diff --git "a/33929/metadata.json" "b/33929/metadata.json" new file mode 100644--- /dev/null +++ "b/33929/metadata.json" @@ -0,0 +1,29802 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "33929", + "quality_score": 0.9113, + "per_segment_quality_scores": [ + { + "start": 53.61, + "end": 58.66, + "probability": 0.5535 + }, + { + "start": 59.2, + "end": 63.94, + "probability": 0.9927 + }, + { + "start": 64.62, + "end": 68.64, + "probability": 0.9017 + }, + { + "start": 69.1, + "end": 71.86, + "probability": 0.9441 + }, + { + "start": 72.02, + "end": 72.9, + "probability": 0.645 + }, + { + "start": 94.36, + "end": 98.96, + "probability": 0.9927 + }, + { + "start": 98.96, + "end": 101.84, + "probability": 0.9749 + }, + { + "start": 102.9, + "end": 104.26, + "probability": 0.6969 + }, + { + "start": 109.82, + "end": 110.38, + "probability": 0.4869 + }, + { + "start": 111.54, + "end": 111.6, + "probability": 0.4261 + }, + { + "start": 111.6, + "end": 116.54, + "probability": 0.8734 + }, + { + "start": 117.48, + "end": 121.5, + "probability": 0.8597 + }, + { + "start": 122.02, + "end": 125.74, + "probability": 0.9004 + }, + { + "start": 126.24, + "end": 128.18, + "probability": 0.9771 + }, + { + "start": 128.18, + "end": 131.46, + "probability": 0.939 + }, + { + "start": 132.06, + "end": 133.22, + "probability": 0.9316 + }, + { + "start": 134.48, + "end": 136.24, + "probability": 0.9291 + }, + { + "start": 136.3, + "end": 137.36, + "probability": 0.5275 + }, + { + "start": 138.42, + "end": 141.62, + "probability": 0.9873 + }, + { + "start": 142.22, + "end": 144.64, + "probability": 0.9832 + }, + { + "start": 144.64, + "end": 147.3, + "probability": 0.9836 + }, + { + "start": 148.4, + "end": 149.92, + "probability": 0.991 + }, + { + "start": 149.94, + "end": 150.92, + "probability": 0.7156 + }, + { + "start": 151.0, + "end": 154.76, + "probability": 0.9639 + }, + { + "start": 155.46, + "end": 159.98, + "probability": 0.9593 + }, + { + "start": 160.1, + "end": 160.7, + "probability": 0.7125 + }, + { + "start": 161.94, + "end": 164.16, + "probability": 0.8312 + }, + { + "start": 164.26, + "end": 165.12, + "probability": 0.7137 + }, + { + "start": 165.24, + "end": 165.98, + "probability": 0.6527 + }, + { + "start": 166.08, + "end": 167.06, + "probability": 0.9496 + }, + { + "start": 167.46, + "end": 168.12, + "probability": 0.6522 + }, + { + "start": 168.54, + "end": 173.14, + "probability": 0.9062 + }, + { + "start": 173.68, + "end": 175.4, + "probability": 0.9819 + }, + { + "start": 176.28, + "end": 178.62, + "probability": 0.8923 + }, + { + "start": 179.06, + "end": 180.1, + "probability": 0.7839 + }, + { + "start": 180.36, + "end": 183.52, + "probability": 0.9487 + }, + { + "start": 184.46, + "end": 185.76, + "probability": 0.9188 + }, + { + "start": 186.48, + "end": 188.59, + "probability": 0.8602 + }, + { + "start": 189.3, + "end": 191.46, + "probability": 0.9074 + }, + { + "start": 191.86, + "end": 196.84, + "probability": 0.9029 + }, + { + "start": 197.24, + "end": 200.06, + "probability": 0.9875 + }, + { + "start": 201.02, + "end": 205.66, + "probability": 0.9845 + }, + { + "start": 206.66, + "end": 210.92, + "probability": 0.7702 + }, + { + "start": 211.28, + "end": 214.38, + "probability": 0.9648 + }, + { + "start": 214.92, + "end": 218.84, + "probability": 0.9243 + }, + { + "start": 219.56, + "end": 222.56, + "probability": 0.9761 + }, + { + "start": 222.94, + "end": 226.26, + "probability": 0.9149 + }, + { + "start": 226.7, + "end": 227.4, + "probability": 0.8277 + }, + { + "start": 228.94, + "end": 231.3, + "probability": 0.9609 + }, + { + "start": 231.3, + "end": 234.78, + "probability": 0.988 + }, + { + "start": 235.74, + "end": 238.98, + "probability": 0.9815 + }, + { + "start": 238.98, + "end": 241.44, + "probability": 0.9968 + }, + { + "start": 242.12, + "end": 244.77, + "probability": 0.9583 + }, + { + "start": 245.44, + "end": 249.6, + "probability": 0.9518 + }, + { + "start": 249.6, + "end": 254.56, + "probability": 0.8199 + }, + { + "start": 255.26, + "end": 256.76, + "probability": 0.8009 + }, + { + "start": 256.84, + "end": 257.66, + "probability": 0.8354 + }, + { + "start": 258.02, + "end": 258.92, + "probability": 0.9753 + }, + { + "start": 259.92, + "end": 261.78, + "probability": 0.9624 + }, + { + "start": 262.24, + "end": 263.14, + "probability": 0.9284 + }, + { + "start": 263.2, + "end": 264.22, + "probability": 0.91 + }, + { + "start": 264.56, + "end": 268.02, + "probability": 0.9593 + }, + { + "start": 268.5, + "end": 270.58, + "probability": 0.6359 + }, + { + "start": 270.98, + "end": 272.62, + "probability": 0.7173 + }, + { + "start": 273.18, + "end": 274.62, + "probability": 0.9351 + }, + { + "start": 275.14, + "end": 276.32, + "probability": 0.7518 + }, + { + "start": 276.68, + "end": 280.18, + "probability": 0.968 + }, + { + "start": 280.8, + "end": 284.24, + "probability": 0.994 + }, + { + "start": 284.24, + "end": 288.24, + "probability": 0.9987 + }, + { + "start": 288.72, + "end": 293.94, + "probability": 0.9414 + }, + { + "start": 294.34, + "end": 294.58, + "probability": 0.8066 + }, + { + "start": 296.28, + "end": 298.12, + "probability": 0.8182 + }, + { + "start": 298.14, + "end": 300.72, + "probability": 0.7975 + }, + { + "start": 301.34, + "end": 303.64, + "probability": 0.9238 + }, + { + "start": 312.08, + "end": 313.24, + "probability": 0.6074 + }, + { + "start": 314.68, + "end": 317.7, + "probability": 0.771 + }, + { + "start": 318.96, + "end": 321.38, + "probability": 0.8767 + }, + { + "start": 322.38, + "end": 325.98, + "probability": 0.9744 + }, + { + "start": 326.68, + "end": 328.44, + "probability": 0.7754 + }, + { + "start": 329.28, + "end": 332.32, + "probability": 0.7816 + }, + { + "start": 333.18, + "end": 335.38, + "probability": 0.9184 + }, + { + "start": 336.74, + "end": 337.02, + "probability": 0.8279 + }, + { + "start": 337.2, + "end": 341.5, + "probability": 0.9915 + }, + { + "start": 342.56, + "end": 344.26, + "probability": 0.9673 + }, + { + "start": 345.6, + "end": 350.08, + "probability": 0.985 + }, + { + "start": 350.2, + "end": 352.82, + "probability": 0.9947 + }, + { + "start": 354.42, + "end": 356.98, + "probability": 0.6652 + }, + { + "start": 357.3, + "end": 358.54, + "probability": 0.8752 + }, + { + "start": 358.62, + "end": 361.38, + "probability": 0.9732 + }, + { + "start": 362.76, + "end": 367.0, + "probability": 0.9673 + }, + { + "start": 367.3, + "end": 368.74, + "probability": 0.8018 + }, + { + "start": 369.4, + "end": 369.88, + "probability": 0.8308 + }, + { + "start": 369.98, + "end": 376.24, + "probability": 0.9893 + }, + { + "start": 377.3, + "end": 382.12, + "probability": 0.9335 + }, + { + "start": 382.88, + "end": 387.38, + "probability": 0.9857 + }, + { + "start": 387.94, + "end": 390.0, + "probability": 0.9807 + }, + { + "start": 390.82, + "end": 394.96, + "probability": 0.9388 + }, + { + "start": 395.04, + "end": 399.96, + "probability": 0.947 + }, + { + "start": 399.96, + "end": 406.28, + "probability": 0.9521 + }, + { + "start": 406.68, + "end": 411.14, + "probability": 0.9683 + }, + { + "start": 411.44, + "end": 412.82, + "probability": 0.8702 + }, + { + "start": 413.4, + "end": 415.72, + "probability": 0.991 + }, + { + "start": 416.16, + "end": 417.56, + "probability": 0.7259 + }, + { + "start": 417.86, + "end": 418.94, + "probability": 0.8649 + }, + { + "start": 419.08, + "end": 419.36, + "probability": 0.4751 + }, + { + "start": 419.5, + "end": 423.42, + "probability": 0.9706 + }, + { + "start": 423.42, + "end": 425.98, + "probability": 0.9622 + }, + { + "start": 426.06, + "end": 426.24, + "probability": 0.7062 + }, + { + "start": 426.68, + "end": 428.38, + "probability": 0.7706 + }, + { + "start": 428.46, + "end": 429.94, + "probability": 0.9119 + }, + { + "start": 430.04, + "end": 430.4, + "probability": 0.6848 + }, + { + "start": 430.46, + "end": 430.8, + "probability": 0.7653 + }, + { + "start": 431.26, + "end": 431.78, + "probability": 0.6382 + }, + { + "start": 431.92, + "end": 432.84, + "probability": 0.9698 + }, + { + "start": 437.34, + "end": 438.0, + "probability": 0.7372 + }, + { + "start": 438.04, + "end": 439.34, + "probability": 0.7725 + }, + { + "start": 439.84, + "end": 444.8, + "probability": 0.9141 + }, + { + "start": 445.36, + "end": 452.14, + "probability": 0.9741 + }, + { + "start": 453.22, + "end": 454.24, + "probability": 0.7036 + }, + { + "start": 454.96, + "end": 456.14, + "probability": 0.7617 + }, + { + "start": 456.76, + "end": 463.28, + "probability": 0.9556 + }, + { + "start": 463.7, + "end": 467.14, + "probability": 0.9277 + }, + { + "start": 467.7, + "end": 469.22, + "probability": 0.9717 + }, + { + "start": 469.86, + "end": 472.52, + "probability": 0.799 + }, + { + "start": 472.64, + "end": 474.5, + "probability": 0.983 + }, + { + "start": 475.58, + "end": 476.87, + "probability": 0.878 + }, + { + "start": 479.18, + "end": 481.32, + "probability": 0.5664 + }, + { + "start": 481.82, + "end": 481.82, + "probability": 0.2695 + }, + { + "start": 481.82, + "end": 487.71, + "probability": 0.9199 + }, + { + "start": 488.32, + "end": 488.98, + "probability": 0.5076 + }, + { + "start": 489.0, + "end": 489.96, + "probability": 0.82 + }, + { + "start": 489.98, + "end": 493.78, + "probability": 0.9891 + }, + { + "start": 493.78, + "end": 496.76, + "probability": 0.8504 + }, + { + "start": 497.1, + "end": 497.72, + "probability": 0.8456 + }, + { + "start": 497.82, + "end": 498.4, + "probability": 0.9648 + }, + { + "start": 498.52, + "end": 500.36, + "probability": 0.9158 + }, + { + "start": 500.78, + "end": 501.32, + "probability": 0.7742 + }, + { + "start": 502.04, + "end": 503.04, + "probability": 0.9983 + }, + { + "start": 503.8, + "end": 507.02, + "probability": 0.9845 + }, + { + "start": 507.42, + "end": 513.04, + "probability": 0.984 + }, + { + "start": 513.46, + "end": 517.2, + "probability": 0.9758 + }, + { + "start": 517.62, + "end": 522.08, + "probability": 0.9867 + }, + { + "start": 522.44, + "end": 525.9, + "probability": 0.9821 + }, + { + "start": 526.6, + "end": 526.76, + "probability": 0.6313 + }, + { + "start": 527.3, + "end": 528.86, + "probability": 0.7468 + }, + { + "start": 529.3, + "end": 531.08, + "probability": 0.9264 + }, + { + "start": 531.28, + "end": 531.92, + "probability": 0.5539 + }, + { + "start": 532.02, + "end": 533.12, + "probability": 0.9759 + }, + { + "start": 536.9, + "end": 539.1, + "probability": 0.6276 + }, + { + "start": 539.86, + "end": 545.5, + "probability": 0.9897 + }, + { + "start": 546.5, + "end": 548.13, + "probability": 0.8989 + }, + { + "start": 549.96, + "end": 551.22, + "probability": 0.9947 + }, + { + "start": 552.14, + "end": 555.04, + "probability": 0.9832 + }, + { + "start": 555.64, + "end": 561.86, + "probability": 0.9971 + }, + { + "start": 562.52, + "end": 563.8, + "probability": 0.9838 + }, + { + "start": 564.76, + "end": 566.35, + "probability": 0.9961 + }, + { + "start": 567.42, + "end": 569.13, + "probability": 0.9725 + }, + { + "start": 570.0, + "end": 571.96, + "probability": 0.9905 + }, + { + "start": 573.02, + "end": 573.78, + "probability": 0.8182 + }, + { + "start": 574.32, + "end": 576.46, + "probability": 0.9256 + }, + { + "start": 577.36, + "end": 579.8, + "probability": 0.9913 + }, + { + "start": 580.62, + "end": 583.34, + "probability": 0.8866 + }, + { + "start": 583.46, + "end": 586.26, + "probability": 0.9978 + }, + { + "start": 587.34, + "end": 588.78, + "probability": 0.829 + }, + { + "start": 589.52, + "end": 592.5, + "probability": 0.9776 + }, + { + "start": 593.18, + "end": 594.9, + "probability": 0.995 + }, + { + "start": 595.88, + "end": 597.96, + "probability": 0.9829 + }, + { + "start": 598.08, + "end": 601.03, + "probability": 0.9914 + }, + { + "start": 602.48, + "end": 604.08, + "probability": 0.6837 + }, + { + "start": 604.7, + "end": 607.56, + "probability": 0.9797 + }, + { + "start": 607.72, + "end": 608.41, + "probability": 0.9389 + }, + { + "start": 609.18, + "end": 611.82, + "probability": 0.9899 + }, + { + "start": 612.6, + "end": 613.76, + "probability": 0.8498 + }, + { + "start": 614.6, + "end": 617.4, + "probability": 0.9478 + }, + { + "start": 618.12, + "end": 621.2, + "probability": 0.9972 + }, + { + "start": 621.26, + "end": 621.38, + "probability": 0.6986 + }, + { + "start": 623.4, + "end": 625.08, + "probability": 0.752 + }, + { + "start": 625.22, + "end": 627.44, + "probability": 0.7486 + }, + { + "start": 631.46, + "end": 634.18, + "probability": 0.9751 + }, + { + "start": 635.16, + "end": 636.66, + "probability": 0.6597 + }, + { + "start": 637.96, + "end": 643.02, + "probability": 0.9808 + }, + { + "start": 643.96, + "end": 646.17, + "probability": 0.7696 + }, + { + "start": 647.6, + "end": 649.78, + "probability": 0.666 + }, + { + "start": 649.96, + "end": 650.76, + "probability": 0.7521 + }, + { + "start": 650.92, + "end": 652.2, + "probability": 0.8263 + }, + { + "start": 652.28, + "end": 655.43, + "probability": 0.9783 + }, + { + "start": 655.98, + "end": 658.4, + "probability": 0.8299 + }, + { + "start": 659.04, + "end": 662.08, + "probability": 0.8123 + }, + { + "start": 662.62, + "end": 665.82, + "probability": 0.7072 + }, + { + "start": 667.04, + "end": 669.38, + "probability": 0.5274 + }, + { + "start": 669.42, + "end": 670.72, + "probability": 0.8167 + }, + { + "start": 671.18, + "end": 673.3, + "probability": 0.6047 + }, + { + "start": 673.3, + "end": 673.76, + "probability": 0.3353 + }, + { + "start": 673.84, + "end": 676.24, + "probability": 0.936 + }, + { + "start": 676.76, + "end": 680.02, + "probability": 0.7752 + }, + { + "start": 680.56, + "end": 682.96, + "probability": 0.9665 + }, + { + "start": 683.42, + "end": 685.24, + "probability": 0.5755 + }, + { + "start": 685.54, + "end": 686.86, + "probability": 0.8139 + }, + { + "start": 687.32, + "end": 688.74, + "probability": 0.9307 + }, + { + "start": 689.04, + "end": 690.42, + "probability": 0.886 + }, + { + "start": 690.56, + "end": 694.24, + "probability": 0.9624 + }, + { + "start": 694.72, + "end": 698.18, + "probability": 0.0645 + }, + { + "start": 698.18, + "end": 701.0, + "probability": 0.496 + }, + { + "start": 701.0, + "end": 705.36, + "probability": 0.7008 + }, + { + "start": 705.4, + "end": 705.62, + "probability": 0.631 + }, + { + "start": 706.42, + "end": 707.92, + "probability": 0.8804 + }, + { + "start": 707.98, + "end": 709.44, + "probability": 0.8645 + }, + { + "start": 709.48, + "end": 710.0, + "probability": 0.4942 + }, + { + "start": 710.2, + "end": 711.08, + "probability": 0.6751 + }, + { + "start": 722.42, + "end": 724.42, + "probability": 0.9974 + }, + { + "start": 724.92, + "end": 727.48, + "probability": 0.7653 + }, + { + "start": 727.62, + "end": 729.8, + "probability": 0.7314 + }, + { + "start": 730.98, + "end": 733.56, + "probability": 0.7716 + }, + { + "start": 734.44, + "end": 737.28, + "probability": 0.9631 + }, + { + "start": 738.34, + "end": 743.16, + "probability": 0.9653 + }, + { + "start": 744.5, + "end": 746.4, + "probability": 0.9595 + }, + { + "start": 747.04, + "end": 751.42, + "probability": 0.9674 + }, + { + "start": 754.22, + "end": 755.56, + "probability": 0.8191 + }, + { + "start": 755.7, + "end": 756.54, + "probability": 0.7385 + }, + { + "start": 756.66, + "end": 758.78, + "probability": 0.9922 + }, + { + "start": 759.66, + "end": 761.52, + "probability": 0.9516 + }, + { + "start": 762.52, + "end": 766.26, + "probability": 0.9105 + }, + { + "start": 767.38, + "end": 767.76, + "probability": 0.9574 + }, + { + "start": 768.4, + "end": 770.18, + "probability": 0.8988 + }, + { + "start": 770.62, + "end": 772.08, + "probability": 0.6787 + }, + { + "start": 772.64, + "end": 772.86, + "probability": 0.9673 + }, + { + "start": 776.2, + "end": 780.84, + "probability": 0.8645 + }, + { + "start": 781.52, + "end": 782.78, + "probability": 0.8932 + }, + { + "start": 783.34, + "end": 787.2, + "probability": 0.9375 + }, + { + "start": 787.48, + "end": 788.36, + "probability": 0.9978 + }, + { + "start": 790.64, + "end": 795.38, + "probability": 0.9916 + }, + { + "start": 796.1, + "end": 797.24, + "probability": 0.8647 + }, + { + "start": 797.7, + "end": 801.92, + "probability": 0.9705 + }, + { + "start": 803.26, + "end": 806.3, + "probability": 0.9932 + }, + { + "start": 806.72, + "end": 809.1, + "probability": 0.9858 + }, + { + "start": 809.88, + "end": 810.6, + "probability": 0.7849 + }, + { + "start": 811.32, + "end": 812.84, + "probability": 0.5503 + }, + { + "start": 813.7, + "end": 817.1, + "probability": 0.9689 + }, + { + "start": 818.46, + "end": 819.26, + "probability": 0.7921 + }, + { + "start": 820.06, + "end": 821.82, + "probability": 0.9497 + }, + { + "start": 822.98, + "end": 827.1, + "probability": 0.9749 + }, + { + "start": 827.72, + "end": 831.04, + "probability": 0.9908 + }, + { + "start": 831.92, + "end": 833.26, + "probability": 0.8562 + }, + { + "start": 834.54, + "end": 836.76, + "probability": 0.9753 + }, + { + "start": 837.28, + "end": 839.14, + "probability": 0.943 + }, + { + "start": 839.18, + "end": 839.74, + "probability": 0.5776 + }, + { + "start": 839.86, + "end": 840.66, + "probability": 0.9398 + }, + { + "start": 843.2, + "end": 844.36, + "probability": 0.7787 + }, + { + "start": 845.3, + "end": 847.06, + "probability": 0.9964 + }, + { + "start": 847.12, + "end": 848.34, + "probability": 0.8408 + }, + { + "start": 848.36, + "end": 852.28, + "probability": 0.7393 + }, + { + "start": 852.94, + "end": 856.38, + "probability": 0.7317 + }, + { + "start": 856.62, + "end": 857.68, + "probability": 0.7615 + }, + { + "start": 858.18, + "end": 864.42, + "probability": 0.9511 + }, + { + "start": 865.3, + "end": 869.7, + "probability": 0.938 + }, + { + "start": 870.38, + "end": 874.96, + "probability": 0.8964 + }, + { + "start": 875.68, + "end": 876.36, + "probability": 0.4743 + }, + { + "start": 876.38, + "end": 876.94, + "probability": 0.6909 + }, + { + "start": 876.94, + "end": 878.0, + "probability": 0.5002 + }, + { + "start": 878.12, + "end": 880.06, + "probability": 0.9839 + }, + { + "start": 880.98, + "end": 882.86, + "probability": 0.7896 + }, + { + "start": 882.92, + "end": 884.26, + "probability": 0.4702 + }, + { + "start": 884.76, + "end": 889.18, + "probability": 0.9616 + }, + { + "start": 889.38, + "end": 893.5, + "probability": 0.9333 + }, + { + "start": 893.7, + "end": 894.66, + "probability": 0.826 + }, + { + "start": 894.9, + "end": 898.65, + "probability": 0.972 + }, + { + "start": 898.74, + "end": 902.32, + "probability": 0.974 + }, + { + "start": 902.66, + "end": 906.15, + "probability": 0.8592 + }, + { + "start": 907.04, + "end": 908.22, + "probability": 0.9516 + }, + { + "start": 908.28, + "end": 908.76, + "probability": 0.8885 + }, + { + "start": 908.8, + "end": 909.2, + "probability": 0.6026 + }, + { + "start": 909.3, + "end": 910.05, + "probability": 0.8725 + }, + { + "start": 910.42, + "end": 910.84, + "probability": 0.6471 + }, + { + "start": 910.84, + "end": 913.0, + "probability": 0.6667 + }, + { + "start": 913.08, + "end": 913.98, + "probability": 0.9006 + }, + { + "start": 914.04, + "end": 916.3, + "probability": 0.7957 + }, + { + "start": 916.42, + "end": 917.08, + "probability": 0.8663 + }, + { + "start": 917.1, + "end": 918.1, + "probability": 0.915 + }, + { + "start": 918.42, + "end": 921.38, + "probability": 0.9649 + }, + { + "start": 921.88, + "end": 924.94, + "probability": 0.7304 + }, + { + "start": 925.46, + "end": 928.42, + "probability": 0.8049 + }, + { + "start": 928.46, + "end": 929.22, + "probability": 0.7384 + }, + { + "start": 930.02, + "end": 931.66, + "probability": 0.9685 + }, + { + "start": 931.84, + "end": 933.94, + "probability": 0.8186 + }, + { + "start": 933.98, + "end": 935.54, + "probability": 0.9637 + }, + { + "start": 937.42, + "end": 937.98, + "probability": 0.6343 + }, + { + "start": 938.16, + "end": 939.7, + "probability": 0.5979 + }, + { + "start": 940.72, + "end": 946.06, + "probability": 0.5568 + }, + { + "start": 946.06, + "end": 949.28, + "probability": 0.7013 + }, + { + "start": 949.44, + "end": 949.94, + "probability": 0.7097 + }, + { + "start": 949.96, + "end": 954.28, + "probability": 0.9892 + }, + { + "start": 954.9, + "end": 958.18, + "probability": 0.666 + }, + { + "start": 959.2, + "end": 963.36, + "probability": 0.8112 + }, + { + "start": 963.42, + "end": 968.44, + "probability": 0.8573 + }, + { + "start": 968.48, + "end": 969.2, + "probability": 0.8901 + }, + { + "start": 969.36, + "end": 977.96, + "probability": 0.8086 + }, + { + "start": 978.24, + "end": 981.26, + "probability": 0.9413 + }, + { + "start": 981.48, + "end": 985.88, + "probability": 0.9561 + }, + { + "start": 986.04, + "end": 988.54, + "probability": 0.7027 + }, + { + "start": 988.6, + "end": 990.36, + "probability": 0.9685 + }, + { + "start": 990.58, + "end": 991.64, + "probability": 0.8297 + }, + { + "start": 991.82, + "end": 996.36, + "probability": 0.4571 + }, + { + "start": 996.8, + "end": 997.96, + "probability": 0.6323 + }, + { + "start": 998.22, + "end": 999.86, + "probability": 0.9414 + }, + { + "start": 999.98, + "end": 1000.48, + "probability": 0.8467 + }, + { + "start": 1000.92, + "end": 1002.96, + "probability": 0.6494 + }, + { + "start": 1003.32, + "end": 1005.34, + "probability": 0.9681 + }, + { + "start": 1005.82, + "end": 1006.26, + "probability": 0.4759 + }, + { + "start": 1006.36, + "end": 1007.64, + "probability": 0.8708 + }, + { + "start": 1012.26, + "end": 1012.8, + "probability": 0.5062 + }, + { + "start": 1012.84, + "end": 1013.98, + "probability": 0.668 + }, + { + "start": 1014.1, + "end": 1014.72, + "probability": 0.9273 + }, + { + "start": 1014.84, + "end": 1016.82, + "probability": 0.6271 + }, + { + "start": 1017.8, + "end": 1018.38, + "probability": 0.8925 + }, + { + "start": 1018.58, + "end": 1023.42, + "probability": 0.95 + }, + { + "start": 1024.38, + "end": 1026.34, + "probability": 0.7373 + }, + { + "start": 1027.16, + "end": 1028.24, + "probability": 0.9031 + }, + { + "start": 1028.96, + "end": 1029.78, + "probability": 0.9288 + }, + { + "start": 1031.04, + "end": 1034.8, + "probability": 0.946 + }, + { + "start": 1035.68, + "end": 1042.0, + "probability": 0.9938 + }, + { + "start": 1043.44, + "end": 1049.26, + "probability": 0.9948 + }, + { + "start": 1049.26, + "end": 1052.22, + "probability": 0.9968 + }, + { + "start": 1052.74, + "end": 1053.9, + "probability": 0.7203 + }, + { + "start": 1054.48, + "end": 1057.88, + "probability": 0.6868 + }, + { + "start": 1058.5, + "end": 1063.02, + "probability": 0.9757 + }, + { + "start": 1063.78, + "end": 1067.8, + "probability": 0.9956 + }, + { + "start": 1068.78, + "end": 1071.02, + "probability": 0.9822 + }, + { + "start": 1071.24, + "end": 1074.52, + "probability": 0.8923 + }, + { + "start": 1075.48, + "end": 1079.36, + "probability": 0.7966 + }, + { + "start": 1080.34, + "end": 1085.88, + "probability": 0.9693 + }, + { + "start": 1086.34, + "end": 1087.88, + "probability": 0.7986 + }, + { + "start": 1087.92, + "end": 1088.82, + "probability": 0.8216 + }, + { + "start": 1089.38, + "end": 1091.72, + "probability": 0.8453 + }, + { + "start": 1092.28, + "end": 1098.1, + "probability": 0.8767 + }, + { + "start": 1099.1, + "end": 1102.46, + "probability": 0.9966 + }, + { + "start": 1103.1, + "end": 1103.98, + "probability": 0.9875 + }, + { + "start": 1104.5, + "end": 1106.36, + "probability": 0.9573 + }, + { + "start": 1106.52, + "end": 1109.9, + "probability": 0.995 + }, + { + "start": 1110.68, + "end": 1114.06, + "probability": 0.9944 + }, + { + "start": 1114.82, + "end": 1116.68, + "probability": 0.6668 + }, + { + "start": 1117.2, + "end": 1126.3, + "probability": 0.9412 + }, + { + "start": 1126.72, + "end": 1127.06, + "probability": 0.7913 + }, + { + "start": 1128.76, + "end": 1130.5, + "probability": 0.8149 + }, + { + "start": 1130.76, + "end": 1133.76, + "probability": 0.9188 + }, + { + "start": 1134.3, + "end": 1135.8, + "probability": 0.8524 + }, + { + "start": 1137.6, + "end": 1138.06, + "probability": 0.562 + }, + { + "start": 1138.2, + "end": 1139.56, + "probability": 0.7741 + }, + { + "start": 1140.6, + "end": 1142.46, + "probability": 0.9514 + }, + { + "start": 1143.72, + "end": 1147.34, + "probability": 0.9884 + }, + { + "start": 1150.38, + "end": 1151.64, + "probability": 0.6149 + }, + { + "start": 1152.14, + "end": 1153.21, + "probability": 0.6928 + }, + { + "start": 1153.94, + "end": 1155.5, + "probability": 0.8795 + }, + { + "start": 1157.06, + "end": 1159.98, + "probability": 0.9561 + }, + { + "start": 1163.06, + "end": 1166.78, + "probability": 0.96 + }, + { + "start": 1166.78, + "end": 1169.96, + "probability": 0.9771 + }, + { + "start": 1172.16, + "end": 1174.2, + "probability": 0.9774 + }, + { + "start": 1175.02, + "end": 1176.1, + "probability": 0.8532 + }, + { + "start": 1176.7, + "end": 1180.52, + "probability": 0.9956 + }, + { + "start": 1181.74, + "end": 1182.86, + "probability": 0.9836 + }, + { + "start": 1183.76, + "end": 1190.46, + "probability": 0.9899 + }, + { + "start": 1190.64, + "end": 1191.76, + "probability": 0.9009 + }, + { + "start": 1192.48, + "end": 1195.9, + "probability": 0.9054 + }, + { + "start": 1196.06, + "end": 1197.36, + "probability": 0.8589 + }, + { + "start": 1197.9, + "end": 1201.3, + "probability": 0.9939 + }, + { + "start": 1202.36, + "end": 1205.14, + "probability": 0.962 + }, + { + "start": 1205.76, + "end": 1208.66, + "probability": 0.9864 + }, + { + "start": 1209.1, + "end": 1212.56, + "probability": 0.9915 + }, + { + "start": 1213.24, + "end": 1220.36, + "probability": 0.9127 + }, + { + "start": 1221.52, + "end": 1224.44, + "probability": 0.9902 + }, + { + "start": 1225.42, + "end": 1228.32, + "probability": 0.8376 + }, + { + "start": 1229.16, + "end": 1230.96, + "probability": 0.8462 + }, + { + "start": 1231.86, + "end": 1235.06, + "probability": 0.9968 + }, + { + "start": 1236.1, + "end": 1239.34, + "probability": 0.9367 + }, + { + "start": 1239.88, + "end": 1242.2, + "probability": 0.9084 + }, + { + "start": 1242.9, + "end": 1245.04, + "probability": 0.8813 + }, + { + "start": 1246.1, + "end": 1251.66, + "probability": 0.9788 + }, + { + "start": 1251.76, + "end": 1260.36, + "probability": 0.9945 + }, + { + "start": 1261.6, + "end": 1266.3, + "probability": 0.575 + }, + { + "start": 1266.66, + "end": 1268.2, + "probability": 0.7507 + }, + { + "start": 1268.72, + "end": 1273.88, + "probability": 0.6722 + }, + { + "start": 1273.98, + "end": 1277.06, + "probability": 0.9885 + }, + { + "start": 1277.84, + "end": 1281.99, + "probability": 0.9059 + }, + { + "start": 1282.66, + "end": 1283.54, + "probability": 0.805 + }, + { + "start": 1283.72, + "end": 1289.04, + "probability": 0.9759 + }, + { + "start": 1289.52, + "end": 1294.04, + "probability": 0.9377 + }, + { + "start": 1294.04, + "end": 1301.2, + "probability": 0.9978 + }, + { + "start": 1301.28, + "end": 1302.46, + "probability": 0.8032 + }, + { + "start": 1303.04, + "end": 1305.64, + "probability": 0.9555 + }, + { + "start": 1306.72, + "end": 1307.58, + "probability": 0.7591 + }, + { + "start": 1308.34, + "end": 1309.58, + "probability": 0.7641 + }, + { + "start": 1309.7, + "end": 1312.08, + "probability": 0.7605 + }, + { + "start": 1313.12, + "end": 1315.46, + "probability": 0.9296 + }, + { + "start": 1319.04, + "end": 1319.78, + "probability": 0.8489 + }, + { + "start": 1319.96, + "end": 1324.94, + "probability": 0.9686 + }, + { + "start": 1324.94, + "end": 1329.72, + "probability": 0.983 + }, + { + "start": 1329.92, + "end": 1330.08, + "probability": 0.004 + }, + { + "start": 1330.08, + "end": 1333.7, + "probability": 0.6067 + }, + { + "start": 1333.7, + "end": 1337.32, + "probability": 0.672 + }, + { + "start": 1337.6, + "end": 1337.94, + "probability": 0.1547 + }, + { + "start": 1339.54, + "end": 1341.2, + "probability": 0.0115 + }, + { + "start": 1341.98, + "end": 1342.12, + "probability": 0.2357 + }, + { + "start": 1342.12, + "end": 1342.12, + "probability": 0.0595 + }, + { + "start": 1342.12, + "end": 1344.52, + "probability": 0.4145 + }, + { + "start": 1344.86, + "end": 1345.94, + "probability": 0.7136 + }, + { + "start": 1346.14, + "end": 1347.4, + "probability": 0.3568 + }, + { + "start": 1347.76, + "end": 1348.81, + "probability": 0.7641 + }, + { + "start": 1349.68, + "end": 1351.53, + "probability": 0.9847 + }, + { + "start": 1352.2, + "end": 1354.42, + "probability": 0.8969 + }, + { + "start": 1354.58, + "end": 1355.16, + "probability": 0.5564 + }, + { + "start": 1355.28, + "end": 1356.06, + "probability": 0.744 + }, + { + "start": 1356.24, + "end": 1357.42, + "probability": 0.938 + }, + { + "start": 1358.12, + "end": 1362.66, + "probability": 0.8836 + }, + { + "start": 1362.7, + "end": 1364.12, + "probability": 0.9355 + }, + { + "start": 1364.2, + "end": 1365.0, + "probability": 0.9034 + }, + { + "start": 1365.12, + "end": 1366.1, + "probability": 0.8444 + }, + { + "start": 1366.56, + "end": 1368.74, + "probability": 0.9757 + }, + { + "start": 1369.26, + "end": 1372.7, + "probability": 0.8551 + }, + { + "start": 1373.62, + "end": 1376.56, + "probability": 0.9444 + }, + { + "start": 1376.56, + "end": 1381.24, + "probability": 0.9902 + }, + { + "start": 1381.54, + "end": 1384.78, + "probability": 0.9956 + }, + { + "start": 1384.78, + "end": 1388.14, + "probability": 0.994 + }, + { + "start": 1388.22, + "end": 1388.84, + "probability": 0.8035 + }, + { + "start": 1389.4, + "end": 1394.16, + "probability": 0.7454 + }, + { + "start": 1394.16, + "end": 1396.58, + "probability": 0.8834 + }, + { + "start": 1397.46, + "end": 1399.74, + "probability": 0.9741 + }, + { + "start": 1399.96, + "end": 1402.68, + "probability": 0.9835 + }, + { + "start": 1402.76, + "end": 1405.16, + "probability": 0.9611 + }, + { + "start": 1407.12, + "end": 1410.36, + "probability": 0.9438 + }, + { + "start": 1410.36, + "end": 1414.56, + "probability": 0.9701 + }, + { + "start": 1415.62, + "end": 1418.54, + "probability": 0.9957 + }, + { + "start": 1418.54, + "end": 1422.7, + "probability": 0.8525 + }, + { + "start": 1423.04, + "end": 1424.47, + "probability": 0.9868 + }, + { + "start": 1424.82, + "end": 1426.12, + "probability": 0.6855 + }, + { + "start": 1426.54, + "end": 1426.9, + "probability": 0.3868 + }, + { + "start": 1426.9, + "end": 1427.68, + "probability": 0.6305 + }, + { + "start": 1427.82, + "end": 1432.0, + "probability": 0.9552 + }, + { + "start": 1432.12, + "end": 1434.2, + "probability": 0.9626 + }, + { + "start": 1434.6, + "end": 1437.2, + "probability": 0.9106 + }, + { + "start": 1437.72, + "end": 1439.16, + "probability": 0.9583 + }, + { + "start": 1439.36, + "end": 1443.88, + "probability": 0.8896 + }, + { + "start": 1444.34, + "end": 1446.22, + "probability": 0.7853 + }, + { + "start": 1446.56, + "end": 1450.18, + "probability": 0.9043 + }, + { + "start": 1450.5, + "end": 1452.24, + "probability": 0.6019 + }, + { + "start": 1452.4, + "end": 1453.18, + "probability": 0.6396 + }, + { + "start": 1453.22, + "end": 1454.52, + "probability": 0.5411 + }, + { + "start": 1455.22, + "end": 1458.76, + "probability": 0.8529 + }, + { + "start": 1458.9, + "end": 1462.21, + "probability": 0.7659 + }, + { + "start": 1462.66, + "end": 1464.33, + "probability": 0.8442 + }, + { + "start": 1464.46, + "end": 1468.95, + "probability": 0.9746 + }, + { + "start": 1469.28, + "end": 1471.96, + "probability": 0.8814 + }, + { + "start": 1472.1, + "end": 1472.3, + "probability": 0.5844 + }, + { + "start": 1472.66, + "end": 1474.86, + "probability": 0.7551 + }, + { + "start": 1475.3, + "end": 1478.18, + "probability": 0.9629 + }, + { + "start": 1482.66, + "end": 1483.3, + "probability": 0.7217 + }, + { + "start": 1483.48, + "end": 1485.92, + "probability": 0.6856 + }, + { + "start": 1486.54, + "end": 1490.92, + "probability": 0.9566 + }, + { + "start": 1491.48, + "end": 1495.96, + "probability": 0.9965 + }, + { + "start": 1497.18, + "end": 1499.42, + "probability": 0.9927 + }, + { + "start": 1499.95, + "end": 1502.3, + "probability": 0.9954 + }, + { + "start": 1502.44, + "end": 1506.16, + "probability": 0.9917 + }, + { + "start": 1506.86, + "end": 1510.64, + "probability": 0.9569 + }, + { + "start": 1510.78, + "end": 1512.22, + "probability": 0.9144 + }, + { + "start": 1512.4, + "end": 1517.24, + "probability": 0.9619 + }, + { + "start": 1517.24, + "end": 1520.1, + "probability": 0.9935 + }, + { + "start": 1520.68, + "end": 1524.8, + "probability": 0.9684 + }, + { + "start": 1525.02, + "end": 1527.76, + "probability": 0.9963 + }, + { + "start": 1528.46, + "end": 1528.76, + "probability": 0.9108 + }, + { + "start": 1529.06, + "end": 1529.88, + "probability": 0.7962 + }, + { + "start": 1530.0, + "end": 1532.88, + "probability": 0.8826 + }, + { + "start": 1533.14, + "end": 1536.68, + "probability": 0.9732 + }, + { + "start": 1537.36, + "end": 1540.28, + "probability": 0.8114 + }, + { + "start": 1540.7, + "end": 1542.38, + "probability": 0.9654 + }, + { + "start": 1542.6, + "end": 1542.84, + "probability": 0.4227 + }, + { + "start": 1542.92, + "end": 1543.06, + "probability": 0.9096 + }, + { + "start": 1543.12, + "end": 1546.6, + "probability": 0.9196 + }, + { + "start": 1546.6, + "end": 1549.5, + "probability": 0.9956 + }, + { + "start": 1549.96, + "end": 1553.16, + "probability": 0.9912 + }, + { + "start": 1553.18, + "end": 1555.92, + "probability": 0.9819 + }, + { + "start": 1556.22, + "end": 1556.5, + "probability": 0.5411 + }, + { + "start": 1557.08, + "end": 1558.78, + "probability": 0.9844 + }, + { + "start": 1558.88, + "end": 1562.76, + "probability": 0.906 + }, + { + "start": 1568.12, + "end": 1571.02, + "probability": 0.6306 + }, + { + "start": 1571.68, + "end": 1576.56, + "probability": 0.9497 + }, + { + "start": 1577.22, + "end": 1583.1, + "probability": 0.991 + }, + { + "start": 1583.92, + "end": 1588.5, + "probability": 0.9888 + }, + { + "start": 1588.66, + "end": 1589.32, + "probability": 0.7154 + }, + { + "start": 1589.76, + "end": 1590.82, + "probability": 0.7923 + }, + { + "start": 1592.06, + "end": 1596.76, + "probability": 0.9209 + }, + { + "start": 1597.74, + "end": 1598.74, + "probability": 0.9324 + }, + { + "start": 1599.44, + "end": 1601.66, + "probability": 0.9814 + }, + { + "start": 1601.9, + "end": 1603.02, + "probability": 0.8636 + }, + { + "start": 1603.08, + "end": 1605.14, + "probability": 0.8103 + }, + { + "start": 1605.18, + "end": 1607.24, + "probability": 0.9856 + }, + { + "start": 1608.16, + "end": 1609.0, + "probability": 0.9351 + }, + { + "start": 1609.62, + "end": 1610.13, + "probability": 0.959 + }, + { + "start": 1611.12, + "end": 1612.8, + "probability": 0.9929 + }, + { + "start": 1613.7, + "end": 1614.57, + "probability": 0.6382 + }, + { + "start": 1615.42, + "end": 1616.12, + "probability": 0.8876 + }, + { + "start": 1616.92, + "end": 1620.46, + "probability": 0.9565 + }, + { + "start": 1622.18, + "end": 1622.78, + "probability": 0.8433 + }, + { + "start": 1623.52, + "end": 1627.2, + "probability": 0.9716 + }, + { + "start": 1628.66, + "end": 1630.0, + "probability": 0.8605 + }, + { + "start": 1631.1, + "end": 1633.64, + "probability": 0.7834 + }, + { + "start": 1634.12, + "end": 1635.94, + "probability": 0.6646 + }, + { + "start": 1647.12, + "end": 1648.14, + "probability": 0.8258 + }, + { + "start": 1650.2, + "end": 1653.82, + "probability": 0.9427 + }, + { + "start": 1654.4, + "end": 1655.86, + "probability": 0.9643 + }, + { + "start": 1656.92, + "end": 1658.16, + "probability": 0.9681 + }, + { + "start": 1658.22, + "end": 1666.04, + "probability": 0.9307 + }, + { + "start": 1667.06, + "end": 1668.3, + "probability": 0.8535 + }, + { + "start": 1669.44, + "end": 1673.86, + "probability": 0.924 + }, + { + "start": 1673.9, + "end": 1677.03, + "probability": 0.7782 + }, + { + "start": 1677.26, + "end": 1678.58, + "probability": 0.7493 + }, + { + "start": 1679.1, + "end": 1684.04, + "probability": 0.8765 + }, + { + "start": 1684.32, + "end": 1686.14, + "probability": 0.9836 + }, + { + "start": 1686.2, + "end": 1691.7, + "probability": 0.8842 + }, + { + "start": 1692.06, + "end": 1698.24, + "probability": 0.9666 + }, + { + "start": 1698.24, + "end": 1704.96, + "probability": 0.9968 + }, + { + "start": 1705.08, + "end": 1707.18, + "probability": 0.9173 + }, + { + "start": 1707.36, + "end": 1710.82, + "probability": 0.9683 + }, + { + "start": 1711.22, + "end": 1712.0, + "probability": 0.6408 + }, + { + "start": 1712.06, + "end": 1714.08, + "probability": 0.7633 + }, + { + "start": 1714.5, + "end": 1719.39, + "probability": 0.7892 + }, + { + "start": 1720.2, + "end": 1721.46, + "probability": 0.7643 + }, + { + "start": 1721.52, + "end": 1724.56, + "probability": 0.0954 + }, + { + "start": 1724.88, + "end": 1730.22, + "probability": 0.9988 + }, + { + "start": 1730.88, + "end": 1731.64, + "probability": 0.6695 + }, + { + "start": 1731.7, + "end": 1733.62, + "probability": 0.9858 + }, + { + "start": 1734.16, + "end": 1736.3, + "probability": 0.9924 + }, + { + "start": 1736.78, + "end": 1743.1, + "probability": 0.9954 + }, + { + "start": 1743.16, + "end": 1745.54, + "probability": 0.9917 + }, + { + "start": 1745.76, + "end": 1747.04, + "probability": 0.8134 + }, + { + "start": 1747.22, + "end": 1749.82, + "probability": 0.9972 + }, + { + "start": 1749.82, + "end": 1753.24, + "probability": 0.9844 + }, + { + "start": 1753.74, + "end": 1755.5, + "probability": 0.9468 + }, + { + "start": 1756.32, + "end": 1758.12, + "probability": 0.8387 + }, + { + "start": 1758.48, + "end": 1761.4, + "probability": 0.9739 + }, + { + "start": 1761.8, + "end": 1762.38, + "probability": 0.4438 + }, + { + "start": 1763.06, + "end": 1766.12, + "probability": 0.711 + }, + { + "start": 1766.3, + "end": 1767.66, + "probability": 0.6598 + }, + { + "start": 1768.28, + "end": 1772.82, + "probability": 0.9457 + }, + { + "start": 1773.32, + "end": 1776.32, + "probability": 0.8901 + }, + { + "start": 1776.94, + "end": 1780.34, + "probability": 0.7976 + }, + { + "start": 1780.86, + "end": 1782.82, + "probability": 0.9231 + }, + { + "start": 1782.88, + "end": 1787.72, + "probability": 0.975 + }, + { + "start": 1788.16, + "end": 1789.2, + "probability": 0.6548 + }, + { + "start": 1789.72, + "end": 1792.86, + "probability": 0.9674 + }, + { + "start": 1792.86, + "end": 1797.24, + "probability": 0.9937 + }, + { + "start": 1797.7, + "end": 1798.3, + "probability": 0.4587 + }, + { + "start": 1798.46, + "end": 1799.78, + "probability": 0.877 + }, + { + "start": 1799.86, + "end": 1801.2, + "probability": 0.8945 + }, + { + "start": 1801.88, + "end": 1805.06, + "probability": 0.8867 + }, + { + "start": 1805.06, + "end": 1810.84, + "probability": 0.9758 + }, + { + "start": 1811.16, + "end": 1814.64, + "probability": 0.978 + }, + { + "start": 1814.64, + "end": 1817.74, + "probability": 0.9985 + }, + { + "start": 1817.88, + "end": 1818.38, + "probability": 0.6062 + }, + { + "start": 1819.06, + "end": 1821.14, + "probability": 0.9014 + }, + { + "start": 1821.38, + "end": 1823.24, + "probability": 0.8572 + }, + { + "start": 1825.84, + "end": 1826.22, + "probability": 0.7722 + }, + { + "start": 1826.8, + "end": 1827.82, + "probability": 0.9326 + }, + { + "start": 1827.92, + "end": 1829.18, + "probability": 0.9719 + }, + { + "start": 1829.72, + "end": 1832.12, + "probability": 0.9814 + }, + { + "start": 1832.22, + "end": 1833.14, + "probability": 0.7471 + }, + { + "start": 1833.14, + "end": 1834.98, + "probability": 0.4273 + }, + { + "start": 1836.18, + "end": 1836.34, + "probability": 0.219 + }, + { + "start": 1836.34, + "end": 1837.78, + "probability": 0.5698 + }, + { + "start": 1838.92, + "end": 1848.36, + "probability": 0.9555 + }, + { + "start": 1848.74, + "end": 1850.2, + "probability": 0.6367 + }, + { + "start": 1851.24, + "end": 1852.06, + "probability": 0.8619 + }, + { + "start": 1852.46, + "end": 1854.14, + "probability": 0.8456 + }, + { + "start": 1855.26, + "end": 1860.72, + "probability": 0.9521 + }, + { + "start": 1860.88, + "end": 1868.88, + "probability": 0.8824 + }, + { + "start": 1869.08, + "end": 1871.66, + "probability": 0.504 + }, + { + "start": 1871.98, + "end": 1873.06, + "probability": 0.8828 + }, + { + "start": 1873.88, + "end": 1874.76, + "probability": 0.6212 + }, + { + "start": 1875.52, + "end": 1877.24, + "probability": 0.9483 + }, + { + "start": 1878.26, + "end": 1880.8, + "probability": 0.5336 + }, + { + "start": 1880.9, + "end": 1881.58, + "probability": 0.9218 + }, + { + "start": 1881.8, + "end": 1887.58, + "probability": 0.8069 + }, + { + "start": 1887.68, + "end": 1889.46, + "probability": 0.8927 + }, + { + "start": 1890.28, + "end": 1891.68, + "probability": 0.6713 + }, + { + "start": 1892.2, + "end": 1896.46, + "probability": 0.9643 + }, + { + "start": 1897.42, + "end": 1902.7, + "probability": 0.9519 + }, + { + "start": 1903.58, + "end": 1907.46, + "probability": 0.9289 + }, + { + "start": 1908.36, + "end": 1911.74, + "probability": 0.9083 + }, + { + "start": 1911.92, + "end": 1916.6, + "probability": 0.9988 + }, + { + "start": 1916.74, + "end": 1917.06, + "probability": 0.553 + }, + { + "start": 1917.12, + "end": 1918.01, + "probability": 0.8488 + }, + { + "start": 1919.0, + "end": 1924.3, + "probability": 0.9837 + }, + { + "start": 1924.44, + "end": 1929.6, + "probability": 0.9875 + }, + { + "start": 1930.42, + "end": 1934.5, + "probability": 0.9864 + }, + { + "start": 1934.5, + "end": 1934.76, + "probability": 0.423 + }, + { + "start": 1935.38, + "end": 1936.84, + "probability": 0.6861 + }, + { + "start": 1936.98, + "end": 1938.74, + "probability": 0.9562 + }, + { + "start": 1939.44, + "end": 1940.18, + "probability": 0.9295 + }, + { + "start": 1940.34, + "end": 1944.7, + "probability": 0.9872 + }, + { + "start": 1944.9, + "end": 1949.4, + "probability": 0.7146 + }, + { + "start": 1949.72, + "end": 1951.66, + "probability": 0.0878 + }, + { + "start": 1952.02, + "end": 1953.2, + "probability": 0.6254 + }, + { + "start": 1953.38, + "end": 1958.04, + "probability": 0.9233 + }, + { + "start": 1958.14, + "end": 1961.72, + "probability": 0.9814 + }, + { + "start": 1977.6, + "end": 1979.6, + "probability": 0.3786 + }, + { + "start": 1979.6, + "end": 1980.18, + "probability": 0.4601 + }, + { + "start": 1980.26, + "end": 1980.94, + "probability": 0.7007 + }, + { + "start": 1981.0, + "end": 1981.4, + "probability": 0.4883 + }, + { + "start": 1981.48, + "end": 1982.66, + "probability": 0.8498 + }, + { + "start": 1983.1, + "end": 1985.96, + "probability": 0.9878 + }, + { + "start": 1986.42, + "end": 1989.54, + "probability": 0.5525 + }, + { + "start": 1990.18, + "end": 1991.84, + "probability": 0.7885 + }, + { + "start": 1992.52, + "end": 1993.66, + "probability": 0.9004 + }, + { + "start": 1993.9, + "end": 1997.8, + "probability": 0.9459 + }, + { + "start": 1998.2, + "end": 2003.9, + "probability": 0.9967 + }, + { + "start": 2003.9, + "end": 2007.31, + "probability": 0.9976 + }, + { + "start": 2008.22, + "end": 2012.56, + "probability": 0.9694 + }, + { + "start": 2012.56, + "end": 2017.26, + "probability": 0.9742 + }, + { + "start": 2017.36, + "end": 2022.22, + "probability": 0.9867 + }, + { + "start": 2022.22, + "end": 2026.12, + "probability": 0.9884 + }, + { + "start": 2026.28, + "end": 2031.42, + "probability": 0.998 + }, + { + "start": 2032.34, + "end": 2032.62, + "probability": 0.4963 + }, + { + "start": 2032.78, + "end": 2037.02, + "probability": 0.9297 + }, + { + "start": 2037.1, + "end": 2041.44, + "probability": 0.9673 + }, + { + "start": 2041.54, + "end": 2045.52, + "probability": 0.9993 + }, + { + "start": 2045.68, + "end": 2049.0, + "probability": 0.9653 + }, + { + "start": 2049.0, + "end": 2052.26, + "probability": 0.6898 + }, + { + "start": 2052.34, + "end": 2052.96, + "probability": 0.9015 + }, + { + "start": 2053.44, + "end": 2056.08, + "probability": 0.9942 + }, + { + "start": 2058.78, + "end": 2061.24, + "probability": 0.7918 + }, + { + "start": 2061.42, + "end": 2061.98, + "probability": 0.6849 + }, + { + "start": 2062.16, + "end": 2062.38, + "probability": 0.7318 + }, + { + "start": 2062.5, + "end": 2066.38, + "probability": 0.9939 + }, + { + "start": 2067.46, + "end": 2068.8, + "probability": 0.6826 + }, + { + "start": 2068.98, + "end": 2071.46, + "probability": 0.9966 + }, + { + "start": 2071.58, + "end": 2073.62, + "probability": 0.758 + }, + { + "start": 2073.96, + "end": 2077.42, + "probability": 0.9814 + }, + { + "start": 2077.42, + "end": 2079.7, + "probability": 0.8679 + }, + { + "start": 2080.14, + "end": 2082.38, + "probability": 0.9928 + }, + { + "start": 2082.62, + "end": 2083.86, + "probability": 0.9626 + }, + { + "start": 2084.42, + "end": 2088.74, + "probability": 0.9883 + }, + { + "start": 2088.8, + "end": 2090.34, + "probability": 0.749 + }, + { + "start": 2090.66, + "end": 2093.76, + "probability": 0.9156 + }, + { + "start": 2094.22, + "end": 2096.6, + "probability": 0.9619 + }, + { + "start": 2096.6, + "end": 2101.94, + "probability": 0.9773 + }, + { + "start": 2102.32, + "end": 2109.34, + "probability": 0.9215 + }, + { + "start": 2110.11, + "end": 2116.46, + "probability": 0.9976 + }, + { + "start": 2116.68, + "end": 2117.64, + "probability": 0.8648 + }, + { + "start": 2117.7, + "end": 2119.74, + "probability": 0.9976 + }, + { + "start": 2120.32, + "end": 2121.9, + "probability": 0.9269 + }, + { + "start": 2122.42, + "end": 2125.46, + "probability": 0.9754 + }, + { + "start": 2125.46, + "end": 2129.32, + "probability": 0.9813 + }, + { + "start": 2129.52, + "end": 2129.86, + "probability": 0.7548 + }, + { + "start": 2131.26, + "end": 2133.4, + "probability": 0.9749 + }, + { + "start": 2133.58, + "end": 2135.26, + "probability": 0.7443 + }, + { + "start": 2135.9, + "end": 2142.32, + "probability": 0.9712 + }, + { + "start": 2142.58, + "end": 2148.02, + "probability": 0.9775 + }, + { + "start": 2148.1, + "end": 2148.62, + "probability": 0.8925 + }, + { + "start": 2149.1, + "end": 2149.6, + "probability": 0.4823 + }, + { + "start": 2149.74, + "end": 2150.9, + "probability": 0.977 + }, + { + "start": 2151.08, + "end": 2152.96, + "probability": 0.9019 + }, + { + "start": 2154.12, + "end": 2157.52, + "probability": 0.7886 + }, + { + "start": 2157.6, + "end": 2158.44, + "probability": 0.8364 + }, + { + "start": 2158.46, + "end": 2159.22, + "probability": 0.7845 + }, + { + "start": 2161.74, + "end": 2163.66, + "probability": 0.995 + }, + { + "start": 2164.98, + "end": 2165.58, + "probability": 0.5873 + }, + { + "start": 2185.1, + "end": 2185.16, + "probability": 0.1849 + }, + { + "start": 2185.16, + "end": 2186.58, + "probability": 0.9537 + }, + { + "start": 2186.78, + "end": 2187.38, + "probability": 0.798 + }, + { + "start": 2190.2, + "end": 2191.96, + "probability": 0.7383 + }, + { + "start": 2192.74, + "end": 2195.48, + "probability": 0.9866 + }, + { + "start": 2195.54, + "end": 2197.48, + "probability": 0.9946 + }, + { + "start": 2198.98, + "end": 2202.04, + "probability": 0.9979 + }, + { + "start": 2202.76, + "end": 2206.34, + "probability": 0.8668 + }, + { + "start": 2207.08, + "end": 2211.72, + "probability": 0.9669 + }, + { + "start": 2211.86, + "end": 2214.5, + "probability": 0.8184 + }, + { + "start": 2215.64, + "end": 2220.42, + "probability": 0.9921 + }, + { + "start": 2220.96, + "end": 2224.7, + "probability": 0.6802 + }, + { + "start": 2224.7, + "end": 2228.56, + "probability": 0.9845 + }, + { + "start": 2229.04, + "end": 2230.62, + "probability": 0.8496 + }, + { + "start": 2231.16, + "end": 2234.34, + "probability": 0.9856 + }, + { + "start": 2234.34, + "end": 2239.6, + "probability": 0.9963 + }, + { + "start": 2240.62, + "end": 2242.34, + "probability": 0.5423 + }, + { + "start": 2243.04, + "end": 2244.52, + "probability": 0.8087 + }, + { + "start": 2245.22, + "end": 2249.04, + "probability": 0.8804 + }, + { + "start": 2249.04, + "end": 2252.16, + "probability": 0.9927 + }, + { + "start": 2252.8, + "end": 2259.98, + "probability": 0.9282 + }, + { + "start": 2260.38, + "end": 2260.5, + "probability": 0.2548 + }, + { + "start": 2260.56, + "end": 2267.84, + "probability": 0.9312 + }, + { + "start": 2267.84, + "end": 2274.26, + "probability": 0.9969 + }, + { + "start": 2274.48, + "end": 2278.02, + "probability": 0.9629 + }, + { + "start": 2278.02, + "end": 2280.3, + "probability": 0.9219 + }, + { + "start": 2280.66, + "end": 2281.71, + "probability": 0.8932 + }, + { + "start": 2282.12, + "end": 2283.26, + "probability": 0.9653 + }, + { + "start": 2283.96, + "end": 2288.3, + "probability": 0.9814 + }, + { + "start": 2288.54, + "end": 2290.3, + "probability": 0.8431 + }, + { + "start": 2290.3, + "end": 2295.08, + "probability": 0.9064 + }, + { + "start": 2295.46, + "end": 2295.94, + "probability": 0.39 + }, + { + "start": 2296.32, + "end": 2298.48, + "probability": 0.9766 + }, + { + "start": 2298.52, + "end": 2300.3, + "probability": 0.6381 + }, + { + "start": 2300.7, + "end": 2303.06, + "probability": 0.9424 + }, + { + "start": 2304.22, + "end": 2308.16, + "probability": 0.9579 + }, + { + "start": 2308.52, + "end": 2309.6, + "probability": 0.799 + }, + { + "start": 2310.0, + "end": 2311.89, + "probability": 0.9656 + }, + { + "start": 2312.04, + "end": 2315.11, + "probability": 0.9775 + }, + { + "start": 2315.76, + "end": 2320.72, + "probability": 0.9951 + }, + { + "start": 2320.8, + "end": 2325.06, + "probability": 0.9303 + }, + { + "start": 2325.12, + "end": 2327.46, + "probability": 0.8442 + }, + { + "start": 2327.96, + "end": 2327.96, + "probability": 0.1895 + }, + { + "start": 2328.26, + "end": 2328.8, + "probability": 0.6848 + }, + { + "start": 2328.92, + "end": 2331.46, + "probability": 0.9777 + }, + { + "start": 2331.62, + "end": 2334.72, + "probability": 0.988 + }, + { + "start": 2334.84, + "end": 2337.34, + "probability": 0.9902 + }, + { + "start": 2337.34, + "end": 2340.07, + "probability": 0.9938 + }, + { + "start": 2340.52, + "end": 2341.32, + "probability": 0.289 + }, + { + "start": 2341.42, + "end": 2343.46, + "probability": 0.7964 + }, + { + "start": 2343.98, + "end": 2345.16, + "probability": 0.8618 + }, + { + "start": 2345.24, + "end": 2346.96, + "probability": 0.9232 + }, + { + "start": 2347.62, + "end": 2348.44, + "probability": 0.9484 + }, + { + "start": 2349.06, + "end": 2350.34, + "probability": 0.9296 + }, + { + "start": 2350.62, + "end": 2352.06, + "probability": 0.9185 + }, + { + "start": 2352.34, + "end": 2353.38, + "probability": 0.9741 + }, + { + "start": 2353.7, + "end": 2354.68, + "probability": 0.7461 + }, + { + "start": 2354.82, + "end": 2355.66, + "probability": 0.9045 + }, + { + "start": 2355.76, + "end": 2359.1, + "probability": 0.9469 + }, + { + "start": 2359.56, + "end": 2360.64, + "probability": 0.8506 + }, + { + "start": 2360.76, + "end": 2364.82, + "probability": 0.9808 + }, + { + "start": 2364.82, + "end": 2370.08, + "probability": 0.9812 + }, + { + "start": 2370.44, + "end": 2373.42, + "probability": 0.9932 + }, + { + "start": 2373.8, + "end": 2375.6, + "probability": 0.6335 + }, + { + "start": 2375.7, + "end": 2379.86, + "probability": 0.9777 + }, + { + "start": 2379.92, + "end": 2380.94, + "probability": 0.9273 + }, + { + "start": 2381.02, + "end": 2383.42, + "probability": 0.9191 + }, + { + "start": 2383.96, + "end": 2384.4, + "probability": 0.3065 + }, + { + "start": 2384.44, + "end": 2385.08, + "probability": 0.7266 + }, + { + "start": 2385.28, + "end": 2386.4, + "probability": 0.8019 + }, + { + "start": 2386.54, + "end": 2388.04, + "probability": 0.8846 + }, + { + "start": 2388.36, + "end": 2390.52, + "probability": 0.8872 + }, + { + "start": 2390.7, + "end": 2391.44, + "probability": 0.8996 + }, + { + "start": 2391.58, + "end": 2392.66, + "probability": 0.7391 + }, + { + "start": 2393.0, + "end": 2394.36, + "probability": 0.5317 + }, + { + "start": 2394.74, + "end": 2397.52, + "probability": 0.9731 + }, + { + "start": 2397.78, + "end": 2398.89, + "probability": 0.8169 + }, + { + "start": 2399.52, + "end": 2402.25, + "probability": 0.9743 + }, + { + "start": 2402.74, + "end": 2407.79, + "probability": 0.9971 + }, + { + "start": 2408.88, + "end": 2409.68, + "probability": 0.6746 + }, + { + "start": 2409.9, + "end": 2410.1, + "probability": 0.4063 + }, + { + "start": 2410.1, + "end": 2411.2, + "probability": 0.9928 + }, + { + "start": 2411.62, + "end": 2415.12, + "probability": 0.99 + }, + { + "start": 2415.18, + "end": 2416.18, + "probability": 0.9088 + }, + { + "start": 2416.24, + "end": 2416.64, + "probability": 0.6797 + }, + { + "start": 2416.8, + "end": 2418.86, + "probability": 0.7805 + }, + { + "start": 2419.08, + "end": 2420.14, + "probability": 0.991 + }, + { + "start": 2420.8, + "end": 2422.02, + "probability": 0.8634 + }, + { + "start": 2422.06, + "end": 2424.44, + "probability": 0.8281 + }, + { + "start": 2448.44, + "end": 2450.3, + "probability": 0.6016 + }, + { + "start": 2452.14, + "end": 2455.7, + "probability": 0.9258 + }, + { + "start": 2456.86, + "end": 2460.42, + "probability": 0.9929 + }, + { + "start": 2461.62, + "end": 2464.19, + "probability": 0.8801 + }, + { + "start": 2466.54, + "end": 2467.34, + "probability": 0.5343 + }, + { + "start": 2467.44, + "end": 2469.26, + "probability": 0.5681 + }, + { + "start": 2469.28, + "end": 2470.58, + "probability": 0.9836 + }, + { + "start": 2471.56, + "end": 2472.89, + "probability": 0.7516 + }, + { + "start": 2473.48, + "end": 2475.37, + "probability": 0.8672 + }, + { + "start": 2476.72, + "end": 2478.5, + "probability": 0.8213 + }, + { + "start": 2478.92, + "end": 2484.76, + "probability": 0.973 + }, + { + "start": 2484.86, + "end": 2487.28, + "probability": 0.9537 + }, + { + "start": 2488.32, + "end": 2490.68, + "probability": 0.6924 + }, + { + "start": 2491.3, + "end": 2493.26, + "probability": 0.4804 + }, + { + "start": 2494.32, + "end": 2502.54, + "probability": 0.8094 + }, + { + "start": 2502.7, + "end": 2504.76, + "probability": 0.5774 + }, + { + "start": 2505.62, + "end": 2508.38, + "probability": 0.8494 + }, + { + "start": 2509.1, + "end": 2511.7, + "probability": 0.7839 + }, + { + "start": 2512.24, + "end": 2515.38, + "probability": 0.8667 + }, + { + "start": 2515.38, + "end": 2519.68, + "probability": 0.9486 + }, + { + "start": 2520.64, + "end": 2521.12, + "probability": 0.4966 + }, + { + "start": 2521.7, + "end": 2524.94, + "probability": 0.9921 + }, + { + "start": 2525.6, + "end": 2526.54, + "probability": 0.7089 + }, + { + "start": 2527.3, + "end": 2529.78, + "probability": 0.7181 + }, + { + "start": 2530.44, + "end": 2535.88, + "probability": 0.8345 + }, + { + "start": 2536.68, + "end": 2539.18, + "probability": 0.9868 + }, + { + "start": 2540.12, + "end": 2542.3, + "probability": 0.786 + }, + { + "start": 2543.04, + "end": 2543.6, + "probability": 0.0696 + }, + { + "start": 2547.5, + "end": 2549.76, + "probability": 0.849 + }, + { + "start": 2550.54, + "end": 2556.06, + "probability": 0.9801 + }, + { + "start": 2556.06, + "end": 2558.74, + "probability": 0.9028 + }, + { + "start": 2558.88, + "end": 2559.54, + "probability": 0.8665 + }, + { + "start": 2560.38, + "end": 2561.84, + "probability": 0.9828 + }, + { + "start": 2563.06, + "end": 2564.64, + "probability": 0.7198 + }, + { + "start": 2565.4, + "end": 2567.74, + "probability": 0.9713 + }, + { + "start": 2568.48, + "end": 2574.12, + "probability": 0.9941 + }, + { + "start": 2574.26, + "end": 2574.96, + "probability": 0.7968 + }, + { + "start": 2575.78, + "end": 2579.08, + "probability": 0.9901 + }, + { + "start": 2579.94, + "end": 2581.02, + "probability": 0.998 + }, + { + "start": 2581.9, + "end": 2584.22, + "probability": 0.979 + }, + { + "start": 2584.84, + "end": 2587.3, + "probability": 0.7417 + }, + { + "start": 2587.54, + "end": 2589.04, + "probability": 0.3195 + }, + { + "start": 2589.04, + "end": 2589.67, + "probability": 0.9878 + }, + { + "start": 2590.76, + "end": 2592.76, + "probability": 0.9836 + }, + { + "start": 2593.76, + "end": 2596.28, + "probability": 0.9834 + }, + { + "start": 2596.94, + "end": 2599.87, + "probability": 0.9689 + }, + { + "start": 2600.5, + "end": 2604.88, + "probability": 0.9201 + }, + { + "start": 2605.58, + "end": 2606.68, + "probability": 0.2493 + }, + { + "start": 2606.96, + "end": 2610.36, + "probability": 0.5475 + }, + { + "start": 2610.46, + "end": 2613.34, + "probability": 0.9608 + }, + { + "start": 2614.32, + "end": 2617.04, + "probability": 0.994 + }, + { + "start": 2617.78, + "end": 2620.45, + "probability": 0.3523 + }, + { + "start": 2620.68, + "end": 2621.16, + "probability": 0.9146 + }, + { + "start": 2621.58, + "end": 2622.52, + "probability": 0.2578 + }, + { + "start": 2625.98, + "end": 2625.98, + "probability": 0.0078 + }, + { + "start": 2625.98, + "end": 2625.98, + "probability": 0.014 + }, + { + "start": 2625.98, + "end": 2625.98, + "probability": 0.0633 + }, + { + "start": 2625.98, + "end": 2626.96, + "probability": 0.7719 + }, + { + "start": 2627.42, + "end": 2630.14, + "probability": 0.7503 + }, + { + "start": 2630.26, + "end": 2635.9, + "probability": 0.8529 + }, + { + "start": 2636.56, + "end": 2640.2, + "probability": 0.9812 + }, + { + "start": 2641.7, + "end": 2641.7, + "probability": 0.147 + }, + { + "start": 2641.7, + "end": 2642.16, + "probability": 0.1767 + }, + { + "start": 2642.94, + "end": 2645.0, + "probability": 0.9922 + }, + { + "start": 2645.62, + "end": 2646.42, + "probability": 0.8945 + }, + { + "start": 2647.18, + "end": 2653.44, + "probability": 0.9163 + }, + { + "start": 2654.04, + "end": 2655.92, + "probability": 0.9456 + }, + { + "start": 2656.52, + "end": 2659.38, + "probability": 0.7659 + }, + { + "start": 2659.84, + "end": 2661.14, + "probability": 0.9339 + }, + { + "start": 2661.98, + "end": 2662.26, + "probability": 0.4009 + }, + { + "start": 2662.26, + "end": 2662.4, + "probability": 0.402 + }, + { + "start": 2662.5, + "end": 2666.06, + "probability": 0.9652 + }, + { + "start": 2666.18, + "end": 2671.8, + "probability": 0.9938 + }, + { + "start": 2671.8, + "end": 2674.6, + "probability": 0.7558 + }, + { + "start": 2675.58, + "end": 2677.36, + "probability": 0.6354 + }, + { + "start": 2677.44, + "end": 2679.6, + "probability": 0.933 + }, + { + "start": 2693.88, + "end": 2698.08, + "probability": 0.9355 + }, + { + "start": 2698.74, + "end": 2699.98, + "probability": 0.6867 + }, + { + "start": 2701.2, + "end": 2703.89, + "probability": 0.6322 + }, + { + "start": 2704.3, + "end": 2708.34, + "probability": 0.9445 + }, + { + "start": 2709.0, + "end": 2710.9, + "probability": 0.5374 + }, + { + "start": 2711.02, + "end": 2714.48, + "probability": 0.9249 + }, + { + "start": 2714.96, + "end": 2718.44, + "probability": 0.9406 + }, + { + "start": 2718.98, + "end": 2719.66, + "probability": 0.7981 + }, + { + "start": 2720.82, + "end": 2725.66, + "probability": 0.8505 + }, + { + "start": 2725.66, + "end": 2734.94, + "probability": 0.8792 + }, + { + "start": 2735.82, + "end": 2737.4, + "probability": 0.983 + }, + { + "start": 2738.12, + "end": 2742.14, + "probability": 0.9976 + }, + { + "start": 2742.94, + "end": 2745.14, + "probability": 0.9973 + }, + { + "start": 2746.22, + "end": 2747.3, + "probability": 0.8883 + }, + { + "start": 2748.32, + "end": 2750.4, + "probability": 0.7498 + }, + { + "start": 2751.04, + "end": 2752.76, + "probability": 0.894 + }, + { + "start": 2753.68, + "end": 2756.22, + "probability": 0.9284 + }, + { + "start": 2758.06, + "end": 2760.92, + "probability": 0.9185 + }, + { + "start": 2762.2, + "end": 2764.52, + "probability": 0.9874 + }, + { + "start": 2765.52, + "end": 2767.7, + "probability": 0.9553 + }, + { + "start": 2767.82, + "end": 2768.96, + "probability": 0.9302 + }, + { + "start": 2769.7, + "end": 2770.98, + "probability": 0.9747 + }, + { + "start": 2771.94, + "end": 2774.2, + "probability": 0.9592 + }, + { + "start": 2775.06, + "end": 2776.06, + "probability": 0.8149 + }, + { + "start": 2776.18, + "end": 2777.92, + "probability": 0.9188 + }, + { + "start": 2778.42, + "end": 2779.28, + "probability": 0.9971 + }, + { + "start": 2779.54, + "end": 2783.42, + "probability": 0.7957 + }, + { + "start": 2784.18, + "end": 2784.98, + "probability": 0.4342 + }, + { + "start": 2786.2, + "end": 2790.24, + "probability": 0.9832 + }, + { + "start": 2790.3, + "end": 2791.1, + "probability": 0.6664 + }, + { + "start": 2792.08, + "end": 2792.9, + "probability": 0.9574 + }, + { + "start": 2792.94, + "end": 2797.58, + "probability": 0.9772 + }, + { + "start": 2799.34, + "end": 2801.66, + "probability": 0.9701 + }, + { + "start": 2802.0, + "end": 2803.16, + "probability": 0.8815 + }, + { + "start": 2803.54, + "end": 2805.28, + "probability": 0.8186 + }, + { + "start": 2805.78, + "end": 2809.7, + "probability": 0.936 + }, + { + "start": 2810.92, + "end": 2813.78, + "probability": 0.9762 + }, + { + "start": 2813.84, + "end": 2814.88, + "probability": 0.95 + }, + { + "start": 2815.66, + "end": 2817.02, + "probability": 0.8565 + }, + { + "start": 2817.1, + "end": 2818.72, + "probability": 0.9622 + }, + { + "start": 2819.22, + "end": 2820.58, + "probability": 0.8021 + }, + { + "start": 2820.7, + "end": 2822.26, + "probability": 0.998 + }, + { + "start": 2822.78, + "end": 2825.84, + "probability": 0.9028 + }, + { + "start": 2826.64, + "end": 2828.94, + "probability": 0.868 + }, + { + "start": 2829.98, + "end": 2832.58, + "probability": 0.7163 + }, + { + "start": 2832.72, + "end": 2834.54, + "probability": 0.9666 + }, + { + "start": 2834.88, + "end": 2837.56, + "probability": 0.8406 + }, + { + "start": 2837.8, + "end": 2838.46, + "probability": 0.6602 + }, + { + "start": 2838.6, + "end": 2845.2, + "probability": 0.9786 + }, + { + "start": 2849.0, + "end": 2853.5, + "probability": 0.9787 + }, + { + "start": 2854.08, + "end": 2855.88, + "probability": 0.6992 + }, + { + "start": 2856.24, + "end": 2857.28, + "probability": 0.6382 + }, + { + "start": 2857.56, + "end": 2861.24, + "probability": 0.9579 + }, + { + "start": 2861.24, + "end": 2864.86, + "probability": 0.9883 + }, + { + "start": 2864.96, + "end": 2869.36, + "probability": 0.9323 + }, + { + "start": 2870.1, + "end": 2871.84, + "probability": 0.8615 + }, + { + "start": 2871.92, + "end": 2873.56, + "probability": 0.9077 + }, + { + "start": 2874.3, + "end": 2879.74, + "probability": 0.9937 + }, + { + "start": 2880.26, + "end": 2881.7, + "probability": 0.834 + }, + { + "start": 2882.22, + "end": 2887.34, + "probability": 0.9517 + }, + { + "start": 2887.34, + "end": 2894.24, + "probability": 0.8942 + }, + { + "start": 2894.52, + "end": 2898.98, + "probability": 0.9144 + }, + { + "start": 2899.66, + "end": 2901.32, + "probability": 0.9131 + }, + { + "start": 2901.48, + "end": 2902.8, + "probability": 0.9619 + }, + { + "start": 2903.16, + "end": 2905.86, + "probability": 0.9952 + }, + { + "start": 2905.86, + "end": 2906.58, + "probability": 0.6267 + }, + { + "start": 2907.04, + "end": 2909.7, + "probability": 0.9863 + }, + { + "start": 2910.22, + "end": 2912.6, + "probability": 0.9533 + }, + { + "start": 2913.06, + "end": 2913.56, + "probability": 0.916 + }, + { + "start": 2913.8, + "end": 2914.1, + "probability": 0.6572 + }, + { + "start": 2914.18, + "end": 2918.62, + "probability": 0.9956 + }, + { + "start": 2919.16, + "end": 2922.66, + "probability": 0.9952 + }, + { + "start": 2923.2, + "end": 2927.65, + "probability": 0.7033 + }, + { + "start": 2930.25, + "end": 2932.25, + "probability": 0.3238 + }, + { + "start": 2933.08, + "end": 2933.72, + "probability": 0.7048 + }, + { + "start": 2933.74, + "end": 2936.22, + "probability": 0.9827 + }, + { + "start": 2936.88, + "end": 2940.06, + "probability": 0.9479 + }, + { + "start": 2940.8, + "end": 2942.42, + "probability": 0.8969 + }, + { + "start": 2942.52, + "end": 2943.26, + "probability": 0.9571 + }, + { + "start": 2944.06, + "end": 2950.44, + "probability": 0.9703 + }, + { + "start": 2950.58, + "end": 2953.02, + "probability": 0.9801 + }, + { + "start": 2953.4, + "end": 2955.18, + "probability": 0.9893 + }, + { + "start": 2955.26, + "end": 2956.93, + "probability": 0.8973 + }, + { + "start": 2957.1, + "end": 2960.14, + "probability": 0.7509 + }, + { + "start": 2960.62, + "end": 2963.26, + "probability": 0.8286 + }, + { + "start": 2963.5, + "end": 2964.62, + "probability": 0.9463 + }, + { + "start": 2965.08, + "end": 2965.4, + "probability": 0.4873 + }, + { + "start": 2965.98, + "end": 2973.0, + "probability": 0.9956 + }, + { + "start": 2973.52, + "end": 2975.72, + "probability": 0.4961 + }, + { + "start": 2977.6, + "end": 2978.46, + "probability": 0.4099 + }, + { + "start": 2978.86, + "end": 2984.74, + "probability": 0.9772 + }, + { + "start": 2985.3, + "end": 2989.06, + "probability": 0.9623 + }, + { + "start": 2989.06, + "end": 2989.2, + "probability": 0.3545 + }, + { + "start": 2990.12, + "end": 2992.78, + "probability": 0.8787 + }, + { + "start": 2992.88, + "end": 2994.62, + "probability": 0.8727 + }, + { + "start": 3003.76, + "end": 3004.06, + "probability": 0.3555 + }, + { + "start": 3004.1, + "end": 3006.32, + "probability": 0.8436 + }, + { + "start": 3007.14, + "end": 3008.46, + "probability": 0.9528 + }, + { + "start": 3008.6, + "end": 3012.64, + "probability": 0.9829 + }, + { + "start": 3012.8, + "end": 3020.64, + "probability": 0.9902 + }, + { + "start": 3021.64, + "end": 3023.04, + "probability": 0.9912 + }, + { + "start": 3023.54, + "end": 3025.26, + "probability": 0.9792 + }, + { + "start": 3025.4, + "end": 3029.3, + "probability": 0.9167 + }, + { + "start": 3029.38, + "end": 3030.32, + "probability": 0.4951 + }, + { + "start": 3030.94, + "end": 3036.46, + "probability": 0.9771 + }, + { + "start": 3037.48, + "end": 3038.3, + "probability": 0.754 + }, + { + "start": 3039.1, + "end": 3040.86, + "probability": 0.978 + }, + { + "start": 3041.68, + "end": 3046.8, + "probability": 0.9782 + }, + { + "start": 3048.1, + "end": 3049.82, + "probability": 0.9023 + }, + { + "start": 3050.36, + "end": 3052.26, + "probability": 0.9927 + }, + { + "start": 3052.7, + "end": 3053.36, + "probability": 0.9836 + }, + { + "start": 3054.48, + "end": 3059.6, + "probability": 0.9962 + }, + { + "start": 3060.82, + "end": 3066.02, + "probability": 0.5221 + }, + { + "start": 3066.92, + "end": 3067.41, + "probability": 0.9732 + }, + { + "start": 3068.76, + "end": 3069.58, + "probability": 0.5007 + }, + { + "start": 3070.42, + "end": 3071.2, + "probability": 0.8054 + }, + { + "start": 3071.42, + "end": 3075.12, + "probability": 0.9522 + }, + { + "start": 3075.44, + "end": 3077.82, + "probability": 0.728 + }, + { + "start": 3078.52, + "end": 3079.9, + "probability": 0.9309 + }, + { + "start": 3080.62, + "end": 3081.64, + "probability": 0.9855 + }, + { + "start": 3082.16, + "end": 3084.84, + "probability": 0.9373 + }, + { + "start": 3085.44, + "end": 3086.54, + "probability": 0.9893 + }, + { + "start": 3087.98, + "end": 3091.18, + "probability": 0.8424 + }, + { + "start": 3092.12, + "end": 3097.9, + "probability": 0.9728 + }, + { + "start": 3098.02, + "end": 3098.98, + "probability": 0.5031 + }, + { + "start": 3099.02, + "end": 3101.2, + "probability": 0.8143 + }, + { + "start": 3101.94, + "end": 3103.17, + "probability": 0.9589 + }, + { + "start": 3103.52, + "end": 3104.32, + "probability": 0.9102 + }, + { + "start": 3104.82, + "end": 3106.36, + "probability": 0.9802 + }, + { + "start": 3108.0, + "end": 3109.72, + "probability": 0.9564 + }, + { + "start": 3109.94, + "end": 3111.22, + "probability": 0.9603 + }, + { + "start": 3111.56, + "end": 3112.92, + "probability": 0.7906 + }, + { + "start": 3113.1, + "end": 3114.74, + "probability": 0.9689 + }, + { + "start": 3115.38, + "end": 3116.04, + "probability": 0.5547 + }, + { + "start": 3116.2, + "end": 3117.94, + "probability": 0.8397 + }, + { + "start": 3118.02, + "end": 3118.7, + "probability": 0.6334 + }, + { + "start": 3119.38, + "end": 3122.5, + "probability": 0.9938 + }, + { + "start": 3124.46, + "end": 3125.74, + "probability": 0.8339 + }, + { + "start": 3125.82, + "end": 3127.84, + "probability": 0.8604 + }, + { + "start": 3128.0, + "end": 3129.52, + "probability": 0.0426 + }, + { + "start": 3129.86, + "end": 3131.08, + "probability": 0.8247 + }, + { + "start": 3131.72, + "end": 3133.14, + "probability": 0.8658 + }, + { + "start": 3134.06, + "end": 3136.96, + "probability": 0.8839 + }, + { + "start": 3137.06, + "end": 3138.62, + "probability": 0.5816 + }, + { + "start": 3139.14, + "end": 3139.86, + "probability": 0.6799 + }, + { + "start": 3141.58, + "end": 3146.08, + "probability": 0.0356 + }, + { + "start": 3146.88, + "end": 3147.66, + "probability": 0.5852 + }, + { + "start": 3148.06, + "end": 3148.78, + "probability": 0.7417 + }, + { + "start": 3149.0, + "end": 3149.8, + "probability": 0.6392 + }, + { + "start": 3149.92, + "end": 3150.13, + "probability": 0.5871 + }, + { + "start": 3150.96, + "end": 3152.98, + "probability": 0.9704 + }, + { + "start": 3153.12, + "end": 3153.51, + "probability": 0.7593 + }, + { + "start": 3154.36, + "end": 3157.32, + "probability": 0.9418 + }, + { + "start": 3157.38, + "end": 3157.84, + "probability": 0.8686 + }, + { + "start": 3157.98, + "end": 3159.1, + "probability": 0.9343 + }, + { + "start": 3160.14, + "end": 3162.0, + "probability": 0.8349 + }, + { + "start": 3164.41, + "end": 3166.42, + "probability": 0.6566 + }, + { + "start": 3166.74, + "end": 3168.14, + "probability": 0.2057 + }, + { + "start": 3169.42, + "end": 3170.82, + "probability": 0.5853 + }, + { + "start": 3172.73, + "end": 3174.92, + "probability": 0.8294 + }, + { + "start": 3174.98, + "end": 3176.92, + "probability": 0.5785 + }, + { + "start": 3177.08, + "end": 3180.28, + "probability": 0.937 + }, + { + "start": 3180.28, + "end": 3181.2, + "probability": 0.927 + }, + { + "start": 3181.46, + "end": 3184.6, + "probability": 0.9869 + }, + { + "start": 3184.64, + "end": 3185.42, + "probability": 0.7754 + }, + { + "start": 3185.52, + "end": 3188.16, + "probability": 0.8299 + }, + { + "start": 3188.44, + "end": 3192.9, + "probability": 0.8994 + }, + { + "start": 3193.06, + "end": 3194.62, + "probability": 0.656 + }, + { + "start": 3195.52, + "end": 3198.24, + "probability": 0.552 + }, + { + "start": 3198.66, + "end": 3198.66, + "probability": 0.0726 + }, + { + "start": 3198.66, + "end": 3199.84, + "probability": 0.5388 + }, + { + "start": 3200.04, + "end": 3202.36, + "probability": 0.8334 + }, + { + "start": 3203.58, + "end": 3207.38, + "probability": 0.9773 + }, + { + "start": 3208.2, + "end": 3212.32, + "probability": 0.9672 + }, + { + "start": 3212.7, + "end": 3213.66, + "probability": 0.7654 + }, + { + "start": 3213.82, + "end": 3214.46, + "probability": 0.4945 + }, + { + "start": 3214.66, + "end": 3215.12, + "probability": 0.8547 + }, + { + "start": 3215.18, + "end": 3215.68, + "probability": 0.9456 + }, + { + "start": 3215.78, + "end": 3216.22, + "probability": 0.9872 + }, + { + "start": 3216.32, + "end": 3216.8, + "probability": 0.9309 + }, + { + "start": 3216.88, + "end": 3217.24, + "probability": 0.9711 + }, + { + "start": 3217.24, + "end": 3217.78, + "probability": 0.9175 + }, + { + "start": 3218.1, + "end": 3223.04, + "probability": 0.9777 + }, + { + "start": 3223.16, + "end": 3224.22, + "probability": 0.9945 + }, + { + "start": 3225.82, + "end": 3226.96, + "probability": 0.868 + }, + { + "start": 3227.0, + "end": 3230.22, + "probability": 0.9988 + }, + { + "start": 3230.22, + "end": 3234.84, + "probability": 0.9883 + }, + { + "start": 3236.26, + "end": 3237.72, + "probability": 0.8484 + }, + { + "start": 3239.1, + "end": 3239.54, + "probability": 0.5361 + }, + { + "start": 3239.6, + "end": 3244.86, + "probability": 0.9725 + }, + { + "start": 3245.14, + "end": 3245.94, + "probability": 0.7996 + }, + { + "start": 3247.26, + "end": 3248.16, + "probability": 0.9595 + }, + { + "start": 3251.5, + "end": 3258.02, + "probability": 0.9839 + }, + { + "start": 3259.76, + "end": 3261.93, + "probability": 0.9837 + }, + { + "start": 3262.0, + "end": 3266.56, + "probability": 0.9982 + }, + { + "start": 3266.66, + "end": 3267.42, + "probability": 0.8041 + }, + { + "start": 3267.5, + "end": 3267.72, + "probability": 0.5974 + }, + { + "start": 3268.52, + "end": 3270.46, + "probability": 0.681 + }, + { + "start": 3270.62, + "end": 3275.72, + "probability": 0.9622 + }, + { + "start": 3275.96, + "end": 3280.58, + "probability": 0.6963 + }, + { + "start": 3280.68, + "end": 3282.88, + "probability": 0.1347 + }, + { + "start": 3284.3, + "end": 3289.02, + "probability": 0.9693 + }, + { + "start": 3290.0, + "end": 3292.77, + "probability": 0.7437 + }, + { + "start": 3294.2, + "end": 3295.64, + "probability": 0.7673 + }, + { + "start": 3295.68, + "end": 3296.26, + "probability": 0.5514 + }, + { + "start": 3296.34, + "end": 3296.88, + "probability": 0.7523 + }, + { + "start": 3297.08, + "end": 3297.48, + "probability": 0.8467 + }, + { + "start": 3300.85, + "end": 3301.99, + "probability": 0.0292 + }, + { + "start": 3309.7, + "end": 3310.4, + "probability": 0.2123 + }, + { + "start": 3312.33, + "end": 3314.13, + "probability": 0.0561 + }, + { + "start": 3314.78, + "end": 3314.78, + "probability": 0.0667 + }, + { + "start": 3314.78, + "end": 3318.12, + "probability": 0.6884 + }, + { + "start": 3318.26, + "end": 3321.74, + "probability": 0.9941 + }, + { + "start": 3321.74, + "end": 3325.13, + "probability": 0.9958 + }, + { + "start": 3325.56, + "end": 3328.22, + "probability": 0.8345 + }, + { + "start": 3328.28, + "end": 3329.72, + "probability": 0.5176 + }, + { + "start": 3330.76, + "end": 3334.18, + "probability": 0.9861 + }, + { + "start": 3334.18, + "end": 3337.38, + "probability": 0.9914 + }, + { + "start": 3338.56, + "end": 3339.78, + "probability": 0.9897 + }, + { + "start": 3341.24, + "end": 3342.4, + "probability": 0.8079 + }, + { + "start": 3342.52, + "end": 3343.94, + "probability": 0.8112 + }, + { + "start": 3344.32, + "end": 3345.8, + "probability": 0.9661 + }, + { + "start": 3345.96, + "end": 3347.64, + "probability": 0.9101 + }, + { + "start": 3348.28, + "end": 3351.72, + "probability": 0.754 + }, + { + "start": 3351.84, + "end": 3353.16, + "probability": 0.6316 + }, + { + "start": 3353.24, + "end": 3354.4, + "probability": 0.9587 + }, + { + "start": 3354.5, + "end": 3354.6, + "probability": 0.7721 + }, + { + "start": 3355.98, + "end": 3357.64, + "probability": 0.9166 + }, + { + "start": 3358.44, + "end": 3361.64, + "probability": 0.9758 + }, + { + "start": 3362.16, + "end": 3365.52, + "probability": 0.7863 + }, + { + "start": 3365.58, + "end": 3366.46, + "probability": 0.7356 + }, + { + "start": 3399.86, + "end": 3401.6, + "probability": 0.7127 + }, + { + "start": 3401.72, + "end": 3402.32, + "probability": 0.891 + }, + { + "start": 3402.42, + "end": 3403.7, + "probability": 0.8609 + }, + { + "start": 3404.76, + "end": 3405.72, + "probability": 0.8499 + }, + { + "start": 3406.76, + "end": 3407.36, + "probability": 0.9321 + }, + { + "start": 3407.46, + "end": 3407.68, + "probability": 0.7624 + }, + { + "start": 3407.78, + "end": 3411.44, + "probability": 0.9737 + }, + { + "start": 3412.86, + "end": 3417.5, + "probability": 0.756 + }, + { + "start": 3417.6, + "end": 3420.28, + "probability": 0.9949 + }, + { + "start": 3420.38, + "end": 3423.46, + "probability": 0.5355 + }, + { + "start": 3423.6, + "end": 3424.06, + "probability": 0.7475 + }, + { + "start": 3424.2, + "end": 3426.66, + "probability": 0.9932 + }, + { + "start": 3427.48, + "end": 3433.42, + "probability": 0.9661 + }, + { + "start": 3434.1, + "end": 3437.22, + "probability": 0.6802 + }, + { + "start": 3438.4, + "end": 3441.22, + "probability": 0.9447 + }, + { + "start": 3441.94, + "end": 3445.6, + "probability": 0.9851 + }, + { + "start": 3446.78, + "end": 3451.42, + "probability": 0.9828 + }, + { + "start": 3451.98, + "end": 3452.94, + "probability": 0.6371 + }, + { + "start": 3453.72, + "end": 3455.54, + "probability": 0.9778 + }, + { + "start": 3455.54, + "end": 3457.72, + "probability": 0.9645 + }, + { + "start": 3457.96, + "end": 3458.34, + "probability": 0.6354 + }, + { + "start": 3458.96, + "end": 3459.16, + "probability": 0.4624 + }, + { + "start": 3460.02, + "end": 3464.54, + "probability": 0.9296 + }, + { + "start": 3465.2, + "end": 3466.48, + "probability": 0.6018 + }, + { + "start": 3466.64, + "end": 3468.46, + "probability": 0.6782 + }, + { + "start": 3468.52, + "end": 3470.28, + "probability": 0.9692 + }, + { + "start": 3471.7, + "end": 3473.13, + "probability": 0.6929 + }, + { + "start": 3474.18, + "end": 3476.36, + "probability": 0.729 + }, + { + "start": 3476.5, + "end": 3479.91, + "probability": 0.9191 + }, + { + "start": 3480.22, + "end": 3481.28, + "probability": 0.7501 + }, + { + "start": 3481.32, + "end": 3482.06, + "probability": 0.4148 + }, + { + "start": 3482.12, + "end": 3482.32, + "probability": 0.8402 + }, + { + "start": 3483.06, + "end": 3483.66, + "probability": 0.7555 + }, + { + "start": 3483.8, + "end": 3486.22, + "probability": 0.9112 + }, + { + "start": 3486.34, + "end": 3487.06, + "probability": 0.8865 + }, + { + "start": 3487.68, + "end": 3489.9, + "probability": 0.9803 + }, + { + "start": 3490.98, + "end": 3492.0, + "probability": 0.3062 + }, + { + "start": 3492.34, + "end": 3494.7, + "probability": 0.7173 + }, + { + "start": 3495.12, + "end": 3496.1, + "probability": 0.5211 + }, + { + "start": 3496.18, + "end": 3498.82, + "probability": 0.8468 + }, + { + "start": 3500.18, + "end": 3503.12, + "probability": 0.7166 + }, + { + "start": 3503.24, + "end": 3503.86, + "probability": 0.38 + }, + { + "start": 3503.92, + "end": 3504.5, + "probability": 0.734 + }, + { + "start": 3504.96, + "end": 3505.54, + "probability": 0.65 + }, + { + "start": 3505.64, + "end": 3506.82, + "probability": 0.765 + }, + { + "start": 3507.58, + "end": 3509.58, + "probability": 0.8934 + }, + { + "start": 3510.14, + "end": 3512.26, + "probability": 0.9561 + }, + { + "start": 3512.86, + "end": 3516.08, + "probability": 0.8674 + }, + { + "start": 3516.66, + "end": 3517.94, + "probability": 0.5458 + }, + { + "start": 3517.98, + "end": 3521.24, + "probability": 0.8845 + }, + { + "start": 3521.24, + "end": 3525.14, + "probability": 0.9839 + }, + { + "start": 3525.6, + "end": 3530.14, + "probability": 0.7881 + }, + { + "start": 3531.18, + "end": 3533.82, + "probability": 0.7987 + }, + { + "start": 3534.46, + "end": 3535.2, + "probability": 0.7921 + }, + { + "start": 3535.24, + "end": 3537.66, + "probability": 0.8467 + }, + { + "start": 3538.16, + "end": 3539.28, + "probability": 0.9469 + }, + { + "start": 3539.34, + "end": 3542.18, + "probability": 0.916 + }, + { + "start": 3542.18, + "end": 3544.82, + "probability": 0.9711 + }, + { + "start": 3546.24, + "end": 3552.48, + "probability": 0.8716 + }, + { + "start": 3552.74, + "end": 3555.14, + "probability": 0.842 + }, + { + "start": 3555.78, + "end": 3558.12, + "probability": 0.9896 + }, + { + "start": 3558.92, + "end": 3561.2, + "probability": 0.9077 + }, + { + "start": 3561.74, + "end": 3562.66, + "probability": 0.8234 + }, + { + "start": 3562.82, + "end": 3565.0, + "probability": 0.6453 + }, + { + "start": 3565.1, + "end": 3567.02, + "probability": 0.7573 + }, + { + "start": 3567.78, + "end": 3567.9, + "probability": 0.3236 + }, + { + "start": 3568.02, + "end": 3572.58, + "probability": 0.9734 + }, + { + "start": 3573.26, + "end": 3577.19, + "probability": 0.9794 + }, + { + "start": 3577.88, + "end": 3578.3, + "probability": 0.7713 + }, + { + "start": 3578.4, + "end": 3581.48, + "probability": 0.7023 + }, + { + "start": 3581.62, + "end": 3586.34, + "probability": 0.9902 + }, + { + "start": 3587.52, + "end": 3587.88, + "probability": 0.6155 + }, + { + "start": 3587.98, + "end": 3588.32, + "probability": 0.612 + }, + { + "start": 3588.38, + "end": 3592.06, + "probability": 0.9318 + }, + { + "start": 3592.74, + "end": 3594.7, + "probability": 0.8603 + }, + { + "start": 3595.8, + "end": 3596.76, + "probability": 0.7661 + }, + { + "start": 3596.78, + "end": 3599.76, + "probability": 0.9544 + }, + { + "start": 3600.3, + "end": 3603.16, + "probability": 0.8448 + }, + { + "start": 3603.72, + "end": 3605.86, + "probability": 0.8533 + }, + { + "start": 3605.98, + "end": 3608.46, + "probability": 0.8682 + }, + { + "start": 3608.98, + "end": 3611.76, + "probability": 0.9724 + }, + { + "start": 3611.88, + "end": 3615.66, + "probability": 0.5771 + }, + { + "start": 3616.24, + "end": 3617.51, + "probability": 0.8091 + }, + { + "start": 3617.66, + "end": 3619.76, + "probability": 0.9773 + }, + { + "start": 3619.76, + "end": 3621.88, + "probability": 0.915 + }, + { + "start": 3621.98, + "end": 3623.06, + "probability": 0.9839 + }, + { + "start": 3623.96, + "end": 3627.82, + "probability": 0.9348 + }, + { + "start": 3627.82, + "end": 3631.16, + "probability": 0.8667 + }, + { + "start": 3631.22, + "end": 3632.88, + "probability": 0.9435 + }, + { + "start": 3633.94, + "end": 3635.6, + "probability": 0.8202 + }, + { + "start": 3636.3, + "end": 3637.5, + "probability": 0.0256 + }, + { + "start": 3638.36, + "end": 3639.3, + "probability": 0.064 + }, + { + "start": 3639.48, + "end": 3640.78, + "probability": 0.6553 + }, + { + "start": 3640.9, + "end": 3642.12, + "probability": 0.772 + }, + { + "start": 3642.76, + "end": 3643.92, + "probability": 0.9468 + }, + { + "start": 3644.36, + "end": 3645.98, + "probability": 0.5479 + }, + { + "start": 3646.14, + "end": 3647.58, + "probability": 0.8496 + }, + { + "start": 3648.8, + "end": 3651.22, + "probability": 0.4267 + }, + { + "start": 3652.16, + "end": 3660.68, + "probability": 0.7142 + }, + { + "start": 3660.68, + "end": 3665.04, + "probability": 0.8787 + }, + { + "start": 3665.14, + "end": 3665.5, + "probability": 0.818 + }, + { + "start": 3667.16, + "end": 3668.6, + "probability": 0.8633 + }, + { + "start": 3669.78, + "end": 3673.91, + "probability": 0.8976 + }, + { + "start": 3675.54, + "end": 3677.0, + "probability": 0.7116 + }, + { + "start": 3677.2, + "end": 3678.16, + "probability": 0.9978 + }, + { + "start": 3679.12, + "end": 3679.64, + "probability": 0.7579 + }, + { + "start": 3680.38, + "end": 3681.26, + "probability": 0.9401 + }, + { + "start": 3682.12, + "end": 3684.74, + "probability": 0.9865 + }, + { + "start": 3685.6, + "end": 3685.88, + "probability": 0.2287 + }, + { + "start": 3685.94, + "end": 3689.54, + "probability": 0.4782 + }, + { + "start": 3689.6, + "end": 3693.64, + "probability": 0.8649 + }, + { + "start": 3697.8, + "end": 3702.44, + "probability": 0.6595 + }, + { + "start": 3702.54, + "end": 3704.06, + "probability": 0.7192 + }, + { + "start": 3704.96, + "end": 3707.22, + "probability": 0.8462 + }, + { + "start": 3708.46, + "end": 3710.98, + "probability": 0.9756 + }, + { + "start": 3711.8, + "end": 3715.72, + "probability": 0.9396 + }, + { + "start": 3717.02, + "end": 3721.48, + "probability": 0.941 + }, + { + "start": 3722.08, + "end": 3725.92, + "probability": 0.9592 + }, + { + "start": 3727.16, + "end": 3729.78, + "probability": 0.8406 + }, + { + "start": 3729.84, + "end": 3730.88, + "probability": 0.7963 + }, + { + "start": 3731.66, + "end": 3732.57, + "probability": 0.9412 + }, + { + "start": 3732.9, + "end": 3734.12, + "probability": 0.9136 + }, + { + "start": 3734.58, + "end": 3736.78, + "probability": 0.9555 + }, + { + "start": 3737.98, + "end": 3740.32, + "probability": 0.9182 + }, + { + "start": 3740.32, + "end": 3743.82, + "probability": 0.9987 + }, + { + "start": 3744.42, + "end": 3746.18, + "probability": 0.7691 + }, + { + "start": 3746.9, + "end": 3751.18, + "probability": 0.8853 + }, + { + "start": 3751.64, + "end": 3755.16, + "probability": 0.9245 + }, + { + "start": 3755.66, + "end": 3758.16, + "probability": 0.5861 + }, + { + "start": 3758.24, + "end": 3758.78, + "probability": 0.6562 + }, + { + "start": 3758.98, + "end": 3762.26, + "probability": 0.8923 + }, + { + "start": 3763.32, + "end": 3766.06, + "probability": 0.9939 + }, + { + "start": 3766.76, + "end": 3768.18, + "probability": 0.8772 + }, + { + "start": 3768.78, + "end": 3770.98, + "probability": 0.9679 + }, + { + "start": 3771.6, + "end": 3773.64, + "probability": 0.8503 + }, + { + "start": 3774.82, + "end": 3776.84, + "probability": 0.6812 + }, + { + "start": 3777.64, + "end": 3784.33, + "probability": 0.9175 + }, + { + "start": 3785.04, + "end": 3786.12, + "probability": 0.979 + }, + { + "start": 3786.24, + "end": 3790.3, + "probability": 0.9915 + }, + { + "start": 3791.34, + "end": 3793.98, + "probability": 0.8947 + }, + { + "start": 3794.82, + "end": 3804.72, + "probability": 0.9859 + }, + { + "start": 3805.62, + "end": 3807.9, + "probability": 0.9465 + }, + { + "start": 3808.1, + "end": 3811.46, + "probability": 0.9771 + }, + { + "start": 3811.46, + "end": 3814.2, + "probability": 0.9938 + }, + { + "start": 3814.26, + "end": 3815.11, + "probability": 0.5727 + }, + { + "start": 3817.12, + "end": 3820.4, + "probability": 0.8783 + }, + { + "start": 3820.58, + "end": 3822.62, + "probability": 0.7288 + }, + { + "start": 3823.34, + "end": 3824.1, + "probability": 0.5981 + }, + { + "start": 3825.06, + "end": 3827.9, + "probability": 0.8973 + }, + { + "start": 3828.78, + "end": 3834.32, + "probability": 0.9806 + }, + { + "start": 3835.36, + "end": 3837.84, + "probability": 0.8312 + }, + { + "start": 3838.58, + "end": 3840.24, + "probability": 0.9346 + }, + { + "start": 3840.94, + "end": 3842.9, + "probability": 0.9855 + }, + { + "start": 3843.52, + "end": 3846.7, + "probability": 0.9678 + }, + { + "start": 3847.18, + "end": 3852.38, + "probability": 0.9847 + }, + { + "start": 3852.48, + "end": 3853.48, + "probability": 0.7404 + }, + { + "start": 3853.92, + "end": 3854.12, + "probability": 0.4608 + }, + { + "start": 3854.14, + "end": 3856.68, + "probability": 0.818 + }, + { + "start": 3856.74, + "end": 3857.74, + "probability": 0.8263 + }, + { + "start": 3858.14, + "end": 3859.98, + "probability": 0.9802 + }, + { + "start": 3860.48, + "end": 3861.41, + "probability": 0.6974 + }, + { + "start": 3862.48, + "end": 3865.18, + "probability": 0.9491 + }, + { + "start": 3865.24, + "end": 3867.45, + "probability": 0.9751 + }, + { + "start": 3868.32, + "end": 3871.7, + "probability": 0.8729 + }, + { + "start": 3871.8, + "end": 3872.64, + "probability": 0.7993 + }, + { + "start": 3872.92, + "end": 3875.2, + "probability": 0.9771 + }, + { + "start": 3875.8, + "end": 3878.02, + "probability": 0.5121 + }, + { + "start": 3878.66, + "end": 3879.92, + "probability": 0.9655 + }, + { + "start": 3880.52, + "end": 3882.44, + "probability": 0.98 + }, + { + "start": 3883.28, + "end": 3885.36, + "probability": 0.8704 + }, + { + "start": 3886.24, + "end": 3887.94, + "probability": 0.99 + }, + { + "start": 3888.36, + "end": 3892.14, + "probability": 0.9861 + }, + { + "start": 3892.2, + "end": 3892.78, + "probability": 0.7018 + }, + { + "start": 3892.88, + "end": 3895.5, + "probability": 0.9919 + }, + { + "start": 3895.68, + "end": 3901.42, + "probability": 0.967 + }, + { + "start": 3902.14, + "end": 3904.3, + "probability": 0.6594 + }, + { + "start": 3905.24, + "end": 3907.18, + "probability": 0.8373 + }, + { + "start": 3907.62, + "end": 3909.82, + "probability": 0.9963 + }, + { + "start": 3910.46, + "end": 3911.62, + "probability": 0.9595 + }, + { + "start": 3912.22, + "end": 3914.1, + "probability": 0.7687 + }, + { + "start": 3914.6, + "end": 3920.02, + "probability": 0.9854 + }, + { + "start": 3920.1, + "end": 3921.08, + "probability": 0.7101 + }, + { + "start": 3921.28, + "end": 3924.26, + "probability": 0.7903 + }, + { + "start": 3924.94, + "end": 3925.3, + "probability": 0.6782 + }, + { + "start": 3927.76, + "end": 3929.52, + "probability": 0.6241 + }, + { + "start": 3932.38, + "end": 3933.04, + "probability": 0.2259 + }, + { + "start": 3933.04, + "end": 3933.04, + "probability": 0.7048 + }, + { + "start": 3933.04, + "end": 3933.14, + "probability": 0.0418 + }, + { + "start": 3933.16, + "end": 3934.56, + "probability": 0.7363 + }, + { + "start": 3934.56, + "end": 3936.3, + "probability": 0.9764 + }, + { + "start": 3936.34, + "end": 3937.68, + "probability": 0.8463 + }, + { + "start": 3938.54, + "end": 3939.26, + "probability": 0.7118 + }, + { + "start": 3939.36, + "end": 3944.35, + "probability": 0.2413 + }, + { + "start": 3945.52, + "end": 3948.8, + "probability": 0.9284 + }, + { + "start": 3948.84, + "end": 3949.18, + "probability": 0.7112 + }, + { + "start": 3949.18, + "end": 3949.76, + "probability": 0.6165 + }, + { + "start": 3949.82, + "end": 3950.66, + "probability": 0.5565 + }, + { + "start": 3950.76, + "end": 3952.04, + "probability": 0.873 + }, + { + "start": 3952.7, + "end": 3953.32, + "probability": 0.8648 + }, + { + "start": 3953.8, + "end": 3958.34, + "probability": 0.9961 + }, + { + "start": 3959.1, + "end": 3960.52, + "probability": 0.711 + }, + { + "start": 3960.86, + "end": 3964.14, + "probability": 0.9647 + }, + { + "start": 3964.66, + "end": 3967.44, + "probability": 0.9984 + }, + { + "start": 3967.44, + "end": 3970.76, + "probability": 0.9029 + }, + { + "start": 3971.2, + "end": 3972.82, + "probability": 0.8188 + }, + { + "start": 3973.72, + "end": 3974.7, + "probability": 0.8839 + }, + { + "start": 3975.48, + "end": 3977.88, + "probability": 0.9777 + }, + { + "start": 3978.62, + "end": 3983.98, + "probability": 0.9701 + }, + { + "start": 3984.44, + "end": 3985.76, + "probability": 0.9683 + }, + { + "start": 3986.32, + "end": 3988.64, + "probability": 0.8196 + }, + { + "start": 3989.8, + "end": 3992.42, + "probability": 0.9956 + }, + { + "start": 3993.12, + "end": 3994.22, + "probability": 0.6939 + }, + { + "start": 3994.28, + "end": 3995.0, + "probability": 0.7701 + }, + { + "start": 3995.46, + "end": 4000.88, + "probability": 0.9974 + }, + { + "start": 4001.66, + "end": 4004.58, + "probability": 0.7034 + }, + { + "start": 4005.44, + "end": 4006.4, + "probability": 0.9298 + }, + { + "start": 4007.28, + "end": 4011.4, + "probability": 0.9716 + }, + { + "start": 4012.3, + "end": 4014.6, + "probability": 0.8533 + }, + { + "start": 4014.66, + "end": 4015.32, + "probability": 0.8699 + }, + { + "start": 4015.42, + "end": 4022.3, + "probability": 0.8844 + }, + { + "start": 4023.02, + "end": 4025.18, + "probability": 0.9882 + }, + { + "start": 4025.26, + "end": 4030.86, + "probability": 0.9893 + }, + { + "start": 4031.4, + "end": 4031.88, + "probability": 0.8524 + }, + { + "start": 4032.44, + "end": 4038.04, + "probability": 0.9849 + }, + { + "start": 4038.04, + "end": 4040.38, + "probability": 0.9609 + }, + { + "start": 4040.46, + "end": 4040.82, + "probability": 0.7006 + }, + { + "start": 4042.3, + "end": 4045.5, + "probability": 0.9673 + }, + { + "start": 4046.2, + "end": 4049.7, + "probability": 0.9157 + }, + { + "start": 4050.48, + "end": 4051.46, + "probability": 0.8807 + }, + { + "start": 4052.64, + "end": 4054.88, + "probability": 0.7525 + }, + { + "start": 4055.86, + "end": 4056.48, + "probability": 0.5702 + }, + { + "start": 4056.56, + "end": 4057.36, + "probability": 0.6272 + }, + { + "start": 4057.54, + "end": 4057.82, + "probability": 0.3645 + }, + { + "start": 4057.92, + "end": 4061.96, + "probability": 0.8511 + }, + { + "start": 4062.4, + "end": 4064.88, + "probability": 0.7716 + }, + { + "start": 4065.68, + "end": 4066.6, + "probability": 0.673 + }, + { + "start": 4066.6, + "end": 4067.4, + "probability": 0.9022 + }, + { + "start": 4067.44, + "end": 4068.52, + "probability": 0.374 + }, + { + "start": 4068.74, + "end": 4070.26, + "probability": 0.8176 + }, + { + "start": 4070.76, + "end": 4073.82, + "probability": 0.9821 + }, + { + "start": 4074.68, + "end": 4074.88, + "probability": 0.4437 + }, + { + "start": 4075.44, + "end": 4078.5, + "probability": 0.9905 + }, + { + "start": 4078.56, + "end": 4081.02, + "probability": 0.8979 + }, + { + "start": 4081.42, + "end": 4081.56, + "probability": 0.015 + }, + { + "start": 4082.24, + "end": 4086.44, + "probability": 0.9791 + }, + { + "start": 4086.78, + "end": 4087.7, + "probability": 0.9696 + }, + { + "start": 4087.94, + "end": 4088.4, + "probability": 0.8284 + }, + { + "start": 4088.6, + "end": 4089.18, + "probability": 0.4898 + }, + { + "start": 4089.38, + "end": 4090.2, + "probability": 0.7964 + }, + { + "start": 4091.12, + "end": 4091.64, + "probability": 0.6016 + }, + { + "start": 4091.7, + "end": 4092.14, + "probability": 0.6078 + }, + { + "start": 4092.16, + "end": 4093.98, + "probability": 0.9196 + }, + { + "start": 4094.24, + "end": 4098.7, + "probability": 0.8884 + }, + { + "start": 4099.52, + "end": 4100.86, + "probability": 0.7947 + }, + { + "start": 4100.92, + "end": 4102.06, + "probability": 0.8951 + }, + { + "start": 4102.16, + "end": 4104.47, + "probability": 0.9383 + }, + { + "start": 4104.72, + "end": 4105.76, + "probability": 0.9031 + }, + { + "start": 4106.34, + "end": 4112.82, + "probability": 0.9906 + }, + { + "start": 4113.52, + "end": 4116.48, + "probability": 0.9917 + }, + { + "start": 4117.62, + "end": 4118.64, + "probability": 0.8958 + }, + { + "start": 4119.68, + "end": 4124.82, + "probability": 0.9678 + }, + { + "start": 4126.0, + "end": 4128.6, + "probability": 0.3515 + }, + { + "start": 4129.04, + "end": 4133.32, + "probability": 0.9974 + }, + { + "start": 4134.16, + "end": 4137.26, + "probability": 0.991 + }, + { + "start": 4137.88, + "end": 4139.04, + "probability": 0.8022 + }, + { + "start": 4140.12, + "end": 4145.98, + "probability": 0.988 + }, + { + "start": 4146.14, + "end": 4150.9, + "probability": 0.932 + }, + { + "start": 4152.04, + "end": 4152.4, + "probability": 0.6271 + }, + { + "start": 4152.56, + "end": 4156.56, + "probability": 0.9779 + }, + { + "start": 4157.18, + "end": 4161.08, + "probability": 0.8481 + }, + { + "start": 4161.2, + "end": 4163.9, + "probability": 0.995 + }, + { + "start": 4164.68, + "end": 4167.24, + "probability": 0.866 + }, + { + "start": 4167.82, + "end": 4168.74, + "probability": 0.9542 + }, + { + "start": 4169.22, + "end": 4170.9, + "probability": 0.9814 + }, + { + "start": 4171.12, + "end": 4172.26, + "probability": 0.8367 + }, + { + "start": 4172.88, + "end": 4175.2, + "probability": 0.916 + }, + { + "start": 4175.8, + "end": 4176.46, + "probability": 0.9985 + }, + { + "start": 4177.78, + "end": 4181.28, + "probability": 0.9934 + }, + { + "start": 4181.8, + "end": 4184.98, + "probability": 0.9404 + }, + { + "start": 4186.02, + "end": 4188.14, + "probability": 0.9724 + }, + { + "start": 4188.86, + "end": 4191.36, + "probability": 0.9708 + }, + { + "start": 4191.82, + "end": 4191.98, + "probability": 0.3421 + }, + { + "start": 4192.12, + "end": 4197.14, + "probability": 0.9965 + }, + { + "start": 4197.98, + "end": 4200.48, + "probability": 0.8804 + }, + { + "start": 4201.2, + "end": 4208.36, + "probability": 0.9909 + }, + { + "start": 4208.98, + "end": 4211.7, + "probability": 0.9753 + }, + { + "start": 4212.66, + "end": 4213.8, + "probability": 0.8179 + }, + { + "start": 4217.96, + "end": 4221.72, + "probability": 0.7546 + }, + { + "start": 4222.46, + "end": 4222.76, + "probability": 0.3842 + }, + { + "start": 4222.84, + "end": 4227.42, + "probability": 0.9948 + }, + { + "start": 4228.96, + "end": 4229.42, + "probability": 0.5363 + }, + { + "start": 4229.46, + "end": 4229.68, + "probability": 0.7513 + }, + { + "start": 4229.82, + "end": 4230.52, + "probability": 0.5029 + }, + { + "start": 4230.66, + "end": 4231.08, + "probability": 0.7867 + }, + { + "start": 4231.2, + "end": 4236.06, + "probability": 0.9823 + }, + { + "start": 4236.34, + "end": 4237.24, + "probability": 0.6445 + }, + { + "start": 4237.8, + "end": 4238.5, + "probability": 0.6784 + }, + { + "start": 4239.02, + "end": 4241.92, + "probability": 0.7856 + }, + { + "start": 4242.28, + "end": 4243.7, + "probability": 0.697 + }, + { + "start": 4244.94, + "end": 4246.18, + "probability": 0.5425 + }, + { + "start": 4246.64, + "end": 4247.84, + "probability": 0.5985 + }, + { + "start": 4247.9, + "end": 4249.6, + "probability": 0.7697 + }, + { + "start": 4249.88, + "end": 4250.98, + "probability": 0.7212 + }, + { + "start": 4252.04, + "end": 4254.06, + "probability": 0.5858 + }, + { + "start": 4254.06, + "end": 4256.62, + "probability": 0.6905 + }, + { + "start": 4257.3, + "end": 4258.36, + "probability": 0.2842 + }, + { + "start": 4259.06, + "end": 4260.44, + "probability": 0.5169 + }, + { + "start": 4260.46, + "end": 4260.9, + "probability": 0.6379 + }, + { + "start": 4261.08, + "end": 4264.68, + "probability": 0.7397 + }, + { + "start": 4264.68, + "end": 4265.58, + "probability": 0.8531 + }, + { + "start": 4265.66, + "end": 4268.56, + "probability": 0.9766 + }, + { + "start": 4268.68, + "end": 4271.3, + "probability": 0.9898 + }, + { + "start": 4271.3, + "end": 4274.04, + "probability": 0.8171 + }, + { + "start": 4274.22, + "end": 4275.32, + "probability": 0.6399 + }, + { + "start": 4277.76, + "end": 4278.78, + "probability": 0.7 + }, + { + "start": 4279.36, + "end": 4280.2, + "probability": 0.9541 + }, + { + "start": 4280.42, + "end": 4281.7, + "probability": 0.9215 + }, + { + "start": 4282.61, + "end": 4284.64, + "probability": 0.7697 + }, + { + "start": 4285.74, + "end": 4287.84, + "probability": 0.9623 + }, + { + "start": 4296.86, + "end": 4297.2, + "probability": 0.3939 + }, + { + "start": 4297.24, + "end": 4298.92, + "probability": 0.6929 + }, + { + "start": 4299.92, + "end": 4304.98, + "probability": 0.9886 + }, + { + "start": 4304.98, + "end": 4308.16, + "probability": 0.7751 + }, + { + "start": 4308.88, + "end": 4310.92, + "probability": 0.8633 + }, + { + "start": 4311.66, + "end": 4312.98, + "probability": 0.8062 + }, + { + "start": 4314.12, + "end": 4318.12, + "probability": 0.9764 + }, + { + "start": 4318.12, + "end": 4322.46, + "probability": 0.9943 + }, + { + "start": 4322.46, + "end": 4325.94, + "probability": 0.999 + }, + { + "start": 4327.12, + "end": 4328.44, + "probability": 0.8485 + }, + { + "start": 4328.76, + "end": 4333.12, + "probability": 0.9132 + }, + { + "start": 4333.12, + "end": 4338.74, + "probability": 0.8658 + }, + { + "start": 4338.84, + "end": 4339.82, + "probability": 0.7676 + }, + { + "start": 4339.88, + "end": 4340.28, + "probability": 0.9518 + }, + { + "start": 4341.2, + "end": 4344.68, + "probability": 0.86 + }, + { + "start": 4344.68, + "end": 4348.74, + "probability": 0.9521 + }, + { + "start": 4348.78, + "end": 4349.52, + "probability": 0.7958 + }, + { + "start": 4350.06, + "end": 4350.88, + "probability": 0.8878 + }, + { + "start": 4351.82, + "end": 4354.26, + "probability": 0.9932 + }, + { + "start": 4354.54, + "end": 4355.88, + "probability": 0.8232 + }, + { + "start": 4356.36, + "end": 4357.18, + "probability": 0.7991 + }, + { + "start": 4358.12, + "end": 4361.58, + "probability": 0.9699 + }, + { + "start": 4363.2, + "end": 4365.0, + "probability": 0.7347 + }, + { + "start": 4365.12, + "end": 4369.28, + "probability": 0.9893 + }, + { + "start": 4369.42, + "end": 4370.56, + "probability": 0.9586 + }, + { + "start": 4371.12, + "end": 4372.3, + "probability": 0.95 + }, + { + "start": 4372.34, + "end": 4373.8, + "probability": 0.7492 + }, + { + "start": 4373.88, + "end": 4375.0, + "probability": 0.9507 + }, + { + "start": 4375.84, + "end": 4377.44, + "probability": 0.9529 + }, + { + "start": 4377.6, + "end": 4380.06, + "probability": 0.9751 + }, + { + "start": 4380.96, + "end": 4383.36, + "probability": 0.9742 + }, + { + "start": 4383.46, + "end": 4385.61, + "probability": 0.8561 + }, + { + "start": 4386.82, + "end": 4387.34, + "probability": 0.6001 + }, + { + "start": 4387.98, + "end": 4390.84, + "probability": 0.9035 + }, + { + "start": 4391.48, + "end": 4393.78, + "probability": 0.9279 + }, + { + "start": 4394.2, + "end": 4396.06, + "probability": 0.9854 + }, + { + "start": 4396.06, + "end": 4398.42, + "probability": 0.996 + }, + { + "start": 4399.0, + "end": 4401.32, + "probability": 0.9623 + }, + { + "start": 4402.26, + "end": 4402.8, + "probability": 0.8003 + }, + { + "start": 4402.9, + "end": 4406.32, + "probability": 0.9915 + }, + { + "start": 4406.38, + "end": 4407.09, + "probability": 0.8203 + }, + { + "start": 4407.74, + "end": 4407.94, + "probability": 0.5439 + }, + { + "start": 4408.0, + "end": 4408.44, + "probability": 0.842 + }, + { + "start": 4408.74, + "end": 4411.92, + "probability": 0.9638 + }, + { + "start": 4412.54, + "end": 4419.96, + "probability": 0.9258 + }, + { + "start": 4420.84, + "end": 4423.86, + "probability": 0.3774 + }, + { + "start": 4423.88, + "end": 4426.34, + "probability": 0.9941 + }, + { + "start": 4426.4, + "end": 4426.62, + "probability": 0.7359 + }, + { + "start": 4428.5, + "end": 4429.91, + "probability": 0.636 + }, + { + "start": 4430.6, + "end": 4430.6, + "probability": 0.1157 + }, + { + "start": 4430.6, + "end": 4431.06, + "probability": 0.3664 + }, + { + "start": 4431.34, + "end": 4434.16, + "probability": 0.9913 + }, + { + "start": 4434.9, + "end": 4438.78, + "probability": 0.8608 + }, + { + "start": 4439.58, + "end": 4442.8, + "probability": 0.9069 + }, + { + "start": 4443.4, + "end": 4444.28, + "probability": 0.8279 + }, + { + "start": 4445.0, + "end": 4447.22, + "probability": 0.9975 + }, + { + "start": 4448.3, + "end": 4451.32, + "probability": 0.9459 + }, + { + "start": 4452.2, + "end": 4454.04, + "probability": 0.707 + }, + { + "start": 4454.12, + "end": 4456.72, + "probability": 0.9697 + }, + { + "start": 4457.54, + "end": 4459.78, + "probability": 0.9594 + }, + { + "start": 4460.74, + "end": 4462.62, + "probability": 0.864 + }, + { + "start": 4462.8, + "end": 4464.16, + "probability": 0.8676 + }, + { + "start": 4464.78, + "end": 4467.02, + "probability": 0.8793 + }, + { + "start": 4467.66, + "end": 4468.73, + "probability": 0.9111 + }, + { + "start": 4470.0, + "end": 4472.08, + "probability": 0.9457 + }, + { + "start": 4472.14, + "end": 4474.82, + "probability": 0.897 + }, + { + "start": 4475.56, + "end": 4478.98, + "probability": 0.9144 + }, + { + "start": 4479.88, + "end": 4484.16, + "probability": 0.9816 + }, + { + "start": 4485.02, + "end": 4489.56, + "probability": 0.9573 + }, + { + "start": 4490.38, + "end": 4490.96, + "probability": 0.4439 + }, + { + "start": 4491.02, + "end": 4495.9, + "probability": 0.7781 + }, + { + "start": 4496.68, + "end": 4497.94, + "probability": 0.578 + }, + { + "start": 4498.8, + "end": 4500.4, + "probability": 0.9085 + }, + { + "start": 4501.78, + "end": 4504.96, + "probability": 0.6107 + }, + { + "start": 4505.96, + "end": 4506.9, + "probability": 0.7948 + }, + { + "start": 4507.98, + "end": 4508.78, + "probability": 0.7389 + }, + { + "start": 4508.94, + "end": 4509.15, + "probability": 0.417 + }, + { + "start": 4509.38, + "end": 4512.36, + "probability": 0.8458 + }, + { + "start": 4512.46, + "end": 4513.6, + "probability": 0.648 + }, + { + "start": 4514.42, + "end": 4516.74, + "probability": 0.7758 + }, + { + "start": 4516.9, + "end": 4520.14, + "probability": 0.9929 + }, + { + "start": 4520.22, + "end": 4522.66, + "probability": 0.9888 + }, + { + "start": 4523.22, + "end": 4524.76, + "probability": 0.8779 + }, + { + "start": 4525.44, + "end": 4526.34, + "probability": 0.8713 + }, + { + "start": 4526.56, + "end": 4532.2, + "probability": 0.7026 + }, + { + "start": 4532.32, + "end": 4533.16, + "probability": 0.9463 + }, + { + "start": 4533.78, + "end": 4534.97, + "probability": 0.9961 + }, + { + "start": 4536.1, + "end": 4537.14, + "probability": 0.8951 + }, + { + "start": 4538.0, + "end": 4545.06, + "probability": 0.9788 + }, + { + "start": 4545.94, + "end": 4550.2, + "probability": 0.9979 + }, + { + "start": 4550.38, + "end": 4551.4, + "probability": 0.6849 + }, + { + "start": 4552.6, + "end": 4555.36, + "probability": 0.9862 + }, + { + "start": 4555.48, + "end": 4558.94, + "probability": 0.9064 + }, + { + "start": 4559.04, + "end": 4560.18, + "probability": 0.9331 + }, + { + "start": 4560.38, + "end": 4561.16, + "probability": 0.8904 + }, + { + "start": 4561.86, + "end": 4564.14, + "probability": 0.8089 + }, + { + "start": 4565.16, + "end": 4567.38, + "probability": 0.9299 + }, + { + "start": 4568.22, + "end": 4570.76, + "probability": 0.9582 + }, + { + "start": 4571.72, + "end": 4573.93, + "probability": 0.8721 + }, + { + "start": 4574.92, + "end": 4578.64, + "probability": 0.9341 + }, + { + "start": 4579.34, + "end": 4581.4, + "probability": 0.9036 + }, + { + "start": 4581.88, + "end": 4586.98, + "probability": 0.9061 + }, + { + "start": 4587.92, + "end": 4594.32, + "probability": 0.8955 + }, + { + "start": 4595.18, + "end": 4597.12, + "probability": 0.9531 + }, + { + "start": 4597.2, + "end": 4598.7, + "probability": 0.7169 + }, + { + "start": 4599.22, + "end": 4601.92, + "probability": 0.9901 + }, + { + "start": 4602.4, + "end": 4604.58, + "probability": 0.9662 + }, + { + "start": 4605.28, + "end": 4607.14, + "probability": 0.9445 + }, + { + "start": 4607.8, + "end": 4608.78, + "probability": 0.9573 + }, + { + "start": 4609.1, + "end": 4611.69, + "probability": 0.9937 + }, + { + "start": 4612.4, + "end": 4614.04, + "probability": 0.6604 + }, + { + "start": 4614.74, + "end": 4618.66, + "probability": 0.9578 + }, + { + "start": 4618.74, + "end": 4619.8, + "probability": 0.8242 + }, + { + "start": 4620.64, + "end": 4623.56, + "probability": 0.9365 + }, + { + "start": 4623.58, + "end": 4625.91, + "probability": 0.993 + }, + { + "start": 4626.24, + "end": 4627.26, + "probability": 0.871 + }, + { + "start": 4627.38, + "end": 4627.76, + "probability": 0.6486 + }, + { + "start": 4627.84, + "end": 4628.64, + "probability": 0.8739 + }, + { + "start": 4629.83, + "end": 4634.42, + "probability": 0.967 + }, + { + "start": 4635.04, + "end": 4639.06, + "probability": 0.9869 + }, + { + "start": 4640.42, + "end": 4641.93, + "probability": 0.7234 + }, + { + "start": 4642.52, + "end": 4643.15, + "probability": 0.5718 + }, + { + "start": 4643.22, + "end": 4643.58, + "probability": 0.7449 + }, + { + "start": 4644.66, + "end": 4646.16, + "probability": 0.8066 + }, + { + "start": 4646.62, + "end": 4647.26, + "probability": 0.6132 + }, + { + "start": 4651.6, + "end": 4654.0, + "probability": 0.9333 + }, + { + "start": 4654.24, + "end": 4661.24, + "probability": 0.9893 + }, + { + "start": 4661.44, + "end": 4663.28, + "probability": 0.9966 + }, + { + "start": 4663.96, + "end": 4664.96, + "probability": 0.7241 + }, + { + "start": 4666.42, + "end": 4670.54, + "probability": 0.9819 + }, + { + "start": 4671.0, + "end": 4672.74, + "probability": 0.9681 + }, + { + "start": 4673.24, + "end": 4680.4, + "probability": 0.9597 + }, + { + "start": 4681.16, + "end": 4684.44, + "probability": 0.9849 + }, + { + "start": 4685.12, + "end": 4688.38, + "probability": 0.998 + }, + { + "start": 4689.38, + "end": 4692.15, + "probability": 0.9939 + }, + { + "start": 4693.32, + "end": 4695.84, + "probability": 0.9817 + }, + { + "start": 4696.26, + "end": 4697.46, + "probability": 0.926 + }, + { + "start": 4697.64, + "end": 4701.9, + "probability": 0.9683 + }, + { + "start": 4702.6, + "end": 4708.82, + "probability": 0.996 + }, + { + "start": 4709.74, + "end": 4713.66, + "probability": 0.9262 + }, + { + "start": 4714.32, + "end": 4716.44, + "probability": 0.9924 + }, + { + "start": 4716.84, + "end": 4720.58, + "probability": 0.9557 + }, + { + "start": 4721.14, + "end": 4722.54, + "probability": 0.8657 + }, + { + "start": 4723.2, + "end": 4727.96, + "probability": 0.9812 + }, + { + "start": 4728.12, + "end": 4729.69, + "probability": 0.9977 + }, + { + "start": 4730.44, + "end": 4733.25, + "probability": 0.9922 + }, + { + "start": 4734.24, + "end": 4735.92, + "probability": 0.7527 + }, + { + "start": 4736.28, + "end": 4739.96, + "probability": 0.8157 + }, + { + "start": 4740.46, + "end": 4745.8, + "probability": 0.4847 + }, + { + "start": 4745.8, + "end": 4746.34, + "probability": 0.8374 + }, + { + "start": 4747.77, + "end": 4753.36, + "probability": 0.8501 + }, + { + "start": 4753.5, + "end": 4758.66, + "probability": 0.9977 + }, + { + "start": 4759.1, + "end": 4760.62, + "probability": 0.7809 + }, + { + "start": 4760.98, + "end": 4761.46, + "probability": 0.8549 + }, + { + "start": 4761.9, + "end": 4762.86, + "probability": 0.5486 + }, + { + "start": 4763.04, + "end": 4763.68, + "probability": 0.8262 + }, + { + "start": 4763.7, + "end": 4763.94, + "probability": 0.737 + }, + { + "start": 4764.84, + "end": 4766.92, + "probability": 0.7236 + }, + { + "start": 4766.92, + "end": 4767.76, + "probability": 0.8364 + }, + { + "start": 4768.42, + "end": 4769.84, + "probability": 0.3601 + }, + { + "start": 4770.56, + "end": 4771.94, + "probability": 0.7491 + }, + { + "start": 4772.55, + "end": 4774.84, + "probability": 0.855 + }, + { + "start": 4775.08, + "end": 4776.82, + "probability": 0.7205 + }, + { + "start": 4776.82, + "end": 4776.96, + "probability": 0.2659 + }, + { + "start": 4777.48, + "end": 4777.68, + "probability": 0.0644 + }, + { + "start": 4777.68, + "end": 4777.68, + "probability": 0.3652 + }, + { + "start": 4777.68, + "end": 4780.4, + "probability": 0.9486 + }, + { + "start": 4781.52, + "end": 4784.58, + "probability": 0.8664 + }, + { + "start": 4784.76, + "end": 4785.69, + "probability": 0.8104 + }, + { + "start": 4787.24, + "end": 4788.46, + "probability": 0.9481 + }, + { + "start": 4789.32, + "end": 4790.61, + "probability": 0.7974 + }, + { + "start": 4792.24, + "end": 4793.07, + "probability": 0.3864 + }, + { + "start": 4795.84, + "end": 4797.12, + "probability": 0.6844 + }, + { + "start": 4797.92, + "end": 4799.46, + "probability": 0.8546 + }, + { + "start": 4799.76, + "end": 4804.38, + "probability": 0.9599 + }, + { + "start": 4805.02, + "end": 4806.25, + "probability": 0.9112 + }, + { + "start": 4807.42, + "end": 4810.92, + "probability": 0.917 + }, + { + "start": 4811.9, + "end": 4813.06, + "probability": 0.0507 + }, + { + "start": 4813.16, + "end": 4816.08, + "probability": 0.7178 + }, + { + "start": 4816.42, + "end": 4817.78, + "probability": 0.3823 + }, + { + "start": 4817.82, + "end": 4819.06, + "probability": 0.0434 + }, + { + "start": 4831.42, + "end": 4832.58, + "probability": 0.0887 + }, + { + "start": 4832.58, + "end": 4832.58, + "probability": 0.0502 + }, + { + "start": 4832.58, + "end": 4832.58, + "probability": 0.0518 + }, + { + "start": 4832.58, + "end": 4832.58, + "probability": 0.1103 + }, + { + "start": 4832.58, + "end": 4832.58, + "probability": 0.0166 + }, + { + "start": 4832.58, + "end": 4832.58, + "probability": 0.0608 + }, + { + "start": 4832.58, + "end": 4836.64, + "probability": 0.5527 + }, + { + "start": 4836.72, + "end": 4837.1, + "probability": 0.8244 + }, + { + "start": 4837.26, + "end": 4837.92, + "probability": 0.374 + }, + { + "start": 4839.12, + "end": 4840.98, + "probability": 0.9282 + }, + { + "start": 4843.66, + "end": 4844.04, + "probability": 0.8463 + }, + { + "start": 4844.16, + "end": 4845.34, + "probability": 0.7915 + }, + { + "start": 4845.48, + "end": 4846.98, + "probability": 0.9006 + }, + { + "start": 4848.24, + "end": 4850.64, + "probability": 0.7665 + }, + { + "start": 4851.44, + "end": 4856.18, + "probability": 0.8787 + }, + { + "start": 4856.72, + "end": 4858.46, + "probability": 0.744 + }, + { + "start": 4858.6, + "end": 4861.0, + "probability": 0.8558 + }, + { + "start": 4861.72, + "end": 4864.28, + "probability": 0.8975 + }, + { + "start": 4865.06, + "end": 4867.66, + "probability": 0.829 + }, + { + "start": 4867.86, + "end": 4871.92, + "probability": 0.93 + }, + { + "start": 4871.92, + "end": 4872.88, + "probability": 0.7943 + }, + { + "start": 4874.04, + "end": 4875.3, + "probability": 0.6888 + }, + { + "start": 4876.32, + "end": 4878.12, + "probability": 0.9712 + }, + { + "start": 4878.68, + "end": 4878.68, + "probability": 0.9536 + }, + { + "start": 4879.74, + "end": 4881.02, + "probability": 0.8286 + }, + { + "start": 4881.2, + "end": 4882.58, + "probability": 0.723 + }, + { + "start": 4882.6, + "end": 4883.62, + "probability": 0.9557 + }, + { + "start": 4883.88, + "end": 4885.32, + "probability": 0.9683 + }, + { + "start": 4885.92, + "end": 4887.06, + "probability": 0.9467 + }, + { + "start": 4887.9, + "end": 4890.5, + "probability": 0.7983 + }, + { + "start": 4891.62, + "end": 4892.9, + "probability": 0.9707 + }, + { + "start": 4893.08, + "end": 4894.13, + "probability": 0.7139 + }, + { + "start": 4894.38, + "end": 4897.06, + "probability": 0.9637 + }, + { + "start": 4897.24, + "end": 4899.44, + "probability": 0.9448 + }, + { + "start": 4900.0, + "end": 4903.44, + "probability": 0.9914 + }, + { + "start": 4904.14, + "end": 4904.9, + "probability": 0.9674 + }, + { + "start": 4905.5, + "end": 4907.18, + "probability": 0.7228 + }, + { + "start": 4907.26, + "end": 4908.78, + "probability": 0.9854 + }, + { + "start": 4909.3, + "end": 4911.06, + "probability": 0.9343 + }, + { + "start": 4911.58, + "end": 4914.86, + "probability": 0.701 + }, + { + "start": 4915.04, + "end": 4916.82, + "probability": 0.8262 + }, + { + "start": 4916.98, + "end": 4917.76, + "probability": 0.9145 + }, + { + "start": 4917.86, + "end": 4919.12, + "probability": 0.9606 + }, + { + "start": 4920.14, + "end": 4922.42, + "probability": 0.8466 + }, + { + "start": 4922.94, + "end": 4924.16, + "probability": 0.7741 + }, + { + "start": 4924.22, + "end": 4925.12, + "probability": 0.9447 + }, + { + "start": 4925.48, + "end": 4927.72, + "probability": 0.9724 + }, + { + "start": 4927.8, + "end": 4931.78, + "probability": 0.9836 + }, + { + "start": 4933.36, + "end": 4934.94, + "probability": 0.5225 + }, + { + "start": 4934.94, + "end": 4936.12, + "probability": 0.9617 + }, + { + "start": 4938.22, + "end": 4940.64, + "probability": 0.924 + }, + { + "start": 4941.4, + "end": 4942.64, + "probability": 0.9307 + }, + { + "start": 4943.26, + "end": 4945.16, + "probability": 0.8445 + }, + { + "start": 4945.5, + "end": 4946.85, + "probability": 0.9829 + }, + { + "start": 4947.12, + "end": 4947.91, + "probability": 0.5911 + }, + { + "start": 4948.82, + "end": 4949.88, + "probability": 0.8994 + }, + { + "start": 4950.5, + "end": 4952.2, + "probability": 0.7021 + }, + { + "start": 4953.12, + "end": 4959.36, + "probability": 0.882 + }, + { + "start": 4959.48, + "end": 4961.1, + "probability": 0.9019 + }, + { + "start": 4961.26, + "end": 4964.2, + "probability": 0.9606 + }, + { + "start": 4964.26, + "end": 4964.98, + "probability": 0.6738 + }, + { + "start": 4966.06, + "end": 4967.52, + "probability": 0.9535 + }, + { + "start": 4967.64, + "end": 4970.48, + "probability": 0.9622 + }, + { + "start": 4970.6, + "end": 4973.42, + "probability": 0.9001 + }, + { + "start": 4973.6, + "end": 4976.06, + "probability": 0.9919 + }, + { + "start": 4976.74, + "end": 4978.26, + "probability": 0.913 + }, + { + "start": 4979.26, + "end": 4980.9, + "probability": 0.6077 + }, + { + "start": 4980.96, + "end": 4983.72, + "probability": 0.9592 + }, + { + "start": 4983.8, + "end": 4984.22, + "probability": 0.4476 + }, + { + "start": 4984.56, + "end": 4984.72, + "probability": 0.6426 + }, + { + "start": 4985.22, + "end": 4989.12, + "probability": 0.9932 + }, + { + "start": 4989.46, + "end": 4990.42, + "probability": 0.649 + }, + { + "start": 4990.94, + "end": 4992.55, + "probability": 0.3211 + }, + { + "start": 4992.8, + "end": 4995.99, + "probability": 0.6388 + }, + { + "start": 4996.16, + "end": 4998.68, + "probability": 0.9855 + }, + { + "start": 4998.78, + "end": 4999.94, + "probability": 0.9464 + }, + { + "start": 5000.56, + "end": 5002.3, + "probability": 0.7608 + }, + { + "start": 5003.46, + "end": 5005.0, + "probability": 0.7573 + }, + { + "start": 5005.36, + "end": 5007.6, + "probability": 0.7382 + }, + { + "start": 5020.72, + "end": 5021.6, + "probability": 0.924 + }, + { + "start": 5023.52, + "end": 5026.66, + "probability": 0.9785 + }, + { + "start": 5027.44, + "end": 5030.68, + "probability": 0.8249 + }, + { + "start": 5031.1, + "end": 5035.32, + "probability": 0.9792 + }, + { + "start": 5035.4, + "end": 5037.17, + "probability": 0.5968 + }, + { + "start": 5039.04, + "end": 5039.58, + "probability": 0.1172 + }, + { + "start": 5040.2, + "end": 5045.2, + "probability": 0.9965 + }, + { + "start": 5046.63, + "end": 5046.98, + "probability": 0.3132 + }, + { + "start": 5047.38, + "end": 5051.48, + "probability": 0.9816 + }, + { + "start": 5053.17, + "end": 5056.04, + "probability": 0.404 + }, + { + "start": 5056.18, + "end": 5062.28, + "probability": 0.7968 + }, + { + "start": 5063.66, + "end": 5064.16, + "probability": 0.5306 + }, + { + "start": 5064.3, + "end": 5065.32, + "probability": 0.8617 + }, + { + "start": 5065.52, + "end": 5068.02, + "probability": 0.8647 + }, + { + "start": 5069.82, + "end": 5073.56, + "probability": 0.9918 + }, + { + "start": 5074.0, + "end": 5077.72, + "probability": 0.9961 + }, + { + "start": 5078.44, + "end": 5080.72, + "probability": 0.9501 + }, + { + "start": 5081.5, + "end": 5085.2, + "probability": 0.9592 + }, + { + "start": 5085.2, + "end": 5087.7, + "probability": 0.9943 + }, + { + "start": 5088.5, + "end": 5092.98, + "probability": 0.9755 + }, + { + "start": 5094.02, + "end": 5097.36, + "probability": 0.9979 + }, + { + "start": 5098.1, + "end": 5099.34, + "probability": 0.9264 + }, + { + "start": 5099.98, + "end": 5103.0, + "probability": 0.8643 + }, + { + "start": 5106.66, + "end": 5109.52, + "probability": 0.999 + }, + { + "start": 5109.52, + "end": 5112.88, + "probability": 0.9701 + }, + { + "start": 5113.58, + "end": 5120.98, + "probability": 0.9724 + }, + { + "start": 5121.64, + "end": 5125.43, + "probability": 0.9965 + }, + { + "start": 5125.5, + "end": 5130.54, + "probability": 0.9814 + }, + { + "start": 5131.12, + "end": 5135.12, + "probability": 0.9822 + }, + { + "start": 5135.68, + "end": 5138.16, + "probability": 0.7941 + }, + { + "start": 5138.16, + "end": 5141.1, + "probability": 0.9081 + }, + { + "start": 5141.96, + "end": 5144.46, + "probability": 0.9774 + }, + { + "start": 5145.88, + "end": 5150.66, + "probability": 0.9426 + }, + { + "start": 5151.46, + "end": 5155.96, + "probability": 0.9812 + }, + { + "start": 5157.24, + "end": 5157.82, + "probability": 0.5492 + }, + { + "start": 5159.04, + "end": 5160.74, + "probability": 0.8301 + }, + { + "start": 5164.64, + "end": 5166.6, + "probability": 0.8835 + }, + { + "start": 5168.1, + "end": 5169.04, + "probability": 0.7593 + }, + { + "start": 5169.14, + "end": 5170.44, + "probability": 0.9406 + }, + { + "start": 5171.34, + "end": 5172.4, + "probability": 0.7558 + }, + { + "start": 5173.16, + "end": 5178.76, + "probability": 0.9678 + }, + { + "start": 5179.4, + "end": 5183.48, + "probability": 0.9186 + }, + { + "start": 5184.36, + "end": 5184.84, + "probability": 0.7057 + }, + { + "start": 5185.26, + "end": 5186.78, + "probability": 0.8077 + }, + { + "start": 5187.28, + "end": 5189.98, + "probability": 0.8542 + }, + { + "start": 5190.6, + "end": 5193.12, + "probability": 0.6729 + }, + { + "start": 5193.68, + "end": 5194.84, + "probability": 0.989 + }, + { + "start": 5195.42, + "end": 5200.36, + "probability": 0.8968 + }, + { + "start": 5201.08, + "end": 5201.52, + "probability": 0.7981 + }, + { + "start": 5201.68, + "end": 5204.78, + "probability": 0.9303 + }, + { + "start": 5204.86, + "end": 5206.6, + "probability": 0.9243 + }, + { + "start": 5207.32, + "end": 5211.04, + "probability": 0.9564 + }, + { + "start": 5211.1, + "end": 5215.84, + "probability": 0.8785 + }, + { + "start": 5216.88, + "end": 5219.46, + "probability": 0.995 + }, + { + "start": 5220.3, + "end": 5224.1, + "probability": 0.8618 + }, + { + "start": 5224.76, + "end": 5228.44, + "probability": 0.9969 + }, + { + "start": 5229.14, + "end": 5230.4, + "probability": 0.3356 + }, + { + "start": 5231.02, + "end": 5232.64, + "probability": 0.8927 + }, + { + "start": 5233.22, + "end": 5237.88, + "probability": 0.9292 + }, + { + "start": 5237.96, + "end": 5238.06, + "probability": 0.795 + }, + { + "start": 5238.4, + "end": 5239.16, + "probability": 0.5936 + }, + { + "start": 5240.16, + "end": 5244.82, + "probability": 0.7201 + }, + { + "start": 5244.88, + "end": 5247.78, + "probability": 0.8819 + }, + { + "start": 5248.62, + "end": 5250.44, + "probability": 0.9806 + }, + { + "start": 5251.02, + "end": 5252.88, + "probability": 0.9418 + }, + { + "start": 5254.26, + "end": 5254.84, + "probability": 0.426 + }, + { + "start": 5255.06, + "end": 5257.48, + "probability": 0.9834 + }, + { + "start": 5257.48, + "end": 5260.7, + "probability": 0.994 + }, + { + "start": 5261.2, + "end": 5264.74, + "probability": 0.9773 + }, + { + "start": 5267.34, + "end": 5268.91, + "probability": 0.8489 + }, + { + "start": 5276.74, + "end": 5277.5, + "probability": 0.8679 + }, + { + "start": 5277.62, + "end": 5279.26, + "probability": 0.5967 + }, + { + "start": 5279.44, + "end": 5282.8, + "probability": 0.9237 + }, + { + "start": 5284.06, + "end": 5285.2, + "probability": 0.916 + }, + { + "start": 5287.24, + "end": 5291.58, + "probability": 0.8643 + }, + { + "start": 5292.42, + "end": 5295.76, + "probability": 0.9771 + }, + { + "start": 5295.96, + "end": 5298.01, + "probability": 0.9509 + }, + { + "start": 5299.12, + "end": 5302.97, + "probability": 0.9774 + }, + { + "start": 5304.06, + "end": 5305.42, + "probability": 0.6904 + }, + { + "start": 5306.92, + "end": 5307.16, + "probability": 0.3836 + }, + { + "start": 5307.4, + "end": 5307.86, + "probability": 0.4741 + }, + { + "start": 5307.86, + "end": 5311.46, + "probability": 0.8546 + }, + { + "start": 5311.56, + "end": 5315.42, + "probability": 0.9933 + }, + { + "start": 5315.42, + "end": 5318.82, + "probability": 0.8988 + }, + { + "start": 5319.06, + "end": 5320.96, + "probability": 0.742 + }, + { + "start": 5321.0, + "end": 5322.24, + "probability": 0.8179 + }, + { + "start": 5322.38, + "end": 5324.25, + "probability": 0.9897 + }, + { + "start": 5325.06, + "end": 5327.04, + "probability": 0.9201 + }, + { + "start": 5328.54, + "end": 5329.78, + "probability": 0.9158 + }, + { + "start": 5329.94, + "end": 5331.68, + "probability": 0.949 + }, + { + "start": 5333.0, + "end": 5337.72, + "probability": 0.9545 + }, + { + "start": 5337.82, + "end": 5342.64, + "probability": 0.9594 + }, + { + "start": 5343.82, + "end": 5345.48, + "probability": 0.6828 + }, + { + "start": 5345.7, + "end": 5347.0, + "probability": 0.79 + }, + { + "start": 5348.12, + "end": 5350.06, + "probability": 0.9557 + }, + { + "start": 5351.0, + "end": 5353.24, + "probability": 0.9771 + }, + { + "start": 5354.3, + "end": 5356.32, + "probability": 0.7238 + }, + { + "start": 5356.54, + "end": 5357.86, + "probability": 0.8401 + }, + { + "start": 5357.9, + "end": 5360.42, + "probability": 0.9115 + }, + { + "start": 5361.32, + "end": 5363.6, + "probability": 0.8781 + }, + { + "start": 5364.38, + "end": 5366.68, + "probability": 0.8569 + }, + { + "start": 5367.94, + "end": 5369.28, + "probability": 0.4761 + }, + { + "start": 5369.58, + "end": 5369.92, + "probability": 0.7873 + }, + { + "start": 5370.02, + "end": 5370.34, + "probability": 0.8156 + }, + { + "start": 5370.44, + "end": 5371.68, + "probability": 0.6239 + }, + { + "start": 5372.52, + "end": 5373.26, + "probability": 0.7063 + }, + { + "start": 5373.36, + "end": 5379.02, + "probability": 0.7736 + }, + { + "start": 5379.78, + "end": 5382.16, + "probability": 0.9871 + }, + { + "start": 5383.1, + "end": 5386.0, + "probability": 0.971 + }, + { + "start": 5386.76, + "end": 5387.99, + "probability": 0.9331 + }, + { + "start": 5388.78, + "end": 5391.68, + "probability": 0.8628 + }, + { + "start": 5392.2, + "end": 5393.48, + "probability": 0.9282 + }, + { + "start": 5394.1, + "end": 5395.46, + "probability": 0.9823 + }, + { + "start": 5396.0, + "end": 5400.32, + "probability": 0.9624 + }, + { + "start": 5400.98, + "end": 5403.24, + "probability": 0.9847 + }, + { + "start": 5403.68, + "end": 5407.8, + "probability": 0.8477 + }, + { + "start": 5408.44, + "end": 5412.66, + "probability": 0.9727 + }, + { + "start": 5412.69, + "end": 5417.1, + "probability": 0.9882 + }, + { + "start": 5418.42, + "end": 5421.27, + "probability": 0.9153 + }, + { + "start": 5421.88, + "end": 5423.78, + "probability": 0.9929 + }, + { + "start": 5424.7, + "end": 5425.04, + "probability": 0.7816 + }, + { + "start": 5426.12, + "end": 5427.72, + "probability": 0.9141 + }, + { + "start": 5428.38, + "end": 5431.0, + "probability": 0.6722 + }, + { + "start": 5431.82, + "end": 5436.2, + "probability": 0.9281 + }, + { + "start": 5436.34, + "end": 5440.74, + "probability": 0.9471 + }, + { + "start": 5441.92, + "end": 5446.28, + "probability": 0.638 + }, + { + "start": 5446.44, + "end": 5448.28, + "probability": 0.5235 + }, + { + "start": 5448.56, + "end": 5451.46, + "probability": 0.9009 + }, + { + "start": 5452.34, + "end": 5454.58, + "probability": 0.7902 + }, + { + "start": 5456.54, + "end": 5458.74, + "probability": 0.9587 + }, + { + "start": 5459.46, + "end": 5461.04, + "probability": 0.8434 + }, + { + "start": 5461.2, + "end": 5464.54, + "probability": 0.9343 + }, + { + "start": 5465.33, + "end": 5468.4, + "probability": 0.9891 + }, + { + "start": 5469.2, + "end": 5470.98, + "probability": 0.8785 + }, + { + "start": 5472.0, + "end": 5473.24, + "probability": 0.6166 + }, + { + "start": 5473.66, + "end": 5477.26, + "probability": 0.9956 + }, + { + "start": 5478.1, + "end": 5480.36, + "probability": 0.9731 + }, + { + "start": 5480.86, + "end": 5481.76, + "probability": 0.9157 + }, + { + "start": 5482.12, + "end": 5484.12, + "probability": 0.9935 + }, + { + "start": 5484.74, + "end": 5487.12, + "probability": 0.8136 + }, + { + "start": 5487.82, + "end": 5492.15, + "probability": 0.9479 + }, + { + "start": 5492.92, + "end": 5495.42, + "probability": 0.7017 + }, + { + "start": 5496.28, + "end": 5498.04, + "probability": 0.9912 + }, + { + "start": 5499.1, + "end": 5503.44, + "probability": 0.797 + }, + { + "start": 5504.04, + "end": 5505.78, + "probability": 0.8547 + }, + { + "start": 5507.58, + "end": 5510.4, + "probability": 0.9163 + }, + { + "start": 5511.06, + "end": 5512.48, + "probability": 0.7348 + }, + { + "start": 5512.94, + "end": 5516.9, + "probability": 0.9451 + }, + { + "start": 5517.26, + "end": 5518.44, + "probability": 0.6076 + }, + { + "start": 5518.54, + "end": 5519.08, + "probability": 0.6211 + }, + { + "start": 5519.52, + "end": 5521.34, + "probability": 0.7638 + }, + { + "start": 5522.66, + "end": 5526.74, + "probability": 0.7631 + }, + { + "start": 5527.72, + "end": 5528.64, + "probability": 0.9517 + }, + { + "start": 5529.54, + "end": 5532.38, + "probability": 0.9978 + }, + { + "start": 5533.16, + "end": 5533.98, + "probability": 0.7121 + }, + { + "start": 5534.52, + "end": 5536.64, + "probability": 0.9135 + }, + { + "start": 5537.82, + "end": 5543.34, + "probability": 0.9836 + }, + { + "start": 5543.56, + "end": 5544.97, + "probability": 0.9927 + }, + { + "start": 5546.0, + "end": 5546.9, + "probability": 0.3319 + }, + { + "start": 5546.9, + "end": 5548.05, + "probability": 0.9653 + }, + { + "start": 5549.08, + "end": 5549.24, + "probability": 0.0437 + }, + { + "start": 5549.24, + "end": 5554.86, + "probability": 0.8961 + }, + { + "start": 5554.86, + "end": 5555.58, + "probability": 0.9308 + }, + { + "start": 5557.2, + "end": 5557.2, + "probability": 0.041 + }, + { + "start": 5557.2, + "end": 5557.82, + "probability": 0.5338 + }, + { + "start": 5558.8, + "end": 5560.72, + "probability": 0.9492 + }, + { + "start": 5560.72, + "end": 5561.02, + "probability": 0.4755 + }, + { + "start": 5561.14, + "end": 5562.81, + "probability": 0.5796 + }, + { + "start": 5563.66, + "end": 5566.5, + "probability": 0.9775 + }, + { + "start": 5567.38, + "end": 5570.54, + "probability": 0.9974 + }, + { + "start": 5571.42, + "end": 5572.62, + "probability": 0.7593 + }, + { + "start": 5573.56, + "end": 5575.22, + "probability": 0.7164 + }, + { + "start": 5575.3, + "end": 5577.32, + "probability": 0.8186 + }, + { + "start": 5577.46, + "end": 5580.36, + "probability": 0.4586 + }, + { + "start": 5580.46, + "end": 5581.05, + "probability": 0.9467 + }, + { + "start": 5582.14, + "end": 5583.8, + "probability": 0.5222 + }, + { + "start": 5584.88, + "end": 5587.42, + "probability": 0.9575 + }, + { + "start": 5588.02, + "end": 5589.9, + "probability": 0.9938 + }, + { + "start": 5591.38, + "end": 5592.46, + "probability": 0.6843 + }, + { + "start": 5593.38, + "end": 5594.66, + "probability": 0.924 + }, + { + "start": 5595.82, + "end": 5598.56, + "probability": 0.9708 + }, + { + "start": 5599.42, + "end": 5600.86, + "probability": 0.844 + }, + { + "start": 5601.64, + "end": 5604.92, + "probability": 0.9077 + }, + { + "start": 5605.62, + "end": 5606.9, + "probability": 0.8892 + }, + { + "start": 5607.42, + "end": 5609.9, + "probability": 0.9995 + }, + { + "start": 5610.46, + "end": 5614.7, + "probability": 0.9918 + }, + { + "start": 5615.96, + "end": 5617.02, + "probability": 0.4521 + }, + { + "start": 5617.06, + "end": 5619.64, + "probability": 0.9983 + }, + { + "start": 5619.64, + "end": 5624.7, + "probability": 0.9916 + }, + { + "start": 5625.04, + "end": 5626.5, + "probability": 0.9502 + }, + { + "start": 5627.3, + "end": 5629.28, + "probability": 0.9883 + }, + { + "start": 5629.94, + "end": 5632.64, + "probability": 0.8961 + }, + { + "start": 5633.12, + "end": 5634.22, + "probability": 0.9388 + }, + { + "start": 5634.98, + "end": 5639.7, + "probability": 0.7923 + }, + { + "start": 5640.42, + "end": 5640.82, + "probability": 0.026 + }, + { + "start": 5640.82, + "end": 5646.22, + "probability": 0.7615 + }, + { + "start": 5646.36, + "end": 5647.35, + "probability": 0.9562 + }, + { + "start": 5648.58, + "end": 5649.6, + "probability": 0.372 + }, + { + "start": 5650.84, + "end": 5653.84, + "probability": 0.8937 + }, + { + "start": 5654.64, + "end": 5656.5, + "probability": 0.8599 + }, + { + "start": 5656.58, + "end": 5657.78, + "probability": 0.9115 + }, + { + "start": 5657.84, + "end": 5659.68, + "probability": 0.7244 + }, + { + "start": 5661.08, + "end": 5662.2, + "probability": 0.7959 + }, + { + "start": 5663.72, + "end": 5665.48, + "probability": 0.6828 + }, + { + "start": 5665.62, + "end": 5667.48, + "probability": 0.9049 + }, + { + "start": 5668.46, + "end": 5669.88, + "probability": 0.9049 + }, + { + "start": 5670.52, + "end": 5671.86, + "probability": 0.8792 + }, + { + "start": 5671.94, + "end": 5672.02, + "probability": 0.6839 + }, + { + "start": 5672.12, + "end": 5674.74, + "probability": 0.9549 + }, + { + "start": 5675.56, + "end": 5677.36, + "probability": 0.965 + }, + { + "start": 5678.12, + "end": 5682.86, + "probability": 0.9375 + }, + { + "start": 5682.96, + "end": 5683.94, + "probability": 0.9141 + }, + { + "start": 5684.78, + "end": 5686.02, + "probability": 0.8592 + }, + { + "start": 5686.84, + "end": 5690.66, + "probability": 0.8037 + }, + { + "start": 5690.9, + "end": 5692.1, + "probability": 0.9987 + }, + { + "start": 5692.78, + "end": 5697.3, + "probability": 0.9476 + }, + { + "start": 5697.86, + "end": 5698.7, + "probability": 0.8568 + }, + { + "start": 5699.68, + "end": 5701.72, + "probability": 0.8711 + }, + { + "start": 5702.6, + "end": 5707.4, + "probability": 0.8984 + }, + { + "start": 5708.16, + "end": 5713.6, + "probability": 0.9971 + }, + { + "start": 5714.7, + "end": 5717.03, + "probability": 0.7025 + }, + { + "start": 5718.12, + "end": 5720.71, + "probability": 0.8376 + }, + { + "start": 5721.58, + "end": 5722.93, + "probability": 0.7713 + }, + { + "start": 5723.68, + "end": 5726.92, + "probability": 0.6875 + }, + { + "start": 5727.12, + "end": 5727.84, + "probability": 0.985 + }, + { + "start": 5727.96, + "end": 5730.34, + "probability": 0.5503 + }, + { + "start": 5730.34, + "end": 5732.0, + "probability": 0.826 + }, + { + "start": 5733.28, + "end": 5735.84, + "probability": 0.9897 + }, + { + "start": 5736.5, + "end": 5736.98, + "probability": 0.519 + }, + { + "start": 5737.12, + "end": 5739.2, + "probability": 0.9038 + }, + { + "start": 5739.66, + "end": 5740.86, + "probability": 0.6292 + }, + { + "start": 5741.6, + "end": 5744.56, + "probability": 0.8746 + }, + { + "start": 5744.7, + "end": 5745.45, + "probability": 0.6651 + }, + { + "start": 5746.44, + "end": 5754.72, + "probability": 0.9896 + }, + { + "start": 5755.98, + "end": 5758.14, + "probability": 0.9966 + }, + { + "start": 5758.8, + "end": 5760.26, + "probability": 0.9824 + }, + { + "start": 5761.1, + "end": 5761.94, + "probability": 0.9902 + }, + { + "start": 5762.64, + "end": 5763.42, + "probability": 0.7481 + }, + { + "start": 5764.26, + "end": 5765.46, + "probability": 0.5478 + }, + { + "start": 5766.12, + "end": 5767.98, + "probability": 0.9891 + }, + { + "start": 5768.14, + "end": 5768.14, + "probability": 0.6285 + }, + { + "start": 5768.14, + "end": 5769.04, + "probability": 0.3889 + }, + { + "start": 5770.32, + "end": 5774.48, + "probability": 0.8166 + }, + { + "start": 5777.49, + "end": 5781.16, + "probability": 0.6904 + }, + { + "start": 5781.86, + "end": 5783.36, + "probability": 0.7699 + }, + { + "start": 5783.46, + "end": 5784.3, + "probability": 0.97 + }, + { + "start": 5784.68, + "end": 5787.6, + "probability": 0.7904 + }, + { + "start": 5787.7, + "end": 5788.66, + "probability": 0.7832 + }, + { + "start": 5789.74, + "end": 5792.34, + "probability": 0.9961 + }, + { + "start": 5793.8, + "end": 5795.62, + "probability": 0.9978 + }, + { + "start": 5796.46, + "end": 5799.36, + "probability": 0.9961 + }, + { + "start": 5800.47, + "end": 5803.04, + "probability": 0.8778 + }, + { + "start": 5803.88, + "end": 5805.74, + "probability": 0.9533 + }, + { + "start": 5805.94, + "end": 5810.8, + "probability": 0.9962 + }, + { + "start": 5811.34, + "end": 5813.04, + "probability": 0.9943 + }, + { + "start": 5813.78, + "end": 5815.12, + "probability": 0.9009 + }, + { + "start": 5815.22, + "end": 5815.52, + "probability": 0.4174 + }, + { + "start": 5815.56, + "end": 5818.02, + "probability": 0.7948 + }, + { + "start": 5819.35, + "end": 5823.92, + "probability": 0.8609 + }, + { + "start": 5824.78, + "end": 5826.7, + "probability": 0.9928 + }, + { + "start": 5827.52, + "end": 5830.52, + "probability": 0.9171 + }, + { + "start": 5831.16, + "end": 5836.42, + "probability": 0.9179 + }, + { + "start": 5837.1, + "end": 5838.4, + "probability": 0.9956 + }, + { + "start": 5838.84, + "end": 5840.3, + "probability": 0.995 + }, + { + "start": 5841.02, + "end": 5843.58, + "probability": 0.9879 + }, + { + "start": 5844.26, + "end": 5846.28, + "probability": 0.9801 + }, + { + "start": 5847.06, + "end": 5847.76, + "probability": 0.6692 + }, + { + "start": 5847.84, + "end": 5848.86, + "probability": 0.4055 + }, + { + "start": 5849.4, + "end": 5850.1, + "probability": 0.5177 + }, + { + "start": 5850.82, + "end": 5852.1, + "probability": 0.9878 + }, + { + "start": 5852.22, + "end": 5853.5, + "probability": 0.744 + }, + { + "start": 5854.32, + "end": 5856.12, + "probability": 0.987 + }, + { + "start": 5856.18, + "end": 5859.14, + "probability": 0.9304 + }, + { + "start": 5860.12, + "end": 5861.62, + "probability": 0.9233 + }, + { + "start": 5862.24, + "end": 5863.14, + "probability": 0.6094 + }, + { + "start": 5863.94, + "end": 5866.46, + "probability": 0.7987 + }, + { + "start": 5867.14, + "end": 5867.97, + "probability": 0.9458 + }, + { + "start": 5868.16, + "end": 5871.1, + "probability": 0.7492 + }, + { + "start": 5871.68, + "end": 5873.08, + "probability": 0.7309 + }, + { + "start": 5873.87, + "end": 5877.88, + "probability": 0.9719 + }, + { + "start": 5877.94, + "end": 5882.54, + "probability": 0.9602 + }, + { + "start": 5883.46, + "end": 5884.66, + "probability": 0.7981 + }, + { + "start": 5884.7, + "end": 5887.68, + "probability": 0.6613 + }, + { + "start": 5887.68, + "end": 5889.66, + "probability": 0.7126 + }, + { + "start": 5890.28, + "end": 5892.02, + "probability": 0.8506 + }, + { + "start": 5892.18, + "end": 5895.16, + "probability": 0.9764 + }, + { + "start": 5895.3, + "end": 5896.04, + "probability": 0.8768 + }, + { + "start": 5896.22, + "end": 5897.04, + "probability": 0.9743 + }, + { + "start": 5897.48, + "end": 5898.12, + "probability": 0.8893 + }, + { + "start": 5898.66, + "end": 5900.96, + "probability": 0.9922 + }, + { + "start": 5902.06, + "end": 5904.0, + "probability": 0.9927 + }, + { + "start": 5904.66, + "end": 5906.0, + "probability": 0.989 + }, + { + "start": 5907.32, + "end": 5907.88, + "probability": 0.7507 + }, + { + "start": 5908.6, + "end": 5911.38, + "probability": 0.9614 + }, + { + "start": 5911.92, + "end": 5913.38, + "probability": 0.9844 + }, + { + "start": 5913.44, + "end": 5914.02, + "probability": 0.8337 + }, + { + "start": 5914.12, + "end": 5914.86, + "probability": 0.8931 + }, + { + "start": 5915.46, + "end": 5917.18, + "probability": 0.6148 + }, + { + "start": 5918.54, + "end": 5919.74, + "probability": 0.9446 + }, + { + "start": 5920.5, + "end": 5923.4, + "probability": 0.9526 + }, + { + "start": 5924.42, + "end": 5926.72, + "probability": 0.8604 + }, + { + "start": 5927.48, + "end": 5929.8, + "probability": 0.8396 + }, + { + "start": 5930.76, + "end": 5932.9, + "probability": 0.9576 + }, + { + "start": 5933.64, + "end": 5938.12, + "probability": 0.6824 + }, + { + "start": 5938.62, + "end": 5941.62, + "probability": 0.8667 + }, + { + "start": 5942.16, + "end": 5945.56, + "probability": 0.9905 + }, + { + "start": 5945.58, + "end": 5948.56, + "probability": 0.6245 + }, + { + "start": 5949.06, + "end": 5951.02, + "probability": 0.9678 + }, + { + "start": 5952.52, + "end": 5953.87, + "probability": 0.9556 + }, + { + "start": 5954.3, + "end": 5955.36, + "probability": 0.9822 + }, + { + "start": 5955.7, + "end": 5956.98, + "probability": 0.9749 + }, + { + "start": 5957.3, + "end": 5958.6, + "probability": 0.9484 + }, + { + "start": 5959.04, + "end": 5960.66, + "probability": 0.9805 + }, + { + "start": 5960.7, + "end": 5964.44, + "probability": 0.9372 + }, + { + "start": 5965.04, + "end": 5965.48, + "probability": 0.6684 + }, + { + "start": 5965.48, + "end": 5965.96, + "probability": 0.8467 + }, + { + "start": 5966.08, + "end": 5967.02, + "probability": 0.7902 + }, + { + "start": 5967.1, + "end": 5967.46, + "probability": 0.9234 + }, + { + "start": 5967.54, + "end": 5968.14, + "probability": 0.6791 + }, + { + "start": 5969.02, + "end": 5971.96, + "probability": 0.9529 + }, + { + "start": 5973.96, + "end": 5975.19, + "probability": 0.5358 + }, + { + "start": 5975.42, + "end": 5979.76, + "probability": 0.9917 + }, + { + "start": 5980.6, + "end": 5983.92, + "probability": 0.9836 + }, + { + "start": 5984.5, + "end": 5986.22, + "probability": 0.9865 + }, + { + "start": 5986.26, + "end": 5986.76, + "probability": 0.8159 + }, + { + "start": 5986.78, + "end": 5990.48, + "probability": 0.8991 + }, + { + "start": 5991.16, + "end": 5993.54, + "probability": 0.8222 + }, + { + "start": 5994.14, + "end": 5998.04, + "probability": 0.9546 + }, + { + "start": 5998.8, + "end": 6001.42, + "probability": 0.9966 + }, + { + "start": 6001.54, + "end": 6002.16, + "probability": 0.872 + }, + { + "start": 6002.74, + "end": 6005.2, + "probability": 0.926 + }, + { + "start": 6005.98, + "end": 6007.62, + "probability": 0.9866 + }, + { + "start": 6008.1, + "end": 6010.72, + "probability": 0.9127 + }, + { + "start": 6011.36, + "end": 6012.93, + "probability": 0.9971 + }, + { + "start": 6015.5, + "end": 6017.24, + "probability": 0.7661 + }, + { + "start": 6017.24, + "end": 6019.08, + "probability": 0.86 + }, + { + "start": 6019.24, + "end": 6020.52, + "probability": 0.9295 + }, + { + "start": 6021.28, + "end": 6024.28, + "probability": 0.9773 + }, + { + "start": 6024.84, + "end": 6030.54, + "probability": 0.895 + }, + { + "start": 6031.0, + "end": 6032.31, + "probability": 0.9331 + }, + { + "start": 6032.84, + "end": 6034.18, + "probability": 0.5926 + }, + { + "start": 6034.38, + "end": 6034.5, + "probability": 0.4217 + }, + { + "start": 6034.62, + "end": 6035.52, + "probability": 0.6935 + }, + { + "start": 6036.82, + "end": 6037.88, + "probability": 0.957 + }, + { + "start": 6038.72, + "end": 6043.04, + "probability": 0.9352 + }, + { + "start": 6043.8, + "end": 6045.56, + "probability": 0.6242 + }, + { + "start": 6045.66, + "end": 6047.64, + "probability": 0.9517 + }, + { + "start": 6047.8, + "end": 6048.62, + "probability": 0.9236 + }, + { + "start": 6048.74, + "end": 6049.76, + "probability": 0.9408 + }, + { + "start": 6050.42, + "end": 6052.42, + "probability": 0.9539 + }, + { + "start": 6052.9, + "end": 6054.54, + "probability": 0.9834 + }, + { + "start": 6056.02, + "end": 6059.82, + "probability": 0.9371 + }, + { + "start": 6060.56, + "end": 6062.28, + "probability": 0.7181 + }, + { + "start": 6062.44, + "end": 6066.98, + "probability": 0.9818 + }, + { + "start": 6067.74, + "end": 6069.52, + "probability": 0.8136 + }, + { + "start": 6070.22, + "end": 6073.08, + "probability": 0.9485 + }, + { + "start": 6073.9, + "end": 6077.2, + "probability": 0.5976 + }, + { + "start": 6077.84, + "end": 6078.48, + "probability": 0.4873 + }, + { + "start": 6078.6, + "end": 6082.66, + "probability": 0.4685 + }, + { + "start": 6082.8, + "end": 6083.36, + "probability": 0.8462 + }, + { + "start": 6084.14, + "end": 6085.72, + "probability": 0.8597 + }, + { + "start": 6086.56, + "end": 6088.94, + "probability": 0.5867 + }, + { + "start": 6088.96, + "end": 6089.86, + "probability": 0.7602 + }, + { + "start": 6090.62, + "end": 6091.64, + "probability": 0.5889 + }, + { + "start": 6091.8, + "end": 6093.43, + "probability": 0.8252 + }, + { + "start": 6094.16, + "end": 6094.96, + "probability": 0.9516 + }, + { + "start": 6095.0, + "end": 6097.36, + "probability": 0.9775 + }, + { + "start": 6097.36, + "end": 6100.48, + "probability": 0.9715 + }, + { + "start": 6101.14, + "end": 6103.62, + "probability": 0.6223 + }, + { + "start": 6104.26, + "end": 6106.04, + "probability": 0.3816 + }, + { + "start": 6106.58, + "end": 6107.8, + "probability": 0.8514 + }, + { + "start": 6108.34, + "end": 6112.9, + "probability": 0.8918 + }, + { + "start": 6113.6, + "end": 6115.4, + "probability": 0.66 + }, + { + "start": 6115.96, + "end": 6117.18, + "probability": 0.7427 + }, + { + "start": 6117.26, + "end": 6118.02, + "probability": 0.9441 + }, + { + "start": 6118.56, + "end": 6122.0, + "probability": 0.9571 + }, + { + "start": 6122.06, + "end": 6122.65, + "probability": 0.6811 + }, + { + "start": 6123.52, + "end": 6125.32, + "probability": 0.9812 + }, + { + "start": 6125.82, + "end": 6126.48, + "probability": 0.9666 + }, + { + "start": 6127.6, + "end": 6129.78, + "probability": 0.8061 + }, + { + "start": 6129.86, + "end": 6131.39, + "probability": 0.9419 + }, + { + "start": 6132.48, + "end": 6135.68, + "probability": 0.9619 + }, + { + "start": 6135.9, + "end": 6136.49, + "probability": 0.9565 + }, + { + "start": 6137.46, + "end": 6139.26, + "probability": 0.9683 + }, + { + "start": 6140.16, + "end": 6144.24, + "probability": 0.9756 + }, + { + "start": 6145.04, + "end": 6150.46, + "probability": 0.9983 + }, + { + "start": 6152.18, + "end": 6153.84, + "probability": 0.6452 + }, + { + "start": 6155.86, + "end": 6157.18, + "probability": 0.6595 + }, + { + "start": 6158.36, + "end": 6160.82, + "probability": 0.9178 + }, + { + "start": 6168.42, + "end": 6170.12, + "probability": 0.711 + }, + { + "start": 6171.34, + "end": 6176.5, + "probability": 0.9715 + }, + { + "start": 6176.5, + "end": 6179.68, + "probability": 0.9968 + }, + { + "start": 6180.8, + "end": 6183.6, + "probability": 0.6939 + }, + { + "start": 6184.1, + "end": 6187.18, + "probability": 0.9584 + }, + { + "start": 6187.98, + "end": 6194.34, + "probability": 0.9858 + }, + { + "start": 6195.04, + "end": 6198.96, + "probability": 0.4258 + }, + { + "start": 6199.34, + "end": 6207.06, + "probability": 0.7755 + }, + { + "start": 6208.7, + "end": 6209.24, + "probability": 0.3345 + }, + { + "start": 6209.6, + "end": 6211.62, + "probability": 0.8755 + }, + { + "start": 6212.06, + "end": 6213.44, + "probability": 0.7243 + }, + { + "start": 6213.56, + "end": 6216.06, + "probability": 0.91 + }, + { + "start": 6216.86, + "end": 6220.4, + "probability": 0.9953 + }, + { + "start": 6221.18, + "end": 6224.94, + "probability": 0.9649 + }, + { + "start": 6225.6, + "end": 6227.98, + "probability": 0.947 + }, + { + "start": 6228.74, + "end": 6231.16, + "probability": 0.9578 + }, + { + "start": 6231.68, + "end": 6232.12, + "probability": 0.6625 + }, + { + "start": 6232.18, + "end": 6236.14, + "probability": 0.9816 + }, + { + "start": 6236.8, + "end": 6241.68, + "probability": 0.8661 + }, + { + "start": 6241.68, + "end": 6244.94, + "probability": 0.9972 + }, + { + "start": 6246.12, + "end": 6248.62, + "probability": 0.983 + }, + { + "start": 6248.62, + "end": 6251.62, + "probability": 0.9813 + }, + { + "start": 6251.72, + "end": 6252.64, + "probability": 0.5001 + }, + { + "start": 6253.22, + "end": 6256.64, + "probability": 0.7975 + }, + { + "start": 6257.74, + "end": 6259.96, + "probability": 0.9945 + }, + { + "start": 6260.76, + "end": 6263.06, + "probability": 0.8631 + }, + { + "start": 6263.18, + "end": 6264.28, + "probability": 0.9467 + }, + { + "start": 6265.16, + "end": 6269.32, + "probability": 0.9581 + }, + { + "start": 6269.42, + "end": 6270.6, + "probability": 0.7765 + }, + { + "start": 6270.68, + "end": 6273.24, + "probability": 0.9933 + }, + { + "start": 6274.04, + "end": 6278.3, + "probability": 0.9844 + }, + { + "start": 6278.82, + "end": 6280.2, + "probability": 0.583 + }, + { + "start": 6280.68, + "end": 6284.04, + "probability": 0.9239 + }, + { + "start": 6285.08, + "end": 6286.94, + "probability": 0.998 + }, + { + "start": 6286.94, + "end": 6290.06, + "probability": 0.9871 + }, + { + "start": 6290.1, + "end": 6290.8, + "probability": 0.6811 + }, + { + "start": 6290.84, + "end": 6294.14, + "probability": 0.8774 + }, + { + "start": 6294.16, + "end": 6297.04, + "probability": 0.9612 + }, + { + "start": 6297.04, + "end": 6299.98, + "probability": 0.922 + }, + { + "start": 6301.58, + "end": 6302.2, + "probability": 0.4744 + }, + { + "start": 6302.32, + "end": 6305.72, + "probability": 0.9622 + }, + { + "start": 6305.9, + "end": 6307.04, + "probability": 0.6663 + }, + { + "start": 6307.78, + "end": 6312.6, + "probability": 0.7908 + }, + { + "start": 6313.42, + "end": 6315.62, + "probability": 0.9958 + }, + { + "start": 6316.16, + "end": 6317.0, + "probability": 0.8391 + }, + { + "start": 6319.08, + "end": 6322.3, + "probability": 0.9182 + }, + { + "start": 6322.3, + "end": 6326.14, + "probability": 0.9827 + }, + { + "start": 6326.96, + "end": 6328.66, + "probability": 0.819 + }, + { + "start": 6328.82, + "end": 6330.18, + "probability": 0.5499 + }, + { + "start": 6330.92, + "end": 6333.34, + "probability": 0.9828 + }, + { + "start": 6333.94, + "end": 6336.56, + "probability": 0.9912 + }, + { + "start": 6337.3, + "end": 6337.64, + "probability": 0.6044 + }, + { + "start": 6337.74, + "end": 6342.78, + "probability": 0.6664 + }, + { + "start": 6344.3, + "end": 6346.2, + "probability": 0.7242 + }, + { + "start": 6346.7, + "end": 6347.32, + "probability": 0.7154 + }, + { + "start": 6347.32, + "end": 6348.48, + "probability": 0.9016 + }, + { + "start": 6348.7, + "end": 6350.02, + "probability": 0.8474 + }, + { + "start": 6351.24, + "end": 6352.02, + "probability": 0.9175 + }, + { + "start": 6353.36, + "end": 6353.66, + "probability": 0.3414 + }, + { + "start": 6353.8, + "end": 6354.48, + "probability": 0.4393 + }, + { + "start": 6354.72, + "end": 6354.92, + "probability": 0.5189 + }, + { + "start": 6354.94, + "end": 6355.56, + "probability": 0.712 + }, + { + "start": 6355.56, + "end": 6356.62, + "probability": 0.6108 + }, + { + "start": 6357.38, + "end": 6358.14, + "probability": 0.8854 + }, + { + "start": 6358.28, + "end": 6363.92, + "probability": 0.9062 + }, + { + "start": 6364.64, + "end": 6364.8, + "probability": 0.3063 + }, + { + "start": 6364.9, + "end": 6369.38, + "probability": 0.9071 + }, + { + "start": 6369.46, + "end": 6370.52, + "probability": 0.9771 + }, + { + "start": 6372.12, + "end": 6374.28, + "probability": 0.9702 + }, + { + "start": 6375.18, + "end": 6379.74, + "probability": 0.9417 + }, + { + "start": 6380.54, + "end": 6382.78, + "probability": 0.9098 + }, + { + "start": 6383.28, + "end": 6384.3, + "probability": 0.9354 + }, + { + "start": 6384.58, + "end": 6386.6, + "probability": 0.7837 + }, + { + "start": 6387.48, + "end": 6388.86, + "probability": 0.6162 + }, + { + "start": 6389.64, + "end": 6392.06, + "probability": 0.8628 + }, + { + "start": 6392.68, + "end": 6395.5, + "probability": 0.8969 + }, + { + "start": 6395.66, + "end": 6396.77, + "probability": 0.7613 + }, + { + "start": 6397.48, + "end": 6399.24, + "probability": 0.7294 + }, + { + "start": 6400.56, + "end": 6406.96, + "probability": 0.9916 + }, + { + "start": 6408.34, + "end": 6410.7, + "probability": 0.9239 + }, + { + "start": 6411.84, + "end": 6414.2, + "probability": 0.7431 + }, + { + "start": 6415.68, + "end": 6419.64, + "probability": 0.9922 + }, + { + "start": 6420.6, + "end": 6422.6, + "probability": 0.87 + }, + { + "start": 6422.62, + "end": 6425.34, + "probability": 0.6997 + }, + { + "start": 6426.34, + "end": 6428.58, + "probability": 0.8685 + }, + { + "start": 6429.22, + "end": 6431.54, + "probability": 0.9269 + }, + { + "start": 6432.26, + "end": 6433.26, + "probability": 0.7863 + }, + { + "start": 6433.72, + "end": 6433.88, + "probability": 0.2575 + }, + { + "start": 6434.08, + "end": 6436.86, + "probability": 0.3896 + }, + { + "start": 6436.86, + "end": 6437.5, + "probability": 0.6209 + }, + { + "start": 6437.9, + "end": 6439.94, + "probability": 0.8305 + }, + { + "start": 6440.0, + "end": 6440.32, + "probability": 0.5097 + }, + { + "start": 6440.48, + "end": 6440.76, + "probability": 0.412 + }, + { + "start": 6440.84, + "end": 6442.59, + "probability": 0.2283 + }, + { + "start": 6442.9, + "end": 6444.38, + "probability": 0.9321 + }, + { + "start": 6444.46, + "end": 6447.84, + "probability": 0.9288 + }, + { + "start": 6448.14, + "end": 6451.64, + "probability": 0.9778 + }, + { + "start": 6451.64, + "end": 6451.76, + "probability": 0.0562 + }, + { + "start": 6451.76, + "end": 6453.04, + "probability": 0.5713 + }, + { + "start": 6453.04, + "end": 6454.24, + "probability": 0.6804 + }, + { + "start": 6454.3, + "end": 6455.04, + "probability": 0.48 + }, + { + "start": 6455.04, + "end": 6456.8, + "probability": 0.9604 + }, + { + "start": 6456.92, + "end": 6457.08, + "probability": 0.3556 + }, + { + "start": 6457.28, + "end": 6458.9, + "probability": 0.841 + }, + { + "start": 6459.02, + "end": 6460.22, + "probability": 0.9395 + }, + { + "start": 6460.98, + "end": 6463.74, + "probability": 0.776 + }, + { + "start": 6464.6, + "end": 6467.7, + "probability": 0.8555 + }, + { + "start": 6467.78, + "end": 6468.82, + "probability": 0.9672 + }, + { + "start": 6468.94, + "end": 6471.74, + "probability": 0.7887 + }, + { + "start": 6473.28, + "end": 6474.06, + "probability": 0.5034 + }, + { + "start": 6476.32, + "end": 6481.36, + "probability": 0.9968 + }, + { + "start": 6482.52, + "end": 6484.54, + "probability": 0.9932 + }, + { + "start": 6485.18, + "end": 6490.2, + "probability": 0.9934 + }, + { + "start": 6490.64, + "end": 6492.16, + "probability": 0.8722 + }, + { + "start": 6492.72, + "end": 6494.84, + "probability": 0.9559 + }, + { + "start": 6495.76, + "end": 6498.12, + "probability": 0.8411 + }, + { + "start": 6498.96, + "end": 6499.2, + "probability": 0.3201 + }, + { + "start": 6499.3, + "end": 6501.18, + "probability": 0.7691 + }, + { + "start": 6501.24, + "end": 6502.56, + "probability": 0.9648 + }, + { + "start": 6502.66, + "end": 6506.32, + "probability": 0.9116 + }, + { + "start": 6507.18, + "end": 6508.42, + "probability": 0.9725 + }, + { + "start": 6511.0, + "end": 6512.08, + "probability": 0.5421 + }, + { + "start": 6512.72, + "end": 6513.54, + "probability": 0.9966 + }, + { + "start": 6514.22, + "end": 6515.48, + "probability": 0.9844 + }, + { + "start": 6516.42, + "end": 6520.82, + "probability": 0.8984 + }, + { + "start": 6521.0, + "end": 6524.77, + "probability": 0.9492 + }, + { + "start": 6525.48, + "end": 6525.76, + "probability": 0.5927 + }, + { + "start": 6525.76, + "end": 6528.4, + "probability": 0.8446 + }, + { + "start": 6529.36, + "end": 6530.56, + "probability": 0.6518 + }, + { + "start": 6530.58, + "end": 6531.56, + "probability": 0.8357 + }, + { + "start": 6531.64, + "end": 6532.36, + "probability": 0.9673 + }, + { + "start": 6532.4, + "end": 6533.32, + "probability": 0.9744 + }, + { + "start": 6534.0, + "end": 6536.18, + "probability": 0.9595 + }, + { + "start": 6537.02, + "end": 6541.32, + "probability": 0.9832 + }, + { + "start": 6542.26, + "end": 6545.46, + "probability": 0.9277 + }, + { + "start": 6546.24, + "end": 6548.66, + "probability": 0.7617 + }, + { + "start": 6549.96, + "end": 6552.54, + "probability": 0.8555 + }, + { + "start": 6553.06, + "end": 6554.44, + "probability": 0.9966 + }, + { + "start": 6555.24, + "end": 6556.22, + "probability": 0.7377 + }, + { + "start": 6556.84, + "end": 6557.53, + "probability": 0.7468 + }, + { + "start": 6558.0, + "end": 6562.48, + "probability": 0.8139 + }, + { + "start": 6562.58, + "end": 6563.56, + "probability": 0.9432 + }, + { + "start": 6564.64, + "end": 6565.5, + "probability": 0.9915 + }, + { + "start": 6565.52, + "end": 6565.62, + "probability": 0.8455 + }, + { + "start": 6565.72, + "end": 6567.85, + "probability": 0.9595 + }, + { + "start": 6568.64, + "end": 6571.3, + "probability": 0.958 + }, + { + "start": 6571.92, + "end": 6572.96, + "probability": 0.7786 + }, + { + "start": 6573.52, + "end": 6576.75, + "probability": 0.9949 + }, + { + "start": 6577.1, + "end": 6577.62, + "probability": 0.9216 + }, + { + "start": 6577.7, + "end": 6578.74, + "probability": 0.9167 + }, + { + "start": 6579.64, + "end": 6581.62, + "probability": 0.9934 + }, + { + "start": 6582.22, + "end": 6584.68, + "probability": 0.9363 + }, + { + "start": 6585.26, + "end": 6586.16, + "probability": 0.6786 + }, + { + "start": 6586.24, + "end": 6590.86, + "probability": 0.973 + }, + { + "start": 6591.58, + "end": 6593.4, + "probability": 0.9224 + }, + { + "start": 6594.08, + "end": 6595.32, + "probability": 0.9991 + }, + { + "start": 6596.08, + "end": 6597.4, + "probability": 0.503 + }, + { + "start": 6598.08, + "end": 6603.65, + "probability": 0.7164 + }, + { + "start": 6604.04, + "end": 6608.8, + "probability": 0.9956 + }, + { + "start": 6609.72, + "end": 6613.52, + "probability": 0.5079 + }, + { + "start": 6615.51, + "end": 6617.63, + "probability": 0.9321 + }, + { + "start": 6618.5, + "end": 6622.28, + "probability": 0.987 + }, + { + "start": 6622.3, + "end": 6622.68, + "probability": 0.1835 + }, + { + "start": 6622.8, + "end": 6623.98, + "probability": 0.749 + }, + { + "start": 6624.18, + "end": 6625.66, + "probability": 0.8851 + }, + { + "start": 6625.78, + "end": 6627.24, + "probability": 0.9905 + }, + { + "start": 6627.8, + "end": 6629.92, + "probability": 0.9569 + }, + { + "start": 6630.0, + "end": 6630.36, + "probability": 0.4799 + }, + { + "start": 6630.68, + "end": 6633.04, + "probability": 0.6055 + }, + { + "start": 6633.1, + "end": 6634.78, + "probability": 0.7476 + }, + { + "start": 6635.38, + "end": 6637.12, + "probability": 0.7226 + }, + { + "start": 6637.22, + "end": 6638.54, + "probability": 0.9753 + }, + { + "start": 6638.94, + "end": 6639.98, + "probability": 0.9036 + }, + { + "start": 6640.84, + "end": 6642.89, + "probability": 0.9534 + }, + { + "start": 6643.88, + "end": 6645.56, + "probability": 0.76 + }, + { + "start": 6645.66, + "end": 6647.44, + "probability": 0.9185 + }, + { + "start": 6647.98, + "end": 6651.42, + "probability": 0.7001 + }, + { + "start": 6651.56, + "end": 6652.22, + "probability": 0.9741 + }, + { + "start": 6653.12, + "end": 6655.56, + "probability": 0.6882 + }, + { + "start": 6656.22, + "end": 6657.61, + "probability": 0.9392 + }, + { + "start": 6657.74, + "end": 6659.88, + "probability": 0.874 + }, + { + "start": 6660.4, + "end": 6661.68, + "probability": 0.9122 + }, + { + "start": 6662.28, + "end": 6663.68, + "probability": 0.7647 + }, + { + "start": 6664.46, + "end": 6667.88, + "probability": 0.9066 + }, + { + "start": 6667.88, + "end": 6670.46, + "probability": 0.8341 + }, + { + "start": 6670.56, + "end": 6672.0, + "probability": 0.2243 + }, + { + "start": 6672.66, + "end": 6673.0, + "probability": 0.6442 + }, + { + "start": 6673.1, + "end": 6674.06, + "probability": 0.9112 + }, + { + "start": 6674.88, + "end": 6675.64, + "probability": 0.8592 + }, + { + "start": 6675.66, + "end": 6676.5, + "probability": 0.7978 + }, + { + "start": 6676.74, + "end": 6678.92, + "probability": 0.9536 + }, + { + "start": 6678.96, + "end": 6680.96, + "probability": 0.8482 + }, + { + "start": 6681.12, + "end": 6681.38, + "probability": 0.448 + }, + { + "start": 6681.46, + "end": 6684.44, + "probability": 0.9413 + }, + { + "start": 6685.36, + "end": 6687.28, + "probability": 0.8799 + }, + { + "start": 6688.9, + "end": 6690.92, + "probability": 0.9893 + }, + { + "start": 6691.02, + "end": 6692.8, + "probability": 0.9912 + }, + { + "start": 6693.64, + "end": 6695.53, + "probability": 0.8807 + }, + { + "start": 6696.4, + "end": 6699.12, + "probability": 0.9878 + }, + { + "start": 6699.98, + "end": 6702.96, + "probability": 0.9482 + }, + { + "start": 6703.5, + "end": 6704.56, + "probability": 0.7716 + }, + { + "start": 6705.44, + "end": 6707.44, + "probability": 0.9082 + }, + { + "start": 6708.42, + "end": 6710.64, + "probability": 0.9946 + }, + { + "start": 6711.32, + "end": 6711.52, + "probability": 0.7589 + }, + { + "start": 6711.58, + "end": 6712.86, + "probability": 0.7957 + }, + { + "start": 6712.9, + "end": 6714.85, + "probability": 0.9178 + }, + { + "start": 6716.04, + "end": 6719.26, + "probability": 0.9125 + }, + { + "start": 6720.0, + "end": 6720.66, + "probability": 0.344 + }, + { + "start": 6720.78, + "end": 6721.35, + "probability": 0.8853 + }, + { + "start": 6722.4, + "end": 6725.75, + "probability": 0.9568 + }, + { + "start": 6727.0, + "end": 6729.58, + "probability": 0.863 + }, + { + "start": 6730.18, + "end": 6733.5, + "probability": 0.9843 + }, + { + "start": 6734.1, + "end": 6736.22, + "probability": 0.766 + }, + { + "start": 6736.38, + "end": 6737.16, + "probability": 0.8351 + }, + { + "start": 6737.18, + "end": 6739.32, + "probability": 0.9878 + }, + { + "start": 6739.32, + "end": 6739.34, + "probability": 0.2202 + }, + { + "start": 6739.34, + "end": 6739.46, + "probability": 0.0863 + }, + { + "start": 6739.46, + "end": 6740.16, + "probability": 0.7333 + }, + { + "start": 6740.24, + "end": 6742.92, + "probability": 0.9795 + }, + { + "start": 6743.1, + "end": 6743.58, + "probability": 0.5879 + }, + { + "start": 6743.58, + "end": 6743.93, + "probability": 0.9798 + }, + { + "start": 6744.88, + "end": 6745.66, + "probability": 0.7989 + }, + { + "start": 6749.76, + "end": 6750.89, + "probability": 0.6383 + }, + { + "start": 6751.12, + "end": 6754.94, + "probability": 0.9818 + }, + { + "start": 6756.04, + "end": 6758.96, + "probability": 0.8984 + }, + { + "start": 6759.22, + "end": 6764.76, + "probability": 0.8797 + }, + { + "start": 6764.76, + "end": 6767.35, + "probability": 0.9814 + }, + { + "start": 6768.02, + "end": 6770.14, + "probability": 0.7816 + }, + { + "start": 6770.88, + "end": 6774.92, + "probability": 0.9268 + }, + { + "start": 6775.0, + "end": 6775.84, + "probability": 0.7236 + }, + { + "start": 6776.9, + "end": 6778.96, + "probability": 0.846 + }, + { + "start": 6779.52, + "end": 6780.1, + "probability": 0.7824 + }, + { + "start": 6780.86, + "end": 6781.3, + "probability": 0.6611 + }, + { + "start": 6781.46, + "end": 6786.7, + "probability": 0.9612 + }, + { + "start": 6786.96, + "end": 6788.52, + "probability": 0.6742 + }, + { + "start": 6789.86, + "end": 6793.68, + "probability": 0.9827 + }, + { + "start": 6794.28, + "end": 6796.38, + "probability": 0.9374 + }, + { + "start": 6797.48, + "end": 6799.1, + "probability": 0.9912 + }, + { + "start": 6799.24, + "end": 6800.78, + "probability": 0.8293 + }, + { + "start": 6801.68, + "end": 6804.24, + "probability": 0.9301 + }, + { + "start": 6804.36, + "end": 6808.08, + "probability": 0.9746 + }, + { + "start": 6808.88, + "end": 6811.44, + "probability": 0.9976 + }, + { + "start": 6812.44, + "end": 6814.24, + "probability": 0.6971 + }, + { + "start": 6814.9, + "end": 6818.36, + "probability": 0.9752 + }, + { + "start": 6818.9, + "end": 6820.7, + "probability": 0.8422 + }, + { + "start": 6821.68, + "end": 6823.52, + "probability": 0.587 + }, + { + "start": 6824.58, + "end": 6827.86, + "probability": 0.8831 + }, + { + "start": 6828.15, + "end": 6831.06, + "probability": 0.7883 + }, + { + "start": 6831.74, + "end": 6834.22, + "probability": 0.9819 + }, + { + "start": 6834.28, + "end": 6834.38, + "probability": 0.1541 + }, + { + "start": 6835.18, + "end": 6837.6, + "probability": 0.8488 + }, + { + "start": 6837.7, + "end": 6844.86, + "probability": 0.9788 + }, + { + "start": 6845.4, + "end": 6848.22, + "probability": 0.874 + }, + { + "start": 6848.28, + "end": 6850.33, + "probability": 0.6388 + }, + { + "start": 6850.38, + "end": 6854.48, + "probability": 0.6246 + }, + { + "start": 6854.48, + "end": 6858.0, + "probability": 0.8911 + }, + { + "start": 6858.02, + "end": 6858.44, + "probability": 0.6729 + }, + { + "start": 6859.34, + "end": 6861.47, + "probability": 0.5107 + }, + { + "start": 6862.84, + "end": 6863.64, + "probability": 0.0397 + }, + { + "start": 6865.08, + "end": 6865.74, + "probability": 0.1982 + }, + { + "start": 6866.98, + "end": 6867.66, + "probability": 0.0722 + }, + { + "start": 6867.9, + "end": 6867.98, + "probability": 0.1353 + }, + { + "start": 6867.98, + "end": 6868.08, + "probability": 0.1761 + }, + { + "start": 6868.08, + "end": 6868.08, + "probability": 0.1125 + }, + { + "start": 6868.08, + "end": 6868.08, + "probability": 0.0212 + }, + { + "start": 6868.08, + "end": 6868.08, + "probability": 0.0827 + }, + { + "start": 6868.08, + "end": 6869.27, + "probability": 0.3371 + }, + { + "start": 6871.9, + "end": 6874.74, + "probability": 0.856 + }, + { + "start": 6875.32, + "end": 6877.18, + "probability": 0.6879 + }, + { + "start": 6878.68, + "end": 6879.76, + "probability": 0.9404 + }, + { + "start": 6879.88, + "end": 6880.64, + "probability": 0.804 + }, + { + "start": 6880.7, + "end": 6881.4, + "probability": 0.8442 + }, + { + "start": 6882.56, + "end": 6884.89, + "probability": 0.9878 + }, + { + "start": 6885.54, + "end": 6886.5, + "probability": 0.8228 + }, + { + "start": 6887.6, + "end": 6890.08, + "probability": 0.7175 + }, + { + "start": 6891.24, + "end": 6893.92, + "probability": 0.8139 + }, + { + "start": 6894.94, + "end": 6899.78, + "probability": 0.9932 + }, + { + "start": 6900.32, + "end": 6901.3, + "probability": 0.8857 + }, + { + "start": 6901.94, + "end": 6903.66, + "probability": 0.9574 + }, + { + "start": 6903.76, + "end": 6907.08, + "probability": 0.9207 + }, + { + "start": 6907.18, + "end": 6908.1, + "probability": 0.6831 + }, + { + "start": 6908.84, + "end": 6910.78, + "probability": 0.6209 + }, + { + "start": 6911.52, + "end": 6914.2, + "probability": 0.9495 + }, + { + "start": 6914.8, + "end": 6918.7, + "probability": 0.7423 + }, + { + "start": 6919.46, + "end": 6922.24, + "probability": 0.9763 + }, + { + "start": 6923.14, + "end": 6927.98, + "probability": 0.9896 + }, + { + "start": 6928.16, + "end": 6930.32, + "probability": 0.8409 + }, + { + "start": 6930.98, + "end": 6933.12, + "probability": 0.9891 + }, + { + "start": 6933.86, + "end": 6935.62, + "probability": 0.8958 + }, + { + "start": 6936.58, + "end": 6938.52, + "probability": 0.9161 + }, + { + "start": 6939.24, + "end": 6940.02, + "probability": 0.7177 + }, + { + "start": 6940.24, + "end": 6943.5, + "probability": 0.8789 + }, + { + "start": 6944.18, + "end": 6949.38, + "probability": 0.8982 + }, + { + "start": 6949.9, + "end": 6951.32, + "probability": 0.9556 + }, + { + "start": 6952.18, + "end": 6952.84, + "probability": 0.4762 + }, + { + "start": 6952.94, + "end": 6953.32, + "probability": 0.9104 + }, + { + "start": 6953.34, + "end": 6957.96, + "probability": 0.7163 + }, + { + "start": 6958.74, + "end": 6959.42, + "probability": 0.8428 + }, + { + "start": 6960.8, + "end": 6963.2, + "probability": 0.6436 + }, + { + "start": 6963.74, + "end": 6966.42, + "probability": 0.9272 + }, + { + "start": 6967.08, + "end": 6967.85, + "probability": 0.9005 + }, + { + "start": 6968.64, + "end": 6969.68, + "probability": 0.9576 + }, + { + "start": 6969.72, + "end": 6972.84, + "probability": 0.7867 + }, + { + "start": 6972.9, + "end": 6973.74, + "probability": 0.9044 + }, + { + "start": 6974.16, + "end": 6976.7, + "probability": 0.9442 + }, + { + "start": 6976.84, + "end": 6978.42, + "probability": 0.7279 + }, + { + "start": 6978.64, + "end": 6980.64, + "probability": 0.8936 + }, + { + "start": 6980.82, + "end": 6983.24, + "probability": 0.8704 + }, + { + "start": 6983.94, + "end": 6986.78, + "probability": 0.9831 + }, + { + "start": 6987.96, + "end": 6989.1, + "probability": 0.7641 + }, + { + "start": 6989.16, + "end": 6989.34, + "probability": 0.9415 + }, + { + "start": 6989.52, + "end": 6991.88, + "probability": 0.8682 + }, + { + "start": 6992.32, + "end": 6993.64, + "probability": 0.9738 + }, + { + "start": 6994.44, + "end": 6995.64, + "probability": 0.785 + }, + { + "start": 6996.06, + "end": 6998.42, + "probability": 0.9056 + }, + { + "start": 6999.14, + "end": 7000.36, + "probability": 0.9448 + }, + { + "start": 7001.32, + "end": 7003.12, + "probability": 0.9284 + }, + { + "start": 7003.32, + "end": 7003.97, + "probability": 0.9287 + }, + { + "start": 7004.72, + "end": 7008.04, + "probability": 0.9072 + }, + { + "start": 7008.44, + "end": 7010.28, + "probability": 0.8495 + }, + { + "start": 7010.94, + "end": 7014.1, + "probability": 0.9168 + }, + { + "start": 7014.64, + "end": 7017.0, + "probability": 0.953 + }, + { + "start": 7017.12, + "end": 7018.26, + "probability": 0.6006 + }, + { + "start": 7019.18, + "end": 7021.58, + "probability": 0.0041 + }, + { + "start": 7022.56, + "end": 7022.56, + "probability": 0.1663 + }, + { + "start": 7022.56, + "end": 7022.56, + "probability": 0.1534 + }, + { + "start": 7022.56, + "end": 7025.76, + "probability": 0.7 + }, + { + "start": 7025.92, + "end": 7026.82, + "probability": 0.7874 + }, + { + "start": 7027.22, + "end": 7028.48, + "probability": 0.939 + }, + { + "start": 7029.14, + "end": 7031.62, + "probability": 0.707 + }, + { + "start": 7032.08, + "end": 7033.82, + "probability": 0.7551 + }, + { + "start": 7034.84, + "end": 7040.26, + "probability": 0.802 + }, + { + "start": 7041.4, + "end": 7043.42, + "probability": 0.9716 + }, + { + "start": 7045.16, + "end": 7047.04, + "probability": 0.8648 + }, + { + "start": 7047.06, + "end": 7047.52, + "probability": 0.5579 + }, + { + "start": 7047.6, + "end": 7048.38, + "probability": 0.6642 + }, + { + "start": 7048.62, + "end": 7049.11, + "probability": 0.5508 + }, + { + "start": 7049.26, + "end": 7052.1, + "probability": 0.5832 + }, + { + "start": 7052.1, + "end": 7052.96, + "probability": 0.8467 + }, + { + "start": 7053.78, + "end": 7053.92, + "probability": 0.07 + }, + { + "start": 7053.94, + "end": 7054.0, + "probability": 0.0436 + }, + { + "start": 7054.0, + "end": 7054.0, + "probability": 0.0122 + }, + { + "start": 7054.0, + "end": 7054.0, + "probability": 0.158 + }, + { + "start": 7054.0, + "end": 7056.8, + "probability": 0.6946 + }, + { + "start": 7056.84, + "end": 7058.5, + "probability": 0.8648 + }, + { + "start": 7059.24, + "end": 7061.52, + "probability": 0.9875 + }, + { + "start": 7062.38, + "end": 7063.04, + "probability": 0.9087 + }, + { + "start": 7064.32, + "end": 7068.58, + "probability": 0.6855 + }, + { + "start": 7068.66, + "end": 7069.52, + "probability": 0.7655 + }, + { + "start": 7070.06, + "end": 7074.86, + "probability": 0.9841 + }, + { + "start": 7074.98, + "end": 7075.4, + "probability": 0.9578 + }, + { + "start": 7075.52, + "end": 7076.06, + "probability": 0.8509 + }, + { + "start": 7076.12, + "end": 7081.3, + "probability": 0.9199 + }, + { + "start": 7081.8, + "end": 7082.73, + "probability": 0.9644 + }, + { + "start": 7083.68, + "end": 7086.44, + "probability": 0.9362 + }, + { + "start": 7086.92, + "end": 7089.9, + "probability": 0.9792 + }, + { + "start": 7090.56, + "end": 7092.4, + "probability": 0.5834 + }, + { + "start": 7092.74, + "end": 7094.06, + "probability": 0.8924 + }, + { + "start": 7094.42, + "end": 7095.38, + "probability": 0.9188 + }, + { + "start": 7096.1, + "end": 7096.82, + "probability": 0.944 + }, + { + "start": 7096.88, + "end": 7100.88, + "probability": 0.993 + }, + { + "start": 7101.82, + "end": 7102.66, + "probability": 0.7764 + }, + { + "start": 7103.22, + "end": 7105.94, + "probability": 0.6644 + }, + { + "start": 7107.28, + "end": 7108.36, + "probability": 0.7633 + }, + { + "start": 7109.28, + "end": 7111.4, + "probability": 0.9028 + }, + { + "start": 7112.66, + "end": 7114.14, + "probability": 0.7524 + }, + { + "start": 7115.2, + "end": 7118.22, + "probability": 0.9897 + }, + { + "start": 7118.4, + "end": 7119.2, + "probability": 0.3136 + }, + { + "start": 7119.34, + "end": 7121.86, + "probability": 0.9966 + }, + { + "start": 7121.9, + "end": 7124.82, + "probability": 0.9001 + }, + { + "start": 7125.68, + "end": 7129.28, + "probability": 0.9787 + }, + { + "start": 7130.12, + "end": 7133.7, + "probability": 0.9988 + }, + { + "start": 7134.38, + "end": 7136.74, + "probability": 0.9902 + }, + { + "start": 7136.94, + "end": 7137.02, + "probability": 0.4537 + }, + { + "start": 7137.06, + "end": 7138.0, + "probability": 0.7234 + }, + { + "start": 7139.22, + "end": 7142.3, + "probability": 0.9719 + }, + { + "start": 7142.8, + "end": 7146.1, + "probability": 0.9008 + }, + { + "start": 7146.66, + "end": 7149.26, + "probability": 0.9834 + }, + { + "start": 7149.46, + "end": 7150.32, + "probability": 0.4998 + }, + { + "start": 7150.34, + "end": 7150.84, + "probability": 0.3375 + }, + { + "start": 7151.56, + "end": 7156.29, + "probability": 0.9803 + }, + { + "start": 7157.24, + "end": 7158.38, + "probability": 0.8738 + }, + { + "start": 7159.34, + "end": 7163.34, + "probability": 0.8516 + }, + { + "start": 7164.24, + "end": 7169.32, + "probability": 0.9732 + }, + { + "start": 7170.12, + "end": 7172.11, + "probability": 0.7457 + }, + { + "start": 7172.46, + "end": 7174.98, + "probability": 0.9623 + }, + { + "start": 7175.96, + "end": 7179.08, + "probability": 0.9466 + }, + { + "start": 7179.6, + "end": 7180.66, + "probability": 0.373 + }, + { + "start": 7180.82, + "end": 7183.36, + "probability": 0.9136 + }, + { + "start": 7183.92, + "end": 7185.16, + "probability": 0.6578 + }, + { + "start": 7185.48, + "end": 7188.32, + "probability": 0.9285 + }, + { + "start": 7189.06, + "end": 7191.74, + "probability": 0.9438 + }, + { + "start": 7192.36, + "end": 7193.44, + "probability": 0.8046 + }, + { + "start": 7193.5, + "end": 7195.46, + "probability": 0.9224 + }, + { + "start": 7196.4, + "end": 7196.76, + "probability": 0.7192 + }, + { + "start": 7196.86, + "end": 7198.4, + "probability": 0.7854 + }, + { + "start": 7199.34, + "end": 7200.54, + "probability": 0.7487 + }, + { + "start": 7200.96, + "end": 7203.54, + "probability": 0.9821 + }, + { + "start": 7203.58, + "end": 7206.6, + "probability": 0.683 + }, + { + "start": 7207.2, + "end": 7210.34, + "probability": 0.6541 + }, + { + "start": 7210.44, + "end": 7211.53, + "probability": 0.0415 + }, + { + "start": 7211.64, + "end": 7212.74, + "probability": 0.4477 + }, + { + "start": 7212.74, + "end": 7213.86, + "probability": 0.1806 + }, + { + "start": 7213.98, + "end": 7214.5, + "probability": 0.462 + }, + { + "start": 7215.42, + "end": 7216.28, + "probability": 0.791 + }, + { + "start": 7216.44, + "end": 7217.34, + "probability": 0.7739 + }, + { + "start": 7218.36, + "end": 7219.66, + "probability": 0.2938 + }, + { + "start": 7219.84, + "end": 7221.16, + "probability": 0.2277 + }, + { + "start": 7221.24, + "end": 7223.25, + "probability": 0.8159 + }, + { + "start": 7223.48, + "end": 7224.1, + "probability": 0.5948 + }, + { + "start": 7224.68, + "end": 7227.16, + "probability": 0.4385 + }, + { + "start": 7229.24, + "end": 7230.04, + "probability": 0.2001 + }, + { + "start": 7230.22, + "end": 7232.68, + "probability": 0.3259 + }, + { + "start": 7232.74, + "end": 7234.02, + "probability": 0.5153 + }, + { + "start": 7234.52, + "end": 7235.72, + "probability": 0.8033 + }, + { + "start": 7236.86, + "end": 7238.04, + "probability": 0.2412 + }, + { + "start": 7238.12, + "end": 7239.94, + "probability": 0.6847 + }, + { + "start": 7240.18, + "end": 7241.62, + "probability": 0.8541 + }, + { + "start": 7241.66, + "end": 7245.1, + "probability": 0.6475 + }, + { + "start": 7245.14, + "end": 7245.81, + "probability": 0.9623 + }, + { + "start": 7246.58, + "end": 7247.56, + "probability": 0.8881 + }, + { + "start": 7249.28, + "end": 7250.58, + "probability": 0.7763 + }, + { + "start": 7251.2, + "end": 7252.16, + "probability": 0.8818 + }, + { + "start": 7253.1, + "end": 7258.64, + "probability": 0.9962 + }, + { + "start": 7258.64, + "end": 7264.98, + "probability": 0.8592 + }, + { + "start": 7265.66, + "end": 7268.94, + "probability": 0.7357 + }, + { + "start": 7269.6, + "end": 7269.76, + "probability": 0.2178 + }, + { + "start": 7270.14, + "end": 7270.8, + "probability": 0.7599 + }, + { + "start": 7270.9, + "end": 7271.04, + "probability": 0.0927 + }, + { + "start": 7271.28, + "end": 7275.0, + "probability": 0.9658 + }, + { + "start": 7275.04, + "end": 7276.68, + "probability": 0.9299 + }, + { + "start": 7276.72, + "end": 7278.58, + "probability": 0.9619 + }, + { + "start": 7278.68, + "end": 7282.06, + "probability": 0.9953 + }, + { + "start": 7282.14, + "end": 7285.36, + "probability": 0.9451 + }, + { + "start": 7285.58, + "end": 7289.64, + "probability": 0.977 + }, + { + "start": 7289.64, + "end": 7291.24, + "probability": 0.2919 + }, + { + "start": 7291.38, + "end": 7291.66, + "probability": 0.7196 + }, + { + "start": 7294.16, + "end": 7298.9, + "probability": 0.966 + }, + { + "start": 7301.34, + "end": 7301.76, + "probability": 0.4819 + }, + { + "start": 7301.76, + "end": 7303.79, + "probability": 0.8324 + }, + { + "start": 7304.92, + "end": 7305.48, + "probability": 0.3974 + }, + { + "start": 7305.6, + "end": 7308.28, + "probability": 0.9822 + }, + { + "start": 7308.94, + "end": 7309.92, + "probability": 0.9404 + }, + { + "start": 7311.14, + "end": 7319.58, + "probability": 0.7705 + }, + { + "start": 7319.68, + "end": 7320.66, + "probability": 0.6939 + }, + { + "start": 7321.56, + "end": 7324.62, + "probability": 0.7983 + }, + { + "start": 7325.38, + "end": 7329.64, + "probability": 0.7621 + }, + { + "start": 7330.44, + "end": 7333.82, + "probability": 0.9916 + }, + { + "start": 7334.52, + "end": 7335.55, + "probability": 0.8413 + }, + { + "start": 7336.38, + "end": 7337.98, + "probability": 0.3543 + }, + { + "start": 7338.86, + "end": 7341.94, + "probability": 0.9499 + }, + { + "start": 7342.34, + "end": 7346.44, + "probability": 0.9187 + }, + { + "start": 7347.46, + "end": 7349.0, + "probability": 0.9897 + }, + { + "start": 7350.32, + "end": 7354.38, + "probability": 0.9966 + }, + { + "start": 7355.1, + "end": 7357.6, + "probability": 0.8811 + }, + { + "start": 7358.82, + "end": 7361.48, + "probability": 0.5541 + }, + { + "start": 7362.18, + "end": 7364.56, + "probability": 0.7126 + }, + { + "start": 7365.92, + "end": 7369.88, + "probability": 0.9844 + }, + { + "start": 7370.88, + "end": 7373.04, + "probability": 0.4064 + }, + { + "start": 7373.64, + "end": 7375.84, + "probability": 0.5761 + }, + { + "start": 7376.4, + "end": 7378.56, + "probability": 0.6053 + }, + { + "start": 7379.24, + "end": 7380.48, + "probability": 0.8252 + }, + { + "start": 7381.26, + "end": 7383.74, + "probability": 0.8351 + }, + { + "start": 7384.52, + "end": 7386.46, + "probability": 0.979 + }, + { + "start": 7387.3, + "end": 7388.18, + "probability": 0.2604 + }, + { + "start": 7388.88, + "end": 7390.76, + "probability": 0.8395 + }, + { + "start": 7391.64, + "end": 7391.9, + "probability": 0.0068 + }, + { + "start": 7394.08, + "end": 7398.92, + "probability": 0.9932 + }, + { + "start": 7399.38, + "end": 7400.38, + "probability": 0.8616 + }, + { + "start": 7401.14, + "end": 7404.88, + "probability": 0.6531 + }, + { + "start": 7405.62, + "end": 7408.9, + "probability": 0.6647 + }, + { + "start": 7410.38, + "end": 7413.84, + "probability": 0.9738 + }, + { + "start": 7414.58, + "end": 7416.32, + "probability": 0.9945 + }, + { + "start": 7418.0, + "end": 7422.84, + "probability": 0.9692 + }, + { + "start": 7422.9, + "end": 7425.46, + "probability": 0.7347 + }, + { + "start": 7426.26, + "end": 7428.58, + "probability": 0.9495 + }, + { + "start": 7429.3, + "end": 7429.68, + "probability": 0.9458 + }, + { + "start": 7429.82, + "end": 7434.38, + "probability": 0.9264 + }, + { + "start": 7435.28, + "end": 7437.28, + "probability": 0.9069 + }, + { + "start": 7437.86, + "end": 7439.82, + "probability": 0.4993 + }, + { + "start": 7439.84, + "end": 7442.06, + "probability": 0.259 + }, + { + "start": 7442.26, + "end": 7443.78, + "probability": 0.1655 + }, + { + "start": 7443.86, + "end": 7446.33, + "probability": 0.9036 + }, + { + "start": 7448.22, + "end": 7450.9, + "probability": 0.7405 + }, + { + "start": 7451.1, + "end": 7453.54, + "probability": 0.9456 + }, + { + "start": 7454.24, + "end": 7456.64, + "probability": 0.7771 + }, + { + "start": 7457.28, + "end": 7458.0, + "probability": 0.4975 + }, + { + "start": 7458.06, + "end": 7460.14, + "probability": 0.739 + }, + { + "start": 7460.24, + "end": 7461.38, + "probability": 0.7168 + }, + { + "start": 7461.88, + "end": 7463.56, + "probability": 0.6115 + }, + { + "start": 7463.64, + "end": 7464.66, + "probability": 0.7783 + }, + { + "start": 7465.32, + "end": 7468.02, + "probability": 0.9878 + }, + { + "start": 7471.39, + "end": 7474.5, + "probability": 0.5304 + }, + { + "start": 7475.34, + "end": 7477.76, + "probability": 0.7923 + }, + { + "start": 7478.82, + "end": 7480.72, + "probability": 0.9826 + }, + { + "start": 7481.56, + "end": 7484.52, + "probability": 0.962 + }, + { + "start": 7485.12, + "end": 7487.5, + "probability": 0.8003 + }, + { + "start": 7488.2, + "end": 7488.6, + "probability": 0.8926 + }, + { + "start": 7488.62, + "end": 7490.36, + "probability": 0.503 + }, + { + "start": 7490.84, + "end": 7491.26, + "probability": 0.8 + }, + { + "start": 7491.3, + "end": 7493.72, + "probability": 0.8258 + }, + { + "start": 7494.12, + "end": 7496.64, + "probability": 0.7924 + }, + { + "start": 7497.28, + "end": 7499.3, + "probability": 0.8799 + }, + { + "start": 7499.78, + "end": 7502.02, + "probability": 0.9109 + }, + { + "start": 7502.84, + "end": 7505.4, + "probability": 0.8501 + }, + { + "start": 7505.64, + "end": 7509.1, + "probability": 0.9787 + }, + { + "start": 7509.9, + "end": 7512.52, + "probability": 0.945 + }, + { + "start": 7513.6, + "end": 7514.87, + "probability": 0.9721 + }, + { + "start": 7515.7, + "end": 7517.82, + "probability": 0.9855 + }, + { + "start": 7517.84, + "end": 7518.63, + "probability": 0.6769 + }, + { + "start": 7518.66, + "end": 7519.46, + "probability": 0.4483 + }, + { + "start": 7519.68, + "end": 7522.18, + "probability": 0.1669 + }, + { + "start": 7522.18, + "end": 7525.14, + "probability": 0.6583 + }, + { + "start": 7525.28, + "end": 7526.5, + "probability": 0.7787 + }, + { + "start": 7526.7, + "end": 7527.61, + "probability": 0.6591 + }, + { + "start": 7528.54, + "end": 7534.88, + "probability": 0.7485 + }, + { + "start": 7535.36, + "end": 7540.52, + "probability": 0.9939 + }, + { + "start": 7541.1, + "end": 7543.94, + "probability": 0.8489 + }, + { + "start": 7544.58, + "end": 7546.58, + "probability": 0.8295 + }, + { + "start": 7547.12, + "end": 7549.32, + "probability": 0.9182 + }, + { + "start": 7549.88, + "end": 7550.88, + "probability": 0.9386 + }, + { + "start": 7551.02, + "end": 7551.78, + "probability": 0.9424 + }, + { + "start": 7554.04, + "end": 7557.1, + "probability": 0.0596 + }, + { + "start": 7557.82, + "end": 7560.7, + "probability": 0.7044 + }, + { + "start": 7561.32, + "end": 7562.56, + "probability": 0.8708 + }, + { + "start": 7563.12, + "end": 7564.42, + "probability": 0.8967 + }, + { + "start": 7564.46, + "end": 7565.82, + "probability": 0.9245 + }, + { + "start": 7566.04, + "end": 7566.44, + "probability": 0.4881 + }, + { + "start": 7566.62, + "end": 7568.0, + "probability": 0.9258 + }, + { + "start": 7569.26, + "end": 7571.94, + "probability": 0.5962 + }, + { + "start": 7572.02, + "end": 7573.12, + "probability": 0.8682 + }, + { + "start": 7573.96, + "end": 7575.76, + "probability": 0.848 + }, + { + "start": 7576.12, + "end": 7578.74, + "probability": 0.9414 + }, + { + "start": 7578.74, + "end": 7580.52, + "probability": 0.9225 + }, + { + "start": 7581.68, + "end": 7585.66, + "probability": 0.9885 + }, + { + "start": 7586.52, + "end": 7587.83, + "probability": 0.9083 + }, + { + "start": 7588.7, + "end": 7594.5, + "probability": 0.6883 + }, + { + "start": 7594.52, + "end": 7596.4, + "probability": 0.9175 + }, + { + "start": 7596.8, + "end": 7598.82, + "probability": 0.9617 + }, + { + "start": 7599.76, + "end": 7600.44, + "probability": 0.8906 + }, + { + "start": 7600.54, + "end": 7604.92, + "probability": 0.9731 + }, + { + "start": 7605.14, + "end": 7606.03, + "probability": 0.9858 + }, + { + "start": 7606.92, + "end": 7608.28, + "probability": 0.7367 + }, + { + "start": 7609.1, + "end": 7611.04, + "probability": 0.9729 + }, + { + "start": 7612.22, + "end": 7614.36, + "probability": 0.7985 + }, + { + "start": 7614.96, + "end": 7616.0, + "probability": 0.9282 + }, + { + "start": 7616.8, + "end": 7618.98, + "probability": 0.9956 + }, + { + "start": 7619.46, + "end": 7620.6, + "probability": 0.9089 + }, + { + "start": 7621.18, + "end": 7625.12, + "probability": 0.9456 + }, + { + "start": 7627.6, + "end": 7629.0, + "probability": 0.7633 + }, + { + "start": 7629.16, + "end": 7630.72, + "probability": 0.9243 + }, + { + "start": 7632.01, + "end": 7635.76, + "probability": 0.925 + }, + { + "start": 7636.4, + "end": 7639.4, + "probability": 0.7968 + }, + { + "start": 7640.1, + "end": 7644.26, + "probability": 0.8714 + }, + { + "start": 7645.36, + "end": 7645.62, + "probability": 0.71 + }, + { + "start": 7646.86, + "end": 7648.12, + "probability": 0.5738 + }, + { + "start": 7649.84, + "end": 7650.8, + "probability": 0.623 + }, + { + "start": 7657.32, + "end": 7659.26, + "probability": 0.5785 + }, + { + "start": 7659.3, + "end": 7659.86, + "probability": 0.7548 + }, + { + "start": 7659.9, + "end": 7663.16, + "probability": 0.9381 + }, + { + "start": 7663.7, + "end": 7664.06, + "probability": 0.6666 + }, + { + "start": 7664.1, + "end": 7664.34, + "probability": 0.8898 + }, + { + "start": 7664.42, + "end": 7669.22, + "probability": 0.9838 + }, + { + "start": 7669.22, + "end": 7672.88, + "probability": 0.7619 + }, + { + "start": 7673.28, + "end": 7675.64, + "probability": 0.856 + }, + { + "start": 7676.18, + "end": 7678.16, + "probability": 0.9929 + }, + { + "start": 7678.6, + "end": 7681.94, + "probability": 0.974 + }, + { + "start": 7682.42, + "end": 7683.78, + "probability": 0.9913 + }, + { + "start": 7684.4, + "end": 7687.62, + "probability": 0.9255 + }, + { + "start": 7688.32, + "end": 7690.04, + "probability": 0.7872 + }, + { + "start": 7690.1, + "end": 7691.62, + "probability": 0.958 + }, + { + "start": 7691.9, + "end": 7692.92, + "probability": 0.9647 + }, + { + "start": 7693.26, + "end": 7695.4, + "probability": 0.9801 + }, + { + "start": 7695.9, + "end": 7699.6, + "probability": 0.9897 + }, + { + "start": 7699.6, + "end": 7703.08, + "probability": 0.9906 + }, + { + "start": 7703.44, + "end": 7703.86, + "probability": 0.7625 + }, + { + "start": 7703.94, + "end": 7707.78, + "probability": 0.9746 + }, + { + "start": 7707.84, + "end": 7710.42, + "probability": 0.9031 + }, + { + "start": 7710.46, + "end": 7711.7, + "probability": 0.9143 + }, + { + "start": 7712.9, + "end": 7714.52, + "probability": 0.229 + }, + { + "start": 7715.74, + "end": 7716.3, + "probability": 0.4433 + }, + { + "start": 7716.36, + "end": 7720.28, + "probability": 0.2543 + }, + { + "start": 7721.78, + "end": 7726.96, + "probability": 0.0251 + }, + { + "start": 7727.0, + "end": 7728.76, + "probability": 0.28 + }, + { + "start": 7728.76, + "end": 7728.86, + "probability": 0.1048 + }, + { + "start": 7728.86, + "end": 7732.06, + "probability": 0.4833 + }, + { + "start": 7732.86, + "end": 7733.8, + "probability": 0.4622 + }, + { + "start": 7747.08, + "end": 7749.96, + "probability": 0.203 + }, + { + "start": 7772.76, + "end": 7773.76, + "probability": 0.121 + }, + { + "start": 7775.02, + "end": 7782.04, + "probability": 0.2674 + }, + { + "start": 7804.78, + "end": 7806.4, + "probability": 0.1886 + }, + { + "start": 7807.3, + "end": 7809.72, + "probability": 0.7426 + }, + { + "start": 7810.26, + "end": 7813.56, + "probability": 0.5046 + }, + { + "start": 7813.56, + "end": 7817.66, + "probability": 0.995 + }, + { + "start": 7817.66, + "end": 7823.7, + "probability": 0.9814 + }, + { + "start": 7824.52, + "end": 7828.58, + "probability": 0.9818 + }, + { + "start": 7829.38, + "end": 7831.3, + "probability": 0.8792 + }, + { + "start": 7832.04, + "end": 7835.3, + "probability": 0.9955 + }, + { + "start": 7836.0, + "end": 7837.0, + "probability": 0.968 + }, + { + "start": 7837.62, + "end": 7838.96, + "probability": 0.9827 + }, + { + "start": 7839.6, + "end": 7842.54, + "probability": 0.9819 + }, + { + "start": 7843.16, + "end": 7846.88, + "probability": 0.9943 + }, + { + "start": 7847.36, + "end": 7849.6, + "probability": 0.7107 + }, + { + "start": 7849.72, + "end": 7849.98, + "probability": 0.8824 + }, + { + "start": 7850.06, + "end": 7851.1, + "probability": 0.81 + }, + { + "start": 7852.5, + "end": 7854.22, + "probability": 0.9521 + }, + { + "start": 7854.4, + "end": 7854.94, + "probability": 0.3589 + }, + { + "start": 7856.4, + "end": 7859.76, + "probability": 0.8608 + }, + { + "start": 7860.94, + "end": 7863.64, + "probability": 0.8987 + }, + { + "start": 7864.68, + "end": 7867.08, + "probability": 0.7936 + }, + { + "start": 7867.2, + "end": 7869.38, + "probability": 0.9937 + }, + { + "start": 7870.34, + "end": 7873.7, + "probability": 0.8895 + }, + { + "start": 7874.84, + "end": 7876.5, + "probability": 0.8407 + }, + { + "start": 7876.9, + "end": 7877.9, + "probability": 0.9509 + }, + { + "start": 7878.96, + "end": 7880.02, + "probability": 0.8274 + }, + { + "start": 7881.14, + "end": 7881.78, + "probability": 0.794 + }, + { + "start": 7883.02, + "end": 7885.16, + "probability": 0.9844 + }, + { + "start": 7886.42, + "end": 7888.54, + "probability": 0.6047 + }, + { + "start": 7888.68, + "end": 7889.66, + "probability": 0.5156 + }, + { + "start": 7893.62, + "end": 7897.46, + "probability": 0.9262 + }, + { + "start": 7898.62, + "end": 7899.24, + "probability": 0.7109 + }, + { + "start": 7900.22, + "end": 7904.08, + "probability": 0.9844 + }, + { + "start": 7904.7, + "end": 7905.14, + "probability": 0.7767 + }, + { + "start": 7906.12, + "end": 7906.46, + "probability": 0.2853 + }, + { + "start": 7906.62, + "end": 7907.58, + "probability": 0.9482 + }, + { + "start": 7907.9, + "end": 7908.64, + "probability": 0.6692 + }, + { + "start": 7908.8, + "end": 7909.86, + "probability": 0.9147 + }, + { + "start": 7910.5, + "end": 7913.84, + "probability": 0.8786 + }, + { + "start": 7913.94, + "end": 7915.92, + "probability": 0.9406 + }, + { + "start": 7916.58, + "end": 7918.16, + "probability": 0.8899 + }, + { + "start": 7919.22, + "end": 7923.42, + "probability": 0.8977 + }, + { + "start": 7924.08, + "end": 7928.16, + "probability": 0.8583 + }, + { + "start": 7928.96, + "end": 7930.84, + "probability": 0.8462 + }, + { + "start": 7931.44, + "end": 7933.93, + "probability": 0.5048 + }, + { + "start": 7935.15, + "end": 7938.3, + "probability": 0.9294 + }, + { + "start": 7939.12, + "end": 7940.34, + "probability": 0.9949 + }, + { + "start": 7940.34, + "end": 7940.84, + "probability": 0.5701 + }, + { + "start": 7941.34, + "end": 7941.6, + "probability": 0.832 + }, + { + "start": 7942.68, + "end": 7946.04, + "probability": 0.9513 + }, + { + "start": 7947.02, + "end": 7949.0, + "probability": 0.7271 + }, + { + "start": 7950.04, + "end": 7951.93, + "probability": 0.9646 + }, + { + "start": 7952.76, + "end": 7954.72, + "probability": 0.9957 + }, + { + "start": 7955.36, + "end": 7957.52, + "probability": 0.9933 + }, + { + "start": 7958.42, + "end": 7961.0, + "probability": 0.7313 + }, + { + "start": 7961.74, + "end": 7962.73, + "probability": 0.9954 + }, + { + "start": 7964.58, + "end": 7966.7, + "probability": 0.9873 + }, + { + "start": 7967.26, + "end": 7968.98, + "probability": 0.7818 + }, + { + "start": 7969.72, + "end": 7973.88, + "probability": 0.8794 + }, + { + "start": 7974.26, + "end": 7975.98, + "probability": 0.9655 + }, + { + "start": 7976.86, + "end": 7977.54, + "probability": 0.4778 + }, + { + "start": 7978.2, + "end": 7979.28, + "probability": 0.9937 + }, + { + "start": 7980.0, + "end": 7982.12, + "probability": 0.7973 + }, + { + "start": 7982.64, + "end": 7983.66, + "probability": 0.9698 + }, + { + "start": 7983.74, + "end": 7988.58, + "probability": 0.6537 + }, + { + "start": 7989.44, + "end": 7993.32, + "probability": 0.9606 + }, + { + "start": 7993.4, + "end": 7994.08, + "probability": 0.5892 + }, + { + "start": 7994.68, + "end": 7995.28, + "probability": 0.9792 + }, + { + "start": 7995.84, + "end": 7998.24, + "probability": 0.9099 + }, + { + "start": 7998.94, + "end": 8000.12, + "probability": 0.8666 + }, + { + "start": 8000.76, + "end": 8000.92, + "probability": 0.7022 + }, + { + "start": 8001.0, + "end": 8001.92, + "probability": 0.8992 + }, + { + "start": 8001.98, + "end": 8003.73, + "probability": 0.8029 + }, + { + "start": 8007.52, + "end": 8007.66, + "probability": 0.178 + }, + { + "start": 8007.66, + "end": 8011.04, + "probability": 0.8431 + }, + { + "start": 8011.8, + "end": 8016.34, + "probability": 0.8806 + }, + { + "start": 8017.78, + "end": 8020.28, + "probability": 0.9554 + }, + { + "start": 8021.26, + "end": 8025.26, + "probability": 0.9789 + }, + { + "start": 8025.38, + "end": 8027.44, + "probability": 0.9467 + }, + { + "start": 8027.64, + "end": 8031.18, + "probability": 0.7824 + }, + { + "start": 8031.8, + "end": 8033.64, + "probability": 0.9186 + }, + { + "start": 8034.28, + "end": 8037.69, + "probability": 0.9924 + }, + { + "start": 8038.74, + "end": 8040.9, + "probability": 0.5644 + }, + { + "start": 8040.98, + "end": 8042.96, + "probability": 0.8531 + }, + { + "start": 8044.26, + "end": 8045.76, + "probability": 0.9244 + }, + { + "start": 8045.84, + "end": 8046.56, + "probability": 0.9 + }, + { + "start": 8047.0, + "end": 8049.3, + "probability": 0.9317 + }, + { + "start": 8050.14, + "end": 8052.06, + "probability": 0.9023 + }, + { + "start": 8053.16, + "end": 8054.26, + "probability": 0.8546 + }, + { + "start": 8055.32, + "end": 8057.6, + "probability": 0.9734 + }, + { + "start": 8058.5, + "end": 8060.28, + "probability": 0.8733 + }, + { + "start": 8060.4, + "end": 8060.56, + "probability": 0.8085 + }, + { + "start": 8060.64, + "end": 8062.12, + "probability": 0.6946 + }, + { + "start": 8062.6, + "end": 8063.7, + "probability": 0.8042 + }, + { + "start": 8064.86, + "end": 8068.88, + "probability": 0.9774 + }, + { + "start": 8069.88, + "end": 8071.8, + "probability": 0.824 + }, + { + "start": 8072.86, + "end": 8074.04, + "probability": 0.6994 + }, + { + "start": 8074.76, + "end": 8077.14, + "probability": 0.8848 + }, + { + "start": 8077.7, + "end": 8082.26, + "probability": 0.8606 + }, + { + "start": 8083.78, + "end": 8084.69, + "probability": 0.5552 + }, + { + "start": 8085.44, + "end": 8088.08, + "probability": 0.8831 + }, + { + "start": 8088.64, + "end": 8089.72, + "probability": 0.96 + }, + { + "start": 8090.68, + "end": 8093.0, + "probability": 0.6154 + }, + { + "start": 8093.38, + "end": 8094.14, + "probability": 0.8892 + }, + { + "start": 8094.14, + "end": 8095.7, + "probability": 0.8885 + }, + { + "start": 8096.5, + "end": 8098.7, + "probability": 0.9882 + }, + { + "start": 8099.82, + "end": 8101.7, + "probability": 0.7463 + }, + { + "start": 8101.76, + "end": 8103.24, + "probability": 0.7885 + }, + { + "start": 8104.18, + "end": 8107.26, + "probability": 0.863 + }, + { + "start": 8107.32, + "end": 8108.04, + "probability": 0.7793 + }, + { + "start": 8108.2, + "end": 8109.16, + "probability": 0.7438 + }, + { + "start": 8110.06, + "end": 8112.14, + "probability": 0.984 + }, + { + "start": 8113.96, + "end": 8115.36, + "probability": 0.7006 + }, + { + "start": 8116.46, + "end": 8122.26, + "probability": 0.7837 + }, + { + "start": 8124.21, + "end": 8126.0, + "probability": 0.8195 + }, + { + "start": 8126.84, + "end": 8128.18, + "probability": 0.4964 + }, + { + "start": 8129.14, + "end": 8130.18, + "probability": 0.9593 + }, + { + "start": 8131.28, + "end": 8132.1, + "probability": 0.9476 + }, + { + "start": 8132.2, + "end": 8133.32, + "probability": 0.7047 + }, + { + "start": 8133.52, + "end": 8136.74, + "probability": 0.8552 + }, + { + "start": 8138.12, + "end": 8139.32, + "probability": 0.9847 + }, + { + "start": 8139.92, + "end": 8144.06, + "probability": 0.9771 + }, + { + "start": 8144.06, + "end": 8147.74, + "probability": 0.7971 + }, + { + "start": 8148.42, + "end": 8149.74, + "probability": 0.922 + }, + { + "start": 8150.4, + "end": 8151.52, + "probability": 0.9429 + }, + { + "start": 8152.32, + "end": 8154.64, + "probability": 0.9101 + }, + { + "start": 8155.66, + "end": 8158.66, + "probability": 0.9978 + }, + { + "start": 8158.76, + "end": 8159.78, + "probability": 0.9869 + }, + { + "start": 8160.22, + "end": 8165.18, + "probability": 0.9254 + }, + { + "start": 8165.8, + "end": 8168.08, + "probability": 0.9252 + }, + { + "start": 8168.6, + "end": 8170.42, + "probability": 0.7865 + }, + { + "start": 8171.04, + "end": 8174.54, + "probability": 0.4851 + }, + { + "start": 8175.26, + "end": 8176.32, + "probability": 0.9111 + }, + { + "start": 8176.42, + "end": 8179.86, + "probability": 0.9912 + }, + { + "start": 8179.86, + "end": 8182.72, + "probability": 0.9989 + }, + { + "start": 8182.8, + "end": 8183.42, + "probability": 0.9704 + }, + { + "start": 8183.52, + "end": 8183.98, + "probability": 0.4421 + }, + { + "start": 8184.94, + "end": 8187.38, + "probability": 0.6993 + }, + { + "start": 8187.86, + "end": 8189.88, + "probability": 0.9883 + }, + { + "start": 8191.18, + "end": 8193.14, + "probability": 0.7961 + }, + { + "start": 8193.7, + "end": 8196.53, + "probability": 0.8345 + }, + { + "start": 8197.32, + "end": 8198.16, + "probability": 0.9584 + }, + { + "start": 8198.24, + "end": 8201.13, + "probability": 0.9593 + }, + { + "start": 8201.72, + "end": 8203.48, + "probability": 0.9614 + }, + { + "start": 8203.94, + "end": 8206.9, + "probability": 0.8652 + }, + { + "start": 8207.74, + "end": 8211.48, + "probability": 0.9873 + }, + { + "start": 8211.64, + "end": 8215.34, + "probability": 0.9058 + }, + { + "start": 8217.04, + "end": 8217.74, + "probability": 0.5668 + }, + { + "start": 8218.2, + "end": 8219.94, + "probability": 0.5352 + }, + { + "start": 8224.06, + "end": 8226.12, + "probability": 0.6274 + }, + { + "start": 8226.24, + "end": 8226.54, + "probability": 0.7201 + }, + { + "start": 8226.56, + "end": 8227.0, + "probability": 0.8122 + }, + { + "start": 8227.06, + "end": 8229.82, + "probability": 0.9261 + }, + { + "start": 8229.9, + "end": 8233.62, + "probability": 0.9906 + }, + { + "start": 8233.73, + "end": 8236.3, + "probability": 0.9433 + }, + { + "start": 8237.54, + "end": 8237.96, + "probability": 0.3308 + }, + { + "start": 8238.56, + "end": 8238.78, + "probability": 0.3515 + }, + { + "start": 8238.86, + "end": 8241.74, + "probability": 0.9905 + }, + { + "start": 8241.8, + "end": 8243.54, + "probability": 0.9545 + }, + { + "start": 8244.22, + "end": 8247.12, + "probability": 0.9819 + }, + { + "start": 8248.04, + "end": 8248.54, + "probability": 0.9448 + }, + { + "start": 8248.68, + "end": 8249.32, + "probability": 0.9041 + }, + { + "start": 8249.46, + "end": 8252.16, + "probability": 0.9923 + }, + { + "start": 8253.1, + "end": 8255.0, + "probability": 0.9825 + }, + { + "start": 8255.16, + "end": 8259.66, + "probability": 0.9935 + }, + { + "start": 8260.24, + "end": 8265.16, + "probability": 0.9851 + }, + { + "start": 8265.74, + "end": 8267.44, + "probability": 0.9811 + }, + { + "start": 8267.64, + "end": 8269.84, + "probability": 0.6091 + }, + { + "start": 8270.78, + "end": 8273.82, + "probability": 0.9342 + }, + { + "start": 8273.9, + "end": 8278.06, + "probability": 0.8918 + }, + { + "start": 8278.82, + "end": 8281.34, + "probability": 0.7839 + }, + { + "start": 8281.46, + "end": 8282.7, + "probability": 0.7086 + }, + { + "start": 8282.86, + "end": 8287.18, + "probability": 0.9719 + }, + { + "start": 8288.12, + "end": 8290.0, + "probability": 0.8676 + }, + { + "start": 8290.16, + "end": 8293.2, + "probability": 0.9823 + }, + { + "start": 8293.3, + "end": 8296.0, + "probability": 0.9937 + }, + { + "start": 8296.6, + "end": 8298.06, + "probability": 0.846 + }, + { + "start": 8298.64, + "end": 8299.64, + "probability": 0.7074 + }, + { + "start": 8299.92, + "end": 8304.64, + "probability": 0.9736 + }, + { + "start": 8305.4, + "end": 8308.28, + "probability": 0.9926 + }, + { + "start": 8308.28, + "end": 8311.72, + "probability": 0.9937 + }, + { + "start": 8312.42, + "end": 8312.78, + "probability": 0.8918 + }, + { + "start": 8313.1, + "end": 8313.68, + "probability": 0.6678 + }, + { + "start": 8313.72, + "end": 8315.52, + "probability": 0.823 + }, + { + "start": 8315.52, + "end": 8316.32, + "probability": 0.7484 + }, + { + "start": 8316.98, + "end": 8321.3, + "probability": 0.9257 + }, + { + "start": 8321.92, + "end": 8323.52, + "probability": 0.9719 + }, + { + "start": 8323.72, + "end": 8326.36, + "probability": 0.9978 + }, + { + "start": 8326.36, + "end": 8328.92, + "probability": 0.926 + }, + { + "start": 8329.36, + "end": 8329.56, + "probability": 0.725 + }, + { + "start": 8330.58, + "end": 8333.78, + "probability": 0.873 + }, + { + "start": 8334.38, + "end": 8335.82, + "probability": 0.8363 + }, + { + "start": 8336.66, + "end": 8338.9, + "probability": 0.9895 + }, + { + "start": 8339.5, + "end": 8341.5, + "probability": 0.8474 + }, + { + "start": 8342.6, + "end": 8343.64, + "probability": 0.9044 + }, + { + "start": 8343.72, + "end": 8345.56, + "probability": 0.9038 + }, + { + "start": 8345.64, + "end": 8346.58, + "probability": 0.8057 + }, + { + "start": 8347.26, + "end": 8348.7, + "probability": 0.4203 + }, + { + "start": 8349.42, + "end": 8350.23, + "probability": 0.9031 + }, + { + "start": 8350.66, + "end": 8352.52, + "probability": 0.9814 + }, + { + "start": 8352.6, + "end": 8357.16, + "probability": 0.9731 + }, + { + "start": 8357.4, + "end": 8358.72, + "probability": 0.9064 + }, + { + "start": 8359.6, + "end": 8362.34, + "probability": 0.8269 + }, + { + "start": 8363.48, + "end": 8368.06, + "probability": 0.9474 + }, + { + "start": 8368.9, + "end": 8370.7, + "probability": 0.409 + }, + { + "start": 8371.4, + "end": 8373.16, + "probability": 0.7673 + }, + { + "start": 8374.05, + "end": 8378.62, + "probability": 0.8205 + }, + { + "start": 8378.82, + "end": 8380.35, + "probability": 0.9614 + }, + { + "start": 8381.62, + "end": 8383.36, + "probability": 0.9469 + }, + { + "start": 8384.0, + "end": 8387.46, + "probability": 0.7237 + }, + { + "start": 8388.24, + "end": 8396.0, + "probability": 0.9941 + }, + { + "start": 8396.3, + "end": 8396.65, + "probability": 0.5994 + }, + { + "start": 8397.94, + "end": 8400.96, + "probability": 0.9659 + }, + { + "start": 8401.94, + "end": 8405.34, + "probability": 0.9992 + }, + { + "start": 8406.26, + "end": 8410.6, + "probability": 0.9567 + }, + { + "start": 8411.6, + "end": 8412.18, + "probability": 0.7393 + }, + { + "start": 8412.38, + "end": 8415.2, + "probability": 0.7706 + }, + { + "start": 8415.36, + "end": 8416.84, + "probability": 0.8361 + }, + { + "start": 8417.3, + "end": 8417.52, + "probability": 0.3588 + }, + { + "start": 8417.66, + "end": 8418.28, + "probability": 0.8236 + }, + { + "start": 8418.88, + "end": 8420.14, + "probability": 0.71 + }, + { + "start": 8420.68, + "end": 8423.52, + "probability": 0.805 + }, + { + "start": 8424.12, + "end": 8425.3, + "probability": 0.8571 + }, + { + "start": 8428.04, + "end": 8429.4, + "probability": 0.705 + }, + { + "start": 8430.3, + "end": 8432.08, + "probability": 0.8834 + }, + { + "start": 8432.14, + "end": 8434.54, + "probability": 0.7002 + }, + { + "start": 8435.64, + "end": 8437.36, + "probability": 0.6617 + }, + { + "start": 8437.6, + "end": 8442.12, + "probability": 0.9187 + }, + { + "start": 8442.24, + "end": 8445.4, + "probability": 0.924 + }, + { + "start": 8445.46, + "end": 8447.58, + "probability": 0.9209 + }, + { + "start": 8448.82, + "end": 8453.62, + "probability": 0.7744 + }, + { + "start": 8454.62, + "end": 8456.46, + "probability": 0.5643 + }, + { + "start": 8456.46, + "end": 8458.3, + "probability": 0.7811 + }, + { + "start": 8459.19, + "end": 8461.94, + "probability": 0.9878 + }, + { + "start": 8462.58, + "end": 8468.54, + "probability": 0.8345 + }, + { + "start": 8469.96, + "end": 8474.98, + "probability": 0.8037 + }, + { + "start": 8476.28, + "end": 8479.1, + "probability": 0.8481 + }, + { + "start": 8480.2, + "end": 8484.06, + "probability": 0.8201 + }, + { + "start": 8485.2, + "end": 8491.68, + "probability": 0.9871 + }, + { + "start": 8492.84, + "end": 8494.46, + "probability": 0.2073 + }, + { + "start": 8495.62, + "end": 8499.92, + "probability": 0.9046 + }, + { + "start": 8500.58, + "end": 8501.78, + "probability": 0.9517 + }, + { + "start": 8502.92, + "end": 8506.36, + "probability": 0.5985 + }, + { + "start": 8507.3, + "end": 8508.26, + "probability": 0.9553 + }, + { + "start": 8509.16, + "end": 8510.68, + "probability": 0.8205 + }, + { + "start": 8511.22, + "end": 8514.58, + "probability": 0.826 + }, + { + "start": 8515.28, + "end": 8516.02, + "probability": 0.7885 + }, + { + "start": 8516.6, + "end": 8518.18, + "probability": 0.7012 + }, + { + "start": 8519.56, + "end": 8521.38, + "probability": 0.9873 + }, + { + "start": 8522.64, + "end": 8524.39, + "probability": 0.8198 + }, + { + "start": 8525.16, + "end": 8529.62, + "probability": 0.9286 + }, + { + "start": 8530.12, + "end": 8531.88, + "probability": 0.9421 + }, + { + "start": 8532.0, + "end": 8533.58, + "probability": 0.8992 + }, + { + "start": 8534.38, + "end": 8535.4, + "probability": 0.7313 + }, + { + "start": 8535.88, + "end": 8536.78, + "probability": 0.9614 + }, + { + "start": 8536.96, + "end": 8539.5, + "probability": 0.6966 + }, + { + "start": 8540.26, + "end": 8543.66, + "probability": 0.8318 + }, + { + "start": 8544.5, + "end": 8546.8, + "probability": 0.9594 + }, + { + "start": 8547.86, + "end": 8549.69, + "probability": 0.9888 + }, + { + "start": 8550.56, + "end": 8552.08, + "probability": 0.9925 + }, + { + "start": 8553.26, + "end": 8555.9, + "probability": 0.9875 + }, + { + "start": 8557.0, + "end": 8559.58, + "probability": 0.9724 + }, + { + "start": 8560.3, + "end": 8561.36, + "probability": 0.7185 + }, + { + "start": 8561.6, + "end": 8565.88, + "probability": 0.9585 + }, + { + "start": 8566.0, + "end": 8567.14, + "probability": 0.8941 + }, + { + "start": 8567.7, + "end": 8568.62, + "probability": 0.9185 + }, + { + "start": 8568.96, + "end": 8573.2, + "probability": 0.7519 + }, + { + "start": 8573.24, + "end": 8575.26, + "probability": 0.939 + }, + { + "start": 8576.26, + "end": 8578.64, + "probability": 0.8873 + }, + { + "start": 8580.02, + "end": 8582.36, + "probability": 0.957 + }, + { + "start": 8583.16, + "end": 8584.62, + "probability": 0.8562 + }, + { + "start": 8585.36, + "end": 8586.99, + "probability": 0.9849 + }, + { + "start": 8587.28, + "end": 8588.1, + "probability": 0.2445 + }, + { + "start": 8589.0, + "end": 8590.34, + "probability": 0.9725 + }, + { + "start": 8591.04, + "end": 8592.72, + "probability": 0.9763 + }, + { + "start": 8593.24, + "end": 8594.56, + "probability": 0.8939 + }, + { + "start": 8595.14, + "end": 8595.87, + "probability": 0.8423 + }, + { + "start": 8596.24, + "end": 8598.8, + "probability": 0.9783 + }, + { + "start": 8599.66, + "end": 8601.68, + "probability": 0.9961 + }, + { + "start": 8601.68, + "end": 8605.28, + "probability": 0.9959 + }, + { + "start": 8605.94, + "end": 8607.9, + "probability": 0.9391 + }, + { + "start": 8608.04, + "end": 8610.14, + "probability": 0.8212 + }, + { + "start": 8610.78, + "end": 8614.42, + "probability": 0.9051 + }, + { + "start": 8614.48, + "end": 8618.6, + "probability": 0.939 + }, + { + "start": 8618.68, + "end": 8621.58, + "probability": 0.8677 + }, + { + "start": 8621.94, + "end": 8622.57, + "probability": 0.9958 + }, + { + "start": 8623.26, + "end": 8626.06, + "probability": 0.913 + }, + { + "start": 8628.54, + "end": 8629.04, + "probability": 0.6707 + }, + { + "start": 8629.74, + "end": 8631.5, + "probability": 0.8056 + }, + { + "start": 8632.7, + "end": 8633.4, + "probability": 0.8177 + }, + { + "start": 8645.16, + "end": 8646.14, + "probability": 0.5903 + }, + { + "start": 8646.52, + "end": 8646.52, + "probability": 0.5087 + }, + { + "start": 8646.52, + "end": 8647.34, + "probability": 0.6589 + }, + { + "start": 8647.92, + "end": 8651.58, + "probability": 0.979 + }, + { + "start": 8651.94, + "end": 8658.46, + "probability": 0.9781 + }, + { + "start": 8658.98, + "end": 8660.75, + "probability": 0.5968 + }, + { + "start": 8661.68, + "end": 8667.1, + "probability": 0.9952 + }, + { + "start": 8668.14, + "end": 8671.12, + "probability": 0.9514 + }, + { + "start": 8671.7, + "end": 8673.04, + "probability": 0.8828 + }, + { + "start": 8673.76, + "end": 8675.52, + "probability": 0.9608 + }, + { + "start": 8676.62, + "end": 8679.96, + "probability": 0.9898 + }, + { + "start": 8681.3, + "end": 8683.06, + "probability": 0.7224 + }, + { + "start": 8684.6, + "end": 8685.38, + "probability": 0.4536 + }, + { + "start": 8687.42, + "end": 8689.36, + "probability": 0.9244 + }, + { + "start": 8689.44, + "end": 8690.24, + "probability": 0.74 + }, + { + "start": 8690.3, + "end": 8694.82, + "probability": 0.9884 + }, + { + "start": 8695.26, + "end": 8695.42, + "probability": 0.7356 + }, + { + "start": 8696.8, + "end": 8699.42, + "probability": 0.8267 + }, + { + "start": 8700.88, + "end": 8704.06, + "probability": 0.9729 + }, + { + "start": 8704.84, + "end": 8708.46, + "probability": 0.6136 + }, + { + "start": 8709.36, + "end": 8712.56, + "probability": 0.9041 + }, + { + "start": 8713.44, + "end": 8717.26, + "probability": 0.9805 + }, + { + "start": 8718.34, + "end": 8718.56, + "probability": 0.101 + }, + { + "start": 8720.12, + "end": 8722.24, + "probability": 0.9152 + }, + { + "start": 8723.0, + "end": 8723.2, + "probability": 0.4325 + }, + { + "start": 8723.98, + "end": 8726.04, + "probability": 0.9114 + }, + { + "start": 8726.8, + "end": 8726.96, + "probability": 0.0211 + }, + { + "start": 8727.14, + "end": 8729.48, + "probability": 0.9744 + }, + { + "start": 8731.1, + "end": 8731.32, + "probability": 0.45 + }, + { + "start": 8731.54, + "end": 8734.32, + "probability": 0.9968 + }, + { + "start": 8735.06, + "end": 8735.22, + "probability": 0.5582 + }, + { + "start": 8735.3, + "end": 8738.5, + "probability": 0.9984 + }, + { + "start": 8739.5, + "end": 8743.74, + "probability": 0.9885 + }, + { + "start": 8746.1, + "end": 8751.69, + "probability": 0.9946 + }, + { + "start": 8752.7, + "end": 8754.48, + "probability": 0.944 + }, + { + "start": 8755.74, + "end": 8756.83, + "probability": 0.7492 + }, + { + "start": 8757.16, + "end": 8760.74, + "probability": 0.8161 + }, + { + "start": 8762.42, + "end": 8764.96, + "probability": 0.9748 + }, + { + "start": 8765.34, + "end": 8766.98, + "probability": 0.9437 + }, + { + "start": 8770.98, + "end": 8773.32, + "probability": 0.1519 + }, + { + "start": 8773.32, + "end": 8773.97, + "probability": 0.5372 + }, + { + "start": 8775.26, + "end": 8776.28, + "probability": 0.6663 + }, + { + "start": 8777.32, + "end": 8780.82, + "probability": 0.9386 + }, + { + "start": 8782.06, + "end": 8782.83, + "probability": 0.8252 + }, + { + "start": 8786.74, + "end": 8789.38, + "probability": 0.9399 + }, + { + "start": 8790.78, + "end": 8798.0, + "probability": 0.7592 + }, + { + "start": 8798.06, + "end": 8800.18, + "probability": 0.9196 + }, + { + "start": 8800.3, + "end": 8801.1, + "probability": 0.3158 + }, + { + "start": 8801.3, + "end": 8803.44, + "probability": 0.9697 + }, + { + "start": 8804.36, + "end": 8806.23, + "probability": 0.9942 + }, + { + "start": 8807.0, + "end": 8808.7, + "probability": 0.9969 + }, + { + "start": 8809.52, + "end": 8811.72, + "probability": 0.875 + }, + { + "start": 8812.4, + "end": 8812.66, + "probability": 0.2475 + }, + { + "start": 8812.74, + "end": 8818.12, + "probability": 0.9628 + }, + { + "start": 8818.18, + "end": 8823.42, + "probability": 0.9956 + }, + { + "start": 8824.92, + "end": 8826.92, + "probability": 0.8723 + }, + { + "start": 8827.02, + "end": 8828.76, + "probability": 0.8549 + }, + { + "start": 8829.24, + "end": 8830.44, + "probability": 0.8398 + }, + { + "start": 8831.1, + "end": 8834.04, + "probability": 0.8907 + }, + { + "start": 8834.84, + "end": 8836.06, + "probability": 0.7322 + }, + { + "start": 8836.34, + "end": 8838.86, + "probability": 0.885 + }, + { + "start": 8839.54, + "end": 8841.38, + "probability": 0.8055 + }, + { + "start": 8842.0, + "end": 8843.14, + "probability": 0.7438 + }, + { + "start": 8843.75, + "end": 8847.8, + "probability": 0.9407 + }, + { + "start": 8848.5, + "end": 8849.88, + "probability": 0.9126 + }, + { + "start": 8851.24, + "end": 8852.34, + "probability": 0.9033 + }, + { + "start": 8852.46, + "end": 8853.88, + "probability": 0.4774 + }, + { + "start": 8855.56, + "end": 8858.0, + "probability": 0.6914 + }, + { + "start": 8858.32, + "end": 8861.18, + "probability": 0.9949 + }, + { + "start": 8861.86, + "end": 8862.58, + "probability": 0.9211 + }, + { + "start": 8862.68, + "end": 8863.98, + "probability": 0.991 + }, + { + "start": 8864.12, + "end": 8866.08, + "probability": 0.9726 + }, + { + "start": 8867.14, + "end": 8868.12, + "probability": 0.8944 + }, + { + "start": 8868.28, + "end": 8869.29, + "probability": 0.7759 + }, + { + "start": 8869.8, + "end": 8873.26, + "probability": 0.8117 + }, + { + "start": 8873.8, + "end": 8874.88, + "probability": 0.9077 + }, + { + "start": 8875.28, + "end": 8881.86, + "probability": 0.9929 + }, + { + "start": 8882.44, + "end": 8883.74, + "probability": 0.999 + }, + { + "start": 8884.6, + "end": 8885.16, + "probability": 0.9837 + }, + { + "start": 8885.62, + "end": 8887.95, + "probability": 0.884 + }, + { + "start": 8888.3, + "end": 8891.5, + "probability": 0.9692 + }, + { + "start": 8891.54, + "end": 8892.7, + "probability": 0.6422 + }, + { + "start": 8892.92, + "end": 8896.38, + "probability": 0.9867 + }, + { + "start": 8896.44, + "end": 8897.17, + "probability": 0.9941 + }, + { + "start": 8897.38, + "end": 8898.52, + "probability": 0.9916 + }, + { + "start": 8899.46, + "end": 8900.2, + "probability": 0.7933 + }, + { + "start": 8900.22, + "end": 8901.38, + "probability": 0.714 + }, + { + "start": 8901.38, + "end": 8901.72, + "probability": 0.7723 + }, + { + "start": 8901.72, + "end": 8902.0, + "probability": 0.6059 + }, + { + "start": 8902.28, + "end": 8907.58, + "probability": 0.762 + }, + { + "start": 8908.58, + "end": 8912.18, + "probability": 0.9944 + }, + { + "start": 8912.88, + "end": 8914.12, + "probability": 0.9048 + }, + { + "start": 8914.66, + "end": 8915.1, + "probability": 0.9155 + }, + { + "start": 8915.58, + "end": 8916.86, + "probability": 0.7669 + }, + { + "start": 8917.34, + "end": 8917.98, + "probability": 0.2477 + }, + { + "start": 8918.02, + "end": 8920.36, + "probability": 0.8526 + }, + { + "start": 8920.92, + "end": 8921.72, + "probability": 0.6875 + }, + { + "start": 8921.8, + "end": 8921.87, + "probability": 0.0408 + }, + { + "start": 8922.9, + "end": 8923.6, + "probability": 0.7931 + }, + { + "start": 8924.36, + "end": 8926.0, + "probability": 0.9907 + }, + { + "start": 8927.0, + "end": 8928.05, + "probability": 0.5768 + }, + { + "start": 8928.52, + "end": 8930.94, + "probability": 0.9119 + }, + { + "start": 8931.58, + "end": 8932.7, + "probability": 0.7868 + }, + { + "start": 8933.42, + "end": 8937.12, + "probability": 0.6494 + }, + { + "start": 8937.24, + "end": 8938.97, + "probability": 0.9658 + }, + { + "start": 8940.0, + "end": 8941.04, + "probability": 0.7633 + }, + { + "start": 8941.04, + "end": 8942.58, + "probability": 0.7932 + }, + { + "start": 8942.72, + "end": 8946.34, + "probability": 0.9963 + }, + { + "start": 8946.34, + "end": 8949.14, + "probability": 0.5737 + }, + { + "start": 8949.64, + "end": 8950.56, + "probability": 0.5827 + }, + { + "start": 8951.26, + "end": 8952.78, + "probability": 0.9539 + }, + { + "start": 8953.4, + "end": 8955.62, + "probability": 0.9093 + }, + { + "start": 8956.56, + "end": 8956.98, + "probability": 0.7234 + }, + { + "start": 8957.18, + "end": 8959.52, + "probability": 0.7944 + }, + { + "start": 8961.32, + "end": 8963.82, + "probability": 0.9491 + }, + { + "start": 8963.88, + "end": 8964.48, + "probability": 0.8425 + }, + { + "start": 8964.54, + "end": 8965.27, + "probability": 0.9569 + }, + { + "start": 8966.5, + "end": 8968.46, + "probability": 0.8432 + }, + { + "start": 8968.54, + "end": 8969.64, + "probability": 0.9805 + }, + { + "start": 8970.14, + "end": 8971.06, + "probability": 0.7908 + }, + { + "start": 8971.78, + "end": 8972.88, + "probability": 0.8338 + }, + { + "start": 8973.04, + "end": 8975.16, + "probability": 0.9775 + }, + { + "start": 8976.12, + "end": 8978.9, + "probability": 0.9263 + }, + { + "start": 8979.58, + "end": 8982.96, + "probability": 0.83 + }, + { + "start": 8984.1, + "end": 8987.76, + "probability": 0.7349 + }, + { + "start": 8988.4, + "end": 8988.5, + "probability": 0.4626 + }, + { + "start": 8988.5, + "end": 8990.82, + "probability": 0.6167 + }, + { + "start": 8991.84, + "end": 8995.24, + "probability": 0.754 + }, + { + "start": 8996.36, + "end": 8997.82, + "probability": 0.7951 + }, + { + "start": 8997.84, + "end": 8998.84, + "probability": 0.7084 + }, + { + "start": 8999.68, + "end": 9001.8, + "probability": 0.8282 + }, + { + "start": 9002.36, + "end": 9006.08, + "probability": 0.801 + }, + { + "start": 9007.1, + "end": 9009.24, + "probability": 0.9766 + }, + { + "start": 9009.28, + "end": 9009.83, + "probability": 0.6283 + }, + { + "start": 9009.94, + "end": 9012.38, + "probability": 0.8585 + }, + { + "start": 9012.46, + "end": 9012.46, + "probability": 0.0643 + }, + { + "start": 9012.46, + "end": 9012.46, + "probability": 0.2217 + }, + { + "start": 9012.46, + "end": 9013.72, + "probability": 0.6 + }, + { + "start": 9013.84, + "end": 9015.08, + "probability": 0.9722 + }, + { + "start": 9015.36, + "end": 9016.56, + "probability": 0.487 + }, + { + "start": 9016.56, + "end": 9022.06, + "probability": 0.963 + }, + { + "start": 9022.06, + "end": 9024.12, + "probability": 0.7229 + }, + { + "start": 9024.14, + "end": 9026.9, + "probability": 0.9536 + }, + { + "start": 9028.0, + "end": 9030.64, + "probability": 0.9806 + }, + { + "start": 9032.58, + "end": 9035.6, + "probability": 0.9857 + }, + { + "start": 9036.12, + "end": 9039.74, + "probability": 0.9829 + }, + { + "start": 9040.54, + "end": 9042.83, + "probability": 0.7906 + }, + { + "start": 9044.78, + "end": 9046.44, + "probability": 0.9482 + }, + { + "start": 9046.74, + "end": 9050.12, + "probability": 0.9872 + }, + { + "start": 9050.54, + "end": 9055.1, + "probability": 0.8779 + }, + { + "start": 9055.18, + "end": 9057.88, + "probability": 0.7522 + }, + { + "start": 9058.84, + "end": 9060.02, + "probability": 0.627 + }, + { + "start": 9060.56, + "end": 9060.96, + "probability": 0.4849 + }, + { + "start": 9061.0, + "end": 9064.72, + "probability": 0.9339 + }, + { + "start": 9064.8, + "end": 9066.34, + "probability": 0.7586 + }, + { + "start": 9066.48, + "end": 9067.06, + "probability": 0.787 + }, + { + "start": 9067.06, + "end": 9067.92, + "probability": 0.6724 + }, + { + "start": 9070.42, + "end": 9070.6, + "probability": 0.3599 + }, + { + "start": 9070.6, + "end": 9070.6, + "probability": 0.0868 + }, + { + "start": 9070.6, + "end": 9071.7, + "probability": 0.1777 + }, + { + "start": 9071.78, + "end": 9071.92, + "probability": 0.4117 + }, + { + "start": 9071.92, + "end": 9072.7, + "probability": 0.8601 + }, + { + "start": 9073.14, + "end": 9073.26, + "probability": 0.4072 + }, + { + "start": 9073.4, + "end": 9078.04, + "probability": 0.6823 + }, + { + "start": 9078.08, + "end": 9079.48, + "probability": 0.7478 + }, + { + "start": 9080.56, + "end": 9082.88, + "probability": 0.7405 + }, + { + "start": 9083.02, + "end": 9084.68, + "probability": 0.7527 + }, + { + "start": 9085.28, + "end": 9085.4, + "probability": 0.1062 + }, + { + "start": 9085.46, + "end": 9085.56, + "probability": 0.872 + }, + { + "start": 9085.68, + "end": 9087.98, + "probability": 0.9893 + }, + { + "start": 9088.02, + "end": 9088.64, + "probability": 0.4357 + }, + { + "start": 9089.28, + "end": 9093.02, + "probability": 0.9489 + }, + { + "start": 9093.9, + "end": 9095.96, + "probability": 0.8339 + }, + { + "start": 9096.68, + "end": 9102.74, + "probability": 0.928 + }, + { + "start": 9102.86, + "end": 9104.84, + "probability": 0.642 + }, + { + "start": 9106.02, + "end": 9106.99, + "probability": 0.4782 + }, + { + "start": 9108.04, + "end": 9110.22, + "probability": 0.8779 + }, + { + "start": 9110.74, + "end": 9113.2, + "probability": 0.9951 + }, + { + "start": 9113.97, + "end": 9115.58, + "probability": 0.5299 + }, + { + "start": 9115.66, + "end": 9116.5, + "probability": 0.7139 + }, + { + "start": 9116.54, + "end": 9119.58, + "probability": 0.948 + }, + { + "start": 9119.84, + "end": 9121.44, + "probability": 0.8152 + }, + { + "start": 9121.44, + "end": 9122.36, + "probability": 0.6291 + }, + { + "start": 9122.42, + "end": 9123.18, + "probability": 0.4457 + }, + { + "start": 9123.18, + "end": 9123.6, + "probability": 0.3795 + }, + { + "start": 9123.88, + "end": 9124.04, + "probability": 0.1409 + }, + { + "start": 9124.04, + "end": 9125.38, + "probability": 0.6719 + }, + { + "start": 9125.54, + "end": 9126.96, + "probability": 0.7305 + }, + { + "start": 9127.6, + "end": 9127.68, + "probability": 0.5759 + }, + { + "start": 9127.68, + "end": 9128.0, + "probability": 0.5788 + }, + { + "start": 9128.12, + "end": 9132.72, + "probability": 0.7249 + }, + { + "start": 9133.46, + "end": 9134.34, + "probability": 0.9951 + }, + { + "start": 9135.44, + "end": 9136.2, + "probability": 0.8657 + }, + { + "start": 9136.73, + "end": 9140.52, + "probability": 0.9692 + }, + { + "start": 9141.1, + "end": 9142.1, + "probability": 0.5947 + }, + { + "start": 9142.26, + "end": 9142.98, + "probability": 0.7446 + }, + { + "start": 9144.1, + "end": 9145.32, + "probability": 0.6666 + }, + { + "start": 9145.36, + "end": 9147.9, + "probability": 0.856 + }, + { + "start": 9147.94, + "end": 9148.38, + "probability": 0.4664 + }, + { + "start": 9148.48, + "end": 9149.08, + "probability": 0.9474 + }, + { + "start": 9149.32, + "end": 9150.9, + "probability": 0.5206 + }, + { + "start": 9151.04, + "end": 9151.98, + "probability": 0.5141 + }, + { + "start": 9152.02, + "end": 9153.12, + "probability": 0.743 + }, + { + "start": 9153.2, + "end": 9154.58, + "probability": 0.9357 + }, + { + "start": 9155.7, + "end": 9156.42, + "probability": 0.7775 + }, + { + "start": 9156.54, + "end": 9157.16, + "probability": 0.54 + }, + { + "start": 9157.24, + "end": 9159.9, + "probability": 0.8008 + }, + { + "start": 9161.1, + "end": 9162.2, + "probability": 0.1649 + }, + { + "start": 9162.2, + "end": 9162.34, + "probability": 0.2778 + }, + { + "start": 9162.34, + "end": 9162.98, + "probability": 0.1586 + }, + { + "start": 9163.08, + "end": 9163.5, + "probability": 0.7581 + }, + { + "start": 9164.1, + "end": 9167.9, + "probability": 0.9761 + }, + { + "start": 9168.88, + "end": 9171.44, + "probability": 0.9542 + }, + { + "start": 9171.6, + "end": 9174.12, + "probability": 0.6074 + }, + { + "start": 9174.74, + "end": 9177.24, + "probability": 0.9241 + }, + { + "start": 9178.0, + "end": 9178.16, + "probability": 0.0333 + }, + { + "start": 9178.26, + "end": 9180.02, + "probability": 0.9969 + }, + { + "start": 9180.66, + "end": 9180.74, + "probability": 0.1245 + }, + { + "start": 9180.8, + "end": 9183.62, + "probability": 0.9811 + }, + { + "start": 9183.8, + "end": 9186.28, + "probability": 0.8828 + }, + { + "start": 9187.12, + "end": 9188.38, + "probability": 0.7614 + }, + { + "start": 9188.5, + "end": 9189.25, + "probability": 0.8396 + }, + { + "start": 9189.62, + "end": 9190.4, + "probability": 0.9615 + }, + { + "start": 9191.46, + "end": 9193.82, + "probability": 0.7172 + }, + { + "start": 9194.45, + "end": 9197.14, + "probability": 0.929 + }, + { + "start": 9197.78, + "end": 9197.9, + "probability": 0.4432 + }, + { + "start": 9198.22, + "end": 9199.66, + "probability": 0.9188 + }, + { + "start": 9200.2, + "end": 9201.04, + "probability": 0.9103 + }, + { + "start": 9203.08, + "end": 9203.14, + "probability": 0.294 + }, + { + "start": 9203.14, + "end": 9205.15, + "probability": 0.2805 + }, + { + "start": 9205.66, + "end": 9206.72, + "probability": 0.8436 + }, + { + "start": 9207.1, + "end": 9208.3, + "probability": 0.7916 + }, + { + "start": 9208.4, + "end": 9210.72, + "probability": 0.8292 + }, + { + "start": 9213.16, + "end": 9215.6, + "probability": 0.8237 + }, + { + "start": 9216.04, + "end": 9217.08, + "probability": 0.8197 + }, + { + "start": 9217.26, + "end": 9218.1, + "probability": 0.8484 + }, + { + "start": 9218.54, + "end": 9221.28, + "probability": 0.8075 + }, + { + "start": 9222.8, + "end": 9229.0, + "probability": 0.0573 + }, + { + "start": 9229.72, + "end": 9232.86, + "probability": 0.1465 + }, + { + "start": 9233.66, + "end": 9234.72, + "probability": 0.1074 + }, + { + "start": 9238.2, + "end": 9239.4, + "probability": 0.1387 + }, + { + "start": 9239.4, + "end": 9243.94, + "probability": 0.01 + }, + { + "start": 9243.94, + "end": 9244.98, + "probability": 0.1937 + }, + { + "start": 9244.98, + "end": 9246.14, + "probability": 0.1231 + }, + { + "start": 9246.64, + "end": 9247.6, + "probability": 0.1428 + }, + { + "start": 9247.62, + "end": 9250.86, + "probability": 0.0997 + }, + { + "start": 9264.58, + "end": 9264.78, + "probability": 0.025 + }, + { + "start": 9265.9, + "end": 9268.02, + "probability": 0.041 + }, + { + "start": 9268.02, + "end": 9268.56, + "probability": 0.0722 + }, + { + "start": 9268.9, + "end": 9269.88, + "probability": 0.0638 + }, + { + "start": 9270.44, + "end": 9272.22, + "probability": 0.0331 + }, + { + "start": 9272.22, + "end": 9272.46, + "probability": 0.0172 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9324.8, + "end": 9327.14, + "probability": 0.1505 + }, + { + "start": 9331.4, + "end": 9332.4, + "probability": 0.0371 + }, + { + "start": 9333.82, + "end": 9338.14, + "probability": 0.0662 + }, + { + "start": 9339.54, + "end": 9340.04, + "probability": 0.0235 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.0, + "end": 9420.0, + "probability": 0.0 + }, + { + "start": 9420.32, + "end": 9421.82, + "probability": 0.9101 + }, + { + "start": 9422.86, + "end": 9424.32, + "probability": 0.7766 + }, + { + "start": 9424.42, + "end": 9427.02, + "probability": 0.8171 + }, + { + "start": 9428.44, + "end": 9430.08, + "probability": 0.9574 + }, + { + "start": 9430.88, + "end": 9433.58, + "probability": 0.9185 + }, + { + "start": 9434.26, + "end": 9437.16, + "probability": 0.6782 + }, + { + "start": 9437.16, + "end": 9439.94, + "probability": 0.9907 + }, + { + "start": 9440.64, + "end": 9443.88, + "probability": 0.9899 + }, + { + "start": 9444.9, + "end": 9447.02, + "probability": 0.8791 + }, + { + "start": 9447.7, + "end": 9451.54, + "probability": 0.7954 + }, + { + "start": 9452.2, + "end": 9454.34, + "probability": 0.9538 + }, + { + "start": 9457.04, + "end": 9457.64, + "probability": 0.8304 + }, + { + "start": 9458.78, + "end": 9458.96, + "probability": 0.3572 + }, + { + "start": 9459.02, + "end": 9459.66, + "probability": 0.6736 + }, + { + "start": 9460.26, + "end": 9462.5, + "probability": 0.5038 + }, + { + "start": 9462.68, + "end": 9464.74, + "probability": 0.7203 + }, + { + "start": 9465.1, + "end": 9465.9, + "probability": 0.6872 + }, + { + "start": 9465.9, + "end": 9466.5, + "probability": 0.7438 + }, + { + "start": 9469.52, + "end": 9469.94, + "probability": 0.8212 + }, + { + "start": 9470.1, + "end": 9470.36, + "probability": 0.7625 + }, + { + "start": 9470.58, + "end": 9471.0, + "probability": 0.7212 + }, + { + "start": 9471.08, + "end": 9475.92, + "probability": 0.8906 + }, + { + "start": 9476.14, + "end": 9477.88, + "probability": 0.4994 + }, + { + "start": 9480.24, + "end": 9482.34, + "probability": 0.6413 + }, + { + "start": 9482.9, + "end": 9483.82, + "probability": 0.4707 + }, + { + "start": 9484.16, + "end": 9484.96, + "probability": 0.8397 + }, + { + "start": 9484.98, + "end": 9487.58, + "probability": 0.7997 + }, + { + "start": 9488.34, + "end": 9492.24, + "probability": 0.9036 + }, + { + "start": 9492.32, + "end": 9492.76, + "probability": 0.6536 + }, + { + "start": 9492.88, + "end": 9493.12, + "probability": 0.1991 + }, + { + "start": 9493.2, + "end": 9494.16, + "probability": 0.8281 + }, + { + "start": 9494.5, + "end": 9495.72, + "probability": 0.9272 + }, + { + "start": 9495.8, + "end": 9497.32, + "probability": 0.966 + }, + { + "start": 9497.92, + "end": 9498.62, + "probability": 0.8504 + }, + { + "start": 9498.72, + "end": 9501.46, + "probability": 0.9786 + }, + { + "start": 9501.62, + "end": 9504.74, + "probability": 0.9546 + }, + { + "start": 9505.4, + "end": 9505.84, + "probability": 0.3351 + }, + { + "start": 9506.32, + "end": 9510.04, + "probability": 0.8368 + }, + { + "start": 9510.04, + "end": 9514.1, + "probability": 0.9132 + }, + { + "start": 9514.62, + "end": 9517.5, + "probability": 0.9924 + }, + { + "start": 9517.74, + "end": 9519.66, + "probability": 0.9829 + }, + { + "start": 9520.42, + "end": 9522.8, + "probability": 0.9727 + }, + { + "start": 9522.8, + "end": 9525.74, + "probability": 0.8847 + }, + { + "start": 9525.88, + "end": 9528.88, + "probability": 0.9447 + }, + { + "start": 9529.38, + "end": 9534.36, + "probability": 0.9957 + }, + { + "start": 9534.36, + "end": 9539.92, + "probability": 0.9925 + }, + { + "start": 9540.34, + "end": 9543.46, + "probability": 0.8435 + }, + { + "start": 9543.76, + "end": 9544.88, + "probability": 0.7075 + }, + { + "start": 9545.28, + "end": 9546.02, + "probability": 0.8226 + }, + { + "start": 9546.54, + "end": 9547.81, + "probability": 0.9937 + }, + { + "start": 9548.18, + "end": 9548.34, + "probability": 0.8174 + }, + { + "start": 9549.06, + "end": 9552.0, + "probability": 0.7817 + }, + { + "start": 9552.74, + "end": 9555.92, + "probability": 0.3807 + }, + { + "start": 9555.92, + "end": 9557.1, + "probability": 0.5392 + }, + { + "start": 9557.42, + "end": 9559.55, + "probability": 0.6164 + }, + { + "start": 9560.37, + "end": 9562.96, + "probability": 0.95 + }, + { + "start": 9564.3, + "end": 9567.86, + "probability": 0.9539 + }, + { + "start": 9568.96, + "end": 9573.54, + "probability": 0.8418 + }, + { + "start": 9574.38, + "end": 9577.8, + "probability": 0.9856 + }, + { + "start": 9578.82, + "end": 9582.24, + "probability": 0.9682 + }, + { + "start": 9582.88, + "end": 9584.04, + "probability": 0.9878 + }, + { + "start": 9584.3, + "end": 9588.28, + "probability": 0.9426 + }, + { + "start": 9589.2, + "end": 9591.0, + "probability": 0.9917 + }, + { + "start": 9591.18, + "end": 9592.6, + "probability": 0.9958 + }, + { + "start": 9593.3, + "end": 9598.32, + "probability": 0.9477 + }, + { + "start": 9598.32, + "end": 9604.18, + "probability": 0.9761 + }, + { + "start": 9605.1, + "end": 9607.62, + "probability": 0.6427 + }, + { + "start": 9608.28, + "end": 9611.3, + "probability": 0.9827 + }, + { + "start": 9612.04, + "end": 9613.78, + "probability": 0.9731 + }, + { + "start": 9615.22, + "end": 9617.4, + "probability": 0.929 + }, + { + "start": 9617.4, + "end": 9620.08, + "probability": 0.9753 + }, + { + "start": 9621.54, + "end": 9622.78, + "probability": 0.74 + }, + { + "start": 9623.0, + "end": 9625.54, + "probability": 0.8049 + }, + { + "start": 9625.76, + "end": 9629.36, + "probability": 0.9492 + }, + { + "start": 9630.04, + "end": 9631.22, + "probability": 0.8869 + }, + { + "start": 9632.12, + "end": 9635.88, + "probability": 0.9777 + }, + { + "start": 9636.56, + "end": 9640.34, + "probability": 0.9684 + }, + { + "start": 9641.26, + "end": 9643.12, + "probability": 0.7225 + }, + { + "start": 9644.16, + "end": 9647.02, + "probability": 0.8485 + }, + { + "start": 9647.02, + "end": 9650.72, + "probability": 0.9963 + }, + { + "start": 9651.84, + "end": 9654.98, + "probability": 0.887 + }, + { + "start": 9656.92, + "end": 9657.06, + "probability": 0.1873 + }, + { + "start": 9657.16, + "end": 9660.02, + "probability": 0.9812 + }, + { + "start": 9660.12, + "end": 9663.68, + "probability": 0.98 + }, + { + "start": 9663.82, + "end": 9665.46, + "probability": 0.9951 + }, + { + "start": 9666.42, + "end": 9666.54, + "probability": 0.0172 + }, + { + "start": 9666.66, + "end": 9671.22, + "probability": 0.9917 + }, + { + "start": 9672.7, + "end": 9672.86, + "probability": 0.2544 + }, + { + "start": 9673.0, + "end": 9678.34, + "probability": 0.8468 + }, + { + "start": 9679.48, + "end": 9679.62, + "probability": 0.6523 + }, + { + "start": 9679.74, + "end": 9682.92, + "probability": 0.8657 + }, + { + "start": 9684.2, + "end": 9684.46, + "probability": 0.0507 + }, + { + "start": 9684.46, + "end": 9688.78, + "probability": 0.9137 + }, + { + "start": 9690.22, + "end": 9690.42, + "probability": 0.3948 + }, + { + "start": 9690.58, + "end": 9694.52, + "probability": 0.9893 + }, + { + "start": 9694.52, + "end": 9697.08, + "probability": 0.7652 + }, + { + "start": 9698.0, + "end": 9701.86, + "probability": 0.9564 + }, + { + "start": 9702.58, + "end": 9705.62, + "probability": 0.9688 + }, + { + "start": 9707.88, + "end": 9708.06, + "probability": 0.1177 + }, + { + "start": 9708.18, + "end": 9712.3, + "probability": 0.8452 + }, + { + "start": 9712.48, + "end": 9712.94, + "probability": 0.6775 + }, + { + "start": 9714.38, + "end": 9714.38, + "probability": 0.001 + }, + { + "start": 9714.38, + "end": 9717.04, + "probability": 0.7293 + }, + { + "start": 9717.04, + "end": 9720.66, + "probability": 0.9627 + }, + { + "start": 9720.88, + "end": 9721.02, + "probability": 0.0111 + }, + { + "start": 9722.0, + "end": 9724.08, + "probability": 0.923 + }, + { + "start": 9724.18, + "end": 9726.36, + "probability": 0.6594 + }, + { + "start": 9727.06, + "end": 9729.24, + "probability": 0.9972 + }, + { + "start": 9731.74, + "end": 9732.1, + "probability": 0.646 + }, + { + "start": 9732.52, + "end": 9735.64, + "probability": 0.9806 + }, + { + "start": 9735.64, + "end": 9740.48, + "probability": 0.9458 + }, + { + "start": 9742.1, + "end": 9742.52, + "probability": 0.002 + }, + { + "start": 9742.82, + "end": 9744.32, + "probability": 0.9281 + }, + { + "start": 9745.26, + "end": 9750.06, + "probability": 0.9825 + }, + { + "start": 9750.18, + "end": 9753.65, + "probability": 0.9922 + }, + { + "start": 9754.42, + "end": 9756.6, + "probability": 0.9673 + }, + { + "start": 9757.22, + "end": 9759.52, + "probability": 0.8761 + }, + { + "start": 9760.48, + "end": 9763.12, + "probability": 0.9974 + }, + { + "start": 9763.78, + "end": 9766.36, + "probability": 0.9279 + }, + { + "start": 9767.2, + "end": 9769.75, + "probability": 0.9714 + }, + { + "start": 9770.42, + "end": 9774.44, + "probability": 0.9788 + }, + { + "start": 9775.46, + "end": 9775.78, + "probability": 0.1398 + }, + { + "start": 9775.88, + "end": 9778.3, + "probability": 0.7727 + }, + { + "start": 9779.14, + "end": 9780.58, + "probability": 0.9044 + }, + { + "start": 9782.02, + "end": 9784.66, + "probability": 0.8695 + }, + { + "start": 9784.66, + "end": 9787.4, + "probability": 0.9858 + }, + { + "start": 9788.16, + "end": 9792.38, + "probability": 0.9908 + }, + { + "start": 9793.2, + "end": 9795.16, + "probability": 0.9817 + }, + { + "start": 9795.82, + "end": 9798.38, + "probability": 0.7646 + }, + { + "start": 9798.48, + "end": 9801.82, + "probability": 0.7915 + }, + { + "start": 9802.66, + "end": 9803.0, + "probability": 0.6591 + }, + { + "start": 9803.12, + "end": 9804.96, + "probability": 0.9482 + }, + { + "start": 9805.1, + "end": 9805.76, + "probability": 0.7619 + }, + { + "start": 9805.78, + "end": 9806.56, + "probability": 0.708 + }, + { + "start": 9807.52, + "end": 9810.92, + "probability": 0.8794 + }, + { + "start": 9810.92, + "end": 9813.52, + "probability": 0.9945 + }, + { + "start": 9814.44, + "end": 9818.9, + "probability": 0.9873 + }, + { + "start": 9819.46, + "end": 9821.46, + "probability": 0.8468 + }, + { + "start": 9822.06, + "end": 9824.02, + "probability": 0.9765 + }, + { + "start": 9825.26, + "end": 9827.2, + "probability": 0.873 + }, + { + "start": 9827.9, + "end": 9830.06, + "probability": 0.9671 + }, + { + "start": 9830.72, + "end": 9833.94, + "probability": 0.9686 + }, + { + "start": 9834.86, + "end": 9837.86, + "probability": 0.8069 + }, + { + "start": 9839.02, + "end": 9841.78, + "probability": 0.9917 + }, + { + "start": 9842.64, + "end": 9845.04, + "probability": 0.911 + }, + { + "start": 9845.84, + "end": 9848.72, + "probability": 0.6969 + }, + { + "start": 9849.3, + "end": 9853.62, + "probability": 0.9348 + }, + { + "start": 9853.62, + "end": 9860.32, + "probability": 0.9281 + }, + { + "start": 9861.2, + "end": 9863.7, + "probability": 0.9329 + }, + { + "start": 9865.16, + "end": 9865.16, + "probability": 0.0036 + }, + { + "start": 9865.16, + "end": 9868.3, + "probability": 0.9381 + }, + { + "start": 9869.02, + "end": 9872.04, + "probability": 0.9401 + }, + { + "start": 9872.94, + "end": 9875.1, + "probability": 0.9819 + }, + { + "start": 9876.4, + "end": 9879.0, + "probability": 0.9191 + }, + { + "start": 9879.54, + "end": 9882.46, + "probability": 0.8767 + }, + { + "start": 9883.12, + "end": 9886.06, + "probability": 0.9437 + }, + { + "start": 9887.9, + "end": 9888.04, + "probability": 0.1379 + }, + { + "start": 9888.2, + "end": 9890.5, + "probability": 0.9942 + }, + { + "start": 9892.16, + "end": 9893.76, + "probability": 0.9946 + }, + { + "start": 9894.52, + "end": 9897.06, + "probability": 0.9899 + }, + { + "start": 9897.76, + "end": 9904.02, + "probability": 0.9306 + }, + { + "start": 9904.02, + "end": 9909.96, + "probability": 0.8813 + }, + { + "start": 9910.94, + "end": 9911.6, + "probability": 0.9402 + }, + { + "start": 9912.28, + "end": 9914.04, + "probability": 0.908 + }, + { + "start": 9914.04, + "end": 9917.12, + "probability": 0.9741 + }, + { + "start": 9917.98, + "end": 9918.08, + "probability": 0.2968 + }, + { + "start": 9918.82, + "end": 9921.26, + "probability": 0.783 + }, + { + "start": 9922.12, + "end": 9922.56, + "probability": 0.4408 + }, + { + "start": 9922.62, + "end": 9926.18, + "probability": 0.8212 + }, + { + "start": 9926.18, + "end": 9929.26, + "probability": 0.9646 + }, + { + "start": 9929.82, + "end": 9932.42, + "probability": 0.8009 + }, + { + "start": 9933.64, + "end": 9933.78, + "probability": 0.0144 + }, + { + "start": 9934.02, + "end": 9939.04, + "probability": 0.8632 + }, + { + "start": 9939.8, + "end": 9942.66, + "probability": 0.6806 + }, + { + "start": 9942.66, + "end": 9946.08, + "probability": 0.9501 + }, + { + "start": 9946.82, + "end": 9948.88, + "probability": 0.9517 + }, + { + "start": 9949.44, + "end": 9952.32, + "probability": 0.9875 + }, + { + "start": 9953.26, + "end": 9955.88, + "probability": 0.8875 + }, + { + "start": 9956.46, + "end": 9959.36, + "probability": 0.9885 + }, + { + "start": 9959.96, + "end": 9960.92, + "probability": 0.8183 + }, + { + "start": 9961.4, + "end": 9961.76, + "probability": 0.4711 + }, + { + "start": 9961.9, + "end": 9966.8, + "probability": 0.9315 + }, + { + "start": 9967.4, + "end": 9969.44, + "probability": 0.9484 + }, + { + "start": 9970.48, + "end": 9972.68, + "probability": 0.984 + }, + { + "start": 9973.94, + "end": 9977.2, + "probability": 0.9493 + }, + { + "start": 9978.02, + "end": 9979.1, + "probability": 0.6626 + }, + { + "start": 9979.2, + "end": 9982.76, + "probability": 0.8219 + }, + { + "start": 9985.18, + "end": 9986.54, + "probability": 0.9977 + }, + { + "start": 9987.5, + "end": 9991.46, + "probability": 0.71 + }, + { + "start": 9991.98, + "end": 9991.98, + "probability": 0.3526 + }, + { + "start": 9991.98, + "end": 9994.44, + "probability": 0.9882 + }, + { + "start": 9994.44, + "end": 9998.58, + "probability": 0.9613 + }, + { + "start": 9999.3, + "end": 10000.1, + "probability": 0.6785 + }, + { + "start": 10000.14, + "end": 10003.52, + "probability": 0.8828 + }, + { + "start": 10004.04, + "end": 10007.24, + "probability": 0.7681 + }, + { + "start": 10008.02, + "end": 10010.12, + "probability": 0.8336 + }, + { + "start": 10010.64, + "end": 10011.84, + "probability": 0.9349 + }, + { + "start": 10012.64, + "end": 10014.74, + "probability": 0.8586 + }, + { + "start": 10015.42, + "end": 10016.98, + "probability": 0.972 + }, + { + "start": 10017.52, + "end": 10020.14, + "probability": 0.9741 + }, + { + "start": 10021.32, + "end": 10021.32, + "probability": 0.0227 + }, + { + "start": 10021.32, + "end": 10021.32, + "probability": 0.0427 + }, + { + "start": 10021.32, + "end": 10023.14, + "probability": 0.5935 + }, + { + "start": 10023.86, + "end": 10026.66, + "probability": 0.7991 + }, + { + "start": 10027.42, + "end": 10030.3, + "probability": 0.7716 + }, + { + "start": 10030.44, + "end": 10032.58, + "probability": 0.5826 + }, + { + "start": 10033.28, + "end": 10036.42, + "probability": 0.8115 + }, + { + "start": 10037.34, + "end": 10039.39, + "probability": 0.9766 + }, + { + "start": 10040.28, + "end": 10041.44, + "probability": 0.7032 + }, + { + "start": 10041.86, + "end": 10043.8, + "probability": 0.925 + }, + { + "start": 10044.6, + "end": 10046.3, + "probability": 0.9785 + }, + { + "start": 10047.0, + "end": 10048.05, + "probability": 0.6096 + }, + { + "start": 10049.44, + "end": 10055.06, + "probability": 0.991 + }, + { + "start": 10056.04, + "end": 10057.08, + "probability": 0.9871 + }, + { + "start": 10057.72, + "end": 10058.29, + "probability": 0.9112 + }, + { + "start": 10059.36, + "end": 10061.54, + "probability": 0.9632 + }, + { + "start": 10061.9, + "end": 10067.22, + "probability": 0.8899 + }, + { + "start": 10067.98, + "end": 10071.76, + "probability": 0.9426 + }, + { + "start": 10073.04, + "end": 10073.8, + "probability": 0.6605 + }, + { + "start": 10074.12, + "end": 10077.78, + "probability": 0.9635 + }, + { + "start": 10077.84, + "end": 10079.15, + "probability": 0.4942 + }, + { + "start": 10080.0, + "end": 10081.66, + "probability": 0.8597 + }, + { + "start": 10082.5, + "end": 10083.72, + "probability": 0.8393 + }, + { + "start": 10083.98, + "end": 10084.88, + "probability": 0.2798 + }, + { + "start": 10085.72, + "end": 10088.04, + "probability": 0.3681 + }, + { + "start": 10090.96, + "end": 10092.4, + "probability": 0.8277 + }, + { + "start": 10092.54, + "end": 10093.05, + "probability": 0.652 + }, + { + "start": 10093.26, + "end": 10094.32, + "probability": 0.7119 + }, + { + "start": 10094.36, + "end": 10094.92, + "probability": 0.9398 + }, + { + "start": 10095.44, + "end": 10096.84, + "probability": 0.9579 + }, + { + "start": 10098.28, + "end": 10099.84, + "probability": 0.8687 + }, + { + "start": 10100.82, + "end": 10101.42, + "probability": 0.4389 + }, + { + "start": 10102.64, + "end": 10103.99, + "probability": 0.8092 + }, + { + "start": 10106.32, + "end": 10109.18, + "probability": 0.9134 + }, + { + "start": 10110.02, + "end": 10111.98, + "probability": 0.7422 + }, + { + "start": 10114.82, + "end": 10117.32, + "probability": 0.9065 + }, + { + "start": 10117.52, + "end": 10120.98, + "probability": 0.9489 + }, + { + "start": 10121.68, + "end": 10124.25, + "probability": 0.8274 + }, + { + "start": 10126.04, + "end": 10130.56, + "probability": 0.9338 + }, + { + "start": 10131.34, + "end": 10132.52, + "probability": 0.744 + }, + { + "start": 10133.14, + "end": 10135.18, + "probability": 0.9731 + }, + { + "start": 10135.78, + "end": 10137.56, + "probability": 0.9473 + }, + { + "start": 10138.22, + "end": 10139.52, + "probability": 0.9865 + }, + { + "start": 10139.6, + "end": 10140.54, + "probability": 0.8877 + }, + { + "start": 10141.14, + "end": 10143.55, + "probability": 0.8675 + }, + { + "start": 10143.58, + "end": 10148.56, + "probability": 0.7853 + }, + { + "start": 10149.14, + "end": 10149.84, + "probability": 0.9456 + }, + { + "start": 10149.98, + "end": 10151.2, + "probability": 0.6233 + }, + { + "start": 10152.14, + "end": 10154.78, + "probability": 0.9872 + }, + { + "start": 10155.24, + "end": 10155.72, + "probability": 0.7989 + }, + { + "start": 10155.78, + "end": 10158.58, + "probability": 0.9282 + }, + { + "start": 10159.58, + "end": 10162.86, + "probability": 0.9899 + }, + { + "start": 10163.83, + "end": 10166.58, + "probability": 0.997 + }, + { + "start": 10166.62, + "end": 10167.94, + "probability": 0.6739 + }, + { + "start": 10167.96, + "end": 10169.36, + "probability": 0.7711 + }, + { + "start": 10169.36, + "end": 10170.24, + "probability": 0.9096 + }, + { + "start": 10170.68, + "end": 10172.32, + "probability": 0.9212 + }, + { + "start": 10172.8, + "end": 10174.56, + "probability": 0.548 + }, + { + "start": 10175.26, + "end": 10181.28, + "probability": 0.9807 + }, + { + "start": 10182.86, + "end": 10183.38, + "probability": 0.5454 + }, + { + "start": 10183.4, + "end": 10184.83, + "probability": 0.8398 + }, + { + "start": 10192.96, + "end": 10193.14, + "probability": 0.0616 + }, + { + "start": 10193.26, + "end": 10194.8, + "probability": 0.8504 + }, + { + "start": 10195.56, + "end": 10200.7, + "probability": 0.8958 + }, + { + "start": 10201.28, + "end": 10203.3, + "probability": 0.9973 + }, + { + "start": 10204.12, + "end": 10206.9, + "probability": 0.9909 + }, + { + "start": 10207.72, + "end": 10209.16, + "probability": 0.9848 + }, + { + "start": 10209.18, + "end": 10211.18, + "probability": 0.9558 + }, + { + "start": 10211.38, + "end": 10212.18, + "probability": 0.9786 + }, + { + "start": 10212.34, + "end": 10213.4, + "probability": 0.4028 + }, + { + "start": 10213.4, + "end": 10213.92, + "probability": 0.5493 + }, + { + "start": 10214.14, + "end": 10215.62, + "probability": 0.9582 + }, + { + "start": 10216.08, + "end": 10220.46, + "probability": 0.9108 + }, + { + "start": 10221.04, + "end": 10223.82, + "probability": 0.9805 + }, + { + "start": 10224.84, + "end": 10224.84, + "probability": 0.1021 + }, + { + "start": 10224.84, + "end": 10227.02, + "probability": 0.6991 + }, + { + "start": 10227.46, + "end": 10229.08, + "probability": 0.8594 + }, + { + "start": 10229.68, + "end": 10230.92, + "probability": 0.6394 + }, + { + "start": 10231.04, + "end": 10231.98, + "probability": 0.9736 + }, + { + "start": 10232.22, + "end": 10233.86, + "probability": 0.9442 + }, + { + "start": 10234.18, + "end": 10237.12, + "probability": 0.9469 + }, + { + "start": 10238.66, + "end": 10240.56, + "probability": 0.7691 + }, + { + "start": 10240.9, + "end": 10242.1, + "probability": 0.8069 + }, + { + "start": 10242.52, + "end": 10246.0, + "probability": 0.9066 + }, + { + "start": 10246.1, + "end": 10247.31, + "probability": 0.8358 + }, + { + "start": 10247.8, + "end": 10249.03, + "probability": 0.451 + }, + { + "start": 10249.8, + "end": 10251.4, + "probability": 0.6962 + }, + { + "start": 10252.66, + "end": 10253.52, + "probability": 0.9689 + }, + { + "start": 10253.58, + "end": 10253.92, + "probability": 0.9073 + }, + { + "start": 10253.96, + "end": 10254.8, + "probability": 0.9695 + }, + { + "start": 10255.18, + "end": 10258.22, + "probability": 0.9603 + }, + { + "start": 10259.08, + "end": 10263.58, + "probability": 0.7133 + }, + { + "start": 10263.86, + "end": 10265.1, + "probability": 0.6814 + }, + { + "start": 10265.22, + "end": 10265.74, + "probability": 0.5944 + }, + { + "start": 10267.12, + "end": 10267.76, + "probability": 0.9325 + }, + { + "start": 10268.38, + "end": 10273.54, + "probability": 0.6325 + }, + { + "start": 10273.56, + "end": 10274.0, + "probability": 0.5765 + }, + { + "start": 10274.16, + "end": 10275.84, + "probability": 0.5008 + }, + { + "start": 10276.2, + "end": 10276.3, + "probability": 0.4889 + }, + { + "start": 10276.38, + "end": 10277.08, + "probability": 0.9211 + }, + { + "start": 10277.2, + "end": 10277.74, + "probability": 0.9357 + }, + { + "start": 10278.1, + "end": 10280.66, + "probability": 0.9274 + }, + { + "start": 10280.72, + "end": 10283.94, + "probability": 0.3529 + }, + { + "start": 10284.3, + "end": 10284.7, + "probability": 0.1961 + }, + { + "start": 10284.7, + "end": 10284.72, + "probability": 0.1433 + }, + { + "start": 10284.72, + "end": 10284.72, + "probability": 0.275 + }, + { + "start": 10284.72, + "end": 10284.72, + "probability": 0.3549 + }, + { + "start": 10284.72, + "end": 10285.2, + "probability": 0.1037 + }, + { + "start": 10285.46, + "end": 10285.46, + "probability": 0.2982 + }, + { + "start": 10285.46, + "end": 10285.46, + "probability": 0.213 + }, + { + "start": 10285.46, + "end": 10285.62, + "probability": 0.6971 + }, + { + "start": 10285.8, + "end": 10287.18, + "probability": 0.4083 + }, + { + "start": 10287.24, + "end": 10289.86, + "probability": 0.9436 + }, + { + "start": 10290.04, + "end": 10290.39, + "probability": 0.9557 + }, + { + "start": 10290.76, + "end": 10291.36, + "probability": 0.6558 + }, + { + "start": 10291.44, + "end": 10292.4, + "probability": 0.5084 + }, + { + "start": 10292.9, + "end": 10293.82, + "probability": 0.5778 + }, + { + "start": 10294.22, + "end": 10295.62, + "probability": 0.9475 + }, + { + "start": 10299.34, + "end": 10301.98, + "probability": 0.8469 + }, + { + "start": 10302.8, + "end": 10304.06, + "probability": 0.9514 + }, + { + "start": 10304.24, + "end": 10305.84, + "probability": 0.705 + }, + { + "start": 10305.9, + "end": 10307.1, + "probability": 0.9839 + }, + { + "start": 10307.2, + "end": 10309.32, + "probability": 0.6986 + }, + { + "start": 10309.9, + "end": 10312.06, + "probability": 0.8002 + }, + { + "start": 10312.38, + "end": 10314.22, + "probability": 0.1084 + }, + { + "start": 10314.32, + "end": 10314.32, + "probability": 0.0191 + }, + { + "start": 10314.32, + "end": 10316.4, + "probability": 0.9288 + }, + { + "start": 10317.14, + "end": 10318.05, + "probability": 0.8804 + }, + { + "start": 10318.98, + "end": 10320.48, + "probability": 0.7124 + }, + { + "start": 10320.6, + "end": 10323.18, + "probability": 0.7945 + }, + { + "start": 10323.96, + "end": 10325.46, + "probability": 0.2096 + }, + { + "start": 10325.46, + "end": 10325.46, + "probability": 0.2351 + }, + { + "start": 10325.46, + "end": 10325.6, + "probability": 0.1092 + }, + { + "start": 10326.62, + "end": 10327.62, + "probability": 0.4885 + }, + { + "start": 10328.26, + "end": 10331.92, + "probability": 0.6584 + }, + { + "start": 10332.48, + "end": 10334.28, + "probability": 0.7169 + }, + { + "start": 10334.84, + "end": 10336.6, + "probability": 0.4442 + }, + { + "start": 10337.2, + "end": 10340.02, + "probability": 0.9388 + }, + { + "start": 10340.72, + "end": 10341.2, + "probability": 0.0313 + }, + { + "start": 10341.24, + "end": 10342.8, + "probability": 0.7068 + }, + { + "start": 10343.08, + "end": 10344.65, + "probability": 0.5697 + }, + { + "start": 10345.2, + "end": 10347.66, + "probability": 0.5634 + }, + { + "start": 10348.0, + "end": 10353.72, + "probability": 0.9818 + }, + { + "start": 10353.84, + "end": 10354.2, + "probability": 0.5218 + }, + { + "start": 10355.0, + "end": 10356.02, + "probability": 0.9751 + }, + { + "start": 10357.15, + "end": 10358.1, + "probability": 0.5127 + }, + { + "start": 10358.16, + "end": 10359.12, + "probability": 0.2376 + }, + { + "start": 10359.12, + "end": 10362.9, + "probability": 0.6711 + }, + { + "start": 10363.14, + "end": 10364.4, + "probability": 0.8693 + }, + { + "start": 10364.46, + "end": 10364.76, + "probability": 0.4206 + }, + { + "start": 10364.88, + "end": 10369.16, + "probability": 0.886 + }, + { + "start": 10369.16, + "end": 10373.52, + "probability": 0.8918 + }, + { + "start": 10373.78, + "end": 10374.7, + "probability": 0.8395 + }, + { + "start": 10375.36, + "end": 10379.44, + "probability": 0.9692 + }, + { + "start": 10379.6, + "end": 10381.54, + "probability": 0.53 + }, + { + "start": 10381.7, + "end": 10382.94, + "probability": 0.5578 + }, + { + "start": 10383.1, + "end": 10386.73, + "probability": 0.8207 + }, + { + "start": 10387.16, + "end": 10389.42, + "probability": 0.8963 + }, + { + "start": 10389.58, + "end": 10389.82, + "probability": 0.8327 + }, + { + "start": 10389.88, + "end": 10391.48, + "probability": 0.5484 + }, + { + "start": 10391.68, + "end": 10392.42, + "probability": 0.4212 + }, + { + "start": 10392.58, + "end": 10393.06, + "probability": 0.665 + }, + { + "start": 10393.12, + "end": 10394.16, + "probability": 0.6511 + }, + { + "start": 10394.28, + "end": 10395.54, + "probability": 0.71 + }, + { + "start": 10395.8, + "end": 10395.92, + "probability": 0.2994 + }, + { + "start": 10396.7, + "end": 10397.92, + "probability": 0.3113 + }, + { + "start": 10398.09, + "end": 10402.14, + "probability": 0.9792 + }, + { + "start": 10403.07, + "end": 10406.18, + "probability": 0.8643 + }, + { + "start": 10408.85, + "end": 10408.92, + "probability": 0.1805 + }, + { + "start": 10409.12, + "end": 10410.67, + "probability": 0.9042 + }, + { + "start": 10411.42, + "end": 10411.82, + "probability": 0.5576 + }, + { + "start": 10412.0, + "end": 10412.8, + "probability": 0.4541 + }, + { + "start": 10413.62, + "end": 10414.54, + "probability": 0.75 + }, + { + "start": 10414.74, + "end": 10419.72, + "probability": 0.947 + }, + { + "start": 10419.86, + "end": 10420.66, + "probability": 0.7328 + }, + { + "start": 10421.32, + "end": 10422.78, + "probability": 0.9314 + }, + { + "start": 10423.22, + "end": 10425.82, + "probability": 0.4501 + }, + { + "start": 10425.82, + "end": 10426.12, + "probability": 0.2443 + }, + { + "start": 10426.24, + "end": 10426.7, + "probability": 0.4769 + }, + { + "start": 10428.44, + "end": 10430.28, + "probability": 0.9785 + }, + { + "start": 10431.24, + "end": 10432.54, + "probability": 0.5586 + }, + { + "start": 10433.2, + "end": 10434.16, + "probability": 0.8796 + }, + { + "start": 10434.98, + "end": 10437.69, + "probability": 0.9662 + }, + { + "start": 10438.98, + "end": 10439.66, + "probability": 0.7212 + }, + { + "start": 10439.74, + "end": 10440.22, + "probability": 0.6473 + }, + { + "start": 10440.36, + "end": 10442.38, + "probability": 0.9661 + }, + { + "start": 10443.08, + "end": 10443.5, + "probability": 0.5868 + }, + { + "start": 10444.3, + "end": 10446.61, + "probability": 0.8012 + }, + { + "start": 10447.58, + "end": 10451.44, + "probability": 0.8965 + }, + { + "start": 10452.42, + "end": 10456.58, + "probability": 0.8031 + }, + { + "start": 10457.26, + "end": 10458.04, + "probability": 0.4238 + }, + { + "start": 10459.16, + "end": 10459.16, + "probability": 0.1047 + }, + { + "start": 10459.16, + "end": 10460.02, + "probability": 0.0449 + }, + { + "start": 10460.5, + "end": 10461.76, + "probability": 0.9761 + }, + { + "start": 10461.8, + "end": 10464.5, + "probability": 0.886 + }, + { + "start": 10465.32, + "end": 10467.5, + "probability": 0.9548 + }, + { + "start": 10468.02, + "end": 10470.32, + "probability": 0.8142 + }, + { + "start": 10470.92, + "end": 10475.12, + "probability": 0.9031 + }, + { + "start": 10475.94, + "end": 10478.88, + "probability": 0.89 + }, + { + "start": 10480.1, + "end": 10481.28, + "probability": 0.6895 + }, + { + "start": 10481.42, + "end": 10482.24, + "probability": 0.9559 + }, + { + "start": 10482.44, + "end": 10485.2, + "probability": 0.968 + }, + { + "start": 10485.76, + "end": 10489.04, + "probability": 0.9866 + }, + { + "start": 10489.74, + "end": 10492.05, + "probability": 0.6698 + }, + { + "start": 10492.14, + "end": 10493.08, + "probability": 0.7273 + }, + { + "start": 10493.7, + "end": 10495.72, + "probability": 0.9161 + }, + { + "start": 10497.18, + "end": 10497.78, + "probability": 0.8863 + }, + { + "start": 10497.82, + "end": 10502.98, + "probability": 0.9707 + }, + { + "start": 10503.18, + "end": 10505.5, + "probability": 0.8468 + }, + { + "start": 10505.96, + "end": 10508.14, + "probability": 0.846 + }, + { + "start": 10508.32, + "end": 10511.74, + "probability": 0.9823 + }, + { + "start": 10511.95, + "end": 10516.96, + "probability": 0.8955 + }, + { + "start": 10517.04, + "end": 10519.18, + "probability": 0.7723 + }, + { + "start": 10519.62, + "end": 10520.98, + "probability": 0.5095 + }, + { + "start": 10522.1, + "end": 10524.46, + "probability": 0.832 + }, + { + "start": 10524.88, + "end": 10527.18, + "probability": 0.752 + }, + { + "start": 10527.72, + "end": 10531.18, + "probability": 0.9596 + }, + { + "start": 10532.08, + "end": 10532.28, + "probability": 0.8516 + }, + { + "start": 10534.34, + "end": 10540.08, + "probability": 0.9924 + }, + { + "start": 10540.48, + "end": 10541.56, + "probability": 0.8082 + }, + { + "start": 10542.44, + "end": 10543.82, + "probability": 0.8178 + }, + { + "start": 10544.98, + "end": 10546.92, + "probability": 0.9432 + }, + { + "start": 10547.08, + "end": 10548.52, + "probability": 0.9718 + }, + { + "start": 10548.64, + "end": 10550.4, + "probability": 0.9845 + }, + { + "start": 10551.9, + "end": 10556.88, + "probability": 0.9806 + }, + { + "start": 10557.46, + "end": 10558.24, + "probability": 0.7692 + }, + { + "start": 10558.32, + "end": 10559.35, + "probability": 0.9598 + }, + { + "start": 10560.36, + "end": 10561.4, + "probability": 0.9875 + }, + { + "start": 10564.16, + "end": 10566.64, + "probability": 0.7678 + }, + { + "start": 10567.52, + "end": 10568.14, + "probability": 0.8028 + }, + { + "start": 10568.9, + "end": 10571.14, + "probability": 0.9961 + }, + { + "start": 10572.16, + "end": 10574.4, + "probability": 0.5983 + }, + { + "start": 10575.56, + "end": 10577.5, + "probability": 0.9536 + }, + { + "start": 10578.1, + "end": 10579.6, + "probability": 0.9577 + }, + { + "start": 10580.16, + "end": 10582.46, + "probability": 0.9726 + }, + { + "start": 10583.6, + "end": 10586.8, + "probability": 0.9268 + }, + { + "start": 10587.52, + "end": 10589.43, + "probability": 0.9987 + }, + { + "start": 10589.8, + "end": 10593.66, + "probability": 0.9646 + }, + { + "start": 10593.84, + "end": 10594.2, + "probability": 0.3131 + }, + { + "start": 10594.4, + "end": 10598.6, + "probability": 0.9641 + }, + { + "start": 10600.12, + "end": 10600.8, + "probability": 0.9169 + }, + { + "start": 10601.78, + "end": 10602.28, + "probability": 0.954 + }, + { + "start": 10604.38, + "end": 10605.86, + "probability": 0.9642 + }, + { + "start": 10606.88, + "end": 10608.78, + "probability": 0.8714 + }, + { + "start": 10608.94, + "end": 10609.58, + "probability": 0.7472 + }, + { + "start": 10609.7, + "end": 10611.26, + "probability": 0.8085 + }, + { + "start": 10612.28, + "end": 10617.76, + "probability": 0.986 + }, + { + "start": 10619.34, + "end": 10623.1, + "probability": 0.9337 + }, + { + "start": 10623.98, + "end": 10626.06, + "probability": 0.8192 + }, + { + "start": 10626.14, + "end": 10627.32, + "probability": 0.9296 + }, + { + "start": 10628.0, + "end": 10629.94, + "probability": 0.6922 + }, + { + "start": 10630.6, + "end": 10632.08, + "probability": 0.6145 + }, + { + "start": 10632.84, + "end": 10634.44, + "probability": 0.927 + }, + { + "start": 10634.46, + "end": 10634.74, + "probability": 0.5075 + }, + { + "start": 10634.86, + "end": 10635.84, + "probability": 0.9554 + }, + { + "start": 10636.0, + "end": 10636.78, + "probability": 0.9714 + }, + { + "start": 10637.48, + "end": 10638.98, + "probability": 0.8701 + }, + { + "start": 10639.94, + "end": 10641.18, + "probability": 0.8547 + }, + { + "start": 10641.2, + "end": 10642.52, + "probability": 0.9053 + }, + { + "start": 10642.78, + "end": 10642.92, + "probability": 0.5993 + }, + { + "start": 10643.12, + "end": 10643.94, + "probability": 0.6712 + }, + { + "start": 10644.62, + "end": 10646.18, + "probability": 0.3941 + }, + { + "start": 10647.12, + "end": 10647.71, + "probability": 0.6453 + }, + { + "start": 10648.16, + "end": 10649.24, + "probability": 0.844 + }, + { + "start": 10649.3, + "end": 10649.98, + "probability": 0.7895 + }, + { + "start": 10650.06, + "end": 10651.02, + "probability": 0.7968 + }, + { + "start": 10652.1, + "end": 10652.56, + "probability": 0.9868 + }, + { + "start": 10653.9, + "end": 10655.7, + "probability": 0.9011 + }, + { + "start": 10656.66, + "end": 10660.06, + "probability": 0.8525 + }, + { + "start": 10660.58, + "end": 10662.08, + "probability": 0.999 + }, + { + "start": 10662.7, + "end": 10663.6, + "probability": 0.8319 + }, + { + "start": 10664.32, + "end": 10668.25, + "probability": 0.9517 + }, + { + "start": 10669.34, + "end": 10671.4, + "probability": 0.9764 + }, + { + "start": 10672.42, + "end": 10676.6, + "probability": 0.646 + }, + { + "start": 10677.3, + "end": 10678.43, + "probability": 0.7648 + }, + { + "start": 10679.42, + "end": 10682.24, + "probability": 0.8169 + }, + { + "start": 10682.46, + "end": 10683.58, + "probability": 0.9784 + }, + { + "start": 10683.68, + "end": 10684.64, + "probability": 0.95 + }, + { + "start": 10685.62, + "end": 10691.02, + "probability": 0.9694 + }, + { + "start": 10691.44, + "end": 10693.3, + "probability": 0.9965 + }, + { + "start": 10693.92, + "end": 10696.58, + "probability": 0.8748 + }, + { + "start": 10697.34, + "end": 10699.96, + "probability": 0.9611 + }, + { + "start": 10700.76, + "end": 10701.74, + "probability": 0.9727 + }, + { + "start": 10702.88, + "end": 10704.08, + "probability": 0.8425 + }, + { + "start": 10704.22, + "end": 10704.66, + "probability": 0.8393 + }, + { + "start": 10704.74, + "end": 10705.8, + "probability": 0.8692 + }, + { + "start": 10705.82, + "end": 10706.2, + "probability": 0.7905 + }, + { + "start": 10706.2, + "end": 10706.64, + "probability": 0.8833 + }, + { + "start": 10707.7, + "end": 10709.9, + "probability": 0.9933 + }, + { + "start": 10710.7, + "end": 10712.62, + "probability": 0.7472 + }, + { + "start": 10713.0, + "end": 10713.9, + "probability": 0.066 + }, + { + "start": 10715.28, + "end": 10716.06, + "probability": 0.3236 + }, + { + "start": 10716.44, + "end": 10718.48, + "probability": 0.3201 + }, + { + "start": 10719.38, + "end": 10722.54, + "probability": 0.7562 + }, + { + "start": 10723.4, + "end": 10725.7, + "probability": 0.9447 + }, + { + "start": 10726.44, + "end": 10728.32, + "probability": 0.9743 + }, + { + "start": 10729.46, + "end": 10730.72, + "probability": 0.1234 + }, + { + "start": 10731.58, + "end": 10735.52, + "probability": 0.9919 + }, + { + "start": 10735.52, + "end": 10740.46, + "probability": 0.9961 + }, + { + "start": 10741.16, + "end": 10743.54, + "probability": 0.9609 + }, + { + "start": 10744.18, + "end": 10746.06, + "probability": 0.9911 + }, + { + "start": 10746.7, + "end": 10750.7, + "probability": 0.8725 + }, + { + "start": 10751.4, + "end": 10752.29, + "probability": 0.9871 + }, + { + "start": 10753.28, + "end": 10754.96, + "probability": 0.959 + }, + { + "start": 10755.22, + "end": 10756.12, + "probability": 0.396 + }, + { + "start": 10756.3, + "end": 10758.16, + "probability": 0.6954 + }, + { + "start": 10759.1, + "end": 10761.21, + "probability": 0.9513 + }, + { + "start": 10762.38, + "end": 10764.1, + "probability": 0.8577 + }, + { + "start": 10764.98, + "end": 10765.81, + "probability": 0.958 + }, + { + "start": 10766.0, + "end": 10766.7, + "probability": 0.8632 + }, + { + "start": 10767.42, + "end": 10768.9, + "probability": 0.895 + }, + { + "start": 10769.76, + "end": 10772.08, + "probability": 0.9155 + }, + { + "start": 10772.76, + "end": 10773.72, + "probability": 0.9643 + }, + { + "start": 10774.56, + "end": 10775.74, + "probability": 0.8175 + }, + { + "start": 10776.5, + "end": 10779.02, + "probability": 0.9964 + }, + { + "start": 10779.54, + "end": 10780.4, + "probability": 0.9185 + }, + { + "start": 10781.06, + "end": 10782.64, + "probability": 0.9478 + }, + { + "start": 10783.44, + "end": 10784.58, + "probability": 0.9575 + }, + { + "start": 10785.4, + "end": 10788.7, + "probability": 0.9873 + }, + { + "start": 10789.36, + "end": 10791.04, + "probability": 0.9921 + }, + { + "start": 10791.62, + "end": 10794.1, + "probability": 0.9887 + }, + { + "start": 10794.98, + "end": 10796.54, + "probability": 0.92 + }, + { + "start": 10797.3, + "end": 10799.53, + "probability": 0.8594 + }, + { + "start": 10800.1, + "end": 10802.46, + "probability": 0.9934 + }, + { + "start": 10802.94, + "end": 10804.48, + "probability": 0.9388 + }, + { + "start": 10805.14, + "end": 10808.76, + "probability": 0.6531 + }, + { + "start": 10810.06, + "end": 10811.16, + "probability": 0.65 + }, + { + "start": 10812.16, + "end": 10814.3, + "probability": 0.9944 + }, + { + "start": 10815.14, + "end": 10820.92, + "probability": 0.9912 + }, + { + "start": 10821.82, + "end": 10824.94, + "probability": 0.9886 + }, + { + "start": 10825.56, + "end": 10826.3, + "probability": 0.9607 + }, + { + "start": 10826.48, + "end": 10831.1, + "probability": 0.8947 + }, + { + "start": 10831.64, + "end": 10832.59, + "probability": 0.5852 + }, + { + "start": 10833.28, + "end": 10835.22, + "probability": 0.5154 + }, + { + "start": 10835.52, + "end": 10839.62, + "probability": 0.8106 + }, + { + "start": 10840.22, + "end": 10842.2, + "probability": 0.7477 + }, + { + "start": 10843.12, + "end": 10845.88, + "probability": 0.6337 + }, + { + "start": 10846.62, + "end": 10847.38, + "probability": 0.9811 + }, + { + "start": 10847.5, + "end": 10848.12, + "probability": 0.7045 + }, + { + "start": 10848.2, + "end": 10849.5, + "probability": 0.6691 + }, + { + "start": 10850.34, + "end": 10851.24, + "probability": 0.9374 + }, + { + "start": 10851.9, + "end": 10854.9, + "probability": 0.7886 + }, + { + "start": 10856.04, + "end": 10856.6, + "probability": 0.7603 + }, + { + "start": 10856.68, + "end": 10861.3, + "probability": 0.8804 + }, + { + "start": 10862.08, + "end": 10863.0, + "probability": 0.9987 + }, + { + "start": 10865.34, + "end": 10868.98, + "probability": 0.9562 + }, + { + "start": 10869.92, + "end": 10873.34, + "probability": 0.8077 + }, + { + "start": 10874.74, + "end": 10877.62, + "probability": 0.4442 + }, + { + "start": 10878.54, + "end": 10878.68, + "probability": 0.6696 + }, + { + "start": 10878.68, + "end": 10879.93, + "probability": 0.6885 + }, + { + "start": 10880.42, + "end": 10881.22, + "probability": 0.8396 + }, + { + "start": 10881.92, + "end": 10882.74, + "probability": 0.8294 + }, + { + "start": 10883.56, + "end": 10885.28, + "probability": 0.9561 + }, + { + "start": 10885.92, + "end": 10890.2, + "probability": 0.9858 + }, + { + "start": 10890.58, + "end": 10891.68, + "probability": 0.7151 + }, + { + "start": 10892.36, + "end": 10894.68, + "probability": 0.9664 + }, + { + "start": 10895.76, + "end": 10897.88, + "probability": 0.8 + }, + { + "start": 10898.44, + "end": 10900.4, + "probability": 0.9845 + }, + { + "start": 10900.94, + "end": 10902.11, + "probability": 0.9927 + }, + { + "start": 10902.46, + "end": 10907.38, + "probability": 0.9899 + }, + { + "start": 10907.68, + "end": 10908.62, + "probability": 0.9927 + }, + { + "start": 10909.18, + "end": 10909.74, + "probability": 0.9818 + }, + { + "start": 10910.3, + "end": 10911.68, + "probability": 0.7708 + }, + { + "start": 10911.86, + "end": 10914.78, + "probability": 0.9499 + }, + { + "start": 10915.34, + "end": 10917.1, + "probability": 0.8915 + }, + { + "start": 10918.58, + "end": 10919.62, + "probability": 0.7578 + }, + { + "start": 10920.32, + "end": 10921.76, + "probability": 0.9744 + }, + { + "start": 10923.02, + "end": 10926.14, + "probability": 0.773 + }, + { + "start": 10926.68, + "end": 10928.66, + "probability": 0.9921 + }, + { + "start": 10929.74, + "end": 10931.48, + "probability": 0.9207 + }, + { + "start": 10933.38, + "end": 10934.85, + "probability": 0.979 + }, + { + "start": 10936.18, + "end": 10938.62, + "probability": 0.9666 + }, + { + "start": 10939.26, + "end": 10941.24, + "probability": 0.8187 + }, + { + "start": 10942.3, + "end": 10944.5, + "probability": 0.9248 + }, + { + "start": 10945.06, + "end": 10945.9, + "probability": 0.84 + }, + { + "start": 10946.78, + "end": 10949.72, + "probability": 0.7098 + }, + { + "start": 10950.56, + "end": 10954.68, + "probability": 0.5249 + }, + { + "start": 10954.78, + "end": 10956.06, + "probability": 0.9648 + }, + { + "start": 10956.86, + "end": 10957.5, + "probability": 0.6646 + }, + { + "start": 10957.62, + "end": 10961.0, + "probability": 0.6866 + }, + { + "start": 10961.18, + "end": 10962.0, + "probability": 0.7488 + }, + { + "start": 10962.36, + "end": 10963.32, + "probability": 0.9858 + }, + { + "start": 10964.06, + "end": 10965.58, + "probability": 0.6666 + }, + { + "start": 10966.32, + "end": 10966.68, + "probability": 0.7617 + }, + { + "start": 10966.76, + "end": 10968.42, + "probability": 0.9854 + }, + { + "start": 10968.46, + "end": 10968.94, + "probability": 0.985 + }, + { + "start": 10969.02, + "end": 10969.52, + "probability": 0.9887 + }, + { + "start": 10969.58, + "end": 10970.1, + "probability": 0.4742 + }, + { + "start": 10970.76, + "end": 10972.9, + "probability": 0.7488 + }, + { + "start": 10973.72, + "end": 10978.88, + "probability": 0.9209 + }, + { + "start": 10979.08, + "end": 10981.14, + "probability": 0.9878 + }, + { + "start": 10981.7, + "end": 10983.4, + "probability": 0.731 + }, + { + "start": 10984.2, + "end": 10986.88, + "probability": 0.9882 + }, + { + "start": 10986.88, + "end": 10989.24, + "probability": 0.7707 + }, + { + "start": 10989.38, + "end": 10990.31, + "probability": 0.8092 + }, + { + "start": 10991.54, + "end": 10992.8, + "probability": 0.8318 + }, + { + "start": 10992.88, + "end": 10994.62, + "probability": 0.8383 + }, + { + "start": 10995.26, + "end": 10996.9, + "probability": 0.9695 + }, + { + "start": 10997.84, + "end": 11000.26, + "probability": 0.9974 + }, + { + "start": 11001.92, + "end": 11005.46, + "probability": 0.9879 + }, + { + "start": 11006.36, + "end": 11006.92, + "probability": 0.3355 + }, + { + "start": 11007.04, + "end": 11012.14, + "probability": 0.9819 + }, + { + "start": 11013.24, + "end": 11014.3, + "probability": 0.8596 + }, + { + "start": 11015.06, + "end": 11017.14, + "probability": 0.9948 + }, + { + "start": 11017.14, + "end": 11020.54, + "probability": 0.891 + }, + { + "start": 11020.58, + "end": 11022.58, + "probability": 0.8253 + }, + { + "start": 11023.16, + "end": 11027.28, + "probability": 0.7494 + }, + { + "start": 11027.68, + "end": 11028.1, + "probability": 0.7837 + }, + { + "start": 11030.26, + "end": 11032.92, + "probability": 0.9798 + }, + { + "start": 11032.98, + "end": 11033.49, + "probability": 0.9019 + }, + { + "start": 11034.4, + "end": 11037.2, + "probability": 0.9232 + }, + { + "start": 11038.56, + "end": 11040.41, + "probability": 0.6534 + }, + { + "start": 11041.68, + "end": 11045.84, + "probability": 0.4011 + }, + { + "start": 11045.96, + "end": 11050.64, + "probability": 0.9815 + }, + { + "start": 11051.58, + "end": 11052.56, + "probability": 0.8234 + }, + { + "start": 11053.1, + "end": 11055.37, + "probability": 0.9648 + }, + { + "start": 11057.0, + "end": 11057.98, + "probability": 0.6742 + }, + { + "start": 11058.02, + "end": 11060.86, + "probability": 0.7493 + }, + { + "start": 11066.52, + "end": 11070.66, + "probability": 0.9085 + }, + { + "start": 11071.22, + "end": 11072.92, + "probability": 0.709 + }, + { + "start": 11073.68, + "end": 11074.6, + "probability": 0.9534 + }, + { + "start": 11074.82, + "end": 11077.84, + "probability": 0.9989 + }, + { + "start": 11078.62, + "end": 11079.66, + "probability": 0.7172 + }, + { + "start": 11079.92, + "end": 11082.14, + "probability": 0.9339 + }, + { + "start": 11082.3, + "end": 11083.2, + "probability": 0.6691 + }, + { + "start": 11083.82, + "end": 11087.7, + "probability": 0.9951 + }, + { + "start": 11088.76, + "end": 11092.8, + "probability": 0.8283 + }, + { + "start": 11093.68, + "end": 11096.28, + "probability": 0.9247 + }, + { + "start": 11096.82, + "end": 11099.56, + "probability": 0.7071 + }, + { + "start": 11100.64, + "end": 11105.02, + "probability": 0.9261 + }, + { + "start": 11105.88, + "end": 11108.52, + "probability": 0.8162 + }, + { + "start": 11109.38, + "end": 11110.26, + "probability": 0.9409 + }, + { + "start": 11111.1, + "end": 11112.48, + "probability": 0.9748 + }, + { + "start": 11112.64, + "end": 11115.7, + "probability": 0.7349 + }, + { + "start": 11116.86, + "end": 11123.42, + "probability": 0.8865 + }, + { + "start": 11124.42, + "end": 11127.1, + "probability": 0.6445 + }, + { + "start": 11127.96, + "end": 11129.52, + "probability": 0.7222 + }, + { + "start": 11130.32, + "end": 11130.52, + "probability": 0.6532 + }, + { + "start": 11130.8, + "end": 11134.42, + "probability": 0.9839 + }, + { + "start": 11134.52, + "end": 11134.94, + "probability": 0.9156 + }, + { + "start": 11135.0, + "end": 11135.54, + "probability": 0.9112 + }, + { + "start": 11136.72, + "end": 11137.52, + "probability": 0.9549 + }, + { + "start": 11137.72, + "end": 11138.86, + "probability": 0.9642 + }, + { + "start": 11138.98, + "end": 11139.44, + "probability": 0.8954 + }, + { + "start": 11139.58, + "end": 11141.7, + "probability": 0.9519 + }, + { + "start": 11142.4, + "end": 11143.88, + "probability": 0.9531 + }, + { + "start": 11144.12, + "end": 11146.86, + "probability": 0.9893 + }, + { + "start": 11147.74, + "end": 11149.18, + "probability": 0.5813 + }, + { + "start": 11149.3, + "end": 11152.91, + "probability": 0.9816 + }, + { + "start": 11153.76, + "end": 11158.14, + "probability": 0.9653 + }, + { + "start": 11158.94, + "end": 11159.84, + "probability": 0.7073 + }, + { + "start": 11160.0, + "end": 11161.0, + "probability": 0.9065 + }, + { + "start": 11161.58, + "end": 11163.94, + "probability": 0.9258 + }, + { + "start": 11164.88, + "end": 11166.48, + "probability": 0.8985 + }, + { + "start": 11166.6, + "end": 11169.74, + "probability": 0.8464 + }, + { + "start": 11170.5, + "end": 11170.82, + "probability": 0.8192 + }, + { + "start": 11171.2, + "end": 11171.74, + "probability": 0.7896 + }, + { + "start": 11174.24, + "end": 11174.7, + "probability": 0.0397 + }, + { + "start": 11174.7, + "end": 11174.7, + "probability": 0.0818 + }, + { + "start": 11174.7, + "end": 11175.88, + "probability": 0.1578 + }, + { + "start": 11177.66, + "end": 11178.48, + "probability": 0.8045 + }, + { + "start": 11178.6, + "end": 11179.76, + "probability": 0.5922 + }, + { + "start": 11179.86, + "end": 11181.3, + "probability": 0.8235 + }, + { + "start": 11181.44, + "end": 11182.22, + "probability": 0.723 + }, + { + "start": 11183.02, + "end": 11186.08, + "probability": 0.8953 + }, + { + "start": 11187.86, + "end": 11190.03, + "probability": 0.9387 + }, + { + "start": 11190.34, + "end": 11191.82, + "probability": 0.8848 + }, + { + "start": 11193.63, + "end": 11196.2, + "probability": 0.7594 + }, + { + "start": 11197.02, + "end": 11198.84, + "probability": 0.774 + }, + { + "start": 11199.56, + "end": 11200.64, + "probability": 0.7277 + }, + { + "start": 11201.72, + "end": 11203.0, + "probability": 0.7904 + }, + { + "start": 11203.42, + "end": 11206.34, + "probability": 0.9483 + }, + { + "start": 11207.58, + "end": 11209.1, + "probability": 0.8431 + }, + { + "start": 11209.8, + "end": 11213.58, + "probability": 0.9591 + }, + { + "start": 11214.48, + "end": 11216.44, + "probability": 0.9957 + }, + { + "start": 11217.64, + "end": 11218.64, + "probability": 0.7137 + }, + { + "start": 11219.38, + "end": 11222.3, + "probability": 0.9721 + }, + { + "start": 11223.28, + "end": 11224.84, + "probability": 0.8991 + }, + { + "start": 11226.02, + "end": 11229.24, + "probability": 0.8069 + }, + { + "start": 11230.2, + "end": 11231.68, + "probability": 0.9779 + }, + { + "start": 11231.86, + "end": 11233.88, + "probability": 0.8229 + }, + { + "start": 11234.4, + "end": 11237.1, + "probability": 0.9592 + }, + { + "start": 11238.95, + "end": 11240.4, + "probability": 0.678 + }, + { + "start": 11240.48, + "end": 11243.32, + "probability": 0.9373 + }, + { + "start": 11244.46, + "end": 11247.84, + "probability": 0.9525 + }, + { + "start": 11248.62, + "end": 11249.1, + "probability": 0.4628 + }, + { + "start": 11249.22, + "end": 11251.26, + "probability": 0.9822 + }, + { + "start": 11251.48, + "end": 11254.13, + "probability": 0.9237 + }, + { + "start": 11254.26, + "end": 11256.7, + "probability": 0.8622 + }, + { + "start": 11257.62, + "end": 11260.3, + "probability": 0.7747 + }, + { + "start": 11260.84, + "end": 11261.76, + "probability": 0.5244 + }, + { + "start": 11262.22, + "end": 11263.57, + "probability": 0.8943 + }, + { + "start": 11263.76, + "end": 11264.82, + "probability": 0.4927 + }, + { + "start": 11265.94, + "end": 11268.92, + "probability": 0.8979 + }, + { + "start": 11269.9, + "end": 11271.66, + "probability": 0.846 + }, + { + "start": 11271.68, + "end": 11274.22, + "probability": 0.8551 + }, + { + "start": 11275.22, + "end": 11278.48, + "probability": 0.9226 + }, + { + "start": 11279.24, + "end": 11280.84, + "probability": 0.6149 + }, + { + "start": 11281.66, + "end": 11282.6, + "probability": 0.4432 + }, + { + "start": 11284.26, + "end": 11285.4, + "probability": 0.6648 + }, + { + "start": 11286.38, + "end": 11290.16, + "probability": 0.811 + }, + { + "start": 11291.02, + "end": 11293.94, + "probability": 0.6306 + }, + { + "start": 11294.64, + "end": 11296.2, + "probability": 0.7067 + }, + { + "start": 11297.6, + "end": 11301.96, + "probability": 0.8101 + }, + { + "start": 11301.96, + "end": 11304.82, + "probability": 0.9917 + }, + { + "start": 11305.9, + "end": 11307.64, + "probability": 0.9495 + }, + { + "start": 11307.76, + "end": 11311.68, + "probability": 0.7438 + }, + { + "start": 11312.56, + "end": 11313.52, + "probability": 0.668 + }, + { + "start": 11314.62, + "end": 11319.11, + "probability": 0.965 + }, + { + "start": 11319.62, + "end": 11321.37, + "probability": 0.5292 + }, + { + "start": 11321.42, + "end": 11322.66, + "probability": 0.9331 + }, + { + "start": 11323.14, + "end": 11325.04, + "probability": 0.5996 + }, + { + "start": 11325.66, + "end": 11326.7, + "probability": 0.6365 + }, + { + "start": 11327.54, + "end": 11328.84, + "probability": 0.8208 + }, + { + "start": 11329.1, + "end": 11329.82, + "probability": 0.905 + }, + { + "start": 11330.36, + "end": 11331.16, + "probability": 0.7195 + }, + { + "start": 11331.36, + "end": 11334.1, + "probability": 0.7282 + }, + { + "start": 11335.28, + "end": 11337.1, + "probability": 0.5238 + }, + { + "start": 11338.34, + "end": 11340.88, + "probability": 0.8602 + }, + { + "start": 11341.66, + "end": 11342.75, + "probability": 0.7688 + }, + { + "start": 11343.66, + "end": 11347.98, + "probability": 0.943 + }, + { + "start": 11348.2, + "end": 11348.98, + "probability": 0.8265 + }, + { + "start": 11349.5, + "end": 11350.56, + "probability": 0.9278 + }, + { + "start": 11351.4, + "end": 11353.58, + "probability": 0.895 + }, + { + "start": 11354.04, + "end": 11355.26, + "probability": 0.9928 + }, + { + "start": 11355.36, + "end": 11356.3, + "probability": 0.7457 + }, + { + "start": 11356.32, + "end": 11357.0, + "probability": 0.4335 + }, + { + "start": 11358.04, + "end": 11360.76, + "probability": 0.9794 + }, + { + "start": 11361.04, + "end": 11364.38, + "probability": 0.8425 + }, + { + "start": 11365.06, + "end": 11366.08, + "probability": 0.6856 + }, + { + "start": 11366.18, + "end": 11368.16, + "probability": 0.9934 + }, + { + "start": 11368.54, + "end": 11370.26, + "probability": 0.9467 + }, + { + "start": 11371.24, + "end": 11373.22, + "probability": 0.6664 + }, + { + "start": 11373.74, + "end": 11377.08, + "probability": 0.9883 + }, + { + "start": 11377.74, + "end": 11379.18, + "probability": 0.9875 + }, + { + "start": 11379.52, + "end": 11380.5, + "probability": 0.881 + }, + { + "start": 11382.13, + "end": 11383.78, + "probability": 0.4517 + }, + { + "start": 11384.24, + "end": 11387.1, + "probability": 0.8498 + }, + { + "start": 11387.7, + "end": 11388.59, + "probability": 0.631 + }, + { + "start": 11389.28, + "end": 11390.34, + "probability": 0.9305 + }, + { + "start": 11390.6, + "end": 11392.3, + "probability": 0.9694 + }, + { + "start": 11393.44, + "end": 11395.0, + "probability": 0.9874 + }, + { + "start": 11396.4, + "end": 11401.2, + "probability": 0.8325 + }, + { + "start": 11403.28, + "end": 11404.78, + "probability": 0.8372 + }, + { + "start": 11404.98, + "end": 11407.18, + "probability": 0.7201 + }, + { + "start": 11407.98, + "end": 11408.12, + "probability": 0.7728 + }, + { + "start": 11408.24, + "end": 11413.14, + "probability": 0.9823 + }, + { + "start": 11413.84, + "end": 11417.32, + "probability": 0.9657 + }, + { + "start": 11417.7, + "end": 11419.32, + "probability": 0.6932 + }, + { + "start": 11419.4, + "end": 11419.66, + "probability": 0.8634 + }, + { + "start": 11419.7, + "end": 11420.18, + "probability": 0.5244 + }, + { + "start": 11421.26, + "end": 11423.94, + "probability": 0.9092 + }, + { + "start": 11424.86, + "end": 11426.78, + "probability": 0.9902 + }, + { + "start": 11427.34, + "end": 11430.08, + "probability": 0.9495 + }, + { + "start": 11430.74, + "end": 11433.08, + "probability": 0.8185 + }, + { + "start": 11433.78, + "end": 11436.48, + "probability": 0.8449 + }, + { + "start": 11437.12, + "end": 11439.62, + "probability": 0.8668 + }, + { + "start": 11439.62, + "end": 11442.56, + "probability": 0.9915 + }, + { + "start": 11442.64, + "end": 11444.78, + "probability": 0.9871 + }, + { + "start": 11445.92, + "end": 11447.4, + "probability": 0.8316 + }, + { + "start": 11448.02, + "end": 11450.14, + "probability": 0.6097 + }, + { + "start": 11451.64, + "end": 11456.36, + "probability": 0.9597 + }, + { + "start": 11456.88, + "end": 11457.66, + "probability": 0.3453 + }, + { + "start": 11458.4, + "end": 11461.02, + "probability": 0.8351 + }, + { + "start": 11461.58, + "end": 11463.96, + "probability": 0.7195 + }, + { + "start": 11464.86, + "end": 11467.92, + "probability": 0.7866 + }, + { + "start": 11469.22, + "end": 11470.52, + "probability": 0.8037 + }, + { + "start": 11471.1, + "end": 11472.3, + "probability": 0.7652 + }, + { + "start": 11473.06, + "end": 11475.8, + "probability": 0.8843 + }, + { + "start": 11476.24, + "end": 11479.9, + "probability": 0.8657 + }, + { + "start": 11480.6, + "end": 11482.1, + "probability": 0.6749 + }, + { + "start": 11482.68, + "end": 11485.0, + "probability": 0.895 + }, + { + "start": 11485.54, + "end": 11488.14, + "probability": 0.8748 + }, + { + "start": 11488.68, + "end": 11490.74, + "probability": 0.8306 + }, + { + "start": 11491.18, + "end": 11495.12, + "probability": 0.9785 + }, + { + "start": 11495.38, + "end": 11496.58, + "probability": 0.8559 + }, + { + "start": 11497.08, + "end": 11497.98, + "probability": 0.8763 + }, + { + "start": 11498.52, + "end": 11502.36, + "probability": 0.9263 + }, + { + "start": 11502.92, + "end": 11503.76, + "probability": 0.7436 + }, + { + "start": 11504.82, + "end": 11506.94, + "probability": 0.9836 + }, + { + "start": 11507.44, + "end": 11508.34, + "probability": 0.7762 + }, + { + "start": 11508.38, + "end": 11510.72, + "probability": 0.7578 + }, + { + "start": 11510.9, + "end": 11512.06, + "probability": 0.5103 + }, + { + "start": 11513.3, + "end": 11513.3, + "probability": 0.854 + }, + { + "start": 11514.02, + "end": 11517.56, + "probability": 0.9925 + }, + { + "start": 11518.4, + "end": 11519.56, + "probability": 0.6289 + }, + { + "start": 11519.72, + "end": 11521.84, + "probability": 0.991 + }, + { + "start": 11523.0, + "end": 11524.92, + "probability": 0.9642 + }, + { + "start": 11525.0, + "end": 11527.52, + "probability": 0.9802 + }, + { + "start": 11528.02, + "end": 11528.74, + "probability": 0.8512 + }, + { + "start": 11529.62, + "end": 11532.5, + "probability": 0.9976 + }, + { + "start": 11533.34, + "end": 11536.06, + "probability": 0.5349 + }, + { + "start": 11537.0, + "end": 11538.82, + "probability": 0.9888 + }, + { + "start": 11539.72, + "end": 11541.77, + "probability": 0.991 + }, + { + "start": 11542.72, + "end": 11544.3, + "probability": 0.9538 + }, + { + "start": 11544.88, + "end": 11545.96, + "probability": 0.1513 + }, + { + "start": 11547.38, + "end": 11548.06, + "probability": 0.4384 + }, + { + "start": 11549.1, + "end": 11551.58, + "probability": 0.9912 + }, + { + "start": 11551.66, + "end": 11552.24, + "probability": 0.5855 + }, + { + "start": 11552.92, + "end": 11554.68, + "probability": 0.9618 + }, + { + "start": 11555.78, + "end": 11559.06, + "probability": 0.9908 + }, + { + "start": 11559.6, + "end": 11560.7, + "probability": 0.8632 + }, + { + "start": 11561.32, + "end": 11563.7, + "probability": 0.6858 + }, + { + "start": 11564.48, + "end": 11568.58, + "probability": 0.9935 + }, + { + "start": 11568.6, + "end": 11571.04, + "probability": 0.9441 + }, + { + "start": 11571.82, + "end": 11574.68, + "probability": 0.9839 + }, + { + "start": 11574.72, + "end": 11576.28, + "probability": 0.7502 + }, + { + "start": 11576.78, + "end": 11577.44, + "probability": 0.7705 + }, + { + "start": 11578.08, + "end": 11578.63, + "probability": 0.9943 + }, + { + "start": 11579.76, + "end": 11582.18, + "probability": 0.9629 + }, + { + "start": 11582.3, + "end": 11583.53, + "probability": 0.9883 + }, + { + "start": 11584.58, + "end": 11585.63, + "probability": 0.687 + }, + { + "start": 11586.0, + "end": 11588.2, + "probability": 0.724 + }, + { + "start": 11588.46, + "end": 11588.78, + "probability": 0.4832 + }, + { + "start": 11588.96, + "end": 11590.9, + "probability": 0.7951 + }, + { + "start": 11591.06, + "end": 11593.05, + "probability": 0.7717 + }, + { + "start": 11593.66, + "end": 11595.4, + "probability": 0.9607 + }, + { + "start": 11595.88, + "end": 11596.42, + "probability": 0.9869 + }, + { + "start": 11596.86, + "end": 11597.28, + "probability": 0.2059 + }, + { + "start": 11597.8, + "end": 11600.14, + "probability": 0.7552 + }, + { + "start": 11600.86, + "end": 11603.7, + "probability": 0.9243 + }, + { + "start": 11603.82, + "end": 11606.98, + "probability": 0.9932 + }, + { + "start": 11606.98, + "end": 11608.14, + "probability": 0.6077 + }, + { + "start": 11608.3, + "end": 11608.98, + "probability": 0.6442 + }, + { + "start": 11608.98, + "end": 11612.2, + "probability": 0.0129 + }, + { + "start": 11612.2, + "end": 11612.2, + "probability": 0.0974 + }, + { + "start": 11612.2, + "end": 11612.2, + "probability": 0.2397 + }, + { + "start": 11612.2, + "end": 11612.6, + "probability": 0.074 + }, + { + "start": 11612.66, + "end": 11612.86, + "probability": 0.9241 + }, + { + "start": 11613.16, + "end": 11614.52, + "probability": 0.7271 + }, + { + "start": 11614.62, + "end": 11618.8, + "probability": 0.8675 + }, + { + "start": 11619.04, + "end": 11619.32, + "probability": 0.4412 + }, + { + "start": 11619.32, + "end": 11621.56, + "probability": 0.9221 + }, + { + "start": 11621.58, + "end": 11621.58, + "probability": 0.2748 + }, + { + "start": 11621.58, + "end": 11623.96, + "probability": 0.9487 + }, + { + "start": 11624.02, + "end": 11625.66, + "probability": 0.8468 + }, + { + "start": 11625.76, + "end": 11627.28, + "probability": 0.6809 + }, + { + "start": 11627.86, + "end": 11628.36, + "probability": 0.1781 + }, + { + "start": 11629.85, + "end": 11629.94, + "probability": 0.2022 + }, + { + "start": 11629.94, + "end": 11632.61, + "probability": 0.8662 + }, + { + "start": 11633.02, + "end": 11635.32, + "probability": 0.992 + }, + { + "start": 11635.58, + "end": 11636.36, + "probability": 0.8101 + }, + { + "start": 11636.66, + "end": 11636.86, + "probability": 0.8141 + }, + { + "start": 11636.88, + "end": 11637.86, + "probability": 0.6194 + }, + { + "start": 11638.8, + "end": 11640.24, + "probability": 0.9775 + }, + { + "start": 11640.86, + "end": 11643.13, + "probability": 0.7268 + }, + { + "start": 11643.26, + "end": 11644.72, + "probability": 0.9738 + }, + { + "start": 11645.3, + "end": 11646.51, + "probability": 0.8065 + }, + { + "start": 11646.76, + "end": 11648.52, + "probability": 0.8358 + }, + { + "start": 11648.78, + "end": 11649.42, + "probability": 0.6026 + }, + { + "start": 11649.58, + "end": 11650.38, + "probability": 0.4405 + }, + { + "start": 11650.38, + "end": 11651.88, + "probability": 0.7158 + }, + { + "start": 11652.08, + "end": 11653.36, + "probability": 0.8955 + }, + { + "start": 11653.52, + "end": 11656.14, + "probability": 0.9915 + }, + { + "start": 11656.16, + "end": 11659.14, + "probability": 0.9812 + }, + { + "start": 11660.62, + "end": 11661.58, + "probability": 0.3494 + }, + { + "start": 11661.58, + "end": 11661.58, + "probability": 0.4074 + }, + { + "start": 11661.58, + "end": 11661.9, + "probability": 0.1418 + }, + { + "start": 11662.0, + "end": 11665.22, + "probability": 0.8804 + }, + { + "start": 11665.32, + "end": 11668.06, + "probability": 0.7029 + }, + { + "start": 11668.64, + "end": 11670.04, + "probability": 0.9205 + }, + { + "start": 11671.36, + "end": 11675.16, + "probability": 0.1803 + }, + { + "start": 11675.16, + "end": 11675.16, + "probability": 0.0547 + }, + { + "start": 11675.16, + "end": 11675.46, + "probability": 0.0644 + }, + { + "start": 11675.48, + "end": 11675.94, + "probability": 0.4877 + }, + { + "start": 11676.04, + "end": 11677.52, + "probability": 0.6187 + }, + { + "start": 11677.84, + "end": 11680.52, + "probability": 0.9827 + }, + { + "start": 11680.58, + "end": 11684.44, + "probability": 0.9867 + }, + { + "start": 11685.0, + "end": 11687.6, + "probability": 0.9715 + }, + { + "start": 11687.7, + "end": 11688.64, + "probability": 0.5908 + }, + { + "start": 11689.24, + "end": 11693.1, + "probability": 0.8831 + }, + { + "start": 11693.4, + "end": 11695.38, + "probability": 0.9178 + }, + { + "start": 11696.08, + "end": 11696.66, + "probability": 0.951 + }, + { + "start": 11697.52, + "end": 11700.38, + "probability": 0.985 + }, + { + "start": 11701.46, + "end": 11705.62, + "probability": 0.9926 + }, + { + "start": 11706.82, + "end": 11707.9, + "probability": 0.9313 + }, + { + "start": 11708.72, + "end": 11709.82, + "probability": 0.9935 + }, + { + "start": 11710.34, + "end": 11712.46, + "probability": 0.8868 + }, + { + "start": 11712.66, + "end": 11715.98, + "probability": 0.978 + }, + { + "start": 11715.98, + "end": 11719.38, + "probability": 0.9837 + }, + { + "start": 11720.16, + "end": 11724.06, + "probability": 0.9882 + }, + { + "start": 11724.8, + "end": 11727.2, + "probability": 0.9806 + }, + { + "start": 11727.74, + "end": 11730.42, + "probability": 0.873 + }, + { + "start": 11731.16, + "end": 11734.08, + "probability": 0.9847 + }, + { + "start": 11734.88, + "end": 11740.16, + "probability": 0.9325 + }, + { + "start": 11740.66, + "end": 11741.26, + "probability": 0.966 + }, + { + "start": 11741.76, + "end": 11747.34, + "probability": 0.9901 + }, + { + "start": 11748.14, + "end": 11748.28, + "probability": 0.3414 + }, + { + "start": 11748.38, + "end": 11748.76, + "probability": 0.838 + }, + { + "start": 11748.86, + "end": 11752.72, + "probability": 0.8405 + }, + { + "start": 11753.4, + "end": 11758.32, + "probability": 0.5834 + }, + { + "start": 11758.96, + "end": 11762.58, + "probability": 0.9614 + }, + { + "start": 11762.84, + "end": 11763.78, + "probability": 0.6999 + }, + { + "start": 11763.96, + "end": 11764.5, + "probability": 0.9196 + }, + { + "start": 11764.68, + "end": 11764.92, + "probability": 0.6907 + }, + { + "start": 11765.46, + "end": 11768.62, + "probability": 0.9567 + }, + { + "start": 11768.86, + "end": 11772.6, + "probability": 0.978 + }, + { + "start": 11773.14, + "end": 11774.44, + "probability": 0.7444 + }, + { + "start": 11775.02, + "end": 11777.96, + "probability": 0.902 + }, + { + "start": 11779.0, + "end": 11782.26, + "probability": 0.9493 + }, + { + "start": 11782.72, + "end": 11783.12, + "probability": 0.8635 + }, + { + "start": 11783.76, + "end": 11786.8, + "probability": 0.8973 + }, + { + "start": 11787.38, + "end": 11789.68, + "probability": 0.9927 + }, + { + "start": 11790.02, + "end": 11791.28, + "probability": 0.9473 + }, + { + "start": 11791.86, + "end": 11795.04, + "probability": 0.9776 + }, + { + "start": 11795.48, + "end": 11797.76, + "probability": 0.7252 + }, + { + "start": 11798.64, + "end": 11800.98, + "probability": 0.9252 + }, + { + "start": 11800.98, + "end": 11803.62, + "probability": 0.9961 + }, + { + "start": 11804.44, + "end": 11808.26, + "probability": 0.996 + }, + { + "start": 11808.26, + "end": 11812.72, + "probability": 0.9979 + }, + { + "start": 11813.62, + "end": 11814.26, + "probability": 0.9174 + }, + { + "start": 11815.4, + "end": 11816.5, + "probability": 0.8003 + }, + { + "start": 11816.64, + "end": 11817.04, + "probability": 0.8213 + }, + { + "start": 11817.2, + "end": 11817.98, + "probability": 0.782 + }, + { + "start": 11818.08, + "end": 11819.48, + "probability": 0.9834 + }, + { + "start": 11820.14, + "end": 11824.28, + "probability": 0.9934 + }, + { + "start": 11824.88, + "end": 11828.78, + "probability": 0.9875 + }, + { + "start": 11830.38, + "end": 11833.98, + "probability": 0.9913 + }, + { + "start": 11834.68, + "end": 11839.14, + "probability": 0.9259 + }, + { + "start": 11840.06, + "end": 11843.12, + "probability": 0.9911 + }, + { + "start": 11843.12, + "end": 11846.74, + "probability": 0.964 + }, + { + "start": 11848.12, + "end": 11851.38, + "probability": 0.712 + }, + { + "start": 11852.08, + "end": 11853.6, + "probability": 0.7681 + }, + { + "start": 11853.62, + "end": 11854.38, + "probability": 0.5127 + }, + { + "start": 11855.0, + "end": 11857.44, + "probability": 0.7256 + }, + { + "start": 11864.24, + "end": 11864.72, + "probability": 0.7171 + }, + { + "start": 11864.96, + "end": 11871.62, + "probability": 0.7781 + }, + { + "start": 11871.62, + "end": 11872.36, + "probability": 0.5033 + }, + { + "start": 11873.08, + "end": 11873.28, + "probability": 0.5944 + }, + { + "start": 11873.66, + "end": 11874.86, + "probability": 0.9546 + }, + { + "start": 11877.04, + "end": 11877.82, + "probability": 0.6677 + }, + { + "start": 11878.36, + "end": 11878.62, + "probability": 0.8486 + }, + { + "start": 11879.78, + "end": 11880.5, + "probability": 0.9814 + }, + { + "start": 11881.32, + "end": 11882.26, + "probability": 0.7321 + }, + { + "start": 11883.62, + "end": 11885.82, + "probability": 0.9726 + }, + { + "start": 11887.12, + "end": 11889.08, + "probability": 0.5928 + }, + { + "start": 11890.22, + "end": 11893.24, + "probability": 0.8395 + }, + { + "start": 11893.56, + "end": 11895.07, + "probability": 0.965 + }, + { + "start": 11896.5, + "end": 11896.98, + "probability": 0.8606 + }, + { + "start": 11897.78, + "end": 11901.76, + "probability": 0.9977 + }, + { + "start": 11902.36, + "end": 11905.0, + "probability": 0.8576 + }, + { + "start": 11905.8, + "end": 11906.94, + "probability": 0.7804 + }, + { + "start": 11907.48, + "end": 11911.04, + "probability": 0.8582 + }, + { + "start": 11911.84, + "end": 11914.86, + "probability": 0.938 + }, + { + "start": 11914.86, + "end": 11919.02, + "probability": 0.971 + }, + { + "start": 11919.1, + "end": 11921.54, + "probability": 0.9757 + }, + { + "start": 11922.04, + "end": 11925.42, + "probability": 0.9857 + }, + { + "start": 11926.36, + "end": 11927.58, + "probability": 0.9403 + }, + { + "start": 11928.16, + "end": 11929.32, + "probability": 0.7993 + }, + { + "start": 11929.44, + "end": 11930.54, + "probability": 0.9883 + }, + { + "start": 11930.92, + "end": 11932.88, + "probability": 0.9974 + }, + { + "start": 11933.52, + "end": 11935.16, + "probability": 0.9743 + }, + { + "start": 11935.42, + "end": 11936.26, + "probability": 0.971 + }, + { + "start": 11936.74, + "end": 11937.32, + "probability": 0.9806 + }, + { + "start": 11937.34, + "end": 11937.88, + "probability": 0.5542 + }, + { + "start": 11938.54, + "end": 11941.84, + "probability": 0.955 + }, + { + "start": 11942.44, + "end": 11944.6, + "probability": 0.9959 + }, + { + "start": 11944.94, + "end": 11947.7, + "probability": 0.9591 + }, + { + "start": 11948.44, + "end": 11950.64, + "probability": 0.9839 + }, + { + "start": 11951.6, + "end": 11954.74, + "probability": 0.9607 + }, + { + "start": 11955.26, + "end": 11956.74, + "probability": 0.8021 + }, + { + "start": 11957.32, + "end": 11959.02, + "probability": 0.9961 + }, + { + "start": 11959.54, + "end": 11962.7, + "probability": 0.9524 + }, + { + "start": 11963.36, + "end": 11965.34, + "probability": 0.5736 + }, + { + "start": 11966.18, + "end": 11968.12, + "probability": 0.9951 + }, + { + "start": 11968.48, + "end": 11971.46, + "probability": 0.9773 + }, + { + "start": 11971.94, + "end": 11974.48, + "probability": 0.9351 + }, + { + "start": 11975.22, + "end": 11977.3, + "probability": 0.9895 + }, + { + "start": 11977.74, + "end": 11979.32, + "probability": 0.8983 + }, + { + "start": 11980.42, + "end": 11981.18, + "probability": 0.8495 + }, + { + "start": 11981.58, + "end": 11984.92, + "probability": 0.9513 + }, + { + "start": 11985.46, + "end": 11986.22, + "probability": 0.9144 + }, + { + "start": 11987.06, + "end": 11987.52, + "probability": 0.8679 + }, + { + "start": 11987.72, + "end": 11992.24, + "probability": 0.9865 + }, + { + "start": 11992.62, + "end": 11996.5, + "probability": 0.8003 + }, + { + "start": 11997.4, + "end": 11998.3, + "probability": 0.7957 + }, + { + "start": 11999.04, + "end": 12001.24, + "probability": 0.9708 + }, + { + "start": 12002.16, + "end": 12003.78, + "probability": 0.8016 + }, + { + "start": 12004.58, + "end": 12006.24, + "probability": 0.9611 + }, + { + "start": 12006.8, + "end": 12009.74, + "probability": 0.8698 + }, + { + "start": 12010.56, + "end": 12012.58, + "probability": 0.9269 + }, + { + "start": 12014.74, + "end": 12018.12, + "probability": 0.9094 + }, + { + "start": 12019.08, + "end": 12021.36, + "probability": 0.9982 + }, + { + "start": 12022.18, + "end": 12024.76, + "probability": 0.9709 + }, + { + "start": 12025.72, + "end": 12028.58, + "probability": 0.9319 + }, + { + "start": 12029.3, + "end": 12031.96, + "probability": 0.9959 + }, + { + "start": 12032.66, + "end": 12036.92, + "probability": 0.9815 + }, + { + "start": 12037.1, + "end": 12038.1, + "probability": 0.9135 + }, + { + "start": 12039.72, + "end": 12042.2, + "probability": 0.9478 + }, + { + "start": 12043.22, + "end": 12047.12, + "probability": 0.9909 + }, + { + "start": 12047.48, + "end": 12048.52, + "probability": 0.9376 + }, + { + "start": 12049.1, + "end": 12050.72, + "probability": 0.992 + }, + { + "start": 12051.36, + "end": 12052.87, + "probability": 0.9787 + }, + { + "start": 12053.68, + "end": 12055.7, + "probability": 0.9692 + }, + { + "start": 12056.34, + "end": 12057.5, + "probability": 0.9923 + }, + { + "start": 12058.26, + "end": 12059.16, + "probability": 0.8658 + }, + { + "start": 12059.86, + "end": 12060.98, + "probability": 0.9484 + }, + { + "start": 12062.22, + "end": 12065.16, + "probability": 0.917 + }, + { + "start": 12065.92, + "end": 12066.3, + "probability": 0.8377 + }, + { + "start": 12066.34, + "end": 12066.76, + "probability": 0.9472 + }, + { + "start": 12066.78, + "end": 12071.26, + "probability": 0.9932 + }, + { + "start": 12072.44, + "end": 12075.74, + "probability": 0.981 + }, + { + "start": 12076.56, + "end": 12079.76, + "probability": 0.9982 + }, + { + "start": 12080.46, + "end": 12083.52, + "probability": 0.9734 + }, + { + "start": 12084.44, + "end": 12088.36, + "probability": 0.9911 + }, + { + "start": 12089.04, + "end": 12093.06, + "probability": 0.9981 + }, + { + "start": 12093.06, + "end": 12098.1, + "probability": 0.996 + }, + { + "start": 12099.08, + "end": 12100.28, + "probability": 0.8711 + }, + { + "start": 12101.0, + "end": 12104.36, + "probability": 0.9741 + }, + { + "start": 12105.0, + "end": 12105.8, + "probability": 0.8294 + }, + { + "start": 12107.36, + "end": 12111.04, + "probability": 0.9775 + }, + { + "start": 12111.58, + "end": 12114.34, + "probability": 0.9985 + }, + { + "start": 12114.96, + "end": 12115.12, + "probability": 0.5169 + }, + { + "start": 12115.24, + "end": 12118.26, + "probability": 0.9868 + }, + { + "start": 12119.18, + "end": 12123.22, + "probability": 0.9961 + }, + { + "start": 12123.34, + "end": 12123.78, + "probability": 0.8745 + }, + { + "start": 12123.98, + "end": 12126.22, + "probability": 0.9546 + }, + { + "start": 12127.08, + "end": 12129.48, + "probability": 0.9766 + }, + { + "start": 12130.04, + "end": 12132.08, + "probability": 0.9313 + }, + { + "start": 12133.0, + "end": 12138.0, + "probability": 0.9922 + }, + { + "start": 12138.0, + "end": 12141.82, + "probability": 0.9925 + }, + { + "start": 12142.92, + "end": 12145.66, + "probability": 0.8765 + }, + { + "start": 12146.18, + "end": 12151.04, + "probability": 0.9956 + }, + { + "start": 12151.92, + "end": 12154.2, + "probability": 0.9696 + }, + { + "start": 12154.9, + "end": 12157.92, + "probability": 0.992 + }, + { + "start": 12158.72, + "end": 12160.26, + "probability": 0.9795 + }, + { + "start": 12161.2, + "end": 12162.12, + "probability": 0.7508 + }, + { + "start": 12162.32, + "end": 12163.52, + "probability": 0.7634 + }, + { + "start": 12163.86, + "end": 12165.28, + "probability": 0.9897 + }, + { + "start": 12165.4, + "end": 12168.66, + "probability": 0.9823 + }, + { + "start": 12168.68, + "end": 12171.44, + "probability": 0.9103 + }, + { + "start": 12172.14, + "end": 12176.1, + "probability": 0.9967 + }, + { + "start": 12176.26, + "end": 12180.38, + "probability": 0.9911 + }, + { + "start": 12181.34, + "end": 12184.12, + "probability": 0.9854 + }, + { + "start": 12184.5, + "end": 12187.08, + "probability": 0.0155 + }, + { + "start": 12187.24, + "end": 12187.56, + "probability": 0.3 + }, + { + "start": 12187.56, + "end": 12187.56, + "probability": 0.3755 + }, + { + "start": 12187.56, + "end": 12187.82, + "probability": 0.1838 + }, + { + "start": 12189.56, + "end": 12190.1, + "probability": 0.6953 + }, + { + "start": 12190.9, + "end": 12190.9, + "probability": 0.2301 + }, + { + "start": 12190.9, + "end": 12194.34, + "probability": 0.993 + }, + { + "start": 12195.34, + "end": 12197.5, + "probability": 0.9879 + }, + { + "start": 12197.5, + "end": 12199.42, + "probability": 0.9741 + }, + { + "start": 12200.4, + "end": 12201.38, + "probability": 0.7923 + }, + { + "start": 12201.96, + "end": 12203.36, + "probability": 0.6984 + }, + { + "start": 12203.42, + "end": 12205.06, + "probability": 0.9824 + }, + { + "start": 12205.5, + "end": 12208.54, + "probability": 0.9869 + }, + { + "start": 12209.12, + "end": 12212.3, + "probability": 0.849 + }, + { + "start": 12212.3, + "end": 12216.1, + "probability": 0.9951 + }, + { + "start": 12216.8, + "end": 12221.06, + "probability": 0.9912 + }, + { + "start": 12221.06, + "end": 12226.8, + "probability": 0.9963 + }, + { + "start": 12227.12, + "end": 12230.92, + "probability": 0.9009 + }, + { + "start": 12231.06, + "end": 12232.66, + "probability": 0.8421 + }, + { + "start": 12233.94, + "end": 12235.98, + "probability": 0.6883 + }, + { + "start": 12237.1, + "end": 12238.16, + "probability": 0.8455 + }, + { + "start": 12238.96, + "end": 12241.96, + "probability": 0.9864 + }, + { + "start": 12242.56, + "end": 12245.6, + "probability": 0.9633 + }, + { + "start": 12246.12, + "end": 12251.06, + "probability": 0.942 + }, + { + "start": 12251.92, + "end": 12254.9, + "probability": 0.9988 + }, + { + "start": 12254.9, + "end": 12257.92, + "probability": 0.9736 + }, + { + "start": 12258.52, + "end": 12259.62, + "probability": 0.9364 + }, + { + "start": 12259.74, + "end": 12263.08, + "probability": 0.9413 + }, + { + "start": 12264.06, + "end": 12267.0, + "probability": 0.9589 + }, + { + "start": 12267.52, + "end": 12270.84, + "probability": 0.9968 + }, + { + "start": 12271.3, + "end": 12276.36, + "probability": 0.9834 + }, + { + "start": 12277.0, + "end": 12278.88, + "probability": 0.8077 + }, + { + "start": 12279.48, + "end": 12281.26, + "probability": 0.7048 + }, + { + "start": 12281.44, + "end": 12283.02, + "probability": 0.7143 + }, + { + "start": 12283.46, + "end": 12285.2, + "probability": 0.7276 + }, + { + "start": 12285.86, + "end": 12287.24, + "probability": 0.9686 + }, + { + "start": 12288.14, + "end": 12288.86, + "probability": 0.8529 + }, + { + "start": 12288.96, + "end": 12291.98, + "probability": 0.9963 + }, + { + "start": 12292.8, + "end": 12296.08, + "probability": 0.9922 + }, + { + "start": 12296.46, + "end": 12298.06, + "probability": 0.8543 + }, + { + "start": 12299.2, + "end": 12303.82, + "probability": 0.9969 + }, + { + "start": 12305.06, + "end": 12310.34, + "probability": 0.996 + }, + { + "start": 12310.34, + "end": 12316.3, + "probability": 0.988 + }, + { + "start": 12316.76, + "end": 12318.82, + "probability": 0.9945 + }, + { + "start": 12319.28, + "end": 12322.08, + "probability": 0.9956 + }, + { + "start": 12322.08, + "end": 12324.46, + "probability": 0.9938 + }, + { + "start": 12325.76, + "end": 12328.08, + "probability": 0.998 + }, + { + "start": 12328.8, + "end": 12333.42, + "probability": 0.998 + }, + { + "start": 12333.98, + "end": 12337.32, + "probability": 0.9524 + }, + { + "start": 12338.04, + "end": 12338.5, + "probability": 0.7672 + }, + { + "start": 12339.3, + "end": 12340.04, + "probability": 0.6338 + }, + { + "start": 12340.82, + "end": 12342.08, + "probability": 0.3711 + }, + { + "start": 12342.14, + "end": 12344.56, + "probability": 0.7655 + }, + { + "start": 12363.28, + "end": 12364.24, + "probability": 0.5719 + }, + { + "start": 12365.42, + "end": 12366.92, + "probability": 0.9124 + }, + { + "start": 12370.64, + "end": 12371.58, + "probability": 0.484 + }, + { + "start": 12371.64, + "end": 12375.02, + "probability": 0.8448 + }, + { + "start": 12375.9, + "end": 12376.4, + "probability": 0.7609 + }, + { + "start": 12376.54, + "end": 12380.4, + "probability": 0.9185 + }, + { + "start": 12381.9, + "end": 12385.02, + "probability": 0.9913 + }, + { + "start": 12385.8, + "end": 12388.48, + "probability": 0.9226 + }, + { + "start": 12388.66, + "end": 12389.58, + "probability": 0.7961 + }, + { + "start": 12389.66, + "end": 12390.28, + "probability": 0.5147 + }, + { + "start": 12390.96, + "end": 12393.6, + "probability": 0.8128 + }, + { + "start": 12394.54, + "end": 12395.28, + "probability": 0.6185 + }, + { + "start": 12395.42, + "end": 12398.56, + "probability": 0.8193 + }, + { + "start": 12399.42, + "end": 12400.98, + "probability": 0.5696 + }, + { + "start": 12401.92, + "end": 12404.8, + "probability": 0.9895 + }, + { + "start": 12404.8, + "end": 12408.48, + "probability": 0.9294 + }, + { + "start": 12409.8, + "end": 12415.22, + "probability": 0.917 + }, + { + "start": 12415.22, + "end": 12422.0, + "probability": 0.9408 + }, + { + "start": 12422.84, + "end": 12424.88, + "probability": 0.9797 + }, + { + "start": 12426.04, + "end": 12430.04, + "probability": 0.9816 + }, + { + "start": 12430.82, + "end": 12434.24, + "probability": 0.924 + }, + { + "start": 12435.22, + "end": 12440.04, + "probability": 0.9954 + }, + { + "start": 12440.7, + "end": 12443.28, + "probability": 0.9435 + }, + { + "start": 12443.48, + "end": 12447.36, + "probability": 0.6059 + }, + { + "start": 12448.0, + "end": 12449.8, + "probability": 0.9486 + }, + { + "start": 12450.66, + "end": 12455.94, + "probability": 0.9865 + }, + { + "start": 12456.56, + "end": 12458.72, + "probability": 0.9951 + }, + { + "start": 12459.64, + "end": 12464.56, + "probability": 0.8799 + }, + { + "start": 12465.12, + "end": 12468.34, + "probability": 0.8823 + }, + { + "start": 12470.1, + "end": 12474.78, + "probability": 0.8882 + }, + { + "start": 12474.94, + "end": 12476.34, + "probability": 0.7267 + }, + { + "start": 12477.06, + "end": 12481.68, + "probability": 0.9487 + }, + { + "start": 12481.8, + "end": 12486.24, + "probability": 0.9374 + }, + { + "start": 12487.22, + "end": 12489.76, + "probability": 0.9434 + }, + { + "start": 12490.28, + "end": 12491.68, + "probability": 0.8879 + }, + { + "start": 12492.92, + "end": 12495.34, + "probability": 0.9943 + }, + { + "start": 12495.34, + "end": 12498.22, + "probability": 0.9971 + }, + { + "start": 12499.6, + "end": 12501.18, + "probability": 0.9074 + }, + { + "start": 12502.14, + "end": 12503.2, + "probability": 0.9473 + }, + { + "start": 12504.06, + "end": 12506.34, + "probability": 0.9556 + }, + { + "start": 12507.5, + "end": 12510.28, + "probability": 0.952 + }, + { + "start": 12510.28, + "end": 12512.38, + "probability": 0.8229 + }, + { + "start": 12513.92, + "end": 12515.9, + "probability": 0.978 + }, + { + "start": 12516.46, + "end": 12521.18, + "probability": 0.9956 + }, + { + "start": 12522.58, + "end": 12524.08, + "probability": 0.7367 + }, + { + "start": 12524.98, + "end": 12525.44, + "probability": 0.29 + }, + { + "start": 12525.66, + "end": 12528.98, + "probability": 0.7259 + }, + { + "start": 12529.0, + "end": 12532.9, + "probability": 0.9906 + }, + { + "start": 12533.74, + "end": 12535.82, + "probability": 0.9271 + }, + { + "start": 12536.94, + "end": 12544.42, + "probability": 0.9686 + }, + { + "start": 12545.2, + "end": 12548.34, + "probability": 0.9536 + }, + { + "start": 12549.22, + "end": 12551.76, + "probability": 0.9203 + }, + { + "start": 12552.32, + "end": 12556.72, + "probability": 0.9567 + }, + { + "start": 12557.74, + "end": 12559.56, + "probability": 0.9973 + }, + { + "start": 12560.78, + "end": 12565.1, + "probability": 0.7209 + }, + { + "start": 12565.8, + "end": 12568.96, + "probability": 0.6659 + }, + { + "start": 12569.72, + "end": 12572.92, + "probability": 0.7656 + }, + { + "start": 12573.78, + "end": 12578.52, + "probability": 0.9891 + }, + { + "start": 12579.9, + "end": 12582.46, + "probability": 0.519 + }, + { + "start": 12582.48, + "end": 12585.38, + "probability": 0.7674 + }, + { + "start": 12586.1, + "end": 12587.2, + "probability": 0.7511 + }, + { + "start": 12587.9, + "end": 12591.12, + "probability": 0.6232 + }, + { + "start": 12591.22, + "end": 12592.12, + "probability": 0.5776 + }, + { + "start": 12593.06, + "end": 12595.56, + "probability": 0.8216 + }, + { + "start": 12595.76, + "end": 12596.88, + "probability": 0.4959 + }, + { + "start": 12597.68, + "end": 12598.28, + "probability": 0.8844 + }, + { + "start": 12598.8, + "end": 12604.52, + "probability": 0.9611 + }, + { + "start": 12605.38, + "end": 12609.12, + "probability": 0.9768 + }, + { + "start": 12609.12, + "end": 12612.62, + "probability": 0.8855 + }, + { + "start": 12613.14, + "end": 12614.99, + "probability": 0.9961 + }, + { + "start": 12615.9, + "end": 12617.34, + "probability": 0.9646 + }, + { + "start": 12617.5, + "end": 12619.86, + "probability": 0.7782 + }, + { + "start": 12620.5, + "end": 12622.76, + "probability": 0.7631 + }, + { + "start": 12623.42, + "end": 12626.3, + "probability": 0.7488 + }, + { + "start": 12627.2, + "end": 12629.98, + "probability": 0.9688 + }, + { + "start": 12629.98, + "end": 12636.46, + "probability": 0.8666 + }, + { + "start": 12637.74, + "end": 12639.38, + "probability": 0.6043 + }, + { + "start": 12640.62, + "end": 12643.62, + "probability": 0.7151 + }, + { + "start": 12643.96, + "end": 12647.42, + "probability": 0.9471 + }, + { + "start": 12647.42, + "end": 12650.76, + "probability": 0.9825 + }, + { + "start": 12651.62, + "end": 12653.78, + "probability": 0.9316 + }, + { + "start": 12653.84, + "end": 12655.16, + "probability": 0.6721 + }, + { + "start": 12656.38, + "end": 12658.32, + "probability": 0.835 + }, + { + "start": 12658.34, + "end": 12661.14, + "probability": 0.9709 + }, + { + "start": 12661.8, + "end": 12663.9, + "probability": 0.9521 + }, + { + "start": 12666.5, + "end": 12669.8, + "probability": 0.725 + }, + { + "start": 12670.06, + "end": 12670.58, + "probability": 0.6029 + }, + { + "start": 12670.74, + "end": 12671.28, + "probability": 0.8987 + }, + { + "start": 12671.5, + "end": 12672.04, + "probability": 0.2726 + }, + { + "start": 12672.16, + "end": 12673.28, + "probability": 0.6316 + }, + { + "start": 12673.46, + "end": 12674.54, + "probability": 0.782 + }, + { + "start": 12675.68, + "end": 12679.08, + "probability": 0.8094 + }, + { + "start": 12679.7, + "end": 12682.68, + "probability": 0.9261 + }, + { + "start": 12684.28, + "end": 12684.92, + "probability": 0.7556 + }, + { + "start": 12685.44, + "end": 12687.24, + "probability": 0.9458 + }, + { + "start": 12687.98, + "end": 12692.72, + "probability": 0.7136 + }, + { + "start": 12693.9, + "end": 12694.62, + "probability": 0.9395 + }, + { + "start": 12697.5, + "end": 12702.28, + "probability": 0.9683 + }, + { + "start": 12702.28, + "end": 12705.5, + "probability": 0.9931 + }, + { + "start": 12705.64, + "end": 12706.24, + "probability": 0.6644 + }, + { + "start": 12706.76, + "end": 12710.76, + "probability": 0.9848 + }, + { + "start": 12711.28, + "end": 12715.5, + "probability": 0.8636 + }, + { + "start": 12716.28, + "end": 12720.3, + "probability": 0.6993 + }, + { + "start": 12720.82, + "end": 12723.58, + "probability": 0.6935 + }, + { + "start": 12724.26, + "end": 12724.38, + "probability": 0.2143 + }, + { + "start": 12724.38, + "end": 12726.8, + "probability": 0.8173 + }, + { + "start": 12727.42, + "end": 12731.06, + "probability": 0.715 + }, + { + "start": 12731.96, + "end": 12733.82, + "probability": 0.949 + }, + { + "start": 12734.52, + "end": 12738.12, + "probability": 0.9619 + }, + { + "start": 12738.66, + "end": 12742.0, + "probability": 0.9374 + }, + { + "start": 12742.34, + "end": 12747.24, + "probability": 0.7681 + }, + { + "start": 12747.7, + "end": 12749.62, + "probability": 0.9949 + }, + { + "start": 12750.7, + "end": 12751.68, + "probability": 0.7001 + }, + { + "start": 12752.78, + "end": 12754.78, + "probability": 0.9601 + }, + { + "start": 12755.3, + "end": 12756.82, + "probability": 0.9968 + }, + { + "start": 12757.42, + "end": 12758.46, + "probability": 0.7092 + }, + { + "start": 12759.08, + "end": 12763.94, + "probability": 0.9762 + }, + { + "start": 12763.94, + "end": 12768.68, + "probability": 0.7436 + }, + { + "start": 12769.34, + "end": 12773.62, + "probability": 0.9684 + }, + { + "start": 12773.76, + "end": 12774.04, + "probability": 0.7759 + }, + { + "start": 12774.84, + "end": 12776.7, + "probability": 0.803 + }, + { + "start": 12776.86, + "end": 12777.98, + "probability": 0.6867 + }, + { + "start": 12788.44, + "end": 12790.66, + "probability": 0.8745 + }, + { + "start": 12790.88, + "end": 12795.66, + "probability": 0.9138 + }, + { + "start": 12797.6, + "end": 12800.0, + "probability": 0.5474 + }, + { + "start": 12800.2, + "end": 12800.26, + "probability": 0.6109 + }, + { + "start": 12800.26, + "end": 12801.66, + "probability": 0.8139 + }, + { + "start": 12801.76, + "end": 12802.84, + "probability": 0.9246 + }, + { + "start": 12802.96, + "end": 12804.26, + "probability": 0.9647 + }, + { + "start": 12805.28, + "end": 12808.38, + "probability": 0.7075 + }, + { + "start": 12809.36, + "end": 12812.2, + "probability": 0.9991 + }, + { + "start": 12812.72, + "end": 12815.78, + "probability": 0.8777 + }, + { + "start": 12817.04, + "end": 12820.38, + "probability": 0.9974 + }, + { + "start": 12821.28, + "end": 12827.6, + "probability": 0.9951 + }, + { + "start": 12828.44, + "end": 12829.44, + "probability": 0.9127 + }, + { + "start": 12830.24, + "end": 12831.18, + "probability": 0.9659 + }, + { + "start": 12832.16, + "end": 12836.0, + "probability": 0.9085 + }, + { + "start": 12836.76, + "end": 12840.26, + "probability": 0.711 + }, + { + "start": 12841.26, + "end": 12845.44, + "probability": 0.9459 + }, + { + "start": 12846.48, + "end": 12847.16, + "probability": 0.4299 + }, + { + "start": 12849.51, + "end": 12852.36, + "probability": 0.9896 + }, + { + "start": 12852.48, + "end": 12853.04, + "probability": 0.6417 + }, + { + "start": 12853.2, + "end": 12853.56, + "probability": 0.5646 + }, + { + "start": 12853.62, + "end": 12854.96, + "probability": 0.988 + }, + { + "start": 12857.2, + "end": 12860.32, + "probability": 0.7812 + }, + { + "start": 12861.2, + "end": 12861.72, + "probability": 0.8484 + }, + { + "start": 12862.52, + "end": 12864.28, + "probability": 0.9534 + }, + { + "start": 12865.42, + "end": 12867.28, + "probability": 0.8118 + }, + { + "start": 12867.36, + "end": 12868.14, + "probability": 0.7584 + }, + { + "start": 12868.3, + "end": 12869.7, + "probability": 0.8284 + }, + { + "start": 12871.62, + "end": 12876.28, + "probability": 0.9902 + }, + { + "start": 12878.08, + "end": 12879.54, + "probability": 0.8372 + }, + { + "start": 12880.86, + "end": 12881.9, + "probability": 0.9464 + }, + { + "start": 12882.78, + "end": 12884.68, + "probability": 0.9982 + }, + { + "start": 12886.1, + "end": 12888.32, + "probability": 0.7261 + }, + { + "start": 12888.92, + "end": 12890.66, + "probability": 0.8628 + }, + { + "start": 12891.9, + "end": 12892.68, + "probability": 0.664 + }, + { + "start": 12893.5, + "end": 12895.02, + "probability": 0.8445 + }, + { + "start": 12895.94, + "end": 12896.04, + "probability": 0.9531 + }, + { + "start": 12896.8, + "end": 12898.04, + "probability": 0.9951 + }, + { + "start": 12898.3, + "end": 12899.04, + "probability": 0.8948 + }, + { + "start": 12899.12, + "end": 12899.96, + "probability": 0.991 + }, + { + "start": 12900.28, + "end": 12901.22, + "probability": 0.9357 + }, + { + "start": 12901.64, + "end": 12902.3, + "probability": 0.9642 + }, + { + "start": 12902.63, + "end": 12904.86, + "probability": 0.9189 + }, + { + "start": 12909.86, + "end": 12910.98, + "probability": 0.875 + }, + { + "start": 12912.6, + "end": 12916.94, + "probability": 0.999 + }, + { + "start": 12917.0, + "end": 12920.88, + "probability": 0.9956 + }, + { + "start": 12921.34, + "end": 12922.82, + "probability": 0.9616 + }, + { + "start": 12923.52, + "end": 12925.14, + "probability": 0.9578 + }, + { + "start": 12926.16, + "end": 12928.58, + "probability": 0.9844 + }, + { + "start": 12929.7, + "end": 12931.98, + "probability": 0.9847 + }, + { + "start": 12933.68, + "end": 12934.5, + "probability": 0.7383 + }, + { + "start": 12935.3, + "end": 12938.86, + "probability": 0.9741 + }, + { + "start": 12939.98, + "end": 12941.78, + "probability": 0.9836 + }, + { + "start": 12942.06, + "end": 12943.38, + "probability": 0.8994 + }, + { + "start": 12944.7, + "end": 12945.7, + "probability": 0.9944 + }, + { + "start": 12946.24, + "end": 12947.94, + "probability": 0.9644 + }, + { + "start": 12948.84, + "end": 12949.7, + "probability": 0.9287 + }, + { + "start": 12950.28, + "end": 12951.72, + "probability": 0.9497 + }, + { + "start": 12952.84, + "end": 12954.08, + "probability": 0.9429 + }, + { + "start": 12955.24, + "end": 12958.16, + "probability": 0.9766 + }, + { + "start": 12959.86, + "end": 12960.36, + "probability": 0.8193 + }, + { + "start": 12960.44, + "end": 12960.62, + "probability": 0.9494 + }, + { + "start": 12960.72, + "end": 12965.7, + "probability": 0.9951 + }, + { + "start": 12965.7, + "end": 12969.28, + "probability": 0.8231 + }, + { + "start": 12969.36, + "end": 12971.64, + "probability": 0.8854 + }, + { + "start": 12973.88, + "end": 12976.12, + "probability": 0.9982 + }, + { + "start": 12979.96, + "end": 12981.32, + "probability": 0.9731 + }, + { + "start": 12982.42, + "end": 12984.06, + "probability": 0.9766 + }, + { + "start": 12985.12, + "end": 12986.18, + "probability": 0.6289 + }, + { + "start": 12986.42, + "end": 12994.12, + "probability": 0.9946 + }, + { + "start": 12995.74, + "end": 12998.32, + "probability": 0.665 + }, + { + "start": 13000.58, + "end": 13004.1, + "probability": 0.933 + }, + { + "start": 13005.1, + "end": 13006.58, + "probability": 0.9801 + }, + { + "start": 13007.36, + "end": 13010.1, + "probability": 0.9854 + }, + { + "start": 13011.84, + "end": 13013.42, + "probability": 0.8316 + }, + { + "start": 13013.64, + "end": 13016.86, + "probability": 0.9863 + }, + { + "start": 13017.38, + "end": 13020.16, + "probability": 0.9614 + }, + { + "start": 13020.7, + "end": 13023.06, + "probability": 0.9259 + }, + { + "start": 13024.02, + "end": 13025.12, + "probability": 0.4363 + }, + { + "start": 13025.7, + "end": 13027.7, + "probability": 0.9219 + }, + { + "start": 13027.76, + "end": 13028.98, + "probability": 0.9283 + }, + { + "start": 13029.88, + "end": 13032.48, + "probability": 0.9706 + }, + { + "start": 13032.76, + "end": 13034.32, + "probability": 0.9857 + }, + { + "start": 13034.34, + "end": 13035.34, + "probability": 0.7565 + }, + { + "start": 13037.38, + "end": 13039.28, + "probability": 0.9457 + }, + { + "start": 13039.46, + "end": 13042.17, + "probability": 0.9595 + }, + { + "start": 13043.56, + "end": 13044.84, + "probability": 0.7832 + }, + { + "start": 13045.36, + "end": 13046.62, + "probability": 0.9839 + }, + { + "start": 13046.88, + "end": 13049.2, + "probability": 0.9917 + }, + { + "start": 13049.38, + "end": 13051.04, + "probability": 0.6648 + }, + { + "start": 13051.62, + "end": 13053.36, + "probability": 0.9944 + }, + { + "start": 13054.1, + "end": 13055.96, + "probability": 0.9854 + }, + { + "start": 13056.54, + "end": 13057.54, + "probability": 0.9671 + }, + { + "start": 13058.12, + "end": 13060.3, + "probability": 0.9909 + }, + { + "start": 13060.46, + "end": 13063.38, + "probability": 0.9839 + }, + { + "start": 13063.86, + "end": 13064.68, + "probability": 0.6198 + }, + { + "start": 13065.1, + "end": 13067.16, + "probability": 0.709 + }, + { + "start": 13067.92, + "end": 13069.4, + "probability": 0.9882 + }, + { + "start": 13070.22, + "end": 13075.48, + "probability": 0.9901 + }, + { + "start": 13076.96, + "end": 13078.64, + "probability": 0.9744 + }, + { + "start": 13078.7, + "end": 13079.7, + "probability": 0.9884 + }, + { + "start": 13079.78, + "end": 13085.14, + "probability": 0.9685 + }, + { + "start": 13085.24, + "end": 13087.12, + "probability": 0.9836 + }, + { + "start": 13088.8, + "end": 13092.38, + "probability": 0.9977 + }, + { + "start": 13092.38, + "end": 13095.74, + "probability": 0.8626 + }, + { + "start": 13095.84, + "end": 13097.68, + "probability": 0.9182 + }, + { + "start": 13097.76, + "end": 13101.04, + "probability": 0.8354 + }, + { + "start": 13101.1, + "end": 13103.74, + "probability": 0.7114 + }, + { + "start": 13104.26, + "end": 13108.04, + "probability": 0.8933 + }, + { + "start": 13108.68, + "end": 13110.6, + "probability": 0.8634 + }, + { + "start": 13111.72, + "end": 13112.76, + "probability": 0.824 + }, + { + "start": 13113.04, + "end": 13114.48, + "probability": 0.5369 + }, + { + "start": 13114.48, + "end": 13118.9, + "probability": 0.8261 + }, + { + "start": 13119.4, + "end": 13123.68, + "probability": 0.9807 + }, + { + "start": 13124.38, + "end": 13127.58, + "probability": 0.9814 + }, + { + "start": 13128.02, + "end": 13129.46, + "probability": 0.6839 + }, + { + "start": 13130.9, + "end": 13133.58, + "probability": 0.9199 + }, + { + "start": 13133.78, + "end": 13135.43, + "probability": 0.9321 + }, + { + "start": 13135.82, + "end": 13136.52, + "probability": 0.9592 + }, + { + "start": 13136.56, + "end": 13137.9, + "probability": 0.9462 + }, + { + "start": 13139.92, + "end": 13141.3, + "probability": 0.9729 + }, + { + "start": 13141.34, + "end": 13141.98, + "probability": 0.9376 + }, + { + "start": 13141.98, + "end": 13143.62, + "probability": 0.9932 + }, + { + "start": 13143.8, + "end": 13144.44, + "probability": 0.7652 + }, + { + "start": 13144.9, + "end": 13145.98, + "probability": 0.422 + }, + { + "start": 13146.02, + "end": 13146.56, + "probability": 0.842 + }, + { + "start": 13146.8, + "end": 13147.6, + "probability": 0.7185 + }, + { + "start": 13148.14, + "end": 13150.34, + "probability": 0.8529 + }, + { + "start": 13151.96, + "end": 13159.1, + "probability": 0.9339 + }, + { + "start": 13160.16, + "end": 13161.32, + "probability": 0.9887 + }, + { + "start": 13162.0, + "end": 13164.62, + "probability": 0.8037 + }, + { + "start": 13165.24, + "end": 13166.72, + "probability": 0.9784 + }, + { + "start": 13167.28, + "end": 13168.04, + "probability": 0.6689 + }, + { + "start": 13168.72, + "end": 13171.48, + "probability": 0.9752 + }, + { + "start": 13171.48, + "end": 13172.88, + "probability": 0.9961 + }, + { + "start": 13172.96, + "end": 13175.34, + "probability": 0.9958 + }, + { + "start": 13175.9, + "end": 13177.4, + "probability": 0.6918 + }, + { + "start": 13177.96, + "end": 13180.16, + "probability": 0.9922 + }, + { + "start": 13180.26, + "end": 13180.9, + "probability": 0.3163 + }, + { + "start": 13181.54, + "end": 13182.7, + "probability": 0.9645 + }, + { + "start": 13183.7, + "end": 13185.9, + "probability": 0.9087 + }, + { + "start": 13186.12, + "end": 13188.32, + "probability": 0.9022 + }, + { + "start": 13188.5, + "end": 13189.26, + "probability": 0.902 + }, + { + "start": 13189.36, + "end": 13190.42, + "probability": 0.9784 + }, + { + "start": 13190.94, + "end": 13193.92, + "probability": 0.9939 + }, + { + "start": 13195.36, + "end": 13196.0, + "probability": 0.4305 + }, + { + "start": 13196.04, + "end": 13197.2, + "probability": 0.933 + }, + { + "start": 13197.24, + "end": 13201.66, + "probability": 0.9946 + }, + { + "start": 13203.2, + "end": 13204.31, + "probability": 0.7072 + }, + { + "start": 13204.94, + "end": 13205.82, + "probability": 0.9312 + }, + { + "start": 13206.02, + "end": 13209.6, + "probability": 0.9379 + }, + { + "start": 13209.76, + "end": 13210.82, + "probability": 0.8395 + }, + { + "start": 13210.96, + "end": 13213.18, + "probability": 0.9934 + }, + { + "start": 13213.84, + "end": 13216.04, + "probability": 0.9126 + }, + { + "start": 13216.34, + "end": 13219.2, + "probability": 0.8528 + }, + { + "start": 13219.78, + "end": 13220.34, + "probability": 0.9128 + }, + { + "start": 13221.14, + "end": 13226.38, + "probability": 0.4504 + }, + { + "start": 13226.38, + "end": 13230.72, + "probability": 0.7801 + }, + { + "start": 13231.9, + "end": 13236.88, + "probability": 0.6605 + }, + { + "start": 13236.88, + "end": 13242.0, + "probability": 0.9647 + }, + { + "start": 13242.88, + "end": 13246.52, + "probability": 0.8013 + }, + { + "start": 13247.28, + "end": 13252.0, + "probability": 0.9789 + }, + { + "start": 13252.66, + "end": 13257.88, + "probability": 0.9699 + }, + { + "start": 13258.62, + "end": 13259.4, + "probability": 0.9576 + }, + { + "start": 13260.0, + "end": 13262.88, + "probability": 0.9621 + }, + { + "start": 13263.42, + "end": 13265.64, + "probability": 0.5434 + }, + { + "start": 13266.7, + "end": 13269.58, + "probability": 0.78 + }, + { + "start": 13270.14, + "end": 13273.16, + "probability": 0.8171 + }, + { + "start": 13274.2, + "end": 13276.84, + "probability": 0.7521 + }, + { + "start": 13277.96, + "end": 13281.82, + "probability": 0.6314 + }, + { + "start": 13282.54, + "end": 13285.96, + "probability": 0.5569 + }, + { + "start": 13286.96, + "end": 13290.74, + "probability": 0.9519 + }, + { + "start": 13292.38, + "end": 13294.36, + "probability": 0.6916 + }, + { + "start": 13295.28, + "end": 13299.72, + "probability": 0.563 + }, + { + "start": 13299.72, + "end": 13305.22, + "probability": 0.5224 + }, + { + "start": 13305.94, + "end": 13311.28, + "probability": 0.7701 + }, + { + "start": 13312.0, + "end": 13317.64, + "probability": 0.7515 + }, + { + "start": 13318.14, + "end": 13320.44, + "probability": 0.9861 + }, + { + "start": 13320.5, + "end": 13324.88, + "probability": 0.9914 + }, + { + "start": 13324.88, + "end": 13328.28, + "probability": 0.9976 + }, + { + "start": 13328.6, + "end": 13328.9, + "probability": 0.7469 + }, + { + "start": 13330.1, + "end": 13331.4, + "probability": 0.5908 + }, + { + "start": 13331.78, + "end": 13332.92, + "probability": 0.9229 + }, + { + "start": 13334.0, + "end": 13337.42, + "probability": 0.842 + }, + { + "start": 13337.94, + "end": 13338.64, + "probability": 0.5711 + }, + { + "start": 13339.56, + "end": 13340.56, + "probability": 0.5685 + }, + { + "start": 13340.64, + "end": 13343.76, + "probability": 0.9412 + }, + { + "start": 13343.76, + "end": 13348.34, + "probability": 0.9685 + }, + { + "start": 13349.12, + "end": 13350.12, + "probability": 0.964 + }, + { + "start": 13351.0, + "end": 13351.42, + "probability": 0.3989 + }, + { + "start": 13351.6, + "end": 13354.24, + "probability": 0.6145 + }, + { + "start": 13355.0, + "end": 13357.26, + "probability": 0.0288 + }, + { + "start": 13357.94, + "end": 13359.16, + "probability": 0.4308 + }, + { + "start": 13359.8, + "end": 13359.8, + "probability": 0.0018 + }, + { + "start": 13362.42, + "end": 13364.38, + "probability": 0.2562 + }, + { + "start": 13364.72, + "end": 13366.16, + "probability": 0.5591 + }, + { + "start": 13366.32, + "end": 13368.36, + "probability": 0.5807 + }, + { + "start": 13370.2, + "end": 13373.0, + "probability": 0.0176 + }, + { + "start": 13373.06, + "end": 13374.63, + "probability": 0.7822 + }, + { + "start": 13375.34, + "end": 13376.82, + "probability": 0.583 + }, + { + "start": 13377.54, + "end": 13379.04, + "probability": 0.2337 + }, + { + "start": 13381.12, + "end": 13381.44, + "probability": 0.5365 + }, + { + "start": 13381.66, + "end": 13382.8, + "probability": 0.8182 + }, + { + "start": 13382.96, + "end": 13383.7, + "probability": 0.7354 + }, + { + "start": 13383.82, + "end": 13386.22, + "probability": 0.9941 + }, + { + "start": 13387.1, + "end": 13392.44, + "probability": 0.988 + }, + { + "start": 13392.54, + "end": 13394.32, + "probability": 0.8878 + }, + { + "start": 13395.0, + "end": 13396.02, + "probability": 0.8824 + }, + { + "start": 13396.9, + "end": 13400.18, + "probability": 0.9434 + }, + { + "start": 13401.5, + "end": 13404.5, + "probability": 0.8763 + }, + { + "start": 13405.0, + "end": 13407.48, + "probability": 0.7696 + }, + { + "start": 13408.08, + "end": 13411.1, + "probability": 0.8267 + }, + { + "start": 13411.68, + "end": 13413.38, + "probability": 0.6733 + }, + { + "start": 13414.62, + "end": 13416.28, + "probability": 0.6287 + }, + { + "start": 13416.96, + "end": 13417.98, + "probability": 0.3089 + }, + { + "start": 13420.34, + "end": 13424.47, + "probability": 0.8113 + }, + { + "start": 13424.58, + "end": 13429.0, + "probability": 0.7216 + }, + { + "start": 13429.36, + "end": 13430.56, + "probability": 0.7176 + }, + { + "start": 13430.82, + "end": 13431.64, + "probability": 0.0711 + }, + { + "start": 13432.46, + "end": 13434.83, + "probability": 0.6003 + }, + { + "start": 13436.0, + "end": 13437.23, + "probability": 0.9385 + }, + { + "start": 13438.24, + "end": 13439.94, + "probability": 0.9969 + }, + { + "start": 13442.66, + "end": 13445.8, + "probability": 0.647 + }, + { + "start": 13447.78, + "end": 13451.02, + "probability": 0.7225 + }, + { + "start": 13451.44, + "end": 13452.16, + "probability": 0.704 + }, + { + "start": 13453.12, + "end": 13453.88, + "probability": 0.7129 + }, + { + "start": 13454.1, + "end": 13458.42, + "probability": 0.9122 + }, + { + "start": 13459.6, + "end": 13463.34, + "probability": 0.9945 + }, + { + "start": 13463.34, + "end": 13466.48, + "probability": 0.9989 + }, + { + "start": 13467.76, + "end": 13468.6, + "probability": 0.8793 + }, + { + "start": 13470.62, + "end": 13471.56, + "probability": 0.9392 + }, + { + "start": 13475.68, + "end": 13477.52, + "probability": 0.8884 + }, + { + "start": 13479.94, + "end": 13480.87, + "probability": 0.9485 + }, + { + "start": 13483.06, + "end": 13484.14, + "probability": 0.9775 + }, + { + "start": 13485.66, + "end": 13487.65, + "probability": 0.9764 + }, + { + "start": 13488.28, + "end": 13490.96, + "probability": 0.8276 + }, + { + "start": 13492.08, + "end": 13494.32, + "probability": 0.9919 + }, + { + "start": 13494.79, + "end": 13498.36, + "probability": 0.9738 + }, + { + "start": 13498.86, + "end": 13500.02, + "probability": 0.9958 + }, + { + "start": 13500.52, + "end": 13504.26, + "probability": 0.9883 + }, + { + "start": 13504.68, + "end": 13507.44, + "probability": 0.9973 + }, + { + "start": 13508.64, + "end": 13511.16, + "probability": 0.9019 + }, + { + "start": 13511.58, + "end": 13512.86, + "probability": 0.1688 + }, + { + "start": 13513.46, + "end": 13518.2, + "probability": 0.9924 + }, + { + "start": 13520.38, + "end": 13521.64, + "probability": 0.7312 + }, + { + "start": 13522.42, + "end": 13524.92, + "probability": 0.96 + }, + { + "start": 13524.92, + "end": 13527.3, + "probability": 0.9917 + }, + { + "start": 13527.8, + "end": 13530.38, + "probability": 0.998 + }, + { + "start": 13530.86, + "end": 13532.86, + "probability": 0.9977 + }, + { + "start": 13533.84, + "end": 13534.58, + "probability": 0.6604 + }, + { + "start": 13535.44, + "end": 13538.48, + "probability": 0.9643 + }, + { + "start": 13539.36, + "end": 13541.46, + "probability": 0.6909 + }, + { + "start": 13542.12, + "end": 13543.8, + "probability": 0.7227 + }, + { + "start": 13544.5, + "end": 13547.62, + "probability": 0.9879 + }, + { + "start": 13547.74, + "end": 13550.32, + "probability": 0.7578 + }, + { + "start": 13550.38, + "end": 13551.08, + "probability": 0.6528 + }, + { + "start": 13551.88, + "end": 13553.16, + "probability": 0.7678 + }, + { + "start": 13553.62, + "end": 13556.86, + "probability": 0.9471 + }, + { + "start": 13557.86, + "end": 13558.66, + "probability": 0.8257 + }, + { + "start": 13559.4, + "end": 13563.0, + "probability": 0.9744 + }, + { + "start": 13563.58, + "end": 13564.54, + "probability": 0.8994 + }, + { + "start": 13565.26, + "end": 13568.84, + "probability": 0.9921 + }, + { + "start": 13568.84, + "end": 13572.42, + "probability": 0.9902 + }, + { + "start": 13573.7, + "end": 13576.94, + "probability": 0.9883 + }, + { + "start": 13577.84, + "end": 13579.0, + "probability": 0.8805 + }, + { + "start": 13580.32, + "end": 13581.38, + "probability": 0.9521 + }, + { + "start": 13582.38, + "end": 13582.92, + "probability": 0.9626 + }, + { + "start": 13583.9, + "end": 13584.9, + "probability": 0.9972 + }, + { + "start": 13585.62, + "end": 13586.94, + "probability": 0.9795 + }, + { + "start": 13588.2, + "end": 13591.66, + "probability": 0.9811 + }, + { + "start": 13592.34, + "end": 13597.28, + "probability": 0.9751 + }, + { + "start": 13597.98, + "end": 13599.9, + "probability": 0.8872 + }, + { + "start": 13600.66, + "end": 13601.42, + "probability": 0.9416 + }, + { + "start": 13602.92, + "end": 13603.2, + "probability": 0.8091 + }, + { + "start": 13603.98, + "end": 13605.0, + "probability": 0.6694 + }, + { + "start": 13605.1, + "end": 13607.58, + "probability": 0.9909 + }, + { + "start": 13607.58, + "end": 13612.28, + "probability": 0.9503 + }, + { + "start": 13613.16, + "end": 13616.02, + "probability": 0.9994 + }, + { + "start": 13616.6, + "end": 13621.5, + "probability": 0.9779 + }, + { + "start": 13622.18, + "end": 13627.46, + "probability": 0.9917 + }, + { + "start": 13627.46, + "end": 13634.18, + "probability": 0.9648 + }, + { + "start": 13634.7, + "end": 13635.32, + "probability": 0.8183 + }, + { + "start": 13636.8, + "end": 13637.56, + "probability": 0.8104 + }, + { + "start": 13638.6, + "end": 13642.46, + "probability": 0.9992 + }, + { + "start": 13642.46, + "end": 13645.48, + "probability": 0.7723 + }, + { + "start": 13646.2, + "end": 13647.82, + "probability": 0.7309 + }, + { + "start": 13647.98, + "end": 13650.48, + "probability": 0.8939 + }, + { + "start": 13650.92, + "end": 13653.2, + "probability": 0.9442 + }, + { + "start": 13653.64, + "end": 13656.94, + "probability": 0.978 + }, + { + "start": 13657.6, + "end": 13659.52, + "probability": 0.7915 + }, + { + "start": 13660.24, + "end": 13663.72, + "probability": 0.9883 + }, + { + "start": 13663.72, + "end": 13665.98, + "probability": 0.7376 + }, + { + "start": 13665.98, + "end": 13666.56, + "probability": 0.9079 + }, + { + "start": 13667.66, + "end": 13669.94, + "probability": 0.7451 + }, + { + "start": 13671.76, + "end": 13674.86, + "probability": 0.9863 + }, + { + "start": 13675.98, + "end": 13678.42, + "probability": 0.9365 + }, + { + "start": 13679.2, + "end": 13679.42, + "probability": 0.826 + }, + { + "start": 13679.48, + "end": 13681.4, + "probability": 0.9961 + }, + { + "start": 13681.4, + "end": 13685.02, + "probability": 0.9866 + }, + { + "start": 13686.2, + "end": 13687.48, + "probability": 0.8814 + }, + { + "start": 13688.06, + "end": 13688.28, + "probability": 0.1067 + }, + { + "start": 13689.39, + "end": 13691.54, + "probability": 0.1862 + }, + { + "start": 13691.74, + "end": 13693.5, + "probability": 0.4941 + }, + { + "start": 13693.52, + "end": 13694.4, + "probability": 0.4183 + }, + { + "start": 13695.04, + "end": 13697.58, + "probability": 0.995 + }, + { + "start": 13698.26, + "end": 13699.86, + "probability": 0.9611 + }, + { + "start": 13700.58, + "end": 13701.42, + "probability": 0.5262 + }, + { + "start": 13702.0, + "end": 13705.7, + "probability": 0.9677 + }, + { + "start": 13706.86, + "end": 13708.22, + "probability": 0.4898 + }, + { + "start": 13708.76, + "end": 13711.26, + "probability": 0.7858 + }, + { + "start": 13712.04, + "end": 13712.86, + "probability": 0.8442 + }, + { + "start": 13714.38, + "end": 13716.68, + "probability": 0.9146 + }, + { + "start": 13717.62, + "end": 13719.0, + "probability": 0.6805 + }, + { + "start": 13719.82, + "end": 13720.38, + "probability": 0.7277 + }, + { + "start": 13721.9, + "end": 13722.71, + "probability": 0.9718 + }, + { + "start": 13723.46, + "end": 13724.01, + "probability": 0.9648 + }, + { + "start": 13724.66, + "end": 13729.58, + "probability": 0.9771 + }, + { + "start": 13730.6, + "end": 13732.68, + "probability": 0.6148 + }, + { + "start": 13733.32, + "end": 13737.58, + "probability": 0.9513 + }, + { + "start": 13738.38, + "end": 13740.14, + "probability": 0.8351 + }, + { + "start": 13740.68, + "end": 13744.46, + "probability": 0.9487 + }, + { + "start": 13744.62, + "end": 13746.22, + "probability": 0.9131 + }, + { + "start": 13746.74, + "end": 13754.0, + "probability": 0.9504 + }, + { + "start": 13755.48, + "end": 13758.1, + "probability": 0.9043 + }, + { + "start": 13758.78, + "end": 13759.5, + "probability": 0.6551 + }, + { + "start": 13759.62, + "end": 13760.87, + "probability": 0.8596 + }, + { + "start": 13761.95, + "end": 13765.4, + "probability": 0.9269 + }, + { + "start": 13765.48, + "end": 13765.94, + "probability": 0.8328 + }, + { + "start": 13768.32, + "end": 13770.48, + "probability": 0.893 + }, + { + "start": 13771.4, + "end": 13771.64, + "probability": 0.6157 + }, + { + "start": 13771.84, + "end": 13772.1, + "probability": 0.2203 + }, + { + "start": 13772.16, + "end": 13773.42, + "probability": 0.9574 + }, + { + "start": 13773.46, + "end": 13773.76, + "probability": 0.5565 + }, + { + "start": 13774.5, + "end": 13776.18, + "probability": 0.9552 + }, + { + "start": 13779.26, + "end": 13780.26, + "probability": 0.9626 + }, + { + "start": 13780.36, + "end": 13781.22, + "probability": 0.5042 + }, + { + "start": 13781.22, + "end": 13783.26, + "probability": 0.7636 + }, + { + "start": 13784.62, + "end": 13788.1, + "probability": 0.9087 + }, + { + "start": 13788.57, + "end": 13790.03, + "probability": 0.9653 + }, + { + "start": 13790.44, + "end": 13793.88, + "probability": 0.8818 + }, + { + "start": 13794.84, + "end": 13796.96, + "probability": 0.6093 + }, + { + "start": 13798.02, + "end": 13798.68, + "probability": 0.7327 + }, + { + "start": 13800.92, + "end": 13801.34, + "probability": 0.6647 + }, + { + "start": 13801.52, + "end": 13801.94, + "probability": 0.5396 + }, + { + "start": 13802.1, + "end": 13802.72, + "probability": 0.9636 + }, + { + "start": 13802.76, + "end": 13804.2, + "probability": 0.8407 + }, + { + "start": 13805.38, + "end": 13806.6, + "probability": 0.7118 + }, + { + "start": 13808.94, + "end": 13810.38, + "probability": 0.6567 + }, + { + "start": 13812.78, + "end": 13813.26, + "probability": 0.9652 + }, + { + "start": 13813.44, + "end": 13815.85, + "probability": 0.8011 + }, + { + "start": 13817.14, + "end": 13819.04, + "probability": 0.946 + }, + { + "start": 13819.18, + "end": 13820.21, + "probability": 0.9868 + }, + { + "start": 13820.46, + "end": 13821.92, + "probability": 0.9888 + }, + { + "start": 13822.86, + "end": 13822.98, + "probability": 0.4728 + }, + { + "start": 13823.04, + "end": 13824.29, + "probability": 0.8896 + }, + { + "start": 13824.44, + "end": 13825.74, + "probability": 0.9682 + }, + { + "start": 13825.82, + "end": 13826.26, + "probability": 0.9119 + }, + { + "start": 13826.8, + "end": 13830.28, + "probability": 0.8599 + }, + { + "start": 13831.1, + "end": 13834.54, + "probability": 0.832 + }, + { + "start": 13835.0, + "end": 13835.7, + "probability": 0.9151 + }, + { + "start": 13836.5, + "end": 13837.12, + "probability": 0.9146 + }, + { + "start": 13838.2, + "end": 13840.04, + "probability": 0.7535 + }, + { + "start": 13842.24, + "end": 13842.92, + "probability": 0.6269 + }, + { + "start": 13843.0, + "end": 13843.54, + "probability": 0.9685 + }, + { + "start": 13843.58, + "end": 13847.04, + "probability": 0.9014 + }, + { + "start": 13847.34, + "end": 13848.36, + "probability": 0.7289 + }, + { + "start": 13849.18, + "end": 13851.18, + "probability": 0.9962 + }, + { + "start": 13851.24, + "end": 13852.8, + "probability": 0.8648 + }, + { + "start": 13852.82, + "end": 13853.74, + "probability": 0.8301 + }, + { + "start": 13853.82, + "end": 13854.5, + "probability": 0.4655 + }, + { + "start": 13855.66, + "end": 13859.3, + "probability": 0.982 + }, + { + "start": 13860.32, + "end": 13861.96, + "probability": 0.8349 + }, + { + "start": 13862.6, + "end": 13863.94, + "probability": 0.9899 + }, + { + "start": 13864.12, + "end": 13868.22, + "probability": 0.9972 + }, + { + "start": 13868.38, + "end": 13869.84, + "probability": 0.8535 + }, + { + "start": 13870.76, + "end": 13871.8, + "probability": 0.8931 + }, + { + "start": 13872.56, + "end": 13876.24, + "probability": 0.9712 + }, + { + "start": 13876.36, + "end": 13879.86, + "probability": 0.925 + }, + { + "start": 13880.56, + "end": 13881.88, + "probability": 0.644 + }, + { + "start": 13881.94, + "end": 13883.12, + "probability": 0.9969 + }, + { + "start": 13883.2, + "end": 13884.86, + "probability": 0.7919 + }, + { + "start": 13885.78, + "end": 13888.08, + "probability": 0.6125 + }, + { + "start": 13888.16, + "end": 13888.9, + "probability": 0.9615 + }, + { + "start": 13893.46, + "end": 13894.02, + "probability": 0.5607 + }, + { + "start": 13894.66, + "end": 13896.6, + "probability": 0.7556 + }, + { + "start": 13897.16, + "end": 13900.44, + "probability": 0.734 + }, + { + "start": 13901.28, + "end": 13904.16, + "probability": 0.6172 + }, + { + "start": 13905.22, + "end": 13907.16, + "probability": 0.9047 + }, + { + "start": 13908.46, + "end": 13910.97, + "probability": 0.5933 + }, + { + "start": 13911.68, + "end": 13914.96, + "probability": 0.3216 + }, + { + "start": 13914.96, + "end": 13915.78, + "probability": 0.5587 + }, + { + "start": 13916.38, + "end": 13921.4, + "probability": 0.9607 + }, + { + "start": 13921.94, + "end": 13924.28, + "probability": 0.9481 + }, + { + "start": 13925.2, + "end": 13927.06, + "probability": 0.5617 + }, + { + "start": 13928.38, + "end": 13929.9, + "probability": 0.8044 + }, + { + "start": 13930.76, + "end": 13931.62, + "probability": 0.6489 + }, + { + "start": 13932.72, + "end": 13938.72, + "probability": 0.9915 + }, + { + "start": 13940.96, + "end": 13941.36, + "probability": 0.7389 + }, + { + "start": 13943.84, + "end": 13944.46, + "probability": 0.6433 + }, + { + "start": 13944.9, + "end": 13948.34, + "probability": 0.9764 + }, + { + "start": 13950.14, + "end": 13952.58, + "probability": 0.9884 + }, + { + "start": 13953.7, + "end": 13955.72, + "probability": 0.9484 + }, + { + "start": 13957.1, + "end": 13958.22, + "probability": 0.7896 + }, + { + "start": 13960.84, + "end": 13962.54, + "probability": 0.7539 + }, + { + "start": 13965.0, + "end": 13965.66, + "probability": 0.5076 + }, + { + "start": 13966.28, + "end": 13966.98, + "probability": 0.9464 + }, + { + "start": 13967.76, + "end": 13968.98, + "probability": 0.9984 + }, + { + "start": 13971.58, + "end": 13973.94, + "probability": 0.7917 + }, + { + "start": 13975.34, + "end": 13978.88, + "probability": 0.9097 + }, + { + "start": 13984.69, + "end": 13986.54, + "probability": 0.9854 + }, + { + "start": 13988.7, + "end": 13989.32, + "probability": 0.8697 + }, + { + "start": 13992.1, + "end": 13993.68, + "probability": 0.9067 + }, + { + "start": 13995.0, + "end": 13995.8, + "probability": 0.7105 + }, + { + "start": 13998.28, + "end": 14001.6, + "probability": 0.7923 + }, + { + "start": 14003.72, + "end": 14007.42, + "probability": 0.9988 + }, + { + "start": 14009.84, + "end": 14010.62, + "probability": 0.3123 + }, + { + "start": 14011.5, + "end": 14016.48, + "probability": 0.9575 + }, + { + "start": 14017.1, + "end": 14021.42, + "probability": 0.9958 + }, + { + "start": 14022.5, + "end": 14024.18, + "probability": 0.9971 + }, + { + "start": 14024.24, + "end": 14026.18, + "probability": 0.9966 + }, + { + "start": 14026.9, + "end": 14029.46, + "probability": 0.9661 + }, + { + "start": 14031.26, + "end": 14035.7, + "probability": 0.6475 + }, + { + "start": 14036.34, + "end": 14039.38, + "probability": 0.8989 + }, + { + "start": 14041.5, + "end": 14043.4, + "probability": 0.4421 + }, + { + "start": 14044.3, + "end": 14044.86, + "probability": 0.5129 + }, + { + "start": 14046.06, + "end": 14046.66, + "probability": 0.8068 + }, + { + "start": 14047.2, + "end": 14049.1, + "probability": 0.7997 + }, + { + "start": 14050.76, + "end": 14052.8, + "probability": 0.9587 + }, + { + "start": 14054.1, + "end": 14054.59, + "probability": 0.936 + }, + { + "start": 14056.48, + "end": 14057.1, + "probability": 0.8625 + }, + { + "start": 14058.52, + "end": 14060.32, + "probability": 0.971 + }, + { + "start": 14061.54, + "end": 14062.44, + "probability": 0.8876 + }, + { + "start": 14063.3, + "end": 14064.52, + "probability": 0.77 + }, + { + "start": 14065.04, + "end": 14067.8, + "probability": 0.542 + }, + { + "start": 14069.34, + "end": 14072.52, + "probability": 0.9844 + }, + { + "start": 14073.58, + "end": 14074.34, + "probability": 0.9695 + }, + { + "start": 14075.04, + "end": 14078.98, + "probability": 0.9359 + }, + { + "start": 14080.0, + "end": 14082.7, + "probability": 0.9902 + }, + { + "start": 14083.22, + "end": 14084.44, + "probability": 0.624 + }, + { + "start": 14085.34, + "end": 14085.96, + "probability": 0.9875 + }, + { + "start": 14087.38, + "end": 14093.74, + "probability": 0.9878 + }, + { + "start": 14094.6, + "end": 14095.23, + "probability": 0.9433 + }, + { + "start": 14096.48, + "end": 14097.44, + "probability": 0.9412 + }, + { + "start": 14097.86, + "end": 14098.39, + "probability": 0.9839 + }, + { + "start": 14099.34, + "end": 14099.92, + "probability": 0.976 + }, + { + "start": 14101.12, + "end": 14102.66, + "probability": 0.7314 + }, + { + "start": 14103.58, + "end": 14105.9, + "probability": 0.882 + }, + { + "start": 14107.66, + "end": 14111.4, + "probability": 0.9354 + }, + { + "start": 14112.26, + "end": 14112.61, + "probability": 0.7651 + }, + { + "start": 14114.24, + "end": 14116.46, + "probability": 0.5922 + }, + { + "start": 14117.14, + "end": 14120.3, + "probability": 0.7939 + }, + { + "start": 14123.44, + "end": 14131.1, + "probability": 0.9965 + }, + { + "start": 14131.3, + "end": 14132.76, + "probability": 0.5945 + }, + { + "start": 14132.82, + "end": 14134.16, + "probability": 0.9863 + }, + { + "start": 14135.18, + "end": 14136.0, + "probability": 0.6641 + }, + { + "start": 14136.18, + "end": 14138.04, + "probability": 0.9349 + }, + { + "start": 14139.14, + "end": 14139.86, + "probability": 0.4525 + }, + { + "start": 14139.92, + "end": 14140.62, + "probability": 0.7779 + }, + { + "start": 14140.74, + "end": 14142.54, + "probability": 0.7495 + }, + { + "start": 14142.6, + "end": 14143.6, + "probability": 0.6409 + }, + { + "start": 14143.62, + "end": 14144.64, + "probability": 0.3368 + }, + { + "start": 14145.22, + "end": 14147.06, + "probability": 0.5961 + }, + { + "start": 14147.16, + "end": 14150.3, + "probability": 0.5605 + }, + { + "start": 14151.26, + "end": 14153.22, + "probability": 0.9976 + }, + { + "start": 14153.59, + "end": 14156.52, + "probability": 0.7496 + }, + { + "start": 14156.6, + "end": 14157.92, + "probability": 0.8977 + }, + { + "start": 14158.46, + "end": 14159.5, + "probability": 0.7445 + }, + { + "start": 14160.26, + "end": 14162.54, + "probability": 0.9132 + }, + { + "start": 14163.4, + "end": 14164.63, + "probability": 0.9575 + }, + { + "start": 14164.9, + "end": 14166.56, + "probability": 0.4596 + }, + { + "start": 14167.62, + "end": 14168.46, + "probability": 0.8389 + }, + { + "start": 14168.64, + "end": 14172.44, + "probability": 0.9458 + }, + { + "start": 14173.3, + "end": 14176.78, + "probability": 0.4673 + }, + { + "start": 14177.72, + "end": 14180.21, + "probability": 0.8285 + }, + { + "start": 14182.6, + "end": 14185.88, + "probability": 0.9746 + }, + { + "start": 14186.62, + "end": 14189.02, + "probability": 0.8328 + }, + { + "start": 14189.84, + "end": 14190.66, + "probability": 0.8126 + }, + { + "start": 14191.4, + "end": 14192.46, + "probability": 0.9725 + }, + { + "start": 14193.3, + "end": 14194.76, + "probability": 0.9443 + }, + { + "start": 14195.5, + "end": 14196.16, + "probability": 0.9421 + }, + { + "start": 14197.08, + "end": 14198.74, + "probability": 0.8033 + }, + { + "start": 14199.38, + "end": 14201.17, + "probability": 0.7343 + }, + { + "start": 14201.57, + "end": 14204.3, + "probability": 0.7482 + }, + { + "start": 14205.42, + "end": 14207.92, + "probability": 0.6788 + }, + { + "start": 14207.96, + "end": 14209.4, + "probability": 0.6786 + }, + { + "start": 14209.94, + "end": 14211.3, + "probability": 0.7354 + }, + { + "start": 14211.54, + "end": 14213.3, + "probability": 0.8721 + }, + { + "start": 14213.66, + "end": 14214.74, + "probability": 0.9858 + }, + { + "start": 14214.92, + "end": 14217.68, + "probability": 0.3286 + }, + { + "start": 14217.8, + "end": 14222.8, + "probability": 0.8795 + }, + { + "start": 14222.9, + "end": 14224.52, + "probability": 0.9274 + }, + { + "start": 14227.28, + "end": 14229.86, + "probability": 0.8773 + }, + { + "start": 14230.74, + "end": 14231.94, + "probability": 0.885 + }, + { + "start": 14232.8, + "end": 14234.26, + "probability": 0.9979 + }, + { + "start": 14236.14, + "end": 14236.58, + "probability": 0.6613 + }, + { + "start": 14236.76, + "end": 14239.6, + "probability": 0.998 + }, + { + "start": 14239.68, + "end": 14240.26, + "probability": 0.954 + }, + { + "start": 14241.1, + "end": 14243.22, + "probability": 0.9609 + }, + { + "start": 14244.3, + "end": 14244.32, + "probability": 0.563 + }, + { + "start": 14246.92, + "end": 14250.1, + "probability": 0.6459 + }, + { + "start": 14251.0, + "end": 14253.8, + "probability": 0.8565 + }, + { + "start": 14254.78, + "end": 14255.36, + "probability": 0.9583 + }, + { + "start": 14256.62, + "end": 14258.06, + "probability": 0.995 + }, + { + "start": 14258.16, + "end": 14259.5, + "probability": 0.9401 + }, + { + "start": 14259.62, + "end": 14262.52, + "probability": 0.9921 + }, + { + "start": 14263.52, + "end": 14264.62, + "probability": 0.9868 + }, + { + "start": 14266.62, + "end": 14268.44, + "probability": 0.8979 + }, + { + "start": 14268.66, + "end": 14269.76, + "probability": 0.9352 + }, + { + "start": 14273.46, + "end": 14276.84, + "probability": 0.9225 + }, + { + "start": 14277.54, + "end": 14279.24, + "probability": 0.991 + }, + { + "start": 14281.1, + "end": 14282.4, + "probability": 0.8989 + }, + { + "start": 14283.22, + "end": 14284.0, + "probability": 0.9714 + }, + { + "start": 14285.62, + "end": 14289.19, + "probability": 0.8296 + }, + { + "start": 14289.4, + "end": 14290.49, + "probability": 0.5647 + }, + { + "start": 14290.58, + "end": 14292.28, + "probability": 0.7066 + }, + { + "start": 14293.58, + "end": 14295.6, + "probability": 0.9966 + }, + { + "start": 14296.8, + "end": 14298.74, + "probability": 0.991 + }, + { + "start": 14298.84, + "end": 14304.32, + "probability": 0.6565 + }, + { + "start": 14304.34, + "end": 14306.5, + "probability": 0.7096 + }, + { + "start": 14306.9, + "end": 14308.34, + "probability": 0.4771 + }, + { + "start": 14308.34, + "end": 14308.94, + "probability": 0.4333 + }, + { + "start": 14309.82, + "end": 14310.8, + "probability": 0.7328 + }, + { + "start": 14311.7, + "end": 14312.22, + "probability": 0.7622 + }, + { + "start": 14312.28, + "end": 14314.22, + "probability": 0.9542 + }, + { + "start": 14314.6, + "end": 14315.06, + "probability": 0.4892 + }, + { + "start": 14316.5, + "end": 14317.56, + "probability": 0.7793 + }, + { + "start": 14318.08, + "end": 14320.74, + "probability": 0.5824 + }, + { + "start": 14320.82, + "end": 14322.72, + "probability": 0.776 + }, + { + "start": 14323.83, + "end": 14326.36, + "probability": 0.8761 + }, + { + "start": 14327.98, + "end": 14330.44, + "probability": 0.4987 + }, + { + "start": 14330.98, + "end": 14331.66, + "probability": 0.5217 + }, + { + "start": 14331.68, + "end": 14334.34, + "probability": 0.8677 + }, + { + "start": 14335.24, + "end": 14336.48, + "probability": 0.5926 + }, + { + "start": 14337.92, + "end": 14342.44, + "probability": 0.9977 + }, + { + "start": 14342.88, + "end": 14344.72, + "probability": 0.9326 + }, + { + "start": 14346.18, + "end": 14347.94, + "probability": 0.8682 + }, + { + "start": 14349.24, + "end": 14350.22, + "probability": 0.0012 + }, + { + "start": 14350.54, + "end": 14351.2, + "probability": 0.9718 + }, + { + "start": 14351.7, + "end": 14354.82, + "probability": 0.9805 + }, + { + "start": 14355.5, + "end": 14357.22, + "probability": 0.7357 + }, + { + "start": 14358.0, + "end": 14359.36, + "probability": 0.9552 + }, + { + "start": 14359.5, + "end": 14364.16, + "probability": 0.9915 + }, + { + "start": 14364.52, + "end": 14367.06, + "probability": 0.9976 + }, + { + "start": 14368.3, + "end": 14368.71, + "probability": 0.6875 + }, + { + "start": 14368.86, + "end": 14370.85, + "probability": 0.628 + }, + { + "start": 14372.36, + "end": 14375.12, + "probability": 0.995 + }, + { + "start": 14376.3, + "end": 14379.24, + "probability": 0.9526 + }, + { + "start": 14380.28, + "end": 14382.8, + "probability": 0.9729 + }, + { + "start": 14383.82, + "end": 14386.08, + "probability": 0.8488 + }, + { + "start": 14386.78, + "end": 14388.0, + "probability": 0.9141 + }, + { + "start": 14389.92, + "end": 14391.24, + "probability": 0.9956 + }, + { + "start": 14392.12, + "end": 14393.68, + "probability": 0.9862 + }, + { + "start": 14394.46, + "end": 14396.18, + "probability": 0.9517 + }, + { + "start": 14396.58, + "end": 14397.82, + "probability": 0.5882 + }, + { + "start": 14398.26, + "end": 14399.56, + "probability": 0.6975 + }, + { + "start": 14400.18, + "end": 14401.12, + "probability": 0.746 + }, + { + "start": 14401.74, + "end": 14404.16, + "probability": 0.846 + }, + { + "start": 14404.48, + "end": 14406.76, + "probability": 0.7768 + }, + { + "start": 14408.84, + "end": 14409.36, + "probability": 0.958 + }, + { + "start": 14411.12, + "end": 14411.72, + "probability": 0.6165 + }, + { + "start": 14412.2, + "end": 14413.2, + "probability": 0.9899 + }, + { + "start": 14414.64, + "end": 14415.64, + "probability": 0.8947 + }, + { + "start": 14416.84, + "end": 14419.32, + "probability": 0.9622 + }, + { + "start": 14420.32, + "end": 14421.88, + "probability": 0.8447 + }, + { + "start": 14421.98, + "end": 14422.88, + "probability": 0.7599 + }, + { + "start": 14428.98, + "end": 14431.88, + "probability": 0.8301 + }, + { + "start": 14432.6, + "end": 14433.62, + "probability": 0.9021 + }, + { + "start": 14435.04, + "end": 14438.32, + "probability": 0.9912 + }, + { + "start": 14441.18, + "end": 14445.91, + "probability": 0.9761 + }, + { + "start": 14447.46, + "end": 14448.36, + "probability": 0.9755 + }, + { + "start": 14449.4, + "end": 14451.18, + "probability": 0.7024 + }, + { + "start": 14452.6, + "end": 14452.98, + "probability": 0.6774 + }, + { + "start": 14453.34, + "end": 14456.1, + "probability": 0.9833 + }, + { + "start": 14458.58, + "end": 14458.96, + "probability": 0.8228 + }, + { + "start": 14459.5, + "end": 14460.5, + "probability": 0.8001 + }, + { + "start": 14460.54, + "end": 14461.92, + "probability": 0.5818 + }, + { + "start": 14461.92, + "end": 14463.16, + "probability": 0.0368 + }, + { + "start": 14464.3, + "end": 14465.58, + "probability": 0.6867 + }, + { + "start": 14465.58, + "end": 14466.5, + "probability": 0.0627 + }, + { + "start": 14466.54, + "end": 14467.68, + "probability": 0.5724 + }, + { + "start": 14468.72, + "end": 14470.74, + "probability": 0.5682 + }, + { + "start": 14473.04, + "end": 14475.62, + "probability": 0.9729 + }, + { + "start": 14476.68, + "end": 14477.48, + "probability": 0.9554 + }, + { + "start": 14478.64, + "end": 14478.74, + "probability": 0.8062 + }, + { + "start": 14480.2, + "end": 14480.72, + "probability": 0.9587 + }, + { + "start": 14481.78, + "end": 14485.16, + "probability": 0.7017 + }, + { + "start": 14485.16, + "end": 14486.41, + "probability": 0.5806 + }, + { + "start": 14487.32, + "end": 14488.84, + "probability": 0.9526 + }, + { + "start": 14488.92, + "end": 14489.78, + "probability": 0.9331 + }, + { + "start": 14490.42, + "end": 14492.41, + "probability": 0.9449 + }, + { + "start": 14493.0, + "end": 14497.52, + "probability": 0.3786 + }, + { + "start": 14497.98, + "end": 14500.16, + "probability": 0.9753 + }, + { + "start": 14500.28, + "end": 14501.6, + "probability": 0.9131 + }, + { + "start": 14501.62, + "end": 14503.5, + "probability": 0.8242 + }, + { + "start": 14504.7, + "end": 14505.92, + "probability": 0.9287 + }, + { + "start": 14506.78, + "end": 14508.48, + "probability": 0.9647 + }, + { + "start": 14509.86, + "end": 14510.6, + "probability": 0.4628 + }, + { + "start": 14510.74, + "end": 14512.18, + "probability": 0.8661 + }, + { + "start": 14512.66, + "end": 14513.5, + "probability": 0.678 + }, + { + "start": 14513.7, + "end": 14514.46, + "probability": 0.8961 + }, + { + "start": 14514.5, + "end": 14515.04, + "probability": 0.8827 + }, + { + "start": 14515.14, + "end": 14518.27, + "probability": 0.9846 + }, + { + "start": 14519.36, + "end": 14521.56, + "probability": 0.8439 + }, + { + "start": 14522.3, + "end": 14525.24, + "probability": 0.9222 + }, + { + "start": 14526.08, + "end": 14527.7, + "probability": 0.9654 + }, + { + "start": 14527.92, + "end": 14529.48, + "probability": 0.9543 + }, + { + "start": 14529.62, + "end": 14532.86, + "probability": 0.9732 + }, + { + "start": 14533.34, + "end": 14535.0, + "probability": 0.8864 + }, + { + "start": 14535.46, + "end": 14536.22, + "probability": 0.92 + }, + { + "start": 14536.34, + "end": 14536.68, + "probability": 0.9118 + }, + { + "start": 14536.76, + "end": 14537.78, + "probability": 0.9282 + }, + { + "start": 14538.46, + "end": 14541.7, + "probability": 0.9556 + }, + { + "start": 14542.08, + "end": 14543.14, + "probability": 0.948 + }, + { + "start": 14543.26, + "end": 14543.5, + "probability": 0.6823 + }, + { + "start": 14543.62, + "end": 14543.94, + "probability": 0.2172 + }, + { + "start": 14543.98, + "end": 14544.8, + "probability": 0.5097 + }, + { + "start": 14546.78, + "end": 14547.84, + "probability": 0.9397 + }, + { + "start": 14547.88, + "end": 14550.66, + "probability": 0.9764 + }, + { + "start": 14550.82, + "end": 14551.94, + "probability": 0.8733 + }, + { + "start": 14552.72, + "end": 14555.56, + "probability": 0.929 + }, + { + "start": 14556.38, + "end": 14556.98, + "probability": 0.7997 + }, + { + "start": 14557.6, + "end": 14558.84, + "probability": 0.9561 + }, + { + "start": 14559.18, + "end": 14559.94, + "probability": 0.9352 + }, + { + "start": 14560.18, + "end": 14561.06, + "probability": 0.5392 + }, + { + "start": 14561.6, + "end": 14562.18, + "probability": 0.6078 + }, + { + "start": 14564.91, + "end": 14566.86, + "probability": 0.7128 + }, + { + "start": 14567.54, + "end": 14569.86, + "probability": 0.8383 + }, + { + "start": 14570.54, + "end": 14571.08, + "probability": 0.939 + }, + { + "start": 14571.78, + "end": 14574.52, + "probability": 0.4983 + }, + { + "start": 14574.52, + "end": 14576.4, + "probability": 0.9905 + }, + { + "start": 14577.36, + "end": 14577.94, + "probability": 0.772 + }, + { + "start": 14578.48, + "end": 14580.22, + "probability": 0.8154 + }, + { + "start": 14580.5, + "end": 14581.85, + "probability": 0.9902 + }, + { + "start": 14583.1, + "end": 14585.82, + "probability": 0.8476 + }, + { + "start": 14586.32, + "end": 14589.72, + "probability": 0.9836 + }, + { + "start": 14589.8, + "end": 14590.2, + "probability": 0.7679 + }, + { + "start": 14590.96, + "end": 14593.5, + "probability": 0.984 + }, + { + "start": 14594.5, + "end": 14597.44, + "probability": 0.5859 + }, + { + "start": 14598.26, + "end": 14599.38, + "probability": 0.9536 + }, + { + "start": 14599.98, + "end": 14600.64, + "probability": 0.991 + }, + { + "start": 14601.06, + "end": 14602.3, + "probability": 0.8197 + }, + { + "start": 14602.42, + "end": 14604.44, + "probability": 0.9767 + }, + { + "start": 14605.16, + "end": 14606.08, + "probability": 0.897 + }, + { + "start": 14606.18, + "end": 14608.69, + "probability": 0.998 + }, + { + "start": 14609.18, + "end": 14610.08, + "probability": 0.6491 + }, + { + "start": 14610.16, + "end": 14610.74, + "probability": 0.963 + }, + { + "start": 14610.84, + "end": 14611.6, + "probability": 0.3914 + }, + { + "start": 14611.8, + "end": 14613.0, + "probability": 0.7258 + }, + { + "start": 14613.2, + "end": 14613.72, + "probability": 0.6013 + }, + { + "start": 14613.88, + "end": 14618.1, + "probability": 0.8931 + }, + { + "start": 14618.62, + "end": 14620.7, + "probability": 0.8422 + }, + { + "start": 14620.88, + "end": 14621.66, + "probability": 0.8007 + }, + { + "start": 14621.76, + "end": 14625.02, + "probability": 0.8095 + }, + { + "start": 14625.08, + "end": 14626.38, + "probability": 0.6478 + }, + { + "start": 14626.48, + "end": 14628.16, + "probability": 0.7136 + }, + { + "start": 14628.24, + "end": 14629.25, + "probability": 0.7288 + }, + { + "start": 14629.5, + "end": 14631.98, + "probability": 0.8148 + }, + { + "start": 14632.0, + "end": 14634.1, + "probability": 0.825 + }, + { + "start": 14634.38, + "end": 14635.28, + "probability": 0.2068 + }, + { + "start": 14635.28, + "end": 14637.1, + "probability": 0.219 + }, + { + "start": 14637.26, + "end": 14640.74, + "probability": 0.7148 + }, + { + "start": 14640.84, + "end": 14641.56, + "probability": 0.8247 + }, + { + "start": 14642.36, + "end": 14645.86, + "probability": 0.9935 + }, + { + "start": 14647.0, + "end": 14650.12, + "probability": 0.9437 + }, + { + "start": 14651.57, + "end": 14653.14, + "probability": 0.729 + }, + { + "start": 14653.24, + "end": 14654.5, + "probability": 0.9951 + }, + { + "start": 14654.58, + "end": 14656.82, + "probability": 0.8137 + }, + { + "start": 14657.06, + "end": 14658.21, + "probability": 0.7446 + }, + { + "start": 14658.42, + "end": 14659.99, + "probability": 0.9919 + }, + { + "start": 14660.66, + "end": 14662.42, + "probability": 0.8579 + }, + { + "start": 14662.56, + "end": 14664.14, + "probability": 0.9919 + }, + { + "start": 14664.44, + "end": 14664.68, + "probability": 0.6561 + }, + { + "start": 14665.1, + "end": 14666.64, + "probability": 0.7911 + }, + { + "start": 14667.1, + "end": 14668.42, + "probability": 0.9844 + }, + { + "start": 14668.8, + "end": 14672.26, + "probability": 0.978 + }, + { + "start": 14672.4, + "end": 14677.08, + "probability": 0.9852 + }, + { + "start": 14677.18, + "end": 14680.72, + "probability": 0.7842 + }, + { + "start": 14681.54, + "end": 14682.9, + "probability": 0.6482 + }, + { + "start": 14684.24, + "end": 14686.26, + "probability": 0.6529 + }, + { + "start": 14686.34, + "end": 14687.98, + "probability": 0.9934 + }, + { + "start": 14688.1, + "end": 14690.08, + "probability": 0.9961 + }, + { + "start": 14690.1, + "end": 14691.02, + "probability": 0.8571 + }, + { + "start": 14691.72, + "end": 14694.1, + "probability": 0.9043 + }, + { + "start": 14694.82, + "end": 14698.34, + "probability": 0.8793 + }, + { + "start": 14698.6, + "end": 14700.42, + "probability": 0.9205 + }, + { + "start": 14700.62, + "end": 14701.58, + "probability": 0.9596 + }, + { + "start": 14701.7, + "end": 14708.48, + "probability": 0.938 + }, + { + "start": 14708.62, + "end": 14709.18, + "probability": 0.5918 + }, + { + "start": 14709.28, + "end": 14709.82, + "probability": 0.6804 + }, + { + "start": 14709.84, + "end": 14710.16, + "probability": 0.7642 + }, + { + "start": 14731.38, + "end": 14735.12, + "probability": 0.3344 + }, + { + "start": 14736.18, + "end": 14737.98, + "probability": 0.0811 + }, + { + "start": 14737.98, + "end": 14739.17, + "probability": 0.231 + }, + { + "start": 14741.42, + "end": 14741.64, + "probability": 0.0728 + }, + { + "start": 14741.64, + "end": 14742.92, + "probability": 0.0773 + }, + { + "start": 14748.9, + "end": 14749.76, + "probability": 0.111 + }, + { + "start": 14750.92, + "end": 14751.72, + "probability": 0.1015 + }, + { + "start": 14755.46, + "end": 14759.6, + "probability": 0.0627 + }, + { + "start": 14759.82, + "end": 14761.0, + "probability": 0.0409 + }, + { + "start": 14761.73, + "end": 14764.04, + "probability": 0.0237 + }, + { + "start": 14765.82, + "end": 14767.5, + "probability": 0.0837 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.0, + "end": 14820.0, + "probability": 0.0 + }, + { + "start": 14820.12, + "end": 14821.6, + "probability": 0.1316 + }, + { + "start": 14823.0, + "end": 14823.5, + "probability": 0.0935 + }, + { + "start": 14826.0, + "end": 14827.62, + "probability": 0.6007 + }, + { + "start": 14827.68, + "end": 14828.78, + "probability": 0.9617 + }, + { + "start": 14828.86, + "end": 14829.18, + "probability": 0.346 + }, + { + "start": 14829.48, + "end": 14831.6, + "probability": 0.7559 + }, + { + "start": 14831.6, + "end": 14836.9, + "probability": 0.3596 + }, + { + "start": 14836.98, + "end": 14837.52, + "probability": 0.6969 + }, + { + "start": 14837.76, + "end": 14838.18, + "probability": 0.8367 + }, + { + "start": 14838.86, + "end": 14839.22, + "probability": 0.7903 + }, + { + "start": 14839.3, + "end": 14840.11, + "probability": 0.8749 + }, + { + "start": 14840.32, + "end": 14843.68, + "probability": 0.8261 + }, + { + "start": 14848.92, + "end": 14849.88, + "probability": 0.8369 + }, + { + "start": 14850.02, + "end": 14852.42, + "probability": 0.7256 + }, + { + "start": 14852.5, + "end": 14855.46, + "probability": 0.674 + }, + { + "start": 14855.52, + "end": 14856.18, + "probability": 0.2209 + }, + { + "start": 14856.86, + "end": 14859.52, + "probability": 0.7881 + }, + { + "start": 14860.1, + "end": 14861.65, + "probability": 0.6919 + }, + { + "start": 14862.96, + "end": 14866.62, + "probability": 0.963 + }, + { + "start": 14866.92, + "end": 14870.7, + "probability": 0.881 + }, + { + "start": 14871.8, + "end": 14872.64, + "probability": 0.8523 + }, + { + "start": 14874.32, + "end": 14877.96, + "probability": 0.9425 + }, + { + "start": 14878.62, + "end": 14883.94, + "probability": 0.9976 + }, + { + "start": 14884.68, + "end": 14887.88, + "probability": 0.9927 + }, + { + "start": 14887.96, + "end": 14889.4, + "probability": 0.9937 + }, + { + "start": 14892.54, + "end": 14894.52, + "probability": 0.7739 + }, + { + "start": 14895.3, + "end": 14897.76, + "probability": 0.8123 + }, + { + "start": 14899.04, + "end": 14900.16, + "probability": 0.8243 + }, + { + "start": 14901.48, + "end": 14903.66, + "probability": 0.917 + }, + { + "start": 14903.7, + "end": 14906.12, + "probability": 0.8593 + }, + { + "start": 14907.3, + "end": 14907.36, + "probability": 0.8765 + }, + { + "start": 14908.16, + "end": 14910.94, + "probability": 0.9891 + }, + { + "start": 14910.94, + "end": 14916.22, + "probability": 0.8438 + }, + { + "start": 14917.06, + "end": 14917.2, + "probability": 0.2723 + }, + { + "start": 14917.38, + "end": 14918.24, + "probability": 0.3707 + }, + { + "start": 14918.36, + "end": 14919.3, + "probability": 0.7333 + }, + { + "start": 14919.36, + "end": 14921.6, + "probability": 0.9894 + }, + { + "start": 14921.78, + "end": 14922.47, + "probability": 0.9825 + }, + { + "start": 14923.78, + "end": 14929.36, + "probability": 0.9937 + }, + { + "start": 14929.56, + "end": 14930.4, + "probability": 0.7482 + }, + { + "start": 14931.36, + "end": 14933.98, + "probability": 0.9296 + }, + { + "start": 14934.96, + "end": 14936.26, + "probability": 0.7097 + }, + { + "start": 14936.44, + "end": 14941.08, + "probability": 0.9743 + }, + { + "start": 14941.08, + "end": 14945.6, + "probability": 0.9766 + }, + { + "start": 14946.32, + "end": 14952.18, + "probability": 0.2512 + }, + { + "start": 14952.82, + "end": 14954.56, + "probability": 0.7914 + }, + { + "start": 14954.62, + "end": 14958.84, + "probability": 0.9343 + }, + { + "start": 14958.92, + "end": 14961.54, + "probability": 0.9878 + }, + { + "start": 14962.38, + "end": 14968.46, + "probability": 0.987 + }, + { + "start": 14969.64, + "end": 14972.38, + "probability": 0.9962 + }, + { + "start": 14972.38, + "end": 14976.42, + "probability": 0.9625 + }, + { + "start": 14977.06, + "end": 14981.0, + "probability": 0.9941 + }, + { + "start": 14981.7, + "end": 14985.5, + "probability": 0.9638 + }, + { + "start": 14986.2, + "end": 14988.9, + "probability": 0.9618 + }, + { + "start": 14989.56, + "end": 14993.44, + "probability": 0.9058 + }, + { + "start": 14993.92, + "end": 14996.46, + "probability": 0.9854 + }, + { + "start": 14997.02, + "end": 14999.48, + "probability": 0.8604 + }, + { + "start": 15000.38, + "end": 15004.52, + "probability": 0.9806 + }, + { + "start": 15005.0, + "end": 15006.28, + "probability": 0.569 + }, + { + "start": 15006.52, + "end": 15009.1, + "probability": 0.981 + }, + { + "start": 15009.56, + "end": 15012.9, + "probability": 0.9332 + }, + { + "start": 15014.18, + "end": 15014.7, + "probability": 0.6735 + }, + { + "start": 15014.8, + "end": 15017.46, + "probability": 0.7276 + }, + { + "start": 15017.94, + "end": 15019.48, + "probability": 0.9258 + }, + { + "start": 15019.92, + "end": 15023.54, + "probability": 0.988 + }, + { + "start": 15023.54, + "end": 15027.42, + "probability": 0.9584 + }, + { + "start": 15028.04, + "end": 15028.76, + "probability": 0.8058 + }, + { + "start": 15029.32, + "end": 15033.64, + "probability": 0.958 + }, + { + "start": 15033.64, + "end": 15038.0, + "probability": 0.9987 + }, + { + "start": 15038.9, + "end": 15042.82, + "probability": 0.9116 + }, + { + "start": 15043.0, + "end": 15048.42, + "probability": 0.9956 + }, + { + "start": 15048.42, + "end": 15053.5, + "probability": 0.9916 + }, + { + "start": 15054.56, + "end": 15058.76, + "probability": 0.9978 + }, + { + "start": 15058.98, + "end": 15064.94, + "probability": 0.9712 + }, + { + "start": 15065.72, + "end": 15070.54, + "probability": 0.993 + }, + { + "start": 15071.12, + "end": 15075.68, + "probability": 0.7275 + }, + { + "start": 15075.8, + "end": 15077.02, + "probability": 0.8978 + }, + { + "start": 15077.44, + "end": 15078.2, + "probability": 0.5009 + }, + { + "start": 15078.56, + "end": 15079.74, + "probability": 0.4783 + }, + { + "start": 15081.16, + "end": 15087.74, + "probability": 0.9915 + }, + { + "start": 15087.74, + "end": 15093.5, + "probability": 0.9807 + }, + { + "start": 15093.76, + "end": 15096.44, + "probability": 0.9895 + }, + { + "start": 15096.9, + "end": 15098.56, + "probability": 0.9967 + }, + { + "start": 15098.74, + "end": 15099.76, + "probability": 0.8706 + }, + { + "start": 15100.48, + "end": 15101.8, + "probability": 0.9107 + }, + { + "start": 15101.98, + "end": 15106.94, + "probability": 0.952 + }, + { + "start": 15107.26, + "end": 15109.5, + "probability": 0.9851 + }, + { + "start": 15110.3, + "end": 15111.92, + "probability": 0.8907 + }, + { + "start": 15112.54, + "end": 15116.18, + "probability": 0.9526 + }, + { + "start": 15116.86, + "end": 15120.19, + "probability": 0.9894 + }, + { + "start": 15120.44, + "end": 15123.86, + "probability": 0.8641 + }, + { + "start": 15124.46, + "end": 15132.66, + "probability": 0.8322 + }, + { + "start": 15133.54, + "end": 15140.12, + "probability": 0.9852 + }, + { + "start": 15140.12, + "end": 15147.26, + "probability": 0.9549 + }, + { + "start": 15148.04, + "end": 15153.28, + "probability": 0.9969 + }, + { + "start": 15153.86, + "end": 15157.54, + "probability": 0.999 + }, + { + "start": 15158.26, + "end": 15161.56, + "probability": 0.9224 + }, + { + "start": 15162.18, + "end": 15164.68, + "probability": 0.9506 + }, + { + "start": 15164.9, + "end": 15168.16, + "probability": 0.9301 + }, + { + "start": 15168.74, + "end": 15173.34, + "probability": 0.8744 + }, + { + "start": 15173.84, + "end": 15177.44, + "probability": 0.7932 + }, + { + "start": 15178.04, + "end": 15179.06, + "probability": 0.9493 + }, + { + "start": 15179.68, + "end": 15182.82, + "probability": 0.8717 + }, + { + "start": 15183.92, + "end": 15187.16, + "probability": 0.998 + }, + { + "start": 15187.16, + "end": 15190.4, + "probability": 0.9985 + }, + { + "start": 15190.88, + "end": 15191.78, + "probability": 0.9243 + }, + { + "start": 15192.56, + "end": 15194.92, + "probability": 0.9369 + }, + { + "start": 15196.04, + "end": 15200.88, + "probability": 0.9773 + }, + { + "start": 15200.88, + "end": 15205.16, + "probability": 0.999 + }, + { + "start": 15205.96, + "end": 15206.46, + "probability": 0.4479 + }, + { + "start": 15207.04, + "end": 15213.3, + "probability": 0.9881 + }, + { + "start": 15213.38, + "end": 15217.94, + "probability": 0.9593 + }, + { + "start": 15218.64, + "end": 15224.96, + "probability": 0.9938 + }, + { + "start": 15225.02, + "end": 15225.34, + "probability": 0.7903 + }, + { + "start": 15226.56, + "end": 15231.58, + "probability": 0.9667 + }, + { + "start": 15231.58, + "end": 15236.0, + "probability": 0.9971 + }, + { + "start": 15236.76, + "end": 15239.16, + "probability": 0.8672 + }, + { + "start": 15239.96, + "end": 15243.92, + "probability": 0.9513 + }, + { + "start": 15244.46, + "end": 15244.9, + "probability": 0.465 + }, + { + "start": 15245.02, + "end": 15250.78, + "probability": 0.8279 + }, + { + "start": 15251.38, + "end": 15254.68, + "probability": 0.4885 + }, + { + "start": 15255.62, + "end": 15263.0, + "probability": 0.9944 + }, + { + "start": 15263.12, + "end": 15263.68, + "probability": 0.7543 + }, + { + "start": 15264.18, + "end": 15266.94, + "probability": 0.9962 + }, + { + "start": 15268.49, + "end": 15270.64, + "probability": 0.9978 + }, + { + "start": 15271.3, + "end": 15276.92, + "probability": 0.9906 + }, + { + "start": 15277.66, + "end": 15278.31, + "probability": 0.1608 + }, + { + "start": 15279.38, + "end": 15282.86, + "probability": 0.925 + }, + { + "start": 15283.88, + "end": 15284.46, + "probability": 0.6244 + }, + { + "start": 15284.52, + "end": 15288.0, + "probability": 0.9844 + }, + { + "start": 15288.0, + "end": 15292.04, + "probability": 0.9929 + }, + { + "start": 15292.7, + "end": 15295.82, + "probability": 0.9976 + }, + { + "start": 15295.82, + "end": 15300.78, + "probability": 0.9962 + }, + { + "start": 15301.12, + "end": 15303.95, + "probability": 0.8945 + }, + { + "start": 15304.42, + "end": 15307.34, + "probability": 0.9175 + }, + { + "start": 15307.44, + "end": 15310.06, + "probability": 0.9902 + }, + { + "start": 15310.84, + "end": 15311.28, + "probability": 0.9076 + }, + { + "start": 15311.9, + "end": 15313.92, + "probability": 0.6979 + }, + { + "start": 15314.98, + "end": 15316.44, + "probability": 0.999 + }, + { + "start": 15317.34, + "end": 15319.78, + "probability": 0.6412 + }, + { + "start": 15320.5, + "end": 15322.0, + "probability": 0.9839 + }, + { + "start": 15323.04, + "end": 15324.48, + "probability": 0.8912 + }, + { + "start": 15324.58, + "end": 15325.64, + "probability": 0.9111 + }, + { + "start": 15325.92, + "end": 15327.78, + "probability": 0.9752 + }, + { + "start": 15327.92, + "end": 15328.78, + "probability": 0.9771 + }, + { + "start": 15329.04, + "end": 15332.52, + "probability": 0.8413 + }, + { + "start": 15332.67, + "end": 15335.08, + "probability": 0.6761 + }, + { + "start": 15335.62, + "end": 15336.78, + "probability": 0.6649 + }, + { + "start": 15337.2, + "end": 15340.95, + "probability": 0.9487 + }, + { + "start": 15341.46, + "end": 15342.84, + "probability": 0.6566 + }, + { + "start": 15342.92, + "end": 15343.72, + "probability": 0.7446 + }, + { + "start": 15343.92, + "end": 15345.14, + "probability": 0.6569 + }, + { + "start": 15345.92, + "end": 15347.37, + "probability": 0.8501 + }, + { + "start": 15348.64, + "end": 15350.42, + "probability": 0.508 + }, + { + "start": 15351.26, + "end": 15354.52, + "probability": 0.9467 + }, + { + "start": 15355.16, + "end": 15356.3, + "probability": 0.8347 + }, + { + "start": 15356.98, + "end": 15357.52, + "probability": 0.8737 + }, + { + "start": 15357.62, + "end": 15358.56, + "probability": 0.9838 + }, + { + "start": 15358.62, + "end": 15360.6, + "probability": 0.9482 + }, + { + "start": 15361.26, + "end": 15365.08, + "probability": 0.954 + }, + { + "start": 15365.78, + "end": 15369.76, + "probability": 0.8818 + }, + { + "start": 15370.64, + "end": 15375.54, + "probability": 0.9845 + }, + { + "start": 15376.32, + "end": 15376.68, + "probability": 0.6152 + }, + { + "start": 15377.34, + "end": 15378.94, + "probability": 0.8252 + }, + { + "start": 15379.32, + "end": 15382.28, + "probability": 0.9575 + }, + { + "start": 15382.9, + "end": 15389.94, + "probability": 0.9979 + }, + { + "start": 15390.04, + "end": 15392.7, + "probability": 0.7827 + }, + { + "start": 15393.38, + "end": 15400.94, + "probability": 0.9719 + }, + { + "start": 15401.64, + "end": 15407.6, + "probability": 0.9846 + }, + { + "start": 15407.66, + "end": 15411.9, + "probability": 0.9958 + }, + { + "start": 15412.56, + "end": 15418.78, + "probability": 0.9906 + }, + { + "start": 15419.76, + "end": 15421.12, + "probability": 0.771 + }, + { + "start": 15421.72, + "end": 15423.36, + "probability": 0.9971 + }, + { + "start": 15424.2, + "end": 15427.42, + "probability": 0.8543 + }, + { + "start": 15428.18, + "end": 15430.94, + "probability": 0.9961 + }, + { + "start": 15430.94, + "end": 15434.46, + "probability": 0.9969 + }, + { + "start": 15434.56, + "end": 15435.1, + "probability": 0.6423 + }, + { + "start": 15435.86, + "end": 15439.62, + "probability": 0.9062 + }, + { + "start": 15439.68, + "end": 15442.5, + "probability": 0.9929 + }, + { + "start": 15442.98, + "end": 15446.64, + "probability": 0.9961 + }, + { + "start": 15446.72, + "end": 15448.21, + "probability": 0.9915 + }, + { + "start": 15448.82, + "end": 15450.9, + "probability": 0.9883 + }, + { + "start": 15451.36, + "end": 15452.64, + "probability": 0.7516 + }, + { + "start": 15452.82, + "end": 15455.04, + "probability": 0.9918 + }, + { + "start": 15455.54, + "end": 15458.08, + "probability": 0.957 + }, + { + "start": 15458.22, + "end": 15461.68, + "probability": 0.9891 + }, + { + "start": 15461.68, + "end": 15466.78, + "probability": 0.9834 + }, + { + "start": 15467.88, + "end": 15469.74, + "probability": 0.4257 + }, + { + "start": 15470.3, + "end": 15470.3, + "probability": 0.0355 + }, + { + "start": 15470.3, + "end": 15475.44, + "probability": 0.7252 + }, + { + "start": 15476.32, + "end": 15477.91, + "probability": 0.6598 + }, + { + "start": 15478.02, + "end": 15478.83, + "probability": 0.667 + }, + { + "start": 15480.58, + "end": 15483.48, + "probability": 0.8672 + }, + { + "start": 15484.08, + "end": 15484.86, + "probability": 0.7147 + }, + { + "start": 15486.14, + "end": 15488.18, + "probability": 0.9418 + }, + { + "start": 15489.28, + "end": 15489.78, + "probability": 0.1055 + }, + { + "start": 15489.78, + "end": 15490.42, + "probability": 0.6153 + }, + { + "start": 15492.06, + "end": 15494.68, + "probability": 0.9548 + }, + { + "start": 15494.74, + "end": 15498.92, + "probability": 0.9893 + }, + { + "start": 15499.64, + "end": 15504.96, + "probability": 0.9245 + }, + { + "start": 15505.72, + "end": 15506.2, + "probability": 0.3997 + }, + { + "start": 15506.7, + "end": 15507.77, + "probability": 0.9517 + }, + { + "start": 15508.28, + "end": 15509.1, + "probability": 0.9934 + }, + { + "start": 15509.88, + "end": 15513.4, + "probability": 0.9614 + }, + { + "start": 15514.04, + "end": 15517.84, + "probability": 0.9954 + }, + { + "start": 15518.8, + "end": 15521.18, + "probability": 0.8898 + }, + { + "start": 15521.38, + "end": 15524.4, + "probability": 0.8453 + }, + { + "start": 15525.0, + "end": 15527.2, + "probability": 0.8984 + }, + { + "start": 15527.74, + "end": 15530.34, + "probability": 0.9967 + }, + { + "start": 15530.6, + "end": 15532.81, + "probability": 0.9845 + }, + { + "start": 15533.62, + "end": 15535.56, + "probability": 0.9578 + }, + { + "start": 15536.22, + "end": 15541.12, + "probability": 0.8525 + }, + { + "start": 15541.64, + "end": 15547.38, + "probability": 0.966 + }, + { + "start": 15547.94, + "end": 15549.3, + "probability": 0.9958 + }, + { + "start": 15549.94, + "end": 15554.34, + "probability": 0.9873 + }, + { + "start": 15555.68, + "end": 15556.48, + "probability": 0.5785 + }, + { + "start": 15557.6, + "end": 15561.76, + "probability": 0.8181 + }, + { + "start": 15562.5, + "end": 15566.02, + "probability": 0.9746 + }, + { + "start": 15566.84, + "end": 15567.6, + "probability": 0.6315 + }, + { + "start": 15567.78, + "end": 15568.48, + "probability": 0.685 + }, + { + "start": 15568.6, + "end": 15569.9, + "probability": 0.8511 + }, + { + "start": 15570.0, + "end": 15571.48, + "probability": 0.9027 + }, + { + "start": 15571.9, + "end": 15574.72, + "probability": 0.896 + }, + { + "start": 15575.18, + "end": 15578.8, + "probability": 0.8064 + }, + { + "start": 15579.32, + "end": 15580.28, + "probability": 0.6671 + }, + { + "start": 15581.18, + "end": 15581.5, + "probability": 0.7924 + }, + { + "start": 15581.86, + "end": 15585.08, + "probability": 0.9131 + }, + { + "start": 15586.48, + "end": 15587.98, + "probability": 0.7338 + }, + { + "start": 15589.04, + "end": 15590.18, + "probability": 0.5139 + }, + { + "start": 15590.18, + "end": 15590.18, + "probability": 0.5109 + }, + { + "start": 15591.24, + "end": 15591.48, + "probability": 0.0163 + }, + { + "start": 15591.48, + "end": 15593.2, + "probability": 0.2139 + }, + { + "start": 15593.86, + "end": 15595.42, + "probability": 0.9628 + }, + { + "start": 15595.48, + "end": 15598.94, + "probability": 0.9849 + }, + { + "start": 15599.6, + "end": 15601.12, + "probability": 0.9385 + }, + { + "start": 15601.9, + "end": 15604.7, + "probability": 0.9304 + }, + { + "start": 15604.76, + "end": 15606.22, + "probability": 0.7177 + }, + { + "start": 15606.36, + "end": 15608.08, + "probability": 0.6555 + }, + { + "start": 15608.32, + "end": 15608.48, + "probability": 0.1483 + }, + { + "start": 15608.48, + "end": 15614.8, + "probability": 0.6983 + }, + { + "start": 15615.3, + "end": 15615.74, + "probability": 0.8599 + }, + { + "start": 15616.26, + "end": 15618.0, + "probability": 0.868 + }, + { + "start": 15618.56, + "end": 15619.86, + "probability": 0.7101 + }, + { + "start": 15620.7, + "end": 15622.18, + "probability": 0.9704 + }, + { + "start": 15622.28, + "end": 15626.18, + "probability": 0.8047 + }, + { + "start": 15626.18, + "end": 15630.94, + "probability": 0.8621 + }, + { + "start": 15631.64, + "end": 15635.21, + "probability": 0.9614 + }, + { + "start": 15635.96, + "end": 15638.7, + "probability": 0.9707 + }, + { + "start": 15642.84, + "end": 15642.84, + "probability": 0.0276 + }, + { + "start": 15642.84, + "end": 15644.92, + "probability": 0.4221 + }, + { + "start": 15645.52, + "end": 15646.32, + "probability": 0.528 + }, + { + "start": 15646.54, + "end": 15647.22, + "probability": 0.9041 + }, + { + "start": 15647.88, + "end": 15653.1, + "probability": 0.9766 + }, + { + "start": 15653.54, + "end": 15654.14, + "probability": 0.6259 + }, + { + "start": 15654.42, + "end": 15659.04, + "probability": 0.9888 + }, + { + "start": 15660.02, + "end": 15662.86, + "probability": 0.9624 + }, + { + "start": 15663.28, + "end": 15664.5, + "probability": 0.9453 + }, + { + "start": 15664.96, + "end": 15666.94, + "probability": 0.6845 + }, + { + "start": 15667.14, + "end": 15670.28, + "probability": 0.8846 + }, + { + "start": 15670.38, + "end": 15670.76, + "probability": 0.4767 + }, + { + "start": 15670.82, + "end": 15671.06, + "probability": 0.8521 + }, + { + "start": 15672.48, + "end": 15675.92, + "probability": 0.7722 + }, + { + "start": 15676.86, + "end": 15679.14, + "probability": 0.9674 + }, + { + "start": 15679.92, + "end": 15680.1, + "probability": 0.8262 + }, + { + "start": 15681.38, + "end": 15682.76, + "probability": 0.6909 + }, + { + "start": 15683.58, + "end": 15685.84, + "probability": 0.6041 + }, + { + "start": 15686.08, + "end": 15687.34, + "probability": 0.9924 + }, + { + "start": 15688.32, + "end": 15689.72, + "probability": 0.5883 + }, + { + "start": 15689.8, + "end": 15689.84, + "probability": 0.0346 + }, + { + "start": 15689.84, + "end": 15691.62, + "probability": 0.871 + }, + { + "start": 15691.84, + "end": 15692.5, + "probability": 0.7394 + }, + { + "start": 15692.5, + "end": 15693.12, + "probability": 0.551 + }, + { + "start": 15693.2, + "end": 15696.14, + "probability": 0.5394 + }, + { + "start": 15696.58, + "end": 15697.04, + "probability": 0.7358 + }, + { + "start": 15697.17, + "end": 15701.34, + "probability": 0.9471 + }, + { + "start": 15701.5, + "end": 15702.64, + "probability": 0.9194 + }, + { + "start": 15703.02, + "end": 15705.76, + "probability": 0.9662 + }, + { + "start": 15705.98, + "end": 15706.6, + "probability": 0.9447 + }, + { + "start": 15706.88, + "end": 15707.74, + "probability": 0.9373 + }, + { + "start": 15707.74, + "end": 15710.22, + "probability": 0.9784 + }, + { + "start": 15711.18, + "end": 15716.42, + "probability": 0.9988 + }, + { + "start": 15716.42, + "end": 15721.7, + "probability": 0.9949 + }, + { + "start": 15722.36, + "end": 15723.46, + "probability": 0.7329 + }, + { + "start": 15724.06, + "end": 15725.66, + "probability": 0.9097 + }, + { + "start": 15727.28, + "end": 15729.7, + "probability": 0.9134 + }, + { + "start": 15730.34, + "end": 15733.58, + "probability": 0.9966 + }, + { + "start": 15734.22, + "end": 15734.92, + "probability": 0.7384 + }, + { + "start": 15735.5, + "end": 15736.94, + "probability": 0.761 + }, + { + "start": 15737.32, + "end": 15746.08, + "probability": 0.8945 + }, + { + "start": 15746.54, + "end": 15752.64, + "probability": 0.8781 + }, + { + "start": 15753.98, + "end": 15762.32, + "probability": 0.945 + }, + { + "start": 15762.4, + "end": 15763.92, + "probability": 0.9552 + }, + { + "start": 15764.46, + "end": 15766.5, + "probability": 0.9115 + }, + { + "start": 15767.0, + "end": 15768.66, + "probability": 0.9907 + }, + { + "start": 15769.46, + "end": 15772.64, + "probability": 0.9122 + }, + { + "start": 15773.38, + "end": 15773.66, + "probability": 0.8008 + }, + { + "start": 15775.02, + "end": 15775.3, + "probability": 0.5082 + }, + { + "start": 15776.05, + "end": 15777.04, + "probability": 0.3841 + }, + { + "start": 15777.04, + "end": 15778.82, + "probability": 0.9697 + }, + { + "start": 15778.88, + "end": 15782.56, + "probability": 0.8638 + }, + { + "start": 15783.34, + "end": 15789.72, + "probability": 0.8933 + }, + { + "start": 15789.94, + "end": 15792.76, + "probability": 0.874 + }, + { + "start": 15793.28, + "end": 15795.64, + "probability": 0.7154 + }, + { + "start": 15796.96, + "end": 15797.24, + "probability": 0.6478 + }, + { + "start": 15797.88, + "end": 15799.18, + "probability": 0.7856 + }, + { + "start": 15799.32, + "end": 15800.52, + "probability": 0.5081 + }, + { + "start": 15800.6, + "end": 15802.38, + "probability": 0.832 + }, + { + "start": 15802.52, + "end": 15807.68, + "probability": 0.8918 + }, + { + "start": 15810.12, + "end": 15813.3, + "probability": 0.2067 + }, + { + "start": 15813.36, + "end": 15817.56, + "probability": 0.3806 + }, + { + "start": 15820.58, + "end": 15821.2, + "probability": 0.4014 + }, + { + "start": 15821.2, + "end": 15822.62, + "probability": 0.0852 + }, + { + "start": 15822.98, + "end": 15825.1, + "probability": 0.448 + }, + { + "start": 15825.62, + "end": 15827.62, + "probability": 0.7477 + }, + { + "start": 15827.7, + "end": 15835.9, + "probability": 0.7255 + }, + { + "start": 15836.26, + "end": 15837.16, + "probability": 0.5078 + }, + { + "start": 15838.62, + "end": 15840.0, + "probability": 0.5375 + }, + { + "start": 15841.16, + "end": 15848.06, + "probability": 0.5876 + }, + { + "start": 15852.0, + "end": 15853.52, + "probability": 0.7841 + }, + { + "start": 15855.74, + "end": 15860.6, + "probability": 0.9621 + }, + { + "start": 15864.6, + "end": 15865.72, + "probability": 0.7274 + }, + { + "start": 15867.38, + "end": 15868.12, + "probability": 0.799 + }, + { + "start": 15868.14, + "end": 15870.14, + "probability": 0.9349 + }, + { + "start": 15871.24, + "end": 15871.64, + "probability": 0.8032 + }, + { + "start": 15873.36, + "end": 15873.56, + "probability": 0.2288 + }, + { + "start": 15873.56, + "end": 15875.76, + "probability": 0.4934 + }, + { + "start": 15876.42, + "end": 15876.92, + "probability": 0.9086 + }, + { + "start": 15877.04, + "end": 15881.8, + "probability": 0.7663 + }, + { + "start": 15881.8, + "end": 15885.72, + "probability": 0.8681 + }, + { + "start": 15885.82, + "end": 15886.58, + "probability": 0.7551 + }, + { + "start": 15886.68, + "end": 15888.5, + "probability": 0.9448 + }, + { + "start": 15889.82, + "end": 15890.42, + "probability": 0.7348 + }, + { + "start": 15891.36, + "end": 15894.94, + "probability": 0.9716 + }, + { + "start": 15895.98, + "end": 15899.72, + "probability": 0.9517 + }, + { + "start": 15900.56, + "end": 15901.24, + "probability": 0.6966 + }, + { + "start": 15901.78, + "end": 15904.2, + "probability": 0.9438 + }, + { + "start": 15906.0, + "end": 15906.24, + "probability": 0.1638 + }, + { + "start": 15906.78, + "end": 15909.6, + "probability": 0.8108 + }, + { + "start": 15909.6, + "end": 15913.08, + "probability": 0.9089 + }, + { + "start": 15913.34, + "end": 15915.34, + "probability": 0.563 + }, + { + "start": 15915.36, + "end": 15916.12, + "probability": 0.6533 + }, + { + "start": 15916.12, + "end": 15916.4, + "probability": 0.3685 + }, + { + "start": 15916.4, + "end": 15918.3, + "probability": 0.664 + }, + { + "start": 15919.04, + "end": 15920.3, + "probability": 0.5486 + }, + { + "start": 15920.46, + "end": 15920.7, + "probability": 0.7816 + }, + { + "start": 15920.76, + "end": 15923.16, + "probability": 0.7104 + }, + { + "start": 15923.64, + "end": 15925.04, + "probability": 0.8302 + }, + { + "start": 15925.04, + "end": 15927.66, + "probability": 0.7949 + }, + { + "start": 15927.72, + "end": 15930.08, + "probability": 0.9569 + }, + { + "start": 15931.22, + "end": 15932.8, + "probability": 0.9451 + }, + { + "start": 15933.44, + "end": 15938.5, + "probability": 0.9951 + }, + { + "start": 15939.54, + "end": 15940.9, + "probability": 0.7853 + }, + { + "start": 15941.7, + "end": 15942.32, + "probability": 0.872 + }, + { + "start": 15942.66, + "end": 15947.74, + "probability": 0.9839 + }, + { + "start": 15948.56, + "end": 15950.74, + "probability": 0.7868 + }, + { + "start": 15951.12, + "end": 15951.66, + "probability": 0.5435 + }, + { + "start": 15952.74, + "end": 15954.12, + "probability": 0.9684 + }, + { + "start": 15955.12, + "end": 15957.98, + "probability": 0.9403 + }, + { + "start": 15958.22, + "end": 15959.2, + "probability": 0.5181 + }, + { + "start": 15959.48, + "end": 15965.3, + "probability": 0.1436 + }, + { + "start": 15965.3, + "end": 15965.3, + "probability": 0.0464 + }, + { + "start": 15965.3, + "end": 15965.3, + "probability": 0.0209 + }, + { + "start": 15965.3, + "end": 15968.58, + "probability": 0.6311 + }, + { + "start": 15968.78, + "end": 15970.5, + "probability": 0.5359 + }, + { + "start": 15970.58, + "end": 15972.81, + "probability": 0.7332 + }, + { + "start": 15974.16, + "end": 15975.28, + "probability": 0.9698 + }, + { + "start": 15976.2, + "end": 15978.19, + "probability": 0.8783 + }, + { + "start": 15980.78, + "end": 15981.02, + "probability": 0.9617 + }, + { + "start": 15983.78, + "end": 15986.95, + "probability": 0.7988 + }, + { + "start": 15988.04, + "end": 15990.97, + "probability": 0.9209 + }, + { + "start": 15991.92, + "end": 15994.08, + "probability": 0.8131 + }, + { + "start": 15994.6, + "end": 15995.86, + "probability": 0.7586 + }, + { + "start": 15997.06, + "end": 15999.26, + "probability": 0.9691 + }, + { + "start": 15999.96, + "end": 16005.58, + "probability": 0.9849 + }, + { + "start": 16006.2, + "end": 16008.88, + "probability": 0.9455 + }, + { + "start": 16009.62, + "end": 16014.26, + "probability": 0.9974 + }, + { + "start": 16014.74, + "end": 16017.16, + "probability": 0.9937 + }, + { + "start": 16018.0, + "end": 16021.34, + "probability": 0.981 + }, + { + "start": 16022.3, + "end": 16022.86, + "probability": 0.6732 + }, + { + "start": 16023.44, + "end": 16024.68, + "probability": 0.9065 + }, + { + "start": 16024.86, + "end": 16027.48, + "probability": 0.9926 + }, + { + "start": 16027.56, + "end": 16030.1, + "probability": 0.7622 + }, + { + "start": 16030.56, + "end": 16033.1, + "probability": 0.9127 + }, + { + "start": 16033.1, + "end": 16037.1, + "probability": 0.8527 + }, + { + "start": 16038.28, + "end": 16043.26, + "probability": 0.9486 + }, + { + "start": 16043.26, + "end": 16047.02, + "probability": 0.9666 + }, + { + "start": 16047.66, + "end": 16050.0, + "probability": 0.9866 + }, + { + "start": 16051.28, + "end": 16051.78, + "probability": 0.7887 + }, + { + "start": 16052.38, + "end": 16055.94, + "probability": 0.9951 + }, + { + "start": 16056.46, + "end": 16059.72, + "probability": 0.827 + }, + { + "start": 16060.4, + "end": 16063.08, + "probability": 0.9938 + }, + { + "start": 16063.2, + "end": 16068.42, + "probability": 0.985 + }, + { + "start": 16069.1, + "end": 16071.28, + "probability": 0.8989 + }, + { + "start": 16071.98, + "end": 16075.88, + "probability": 0.7176 + }, + { + "start": 16075.92, + "end": 16076.84, + "probability": 0.9939 + }, + { + "start": 16077.7, + "end": 16080.84, + "probability": 0.9023 + }, + { + "start": 16082.48, + "end": 16083.66, + "probability": 0.8225 + }, + { + "start": 16084.06, + "end": 16084.62, + "probability": 0.7521 + }, + { + "start": 16087.92, + "end": 16091.08, + "probability": 0.9754 + }, + { + "start": 16091.36, + "end": 16092.7, + "probability": 0.9575 + }, + { + "start": 16093.98, + "end": 16101.28, + "probability": 0.9867 + }, + { + "start": 16102.16, + "end": 16104.86, + "probability": 0.5425 + }, + { + "start": 16105.04, + "end": 16105.92, + "probability": 0.1261 + }, + { + "start": 16105.92, + "end": 16106.6, + "probability": 0.5981 + }, + { + "start": 16106.68, + "end": 16107.79, + "probability": 0.8658 + }, + { + "start": 16107.94, + "end": 16108.36, + "probability": 0.4536 + }, + { + "start": 16108.56, + "end": 16109.58, + "probability": 0.8176 + }, + { + "start": 16109.58, + "end": 16113.36, + "probability": 0.5514 + }, + { + "start": 16113.8, + "end": 16115.48, + "probability": 0.52 + }, + { + "start": 16115.48, + "end": 16117.1, + "probability": 0.9406 + }, + { + "start": 16117.22, + "end": 16119.32, + "probability": 0.8041 + }, + { + "start": 16119.94, + "end": 16123.3, + "probability": 0.8708 + }, + { + "start": 16124.1, + "end": 16127.12, + "probability": 0.9864 + }, + { + "start": 16127.92, + "end": 16129.12, + "probability": 0.9893 + }, + { + "start": 16130.42, + "end": 16130.98, + "probability": 0.9307 + }, + { + "start": 16131.82, + "end": 16132.08, + "probability": 0.9618 + }, + { + "start": 16132.48, + "end": 16136.06, + "probability": 0.9595 + }, + { + "start": 16136.54, + "end": 16137.9, + "probability": 0.9915 + }, + { + "start": 16137.94, + "end": 16138.68, + "probability": 0.9919 + }, + { + "start": 16138.76, + "end": 16139.44, + "probability": 0.9016 + }, + { + "start": 16139.76, + "end": 16140.06, + "probability": 0.9607 + }, + { + "start": 16140.82, + "end": 16144.84, + "probability": 0.9237 + }, + { + "start": 16145.94, + "end": 16149.6, + "probability": 0.986 + }, + { + "start": 16149.8, + "end": 16151.2, + "probability": 0.8167 + }, + { + "start": 16151.98, + "end": 16154.4, + "probability": 0.956 + }, + { + "start": 16154.5, + "end": 16155.86, + "probability": 0.9355 + }, + { + "start": 16157.06, + "end": 16158.0, + "probability": 0.979 + }, + { + "start": 16158.68, + "end": 16160.74, + "probability": 0.9653 + }, + { + "start": 16161.58, + "end": 16164.36, + "probability": 0.954 + }, + { + "start": 16164.64, + "end": 16165.71, + "probability": 0.9858 + }, + { + "start": 16166.6, + "end": 16169.1, + "probability": 0.9839 + }, + { + "start": 16170.52, + "end": 16174.06, + "probability": 0.9805 + }, + { + "start": 16174.78, + "end": 16176.22, + "probability": 0.5983 + }, + { + "start": 16181.02, + "end": 16182.6, + "probability": 0.0001 + }, + { + "start": 16184.76, + "end": 16186.64, + "probability": 0.6858 + }, + { + "start": 16187.56, + "end": 16188.88, + "probability": 0.879 + }, + { + "start": 16189.62, + "end": 16195.2, + "probability": 0.8145 + }, + { + "start": 16195.3, + "end": 16196.06, + "probability": 0.8643 + }, + { + "start": 16196.78, + "end": 16199.86, + "probability": 0.8425 + }, + { + "start": 16200.5, + "end": 16201.4, + "probability": 0.7428 + }, + { + "start": 16202.06, + "end": 16204.68, + "probability": 0.9873 + }, + { + "start": 16204.68, + "end": 16207.5, + "probability": 0.8838 + }, + { + "start": 16208.14, + "end": 16211.38, + "probability": 0.8724 + }, + { + "start": 16211.46, + "end": 16217.2, + "probability": 0.9297 + }, + { + "start": 16217.94, + "end": 16221.57, + "probability": 0.9067 + }, + { + "start": 16222.64, + "end": 16223.64, + "probability": 0.7454 + }, + { + "start": 16225.46, + "end": 16227.06, + "probability": 0.963 + }, + { + "start": 16227.28, + "end": 16228.44, + "probability": 0.6338 + }, + { + "start": 16228.82, + "end": 16230.42, + "probability": 0.9414 + }, + { + "start": 16231.28, + "end": 16232.54, + "probability": 0.9327 + }, + { + "start": 16233.72, + "end": 16234.82, + "probability": 0.9945 + }, + { + "start": 16235.86, + "end": 16236.8, + "probability": 0.6944 + }, + { + "start": 16237.62, + "end": 16240.72, + "probability": 0.992 + }, + { + "start": 16241.54, + "end": 16242.18, + "probability": 0.7793 + }, + { + "start": 16243.9, + "end": 16245.08, + "probability": 0.9932 + }, + { + "start": 16245.16, + "end": 16247.8, + "probability": 0.9844 + }, + { + "start": 16248.5, + "end": 16252.02, + "probability": 0.9915 + }, + { + "start": 16252.2, + "end": 16253.04, + "probability": 0.7453 + }, + { + "start": 16253.16, + "end": 16254.88, + "probability": 0.9611 + }, + { + "start": 16255.02, + "end": 16257.86, + "probability": 0.5853 + }, + { + "start": 16258.12, + "end": 16262.94, + "probability": 0.7763 + }, + { + "start": 16262.94, + "end": 16265.2, + "probability": 0.9943 + }, + { + "start": 16265.34, + "end": 16265.78, + "probability": 0.9284 + }, + { + "start": 16266.52, + "end": 16270.52, + "probability": 0.8343 + }, + { + "start": 16270.56, + "end": 16273.24, + "probability": 0.7869 + }, + { + "start": 16273.72, + "end": 16276.16, + "probability": 0.8771 + }, + { + "start": 16276.16, + "end": 16278.18, + "probability": 0.9888 + }, + { + "start": 16278.86, + "end": 16280.84, + "probability": 0.8594 + }, + { + "start": 16280.84, + "end": 16283.52, + "probability": 0.959 + }, + { + "start": 16284.48, + "end": 16288.18, + "probability": 0.9223 + }, + { + "start": 16288.8, + "end": 16291.26, + "probability": 0.9447 + }, + { + "start": 16292.5, + "end": 16292.76, + "probability": 0.4374 + }, + { + "start": 16292.84, + "end": 16294.5, + "probability": 0.9518 + }, + { + "start": 16294.52, + "end": 16298.0, + "probability": 0.9356 + }, + { + "start": 16299.48, + "end": 16300.68, + "probability": 0.871 + }, + { + "start": 16301.26, + "end": 16303.06, + "probability": 0.9902 + }, + { + "start": 16304.02, + "end": 16305.54, + "probability": 0.7494 + }, + { + "start": 16306.2, + "end": 16309.8, + "probability": 0.9945 + }, + { + "start": 16309.86, + "end": 16312.78, + "probability": 0.9913 + }, + { + "start": 16314.16, + "end": 16315.96, + "probability": 0.4948 + }, + { + "start": 16315.96, + "end": 16320.16, + "probability": 0.7947 + }, + { + "start": 16321.4, + "end": 16324.12, + "probability": 0.8671 + }, + { + "start": 16324.68, + "end": 16326.54, + "probability": 0.793 + }, + { + "start": 16326.54, + "end": 16327.48, + "probability": 0.7673 + }, + { + "start": 16327.48, + "end": 16327.48, + "probability": 0.6503 + }, + { + "start": 16328.48, + "end": 16329.34, + "probability": 0.9224 + }, + { + "start": 16330.16, + "end": 16331.2, + "probability": 0.9006 + }, + { + "start": 16331.64, + "end": 16335.79, + "probability": 0.9208 + }, + { + "start": 16337.14, + "end": 16340.94, + "probability": 0.8281 + }, + { + "start": 16341.18, + "end": 16343.96, + "probability": 0.9437 + }, + { + "start": 16344.46, + "end": 16344.95, + "probability": 0.8651 + }, + { + "start": 16345.48, + "end": 16348.22, + "probability": 0.9741 + }, + { + "start": 16348.68, + "end": 16352.52, + "probability": 0.8085 + }, + { + "start": 16352.58, + "end": 16354.22, + "probability": 0.9602 + }, + { + "start": 16354.38, + "end": 16354.94, + "probability": 0.5961 + }, + { + "start": 16355.04, + "end": 16355.9, + "probability": 0.7133 + }, + { + "start": 16356.24, + "end": 16357.08, + "probability": 0.6201 + }, + { + "start": 16357.16, + "end": 16358.32, + "probability": 0.9674 + }, + { + "start": 16358.5, + "end": 16358.82, + "probability": 0.8765 + }, + { + "start": 16359.58, + "end": 16359.96, + "probability": 0.7557 + }, + { + "start": 16360.1, + "end": 16360.68, + "probability": 0.891 + }, + { + "start": 16360.84, + "end": 16364.68, + "probability": 0.981 + }, + { + "start": 16364.7, + "end": 16366.78, + "probability": 0.9757 + }, + { + "start": 16367.44, + "end": 16368.78, + "probability": 0.6973 + }, + { + "start": 16369.56, + "end": 16370.8, + "probability": 0.8091 + }, + { + "start": 16370.9, + "end": 16371.52, + "probability": 0.9409 + }, + { + "start": 16372.58, + "end": 16378.12, + "probability": 0.9602 + }, + { + "start": 16380.26, + "end": 16380.96, + "probability": 0.9181 + }, + { + "start": 16381.7, + "end": 16382.62, + "probability": 0.955 + }, + { + "start": 16383.32, + "end": 16384.18, + "probability": 0.8294 + }, + { + "start": 16385.3, + "end": 16386.24, + "probability": 0.9812 + }, + { + "start": 16386.98, + "end": 16389.34, + "probability": 0.9703 + }, + { + "start": 16390.34, + "end": 16391.74, + "probability": 0.605 + }, + { + "start": 16392.1, + "end": 16393.0, + "probability": 0.7084 + }, + { + "start": 16394.83, + "end": 16397.38, + "probability": 0.986 + }, + { + "start": 16397.8, + "end": 16400.34, + "probability": 0.9532 + }, + { + "start": 16400.48, + "end": 16401.91, + "probability": 0.7176 + }, + { + "start": 16403.8, + "end": 16404.2, + "probability": 0.9714 + }, + { + "start": 16405.08, + "end": 16406.18, + "probability": 0.6353 + }, + { + "start": 16406.66, + "end": 16407.92, + "probability": 0.9883 + }, + { + "start": 16408.1, + "end": 16409.4, + "probability": 0.8651 + }, + { + "start": 16410.16, + "end": 16411.8, + "probability": 0.826 + }, + { + "start": 16412.64, + "end": 16413.68, + "probability": 0.7693 + }, + { + "start": 16415.36, + "end": 16417.58, + "probability": 0.8547 + }, + { + "start": 16418.32, + "end": 16420.16, + "probability": 0.9543 + }, + { + "start": 16421.14, + "end": 16423.86, + "probability": 0.7083 + }, + { + "start": 16425.16, + "end": 16427.28, + "probability": 0.9233 + }, + { + "start": 16428.98, + "end": 16430.88, + "probability": 0.7294 + }, + { + "start": 16432.24, + "end": 16433.3, + "probability": 0.9917 + }, + { + "start": 16435.44, + "end": 16436.19, + "probability": 0.9194 + }, + { + "start": 16437.72, + "end": 16438.38, + "probability": 0.7977 + }, + { + "start": 16439.0, + "end": 16440.66, + "probability": 0.8964 + }, + { + "start": 16441.92, + "end": 16442.8, + "probability": 0.9819 + }, + { + "start": 16442.88, + "end": 16443.46, + "probability": 0.9353 + }, + { + "start": 16443.48, + "end": 16445.0, + "probability": 0.8888 + }, + { + "start": 16445.38, + "end": 16446.32, + "probability": 0.788 + }, + { + "start": 16446.62, + "end": 16448.98, + "probability": 0.9785 + }, + { + "start": 16449.06, + "end": 16453.82, + "probability": 0.9952 + }, + { + "start": 16453.88, + "end": 16454.88, + "probability": 0.692 + }, + { + "start": 16455.6, + "end": 16457.08, + "probability": 0.9509 + }, + { + "start": 16457.82, + "end": 16458.52, + "probability": 0.747 + }, + { + "start": 16458.58, + "end": 16459.12, + "probability": 0.9822 + }, + { + "start": 16459.44, + "end": 16460.44, + "probability": 0.7313 + }, + { + "start": 16460.86, + "end": 16461.62, + "probability": 0.3306 + }, + { + "start": 16461.74, + "end": 16462.24, + "probability": 0.224 + }, + { + "start": 16462.3, + "end": 16463.58, + "probability": 0.4974 + }, + { + "start": 16464.02, + "end": 16465.44, + "probability": 0.5928 + }, + { + "start": 16466.22, + "end": 16467.3, + "probability": 0.2565 + }, + { + "start": 16467.92, + "end": 16469.48, + "probability": 0.7065 + }, + { + "start": 16470.16, + "end": 16471.78, + "probability": 0.9487 + }, + { + "start": 16472.2, + "end": 16475.28, + "probability": 0.9568 + }, + { + "start": 16476.96, + "end": 16479.18, + "probability": 0.8145 + }, + { + "start": 16480.96, + "end": 16483.72, + "probability": 0.9494 + }, + { + "start": 16484.46, + "end": 16485.11, + "probability": 0.8407 + }, + { + "start": 16487.54, + "end": 16489.34, + "probability": 0.8212 + }, + { + "start": 16490.48, + "end": 16493.49, + "probability": 0.9915 + }, + { + "start": 16495.22, + "end": 16496.18, + "probability": 0.7005 + }, + { + "start": 16496.88, + "end": 16497.86, + "probability": 0.9092 + }, + { + "start": 16497.86, + "end": 16498.16, + "probability": 0.6136 + }, + { + "start": 16498.26, + "end": 16498.76, + "probability": 0.4308 + }, + { + "start": 16498.9, + "end": 16499.18, + "probability": 0.9039 + }, + { + "start": 16499.24, + "end": 16500.16, + "probability": 0.7613 + }, + { + "start": 16500.46, + "end": 16502.6, + "probability": 0.8609 + }, + { + "start": 16503.36, + "end": 16504.8, + "probability": 0.9815 + }, + { + "start": 16505.82, + "end": 16509.06, + "probability": 0.6992 + }, + { + "start": 16509.1, + "end": 16509.1, + "probability": 0.0056 + }, + { + "start": 16509.8, + "end": 16512.65, + "probability": 0.252 + }, + { + "start": 16512.88, + "end": 16516.34, + "probability": 0.8638 + }, + { + "start": 16516.48, + "end": 16518.62, + "probability": 0.8596 + }, + { + "start": 16518.7, + "end": 16519.88, + "probability": 0.5698 + }, + { + "start": 16519.88, + "end": 16519.88, + "probability": 0.267 + }, + { + "start": 16519.88, + "end": 16520.88, + "probability": 0.6795 + }, + { + "start": 16521.26, + "end": 16524.22, + "probability": 0.5969 + }, + { + "start": 16524.32, + "end": 16525.7, + "probability": 0.8752 + }, + { + "start": 16526.6, + "end": 16532.48, + "probability": 0.8071 + }, + { + "start": 16533.24, + "end": 16533.44, + "probability": 0.5509 + }, + { + "start": 16533.58, + "end": 16534.72, + "probability": 0.7068 + }, + { + "start": 16534.78, + "end": 16535.92, + "probability": 0.8979 + }, + { + "start": 16537.44, + "end": 16539.36, + "probability": 0.8161 + }, + { + "start": 16540.48, + "end": 16542.9, + "probability": 0.7606 + }, + { + "start": 16543.94, + "end": 16545.4, + "probability": 0.9952 + }, + { + "start": 16545.92, + "end": 16547.23, + "probability": 0.9692 + }, + { + "start": 16548.0, + "end": 16549.76, + "probability": 0.4301 + }, + { + "start": 16551.04, + "end": 16552.44, + "probability": 0.965 + }, + { + "start": 16553.88, + "end": 16555.0, + "probability": 0.8785 + }, + { + "start": 16555.1, + "end": 16557.16, + "probability": 0.9697 + }, + { + "start": 16557.7, + "end": 16561.14, + "probability": 0.9825 + }, + { + "start": 16563.02, + "end": 16564.47, + "probability": 0.9976 + }, + { + "start": 16565.48, + "end": 16567.7, + "probability": 0.6146 + }, + { + "start": 16568.84, + "end": 16571.56, + "probability": 0.3392 + }, + { + "start": 16571.68, + "end": 16572.29, + "probability": 0.4369 + }, + { + "start": 16572.52, + "end": 16574.95, + "probability": 0.9976 + }, + { + "start": 16576.17, + "end": 16578.59, + "probability": 0.9644 + }, + { + "start": 16579.2, + "end": 16581.72, + "probability": 0.9434 + }, + { + "start": 16582.56, + "end": 16584.6, + "probability": 0.7907 + }, + { + "start": 16585.96, + "end": 16588.02, + "probability": 0.7951 + }, + { + "start": 16589.02, + "end": 16591.3, + "probability": 0.5145 + }, + { + "start": 16591.3, + "end": 16593.04, + "probability": 0.2957 + }, + { + "start": 16593.52, + "end": 16597.28, + "probability": 0.9246 + }, + { + "start": 16597.64, + "end": 16598.57, + "probability": 0.1398 + }, + { + "start": 16600.24, + "end": 16601.48, + "probability": 0.9841 + }, + { + "start": 16601.96, + "end": 16604.77, + "probability": 0.9766 + }, + { + "start": 16606.2, + "end": 16609.43, + "probability": 0.9517 + }, + { + "start": 16609.5, + "end": 16611.68, + "probability": 0.9749 + }, + { + "start": 16611.82, + "end": 16616.08, + "probability": 0.9395 + }, + { + "start": 16616.64, + "end": 16619.8, + "probability": 0.9785 + }, + { + "start": 16619.86, + "end": 16622.96, + "probability": 0.9901 + }, + { + "start": 16623.5, + "end": 16624.65, + "probability": 0.9188 + }, + { + "start": 16625.28, + "end": 16626.71, + "probability": 0.9966 + }, + { + "start": 16626.84, + "end": 16631.06, + "probability": 0.9893 + }, + { + "start": 16631.18, + "end": 16635.02, + "probability": 0.9897 + }, + { + "start": 16635.64, + "end": 16637.0, + "probability": 0.5677 + }, + { + "start": 16637.82, + "end": 16639.2, + "probability": 0.5887 + }, + { + "start": 16639.58, + "end": 16640.37, + "probability": 0.998 + }, + { + "start": 16640.58, + "end": 16646.16, + "probability": 0.8728 + }, + { + "start": 16646.18, + "end": 16647.94, + "probability": 0.964 + }, + { + "start": 16648.48, + "end": 16650.94, + "probability": 0.5304 + }, + { + "start": 16651.52, + "end": 16653.28, + "probability": 0.6854 + }, + { + "start": 16653.44, + "end": 16657.8, + "probability": 0.5763 + }, + { + "start": 16657.8, + "end": 16661.96, + "probability": 0.9184 + }, + { + "start": 16662.52, + "end": 16664.62, + "probability": 0.9277 + }, + { + "start": 16664.96, + "end": 16666.02, + "probability": 0.7375 + }, + { + "start": 16666.28, + "end": 16667.92, + "probability": 0.6412 + }, + { + "start": 16669.04, + "end": 16670.22, + "probability": 0.926 + }, + { + "start": 16671.1, + "end": 16673.32, + "probability": 0.9655 + }, + { + "start": 16673.32, + "end": 16678.74, + "probability": 0.858 + }, + { + "start": 16678.93, + "end": 16680.46, + "probability": 0.8161 + }, + { + "start": 16680.5, + "end": 16682.18, + "probability": 0.9524 + }, + { + "start": 16682.64, + "end": 16684.58, + "probability": 0.9615 + }, + { + "start": 16685.68, + "end": 16689.6, + "probability": 0.8056 + }, + { + "start": 16689.96, + "end": 16691.46, + "probability": 0.9715 + }, + { + "start": 16692.52, + "end": 16694.08, + "probability": 0.5006 + }, + { + "start": 16695.78, + "end": 16696.2, + "probability": 0.0796 + }, + { + "start": 16696.2, + "end": 16698.6, + "probability": 0.9165 + }, + { + "start": 16699.81, + "end": 16703.86, + "probability": 0.6155 + }, + { + "start": 16704.32, + "end": 16707.38, + "probability": 0.9797 + }, + { + "start": 16708.18, + "end": 16711.28, + "probability": 0.1424 + }, + { + "start": 16712.04, + "end": 16712.68, + "probability": 0.6474 + }, + { + "start": 16716.42, + "end": 16717.3, + "probability": 0.3395 + }, + { + "start": 16719.48, + "end": 16722.74, + "probability": 0.9287 + }, + { + "start": 16722.82, + "end": 16723.72, + "probability": 0.8388 + }, + { + "start": 16724.26, + "end": 16728.2, + "probability": 0.9269 + }, + { + "start": 16728.2, + "end": 16732.48, + "probability": 0.9969 + }, + { + "start": 16732.6, + "end": 16734.64, + "probability": 0.8548 + }, + { + "start": 16735.6, + "end": 16739.36, + "probability": 0.9234 + }, + { + "start": 16739.98, + "end": 16742.28, + "probability": 0.9919 + }, + { + "start": 16742.9, + "end": 16746.6, + "probability": 0.9946 + }, + { + "start": 16747.58, + "end": 16753.4, + "probability": 0.9923 + }, + { + "start": 16754.26, + "end": 16759.74, + "probability": 0.965 + }, + { + "start": 16760.22, + "end": 16762.78, + "probability": 0.9783 + }, + { + "start": 16764.06, + "end": 16767.52, + "probability": 0.9885 + }, + { + "start": 16768.14, + "end": 16771.36, + "probability": 0.9976 + }, + { + "start": 16771.36, + "end": 16773.62, + "probability": 0.9874 + }, + { + "start": 16774.86, + "end": 16775.93, + "probability": 0.7463 + }, + { + "start": 16776.16, + "end": 16776.57, + "probability": 0.6597 + }, + { + "start": 16777.26, + "end": 16779.56, + "probability": 0.5493 + }, + { + "start": 16780.4, + "end": 16781.88, + "probability": 0.9969 + }, + { + "start": 16782.8, + "end": 16788.04, + "probability": 0.9896 + }, + { + "start": 16788.66, + "end": 16791.44, + "probability": 0.902 + }, + { + "start": 16791.92, + "end": 16792.6, + "probability": 0.5546 + }, + { + "start": 16792.74, + "end": 16793.4, + "probability": 0.467 + }, + { + "start": 16793.4, + "end": 16793.82, + "probability": 0.9251 + }, + { + "start": 16795.52, + "end": 16799.66, + "probability": 0.8902 + }, + { + "start": 16801.0, + "end": 16802.02, + "probability": 0.9016 + }, + { + "start": 16802.88, + "end": 16804.56, + "probability": 0.9543 + }, + { + "start": 16805.64, + "end": 16806.0, + "probability": 0.5243 + }, + { + "start": 16806.1, + "end": 16809.22, + "probability": 0.9827 + }, + { + "start": 16809.28, + "end": 16810.84, + "probability": 0.8829 + }, + { + "start": 16811.38, + "end": 16812.12, + "probability": 0.4093 + }, + { + "start": 16813.42, + "end": 16814.3, + "probability": 0.9834 + }, + { + "start": 16814.67, + "end": 16816.82, + "probability": 0.8962 + }, + { + "start": 16816.98, + "end": 16821.18, + "probability": 0.8928 + }, + { + "start": 16821.24, + "end": 16824.82, + "probability": 0.839 + }, + { + "start": 16825.44, + "end": 16827.42, + "probability": 0.9824 + }, + { + "start": 16827.56, + "end": 16831.56, + "probability": 0.8521 + }, + { + "start": 16832.5, + "end": 16832.98, + "probability": 0.7452 + }, + { + "start": 16833.08, + "end": 16835.78, + "probability": 0.7407 + }, + { + "start": 16838.36, + "end": 16839.84, + "probability": 0.8418 + }, + { + "start": 16840.6, + "end": 16843.02, + "probability": 0.6572 + }, + { + "start": 16843.58, + "end": 16845.58, + "probability": 0.8102 + }, + { + "start": 16845.64, + "end": 16847.88, + "probability": 0.5856 + }, + { + "start": 16847.88, + "end": 16848.16, + "probability": 0.1649 + }, + { + "start": 16848.34, + "end": 16849.66, + "probability": 0.9426 + }, + { + "start": 16849.66, + "end": 16851.27, + "probability": 0.5607 + }, + { + "start": 16851.82, + "end": 16852.62, + "probability": 0.8793 + }, + { + "start": 16853.38, + "end": 16855.02, + "probability": 0.9933 + }, + { + "start": 16855.22, + "end": 16857.02, + "probability": 0.3424 + }, + { + "start": 16858.12, + "end": 16859.42, + "probability": 0.4145 + }, + { + "start": 16860.78, + "end": 16862.44, + "probability": 0.8763 + }, + { + "start": 16863.46, + "end": 16864.98, + "probability": 0.9674 + }, + { + "start": 16866.06, + "end": 16868.0, + "probability": 0.7919 + }, + { + "start": 16868.16, + "end": 16872.44, + "probability": 0.9941 + }, + { + "start": 16872.56, + "end": 16874.08, + "probability": 0.9836 + }, + { + "start": 16874.76, + "end": 16876.68, + "probability": 0.434 + }, + { + "start": 16876.94, + "end": 16877.22, + "probability": 0.1824 + }, + { + "start": 16878.04, + "end": 16879.64, + "probability": 0.9542 + }, + { + "start": 16879.72, + "end": 16881.11, + "probability": 0.9304 + }, + { + "start": 16881.4, + "end": 16885.06, + "probability": 0.9839 + }, + { + "start": 16885.6, + "end": 16886.94, + "probability": 0.8046 + }, + { + "start": 16887.26, + "end": 16888.16, + "probability": 0.0108 + }, + { + "start": 16888.16, + "end": 16889.14, + "probability": 0.0531 + }, + { + "start": 16889.22, + "end": 16890.8, + "probability": 0.978 + }, + { + "start": 16892.54, + "end": 16893.58, + "probability": 0.8522 + }, + { + "start": 16894.52, + "end": 16897.08, + "probability": 0.877 + }, + { + "start": 16897.84, + "end": 16900.32, + "probability": 0.9632 + }, + { + "start": 16900.7, + "end": 16902.52, + "probability": 0.5763 + }, + { + "start": 16903.76, + "end": 16904.98, + "probability": 0.8343 + }, + { + "start": 16905.42, + "end": 16908.68, + "probability": 0.6753 + }, + { + "start": 16909.5, + "end": 16911.5, + "probability": 0.7003 + }, + { + "start": 16911.66, + "end": 16916.76, + "probability": 0.8872 + }, + { + "start": 16917.12, + "end": 16918.64, + "probability": 0.9979 + }, + { + "start": 16919.76, + "end": 16920.66, + "probability": 0.6556 + }, + { + "start": 16921.2, + "end": 16923.72, + "probability": 0.8823 + }, + { + "start": 16924.56, + "end": 16925.74, + "probability": 0.9961 + }, + { + "start": 16926.54, + "end": 16929.42, + "probability": 0.8755 + }, + { + "start": 16929.64, + "end": 16930.88, + "probability": 0.2936 + }, + { + "start": 16932.26, + "end": 16933.7, + "probability": 0.8539 + }, + { + "start": 16935.66, + "end": 16936.47, + "probability": 0.9093 + }, + { + "start": 16938.2, + "end": 16943.74, + "probability": 0.7933 + }, + { + "start": 16945.8, + "end": 16948.22, + "probability": 0.9805 + }, + { + "start": 16949.86, + "end": 16950.74, + "probability": 0.8506 + }, + { + "start": 16951.66, + "end": 16955.78, + "probability": 0.792 + }, + { + "start": 16957.3, + "end": 16959.0, + "probability": 0.9648 + }, + { + "start": 16959.86, + "end": 16960.62, + "probability": 0.6831 + }, + { + "start": 16961.7, + "end": 16962.84, + "probability": 0.5514 + }, + { + "start": 16962.94, + "end": 16964.27, + "probability": 0.8553 + }, + { + "start": 16965.2, + "end": 16969.7, + "probability": 0.9852 + }, + { + "start": 16969.78, + "end": 16974.08, + "probability": 0.767 + }, + { + "start": 16974.72, + "end": 16974.96, + "probability": 0.5329 + }, + { + "start": 16974.98, + "end": 16976.06, + "probability": 0.908 + }, + { + "start": 16976.14, + "end": 16977.12, + "probability": 0.9632 + }, + { + "start": 16977.12, + "end": 16978.78, + "probability": 0.9918 + }, + { + "start": 16980.04, + "end": 16980.82, + "probability": 0.5908 + }, + { + "start": 16982.28, + "end": 16984.26, + "probability": 0.8708 + }, + { + "start": 16985.0, + "end": 16985.8, + "probability": 0.3888 + }, + { + "start": 16986.26, + "end": 16987.12, + "probability": 0.932 + }, + { + "start": 16987.22, + "end": 16987.95, + "probability": 0.5763 + }, + { + "start": 16988.18, + "end": 16991.5, + "probability": 0.9473 + }, + { + "start": 16991.92, + "end": 16993.04, + "probability": 0.8285 + }, + { + "start": 16993.14, + "end": 16994.54, + "probability": 0.8994 + }, + { + "start": 16995.02, + "end": 16995.97, + "probability": 0.0993 + }, + { + "start": 16996.0, + "end": 17002.34, + "probability": 0.7922 + }, + { + "start": 17002.86, + "end": 17004.84, + "probability": 0.9036 + }, + { + "start": 17004.84, + "end": 17006.44, + "probability": 0.9738 + }, + { + "start": 17006.66, + "end": 17008.24, + "probability": 0.8667 + }, + { + "start": 17009.04, + "end": 17010.14, + "probability": 0.7974 + }, + { + "start": 17010.34, + "end": 17011.52, + "probability": 0.9452 + }, + { + "start": 17012.4, + "end": 17013.94, + "probability": 0.9224 + }, + { + "start": 17014.06, + "end": 17014.36, + "probability": 0.6443 + }, + { + "start": 17017.28, + "end": 17017.86, + "probability": 0.8247 + }, + { + "start": 17019.0, + "end": 17021.66, + "probability": 0.7201 + }, + { + "start": 17022.74, + "end": 17025.14, + "probability": 0.998 + }, + { + "start": 17025.16, + "end": 17027.54, + "probability": 0.9797 + }, + { + "start": 17028.74, + "end": 17031.68, + "probability": 0.2531 + }, + { + "start": 17031.94, + "end": 17034.66, + "probability": 0.6379 + }, + { + "start": 17035.2, + "end": 17035.66, + "probability": 0.786 + }, + { + "start": 17036.76, + "end": 17036.88, + "probability": 0.2305 + }, + { + "start": 17037.3, + "end": 17037.46, + "probability": 0.2544 + }, + { + "start": 17037.66, + "end": 17037.88, + "probability": 0.8222 + }, + { + "start": 17037.92, + "end": 17038.28, + "probability": 0.7953 + }, + { + "start": 17038.28, + "end": 17039.32, + "probability": 0.9907 + }, + { + "start": 17039.5, + "end": 17041.34, + "probability": 0.9951 + }, + { + "start": 17041.34, + "end": 17041.72, + "probability": 0.7967 + }, + { + "start": 17041.72, + "end": 17047.82, + "probability": 0.6858 + }, + { + "start": 17047.94, + "end": 17048.14, + "probability": 0.47 + }, + { + "start": 17048.16, + "end": 17049.46, + "probability": 0.9868 + }, + { + "start": 17050.36, + "end": 17051.53, + "probability": 0.6292 + }, + { + "start": 17051.84, + "end": 17056.7, + "probability": 0.8373 + }, + { + "start": 17056.96, + "end": 17058.32, + "probability": 0.3753 + }, + { + "start": 17058.7, + "end": 17059.38, + "probability": 0.8712 + }, + { + "start": 17059.44, + "end": 17060.14, + "probability": 0.9388 + }, + { + "start": 17060.14, + "end": 17063.02, + "probability": 0.9279 + }, + { + "start": 17063.14, + "end": 17064.21, + "probability": 0.9495 + }, + { + "start": 17065.18, + "end": 17070.58, + "probability": 0.335 + }, + { + "start": 17070.7, + "end": 17071.4, + "probability": 0.4378 + }, + { + "start": 17071.5, + "end": 17071.99, + "probability": 0.0494 + }, + { + "start": 17072.92, + "end": 17073.36, + "probability": 0.3421 + }, + { + "start": 17073.36, + "end": 17077.24, + "probability": 0.4184 + }, + { + "start": 17077.72, + "end": 17078.62, + "probability": 0.5304 + }, + { + "start": 17079.7, + "end": 17081.21, + "probability": 0.5562 + }, + { + "start": 17081.88, + "end": 17082.68, + "probability": 0.3835 + }, + { + "start": 17082.74, + "end": 17082.96, + "probability": 0.6176 + }, + { + "start": 17082.96, + "end": 17085.74, + "probability": 0.8405 + }, + { + "start": 17085.84, + "end": 17092.0, + "probability": 0.9327 + }, + { + "start": 17094.84, + "end": 17097.9, + "probability": 0.9517 + }, + { + "start": 17098.76, + "end": 17099.96, + "probability": 0.7053 + }, + { + "start": 17100.48, + "end": 17103.88, + "probability": 0.9711 + }, + { + "start": 17104.4, + "end": 17107.38, + "probability": 0.7345 + }, + { + "start": 17108.2, + "end": 17109.6, + "probability": 0.8144 + }, + { + "start": 17110.2, + "end": 17112.41, + "probability": 0.5904 + }, + { + "start": 17112.76, + "end": 17113.34, + "probability": 0.6608 + }, + { + "start": 17113.64, + "end": 17114.62, + "probability": 0.5627 + }, + { + "start": 17114.68, + "end": 17116.28, + "probability": 0.9384 + }, + { + "start": 17116.92, + "end": 17119.6, + "probability": 0.5479 + } + ], + "segments_count": 5957, + "words_count": 31047, + "avg_words_per_segment": 5.2119, + "avg_segment_duration": 2.1562, + "avg_words_per_minute": 108.7433, + "plenum_id": "33929", + "duration": 17130.43, + "title": null, + "plenum_date": "2014-01-07" +} \ No newline at end of file