diff --git "a/38495/metadata.json" "b/38495/metadata.json" new file mode 100644--- /dev/null +++ "b/38495/metadata.json" @@ -0,0 +1,24592 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "38495", + "quality_score": 0.9308, + "per_segment_quality_scores": [ + { + "start": 8.58, + "end": 8.72, + "probability": 0.0181 + }, + { + "start": 23.18, + "end": 24.82, + "probability": 0.0175 + }, + { + "start": 70.66, + "end": 71.46, + "probability": 0.2654 + }, + { + "start": 72.36, + "end": 77.5, + "probability": 0.9709 + }, + { + "start": 78.38, + "end": 79.96, + "probability": 0.8717 + }, + { + "start": 88.82, + "end": 91.84, + "probability": 0.8839 + }, + { + "start": 91.86, + "end": 92.76, + "probability": 0.6755 + }, + { + "start": 93.26, + "end": 93.26, + "probability": 0.3023 + }, + { + "start": 99.98, + "end": 101.4, + "probability": 0.3346 + }, + { + "start": 101.4, + "end": 102.54, + "probability": 0.7 + }, + { + "start": 104.0, + "end": 105.22, + "probability": 0.7922 + }, + { + "start": 108.1, + "end": 110.51, + "probability": 0.897 + }, + { + "start": 112.58, + "end": 113.24, + "probability": 0.4998 + }, + { + "start": 114.2, + "end": 119.76, + "probability": 0.9782 + }, + { + "start": 120.82, + "end": 123.62, + "probability": 0.9402 + }, + { + "start": 123.92, + "end": 129.1, + "probability": 0.881 + }, + { + "start": 130.26, + "end": 133.28, + "probability": 0.9591 + }, + { + "start": 133.44, + "end": 134.6, + "probability": 0.7747 + }, + { + "start": 136.4, + "end": 137.9, + "probability": 0.5668 + }, + { + "start": 139.7, + "end": 140.82, + "probability": 0.8394 + }, + { + "start": 140.98, + "end": 144.46, + "probability": 0.9834 + }, + { + "start": 145.1, + "end": 146.82, + "probability": 0.7942 + }, + { + "start": 147.04, + "end": 149.48, + "probability": 0.9744 + }, + { + "start": 150.62, + "end": 151.66, + "probability": 0.7834 + }, + { + "start": 152.4, + "end": 153.08, + "probability": 0.9868 + }, + { + "start": 153.2, + "end": 153.98, + "probability": 0.9917 + }, + { + "start": 154.06, + "end": 156.0, + "probability": 0.8466 + }, + { + "start": 158.8, + "end": 163.43, + "probability": 0.8005 + }, + { + "start": 164.46, + "end": 164.98, + "probability": 0.9302 + }, + { + "start": 165.44, + "end": 170.18, + "probability": 0.9403 + }, + { + "start": 172.94, + "end": 173.64, + "probability": 0.7118 + }, + { + "start": 173.76, + "end": 177.42, + "probability": 0.8383 + }, + { + "start": 178.34, + "end": 181.44, + "probability": 0.9849 + }, + { + "start": 184.4, + "end": 190.5, + "probability": 0.9981 + }, + { + "start": 190.54, + "end": 196.26, + "probability": 0.9899 + }, + { + "start": 196.38, + "end": 196.94, + "probability": 0.4526 + }, + { + "start": 197.06, + "end": 198.14, + "probability": 0.9673 + }, + { + "start": 199.06, + "end": 202.44, + "probability": 0.9775 + }, + { + "start": 202.6, + "end": 203.14, + "probability": 0.8433 + }, + { + "start": 203.72, + "end": 204.14, + "probability": 0.4938 + }, + { + "start": 204.2, + "end": 205.6, + "probability": 0.9922 + }, + { + "start": 205.68, + "end": 206.64, + "probability": 0.9629 + }, + { + "start": 207.06, + "end": 207.79, + "probability": 0.5046 + }, + { + "start": 208.94, + "end": 210.12, + "probability": 0.9261 + }, + { + "start": 210.72, + "end": 212.86, + "probability": 0.7695 + }, + { + "start": 213.58, + "end": 214.4, + "probability": 0.9859 + }, + { + "start": 214.78, + "end": 215.74, + "probability": 0.9092 + }, + { + "start": 215.98, + "end": 216.88, + "probability": 0.8448 + }, + { + "start": 216.92, + "end": 218.78, + "probability": 0.9134 + }, + { + "start": 220.38, + "end": 222.64, + "probability": 0.7613 + }, + { + "start": 222.76, + "end": 224.92, + "probability": 0.9282 + }, + { + "start": 224.98, + "end": 225.08, + "probability": 0.8439 + }, + { + "start": 225.46, + "end": 225.78, + "probability": 0.4089 + }, + { + "start": 227.28, + "end": 229.06, + "probability": 0.9236 + }, + { + "start": 233.92, + "end": 236.1, + "probability": 0.6218 + }, + { + "start": 236.28, + "end": 237.78, + "probability": 0.6403 + }, + { + "start": 237.86, + "end": 239.8, + "probability": 0.9551 + }, + { + "start": 240.26, + "end": 240.8, + "probability": 0.7755 + }, + { + "start": 240.92, + "end": 246.86, + "probability": 0.9036 + }, + { + "start": 247.44, + "end": 248.44, + "probability": 0.7527 + }, + { + "start": 248.48, + "end": 255.24, + "probability": 0.5866 + }, + { + "start": 255.74, + "end": 259.46, + "probability": 0.8347 + }, + { + "start": 259.54, + "end": 260.48, + "probability": 0.942 + }, + { + "start": 260.86, + "end": 263.54, + "probability": 0.9475 + }, + { + "start": 264.13, + "end": 268.74, + "probability": 0.8778 + }, + { + "start": 270.72, + "end": 270.72, + "probability": 0.017 + }, + { + "start": 270.72, + "end": 274.72, + "probability": 0.8341 + }, + { + "start": 275.54, + "end": 282.44, + "probability": 0.9314 + }, + { + "start": 282.44, + "end": 288.46, + "probability": 0.9495 + }, + { + "start": 288.84, + "end": 290.22, + "probability": 0.8226 + }, + { + "start": 290.26, + "end": 291.88, + "probability": 0.6822 + }, + { + "start": 292.32, + "end": 295.06, + "probability": 0.7738 + }, + { + "start": 295.22, + "end": 297.48, + "probability": 0.8323 + }, + { + "start": 297.74, + "end": 300.46, + "probability": 0.8613 + }, + { + "start": 300.46, + "end": 303.78, + "probability": 0.7409 + }, + { + "start": 304.42, + "end": 305.12, + "probability": 0.4996 + }, + { + "start": 305.22, + "end": 309.26, + "probability": 0.876 + }, + { + "start": 309.94, + "end": 310.9, + "probability": 0.84 + }, + { + "start": 311.1, + "end": 313.62, + "probability": 0.79 + }, + { + "start": 313.9, + "end": 317.94, + "probability": 0.934 + }, + { + "start": 318.74, + "end": 321.47, + "probability": 0.8829 + }, + { + "start": 321.88, + "end": 323.66, + "probability": 0.4003 + }, + { + "start": 324.24, + "end": 324.66, + "probability": 0.7179 + }, + { + "start": 325.06, + "end": 328.38, + "probability": 0.8899 + }, + { + "start": 329.32, + "end": 330.42, + "probability": 0.9221 + }, + { + "start": 330.52, + "end": 332.78, + "probability": 0.8649 + }, + { + "start": 333.28, + "end": 335.02, + "probability": 0.94 + }, + { + "start": 335.48, + "end": 337.66, + "probability": 0.718 + }, + { + "start": 339.72, + "end": 344.04, + "probability": 0.9546 + }, + { + "start": 345.14, + "end": 346.72, + "probability": 0.9919 + }, + { + "start": 348.18, + "end": 350.64, + "probability": 0.9615 + }, + { + "start": 350.7, + "end": 351.7, + "probability": 0.8394 + }, + { + "start": 351.76, + "end": 352.5, + "probability": 0.6753 + }, + { + "start": 353.54, + "end": 356.76, + "probability": 0.8849 + }, + { + "start": 358.2, + "end": 359.3, + "probability": 0.931 + }, + { + "start": 359.32, + "end": 359.58, + "probability": 0.7419 + }, + { + "start": 362.38, + "end": 366.12, + "probability": 0.6613 + }, + { + "start": 366.84, + "end": 368.06, + "probability": 0.9006 + }, + { + "start": 369.24, + "end": 372.48, + "probability": 0.9844 + }, + { + "start": 372.54, + "end": 373.74, + "probability": 0.9629 + }, + { + "start": 374.56, + "end": 379.64, + "probability": 0.8849 + }, + { + "start": 380.16, + "end": 382.76, + "probability": 0.9507 + }, + { + "start": 383.26, + "end": 384.88, + "probability": 0.8225 + }, + { + "start": 385.22, + "end": 387.26, + "probability": 0.9861 + }, + { + "start": 387.68, + "end": 388.14, + "probability": 0.5293 + }, + { + "start": 388.26, + "end": 391.2, + "probability": 0.9523 + }, + { + "start": 391.86, + "end": 393.74, + "probability": 0.8743 + }, + { + "start": 394.28, + "end": 396.72, + "probability": 0.9236 + }, + { + "start": 397.48, + "end": 401.98, + "probability": 0.8558 + }, + { + "start": 402.74, + "end": 404.48, + "probability": 0.996 + }, + { + "start": 405.26, + "end": 408.52, + "probability": 0.8972 + }, + { + "start": 409.14, + "end": 411.6, + "probability": 0.9197 + }, + { + "start": 412.4, + "end": 414.46, + "probability": 0.8107 + }, + { + "start": 415.36, + "end": 416.86, + "probability": 0.9849 + }, + { + "start": 417.68, + "end": 418.8, + "probability": 0.8315 + }, + { + "start": 418.84, + "end": 422.02, + "probability": 0.9863 + }, + { + "start": 422.36, + "end": 422.56, + "probability": 0.8114 + }, + { + "start": 423.2, + "end": 424.9, + "probability": 0.6352 + }, + { + "start": 425.04, + "end": 427.92, + "probability": 0.6401 + }, + { + "start": 428.36, + "end": 429.74, + "probability": 0.8944 + }, + { + "start": 431.72, + "end": 432.92, + "probability": 0.834 + }, + { + "start": 433.62, + "end": 439.42, + "probability": 0.9843 + }, + { + "start": 439.84, + "end": 441.14, + "probability": 0.7612 + }, + { + "start": 441.22, + "end": 444.12, + "probability": 0.8652 + }, + { + "start": 446.64, + "end": 446.66, + "probability": 0.6689 + }, + { + "start": 447.2, + "end": 449.53, + "probability": 0.9189 + }, + { + "start": 450.32, + "end": 452.6, + "probability": 0.9736 + }, + { + "start": 454.04, + "end": 458.14, + "probability": 0.9766 + }, + { + "start": 458.14, + "end": 464.22, + "probability": 0.9661 + }, + { + "start": 464.98, + "end": 467.2, + "probability": 0.9956 + }, + { + "start": 470.36, + "end": 472.32, + "probability": 0.3511 + }, + { + "start": 472.32, + "end": 472.66, + "probability": 0.7773 + }, + { + "start": 472.78, + "end": 473.76, + "probability": 0.564 + }, + { + "start": 473.98, + "end": 475.6, + "probability": 0.8806 + }, + { + "start": 476.2, + "end": 480.44, + "probability": 0.9899 + }, + { + "start": 481.26, + "end": 483.46, + "probability": 0.8761 + }, + { + "start": 484.0, + "end": 486.7, + "probability": 0.8921 + }, + { + "start": 487.28, + "end": 487.88, + "probability": 0.5055 + }, + { + "start": 487.94, + "end": 490.56, + "probability": 0.8398 + }, + { + "start": 490.7, + "end": 492.68, + "probability": 0.6147 + }, + { + "start": 493.2, + "end": 496.96, + "probability": 0.9841 + }, + { + "start": 498.24, + "end": 501.28, + "probability": 0.7059 + }, + { + "start": 501.28, + "end": 506.24, + "probability": 0.9558 + }, + { + "start": 506.3, + "end": 507.46, + "probability": 0.5012 + }, + { + "start": 507.98, + "end": 508.42, + "probability": 0.6305 + }, + { + "start": 508.5, + "end": 512.54, + "probability": 0.8945 + }, + { + "start": 512.98, + "end": 518.66, + "probability": 0.9011 + }, + { + "start": 519.0, + "end": 519.84, + "probability": 0.767 + }, + { + "start": 520.36, + "end": 523.24, + "probability": 0.5894 + }, + { + "start": 523.78, + "end": 526.64, + "probability": 0.9663 + }, + { + "start": 527.6, + "end": 528.32, + "probability": 0.8804 + }, + { + "start": 528.44, + "end": 529.78, + "probability": 0.9568 + }, + { + "start": 530.44, + "end": 535.48, + "probability": 0.9523 + }, + { + "start": 536.34, + "end": 541.1, + "probability": 0.8839 + }, + { + "start": 541.86, + "end": 546.7, + "probability": 0.779 + }, + { + "start": 547.3, + "end": 550.12, + "probability": 0.9767 + }, + { + "start": 551.3, + "end": 553.4, + "probability": 0.7293 + }, + { + "start": 553.56, + "end": 555.26, + "probability": 0.9038 + }, + { + "start": 556.82, + "end": 557.74, + "probability": 0.7112 + }, + { + "start": 558.52, + "end": 561.76, + "probability": 0.881 + }, + { + "start": 561.76, + "end": 565.52, + "probability": 0.8435 + }, + { + "start": 566.82, + "end": 568.52, + "probability": 0.9253 + }, + { + "start": 568.6, + "end": 569.14, + "probability": 0.5438 + }, + { + "start": 569.2, + "end": 570.28, + "probability": 0.4934 + }, + { + "start": 570.6, + "end": 571.38, + "probability": 0.5922 + }, + { + "start": 571.46, + "end": 572.98, + "probability": 0.9575 + }, + { + "start": 573.28, + "end": 575.66, + "probability": 0.7309 + }, + { + "start": 576.46, + "end": 578.54, + "probability": 0.92 + }, + { + "start": 578.54, + "end": 582.5, + "probability": 0.8307 + }, + { + "start": 582.62, + "end": 583.48, + "probability": 0.5127 + }, + { + "start": 583.56, + "end": 587.34, + "probability": 0.8662 + }, + { + "start": 587.34, + "end": 591.41, + "probability": 0.847 + }, + { + "start": 592.48, + "end": 593.34, + "probability": 0.7479 + }, + { + "start": 593.86, + "end": 595.72, + "probability": 0.7534 + }, + { + "start": 596.42, + "end": 597.02, + "probability": 0.6648 + }, + { + "start": 597.04, + "end": 599.54, + "probability": 0.8157 + }, + { + "start": 599.92, + "end": 601.54, + "probability": 0.5425 + }, + { + "start": 601.54, + "end": 606.28, + "probability": 0.8591 + }, + { + "start": 606.42, + "end": 607.28, + "probability": 0.5512 + }, + { + "start": 607.74, + "end": 609.2, + "probability": 0.9961 + }, + { + "start": 610.26, + "end": 611.76, + "probability": 0.9771 + }, + { + "start": 612.04, + "end": 612.84, + "probability": 0.4908 + }, + { + "start": 613.08, + "end": 614.04, + "probability": 0.8813 + }, + { + "start": 614.12, + "end": 617.52, + "probability": 0.8777 + }, + { + "start": 618.06, + "end": 618.82, + "probability": 0.5579 + }, + { + "start": 618.86, + "end": 619.36, + "probability": 0.7004 + }, + { + "start": 619.54, + "end": 620.18, + "probability": 0.7482 + }, + { + "start": 620.56, + "end": 625.48, + "probability": 0.9314 + }, + { + "start": 625.52, + "end": 626.08, + "probability": 0.9218 + }, + { + "start": 626.26, + "end": 626.94, + "probability": 0.7169 + }, + { + "start": 627.34, + "end": 629.72, + "probability": 0.9844 + }, + { + "start": 630.28, + "end": 631.94, + "probability": 0.9447 + }, + { + "start": 632.26, + "end": 634.8, + "probability": 0.9781 + }, + { + "start": 635.68, + "end": 636.18, + "probability": 0.7381 + }, + { + "start": 636.36, + "end": 636.94, + "probability": 0.4845 + }, + { + "start": 636.98, + "end": 641.42, + "probability": 0.9782 + }, + { + "start": 641.68, + "end": 642.36, + "probability": 0.4732 + }, + { + "start": 642.78, + "end": 645.34, + "probability": 0.7169 + }, + { + "start": 645.34, + "end": 650.28, + "probability": 0.9917 + }, + { + "start": 650.44, + "end": 651.22, + "probability": 0.5601 + }, + { + "start": 651.56, + "end": 655.4, + "probability": 0.9035 + }, + { + "start": 655.74, + "end": 656.06, + "probability": 0.7496 + }, + { + "start": 656.26, + "end": 656.92, + "probability": 0.5196 + }, + { + "start": 657.16, + "end": 661.32, + "probability": 0.9871 + }, + { + "start": 661.32, + "end": 665.58, + "probability": 0.97 + }, + { + "start": 666.94, + "end": 669.52, + "probability": 0.9631 + }, + { + "start": 669.7, + "end": 673.08, + "probability": 0.9629 + }, + { + "start": 674.5, + "end": 675.12, + "probability": 0.7674 + }, + { + "start": 675.62, + "end": 679.94, + "probability": 0.9763 + }, + { + "start": 680.42, + "end": 684.0, + "probability": 0.9915 + }, + { + "start": 684.06, + "end": 685.82, + "probability": 0.9265 + }, + { + "start": 686.62, + "end": 688.68, + "probability": 0.7888 + }, + { + "start": 702.62, + "end": 703.62, + "probability": 0.7486 + }, + { + "start": 705.62, + "end": 709.18, + "probability": 0.8587 + }, + { + "start": 709.26, + "end": 712.78, + "probability": 0.8826 + }, + { + "start": 712.9, + "end": 714.96, + "probability": 0.6873 + }, + { + "start": 715.78, + "end": 717.36, + "probability": 0.6656 + }, + { + "start": 718.84, + "end": 721.64, + "probability": 0.5057 + }, + { + "start": 722.78, + "end": 724.68, + "probability": 0.9578 + }, + { + "start": 724.8, + "end": 725.44, + "probability": 0.741 + }, + { + "start": 726.94, + "end": 729.24, + "probability": 0.8297 + }, + { + "start": 729.48, + "end": 732.8, + "probability": 0.9591 + }, + { + "start": 732.96, + "end": 735.84, + "probability": 0.8904 + }, + { + "start": 736.62, + "end": 738.82, + "probability": 0.9803 + }, + { + "start": 738.82, + "end": 741.62, + "probability": 0.9893 + }, + { + "start": 741.72, + "end": 745.12, + "probability": 0.9393 + }, + { + "start": 745.12, + "end": 747.58, + "probability": 0.9995 + }, + { + "start": 748.3, + "end": 748.96, + "probability": 0.5819 + }, + { + "start": 749.06, + "end": 749.4, + "probability": 0.5096 + }, + { + "start": 749.48, + "end": 754.04, + "probability": 0.9885 + }, + { + "start": 754.34, + "end": 756.06, + "probability": 0.9432 + }, + { + "start": 756.48, + "end": 757.96, + "probability": 0.616 + }, + { + "start": 760.64, + "end": 761.52, + "probability": 0.7092 + }, + { + "start": 762.28, + "end": 763.18, + "probability": 0.7829 + }, + { + "start": 763.94, + "end": 764.66, + "probability": 0.9665 + }, + { + "start": 765.2, + "end": 766.14, + "probability": 0.7739 + }, + { + "start": 769.0, + "end": 774.18, + "probability": 0.962 + }, + { + "start": 774.66, + "end": 775.6, + "probability": 0.9431 + }, + { + "start": 777.4, + "end": 777.76, + "probability": 0.7677 + }, + { + "start": 779.14, + "end": 781.64, + "probability": 0.9957 + }, + { + "start": 782.3, + "end": 782.5, + "probability": 0.8992 + }, + { + "start": 784.18, + "end": 786.0, + "probability": 0.9707 + }, + { + "start": 788.7, + "end": 788.7, + "probability": 0.0841 + }, + { + "start": 788.7, + "end": 791.16, + "probability": 0.9912 + }, + { + "start": 791.72, + "end": 793.4, + "probability": 0.9467 + }, + { + "start": 794.5, + "end": 798.64, + "probability": 0.9764 + }, + { + "start": 799.68, + "end": 801.26, + "probability": 0.9802 + }, + { + "start": 802.58, + "end": 805.52, + "probability": 0.8416 + }, + { + "start": 806.1, + "end": 808.18, + "probability": 0.9892 + }, + { + "start": 809.6, + "end": 811.82, + "probability": 0.8962 + }, + { + "start": 811.82, + "end": 816.6, + "probability": 0.9794 + }, + { + "start": 818.28, + "end": 818.86, + "probability": 0.7015 + }, + { + "start": 819.78, + "end": 824.04, + "probability": 0.8948 + }, + { + "start": 824.84, + "end": 825.38, + "probability": 0.833 + }, + { + "start": 826.36, + "end": 828.2, + "probability": 0.9896 + }, + { + "start": 829.26, + "end": 830.1, + "probability": 0.9766 + }, + { + "start": 830.72, + "end": 835.92, + "probability": 0.9354 + }, + { + "start": 838.21, + "end": 841.9, + "probability": 0.9935 + }, + { + "start": 842.54, + "end": 845.08, + "probability": 0.9963 + }, + { + "start": 846.1, + "end": 847.08, + "probability": 0.664 + }, + { + "start": 847.18, + "end": 851.96, + "probability": 0.9183 + }, + { + "start": 852.14, + "end": 859.62, + "probability": 0.8668 + }, + { + "start": 860.92, + "end": 867.9, + "probability": 0.989 + }, + { + "start": 870.3, + "end": 876.92, + "probability": 0.9868 + }, + { + "start": 878.48, + "end": 878.74, + "probability": 0.2742 + }, + { + "start": 878.76, + "end": 878.92, + "probability": 0.794 + }, + { + "start": 879.1, + "end": 884.06, + "probability": 0.9681 + }, + { + "start": 884.92, + "end": 885.86, + "probability": 0.8745 + }, + { + "start": 886.48, + "end": 887.14, + "probability": 0.8521 + }, + { + "start": 888.72, + "end": 891.98, + "probability": 0.773 + }, + { + "start": 893.74, + "end": 895.68, + "probability": 0.9882 + }, + { + "start": 895.78, + "end": 896.76, + "probability": 0.6921 + }, + { + "start": 897.56, + "end": 900.42, + "probability": 0.9456 + }, + { + "start": 901.28, + "end": 902.62, + "probability": 0.875 + }, + { + "start": 904.26, + "end": 905.34, + "probability": 0.9911 + }, + { + "start": 906.48, + "end": 908.7, + "probability": 0.9798 + }, + { + "start": 908.74, + "end": 910.18, + "probability": 0.5814 + }, + { + "start": 911.06, + "end": 912.96, + "probability": 0.9987 + }, + { + "start": 913.82, + "end": 919.13, + "probability": 0.9843 + }, + { + "start": 921.1, + "end": 923.86, + "probability": 0.6155 + }, + { + "start": 923.92, + "end": 925.3, + "probability": 0.8867 + }, + { + "start": 925.7, + "end": 927.52, + "probability": 0.8901 + }, + { + "start": 928.0, + "end": 929.05, + "probability": 0.713 + }, + { + "start": 929.36, + "end": 930.02, + "probability": 0.9442 + }, + { + "start": 930.06, + "end": 931.88, + "probability": 0.9937 + }, + { + "start": 932.38, + "end": 934.08, + "probability": 0.9644 + }, + { + "start": 934.6, + "end": 936.05, + "probability": 0.9956 + }, + { + "start": 936.76, + "end": 938.42, + "probability": 0.9829 + }, + { + "start": 938.82, + "end": 940.34, + "probability": 0.9741 + }, + { + "start": 941.42, + "end": 944.56, + "probability": 0.9482 + }, + { + "start": 944.82, + "end": 945.52, + "probability": 0.9927 + }, + { + "start": 947.06, + "end": 949.86, + "probability": 0.8883 + }, + { + "start": 950.74, + "end": 953.5, + "probability": 0.9585 + }, + { + "start": 953.88, + "end": 955.98, + "probability": 0.9257 + }, + { + "start": 961.5, + "end": 962.42, + "probability": 0.8113 + }, + { + "start": 963.02, + "end": 964.14, + "probability": 0.9674 + }, + { + "start": 965.58, + "end": 973.08, + "probability": 0.9824 + }, + { + "start": 973.64, + "end": 978.24, + "probability": 0.8576 + }, + { + "start": 978.66, + "end": 980.08, + "probability": 0.9608 + }, + { + "start": 980.9, + "end": 982.08, + "probability": 0.786 + }, + { + "start": 982.76, + "end": 983.84, + "probability": 0.9655 + }, + { + "start": 984.3, + "end": 985.12, + "probability": 0.9366 + }, + { + "start": 985.34, + "end": 988.62, + "probability": 0.9285 + }, + { + "start": 988.8, + "end": 992.86, + "probability": 0.9644 + }, + { + "start": 994.04, + "end": 997.22, + "probability": 0.9778 + }, + { + "start": 997.22, + "end": 1001.78, + "probability": 0.9894 + }, + { + "start": 1002.46, + "end": 1008.52, + "probability": 0.9967 + }, + { + "start": 1008.52, + "end": 1014.3, + "probability": 0.9917 + }, + { + "start": 1015.26, + "end": 1017.82, + "probability": 0.8289 + }, + { + "start": 1018.14, + "end": 1019.4, + "probability": 0.8127 + }, + { + "start": 1020.36, + "end": 1021.18, + "probability": 0.7585 + }, + { + "start": 1022.2, + "end": 1022.96, + "probability": 0.9465 + }, + { + "start": 1025.4, + "end": 1031.52, + "probability": 0.9032 + }, + { + "start": 1032.12, + "end": 1034.32, + "probability": 0.9532 + }, + { + "start": 1034.98, + "end": 1038.04, + "probability": 0.9609 + }, + { + "start": 1039.1, + "end": 1040.06, + "probability": 0.7255 + }, + { + "start": 1040.16, + "end": 1043.98, + "probability": 0.6988 + }, + { + "start": 1044.48, + "end": 1044.64, + "probability": 0.452 + }, + { + "start": 1044.76, + "end": 1047.84, + "probability": 0.8341 + }, + { + "start": 1048.72, + "end": 1051.06, + "probability": 0.946 + }, + { + "start": 1051.78, + "end": 1054.02, + "probability": 0.8899 + }, + { + "start": 1056.12, + "end": 1057.8, + "probability": 0.9162 + }, + { + "start": 1058.46, + "end": 1059.41, + "probability": 0.9142 + }, + { + "start": 1060.32, + "end": 1060.9, + "probability": 0.7786 + }, + { + "start": 1061.64, + "end": 1062.79, + "probability": 0.9771 + }, + { + "start": 1064.44, + "end": 1067.82, + "probability": 0.9695 + }, + { + "start": 1068.86, + "end": 1070.52, + "probability": 0.9932 + }, + { + "start": 1072.48, + "end": 1075.18, + "probability": 0.9813 + }, + { + "start": 1076.0, + "end": 1077.86, + "probability": 0.9235 + }, + { + "start": 1078.32, + "end": 1080.86, + "probability": 0.5193 + }, + { + "start": 1081.02, + "end": 1081.68, + "probability": 0.576 + }, + { + "start": 1081.86, + "end": 1083.32, + "probability": 0.9639 + }, + { + "start": 1083.98, + "end": 1085.44, + "probability": 0.9986 + }, + { + "start": 1086.02, + "end": 1087.58, + "probability": 0.9919 + }, + { + "start": 1087.92, + "end": 1091.56, + "probability": 0.9903 + }, + { + "start": 1091.56, + "end": 1094.26, + "probability": 0.999 + }, + { + "start": 1094.46, + "end": 1097.52, + "probability": 0.7687 + }, + { + "start": 1099.46, + "end": 1100.72, + "probability": 0.9785 + }, + { + "start": 1102.0, + "end": 1103.02, + "probability": 0.8979 + }, + { + "start": 1103.7, + "end": 1104.0, + "probability": 0.9799 + }, + { + "start": 1104.46, + "end": 1108.94, + "probability": 0.9844 + }, + { + "start": 1108.94, + "end": 1111.84, + "probability": 0.9905 + }, + { + "start": 1113.0, + "end": 1114.28, + "probability": 0.8708 + }, + { + "start": 1114.6, + "end": 1115.96, + "probability": 0.8149 + }, + { + "start": 1116.0, + "end": 1117.52, + "probability": 0.915 + }, + { + "start": 1118.48, + "end": 1120.06, + "probability": 0.998 + }, + { + "start": 1121.74, + "end": 1123.2, + "probability": 0.9766 + }, + { + "start": 1123.82, + "end": 1129.28, + "probability": 0.9906 + }, + { + "start": 1129.36, + "end": 1130.08, + "probability": 0.7616 + }, + { + "start": 1130.94, + "end": 1132.4, + "probability": 0.9596 + }, + { + "start": 1133.08, + "end": 1134.36, + "probability": 0.8736 + }, + { + "start": 1134.46, + "end": 1135.42, + "probability": 0.9651 + }, + { + "start": 1135.48, + "end": 1137.66, + "probability": 0.991 + }, + { + "start": 1137.76, + "end": 1138.44, + "probability": 0.5214 + }, + { + "start": 1138.56, + "end": 1139.34, + "probability": 0.6191 + }, + { + "start": 1139.96, + "end": 1141.08, + "probability": 0.8827 + }, + { + "start": 1142.88, + "end": 1144.02, + "probability": 0.9899 + }, + { + "start": 1144.9, + "end": 1146.3, + "probability": 0.9751 + }, + { + "start": 1146.98, + "end": 1147.56, + "probability": 0.4998 + }, + { + "start": 1147.7, + "end": 1153.38, + "probability": 0.9956 + }, + { + "start": 1154.28, + "end": 1155.74, + "probability": 0.9899 + }, + { + "start": 1156.28, + "end": 1164.88, + "probability": 0.9836 + }, + { + "start": 1165.46, + "end": 1166.34, + "probability": 0.8745 + }, + { + "start": 1167.02, + "end": 1173.44, + "probability": 0.981 + }, + { + "start": 1175.9, + "end": 1177.3, + "probability": 0.9646 + }, + { + "start": 1177.48, + "end": 1178.82, + "probability": 0.9899 + }, + { + "start": 1179.42, + "end": 1180.2, + "probability": 0.9487 + }, + { + "start": 1181.14, + "end": 1183.0, + "probability": 0.9338 + }, + { + "start": 1183.66, + "end": 1184.68, + "probability": 0.7595 + }, + { + "start": 1185.6, + "end": 1189.8, + "probability": 0.985 + }, + { + "start": 1191.42, + "end": 1195.16, + "probability": 0.9521 + }, + { + "start": 1195.46, + "end": 1198.7, + "probability": 0.8921 + }, + { + "start": 1200.28, + "end": 1201.26, + "probability": 0.9114 + }, + { + "start": 1201.8, + "end": 1203.42, + "probability": 0.7735 + }, + { + "start": 1203.74, + "end": 1204.84, + "probability": 0.4367 + }, + { + "start": 1206.18, + "end": 1208.48, + "probability": 0.7406 + }, + { + "start": 1209.16, + "end": 1209.82, + "probability": 0.5328 + }, + { + "start": 1210.72, + "end": 1213.68, + "probability": 0.9291 + }, + { + "start": 1213.74, + "end": 1214.5, + "probability": 0.682 + }, + { + "start": 1214.94, + "end": 1217.56, + "probability": 0.9541 + }, + { + "start": 1218.94, + "end": 1219.98, + "probability": 0.1112 + }, + { + "start": 1222.26, + "end": 1223.5, + "probability": 0.6337 + }, + { + "start": 1224.52, + "end": 1225.9, + "probability": 0.9329 + }, + { + "start": 1226.23, + "end": 1227.68, + "probability": 0.9146 + }, + { + "start": 1227.82, + "end": 1229.36, + "probability": 0.8869 + }, + { + "start": 1229.94, + "end": 1230.86, + "probability": 0.9915 + }, + { + "start": 1232.52, + "end": 1234.52, + "probability": 0.9128 + }, + { + "start": 1235.48, + "end": 1236.58, + "probability": 0.9028 + }, + { + "start": 1237.88, + "end": 1244.3, + "probability": 0.7368 + }, + { + "start": 1245.38, + "end": 1246.42, + "probability": 0.9139 + }, + { + "start": 1247.16, + "end": 1248.3, + "probability": 0.8081 + }, + { + "start": 1249.56, + "end": 1250.44, + "probability": 0.8963 + }, + { + "start": 1251.36, + "end": 1254.78, + "probability": 0.9758 + }, + { + "start": 1255.48, + "end": 1257.76, + "probability": 0.9375 + }, + { + "start": 1259.12, + "end": 1262.08, + "probability": 0.9424 + }, + { + "start": 1262.98, + "end": 1265.94, + "probability": 0.5065 + }, + { + "start": 1267.02, + "end": 1268.5, + "probability": 0.8442 + }, + { + "start": 1272.12, + "end": 1274.02, + "probability": 0.7568 + }, + { + "start": 1274.74, + "end": 1276.84, + "probability": 0.9909 + }, + { + "start": 1277.7, + "end": 1278.3, + "probability": 0.9111 + }, + { + "start": 1279.04, + "end": 1282.26, + "probability": 0.7976 + }, + { + "start": 1283.26, + "end": 1283.48, + "probability": 0.6935 + }, + { + "start": 1283.62, + "end": 1287.24, + "probability": 0.9949 + }, + { + "start": 1288.2, + "end": 1290.74, + "probability": 0.8108 + }, + { + "start": 1291.28, + "end": 1294.74, + "probability": 0.8628 + }, + { + "start": 1296.18, + "end": 1297.5, + "probability": 0.9364 + }, + { + "start": 1298.4, + "end": 1301.48, + "probability": 0.7746 + }, + { + "start": 1301.9, + "end": 1304.14, + "probability": 0.9834 + }, + { + "start": 1305.22, + "end": 1308.2, + "probability": 0.9529 + }, + { + "start": 1309.2, + "end": 1309.44, + "probability": 0.4737 + }, + { + "start": 1311.78, + "end": 1313.46, + "probability": 0.731 + }, + { + "start": 1314.18, + "end": 1316.44, + "probability": 0.9267 + }, + { + "start": 1317.22, + "end": 1318.74, + "probability": 0.9672 + }, + { + "start": 1320.18, + "end": 1325.7, + "probability": 0.9558 + }, + { + "start": 1329.4, + "end": 1333.28, + "probability": 0.9604 + }, + { + "start": 1333.82, + "end": 1337.82, + "probability": 0.1611 + }, + { + "start": 1337.82, + "end": 1338.9, + "probability": 0.64 + }, + { + "start": 1339.48, + "end": 1340.64, + "probability": 0.8429 + }, + { + "start": 1340.76, + "end": 1341.52, + "probability": 0.8978 + }, + { + "start": 1342.0, + "end": 1344.48, + "probability": 0.4407 + }, + { + "start": 1344.8, + "end": 1345.32, + "probability": 0.9019 + }, + { + "start": 1345.74, + "end": 1346.83, + "probability": 0.7397 + }, + { + "start": 1348.48, + "end": 1351.86, + "probability": 0.9739 + }, + { + "start": 1353.0, + "end": 1356.42, + "probability": 0.7562 + }, + { + "start": 1356.86, + "end": 1360.72, + "probability": 0.9716 + }, + { + "start": 1361.04, + "end": 1361.62, + "probability": 0.5587 + }, + { + "start": 1362.7, + "end": 1367.78, + "probability": 0.9897 + }, + { + "start": 1368.08, + "end": 1368.68, + "probability": 0.846 + }, + { + "start": 1369.4, + "end": 1370.12, + "probability": 0.9002 + }, + { + "start": 1370.7, + "end": 1373.46, + "probability": 0.9927 + }, + { + "start": 1373.46, + "end": 1378.66, + "probability": 0.8166 + }, + { + "start": 1379.54, + "end": 1380.3, + "probability": 0.7057 + }, + { + "start": 1380.72, + "end": 1381.99, + "probability": 0.6699 + }, + { + "start": 1382.46, + "end": 1383.76, + "probability": 0.5471 + }, + { + "start": 1384.46, + "end": 1386.24, + "probability": 0.9296 + }, + { + "start": 1386.36, + "end": 1387.52, + "probability": 0.902 + }, + { + "start": 1389.76, + "end": 1390.92, + "probability": 0.9502 + }, + { + "start": 1392.82, + "end": 1393.44, + "probability": 0.6612 + }, + { + "start": 1394.04, + "end": 1396.66, + "probability": 0.9558 + }, + { + "start": 1397.2, + "end": 1398.18, + "probability": 0.7123 + }, + { + "start": 1398.34, + "end": 1399.68, + "probability": 0.67 + }, + { + "start": 1400.48, + "end": 1402.16, + "probability": 0.718 + }, + { + "start": 1403.54, + "end": 1404.36, + "probability": 0.9771 + }, + { + "start": 1405.0, + "end": 1408.0, + "probability": 0.8837 + }, + { + "start": 1408.38, + "end": 1412.26, + "probability": 0.9296 + }, + { + "start": 1412.4, + "end": 1414.28, + "probability": 0.8325 + }, + { + "start": 1415.14, + "end": 1417.16, + "probability": 0.9387 + }, + { + "start": 1417.94, + "end": 1419.52, + "probability": 0.8631 + }, + { + "start": 1420.14, + "end": 1422.32, + "probability": 0.9873 + }, + { + "start": 1423.82, + "end": 1428.14, + "probability": 0.9988 + }, + { + "start": 1428.16, + "end": 1429.26, + "probability": 0.7668 + }, + { + "start": 1430.26, + "end": 1436.64, + "probability": 0.9922 + }, + { + "start": 1439.42, + "end": 1442.22, + "probability": 0.9185 + }, + { + "start": 1442.36, + "end": 1446.46, + "probability": 0.7676 + }, + { + "start": 1446.96, + "end": 1449.02, + "probability": 0.9272 + }, + { + "start": 1449.56, + "end": 1450.06, + "probability": 0.8784 + }, + { + "start": 1450.12, + "end": 1451.0, + "probability": 0.7434 + }, + { + "start": 1451.44, + "end": 1454.48, + "probability": 0.9525 + }, + { + "start": 1458.44, + "end": 1458.86, + "probability": 0.4905 + }, + { + "start": 1460.98, + "end": 1465.84, + "probability": 0.6346 + }, + { + "start": 1466.36, + "end": 1468.46, + "probability": 0.7329 + }, + { + "start": 1469.14, + "end": 1469.9, + "probability": 0.7513 + }, + { + "start": 1470.22, + "end": 1470.62, + "probability": 0.3588 + }, + { + "start": 1472.18, + "end": 1473.42, + "probability": 0.42 + }, + { + "start": 1473.52, + "end": 1473.84, + "probability": 0.6303 + }, + { + "start": 1474.04, + "end": 1475.4, + "probability": 0.9351 + }, + { + "start": 1475.48, + "end": 1477.24, + "probability": 0.9783 + }, + { + "start": 1478.26, + "end": 1478.75, + "probability": 0.4834 + }, + { + "start": 1479.9, + "end": 1482.98, + "probability": 0.9949 + }, + { + "start": 1483.68, + "end": 1485.18, + "probability": 0.9895 + }, + { + "start": 1486.58, + "end": 1489.3, + "probability": 0.4885 + }, + { + "start": 1491.01, + "end": 1494.7, + "probability": 0.9722 + }, + { + "start": 1494.84, + "end": 1495.26, + "probability": 0.4586 + }, + { + "start": 1497.78, + "end": 1500.76, + "probability": 0.7349 + }, + { + "start": 1501.34, + "end": 1503.48, + "probability": 0.9719 + }, + { + "start": 1506.59, + "end": 1510.76, + "probability": 0.5801 + }, + { + "start": 1511.72, + "end": 1513.25, + "probability": 0.6173 + }, + { + "start": 1514.16, + "end": 1517.16, + "probability": 0.7027 + }, + { + "start": 1518.08, + "end": 1518.64, + "probability": 0.7465 + }, + { + "start": 1518.82, + "end": 1525.16, + "probability": 0.9963 + }, + { + "start": 1526.32, + "end": 1528.44, + "probability": 0.7292 + }, + { + "start": 1528.6, + "end": 1532.58, + "probability": 0.9771 + }, + { + "start": 1533.34, + "end": 1537.42, + "probability": 0.8879 + }, + { + "start": 1537.6, + "end": 1539.44, + "probability": 0.8326 + }, + { + "start": 1539.68, + "end": 1540.93, + "probability": 0.7447 + }, + { + "start": 1541.94, + "end": 1543.34, + "probability": 0.7656 + }, + { + "start": 1543.4, + "end": 1544.48, + "probability": 0.8862 + }, + { + "start": 1544.6, + "end": 1545.84, + "probability": 0.6154 + }, + { + "start": 1545.98, + "end": 1548.32, + "probability": 0.7416 + }, + { + "start": 1548.98, + "end": 1550.12, + "probability": 0.9346 + }, + { + "start": 1550.72, + "end": 1552.92, + "probability": 0.4631 + }, + { + "start": 1554.43, + "end": 1558.24, + "probability": 0.7298 + }, + { + "start": 1559.18, + "end": 1559.78, + "probability": 0.564 + }, + { + "start": 1559.92, + "end": 1563.44, + "probability": 0.9432 + }, + { + "start": 1563.52, + "end": 1564.54, + "probability": 0.8804 + }, + { + "start": 1565.3, + "end": 1567.23, + "probability": 0.984 + }, + { + "start": 1568.04, + "end": 1572.12, + "probability": 0.9805 + }, + { + "start": 1572.18, + "end": 1573.08, + "probability": 0.7683 + }, + { + "start": 1573.16, + "end": 1573.8, + "probability": 0.6788 + }, + { + "start": 1574.64, + "end": 1575.28, + "probability": 0.8925 + }, + { + "start": 1576.64, + "end": 1577.38, + "probability": 0.9688 + }, + { + "start": 1578.76, + "end": 1582.5, + "probability": 0.9904 + }, + { + "start": 1583.5, + "end": 1584.96, + "probability": 0.8955 + }, + { + "start": 1585.56, + "end": 1585.74, + "probability": 0.3509 + }, + { + "start": 1586.04, + "end": 1589.96, + "probability": 0.8758 + }, + { + "start": 1590.18, + "end": 1591.2, + "probability": 0.5974 + }, + { + "start": 1591.42, + "end": 1591.6, + "probability": 0.7687 + }, + { + "start": 1592.68, + "end": 1594.76, + "probability": 0.9186 + }, + { + "start": 1595.58, + "end": 1597.98, + "probability": 0.6313 + }, + { + "start": 1599.04, + "end": 1599.68, + "probability": 0.2768 + }, + { + "start": 1600.38, + "end": 1602.7, + "probability": 0.979 + }, + { + "start": 1602.72, + "end": 1603.44, + "probability": 0.6375 + }, + { + "start": 1604.02, + "end": 1607.0, + "probability": 0.9933 + }, + { + "start": 1607.08, + "end": 1607.88, + "probability": 0.9799 + }, + { + "start": 1607.94, + "end": 1608.5, + "probability": 0.9771 + }, + { + "start": 1608.56, + "end": 1609.02, + "probability": 0.8384 + }, + { + "start": 1609.14, + "end": 1611.8, + "probability": 0.502 + }, + { + "start": 1612.18, + "end": 1616.08, + "probability": 0.9877 + }, + { + "start": 1616.1, + "end": 1616.5, + "probability": 0.4039 + }, + { + "start": 1616.58, + "end": 1616.74, + "probability": 0.4348 + }, + { + "start": 1617.04, + "end": 1619.96, + "probability": 0.8915 + }, + { + "start": 1620.68, + "end": 1622.56, + "probability": 0.8312 + }, + { + "start": 1622.82, + "end": 1623.34, + "probability": 0.8326 + }, + { + "start": 1624.1, + "end": 1625.6, + "probability": 0.7671 + }, + { + "start": 1626.2, + "end": 1627.45, + "probability": 0.95 + }, + { + "start": 1627.64, + "end": 1628.98, + "probability": 0.8496 + }, + { + "start": 1629.94, + "end": 1633.74, + "probability": 0.9778 + }, + { + "start": 1635.06, + "end": 1636.28, + "probability": 0.9704 + }, + { + "start": 1636.38, + "end": 1636.96, + "probability": 0.9071 + }, + { + "start": 1637.44, + "end": 1638.92, + "probability": 0.7865 + }, + { + "start": 1639.92, + "end": 1642.79, + "probability": 0.9155 + }, + { + "start": 1643.48, + "end": 1644.36, + "probability": 0.5645 + }, + { + "start": 1645.14, + "end": 1646.44, + "probability": 0.9155 + }, + { + "start": 1647.54, + "end": 1648.14, + "probability": 0.5345 + }, + { + "start": 1649.93, + "end": 1651.78, + "probability": 0.8398 + }, + { + "start": 1652.32, + "end": 1653.33, + "probability": 0.9602 + }, + { + "start": 1654.28, + "end": 1655.32, + "probability": 0.9572 + }, + { + "start": 1656.14, + "end": 1656.74, + "probability": 0.4483 + }, + { + "start": 1658.32, + "end": 1658.56, + "probability": 0.87 + }, + { + "start": 1658.84, + "end": 1659.68, + "probability": 0.8682 + }, + { + "start": 1659.92, + "end": 1660.92, + "probability": 0.5168 + }, + { + "start": 1661.02, + "end": 1662.64, + "probability": 0.9502 + }, + { + "start": 1663.56, + "end": 1664.28, + "probability": 0.7997 + }, + { + "start": 1665.32, + "end": 1668.62, + "probability": 0.9272 + }, + { + "start": 1669.32, + "end": 1671.02, + "probability": 0.8647 + }, + { + "start": 1673.36, + "end": 1675.06, + "probability": 0.9473 + }, + { + "start": 1675.26, + "end": 1676.06, + "probability": 0.974 + }, + { + "start": 1676.16, + "end": 1678.02, + "probability": 0.275 + }, + { + "start": 1678.02, + "end": 1678.7, + "probability": 0.4237 + }, + { + "start": 1679.26, + "end": 1682.26, + "probability": 0.7208 + }, + { + "start": 1682.56, + "end": 1683.68, + "probability": 0.7693 + }, + { + "start": 1683.98, + "end": 1691.36, + "probability": 0.9053 + }, + { + "start": 1692.26, + "end": 1695.22, + "probability": 0.7717 + }, + { + "start": 1698.72, + "end": 1702.78, + "probability": 0.9628 + }, + { + "start": 1703.66, + "end": 1705.48, + "probability": 0.9928 + }, + { + "start": 1705.72, + "end": 1709.98, + "probability": 0.8887 + }, + { + "start": 1710.04, + "end": 1711.16, + "probability": 0.822 + }, + { + "start": 1712.9, + "end": 1713.7, + "probability": 0.8091 + }, + { + "start": 1714.96, + "end": 1716.7, + "probability": 0.9568 + }, + { + "start": 1717.36, + "end": 1719.28, + "probability": 0.8927 + }, + { + "start": 1719.82, + "end": 1720.36, + "probability": 0.9868 + }, + { + "start": 1720.48, + "end": 1722.94, + "probability": 0.9823 + }, + { + "start": 1723.06, + "end": 1725.32, + "probability": 0.7816 + }, + { + "start": 1725.68, + "end": 1726.64, + "probability": 0.7964 + }, + { + "start": 1727.36, + "end": 1729.38, + "probability": 0.7398 + }, + { + "start": 1729.84, + "end": 1731.13, + "probability": 0.9985 + }, + { + "start": 1732.42, + "end": 1733.2, + "probability": 0.9902 + }, + { + "start": 1733.48, + "end": 1736.01, + "probability": 0.9009 + }, + { + "start": 1736.94, + "end": 1740.56, + "probability": 0.9595 + }, + { + "start": 1743.22, + "end": 1748.12, + "probability": 0.0867 + }, + { + "start": 1749.16, + "end": 1752.58, + "probability": 0.7916 + }, + { + "start": 1752.58, + "end": 1753.44, + "probability": 0.6541 + }, + { + "start": 1753.52, + "end": 1753.76, + "probability": 0.5743 + }, + { + "start": 1754.46, + "end": 1755.98, + "probability": 0.8505 + }, + { + "start": 1756.66, + "end": 1756.94, + "probability": 0.6871 + }, + { + "start": 1757.0, + "end": 1760.8, + "probability": 0.9632 + }, + { + "start": 1760.9, + "end": 1765.74, + "probability": 0.9919 + }, + { + "start": 1766.94, + "end": 1769.9, + "probability": 0.9871 + }, + { + "start": 1769.9, + "end": 1774.94, + "probability": 0.9976 + }, + { + "start": 1775.12, + "end": 1778.8, + "probability": 0.9693 + }, + { + "start": 1778.92, + "end": 1780.64, + "probability": 0.998 + }, + { + "start": 1781.46, + "end": 1782.3, + "probability": 0.6663 + }, + { + "start": 1782.32, + "end": 1784.3, + "probability": 0.552 + }, + { + "start": 1784.36, + "end": 1786.06, + "probability": 0.9682 + }, + { + "start": 1786.92, + "end": 1789.8, + "probability": 0.5166 + }, + { + "start": 1790.58, + "end": 1794.56, + "probability": 0.8358 + }, + { + "start": 1795.22, + "end": 1797.96, + "probability": 0.9803 + }, + { + "start": 1797.96, + "end": 1803.12, + "probability": 0.9572 + }, + { + "start": 1803.24, + "end": 1803.42, + "probability": 0.5984 + }, + { + "start": 1803.42, + "end": 1804.22, + "probability": 0.9041 + }, + { + "start": 1805.08, + "end": 1806.42, + "probability": 0.8818 + }, + { + "start": 1806.48, + "end": 1815.0, + "probability": 0.7661 + }, + { + "start": 1815.08, + "end": 1815.84, + "probability": 0.7857 + }, + { + "start": 1815.9, + "end": 1819.76, + "probability": 0.9333 + }, + { + "start": 1820.36, + "end": 1823.14, + "probability": 0.9678 + }, + { + "start": 1823.62, + "end": 1824.68, + "probability": 0.9819 + }, + { + "start": 1825.08, + "end": 1826.24, + "probability": 0.8176 + }, + { + "start": 1827.08, + "end": 1827.18, + "probability": 0.3907 + }, + { + "start": 1827.18, + "end": 1829.82, + "probability": 0.8381 + }, + { + "start": 1830.28, + "end": 1832.94, + "probability": 0.9962 + }, + { + "start": 1833.04, + "end": 1833.96, + "probability": 0.6702 + }, + { + "start": 1834.76, + "end": 1836.56, + "probability": 0.9082 + }, + { + "start": 1837.86, + "end": 1840.14, + "probability": 0.9419 + }, + { + "start": 1840.44, + "end": 1842.86, + "probability": 0.7169 + }, + { + "start": 1843.14, + "end": 1843.7, + "probability": 0.5238 + }, + { + "start": 1843.84, + "end": 1845.4, + "probability": 0.9028 + }, + { + "start": 1845.48, + "end": 1846.56, + "probability": 0.9768 + }, + { + "start": 1846.76, + "end": 1846.8, + "probability": 0.4189 + }, + { + "start": 1846.8, + "end": 1846.8, + "probability": 0.4518 + }, + { + "start": 1847.06, + "end": 1848.7, + "probability": 0.7892 + }, + { + "start": 1849.46, + "end": 1850.06, + "probability": 0.1713 + }, + { + "start": 1850.06, + "end": 1850.06, + "probability": 0.0241 + }, + { + "start": 1850.06, + "end": 1850.06, + "probability": 0.0077 + }, + { + "start": 1850.06, + "end": 1850.88, + "probability": 0.2369 + }, + { + "start": 1850.88, + "end": 1851.94, + "probability": 0.6317 + }, + { + "start": 1852.14, + "end": 1852.14, + "probability": 0.6157 + }, + { + "start": 1852.14, + "end": 1852.14, + "probability": 0.6909 + }, + { + "start": 1852.14, + "end": 1856.56, + "probability": 0.5598 + }, + { + "start": 1857.12, + "end": 1857.4, + "probability": 0.5757 + }, + { + "start": 1857.5, + "end": 1858.24, + "probability": 0.6233 + }, + { + "start": 1858.72, + "end": 1861.98, + "probability": 0.9416 + }, + { + "start": 1862.1, + "end": 1866.32, + "probability": 0.9949 + }, + { + "start": 1866.9, + "end": 1867.5, + "probability": 0.8488 + }, + { + "start": 1867.8, + "end": 1869.38, + "probability": 0.9722 + }, + { + "start": 1869.56, + "end": 1870.5, + "probability": 0.7718 + }, + { + "start": 1870.78, + "end": 1871.76, + "probability": 0.9526 + }, + { + "start": 1871.92, + "end": 1876.81, + "probability": 0.9897 + }, + { + "start": 1878.5, + "end": 1882.76, + "probability": 0.8499 + }, + { + "start": 1883.58, + "end": 1886.0, + "probability": 0.9567 + }, + { + "start": 1886.02, + "end": 1886.22, + "probability": 0.6867 + }, + { + "start": 1886.3, + "end": 1890.12, + "probability": 0.9863 + }, + { + "start": 1890.2, + "end": 1891.9, + "probability": 0.9883 + }, + { + "start": 1892.72, + "end": 1895.24, + "probability": 0.8953 + }, + { + "start": 1895.76, + "end": 1896.56, + "probability": 0.4397 + }, + { + "start": 1896.56, + "end": 1897.7, + "probability": 0.9033 + }, + { + "start": 1899.3, + "end": 1903.52, + "probability": 0.9812 + }, + { + "start": 1904.0, + "end": 1911.0, + "probability": 0.9871 + }, + { + "start": 1911.9, + "end": 1917.32, + "probability": 0.863 + }, + { + "start": 1918.28, + "end": 1921.44, + "probability": 0.8085 + }, + { + "start": 1921.56, + "end": 1922.74, + "probability": 0.9521 + }, + { + "start": 1923.18, + "end": 1924.74, + "probability": 0.9653 + }, + { + "start": 1926.3, + "end": 1929.88, + "probability": 0.8625 + }, + { + "start": 1930.54, + "end": 1933.46, + "probability": 0.9149 + }, + { + "start": 1934.04, + "end": 1935.76, + "probability": 0.9434 + }, + { + "start": 1937.4, + "end": 1938.42, + "probability": 0.5327 + }, + { + "start": 1939.12, + "end": 1940.56, + "probability": 0.8638 + }, + { + "start": 1941.22, + "end": 1946.02, + "probability": 0.985 + }, + { + "start": 1947.12, + "end": 1950.66, + "probability": 0.9207 + }, + { + "start": 1951.54, + "end": 1953.7, + "probability": 0.9949 + }, + { + "start": 1954.04, + "end": 1954.72, + "probability": 0.939 + }, + { + "start": 1955.58, + "end": 1957.12, + "probability": 0.9946 + }, + { + "start": 1957.8, + "end": 1960.92, + "probability": 0.9685 + }, + { + "start": 1961.86, + "end": 1966.3, + "probability": 0.9905 + }, + { + "start": 1966.38, + "end": 1967.21, + "probability": 0.3708 + }, + { + "start": 1967.54, + "end": 1968.38, + "probability": 0.7021 + }, + { + "start": 1969.24, + "end": 1969.84, + "probability": 0.8943 + }, + { + "start": 1970.32, + "end": 1974.36, + "probability": 0.9493 + }, + { + "start": 1974.36, + "end": 1976.42, + "probability": 0.9927 + }, + { + "start": 1977.12, + "end": 1978.56, + "probability": 0.839 + }, + { + "start": 1979.84, + "end": 1981.84, + "probability": 0.901 + }, + { + "start": 1982.0, + "end": 1984.06, + "probability": 0.855 + }, + { + "start": 1984.08, + "end": 1985.71, + "probability": 0.989 + }, + { + "start": 1986.94, + "end": 1990.44, + "probability": 0.943 + }, + { + "start": 1990.8, + "end": 1991.74, + "probability": 0.8237 + }, + { + "start": 1992.24, + "end": 1994.14, + "probability": 0.9937 + }, + { + "start": 1994.26, + "end": 1995.12, + "probability": 0.927 + }, + { + "start": 1995.52, + "end": 1995.9, + "probability": 0.6865 + }, + { + "start": 1996.24, + "end": 1998.6, + "probability": 0.5037 + }, + { + "start": 1998.68, + "end": 2001.48, + "probability": 0.6535 + }, + { + "start": 2001.48, + "end": 2002.14, + "probability": 0.7998 + }, + { + "start": 2002.32, + "end": 2005.36, + "probability": 0.9965 + }, + { + "start": 2006.12, + "end": 2010.28, + "probability": 0.8019 + }, + { + "start": 2010.62, + "end": 2012.52, + "probability": 0.9966 + }, + { + "start": 2012.68, + "end": 2013.98, + "probability": 0.9956 + }, + { + "start": 2014.4, + "end": 2019.02, + "probability": 0.9962 + }, + { + "start": 2019.62, + "end": 2020.26, + "probability": 0.4885 + }, + { + "start": 2021.1, + "end": 2022.14, + "probability": 0.9359 + }, + { + "start": 2022.96, + "end": 2024.68, + "probability": 0.9012 + }, + { + "start": 2024.84, + "end": 2026.16, + "probability": 0.9843 + }, + { + "start": 2027.02, + "end": 2027.66, + "probability": 0.6609 + }, + { + "start": 2027.82, + "end": 2030.7, + "probability": 0.981 + }, + { + "start": 2032.02, + "end": 2033.02, + "probability": 0.8347 + }, + { + "start": 2034.12, + "end": 2036.78, + "probability": 0.8197 + }, + { + "start": 2037.12, + "end": 2038.2, + "probability": 0.8523 + }, + { + "start": 2038.3, + "end": 2038.8, + "probability": 0.6837 + }, + { + "start": 2039.22, + "end": 2042.84, + "probability": 0.9529 + }, + { + "start": 2042.9, + "end": 2043.94, + "probability": 0.7421 + }, + { + "start": 2044.68, + "end": 2045.82, + "probability": 0.7645 + }, + { + "start": 2046.56, + "end": 2048.26, + "probability": 0.8722 + }, + { + "start": 2049.44, + "end": 2051.2, + "probability": 0.9893 + }, + { + "start": 2051.34, + "end": 2052.92, + "probability": 0.9878 + }, + { + "start": 2053.6, + "end": 2054.16, + "probability": 0.9426 + }, + { + "start": 2054.22, + "end": 2056.98, + "probability": 0.8595 + }, + { + "start": 2057.14, + "end": 2058.22, + "probability": 0.9163 + }, + { + "start": 2058.36, + "end": 2059.98, + "probability": 0.988 + }, + { + "start": 2060.06, + "end": 2062.22, + "probability": 0.8345 + }, + { + "start": 2062.56, + "end": 2062.66, + "probability": 0.5478 + }, + { + "start": 2063.9, + "end": 2066.1, + "probability": 0.7756 + }, + { + "start": 2066.94, + "end": 2068.66, + "probability": 0.0317 + }, + { + "start": 2069.22, + "end": 2069.32, + "probability": 0.0165 + }, + { + "start": 2069.32, + "end": 2070.44, + "probability": 0.4938 + }, + { + "start": 2070.86, + "end": 2071.52, + "probability": 0.6639 + }, + { + "start": 2072.5, + "end": 2074.56, + "probability": 0.0255 + }, + { + "start": 2074.98, + "end": 2076.08, + "probability": 0.0693 + }, + { + "start": 2076.56, + "end": 2076.68, + "probability": 0.6037 + }, + { + "start": 2076.94, + "end": 2078.04, + "probability": 0.7979 + }, + { + "start": 2078.12, + "end": 2080.46, + "probability": 0.9709 + }, + { + "start": 2080.52, + "end": 2080.7, + "probability": 0.5526 + }, + { + "start": 2080.78, + "end": 2081.4, + "probability": 0.9779 + }, + { + "start": 2081.5, + "end": 2082.7, + "probability": 0.8011 + }, + { + "start": 2082.84, + "end": 2083.3, + "probability": 0.8085 + }, + { + "start": 2084.56, + "end": 2086.32, + "probability": 0.9342 + }, + { + "start": 2086.54, + "end": 2087.24, + "probability": 0.7581 + }, + { + "start": 2087.44, + "end": 2088.86, + "probability": 0.9392 + }, + { + "start": 2089.2, + "end": 2089.7, + "probability": 0.7727 + }, + { + "start": 2089.82, + "end": 2091.54, + "probability": 0.6157 + }, + { + "start": 2091.94, + "end": 2093.88, + "probability": 0.8264 + }, + { + "start": 2095.5, + "end": 2095.88, + "probability": 0.0665 + }, + { + "start": 2096.0, + "end": 2096.38, + "probability": 0.2021 + }, + { + "start": 2096.92, + "end": 2097.48, + "probability": 0.628 + }, + { + "start": 2097.9, + "end": 2103.58, + "probability": 0.9408 + }, + { + "start": 2103.74, + "end": 2106.27, + "probability": 0.9915 + }, + { + "start": 2106.34, + "end": 2106.72, + "probability": 0.4968 + }, + { + "start": 2106.82, + "end": 2108.68, + "probability": 0.9894 + }, + { + "start": 2108.84, + "end": 2109.84, + "probability": 0.8578 + }, + { + "start": 2109.92, + "end": 2110.24, + "probability": 0.858 + }, + { + "start": 2110.44, + "end": 2111.03, + "probability": 0.9888 + }, + { + "start": 2112.46, + "end": 2113.72, + "probability": 0.96 + }, + { + "start": 2116.22, + "end": 2118.1, + "probability": 0.8173 + }, + { + "start": 2118.24, + "end": 2122.21, + "probability": 0.9946 + }, + { + "start": 2123.06, + "end": 2125.92, + "probability": 0.9404 + }, + { + "start": 2126.9, + "end": 2127.46, + "probability": 0.69 + }, + { + "start": 2127.52, + "end": 2131.28, + "probability": 0.9667 + }, + { + "start": 2131.28, + "end": 2136.1, + "probability": 0.9694 + }, + { + "start": 2136.26, + "end": 2140.32, + "probability": 0.9904 + }, + { + "start": 2140.32, + "end": 2144.44, + "probability": 0.9048 + }, + { + "start": 2145.0, + "end": 2146.82, + "probability": 0.8421 + }, + { + "start": 2147.46, + "end": 2151.22, + "probability": 0.9798 + }, + { + "start": 2151.22, + "end": 2155.88, + "probability": 0.9808 + }, + { + "start": 2156.12, + "end": 2156.8, + "probability": 0.7486 + }, + { + "start": 2157.82, + "end": 2158.8, + "probability": 0.8224 + }, + { + "start": 2158.98, + "end": 2162.82, + "probability": 0.9911 + }, + { + "start": 2163.7, + "end": 2166.62, + "probability": 0.999 + }, + { + "start": 2166.62, + "end": 2169.34, + "probability": 0.8728 + }, + { + "start": 2169.38, + "end": 2172.06, + "probability": 0.8544 + }, + { + "start": 2173.12, + "end": 2176.46, + "probability": 0.9344 + }, + { + "start": 2176.58, + "end": 2178.14, + "probability": 0.8909 + }, + { + "start": 2178.22, + "end": 2179.34, + "probability": 0.6744 + }, + { + "start": 2180.18, + "end": 2180.56, + "probability": 0.3643 + }, + { + "start": 2180.6, + "end": 2181.54, + "probability": 0.4931 + }, + { + "start": 2181.62, + "end": 2182.18, + "probability": 0.8688 + }, + { + "start": 2184.0, + "end": 2184.98, + "probability": 0.022 + }, + { + "start": 2185.1, + "end": 2186.91, + "probability": 0.9243 + }, + { + "start": 2188.58, + "end": 2189.46, + "probability": 0.9473 + }, + { + "start": 2191.54, + "end": 2196.1, + "probability": 0.7386 + }, + { + "start": 2196.2, + "end": 2197.88, + "probability": 0.6615 + }, + { + "start": 2198.8, + "end": 2199.84, + "probability": 0.9316 + }, + { + "start": 2200.14, + "end": 2203.74, + "probability": 0.9923 + }, + { + "start": 2204.26, + "end": 2204.62, + "probability": 0.838 + }, + { + "start": 2206.08, + "end": 2208.92, + "probability": 0.999 + }, + { + "start": 2209.32, + "end": 2212.9, + "probability": 0.9998 + }, + { + "start": 2214.44, + "end": 2215.62, + "probability": 0.9979 + }, + { + "start": 2215.96, + "end": 2216.58, + "probability": 0.9893 + }, + { + "start": 2217.86, + "end": 2218.22, + "probability": 0.7309 + }, + { + "start": 2219.2, + "end": 2220.0, + "probability": 0.5976 + }, + { + "start": 2220.52, + "end": 2221.7, + "probability": 0.9523 + }, + { + "start": 2222.3, + "end": 2223.8, + "probability": 0.973 + }, + { + "start": 2225.38, + "end": 2225.94, + "probability": 0.9262 + }, + { + "start": 2226.08, + "end": 2226.5, + "probability": 0.7374 + }, + { + "start": 2226.6, + "end": 2226.86, + "probability": 0.7857 + }, + { + "start": 2227.0, + "end": 2227.78, + "probability": 0.9631 + }, + { + "start": 2227.84, + "end": 2228.68, + "probability": 0.8306 + }, + { + "start": 2229.36, + "end": 2230.48, + "probability": 0.7922 + }, + { + "start": 2232.08, + "end": 2233.64, + "probability": 0.6656 + }, + { + "start": 2234.88, + "end": 2237.34, + "probability": 0.5341 + }, + { + "start": 2237.74, + "end": 2240.8, + "probability": 0.9748 + }, + { + "start": 2242.18, + "end": 2246.3, + "probability": 0.8582 + }, + { + "start": 2246.98, + "end": 2251.08, + "probability": 0.9141 + }, + { + "start": 2251.5, + "end": 2254.16, + "probability": 0.9929 + }, + { + "start": 2255.0, + "end": 2256.04, + "probability": 0.7767 + }, + { + "start": 2256.92, + "end": 2261.26, + "probability": 0.9761 + }, + { + "start": 2261.34, + "end": 2262.72, + "probability": 0.8002 + }, + { + "start": 2262.76, + "end": 2263.42, + "probability": 0.8747 + }, + { + "start": 2263.62, + "end": 2264.64, + "probability": 0.8756 + }, + { + "start": 2264.72, + "end": 2265.58, + "probability": 0.8236 + }, + { + "start": 2268.72, + "end": 2272.14, + "probability": 0.8542 + }, + { + "start": 2273.08, + "end": 2276.12, + "probability": 0.8422 + }, + { + "start": 2276.86, + "end": 2280.94, + "probability": 0.9811 + }, + { + "start": 2280.94, + "end": 2283.28, + "probability": 0.9675 + }, + { + "start": 2284.34, + "end": 2284.6, + "probability": 0.6913 + }, + { + "start": 2284.74, + "end": 2288.12, + "probability": 0.9569 + }, + { + "start": 2288.96, + "end": 2292.24, + "probability": 0.9065 + }, + { + "start": 2292.24, + "end": 2292.28, + "probability": 0.1324 + }, + { + "start": 2292.32, + "end": 2292.96, + "probability": 0.5582 + }, + { + "start": 2293.54, + "end": 2294.61, + "probability": 0.8545 + }, + { + "start": 2295.26, + "end": 2301.96, + "probability": 0.7231 + }, + { + "start": 2302.22, + "end": 2303.82, + "probability": 0.9957 + }, + { + "start": 2304.1, + "end": 2306.1, + "probability": 0.9558 + }, + { + "start": 2306.66, + "end": 2312.7, + "probability": 0.8265 + }, + { + "start": 2313.42, + "end": 2313.68, + "probability": 0.6366 + }, + { + "start": 2313.8, + "end": 2315.42, + "probability": 0.5482 + }, + { + "start": 2315.72, + "end": 2321.52, + "probability": 0.9343 + }, + { + "start": 2322.32, + "end": 2323.72, + "probability": 0.9884 + }, + { + "start": 2324.54, + "end": 2328.24, + "probability": 0.9199 + }, + { + "start": 2329.16, + "end": 2330.14, + "probability": 0.7374 + }, + { + "start": 2330.54, + "end": 2334.52, + "probability": 0.9674 + }, + { + "start": 2335.12, + "end": 2336.17, + "probability": 0.9873 + }, + { + "start": 2337.56, + "end": 2339.02, + "probability": 0.6966 + }, + { + "start": 2339.88, + "end": 2342.72, + "probability": 0.9799 + }, + { + "start": 2342.92, + "end": 2343.5, + "probability": 0.7477 + }, + { + "start": 2344.36, + "end": 2348.72, + "probability": 0.9969 + }, + { + "start": 2350.68, + "end": 2353.12, + "probability": 0.7646 + }, + { + "start": 2356.8, + "end": 2358.12, + "probability": 0.7243 + }, + { + "start": 2358.18, + "end": 2358.48, + "probability": 0.5031 + }, + { + "start": 2358.6, + "end": 2361.1, + "probability": 0.9883 + }, + { + "start": 2361.14, + "end": 2361.9, + "probability": 0.6371 + }, + { + "start": 2361.92, + "end": 2363.04, + "probability": 0.7759 + }, + { + "start": 2363.2, + "end": 2363.24, + "probability": 0.5091 + }, + { + "start": 2363.24, + "end": 2363.9, + "probability": 0.4856 + }, + { + "start": 2363.9, + "end": 2364.14, + "probability": 0.7986 + }, + { + "start": 2364.2, + "end": 2364.34, + "probability": 0.6294 + }, + { + "start": 2364.34, + "end": 2364.82, + "probability": 0.8328 + }, + { + "start": 2364.94, + "end": 2365.36, + "probability": 0.5002 + }, + { + "start": 2365.4, + "end": 2366.32, + "probability": 0.3352 + }, + { + "start": 2367.3, + "end": 2368.8, + "probability": 0.4508 + }, + { + "start": 2368.8, + "end": 2370.2, + "probability": 0.9637 + }, + { + "start": 2370.24, + "end": 2370.52, + "probability": 0.9214 + }, + { + "start": 2371.56, + "end": 2378.96, + "probability": 0.9569 + }, + { + "start": 2379.72, + "end": 2382.9, + "probability": 0.991 + }, + { + "start": 2382.92, + "end": 2386.08, + "probability": 0.9709 + }, + { + "start": 2386.76, + "end": 2387.62, + "probability": 0.6721 + }, + { + "start": 2387.66, + "end": 2388.26, + "probability": 0.6819 + }, + { + "start": 2388.46, + "end": 2390.6, + "probability": 0.7056 + }, + { + "start": 2390.6, + "end": 2390.66, + "probability": 0.8281 + }, + { + "start": 2390.66, + "end": 2390.72, + "probability": 0.666 + }, + { + "start": 2390.78, + "end": 2391.63, + "probability": 0.9902 + }, + { + "start": 2391.9, + "end": 2394.54, + "probability": 0.9575 + }, + { + "start": 2395.1, + "end": 2395.62, + "probability": 0.7286 + }, + { + "start": 2396.2, + "end": 2397.84, + "probability": 0.8106 + }, + { + "start": 2398.25, + "end": 2400.35, + "probability": 0.9882 + }, + { + "start": 2401.08, + "end": 2404.2, + "probability": 0.6211 + }, + { + "start": 2404.36, + "end": 2406.66, + "probability": 0.9663 + }, + { + "start": 2407.36, + "end": 2408.9, + "probability": 0.9518 + }, + { + "start": 2408.92, + "end": 2413.54, + "probability": 0.9891 + }, + { + "start": 2413.64, + "end": 2415.8, + "probability": 0.9942 + }, + { + "start": 2416.8, + "end": 2421.24, + "probability": 0.9925 + }, + { + "start": 2421.24, + "end": 2427.12, + "probability": 0.9914 + }, + { + "start": 2427.8, + "end": 2428.82, + "probability": 0.8188 + }, + { + "start": 2429.54, + "end": 2431.06, + "probability": 0.9004 + }, + { + "start": 2431.2, + "end": 2432.69, + "probability": 0.7462 + }, + { + "start": 2432.92, + "end": 2433.08, + "probability": 0.2475 + }, + { + "start": 2433.08, + "end": 2433.52, + "probability": 0.5646 + }, + { + "start": 2433.6, + "end": 2434.82, + "probability": 0.8001 + }, + { + "start": 2435.76, + "end": 2438.62, + "probability": 0.6949 + }, + { + "start": 2438.74, + "end": 2441.23, + "probability": 0.9946 + }, + { + "start": 2441.8, + "end": 2445.32, + "probability": 0.8127 + }, + { + "start": 2446.0, + "end": 2446.54, + "probability": 0.7445 + }, + { + "start": 2447.1, + "end": 2448.94, + "probability": 0.9248 + }, + { + "start": 2454.2, + "end": 2455.76, + "probability": 0.6997 + }, + { + "start": 2458.0, + "end": 2458.94, + "probability": 0.8669 + }, + { + "start": 2459.72, + "end": 2465.86, + "probability": 0.9712 + }, + { + "start": 2466.44, + "end": 2469.0, + "probability": 0.84 + }, + { + "start": 2469.14, + "end": 2473.14, + "probability": 0.7421 + }, + { + "start": 2473.26, + "end": 2473.84, + "probability": 0.5995 + }, + { + "start": 2473.92, + "end": 2474.2, + "probability": 0.2774 + }, + { + "start": 2474.2, + "end": 2476.64, + "probability": 0.9867 + }, + { + "start": 2476.76, + "end": 2478.6, + "probability": 0.6994 + }, + { + "start": 2479.14, + "end": 2484.2, + "probability": 0.8848 + }, + { + "start": 2484.3, + "end": 2485.12, + "probability": 0.9746 + }, + { + "start": 2485.6, + "end": 2486.84, + "probability": 0.6754 + }, + { + "start": 2486.96, + "end": 2488.44, + "probability": 0.9883 + }, + { + "start": 2488.9, + "end": 2492.0, + "probability": 0.9667 + }, + { + "start": 2493.3, + "end": 2493.6, + "probability": 0.7842 + }, + { + "start": 2493.66, + "end": 2498.16, + "probability": 0.9984 + }, + { + "start": 2498.16, + "end": 2503.98, + "probability": 0.9836 + }, + { + "start": 2505.36, + "end": 2507.16, + "probability": 0.7944 + }, + { + "start": 2507.22, + "end": 2507.66, + "probability": 0.7212 + }, + { + "start": 2507.76, + "end": 2511.52, + "probability": 0.9964 + }, + { + "start": 2513.2, + "end": 2516.8, + "probability": 0.7341 + }, + { + "start": 2516.8, + "end": 2520.42, + "probability": 0.9813 + }, + { + "start": 2521.38, + "end": 2522.72, + "probability": 0.5163 + }, + { + "start": 2522.74, + "end": 2523.38, + "probability": 0.7998 + }, + { + "start": 2525.8, + "end": 2533.6, + "probability": 0.9851 + }, + { + "start": 2535.42, + "end": 2537.42, + "probability": 0.7039 + }, + { + "start": 2537.9, + "end": 2543.84, + "probability": 0.8477 + }, + { + "start": 2543.94, + "end": 2546.27, + "probability": 0.9946 + }, + { + "start": 2548.08, + "end": 2549.72, + "probability": 0.9771 + }, + { + "start": 2550.38, + "end": 2552.46, + "probability": 0.9691 + }, + { + "start": 2553.84, + "end": 2555.35, + "probability": 0.7011 + }, + { + "start": 2556.14, + "end": 2557.38, + "probability": 0.9932 + }, + { + "start": 2559.76, + "end": 2563.28, + "probability": 0.7297 + }, + { + "start": 2563.6, + "end": 2564.94, + "probability": 0.9617 + }, + { + "start": 2565.44, + "end": 2566.1, + "probability": 0.5779 + }, + { + "start": 2566.22, + "end": 2566.84, + "probability": 0.4984 + }, + { + "start": 2566.96, + "end": 2572.24, + "probability": 0.8583 + }, + { + "start": 2572.56, + "end": 2573.84, + "probability": 0.893 + }, + { + "start": 2574.02, + "end": 2575.76, + "probability": 0.8951 + }, + { + "start": 2576.78, + "end": 2577.96, + "probability": 0.9888 + }, + { + "start": 2579.56, + "end": 2581.7, + "probability": 0.9624 + }, + { + "start": 2582.4, + "end": 2582.56, + "probability": 0.6572 + }, + { + "start": 2582.64, + "end": 2583.86, + "probability": 0.755 + }, + { + "start": 2583.9, + "end": 2588.24, + "probability": 0.9775 + }, + { + "start": 2588.32, + "end": 2590.02, + "probability": 0.9503 + }, + { + "start": 2590.38, + "end": 2592.04, + "probability": 0.6885 + }, + { + "start": 2592.62, + "end": 2593.8, + "probability": 0.7163 + }, + { + "start": 2594.34, + "end": 2596.92, + "probability": 0.9731 + }, + { + "start": 2600.5, + "end": 2602.26, + "probability": 0.9349 + }, + { + "start": 2605.42, + "end": 2608.66, + "probability": 0.9861 + }, + { + "start": 2609.6, + "end": 2609.9, + "probability": 0.5308 + }, + { + "start": 2610.42, + "end": 2612.58, + "probability": 0.973 + }, + { + "start": 2612.86, + "end": 2614.12, + "probability": 0.991 + }, + { + "start": 2615.54, + "end": 2617.1, + "probability": 0.9448 + }, + { + "start": 2620.66, + "end": 2622.22, + "probability": 0.9836 + }, + { + "start": 2623.84, + "end": 2625.36, + "probability": 0.5465 + }, + { + "start": 2625.96, + "end": 2627.1, + "probability": 0.9066 + }, + { + "start": 2627.9, + "end": 2631.54, + "probability": 0.998 + }, + { + "start": 2632.58, + "end": 2634.4, + "probability": 0.9956 + }, + { + "start": 2635.32, + "end": 2637.38, + "probability": 0.6837 + }, + { + "start": 2638.06, + "end": 2640.56, + "probability": 0.9876 + }, + { + "start": 2640.98, + "end": 2642.96, + "probability": 0.9977 + }, + { + "start": 2643.24, + "end": 2644.29, + "probability": 0.9939 + }, + { + "start": 2644.7, + "end": 2645.84, + "probability": 0.7342 + }, + { + "start": 2645.96, + "end": 2647.06, + "probability": 0.8125 + }, + { + "start": 2647.1, + "end": 2647.58, + "probability": 0.8995 + }, + { + "start": 2647.94, + "end": 2648.38, + "probability": 0.8551 + }, + { + "start": 2650.04, + "end": 2653.42, + "probability": 0.955 + }, + { + "start": 2654.0, + "end": 2656.02, + "probability": 0.9323 + }, + { + "start": 2656.34, + "end": 2657.24, + "probability": 0.9971 + }, + { + "start": 2658.56, + "end": 2661.02, + "probability": 0.855 + }, + { + "start": 2661.88, + "end": 2662.52, + "probability": 0.9167 + }, + { + "start": 2662.6, + "end": 2663.22, + "probability": 0.7876 + }, + { + "start": 2663.46, + "end": 2665.62, + "probability": 0.9012 + }, + { + "start": 2665.76, + "end": 2667.32, + "probability": 0.9795 + }, + { + "start": 2668.56, + "end": 2671.64, + "probability": 0.9669 + }, + { + "start": 2672.4, + "end": 2674.14, + "probability": 0.0712 + }, + { + "start": 2675.12, + "end": 2679.87, + "probability": 0.9458 + }, + { + "start": 2681.16, + "end": 2682.86, + "probability": 0.784 + }, + { + "start": 2683.4, + "end": 2687.04, + "probability": 0.978 + }, + { + "start": 2687.22, + "end": 2689.26, + "probability": 0.8092 + }, + { + "start": 2689.8, + "end": 2693.24, + "probability": 0.9829 + }, + { + "start": 2694.34, + "end": 2695.74, + "probability": 0.9863 + }, + { + "start": 2696.32, + "end": 2696.91, + "probability": 0.9897 + }, + { + "start": 2698.34, + "end": 2698.86, + "probability": 0.8755 + }, + { + "start": 2699.8, + "end": 2701.2, + "probability": 0.8676 + }, + { + "start": 2701.76, + "end": 2702.28, + "probability": 0.8117 + }, + { + "start": 2703.0, + "end": 2704.16, + "probability": 0.7637 + }, + { + "start": 2705.1, + "end": 2707.64, + "probability": 0.5187 + }, + { + "start": 2710.7, + "end": 2716.54, + "probability": 0.7297 + }, + { + "start": 2716.82, + "end": 2717.14, + "probability": 0.5517 + }, + { + "start": 2718.1, + "end": 2719.52, + "probability": 0.9543 + }, + { + "start": 2720.98, + "end": 2721.9, + "probability": 0.5779 + }, + { + "start": 2721.94, + "end": 2727.8, + "probability": 0.9744 + }, + { + "start": 2728.32, + "end": 2728.4, + "probability": 0.0107 + }, + { + "start": 2728.6, + "end": 2729.62, + "probability": 0.4971 + }, + { + "start": 2729.7, + "end": 2731.85, + "probability": 0.6997 + }, + { + "start": 2732.14, + "end": 2732.94, + "probability": 0.7703 + }, + { + "start": 2733.54, + "end": 2738.06, + "probability": 0.7584 + }, + { + "start": 2738.68, + "end": 2740.28, + "probability": 0.8454 + }, + { + "start": 2740.82, + "end": 2742.02, + "probability": 0.7788 + }, + { + "start": 2743.32, + "end": 2743.56, + "probability": 0.9653 + }, + { + "start": 2743.76, + "end": 2747.08, + "probability": 0.9883 + }, + { + "start": 2748.54, + "end": 2750.06, + "probability": 0.9783 + }, + { + "start": 2753.24, + "end": 2755.12, + "probability": 0.9887 + }, + { + "start": 2756.34, + "end": 2756.92, + "probability": 0.8727 + }, + { + "start": 2757.86, + "end": 2758.62, + "probability": 0.6086 + }, + { + "start": 2760.08, + "end": 2760.74, + "probability": 0.793 + }, + { + "start": 2762.86, + "end": 2763.6, + "probability": 0.7778 + }, + { + "start": 2763.82, + "end": 2765.4, + "probability": 0.9974 + }, + { + "start": 2766.04, + "end": 2766.18, + "probability": 0.5347 + }, + { + "start": 2767.24, + "end": 2768.6, + "probability": 0.2691 + }, + { + "start": 2769.68, + "end": 2774.32, + "probability": 0.9951 + }, + { + "start": 2776.62, + "end": 2779.42, + "probability": 0.9962 + }, + { + "start": 2779.58, + "end": 2779.76, + "probability": 0.5665 + }, + { + "start": 2779.92, + "end": 2781.64, + "probability": 0.9333 + }, + { + "start": 2782.68, + "end": 2783.66, + "probability": 0.999 + }, + { + "start": 2784.2, + "end": 2785.0, + "probability": 0.942 + }, + { + "start": 2785.56, + "end": 2786.26, + "probability": 0.368 + }, + { + "start": 2786.56, + "end": 2789.84, + "probability": 0.996 + }, + { + "start": 2791.18, + "end": 2792.32, + "probability": 0.7769 + }, + { + "start": 2792.48, + "end": 2792.56, + "probability": 0.4448 + }, + { + "start": 2792.58, + "end": 2792.76, + "probability": 0.6726 + }, + { + "start": 2792.96, + "end": 2793.52, + "probability": 0.9062 + }, + { + "start": 2793.6, + "end": 2799.48, + "probability": 0.9414 + }, + { + "start": 2799.66, + "end": 2801.88, + "probability": 0.8896 + }, + { + "start": 2802.22, + "end": 2806.06, + "probability": 0.6419 + }, + { + "start": 2806.96, + "end": 2808.52, + "probability": 0.9904 + }, + { + "start": 2809.5, + "end": 2815.28, + "probability": 0.9333 + }, + { + "start": 2815.98, + "end": 2818.94, + "probability": 0.9601 + }, + { + "start": 2820.28, + "end": 2821.68, + "probability": 0.7391 + }, + { + "start": 2822.6, + "end": 2823.23, + "probability": 0.6123 + }, + { + "start": 2824.46, + "end": 2826.08, + "probability": 0.8652 + }, + { + "start": 2826.24, + "end": 2826.74, + "probability": 0.9611 + }, + { + "start": 2828.34, + "end": 2831.56, + "probability": 0.8233 + }, + { + "start": 2832.06, + "end": 2833.98, + "probability": 0.9791 + }, + { + "start": 2834.6, + "end": 2836.0, + "probability": 0.937 + }, + { + "start": 2837.58, + "end": 2840.44, + "probability": 0.6669 + }, + { + "start": 2841.06, + "end": 2844.26, + "probability": 0.8654 + }, + { + "start": 2845.2, + "end": 2847.66, + "probability": 0.8148 + }, + { + "start": 2848.12, + "end": 2848.32, + "probability": 0.9626 + }, + { + "start": 2848.44, + "end": 2851.32, + "probability": 0.9909 + }, + { + "start": 2851.42, + "end": 2857.14, + "probability": 0.9961 + }, + { + "start": 2857.7, + "end": 2862.3, + "probability": 0.775 + }, + { + "start": 2862.36, + "end": 2863.7, + "probability": 0.9744 + }, + { + "start": 2863.76, + "end": 2867.02, + "probability": 0.9923 + }, + { + "start": 2869.26, + "end": 2870.58, + "probability": 0.9277 + }, + { + "start": 2871.46, + "end": 2873.72, + "probability": 0.9941 + }, + { + "start": 2874.12, + "end": 2877.26, + "probability": 0.9835 + }, + { + "start": 2877.3, + "end": 2877.48, + "probability": 0.7298 + }, + { + "start": 2877.92, + "end": 2878.18, + "probability": 0.7932 + }, + { + "start": 2878.26, + "end": 2878.7, + "probability": 0.1788 + }, + { + "start": 2879.44, + "end": 2881.38, + "probability": 0.91 + }, + { + "start": 2882.12, + "end": 2884.3, + "probability": 0.9746 + }, + { + "start": 2885.36, + "end": 2885.92, + "probability": 0.7842 + }, + { + "start": 2887.22, + "end": 2889.7, + "probability": 0.9365 + }, + { + "start": 2890.46, + "end": 2892.02, + "probability": 0.8242 + }, + { + "start": 2892.34, + "end": 2892.66, + "probability": 0.8543 + }, + { + "start": 2900.62, + "end": 2902.32, + "probability": 0.6012 + }, + { + "start": 2902.44, + "end": 2908.3, + "probability": 0.6669 + }, + { + "start": 2908.38, + "end": 2912.0, + "probability": 0.975 + }, + { + "start": 2912.1, + "end": 2914.9, + "probability": 0.3616 + }, + { + "start": 2915.88, + "end": 2915.98, + "probability": 0.6673 + }, + { + "start": 2916.7, + "end": 2920.92, + "probability": 0.744 + }, + { + "start": 2921.78, + "end": 2923.48, + "probability": 0.9323 + }, + { + "start": 2923.52, + "end": 2924.04, + "probability": 0.8564 + }, + { + "start": 2924.12, + "end": 2926.57, + "probability": 0.9937 + }, + { + "start": 2926.84, + "end": 2929.82, + "probability": 0.9951 + }, + { + "start": 2929.9, + "end": 2933.6, + "probability": 0.7307 + }, + { + "start": 2934.02, + "end": 2935.92, + "probability": 0.7469 + }, + { + "start": 2936.26, + "end": 2936.58, + "probability": 0.3821 + }, + { + "start": 2936.68, + "end": 2937.4, + "probability": 0.5654 + }, + { + "start": 2938.16, + "end": 2943.22, + "probability": 0.8328 + }, + { + "start": 2943.84, + "end": 2946.08, + "probability": 0.9203 + }, + { + "start": 2946.42, + "end": 2949.44, + "probability": 0.9927 + }, + { + "start": 2949.44, + "end": 2953.66, + "probability": 0.9634 + }, + { + "start": 2954.7, + "end": 2956.08, + "probability": 0.6696 + }, + { + "start": 2956.28, + "end": 2956.56, + "probability": 0.3771 + }, + { + "start": 2956.64, + "end": 2959.18, + "probability": 0.7361 + }, + { + "start": 2959.22, + "end": 2961.94, + "probability": 0.8212 + }, + { + "start": 2965.18, + "end": 2965.88, + "probability": 0.1925 + }, + { + "start": 2967.5, + "end": 2968.4, + "probability": 0.395 + }, + { + "start": 2969.46, + "end": 2972.1, + "probability": 0.7055 + }, + { + "start": 2972.24, + "end": 2975.82, + "probability": 0.7616 + }, + { + "start": 2976.74, + "end": 2979.66, + "probability": 0.9919 + }, + { + "start": 2982.72, + "end": 2986.02, + "probability": 0.5262 + }, + { + "start": 2986.14, + "end": 2989.22, + "probability": 0.9634 + }, + { + "start": 2989.26, + "end": 2990.18, + "probability": 0.9946 + }, + { + "start": 2991.4, + "end": 2993.46, + "probability": 0.8188 + }, + { + "start": 2993.86, + "end": 2994.28, + "probability": 0.5162 + }, + { + "start": 2994.36, + "end": 2997.7, + "probability": 0.6481 + }, + { + "start": 2999.46, + "end": 3004.26, + "probability": 0.6643 + }, + { + "start": 3005.28, + "end": 3007.12, + "probability": 0.8763 + }, + { + "start": 3007.18, + "end": 3008.94, + "probability": 0.99 + }, + { + "start": 3009.62, + "end": 3012.8, + "probability": 0.9302 + }, + { + "start": 3013.3, + "end": 3013.86, + "probability": 0.4947 + }, + { + "start": 3013.94, + "end": 3016.36, + "probability": 0.9836 + }, + { + "start": 3016.64, + "end": 3016.88, + "probability": 0.5939 + }, + { + "start": 3017.64, + "end": 3017.94, + "probability": 0.7122 + }, + { + "start": 3018.24, + "end": 3019.86, + "probability": 0.7032 + }, + { + "start": 3020.06, + "end": 3023.48, + "probability": 0.9334 + }, + { + "start": 3023.48, + "end": 3027.14, + "probability": 0.9927 + }, + { + "start": 3027.2, + "end": 3028.84, + "probability": 0.6782 + }, + { + "start": 3028.92, + "end": 3030.3, + "probability": 0.7038 + }, + { + "start": 3031.08, + "end": 3032.22, + "probability": 0.8308 + }, + { + "start": 3032.3, + "end": 3036.6, + "probability": 0.9801 + }, + { + "start": 3036.8, + "end": 3041.92, + "probability": 0.8262 + }, + { + "start": 3041.96, + "end": 3044.53, + "probability": 0.897 + }, + { + "start": 3045.4, + "end": 3046.84, + "probability": 0.8119 + }, + { + "start": 3048.28, + "end": 3053.22, + "probability": 0.9763 + }, + { + "start": 3054.38, + "end": 3055.28, + "probability": 0.9459 + }, + { + "start": 3055.4, + "end": 3056.7, + "probability": 0.9234 + }, + { + "start": 3056.82, + "end": 3058.07, + "probability": 0.6267 + }, + { + "start": 3058.49, + "end": 3061.12, + "probability": 0.1686 + }, + { + "start": 3061.24, + "end": 3062.56, + "probability": 0.6556 + }, + { + "start": 3064.76, + "end": 3065.16, + "probability": 0.6832 + }, + { + "start": 3066.37, + "end": 3071.0, + "probability": 0.9762 + }, + { + "start": 3071.02, + "end": 3072.9, + "probability": 0.9412 + }, + { + "start": 3073.14, + "end": 3077.22, + "probability": 0.938 + }, + { + "start": 3077.88, + "end": 3078.54, + "probability": 0.5774 + }, + { + "start": 3082.28, + "end": 3082.98, + "probability": 0.5379 + }, + { + "start": 3083.32, + "end": 3084.0, + "probability": 0.7624 + }, + { + "start": 3084.24, + "end": 3087.46, + "probability": 0.9773 + }, + { + "start": 3088.58, + "end": 3089.48, + "probability": 0.8122 + }, + { + "start": 3089.76, + "end": 3091.68, + "probability": 0.9561 + }, + { + "start": 3091.72, + "end": 3093.86, + "probability": 0.9563 + }, + { + "start": 3094.56, + "end": 3096.42, + "probability": 0.9783 + }, + { + "start": 3096.42, + "end": 3098.88, + "probability": 0.9778 + }, + { + "start": 3099.64, + "end": 3102.08, + "probability": 0.9158 + }, + { + "start": 3102.72, + "end": 3104.62, + "probability": 0.9305 + }, + { + "start": 3104.72, + "end": 3104.9, + "probability": 0.5623 + }, + { + "start": 3105.14, + "end": 3106.02, + "probability": 0.9827 + }, + { + "start": 3106.22, + "end": 3106.52, + "probability": 0.4076 + }, + { + "start": 3106.78, + "end": 3107.26, + "probability": 0.8985 + }, + { + "start": 3108.54, + "end": 3111.44, + "probability": 0.9733 + }, + { + "start": 3111.44, + "end": 3114.78, + "probability": 0.8802 + }, + { + "start": 3115.46, + "end": 3115.62, + "probability": 0.4366 + }, + { + "start": 3115.74, + "end": 3116.08, + "probability": 0.8835 + }, + { + "start": 3116.22, + "end": 3117.66, + "probability": 0.9776 + }, + { + "start": 3117.96, + "end": 3122.0, + "probability": 0.9792 + }, + { + "start": 3122.88, + "end": 3123.96, + "probability": 0.8085 + }, + { + "start": 3124.02, + "end": 3124.94, + "probability": 0.8609 + }, + { + "start": 3125.08, + "end": 3128.48, + "probability": 0.8155 + }, + { + "start": 3129.44, + "end": 3130.16, + "probability": 0.873 + }, + { + "start": 3130.36, + "end": 3131.81, + "probability": 0.955 + }, + { + "start": 3132.6, + "end": 3135.18, + "probability": 0.988 + }, + { + "start": 3135.4, + "end": 3135.84, + "probability": 0.9189 + }, + { + "start": 3136.04, + "end": 3136.94, + "probability": 0.5984 + }, + { + "start": 3137.24, + "end": 3138.4, + "probability": 0.9837 + }, + { + "start": 3138.52, + "end": 3140.16, + "probability": 0.99 + }, + { + "start": 3140.94, + "end": 3143.08, + "probability": 0.8825 + }, + { + "start": 3143.3, + "end": 3145.22, + "probability": 0.9613 + }, + { + "start": 3145.58, + "end": 3151.9, + "probability": 0.8494 + }, + { + "start": 3151.96, + "end": 3154.62, + "probability": 0.9873 + }, + { + "start": 3154.76, + "end": 3155.58, + "probability": 0.8859 + }, + { + "start": 3155.76, + "end": 3157.66, + "probability": 0.6657 + }, + { + "start": 3157.9, + "end": 3159.36, + "probability": 0.7825 + }, + { + "start": 3159.48, + "end": 3160.42, + "probability": 0.4997 + }, + { + "start": 3160.88, + "end": 3161.84, + "probability": 0.9794 + }, + { + "start": 3162.16, + "end": 3164.5, + "probability": 0.7876 + }, + { + "start": 3165.16, + "end": 3166.94, + "probability": 0.962 + }, + { + "start": 3166.94, + "end": 3169.82, + "probability": 0.9271 + }, + { + "start": 3170.36, + "end": 3170.52, + "probability": 0.7768 + }, + { + "start": 3171.24, + "end": 3171.52, + "probability": 0.3169 + }, + { + "start": 3171.6, + "end": 3172.5, + "probability": 0.9857 + }, + { + "start": 3172.74, + "end": 3176.88, + "probability": 0.9824 + }, + { + "start": 3176.94, + "end": 3177.16, + "probability": 0.4076 + }, + { + "start": 3177.3, + "end": 3177.64, + "probability": 0.5815 + }, + { + "start": 3177.7, + "end": 3179.44, + "probability": 0.9941 + }, + { + "start": 3181.04, + "end": 3183.08, + "probability": 0.7008 + }, + { + "start": 3183.56, + "end": 3184.92, + "probability": 0.9159 + }, + { + "start": 3185.22, + "end": 3185.38, + "probability": 0.1985 + }, + { + "start": 3186.92, + "end": 3188.82, + "probability": 0.6174 + }, + { + "start": 3188.82, + "end": 3189.96, + "probability": 0.5674 + }, + { + "start": 3190.6, + "end": 3193.5, + "probability": 0.8334 + }, + { + "start": 3193.54, + "end": 3195.11, + "probability": 0.9771 + }, + { + "start": 3196.86, + "end": 3197.56, + "probability": 0.5302 + }, + { + "start": 3200.1, + "end": 3200.5, + "probability": 0.1484 + }, + { + "start": 3203.06, + "end": 3203.48, + "probability": 0.3497 + }, + { + "start": 3203.48, + "end": 3206.8, + "probability": 0.9462 + }, + { + "start": 3206.8, + "end": 3211.12, + "probability": 0.8994 + }, + { + "start": 3211.66, + "end": 3214.14, + "probability": 0.9976 + }, + { + "start": 3214.14, + "end": 3218.58, + "probability": 0.9622 + }, + { + "start": 3218.88, + "end": 3221.42, + "probability": 0.957 + }, + { + "start": 3221.42, + "end": 3224.68, + "probability": 0.9774 + }, + { + "start": 3224.8, + "end": 3228.0, + "probability": 0.9296 + }, + { + "start": 3228.18, + "end": 3231.08, + "probability": 0.893 + }, + { + "start": 3231.26, + "end": 3232.26, + "probability": 0.8406 + }, + { + "start": 3232.32, + "end": 3233.98, + "probability": 0.4194 + }, + { + "start": 3235.38, + "end": 3240.34, + "probability": 0.9925 + }, + { + "start": 3240.98, + "end": 3241.32, + "probability": 0.5818 + }, + { + "start": 3241.46, + "end": 3241.92, + "probability": 0.8265 + }, + { + "start": 3242.08, + "end": 3242.46, + "probability": 0.7782 + }, + { + "start": 3242.58, + "end": 3243.46, + "probability": 0.7912 + }, + { + "start": 3243.5, + "end": 3244.32, + "probability": 0.9275 + }, + { + "start": 3244.78, + "end": 3245.62, + "probability": 0.6005 + }, + { + "start": 3246.74, + "end": 3247.9, + "probability": 0.7884 + }, + { + "start": 3249.52, + "end": 3252.48, + "probability": 0.8289 + }, + { + "start": 3253.86, + "end": 3254.42, + "probability": 0.8884 + }, + { + "start": 3254.59, + "end": 3255.88, + "probability": 0.8194 + }, + { + "start": 3256.06, + "end": 3256.98, + "probability": 0.8875 + }, + { + "start": 3257.14, + "end": 3259.9, + "probability": 0.9917 + }, + { + "start": 3261.64, + "end": 3263.08, + "probability": 0.9771 + }, + { + "start": 3264.78, + "end": 3269.26, + "probability": 0.9502 + }, + { + "start": 3269.4, + "end": 3270.68, + "probability": 0.5015 + }, + { + "start": 3271.24, + "end": 3271.96, + "probability": 0.7817 + }, + { + "start": 3272.42, + "end": 3273.22, + "probability": 0.9011 + }, + { + "start": 3273.64, + "end": 3277.98, + "probability": 0.6635 + }, + { + "start": 3278.4, + "end": 3282.32, + "probability": 0.9938 + }, + { + "start": 3283.38, + "end": 3287.3, + "probability": 0.9934 + }, + { + "start": 3288.24, + "end": 3292.88, + "probability": 0.9977 + }, + { + "start": 3293.7, + "end": 3297.98, + "probability": 0.9792 + }, + { + "start": 3299.08, + "end": 3299.42, + "probability": 0.5273 + }, + { + "start": 3300.56, + "end": 3300.94, + "probability": 0.7461 + }, + { + "start": 3301.58, + "end": 3302.24, + "probability": 0.9893 + }, + { + "start": 3302.84, + "end": 3306.8, + "probability": 0.9687 + }, + { + "start": 3306.82, + "end": 3311.04, + "probability": 0.9925 + }, + { + "start": 3311.66, + "end": 3315.54, + "probability": 0.9717 + }, + { + "start": 3315.54, + "end": 3319.44, + "probability": 0.9908 + }, + { + "start": 3320.62, + "end": 3323.56, + "probability": 0.8429 + }, + { + "start": 3324.22, + "end": 3326.52, + "probability": 0.7153 + }, + { + "start": 3327.08, + "end": 3328.46, + "probability": 0.8106 + }, + { + "start": 3329.06, + "end": 3331.54, + "probability": 0.9978 + }, + { + "start": 3332.2, + "end": 3333.16, + "probability": 0.9862 + }, + { + "start": 3334.12, + "end": 3338.14, + "probability": 0.9967 + }, + { + "start": 3338.82, + "end": 3342.86, + "probability": 0.9445 + }, + { + "start": 3343.72, + "end": 3345.72, + "probability": 0.8924 + }, + { + "start": 3346.34, + "end": 3348.54, + "probability": 0.9921 + }, + { + "start": 3349.22, + "end": 3352.54, + "probability": 0.9988 + }, + { + "start": 3353.34, + "end": 3356.34, + "probability": 0.9807 + }, + { + "start": 3357.74, + "end": 3360.78, + "probability": 0.786 + }, + { + "start": 3363.58, + "end": 3363.94, + "probability": 0.857 + }, + { + "start": 3364.04, + "end": 3364.92, + "probability": 0.8363 + }, + { + "start": 3364.98, + "end": 3368.02, + "probability": 0.9497 + }, + { + "start": 3368.16, + "end": 3369.88, + "probability": 0.8559 + }, + { + "start": 3369.96, + "end": 3371.98, + "probability": 0.9073 + }, + { + "start": 3373.17, + "end": 3377.22, + "probability": 0.9176 + }, + { + "start": 3377.34, + "end": 3380.6, + "probability": 0.753 + }, + { + "start": 3380.6, + "end": 3383.36, + "probability": 0.9777 + }, + { + "start": 3383.48, + "end": 3383.82, + "probability": 0.7673 + }, + { + "start": 3383.88, + "end": 3386.58, + "probability": 0.9453 + }, + { + "start": 3386.96, + "end": 3389.6, + "probability": 0.996 + }, + { + "start": 3389.78, + "end": 3391.25, + "probability": 0.999 + }, + { + "start": 3391.98, + "end": 3393.7, + "probability": 0.9304 + }, + { + "start": 3394.28, + "end": 3394.74, + "probability": 0.9231 + }, + { + "start": 3394.88, + "end": 3396.08, + "probability": 0.9506 + }, + { + "start": 3396.22, + "end": 3399.28, + "probability": 0.9948 + }, + { + "start": 3399.66, + "end": 3399.98, + "probability": 0.779 + }, + { + "start": 3400.1, + "end": 3400.36, + "probability": 0.7506 + }, + { + "start": 3401.4, + "end": 3401.92, + "probability": 0.4716 + }, + { + "start": 3402.18, + "end": 3403.7, + "probability": 0.8603 + }, + { + "start": 3403.86, + "end": 3405.46, + "probability": 0.9883 + }, + { + "start": 3406.32, + "end": 3407.99, + "probability": 0.9614 + }, + { + "start": 3412.34, + "end": 3415.46, + "probability": 0.6494 + }, + { + "start": 3416.2, + "end": 3418.7, + "probability": 0.7808 + }, + { + "start": 3420.0, + "end": 3421.98, + "probability": 0.9951 + }, + { + "start": 3422.18, + "end": 3422.44, + "probability": 0.8946 + }, + { + "start": 3422.6, + "end": 3423.68, + "probability": 0.5558 + }, + { + "start": 3424.16, + "end": 3427.12, + "probability": 0.5745 + }, + { + "start": 3428.28, + "end": 3429.3, + "probability": 0.4624 + }, + { + "start": 3429.58, + "end": 3430.82, + "probability": 0.7723 + }, + { + "start": 3431.06, + "end": 3432.36, + "probability": 0.1491 + }, + { + "start": 3432.36, + "end": 3433.82, + "probability": 0.4957 + }, + { + "start": 3434.16, + "end": 3436.86, + "probability": 0.8438 + }, + { + "start": 3437.46, + "end": 3438.98, + "probability": 0.4816 + }, + { + "start": 3439.08, + "end": 3443.42, + "probability": 0.837 + }, + { + "start": 3444.06, + "end": 3445.36, + "probability": 0.3458 + }, + { + "start": 3445.56, + "end": 3446.66, + "probability": 0.7885 + }, + { + "start": 3447.86, + "end": 3449.84, + "probability": 0.997 + }, + { + "start": 3449.96, + "end": 3450.44, + "probability": 0.8766 + }, + { + "start": 3450.56, + "end": 3452.58, + "probability": 0.9705 + }, + { + "start": 3453.06, + "end": 3454.24, + "probability": 0.8153 + }, + { + "start": 3454.54, + "end": 3456.12, + "probability": 0.9966 + }, + { + "start": 3457.94, + "end": 3460.12, + "probability": 0.7377 + }, + { + "start": 3461.52, + "end": 3465.64, + "probability": 0.985 + }, + { + "start": 3465.76, + "end": 3469.04, + "probability": 0.93 + }, + { + "start": 3469.26, + "end": 3471.18, + "probability": 0.9324 + }, + { + "start": 3472.06, + "end": 3472.44, + "probability": 0.8055 + }, + { + "start": 3474.09, + "end": 3475.32, + "probability": 0.5716 + }, + { + "start": 3475.52, + "end": 3476.38, + "probability": 0.9238 + }, + { + "start": 3476.46, + "end": 3477.75, + "probability": 0.9917 + }, + { + "start": 3478.54, + "end": 3480.36, + "probability": 0.898 + }, + { + "start": 3480.48, + "end": 3481.44, + "probability": 0.8203 + }, + { + "start": 3481.46, + "end": 3482.5, + "probability": 0.9319 + }, + { + "start": 3482.74, + "end": 3484.2, + "probability": 0.9499 + }, + { + "start": 3484.54, + "end": 3487.22, + "probability": 0.8897 + }, + { + "start": 3488.54, + "end": 3490.52, + "probability": 0.7815 + }, + { + "start": 3490.62, + "end": 3491.48, + "probability": 0.9922 + }, + { + "start": 3492.48, + "end": 3494.94, + "probability": 0.6758 + }, + { + "start": 3495.92, + "end": 3499.08, + "probability": 0.99 + }, + { + "start": 3499.62, + "end": 3502.28, + "probability": 0.9033 + }, + { + "start": 3503.1, + "end": 3504.83, + "probability": 0.7803 + }, + { + "start": 3505.72, + "end": 3506.6, + "probability": 0.957 + }, + { + "start": 3508.46, + "end": 3513.38, + "probability": 0.8657 + }, + { + "start": 3514.1, + "end": 3518.66, + "probability": 0.9696 + }, + { + "start": 3519.08, + "end": 3522.56, + "probability": 0.8477 + }, + { + "start": 3522.56, + "end": 3523.54, + "probability": 0.5564 + }, + { + "start": 3523.76, + "end": 3525.66, + "probability": 0.8664 + }, + { + "start": 3525.8, + "end": 3527.98, + "probability": 0.9096 + }, + { + "start": 3528.36, + "end": 3531.06, + "probability": 0.9635 + }, + { + "start": 3531.88, + "end": 3534.76, + "probability": 0.9467 + }, + { + "start": 3535.82, + "end": 3536.16, + "probability": 0.7668 + }, + { + "start": 3536.32, + "end": 3538.78, + "probability": 0.988 + }, + { + "start": 3539.56, + "end": 3542.92, + "probability": 0.9326 + }, + { + "start": 3543.82, + "end": 3544.94, + "probability": 0.8329 + }, + { + "start": 3546.36, + "end": 3548.82, + "probability": 0.8857 + }, + { + "start": 3548.94, + "end": 3550.46, + "probability": 0.9907 + }, + { + "start": 3550.52, + "end": 3554.1, + "probability": 0.7911 + }, + { + "start": 3554.22, + "end": 3554.22, + "probability": 0.5044 + }, + { + "start": 3554.4, + "end": 3554.7, + "probability": 0.7602 + }, + { + "start": 3554.78, + "end": 3555.78, + "probability": 0.8484 + }, + { + "start": 3556.24, + "end": 3559.58, + "probability": 0.9394 + }, + { + "start": 3559.88, + "end": 3561.44, + "probability": 0.9948 + }, + { + "start": 3561.6, + "end": 3564.08, + "probability": 0.74 + }, + { + "start": 3564.68, + "end": 3565.76, + "probability": 0.8438 + }, + { + "start": 3565.82, + "end": 3569.74, + "probability": 0.9419 + }, + { + "start": 3570.12, + "end": 3572.62, + "probability": 0.8504 + }, + { + "start": 3572.92, + "end": 3576.76, + "probability": 0.668 + }, + { + "start": 3577.3, + "end": 3580.94, + "probability": 0.9858 + }, + { + "start": 3581.8, + "end": 3585.98, + "probability": 0.9532 + }, + { + "start": 3585.98, + "end": 3589.66, + "probability": 0.9751 + }, + { + "start": 3590.12, + "end": 3592.72, + "probability": 0.9896 + }, + { + "start": 3593.56, + "end": 3595.7, + "probability": 0.8053 + }, + { + "start": 3595.7, + "end": 3599.6, + "probability": 0.7455 + }, + { + "start": 3599.78, + "end": 3602.88, + "probability": 0.7661 + }, + { + "start": 3605.0, + "end": 3606.32, + "probability": 0.6472 + }, + { + "start": 3606.48, + "end": 3607.94, + "probability": 0.9816 + }, + { + "start": 3608.0, + "end": 3610.96, + "probability": 0.7858 + }, + { + "start": 3611.2, + "end": 3611.8, + "probability": 0.6752 + }, + { + "start": 3613.1, + "end": 3613.1, + "probability": 0.2366 + }, + { + "start": 3613.84, + "end": 3615.34, + "probability": 0.5384 + }, + { + "start": 3615.9, + "end": 3616.84, + "probability": 0.934 + }, + { + "start": 3617.18, + "end": 3619.78, + "probability": 0.721 + }, + { + "start": 3621.12, + "end": 3625.4, + "probability": 0.9956 + }, + { + "start": 3625.54, + "end": 3630.12, + "probability": 0.978 + }, + { + "start": 3630.12, + "end": 3635.32, + "probability": 0.9285 + }, + { + "start": 3636.38, + "end": 3637.94, + "probability": 0.8517 + }, + { + "start": 3640.6, + "end": 3646.14, + "probability": 0.7733 + }, + { + "start": 3647.0, + "end": 3650.42, + "probability": 0.554 + }, + { + "start": 3651.64, + "end": 3655.54, + "probability": 0.916 + }, + { + "start": 3656.24, + "end": 3658.32, + "probability": 0.7561 + }, + { + "start": 3659.26, + "end": 3661.96, + "probability": 0.971 + }, + { + "start": 3662.8, + "end": 3664.52, + "probability": 0.8586 + }, + { + "start": 3665.04, + "end": 3669.28, + "probability": 0.5818 + }, + { + "start": 3670.0, + "end": 3672.66, + "probability": 0.9175 + }, + { + "start": 3673.58, + "end": 3676.46, + "probability": 0.9487 + }, + { + "start": 3677.3, + "end": 3679.78, + "probability": 0.977 + }, + { + "start": 3680.98, + "end": 3684.48, + "probability": 0.9412 + }, + { + "start": 3684.66, + "end": 3686.96, + "probability": 0.6766 + }, + { + "start": 3687.0, + "end": 3687.42, + "probability": 0.3769 + }, + { + "start": 3689.0, + "end": 3690.24, + "probability": 0.9455 + }, + { + "start": 3690.32, + "end": 3696.0, + "probability": 0.9636 + }, + { + "start": 3696.76, + "end": 3698.42, + "probability": 0.984 + }, + { + "start": 3699.58, + "end": 3707.28, + "probability": 0.9607 + }, + { + "start": 3708.1, + "end": 3710.42, + "probability": 0.9981 + }, + { + "start": 3711.06, + "end": 3712.7, + "probability": 0.8168 + }, + { + "start": 3713.2, + "end": 3714.65, + "probability": 0.0154 + }, + { + "start": 3715.3, + "end": 3716.06, + "probability": 0.6137 + }, + { + "start": 3717.66, + "end": 3719.36, + "probability": 0.7954 + }, + { + "start": 3721.56, + "end": 3726.34, + "probability": 0.7378 + }, + { + "start": 3726.94, + "end": 3728.8, + "probability": 0.8459 + }, + { + "start": 3729.84, + "end": 3731.42, + "probability": 0.9875 + }, + { + "start": 3731.9, + "end": 3735.5, + "probability": 0.9248 + }, + { + "start": 3735.5, + "end": 3739.88, + "probability": 0.9961 + }, + { + "start": 3742.58, + "end": 3747.58, + "probability": 0.8818 + }, + { + "start": 3747.78, + "end": 3748.72, + "probability": 0.7731 + }, + { + "start": 3749.58, + "end": 3754.62, + "probability": 0.8741 + }, + { + "start": 3754.68, + "end": 3756.44, + "probability": 0.9688 + }, + { + "start": 3756.44, + "end": 3759.7, + "probability": 0.9249 + }, + { + "start": 3768.18, + "end": 3769.2, + "probability": 0.819 + }, + { + "start": 3769.98, + "end": 3771.46, + "probability": 0.5873 + }, + { + "start": 3772.86, + "end": 3773.98, + "probability": 0.7162 + }, + { + "start": 3774.18, + "end": 3776.18, + "probability": 0.0668 + }, + { + "start": 3777.14, + "end": 3780.62, + "probability": 0.8002 + }, + { + "start": 3780.62, + "end": 3781.92, + "probability": 0.5836 + }, + { + "start": 3782.04, + "end": 3783.2, + "probability": 0.5599 + }, + { + "start": 3783.3, + "end": 3786.48, + "probability": 0.9128 + }, + { + "start": 3786.96, + "end": 3787.38, + "probability": 0.4959 + }, + { + "start": 3787.42, + "end": 3790.7, + "probability": 0.9849 + }, + { + "start": 3792.3, + "end": 3794.34, + "probability": 0.2993 + }, + { + "start": 3794.48, + "end": 3796.44, + "probability": 0.6365 + }, + { + "start": 3796.54, + "end": 3799.7, + "probability": 0.9274 + }, + { + "start": 3799.8, + "end": 3801.2, + "probability": 0.7851 + }, + { + "start": 3801.24, + "end": 3801.78, + "probability": 0.7241 + }, + { + "start": 3802.3, + "end": 3803.84, + "probability": 0.2788 + }, + { + "start": 3805.32, + "end": 3807.02, + "probability": 0.7013 + }, + { + "start": 3807.02, + "end": 3809.58, + "probability": 0.4594 + }, + { + "start": 3809.58, + "end": 3810.44, + "probability": 0.2203 + }, + { + "start": 3810.58, + "end": 3811.56, + "probability": 0.6766 + }, + { + "start": 3811.62, + "end": 3811.92, + "probability": 0.9152 + }, + { + "start": 3812.14, + "end": 3812.74, + "probability": 0.6415 + }, + { + "start": 3812.8, + "end": 3813.52, + "probability": 0.8099 + }, + { + "start": 3813.62, + "end": 3818.4, + "probability": 0.9833 + }, + { + "start": 3818.98, + "end": 3824.16, + "probability": 0.8547 + }, + { + "start": 3824.92, + "end": 3827.82, + "probability": 0.4664 + }, + { + "start": 3828.62, + "end": 3830.42, + "probability": 0.9918 + }, + { + "start": 3830.56, + "end": 3833.3, + "probability": 0.9429 + }, + { + "start": 3833.78, + "end": 3835.6, + "probability": 0.5555 + }, + { + "start": 3835.74, + "end": 3837.24, + "probability": 0.3528 + }, + { + "start": 3837.24, + "end": 3839.08, + "probability": 0.9035 + }, + { + "start": 3839.46, + "end": 3841.52, + "probability": 0.6955 + }, + { + "start": 3841.76, + "end": 3844.21, + "probability": 0.9821 + }, + { + "start": 3844.86, + "end": 3846.02, + "probability": 0.4459 + }, + { + "start": 3846.08, + "end": 3847.32, + "probability": 0.6752 + }, + { + "start": 3847.6, + "end": 3850.4, + "probability": 0.969 + }, + { + "start": 3850.86, + "end": 3852.6, + "probability": 0.9301 + }, + { + "start": 3852.76, + "end": 3854.82, + "probability": 0.8045 + }, + { + "start": 3855.2, + "end": 3856.22, + "probability": 0.7272 + }, + { + "start": 3857.83, + "end": 3860.64, + "probability": 0.9346 + }, + { + "start": 3861.08, + "end": 3861.78, + "probability": 0.8033 + }, + { + "start": 3861.92, + "end": 3863.96, + "probability": 0.9653 + }, + { + "start": 3864.6, + "end": 3866.82, + "probability": 0.8231 + }, + { + "start": 3867.18, + "end": 3868.12, + "probability": 0.6976 + }, + { + "start": 3868.58, + "end": 3870.2, + "probability": 0.2151 + }, + { + "start": 3870.6, + "end": 3872.22, + "probability": 0.7196 + }, + { + "start": 3872.48, + "end": 3874.46, + "probability": 0.9124 + }, + { + "start": 3874.56, + "end": 3874.74, + "probability": 0.7438 + }, + { + "start": 3875.7, + "end": 3877.98, + "probability": 0.7456 + }, + { + "start": 3878.02, + "end": 3879.31, + "probability": 0.9148 + }, + { + "start": 3880.38, + "end": 3881.82, + "probability": 0.9409 + }, + { + "start": 3882.72, + "end": 3882.74, + "probability": 0.1428 + }, + { + "start": 3882.74, + "end": 3882.74, + "probability": 0.2124 + }, + { + "start": 3882.74, + "end": 3882.74, + "probability": 0.3637 + }, + { + "start": 3882.74, + "end": 3883.88, + "probability": 0.1255 + }, + { + "start": 3885.08, + "end": 3887.12, + "probability": 0.7233 + }, + { + "start": 3887.4, + "end": 3888.63, + "probability": 0.8184 + }, + { + "start": 3889.1, + "end": 3889.58, + "probability": 0.7618 + }, + { + "start": 3890.36, + "end": 3893.08, + "probability": 0.8261 + }, + { + "start": 3893.08, + "end": 3896.14, + "probability": 0.8673 + }, + { + "start": 3897.38, + "end": 3901.04, + "probability": 0.8411 + }, + { + "start": 3901.8, + "end": 3905.84, + "probability": 0.9886 + }, + { + "start": 3908.1, + "end": 3908.98, + "probability": 0.9001 + }, + { + "start": 3911.4, + "end": 3913.64, + "probability": 0.6776 + }, + { + "start": 3915.46, + "end": 3921.1, + "probability": 0.9786 + }, + { + "start": 3921.66, + "end": 3924.42, + "probability": 0.9956 + }, + { + "start": 3924.5, + "end": 3926.7, + "probability": 0.9603 + }, + { + "start": 3926.86, + "end": 3929.04, + "probability": 0.964 + }, + { + "start": 3930.24, + "end": 3933.26, + "probability": 0.6712 + }, + { + "start": 3933.28, + "end": 3934.42, + "probability": 0.9642 + }, + { + "start": 3935.68, + "end": 3939.26, + "probability": 0.9709 + }, + { + "start": 3939.26, + "end": 3943.7, + "probability": 0.8206 + }, + { + "start": 3944.84, + "end": 3949.42, + "probability": 0.6695 + }, + { + "start": 3949.94, + "end": 3952.0, + "probability": 0.98 + }, + { + "start": 3952.12, + "end": 3956.52, + "probability": 0.9579 + }, + { + "start": 3957.38, + "end": 3959.92, + "probability": 0.9598 + }, + { + "start": 3960.54, + "end": 3964.08, + "probability": 0.9802 + }, + { + "start": 3964.86, + "end": 3966.84, + "probability": 0.9594 + }, + { + "start": 3966.92, + "end": 3968.02, + "probability": 0.8827 + }, + { + "start": 3968.44, + "end": 3973.16, + "probability": 0.9976 + }, + { + "start": 3973.9, + "end": 3977.18, + "probability": 0.9862 + }, + { + "start": 3977.18, + "end": 3980.36, + "probability": 0.9884 + }, + { + "start": 3981.72, + "end": 3985.06, + "probability": 0.9907 + }, + { + "start": 3985.06, + "end": 3990.06, + "probability": 0.9063 + }, + { + "start": 3990.76, + "end": 3992.72, + "probability": 0.9882 + }, + { + "start": 3993.4, + "end": 3995.9, + "probability": 0.9888 + }, + { + "start": 3996.98, + "end": 3997.62, + "probability": 0.5392 + }, + { + "start": 3997.66, + "end": 3998.42, + "probability": 0.9805 + }, + { + "start": 3998.6, + "end": 4002.0, + "probability": 0.8805 + }, + { + "start": 4002.18, + "end": 4003.96, + "probability": 0.8136 + }, + { + "start": 4004.76, + "end": 4008.64, + "probability": 0.9963 + }, + { + "start": 4008.64, + "end": 4014.2, + "probability": 0.963 + }, + { + "start": 4015.18, + "end": 4019.96, + "probability": 0.9977 + }, + { + "start": 4020.64, + "end": 4021.32, + "probability": 0.4954 + }, + { + "start": 4021.34, + "end": 4025.7, + "probability": 0.7438 + }, + { + "start": 4026.2, + "end": 4031.06, + "probability": 0.988 + }, + { + "start": 4031.52, + "end": 4035.58, + "probability": 0.9908 + }, + { + "start": 4036.06, + "end": 4039.5, + "probability": 0.89 + }, + { + "start": 4039.5, + "end": 4042.24, + "probability": 0.7943 + }, + { + "start": 4048.12, + "end": 4048.32, + "probability": 0.1935 + }, + { + "start": 4048.32, + "end": 4052.14, + "probability": 0.7246 + }, + { + "start": 4053.04, + "end": 4054.8, + "probability": 0.7009 + }, + { + "start": 4055.52, + "end": 4057.89, + "probability": 0.9844 + }, + { + "start": 4058.16, + "end": 4059.3, + "probability": 0.6379 + }, + { + "start": 4059.78, + "end": 4063.38, + "probability": 0.969 + }, + { + "start": 4063.96, + "end": 4066.9, + "probability": 0.9985 + }, + { + "start": 4067.5, + "end": 4071.34, + "probability": 0.9925 + }, + { + "start": 4071.44, + "end": 4072.02, + "probability": 0.9139 + }, + { + "start": 4072.1, + "end": 4072.8, + "probability": 0.7898 + }, + { + "start": 4073.36, + "end": 4075.65, + "probability": 0.9907 + }, + { + "start": 4076.28, + "end": 4080.58, + "probability": 0.9813 + }, + { + "start": 4081.1, + "end": 4084.46, + "probability": 0.7026 + }, + { + "start": 4085.0, + "end": 4088.22, + "probability": 0.9799 + }, + { + "start": 4088.74, + "end": 4090.02, + "probability": 0.9908 + }, + { + "start": 4090.66, + "end": 4094.24, + "probability": 0.9808 + }, + { + "start": 4094.78, + "end": 4098.86, + "probability": 0.9609 + }, + { + "start": 4100.2, + "end": 4103.54, + "probability": 0.9751 + }, + { + "start": 4104.08, + "end": 4106.84, + "probability": 0.9956 + }, + { + "start": 4107.38, + "end": 4109.6, + "probability": 0.645 + }, + { + "start": 4110.12, + "end": 4114.88, + "probability": 0.8791 + }, + { + "start": 4114.88, + "end": 4120.9, + "probability": 0.9759 + }, + { + "start": 4121.36, + "end": 4124.22, + "probability": 0.9054 + }, + { + "start": 4124.22, + "end": 4127.62, + "probability": 0.9917 + }, + { + "start": 4128.38, + "end": 4130.96, + "probability": 0.9879 + }, + { + "start": 4132.26, + "end": 4136.8, + "probability": 0.9635 + }, + { + "start": 4136.8, + "end": 4141.28, + "probability": 0.9952 + }, + { + "start": 4141.88, + "end": 4142.44, + "probability": 0.9531 + }, + { + "start": 4143.16, + "end": 4147.56, + "probability": 0.9956 + }, + { + "start": 4148.04, + "end": 4148.74, + "probability": 0.9365 + }, + { + "start": 4149.16, + "end": 4153.66, + "probability": 0.9978 + }, + { + "start": 4154.24, + "end": 4157.18, + "probability": 0.9918 + }, + { + "start": 4158.76, + "end": 4159.26, + "probability": 0.7443 + }, + { + "start": 4159.38, + "end": 4160.22, + "probability": 0.9877 + }, + { + "start": 4160.24, + "end": 4163.58, + "probability": 0.9795 + }, + { + "start": 4163.58, + "end": 4166.82, + "probability": 0.8892 + }, + { + "start": 4167.48, + "end": 4172.0, + "probability": 0.9917 + }, + { + "start": 4172.38, + "end": 4173.94, + "probability": 0.6971 + }, + { + "start": 4174.36, + "end": 4177.58, + "probability": 0.998 + }, + { + "start": 4178.36, + "end": 4180.9, + "probability": 0.9352 + }, + { + "start": 4181.46, + "end": 4185.2, + "probability": 0.9181 + }, + { + "start": 4185.38, + "end": 4186.16, + "probability": 0.528 + }, + { + "start": 4186.58, + "end": 4189.78, + "probability": 0.881 + }, + { + "start": 4190.16, + "end": 4194.66, + "probability": 0.9227 + }, + { + "start": 4194.66, + "end": 4197.78, + "probability": 0.9879 + }, + { + "start": 4198.14, + "end": 4200.0, + "probability": 0.9956 + }, + { + "start": 4201.14, + "end": 4201.46, + "probability": 0.7515 + }, + { + "start": 4201.98, + "end": 4206.18, + "probability": 0.9817 + }, + { + "start": 4207.46, + "end": 4210.9, + "probability": 0.8594 + }, + { + "start": 4210.9, + "end": 4215.6, + "probability": 0.9913 + }, + { + "start": 4216.74, + "end": 4221.0, + "probability": 0.9906 + }, + { + "start": 4221.0, + "end": 4225.72, + "probability": 0.9948 + }, + { + "start": 4226.46, + "end": 4233.56, + "probability": 0.9945 + }, + { + "start": 4234.32, + "end": 4238.66, + "probability": 0.8925 + }, + { + "start": 4239.06, + "end": 4242.62, + "probability": 0.9883 + }, + { + "start": 4243.16, + "end": 4244.28, + "probability": 0.9299 + }, + { + "start": 4245.0, + "end": 4247.3, + "probability": 0.9531 + }, + { + "start": 4247.72, + "end": 4248.78, + "probability": 0.9211 + }, + { + "start": 4249.12, + "end": 4254.3, + "probability": 0.9944 + }, + { + "start": 4256.26, + "end": 4256.66, + "probability": 0.953 + }, + { + "start": 4257.12, + "end": 4260.94, + "probability": 0.9895 + }, + { + "start": 4261.58, + "end": 4263.62, + "probability": 0.8448 + }, + { + "start": 4264.6, + "end": 4269.68, + "probability": 0.9594 + }, + { + "start": 4270.92, + "end": 4274.4, + "probability": 0.9344 + }, + { + "start": 4274.4, + "end": 4278.9, + "probability": 0.9986 + }, + { + "start": 4278.9, + "end": 4283.16, + "probability": 0.8794 + }, + { + "start": 4283.86, + "end": 4287.4, + "probability": 0.9857 + }, + { + "start": 4288.02, + "end": 4290.16, + "probability": 0.9923 + }, + { + "start": 4290.68, + "end": 4291.58, + "probability": 0.9498 + }, + { + "start": 4291.94, + "end": 4292.86, + "probability": 0.9285 + }, + { + "start": 4293.3, + "end": 4298.26, + "probability": 0.9898 + }, + { + "start": 4298.26, + "end": 4303.44, + "probability": 0.992 + }, + { + "start": 4305.0, + "end": 4308.9, + "probability": 0.8573 + }, + { + "start": 4309.6, + "end": 4312.96, + "probability": 0.9895 + }, + { + "start": 4313.12, + "end": 4316.52, + "probability": 0.8756 + }, + { + "start": 4317.14, + "end": 4320.56, + "probability": 0.9881 + }, + { + "start": 4320.96, + "end": 4323.54, + "probability": 0.9785 + }, + { + "start": 4324.0, + "end": 4327.12, + "probability": 0.9949 + }, + { + "start": 4327.58, + "end": 4330.66, + "probability": 0.9904 + }, + { + "start": 4331.28, + "end": 4333.98, + "probability": 0.9844 + }, + { + "start": 4334.58, + "end": 4339.26, + "probability": 0.9829 + }, + { + "start": 4339.9, + "end": 4340.77, + "probability": 0.9809 + }, + { + "start": 4341.3, + "end": 4341.86, + "probability": 0.8547 + }, + { + "start": 4342.32, + "end": 4346.84, + "probability": 0.9891 + }, + { + "start": 4347.04, + "end": 4349.78, + "probability": 0.8555 + }, + { + "start": 4351.28, + "end": 4353.97, + "probability": 0.924 + }, + { + "start": 4354.54, + "end": 4359.24, + "probability": 0.9801 + }, + { + "start": 4359.95, + "end": 4364.48, + "probability": 0.9097 + }, + { + "start": 4365.0, + "end": 4368.5, + "probability": 0.7966 + }, + { + "start": 4369.2, + "end": 4375.68, + "probability": 0.9964 + }, + { + "start": 4375.68, + "end": 4380.26, + "probability": 0.9872 + }, + { + "start": 4381.1, + "end": 4386.22, + "probability": 0.9915 + }, + { + "start": 4386.54, + "end": 4387.04, + "probability": 0.3422 + }, + { + "start": 4387.58, + "end": 4391.84, + "probability": 0.944 + }, + { + "start": 4392.46, + "end": 4397.2, + "probability": 0.9839 + }, + { + "start": 4397.9, + "end": 4400.38, + "probability": 0.991 + }, + { + "start": 4400.9, + "end": 4405.88, + "probability": 0.9857 + }, + { + "start": 4405.88, + "end": 4410.88, + "probability": 0.9995 + }, + { + "start": 4411.5, + "end": 4416.36, + "probability": 0.9755 + }, + { + "start": 4417.1, + "end": 4417.54, + "probability": 0.7353 + }, + { + "start": 4418.8, + "end": 4421.16, + "probability": 0.6264 + }, + { + "start": 4421.34, + "end": 4423.56, + "probability": 0.6958 + }, + { + "start": 4424.68, + "end": 4429.9, + "probability": 0.6735 + }, + { + "start": 4430.26, + "end": 4432.11, + "probability": 0.9941 + }, + { + "start": 4433.2, + "end": 4437.16, + "probability": 0.961 + }, + { + "start": 4438.6, + "end": 4440.84, + "probability": 0.9619 + }, + { + "start": 4441.06, + "end": 4442.38, + "probability": 0.4586 + }, + { + "start": 4442.4, + "end": 4443.94, + "probability": 0.6635 + }, + { + "start": 4459.54, + "end": 4460.8, + "probability": 0.3587 + }, + { + "start": 4460.94, + "end": 4461.52, + "probability": 0.795 + }, + { + "start": 4461.6, + "end": 4462.76, + "probability": 0.7764 + }, + { + "start": 4462.98, + "end": 4464.6, + "probability": 0.419 + }, + { + "start": 4467.6, + "end": 4469.12, + "probability": 0.9685 + }, + { + "start": 4469.32, + "end": 4474.72, + "probability": 0.8551 + }, + { + "start": 4474.94, + "end": 4484.12, + "probability": 0.9675 + }, + { + "start": 4484.12, + "end": 4485.16, + "probability": 0.5194 + }, + { + "start": 4485.58, + "end": 4485.74, + "probability": 0.3306 + }, + { + "start": 4485.78, + "end": 4486.64, + "probability": 0.571 + }, + { + "start": 4487.82, + "end": 4489.88, + "probability": 0.8977 + }, + { + "start": 4491.48, + "end": 4499.12, + "probability": 0.866 + }, + { + "start": 4499.5, + "end": 4502.04, + "probability": 0.5759 + }, + { + "start": 4504.0, + "end": 4510.6, + "probability": 0.9256 + }, + { + "start": 4510.6, + "end": 4514.62, + "probability": 0.9948 + }, + { + "start": 4516.16, + "end": 4521.09, + "probability": 0.998 + }, + { + "start": 4522.24, + "end": 4524.18, + "probability": 0.8195 + }, + { + "start": 4525.65, + "end": 4531.28, + "probability": 0.8451 + }, + { + "start": 4532.06, + "end": 4534.98, + "probability": 0.9004 + }, + { + "start": 4536.12, + "end": 4543.22, + "probability": 0.9805 + }, + { + "start": 4544.72, + "end": 4548.96, + "probability": 0.9901 + }, + { + "start": 4551.3, + "end": 4554.82, + "probability": 0.7245 + }, + { + "start": 4555.7, + "end": 4559.49, + "probability": 0.7932 + }, + { + "start": 4561.24, + "end": 4562.06, + "probability": 0.4994 + }, + { + "start": 4562.6, + "end": 4565.62, + "probability": 0.784 + }, + { + "start": 4567.64, + "end": 4576.96, + "probability": 0.8724 + }, + { + "start": 4578.2, + "end": 4578.9, + "probability": 0.7787 + }, + { + "start": 4580.78, + "end": 4581.86, + "probability": 0.8883 + }, + { + "start": 4582.76, + "end": 4583.74, + "probability": 0.693 + }, + { + "start": 4584.82, + "end": 4590.72, + "probability": 0.9692 + }, + { + "start": 4591.94, + "end": 4592.9, + "probability": 0.9161 + }, + { + "start": 4593.8, + "end": 4595.54, + "probability": 0.9802 + }, + { + "start": 4597.24, + "end": 4603.06, + "probability": 0.9871 + }, + { + "start": 4603.74, + "end": 4606.3, + "probability": 0.9409 + }, + { + "start": 4606.62, + "end": 4610.04, + "probability": 0.8791 + }, + { + "start": 4611.04, + "end": 4611.78, + "probability": 0.7343 + }, + { + "start": 4611.9, + "end": 4614.46, + "probability": 0.8379 + }, + { + "start": 4615.48, + "end": 4621.74, + "probability": 0.9725 + }, + { + "start": 4622.94, + "end": 4623.55, + "probability": 0.8627 + }, + { + "start": 4624.42, + "end": 4629.74, + "probability": 0.917 + }, + { + "start": 4629.8, + "end": 4633.02, + "probability": 0.9309 + }, + { + "start": 4633.82, + "end": 4638.28, + "probability": 0.9834 + }, + { + "start": 4638.4, + "end": 4639.72, + "probability": 0.5336 + }, + { + "start": 4639.9, + "end": 4645.68, + "probability": 0.9912 + }, + { + "start": 4645.68, + "end": 4648.8, + "probability": 0.9486 + }, + { + "start": 4650.0, + "end": 4653.88, + "probability": 0.5585 + }, + { + "start": 4655.0, + "end": 4657.18, + "probability": 0.9189 + }, + { + "start": 4658.22, + "end": 4660.14, + "probability": 0.7238 + }, + { + "start": 4660.22, + "end": 4666.92, + "probability": 0.9272 + }, + { + "start": 4667.1, + "end": 4669.12, + "probability": 0.8182 + }, + { + "start": 4670.22, + "end": 4674.96, + "probability": 0.923 + }, + { + "start": 4676.52, + "end": 4677.27, + "probability": 0.8263 + }, + { + "start": 4677.84, + "end": 4679.38, + "probability": 0.6333 + }, + { + "start": 4679.4, + "end": 4681.12, + "probability": 0.7234 + }, + { + "start": 4681.16, + "end": 4682.04, + "probability": 0.8483 + }, + { + "start": 4682.16, + "end": 4685.18, + "probability": 0.8989 + }, + { + "start": 4686.24, + "end": 4688.74, + "probability": 0.9913 + }, + { + "start": 4689.32, + "end": 4694.96, + "probability": 0.933 + }, + { + "start": 4696.16, + "end": 4705.5, + "probability": 0.9937 + }, + { + "start": 4705.78, + "end": 4710.76, + "probability": 0.9736 + }, + { + "start": 4710.76, + "end": 4714.26, + "probability": 0.9724 + }, + { + "start": 4717.42, + "end": 4718.08, + "probability": 0.147 + }, + { + "start": 4719.76, + "end": 4726.36, + "probability": 0.9167 + }, + { + "start": 4726.58, + "end": 4728.84, + "probability": 0.7978 + }, + { + "start": 4730.0, + "end": 4732.94, + "probability": 0.8157 + }, + { + "start": 4733.56, + "end": 4736.5, + "probability": 0.694 + }, + { + "start": 4736.72, + "end": 4737.92, + "probability": 0.7441 + }, + { + "start": 4739.02, + "end": 4742.02, + "probability": 0.7492 + }, + { + "start": 4744.72, + "end": 4744.78, + "probability": 0.0519 + }, + { + "start": 4744.78, + "end": 4745.76, + "probability": 0.9758 + }, + { + "start": 4745.8, + "end": 4749.1, + "probability": 0.7552 + }, + { + "start": 4750.58, + "end": 4752.06, + "probability": 0.9481 + }, + { + "start": 4752.78, + "end": 4755.98, + "probability": 0.7965 + }, + { + "start": 4757.12, + "end": 4759.1, + "probability": 0.9761 + }, + { + "start": 4762.42, + "end": 4764.14, + "probability": 0.1808 + }, + { + "start": 4764.22, + "end": 4771.36, + "probability": 0.9637 + }, + { + "start": 4771.48, + "end": 4776.08, + "probability": 0.7603 + }, + { + "start": 4776.28, + "end": 4778.42, + "probability": 0.646 + }, + { + "start": 4778.42, + "end": 4778.42, + "probability": 0.5049 + }, + { + "start": 4778.56, + "end": 4784.32, + "probability": 0.9941 + }, + { + "start": 4784.48, + "end": 4791.22, + "probability": 0.8984 + }, + { + "start": 4791.22, + "end": 4795.74, + "probability": 0.9756 + }, + { + "start": 4797.28, + "end": 4800.18, + "probability": 0.9141 + }, + { + "start": 4800.68, + "end": 4801.56, + "probability": 0.583 + }, + { + "start": 4802.0, + "end": 4802.64, + "probability": 0.7247 + }, + { + "start": 4802.78, + "end": 4803.38, + "probability": 0.4723 + }, + { + "start": 4803.82, + "end": 4804.88, + "probability": 0.3419 + }, + { + "start": 4805.6, + "end": 4811.58, + "probability": 0.9536 + }, + { + "start": 4811.76, + "end": 4815.26, + "probability": 0.9761 + }, + { + "start": 4815.68, + "end": 4815.78, + "probability": 0.5816 + }, + { + "start": 4816.5, + "end": 4817.08, + "probability": 0.8027 + }, + { + "start": 4818.02, + "end": 4820.2, + "probability": 0.8176 + }, + { + "start": 4849.6, + "end": 4850.8, + "probability": 0.6641 + }, + { + "start": 4850.94, + "end": 4851.5, + "probability": 0.8164 + }, + { + "start": 4851.62, + "end": 4853.3, + "probability": 0.6137 + }, + { + "start": 4854.5, + "end": 4857.5, + "probability": 0.778 + }, + { + "start": 4858.22, + "end": 4858.88, + "probability": 0.9863 + }, + { + "start": 4859.62, + "end": 4862.68, + "probability": 0.9954 + }, + { + "start": 4863.26, + "end": 4864.86, + "probability": 0.7251 + }, + { + "start": 4865.14, + "end": 4867.16, + "probability": 0.9327 + }, + { + "start": 4867.94, + "end": 4870.3, + "probability": 0.8299 + }, + { + "start": 4871.22, + "end": 4874.98, + "probability": 0.8664 + }, + { + "start": 4875.54, + "end": 4876.88, + "probability": 0.9976 + }, + { + "start": 4878.04, + "end": 4879.74, + "probability": 0.7923 + }, + { + "start": 4880.72, + "end": 4885.0, + "probability": 0.9495 + }, + { + "start": 4885.9, + "end": 4887.74, + "probability": 0.9543 + }, + { + "start": 4888.3, + "end": 4894.04, + "probability": 0.9915 + }, + { + "start": 4896.9, + "end": 4897.84, + "probability": 0.6572 + }, + { + "start": 4898.4, + "end": 4899.3, + "probability": 0.7056 + }, + { + "start": 4900.12, + "end": 4901.7, + "probability": 0.9946 + }, + { + "start": 4902.36, + "end": 4902.72, + "probability": 0.4789 + }, + { + "start": 4902.82, + "end": 4907.0, + "probability": 0.9887 + }, + { + "start": 4908.0, + "end": 4911.3, + "probability": 0.9888 + }, + { + "start": 4911.92, + "end": 4912.7, + "probability": 0.8812 + }, + { + "start": 4913.36, + "end": 4918.2, + "probability": 0.995 + }, + { + "start": 4919.0, + "end": 4922.82, + "probability": 0.8623 + }, + { + "start": 4925.08, + "end": 4927.62, + "probability": 0.9982 + }, + { + "start": 4928.3, + "end": 4931.38, + "probability": 0.979 + }, + { + "start": 4932.28, + "end": 4938.14, + "probability": 0.8068 + }, + { + "start": 4938.96, + "end": 4940.32, + "probability": 0.993 + }, + { + "start": 4940.94, + "end": 4945.28, + "probability": 0.9903 + }, + { + "start": 4946.14, + "end": 4949.66, + "probability": 0.9725 + }, + { + "start": 4950.9, + "end": 4951.56, + "probability": 0.8462 + }, + { + "start": 4951.7, + "end": 4952.34, + "probability": 0.6028 + }, + { + "start": 4952.55, + "end": 4955.32, + "probability": 0.9536 + }, + { + "start": 4956.06, + "end": 4959.52, + "probability": 0.9359 + }, + { + "start": 4960.1, + "end": 4961.04, + "probability": 0.877 + }, + { + "start": 4961.72, + "end": 4962.66, + "probability": 0.8886 + }, + { + "start": 4962.76, + "end": 4967.0, + "probability": 0.9757 + }, + { + "start": 4967.2, + "end": 4970.58, + "probability": 0.9909 + }, + { + "start": 4970.58, + "end": 4974.44, + "probability": 0.8082 + }, + { + "start": 4976.54, + "end": 4979.32, + "probability": 0.9837 + }, + { + "start": 4980.58, + "end": 4986.2, + "probability": 0.8932 + }, + { + "start": 4987.12, + "end": 4987.66, + "probability": 0.4648 + }, + { + "start": 4987.66, + "end": 4988.86, + "probability": 0.9227 + }, + { + "start": 4988.98, + "end": 4993.0, + "probability": 0.9888 + }, + { + "start": 4993.62, + "end": 4997.86, + "probability": 0.9967 + }, + { + "start": 4997.9, + "end": 5002.6, + "probability": 0.974 + }, + { + "start": 5003.48, + "end": 5005.0, + "probability": 0.9598 + }, + { + "start": 5005.08, + "end": 5006.58, + "probability": 0.9685 + }, + { + "start": 5006.8, + "end": 5007.36, + "probability": 0.8608 + }, + { + "start": 5007.42, + "end": 5008.42, + "probability": 0.8575 + }, + { + "start": 5008.88, + "end": 5012.53, + "probability": 0.9848 + }, + { + "start": 5013.16, + "end": 5017.38, + "probability": 0.5995 + }, + { + "start": 5017.54, + "end": 5018.93, + "probability": 0.4915 + }, + { + "start": 5019.16, + "end": 5020.56, + "probability": 0.8322 + }, + { + "start": 5020.86, + "end": 5023.28, + "probability": 0.8712 + }, + { + "start": 5024.76, + "end": 5027.6, + "probability": 0.9308 + }, + { + "start": 5028.26, + "end": 5030.28, + "probability": 0.9941 + }, + { + "start": 5030.96, + "end": 5034.44, + "probability": 0.9824 + }, + { + "start": 5034.44, + "end": 5035.18, + "probability": 0.3606 + }, + { + "start": 5035.34, + "end": 5037.06, + "probability": 0.7368 + }, + { + "start": 5037.94, + "end": 5039.6, + "probability": 0.7481 + }, + { + "start": 5040.42, + "end": 5042.88, + "probability": 0.9982 + }, + { + "start": 5042.88, + "end": 5045.6, + "probability": 0.9538 + }, + { + "start": 5045.9, + "end": 5046.74, + "probability": 0.5544 + }, + { + "start": 5046.92, + "end": 5047.52, + "probability": 0.8779 + }, + { + "start": 5047.66, + "end": 5049.08, + "probability": 0.7917 + }, + { + "start": 5049.42, + "end": 5051.52, + "probability": 0.9765 + }, + { + "start": 5051.9, + "end": 5056.58, + "probability": 0.7179 + }, + { + "start": 5056.58, + "end": 5062.52, + "probability": 0.9399 + }, + { + "start": 5062.74, + "end": 5063.22, + "probability": 0.63 + }, + { + "start": 5063.82, + "end": 5066.04, + "probability": 0.7673 + }, + { + "start": 5066.16, + "end": 5067.56, + "probability": 0.9779 + }, + { + "start": 5067.92, + "end": 5071.96, + "probability": 0.9862 + }, + { + "start": 5071.96, + "end": 5076.32, + "probability": 0.9922 + }, + { + "start": 5076.64, + "end": 5077.32, + "probability": 0.5334 + }, + { + "start": 5077.4, + "end": 5077.82, + "probability": 0.5563 + }, + { + "start": 5077.92, + "end": 5080.08, + "probability": 0.9051 + }, + { + "start": 5080.48, + "end": 5086.1, + "probability": 0.9947 + }, + { + "start": 5086.54, + "end": 5091.44, + "probability": 0.9315 + }, + { + "start": 5091.62, + "end": 5093.44, + "probability": 0.8182 + }, + { + "start": 5093.58, + "end": 5100.78, + "probability": 0.972 + }, + { + "start": 5101.36, + "end": 5102.22, + "probability": 0.6606 + }, + { + "start": 5102.6, + "end": 5103.42, + "probability": 0.9244 + }, + { + "start": 5103.84, + "end": 5106.04, + "probability": 0.9937 + }, + { + "start": 5106.46, + "end": 5109.76, + "probability": 0.9979 + }, + { + "start": 5110.3, + "end": 5112.58, + "probability": 0.9801 + }, + { + "start": 5113.2, + "end": 5115.82, + "probability": 0.9886 + }, + { + "start": 5116.18, + "end": 5117.5, + "probability": 0.9056 + }, + { + "start": 5118.12, + "end": 5119.68, + "probability": 0.5867 + }, + { + "start": 5120.24, + "end": 5122.86, + "probability": 0.9539 + }, + { + "start": 5123.16, + "end": 5124.6, + "probability": 0.9891 + }, + { + "start": 5125.04, + "end": 5126.64, + "probability": 0.669 + }, + { + "start": 5127.2, + "end": 5128.56, + "probability": 0.9816 + }, + { + "start": 5129.08, + "end": 5129.64, + "probability": 0.6313 + }, + { + "start": 5130.08, + "end": 5133.88, + "probability": 0.8138 + }, + { + "start": 5134.18, + "end": 5135.82, + "probability": 0.8983 + }, + { + "start": 5136.28, + "end": 5138.08, + "probability": 0.9737 + }, + { + "start": 5138.16, + "end": 5138.96, + "probability": 0.8817 + }, + { + "start": 5139.3, + "end": 5142.8, + "probability": 0.9489 + }, + { + "start": 5142.94, + "end": 5145.98, + "probability": 0.9277 + }, + { + "start": 5146.26, + "end": 5146.48, + "probability": 0.6608 + }, + { + "start": 5147.22, + "end": 5147.94, + "probability": 0.8309 + }, + { + "start": 5148.56, + "end": 5152.16, + "probability": 0.8262 + }, + { + "start": 5154.88, + "end": 5158.0, + "probability": 0.8431 + }, + { + "start": 5163.4, + "end": 5166.68, + "probability": 0.7151 + }, + { + "start": 5168.3, + "end": 5170.22, + "probability": 0.7744 + }, + { + "start": 5170.8, + "end": 5171.54, + "probability": 0.6236 + }, + { + "start": 5173.04, + "end": 5175.44, + "probability": 0.6142 + }, + { + "start": 5175.56, + "end": 5178.78, + "probability": 0.9547 + }, + { + "start": 5179.56, + "end": 5181.56, + "probability": 0.9911 + }, + { + "start": 5182.34, + "end": 5182.84, + "probability": 0.8687 + }, + { + "start": 5187.1, + "end": 5190.18, + "probability": 0.9963 + }, + { + "start": 5190.9, + "end": 5194.64, + "probability": 0.8569 + }, + { + "start": 5195.74, + "end": 5200.72, + "probability": 0.9973 + }, + { + "start": 5202.88, + "end": 5203.14, + "probability": 0.4662 + }, + { + "start": 5203.18, + "end": 5206.9, + "probability": 0.9832 + }, + { + "start": 5208.28, + "end": 5211.66, + "probability": 0.8243 + }, + { + "start": 5211.66, + "end": 5216.82, + "probability": 0.9952 + }, + { + "start": 5217.68, + "end": 5219.54, + "probability": 0.8021 + }, + { + "start": 5221.14, + "end": 5224.52, + "probability": 0.9902 + }, + { + "start": 5226.34, + "end": 5227.26, + "probability": 0.6649 + }, + { + "start": 5228.5, + "end": 5230.94, + "probability": 0.9264 + }, + { + "start": 5232.04, + "end": 5235.9, + "probability": 0.984 + }, + { + "start": 5236.36, + "end": 5240.46, + "probability": 0.9885 + }, + { + "start": 5242.1, + "end": 5246.38, + "probability": 0.9481 + }, + { + "start": 5248.4, + "end": 5252.98, + "probability": 0.4961 + }, + { + "start": 5253.96, + "end": 5257.72, + "probability": 0.9497 + }, + { + "start": 5258.84, + "end": 5259.56, + "probability": 0.3583 + }, + { + "start": 5260.38, + "end": 5263.34, + "probability": 0.9885 + }, + { + "start": 5264.44, + "end": 5266.92, + "probability": 0.9886 + }, + { + "start": 5269.04, + "end": 5270.06, + "probability": 0.75 + }, + { + "start": 5270.64, + "end": 5273.06, + "probability": 0.968 + }, + { + "start": 5274.4, + "end": 5277.26, + "probability": 0.9819 + }, + { + "start": 5277.6, + "end": 5279.25, + "probability": 0.9937 + }, + { + "start": 5281.66, + "end": 5283.6, + "probability": 0.9929 + }, + { + "start": 5283.74, + "end": 5284.76, + "probability": 0.9416 + }, + { + "start": 5285.1, + "end": 5286.6, + "probability": 0.9462 + }, + { + "start": 5287.46, + "end": 5289.58, + "probability": 0.9777 + }, + { + "start": 5290.24, + "end": 5293.42, + "probability": 0.9688 + }, + { + "start": 5295.32, + "end": 5297.68, + "probability": 0.9783 + }, + { + "start": 5297.68, + "end": 5301.16, + "probability": 0.9607 + }, + { + "start": 5301.98, + "end": 5304.22, + "probability": 0.9939 + }, + { + "start": 5305.56, + "end": 5308.46, + "probability": 0.7989 + }, + { + "start": 5309.16, + "end": 5311.62, + "probability": 0.9948 + }, + { + "start": 5311.62, + "end": 5315.72, + "probability": 0.9952 + }, + { + "start": 5316.3, + "end": 5316.92, + "probability": 0.9549 + }, + { + "start": 5317.72, + "end": 5321.42, + "probability": 0.9924 + }, + { + "start": 5321.98, + "end": 5324.98, + "probability": 0.983 + }, + { + "start": 5326.64, + "end": 5329.64, + "probability": 0.9958 + }, + { + "start": 5329.64, + "end": 5333.86, + "probability": 0.9949 + }, + { + "start": 5335.2, + "end": 5337.16, + "probability": 0.9683 + }, + { + "start": 5337.68, + "end": 5339.46, + "probability": 0.9314 + }, + { + "start": 5340.04, + "end": 5344.32, + "probability": 0.9741 + }, + { + "start": 5345.9, + "end": 5347.28, + "probability": 0.9969 + }, + { + "start": 5348.32, + "end": 5349.28, + "probability": 0.8227 + }, + { + "start": 5350.3, + "end": 5354.4, + "probability": 0.9674 + }, + { + "start": 5355.46, + "end": 5357.48, + "probability": 0.8579 + }, + { + "start": 5357.7, + "end": 5363.48, + "probability": 0.9937 + }, + { + "start": 5364.02, + "end": 5366.86, + "probability": 0.9482 + }, + { + "start": 5367.94, + "end": 5370.14, + "probability": 0.841 + }, + { + "start": 5370.16, + "end": 5372.68, + "probability": 0.8262 + }, + { + "start": 5373.38, + "end": 5378.43, + "probability": 0.9914 + }, + { + "start": 5378.54, + "end": 5382.74, + "probability": 0.9919 + }, + { + "start": 5383.68, + "end": 5388.42, + "probability": 0.9868 + }, + { + "start": 5388.42, + "end": 5393.66, + "probability": 0.9971 + }, + { + "start": 5395.0, + "end": 5400.06, + "probability": 0.9786 + }, + { + "start": 5400.86, + "end": 5403.22, + "probability": 0.9881 + }, + { + "start": 5404.16, + "end": 5407.14, + "probability": 0.7845 + }, + { + "start": 5408.6, + "end": 5411.88, + "probability": 0.9921 + }, + { + "start": 5412.94, + "end": 5415.91, + "probability": 0.837 + }, + { + "start": 5416.74, + "end": 5419.93, + "probability": 0.9709 + }, + { + "start": 5421.26, + "end": 5422.84, + "probability": 0.9702 + }, + { + "start": 5423.22, + "end": 5423.34, + "probability": 0.0107 + }, + { + "start": 5424.3, + "end": 5427.4, + "probability": 0.9983 + }, + { + "start": 5427.48, + "end": 5430.26, + "probability": 0.8711 + }, + { + "start": 5430.5, + "end": 5430.88, + "probability": 0.8702 + }, + { + "start": 5431.52, + "end": 5432.46, + "probability": 0.9888 + }, + { + "start": 5433.16, + "end": 5435.18, + "probability": 0.8127 + }, + { + "start": 5436.48, + "end": 5437.7, + "probability": 0.8662 + }, + { + "start": 5438.04, + "end": 5440.24, + "probability": 0.9941 + }, + { + "start": 5441.8, + "end": 5444.8, + "probability": 0.8657 + }, + { + "start": 5446.44, + "end": 5449.06, + "probability": 0.9797 + }, + { + "start": 5449.86, + "end": 5450.42, + "probability": 0.8204 + }, + { + "start": 5450.56, + "end": 5454.26, + "probability": 0.985 + }, + { + "start": 5454.8, + "end": 5457.68, + "probability": 0.9028 + }, + { + "start": 5458.3, + "end": 5459.46, + "probability": 0.9931 + }, + { + "start": 5461.16, + "end": 5461.42, + "probability": 0.4322 + }, + { + "start": 5461.6, + "end": 5466.36, + "probability": 0.9668 + }, + { + "start": 5467.06, + "end": 5472.56, + "probability": 0.9949 + }, + { + "start": 5473.2, + "end": 5475.14, + "probability": 0.9748 + }, + { + "start": 5477.0, + "end": 5479.98, + "probability": 0.9804 + }, + { + "start": 5480.18, + "end": 5481.57, + "probability": 0.9961 + }, + { + "start": 5482.92, + "end": 5485.44, + "probability": 0.9707 + }, + { + "start": 5486.02, + "end": 5488.26, + "probability": 0.9018 + }, + { + "start": 5488.96, + "end": 5491.58, + "probability": 0.9988 + }, + { + "start": 5492.7, + "end": 5494.26, + "probability": 0.9899 + }, + { + "start": 5495.56, + "end": 5496.69, + "probability": 0.7905 + }, + { + "start": 5497.48, + "end": 5498.68, + "probability": 0.9714 + }, + { + "start": 5499.04, + "end": 5502.18, + "probability": 0.9705 + }, + { + "start": 5503.56, + "end": 5504.6, + "probability": 0.8506 + }, + { + "start": 5505.86, + "end": 5506.52, + "probability": 0.8684 + }, + { + "start": 5506.74, + "end": 5507.38, + "probability": 0.8241 + }, + { + "start": 5507.44, + "end": 5508.26, + "probability": 0.7659 + }, + { + "start": 5508.36, + "end": 5510.76, + "probability": 0.99 + }, + { + "start": 5511.84, + "end": 5513.46, + "probability": 0.9283 + }, + { + "start": 5513.58, + "end": 5520.36, + "probability": 0.9977 + }, + { + "start": 5522.65, + "end": 5529.11, + "probability": 0.9914 + }, + { + "start": 5529.18, + "end": 5533.98, + "probability": 0.9989 + }, + { + "start": 5534.42, + "end": 5539.16, + "probability": 0.9968 + }, + { + "start": 5540.16, + "end": 5542.26, + "probability": 0.7692 + }, + { + "start": 5543.84, + "end": 5545.06, + "probability": 0.957 + }, + { + "start": 5546.76, + "end": 5547.64, + "probability": 0.8476 + }, + { + "start": 5548.76, + "end": 5548.8, + "probability": 0.9404 + }, + { + "start": 5549.54, + "end": 5551.58, + "probability": 0.9934 + }, + { + "start": 5553.56, + "end": 5554.58, + "probability": 0.8699 + }, + { + "start": 5556.08, + "end": 5560.26, + "probability": 0.9417 + }, + { + "start": 5560.8, + "end": 5561.8, + "probability": 0.9302 + }, + { + "start": 5563.66, + "end": 5565.38, + "probability": 0.7982 + }, + { + "start": 5566.44, + "end": 5569.76, + "probability": 0.9598 + }, + { + "start": 5571.46, + "end": 5572.12, + "probability": 0.6481 + }, + { + "start": 5573.52, + "end": 5574.26, + "probability": 0.8625 + }, + { + "start": 5575.16, + "end": 5575.9, + "probability": 0.567 + }, + { + "start": 5576.48, + "end": 5579.3, + "probability": 0.972 + }, + { + "start": 5580.08, + "end": 5581.06, + "probability": 0.5206 + }, + { + "start": 5582.88, + "end": 5587.14, + "probability": 0.7456 + }, + { + "start": 5588.1, + "end": 5588.48, + "probability": 0.9506 + }, + { + "start": 5589.58, + "end": 5591.56, + "probability": 0.9368 + }, + { + "start": 5592.28, + "end": 5592.62, + "probability": 0.9311 + }, + { + "start": 5593.8, + "end": 5597.98, + "probability": 0.9437 + }, + { + "start": 5599.19, + "end": 5601.5, + "probability": 0.8074 + }, + { + "start": 5602.12, + "end": 5604.78, + "probability": 0.9147 + }, + { + "start": 5605.52, + "end": 5606.76, + "probability": 0.9839 + }, + { + "start": 5607.82, + "end": 5611.44, + "probability": 0.9246 + }, + { + "start": 5612.28, + "end": 5612.93, + "probability": 0.9795 + }, + { + "start": 5613.72, + "end": 5614.6, + "probability": 0.9961 + }, + { + "start": 5616.22, + "end": 5620.18, + "probability": 0.9864 + }, + { + "start": 5621.3, + "end": 5622.24, + "probability": 0.9575 + }, + { + "start": 5623.32, + "end": 5624.72, + "probability": 0.9853 + }, + { + "start": 5626.07, + "end": 5628.52, + "probability": 0.7691 + }, + { + "start": 5628.98, + "end": 5629.88, + "probability": 0.5226 + }, + { + "start": 5630.1, + "end": 5631.88, + "probability": 0.8302 + }, + { + "start": 5632.22, + "end": 5632.22, + "probability": 0.8413 + }, + { + "start": 5633.2, + "end": 5638.78, + "probability": 0.9896 + }, + { + "start": 5640.58, + "end": 5644.58, + "probability": 0.8993 + }, + { + "start": 5644.76, + "end": 5649.0, + "probability": 0.9784 + }, + { + "start": 5650.22, + "end": 5651.48, + "probability": 0.8616 + }, + { + "start": 5651.52, + "end": 5654.62, + "probability": 0.9808 + }, + { + "start": 5654.62, + "end": 5657.48, + "probability": 0.9701 + }, + { + "start": 5658.28, + "end": 5661.68, + "probability": 0.9969 + }, + { + "start": 5661.72, + "end": 5665.6, + "probability": 0.9755 + }, + { + "start": 5666.18, + "end": 5668.82, + "probability": 0.9966 + }, + { + "start": 5670.3, + "end": 5672.92, + "probability": 0.886 + }, + { + "start": 5672.92, + "end": 5675.7, + "probability": 0.9725 + }, + { + "start": 5676.52, + "end": 5676.86, + "probability": 0.4218 + }, + { + "start": 5677.76, + "end": 5679.7, + "probability": 0.8847 + }, + { + "start": 5680.2, + "end": 5682.24, + "probability": 0.9976 + }, + { + "start": 5683.0, + "end": 5684.34, + "probability": 0.8914 + }, + { + "start": 5685.7, + "end": 5687.76, + "probability": 0.7512 + }, + { + "start": 5688.76, + "end": 5689.86, + "probability": 0.9852 + }, + { + "start": 5692.1, + "end": 5693.1, + "probability": 0.8572 + }, + { + "start": 5693.98, + "end": 5694.28, + "probability": 0.3198 + }, + { + "start": 5695.52, + "end": 5700.6, + "probability": 0.9974 + }, + { + "start": 5701.26, + "end": 5702.52, + "probability": 0.9766 + }, + { + "start": 5702.74, + "end": 5704.3, + "probability": 0.942 + }, + { + "start": 5705.54, + "end": 5707.66, + "probability": 0.4023 + }, + { + "start": 5708.02, + "end": 5708.82, + "probability": 0.8879 + }, + { + "start": 5709.26, + "end": 5710.22, + "probability": 0.9757 + }, + { + "start": 5710.3, + "end": 5713.28, + "probability": 0.825 + }, + { + "start": 5715.12, + "end": 5719.1, + "probability": 0.9329 + }, + { + "start": 5719.34, + "end": 5719.66, + "probability": 0.8447 + }, + { + "start": 5719.8, + "end": 5720.39, + "probability": 0.6379 + }, + { + "start": 5722.47, + "end": 5726.4, + "probability": 0.9548 + }, + { + "start": 5727.8, + "end": 5728.42, + "probability": 0.857 + }, + { + "start": 5729.06, + "end": 5729.28, + "probability": 0.254 + }, + { + "start": 5729.92, + "end": 5729.92, + "probability": 0.6822 + }, + { + "start": 5729.92, + "end": 5730.64, + "probability": 0.5144 + }, + { + "start": 5731.58, + "end": 5732.62, + "probability": 0.5697 + }, + { + "start": 5734.22, + "end": 5735.95, + "probability": 0.8413 + }, + { + "start": 5736.96, + "end": 5738.04, + "probability": 0.5675 + }, + { + "start": 5739.18, + "end": 5744.64, + "probability": 0.7945 + }, + { + "start": 5745.84, + "end": 5750.32, + "probability": 0.9585 + }, + { + "start": 5750.64, + "end": 5751.42, + "probability": 0.6756 + }, + { + "start": 5752.46, + "end": 5752.86, + "probability": 0.9085 + }, + { + "start": 5754.48, + "end": 5758.78, + "probability": 0.9927 + }, + { + "start": 5759.04, + "end": 5759.62, + "probability": 0.7266 + }, + { + "start": 5759.8, + "end": 5760.14, + "probability": 0.854 + }, + { + "start": 5761.82, + "end": 5763.96, + "probability": 0.8761 + }, + { + "start": 5764.56, + "end": 5765.28, + "probability": 0.7024 + }, + { + "start": 5766.78, + "end": 5768.83, + "probability": 0.9985 + }, + { + "start": 5773.06, + "end": 5773.98, + "probability": 0.9859 + }, + { + "start": 5776.1, + "end": 5776.86, + "probability": 0.979 + }, + { + "start": 5777.62, + "end": 5778.2, + "probability": 0.9106 + }, + { + "start": 5779.42, + "end": 5783.68, + "probability": 0.9911 + }, + { + "start": 5784.3, + "end": 5784.86, + "probability": 0.6182 + }, + { + "start": 5784.86, + "end": 5785.3, + "probability": 0.8812 + }, + { + "start": 5787.46, + "end": 5788.1, + "probability": 0.6582 + }, + { + "start": 5789.74, + "end": 5792.62, + "probability": 0.8933 + }, + { + "start": 5792.9, + "end": 5793.68, + "probability": 0.412 + }, + { + "start": 5793.68, + "end": 5795.1, + "probability": 0.8569 + }, + { + "start": 5795.62, + "end": 5796.3, + "probability": 0.9262 + }, + { + "start": 5796.78, + "end": 5797.96, + "probability": 0.7231 + }, + { + "start": 5797.96, + "end": 5798.58, + "probability": 0.9796 + }, + { + "start": 5799.74, + "end": 5803.14, + "probability": 0.883 + }, + { + "start": 5803.28, + "end": 5806.54, + "probability": 0.9763 + }, + { + "start": 5806.99, + "end": 5809.2, + "probability": 0.3267 + }, + { + "start": 5810.1, + "end": 5811.3, + "probability": 0.7578 + }, + { + "start": 5812.42, + "end": 5813.82, + "probability": 0.7493 + }, + { + "start": 5813.9, + "end": 5815.02, + "probability": 0.603 + }, + { + "start": 5815.08, + "end": 5816.72, + "probability": 0.5767 + }, + { + "start": 5817.1, + "end": 5818.44, + "probability": 0.9725 + }, + { + "start": 5819.16, + "end": 5822.28, + "probability": 0.5176 + }, + { + "start": 5822.48, + "end": 5824.56, + "probability": 0.0493 + }, + { + "start": 5824.86, + "end": 5826.08, + "probability": 0.689 + }, + { + "start": 5826.44, + "end": 5829.24, + "probability": 0.9618 + }, + { + "start": 5831.6, + "end": 5831.68, + "probability": 0.1089 + }, + { + "start": 5831.86, + "end": 5833.12, + "probability": 0.7425 + }, + { + "start": 5833.54, + "end": 5837.7, + "probability": 0.8422 + }, + { + "start": 5838.16, + "end": 5839.84, + "probability": 0.851 + }, + { + "start": 5839.98, + "end": 5840.96, + "probability": 0.9946 + }, + { + "start": 5840.98, + "end": 5841.78, + "probability": 0.7702 + }, + { + "start": 5843.88, + "end": 5845.76, + "probability": 0.9344 + }, + { + "start": 5845.76, + "end": 5849.5, + "probability": 0.4779 + }, + { + "start": 5849.74, + "end": 5854.64, + "probability": 0.7094 + }, + { + "start": 5854.64, + "end": 5858.6, + "probability": 0.9924 + }, + { + "start": 5858.64, + "end": 5859.58, + "probability": 0.7614 + }, + { + "start": 5859.8, + "end": 5860.44, + "probability": 0.5718 + }, + { + "start": 5860.62, + "end": 5862.7, + "probability": 0.7082 + }, + { + "start": 5863.06, + "end": 5863.38, + "probability": 0.4097 + }, + { + "start": 5863.94, + "end": 5867.08, + "probability": 0.9418 + }, + { + "start": 5867.34, + "end": 5869.88, + "probability": 0.6809 + }, + { + "start": 5870.28, + "end": 5872.38, + "probability": 0.2037 + }, + { + "start": 5873.78, + "end": 5875.56, + "probability": 0.6372 + }, + { + "start": 5876.02, + "end": 5879.04, + "probability": 0.9858 + }, + { + "start": 5879.68, + "end": 5879.74, + "probability": 0.0529 + }, + { + "start": 5879.82, + "end": 5881.74, + "probability": 0.9844 + }, + { + "start": 5881.78, + "end": 5883.01, + "probability": 0.2615 + }, + { + "start": 5883.5, + "end": 5885.38, + "probability": 0.9 + }, + { + "start": 5885.98, + "end": 5886.42, + "probability": 0.2906 + }, + { + "start": 5886.6, + "end": 5888.08, + "probability": 0.6963 + }, + { + "start": 5888.66, + "end": 5889.72, + "probability": 0.8306 + }, + { + "start": 5889.84, + "end": 5891.32, + "probability": 0.631 + }, + { + "start": 5891.42, + "end": 5897.42, + "probability": 0.9295 + }, + { + "start": 5897.98, + "end": 5899.96, + "probability": 0.6286 + }, + { + "start": 5900.36, + "end": 5901.58, + "probability": 0.9824 + }, + { + "start": 5902.78, + "end": 5906.84, + "probability": 0.9664 + }, + { + "start": 5906.96, + "end": 5907.87, + "probability": 0.9905 + }, + { + "start": 5908.58, + "end": 5913.08, + "probability": 0.9639 + }, + { + "start": 5913.62, + "end": 5915.2, + "probability": 0.9645 + }, + { + "start": 5916.86, + "end": 5919.76, + "probability": 0.9971 + }, + { + "start": 5920.5, + "end": 5920.98, + "probability": 0.0123 + }, + { + "start": 5921.48, + "end": 5922.84, + "probability": 0.6662 + }, + { + "start": 5923.32, + "end": 5926.27, + "probability": 0.024 + }, + { + "start": 5927.01, + "end": 5929.72, + "probability": 0.8574 + }, + { + "start": 5930.92, + "end": 5933.58, + "probability": 0.9775 + }, + { + "start": 5934.1, + "end": 5937.7, + "probability": 0.9587 + }, + { + "start": 5938.5, + "end": 5943.54, + "probability": 0.943 + }, + { + "start": 5943.54, + "end": 5948.46, + "probability": 0.9949 + }, + { + "start": 5948.46, + "end": 5953.26, + "probability": 0.9862 + }, + { + "start": 5953.96, + "end": 5958.6, + "probability": 0.9484 + }, + { + "start": 5959.0, + "end": 5962.52, + "probability": 0.6252 + }, + { + "start": 5962.52, + "end": 5966.3, + "probability": 0.9846 + }, + { + "start": 5966.7, + "end": 5971.48, + "probability": 0.9929 + }, + { + "start": 5971.92, + "end": 5976.78, + "probability": 0.9372 + }, + { + "start": 5977.16, + "end": 5977.36, + "probability": 0.6943 + }, + { + "start": 5979.58, + "end": 5981.26, + "probability": 0.7151 + }, + { + "start": 5981.32, + "end": 5982.68, + "probability": 0.7225 + }, + { + "start": 5983.84, + "end": 5986.18, + "probability": 0.8621 + }, + { + "start": 5987.22, + "end": 5989.58, + "probability": 0.5499 + }, + { + "start": 5990.18, + "end": 5991.16, + "probability": 0.9182 + }, + { + "start": 5991.16, + "end": 5992.56, + "probability": 0.9069 + }, + { + "start": 5992.86, + "end": 5993.7, + "probability": 0.9814 + }, + { + "start": 5993.74, + "end": 5994.51, + "probability": 0.9453 + }, + { + "start": 5995.42, + "end": 5997.16, + "probability": 0.9945 + }, + { + "start": 5998.22, + "end": 6000.28, + "probability": 0.8691 + }, + { + "start": 6001.12, + "end": 6002.36, + "probability": 0.988 + }, + { + "start": 6002.5, + "end": 6003.92, + "probability": 0.9893 + }, + { + "start": 6004.08, + "end": 6004.66, + "probability": 0.3973 + }, + { + "start": 6004.76, + "end": 6006.04, + "probability": 0.8466 + }, + { + "start": 6006.82, + "end": 6007.46, + "probability": 0.8481 + }, + { + "start": 6007.54, + "end": 6010.54, + "probability": 0.8854 + }, + { + "start": 6010.6, + "end": 6012.0, + "probability": 0.9055 + }, + { + "start": 6012.78, + "end": 6013.68, + "probability": 0.6436 + }, + { + "start": 6013.68, + "end": 6014.78, + "probability": 0.9318 + }, + { + "start": 6017.28, + "end": 6017.32, + "probability": 0.5515 + }, + { + "start": 6017.34, + "end": 6017.95, + "probability": 0.7925 + }, + { + "start": 6018.16, + "end": 6018.58, + "probability": 0.5643 + }, + { + "start": 6021.56, + "end": 6021.72, + "probability": 0.078 + }, + { + "start": 6025.16, + "end": 6025.7, + "probability": 0.1307 + }, + { + "start": 6025.7, + "end": 6026.1, + "probability": 0.7837 + }, + { + "start": 6026.92, + "end": 6027.4, + "probability": 0.5373 + }, + { + "start": 6027.46, + "end": 6028.83, + "probability": 0.4891 + }, + { + "start": 6029.54, + "end": 6030.04, + "probability": 0.8045 + }, + { + "start": 6030.1, + "end": 6030.88, + "probability": 0.6859 + }, + { + "start": 6031.08, + "end": 6031.18, + "probability": 0.6031 + }, + { + "start": 6031.32, + "end": 6031.84, + "probability": 0.6843 + }, + { + "start": 6031.88, + "end": 6032.24, + "probability": 0.9376 + }, + { + "start": 6032.72, + "end": 6035.16, + "probability": 0.9974 + }, + { + "start": 6035.86, + "end": 6038.58, + "probability": 0.9629 + }, + { + "start": 6039.24, + "end": 6040.86, + "probability": 0.991 + }, + { + "start": 6041.14, + "end": 6042.82, + "probability": 0.959 + }, + { + "start": 6042.98, + "end": 6046.22, + "probability": 0.986 + }, + { + "start": 6047.08, + "end": 6048.52, + "probability": 0.985 + }, + { + "start": 6049.92, + "end": 6052.2, + "probability": 0.859 + }, + { + "start": 6052.72, + "end": 6055.13, + "probability": 0.9939 + }, + { + "start": 6055.68, + "end": 6058.54, + "probability": 0.921 + }, + { + "start": 6059.28, + "end": 6060.44, + "probability": 0.6099 + }, + { + "start": 6061.22, + "end": 6064.88, + "probability": 0.7035 + }, + { + "start": 6065.04, + "end": 6065.66, + "probability": 0.7855 + }, + { + "start": 6066.64, + "end": 6069.52, + "probability": 0.9351 + }, + { + "start": 6070.08, + "end": 6072.3, + "probability": 0.8936 + }, + { + "start": 6073.26, + "end": 6074.66, + "probability": 0.4857 + }, + { + "start": 6075.84, + "end": 6080.3, + "probability": 0.9262 + }, + { + "start": 6081.02, + "end": 6083.54, + "probability": 0.5251 + }, + { + "start": 6083.72, + "end": 6087.18, + "probability": 0.9126 + }, + { + "start": 6087.32, + "end": 6088.04, + "probability": 0.332 + }, + { + "start": 6088.04, + "end": 6089.12, + "probability": 0.5623 + }, + { + "start": 6089.24, + "end": 6089.59, + "probability": 0.4697 + }, + { + "start": 6090.72, + "end": 6094.18, + "probability": 0.795 + }, + { + "start": 6095.26, + "end": 6097.54, + "probability": 0.8171 + }, + { + "start": 6098.14, + "end": 6102.38, + "probability": 0.9875 + }, + { + "start": 6102.38, + "end": 6106.74, + "probability": 0.9095 + }, + { + "start": 6107.98, + "end": 6109.35, + "probability": 0.5671 + }, + { + "start": 6109.62, + "end": 6110.14, + "probability": 0.7503 + }, + { + "start": 6110.16, + "end": 6110.84, + "probability": 0.9392 + }, + { + "start": 6111.04, + "end": 6115.22, + "probability": 0.9873 + }, + { + "start": 6115.22, + "end": 6119.92, + "probability": 0.9066 + }, + { + "start": 6120.08, + "end": 6120.74, + "probability": 0.6902 + }, + { + "start": 6121.18, + "end": 6122.76, + "probability": 0.7157 + }, + { + "start": 6122.76, + "end": 6125.24, + "probability": 0.6321 + }, + { + "start": 6126.12, + "end": 6131.4, + "probability": 0.9128 + }, + { + "start": 6131.76, + "end": 6134.28, + "probability": 0.8997 + }, + { + "start": 6134.78, + "end": 6137.02, + "probability": 0.9757 + }, + { + "start": 6137.14, + "end": 6137.82, + "probability": 0.576 + }, + { + "start": 6138.1, + "end": 6140.92, + "probability": 0.6856 + }, + { + "start": 6140.98, + "end": 6143.38, + "probability": 0.9075 + }, + { + "start": 6143.52, + "end": 6144.26, + "probability": 0.7914 + }, + { + "start": 6144.54, + "end": 6147.78, + "probability": 0.9187 + }, + { + "start": 6147.86, + "end": 6153.4, + "probability": 0.8437 + }, + { + "start": 6153.46, + "end": 6154.09, + "probability": 0.5984 + }, + { + "start": 6154.48, + "end": 6156.01, + "probability": 0.8442 + }, + { + "start": 6156.12, + "end": 6157.48, + "probability": 0.7656 + }, + { + "start": 6157.9, + "end": 6162.4, + "probability": 0.6788 + }, + { + "start": 6162.44, + "end": 6162.9, + "probability": 0.8939 + }, + { + "start": 6163.0, + "end": 6163.96, + "probability": 0.9424 + }, + { + "start": 6165.24, + "end": 6165.64, + "probability": 0.5276 + }, + { + "start": 6166.04, + "end": 6167.76, + "probability": 0.7324 + }, + { + "start": 6167.86, + "end": 6169.7, + "probability": 0.5984 + }, + { + "start": 6170.16, + "end": 6174.84, + "probability": 0.9424 + }, + { + "start": 6175.2, + "end": 6181.26, + "probability": 0.7475 + }, + { + "start": 6181.86, + "end": 6183.18, + "probability": 0.8472 + }, + { + "start": 6183.44, + "end": 6184.66, + "probability": 0.9583 + }, + { + "start": 6184.78, + "end": 6185.84, + "probability": 0.8426 + }, + { + "start": 6185.94, + "end": 6189.34, + "probability": 0.9532 + }, + { + "start": 6189.46, + "end": 6189.66, + "probability": 0.3976 + }, + { + "start": 6189.74, + "end": 6189.98, + "probability": 0.6783 + }, + { + "start": 6190.08, + "end": 6194.7, + "probability": 0.867 + }, + { + "start": 6194.94, + "end": 6195.9, + "probability": 0.263 + }, + { + "start": 6198.66, + "end": 6203.46, + "probability": 0.9242 + }, + { + "start": 6203.64, + "end": 6205.87, + "probability": 0.9922 + }, + { + "start": 6207.3, + "end": 6207.44, + "probability": 0.0175 + }, + { + "start": 6207.44, + "end": 6207.44, + "probability": 0.2384 + }, + { + "start": 6207.44, + "end": 6207.44, + "probability": 0.0419 + }, + { + "start": 6207.44, + "end": 6208.04, + "probability": 0.1529 + }, + { + "start": 6208.16, + "end": 6208.68, + "probability": 0.4065 + }, + { + "start": 6208.96, + "end": 6209.08, + "probability": 0.4142 + }, + { + "start": 6209.18, + "end": 6210.08, + "probability": 0.7166 + }, + { + "start": 6210.94, + "end": 6215.94, + "probability": 0.4935 + }, + { + "start": 6215.94, + "end": 6216.71, + "probability": 0.7839 + }, + { + "start": 6217.1, + "end": 6219.52, + "probability": 0.8689 + }, + { + "start": 6219.64, + "end": 6223.02, + "probability": 0.9304 + }, + { + "start": 6223.56, + "end": 6229.56, + "probability": 0.7281 + }, + { + "start": 6229.68, + "end": 6230.46, + "probability": 0.8652 + }, + { + "start": 6230.66, + "end": 6232.06, + "probability": 0.6467 + }, + { + "start": 6232.8, + "end": 6234.14, + "probability": 0.9634 + }, + { + "start": 6234.28, + "end": 6238.7, + "probability": 0.7635 + }, + { + "start": 6238.92, + "end": 6241.16, + "probability": 0.8045 + }, + { + "start": 6241.16, + "end": 6243.94, + "probability": 0.6663 + }, + { + "start": 6245.22, + "end": 6247.06, + "probability": 0.979 + }, + { + "start": 6247.24, + "end": 6248.48, + "probability": 0.9314 + }, + { + "start": 6248.62, + "end": 6249.59, + "probability": 0.8826 + }, + { + "start": 6250.04, + "end": 6251.06, + "probability": 0.5698 + }, + { + "start": 6251.18, + "end": 6251.66, + "probability": 0.7519 + }, + { + "start": 6252.28, + "end": 6254.38, + "probability": 0.8499 + }, + { + "start": 6255.42, + "end": 6257.52, + "probability": 0.8601 + }, + { + "start": 6257.76, + "end": 6259.06, + "probability": 0.7317 + }, + { + "start": 6259.42, + "end": 6260.84, + "probability": 0.5926 + }, + { + "start": 6261.3, + "end": 6261.74, + "probability": 0.4963 + }, + { + "start": 6261.82, + "end": 6264.7, + "probability": 0.7539 + }, + { + "start": 6264.9, + "end": 6265.66, + "probability": 0.7028 + }, + { + "start": 6266.04, + "end": 6266.46, + "probability": 0.4325 + }, + { + "start": 6266.92, + "end": 6268.26, + "probability": 0.9349 + }, + { + "start": 6268.36, + "end": 6271.24, + "probability": 0.6584 + }, + { + "start": 6271.44, + "end": 6273.92, + "probability": 0.9022 + }, + { + "start": 6274.16, + "end": 6275.3, + "probability": 0.813 + }, + { + "start": 6276.48, + "end": 6279.7, + "probability": 0.6055 + }, + { + "start": 6280.12, + "end": 6281.36, + "probability": 0.6953 + }, + { + "start": 6281.64, + "end": 6285.12, + "probability": 0.979 + }, + { + "start": 6285.12, + "end": 6286.36, + "probability": 0.628 + }, + { + "start": 6286.88, + "end": 6286.88, + "probability": 0.3673 + }, + { + "start": 6286.88, + "end": 6287.12, + "probability": 0.4967 + }, + { + "start": 6287.64, + "end": 6288.54, + "probability": 0.2736 + }, + { + "start": 6289.16, + "end": 6291.88, + "probability": 0.5667 + }, + { + "start": 6292.54, + "end": 6293.1, + "probability": 0.9248 + }, + { + "start": 6293.24, + "end": 6296.56, + "probability": 0.9309 + }, + { + "start": 6296.64, + "end": 6299.9, + "probability": 0.9593 + }, + { + "start": 6300.22, + "end": 6300.48, + "probability": 0.4679 + }, + { + "start": 6300.52, + "end": 6303.84, + "probability": 0.5249 + }, + { + "start": 6304.06, + "end": 6305.28, + "probability": 0.8781 + }, + { + "start": 6305.98, + "end": 6309.02, + "probability": 0.4241 + }, + { + "start": 6309.16, + "end": 6310.55, + "probability": 0.9454 + }, + { + "start": 6311.0, + "end": 6313.22, + "probability": 0.6513 + }, + { + "start": 6313.46, + "end": 6314.3, + "probability": 0.5372 + }, + { + "start": 6314.42, + "end": 6314.86, + "probability": 0.1728 + }, + { + "start": 6314.86, + "end": 6316.27, + "probability": 0.8352 + }, + { + "start": 6316.32, + "end": 6317.09, + "probability": 0.4828 + }, + { + "start": 6317.34, + "end": 6318.08, + "probability": 0.848 + }, + { + "start": 6318.1, + "end": 6320.22, + "probability": 0.8792 + }, + { + "start": 6320.74, + "end": 6324.44, + "probability": 0.8015 + }, + { + "start": 6325.2, + "end": 6326.52, + "probability": 0.6956 + }, + { + "start": 6326.62, + "end": 6327.58, + "probability": 0.5002 + }, + { + "start": 6327.64, + "end": 6330.47, + "probability": 0.5426 + }, + { + "start": 6330.7, + "end": 6331.36, + "probability": 0.3447 + }, + { + "start": 6331.54, + "end": 6332.1, + "probability": 0.4219 + }, + { + "start": 6332.2, + "end": 6334.3, + "probability": 0.8237 + }, + { + "start": 6334.38, + "end": 6337.4, + "probability": 0.9327 + }, + { + "start": 6337.7, + "end": 6337.72, + "probability": 0.1923 + }, + { + "start": 6337.72, + "end": 6340.7, + "probability": 0.4055 + }, + { + "start": 6340.7, + "end": 6343.96, + "probability": 0.6358 + }, + { + "start": 6344.0, + "end": 6345.36, + "probability": 0.8795 + }, + { + "start": 6345.64, + "end": 6346.62, + "probability": 0.8131 + }, + { + "start": 6347.2, + "end": 6348.7, + "probability": 0.652 + }, + { + "start": 6348.82, + "end": 6350.38, + "probability": 0.912 + }, + { + "start": 6351.26, + "end": 6352.88, + "probability": 0.6598 + }, + { + "start": 6353.16, + "end": 6355.58, + "probability": 0.9017 + }, + { + "start": 6357.02, + "end": 6358.44, + "probability": 0.941 + }, + { + "start": 6359.84, + "end": 6361.26, + "probability": 0.944 + }, + { + "start": 6361.92, + "end": 6363.7, + "probability": 0.9041 + }, + { + "start": 6364.98, + "end": 6365.94, + "probability": 0.6129 + }, + { + "start": 6366.3, + "end": 6368.44, + "probability": 0.9551 + }, + { + "start": 6368.68, + "end": 6371.35, + "probability": 0.9565 + }, + { + "start": 6371.54, + "end": 6372.54, + "probability": 0.9634 + }, + { + "start": 6372.58, + "end": 6373.1, + "probability": 0.7347 + }, + { + "start": 6373.72, + "end": 6376.6, + "probability": 0.5489 + }, + { + "start": 6376.72, + "end": 6377.89, + "probability": 0.6859 + }, + { + "start": 6378.04, + "end": 6378.64, + "probability": 0.6874 + }, + { + "start": 6378.68, + "end": 6379.58, + "probability": 0.8142 + }, + { + "start": 6379.66, + "end": 6380.62, + "probability": 0.7932 + }, + { + "start": 6380.7, + "end": 6383.3, + "probability": 0.9159 + }, + { + "start": 6383.38, + "end": 6391.62, + "probability": 0.7794 + }, + { + "start": 6391.62, + "end": 6398.96, + "probability": 0.9896 + }, + { + "start": 6399.64, + "end": 6402.98, + "probability": 0.9437 + }, + { + "start": 6402.98, + "end": 6408.32, + "probability": 0.9703 + }, + { + "start": 6408.76, + "end": 6413.74, + "probability": 0.9849 + }, + { + "start": 6413.86, + "end": 6414.12, + "probability": 0.3901 + }, + { + "start": 6414.48, + "end": 6415.22, + "probability": 0.8761 + }, + { + "start": 6415.48, + "end": 6417.16, + "probability": 0.6973 + }, + { + "start": 6417.22, + "end": 6418.9, + "probability": 0.9489 + }, + { + "start": 6419.22, + "end": 6427.32, + "probability": 0.8912 + }, + { + "start": 6427.96, + "end": 6431.06, + "probability": 0.8594 + }, + { + "start": 6431.46, + "end": 6436.4, + "probability": 0.9456 + }, + { + "start": 6436.4, + "end": 6440.52, + "probability": 0.9655 + }, + { + "start": 6440.9, + "end": 6441.78, + "probability": 0.1946 + }, + { + "start": 6441.78, + "end": 6446.54, + "probability": 0.9469 + }, + { + "start": 6447.02, + "end": 6447.68, + "probability": 0.9331 + }, + { + "start": 6447.76, + "end": 6454.06, + "probability": 0.9712 + }, + { + "start": 6454.58, + "end": 6455.5, + "probability": 0.8634 + }, + { + "start": 6455.64, + "end": 6457.17, + "probability": 0.9763 + }, + { + "start": 6457.9, + "end": 6463.8, + "probability": 0.8848 + }, + { + "start": 6463.92, + "end": 6470.24, + "probability": 0.814 + }, + { + "start": 6470.8, + "end": 6473.7, + "probability": 0.9961 + }, + { + "start": 6474.26, + "end": 6479.72, + "probability": 0.9238 + }, + { + "start": 6480.3, + "end": 6482.1, + "probability": 0.7776 + }, + { + "start": 6482.5, + "end": 6485.42, + "probability": 0.9969 + }, + { + "start": 6485.42, + "end": 6489.6, + "probability": 0.9849 + }, + { + "start": 6490.0, + "end": 6492.62, + "probability": 0.9187 + }, + { + "start": 6492.82, + "end": 6493.98, + "probability": 0.8971 + }, + { + "start": 6495.16, + "end": 6496.04, + "probability": 0.833 + }, + { + "start": 6496.62, + "end": 6497.14, + "probability": 0.5131 + }, + { + "start": 6497.48, + "end": 6499.0, + "probability": 0.5312 + }, + { + "start": 6500.62, + "end": 6503.18, + "probability": 0.9819 + }, + { + "start": 6503.34, + "end": 6505.56, + "probability": 0.9836 + }, + { + "start": 6506.04, + "end": 6508.54, + "probability": 0.8276 + }, + { + "start": 6509.24, + "end": 6510.26, + "probability": 0.4297 + }, + { + "start": 6510.66, + "end": 6513.86, + "probability": 0.6992 + }, + { + "start": 6521.85, + "end": 6523.33, + "probability": 0.0343 + }, + { + "start": 6533.98, + "end": 6535.16, + "probability": 0.0315 + }, + { + "start": 6535.16, + "end": 6535.16, + "probability": 0.0555 + }, + { + "start": 6535.16, + "end": 6535.16, + "probability": 0.2355 + }, + { + "start": 6535.16, + "end": 6535.16, + "probability": 0.4966 + }, + { + "start": 6535.16, + "end": 6536.36, + "probability": 0.4579 + }, + { + "start": 6536.76, + "end": 6537.94, + "probability": 0.7824 + }, + { + "start": 6538.16, + "end": 6539.2, + "probability": 0.9615 + }, + { + "start": 6542.12, + "end": 6545.52, + "probability": 0.3572 + }, + { + "start": 6545.52, + "end": 6549.36, + "probability": 0.8253 + }, + { + "start": 6549.98, + "end": 6550.66, + "probability": 0.7311 + }, + { + "start": 6551.04, + "end": 6551.62, + "probability": 0.7698 + }, + { + "start": 6551.72, + "end": 6556.54, + "probability": 0.9716 + }, + { + "start": 6556.66, + "end": 6559.08, + "probability": 0.8605 + }, + { + "start": 6559.86, + "end": 6560.92, + "probability": 0.7366 + }, + { + "start": 6562.16, + "end": 6565.68, + "probability": 0.7853 + }, + { + "start": 6566.44, + "end": 6568.7, + "probability": 0.824 + }, + { + "start": 6568.8, + "end": 6570.82, + "probability": 0.098 + }, + { + "start": 6571.34, + "end": 6573.9, + "probability": 0.5806 + }, + { + "start": 6574.24, + "end": 6577.6, + "probability": 0.7459 + }, + { + "start": 6577.72, + "end": 6577.82, + "probability": 0.0953 + }, + { + "start": 6577.82, + "end": 6580.92, + "probability": 0.8444 + }, + { + "start": 6581.54, + "end": 6585.16, + "probability": 0.6261 + }, + { + "start": 6585.8, + "end": 6586.98, + "probability": 0.7439 + }, + { + "start": 6587.2, + "end": 6591.22, + "probability": 0.8786 + }, + { + "start": 6591.74, + "end": 6596.4, + "probability": 0.9797 + }, + { + "start": 6596.4, + "end": 6600.94, + "probability": 0.9992 + }, + { + "start": 6601.5, + "end": 6602.0, + "probability": 0.6773 + }, + { + "start": 6602.14, + "end": 6602.58, + "probability": 0.6942 + }, + { + "start": 6602.72, + "end": 6606.96, + "probability": 0.9902 + }, + { + "start": 6607.5, + "end": 6610.32, + "probability": 0.9845 + }, + { + "start": 6610.84, + "end": 6615.3, + "probability": 0.9767 + }, + { + "start": 6615.3, + "end": 6622.74, + "probability": 0.9672 + }, + { + "start": 6623.44, + "end": 6628.6, + "probability": 0.9908 + }, + { + "start": 6628.6, + "end": 6633.42, + "probability": 0.9984 + }, + { + "start": 6634.14, + "end": 6634.58, + "probability": 0.4127 + }, + { + "start": 6634.68, + "end": 6637.18, + "probability": 0.9974 + }, + { + "start": 6637.18, + "end": 6641.64, + "probability": 0.9785 + }, + { + "start": 6642.22, + "end": 6646.92, + "probability": 0.9949 + }, + { + "start": 6646.96, + "end": 6652.2, + "probability": 0.9883 + }, + { + "start": 6652.2, + "end": 6656.34, + "probability": 0.9874 + }, + { + "start": 6656.98, + "end": 6657.64, + "probability": 0.718 + }, + { + "start": 6657.74, + "end": 6658.58, + "probability": 0.9719 + }, + { + "start": 6658.94, + "end": 6663.2, + "probability": 0.9881 + }, + { + "start": 6663.64, + "end": 6666.08, + "probability": 0.9976 + }, + { + "start": 6666.08, + "end": 6670.46, + "probability": 0.9966 + }, + { + "start": 6671.04, + "end": 6675.06, + "probability": 0.9949 + }, + { + "start": 6675.06, + "end": 6680.18, + "probability": 0.994 + }, + { + "start": 6680.8, + "end": 6684.24, + "probability": 0.7399 + }, + { + "start": 6684.24, + "end": 6687.7, + "probability": 0.9652 + }, + { + "start": 6688.2, + "end": 6690.7, + "probability": 0.9774 + }, + { + "start": 6691.22, + "end": 6695.42, + "probability": 0.9869 + }, + { + "start": 6696.06, + "end": 6698.4, + "probability": 0.9705 + }, + { + "start": 6700.08, + "end": 6700.94, + "probability": 0.7739 + }, + { + "start": 6701.06, + "end": 6704.82, + "probability": 0.991 + }, + { + "start": 6706.24, + "end": 6709.18, + "probability": 0.8789 + }, + { + "start": 6709.4, + "end": 6712.54, + "probability": 0.9969 + }, + { + "start": 6712.54, + "end": 6715.94, + "probability": 0.9941 + }, + { + "start": 6716.32, + "end": 6717.22, + "probability": 0.8452 + }, + { + "start": 6717.8, + "end": 6721.5, + "probability": 0.9663 + }, + { + "start": 6721.5, + "end": 6726.42, + "probability": 0.9974 + }, + { + "start": 6726.98, + "end": 6729.4, + "probability": 0.6632 + }, + { + "start": 6729.94, + "end": 6730.3, + "probability": 0.3723 + }, + { + "start": 6730.44, + "end": 6733.44, + "probability": 0.7976 + }, + { + "start": 6733.44, + "end": 6736.4, + "probability": 0.9838 + }, + { + "start": 6737.0, + "end": 6737.52, + "probability": 0.3587 + }, + { + "start": 6737.58, + "end": 6738.24, + "probability": 0.8809 + }, + { + "start": 6738.24, + "end": 6745.46, + "probability": 0.8249 + }, + { + "start": 6745.62, + "end": 6751.0, + "probability": 0.898 + }, + { + "start": 6751.0, + "end": 6754.56, + "probability": 0.9541 + }, + { + "start": 6754.74, + "end": 6756.32, + "probability": 0.7345 + }, + { + "start": 6756.96, + "end": 6760.54, + "probability": 0.9414 + }, + { + "start": 6761.06, + "end": 6764.68, + "probability": 0.9915 + }, + { + "start": 6765.08, + "end": 6765.36, + "probability": 0.729 + }, + { + "start": 6766.46, + "end": 6767.14, + "probability": 0.7708 + }, + { + "start": 6767.4, + "end": 6769.7, + "probability": 0.974 + }, + { + "start": 6771.26, + "end": 6772.42, + "probability": 0.7438 + }, + { + "start": 6772.56, + "end": 6776.24, + "probability": 0.9907 + }, + { + "start": 6776.36, + "end": 6777.66, + "probability": 0.8754 + }, + { + "start": 6794.5, + "end": 6795.34, + "probability": 0.4695 + }, + { + "start": 6795.42, + "end": 6796.24, + "probability": 0.7157 + }, + { + "start": 6796.3, + "end": 6798.27, + "probability": 0.8039 + }, + { + "start": 6799.24, + "end": 6804.22, + "probability": 0.7877 + }, + { + "start": 6804.49, + "end": 6807.62, + "probability": 0.6722 + }, + { + "start": 6807.78, + "end": 6808.74, + "probability": 0.8718 + }, + { + "start": 6809.9, + "end": 6811.22, + "probability": 0.968 + }, + { + "start": 6811.9, + "end": 6812.3, + "probability": 0.7552 + }, + { + "start": 6813.7, + "end": 6814.72, + "probability": 0.703 + }, + { + "start": 6815.44, + "end": 6816.92, + "probability": 0.8765 + }, + { + "start": 6817.04, + "end": 6817.64, + "probability": 0.925 + }, + { + "start": 6817.92, + "end": 6821.8, + "probability": 0.9959 + }, + { + "start": 6822.34, + "end": 6824.58, + "probability": 0.4218 + }, + { + "start": 6824.64, + "end": 6827.06, + "probability": 0.7297 + }, + { + "start": 6827.84, + "end": 6829.78, + "probability": 0.9857 + }, + { + "start": 6830.48, + "end": 6833.46, + "probability": 0.8506 + }, + { + "start": 6834.5, + "end": 6838.0, + "probability": 0.7746 + }, + { + "start": 6838.86, + "end": 6841.23, + "probability": 0.9595 + }, + { + "start": 6842.3, + "end": 6844.66, + "probability": 0.9614 + }, + { + "start": 6845.32, + "end": 6847.98, + "probability": 0.9752 + }, + { + "start": 6848.38, + "end": 6851.96, + "probability": 0.9119 + }, + { + "start": 6852.36, + "end": 6854.16, + "probability": 0.8233 + }, + { + "start": 6854.7, + "end": 6859.78, + "probability": 0.8768 + }, + { + "start": 6859.98, + "end": 6863.34, + "probability": 0.9587 + }, + { + "start": 6863.92, + "end": 6864.52, + "probability": 0.6963 + }, + { + "start": 6865.1, + "end": 6867.9, + "probability": 0.4498 + }, + { + "start": 6868.78, + "end": 6871.6, + "probability": 0.8542 + }, + { + "start": 6872.12, + "end": 6878.66, + "probability": 0.9819 + }, + { + "start": 6878.66, + "end": 6883.04, + "probability": 0.984 + }, + { + "start": 6883.78, + "end": 6886.68, + "probability": 0.8828 + }, + { + "start": 6887.46, + "end": 6891.76, + "probability": 0.9223 + }, + { + "start": 6892.14, + "end": 6893.7, + "probability": 0.9902 + }, + { + "start": 6894.88, + "end": 6898.6, + "probability": 0.9889 + }, + { + "start": 6899.06, + "end": 6900.14, + "probability": 0.4839 + }, + { + "start": 6900.4, + "end": 6902.52, + "probability": 0.9619 + }, + { + "start": 6902.6, + "end": 6903.68, + "probability": 0.8276 + }, + { + "start": 6903.74, + "end": 6904.76, + "probability": 0.6703 + }, + { + "start": 6905.04, + "end": 6906.1, + "probability": 0.8691 + }, + { + "start": 6906.6, + "end": 6907.46, + "probability": 0.7188 + }, + { + "start": 6907.68, + "end": 6909.12, + "probability": 0.9374 + }, + { + "start": 6909.3, + "end": 6911.34, + "probability": 0.9755 + }, + { + "start": 6911.52, + "end": 6912.46, + "probability": 0.9641 + }, + { + "start": 6912.6, + "end": 6913.66, + "probability": 0.9655 + }, + { + "start": 6913.98, + "end": 6915.28, + "probability": 0.5136 + }, + { + "start": 6915.76, + "end": 6917.82, + "probability": 0.932 + }, + { + "start": 6918.4, + "end": 6923.66, + "probability": 0.9941 + }, + { + "start": 6923.66, + "end": 6929.76, + "probability": 0.9784 + }, + { + "start": 6930.14, + "end": 6932.1, + "probability": 0.9975 + }, + { + "start": 6932.42, + "end": 6934.64, + "probability": 0.9907 + }, + { + "start": 6935.16, + "end": 6937.24, + "probability": 0.8618 + }, + { + "start": 6937.52, + "end": 6937.56, + "probability": 0.0461 + }, + { + "start": 6937.56, + "end": 6938.62, + "probability": 0.6899 + }, + { + "start": 6938.92, + "end": 6943.22, + "probability": 0.9913 + }, + { + "start": 6943.52, + "end": 6945.71, + "probability": 0.9654 + }, + { + "start": 6945.76, + "end": 6947.96, + "probability": 0.8187 + }, + { + "start": 6948.6, + "end": 6949.5, + "probability": 0.7403 + }, + { + "start": 6949.6, + "end": 6950.18, + "probability": 0.8623 + }, + { + "start": 6950.26, + "end": 6951.33, + "probability": 0.9927 + }, + { + "start": 6952.42, + "end": 6956.88, + "probability": 0.9729 + }, + { + "start": 6957.26, + "end": 6959.42, + "probability": 0.9818 + }, + { + "start": 6959.78, + "end": 6960.54, + "probability": 0.894 + }, + { + "start": 6960.56, + "end": 6964.68, + "probability": 0.9832 + }, + { + "start": 6965.76, + "end": 6967.36, + "probability": 0.6017 + }, + { + "start": 6968.3, + "end": 6969.02, + "probability": 0.6755 + }, + { + "start": 6969.56, + "end": 6971.14, + "probability": 0.6654 + }, + { + "start": 6972.16, + "end": 6973.22, + "probability": 0.6909 + }, + { + "start": 6973.66, + "end": 6973.66, + "probability": 0.0001 + }, + { + "start": 6976.52, + "end": 6976.8, + "probability": 0.4238 + }, + { + "start": 6976.8, + "end": 6977.01, + "probability": 0.958 + }, + { + "start": 6977.64, + "end": 6979.44, + "probability": 0.0313 + }, + { + "start": 6980.06, + "end": 6981.72, + "probability": 0.9281 + }, + { + "start": 6982.38, + "end": 6985.2, + "probability": 0.8296 + }, + { + "start": 6985.28, + "end": 6987.46, + "probability": 0.8681 + }, + { + "start": 6988.32, + "end": 6988.98, + "probability": 0.4815 + }, + { + "start": 6988.98, + "end": 6989.96, + "probability": 0.8614 + }, + { + "start": 7000.18, + "end": 7000.18, + "probability": 0.0367 + }, + { + "start": 7000.18, + "end": 7000.18, + "probability": 0.0067 + }, + { + "start": 7006.8, + "end": 7007.98, + "probability": 0.0741 + }, + { + "start": 7007.98, + "end": 7007.98, + "probability": 0.6938 + }, + { + "start": 7007.98, + "end": 7008.9, + "probability": 0.4278 + }, + { + "start": 7009.68, + "end": 7011.44, + "probability": 0.5536 + }, + { + "start": 7014.47, + "end": 7016.38, + "probability": 0.6284 + }, + { + "start": 7016.42, + "end": 7021.32, + "probability": 0.8099 + }, + { + "start": 7021.96, + "end": 7023.02, + "probability": 0.7414 + }, + { + "start": 7023.34, + "end": 7024.18, + "probability": 0.8525 + }, + { + "start": 7027.34, + "end": 7031.46, + "probability": 0.9965 + }, + { + "start": 7032.34, + "end": 7032.34, + "probability": 0.2659 + }, + { + "start": 7032.7, + "end": 7033.9, + "probability": 0.645 + }, + { + "start": 7034.7, + "end": 7036.58, + "probability": 0.9873 + }, + { + "start": 7036.84, + "end": 7037.5, + "probability": 0.4041 + }, + { + "start": 7038.2, + "end": 7038.86, + "probability": 0.7836 + }, + { + "start": 7039.76, + "end": 7046.98, + "probability": 0.882 + }, + { + "start": 7047.56, + "end": 7050.64, + "probability": 0.8508 + }, + { + "start": 7050.64, + "end": 7054.04, + "probability": 0.997 + }, + { + "start": 7054.38, + "end": 7056.46, + "probability": 0.3178 + }, + { + "start": 7057.07, + "end": 7059.42, + "probability": 0.6619 + }, + { + "start": 7059.5, + "end": 7061.4, + "probability": 0.8707 + }, + { + "start": 7062.0, + "end": 7062.02, + "probability": 0.0489 + }, + { + "start": 7062.02, + "end": 7063.9, + "probability": 0.9339 + }, + { + "start": 7065.2, + "end": 7065.5, + "probability": 0.8259 + }, + { + "start": 7070.42, + "end": 7070.7, + "probability": 0.288 + }, + { + "start": 7070.72, + "end": 7071.82, + "probability": 0.5228 + }, + { + "start": 7072.66, + "end": 7073.88, + "probability": 0.7743 + }, + { + "start": 7076.04, + "end": 7078.08, + "probability": 0.6254 + }, + { + "start": 7080.86, + "end": 7084.08, + "probability": 0.9768 + }, + { + "start": 7085.14, + "end": 7087.56, + "probability": 0.9087 + }, + { + "start": 7088.32, + "end": 7091.56, + "probability": 0.9908 + }, + { + "start": 7092.98, + "end": 7094.88, + "probability": 0.7063 + }, + { + "start": 7095.72, + "end": 7098.14, + "probability": 0.9342 + }, + { + "start": 7099.5, + "end": 7100.4, + "probability": 0.9937 + }, + { + "start": 7101.24, + "end": 7104.66, + "probability": 0.9552 + }, + { + "start": 7105.42, + "end": 7107.3, + "probability": 0.5665 + }, + { + "start": 7107.36, + "end": 7107.94, + "probability": 0.9878 + }, + { + "start": 7109.0, + "end": 7109.56, + "probability": 0.7904 + }, + { + "start": 7110.3, + "end": 7111.56, + "probability": 0.396 + }, + { + "start": 7111.98, + "end": 7114.62, + "probability": 0.8922 + }, + { + "start": 7117.98, + "end": 7122.12, + "probability": 0.8668 + }, + { + "start": 7122.2, + "end": 7122.66, + "probability": 0.8163 + }, + { + "start": 7123.7, + "end": 7124.86, + "probability": 0.2938 + }, + { + "start": 7124.94, + "end": 7128.86, + "probability": 0.9247 + }, + { + "start": 7129.46, + "end": 7131.72, + "probability": 0.9959 + }, + { + "start": 7132.42, + "end": 7133.54, + "probability": 0.824 + }, + { + "start": 7134.38, + "end": 7137.0, + "probability": 0.9621 + }, + { + "start": 7137.0, + "end": 7141.16, + "probability": 0.989 + }, + { + "start": 7141.22, + "end": 7142.68, + "probability": 0.7796 + }, + { + "start": 7143.68, + "end": 7146.02, + "probability": 0.8667 + }, + { + "start": 7146.02, + "end": 7149.88, + "probability": 0.9889 + }, + { + "start": 7150.38, + "end": 7150.82, + "probability": 0.4681 + }, + { + "start": 7151.12, + "end": 7153.12, + "probability": 0.8837 + }, + { + "start": 7153.28, + "end": 7154.54, + "probability": 0.9247 + }, + { + "start": 7155.14, + "end": 7159.46, + "probability": 0.9455 + }, + { + "start": 7160.8, + "end": 7161.72, + "probability": 0.987 + }, + { + "start": 7162.86, + "end": 7166.06, + "probability": 0.9677 + }, + { + "start": 7167.1, + "end": 7170.8, + "probability": 0.7314 + }, + { + "start": 7171.58, + "end": 7172.4, + "probability": 0.7871 + }, + { + "start": 7172.4, + "end": 7174.96, + "probability": 0.9916 + }, + { + "start": 7175.76, + "end": 7180.22, + "probability": 0.9214 + }, + { + "start": 7180.78, + "end": 7182.96, + "probability": 0.999 + }, + { + "start": 7183.66, + "end": 7186.42, + "probability": 0.9952 + }, + { + "start": 7187.22, + "end": 7188.46, + "probability": 0.9035 + }, + { + "start": 7189.0, + "end": 7191.48, + "probability": 0.9869 + }, + { + "start": 7192.2, + "end": 7195.02, + "probability": 0.9518 + }, + { + "start": 7195.2, + "end": 7197.74, + "probability": 0.9856 + }, + { + "start": 7198.42, + "end": 7200.52, + "probability": 0.4924 + }, + { + "start": 7201.08, + "end": 7203.48, + "probability": 0.9837 + }, + { + "start": 7203.48, + "end": 7206.22, + "probability": 0.9918 + }, + { + "start": 7207.12, + "end": 7207.9, + "probability": 0.7724 + }, + { + "start": 7209.12, + "end": 7212.9, + "probability": 0.9587 + }, + { + "start": 7213.52, + "end": 7217.6, + "probability": 0.9909 + }, + { + "start": 7218.6, + "end": 7223.96, + "probability": 0.8559 + }, + { + "start": 7223.98, + "end": 7224.3, + "probability": 0.4573 + }, + { + "start": 7225.04, + "end": 7227.04, + "probability": 0.827 + }, + { + "start": 7227.18, + "end": 7228.66, + "probability": 0.7813 + }, + { + "start": 7229.28, + "end": 7230.96, + "probability": 0.9923 + }, + { + "start": 7231.78, + "end": 7234.86, + "probability": 0.9905 + }, + { + "start": 7234.86, + "end": 7237.04, + "probability": 0.9744 + }, + { + "start": 7237.92, + "end": 7241.38, + "probability": 0.9557 + }, + { + "start": 7241.9, + "end": 7244.44, + "probability": 0.938 + }, + { + "start": 7245.48, + "end": 7249.76, + "probability": 0.9646 + }, + { + "start": 7249.76, + "end": 7253.24, + "probability": 0.9633 + }, + { + "start": 7253.82, + "end": 7255.68, + "probability": 0.7684 + }, + { + "start": 7257.1, + "end": 7260.18, + "probability": 0.9754 + }, + { + "start": 7260.32, + "end": 7262.7, + "probability": 0.868 + }, + { + "start": 7263.16, + "end": 7266.13, + "probability": 0.881 + }, + { + "start": 7266.8, + "end": 7269.0, + "probability": 0.8628 + }, + { + "start": 7269.0, + "end": 7271.56, + "probability": 0.9724 + }, + { + "start": 7272.78, + "end": 7275.68, + "probability": 0.944 + }, + { + "start": 7275.82, + "end": 7281.16, + "probability": 0.9491 + }, + { + "start": 7282.04, + "end": 7286.06, + "probability": 0.844 + }, + { + "start": 7286.64, + "end": 7287.78, + "probability": 0.5271 + }, + { + "start": 7288.74, + "end": 7290.48, + "probability": 0.9929 + }, + { + "start": 7291.3, + "end": 7292.96, + "probability": 0.8047 + }, + { + "start": 7293.52, + "end": 7295.74, + "probability": 0.9931 + }, + { + "start": 7296.32, + "end": 7297.96, + "probability": 0.9929 + }, + { + "start": 7298.82, + "end": 7301.44, + "probability": 0.9985 + }, + { + "start": 7301.44, + "end": 7303.94, + "probability": 0.9949 + }, + { + "start": 7304.46, + "end": 7306.28, + "probability": 0.9645 + }, + { + "start": 7307.46, + "end": 7308.26, + "probability": 0.9645 + }, + { + "start": 7309.54, + "end": 7311.56, + "probability": 0.9623 + }, + { + "start": 7311.66, + "end": 7314.04, + "probability": 0.8591 + }, + { + "start": 7315.12, + "end": 7315.68, + "probability": 0.569 + }, + { + "start": 7316.76, + "end": 7319.14, + "probability": 0.9136 + }, + { + "start": 7319.2, + "end": 7324.62, + "probability": 0.713 + }, + { + "start": 7325.18, + "end": 7327.08, + "probability": 0.8561 + }, + { + "start": 7327.86, + "end": 7333.12, + "probability": 0.8396 + }, + { + "start": 7333.12, + "end": 7336.18, + "probability": 0.9944 + }, + { + "start": 7337.16, + "end": 7337.6, + "probability": 0.3187 + }, + { + "start": 7337.76, + "end": 7339.0, + "probability": 0.8879 + }, + { + "start": 7339.04, + "end": 7341.54, + "probability": 0.9883 + }, + { + "start": 7342.26, + "end": 7344.44, + "probability": 0.7655 + }, + { + "start": 7345.48, + "end": 7351.98, + "probability": 0.9816 + }, + { + "start": 7352.02, + "end": 7356.38, + "probability": 0.8838 + }, + { + "start": 7356.6, + "end": 7357.64, + "probability": 0.7463 + }, + { + "start": 7357.84, + "end": 7362.16, + "probability": 0.6829 + }, + { + "start": 7363.58, + "end": 7365.6, + "probability": 0.6104 + }, + { + "start": 7366.58, + "end": 7369.4, + "probability": 0.8032 + }, + { + "start": 7369.74, + "end": 7371.56, + "probability": 0.9459 + }, + { + "start": 7373.09, + "end": 7375.02, + "probability": 0.7397 + }, + { + "start": 7375.72, + "end": 7376.4, + "probability": 0.8194 + }, + { + "start": 7377.18, + "end": 7380.74, + "probability": 0.8531 + }, + { + "start": 7381.4, + "end": 7385.04, + "probability": 0.9886 + }, + { + "start": 7385.04, + "end": 7387.1, + "probability": 0.7794 + }, + { + "start": 7387.62, + "end": 7389.04, + "probability": 0.86 + }, + { + "start": 7389.42, + "end": 7390.62, + "probability": 0.954 + }, + { + "start": 7390.7, + "end": 7392.82, + "probability": 0.8737 + }, + { + "start": 7393.28, + "end": 7394.22, + "probability": 0.6571 + }, + { + "start": 7394.48, + "end": 7396.0, + "probability": 0.9907 + }, + { + "start": 7396.08, + "end": 7396.48, + "probability": 0.8534 + }, + { + "start": 7397.2, + "end": 7398.06, + "probability": 0.8729 + }, + { + "start": 7398.9, + "end": 7401.72, + "probability": 0.741 + }, + { + "start": 7402.9, + "end": 7404.82, + "probability": 0.9893 + }, + { + "start": 7406.11, + "end": 7408.96, + "probability": 0.6957 + }, + { + "start": 7409.98, + "end": 7411.57, + "probability": 0.9872 + }, + { + "start": 7412.16, + "end": 7413.58, + "probability": 0.9293 + }, + { + "start": 7414.24, + "end": 7415.3, + "probability": 0.9854 + }, + { + "start": 7417.76, + "end": 7419.98, + "probability": 0.9177 + }, + { + "start": 7421.22, + "end": 7425.72, + "probability": 0.7264 + }, + { + "start": 7426.4, + "end": 7426.92, + "probability": 0.9844 + }, + { + "start": 7427.2, + "end": 7428.02, + "probability": 0.13 + }, + { + "start": 7428.74, + "end": 7430.08, + "probability": 0.4949 + }, + { + "start": 7430.08, + "end": 7430.08, + "probability": 0.6183 + }, + { + "start": 7430.68, + "end": 7432.64, + "probability": 0.5422 + }, + { + "start": 7432.76, + "end": 7433.16, + "probability": 0.5105 + }, + { + "start": 7433.18, + "end": 7434.42, + "probability": 0.9062 + }, + { + "start": 7434.5, + "end": 7434.94, + "probability": 0.6153 + }, + { + "start": 7436.18, + "end": 7439.02, + "probability": 0.7178 + }, + { + "start": 7439.56, + "end": 7441.59, + "probability": 0.5181 + }, + { + "start": 7444.56, + "end": 7445.58, + "probability": 0.8188 + }, + { + "start": 7447.58, + "end": 7449.28, + "probability": 0.826 + }, + { + "start": 7450.2, + "end": 7451.24, + "probability": 0.3821 + }, + { + "start": 7451.38, + "end": 7453.4, + "probability": 0.9963 + }, + { + "start": 7454.24, + "end": 7457.86, + "probability": 0.6867 + }, + { + "start": 7458.46, + "end": 7458.62, + "probability": 0.5711 + }, + { + "start": 7458.7, + "end": 7459.02, + "probability": 0.0241 + }, + { + "start": 7459.02, + "end": 7460.07, + "probability": 0.4851 + }, + { + "start": 7461.14, + "end": 7462.42, + "probability": 0.9325 + }, + { + "start": 7462.48, + "end": 7465.02, + "probability": 0.9841 + }, + { + "start": 7466.64, + "end": 7468.06, + "probability": 0.6181 + }, + { + "start": 7468.54, + "end": 7476.12, + "probability": 0.9819 + }, + { + "start": 7476.7, + "end": 7481.1, + "probability": 0.9782 + }, + { + "start": 7483.52, + "end": 7490.04, + "probability": 0.956 + }, + { + "start": 7491.14, + "end": 7491.82, + "probability": 0.6624 + }, + { + "start": 7491.98, + "end": 7493.66, + "probability": 0.4558 + }, + { + "start": 7493.86, + "end": 7495.68, + "probability": 0.9942 + }, + { + "start": 7495.88, + "end": 7497.1, + "probability": 0.9941 + }, + { + "start": 7497.98, + "end": 7498.72, + "probability": 0.7797 + }, + { + "start": 7498.84, + "end": 7504.02, + "probability": 0.8972 + }, + { + "start": 7504.66, + "end": 7509.06, + "probability": 0.9656 + }, + { + "start": 7509.06, + "end": 7515.38, + "probability": 0.9907 + }, + { + "start": 7515.96, + "end": 7517.2, + "probability": 0.314 + }, + { + "start": 7517.7, + "end": 7520.98, + "probability": 0.8859 + }, + { + "start": 7521.78, + "end": 7526.13, + "probability": 0.9594 + }, + { + "start": 7526.84, + "end": 7528.26, + "probability": 0.8254 + }, + { + "start": 7528.48, + "end": 7529.68, + "probability": 0.9277 + }, + { + "start": 7529.98, + "end": 7531.56, + "probability": 0.7891 + }, + { + "start": 7532.62, + "end": 7536.42, + "probability": 0.9076 + }, + { + "start": 7536.68, + "end": 7538.54, + "probability": 0.9641 + }, + { + "start": 7539.08, + "end": 7539.84, + "probability": 0.9417 + }, + { + "start": 7539.98, + "end": 7542.6, + "probability": 0.8263 + }, + { + "start": 7542.94, + "end": 7544.92, + "probability": 0.7714 + }, + { + "start": 7545.82, + "end": 7549.64, + "probability": 0.941 + }, + { + "start": 7550.42, + "end": 7554.74, + "probability": 0.757 + }, + { + "start": 7555.96, + "end": 7556.76, + "probability": 0.8354 + }, + { + "start": 7558.3, + "end": 7559.68, + "probability": 0.9754 + }, + { + "start": 7559.74, + "end": 7561.0, + "probability": 0.7013 + }, + { + "start": 7563.3, + "end": 7566.1, + "probability": 0.9808 + }, + { + "start": 7567.18, + "end": 7569.94, + "probability": 0.6629 + }, + { + "start": 7570.06, + "end": 7572.98, + "probability": 0.9314 + }, + { + "start": 7573.56, + "end": 7578.24, + "probability": 0.9278 + }, + { + "start": 7579.15, + "end": 7582.4, + "probability": 0.5865 + }, + { + "start": 7582.86, + "end": 7584.2, + "probability": 0.72 + }, + { + "start": 7584.88, + "end": 7592.7, + "probability": 0.9236 + }, + { + "start": 7593.1, + "end": 7596.28, + "probability": 0.996 + }, + { + "start": 7596.46, + "end": 7596.64, + "probability": 0.6588 + }, + { + "start": 7597.36, + "end": 7599.1, + "probability": 0.611 + }, + { + "start": 7599.18, + "end": 7602.38, + "probability": 0.9902 + }, + { + "start": 7602.76, + "end": 7604.38, + "probability": 0.9791 + }, + { + "start": 7604.96, + "end": 7607.2, + "probability": 0.9438 + }, + { + "start": 7609.08, + "end": 7611.36, + "probability": 0.8149 + }, + { + "start": 7612.48, + "end": 7613.16, + "probability": 0.5141 + }, + { + "start": 7613.28, + "end": 7613.78, + "probability": 0.3662 + }, + { + "start": 7616.9, + "end": 7617.76, + "probability": 0.8081 + }, + { + "start": 7626.38, + "end": 7627.96, + "probability": 0.8396 + }, + { + "start": 7632.55, + "end": 7635.64, + "probability": 0.0772 + }, + { + "start": 7636.54, + "end": 7638.6, + "probability": 0.0396 + }, + { + "start": 7639.13, + "end": 7639.6, + "probability": 0.0212 + }, + { + "start": 7639.6, + "end": 7639.76, + "probability": 0.0559 + }, + { + "start": 7639.76, + "end": 7640.7, + "probability": 0.583 + }, + { + "start": 7641.28, + "end": 7643.76, + "probability": 0.1102 + }, + { + "start": 7644.62, + "end": 7644.62, + "probability": 0.0708 + }, + { + "start": 7644.62, + "end": 7650.62, + "probability": 0.2051 + }, + { + "start": 7651.84, + "end": 7651.9, + "probability": 0.3981 + }, + { + "start": 7653.3, + "end": 7654.42, + "probability": 0.1603 + }, + { + "start": 7655.44, + "end": 7659.88, + "probability": 0.0177 + }, + { + "start": 7660.28, + "end": 7660.86, + "probability": 0.2228 + }, + { + "start": 7670.94, + "end": 7672.64, + "probability": 0.2156 + }, + { + "start": 7674.98, + "end": 7675.0, + "probability": 0.0221 + }, + { + "start": 7703.0, + "end": 7703.0, + "probability": 0.0 + }, + { + "start": 7703.0, + "end": 7703.0, + "probability": 0.0 + }, + { + "start": 7703.0, + "end": 7703.0, + "probability": 0.0 + }, + { + "start": 7703.0, + "end": 7703.0, + "probability": 0.0 + }, + { + "start": 7703.0, + "end": 7703.0, + "probability": 0.0 + }, + { + "start": 7703.0, + "end": 7703.0, + "probability": 0.0 + }, + { + "start": 7703.0, + "end": 7703.0, + "probability": 0.0 + }, + { + "start": 7703.0, + "end": 7703.0, + "probability": 0.0 + }, + { + "start": 7703.0, + "end": 7703.0, + "probability": 0.0 + }, + { + "start": 7703.0, + "end": 7703.0, + "probability": 0.0 + }, + { + "start": 7703.0, + "end": 7703.0, + "probability": 0.0 + }, + { + "start": 7703.0, + "end": 7703.0, + "probability": 0.0 + }, + { + "start": 7703.0, + "end": 7703.0, + "probability": 0.0 + }, + { + "start": 7703.0, + "end": 7703.0, + "probability": 0.0 + }, + { + "start": 7703.0, + "end": 7703.0, + "probability": 0.0 + }, + { + "start": 7703.0, + "end": 7703.0, + "probability": 0.0 + }, + { + "start": 7703.0, + "end": 7703.0, + "probability": 0.0 + }, + { + "start": 7703.0, + "end": 7703.0, + "probability": 0.0 + }, + { + "start": 7703.0, + "end": 7703.0, + "probability": 0.0 + }, + { + "start": 7703.0, + "end": 7703.0, + "probability": 0.0 + }, + { + "start": 7703.16, + "end": 7703.92, + "probability": 0.7703 + }, + { + "start": 7704.74, + "end": 7707.94, + "probability": 0.8481 + }, + { + "start": 7712.88, + "end": 7715.69, + "probability": 0.7513 + }, + { + "start": 7717.26, + "end": 7718.83, + "probability": 0.9849 + }, + { + "start": 7720.1, + "end": 7724.94, + "probability": 0.6318 + }, + { + "start": 7726.62, + "end": 7731.38, + "probability": 0.3597 + }, + { + "start": 7731.99, + "end": 7736.0, + "probability": 0.6154 + }, + { + "start": 7736.58, + "end": 7737.24, + "probability": 0.6223 + }, + { + "start": 7737.74, + "end": 7741.28, + "probability": 0.9688 + }, + { + "start": 7741.28, + "end": 7747.12, + "probability": 0.8971 + }, + { + "start": 7747.7, + "end": 7748.24, + "probability": 0.6753 + }, + { + "start": 7748.63, + "end": 7749.52, + "probability": 0.4913 + }, + { + "start": 7749.52, + "end": 7752.82, + "probability": 0.6617 + }, + { + "start": 7752.9, + "end": 7753.2, + "probability": 0.7777 + }, + { + "start": 7753.24, + "end": 7755.34, + "probability": 0.7189 + }, + { + "start": 7756.2, + "end": 7758.8, + "probability": 0.9976 + }, + { + "start": 7759.3, + "end": 7762.42, + "probability": 0.936 + }, + { + "start": 7762.42, + "end": 7765.04, + "probability": 0.9818 + }, + { + "start": 7766.22, + "end": 7769.28, + "probability": 0.9653 + }, + { + "start": 7769.28, + "end": 7772.08, + "probability": 0.6377 + }, + { + "start": 7773.06, + "end": 7778.56, + "probability": 0.752 + }, + { + "start": 7779.12, + "end": 7781.16, + "probability": 0.8551 + }, + { + "start": 7781.74, + "end": 7784.88, + "probability": 0.9326 + }, + { + "start": 7785.28, + "end": 7790.8, + "probability": 0.9848 + }, + { + "start": 7791.54, + "end": 7793.31, + "probability": 0.4915 + }, + { + "start": 7794.1, + "end": 7796.07, + "probability": 0.8051 + }, + { + "start": 7796.12, + "end": 7797.38, + "probability": 0.9533 + }, + { + "start": 7798.11, + "end": 7799.94, + "probability": 0.7814 + }, + { + "start": 7800.46, + "end": 7805.34, + "probability": 0.8786 + }, + { + "start": 7805.62, + "end": 7806.82, + "probability": 0.89 + }, + { + "start": 7807.1, + "end": 7808.8, + "probability": 0.9062 + }, + { + "start": 7809.48, + "end": 7812.26, + "probability": 0.9634 + }, + { + "start": 7813.88, + "end": 7814.5, + "probability": 0.4364 + }, + { + "start": 7814.8, + "end": 7817.4, + "probability": 0.8647 + }, + { + "start": 7817.66, + "end": 7822.28, + "probability": 0.9519 + }, + { + "start": 7822.98, + "end": 7828.12, + "probability": 0.9903 + }, + { + "start": 7829.02, + "end": 7832.64, + "probability": 0.8299 + }, + { + "start": 7833.06, + "end": 7834.24, + "probability": 0.8984 + }, + { + "start": 7834.34, + "end": 7837.36, + "probability": 0.6836 + }, + { + "start": 7837.8, + "end": 7841.76, + "probability": 0.814 + }, + { + "start": 7842.52, + "end": 7844.96, + "probability": 0.9915 + }, + { + "start": 7845.66, + "end": 7846.39, + "probability": 0.7659 + }, + { + "start": 7846.64, + "end": 7849.35, + "probability": 0.8793 + }, + { + "start": 7849.82, + "end": 7854.27, + "probability": 0.994 + }, + { + "start": 7854.78, + "end": 7854.92, + "probability": 0.5593 + }, + { + "start": 7854.92, + "end": 7857.88, + "probability": 0.3907 + }, + { + "start": 7858.0, + "end": 7858.4, + "probability": 0.3398 + }, + { + "start": 7858.66, + "end": 7858.72, + "probability": 0.244 + }, + { + "start": 7858.72, + "end": 7860.04, + "probability": 0.5351 + }, + { + "start": 7860.6, + "end": 7861.64, + "probability": 0.8768 + }, + { + "start": 7863.06, + "end": 7864.54, + "probability": 0.742 + }, + { + "start": 7864.62, + "end": 7867.56, + "probability": 0.9401 + }, + { + "start": 7867.96, + "end": 7874.12, + "probability": 0.9249 + }, + { + "start": 7874.7, + "end": 7876.56, + "probability": 0.7021 + }, + { + "start": 7877.32, + "end": 7879.26, + "probability": 0.6979 + }, + { + "start": 7879.58, + "end": 7880.3, + "probability": 0.3806 + }, + { + "start": 7880.42, + "end": 7881.68, + "probability": 0.9548 + }, + { + "start": 7881.78, + "end": 7882.38, + "probability": 0.6422 + }, + { + "start": 7883.06, + "end": 7886.44, + "probability": 0.776 + }, + { + "start": 7886.46, + "end": 7888.54, + "probability": 0.7842 + }, + { + "start": 7889.2, + "end": 7890.61, + "probability": 0.9619 + }, + { + "start": 7890.84, + "end": 7894.7, + "probability": 0.9032 + }, + { + "start": 7895.38, + "end": 7897.72, + "probability": 0.9601 + }, + { + "start": 7898.44, + "end": 7900.42, + "probability": 0.7916 + }, + { + "start": 7900.8, + "end": 7902.5, + "probability": 0.9568 + }, + { + "start": 7903.8, + "end": 7905.96, + "probability": 0.9419 + }, + { + "start": 7906.48, + "end": 7910.8, + "probability": 0.6308 + }, + { + "start": 7911.28, + "end": 7911.82, + "probability": 0.7959 + }, + { + "start": 7912.3, + "end": 7916.06, + "probability": 0.9846 + }, + { + "start": 7916.46, + "end": 7917.36, + "probability": 0.8997 + }, + { + "start": 7917.54, + "end": 7918.72, + "probability": 0.8762 + }, + { + "start": 7919.16, + "end": 7920.36, + "probability": 0.7709 + }, + { + "start": 7921.62, + "end": 7922.16, + "probability": 0.8511 + }, + { + "start": 7922.4, + "end": 7922.96, + "probability": 0.9221 + }, + { + "start": 7923.06, + "end": 7926.0, + "probability": 0.6064 + }, + { + "start": 7926.16, + "end": 7926.72, + "probability": 0.936 + }, + { + "start": 7927.06, + "end": 7928.06, + "probability": 0.8037 + }, + { + "start": 7928.5, + "end": 7930.44, + "probability": 0.9165 + }, + { + "start": 7931.08, + "end": 7933.24, + "probability": 0.9269 + }, + { + "start": 7933.32, + "end": 7936.36, + "probability": 0.6948 + }, + { + "start": 7937.44, + "end": 7940.48, + "probability": 0.8997 + }, + { + "start": 7940.94, + "end": 7942.98, + "probability": 0.6208 + }, + { + "start": 7943.0, + "end": 7943.8, + "probability": 0.7528 + }, + { + "start": 7944.14, + "end": 7945.28, + "probability": 0.9536 + }, + { + "start": 7945.52, + "end": 7946.66, + "probability": 0.7226 + }, + { + "start": 7948.4, + "end": 7950.18, + "probability": 0.8496 + }, + { + "start": 7950.76, + "end": 7950.86, + "probability": 0.6927 + }, + { + "start": 7950.96, + "end": 7953.92, + "probability": 0.8449 + }, + { + "start": 7954.46, + "end": 7956.68, + "probability": 0.9657 + }, + { + "start": 7957.26, + "end": 7960.54, + "probability": 0.8246 + }, + { + "start": 7960.54, + "end": 7967.14, + "probability": 0.7149 + }, + { + "start": 7969.19, + "end": 7971.88, + "probability": 0.7002 + }, + { + "start": 7972.66, + "end": 7975.62, + "probability": 0.8097 + }, + { + "start": 7975.62, + "end": 7978.98, + "probability": 0.896 + }, + { + "start": 7979.16, + "end": 7979.23, + "probability": 0.0513 + }, + { + "start": 7980.18, + "end": 7981.07, + "probability": 0.9756 + }, + { + "start": 7981.84, + "end": 7983.96, + "probability": 0.5733 + }, + { + "start": 7984.68, + "end": 7987.72, + "probability": 0.5275 + }, + { + "start": 7987.72, + "end": 7990.34, + "probability": 0.858 + }, + { + "start": 7990.96, + "end": 7993.02, + "probability": 0.8575 + }, + { + "start": 7993.36, + "end": 7995.28, + "probability": 0.8221 + }, + { + "start": 7995.68, + "end": 7998.34, + "probability": 0.6792 + }, + { + "start": 7998.86, + "end": 8000.9, + "probability": 0.8719 + }, + { + "start": 8001.42, + "end": 8001.9, + "probability": 0.7379 + }, + { + "start": 8002.2, + "end": 8004.24, + "probability": 0.8104 + }, + { + "start": 8004.7, + "end": 8005.46, + "probability": 0.9616 + }, + { + "start": 8005.9, + "end": 8010.26, + "probability": 0.9487 + }, + { + "start": 8010.62, + "end": 8014.22, + "probability": 0.9375 + }, + { + "start": 8014.58, + "end": 8016.02, + "probability": 0.4362 + }, + { + "start": 8016.1, + "end": 8016.44, + "probability": 0.7307 + }, + { + "start": 8017.24, + "end": 8017.42, + "probability": 0.1431 + }, + { + "start": 8018.12, + "end": 8019.5, + "probability": 0.6644 + }, + { + "start": 8019.74, + "end": 8020.82, + "probability": 0.9894 + }, + { + "start": 8021.82, + "end": 8022.58, + "probability": 0.3798 + }, + { + "start": 8023.06, + "end": 8023.64, + "probability": 0.7486 + }, + { + "start": 8025.64, + "end": 8026.28, + "probability": 0.3828 + }, + { + "start": 8026.28, + "end": 8027.4, + "probability": 0.818 + }, + { + "start": 8027.56, + "end": 8028.22, + "probability": 0.419 + }, + { + "start": 8028.22, + "end": 8031.62, + "probability": 0.9539 + }, + { + "start": 8031.66, + "end": 8037.68, + "probability": 0.6955 + }, + { + "start": 8038.66, + "end": 8041.0, + "probability": 0.9487 + }, + { + "start": 8041.06, + "end": 8041.64, + "probability": 0.872 + }, + { + "start": 8041.72, + "end": 8043.66, + "probability": 0.9041 + }, + { + "start": 8044.26, + "end": 8046.0, + "probability": 0.8602 + }, + { + "start": 8047.58, + "end": 8048.3, + "probability": 0.8496 + }, + { + "start": 8068.42, + "end": 8068.78, + "probability": 0.5769 + }, + { + "start": 8068.94, + "end": 8070.62, + "probability": 0.8613 + }, + { + "start": 8071.02, + "end": 8074.36, + "probability": 0.8514 + }, + { + "start": 8074.42, + "end": 8075.78, + "probability": 0.7002 + }, + { + "start": 8075.96, + "end": 8076.96, + "probability": 0.7618 + }, + { + "start": 8077.36, + "end": 8078.04, + "probability": 0.4395 + }, + { + "start": 8078.2, + "end": 8080.82, + "probability": 0.4395 + }, + { + "start": 8081.64, + "end": 8083.46, + "probability": 0.7477 + }, + { + "start": 8084.04, + "end": 8086.62, + "probability": 0.8676 + }, + { + "start": 8087.14, + "end": 8089.74, + "probability": 0.9805 + }, + { + "start": 8090.18, + "end": 8091.38, + "probability": 0.9714 + }, + { + "start": 8091.9, + "end": 8095.7, + "probability": 0.9932 + }, + { + "start": 8095.88, + "end": 8096.74, + "probability": 0.8743 + }, + { + "start": 8097.36, + "end": 8099.1, + "probability": 0.7392 + }, + { + "start": 8099.76, + "end": 8103.08, + "probability": 0.9955 + }, + { + "start": 8104.52, + "end": 8107.78, + "probability": 0.9061 + }, + { + "start": 8108.84, + "end": 8111.28, + "probability": 0.9794 + }, + { + "start": 8112.46, + "end": 8115.94, + "probability": 0.9352 + }, + { + "start": 8115.98, + "end": 8120.1, + "probability": 0.9955 + }, + { + "start": 8121.04, + "end": 8122.11, + "probability": 0.9481 + }, + { + "start": 8123.24, + "end": 8125.44, + "probability": 0.9113 + }, + { + "start": 8126.06, + "end": 8126.74, + "probability": 0.9752 + }, + { + "start": 8127.96, + "end": 8131.76, + "probability": 0.8415 + }, + { + "start": 8132.08, + "end": 8135.16, + "probability": 0.9963 + }, + { + "start": 8135.52, + "end": 8136.16, + "probability": 0.9309 + }, + { + "start": 8136.82, + "end": 8136.96, + "probability": 0.3789 + }, + { + "start": 8136.96, + "end": 8140.58, + "probability": 0.947 + }, + { + "start": 8140.58, + "end": 8142.76, + "probability": 0.9626 + }, + { + "start": 8143.42, + "end": 8146.26, + "probability": 0.8294 + }, + { + "start": 8147.06, + "end": 8148.8, + "probability": 0.9655 + }, + { + "start": 8148.9, + "end": 8151.66, + "probability": 0.9683 + }, + { + "start": 8152.2, + "end": 8154.88, + "probability": 0.8933 + }, + { + "start": 8155.68, + "end": 8159.52, + "probability": 0.9867 + }, + { + "start": 8160.32, + "end": 8163.5, + "probability": 0.7446 + }, + { + "start": 8163.58, + "end": 8165.16, + "probability": 0.716 + }, + { + "start": 8165.68, + "end": 8170.08, + "probability": 0.9902 + }, + { + "start": 8170.8, + "end": 8174.86, + "probability": 0.9952 + }, + { + "start": 8175.28, + "end": 8176.81, + "probability": 0.9926 + }, + { + "start": 8177.5, + "end": 8181.24, + "probability": 0.9178 + }, + { + "start": 8181.62, + "end": 8183.96, + "probability": 0.9255 + }, + { + "start": 8184.8, + "end": 8186.26, + "probability": 0.9481 + }, + { + "start": 8186.54, + "end": 8189.08, + "probability": 0.9688 + }, + { + "start": 8189.62, + "end": 8191.5, + "probability": 0.972 + }, + { + "start": 8191.88, + "end": 8193.1, + "probability": 0.7165 + }, + { + "start": 8193.76, + "end": 8200.08, + "probability": 0.9747 + }, + { + "start": 8200.5, + "end": 8205.4, + "probability": 0.9469 + }, + { + "start": 8206.02, + "end": 8209.46, + "probability": 0.988 + }, + { + "start": 8209.54, + "end": 8209.98, + "probability": 0.3442 + }, + { + "start": 8210.14, + "end": 8210.8, + "probability": 0.7326 + }, + { + "start": 8211.06, + "end": 8211.64, + "probability": 0.7233 + }, + { + "start": 8212.02, + "end": 8214.07, + "probability": 0.9424 + }, + { + "start": 8214.6, + "end": 8216.36, + "probability": 0.9267 + }, + { + "start": 8216.36, + "end": 8220.92, + "probability": 0.9761 + }, + { + "start": 8221.82, + "end": 8223.74, + "probability": 0.7536 + }, + { + "start": 8224.16, + "end": 8227.22, + "probability": 0.8473 + }, + { + "start": 8227.3, + "end": 8227.82, + "probability": 0.7365 + }, + { + "start": 8228.42, + "end": 8230.0, + "probability": 0.9907 + }, + { + "start": 8230.46, + "end": 8232.13, + "probability": 0.894 + }, + { + "start": 8232.82, + "end": 8233.58, + "probability": 0.7754 + }, + { + "start": 8233.7, + "end": 8235.2, + "probability": 0.853 + }, + { + "start": 8235.32, + "end": 8236.64, + "probability": 0.7087 + }, + { + "start": 8236.86, + "end": 8239.88, + "probability": 0.7551 + }, + { + "start": 8240.6, + "end": 8242.2, + "probability": 0.6118 + }, + { + "start": 8242.38, + "end": 8243.78, + "probability": 0.0912 + }, + { + "start": 8244.14, + "end": 8245.04, + "probability": 0.6663 + }, + { + "start": 8246.28, + "end": 8246.86, + "probability": 0.6989 + }, + { + "start": 8246.88, + "end": 8247.4, + "probability": 0.7012 + }, + { + "start": 8247.6, + "end": 8247.98, + "probability": 0.9612 + }, + { + "start": 8249.08, + "end": 8251.08, + "probability": 0.0244 + }, + { + "start": 8251.08, + "end": 8252.84, + "probability": 0.0192 + }, + { + "start": 8260.48, + "end": 8261.36, + "probability": 0.0727 + }, + { + "start": 8262.24, + "end": 8263.04, + "probability": 0.1223 + }, + { + "start": 8264.94, + "end": 8268.76, + "probability": 0.6818 + }, + { + "start": 8269.24, + "end": 8272.02, + "probability": 0.5629 + }, + { + "start": 8272.02, + "end": 8277.04, + "probability": 0.9947 + }, + { + "start": 8279.48, + "end": 8282.9, + "probability": 0.8587 + }, + { + "start": 8284.38, + "end": 8289.44, + "probability": 0.9102 + }, + { + "start": 8291.2, + "end": 8292.0, + "probability": 0.8322 + }, + { + "start": 8292.92, + "end": 8296.9, + "probability": 0.9288 + }, + { + "start": 8297.04, + "end": 8298.9, + "probability": 0.8296 + }, + { + "start": 8299.02, + "end": 8300.14, + "probability": 0.7595 + }, + { + "start": 8301.06, + "end": 8303.76, + "probability": 0.0354 + }, + { + "start": 8303.88, + "end": 8307.18, + "probability": 0.9214 + }, + { + "start": 8307.18, + "end": 8310.36, + "probability": 0.9382 + }, + { + "start": 8310.62, + "end": 8311.62, + "probability": 0.8919 + }, + { + "start": 8311.7, + "end": 8315.14, + "probability": 0.9905 + }, + { + "start": 8316.42, + "end": 8321.18, + "probability": 0.9851 + }, + { + "start": 8322.32, + "end": 8327.96, + "probability": 0.9736 + }, + { + "start": 8329.08, + "end": 8331.48, + "probability": 0.7408 + }, + { + "start": 8331.88, + "end": 8333.48, + "probability": 0.4407 + }, + { + "start": 8333.84, + "end": 8335.16, + "probability": 0.9858 + }, + { + "start": 8335.96, + "end": 8339.98, + "probability": 0.9037 + }, + { + "start": 8341.08, + "end": 8343.68, + "probability": 0.9955 + }, + { + "start": 8343.68, + "end": 8346.6, + "probability": 0.928 + }, + { + "start": 8347.52, + "end": 8350.94, + "probability": 0.9408 + }, + { + "start": 8351.06, + "end": 8351.82, + "probability": 0.6107 + }, + { + "start": 8352.56, + "end": 8353.3, + "probability": 0.932 + }, + { + "start": 8353.64, + "end": 8354.48, + "probability": 0.8482 + }, + { + "start": 8354.64, + "end": 8358.36, + "probability": 0.991 + }, + { + "start": 8358.98, + "end": 8362.58, + "probability": 0.9982 + }, + { + "start": 8363.6, + "end": 8367.52, + "probability": 0.9908 + }, + { + "start": 8368.7, + "end": 8372.26, + "probability": 0.9221 + }, + { + "start": 8372.6, + "end": 8375.98, + "probability": 0.9475 + }, + { + "start": 8376.86, + "end": 8380.88, + "probability": 0.9922 + }, + { + "start": 8382.56, + "end": 8386.0, + "probability": 0.9865 + }, + { + "start": 8386.58, + "end": 8387.34, + "probability": 0.9217 + }, + { + "start": 8387.92, + "end": 8391.78, + "probability": 0.9941 + }, + { + "start": 8392.62, + "end": 8393.18, + "probability": 0.7411 + }, + { + "start": 8393.96, + "end": 8399.22, + "probability": 0.9301 + }, + { + "start": 8400.4, + "end": 8406.32, + "probability": 0.9952 + }, + { + "start": 8408.44, + "end": 8410.89, + "probability": 0.8333 + }, + { + "start": 8411.46, + "end": 8414.86, + "probability": 0.6743 + }, + { + "start": 8415.3, + "end": 8415.98, + "probability": 0.8338 + }, + { + "start": 8416.42, + "end": 8418.14, + "probability": 0.7971 + }, + { + "start": 8419.4, + "end": 8422.76, + "probability": 0.97 + }, + { + "start": 8423.84, + "end": 8428.52, + "probability": 0.9915 + }, + { + "start": 8429.08, + "end": 8429.7, + "probability": 0.7017 + }, + { + "start": 8430.16, + "end": 8430.76, + "probability": 0.963 + }, + { + "start": 8431.22, + "end": 8433.66, + "probability": 0.9917 + }, + { + "start": 8434.82, + "end": 8438.46, + "probability": 0.9863 + }, + { + "start": 8439.16, + "end": 8440.06, + "probability": 0.9954 + }, + { + "start": 8441.36, + "end": 8442.28, + "probability": 0.8512 + }, + { + "start": 8443.04, + "end": 8446.64, + "probability": 0.9377 + }, + { + "start": 8447.1, + "end": 8449.46, + "probability": 0.9987 + }, + { + "start": 8450.0, + "end": 8452.36, + "probability": 0.9861 + }, + { + "start": 8453.84, + "end": 8456.2, + "probability": 0.9966 + }, + { + "start": 8456.4, + "end": 8457.82, + "probability": 0.9591 + }, + { + "start": 8458.1, + "end": 8459.2, + "probability": 0.8086 + }, + { + "start": 8459.3, + "end": 8462.02, + "probability": 0.9736 + }, + { + "start": 8462.86, + "end": 8467.48, + "probability": 0.9763 + }, + { + "start": 8467.66, + "end": 8469.34, + "probability": 0.8857 + }, + { + "start": 8469.38, + "end": 8471.42, + "probability": 0.989 + }, + { + "start": 8471.42, + "end": 8473.65, + "probability": 0.9941 + }, + { + "start": 8474.43, + "end": 8475.72, + "probability": 0.9702 + }, + { + "start": 8476.94, + "end": 8478.02, + "probability": 0.5028 + }, + { + "start": 8478.56, + "end": 8482.0, + "probability": 0.9782 + }, + { + "start": 8484.0, + "end": 8485.06, + "probability": 0.7015 + }, + { + "start": 8486.14, + "end": 8487.2, + "probability": 0.9224 + }, + { + "start": 8488.16, + "end": 8488.94, + "probability": 0.9661 + }, + { + "start": 8489.58, + "end": 8490.18, + "probability": 0.9678 + }, + { + "start": 8492.1, + "end": 8494.16, + "probability": 0.9363 + }, + { + "start": 8494.72, + "end": 8497.05, + "probability": 0.92 + }, + { + "start": 8497.96, + "end": 8501.62, + "probability": 0.9761 + }, + { + "start": 8503.36, + "end": 8504.16, + "probability": 0.8459 + }, + { + "start": 8505.4, + "end": 8506.44, + "probability": 0.8563 + }, + { + "start": 8506.5, + "end": 8507.84, + "probability": 0.9756 + }, + { + "start": 8507.94, + "end": 8510.32, + "probability": 0.7702 + }, + { + "start": 8510.4, + "end": 8512.84, + "probability": 0.9844 + }, + { + "start": 8512.88, + "end": 8515.34, + "probability": 0.9274 + }, + { + "start": 8515.56, + "end": 8516.76, + "probability": 0.5683 + }, + { + "start": 8517.26, + "end": 8517.92, + "probability": 0.2745 + }, + { + "start": 8518.02, + "end": 8520.2, + "probability": 0.9263 + }, + { + "start": 8520.46, + "end": 8520.64, + "probability": 0.9519 + }, + { + "start": 8521.18, + "end": 8522.48, + "probability": 0.86 + }, + { + "start": 8524.4, + "end": 8525.3, + "probability": 0.6901 + }, + { + "start": 8526.6, + "end": 8527.18, + "probability": 0.7313 + }, + { + "start": 8527.26, + "end": 8528.3, + "probability": 0.7196 + }, + { + "start": 8528.72, + "end": 8530.24, + "probability": 0.9902 + }, + { + "start": 8532.26, + "end": 8533.28, + "probability": 0.8851 + }, + { + "start": 8533.52, + "end": 8534.54, + "probability": 0.6901 + }, + { + "start": 8534.64, + "end": 8537.22, + "probability": 0.9414 + }, + { + "start": 8538.32, + "end": 8540.2, + "probability": 0.7342 + }, + { + "start": 8541.15, + "end": 8544.2, + "probability": 0.8612 + }, + { + "start": 8544.76, + "end": 8546.44, + "probability": 0.5122 + }, + { + "start": 8548.24, + "end": 8550.2, + "probability": 0.9554 + }, + { + "start": 8550.28, + "end": 8554.84, + "probability": 0.9944 + }, + { + "start": 8555.78, + "end": 8557.38, + "probability": 0.898 + }, + { + "start": 8557.54, + "end": 8562.12, + "probability": 0.9928 + }, + { + "start": 8563.4, + "end": 8567.6, + "probability": 0.9972 + }, + { + "start": 8568.82, + "end": 8569.4, + "probability": 0.4965 + }, + { + "start": 8570.3, + "end": 8572.62, + "probability": 0.8342 + }, + { + "start": 8573.8, + "end": 8574.24, + "probability": 0.8591 + }, + { + "start": 8575.5, + "end": 8576.4, + "probability": 0.8591 + }, + { + "start": 8576.66, + "end": 8578.38, + "probability": 0.9551 + }, + { + "start": 8578.46, + "end": 8581.42, + "probability": 0.9909 + }, + { + "start": 8582.42, + "end": 8584.72, + "probability": 0.9875 + }, + { + "start": 8585.38, + "end": 8588.06, + "probability": 0.8977 + }, + { + "start": 8588.44, + "end": 8589.26, + "probability": 0.8367 + }, + { + "start": 8589.84, + "end": 8590.72, + "probability": 0.8428 + }, + { + "start": 8591.54, + "end": 8592.4, + "probability": 0.559 + }, + { + "start": 8593.04, + "end": 8594.6, + "probability": 0.897 + }, + { + "start": 8595.28, + "end": 8597.2, + "probability": 0.9908 + }, + { + "start": 8597.62, + "end": 8598.82, + "probability": 0.9937 + }, + { + "start": 8599.26, + "end": 8600.2, + "probability": 0.7053 + }, + { + "start": 8600.2, + "end": 8600.56, + "probability": 0.3948 + }, + { + "start": 8601.48, + "end": 8605.16, + "probability": 0.988 + }, + { + "start": 8606.46, + "end": 8609.42, + "probability": 0.8948 + }, + { + "start": 8609.84, + "end": 8610.08, + "probability": 0.643 + }, + { + "start": 8610.24, + "end": 8610.94, + "probability": 0.6398 + }, + { + "start": 8611.68, + "end": 8612.7, + "probability": 0.9705 + }, + { + "start": 8613.26, + "end": 8614.12, + "probability": 0.8394 + }, + { + "start": 8614.7, + "end": 8616.36, + "probability": 0.9926 + }, + { + "start": 8616.82, + "end": 8617.8, + "probability": 0.9965 + }, + { + "start": 8618.24, + "end": 8619.16, + "probability": 0.9543 + }, + { + "start": 8619.9, + "end": 8622.54, + "probability": 0.9701 + }, + { + "start": 8623.44, + "end": 8626.14, + "probability": 0.7928 + }, + { + "start": 8627.22, + "end": 8628.86, + "probability": 0.9583 + }, + { + "start": 8629.74, + "end": 8630.88, + "probability": 0.7954 + }, + { + "start": 8631.66, + "end": 8634.54, + "probability": 0.9855 + }, + { + "start": 8635.14, + "end": 8636.48, + "probability": 0.8686 + }, + { + "start": 8637.18, + "end": 8639.8, + "probability": 0.9245 + }, + { + "start": 8640.58, + "end": 8644.52, + "probability": 0.96 + }, + { + "start": 8645.88, + "end": 8649.92, + "probability": 0.9906 + }, + { + "start": 8651.08, + "end": 8652.14, + "probability": 0.9756 + }, + { + "start": 8652.74, + "end": 8654.5, + "probability": 0.9927 + }, + { + "start": 8654.94, + "end": 8656.24, + "probability": 0.9597 + }, + { + "start": 8656.72, + "end": 8657.78, + "probability": 0.9875 + }, + { + "start": 8658.66, + "end": 8660.6, + "probability": 0.9792 + }, + { + "start": 8661.42, + "end": 8665.1, + "probability": 0.9719 + }, + { + "start": 8666.12, + "end": 8669.38, + "probability": 0.9192 + }, + { + "start": 8670.3, + "end": 8673.3, + "probability": 0.9951 + }, + { + "start": 8673.94, + "end": 8676.92, + "probability": 0.999 + }, + { + "start": 8677.04, + "end": 8677.86, + "probability": 0.6255 + }, + { + "start": 8678.3, + "end": 8680.96, + "probability": 0.998 + }, + { + "start": 8681.66, + "end": 8684.1, + "probability": 0.5647 + }, + { + "start": 8684.86, + "end": 8686.46, + "probability": 0.6919 + }, + { + "start": 8686.88, + "end": 8689.3, + "probability": 0.9282 + }, + { + "start": 8691.48, + "end": 8695.26, + "probability": 0.958 + }, + { + "start": 8695.88, + "end": 8698.48, + "probability": 0.9284 + }, + { + "start": 8699.08, + "end": 8701.64, + "probability": 0.9451 + }, + { + "start": 8702.5, + "end": 8703.02, + "probability": 0.8854 + }, + { + "start": 8703.58, + "end": 8704.6, + "probability": 0.9668 + }, + { + "start": 8705.38, + "end": 8710.14, + "probability": 0.9813 + }, + { + "start": 8711.24, + "end": 8711.78, + "probability": 0.5591 + }, + { + "start": 8711.88, + "end": 8713.66, + "probability": 0.8756 + }, + { + "start": 8714.3, + "end": 8715.12, + "probability": 0.6862 + }, + { + "start": 8715.7, + "end": 8717.28, + "probability": 0.9959 + }, + { + "start": 8717.86, + "end": 8720.62, + "probability": 0.9907 + }, + { + "start": 8721.16, + "end": 8723.68, + "probability": 0.9951 + }, + { + "start": 8723.68, + "end": 8727.84, + "probability": 0.8776 + }, + { + "start": 8729.0, + "end": 8729.98, + "probability": 0.9067 + }, + { + "start": 8730.52, + "end": 8733.26, + "probability": 0.9626 + }, + { + "start": 8733.92, + "end": 8735.46, + "probability": 0.9676 + }, + { + "start": 8736.28, + "end": 8738.36, + "probability": 0.9771 + }, + { + "start": 8739.02, + "end": 8741.48, + "probability": 0.9406 + }, + { + "start": 8742.02, + "end": 8742.78, + "probability": 0.9403 + }, + { + "start": 8743.74, + "end": 8744.87, + "probability": 0.9927 + }, + { + "start": 8745.48, + "end": 8746.96, + "probability": 0.9681 + }, + { + "start": 8747.6, + "end": 8747.96, + "probability": 0.7774 + }, + { + "start": 8748.4, + "end": 8748.9, + "probability": 0.9314 + }, + { + "start": 8749.0, + "end": 8749.64, + "probability": 0.8801 + }, + { + "start": 8749.8, + "end": 8750.5, + "probability": 0.6557 + }, + { + "start": 8750.58, + "end": 8751.14, + "probability": 0.8304 + }, + { + "start": 8751.22, + "end": 8751.52, + "probability": 0.9651 + }, + { + "start": 8752.3, + "end": 8754.14, + "probability": 0.9157 + }, + { + "start": 8755.26, + "end": 8757.02, + "probability": 0.8919 + }, + { + "start": 8757.58, + "end": 8758.02, + "probability": 0.6075 + }, + { + "start": 8758.8, + "end": 8760.86, + "probability": 0.9939 + }, + { + "start": 8761.3, + "end": 8762.74, + "probability": 0.7291 + }, + { + "start": 8763.16, + "end": 8765.58, + "probability": 0.8718 + }, + { + "start": 8766.22, + "end": 8768.7, + "probability": 0.9125 + }, + { + "start": 8769.24, + "end": 8772.4, + "probability": 0.967 + }, + { + "start": 8773.52, + "end": 8773.74, + "probability": 0.1984 + }, + { + "start": 8773.74, + "end": 8776.78, + "probability": 0.9884 + }, + { + "start": 8777.64, + "end": 8778.18, + "probability": 0.9339 + }, + { + "start": 8778.68, + "end": 8779.86, + "probability": 0.9899 + }, + { + "start": 8780.26, + "end": 8781.02, + "probability": 0.9647 + }, + { + "start": 8781.98, + "end": 8783.04, + "probability": 0.9639 + }, + { + "start": 8784.36, + "end": 8784.8, + "probability": 0.9422 + }, + { + "start": 8786.56, + "end": 8788.94, + "probability": 0.7116 + }, + { + "start": 8789.88, + "end": 8791.8, + "probability": 0.6928 + }, + { + "start": 8793.26, + "end": 8794.24, + "probability": 0.7954 + }, + { + "start": 8795.0, + "end": 8795.62, + "probability": 0.6476 + }, + { + "start": 8796.26, + "end": 8799.46, + "probability": 0.8757 + }, + { + "start": 8802.22, + "end": 8803.38, + "probability": 0.7206 + }, + { + "start": 8804.28, + "end": 8805.34, + "probability": 0.9536 + }, + { + "start": 8806.5, + "end": 8808.72, + "probability": 0.924 + }, + { + "start": 8809.32, + "end": 8811.72, + "probability": 0.958 + }, + { + "start": 8812.78, + "end": 8813.3, + "probability": 0.9134 + }, + { + "start": 8814.38, + "end": 8815.28, + "probability": 0.9753 + }, + { + "start": 8816.1, + "end": 8817.68, + "probability": 0.9963 + }, + { + "start": 8818.42, + "end": 8819.84, + "probability": 0.9556 + }, + { + "start": 8820.28, + "end": 8822.0, + "probability": 0.9829 + }, + { + "start": 8822.96, + "end": 8826.26, + "probability": 0.9859 + }, + { + "start": 8827.06, + "end": 8831.49, + "probability": 0.8754 + }, + { + "start": 8833.04, + "end": 8834.08, + "probability": 0.8551 + }, + { + "start": 8834.82, + "end": 8836.52, + "probability": 0.9878 + }, + { + "start": 8837.0, + "end": 8838.6, + "probability": 0.7278 + }, + { + "start": 8839.24, + "end": 8840.25, + "probability": 0.9861 + }, + { + "start": 8841.7, + "end": 8843.76, + "probability": 0.9673 + }, + { + "start": 8844.58, + "end": 8846.6, + "probability": 0.9751 + }, + { + "start": 8846.6, + "end": 8849.48, + "probability": 0.9315 + }, + { + "start": 8849.9, + "end": 8851.64, + "probability": 0.9761 + }, + { + "start": 8852.5, + "end": 8855.22, + "probability": 0.9059 + }, + { + "start": 8856.34, + "end": 8858.06, + "probability": 0.9835 + }, + { + "start": 8858.16, + "end": 8861.32, + "probability": 0.9636 + }, + { + "start": 8862.42, + "end": 8864.34, + "probability": 0.9346 + }, + { + "start": 8865.16, + "end": 8865.94, + "probability": 0.8182 + }, + { + "start": 8866.76, + "end": 8866.94, + "probability": 0.5661 + }, + { + "start": 8868.14, + "end": 8870.64, + "probability": 0.91 + }, + { + "start": 8871.3, + "end": 8875.16, + "probability": 0.9933 + }, + { + "start": 8875.82, + "end": 8876.58, + "probability": 0.9492 + }, + { + "start": 8877.2, + "end": 8878.06, + "probability": 0.9712 + }, + { + "start": 8878.28, + "end": 8879.46, + "probability": 0.9754 + }, + { + "start": 8879.56, + "end": 8880.9, + "probability": 0.8975 + }, + { + "start": 8881.52, + "end": 8885.1, + "probability": 0.6944 + }, + { + "start": 8885.46, + "end": 8887.74, + "probability": 0.7969 + }, + { + "start": 8888.88, + "end": 8890.6, + "probability": 0.9921 + }, + { + "start": 8891.28, + "end": 8892.58, + "probability": 0.9734 + }, + { + "start": 8893.42, + "end": 8894.78, + "probability": 0.9636 + }, + { + "start": 8894.88, + "end": 8898.04, + "probability": 0.9927 + }, + { + "start": 8899.48, + "end": 8900.36, + "probability": 0.8804 + }, + { + "start": 8901.0, + "end": 8902.32, + "probability": 0.4646 + }, + { + "start": 8902.9, + "end": 8904.74, + "probability": 0.8737 + }, + { + "start": 8904.98, + "end": 8908.18, + "probability": 0.9712 + }, + { + "start": 8908.28, + "end": 8908.76, + "probability": 0.8065 + }, + { + "start": 8909.44, + "end": 8911.34, + "probability": 0.6676 + }, + { + "start": 8911.4, + "end": 8914.82, + "probability": 0.9528 + }, + { + "start": 8915.58, + "end": 8917.3, + "probability": 0.9937 + }, + { + "start": 8918.16, + "end": 8919.0, + "probability": 0.9649 + }, + { + "start": 8919.42, + "end": 8920.26, + "probability": 0.647 + }, + { + "start": 8921.3, + "end": 8924.68, + "probability": 0.9658 + }, + { + "start": 8925.12, + "end": 8927.4, + "probability": 0.9837 + }, + { + "start": 8928.1, + "end": 8929.62, + "probability": 0.9297 + }, + { + "start": 8930.0, + "end": 8934.3, + "probability": 0.934 + }, + { + "start": 8935.44, + "end": 8936.8, + "probability": 0.7653 + }, + { + "start": 8937.64, + "end": 8940.62, + "probability": 0.9307 + }, + { + "start": 8940.9, + "end": 8941.06, + "probability": 0.8005 + }, + { + "start": 8942.22, + "end": 8945.34, + "probability": 0.904 + }, + { + "start": 8946.12, + "end": 8949.54, + "probability": 0.9077 + }, + { + "start": 8949.66, + "end": 8951.12, + "probability": 0.9542 + }, + { + "start": 8951.2, + "end": 8953.64, + "probability": 0.9796 + }, + { + "start": 8954.34, + "end": 8957.86, + "probability": 0.9717 + }, + { + "start": 8959.14, + "end": 8959.42, + "probability": 0.9336 + }, + { + "start": 8960.52, + "end": 8962.82, + "probability": 0.955 + }, + { + "start": 8965.4, + "end": 8967.38, + "probability": 0.5513 + }, + { + "start": 8968.56, + "end": 8969.88, + "probability": 0.8175 + }, + { + "start": 8969.88, + "end": 8970.44, + "probability": 0.8178 + }, + { + "start": 8970.66, + "end": 8971.32, + "probability": 0.8049 + }, + { + "start": 8972.24, + "end": 8972.8, + "probability": 0.9769 + }, + { + "start": 8974.32, + "end": 8976.96, + "probability": 0.8243 + }, + { + "start": 8978.2, + "end": 8981.02, + "probability": 0.9968 + }, + { + "start": 8981.02, + "end": 8983.64, + "probability": 0.9966 + }, + { + "start": 8984.54, + "end": 8985.7, + "probability": 0.4631 + }, + { + "start": 8986.62, + "end": 8987.14, + "probability": 0.4958 + }, + { + "start": 8987.26, + "end": 8990.48, + "probability": 0.9128 + }, + { + "start": 8991.32, + "end": 8994.14, + "probability": 0.9799 + }, + { + "start": 8994.22, + "end": 8994.38, + "probability": 0.3678 + }, + { + "start": 8994.48, + "end": 8994.88, + "probability": 0.3339 + }, + { + "start": 8994.98, + "end": 8996.88, + "probability": 0.9821 + }, + { + "start": 8997.44, + "end": 9000.74, + "probability": 0.9125 + }, + { + "start": 9001.58, + "end": 9004.12, + "probability": 0.8352 + }, + { + "start": 9004.74, + "end": 9008.16, + "probability": 0.9988 + }, + { + "start": 9009.02, + "end": 9010.26, + "probability": 0.8802 + }, + { + "start": 9012.72, + "end": 9014.9, + "probability": 0.9887 + }, + { + "start": 9015.12, + "end": 9017.08, + "probability": 0.5575 + }, + { + "start": 9017.14, + "end": 9021.74, + "probability": 0.8068 + }, + { + "start": 9022.66, + "end": 9024.68, + "probability": 0.8452 + }, + { + "start": 9025.58, + "end": 9026.88, + "probability": 0.9817 + }, + { + "start": 9027.74, + "end": 9029.07, + "probability": 0.6194 + }, + { + "start": 9029.38, + "end": 9031.06, + "probability": 0.8634 + }, + { + "start": 9031.16, + "end": 9031.8, + "probability": 0.9078 + }, + { + "start": 9032.4, + "end": 9034.32, + "probability": 0.9697 + }, + { + "start": 9035.54, + "end": 9036.94, + "probability": 0.7551 + }, + { + "start": 9037.78, + "end": 9038.46, + "probability": 0.8369 + }, + { + "start": 9039.68, + "end": 9041.36, + "probability": 0.76 + }, + { + "start": 9042.02, + "end": 9043.4, + "probability": 0.7903 + }, + { + "start": 9044.06, + "end": 9048.62, + "probability": 0.7853 + }, + { + "start": 9048.94, + "end": 9049.72, + "probability": 0.7674 + }, + { + "start": 9050.92, + "end": 9052.34, + "probability": 0.7299 + }, + { + "start": 9052.74, + "end": 9054.3, + "probability": 0.9594 + }, + { + "start": 9055.24, + "end": 9057.24, + "probability": 0.7518 + }, + { + "start": 9058.44, + "end": 9060.68, + "probability": 0.8849 + }, + { + "start": 9061.06, + "end": 9062.72, + "probability": 0.9277 + }, + { + "start": 9063.92, + "end": 9068.68, + "probability": 0.8373 + }, + { + "start": 9070.02, + "end": 9072.24, + "probability": 0.8557 + }, + { + "start": 9072.44, + "end": 9075.36, + "probability": 0.8764 + }, + { + "start": 9075.68, + "end": 9077.44, + "probability": 0.855 + }, + { + "start": 9077.82, + "end": 9080.32, + "probability": 0.9771 + }, + { + "start": 9080.56, + "end": 9082.01, + "probability": 0.9624 + }, + { + "start": 9082.12, + "end": 9083.0, + "probability": 0.9806 + }, + { + "start": 9083.36, + "end": 9084.82, + "probability": 0.862 + }, + { + "start": 9085.46, + "end": 9087.36, + "probability": 0.851 + }, + { + "start": 9088.0, + "end": 9089.36, + "probability": 0.6625 + }, + { + "start": 9089.84, + "end": 9091.24, + "probability": 0.9017 + }, + { + "start": 9092.44, + "end": 9092.66, + "probability": 0.4867 + }, + { + "start": 9093.22, + "end": 9096.68, + "probability": 0.8655 + }, + { + "start": 9096.74, + "end": 9097.38, + "probability": 0.7087 + }, + { + "start": 9097.74, + "end": 9098.84, + "probability": 0.9106 + }, + { + "start": 9098.98, + "end": 9099.42, + "probability": 0.9414 + }, + { + "start": 9099.6, + "end": 9100.26, + "probability": 0.9575 + }, + { + "start": 9101.12, + "end": 9102.0, + "probability": 0.9834 + }, + { + "start": 9103.2, + "end": 9104.73, + "probability": 0.6718 + }, + { + "start": 9105.7, + "end": 9106.56, + "probability": 0.8143 + }, + { + "start": 9106.96, + "end": 9107.82, + "probability": 0.9419 + }, + { + "start": 9108.32, + "end": 9110.5, + "probability": 0.9461 + }, + { + "start": 9110.74, + "end": 9112.26, + "probability": 0.9833 + }, + { + "start": 9112.7, + "end": 9116.32, + "probability": 0.9902 + }, + { + "start": 9116.56, + "end": 9118.68, + "probability": 0.8321 + }, + { + "start": 9119.86, + "end": 9120.6, + "probability": 0.7635 + }, + { + "start": 9122.7, + "end": 9123.86, + "probability": 0.9912 + }, + { + "start": 9123.92, + "end": 9124.52, + "probability": 0.4647 + }, + { + "start": 9124.54, + "end": 9124.68, + "probability": 0.9724 + }, + { + "start": 9125.06, + "end": 9126.26, + "probability": 0.7706 + }, + { + "start": 9126.92, + "end": 9128.72, + "probability": 0.7892 + }, + { + "start": 9130.29, + "end": 9132.28, + "probability": 0.4966 + }, + { + "start": 9132.74, + "end": 9134.64, + "probability": 0.8091 + }, + { + "start": 9134.7, + "end": 9137.1, + "probability": 0.7155 + }, + { + "start": 9137.56, + "end": 9138.28, + "probability": 0.7451 + }, + { + "start": 9139.26, + "end": 9141.48, + "probability": 0.9876 + }, + { + "start": 9141.56, + "end": 9141.96, + "probability": 0.9182 + }, + { + "start": 9142.08, + "end": 9142.5, + "probability": 0.7405 + }, + { + "start": 9142.9, + "end": 9144.48, + "probability": 0.4708 + }, + { + "start": 9145.36, + "end": 9146.74, + "probability": 0.8782 + }, + { + "start": 9147.32, + "end": 9149.64, + "probability": 0.9691 + }, + { + "start": 9150.52, + "end": 9153.56, + "probability": 0.8231 + }, + { + "start": 9153.78, + "end": 9154.8, + "probability": 0.9531 + }, + { + "start": 9155.96, + "end": 9157.46, + "probability": 0.988 + }, + { + "start": 9158.92, + "end": 9162.04, + "probability": 0.8166 + }, + { + "start": 9162.6, + "end": 9163.88, + "probability": 0.9521 + }, + { + "start": 9165.02, + "end": 9166.72, + "probability": 0.977 + }, + { + "start": 9167.6, + "end": 9168.98, + "probability": 0.6946 + }, + { + "start": 9169.8, + "end": 9172.04, + "probability": 0.8193 + }, + { + "start": 9172.6, + "end": 9175.14, + "probability": 0.7693 + }, + { + "start": 9175.94, + "end": 9180.42, + "probability": 0.9132 + }, + { + "start": 9181.48, + "end": 9184.18, + "probability": 0.9408 + }, + { + "start": 9184.98, + "end": 9185.96, + "probability": 0.9403 + }, + { + "start": 9187.31, + "end": 9190.22, + "probability": 0.6209 + }, + { + "start": 9190.9, + "end": 9195.0, + "probability": 0.8244 + }, + { + "start": 9195.92, + "end": 9197.84, + "probability": 0.9685 + }, + { + "start": 9198.34, + "end": 9199.84, + "probability": 0.5526 + }, + { + "start": 9200.42, + "end": 9200.92, + "probability": 0.9419 + }, + { + "start": 9201.32, + "end": 9206.04, + "probability": 0.9245 + }, + { + "start": 9206.68, + "end": 9208.42, + "probability": 0.8325 + }, + { + "start": 9209.52, + "end": 9211.4, + "probability": 0.8489 + }, + { + "start": 9212.14, + "end": 9214.56, + "probability": 0.9889 + }, + { + "start": 9215.36, + "end": 9216.94, + "probability": 0.9679 + }, + { + "start": 9217.52, + "end": 9218.72, + "probability": 0.7761 + }, + { + "start": 9219.28, + "end": 9223.3, + "probability": 0.9821 + }, + { + "start": 9224.42, + "end": 9226.3, + "probability": 0.993 + }, + { + "start": 9227.4, + "end": 9229.58, + "probability": 0.5752 + }, + { + "start": 9230.2, + "end": 9232.96, + "probability": 0.7513 + }, + { + "start": 9233.98, + "end": 9234.4, + "probability": 0.9894 + }, + { + "start": 9235.36, + "end": 9238.12, + "probability": 0.7254 + }, + { + "start": 9238.12, + "end": 9239.84, + "probability": 0.8102 + }, + { + "start": 9239.84, + "end": 9240.5, + "probability": 0.6144 + }, + { + "start": 9241.16, + "end": 9242.74, + "probability": 0.6887 + }, + { + "start": 9243.5, + "end": 9246.14, + "probability": 0.9951 + }, + { + "start": 9246.96, + "end": 9249.9, + "probability": 0.8841 + }, + { + "start": 9251.32, + "end": 9253.72, + "probability": 0.9939 + }, + { + "start": 9253.82, + "end": 9257.28, + "probability": 0.9406 + }, + { + "start": 9258.38, + "end": 9260.98, + "probability": 0.9613 + }, + { + "start": 9271.72, + "end": 9273.08, + "probability": 0.5602 + }, + { + "start": 9274.04, + "end": 9276.26, + "probability": 0.8602 + }, + { + "start": 9277.52, + "end": 9279.2, + "probability": 0.9598 + }, + { + "start": 9279.76, + "end": 9284.0, + "probability": 0.9973 + }, + { + "start": 9284.9, + "end": 9287.08, + "probability": 0.9978 + }, + { + "start": 9287.42, + "end": 9289.52, + "probability": 0.7482 + }, + { + "start": 9290.38, + "end": 9291.84, + "probability": 0.9268 + }, + { + "start": 9292.28, + "end": 9293.77, + "probability": 0.9987 + }, + { + "start": 9295.6, + "end": 9296.4, + "probability": 0.9674 + }, + { + "start": 9297.58, + "end": 9298.94, + "probability": 0.8875 + }, + { + "start": 9299.9, + "end": 9300.62, + "probability": 0.8634 + }, + { + "start": 9300.68, + "end": 9306.14, + "probability": 0.9836 + }, + { + "start": 9307.32, + "end": 9310.24, + "probability": 0.786 + }, + { + "start": 9310.48, + "end": 9316.9, + "probability": 0.9215 + }, + { + "start": 9317.56, + "end": 9321.26, + "probability": 0.9816 + }, + { + "start": 9321.84, + "end": 9322.86, + "probability": 0.6905 + }, + { + "start": 9323.74, + "end": 9325.76, + "probability": 0.5374 + }, + { + "start": 9326.3, + "end": 9327.64, + "probability": 0.8306 + }, + { + "start": 9329.22, + "end": 9332.58, + "probability": 0.9907 + }, + { + "start": 9332.86, + "end": 9335.18, + "probability": 0.7797 + }, + { + "start": 9335.32, + "end": 9339.24, + "probability": 0.9585 + }, + { + "start": 9339.32, + "end": 9340.02, + "probability": 0.7383 + }, + { + "start": 9341.04, + "end": 9346.46, + "probability": 0.93 + }, + { + "start": 9346.56, + "end": 9347.84, + "probability": 0.96 + }, + { + "start": 9348.58, + "end": 9350.46, + "probability": 0.9619 + }, + { + "start": 9351.84, + "end": 9353.7, + "probability": 0.8882 + }, + { + "start": 9355.0, + "end": 9358.6, + "probability": 0.9466 + }, + { + "start": 9359.36, + "end": 9362.36, + "probability": 0.8684 + }, + { + "start": 9363.06, + "end": 9368.88, + "probability": 0.9896 + }, + { + "start": 9370.0, + "end": 9372.02, + "probability": 0.9906 + }, + { + "start": 9372.4, + "end": 9376.66, + "probability": 0.9873 + }, + { + "start": 9376.7, + "end": 9379.18, + "probability": 0.9927 + }, + { + "start": 9380.08, + "end": 9380.72, + "probability": 0.7298 + }, + { + "start": 9380.9, + "end": 9381.3, + "probability": 0.4109 + }, + { + "start": 9381.4, + "end": 9384.38, + "probability": 0.9688 + }, + { + "start": 9384.5, + "end": 9385.34, + "probability": 0.7153 + }, + { + "start": 9385.8, + "end": 9386.28, + "probability": 0.9951 + }, + { + "start": 9387.16, + "end": 9388.2, + "probability": 0.8711 + }, + { + "start": 9389.38, + "end": 9391.38, + "probability": 0.8658 + }, + { + "start": 9391.96, + "end": 9392.8, + "probability": 0.8833 + }, + { + "start": 9394.2, + "end": 9394.3, + "probability": 0.4087 + }, + { + "start": 9396.65, + "end": 9401.42, + "probability": 0.992 + }, + { + "start": 9402.5, + "end": 9404.58, + "probability": 0.9927 + }, + { + "start": 9404.64, + "end": 9406.78, + "probability": 0.9147 + }, + { + "start": 9407.24, + "end": 9407.82, + "probability": 0.5192 + }, + { + "start": 9408.02, + "end": 9408.62, + "probability": 0.7744 + }, + { + "start": 9409.68, + "end": 9413.82, + "probability": 0.9878 + }, + { + "start": 9414.2, + "end": 9415.86, + "probability": 0.8983 + }, + { + "start": 9416.2, + "end": 9417.58, + "probability": 0.9413 + }, + { + "start": 9418.36, + "end": 9421.38, + "probability": 0.9421 + }, + { + "start": 9422.38, + "end": 9426.38, + "probability": 0.9841 + }, + { + "start": 9426.44, + "end": 9427.24, + "probability": 0.9729 + }, + { + "start": 9427.34, + "end": 9428.38, + "probability": 0.7814 + }, + { + "start": 9428.78, + "end": 9434.5, + "probability": 0.9932 + }, + { + "start": 9435.2, + "end": 9438.64, + "probability": 0.9769 + }, + { + "start": 9438.64, + "end": 9445.14, + "probability": 0.9969 + }, + { + "start": 9445.32, + "end": 9446.32, + "probability": 0.6736 + }, + { + "start": 9446.86, + "end": 9449.78, + "probability": 0.9966 + }, + { + "start": 9450.48, + "end": 9452.94, + "probability": 0.9928 + }, + { + "start": 9453.5, + "end": 9455.9, + "probability": 0.9067 + }, + { + "start": 9456.6, + "end": 9460.32, + "probability": 0.9243 + }, + { + "start": 9461.14, + "end": 9464.68, + "probability": 0.8588 + }, + { + "start": 9466.28, + "end": 9469.78, + "probability": 0.9714 + }, + { + "start": 9470.14, + "end": 9473.3, + "probability": 0.9988 + }, + { + "start": 9474.24, + "end": 9478.54, + "probability": 0.998 + }, + { + "start": 9479.1, + "end": 9480.88, + "probability": 0.9325 + }, + { + "start": 9481.8, + "end": 9485.18, + "probability": 0.9966 + }, + { + "start": 9485.38, + "end": 9487.82, + "probability": 0.9671 + }, + { + "start": 9488.26, + "end": 9489.66, + "probability": 0.0306 + }, + { + "start": 9490.3, + "end": 9492.44, + "probability": 0.4768 + }, + { + "start": 9493.28, + "end": 9496.08, + "probability": 0.9824 + }, + { + "start": 9496.7, + "end": 9498.26, + "probability": 0.9778 + }, + { + "start": 9498.78, + "end": 9502.3, + "probability": 0.998 + }, + { + "start": 9503.28, + "end": 9507.92, + "probability": 0.9401 + }, + { + "start": 9508.6, + "end": 9514.26, + "probability": 0.995 + }, + { + "start": 9514.46, + "end": 9514.92, + "probability": 0.7463 + }, + { + "start": 9515.98, + "end": 9517.76, + "probability": 0.9758 + }, + { + "start": 9519.08, + "end": 9521.22, + "probability": 0.998 + }, + { + "start": 9521.54, + "end": 9524.12, + "probability": 0.9655 + }, + { + "start": 9544.68, + "end": 9547.4, + "probability": 0.6053 + }, + { + "start": 9554.36, + "end": 9554.36, + "probability": 0.2506 + }, + { + "start": 9554.36, + "end": 9555.04, + "probability": 0.4064 + }, + { + "start": 9555.56, + "end": 9557.16, + "probability": 0.6735 + }, + { + "start": 9557.96, + "end": 9558.98, + "probability": 0.7767 + }, + { + "start": 9562.74, + "end": 9566.16, + "probability": 0.5146 + }, + { + "start": 9567.44, + "end": 9568.47, + "probability": 0.6368 + }, + { + "start": 9569.68, + "end": 9577.26, + "probability": 0.8367 + }, + { + "start": 9578.72, + "end": 9579.36, + "probability": 0.9052 + }, + { + "start": 9584.16, + "end": 9587.58, + "probability": 0.9771 + }, + { + "start": 9589.3, + "end": 9589.88, + "probability": 0.8433 + }, + { + "start": 9590.94, + "end": 9595.02, + "probability": 0.9693 + }, + { + "start": 9596.2, + "end": 9597.8, + "probability": 0.9963 + }, + { + "start": 9598.72, + "end": 9603.4, + "probability": 0.9935 + }, + { + "start": 9603.54, + "end": 9603.9, + "probability": 0.7544 + }, + { + "start": 9604.6, + "end": 9605.44, + "probability": 0.8658 + }, + { + "start": 9606.56, + "end": 9607.58, + "probability": 0.7974 + }, + { + "start": 9608.98, + "end": 9609.7, + "probability": 0.9119 + }, + { + "start": 9611.72, + "end": 9612.84, + "probability": 0.6328 + }, + { + "start": 9612.96, + "end": 9614.4, + "probability": 0.9818 + }, + { + "start": 9617.82, + "end": 9618.96, + "probability": 0.9432 + }, + { + "start": 9620.96, + "end": 9625.61, + "probability": 0.9811 + }, + { + "start": 9627.48, + "end": 9629.26, + "probability": 0.7891 + }, + { + "start": 9630.66, + "end": 9633.24, + "probability": 0.9907 + }, + { + "start": 9633.24, + "end": 9636.06, + "probability": 0.5592 + }, + { + "start": 9636.14, + "end": 9637.74, + "probability": 0.8325 + }, + { + "start": 9638.78, + "end": 9639.4, + "probability": 0.5038 + }, + { + "start": 9639.66, + "end": 9640.32, + "probability": 0.83 + }, + { + "start": 9640.38, + "end": 9641.38, + "probability": 0.5047 + }, + { + "start": 9642.6, + "end": 9645.12, + "probability": 0.752 + }, + { + "start": 9646.3, + "end": 9648.54, + "probability": 0.9791 + }, + { + "start": 9648.54, + "end": 9652.3, + "probability": 0.8826 + }, + { + "start": 9652.92, + "end": 9654.31, + "probability": 0.9214 + }, + { + "start": 9655.3, + "end": 9657.84, + "probability": 0.8576 + }, + { + "start": 9660.22, + "end": 9663.06, + "probability": 0.8159 + }, + { + "start": 9663.84, + "end": 9664.96, + "probability": 0.8652 + }, + { + "start": 9665.84, + "end": 9666.94, + "probability": 0.939 + }, + { + "start": 9669.76, + "end": 9671.76, + "probability": 0.7461 + }, + { + "start": 9672.5, + "end": 9673.78, + "probability": 0.7876 + }, + { + "start": 9675.94, + "end": 9677.26, + "probability": 0.9539 + }, + { + "start": 9677.36, + "end": 9678.88, + "probability": 0.9087 + }, + { + "start": 9679.06, + "end": 9679.7, + "probability": 0.1923 + }, + { + "start": 9682.26, + "end": 9682.98, + "probability": 0.7443 + }, + { + "start": 9685.06, + "end": 9685.7, + "probability": 0.8974 + }, + { + "start": 9686.36, + "end": 9689.14, + "probability": 0.9833 + }, + { + "start": 9690.06, + "end": 9691.04, + "probability": 0.5817 + }, + { + "start": 9691.14, + "end": 9694.56, + "probability": 0.6988 + }, + { + "start": 9696.1, + "end": 9696.74, + "probability": 0.5051 + }, + { + "start": 9698.7, + "end": 9699.36, + "probability": 0.9567 + }, + { + "start": 9701.02, + "end": 9701.56, + "probability": 0.8996 + }, + { + "start": 9702.22, + "end": 9703.16, + "probability": 0.9472 + }, + { + "start": 9704.78, + "end": 9705.34, + "probability": 0.9882 + }, + { + "start": 9706.44, + "end": 9707.04, + "probability": 0.9855 + }, + { + "start": 9709.44, + "end": 9710.24, + "probability": 0.9745 + }, + { + "start": 9711.04, + "end": 9711.88, + "probability": 0.9836 + }, + { + "start": 9712.74, + "end": 9713.5, + "probability": 0.9774 + }, + { + "start": 9714.54, + "end": 9715.48, + "probability": 0.9833 + }, + { + "start": 9716.6, + "end": 9719.36, + "probability": 0.9459 + }, + { + "start": 9719.78, + "end": 9720.94, + "probability": 0.5015 + }, + { + "start": 9721.94, + "end": 9722.18, + "probability": 0.7345 + }, + { + "start": 9723.52, + "end": 9724.36, + "probability": 0.9537 + }, + { + "start": 9725.1, + "end": 9726.16, + "probability": 0.7558 + }, + { + "start": 9727.16, + "end": 9728.52, + "probability": 0.8526 + }, + { + "start": 9730.96, + "end": 9733.8, + "probability": 0.9157 + }, + { + "start": 9735.22, + "end": 9737.14, + "probability": 0.93 + }, + { + "start": 9738.18, + "end": 9739.28, + "probability": 0.5335 + }, + { + "start": 9740.48, + "end": 9742.54, + "probability": 0.96 + }, + { + "start": 9743.16, + "end": 9743.94, + "probability": 0.912 + }, + { + "start": 9745.92, + "end": 9748.7, + "probability": 0.8342 + }, + { + "start": 9750.18, + "end": 9752.84, + "probability": 0.5693 + }, + { + "start": 9752.84, + "end": 9755.62, + "probability": 0.5719 + }, + { + "start": 9756.58, + "end": 9759.18, + "probability": 0.8798 + }, + { + "start": 9759.86, + "end": 9761.28, + "probability": 0.7625 + }, + { + "start": 9761.86, + "end": 9762.24, + "probability": 0.3498 + }, + { + "start": 9762.3, + "end": 9762.66, + "probability": 0.6859 + }, + { + "start": 9763.1, + "end": 9763.68, + "probability": 0.5694 + }, + { + "start": 9763.8, + "end": 9764.34, + "probability": 0.4958 + }, + { + "start": 9764.9, + "end": 9766.86, + "probability": 0.889 + }, + { + "start": 9767.75, + "end": 9769.72, + "probability": 0.5009 + }, + { + "start": 9785.04, + "end": 9785.4, + "probability": 0.1594 + }, + { + "start": 9785.52, + "end": 9786.16, + "probability": 0.1232 + }, + { + "start": 9786.32, + "end": 9787.66, + "probability": 0.614 + }, + { + "start": 9787.76, + "end": 9789.36, + "probability": 0.7582 + }, + { + "start": 9790.58, + "end": 9791.56, + "probability": 0.9377 + }, + { + "start": 9791.62, + "end": 9792.46, + "probability": 0.993 + }, + { + "start": 9792.7, + "end": 9793.42, + "probability": 0.7988 + }, + { + "start": 9793.44, + "end": 9794.98, + "probability": 0.8334 + }, + { + "start": 9796.6, + "end": 9798.52, + "probability": 0.9066 + }, + { + "start": 9799.66, + "end": 9800.7, + "probability": 0.6813 + }, + { + "start": 9801.86, + "end": 9805.46, + "probability": 0.5293 + }, + { + "start": 9806.28, + "end": 9808.5, + "probability": 0.9312 + }, + { + "start": 9809.8, + "end": 9810.8, + "probability": 0.9533 + }, + { + "start": 9811.7, + "end": 9820.9, + "probability": 0.847 + }, + { + "start": 9822.54, + "end": 9828.4, + "probability": 0.9648 + }, + { + "start": 9830.95, + "end": 9834.46, + "probability": 0.8842 + }, + { + "start": 9835.04, + "end": 9836.9, + "probability": 0.6666 + }, + { + "start": 9837.84, + "end": 9841.92, + "probability": 0.7732 + }, + { + "start": 9842.74, + "end": 9847.96, + "probability": 0.9406 + }, + { + "start": 9848.56, + "end": 9850.92, + "probability": 0.6073 + }, + { + "start": 9851.94, + "end": 9857.12, + "probability": 0.9194 + }, + { + "start": 9858.36, + "end": 9862.04, + "probability": 0.9948 + }, + { + "start": 9862.66, + "end": 9864.64, + "probability": 0.733 + }, + { + "start": 9865.18, + "end": 9868.18, + "probability": 0.6559 + }, + { + "start": 9868.96, + "end": 9870.14, + "probability": 0.8326 + }, + { + "start": 9870.82, + "end": 9872.98, + "probability": 0.3777 + }, + { + "start": 9874.24, + "end": 9877.8, + "probability": 0.6903 + }, + { + "start": 9878.44, + "end": 9882.38, + "probability": 0.8619 + }, + { + "start": 9883.06, + "end": 9886.04, + "probability": 0.6246 + }, + { + "start": 9886.14, + "end": 9886.74, + "probability": 0.8975 + }, + { + "start": 9886.8, + "end": 9888.0, + "probability": 0.9171 + }, + { + "start": 9888.12, + "end": 9890.18, + "probability": 0.9475 + }, + { + "start": 9890.8, + "end": 9895.03, + "probability": 0.9702 + }, + { + "start": 9896.0, + "end": 9899.12, + "probability": 0.9764 + }, + { + "start": 9899.66, + "end": 9904.5, + "probability": 0.8374 + }, + { + "start": 9905.06, + "end": 9909.66, + "probability": 0.9954 + }, + { + "start": 9911.44, + "end": 9912.74, + "probability": 0.9854 + }, + { + "start": 9913.26, + "end": 9919.06, + "probability": 0.9885 + }, + { + "start": 9919.7, + "end": 9922.22, + "probability": 0.7239 + }, + { + "start": 9922.92, + "end": 9923.3, + "probability": 0.7975 + }, + { + "start": 9923.34, + "end": 9926.3, + "probability": 0.9916 + }, + { + "start": 9927.44, + "end": 9928.89, + "probability": 0.7944 + }, + { + "start": 9929.14, + "end": 9929.74, + "probability": 0.5775 + }, + { + "start": 9929.86, + "end": 9931.86, + "probability": 0.878 + }, + { + "start": 9932.4, + "end": 9934.96, + "probability": 0.8341 + }, + { + "start": 9935.0, + "end": 9937.78, + "probability": 0.9036 + }, + { + "start": 9938.84, + "end": 9941.5, + "probability": 0.8733 + }, + { + "start": 9941.72, + "end": 9942.34, + "probability": 0.8387 + }, + { + "start": 9942.42, + "end": 9944.28, + "probability": 0.9537 + }, + { + "start": 9945.14, + "end": 9947.52, + "probability": 0.5908 + }, + { + "start": 9948.28, + "end": 9948.94, + "probability": 0.7238 + }, + { + "start": 9948.94, + "end": 9952.02, + "probability": 0.8931 + }, + { + "start": 9952.72, + "end": 9955.62, + "probability": 0.854 + }, + { + "start": 9956.14, + "end": 9958.08, + "probability": 0.5409 + }, + { + "start": 9958.6, + "end": 9959.74, + "probability": 0.9631 + }, + { + "start": 9961.5, + "end": 9963.24, + "probability": 0.7667 + }, + { + "start": 9964.72, + "end": 9969.24, + "probability": 0.8381 + }, + { + "start": 9970.16, + "end": 9973.25, + "probability": 0.8332 + }, + { + "start": 9973.92, + "end": 9974.98, + "probability": 0.9801 + }, + { + "start": 9975.92, + "end": 9980.14, + "probability": 0.908 + }, + { + "start": 9980.96, + "end": 9983.83, + "probability": 0.6383 + }, + { + "start": 9984.38, + "end": 9985.81, + "probability": 0.6076 + }, + { + "start": 9986.46, + "end": 9990.1, + "probability": 0.6927 + }, + { + "start": 9990.66, + "end": 9993.76, + "probability": 0.9594 + }, + { + "start": 9994.36, + "end": 9995.9, + "probability": 0.6824 + }, + { + "start": 9996.0, + "end": 9997.0, + "probability": 0.5511 + }, + { + "start": 9997.12, + "end": 9998.08, + "probability": 0.727 + }, + { + "start": 9998.18, + "end": 9999.16, + "probability": 0.7809 + }, + { + "start": 9999.2, + "end": 10000.52, + "probability": 0.8725 + }, + { + "start": 10001.02, + "end": 10003.22, + "probability": 0.9409 + }, + { + "start": 10004.08, + "end": 10006.5, + "probability": 0.7775 + }, + { + "start": 10006.68, + "end": 10007.17, + "probability": 0.4997 + }, + { + "start": 10007.4, + "end": 10007.88, + "probability": 0.8314 + }, + { + "start": 10008.66, + "end": 10009.34, + "probability": 0.7522 + }, + { + "start": 10010.35, + "end": 10015.92, + "probability": 0.9119 + }, + { + "start": 10017.58, + "end": 10020.02, + "probability": 0.7957 + }, + { + "start": 10020.7, + "end": 10021.36, + "probability": 0.8428 + }, + { + "start": 10021.78, + "end": 10023.56, + "probability": 0.4493 + }, + { + "start": 10023.68, + "end": 10026.24, + "probability": 0.7866 + }, + { + "start": 10026.96, + "end": 10030.72, + "probability": 0.9111 + }, + { + "start": 10031.34, + "end": 10035.12, + "probability": 0.9332 + }, + { + "start": 10035.42, + "end": 10037.38, + "probability": 0.7 + }, + { + "start": 10037.52, + "end": 10037.78, + "probability": 0.8454 + }, + { + "start": 10038.56, + "end": 10038.98, + "probability": 0.6736 + }, + { + "start": 10039.26, + "end": 10039.84, + "probability": 0.9013 + }, + { + "start": 10039.92, + "end": 10041.64, + "probability": 0.944 + }, + { + "start": 10042.36, + "end": 10042.94, + "probability": 0.9719 + }, + { + "start": 10043.48, + "end": 10044.5, + "probability": 0.9536 + }, + { + "start": 10045.82, + "end": 10047.84, + "probability": 0.7074 + }, + { + "start": 10066.32, + "end": 10067.76, + "probability": 0.6087 + }, + { + "start": 10068.3, + "end": 10070.28, + "probability": 0.864 + }, + { + "start": 10072.02, + "end": 10072.92, + "probability": 0.73 + }, + { + "start": 10074.54, + "end": 10077.22, + "probability": 0.9854 + }, + { + "start": 10078.52, + "end": 10079.22, + "probability": 0.8488 + }, + { + "start": 10080.56, + "end": 10081.46, + "probability": 0.8011 + }, + { + "start": 10082.42, + "end": 10087.4, + "probability": 0.9355 + }, + { + "start": 10087.48, + "end": 10088.3, + "probability": 0.5001 + }, + { + "start": 10088.36, + "end": 10089.08, + "probability": 0.8807 + }, + { + "start": 10090.28, + "end": 10092.22, + "probability": 0.9193 + }, + { + "start": 10097.68, + "end": 10099.9, + "probability": 0.9825 + }, + { + "start": 10100.56, + "end": 10105.5, + "probability": 0.8533 + }, + { + "start": 10106.86, + "end": 10110.42, + "probability": 0.7132 + }, + { + "start": 10111.04, + "end": 10113.0, + "probability": 0.6669 + }, + { + "start": 10113.86, + "end": 10116.74, + "probability": 0.8994 + }, + { + "start": 10117.38, + "end": 10118.38, + "probability": 0.816 + }, + { + "start": 10119.28, + "end": 10119.78, + "probability": 0.9707 + }, + { + "start": 10121.78, + "end": 10122.38, + "probability": 0.9851 + }, + { + "start": 10124.32, + "end": 10127.38, + "probability": 0.9917 + }, + { + "start": 10128.44, + "end": 10129.84, + "probability": 0.7465 + }, + { + "start": 10130.74, + "end": 10132.24, + "probability": 0.9373 + }, + { + "start": 10132.7, + "end": 10134.5, + "probability": 0.9458 + }, + { + "start": 10135.66, + "end": 10137.04, + "probability": 0.9797 + }, + { + "start": 10139.0, + "end": 10140.9, + "probability": 0.8418 + }, + { + "start": 10142.04, + "end": 10142.94, + "probability": 0.5401 + }, + { + "start": 10144.48, + "end": 10147.42, + "probability": 0.8979 + }, + { + "start": 10148.14, + "end": 10150.9, + "probability": 0.9243 + }, + { + "start": 10152.62, + "end": 10153.46, + "probability": 0.6883 + }, + { + "start": 10154.66, + "end": 10156.6, + "probability": 0.8638 + }, + { + "start": 10157.76, + "end": 10160.36, + "probability": 0.881 + }, + { + "start": 10161.86, + "end": 10164.96, + "probability": 0.9862 + }, + { + "start": 10166.28, + "end": 10168.14, + "probability": 0.9845 + }, + { + "start": 10168.32, + "end": 10170.52, + "probability": 0.8947 + }, + { + "start": 10171.16, + "end": 10174.22, + "probability": 0.9328 + }, + { + "start": 10176.44, + "end": 10178.44, + "probability": 0.9878 + }, + { + "start": 10179.68, + "end": 10182.48, + "probability": 0.9856 + }, + { + "start": 10183.22, + "end": 10183.84, + "probability": 0.9753 + }, + { + "start": 10185.08, + "end": 10186.64, + "probability": 0.9798 + }, + { + "start": 10187.6, + "end": 10191.18, + "probability": 0.9824 + }, + { + "start": 10191.78, + "end": 10192.86, + "probability": 0.776 + }, + { + "start": 10193.54, + "end": 10196.96, + "probability": 0.9917 + }, + { + "start": 10198.06, + "end": 10200.22, + "probability": 0.8289 + }, + { + "start": 10201.24, + "end": 10204.92, + "probability": 0.9666 + }, + { + "start": 10206.26, + "end": 10209.18, + "probability": 0.9729 + }, + { + "start": 10210.18, + "end": 10214.1, + "probability": 0.9952 + }, + { + "start": 10214.88, + "end": 10215.56, + "probability": 0.7488 + }, + { + "start": 10216.98, + "end": 10217.94, + "probability": 0.738 + }, + { + "start": 10218.16, + "end": 10223.18, + "probability": 0.9863 + }, + { + "start": 10223.84, + "end": 10226.64, + "probability": 0.9969 + }, + { + "start": 10227.16, + "end": 10227.84, + "probability": 0.8516 + }, + { + "start": 10229.12, + "end": 10230.8, + "probability": 0.9972 + }, + { + "start": 10231.74, + "end": 10233.86, + "probability": 0.9966 + }, + { + "start": 10234.72, + "end": 10237.34, + "probability": 0.9978 + }, + { + "start": 10237.88, + "end": 10240.92, + "probability": 0.9191 + }, + { + "start": 10241.42, + "end": 10242.04, + "probability": 0.7119 + }, + { + "start": 10242.58, + "end": 10243.12, + "probability": 0.8709 + }, + { + "start": 10243.4, + "end": 10245.78, + "probability": 0.7355 + }, + { + "start": 10246.24, + "end": 10247.12, + "probability": 0.7016 + }, + { + "start": 10251.26, + "end": 10252.74, + "probability": 0.7484 + }, + { + "start": 10256.54, + "end": 10258.24, + "probability": 0.8799 + }, + { + "start": 10258.3, + "end": 10259.32, + "probability": 0.8378 + }, + { + "start": 10259.4, + "end": 10259.89, + "probability": 0.2195 + }, + { + "start": 10262.66, + "end": 10263.22, + "probability": 0.8233 + }, + { + "start": 10265.72, + "end": 10266.14, + "probability": 0.7283 + }, + { + "start": 10277.82, + "end": 10280.8, + "probability": 0.7479 + }, + { + "start": 10284.1, + "end": 10286.82, + "probability": 0.897 + }, + { + "start": 10289.16, + "end": 10290.58, + "probability": 0.9496 + }, + { + "start": 10292.06, + "end": 10292.94, + "probability": 0.7179 + }, + { + "start": 10293.84, + "end": 10294.94, + "probability": 0.9909 + }, + { + "start": 10295.94, + "end": 10297.52, + "probability": 0.754 + }, + { + "start": 10298.5, + "end": 10304.24, + "probability": 0.9878 + }, + { + "start": 10304.26, + "end": 10306.44, + "probability": 0.757 + }, + { + "start": 10307.16, + "end": 10309.48, + "probability": 0.795 + }, + { + "start": 10310.52, + "end": 10312.84, + "probability": 0.6578 + }, + { + "start": 10314.66, + "end": 10316.22, + "probability": 0.9966 + }, + { + "start": 10317.44, + "end": 10319.82, + "probability": 0.9708 + }, + { + "start": 10321.1, + "end": 10327.4, + "probability": 0.9891 + }, + { + "start": 10328.1, + "end": 10330.64, + "probability": 0.9936 + }, + { + "start": 10333.18, + "end": 10333.88, + "probability": 0.5341 + }, + { + "start": 10334.66, + "end": 10339.14, + "probability": 0.996 + }, + { + "start": 10339.72, + "end": 10342.22, + "probability": 0.9976 + }, + { + "start": 10342.78, + "end": 10347.42, + "probability": 0.9956 + }, + { + "start": 10348.2, + "end": 10352.86, + "probability": 0.9985 + }, + { + "start": 10353.1, + "end": 10361.18, + "probability": 0.9954 + }, + { + "start": 10362.36, + "end": 10364.0, + "probability": 0.5 + }, + { + "start": 10364.12, + "end": 10366.08, + "probability": 0.8356 + }, + { + "start": 10366.62, + "end": 10373.1, + "probability": 0.972 + }, + { + "start": 10374.46, + "end": 10377.2, + "probability": 0.969 + }, + { + "start": 10378.68, + "end": 10380.22, + "probability": 0.974 + }, + { + "start": 10382.16, + "end": 10385.7, + "probability": 0.9714 + }, + { + "start": 10386.7, + "end": 10392.9, + "probability": 0.8994 + }, + { + "start": 10394.64, + "end": 10395.42, + "probability": 0.7048 + }, + { + "start": 10396.28, + "end": 10399.16, + "probability": 0.9946 + }, + { + "start": 10399.96, + "end": 10402.83, + "probability": 0.991 + }, + { + "start": 10403.02, + "end": 10408.7, + "probability": 0.9428 + }, + { + "start": 10409.48, + "end": 10410.52, + "probability": 0.6517 + }, + { + "start": 10411.12, + "end": 10411.52, + "probability": 0.6143 + }, + { + "start": 10412.84, + "end": 10416.82, + "probability": 0.9068 + }, + { + "start": 10417.34, + "end": 10422.82, + "probability": 0.9811 + }, + { + "start": 10424.08, + "end": 10427.3, + "probability": 0.979 + }, + { + "start": 10428.1, + "end": 10429.4, + "probability": 0.9776 + }, + { + "start": 10430.18, + "end": 10433.42, + "probability": 0.8768 + }, + { + "start": 10433.64, + "end": 10437.12, + "probability": 0.9847 + }, + { + "start": 10438.34, + "end": 10438.88, + "probability": 0.6165 + }, + { + "start": 10439.8, + "end": 10442.02, + "probability": 0.9408 + }, + { + "start": 10442.8, + "end": 10443.32, + "probability": 0.9438 + }, + { + "start": 10443.88, + "end": 10444.5, + "probability": 0.9916 + }, + { + "start": 10445.14, + "end": 10446.42, + "probability": 0.9531 + }, + { + "start": 10446.94, + "end": 10449.0, + "probability": 0.9836 + }, + { + "start": 10449.8, + "end": 10456.52, + "probability": 0.9877 + }, + { + "start": 10457.54, + "end": 10458.71, + "probability": 0.9888 + }, + { + "start": 10459.64, + "end": 10468.6, + "probability": 0.998 + }, + { + "start": 10469.84, + "end": 10470.98, + "probability": 0.9921 + }, + { + "start": 10471.64, + "end": 10476.42, + "probability": 0.8555 + }, + { + "start": 10477.62, + "end": 10481.76, + "probability": 0.9893 + }, + { + "start": 10482.5, + "end": 10487.84, + "probability": 0.9905 + }, + { + "start": 10488.56, + "end": 10491.2, + "probability": 0.9934 + }, + { + "start": 10492.44, + "end": 10494.3, + "probability": 0.9096 + }, + { + "start": 10494.86, + "end": 10495.72, + "probability": 0.9137 + }, + { + "start": 10496.38, + "end": 10497.24, + "probability": 0.7996 + }, + { + "start": 10497.98, + "end": 10498.83, + "probability": 0.957 + }, + { + "start": 10499.72, + "end": 10503.62, + "probability": 0.9678 + }, + { + "start": 10506.16, + "end": 10506.68, + "probability": 0.5332 + }, + { + "start": 10506.72, + "end": 10510.02, + "probability": 0.9891 + }, + { + "start": 10510.04, + "end": 10510.92, + "probability": 0.906 + }, + { + "start": 10511.32, + "end": 10512.08, + "probability": 0.6515 + }, + { + "start": 10512.26, + "end": 10512.34, + "probability": 0.7439 + }, + { + "start": 10512.34, + "end": 10513.58, + "probability": 0.464 + }, + { + "start": 10513.6, + "end": 10514.3, + "probability": 0.6588 + }, + { + "start": 10514.8, + "end": 10516.54, + "probability": 0.4807 + }, + { + "start": 10517.36, + "end": 10520.36, + "probability": 0.9485 + }, + { + "start": 10520.44, + "end": 10521.26, + "probability": 0.4866 + }, + { + "start": 10521.38, + "end": 10521.44, + "probability": 0.229 + }, + { + "start": 10522.32, + "end": 10523.26, + "probability": 0.7078 + }, + { + "start": 10524.12, + "end": 10524.26, + "probability": 0.0672 + }, + { + "start": 10524.26, + "end": 10524.26, + "probability": 0.7705 + }, + { + "start": 10525.16, + "end": 10527.4, + "probability": 0.9359 + }, + { + "start": 10528.14, + "end": 10531.6, + "probability": 0.9935 + }, + { + "start": 10532.12, + "end": 10533.18, + "probability": 0.7023 + }, + { + "start": 10533.2, + "end": 10533.54, + "probability": 0.8591 + }, + { + "start": 10533.74, + "end": 10538.62, + "probability": 0.9923 + }, + { + "start": 10539.06, + "end": 10542.86, + "probability": 0.8916 + }, + { + "start": 10543.32, + "end": 10545.52, + "probability": 0.9985 + }, + { + "start": 10546.34, + "end": 10550.62, + "probability": 0.9195 + }, + { + "start": 10551.36, + "end": 10552.04, + "probability": 0.9577 + }, + { + "start": 10553.06, + "end": 10557.24, + "probability": 0.9875 + }, + { + "start": 10557.7, + "end": 10562.12, + "probability": 0.9244 + }, + { + "start": 10562.66, + "end": 10564.66, + "probability": 0.7177 + }, + { + "start": 10565.6, + "end": 10566.12, + "probability": 0.8321 + }, + { + "start": 10566.92, + "end": 10567.72, + "probability": 0.9649 + }, + { + "start": 10568.62, + "end": 10574.12, + "probability": 0.9902 + }, + { + "start": 10574.66, + "end": 10575.34, + "probability": 0.7014 + }, + { + "start": 10576.1, + "end": 10578.23, + "probability": 0.9675 + }, + { + "start": 10578.8, + "end": 10580.28, + "probability": 0.8106 + }, + { + "start": 10580.9, + "end": 10583.92, + "probability": 0.897 + }, + { + "start": 10584.32, + "end": 10587.62, + "probability": 0.8705 + }, + { + "start": 10588.28, + "end": 10588.72, + "probability": 0.877 + }, + { + "start": 10589.24, + "end": 10591.79, + "probability": 0.693 + }, + { + "start": 10592.12, + "end": 10593.09, + "probability": 0.8385 + }, + { + "start": 10593.44, + "end": 10593.7, + "probability": 0.2565 + }, + { + "start": 10593.7, + "end": 10595.01, + "probability": 0.8477 + }, + { + "start": 10595.48, + "end": 10596.56, + "probability": 0.851 + }, + { + "start": 10596.6, + "end": 10597.78, + "probability": 0.88 + }, + { + "start": 10598.2, + "end": 10598.38, + "probability": 0.8228 + }, + { + "start": 10598.78, + "end": 10600.56, + "probability": 0.7741 + }, + { + "start": 10601.46, + "end": 10602.5, + "probability": 0.3951 + }, + { + "start": 10602.8, + "end": 10602.8, + "probability": 0.6407 + }, + { + "start": 10602.92, + "end": 10603.34, + "probability": 0.009 + }, + { + "start": 10603.38, + "end": 10604.96, + "probability": 0.9785 + }, + { + "start": 10605.1, + "end": 10606.24, + "probability": 0.1184 + }, + { + "start": 10607.04, + "end": 10608.67, + "probability": 0.3662 + }, + { + "start": 10609.28, + "end": 10610.72, + "probability": 0.5104 + }, + { + "start": 10612.38, + "end": 10613.9, + "probability": 0.8671 + }, + { + "start": 10614.82, + "end": 10616.48, + "probability": 0.8918 + }, + { + "start": 10616.76, + "end": 10624.2, + "probability": 0.9689 + }, + { + "start": 10624.86, + "end": 10628.36, + "probability": 0.8411 + }, + { + "start": 10629.28, + "end": 10631.14, + "probability": 0.9404 + }, + { + "start": 10632.02, + "end": 10635.54, + "probability": 0.9772 + }, + { + "start": 10636.4, + "end": 10637.16, + "probability": 0.8629 + }, + { + "start": 10637.7, + "end": 10642.26, + "probability": 0.9819 + }, + { + "start": 10643.04, + "end": 10644.32, + "probability": 0.5126 + }, + { + "start": 10644.32, + "end": 10644.62, + "probability": 0.4577 + }, + { + "start": 10644.92, + "end": 10649.36, + "probability": 0.998 + }, + { + "start": 10650.04, + "end": 10652.4, + "probability": 0.9946 + }, + { + "start": 10652.92, + "end": 10655.22, + "probability": 0.9966 + }, + { + "start": 10655.64, + "end": 10656.52, + "probability": 0.8381 + }, + { + "start": 10656.9, + "end": 10659.92, + "probability": 0.9844 + }, + { + "start": 10660.34, + "end": 10661.06, + "probability": 0.6573 + }, + { + "start": 10662.52, + "end": 10662.9, + "probability": 0.5883 + }, + { + "start": 10662.98, + "end": 10665.3, + "probability": 0.8781 + }, + { + "start": 10669.12, + "end": 10669.6, + "probability": 0.7383 + }, + { + "start": 10670.32, + "end": 10672.5, + "probability": 0.9577 + }, + { + "start": 10680.3, + "end": 10683.22, + "probability": 0.917 + }, + { + "start": 10686.24, + "end": 10690.66, + "probability": 0.7374 + }, + { + "start": 10692.13, + "end": 10701.42, + "probability": 0.9863 + }, + { + "start": 10701.42, + "end": 10707.08, + "probability": 0.9934 + }, + { + "start": 10709.78, + "end": 10714.26, + "probability": 0.9749 + }, + { + "start": 10714.92, + "end": 10715.86, + "probability": 0.6067 + }, + { + "start": 10717.04, + "end": 10722.24, + "probability": 0.9105 + }, + { + "start": 10723.66, + "end": 10729.68, + "probability": 0.9937 + }, + { + "start": 10730.26, + "end": 10731.2, + "probability": 0.9258 + }, + { + "start": 10733.12, + "end": 10734.98, + "probability": 0.8773 + }, + { + "start": 10735.56, + "end": 10735.92, + "probability": 0.589 + }, + { + "start": 10736.58, + "end": 10739.74, + "probability": 0.8162 + }, + { + "start": 10740.26, + "end": 10740.92, + "probability": 0.8205 + }, + { + "start": 10741.94, + "end": 10745.78, + "probability": 0.9178 + }, + { + "start": 10745.78, + "end": 10749.94, + "probability": 0.9805 + }, + { + "start": 10751.26, + "end": 10754.24, + "probability": 0.7212 + }, + { + "start": 10755.08, + "end": 10758.64, + "probability": 0.9484 + }, + { + "start": 10759.86, + "end": 10762.24, + "probability": 0.9614 + }, + { + "start": 10762.38, + "end": 10764.92, + "probability": 0.8437 + }, + { + "start": 10766.4, + "end": 10769.92, + "probability": 0.8999 + }, + { + "start": 10771.04, + "end": 10772.88, + "probability": 0.4799 + }, + { + "start": 10773.62, + "end": 10775.06, + "probability": 0.8962 + }, + { + "start": 10775.36, + "end": 10778.32, + "probability": 0.9397 + }, + { + "start": 10779.34, + "end": 10781.76, + "probability": 0.9941 + }, + { + "start": 10781.92, + "end": 10783.94, + "probability": 0.9945 + }, + { + "start": 10784.7, + "end": 10786.94, + "probability": 0.7117 + }, + { + "start": 10786.96, + "end": 10788.1, + "probability": 0.5317 + }, + { + "start": 10788.54, + "end": 10791.58, + "probability": 0.9586 + }, + { + "start": 10792.9, + "end": 10800.04, + "probability": 0.9839 + }, + { + "start": 10800.08, + "end": 10805.06, + "probability": 0.9989 + }, + { + "start": 10806.04, + "end": 10806.56, + "probability": 0.7705 + }, + { + "start": 10807.12, + "end": 10807.74, + "probability": 0.9777 + }, + { + "start": 10808.26, + "end": 10815.7, + "probability": 0.9749 + }, + { + "start": 10816.74, + "end": 10818.86, + "probability": 0.9769 + }, + { + "start": 10819.56, + "end": 10825.44, + "probability": 0.9846 + }, + { + "start": 10826.06, + "end": 10830.44, + "probability": 0.9869 + }, + { + "start": 10831.7, + "end": 10834.62, + "probability": 0.8866 + }, + { + "start": 10834.62, + "end": 10837.72, + "probability": 0.9988 + }, + { + "start": 10838.38, + "end": 10843.34, + "probability": 0.9856 + }, + { + "start": 10843.96, + "end": 10846.46, + "probability": 0.9998 + }, + { + "start": 10847.22, + "end": 10847.82, + "probability": 0.5961 + }, + { + "start": 10847.88, + "end": 10854.26, + "probability": 0.9664 + }, + { + "start": 10854.8, + "end": 10856.9, + "probability": 0.9908 + }, + { + "start": 10857.42, + "end": 10860.66, + "probability": 0.9904 + }, + { + "start": 10861.48, + "end": 10861.6, + "probability": 0.0979 + }, + { + "start": 10861.82, + "end": 10862.54, + "probability": 0.7014 + }, + { + "start": 10863.02, + "end": 10866.9, + "probability": 0.9475 + }, + { + "start": 10867.4, + "end": 10870.24, + "probability": 0.9484 + }, + { + "start": 10870.9, + "end": 10877.18, + "probability": 0.9763 + }, + { + "start": 10877.82, + "end": 10879.96, + "probability": 0.8691 + }, + { + "start": 10880.08, + "end": 10880.22, + "probability": 0.0709 + }, + { + "start": 10880.52, + "end": 10884.12, + "probability": 0.9454 + }, + { + "start": 10884.58, + "end": 10889.08, + "probability": 0.9982 + }, + { + "start": 10889.82, + "end": 10891.5, + "probability": 0.9951 + }, + { + "start": 10891.98, + "end": 10893.3, + "probability": 0.7933 + }, + { + "start": 10893.8, + "end": 10895.88, + "probability": 0.9 + }, + { + "start": 10896.42, + "end": 10897.38, + "probability": 0.916 + }, + { + "start": 10897.42, + "end": 10898.92, + "probability": 0.9251 + }, + { + "start": 10898.98, + "end": 10899.92, + "probability": 0.8985 + }, + { + "start": 10900.2, + "end": 10902.02, + "probability": 0.989 + }, + { + "start": 10902.72, + "end": 10905.52, + "probability": 0.9476 + }, + { + "start": 10905.58, + "end": 10907.26, + "probability": 0.9739 + }, + { + "start": 10907.66, + "end": 10908.36, + "probability": 0.8559 + }, + { + "start": 10909.4, + "end": 10911.68, + "probability": 0.9827 + }, + { + "start": 10912.3, + "end": 10913.56, + "probability": 0.9338 + }, + { + "start": 10913.64, + "end": 10914.88, + "probability": 0.8183 + }, + { + "start": 10915.26, + "end": 10915.96, + "probability": 0.547 + }, + { + "start": 10916.04, + "end": 10918.3, + "probability": 0.9919 + }, + { + "start": 10918.7, + "end": 10922.52, + "probability": 0.9812 + }, + { + "start": 10923.1, + "end": 10925.04, + "probability": 0.9571 + }, + { + "start": 10925.46, + "end": 10927.6, + "probability": 0.8818 + }, + { + "start": 10927.88, + "end": 10929.22, + "probability": 0.9451 + }, + { + "start": 10929.96, + "end": 10932.32, + "probability": 0.9971 + }, + { + "start": 10933.2, + "end": 10937.66, + "probability": 0.9767 + }, + { + "start": 10938.06, + "end": 10942.1, + "probability": 0.9756 + }, + { + "start": 10942.18, + "end": 10944.0, + "probability": 0.9973 + }, + { + "start": 10945.34, + "end": 10950.28, + "probability": 0.8977 + }, + { + "start": 10950.36, + "end": 10952.24, + "probability": 0.9818 + }, + { + "start": 10953.0, + "end": 10956.28, + "probability": 0.9695 + }, + { + "start": 10956.28, + "end": 10959.82, + "probability": 0.9965 + }, + { + "start": 10960.38, + "end": 10963.24, + "probability": 0.9947 + }, + { + "start": 10963.24, + "end": 10965.6, + "probability": 0.9818 + }, + { + "start": 10966.06, + "end": 10966.72, + "probability": 0.7557 + }, + { + "start": 10967.32, + "end": 10970.34, + "probability": 0.9979 + }, + { + "start": 10970.34, + "end": 10974.48, + "probability": 0.9741 + }, + { + "start": 10975.3, + "end": 10978.28, + "probability": 0.9969 + }, + { + "start": 10978.28, + "end": 10982.28, + "probability": 0.9647 + }, + { + "start": 10983.04, + "end": 10987.6, + "probability": 0.9882 + }, + { + "start": 10987.96, + "end": 10989.68, + "probability": 0.912 + }, + { + "start": 10989.72, + "end": 10990.34, + "probability": 0.4328 + }, + { + "start": 10990.74, + "end": 10993.08, + "probability": 0.9633 + }, + { + "start": 10994.36, + "end": 10995.04, + "probability": 0.7047 + }, + { + "start": 10995.56, + "end": 10996.58, + "probability": 0.9477 + }, + { + "start": 11008.62, + "end": 11010.42, + "probability": 0.5863 + }, + { + "start": 11011.28, + "end": 11012.8, + "probability": 0.7141 + }, + { + "start": 11013.96, + "end": 11016.5, + "probability": 0.8757 + }, + { + "start": 11017.16, + "end": 11018.73, + "probability": 0.7457 + }, + { + "start": 11019.78, + "end": 11022.68, + "probability": 0.4999 + }, + { + "start": 11025.2, + "end": 11028.92, + "probability": 0.7453 + }, + { + "start": 11029.68, + "end": 11031.82, + "probability": 0.6625 + }, + { + "start": 11032.66, + "end": 11034.8, + "probability": 0.6051 + }, + { + "start": 11035.52, + "end": 11035.87, + "probability": 0.0478 + }, + { + "start": 11036.74, + "end": 11040.16, + "probability": 0.9955 + }, + { + "start": 11041.44, + "end": 11045.84, + "probability": 0.8769 + }, + { + "start": 11046.92, + "end": 11049.94, + "probability": 0.8939 + }, + { + "start": 11050.42, + "end": 11051.94, + "probability": 0.5805 + }, + { + "start": 11052.04, + "end": 11052.62, + "probability": 0.6241 + }, + { + "start": 11053.24, + "end": 11058.48, + "probability": 0.8369 + }, + { + "start": 11059.16, + "end": 11065.08, + "probability": 0.9305 + }, + { + "start": 11067.37, + "end": 11072.42, + "probability": 0.9889 + }, + { + "start": 11073.02, + "end": 11074.5, + "probability": 0.7829 + }, + { + "start": 11075.04, + "end": 11075.92, + "probability": 0.6801 + }, + { + "start": 11076.06, + "end": 11079.14, + "probability": 0.6769 + }, + { + "start": 11080.17, + "end": 11081.72, + "probability": 0.8456 + }, + { + "start": 11082.56, + "end": 11086.84, + "probability": 0.6214 + }, + { + "start": 11087.5, + "end": 11089.6, + "probability": 0.8338 + }, + { + "start": 11090.5, + "end": 11094.44, + "probability": 0.9805 + }, + { + "start": 11095.64, + "end": 11096.22, + "probability": 0.7322 + }, + { + "start": 11097.18, + "end": 11100.12, + "probability": 0.8287 + }, + { + "start": 11100.66, + "end": 11104.6, + "probability": 0.9707 + }, + { + "start": 11105.55, + "end": 11108.56, + "probability": 0.8669 + }, + { + "start": 11109.08, + "end": 11110.88, + "probability": 0.9785 + }, + { + "start": 11111.86, + "end": 11113.31, + "probability": 0.9764 + }, + { + "start": 11114.1, + "end": 11118.58, + "probability": 0.9669 + }, + { + "start": 11119.2, + "end": 11120.46, + "probability": 0.7397 + }, + { + "start": 11120.7, + "end": 11123.76, + "probability": 0.8044 + }, + { + "start": 11123.9, + "end": 11124.78, + "probability": 0.8155 + }, + { + "start": 11125.26, + "end": 11126.14, + "probability": 0.9951 + }, + { + "start": 11127.36, + "end": 11131.08, + "probability": 0.9227 + }, + { + "start": 11132.02, + "end": 11136.5, + "probability": 0.9317 + }, + { + "start": 11136.5, + "end": 11139.3, + "probability": 0.9814 + }, + { + "start": 11139.94, + "end": 11142.24, + "probability": 0.6999 + }, + { + "start": 11142.36, + "end": 11143.06, + "probability": 0.749 + }, + { + "start": 11143.26, + "end": 11144.08, + "probability": 0.7026 + }, + { + "start": 11144.58, + "end": 11145.68, + "probability": 0.8308 + }, + { + "start": 11146.3, + "end": 11148.9, + "probability": 0.7979 + }, + { + "start": 11150.16, + "end": 11151.24, + "probability": 0.5791 + }, + { + "start": 11151.64, + "end": 11155.98, + "probability": 0.9735 + }, + { + "start": 11156.12, + "end": 11156.7, + "probability": 0.5412 + }, + { + "start": 11157.16, + "end": 11158.48, + "probability": 0.8202 + }, + { + "start": 11159.68, + "end": 11160.42, + "probability": 0.7819 + }, + { + "start": 11161.14, + "end": 11161.64, + "probability": 0.6868 + }, + { + "start": 11162.66, + "end": 11169.5, + "probability": 0.8085 + }, + { + "start": 11171.51, + "end": 11174.42, + "probability": 0.4657 + }, + { + "start": 11175.3, + "end": 11177.32, + "probability": 0.9839 + }, + { + "start": 11177.38, + "end": 11181.12, + "probability": 0.7499 + }, + { + "start": 11181.24, + "end": 11181.24, + "probability": 0.5031 + }, + { + "start": 11181.24, + "end": 11184.42, + "probability": 0.5088 + }, + { + "start": 11185.64, + "end": 11187.48, + "probability": 0.5223 + }, + { + "start": 11188.2, + "end": 11190.5, + "probability": 0.7291 + }, + { + "start": 11190.98, + "end": 11192.22, + "probability": 0.9718 + }, + { + "start": 11192.38, + "end": 11194.28, + "probability": 0.8813 + }, + { + "start": 11195.08, + "end": 11196.84, + "probability": 0.5031 + }, + { + "start": 11197.56, + "end": 11198.32, + "probability": 0.4933 + }, + { + "start": 11198.56, + "end": 11199.46, + "probability": 0.7258 + }, + { + "start": 11199.8, + "end": 11200.28, + "probability": 0.3809 + }, + { + "start": 11200.38, + "end": 11200.66, + "probability": 0.7957 + }, + { + "start": 11200.88, + "end": 11201.5, + "probability": 0.9271 + }, + { + "start": 11201.94, + "end": 11205.32, + "probability": 0.9263 + }, + { + "start": 11210.1, + "end": 11211.0, + "probability": 0.8403 + }, + { + "start": 11211.68, + "end": 11212.74, + "probability": 0.9555 + }, + { + "start": 11212.98, + "end": 11213.65, + "probability": 0.9697 + }, + { + "start": 11214.08, + "end": 11215.0, + "probability": 0.9028 + }, + { + "start": 11215.44, + "end": 11216.18, + "probability": 0.8089 + }, + { + "start": 11216.74, + "end": 11218.27, + "probability": 0.8236 + }, + { + "start": 11218.5, + "end": 11220.6, + "probability": 0.7397 + }, + { + "start": 11220.92, + "end": 11221.82, + "probability": 0.9612 + }, + { + "start": 11221.92, + "end": 11222.08, + "probability": 0.6348 + }, + { + "start": 11222.26, + "end": 11223.16, + "probability": 0.9078 + }, + { + "start": 11223.24, + "end": 11223.6, + "probability": 0.4189 + }, + { + "start": 11224.06, + "end": 11224.98, + "probability": 0.9468 + }, + { + "start": 11225.36, + "end": 11226.38, + "probability": 0.8458 + }, + { + "start": 11226.86, + "end": 11227.82, + "probability": 0.7886 + }, + { + "start": 11228.44, + "end": 11230.18, + "probability": 0.6638 + }, + { + "start": 11230.7, + "end": 11232.45, + "probability": 0.7353 + }, + { + "start": 11233.34, + "end": 11234.48, + "probability": 0.9785 + }, + { + "start": 11235.16, + "end": 11236.24, + "probability": 0.7836 + }, + { + "start": 11236.28, + "end": 11237.12, + "probability": 0.8458 + }, + { + "start": 11238.24, + "end": 11238.66, + "probability": 0.3575 + }, + { + "start": 11238.72, + "end": 11239.46, + "probability": 0.7935 + }, + { + "start": 11239.54, + "end": 11240.08, + "probability": 0.5664 + }, + { + "start": 11241.18, + "end": 11242.76, + "probability": 0.6789 + }, + { + "start": 11243.5, + "end": 11244.33, + "probability": 0.3754 + }, + { + "start": 11244.82, + "end": 11247.58, + "probability": 0.9526 + }, + { + "start": 11247.92, + "end": 11248.45, + "probability": 0.6807 + }, + { + "start": 11249.58, + "end": 11251.43, + "probability": 0.5968 + }, + { + "start": 11251.8, + "end": 11254.18, + "probability": 0.9518 + }, + { + "start": 11254.76, + "end": 11256.56, + "probability": 0.7015 + }, + { + "start": 11257.68, + "end": 11258.34, + "probability": 0.9139 + }, + { + "start": 11259.58, + "end": 11263.12, + "probability": 0.9746 + }, + { + "start": 11264.06, + "end": 11265.82, + "probability": 0.5948 + }, + { + "start": 11266.4, + "end": 11267.44, + "probability": 0.9966 + }, + { + "start": 11268.16, + "end": 11272.2, + "probability": 0.9705 + }, + { + "start": 11272.52, + "end": 11273.14, + "probability": 0.8646 + }, + { + "start": 11273.38, + "end": 11274.54, + "probability": 0.8122 + }, + { + "start": 11275.26, + "end": 11277.0, + "probability": 0.7569 + }, + { + "start": 11277.98, + "end": 11279.46, + "probability": 0.8182 + }, + { + "start": 11280.0, + "end": 11282.66, + "probability": 0.7315 + }, + { + "start": 11283.0, + "end": 11284.2, + "probability": 0.7022 + }, + { + "start": 11284.76, + "end": 11288.48, + "probability": 0.9567 + }, + { + "start": 11289.28, + "end": 11291.86, + "probability": 0.9007 + }, + { + "start": 11292.48, + "end": 11295.22, + "probability": 0.7368 + }, + { + "start": 11297.3, + "end": 11298.36, + "probability": 0.9632 + }, + { + "start": 11298.96, + "end": 11301.3, + "probability": 0.9673 + }, + { + "start": 11302.48, + "end": 11304.7, + "probability": 0.756 + }, + { + "start": 11305.4, + "end": 11308.58, + "probability": 0.9251 + }, + { + "start": 11309.4, + "end": 11315.36, + "probability": 0.988 + }, + { + "start": 11316.0, + "end": 11318.02, + "probability": 0.6689 + }, + { + "start": 11318.86, + "end": 11319.76, + "probability": 0.5498 + }, + { + "start": 11320.28, + "end": 11321.08, + "probability": 0.9187 + }, + { + "start": 11322.26, + "end": 11322.86, + "probability": 0.6078 + }, + { + "start": 11323.16, + "end": 11325.3, + "probability": 0.6487 + }, + { + "start": 11351.12, + "end": 11353.24, + "probability": 0.5182 + }, + { + "start": 11353.9, + "end": 11354.66, + "probability": 0.8738 + }, + { + "start": 11356.0, + "end": 11358.06, + "probability": 0.8498 + }, + { + "start": 11359.88, + "end": 11360.24, + "probability": 0.4287 + }, + { + "start": 11360.34, + "end": 11362.88, + "probability": 0.9773 + }, + { + "start": 11363.0, + "end": 11363.44, + "probability": 0.9538 + }, + { + "start": 11363.54, + "end": 11364.12, + "probability": 0.848 + }, + { + "start": 11365.52, + "end": 11366.86, + "probability": 0.682 + }, + { + "start": 11367.86, + "end": 11370.24, + "probability": 0.7601 + }, + { + "start": 11371.14, + "end": 11372.56, + "probability": 0.7281 + }, + { + "start": 11374.6, + "end": 11375.3, + "probability": 0.8703 + }, + { + "start": 11375.92, + "end": 11377.02, + "probability": 0.759 + }, + { + "start": 11378.26, + "end": 11379.76, + "probability": 0.9352 + }, + { + "start": 11381.42, + "end": 11384.66, + "probability": 0.8629 + }, + { + "start": 11386.26, + "end": 11387.3, + "probability": 0.762 + }, + { + "start": 11389.2, + "end": 11392.44, + "probability": 0.9715 + }, + { + "start": 11392.54, + "end": 11393.19, + "probability": 0.9526 + }, + { + "start": 11393.54, + "end": 11395.49, + "probability": 0.9858 + }, + { + "start": 11396.48, + "end": 11398.24, + "probability": 0.9193 + }, + { + "start": 11399.66, + "end": 11400.42, + "probability": 0.8604 + }, + { + "start": 11401.22, + "end": 11401.7, + "probability": 0.7985 + }, + { + "start": 11402.76, + "end": 11404.9, + "probability": 0.9508 + }, + { + "start": 11406.04, + "end": 11407.28, + "probability": 0.9587 + }, + { + "start": 11407.8, + "end": 11408.34, + "probability": 0.8721 + }, + { + "start": 11409.76, + "end": 11411.48, + "probability": 0.9319 + }, + { + "start": 11412.28, + "end": 11413.0, + "probability": 0.7778 + }, + { + "start": 11414.4, + "end": 11415.46, + "probability": 0.9814 + }, + { + "start": 11415.52, + "end": 11417.62, + "probability": 0.8824 + }, + { + "start": 11417.92, + "end": 11418.26, + "probability": 0.915 + }, + { + "start": 11419.18, + "end": 11420.06, + "probability": 0.495 + }, + { + "start": 11420.06, + "end": 11420.84, + "probability": 0.8314 + }, + { + "start": 11420.98, + "end": 11423.78, + "probability": 0.8893 + }, + { + "start": 11424.94, + "end": 11428.36, + "probability": 0.9784 + }, + { + "start": 11429.26, + "end": 11431.76, + "probability": 0.8261 + }, + { + "start": 11432.8, + "end": 11433.58, + "probability": 0.9745 + }, + { + "start": 11434.36, + "end": 11437.0, + "probability": 0.9428 + }, + { + "start": 11437.34, + "end": 11437.34, + "probability": 0.8809 + }, + { + "start": 11438.64, + "end": 11439.88, + "probability": 0.8992 + }, + { + "start": 11440.52, + "end": 11443.08, + "probability": 0.7328 + }, + { + "start": 11445.42, + "end": 11446.7, + "probability": 0.8097 + }, + { + "start": 11448.31, + "end": 11450.62, + "probability": 0.5544 + }, + { + "start": 11450.64, + "end": 11451.73, + "probability": 0.6703 + }, + { + "start": 11453.22, + "end": 11453.73, + "probability": 0.9375 + }, + { + "start": 11455.2, + "end": 11457.1, + "probability": 0.9099 + }, + { + "start": 11459.0, + "end": 11459.42, + "probability": 0.6399 + }, + { + "start": 11460.78, + "end": 11462.31, + "probability": 0.7767 + }, + { + "start": 11463.18, + "end": 11464.05, + "probability": 0.5819 + }, + { + "start": 11464.86, + "end": 11465.44, + "probability": 0.3741 + }, + { + "start": 11466.86, + "end": 11467.54, + "probability": 0.9684 + }, + { + "start": 11469.06, + "end": 11470.22, + "probability": 0.8712 + }, + { + "start": 11470.44, + "end": 11472.72, + "probability": 0.9307 + }, + { + "start": 11473.24, + "end": 11473.62, + "probability": 0.8406 + }, + { + "start": 11474.42, + "end": 11476.08, + "probability": 0.9333 + }, + { + "start": 11476.16, + "end": 11476.9, + "probability": 0.9918 + }, + { + "start": 11477.04, + "end": 11477.54, + "probability": 0.6926 + }, + { + "start": 11478.4, + "end": 11478.74, + "probability": 0.8474 + }, + { + "start": 11479.76, + "end": 11481.96, + "probability": 0.9583 + }, + { + "start": 11481.98, + "end": 11482.38, + "probability": 0.3378 + }, + { + "start": 11482.46, + "end": 11483.78, + "probability": 0.7129 + }, + { + "start": 11484.18, + "end": 11485.7, + "probability": 0.8635 + }, + { + "start": 11486.3, + "end": 11488.34, + "probability": 0.9805 + }, + { + "start": 11488.98, + "end": 11489.7, + "probability": 0.719 + }, + { + "start": 11491.04, + "end": 11491.98, + "probability": 0.9897 + }, + { + "start": 11492.86, + "end": 11493.52, + "probability": 0.9406 + }, + { + "start": 11494.46, + "end": 11495.42, + "probability": 0.7512 + }, + { + "start": 11496.44, + "end": 11498.64, + "probability": 0.8507 + }, + { + "start": 11499.28, + "end": 11500.66, + "probability": 0.9957 + }, + { + "start": 11502.1, + "end": 11503.56, + "probability": 0.7147 + }, + { + "start": 11503.92, + "end": 11504.8, + "probability": 0.8308 + }, + { + "start": 11505.98, + "end": 11506.32, + "probability": 0.8405 + }, + { + "start": 11506.96, + "end": 11508.04, + "probability": 0.7763 + }, + { + "start": 11510.34, + "end": 11512.38, + "probability": 0.9983 + }, + { + "start": 11513.5, + "end": 11515.92, + "probability": 0.9856 + }, + { + "start": 11516.92, + "end": 11517.66, + "probability": 0.8665 + }, + { + "start": 11518.44, + "end": 11519.36, + "probability": 0.8482 + }, + { + "start": 11520.06, + "end": 11521.16, + "probability": 0.9224 + }, + { + "start": 11523.42, + "end": 11523.86, + "probability": 0.0086 + }, + { + "start": 11524.54, + "end": 11526.04, + "probability": 0.1941 + }, + { + "start": 11529.16, + "end": 11531.36, + "probability": 0.0838 + }, + { + "start": 11532.76, + "end": 11533.5, + "probability": 0.9103 + }, + { + "start": 11534.04, + "end": 11535.12, + "probability": 0.9971 + }, + { + "start": 11535.7, + "end": 11536.82, + "probability": 0.9718 + }, + { + "start": 11537.54, + "end": 11538.12, + "probability": 0.8873 + }, + { + "start": 11538.96, + "end": 11539.74, + "probability": 0.7608 + }, + { + "start": 11540.5, + "end": 11541.42, + "probability": 0.9818 + }, + { + "start": 11542.18, + "end": 11542.74, + "probability": 0.9562 + }, + { + "start": 11542.86, + "end": 11545.04, + "probability": 0.9749 + }, + { + "start": 11545.18, + "end": 11545.5, + "probability": 0.6662 + }, + { + "start": 11545.56, + "end": 11547.14, + "probability": 0.9321 + }, + { + "start": 11547.3, + "end": 11547.6, + "probability": 0.5023 + }, + { + "start": 11547.66, + "end": 11550.08, + "probability": 0.7425 + }, + { + "start": 11550.48, + "end": 11552.06, + "probability": 0.9711 + }, + { + "start": 11552.96, + "end": 11555.44, + "probability": 0.7991 + }, + { + "start": 11555.94, + "end": 11558.45, + "probability": 0.7789 + }, + { + "start": 11561.04, + "end": 11562.3, + "probability": 0.325 + }, + { + "start": 11562.54, + "end": 11563.58, + "probability": 0.8519 + }, + { + "start": 11564.36, + "end": 11565.0, + "probability": 0.7588 + }, + { + "start": 11565.52, + "end": 11569.16, + "probability": 0.7742 + }, + { + "start": 11569.38, + "end": 11569.66, + "probability": 0.653 + }, + { + "start": 11570.14, + "end": 11570.94, + "probability": 0.7311 + }, + { + "start": 11598.32, + "end": 11599.84, + "probability": 0.712 + }, + { + "start": 11601.14, + "end": 11602.16, + "probability": 0.7721 + }, + { + "start": 11603.32, + "end": 11604.68, + "probability": 0.8727 + }, + { + "start": 11606.14, + "end": 11609.37, + "probability": 0.8293 + }, + { + "start": 11612.14, + "end": 11612.96, + "probability": 0.8278 + }, + { + "start": 11614.0, + "end": 11616.34, + "probability": 0.9901 + }, + { + "start": 11617.3, + "end": 11618.36, + "probability": 0.7545 + }, + { + "start": 11620.28, + "end": 11622.5, + "probability": 0.948 + }, + { + "start": 11623.96, + "end": 11626.74, + "probability": 0.5179 + }, + { + "start": 11628.18, + "end": 11629.7, + "probability": 0.8394 + }, + { + "start": 11630.52, + "end": 11631.58, + "probability": 0.8858 + }, + { + "start": 11631.78, + "end": 11634.28, + "probability": 0.9749 + }, + { + "start": 11634.78, + "end": 11636.4, + "probability": 0.9617 + }, + { + "start": 11637.08, + "end": 11640.2, + "probability": 0.8486 + }, + { + "start": 11640.72, + "end": 11643.14, + "probability": 0.9585 + }, + { + "start": 11644.1, + "end": 11645.48, + "probability": 0.9696 + }, + { + "start": 11647.2, + "end": 11649.68, + "probability": 0.9977 + }, + { + "start": 11649.9, + "end": 11650.84, + "probability": 0.9324 + }, + { + "start": 11652.64, + "end": 11654.14, + "probability": 0.7912 + }, + { + "start": 11654.28, + "end": 11656.22, + "probability": 0.9103 + }, + { + "start": 11657.02, + "end": 11661.1, + "probability": 0.983 + }, + { + "start": 11661.68, + "end": 11662.56, + "probability": 0.8327 + }, + { + "start": 11662.6, + "end": 11668.02, + "probability": 0.9966 + }, + { + "start": 11668.62, + "end": 11669.66, + "probability": 0.9312 + }, + { + "start": 11670.46, + "end": 11672.44, + "probability": 0.9795 + }, + { + "start": 11674.28, + "end": 11675.3, + "probability": 0.8105 + }, + { + "start": 11675.84, + "end": 11676.78, + "probability": 0.9526 + }, + { + "start": 11677.54, + "end": 11679.68, + "probability": 0.9409 + }, + { + "start": 11680.4, + "end": 11684.24, + "probability": 0.9301 + }, + { + "start": 11685.68, + "end": 11690.82, + "probability": 0.8621 + }, + { + "start": 11691.94, + "end": 11694.94, + "probability": 0.9923 + }, + { + "start": 11696.1, + "end": 11699.22, + "probability": 0.9842 + }, + { + "start": 11700.18, + "end": 11701.4, + "probability": 0.5518 + }, + { + "start": 11701.98, + "end": 11702.94, + "probability": 0.8141 + }, + { + "start": 11703.16, + "end": 11708.62, + "probability": 0.9959 + }, + { + "start": 11709.3, + "end": 11711.52, + "probability": 0.9791 + }, + { + "start": 11712.94, + "end": 11713.9, + "probability": 0.6178 + }, + { + "start": 11715.04, + "end": 11717.4, + "probability": 0.9405 + }, + { + "start": 11718.0, + "end": 11721.6, + "probability": 0.985 + }, + { + "start": 11722.24, + "end": 11725.36, + "probability": 0.9882 + }, + { + "start": 11726.6, + "end": 11728.66, + "probability": 0.9621 + }, + { + "start": 11729.64, + "end": 11730.88, + "probability": 0.96 + }, + { + "start": 11731.68, + "end": 11736.18, + "probability": 0.9885 + }, + { + "start": 11736.82, + "end": 11737.84, + "probability": 0.9066 + }, + { + "start": 11738.0, + "end": 11740.86, + "probability": 0.9931 + }, + { + "start": 11740.86, + "end": 11743.86, + "probability": 0.9922 + }, + { + "start": 11745.38, + "end": 11748.54, + "probability": 0.7357 + }, + { + "start": 11749.78, + "end": 11753.58, + "probability": 0.9937 + }, + { + "start": 11754.56, + "end": 11756.24, + "probability": 0.9854 + }, + { + "start": 11757.24, + "end": 11759.64, + "probability": 0.6506 + }, + { + "start": 11760.18, + "end": 11766.92, + "probability": 0.989 + }, + { + "start": 11768.02, + "end": 11768.86, + "probability": 0.719 + }, + { + "start": 11769.32, + "end": 11769.9, + "probability": 0.8066 + }, + { + "start": 11769.94, + "end": 11771.77, + "probability": 0.9296 + }, + { + "start": 11772.42, + "end": 11774.68, + "probability": 0.9891 + }, + { + "start": 11775.98, + "end": 11777.62, + "probability": 0.9663 + }, + { + "start": 11779.12, + "end": 11782.78, + "probability": 0.9642 + }, + { + "start": 11783.98, + "end": 11784.78, + "probability": 0.6859 + }, + { + "start": 11785.7, + "end": 11787.68, + "probability": 0.7363 + }, + { + "start": 11787.68, + "end": 11790.84, + "probability": 0.9913 + }, + { + "start": 11791.64, + "end": 11792.16, + "probability": 0.921 + }, + { + "start": 11793.16, + "end": 11794.84, + "probability": 0.8575 + }, + { + "start": 11797.88, + "end": 11798.77, + "probability": 0.5931 + }, + { + "start": 11799.84, + "end": 11802.38, + "probability": 0.7529 + }, + { + "start": 11802.94, + "end": 11805.32, + "probability": 0.9385 + }, + { + "start": 11805.44, + "end": 11808.64, + "probability": 0.9337 + }, + { + "start": 11810.18, + "end": 11812.2, + "probability": 0.782 + }, + { + "start": 11812.82, + "end": 11814.44, + "probability": 0.9814 + }, + { + "start": 11815.22, + "end": 11817.58, + "probability": 0.8968 + }, + { + "start": 11818.48, + "end": 11822.46, + "probability": 0.995 + }, + { + "start": 11822.46, + "end": 11825.26, + "probability": 0.974 + }, + { + "start": 11826.1, + "end": 11826.4, + "probability": 0.3438 + }, + { + "start": 11826.5, + "end": 11828.48, + "probability": 0.7907 + }, + { + "start": 11828.58, + "end": 11831.08, + "probability": 0.8898 + }, + { + "start": 11832.96, + "end": 11834.18, + "probability": 0.8953 + }, + { + "start": 11835.02, + "end": 11836.92, + "probability": 0.9488 + }, + { + "start": 11837.44, + "end": 11842.7, + "probability": 0.9802 + }, + { + "start": 11842.86, + "end": 11843.26, + "probability": 0.6121 + }, + { + "start": 11844.9, + "end": 11848.96, + "probability": 0.8224 + }, + { + "start": 11849.86, + "end": 11853.42, + "probability": 0.8426 + }, + { + "start": 11854.04, + "end": 11855.88, + "probability": 0.9407 + }, + { + "start": 11856.56, + "end": 11859.22, + "probability": 0.8898 + }, + { + "start": 11860.66, + "end": 11862.86, + "probability": 0.9826 + }, + { + "start": 11863.22, + "end": 11867.91, + "probability": 0.9953 + }, + { + "start": 11869.1, + "end": 11870.78, + "probability": 0.9566 + }, + { + "start": 11871.58, + "end": 11873.04, + "probability": 0.9059 + }, + { + "start": 11874.0, + "end": 11876.76, + "probability": 0.8865 + }, + { + "start": 11877.08, + "end": 11880.76, + "probability": 0.8989 + }, + { + "start": 11880.98, + "end": 11881.52, + "probability": 0.931 + }, + { + "start": 11882.04, + "end": 11883.58, + "probability": 0.9888 + }, + { + "start": 11884.22, + "end": 11887.44, + "probability": 0.9124 + }, + { + "start": 11887.76, + "end": 11889.58, + "probability": 0.9916 + }, + { + "start": 11890.28, + "end": 11891.02, + "probability": 0.964 + }, + { + "start": 11891.26, + "end": 11892.96, + "probability": 0.9878 + }, + { + "start": 11895.12, + "end": 11896.18, + "probability": 0.7909 + }, + { + "start": 11896.3, + "end": 11897.26, + "probability": 0.8028 + }, + { + "start": 11897.38, + "end": 11898.64, + "probability": 0.9035 + }, + { + "start": 11898.72, + "end": 11900.8, + "probability": 0.8167 + }, + { + "start": 11901.2, + "end": 11902.34, + "probability": 0.9073 + }, + { + "start": 11903.76, + "end": 11907.3, + "probability": 0.9614 + }, + { + "start": 11907.4, + "end": 11907.9, + "probability": 0.8619 + }, + { + "start": 11908.02, + "end": 11908.52, + "probability": 0.8768 + }, + { + "start": 11908.66, + "end": 11909.06, + "probability": 0.668 + }, + { + "start": 11909.4, + "end": 11909.94, + "probability": 0.1047 + }, + { + "start": 11910.7, + "end": 11913.8, + "probability": 0.9819 + }, + { + "start": 11914.8, + "end": 11918.94, + "probability": 0.9706 + }, + { + "start": 11919.68, + "end": 11923.18, + "probability": 0.9325 + }, + { + "start": 11923.8, + "end": 11925.44, + "probability": 0.7741 + }, + { + "start": 11925.82, + "end": 11926.94, + "probability": 0.8378 + }, + { + "start": 11927.1, + "end": 11927.48, + "probability": 0.4103 + }, + { + "start": 11927.5, + "end": 11928.66, + "probability": 0.9754 + }, + { + "start": 11929.3, + "end": 11931.7, + "probability": 0.6816 + }, + { + "start": 11931.74, + "end": 11936.76, + "probability": 0.9956 + }, + { + "start": 11936.94, + "end": 11937.26, + "probability": 0.2975 + }, + { + "start": 11937.74, + "end": 11938.38, + "probability": 0.6332 + }, + { + "start": 11938.42, + "end": 11938.9, + "probability": 0.7595 + }, + { + "start": 11939.62, + "end": 11940.0, + "probability": 0.456 + }, + { + "start": 11958.28, + "end": 11960.86, + "probability": 0.6087 + }, + { + "start": 11962.12, + "end": 11963.32, + "probability": 0.9225 + }, + { + "start": 11964.36, + "end": 11965.22, + "probability": 0.3811 + }, + { + "start": 11966.7, + "end": 11968.24, + "probability": 0.7456 + }, + { + "start": 11970.42, + "end": 11971.68, + "probability": 0.6616 + }, + { + "start": 11973.08, + "end": 11974.56, + "probability": 0.9423 + }, + { + "start": 11975.92, + "end": 11977.04, + "probability": 0.8176 + }, + { + "start": 11978.3, + "end": 11982.5, + "probability": 0.5038 + }, + { + "start": 11983.72, + "end": 11985.85, + "probability": 0.6263 + }, + { + "start": 11987.76, + "end": 11989.48, + "probability": 0.5801 + }, + { + "start": 11990.76, + "end": 11991.98, + "probability": 0.8493 + }, + { + "start": 11992.78, + "end": 11994.94, + "probability": 0.476 + }, + { + "start": 11995.76, + "end": 11996.94, + "probability": 0.6566 + }, + { + "start": 11998.54, + "end": 11999.43, + "probability": 0.4947 + }, + { + "start": 12000.52, + "end": 12002.34, + "probability": 0.7875 + }, + { + "start": 12003.24, + "end": 12004.2, + "probability": 0.7121 + }, + { + "start": 12005.0, + "end": 12006.88, + "probability": 0.9808 + }, + { + "start": 12007.7, + "end": 12008.92, + "probability": 0.991 + }, + { + "start": 12009.52, + "end": 12010.66, + "probability": 0.9518 + }, + { + "start": 12011.5, + "end": 12012.68, + "probability": 0.7672 + }, + { + "start": 12013.52, + "end": 12018.28, + "probability": 0.99 + }, + { + "start": 12018.96, + "end": 12019.94, + "probability": 0.9477 + }, + { + "start": 12020.12, + "end": 12020.42, + "probability": 0.9705 + }, + { + "start": 12021.3, + "end": 12022.96, + "probability": 0.9917 + }, + { + "start": 12023.72, + "end": 12024.85, + "probability": 0.8403 + }, + { + "start": 12026.02, + "end": 12030.4, + "probability": 0.9805 + }, + { + "start": 12030.4, + "end": 12037.26, + "probability": 0.8871 + }, + { + "start": 12037.9, + "end": 12038.76, + "probability": 0.7341 + }, + { + "start": 12039.36, + "end": 12040.51, + "probability": 0.7359 + }, + { + "start": 12042.26, + "end": 12045.46, + "probability": 0.9043 + }, + { + "start": 12046.5, + "end": 12048.34, + "probability": 0.9985 + }, + { + "start": 12049.02, + "end": 12052.56, + "probability": 0.9942 + }, + { + "start": 12053.48, + "end": 12054.04, + "probability": 0.9614 + }, + { + "start": 12054.74, + "end": 12058.34, + "probability": 0.9705 + }, + { + "start": 12059.78, + "end": 12062.32, + "probability": 0.9581 + }, + { + "start": 12063.06, + "end": 12064.16, + "probability": 0.2356 + }, + { + "start": 12064.98, + "end": 12066.22, + "probability": 0.9408 + }, + { + "start": 12066.94, + "end": 12067.98, + "probability": 0.7465 + }, + { + "start": 12068.64, + "end": 12070.46, + "probability": 0.8418 + }, + { + "start": 12071.54, + "end": 12073.56, + "probability": 0.9569 + }, + { + "start": 12074.28, + "end": 12075.94, + "probability": 0.7192 + }, + { + "start": 12076.98, + "end": 12081.6, + "probability": 0.566 + }, + { + "start": 12082.32, + "end": 12083.4, + "probability": 0.7745 + }, + { + "start": 12084.26, + "end": 12086.54, + "probability": 0.6344 + }, + { + "start": 12087.42, + "end": 12089.14, + "probability": 0.7308 + }, + { + "start": 12090.42, + "end": 12091.58, + "probability": 0.7934 + }, + { + "start": 12092.32, + "end": 12096.3, + "probability": 0.8792 + }, + { + "start": 12096.82, + "end": 12098.1, + "probability": 0.986 + }, + { + "start": 12098.7, + "end": 12099.82, + "probability": 0.9818 + }, + { + "start": 12100.62, + "end": 12104.46, + "probability": 0.6858 + }, + { + "start": 12105.94, + "end": 12107.66, + "probability": 0.959 + }, + { + "start": 12108.22, + "end": 12110.38, + "probability": 0.731 + }, + { + "start": 12111.12, + "end": 12113.26, + "probability": 0.6288 + }, + { + "start": 12114.02, + "end": 12116.02, + "probability": 0.8608 + }, + { + "start": 12116.64, + "end": 12120.78, + "probability": 0.7804 + }, + { + "start": 12121.74, + "end": 12130.6, + "probability": 0.96 + }, + { + "start": 12130.8, + "end": 12135.78, + "probability": 0.9673 + }, + { + "start": 12139.36, + "end": 12141.92, + "probability": 0.4401 + }, + { + "start": 12142.02, + "end": 12142.89, + "probability": 0.9691 + }, + { + "start": 12143.76, + "end": 12144.0, + "probability": 0.3146 + }, + { + "start": 12144.0, + "end": 12147.44, + "probability": 0.8325 + }, + { + "start": 12148.48, + "end": 12150.36, + "probability": 0.7837 + }, + { + "start": 12151.3, + "end": 12153.74, + "probability": 0.903 + }, + { + "start": 12154.44, + "end": 12158.68, + "probability": 0.973 + }, + { + "start": 12159.28, + "end": 12160.2, + "probability": 0.941 + }, + { + "start": 12160.84, + "end": 12165.4, + "probability": 0.671 + }, + { + "start": 12165.88, + "end": 12168.08, + "probability": 0.6929 + }, + { + "start": 12168.7, + "end": 12169.78, + "probability": 0.6938 + }, + { + "start": 12170.24, + "end": 12171.3, + "probability": 0.9678 + }, + { + "start": 12171.76, + "end": 12174.54, + "probability": 0.8651 + }, + { + "start": 12175.12, + "end": 12178.34, + "probability": 0.7779 + }, + { + "start": 12179.16, + "end": 12182.46, + "probability": 0.9773 + }, + { + "start": 12183.12, + "end": 12186.92, + "probability": 0.9697 + }, + { + "start": 12187.7, + "end": 12190.18, + "probability": 0.5436 + }, + { + "start": 12190.86, + "end": 12191.38, + "probability": 0.5164 + }, + { + "start": 12191.82, + "end": 12193.08, + "probability": 0.8345 + }, + { + "start": 12201.84, + "end": 12204.52, + "probability": 0.9084 + }, + { + "start": 12210.82, + "end": 12212.28, + "probability": 0.5638 + }, + { + "start": 12212.52, + "end": 12213.1, + "probability": 0.8732 + }, + { + "start": 12213.24, + "end": 12214.34, + "probability": 0.8088 + }, + { + "start": 12214.38, + "end": 12215.4, + "probability": 0.8743 + }, + { + "start": 12215.46, + "end": 12216.28, + "probability": 0.9172 + }, + { + "start": 12216.8, + "end": 12217.54, + "probability": 0.8946 + }, + { + "start": 12218.72, + "end": 12222.88, + "probability": 0.9886 + }, + { + "start": 12224.2, + "end": 12228.44, + "probability": 0.9517 + }, + { + "start": 12230.16, + "end": 12234.4, + "probability": 0.6141 + }, + { + "start": 12235.48, + "end": 12236.44, + "probability": 0.8754 + }, + { + "start": 12238.88, + "end": 12242.34, + "probability": 0.9876 + }, + { + "start": 12242.34, + "end": 12245.04, + "probability": 0.9263 + }, + { + "start": 12245.94, + "end": 12248.92, + "probability": 0.9352 + }, + { + "start": 12249.0, + "end": 12250.95, + "probability": 0.0858 + }, + { + "start": 12251.56, + "end": 12251.88, + "probability": 0.1722 + }, + { + "start": 12254.02, + "end": 12255.46, + "probability": 0.057 + }, + { + "start": 12255.46, + "end": 12260.56, + "probability": 0.9771 + }, + { + "start": 12261.84, + "end": 12264.34, + "probability": 0.9559 + }, + { + "start": 12266.02, + "end": 12268.74, + "probability": 0.9989 + }, + { + "start": 12269.98, + "end": 12273.86, + "probability": 0.9964 + }, + { + "start": 12274.48, + "end": 12275.6, + "probability": 0.945 + }, + { + "start": 12276.66, + "end": 12280.4, + "probability": 0.9814 + }, + { + "start": 12281.38, + "end": 12283.42, + "probability": 0.9843 + }, + { + "start": 12285.54, + "end": 12288.9, + "probability": 0.9928 + }, + { + "start": 12290.28, + "end": 12292.66, + "probability": 0.9924 + }, + { + "start": 12292.74, + "end": 12294.24, + "probability": 0.9985 + }, + { + "start": 12294.98, + "end": 12297.4, + "probability": 0.9976 + }, + { + "start": 12297.94, + "end": 12300.5, + "probability": 0.9956 + }, + { + "start": 12301.88, + "end": 12304.24, + "probability": 0.9738 + }, + { + "start": 12305.58, + "end": 12308.56, + "probability": 0.9773 + }, + { + "start": 12309.5, + "end": 12312.46, + "probability": 0.9943 + }, + { + "start": 12313.52, + "end": 12317.79, + "probability": 0.983 + }, + { + "start": 12318.3, + "end": 12319.2, + "probability": 0.6401 + }, + { + "start": 12320.24, + "end": 12322.98, + "probability": 0.9774 + }, + { + "start": 12323.84, + "end": 12324.64, + "probability": 0.9371 + }, + { + "start": 12325.0, + "end": 12326.14, + "probability": 0.8143 + }, + { + "start": 12326.24, + "end": 12327.32, + "probability": 0.9013 + }, + { + "start": 12327.54, + "end": 12327.8, + "probability": 0.8877 + }, + { + "start": 12328.34, + "end": 12329.32, + "probability": 0.9963 + }, + { + "start": 12330.16, + "end": 12333.18, + "probability": 0.992 + }, + { + "start": 12334.04, + "end": 12335.73, + "probability": 0.9988 + }, + { + "start": 12336.6, + "end": 12337.44, + "probability": 0.8922 + }, + { + "start": 12338.38, + "end": 12340.82, + "probability": 0.9399 + }, + { + "start": 12342.04, + "end": 12346.08, + "probability": 0.9885 + }, + { + "start": 12346.08, + "end": 12348.38, + "probability": 0.9973 + }, + { + "start": 12349.24, + "end": 12351.92, + "probability": 0.877 + }, + { + "start": 12352.82, + "end": 12355.3, + "probability": 0.9951 + }, + { + "start": 12356.18, + "end": 12359.81, + "probability": 0.9397 + }, + { + "start": 12361.36, + "end": 12364.12, + "probability": 0.9856 + }, + { + "start": 12364.66, + "end": 12368.35, + "probability": 0.9801 + }, + { + "start": 12369.52, + "end": 12371.24, + "probability": 0.9971 + }, + { + "start": 12371.86, + "end": 12373.74, + "probability": 0.97 + }, + { + "start": 12374.42, + "end": 12375.14, + "probability": 0.8904 + }, + { + "start": 12375.96, + "end": 12377.42, + "probability": 0.9881 + }, + { + "start": 12377.78, + "end": 12380.48, + "probability": 0.9815 + }, + { + "start": 12380.94, + "end": 12384.44, + "probability": 0.9961 + }, + { + "start": 12385.24, + "end": 12388.54, + "probability": 0.9956 + }, + { + "start": 12389.24, + "end": 12390.86, + "probability": 0.9409 + }, + { + "start": 12391.46, + "end": 12394.78, + "probability": 0.9977 + }, + { + "start": 12395.66, + "end": 12397.54, + "probability": 0.9878 + }, + { + "start": 12397.76, + "end": 12398.68, + "probability": 0.8013 + }, + { + "start": 12399.08, + "end": 12401.3, + "probability": 0.9976 + }, + { + "start": 12401.86, + "end": 12403.52, + "probability": 0.9796 + }, + { + "start": 12403.62, + "end": 12404.26, + "probability": 0.8615 + }, + { + "start": 12404.4, + "end": 12404.72, + "probability": 0.5709 + }, + { + "start": 12404.72, + "end": 12404.72, + "probability": 0.5817 + }, + { + "start": 12407.92, + "end": 12408.38, + "probability": 0.8722 + }, + { + "start": 12426.42, + "end": 12428.28, + "probability": 0.7406 + }, + { + "start": 12429.68, + "end": 12432.58, + "probability": 0.7982 + }, + { + "start": 12433.36, + "end": 12435.9, + "probability": 0.9937 + }, + { + "start": 12437.46, + "end": 12437.94, + "probability": 0.9282 + }, + { + "start": 12439.98, + "end": 12440.44, + "probability": 0.4571 + }, + { + "start": 12440.78, + "end": 12442.22, + "probability": 0.9098 + }, + { + "start": 12445.3, + "end": 12447.2, + "probability": 0.3348 + }, + { + "start": 12449.12, + "end": 12449.82, + "probability": 0.6568 + }, + { + "start": 12451.04, + "end": 12453.34, + "probability": 0.975 + }, + { + "start": 12453.92, + "end": 12454.82, + "probability": 0.9138 + }, + { + "start": 12455.82, + "end": 12457.8, + "probability": 0.946 + }, + { + "start": 12459.3, + "end": 12460.18, + "probability": 0.8901 + }, + { + "start": 12461.72, + "end": 12465.36, + "probability": 0.9832 + }, + { + "start": 12467.08, + "end": 12468.78, + "probability": 0.7354 + }, + { + "start": 12469.62, + "end": 12472.64, + "probability": 0.6289 + }, + { + "start": 12473.88, + "end": 12475.0, + "probability": 0.5039 + }, + { + "start": 12475.62, + "end": 12476.36, + "probability": 0.5305 + }, + { + "start": 12477.12, + "end": 12483.96, + "probability": 0.8637 + }, + { + "start": 12484.26, + "end": 12485.44, + "probability": 0.9919 + }, + { + "start": 12486.52, + "end": 12487.98, + "probability": 0.978 + }, + { + "start": 12489.26, + "end": 12490.24, + "probability": 0.5157 + }, + { + "start": 12491.64, + "end": 12492.73, + "probability": 0.9712 + }, + { + "start": 12493.38, + "end": 12494.5, + "probability": 0.9668 + }, + { + "start": 12495.48, + "end": 12497.82, + "probability": 0.4955 + }, + { + "start": 12498.7, + "end": 12500.56, + "probability": 0.9679 + }, + { + "start": 12501.96, + "end": 12503.5, + "probability": 0.9269 + }, + { + "start": 12504.06, + "end": 12507.14, + "probability": 0.9107 + }, + { + "start": 12508.14, + "end": 12510.0, + "probability": 0.9346 + }, + { + "start": 12511.24, + "end": 12513.5, + "probability": 0.9954 + }, + { + "start": 12514.26, + "end": 12515.94, + "probability": 0.8768 + }, + { + "start": 12516.88, + "end": 12520.34, + "probability": 0.9543 + }, + { + "start": 12521.38, + "end": 12525.02, + "probability": 0.9747 + }, + { + "start": 12526.26, + "end": 12528.4, + "probability": 0.9492 + }, + { + "start": 12528.46, + "end": 12529.16, + "probability": 0.8438 + }, + { + "start": 12530.3, + "end": 12534.0, + "probability": 0.9891 + }, + { + "start": 12535.28, + "end": 12536.96, + "probability": 0.9395 + }, + { + "start": 12538.04, + "end": 12539.44, + "probability": 0.8719 + }, + { + "start": 12540.18, + "end": 12542.24, + "probability": 0.9677 + }, + { + "start": 12542.94, + "end": 12544.82, + "probability": 0.9465 + }, + { + "start": 12545.56, + "end": 12547.52, + "probability": 0.9296 + }, + { + "start": 12548.7, + "end": 12552.46, + "probability": 0.9983 + }, + { + "start": 12553.22, + "end": 12555.0, + "probability": 0.9904 + }, + { + "start": 12556.08, + "end": 12561.0, + "probability": 0.9537 + }, + { + "start": 12562.08, + "end": 12565.3, + "probability": 0.9971 + }, + { + "start": 12566.1, + "end": 12566.94, + "probability": 0.5758 + }, + { + "start": 12567.98, + "end": 12570.48, + "probability": 0.8412 + }, + { + "start": 12571.24, + "end": 12574.18, + "probability": 0.907 + }, + { + "start": 12574.68, + "end": 12576.32, + "probability": 0.8639 + }, + { + "start": 12577.86, + "end": 12579.38, + "probability": 0.845 + }, + { + "start": 12580.1, + "end": 12582.86, + "probability": 0.9875 + }, + { + "start": 12583.54, + "end": 12585.42, + "probability": 0.9977 + }, + { + "start": 12586.48, + "end": 12588.4, + "probability": 0.9342 + }, + { + "start": 12589.28, + "end": 12592.06, + "probability": 0.945 + }, + { + "start": 12592.8, + "end": 12594.9, + "probability": 0.9902 + }, + { + "start": 12595.8, + "end": 12600.8, + "probability": 0.9878 + }, + { + "start": 12601.98, + "end": 12603.96, + "probability": 0.9742 + }, + { + "start": 12605.5, + "end": 12607.36, + "probability": 0.9543 + }, + { + "start": 12608.28, + "end": 12609.18, + "probability": 0.8765 + }, + { + "start": 12609.8, + "end": 12610.2, + "probability": 0.5972 + }, + { + "start": 12610.82, + "end": 12614.6, + "probability": 0.989 + }, + { + "start": 12615.58, + "end": 12618.52, + "probability": 0.9452 + }, + { + "start": 12620.34, + "end": 12621.1, + "probability": 0.8711 + }, + { + "start": 12622.14, + "end": 12625.22, + "probability": 0.8995 + }, + { + "start": 12625.9, + "end": 12629.04, + "probability": 0.9792 + }, + { + "start": 12629.78, + "end": 12631.72, + "probability": 0.995 + }, + { + "start": 12632.24, + "end": 12634.02, + "probability": 0.9161 + }, + { + "start": 12635.38, + "end": 12635.9, + "probability": 0.7901 + }, + { + "start": 12637.02, + "end": 12637.96, + "probability": 0.9762 + }, + { + "start": 12638.62, + "end": 12642.5, + "probability": 0.9908 + }, + { + "start": 12643.82, + "end": 12647.02, + "probability": 0.9957 + }, + { + "start": 12647.92, + "end": 12650.5, + "probability": 0.9342 + }, + { + "start": 12651.18, + "end": 12653.2, + "probability": 0.9722 + }, + { + "start": 12653.96, + "end": 12657.92, + "probability": 0.9802 + }, + { + "start": 12659.5, + "end": 12662.72, + "probability": 0.985 + }, + { + "start": 12663.82, + "end": 12666.78, + "probability": 0.999 + }, + { + "start": 12667.54, + "end": 12668.22, + "probability": 0.8069 + }, + { + "start": 12669.8, + "end": 12669.9, + "probability": 0.0179 + }, + { + "start": 12669.9, + "end": 12670.94, + "probability": 0.9655 + }, + { + "start": 12672.74, + "end": 12676.18, + "probability": 0.9442 + }, + { + "start": 12676.76, + "end": 12682.1, + "probability": 0.9929 + }, + { + "start": 12682.9, + "end": 12686.04, + "probability": 0.9905 + }, + { + "start": 12686.78, + "end": 12690.84, + "probability": 0.9972 + }, + { + "start": 12691.38, + "end": 12694.24, + "probability": 0.9819 + }, + { + "start": 12694.92, + "end": 12696.22, + "probability": 0.9583 + }, + { + "start": 12696.84, + "end": 12699.12, + "probability": 0.9882 + }, + { + "start": 12700.02, + "end": 12702.1, + "probability": 0.9932 + }, + { + "start": 12702.82, + "end": 12704.36, + "probability": 0.8841 + }, + { + "start": 12705.54, + "end": 12711.84, + "probability": 0.9806 + }, + { + "start": 12712.9, + "end": 12714.58, + "probability": 0.6959 + }, + { + "start": 12715.38, + "end": 12718.18, + "probability": 0.9933 + }, + { + "start": 12718.74, + "end": 12720.82, + "probability": 0.9707 + }, + { + "start": 12721.58, + "end": 12724.64, + "probability": 0.8933 + }, + { + "start": 12725.7, + "end": 12728.1, + "probability": 0.8726 + }, + { + "start": 12728.86, + "end": 12731.2, + "probability": 0.9253 + }, + { + "start": 12732.44, + "end": 12733.54, + "probability": 0.967 + }, + { + "start": 12734.38, + "end": 12737.38, + "probability": 0.7835 + }, + { + "start": 12737.5, + "end": 12738.28, + "probability": 0.7563 + }, + { + "start": 12738.76, + "end": 12741.82, + "probability": 0.9059 + }, + { + "start": 12741.82, + "end": 12744.34, + "probability": 0.9913 + }, + { + "start": 12745.28, + "end": 12749.0, + "probability": 0.9992 + }, + { + "start": 12749.6, + "end": 12752.18, + "probability": 0.7988 + }, + { + "start": 12752.8, + "end": 12754.38, + "probability": 0.998 + }, + { + "start": 12754.84, + "end": 12757.44, + "probability": 0.9891 + }, + { + "start": 12758.24, + "end": 12760.3, + "probability": 0.9856 + }, + { + "start": 12761.8, + "end": 12762.38, + "probability": 0.4496 + }, + { + "start": 12765.24, + "end": 12766.48, + "probability": 0.6808 + }, + { + "start": 12767.34, + "end": 12769.54, + "probability": 0.9432 + }, + { + "start": 12770.42, + "end": 12771.56, + "probability": 0.92 + }, + { + "start": 12773.02, + "end": 12773.9, + "probability": 0.8507 + }, + { + "start": 12774.76, + "end": 12776.9, + "probability": 0.9976 + }, + { + "start": 12777.98, + "end": 12779.1, + "probability": 0.9849 + }, + { + "start": 12781.1, + "end": 12782.34, + "probability": 0.8683 + }, + { + "start": 12783.02, + "end": 12783.58, + "probability": 0.7851 + }, + { + "start": 12785.38, + "end": 12787.48, + "probability": 0.8725 + }, + { + "start": 12788.96, + "end": 12790.34, + "probability": 0.9882 + }, + { + "start": 12791.4, + "end": 12793.7, + "probability": 0.9279 + }, + { + "start": 12794.72, + "end": 12796.36, + "probability": 0.8265 + }, + { + "start": 12797.02, + "end": 12800.26, + "probability": 0.9935 + }, + { + "start": 12800.94, + "end": 12805.24, + "probability": 0.8615 + }, + { + "start": 12805.82, + "end": 12806.38, + "probability": 0.7449 + }, + { + "start": 12807.28, + "end": 12808.16, + "probability": 0.6484 + }, + { + "start": 12808.76, + "end": 12811.4, + "probability": 0.9182 + }, + { + "start": 12812.28, + "end": 12815.83, + "probability": 0.9512 + }, + { + "start": 12816.8, + "end": 12818.66, + "probability": 0.9607 + }, + { + "start": 12819.84, + "end": 12824.14, + "probability": 0.9952 + }, + { + "start": 12824.9, + "end": 12827.68, + "probability": 0.9923 + }, + { + "start": 12828.54, + "end": 12831.44, + "probability": 0.9508 + }, + { + "start": 12831.98, + "end": 12833.58, + "probability": 0.9508 + }, + { + "start": 12835.18, + "end": 12836.12, + "probability": 0.883 + }, + { + "start": 12836.88, + "end": 12837.94, + "probability": 0.9751 + }, + { + "start": 12840.58, + "end": 12842.82, + "probability": 0.9662 + }, + { + "start": 12844.12, + "end": 12845.88, + "probability": 0.9954 + }, + { + "start": 12846.94, + "end": 12850.24, + "probability": 0.9927 + }, + { + "start": 12853.11, + "end": 12855.16, + "probability": 0.2581 + }, + { + "start": 12855.16, + "end": 12856.42, + "probability": 0.8411 + }, + { + "start": 12857.22, + "end": 12861.82, + "probability": 0.9572 + }, + { + "start": 12862.48, + "end": 12864.12, + "probability": 0.924 + }, + { + "start": 12864.8, + "end": 12867.0, + "probability": 0.9222 + }, + { + "start": 12868.6, + "end": 12872.9, + "probability": 0.836 + }, + { + "start": 12872.9, + "end": 12878.96, + "probability": 0.9963 + }, + { + "start": 12879.54, + "end": 12879.8, + "probability": 0.7817 + }, + { + "start": 12880.32, + "end": 12882.66, + "probability": 0.8105 + }, + { + "start": 12882.9, + "end": 12885.62, + "probability": 0.9233 + }, + { + "start": 12886.98, + "end": 12889.14, + "probability": 0.7118 + }, + { + "start": 12891.22, + "end": 12895.1, + "probability": 0.8042 + }, + { + "start": 12897.28, + "end": 12902.08, + "probability": 0.9115 + }, + { + "start": 12902.34, + "end": 12903.28, + "probability": 0.4827 + }, + { + "start": 12903.28, + "end": 12907.58, + "probability": 0.8056 + }, + { + "start": 12909.46, + "end": 12911.11, + "probability": 0.9154 + }, + { + "start": 12923.52, + "end": 12923.94, + "probability": 0.6332 + }, + { + "start": 12924.26, + "end": 12927.28, + "probability": 0.874 + }, + { + "start": 12928.0, + "end": 12928.52, + "probability": 0.968 + }, + { + "start": 12928.52, + "end": 12928.6, + "probability": 0.66 + }, + { + "start": 12948.62, + "end": 12949.0, + "probability": 0.69 + }, + { + "start": 12949.0, + "end": 12949.0, + "probability": 0.0246 + }, + { + "start": 12949.0, + "end": 12949.0, + "probability": 0.177 + }, + { + "start": 12949.02, + "end": 12949.74, + "probability": 0.1068 + }, + { + "start": 12949.74, + "end": 12950.18, + "probability": 0.0515 + }, + { + "start": 12958.02, + "end": 12959.38, + "probability": 0.096 + }, + { + "start": 12960.56, + "end": 12960.8, + "probability": 0.0012 + }, + { + "start": 12991.4, + "end": 12992.96, + "probability": 0.988 + }, + { + "start": 13010.34, + "end": 13013.46, + "probability": 0.9944 + }, + { + "start": 13014.2, + "end": 13019.98, + "probability": 0.9222 + }, + { + "start": 13022.42, + "end": 13026.3, + "probability": 0.9154 + }, + { + "start": 13027.26, + "end": 13030.56, + "probability": 0.9988 + }, + { + "start": 13030.78, + "end": 13035.88, + "probability": 0.8816 + }, + { + "start": 13037.08, + "end": 13038.38, + "probability": 0.3822 + }, + { + "start": 13039.54, + "end": 13044.02, + "probability": 0.9222 + }, + { + "start": 13044.96, + "end": 13046.98, + "probability": 0.9919 + }, + { + "start": 13047.98, + "end": 13050.78, + "probability": 0.9888 + }, + { + "start": 13051.9, + "end": 13052.86, + "probability": 0.898 + }, + { + "start": 13055.78, + "end": 13057.52, + "probability": 0.3634 + }, + { + "start": 13059.42, + "end": 13063.7, + "probability": 0.9988 + }, + { + "start": 13063.7, + "end": 13068.22, + "probability": 0.9866 + }, + { + "start": 13069.46, + "end": 13069.9, + "probability": 0.5756 + }, + { + "start": 13069.94, + "end": 13072.4, + "probability": 0.9753 + }, + { + "start": 13072.4, + "end": 13075.32, + "probability": 0.9831 + }, + { + "start": 13076.14, + "end": 13078.6, + "probability": 0.9771 + }, + { + "start": 13078.6, + "end": 13081.88, + "probability": 0.9886 + }, + { + "start": 13082.14, + "end": 13087.44, + "probability": 0.9596 + }, + { + "start": 13088.0, + "end": 13090.9, + "probability": 0.9966 + }, + { + "start": 13091.48, + "end": 13093.6, + "probability": 0.965 + }, + { + "start": 13094.04, + "end": 13097.18, + "probability": 0.9963 + }, + { + "start": 13100.42, + "end": 13103.24, + "probability": 0.9946 + }, + { + "start": 13103.78, + "end": 13105.8, + "probability": 0.9924 + }, + { + "start": 13105.94, + "end": 13107.7, + "probability": 0.9846 + }, + { + "start": 13108.3, + "end": 13110.52, + "probability": 0.9957 + }, + { + "start": 13110.76, + "end": 13112.72, + "probability": 0.9895 + }, + { + "start": 13113.54, + "end": 13114.7, + "probability": 0.6499 + }, + { + "start": 13114.82, + "end": 13116.56, + "probability": 0.9492 + }, + { + "start": 13116.7, + "end": 13120.98, + "probability": 0.8347 + }, + { + "start": 13121.68, + "end": 13121.98, + "probability": 0.3999 + }, + { + "start": 13122.04, + "end": 13124.14, + "probability": 0.9438 + }, + { + "start": 13124.24, + "end": 13126.56, + "probability": 0.9855 + }, + { + "start": 13127.08, + "end": 13129.54, + "probability": 0.9668 + }, + { + "start": 13129.98, + "end": 13131.04, + "probability": 0.9574 + }, + { + "start": 13132.18, + "end": 13136.68, + "probability": 0.9927 + }, + { + "start": 13137.18, + "end": 13138.42, + "probability": 0.9642 + }, + { + "start": 13139.32, + "end": 13143.94, + "probability": 0.8988 + }, + { + "start": 13144.1, + "end": 13145.74, + "probability": 0.9963 + }, + { + "start": 13146.46, + "end": 13148.3, + "probability": 0.9912 + }, + { + "start": 13148.46, + "end": 13150.28, + "probability": 0.7844 + }, + { + "start": 13150.32, + "end": 13151.02, + "probability": 0.838 + }, + { + "start": 13151.64, + "end": 13154.14, + "probability": 0.9868 + }, + { + "start": 13154.86, + "end": 13157.42, + "probability": 0.9935 + }, + { + "start": 13158.26, + "end": 13160.84, + "probability": 0.9919 + }, + { + "start": 13160.92, + "end": 13163.38, + "probability": 0.9976 + }, + { + "start": 13164.54, + "end": 13168.36, + "probability": 0.9984 + }, + { + "start": 13168.36, + "end": 13174.58, + "probability": 0.9748 + }, + { + "start": 13179.1, + "end": 13181.0, + "probability": 0.924 + }, + { + "start": 13181.18, + "end": 13183.88, + "probability": 0.9943 + }, + { + "start": 13184.0, + "end": 13185.96, + "probability": 0.9721 + }, + { + "start": 13187.02, + "end": 13188.52, + "probability": 0.9844 + }, + { + "start": 13188.82, + "end": 13191.7, + "probability": 0.9977 + }, + { + "start": 13192.36, + "end": 13195.26, + "probability": 0.7168 + }, + { + "start": 13196.26, + "end": 13198.32, + "probability": 0.9398 + }, + { + "start": 13198.42, + "end": 13198.68, + "probability": 0.3812 + }, + { + "start": 13198.78, + "end": 13203.32, + "probability": 0.9829 + }, + { + "start": 13204.46, + "end": 13207.72, + "probability": 0.9921 + }, + { + "start": 13208.4, + "end": 13212.56, + "probability": 0.9629 + }, + { + "start": 13213.46, + "end": 13217.3, + "probability": 0.9873 + }, + { + "start": 13218.6, + "end": 13219.02, + "probability": 0.7821 + }, + { + "start": 13219.84, + "end": 13220.44, + "probability": 0.8204 + }, + { + "start": 13220.56, + "end": 13224.98, + "probability": 0.9966 + }, + { + "start": 13225.86, + "end": 13227.58, + "probability": 0.7902 + }, + { + "start": 13228.52, + "end": 13231.54, + "probability": 0.8565 + }, + { + "start": 13232.86, + "end": 13235.28, + "probability": 0.869 + }, + { + "start": 13235.76, + "end": 13239.14, + "probability": 0.9965 + }, + { + "start": 13239.46, + "end": 13241.65, + "probability": 0.9884 + }, + { + "start": 13242.1, + "end": 13242.72, + "probability": 0.9023 + }, + { + "start": 13243.0, + "end": 13245.7, + "probability": 0.9857 + }, + { + "start": 13245.9, + "end": 13248.88, + "probability": 0.9829 + }, + { + "start": 13248.96, + "end": 13252.96, + "probability": 0.972 + }, + { + "start": 13253.18, + "end": 13255.04, + "probability": 0.9939 + }, + { + "start": 13256.02, + "end": 13258.02, + "probability": 0.9128 + }, + { + "start": 13261.54, + "end": 13263.74, + "probability": 0.719 + }, + { + "start": 13268.28, + "end": 13268.94, + "probability": 0.3788 + }, + { + "start": 13269.06, + "end": 13269.06, + "probability": 0.5097 + }, + { + "start": 13269.06, + "end": 13269.24, + "probability": 0.6503 + }, + { + "start": 13269.34, + "end": 13272.1, + "probability": 0.7393 + }, + { + "start": 13272.44, + "end": 13277.32, + "probability": 0.9843 + }, + { + "start": 13277.88, + "end": 13279.36, + "probability": 0.7188 + }, + { + "start": 13280.12, + "end": 13284.9, + "probability": 0.978 + }, + { + "start": 13284.96, + "end": 13285.22, + "probability": 0.8258 + }, + { + "start": 13285.28, + "end": 13286.34, + "probability": 0.9465 + }, + { + "start": 13286.56, + "end": 13291.06, + "probability": 0.9501 + }, + { + "start": 13291.06, + "end": 13293.46, + "probability": 0.7982 + }, + { + "start": 13294.44, + "end": 13299.04, + "probability": 0.5796 + }, + { + "start": 13299.56, + "end": 13303.9, + "probability": 0.8486 + }, + { + "start": 13304.68, + "end": 13307.08, + "probability": 0.9835 + }, + { + "start": 13308.02, + "end": 13311.24, + "probability": 0.9902 + }, + { + "start": 13312.06, + "end": 13313.06, + "probability": 0.6902 + }, + { + "start": 13314.14, + "end": 13316.86, + "probability": 0.8074 + }, + { + "start": 13316.98, + "end": 13317.2, + "probability": 0.475 + }, + { + "start": 13317.2, + "end": 13318.24, + "probability": 0.6848 + }, + { + "start": 13318.36, + "end": 13320.78, + "probability": 0.9988 + }, + { + "start": 13321.0, + "end": 13323.54, + "probability": 0.9985 + }, + { + "start": 13323.54, + "end": 13327.87, + "probability": 0.9503 + }, + { + "start": 13328.28, + "end": 13333.14, + "probability": 0.9941 + }, + { + "start": 13333.98, + "end": 13339.23, + "probability": 0.9855 + }, + { + "start": 13340.36, + "end": 13341.52, + "probability": 0.9956 + }, + { + "start": 13342.1, + "end": 13344.6, + "probability": 0.9577 + }, + { + "start": 13345.34, + "end": 13347.54, + "probability": 0.9829 + }, + { + "start": 13348.36, + "end": 13349.36, + "probability": 0.9749 + }, + { + "start": 13349.62, + "end": 13351.5, + "probability": 0.5529 + }, + { + "start": 13352.04, + "end": 13354.06, + "probability": 0.6934 + }, + { + "start": 13354.68, + "end": 13358.22, + "probability": 0.9875 + }, + { + "start": 13358.64, + "end": 13359.3, + "probability": 0.8105 + }, + { + "start": 13359.38, + "end": 13362.56, + "probability": 0.9833 + }, + { + "start": 13363.18, + "end": 13366.2, + "probability": 0.969 + }, + { + "start": 13366.8, + "end": 13368.16, + "probability": 0.9966 + }, + { + "start": 13369.08, + "end": 13372.3, + "probability": 0.9839 + }, + { + "start": 13372.88, + "end": 13374.64, + "probability": 0.6933 + }, + { + "start": 13374.78, + "end": 13377.52, + "probability": 0.9899 + }, + { + "start": 13378.2, + "end": 13381.18, + "probability": 0.9883 + }, + { + "start": 13381.92, + "end": 13383.54, + "probability": 0.9159 + }, + { + "start": 13384.04, + "end": 13388.04, + "probability": 0.9922 + }, + { + "start": 13388.16, + "end": 13388.88, + "probability": 0.5631 + }, + { + "start": 13389.5, + "end": 13390.34, + "probability": 0.9738 + }, + { + "start": 13391.06, + "end": 13395.26, + "probability": 0.9792 + }, + { + "start": 13395.58, + "end": 13396.24, + "probability": 0.9214 + }, + { + "start": 13396.86, + "end": 13398.02, + "probability": 0.9979 + }, + { + "start": 13398.66, + "end": 13401.62, + "probability": 0.9292 + }, + { + "start": 13402.18, + "end": 13403.14, + "probability": 0.6974 + }, + { + "start": 13404.46, + "end": 13405.86, + "probability": 0.5785 + }, + { + "start": 13406.62, + "end": 13411.14, + "probability": 0.9619 + }, + { + "start": 13411.26, + "end": 13414.64, + "probability": 0.9304 + }, + { + "start": 13414.68, + "end": 13415.9, + "probability": 0.9848 + }, + { + "start": 13415.94, + "end": 13417.82, + "probability": 0.9144 + }, + { + "start": 13418.28, + "end": 13419.74, + "probability": 0.8808 + }, + { + "start": 13419.86, + "end": 13421.44, + "probability": 0.9207 + }, + { + "start": 13421.52, + "end": 13422.52, + "probability": 0.9302 + }, + { + "start": 13422.6, + "end": 13424.42, + "probability": 0.9258 + }, + { + "start": 13424.46, + "end": 13425.6, + "probability": 0.981 + }, + { + "start": 13426.28, + "end": 13427.28, + "probability": 0.983 + }, + { + "start": 13427.32, + "end": 13430.62, + "probability": 0.9697 + }, + { + "start": 13431.62, + "end": 13434.98, + "probability": 0.9951 + }, + { + "start": 13435.06, + "end": 13437.09, + "probability": 0.98 + }, + { + "start": 13438.16, + "end": 13438.72, + "probability": 0.5062 + }, + { + "start": 13438.9, + "end": 13441.0, + "probability": 0.9032 + }, + { + "start": 13441.54, + "end": 13442.7, + "probability": 0.9233 + }, + { + "start": 13443.22, + "end": 13444.54, + "probability": 0.9652 + }, + { + "start": 13446.36, + "end": 13450.0, + "probability": 0.9201 + }, + { + "start": 13450.2, + "end": 13451.12, + "probability": 0.6794 + }, + { + "start": 13451.5, + "end": 13454.28, + "probability": 0.9417 + }, + { + "start": 13454.32, + "end": 13457.0, + "probability": 0.9972 + }, + { + "start": 13457.06, + "end": 13458.82, + "probability": 0.8525 + }, + { + "start": 13458.88, + "end": 13460.24, + "probability": 0.9164 + }, + { + "start": 13462.5, + "end": 13464.96, + "probability": 0.997 + }, + { + "start": 13465.2, + "end": 13467.3, + "probability": 0.9579 + }, + { + "start": 13467.8, + "end": 13469.98, + "probability": 0.998 + }, + { + "start": 13470.66, + "end": 13471.52, + "probability": 0.8408 + }, + { + "start": 13471.92, + "end": 13475.58, + "probability": 0.9606 + }, + { + "start": 13476.78, + "end": 13480.66, + "probability": 0.995 + }, + { + "start": 13481.24, + "end": 13481.96, + "probability": 0.9459 + }, + { + "start": 13482.06, + "end": 13482.62, + "probability": 0.8012 + }, + { + "start": 13482.74, + "end": 13483.14, + "probability": 0.9124 + }, + { + "start": 13483.24, + "end": 13483.66, + "probability": 0.9922 + }, + { + "start": 13483.7, + "end": 13484.18, + "probability": 0.9906 + }, + { + "start": 13484.2, + "end": 13484.58, + "probability": 0.8835 + }, + { + "start": 13484.64, + "end": 13486.5, + "probability": 0.8953 + }, + { + "start": 13486.88, + "end": 13488.68, + "probability": 0.9932 + }, + { + "start": 13489.46, + "end": 13494.28, + "probability": 0.9011 + }, + { + "start": 13494.4, + "end": 13495.26, + "probability": 0.917 + }, + { + "start": 13495.66, + "end": 13496.34, + "probability": 0.9769 + }, + { + "start": 13496.86, + "end": 13498.46, + "probability": 0.9922 + }, + { + "start": 13499.18, + "end": 13500.78, + "probability": 0.3868 + }, + { + "start": 13500.94, + "end": 13501.94, + "probability": 0.9989 + }, + { + "start": 13502.72, + "end": 13506.52, + "probability": 0.7706 + }, + { + "start": 13506.98, + "end": 13511.56, + "probability": 0.9948 + }, + { + "start": 13513.34, + "end": 13515.2, + "probability": 0.7306 + }, + { + "start": 13515.54, + "end": 13520.16, + "probability": 0.9922 + }, + { + "start": 13520.24, + "end": 13523.92, + "probability": 0.9983 + }, + { + "start": 13524.3, + "end": 13526.28, + "probability": 0.4241 + }, + { + "start": 13526.46, + "end": 13528.08, + "probability": 0.8947 + }, + { + "start": 13528.56, + "end": 13530.12, + "probability": 0.8428 + }, + { + "start": 13530.46, + "end": 13532.48, + "probability": 0.9744 + }, + { + "start": 13532.64, + "end": 13536.78, + "probability": 0.9673 + }, + { + "start": 13537.72, + "end": 13541.42, + "probability": 0.9893 + }, + { + "start": 13541.42, + "end": 13544.86, + "probability": 0.9895 + }, + { + "start": 13545.42, + "end": 13545.8, + "probability": 0.3483 + }, + { + "start": 13545.92, + "end": 13547.28, + "probability": 0.537 + }, + { + "start": 13547.34, + "end": 13547.98, + "probability": 0.7879 + }, + { + "start": 13548.12, + "end": 13548.8, + "probability": 0.9401 + }, + { + "start": 13548.9, + "end": 13549.62, + "probability": 0.9544 + }, + { + "start": 13550.08, + "end": 13554.98, + "probability": 0.9883 + }, + { + "start": 13555.44, + "end": 13558.14, + "probability": 0.8332 + }, + { + "start": 13558.68, + "end": 13560.16, + "probability": 0.8067 + }, + { + "start": 13560.18, + "end": 13563.0, + "probability": 0.9867 + }, + { + "start": 13563.08, + "end": 13563.4, + "probability": 0.4085 + }, + { + "start": 13563.78, + "end": 13567.56, + "probability": 0.9971 + }, + { + "start": 13567.76, + "end": 13569.63, + "probability": 0.991 + }, + { + "start": 13570.4, + "end": 13572.82, + "probability": 0.9782 + }, + { + "start": 13573.28, + "end": 13574.28, + "probability": 0.936 + }, + { + "start": 13574.48, + "end": 13574.64, + "probability": 0.7554 + }, + { + "start": 13575.24, + "end": 13576.8, + "probability": 0.6673 + }, + { + "start": 13577.04, + "end": 13578.16, + "probability": 0.9423 + }, + { + "start": 13578.32, + "end": 13580.72, + "probability": 0.6872 + }, + { + "start": 13580.76, + "end": 13580.86, + "probability": 0.7464 + }, + { + "start": 13600.6, + "end": 13603.38, + "probability": 0.6336 + }, + { + "start": 13604.62, + "end": 13608.64, + "probability": 0.9525 + }, + { + "start": 13609.9, + "end": 13612.7, + "probability": 0.9956 + }, + { + "start": 13613.7, + "end": 13616.56, + "probability": 0.9533 + }, + { + "start": 13618.0, + "end": 13620.64, + "probability": 0.8038 + }, + { + "start": 13621.56, + "end": 13623.0, + "probability": 0.7348 + }, + { + "start": 13623.76, + "end": 13627.18, + "probability": 0.9172 + }, + { + "start": 13627.74, + "end": 13630.5, + "probability": 0.9918 + }, + { + "start": 13631.02, + "end": 13633.88, + "probability": 0.9958 + }, + { + "start": 13635.2, + "end": 13637.46, + "probability": 0.9839 + }, + { + "start": 13638.1, + "end": 13642.4, + "probability": 0.9977 + }, + { + "start": 13644.5, + "end": 13645.38, + "probability": 0.7671 + }, + { + "start": 13646.1, + "end": 13647.62, + "probability": 0.9425 + }, + { + "start": 13648.24, + "end": 13651.1, + "probability": 0.9968 + }, + { + "start": 13651.76, + "end": 13653.56, + "probability": 0.9766 + }, + { + "start": 13654.22, + "end": 13655.8, + "probability": 0.927 + }, + { + "start": 13656.5, + "end": 13659.38, + "probability": 0.97 + }, + { + "start": 13661.02, + "end": 13663.42, + "probability": 0.8862 + }, + { + "start": 13664.66, + "end": 13665.64, + "probability": 0.6243 + }, + { + "start": 13667.06, + "end": 13669.4, + "probability": 0.9576 + }, + { + "start": 13670.02, + "end": 13670.86, + "probability": 0.9603 + }, + { + "start": 13671.4, + "end": 13672.06, + "probability": 0.7616 + }, + { + "start": 13673.12, + "end": 13674.98, + "probability": 0.9813 + }, + { + "start": 13676.64, + "end": 13680.32, + "probability": 0.9931 + }, + { + "start": 13680.96, + "end": 13686.2, + "probability": 0.9058 + }, + { + "start": 13687.84, + "end": 13691.18, + "probability": 0.998 + }, + { + "start": 13691.94, + "end": 13696.1, + "probability": 0.854 + }, + { + "start": 13697.4, + "end": 13701.46, + "probability": 0.9973 + }, + { + "start": 13702.06, + "end": 13706.14, + "probability": 0.9976 + }, + { + "start": 13707.44, + "end": 13708.3, + "probability": 0.9788 + }, + { + "start": 13709.26, + "end": 13710.52, + "probability": 0.97 + }, + { + "start": 13711.06, + "end": 13714.98, + "probability": 0.993 + }, + { + "start": 13715.04, + "end": 13716.32, + "probability": 0.7075 + }, + { + "start": 13716.88, + "end": 13719.14, + "probability": 0.9523 + }, + { + "start": 13720.08, + "end": 13720.94, + "probability": 0.7559 + }, + { + "start": 13721.02, + "end": 13724.02, + "probability": 0.8632 + }, + { + "start": 13724.76, + "end": 13727.24, + "probability": 0.9311 + }, + { + "start": 13728.2, + "end": 13729.08, + "probability": 0.6111 + }, + { + "start": 13730.12, + "end": 13733.5, + "probability": 0.9287 + }, + { + "start": 13736.14, + "end": 13737.9, + "probability": 0.9792 + }, + { + "start": 13739.18, + "end": 13743.06, + "probability": 0.8918 + }, + { + "start": 13743.06, + "end": 13747.58, + "probability": 0.911 + }, + { + "start": 13748.54, + "end": 13755.48, + "probability": 0.9833 + }, + { + "start": 13756.5, + "end": 13762.52, + "probability": 0.9946 + }, + { + "start": 13763.8, + "end": 13766.74, + "probability": 0.939 + }, + { + "start": 13767.78, + "end": 13769.68, + "probability": 0.9884 + }, + { + "start": 13770.36, + "end": 13776.58, + "probability": 0.9812 + }, + { + "start": 13778.24, + "end": 13781.8, + "probability": 0.8526 + }, + { + "start": 13782.18, + "end": 13782.64, + "probability": 0.8323 + }, + { + "start": 13784.18, + "end": 13785.1, + "probability": 0.8385 + }, + { + "start": 13785.8, + "end": 13787.58, + "probability": 0.9329 + }, + { + "start": 13788.84, + "end": 13794.84, + "probability": 0.9778 + }, + { + "start": 13796.3, + "end": 13798.92, + "probability": 0.9708 + }, + { + "start": 13799.3, + "end": 13801.58, + "probability": 0.8449 + }, + { + "start": 13803.68, + "end": 13808.38, + "probability": 0.9969 + }, + { + "start": 13809.44, + "end": 13813.48, + "probability": 0.9956 + }, + { + "start": 13814.26, + "end": 13817.82, + "probability": 0.9606 + }, + { + "start": 13818.34, + "end": 13820.2, + "probability": 0.8673 + }, + { + "start": 13820.8, + "end": 13824.66, + "probability": 0.9886 + }, + { + "start": 13825.58, + "end": 13828.76, + "probability": 0.9653 + }, + { + "start": 13830.0, + "end": 13835.64, + "probability": 0.9832 + }, + { + "start": 13836.42, + "end": 13839.46, + "probability": 0.9762 + }, + { + "start": 13839.46, + "end": 13844.3, + "probability": 0.9805 + }, + { + "start": 13845.08, + "end": 13847.88, + "probability": 0.9651 + }, + { + "start": 13848.56, + "end": 13849.32, + "probability": 0.8545 + }, + { + "start": 13851.06, + "end": 13852.34, + "probability": 0.7817 + }, + { + "start": 13853.02, + "end": 13855.64, + "probability": 0.7769 + }, + { + "start": 13856.5, + "end": 13858.56, + "probability": 0.7472 + }, + { + "start": 13859.2, + "end": 13860.72, + "probability": 0.9198 + }, + { + "start": 13862.0, + "end": 13862.98, + "probability": 0.623 + }, + { + "start": 13864.22, + "end": 13865.38, + "probability": 0.6675 + }, + { + "start": 13866.36, + "end": 13867.5, + "probability": 0.9307 + }, + { + "start": 13868.12, + "end": 13869.17, + "probability": 0.9792 + }, + { + "start": 13869.86, + "end": 13873.38, + "probability": 0.7076 + }, + { + "start": 13875.5, + "end": 13877.84, + "probability": 0.9725 + }, + { + "start": 13878.36, + "end": 13880.0, + "probability": 0.9778 + }, + { + "start": 13881.08, + "end": 13886.44, + "probability": 0.987 + }, + { + "start": 13887.2, + "end": 13888.34, + "probability": 0.7983 + }, + { + "start": 13888.76, + "end": 13892.42, + "probability": 0.9515 + }, + { + "start": 13893.86, + "end": 13894.38, + "probability": 0.9796 + }, + { + "start": 13895.58, + "end": 13897.3, + "probability": 0.6805 + }, + { + "start": 13897.56, + "end": 13900.58, + "probability": 0.9921 + }, + { + "start": 13901.18, + "end": 13904.52, + "probability": 0.8461 + }, + { + "start": 13908.76, + "end": 13910.44, + "probability": 0.6773 + }, + { + "start": 13920.6, + "end": 13921.82, + "probability": 0.6688 + }, + { + "start": 13922.58, + "end": 13924.22, + "probability": 0.9746 + }, + { + "start": 13925.02, + "end": 13926.12, + "probability": 0.8161 + }, + { + "start": 13927.36, + "end": 13930.46, + "probability": 0.8863 + }, + { + "start": 13931.84, + "end": 13933.48, + "probability": 0.9298 + }, + { + "start": 13934.62, + "end": 13936.9, + "probability": 0.9972 + }, + { + "start": 13937.62, + "end": 13939.72, + "probability": 0.996 + }, + { + "start": 13940.46, + "end": 13941.1, + "probability": 0.9951 + }, + { + "start": 13942.18, + "end": 13943.12, + "probability": 0.4016 + }, + { + "start": 13943.88, + "end": 13946.92, + "probability": 0.9734 + }, + { + "start": 13947.78, + "end": 13951.68, + "probability": 0.9917 + }, + { + "start": 13952.46, + "end": 13954.58, + "probability": 0.936 + }, + { + "start": 13955.66, + "end": 13959.66, + "probability": 0.9939 + }, + { + "start": 13959.66, + "end": 13964.56, + "probability": 0.9295 + }, + { + "start": 13965.1, + "end": 13968.02, + "probability": 0.9945 + }, + { + "start": 13969.88, + "end": 13973.28, + "probability": 0.9424 + }, + { + "start": 13974.56, + "end": 13977.54, + "probability": 0.9688 + }, + { + "start": 13978.6, + "end": 13979.82, + "probability": 0.8096 + }, + { + "start": 13980.42, + "end": 13981.32, + "probability": 0.9357 + }, + { + "start": 13982.5, + "end": 13983.5, + "probability": 0.9505 + }, + { + "start": 13984.36, + "end": 13988.92, + "probability": 0.9983 + }, + { + "start": 13990.9, + "end": 13991.46, + "probability": 0.9917 + }, + { + "start": 13992.28, + "end": 13993.24, + "probability": 0.9728 + }, + { + "start": 13993.86, + "end": 13995.06, + "probability": 0.8667 + }, + { + "start": 13995.78, + "end": 13998.78, + "probability": 0.9903 + }, + { + "start": 14000.16, + "end": 14005.76, + "probability": 0.9111 + }, + { + "start": 14006.46, + "end": 14008.4, + "probability": 0.5709 + }, + { + "start": 14010.64, + "end": 14012.46, + "probability": 0.9407 + }, + { + "start": 14013.02, + "end": 14017.22, + "probability": 0.9731 + }, + { + "start": 14018.38, + "end": 14021.68, + "probability": 0.7853 + }, + { + "start": 14022.46, + "end": 14024.26, + "probability": 0.8223 + }, + { + "start": 14025.1, + "end": 14031.42, + "probability": 0.9567 + }, + { + "start": 14032.18, + "end": 14034.6, + "probability": 0.9656 + }, + { + "start": 14035.48, + "end": 14041.74, + "probability": 0.9854 + }, + { + "start": 14043.44, + "end": 14046.08, + "probability": 0.7925 + }, + { + "start": 14047.26, + "end": 14050.28, + "probability": 0.9943 + }, + { + "start": 14050.94, + "end": 14052.94, + "probability": 0.89 + }, + { + "start": 14053.94, + "end": 14056.8, + "probability": 0.9989 + }, + { + "start": 14056.84, + "end": 14060.34, + "probability": 0.9961 + }, + { + "start": 14061.06, + "end": 14061.68, + "probability": 0.8516 + }, + { + "start": 14061.74, + "end": 14064.56, + "probability": 0.9876 + }, + { + "start": 14064.96, + "end": 14065.54, + "probability": 0.9082 + }, + { + "start": 14066.64, + "end": 14067.34, + "probability": 0.874 + }, + { + "start": 14068.38, + "end": 14069.26, + "probability": 0.3197 + }, + { + "start": 14070.0, + "end": 14072.36, + "probability": 0.9951 + }, + { + "start": 14073.08, + "end": 14073.72, + "probability": 0.4002 + }, + { + "start": 14074.6, + "end": 14075.22, + "probability": 0.7328 + }, + { + "start": 14076.32, + "end": 14078.7, + "probability": 0.9905 + }, + { + "start": 14079.68, + "end": 14084.44, + "probability": 0.9878 + }, + { + "start": 14085.38, + "end": 14091.46, + "probability": 0.9886 + }, + { + "start": 14092.32, + "end": 14092.96, + "probability": 0.9531 + }, + { + "start": 14094.1, + "end": 14101.12, + "probability": 0.9819 + }, + { + "start": 14102.22, + "end": 14106.38, + "probability": 0.9897 + }, + { + "start": 14107.22, + "end": 14109.18, + "probability": 0.9989 + }, + { + "start": 14109.72, + "end": 14111.64, + "probability": 0.9749 + }, + { + "start": 14112.42, + "end": 14113.94, + "probability": 0.5923 + }, + { + "start": 14114.68, + "end": 14117.14, + "probability": 0.8277 + }, + { + "start": 14118.1, + "end": 14120.0, + "probability": 0.8979 + }, + { + "start": 14120.78, + "end": 14121.54, + "probability": 0.8047 + }, + { + "start": 14122.28, + "end": 14123.78, + "probability": 0.9387 + }, + { + "start": 14124.64, + "end": 14126.2, + "probability": 0.7896 + }, + { + "start": 14126.8, + "end": 14132.86, + "probability": 0.9918 + }, + { + "start": 14133.58, + "end": 14134.88, + "probability": 0.8369 + }, + { + "start": 14135.88, + "end": 14136.82, + "probability": 0.8985 + }, + { + "start": 14137.72, + "end": 14142.24, + "probability": 0.9628 + }, + { + "start": 14142.82, + "end": 14146.8, + "probability": 0.9962 + }, + { + "start": 14147.1, + "end": 14147.52, + "probability": 0.8297 + }, + { + "start": 14148.84, + "end": 14152.84, + "probability": 0.9719 + }, + { + "start": 14153.26, + "end": 14155.56, + "probability": 0.998 + }, + { + "start": 14156.34, + "end": 14159.64, + "probability": 0.9285 + }, + { + "start": 14160.36, + "end": 14161.32, + "probability": 0.8362 + }, + { + "start": 14163.66, + "end": 14165.02, + "probability": 0.7423 + }, + { + "start": 14165.4, + "end": 14167.32, + "probability": 0.7895 + }, + { + "start": 14167.48, + "end": 14169.26, + "probability": 0.8913 + }, + { + "start": 14169.42, + "end": 14169.78, + "probability": 0.8655 + }, + { + "start": 14170.02, + "end": 14170.34, + "probability": 0.7389 + }, + { + "start": 14170.7, + "end": 14171.34, + "probability": 0.8462 + }, + { + "start": 14171.86, + "end": 14173.94, + "probability": 0.9323 + }, + { + "start": 14174.54, + "end": 14175.6, + "probability": 0.3608 + }, + { + "start": 14176.34, + "end": 14176.96, + "probability": 0.0205 + }, + { + "start": 14177.66, + "end": 14178.74, + "probability": 0.175 + }, + { + "start": 14179.26, + "end": 14179.26, + "probability": 0.1631 + }, + { + "start": 14179.26, + "end": 14180.03, + "probability": 0.2198 + }, + { + "start": 14180.16, + "end": 14181.14, + "probability": 0.2177 + }, + { + "start": 14181.4, + "end": 14182.84, + "probability": 0.2768 + }, + { + "start": 14184.48, + "end": 14185.3, + "probability": 0.2821 + }, + { + "start": 14186.02, + "end": 14186.62, + "probability": 0.1318 + }, + { + "start": 14186.64, + "end": 14187.3, + "probability": 0.0745 + }, + { + "start": 14187.42, + "end": 14189.38, + "probability": 0.6166 + }, + { + "start": 14189.68, + "end": 14194.18, + "probability": 0.8444 + }, + { + "start": 14194.82, + "end": 14196.62, + "probability": 0.7895 + }, + { + "start": 14197.52, + "end": 14198.9, + "probability": 0.6629 + }, + { + "start": 14199.06, + "end": 14205.52, + "probability": 0.8983 + }, + { + "start": 14205.68, + "end": 14208.0, + "probability": 0.8058 + }, + { + "start": 14208.12, + "end": 14208.96, + "probability": 0.9299 + }, + { + "start": 14209.02, + "end": 14210.16, + "probability": 0.9334 + }, + { + "start": 14211.2, + "end": 14213.56, + "probability": 0.9312 + }, + { + "start": 14213.72, + "end": 14214.5, + "probability": 0.7445 + }, + { + "start": 14214.56, + "end": 14215.4, + "probability": 0.8955 + }, + { + "start": 14215.5, + "end": 14218.46, + "probability": 0.668 + }, + { + "start": 14218.64, + "end": 14221.5, + "probability": 0.8333 + }, + { + "start": 14221.84, + "end": 14223.5, + "probability": 0.945 + }, + { + "start": 14223.78, + "end": 14223.82, + "probability": 0.3052 + }, + { + "start": 14224.42, + "end": 14226.22, + "probability": 0.9443 + }, + { + "start": 14226.38, + "end": 14227.66, + "probability": 0.8674 + }, + { + "start": 14227.88, + "end": 14228.34, + "probability": 0.6376 + }, + { + "start": 14228.49, + "end": 14231.16, + "probability": 0.7798 + }, + { + "start": 14231.44, + "end": 14233.38, + "probability": 0.8937 + }, + { + "start": 14233.46, + "end": 14235.26, + "probability": 0.7517 + }, + { + "start": 14235.44, + "end": 14239.24, + "probability": 0.9734 + }, + { + "start": 14239.4, + "end": 14240.36, + "probability": 0.671 + }, + { + "start": 14240.52, + "end": 14241.31, + "probability": 0.9562 + }, + { + "start": 14241.5, + "end": 14242.24, + "probability": 0.4106 + }, + { + "start": 14242.36, + "end": 14244.0, + "probability": 0.7666 + }, + { + "start": 14244.66, + "end": 14249.48, + "probability": 0.7199 + }, + { + "start": 14249.82, + "end": 14254.46, + "probability": 0.9897 + }, + { + "start": 14255.16, + "end": 14259.68, + "probability": 0.9851 + }, + { + "start": 14260.44, + "end": 14261.94, + "probability": 0.689 + }, + { + "start": 14262.56, + "end": 14264.72, + "probability": 0.8662 + }, + { + "start": 14265.6, + "end": 14267.94, + "probability": 0.9287 + }, + { + "start": 14268.78, + "end": 14269.86, + "probability": 0.7445 + }, + { + "start": 14270.04, + "end": 14273.36, + "probability": 0.9889 + }, + { + "start": 14273.88, + "end": 14275.54, + "probability": 0.927 + }, + { + "start": 14275.56, + "end": 14279.68, + "probability": 0.8921 + }, + { + "start": 14279.74, + "end": 14280.58, + "probability": 0.7829 + }, + { + "start": 14281.12, + "end": 14282.0, + "probability": 0.7965 + }, + { + "start": 14282.77, + "end": 14285.5, + "probability": 0.7808 + }, + { + "start": 14285.64, + "end": 14287.62, + "probability": 0.0101 + }, + { + "start": 14287.88, + "end": 14289.59, + "probability": 0.5619 + }, + { + "start": 14290.0, + "end": 14291.66, + "probability": 0.7885 + }, + { + "start": 14292.18, + "end": 14294.18, + "probability": 0.8348 + }, + { + "start": 14295.3, + "end": 14296.12, + "probability": 0.1952 + }, + { + "start": 14297.6, + "end": 14299.6, + "probability": 0.8157 + }, + { + "start": 14301.2, + "end": 14304.56, + "probability": 0.7429 + }, + { + "start": 14305.24, + "end": 14306.46, + "probability": 0.9941 + }, + { + "start": 14308.18, + "end": 14310.38, + "probability": 0.8872 + }, + { + "start": 14311.14, + "end": 14312.04, + "probability": 0.8373 + }, + { + "start": 14313.46, + "end": 14314.04, + "probability": 0.6731 + }, + { + "start": 14316.3, + "end": 14324.62, + "probability": 0.9576 + }, + { + "start": 14325.66, + "end": 14327.92, + "probability": 0.9939 + }, + { + "start": 14328.98, + "end": 14331.32, + "probability": 0.9629 + }, + { + "start": 14332.5, + "end": 14337.38, + "probability": 0.9978 + }, + { + "start": 14338.0, + "end": 14338.58, + "probability": 0.9792 + }, + { + "start": 14341.18, + "end": 14343.1, + "probability": 0.9141 + }, + { + "start": 14344.32, + "end": 14344.98, + "probability": 0.7111 + }, + { + "start": 14346.02, + "end": 14350.16, + "probability": 0.8066 + }, + { + "start": 14351.76, + "end": 14352.7, + "probability": 0.9321 + }, + { + "start": 14353.44, + "end": 14355.14, + "probability": 0.9635 + }, + { + "start": 14358.3, + "end": 14361.92, + "probability": 0.9141 + }, + { + "start": 14363.14, + "end": 14364.3, + "probability": 0.8735 + }, + { + "start": 14366.62, + "end": 14369.68, + "probability": 0.9575 + }, + { + "start": 14370.74, + "end": 14374.34, + "probability": 0.985 + }, + { + "start": 14375.0, + "end": 14376.06, + "probability": 0.7421 + }, + { + "start": 14378.92, + "end": 14381.56, + "probability": 0.9941 + }, + { + "start": 14382.8, + "end": 14385.38, + "probability": 0.9966 + }, + { + "start": 14386.24, + "end": 14392.58, + "probability": 0.9941 + }, + { + "start": 14393.36, + "end": 14394.92, + "probability": 0.9945 + }, + { + "start": 14395.72, + "end": 14399.04, + "probability": 0.9933 + }, + { + "start": 14399.56, + "end": 14400.34, + "probability": 0.5325 + }, + { + "start": 14401.24, + "end": 14404.52, + "probability": 0.9937 + }, + { + "start": 14405.5, + "end": 14406.78, + "probability": 0.9974 + }, + { + "start": 14407.4, + "end": 14409.5, + "probability": 0.9786 + }, + { + "start": 14411.18, + "end": 14413.96, + "probability": 0.9808 + }, + { + "start": 14414.76, + "end": 14415.58, + "probability": 0.9709 + }, + { + "start": 14416.92, + "end": 14422.44, + "probability": 0.8339 + }, + { + "start": 14425.54, + "end": 14428.14, + "probability": 0.9907 + }, + { + "start": 14431.34, + "end": 14432.4, + "probability": 0.684 + }, + { + "start": 14434.8, + "end": 14438.14, + "probability": 0.9617 + }, + { + "start": 14439.22, + "end": 14444.18, + "probability": 0.9685 + }, + { + "start": 14444.94, + "end": 14448.92, + "probability": 0.7736 + }, + { + "start": 14450.88, + "end": 14452.06, + "probability": 0.812 + }, + { + "start": 14452.58, + "end": 14453.36, + "probability": 0.955 + }, + { + "start": 14454.14, + "end": 14456.34, + "probability": 0.8414 + }, + { + "start": 14457.54, + "end": 14460.34, + "probability": 0.9913 + }, + { + "start": 14460.96, + "end": 14464.56, + "probability": 0.9919 + }, + { + "start": 14466.2, + "end": 14467.76, + "probability": 0.9703 + }, + { + "start": 14468.38, + "end": 14469.72, + "probability": 0.978 + }, + { + "start": 14470.24, + "end": 14474.42, + "probability": 0.9753 + }, + { + "start": 14475.1, + "end": 14475.96, + "probability": 0.9875 + }, + { + "start": 14477.64, + "end": 14480.08, + "probability": 0.7834 + }, + { + "start": 14481.04, + "end": 14483.36, + "probability": 0.9551 + }, + { + "start": 14484.32, + "end": 14485.54, + "probability": 0.9887 + }, + { + "start": 14486.64, + "end": 14488.22, + "probability": 0.9982 + }, + { + "start": 14489.2, + "end": 14493.46, + "probability": 0.9951 + }, + { + "start": 14493.96, + "end": 14496.42, + "probability": 0.981 + }, + { + "start": 14500.1, + "end": 14500.86, + "probability": 0.9894 + }, + { + "start": 14502.28, + "end": 14505.3, + "probability": 0.9907 + }, + { + "start": 14506.48, + "end": 14508.34, + "probability": 0.8489 + }, + { + "start": 14509.56, + "end": 14511.46, + "probability": 0.7485 + }, + { + "start": 14512.76, + "end": 14519.8, + "probability": 0.9847 + }, + { + "start": 14519.8, + "end": 14523.34, + "probability": 0.8117 + }, + { + "start": 14524.2, + "end": 14531.0, + "probability": 0.9339 + }, + { + "start": 14533.18, + "end": 14538.22, + "probability": 0.9257 + }, + { + "start": 14538.28, + "end": 14541.26, + "probability": 0.9041 + }, + { + "start": 14541.42, + "end": 14545.62, + "probability": 0.9793 + }, + { + "start": 14545.98, + "end": 14550.08, + "probability": 0.8196 + }, + { + "start": 14551.48, + "end": 14552.94, + "probability": 0.8052 + }, + { + "start": 14553.82, + "end": 14558.02, + "probability": 0.9142 + }, + { + "start": 14558.7, + "end": 14559.12, + "probability": 0.4969 + }, + { + "start": 14559.64, + "end": 14560.62, + "probability": 0.5631 + }, + { + "start": 14562.24, + "end": 14563.32, + "probability": 0.9391 + }, + { + "start": 14563.94, + "end": 14565.8, + "probability": 0.9323 + }, + { + "start": 14566.34, + "end": 14570.64, + "probability": 0.8802 + }, + { + "start": 14572.4, + "end": 14573.83, + "probability": 0.9045 + }, + { + "start": 14574.22, + "end": 14574.98, + "probability": 0.5081 + }, + { + "start": 14575.78, + "end": 14579.14, + "probability": 0.9987 + }, + { + "start": 14580.02, + "end": 14580.7, + "probability": 0.7279 + }, + { + "start": 14580.78, + "end": 14581.7, + "probability": 0.4915 + }, + { + "start": 14582.1, + "end": 14586.22, + "probability": 0.8946 + }, + { + "start": 14588.0, + "end": 14591.86, + "probability": 0.9968 + }, + { + "start": 14592.7, + "end": 14594.8, + "probability": 0.9967 + }, + { + "start": 14596.96, + "end": 14600.84, + "probability": 0.5334 + }, + { + "start": 14601.3, + "end": 14606.28, + "probability": 0.9803 + }, + { + "start": 14606.96, + "end": 14610.33, + "probability": 0.8501 + }, + { + "start": 14611.4, + "end": 14612.5, + "probability": 0.9995 + }, + { + "start": 14613.14, + "end": 14616.46, + "probability": 0.9917 + }, + { + "start": 14617.84, + "end": 14621.9, + "probability": 0.9023 + }, + { + "start": 14625.5, + "end": 14627.2, + "probability": 0.7775 + }, + { + "start": 14627.94, + "end": 14628.94, + "probability": 0.9539 + }, + { + "start": 14629.58, + "end": 14631.16, + "probability": 0.9541 + }, + { + "start": 14632.26, + "end": 14637.09, + "probability": 0.9952 + }, + { + "start": 14638.3, + "end": 14641.1, + "probability": 0.9826 + }, + { + "start": 14642.4, + "end": 14644.96, + "probability": 0.7859 + }, + { + "start": 14646.26, + "end": 14647.38, + "probability": 0.2903 + }, + { + "start": 14649.56, + "end": 14651.98, + "probability": 0.8627 + }, + { + "start": 14652.44, + "end": 14655.02, + "probability": 0.9436 + }, + { + "start": 14655.52, + "end": 14661.14, + "probability": 0.9762 + }, + { + "start": 14661.74, + "end": 14662.66, + "probability": 0.5916 + }, + { + "start": 14664.0, + "end": 14665.16, + "probability": 0.506 + }, + { + "start": 14665.7, + "end": 14667.58, + "probability": 0.9468 + }, + { + "start": 14669.16, + "end": 14672.88, + "probability": 0.6793 + }, + { + "start": 14673.7, + "end": 14678.68, + "probability": 0.9975 + }, + { + "start": 14679.02, + "end": 14680.96, + "probability": 0.8444 + }, + { + "start": 14684.66, + "end": 14685.16, + "probability": 0.9558 + }, + { + "start": 14685.88, + "end": 14690.01, + "probability": 0.9958 + }, + { + "start": 14691.04, + "end": 14691.8, + "probability": 0.9928 + }, + { + "start": 14693.3, + "end": 14695.64, + "probability": 0.9664 + }, + { + "start": 14696.16, + "end": 14700.84, + "probability": 0.9919 + }, + { + "start": 14702.86, + "end": 14709.04, + "probability": 0.9701 + }, + { + "start": 14709.2, + "end": 14713.7, + "probability": 0.9912 + }, + { + "start": 14713.7, + "end": 14719.7, + "probability": 0.9823 + }, + { + "start": 14720.3, + "end": 14724.24, + "probability": 0.9972 + }, + { + "start": 14724.96, + "end": 14730.32, + "probability": 0.9358 + }, + { + "start": 14731.0, + "end": 14731.86, + "probability": 0.8989 + }, + { + "start": 14732.44, + "end": 14735.58, + "probability": 0.9803 + }, + { + "start": 14736.48, + "end": 14738.36, + "probability": 0.9873 + }, + { + "start": 14739.26, + "end": 14741.26, + "probability": 0.9977 + }, + { + "start": 14742.98, + "end": 14746.54, + "probability": 0.8081 + }, + { + "start": 14747.38, + "end": 14752.32, + "probability": 0.8129 + }, + { + "start": 14754.58, + "end": 14760.44, + "probability": 0.9429 + }, + { + "start": 14761.02, + "end": 14764.28, + "probability": 0.9907 + }, + { + "start": 14765.02, + "end": 14766.8, + "probability": 0.8506 + }, + { + "start": 14766.88, + "end": 14770.1, + "probability": 0.9705 + }, + { + "start": 14770.84, + "end": 14774.42, + "probability": 0.9463 + }, + { + "start": 14775.1, + "end": 14776.32, + "probability": 0.8624 + }, + { + "start": 14777.12, + "end": 14778.64, + "probability": 0.8828 + }, + { + "start": 14781.44, + "end": 14782.48, + "probability": 0.92 + }, + { + "start": 14783.06, + "end": 14786.5, + "probability": 0.737 + }, + { + "start": 14787.84, + "end": 14788.86, + "probability": 0.9885 + }, + { + "start": 14789.62, + "end": 14791.46, + "probability": 0.9985 + }, + { + "start": 14792.58, + "end": 14796.2, + "probability": 0.7452 + }, + { + "start": 14797.86, + "end": 14801.8, + "probability": 0.9839 + }, + { + "start": 14802.82, + "end": 14805.82, + "probability": 0.9481 + }, + { + "start": 14806.5, + "end": 14807.9, + "probability": 0.9231 + }, + { + "start": 14808.8, + "end": 14811.56, + "probability": 0.7603 + }, + { + "start": 14812.36, + "end": 14814.58, + "probability": 0.8884 + }, + { + "start": 14815.36, + "end": 14819.18, + "probability": 0.6048 + }, + { + "start": 14819.18, + "end": 14824.64, + "probability": 0.995 + }, + { + "start": 14825.42, + "end": 14829.24, + "probability": 0.9373 + }, + { + "start": 14830.42, + "end": 14831.38, + "probability": 0.8459 + }, + { + "start": 14832.06, + "end": 14834.78, + "probability": 0.9847 + }, + { + "start": 14835.72, + "end": 14835.92, + "probability": 0.4687 + }, + { + "start": 14835.96, + "end": 14840.4, + "probability": 0.9148 + }, + { + "start": 14841.4, + "end": 14842.76, + "probability": 0.9739 + }, + { + "start": 14843.64, + "end": 14844.26, + "probability": 0.9291 + }, + { + "start": 14846.38, + "end": 14848.42, + "probability": 0.899 + }, + { + "start": 14849.16, + "end": 14850.66, + "probability": 0.6841 + }, + { + "start": 14851.6, + "end": 14855.78, + "probability": 0.9746 + }, + { + "start": 14856.28, + "end": 14858.26, + "probability": 0.9812 + }, + { + "start": 14858.82, + "end": 14860.84, + "probability": 0.8557 + }, + { + "start": 14861.36, + "end": 14865.52, + "probability": 0.8792 + }, + { + "start": 14866.02, + "end": 14866.94, + "probability": 0.7964 + }, + { + "start": 14867.5, + "end": 14869.66, + "probability": 0.8037 + }, + { + "start": 14870.28, + "end": 14870.76, + "probability": 0.8541 + }, + { + "start": 14871.56, + "end": 14873.02, + "probability": 0.8398 + }, + { + "start": 14873.06, + "end": 14874.24, + "probability": 0.9449 + }, + { + "start": 14875.38, + "end": 14875.44, + "probability": 0.0024 + } + ], + "segments_count": 4915, + "words_count": 24822, + "avg_words_per_segment": 5.0503, + "avg_segment_duration": 2.2021, + "avg_words_per_minute": 99.9449, + "plenum_id": "38495", + "duration": 14901.41, + "title": null, + "plenum_date": "2014-07-08" +} \ No newline at end of file