726.52, + "end": 13730.2, + "probability": 0.989 + }, + { + "start": 13731.42, + "end": 13731.42, + "probability": 0.0132 + }, + { + "start": 13731.42, + "end": 13733.36, + "probability": 0.951 + }, + { + "start": 13733.88, + "end": 13735.16, + "probability": 0.8496 + }, + { + "start": 13735.38, + "end": 13738.16, + "probability": 0.9803 + }, + { + "start": 13738.22, + "end": 13741.04, + "probability": 0.9894 + }, + { + "start": 13742.14, + "end": 13747.22, + "probability": 0.9888 + }, + { + "start": 13747.58, + "end": 13750.22, + "probability": 0.9316 + }, + { + "start": 13752.48, + "end": 13753.77, + "probability": 0.9364 + }, + { + "start": 13754.04, + "end": 13758.58, + "probability": 0.9948 + }, + { + "start": 13759.0, + "end": 13760.8, + "probability": 0.9329 + }, + { + "start": 13761.18, + "end": 13764.86, + "probability": 0.8622 + }, + { + "start": 13766.2, + "end": 13767.52, + "probability": 0.931 + }, + { + "start": 13767.6, + "end": 13768.72, + "probability": 0.9379 + }, + { + "start": 13768.96, + "end": 13771.5, + "probability": 0.9084 + }, + { + "start": 13772.08, + "end": 13777.4, + "probability": 0.9373 + }, + { + "start": 13777.4, + "end": 13780.28, + "probability": 0.9163 + }, + { + "start": 13784.08, + "end": 13787.56, + "probability": 0.9928 + }, + { + "start": 13788.92, + "end": 13793.34, + "probability": 0.9749 + }, + { + "start": 13793.38, + "end": 13795.8, + "probability": 0.9707 + }, + { + "start": 13796.92, + "end": 13799.02, + "probability": 0.998 + }, + { + "start": 13799.6, + "end": 13801.98, + "probability": 0.9957 + }, + { + "start": 13803.54, + "end": 13805.4, + "probability": 0.984 + }, + { + "start": 13805.6, + "end": 13807.62, + "probability": 0.9744 + }, + { + "start": 13807.7, + "end": 13809.6, + "probability": 0.9899 + }, + { + "start": 13809.6, + "end": 13812.08, + "probability": 0.9951 + }, + { + "start": 13812.62, + "end": 13816.26, + "probability": 0.9876 + }, + { + "start": 13816.42, + "end": 13817.08, + "probability": 0.5862 + }, + { + "start": 13818.3, + "end": 13820.92, + "probability": 0.9865 + }, + { + "start": 13822.46, + "end": 13826.54, + "probability": 0.9914 + }, + { + "start": 13827.28, + "end": 13831.44, + "probability": 0.9891 + }, + { + "start": 13831.44, + "end": 13835.78, + "probability": 0.993 + }, + { + "start": 13837.56, + "end": 13845.88, + "probability": 0.9898 + }, + { + "start": 13846.68, + "end": 13847.08, + "probability": 0.7484 + }, + { + "start": 13847.2, + "end": 13851.68, + "probability": 0.9278 + }, + { + "start": 13851.86, + "end": 13853.54, + "probability": 0.8642 + }, + { + "start": 13854.9, + "end": 13857.22, + "probability": 0.9454 + }, + { + "start": 13857.44, + "end": 13859.68, + "probability": 0.8027 + }, + { + "start": 13859.8, + "end": 13860.88, + "probability": 0.7397 + }, + { + "start": 13862.54, + "end": 13866.3, + "probability": 0.988 + }, + { + "start": 13866.3, + "end": 13872.34, + "probability": 0.994 + }, + { + "start": 13873.86, + "end": 13874.38, + "probability": 0.5795 + }, + { + "start": 13874.52, + "end": 13875.58, + "probability": 0.9701 + }, + { + "start": 13875.74, + "end": 13877.58, + "probability": 0.9902 + }, + { + "start": 13878.38, + "end": 13880.68, + "probability": 0.9738 + }, + { + "start": 13880.74, + "end": 13883.55, + "probability": 0.9716 + }, + { + "start": 13883.98, + "end": 13886.34, + "probability": 0.993 + }, + { + "start": 13887.02, + "end": 13888.6, + "probability": 0.9836 + }, + { + "start": 13888.8, + "end": 13890.44, + "probability": 0.9927 + }, + { + "start": 13890.74, + "end": 13894.34, + "probability": 0.9001 + }, + { + "start": 13895.28, + "end": 13896.28, + "probability": 0.8382 + }, + { + "start": 13896.42, + "end": 13900.62, + "probability": 0.9927 + }, + { + "start": 13901.48, + "end": 13905.98, + "probability": 0.9964 + }, + { + "start": 13906.56, + "end": 13908.22, + "probability": 0.8291 + }, + { + "start": 13909.54, + "end": 13912.3, + "probability": 0.9966 + }, + { + "start": 13912.3, + "end": 13914.88, + "probability": 1.0 + }, + { + "start": 13915.1, + "end": 13917.02, + "probability": 0.9992 + }, + { + "start": 13917.5, + "end": 13921.92, + "probability": 0.994 + }, + { + "start": 13922.4, + "end": 13923.96, + "probability": 0.8544 + }, + { + "start": 13924.08, + "end": 13925.5, + "probability": 0.993 + }, + { + "start": 13926.62, + "end": 13928.52, + "probability": 0.7589 + }, + { + "start": 13928.6, + "end": 13930.82, + "probability": 0.9082 + }, + { + "start": 13931.66, + "end": 13935.26, + "probability": 0.9417 + }, + { + "start": 13936.18, + "end": 13939.58, + "probability": 0.9758 + }, + { + "start": 13940.64, + "end": 13944.6, + "probability": 0.8907 + }, + { + "start": 13944.84, + "end": 13945.52, + "probability": 0.7717 + }, + { + "start": 13946.44, + "end": 13948.92, + "probability": 0.8695 + }, + { + "start": 13948.98, + "end": 13951.56, + "probability": 0.9932 + }, + { + "start": 13952.56, + "end": 13954.72, + "probability": 0.7438 + }, + { + "start": 13954.74, + "end": 13955.22, + "probability": 0.8617 + }, + { + "start": 13955.36, + "end": 13960.52, + "probability": 0.9167 + }, + { + "start": 13960.52, + "end": 13964.22, + "probability": 0.9976 + }, + { + "start": 13964.26, + "end": 13968.82, + "probability": 0.9849 + }, + { + "start": 13969.42, + "end": 13972.2, + "probability": 0.9951 + }, + { + "start": 13972.34, + "end": 13974.62, + "probability": 0.9934 + }, + { + "start": 13976.04, + "end": 13977.76, + "probability": 0.9937 + }, + { + "start": 13977.86, + "end": 13981.34, + "probability": 0.9952 + }, + { + "start": 13981.5, + "end": 13983.09, + "probability": 0.9786 + }, + { + "start": 13983.72, + "end": 13987.32, + "probability": 0.9927 + }, + { + "start": 13987.84, + "end": 13990.22, + "probability": 0.7621 + }, + { + "start": 13990.82, + "end": 13991.38, + "probability": 0.856 + }, + { + "start": 13992.44, + "end": 13995.28, + "probability": 0.9395 + }, + { + "start": 13995.36, + "end": 13998.88, + "probability": 0.951 + }, + { + "start": 13999.06, + "end": 13999.92, + "probability": 0.979 + }, + { + "start": 14000.3, + "end": 14003.64, + "probability": 0.9819 + }, + { + "start": 14003.78, + "end": 14004.42, + "probability": 0.9132 + }, + { + "start": 14004.56, + "end": 14005.0, + "probability": 0.5483 + }, + { + "start": 14005.06, + "end": 14006.5, + "probability": 0.7877 + }, + { + "start": 14007.06, + "end": 14007.82, + "probability": 0.9751 + }, + { + "start": 14008.34, + "end": 14011.4, + "probability": 0.9864 + }, + { + "start": 14011.46, + "end": 14012.72, + "probability": 0.9979 + }, + { + "start": 14013.82, + "end": 14016.96, + "probability": 0.9983 + }, + { + "start": 14016.96, + "end": 14020.36, + "probability": 0.9988 + }, + { + "start": 14021.08, + "end": 14024.02, + "probability": 0.9937 + }, + { + "start": 14024.28, + "end": 14027.62, + "probability": 0.7666 + }, + { + "start": 14027.62, + "end": 14031.94, + "probability": 0.9618 + }, + { + "start": 14032.54, + "end": 14032.68, + "probability": 0.2631 + }, + { + "start": 14032.82, + "end": 14038.0, + "probability": 0.9063 + }, + { + "start": 14038.0, + "end": 14044.12, + "probability": 0.9977 + }, + { + "start": 14044.6, + "end": 14046.38, + "probability": 0.7853 + }, + { + "start": 14046.64, + "end": 14048.66, + "probability": 0.9774 + }, + { + "start": 14049.22, + "end": 14051.84, + "probability": 0.8886 + }, + { + "start": 14052.2, + "end": 14054.44, + "probability": 0.7717 + }, + { + "start": 14054.52, + "end": 14055.3, + "probability": 0.817 + }, + { + "start": 14055.64, + "end": 14055.84, + "probability": 0.9106 + }, + { + "start": 14055.92, + "end": 14059.22, + "probability": 0.9985 + }, + { + "start": 14059.22, + "end": 14062.98, + "probability": 0.9993 + }, + { + "start": 14063.56, + "end": 14065.84, + "probability": 0.996 + }, + { + "start": 14066.3, + "end": 14068.04, + "probability": 0.9839 + }, + { + "start": 14068.62, + "end": 14069.56, + "probability": 0.9698 + }, + { + "start": 14070.16, + "end": 14070.8, + "probability": 0.7619 + }, + { + "start": 14071.56, + "end": 14075.56, + "probability": 0.999 + }, + { + "start": 14076.22, + "end": 14076.66, + "probability": 0.3617 + }, + { + "start": 14076.8, + "end": 14078.86, + "probability": 0.9163 + }, + { + "start": 14079.0, + "end": 14079.41, + "probability": 0.8342 + }, + { + "start": 14079.64, + "end": 14083.1, + "probability": 0.8998 + }, + { + "start": 14083.58, + "end": 14086.18, + "probability": 0.9973 + }, + { + "start": 14086.98, + "end": 14091.08, + "probability": 0.999 + }, + { + "start": 14091.76, + "end": 14092.14, + "probability": 0.6311 + }, + { + "start": 14092.52, + "end": 14093.18, + "probability": 0.7454 + }, + { + "start": 14093.32, + "end": 14095.22, + "probability": 0.7723 + }, + { + "start": 14095.4, + "end": 14097.14, + "probability": 0.9924 + }, + { + "start": 14097.94, + "end": 14103.68, + "probability": 0.9961 + }, + { + "start": 14103.7, + "end": 14104.35, + "probability": 0.9794 + }, + { + "start": 14104.62, + "end": 14107.62, + "probability": 0.9854 + }, + { + "start": 14107.92, + "end": 14108.96, + "probability": 0.9764 + }, + { + "start": 14109.16, + "end": 14109.58, + "probability": 0.8001 + }, + { + "start": 14109.58, + "end": 14109.93, + "probability": 0.5004 + }, + { + "start": 14111.12, + "end": 14114.3, + "probability": 0.8136 + }, + { + "start": 14115.0, + "end": 14116.68, + "probability": 0.8836 + }, + { + "start": 14117.54, + "end": 14118.04, + "probability": 0.4553 + }, + { + "start": 14118.84, + "end": 14121.02, + "probability": 0.8821 + }, + { + "start": 14121.38, + "end": 14123.56, + "probability": 0.95 + }, + { + "start": 14124.32, + "end": 14126.9, + "probability": 0.929 + }, + { + "start": 14128.26, + "end": 14129.04, + "probability": 0.6651 + }, + { + "start": 14129.54, + "end": 14130.59, + "probability": 0.9563 + }, + { + "start": 14132.34, + "end": 14132.96, + "probability": 0.941 + }, + { + "start": 14133.2, + "end": 14135.96, + "probability": 0.7715 + }, + { + "start": 14139.88, + "end": 14142.36, + "probability": 0.9312 + }, + { + "start": 14142.42, + "end": 14144.9, + "probability": 0.9058 + }, + { + "start": 14145.04, + "end": 14147.06, + "probability": 0.9595 + }, + { + "start": 14149.98, + "end": 14151.82, + "probability": 0.9519 + }, + { + "start": 14152.2, + "end": 14153.2, + "probability": 0.9883 + }, + { + "start": 14153.66, + "end": 14157.22, + "probability": 0.9032 + }, + { + "start": 14157.54, + "end": 14158.18, + "probability": 0.8049 + }, + { + "start": 14158.22, + "end": 14160.32, + "probability": 0.9721 + }, + { + "start": 14160.86, + "end": 14161.74, + "probability": 0.9113 + }, + { + "start": 14162.4, + "end": 14164.88, + "probability": 0.8913 + }, + { + "start": 14165.68, + "end": 14169.12, + "probability": 0.9456 + }, + { + "start": 14169.36, + "end": 14169.98, + "probability": 0.7904 + }, + { + "start": 14170.08, + "end": 14171.16, + "probability": 0.8876 + }, + { + "start": 14171.28, + "end": 14173.12, + "probability": 0.9476 + }, + { + "start": 14173.48, + "end": 14175.88, + "probability": 0.9694 + }, + { + "start": 14176.38, + "end": 14181.72, + "probability": 0.9837 + }, + { + "start": 14183.9, + "end": 14185.54, + "probability": 0.9479 + }, + { + "start": 14185.6, + "end": 14187.44, + "probability": 0.99 + }, + { + "start": 14187.54, + "end": 14188.7, + "probability": 0.9886 + }, + { + "start": 14189.02, + "end": 14194.4, + "probability": 0.9832 + }, + { + "start": 14194.76, + "end": 14198.32, + "probability": 0.997 + }, + { + "start": 14199.12, + "end": 14201.0, + "probability": 0.899 + }, + { + "start": 14201.5, + "end": 14205.24, + "probability": 0.9958 + }, + { + "start": 14206.04, + "end": 14212.64, + "probability": 0.9764 + }, + { + "start": 14213.33, + "end": 14218.42, + "probability": 0.714 + }, + { + "start": 14218.82, + "end": 14220.22, + "probability": 0.6985 + }, + { + "start": 14220.7, + "end": 14227.22, + "probability": 0.9908 + }, + { + "start": 14227.5, + "end": 14229.9, + "probability": 0.999 + }, + { + "start": 14231.68, + "end": 14232.78, + "probability": 0.7603 + }, + { + "start": 14233.84, + "end": 14234.5, + "probability": 0.9402 + }, + { + "start": 14234.58, + "end": 14236.38, + "probability": 0.979 + }, + { + "start": 14236.52, + "end": 14238.04, + "probability": 0.8689 + }, + { + "start": 14238.52, + "end": 14241.82, + "probability": 0.9861 + }, + { + "start": 14241.82, + "end": 14245.18, + "probability": 0.9937 + }, + { + "start": 14245.4, + "end": 14246.38, + "probability": 0.9285 + }, + { + "start": 14246.8, + "end": 14247.88, + "probability": 0.6453 + }, + { + "start": 14248.9, + "end": 14253.08, + "probability": 0.8154 + }, + { + "start": 14253.2, + "end": 14254.52, + "probability": 0.8279 + }, + { + "start": 14256.41, + "end": 14257.92, + "probability": 0.7466 + }, + { + "start": 14257.98, + "end": 14258.66, + "probability": 0.7119 + }, + { + "start": 14258.68, + "end": 14260.5, + "probability": 0.5976 + }, + { + "start": 14260.86, + "end": 14262.62, + "probability": 0.9653 + }, + { + "start": 14262.76, + "end": 14264.38, + "probability": 0.9966 + }, + { + "start": 14265.18, + "end": 14267.04, + "probability": 0.9985 + }, + { + "start": 14268.64, + "end": 14270.38, + "probability": 0.9985 + }, + { + "start": 14271.56, + "end": 14274.54, + "probability": 0.9883 + }, + { + "start": 14274.7, + "end": 14276.42, + "probability": 0.9697 + }, + { + "start": 14276.5, + "end": 14277.32, + "probability": 0.5359 + }, + { + "start": 14277.38, + "end": 14280.28, + "probability": 0.9673 + }, + { + "start": 14282.0, + "end": 14282.9, + "probability": 0.7969 + }, + { + "start": 14283.86, + "end": 14285.26, + "probability": 0.9961 + }, + { + "start": 14289.0, + "end": 14290.28, + "probability": 0.4375 + }, + { + "start": 14290.88, + "end": 14291.58, + "probability": 0.1735 + }, + { + "start": 14292.14, + "end": 14293.24, + "probability": 0.4414 + }, + { + "start": 14294.06, + "end": 14295.89, + "probability": 0.8477 + }, + { + "start": 14297.24, + "end": 14299.08, + "probability": 0.7514 + }, + { + "start": 14299.22, + "end": 14301.4, + "probability": 0.981 + }, + { + "start": 14301.74, + "end": 14305.26, + "probability": 0.7663 + }, + { + "start": 14307.46, + "end": 14313.2, + "probability": 0.779 + }, + { + "start": 14313.74, + "end": 14315.82, + "probability": 0.9196 + }, + { + "start": 14316.96, + "end": 14318.66, + "probability": 0.8018 + }, + { + "start": 14319.44, + "end": 14320.64, + "probability": 0.9969 + }, + { + "start": 14320.74, + "end": 14321.32, + "probability": 0.5052 + }, + { + "start": 14321.7, + "end": 14324.52, + "probability": 0.9993 + }, + { + "start": 14325.12, + "end": 14326.94, + "probability": 0.8044 + }, + { + "start": 14327.48, + "end": 14328.46, + "probability": 0.7521 + }, + { + "start": 14329.06, + "end": 14331.36, + "probability": 0.957 + }, + { + "start": 14331.84, + "end": 14333.42, + "probability": 0.6571 + }, + { + "start": 14334.1, + "end": 14337.78, + "probability": 0.9557 + }, + { + "start": 14338.06, + "end": 14339.74, + "probability": 0.9629 + }, + { + "start": 14341.12, + "end": 14342.02, + "probability": 0.7295 + }, + { + "start": 14342.02, + "end": 14342.44, + "probability": 0.7139 + }, + { + "start": 14342.58, + "end": 14343.16, + "probability": 0.9976 + }, + { + "start": 14344.18, + "end": 14344.86, + "probability": 0.9861 + }, + { + "start": 14345.52, + "end": 14352.84, + "probability": 0.91 + }, + { + "start": 14354.1, + "end": 14355.58, + "probability": 0.9974 + }, + { + "start": 14357.12, + "end": 14357.18, + "probability": 0.5264 + }, + { + "start": 14357.18, + "end": 14360.7, + "probability": 0.9858 + }, + { + "start": 14360.74, + "end": 14361.9, + "probability": 0.3557 + }, + { + "start": 14362.4, + "end": 14363.85, + "probability": 0.9902 + }, + { + "start": 14366.52, + "end": 14368.36, + "probability": 0.8925 + }, + { + "start": 14368.84, + "end": 14369.5, + "probability": 0.7215 + }, + { + "start": 14370.08, + "end": 14374.56, + "probability": 0.9746 + }, + { + "start": 14374.94, + "end": 14379.34, + "probability": 0.9717 + }, + { + "start": 14379.4, + "end": 14380.04, + "probability": 0.7814 + }, + { + "start": 14381.02, + "end": 14383.34, + "probability": 0.7073 + }, + { + "start": 14385.06, + "end": 14388.3, + "probability": 0.9513 + }, + { + "start": 14388.3, + "end": 14391.72, + "probability": 0.9773 + }, + { + "start": 14392.6, + "end": 14394.3, + "probability": 0.9901 + }, + { + "start": 14394.44, + "end": 14394.96, + "probability": 0.4407 + }, + { + "start": 14395.44, + "end": 14395.74, + "probability": 0.478 + }, + { + "start": 14395.86, + "end": 14396.84, + "probability": 0.9946 + }, + { + "start": 14396.86, + "end": 14400.16, + "probability": 0.8895 + }, + { + "start": 14400.22, + "end": 14405.02, + "probability": 0.9207 + }, + { + "start": 14405.78, + "end": 14408.78, + "probability": 0.7506 + }, + { + "start": 14408.84, + "end": 14409.48, + "probability": 0.9031 + }, + { + "start": 14409.5, + "end": 14410.24, + "probability": 0.6255 + }, + { + "start": 14411.36, + "end": 14413.7, + "probability": 0.9916 + }, + { + "start": 14415.48, + "end": 14416.82, + "probability": 0.895 + }, + { + "start": 14416.9, + "end": 14417.14, + "probability": 0.0795 + }, + { + "start": 14426.9, + "end": 14427.34, + "probability": 0.0073 + }, + { + "start": 14439.86, + "end": 14441.22, + "probability": 0.3207 + }, + { + "start": 14441.68, + "end": 14442.54, + "probability": 0.6849 + }, + { + "start": 14443.4, + "end": 14447.14, + "probability": 0.9573 + }, + { + "start": 14448.32, + "end": 14453.24, + "probability": 0.8301 + }, + { + "start": 14457.36, + "end": 14462.06, + "probability": 0.8277 + }, + { + "start": 14463.46, + "end": 14465.28, + "probability": 0.8496 + }, + { + "start": 14470.78, + "end": 14471.4, + "probability": 0.758 + }, + { + "start": 14471.54, + "end": 14474.26, + "probability": 0.849 + }, + { + "start": 14474.48, + "end": 14475.22, + "probability": 0.7292 + }, + { + "start": 14475.56, + "end": 14476.58, + "probability": 0.8566 + }, + { + "start": 14476.64, + "end": 14478.08, + "probability": 0.9637 + }, + { + "start": 14479.1, + "end": 14479.98, + "probability": 0.8389 + }, + { + "start": 14480.24, + "end": 14483.84, + "probability": 0.9979 + }, + { + "start": 14485.1, + "end": 14487.74, + "probability": 0.485 + }, + { + "start": 14488.88, + "end": 14492.88, + "probability": 0.8919 + }, + { + "start": 14493.82, + "end": 14496.84, + "probability": 0.8008 + }, + { + "start": 14497.88, + "end": 14499.5, + "probability": 0.9883 + }, + { + "start": 14500.34, + "end": 14503.02, + "probability": 0.7678 + }, + { + "start": 14503.12, + "end": 14504.28, + "probability": 0.5307 + }, + { + "start": 14504.5, + "end": 14505.66, + "probability": 0.9077 + }, + { + "start": 14505.78, + "end": 14506.36, + "probability": 0.3945 + }, + { + "start": 14506.44, + "end": 14507.41, + "probability": 0.9661 + }, + { + "start": 14508.08, + "end": 14509.88, + "probability": 0.984 + }, + { + "start": 14510.76, + "end": 14511.92, + "probability": 0.5942 + }, + { + "start": 14512.58, + "end": 14515.4, + "probability": 0.7354 + }, + { + "start": 14516.18, + "end": 14519.12, + "probability": 0.9887 + }, + { + "start": 14519.12, + "end": 14522.18, + "probability": 0.9879 + }, + { + "start": 14522.38, + "end": 14523.58, + "probability": 0.8131 + }, + { + "start": 14524.32, + "end": 14528.42, + "probability": 0.9917 + }, + { + "start": 14528.98, + "end": 14530.08, + "probability": 0.9023 + }, + { + "start": 14530.76, + "end": 14532.64, + "probability": 0.797 + }, + { + "start": 14533.24, + "end": 14536.74, + "probability": 0.9242 + }, + { + "start": 14536.94, + "end": 14538.68, + "probability": 0.9764 + }, + { + "start": 14539.36, + "end": 14540.48, + "probability": 0.827 + }, + { + "start": 14541.42, + "end": 14542.14, + "probability": 0.8654 + }, + { + "start": 14543.26, + "end": 14545.46, + "probability": 0.8327 + }, + { + "start": 14546.36, + "end": 14547.3, + "probability": 0.8603 + }, + { + "start": 14548.1, + "end": 14550.6, + "probability": 0.9231 + }, + { + "start": 14550.68, + "end": 14551.06, + "probability": 0.6552 + }, + { + "start": 14552.98, + "end": 14553.68, + "probability": 0.9522 + }, + { + "start": 14555.1, + "end": 14555.96, + "probability": 0.9482 + }, + { + "start": 14557.3, + "end": 14558.34, + "probability": 0.9656 + }, + { + "start": 14558.38, + "end": 14561.9, + "probability": 0.9849 + }, + { + "start": 14562.9, + "end": 14566.27, + "probability": 0.9917 + }, + { + "start": 14567.64, + "end": 14571.48, + "probability": 0.9236 + }, + { + "start": 14572.4, + "end": 14573.7, + "probability": 0.9764 + }, + { + "start": 14574.32, + "end": 14575.32, + "probability": 0.9557 + }, + { + "start": 14576.5, + "end": 14579.24, + "probability": 0.9589 + }, + { + "start": 14580.8, + "end": 14584.78, + "probability": 0.9916 + }, + { + "start": 14585.4, + "end": 14587.44, + "probability": 0.9991 + }, + { + "start": 14588.56, + "end": 14591.6, + "probability": 0.9955 + }, + { + "start": 14592.4, + "end": 14593.96, + "probability": 0.9985 + }, + { + "start": 14594.54, + "end": 14594.8, + "probability": 0.4197 + }, + { + "start": 14596.72, + "end": 14598.32, + "probability": 0.9884 + }, + { + "start": 14598.74, + "end": 14600.31, + "probability": 0.9971 + }, + { + "start": 14601.66, + "end": 14603.68, + "probability": 0.9966 + }, + { + "start": 14603.9, + "end": 14605.0, + "probability": 0.999 + }, + { + "start": 14606.12, + "end": 14607.32, + "probability": 0.9991 + }, + { + "start": 14607.88, + "end": 14608.67, + "probability": 0.9773 + }, + { + "start": 14609.98, + "end": 14611.36, + "probability": 0.7316 + }, + { + "start": 14611.54, + "end": 14615.8, + "probability": 0.9756 + }, + { + "start": 14617.12, + "end": 14617.94, + "probability": 0.3926 + }, + { + "start": 14619.94, + "end": 14623.02, + "probability": 0.9374 + }, + { + "start": 14623.6, + "end": 14626.28, + "probability": 0.8339 + }, + { + "start": 14627.7, + "end": 14628.85, + "probability": 0.9983 + }, + { + "start": 14629.58, + "end": 14630.74, + "probability": 0.9954 + }, + { + "start": 14631.7, + "end": 14633.21, + "probability": 0.998 + }, + { + "start": 14634.2, + "end": 14635.98, + "probability": 0.9203 + }, + { + "start": 14637.16, + "end": 14639.7, + "probability": 0.981 + }, + { + "start": 14639.86, + "end": 14640.82, + "probability": 0.9375 + }, + { + "start": 14641.46, + "end": 14642.78, + "probability": 0.9886 + }, + { + "start": 14642.84, + "end": 14646.74, + "probability": 0.8601 + }, + { + "start": 14647.2, + "end": 14647.72, + "probability": 0.8414 + }, + { + "start": 14647.82, + "end": 14648.56, + "probability": 0.8065 + }, + { + "start": 14648.6, + "end": 14649.0, + "probability": 0.8116 + }, + { + "start": 14649.12, + "end": 14650.12, + "probability": 0.9877 + }, + { + "start": 14650.84, + "end": 14651.52, + "probability": 0.9801 + }, + { + "start": 14651.68, + "end": 14652.36, + "probability": 0.6157 + }, + { + "start": 14652.48, + "end": 14652.98, + "probability": 0.7447 + }, + { + "start": 14652.98, + "end": 14658.16, + "probability": 0.8975 + }, + { + "start": 14658.3, + "end": 14660.0, + "probability": 0.5505 + }, + { + "start": 14660.76, + "end": 14663.28, + "probability": 0.8398 + }, + { + "start": 14664.08, + "end": 14664.9, + "probability": 0.694 + }, + { + "start": 14665.08, + "end": 14667.84, + "probability": 0.9561 + }, + { + "start": 14668.22, + "end": 14671.22, + "probability": 0.9922 + }, + { + "start": 14671.94, + "end": 14673.12, + "probability": 0.7895 + }, + { + "start": 14673.18, + "end": 14673.3, + "probability": 0.1271 + }, + { + "start": 14673.78, + "end": 14673.94, + "probability": 0.4047 + }, + { + "start": 14674.02, + "end": 14676.54, + "probability": 0.9983 + }, + { + "start": 14677.1, + "end": 14679.04, + "probability": 0.9214 + }, + { + "start": 14679.38, + "end": 14681.9, + "probability": 0.6965 + }, + { + "start": 14682.4, + "end": 14682.9, + "probability": 0.8971 + }, + { + "start": 14683.84, + "end": 14683.98, + "probability": 0.2935 + }, + { + "start": 14683.98, + "end": 14686.98, + "probability": 0.9686 + }, + { + "start": 14687.56, + "end": 14689.12, + "probability": 0.9714 + }, + { + "start": 14689.18, + "end": 14689.56, + "probability": 0.9089 + }, + { + "start": 14689.62, + "end": 14690.86, + "probability": 0.5602 + }, + { + "start": 14691.72, + "end": 14693.12, + "probability": 0.9966 + }, + { + "start": 14694.52, + "end": 14694.72, + "probability": 0.472 + }, + { + "start": 14695.24, + "end": 14696.88, + "probability": 0.6638 + }, + { + "start": 14697.98, + "end": 14702.52, + "probability": 0.9707 + }, + { + "start": 14702.66, + "end": 14704.92, + "probability": 0.3391 + }, + { + "start": 14705.38, + "end": 14709.1, + "probability": 0.5068 + }, + { + "start": 14709.1, + "end": 14709.68, + "probability": 0.9232 + }, + { + "start": 14711.7, + "end": 14712.09, + "probability": 0.1022 + }, + { + "start": 14712.62, + "end": 14713.18, + "probability": 0.3827 + }, + { + "start": 14713.34, + "end": 14714.54, + "probability": 0.525 + }, + { + "start": 14714.7, + "end": 14716.58, + "probability": 0.6641 + }, + { + "start": 14716.76, + "end": 14717.24, + "probability": 0.2693 + }, + { + "start": 14718.44, + "end": 14720.88, + "probability": 0.5136 + }, + { + "start": 14721.67, + "end": 14731.66, + "probability": 0.9819 + }, + { + "start": 14732.5, + "end": 14736.46, + "probability": 0.8206 + }, + { + "start": 14738.16, + "end": 14740.08, + "probability": 0.9844 + }, + { + "start": 14740.16, + "end": 14742.34, + "probability": 0.9504 + }, + { + "start": 14743.1, + "end": 14748.88, + "probability": 0.8593 + }, + { + "start": 14748.98, + "end": 14752.16, + "probability": 0.9979 + }, + { + "start": 14753.26, + "end": 14755.04, + "probability": 0.8674 + }, + { + "start": 14755.3, + "end": 14759.46, + "probability": 0.929 + }, + { + "start": 14760.44, + "end": 14763.58, + "probability": 0.9473 + }, + { + "start": 14764.64, + "end": 14768.9, + "probability": 0.834 + }, + { + "start": 14769.34, + "end": 14771.44, + "probability": 0.8882 + }, + { + "start": 14772.34, + "end": 14773.08, + "probability": 0.5921 + }, + { + "start": 14773.74, + "end": 14776.44, + "probability": 0.5361 + }, + { + "start": 14776.5, + "end": 14781.96, + "probability": 0.8399 + }, + { + "start": 14782.36, + "end": 14790.76, + "probability": 0.9855 + }, + { + "start": 14791.24, + "end": 14792.84, + "probability": 0.9092 + }, + { + "start": 14793.84, + "end": 14794.42, + "probability": 0.9424 + }, + { + "start": 14795.12, + "end": 14799.26, + "probability": 0.9644 + }, + { + "start": 14799.76, + "end": 14800.08, + "probability": 0.6541 + }, + { + "start": 14800.14, + "end": 14801.12, + "probability": 0.9239 + }, + { + "start": 14801.82, + "end": 14805.68, + "probability": 0.9941 + }, + { + "start": 14806.24, + "end": 14807.52, + "probability": 0.6577 + }, + { + "start": 14807.74, + "end": 14810.46, + "probability": 0.8081 + }, + { + "start": 14811.12, + "end": 14811.72, + "probability": 0.7566 + }, + { + "start": 14811.82, + "end": 14812.36, + "probability": 0.9264 + }, + { + "start": 14812.48, + "end": 14815.2, + "probability": 0.994 + }, + { + "start": 14815.58, + "end": 14816.08, + "probability": 0.9636 + }, + { + "start": 14816.14, + "end": 14818.3, + "probability": 0.8628 + }, + { + "start": 14818.3, + "end": 14820.56, + "probability": 0.9358 + }, + { + "start": 14821.34, + "end": 14822.74, + "probability": 0.9657 + }, + { + "start": 14823.26, + "end": 14824.96, + "probability": 0.9559 + }, + { + "start": 14825.14, + "end": 14825.6, + "probability": 0.3777 + }, + { + "start": 14825.78, + "end": 14826.1, + "probability": 0.501 + }, + { + "start": 14826.24, + "end": 14827.22, + "probability": 0.7817 + }, + { + "start": 14827.68, + "end": 14829.56, + "probability": 0.8547 + }, + { + "start": 14831.08, + "end": 14834.54, + "probability": 0.989 + }, + { + "start": 14835.38, + "end": 14837.58, + "probability": 0.8282 + }, + { + "start": 14838.0, + "end": 14843.76, + "probability": 0.8296 + }, + { + "start": 14844.62, + "end": 14848.58, + "probability": 0.9497 + }, + { + "start": 14849.4, + "end": 14852.54, + "probability": 0.7646 + }, + { + "start": 14853.81, + "end": 14859.46, + "probability": 0.9124 + }, + { + "start": 14859.95, + "end": 14864.06, + "probability": 0.8278 + }, + { + "start": 14864.8, + "end": 14868.78, + "probability": 0.9896 + }, + { + "start": 14869.56, + "end": 14876.24, + "probability": 0.9803 + }, + { + "start": 14876.9, + "end": 14879.24, + "probability": 0.9868 + }, + { + "start": 14879.32, + "end": 14880.38, + "probability": 0.7596 + }, + { + "start": 14880.52, + "end": 14881.1, + "probability": 0.6425 + }, + { + "start": 14881.16, + "end": 14883.0, + "probability": 0.8124 + }, + { + "start": 14883.54, + "end": 14885.9, + "probability": 0.5515 + }, + { + "start": 14886.72, + "end": 14886.72, + "probability": 0.1083 + }, + { + "start": 14886.72, + "end": 14892.36, + "probability": 0.9091 + }, + { + "start": 14893.02, + "end": 14893.98, + "probability": 0.9352 + }, + { + "start": 14894.36, + "end": 14900.34, + "probability": 0.9856 + }, + { + "start": 14901.82, + "end": 14902.5, + "probability": 0.8635 + }, + { + "start": 14903.08, + "end": 14908.74, + "probability": 0.9965 + }, + { + "start": 14910.14, + "end": 14915.48, + "probability": 0.9974 + }, + { + "start": 14915.56, + "end": 14917.58, + "probability": 0.983 + }, + { + "start": 14918.08, + "end": 14920.17, + "probability": 0.9888 + }, + { + "start": 14921.14, + "end": 14924.02, + "probability": 0.8804 + }, + { + "start": 14925.04, + "end": 14929.48, + "probability": 0.847 + }, + { + "start": 14930.48, + "end": 14935.06, + "probability": 0.9829 + }, + { + "start": 14935.56, + "end": 14939.3, + "probability": 0.9907 + }, + { + "start": 14939.64, + "end": 14941.38, + "probability": 0.9512 + }, + { + "start": 14941.82, + "end": 14945.88, + "probability": 0.9878 + }, + { + "start": 14947.54, + "end": 14948.32, + "probability": 0.738 + }, + { + "start": 14948.58, + "end": 14952.4, + "probability": 0.8469 + }, + { + "start": 14952.92, + "end": 14953.84, + "probability": 0.6286 + }, + { + "start": 14954.04, + "end": 14956.42, + "probability": 0.9765 + }, + { + "start": 14956.82, + "end": 14958.22, + "probability": 0.8583 + }, + { + "start": 14958.58, + "end": 14962.98, + "probability": 0.789 + }, + { + "start": 14963.54, + "end": 14967.14, + "probability": 0.7457 + }, + { + "start": 14967.82, + "end": 14968.4, + "probability": 0.4511 + }, + { + "start": 14968.86, + "end": 14971.92, + "probability": 0.7426 + }, + { + "start": 14972.16, + "end": 14974.4, + "probability": 0.8474 + }, + { + "start": 14975.0, + "end": 14975.22, + "probability": 0.1761 + }, + { + "start": 14975.22, + "end": 14976.62, + "probability": 0.8606 + }, + { + "start": 14977.02, + "end": 14978.06, + "probability": 0.9767 + }, + { + "start": 14978.2, + "end": 14978.5, + "probability": 0.7698 + }, + { + "start": 14978.5, + "end": 14979.18, + "probability": 0.9609 + }, + { + "start": 14979.96, + "end": 14983.42, + "probability": 0.9783 + }, + { + "start": 14984.52, + "end": 14990.26, + "probability": 0.645 + }, + { + "start": 14990.5, + "end": 14990.76, + "probability": 0.7358 + }, + { + "start": 14991.7, + "end": 14991.92, + "probability": 0.7751 + }, + { + "start": 14992.32, + "end": 14992.86, + "probability": 0.8083 + }, + { + "start": 14993.02, + "end": 14993.88, + "probability": 0.7036 + }, + { + "start": 14994.26, + "end": 14997.62, + "probability": 0.9404 + }, + { + "start": 14998.6, + "end": 14999.42, + "probability": 0.9946 + }, + { + "start": 15000.7, + "end": 15002.3, + "probability": 0.9264 + }, + { + "start": 15003.34, + "end": 15003.96, + "probability": 0.6051 + }, + { + "start": 15016.4, + "end": 15016.46, + "probability": 0.4315 + }, + { + "start": 15016.54, + "end": 15017.02, + "probability": 0.5458 + }, + { + "start": 15017.02, + "end": 15019.32, + "probability": 0.6103 + }, + { + "start": 15019.54, + "end": 15020.54, + "probability": 0.8349 + }, + { + "start": 15020.7, + "end": 15021.92, + "probability": 0.788 + }, + { + "start": 15022.74, + "end": 15023.88, + "probability": 0.9178 + }, + { + "start": 15025.02, + "end": 15029.94, + "probability": 0.8687 + }, + { + "start": 15030.88, + "end": 15033.44, + "probability": 0.929 + }, + { + "start": 15033.64, + "end": 15034.06, + "probability": 0.8169 + }, + { + "start": 15038.24, + "end": 15039.14, + "probability": 0.6861 + }, + { + "start": 15039.22, + "end": 15039.78, + "probability": 0.6754 + }, + { + "start": 15039.88, + "end": 15042.7, + "probability": 0.9358 + }, + { + "start": 15043.56, + "end": 15044.6, + "probability": 0.5009 + }, + { + "start": 15044.78, + "end": 15047.2, + "probability": 0.9361 + }, + { + "start": 15048.36, + "end": 15048.74, + "probability": 0.9774 + }, + { + "start": 15049.44, + "end": 15051.74, + "probability": 0.9602 + }, + { + "start": 15052.38, + "end": 15053.5, + "probability": 0.6631 + }, + { + "start": 15054.56, + "end": 15056.4, + "probability": 0.9022 + }, + { + "start": 15057.16, + "end": 15059.8, + "probability": 0.7739 + }, + { + "start": 15060.76, + "end": 15064.26, + "probability": 0.9727 + }, + { + "start": 15064.96, + "end": 15066.08, + "probability": 0.9977 + }, + { + "start": 15067.1, + "end": 15067.76, + "probability": 0.9056 + }, + { + "start": 15068.44, + "end": 15072.76, + "probability": 0.9918 + }, + { + "start": 15074.12, + "end": 15079.16, + "probability": 0.9711 + }, + { + "start": 15080.14, + "end": 15081.26, + "probability": 0.7452 + }, + { + "start": 15081.54, + "end": 15083.0, + "probability": 0.9001 + }, + { + "start": 15083.12, + "end": 15084.06, + "probability": 0.7572 + }, + { + "start": 15084.28, + "end": 15086.34, + "probability": 0.9313 + }, + { + "start": 15087.06, + "end": 15088.92, + "probability": 0.9893 + }, + { + "start": 15089.74, + "end": 15091.0, + "probability": 0.7143 + }, + { + "start": 15091.22, + "end": 15092.04, + "probability": 0.9667 + }, + { + "start": 15092.56, + "end": 15095.78, + "probability": 0.9832 + }, + { + "start": 15096.38, + "end": 15097.32, + "probability": 0.9834 + }, + { + "start": 15097.92, + "end": 15101.42, + "probability": 0.998 + }, + { + "start": 15102.94, + "end": 15108.2, + "probability": 0.9792 + }, + { + "start": 15108.96, + "end": 15109.94, + "probability": 0.8176 + }, + { + "start": 15110.7, + "end": 15111.86, + "probability": 0.8721 + }, + { + "start": 15112.68, + "end": 15114.3, + "probability": 0.8064 + }, + { + "start": 15114.42, + "end": 15121.78, + "probability": 0.9949 + }, + { + "start": 15122.34, + "end": 15125.58, + "probability": 0.8773 + }, + { + "start": 15126.1, + "end": 15127.78, + "probability": 0.9978 + }, + { + "start": 15128.36, + "end": 15132.54, + "probability": 0.9932 + }, + { + "start": 15132.54, + "end": 15136.26, + "probability": 0.9886 + }, + { + "start": 15137.48, + "end": 15138.12, + "probability": 0.7405 + }, + { + "start": 15138.7, + "end": 15141.48, + "probability": 0.9236 + }, + { + "start": 15141.6, + "end": 15142.38, + "probability": 0.6376 + }, + { + "start": 15142.84, + "end": 15144.96, + "probability": 0.9868 + }, + { + "start": 15145.88, + "end": 15147.5, + "probability": 0.979 + }, + { + "start": 15148.56, + "end": 15150.52, + "probability": 0.9829 + }, + { + "start": 15151.06, + "end": 15152.18, + "probability": 0.7298 + }, + { + "start": 15152.98, + "end": 15155.26, + "probability": 0.9702 + }, + { + "start": 15156.54, + "end": 15157.24, + "probability": 0.9196 + }, + { + "start": 15157.56, + "end": 15158.72, + "probability": 0.9884 + }, + { + "start": 15159.62, + "end": 15161.74, + "probability": 0.9795 + }, + { + "start": 15162.66, + "end": 15163.36, + "probability": 0.6194 + }, + { + "start": 15163.54, + "end": 15164.08, + "probability": 0.0636 + }, + { + "start": 15164.48, + "end": 15168.06, + "probability": 0.6826 + }, + { + "start": 15168.28, + "end": 15172.88, + "probability": 0.9285 + }, + { + "start": 15173.04, + "end": 15173.34, + "probability": 0.0807 + }, + { + "start": 15173.54, + "end": 15174.02, + "probability": 0.413 + }, + { + "start": 15174.79, + "end": 15177.64, + "probability": 0.8247 + }, + { + "start": 15178.06, + "end": 15180.08, + "probability": 0.8689 + }, + { + "start": 15180.62, + "end": 15182.74, + "probability": 0.9185 + }, + { + "start": 15183.84, + "end": 15185.58, + "probability": 0.7615 + }, + { + "start": 15186.44, + "end": 15190.64, + "probability": 0.9432 + }, + { + "start": 15190.84, + "end": 15191.34, + "probability": 0.7943 + }, + { + "start": 15192.58, + "end": 15193.8, + "probability": 0.613 + }, + { + "start": 15194.26, + "end": 15195.9, + "probability": 0.9062 + }, + { + "start": 15196.38, + "end": 15198.04, + "probability": 0.9607 + }, + { + "start": 15199.38, + "end": 15200.68, + "probability": 0.8233 + }, + { + "start": 15200.76, + "end": 15204.02, + "probability": 0.8374 + }, + { + "start": 15204.5, + "end": 15205.81, + "probability": 0.6938 + }, + { + "start": 15205.96, + "end": 15206.64, + "probability": 0.7372 + }, + { + "start": 15207.9, + "end": 15210.34, + "probability": 0.9636 + }, + { + "start": 15211.44, + "end": 15213.7, + "probability": 0.9832 + }, + { + "start": 15214.86, + "end": 15216.76, + "probability": 0.9899 + }, + { + "start": 15217.04, + "end": 15218.52, + "probability": 0.9893 + }, + { + "start": 15219.22, + "end": 15221.04, + "probability": 0.9551 + }, + { + "start": 15222.12, + "end": 15225.1, + "probability": 0.9912 + }, + { + "start": 15225.9, + "end": 15227.06, + "probability": 0.6713 + }, + { + "start": 15228.24, + "end": 15228.34, + "probability": 0.5031 + }, + { + "start": 15228.9, + "end": 15230.54, + "probability": 0.9472 + }, + { + "start": 15231.12, + "end": 15234.06, + "probability": 0.8871 + }, + { + "start": 15234.64, + "end": 15239.06, + "probability": 0.9708 + }, + { + "start": 15239.82, + "end": 15243.22, + "probability": 0.9258 + }, + { + "start": 15243.8, + "end": 15244.76, + "probability": 0.9596 + }, + { + "start": 15244.84, + "end": 15245.8, + "probability": 0.8233 + }, + { + "start": 15246.22, + "end": 15248.42, + "probability": 0.9706 + }, + { + "start": 15248.64, + "end": 15249.44, + "probability": 0.6851 + }, + { + "start": 15250.04, + "end": 15250.3, + "probability": 0.494 + }, + { + "start": 15250.3, + "end": 15250.52, + "probability": 0.5038 + }, + { + "start": 15250.64, + "end": 15252.23, + "probability": 0.6921 + }, + { + "start": 15252.32, + "end": 15257.04, + "probability": 0.686 + }, + { + "start": 15257.8, + "end": 15260.04, + "probability": 0.8993 + }, + { + "start": 15260.62, + "end": 15260.84, + "probability": 0.7315 + }, + { + "start": 15261.02, + "end": 15262.92, + "probability": 0.7866 + }, + { + "start": 15263.44, + "end": 15265.02, + "probability": 0.6003 + }, + { + "start": 15266.66, + "end": 15266.76, + "probability": 0.645 + }, + { + "start": 15266.76, + "end": 15270.18, + "probability": 0.9437 + }, + { + "start": 15270.64, + "end": 15272.38, + "probability": 0.9289 + }, + { + "start": 15274.18, + "end": 15278.82, + "probability": 0.9832 + }, + { + "start": 15278.82, + "end": 15284.8, + "probability": 0.9614 + }, + { + "start": 15284.94, + "end": 15285.52, + "probability": 0.8757 + }, + { + "start": 15286.58, + "end": 15288.42, + "probability": 0.995 + }, + { + "start": 15289.36, + "end": 15290.22, + "probability": 0.744 + }, + { + "start": 15291.26, + "end": 15295.78, + "probability": 0.9845 + }, + { + "start": 15295.9, + "end": 15296.92, + "probability": 0.6425 + }, + { + "start": 15297.12, + "end": 15298.56, + "probability": 0.8369 + }, + { + "start": 15299.7, + "end": 15302.32, + "probability": 0.9155 + }, + { + "start": 15303.22, + "end": 15304.94, + "probability": 0.9784 + }, + { + "start": 15305.12, + "end": 15305.84, + "probability": 0.5605 + }, + { + "start": 15305.96, + "end": 15307.1, + "probability": 0.8838 + }, + { + "start": 15307.74, + "end": 15310.54, + "probability": 0.7662 + }, + { + "start": 15311.06, + "end": 15314.62, + "probability": 0.9304 + }, + { + "start": 15315.02, + "end": 15316.22, + "probability": 0.9372 + }, + { + "start": 15317.42, + "end": 15318.72, + "probability": 0.9407 + }, + { + "start": 15319.08, + "end": 15319.34, + "probability": 0.5025 + }, + { + "start": 15319.38, + "end": 15320.46, + "probability": 0.9907 + }, + { + "start": 15320.6, + "end": 15322.44, + "probability": 0.894 + }, + { + "start": 15322.96, + "end": 15326.88, + "probability": 0.9327 + }, + { + "start": 15327.02, + "end": 15327.68, + "probability": 0.95 + }, + { + "start": 15327.74, + "end": 15328.22, + "probability": 0.9148 + }, + { + "start": 15328.68, + "end": 15329.99, + "probability": 0.9458 + }, + { + "start": 15331.66, + "end": 15333.4, + "probability": 0.747 + }, + { + "start": 15333.92, + "end": 15335.56, + "probability": 0.7583 + }, + { + "start": 15336.22, + "end": 15337.04, + "probability": 0.9581 + }, + { + "start": 15338.02, + "end": 15340.98, + "probability": 0.0807 + }, + { + "start": 15340.98, + "end": 15343.9, + "probability": 0.542 + }, + { + "start": 15343.9, + "end": 15350.4, + "probability": 0.989 + }, + { + "start": 15350.5, + "end": 15352.16, + "probability": 0.8856 + }, + { + "start": 15352.4, + "end": 15354.32, + "probability": 0.9022 + }, + { + "start": 15354.34, + "end": 15355.86, + "probability": 0.9956 + }, + { + "start": 15356.98, + "end": 15358.31, + "probability": 0.9128 + }, + { + "start": 15359.04, + "end": 15360.56, + "probability": 0.969 + }, + { + "start": 15360.76, + "end": 15362.1, + "probability": 0.6649 + }, + { + "start": 15362.26, + "end": 15363.08, + "probability": 0.8882 + }, + { + "start": 15363.1, + "end": 15364.52, + "probability": 0.7975 + }, + { + "start": 15364.6, + "end": 15366.36, + "probability": 0.9624 + }, + { + "start": 15367.06, + "end": 15368.76, + "probability": 0.4107 + }, + { + "start": 15369.84, + "end": 15372.54, + "probability": 0.8464 + }, + { + "start": 15373.06, + "end": 15374.82, + "probability": 0.9944 + }, + { + "start": 15374.98, + "end": 15375.92, + "probability": 0.6989 + }, + { + "start": 15376.12, + "end": 15378.84, + "probability": 0.9883 + }, + { + "start": 15378.9, + "end": 15379.67, + "probability": 0.9141 + }, + { + "start": 15380.28, + "end": 15381.06, + "probability": 0.7431 + }, + { + "start": 15381.66, + "end": 15383.38, + "probability": 0.5522 + }, + { + "start": 15383.42, + "end": 15384.94, + "probability": 0.9494 + }, + { + "start": 15385.1, + "end": 15386.14, + "probability": 0.8161 + }, + { + "start": 15386.76, + "end": 15388.56, + "probability": 0.9094 + }, + { + "start": 15389.4, + "end": 15390.74, + "probability": 0.8531 + }, + { + "start": 15391.42, + "end": 15392.48, + "probability": 0.837 + }, + { + "start": 15393.56, + "end": 15395.64, + "probability": 0.9907 + }, + { + "start": 15396.36, + "end": 15397.06, + "probability": 0.7445 + }, + { + "start": 15397.52, + "end": 15399.2, + "probability": 0.9961 + }, + { + "start": 15399.5, + "end": 15401.42, + "probability": 0.9455 + }, + { + "start": 15401.68, + "end": 15404.62, + "probability": 0.8901 + }, + { + "start": 15404.64, + "end": 15407.88, + "probability": 0.9969 + }, + { + "start": 15408.42, + "end": 15409.6, + "probability": 0.9523 + }, + { + "start": 15410.0, + "end": 15411.2, + "probability": 0.9456 + }, + { + "start": 15411.78, + "end": 15413.18, + "probability": 0.7604 + }, + { + "start": 15413.72, + "end": 15414.74, + "probability": 0.8749 + }, + { + "start": 15415.06, + "end": 15417.3, + "probability": 0.9932 + }, + { + "start": 15417.38, + "end": 15418.74, + "probability": 0.9859 + }, + { + "start": 15418.88, + "end": 15420.04, + "probability": 0.9264 + }, + { + "start": 15420.2, + "end": 15421.5, + "probability": 0.9886 + }, + { + "start": 15421.52, + "end": 15422.82, + "probability": 0.6169 + }, + { + "start": 15423.04, + "end": 15425.26, + "probability": 0.9325 + }, + { + "start": 15425.86, + "end": 15428.02, + "probability": 0.9795 + }, + { + "start": 15428.12, + "end": 15429.34, + "probability": 0.7786 + }, + { + "start": 15429.8, + "end": 15433.22, + "probability": 0.9707 + }, + { + "start": 15433.52, + "end": 15435.08, + "probability": 0.8129 + }, + { + "start": 15435.54, + "end": 15436.48, + "probability": 0.9026 + }, + { + "start": 15436.6, + "end": 15438.76, + "probability": 0.9409 + }, + { + "start": 15439.08, + "end": 15440.48, + "probability": 0.9584 + }, + { + "start": 15441.14, + "end": 15442.06, + "probability": 0.4856 + }, + { + "start": 15442.3, + "end": 15444.9, + "probability": 0.9976 + }, + { + "start": 15445.06, + "end": 15446.54, + "probability": 0.905 + }, + { + "start": 15447.22, + "end": 15447.92, + "probability": 0.8683 + }, + { + "start": 15448.72, + "end": 15453.5, + "probability": 0.9833 + }, + { + "start": 15454.0, + "end": 15456.32, + "probability": 0.9958 + }, + { + "start": 15456.66, + "end": 15457.18, + "probability": 0.6971 + }, + { + "start": 15457.26, + "end": 15457.56, + "probability": 0.304 + }, + { + "start": 15457.6, + "end": 15460.78, + "probability": 0.9465 + }, + { + "start": 15461.1, + "end": 15461.38, + "probability": 0.4017 + }, + { + "start": 15461.68, + "end": 15462.24, + "probability": 0.8552 + }, + { + "start": 15462.92, + "end": 15464.22, + "probability": 0.6773 + }, + { + "start": 15464.76, + "end": 15467.26, + "probability": 0.6929 + }, + { + "start": 15468.2, + "end": 15469.16, + "probability": 0.7673 + }, + { + "start": 15470.18, + "end": 15472.86, + "probability": 0.9622 + }, + { + "start": 15474.12, + "end": 15474.8, + "probability": 0.7655 + }, + { + "start": 15475.46, + "end": 15477.22, + "probability": 0.6158 + }, + { + "start": 15479.06, + "end": 15482.62, + "probability": 0.7155 + }, + { + "start": 15483.48, + "end": 15487.26, + "probability": 0.7951 + }, + { + "start": 15487.96, + "end": 15490.16, + "probability": 0.705 + }, + { + "start": 15490.84, + "end": 15493.32, + "probability": 0.71 + }, + { + "start": 15493.52, + "end": 15494.86, + "probability": 0.2753 + }, + { + "start": 15495.57, + "end": 15499.72, + "probability": 0.9722 + }, + { + "start": 15499.82, + "end": 15501.29, + "probability": 0.6596 + }, + { + "start": 15502.7, + "end": 15505.56, + "probability": 0.8965 + }, + { + "start": 15506.98, + "end": 15507.26, + "probability": 0.0303 + }, + { + "start": 15507.26, + "end": 15507.56, + "probability": 0.5735 + }, + { + "start": 15509.95, + "end": 15511.88, + "probability": 0.8318 + }, + { + "start": 15512.39, + "end": 15513.06, + "probability": 0.4757 + }, + { + "start": 15514.1, + "end": 15514.1, + "probability": 0.6883 + }, + { + "start": 15514.58, + "end": 15520.48, + "probability": 0.9404 + }, + { + "start": 15521.5, + "end": 15524.2, + "probability": 0.9383 + }, + { + "start": 15526.12, + "end": 15527.48, + "probability": 0.9976 + }, + { + "start": 15528.2, + "end": 15529.1, + "probability": 0.9897 + }, + { + "start": 15531.38, + "end": 15538.87, + "probability": 0.9933 + }, + { + "start": 15539.92, + "end": 15542.62, + "probability": 0.9929 + }, + { + "start": 15543.56, + "end": 15544.82, + "probability": 0.9818 + }, + { + "start": 15545.7, + "end": 15547.08, + "probability": 0.6841 + }, + { + "start": 15547.66, + "end": 15550.8, + "probability": 0.996 + }, + { + "start": 15551.62, + "end": 15553.12, + "probability": 0.9901 + }, + { + "start": 15553.92, + "end": 15556.96, + "probability": 0.9779 + }, + { + "start": 15556.96, + "end": 15562.12, + "probability": 0.7773 + }, + { + "start": 15562.72, + "end": 15563.12, + "probability": 0.7573 + }, + { + "start": 15563.64, + "end": 15568.28, + "probability": 0.7123 + }, + { + "start": 15569.28, + "end": 15573.1, + "probability": 0.744 + }, + { + "start": 15573.92, + "end": 15574.98, + "probability": 0.9785 + }, + { + "start": 15575.04, + "end": 15578.78, + "probability": 0.9641 + }, + { + "start": 15579.36, + "end": 15581.04, + "probability": 0.9494 + }, + { + "start": 15581.98, + "end": 15582.7, + "probability": 0.6385 + }, + { + "start": 15582.96, + "end": 15585.58, + "probability": 0.8717 + }, + { + "start": 15585.58, + "end": 15589.54, + "probability": 0.7177 + }, + { + "start": 15589.92, + "end": 15594.2, + "probability": 0.7734 + }, + { + "start": 15594.76, + "end": 15596.98, + "probability": 0.8794 + }, + { + "start": 15597.1, + "end": 15598.44, + "probability": 0.9854 + }, + { + "start": 15599.42, + "end": 15601.86, + "probability": 0.9579 + }, + { + "start": 15602.68, + "end": 15604.04, + "probability": 0.8672 + }, + { + "start": 15604.62, + "end": 15605.92, + "probability": 0.9529 + }, + { + "start": 15606.32, + "end": 15607.98, + "probability": 0.8191 + }, + { + "start": 15608.5, + "end": 15608.98, + "probability": 0.8315 + }, + { + "start": 15609.08, + "end": 15610.88, + "probability": 0.8411 + }, + { + "start": 15611.04, + "end": 15611.9, + "probability": 0.8018 + }, + { + "start": 15612.78, + "end": 15614.69, + "probability": 0.9896 + }, + { + "start": 15615.74, + "end": 15617.34, + "probability": 0.8805 + }, + { + "start": 15617.36, + "end": 15618.52, + "probability": 0.9023 + }, + { + "start": 15618.6, + "end": 15621.52, + "probability": 0.8025 + }, + { + "start": 15622.3, + "end": 15623.2, + "probability": 0.9727 + }, + { + "start": 15623.94, + "end": 15626.56, + "probability": 0.8579 + }, + { + "start": 15627.24, + "end": 15629.74, + "probability": 0.6477 + }, + { + "start": 15630.28, + "end": 15631.44, + "probability": 0.7682 + }, + { + "start": 15631.56, + "end": 15631.97, + "probability": 0.9666 + }, + { + "start": 15632.7, + "end": 15635.52, + "probability": 0.9844 + }, + { + "start": 15635.68, + "end": 15637.3, + "probability": 0.5649 + }, + { + "start": 15637.5, + "end": 15638.8, + "probability": 0.9271 + }, + { + "start": 15639.2, + "end": 15640.89, + "probability": 0.9934 + }, + { + "start": 15641.64, + "end": 15642.7, + "probability": 0.8208 + }, + { + "start": 15642.78, + "end": 15645.07, + "probability": 0.7277 + }, + { + "start": 15645.88, + "end": 15646.76, + "probability": 0.6332 + }, + { + "start": 15646.84, + "end": 15647.24, + "probability": 0.7897 + }, + { + "start": 15647.28, + "end": 15647.62, + "probability": 0.8284 + }, + { + "start": 15647.72, + "end": 15649.16, + "probability": 0.9648 + }, + { + "start": 15649.88, + "end": 15652.02, + "probability": 0.9601 + }, + { + "start": 15652.18, + "end": 15654.96, + "probability": 0.8858 + }, + { + "start": 15655.86, + "end": 15657.16, + "probability": 0.7506 + }, + { + "start": 15657.28, + "end": 15663.62, + "probability": 0.9857 + }, + { + "start": 15663.76, + "end": 15667.06, + "probability": 0.9845 + }, + { + "start": 15667.26, + "end": 15669.92, + "probability": 0.9232 + }, + { + "start": 15670.14, + "end": 15670.8, + "probability": 0.4034 + }, + { + "start": 15670.94, + "end": 15675.6, + "probability": 0.9954 + }, + { + "start": 15675.76, + "end": 15676.86, + "probability": 0.9331 + }, + { + "start": 15677.34, + "end": 15679.86, + "probability": 0.9895 + }, + { + "start": 15680.72, + "end": 15681.5, + "probability": 0.6279 + }, + { + "start": 15681.74, + "end": 15682.76, + "probability": 0.9412 + }, + { + "start": 15683.2, + "end": 15684.18, + "probability": 0.0443 + }, + { + "start": 15684.18, + "end": 15687.0, + "probability": 0.4955 + }, + { + "start": 15688.33, + "end": 15690.64, + "probability": 0.7169 + }, + { + "start": 15691.0, + "end": 15691.68, + "probability": 0.8349 + }, + { + "start": 15692.3, + "end": 15694.0, + "probability": 0.79 + }, + { + "start": 15694.14, + "end": 15695.38, + "probability": 0.539 + }, + { + "start": 15695.6, + "end": 15698.7, + "probability": 0.9663 + }, + { + "start": 15698.92, + "end": 15700.16, + "probability": 0.8926 + }, + { + "start": 15700.88, + "end": 15704.98, + "probability": 0.944 + }, + { + "start": 15705.66, + "end": 15707.5, + "probability": 0.1964 + }, + { + "start": 15708.58, + "end": 15709.84, + "probability": 0.9529 + }, + { + "start": 15710.58, + "end": 15713.02, + "probability": 0.9871 + }, + { + "start": 15713.02, + "end": 15716.92, + "probability": 0.9894 + }, + { + "start": 15717.48, + "end": 15720.22, + "probability": 0.7904 + }, + { + "start": 15720.74, + "end": 15726.17, + "probability": 0.4278 + }, + { + "start": 15727.48, + "end": 15727.76, + "probability": 0.6025 + }, + { + "start": 15728.78, + "end": 15729.18, + "probability": 0.4928 + }, + { + "start": 15736.56, + "end": 15738.54, + "probability": 0.6621 + }, + { + "start": 15739.28, + "end": 15742.65, + "probability": 0.6797 + }, + { + "start": 15743.54, + "end": 15748.6, + "probability": 0.8758 + }, + { + "start": 15748.88, + "end": 15750.84, + "probability": 0.2083 + }, + { + "start": 15751.5, + "end": 15752.32, + "probability": 0.6587 + }, + { + "start": 15752.6, + "end": 15754.94, + "probability": 0.9895 + }, + { + "start": 15755.2, + "end": 15755.84, + "probability": 0.5915 + }, + { + "start": 15756.9, + "end": 15757.54, + "probability": 0.7493 + }, + { + "start": 15760.14, + "end": 15760.94, + "probability": 0.6646 + }, + { + "start": 15762.66, + "end": 15764.9, + "probability": 0.7819 + }, + { + "start": 15765.94, + "end": 15769.5, + "probability": 0.9944 + }, + { + "start": 15770.14, + "end": 15774.1, + "probability": 0.9906 + }, + { + "start": 15775.38, + "end": 15775.75, + "probability": 0.9565 + }, + { + "start": 15777.14, + "end": 15778.7, + "probability": 0.5414 + }, + { + "start": 15779.4, + "end": 15784.44, + "probability": 0.762 + }, + { + "start": 15785.82, + "end": 15787.9, + "probability": 0.6632 + }, + { + "start": 15787.98, + "end": 15790.7, + "probability": 0.6609 + }, + { + "start": 15792.1, + "end": 15796.68, + "probability": 0.8984 + }, + { + "start": 15798.18, + "end": 15800.72, + "probability": 0.5893 + }, + { + "start": 15801.4, + "end": 15802.9, + "probability": 0.57 + }, + { + "start": 15803.3, + "end": 15804.4, + "probability": 0.9865 + }, + { + "start": 15804.52, + "end": 15805.94, + "probability": 0.8621 + }, + { + "start": 15806.9, + "end": 15808.88, + "probability": 0.968 + }, + { + "start": 15809.48, + "end": 15811.82, + "probability": 0.6837 + }, + { + "start": 15815.42, + "end": 15815.44, + "probability": 0.2681 + }, + { + "start": 15815.44, + "end": 15816.36, + "probability": 0.6068 + }, + { + "start": 15817.22, + "end": 15819.6, + "probability": 0.7352 + }, + { + "start": 15820.22, + "end": 15821.82, + "probability": 0.9866 + }, + { + "start": 15824.6, + "end": 15825.95, + "probability": 0.9963 + }, + { + "start": 15826.74, + "end": 15829.64, + "probability": 0.9844 + }, + { + "start": 15829.84, + "end": 15834.76, + "probability": 0.9915 + }, + { + "start": 15835.36, + "end": 15836.14, + "probability": 0.9268 + }, + { + "start": 15837.0, + "end": 15838.18, + "probability": 0.7729 + }, + { + "start": 15839.04, + "end": 15841.74, + "probability": 0.9846 + }, + { + "start": 15842.76, + "end": 15843.72, + "probability": 0.9607 + }, + { + "start": 15844.04, + "end": 15844.46, + "probability": 0.7963 + }, + { + "start": 15845.0, + "end": 15846.12, + "probability": 0.6536 + }, + { + "start": 15847.1, + "end": 15848.06, + "probability": 0.99 + }, + { + "start": 15849.06, + "end": 15849.26, + "probability": 0.2352 + }, + { + "start": 15852.78, + "end": 15854.54, + "probability": 0.1696 + }, + { + "start": 15857.06, + "end": 15860.5, + "probability": 0.5304 + }, + { + "start": 15860.56, + "end": 15860.92, + "probability": 0.7839 + }, + { + "start": 15861.04, + "end": 15861.62, + "probability": 0.5784 + }, + { + "start": 15861.66, + "end": 15862.04, + "probability": 0.8346 + }, + { + "start": 15862.6, + "end": 15863.94, + "probability": 0.911 + }, + { + "start": 15864.56, + "end": 15865.8, + "probability": 0.859 + }, + { + "start": 15866.1, + "end": 15867.32, + "probability": 0.5806 + }, + { + "start": 15868.28, + "end": 15870.46, + "probability": 0.0693 + }, + { + "start": 15876.68, + "end": 15877.54, + "probability": 0.0129 + }, + { + "start": 15889.84, + "end": 15893.48, + "probability": 0.0804 + }, + { + "start": 15894.58, + "end": 15896.78, + "probability": 0.0176 + }, + { + "start": 15897.36, + "end": 15901.74, + "probability": 0.4146 + }, + { + "start": 15903.38, + "end": 15903.66, + "probability": 0.2292 + }, + { + "start": 15903.66, + "end": 15905.0, + "probability": 0.134 + }, + { + "start": 15906.16, + "end": 15907.76, + "probability": 0.2845 + }, + { + "start": 15907.76, + "end": 15909.38, + "probability": 0.0375 + }, + { + "start": 15909.56, + "end": 15909.86, + "probability": 0.1608 + }, + { + "start": 15910.16, + "end": 15911.15, + "probability": 0.3382 + }, + { + "start": 15911.58, + "end": 15914.14, + "probability": 0.3156 + }, + { + "start": 15914.86, + "end": 15915.18, + "probability": 0.0327 + }, + { + "start": 15915.84, + "end": 15920.4, + "probability": 0.5393 + }, + { + "start": 15921.02, + "end": 15923.8, + "probability": 0.8357 + }, + { + "start": 15924.4, + "end": 15925.06, + "probability": 0.7648 + }, + { + "start": 15925.68, + "end": 15929.14, + "probability": 0.8774 + }, + { + "start": 15930.56, + "end": 15932.16, + "probability": 0.7546 + }, + { + "start": 15932.48, + "end": 15936.58, + "probability": 0.9946 + }, + { + "start": 15936.58, + "end": 15940.28, + "probability": 0.8491 + }, + { + "start": 15940.52, + "end": 15941.76, + "probability": 0.9465 + }, + { + "start": 15942.96, + "end": 15944.76, + "probability": 0.6424 + }, + { + "start": 15945.38, + "end": 15946.1, + "probability": 0.4346 + }, + { + "start": 15946.12, + "end": 15946.44, + "probability": 0.8758 + }, + { + "start": 15946.6, + "end": 15948.78, + "probability": 0.8577 + }, + { + "start": 15949.04, + "end": 15952.56, + "probability": 0.9841 + }, + { + "start": 15953.18, + "end": 15954.04, + "probability": 0.9712 + }, + { + "start": 15954.18, + "end": 15955.14, + "probability": 0.7018 + }, + { + "start": 15955.26, + "end": 15961.36, + "probability": 0.9883 + }, + { + "start": 15962.92, + "end": 15963.88, + "probability": 0.8774 + }, + { + "start": 15964.08, + "end": 15968.24, + "probability": 0.9957 + }, + { + "start": 15968.56, + "end": 15971.76, + "probability": 0.9968 + }, + { + "start": 15971.9, + "end": 15972.54, + "probability": 0.789 + }, + { + "start": 15972.62, + "end": 15974.7, + "probability": 0.9631 + }, + { + "start": 15975.16, + "end": 15975.98, + "probability": 0.6319 + }, + { + "start": 15976.18, + "end": 15978.72, + "probability": 0.9585 + }, + { + "start": 15978.76, + "end": 15982.68, + "probability": 0.9879 + }, + { + "start": 15982.68, + "end": 15986.76, + "probability": 0.9941 + }, + { + "start": 15987.46, + "end": 15988.72, + "probability": 0.9839 + }, + { + "start": 15989.5, + "end": 15991.44, + "probability": 0.922 + }, + { + "start": 15991.64, + "end": 15994.16, + "probability": 0.9058 + }, + { + "start": 15994.72, + "end": 15995.78, + "probability": 0.8108 + }, + { + "start": 15996.34, + "end": 15997.4, + "probability": 0.9715 + }, + { + "start": 15998.28, + "end": 15999.44, + "probability": 0.868 + }, + { + "start": 15999.68, + "end": 16001.18, + "probability": 0.7037 + }, + { + "start": 16001.38, + "end": 16002.74, + "probability": 0.8557 + }, + { + "start": 16002.98, + "end": 16005.58, + "probability": 0.7949 + }, + { + "start": 16005.66, + "end": 16007.62, + "probability": 0.9948 + }, + { + "start": 16008.2, + "end": 16008.62, + "probability": 0.5149 + }, + { + "start": 16008.76, + "end": 16010.44, + "probability": 0.9912 + }, + { + "start": 16010.6, + "end": 16011.3, + "probability": 0.7446 + }, + { + "start": 16011.4, + "end": 16012.6, + "probability": 0.9811 + }, + { + "start": 16013.06, + "end": 16014.84, + "probability": 0.9858 + }, + { + "start": 16016.5, + "end": 16017.42, + "probability": 0.9976 + }, + { + "start": 16017.84, + "end": 16018.9, + "probability": 0.971 + }, + { + "start": 16019.8, + "end": 16020.5, + "probability": 0.7832 + }, + { + "start": 16021.42, + "end": 16023.96, + "probability": 0.9902 + }, + { + "start": 16024.04, + "end": 16025.1, + "probability": 0.9593 + }, + { + "start": 16027.24, + "end": 16028.36, + "probability": 0.9945 + }, + { + "start": 16029.82, + "end": 16033.32, + "probability": 0.8123 + }, + { + "start": 16033.52, + "end": 16034.3, + "probability": 0.6754 + }, + { + "start": 16035.6, + "end": 16040.16, + "probability": 0.9893 + }, + { + "start": 16040.28, + "end": 16040.56, + "probability": 0.6956 + }, + { + "start": 16041.44, + "end": 16042.5, + "probability": 0.9587 + }, + { + "start": 16042.7, + "end": 16043.78, + "probability": 0.8692 + }, + { + "start": 16044.22, + "end": 16045.6, + "probability": 0.8049 + }, + { + "start": 16045.82, + "end": 16047.8, + "probability": 0.9078 + }, + { + "start": 16048.32, + "end": 16048.83, + "probability": 0.8246 + }, + { + "start": 16050.26, + "end": 16053.72, + "probability": 0.995 + }, + { + "start": 16054.68, + "end": 16056.24, + "probability": 0.7077 + }, + { + "start": 16056.58, + "end": 16059.76, + "probability": 0.908 + }, + { + "start": 16060.88, + "end": 16063.76, + "probability": 0.979 + }, + { + "start": 16063.84, + "end": 16066.46, + "probability": 0.7906 + }, + { + "start": 16067.68, + "end": 16072.36, + "probability": 0.9963 + }, + { + "start": 16072.62, + "end": 16077.6, + "probability": 0.8667 + }, + { + "start": 16077.94, + "end": 16079.16, + "probability": 0.7667 + }, + { + "start": 16080.28, + "end": 16083.46, + "probability": 0.9819 + }, + { + "start": 16083.56, + "end": 16084.02, + "probability": 0.9805 + }, + { + "start": 16084.2, + "end": 16084.88, + "probability": 0.6301 + }, + { + "start": 16084.92, + "end": 16085.96, + "probability": 0.9976 + }, + { + "start": 16086.08, + "end": 16087.2, + "probability": 0.8082 + }, + { + "start": 16087.94, + "end": 16090.46, + "probability": 0.9603 + }, + { + "start": 16092.08, + "end": 16093.12, + "probability": 0.9893 + }, + { + "start": 16093.26, + "end": 16094.04, + "probability": 0.8677 + }, + { + "start": 16094.26, + "end": 16096.24, + "probability": 0.9027 + }, + { + "start": 16097.22, + "end": 16099.0, + "probability": 0.9861 + }, + { + "start": 16100.5, + "end": 16104.74, + "probability": 0.9957 + }, + { + "start": 16105.46, + "end": 16107.1, + "probability": 0.9972 + }, + { + "start": 16107.18, + "end": 16108.16, + "probability": 0.6847 + }, + { + "start": 16108.36, + "end": 16110.48, + "probability": 0.7624 + }, + { + "start": 16110.66, + "end": 16113.2, + "probability": 0.9231 + }, + { + "start": 16113.92, + "end": 16115.5, + "probability": 0.7574 + }, + { + "start": 16117.82, + "end": 16118.86, + "probability": 0.7397 + }, + { + "start": 16118.9, + "end": 16119.56, + "probability": 0.7509 + }, + { + "start": 16119.64, + "end": 16122.26, + "probability": 0.9065 + }, + { + "start": 16122.36, + "end": 16123.26, + "probability": 0.9108 + }, + { + "start": 16123.46, + "end": 16126.66, + "probability": 0.9902 + }, + { + "start": 16126.66, + "end": 16129.96, + "probability": 0.9897 + }, + { + "start": 16130.72, + "end": 16133.48, + "probability": 0.7965 + }, + { + "start": 16134.24, + "end": 16135.7, + "probability": 0.6973 + }, + { + "start": 16135.84, + "end": 16137.18, + "probability": 0.9431 + }, + { + "start": 16137.24, + "end": 16140.9, + "probability": 0.9895 + }, + { + "start": 16141.54, + "end": 16144.14, + "probability": 0.9854 + }, + { + "start": 16144.14, + "end": 16146.86, + "probability": 0.9896 + }, + { + "start": 16147.48, + "end": 16152.1, + "probability": 0.9993 + }, + { + "start": 16152.36, + "end": 16154.38, + "probability": 0.9941 + }, + { + "start": 16154.92, + "end": 16162.12, + "probability": 0.9161 + }, + { + "start": 16162.8, + "end": 16167.1, + "probability": 0.9964 + }, + { + "start": 16167.36, + "end": 16169.82, + "probability": 0.9956 + }, + { + "start": 16170.52, + "end": 16171.3, + "probability": 0.9763 + }, + { + "start": 16172.12, + "end": 16173.32, + "probability": 0.7649 + }, + { + "start": 16173.42, + "end": 16174.52, + "probability": 0.9299 + }, + { + "start": 16174.7, + "end": 16175.2, + "probability": 0.4959 + }, + { + "start": 16175.36, + "end": 16176.66, + "probability": 0.699 + }, + { + "start": 16176.74, + "end": 16177.34, + "probability": 0.7963 + }, + { + "start": 16177.48, + "end": 16178.52, + "probability": 0.8092 + }, + { + "start": 16179.02, + "end": 16179.64, + "probability": 0.3416 + }, + { + "start": 16179.98, + "end": 16184.12, + "probability": 0.1547 + }, + { + "start": 16186.43, + "end": 16190.3, + "probability": 0.8224 + }, + { + "start": 16190.92, + "end": 16195.8, + "probability": 0.4389 + }, + { + "start": 16196.0, + "end": 16196.7, + "probability": 0.7864 + }, + { + "start": 16196.78, + "end": 16197.68, + "probability": 0.9738 + }, + { + "start": 16197.74, + "end": 16201.74, + "probability": 0.8842 + }, + { + "start": 16202.72, + "end": 16203.64, + "probability": 0.1082 + }, + { + "start": 16204.2, + "end": 16205.54, + "probability": 0.4753 + }, + { + "start": 16205.72, + "end": 16208.2, + "probability": 0.9871 + }, + { + "start": 16208.38, + "end": 16211.48, + "probability": 0.9447 + }, + { + "start": 16213.74, + "end": 16217.58, + "probability": 0.4608 + }, + { + "start": 16217.72, + "end": 16222.98, + "probability": 0.9744 + }, + { + "start": 16223.2, + "end": 16226.16, + "probability": 0.9749 + }, + { + "start": 16226.98, + "end": 16228.94, + "probability": 0.9618 + }, + { + "start": 16229.02, + "end": 16230.74, + "probability": 0.7556 + }, + { + "start": 16231.16, + "end": 16235.1, + "probability": 0.7705 + }, + { + "start": 16235.28, + "end": 16236.18, + "probability": 0.6559 + }, + { + "start": 16236.28, + "end": 16236.94, + "probability": 0.6682 + }, + { + "start": 16237.0, + "end": 16240.5, + "probability": 0.908 + }, + { + "start": 16241.21, + "end": 16245.28, + "probability": 0.9592 + }, + { + "start": 16246.9, + "end": 16250.08, + "probability": 0.7599 + }, + { + "start": 16251.0, + "end": 16253.74, + "probability": 0.9756 + }, + { + "start": 16254.54, + "end": 16260.48, + "probability": 0.9578 + }, + { + "start": 16260.8, + "end": 16263.6, + "probability": 0.6818 + }, + { + "start": 16263.78, + "end": 16264.42, + "probability": 0.5604 + }, + { + "start": 16265.3, + "end": 16266.72, + "probability": 0.9932 + }, + { + "start": 16266.82, + "end": 16267.8, + "probability": 0.9594 + }, + { + "start": 16268.24, + "end": 16269.55, + "probability": 0.9565 + }, + { + "start": 16269.88, + "end": 16270.4, + "probability": 0.8843 + }, + { + "start": 16270.48, + "end": 16276.3, + "probability": 0.6878 + }, + { + "start": 16276.76, + "end": 16278.6, + "probability": 0.9906 + }, + { + "start": 16278.96, + "end": 16280.88, + "probability": 0.9924 + }, + { + "start": 16281.64, + "end": 16283.04, + "probability": 0.7725 + }, + { + "start": 16284.02, + "end": 16287.22, + "probability": 0.9695 + }, + { + "start": 16289.04, + "end": 16293.72, + "probability": 0.5404 + }, + { + "start": 16293.78, + "end": 16296.0, + "probability": 0.5218 + }, + { + "start": 16296.82, + "end": 16298.68, + "probability": 0.7552 + }, + { + "start": 16298.8, + "end": 16299.28, + "probability": 0.7885 + }, + { + "start": 16299.4, + "end": 16299.68, + "probability": 0.7743 + }, + { + "start": 16299.88, + "end": 16300.24, + "probability": 0.518 + }, + { + "start": 16300.3, + "end": 16300.82, + "probability": 0.547 + }, + { + "start": 16301.52, + "end": 16303.28, + "probability": 0.9528 + }, + { + "start": 16303.4, + "end": 16304.24, + "probability": 0.9724 + }, + { + "start": 16305.14, + "end": 16306.62, + "probability": 0.5332 + }, + { + "start": 16307.8, + "end": 16310.3, + "probability": 0.9706 + }, + { + "start": 16310.84, + "end": 16312.52, + "probability": 0.96 + }, + { + "start": 16313.18, + "end": 16315.4, + "probability": 0.9785 + }, + { + "start": 16317.06, + "end": 16319.34, + "probability": 0.9694 + }, + { + "start": 16320.22, + "end": 16321.62, + "probability": 0.9861 + }, + { + "start": 16321.9, + "end": 16324.6, + "probability": 0.8479 + }, + { + "start": 16324.62, + "end": 16326.88, + "probability": 0.7578 + }, + { + "start": 16328.02, + "end": 16330.52, + "probability": 0.947 + }, + { + "start": 16330.62, + "end": 16332.05, + "probability": 0.903 + }, + { + "start": 16332.78, + "end": 16334.0, + "probability": 0.978 + }, + { + "start": 16334.72, + "end": 16335.4, + "probability": 0.73 + }, + { + "start": 16335.54, + "end": 16336.38, + "probability": 0.5632 + }, + { + "start": 16336.4, + "end": 16341.06, + "probability": 0.97 + }, + { + "start": 16342.32, + "end": 16344.0, + "probability": 0.9545 + }, + { + "start": 16344.58, + "end": 16345.74, + "probability": 0.9364 + }, + { + "start": 16346.16, + "end": 16348.72, + "probability": 0.9895 + }, + { + "start": 16348.8, + "end": 16350.77, + "probability": 0.9965 + }, + { + "start": 16351.52, + "end": 16353.52, + "probability": 0.6835 + }, + { + "start": 16353.76, + "end": 16355.88, + "probability": 0.7831 + }, + { + "start": 16356.7, + "end": 16359.64, + "probability": 0.6617 + }, + { + "start": 16360.18, + "end": 16360.7, + "probability": 0.7128 + }, + { + "start": 16360.84, + "end": 16361.76, + "probability": 0.8487 + }, + { + "start": 16362.1, + "end": 16365.85, + "probability": 0.8364 + }, + { + "start": 16366.28, + "end": 16370.34, + "probability": 0.9427 + }, + { + "start": 16370.88, + "end": 16372.68, + "probability": 0.9275 + }, + { + "start": 16373.06, + "end": 16373.87, + "probability": 0.9935 + }, + { + "start": 16374.5, + "end": 16375.56, + "probability": 0.863 + }, + { + "start": 16375.66, + "end": 16376.56, + "probability": 0.6595 + }, + { + "start": 16377.08, + "end": 16379.8, + "probability": 0.7707 + }, + { + "start": 16383.36, + "end": 16384.38, + "probability": 0.7114 + }, + { + "start": 16385.36, + "end": 16387.34, + "probability": 0.0976 + }, + { + "start": 16404.52, + "end": 16409.62, + "probability": 0.4721 + }, + { + "start": 16409.86, + "end": 16410.38, + "probability": 0.2237 + }, + { + "start": 16413.96, + "end": 16418.14, + "probability": 0.2475 + }, + { + "start": 16419.34, + "end": 16420.52, + "probability": 0.0507 + }, + { + "start": 16424.46, + "end": 16426.7, + "probability": 0.062 + }, + { + "start": 16426.7, + "end": 16430.34, + "probability": 0.0258 + }, + { + "start": 16432.12, + "end": 16433.76, + "probability": 0.074 + }, + { + "start": 16434.9, + "end": 16438.04, + "probability": 0.0524 + }, + { + "start": 16496.78, + "end": 16498.56, + "probability": 0.0126 + }, + { + "start": 16498.62, + "end": 16500.42, + "probability": 0.1821 + }, + { + "start": 16500.42, + "end": 16501.2, + "probability": 0.1287 + } + ], + "segments_count": 5764, + "words_count": 28582, + "avg_words_per_segment": 4.9587, + "avg_segment_duration": 2.0495, + "avg_words_per_minute": 103.9158, + "plenum_id": "18442", + "duration": 16502.98, + "title": null, + "plenum_date": "2012-01-17" +} \ No newline at end of file