diff --git "a/46220/metadata.json" "b/46220/metadata.json" new file mode 100644--- /dev/null +++ "b/46220/metadata.json" @@ -0,0 +1,19617 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "46220", + "quality_score": 0.922, + "per_segment_quality_scores": [ + { + "start": 0.64, + "end": 1.3, + "probability": 0.0903 + }, + { + "start": 1.3, + "end": 3.98, + "probability": 0.259 + }, + { + "start": 4.87, + "end": 6.5, + "probability": 0.1353 + }, + { + "start": 10.84, + "end": 11.18, + "probability": 0.0212 + }, + { + "start": 40.06, + "end": 43.32, + "probability": 0.5878 + }, + { + "start": 57.98, + "end": 59.48, + "probability": 0.6311 + }, + { + "start": 60.1, + "end": 63.02, + "probability": 0.2734 + }, + { + "start": 63.6, + "end": 65.74, + "probability": 0.7259 + }, + { + "start": 67.01, + "end": 68.7, + "probability": 0.668 + }, + { + "start": 69.48, + "end": 72.02, + "probability": 0.8054 + }, + { + "start": 73.12, + "end": 74.36, + "probability": 0.7983 + }, + { + "start": 74.94, + "end": 76.34, + "probability": 0.5311 + }, + { + "start": 77.02, + "end": 78.72, + "probability": 0.9674 + }, + { + "start": 79.5, + "end": 79.84, + "probability": 0.7534 + }, + { + "start": 80.24, + "end": 81.62, + "probability": 0.8953 + }, + { + "start": 81.76, + "end": 83.8, + "probability": 0.6577 + }, + { + "start": 84.78, + "end": 90.56, + "probability": 0.9572 + }, + { + "start": 91.48, + "end": 92.54, + "probability": 0.6304 + }, + { + "start": 94.06, + "end": 95.8, + "probability": 0.8788 + }, + { + "start": 96.66, + "end": 101.12, + "probability": 0.8667 + }, + { + "start": 101.34, + "end": 104.9, + "probability": 0.9873 + }, + { + "start": 105.06, + "end": 107.08, + "probability": 0.4496 + }, + { + "start": 107.08, + "end": 108.94, + "probability": 0.607 + }, + { + "start": 109.46, + "end": 111.7, + "probability": 0.2375 + }, + { + "start": 112.5, + "end": 113.46, + "probability": 0.0454 + }, + { + "start": 113.46, + "end": 113.46, + "probability": 0.0263 + }, + { + "start": 113.46, + "end": 113.46, + "probability": 0.1377 + }, + { + "start": 113.46, + "end": 116.74, + "probability": 0.8643 + }, + { + "start": 117.39, + "end": 121.74, + "probability": 0.7323 + }, + { + "start": 122.32, + "end": 124.16, + "probability": 0.2736 + }, + { + "start": 124.58, + "end": 125.32, + "probability": 0.1265 + }, + { + "start": 125.46, + "end": 126.12, + "probability": 0.737 + }, + { + "start": 126.52, + "end": 126.82, + "probability": 0.3873 + }, + { + "start": 127.12, + "end": 129.4, + "probability": 0.7552 + }, + { + "start": 129.64, + "end": 133.64, + "probability": 0.7818 + }, + { + "start": 134.45, + "end": 137.38, + "probability": 0.9374 + }, + { + "start": 137.44, + "end": 138.14, + "probability": 0.8589 + }, + { + "start": 139.25, + "end": 140.7, + "probability": 0.5813 + }, + { + "start": 140.78, + "end": 141.44, + "probability": 0.9255 + }, + { + "start": 141.52, + "end": 143.54, + "probability": 0.854 + }, + { + "start": 143.92, + "end": 147.3, + "probability": 0.9606 + }, + { + "start": 147.78, + "end": 149.62, + "probability": 0.5756 + }, + { + "start": 149.68, + "end": 150.78, + "probability": 0.8373 + }, + { + "start": 151.4, + "end": 153.56, + "probability": 0.8986 + }, + { + "start": 159.9, + "end": 161.78, + "probability": 0.5455 + }, + { + "start": 162.58, + "end": 164.24, + "probability": 0.8412 + }, + { + "start": 165.86, + "end": 167.8, + "probability": 0.6599 + }, + { + "start": 169.22, + "end": 171.44, + "probability": 0.9287 + }, + { + "start": 172.18, + "end": 172.84, + "probability": 0.7178 + }, + { + "start": 173.78, + "end": 177.52, + "probability": 0.9404 + }, + { + "start": 177.68, + "end": 183.06, + "probability": 0.9957 + }, + { + "start": 183.6, + "end": 184.74, + "probability": 0.9036 + }, + { + "start": 185.2, + "end": 186.8, + "probability": 0.9318 + }, + { + "start": 187.78, + "end": 192.26, + "probability": 0.6356 + }, + { + "start": 193.04, + "end": 193.68, + "probability": 0.3339 + }, + { + "start": 194.42, + "end": 194.54, + "probability": 0.4038 + }, + { + "start": 194.68, + "end": 195.22, + "probability": 0.8565 + }, + { + "start": 195.34, + "end": 198.32, + "probability": 0.9734 + }, + { + "start": 198.84, + "end": 204.16, + "probability": 0.6977 + }, + { + "start": 204.76, + "end": 207.66, + "probability": 0.9688 + }, + { + "start": 208.42, + "end": 209.74, + "probability": 0.7564 + }, + { + "start": 210.26, + "end": 212.92, + "probability": 0.9967 + }, + { + "start": 212.92, + "end": 216.0, + "probability": 0.9479 + }, + { + "start": 216.18, + "end": 220.44, + "probability": 0.9749 + }, + { + "start": 220.58, + "end": 222.12, + "probability": 0.993 + }, + { + "start": 222.2, + "end": 223.0, + "probability": 0.7795 + }, + { + "start": 223.42, + "end": 226.68, + "probability": 0.9895 + }, + { + "start": 226.68, + "end": 229.66, + "probability": 0.6802 + }, + { + "start": 230.18, + "end": 232.88, + "probability": 0.8639 + }, + { + "start": 232.96, + "end": 234.5, + "probability": 0.7549 + }, + { + "start": 234.84, + "end": 236.4, + "probability": 0.8882 + }, + { + "start": 237.56, + "end": 243.66, + "probability": 0.9291 + }, + { + "start": 243.86, + "end": 249.34, + "probability": 0.9604 + }, + { + "start": 249.52, + "end": 251.72, + "probability": 0.85 + }, + { + "start": 252.26, + "end": 254.88, + "probability": 0.9946 + }, + { + "start": 255.7, + "end": 257.7, + "probability": 0.738 + }, + { + "start": 258.16, + "end": 258.68, + "probability": 0.5767 + }, + { + "start": 258.68, + "end": 260.28, + "probability": 0.947 + }, + { + "start": 260.48, + "end": 261.64, + "probability": 0.4868 + }, + { + "start": 261.72, + "end": 264.58, + "probability": 0.8938 + }, + { + "start": 265.5, + "end": 267.02, + "probability": 0.6958 + }, + { + "start": 267.96, + "end": 270.9, + "probability": 0.8784 + }, + { + "start": 272.58, + "end": 273.76, + "probability": 0.8353 + }, + { + "start": 275.92, + "end": 277.04, + "probability": 0.8667 + }, + { + "start": 277.1, + "end": 277.38, + "probability": 0.9659 + }, + { + "start": 277.5, + "end": 282.26, + "probability": 0.7898 + }, + { + "start": 282.81, + "end": 284.62, + "probability": 0.8574 + }, + { + "start": 284.64, + "end": 286.03, + "probability": 0.9688 + }, + { + "start": 287.0, + "end": 290.62, + "probability": 0.9822 + }, + { + "start": 291.56, + "end": 292.84, + "probability": 0.4648 + }, + { + "start": 293.24, + "end": 293.24, + "probability": 0.4033 + }, + { + "start": 293.28, + "end": 294.86, + "probability": 0.7359 + }, + { + "start": 295.4, + "end": 298.9, + "probability": 0.6345 + }, + { + "start": 299.62, + "end": 300.25, + "probability": 0.544 + }, + { + "start": 300.52, + "end": 300.96, + "probability": 0.6797 + }, + { + "start": 301.02, + "end": 301.62, + "probability": 0.8345 + }, + { + "start": 302.42, + "end": 303.0, + "probability": 0.9322 + }, + { + "start": 305.06, + "end": 306.22, + "probability": 0.9629 + }, + { + "start": 306.3, + "end": 306.9, + "probability": 0.5283 + }, + { + "start": 307.2, + "end": 310.12, + "probability": 0.6715 + }, + { + "start": 311.14, + "end": 315.36, + "probability": 0.113 + }, + { + "start": 316.42, + "end": 317.08, + "probability": 0.1099 + }, + { + "start": 317.08, + "end": 317.08, + "probability": 0.2369 + }, + { + "start": 317.08, + "end": 317.2, + "probability": 0.2727 + }, + { + "start": 318.3, + "end": 318.38, + "probability": 0.0476 + }, + { + "start": 318.42, + "end": 323.18, + "probability": 0.6474 + }, + { + "start": 323.18, + "end": 324.46, + "probability": 0.5049 + }, + { + "start": 324.62, + "end": 327.02, + "probability": 0.7314 + }, + { + "start": 327.76, + "end": 332.56, + "probability": 0.9688 + }, + { + "start": 333.44, + "end": 337.12, + "probability": 0.8847 + }, + { + "start": 338.12, + "end": 338.86, + "probability": 0.8216 + }, + { + "start": 338.94, + "end": 341.42, + "probability": 0.9448 + }, + { + "start": 341.88, + "end": 343.38, + "probability": 0.7344 + }, + { + "start": 343.46, + "end": 348.72, + "probability": 0.9969 + }, + { + "start": 348.92, + "end": 350.18, + "probability": 0.9583 + }, + { + "start": 350.92, + "end": 355.32, + "probability": 0.9753 + }, + { + "start": 355.92, + "end": 356.92, + "probability": 0.9556 + }, + { + "start": 357.18, + "end": 358.84, + "probability": 0.5501 + }, + { + "start": 358.9, + "end": 360.18, + "probability": 0.9851 + }, + { + "start": 360.18, + "end": 366.2, + "probability": 0.9926 + }, + { + "start": 366.32, + "end": 367.46, + "probability": 0.7376 + }, + { + "start": 367.64, + "end": 371.64, + "probability": 0.9799 + }, + { + "start": 371.64, + "end": 376.09, + "probability": 0.8677 + }, + { + "start": 377.18, + "end": 384.96, + "probability": 0.99 + }, + { + "start": 385.76, + "end": 389.1, + "probability": 0.9 + }, + { + "start": 389.22, + "end": 392.64, + "probability": 0.8668 + }, + { + "start": 392.76, + "end": 394.15, + "probability": 0.533 + }, + { + "start": 394.16, + "end": 394.16, + "probability": 0.5668 + }, + { + "start": 394.18, + "end": 394.56, + "probability": 0.5059 + }, + { + "start": 394.62, + "end": 396.48, + "probability": 0.7734 + }, + { + "start": 396.66, + "end": 398.02, + "probability": 0.9154 + }, + { + "start": 398.14, + "end": 400.2, + "probability": 0.9751 + }, + { + "start": 400.72, + "end": 401.3, + "probability": 0.3828 + }, + { + "start": 401.44, + "end": 403.3, + "probability": 0.9772 + }, + { + "start": 403.38, + "end": 404.3, + "probability": 0.9912 + }, + { + "start": 404.6, + "end": 405.86, + "probability": 0.9449 + }, + { + "start": 406.62, + "end": 412.34, + "probability": 0.9749 + }, + { + "start": 414.22, + "end": 414.36, + "probability": 0.0 + }, + { + "start": 416.08, + "end": 417.42, + "probability": 0.8789 + }, + { + "start": 418.08, + "end": 419.24, + "probability": 0.3604 + }, + { + "start": 419.36, + "end": 421.58, + "probability": 0.6369 + }, + { + "start": 421.96, + "end": 423.06, + "probability": 0.9639 + }, + { + "start": 423.26, + "end": 424.64, + "probability": 0.8801 + }, + { + "start": 424.8, + "end": 425.38, + "probability": 0.9626 + }, + { + "start": 425.46, + "end": 428.34, + "probability": 0.958 + }, + { + "start": 428.34, + "end": 428.42, + "probability": 0.0253 + }, + { + "start": 428.42, + "end": 428.54, + "probability": 0.4326 + }, + { + "start": 428.64, + "end": 430.28, + "probability": 0.8301 + }, + { + "start": 430.4, + "end": 432.1, + "probability": 0.7359 + }, + { + "start": 432.22, + "end": 432.3, + "probability": 0.6332 + }, + { + "start": 432.3, + "end": 432.3, + "probability": 0.4741 + }, + { + "start": 432.3, + "end": 433.38, + "probability": 0.7573 + }, + { + "start": 433.96, + "end": 437.28, + "probability": 0.8425 + }, + { + "start": 437.64, + "end": 437.98, + "probability": 0.6774 + }, + { + "start": 438.44, + "end": 440.26, + "probability": 0.0251 + }, + { + "start": 440.42, + "end": 444.52, + "probability": 0.589 + }, + { + "start": 444.66, + "end": 444.68, + "probability": 0.1763 + }, + { + "start": 444.68, + "end": 445.14, + "probability": 0.5373 + }, + { + "start": 446.0, + "end": 446.32, + "probability": 0.0191 + }, + { + "start": 450.16, + "end": 451.82, + "probability": 0.7426 + }, + { + "start": 451.94, + "end": 452.26, + "probability": 0.6408 + }, + { + "start": 452.44, + "end": 455.42, + "probability": 0.8866 + }, + { + "start": 456.3, + "end": 458.38, + "probability": 0.9969 + }, + { + "start": 458.42, + "end": 461.42, + "probability": 0.8957 + }, + { + "start": 461.42, + "end": 463.78, + "probability": 0.9916 + }, + { + "start": 464.3, + "end": 470.25, + "probability": 0.9895 + }, + { + "start": 470.86, + "end": 471.7, + "probability": 0.5428 + }, + { + "start": 471.88, + "end": 474.1, + "probability": 0.97 + }, + { + "start": 474.4, + "end": 476.5, + "probability": 0.9014 + }, + { + "start": 479.08, + "end": 480.88, + "probability": 0.9065 + }, + { + "start": 481.0, + "end": 482.31, + "probability": 0.8053 + }, + { + "start": 482.88, + "end": 486.36, + "probability": 0.989 + }, + { + "start": 486.48, + "end": 489.0, + "probability": 0.8781 + }, + { + "start": 489.56, + "end": 491.5, + "probability": 0.9745 + }, + { + "start": 493.8, + "end": 494.78, + "probability": 0.0546 + }, + { + "start": 496.3, + "end": 496.46, + "probability": 0.0255 + }, + { + "start": 496.46, + "end": 498.46, + "probability": 0.6628 + }, + { + "start": 500.2, + "end": 501.76, + "probability": 0.9772 + }, + { + "start": 504.62, + "end": 509.06, + "probability": 0.9976 + }, + { + "start": 510.42, + "end": 511.98, + "probability": 0.4735 + }, + { + "start": 512.72, + "end": 513.48, + "probability": 0.3936 + }, + { + "start": 513.93, + "end": 522.16, + "probability": 0.9802 + }, + { + "start": 523.1, + "end": 527.2, + "probability": 0.8438 + }, + { + "start": 527.84, + "end": 528.92, + "probability": 0.8994 + }, + { + "start": 529.8, + "end": 532.26, + "probability": 0.953 + }, + { + "start": 533.0, + "end": 534.36, + "probability": 0.4604 + }, + { + "start": 535.12, + "end": 537.02, + "probability": 0.9117 + }, + { + "start": 537.16, + "end": 541.46, + "probability": 0.9971 + }, + { + "start": 541.46, + "end": 548.02, + "probability": 0.9807 + }, + { + "start": 548.36, + "end": 550.74, + "probability": 0.9011 + }, + { + "start": 550.82, + "end": 551.74, + "probability": 0.9214 + }, + { + "start": 552.26, + "end": 553.26, + "probability": 0.7692 + }, + { + "start": 553.72, + "end": 554.74, + "probability": 0.6944 + }, + { + "start": 555.24, + "end": 560.14, + "probability": 0.9787 + }, + { + "start": 560.62, + "end": 565.95, + "probability": 0.9761 + }, + { + "start": 567.1, + "end": 569.08, + "probability": 0.8955 + }, + { + "start": 569.74, + "end": 570.72, + "probability": 0.9736 + }, + { + "start": 571.38, + "end": 574.22, + "probability": 0.9559 + }, + { + "start": 574.46, + "end": 575.5, + "probability": 0.749 + }, + { + "start": 575.58, + "end": 576.28, + "probability": 0.7231 + }, + { + "start": 576.9, + "end": 578.34, + "probability": 0.8301 + }, + { + "start": 578.52, + "end": 582.44, + "probability": 0.9786 + }, + { + "start": 583.06, + "end": 585.76, + "probability": 0.9558 + }, + { + "start": 586.24, + "end": 588.08, + "probability": 0.9883 + }, + { + "start": 588.56, + "end": 589.6, + "probability": 0.642 + }, + { + "start": 589.74, + "end": 593.24, + "probability": 0.9844 + }, + { + "start": 593.76, + "end": 602.94, + "probability": 0.9427 + }, + { + "start": 603.3, + "end": 604.16, + "probability": 0.9162 + }, + { + "start": 604.68, + "end": 606.02, + "probability": 0.9714 + }, + { + "start": 608.22, + "end": 610.9, + "probability": 0.919 + }, + { + "start": 611.4, + "end": 611.52, + "probability": 0.4838 + }, + { + "start": 611.6, + "end": 613.58, + "probability": 0.9891 + }, + { + "start": 613.58, + "end": 616.26, + "probability": 0.9971 + }, + { + "start": 616.96, + "end": 618.5, + "probability": 0.9985 + }, + { + "start": 619.42, + "end": 626.7, + "probability": 0.9006 + }, + { + "start": 626.88, + "end": 627.34, + "probability": 0.2458 + }, + { + "start": 627.34, + "end": 628.8, + "probability": 0.8157 + }, + { + "start": 629.32, + "end": 632.28, + "probability": 0.9324 + }, + { + "start": 632.86, + "end": 638.32, + "probability": 0.9894 + }, + { + "start": 638.8, + "end": 640.08, + "probability": 0.9739 + }, + { + "start": 640.14, + "end": 641.46, + "probability": 0.8764 + }, + { + "start": 641.94, + "end": 645.52, + "probability": 0.7311 + }, + { + "start": 645.92, + "end": 646.22, + "probability": 0.3435 + }, + { + "start": 646.22, + "end": 649.4, + "probability": 0.8932 + }, + { + "start": 650.12, + "end": 650.76, + "probability": 0.4569 + }, + { + "start": 651.0, + "end": 652.46, + "probability": 0.9751 + }, + { + "start": 652.48, + "end": 652.96, + "probability": 0.9133 + }, + { + "start": 653.0, + "end": 653.6, + "probability": 0.6418 + }, + { + "start": 653.62, + "end": 654.78, + "probability": 0.9338 + }, + { + "start": 659.92, + "end": 662.44, + "probability": 0.8738 + }, + { + "start": 662.98, + "end": 663.72, + "probability": 0.6163 + }, + { + "start": 665.0, + "end": 666.5, + "probability": 0.5858 + }, + { + "start": 666.58, + "end": 670.66, + "probability": 0.9935 + }, + { + "start": 671.1, + "end": 672.22, + "probability": 0.9369 + }, + { + "start": 672.94, + "end": 673.88, + "probability": 0.8564 + }, + { + "start": 673.98, + "end": 678.6, + "probability": 0.9984 + }, + { + "start": 679.14, + "end": 680.44, + "probability": 0.9253 + }, + { + "start": 681.16, + "end": 683.2, + "probability": 0.9995 + }, + { + "start": 684.18, + "end": 686.44, + "probability": 0.9905 + }, + { + "start": 687.16, + "end": 691.38, + "probability": 0.9988 + }, + { + "start": 691.96, + "end": 694.96, + "probability": 0.7861 + }, + { + "start": 696.52, + "end": 699.2, + "probability": 0.9987 + }, + { + "start": 699.86, + "end": 702.38, + "probability": 0.9148 + }, + { + "start": 702.74, + "end": 708.84, + "probability": 0.9913 + }, + { + "start": 709.02, + "end": 710.08, + "probability": 0.6942 + }, + { + "start": 712.02, + "end": 713.36, + "probability": 0.8071 + }, + { + "start": 714.16, + "end": 716.48, + "probability": 0.7485 + }, + { + "start": 716.54, + "end": 716.9, + "probability": 0.7672 + }, + { + "start": 716.96, + "end": 717.24, + "probability": 0.7709 + }, + { + "start": 717.3, + "end": 717.94, + "probability": 0.7807 + }, + { + "start": 718.0, + "end": 719.94, + "probability": 0.8416 + }, + { + "start": 721.5, + "end": 723.48, + "probability": 0.6261 + }, + { + "start": 724.36, + "end": 727.54, + "probability": 0.9551 + }, + { + "start": 728.58, + "end": 730.22, + "probability": 0.9263 + }, + { + "start": 731.12, + "end": 733.72, + "probability": 0.881 + }, + { + "start": 734.4, + "end": 735.68, + "probability": 0.6797 + }, + { + "start": 736.9, + "end": 739.0, + "probability": 0.7644 + }, + { + "start": 739.18, + "end": 739.6, + "probability": 0.837 + }, + { + "start": 739.68, + "end": 747.78, + "probability": 0.9762 + }, + { + "start": 748.76, + "end": 751.52, + "probability": 0.9807 + }, + { + "start": 751.6, + "end": 752.56, + "probability": 0.8091 + }, + { + "start": 753.1, + "end": 753.92, + "probability": 0.5426 + }, + { + "start": 755.26, + "end": 763.36, + "probability": 0.9789 + }, + { + "start": 763.84, + "end": 765.8, + "probability": 0.998 + }, + { + "start": 765.8, + "end": 770.3, + "probability": 0.9824 + }, + { + "start": 770.36, + "end": 771.5, + "probability": 0.9987 + }, + { + "start": 772.18, + "end": 775.7, + "probability": 0.8573 + }, + { + "start": 776.4, + "end": 782.04, + "probability": 0.984 + }, + { + "start": 782.72, + "end": 788.36, + "probability": 0.9435 + }, + { + "start": 788.46, + "end": 789.62, + "probability": 0.9958 + }, + { + "start": 790.34, + "end": 795.7, + "probability": 0.9851 + }, + { + "start": 796.26, + "end": 796.46, + "probability": 0.0136 + }, + { + "start": 797.0, + "end": 797.88, + "probability": 0.6353 + }, + { + "start": 798.22, + "end": 799.06, + "probability": 0.844 + }, + { + "start": 799.84, + "end": 803.08, + "probability": 0.9396 + }, + { + "start": 803.42, + "end": 807.56, + "probability": 0.9902 + }, + { + "start": 808.24, + "end": 808.24, + "probability": 0.6866 + }, + { + "start": 808.5, + "end": 809.42, + "probability": 0.8077 + }, + { + "start": 809.52, + "end": 811.72, + "probability": 0.6946 + }, + { + "start": 812.08, + "end": 813.9, + "probability": 0.8188 + }, + { + "start": 814.44, + "end": 818.28, + "probability": 0.9882 + }, + { + "start": 818.52, + "end": 819.2, + "probability": 0.8226 + }, + { + "start": 819.26, + "end": 819.92, + "probability": 0.8862 + }, + { + "start": 820.04, + "end": 820.8, + "probability": 0.7372 + }, + { + "start": 821.2, + "end": 825.28, + "probability": 0.9023 + }, + { + "start": 825.28, + "end": 830.14, + "probability": 0.9194 + }, + { + "start": 830.36, + "end": 831.6, + "probability": 0.9967 + }, + { + "start": 831.66, + "end": 836.52, + "probability": 0.9938 + }, + { + "start": 836.84, + "end": 838.54, + "probability": 0.1196 + }, + { + "start": 838.54, + "end": 840.84, + "probability": 0.7322 + }, + { + "start": 840.94, + "end": 844.64, + "probability": 0.7505 + }, + { + "start": 845.02, + "end": 849.22, + "probability": 0.9152 + }, + { + "start": 849.78, + "end": 850.24, + "probability": 0.4552 + }, + { + "start": 850.34, + "end": 857.3, + "probability": 0.9979 + }, + { + "start": 857.94, + "end": 860.72, + "probability": 0.9973 + }, + { + "start": 861.5, + "end": 864.48, + "probability": 0.839 + }, + { + "start": 865.44, + "end": 867.32, + "probability": 0.7939 + }, + { + "start": 868.1, + "end": 871.92, + "probability": 0.9889 + }, + { + "start": 871.92, + "end": 876.08, + "probability": 0.9918 + }, + { + "start": 876.72, + "end": 877.46, + "probability": 0.9707 + }, + { + "start": 878.5, + "end": 883.42, + "probability": 0.9936 + }, + { + "start": 883.5, + "end": 884.58, + "probability": 0.96 + }, + { + "start": 885.0, + "end": 888.64, + "probability": 0.998 + }, + { + "start": 888.82, + "end": 890.0, + "probability": 0.7933 + }, + { + "start": 890.62, + "end": 891.84, + "probability": 0.8215 + }, + { + "start": 891.92, + "end": 894.11, + "probability": 0.7835 + }, + { + "start": 894.44, + "end": 898.3, + "probability": 0.9924 + }, + { + "start": 898.7, + "end": 899.66, + "probability": 0.9608 + }, + { + "start": 899.74, + "end": 901.12, + "probability": 0.8526 + }, + { + "start": 901.56, + "end": 903.58, + "probability": 0.9938 + }, + { + "start": 904.04, + "end": 905.45, + "probability": 0.7919 + }, + { + "start": 905.56, + "end": 905.74, + "probability": 0.8054 + }, + { + "start": 908.28, + "end": 910.88, + "probability": 0.7844 + }, + { + "start": 911.34, + "end": 913.8, + "probability": 0.9516 + }, + { + "start": 914.2, + "end": 916.12, + "probability": 0.8735 + }, + { + "start": 917.32, + "end": 920.48, + "probability": 0.1679 + }, + { + "start": 921.72, + "end": 923.02, + "probability": 0.6331 + }, + { + "start": 927.7, + "end": 932.6, + "probability": 0.9379 + }, + { + "start": 932.6, + "end": 937.62, + "probability": 0.9967 + }, + { + "start": 938.78, + "end": 941.53, + "probability": 0.8839 + }, + { + "start": 942.02, + "end": 943.7, + "probability": 0.9967 + }, + { + "start": 944.58, + "end": 946.2, + "probability": 0.8044 + }, + { + "start": 948.44, + "end": 950.66, + "probability": 0.9955 + }, + { + "start": 951.68, + "end": 955.39, + "probability": 0.9915 + }, + { + "start": 956.24, + "end": 959.2, + "probability": 0.9932 + }, + { + "start": 960.38, + "end": 965.0, + "probability": 0.6434 + }, + { + "start": 965.2, + "end": 970.04, + "probability": 0.0054 + }, + { + "start": 972.02, + "end": 972.02, + "probability": 0.0724 + }, + { + "start": 972.02, + "end": 972.02, + "probability": 0.1087 + }, + { + "start": 972.02, + "end": 972.02, + "probability": 0.2994 + }, + { + "start": 972.02, + "end": 972.02, + "probability": 0.0831 + }, + { + "start": 972.02, + "end": 975.14, + "probability": 0.5241 + }, + { + "start": 975.2, + "end": 978.34, + "probability": 0.8647 + }, + { + "start": 979.4, + "end": 981.56, + "probability": 0.9744 + }, + { + "start": 981.56, + "end": 985.56, + "probability": 0.9978 + }, + { + "start": 986.88, + "end": 986.88, + "probability": 0.0028 + }, + { + "start": 986.88, + "end": 987.26, + "probability": 0.3642 + }, + { + "start": 987.42, + "end": 993.62, + "probability": 0.9863 + }, + { + "start": 993.62, + "end": 999.34, + "probability": 0.9989 + }, + { + "start": 1000.22, + "end": 1001.84, + "probability": 0.5007 + }, + { + "start": 1003.1, + "end": 1005.9, + "probability": 0.95 + }, + { + "start": 1006.68, + "end": 1008.28, + "probability": 0.9324 + }, + { + "start": 1008.52, + "end": 1012.52, + "probability": 0.9873 + }, + { + "start": 1013.46, + "end": 1015.5, + "probability": 0.9315 + }, + { + "start": 1016.3, + "end": 1022.7, + "probability": 0.9875 + }, + { + "start": 1022.92, + "end": 1029.06, + "probability": 0.9954 + }, + { + "start": 1029.28, + "end": 1029.86, + "probability": 0.726 + }, + { + "start": 1029.92, + "end": 1030.7, + "probability": 0.979 + }, + { + "start": 1031.98, + "end": 1032.2, + "probability": 0.7194 + }, + { + "start": 1034.06, + "end": 1035.7, + "probability": 0.6895 + }, + { + "start": 1035.84, + "end": 1039.48, + "probability": 0.8728 + }, + { + "start": 1039.48, + "end": 1044.6, + "probability": 0.9963 + }, + { + "start": 1044.76, + "end": 1045.84, + "probability": 0.6748 + }, + { + "start": 1046.8, + "end": 1050.14, + "probability": 0.9888 + }, + { + "start": 1051.43, + "end": 1055.38, + "probability": 0.8965 + }, + { + "start": 1056.78, + "end": 1058.06, + "probability": 0.4193 + }, + { + "start": 1058.06, + "end": 1059.44, + "probability": 0.0896 + }, + { + "start": 1060.42, + "end": 1061.72, + "probability": 0.7111 + }, + { + "start": 1063.08, + "end": 1063.5, + "probability": 0.6181 + }, + { + "start": 1064.08, + "end": 1068.36, + "probability": 0.8904 + }, + { + "start": 1069.0, + "end": 1069.08, + "probability": 0.0213 + }, + { + "start": 1069.08, + "end": 1071.46, + "probability": 0.8754 + }, + { + "start": 1071.78, + "end": 1074.64, + "probability": 0.9343 + }, + { + "start": 1075.52, + "end": 1077.24, + "probability": 0.1006 + }, + { + "start": 1077.24, + "end": 1079.64, + "probability": 0.6011 + }, + { + "start": 1079.82, + "end": 1080.34, + "probability": 0.4397 + }, + { + "start": 1080.54, + "end": 1085.0, + "probability": 0.9754 + }, + { + "start": 1085.4, + "end": 1086.8, + "probability": 0.6433 + }, + { + "start": 1086.88, + "end": 1089.02, + "probability": 0.8252 + }, + { + "start": 1089.08, + "end": 1091.68, + "probability": 0.738 + }, + { + "start": 1092.12, + "end": 1094.02, + "probability": 0.9603 + }, + { + "start": 1094.06, + "end": 1094.62, + "probability": 0.4357 + }, + { + "start": 1094.92, + "end": 1096.3, + "probability": 0.7453 + }, + { + "start": 1097.18, + "end": 1099.94, + "probability": 0.6496 + }, + { + "start": 1100.12, + "end": 1102.66, + "probability": 0.9976 + }, + { + "start": 1102.72, + "end": 1105.64, + "probability": 0.6831 + }, + { + "start": 1105.66, + "end": 1106.68, + "probability": 0.691 + }, + { + "start": 1106.96, + "end": 1113.16, + "probability": 0.9837 + }, + { + "start": 1114.24, + "end": 1115.96, + "probability": 0.9929 + }, + { + "start": 1116.4, + "end": 1119.32, + "probability": 0.9834 + }, + { + "start": 1119.5, + "end": 1122.36, + "probability": 0.9897 + }, + { + "start": 1122.36, + "end": 1125.64, + "probability": 0.9834 + }, + { + "start": 1126.06, + "end": 1128.72, + "probability": 0.9896 + }, + { + "start": 1129.46, + "end": 1130.32, + "probability": 0.6503 + }, + { + "start": 1130.38, + "end": 1131.84, + "probability": 0.7109 + }, + { + "start": 1131.96, + "end": 1134.84, + "probability": 0.9889 + }, + { + "start": 1135.7, + "end": 1138.24, + "probability": 0.9786 + }, + { + "start": 1138.4, + "end": 1141.52, + "probability": 0.9878 + }, + { + "start": 1141.8, + "end": 1144.7, + "probability": 0.9482 + }, + { + "start": 1145.78, + "end": 1147.54, + "probability": 0.6236 + }, + { + "start": 1148.36, + "end": 1150.72, + "probability": 0.8147 + }, + { + "start": 1150.78, + "end": 1151.96, + "probability": 0.7077 + }, + { + "start": 1152.28, + "end": 1154.32, + "probability": 0.9634 + }, + { + "start": 1155.48, + "end": 1158.54, + "probability": 0.9958 + }, + { + "start": 1159.5, + "end": 1162.1, + "probability": 0.9871 + }, + { + "start": 1162.22, + "end": 1163.32, + "probability": 0.8458 + }, + { + "start": 1163.84, + "end": 1167.68, + "probability": 0.9849 + }, + { + "start": 1167.86, + "end": 1168.68, + "probability": 0.7539 + }, + { + "start": 1168.82, + "end": 1170.54, + "probability": 0.9917 + }, + { + "start": 1170.88, + "end": 1172.68, + "probability": 0.6039 + }, + { + "start": 1172.78, + "end": 1173.54, + "probability": 0.8459 + }, + { + "start": 1173.66, + "end": 1175.52, + "probability": 0.7212 + }, + { + "start": 1175.86, + "end": 1177.08, + "probability": 0.6573 + }, + { + "start": 1177.34, + "end": 1178.52, + "probability": 0.978 + }, + { + "start": 1178.9, + "end": 1180.44, + "probability": 0.9536 + }, + { + "start": 1180.46, + "end": 1180.92, + "probability": 0.9412 + }, + { + "start": 1181.1, + "end": 1181.42, + "probability": 0.7927 + }, + { + "start": 1181.92, + "end": 1184.3, + "probability": 0.935 + }, + { + "start": 1184.34, + "end": 1187.9, + "probability": 0.5122 + }, + { + "start": 1187.9, + "end": 1187.9, + "probability": 0.1469 + }, + { + "start": 1187.9, + "end": 1188.4, + "probability": 0.5019 + }, + { + "start": 1191.48, + "end": 1192.58, + "probability": 0.8201 + }, + { + "start": 1192.72, + "end": 1194.26, + "probability": 0.8179 + }, + { + "start": 1194.32, + "end": 1195.96, + "probability": 0.7533 + }, + { + "start": 1196.74, + "end": 1199.66, + "probability": 0.9747 + }, + { + "start": 1199.78, + "end": 1200.16, + "probability": 0.7131 + }, + { + "start": 1200.32, + "end": 1200.88, + "probability": 0.8738 + }, + { + "start": 1201.2, + "end": 1202.48, + "probability": 0.8454 + }, + { + "start": 1203.96, + "end": 1206.48, + "probability": 0.9932 + }, + { + "start": 1207.66, + "end": 1208.8, + "probability": 0.8457 + }, + { + "start": 1209.78, + "end": 1217.64, + "probability": 0.9861 + }, + { + "start": 1217.96, + "end": 1221.7, + "probability": 0.8435 + }, + { + "start": 1221.8, + "end": 1227.36, + "probability": 0.9088 + }, + { + "start": 1227.36, + "end": 1231.38, + "probability": 0.9876 + }, + { + "start": 1232.08, + "end": 1233.78, + "probability": 0.673 + }, + { + "start": 1234.58, + "end": 1235.87, + "probability": 0.9198 + }, + { + "start": 1236.9, + "end": 1238.54, + "probability": 0.987 + }, + { + "start": 1239.26, + "end": 1240.72, + "probability": 0.8762 + }, + { + "start": 1241.62, + "end": 1244.36, + "probability": 0.724 + }, + { + "start": 1245.9, + "end": 1247.06, + "probability": 0.7996 + }, + { + "start": 1248.1, + "end": 1251.76, + "probability": 0.9918 + }, + { + "start": 1251.76, + "end": 1256.82, + "probability": 0.9956 + }, + { + "start": 1257.66, + "end": 1261.82, + "probability": 0.2692 + }, + { + "start": 1262.54, + "end": 1265.68, + "probability": 0.9888 + }, + { + "start": 1266.4, + "end": 1269.76, + "probability": 0.942 + }, + { + "start": 1270.38, + "end": 1275.4, + "probability": 0.9931 + }, + { + "start": 1276.08, + "end": 1278.1, + "probability": 0.8446 + }, + { + "start": 1278.8, + "end": 1280.46, + "probability": 0.9846 + }, + { + "start": 1281.24, + "end": 1284.86, + "probability": 0.9963 + }, + { + "start": 1285.74, + "end": 1286.94, + "probability": 0.6903 + }, + { + "start": 1287.56, + "end": 1292.6, + "probability": 0.9928 + }, + { + "start": 1292.6, + "end": 1299.36, + "probability": 0.9903 + }, + { + "start": 1300.14, + "end": 1301.68, + "probability": 0.8485 + }, + { + "start": 1302.56, + "end": 1303.42, + "probability": 0.7406 + }, + { + "start": 1304.34, + "end": 1306.86, + "probability": 0.9509 + }, + { + "start": 1307.04, + "end": 1309.48, + "probability": 0.8679 + }, + { + "start": 1309.82, + "end": 1311.8, + "probability": 0.9436 + }, + { + "start": 1313.8, + "end": 1315.26, + "probability": 0.9702 + }, + { + "start": 1315.58, + "end": 1317.3, + "probability": 0.9724 + }, + { + "start": 1317.5, + "end": 1320.58, + "probability": 0.998 + }, + { + "start": 1321.6, + "end": 1325.08, + "probability": 0.9951 + }, + { + "start": 1325.82, + "end": 1327.22, + "probability": 0.9461 + }, + { + "start": 1327.76, + "end": 1331.66, + "probability": 0.9995 + }, + { + "start": 1332.78, + "end": 1336.54, + "probability": 0.9318 + }, + { + "start": 1337.06, + "end": 1340.06, + "probability": 0.9487 + }, + { + "start": 1341.18, + "end": 1342.02, + "probability": 0.9818 + }, + { + "start": 1342.06, + "end": 1343.48, + "probability": 0.991 + }, + { + "start": 1343.64, + "end": 1344.96, + "probability": 0.9826 + }, + { + "start": 1345.78, + "end": 1349.74, + "probability": 0.9009 + }, + { + "start": 1350.52, + "end": 1351.51, + "probability": 0.9673 + }, + { + "start": 1351.92, + "end": 1354.08, + "probability": 0.7679 + }, + { + "start": 1354.38, + "end": 1359.1, + "probability": 0.9545 + }, + { + "start": 1359.46, + "end": 1360.68, + "probability": 0.9003 + }, + { + "start": 1361.04, + "end": 1364.78, + "probability": 0.9677 + }, + { + "start": 1365.22, + "end": 1368.6, + "probability": 0.9717 + }, + { + "start": 1369.44, + "end": 1375.24, + "probability": 0.9683 + }, + { + "start": 1375.8, + "end": 1379.74, + "probability": 0.9548 + }, + { + "start": 1380.44, + "end": 1382.32, + "probability": 0.7429 + }, + { + "start": 1382.9, + "end": 1387.18, + "probability": 0.9739 + }, + { + "start": 1387.54, + "end": 1391.96, + "probability": 0.9837 + }, + { + "start": 1392.4, + "end": 1397.34, + "probability": 0.9884 + }, + { + "start": 1397.98, + "end": 1400.58, + "probability": 0.9753 + }, + { + "start": 1400.94, + "end": 1407.34, + "probability": 0.9346 + }, + { + "start": 1407.54, + "end": 1407.96, + "probability": 0.7659 + }, + { + "start": 1408.26, + "end": 1409.72, + "probability": 0.5318 + }, + { + "start": 1410.02, + "end": 1411.7, + "probability": 0.774 + }, + { + "start": 1412.1, + "end": 1414.36, + "probability": 0.8197 + }, + { + "start": 1419.56, + "end": 1420.68, + "probability": 0.6185 + }, + { + "start": 1420.72, + "end": 1421.38, + "probability": 0.7891 + }, + { + "start": 1421.58, + "end": 1423.58, + "probability": 0.986 + }, + { + "start": 1423.68, + "end": 1426.08, + "probability": 0.9323 + }, + { + "start": 1426.22, + "end": 1430.18, + "probability": 0.985 + }, + { + "start": 1430.24, + "end": 1431.76, + "probability": 0.9878 + }, + { + "start": 1432.24, + "end": 1437.62, + "probability": 0.9951 + }, + { + "start": 1438.1, + "end": 1441.72, + "probability": 0.4165 + }, + { + "start": 1441.88, + "end": 1443.26, + "probability": 0.9248 + }, + { + "start": 1443.5, + "end": 1444.42, + "probability": 0.2531 + }, + { + "start": 1444.8, + "end": 1446.1, + "probability": 0.6029 + }, + { + "start": 1446.38, + "end": 1447.57, + "probability": 0.8264 + }, + { + "start": 1447.64, + "end": 1449.65, + "probability": 0.8713 + }, + { + "start": 1450.36, + "end": 1451.3, + "probability": 0.9888 + }, + { + "start": 1451.82, + "end": 1452.7, + "probability": 0.3853 + }, + { + "start": 1452.7, + "end": 1453.89, + "probability": 0.7393 + }, + { + "start": 1454.9, + "end": 1455.1, + "probability": 0.0011 + }, + { + "start": 1456.16, + "end": 1459.64, + "probability": 0.9326 + }, + { + "start": 1459.74, + "end": 1460.4, + "probability": 0.1925 + }, + { + "start": 1460.48, + "end": 1461.95, + "probability": 0.7808 + }, + { + "start": 1462.5, + "end": 1463.34, + "probability": 0.9604 + }, + { + "start": 1463.76, + "end": 1464.36, + "probability": 0.3856 + }, + { + "start": 1464.66, + "end": 1465.14, + "probability": 0.9785 + }, + { + "start": 1465.7, + "end": 1469.96, + "probability": 0.5189 + }, + { + "start": 1470.44, + "end": 1474.2, + "probability": 0.5015 + }, + { + "start": 1474.28, + "end": 1476.92, + "probability": 0.85 + }, + { + "start": 1480.06, + "end": 1481.74, + "probability": 0.8048 + }, + { + "start": 1481.98, + "end": 1481.98, + "probability": 0.4662 + }, + { + "start": 1482.02, + "end": 1483.8, + "probability": 0.5443 + }, + { + "start": 1484.76, + "end": 1484.94, + "probability": 0.3612 + }, + { + "start": 1485.02, + "end": 1488.72, + "probability": 0.9651 + }, + { + "start": 1489.24, + "end": 1492.61, + "probability": 0.9428 + }, + { + "start": 1493.84, + "end": 1495.99, + "probability": 0.9875 + }, + { + "start": 1496.4, + "end": 1498.68, + "probability": 0.802 + }, + { + "start": 1499.1, + "end": 1500.74, + "probability": 0.8667 + }, + { + "start": 1501.5, + "end": 1503.68, + "probability": 0.9316 + }, + { + "start": 1504.92, + "end": 1508.64, + "probability": 0.9772 + }, + { + "start": 1509.02, + "end": 1514.28, + "probability": 0.9701 + }, + { + "start": 1515.16, + "end": 1518.58, + "probability": 0.992 + }, + { + "start": 1518.58, + "end": 1521.24, + "probability": 0.9985 + }, + { + "start": 1521.74, + "end": 1523.34, + "probability": 0.6729 + }, + { + "start": 1523.86, + "end": 1527.51, + "probability": 0.812 + }, + { + "start": 1528.22, + "end": 1531.2, + "probability": 0.9453 + }, + { + "start": 1531.76, + "end": 1533.6, + "probability": 0.4848 + }, + { + "start": 1533.88, + "end": 1534.38, + "probability": 0.8586 + }, + { + "start": 1534.56, + "end": 1535.24, + "probability": 0.9596 + }, + { + "start": 1535.56, + "end": 1538.44, + "probability": 0.9783 + }, + { + "start": 1539.12, + "end": 1540.18, + "probability": 0.8171 + }, + { + "start": 1540.34, + "end": 1544.7, + "probability": 0.9709 + }, + { + "start": 1545.38, + "end": 1545.84, + "probability": 0.7962 + }, + { + "start": 1545.92, + "end": 1547.5, + "probability": 0.5245 + }, + { + "start": 1547.54, + "end": 1551.76, + "probability": 0.9929 + }, + { + "start": 1552.08, + "end": 1553.66, + "probability": 0.8812 + }, + { + "start": 1553.96, + "end": 1556.58, + "probability": 0.9872 + }, + { + "start": 1557.06, + "end": 1558.82, + "probability": 0.9447 + }, + { + "start": 1559.04, + "end": 1559.18, + "probability": 0.6059 + }, + { + "start": 1559.42, + "end": 1562.42, + "probability": 0.976 + }, + { + "start": 1562.92, + "end": 1564.48, + "probability": 0.9537 + }, + { + "start": 1564.92, + "end": 1570.98, + "probability": 0.993 + }, + { + "start": 1571.48, + "end": 1577.56, + "probability": 0.9883 + }, + { + "start": 1578.06, + "end": 1579.32, + "probability": 0.6834 + }, + { + "start": 1579.62, + "end": 1580.4, + "probability": 0.8247 + }, + { + "start": 1580.86, + "end": 1582.7, + "probability": 0.9634 + }, + { + "start": 1583.06, + "end": 1584.9, + "probability": 0.8776 + }, + { + "start": 1585.44, + "end": 1587.86, + "probability": 0.99 + }, + { + "start": 1589.2, + "end": 1589.48, + "probability": 0.1635 + }, + { + "start": 1589.48, + "end": 1592.02, + "probability": 0.6918 + }, + { + "start": 1592.16, + "end": 1596.04, + "probability": 0.9792 + }, + { + "start": 1596.32, + "end": 1596.58, + "probability": 0.5756 + }, + { + "start": 1596.74, + "end": 1598.44, + "probability": 0.5589 + }, + { + "start": 1598.54, + "end": 1601.06, + "probability": 0.7504 + }, + { + "start": 1601.2, + "end": 1602.82, + "probability": 0.8051 + }, + { + "start": 1605.76, + "end": 1606.5, + "probability": 0.6641 + }, + { + "start": 1606.64, + "end": 1607.46, + "probability": 0.732 + }, + { + "start": 1607.86, + "end": 1611.48, + "probability": 0.9418 + }, + { + "start": 1611.48, + "end": 1616.0, + "probability": 0.9241 + }, + { + "start": 1616.96, + "end": 1617.86, + "probability": 0.5644 + }, + { + "start": 1618.06, + "end": 1620.28, + "probability": 0.7964 + }, + { + "start": 1620.38, + "end": 1620.76, + "probability": 0.8279 + }, + { + "start": 1620.88, + "end": 1621.4, + "probability": 0.7469 + }, + { + "start": 1621.62, + "end": 1622.64, + "probability": 0.5423 + }, + { + "start": 1623.26, + "end": 1627.66, + "probability": 0.9745 + }, + { + "start": 1629.0, + "end": 1632.7, + "probability": 0.8842 + }, + { + "start": 1632.74, + "end": 1633.36, + "probability": 0.813 + }, + { + "start": 1634.12, + "end": 1637.95, + "probability": 0.9744 + }, + { + "start": 1638.56, + "end": 1643.14, + "probability": 0.9763 + }, + { + "start": 1643.14, + "end": 1648.76, + "probability": 0.6201 + }, + { + "start": 1650.12, + "end": 1651.44, + "probability": 0.796 + }, + { + "start": 1652.1, + "end": 1654.64, + "probability": 0.6878 + }, + { + "start": 1655.18, + "end": 1655.54, + "probability": 0.6479 + }, + { + "start": 1655.58, + "end": 1656.84, + "probability": 0.925 + }, + { + "start": 1656.92, + "end": 1657.92, + "probability": 0.8778 + }, + { + "start": 1658.32, + "end": 1660.04, + "probability": 0.8053 + }, + { + "start": 1660.4, + "end": 1661.66, + "probability": 0.9724 + }, + { + "start": 1661.9, + "end": 1663.97, + "probability": 0.9717 + }, + { + "start": 1664.1, + "end": 1667.88, + "probability": 0.9346 + }, + { + "start": 1668.8, + "end": 1669.57, + "probability": 0.8532 + }, + { + "start": 1669.74, + "end": 1672.64, + "probability": 0.9565 + }, + { + "start": 1673.42, + "end": 1676.1, + "probability": 0.4996 + }, + { + "start": 1676.6, + "end": 1679.75, + "probability": 0.7534 + }, + { + "start": 1680.42, + "end": 1681.78, + "probability": 0.8078 + }, + { + "start": 1681.96, + "end": 1682.45, + "probability": 0.3473 + }, + { + "start": 1682.58, + "end": 1684.16, + "probability": 0.9801 + }, + { + "start": 1684.66, + "end": 1686.52, + "probability": 0.7853 + }, + { + "start": 1687.3, + "end": 1688.44, + "probability": 0.8237 + }, + { + "start": 1688.52, + "end": 1689.58, + "probability": 0.4629 + }, + { + "start": 1689.68, + "end": 1691.94, + "probability": 0.9619 + }, + { + "start": 1691.98, + "end": 1692.86, + "probability": 0.3816 + }, + { + "start": 1693.36, + "end": 1693.76, + "probability": 0.2659 + }, + { + "start": 1693.8, + "end": 1698.86, + "probability": 0.9465 + }, + { + "start": 1698.86, + "end": 1700.52, + "probability": 0.8666 + }, + { + "start": 1700.76, + "end": 1700.98, + "probability": 0.4934 + }, + { + "start": 1701.44, + "end": 1705.4, + "probability": 0.4983 + }, + { + "start": 1705.42, + "end": 1707.11, + "probability": 0.8658 + }, + { + "start": 1707.64, + "end": 1708.54, + "probability": 0.4862 + }, + { + "start": 1708.94, + "end": 1712.46, + "probability": 0.8544 + }, + { + "start": 1712.56, + "end": 1713.12, + "probability": 0.7126 + }, + { + "start": 1713.24, + "end": 1716.04, + "probability": 0.9845 + }, + { + "start": 1716.6, + "end": 1721.9, + "probability": 0.8462 + }, + { + "start": 1722.44, + "end": 1723.9, + "probability": 0.7007 + }, + { + "start": 1724.08, + "end": 1725.28, + "probability": 0.6016 + }, + { + "start": 1725.68, + "end": 1729.38, + "probability": 0.7866 + }, + { + "start": 1729.68, + "end": 1732.8, + "probability": 0.6054 + }, + { + "start": 1733.2, + "end": 1735.96, + "probability": 0.645 + }, + { + "start": 1736.16, + "end": 1737.06, + "probability": 0.8356 + }, + { + "start": 1737.48, + "end": 1739.46, + "probability": 0.9399 + }, + { + "start": 1740.02, + "end": 1740.22, + "probability": 0.154 + }, + { + "start": 1740.22, + "end": 1744.14, + "probability": 0.7511 + }, + { + "start": 1744.68, + "end": 1747.04, + "probability": 0.9412 + }, + { + "start": 1747.72, + "end": 1751.0, + "probability": 0.7532 + }, + { + "start": 1751.16, + "end": 1753.28, + "probability": 0.8424 + }, + { + "start": 1753.34, + "end": 1754.88, + "probability": 0.6884 + }, + { + "start": 1760.16, + "end": 1762.32, + "probability": 0.5904 + }, + { + "start": 1763.84, + "end": 1766.54, + "probability": 0.9709 + }, + { + "start": 1767.34, + "end": 1773.74, + "probability": 0.9633 + }, + { + "start": 1774.28, + "end": 1777.22, + "probability": 0.8489 + }, + { + "start": 1777.32, + "end": 1780.4, + "probability": 0.9971 + }, + { + "start": 1780.4, + "end": 1782.88, + "probability": 0.9995 + }, + { + "start": 1783.08, + "end": 1787.86, + "probability": 0.971 + }, + { + "start": 1788.64, + "end": 1789.61, + "probability": 0.5557 + }, + { + "start": 1789.88, + "end": 1793.3, + "probability": 0.9756 + }, + { + "start": 1793.3, + "end": 1797.78, + "probability": 0.9987 + }, + { + "start": 1797.98, + "end": 1802.16, + "probability": 0.9131 + }, + { + "start": 1803.26, + "end": 1804.68, + "probability": 0.9501 + }, + { + "start": 1805.12, + "end": 1808.64, + "probability": 0.9945 + }, + { + "start": 1809.34, + "end": 1812.66, + "probability": 0.9958 + }, + { + "start": 1812.66, + "end": 1816.82, + "probability": 0.9933 + }, + { + "start": 1817.16, + "end": 1821.02, + "probability": 0.9847 + }, + { + "start": 1821.02, + "end": 1824.26, + "probability": 0.9834 + }, + { + "start": 1825.4, + "end": 1828.1, + "probability": 0.9355 + }, + { + "start": 1828.18, + "end": 1830.87, + "probability": 0.9456 + }, + { + "start": 1831.42, + "end": 1832.94, + "probability": 0.9349 + }, + { + "start": 1833.54, + "end": 1835.22, + "probability": 0.9498 + }, + { + "start": 1835.52, + "end": 1839.66, + "probability": 0.9897 + }, + { + "start": 1839.78, + "end": 1841.82, + "probability": 0.998 + }, + { + "start": 1842.4, + "end": 1845.54, + "probability": 0.9833 + }, + { + "start": 1846.22, + "end": 1848.56, + "probability": 0.9726 + }, + { + "start": 1848.94, + "end": 1850.72, + "probability": 0.7787 + }, + { + "start": 1850.94, + "end": 1854.73, + "probability": 0.9829 + }, + { + "start": 1854.94, + "end": 1856.32, + "probability": 0.7239 + }, + { + "start": 1856.32, + "end": 1857.38, + "probability": 0.9675 + }, + { + "start": 1857.56, + "end": 1857.78, + "probability": 0.7312 + }, + { + "start": 1857.98, + "end": 1859.36, + "probability": 0.7275 + }, + { + "start": 1859.46, + "end": 1861.44, + "probability": 0.7612 + }, + { + "start": 1862.0, + "end": 1864.02, + "probability": 0.8848 + }, + { + "start": 1867.64, + "end": 1868.2, + "probability": 0.5209 + }, + { + "start": 1868.32, + "end": 1868.78, + "probability": 0.9517 + }, + { + "start": 1868.9, + "end": 1869.12, + "probability": 0.6399 + }, + { + "start": 1869.26, + "end": 1870.46, + "probability": 0.9309 + }, + { + "start": 1870.56, + "end": 1872.88, + "probability": 0.9939 + }, + { + "start": 1875.02, + "end": 1875.02, + "probability": 0.0159 + }, + { + "start": 1875.24, + "end": 1877.78, + "probability": 0.7279 + }, + { + "start": 1877.88, + "end": 1881.7, + "probability": 0.9365 + }, + { + "start": 1881.8, + "end": 1884.86, + "probability": 0.6589 + }, + { + "start": 1887.18, + "end": 1887.2, + "probability": 0.0854 + }, + { + "start": 1887.34, + "end": 1889.46, + "probability": 0.9001 + }, + { + "start": 1889.5, + "end": 1890.58, + "probability": 0.9004 + }, + { + "start": 1891.18, + "end": 1891.86, + "probability": 0.8514 + }, + { + "start": 1891.96, + "end": 1893.74, + "probability": 0.9124 + }, + { + "start": 1894.14, + "end": 1896.44, + "probability": 0.992 + }, + { + "start": 1896.86, + "end": 1898.72, + "probability": 0.9922 + }, + { + "start": 1899.18, + "end": 1900.36, + "probability": 0.7173 + }, + { + "start": 1900.76, + "end": 1901.78, + "probability": 0.9984 + }, + { + "start": 1901.86, + "end": 1902.96, + "probability": 0.7082 + }, + { + "start": 1903.48, + "end": 1905.25, + "probability": 0.9803 + }, + { + "start": 1906.4, + "end": 1906.4, + "probability": 0.1246 + }, + { + "start": 1906.4, + "end": 1906.76, + "probability": 0.3495 + }, + { + "start": 1907.34, + "end": 1907.7, + "probability": 0.6453 + }, + { + "start": 1908.66, + "end": 1911.76, + "probability": 0.9137 + }, + { + "start": 1911.96, + "end": 1914.14, + "probability": 0.9985 + }, + { + "start": 1914.36, + "end": 1916.04, + "probability": 0.8318 + }, + { + "start": 1916.18, + "end": 1917.98, + "probability": 0.5043 + }, + { + "start": 1918.12, + "end": 1919.32, + "probability": 0.411 + }, + { + "start": 1919.96, + "end": 1924.04, + "probability": 0.9958 + }, + { + "start": 1924.14, + "end": 1928.76, + "probability": 0.998 + }, + { + "start": 1929.14, + "end": 1930.26, + "probability": 0.9857 + }, + { + "start": 1930.44, + "end": 1935.24, + "probability": 0.994 + }, + { + "start": 1935.8, + "end": 1937.44, + "probability": 0.916 + }, + { + "start": 1937.58, + "end": 1937.92, + "probability": 0.877 + }, + { + "start": 1938.02, + "end": 1939.61, + "probability": 0.9932 + }, + { + "start": 1939.86, + "end": 1940.26, + "probability": 0.8569 + }, + { + "start": 1941.2, + "end": 1942.96, + "probability": 0.7343 + }, + { + "start": 1943.2, + "end": 1944.38, + "probability": 0.6991 + }, + { + "start": 1944.58, + "end": 1944.94, + "probability": 0.3683 + }, + { + "start": 1945.04, + "end": 1946.14, + "probability": 0.9744 + }, + { + "start": 1949.56, + "end": 1951.72, + "probability": 0.8049 + }, + { + "start": 1952.72, + "end": 1956.52, + "probability": 0.9592 + }, + { + "start": 1957.06, + "end": 1963.16, + "probability": 0.9134 + }, + { + "start": 1963.64, + "end": 1965.9, + "probability": 0.9426 + }, + { + "start": 1966.3, + "end": 1969.18, + "probability": 0.9839 + }, + { + "start": 1969.96, + "end": 1973.46, + "probability": 0.9862 + }, + { + "start": 1973.46, + "end": 1976.22, + "probability": 0.861 + }, + { + "start": 1977.24, + "end": 1981.84, + "probability": 0.9868 + }, + { + "start": 1982.12, + "end": 1983.66, + "probability": 0.8237 + }, + { + "start": 1983.98, + "end": 1985.06, + "probability": 0.8869 + }, + { + "start": 1985.78, + "end": 1988.3, + "probability": 0.9874 + }, + { + "start": 1988.68, + "end": 1992.64, + "probability": 0.9941 + }, + { + "start": 1992.64, + "end": 1996.92, + "probability": 0.9973 + }, + { + "start": 1997.88, + "end": 1998.22, + "probability": 0.7853 + }, + { + "start": 1998.76, + "end": 2000.94, + "probability": 0.7683 + }, + { + "start": 2001.38, + "end": 2003.3, + "probability": 0.9897 + }, + { + "start": 2003.86, + "end": 2006.92, + "probability": 0.7305 + }, + { + "start": 2007.46, + "end": 2009.8, + "probability": 0.985 + }, + { + "start": 2010.76, + "end": 2012.94, + "probability": 0.9981 + }, + { + "start": 2013.24, + "end": 2017.06, + "probability": 0.9927 + }, + { + "start": 2017.06, + "end": 2020.12, + "probability": 0.9903 + }, + { + "start": 2020.46, + "end": 2021.28, + "probability": 0.9006 + }, + { + "start": 2021.7, + "end": 2021.92, + "probability": 0.7689 + }, + { + "start": 2022.44, + "end": 2024.5, + "probability": 0.9689 + }, + { + "start": 2024.92, + "end": 2026.94, + "probability": 0.8983 + }, + { + "start": 2027.59, + "end": 2031.88, + "probability": 0.7306 + }, + { + "start": 2032.64, + "end": 2033.58, + "probability": 0.7687 + }, + { + "start": 2033.76, + "end": 2034.52, + "probability": 0.7672 + }, + { + "start": 2034.74, + "end": 2035.4, + "probability": 0.8078 + }, + { + "start": 2035.54, + "end": 2036.64, + "probability": 0.9306 + }, + { + "start": 2036.78, + "end": 2038.52, + "probability": 0.9936 + }, + { + "start": 2038.94, + "end": 2040.24, + "probability": 0.9544 + }, + { + "start": 2040.62, + "end": 2044.62, + "probability": 0.9984 + }, + { + "start": 2044.62, + "end": 2049.04, + "probability": 0.999 + }, + { + "start": 2049.7, + "end": 2052.42, + "probability": 0.9863 + }, + { + "start": 2052.86, + "end": 2054.34, + "probability": 0.8942 + }, + { + "start": 2054.8, + "end": 2056.18, + "probability": 0.9443 + }, + { + "start": 2056.82, + "end": 2060.5, + "probability": 0.9941 + }, + { + "start": 2061.12, + "end": 2067.44, + "probability": 0.9902 + }, + { + "start": 2067.52, + "end": 2070.26, + "probability": 0.9323 + }, + { + "start": 2070.78, + "end": 2072.36, + "probability": 0.8927 + }, + { + "start": 2072.62, + "end": 2077.74, + "probability": 0.9644 + }, + { + "start": 2078.16, + "end": 2081.76, + "probability": 0.9828 + }, + { + "start": 2081.76, + "end": 2085.62, + "probability": 0.994 + }, + { + "start": 2086.2, + "end": 2091.88, + "probability": 0.9652 + }, + { + "start": 2091.88, + "end": 2096.96, + "probability": 0.9988 + }, + { + "start": 2097.52, + "end": 2098.3, + "probability": 0.4808 + }, + { + "start": 2098.36, + "end": 2102.38, + "probability": 0.9731 + }, + { + "start": 2102.74, + "end": 2105.68, + "probability": 0.925 + }, + { + "start": 2106.04, + "end": 2111.06, + "probability": 0.9272 + }, + { + "start": 2111.54, + "end": 2113.22, + "probability": 0.7137 + }, + { + "start": 2113.3, + "end": 2114.78, + "probability": 0.6544 + }, + { + "start": 2115.24, + "end": 2117.7, + "probability": 0.7387 + }, + { + "start": 2118.26, + "end": 2119.4, + "probability": 0.8172 + }, + { + "start": 2119.9, + "end": 2122.92, + "probability": 0.9606 + }, + { + "start": 2122.92, + "end": 2126.46, + "probability": 0.9833 + }, + { + "start": 2126.98, + "end": 2128.28, + "probability": 0.6798 + }, + { + "start": 2128.82, + "end": 2131.04, + "probability": 0.9977 + }, + { + "start": 2131.16, + "end": 2132.38, + "probability": 0.4553 + }, + { + "start": 2132.86, + "end": 2138.06, + "probability": 0.9826 + }, + { + "start": 2138.06, + "end": 2140.74, + "probability": 0.9937 + }, + { + "start": 2141.14, + "end": 2144.18, + "probability": 0.9658 + }, + { + "start": 2144.66, + "end": 2149.9, + "probability": 0.9421 + }, + { + "start": 2150.16, + "end": 2150.5, + "probability": 0.7261 + }, + { + "start": 2150.82, + "end": 2152.78, + "probability": 0.6403 + }, + { + "start": 2153.42, + "end": 2155.86, + "probability": 0.7579 + }, + { + "start": 2156.38, + "end": 2156.82, + "probability": 0.2903 + }, + { + "start": 2156.88, + "end": 2158.34, + "probability": 0.8997 + }, + { + "start": 2164.56, + "end": 2165.5, + "probability": 0.1398 + }, + { + "start": 2166.7, + "end": 2167.68, + "probability": 0.6544 + }, + { + "start": 2170.04, + "end": 2173.76, + "probability": 0.9838 + }, + { + "start": 2174.28, + "end": 2175.4, + "probability": 0.8033 + }, + { + "start": 2176.32, + "end": 2181.62, + "probability": 0.9162 + }, + { + "start": 2181.92, + "end": 2186.94, + "probability": 0.889 + }, + { + "start": 2186.94, + "end": 2193.22, + "probability": 0.9731 + }, + { + "start": 2194.4, + "end": 2198.38, + "probability": 0.8384 + }, + { + "start": 2201.34, + "end": 2201.54, + "probability": 0.167 + }, + { + "start": 2201.54, + "end": 2204.18, + "probability": 0.3253 + }, + { + "start": 2204.34, + "end": 2206.86, + "probability": 0.4791 + }, + { + "start": 2206.86, + "end": 2208.18, + "probability": 0.3442 + }, + { + "start": 2208.84, + "end": 2209.9, + "probability": 0.7301 + }, + { + "start": 2211.48, + "end": 2215.72, + "probability": 0.8774 + }, + { + "start": 2216.18, + "end": 2222.76, + "probability": 0.8738 + }, + { + "start": 2223.62, + "end": 2224.58, + "probability": 0.7245 + }, + { + "start": 2224.58, + "end": 2230.06, + "probability": 0.9257 + }, + { + "start": 2230.14, + "end": 2232.3, + "probability": 0.8733 + }, + { + "start": 2233.92, + "end": 2235.08, + "probability": 0.5377 + }, + { + "start": 2236.86, + "end": 2239.78, + "probability": 0.0022 + }, + { + "start": 2239.78, + "end": 2246.41, + "probability": 0.866 + }, + { + "start": 2247.2, + "end": 2248.11, + "probability": 0.8708 + }, + { + "start": 2249.22, + "end": 2250.26, + "probability": 0.243 + }, + { + "start": 2250.8, + "end": 2255.5, + "probability": 0.7387 + }, + { + "start": 2255.84, + "end": 2255.84, + "probability": 0.0004 + }, + { + "start": 2255.84, + "end": 2260.0, + "probability": 0.8524 + }, + { + "start": 2260.12, + "end": 2265.06, + "probability": 0.9166 + }, + { + "start": 2265.14, + "end": 2267.12, + "probability": 0.9655 + }, + { + "start": 2267.62, + "end": 2267.74, + "probability": 0.1587 + }, + { + "start": 2267.96, + "end": 2274.48, + "probability": 0.8171 + }, + { + "start": 2275.64, + "end": 2277.66, + "probability": 0.3622 + }, + { + "start": 2278.44, + "end": 2284.34, + "probability": 0.9488 + }, + { + "start": 2286.2, + "end": 2293.32, + "probability": 0.7838 + }, + { + "start": 2294.84, + "end": 2299.06, + "probability": 0.8179 + }, + { + "start": 2299.5, + "end": 2299.54, + "probability": 0.643 + }, + { + "start": 2299.66, + "end": 2301.95, + "probability": 0.9424 + }, + { + "start": 2303.35, + "end": 2304.41, + "probability": 0.0274 + }, + { + "start": 2305.04, + "end": 2305.72, + "probability": 0.2324 + }, + { + "start": 2306.12, + "end": 2307.26, + "probability": 0.0628 + }, + { + "start": 2307.64, + "end": 2308.3, + "probability": 0.0183 + }, + { + "start": 2308.87, + "end": 2308.94, + "probability": 0.0556 + }, + { + "start": 2310.52, + "end": 2310.78, + "probability": 0.0648 + }, + { + "start": 2310.78, + "end": 2310.78, + "probability": 0.1045 + }, + { + "start": 2310.78, + "end": 2311.34, + "probability": 0.0718 + }, + { + "start": 2311.34, + "end": 2315.66, + "probability": 0.7827 + }, + { + "start": 2321.0, + "end": 2322.12, + "probability": 0.7135 + }, + { + "start": 2323.32, + "end": 2325.31, + "probability": 0.1164 + }, + { + "start": 2328.76, + "end": 2329.94, + "probability": 0.7704 + }, + { + "start": 2330.06, + "end": 2330.88, + "probability": 0.9478 + }, + { + "start": 2330.96, + "end": 2333.22, + "probability": 0.9969 + }, + { + "start": 2334.1, + "end": 2334.92, + "probability": 0.798 + }, + { + "start": 2334.96, + "end": 2340.08, + "probability": 0.8519 + }, + { + "start": 2340.89, + "end": 2343.14, + "probability": 0.9492 + }, + { + "start": 2343.74, + "end": 2346.24, + "probability": 0.9896 + }, + { + "start": 2347.0, + "end": 2349.52, + "probability": 0.9882 + }, + { + "start": 2349.56, + "end": 2351.16, + "probability": 0.9865 + }, + { + "start": 2351.68, + "end": 2352.34, + "probability": 0.7312 + }, + { + "start": 2353.3, + "end": 2355.98, + "probability": 0.6461 + }, + { + "start": 2356.52, + "end": 2360.54, + "probability": 0.9232 + }, + { + "start": 2361.4, + "end": 2361.94, + "probability": 0.9775 + }, + { + "start": 2362.62, + "end": 2363.24, + "probability": 0.8712 + }, + { + "start": 2363.32, + "end": 2364.58, + "probability": 0.8191 + }, + { + "start": 2364.78, + "end": 2366.25, + "probability": 0.9844 + }, + { + "start": 2367.06, + "end": 2368.66, + "probability": 0.9798 + }, + { + "start": 2369.1, + "end": 2371.7, + "probability": 0.8977 + }, + { + "start": 2372.08, + "end": 2372.4, + "probability": 0.611 + }, + { + "start": 2372.5, + "end": 2377.44, + "probability": 0.9186 + }, + { + "start": 2377.82, + "end": 2381.8, + "probability": 0.9673 + }, + { + "start": 2381.9, + "end": 2383.22, + "probability": 0.9932 + }, + { + "start": 2383.84, + "end": 2387.58, + "probability": 0.9935 + }, + { + "start": 2388.06, + "end": 2390.98, + "probability": 0.9875 + }, + { + "start": 2391.6, + "end": 2392.0, + "probability": 0.6972 + }, + { + "start": 2392.16, + "end": 2395.82, + "probability": 0.9526 + }, + { + "start": 2396.58, + "end": 2397.66, + "probability": 0.7461 + }, + { + "start": 2397.8, + "end": 2403.26, + "probability": 0.9851 + }, + { + "start": 2403.38, + "end": 2404.86, + "probability": 0.9854 + }, + { + "start": 2405.42, + "end": 2409.46, + "probability": 0.9888 + }, + { + "start": 2409.8, + "end": 2413.36, + "probability": 0.9939 + }, + { + "start": 2413.84, + "end": 2414.6, + "probability": 0.945 + }, + { + "start": 2414.66, + "end": 2415.8, + "probability": 0.8313 + }, + { + "start": 2416.0, + "end": 2418.16, + "probability": 0.8351 + }, + { + "start": 2418.42, + "end": 2419.42, + "probability": 0.8192 + }, + { + "start": 2419.44, + "end": 2419.44, + "probability": 0.1297 + }, + { + "start": 2419.44, + "end": 2421.06, + "probability": 0.7877 + }, + { + "start": 2421.5, + "end": 2426.64, + "probability": 0.9746 + }, + { + "start": 2427.06, + "end": 2431.74, + "probability": 0.9953 + }, + { + "start": 2431.76, + "end": 2433.2, + "probability": 0.7467 + }, + { + "start": 2433.28, + "end": 2434.56, + "probability": 0.8564 + }, + { + "start": 2435.02, + "end": 2439.5, + "probability": 0.9389 + }, + { + "start": 2439.6, + "end": 2440.52, + "probability": 0.618 + }, + { + "start": 2440.52, + "end": 2441.12, + "probability": 0.5048 + }, + { + "start": 2441.58, + "end": 2442.84, + "probability": 0.8571 + }, + { + "start": 2443.65, + "end": 2446.04, + "probability": 0.7115 + }, + { + "start": 2447.0, + "end": 2447.96, + "probability": 0.8109 + }, + { + "start": 2448.22, + "end": 2453.08, + "probability": 0.9568 + }, + { + "start": 2453.08, + "end": 2460.06, + "probability": 0.8696 + }, + { + "start": 2460.12, + "end": 2462.76, + "probability": 0.9406 + }, + { + "start": 2463.28, + "end": 2468.36, + "probability": 0.9343 + }, + { + "start": 2468.74, + "end": 2469.4, + "probability": 0.7707 + }, + { + "start": 2469.56, + "end": 2474.46, + "probability": 0.9922 + }, + { + "start": 2474.46, + "end": 2478.64, + "probability": 0.9934 + }, + { + "start": 2479.84, + "end": 2486.58, + "probability": 0.9683 + }, + { + "start": 2487.87, + "end": 2493.3, + "probability": 0.8922 + }, + { + "start": 2493.96, + "end": 2495.9, + "probability": 0.7302 + }, + { + "start": 2496.64, + "end": 2496.8, + "probability": 0.8684 + }, + { + "start": 2499.4, + "end": 2501.3, + "probability": 0.8691 + }, + { + "start": 2501.88, + "end": 2503.42, + "probability": 0.503 + }, + { + "start": 2504.08, + "end": 2507.44, + "probability": 0.8729 + }, + { + "start": 2507.64, + "end": 2510.76, + "probability": 0.9602 + }, + { + "start": 2511.26, + "end": 2514.62, + "probability": 0.9796 + }, + { + "start": 2515.32, + "end": 2519.46, + "probability": 0.9487 + }, + { + "start": 2519.52, + "end": 2524.34, + "probability": 0.9964 + }, + { + "start": 2524.9, + "end": 2528.8, + "probability": 0.9888 + }, + { + "start": 2529.38, + "end": 2534.44, + "probability": 0.8141 + }, + { + "start": 2534.8, + "end": 2540.94, + "probability": 0.9913 + }, + { + "start": 2541.2, + "end": 2542.48, + "probability": 0.7091 + }, + { + "start": 2542.6, + "end": 2544.3, + "probability": 0.874 + }, + { + "start": 2544.58, + "end": 2546.06, + "probability": 0.7913 + }, + { + "start": 2546.14, + "end": 2546.52, + "probability": 0.8633 + }, + { + "start": 2546.58, + "end": 2547.0, + "probability": 0.7588 + }, + { + "start": 2547.36, + "end": 2548.16, + "probability": 0.6652 + }, + { + "start": 2548.56, + "end": 2551.08, + "probability": 0.9199 + }, + { + "start": 2552.78, + "end": 2553.64, + "probability": 0.7029 + }, + { + "start": 2553.76, + "end": 2555.25, + "probability": 0.6509 + }, + { + "start": 2555.48, + "end": 2556.4, + "probability": 0.5755 + }, + { + "start": 2556.82, + "end": 2563.64, + "probability": 0.9875 + }, + { + "start": 2565.14, + "end": 2565.9, + "probability": 0.6418 + }, + { + "start": 2566.12, + "end": 2568.8, + "probability": 0.453 + }, + { + "start": 2568.8, + "end": 2570.62, + "probability": 0.1615 + }, + { + "start": 2570.76, + "end": 2574.06, + "probability": 0.8846 + }, + { + "start": 2574.26, + "end": 2574.94, + "probability": 0.199 + }, + { + "start": 2575.2, + "end": 2575.58, + "probability": 0.7827 + }, + { + "start": 2575.7, + "end": 2576.26, + "probability": 0.7249 + }, + { + "start": 2576.26, + "end": 2578.2, + "probability": 0.6247 + }, + { + "start": 2578.52, + "end": 2582.18, + "probability": 0.9363 + }, + { + "start": 2582.28, + "end": 2583.16, + "probability": 0.6992 + }, + { + "start": 2583.96, + "end": 2585.88, + "probability": 0.9309 + }, + { + "start": 2585.98, + "end": 2590.34, + "probability": 0.9552 + }, + { + "start": 2590.82, + "end": 2591.28, + "probability": 0.3183 + }, + { + "start": 2592.34, + "end": 2594.32, + "probability": 0.5066 + }, + { + "start": 2594.46, + "end": 2595.98, + "probability": 0.1705 + }, + { + "start": 2596.94, + "end": 2598.24, + "probability": 0.3266 + }, + { + "start": 2599.75, + "end": 2604.2, + "probability": 0.9117 + }, + { + "start": 2605.3, + "end": 2605.8, + "probability": 0.4953 + }, + { + "start": 2605.8, + "end": 2605.9, + "probability": 0.1869 + }, + { + "start": 2605.9, + "end": 2607.9, + "probability": 0.4759 + }, + { + "start": 2609.34, + "end": 2609.42, + "probability": 0.4792 + }, + { + "start": 2609.42, + "end": 2611.11, + "probability": 0.1553 + }, + { + "start": 2612.7, + "end": 2613.32, + "probability": 0.0044 + }, + { + "start": 2613.5, + "end": 2613.94, + "probability": 0.623 + }, + { + "start": 2614.28, + "end": 2615.3, + "probability": 0.6376 + }, + { + "start": 2615.52, + "end": 2617.0, + "probability": 0.7375 + }, + { + "start": 2617.38, + "end": 2619.8, + "probability": 0.8931 + }, + { + "start": 2620.38, + "end": 2622.44, + "probability": 0.9409 + }, + { + "start": 2623.32, + "end": 2626.78, + "probability": 0.9845 + }, + { + "start": 2627.56, + "end": 2629.0, + "probability": 0.9662 + }, + { + "start": 2629.96, + "end": 2631.16, + "probability": 0.9666 + }, + { + "start": 2631.64, + "end": 2636.98, + "probability": 0.9589 + }, + { + "start": 2637.5, + "end": 2641.06, + "probability": 0.984 + }, + { + "start": 2641.16, + "end": 2643.32, + "probability": 0.95 + }, + { + "start": 2643.78, + "end": 2647.26, + "probability": 0.998 + }, + { + "start": 2647.26, + "end": 2652.1, + "probability": 0.9774 + }, + { + "start": 2652.74, + "end": 2655.08, + "probability": 0.9644 + }, + { + "start": 2655.38, + "end": 2656.24, + "probability": 0.8986 + }, + { + "start": 2656.36, + "end": 2658.84, + "probability": 0.6276 + }, + { + "start": 2659.34, + "end": 2661.17, + "probability": 0.0781 + }, + { + "start": 2661.74, + "end": 2662.36, + "probability": 0.5414 + }, + { + "start": 2662.36, + "end": 2665.36, + "probability": 0.94 + }, + { + "start": 2665.76, + "end": 2666.6, + "probability": 0.895 + }, + { + "start": 2666.92, + "end": 2672.56, + "probability": 0.8475 + }, + { + "start": 2672.56, + "end": 2676.1, + "probability": 0.9598 + }, + { + "start": 2676.68, + "end": 2677.16, + "probability": 0.7912 + }, + { + "start": 2677.52, + "end": 2677.88, + "probability": 0.5729 + }, + { + "start": 2678.28, + "end": 2678.54, + "probability": 0.2754 + }, + { + "start": 2678.62, + "end": 2681.14, + "probability": 0.4828 + }, + { + "start": 2681.24, + "end": 2683.08, + "probability": 0.7572 + }, + { + "start": 2683.18, + "end": 2683.52, + "probability": 0.5124 + }, + { + "start": 2683.52, + "end": 2684.0, + "probability": 0.7655 + }, + { + "start": 2684.32, + "end": 2685.38, + "probability": 0.54 + }, + { + "start": 2685.62, + "end": 2687.46, + "probability": 0.9622 + }, + { + "start": 2690.86, + "end": 2692.64, + "probability": 0.6081 + }, + { + "start": 2693.68, + "end": 2698.0, + "probability": 0.9884 + }, + { + "start": 2698.0, + "end": 2703.82, + "probability": 0.9347 + }, + { + "start": 2703.82, + "end": 2709.82, + "probability": 0.9807 + }, + { + "start": 2710.36, + "end": 2711.6, + "probability": 0.7566 + }, + { + "start": 2711.74, + "end": 2715.16, + "probability": 0.9645 + }, + { + "start": 2716.26, + "end": 2719.58, + "probability": 0.9305 + }, + { + "start": 2719.58, + "end": 2725.16, + "probability": 0.9833 + }, + { + "start": 2725.16, + "end": 2730.04, + "probability": 0.9982 + }, + { + "start": 2730.84, + "end": 2735.56, + "probability": 0.9828 + }, + { + "start": 2736.88, + "end": 2740.38, + "probability": 0.9022 + }, + { + "start": 2741.82, + "end": 2744.8, + "probability": 0.8499 + }, + { + "start": 2745.36, + "end": 2750.72, + "probability": 0.9951 + }, + { + "start": 2750.72, + "end": 2755.4, + "probability": 0.9963 + }, + { + "start": 2756.48, + "end": 2760.56, + "probability": 0.6283 + }, + { + "start": 2760.58, + "end": 2766.88, + "probability": 0.9941 + }, + { + "start": 2766.88, + "end": 2771.24, + "probability": 0.957 + }, + { + "start": 2771.98, + "end": 2777.28, + "probability": 0.7364 + }, + { + "start": 2777.48, + "end": 2779.26, + "probability": 0.7599 + }, + { + "start": 2779.76, + "end": 2784.56, + "probability": 0.9741 + }, + { + "start": 2784.8, + "end": 2787.48, + "probability": 0.9766 + }, + { + "start": 2787.48, + "end": 2792.26, + "probability": 0.9821 + }, + { + "start": 2792.56, + "end": 2794.22, + "probability": 0.9907 + }, + { + "start": 2794.82, + "end": 2797.1, + "probability": 0.8752 + }, + { + "start": 2797.66, + "end": 2801.12, + "probability": 0.9155 + }, + { + "start": 2801.96, + "end": 2804.76, + "probability": 0.7726 + }, + { + "start": 2805.36, + "end": 2807.46, + "probability": 0.7511 + }, + { + "start": 2807.9, + "end": 2809.3, + "probability": 0.9377 + }, + { + "start": 2812.7, + "end": 2813.6, + "probability": 0.5932 + }, + { + "start": 2814.2, + "end": 2816.52, + "probability": 0.6133 + }, + { + "start": 2817.62, + "end": 2826.06, + "probability": 0.995 + }, + { + "start": 2826.8, + "end": 2829.36, + "probability": 0.8483 + }, + { + "start": 2830.28, + "end": 2831.5, + "probability": 0.7886 + }, + { + "start": 2832.32, + "end": 2836.24, + "probability": 0.9873 + }, + { + "start": 2836.56, + "end": 2840.08, + "probability": 0.4916 + }, + { + "start": 2841.44, + "end": 2843.22, + "probability": 0.9939 + }, + { + "start": 2843.86, + "end": 2848.68, + "probability": 0.9937 + }, + { + "start": 2848.86, + "end": 2850.5, + "probability": 0.9028 + }, + { + "start": 2852.42, + "end": 2853.71, + "probability": 0.8344 + }, + { + "start": 2854.78, + "end": 2855.7, + "probability": 0.8694 + }, + { + "start": 2855.92, + "end": 2856.88, + "probability": 0.7811 + }, + { + "start": 2857.74, + "end": 2863.54, + "probability": 0.9746 + }, + { + "start": 2863.54, + "end": 2867.5, + "probability": 0.9969 + }, + { + "start": 2867.76, + "end": 2869.24, + "probability": 0.9811 + }, + { + "start": 2869.38, + "end": 2875.04, + "probability": 0.8981 + }, + { + "start": 2875.12, + "end": 2876.62, + "probability": 0.9951 + }, + { + "start": 2877.34, + "end": 2879.98, + "probability": 0.8305 + }, + { + "start": 2881.52, + "end": 2888.12, + "probability": 0.9956 + }, + { + "start": 2888.82, + "end": 2890.0, + "probability": 0.8894 + }, + { + "start": 2890.12, + "end": 2893.74, + "probability": 0.9901 + }, + { + "start": 2894.18, + "end": 2897.74, + "probability": 0.9664 + }, + { + "start": 2897.8, + "end": 2902.4, + "probability": 0.9902 + }, + { + "start": 2902.76, + "end": 2903.24, + "probability": 0.8672 + }, + { + "start": 2903.44, + "end": 2905.64, + "probability": 0.9562 + }, + { + "start": 2905.92, + "end": 2907.78, + "probability": 0.857 + }, + { + "start": 2907.86, + "end": 2909.38, + "probability": 0.96 + }, + { + "start": 2913.16, + "end": 2915.12, + "probability": 0.7708 + }, + { + "start": 2915.78, + "end": 2918.58, + "probability": 0.9933 + }, + { + "start": 2918.58, + "end": 2921.32, + "probability": 0.9879 + }, + { + "start": 2921.78, + "end": 2925.56, + "probability": 0.9968 + }, + { + "start": 2926.56, + "end": 2929.88, + "probability": 0.9995 + }, + { + "start": 2930.7, + "end": 2933.1, + "probability": 0.9387 + }, + { + "start": 2933.2, + "end": 2935.28, + "probability": 0.8848 + }, + { + "start": 2935.98, + "end": 2937.32, + "probability": 0.9924 + }, + { + "start": 2937.94, + "end": 2941.76, + "probability": 0.9875 + }, + { + "start": 2942.5, + "end": 2943.74, + "probability": 0.4857 + }, + { + "start": 2943.9, + "end": 2946.08, + "probability": 0.8907 + }, + { + "start": 2946.54, + "end": 2948.22, + "probability": 0.9659 + }, + { + "start": 2948.6, + "end": 2949.82, + "probability": 0.7374 + }, + { + "start": 2950.3, + "end": 2952.06, + "probability": 0.9891 + }, + { + "start": 2952.58, + "end": 2953.22, + "probability": 0.8419 + }, + { + "start": 2953.36, + "end": 2956.82, + "probability": 0.986 + }, + { + "start": 2957.6, + "end": 2960.86, + "probability": 0.957 + }, + { + "start": 2961.46, + "end": 2966.48, + "probability": 0.8807 + }, + { + "start": 2967.12, + "end": 2969.18, + "probability": 0.9712 + }, + { + "start": 2969.9, + "end": 2970.85, + "probability": 0.9934 + }, + { + "start": 2971.9, + "end": 2972.36, + "probability": 0.7997 + }, + { + "start": 2973.02, + "end": 2973.78, + "probability": 0.7869 + }, + { + "start": 2974.74, + "end": 2976.6, + "probability": 0.6338 + }, + { + "start": 2977.2, + "end": 2979.72, + "probability": 0.9937 + }, + { + "start": 2980.2, + "end": 2982.96, + "probability": 0.9951 + }, + { + "start": 2983.4, + "end": 2985.0, + "probability": 0.9956 + }, + { + "start": 2985.14, + "end": 2986.32, + "probability": 0.9786 + }, + { + "start": 2986.66, + "end": 2990.24, + "probability": 0.9375 + }, + { + "start": 2990.62, + "end": 2991.34, + "probability": 0.7008 + }, + { + "start": 2991.72, + "end": 2994.74, + "probability": 0.991 + }, + { + "start": 2995.5, + "end": 2996.53, + "probability": 0.9888 + }, + { + "start": 2998.2, + "end": 3003.9, + "probability": 0.8666 + }, + { + "start": 3004.26, + "end": 3004.56, + "probability": 0.8268 + }, + { + "start": 3004.68, + "end": 3005.3, + "probability": 0.7493 + }, + { + "start": 3005.38, + "end": 3006.6, + "probability": 0.8098 + }, + { + "start": 3007.14, + "end": 3008.91, + "probability": 0.9902 + }, + { + "start": 3009.42, + "end": 3011.78, + "probability": 0.9696 + }, + { + "start": 3012.14, + "end": 3012.87, + "probability": 0.7343 + }, + { + "start": 3013.32, + "end": 3017.02, + "probability": 0.696 + }, + { + "start": 3017.22, + "end": 3019.1, + "probability": 0.9637 + }, + { + "start": 3019.46, + "end": 3020.52, + "probability": 0.4458 + }, + { + "start": 3021.42, + "end": 3023.62, + "probability": 0.9583 + }, + { + "start": 3023.94, + "end": 3025.68, + "probability": 0.9038 + }, + { + "start": 3026.18, + "end": 3027.26, + "probability": 0.8035 + }, + { + "start": 3027.34, + "end": 3030.16, + "probability": 0.9188 + }, + { + "start": 3030.66, + "end": 3031.92, + "probability": 0.8494 + }, + { + "start": 3032.24, + "end": 3035.32, + "probability": 0.9946 + }, + { + "start": 3035.32, + "end": 3040.38, + "probability": 0.9474 + }, + { + "start": 3040.82, + "end": 3042.34, + "probability": 0.9344 + }, + { + "start": 3042.4, + "end": 3042.9, + "probability": 0.8091 + }, + { + "start": 3043.02, + "end": 3045.54, + "probability": 0.874 + }, + { + "start": 3045.56, + "end": 3047.96, + "probability": 0.7965 + }, + { + "start": 3049.38, + "end": 3051.57, + "probability": 0.9894 + }, + { + "start": 3054.48, + "end": 3056.76, + "probability": 0.9282 + }, + { + "start": 3057.38, + "end": 3062.0, + "probability": 0.938 + }, + { + "start": 3063.46, + "end": 3064.46, + "probability": 0.9094 + }, + { + "start": 3064.68, + "end": 3065.5, + "probability": 0.8499 + }, + { + "start": 3065.64, + "end": 3066.4, + "probability": 0.9077 + }, + { + "start": 3066.82, + "end": 3067.48, + "probability": 0.7848 + }, + { + "start": 3067.62, + "end": 3068.1, + "probability": 0.2867 + }, + { + "start": 3068.2, + "end": 3068.66, + "probability": 0.5327 + }, + { + "start": 3068.72, + "end": 3070.28, + "probability": 0.9325 + }, + { + "start": 3070.38, + "end": 3071.38, + "probability": 0.9661 + }, + { + "start": 3073.08, + "end": 3078.14, + "probability": 0.9067 + }, + { + "start": 3079.54, + "end": 3083.1, + "probability": 0.9341 + }, + { + "start": 3083.8, + "end": 3087.72, + "probability": 0.9598 + }, + { + "start": 3087.84, + "end": 3093.65, + "probability": 0.9745 + }, + { + "start": 3094.5, + "end": 3098.26, + "probability": 0.9691 + }, + { + "start": 3099.28, + "end": 3101.52, + "probability": 0.7683 + }, + { + "start": 3102.64, + "end": 3108.5, + "probability": 0.9852 + }, + { + "start": 3108.76, + "end": 3109.32, + "probability": 0.4767 + }, + { + "start": 3109.36, + "end": 3110.18, + "probability": 0.8239 + }, + { + "start": 3110.74, + "end": 3112.92, + "probability": 0.6928 + }, + { + "start": 3114.36, + "end": 3115.82, + "probability": 0.7828 + }, + { + "start": 3116.42, + "end": 3117.52, + "probability": 0.9025 + }, + { + "start": 3117.72, + "end": 3122.12, + "probability": 0.9834 + }, + { + "start": 3122.78, + "end": 3123.58, + "probability": 0.6333 + }, + { + "start": 3123.72, + "end": 3126.5, + "probability": 0.9563 + }, + { + "start": 3127.56, + "end": 3130.54, + "probability": 0.9404 + }, + { + "start": 3130.62, + "end": 3130.62, + "probability": 0.0345 + }, + { + "start": 3130.62, + "end": 3130.62, + "probability": 0.0481 + }, + { + "start": 3130.62, + "end": 3133.44, + "probability": 0.8279 + }, + { + "start": 3134.1, + "end": 3136.56, + "probability": 0.7815 + }, + { + "start": 3137.06, + "end": 3141.4, + "probability": 0.867 + }, + { + "start": 3141.92, + "end": 3143.4, + "probability": 0.9264 + }, + { + "start": 3144.98, + "end": 3146.78, + "probability": 0.8525 + }, + { + "start": 3147.04, + "end": 3149.22, + "probability": 0.9069 + }, + { + "start": 3149.3, + "end": 3152.22, + "probability": 0.8762 + }, + { + "start": 3152.8, + "end": 3156.23, + "probability": 0.9877 + }, + { + "start": 3158.56, + "end": 3160.26, + "probability": 0.8656 + }, + { + "start": 3160.56, + "end": 3163.68, + "probability": 0.6043 + }, + { + "start": 3163.86, + "end": 3163.86, + "probability": 0.6813 + }, + { + "start": 3164.16, + "end": 3165.1, + "probability": 0.7514 + }, + { + "start": 3165.36, + "end": 3166.06, + "probability": 0.8605 + }, + { + "start": 3166.34, + "end": 3169.15, + "probability": 0.9823 + }, + { + "start": 3169.7, + "end": 3172.58, + "probability": 0.994 + }, + { + "start": 3174.18, + "end": 3176.52, + "probability": 0.8456 + }, + { + "start": 3177.88, + "end": 3178.88, + "probability": 0.702 + }, + { + "start": 3178.9, + "end": 3179.22, + "probability": 0.7732 + }, + { + "start": 3179.26, + "end": 3181.14, + "probability": 0.9822 + }, + { + "start": 3181.76, + "end": 3184.46, + "probability": 0.8605 + }, + { + "start": 3185.1, + "end": 3186.0, + "probability": 0.6891 + }, + { + "start": 3186.1, + "end": 3188.52, + "probability": 0.8237 + }, + { + "start": 3188.76, + "end": 3189.26, + "probability": 0.5688 + }, + { + "start": 3189.68, + "end": 3192.22, + "probability": 0.7965 + }, + { + "start": 3192.76, + "end": 3196.72, + "probability": 0.7217 + }, + { + "start": 3196.84, + "end": 3197.5, + "probability": 0.9375 + }, + { + "start": 3197.58, + "end": 3198.52, + "probability": 0.9521 + }, + { + "start": 3199.44, + "end": 3202.68, + "probability": 0.938 + }, + { + "start": 3203.1, + "end": 3204.95, + "probability": 0.766 + }, + { + "start": 3207.02, + "end": 3207.72, + "probability": 0.5559 + }, + { + "start": 3208.16, + "end": 3208.94, + "probability": 0.5574 + }, + { + "start": 3209.08, + "end": 3213.3, + "probability": 0.9882 + }, + { + "start": 3213.3, + "end": 3216.22, + "probability": 0.9325 + }, + { + "start": 3216.34, + "end": 3216.76, + "probability": 0.8856 + }, + { + "start": 3217.36, + "end": 3219.76, + "probability": 0.8828 + }, + { + "start": 3221.64, + "end": 3223.92, + "probability": 0.722 + }, + { + "start": 3224.06, + "end": 3224.54, + "probability": 0.1795 + }, + { + "start": 3225.14, + "end": 3227.7, + "probability": 0.3532 + }, + { + "start": 3230.88, + "end": 3231.24, + "probability": 0.0158 + }, + { + "start": 3231.24, + "end": 3231.24, + "probability": 0.3273 + }, + { + "start": 3231.24, + "end": 3231.24, + "probability": 0.4115 + }, + { + "start": 3231.24, + "end": 3231.24, + "probability": 0.4375 + }, + { + "start": 3231.24, + "end": 3231.24, + "probability": 0.4863 + }, + { + "start": 3231.24, + "end": 3231.24, + "probability": 0.5003 + }, + { + "start": 3231.24, + "end": 3231.24, + "probability": 0.2325 + }, + { + "start": 3231.24, + "end": 3232.87, + "probability": 0.3037 + }, + { + "start": 3233.22, + "end": 3235.1, + "probability": 0.7361 + }, + { + "start": 3235.5, + "end": 3238.84, + "probability": 0.9869 + }, + { + "start": 3240.06, + "end": 3240.56, + "probability": 0.5722 + }, + { + "start": 3240.7, + "end": 3243.04, + "probability": 0.9907 + }, + { + "start": 3243.12, + "end": 3247.64, + "probability": 0.8271 + }, + { + "start": 3248.24, + "end": 3251.3, + "probability": 0.9887 + }, + { + "start": 3251.88, + "end": 3255.6, + "probability": 0.9722 + }, + { + "start": 3256.82, + "end": 3261.48, + "probability": 0.9964 + }, + { + "start": 3262.12, + "end": 3265.96, + "probability": 0.9821 + }, + { + "start": 3267.44, + "end": 3272.2, + "probability": 0.991 + }, + { + "start": 3273.06, + "end": 3275.46, + "probability": 0.8541 + }, + { + "start": 3276.12, + "end": 3281.86, + "probability": 0.9932 + }, + { + "start": 3283.12, + "end": 3283.94, + "probability": 0.8373 + }, + { + "start": 3284.8, + "end": 3289.5, + "probability": 0.9948 + }, + { + "start": 3289.5, + "end": 3292.54, + "probability": 0.9963 + }, + { + "start": 3293.26, + "end": 3295.66, + "probability": 0.8288 + }, + { + "start": 3296.44, + "end": 3297.84, + "probability": 0.9828 + }, + { + "start": 3298.5, + "end": 3304.52, + "probability": 0.9534 + }, + { + "start": 3305.06, + "end": 3312.2, + "probability": 0.9712 + }, + { + "start": 3312.76, + "end": 3314.3, + "probability": 0.7263 + }, + { + "start": 3314.88, + "end": 3315.96, + "probability": 0.8367 + }, + { + "start": 3316.2, + "end": 3317.04, + "probability": 0.9679 + }, + { + "start": 3317.54, + "end": 3320.86, + "probability": 0.99 + }, + { + "start": 3322.04, + "end": 3325.48, + "probability": 0.9949 + }, + { + "start": 3326.2, + "end": 3329.08, + "probability": 0.8587 + }, + { + "start": 3329.08, + "end": 3333.1, + "probability": 0.9822 + }, + { + "start": 3333.92, + "end": 3339.2, + "probability": 0.8487 + }, + { + "start": 3339.7, + "end": 3342.9, + "probability": 0.9366 + }, + { + "start": 3343.96, + "end": 3344.1, + "probability": 0.3633 + }, + { + "start": 3344.2, + "end": 3348.62, + "probability": 0.9304 + }, + { + "start": 3349.9, + "end": 3354.24, + "probability": 0.9967 + }, + { + "start": 3354.88, + "end": 3356.06, + "probability": 0.9347 + }, + { + "start": 3356.14, + "end": 3357.34, + "probability": 0.8735 + }, + { + "start": 3357.74, + "end": 3358.58, + "probability": 0.9123 + }, + { + "start": 3358.7, + "end": 3359.84, + "probability": 0.9844 + }, + { + "start": 3361.28, + "end": 3365.36, + "probability": 0.9935 + }, + { + "start": 3366.06, + "end": 3370.5, + "probability": 0.9915 + }, + { + "start": 3370.54, + "end": 3375.48, + "probability": 0.9888 + }, + { + "start": 3376.58, + "end": 3379.64, + "probability": 0.983 + }, + { + "start": 3380.16, + "end": 3381.42, + "probability": 0.6528 + }, + { + "start": 3381.58, + "end": 3386.28, + "probability": 0.9707 + }, + { + "start": 3386.28, + "end": 3390.72, + "probability": 0.9985 + }, + { + "start": 3392.1, + "end": 3395.68, + "probability": 0.995 + }, + { + "start": 3395.88, + "end": 3398.86, + "probability": 0.9969 + }, + { + "start": 3399.36, + "end": 3402.84, + "probability": 0.9976 + }, + { + "start": 3403.22, + "end": 3405.48, + "probability": 0.99 + }, + { + "start": 3406.14, + "end": 3408.14, + "probability": 0.9586 + }, + { + "start": 3408.48, + "end": 3410.16, + "probability": 0.717 + }, + { + "start": 3410.32, + "end": 3413.52, + "probability": 0.8513 + }, + { + "start": 3415.34, + "end": 3416.02, + "probability": 0.7499 + }, + { + "start": 3416.56, + "end": 3417.98, + "probability": 0.8118 + }, + { + "start": 3418.4, + "end": 3421.86, + "probability": 0.952 + }, + { + "start": 3422.42, + "end": 3424.92, + "probability": 0.9976 + }, + { + "start": 3424.92, + "end": 3426.98, + "probability": 0.807 + }, + { + "start": 3427.28, + "end": 3427.6, + "probability": 0.6516 + }, + { + "start": 3428.32, + "end": 3430.12, + "probability": 0.9005 + }, + { + "start": 3431.5, + "end": 3433.52, + "probability": 0.9973 + }, + { + "start": 3433.9, + "end": 3435.12, + "probability": 0.9315 + }, + { + "start": 3436.32, + "end": 3436.32, + "probability": 0.2597 + }, + { + "start": 3436.32, + "end": 3437.98, + "probability": 0.8571 + }, + { + "start": 3438.52, + "end": 3439.02, + "probability": 0.5331 + }, + { + "start": 3439.78, + "end": 3440.38, + "probability": 0.9116 + }, + { + "start": 3440.44, + "end": 3441.46, + "probability": 0.7782 + }, + { + "start": 3441.56, + "end": 3442.4, + "probability": 0.8522 + }, + { + "start": 3442.54, + "end": 3444.12, + "probability": 0.7966 + }, + { + "start": 3453.68, + "end": 3456.24, + "probability": 0.745 + }, + { + "start": 3457.08, + "end": 3460.62, + "probability": 0.9292 + }, + { + "start": 3460.9, + "end": 3463.08, + "probability": 0.9878 + }, + { + "start": 3463.22, + "end": 3463.94, + "probability": 0.7976 + }, + { + "start": 3464.2, + "end": 3464.76, + "probability": 0.5627 + }, + { + "start": 3464.94, + "end": 3465.42, + "probability": 0.9209 + }, + { + "start": 3465.52, + "end": 3466.36, + "probability": 0.8268 + }, + { + "start": 3466.88, + "end": 3469.28, + "probability": 0.7983 + }, + { + "start": 3470.04, + "end": 3470.44, + "probability": 0.4646 + }, + { + "start": 3470.52, + "end": 3472.38, + "probability": 0.953 + }, + { + "start": 3472.64, + "end": 3473.94, + "probability": 0.9547 + }, + { + "start": 3474.48, + "end": 3475.5, + "probability": 0.7177 + }, + { + "start": 3475.56, + "end": 3477.46, + "probability": 0.9239 + }, + { + "start": 3478.06, + "end": 3482.76, + "probability": 0.9535 + }, + { + "start": 3483.28, + "end": 3485.76, + "probability": 0.9572 + }, + { + "start": 3486.24, + "end": 3487.42, + "probability": 0.3977 + }, + { + "start": 3488.21, + "end": 3489.72, + "probability": 0.9382 + }, + { + "start": 3489.86, + "end": 3490.7, + "probability": 0.7739 + }, + { + "start": 3491.0, + "end": 3493.96, + "probability": 0.9876 + }, + { + "start": 3494.24, + "end": 3496.66, + "probability": 0.9953 + }, + { + "start": 3497.42, + "end": 3501.28, + "probability": 0.9349 + }, + { + "start": 3501.8, + "end": 3503.66, + "probability": 0.9995 + }, + { + "start": 3503.66, + "end": 3505.08, + "probability": 0.9998 + }, + { + "start": 3506.13, + "end": 3507.6, + "probability": 0.9564 + }, + { + "start": 3507.66, + "end": 3508.56, + "probability": 0.6745 + }, + { + "start": 3508.66, + "end": 3509.88, + "probability": 0.9701 + }, + { + "start": 3510.44, + "end": 3511.42, + "probability": 0.978 + }, + { + "start": 3511.72, + "end": 3513.08, + "probability": 0.9364 + }, + { + "start": 3513.48, + "end": 3515.52, + "probability": 0.8625 + }, + { + "start": 3516.66, + "end": 3517.15, + "probability": 0.9845 + }, + { + "start": 3517.46, + "end": 3519.02, + "probability": 0.958 + }, + { + "start": 3519.07, + "end": 3520.78, + "probability": 0.9907 + }, + { + "start": 3520.84, + "end": 3524.62, + "probability": 0.9915 + }, + { + "start": 3524.96, + "end": 3526.56, + "probability": 0.9427 + }, + { + "start": 3526.7, + "end": 3528.24, + "probability": 0.2886 + }, + { + "start": 3528.24, + "end": 3529.7, + "probability": 0.9435 + }, + { + "start": 3529.96, + "end": 3530.06, + "probability": 0.3097 + }, + { + "start": 3530.14, + "end": 3530.56, + "probability": 0.593 + }, + { + "start": 3530.66, + "end": 3533.12, + "probability": 0.9637 + }, + { + "start": 3533.34, + "end": 3535.4, + "probability": 0.9866 + }, + { + "start": 3537.0, + "end": 3538.3, + "probability": 0.989 + }, + { + "start": 3538.46, + "end": 3539.08, + "probability": 0.8718 + }, + { + "start": 3539.48, + "end": 3542.66, + "probability": 0.9759 + }, + { + "start": 3543.3, + "end": 3546.76, + "probability": 0.9086 + }, + { + "start": 3547.28, + "end": 3549.0, + "probability": 0.8205 + }, + { + "start": 3549.86, + "end": 3552.54, + "probability": 0.9895 + }, + { + "start": 3553.4, + "end": 3554.02, + "probability": 0.978 + }, + { + "start": 3554.66, + "end": 3558.78, + "probability": 0.9921 + }, + { + "start": 3559.22, + "end": 3561.36, + "probability": 0.9991 + }, + { + "start": 3561.9, + "end": 3563.02, + "probability": 0.9825 + }, + { + "start": 3563.1, + "end": 3566.04, + "probability": 0.6923 + }, + { + "start": 3566.76, + "end": 3567.08, + "probability": 0.9137 + }, + { + "start": 3567.62, + "end": 3570.5, + "probability": 0.9916 + }, + { + "start": 3571.14, + "end": 3572.64, + "probability": 0.9905 + }, + { + "start": 3573.74, + "end": 3575.68, + "probability": 0.9986 + }, + { + "start": 3577.22, + "end": 3580.54, + "probability": 0.9961 + }, + { + "start": 3580.9, + "end": 3584.94, + "probability": 0.9979 + }, + { + "start": 3585.28, + "end": 3586.62, + "probability": 0.9979 + }, + { + "start": 3587.12, + "end": 3588.88, + "probability": 0.998 + }, + { + "start": 3589.8, + "end": 3593.62, + "probability": 0.9836 + }, + { + "start": 3594.04, + "end": 3597.22, + "probability": 0.9985 + }, + { + "start": 3597.22, + "end": 3601.3, + "probability": 0.9896 + }, + { + "start": 3601.68, + "end": 3604.2, + "probability": 0.9984 + }, + { + "start": 3604.2, + "end": 3605.94, + "probability": 0.9274 + }, + { + "start": 3606.4, + "end": 3607.68, + "probability": 0.6862 + }, + { + "start": 3607.76, + "end": 3609.98, + "probability": 0.4984 + }, + { + "start": 3611.2, + "end": 3612.04, + "probability": 0.7053 + }, + { + "start": 3612.1, + "end": 3613.92, + "probability": 0.9739 + }, + { + "start": 3614.24, + "end": 3615.02, + "probability": 0.9615 + }, + { + "start": 3615.08, + "end": 3617.88, + "probability": 0.9793 + }, + { + "start": 3617.96, + "end": 3620.4, + "probability": 0.9951 + }, + { + "start": 3621.34, + "end": 3622.56, + "probability": 0.8264 + }, + { + "start": 3622.64, + "end": 3624.54, + "probability": 0.9939 + }, + { + "start": 3625.24, + "end": 3627.2, + "probability": 0.978 + }, + { + "start": 3627.2, + "end": 3629.72, + "probability": 0.9591 + }, + { + "start": 3629.84, + "end": 3630.88, + "probability": 0.9717 + }, + { + "start": 3631.24, + "end": 3633.2, + "probability": 0.9934 + }, + { + "start": 3633.24, + "end": 3633.88, + "probability": 0.8116 + }, + { + "start": 3634.42, + "end": 3637.82, + "probability": 0.9942 + }, + { + "start": 3638.48, + "end": 3640.6, + "probability": 0.9973 + }, + { + "start": 3641.06, + "end": 3644.12, + "probability": 0.9861 + }, + { + "start": 3644.6, + "end": 3646.24, + "probability": 0.9583 + }, + { + "start": 3646.58, + "end": 3650.14, + "probability": 0.9683 + }, + { + "start": 3650.54, + "end": 3651.16, + "probability": 0.9594 + }, + { + "start": 3651.22, + "end": 3652.66, + "probability": 0.9868 + }, + { + "start": 3653.02, + "end": 3654.24, + "probability": 0.6761 + }, + { + "start": 3654.7, + "end": 3657.7, + "probability": 0.9934 + }, + { + "start": 3658.5, + "end": 3660.18, + "probability": 0.9987 + }, + { + "start": 3660.3, + "end": 3660.96, + "probability": 0.8734 + }, + { + "start": 3661.02, + "end": 3662.18, + "probability": 0.9984 + }, + { + "start": 3662.74, + "end": 3666.32, + "probability": 0.9201 + }, + { + "start": 3666.43, + "end": 3670.4, + "probability": 0.9966 + }, + { + "start": 3671.52, + "end": 3673.14, + "probability": 0.8628 + }, + { + "start": 3673.6, + "end": 3674.83, + "probability": 0.995 + }, + { + "start": 3675.58, + "end": 3679.16, + "probability": 0.6489 + }, + { + "start": 3679.74, + "end": 3680.78, + "probability": 0.9983 + }, + { + "start": 3681.12, + "end": 3684.6, + "probability": 0.9517 + }, + { + "start": 3685.18, + "end": 3686.52, + "probability": 0.9355 + }, + { + "start": 3686.92, + "end": 3689.04, + "probability": 0.9825 + }, + { + "start": 3689.48, + "end": 3690.78, + "probability": 0.9759 + }, + { + "start": 3690.88, + "end": 3693.84, + "probability": 0.9876 + }, + { + "start": 3693.92, + "end": 3695.78, + "probability": 0.8253 + }, + { + "start": 3696.46, + "end": 3697.28, + "probability": 0.9171 + }, + { + "start": 3697.44, + "end": 3698.4, + "probability": 0.9406 + }, + { + "start": 3698.78, + "end": 3700.36, + "probability": 0.9404 + }, + { + "start": 3700.46, + "end": 3701.0, + "probability": 0.9159 + }, + { + "start": 3701.08, + "end": 3701.46, + "probability": 0.8323 + }, + { + "start": 3701.6, + "end": 3701.9, + "probability": 0.865 + }, + { + "start": 3702.14, + "end": 3702.56, + "probability": 0.8297 + }, + { + "start": 3703.1, + "end": 3704.28, + "probability": 0.9609 + }, + { + "start": 3704.4, + "end": 3706.0, + "probability": 0.9929 + }, + { + "start": 3706.05, + "end": 3707.34, + "probability": 0.9932 + }, + { + "start": 3707.62, + "end": 3708.78, + "probability": 0.8922 + }, + { + "start": 3708.86, + "end": 3709.46, + "probability": 0.9944 + }, + { + "start": 3710.24, + "end": 3710.92, + "probability": 0.5618 + }, + { + "start": 3711.02, + "end": 3711.99, + "probability": 0.9963 + }, + { + "start": 3712.42, + "end": 3713.39, + "probability": 0.657 + }, + { + "start": 3713.44, + "end": 3714.78, + "probability": 0.9446 + }, + { + "start": 3715.56, + "end": 3716.34, + "probability": 0.9145 + }, + { + "start": 3716.78, + "end": 3717.6, + "probability": 0.652 + }, + { + "start": 3718.06, + "end": 3718.64, + "probability": 0.9403 + }, + { + "start": 3718.74, + "end": 3719.56, + "probability": 0.99 + }, + { + "start": 3719.64, + "end": 3720.54, + "probability": 0.9924 + }, + { + "start": 3720.88, + "end": 3721.84, + "probability": 0.9967 + }, + { + "start": 3722.38, + "end": 3723.38, + "probability": 0.8909 + }, + { + "start": 3725.04, + "end": 3726.82, + "probability": 0.9893 + }, + { + "start": 3726.9, + "end": 3729.78, + "probability": 0.9568 + }, + { + "start": 3730.08, + "end": 3730.88, + "probability": 0.9263 + }, + { + "start": 3731.38, + "end": 3735.98, + "probability": 0.9856 + }, + { + "start": 3736.04, + "end": 3737.66, + "probability": 0.9975 + }, + { + "start": 3738.62, + "end": 3741.52, + "probability": 0.9889 + }, + { + "start": 3742.06, + "end": 3744.0, + "probability": 0.994 + }, + { + "start": 3744.38, + "end": 3748.0, + "probability": 0.8049 + }, + { + "start": 3748.98, + "end": 3750.62, + "probability": 0.9966 + }, + { + "start": 3750.84, + "end": 3753.32, + "probability": 0.8785 + }, + { + "start": 3753.7, + "end": 3754.62, + "probability": 0.7528 + }, + { + "start": 3754.84, + "end": 3755.46, + "probability": 0.9581 + }, + { + "start": 3755.9, + "end": 3756.98, + "probability": 0.7828 + }, + { + "start": 3757.08, + "end": 3758.44, + "probability": 0.6318 + }, + { + "start": 3758.52, + "end": 3758.92, + "probability": 0.9337 + }, + { + "start": 3759.9, + "end": 3761.56, + "probability": 0.9966 + }, + { + "start": 3762.32, + "end": 3764.36, + "probability": 0.9583 + }, + { + "start": 3764.36, + "end": 3768.6, + "probability": 0.9944 + }, + { + "start": 3769.0, + "end": 3772.84, + "probability": 0.9365 + }, + { + "start": 3773.36, + "end": 3777.38, + "probability": 0.9975 + }, + { + "start": 3777.78, + "end": 3778.14, + "probability": 0.7517 + }, + { + "start": 3778.16, + "end": 3779.4, + "probability": 0.657 + }, + { + "start": 3780.12, + "end": 3783.9, + "probability": 0.9443 + }, + { + "start": 3784.14, + "end": 3785.6, + "probability": 0.6813 + }, + { + "start": 3792.32, + "end": 3793.26, + "probability": 0.4809 + }, + { + "start": 3793.42, + "end": 3797.92, + "probability": 0.9448 + }, + { + "start": 3798.2, + "end": 3799.94, + "probability": 0.9002 + }, + { + "start": 3804.38, + "end": 3805.0, + "probability": 0.694 + }, + { + "start": 3805.28, + "end": 3808.58, + "probability": 0.9761 + }, + { + "start": 3809.44, + "end": 3812.6, + "probability": 0.9994 + }, + { + "start": 3813.42, + "end": 3815.68, + "probability": 0.8674 + }, + { + "start": 3815.9, + "end": 3817.91, + "probability": 0.9132 + }, + { + "start": 3819.4, + "end": 3822.12, + "probability": 0.7446 + }, + { + "start": 3822.22, + "end": 3824.12, + "probability": 0.9971 + }, + { + "start": 3825.16, + "end": 3827.48, + "probability": 0.9489 + }, + { + "start": 3828.44, + "end": 3830.24, + "probability": 0.994 + }, + { + "start": 3830.8, + "end": 3831.88, + "probability": 0.5434 + }, + { + "start": 3831.92, + "end": 3832.7, + "probability": 0.9837 + }, + { + "start": 3832.74, + "end": 3836.66, + "probability": 0.9887 + }, + { + "start": 3838.22, + "end": 3843.32, + "probability": 0.9971 + }, + { + "start": 3843.88, + "end": 3845.42, + "probability": 0.9984 + }, + { + "start": 3846.02, + "end": 3846.46, + "probability": 0.9064 + }, + { + "start": 3847.62, + "end": 3851.5, + "probability": 0.9995 + }, + { + "start": 3852.66, + "end": 3853.3, + "probability": 0.8443 + }, + { + "start": 3853.3, + "end": 3858.54, + "probability": 0.9987 + }, + { + "start": 3859.86, + "end": 3865.98, + "probability": 0.98 + }, + { + "start": 3867.18, + "end": 3870.76, + "probability": 0.9989 + }, + { + "start": 3871.02, + "end": 3872.28, + "probability": 0.8839 + }, + { + "start": 3872.82, + "end": 3874.36, + "probability": 0.8253 + }, + { + "start": 3875.02, + "end": 3876.42, + "probability": 0.8502 + }, + { + "start": 3877.18, + "end": 3879.28, + "probability": 0.9507 + }, + { + "start": 3880.3, + "end": 3882.6, + "probability": 0.9093 + }, + { + "start": 3883.0, + "end": 3886.14, + "probability": 0.9814 + }, + { + "start": 3886.44, + "end": 3889.62, + "probability": 0.9962 + }, + { + "start": 3889.62, + "end": 3892.82, + "probability": 0.9949 + }, + { + "start": 3894.16, + "end": 3895.54, + "probability": 0.9814 + }, + { + "start": 3896.3, + "end": 3903.82, + "probability": 0.9955 + }, + { + "start": 3904.5, + "end": 3908.96, + "probability": 0.9705 + }, + { + "start": 3909.72, + "end": 3911.8, + "probability": 0.9951 + }, + { + "start": 3912.42, + "end": 3915.14, + "probability": 0.9305 + }, + { + "start": 3915.68, + "end": 3916.76, + "probability": 0.9812 + }, + { + "start": 3917.56, + "end": 3920.68, + "probability": 0.978 + }, + { + "start": 3920.72, + "end": 3922.74, + "probability": 0.9909 + }, + { + "start": 3923.58, + "end": 3926.56, + "probability": 0.9489 + }, + { + "start": 3927.62, + "end": 3930.42, + "probability": 0.912 + }, + { + "start": 3931.04, + "end": 3934.46, + "probability": 0.9976 + }, + { + "start": 3934.9, + "end": 3937.5, + "probability": 0.9863 + }, + { + "start": 3938.62, + "end": 3940.18, + "probability": 0.7519 + }, + { + "start": 3940.86, + "end": 3942.76, + "probability": 0.9983 + }, + { + "start": 3943.42, + "end": 3945.74, + "probability": 0.9886 + }, + { + "start": 3946.56, + "end": 3949.6, + "probability": 0.9949 + }, + { + "start": 3950.52, + "end": 3953.88, + "probability": 0.8552 + }, + { + "start": 3954.46, + "end": 3956.04, + "probability": 0.9971 + }, + { + "start": 3956.2, + "end": 3957.62, + "probability": 0.9934 + }, + { + "start": 3957.94, + "end": 3959.42, + "probability": 0.9983 + }, + { + "start": 3960.5, + "end": 3964.38, + "probability": 0.9427 + }, + { + "start": 3964.54, + "end": 3966.01, + "probability": 0.8551 + }, + { + "start": 3966.26, + "end": 3967.06, + "probability": 0.9274 + }, + { + "start": 3967.96, + "end": 3971.26, + "probability": 0.8068 + }, + { + "start": 3971.94, + "end": 3974.54, + "probability": 0.9485 + }, + { + "start": 3974.54, + "end": 3977.34, + "probability": 0.9948 + }, + { + "start": 3978.34, + "end": 3981.9, + "probability": 0.9716 + }, + { + "start": 3981.92, + "end": 3985.48, + "probability": 0.9902 + }, + { + "start": 3986.1, + "end": 3990.06, + "probability": 0.9956 + }, + { + "start": 3990.22, + "end": 3991.98, + "probability": 0.9966 + }, + { + "start": 3992.58, + "end": 3994.56, + "probability": 0.9864 + }, + { + "start": 3995.08, + "end": 3998.32, + "probability": 0.9971 + }, + { + "start": 3998.32, + "end": 4001.04, + "probability": 0.7899 + }, + { + "start": 4001.72, + "end": 4006.08, + "probability": 0.9907 + }, + { + "start": 4006.62, + "end": 4009.76, + "probability": 0.905 + }, + { + "start": 4010.84, + "end": 4012.6, + "probability": 0.988 + }, + { + "start": 4013.94, + "end": 4015.64, + "probability": 0.4248 + }, + { + "start": 4015.74, + "end": 4017.58, + "probability": 0.5204 + }, + { + "start": 4017.86, + "end": 4020.44, + "probability": 0.9363 + }, + { + "start": 4021.74, + "end": 4025.14, + "probability": 0.9937 + }, + { + "start": 4025.9, + "end": 4027.54, + "probability": 0.7911 + }, + { + "start": 4028.32, + "end": 4030.88, + "probability": 0.9518 + }, + { + "start": 4031.78, + "end": 4034.0, + "probability": 0.9969 + }, + { + "start": 4035.26, + "end": 4037.82, + "probability": 0.9907 + }, + { + "start": 4038.04, + "end": 4041.68, + "probability": 0.7363 + }, + { + "start": 4042.02, + "end": 4042.98, + "probability": 0.8865 + }, + { + "start": 4043.36, + "end": 4044.22, + "probability": 0.9092 + }, + { + "start": 4045.1, + "end": 4047.32, + "probability": 0.8679 + }, + { + "start": 4048.44, + "end": 4050.42, + "probability": 0.6961 + }, + { + "start": 4051.64, + "end": 4055.48, + "probability": 0.6267 + }, + { + "start": 4056.56, + "end": 4057.52, + "probability": 0.894 + }, + { + "start": 4058.42, + "end": 4061.72, + "probability": 0.9364 + }, + { + "start": 4063.26, + "end": 4064.84, + "probability": 0.9868 + }, + { + "start": 4066.02, + "end": 4067.14, + "probability": 0.9 + }, + { + "start": 4068.16, + "end": 4069.32, + "probability": 0.99 + }, + { + "start": 4069.86, + "end": 4070.86, + "probability": 0.651 + }, + { + "start": 4071.5, + "end": 4073.06, + "probability": 0.766 + }, + { + "start": 4074.06, + "end": 4076.9, + "probability": 0.981 + }, + { + "start": 4076.9, + "end": 4080.12, + "probability": 0.9681 + }, + { + "start": 4080.48, + "end": 4083.2, + "probability": 0.8776 + }, + { + "start": 4084.0, + "end": 4084.24, + "probability": 0.5436 + }, + { + "start": 4084.76, + "end": 4086.4, + "probability": 0.978 + }, + { + "start": 4086.4, + "end": 4086.5, + "probability": 0.7283 + }, + { + "start": 4087.18, + "end": 4087.77, + "probability": 0.5345 + }, + { + "start": 4088.38, + "end": 4090.0, + "probability": 0.998 + }, + { + "start": 4090.36, + "end": 4092.18, + "probability": 0.9963 + }, + { + "start": 4092.74, + "end": 4095.18, + "probability": 0.989 + }, + { + "start": 4095.76, + "end": 4097.08, + "probability": 0.9561 + }, + { + "start": 4097.62, + "end": 4100.04, + "probability": 0.7788 + }, + { + "start": 4100.78, + "end": 4104.12, + "probability": 0.9132 + }, + { + "start": 4105.04, + "end": 4105.3, + "probability": 0.7942 + }, + { + "start": 4105.92, + "end": 4111.68, + "probability": 0.9886 + }, + { + "start": 4112.1, + "end": 4113.92, + "probability": 0.9972 + }, + { + "start": 4114.74, + "end": 4119.58, + "probability": 0.9921 + }, + { + "start": 4120.36, + "end": 4122.3, + "probability": 0.9887 + }, + { + "start": 4122.36, + "end": 4122.98, + "probability": 0.876 + }, + { + "start": 4123.04, + "end": 4124.69, + "probability": 0.991 + }, + { + "start": 4125.34, + "end": 4126.6, + "probability": 0.9565 + }, + { + "start": 4126.68, + "end": 4130.36, + "probability": 0.9269 + }, + { + "start": 4130.86, + "end": 4130.86, + "probability": 0.0274 + }, + { + "start": 4130.86, + "end": 4132.62, + "probability": 0.7811 + }, + { + "start": 4132.7, + "end": 4136.95, + "probability": 0.9945 + }, + { + "start": 4137.8, + "end": 4140.26, + "probability": 0.6839 + }, + { + "start": 4140.84, + "end": 4141.74, + "probability": 0.9178 + }, + { + "start": 4141.84, + "end": 4145.0, + "probability": 0.9967 + }, + { + "start": 4145.74, + "end": 4149.54, + "probability": 0.9982 + }, + { + "start": 4149.54, + "end": 4152.58, + "probability": 0.9807 + }, + { + "start": 4153.0, + "end": 4155.24, + "probability": 0.9889 + }, + { + "start": 4155.54, + "end": 4156.64, + "probability": 0.8234 + }, + { + "start": 4157.08, + "end": 4162.92, + "probability": 0.9924 + }, + { + "start": 4163.02, + "end": 4163.02, + "probability": 0.5807 + }, + { + "start": 4163.02, + "end": 4165.3, + "probability": 0.8284 + }, + { + "start": 4165.62, + "end": 4166.32, + "probability": 0.981 + }, + { + "start": 4166.62, + "end": 4167.28, + "probability": 0.7745 + }, + { + "start": 4167.66, + "end": 4169.9, + "probability": 0.938 + }, + { + "start": 4170.22, + "end": 4172.04, + "probability": 0.9976 + }, + { + "start": 4172.7, + "end": 4174.5, + "probability": 0.5134 + }, + { + "start": 4176.02, + "end": 4176.62, + "probability": 0.7603 + }, + { + "start": 4176.68, + "end": 4176.72, + "probability": 0.5686 + }, + { + "start": 4176.72, + "end": 4177.0, + "probability": 0.6851 + }, + { + "start": 4177.08, + "end": 4178.2, + "probability": 0.9421 + }, + { + "start": 4180.72, + "end": 4184.26, + "probability": 0.877 + }, + { + "start": 4185.43, + "end": 4189.02, + "probability": 0.7462 + }, + { + "start": 4189.06, + "end": 4190.62, + "probability": 0.498 + }, + { + "start": 4191.16, + "end": 4191.46, + "probability": 0.2685 + }, + { + "start": 4191.68, + "end": 4192.16, + "probability": 0.4838 + }, + { + "start": 4194.08, + "end": 4195.34, + "probability": 0.6178 + }, + { + "start": 4195.7, + "end": 4196.9, + "probability": 0.8538 + }, + { + "start": 4197.1, + "end": 4199.86, + "probability": 0.7499 + }, + { + "start": 4200.7, + "end": 4203.76, + "probability": 0.9362 + }, + { + "start": 4204.02, + "end": 4211.69, + "probability": 0.9814 + }, + { + "start": 4212.5, + "end": 4214.51, + "probability": 0.8467 + }, + { + "start": 4215.52, + "end": 4217.16, + "probability": 0.9585 + }, + { + "start": 4217.7, + "end": 4220.16, + "probability": 0.9456 + }, + { + "start": 4220.7, + "end": 4222.06, + "probability": 0.9043 + }, + { + "start": 4222.46, + "end": 4223.0, + "probability": 0.9638 + }, + { + "start": 4223.52, + "end": 4227.02, + "probability": 0.6641 + }, + { + "start": 4227.62, + "end": 4229.66, + "probability": 0.9329 + }, + { + "start": 4229.74, + "end": 4230.38, + "probability": 0.8345 + }, + { + "start": 4231.5, + "end": 4235.52, + "probability": 0.958 + }, + { + "start": 4235.62, + "end": 4237.14, + "probability": 0.8553 + }, + { + "start": 4237.88, + "end": 4242.16, + "probability": 0.9832 + }, + { + "start": 4242.62, + "end": 4246.24, + "probability": 0.9987 + }, + { + "start": 4247.62, + "end": 4251.46, + "probability": 0.9475 + }, + { + "start": 4251.98, + "end": 4253.0, + "probability": 0.9214 + }, + { + "start": 4253.06, + "end": 4254.58, + "probability": 0.9658 + }, + { + "start": 4254.68, + "end": 4257.28, + "probability": 0.9551 + }, + { + "start": 4257.9, + "end": 4262.88, + "probability": 0.9838 + }, + { + "start": 4263.68, + "end": 4265.04, + "probability": 0.9138 + }, + { + "start": 4265.26, + "end": 4266.72, + "probability": 0.9919 + }, + { + "start": 4267.2, + "end": 4269.36, + "probability": 0.9486 + }, + { + "start": 4269.88, + "end": 4273.48, + "probability": 0.9904 + }, + { + "start": 4274.16, + "end": 4276.46, + "probability": 0.8391 + }, + { + "start": 4276.94, + "end": 4281.34, + "probability": 0.9693 + }, + { + "start": 4281.34, + "end": 4285.48, + "probability": 0.9933 + }, + { + "start": 4285.52, + "end": 4289.59, + "probability": 0.9962 + }, + { + "start": 4290.5, + "end": 4294.2, + "probability": 0.9717 + }, + { + "start": 4294.4, + "end": 4298.92, + "probability": 0.7992 + }, + { + "start": 4299.04, + "end": 4299.9, + "probability": 0.642 + }, + { + "start": 4300.0, + "end": 4301.16, + "probability": 0.8707 + }, + { + "start": 4301.7, + "end": 4304.78, + "probability": 0.9694 + }, + { + "start": 4305.68, + "end": 4307.16, + "probability": 0.7437 + }, + { + "start": 4307.24, + "end": 4309.46, + "probability": 0.9945 + }, + { + "start": 4309.64, + "end": 4313.56, + "probability": 0.9846 + }, + { + "start": 4314.02, + "end": 4315.32, + "probability": 0.9896 + }, + { + "start": 4315.36, + "end": 4319.66, + "probability": 0.9685 + }, + { + "start": 4319.66, + "end": 4322.84, + "probability": 0.999 + }, + { + "start": 4323.28, + "end": 4331.72, + "probability": 0.9751 + }, + { + "start": 4332.3, + "end": 4332.92, + "probability": 0.8423 + }, + { + "start": 4332.98, + "end": 4335.99, + "probability": 0.9903 + }, + { + "start": 4336.26, + "end": 4337.42, + "probability": 0.7221 + }, + { + "start": 4338.1, + "end": 4339.5, + "probability": 0.9962 + }, + { + "start": 4340.24, + "end": 4342.16, + "probability": 0.5918 + }, + { + "start": 4342.34, + "end": 4342.46, + "probability": 0.3671 + }, + { + "start": 4342.56, + "end": 4342.66, + "probability": 0.2365 + }, + { + "start": 4343.48, + "end": 4344.86, + "probability": 0.4905 + }, + { + "start": 4344.92, + "end": 4346.2, + "probability": 0.2906 + }, + { + "start": 4346.26, + "end": 4347.08, + "probability": 0.521 + }, + { + "start": 4347.14, + "end": 4348.76, + "probability": 0.0671 + }, + { + "start": 4349.4, + "end": 4350.28, + "probability": 0.0982 + }, + { + "start": 4350.28, + "end": 4350.28, + "probability": 0.2336 + }, + { + "start": 4350.28, + "end": 4350.28, + "probability": 0.1421 + }, + { + "start": 4350.28, + "end": 4350.6, + "probability": 0.6127 + }, + { + "start": 4351.32, + "end": 4351.86, + "probability": 0.7024 + }, + { + "start": 4352.08, + "end": 4353.44, + "probability": 0.9819 + }, + { + "start": 4353.52, + "end": 4354.38, + "probability": 0.6765 + }, + { + "start": 4354.62, + "end": 4355.72, + "probability": 0.7002 + }, + { + "start": 4356.16, + "end": 4359.62, + "probability": 0.9297 + }, + { + "start": 4361.28, + "end": 4364.38, + "probability": 0.9987 + }, + { + "start": 4364.96, + "end": 4366.54, + "probability": 0.9141 + }, + { + "start": 4367.18, + "end": 4371.06, + "probability": 0.7859 + }, + { + "start": 4371.66, + "end": 4373.85, + "probability": 0.9826 + }, + { + "start": 4377.14, + "end": 4379.36, + "probability": 0.8142 + }, + { + "start": 4379.76, + "end": 4380.3, + "probability": 0.7125 + }, + { + "start": 4380.38, + "end": 4383.18, + "probability": 0.8495 + }, + { + "start": 4383.5, + "end": 4384.28, + "probability": 0.8376 + }, + { + "start": 4384.42, + "end": 4386.56, + "probability": 0.8879 + }, + { + "start": 4386.62, + "end": 4387.26, + "probability": 0.8521 + }, + { + "start": 4387.6, + "end": 4388.78, + "probability": 0.9558 + }, + { + "start": 4389.22, + "end": 4389.7, + "probability": 0.5661 + }, + { + "start": 4389.72, + "end": 4394.08, + "probability": 0.951 + }, + { + "start": 4394.26, + "end": 4400.98, + "probability": 0.8962 + }, + { + "start": 4401.18, + "end": 4404.02, + "probability": 0.9871 + }, + { + "start": 4404.54, + "end": 4408.44, + "probability": 0.9521 + }, + { + "start": 4409.02, + "end": 4413.36, + "probability": 0.9635 + }, + { + "start": 4414.0, + "end": 4418.86, + "probability": 0.8812 + }, + { + "start": 4418.86, + "end": 4424.34, + "probability": 0.8433 + }, + { + "start": 4424.7, + "end": 4425.22, + "probability": 0.5678 + }, + { + "start": 4425.32, + "end": 4428.12, + "probability": 0.9806 + }, + { + "start": 4428.68, + "end": 4435.54, + "probability": 0.9707 + }, + { + "start": 4436.18, + "end": 4437.28, + "probability": 0.7955 + }, + { + "start": 4439.12, + "end": 4443.4, + "probability": 0.8392 + }, + { + "start": 4443.58, + "end": 4447.34, + "probability": 0.9235 + }, + { + "start": 4447.94, + "end": 4451.32, + "probability": 0.8997 + }, + { + "start": 4451.74, + "end": 4459.74, + "probability": 0.9084 + }, + { + "start": 4459.92, + "end": 4464.22, + "probability": 0.9559 + }, + { + "start": 4464.74, + "end": 4465.72, + "probability": 0.9907 + }, + { + "start": 4466.52, + "end": 4469.58, + "probability": 0.7375 + }, + { + "start": 4470.46, + "end": 4473.38, + "probability": 0.9246 + }, + { + "start": 4473.94, + "end": 4482.0, + "probability": 0.9899 + }, + { + "start": 4485.08, + "end": 4486.36, + "probability": 0.5849 + }, + { + "start": 4486.44, + "end": 4489.72, + "probability": 0.9749 + }, + { + "start": 4490.4, + "end": 4490.94, + "probability": 0.7097 + }, + { + "start": 4491.48, + "end": 4492.62, + "probability": 0.8798 + }, + { + "start": 4493.06, + "end": 4494.26, + "probability": 0.8315 + }, + { + "start": 4494.34, + "end": 4496.18, + "probability": 0.9419 + }, + { + "start": 4496.46, + "end": 4502.92, + "probability": 0.9045 + }, + { + "start": 4503.06, + "end": 4504.16, + "probability": 0.7149 + }, + { + "start": 4504.86, + "end": 4505.56, + "probability": 0.9484 + }, + { + "start": 4505.64, + "end": 4506.44, + "probability": 0.9255 + }, + { + "start": 4506.5, + "end": 4507.0, + "probability": 0.7379 + }, + { + "start": 4507.0, + "end": 4507.86, + "probability": 0.8059 + }, + { + "start": 4508.02, + "end": 4508.9, + "probability": 0.9417 + }, + { + "start": 4509.56, + "end": 4510.64, + "probability": 0.9195 + }, + { + "start": 4510.95, + "end": 4513.83, + "probability": 0.9689 + }, + { + "start": 4513.94, + "end": 4516.82, + "probability": 0.9172 + }, + { + "start": 4517.3, + "end": 4518.56, + "probability": 0.8267 + }, + { + "start": 4519.0, + "end": 4519.8, + "probability": 0.8033 + }, + { + "start": 4519.96, + "end": 4522.46, + "probability": 0.9 + }, + { + "start": 4523.42, + "end": 4524.38, + "probability": 0.5005 + }, + { + "start": 4524.4, + "end": 4527.38, + "probability": 0.9903 + }, + { + "start": 4527.58, + "end": 4528.3, + "probability": 0.7531 + }, + { + "start": 4528.32, + "end": 4529.36, + "probability": 0.7775 + }, + { + "start": 4529.62, + "end": 4532.18, + "probability": 0.8401 + }, + { + "start": 4533.57, + "end": 4535.98, + "probability": 0.9616 + }, + { + "start": 4550.06, + "end": 4552.6, + "probability": 0.7042 + }, + { + "start": 4552.82, + "end": 4554.34, + "probability": 0.8076 + }, + { + "start": 4558.14, + "end": 4561.06, + "probability": 0.6919 + }, + { + "start": 4563.38, + "end": 4567.28, + "probability": 0.9943 + }, + { + "start": 4569.42, + "end": 4571.42, + "probability": 0.8851 + }, + { + "start": 4573.48, + "end": 4575.46, + "probability": 0.9958 + }, + { + "start": 4576.48, + "end": 4577.6, + "probability": 0.8494 + }, + { + "start": 4578.5, + "end": 4584.68, + "probability": 0.989 + }, + { + "start": 4586.12, + "end": 4587.32, + "probability": 0.8377 + }, + { + "start": 4587.36, + "end": 4587.58, + "probability": 0.721 + }, + { + "start": 4589.3, + "end": 4592.3, + "probability": 0.9583 + }, + { + "start": 4593.26, + "end": 4593.98, + "probability": 0.8524 + }, + { + "start": 4595.74, + "end": 4597.9, + "probability": 0.9543 + }, + { + "start": 4598.3, + "end": 4600.6, + "probability": 0.8509 + }, + { + "start": 4603.74, + "end": 4604.82, + "probability": 0.2552 + }, + { + "start": 4605.06, + "end": 4605.28, + "probability": 0.678 + }, + { + "start": 4607.98, + "end": 4608.16, + "probability": 0.0868 + }, + { + "start": 4608.16, + "end": 4608.42, + "probability": 0.7452 + }, + { + "start": 4609.2, + "end": 4611.12, + "probability": 0.1535 + }, + { + "start": 4611.3, + "end": 4617.24, + "probability": 0.4723 + }, + { + "start": 4618.12, + "end": 4620.46, + "probability": 0.8558 + }, + { + "start": 4621.58, + "end": 4631.8, + "probability": 0.9326 + }, + { + "start": 4632.28, + "end": 4633.16, + "probability": 0.7958 + }, + { + "start": 4633.82, + "end": 4634.94, + "probability": 0.7625 + }, + { + "start": 4638.92, + "end": 4639.9, + "probability": 0.8361 + }, + { + "start": 4639.98, + "end": 4641.34, + "probability": 0.9915 + }, + { + "start": 4641.52, + "end": 4647.24, + "probability": 0.9948 + }, + { + "start": 4647.82, + "end": 4648.64, + "probability": 0.747 + }, + { + "start": 4649.72, + "end": 4651.24, + "probability": 0.5677 + }, + { + "start": 4652.92, + "end": 4654.24, + "probability": 0.8575 + }, + { + "start": 4654.32, + "end": 4658.32, + "probability": 0.8936 + }, + { + "start": 4658.38, + "end": 4659.32, + "probability": 0.991 + }, + { + "start": 4659.66, + "end": 4660.26, + "probability": 0.6738 + }, + { + "start": 4660.26, + "end": 4661.1, + "probability": 0.5797 + }, + { + "start": 4662.16, + "end": 4663.22, + "probability": 0.7867 + }, + { + "start": 4663.94, + "end": 4668.0, + "probability": 0.9982 + }, + { + "start": 4669.12, + "end": 4671.34, + "probability": 0.9886 + }, + { + "start": 4671.46, + "end": 4672.0, + "probability": 0.6324 + }, + { + "start": 4673.24, + "end": 4678.0, + "probability": 0.9706 + }, + { + "start": 4678.0, + "end": 4680.96, + "probability": 0.997 + }, + { + "start": 4682.14, + "end": 4685.86, + "probability": 0.8181 + }, + { + "start": 4687.34, + "end": 4687.96, + "probability": 0.7252 + }, + { + "start": 4688.6, + "end": 4690.06, + "probability": 0.8554 + }, + { + "start": 4691.06, + "end": 4692.46, + "probability": 0.4477 + }, + { + "start": 4692.48, + "end": 4696.64, + "probability": 0.9046 + }, + { + "start": 4697.2, + "end": 4701.01, + "probability": 0.5716 + }, + { + "start": 4701.26, + "end": 4701.26, + "probability": 0.011 + }, + { + "start": 4701.26, + "end": 4701.75, + "probability": 0.6462 + }, + { + "start": 4702.26, + "end": 4704.44, + "probability": 0.9535 + }, + { + "start": 4705.94, + "end": 4706.92, + "probability": 0.6709 + }, + { + "start": 4707.56, + "end": 4713.26, + "probability": 0.7952 + }, + { + "start": 4713.96, + "end": 4715.22, + "probability": 0.7743 + }, + { + "start": 4716.84, + "end": 4717.9, + "probability": 0.8309 + }, + { + "start": 4718.96, + "end": 4719.14, + "probability": 0.0725 + }, + { + "start": 4719.14, + "end": 4719.63, + "probability": 0.4067 + }, + { + "start": 4719.72, + "end": 4720.2, + "probability": 0.513 + }, + { + "start": 4720.38, + "end": 4722.98, + "probability": 0.9176 + }, + { + "start": 4723.1, + "end": 4724.1, + "probability": 0.8995 + }, + { + "start": 4724.42, + "end": 4725.0, + "probability": 0.712 + }, + { + "start": 4725.24, + "end": 4725.98, + "probability": 0.8662 + }, + { + "start": 4726.64, + "end": 4727.38, + "probability": 0.724 + }, + { + "start": 4728.08, + "end": 4730.86, + "probability": 0.8414 + }, + { + "start": 4732.2, + "end": 4736.08, + "probability": 0.7801 + }, + { + "start": 4739.82, + "end": 4742.38, + "probability": 0.4411 + }, + { + "start": 4743.1, + "end": 4743.6, + "probability": 0.6599 + }, + { + "start": 4743.7, + "end": 4744.52, + "probability": 0.8311 + }, + { + "start": 4744.6, + "end": 4747.34, + "probability": 0.9384 + }, + { + "start": 4748.26, + "end": 4752.78, + "probability": 0.9775 + }, + { + "start": 4753.06, + "end": 4754.06, + "probability": 0.9608 + }, + { + "start": 4755.54, + "end": 4756.96, + "probability": 0.5436 + }, + { + "start": 4759.44, + "end": 4761.88, + "probability": 0.9912 + }, + { + "start": 4762.06, + "end": 4763.82, + "probability": 0.7129 + }, + { + "start": 4764.54, + "end": 4769.69, + "probability": 0.9929 + }, + { + "start": 4770.64, + "end": 4771.54, + "probability": 0.5284 + }, + { + "start": 4773.54, + "end": 4775.26, + "probability": 0.9307 + }, + { + "start": 4776.5, + "end": 4779.54, + "probability": 0.8723 + }, + { + "start": 4781.16, + "end": 4783.22, + "probability": 0.8598 + }, + { + "start": 4784.54, + "end": 4786.3, + "probability": 0.9839 + }, + { + "start": 4787.78, + "end": 4791.42, + "probability": 0.983 + }, + { + "start": 4793.46, + "end": 4796.12, + "probability": 0.7868 + }, + { + "start": 4796.18, + "end": 4796.74, + "probability": 0.918 + }, + { + "start": 4796.88, + "end": 4797.32, + "probability": 0.8852 + }, + { + "start": 4797.76, + "end": 4800.9, + "probability": 0.8421 + }, + { + "start": 4801.72, + "end": 4803.58, + "probability": 0.8125 + }, + { + "start": 4804.0, + "end": 4804.81, + "probability": 0.9756 + }, + { + "start": 4805.16, + "end": 4806.42, + "probability": 0.9857 + }, + { + "start": 4806.62, + "end": 4807.28, + "probability": 0.7271 + }, + { + "start": 4807.66, + "end": 4809.16, + "probability": 0.9565 + }, + { + "start": 4809.3, + "end": 4810.32, + "probability": 0.9619 + }, + { + "start": 4810.96, + "end": 4812.0, + "probability": 0.5226 + }, + { + "start": 4812.22, + "end": 4815.22, + "probability": 0.8002 + }, + { + "start": 4815.38, + "end": 4816.72, + "probability": 0.9837 + }, + { + "start": 4817.82, + "end": 4820.14, + "probability": 0.8755 + }, + { + "start": 4820.26, + "end": 4822.1, + "probability": 0.9252 + }, + { + "start": 4822.46, + "end": 4824.06, + "probability": 0.991 + }, + { + "start": 4824.12, + "end": 4825.6, + "probability": 0.9307 + }, + { + "start": 4826.04, + "end": 4826.9, + "probability": 0.7359 + }, + { + "start": 4827.44, + "end": 4830.76, + "probability": 0.9951 + }, + { + "start": 4831.08, + "end": 4833.64, + "probability": 0.6368 + }, + { + "start": 4834.42, + "end": 4838.94, + "probability": 0.9822 + }, + { + "start": 4839.4, + "end": 4840.72, + "probability": 0.7694 + }, + { + "start": 4840.84, + "end": 4842.74, + "probability": 0.4924 + }, + { + "start": 4842.96, + "end": 4844.12, + "probability": 0.9718 + }, + { + "start": 4844.42, + "end": 4847.7, + "probability": 0.9944 + }, + { + "start": 4848.32, + "end": 4851.18, + "probability": 0.9937 + }, + { + "start": 4851.58, + "end": 4853.24, + "probability": 0.9353 + }, + { + "start": 4853.64, + "end": 4857.82, + "probability": 0.8897 + }, + { + "start": 4858.32, + "end": 4859.5, + "probability": 0.9946 + }, + { + "start": 4859.68, + "end": 4860.78, + "probability": 0.9993 + }, + { + "start": 4860.9, + "end": 4861.9, + "probability": 0.8833 + }, + { + "start": 4861.9, + "end": 4864.54, + "probability": 0.8154 + }, + { + "start": 4864.58, + "end": 4866.12, + "probability": 0.5649 + }, + { + "start": 4866.9, + "end": 4868.06, + "probability": 0.9141 + }, + { + "start": 4868.76, + "end": 4870.6, + "probability": 0.9786 + }, + { + "start": 4870.74, + "end": 4871.9, + "probability": 0.9702 + }, + { + "start": 4872.36, + "end": 4873.62, + "probability": 0.882 + }, + { + "start": 4874.2, + "end": 4878.84, + "probability": 0.9724 + }, + { + "start": 4879.34, + "end": 4883.34, + "probability": 0.6798 + }, + { + "start": 4883.7, + "end": 4888.0, + "probability": 0.7651 + }, + { + "start": 4888.42, + "end": 4888.64, + "probability": 0.4658 + }, + { + "start": 4888.64, + "end": 4889.56, + "probability": 0.7528 + }, + { + "start": 4890.46, + "end": 4896.0, + "probability": 0.9031 + }, + { + "start": 4896.38, + "end": 4897.64, + "probability": 0.6707 + }, + { + "start": 4898.02, + "end": 4899.56, + "probability": 0.9856 + }, + { + "start": 4899.68, + "end": 4900.84, + "probability": 0.9847 + }, + { + "start": 4901.2, + "end": 4904.52, + "probability": 0.9863 + }, + { + "start": 4904.52, + "end": 4904.88, + "probability": 0.7244 + }, + { + "start": 4904.94, + "end": 4905.14, + "probability": 0.7109 + }, + { + "start": 4905.64, + "end": 4907.16, + "probability": 0.989 + }, + { + "start": 4907.28, + "end": 4910.24, + "probability": 0.9878 + }, + { + "start": 4928.66, + "end": 4929.88, + "probability": 0.6168 + }, + { + "start": 4930.76, + "end": 4933.2, + "probability": 0.743 + }, + { + "start": 4934.42, + "end": 4936.84, + "probability": 0.8015 + }, + { + "start": 4938.08, + "end": 4941.34, + "probability": 0.9743 + }, + { + "start": 4942.56, + "end": 4945.98, + "probability": 0.983 + }, + { + "start": 4946.6, + "end": 4947.4, + "probability": 0.9976 + }, + { + "start": 4948.26, + "end": 4950.02, + "probability": 0.9369 + }, + { + "start": 4950.64, + "end": 4951.86, + "probability": 0.9692 + }, + { + "start": 4952.6, + "end": 4953.24, + "probability": 0.8697 + }, + { + "start": 4954.0, + "end": 4960.66, + "probability": 0.938 + }, + { + "start": 4961.84, + "end": 4965.06, + "probability": 0.9938 + }, + { + "start": 4966.4, + "end": 4968.74, + "probability": 0.7291 + }, + { + "start": 4969.58, + "end": 4972.12, + "probability": 0.9973 + }, + { + "start": 4972.82, + "end": 4976.06, + "probability": 0.9744 + }, + { + "start": 4976.6, + "end": 4979.02, + "probability": 0.9904 + }, + { + "start": 4980.04, + "end": 4982.74, + "probability": 0.991 + }, + { + "start": 4983.2, + "end": 4987.84, + "probability": 0.9984 + }, + { + "start": 4988.14, + "end": 4988.56, + "probability": 0.8339 + }, + { + "start": 4989.34, + "end": 4989.98, + "probability": 0.9548 + }, + { + "start": 4990.74, + "end": 4991.48, + "probability": 0.8553 + }, + { + "start": 4992.16, + "end": 4996.12, + "probability": 0.988 + }, + { + "start": 4996.6, + "end": 5000.12, + "probability": 0.9971 + }, + { + "start": 5000.12, + "end": 5003.08, + "probability": 0.9979 + }, + { + "start": 5003.66, + "end": 5006.46, + "probability": 0.8686 + }, + { + "start": 5007.38, + "end": 5008.5, + "probability": 0.9316 + }, + { + "start": 5009.58, + "end": 5011.72, + "probability": 0.9851 + }, + { + "start": 5011.72, + "end": 5015.06, + "probability": 0.9779 + }, + { + "start": 5015.78, + "end": 5017.86, + "probability": 0.5598 + }, + { + "start": 5018.44, + "end": 5018.94, + "probability": 0.9785 + }, + { + "start": 5020.0, + "end": 5024.86, + "probability": 0.9911 + }, + { + "start": 5025.56, + "end": 5030.82, + "probability": 0.9828 + }, + { + "start": 5031.94, + "end": 5033.56, + "probability": 0.8969 + }, + { + "start": 5033.64, + "end": 5035.82, + "probability": 0.9885 + }, + { + "start": 5036.32, + "end": 5041.28, + "probability": 0.9592 + }, + { + "start": 5042.1, + "end": 5045.18, + "probability": 0.9902 + }, + { + "start": 5045.68, + "end": 5047.04, + "probability": 0.7744 + }, + { + "start": 5047.62, + "end": 5051.08, + "probability": 0.9557 + }, + { + "start": 5052.12, + "end": 5053.3, + "probability": 0.8324 + }, + { + "start": 5053.98, + "end": 5054.24, + "probability": 0.9297 + }, + { + "start": 5055.64, + "end": 5057.46, + "probability": 0.8993 + }, + { + "start": 5058.12, + "end": 5058.8, + "probability": 0.9796 + }, + { + "start": 5059.32, + "end": 5062.5, + "probability": 0.8643 + }, + { + "start": 5062.84, + "end": 5066.2, + "probability": 0.4608 + }, + { + "start": 5066.88, + "end": 5067.38, + "probability": 0.8252 + }, + { + "start": 5068.2, + "end": 5071.44, + "probability": 0.994 + }, + { + "start": 5071.44, + "end": 5074.1, + "probability": 0.9677 + }, + { + "start": 5074.86, + "end": 5075.88, + "probability": 0.9646 + }, + { + "start": 5076.9, + "end": 5081.42, + "probability": 0.9932 + }, + { + "start": 5081.5, + "end": 5082.32, + "probability": 0.9429 + }, + { + "start": 5083.2, + "end": 5083.74, + "probability": 0.9173 + }, + { + "start": 5084.54, + "end": 5090.32, + "probability": 0.9709 + }, + { + "start": 5090.96, + "end": 5094.72, + "probability": 0.9158 + }, + { + "start": 5095.34, + "end": 5095.94, + "probability": 0.9686 + }, + { + "start": 5096.18, + "end": 5096.46, + "probability": 0.7483 + }, + { + "start": 5096.72, + "end": 5097.24, + "probability": 0.7885 + }, + { + "start": 5099.52, + "end": 5101.86, + "probability": 0.9668 + }, + { + "start": 5101.94, + "end": 5102.64, + "probability": 0.9197 + }, + { + "start": 5102.76, + "end": 5103.3, + "probability": 0.5946 + }, + { + "start": 5103.46, + "end": 5104.94, + "probability": 0.9128 + }, + { + "start": 5122.64, + "end": 5123.62, + "probability": 0.5759 + }, + { + "start": 5124.54, + "end": 5127.26, + "probability": 0.7462 + }, + { + "start": 5128.06, + "end": 5130.68, + "probability": 0.8965 + }, + { + "start": 5131.38, + "end": 5131.38, + "probability": 0.0285 + }, + { + "start": 5131.48, + "end": 5132.18, + "probability": 0.7123 + }, + { + "start": 5132.24, + "end": 5135.69, + "probability": 0.8145 + }, + { + "start": 5136.2, + "end": 5136.82, + "probability": 0.7183 + }, + { + "start": 5137.0, + "end": 5138.04, + "probability": 0.915 + }, + { + "start": 5138.72, + "end": 5140.08, + "probability": 0.748 + }, + { + "start": 5140.44, + "end": 5141.56, + "probability": 0.6124 + }, + { + "start": 5141.84, + "end": 5142.12, + "probability": 0.8977 + }, + { + "start": 5142.36, + "end": 5143.24, + "probability": 0.0871 + }, + { + "start": 5143.84, + "end": 5144.18, + "probability": 0.506 + }, + { + "start": 5144.64, + "end": 5145.32, + "probability": 0.8608 + }, + { + "start": 5145.32, + "end": 5146.78, + "probability": 0.7196 + }, + { + "start": 5147.36, + "end": 5150.66, + "probability": 0.5629 + }, + { + "start": 5151.46, + "end": 5155.68, + "probability": 0.9922 + }, + { + "start": 5156.22, + "end": 5157.48, + "probability": 0.9992 + }, + { + "start": 5157.98, + "end": 5159.06, + "probability": 0.7053 + }, + { + "start": 5159.6, + "end": 5166.04, + "probability": 0.9849 + }, + { + "start": 5166.68, + "end": 5168.48, + "probability": 0.9097 + }, + { + "start": 5169.26, + "end": 5172.38, + "probability": 0.9845 + }, + { + "start": 5173.36, + "end": 5179.2, + "probability": 0.9971 + }, + { + "start": 5179.86, + "end": 5184.32, + "probability": 0.9984 + }, + { + "start": 5184.4, + "end": 5185.28, + "probability": 0.8134 + }, + { + "start": 5185.7, + "end": 5185.96, + "probability": 0.4867 + }, + { + "start": 5186.02, + "end": 5187.44, + "probability": 0.9223 + }, + { + "start": 5187.56, + "end": 5191.26, + "probability": 0.9648 + }, + { + "start": 5191.92, + "end": 5196.0, + "probability": 0.8182 + }, + { + "start": 5197.1, + "end": 5198.2, + "probability": 0.7177 + }, + { + "start": 5198.4, + "end": 5202.68, + "probability": 0.9844 + }, + { + "start": 5203.1, + "end": 5206.98, + "probability": 0.9917 + }, + { + "start": 5208.26, + "end": 5216.68, + "probability": 0.9902 + }, + { + "start": 5217.28, + "end": 5218.08, + "probability": 0.9676 + }, + { + "start": 5219.1, + "end": 5224.42, + "probability": 0.9897 + }, + { + "start": 5225.12, + "end": 5226.88, + "probability": 0.9347 + }, + { + "start": 5227.3, + "end": 5227.88, + "probability": 0.6011 + }, + { + "start": 5228.22, + "end": 5235.56, + "probability": 0.9715 + }, + { + "start": 5235.88, + "end": 5236.66, + "probability": 0.931 + }, + { + "start": 5237.08, + "end": 5237.8, + "probability": 0.7777 + }, + { + "start": 5238.22, + "end": 5241.62, + "probability": 0.998 + }, + { + "start": 5241.62, + "end": 5245.72, + "probability": 0.9741 + }, + { + "start": 5246.56, + "end": 5247.3, + "probability": 0.5037 + }, + { + "start": 5248.48, + "end": 5252.24, + "probability": 0.9201 + }, + { + "start": 5252.98, + "end": 5257.92, + "probability": 0.9498 + }, + { + "start": 5258.3, + "end": 5260.4, + "probability": 0.9852 + }, + { + "start": 5261.02, + "end": 5265.42, + "probability": 0.7315 + }, + { + "start": 5266.02, + "end": 5268.62, + "probability": 0.9972 + }, + { + "start": 5268.74, + "end": 5269.6, + "probability": 0.8552 + }, + { + "start": 5270.08, + "end": 5277.38, + "probability": 0.9793 + }, + { + "start": 5278.94, + "end": 5282.64, + "probability": 0.869 + }, + { + "start": 5283.3, + "end": 5283.88, + "probability": 0.9058 + }, + { + "start": 5284.64, + "end": 5290.11, + "probability": 0.9934 + }, + { + "start": 5290.94, + "end": 5294.28, + "probability": 0.9362 + }, + { + "start": 5294.8, + "end": 5297.9, + "probability": 0.8964 + }, + { + "start": 5298.4, + "end": 5302.7, + "probability": 0.9983 + }, + { + "start": 5302.7, + "end": 5306.18, + "probability": 0.9606 + }, + { + "start": 5306.92, + "end": 5311.94, + "probability": 0.9722 + }, + { + "start": 5312.38, + "end": 5314.12, + "probability": 0.8851 + }, + { + "start": 5315.18, + "end": 5319.98, + "probability": 0.7379 + }, + { + "start": 5320.88, + "end": 5325.02, + "probability": 0.9843 + }, + { + "start": 5325.02, + "end": 5328.38, + "probability": 0.9524 + }, + { + "start": 5329.3, + "end": 5332.0, + "probability": 0.8699 + }, + { + "start": 5332.68, + "end": 5338.15, + "probability": 0.9963 + }, + { + "start": 5338.34, + "end": 5338.82, + "probability": 0.7506 + }, + { + "start": 5338.9, + "end": 5344.1, + "probability": 0.974 + }, + { + "start": 5344.64, + "end": 5345.64, + "probability": 0.8791 + }, + { + "start": 5346.36, + "end": 5350.8, + "probability": 0.9917 + }, + { + "start": 5352.08, + "end": 5353.04, + "probability": 0.8622 + }, + { + "start": 5353.18, + "end": 5353.62, + "probability": 0.3128 + }, + { + "start": 5353.68, + "end": 5357.88, + "probability": 0.9697 + }, + { + "start": 5357.88, + "end": 5361.98, + "probability": 0.9888 + }, + { + "start": 5362.46, + "end": 5366.98, + "probability": 0.9915 + }, + { + "start": 5367.66, + "end": 5371.48, + "probability": 0.9532 + }, + { + "start": 5372.66, + "end": 5381.76, + "probability": 0.9813 + }, + { + "start": 5384.0, + "end": 5390.44, + "probability": 0.9885 + }, + { + "start": 5391.06, + "end": 5393.12, + "probability": 0.8633 + }, + { + "start": 5393.5, + "end": 5395.3, + "probability": 0.5826 + }, + { + "start": 5395.36, + "end": 5395.8, + "probability": 0.639 + }, + { + "start": 5395.96, + "end": 5396.84, + "probability": 0.9897 + }, + { + "start": 5397.06, + "end": 5397.76, + "probability": 0.8305 + }, + { + "start": 5398.38, + "end": 5400.42, + "probability": 0.9282 + }, + { + "start": 5401.04, + "end": 5403.08, + "probability": 0.9772 + }, + { + "start": 5403.5, + "end": 5407.01, + "probability": 0.9784 + }, + { + "start": 5409.18, + "end": 5413.02, + "probability": 0.7941 + }, + { + "start": 5413.9, + "end": 5415.62, + "probability": 0.5825 + }, + { + "start": 5415.62, + "end": 5417.4, + "probability": 0.2357 + }, + { + "start": 5417.58, + "end": 5420.52, + "probability": 0.357 + }, + { + "start": 5421.48, + "end": 5423.1, + "probability": 0.1122 + }, + { + "start": 5424.02, + "end": 5426.72, + "probability": 0.3767 + }, + { + "start": 5427.0, + "end": 5428.65, + "probability": 0.3277 + }, + { + "start": 5431.08, + "end": 5431.78, + "probability": 0.0661 + }, + { + "start": 5431.78, + "end": 5432.1, + "probability": 0.2714 + }, + { + "start": 5432.22, + "end": 5433.44, + "probability": 0.9946 + }, + { + "start": 5437.11, + "end": 5441.06, + "probability": 0.8975 + }, + { + "start": 5441.46, + "end": 5444.8, + "probability": 0.7734 + }, + { + "start": 5445.26, + "end": 5447.26, + "probability": 0.9846 + }, + { + "start": 5447.4, + "end": 5449.54, + "probability": 0.9813 + }, + { + "start": 5449.92, + "end": 5454.08, + "probability": 0.9937 + }, + { + "start": 5454.28, + "end": 5456.18, + "probability": 0.9966 + }, + { + "start": 5457.17, + "end": 5461.48, + "probability": 0.98 + }, + { + "start": 5461.98, + "end": 5464.38, + "probability": 0.7618 + }, + { + "start": 5464.9, + "end": 5469.62, + "probability": 0.9841 + }, + { + "start": 5469.68, + "end": 5472.14, + "probability": 0.9774 + }, + { + "start": 5472.7, + "end": 5477.62, + "probability": 0.9663 + }, + { + "start": 5477.76, + "end": 5480.88, + "probability": 0.8427 + }, + { + "start": 5481.3, + "end": 5483.3, + "probability": 0.951 + }, + { + "start": 5483.78, + "end": 5484.22, + "probability": 0.8171 + }, + { + "start": 5484.7, + "end": 5488.4, + "probability": 0.9047 + }, + { + "start": 5488.52, + "end": 5490.48, + "probability": 0.8788 + }, + { + "start": 5490.86, + "end": 5493.84, + "probability": 0.8798 + }, + { + "start": 5494.54, + "end": 5494.54, + "probability": 0.3957 + }, + { + "start": 5494.66, + "end": 5503.86, + "probability": 0.9776 + }, + { + "start": 5504.32, + "end": 5505.72, + "probability": 0.9897 + }, + { + "start": 5505.9, + "end": 5508.92, + "probability": 0.9878 + }, + { + "start": 5509.34, + "end": 5509.8, + "probability": 0.2486 + }, + { + "start": 5511.84, + "end": 5513.14, + "probability": 0.9329 + }, + { + "start": 5513.68, + "end": 5518.28, + "probability": 0.9927 + }, + { + "start": 5518.28, + "end": 5523.58, + "probability": 0.9948 + }, + { + "start": 5524.08, + "end": 5524.52, + "probability": 0.617 + }, + { + "start": 5524.58, + "end": 5525.48, + "probability": 0.6511 + }, + { + "start": 5525.6, + "end": 5526.5, + "probability": 0.8313 + }, + { + "start": 5526.68, + "end": 5527.0, + "probability": 0.4813 + }, + { + "start": 5527.62, + "end": 5529.14, + "probability": 0.9185 + }, + { + "start": 5529.3, + "end": 5530.62, + "probability": 0.6955 + }, + { + "start": 5531.64, + "end": 5531.66, + "probability": 0.2607 + }, + { + "start": 5532.2, + "end": 5534.02, + "probability": 0.8286 + }, + { + "start": 5544.4, + "end": 5545.22, + "probability": 0.5817 + }, + { + "start": 5545.24, + "end": 5548.66, + "probability": 0.8332 + }, + { + "start": 5549.12, + "end": 5551.08, + "probability": 0.9646 + }, + { + "start": 5551.56, + "end": 5554.38, + "probability": 0.9763 + }, + { + "start": 5554.54, + "end": 5556.52, + "probability": 0.9964 + }, + { + "start": 5556.98, + "end": 5557.74, + "probability": 0.9858 + }, + { + "start": 5559.16, + "end": 5561.54, + "probability": 0.95 + }, + { + "start": 5562.22, + "end": 5565.06, + "probability": 0.5662 + }, + { + "start": 5566.46, + "end": 5568.64, + "probability": 0.5133 + }, + { + "start": 5568.86, + "end": 5575.3, + "probability": 0.9316 + }, + { + "start": 5576.16, + "end": 5578.46, + "probability": 0.8122 + }, + { + "start": 5579.76, + "end": 5583.73, + "probability": 0.9456 + }, + { + "start": 5583.82, + "end": 5584.68, + "probability": 0.9495 + }, + { + "start": 5586.12, + "end": 5588.56, + "probability": 0.8038 + }, + { + "start": 5590.82, + "end": 5592.1, + "probability": 0.9529 + }, + { + "start": 5593.45, + "end": 5597.68, + "probability": 0.9924 + }, + { + "start": 5597.74, + "end": 5598.6, + "probability": 0.9922 + }, + { + "start": 5599.18, + "end": 5600.64, + "probability": 0.9931 + }, + { + "start": 5602.02, + "end": 5605.28, + "probability": 0.5083 + }, + { + "start": 5607.57, + "end": 5612.12, + "probability": 0.8143 + }, + { + "start": 5613.42, + "end": 5617.98, + "probability": 0.911 + }, + { + "start": 5618.44, + "end": 5622.64, + "probability": 0.9413 + }, + { + "start": 5623.49, + "end": 5623.94, + "probability": 0.6572 + }, + { + "start": 5625.1, + "end": 5626.04, + "probability": 0.7474 + }, + { + "start": 5626.7, + "end": 5629.88, + "probability": 0.834 + }, + { + "start": 5631.7, + "end": 5636.92, + "probability": 0.9644 + }, + { + "start": 5637.3, + "end": 5640.26, + "probability": 0.9406 + }, + { + "start": 5641.26, + "end": 5641.9, + "probability": 0.5828 + }, + { + "start": 5642.8, + "end": 5644.26, + "probability": 0.9282 + }, + { + "start": 5645.06, + "end": 5650.56, + "probability": 0.9937 + }, + { + "start": 5651.32, + "end": 5653.04, + "probability": 0.9482 + }, + { + "start": 5654.7, + "end": 5658.06, + "probability": 0.9329 + }, + { + "start": 5658.78, + "end": 5661.06, + "probability": 0.6226 + }, + { + "start": 5661.74, + "end": 5666.74, + "probability": 0.7025 + }, + { + "start": 5667.58, + "end": 5670.38, + "probability": 0.9891 + }, + { + "start": 5671.14, + "end": 5674.42, + "probability": 0.9634 + }, + { + "start": 5675.04, + "end": 5676.6, + "probability": 0.9604 + }, + { + "start": 5677.58, + "end": 5679.88, + "probability": 0.8725 + }, + { + "start": 5680.12, + "end": 5680.9, + "probability": 0.9612 + }, + { + "start": 5682.74, + "end": 5686.42, + "probability": 0.8569 + }, + { + "start": 5686.76, + "end": 5688.38, + "probability": 0.9254 + }, + { + "start": 5689.83, + "end": 5693.06, + "probability": 0.899 + }, + { + "start": 5694.24, + "end": 5695.48, + "probability": 0.8865 + }, + { + "start": 5696.28, + "end": 5699.1, + "probability": 0.9256 + }, + { + "start": 5699.18, + "end": 5703.58, + "probability": 0.5129 + }, + { + "start": 5704.32, + "end": 5708.54, + "probability": 0.9292 + }, + { + "start": 5709.64, + "end": 5710.58, + "probability": 0.9575 + }, + { + "start": 5711.14, + "end": 5712.16, + "probability": 0.6922 + }, + { + "start": 5712.68, + "end": 5713.32, + "probability": 0.9292 + }, + { + "start": 5714.0, + "end": 5714.84, + "probability": 0.2119 + }, + { + "start": 5715.4, + "end": 5717.68, + "probability": 0.6277 + }, + { + "start": 5718.64, + "end": 5719.7, + "probability": 0.8547 + }, + { + "start": 5721.68, + "end": 5722.58, + "probability": 0.2201 + }, + { + "start": 5722.84, + "end": 5723.76, + "probability": 0.0519 + }, + { + "start": 5723.76, + "end": 5724.39, + "probability": 0.1405 + }, + { + "start": 5725.32, + "end": 5726.62, + "probability": 0.6746 + }, + { + "start": 5727.54, + "end": 5729.5, + "probability": 0.4972 + }, + { + "start": 5730.5, + "end": 5732.58, + "probability": 0.1516 + }, + { + "start": 5734.46, + "end": 5735.7, + "probability": 0.991 + }, + { + "start": 5736.62, + "end": 5737.67, + "probability": 0.6213 + }, + { + "start": 5738.08, + "end": 5739.34, + "probability": 0.5845 + }, + { + "start": 5740.04, + "end": 5741.04, + "probability": 0.3411 + }, + { + "start": 5741.82, + "end": 5745.78, + "probability": 0.9893 + }, + { + "start": 5746.08, + "end": 5747.92, + "probability": 0.9205 + }, + { + "start": 5748.46, + "end": 5748.84, + "probability": 0.6853 + }, + { + "start": 5749.36, + "end": 5750.84, + "probability": 0.673 + }, + { + "start": 5751.8, + "end": 5754.04, + "probability": 0.8373 + }, + { + "start": 5754.96, + "end": 5755.56, + "probability": 0.4713 + }, + { + "start": 5756.0, + "end": 5758.06, + "probability": 0.9733 + }, + { + "start": 5759.14, + "end": 5766.22, + "probability": 0.8923 + }, + { + "start": 5767.3, + "end": 5771.94, + "probability": 0.7257 + }, + { + "start": 5775.94, + "end": 5781.5, + "probability": 0.9993 + }, + { + "start": 5782.1, + "end": 5782.8, + "probability": 0.9349 + }, + { + "start": 5783.4, + "end": 5784.68, + "probability": 0.9869 + }, + { + "start": 5785.06, + "end": 5789.04, + "probability": 0.9713 + }, + { + "start": 5789.48, + "end": 5792.24, + "probability": 0.9819 + }, + { + "start": 5793.42, + "end": 5795.94, + "probability": 0.8362 + }, + { + "start": 5796.7, + "end": 5798.58, + "probability": 0.318 + }, + { + "start": 5799.4, + "end": 5803.02, + "probability": 0.7103 + }, + { + "start": 5803.56, + "end": 5809.34, + "probability": 0.7387 + }, + { + "start": 5810.16, + "end": 5814.78, + "probability": 0.7734 + }, + { + "start": 5814.78, + "end": 5815.6, + "probability": 0.5416 + }, + { + "start": 5816.24, + "end": 5817.66, + "probability": 0.0475 + }, + { + "start": 5818.06, + "end": 5819.72, + "probability": 0.1014 + }, + { + "start": 5819.72, + "end": 5820.68, + "probability": 0.4568 + }, + { + "start": 5820.82, + "end": 5820.9, + "probability": 0.2728 + }, + { + "start": 5820.98, + "end": 5822.38, + "probability": 0.1603 + }, + { + "start": 5822.72, + "end": 5822.74, + "probability": 0.0976 + }, + { + "start": 5822.74, + "end": 5823.4, + "probability": 0.3116 + }, + { + "start": 5823.96, + "end": 5824.14, + "probability": 0.3575 + }, + { + "start": 5824.22, + "end": 5826.3, + "probability": 0.3402 + }, + { + "start": 5826.54, + "end": 5826.96, + "probability": 0.0475 + }, + { + "start": 5827.62, + "end": 5828.14, + "probability": 0.1198 + }, + { + "start": 5828.46, + "end": 5829.66, + "probability": 0.8286 + }, + { + "start": 5829.68, + "end": 5829.88, + "probability": 0.0166 + }, + { + "start": 5830.82, + "end": 5833.04, + "probability": 0.063 + }, + { + "start": 5833.04, + "end": 5837.6, + "probability": 0.0389 + }, + { + "start": 5837.64, + "end": 5841.12, + "probability": 0.061 + }, + { + "start": 5842.1, + "end": 5842.92, + "probability": 0.0573 + }, + { + "start": 5842.98, + "end": 5843.54, + "probability": 0.1281 + }, + { + "start": 5844.18, + "end": 5852.28, + "probability": 0.1705 + }, + { + "start": 5856.36, + "end": 5856.91, + "probability": 0.2342 + }, + { + "start": 5857.7, + "end": 5858.82, + "probability": 0.1895 + }, + { + "start": 5859.91, + "end": 5862.2, + "probability": 0.0547 + }, + { + "start": 5862.7, + "end": 5863.94, + "probability": 0.1379 + }, + { + "start": 5863.94, + "end": 5864.86, + "probability": 0.2216 + }, + { + "start": 5865.24, + "end": 5866.1, + "probability": 0.0566 + }, + { + "start": 5866.1, + "end": 5867.64, + "probability": 0.0927 + }, + { + "start": 5868.54, + "end": 5868.54, + "probability": 0.0941 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.2, + "end": 5871.88, + "probability": 0.0971 + }, + { + "start": 5871.88, + "end": 5871.88, + "probability": 0.5008 + }, + { + "start": 5871.88, + "end": 5874.22, + "probability": 0.4751 + }, + { + "start": 5874.44, + "end": 5877.02, + "probability": 0.9621 + }, + { + "start": 5878.38, + "end": 5880.92, + "probability": 0.0859 + }, + { + "start": 5882.72, + "end": 5883.38, + "probability": 0.1191 + }, + { + "start": 5883.9, + "end": 5884.2, + "probability": 0.0151 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.54, + "end": 5998.02, + "probability": 0.0391 + }, + { + "start": 5998.02, + "end": 5998.02, + "probability": 0.0348 + }, + { + "start": 5998.02, + "end": 5999.2, + "probability": 0.278 + }, + { + "start": 6001.2, + "end": 6001.58, + "probability": 0.7358 + }, + { + "start": 6001.62, + "end": 6004.22, + "probability": 0.9807 + }, + { + "start": 6004.82, + "end": 6005.26, + "probability": 0.7367 + }, + { + "start": 6006.0, + "end": 6007.86, + "probability": 0.9833 + }, + { + "start": 6008.52, + "end": 6010.64, + "probability": 0.891 + }, + { + "start": 6011.32, + "end": 6013.87, + "probability": 0.9951 + }, + { + "start": 6014.5, + "end": 6017.98, + "probability": 0.9814 + }, + { + "start": 6018.48, + "end": 6019.9, + "probability": 0.9434 + }, + { + "start": 6020.36, + "end": 6021.76, + "probability": 0.9983 + }, + { + "start": 6023.12, + "end": 6026.46, + "probability": 0.9879 + }, + { + "start": 6027.1, + "end": 6030.5, + "probability": 0.9965 + }, + { + "start": 6031.1, + "end": 6033.64, + "probability": 0.9851 + }, + { + "start": 6033.72, + "end": 6035.13, + "probability": 0.7842 + }, + { + "start": 6036.18, + "end": 6038.92, + "probability": 0.9556 + }, + { + "start": 6039.44, + "end": 6040.08, + "probability": 0.7052 + }, + { + "start": 6040.28, + "end": 6042.96, + "probability": 0.9262 + }, + { + "start": 6043.04, + "end": 6044.48, + "probability": 0.9898 + }, + { + "start": 6045.22, + "end": 6046.16, + "probability": 0.7985 + }, + { + "start": 6046.58, + "end": 6047.62, + "probability": 0.0648 + }, + { + "start": 6047.62, + "end": 6047.62, + "probability": 0.1174 + }, + { + "start": 6047.62, + "end": 6049.04, + "probability": 0.68 + }, + { + "start": 6050.58, + "end": 6054.12, + "probability": 0.8408 + }, + { + "start": 6054.78, + "end": 6056.84, + "probability": 0.0373 + }, + { + "start": 6056.84, + "end": 6057.22, + "probability": 0.2458 + }, + { + "start": 6057.22, + "end": 6059.9, + "probability": 0.146 + }, + { + "start": 6059.96, + "end": 6061.74, + "probability": 0.2998 + }, + { + "start": 6062.4, + "end": 6063.7, + "probability": 0.5445 + }, + { + "start": 6063.8, + "end": 6065.7, + "probability": 0.1024 + }, + { + "start": 6066.1, + "end": 6068.1, + "probability": 0.1644 + }, + { + "start": 6068.66, + "end": 6071.68, + "probability": 0.6896 + }, + { + "start": 6072.6, + "end": 6074.86, + "probability": 0.9895 + }, + { + "start": 6075.18, + "end": 6077.22, + "probability": 0.9329 + }, + { + "start": 6078.1, + "end": 6082.54, + "probability": 0.9951 + }, + { + "start": 6083.64, + "end": 6084.48, + "probability": 0.7367 + }, + { + "start": 6085.02, + "end": 6089.04, + "probability": 0.9958 + }, + { + "start": 6089.04, + "end": 6093.7, + "probability": 0.9956 + }, + { + "start": 6093.72, + "end": 6094.44, + "probability": 0.7096 + }, + { + "start": 6094.74, + "end": 6096.66, + "probability": 0.698 + }, + { + "start": 6097.14, + "end": 6097.96, + "probability": 0.9031 + }, + { + "start": 6098.4, + "end": 6099.48, + "probability": 0.6655 + }, + { + "start": 6100.72, + "end": 6101.46, + "probability": 0.8768 + }, + { + "start": 6102.16, + "end": 6102.78, + "probability": 0.8151 + }, + { + "start": 6103.5, + "end": 6107.06, + "probability": 0.9858 + }, + { + "start": 6107.22, + "end": 6110.56, + "probability": 0.9637 + }, + { + "start": 6111.34, + "end": 6111.82, + "probability": 0.9023 + }, + { + "start": 6112.48, + "end": 6113.58, + "probability": 0.9675 + }, + { + "start": 6114.1, + "end": 6114.72, + "probability": 0.9541 + }, + { + "start": 6115.44, + "end": 6117.48, + "probability": 0.9917 + }, + { + "start": 6117.48, + "end": 6119.82, + "probability": 0.9884 + }, + { + "start": 6120.28, + "end": 6121.28, + "probability": 0.989 + }, + { + "start": 6121.88, + "end": 6123.64, + "probability": 0.9541 + }, + { + "start": 6124.1, + "end": 6127.24, + "probability": 0.9894 + }, + { + "start": 6127.48, + "end": 6130.46, + "probability": 0.9653 + }, + { + "start": 6130.48, + "end": 6132.14, + "probability": 0.9624 + }, + { + "start": 6132.44, + "end": 6132.62, + "probability": 0.8215 + }, + { + "start": 6133.2, + "end": 6133.2, + "probability": 0.1236 + }, + { + "start": 6133.2, + "end": 6133.5, + "probability": 0.6244 + }, + { + "start": 6134.8, + "end": 6140.54, + "probability": 0.8002 + }, + { + "start": 6140.84, + "end": 6141.24, + "probability": 0.8503 + }, + { + "start": 6145.58, + "end": 6146.68, + "probability": 0.6693 + }, + { + "start": 6147.34, + "end": 6148.76, + "probability": 0.6339 + }, + { + "start": 6149.02, + "end": 6151.46, + "probability": 0.6727 + }, + { + "start": 6152.3, + "end": 6157.52, + "probability": 0.8597 + }, + { + "start": 6158.06, + "end": 6159.72, + "probability": 0.4603 + }, + { + "start": 6160.48, + "end": 6160.66, + "probability": 0.7152 + }, + { + "start": 6160.72, + "end": 6161.12, + "probability": 0.898 + }, + { + "start": 6161.14, + "end": 6162.24, + "probability": 0.9741 + }, + { + "start": 6162.36, + "end": 6163.38, + "probability": 0.8921 + }, + { + "start": 6164.12, + "end": 6164.84, + "probability": 0.7074 + }, + { + "start": 6165.1, + "end": 6165.7, + "probability": 0.827 + }, + { + "start": 6166.32, + "end": 6170.76, + "probability": 0.9059 + }, + { + "start": 6173.3, + "end": 6173.78, + "probability": 0.2117 + }, + { + "start": 6174.98, + "end": 6176.3, + "probability": 0.9054 + }, + { + "start": 6176.38, + "end": 6178.11, + "probability": 0.9204 + }, + { + "start": 6178.46, + "end": 6179.14, + "probability": 0.5838 + }, + { + "start": 6181.77, + "end": 6184.74, + "probability": 0.9666 + }, + { + "start": 6185.16, + "end": 6185.58, + "probability": 0.5801 + }, + { + "start": 6186.34, + "end": 6187.28, + "probability": 0.8487 + }, + { + "start": 6187.9, + "end": 6190.2, + "probability": 0.8169 + }, + { + "start": 6190.74, + "end": 6194.96, + "probability": 0.7817 + }, + { + "start": 6195.68, + "end": 6198.24, + "probability": 0.993 + }, + { + "start": 6198.96, + "end": 6200.5, + "probability": 0.5451 + }, + { + "start": 6201.56, + "end": 6204.82, + "probability": 0.8827 + }, + { + "start": 6206.46, + "end": 6207.23, + "probability": 0.9386 + }, + { + "start": 6207.46, + "end": 6210.82, + "probability": 0.853 + }, + { + "start": 6211.26, + "end": 6213.22, + "probability": 0.3959 + }, + { + "start": 6214.08, + "end": 6222.84, + "probability": 0.6387 + }, + { + "start": 6223.3, + "end": 6224.58, + "probability": 0.8604 + }, + { + "start": 6224.7, + "end": 6225.72, + "probability": 0.9238 + }, + { + "start": 6226.22, + "end": 6230.36, + "probability": 0.8902 + }, + { + "start": 6230.68, + "end": 6231.14, + "probability": 0.9008 + }, + { + "start": 6232.18, + "end": 6234.4, + "probability": 0.9784 + }, + { + "start": 6234.72, + "end": 6235.66, + "probability": 0.9829 + }, + { + "start": 6236.62, + "end": 6239.08, + "probability": 0.9082 + }, + { + "start": 6240.22, + "end": 6243.58, + "probability": 0.8923 + }, + { + "start": 6244.1, + "end": 6245.96, + "probability": 0.9818 + }, + { + "start": 6247.36, + "end": 6249.5, + "probability": 0.9869 + }, + { + "start": 6250.2, + "end": 6252.28, + "probability": 0.9919 + }, + { + "start": 6252.66, + "end": 6257.84, + "probability": 0.9908 + }, + { + "start": 6257.92, + "end": 6260.56, + "probability": 0.8926 + }, + { + "start": 6260.88, + "end": 6261.82, + "probability": 0.9096 + }, + { + "start": 6262.27, + "end": 6264.8, + "probability": 0.8923 + }, + { + "start": 6265.21, + "end": 6270.48, + "probability": 0.9304 + }, + { + "start": 6271.36, + "end": 6272.64, + "probability": 0.9944 + }, + { + "start": 6272.96, + "end": 6275.2, + "probability": 0.9976 + }, + { + "start": 6275.36, + "end": 6275.9, + "probability": 0.6094 + }, + { + "start": 6276.5, + "end": 6278.08, + "probability": 0.9219 + }, + { + "start": 6278.16, + "end": 6279.22, + "probability": 0.8971 + }, + { + "start": 6279.4, + "end": 6280.86, + "probability": 0.9854 + }, + { + "start": 6281.48, + "end": 6283.98, + "probability": 0.9883 + }, + { + "start": 6284.49, + "end": 6289.98, + "probability": 0.9553 + }, + { + "start": 6289.98, + "end": 6294.02, + "probability": 0.9948 + }, + { + "start": 6295.94, + "end": 6297.8, + "probability": 0.9547 + }, + { + "start": 6297.84, + "end": 6299.02, + "probability": 0.902 + }, + { + "start": 6299.42, + "end": 6300.04, + "probability": 0.7234 + }, + { + "start": 6300.68, + "end": 6302.16, + "probability": 0.7282 + }, + { + "start": 6302.44, + "end": 6303.6, + "probability": 0.7235 + }, + { + "start": 6303.6, + "end": 6306.58, + "probability": 0.9688 + }, + { + "start": 6306.58, + "end": 6311.28, + "probability": 0.9601 + }, + { + "start": 6311.76, + "end": 6312.02, + "probability": 0.8869 + }, + { + "start": 6312.98, + "end": 6313.62, + "probability": 0.8376 + }, + { + "start": 6314.36, + "end": 6315.96, + "probability": 0.7432 + }, + { + "start": 6317.1, + "end": 6318.14, + "probability": 0.8601 + }, + { + "start": 6318.26, + "end": 6320.7, + "probability": 0.9309 + }, + { + "start": 6320.82, + "end": 6322.67, + "probability": 0.9682 + }, + { + "start": 6323.2, + "end": 6323.62, + "probability": 0.9017 + }, + { + "start": 6323.74, + "end": 6324.26, + "probability": 0.9186 + }, + { + "start": 6324.61, + "end": 6327.04, + "probability": 0.9935 + }, + { + "start": 6327.54, + "end": 6329.42, + "probability": 0.7405 + }, + { + "start": 6329.68, + "end": 6332.75, + "probability": 0.5894 + }, + { + "start": 6333.86, + "end": 6337.52, + "probability": 0.9588 + }, + { + "start": 6337.66, + "end": 6338.18, + "probability": 0.9419 + }, + { + "start": 6338.42, + "end": 6339.16, + "probability": 0.8996 + }, + { + "start": 6339.44, + "end": 6341.9, + "probability": 0.9575 + }, + { + "start": 6342.26, + "end": 6343.56, + "probability": 0.502 + }, + { + "start": 6343.72, + "end": 6346.86, + "probability": 0.9154 + }, + { + "start": 6346.86, + "end": 6351.06, + "probability": 0.7974 + }, + { + "start": 6351.16, + "end": 6352.68, + "probability": 0.0933 + }, + { + "start": 6353.32, + "end": 6353.62, + "probability": 0.4147 + }, + { + "start": 6354.42, + "end": 6355.14, + "probability": 0.5243 + }, + { + "start": 6356.1, + "end": 6358.16, + "probability": 0.9379 + }, + { + "start": 6358.82, + "end": 6361.96, + "probability": 0.3716 + }, + { + "start": 6363.64, + "end": 6364.87, + "probability": 0.8867 + }, + { + "start": 6365.04, + "end": 6367.16, + "probability": 0.3535 + }, + { + "start": 6367.68, + "end": 6369.42, + "probability": 0.5054 + }, + { + "start": 6369.56, + "end": 6370.0, + "probability": 0.577 + }, + { + "start": 6370.74, + "end": 6371.28, + "probability": 0.532 + }, + { + "start": 6371.28, + "end": 6372.21, + "probability": 0.9043 + }, + { + "start": 6372.5, + "end": 6374.66, + "probability": 0.8896 + }, + { + "start": 6374.74, + "end": 6375.38, + "probability": 0.8253 + }, + { + "start": 6375.76, + "end": 6376.28, + "probability": 0.5601 + }, + { + "start": 6376.32, + "end": 6377.02, + "probability": 0.7697 + }, + { + "start": 6377.68, + "end": 6381.12, + "probability": 0.9492 + }, + { + "start": 6381.2, + "end": 6384.7, + "probability": 0.9384 + }, + { + "start": 6385.2, + "end": 6385.2, + "probability": 0.1179 + }, + { + "start": 6385.28, + "end": 6387.5, + "probability": 0.9069 + }, + { + "start": 6387.98, + "end": 6389.7, + "probability": 0.8004 + }, + { + "start": 6390.24, + "end": 6391.66, + "probability": 0.7568 + }, + { + "start": 6392.42, + "end": 6393.26, + "probability": 0.8857 + }, + { + "start": 6393.42, + "end": 6394.72, + "probability": 0.9832 + }, + { + "start": 6394.84, + "end": 6396.24, + "probability": 0.958 + }, + { + "start": 6396.62, + "end": 6398.82, + "probability": 0.9848 + }, + { + "start": 6399.6, + "end": 6400.72, + "probability": 0.5108 + }, + { + "start": 6400.88, + "end": 6401.4, + "probability": 0.5312 + }, + { + "start": 6401.48, + "end": 6401.86, + "probability": 0.4057 + }, + { + "start": 6401.9, + "end": 6402.46, + "probability": 0.1273 + }, + { + "start": 6402.64, + "end": 6403.36, + "probability": 0.3263 + }, + { + "start": 6403.38, + "end": 6404.58, + "probability": 0.5894 + }, + { + "start": 6405.04, + "end": 6406.44, + "probability": 0.904 + }, + { + "start": 6406.44, + "end": 6406.8, + "probability": 0.6423 + }, + { + "start": 6406.9, + "end": 6408.9, + "probability": 0.9423 + }, + { + "start": 6409.26, + "end": 6411.68, + "probability": 0.9465 + }, + { + "start": 6411.98, + "end": 6414.12, + "probability": 0.8968 + }, + { + "start": 6414.22, + "end": 6418.12, + "probability": 0.9657 + }, + { + "start": 6418.16, + "end": 6418.72, + "probability": 0.9873 + }, + { + "start": 6419.16, + "end": 6421.04, + "probability": 0.9187 + }, + { + "start": 6421.56, + "end": 6423.12, + "probability": 0.9828 + }, + { + "start": 6423.68, + "end": 6426.0, + "probability": 0.9495 + }, + { + "start": 6427.16, + "end": 6428.54, + "probability": 0.9033 + }, + { + "start": 6429.28, + "end": 6435.64, + "probability": 0.9765 + }, + { + "start": 6436.26, + "end": 6436.3, + "probability": 0.0652 + }, + { + "start": 6436.3, + "end": 6439.76, + "probability": 0.9943 + }, + { + "start": 6441.04, + "end": 6443.84, + "probability": 0.7335 + }, + { + "start": 6444.74, + "end": 6447.24, + "probability": 0.9455 + }, + { + "start": 6447.34, + "end": 6449.08, + "probability": 0.6541 + }, + { + "start": 6449.28, + "end": 6450.3, + "probability": 0.1422 + }, + { + "start": 6451.08, + "end": 6453.46, + "probability": 0.9716 + }, + { + "start": 6454.0, + "end": 6455.08, + "probability": 0.8516 + }, + { + "start": 6456.0, + "end": 6457.12, + "probability": 0.7938 + }, + { + "start": 6457.48, + "end": 6458.44, + "probability": 0.9346 + }, + { + "start": 6460.8, + "end": 6463.28, + "probability": 0.998 + }, + { + "start": 6463.98, + "end": 6467.54, + "probability": 0.8385 + }, + { + "start": 6468.1, + "end": 6471.64, + "probability": 0.948 + }, + { + "start": 6471.86, + "end": 6474.92, + "probability": 0.9946 + }, + { + "start": 6475.46, + "end": 6476.28, + "probability": 0.691 + }, + { + "start": 6477.0, + "end": 6477.0, + "probability": 0.0009 + }, + { + "start": 6478.64, + "end": 6478.8, + "probability": 0.0277 + }, + { + "start": 6478.8, + "end": 6479.55, + "probability": 0.9785 + }, + { + "start": 6479.94, + "end": 6483.26, + "probability": 0.7745 + }, + { + "start": 6484.4, + "end": 6485.33, + "probability": 0.9604 + }, + { + "start": 6485.96, + "end": 6487.16, + "probability": 0.8728 + }, + { + "start": 6487.3, + "end": 6490.72, + "probability": 0.9785 + }, + { + "start": 6490.96, + "end": 6495.98, + "probability": 0.7077 + }, + { + "start": 6496.14, + "end": 6500.12, + "probability": 0.8644 + }, + { + "start": 6500.26, + "end": 6500.86, + "probability": 0.913 + }, + { + "start": 6500.94, + "end": 6501.34, + "probability": 0.7171 + }, + { + "start": 6501.94, + "end": 6502.88, + "probability": 0.8431 + }, + { + "start": 6503.1, + "end": 6505.5, + "probability": 0.7452 + }, + { + "start": 6505.84, + "end": 6507.76, + "probability": 0.6295 + }, + { + "start": 6508.08, + "end": 6510.84, + "probability": 0.4242 + }, + { + "start": 6510.98, + "end": 6512.0, + "probability": 0.6181 + }, + { + "start": 6512.12, + "end": 6514.36, + "probability": 0.9448 + }, + { + "start": 6514.42, + "end": 6515.42, + "probability": 0.8013 + }, + { + "start": 6515.98, + "end": 6518.54, + "probability": 0.3345 + }, + { + "start": 6518.7, + "end": 6521.8, + "probability": 0.8515 + }, + { + "start": 6522.56, + "end": 6526.86, + "probability": 0.9159 + }, + { + "start": 6527.2, + "end": 6530.58, + "probability": 0.7012 + }, + { + "start": 6530.98, + "end": 6531.84, + "probability": 0.7746 + }, + { + "start": 6532.2, + "end": 6535.16, + "probability": 0.8932 + }, + { + "start": 6536.02, + "end": 6537.16, + "probability": 0.93 + }, + { + "start": 6537.46, + "end": 6538.99, + "probability": 0.9842 + }, + { + "start": 6539.4, + "end": 6539.94, + "probability": 0.5164 + }, + { + "start": 6540.06, + "end": 6544.52, + "probability": 0.9736 + }, + { + "start": 6545.0, + "end": 6547.56, + "probability": 0.7628 + }, + { + "start": 6547.78, + "end": 6548.36, + "probability": 0.6595 + }, + { + "start": 6548.5, + "end": 6549.14, + "probability": 0.2735 + }, + { + "start": 6549.14, + "end": 6549.58, + "probability": 0.3902 + }, + { + "start": 6550.0, + "end": 6551.42, + "probability": 0.9282 + }, + { + "start": 6551.52, + "end": 6552.34, + "probability": 0.7661 + }, + { + "start": 6552.42, + "end": 6553.46, + "probability": 0.9247 + }, + { + "start": 6553.78, + "end": 6556.16, + "probability": 0.8185 + }, + { + "start": 6556.58, + "end": 6558.52, + "probability": 0.9424 + }, + { + "start": 6558.98, + "end": 6560.74, + "probability": 0.7834 + }, + { + "start": 6561.14, + "end": 6561.93, + "probability": 0.4398 + }, + { + "start": 6562.92, + "end": 6565.86, + "probability": 0.8221 + }, + { + "start": 6566.4, + "end": 6567.5, + "probability": 0.9707 + }, + { + "start": 6567.6, + "end": 6568.8, + "probability": 0.9719 + }, + { + "start": 6568.9, + "end": 6570.0, + "probability": 0.6064 + }, + { + "start": 6570.5, + "end": 6570.76, + "probability": 0.8309 + }, + { + "start": 6571.28, + "end": 6572.04, + "probability": 0.8791 + }, + { + "start": 6572.24, + "end": 6572.64, + "probability": 0.952 + }, + { + "start": 6572.86, + "end": 6575.84, + "probability": 0.9387 + }, + { + "start": 6576.24, + "end": 6580.0, + "probability": 0.9722 + }, + { + "start": 6580.0, + "end": 6581.12, + "probability": 0.6873 + }, + { + "start": 6581.54, + "end": 6584.7, + "probability": 0.9929 + }, + { + "start": 6584.76, + "end": 6585.28, + "probability": 0.8462 + }, + { + "start": 6585.34, + "end": 6585.8, + "probability": 0.6306 + }, + { + "start": 6585.9, + "end": 6586.8, + "probability": 0.7972 + }, + { + "start": 6587.24, + "end": 6590.42, + "probability": 0.9841 + }, + { + "start": 6590.58, + "end": 6591.8, + "probability": 0.8314 + }, + { + "start": 6591.86, + "end": 6593.9, + "probability": 0.7768 + }, + { + "start": 6594.26, + "end": 6595.74, + "probability": 0.4893 + }, + { + "start": 6595.9, + "end": 6597.56, + "probability": 0.8787 + }, + { + "start": 6597.88, + "end": 6600.02, + "probability": 0.764 + }, + { + "start": 6600.5, + "end": 6600.94, + "probability": 0.4413 + }, + { + "start": 6601.02, + "end": 6601.58, + "probability": 0.503 + }, + { + "start": 6602.12, + "end": 6603.0, + "probability": 0.634 + }, + { + "start": 6603.6, + "end": 6607.12, + "probability": 0.8376 + }, + { + "start": 6607.46, + "end": 6608.66, + "probability": 0.647 + }, + { + "start": 6608.72, + "end": 6610.09, + "probability": 0.9861 + }, + { + "start": 6610.77, + "end": 6613.74, + "probability": 0.981 + }, + { + "start": 6613.8, + "end": 6615.58, + "probability": 0.7787 + }, + { + "start": 6615.84, + "end": 6616.5, + "probability": 0.7555 + }, + { + "start": 6616.66, + "end": 6617.58, + "probability": 0.806 + }, + { + "start": 6617.62, + "end": 6619.75, + "probability": 0.8191 + }, + { + "start": 6619.82, + "end": 6621.0, + "probability": 0.8534 + }, + { + "start": 6621.22, + "end": 6623.72, + "probability": 0.9607 + }, + { + "start": 6624.26, + "end": 6625.78, + "probability": 0.8787 + }, + { + "start": 6626.1, + "end": 6626.44, + "probability": 0.79 + }, + { + "start": 6626.52, + "end": 6629.4, + "probability": 0.9077 + }, + { + "start": 6629.42, + "end": 6631.28, + "probability": 0.9631 + }, + { + "start": 6631.36, + "end": 6631.82, + "probability": 0.5375 + }, + { + "start": 6632.36, + "end": 6637.92, + "probability": 0.9448 + }, + { + "start": 6638.26, + "end": 6639.1, + "probability": 0.7607 + }, + { + "start": 6639.16, + "end": 6640.68, + "probability": 0.8491 + }, + { + "start": 6640.92, + "end": 6642.7, + "probability": 0.9915 + }, + { + "start": 6642.96, + "end": 6644.72, + "probability": 0.7581 + }, + { + "start": 6644.9, + "end": 6645.62, + "probability": 0.2666 + }, + { + "start": 6646.08, + "end": 6647.16, + "probability": 0.9668 + }, + { + "start": 6647.24, + "end": 6648.06, + "probability": 0.8196 + }, + { + "start": 6648.54, + "end": 6648.62, + "probability": 0.0575 + }, + { + "start": 6648.7, + "end": 6649.8, + "probability": 0.6492 + }, + { + "start": 6649.9, + "end": 6651.34, + "probability": 0.4618 + }, + { + "start": 6651.62, + "end": 6652.28, + "probability": 0.7556 + }, + { + "start": 6652.36, + "end": 6653.66, + "probability": 0.4537 + }, + { + "start": 6654.06, + "end": 6655.1, + "probability": 0.8774 + }, + { + "start": 6655.32, + "end": 6656.14, + "probability": 0.787 + }, + { + "start": 6656.3, + "end": 6657.6, + "probability": 0.9738 + }, + { + "start": 6657.74, + "end": 6657.94, + "probability": 0.2809 + }, + { + "start": 6658.18, + "end": 6659.12, + "probability": 0.7866 + }, + { + "start": 6659.16, + "end": 6659.75, + "probability": 0.5547 + }, + { + "start": 6660.52, + "end": 6662.04, + "probability": 0.626 + }, + { + "start": 6662.2, + "end": 6664.0, + "probability": 0.8284 + }, + { + "start": 6664.44, + "end": 6666.48, + "probability": 0.9776 + }, + { + "start": 6666.56, + "end": 6670.68, + "probability": 0.9653 + }, + { + "start": 6670.8, + "end": 6672.04, + "probability": 0.5666 + }, + { + "start": 6672.48, + "end": 6672.86, + "probability": 0.7664 + }, + { + "start": 6672.88, + "end": 6674.08, + "probability": 0.8665 + }, + { + "start": 6674.26, + "end": 6674.92, + "probability": 0.6755 + }, + { + "start": 6675.24, + "end": 6677.0, + "probability": 0.9007 + }, + { + "start": 6677.1, + "end": 6678.2, + "probability": 0.9793 + }, + { + "start": 6678.6, + "end": 6680.32, + "probability": 0.9732 + }, + { + "start": 6680.64, + "end": 6684.48, + "probability": 0.7423 + }, + { + "start": 6684.8, + "end": 6688.68, + "probability": 0.9974 + }, + { + "start": 6688.76, + "end": 6691.74, + "probability": 0.7396 + }, + { + "start": 6692.08, + "end": 6693.12, + "probability": 0.8842 + }, + { + "start": 6693.4, + "end": 6694.52, + "probability": 0.9054 + }, + { + "start": 6694.82, + "end": 6696.0, + "probability": 0.9784 + }, + { + "start": 6696.28, + "end": 6697.2, + "probability": 0.944 + }, + { + "start": 6698.1, + "end": 6698.98, + "probability": 0.5346 + }, + { + "start": 6699.02, + "end": 6700.44, + "probability": 0.966 + }, + { + "start": 6700.5, + "end": 6702.34, + "probability": 0.7468 + }, + { + "start": 6702.34, + "end": 6703.94, + "probability": 0.9603 + }, + { + "start": 6704.14, + "end": 6704.9, + "probability": 0.6745 + }, + { + "start": 6705.5, + "end": 6706.14, + "probability": 0.3198 + }, + { + "start": 6706.18, + "end": 6708.82, + "probability": 0.994 + }, + { + "start": 6709.02, + "end": 6709.82, + "probability": 0.7852 + }, + { + "start": 6710.66, + "end": 6713.78, + "probability": 0.8356 + }, + { + "start": 6715.4, + "end": 6717.88, + "probability": 0.966 + }, + { + "start": 6717.88, + "end": 6721.12, + "probability": 0.6815 + }, + { + "start": 6721.42, + "end": 6724.38, + "probability": 0.8997 + }, + { + "start": 6724.66, + "end": 6726.48, + "probability": 0.8163 + }, + { + "start": 6726.96, + "end": 6727.56, + "probability": 0.645 + }, + { + "start": 6727.86, + "end": 6731.36, + "probability": 0.9233 + }, + { + "start": 6732.0, + "end": 6733.76, + "probability": 0.876 + }, + { + "start": 6734.1, + "end": 6734.54, + "probability": 0.8619 + }, + { + "start": 6735.34, + "end": 6737.78, + "probability": 0.7502 + }, + { + "start": 6738.76, + "end": 6743.88, + "probability": 0.9458 + }, + { + "start": 6744.67, + "end": 6748.52, + "probability": 0.7472 + }, + { + "start": 6749.14, + "end": 6750.18, + "probability": 0.5051 + }, + { + "start": 6750.32, + "end": 6752.58, + "probability": 0.8811 + }, + { + "start": 6752.68, + "end": 6753.46, + "probability": 0.8932 + }, + { + "start": 6754.16, + "end": 6758.5, + "probability": 0.9801 + }, + { + "start": 6758.8, + "end": 6759.42, + "probability": 0.7792 + }, + { + "start": 6759.62, + "end": 6760.0, + "probability": 0.545 + }, + { + "start": 6761.77, + "end": 6763.84, + "probability": 0.8944 + }, + { + "start": 6764.02, + "end": 6766.35, + "probability": 0.7503 + }, + { + "start": 6766.5, + "end": 6768.18, + "probability": 0.9618 + }, + { + "start": 6768.54, + "end": 6769.46, + "probability": 0.962 + }, + { + "start": 6769.68, + "end": 6770.68, + "probability": 0.9149 + }, + { + "start": 6770.8, + "end": 6773.36, + "probability": 0.8064 + }, + { + "start": 6773.7, + "end": 6776.5, + "probability": 0.9835 + }, + { + "start": 6776.78, + "end": 6777.24, + "probability": 0.981 + }, + { + "start": 6777.4, + "end": 6778.28, + "probability": 0.7397 + }, + { + "start": 6778.64, + "end": 6779.78, + "probability": 0.9707 + }, + { + "start": 6780.0, + "end": 6781.72, + "probability": 0.8723 + }, + { + "start": 6782.04, + "end": 6782.32, + "probability": 0.8249 + }, + { + "start": 6782.42, + "end": 6785.22, + "probability": 0.9219 + }, + { + "start": 6785.88, + "end": 6788.1, + "probability": 0.9982 + }, + { + "start": 6788.26, + "end": 6788.64, + "probability": 0.7872 + }, + { + "start": 6788.66, + "end": 6793.2, + "probability": 0.8621 + }, + { + "start": 6793.2, + "end": 6795.78, + "probability": 0.9068 + }, + { + "start": 6796.06, + "end": 6799.92, + "probability": 0.8651 + }, + { + "start": 6800.68, + "end": 6802.28, + "probability": 0.2436 + }, + { + "start": 6802.48, + "end": 6802.48, + "probability": 0.364 + }, + { + "start": 6802.7, + "end": 6806.2, + "probability": 0.6713 + }, + { + "start": 6806.44, + "end": 6810.54, + "probability": 0.8905 + }, + { + "start": 6810.74, + "end": 6811.0, + "probability": 0.3143 + }, + { + "start": 6811.18, + "end": 6811.66, + "probability": 0.4537 + }, + { + "start": 6812.02, + "end": 6816.14, + "probability": 0.5075 + }, + { + "start": 6816.3, + "end": 6819.42, + "probability": 0.8294 + }, + { + "start": 6819.78, + "end": 6820.9, + "probability": 0.6748 + }, + { + "start": 6821.52, + "end": 6822.29, + "probability": 0.948 + }, + { + "start": 6822.92, + "end": 6824.34, + "probability": 0.9424 + }, + { + "start": 6824.44, + "end": 6825.26, + "probability": 0.7509 + }, + { + "start": 6825.3, + "end": 6827.16, + "probability": 0.608 + }, + { + "start": 6827.34, + "end": 6830.14, + "probability": 0.5231 + }, + { + "start": 6830.2, + "end": 6830.84, + "probability": 0.8372 + }, + { + "start": 6830.9, + "end": 6832.39, + "probability": 0.964 + }, + { + "start": 6832.52, + "end": 6834.7, + "probability": 0.9876 + }, + { + "start": 6834.7, + "end": 6837.98, + "probability": 0.9814 + }, + { + "start": 6840.38, + "end": 6840.5, + "probability": 0.0766 + }, + { + "start": 6840.5, + "end": 6840.96, + "probability": 0.2598 + }, + { + "start": 6841.16, + "end": 6842.48, + "probability": 0.7689 + }, + { + "start": 6842.58, + "end": 6843.1, + "probability": 0.5525 + }, + { + "start": 6843.42, + "end": 6844.48, + "probability": 0.9949 + }, + { + "start": 6844.98, + "end": 6846.22, + "probability": 0.9915 + }, + { + "start": 6846.96, + "end": 6849.14, + "probability": 0.9281 + }, + { + "start": 6849.4, + "end": 6850.3, + "probability": 0.9243 + }, + { + "start": 6850.66, + "end": 6851.06, + "probability": 0.9575 + }, + { + "start": 6851.49, + "end": 6854.64, + "probability": 0.9558 + }, + { + "start": 6854.66, + "end": 6856.06, + "probability": 0.9243 + }, + { + "start": 6856.16, + "end": 6858.38, + "probability": 0.7231 + }, + { + "start": 6859.4, + "end": 6861.42, + "probability": 0.8117 + }, + { + "start": 6861.48, + "end": 6862.9, + "probability": 0.9008 + }, + { + "start": 6863.3, + "end": 6865.18, + "probability": 0.2214 + }, + { + "start": 6865.3, + "end": 6865.64, + "probability": 0.3922 + }, + { + "start": 6865.74, + "end": 6866.24, + "probability": 0.8608 + }, + { + "start": 6866.5, + "end": 6867.1, + "probability": 0.5977 + }, + { + "start": 6867.76, + "end": 6871.5, + "probability": 0.8138 + }, + { + "start": 6871.62, + "end": 6872.04, + "probability": 0.7337 + }, + { + "start": 6872.18, + "end": 6873.2, + "probability": 0.5079 + }, + { + "start": 6873.22, + "end": 6874.92, + "probability": 0.457 + }, + { + "start": 6875.06, + "end": 6875.58, + "probability": 0.3549 + }, + { + "start": 6876.1, + "end": 6879.03, + "probability": 0.6255 + }, + { + "start": 6879.42, + "end": 6881.96, + "probability": 0.0904 + }, + { + "start": 6882.02, + "end": 6884.72, + "probability": 0.4393 + }, + { + "start": 6884.96, + "end": 6885.66, + "probability": 0.2314 + }, + { + "start": 6885.9, + "end": 6886.77, + "probability": 0.5911 + }, + { + "start": 6892.0, + "end": 6892.1, + "probability": 0.0132 + }, + { + "start": 6892.1, + "end": 6892.1, + "probability": 0.0815 + }, + { + "start": 6892.1, + "end": 6892.1, + "probability": 0.1575 + }, + { + "start": 6892.1, + "end": 6892.84, + "probability": 0.4173 + }, + { + "start": 6892.98, + "end": 6893.0, + "probability": 0.208 + }, + { + "start": 6893.0, + "end": 6893.74, + "probability": 0.6289 + }, + { + "start": 6894.14, + "end": 6897.96, + "probability": 0.6754 + }, + { + "start": 6898.44, + "end": 6903.12, + "probability": 0.8092 + }, + { + "start": 6903.2, + "end": 6903.88, + "probability": 0.8669 + }, + { + "start": 6904.4, + "end": 6905.88, + "probability": 0.6706 + }, + { + "start": 6906.04, + "end": 6909.28, + "probability": 0.9614 + }, + { + "start": 6909.56, + "end": 6912.48, + "probability": 0.9651 + }, + { + "start": 6912.78, + "end": 6913.5, + "probability": 0.6785 + }, + { + "start": 6913.9, + "end": 6916.24, + "probability": 0.9873 + }, + { + "start": 6916.78, + "end": 6918.31, + "probability": 0.999 + }, + { + "start": 6918.7, + "end": 6919.35, + "probability": 0.8882 + }, + { + "start": 6919.84, + "end": 6922.08, + "probability": 0.9697 + }, + { + "start": 6922.08, + "end": 6926.6, + "probability": 0.9852 + }, + { + "start": 6927.08, + "end": 6927.66, + "probability": 0.3942 + }, + { + "start": 6927.84, + "end": 6931.14, + "probability": 0.9844 + }, + { + "start": 6933.62, + "end": 6934.02, + "probability": 0.3832 + }, + { + "start": 6934.1, + "end": 6934.44, + "probability": 0.4673 + }, + { + "start": 6934.5, + "end": 6935.48, + "probability": 0.7589 + }, + { + "start": 6935.66, + "end": 6935.92, + "probability": 0.6237 + }, + { + "start": 6936.28, + "end": 6938.06, + "probability": 0.966 + }, + { + "start": 6938.5, + "end": 6942.04, + "probability": 0.9891 + }, + { + "start": 6942.38, + "end": 6942.74, + "probability": 0.4504 + }, + { + "start": 6942.98, + "end": 6943.94, + "probability": 0.8869 + }, + { + "start": 6943.98, + "end": 6946.28, + "probability": 0.9818 + }, + { + "start": 6946.32, + "end": 6947.06, + "probability": 0.8164 + }, + { + "start": 6947.5, + "end": 6948.5, + "probability": 0.9653 + }, + { + "start": 6948.62, + "end": 6950.92, + "probability": 0.9933 + }, + { + "start": 6951.16, + "end": 6953.2, + "probability": 0.9829 + }, + { + "start": 6953.26, + "end": 6957.76, + "probability": 0.9359 + }, + { + "start": 6958.06, + "end": 6960.78, + "probability": 0.9873 + }, + { + "start": 6961.08, + "end": 6961.76, + "probability": 0.8944 + }, + { + "start": 6961.82, + "end": 6962.12, + "probability": 0.3079 + }, + { + "start": 6962.58, + "end": 6966.0, + "probability": 0.8919 + }, + { + "start": 6966.02, + "end": 6966.7, + "probability": 0.5555 + }, + { + "start": 6969.74, + "end": 6969.9, + "probability": 0.169 + }, + { + "start": 6970.98, + "end": 6970.98, + "probability": 0.18 + }, + { + "start": 6971.34, + "end": 6972.28, + "probability": 0.6119 + }, + { + "start": 6972.34, + "end": 6972.72, + "probability": 0.7699 + }, + { + "start": 6972.86, + "end": 6974.52, + "probability": 0.9081 + }, + { + "start": 6975.12, + "end": 6981.28, + "probability": 0.9717 + }, + { + "start": 6981.38, + "end": 6982.94, + "probability": 0.5911 + }, + { + "start": 6983.26, + "end": 6984.64, + "probability": 0.9816 + }, + { + "start": 6984.68, + "end": 6985.26, + "probability": 0.4056 + }, + { + "start": 6985.64, + "end": 6986.96, + "probability": 0.9371 + }, + { + "start": 6988.14, + "end": 6991.02, + "probability": 0.3991 + }, + { + "start": 6991.14, + "end": 6992.64, + "probability": 0.9182 + }, + { + "start": 6992.76, + "end": 6993.04, + "probability": 0.86 + }, + { + "start": 6999.64, + "end": 7000.24, + "probability": 0.0452 + }, + { + "start": 7000.38, + "end": 7002.04, + "probability": 0.6725 + }, + { + "start": 7002.08, + "end": 7003.8, + "probability": 0.8164 + }, + { + "start": 7005.52, + "end": 7009.78, + "probability": 0.9577 + }, + { + "start": 7010.54, + "end": 7011.12, + "probability": 0.9344 + }, + { + "start": 7011.96, + "end": 7016.08, + "probability": 0.994 + }, + { + "start": 7016.2, + "end": 7020.44, + "probability": 0.9846 + }, + { + "start": 7021.1, + "end": 7025.26, + "probability": 0.8328 + }, + { + "start": 7026.88, + "end": 7032.4, + "probability": 0.9658 + }, + { + "start": 7033.02, + "end": 7037.16, + "probability": 0.9733 + }, + { + "start": 7038.16, + "end": 7040.78, + "probability": 0.9735 + }, + { + "start": 7041.56, + "end": 7044.46, + "probability": 0.9976 + }, + { + "start": 7045.42, + "end": 7048.2, + "probability": 0.9951 + }, + { + "start": 7049.48, + "end": 7052.92, + "probability": 0.9956 + }, + { + "start": 7053.42, + "end": 7055.0, + "probability": 0.9679 + }, + { + "start": 7055.96, + "end": 7061.5, + "probability": 0.9966 + }, + { + "start": 7062.14, + "end": 7065.58, + "probability": 0.998 + }, + { + "start": 7066.24, + "end": 7069.48, + "probability": 0.9836 + }, + { + "start": 7070.68, + "end": 7073.54, + "probability": 0.9842 + }, + { + "start": 7074.06, + "end": 7076.86, + "probability": 0.9761 + }, + { + "start": 7078.42, + "end": 7083.5, + "probability": 0.99 + }, + { + "start": 7084.54, + "end": 7091.36, + "probability": 0.9968 + }, + { + "start": 7091.92, + "end": 7097.72, + "probability": 0.9875 + }, + { + "start": 7098.3, + "end": 7099.46, + "probability": 0.9557 + }, + { + "start": 7100.16, + "end": 7103.44, + "probability": 0.9156 + }, + { + "start": 7106.46, + "end": 7110.22, + "probability": 0.7416 + }, + { + "start": 7111.56, + "end": 7114.9, + "probability": 0.977 + }, + { + "start": 7116.08, + "end": 7117.12, + "probability": 0.8797 + }, + { + "start": 7118.18, + "end": 7122.22, + "probability": 0.9951 + }, + { + "start": 7122.76, + "end": 7127.46, + "probability": 0.974 + }, + { + "start": 7127.96, + "end": 7131.98, + "probability": 0.7497 + }, + { + "start": 7132.86, + "end": 7135.06, + "probability": 0.8609 + }, + { + "start": 7135.82, + "end": 7141.42, + "probability": 0.991 + }, + { + "start": 7142.96, + "end": 7146.12, + "probability": 0.9867 + }, + { + "start": 7146.68, + "end": 7152.1, + "probability": 0.9971 + }, + { + "start": 7153.7, + "end": 7154.98, + "probability": 0.8353 + }, + { + "start": 7155.68, + "end": 7161.88, + "probability": 0.9591 + }, + { + "start": 7162.38, + "end": 7165.16, + "probability": 0.9463 + }, + { + "start": 7166.5, + "end": 7171.24, + "probability": 0.9834 + }, + { + "start": 7171.88, + "end": 7176.06, + "probability": 0.9858 + }, + { + "start": 7176.58, + "end": 7178.68, + "probability": 0.9453 + }, + { + "start": 7179.2, + "end": 7182.42, + "probability": 0.9871 + }, + { + "start": 7182.84, + "end": 7183.06, + "probability": 0.8685 + }, + { + "start": 7185.64, + "end": 7189.18, + "probability": 0.9211 + }, + { + "start": 7189.18, + "end": 7192.99, + "probability": 0.9817 + }, + { + "start": 7193.86, + "end": 7196.22, + "probability": 0.9419 + }, + { + "start": 7196.78, + "end": 7200.58, + "probability": 0.6696 + }, + { + "start": 7201.4, + "end": 7204.22, + "probability": 0.9225 + }, + { + "start": 7204.32, + "end": 7206.64, + "probability": 0.8422 + }, + { + "start": 7207.46, + "end": 7208.62, + "probability": 0.6035 + }, + { + "start": 7210.76, + "end": 7216.38, + "probability": 0.9902 + }, + { + "start": 7216.44, + "end": 7218.18, + "probability": 0.9208 + }, + { + "start": 7220.96, + "end": 7223.48, + "probability": 0.7839 + }, + { + "start": 7224.12, + "end": 7228.3, + "probability": 0.9626 + }, + { + "start": 7228.3, + "end": 7233.64, + "probability": 0.9963 + }, + { + "start": 7233.88, + "end": 7237.36, + "probability": 0.9973 + }, + { + "start": 7238.04, + "end": 7243.14, + "probability": 0.9874 + }, + { + "start": 7243.14, + "end": 7247.26, + "probability": 0.9843 + }, + { + "start": 7247.94, + "end": 7249.32, + "probability": 0.6669 + }, + { + "start": 7250.24, + "end": 7253.88, + "probability": 0.5604 + }, + { + "start": 7254.52, + "end": 7260.14, + "probability": 0.932 + }, + { + "start": 7261.12, + "end": 7263.5, + "probability": 0.9818 + }, + { + "start": 7264.92, + "end": 7266.8, + "probability": 0.9782 + }, + { + "start": 7269.5, + "end": 7273.42, + "probability": 0.683 + }, + { + "start": 7274.04, + "end": 7275.3, + "probability": 0.9971 + }, + { + "start": 7275.76, + "end": 7279.08, + "probability": 0.795 + }, + { + "start": 7280.26, + "end": 7283.54, + "probability": 0.7825 + }, + { + "start": 7284.1, + "end": 7286.38, + "probability": 0.9974 + }, + { + "start": 7287.56, + "end": 7291.57, + "probability": 0.9868 + }, + { + "start": 7292.74, + "end": 7293.3, + "probability": 0.9977 + }, + { + "start": 7294.4, + "end": 7296.62, + "probability": 0.5961 + }, + { + "start": 7297.24, + "end": 7301.16, + "probability": 0.9908 + }, + { + "start": 7303.34, + "end": 7306.06, + "probability": 0.9541 + }, + { + "start": 7306.38, + "end": 7308.78, + "probability": 0.9461 + }, + { + "start": 7309.44, + "end": 7313.54, + "probability": 0.919 + }, + { + "start": 7314.12, + "end": 7316.62, + "probability": 0.9444 + }, + { + "start": 7317.1, + "end": 7318.66, + "probability": 0.8951 + }, + { + "start": 7318.84, + "end": 7320.34, + "probability": 0.9967 + }, + { + "start": 7320.98, + "end": 7325.14, + "probability": 0.9794 + }, + { + "start": 7326.0, + "end": 7331.14, + "probability": 0.9243 + }, + { + "start": 7331.38, + "end": 7337.7, + "probability": 0.9694 + }, + { + "start": 7338.68, + "end": 7339.6, + "probability": 0.8856 + }, + { + "start": 7340.14, + "end": 7343.88, + "probability": 0.9724 + }, + { + "start": 7344.7, + "end": 7346.46, + "probability": 0.9807 + }, + { + "start": 7347.02, + "end": 7351.16, + "probability": 0.9452 + }, + { + "start": 7351.26, + "end": 7352.14, + "probability": 0.8984 + }, + { + "start": 7353.24, + "end": 7354.54, + "probability": 0.6973 + }, + { + "start": 7355.18, + "end": 7357.8, + "probability": 0.8754 + }, + { + "start": 7358.56, + "end": 7366.32, + "probability": 0.9294 + }, + { + "start": 7368.06, + "end": 7368.44, + "probability": 0.6949 + }, + { + "start": 7369.18, + "end": 7373.08, + "probability": 0.9969 + }, + { + "start": 7373.36, + "end": 7377.24, + "probability": 0.9955 + }, + { + "start": 7378.12, + "end": 7378.82, + "probability": 0.7964 + }, + { + "start": 7378.9, + "end": 7384.16, + "probability": 0.9763 + }, + { + "start": 7385.22, + "end": 7385.8, + "probability": 0.7816 + }, + { + "start": 7386.56, + "end": 7390.26, + "probability": 0.9805 + }, + { + "start": 7390.26, + "end": 7393.92, + "probability": 0.9925 + }, + { + "start": 7394.56, + "end": 7401.9, + "probability": 0.9978 + }, + { + "start": 7402.98, + "end": 7405.0, + "probability": 0.8711 + }, + { + "start": 7405.92, + "end": 7407.48, + "probability": 0.8358 + }, + { + "start": 7407.62, + "end": 7408.66, + "probability": 0.591 + }, + { + "start": 7408.82, + "end": 7411.32, + "probability": 0.8922 + }, + { + "start": 7411.86, + "end": 7418.46, + "probability": 0.9414 + }, + { + "start": 7418.66, + "end": 7419.28, + "probability": 0.804 + }, + { + "start": 7419.9, + "end": 7422.06, + "probability": 0.9303 + }, + { + "start": 7422.78, + "end": 7425.72, + "probability": 0.9875 + }, + { + "start": 7426.5, + "end": 7428.72, + "probability": 0.9618 + }, + { + "start": 7429.48, + "end": 7432.74, + "probability": 0.9989 + }, + { + "start": 7432.74, + "end": 7437.04, + "probability": 0.9964 + }, + { + "start": 7437.98, + "end": 7441.7, + "probability": 0.955 + }, + { + "start": 7441.7, + "end": 7444.9, + "probability": 0.9932 + }, + { + "start": 7445.72, + "end": 7447.0, + "probability": 0.7559 + }, + { + "start": 7447.7, + "end": 7453.64, + "probability": 0.9876 + }, + { + "start": 7454.36, + "end": 7459.3, + "probability": 0.994 + }, + { + "start": 7459.96, + "end": 7467.9, + "probability": 0.9931 + }, + { + "start": 7468.28, + "end": 7474.64, + "probability": 0.9972 + }, + { + "start": 7475.18, + "end": 7475.44, + "probability": 0.3488 + }, + { + "start": 7475.52, + "end": 7480.46, + "probability": 0.9727 + }, + { + "start": 7480.88, + "end": 7481.88, + "probability": 0.7449 + }, + { + "start": 7482.72, + "end": 7486.66, + "probability": 0.825 + }, + { + "start": 7486.74, + "end": 7488.52, + "probability": 0.834 + }, + { + "start": 7490.0, + "end": 7492.14, + "probability": 0.9934 + }, + { + "start": 7492.18, + "end": 7492.28, + "probability": 0.0679 + }, + { + "start": 7495.26, + "end": 7499.86, + "probability": 0.9967 + }, + { + "start": 7499.86, + "end": 7504.4, + "probability": 0.9917 + }, + { + "start": 7505.14, + "end": 7506.94, + "probability": 0.5426 + }, + { + "start": 7507.68, + "end": 7508.62, + "probability": 0.9018 + }, + { + "start": 7509.22, + "end": 7513.5, + "probability": 0.9469 + }, + { + "start": 7514.22, + "end": 7517.62, + "probability": 0.9671 + }, + { + "start": 7518.16, + "end": 7520.44, + "probability": 0.9683 + }, + { + "start": 7521.12, + "end": 7524.06, + "probability": 0.9985 + }, + { + "start": 7524.06, + "end": 7529.16, + "probability": 0.9974 + }, + { + "start": 7529.16, + "end": 7533.0, + "probability": 0.9976 + }, + { + "start": 7533.8, + "end": 7537.74, + "probability": 0.9968 + }, + { + "start": 7538.84, + "end": 7541.82, + "probability": 0.9165 + }, + { + "start": 7542.18, + "end": 7546.86, + "probability": 0.9857 + }, + { + "start": 7546.86, + "end": 7551.76, + "probability": 0.9854 + }, + { + "start": 7552.22, + "end": 7557.42, + "probability": 0.9639 + }, + { + "start": 7557.62, + "end": 7558.44, + "probability": 0.9394 + }, + { + "start": 7559.12, + "end": 7563.14, + "probability": 0.9575 + }, + { + "start": 7563.94, + "end": 7567.04, + "probability": 0.9583 + }, + { + "start": 7567.8, + "end": 7571.14, + "probability": 0.7948 + }, + { + "start": 7571.6, + "end": 7575.1, + "probability": 0.8176 + }, + { + "start": 7575.1, + "end": 7578.88, + "probability": 0.9753 + }, + { + "start": 7579.66, + "end": 7580.54, + "probability": 0.8917 + }, + { + "start": 7580.84, + "end": 7583.24, + "probability": 0.7781 + }, + { + "start": 7583.32, + "end": 7583.82, + "probability": 0.6095 + }, + { + "start": 7584.34, + "end": 7587.9, + "probability": 0.9915 + }, + { + "start": 7588.36, + "end": 7590.68, + "probability": 0.4799 + }, + { + "start": 7591.16, + "end": 7596.76, + "probability": 0.9916 + }, + { + "start": 7597.14, + "end": 7598.05, + "probability": 0.8206 + }, + { + "start": 7598.56, + "end": 7600.1, + "probability": 0.7946 + }, + { + "start": 7600.4, + "end": 7601.8, + "probability": 0.9678 + }, + { + "start": 7601.92, + "end": 7603.58, + "probability": 0.9829 + }, + { + "start": 7603.86, + "end": 7606.48, + "probability": 0.9851 + }, + { + "start": 7606.98, + "end": 7610.34, + "probability": 0.9886 + }, + { + "start": 7610.34, + "end": 7613.4, + "probability": 0.9989 + }, + { + "start": 7613.68, + "end": 7613.9, + "probability": 0.6981 + }, + { + "start": 7614.3, + "end": 7614.84, + "probability": 0.4188 + }, + { + "start": 7615.16, + "end": 7619.74, + "probability": 0.7107 + }, + { + "start": 7620.0, + "end": 7621.4, + "probability": 0.9543 + }, + { + "start": 7631.2, + "end": 7631.56, + "probability": 0.4297 + }, + { + "start": 7631.66, + "end": 7632.42, + "probability": 0.3135 + }, + { + "start": 7632.42, + "end": 7635.66, + "probability": 0.9393 + }, + { + "start": 7636.32, + "end": 7638.52, + "probability": 0.9796 + }, + { + "start": 7639.88, + "end": 7642.68, + "probability": 0.9484 + }, + { + "start": 7643.24, + "end": 7645.26, + "probability": 0.9409 + }, + { + "start": 7645.92, + "end": 7647.52, + "probability": 0.9954 + }, + { + "start": 7648.26, + "end": 7649.24, + "probability": 0.6838 + }, + { + "start": 7649.9, + "end": 7650.72, + "probability": 0.8433 + }, + { + "start": 7651.02, + "end": 7653.22, + "probability": 0.79 + }, + { + "start": 7653.26, + "end": 7653.69, + "probability": 0.5652 + }, + { + "start": 7654.84, + "end": 7659.64, + "probability": 0.9762 + }, + { + "start": 7659.7, + "end": 7662.08, + "probability": 0.7934 + }, + { + "start": 7662.36, + "end": 7663.24, + "probability": 0.8501 + }, + { + "start": 7663.82, + "end": 7667.58, + "probability": 0.9576 + }, + { + "start": 7668.4, + "end": 7670.56, + "probability": 0.5444 + }, + { + "start": 7670.76, + "end": 7671.96, + "probability": 0.7998 + }, + { + "start": 7672.56, + "end": 7674.22, + "probability": 0.9958 + }, + { + "start": 7675.02, + "end": 7675.52, + "probability": 0.9216 + }, + { + "start": 7676.06, + "end": 7676.9, + "probability": 0.7545 + }, + { + "start": 7677.92, + "end": 7682.86, + "probability": 0.9076 + }, + { + "start": 7684.08, + "end": 7685.58, + "probability": 0.8667 + }, + { + "start": 7686.0, + "end": 7691.42, + "probability": 0.9618 + }, + { + "start": 7691.58, + "end": 7692.54, + "probability": 0.9839 + }, + { + "start": 7692.72, + "end": 7693.92, + "probability": 0.5798 + }, + { + "start": 7694.98, + "end": 7696.7, + "probability": 0.746 + }, + { + "start": 7699.17, + "end": 7704.58, + "probability": 0.9855 + }, + { + "start": 7705.18, + "end": 7706.16, + "probability": 0.9949 + }, + { + "start": 7707.12, + "end": 7709.98, + "probability": 0.9907 + }, + { + "start": 7710.84, + "end": 7716.74, + "probability": 0.9756 + }, + { + "start": 7716.86, + "end": 7717.48, + "probability": 0.6097 + }, + { + "start": 7718.26, + "end": 7722.02, + "probability": 0.9073 + }, + { + "start": 7724.66, + "end": 7725.94, + "probability": 0.9701 + }, + { + "start": 7726.1, + "end": 7726.94, + "probability": 0.9792 + }, + { + "start": 7727.0, + "end": 7728.02, + "probability": 0.9355 + }, + { + "start": 7729.14, + "end": 7729.26, + "probability": 0.5208 + }, + { + "start": 7729.28, + "end": 7729.56, + "probability": 0.9446 + }, + { + "start": 7729.62, + "end": 7730.42, + "probability": 0.9635 + }, + { + "start": 7730.58, + "end": 7732.08, + "probability": 0.9862 + }, + { + "start": 7732.78, + "end": 7734.0, + "probability": 0.7095 + }, + { + "start": 7734.16, + "end": 7738.0, + "probability": 0.9934 + }, + { + "start": 7738.82, + "end": 7741.64, + "probability": 0.8181 + }, + { + "start": 7743.12, + "end": 7743.48, + "probability": 0.8301 + }, + { + "start": 7744.76, + "end": 7747.54, + "probability": 0.9943 + }, + { + "start": 7747.72, + "end": 7748.18, + "probability": 0.7676 + }, + { + "start": 7748.3, + "end": 7752.52, + "probability": 0.5773 + }, + { + "start": 7753.36, + "end": 7756.58, + "probability": 0.978 + }, + { + "start": 7757.68, + "end": 7759.22, + "probability": 0.9766 + }, + { + "start": 7759.8, + "end": 7762.02, + "probability": 0.7595 + }, + { + "start": 7766.06, + "end": 7767.78, + "probability": 0.9897 + }, + { + "start": 7768.9, + "end": 7770.74, + "probability": 0.8157 + }, + { + "start": 7771.36, + "end": 7773.6, + "probability": 0.9827 + }, + { + "start": 7773.6, + "end": 7776.34, + "probability": 0.9497 + }, + { + "start": 7777.0, + "end": 7778.9, + "probability": 0.8918 + }, + { + "start": 7779.56, + "end": 7781.02, + "probability": 0.6643 + }, + { + "start": 7781.74, + "end": 7784.68, + "probability": 0.9854 + }, + { + "start": 7785.26, + "end": 7786.2, + "probability": 0.7015 + }, + { + "start": 7786.46, + "end": 7789.18, + "probability": 0.9882 + }, + { + "start": 7790.44, + "end": 7793.48, + "probability": 0.926 + }, + { + "start": 7793.88, + "end": 7795.64, + "probability": 0.9647 + }, + { + "start": 7796.32, + "end": 7797.56, + "probability": 0.8278 + }, + { + "start": 7797.6, + "end": 7798.34, + "probability": 0.9552 + }, + { + "start": 7798.44, + "end": 7800.06, + "probability": 0.9983 + }, + { + "start": 7800.58, + "end": 7802.26, + "probability": 0.9954 + }, + { + "start": 7803.18, + "end": 7804.04, + "probability": 0.9475 + }, + { + "start": 7804.16, + "end": 7808.3, + "probability": 0.9932 + }, + { + "start": 7808.92, + "end": 7811.32, + "probability": 0.9976 + }, + { + "start": 7811.52, + "end": 7813.5, + "probability": 0.9766 + }, + { + "start": 7815.4, + "end": 7821.88, + "probability": 0.9873 + }, + { + "start": 7822.58, + "end": 7824.12, + "probability": 0.9824 + }, + { + "start": 7825.0, + "end": 7825.92, + "probability": 0.6383 + }, + { + "start": 7826.26, + "end": 7827.0, + "probability": 0.8718 + }, + { + "start": 7828.88, + "end": 7832.76, + "probability": 0.8382 + }, + { + "start": 7833.38, + "end": 7838.68, + "probability": 0.9969 + }, + { + "start": 7839.56, + "end": 7842.42, + "probability": 0.9966 + }, + { + "start": 7843.0, + "end": 7845.1, + "probability": 0.8934 + }, + { + "start": 7845.14, + "end": 7845.74, + "probability": 0.82 + }, + { + "start": 7846.24, + "end": 7847.48, + "probability": 0.9826 + }, + { + "start": 7849.36, + "end": 7852.44, + "probability": 0.7284 + }, + { + "start": 7852.54, + "end": 7853.68, + "probability": 0.97 + }, + { + "start": 7854.36, + "end": 7856.6, + "probability": 0.9973 + }, + { + "start": 7857.36, + "end": 7858.76, + "probability": 0.9154 + }, + { + "start": 7859.7, + "end": 7862.08, + "probability": 0.9238 + }, + { + "start": 7862.8, + "end": 7865.2, + "probability": 0.9932 + }, + { + "start": 7865.24, + "end": 7870.62, + "probability": 0.9377 + }, + { + "start": 7871.18, + "end": 7873.8, + "probability": 0.99 + }, + { + "start": 7874.48, + "end": 7874.86, + "probability": 0.7954 + }, + { + "start": 7875.62, + "end": 7875.98, + "probability": 0.5657 + }, + { + "start": 7876.14, + "end": 7880.52, + "probability": 0.8803 + }, + { + "start": 7881.22, + "end": 7883.66, + "probability": 0.8797 + }, + { + "start": 7884.02, + "end": 7884.48, + "probability": 0.3936 + }, + { + "start": 7884.52, + "end": 7885.96, + "probability": 0.7146 + }, + { + "start": 7886.1, + "end": 7887.06, + "probability": 0.7619 + }, + { + "start": 7887.16, + "end": 7888.26, + "probability": 0.7411 + }, + { + "start": 7888.92, + "end": 7890.22, + "probability": 0.5036 + }, + { + "start": 7890.32, + "end": 7891.04, + "probability": 0.508 + }, + { + "start": 7891.22, + "end": 7893.26, + "probability": 0.71 + }, + { + "start": 7893.38, + "end": 7895.3, + "probability": 0.567 + }, + { + "start": 7895.54, + "end": 7896.26, + "probability": 0.6658 + }, + { + "start": 7896.34, + "end": 7897.32, + "probability": 0.1943 + }, + { + "start": 7897.88, + "end": 7902.44, + "probability": 0.4923 + }, + { + "start": 7902.82, + "end": 7903.94, + "probability": 0.7451 + }, + { + "start": 7904.08, + "end": 7908.44, + "probability": 0.8945 + }, + { + "start": 7908.54, + "end": 7909.82, + "probability": 0.9567 + }, + { + "start": 7910.0, + "end": 7910.68, + "probability": 0.9482 + }, + { + "start": 7910.76, + "end": 7911.54, + "probability": 0.1171 + }, + { + "start": 7911.76, + "end": 7912.1, + "probability": 0.9003 + }, + { + "start": 7912.96, + "end": 7914.24, + "probability": 0.8457 + }, + { + "start": 7914.5, + "end": 7914.84, + "probability": 0.5037 + }, + { + "start": 7914.96, + "end": 7919.72, + "probability": 0.9877 + }, + { + "start": 7920.34, + "end": 7920.36, + "probability": 0.5363 + }, + { + "start": 7920.5, + "end": 7923.02, + "probability": 0.9968 + }, + { + "start": 7923.02, + "end": 7925.06, + "probability": 0.996 + }, + { + "start": 7925.26, + "end": 7925.72, + "probability": 0.6438 + }, + { + "start": 7926.16, + "end": 7928.5, + "probability": 0.1899 + }, + { + "start": 7928.66, + "end": 7929.84, + "probability": 0.9048 + }, + { + "start": 7930.0, + "end": 7930.64, + "probability": 0.0768 + }, + { + "start": 7931.2, + "end": 7931.42, + "probability": 0.1392 + }, + { + "start": 7931.44, + "end": 7931.6, + "probability": 0.3332 + }, + { + "start": 7931.6, + "end": 7932.95, + "probability": 0.3961 + }, + { + "start": 7933.04, + "end": 7934.2, + "probability": 0.8878 + }, + { + "start": 7934.78, + "end": 7940.04, + "probability": 0.984 + }, + { + "start": 7940.12, + "end": 7941.72, + "probability": 0.7321 + }, + { + "start": 7942.44, + "end": 7942.44, + "probability": 0.0306 + }, + { + "start": 7942.44, + "end": 7944.58, + "probability": 0.6816 + }, + { + "start": 7945.36, + "end": 7950.76, + "probability": 0.9752 + }, + { + "start": 7950.84, + "end": 7952.18, + "probability": 0.9579 + }, + { + "start": 7952.4, + "end": 7953.02, + "probability": 0.3572 + }, + { + "start": 7953.06, + "end": 7956.48, + "probability": 0.8513 + }, + { + "start": 7956.54, + "end": 7961.24, + "probability": 0.9874 + }, + { + "start": 7961.72, + "end": 7963.46, + "probability": 0.4132 + }, + { + "start": 7963.46, + "end": 7964.7, + "probability": 0.089 + }, + { + "start": 7964.7, + "end": 7964.88, + "probability": 0.0281 + }, + { + "start": 7964.88, + "end": 7965.28, + "probability": 0.345 + }, + { + "start": 7965.86, + "end": 7967.12, + "probability": 0.7884 + }, + { + "start": 7967.5, + "end": 7968.36, + "probability": 0.9619 + }, + { + "start": 7968.44, + "end": 7969.81, + "probability": 0.9739 + }, + { + "start": 7969.92, + "end": 7972.96, + "probability": 0.997 + }, + { + "start": 7973.4, + "end": 7974.82, + "probability": 0.9155 + }, + { + "start": 7975.68, + "end": 7981.52, + "probability": 0.9768 + }, + { + "start": 7982.14, + "end": 7983.5, + "probability": 0.9832 + }, + { + "start": 7983.56, + "end": 7984.12, + "probability": 0.9356 + }, + { + "start": 7984.26, + "end": 7984.82, + "probability": 0.9701 + }, + { + "start": 7986.1, + "end": 7987.22, + "probability": 0.794 + }, + { + "start": 7987.4, + "end": 7987.66, + "probability": 0.5748 + }, + { + "start": 7987.66, + "end": 7989.26, + "probability": 0.2351 + }, + { + "start": 7989.56, + "end": 7990.68, + "probability": 0.0889 + }, + { + "start": 7990.74, + "end": 7991.08, + "probability": 0.0551 + }, + { + "start": 7991.12, + "end": 7991.52, + "probability": 0.1134 + }, + { + "start": 7992.04, + "end": 7993.22, + "probability": 0.6425 + }, + { + "start": 7993.3, + "end": 7994.46, + "probability": 0.2905 + }, + { + "start": 7994.46, + "end": 7995.64, + "probability": 0.3229 + }, + { + "start": 7996.76, + "end": 7997.42, + "probability": 0.4346 + }, + { + "start": 7997.64, + "end": 8000.74, + "probability": 0.9235 + }, + { + "start": 8001.08, + "end": 8002.04, + "probability": 0.8598 + }, + { + "start": 8002.24, + "end": 8003.63, + "probability": 0.9951 + }, + { + "start": 8003.82, + "end": 8007.56, + "probability": 0.8582 + }, + { + "start": 8007.78, + "end": 8008.16, + "probability": 0.8327 + }, + { + "start": 8008.22, + "end": 8013.28, + "probability": 0.9893 + }, + { + "start": 8013.62, + "end": 8015.29, + "probability": 0.5976 + }, + { + "start": 8015.96, + "end": 8020.04, + "probability": 0.815 + }, + { + "start": 8020.46, + "end": 8026.06, + "probability": 0.9622 + }, + { + "start": 8026.56, + "end": 8027.81, + "probability": 0.9147 + }, + { + "start": 8028.36, + "end": 8029.28, + "probability": 0.968 + }, + { + "start": 8029.9, + "end": 8032.74, + "probability": 0.9258 + }, + { + "start": 8032.82, + "end": 8033.9, + "probability": 0.5884 + }, + { + "start": 8033.9, + "end": 8034.01, + "probability": 0.745 + }, + { + "start": 8034.86, + "end": 8037.32, + "probability": 0.9828 + }, + { + "start": 8038.78, + "end": 8042.84, + "probability": 0.9987 + }, + { + "start": 8042.92, + "end": 8043.92, + "probability": 0.9585 + }, + { + "start": 8044.06, + "end": 8045.48, + "probability": 0.3005 + }, + { + "start": 8045.56, + "end": 8047.48, + "probability": 0.9928 + }, + { + "start": 8047.74, + "end": 8050.9, + "probability": 0.9986 + }, + { + "start": 8051.3, + "end": 8052.6, + "probability": 0.5854 + }, + { + "start": 8052.86, + "end": 8053.46, + "probability": 0.785 + }, + { + "start": 8053.84, + "end": 8055.72, + "probability": 0.991 + }, + { + "start": 8055.88, + "end": 8058.4, + "probability": 0.9493 + }, + { + "start": 8058.58, + "end": 8061.38, + "probability": 0.9333 + }, + { + "start": 8061.68, + "end": 8062.34, + "probability": 0.5795 + }, + { + "start": 8062.68, + "end": 8063.0, + "probability": 0.9144 + }, + { + "start": 8064.9, + "end": 8067.06, + "probability": 0.6661 + }, + { + "start": 8067.84, + "end": 8070.6, + "probability": 0.8479 + }, + { + "start": 8071.02, + "end": 8075.26, + "probability": 0.9883 + }, + { + "start": 8075.26, + "end": 8079.88, + "probability": 0.9348 + }, + { + "start": 8080.44, + "end": 8081.44, + "probability": 0.4761 + }, + { + "start": 8082.42, + "end": 8084.06, + "probability": 0.9753 + }, + { + "start": 8093.16, + "end": 8093.4, + "probability": 0.6103 + }, + { + "start": 8093.48, + "end": 8093.48, + "probability": 0.3079 + }, + { + "start": 8093.48, + "end": 8093.78, + "probability": 0.4571 + }, + { + "start": 8093.94, + "end": 8094.22, + "probability": 0.5902 + }, + { + "start": 8094.66, + "end": 8095.04, + "probability": 0.5931 + }, + { + "start": 8096.24, + "end": 8096.82, + "probability": 0.8925 + }, + { + "start": 8097.54, + "end": 8098.86, + "probability": 0.0559 + }, + { + "start": 8099.04, + "end": 8099.34, + "probability": 0.0481 + }, + { + "start": 8099.34, + "end": 8101.18, + "probability": 0.0374 + }, + { + "start": 8103.2, + "end": 8103.8, + "probability": 0.3613 + }, + { + "start": 8104.3, + "end": 8106.06, + "probability": 0.2232 + }, + { + "start": 8106.24, + "end": 8106.68, + "probability": 0.2177 + }, + { + "start": 8107.34, + "end": 8107.88, + "probability": 0.3282 + }, + { + "start": 8108.9, + "end": 8112.06, + "probability": 0.336 + }, + { + "start": 8112.14, + "end": 8112.7, + "probability": 0.8678 + }, + { + "start": 8114.11, + "end": 8116.51, + "probability": 0.0435 + }, + { + "start": 8120.82, + "end": 8123.14, + "probability": 0.4551 + }, + { + "start": 8123.14, + "end": 8125.34, + "probability": 0.7642 + }, + { + "start": 8129.28, + "end": 8131.0, + "probability": 0.0321 + }, + { + "start": 8133.5, + "end": 8137.42, + "probability": 0.6376 + }, + { + "start": 8142.52, + "end": 8144.3, + "probability": 0.0576 + }, + { + "start": 8154.72, + "end": 8154.96, + "probability": 0.3748 + }, + { + "start": 8154.96, + "end": 8156.49, + "probability": 0.0904 + }, + { + "start": 8159.36, + "end": 8160.48, + "probability": 0.1171 + }, + { + "start": 8165.62, + "end": 8166.46, + "probability": 0.1652 + }, + { + "start": 8168.16, + "end": 8170.34, + "probability": 0.0466 + }, + { + "start": 8172.3, + "end": 8174.66, + "probability": 0.1513 + }, + { + "start": 8174.98, + "end": 8175.92, + "probability": 0.1388 + }, + { + "start": 8175.92, + "end": 8176.56, + "probability": 0.1442 + }, + { + "start": 8177.38, + "end": 8177.78, + "probability": 0.1936 + }, + { + "start": 8178.96, + "end": 8180.34, + "probability": 0.123 + }, + { + "start": 8180.34, + "end": 8181.32, + "probability": 0.0524 + }, + { + "start": 8181.32, + "end": 8181.92, + "probability": 0.01 + }, + { + "start": 8183.0, + "end": 8183.0, + "probability": 0.0 + }, + { + "start": 8183.0, + "end": 8183.0, + "probability": 0.0 + }, + { + "start": 8183.0, + "end": 8183.0, + "probability": 0.0 + }, + { + "start": 8183.0, + "end": 8183.0, + "probability": 0.0 + }, + { + "start": 8183.0, + "end": 8183.0, + "probability": 0.0 + }, + { + "start": 8183.0, + "end": 8183.0, + "probability": 0.0 + }, + { + "start": 8183.0, + "end": 8183.0, + "probability": 0.0 + }, + { + "start": 8183.0, + "end": 8183.0, + "probability": 0.0 + }, + { + "start": 8183.0, + "end": 8183.0, + "probability": 0.0 + }, + { + "start": 8183.0, + "end": 8183.0, + "probability": 0.0 + }, + { + "start": 8183.2, + "end": 8183.98, + "probability": 0.1114 + }, + { + "start": 8184.74, + "end": 8190.2, + "probability": 0.9775 + }, + { + "start": 8190.82, + "end": 8192.28, + "probability": 0.6609 + }, + { + "start": 8193.22, + "end": 8200.38, + "probability": 0.9585 + }, + { + "start": 8201.0, + "end": 8201.24, + "probability": 0.7938 + }, + { + "start": 8202.26, + "end": 8204.54, + "probability": 0.8415 + }, + { + "start": 8206.2, + "end": 8207.1, + "probability": 0.0447 + }, + { + "start": 8229.07, + "end": 8229.51, + "probability": 0.0001 + }, + { + "start": 8235.87, + "end": 8237.71, + "probability": 0.3304 + }, + { + "start": 8237.71, + "end": 8240.81, + "probability": 0.0773 + }, + { + "start": 8241.87, + "end": 8242.93, + "probability": 0.2048 + }, + { + "start": 8245.78, + "end": 8245.85, + "probability": 0.045 + }, + { + "start": 8258.01, + "end": 8259.57, + "probability": 0.0027 + }, + { + "start": 8260.9, + "end": 8261.85, + "probability": 0.0734 + }, + { + "start": 8262.51, + "end": 8264.13, + "probability": 0.129 + }, + { + "start": 8264.13, + "end": 8267.34, + "probability": 0.3613 + }, + { + "start": 8267.53, + "end": 8267.53, + "probability": 0.358 + }, + { + "start": 8269.8, + "end": 8271.51, + "probability": 0.2227 + }, + { + "start": 8273.37, + "end": 8274.91, + "probability": 0.0418 + }, + { + "start": 8274.91, + "end": 8274.91, + "probability": 0.0016 + }, + { + "start": 8306.0, + "end": 8306.0, + "probability": 0.0 + }, + { + "start": 8306.0, + "end": 8306.0, + "probability": 0.0 + }, + { + "start": 8306.0, + "end": 8306.0, + "probability": 0.0 + }, + { + "start": 8306.0, + "end": 8306.0, + "probability": 0.0 + }, + { + "start": 8306.0, + "end": 8306.0, + "probability": 0.0 + }, + { + "start": 8306.0, + "end": 8306.0, + "probability": 0.0 + }, + { + "start": 8306.0, + "end": 8306.0, + "probability": 0.0 + }, + { + "start": 8306.0, + "end": 8306.0, + "probability": 0.0 + }, + { + "start": 8306.0, + "end": 8306.0, + "probability": 0.0 + }, + { + "start": 8306.0, + "end": 8306.0, + "probability": 0.0 + }, + { + "start": 8306.0, + "end": 8306.0, + "probability": 0.0 + }, + { + "start": 8306.0, + "end": 8306.0, + "probability": 0.0 + }, + { + "start": 8306.0, + "end": 8306.0, + "probability": 0.0 + }, + { + "start": 8306.0, + "end": 8306.0, + "probability": 0.0 + }, + { + "start": 8306.0, + "end": 8306.0, + "probability": 0.0 + }, + { + "start": 8306.0, + "end": 8306.0, + "probability": 0.0 + }, + { + "start": 8306.0, + "end": 8306.0, + "probability": 0.0 + }, + { + "start": 8306.0, + "end": 8306.0, + "probability": 0.0 + }, + { + "start": 8306.0, + "end": 8306.0, + "probability": 0.0 + }, + { + "start": 8306.0, + "end": 8306.0, + "probability": 0.0 + }, + { + "start": 8306.0, + "end": 8306.0, + "probability": 0.0 + }, + { + "start": 8306.0, + "end": 8306.0, + "probability": 0.0 + }, + { + "start": 8310.04, + "end": 8310.84, + "probability": 0.4053 + }, + { + "start": 8313.04, + "end": 8313.94, + "probability": 0.9596 + }, + { + "start": 8315.2, + "end": 8316.54, + "probability": 0.8235 + }, + { + "start": 8317.18, + "end": 8318.56, + "probability": 0.9337 + }, + { + "start": 8319.62, + "end": 8322.36, + "probability": 0.8455 + }, + { + "start": 8323.7, + "end": 8327.68, + "probability": 0.9948 + }, + { + "start": 8328.2, + "end": 8329.54, + "probability": 0.9893 + }, + { + "start": 8331.2, + "end": 8333.46, + "probability": 0.6564 + }, + { + "start": 8334.06, + "end": 8337.42, + "probability": 0.968 + }, + { + "start": 8337.42, + "end": 8340.46, + "probability": 0.9992 + }, + { + "start": 8341.74, + "end": 8342.47, + "probability": 0.5503 + }, + { + "start": 8343.8, + "end": 8349.16, + "probability": 0.9416 + }, + { + "start": 8349.28, + "end": 8352.44, + "probability": 0.7928 + }, + { + "start": 8353.06, + "end": 8353.78, + "probability": 0.9309 + }, + { + "start": 8355.92, + "end": 8357.68, + "probability": 0.9934 + }, + { + "start": 8358.86, + "end": 8359.92, + "probability": 0.6987 + }, + { + "start": 8360.58, + "end": 8360.92, + "probability": 0.9074 + }, + { + "start": 8362.22, + "end": 8365.32, + "probability": 0.8214 + }, + { + "start": 8365.84, + "end": 8367.22, + "probability": 0.9937 + }, + { + "start": 8367.9, + "end": 8369.68, + "probability": 0.9964 + }, + { + "start": 8370.48, + "end": 8374.02, + "probability": 0.9804 + }, + { + "start": 8374.4, + "end": 8377.62, + "probability": 0.9357 + }, + { + "start": 8378.04, + "end": 8379.79, + "probability": 0.9961 + }, + { + "start": 8381.2, + "end": 8382.8, + "probability": 0.986 + }, + { + "start": 8383.36, + "end": 8384.9, + "probability": 0.9824 + }, + { + "start": 8385.76, + "end": 8388.12, + "probability": 0.8389 + }, + { + "start": 8388.5, + "end": 8391.28, + "probability": 0.9945 + }, + { + "start": 8392.32, + "end": 8393.78, + "probability": 0.5305 + }, + { + "start": 8395.3, + "end": 8396.28, + "probability": 0.9526 + }, + { + "start": 8396.36, + "end": 8397.62, + "probability": 0.9416 + }, + { + "start": 8397.82, + "end": 8399.26, + "probability": 0.5508 + }, + { + "start": 8400.14, + "end": 8404.88, + "probability": 0.9854 + }, + { + "start": 8404.88, + "end": 8407.36, + "probability": 0.9851 + }, + { + "start": 8407.84, + "end": 8409.18, + "probability": 0.9507 + }, + { + "start": 8409.72, + "end": 8411.72, + "probability": 0.9707 + }, + { + "start": 8411.82, + "end": 8415.74, + "probability": 0.9833 + }, + { + "start": 8416.32, + "end": 8418.52, + "probability": 0.9694 + }, + { + "start": 8418.84, + "end": 8421.14, + "probability": 0.9864 + }, + { + "start": 8422.78, + "end": 8425.16, + "probability": 0.8801 + }, + { + "start": 8425.22, + "end": 8426.86, + "probability": 0.9624 + }, + { + "start": 8428.0, + "end": 8429.33, + "probability": 0.8804 + }, + { + "start": 8430.06, + "end": 8432.32, + "probability": 0.6599 + }, + { + "start": 8433.22, + "end": 8435.54, + "probability": 0.8065 + }, + { + "start": 8437.14, + "end": 8440.16, + "probability": 0.9886 + }, + { + "start": 8440.7, + "end": 8441.54, + "probability": 0.575 + }, + { + "start": 8442.24, + "end": 8450.74, + "probability": 0.6866 + }, + { + "start": 8451.62, + "end": 8453.14, + "probability": 0.9402 + }, + { + "start": 8455.16, + "end": 8457.36, + "probability": 0.5374 + }, + { + "start": 8458.24, + "end": 8458.24, + "probability": 0.6211 + }, + { + "start": 8458.24, + "end": 8458.42, + "probability": 0.3337 + }, + { + "start": 8459.24, + "end": 8459.34, + "probability": 0.1092 + }, + { + "start": 8459.34, + "end": 8460.44, + "probability": 0.7158 + }, + { + "start": 8460.74, + "end": 8461.74, + "probability": 0.9692 + }, + { + "start": 8462.68, + "end": 8463.5, + "probability": 0.8849 + }, + { + "start": 8463.64, + "end": 8468.44, + "probability": 0.918 + }, + { + "start": 8469.72, + "end": 8474.8, + "probability": 0.7906 + }, + { + "start": 8475.62, + "end": 8476.52, + "probability": 0.5477 + }, + { + "start": 8477.34, + "end": 8480.5, + "probability": 0.8958 + }, + { + "start": 8481.2, + "end": 8482.62, + "probability": 0.9868 + }, + { + "start": 8484.84, + "end": 8486.88, + "probability": 0.992 + }, + { + "start": 8487.58, + "end": 8489.26, + "probability": 0.1726 + }, + { + "start": 8489.98, + "end": 8492.36, + "probability": 0.9537 + }, + { + "start": 8493.86, + "end": 8497.14, + "probability": 0.7847 + }, + { + "start": 8499.5, + "end": 8503.06, + "probability": 0.9091 + }, + { + "start": 8504.22, + "end": 8506.76, + "probability": 0.8628 + }, + { + "start": 8507.98, + "end": 8508.98, + "probability": 0.9423 + }, + { + "start": 8509.24, + "end": 8510.56, + "probability": 0.9763 + }, + { + "start": 8510.62, + "end": 8511.5, + "probability": 0.8149 + }, + { + "start": 8511.56, + "end": 8512.24, + "probability": 0.9337 + }, + { + "start": 8513.3, + "end": 8515.24, + "probability": 0.9951 + }, + { + "start": 8516.48, + "end": 8518.26, + "probability": 0.9922 + }, + { + "start": 8519.46, + "end": 8520.54, + "probability": 0.821 + }, + { + "start": 8521.36, + "end": 8523.34, + "probability": 0.9888 + }, + { + "start": 8523.96, + "end": 8525.4, + "probability": 0.9958 + }, + { + "start": 8526.68, + "end": 8530.88, + "probability": 0.9285 + }, + { + "start": 8531.46, + "end": 8532.88, + "probability": 0.9626 + }, + { + "start": 8533.32, + "end": 8537.82, + "probability": 0.9948 + }, + { + "start": 8539.08, + "end": 8541.14, + "probability": 0.9886 + }, + { + "start": 8541.84, + "end": 8542.62, + "probability": 0.895 + }, + { + "start": 8543.02, + "end": 8545.46, + "probability": 0.9624 + }, + { + "start": 8545.64, + "end": 8547.1, + "probability": 0.994 + }, + { + "start": 8548.5, + "end": 8549.5, + "probability": 0.9758 + }, + { + "start": 8550.28, + "end": 8550.46, + "probability": 0.3866 + }, + { + "start": 8550.6, + "end": 8553.04, + "probability": 0.9468 + }, + { + "start": 8554.62, + "end": 8558.72, + "probability": 0.9839 + }, + { + "start": 8559.4, + "end": 8560.15, + "probability": 0.6559 + }, + { + "start": 8560.82, + "end": 8563.74, + "probability": 0.7526 + }, + { + "start": 8564.96, + "end": 8567.84, + "probability": 0.8125 + }, + { + "start": 8568.94, + "end": 8571.16, + "probability": 0.9779 + }, + { + "start": 8571.6, + "end": 8573.42, + "probability": 0.8208 + }, + { + "start": 8573.92, + "end": 8575.54, + "probability": 0.9666 + }, + { + "start": 8576.04, + "end": 8576.74, + "probability": 0.6729 + }, + { + "start": 8576.78, + "end": 8577.4, + "probability": 0.656 + }, + { + "start": 8577.48, + "end": 8578.68, + "probability": 0.7706 + }, + { + "start": 8578.7, + "end": 8582.68, + "probability": 0.9651 + }, + { + "start": 8585.16, + "end": 8587.06, + "probability": 0.9229 + }, + { + "start": 8589.26, + "end": 8590.9, + "probability": 0.6804 + }, + { + "start": 8592.88, + "end": 8593.5, + "probability": 0.9839 + }, + { + "start": 8595.1, + "end": 8596.38, + "probability": 0.9239 + }, + { + "start": 8597.12, + "end": 8600.22, + "probability": 0.9864 + }, + { + "start": 8600.22, + "end": 8602.68, + "probability": 0.8721 + }, + { + "start": 8604.4, + "end": 8605.84, + "probability": 0.9971 + }, + { + "start": 8607.48, + "end": 8608.09, + "probability": 0.991 + }, + { + "start": 8609.02, + "end": 8611.66, + "probability": 0.7491 + }, + { + "start": 8612.42, + "end": 8615.1, + "probability": 0.652 + }, + { + "start": 8615.54, + "end": 8617.78, + "probability": 0.9883 + }, + { + "start": 8617.78, + "end": 8620.12, + "probability": 0.943 + }, + { + "start": 8620.56, + "end": 8621.02, + "probability": 0.8722 + }, + { + "start": 8621.28, + "end": 8622.16, + "probability": 0.5952 + }, + { + "start": 8624.16, + "end": 8626.38, + "probability": 0.8914 + }, + { + "start": 8626.46, + "end": 8627.6, + "probability": 0.912 + }, + { + "start": 8627.66, + "end": 8629.06, + "probability": 0.932 + }, + { + "start": 8629.08, + "end": 8629.84, + "probability": 0.8509 + }, + { + "start": 8629.92, + "end": 8630.52, + "probability": 0.958 + }, + { + "start": 8631.46, + "end": 8633.64, + "probability": 0.8174 + }, + { + "start": 8634.58, + "end": 8635.62, + "probability": 0.1133 + }, + { + "start": 8635.62, + "end": 8637.4, + "probability": 0.825 + }, + { + "start": 8639.32, + "end": 8640.94, + "probability": 0.0394 + }, + { + "start": 8644.46, + "end": 8645.8, + "probability": 0.2887 + }, + { + "start": 8647.46, + "end": 8649.68, + "probability": 0.7668 + }, + { + "start": 8651.22, + "end": 8656.76, + "probability": 0.9302 + }, + { + "start": 8658.78, + "end": 8660.76, + "probability": 0.1844 + }, + { + "start": 8665.06, + "end": 8668.04, + "probability": 0.4741 + }, + { + "start": 8669.12, + "end": 8677.16, + "probability": 0.9724 + }, + { + "start": 8677.9, + "end": 8681.22, + "probability": 0.9918 + }, + { + "start": 8682.92, + "end": 8683.76, + "probability": 0.9995 + }, + { + "start": 8685.12, + "end": 8685.96, + "probability": 0.8758 + }, + { + "start": 8687.0, + "end": 8687.7, + "probability": 0.9758 + }, + { + "start": 8689.02, + "end": 8690.62, + "probability": 0.7952 + }, + { + "start": 8691.9, + "end": 8695.16, + "probability": 0.8419 + }, + { + "start": 8695.36, + "end": 8696.72, + "probability": 0.7722 + }, + { + "start": 8698.34, + "end": 8702.88, + "probability": 0.994 + }, + { + "start": 8703.48, + "end": 8704.52, + "probability": 0.9386 + }, + { + "start": 8705.92, + "end": 8706.46, + "probability": 0.3201 + }, + { + "start": 8709.06, + "end": 8714.12, + "probability": 0.8718 + }, + { + "start": 8714.32, + "end": 8715.54, + "probability": 0.6231 + }, + { + "start": 8717.58, + "end": 8718.64, + "probability": 0.9971 + }, + { + "start": 8719.86, + "end": 8720.72, + "probability": 0.6987 + }, + { + "start": 8723.2, + "end": 8725.68, + "probability": 0.8143 + }, + { + "start": 8728.28, + "end": 8729.34, + "probability": 0.9789 + }, + { + "start": 8731.06, + "end": 8731.96, + "probability": 0.9689 + }, + { + "start": 8733.3, + "end": 8733.98, + "probability": 0.9555 + }, + { + "start": 8737.16, + "end": 8746.8, + "probability": 0.9657 + }, + { + "start": 8748.2, + "end": 8749.69, + "probability": 0.653 + }, + { + "start": 8750.38, + "end": 8751.38, + "probability": 0.835 + }, + { + "start": 8753.18, + "end": 8757.46, + "probability": 0.9812 + }, + { + "start": 8760.04, + "end": 8761.12, + "probability": 0.9363 + }, + { + "start": 8762.62, + "end": 8766.22, + "probability": 0.9251 + }, + { + "start": 8767.42, + "end": 8774.02, + "probability": 0.9594 + }, + { + "start": 8776.92, + "end": 8779.82, + "probability": 0.7745 + }, + { + "start": 8780.94, + "end": 8782.86, + "probability": 0.7088 + }, + { + "start": 8785.12, + "end": 8785.8, + "probability": 0.943 + }, + { + "start": 8786.48, + "end": 8787.18, + "probability": 0.8802 + }, + { + "start": 8788.46, + "end": 8789.46, + "probability": 0.7457 + }, + { + "start": 8790.14, + "end": 8791.04, + "probability": 0.8327 + }, + { + "start": 8793.34, + "end": 8796.62, + "probability": 0.9001 + }, + { + "start": 8797.42, + "end": 8798.44, + "probability": 0.6576 + }, + { + "start": 8800.24, + "end": 8805.26, + "probability": 0.9855 + }, + { + "start": 8805.74, + "end": 8809.36, + "probability": 0.9264 + }, + { + "start": 8810.76, + "end": 8812.58, + "probability": 0.8677 + }, + { + "start": 8815.2, + "end": 8821.46, + "probability": 0.8452 + }, + { + "start": 8823.02, + "end": 8826.32, + "probability": 0.9712 + }, + { + "start": 8827.1, + "end": 8827.64, + "probability": 0.8328 + }, + { + "start": 8828.6, + "end": 8830.84, + "probability": 0.9303 + }, + { + "start": 8831.76, + "end": 8833.38, + "probability": 0.9351 + }, + { + "start": 8834.58, + "end": 8839.3, + "probability": 0.9888 + }, + { + "start": 8840.18, + "end": 8841.92, + "probability": 0.9752 + }, + { + "start": 8842.44, + "end": 8843.38, + "probability": 0.5609 + }, + { + "start": 8845.16, + "end": 8846.22, + "probability": 0.4178 + }, + { + "start": 8848.86, + "end": 8850.82, + "probability": 0.9968 + }, + { + "start": 8853.72, + "end": 8855.86, + "probability": 0.7974 + }, + { + "start": 8857.12, + "end": 8860.42, + "probability": 0.8786 + }, + { + "start": 8863.66, + "end": 8867.1, + "probability": 0.9934 + }, + { + "start": 8867.76, + "end": 8871.94, + "probability": 0.9492 + }, + { + "start": 8873.54, + "end": 8881.24, + "probability": 0.9721 + }, + { + "start": 8884.12, + "end": 8888.68, + "probability": 0.9784 + }, + { + "start": 8889.64, + "end": 8890.7, + "probability": 0.9292 + }, + { + "start": 8892.36, + "end": 8898.78, + "probability": 0.9918 + }, + { + "start": 8901.14, + "end": 8905.0, + "probability": 0.9958 + }, + { + "start": 8905.82, + "end": 8909.4, + "probability": 0.885 + }, + { + "start": 8910.68, + "end": 8911.94, + "probability": 0.5613 + }, + { + "start": 8913.66, + "end": 8919.92, + "probability": 0.6869 + }, + { + "start": 8921.58, + "end": 8928.28, + "probability": 0.9774 + }, + { + "start": 8929.34, + "end": 8932.24, + "probability": 0.8672 + }, + { + "start": 8933.1, + "end": 8935.66, + "probability": 0.9434 + }, + { + "start": 8936.58, + "end": 8940.94, + "probability": 0.8999 + }, + { + "start": 8940.94, + "end": 8946.48, + "probability": 0.9884 + }, + { + "start": 8946.66, + "end": 8947.22, + "probability": 0.4526 + }, + { + "start": 8947.34, + "end": 8950.48, + "probability": 0.9846 + }, + { + "start": 8951.12, + "end": 8956.42, + "probability": 0.9976 + }, + { + "start": 8957.26, + "end": 8959.08, + "probability": 0.9944 + }, + { + "start": 8959.18, + "end": 8960.1, + "probability": 0.8835 + }, + { + "start": 8960.44, + "end": 8963.48, + "probability": 0.9277 + }, + { + "start": 8964.2, + "end": 8968.82, + "probability": 0.5637 + }, + { + "start": 8968.82, + "end": 8970.88, + "probability": 0.9817 + }, + { + "start": 8971.64, + "end": 8972.16, + "probability": 0.741 + }, + { + "start": 8972.28, + "end": 8973.22, + "probability": 0.566 + }, + { + "start": 8973.42, + "end": 8976.04, + "probability": 0.8338 + }, + { + "start": 8976.4, + "end": 8977.78, + "probability": 0.7929 + }, + { + "start": 8977.94, + "end": 8979.58, + "probability": 0.9907 + }, + { + "start": 8979.6, + "end": 8984.8, + "probability": 0.6656 + }, + { + "start": 8985.04, + "end": 8986.64, + "probability": 0.7131 + }, + { + "start": 8986.76, + "end": 8986.96, + "probability": 0.6748 + }, + { + "start": 8987.16, + "end": 8988.36, + "probability": 0.6467 + }, + { + "start": 8988.86, + "end": 8989.82, + "probability": 0.6934 + }, + { + "start": 8989.82, + "end": 8993.02, + "probability": 0.8573 + }, + { + "start": 8993.12, + "end": 8994.18, + "probability": 0.732 + }, + { + "start": 8994.24, + "end": 8995.86, + "probability": 0.8077 + }, + { + "start": 8996.34, + "end": 8997.12, + "probability": 0.7509 + }, + { + "start": 8997.16, + "end": 8998.72, + "probability": 0.8602 + }, + { + "start": 8998.8, + "end": 8999.44, + "probability": 0.8116 + }, + { + "start": 8999.98, + "end": 8999.98, + "probability": 0.2758 + }, + { + "start": 8999.98, + "end": 9001.38, + "probability": 0.5514 + }, + { + "start": 9001.46, + "end": 9003.0, + "probability": 0.6404 + }, + { + "start": 9003.36, + "end": 9005.34, + "probability": 0.9647 + }, + { + "start": 9005.68, + "end": 9006.4, + "probability": 0.4296 + }, + { + "start": 9006.54, + "end": 9007.74, + "probability": 0.8931 + }, + { + "start": 9028.82, + "end": 9033.6, + "probability": 0.4973 + }, + { + "start": 9034.4, + "end": 9038.88, + "probability": 0.8387 + }, + { + "start": 9038.88, + "end": 9040.4, + "probability": 0.986 + }, + { + "start": 9041.4, + "end": 9043.13, + "probability": 0.5724 + }, + { + "start": 9044.92, + "end": 9046.02, + "probability": 0.6794 + }, + { + "start": 9047.5, + "end": 9049.78, + "probability": 0.6179 + }, + { + "start": 9050.4, + "end": 9051.31, + "probability": 0.8264 + }, + { + "start": 9051.46, + "end": 9052.6, + "probability": 0.4998 + }, + { + "start": 9053.44, + "end": 9055.78, + "probability": 0.9873 + }, + { + "start": 9055.82, + "end": 9058.06, + "probability": 0.9888 + }, + { + "start": 9058.58, + "end": 9060.06, + "probability": 0.916 + }, + { + "start": 9060.28, + "end": 9062.2, + "probability": 0.9594 + }, + { + "start": 9062.94, + "end": 9065.18, + "probability": 0.8294 + }, + { + "start": 9065.52, + "end": 9068.06, + "probability": 0.9678 + }, + { + "start": 9068.5, + "end": 9071.24, + "probability": 0.9408 + }, + { + "start": 9071.54, + "end": 9072.28, + "probability": 0.9978 + }, + { + "start": 9076.46, + "end": 9078.76, + "probability": 0.7111 + }, + { + "start": 9079.28, + "end": 9084.1, + "probability": 0.9314 + }, + { + "start": 9084.12, + "end": 9086.84, + "probability": 0.8368 + }, + { + "start": 9087.36, + "end": 9088.18, + "probability": 0.8184 + }, + { + "start": 9088.3, + "end": 9088.68, + "probability": 0.257 + }, + { + "start": 9088.78, + "end": 9093.96, + "probability": 0.9657 + }, + { + "start": 9094.54, + "end": 9098.14, + "probability": 0.9031 + }, + { + "start": 9099.1, + "end": 9104.12, + "probability": 0.9812 + }, + { + "start": 9104.92, + "end": 9107.04, + "probability": 0.9987 + }, + { + "start": 9107.14, + "end": 9110.24, + "probability": 0.9724 + }, + { + "start": 9110.9, + "end": 9113.0, + "probability": 0.8 + }, + { + "start": 9113.8, + "end": 9115.68, + "probability": 0.9839 + }, + { + "start": 9117.42, + "end": 9119.64, + "probability": 0.9766 + }, + { + "start": 9120.01, + "end": 9124.28, + "probability": 0.984 + }, + { + "start": 9124.66, + "end": 9126.74, + "probability": 0.9671 + }, + { + "start": 9127.42, + "end": 9130.02, + "probability": 0.9648 + }, + { + "start": 9130.82, + "end": 9132.38, + "probability": 0.9182 + }, + { + "start": 9133.78, + "end": 9138.26, + "probability": 0.8334 + }, + { + "start": 9138.6, + "end": 9140.98, + "probability": 0.7461 + }, + { + "start": 9141.08, + "end": 9141.94, + "probability": 0.3131 + }, + { + "start": 9142.0, + "end": 9142.76, + "probability": 0.7512 + }, + { + "start": 9142.98, + "end": 9148.04, + "probability": 0.9861 + }, + { + "start": 9148.38, + "end": 9153.86, + "probability": 0.8531 + }, + { + "start": 9154.6, + "end": 9155.02, + "probability": 0.289 + }, + { + "start": 9155.08, + "end": 9155.56, + "probability": 0.9127 + }, + { + "start": 9155.66, + "end": 9158.42, + "probability": 0.9562 + }, + { + "start": 9160.48, + "end": 9163.48, + "probability": 0.8909 + }, + { + "start": 9164.12, + "end": 9165.62, + "probability": 0.9976 + }, + { + "start": 9165.78, + "end": 9169.6, + "probability": 0.6935 + }, + { + "start": 9169.6, + "end": 9172.17, + "probability": 0.9517 + }, + { + "start": 9172.96, + "end": 9175.42, + "probability": 0.9416 + }, + { + "start": 9175.54, + "end": 9177.36, + "probability": 0.7942 + }, + { + "start": 9177.62, + "end": 9178.48, + "probability": 0.6818 + }, + { + "start": 9178.54, + "end": 9179.48, + "probability": 0.7487 + }, + { + "start": 9179.72, + "end": 9182.14, + "probability": 0.7942 + }, + { + "start": 9183.52, + "end": 9186.68, + "probability": 0.6823 + }, + { + "start": 9186.76, + "end": 9186.86, + "probability": 0.6058 + }, + { + "start": 9187.22, + "end": 9189.54, + "probability": 0.9907 + }, + { + "start": 9189.54, + "end": 9192.06, + "probability": 0.85 + }, + { + "start": 9192.44, + "end": 9192.74, + "probability": 0.7612 + }, + { + "start": 9192.8, + "end": 9194.14, + "probability": 0.9402 + }, + { + "start": 9194.44, + "end": 9196.1, + "probability": 0.739 + }, + { + "start": 9196.18, + "end": 9198.02, + "probability": 0.9803 + }, + { + "start": 9198.7, + "end": 9200.7, + "probability": 0.9579 + }, + { + "start": 9201.3, + "end": 9203.76, + "probability": 0.9817 + }, + { + "start": 9203.76, + "end": 9207.02, + "probability": 0.965 + }, + { + "start": 9207.3, + "end": 9213.76, + "probability": 0.9935 + }, + { + "start": 9214.2, + "end": 9215.36, + "probability": 0.779 + }, + { + "start": 9215.5, + "end": 9219.27, + "probability": 0.915 + }, + { + "start": 9219.7, + "end": 9221.34, + "probability": 0.8778 + }, + { + "start": 9221.86, + "end": 9222.7, + "probability": 0.8895 + }, + { + "start": 9222.75, + "end": 9227.26, + "probability": 0.7871 + }, + { + "start": 9227.5, + "end": 9229.8, + "probability": 0.9189 + }, + { + "start": 9230.1, + "end": 9234.2, + "probability": 0.8475 + }, + { + "start": 9234.7, + "end": 9236.12, + "probability": 0.8904 + }, + { + "start": 9236.24, + "end": 9237.32, + "probability": 0.835 + }, + { + "start": 9238.58, + "end": 9242.06, + "probability": 0.6965 + }, + { + "start": 9242.5, + "end": 9251.44, + "probability": 0.9556 + }, + { + "start": 9252.54, + "end": 9253.44, + "probability": 0.9795 + }, + { + "start": 9253.56, + "end": 9256.04, + "probability": 0.9974 + }, + { + "start": 9256.04, + "end": 9258.44, + "probability": 0.9023 + }, + { + "start": 9259.02, + "end": 9259.86, + "probability": 0.6012 + }, + { + "start": 9260.06, + "end": 9261.4, + "probability": 0.9858 + }, + { + "start": 9261.76, + "end": 9264.54, + "probability": 0.8149 + }, + { + "start": 9264.6, + "end": 9264.84, + "probability": 0.4927 + }, + { + "start": 9265.06, + "end": 9266.38, + "probability": 0.9532 + }, + { + "start": 9266.52, + "end": 9271.05, + "probability": 0.8238 + }, + { + "start": 9271.6, + "end": 9272.8, + "probability": 0.9847 + }, + { + "start": 9272.92, + "end": 9274.1, + "probability": 0.9922 + }, + { + "start": 9274.18, + "end": 9277.35, + "probability": 0.9993 + }, + { + "start": 9278.68, + "end": 9281.62, + "probability": 0.8947 + }, + { + "start": 9282.2, + "end": 9285.86, + "probability": 0.8237 + }, + { + "start": 9286.2, + "end": 9289.32, + "probability": 0.9921 + }, + { + "start": 9289.46, + "end": 9290.2, + "probability": 0.7587 + }, + { + "start": 9290.7, + "end": 9293.58, + "probability": 0.871 + }, + { + "start": 9293.74, + "end": 9294.72, + "probability": 0.8276 + }, + { + "start": 9294.86, + "end": 9296.66, + "probability": 0.9678 + }, + { + "start": 9296.74, + "end": 9297.04, + "probability": 0.8487 + }, + { + "start": 9297.28, + "end": 9297.63, + "probability": 0.6058 + }, + { + "start": 9298.44, + "end": 9300.58, + "probability": 0.8875 + }, + { + "start": 9300.92, + "end": 9305.79, + "probability": 0.9982 + }, + { + "start": 9306.3, + "end": 9313.16, + "probability": 0.9912 + }, + { + "start": 9313.64, + "end": 9316.34, + "probability": 0.941 + }, + { + "start": 9317.06, + "end": 9317.62, + "probability": 0.9554 + }, + { + "start": 9317.84, + "end": 9323.32, + "probability": 0.8243 + }, + { + "start": 9323.86, + "end": 9325.3, + "probability": 0.8665 + }, + { + "start": 9325.32, + "end": 9326.54, + "probability": 0.8647 + }, + { + "start": 9326.54, + "end": 9327.12, + "probability": 0.6067 + }, + { + "start": 9327.4, + "end": 9330.3, + "probability": 0.9543 + }, + { + "start": 9331.06, + "end": 9333.64, + "probability": 0.9863 + }, + { + "start": 9334.0, + "end": 9338.6, + "probability": 0.7903 + }, + { + "start": 9339.06, + "end": 9340.96, + "probability": 0.9538 + }, + { + "start": 9341.64, + "end": 9342.78, + "probability": 0.9902 + }, + { + "start": 9343.04, + "end": 9343.48, + "probability": 0.8278 + }, + { + "start": 9344.56, + "end": 9346.6, + "probability": 0.7186 + }, + { + "start": 9347.44, + "end": 9349.84, + "probability": 0.4738 + }, + { + "start": 9350.38, + "end": 9351.06, + "probability": 0.7515 + }, + { + "start": 9351.16, + "end": 9353.74, + "probability": 0.8691 + }, + { + "start": 9353.9, + "end": 9356.34, + "probability": 0.9707 + }, + { + "start": 9369.02, + "end": 9371.46, + "probability": 0.9786 + }, + { + "start": 9371.6, + "end": 9372.44, + "probability": 0.5799 + }, + { + "start": 9372.76, + "end": 9378.2, + "probability": 0.9826 + }, + { + "start": 9378.8, + "end": 9379.91, + "probability": 0.7549 + }, + { + "start": 9380.16, + "end": 9380.18, + "probability": 0.4692 + }, + { + "start": 9380.34, + "end": 9381.3, + "probability": 0.4442 + }, + { + "start": 9381.6, + "end": 9382.74, + "probability": 0.9342 + }, + { + "start": 9382.84, + "end": 9384.54, + "probability": 0.9814 + }, + { + "start": 9384.7, + "end": 9385.0, + "probability": 0.5244 + }, + { + "start": 9385.0, + "end": 9385.52, + "probability": 0.5279 + }, + { + "start": 9385.56, + "end": 9390.14, + "probability": 0.9492 + }, + { + "start": 9390.8, + "end": 9391.42, + "probability": 0.3717 + }, + { + "start": 9391.5, + "end": 9392.08, + "probability": 0.805 + }, + { + "start": 9392.1, + "end": 9392.2, + "probability": 0.0142 + }, + { + "start": 9392.2, + "end": 9392.71, + "probability": 0.9492 + }, + { + "start": 9393.48, + "end": 9396.84, + "probability": 0.7816 + }, + { + "start": 9396.84, + "end": 9400.34, + "probability": 0.9447 + }, + { + "start": 9401.58, + "end": 9401.94, + "probability": 0.3744 + }, + { + "start": 9402.08, + "end": 9402.56, + "probability": 0.9003 + }, + { + "start": 9403.32, + "end": 9404.52, + "probability": 0.5853 + }, + { + "start": 9404.96, + "end": 9405.94, + "probability": 0.7179 + }, + { + "start": 9406.12, + "end": 9408.78, + "probability": 0.9526 + }, + { + "start": 9410.4, + "end": 9413.16, + "probability": 0.6896 + }, + { + "start": 9414.18, + "end": 9417.26, + "probability": 0.9885 + }, + { + "start": 9418.9, + "end": 9429.34, + "probability": 0.9948 + }, + { + "start": 9429.92, + "end": 9434.86, + "probability": 0.9963 + }, + { + "start": 9436.9, + "end": 9440.5, + "probability": 0.9897 + }, + { + "start": 9441.32, + "end": 9443.8, + "probability": 0.8788 + }, + { + "start": 9446.1, + "end": 9448.1, + "probability": 0.9849 + }, + { + "start": 9449.92, + "end": 9453.3, + "probability": 0.8067 + }, + { + "start": 9454.54, + "end": 9455.56, + "probability": 0.9795 + }, + { + "start": 9457.52, + "end": 9461.02, + "probability": 0.9707 + }, + { + "start": 9461.42, + "end": 9463.32, + "probability": 0.9164 + }, + { + "start": 9464.08, + "end": 9468.22, + "probability": 0.9086 + }, + { + "start": 9469.38, + "end": 9472.04, + "probability": 0.9167 + }, + { + "start": 9472.96, + "end": 9477.46, + "probability": 0.9336 + }, + { + "start": 9478.48, + "end": 9479.06, + "probability": 0.8407 + }, + { + "start": 9482.36, + "end": 9488.08, + "probability": 0.9781 + }, + { + "start": 9488.6, + "end": 9489.34, + "probability": 0.7454 + }, + { + "start": 9490.82, + "end": 9491.16, + "probability": 0.8254 + }, + { + "start": 9491.74, + "end": 9492.9, + "probability": 0.9387 + }, + { + "start": 9495.06, + "end": 9497.02, + "probability": 0.9785 + }, + { + "start": 9498.16, + "end": 9502.62, + "probability": 0.7328 + }, + { + "start": 9503.96, + "end": 9504.52, + "probability": 0.9792 + }, + { + "start": 9506.72, + "end": 9507.46, + "probability": 0.9944 + }, + { + "start": 9508.08, + "end": 9511.82, + "probability": 0.9854 + }, + { + "start": 9513.66, + "end": 9517.74, + "probability": 0.6993 + }, + { + "start": 9518.26, + "end": 9520.2, + "probability": 0.3916 + }, + { + "start": 9520.76, + "end": 9521.88, + "probability": 0.9575 + }, + { + "start": 9522.8, + "end": 9524.28, + "probability": 0.9569 + }, + { + "start": 9525.08, + "end": 9529.9, + "probability": 0.9906 + }, + { + "start": 9530.54, + "end": 9531.48, + "probability": 0.9517 + }, + { + "start": 9532.14, + "end": 9533.18, + "probability": 0.506 + }, + { + "start": 9534.36, + "end": 9535.16, + "probability": 0.7954 + }, + { + "start": 9536.16, + "end": 9537.7, + "probability": 0.4492 + }, + { + "start": 9538.86, + "end": 9540.52, + "probability": 0.9824 + }, + { + "start": 9541.44, + "end": 9545.06, + "probability": 0.7093 + }, + { + "start": 9545.6, + "end": 9547.57, + "probability": 0.8483 + }, + { + "start": 9548.94, + "end": 9554.24, + "probability": 0.9576 + }, + { + "start": 9554.36, + "end": 9555.66, + "probability": 0.7728 + }, + { + "start": 9556.18, + "end": 9558.98, + "probability": 0.7177 + }, + { + "start": 9560.78, + "end": 9565.4, + "probability": 0.9795 + }, + { + "start": 9565.4, + "end": 9571.0, + "probability": 0.9984 + }, + { + "start": 9572.3, + "end": 9575.74, + "probability": 0.8359 + }, + { + "start": 9576.88, + "end": 9580.42, + "probability": 0.9956 + }, + { + "start": 9581.48, + "end": 9582.96, + "probability": 0.6817 + }, + { + "start": 9583.82, + "end": 9589.3, + "probability": 0.994 + }, + { + "start": 9590.54, + "end": 9591.76, + "probability": 0.9957 + }, + { + "start": 9593.24, + "end": 9594.97, + "probability": 0.7713 + }, + { + "start": 9596.14, + "end": 9598.08, + "probability": 0.7443 + }, + { + "start": 9598.28, + "end": 9598.62, + "probability": 0.8761 + }, + { + "start": 9598.72, + "end": 9599.84, + "probability": 0.8551 + }, + { + "start": 9600.44, + "end": 9604.42, + "probability": 0.9586 + }, + { + "start": 9606.32, + "end": 9611.08, + "probability": 0.8621 + }, + { + "start": 9612.3, + "end": 9616.36, + "probability": 0.8662 + }, + { + "start": 9616.5, + "end": 9617.46, + "probability": 0.8947 + }, + { + "start": 9618.3, + "end": 9620.76, + "probability": 0.9274 + }, + { + "start": 9621.82, + "end": 9623.96, + "probability": 0.5892 + }, + { + "start": 9624.5, + "end": 9630.04, + "probability": 0.8563 + }, + { + "start": 9631.72, + "end": 9633.66, + "probability": 0.9923 + }, + { + "start": 9636.79, + "end": 9641.0, + "probability": 0.9907 + }, + { + "start": 9641.2, + "end": 9644.2, + "probability": 0.969 + }, + { + "start": 9644.36, + "end": 9645.78, + "probability": 0.8564 + }, + { + "start": 9646.68, + "end": 9650.22, + "probability": 0.906 + }, + { + "start": 9651.26, + "end": 9657.96, + "probability": 0.9878 + }, + { + "start": 9659.06, + "end": 9660.02, + "probability": 0.9256 + }, + { + "start": 9660.8, + "end": 9664.76, + "probability": 0.9221 + }, + { + "start": 9666.4, + "end": 9668.64, + "probability": 0.7432 + }, + { + "start": 9669.56, + "end": 9670.06, + "probability": 0.8497 + }, + { + "start": 9670.26, + "end": 9671.4, + "probability": 0.925 + }, + { + "start": 9671.58, + "end": 9672.04, + "probability": 0.876 + }, + { + "start": 9672.42, + "end": 9673.08, + "probability": 0.7817 + }, + { + "start": 9673.16, + "end": 9675.4, + "probability": 0.9818 + }, + { + "start": 9675.54, + "end": 9679.86, + "probability": 0.9756 + }, + { + "start": 9680.48, + "end": 9683.46, + "probability": 0.9296 + }, + { + "start": 9684.34, + "end": 9686.0, + "probability": 0.9927 + }, + { + "start": 9686.08, + "end": 9686.64, + "probability": 0.8204 + }, + { + "start": 9686.74, + "end": 9687.36, + "probability": 0.4368 + }, + { + "start": 9687.4, + "end": 9688.3, + "probability": 0.9502 + }, + { + "start": 9688.38, + "end": 9689.32, + "probability": 0.9495 + }, + { + "start": 9690.02, + "end": 9693.94, + "probability": 0.9668 + }, + { + "start": 9694.64, + "end": 9696.6, + "probability": 0.9964 + }, + { + "start": 9697.88, + "end": 9699.16, + "probability": 0.6907 + }, + { + "start": 9700.72, + "end": 9703.28, + "probability": 0.994 + }, + { + "start": 9703.42, + "end": 9705.96, + "probability": 0.8116 + }, + { + "start": 9706.2, + "end": 9706.68, + "probability": 0.88 + }, + { + "start": 9706.76, + "end": 9707.46, + "probability": 0.877 + }, + { + "start": 9708.28, + "end": 9708.96, + "probability": 0.847 + }, + { + "start": 9709.92, + "end": 9713.68, + "probability": 0.9635 + }, + { + "start": 9715.84, + "end": 9718.08, + "probability": 0.9994 + }, + { + "start": 9718.96, + "end": 9720.82, + "probability": 0.7594 + }, + { + "start": 9721.8, + "end": 9723.58, + "probability": 0.9651 + }, + { + "start": 9724.7, + "end": 9729.48, + "probability": 0.9751 + }, + { + "start": 9730.18, + "end": 9731.24, + "probability": 0.9316 + }, + { + "start": 9732.1, + "end": 9733.86, + "probability": 0.8953 + }, + { + "start": 9733.96, + "end": 9738.22, + "probability": 0.9483 + }, + { + "start": 9738.98, + "end": 9741.66, + "probability": 0.9517 + }, + { + "start": 9742.38, + "end": 9746.08, + "probability": 0.7862 + }, + { + "start": 9746.84, + "end": 9749.34, + "probability": 0.9405 + }, + { + "start": 9752.66, + "end": 9757.02, + "probability": 0.987 + }, + { + "start": 9757.16, + "end": 9758.02, + "probability": 0.6136 + }, + { + "start": 9758.72, + "end": 9764.1, + "probability": 0.9829 + }, + { + "start": 9764.6, + "end": 9766.28, + "probability": 0.9911 + }, + { + "start": 9767.2, + "end": 9769.36, + "probability": 0.9794 + }, + { + "start": 9769.68, + "end": 9771.74, + "probability": 0.7508 + }, + { + "start": 9772.56, + "end": 9775.04, + "probability": 0.9939 + }, + { + "start": 9775.22, + "end": 9777.14, + "probability": 0.9221 + }, + { + "start": 9777.3, + "end": 9777.94, + "probability": 0.4645 + }, + { + "start": 9778.8, + "end": 9781.54, + "probability": 0.983 + }, + { + "start": 9781.62, + "end": 9784.8, + "probability": 0.8574 + }, + { + "start": 9785.02, + "end": 9787.18, + "probability": 0.8927 + }, + { + "start": 9787.78, + "end": 9790.34, + "probability": 0.96 + }, + { + "start": 9790.42, + "end": 9792.24, + "probability": 0.9915 + }, + { + "start": 9794.54, + "end": 9797.54, + "probability": 0.9076 + }, + { + "start": 9798.04, + "end": 9799.92, + "probability": 0.9458 + }, + { + "start": 9800.02, + "end": 9805.52, + "probability": 0.9642 + }, + { + "start": 9806.08, + "end": 9808.1, + "probability": 0.9915 + }, + { + "start": 9808.3, + "end": 9812.68, + "probability": 0.9863 + }, + { + "start": 9813.02, + "end": 9813.34, + "probability": 0.74 + }, + { + "start": 9813.78, + "end": 9814.26, + "probability": 0.7133 + }, + { + "start": 9815.18, + "end": 9817.42, + "probability": 0.9229 + }, + { + "start": 9817.64, + "end": 9824.28, + "probability": 0.9053 + }, + { + "start": 9825.08, + "end": 9828.64, + "probability": 0.9949 + }, + { + "start": 9828.66, + "end": 9830.62, + "probability": 0.9651 + }, + { + "start": 9830.98, + "end": 9832.34, + "probability": 0.8777 + }, + { + "start": 9834.28, + "end": 9836.92, + "probability": 0.2188 + }, + { + "start": 9836.92, + "end": 9840.38, + "probability": 0.5779 + }, + { + "start": 9840.38, + "end": 9843.57, + "probability": 0.4099 + }, + { + "start": 9844.48, + "end": 9845.18, + "probability": 0.2183 + }, + { + "start": 9845.54, + "end": 9847.44, + "probability": 0.3241 + }, + { + "start": 9847.74, + "end": 9848.28, + "probability": 0.232 + }, + { + "start": 9848.48, + "end": 9848.48, + "probability": 0.1767 + }, + { + "start": 9848.48, + "end": 9850.82, + "probability": 0.8209 + }, + { + "start": 9851.94, + "end": 9855.24, + "probability": 0.7647 + }, + { + "start": 9857.06, + "end": 9857.52, + "probability": 0.4648 + }, + { + "start": 9857.6, + "end": 9860.38, + "probability": 0.6548 + }, + { + "start": 9861.26, + "end": 9861.6, + "probability": 0.7484 + }, + { + "start": 9862.34, + "end": 9863.58, + "probability": 0.7214 + }, + { + "start": 9865.1, + "end": 9866.42, + "probability": 0.761 + }, + { + "start": 9866.54, + "end": 9870.08, + "probability": 0.9902 + }, + { + "start": 9871.2, + "end": 9871.66, + "probability": 0.965 + }, + { + "start": 9872.52, + "end": 9873.28, + "probability": 0.9819 + }, + { + "start": 9874.24, + "end": 9876.1, + "probability": 0.9159 + }, + { + "start": 9878.58, + "end": 9885.38, + "probability": 0.9415 + }, + { + "start": 9889.18, + "end": 9891.2, + "probability": 0.9818 + }, + { + "start": 9892.54, + "end": 9893.42, + "probability": 0.885 + }, + { + "start": 9894.86, + "end": 9900.5, + "probability": 0.9894 + }, + { + "start": 9900.5, + "end": 9905.08, + "probability": 0.9907 + }, + { + "start": 9906.16, + "end": 9907.26, + "probability": 0.7272 + }, + { + "start": 9908.24, + "end": 9910.78, + "probability": 0.7952 + }, + { + "start": 9911.72, + "end": 9914.3, + "probability": 0.9214 + }, + { + "start": 9916.44, + "end": 9917.0, + "probability": 0.3183 + }, + { + "start": 9918.84, + "end": 9919.74, + "probability": 0.977 + }, + { + "start": 9920.52, + "end": 9923.88, + "probability": 0.9108 + }, + { + "start": 9924.5, + "end": 9925.16, + "probability": 0.9005 + }, + { + "start": 9925.74, + "end": 9930.2, + "probability": 0.956 + }, + { + "start": 9931.36, + "end": 9932.24, + "probability": 0.5494 + }, + { + "start": 9933.06, + "end": 9935.3, + "probability": 0.9849 + }, + { + "start": 9936.12, + "end": 9937.98, + "probability": 0.9813 + }, + { + "start": 9939.7, + "end": 9941.54, + "probability": 0.8961 + }, + { + "start": 9943.3, + "end": 9944.14, + "probability": 0.874 + }, + { + "start": 9945.52, + "end": 9946.53, + "probability": 0.9668 + }, + { + "start": 9947.38, + "end": 9947.76, + "probability": 0.5514 + }, + { + "start": 9948.38, + "end": 9949.98, + "probability": 0.9519 + }, + { + "start": 9951.48, + "end": 9954.14, + "probability": 0.9622 + }, + { + "start": 9955.12, + "end": 9955.89, + "probability": 0.855 + }, + { + "start": 9956.94, + "end": 9961.14, + "probability": 0.9945 + }, + { + "start": 9962.14, + "end": 9963.28, + "probability": 0.863 + }, + { + "start": 9964.48, + "end": 9964.9, + "probability": 0.6646 + }, + { + "start": 9966.06, + "end": 9967.66, + "probability": 0.995 + }, + { + "start": 9968.48, + "end": 9969.52, + "probability": 0.9971 + }, + { + "start": 9970.66, + "end": 9972.84, + "probability": 0.9756 + }, + { + "start": 9974.0, + "end": 9974.72, + "probability": 0.9933 + }, + { + "start": 9975.66, + "end": 9977.16, + "probability": 0.6701 + }, + { + "start": 9978.27, + "end": 9979.84, + "probability": 0.6506 + }, + { + "start": 9979.98, + "end": 9980.39, + "probability": 0.6158 + }, + { + "start": 9981.4, + "end": 9982.36, + "probability": 0.9496 + }, + { + "start": 9983.2, + "end": 9986.12, + "probability": 0.2832 + }, + { + "start": 9987.44, + "end": 9988.58, + "probability": 0.971 + }, + { + "start": 9989.53, + "end": 9990.87, + "probability": 0.9805 + }, + { + "start": 9992.02, + "end": 9994.14, + "probability": 0.991 + }, + { + "start": 9995.34, + "end": 9996.34, + "probability": 0.8036 + }, + { + "start": 9996.48, + "end": 9997.26, + "probability": 0.9077 + }, + { + "start": 9998.08, + "end": 9998.82, + "probability": 0.9835 + }, + { + "start": 9999.92, + "end": 10001.76, + "probability": 0.5719 + }, + { + "start": 10002.4, + "end": 10004.72, + "probability": 0.9916 + }, + { + "start": 10007.18, + "end": 10008.2, + "probability": 0.7531 + }, + { + "start": 10009.72, + "end": 10010.26, + "probability": 0.6702 + }, + { + "start": 10010.28, + "end": 10014.1, + "probability": 0.9824 + }, + { + "start": 10014.82, + "end": 10015.94, + "probability": 0.7466 + }, + { + "start": 10016.74, + "end": 10019.08, + "probability": 0.6094 + }, + { + "start": 10019.78, + "end": 10021.08, + "probability": 0.9985 + }, + { + "start": 10022.06, + "end": 10022.98, + "probability": 0.9395 + }, + { + "start": 10023.64, + "end": 10024.66, + "probability": 0.9922 + }, + { + "start": 10028.16, + "end": 10031.7, + "probability": 0.9735 + }, + { + "start": 10032.52, + "end": 10034.34, + "probability": 0.8583 + }, + { + "start": 10035.14, + "end": 10037.52, + "probability": 0.9969 + }, + { + "start": 10038.36, + "end": 10039.76, + "probability": 0.714 + }, + { + "start": 10041.1, + "end": 10042.6, + "probability": 0.8574 + }, + { + "start": 10043.86, + "end": 10045.3, + "probability": 0.9891 + }, + { + "start": 10046.54, + "end": 10049.78, + "probability": 0.9399 + }, + { + "start": 10050.4, + "end": 10055.06, + "probability": 0.8123 + }, + { + "start": 10056.1, + "end": 10060.72, + "probability": 0.9893 + }, + { + "start": 10060.8, + "end": 10062.06, + "probability": 0.6816 + }, + { + "start": 10062.78, + "end": 10064.18, + "probability": 0.7768 + }, + { + "start": 10064.74, + "end": 10066.14, + "probability": 0.9609 + }, + { + "start": 10067.06, + "end": 10067.78, + "probability": 0.8505 + }, + { + "start": 10070.13, + "end": 10070.51, + "probability": 0.4727 + }, + { + "start": 10072.3, + "end": 10072.84, + "probability": 0.8109 + }, + { + "start": 10073.6, + "end": 10075.58, + "probability": 0.9875 + }, + { + "start": 10076.07, + "end": 10078.94, + "probability": 0.9722 + }, + { + "start": 10079.02, + "end": 10080.08, + "probability": 0.6664 + }, + { + "start": 10080.92, + "end": 10082.62, + "probability": 0.8757 + }, + { + "start": 10084.48, + "end": 10085.0, + "probability": 0.9155 + }, + { + "start": 10085.7, + "end": 10087.24, + "probability": 0.9804 + }, + { + "start": 10088.19, + "end": 10091.12, + "probability": 0.9627 + }, + { + "start": 10093.62, + "end": 10094.12, + "probability": 0.6558 + }, + { + "start": 10094.84, + "end": 10095.32, + "probability": 0.779 + }, + { + "start": 10095.74, + "end": 10096.26, + "probability": 0.8678 + }, + { + "start": 10096.78, + "end": 10097.78, + "probability": 0.2343 + }, + { + "start": 10098.14, + "end": 10099.18, + "probability": 0.9912 + }, + { + "start": 10104.44, + "end": 10105.72, + "probability": 0.9502 + }, + { + "start": 10106.24, + "end": 10106.74, + "probability": 0.7205 + }, + { + "start": 10108.74, + "end": 10109.98, + "probability": 0.6378 + }, + { + "start": 10111.36, + "end": 10114.86, + "probability": 0.7241 + }, + { + "start": 10115.7, + "end": 10117.44, + "probability": 0.855 + }, + { + "start": 10117.78, + "end": 10118.22, + "probability": 0.731 + }, + { + "start": 10118.34, + "end": 10118.6, + "probability": 0.1018 + }, + { + "start": 10118.78, + "end": 10119.58, + "probability": 0.8595 + }, + { + "start": 10119.88, + "end": 10121.2, + "probability": 0.7501 + }, + { + "start": 10121.26, + "end": 10121.62, + "probability": 0.4057 + }, + { + "start": 10121.7, + "end": 10122.83, + "probability": 0.98 + }, + { + "start": 10123.18, + "end": 10123.4, + "probability": 0.4917 + }, + { + "start": 10124.17, + "end": 10125.44, + "probability": 0.6456 + }, + { + "start": 10125.5, + "end": 10127.89, + "probability": 0.5955 + }, + { + "start": 10128.02, + "end": 10131.2, + "probability": 0.6067 + }, + { + "start": 10132.6, + "end": 10136.08, + "probability": 0.5337 + }, + { + "start": 10137.5, + "end": 10137.5, + "probability": 0.2609 + }, + { + "start": 10137.5, + "end": 10137.5, + "probability": 0.0065 + }, + { + "start": 10137.5, + "end": 10137.5, + "probability": 0.2249 + }, + { + "start": 10137.5, + "end": 10137.5, + "probability": 0.0825 + }, + { + "start": 10137.5, + "end": 10140.46, + "probability": 0.3077 + }, + { + "start": 10141.74, + "end": 10146.6, + "probability": 0.6642 + }, + { + "start": 10147.8, + "end": 10148.7, + "probability": 0.8485 + }, + { + "start": 10148.8, + "end": 10150.66, + "probability": 0.7945 + }, + { + "start": 10150.86, + "end": 10151.04, + "probability": 0.0493 + }, + { + "start": 10152.8, + "end": 10155.44, + "probability": 0.9593 + }, + { + "start": 10158.16, + "end": 10159.26, + "probability": 0.9352 + }, + { + "start": 10159.32, + "end": 10162.22, + "probability": 0.9175 + }, + { + "start": 10162.78, + "end": 10163.75, + "probability": 0.7458 + }, + { + "start": 10164.8, + "end": 10165.88, + "probability": 0.9192 + }, + { + "start": 10166.86, + "end": 10171.28, + "probability": 0.5073 + }, + { + "start": 10171.4, + "end": 10173.44, + "probability": 0.3826 + }, + { + "start": 10173.72, + "end": 10174.28, + "probability": 0.8977 + }, + { + "start": 10174.54, + "end": 10174.8, + "probability": 0.9465 + }, + { + "start": 10176.14, + "end": 10176.62, + "probability": 0.8403 + }, + { + "start": 10176.62, + "end": 10178.04, + "probability": 0.1503 + }, + { + "start": 10178.08, + "end": 10179.54, + "probability": 0.9708 + }, + { + "start": 10180.9, + "end": 10182.04, + "probability": 0.9886 + }, + { + "start": 10182.52, + "end": 10185.8, + "probability": 0.7265 + }, + { + "start": 10186.56, + "end": 10192.76, + "probability": 0.9945 + }, + { + "start": 10192.98, + "end": 10194.46, + "probability": 0.9336 + }, + { + "start": 10195.24, + "end": 10197.12, + "probability": 0.5475 + }, + { + "start": 10197.86, + "end": 10199.08, + "probability": 0.9948 + }, + { + "start": 10200.08, + "end": 10201.38, + "probability": 0.994 + }, + { + "start": 10203.92, + "end": 10205.94, + "probability": 0.9823 + }, + { + "start": 10208.06, + "end": 10208.99, + "probability": 0.8182 + }, + { + "start": 10209.66, + "end": 10210.8, + "probability": 0.979 + }, + { + "start": 10211.58, + "end": 10217.42, + "probability": 0.9688 + }, + { + "start": 10219.12, + "end": 10219.8, + "probability": 0.8827 + }, + { + "start": 10221.04, + "end": 10221.9, + "probability": 0.6778 + }, + { + "start": 10223.68, + "end": 10223.98, + "probability": 0.8049 + }, + { + "start": 10224.26, + "end": 10225.1, + "probability": 0.5829 + }, + { + "start": 10225.54, + "end": 10226.0, + "probability": 0.922 + }, + { + "start": 10226.22, + "end": 10232.16, + "probability": 0.9498 + }, + { + "start": 10232.26, + "end": 10235.38, + "probability": 0.8716 + }, + { + "start": 10235.38, + "end": 10236.6, + "probability": 0.1337 + }, + { + "start": 10236.6, + "end": 10239.93, + "probability": 0.6061 + }, + { + "start": 10240.92, + "end": 10245.0, + "probability": 0.5964 + }, + { + "start": 10245.18, + "end": 10248.38, + "probability": 0.6678 + }, + { + "start": 10248.46, + "end": 10250.92, + "probability": 0.9469 + }, + { + "start": 10253.29, + "end": 10255.38, + "probability": 0.999 + }, + { + "start": 10255.48, + "end": 10256.38, + "probability": 0.6896 + }, + { + "start": 10257.2, + "end": 10257.42, + "probability": 0.081 + }, + { + "start": 10257.42, + "end": 10258.62, + "probability": 0.2182 + }, + { + "start": 10258.62, + "end": 10259.85, + "probability": 0.588 + }, + { + "start": 10260.6, + "end": 10261.7, + "probability": 0.8677 + }, + { + "start": 10261.78, + "end": 10263.09, + "probability": 0.6219 + }, + { + "start": 10263.32, + "end": 10264.16, + "probability": 0.9248 + }, + { + "start": 10264.26, + "end": 10264.99, + "probability": 0.9648 + }, + { + "start": 10265.86, + "end": 10267.22, + "probability": 0.9389 + }, + { + "start": 10267.34, + "end": 10268.58, + "probability": 0.6754 + }, + { + "start": 10268.94, + "end": 10271.2, + "probability": 0.7642 + }, + { + "start": 10271.4, + "end": 10273.0, + "probability": 0.529 + }, + { + "start": 10273.0, + "end": 10273.0, + "probability": 0.1764 + }, + { + "start": 10273.0, + "end": 10273.34, + "probability": 0.5356 + }, + { + "start": 10273.42, + "end": 10274.42, + "probability": 0.7886 + }, + { + "start": 10274.52, + "end": 10274.76, + "probability": 0.9123 + }, + { + "start": 10274.84, + "end": 10275.1, + "probability": 0.7206 + }, + { + "start": 10275.1, + "end": 10277.5, + "probability": 0.7828 + }, + { + "start": 10277.5, + "end": 10278.06, + "probability": 0.5663 + }, + { + "start": 10278.44, + "end": 10278.54, + "probability": 0.9573 + }, + { + "start": 10279.8, + "end": 10283.4, + "probability": 0.7514 + }, + { + "start": 10283.48, + "end": 10284.78, + "probability": 0.6846 + }, + { + "start": 10284.94, + "end": 10286.58, + "probability": 0.8529 + }, + { + "start": 10287.0, + "end": 10288.78, + "probability": 0.9842 + }, + { + "start": 10289.04, + "end": 10290.38, + "probability": 0.8024 + }, + { + "start": 10291.04, + "end": 10293.19, + "probability": 0.8066 + }, + { + "start": 10293.86, + "end": 10295.3, + "probability": 0.8426 + }, + { + "start": 10295.8, + "end": 10296.78, + "probability": 0.7055 + }, + { + "start": 10298.08, + "end": 10300.7, + "probability": 0.9862 + }, + { + "start": 10300.7, + "end": 10304.22, + "probability": 0.9937 + }, + { + "start": 10305.08, + "end": 10307.34, + "probability": 0.8941 + }, + { + "start": 10307.9, + "end": 10309.18, + "probability": 0.8913 + }, + { + "start": 10309.54, + "end": 10310.56, + "probability": 0.8383 + }, + { + "start": 10311.06, + "end": 10315.26, + "probability": 0.9692 + }, + { + "start": 10315.72, + "end": 10317.9, + "probability": 0.9268 + }, + { + "start": 10318.26, + "end": 10319.72, + "probability": 0.7747 + }, + { + "start": 10319.78, + "end": 10322.64, + "probability": 0.9961 + }, + { + "start": 10325.6, + "end": 10327.82, + "probability": 0.7258 + }, + { + "start": 10328.42, + "end": 10333.52, + "probability": 0.9083 + }, + { + "start": 10333.86, + "end": 10336.9, + "probability": 0.8071 + }, + { + "start": 10337.64, + "end": 10338.28, + "probability": 0.9655 + }, + { + "start": 10339.88, + "end": 10343.34, + "probability": 0.9685 + }, + { + "start": 10343.94, + "end": 10345.84, + "probability": 0.9668 + }, + { + "start": 10347.4, + "end": 10351.86, + "probability": 0.9986 + }, + { + "start": 10352.18, + "end": 10353.42, + "probability": 0.7202 + }, + { + "start": 10353.88, + "end": 10357.14, + "probability": 0.9965 + }, + { + "start": 10357.54, + "end": 10358.38, + "probability": 0.8615 + }, + { + "start": 10359.36, + "end": 10363.36, + "probability": 0.9617 + }, + { + "start": 10363.9, + "end": 10366.8, + "probability": 0.9816 + }, + { + "start": 10367.18, + "end": 10368.6, + "probability": 0.9943 + }, + { + "start": 10368.92, + "end": 10370.0, + "probability": 0.9775 + }, + { + "start": 10370.42, + "end": 10373.08, + "probability": 0.9949 + }, + { + "start": 10373.68, + "end": 10374.06, + "probability": 0.8285 + }, + { + "start": 10374.94, + "end": 10377.1, + "probability": 0.9873 + }, + { + "start": 10377.68, + "end": 10378.24, + "probability": 0.9113 + }, + { + "start": 10378.64, + "end": 10382.6, + "probability": 0.9719 + }, + { + "start": 10383.0, + "end": 10385.96, + "probability": 0.9824 + }, + { + "start": 10387.2, + "end": 10389.62, + "probability": 0.9603 + }, + { + "start": 10390.22, + "end": 10390.82, + "probability": 0.7229 + }, + { + "start": 10391.2, + "end": 10395.56, + "probability": 0.9881 + }, + { + "start": 10396.14, + "end": 10400.58, + "probability": 0.9919 + }, + { + "start": 10401.16, + "end": 10402.54, + "probability": 0.8987 + }, + { + "start": 10403.02, + "end": 10405.0, + "probability": 0.9945 + }, + { + "start": 10405.4, + "end": 10409.24, + "probability": 0.9993 + }, + { + "start": 10409.7, + "end": 10410.36, + "probability": 0.96 + }, + { + "start": 10411.06, + "end": 10411.62, + "probability": 0.9913 + }, + { + "start": 10411.88, + "end": 10414.34, + "probability": 0.9143 + }, + { + "start": 10414.8, + "end": 10416.92, + "probability": 0.9942 + }, + { + "start": 10417.66, + "end": 10421.98, + "probability": 0.9896 + }, + { + "start": 10421.98, + "end": 10425.52, + "probability": 0.952 + }, + { + "start": 10426.06, + "end": 10428.84, + "probability": 0.9368 + }, + { + "start": 10429.34, + "end": 10434.72, + "probability": 0.9816 + }, + { + "start": 10435.12, + "end": 10437.74, + "probability": 0.9841 + }, + { + "start": 10438.42, + "end": 10438.94, + "probability": 0.9622 + }, + { + "start": 10439.58, + "end": 10443.12, + "probability": 0.908 + }, + { + "start": 10443.54, + "end": 10446.7, + "probability": 0.993 + }, + { + "start": 10447.96, + "end": 10451.2, + "probability": 0.9948 + }, + { + "start": 10451.2, + "end": 10454.86, + "probability": 0.9795 + }, + { + "start": 10455.78, + "end": 10460.02, + "probability": 0.7969 + }, + { + "start": 10460.54, + "end": 10462.1, + "probability": 0.8453 + }, + { + "start": 10462.28, + "end": 10462.76, + "probability": 0.6085 + }, + { + "start": 10463.16, + "end": 10463.26, + "probability": 0.5101 + }, + { + "start": 10463.36, + "end": 10464.26, + "probability": 0.9059 + }, + { + "start": 10464.4, + "end": 10468.5, + "probability": 0.9644 + }, + { + "start": 10470.0, + "end": 10472.84, + "probability": 0.9458 + }, + { + "start": 10472.84, + "end": 10476.34, + "probability": 0.9987 + }, + { + "start": 10476.82, + "end": 10477.92, + "probability": 0.8753 + }, + { + "start": 10478.9, + "end": 10481.76, + "probability": 0.8614 + }, + { + "start": 10482.1, + "end": 10483.4, + "probability": 0.9849 + }, + { + "start": 10484.24, + "end": 10484.72, + "probability": 0.9543 + }, + { + "start": 10484.94, + "end": 10486.0, + "probability": 0.9139 + }, + { + "start": 10486.32, + "end": 10486.88, + "probability": 0.5015 + }, + { + "start": 10487.0, + "end": 10487.68, + "probability": 0.9434 + }, + { + "start": 10488.84, + "end": 10492.02, + "probability": 0.9883 + }, + { + "start": 10492.02, + "end": 10495.32, + "probability": 0.9506 + }, + { + "start": 10495.74, + "end": 10498.74, + "probability": 0.9565 + }, + { + "start": 10498.86, + "end": 10500.3, + "probability": 0.8378 + }, + { + "start": 10500.92, + "end": 10504.4, + "probability": 0.8942 + }, + { + "start": 10504.74, + "end": 10507.16, + "probability": 0.975 + }, + { + "start": 10507.92, + "end": 10510.54, + "probability": 0.927 + }, + { + "start": 10510.84, + "end": 10515.12, + "probability": 0.9595 + }, + { + "start": 10515.26, + "end": 10517.7, + "probability": 0.9039 + }, + { + "start": 10518.04, + "end": 10519.44, + "probability": 0.9403 + }, + { + "start": 10519.98, + "end": 10520.28, + "probability": 0.4571 + }, + { + "start": 10520.38, + "end": 10523.36, + "probability": 0.9849 + }, + { + "start": 10524.1, + "end": 10527.62, + "probability": 0.9883 + }, + { + "start": 10527.96, + "end": 10529.32, + "probability": 0.9618 + }, + { + "start": 10529.62, + "end": 10534.0, + "probability": 0.9975 + }, + { + "start": 10534.0, + "end": 10538.32, + "probability": 0.9931 + }, + { + "start": 10539.26, + "end": 10542.52, + "probability": 0.9774 + }, + { + "start": 10542.9, + "end": 10547.62, + "probability": 0.9882 + }, + { + "start": 10548.22, + "end": 10554.22, + "probability": 0.9545 + }, + { + "start": 10554.66, + "end": 10556.32, + "probability": 0.9976 + }, + { + "start": 10557.76, + "end": 10558.24, + "probability": 0.7295 + }, + { + "start": 10558.44, + "end": 10562.52, + "probability": 0.9558 + }, + { + "start": 10562.9, + "end": 10565.36, + "probability": 0.9919 + }, + { + "start": 10566.12, + "end": 10569.5, + "probability": 0.9006 + }, + { + "start": 10569.92, + "end": 10573.04, + "probability": 0.9387 + }, + { + "start": 10573.4, + "end": 10575.64, + "probability": 0.9749 + }, + { + "start": 10576.8, + "end": 10578.3, + "probability": 0.7659 + }, + { + "start": 10578.46, + "end": 10586.23, + "probability": 0.9504 + }, + { + "start": 10588.28, + "end": 10593.52, + "probability": 0.9102 + }, + { + "start": 10593.82, + "end": 10594.62, + "probability": 0.9758 + }, + { + "start": 10595.44, + "end": 10597.22, + "probability": 0.7669 + }, + { + "start": 10597.56, + "end": 10599.01, + "probability": 0.6545 + }, + { + "start": 10599.9, + "end": 10600.94, + "probability": 0.8687 + }, + { + "start": 10601.02, + "end": 10605.52, + "probability": 0.9802 + }, + { + "start": 10605.52, + "end": 10609.96, + "probability": 0.9697 + }, + { + "start": 10610.4, + "end": 10612.36, + "probability": 0.7541 + }, + { + "start": 10612.66, + "end": 10615.24, + "probability": 0.9955 + }, + { + "start": 10615.24, + "end": 10619.52, + "probability": 0.9862 + }, + { + "start": 10620.08, + "end": 10620.32, + "probability": 0.3566 + }, + { + "start": 10620.38, + "end": 10622.01, + "probability": 0.6115 + }, + { + "start": 10622.48, + "end": 10624.12, + "probability": 0.8755 + }, + { + "start": 10624.36, + "end": 10625.04, + "probability": 0.6242 + }, + { + "start": 10626.26, + "end": 10629.6, + "probability": 0.9768 + }, + { + "start": 10639.14, + "end": 10640.04, + "probability": 0.6728 + }, + { + "start": 10640.92, + "end": 10642.45, + "probability": 0.9339 + }, + { + "start": 10643.0, + "end": 10644.11, + "probability": 0.8442 + }, + { + "start": 10645.04, + "end": 10646.16, + "probability": 0.7876 + }, + { + "start": 10646.22, + "end": 10649.44, + "probability": 0.9866 + }, + { + "start": 10650.98, + "end": 10653.12, + "probability": 0.9348 + }, + { + "start": 10653.28, + "end": 10653.69, + "probability": 0.3744 + }, + { + "start": 10654.34, + "end": 10655.84, + "probability": 0.4714 + }, + { + "start": 10656.12, + "end": 10657.14, + "probability": 0.7863 + }, + { + "start": 10658.74, + "end": 10660.21, + "probability": 0.7469 + }, + { + "start": 10660.9, + "end": 10662.86, + "probability": 0.9743 + }, + { + "start": 10663.98, + "end": 10665.16, + "probability": 0.9116 + }, + { + "start": 10666.36, + "end": 10668.46, + "probability": 0.9907 + }, + { + "start": 10669.92, + "end": 10673.22, + "probability": 0.9127 + }, + { + "start": 10674.86, + "end": 10681.08, + "probability": 0.9788 + }, + { + "start": 10681.22, + "end": 10683.52, + "probability": 0.9808 + }, + { + "start": 10683.72, + "end": 10686.2, + "probability": 0.8514 + }, + { + "start": 10686.72, + "end": 10690.92, + "probability": 0.9922 + }, + { + "start": 10691.54, + "end": 10692.84, + "probability": 0.5693 + }, + { + "start": 10693.02, + "end": 10695.86, + "probability": 0.9874 + }, + { + "start": 10696.6, + "end": 10700.9, + "probability": 0.8853 + }, + { + "start": 10701.72, + "end": 10703.24, + "probability": 0.9419 + }, + { + "start": 10703.4, + "end": 10705.84, + "probability": 0.8822 + }, + { + "start": 10706.9, + "end": 10710.14, + "probability": 0.7399 + }, + { + "start": 10711.28, + "end": 10713.46, + "probability": 0.7852 + }, + { + "start": 10714.88, + "end": 10718.96, + "probability": 0.9468 + }, + { + "start": 10720.18, + "end": 10722.77, + "probability": 0.9854 + }, + { + "start": 10724.14, + "end": 10725.28, + "probability": 0.9709 + }, + { + "start": 10725.92, + "end": 10728.48, + "probability": 0.9917 + }, + { + "start": 10729.12, + "end": 10730.06, + "probability": 0.8052 + }, + { + "start": 10731.22, + "end": 10731.74, + "probability": 0.4072 + }, + { + "start": 10732.54, + "end": 10738.36, + "probability": 0.8654 + }, + { + "start": 10739.06, + "end": 10740.57, + "probability": 0.4577 + }, + { + "start": 10743.28, + "end": 10745.0, + "probability": 0.9961 + }, + { + "start": 10745.62, + "end": 10748.85, + "probability": 0.6733 + }, + { + "start": 10749.4, + "end": 10750.52, + "probability": 0.9556 + }, + { + "start": 10752.0, + "end": 10752.88, + "probability": 0.6027 + }, + { + "start": 10753.56, + "end": 10757.96, + "probability": 0.9414 + }, + { + "start": 10760.34, + "end": 10762.96, + "probability": 0.7979 + }, + { + "start": 10762.96, + "end": 10765.9, + "probability": 0.8992 + }, + { + "start": 10766.42, + "end": 10771.04, + "probability": 0.9563 + }, + { + "start": 10772.36, + "end": 10774.32, + "probability": 0.996 + }, + { + "start": 10774.32, + "end": 10777.56, + "probability": 0.997 + }, + { + "start": 10778.2, + "end": 10782.66, + "probability": 0.9823 + }, + { + "start": 10783.88, + "end": 10788.34, + "probability": 0.9416 + }, + { + "start": 10788.34, + "end": 10792.1, + "probability": 0.9883 + }, + { + "start": 10792.72, + "end": 10797.96, + "probability": 0.9907 + }, + { + "start": 10798.3, + "end": 10799.24, + "probability": 0.9024 + }, + { + "start": 10799.9, + "end": 10800.64, + "probability": 0.6262 + }, + { + "start": 10801.1, + "end": 10804.54, + "probability": 0.9711 + }, + { + "start": 10805.16, + "end": 10809.6, + "probability": 0.9093 + }, + { + "start": 10810.04, + "end": 10813.58, + "probability": 0.9854 + }, + { + "start": 10814.56, + "end": 10815.66, + "probability": 0.8483 + }, + { + "start": 10816.24, + "end": 10822.0, + "probability": 0.982 + }, + { + "start": 10822.46, + "end": 10826.18, + "probability": 0.9247 + }, + { + "start": 10826.96, + "end": 10832.98, + "probability": 0.8085 + }, + { + "start": 10833.58, + "end": 10840.44, + "probability": 0.9565 + }, + { + "start": 10841.34, + "end": 10841.8, + "probability": 0.8936 + }, + { + "start": 10842.72, + "end": 10853.12, + "probability": 0.995 + }, + { + "start": 10853.54, + "end": 10857.02, + "probability": 0.9133 + }, + { + "start": 10857.44, + "end": 10859.68, + "probability": 0.7758 + }, + { + "start": 10860.24, + "end": 10864.26, + "probability": 0.9616 + }, + { + "start": 10864.58, + "end": 10866.3, + "probability": 0.9438 + }, + { + "start": 10866.72, + "end": 10869.8, + "probability": 0.9918 + }, + { + "start": 10869.8, + "end": 10873.46, + "probability": 0.99 + }, + { + "start": 10874.18, + "end": 10875.38, + "probability": 0.5284 + }, + { + "start": 10875.94, + "end": 10879.5, + "probability": 0.7106 + }, + { + "start": 10879.56, + "end": 10884.88, + "probability": 0.8824 + }, + { + "start": 10885.38, + "end": 10886.42, + "probability": 0.9444 + }, + { + "start": 10886.76, + "end": 10887.38, + "probability": 0.9741 + }, + { + "start": 10887.82, + "end": 10890.06, + "probability": 0.7064 + }, + { + "start": 10890.72, + "end": 10895.9, + "probability": 0.4318 + }, + { + "start": 10896.46, + "end": 10899.98, + "probability": 0.7838 + }, + { + "start": 10900.54, + "end": 10900.86, + "probability": 0.7109 + }, + { + "start": 10900.88, + "end": 10904.68, + "probability": 0.9928 + }, + { + "start": 10905.14, + "end": 10909.2, + "probability": 0.9913 + }, + { + "start": 10909.2, + "end": 10915.2, + "probability": 0.99 + }, + { + "start": 10915.94, + "end": 10922.54, + "probability": 0.9678 + }, + { + "start": 10923.02, + "end": 10927.5, + "probability": 0.985 + }, + { + "start": 10928.2, + "end": 10930.84, + "probability": 0.8548 + }, + { + "start": 10931.3, + "end": 10935.86, + "probability": 0.9022 + }, + { + "start": 10936.99, + "end": 10940.2, + "probability": 0.8714 + }, + { + "start": 10940.64, + "end": 10945.76, + "probability": 0.9825 + }, + { + "start": 10946.44, + "end": 10953.4, + "probability": 0.7883 + }, + { + "start": 10953.9, + "end": 10961.4, + "probability": 0.971 + }, + { + "start": 10962.84, + "end": 10966.52, + "probability": 0.9919 + }, + { + "start": 10966.52, + "end": 10970.52, + "probability": 0.9777 + }, + { + "start": 10971.34, + "end": 10974.22, + "probability": 0.9939 + }, + { + "start": 10974.22, + "end": 10977.24, + "probability": 0.9978 + }, + { + "start": 10977.32, + "end": 10978.44, + "probability": 0.9668 + }, + { + "start": 10978.6, + "end": 10979.22, + "probability": 0.8136 + }, + { + "start": 10979.36, + "end": 10980.22, + "probability": 0.9626 + }, + { + "start": 10980.82, + "end": 10987.23, + "probability": 0.9874 + }, + { + "start": 10987.96, + "end": 10989.08, + "probability": 0.7511 + }, + { + "start": 10989.56, + "end": 10993.12, + "probability": 0.9424 + }, + { + "start": 10993.38, + "end": 10993.92, + "probability": 0.7805 + }, + { + "start": 10994.02, + "end": 10994.98, + "probability": 0.8896 + }, + { + "start": 10995.14, + "end": 10995.79, + "probability": 0.9663 + }, + { + "start": 10996.22, + "end": 10997.7, + "probability": 0.9873 + }, + { + "start": 10998.36, + "end": 11001.4, + "probability": 0.1031 + }, + { + "start": 11001.8, + "end": 11002.98, + "probability": 0.7274 + }, + { + "start": 11004.0, + "end": 11005.0, + "probability": 0.9245 + }, + { + "start": 11005.18, + "end": 11009.28, + "probability": 0.998 + }, + { + "start": 11010.02, + "end": 11011.22, + "probability": 0.9971 + }, + { + "start": 11011.92, + "end": 11013.32, + "probability": 0.682 + }, + { + "start": 11013.44, + "end": 11015.32, + "probability": 0.9669 + }, + { + "start": 11015.94, + "end": 11017.32, + "probability": 0.7165 + }, + { + "start": 11018.28, + "end": 11021.19, + "probability": 0.9826 + }, + { + "start": 11021.7, + "end": 11022.56, + "probability": 0.9558 + }, + { + "start": 11022.62, + "end": 11023.28, + "probability": 0.8438 + }, + { + "start": 11023.72, + "end": 11024.56, + "probability": 0.9487 + }, + { + "start": 11024.72, + "end": 11025.5, + "probability": 0.9736 + }, + { + "start": 11027.7, + "end": 11030.44, + "probability": 0.5801 + }, + { + "start": 11031.1, + "end": 11034.52, + "probability": 0.8858 + }, + { + "start": 11035.32, + "end": 11038.14, + "probability": 0.7915 + }, + { + "start": 11038.76, + "end": 11039.86, + "probability": 0.9507 + }, + { + "start": 11041.12, + "end": 11045.66, + "probability": 0.9757 + }, + { + "start": 11045.8, + "end": 11046.36, + "probability": 0.9846 + }, + { + "start": 11046.48, + "end": 11048.4, + "probability": 0.9609 + }, + { + "start": 11049.88, + "end": 11052.12, + "probability": 0.9911 + }, + { + "start": 11052.82, + "end": 11053.78, + "probability": 0.801 + }, + { + "start": 11055.06, + "end": 11055.82, + "probability": 0.6398 + }, + { + "start": 11056.42, + "end": 11057.74, + "probability": 0.9257 + }, + { + "start": 11058.36, + "end": 11061.8, + "probability": 0.8296 + }, + { + "start": 11061.9, + "end": 11063.4, + "probability": 0.9982 + }, + { + "start": 11063.8, + "end": 11064.56, + "probability": 0.9893 + }, + { + "start": 11064.68, + "end": 11069.72, + "probability": 0.98 + }, + { + "start": 11070.36, + "end": 11073.97, + "probability": 0.8783 + }, + { + "start": 11075.5, + "end": 11080.12, + "probability": 0.6814 + }, + { + "start": 11082.7, + "end": 11084.22, + "probability": 0.7505 + }, + { + "start": 11085.04, + "end": 11085.92, + "probability": 0.8715 + }, + { + "start": 11086.54, + "end": 11087.44, + "probability": 0.9703 + }, + { + "start": 11088.24, + "end": 11089.02, + "probability": 0.9468 + }, + { + "start": 11089.64, + "end": 11090.5, + "probability": 0.6052 + }, + { + "start": 11092.0, + "end": 11094.06, + "probability": 0.8528 + }, + { + "start": 11095.34, + "end": 11097.52, + "probability": 0.865 + }, + { + "start": 11098.46, + "end": 11100.4, + "probability": 0.9502 + }, + { + "start": 11101.42, + "end": 11104.24, + "probability": 0.9709 + }, + { + "start": 11104.76, + "end": 11105.67, + "probability": 0.8479 + }, + { + "start": 11106.12, + "end": 11109.28, + "probability": 0.9932 + }, + { + "start": 11109.72, + "end": 11113.44, + "probability": 0.9881 + }, + { + "start": 11113.88, + "end": 11115.0, + "probability": 0.8688 + }, + { + "start": 11116.48, + "end": 11118.76, + "probability": 0.6258 + }, + { + "start": 11119.36, + "end": 11120.98, + "probability": 0.8457 + }, + { + "start": 11122.04, + "end": 11123.27, + "probability": 0.9761 + }, + { + "start": 11124.14, + "end": 11125.08, + "probability": 0.9712 + }, + { + "start": 11125.82, + "end": 11131.68, + "probability": 0.9938 + }, + { + "start": 11132.2, + "end": 11133.68, + "probability": 0.6019 + }, + { + "start": 11134.28, + "end": 11137.1, + "probability": 0.9942 + }, + { + "start": 11138.3, + "end": 11147.32, + "probability": 0.9398 + }, + { + "start": 11148.32, + "end": 11150.42, + "probability": 0.8588 + }, + { + "start": 11152.44, + "end": 11156.24, + "probability": 0.8346 + }, + { + "start": 11157.14, + "end": 11157.64, + "probability": 0.9699 + }, + { + "start": 11160.26, + "end": 11164.46, + "probability": 0.9878 + }, + { + "start": 11165.18, + "end": 11166.22, + "probability": 0.6429 + }, + { + "start": 11167.06, + "end": 11167.96, + "probability": 0.3935 + }, + { + "start": 11168.64, + "end": 11169.14, + "probability": 0.7133 + }, + { + "start": 11170.54, + "end": 11171.22, + "probability": 0.865 + }, + { + "start": 11171.48, + "end": 11172.02, + "probability": 0.8746 + }, + { + "start": 11172.98, + "end": 11175.2, + "probability": 0.5648 + }, + { + "start": 11175.24, + "end": 11176.42, + "probability": 0.7429 + }, + { + "start": 11177.82, + "end": 11178.34, + "probability": 0.9546 + }, + { + "start": 11180.96, + "end": 11181.96, + "probability": 0.7613 + }, + { + "start": 11183.1, + "end": 11186.19, + "probability": 0.7414 + }, + { + "start": 11187.62, + "end": 11188.36, + "probability": 0.9351 + }, + { + "start": 11188.9, + "end": 11190.8, + "probability": 0.9102 + }, + { + "start": 11191.64, + "end": 11195.36, + "probability": 0.9981 + }, + { + "start": 11195.9, + "end": 11196.86, + "probability": 0.885 + }, + { + "start": 11197.0, + "end": 11200.16, + "probability": 0.9976 + }, + { + "start": 11201.08, + "end": 11201.62, + "probability": 0.8029 + }, + { + "start": 11202.56, + "end": 11204.06, + "probability": 0.7361 + }, + { + "start": 11205.44, + "end": 11205.98, + "probability": 0.9401 + }, + { + "start": 11206.5, + "end": 11208.78, + "probability": 0.998 + }, + { + "start": 11209.36, + "end": 11210.85, + "probability": 0.9971 + }, + { + "start": 11211.78, + "end": 11213.31, + "probability": 0.998 + }, + { + "start": 11214.08, + "end": 11219.86, + "probability": 0.9771 + }, + { + "start": 11219.86, + "end": 11223.32, + "probability": 0.9948 + }, + { + "start": 11224.62, + "end": 11227.56, + "probability": 0.9179 + }, + { + "start": 11228.34, + "end": 11229.74, + "probability": 0.9298 + }, + { + "start": 11230.98, + "end": 11234.96, + "probability": 0.9785 + }, + { + "start": 11235.08, + "end": 11236.12, + "probability": 0.9658 + }, + { + "start": 11236.9, + "end": 11237.42, + "probability": 0.5545 + }, + { + "start": 11237.76, + "end": 11238.34, + "probability": 0.6498 + }, + { + "start": 11238.76, + "end": 11242.44, + "probability": 0.9745 + }, + { + "start": 11243.28, + "end": 11245.58, + "probability": 0.9843 + }, + { + "start": 11246.24, + "end": 11246.94, + "probability": 0.8087 + }, + { + "start": 11247.6, + "end": 11252.44, + "probability": 0.9512 + }, + { + "start": 11252.98, + "end": 11253.4, + "probability": 0.9473 + }, + { + "start": 11254.16, + "end": 11255.14, + "probability": 0.5543 + }, + { + "start": 11255.28, + "end": 11258.0, + "probability": 0.9867 + }, + { + "start": 11258.92, + "end": 11262.5, + "probability": 0.9658 + }, + { + "start": 11263.02, + "end": 11264.32, + "probability": 0.9937 + }, + { + "start": 11264.44, + "end": 11266.0, + "probability": 0.9875 + }, + { + "start": 11267.22, + "end": 11267.94, + "probability": 0.1841 + }, + { + "start": 11268.96, + "end": 11274.04, + "probability": 0.1798 + }, + { + "start": 11274.56, + "end": 11275.24, + "probability": 0.1255 + }, + { + "start": 11275.72, + "end": 11282.66, + "probability": 0.4463 + }, + { + "start": 11282.72, + "end": 11285.72, + "probability": 0.916 + }, + { + "start": 11285.94, + "end": 11287.72, + "probability": 0.3418 + }, + { + "start": 11289.04, + "end": 11289.7, + "probability": 0.0426 + }, + { + "start": 11289.7, + "end": 11289.78, + "probability": 0.0043 + } + ], + "segments_count": 3920, + "words_count": 19569, + "avg_words_per_segment": 4.9921, + "avg_segment_duration": 2.1831, + "avg_words_per_minute": 103.4365, + "plenum_id": "46220", + "duration": 11351.31, + "title": null, + "plenum_date": "2015-11-03" +} \ No newline at end of file