diff --git "a/60618/metadata.json" "b/60618/metadata.json" new file mode 100644--- /dev/null +++ "b/60618/metadata.json" @@ -0,0 +1,42087 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "60618", + "quality_score": 0.8743, + "per_segment_quality_scores": [ + { + "start": 0.14, + "end": 2.8, + "probability": 0.3859 + }, + { + "start": 6.08, + "end": 8.82, + "probability": 0.876 + }, + { + "start": 9.34, + "end": 10.68, + "probability": 0.7791 + }, + { + "start": 10.96, + "end": 11.62, + "probability": 0.6634 + }, + { + "start": 11.66, + "end": 12.56, + "probability": 0.6326 + }, + { + "start": 13.18, + "end": 15.68, + "probability": 0.7464 + }, + { + "start": 16.38, + "end": 19.1, + "probability": 0.9092 + }, + { + "start": 19.68, + "end": 21.76, + "probability": 0.6674 + }, + { + "start": 21.92, + "end": 24.66, + "probability": 0.7712 + }, + { + "start": 24.76, + "end": 25.64, + "probability": 0.6807 + }, + { + "start": 26.42, + "end": 30.36, + "probability": 0.7945 + }, + { + "start": 31.0, + "end": 34.52, + "probability": 0.6744 + }, + { + "start": 35.2, + "end": 37.6, + "probability": 0.9419 + }, + { + "start": 38.2, + "end": 42.46, + "probability": 0.7791 + }, + { + "start": 42.56, + "end": 43.82, + "probability": 0.9013 + }, + { + "start": 43.96, + "end": 44.9, + "probability": 0.893 + }, + { + "start": 44.96, + "end": 45.34, + "probability": 0.7378 + }, + { + "start": 46.1, + "end": 46.84, + "probability": 0.6514 + }, + { + "start": 47.42, + "end": 48.24, + "probability": 0.9377 + }, + { + "start": 51.17, + "end": 53.49, + "probability": 0.6552 + }, + { + "start": 53.49, + "end": 53.93, + "probability": 0.2523 + }, + { + "start": 54.72, + "end": 57.46, + "probability": 0.7697 + }, + { + "start": 57.91, + "end": 58.95, + "probability": 0.5462 + }, + { + "start": 59.45, + "end": 61.69, + "probability": 0.5694 + }, + { + "start": 79.15, + "end": 82.11, + "probability": 0.0227 + }, + { + "start": 82.25, + "end": 82.31, + "probability": 0.0212 + }, + { + "start": 82.75, + "end": 82.85, + "probability": 0.1003 + }, + { + "start": 82.85, + "end": 83.53, + "probability": 0.3058 + }, + { + "start": 83.77, + "end": 84.45, + "probability": 0.0523 + }, + { + "start": 87.79, + "end": 91.35, + "probability": 0.098 + }, + { + "start": 98.65, + "end": 102.33, + "probability": 0.0493 + }, + { + "start": 103.21, + "end": 105.03, + "probability": 0.0912 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 169.0, + "end": 169.0, + "probability": 0.0 + }, + { + "start": 177.52, + "end": 178.76, + "probability": 0.104 + }, + { + "start": 181.6, + "end": 182.6, + "probability": 0.1113 + }, + { + "start": 182.62, + "end": 191.64, + "probability": 0.1604 + }, + { + "start": 191.64, + "end": 192.46, + "probability": 0.1328 + }, + { + "start": 193.08, + "end": 194.22, + "probability": 0.2017 + }, + { + "start": 194.96, + "end": 195.88, + "probability": 0.1458 + }, + { + "start": 196.84, + "end": 200.38, + "probability": 0.061 + }, + { + "start": 201.12, + "end": 202.62, + "probability": 0.0491 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 303.0, + "probability": 0.0 + }, + { + "start": 303.0, + "end": 305.4, + "probability": 0.7241 + }, + { + "start": 306.62, + "end": 307.86, + "probability": 0.9619 + }, + { + "start": 307.96, + "end": 308.58, + "probability": 0.9858 + }, + { + "start": 308.64, + "end": 309.58, + "probability": 0.9097 + }, + { + "start": 309.64, + "end": 311.82, + "probability": 0.9471 + }, + { + "start": 311.84, + "end": 313.9, + "probability": 0.9906 + }, + { + "start": 314.92, + "end": 318.18, + "probability": 0.9797 + }, + { + "start": 318.96, + "end": 320.0, + "probability": 0.7328 + }, + { + "start": 320.16, + "end": 321.12, + "probability": 0.582 + }, + { + "start": 321.3, + "end": 322.54, + "probability": 0.7486 + }, + { + "start": 323.0, + "end": 324.2, + "probability": 0.7831 + }, + { + "start": 325.3, + "end": 327.18, + "probability": 0.7518 + }, + { + "start": 328.32, + "end": 329.62, + "probability": 0.9519 + }, + { + "start": 330.42, + "end": 332.76, + "probability": 0.9446 + }, + { + "start": 333.54, + "end": 335.28, + "probability": 0.7576 + }, + { + "start": 335.96, + "end": 338.4, + "probability": 0.8171 + }, + { + "start": 339.76, + "end": 341.74, + "probability": 0.4451 + }, + { + "start": 343.78, + "end": 344.34, + "probability": 0.9504 + }, + { + "start": 344.96, + "end": 345.74, + "probability": 0.6671 + }, + { + "start": 345.86, + "end": 348.14, + "probability": 0.9975 + }, + { + "start": 349.44, + "end": 351.12, + "probability": 0.9688 + }, + { + "start": 352.88, + "end": 354.48, + "probability": 0.9963 + }, + { + "start": 356.18, + "end": 358.7, + "probability": 0.9914 + }, + { + "start": 359.66, + "end": 364.3, + "probability": 0.9702 + }, + { + "start": 365.06, + "end": 367.02, + "probability": 0.9117 + }, + { + "start": 370.47, + "end": 373.36, + "probability": 0.7906 + }, + { + "start": 373.6, + "end": 375.76, + "probability": 0.8883 + }, + { + "start": 377.12, + "end": 378.46, + "probability": 0.989 + }, + { + "start": 379.22, + "end": 381.4, + "probability": 0.9792 + }, + { + "start": 382.36, + "end": 384.84, + "probability": 0.973 + }, + { + "start": 387.14, + "end": 387.66, + "probability": 0.9739 + }, + { + "start": 389.18, + "end": 395.4, + "probability": 0.9788 + }, + { + "start": 396.8, + "end": 398.24, + "probability": 0.7925 + }, + { + "start": 399.42, + "end": 399.46, + "probability": 0.5981 + }, + { + "start": 400.58, + "end": 402.18, + "probability": 0.9279 + }, + { + "start": 403.3, + "end": 404.72, + "probability": 0.9548 + }, + { + "start": 405.34, + "end": 406.48, + "probability": 0.853 + }, + { + "start": 407.74, + "end": 408.84, + "probability": 0.9727 + }, + { + "start": 410.02, + "end": 411.17, + "probability": 0.8605 + }, + { + "start": 412.0, + "end": 414.54, + "probability": 0.5437 + }, + { + "start": 416.32, + "end": 418.14, + "probability": 0.8361 + }, + { + "start": 419.7, + "end": 421.32, + "probability": 0.7463 + }, + { + "start": 422.92, + "end": 425.84, + "probability": 0.9468 + }, + { + "start": 426.8, + "end": 428.84, + "probability": 0.9682 + }, + { + "start": 429.64, + "end": 432.6, + "probability": 0.9297 + }, + { + "start": 434.22, + "end": 434.86, + "probability": 0.6848 + }, + { + "start": 435.84, + "end": 436.3, + "probability": 0.8838 + }, + { + "start": 437.44, + "end": 442.26, + "probability": 0.9082 + }, + { + "start": 443.66, + "end": 445.8, + "probability": 0.9991 + }, + { + "start": 446.88, + "end": 449.06, + "probability": 0.9933 + }, + { + "start": 449.68, + "end": 450.94, + "probability": 0.8253 + }, + { + "start": 451.52, + "end": 454.3, + "probability": 0.9982 + }, + { + "start": 455.08, + "end": 457.54, + "probability": 0.769 + }, + { + "start": 458.3, + "end": 459.44, + "probability": 0.9705 + }, + { + "start": 460.26, + "end": 464.76, + "probability": 0.9859 + }, + { + "start": 466.82, + "end": 467.98, + "probability": 0.8945 + }, + { + "start": 469.06, + "end": 470.44, + "probability": 0.7693 + }, + { + "start": 471.6, + "end": 473.42, + "probability": 0.7645 + }, + { + "start": 474.18, + "end": 475.14, + "probability": 0.5265 + }, + { + "start": 475.92, + "end": 476.98, + "probability": 0.9736 + }, + { + "start": 477.36, + "end": 479.82, + "probability": 0.6789 + }, + { + "start": 480.58, + "end": 481.68, + "probability": 0.9934 + }, + { + "start": 483.16, + "end": 485.44, + "probability": 0.9933 + }, + { + "start": 486.48, + "end": 489.98, + "probability": 0.668 + }, + { + "start": 491.68, + "end": 493.42, + "probability": 0.8253 + }, + { + "start": 494.68, + "end": 497.28, + "probability": 0.7485 + }, + { + "start": 498.18, + "end": 499.56, + "probability": 0.8752 + }, + { + "start": 500.14, + "end": 500.84, + "probability": 0.504 + }, + { + "start": 501.96, + "end": 502.76, + "probability": 0.6372 + }, + { + "start": 503.08, + "end": 506.75, + "probability": 0.8857 + }, + { + "start": 508.12, + "end": 509.92, + "probability": 0.8751 + }, + { + "start": 510.54, + "end": 511.72, + "probability": 0.9184 + }, + { + "start": 511.8, + "end": 512.88, + "probability": 0.1957 + }, + { + "start": 513.72, + "end": 515.62, + "probability": 0.7005 + }, + { + "start": 517.64, + "end": 518.04, + "probability": 0.9909 + }, + { + "start": 518.64, + "end": 519.2, + "probability": 0.9646 + }, + { + "start": 520.26, + "end": 524.26, + "probability": 0.948 + }, + { + "start": 526.4, + "end": 526.5, + "probability": 0.3422 + }, + { + "start": 527.63, + "end": 532.02, + "probability": 0.8521 + }, + { + "start": 534.5, + "end": 539.1, + "probability": 0.9982 + }, + { + "start": 541.48, + "end": 542.04, + "probability": 0.8821 + }, + { + "start": 542.7, + "end": 543.82, + "probability": 0.9139 + }, + { + "start": 544.9, + "end": 547.62, + "probability": 0.7994 + }, + { + "start": 548.82, + "end": 553.02, + "probability": 0.9033 + }, + { + "start": 553.7, + "end": 556.88, + "probability": 0.9537 + }, + { + "start": 557.74, + "end": 561.9, + "probability": 0.9663 + }, + { + "start": 562.54, + "end": 565.64, + "probability": 0.8913 + }, + { + "start": 566.9, + "end": 569.36, + "probability": 0.9405 + }, + { + "start": 570.68, + "end": 572.48, + "probability": 0.9923 + }, + { + "start": 573.3, + "end": 574.79, + "probability": 0.998 + }, + { + "start": 575.34, + "end": 578.38, + "probability": 0.8018 + }, + { + "start": 579.24, + "end": 580.5, + "probability": 0.9907 + }, + { + "start": 581.3, + "end": 583.24, + "probability": 0.7278 + }, + { + "start": 584.86, + "end": 587.14, + "probability": 0.8897 + }, + { + "start": 587.24, + "end": 588.16, + "probability": 0.8688 + }, + { + "start": 588.22, + "end": 589.08, + "probability": 0.946 + }, + { + "start": 589.5, + "end": 591.0, + "probability": 0.9897 + }, + { + "start": 591.06, + "end": 592.22, + "probability": 0.9956 + }, + { + "start": 592.7, + "end": 593.79, + "probability": 0.8955 + }, + { + "start": 595.28, + "end": 597.04, + "probability": 0.8548 + }, + { + "start": 598.42, + "end": 601.58, + "probability": 0.7645 + }, + { + "start": 602.56, + "end": 605.0, + "probability": 0.7757 + }, + { + "start": 606.08, + "end": 607.92, + "probability": 0.9756 + }, + { + "start": 608.74, + "end": 610.1, + "probability": 0.787 + }, + { + "start": 611.32, + "end": 613.2, + "probability": 0.5682 + }, + { + "start": 614.14, + "end": 615.46, + "probability": 0.9941 + }, + { + "start": 616.62, + "end": 617.68, + "probability": 0.9146 + }, + { + "start": 618.74, + "end": 620.34, + "probability": 0.9937 + }, + { + "start": 621.18, + "end": 623.08, + "probability": 0.944 + }, + { + "start": 623.84, + "end": 625.02, + "probability": 0.7439 + }, + { + "start": 626.68, + "end": 628.18, + "probability": 0.481 + }, + { + "start": 628.84, + "end": 630.09, + "probability": 0.4717 + }, + { + "start": 631.2, + "end": 634.7, + "probability": 0.8499 + }, + { + "start": 635.2, + "end": 638.28, + "probability": 0.9249 + }, + { + "start": 640.04, + "end": 641.84, + "probability": 0.975 + }, + { + "start": 642.38, + "end": 644.58, + "probability": 0.9385 + }, + { + "start": 644.72, + "end": 645.86, + "probability": 0.7178 + }, + { + "start": 646.92, + "end": 648.2, + "probability": 0.7125 + }, + { + "start": 651.5, + "end": 654.54, + "probability": 0.868 + }, + { + "start": 655.76, + "end": 656.66, + "probability": 0.8838 + }, + { + "start": 658.28, + "end": 659.84, + "probability": 0.9544 + }, + { + "start": 660.54, + "end": 663.42, + "probability": 0.8392 + }, + { + "start": 664.76, + "end": 670.66, + "probability": 0.9939 + }, + { + "start": 673.1, + "end": 674.96, + "probability": 0.9685 + }, + { + "start": 675.66, + "end": 682.58, + "probability": 0.9971 + }, + { + "start": 683.28, + "end": 684.7, + "probability": 0.9855 + }, + { + "start": 686.54, + "end": 687.8, + "probability": 0.8571 + }, + { + "start": 688.46, + "end": 689.22, + "probability": 0.8611 + }, + { + "start": 689.48, + "end": 690.31, + "probability": 0.9951 + }, + { + "start": 691.1, + "end": 693.74, + "probability": 0.2729 + }, + { + "start": 693.86, + "end": 695.78, + "probability": 0.6748 + }, + { + "start": 696.04, + "end": 699.22, + "probability": 0.3097 + }, + { + "start": 699.22, + "end": 700.03, + "probability": 0.6832 + }, + { + "start": 701.22, + "end": 701.7, + "probability": 0.1086 + }, + { + "start": 702.98, + "end": 704.1, + "probability": 0.9756 + }, + { + "start": 704.22, + "end": 704.99, + "probability": 0.4636 + }, + { + "start": 705.66, + "end": 707.5, + "probability": 0.876 + }, + { + "start": 708.86, + "end": 711.32, + "probability": 0.9588 + }, + { + "start": 711.68, + "end": 713.46, + "probability": 0.9179 + }, + { + "start": 714.04, + "end": 714.6, + "probability": 0.0065 + }, + { + "start": 714.66, + "end": 716.5, + "probability": 0.2638 + }, + { + "start": 716.86, + "end": 718.22, + "probability": 0.5764 + }, + { + "start": 718.64, + "end": 720.24, + "probability": 0.2508 + }, + { + "start": 720.62, + "end": 720.94, + "probability": 0.4113 + }, + { + "start": 721.02, + "end": 722.18, + "probability": 0.4889 + }, + { + "start": 722.18, + "end": 724.02, + "probability": 0.0782 + }, + { + "start": 724.12, + "end": 724.63, + "probability": 0.3089 + }, + { + "start": 726.22, + "end": 726.22, + "probability": 0.8481 + }, + { + "start": 727.74, + "end": 729.74, + "probability": 0.9897 + }, + { + "start": 729.9, + "end": 731.8, + "probability": 0.4707 + }, + { + "start": 731.92, + "end": 733.82, + "probability": 0.9749 + }, + { + "start": 734.68, + "end": 736.76, + "probability": 0.8977 + }, + { + "start": 737.62, + "end": 743.22, + "probability": 0.9518 + }, + { + "start": 745.02, + "end": 749.92, + "probability": 0.9341 + }, + { + "start": 750.54, + "end": 751.92, + "probability": 0.7068 + }, + { + "start": 753.2, + "end": 754.42, + "probability": 0.9465 + }, + { + "start": 754.52, + "end": 756.14, + "probability": 0.9957 + }, + { + "start": 756.78, + "end": 757.6, + "probability": 0.9653 + }, + { + "start": 758.02, + "end": 761.04, + "probability": 0.9684 + }, + { + "start": 761.66, + "end": 764.79, + "probability": 0.999 + }, + { + "start": 764.84, + "end": 766.87, + "probability": 0.9939 + }, + { + "start": 767.92, + "end": 771.38, + "probability": 0.9964 + }, + { + "start": 771.44, + "end": 776.16, + "probability": 0.9656 + }, + { + "start": 778.14, + "end": 780.54, + "probability": 0.9912 + }, + { + "start": 781.6, + "end": 783.68, + "probability": 0.6037 + }, + { + "start": 784.58, + "end": 787.88, + "probability": 0.988 + }, + { + "start": 788.96, + "end": 790.88, + "probability": 0.8578 + }, + { + "start": 791.6, + "end": 794.48, + "probability": 0.9863 + }, + { + "start": 795.08, + "end": 797.6, + "probability": 0.9917 + }, + { + "start": 798.16, + "end": 804.6, + "probability": 0.993 + }, + { + "start": 804.98, + "end": 806.46, + "probability": 0.9934 + }, + { + "start": 806.64, + "end": 808.02, + "probability": 0.6361 + }, + { + "start": 808.24, + "end": 810.3, + "probability": 0.9961 + }, + { + "start": 810.42, + "end": 810.8, + "probability": 0.8101 + }, + { + "start": 811.62, + "end": 813.76, + "probability": 0.9634 + }, + { + "start": 814.41, + "end": 817.86, + "probability": 0.8544 + }, + { + "start": 819.0, + "end": 822.02, + "probability": 0.8201 + }, + { + "start": 823.1, + "end": 826.34, + "probability": 0.9844 + }, + { + "start": 827.76, + "end": 829.48, + "probability": 0.561 + }, + { + "start": 830.24, + "end": 831.46, + "probability": 0.5736 + }, + { + "start": 833.2, + "end": 835.96, + "probability": 0.9167 + }, + { + "start": 836.04, + "end": 836.64, + "probability": 0.8759 + }, + { + "start": 836.72, + "end": 839.46, + "probability": 0.9172 + }, + { + "start": 840.14, + "end": 841.26, + "probability": 0.8477 + }, + { + "start": 841.5, + "end": 848.96, + "probability": 0.8799 + }, + { + "start": 849.38, + "end": 850.26, + "probability": 0.7838 + }, + { + "start": 850.42, + "end": 851.42, + "probability": 0.915 + }, + { + "start": 852.3, + "end": 856.12, + "probability": 0.9854 + }, + { + "start": 856.12, + "end": 859.24, + "probability": 0.7557 + }, + { + "start": 859.4, + "end": 860.76, + "probability": 0.7152 + }, + { + "start": 861.26, + "end": 863.96, + "probability": 0.9792 + }, + { + "start": 864.34, + "end": 865.76, + "probability": 0.6322 + }, + { + "start": 866.14, + "end": 869.9, + "probability": 0.7993 + }, + { + "start": 869.96, + "end": 870.96, + "probability": 0.9558 + }, + { + "start": 871.56, + "end": 872.38, + "probability": 0.9271 + }, + { + "start": 872.48, + "end": 873.78, + "probability": 0.9985 + }, + { + "start": 874.1, + "end": 877.56, + "probability": 0.9614 + }, + { + "start": 878.2, + "end": 880.24, + "probability": 0.9896 + }, + { + "start": 880.74, + "end": 881.4, + "probability": 0.7819 + }, + { + "start": 881.54, + "end": 882.74, + "probability": 0.8989 + }, + { + "start": 883.2, + "end": 883.72, + "probability": 0.8265 + }, + { + "start": 883.82, + "end": 884.36, + "probability": 0.9113 + }, + { + "start": 884.44, + "end": 885.4, + "probability": 0.9888 + }, + { + "start": 885.98, + "end": 887.94, + "probability": 0.8553 + }, + { + "start": 888.26, + "end": 889.13, + "probability": 0.9165 + }, + { + "start": 890.0, + "end": 890.88, + "probability": 0.7601 + }, + { + "start": 891.14, + "end": 895.02, + "probability": 0.8779 + }, + { + "start": 895.6, + "end": 898.48, + "probability": 0.8094 + }, + { + "start": 898.48, + "end": 901.82, + "probability": 0.9712 + }, + { + "start": 902.14, + "end": 904.06, + "probability": 0.8769 + }, + { + "start": 904.66, + "end": 907.68, + "probability": 0.8956 + }, + { + "start": 908.26, + "end": 911.6, + "probability": 0.9781 + }, + { + "start": 912.14, + "end": 915.16, + "probability": 0.798 + }, + { + "start": 915.58, + "end": 917.3, + "probability": 0.7433 + }, + { + "start": 918.02, + "end": 922.28, + "probability": 0.9878 + }, + { + "start": 922.28, + "end": 925.02, + "probability": 0.8796 + }, + { + "start": 925.48, + "end": 927.88, + "probability": 0.988 + }, + { + "start": 928.3, + "end": 929.54, + "probability": 0.5716 + }, + { + "start": 929.88, + "end": 931.01, + "probability": 0.9824 + }, + { + "start": 931.24, + "end": 935.36, + "probability": 0.9812 + }, + { + "start": 935.46, + "end": 939.72, + "probability": 0.2458 + }, + { + "start": 939.72, + "end": 940.28, + "probability": 0.2287 + }, + { + "start": 941.06, + "end": 943.22, + "probability": 0.9551 + }, + { + "start": 943.6, + "end": 949.84, + "probability": 0.9847 + }, + { + "start": 950.0, + "end": 952.24, + "probability": 0.9961 + }, + { + "start": 952.8, + "end": 953.02, + "probability": 0.2651 + }, + { + "start": 953.18, + "end": 956.88, + "probability": 0.9852 + }, + { + "start": 956.88, + "end": 961.44, + "probability": 0.9758 + }, + { + "start": 961.88, + "end": 965.94, + "probability": 0.9922 + }, + { + "start": 966.08, + "end": 966.84, + "probability": 0.3199 + }, + { + "start": 967.02, + "end": 967.58, + "probability": 0.7228 + }, + { + "start": 968.36, + "end": 969.72, + "probability": 0.7188 + }, + { + "start": 969.76, + "end": 970.96, + "probability": 0.8613 + }, + { + "start": 971.14, + "end": 971.98, + "probability": 0.7672 + }, + { + "start": 972.4, + "end": 974.1, + "probability": 0.9829 + }, + { + "start": 974.18, + "end": 975.52, + "probability": 0.8629 + }, + { + "start": 975.84, + "end": 977.7, + "probability": 0.7508 + }, + { + "start": 978.06, + "end": 979.08, + "probability": 0.9514 + }, + { + "start": 979.16, + "end": 982.58, + "probability": 0.8517 + }, + { + "start": 982.58, + "end": 986.62, + "probability": 0.6936 + }, + { + "start": 986.62, + "end": 989.14, + "probability": 0.6556 + }, + { + "start": 989.68, + "end": 991.1, + "probability": 0.7933 + }, + { + "start": 991.18, + "end": 992.16, + "probability": 0.787 + }, + { + "start": 992.34, + "end": 993.76, + "probability": 0.86 + }, + { + "start": 994.08, + "end": 998.12, + "probability": 0.9878 + }, + { + "start": 998.5, + "end": 1004.7, + "probability": 0.9895 + }, + { + "start": 1005.06, + "end": 1005.06, + "probability": 0.2916 + }, + { + "start": 1005.14, + "end": 1007.74, + "probability": 0.965 + }, + { + "start": 1008.26, + "end": 1010.1, + "probability": 0.9579 + }, + { + "start": 1010.36, + "end": 1010.86, + "probability": 0.8182 + }, + { + "start": 1011.26, + "end": 1015.7, + "probability": 0.9944 + }, + { + "start": 1016.2, + "end": 1017.96, + "probability": 0.9591 + }, + { + "start": 1018.36, + "end": 1021.52, + "probability": 0.9828 + }, + { + "start": 1022.12, + "end": 1024.02, + "probability": 0.9763 + }, + { + "start": 1024.14, + "end": 1029.98, + "probability": 0.9214 + }, + { + "start": 1030.14, + "end": 1033.86, + "probability": 0.9332 + }, + { + "start": 1033.86, + "end": 1036.66, + "probability": 0.999 + }, + { + "start": 1037.42, + "end": 1041.12, + "probability": 0.9979 + }, + { + "start": 1041.34, + "end": 1043.24, + "probability": 0.8669 + }, + { + "start": 1043.5, + "end": 1045.02, + "probability": 0.8905 + }, + { + "start": 1045.24, + "end": 1046.48, + "probability": 0.5939 + }, + { + "start": 1046.62, + "end": 1047.9, + "probability": 0.6866 + }, + { + "start": 1048.0, + "end": 1054.2, + "probability": 0.8509 + }, + { + "start": 1054.44, + "end": 1060.46, + "probability": 0.9893 + }, + { + "start": 1060.46, + "end": 1064.98, + "probability": 0.9826 + }, + { + "start": 1065.36, + "end": 1068.5, + "probability": 0.9897 + }, + { + "start": 1068.72, + "end": 1073.34, + "probability": 0.9608 + }, + { + "start": 1073.44, + "end": 1074.22, + "probability": 0.661 + }, + { + "start": 1074.46, + "end": 1075.34, + "probability": 0.8223 + }, + { + "start": 1075.4, + "end": 1076.94, + "probability": 0.9556 + }, + { + "start": 1077.28, + "end": 1078.62, + "probability": 0.8546 + }, + { + "start": 1079.08, + "end": 1082.62, + "probability": 0.9989 + }, + { + "start": 1082.62, + "end": 1086.3, + "probability": 0.9978 + }, + { + "start": 1086.64, + "end": 1088.67, + "probability": 0.9872 + }, + { + "start": 1089.28, + "end": 1090.94, + "probability": 0.8282 + }, + { + "start": 1091.1, + "end": 1094.9, + "probability": 0.9008 + }, + { + "start": 1095.32, + "end": 1101.64, + "probability": 0.995 + }, + { + "start": 1102.08, + "end": 1106.5, + "probability": 0.9634 + }, + { + "start": 1106.86, + "end": 1108.6, + "probability": 0.8823 + }, + { + "start": 1109.0, + "end": 1110.3, + "probability": 0.9897 + }, + { + "start": 1110.64, + "end": 1112.26, + "probability": 0.962 + }, + { + "start": 1113.18, + "end": 1116.5, + "probability": 0.9878 + }, + { + "start": 1116.86, + "end": 1118.88, + "probability": 0.7883 + }, + { + "start": 1119.24, + "end": 1122.69, + "probability": 0.9858 + }, + { + "start": 1124.08, + "end": 1126.42, + "probability": 0.7518 + }, + { + "start": 1127.2, + "end": 1131.08, + "probability": 0.9805 + }, + { + "start": 1131.6, + "end": 1135.1, + "probability": 0.8774 + }, + { + "start": 1135.32, + "end": 1137.76, + "probability": 0.973 + }, + { + "start": 1138.08, + "end": 1141.82, + "probability": 0.9961 + }, + { + "start": 1142.28, + "end": 1143.58, + "probability": 0.8723 + }, + { + "start": 1143.7, + "end": 1148.76, + "probability": 0.9653 + }, + { + "start": 1148.86, + "end": 1150.98, + "probability": 0.8262 + }, + { + "start": 1151.82, + "end": 1153.3, + "probability": 0.6845 + }, + { + "start": 1153.44, + "end": 1157.98, + "probability": 0.9484 + }, + { + "start": 1158.5, + "end": 1161.34, + "probability": 0.9534 + }, + { + "start": 1162.0, + "end": 1165.14, + "probability": 0.8972 + }, + { + "start": 1165.6, + "end": 1166.08, + "probability": 0.5618 + }, + { + "start": 1166.12, + "end": 1167.62, + "probability": 0.876 + }, + { + "start": 1167.66, + "end": 1168.66, + "probability": 0.7554 + }, + { + "start": 1169.0, + "end": 1169.81, + "probability": 0.9821 + }, + { + "start": 1170.42, + "end": 1171.12, + "probability": 0.9165 + }, + { + "start": 1171.42, + "end": 1175.36, + "probability": 0.9487 + }, + { + "start": 1175.44, + "end": 1176.56, + "probability": 0.9263 + }, + { + "start": 1176.58, + "end": 1177.68, + "probability": 0.7715 + }, + { + "start": 1178.16, + "end": 1182.0, + "probability": 0.6255 + }, + { + "start": 1192.7, + "end": 1197.48, + "probability": 0.7991 + }, + { + "start": 1198.26, + "end": 1203.08, + "probability": 0.9851 + }, + { + "start": 1203.08, + "end": 1207.38, + "probability": 0.9824 + }, + { + "start": 1207.64, + "end": 1208.94, + "probability": 0.7261 + }, + { + "start": 1209.18, + "end": 1211.13, + "probability": 0.957 + }, + { + "start": 1211.34, + "end": 1214.42, + "probability": 0.9976 + }, + { + "start": 1214.92, + "end": 1217.72, + "probability": 0.9215 + }, + { + "start": 1217.76, + "end": 1219.9, + "probability": 0.804 + }, + { + "start": 1220.36, + "end": 1221.59, + "probability": 0.9248 + }, + { + "start": 1222.46, + "end": 1223.74, + "probability": 0.5025 + }, + { + "start": 1224.2, + "end": 1229.5, + "probability": 0.76 + }, + { + "start": 1229.88, + "end": 1233.92, + "probability": 0.9548 + }, + { + "start": 1234.36, + "end": 1239.12, + "probability": 0.9915 + }, + { + "start": 1240.09, + "end": 1242.82, + "probability": 0.6036 + }, + { + "start": 1242.82, + "end": 1243.29, + "probability": 0.2034 + }, + { + "start": 1243.86, + "end": 1246.18, + "probability": 0.7982 + }, + { + "start": 1246.26, + "end": 1249.28, + "probability": 0.9729 + }, + { + "start": 1261.84, + "end": 1262.88, + "probability": 0.1548 + }, + { + "start": 1262.88, + "end": 1265.74, + "probability": 0.0787 + }, + { + "start": 1265.74, + "end": 1269.34, + "probability": 0.0934 + }, + { + "start": 1269.72, + "end": 1270.86, + "probability": 0.0545 + }, + { + "start": 1270.98, + "end": 1272.6, + "probability": 0.3426 + }, + { + "start": 1284.12, + "end": 1284.24, + "probability": 0.0004 + }, + { + "start": 1297.74, + "end": 1299.12, + "probability": 0.4981 + }, + { + "start": 1301.12, + "end": 1304.84, + "probability": 0.9917 + }, + { + "start": 1308.04, + "end": 1312.24, + "probability": 0.8835 + }, + { + "start": 1314.34, + "end": 1315.72, + "probability": 0.9696 + }, + { + "start": 1318.12, + "end": 1318.92, + "probability": 0.6283 + }, + { + "start": 1319.36, + "end": 1319.76, + "probability": 0.6379 + }, + { + "start": 1319.82, + "end": 1320.08, + "probability": 0.3141 + }, + { + "start": 1320.16, + "end": 1322.18, + "probability": 0.6967 + }, + { + "start": 1322.34, + "end": 1323.18, + "probability": 0.0504 + }, + { + "start": 1323.5, + "end": 1324.28, + "probability": 0.2186 + }, + { + "start": 1324.92, + "end": 1325.88, + "probability": 0.0537 + }, + { + "start": 1326.1, + "end": 1326.78, + "probability": 0.8586 + }, + { + "start": 1326.78, + "end": 1326.94, + "probability": 0.8189 + }, + { + "start": 1326.94, + "end": 1327.34, + "probability": 0.7587 + }, + { + "start": 1327.42, + "end": 1328.02, + "probability": 0.9029 + }, + { + "start": 1328.14, + "end": 1329.38, + "probability": 0.8568 + }, + { + "start": 1331.2, + "end": 1332.36, + "probability": 0.9564 + }, + { + "start": 1334.14, + "end": 1335.64, + "probability": 0.9463 + }, + { + "start": 1336.88, + "end": 1338.52, + "probability": 0.9923 + }, + { + "start": 1340.52, + "end": 1340.52, + "probability": 0.645 + }, + { + "start": 1340.52, + "end": 1341.82, + "probability": 0.886 + }, + { + "start": 1341.94, + "end": 1344.52, + "probability": 0.9894 + }, + { + "start": 1346.12, + "end": 1347.92, + "probability": 0.908 + }, + { + "start": 1349.28, + "end": 1352.78, + "probability": 0.8982 + }, + { + "start": 1352.94, + "end": 1354.48, + "probability": 0.9733 + }, + { + "start": 1355.1, + "end": 1356.72, + "probability": 0.9897 + }, + { + "start": 1357.02, + "end": 1359.32, + "probability": 0.9895 + }, + { + "start": 1360.78, + "end": 1364.68, + "probability": 0.9727 + }, + { + "start": 1365.92, + "end": 1368.74, + "probability": 0.8369 + }, + { + "start": 1369.6, + "end": 1372.93, + "probability": 0.9058 + }, + { + "start": 1374.32, + "end": 1374.96, + "probability": 0.9423 + }, + { + "start": 1376.74, + "end": 1378.58, + "probability": 0.7883 + }, + { + "start": 1378.86, + "end": 1379.54, + "probability": 0.8997 + }, + { + "start": 1380.34, + "end": 1381.04, + "probability": 0.5853 + }, + { + "start": 1381.14, + "end": 1381.6, + "probability": 0.4301 + }, + { + "start": 1382.24, + "end": 1382.68, + "probability": 0.2632 + }, + { + "start": 1382.68, + "end": 1384.16, + "probability": 0.4698 + }, + { + "start": 1384.76, + "end": 1384.86, + "probability": 0.0435 + }, + { + "start": 1384.96, + "end": 1384.96, + "probability": 0.4144 + }, + { + "start": 1384.96, + "end": 1385.94, + "probability": 0.2381 + }, + { + "start": 1385.98, + "end": 1387.86, + "probability": 0.7574 + }, + { + "start": 1387.96, + "end": 1389.28, + "probability": 0.7843 + }, + { + "start": 1389.36, + "end": 1392.5, + "probability": 0.4472 + }, + { + "start": 1392.6, + "end": 1393.04, + "probability": 0.0798 + }, + { + "start": 1393.7, + "end": 1401.72, + "probability": 0.0412 + }, + { + "start": 1402.98, + "end": 1404.28, + "probability": 0.026 + }, + { + "start": 1404.28, + "end": 1404.48, + "probability": 0.0531 + }, + { + "start": 1404.48, + "end": 1406.34, + "probability": 0.0904 + }, + { + "start": 1407.3, + "end": 1407.3, + "probability": 0.4027 + }, + { + "start": 1407.88, + "end": 1408.8, + "probability": 0.0307 + }, + { + "start": 1408.82, + "end": 1410.0, + "probability": 0.1247 + }, + { + "start": 1412.48, + "end": 1416.34, + "probability": 0.0166 + }, + { + "start": 1417.56, + "end": 1417.56, + "probability": 0.0082 + }, + { + "start": 1418.65, + "end": 1418.72, + "probability": 0.0603 + }, + { + "start": 1418.92, + "end": 1419.44, + "probability": 0.0644 + }, + { + "start": 1419.44, + "end": 1423.34, + "probability": 0.0259 + }, + { + "start": 1424.1, + "end": 1429.38, + "probability": 0.0681 + }, + { + "start": 1429.38, + "end": 1430.56, + "probability": 0.0432 + }, + { + "start": 1434.56, + "end": 1435.7, + "probability": 0.0398 + }, + { + "start": 1436.44, + "end": 1436.84, + "probability": 0.0234 + }, + { + "start": 1437.0, + "end": 1437.0, + "probability": 0.0 + }, + { + "start": 1437.0, + "end": 1437.0, + "probability": 0.0 + }, + { + "start": 1437.0, + "end": 1437.0, + "probability": 0.0 + }, + { + "start": 1437.0, + "end": 1437.0, + "probability": 0.0 + }, + { + "start": 1437.0, + "end": 1437.0, + "probability": 0.0 + }, + { + "start": 1437.0, + "end": 1437.0, + "probability": 0.0 + }, + { + "start": 1437.0, + "end": 1437.0, + "probability": 0.0 + }, + { + "start": 1437.0, + "end": 1437.0, + "probability": 0.0 + }, + { + "start": 1437.0, + "end": 1437.0, + "probability": 0.0 + }, + { + "start": 1440.96, + "end": 1443.12, + "probability": 0.7623 + }, + { + "start": 1443.4, + "end": 1449.34, + "probability": 0.4747 + }, + { + "start": 1449.66, + "end": 1451.76, + "probability": 0.0301 + }, + { + "start": 1452.08, + "end": 1453.27, + "probability": 0.1782 + }, + { + "start": 1455.1, + "end": 1457.82, + "probability": 0.0502 + }, + { + "start": 1458.54, + "end": 1458.9, + "probability": 0.3626 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.0, + "end": 1568.0, + "probability": 0.0 + }, + { + "start": 1568.36, + "end": 1568.62, + "probability": 0.202 + }, + { + "start": 1568.62, + "end": 1568.62, + "probability": 0.0564 + }, + { + "start": 1568.62, + "end": 1571.5, + "probability": 0.8481 + }, + { + "start": 1571.96, + "end": 1573.68, + "probability": 0.7118 + }, + { + "start": 1573.86, + "end": 1576.45, + "probability": 0.0141 + }, + { + "start": 1577.44, + "end": 1578.89, + "probability": 0.2221 + }, + { + "start": 1579.28, + "end": 1581.14, + "probability": 0.3958 + }, + { + "start": 1581.14, + "end": 1581.14, + "probability": 0.0446 + }, + { + "start": 1581.14, + "end": 1582.42, + "probability": 0.7656 + }, + { + "start": 1582.42, + "end": 1585.9, + "probability": 0.7943 + }, + { + "start": 1586.58, + "end": 1588.02, + "probability": 0.8633 + }, + { + "start": 1588.82, + "end": 1590.12, + "probability": 0.9129 + }, + { + "start": 1590.68, + "end": 1595.76, + "probability": 0.9495 + }, + { + "start": 1595.8, + "end": 1597.25, + "probability": 0.9617 + }, + { + "start": 1597.82, + "end": 1600.56, + "probability": 0.9746 + }, + { + "start": 1601.36, + "end": 1605.66, + "probability": 0.9905 + }, + { + "start": 1607.24, + "end": 1607.24, + "probability": 0.1238 + }, + { + "start": 1607.24, + "end": 1607.78, + "probability": 0.6046 + }, + { + "start": 1608.74, + "end": 1609.16, + "probability": 0.309 + }, + { + "start": 1609.16, + "end": 1610.6, + "probability": 0.5428 + }, + { + "start": 1610.6, + "end": 1610.66, + "probability": 0.243 + }, + { + "start": 1610.78, + "end": 1611.32, + "probability": 0.6212 + }, + { + "start": 1611.32, + "end": 1612.1, + "probability": 0.2536 + }, + { + "start": 1612.16, + "end": 1614.04, + "probability": 0.2062 + }, + { + "start": 1614.3, + "end": 1616.04, + "probability": 0.0078 + }, + { + "start": 1616.04, + "end": 1616.93, + "probability": 0.1405 + }, + { + "start": 1617.54, + "end": 1619.28, + "probability": 0.8158 + }, + { + "start": 1619.46, + "end": 1621.04, + "probability": 0.9935 + }, + { + "start": 1622.28, + "end": 1623.62, + "probability": 0.2073 + }, + { + "start": 1624.28, + "end": 1626.08, + "probability": 0.8848 + }, + { + "start": 1626.88, + "end": 1630.32, + "probability": 0.0315 + }, + { + "start": 1639.3, + "end": 1640.72, + "probability": 0.2461 + }, + { + "start": 1640.72, + "end": 1640.72, + "probability": 0.0468 + }, + { + "start": 1640.72, + "end": 1640.84, + "probability": 0.0671 + }, + { + "start": 1641.34, + "end": 1642.3, + "probability": 0.663 + }, + { + "start": 1644.75, + "end": 1646.12, + "probability": 0.0195 + }, + { + "start": 1646.12, + "end": 1649.14, + "probability": 0.1151 + }, + { + "start": 1649.68, + "end": 1651.66, + "probability": 0.8778 + }, + { + "start": 1653.06, + "end": 1654.12, + "probability": 0.8428 + }, + { + "start": 1655.3, + "end": 1659.14, + "probability": 0.9754 + }, + { + "start": 1659.9, + "end": 1667.56, + "probability": 0.9958 + }, + { + "start": 1668.64, + "end": 1670.04, + "probability": 0.9454 + }, + { + "start": 1671.2, + "end": 1672.28, + "probability": 0.9747 + }, + { + "start": 1673.42, + "end": 1674.9, + "probability": 0.9958 + }, + { + "start": 1676.54, + "end": 1678.3, + "probability": 0.8436 + }, + { + "start": 1679.94, + "end": 1681.44, + "probability": 0.8272 + }, + { + "start": 1681.46, + "end": 1685.44, + "probability": 0.9972 + }, + { + "start": 1687.36, + "end": 1688.18, + "probability": 0.7444 + }, + { + "start": 1689.54, + "end": 1691.34, + "probability": 0.8745 + }, + { + "start": 1692.76, + "end": 1698.0, + "probability": 0.9958 + }, + { + "start": 1698.72, + "end": 1702.08, + "probability": 0.937 + }, + { + "start": 1702.78, + "end": 1704.04, + "probability": 0.9444 + }, + { + "start": 1704.76, + "end": 1707.54, + "probability": 0.9309 + }, + { + "start": 1707.86, + "end": 1708.5, + "probability": 0.6424 + }, + { + "start": 1708.72, + "end": 1710.54, + "probability": 0.819 + }, + { + "start": 1711.76, + "end": 1713.64, + "probability": 0.7702 + }, + { + "start": 1715.02, + "end": 1715.84, + "probability": 0.8041 + }, + { + "start": 1716.78, + "end": 1718.19, + "probability": 0.9524 + }, + { + "start": 1719.46, + "end": 1724.92, + "probability": 0.9285 + }, + { + "start": 1725.66, + "end": 1728.22, + "probability": 0.861 + }, + { + "start": 1729.18, + "end": 1731.94, + "probability": 0.9431 + }, + { + "start": 1732.89, + "end": 1735.94, + "probability": 0.8603 + }, + { + "start": 1737.0, + "end": 1740.66, + "probability": 0.8601 + }, + { + "start": 1742.04, + "end": 1747.5, + "probability": 0.9333 + }, + { + "start": 1748.42, + "end": 1749.2, + "probability": 0.9154 + }, + { + "start": 1749.54, + "end": 1752.0, + "probability": 0.8676 + }, + { + "start": 1752.82, + "end": 1754.6, + "probability": 0.9406 + }, + { + "start": 1754.76, + "end": 1755.82, + "probability": 0.92 + }, + { + "start": 1755.94, + "end": 1756.96, + "probability": 0.6908 + }, + { + "start": 1757.2, + "end": 1758.44, + "probability": 0.0255 + }, + { + "start": 1758.48, + "end": 1759.78, + "probability": 0.7733 + }, + { + "start": 1759.86, + "end": 1760.48, + "probability": 0.2742 + }, + { + "start": 1760.56, + "end": 1763.36, + "probability": 0.7372 + }, + { + "start": 1764.02, + "end": 1764.44, + "probability": 0.0347 + }, + { + "start": 1764.44, + "end": 1765.8, + "probability": 0.4422 + }, + { + "start": 1766.08, + "end": 1767.16, + "probability": 0.6138 + }, + { + "start": 1767.16, + "end": 1768.14, + "probability": 0.0257 + }, + { + "start": 1768.14, + "end": 1771.08, + "probability": 0.8396 + }, + { + "start": 1771.28, + "end": 1771.46, + "probability": 0.0666 + }, + { + "start": 1771.54, + "end": 1773.38, + "probability": 0.8196 + }, + { + "start": 1773.46, + "end": 1777.2, + "probability": 0.9454 + }, + { + "start": 1778.0, + "end": 1781.56, + "probability": 0.86 + }, + { + "start": 1782.84, + "end": 1786.02, + "probability": 0.6464 + }, + { + "start": 1786.02, + "end": 1787.44, + "probability": 0.846 + }, + { + "start": 1788.14, + "end": 1789.26, + "probability": 0.7598 + }, + { + "start": 1789.66, + "end": 1801.34, + "probability": 0.0092 + }, + { + "start": 1801.34, + "end": 1801.54, + "probability": 0.0169 + }, + { + "start": 1801.54, + "end": 1803.16, + "probability": 0.167 + }, + { + "start": 1803.58, + "end": 1803.76, + "probability": 0.0217 + }, + { + "start": 1804.8, + "end": 1806.02, + "probability": 0.0768 + }, + { + "start": 1807.02, + "end": 1809.02, + "probability": 0.1309 + }, + { + "start": 1810.88, + "end": 1812.36, + "probability": 0.0727 + }, + { + "start": 1812.36, + "end": 1813.18, + "probability": 0.02 + }, + { + "start": 1813.96, + "end": 1814.5, + "probability": 0.0504 + }, + { + "start": 1814.74, + "end": 1817.17, + "probability": 0.026 + }, + { + "start": 1817.56, + "end": 1817.76, + "probability": 0.1455 + }, + { + "start": 1817.94, + "end": 1820.19, + "probability": 0.0247 + }, + { + "start": 1821.5, + "end": 1823.16, + "probability": 0.0375 + }, + { + "start": 1823.16, + "end": 1825.16, + "probability": 0.2964 + }, + { + "start": 1826.16, + "end": 1827.0, + "probability": 0.0364 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1852.0, + "end": 1852.0, + "probability": 0.0 + }, + { + "start": 1853.67, + "end": 1857.52, + "probability": 0.9946 + }, + { + "start": 1857.54, + "end": 1858.3, + "probability": 0.2762 + }, + { + "start": 1858.34, + "end": 1858.64, + "probability": 0.0346 + }, + { + "start": 1858.72, + "end": 1858.86, + "probability": 0.0066 + }, + { + "start": 1858.86, + "end": 1859.12, + "probability": 0.0291 + }, + { + "start": 1859.12, + "end": 1866.9, + "probability": 0.9847 + }, + { + "start": 1867.94, + "end": 1871.06, + "probability": 0.9775 + }, + { + "start": 1871.16, + "end": 1871.16, + "probability": 0.0411 + }, + { + "start": 1871.52, + "end": 1872.46, + "probability": 0.4642 + }, + { + "start": 1872.48, + "end": 1872.76, + "probability": 0.008 + }, + { + "start": 1872.76, + "end": 1876.38, + "probability": 0.9204 + }, + { + "start": 1876.38, + "end": 1876.9, + "probability": 0.0164 + }, + { + "start": 1877.44, + "end": 1878.42, + "probability": 0.1197 + }, + { + "start": 1880.34, + "end": 1880.86, + "probability": 0.0089 + }, + { + "start": 1880.86, + "end": 1882.6, + "probability": 0.4156 + }, + { + "start": 1882.72, + "end": 1882.72, + "probability": 0.0489 + }, + { + "start": 1882.72, + "end": 1882.74, + "probability": 0.4019 + }, + { + "start": 1882.78, + "end": 1882.8, + "probability": 0.6045 + }, + { + "start": 1882.8, + "end": 1886.18, + "probability": 0.4887 + }, + { + "start": 1886.88, + "end": 1887.74, + "probability": 0.1338 + }, + { + "start": 1887.74, + "end": 1888.18, + "probability": 0.0246 + }, + { + "start": 1888.44, + "end": 1890.68, + "probability": 0.6611 + }, + { + "start": 1890.68, + "end": 1891.82, + "probability": 0.4622 + }, + { + "start": 1891.9, + "end": 1892.83, + "probability": 0.4232 + }, + { + "start": 1892.98, + "end": 1893.36, + "probability": 0.473 + }, + { + "start": 1894.28, + "end": 1895.92, + "probability": 0.4066 + }, + { + "start": 1896.04, + "end": 1896.6, + "probability": 0.0701 + }, + { + "start": 1896.6, + "end": 1898.02, + "probability": 0.835 + }, + { + "start": 1898.04, + "end": 1898.06, + "probability": 0.1189 + }, + { + "start": 1898.5, + "end": 1901.9, + "probability": 0.9408 + }, + { + "start": 1901.96, + "end": 1902.36, + "probability": 0.5477 + }, + { + "start": 1904.38, + "end": 1904.9, + "probability": 0.0193 + }, + { + "start": 1904.9, + "end": 1905.5, + "probability": 0.4385 + }, + { + "start": 1905.78, + "end": 1907.04, + "probability": 0.9883 + }, + { + "start": 1907.74, + "end": 1912.44, + "probability": 0.9307 + }, + { + "start": 1913.22, + "end": 1921.36, + "probability": 0.978 + }, + { + "start": 1921.5, + "end": 1921.96, + "probability": 0.0571 + }, + { + "start": 1922.12, + "end": 1922.68, + "probability": 0.2008 + }, + { + "start": 1922.86, + "end": 1924.84, + "probability": 0.7689 + }, + { + "start": 1925.06, + "end": 1927.82, + "probability": 0.9924 + }, + { + "start": 1927.94, + "end": 1928.86, + "probability": 0.6848 + }, + { + "start": 1929.0, + "end": 1929.94, + "probability": 0.1834 + }, + { + "start": 1930.08, + "end": 1932.18, + "probability": 0.9878 + }, + { + "start": 1932.54, + "end": 1934.82, + "probability": 0.9448 + }, + { + "start": 1935.58, + "end": 1936.2, + "probability": 0.4696 + }, + { + "start": 1936.76, + "end": 1943.54, + "probability": 0.9587 + }, + { + "start": 1943.98, + "end": 1946.32, + "probability": 0.8937 + }, + { + "start": 1947.18, + "end": 1950.68, + "probability": 0.6994 + }, + { + "start": 1951.54, + "end": 1956.78, + "probability": 0.9954 + }, + { + "start": 1956.78, + "end": 1961.54, + "probability": 0.9909 + }, + { + "start": 1961.7, + "end": 1964.52, + "probability": 0.1155 + }, + { + "start": 1964.74, + "end": 1965.26, + "probability": 0.447 + }, + { + "start": 1965.46, + "end": 1971.1, + "probability": 0.9446 + }, + { + "start": 1971.26, + "end": 1971.26, + "probability": 0.1757 + }, + { + "start": 1971.42, + "end": 1973.48, + "probability": 0.3344 + }, + { + "start": 1973.48, + "end": 1975.28, + "probability": 0.1689 + }, + { + "start": 1976.6, + "end": 1976.82, + "probability": 0.5136 + }, + { + "start": 1976.82, + "end": 1976.82, + "probability": 0.0164 + }, + { + "start": 1976.82, + "end": 1976.94, + "probability": 0.0173 + }, + { + "start": 1976.94, + "end": 1979.6, + "probability": 0.7887 + }, + { + "start": 1979.82, + "end": 1981.08, + "probability": 0.4829 + }, + { + "start": 1981.16, + "end": 1984.58, + "probability": 0.9346 + }, + { + "start": 1985.12, + "end": 1989.4, + "probability": 0.9372 + }, + { + "start": 1989.56, + "end": 1991.48, + "probability": 0.8242 + }, + { + "start": 1991.52, + "end": 1992.29, + "probability": 0.3303 + }, + { + "start": 1992.6, + "end": 1992.68, + "probability": 0.0264 + }, + { + "start": 1992.74, + "end": 1994.02, + "probability": 0.4938 + }, + { + "start": 1994.14, + "end": 1995.69, + "probability": 0.6864 + }, + { + "start": 1995.74, + "end": 1996.72, + "probability": 0.0573 + }, + { + "start": 1996.72, + "end": 1998.28, + "probability": 0.9081 + }, + { + "start": 1998.44, + "end": 2000.58, + "probability": 0.8284 + }, + { + "start": 2000.96, + "end": 2001.88, + "probability": 0.5375 + }, + { + "start": 2001.88, + "end": 2002.12, + "probability": 0.0329 + }, + { + "start": 2002.12, + "end": 2004.44, + "probability": 0.5508 + }, + { + "start": 2004.78, + "end": 2005.54, + "probability": 0.0429 + }, + { + "start": 2005.76, + "end": 2005.96, + "probability": 0.1228 + }, + { + "start": 2005.96, + "end": 2006.32, + "probability": 0.0987 + }, + { + "start": 2006.32, + "end": 2008.26, + "probability": 0.4334 + }, + { + "start": 2008.4, + "end": 2011.82, + "probability": 0.5525 + }, + { + "start": 2012.46, + "end": 2013.42, + "probability": 0.014 + }, + { + "start": 2013.58, + "end": 2015.56, + "probability": 0.2751 + }, + { + "start": 2015.78, + "end": 2020.92, + "probability": 0.6796 + }, + { + "start": 2021.0, + "end": 2021.72, + "probability": 0.9668 + }, + { + "start": 2021.86, + "end": 2024.0, + "probability": 0.7479 + }, + { + "start": 2024.08, + "end": 2024.74, + "probability": 0.4116 + }, + { + "start": 2025.16, + "end": 2026.92, + "probability": 0.8201 + }, + { + "start": 2026.94, + "end": 2027.94, + "probability": 0.8342 + }, + { + "start": 2028.6, + "end": 2028.94, + "probability": 0.164 + }, + { + "start": 2029.28, + "end": 2029.92, + "probability": 0.9412 + }, + { + "start": 2030.34, + "end": 2033.72, + "probability": 0.9907 + }, + { + "start": 2034.38, + "end": 2036.04, + "probability": 0.8919 + }, + { + "start": 2036.82, + "end": 2038.61, + "probability": 0.8623 + }, + { + "start": 2039.36, + "end": 2041.32, + "probability": 0.8398 + }, + { + "start": 2042.12, + "end": 2043.98, + "probability": 0.9465 + }, + { + "start": 2044.08, + "end": 2045.5, + "probability": 0.7794 + }, + { + "start": 2045.98, + "end": 2050.44, + "probability": 0.4148 + }, + { + "start": 2050.6, + "end": 2050.86, + "probability": 0.1513 + }, + { + "start": 2050.86, + "end": 2050.86, + "probability": 0.0576 + }, + { + "start": 2050.86, + "end": 2051.24, + "probability": 0.2924 + }, + { + "start": 2051.5, + "end": 2052.26, + "probability": 0.9536 + }, + { + "start": 2053.08, + "end": 2054.22, + "probability": 0.7721 + }, + { + "start": 2055.12, + "end": 2056.32, + "probability": 0.5925 + }, + { + "start": 2057.34, + "end": 2058.3, + "probability": 0.9534 + }, + { + "start": 2058.36, + "end": 2059.42, + "probability": 0.7537 + }, + { + "start": 2059.5, + "end": 2060.49, + "probability": 0.9302 + }, + { + "start": 2061.48, + "end": 2063.67, + "probability": 0.9937 + }, + { + "start": 2063.98, + "end": 2066.56, + "probability": 0.9071 + }, + { + "start": 2066.82, + "end": 2067.64, + "probability": 0.9196 + }, + { + "start": 2068.32, + "end": 2071.36, + "probability": 0.9619 + }, + { + "start": 2071.48, + "end": 2073.42, + "probability": 0.918 + }, + { + "start": 2073.5, + "end": 2074.82, + "probability": 0.0092 + }, + { + "start": 2075.34, + "end": 2075.84, + "probability": 0.02 + }, + { + "start": 2075.84, + "end": 2075.84, + "probability": 0.308 + }, + { + "start": 2075.84, + "end": 2075.84, + "probability": 0.1002 + }, + { + "start": 2075.84, + "end": 2077.36, + "probability": 0.1843 + }, + { + "start": 2077.38, + "end": 2078.34, + "probability": 0.6498 + }, + { + "start": 2079.12, + "end": 2079.18, + "probability": 0.2685 + }, + { + "start": 2079.18, + "end": 2081.24, + "probability": 0.3118 + }, + { + "start": 2081.52, + "end": 2084.16, + "probability": 0.8267 + }, + { + "start": 2084.58, + "end": 2087.0, + "probability": 0.1354 + }, + { + "start": 2097.64, + "end": 2098.78, + "probability": 0.8079 + }, + { + "start": 2103.46, + "end": 2109.22, + "probability": 0.1543 + }, + { + "start": 2112.95, + "end": 2115.96, + "probability": 0.1264 + }, + { + "start": 2116.28, + "end": 2117.18, + "probability": 0.1216 + }, + { + "start": 2117.18, + "end": 2120.26, + "probability": 0.0647 + }, + { + "start": 2120.44, + "end": 2121.74, + "probability": 0.0251 + }, + { + "start": 2121.74, + "end": 2123.94, + "probability": 0.0523 + }, + { + "start": 2124.14, + "end": 2128.0, + "probability": 0.1229 + }, + { + "start": 2128.72, + "end": 2131.32, + "probability": 0.0496 + }, + { + "start": 2132.35, + "end": 2132.61, + "probability": 0.0668 + }, + { + "start": 2133.18, + "end": 2134.6, + "probability": 0.2974 + }, + { + "start": 2135.22, + "end": 2135.52, + "probability": 0.0598 + }, + { + "start": 2135.52, + "end": 2136.16, + "probability": 0.0319 + }, + { + "start": 2136.18, + "end": 2139.62, + "probability": 0.1234 + }, + { + "start": 2140.5, + "end": 2140.76, + "probability": 0.5372 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.1, + "end": 2147.44, + "probability": 0.6289 + }, + { + "start": 2147.96, + "end": 2149.96, + "probability": 0.1196 + }, + { + "start": 2150.62, + "end": 2150.86, + "probability": 0.1072 + }, + { + "start": 2150.86, + "end": 2150.86, + "probability": 0.2737 + }, + { + "start": 2150.86, + "end": 2151.04, + "probability": 0.6507 + }, + { + "start": 2151.26, + "end": 2151.78, + "probability": 0.5134 + }, + { + "start": 2152.12, + "end": 2152.98, + "probability": 0.4958 + }, + { + "start": 2153.34, + "end": 2154.34, + "probability": 0.0583 + }, + { + "start": 2154.34, + "end": 2154.78, + "probability": 0.1096 + }, + { + "start": 2154.78, + "end": 2156.02, + "probability": 0.1358 + }, + { + "start": 2156.02, + "end": 2157.52, + "probability": 0.6303 + }, + { + "start": 2157.79, + "end": 2158.58, + "probability": 0.2403 + }, + { + "start": 2158.58, + "end": 2159.5, + "probability": 0.3358 + }, + { + "start": 2160.3, + "end": 2160.32, + "probability": 0.2289 + }, + { + "start": 2160.32, + "end": 2163.48, + "probability": 0.5082 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2263.0, + "end": 2263.0, + "probability": 0.0 + }, + { + "start": 2275.84, + "end": 2278.02, + "probability": 0.3122 + }, + { + "start": 2279.96, + "end": 2280.52, + "probability": 0.2167 + }, + { + "start": 2281.12, + "end": 2281.2, + "probability": 0.388 + }, + { + "start": 2281.2, + "end": 2281.2, + "probability": 0.3088 + }, + { + "start": 2281.28, + "end": 2281.82, + "probability": 0.3353 + }, + { + "start": 2282.26, + "end": 2283.36, + "probability": 0.1654 + }, + { + "start": 2284.96, + "end": 2287.76, + "probability": 0.7415 + }, + { + "start": 2289.22, + "end": 2290.18, + "probability": 0.9729 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2393.0, + "end": 2393.0, + "probability": 0.0 + }, + { + "start": 2396.54, + "end": 2398.34, + "probability": 0.995 + }, + { + "start": 2398.88, + "end": 2401.92, + "probability": 0.9954 + }, + { + "start": 2403.36, + "end": 2404.86, + "probability": 0.7887 + }, + { + "start": 2405.4, + "end": 2407.5, + "probability": 0.8972 + }, + { + "start": 2407.98, + "end": 2408.84, + "probability": 0.5517 + }, + { + "start": 2409.2, + "end": 2412.8, + "probability": 0.9934 + }, + { + "start": 2413.54, + "end": 2419.76, + "probability": 0.8226 + }, + { + "start": 2421.14, + "end": 2424.52, + "probability": 0.8524 + }, + { + "start": 2425.6, + "end": 2428.18, + "probability": 0.9521 + }, + { + "start": 2429.24, + "end": 2433.41, + "probability": 0.99 + }, + { + "start": 2433.52, + "end": 2439.08, + "probability": 0.8877 + }, + { + "start": 2439.56, + "end": 2440.58, + "probability": 0.727 + }, + { + "start": 2441.5, + "end": 2445.44, + "probability": 0.9969 + }, + { + "start": 2447.14, + "end": 2448.28, + "probability": 0.8493 + }, + { + "start": 2449.26, + "end": 2450.64, + "probability": 0.8326 + }, + { + "start": 2451.24, + "end": 2452.96, + "probability": 0.8997 + }, + { + "start": 2454.2, + "end": 2458.52, + "probability": 0.9949 + }, + { + "start": 2459.38, + "end": 2460.98, + "probability": 0.9639 + }, + { + "start": 2461.6, + "end": 2464.78, + "probability": 0.9805 + }, + { + "start": 2465.88, + "end": 2469.74, + "probability": 0.9894 + }, + { + "start": 2470.74, + "end": 2475.56, + "probability": 0.9956 + }, + { + "start": 2477.76, + "end": 2479.72, + "probability": 0.7894 + }, + { + "start": 2480.46, + "end": 2489.62, + "probability": 0.9578 + }, + { + "start": 2490.96, + "end": 2492.32, + "probability": 0.8438 + }, + { + "start": 2493.28, + "end": 2495.86, + "probability": 0.9968 + }, + { + "start": 2496.82, + "end": 2501.56, + "probability": 0.9995 + }, + { + "start": 2502.66, + "end": 2506.94, + "probability": 0.9983 + }, + { + "start": 2507.78, + "end": 2513.62, + "probability": 0.9907 + }, + { + "start": 2515.0, + "end": 2522.3, + "probability": 0.9757 + }, + { + "start": 2523.18, + "end": 2526.18, + "probability": 0.9957 + }, + { + "start": 2526.7, + "end": 2530.72, + "probability": 0.9801 + }, + { + "start": 2531.98, + "end": 2535.18, + "probability": 0.9178 + }, + { + "start": 2536.32, + "end": 2541.38, + "probability": 0.8836 + }, + { + "start": 2542.44, + "end": 2548.96, + "probability": 0.9809 + }, + { + "start": 2550.2, + "end": 2554.46, + "probability": 0.9914 + }, + { + "start": 2555.44, + "end": 2561.38, + "probability": 0.958 + }, + { + "start": 2562.46, + "end": 2565.0, + "probability": 0.8496 + }, + { + "start": 2565.6, + "end": 2571.2, + "probability": 0.6358 + }, + { + "start": 2571.84, + "end": 2572.74, + "probability": 0.0417 + }, + { + "start": 2573.96, + "end": 2576.92, + "probability": 0.1819 + }, + { + "start": 2576.92, + "end": 2582.24, + "probability": 0.0807 + }, + { + "start": 2600.62, + "end": 2604.78, + "probability": 0.4361 + }, + { + "start": 2604.78, + "end": 2609.16, + "probability": 0.9246 + }, + { + "start": 2610.3, + "end": 2612.38, + "probability": 0.3123 + }, + { + "start": 2619.68, + "end": 2622.56, + "probability": 0.0215 + }, + { + "start": 2622.56, + "end": 2622.56, + "probability": 0.1653 + }, + { + "start": 2622.56, + "end": 2622.96, + "probability": 0.1516 + }, + { + "start": 2638.14, + "end": 2640.1, + "probability": 0.0887 + }, + { + "start": 2640.1, + "end": 2640.94, + "probability": 0.1331 + }, + { + "start": 2640.94, + "end": 2642.54, + "probability": 0.0661 + }, + { + "start": 2642.56, + "end": 2642.72, + "probability": 0.1721 + }, + { + "start": 2643.64, + "end": 2647.26, + "probability": 0.1186 + }, + { + "start": 2649.17, + "end": 2652.12, + "probability": 0.0509 + }, + { + "start": 2653.22, + "end": 2657.98, + "probability": 0.0927 + }, + { + "start": 2665.0, + "end": 2665.0, + "probability": 0.0 + }, + { + "start": 2665.0, + "end": 2665.0, + "probability": 0.0 + }, + { + "start": 2665.0, + "end": 2665.0, + "probability": 0.0 + }, + { + "start": 2665.0, + "end": 2665.0, + "probability": 0.0 + }, + { + "start": 2665.0, + "end": 2665.0, + "probability": 0.0 + }, + { + "start": 2665.0, + "end": 2665.0, + "probability": 0.0 + }, + { + "start": 2665.0, + "end": 2665.0, + "probability": 0.0 + }, + { + "start": 2665.0, + "end": 2665.0, + "probability": 0.0 + }, + { + "start": 2665.0, + "end": 2665.0, + "probability": 0.0 + }, + { + "start": 2665.0, + "end": 2665.0, + "probability": 0.0 + }, + { + "start": 2665.0, + "end": 2665.0, + "probability": 0.0 + }, + { + "start": 2665.0, + "end": 2665.0, + "probability": 0.0 + }, + { + "start": 2665.0, + "end": 2665.0, + "probability": 0.0 + }, + { + "start": 2665.14, + "end": 2667.49, + "probability": 0.2752 + }, + { + "start": 2668.56, + "end": 2675.58, + "probability": 0.9506 + }, + { + "start": 2676.72, + "end": 2682.04, + "probability": 0.9731 + }, + { + "start": 2682.6, + "end": 2687.4, + "probability": 0.4381 + }, + { + "start": 2688.46, + "end": 2689.94, + "probability": 0.7827 + }, + { + "start": 2691.02, + "end": 2695.04, + "probability": 0.9768 + }, + { + "start": 2695.92, + "end": 2697.78, + "probability": 0.7393 + }, + { + "start": 2698.52, + "end": 2703.14, + "probability": 0.9384 + }, + { + "start": 2704.1, + "end": 2710.0, + "probability": 0.9594 + }, + { + "start": 2712.3, + "end": 2716.66, + "probability": 0.9948 + }, + { + "start": 2717.78, + "end": 2719.7, + "probability": 0.7906 + }, + { + "start": 2720.66, + "end": 2724.28, + "probability": 0.999 + }, + { + "start": 2724.28, + "end": 2728.06, + "probability": 0.9609 + }, + { + "start": 2729.14, + "end": 2732.4, + "probability": 0.9883 + }, + { + "start": 2734.0, + "end": 2739.82, + "probability": 0.9982 + }, + { + "start": 2740.88, + "end": 2747.4, + "probability": 0.9811 + }, + { + "start": 2748.04, + "end": 2750.74, + "probability": 0.9752 + }, + { + "start": 2752.64, + "end": 2753.82, + "probability": 0.8155 + }, + { + "start": 2754.84, + "end": 2758.92, + "probability": 0.9937 + }, + { + "start": 2760.16, + "end": 2763.22, + "probability": 0.9828 + }, + { + "start": 2764.22, + "end": 2770.0, + "probability": 0.8738 + }, + { + "start": 2771.2, + "end": 2775.3, + "probability": 0.9775 + }, + { + "start": 2775.6, + "end": 2781.2, + "probability": 0.959 + }, + { + "start": 2781.66, + "end": 2788.4, + "probability": 0.9878 + }, + { + "start": 2789.7, + "end": 2791.32, + "probability": 0.7617 + }, + { + "start": 2792.28, + "end": 2798.32, + "probability": 0.995 + }, + { + "start": 2799.4, + "end": 2801.68, + "probability": 0.8964 + }, + { + "start": 2802.56, + "end": 2805.46, + "probability": 0.7742 + }, + { + "start": 2806.24, + "end": 2811.7, + "probability": 0.9908 + }, + { + "start": 2811.7, + "end": 2816.74, + "probability": 0.9807 + }, + { + "start": 2817.48, + "end": 2818.14, + "probability": 0.6057 + }, + { + "start": 2818.76, + "end": 2822.16, + "probability": 0.9004 + }, + { + "start": 2822.7, + "end": 2830.44, + "probability": 0.987 + }, + { + "start": 2831.46, + "end": 2833.74, + "probability": 0.9846 + }, + { + "start": 2834.34, + "end": 2836.88, + "probability": 0.9722 + }, + { + "start": 2837.8, + "end": 2841.6, + "probability": 0.8679 + }, + { + "start": 2842.16, + "end": 2846.02, + "probability": 0.9167 + }, + { + "start": 2846.76, + "end": 2852.56, + "probability": 0.9873 + }, + { + "start": 2854.92, + "end": 2858.58, + "probability": 0.9878 + }, + { + "start": 2859.52, + "end": 2862.94, + "probability": 0.9812 + }, + { + "start": 2863.68, + "end": 2865.52, + "probability": 0.9671 + }, + { + "start": 2866.48, + "end": 2869.24, + "probability": 0.9471 + }, + { + "start": 2870.6, + "end": 2875.66, + "probability": 0.9844 + }, + { + "start": 2884.84, + "end": 2887.92, + "probability": 0.7773 + }, + { + "start": 2888.68, + "end": 2889.68, + "probability": 0.0208 + }, + { + "start": 2892.86, + "end": 2894.38, + "probability": 0.0485 + }, + { + "start": 2896.66, + "end": 2901.36, + "probability": 0.8898 + }, + { + "start": 2902.12, + "end": 2905.42, + "probability": 0.9228 + }, + { + "start": 2905.8, + "end": 2907.72, + "probability": 0.8503 + }, + { + "start": 2908.4, + "end": 2909.46, + "probability": 0.9441 + }, + { + "start": 2910.14, + "end": 2910.88, + "probability": 0.7111 + }, + { + "start": 2911.04, + "end": 2912.24, + "probability": 0.8089 + }, + { + "start": 2912.5, + "end": 2913.06, + "probability": 0.8599 + }, + { + "start": 2913.14, + "end": 2914.52, + "probability": 0.8038 + }, + { + "start": 2914.92, + "end": 2921.28, + "probability": 0.9815 + }, + { + "start": 2922.44, + "end": 2925.96, + "probability": 0.9813 + }, + { + "start": 2926.36, + "end": 2928.62, + "probability": 0.9797 + }, + { + "start": 2928.98, + "end": 2931.94, + "probability": 0.9874 + }, + { + "start": 2932.36, + "end": 2936.56, + "probability": 0.9604 + }, + { + "start": 2937.06, + "end": 2941.68, + "probability": 0.9944 + }, + { + "start": 2942.46, + "end": 2944.6, + "probability": 0.0278 + }, + { + "start": 2945.66, + "end": 2947.14, + "probability": 0.0761 + }, + { + "start": 2947.7, + "end": 2950.06, + "probability": 0.8276 + }, + { + "start": 2950.24, + "end": 2952.72, + "probability": 0.7816 + }, + { + "start": 2953.26, + "end": 2961.08, + "probability": 0.0463 + }, + { + "start": 2961.18, + "end": 2964.12, + "probability": 0.9823 + }, + { + "start": 2964.62, + "end": 2964.78, + "probability": 0.6256 + }, + { + "start": 2964.78, + "end": 2966.24, + "probability": 0.9927 + }, + { + "start": 2966.86, + "end": 2969.54, + "probability": 0.9578 + }, + { + "start": 2970.64, + "end": 2970.94, + "probability": 0.3108 + }, + { + "start": 2971.4, + "end": 2973.62, + "probability": 0.5947 + }, + { + "start": 2973.72, + "end": 2974.98, + "probability": 0.9971 + }, + { + "start": 2975.54, + "end": 2977.12, + "probability": 0.9602 + }, + { + "start": 2977.36, + "end": 2978.72, + "probability": 0.9666 + }, + { + "start": 2979.0, + "end": 2979.98, + "probability": 0.672 + }, + { + "start": 2984.68, + "end": 2987.32, + "probability": 0.1487 + }, + { + "start": 2987.86, + "end": 2993.94, + "probability": 0.2073 + }, + { + "start": 3006.28, + "end": 3010.6, + "probability": 0.2478 + }, + { + "start": 3012.7, + "end": 3013.9, + "probability": 0.8901 + }, + { + "start": 3013.98, + "end": 3016.1, + "probability": 0.9834 + }, + { + "start": 3016.28, + "end": 3017.32, + "probability": 0.8158 + }, + { + "start": 3017.7, + "end": 3022.18, + "probability": 0.9951 + }, + { + "start": 3022.34, + "end": 3024.48, + "probability": 0.0948 + }, + { + "start": 3024.58, + "end": 3024.58, + "probability": 0.0945 + }, + { + "start": 3024.66, + "end": 3025.38, + "probability": 0.3883 + }, + { + "start": 3025.88, + "end": 3029.24, + "probability": 0.8423 + }, + { + "start": 3029.94, + "end": 3030.82, + "probability": 0.9158 + }, + { + "start": 3031.3, + "end": 3033.82, + "probability": 0.3818 + }, + { + "start": 3035.26, + "end": 3036.84, + "probability": 0.9267 + }, + { + "start": 3038.34, + "end": 3040.72, + "probability": 0.9649 + }, + { + "start": 3041.96, + "end": 3045.18, + "probability": 0.7128 + }, + { + "start": 3047.28, + "end": 3048.44, + "probability": 0.8038 + }, + { + "start": 3048.66, + "end": 3050.5, + "probability": 0.9618 + }, + { + "start": 3051.54, + "end": 3053.8, + "probability": 0.9843 + }, + { + "start": 3054.4, + "end": 3057.84, + "probability": 0.9599 + }, + { + "start": 3058.6, + "end": 3059.8, + "probability": 0.9841 + }, + { + "start": 3061.62, + "end": 3067.54, + "probability": 0.9944 + }, + { + "start": 3068.32, + "end": 3070.2, + "probability": 0.9985 + }, + { + "start": 3071.18, + "end": 3072.94, + "probability": 0.9123 + }, + { + "start": 3074.84, + "end": 3078.4, + "probability": 0.5577 + }, + { + "start": 3078.96, + "end": 3080.42, + "probability": 0.938 + }, + { + "start": 3081.56, + "end": 3083.56, + "probability": 0.8072 + }, + { + "start": 3084.3, + "end": 3085.98, + "probability": 0.9844 + }, + { + "start": 3087.92, + "end": 3090.98, + "probability": 0.9933 + }, + { + "start": 3091.72, + "end": 3094.86, + "probability": 0.9286 + }, + { + "start": 3096.1, + "end": 3099.06, + "probability": 0.8967 + }, + { + "start": 3100.1, + "end": 3100.78, + "probability": 0.7742 + }, + { + "start": 3101.46, + "end": 3103.2, + "probability": 0.6753 + }, + { + "start": 3105.3, + "end": 3106.14, + "probability": 0.2216 + }, + { + "start": 3106.26, + "end": 3106.8, + "probability": 0.314 + }, + { + "start": 3106.88, + "end": 3114.01, + "probability": 0.6685 + }, + { + "start": 3114.1, + "end": 3117.04, + "probability": 0.2719 + }, + { + "start": 3117.36, + "end": 3120.01, + "probability": 0.7602 + }, + { + "start": 3120.54, + "end": 3121.88, + "probability": 0.9354 + }, + { + "start": 3122.48, + "end": 3123.44, + "probability": 0.7198 + }, + { + "start": 3123.94, + "end": 3124.82, + "probability": 0.9239 + }, + { + "start": 3124.98, + "end": 3125.7, + "probability": 0.9032 + }, + { + "start": 3127.3, + "end": 3130.6, + "probability": 0.967 + }, + { + "start": 3130.6, + "end": 3134.2, + "probability": 0.9909 + }, + { + "start": 3134.82, + "end": 3139.0, + "probability": 0.9883 + }, + { + "start": 3139.0, + "end": 3142.44, + "probability": 0.8635 + }, + { + "start": 3142.96, + "end": 3144.58, + "probability": 0.9386 + }, + { + "start": 3145.24, + "end": 3145.88, + "probability": 0.5229 + }, + { + "start": 3145.98, + "end": 3150.72, + "probability": 0.9246 + }, + { + "start": 3151.8, + "end": 3153.08, + "probability": 0.7486 + }, + { + "start": 3153.64, + "end": 3155.98, + "probability": 0.828 + }, + { + "start": 3156.96, + "end": 3159.03, + "probability": 0.938 + }, + { + "start": 3160.1, + "end": 3165.54, + "probability": 0.9563 + }, + { + "start": 3167.84, + "end": 3172.26, + "probability": 0.9925 + }, + { + "start": 3172.26, + "end": 3176.74, + "probability": 0.997 + }, + { + "start": 3176.74, + "end": 3182.82, + "probability": 0.9995 + }, + { + "start": 3183.76, + "end": 3186.08, + "probability": 0.5006 + }, + { + "start": 3186.32, + "end": 3188.78, + "probability": 0.715 + }, + { + "start": 3189.58, + "end": 3190.22, + "probability": 0.5199 + }, + { + "start": 3190.46, + "end": 3192.4, + "probability": 0.0717 + }, + { + "start": 3192.4, + "end": 3193.06, + "probability": 0.404 + }, + { + "start": 3193.24, + "end": 3199.34, + "probability": 0.2367 + }, + { + "start": 3199.62, + "end": 3200.64, + "probability": 0.4267 + }, + { + "start": 3200.76, + "end": 3201.67, + "probability": 0.8529 + }, + { + "start": 3202.06, + "end": 3204.34, + "probability": 0.9814 + }, + { + "start": 3205.06, + "end": 3206.7, + "probability": 0.9904 + }, + { + "start": 3206.78, + "end": 3207.2, + "probability": 0.8507 + }, + { + "start": 3207.44, + "end": 3208.31, + "probability": 0.9658 + }, + { + "start": 3208.52, + "end": 3211.0, + "probability": 0.97 + }, + { + "start": 3211.68, + "end": 3212.24, + "probability": 0.622 + }, + { + "start": 3212.68, + "end": 3214.3, + "probability": 0.9573 + }, + { + "start": 3214.6, + "end": 3217.16, + "probability": 0.9307 + }, + { + "start": 3218.08, + "end": 3218.76, + "probability": 0.507 + }, + { + "start": 3218.92, + "end": 3219.08, + "probability": 0.7736 + }, + { + "start": 3219.48, + "end": 3223.06, + "probability": 0.9962 + }, + { + "start": 3226.72, + "end": 3231.68, + "probability": 0.9836 + }, + { + "start": 3232.38, + "end": 3234.8, + "probability": 0.9677 + }, + { + "start": 3235.5, + "end": 3236.28, + "probability": 0.8894 + }, + { + "start": 3237.0, + "end": 3240.8, + "probability": 0.8999 + }, + { + "start": 3242.1, + "end": 3243.48, + "probability": 0.9535 + }, + { + "start": 3243.66, + "end": 3243.98, + "probability": 0.6426 + }, + { + "start": 3244.06, + "end": 3244.66, + "probability": 0.9772 + }, + { + "start": 3244.92, + "end": 3245.67, + "probability": 0.9932 + }, + { + "start": 3245.98, + "end": 3246.78, + "probability": 0.9778 + }, + { + "start": 3247.7, + "end": 3248.72, + "probability": 0.2804 + }, + { + "start": 3250.06, + "end": 3254.26, + "probability": 0.9886 + }, + { + "start": 3255.36, + "end": 3255.96, + "probability": 0.1527 + }, + { + "start": 3255.98, + "end": 3259.4, + "probability": 0.973 + }, + { + "start": 3259.96, + "end": 3261.94, + "probability": 0.7773 + }, + { + "start": 3262.28, + "end": 3263.3, + "probability": 0.7529 + }, + { + "start": 3264.04, + "end": 3264.98, + "probability": 0.3797 + }, + { + "start": 3265.62, + "end": 3267.52, + "probability": 0.9756 + }, + { + "start": 3267.84, + "end": 3271.0, + "probability": 0.9754 + }, + { + "start": 3272.58, + "end": 3275.25, + "probability": 0.7269 + }, + { + "start": 3276.6, + "end": 3278.34, + "probability": 0.9752 + }, + { + "start": 3278.94, + "end": 3281.62, + "probability": 0.9866 + }, + { + "start": 3282.2, + "end": 3287.58, + "probability": 0.9975 + }, + { + "start": 3287.86, + "end": 3289.44, + "probability": 0.9771 + }, + { + "start": 3290.06, + "end": 3291.64, + "probability": 0.7568 + }, + { + "start": 3292.36, + "end": 3294.16, + "probability": 0.8888 + }, + { + "start": 3295.26, + "end": 3296.92, + "probability": 0.5134 + }, + { + "start": 3297.52, + "end": 3300.48, + "probability": 0.8345 + }, + { + "start": 3300.48, + "end": 3303.94, + "probability": 0.9755 + }, + { + "start": 3305.52, + "end": 3309.4, + "probability": 0.9741 + }, + { + "start": 3309.4, + "end": 3311.8, + "probability": 0.994 + }, + { + "start": 3312.3, + "end": 3314.54, + "probability": 0.8282 + }, + { + "start": 3315.14, + "end": 3318.14, + "probability": 0.9482 + }, + { + "start": 3318.2, + "end": 3318.7, + "probability": 0.5139 + }, + { + "start": 3318.8, + "end": 3320.02, + "probability": 0.9183 + }, + { + "start": 3320.64, + "end": 3324.86, + "probability": 0.8171 + }, + { + "start": 3325.86, + "end": 3328.66, + "probability": 0.9597 + }, + { + "start": 3328.84, + "end": 3330.66, + "probability": 0.8418 + }, + { + "start": 3332.2, + "end": 3334.78, + "probability": 0.9461 + }, + { + "start": 3335.12, + "end": 3335.74, + "probability": 0.4045 + }, + { + "start": 3335.82, + "end": 3340.14, + "probability": 0.9909 + }, + { + "start": 3340.14, + "end": 3344.38, + "probability": 0.9753 + }, + { + "start": 3344.62, + "end": 3345.6, + "probability": 0.9901 + }, + { + "start": 3345.98, + "end": 3346.88, + "probability": 0.9796 + }, + { + "start": 3347.38, + "end": 3348.5, + "probability": 0.7852 + }, + { + "start": 3350.5, + "end": 3350.6, + "probability": 0.7258 + }, + { + "start": 3350.92, + "end": 3352.3, + "probability": 0.9749 + }, + { + "start": 3352.54, + "end": 3354.68, + "probability": 0.6952 + }, + { + "start": 3354.7, + "end": 3355.94, + "probability": 0.9189 + }, + { + "start": 3357.72, + "end": 3358.78, + "probability": 0.7818 + }, + { + "start": 3359.44, + "end": 3360.44, + "probability": 0.9099 + }, + { + "start": 3360.62, + "end": 3361.2, + "probability": 0.7911 + }, + { + "start": 3361.24, + "end": 3364.94, + "probability": 0.9598 + }, + { + "start": 3364.94, + "end": 3367.34, + "probability": 0.8971 + }, + { + "start": 3368.06, + "end": 3369.48, + "probability": 0.9948 + }, + { + "start": 3370.08, + "end": 3372.8, + "probability": 0.9829 + }, + { + "start": 3373.04, + "end": 3373.64, + "probability": 0.7075 + }, + { + "start": 3374.2, + "end": 3376.26, + "probability": 0.887 + }, + { + "start": 3377.4, + "end": 3379.34, + "probability": 0.9732 + }, + { + "start": 3379.58, + "end": 3380.06, + "probability": 0.6425 + }, + { + "start": 3380.56, + "end": 3381.1, + "probability": 0.8472 + }, + { + "start": 3381.52, + "end": 3385.51, + "probability": 0.9209 + }, + { + "start": 3386.24, + "end": 3389.28, + "probability": 0.9664 + }, + { + "start": 3389.74, + "end": 3390.58, + "probability": 0.7904 + }, + { + "start": 3392.28, + "end": 3395.9, + "probability": 0.9943 + }, + { + "start": 3396.14, + "end": 3397.92, + "probability": 0.7532 + }, + { + "start": 3398.26, + "end": 3402.48, + "probability": 0.9114 + }, + { + "start": 3403.2, + "end": 3406.2, + "probability": 0.9843 + }, + { + "start": 3407.02, + "end": 3410.02, + "probability": 0.9929 + }, + { + "start": 3410.02, + "end": 3412.46, + "probability": 0.9914 + }, + { + "start": 3413.1, + "end": 3418.44, + "probability": 0.9763 + }, + { + "start": 3419.08, + "end": 3422.02, + "probability": 0.6265 + }, + { + "start": 3422.52, + "end": 3424.1, + "probability": 0.7586 + }, + { + "start": 3425.81, + "end": 3428.46, + "probability": 0.857 + }, + { + "start": 3428.88, + "end": 3431.22, + "probability": 0.8538 + }, + { + "start": 3431.78, + "end": 3435.38, + "probability": 0.7852 + }, + { + "start": 3436.2, + "end": 3436.2, + "probability": 0.0829 + }, + { + "start": 3436.22, + "end": 3436.94, + "probability": 0.9613 + }, + { + "start": 3437.36, + "end": 3439.3, + "probability": 0.8429 + }, + { + "start": 3439.5, + "end": 3441.66, + "probability": 0.881 + }, + { + "start": 3441.88, + "end": 3445.1, + "probability": 0.9517 + }, + { + "start": 3445.16, + "end": 3448.18, + "probability": 0.9536 + }, + { + "start": 3448.68, + "end": 3451.7, + "probability": 0.9696 + }, + { + "start": 3452.08, + "end": 3452.56, + "probability": 0.6678 + }, + { + "start": 3453.72, + "end": 3456.5, + "probability": 0.6524 + }, + { + "start": 3457.1, + "end": 3458.74, + "probability": 0.8217 + }, + { + "start": 3459.42, + "end": 3460.64, + "probability": 0.9688 + }, + { + "start": 3461.42, + "end": 3466.14, + "probability": 0.9243 + }, + { + "start": 3466.14, + "end": 3470.52, + "probability": 0.9672 + }, + { + "start": 3481.92, + "end": 3483.08, + "probability": 0.5728 + }, + { + "start": 3485.06, + "end": 3485.44, + "probability": 0.7659 + }, + { + "start": 3486.56, + "end": 3487.96, + "probability": 0.797 + }, + { + "start": 3490.02, + "end": 3498.04, + "probability": 0.9751 + }, + { + "start": 3501.18, + "end": 3506.98, + "probability": 0.9536 + }, + { + "start": 3509.02, + "end": 3509.92, + "probability": 0.8577 + }, + { + "start": 3511.1, + "end": 3514.46, + "probability": 0.8389 + }, + { + "start": 3515.44, + "end": 3520.02, + "probability": 0.995 + }, + { + "start": 3520.02, + "end": 3523.52, + "probability": 0.9844 + }, + { + "start": 3524.54, + "end": 3525.54, + "probability": 0.8632 + }, + { + "start": 3527.38, + "end": 3531.94, + "probability": 0.9713 + }, + { + "start": 3533.2, + "end": 3534.7, + "probability": 0.8661 + }, + { + "start": 3535.24, + "end": 3536.02, + "probability": 0.6974 + }, + { + "start": 3537.32, + "end": 3545.42, + "probability": 0.978 + }, + { + "start": 3546.26, + "end": 3548.12, + "probability": 0.9473 + }, + { + "start": 3548.12, + "end": 3550.6, + "probability": 0.9987 + }, + { + "start": 3551.76, + "end": 3553.26, + "probability": 0.5591 + }, + { + "start": 3553.74, + "end": 3559.66, + "probability": 0.9803 + }, + { + "start": 3560.78, + "end": 3563.06, + "probability": 0.9578 + }, + { + "start": 3563.68, + "end": 3567.04, + "probability": 0.9807 + }, + { + "start": 3567.68, + "end": 3571.3, + "probability": 0.9951 + }, + { + "start": 3573.74, + "end": 3576.3, + "probability": 0.908 + }, + { + "start": 3577.04, + "end": 3579.3, + "probability": 0.9661 + }, + { + "start": 3580.66, + "end": 3584.3, + "probability": 0.9977 + }, + { + "start": 3585.28, + "end": 3589.16, + "probability": 0.9891 + }, + { + "start": 3590.48, + "end": 3593.02, + "probability": 0.8524 + }, + { + "start": 3594.54, + "end": 3597.46, + "probability": 0.8384 + }, + { + "start": 3597.98, + "end": 3600.86, + "probability": 0.9835 + }, + { + "start": 3602.58, + "end": 3604.26, + "probability": 0.9884 + }, + { + "start": 3605.22, + "end": 3607.1, + "probability": 0.9554 + }, + { + "start": 3607.94, + "end": 3608.94, + "probability": 0.9451 + }, + { + "start": 3609.58, + "end": 3610.18, + "probability": 0.4436 + }, + { + "start": 3611.76, + "end": 3613.26, + "probability": 0.7935 + }, + { + "start": 3613.36, + "end": 3619.7, + "probability": 0.9507 + }, + { + "start": 3621.2, + "end": 3622.38, + "probability": 0.9377 + }, + { + "start": 3623.42, + "end": 3627.58, + "probability": 0.9681 + }, + { + "start": 3629.2, + "end": 3631.8, + "probability": 0.5874 + }, + { + "start": 3632.94, + "end": 3636.18, + "probability": 0.9076 + }, + { + "start": 3636.7, + "end": 3638.14, + "probability": 0.9662 + }, + { + "start": 3638.26, + "end": 3645.08, + "probability": 0.8712 + }, + { + "start": 3645.68, + "end": 3649.9, + "probability": 0.9969 + }, + { + "start": 3650.52, + "end": 3657.28, + "probability": 0.979 + }, + { + "start": 3658.94, + "end": 3661.64, + "probability": 0.9941 + }, + { + "start": 3662.68, + "end": 3666.28, + "probability": 0.999 + }, + { + "start": 3666.28, + "end": 3670.4, + "probability": 0.9996 + }, + { + "start": 3671.2, + "end": 3673.14, + "probability": 0.9988 + }, + { + "start": 3673.84, + "end": 3675.62, + "probability": 0.7034 + }, + { + "start": 3676.14, + "end": 3680.08, + "probability": 0.9205 + }, + { + "start": 3680.24, + "end": 3681.9, + "probability": 0.7368 + }, + { + "start": 3682.92, + "end": 3684.42, + "probability": 0.9052 + }, + { + "start": 3684.68, + "end": 3686.3, + "probability": 0.8969 + }, + { + "start": 3687.92, + "end": 3693.82, + "probability": 0.9915 + }, + { + "start": 3694.82, + "end": 3696.58, + "probability": 0.9957 + }, + { + "start": 3697.82, + "end": 3701.56, + "probability": 0.9397 + }, + { + "start": 3702.42, + "end": 3705.3, + "probability": 0.7518 + }, + { + "start": 3705.84, + "end": 3707.22, + "probability": 0.903 + }, + { + "start": 3708.16, + "end": 3709.42, + "probability": 0.7974 + }, + { + "start": 3709.62, + "end": 3713.0, + "probability": 0.9891 + }, + { + "start": 3713.98, + "end": 3715.22, + "probability": 0.9252 + }, + { + "start": 3715.96, + "end": 3717.4, + "probability": 0.7423 + }, + { + "start": 3718.08, + "end": 3721.08, + "probability": 0.9664 + }, + { + "start": 3722.64, + "end": 3726.52, + "probability": 0.9596 + }, + { + "start": 3727.06, + "end": 3733.22, + "probability": 0.9989 + }, + { + "start": 3733.5, + "end": 3736.36, + "probability": 0.802 + }, + { + "start": 3738.06, + "end": 3739.26, + "probability": 0.7539 + }, + { + "start": 3740.2, + "end": 3741.26, + "probability": 0.5907 + }, + { + "start": 3741.28, + "end": 3745.91, + "probability": 0.9559 + }, + { + "start": 3747.18, + "end": 3750.5, + "probability": 0.8296 + }, + { + "start": 3751.54, + "end": 3757.36, + "probability": 0.9299 + }, + { + "start": 3758.16, + "end": 3760.74, + "probability": 0.9895 + }, + { + "start": 3761.3, + "end": 3763.14, + "probability": 0.6851 + }, + { + "start": 3764.82, + "end": 3766.98, + "probability": 0.9946 + }, + { + "start": 3768.34, + "end": 3769.76, + "probability": 0.9782 + }, + { + "start": 3769.78, + "end": 3770.9, + "probability": 0.8547 + }, + { + "start": 3772.9, + "end": 3776.98, + "probability": 0.8667 + }, + { + "start": 3778.84, + "end": 3781.0, + "probability": 0.7541 + }, + { + "start": 3781.86, + "end": 3784.02, + "probability": 0.9409 + }, + { + "start": 3784.96, + "end": 3785.38, + "probability": 0.6282 + }, + { + "start": 3785.76, + "end": 3786.36, + "probability": 0.9432 + }, + { + "start": 3787.16, + "end": 3788.5, + "probability": 0.7738 + }, + { + "start": 3789.04, + "end": 3792.9, + "probability": 0.989 + }, + { + "start": 3793.32, + "end": 3795.9, + "probability": 0.9976 + }, + { + "start": 3796.58, + "end": 3800.02, + "probability": 0.9912 + }, + { + "start": 3801.36, + "end": 3804.16, + "probability": 0.999 + }, + { + "start": 3804.5, + "end": 3804.66, + "probability": 0.818 + }, + { + "start": 3805.2, + "end": 3805.9, + "probability": 0.8248 + }, + { + "start": 3807.04, + "end": 3808.44, + "probability": 0.9692 + }, + { + "start": 3809.38, + "end": 3812.46, + "probability": 0.9946 + }, + { + "start": 3813.18, + "end": 3813.98, + "probability": 0.8479 + }, + { + "start": 3814.76, + "end": 3818.82, + "probability": 0.9473 + }, + { + "start": 3819.66, + "end": 3821.16, + "probability": 0.2484 + }, + { + "start": 3821.72, + "end": 3822.78, + "probability": 0.2931 + }, + { + "start": 3823.38, + "end": 3828.54, + "probability": 0.6837 + }, + { + "start": 3829.32, + "end": 3831.12, + "probability": 0.6175 + }, + { + "start": 3831.82, + "end": 3832.62, + "probability": 0.7394 + }, + { + "start": 3832.64, + "end": 3835.62, + "probability": 0.9761 + }, + { + "start": 3835.88, + "end": 3836.46, + "probability": 0.8107 + }, + { + "start": 3837.84, + "end": 3841.32, + "probability": 0.9998 + }, + { + "start": 3841.32, + "end": 3847.52, + "probability": 0.9992 + }, + { + "start": 3849.04, + "end": 3851.3, + "probability": 0.9399 + }, + { + "start": 3852.54, + "end": 3854.8, + "probability": 0.9204 + }, + { + "start": 3855.9, + "end": 3858.56, + "probability": 0.9826 + }, + { + "start": 3859.56, + "end": 3863.78, + "probability": 0.3618 + }, + { + "start": 3863.78, + "end": 3867.88, + "probability": 0.9985 + }, + { + "start": 3868.8, + "end": 3870.02, + "probability": 0.6872 + }, + { + "start": 3870.76, + "end": 3875.26, + "probability": 0.9878 + }, + { + "start": 3875.54, + "end": 3876.02, + "probability": 0.8662 + }, + { + "start": 3876.92, + "end": 3878.18, + "probability": 0.6681 + }, + { + "start": 3879.56, + "end": 3881.6, + "probability": 0.5194 + }, + { + "start": 3882.24, + "end": 3884.6, + "probability": 0.774 + }, + { + "start": 3889.0, + "end": 3894.02, + "probability": 0.9966 + }, + { + "start": 3894.72, + "end": 3897.7, + "probability": 0.9847 + }, + { + "start": 3898.9, + "end": 3901.66, + "probability": 0.9771 + }, + { + "start": 3902.18, + "end": 3907.04, + "probability": 0.9946 + }, + { + "start": 3907.7, + "end": 3911.08, + "probability": 0.9914 + }, + { + "start": 3912.32, + "end": 3914.66, + "probability": 0.9244 + }, + { + "start": 3915.76, + "end": 3917.48, + "probability": 0.791 + }, + { + "start": 3917.54, + "end": 3923.66, + "probability": 0.9585 + }, + { + "start": 3924.76, + "end": 3927.58, + "probability": 0.9864 + }, + { + "start": 3927.64, + "end": 3929.36, + "probability": 0.9856 + }, + { + "start": 3929.68, + "end": 3931.13, + "probability": 0.99 + }, + { + "start": 3931.52, + "end": 3933.44, + "probability": 0.9023 + }, + { + "start": 3934.02, + "end": 3936.48, + "probability": 0.9361 + }, + { + "start": 3936.54, + "end": 3937.42, + "probability": 0.9821 + }, + { + "start": 3941.18, + "end": 3944.5, + "probability": 0.9861 + }, + { + "start": 3944.8, + "end": 3947.36, + "probability": 0.6198 + }, + { + "start": 3947.58, + "end": 3948.78, + "probability": 0.6225 + }, + { + "start": 3950.08, + "end": 3953.78, + "probability": 0.993 + }, + { + "start": 3954.46, + "end": 3959.21, + "probability": 0.9974 + }, + { + "start": 3959.32, + "end": 3963.86, + "probability": 0.9362 + }, + { + "start": 3965.78, + "end": 3972.36, + "probability": 0.9867 + }, + { + "start": 3973.14, + "end": 3975.18, + "probability": 0.6494 + }, + { + "start": 3975.74, + "end": 3977.6, + "probability": 0.9859 + }, + { + "start": 3978.84, + "end": 3979.86, + "probability": 0.6617 + }, + { + "start": 3980.72, + "end": 3981.3, + "probability": 0.4235 + }, + { + "start": 3981.72, + "end": 3982.96, + "probability": 0.566 + }, + { + "start": 3983.94, + "end": 3986.52, + "probability": 0.9919 + }, + { + "start": 3988.24, + "end": 3989.4, + "probability": 0.6261 + }, + { + "start": 3990.72, + "end": 3992.58, + "probability": 0.9983 + }, + { + "start": 3993.36, + "end": 3997.36, + "probability": 0.9591 + }, + { + "start": 3998.42, + "end": 4000.9, + "probability": 0.7518 + }, + { + "start": 4001.5, + "end": 4006.06, + "probability": 0.9953 + }, + { + "start": 4006.22, + "end": 4007.58, + "probability": 0.8923 + }, + { + "start": 4008.9, + "end": 4012.7, + "probability": 0.9937 + }, + { + "start": 4013.52, + "end": 4014.78, + "probability": 0.9683 + }, + { + "start": 4015.7, + "end": 4017.2, + "probability": 0.9946 + }, + { + "start": 4018.08, + "end": 4019.06, + "probability": 0.7344 + }, + { + "start": 4020.82, + "end": 4026.84, + "probability": 0.9516 + }, + { + "start": 4027.84, + "end": 4030.0, + "probability": 0.9993 + }, + { + "start": 4030.96, + "end": 4031.98, + "probability": 0.7941 + }, + { + "start": 4032.62, + "end": 4034.28, + "probability": 0.9868 + }, + { + "start": 4035.22, + "end": 4036.49, + "probability": 0.9919 + }, + { + "start": 4037.44, + "end": 4041.88, + "probability": 0.9913 + }, + { + "start": 4042.56, + "end": 4046.88, + "probability": 0.975 + }, + { + "start": 4049.62, + "end": 4050.68, + "probability": 0.719 + }, + { + "start": 4052.04, + "end": 4056.22, + "probability": 0.9947 + }, + { + "start": 4056.4, + "end": 4057.19, + "probability": 0.9231 + }, + { + "start": 4058.02, + "end": 4060.02, + "probability": 0.9604 + }, + { + "start": 4062.76, + "end": 4065.32, + "probability": 0.9733 + }, + { + "start": 4065.9, + "end": 4069.14, + "probability": 0.9907 + }, + { + "start": 4069.76, + "end": 4069.96, + "probability": 0.7204 + }, + { + "start": 4070.82, + "end": 4071.5, + "probability": 0.6701 + }, + { + "start": 4072.34, + "end": 4075.2, + "probability": 0.8311 + }, + { + "start": 4089.46, + "end": 4093.74, + "probability": 0.5689 + }, + { + "start": 4096.26, + "end": 4097.98, + "probability": 0.8093 + }, + { + "start": 4098.78, + "end": 4099.3, + "probability": 0.6547 + }, + { + "start": 4101.16, + "end": 4101.72, + "probability": 0.9445 + }, + { + "start": 4103.02, + "end": 4104.66, + "probability": 0.9971 + }, + { + "start": 4106.62, + "end": 4108.16, + "probability": 0.3776 + }, + { + "start": 4108.66, + "end": 4109.38, + "probability": 0.8338 + }, + { + "start": 4110.1, + "end": 4111.0, + "probability": 0.8356 + }, + { + "start": 4112.24, + "end": 4113.98, + "probability": 0.7765 + }, + { + "start": 4114.08, + "end": 4116.34, + "probability": 0.7853 + }, + { + "start": 4116.58, + "end": 4118.02, + "probability": 0.988 + }, + { + "start": 4118.14, + "end": 4119.14, + "probability": 0.9937 + }, + { + "start": 4119.24, + "end": 4120.28, + "probability": 0.9227 + }, + { + "start": 4120.68, + "end": 4121.16, + "probability": 0.9362 + }, + { + "start": 4121.18, + "end": 4122.2, + "probability": 0.8714 + }, + { + "start": 4123.66, + "end": 4126.06, + "probability": 0.6514 + }, + { + "start": 4126.48, + "end": 4127.02, + "probability": 0.8844 + }, + { + "start": 4127.94, + "end": 4131.02, + "probability": 0.9909 + }, + { + "start": 4131.8, + "end": 4136.06, + "probability": 0.8838 + }, + { + "start": 4137.34, + "end": 4138.0, + "probability": 0.688 + }, + { + "start": 4139.28, + "end": 4142.04, + "probability": 0.5004 + }, + { + "start": 4142.1, + "end": 4142.68, + "probability": 0.5909 + }, + { + "start": 4142.7, + "end": 4143.2, + "probability": 0.4832 + }, + { + "start": 4144.76, + "end": 4149.66, + "probability": 0.9086 + }, + { + "start": 4150.24, + "end": 4151.26, + "probability": 0.5273 + }, + { + "start": 4152.78, + "end": 4156.2, + "probability": 0.3278 + }, + { + "start": 4156.3, + "end": 4156.3, + "probability": 0.4489 + }, + { + "start": 4156.3, + "end": 4156.3, + "probability": 0.4222 + }, + { + "start": 4156.3, + "end": 4160.24, + "probability": 0.9948 + }, + { + "start": 4160.94, + "end": 4163.6, + "probability": 0.8289 + }, + { + "start": 4163.74, + "end": 4166.66, + "probability": 0.9944 + }, + { + "start": 4167.34, + "end": 4168.84, + "probability": 0.8041 + }, + { + "start": 4169.42, + "end": 4170.1, + "probability": 0.954 + }, + { + "start": 4170.32, + "end": 4174.26, + "probability": 0.9522 + }, + { + "start": 4174.78, + "end": 4176.62, + "probability": 0.8091 + }, + { + "start": 4178.66, + "end": 4180.22, + "probability": 0.9167 + }, + { + "start": 4180.26, + "end": 4182.44, + "probability": 0.8113 + }, + { + "start": 4183.46, + "end": 4184.42, + "probability": 0.7544 + }, + { + "start": 4184.56, + "end": 4185.4, + "probability": 0.9469 + }, + { + "start": 4185.48, + "end": 4186.26, + "probability": 0.8994 + }, + { + "start": 4186.46, + "end": 4187.06, + "probability": 0.728 + }, + { + "start": 4187.12, + "end": 4187.72, + "probability": 0.7228 + }, + { + "start": 4188.28, + "end": 4191.78, + "probability": 0.9133 + }, + { + "start": 4191.88, + "end": 4193.2, + "probability": 0.6719 + }, + { + "start": 4193.7, + "end": 4197.66, + "probability": 0.824 + }, + { + "start": 4197.8, + "end": 4198.52, + "probability": 0.7355 + }, + { + "start": 4199.22, + "end": 4202.52, + "probability": 0.8296 + }, + { + "start": 4202.56, + "end": 4202.7, + "probability": 0.3762 + }, + { + "start": 4202.74, + "end": 4203.32, + "probability": 0.8684 + }, + { + "start": 4203.36, + "end": 4206.38, + "probability": 0.9232 + }, + { + "start": 4206.38, + "end": 4209.68, + "probability": 0.9969 + }, + { + "start": 4210.18, + "end": 4212.0, + "probability": 0.9106 + }, + { + "start": 4212.4, + "end": 4214.66, + "probability": 0.8679 + }, + { + "start": 4214.92, + "end": 4215.32, + "probability": 0.5341 + }, + { + "start": 4216.14, + "end": 4218.52, + "probability": 0.835 + }, + { + "start": 4219.32, + "end": 4221.14, + "probability": 0.8847 + }, + { + "start": 4222.16, + "end": 4223.18, + "probability": 0.8079 + }, + { + "start": 4223.64, + "end": 4224.72, + "probability": 0.9073 + }, + { + "start": 4225.12, + "end": 4227.14, + "probability": 0.7622 + }, + { + "start": 4228.08, + "end": 4229.4, + "probability": 0.5412 + }, + { + "start": 4229.94, + "end": 4232.28, + "probability": 0.978 + }, + { + "start": 4233.33, + "end": 4236.78, + "probability": 0.5328 + }, + { + "start": 4238.24, + "end": 4242.9, + "probability": 0.989 + }, + { + "start": 4242.94, + "end": 4243.36, + "probability": 0.7114 + }, + { + "start": 4244.24, + "end": 4246.29, + "probability": 0.9445 + }, + { + "start": 4247.34, + "end": 4252.44, + "probability": 0.9478 + }, + { + "start": 4252.58, + "end": 4255.92, + "probability": 0.7469 + }, + { + "start": 4256.84, + "end": 4259.16, + "probability": 0.681 + }, + { + "start": 4259.88, + "end": 4261.36, + "probability": 0.981 + }, + { + "start": 4263.12, + "end": 4265.54, + "probability": 0.9607 + }, + { + "start": 4266.28, + "end": 4269.58, + "probability": 0.9489 + }, + { + "start": 4271.05, + "end": 4272.28, + "probability": 0.3772 + }, + { + "start": 4272.28, + "end": 4272.72, + "probability": 0.3246 + }, + { + "start": 4273.2, + "end": 4275.02, + "probability": 0.957 + }, + { + "start": 4275.08, + "end": 4277.66, + "probability": 0.846 + }, + { + "start": 4278.58, + "end": 4280.52, + "probability": 0.9364 + }, + { + "start": 4281.68, + "end": 4282.96, + "probability": 0.8142 + }, + { + "start": 4283.2, + "end": 4285.23, + "probability": 0.959 + }, + { + "start": 4286.02, + "end": 4286.58, + "probability": 0.8049 + }, + { + "start": 4287.02, + "end": 4287.94, + "probability": 0.5018 + }, + { + "start": 4288.14, + "end": 4289.04, + "probability": 0.9016 + }, + { + "start": 4289.54, + "end": 4290.32, + "probability": 0.8209 + }, + { + "start": 4290.5, + "end": 4291.36, + "probability": 0.9712 + }, + { + "start": 4291.44, + "end": 4292.88, + "probability": 0.9856 + }, + { + "start": 4293.96, + "end": 4294.86, + "probability": 0.7877 + }, + { + "start": 4295.78, + "end": 4299.68, + "probability": 0.9775 + }, + { + "start": 4300.42, + "end": 4307.12, + "probability": 0.9994 + }, + { + "start": 4308.22, + "end": 4308.48, + "probability": 0.5876 + }, + { + "start": 4308.66, + "end": 4310.45, + "probability": 0.6787 + }, + { + "start": 4310.66, + "end": 4313.8, + "probability": 0.8168 + }, + { + "start": 4314.22, + "end": 4314.52, + "probability": 0.8138 + }, + { + "start": 4314.6, + "end": 4314.88, + "probability": 0.7888 + }, + { + "start": 4314.92, + "end": 4315.64, + "probability": 0.8888 + }, + { + "start": 4315.88, + "end": 4316.3, + "probability": 0.9243 + }, + { + "start": 4317.02, + "end": 4318.24, + "probability": 0.7856 + }, + { + "start": 4319.96, + "end": 4321.9, + "probability": 0.9119 + }, + { + "start": 4322.92, + "end": 4327.9, + "probability": 0.9858 + }, + { + "start": 4327.92, + "end": 4331.18, + "probability": 0.9917 + }, + { + "start": 4331.46, + "end": 4332.78, + "probability": 0.9571 + }, + { + "start": 4332.96, + "end": 4335.34, + "probability": 0.4994 + }, + { + "start": 4335.46, + "end": 4336.62, + "probability": 0.7498 + }, + { + "start": 4336.82, + "end": 4340.28, + "probability": 0.9316 + }, + { + "start": 4340.96, + "end": 4344.14, + "probability": 0.624 + }, + { + "start": 4344.16, + "end": 4347.54, + "probability": 0.8337 + }, + { + "start": 4348.6, + "end": 4350.15, + "probability": 0.8074 + }, + { + "start": 4350.94, + "end": 4351.54, + "probability": 0.9839 + }, + { + "start": 4352.68, + "end": 4353.74, + "probability": 0.8248 + }, + { + "start": 4353.98, + "end": 4355.9, + "probability": 0.8194 + }, + { + "start": 4356.08, + "end": 4357.46, + "probability": 0.6738 + }, + { + "start": 4358.18, + "end": 4361.58, + "probability": 0.9828 + }, + { + "start": 4362.28, + "end": 4363.74, + "probability": 0.8403 + }, + { + "start": 4365.34, + "end": 4366.96, + "probability": 0.8794 + }, + { + "start": 4367.44, + "end": 4369.1, + "probability": 0.9886 + }, + { + "start": 4369.86, + "end": 4373.1, + "probability": 0.9984 + }, + { + "start": 4373.1, + "end": 4378.12, + "probability": 0.9829 + }, + { + "start": 4378.82, + "end": 4383.08, + "probability": 0.9941 + }, + { + "start": 4383.26, + "end": 4384.0, + "probability": 0.8047 + }, + { + "start": 4384.1, + "end": 4384.8, + "probability": 0.7713 + }, + { + "start": 4385.0, + "end": 4387.52, + "probability": 0.9426 + }, + { + "start": 4387.92, + "end": 4390.84, + "probability": 0.9146 + }, + { + "start": 4392.08, + "end": 4393.7, + "probability": 0.9929 + }, + { + "start": 4394.16, + "end": 4396.06, + "probability": 0.8888 + }, + { + "start": 4398.04, + "end": 4400.46, + "probability": 0.9822 + }, + { + "start": 4400.62, + "end": 4407.18, + "probability": 0.9453 + }, + { + "start": 4408.78, + "end": 4411.28, + "probability": 0.9235 + }, + { + "start": 4412.18, + "end": 4414.04, + "probability": 0.807 + }, + { + "start": 4414.82, + "end": 4415.76, + "probability": 0.9669 + }, + { + "start": 4415.9, + "end": 4416.92, + "probability": 0.9455 + }, + { + "start": 4417.04, + "end": 4418.24, + "probability": 0.6437 + }, + { + "start": 4418.28, + "end": 4418.78, + "probability": 0.4753 + }, + { + "start": 4418.82, + "end": 4419.56, + "probability": 0.3769 + }, + { + "start": 4420.1, + "end": 4424.03, + "probability": 0.983 + }, + { + "start": 4424.8, + "end": 4430.7, + "probability": 0.9453 + }, + { + "start": 4431.22, + "end": 4432.86, + "probability": 0.9583 + }, + { + "start": 4433.4, + "end": 4434.42, + "probability": 0.8844 + }, + { + "start": 4436.12, + "end": 4438.32, + "probability": 0.8754 + }, + { + "start": 4438.38, + "end": 4442.66, + "probability": 0.9718 + }, + { + "start": 4442.66, + "end": 4449.92, + "probability": 0.8026 + }, + { + "start": 4450.46, + "end": 4451.08, + "probability": 0.7898 + }, + { + "start": 4451.92, + "end": 4455.58, + "probability": 0.6051 + }, + { + "start": 4457.84, + "end": 4463.18, + "probability": 0.9551 + }, + { + "start": 4463.78, + "end": 4467.76, + "probability": 0.6499 + }, + { + "start": 4467.78, + "end": 4469.18, + "probability": 0.6207 + }, + { + "start": 4470.16, + "end": 4471.4, + "probability": 0.993 + }, + { + "start": 4471.4, + "end": 4474.92, + "probability": 0.9592 + }, + { + "start": 4475.14, + "end": 4482.08, + "probability": 0.9904 + }, + { + "start": 4483.02, + "end": 4487.3, + "probability": 0.9977 + }, + { + "start": 4487.4, + "end": 4488.54, + "probability": 0.8886 + }, + { + "start": 4489.22, + "end": 4493.2, + "probability": 0.9941 + }, + { + "start": 4493.2, + "end": 4496.88, + "probability": 0.9906 + }, + { + "start": 4497.64, + "end": 4499.94, + "probability": 0.7323 + }, + { + "start": 4500.68, + "end": 4503.72, + "probability": 0.9956 + }, + { + "start": 4503.72, + "end": 4507.14, + "probability": 0.9525 + }, + { + "start": 4508.86, + "end": 4511.98, + "probability": 0.6945 + }, + { + "start": 4512.3, + "end": 4516.78, + "probability": 0.9958 + }, + { + "start": 4516.78, + "end": 4523.1, + "probability": 0.9853 + }, + { + "start": 4524.46, + "end": 4529.86, + "probability": 0.9335 + }, + { + "start": 4530.78, + "end": 4533.54, + "probability": 0.8309 + }, + { + "start": 4533.68, + "end": 4534.56, + "probability": 0.7877 + }, + { + "start": 4535.06, + "end": 4536.5, + "probability": 0.9805 + }, + { + "start": 4537.04, + "end": 4541.24, + "probability": 0.9816 + }, + { + "start": 4541.82, + "end": 4543.6, + "probability": 0.9277 + }, + { + "start": 4544.16, + "end": 4549.46, + "probability": 0.9637 + }, + { + "start": 4550.06, + "end": 4552.88, + "probability": 0.9266 + }, + { + "start": 4553.38, + "end": 4553.82, + "probability": 0.5453 + }, + { + "start": 4554.72, + "end": 4555.14, + "probability": 0.6532 + }, + { + "start": 4555.22, + "end": 4556.09, + "probability": 0.853 + }, + { + "start": 4557.02, + "end": 4561.22, + "probability": 0.9246 + }, + { + "start": 4561.64, + "end": 4562.72, + "probability": 0.3055 + }, + { + "start": 4564.7, + "end": 4564.7, + "probability": 0.1027 + }, + { + "start": 4564.7, + "end": 4564.7, + "probability": 0.0123 + }, + { + "start": 4564.7, + "end": 4565.44, + "probability": 0.3405 + }, + { + "start": 4565.74, + "end": 4567.48, + "probability": 0.5972 + }, + { + "start": 4573.84, + "end": 4574.98, + "probability": 0.7496 + }, + { + "start": 4575.04, + "end": 4576.72, + "probability": 0.7993 + }, + { + "start": 4578.28, + "end": 4581.06, + "probability": 0.7293 + }, + { + "start": 4582.12, + "end": 4582.68, + "probability": 0.6323 + }, + { + "start": 4582.96, + "end": 4583.36, + "probability": 0.5198 + }, + { + "start": 4583.9, + "end": 4587.74, + "probability": 0.7444 + }, + { + "start": 4587.74, + "end": 4591.26, + "probability": 0.9737 + }, + { + "start": 4592.72, + "end": 4593.9, + "probability": 0.6344 + }, + { + "start": 4595.42, + "end": 4597.06, + "probability": 0.9591 + }, + { + "start": 4598.28, + "end": 4602.66, + "probability": 0.9843 + }, + { + "start": 4604.12, + "end": 4607.92, + "probability": 0.9927 + }, + { + "start": 4610.08, + "end": 4611.36, + "probability": 0.9946 + }, + { + "start": 4612.26, + "end": 4616.78, + "probability": 0.9707 + }, + { + "start": 4617.64, + "end": 4618.68, + "probability": 0.93 + }, + { + "start": 4619.26, + "end": 4620.22, + "probability": 0.9731 + }, + { + "start": 4620.98, + "end": 4623.24, + "probability": 0.9548 + }, + { + "start": 4625.28, + "end": 4627.74, + "probability": 0.9576 + }, + { + "start": 4629.0, + "end": 4633.3, + "probability": 0.9924 + }, + { + "start": 4634.48, + "end": 4639.54, + "probability": 0.963 + }, + { + "start": 4640.88, + "end": 4644.04, + "probability": 0.8172 + }, + { + "start": 4644.8, + "end": 4649.7, + "probability": 0.9948 + }, + { + "start": 4649.7, + "end": 4653.38, + "probability": 0.9886 + }, + { + "start": 4654.38, + "end": 4656.78, + "probability": 0.9796 + }, + { + "start": 4657.38, + "end": 4658.3, + "probability": 0.8945 + }, + { + "start": 4659.26, + "end": 4665.32, + "probability": 0.9611 + }, + { + "start": 4666.4, + "end": 4669.0, + "probability": 0.9326 + }, + { + "start": 4670.36, + "end": 4675.14, + "probability": 0.9668 + }, + { + "start": 4676.26, + "end": 4677.54, + "probability": 0.7182 + }, + { + "start": 4678.08, + "end": 4680.46, + "probability": 0.9839 + }, + { + "start": 4680.94, + "end": 4681.76, + "probability": 0.9347 + }, + { + "start": 4681.84, + "end": 4682.58, + "probability": 0.8423 + }, + { + "start": 4684.0, + "end": 4686.3, + "probability": 0.9422 + }, + { + "start": 4687.14, + "end": 4688.38, + "probability": 0.98 + }, + { + "start": 4689.02, + "end": 4690.78, + "probability": 0.9697 + }, + { + "start": 4691.34, + "end": 4694.16, + "probability": 0.996 + }, + { + "start": 4694.72, + "end": 4696.22, + "probability": 0.726 + }, + { + "start": 4697.94, + "end": 4701.48, + "probability": 0.9956 + }, + { + "start": 4702.28, + "end": 4705.88, + "probability": 0.9849 + }, + { + "start": 4707.26, + "end": 4709.84, + "probability": 0.9884 + }, + { + "start": 4710.92, + "end": 4712.62, + "probability": 0.9946 + }, + { + "start": 4713.38, + "end": 4714.58, + "probability": 0.9209 + }, + { + "start": 4715.1, + "end": 4716.12, + "probability": 0.7869 + }, + { + "start": 4717.38, + "end": 4718.08, + "probability": 0.8039 + }, + { + "start": 4718.9, + "end": 4721.68, + "probability": 0.6296 + }, + { + "start": 4722.78, + "end": 4725.84, + "probability": 0.9929 + }, + { + "start": 4727.04, + "end": 4728.26, + "probability": 0.9883 + }, + { + "start": 4728.56, + "end": 4729.02, + "probability": 0.6807 + }, + { + "start": 4729.08, + "end": 4729.62, + "probability": 0.8093 + }, + { + "start": 4730.08, + "end": 4731.16, + "probability": 0.9475 + }, + { + "start": 4732.44, + "end": 4736.36, + "probability": 0.8563 + }, + { + "start": 4737.74, + "end": 4738.46, + "probability": 0.8057 + }, + { + "start": 4739.28, + "end": 4741.54, + "probability": 0.8628 + }, + { + "start": 4742.36, + "end": 4745.04, + "probability": 0.9904 + }, + { + "start": 4746.16, + "end": 4748.6, + "probability": 0.9968 + }, + { + "start": 4748.76, + "end": 4749.38, + "probability": 0.7062 + }, + { + "start": 4750.22, + "end": 4752.11, + "probability": 0.9314 + }, + { + "start": 4753.64, + "end": 4754.72, + "probability": 0.7426 + }, + { + "start": 4755.46, + "end": 4757.12, + "probability": 0.9679 + }, + { + "start": 4757.4, + "end": 4758.1, + "probability": 0.9402 + }, + { + "start": 4758.22, + "end": 4759.4, + "probability": 0.9849 + }, + { + "start": 4759.5, + "end": 4760.14, + "probability": 0.9144 + }, + { + "start": 4760.68, + "end": 4762.68, + "probability": 0.5381 + }, + { + "start": 4763.58, + "end": 4764.64, + "probability": 0.9028 + }, + { + "start": 4765.6, + "end": 4766.38, + "probability": 0.5363 + }, + { + "start": 4767.04, + "end": 4768.48, + "probability": 0.9081 + }, + { + "start": 4769.84, + "end": 4771.82, + "probability": 0.8715 + }, + { + "start": 4772.44, + "end": 4775.94, + "probability": 0.9221 + }, + { + "start": 4776.7, + "end": 4778.38, + "probability": 0.9756 + }, + { + "start": 4779.0, + "end": 4779.4, + "probability": 0.5959 + }, + { + "start": 4779.6, + "end": 4781.3, + "probability": 0.7718 + }, + { + "start": 4781.96, + "end": 4784.56, + "probability": 0.9126 + }, + { + "start": 4785.02, + "end": 4788.14, + "probability": 0.9442 + }, + { + "start": 4788.58, + "end": 4792.88, + "probability": 0.9971 + }, + { + "start": 4793.4, + "end": 4797.28, + "probability": 0.9283 + }, + { + "start": 4797.76, + "end": 4800.56, + "probability": 0.9762 + }, + { + "start": 4800.9, + "end": 4801.24, + "probability": 0.3196 + }, + { + "start": 4801.24, + "end": 4801.62, + "probability": 0.6759 + }, + { + "start": 4803.86, + "end": 4805.34, + "probability": 0.6645 + }, + { + "start": 4807.44, + "end": 4807.86, + "probability": 0.0154 + }, + { + "start": 4832.2, + "end": 4833.04, + "probability": 0.7318 + }, + { + "start": 4833.3, + "end": 4834.22, + "probability": 0.5751 + }, + { + "start": 4834.62, + "end": 4835.8, + "probability": 0.9302 + }, + { + "start": 4835.9, + "end": 4838.04, + "probability": 0.7043 + }, + { + "start": 4838.84, + "end": 4841.58, + "probability": 0.4679 + }, + { + "start": 4841.76, + "end": 4843.04, + "probability": 0.9609 + }, + { + "start": 4844.44, + "end": 4846.76, + "probability": 0.783 + }, + { + "start": 4847.06, + "end": 4849.88, + "probability": 0.7045 + }, + { + "start": 4850.02, + "end": 4851.12, + "probability": 0.6715 + }, + { + "start": 4851.88, + "end": 4853.16, + "probability": 0.8607 + }, + { + "start": 4853.7, + "end": 4854.54, + "probability": 0.1543 + }, + { + "start": 4855.5, + "end": 4859.12, + "probability": 0.9724 + }, + { + "start": 4860.08, + "end": 4862.6, + "probability": 0.9875 + }, + { + "start": 4862.82, + "end": 4864.39, + "probability": 0.618 + }, + { + "start": 4865.28, + "end": 4872.4, + "probability": 0.9438 + }, + { + "start": 4873.06, + "end": 4876.36, + "probability": 0.877 + }, + { + "start": 4877.78, + "end": 4879.78, + "probability": 0.9264 + }, + { + "start": 4880.52, + "end": 4881.58, + "probability": 0.6534 + }, + { + "start": 4881.84, + "end": 4886.02, + "probability": 0.696 + }, + { + "start": 4886.4, + "end": 4889.34, + "probability": 0.8002 + }, + { + "start": 4890.16, + "end": 4891.18, + "probability": 0.8642 + }, + { + "start": 4891.24, + "end": 4891.72, + "probability": 0.882 + }, + { + "start": 4891.82, + "end": 4894.4, + "probability": 0.662 + }, + { + "start": 4894.84, + "end": 4897.0, + "probability": 0.9153 + }, + { + "start": 4898.06, + "end": 4898.53, + "probability": 0.9231 + }, + { + "start": 4899.44, + "end": 4899.95, + "probability": 0.9048 + }, + { + "start": 4900.3, + "end": 4900.51, + "probability": 0.7616 + }, + { + "start": 4902.2, + "end": 4904.06, + "probability": 0.9276 + }, + { + "start": 4904.68, + "end": 4907.0, + "probability": 0.1335 + }, + { + "start": 4907.42, + "end": 4910.62, + "probability": 0.3374 + }, + { + "start": 4911.92, + "end": 4912.42, + "probability": 0.6736 + }, + { + "start": 4913.56, + "end": 4917.72, + "probability": 0.8641 + }, + { + "start": 4918.96, + "end": 4922.96, + "probability": 0.779 + }, + { + "start": 4923.0, + "end": 4923.64, + "probability": 0.6466 + }, + { + "start": 4923.98, + "end": 4925.22, + "probability": 0.7697 + }, + { + "start": 4925.76, + "end": 4926.0, + "probability": 0.3825 + }, + { + "start": 4926.14, + "end": 4930.66, + "probability": 0.844 + }, + { + "start": 4931.12, + "end": 4931.56, + "probability": 0.9554 + }, + { + "start": 4932.3, + "end": 4934.22, + "probability": 0.7874 + }, + { + "start": 4934.84, + "end": 4935.96, + "probability": 0.8807 + }, + { + "start": 4936.5, + "end": 4939.22, + "probability": 0.5432 + }, + { + "start": 4940.76, + "end": 4946.06, + "probability": 0.8014 + }, + { + "start": 4946.08, + "end": 4947.16, + "probability": 0.7508 + }, + { + "start": 4947.42, + "end": 4947.76, + "probability": 0.9455 + }, + { + "start": 4948.46, + "end": 4949.54, + "probability": 0.5767 + }, + { + "start": 4951.02, + "end": 4953.09, + "probability": 0.7079 + }, + { + "start": 4954.1, + "end": 4957.72, + "probability": 0.5803 + }, + { + "start": 4958.44, + "end": 4958.64, + "probability": 0.5494 + }, + { + "start": 4958.74, + "end": 4959.56, + "probability": 0.7709 + }, + { + "start": 4959.7, + "end": 4961.82, + "probability": 0.9601 + }, + { + "start": 4963.64, + "end": 4964.88, + "probability": 0.7609 + }, + { + "start": 4965.14, + "end": 4966.08, + "probability": 0.9487 + }, + { + "start": 4966.56, + "end": 4967.68, + "probability": 0.8214 + }, + { + "start": 4968.08, + "end": 4969.76, + "probability": 0.2972 + }, + { + "start": 4971.22, + "end": 4971.36, + "probability": 0.1803 + }, + { + "start": 4971.72, + "end": 4972.7, + "probability": 0.3841 + }, + { + "start": 4973.24, + "end": 4974.8, + "probability": 0.5167 + }, + { + "start": 4974.92, + "end": 4975.16, + "probability": 0.4915 + }, + { + "start": 4975.16, + "end": 4977.48, + "probability": 0.9631 + }, + { + "start": 4978.14, + "end": 4980.3, + "probability": 0.9682 + }, + { + "start": 4980.78, + "end": 4983.44, + "probability": 0.7238 + }, + { + "start": 4983.8, + "end": 4985.66, + "probability": 0.6924 + }, + { + "start": 4985.74, + "end": 4986.4, + "probability": 0.3505 + }, + { + "start": 4986.48, + "end": 4987.06, + "probability": 0.378 + }, + { + "start": 4987.5, + "end": 4990.48, + "probability": 0.971 + }, + { + "start": 4990.78, + "end": 4991.6, + "probability": 0.424 + }, + { + "start": 4992.12, + "end": 4993.42, + "probability": 0.773 + }, + { + "start": 4994.04, + "end": 4994.48, + "probability": 0.5857 + }, + { + "start": 4994.54, + "end": 4999.06, + "probability": 0.826 + }, + { + "start": 4999.46, + "end": 5000.3, + "probability": 0.8938 + }, + { + "start": 5000.52, + "end": 5001.3, + "probability": 0.8101 + }, + { + "start": 5001.34, + "end": 5002.22, + "probability": 0.9503 + }, + { + "start": 5002.5, + "end": 5003.04, + "probability": 0.9597 + }, + { + "start": 5003.96, + "end": 5004.8, + "probability": 0.9785 + }, + { + "start": 5005.68, + "end": 5007.63, + "probability": 0.6791 + }, + { + "start": 5007.8, + "end": 5008.7, + "probability": 0.1028 + }, + { + "start": 5009.12, + "end": 5010.1, + "probability": 0.6606 + }, + { + "start": 5010.5, + "end": 5011.22, + "probability": 0.6662 + }, + { + "start": 5012.34, + "end": 5012.82, + "probability": 0.9312 + }, + { + "start": 5012.86, + "end": 5016.84, + "probability": 0.8562 + }, + { + "start": 5017.36, + "end": 5019.28, + "probability": 0.8942 + }, + { + "start": 5020.14, + "end": 5021.22, + "probability": 0.8008 + }, + { + "start": 5021.68, + "end": 5022.72, + "probability": 0.9473 + }, + { + "start": 5023.58, + "end": 5023.92, + "probability": 0.9684 + }, + { + "start": 5024.58, + "end": 5027.78, + "probability": 0.9213 + }, + { + "start": 5028.3, + "end": 5028.88, + "probability": 0.9256 + }, + { + "start": 5029.96, + "end": 5033.4, + "probability": 0.6413 + }, + { + "start": 5033.84, + "end": 5036.02, + "probability": 0.7223 + }, + { + "start": 5037.46, + "end": 5037.46, + "probability": 0.0369 + }, + { + "start": 5037.46, + "end": 5038.68, + "probability": 0.1024 + }, + { + "start": 5039.28, + "end": 5041.12, + "probability": 0.6028 + }, + { + "start": 5041.88, + "end": 5042.48, + "probability": 0.7018 + }, + { + "start": 5043.0, + "end": 5043.0, + "probability": 0.1863 + }, + { + "start": 5043.06, + "end": 5044.46, + "probability": 0.6304 + }, + { + "start": 5044.58, + "end": 5044.92, + "probability": 0.8101 + }, + { + "start": 5045.38, + "end": 5048.56, + "probability": 0.894 + }, + { + "start": 5049.26, + "end": 5049.64, + "probability": 0.3904 + }, + { + "start": 5050.94, + "end": 5054.3, + "probability": 0.8548 + }, + { + "start": 5054.36, + "end": 5054.68, + "probability": 0.4022 + }, + { + "start": 5054.9, + "end": 5056.18, + "probability": 0.6953 + }, + { + "start": 5056.44, + "end": 5057.64, + "probability": 0.7767 + }, + { + "start": 5058.34, + "end": 5060.34, + "probability": 0.9352 + }, + { + "start": 5060.82, + "end": 5061.96, + "probability": 0.8594 + }, + { + "start": 5062.0, + "end": 5063.12, + "probability": 0.3661 + }, + { + "start": 5063.44, + "end": 5064.1, + "probability": 0.5288 + }, + { + "start": 5064.52, + "end": 5065.58, + "probability": 0.8293 + }, + { + "start": 5066.14, + "end": 5069.32, + "probability": 0.9629 + }, + { + "start": 5070.18, + "end": 5070.44, + "probability": 0.54 + }, + { + "start": 5070.64, + "end": 5072.82, + "probability": 0.8838 + }, + { + "start": 5072.92, + "end": 5073.24, + "probability": 0.6784 + }, + { + "start": 5073.3, + "end": 5073.76, + "probability": 0.4586 + }, + { + "start": 5073.9, + "end": 5074.14, + "probability": 0.3716 + }, + { + "start": 5074.62, + "end": 5077.68, + "probability": 0.8183 + }, + { + "start": 5078.04, + "end": 5081.93, + "probability": 0.9835 + }, + { + "start": 5082.42, + "end": 5084.23, + "probability": 0.9463 + }, + { + "start": 5084.8, + "end": 5085.62, + "probability": 0.9141 + }, + { + "start": 5085.9, + "end": 5090.02, + "probability": 0.9795 + }, + { + "start": 5090.02, + "end": 5090.58, + "probability": 0.5336 + }, + { + "start": 5090.6, + "end": 5091.02, + "probability": 0.2001 + }, + { + "start": 5091.02, + "end": 5091.16, + "probability": 0.3482 + }, + { + "start": 5091.54, + "end": 5092.14, + "probability": 0.4175 + }, + { + "start": 5092.14, + "end": 5092.24, + "probability": 0.5898 + }, + { + "start": 5093.38, + "end": 5094.38, + "probability": 0.7483 + }, + { + "start": 5109.84, + "end": 5113.94, + "probability": 0.5365 + }, + { + "start": 5114.88, + "end": 5118.05, + "probability": 0.8807 + }, + { + "start": 5118.76, + "end": 5121.62, + "probability": 0.9428 + }, + { + "start": 5121.71, + "end": 5126.22, + "probability": 0.9342 + }, + { + "start": 5126.7, + "end": 5130.52, + "probability": 0.968 + }, + { + "start": 5130.76, + "end": 5136.88, + "probability": 0.9867 + }, + { + "start": 5137.38, + "end": 5138.56, + "probability": 0.798 + }, + { + "start": 5138.82, + "end": 5141.2, + "probability": 0.9966 + }, + { + "start": 5141.32, + "end": 5142.88, + "probability": 0.8022 + }, + { + "start": 5143.12, + "end": 5144.96, + "probability": 0.9957 + }, + { + "start": 5145.22, + "end": 5149.64, + "probability": 0.959 + }, + { + "start": 5149.64, + "end": 5155.62, + "probability": 0.9758 + }, + { + "start": 5155.72, + "end": 5158.5, + "probability": 0.8796 + }, + { + "start": 5158.5, + "end": 5161.54, + "probability": 0.9852 + }, + { + "start": 5161.66, + "end": 5165.16, + "probability": 0.9565 + }, + { + "start": 5165.56, + "end": 5169.58, + "probability": 0.9929 + }, + { + "start": 5169.8, + "end": 5170.42, + "probability": 0.9717 + }, + { + "start": 5170.52, + "end": 5170.98, + "probability": 0.9194 + }, + { + "start": 5171.16, + "end": 5172.16, + "probability": 0.8352 + }, + { + "start": 5172.74, + "end": 5176.36, + "probability": 0.9948 + }, + { + "start": 5176.86, + "end": 5181.82, + "probability": 0.9844 + }, + { + "start": 5181.82, + "end": 5186.18, + "probability": 0.9217 + }, + { + "start": 5186.18, + "end": 5190.82, + "probability": 0.9895 + }, + { + "start": 5191.36, + "end": 5192.96, + "probability": 0.947 + }, + { + "start": 5193.02, + "end": 5195.06, + "probability": 0.9609 + }, + { + "start": 5195.18, + "end": 5199.36, + "probability": 0.9858 + }, + { + "start": 5199.78, + "end": 5201.36, + "probability": 0.9644 + }, + { + "start": 5201.46, + "end": 5202.94, + "probability": 0.9695 + }, + { + "start": 5203.12, + "end": 5206.28, + "probability": 0.9763 + }, + { + "start": 5206.28, + "end": 5210.46, + "probability": 0.8142 + }, + { + "start": 5210.7, + "end": 5211.04, + "probability": 0.6116 + }, + { + "start": 5211.4, + "end": 5213.7, + "probability": 0.9956 + }, + { + "start": 5213.86, + "end": 5215.38, + "probability": 0.9602 + }, + { + "start": 5215.74, + "end": 5216.9, + "probability": 0.9333 + }, + { + "start": 5217.0, + "end": 5217.58, + "probability": 0.4049 + }, + { + "start": 5218.06, + "end": 5221.32, + "probability": 0.9574 + }, + { + "start": 5221.32, + "end": 5227.72, + "probability": 0.9692 + }, + { + "start": 5228.16, + "end": 5233.53, + "probability": 0.9396 + }, + { + "start": 5233.62, + "end": 5235.42, + "probability": 0.906 + }, + { + "start": 5236.06, + "end": 5238.54, + "probability": 0.9928 + }, + { + "start": 5238.54, + "end": 5242.54, + "probability": 0.9967 + }, + { + "start": 5243.0, + "end": 5248.08, + "probability": 0.9722 + }, + { + "start": 5248.5, + "end": 5251.44, + "probability": 0.9751 + }, + { + "start": 5252.12, + "end": 5252.78, + "probability": 0.6169 + }, + { + "start": 5253.3, + "end": 5255.68, + "probability": 0.9897 + }, + { + "start": 5256.1, + "end": 5258.4, + "probability": 0.981 + }, + { + "start": 5258.68, + "end": 5264.08, + "probability": 0.9951 + }, + { + "start": 5264.54, + "end": 5265.08, + "probability": 0.6871 + }, + { + "start": 5265.36, + "end": 5266.12, + "probability": 0.963 + }, + { + "start": 5266.26, + "end": 5269.86, + "probability": 0.9841 + }, + { + "start": 5269.94, + "end": 5271.36, + "probability": 0.9596 + }, + { + "start": 5271.6, + "end": 5274.18, + "probability": 0.9275 + }, + { + "start": 5275.44, + "end": 5276.26, + "probability": 0.7106 + }, + { + "start": 5276.42, + "end": 5277.8, + "probability": 0.7502 + }, + { + "start": 5278.1, + "end": 5282.8, + "probability": 0.9893 + }, + { + "start": 5283.06, + "end": 5287.32, + "probability": 0.7187 + }, + { + "start": 5287.32, + "end": 5290.3, + "probability": 0.9976 + }, + { + "start": 5290.86, + "end": 5297.48, + "probability": 0.9676 + }, + { + "start": 5297.58, + "end": 5300.48, + "probability": 0.9861 + }, + { + "start": 5300.96, + "end": 5304.24, + "probability": 0.9966 + }, + { + "start": 5304.24, + "end": 5304.9, + "probability": 0.5234 + }, + { + "start": 5304.92, + "end": 5305.32, + "probability": 0.4812 + }, + { + "start": 5305.42, + "end": 5307.54, + "probability": 0.9932 + }, + { + "start": 5307.78, + "end": 5308.3, + "probability": 0.9618 + }, + { + "start": 5308.34, + "end": 5309.24, + "probability": 0.6784 + }, + { + "start": 5309.34, + "end": 5311.4, + "probability": 0.9493 + }, + { + "start": 5311.46, + "end": 5313.08, + "probability": 0.7532 + }, + { + "start": 5313.3, + "end": 5316.26, + "probability": 0.9188 + }, + { + "start": 5316.5, + "end": 5320.98, + "probability": 0.7236 + }, + { + "start": 5321.26, + "end": 5322.34, + "probability": 0.9284 + }, + { + "start": 5322.86, + "end": 5325.8, + "probability": 0.6284 + }, + { + "start": 5325.84, + "end": 5328.76, + "probability": 0.9188 + }, + { + "start": 5329.34, + "end": 5329.92, + "probability": 0.6487 + }, + { + "start": 5329.94, + "end": 5330.92, + "probability": 0.6928 + }, + { + "start": 5331.16, + "end": 5335.28, + "probability": 0.9824 + }, + { + "start": 5335.42, + "end": 5335.44, + "probability": 0.5059 + }, + { + "start": 5335.82, + "end": 5336.84, + "probability": 0.9825 + }, + { + "start": 5336.96, + "end": 5338.34, + "probability": 0.8962 + }, + { + "start": 5338.64, + "end": 5339.54, + "probability": 0.9635 + }, + { + "start": 5340.2, + "end": 5340.46, + "probability": 0.4967 + }, + { + "start": 5340.88, + "end": 5341.14, + "probability": 0.5203 + }, + { + "start": 5341.96, + "end": 5343.5, + "probability": 0.4382 + }, + { + "start": 5360.48, + "end": 5361.8, + "probability": 0.7905 + }, + { + "start": 5361.8, + "end": 5363.55, + "probability": 0.6904 + }, + { + "start": 5364.98, + "end": 5366.94, + "probability": 0.7712 + }, + { + "start": 5367.56, + "end": 5368.46, + "probability": 0.9453 + }, + { + "start": 5369.72, + "end": 5372.46, + "probability": 0.9755 + }, + { + "start": 5374.44, + "end": 5378.6, + "probability": 0.9528 + }, + { + "start": 5379.7, + "end": 5382.62, + "probability": 0.9955 + }, + { + "start": 5384.2, + "end": 5386.4, + "probability": 0.8968 + }, + { + "start": 5387.24, + "end": 5389.28, + "probability": 0.9268 + }, + { + "start": 5390.06, + "end": 5391.84, + "probability": 0.862 + }, + { + "start": 5391.94, + "end": 5392.0, + "probability": 0.8068 + }, + { + "start": 5392.08, + "end": 5394.79, + "probability": 0.9784 + }, + { + "start": 5396.08, + "end": 5400.26, + "probability": 0.8059 + }, + { + "start": 5400.82, + "end": 5403.2, + "probability": 0.9509 + }, + { + "start": 5404.08, + "end": 5405.02, + "probability": 0.2937 + }, + { + "start": 5405.3, + "end": 5408.54, + "probability": 0.9332 + }, + { + "start": 5408.7, + "end": 5409.4, + "probability": 0.6583 + }, + { + "start": 5409.58, + "end": 5410.82, + "probability": 0.8461 + }, + { + "start": 5412.34, + "end": 5413.04, + "probability": 0.8711 + }, + { + "start": 5414.04, + "end": 5415.16, + "probability": 0.9885 + }, + { + "start": 5417.24, + "end": 5420.4, + "probability": 0.9804 + }, + { + "start": 5420.4, + "end": 5420.84, + "probability": 0.6813 + }, + { + "start": 5421.14, + "end": 5421.18, + "probability": 0.1866 + }, + { + "start": 5421.34, + "end": 5422.86, + "probability": 0.7119 + }, + { + "start": 5423.18, + "end": 5426.76, + "probability": 0.8089 + }, + { + "start": 5429.36, + "end": 5431.72, + "probability": 0.9886 + }, + { + "start": 5431.82, + "end": 5433.14, + "probability": 0.9907 + }, + { + "start": 5434.56, + "end": 5435.66, + "probability": 0.9735 + }, + { + "start": 5437.76, + "end": 5440.82, + "probability": 0.9973 + }, + { + "start": 5441.48, + "end": 5443.18, + "probability": 0.6845 + }, + { + "start": 5443.94, + "end": 5446.86, + "probability": 0.9312 + }, + { + "start": 5447.0, + "end": 5448.48, + "probability": 0.9505 + }, + { + "start": 5449.78, + "end": 5451.86, + "probability": 0.9929 + }, + { + "start": 5453.7, + "end": 5454.36, + "probability": 0.8132 + }, + { + "start": 5456.0, + "end": 5458.56, + "probability": 0.9914 + }, + { + "start": 5459.2, + "end": 5459.9, + "probability": 0.8109 + }, + { + "start": 5461.06, + "end": 5464.52, + "probability": 0.9857 + }, + { + "start": 5465.86, + "end": 5467.1, + "probability": 0.7894 + }, + { + "start": 5467.58, + "end": 5469.36, + "probability": 0.9941 + }, + { + "start": 5469.44, + "end": 5469.6, + "probability": 0.6649 + }, + { + "start": 5469.78, + "end": 5470.74, + "probability": 0.7771 + }, + { + "start": 5473.08, + "end": 5474.08, + "probability": 0.8703 + }, + { + "start": 5475.54, + "end": 5477.77, + "probability": 0.9159 + }, + { + "start": 5478.62, + "end": 5479.76, + "probability": 0.9662 + }, + { + "start": 5481.0, + "end": 5483.4, + "probability": 0.9684 + }, + { + "start": 5484.54, + "end": 5487.0, + "probability": 0.9683 + }, + { + "start": 5487.08, + "end": 5487.88, + "probability": 0.9961 + }, + { + "start": 5488.74, + "end": 5489.82, + "probability": 0.0336 + }, + { + "start": 5490.06, + "end": 5492.72, + "probability": 0.114 + }, + { + "start": 5492.94, + "end": 5492.94, + "probability": 0.1326 + }, + { + "start": 5492.94, + "end": 5494.68, + "probability": 0.4982 + }, + { + "start": 5494.76, + "end": 5498.86, + "probability": 0.363 + }, + { + "start": 5499.08, + "end": 5502.9, + "probability": 0.05 + }, + { + "start": 5505.12, + "end": 5505.28, + "probability": 0.0531 + }, + { + "start": 5508.86, + "end": 5509.5, + "probability": 0.172 + }, + { + "start": 5509.65, + "end": 5511.8, + "probability": 0.1191 + }, + { + "start": 5511.8, + "end": 5513.54, + "probability": 0.014 + }, + { + "start": 5513.66, + "end": 5514.78, + "probability": 0.1504 + }, + { + "start": 5516.38, + "end": 5519.54, + "probability": 0.0529 + }, + { + "start": 5520.2, + "end": 5521.4, + "probability": 0.0203 + }, + { + "start": 5521.4, + "end": 5521.78, + "probability": 0.0298 + }, + { + "start": 5521.78, + "end": 5524.44, + "probability": 0.328 + }, + { + "start": 5527.76, + "end": 5529.02, + "probability": 0.1335 + }, + { + "start": 5531.51, + "end": 5532.18, + "probability": 0.0088 + }, + { + "start": 5533.04, + "end": 5534.38, + "probability": 0.1861 + }, + { + "start": 5534.38, + "end": 5534.54, + "probability": 0.1606 + }, + { + "start": 5534.72, + "end": 5536.76, + "probability": 0.0218 + }, + { + "start": 5538.5, + "end": 5539.12, + "probability": 0.1861 + }, + { + "start": 5540.36, + "end": 5540.62, + "probability": 0.0439 + }, + { + "start": 5541.07, + "end": 5543.92, + "probability": 0.0511 + }, + { + "start": 5544.04, + "end": 5545.8, + "probability": 0.0372 + }, + { + "start": 5545.8, + "end": 5548.4, + "probability": 0.1077 + }, + { + "start": 5549.22, + "end": 5549.5, + "probability": 0.2587 + }, + { + "start": 5550.74, + "end": 5551.56, + "probability": 0.2287 + }, + { + "start": 5552.0, + "end": 5552.0, + "probability": 0.0 + }, + { + "start": 5552.0, + "end": 5552.0, + "probability": 0.0 + }, + { + "start": 5552.0, + "end": 5552.0, + "probability": 0.0 + }, + { + "start": 5552.0, + "end": 5552.0, + "probability": 0.0 + }, + { + "start": 5552.0, + "end": 5552.0, + "probability": 0.0 + }, + { + "start": 5552.0, + "end": 5552.0, + "probability": 0.0 + }, + { + "start": 5552.62, + "end": 5552.94, + "probability": 0.1891 + }, + { + "start": 5552.94, + "end": 5552.94, + "probability": 0.1755 + }, + { + "start": 5552.94, + "end": 5558.34, + "probability": 0.9536 + }, + { + "start": 5558.5, + "end": 5560.4, + "probability": 0.759 + }, + { + "start": 5560.78, + "end": 5562.64, + "probability": 0.9591 + }, + { + "start": 5563.44, + "end": 5563.7, + "probability": 0.1071 + }, + { + "start": 5563.7, + "end": 5563.7, + "probability": 0.0191 + }, + { + "start": 5563.7, + "end": 5565.28, + "probability": 0.7917 + }, + { + "start": 5565.28, + "end": 5572.88, + "probability": 0.8013 + }, + { + "start": 5572.88, + "end": 5573.22, + "probability": 0.0986 + }, + { + "start": 5573.22, + "end": 5573.22, + "probability": 0.0186 + }, + { + "start": 5573.38, + "end": 5577.87, + "probability": 0.9109 + }, + { + "start": 5578.04, + "end": 5579.92, + "probability": 0.7432 + }, + { + "start": 5580.06, + "end": 5580.46, + "probability": 0.0849 + }, + { + "start": 5580.46, + "end": 5581.31, + "probability": 0.5683 + }, + { + "start": 5581.56, + "end": 5585.08, + "probability": 0.7219 + }, + { + "start": 5585.42, + "end": 5589.78, + "probability": 0.8896 + }, + { + "start": 5589.78, + "end": 5590.94, + "probability": 0.5244 + }, + { + "start": 5591.69, + "end": 5592.14, + "probability": 0.4754 + }, + { + "start": 5592.38, + "end": 5592.38, + "probability": 0.5886 + }, + { + "start": 5594.24, + "end": 5596.1, + "probability": 0.9411 + }, + { + "start": 5598.32, + "end": 5600.52, + "probability": 0.7343 + }, + { + "start": 5601.38, + "end": 5601.52, + "probability": 0.0099 + }, + { + "start": 5602.4, + "end": 5604.37, + "probability": 0.052 + }, + { + "start": 5604.92, + "end": 5606.1, + "probability": 0.8413 + }, + { + "start": 5606.24, + "end": 5607.5, + "probability": 0.9277 + }, + { + "start": 5608.18, + "end": 5611.28, + "probability": 0.7157 + }, + { + "start": 5619.82, + "end": 5621.0, + "probability": 0.8695 + }, + { + "start": 5621.1, + "end": 5624.02, + "probability": 0.7317 + }, + { + "start": 5624.86, + "end": 5631.02, + "probability": 0.998 + }, + { + "start": 5632.06, + "end": 5636.88, + "probability": 0.9727 + }, + { + "start": 5637.98, + "end": 5639.86, + "probability": 0.8783 + }, + { + "start": 5640.54, + "end": 5641.72, + "probability": 0.8704 + }, + { + "start": 5642.3, + "end": 5643.52, + "probability": 0.9784 + }, + { + "start": 5644.56, + "end": 5644.72, + "probability": 0.3729 + }, + { + "start": 5644.72, + "end": 5644.72, + "probability": 0.3227 + }, + { + "start": 5644.88, + "end": 5652.38, + "probability": 0.982 + }, + { + "start": 5653.52, + "end": 5654.78, + "probability": 0.9927 + }, + { + "start": 5655.54, + "end": 5657.95, + "probability": 0.6533 + }, + { + "start": 5658.64, + "end": 5661.66, + "probability": 0.9953 + }, + { + "start": 5663.28, + "end": 5665.22, + "probability": 0.982 + }, + { + "start": 5666.2, + "end": 5667.42, + "probability": 0.5889 + }, + { + "start": 5671.26, + "end": 5673.78, + "probability": 0.9255 + }, + { + "start": 5675.36, + "end": 5676.84, + "probability": 0.9832 + }, + { + "start": 5677.88, + "end": 5680.48, + "probability": 0.8879 + }, + { + "start": 5680.66, + "end": 5683.15, + "probability": 0.4996 + }, + { + "start": 5684.02, + "end": 5685.9, + "probability": 0.9951 + }, + { + "start": 5686.94, + "end": 5687.52, + "probability": 0.8754 + }, + { + "start": 5688.08, + "end": 5691.86, + "probability": 0.9908 + }, + { + "start": 5692.4, + "end": 5692.82, + "probability": 0.5439 + }, + { + "start": 5693.74, + "end": 5694.46, + "probability": 0.8573 + }, + { + "start": 5695.52, + "end": 5697.78, + "probability": 0.9675 + }, + { + "start": 5698.2, + "end": 5701.4, + "probability": 0.9385 + }, + { + "start": 5701.46, + "end": 5703.86, + "probability": 0.4774 + }, + { + "start": 5704.98, + "end": 5706.56, + "probability": 0.9956 + }, + { + "start": 5707.22, + "end": 5708.68, + "probability": 0.9954 + }, + { + "start": 5709.46, + "end": 5712.84, + "probability": 0.9979 + }, + { + "start": 5712.88, + "end": 5713.74, + "probability": 0.9766 + }, + { + "start": 5714.7, + "end": 5715.84, + "probability": 0.7905 + }, + { + "start": 5716.6, + "end": 5721.02, + "probability": 0.9874 + }, + { + "start": 5721.64, + "end": 5724.28, + "probability": 0.9461 + }, + { + "start": 5724.94, + "end": 5725.72, + "probability": 0.7021 + }, + { + "start": 5726.32, + "end": 5733.3, + "probability": 0.9842 + }, + { + "start": 5734.46, + "end": 5737.34, + "probability": 0.8125 + }, + { + "start": 5737.96, + "end": 5738.6, + "probability": 0.9109 + }, + { + "start": 5739.22, + "end": 5739.46, + "probability": 0.512 + }, + { + "start": 5739.52, + "end": 5743.54, + "probability": 0.9937 + }, + { + "start": 5744.4, + "end": 5745.62, + "probability": 0.906 + }, + { + "start": 5746.24, + "end": 5749.02, + "probability": 0.9692 + }, + { + "start": 5749.62, + "end": 5753.14, + "probability": 0.9829 + }, + { + "start": 5754.12, + "end": 5757.62, + "probability": 0.9883 + }, + { + "start": 5758.14, + "end": 5759.9, + "probability": 0.9396 + }, + { + "start": 5760.48, + "end": 5763.02, + "probability": 0.8142 + }, + { + "start": 5763.7, + "end": 5768.12, + "probability": 0.9183 + }, + { + "start": 5769.36, + "end": 5771.84, + "probability": 0.9827 + }, + { + "start": 5772.26, + "end": 5773.4, + "probability": 0.933 + }, + { + "start": 5773.96, + "end": 5776.14, + "probability": 0.984 + }, + { + "start": 5776.14, + "end": 5779.42, + "probability": 0.9863 + }, + { + "start": 5780.02, + "end": 5782.5, + "probability": 0.9314 + }, + { + "start": 5782.5, + "end": 5786.38, + "probability": 0.9849 + }, + { + "start": 5786.78, + "end": 5791.94, + "probability": 0.9891 + }, + { + "start": 5792.46, + "end": 5795.0, + "probability": 0.999 + }, + { + "start": 5795.73, + "end": 5797.9, + "probability": 0.998 + }, + { + "start": 5800.16, + "end": 5800.72, + "probability": 0.7097 + }, + { + "start": 5802.06, + "end": 5803.0, + "probability": 0.9265 + }, + { + "start": 5821.64, + "end": 5821.86, + "probability": 0.1865 + }, + { + "start": 5821.92, + "end": 5822.7, + "probability": 0.9189 + }, + { + "start": 5824.04, + "end": 5826.1, + "probability": 0.7373 + }, + { + "start": 5826.7, + "end": 5827.24, + "probability": 0.859 + }, + { + "start": 5827.9, + "end": 5828.38, + "probability": 0.6376 + }, + { + "start": 5829.36, + "end": 5829.76, + "probability": 0.9849 + }, + { + "start": 5830.64, + "end": 5834.4, + "probability": 0.7163 + }, + { + "start": 5834.4, + "end": 5837.3, + "probability": 0.9556 + }, + { + "start": 5839.2, + "end": 5843.14, + "probability": 0.9924 + }, + { + "start": 5844.86, + "end": 5845.96, + "probability": 0.8899 + }, + { + "start": 5846.72, + "end": 5848.92, + "probability": 0.623 + }, + { + "start": 5849.74, + "end": 5851.74, + "probability": 0.3683 + }, + { + "start": 5851.74, + "end": 5852.6, + "probability": 0.6812 + }, + { + "start": 5852.72, + "end": 5854.0, + "probability": 0.8296 + }, + { + "start": 5854.22, + "end": 5855.24, + "probability": 0.8288 + }, + { + "start": 5856.2, + "end": 5859.2, + "probability": 0.9869 + }, + { + "start": 5859.76, + "end": 5862.48, + "probability": 0.9867 + }, + { + "start": 5863.16, + "end": 5866.9, + "probability": 0.9986 + }, + { + "start": 5866.9, + "end": 5870.7, + "probability": 0.9969 + }, + { + "start": 5871.32, + "end": 5872.18, + "probability": 0.8689 + }, + { + "start": 5872.76, + "end": 5875.48, + "probability": 0.9534 + }, + { + "start": 5875.48, + "end": 5878.6, + "probability": 0.9683 + }, + { + "start": 5879.46, + "end": 5881.4, + "probability": 0.9591 + }, + { + "start": 5881.98, + "end": 5886.06, + "probability": 0.9222 + }, + { + "start": 5886.6, + "end": 5888.02, + "probability": 0.9976 + }, + { + "start": 5888.64, + "end": 5890.04, + "probability": 0.9608 + }, + { + "start": 5890.94, + "end": 5896.04, + "probability": 0.9883 + }, + { + "start": 5896.74, + "end": 5897.24, + "probability": 0.8429 + }, + { + "start": 5897.7, + "end": 5901.02, + "probability": 0.8547 + }, + { + "start": 5901.14, + "end": 5902.48, + "probability": 0.5915 + }, + { + "start": 5903.12, + "end": 5904.02, + "probability": 0.7625 + }, + { + "start": 5904.18, + "end": 5908.68, + "probability": 0.5968 + }, + { + "start": 5909.04, + "end": 5910.14, + "probability": 0.5567 + }, + { + "start": 5911.18, + "end": 5915.1, + "probability": 0.9036 + }, + { + "start": 5915.1, + "end": 5919.36, + "probability": 0.9121 + }, + { + "start": 5920.04, + "end": 5922.44, + "probability": 0.8722 + }, + { + "start": 5923.22, + "end": 5925.88, + "probability": 0.6229 + }, + { + "start": 5926.42, + "end": 5929.28, + "probability": 0.9084 + }, + { + "start": 5929.82, + "end": 5933.72, + "probability": 0.936 + }, + { + "start": 5933.94, + "end": 5934.58, + "probability": 0.6968 + }, + { + "start": 5935.14, + "end": 5940.58, + "probability": 0.7473 + }, + { + "start": 5941.14, + "end": 5946.12, + "probability": 0.9691 + }, + { + "start": 5947.2, + "end": 5950.3, + "probability": 0.9471 + }, + { + "start": 5951.06, + "end": 5953.14, + "probability": 0.9491 + }, + { + "start": 5953.92, + "end": 5956.38, + "probability": 0.9854 + }, + { + "start": 5956.74, + "end": 5960.04, + "probability": 0.8711 + }, + { + "start": 5960.32, + "end": 5965.12, + "probability": 0.9556 + }, + { + "start": 5965.48, + "end": 5965.86, + "probability": 0.8605 + }, + { + "start": 5966.78, + "end": 5967.5, + "probability": 0.7033 + }, + { + "start": 5968.22, + "end": 5969.36, + "probability": 0.7391 + }, + { + "start": 5989.08, + "end": 5989.94, + "probability": 0.9452 + }, + { + "start": 5989.98, + "end": 5990.4, + "probability": 0.5225 + }, + { + "start": 5990.6, + "end": 5992.0, + "probability": 0.7501 + }, + { + "start": 5992.56, + "end": 5993.56, + "probability": 0.5996 + }, + { + "start": 5994.16, + "end": 5997.4, + "probability": 0.9597 + }, + { + "start": 5997.4, + "end": 6000.6, + "probability": 0.8906 + }, + { + "start": 6000.72, + "end": 6002.92, + "probability": 0.7159 + }, + { + "start": 6003.1, + "end": 6005.17, + "probability": 0.9002 + }, + { + "start": 6006.02, + "end": 6007.64, + "probability": 0.8047 + }, + { + "start": 6007.8, + "end": 6008.54, + "probability": 0.703 + }, + { + "start": 6008.6, + "end": 6009.58, + "probability": 0.6395 + }, + { + "start": 6010.06, + "end": 6014.8, + "probability": 0.9483 + }, + { + "start": 6015.14, + "end": 6015.84, + "probability": 0.8344 + }, + { + "start": 6015.92, + "end": 6017.82, + "probability": 0.8901 + }, + { + "start": 6018.58, + "end": 6020.38, + "probability": 0.7995 + }, + { + "start": 6020.52, + "end": 6021.76, + "probability": 0.9401 + }, + { + "start": 6021.86, + "end": 6027.7, + "probability": 0.9338 + }, + { + "start": 6028.26, + "end": 6032.84, + "probability": 0.8414 + }, + { + "start": 6033.8, + "end": 6036.88, + "probability": 0.9967 + }, + { + "start": 6037.0, + "end": 6039.24, + "probability": 0.8496 + }, + { + "start": 6039.34, + "end": 6039.76, + "probability": 0.8043 + }, + { + "start": 6040.28, + "end": 6042.5, + "probability": 0.8405 + }, + { + "start": 6042.9, + "end": 6043.4, + "probability": 0.9212 + }, + { + "start": 6043.48, + "end": 6044.52, + "probability": 0.8568 + }, + { + "start": 6044.64, + "end": 6045.34, + "probability": 0.9062 + }, + { + "start": 6045.58, + "end": 6051.08, + "probability": 0.9175 + }, + { + "start": 6051.26, + "end": 6051.76, + "probability": 0.5344 + }, + { + "start": 6051.84, + "end": 6052.26, + "probability": 0.6118 + }, + { + "start": 6052.78, + "end": 6054.66, + "probability": 0.8561 + }, + { + "start": 6054.76, + "end": 6055.38, + "probability": 0.8417 + }, + { + "start": 6055.58, + "end": 6056.56, + "probability": 0.9019 + }, + { + "start": 6056.76, + "end": 6057.54, + "probability": 0.9335 + }, + { + "start": 6057.78, + "end": 6059.32, + "probability": 0.8133 + }, + { + "start": 6059.5, + "end": 6061.28, + "probability": 0.747 + }, + { + "start": 6061.44, + "end": 6062.22, + "probability": 0.6537 + }, + { + "start": 6062.26, + "end": 6062.92, + "probability": 0.4804 + }, + { + "start": 6063.34, + "end": 6063.92, + "probability": 0.6888 + }, + { + "start": 6064.04, + "end": 6067.76, + "probability": 0.801 + }, + { + "start": 6067.84, + "end": 6068.52, + "probability": 0.429 + }, + { + "start": 6068.64, + "end": 6070.52, + "probability": 0.9788 + }, + { + "start": 6070.58, + "end": 6071.96, + "probability": 0.5674 + }, + { + "start": 6072.44, + "end": 6072.78, + "probability": 0.764 + }, + { + "start": 6072.9, + "end": 6075.24, + "probability": 0.7771 + }, + { + "start": 6075.38, + "end": 6080.22, + "probability": 0.988 + }, + { + "start": 6080.68, + "end": 6081.65, + "probability": 0.5207 + }, + { + "start": 6082.88, + "end": 6083.94, + "probability": 0.3662 + }, + { + "start": 6084.0, + "end": 6084.98, + "probability": 0.8092 + }, + { + "start": 6085.26, + "end": 6086.26, + "probability": 0.9646 + }, + { + "start": 6086.36, + "end": 6087.22, + "probability": 0.9508 + }, + { + "start": 6087.48, + "end": 6089.28, + "probability": 0.9134 + }, + { + "start": 6089.66, + "end": 6092.26, + "probability": 0.9373 + }, + { + "start": 6092.42, + "end": 6095.43, + "probability": 0.9956 + }, + { + "start": 6095.98, + "end": 6100.58, + "probability": 0.9801 + }, + { + "start": 6100.82, + "end": 6102.94, + "probability": 0.9473 + }, + { + "start": 6103.66, + "end": 6105.34, + "probability": 0.7545 + }, + { + "start": 6105.36, + "end": 6106.34, + "probability": 0.7046 + }, + { + "start": 6106.58, + "end": 6109.06, + "probability": 0.9894 + }, + { + "start": 6109.86, + "end": 6114.02, + "probability": 0.977 + }, + { + "start": 6114.02, + "end": 6116.12, + "probability": 0.9133 + }, + { + "start": 6116.46, + "end": 6117.52, + "probability": 0.8904 + }, + { + "start": 6117.6, + "end": 6118.78, + "probability": 0.9951 + }, + { + "start": 6119.1, + "end": 6120.84, + "probability": 0.6145 + }, + { + "start": 6120.94, + "end": 6123.68, + "probability": 0.9691 + }, + { + "start": 6123.68, + "end": 6126.0, + "probability": 0.9982 + }, + { + "start": 6126.2, + "end": 6126.54, + "probability": 0.5483 + }, + { + "start": 6127.14, + "end": 6129.81, + "probability": 0.9736 + }, + { + "start": 6130.38, + "end": 6131.28, + "probability": 0.8144 + }, + { + "start": 6131.46, + "end": 6132.84, + "probability": 0.9041 + }, + { + "start": 6133.3, + "end": 6134.58, + "probability": 0.9147 + }, + { + "start": 6134.64, + "end": 6135.54, + "probability": 0.5132 + }, + { + "start": 6135.66, + "end": 6136.78, + "probability": 0.7974 + }, + { + "start": 6136.88, + "end": 6137.9, + "probability": 0.9378 + }, + { + "start": 6138.42, + "end": 6139.96, + "probability": 0.6887 + }, + { + "start": 6140.38, + "end": 6141.68, + "probability": 0.719 + }, + { + "start": 6142.06, + "end": 6142.74, + "probability": 0.947 + }, + { + "start": 6143.04, + "end": 6145.32, + "probability": 0.9014 + }, + { + "start": 6145.94, + "end": 6148.44, + "probability": 0.9679 + }, + { + "start": 6148.6, + "end": 6149.54, + "probability": 0.9881 + }, + { + "start": 6149.62, + "end": 6150.38, + "probability": 0.9056 + }, + { + "start": 6150.48, + "end": 6150.72, + "probability": 0.3873 + }, + { + "start": 6150.8, + "end": 6152.28, + "probability": 0.712 + }, + { + "start": 6152.9, + "end": 6153.66, + "probability": 0.9802 + }, + { + "start": 6153.74, + "end": 6158.1, + "probability": 0.8301 + }, + { + "start": 6158.48, + "end": 6159.88, + "probability": 0.9067 + }, + { + "start": 6160.18, + "end": 6160.84, + "probability": 0.516 + }, + { + "start": 6160.9, + "end": 6162.13, + "probability": 0.9004 + }, + { + "start": 6162.68, + "end": 6163.7, + "probability": 0.712 + }, + { + "start": 6163.92, + "end": 6165.2, + "probability": 0.6439 + }, + { + "start": 6165.36, + "end": 6165.9, + "probability": 0.9554 + }, + { + "start": 6166.4, + "end": 6168.32, + "probability": 0.9658 + }, + { + "start": 6168.38, + "end": 6169.56, + "probability": 0.9153 + }, + { + "start": 6169.98, + "end": 6171.4, + "probability": 0.9532 + }, + { + "start": 6171.52, + "end": 6173.76, + "probability": 0.9404 + }, + { + "start": 6173.98, + "end": 6175.58, + "probability": 0.8437 + }, + { + "start": 6175.8, + "end": 6176.2, + "probability": 0.5399 + }, + { + "start": 6176.96, + "end": 6177.98, + "probability": 0.9626 + }, + { + "start": 6178.22, + "end": 6179.26, + "probability": 0.7911 + }, + { + "start": 6179.42, + "end": 6180.38, + "probability": 0.9484 + }, + { + "start": 6180.48, + "end": 6181.16, + "probability": 0.8853 + }, + { + "start": 6181.28, + "end": 6182.44, + "probability": 0.9626 + }, + { + "start": 6182.52, + "end": 6183.01, + "probability": 0.7546 + }, + { + "start": 6183.44, + "end": 6185.06, + "probability": 0.9821 + }, + { + "start": 6185.16, + "end": 6186.14, + "probability": 0.5046 + }, + { + "start": 6186.72, + "end": 6189.16, + "probability": 0.895 + }, + { + "start": 6189.46, + "end": 6191.74, + "probability": 0.9861 + }, + { + "start": 6191.82, + "end": 6194.2, + "probability": 0.8671 + }, + { + "start": 6194.34, + "end": 6195.5, + "probability": 0.9893 + }, + { + "start": 6195.62, + "end": 6197.8, + "probability": 0.2342 + }, + { + "start": 6197.86, + "end": 6198.88, + "probability": 0.7811 + }, + { + "start": 6199.04, + "end": 6200.64, + "probability": 0.6408 + }, + { + "start": 6200.98, + "end": 6202.26, + "probability": 0.8182 + }, + { + "start": 6202.38, + "end": 6204.9, + "probability": 0.738 + }, + { + "start": 6205.5, + "end": 6207.14, + "probability": 0.9343 + }, + { + "start": 6207.32, + "end": 6210.36, + "probability": 0.9919 + }, + { + "start": 6210.62, + "end": 6212.0, + "probability": 0.9757 + }, + { + "start": 6212.02, + "end": 6213.8, + "probability": 0.9764 + }, + { + "start": 6213.9, + "end": 6215.0, + "probability": 0.9433 + }, + { + "start": 6215.3, + "end": 6217.74, + "probability": 0.9475 + }, + { + "start": 6217.76, + "end": 6218.24, + "probability": 0.7892 + }, + { + "start": 6218.26, + "end": 6218.7, + "probability": 0.731 + }, + { + "start": 6218.96, + "end": 6221.1, + "probability": 0.6676 + }, + { + "start": 6241.14, + "end": 6241.14, + "probability": 0.5989 + }, + { + "start": 6241.14, + "end": 6242.12, + "probability": 0.8204 + }, + { + "start": 6242.16, + "end": 6243.54, + "probability": 0.6553 + }, + { + "start": 6245.12, + "end": 6246.0, + "probability": 0.9425 + }, + { + "start": 6246.08, + "end": 6247.14, + "probability": 0.9274 + }, + { + "start": 6247.48, + "end": 6252.72, + "probability": 0.9823 + }, + { + "start": 6253.2, + "end": 6254.94, + "probability": 0.5771 + }, + { + "start": 6255.14, + "end": 6256.4, + "probability": 0.9341 + }, + { + "start": 6258.36, + "end": 6262.7, + "probability": 0.6424 + }, + { + "start": 6264.56, + "end": 6265.48, + "probability": 0.7346 + }, + { + "start": 6265.56, + "end": 6266.36, + "probability": 0.7832 + }, + { + "start": 6266.48, + "end": 6268.84, + "probability": 0.9429 + }, + { + "start": 6270.34, + "end": 6274.51, + "probability": 0.9662 + }, + { + "start": 6276.48, + "end": 6277.72, + "probability": 0.9873 + }, + { + "start": 6277.78, + "end": 6281.84, + "probability": 0.473 + }, + { + "start": 6282.74, + "end": 6285.42, + "probability": 0.9053 + }, + { + "start": 6285.5, + "end": 6286.52, + "probability": 0.9122 + }, + { + "start": 6286.58, + "end": 6287.12, + "probability": 0.5579 + }, + { + "start": 6287.62, + "end": 6288.44, + "probability": 0.8395 + }, + { + "start": 6288.6, + "end": 6289.22, + "probability": 0.9564 + }, + { + "start": 6289.32, + "end": 6290.1, + "probability": 0.9082 + }, + { + "start": 6290.6, + "end": 6292.14, + "probability": 0.9625 + }, + { + "start": 6292.32, + "end": 6293.1, + "probability": 0.8763 + }, + { + "start": 6293.2, + "end": 6293.84, + "probability": 0.7706 + }, + { + "start": 6293.98, + "end": 6294.08, + "probability": 0.7977 + }, + { + "start": 6295.14, + "end": 6297.66, + "probability": 0.7571 + }, + { + "start": 6299.64, + "end": 6300.5, + "probability": 0.6929 + }, + { + "start": 6302.04, + "end": 6305.28, + "probability": 0.8035 + }, + { + "start": 6306.14, + "end": 6308.35, + "probability": 0.9691 + }, + { + "start": 6309.04, + "end": 6311.88, + "probability": 0.7831 + }, + { + "start": 6312.42, + "end": 6316.22, + "probability": 0.9663 + }, + { + "start": 6318.08, + "end": 6322.24, + "probability": 0.8984 + }, + { + "start": 6322.24, + "end": 6326.28, + "probability": 0.9945 + }, + { + "start": 6326.34, + "end": 6327.52, + "probability": 0.8002 + }, + { + "start": 6328.48, + "end": 6330.98, + "probability": 0.827 + }, + { + "start": 6332.98, + "end": 6337.36, + "probability": 0.9963 + }, + { + "start": 6339.3, + "end": 6341.12, + "probability": 0.6759 + }, + { + "start": 6341.2, + "end": 6342.48, + "probability": 0.8818 + }, + { + "start": 6343.98, + "end": 6349.92, + "probability": 0.9765 + }, + { + "start": 6350.48, + "end": 6357.0, + "probability": 0.9894 + }, + { + "start": 6357.9, + "end": 6360.04, + "probability": 0.8725 + }, + { + "start": 6360.84, + "end": 6369.05, + "probability": 0.998 + }, + { + "start": 6370.86, + "end": 6371.64, + "probability": 0.9867 + }, + { + "start": 6373.32, + "end": 6374.62, + "probability": 0.9775 + }, + { + "start": 6376.14, + "end": 6378.12, + "probability": 0.9812 + }, + { + "start": 6378.66, + "end": 6379.54, + "probability": 0.9679 + }, + { + "start": 6381.1, + "end": 6384.81, + "probability": 0.8755 + }, + { + "start": 6385.56, + "end": 6387.85, + "probability": 0.6249 + }, + { + "start": 6389.2, + "end": 6390.8, + "probability": 0.9085 + }, + { + "start": 6390.94, + "end": 6391.94, + "probability": 0.9536 + }, + { + "start": 6392.18, + "end": 6393.09, + "probability": 0.5454 + }, + { + "start": 6394.48, + "end": 6396.2, + "probability": 0.7851 + }, + { + "start": 6397.9, + "end": 6399.04, + "probability": 0.9885 + }, + { + "start": 6400.02, + "end": 6402.94, + "probability": 0.9902 + }, + { + "start": 6404.12, + "end": 6405.54, + "probability": 0.8001 + }, + { + "start": 6407.1, + "end": 6410.72, + "probability": 0.9954 + }, + { + "start": 6411.74, + "end": 6416.3, + "probability": 0.9963 + }, + { + "start": 6417.32, + "end": 6417.98, + "probability": 0.5665 + }, + { + "start": 6418.22, + "end": 6419.64, + "probability": 0.9282 + }, + { + "start": 6419.8, + "end": 6421.86, + "probability": 0.9934 + }, + { + "start": 6422.76, + "end": 6424.24, + "probability": 0.481 + }, + { + "start": 6427.34, + "end": 6428.22, + "probability": 0.9177 + }, + { + "start": 6429.14, + "end": 6430.32, + "probability": 0.879 + }, + { + "start": 6431.18, + "end": 6432.26, + "probability": 0.6739 + }, + { + "start": 6433.68, + "end": 6435.24, + "probability": 0.984 + }, + { + "start": 6435.36, + "end": 6436.4, + "probability": 0.9069 + }, + { + "start": 6436.7, + "end": 6438.46, + "probability": 0.9929 + }, + { + "start": 6440.26, + "end": 6440.38, + "probability": 0.0691 + }, + { + "start": 6440.38, + "end": 6440.82, + "probability": 0.232 + }, + { + "start": 6440.82, + "end": 6442.06, + "probability": 0.4701 + }, + { + "start": 6442.52, + "end": 6442.78, + "probability": 0.0983 + }, + { + "start": 6442.86, + "end": 6443.16, + "probability": 0.5262 + }, + { + "start": 6443.16, + "end": 6444.2, + "probability": 0.6279 + }, + { + "start": 6444.7, + "end": 6445.8, + "probability": 0.8677 + }, + { + "start": 6445.88, + "end": 6446.88, + "probability": 0.9494 + }, + { + "start": 6447.94, + "end": 6451.14, + "probability": 0.8692 + }, + { + "start": 6451.36, + "end": 6453.23, + "probability": 0.0637 + }, + { + "start": 6454.34, + "end": 6456.74, + "probability": 0.7981 + }, + { + "start": 6484.5, + "end": 6487.3, + "probability": 0.7434 + }, + { + "start": 6496.08, + "end": 6498.26, + "probability": 0.7466 + }, + { + "start": 6501.04, + "end": 6502.78, + "probability": 0.9166 + }, + { + "start": 6509.06, + "end": 6513.6, + "probability": 0.9717 + }, + { + "start": 6515.62, + "end": 6518.66, + "probability": 0.8499 + }, + { + "start": 6518.66, + "end": 6520.38, + "probability": 0.6985 + }, + { + "start": 6520.46, + "end": 6521.12, + "probability": 0.7268 + }, + { + "start": 6522.02, + "end": 6522.58, + "probability": 0.5687 + }, + { + "start": 6522.98, + "end": 6524.64, + "probability": 0.9771 + }, + { + "start": 6528.48, + "end": 6528.48, + "probability": 0.4242 + }, + { + "start": 6528.48, + "end": 6531.38, + "probability": 0.9429 + }, + { + "start": 6531.38, + "end": 6535.24, + "probability": 0.9971 + }, + { + "start": 6537.0, + "end": 6537.48, + "probability": 0.1236 + }, + { + "start": 6537.6, + "end": 6541.44, + "probability": 0.7283 + }, + { + "start": 6543.55, + "end": 6546.74, + "probability": 0.9736 + }, + { + "start": 6547.92, + "end": 6554.44, + "probability": 0.9251 + }, + { + "start": 6555.74, + "end": 6558.76, + "probability": 0.8973 + }, + { + "start": 6560.26, + "end": 6562.84, + "probability": 0.9186 + }, + { + "start": 6563.58, + "end": 6565.52, + "probability": 0.948 + }, + { + "start": 6567.7, + "end": 6570.88, + "probability": 0.9199 + }, + { + "start": 6571.8, + "end": 6575.06, + "probability": 0.9889 + }, + { + "start": 6575.14, + "end": 6578.54, + "probability": 0.9775 + }, + { + "start": 6580.24, + "end": 6584.34, + "probability": 0.9868 + }, + { + "start": 6586.88, + "end": 6590.7, + "probability": 0.7919 + }, + { + "start": 6591.66, + "end": 6595.14, + "probability": 0.9903 + }, + { + "start": 6603.62, + "end": 6604.7, + "probability": 0.9983 + }, + { + "start": 6605.54, + "end": 6607.28, + "probability": 0.9462 + }, + { + "start": 6607.42, + "end": 6613.26, + "probability": 0.9863 + }, + { + "start": 6616.18, + "end": 6625.88, + "probability": 0.8651 + }, + { + "start": 6626.86, + "end": 6632.08, + "probability": 0.9692 + }, + { + "start": 6633.3, + "end": 6637.8, + "probability": 0.9974 + }, + { + "start": 6639.52, + "end": 6642.75, + "probability": 0.9913 + }, + { + "start": 6644.22, + "end": 6645.44, + "probability": 0.9346 + }, + { + "start": 6647.42, + "end": 6649.28, + "probability": 0.9985 + }, + { + "start": 6651.18, + "end": 6655.58, + "probability": 0.9948 + }, + { + "start": 6659.38, + "end": 6664.2, + "probability": 0.9323 + }, + { + "start": 6666.68, + "end": 6667.87, + "probability": 0.9988 + }, + { + "start": 6669.08, + "end": 6678.76, + "probability": 0.9282 + }, + { + "start": 6678.92, + "end": 6679.26, + "probability": 0.6549 + }, + { + "start": 6679.34, + "end": 6680.09, + "probability": 0.6753 + }, + { + "start": 6681.42, + "end": 6681.92, + "probability": 0.8218 + }, + { + "start": 6682.08, + "end": 6682.78, + "probability": 0.645 + }, + { + "start": 6683.04, + "end": 6687.86, + "probability": 0.9948 + }, + { + "start": 6690.42, + "end": 6691.62, + "probability": 0.7733 + }, + { + "start": 6692.18, + "end": 6697.32, + "probability": 0.9746 + }, + { + "start": 6697.92, + "end": 6702.56, + "probability": 0.9375 + }, + { + "start": 6702.8, + "end": 6704.32, + "probability": 0.9811 + }, + { + "start": 6705.04, + "end": 6707.12, + "probability": 0.9839 + }, + { + "start": 6707.78, + "end": 6708.66, + "probability": 0.6512 + }, + { + "start": 6709.44, + "end": 6710.84, + "probability": 0.8425 + }, + { + "start": 6711.78, + "end": 6716.74, + "probability": 0.9806 + }, + { + "start": 6718.3, + "end": 6721.62, + "probability": 0.9825 + }, + { + "start": 6722.42, + "end": 6726.94, + "probability": 0.9404 + }, + { + "start": 6728.18, + "end": 6730.36, + "probability": 0.8695 + }, + { + "start": 6731.02, + "end": 6733.34, + "probability": 0.8228 + }, + { + "start": 6734.78, + "end": 6738.04, + "probability": 0.9499 + }, + { + "start": 6739.02, + "end": 6739.59, + "probability": 0.9211 + }, + { + "start": 6742.1, + "end": 6742.84, + "probability": 0.9409 + }, + { + "start": 6742.96, + "end": 6748.78, + "probability": 0.9814 + }, + { + "start": 6749.78, + "end": 6752.28, + "probability": 0.7045 + }, + { + "start": 6755.14, + "end": 6756.22, + "probability": 0.2679 + }, + { + "start": 6756.42, + "end": 6760.1, + "probability": 0.9685 + }, + { + "start": 6760.32, + "end": 6761.76, + "probability": 0.9498 + }, + { + "start": 6761.92, + "end": 6762.46, + "probability": 0.8008 + }, + { + "start": 6764.4, + "end": 6765.38, + "probability": 0.918 + }, + { + "start": 6766.0, + "end": 6767.5, + "probability": 0.9509 + }, + { + "start": 6768.84, + "end": 6772.42, + "probability": 0.9976 + }, + { + "start": 6772.42, + "end": 6776.74, + "probability": 0.9936 + }, + { + "start": 6777.64, + "end": 6780.26, + "probability": 0.9837 + }, + { + "start": 6781.08, + "end": 6782.1, + "probability": 0.8008 + }, + { + "start": 6783.42, + "end": 6784.86, + "probability": 0.858 + }, + { + "start": 6785.7, + "end": 6789.74, + "probability": 0.9082 + }, + { + "start": 6790.44, + "end": 6791.68, + "probability": 0.7554 + }, + { + "start": 6793.14, + "end": 6797.72, + "probability": 0.9824 + }, + { + "start": 6797.72, + "end": 6803.6, + "probability": 0.9807 + }, + { + "start": 6803.72, + "end": 6804.6, + "probability": 0.7195 + }, + { + "start": 6805.78, + "end": 6806.47, + "probability": 0.9326 + }, + { + "start": 6807.62, + "end": 6811.49, + "probability": 0.9949 + }, + { + "start": 6811.66, + "end": 6814.64, + "probability": 0.8737 + }, + { + "start": 6815.52, + "end": 6817.12, + "probability": 0.6902 + }, + { + "start": 6819.8, + "end": 6821.34, + "probability": 0.9963 + }, + { + "start": 6827.76, + "end": 6832.08, + "probability": 0.999 + }, + { + "start": 6833.74, + "end": 6835.48, + "probability": 0.9965 + }, + { + "start": 6836.82, + "end": 6838.54, + "probability": 0.5595 + }, + { + "start": 6842.88, + "end": 6846.92, + "probability": 0.8939 + }, + { + "start": 6849.52, + "end": 6856.86, + "probability": 0.9576 + }, + { + "start": 6857.22, + "end": 6860.86, + "probability": 0.8596 + }, + { + "start": 6861.44, + "end": 6862.5, + "probability": 0.6931 + }, + { + "start": 6863.92, + "end": 6864.86, + "probability": 0.8706 + }, + { + "start": 6865.9, + "end": 6867.5, + "probability": 0.9993 + }, + { + "start": 6867.66, + "end": 6870.68, + "probability": 0.9633 + }, + { + "start": 6874.5, + "end": 6881.58, + "probability": 0.9993 + }, + { + "start": 6881.7, + "end": 6885.44, + "probability": 0.9854 + }, + { + "start": 6886.38, + "end": 6887.22, + "probability": 0.793 + }, + { + "start": 6889.74, + "end": 6894.46, + "probability": 0.9366 + }, + { + "start": 6895.5, + "end": 6897.4, + "probability": 0.827 + }, + { + "start": 6899.08, + "end": 6900.58, + "probability": 0.9985 + }, + { + "start": 6903.4, + "end": 6904.34, + "probability": 0.7759 + }, + { + "start": 6905.18, + "end": 6906.34, + "probability": 0.8118 + }, + { + "start": 6909.88, + "end": 6912.58, + "probability": 0.9951 + }, + { + "start": 6916.04, + "end": 6917.82, + "probability": 0.8797 + }, + { + "start": 6918.44, + "end": 6919.26, + "probability": 0.6508 + }, + { + "start": 6921.8, + "end": 6922.76, + "probability": 0.9807 + }, + { + "start": 6923.66, + "end": 6924.86, + "probability": 0.6505 + }, + { + "start": 6928.74, + "end": 6931.46, + "probability": 0.9168 + }, + { + "start": 6933.0, + "end": 6935.54, + "probability": 0.9806 + }, + { + "start": 6936.86, + "end": 6938.66, + "probability": 0.9983 + }, + { + "start": 6940.86, + "end": 6943.8, + "probability": 0.9934 + }, + { + "start": 6945.52, + "end": 6946.58, + "probability": 0.8784 + }, + { + "start": 6949.22, + "end": 6950.4, + "probability": 0.9736 + }, + { + "start": 6951.4, + "end": 6956.66, + "probability": 0.9921 + }, + { + "start": 6959.02, + "end": 6963.98, + "probability": 0.5624 + }, + { + "start": 6965.98, + "end": 6967.44, + "probability": 0.695 + }, + { + "start": 6968.22, + "end": 6969.86, + "probability": 0.9348 + }, + { + "start": 6971.66, + "end": 6976.2, + "probability": 0.8994 + }, + { + "start": 6981.72, + "end": 6986.14, + "probability": 0.9396 + }, + { + "start": 6991.86, + "end": 6998.4, + "probability": 0.9844 + }, + { + "start": 6998.9, + "end": 7002.76, + "probability": 0.7759 + }, + { + "start": 7003.54, + "end": 7005.38, + "probability": 0.7881 + }, + { + "start": 7007.1, + "end": 7009.87, + "probability": 0.9517 + }, + { + "start": 7011.34, + "end": 7014.14, + "probability": 0.8788 + }, + { + "start": 7014.26, + "end": 7021.22, + "probability": 0.9074 + }, + { + "start": 7028.18, + "end": 7032.04, + "probability": 0.9695 + }, + { + "start": 7033.06, + "end": 7038.52, + "probability": 0.9847 + }, + { + "start": 7041.0, + "end": 7047.06, + "probability": 0.9965 + }, + { + "start": 7049.4, + "end": 7053.26, + "probability": 0.9981 + }, + { + "start": 7053.26, + "end": 7058.38, + "probability": 0.9989 + }, + { + "start": 7059.62, + "end": 7062.42, + "probability": 0.9976 + }, + { + "start": 7063.58, + "end": 7068.12, + "probability": 0.9087 + }, + { + "start": 7069.4, + "end": 7072.84, + "probability": 0.7723 + }, + { + "start": 7074.74, + "end": 7077.88, + "probability": 0.9977 + }, + { + "start": 7081.4, + "end": 7085.2, + "probability": 0.9707 + }, + { + "start": 7087.56, + "end": 7090.86, + "probability": 0.8125 + }, + { + "start": 7091.46, + "end": 7093.62, + "probability": 0.9868 + }, + { + "start": 7094.86, + "end": 7097.36, + "probability": 0.9756 + }, + { + "start": 7097.36, + "end": 7102.0, + "probability": 0.9809 + }, + { + "start": 7103.92, + "end": 7105.4, + "probability": 0.842 + }, + { + "start": 7108.06, + "end": 7118.06, + "probability": 0.9824 + }, + { + "start": 7118.62, + "end": 7120.64, + "probability": 0.6912 + }, + { + "start": 7121.3, + "end": 7123.22, + "probability": 0.7532 + }, + { + "start": 7124.02, + "end": 7134.6, + "probability": 0.9531 + }, + { + "start": 7135.14, + "end": 7137.98, + "probability": 0.9924 + }, + { + "start": 7139.1, + "end": 7141.72, + "probability": 0.8888 + }, + { + "start": 7142.24, + "end": 7145.22, + "probability": 0.8564 + }, + { + "start": 7147.24, + "end": 7157.6, + "probability": 0.6389 + }, + { + "start": 7158.1, + "end": 7158.96, + "probability": 0.8306 + }, + { + "start": 7159.52, + "end": 7160.6, + "probability": 0.6609 + }, + { + "start": 7161.58, + "end": 7165.78, + "probability": 0.9679 + }, + { + "start": 7165.98, + "end": 7167.26, + "probability": 0.6821 + }, + { + "start": 7167.88, + "end": 7169.06, + "probability": 0.969 + }, + { + "start": 7169.74, + "end": 7171.26, + "probability": 0.8824 + }, + { + "start": 7171.98, + "end": 7178.26, + "probability": 0.9883 + }, + { + "start": 7178.42, + "end": 7181.48, + "probability": 0.9466 + }, + { + "start": 7182.34, + "end": 7185.56, + "probability": 0.9974 + }, + { + "start": 7186.32, + "end": 7187.26, + "probability": 0.8875 + }, + { + "start": 7187.8, + "end": 7190.28, + "probability": 0.9155 + }, + { + "start": 7191.46, + "end": 7192.6, + "probability": 0.9438 + }, + { + "start": 7193.24, + "end": 7195.98, + "probability": 0.9811 + }, + { + "start": 7196.5, + "end": 7201.58, + "probability": 0.9597 + }, + { + "start": 7202.7, + "end": 7203.75, + "probability": 0.9205 + }, + { + "start": 7205.42, + "end": 7206.72, + "probability": 0.9167 + }, + { + "start": 7207.26, + "end": 7210.12, + "probability": 0.6389 + }, + { + "start": 7212.02, + "end": 7214.14, + "probability": 0.8723 + }, + { + "start": 7214.8, + "end": 7219.96, + "probability": 0.9681 + }, + { + "start": 7219.96, + "end": 7225.62, + "probability": 0.9955 + }, + { + "start": 7226.84, + "end": 7229.7, + "probability": 0.9941 + }, + { + "start": 7232.7, + "end": 7233.48, + "probability": 0.3299 + }, + { + "start": 7234.9, + "end": 7237.82, + "probability": 0.9893 + }, + { + "start": 7239.18, + "end": 7240.7, + "probability": 0.9677 + }, + { + "start": 7241.46, + "end": 7243.1, + "probability": 0.8535 + }, + { + "start": 7244.96, + "end": 7248.1, + "probability": 0.9868 + }, + { + "start": 7248.1, + "end": 7250.72, + "probability": 0.9657 + }, + { + "start": 7251.24, + "end": 7253.28, + "probability": 0.6655 + }, + { + "start": 7264.7, + "end": 7267.9, + "probability": 0.8004 + }, + { + "start": 7271.8, + "end": 7274.42, + "probability": 0.9971 + }, + { + "start": 7275.88, + "end": 7278.58, + "probability": 0.9497 + }, + { + "start": 7279.4, + "end": 7283.6, + "probability": 0.9604 + }, + { + "start": 7284.38, + "end": 7286.66, + "probability": 0.6265 + }, + { + "start": 7286.72, + "end": 7287.96, + "probability": 0.5273 + }, + { + "start": 7292.98, + "end": 7294.04, + "probability": 0.1833 + }, + { + "start": 7304.7, + "end": 7304.9, + "probability": 0.1807 + }, + { + "start": 7304.9, + "end": 7304.9, + "probability": 0.0941 + }, + { + "start": 7304.9, + "end": 7309.08, + "probability": 0.5463 + }, + { + "start": 7309.7, + "end": 7312.62, + "probability": 0.9688 + }, + { + "start": 7313.42, + "end": 7313.76, + "probability": 0.3553 + }, + { + "start": 7314.9, + "end": 7317.28, + "probability": 0.1186 + }, + { + "start": 7317.8, + "end": 7318.08, + "probability": 0.1151 + }, + { + "start": 7318.24, + "end": 7320.82, + "probability": 0.5542 + }, + { + "start": 7320.82, + "end": 7322.25, + "probability": 0.9922 + }, + { + "start": 7325.18, + "end": 7325.28, + "probability": 0.1205 + }, + { + "start": 7325.28, + "end": 7325.28, + "probability": 0.0854 + }, + { + "start": 7325.28, + "end": 7326.38, + "probability": 0.53 + }, + { + "start": 7327.38, + "end": 7328.9, + "probability": 0.4984 + }, + { + "start": 7328.9, + "end": 7329.65, + "probability": 0.4698 + }, + { + "start": 7329.88, + "end": 7331.22, + "probability": 0.1473 + }, + { + "start": 7335.0, + "end": 7337.48, + "probability": 0.062 + }, + { + "start": 7344.8, + "end": 7345.34, + "probability": 0.1385 + }, + { + "start": 7345.34, + "end": 7347.94, + "probability": 0.4893 + }, + { + "start": 7348.08, + "end": 7349.9, + "probability": 0.7699 + }, + { + "start": 7350.7, + "end": 7352.04, + "probability": 0.7131 + }, + { + "start": 7352.14, + "end": 7354.16, + "probability": 0.8066 + }, + { + "start": 7354.26, + "end": 7355.72, + "probability": 0.9714 + }, + { + "start": 7355.82, + "end": 7356.34, + "probability": 0.6276 + }, + { + "start": 7356.38, + "end": 7356.8, + "probability": 0.5087 + }, + { + "start": 7356.94, + "end": 7358.02, + "probability": 0.4228 + }, + { + "start": 7359.6, + "end": 7361.36, + "probability": 0.241 + }, + { + "start": 7362.38, + "end": 7363.54, + "probability": 0.2967 + }, + { + "start": 7368.94, + "end": 7369.54, + "probability": 0.0269 + }, + { + "start": 7372.44, + "end": 7372.58, + "probability": 0.1071 + }, + { + "start": 7372.72, + "end": 7374.94, + "probability": 0.3638 + }, + { + "start": 7375.84, + "end": 7376.46, + "probability": 0.6382 + }, + { + "start": 7376.82, + "end": 7377.92, + "probability": 0.8213 + }, + { + "start": 7378.76, + "end": 7380.62, + "probability": 0.9555 + }, + { + "start": 7381.9, + "end": 7385.58, + "probability": 0.9757 + }, + { + "start": 7386.16, + "end": 7389.48, + "probability": 0.7807 + }, + { + "start": 7389.54, + "end": 7390.12, + "probability": 0.2421 + }, + { + "start": 7390.14, + "end": 7391.3, + "probability": 0.5166 + }, + { + "start": 7406.3, + "end": 7407.24, + "probability": 0.0386 + }, + { + "start": 7407.24, + "end": 7408.44, + "probability": 0.4266 + }, + { + "start": 7409.1, + "end": 7410.2, + "probability": 0.7456 + }, + { + "start": 7410.56, + "end": 7411.38, + "probability": 0.9773 + }, + { + "start": 7411.9, + "end": 7413.6, + "probability": 0.8271 + }, + { + "start": 7413.74, + "end": 7416.34, + "probability": 0.9813 + }, + { + "start": 7418.8, + "end": 7420.32, + "probability": 0.9418 + }, + { + "start": 7423.02, + "end": 7429.58, + "probability": 0.9977 + }, + { + "start": 7429.9, + "end": 7430.9, + "probability": 0.6241 + }, + { + "start": 7444.32, + "end": 7444.9, + "probability": 0.0284 + }, + { + "start": 7462.4, + "end": 7463.18, + "probability": 0.7046 + }, + { + "start": 7463.24, + "end": 7467.72, + "probability": 0.9819 + }, + { + "start": 7467.72, + "end": 7472.52, + "probability": 0.9557 + }, + { + "start": 7472.98, + "end": 7474.48, + "probability": 0.8144 + }, + { + "start": 7479.46, + "end": 7480.56, + "probability": 0.9906 + }, + { + "start": 7481.78, + "end": 7483.2, + "probability": 0.9102 + }, + { + "start": 7484.1, + "end": 7489.14, + "probability": 0.9952 + }, + { + "start": 7490.02, + "end": 7493.36, + "probability": 0.9668 + }, + { + "start": 7494.04, + "end": 7495.78, + "probability": 0.9585 + }, + { + "start": 7496.56, + "end": 7498.9, + "probability": 0.8969 + }, + { + "start": 7499.84, + "end": 7502.34, + "probability": 0.9783 + }, + { + "start": 7503.2, + "end": 7505.2, + "probability": 0.9966 + }, + { + "start": 7506.06, + "end": 7508.58, + "probability": 0.9941 + }, + { + "start": 7509.64, + "end": 7511.76, + "probability": 0.8671 + }, + { + "start": 7513.04, + "end": 7516.76, + "probability": 0.9918 + }, + { + "start": 7520.36, + "end": 7521.58, + "probability": 0.9797 + }, + { + "start": 7522.22, + "end": 7524.14, + "probability": 0.9296 + }, + { + "start": 7524.86, + "end": 7527.66, + "probability": 0.981 + }, + { + "start": 7528.46, + "end": 7530.54, + "probability": 0.8667 + }, + { + "start": 7530.94, + "end": 7533.38, + "probability": 0.7192 + }, + { + "start": 7534.08, + "end": 7535.0, + "probability": 0.8482 + }, + { + "start": 7536.62, + "end": 7538.38, + "probability": 0.9474 + }, + { + "start": 7540.44, + "end": 7546.26, + "probability": 0.9836 + }, + { + "start": 7546.86, + "end": 7548.18, + "probability": 0.9951 + }, + { + "start": 7548.9, + "end": 7550.36, + "probability": 0.8924 + }, + { + "start": 7550.6, + "end": 7553.86, + "probability": 0.968 + }, + { + "start": 7554.96, + "end": 7557.76, + "probability": 0.8829 + }, + { + "start": 7558.26, + "end": 7559.66, + "probability": 0.99 + }, + { + "start": 7559.9, + "end": 7560.5, + "probability": 0.9911 + }, + { + "start": 7560.8, + "end": 7562.16, + "probability": 0.9162 + }, + { + "start": 7564.32, + "end": 7567.2, + "probability": 0.91 + }, + { + "start": 7568.26, + "end": 7569.74, + "probability": 0.8269 + }, + { + "start": 7570.4, + "end": 7571.52, + "probability": 0.9253 + }, + { + "start": 7572.06, + "end": 7575.04, + "probability": 0.9106 + }, + { + "start": 7575.82, + "end": 7578.4, + "probability": 0.9995 + }, + { + "start": 7579.06, + "end": 7580.02, + "probability": 0.8294 + }, + { + "start": 7580.78, + "end": 7581.72, + "probability": 0.9719 + }, + { + "start": 7582.62, + "end": 7586.08, + "probability": 0.9876 + }, + { + "start": 7607.02, + "end": 7607.22, + "probability": 0.0383 + }, + { + "start": 7617.64, + "end": 7617.9, + "probability": 0.0002 + }, + { + "start": 7617.9, + "end": 7618.88, + "probability": 0.8664 + }, + { + "start": 7619.46, + "end": 7620.72, + "probability": 0.8652 + }, + { + "start": 7621.88, + "end": 7624.6, + "probability": 0.9816 + }, + { + "start": 7626.08, + "end": 7628.12, + "probability": 0.9186 + }, + { + "start": 7629.06, + "end": 7631.12, + "probability": 0.7914 + }, + { + "start": 7632.54, + "end": 7635.22, + "probability": 0.9772 + }, + { + "start": 7636.76, + "end": 7637.06, + "probability": 0.7388 + }, + { + "start": 7638.38, + "end": 7639.52, + "probability": 0.7557 + }, + { + "start": 7640.64, + "end": 7642.52, + "probability": 0.9639 + }, + { + "start": 7644.22, + "end": 7648.72, + "probability": 0.9917 + }, + { + "start": 7649.24, + "end": 7654.88, + "probability": 0.9781 + }, + { + "start": 7656.66, + "end": 7657.5, + "probability": 0.7477 + }, + { + "start": 7658.42, + "end": 7661.42, + "probability": 0.9741 + }, + { + "start": 7662.24, + "end": 7664.04, + "probability": 0.8507 + }, + { + "start": 7665.52, + "end": 7666.2, + "probability": 0.5621 + }, + { + "start": 7666.96, + "end": 7667.92, + "probability": 0.9098 + }, + { + "start": 7668.7, + "end": 7669.36, + "probability": 0.8212 + }, + { + "start": 7669.88, + "end": 7673.42, + "probability": 0.9736 + }, + { + "start": 7673.98, + "end": 7674.78, + "probability": 0.9668 + }, + { + "start": 7676.62, + "end": 7678.92, + "probability": 0.9633 + }, + { + "start": 7679.56, + "end": 7680.42, + "probability": 0.8755 + }, + { + "start": 7681.58, + "end": 7683.86, + "probability": 0.9077 + }, + { + "start": 7684.76, + "end": 7690.22, + "probability": 0.9971 + }, + { + "start": 7690.96, + "end": 7693.42, + "probability": 0.928 + }, + { + "start": 7695.36, + "end": 7698.5, + "probability": 0.9338 + }, + { + "start": 7698.5, + "end": 7701.54, + "probability": 0.9753 + }, + { + "start": 7701.7, + "end": 7702.64, + "probability": 0.7991 + }, + { + "start": 7703.2, + "end": 7705.62, + "probability": 0.9426 + }, + { + "start": 7706.2, + "end": 7707.58, + "probability": 0.8573 + }, + { + "start": 7708.18, + "end": 7708.66, + "probability": 0.9764 + }, + { + "start": 7709.18, + "end": 7711.58, + "probability": 0.8879 + }, + { + "start": 7712.68, + "end": 7717.5, + "probability": 0.9705 + }, + { + "start": 7717.94, + "end": 7723.0, + "probability": 0.8818 + }, + { + "start": 7723.68, + "end": 7727.58, + "probability": 0.9849 + }, + { + "start": 7729.7, + "end": 7730.22, + "probability": 0.5267 + }, + { + "start": 7731.62, + "end": 7733.32, + "probability": 0.9769 + }, + { + "start": 7733.96, + "end": 7736.1, + "probability": 0.992 + }, + { + "start": 7736.84, + "end": 7741.48, + "probability": 0.9907 + }, + { + "start": 7743.02, + "end": 7746.34, + "probability": 0.9958 + }, + { + "start": 7747.1, + "end": 7751.18, + "probability": 0.9154 + }, + { + "start": 7751.78, + "end": 7752.5, + "probability": 0.8796 + }, + { + "start": 7753.6, + "end": 7754.42, + "probability": 0.9918 + }, + { + "start": 7755.16, + "end": 7761.0, + "probability": 0.9701 + }, + { + "start": 7762.58, + "end": 7763.72, + "probability": 0.8425 + }, + { + "start": 7764.24, + "end": 7765.82, + "probability": 0.9121 + }, + { + "start": 7766.64, + "end": 7768.36, + "probability": 0.6767 + }, + { + "start": 7768.98, + "end": 7773.58, + "probability": 0.9202 + }, + { + "start": 7775.38, + "end": 7777.2, + "probability": 0.9927 + }, + { + "start": 7778.0, + "end": 7779.66, + "probability": 0.7688 + }, + { + "start": 7780.4, + "end": 7781.92, + "probability": 0.9827 + }, + { + "start": 7783.38, + "end": 7786.9, + "probability": 0.9718 + }, + { + "start": 7787.6, + "end": 7789.64, + "probability": 0.9701 + }, + { + "start": 7792.18, + "end": 7796.08, + "probability": 0.9906 + }, + { + "start": 7797.22, + "end": 7802.6, + "probability": 0.991 + }, + { + "start": 7803.2, + "end": 7804.98, + "probability": 0.9944 + }, + { + "start": 7805.62, + "end": 7810.12, + "probability": 0.9314 + }, + { + "start": 7812.14, + "end": 7815.64, + "probability": 0.9229 + }, + { + "start": 7816.38, + "end": 7819.28, + "probability": 0.9828 + }, + { + "start": 7820.76, + "end": 7824.5, + "probability": 0.9893 + }, + { + "start": 7824.94, + "end": 7827.22, + "probability": 0.8711 + }, + { + "start": 7827.92, + "end": 7831.34, + "probability": 0.9712 + }, + { + "start": 7833.54, + "end": 7838.84, + "probability": 0.9878 + }, + { + "start": 7840.24, + "end": 7841.14, + "probability": 0.9193 + }, + { + "start": 7842.16, + "end": 7844.4, + "probability": 0.7651 + }, + { + "start": 7845.38, + "end": 7851.46, + "probability": 0.9119 + }, + { + "start": 7852.46, + "end": 7855.4, + "probability": 0.911 + }, + { + "start": 7856.58, + "end": 7859.12, + "probability": 0.9737 + }, + { + "start": 7859.72, + "end": 7860.73, + "probability": 0.6344 + }, + { + "start": 7861.1, + "end": 7863.88, + "probability": 0.8254 + }, + { + "start": 7864.98, + "end": 7865.98, + "probability": 0.7884 + }, + { + "start": 7866.62, + "end": 7869.52, + "probability": 0.8505 + }, + { + "start": 7870.42, + "end": 7872.9, + "probability": 0.973 + }, + { + "start": 7873.78, + "end": 7875.66, + "probability": 0.9131 + }, + { + "start": 7876.74, + "end": 7879.86, + "probability": 0.9869 + }, + { + "start": 7880.58, + "end": 7882.12, + "probability": 0.9012 + }, + { + "start": 7884.6, + "end": 7889.76, + "probability": 0.9919 + }, + { + "start": 7889.98, + "end": 7893.08, + "probability": 0.9933 + }, + { + "start": 7894.12, + "end": 7896.3, + "probability": 0.996 + }, + { + "start": 7897.26, + "end": 7901.88, + "probability": 0.9951 + }, + { + "start": 7902.98, + "end": 7907.34, + "probability": 0.9733 + }, + { + "start": 7908.06, + "end": 7909.52, + "probability": 0.9931 + }, + { + "start": 7909.58, + "end": 7910.6, + "probability": 0.9714 + }, + { + "start": 7911.0, + "end": 7913.88, + "probability": 0.9689 + }, + { + "start": 7915.7, + "end": 7916.18, + "probability": 0.5794 + }, + { + "start": 7917.4, + "end": 7923.06, + "probability": 0.9885 + }, + { + "start": 7923.38, + "end": 7926.72, + "probability": 0.9857 + }, + { + "start": 7927.76, + "end": 7928.28, + "probability": 0.92 + }, + { + "start": 7929.0, + "end": 7932.58, + "probability": 0.9502 + }, + { + "start": 7932.58, + "end": 7935.88, + "probability": 0.9818 + }, + { + "start": 7937.92, + "end": 7942.12, + "probability": 0.9871 + }, + { + "start": 7942.7, + "end": 7944.0, + "probability": 0.8984 + }, + { + "start": 7945.18, + "end": 7947.84, + "probability": 0.999 + }, + { + "start": 7948.48, + "end": 7950.14, + "probability": 0.9487 + }, + { + "start": 7951.12, + "end": 7955.2, + "probability": 0.9879 + }, + { + "start": 7955.2, + "end": 7959.28, + "probability": 0.9954 + }, + { + "start": 7959.58, + "end": 7961.64, + "probability": 0.8137 + }, + { + "start": 7962.42, + "end": 7964.58, + "probability": 0.9444 + }, + { + "start": 7965.46, + "end": 7967.22, + "probability": 0.9001 + }, + { + "start": 7967.76, + "end": 7970.74, + "probability": 0.8322 + }, + { + "start": 7971.36, + "end": 7972.58, + "probability": 0.9392 + }, + { + "start": 7973.38, + "end": 7978.76, + "probability": 0.9624 + }, + { + "start": 7979.68, + "end": 7982.68, + "probability": 0.9902 + }, + { + "start": 7984.26, + "end": 7984.96, + "probability": 0.7514 + }, + { + "start": 7985.36, + "end": 7990.6, + "probability": 0.994 + }, + { + "start": 7991.64, + "end": 7992.76, + "probability": 0.855 + }, + { + "start": 7993.38, + "end": 7999.18, + "probability": 0.8773 + }, + { + "start": 8000.34, + "end": 8001.18, + "probability": 0.9735 + }, + { + "start": 8003.82, + "end": 8005.34, + "probability": 0.9718 + }, + { + "start": 8006.38, + "end": 8007.08, + "probability": 0.8868 + }, + { + "start": 8007.68, + "end": 8010.5, + "probability": 0.8092 + }, + { + "start": 8010.98, + "end": 8011.74, + "probability": 0.7305 + }, + { + "start": 8012.08, + "end": 8012.7, + "probability": 0.9401 + }, + { + "start": 8014.26, + "end": 8018.12, + "probability": 0.9648 + }, + { + "start": 8018.84, + "end": 8020.38, + "probability": 0.986 + }, + { + "start": 8021.22, + "end": 8024.36, + "probability": 0.9488 + }, + { + "start": 8025.18, + "end": 8028.54, + "probability": 0.9791 + }, + { + "start": 8028.98, + "end": 8032.88, + "probability": 0.977 + }, + { + "start": 8034.24, + "end": 8036.26, + "probability": 0.9942 + }, + { + "start": 8036.68, + "end": 8040.52, + "probability": 0.9896 + }, + { + "start": 8041.06, + "end": 8041.26, + "probability": 0.9979 + }, + { + "start": 8041.8, + "end": 8042.44, + "probability": 0.9971 + }, + { + "start": 8044.2, + "end": 8046.86, + "probability": 0.9988 + }, + { + "start": 8046.86, + "end": 8049.7, + "probability": 0.9757 + }, + { + "start": 8068.22, + "end": 8070.14, + "probability": 0.9443 + }, + { + "start": 8071.22, + "end": 8073.08, + "probability": 0.8984 + }, + { + "start": 8074.1, + "end": 8077.82, + "probability": 0.9727 + }, + { + "start": 8079.12, + "end": 8081.84, + "probability": 0.9632 + }, + { + "start": 8082.74, + "end": 8086.36, + "probability": 0.9216 + }, + { + "start": 8087.56, + "end": 8088.96, + "probability": 0.7541 + }, + { + "start": 8089.86, + "end": 8091.96, + "probability": 0.8774 + }, + { + "start": 8092.78, + "end": 8094.38, + "probability": 0.9741 + }, + { + "start": 8095.2, + "end": 8097.28, + "probability": 0.9039 + }, + { + "start": 8097.84, + "end": 8098.38, + "probability": 0.9354 + }, + { + "start": 8100.36, + "end": 8102.76, + "probability": 0.7837 + }, + { + "start": 8103.44, + "end": 8104.56, + "probability": 0.8022 + }, + { + "start": 8105.48, + "end": 8105.96, + "probability": 0.719 + }, + { + "start": 8106.64, + "end": 8107.47, + "probability": 0.604 + }, + { + "start": 8108.9, + "end": 8109.6, + "probability": 0.6152 + }, + { + "start": 8111.72, + "end": 8116.04, + "probability": 0.9809 + }, + { + "start": 8117.18, + "end": 8118.84, + "probability": 0.8558 + }, + { + "start": 8119.98, + "end": 8124.7, + "probability": 0.9819 + }, + { + "start": 8125.56, + "end": 8126.48, + "probability": 0.9026 + }, + { + "start": 8127.0, + "end": 8131.66, + "probability": 0.9945 + }, + { + "start": 8132.44, + "end": 8133.18, + "probability": 0.9819 + }, + { + "start": 8133.82, + "end": 8137.48, + "probability": 0.8701 + }, + { + "start": 8139.24, + "end": 8140.2, + "probability": 0.7659 + }, + { + "start": 8141.04, + "end": 8144.58, + "probability": 0.8433 + }, + { + "start": 8145.72, + "end": 8147.96, + "probability": 0.8812 + }, + { + "start": 8149.2, + "end": 8150.5, + "probability": 0.9098 + }, + { + "start": 8151.78, + "end": 8153.25, + "probability": 0.9971 + }, + { + "start": 8155.26, + "end": 8156.14, + "probability": 0.9219 + }, + { + "start": 8157.4, + "end": 8162.44, + "probability": 0.9919 + }, + { + "start": 8163.26, + "end": 8164.5, + "probability": 0.5728 + }, + { + "start": 8165.38, + "end": 8168.09, + "probability": 0.9839 + }, + { + "start": 8169.52, + "end": 8171.56, + "probability": 0.99 + }, + { + "start": 8172.84, + "end": 8175.74, + "probability": 0.9844 + }, + { + "start": 8177.12, + "end": 8180.08, + "probability": 0.9667 + }, + { + "start": 8181.0, + "end": 8184.26, + "probability": 0.9966 + }, + { + "start": 8185.78, + "end": 8186.96, + "probability": 0.8919 + }, + { + "start": 8187.5, + "end": 8189.7, + "probability": 0.9522 + }, + { + "start": 8190.84, + "end": 8191.76, + "probability": 0.8333 + }, + { + "start": 8192.36, + "end": 8193.36, + "probability": 0.9638 + }, + { + "start": 8194.12, + "end": 8195.18, + "probability": 0.9541 + }, + { + "start": 8196.9, + "end": 8198.98, + "probability": 0.9985 + }, + { + "start": 8199.94, + "end": 8203.1, + "probability": 0.9258 + }, + { + "start": 8203.96, + "end": 8210.1, + "probability": 0.9849 + }, + { + "start": 8211.24, + "end": 8216.64, + "probability": 0.982 + }, + { + "start": 8217.54, + "end": 8219.46, + "probability": 0.7054 + }, + { + "start": 8220.22, + "end": 8221.86, + "probability": 0.9429 + }, + { + "start": 8223.34, + "end": 8225.48, + "probability": 0.9978 + }, + { + "start": 8226.76, + "end": 8230.64, + "probability": 0.9082 + }, + { + "start": 8231.68, + "end": 8232.9, + "probability": 0.9645 + }, + { + "start": 8234.82, + "end": 8238.36, + "probability": 0.9875 + }, + { + "start": 8238.36, + "end": 8243.78, + "probability": 0.9883 + }, + { + "start": 8244.22, + "end": 8246.5, + "probability": 0.3901 + }, + { + "start": 8246.64, + "end": 8247.1, + "probability": 0.7914 + }, + { + "start": 8247.66, + "end": 8248.22, + "probability": 0.3689 + }, + { + "start": 8248.78, + "end": 8250.92, + "probability": 0.9686 + }, + { + "start": 8252.1, + "end": 8256.76, + "probability": 0.9302 + }, + { + "start": 8257.78, + "end": 8260.38, + "probability": 0.9755 + }, + { + "start": 8261.14, + "end": 8262.22, + "probability": 0.8722 + }, + { + "start": 8263.4, + "end": 8265.64, + "probability": 0.8326 + }, + { + "start": 8266.84, + "end": 8268.34, + "probability": 0.9255 + }, + { + "start": 8269.3, + "end": 8270.8, + "probability": 0.9578 + }, + { + "start": 8272.26, + "end": 8277.6, + "probability": 0.944 + }, + { + "start": 8279.68, + "end": 8279.96, + "probability": 0.8008 + }, + { + "start": 8280.02, + "end": 8282.28, + "probability": 0.9715 + }, + { + "start": 8282.34, + "end": 8283.06, + "probability": 0.8304 + }, + { + "start": 8283.72, + "end": 8287.76, + "probability": 0.903 + }, + { + "start": 8288.9, + "end": 8291.56, + "probability": 0.9937 + }, + { + "start": 8292.32, + "end": 8294.44, + "probability": 0.9952 + }, + { + "start": 8295.18, + "end": 8295.96, + "probability": 0.9595 + }, + { + "start": 8296.76, + "end": 8297.51, + "probability": 0.9901 + }, + { + "start": 8298.62, + "end": 8300.96, + "probability": 0.9093 + }, + { + "start": 8301.78, + "end": 8304.1, + "probability": 0.9592 + }, + { + "start": 8304.68, + "end": 8306.6, + "probability": 0.9632 + }, + { + "start": 8307.38, + "end": 8308.48, + "probability": 0.9882 + }, + { + "start": 8309.2, + "end": 8312.68, + "probability": 0.8933 + }, + { + "start": 8313.36, + "end": 8315.84, + "probability": 0.9945 + }, + { + "start": 8316.98, + "end": 8318.26, + "probability": 0.6819 + }, + { + "start": 8318.9, + "end": 8323.06, + "probability": 0.9756 + }, + { + "start": 8323.66, + "end": 8324.7, + "probability": 0.89 + }, + { + "start": 8325.36, + "end": 8326.38, + "probability": 0.918 + }, + { + "start": 8327.12, + "end": 8328.18, + "probability": 0.9905 + }, + { + "start": 8328.9, + "end": 8330.72, + "probability": 0.9243 + }, + { + "start": 8331.32, + "end": 8332.46, + "probability": 0.971 + }, + { + "start": 8333.28, + "end": 8334.34, + "probability": 0.9805 + }, + { + "start": 8335.66, + "end": 8340.96, + "probability": 0.9944 + }, + { + "start": 8342.32, + "end": 8343.46, + "probability": 0.9087 + }, + { + "start": 8344.62, + "end": 8345.76, + "probability": 0.9847 + }, + { + "start": 8346.9, + "end": 8349.22, + "probability": 0.9951 + }, + { + "start": 8350.36, + "end": 8353.36, + "probability": 0.9947 + }, + { + "start": 8354.72, + "end": 8357.05, + "probability": 0.8547 + }, + { + "start": 8358.72, + "end": 8360.36, + "probability": 0.9771 + }, + { + "start": 8361.86, + "end": 8366.02, + "probability": 0.9711 + }, + { + "start": 8367.52, + "end": 8370.38, + "probability": 0.874 + }, + { + "start": 8371.52, + "end": 8374.56, + "probability": 0.9434 + }, + { + "start": 8375.48, + "end": 8376.83, + "probability": 0.8968 + }, + { + "start": 8377.82, + "end": 8378.22, + "probability": 0.987 + }, + { + "start": 8379.54, + "end": 8382.32, + "probability": 0.9921 + }, + { + "start": 8383.38, + "end": 8385.22, + "probability": 0.8897 + }, + { + "start": 8386.04, + "end": 8391.3, + "probability": 0.989 + }, + { + "start": 8392.44, + "end": 8393.7, + "probability": 0.8015 + }, + { + "start": 8395.36, + "end": 8396.62, + "probability": 0.9716 + }, + { + "start": 8397.8, + "end": 8399.64, + "probability": 0.9585 + }, + { + "start": 8400.46, + "end": 8402.96, + "probability": 0.9886 + }, + { + "start": 8403.92, + "end": 8404.26, + "probability": 0.9305 + }, + { + "start": 8405.06, + "end": 8406.78, + "probability": 0.9974 + }, + { + "start": 8407.46, + "end": 8409.28, + "probability": 0.9968 + }, + { + "start": 8410.36, + "end": 8413.14, + "probability": 0.9793 + }, + { + "start": 8414.28, + "end": 8416.94, + "probability": 0.9023 + }, + { + "start": 8417.6, + "end": 8420.4, + "probability": 0.955 + }, + { + "start": 8421.68, + "end": 8425.22, + "probability": 0.9957 + }, + { + "start": 8425.94, + "end": 8428.62, + "probability": 0.9919 + }, + { + "start": 8429.94, + "end": 8431.42, + "probability": 0.7085 + }, + { + "start": 8432.22, + "end": 8434.64, + "probability": 0.9359 + }, + { + "start": 8435.64, + "end": 8438.06, + "probability": 0.9758 + }, + { + "start": 8438.82, + "end": 8440.56, + "probability": 0.859 + }, + { + "start": 8441.62, + "end": 8444.72, + "probability": 0.9886 + }, + { + "start": 8445.86, + "end": 8448.04, + "probability": 0.9873 + }, + { + "start": 8449.4, + "end": 8450.58, + "probability": 0.932 + }, + { + "start": 8452.32, + "end": 8453.4, + "probability": 0.9273 + }, + { + "start": 8458.56, + "end": 8459.3, + "probability": 0.6773 + }, + { + "start": 8461.54, + "end": 8463.9, + "probability": 0.9679 + }, + { + "start": 8464.76, + "end": 8467.02, + "probability": 0.9937 + }, + { + "start": 8468.02, + "end": 8470.7, + "probability": 0.8608 + }, + { + "start": 8472.02, + "end": 8474.38, + "probability": 0.6963 + }, + { + "start": 8475.54, + "end": 8477.86, + "probability": 0.8982 + }, + { + "start": 8478.66, + "end": 8480.26, + "probability": 0.9954 + }, + { + "start": 8480.72, + "end": 8484.7, + "probability": 0.992 + }, + { + "start": 8485.84, + "end": 8491.4, + "probability": 0.9941 + }, + { + "start": 8492.36, + "end": 8498.48, + "probability": 0.9911 + }, + { + "start": 8499.62, + "end": 8500.3, + "probability": 0.8706 + }, + { + "start": 8501.66, + "end": 8502.84, + "probability": 0.9686 + }, + { + "start": 8503.78, + "end": 8505.0, + "probability": 0.873 + }, + { + "start": 8506.36, + "end": 8507.76, + "probability": 0.5555 + }, + { + "start": 8508.46, + "end": 8510.6, + "probability": 0.9976 + }, + { + "start": 8511.26, + "end": 8517.32, + "probability": 0.9721 + }, + { + "start": 8517.9, + "end": 8521.04, + "probability": 0.9314 + }, + { + "start": 8521.8, + "end": 8525.44, + "probability": 0.9952 + }, + { + "start": 8526.0, + "end": 8528.76, + "probability": 0.9612 + }, + { + "start": 8529.56, + "end": 8531.04, + "probability": 0.9976 + }, + { + "start": 8531.6, + "end": 8532.42, + "probability": 0.9901 + }, + { + "start": 8533.22, + "end": 8534.2, + "probability": 0.9429 + }, + { + "start": 8535.22, + "end": 8537.66, + "probability": 0.9854 + }, + { + "start": 8538.46, + "end": 8539.48, + "probability": 0.9648 + }, + { + "start": 8540.32, + "end": 8541.42, + "probability": 0.9546 + }, + { + "start": 8542.1, + "end": 8545.74, + "probability": 0.9917 + }, + { + "start": 8546.56, + "end": 8550.18, + "probability": 0.9842 + }, + { + "start": 8551.04, + "end": 8552.6, + "probability": 0.9872 + }, + { + "start": 8553.38, + "end": 8555.06, + "probability": 0.9812 + }, + { + "start": 8556.38, + "end": 8557.2, + "probability": 0.8512 + }, + { + "start": 8557.92, + "end": 8559.22, + "probability": 0.9969 + }, + { + "start": 8559.94, + "end": 8561.38, + "probability": 0.9923 + }, + { + "start": 8562.36, + "end": 8565.04, + "probability": 0.9973 + }, + { + "start": 8566.06, + "end": 8567.22, + "probability": 0.8002 + }, + { + "start": 8568.08, + "end": 8569.4, + "probability": 0.9814 + }, + { + "start": 8571.1, + "end": 8572.16, + "probability": 0.9924 + }, + { + "start": 8572.94, + "end": 8574.06, + "probability": 0.9713 + }, + { + "start": 8575.18, + "end": 8575.62, + "probability": 0.8293 + }, + { + "start": 8576.74, + "end": 8578.38, + "probability": 0.8679 + }, + { + "start": 8578.56, + "end": 8580.92, + "probability": 0.9852 + }, + { + "start": 8582.02, + "end": 8584.9, + "probability": 0.998 + }, + { + "start": 8585.6, + "end": 8588.04, + "probability": 0.9896 + }, + { + "start": 8589.7, + "end": 8590.06, + "probability": 0.4033 + }, + { + "start": 8590.6, + "end": 8596.2, + "probability": 0.9908 + }, + { + "start": 8597.0, + "end": 8597.58, + "probability": 0.9965 + }, + { + "start": 8598.36, + "end": 8600.28, + "probability": 0.8477 + }, + { + "start": 8601.04, + "end": 8604.06, + "probability": 0.9775 + }, + { + "start": 8604.68, + "end": 8609.28, + "probability": 0.9965 + }, + { + "start": 8610.34, + "end": 8611.02, + "probability": 0.5456 + }, + { + "start": 8611.1, + "end": 8617.02, + "probability": 0.9978 + }, + { + "start": 8617.74, + "end": 8621.58, + "probability": 0.9639 + }, + { + "start": 8622.2, + "end": 8623.1, + "probability": 0.9714 + }, + { + "start": 8623.8, + "end": 8624.46, + "probability": 0.8053 + }, + { + "start": 8625.38, + "end": 8627.32, + "probability": 0.9459 + }, + { + "start": 8628.24, + "end": 8630.68, + "probability": 0.9788 + }, + { + "start": 8631.34, + "end": 8632.92, + "probability": 0.971 + }, + { + "start": 8633.6, + "end": 8634.56, + "probability": 0.9021 + }, + { + "start": 8635.38, + "end": 8637.18, + "probability": 0.9919 + }, + { + "start": 8637.7, + "end": 8639.72, + "probability": 0.8643 + }, + { + "start": 8640.52, + "end": 8645.8, + "probability": 0.9722 + }, + { + "start": 8646.64, + "end": 8648.46, + "probability": 0.6553 + }, + { + "start": 8649.2, + "end": 8653.94, + "probability": 0.9166 + }, + { + "start": 8656.14, + "end": 8659.7, + "probability": 0.9956 + }, + { + "start": 8659.8, + "end": 8664.88, + "probability": 0.9774 + }, + { + "start": 8674.54, + "end": 8677.22, + "probability": 0.947 + }, + { + "start": 8678.26, + "end": 8681.44, + "probability": 0.9858 + }, + { + "start": 8682.12, + "end": 8685.52, + "probability": 0.9833 + }, + { + "start": 8686.18, + "end": 8692.0, + "probability": 0.9467 + }, + { + "start": 8692.58, + "end": 8694.94, + "probability": 0.8888 + }, + { + "start": 8695.52, + "end": 8698.9, + "probability": 0.939 + }, + { + "start": 8699.64, + "end": 8703.3, + "probability": 0.9966 + }, + { + "start": 8704.3, + "end": 8705.8, + "probability": 0.9868 + }, + { + "start": 8706.42, + "end": 8708.32, + "probability": 0.9886 + }, + { + "start": 8708.72, + "end": 8710.94, + "probability": 0.9011 + }, + { + "start": 8711.82, + "end": 8713.84, + "probability": 0.9202 + }, + { + "start": 8714.66, + "end": 8717.28, + "probability": 0.8441 + }, + { + "start": 8717.86, + "end": 8720.58, + "probability": 0.9858 + }, + { + "start": 8721.26, + "end": 8725.26, + "probability": 0.9786 + }, + { + "start": 8725.92, + "end": 8731.3, + "probability": 0.9744 + }, + { + "start": 8732.36, + "end": 8733.22, + "probability": 0.8901 + }, + { + "start": 8735.06, + "end": 8738.18, + "probability": 0.9751 + }, + { + "start": 8739.1, + "end": 8742.14, + "probability": 0.9947 + }, + { + "start": 8742.88, + "end": 8744.98, + "probability": 0.8985 + }, + { + "start": 8745.86, + "end": 8749.24, + "probability": 0.9845 + }, + { + "start": 8749.9, + "end": 8752.28, + "probability": 0.8039 + }, + { + "start": 8752.48, + "end": 8758.4, + "probability": 0.988 + }, + { + "start": 8760.06, + "end": 8762.2, + "probability": 0.9881 + }, + { + "start": 8762.98, + "end": 8763.86, + "probability": 0.6982 + }, + { + "start": 8764.42, + "end": 8765.86, + "probability": 0.8242 + }, + { + "start": 8766.42, + "end": 8768.88, + "probability": 0.9891 + }, + { + "start": 8769.68, + "end": 8771.54, + "probability": 0.9523 + }, + { + "start": 8772.26, + "end": 8774.46, + "probability": 0.9829 + }, + { + "start": 8774.92, + "end": 8776.58, + "probability": 0.9817 + }, + { + "start": 8776.92, + "end": 8778.0, + "probability": 0.6534 + }, + { + "start": 8778.68, + "end": 8781.62, + "probability": 0.5104 + }, + { + "start": 8782.26, + "end": 8784.14, + "probability": 0.7925 + }, + { + "start": 8785.12, + "end": 8788.22, + "probability": 0.9863 + }, + { + "start": 8788.22, + "end": 8790.38, + "probability": 0.9971 + }, + { + "start": 8791.26, + "end": 8793.5, + "probability": 0.9966 + }, + { + "start": 8794.2, + "end": 8797.12, + "probability": 0.918 + }, + { + "start": 8797.82, + "end": 8802.46, + "probability": 0.9883 + }, + { + "start": 8802.92, + "end": 8804.36, + "probability": 0.6654 + }, + { + "start": 8804.88, + "end": 8808.3, + "probability": 0.9902 + }, + { + "start": 8808.3, + "end": 8812.3, + "probability": 0.9714 + }, + { + "start": 8813.8, + "end": 8816.29, + "probability": 0.6812 + }, + { + "start": 8816.9, + "end": 8819.26, + "probability": 0.9938 + }, + { + "start": 8820.38, + "end": 8823.06, + "probability": 0.98 + }, + { + "start": 8823.72, + "end": 8828.72, + "probability": 0.9966 + }, + { + "start": 8829.6, + "end": 8833.96, + "probability": 0.9956 + }, + { + "start": 8834.72, + "end": 8838.4, + "probability": 0.9956 + }, + { + "start": 8838.4, + "end": 8842.16, + "probability": 0.9924 + }, + { + "start": 8843.04, + "end": 8844.16, + "probability": 0.9995 + }, + { + "start": 8845.0, + "end": 8848.62, + "probability": 0.9919 + }, + { + "start": 8849.2, + "end": 8851.16, + "probability": 0.9996 + }, + { + "start": 8851.96, + "end": 8854.3, + "probability": 0.9102 + }, + { + "start": 8855.0, + "end": 8859.78, + "probability": 0.9705 + }, + { + "start": 8861.56, + "end": 8864.46, + "probability": 0.9131 + }, + { + "start": 8865.06, + "end": 8870.32, + "probability": 0.9709 + }, + { + "start": 8870.38, + "end": 8871.4, + "probability": 0.7162 + }, + { + "start": 8872.02, + "end": 8875.82, + "probability": 0.8433 + }, + { + "start": 8876.84, + "end": 8880.32, + "probability": 0.9861 + }, + { + "start": 8881.08, + "end": 8884.58, + "probability": 0.9953 + }, + { + "start": 8885.4, + "end": 8889.76, + "probability": 0.9958 + }, + { + "start": 8889.76, + "end": 8895.5, + "probability": 0.9403 + }, + { + "start": 8896.12, + "end": 8897.98, + "probability": 0.8423 + }, + { + "start": 8898.62, + "end": 8902.68, + "probability": 0.9961 + }, + { + "start": 8903.34, + "end": 8906.6, + "probability": 0.926 + }, + { + "start": 8907.28, + "end": 8911.8, + "probability": 0.9912 + }, + { + "start": 8912.78, + "end": 8917.24, + "probability": 0.9707 + }, + { + "start": 8917.86, + "end": 8918.56, + "probability": 0.9552 + }, + { + "start": 8918.62, + "end": 8919.36, + "probability": 0.9857 + }, + { + "start": 8919.56, + "end": 8920.28, + "probability": 0.8755 + }, + { + "start": 8920.7, + "end": 8925.14, + "probability": 0.9774 + }, + { + "start": 8926.86, + "end": 8929.64, + "probability": 0.968 + }, + { + "start": 8929.64, + "end": 8933.86, + "probability": 0.9971 + }, + { + "start": 8934.32, + "end": 8937.64, + "probability": 0.9624 + }, + { + "start": 8938.16, + "end": 8939.66, + "probability": 0.9761 + }, + { + "start": 8939.82, + "end": 8940.68, + "probability": 0.9488 + }, + { + "start": 8941.1, + "end": 8942.58, + "probability": 0.9805 + }, + { + "start": 8942.78, + "end": 8943.34, + "probability": 0.8484 + }, + { + "start": 8944.24, + "end": 8945.98, + "probability": 0.9871 + }, + { + "start": 8947.26, + "end": 8948.8, + "probability": 0.9817 + }, + { + "start": 8949.22, + "end": 8950.94, + "probability": 0.9956 + }, + { + "start": 8951.52, + "end": 8955.18, + "probability": 0.9981 + }, + { + "start": 8955.76, + "end": 8959.1, + "probability": 0.9873 + }, + { + "start": 8959.52, + "end": 8961.54, + "probability": 0.9835 + }, + { + "start": 8962.22, + "end": 8962.62, + "probability": 0.3528 + }, + { + "start": 8962.7, + "end": 8963.68, + "probability": 0.7394 + }, + { + "start": 8963.86, + "end": 8966.08, + "probability": 0.8314 + }, + { + "start": 8966.16, + "end": 8967.26, + "probability": 0.95 + }, + { + "start": 8967.96, + "end": 8971.08, + "probability": 0.9964 + }, + { + "start": 8971.08, + "end": 8974.9, + "probability": 0.9917 + }, + { + "start": 8975.44, + "end": 8976.58, + "probability": 0.4639 + }, + { + "start": 8976.64, + "end": 8980.4, + "probability": 0.9972 + }, + { + "start": 8981.62, + "end": 8982.2, + "probability": 0.745 + }, + { + "start": 8982.36, + "end": 8983.68, + "probability": 0.92 + }, + { + "start": 8983.82, + "end": 8984.92, + "probability": 0.929 + }, + { + "start": 8985.18, + "end": 8988.78, + "probability": 0.9738 + }, + { + "start": 8989.6, + "end": 8991.28, + "probability": 0.9492 + }, + { + "start": 8991.54, + "end": 8993.76, + "probability": 0.9224 + }, + { + "start": 8994.4, + "end": 8996.08, + "probability": 0.9844 + }, + { + "start": 8996.6, + "end": 8998.86, + "probability": 0.9974 + }, + { + "start": 8999.52, + "end": 9000.98, + "probability": 0.7739 + }, + { + "start": 9001.8, + "end": 9006.44, + "probability": 0.9966 + }, + { + "start": 9006.44, + "end": 9011.4, + "probability": 0.8406 + }, + { + "start": 9011.94, + "end": 9013.76, + "probability": 0.9985 + }, + { + "start": 9014.62, + "end": 9019.42, + "probability": 0.9971 + }, + { + "start": 9020.14, + "end": 9023.18, + "probability": 0.9976 + }, + { + "start": 9023.88, + "end": 9025.04, + "probability": 0.9402 + }, + { + "start": 9025.12, + "end": 9030.54, + "probability": 0.8425 + }, + { + "start": 9031.36, + "end": 9032.55, + "probability": 0.9409 + }, + { + "start": 9033.54, + "end": 9035.44, + "probability": 0.8584 + }, + { + "start": 9035.96, + "end": 9041.46, + "probability": 0.9808 + }, + { + "start": 9042.32, + "end": 9046.12, + "probability": 0.9737 + }, + { + "start": 9047.64, + "end": 9050.58, + "probability": 0.9807 + }, + { + "start": 9051.2, + "end": 9054.62, + "probability": 0.9557 + }, + { + "start": 9055.02, + "end": 9059.55, + "probability": 0.816 + }, + { + "start": 9060.38, + "end": 9063.6, + "probability": 0.9912 + }, + { + "start": 9064.02, + "end": 9066.44, + "probability": 0.9764 + }, + { + "start": 9066.96, + "end": 9069.98, + "probability": 0.8947 + }, + { + "start": 9070.64, + "end": 9073.14, + "probability": 0.98 + }, + { + "start": 9073.54, + "end": 9074.04, + "probability": 0.9627 + }, + { + "start": 9074.16, + "end": 9075.16, + "probability": 0.9853 + }, + { + "start": 9075.24, + "end": 9077.8, + "probability": 0.9593 + }, + { + "start": 9078.16, + "end": 9079.68, + "probability": 0.9399 + }, + { + "start": 9079.74, + "end": 9080.18, + "probability": 0.9842 + }, + { + "start": 9080.26, + "end": 9081.44, + "probability": 0.9761 + }, + { + "start": 9082.06, + "end": 9086.7, + "probability": 0.953 + }, + { + "start": 9087.7, + "end": 9092.14, + "probability": 0.9495 + }, + { + "start": 9092.72, + "end": 9094.6, + "probability": 0.8735 + }, + { + "start": 9094.66, + "end": 9098.46, + "probability": 0.9096 + }, + { + "start": 9098.64, + "end": 9099.58, + "probability": 0.8665 + }, + { + "start": 9099.7, + "end": 9100.44, + "probability": 0.8024 + }, + { + "start": 9101.1, + "end": 9102.32, + "probability": 0.9759 + }, + { + "start": 9102.9, + "end": 9106.82, + "probability": 0.9941 + }, + { + "start": 9107.6, + "end": 9108.81, + "probability": 0.9951 + }, + { + "start": 9109.44, + "end": 9110.34, + "probability": 0.9695 + }, + { + "start": 9111.08, + "end": 9113.42, + "probability": 0.9862 + }, + { + "start": 9113.86, + "end": 9118.78, + "probability": 0.9984 + }, + { + "start": 9119.74, + "end": 9122.02, + "probability": 0.994 + }, + { + "start": 9122.62, + "end": 9125.55, + "probability": 0.998 + }, + { + "start": 9126.26, + "end": 9131.02, + "probability": 0.957 + }, + { + "start": 9131.92, + "end": 9136.16, + "probability": 0.9817 + }, + { + "start": 9136.86, + "end": 9140.82, + "probability": 0.9911 + }, + { + "start": 9141.36, + "end": 9144.14, + "probability": 0.997 + }, + { + "start": 9144.64, + "end": 9147.56, + "probability": 0.9573 + }, + { + "start": 9148.24, + "end": 9151.58, + "probability": 0.9928 + }, + { + "start": 9152.1, + "end": 9157.26, + "probability": 0.8224 + }, + { + "start": 9157.82, + "end": 9158.64, + "probability": 0.6349 + }, + { + "start": 9159.16, + "end": 9164.48, + "probability": 0.9897 + }, + { + "start": 9165.2, + "end": 9166.78, + "probability": 0.9933 + }, + { + "start": 9167.56, + "end": 9170.84, + "probability": 0.9945 + }, + { + "start": 9171.34, + "end": 9173.48, + "probability": 0.9961 + }, + { + "start": 9174.06, + "end": 9176.56, + "probability": 0.9831 + }, + { + "start": 9177.42, + "end": 9179.1, + "probability": 0.6555 + }, + { + "start": 9179.82, + "end": 9181.78, + "probability": 0.979 + }, + { + "start": 9182.36, + "end": 9185.38, + "probability": 0.9112 + }, + { + "start": 9185.76, + "end": 9189.12, + "probability": 0.8118 + }, + { + "start": 9189.12, + "end": 9192.66, + "probability": 0.9883 + }, + { + "start": 9193.22, + "end": 9197.18, + "probability": 0.9927 + }, + { + "start": 9197.66, + "end": 9198.5, + "probability": 0.7436 + }, + { + "start": 9199.06, + "end": 9201.82, + "probability": 0.9981 + }, + { + "start": 9202.28, + "end": 9206.57, + "probability": 0.9949 + }, + { + "start": 9207.28, + "end": 9209.8, + "probability": 0.984 + }, + { + "start": 9210.26, + "end": 9212.66, + "probability": 0.9961 + }, + { + "start": 9213.3, + "end": 9217.14, + "probability": 0.9972 + }, + { + "start": 9217.66, + "end": 9221.44, + "probability": 0.6787 + }, + { + "start": 9222.02, + "end": 9225.52, + "probability": 0.9722 + }, + { + "start": 9227.48, + "end": 9231.8, + "probability": 0.9939 + }, + { + "start": 9231.8, + "end": 9236.42, + "probability": 0.9834 + }, + { + "start": 9237.04, + "end": 9239.82, + "probability": 0.9974 + }, + { + "start": 9239.98, + "end": 9241.24, + "probability": 0.75 + }, + { + "start": 9241.78, + "end": 9243.92, + "probability": 0.9915 + }, + { + "start": 9244.62, + "end": 9245.34, + "probability": 0.079 + }, + { + "start": 9246.26, + "end": 9250.96, + "probability": 0.91 + }, + { + "start": 9250.96, + "end": 9254.48, + "probability": 0.9937 + }, + { + "start": 9255.2, + "end": 9255.88, + "probability": 0.6684 + }, + { + "start": 9255.94, + "end": 9256.44, + "probability": 0.5199 + }, + { + "start": 9256.84, + "end": 9261.24, + "probability": 0.9162 + }, + { + "start": 9261.64, + "end": 9262.62, + "probability": 0.6796 + }, + { + "start": 9262.7, + "end": 9263.4, + "probability": 0.9255 + }, + { + "start": 9263.78, + "end": 9268.76, + "probability": 0.9667 + }, + { + "start": 9269.52, + "end": 9270.0, + "probability": 0.5108 + }, + { + "start": 9270.0, + "end": 9270.5, + "probability": 0.4326 + }, + { + "start": 9270.88, + "end": 9275.14, + "probability": 0.9983 + }, + { + "start": 9275.14, + "end": 9280.16, + "probability": 0.997 + }, + { + "start": 9281.46, + "end": 9282.04, + "probability": 0.6473 + }, + { + "start": 9282.64, + "end": 9285.26, + "probability": 0.8008 + }, + { + "start": 9285.26, + "end": 9288.26, + "probability": 0.9596 + }, + { + "start": 9289.48, + "end": 9291.14, + "probability": 0.5938 + }, + { + "start": 9292.0, + "end": 9294.97, + "probability": 0.9941 + }, + { + "start": 9295.9, + "end": 9298.64, + "probability": 0.6735 + }, + { + "start": 9299.56, + "end": 9302.06, + "probability": 0.7486 + }, + { + "start": 9302.92, + "end": 9303.54, + "probability": 0.4492 + }, + { + "start": 9303.68, + "end": 9304.52, + "probability": 0.8992 + }, + { + "start": 9304.58, + "end": 9306.38, + "probability": 0.9895 + }, + { + "start": 9307.28, + "end": 9307.86, + "probability": 0.3955 + }, + { + "start": 9308.04, + "end": 9309.18, + "probability": 0.8357 + }, + { + "start": 9309.26, + "end": 9313.46, + "probability": 0.9587 + }, + { + "start": 9313.46, + "end": 9317.32, + "probability": 0.6702 + }, + { + "start": 9317.48, + "end": 9320.7, + "probability": 0.7271 + }, + { + "start": 9321.24, + "end": 9321.24, + "probability": 0.0706 + }, + { + "start": 9321.24, + "end": 9322.76, + "probability": 0.6539 + }, + { + "start": 9323.24, + "end": 9325.96, + "probability": 0.9959 + }, + { + "start": 9325.96, + "end": 9328.26, + "probability": 0.669 + }, + { + "start": 9329.24, + "end": 9334.96, + "probability": 0.9349 + }, + { + "start": 9335.16, + "end": 9336.26, + "probability": 0.6418 + }, + { + "start": 9336.36, + "end": 9337.26, + "probability": 0.6523 + }, + { + "start": 9337.94, + "end": 9342.56, + "probability": 0.9707 + }, + { + "start": 9343.26, + "end": 9350.16, + "probability": 0.9526 + }, + { + "start": 9350.16, + "end": 9352.74, + "probability": 0.9602 + }, + { + "start": 9353.5, + "end": 9356.06, + "probability": 0.995 + }, + { + "start": 9356.7, + "end": 9359.26, + "probability": 0.9357 + }, + { + "start": 9360.0, + "end": 9363.38, + "probability": 0.9527 + }, + { + "start": 9363.38, + "end": 9366.66, + "probability": 0.8618 + }, + { + "start": 9367.48, + "end": 9373.34, + "probability": 0.981 + }, + { + "start": 9374.04, + "end": 9376.68, + "probability": 0.9962 + }, + { + "start": 9376.74, + "end": 9377.14, + "probability": 0.9381 + }, + { + "start": 9377.2, + "end": 9378.16, + "probability": 0.97 + }, + { + "start": 9378.76, + "end": 9381.52, + "probability": 0.9731 + }, + { + "start": 9383.26, + "end": 9386.46, + "probability": 0.9102 + }, + { + "start": 9387.1, + "end": 9389.58, + "probability": 0.9883 + }, + { + "start": 9390.06, + "end": 9392.06, + "probability": 0.6425 + }, + { + "start": 9392.46, + "end": 9395.7, + "probability": 0.9776 + }, + { + "start": 9395.7, + "end": 9398.32, + "probability": 0.9025 + }, + { + "start": 9399.3, + "end": 9400.82, + "probability": 0.8044 + }, + { + "start": 9401.36, + "end": 9407.42, + "probability": 0.9573 + }, + { + "start": 9407.98, + "end": 9409.98, + "probability": 0.974 + }, + { + "start": 9410.5, + "end": 9413.04, + "probability": 0.7198 + }, + { + "start": 9413.74, + "end": 9416.38, + "probability": 0.6912 + }, + { + "start": 9416.38, + "end": 9420.62, + "probability": 0.929 + }, + { + "start": 9421.56, + "end": 9423.9, + "probability": 0.9087 + }, + { + "start": 9424.52, + "end": 9426.06, + "probability": 0.9808 + }, + { + "start": 9426.78, + "end": 9430.24, + "probability": 0.8999 + }, + { + "start": 9431.3, + "end": 9434.26, + "probability": 0.7386 + }, + { + "start": 9434.76, + "end": 9437.47, + "probability": 0.9629 + }, + { + "start": 9438.08, + "end": 9438.88, + "probability": 0.7289 + }, + { + "start": 9439.02, + "end": 9439.52, + "probability": 0.6049 + }, + { + "start": 9439.52, + "end": 9440.65, + "probability": 0.9409 + }, + { + "start": 9441.14, + "end": 9444.0, + "probability": 0.9806 + }, + { + "start": 9444.88, + "end": 9448.28, + "probability": 0.9985 + }, + { + "start": 9448.82, + "end": 9452.58, + "probability": 0.9784 + }, + { + "start": 9452.74, + "end": 9456.52, + "probability": 0.9865 + }, + { + "start": 9457.72, + "end": 9460.24, + "probability": 0.905 + }, + { + "start": 9460.9, + "end": 9466.22, + "probability": 0.9908 + }, + { + "start": 9467.28, + "end": 9471.7, + "probability": 0.9882 + }, + { + "start": 9471.94, + "end": 9473.94, + "probability": 0.8863 + }, + { + "start": 9474.94, + "end": 9477.18, + "probability": 0.8257 + }, + { + "start": 9477.84, + "end": 9480.72, + "probability": 0.9929 + }, + { + "start": 9481.26, + "end": 9482.98, + "probability": 0.9053 + }, + { + "start": 9483.14, + "end": 9484.12, + "probability": 0.7083 + }, + { + "start": 9485.12, + "end": 9486.72, + "probability": 0.9924 + }, + { + "start": 9486.94, + "end": 9490.66, + "probability": 0.9775 + }, + { + "start": 9491.56, + "end": 9494.84, + "probability": 0.9279 + }, + { + "start": 9495.8, + "end": 9498.26, + "probability": 0.976 + }, + { + "start": 9498.26, + "end": 9502.42, + "probability": 0.8383 + }, + { + "start": 9502.82, + "end": 9503.6, + "probability": 0.9562 + }, + { + "start": 9505.12, + "end": 9509.0, + "probability": 0.9225 + }, + { + "start": 9509.62, + "end": 9514.55, + "probability": 0.9873 + }, + { + "start": 9515.0, + "end": 9518.54, + "probability": 0.9965 + }, + { + "start": 9520.44, + "end": 9524.22, + "probability": 0.9656 + }, + { + "start": 9524.68, + "end": 9527.72, + "probability": 0.7657 + }, + { + "start": 9528.38, + "end": 9533.06, + "probability": 0.9881 + }, + { + "start": 9533.8, + "end": 9535.76, + "probability": 0.9939 + }, + { + "start": 9536.34, + "end": 9538.02, + "probability": 0.8494 + }, + { + "start": 9538.64, + "end": 9542.0, + "probability": 0.9885 + }, + { + "start": 9542.52, + "end": 9544.68, + "probability": 0.9927 + }, + { + "start": 9545.3, + "end": 9546.96, + "probability": 0.9711 + }, + { + "start": 9547.52, + "end": 9549.44, + "probability": 0.9539 + }, + { + "start": 9549.94, + "end": 9551.34, + "probability": 0.6527 + }, + { + "start": 9552.82, + "end": 9554.56, + "probability": 0.8181 + }, + { + "start": 9554.8, + "end": 9557.96, + "probability": 0.99 + }, + { + "start": 9558.5, + "end": 9561.94, + "probability": 0.9843 + }, + { + "start": 9562.66, + "end": 9564.98, + "probability": 0.9971 + }, + { + "start": 9565.6, + "end": 9569.94, + "probability": 0.9902 + }, + { + "start": 9570.74, + "end": 9573.56, + "probability": 0.9573 + }, + { + "start": 9574.1, + "end": 9576.24, + "probability": 0.9837 + }, + { + "start": 9576.88, + "end": 9580.32, + "probability": 0.9488 + }, + { + "start": 9580.94, + "end": 9581.9, + "probability": 0.9747 + }, + { + "start": 9581.94, + "end": 9586.06, + "probability": 0.9759 + }, + { + "start": 9586.54, + "end": 9588.22, + "probability": 0.9772 + }, + { + "start": 9588.56, + "end": 9589.26, + "probability": 0.9463 + }, + { + "start": 9589.36, + "end": 9590.14, + "probability": 0.95 + }, + { + "start": 9590.72, + "end": 9592.94, + "probability": 0.7502 + }, + { + "start": 9593.56, + "end": 9597.14, + "probability": 0.9708 + }, + { + "start": 9598.88, + "end": 9599.78, + "probability": 0.7463 + }, + { + "start": 9600.64, + "end": 9603.8, + "probability": 0.9082 + }, + { + "start": 9604.46, + "end": 9606.88, + "probability": 0.9961 + }, + { + "start": 9607.24, + "end": 9608.38, + "probability": 0.4513 + }, + { + "start": 9608.58, + "end": 9609.14, + "probability": 0.5143 + }, + { + "start": 9609.14, + "end": 9609.5, + "probability": 0.6489 + }, + { + "start": 9610.24, + "end": 9613.62, + "probability": 0.9855 + }, + { + "start": 9614.28, + "end": 9617.16, + "probability": 0.9813 + }, + { + "start": 9617.72, + "end": 9619.04, + "probability": 0.7209 + }, + { + "start": 9619.7, + "end": 9623.2, + "probability": 0.8665 + }, + { + "start": 9623.74, + "end": 9626.54, + "probability": 0.8286 + }, + { + "start": 9627.08, + "end": 9630.0, + "probability": 0.9309 + }, + { + "start": 9631.04, + "end": 9635.92, + "probability": 0.9609 + }, + { + "start": 9636.44, + "end": 9638.42, + "probability": 0.8911 + }, + { + "start": 9638.96, + "end": 9642.98, + "probability": 0.9456 + }, + { + "start": 9644.62, + "end": 9648.76, + "probability": 0.9816 + }, + { + "start": 9651.34, + "end": 9656.74, + "probability": 0.9953 + }, + { + "start": 9656.88, + "end": 9657.92, + "probability": 0.7939 + }, + { + "start": 9658.48, + "end": 9661.96, + "probability": 0.9979 + }, + { + "start": 9662.12, + "end": 9665.84, + "probability": 0.9599 + }, + { + "start": 9666.58, + "end": 9670.2, + "probability": 0.8751 + }, + { + "start": 9671.0, + "end": 9673.3, + "probability": 0.9637 + }, + { + "start": 9673.64, + "end": 9675.04, + "probability": 0.9478 + }, + { + "start": 9676.02, + "end": 9678.54, + "probability": 0.9958 + }, + { + "start": 9680.38, + "end": 9682.52, + "probability": 0.1898 + }, + { + "start": 9682.7, + "end": 9683.76, + "probability": 0.5854 + }, + { + "start": 9696.63, + "end": 9697.68, + "probability": 0.0933 + }, + { + "start": 9699.4, + "end": 9701.84, + "probability": 0.5192 + }, + { + "start": 9703.32, + "end": 9703.5, + "probability": 0.8755 + }, + { + "start": 9706.16, + "end": 9710.28, + "probability": 0.7672 + }, + { + "start": 9710.64, + "end": 9713.52, + "probability": 0.983 + }, + { + "start": 9713.92, + "end": 9716.18, + "probability": 0.9908 + }, + { + "start": 9716.32, + "end": 9717.9, + "probability": 0.8877 + }, + { + "start": 9748.2, + "end": 9748.8, + "probability": 0.6661 + }, + { + "start": 9749.2, + "end": 9749.88, + "probability": 0.7809 + }, + { + "start": 9750.1, + "end": 9755.32, + "probability": 0.9015 + }, + { + "start": 9757.08, + "end": 9761.68, + "probability": 0.8934 + }, + { + "start": 9762.0, + "end": 9768.82, + "probability": 0.7932 + }, + { + "start": 9768.92, + "end": 9769.6, + "probability": 0.8661 + }, + { + "start": 9769.64, + "end": 9773.3, + "probability": 0.7537 + }, + { + "start": 9774.68, + "end": 9779.26, + "probability": 0.9176 + }, + { + "start": 9779.34, + "end": 9783.06, + "probability": 0.8123 + }, + { + "start": 9783.28, + "end": 9785.48, + "probability": 0.6104 + }, + { + "start": 9785.6, + "end": 9785.86, + "probability": 0.4436 + }, + { + "start": 9785.92, + "end": 9787.82, + "probability": 0.7793 + }, + { + "start": 9789.08, + "end": 9791.48, + "probability": 0.9005 + }, + { + "start": 9792.9, + "end": 9793.54, + "probability": 0.7338 + }, + { + "start": 9793.96, + "end": 9794.74, + "probability": 0.4816 + }, + { + "start": 9795.75, + "end": 9798.7, + "probability": 0.9787 + }, + { + "start": 9798.9, + "end": 9799.66, + "probability": 0.9521 + }, + { + "start": 9799.9, + "end": 9800.68, + "probability": 0.9852 + }, + { + "start": 9800.78, + "end": 9801.56, + "probability": 0.8076 + }, + { + "start": 9801.62, + "end": 9802.6, + "probability": 0.985 + }, + { + "start": 9802.62, + "end": 9803.58, + "probability": 0.9293 + }, + { + "start": 9805.04, + "end": 9807.32, + "probability": 0.9658 + }, + { + "start": 9807.66, + "end": 9808.6, + "probability": 0.2843 + }, + { + "start": 9809.6, + "end": 9810.06, + "probability": 0.012 + }, + { + "start": 9810.06, + "end": 9813.18, + "probability": 0.9991 + }, + { + "start": 9813.18, + "end": 9818.08, + "probability": 0.784 + }, + { + "start": 9818.96, + "end": 9822.12, + "probability": 0.9465 + }, + { + "start": 9826.32, + "end": 9826.9, + "probability": 0.0247 + }, + { + "start": 9826.9, + "end": 9827.67, + "probability": 0.5895 + }, + { + "start": 9828.84, + "end": 9829.72, + "probability": 0.5238 + }, + { + "start": 9830.88, + "end": 9836.44, + "probability": 0.99 + }, + { + "start": 9837.66, + "end": 9839.04, + "probability": 0.9266 + }, + { + "start": 9839.64, + "end": 9841.28, + "probability": 0.9643 + }, + { + "start": 9841.96, + "end": 9844.92, + "probability": 0.6305 + }, + { + "start": 9845.84, + "end": 9849.19, + "probability": 0.9968 + }, + { + "start": 9851.18, + "end": 9852.8, + "probability": 0.9511 + }, + { + "start": 9853.68, + "end": 9856.08, + "probability": 0.9429 + }, + { + "start": 9856.7, + "end": 9858.4, + "probability": 0.7272 + }, + { + "start": 9859.64, + "end": 9863.26, + "probability": 0.743 + }, + { + "start": 9864.12, + "end": 9865.8, + "probability": 0.8834 + }, + { + "start": 9865.92, + "end": 9866.64, + "probability": 0.7908 + }, + { + "start": 9867.66, + "end": 9870.3, + "probability": 0.6189 + }, + { + "start": 9871.12, + "end": 9872.1, + "probability": 0.342 + }, + { + "start": 9872.24, + "end": 9873.72, + "probability": 0.6256 + }, + { + "start": 9873.8, + "end": 9874.97, + "probability": 0.8257 + }, + { + "start": 9876.08, + "end": 9880.33, + "probability": 0.9556 + }, + { + "start": 9881.3, + "end": 9885.5, + "probability": 0.9849 + }, + { + "start": 9885.5, + "end": 9888.26, + "probability": 0.9661 + }, + { + "start": 9889.6, + "end": 9891.2, + "probability": 0.7648 + }, + { + "start": 9891.46, + "end": 9894.84, + "probability": 0.9839 + }, + { + "start": 9895.48, + "end": 9896.62, + "probability": 0.7124 + }, + { + "start": 9896.78, + "end": 9901.04, + "probability": 0.9834 + }, + { + "start": 9901.4, + "end": 9901.54, + "probability": 0.3954 + }, + { + "start": 9901.54, + "end": 9901.78, + "probability": 0.6649 + }, + { + "start": 9902.66, + "end": 9904.96, + "probability": 0.9396 + }, + { + "start": 9905.12, + "end": 9905.86, + "probability": 0.9475 + }, + { + "start": 9906.04, + "end": 9911.5, + "probability": 0.9823 + }, + { + "start": 9916.46, + "end": 9920.26, + "probability": 0.9297 + }, + { + "start": 9920.58, + "end": 9921.4, + "probability": 0.6701 + }, + { + "start": 9921.52, + "end": 9922.72, + "probability": 0.993 + }, + { + "start": 9922.88, + "end": 9923.52, + "probability": 0.7362 + }, + { + "start": 9923.68, + "end": 9924.24, + "probability": 0.8617 + }, + { + "start": 9924.4, + "end": 9924.72, + "probability": 0.9436 + }, + { + "start": 9925.16, + "end": 9927.14, + "probability": 0.8172 + }, + { + "start": 9927.96, + "end": 9932.32, + "probability": 0.9966 + }, + { + "start": 9932.38, + "end": 9933.12, + "probability": 0.6564 + }, + { + "start": 9933.66, + "end": 9938.6, + "probability": 0.8575 + }, + { + "start": 9938.8, + "end": 9940.8, + "probability": 0.8886 + }, + { + "start": 9941.16, + "end": 9942.46, + "probability": 0.2792 + }, + { + "start": 9942.68, + "end": 9944.4, + "probability": 0.4768 + }, + { + "start": 9944.74, + "end": 9946.66, + "probability": 0.9897 + }, + { + "start": 9947.12, + "end": 9948.84, + "probability": 0.9035 + }, + { + "start": 9949.46, + "end": 9954.2, + "probability": 0.8292 + }, + { + "start": 9954.2, + "end": 9958.72, + "probability": 0.8585 + }, + { + "start": 9959.12, + "end": 9961.16, + "probability": 0.9468 + }, + { + "start": 9962.46, + "end": 9967.0, + "probability": 0.8958 + }, + { + "start": 9967.1, + "end": 9968.58, + "probability": 0.8827 + }, + { + "start": 9968.74, + "end": 9970.14, + "probability": 0.3198 + }, + { + "start": 9970.94, + "end": 9972.56, + "probability": 0.5011 + }, + { + "start": 9972.68, + "end": 9976.14, + "probability": 0.9944 + }, + { + "start": 9976.26, + "end": 9978.02, + "probability": 0.8506 + }, + { + "start": 9978.36, + "end": 9983.56, + "probability": 0.8729 + }, + { + "start": 9984.22, + "end": 9985.5, + "probability": 0.8975 + }, + { + "start": 9985.66, + "end": 9987.12, + "probability": 0.2013 + }, + { + "start": 9987.2, + "end": 9991.9, + "probability": 0.6628 + }, + { + "start": 9992.02, + "end": 9993.78, + "probability": 0.4047 + }, + { + "start": 9993.88, + "end": 9994.94, + "probability": 0.6828 + }, + { + "start": 9995.08, + "end": 9997.8, + "probability": 0.9041 + }, + { + "start": 9998.34, + "end": 9999.06, + "probability": 0.595 + }, + { + "start": 9999.08, + "end": 9999.64, + "probability": 0.6854 + }, + { + "start": 9999.78, + "end": 10002.38, + "probability": 0.8495 + }, + { + "start": 10002.54, + "end": 10007.6, + "probability": 0.9877 + }, + { + "start": 10007.6, + "end": 10013.4, + "probability": 0.7842 + }, + { + "start": 10014.1, + "end": 10017.16, + "probability": 0.9795 + }, + { + "start": 10017.2, + "end": 10022.98, + "probability": 0.9014 + }, + { + "start": 10023.16, + "end": 10023.46, + "probability": 0.2892 + }, + { + "start": 10023.58, + "end": 10025.92, + "probability": 0.9879 + }, + { + "start": 10026.28, + "end": 10028.72, + "probability": 0.9777 + }, + { + "start": 10028.84, + "end": 10029.04, + "probability": 0.5363 + }, + { + "start": 10029.88, + "end": 10032.22, + "probability": 0.7373 + }, + { + "start": 10032.36, + "end": 10033.47, + "probability": 0.5872 + }, + { + "start": 10034.1, + "end": 10041.24, + "probability": 0.9718 + }, + { + "start": 10041.24, + "end": 10046.74, + "probability": 0.9574 + }, + { + "start": 10046.76, + "end": 10047.92, + "probability": 0.9556 + }, + { + "start": 10048.52, + "end": 10051.5, + "probability": 0.9924 + }, + { + "start": 10051.94, + "end": 10056.74, + "probability": 0.9905 + }, + { + "start": 10057.42, + "end": 10059.46, + "probability": 0.9507 + }, + { + "start": 10059.56, + "end": 10060.56, + "probability": 0.084 + }, + { + "start": 10060.56, + "end": 10061.02, + "probability": 0.267 + }, + { + "start": 10074.2, + "end": 10076.2, + "probability": 0.2145 + }, + { + "start": 10076.2, + "end": 10076.3, + "probability": 0.4949 + }, + { + "start": 10076.68, + "end": 10080.08, + "probability": 0.6028 + }, + { + "start": 10080.26, + "end": 10084.32, + "probability": 0.9541 + }, + { + "start": 10084.38, + "end": 10086.24, + "probability": 0.9652 + }, + { + "start": 10086.36, + "end": 10089.42, + "probability": 0.7597 + }, + { + "start": 10089.66, + "end": 10093.3, + "probability": 0.9832 + }, + { + "start": 10093.66, + "end": 10095.7, + "probability": 0.8935 + }, + { + "start": 10095.7, + "end": 10096.36, + "probability": 0.8096 + }, + { + "start": 10096.98, + "end": 10098.04, + "probability": 0.5427 + }, + { + "start": 10098.18, + "end": 10099.4, + "probability": 0.7929 + }, + { + "start": 10099.44, + "end": 10101.98, + "probability": 0.9965 + }, + { + "start": 10101.98, + "end": 10105.6, + "probability": 0.7695 + }, + { + "start": 10106.04, + "end": 10107.04, + "probability": 0.5769 + }, + { + "start": 10107.44, + "end": 10109.96, + "probability": 0.5884 + }, + { + "start": 10110.08, + "end": 10111.46, + "probability": 0.9003 + }, + { + "start": 10111.66, + "end": 10114.52, + "probability": 0.9922 + }, + { + "start": 10115.51, + "end": 10117.3, + "probability": 0.974 + }, + { + "start": 10117.36, + "end": 10121.44, + "probability": 0.8371 + }, + { + "start": 10121.44, + "end": 10124.76, + "probability": 0.7442 + }, + { + "start": 10124.76, + "end": 10126.26, + "probability": 0.8792 + }, + { + "start": 10126.76, + "end": 10128.12, + "probability": 0.8211 + }, + { + "start": 10128.18, + "end": 10129.7, + "probability": 0.574 + }, + { + "start": 10130.04, + "end": 10130.42, + "probability": 0.9194 + }, + { + "start": 10132.84, + "end": 10133.66, + "probability": 0.7917 + }, + { + "start": 10137.64, + "end": 10141.68, + "probability": 0.5426 + }, + { + "start": 10141.8, + "end": 10144.42, + "probability": 0.1385 + }, + { + "start": 10144.74, + "end": 10145.96, + "probability": 0.9861 + }, + { + "start": 10146.02, + "end": 10148.5, + "probability": 0.9631 + }, + { + "start": 10148.66, + "end": 10151.42, + "probability": 0.906 + }, + { + "start": 10152.4, + "end": 10153.16, + "probability": 0.6492 + }, + { + "start": 10154.28, + "end": 10154.94, + "probability": 0.5708 + }, + { + "start": 10155.64, + "end": 10157.04, + "probability": 0.9087 + }, + { + "start": 10173.96, + "end": 10174.6, + "probability": 0.6106 + }, + { + "start": 10174.8, + "end": 10175.68, + "probability": 0.7163 + }, + { + "start": 10175.82, + "end": 10176.66, + "probability": 0.819 + }, + { + "start": 10176.76, + "end": 10177.84, + "probability": 0.8703 + }, + { + "start": 10178.46, + "end": 10180.24, + "probability": 0.8237 + }, + { + "start": 10180.92, + "end": 10182.94, + "probability": 0.9199 + }, + { + "start": 10182.96, + "end": 10183.7, + "probability": 0.6696 + }, + { + "start": 10184.06, + "end": 10186.88, + "probability": 0.7635 + }, + { + "start": 10186.94, + "end": 10188.46, + "probability": 0.1154 + }, + { + "start": 10188.66, + "end": 10193.56, + "probability": 0.8395 + }, + { + "start": 10193.7, + "end": 10195.74, + "probability": 0.9688 + }, + { + "start": 10195.9, + "end": 10197.72, + "probability": 0.9408 + }, + { + "start": 10198.36, + "end": 10200.1, + "probability": 0.5871 + }, + { + "start": 10200.12, + "end": 10203.7, + "probability": 0.092 + }, + { + "start": 10203.86, + "end": 10210.0, + "probability": 0.8853 + }, + { + "start": 10210.4, + "end": 10213.2, + "probability": 0.9435 + }, + { + "start": 10213.56, + "end": 10216.06, + "probability": 0.7451 + }, + { + "start": 10216.7, + "end": 10217.26, + "probability": 0.5464 + }, + { + "start": 10217.58, + "end": 10222.54, + "probability": 0.9664 + }, + { + "start": 10222.62, + "end": 10224.46, + "probability": 0.9077 + }, + { + "start": 10224.54, + "end": 10225.02, + "probability": 0.691 + }, + { + "start": 10225.54, + "end": 10227.12, + "probability": 0.9564 + }, + { + "start": 10227.28, + "end": 10230.34, + "probability": 0.8394 + }, + { + "start": 10230.36, + "end": 10236.24, + "probability": 0.602 + }, + { + "start": 10236.88, + "end": 10237.36, + "probability": 0.0186 + }, + { + "start": 10237.46, + "end": 10242.18, + "probability": 0.8743 + }, + { + "start": 10242.18, + "end": 10247.66, + "probability": 0.99 + }, + { + "start": 10247.66, + "end": 10252.1, + "probability": 0.9868 + }, + { + "start": 10252.28, + "end": 10255.24, + "probability": 0.7971 + }, + { + "start": 10255.24, + "end": 10258.92, + "probability": 0.8643 + }, + { + "start": 10259.3, + "end": 10261.8, + "probability": 0.9083 + }, + { + "start": 10261.8, + "end": 10264.94, + "probability": 0.9979 + }, + { + "start": 10265.4, + "end": 10267.6, + "probability": 0.8164 + }, + { + "start": 10267.6, + "end": 10270.38, + "probability": 0.9575 + }, + { + "start": 10270.56, + "end": 10271.54, + "probability": 0.8677 + }, + { + "start": 10272.42, + "end": 10274.42, + "probability": 0.9503 + }, + { + "start": 10275.1, + "end": 10280.7, + "probability": 0.8666 + }, + { + "start": 10281.56, + "end": 10288.72, + "probability": 0.9584 + }, + { + "start": 10288.72, + "end": 10292.58, + "probability": 0.6769 + }, + { + "start": 10292.58, + "end": 10299.12, + "probability": 0.8624 + }, + { + "start": 10299.18, + "end": 10305.66, + "probability": 0.8999 + }, + { + "start": 10306.08, + "end": 10306.58, + "probability": 0.8099 + }, + { + "start": 10307.12, + "end": 10309.38, + "probability": 0.9843 + }, + { + "start": 10309.38, + "end": 10312.88, + "probability": 0.6605 + }, + { + "start": 10313.6, + "end": 10317.64, + "probability": 0.8654 + }, + { + "start": 10317.64, + "end": 10320.28, + "probability": 0.8002 + }, + { + "start": 10320.38, + "end": 10321.24, + "probability": 0.6218 + }, + { + "start": 10322.06, + "end": 10324.2, + "probability": 0.7615 + }, + { + "start": 10324.28, + "end": 10325.82, + "probability": 0.771 + }, + { + "start": 10325.98, + "end": 10329.54, + "probability": 0.9548 + }, + { + "start": 10329.6, + "end": 10333.46, + "probability": 0.9442 + }, + { + "start": 10333.46, + "end": 10335.74, + "probability": 0.9266 + }, + { + "start": 10335.94, + "end": 10340.27, + "probability": 0.7622 + }, + { + "start": 10340.66, + "end": 10344.22, + "probability": 0.9909 + }, + { + "start": 10345.38, + "end": 10347.48, + "probability": 0.7469 + }, + { + "start": 10347.56, + "end": 10350.26, + "probability": 0.9288 + }, + { + "start": 10350.26, + "end": 10354.48, + "probability": 0.9266 + }, + { + "start": 10354.58, + "end": 10354.86, + "probability": 0.5294 + }, + { + "start": 10355.9, + "end": 10356.85, + "probability": 0.539 + }, + { + "start": 10357.42, + "end": 10359.7, + "probability": 0.9824 + }, + { + "start": 10360.18, + "end": 10361.36, + "probability": 0.9453 + }, + { + "start": 10362.22, + "end": 10362.78, + "probability": 0.8939 + }, + { + "start": 10363.66, + "end": 10366.16, + "probability": 0.9119 + }, + { + "start": 10367.84, + "end": 10369.54, + "probability": 0.759 + }, + { + "start": 10370.94, + "end": 10373.1, + "probability": 0.9644 + }, + { + "start": 10388.36, + "end": 10389.21, + "probability": 0.7191 + }, + { + "start": 10391.14, + "end": 10393.4, + "probability": 0.8893 + }, + { + "start": 10394.32, + "end": 10395.44, + "probability": 0.8921 + }, + { + "start": 10396.8, + "end": 10403.56, + "probability": 0.9875 + }, + { + "start": 10405.68, + "end": 10408.66, + "probability": 0.6451 + }, + { + "start": 10409.96, + "end": 10411.08, + "probability": 0.8775 + }, + { + "start": 10413.46, + "end": 10415.0, + "probability": 0.9391 + }, + { + "start": 10416.32, + "end": 10420.48, + "probability": 0.9887 + }, + { + "start": 10421.44, + "end": 10422.46, + "probability": 0.7961 + }, + { + "start": 10423.78, + "end": 10433.44, + "probability": 0.9316 + }, + { + "start": 10433.44, + "end": 10438.32, + "probability": 0.7759 + }, + { + "start": 10438.42, + "end": 10444.1, + "probability": 0.9717 + }, + { + "start": 10444.34, + "end": 10450.25, + "probability": 0.9811 + }, + { + "start": 10451.06, + "end": 10453.02, + "probability": 0.9822 + }, + { + "start": 10454.02, + "end": 10454.9, + "probability": 0.3385 + }, + { + "start": 10456.04, + "end": 10460.0, + "probability": 0.8472 + }, + { + "start": 10460.84, + "end": 10463.16, + "probability": 0.7313 + }, + { + "start": 10464.5, + "end": 10468.98, + "probability": 0.6023 + }, + { + "start": 10470.1, + "end": 10475.54, + "probability": 0.9201 + }, + { + "start": 10476.1, + "end": 10479.14, + "probability": 0.6899 + }, + { + "start": 10479.7, + "end": 10490.04, + "probability": 0.9885 + }, + { + "start": 10492.59, + "end": 10498.53, + "probability": 0.5778 + }, + { + "start": 10500.62, + "end": 10502.16, + "probability": 0.7847 + }, + { + "start": 10503.26, + "end": 10510.56, + "probability": 0.7425 + }, + { + "start": 10511.78, + "end": 10518.9, + "probability": 0.9286 + }, + { + "start": 10519.62, + "end": 10520.32, + "probability": 0.6095 + }, + { + "start": 10523.22, + "end": 10530.36, + "probability": 0.9126 + }, + { + "start": 10531.3, + "end": 10532.0, + "probability": 0.5095 + }, + { + "start": 10532.58, + "end": 10535.62, + "probability": 0.9697 + }, + { + "start": 10536.24, + "end": 10536.66, + "probability": 0.5998 + }, + { + "start": 10536.68, + "end": 10540.2, + "probability": 0.9875 + }, + { + "start": 10541.34, + "end": 10543.72, + "probability": 0.8578 + }, + { + "start": 10543.82, + "end": 10550.86, + "probability": 0.9581 + }, + { + "start": 10551.4, + "end": 10552.38, + "probability": 0.8502 + }, + { + "start": 10552.44, + "end": 10556.62, + "probability": 0.8328 + }, + { + "start": 10557.94, + "end": 10564.32, + "probability": 0.9568 + }, + { + "start": 10564.66, + "end": 10567.63, + "probability": 0.8835 + }, + { + "start": 10568.7, + "end": 10569.96, + "probability": 0.6976 + }, + { + "start": 10571.24, + "end": 10579.86, + "probability": 0.8808 + }, + { + "start": 10580.68, + "end": 10584.72, + "probability": 0.9015 + }, + { + "start": 10585.3, + "end": 10587.82, + "probability": 0.8694 + }, + { + "start": 10588.42, + "end": 10588.96, + "probability": 0.78 + }, + { + "start": 10589.52, + "end": 10589.92, + "probability": 0.7049 + }, + { + "start": 10590.24, + "end": 10594.58, + "probability": 0.9551 + }, + { + "start": 10595.38, + "end": 10598.54, + "probability": 0.8649 + }, + { + "start": 10599.42, + "end": 10602.76, + "probability": 0.9607 + }, + { + "start": 10603.52, + "end": 10607.34, + "probability": 0.8173 + }, + { + "start": 10614.0, + "end": 10614.86, + "probability": 0.4516 + }, + { + "start": 10615.24, + "end": 10619.26, + "probability": 0.7679 + }, + { + "start": 10619.9, + "end": 10624.4, + "probability": 0.965 + }, + { + "start": 10625.44, + "end": 10625.88, + "probability": 0.5194 + }, + { + "start": 10627.56, + "end": 10630.7, + "probability": 0.674 + }, + { + "start": 10630.82, + "end": 10631.74, + "probability": 0.653 + }, + { + "start": 10632.14, + "end": 10633.18, + "probability": 0.9129 + }, + { + "start": 10634.38, + "end": 10635.92, + "probability": 0.7275 + }, + { + "start": 10636.24, + "end": 10637.76, + "probability": 0.9304 + }, + { + "start": 10637.86, + "end": 10639.42, + "probability": 0.8382 + }, + { + "start": 10639.94, + "end": 10645.14, + "probability": 0.9705 + }, + { + "start": 10645.14, + "end": 10648.68, + "probability": 0.9955 + }, + { + "start": 10649.6, + "end": 10652.52, + "probability": 0.8892 + }, + { + "start": 10653.32, + "end": 10658.32, + "probability": 0.9642 + }, + { + "start": 10658.58, + "end": 10663.62, + "probability": 0.8884 + }, + { + "start": 10664.48, + "end": 10664.98, + "probability": 0.7779 + }, + { + "start": 10665.56, + "end": 10673.0, + "probability": 0.9937 + }, + { + "start": 10673.62, + "end": 10677.48, + "probability": 0.9972 + }, + { + "start": 10677.84, + "end": 10678.54, + "probability": 0.7079 + }, + { + "start": 10678.66, + "end": 10679.32, + "probability": 0.6223 + }, + { + "start": 10681.56, + "end": 10682.16, + "probability": 0.7707 + }, + { + "start": 10682.36, + "end": 10686.96, + "probability": 0.9763 + }, + { + "start": 10686.96, + "end": 10690.56, + "probability": 0.9897 + }, + { + "start": 10691.18, + "end": 10693.34, + "probability": 0.9502 + }, + { + "start": 10693.94, + "end": 10696.74, + "probability": 0.9957 + }, + { + "start": 10696.74, + "end": 10699.68, + "probability": 0.9212 + }, + { + "start": 10700.56, + "end": 10700.92, + "probability": 0.3272 + }, + { + "start": 10700.98, + "end": 10704.38, + "probability": 0.9818 + }, + { + "start": 10704.38, + "end": 10708.68, + "probability": 0.9956 + }, + { + "start": 10709.0, + "end": 10710.1, + "probability": 0.7166 + }, + { + "start": 10710.52, + "end": 10715.83, + "probability": 0.7691 + }, + { + "start": 10716.18, + "end": 10719.42, + "probability": 0.9854 + }, + { + "start": 10719.8, + "end": 10720.96, + "probability": 0.4119 + }, + { + "start": 10721.04, + "end": 10722.26, + "probability": 0.5068 + }, + { + "start": 10722.96, + "end": 10723.34, + "probability": 0.5145 + }, + { + "start": 10723.38, + "end": 10724.12, + "probability": 0.5169 + }, + { + "start": 10725.44, + "end": 10726.28, + "probability": 0.1225 + }, + { + "start": 10726.94, + "end": 10726.94, + "probability": 0.0792 + }, + { + "start": 10726.94, + "end": 10728.28, + "probability": 0.6444 + }, + { + "start": 10730.34, + "end": 10731.66, + "probability": 0.5882 + }, + { + "start": 10732.66, + "end": 10733.84, + "probability": 0.6013 + }, + { + "start": 10750.08, + "end": 10751.34, + "probability": 0.9252 + }, + { + "start": 10756.6, + "end": 10758.04, + "probability": 0.7577 + }, + { + "start": 10759.56, + "end": 10761.0, + "probability": 0.9033 + }, + { + "start": 10762.52, + "end": 10763.68, + "probability": 0.6452 + }, + { + "start": 10765.7, + "end": 10766.94, + "probability": 0.9269 + }, + { + "start": 10770.74, + "end": 10772.2, + "probability": 0.9517 + }, + { + "start": 10773.5, + "end": 10779.94, + "probability": 0.9935 + }, + { + "start": 10781.32, + "end": 10786.04, + "probability": 0.9294 + }, + { + "start": 10787.56, + "end": 10788.56, + "probability": 0.6513 + }, + { + "start": 10790.56, + "end": 10791.72, + "probability": 0.5928 + }, + { + "start": 10793.52, + "end": 10795.7, + "probability": 0.9606 + }, + { + "start": 10799.02, + "end": 10804.28, + "probability": 0.96 + }, + { + "start": 10805.42, + "end": 10811.04, + "probability": 0.8541 + }, + { + "start": 10812.34, + "end": 10816.0, + "probability": 0.9219 + }, + { + "start": 10816.8, + "end": 10822.72, + "probability": 0.9585 + }, + { + "start": 10822.76, + "end": 10826.64, + "probability": 0.741 + }, + { + "start": 10827.18, + "end": 10828.78, + "probability": 0.8877 + }, + { + "start": 10830.28, + "end": 10835.1, + "probability": 0.943 + }, + { + "start": 10836.92, + "end": 10839.7, + "probability": 0.9827 + }, + { + "start": 10840.94, + "end": 10843.66, + "probability": 0.9976 + }, + { + "start": 10844.28, + "end": 10848.14, + "probability": 0.7353 + }, + { + "start": 10849.38, + "end": 10849.74, + "probability": 0.2959 + }, + { + "start": 10850.46, + "end": 10852.6, + "probability": 0.3686 + }, + { + "start": 10853.18, + "end": 10853.94, + "probability": 0.8374 + }, + { + "start": 10854.42, + "end": 10855.6, + "probability": 0.9041 + }, + { + "start": 10856.08, + "end": 10857.56, + "probability": 0.7496 + }, + { + "start": 10857.78, + "end": 10859.24, + "probability": 0.3922 + }, + { + "start": 10859.6, + "end": 10861.12, + "probability": 0.9574 + }, + { + "start": 10861.3, + "end": 10863.38, + "probability": 0.9156 + }, + { + "start": 10863.54, + "end": 10866.12, + "probability": 0.1599 + }, + { + "start": 10866.4, + "end": 10874.3, + "probability": 0.7662 + }, + { + "start": 10875.64, + "end": 10880.18, + "probability": 0.7638 + }, + { + "start": 10881.04, + "end": 10888.14, + "probability": 0.9823 + }, + { + "start": 10888.92, + "end": 10892.82, + "probability": 0.992 + }, + { + "start": 10892.89, + "end": 10897.62, + "probability": 0.9886 + }, + { + "start": 10897.92, + "end": 10903.44, + "probability": 0.0115 + }, + { + "start": 10903.44, + "end": 10903.44, + "probability": 0.2185 + }, + { + "start": 10903.44, + "end": 10906.44, + "probability": 0.4522 + }, + { + "start": 10906.48, + "end": 10912.48, + "probability": 0.9751 + }, + { + "start": 10913.0, + "end": 10917.32, + "probability": 0.987 + }, + { + "start": 10917.96, + "end": 10922.04, + "probability": 0.9985 + }, + { + "start": 10922.72, + "end": 10927.92, + "probability": 0.9958 + }, + { + "start": 10928.38, + "end": 10930.6, + "probability": 0.7675 + }, + { + "start": 10931.26, + "end": 10932.26, + "probability": 0.7018 + }, + { + "start": 10932.28, + "end": 10935.86, + "probability": 0.9519 + }, + { + "start": 10935.96, + "end": 10936.44, + "probability": 0.533 + }, + { + "start": 10936.5, + "end": 10938.08, + "probability": 0.9532 + }, + { + "start": 10938.86, + "end": 10941.24, + "probability": 0.9893 + }, + { + "start": 10942.6, + "end": 10945.82, + "probability": 0.9808 + }, + { + "start": 10945.92, + "end": 10946.7, + "probability": 0.8544 + }, + { + "start": 10947.18, + "end": 10951.32, + "probability": 0.9786 + }, + { + "start": 10951.9, + "end": 10953.52, + "probability": 0.6188 + }, + { + "start": 10954.1, + "end": 10960.64, + "probability": 0.9972 + }, + { + "start": 10961.8, + "end": 10962.92, + "probability": 0.9474 + }, + { + "start": 10963.68, + "end": 10968.02, + "probability": 0.9959 + }, + { + "start": 10970.13, + "end": 10972.14, + "probability": 0.9119 + }, + { + "start": 10972.68, + "end": 10973.05, + "probability": 0.8602 + }, + { + "start": 10974.7, + "end": 10981.88, + "probability": 0.9971 + }, + { + "start": 10982.14, + "end": 10982.91, + "probability": 0.9468 + }, + { + "start": 10983.76, + "end": 10986.46, + "probability": 0.9899 + }, + { + "start": 10987.0, + "end": 10989.98, + "probability": 0.8556 + }, + { + "start": 10990.54, + "end": 10993.02, + "probability": 0.9174 + }, + { + "start": 10993.48, + "end": 10999.18, + "probability": 0.9384 + }, + { + "start": 10999.32, + "end": 11003.22, + "probability": 0.9453 + }, + { + "start": 11003.22, + "end": 11009.86, + "probability": 0.9797 + }, + { + "start": 11010.36, + "end": 11014.1, + "probability": 0.8416 + }, + { + "start": 11015.24, + "end": 11016.06, + "probability": 0.9386 + }, + { + "start": 11016.86, + "end": 11020.44, + "probability": 0.9927 + }, + { + "start": 11021.18, + "end": 11025.12, + "probability": 0.9739 + }, + { + "start": 11025.12, + "end": 11027.48, + "probability": 0.999 + }, + { + "start": 11028.42, + "end": 11032.68, + "probability": 0.9914 + }, + { + "start": 11033.24, + "end": 11037.6, + "probability": 0.9912 + }, + { + "start": 11037.74, + "end": 11042.08, + "probability": 0.9064 + }, + { + "start": 11042.54, + "end": 11048.84, + "probability": 0.9898 + }, + { + "start": 11049.5, + "end": 11054.98, + "probability": 0.6336 + }, + { + "start": 11055.5, + "end": 11057.06, + "probability": 0.7204 + }, + { + "start": 11057.4, + "end": 11059.08, + "probability": 0.9218 + }, + { + "start": 11059.56, + "end": 11061.24, + "probability": 0.6299 + }, + { + "start": 11061.68, + "end": 11065.42, + "probability": 0.9595 + }, + { + "start": 11065.88, + "end": 11066.28, + "probability": 0.7593 + }, + { + "start": 11066.4, + "end": 11071.22, + "probability": 0.9546 + }, + { + "start": 11071.22, + "end": 11075.14, + "probability": 0.9983 + }, + { + "start": 11075.86, + "end": 11078.2, + "probability": 0.6246 + }, + { + "start": 11078.32, + "end": 11080.25, + "probability": 0.9004 + }, + { + "start": 11080.86, + "end": 11082.04, + "probability": 0.9072 + }, + { + "start": 11082.76, + "end": 11085.78, + "probability": 0.6638 + }, + { + "start": 11108.94, + "end": 11110.25, + "probability": 0.6198 + }, + { + "start": 11110.44, + "end": 11115.82, + "probability": 0.7658 + }, + { + "start": 11115.82, + "end": 11120.4, + "probability": 0.9967 + }, + { + "start": 11121.5, + "end": 11126.06, + "probability": 0.9849 + }, + { + "start": 11126.06, + "end": 11132.18, + "probability": 0.9702 + }, + { + "start": 11133.14, + "end": 11138.8, + "probability": 0.9983 + }, + { + "start": 11140.22, + "end": 11147.52, + "probability": 0.9932 + }, + { + "start": 11149.56, + "end": 11151.32, + "probability": 0.9968 + }, + { + "start": 11152.6, + "end": 11160.28, + "probability": 0.9877 + }, + { + "start": 11161.56, + "end": 11167.1, + "probability": 0.9805 + }, + { + "start": 11167.7, + "end": 11172.3, + "probability": 0.9953 + }, + { + "start": 11172.3, + "end": 11178.54, + "probability": 0.9962 + }, + { + "start": 11179.26, + "end": 11182.68, + "probability": 0.9951 + }, + { + "start": 11185.16, + "end": 11188.26, + "probability": 0.8057 + }, + { + "start": 11189.32, + "end": 11195.02, + "probability": 0.968 + }, + { + "start": 11196.28, + "end": 11207.76, + "probability": 0.814 + }, + { + "start": 11208.76, + "end": 11214.74, + "probability": 0.9329 + }, + { + "start": 11214.74, + "end": 11220.32, + "probability": 0.9985 + }, + { + "start": 11222.86, + "end": 11227.32, + "probability": 0.9632 + }, + { + "start": 11228.22, + "end": 11230.86, + "probability": 0.9828 + }, + { + "start": 11232.24, + "end": 11233.26, + "probability": 0.7428 + }, + { + "start": 11233.8, + "end": 11234.68, + "probability": 0.4417 + }, + { + "start": 11235.96, + "end": 11238.94, + "probability": 0.8858 + }, + { + "start": 11239.82, + "end": 11243.88, + "probability": 0.8962 + }, + { + "start": 11244.48, + "end": 11246.86, + "probability": 0.8896 + }, + { + "start": 11249.12, + "end": 11251.94, + "probability": 0.9835 + }, + { + "start": 11251.94, + "end": 11256.8, + "probability": 0.9734 + }, + { + "start": 11257.92, + "end": 11261.4, + "probability": 0.9927 + }, + { + "start": 11261.4, + "end": 11265.44, + "probability": 0.9991 + }, + { + "start": 11266.62, + "end": 11273.56, + "probability": 0.9659 + }, + { + "start": 11274.88, + "end": 11277.14, + "probability": 0.9621 + }, + { + "start": 11279.26, + "end": 11284.36, + "probability": 0.9882 + }, + { + "start": 11285.0, + "end": 11293.12, + "probability": 0.9974 + }, + { + "start": 11293.12, + "end": 11303.38, + "probability": 0.9979 + }, + { + "start": 11306.78, + "end": 11308.16, + "probability": 0.7219 + }, + { + "start": 11309.9, + "end": 11314.28, + "probability": 0.9086 + }, + { + "start": 11315.66, + "end": 11321.66, + "probability": 0.9946 + }, + { + "start": 11322.3, + "end": 11323.54, + "probability": 0.9836 + }, + { + "start": 11325.06, + "end": 11327.78, + "probability": 0.6942 + }, + { + "start": 11328.48, + "end": 11334.4, + "probability": 0.9801 + }, + { + "start": 11334.4, + "end": 11343.26, + "probability": 0.999 + }, + { + "start": 11344.3, + "end": 11347.7, + "probability": 0.8543 + }, + { + "start": 11348.36, + "end": 11349.7, + "probability": 0.946 + }, + { + "start": 11350.6, + "end": 11352.18, + "probability": 0.9976 + }, + { + "start": 11352.94, + "end": 11355.7, + "probability": 0.9966 + }, + { + "start": 11356.74, + "end": 11358.6, + "probability": 0.9873 + }, + { + "start": 11359.34, + "end": 11363.72, + "probability": 0.6792 + }, + { + "start": 11365.42, + "end": 11368.28, + "probability": 0.907 + }, + { + "start": 11370.88, + "end": 11376.88, + "probability": 0.9907 + }, + { + "start": 11380.2, + "end": 11384.86, + "probability": 0.9946 + }, + { + "start": 11386.28, + "end": 11392.92, + "probability": 0.9975 + }, + { + "start": 11392.92, + "end": 11398.54, + "probability": 0.9984 + }, + { + "start": 11400.3, + "end": 11401.56, + "probability": 0.6628 + }, + { + "start": 11401.7, + "end": 11403.32, + "probability": 0.9937 + }, + { + "start": 11403.58, + "end": 11404.52, + "probability": 0.9333 + }, + { + "start": 11404.66, + "end": 11405.4, + "probability": 0.7444 + }, + { + "start": 11405.56, + "end": 11407.18, + "probability": 0.9925 + }, + { + "start": 11407.96, + "end": 11413.38, + "probability": 0.9841 + }, + { + "start": 11414.28, + "end": 11414.98, + "probability": 0.9797 + }, + { + "start": 11415.62, + "end": 11419.48, + "probability": 0.8824 + }, + { + "start": 11420.64, + "end": 11423.5, + "probability": 0.931 + }, + { + "start": 11424.2, + "end": 11429.02, + "probability": 0.9915 + }, + { + "start": 11429.74, + "end": 11431.54, + "probability": 0.9941 + }, + { + "start": 11432.06, + "end": 11436.98, + "probability": 0.9935 + }, + { + "start": 11436.98, + "end": 11441.42, + "probability": 0.9982 + }, + { + "start": 11441.84, + "end": 11444.8, + "probability": 0.9977 + }, + { + "start": 11445.88, + "end": 11448.16, + "probability": 0.9869 + }, + { + "start": 11448.8, + "end": 11451.14, + "probability": 0.9759 + }, + { + "start": 11451.94, + "end": 11453.42, + "probability": 0.6651 + }, + { + "start": 11453.52, + "end": 11455.64, + "probability": 0.8625 + }, + { + "start": 11456.18, + "end": 11459.3, + "probability": 0.7612 + }, + { + "start": 11460.72, + "end": 11462.3, + "probability": 0.9387 + }, + { + "start": 11462.5, + "end": 11463.64, + "probability": 0.9372 + }, + { + "start": 11463.78, + "end": 11467.4, + "probability": 0.9118 + }, + { + "start": 11470.78, + "end": 11472.1, + "probability": 0.0364 + }, + { + "start": 11473.1, + "end": 11473.9, + "probability": 0.1024 + }, + { + "start": 11473.9, + "end": 11475.6, + "probability": 0.5014 + }, + { + "start": 11476.04, + "end": 11477.28, + "probability": 0.9329 + }, + { + "start": 11478.26, + "end": 11479.0, + "probability": 0.9889 + }, + { + "start": 11484.76, + "end": 11486.66, + "probability": 0.9707 + }, + { + "start": 11488.74, + "end": 11489.0, + "probability": 0.4459 + }, + { + "start": 11489.0, + "end": 11493.02, + "probability": 0.5517 + }, + { + "start": 11493.44, + "end": 11493.7, + "probability": 0.551 + }, + { + "start": 11494.88, + "end": 11498.7, + "probability": 0.8574 + }, + { + "start": 11499.1, + "end": 11499.68, + "probability": 0.3193 + }, + { + "start": 11499.78, + "end": 11500.2, + "probability": 0.9508 + }, + { + "start": 11500.22, + "end": 11501.94, + "probability": 0.6956 + }, + { + "start": 11502.02, + "end": 11503.06, + "probability": 0.6834 + }, + { + "start": 11503.18, + "end": 11506.42, + "probability": 0.8721 + }, + { + "start": 11506.42, + "end": 11507.92, + "probability": 0.6932 + }, + { + "start": 11508.08, + "end": 11508.62, + "probability": 0.4946 + }, + { + "start": 11509.06, + "end": 11509.86, + "probability": 0.4304 + }, + { + "start": 11510.68, + "end": 11513.34, + "probability": 0.6918 + }, + { + "start": 11516.78, + "end": 11517.6, + "probability": 0.352 + }, + { + "start": 11517.6, + "end": 11519.06, + "probability": 0.1395 + }, + { + "start": 11519.12, + "end": 11519.54, + "probability": 0.6577 + }, + { + "start": 11519.64, + "end": 11519.78, + "probability": 0.7037 + }, + { + "start": 11519.92, + "end": 11521.14, + "probability": 0.8827 + }, + { + "start": 11521.18, + "end": 11523.82, + "probability": 0.7152 + }, + { + "start": 11525.58, + "end": 11528.9, + "probability": 0.7288 + }, + { + "start": 11530.7, + "end": 11536.82, + "probability": 0.896 + }, + { + "start": 11536.96, + "end": 11537.84, + "probability": 0.7002 + }, + { + "start": 11538.44, + "end": 11539.62, + "probability": 0.7535 + }, + { + "start": 11540.22, + "end": 11542.76, + "probability": 0.8815 + }, + { + "start": 11544.32, + "end": 11545.88, + "probability": 0.792 + }, + { + "start": 11547.82, + "end": 11548.41, + "probability": 0.7271 + }, + { + "start": 11548.62, + "end": 11551.96, + "probability": 0.8607 + }, + { + "start": 11553.48, + "end": 11554.04, + "probability": 0.5215 + }, + { + "start": 11555.36, + "end": 11556.72, + "probability": 0.8843 + }, + { + "start": 11558.04, + "end": 11559.4, + "probability": 0.7807 + }, + { + "start": 11560.76, + "end": 11564.3, + "probability": 0.8292 + }, + { + "start": 11565.08, + "end": 11571.2, + "probability": 0.985 + }, + { + "start": 11572.76, + "end": 11575.42, + "probability": 0.6543 + }, + { + "start": 11576.04, + "end": 11578.4, + "probability": 0.9462 + }, + { + "start": 11578.64, + "end": 11580.84, + "probability": 0.9926 + }, + { + "start": 11582.62, + "end": 11587.02, + "probability": 0.7277 + }, + { + "start": 11587.92, + "end": 11592.36, + "probability": 0.9966 + }, + { + "start": 11593.28, + "end": 11597.18, + "probability": 0.8508 + }, + { + "start": 11598.64, + "end": 11601.52, + "probability": 0.9186 + }, + { + "start": 11603.36, + "end": 11609.62, + "probability": 0.9794 + }, + { + "start": 11610.7, + "end": 11612.24, + "probability": 0.8532 + }, + { + "start": 11613.94, + "end": 11615.74, + "probability": 0.8181 + }, + { + "start": 11616.34, + "end": 11617.54, + "probability": 0.9767 + }, + { + "start": 11618.54, + "end": 11619.91, + "probability": 0.5486 + }, + { + "start": 11620.5, + "end": 11623.72, + "probability": 0.9182 + }, + { + "start": 11625.02, + "end": 11626.94, + "probability": 0.9863 + }, + { + "start": 11627.46, + "end": 11628.48, + "probability": 0.9766 + }, + { + "start": 11631.3, + "end": 11634.34, + "probability": 0.816 + }, + { + "start": 11635.42, + "end": 11636.13, + "probability": 0.7768 + }, + { + "start": 11637.46, + "end": 11638.74, + "probability": 0.6256 + }, + { + "start": 11639.52, + "end": 11641.82, + "probability": 0.9739 + }, + { + "start": 11641.96, + "end": 11642.58, + "probability": 0.851 + }, + { + "start": 11644.08, + "end": 11644.98, + "probability": 0.8877 + }, + { + "start": 11646.48, + "end": 11647.28, + "probability": 0.912 + }, + { + "start": 11647.88, + "end": 11648.86, + "probability": 0.9774 + }, + { + "start": 11649.6, + "end": 11650.22, + "probability": 0.6904 + }, + { + "start": 11651.08, + "end": 11652.34, + "probability": 0.9347 + }, + { + "start": 11652.86, + "end": 11654.66, + "probability": 0.6816 + }, + { + "start": 11655.78, + "end": 11656.86, + "probability": 0.7768 + }, + { + "start": 11658.78, + "end": 11662.22, + "probability": 0.8226 + }, + { + "start": 11663.18, + "end": 11670.92, + "probability": 0.9973 + }, + { + "start": 11671.44, + "end": 11673.98, + "probability": 0.9305 + }, + { + "start": 11674.7, + "end": 11679.38, + "probability": 0.8319 + }, + { + "start": 11680.14, + "end": 11686.22, + "probability": 0.9512 + }, + { + "start": 11687.71, + "end": 11691.02, + "probability": 0.9829 + }, + { + "start": 11692.8, + "end": 11696.58, + "probability": 0.9936 + }, + { + "start": 11698.52, + "end": 11700.44, + "probability": 0.3888 + }, + { + "start": 11700.98, + "end": 11704.28, + "probability": 0.9592 + }, + { + "start": 11705.2, + "end": 11708.46, + "probability": 0.9352 + }, + { + "start": 11709.3, + "end": 11711.8, + "probability": 0.9401 + }, + { + "start": 11713.34, + "end": 11716.06, + "probability": 0.8185 + }, + { + "start": 11717.24, + "end": 11718.82, + "probability": 0.8646 + }, + { + "start": 11720.34, + "end": 11722.74, + "probability": 0.569 + }, + { + "start": 11723.8, + "end": 11724.58, + "probability": 0.7113 + }, + { + "start": 11726.1, + "end": 11729.74, + "probability": 0.7389 + }, + { + "start": 11730.56, + "end": 11732.58, + "probability": 0.4208 + }, + { + "start": 11733.78, + "end": 11734.3, + "probability": 0.1364 + }, + { + "start": 11735.18, + "end": 11737.44, + "probability": 0.3819 + }, + { + "start": 11737.5, + "end": 11738.0, + "probability": 0.4555 + }, + { + "start": 11739.08, + "end": 11742.56, + "probability": 0.9129 + }, + { + "start": 11743.34, + "end": 11743.92, + "probability": 0.598 + }, + { + "start": 11744.78, + "end": 11752.9, + "probability": 0.9864 + }, + { + "start": 11753.14, + "end": 11754.32, + "probability": 0.8042 + }, + { + "start": 11754.38, + "end": 11754.84, + "probability": 0.6376 + }, + { + "start": 11755.2, + "end": 11761.9, + "probability": 0.9746 + }, + { + "start": 11763.5, + "end": 11766.19, + "probability": 0.9939 + }, + { + "start": 11767.04, + "end": 11769.92, + "probability": 0.8796 + }, + { + "start": 11770.76, + "end": 11771.8, + "probability": 0.5976 + }, + { + "start": 11772.58, + "end": 11773.9, + "probability": 0.7562 + }, + { + "start": 11774.58, + "end": 11777.22, + "probability": 0.9135 + }, + { + "start": 11778.0, + "end": 11778.48, + "probability": 0.7879 + }, + { + "start": 11779.44, + "end": 11780.06, + "probability": 0.7581 + }, + { + "start": 11781.44, + "end": 11785.4, + "probability": 0.7267 + }, + { + "start": 11785.62, + "end": 11789.48, + "probability": 0.9922 + }, + { + "start": 11790.12, + "end": 11795.9, + "probability": 0.8372 + }, + { + "start": 11797.28, + "end": 11799.32, + "probability": 0.5406 + }, + { + "start": 11799.88, + "end": 11805.58, + "probability": 0.9297 + }, + { + "start": 11806.3, + "end": 11808.56, + "probability": 0.8218 + }, + { + "start": 11809.32, + "end": 11813.4, + "probability": 0.9438 + }, + { + "start": 11813.8, + "end": 11816.56, + "probability": 0.977 + }, + { + "start": 11817.16, + "end": 11817.5, + "probability": 0.5483 + }, + { + "start": 11819.44, + "end": 11820.04, + "probability": 0.8662 + }, + { + "start": 11820.68, + "end": 11822.26, + "probability": 0.9681 + }, + { + "start": 11823.62, + "end": 11825.2, + "probability": 0.9823 + }, + { + "start": 11826.02, + "end": 11831.06, + "probability": 0.9628 + }, + { + "start": 11832.18, + "end": 11836.24, + "probability": 0.7498 + }, + { + "start": 11837.04, + "end": 11837.83, + "probability": 0.9214 + }, + { + "start": 11839.28, + "end": 11844.34, + "probability": 0.9512 + }, + { + "start": 11845.08, + "end": 11847.6, + "probability": 0.9946 + }, + { + "start": 11848.16, + "end": 11853.06, + "probability": 0.9988 + }, + { + "start": 11855.34, + "end": 11861.24, + "probability": 0.3512 + }, + { + "start": 11861.32, + "end": 11862.11, + "probability": 0.2244 + }, + { + "start": 11862.52, + "end": 11863.44, + "probability": 0.7077 + }, + { + "start": 11863.64, + "end": 11864.94, + "probability": 0.8151 + }, + { + "start": 11865.7, + "end": 11868.24, + "probability": 0.9053 + }, + { + "start": 11868.94, + "end": 11870.3, + "probability": 0.9049 + }, + { + "start": 11871.66, + "end": 11874.54, + "probability": 0.7208 + }, + { + "start": 11874.58, + "end": 11875.8, + "probability": 0.8778 + }, + { + "start": 11876.1, + "end": 11878.24, + "probability": 0.9857 + }, + { + "start": 11879.88, + "end": 11881.08, + "probability": 0.7631 + }, + { + "start": 11881.66, + "end": 11883.42, + "probability": 0.7323 + }, + { + "start": 11884.74, + "end": 11885.86, + "probability": 0.5126 + }, + { + "start": 11886.34, + "end": 11887.42, + "probability": 0.0355 + }, + { + "start": 11889.04, + "end": 11893.66, + "probability": 0.1978 + }, + { + "start": 11894.36, + "end": 11896.3, + "probability": 0.8752 + }, + { + "start": 11897.24, + "end": 11898.86, + "probability": 0.9646 + }, + { + "start": 11899.44, + "end": 11900.32, + "probability": 0.9224 + }, + { + "start": 11901.14, + "end": 11901.54, + "probability": 0.0999 + }, + { + "start": 11901.54, + "end": 11902.82, + "probability": 0.427 + }, + { + "start": 11903.54, + "end": 11907.42, + "probability": 0.9268 + }, + { + "start": 11908.1, + "end": 11911.14, + "probability": 0.7203 + }, + { + "start": 11911.82, + "end": 11912.96, + "probability": 0.5789 + }, + { + "start": 11913.34, + "end": 11915.12, + "probability": 0.8575 + }, + { + "start": 11916.12, + "end": 11920.1, + "probability": 0.9185 + }, + { + "start": 11921.2, + "end": 11922.34, + "probability": 0.9619 + }, + { + "start": 11923.5, + "end": 11926.1, + "probability": 0.9243 + }, + { + "start": 11926.5, + "end": 11926.7, + "probability": 0.7003 + }, + { + "start": 11927.54, + "end": 11931.58, + "probability": 0.7237 + }, + { + "start": 11932.54, + "end": 11933.5, + "probability": 0.233 + }, + { + "start": 11934.02, + "end": 11937.12, + "probability": 0.0567 + }, + { + "start": 11938.18, + "end": 11939.92, + "probability": 0.8337 + }, + { + "start": 11939.92, + "end": 11941.46, + "probability": 0.9265 + }, + { + "start": 11942.36, + "end": 11944.88, + "probability": 0.4097 + }, + { + "start": 11945.08, + "end": 11946.86, + "probability": 0.7146 + }, + { + "start": 11946.86, + "end": 11948.58, + "probability": 0.5732 + }, + { + "start": 11948.58, + "end": 11951.91, + "probability": 0.5956 + }, + { + "start": 11952.52, + "end": 11954.2, + "probability": 0.1371 + }, + { + "start": 11954.22, + "end": 11957.12, + "probability": 0.6343 + }, + { + "start": 11957.55, + "end": 11960.38, + "probability": 0.0161 + }, + { + "start": 11960.38, + "end": 11963.1, + "probability": 0.5653 + }, + { + "start": 11963.54, + "end": 11965.2, + "probability": 0.9168 + }, + { + "start": 11966.08, + "end": 11968.54, + "probability": 0.9724 + }, + { + "start": 11969.08, + "end": 11970.28, + "probability": 0.9449 + }, + { + "start": 11970.32, + "end": 11971.68, + "probability": 0.9505 + }, + { + "start": 11972.2, + "end": 11975.74, + "probability": 0.9913 + }, + { + "start": 11975.84, + "end": 11976.76, + "probability": 0.7708 + }, + { + "start": 11976.92, + "end": 11978.36, + "probability": 0.7215 + }, + { + "start": 11978.52, + "end": 11978.68, + "probability": 0.4197 + }, + { + "start": 11978.92, + "end": 11982.72, + "probability": 0.8579 + }, + { + "start": 11984.24, + "end": 11990.36, + "probability": 0.9533 + }, + { + "start": 11991.14, + "end": 11994.72, + "probability": 0.9811 + }, + { + "start": 11995.42, + "end": 11996.52, + "probability": 0.9034 + }, + { + "start": 11996.74, + "end": 11998.26, + "probability": 0.7127 + }, + { + "start": 11999.5, + "end": 11999.5, + "probability": 0.0333 + }, + { + "start": 11999.5, + "end": 12000.28, + "probability": 0.4598 + }, + { + "start": 12000.82, + "end": 12001.71, + "probability": 0.8945 + }, + { + "start": 12003.26, + "end": 12004.06, + "probability": 0.8556 + }, + { + "start": 12005.96, + "end": 12006.92, + "probability": 0.074 + }, + { + "start": 12028.98, + "end": 12030.04, + "probability": 0.3691 + }, + { + "start": 12030.1, + "end": 12032.16, + "probability": 0.708 + }, + { + "start": 12032.94, + "end": 12034.58, + "probability": 0.7503 + }, + { + "start": 12035.7, + "end": 12038.7, + "probability": 0.9734 + }, + { + "start": 12039.52, + "end": 12042.86, + "probability": 0.932 + }, + { + "start": 12043.92, + "end": 12045.38, + "probability": 0.9702 + }, + { + "start": 12045.82, + "end": 12048.86, + "probability": 0.9226 + }, + { + "start": 12049.04, + "end": 12049.04, + "probability": 0.4265 + }, + { + "start": 12049.14, + "end": 12050.46, + "probability": 0.8724 + }, + { + "start": 12050.56, + "end": 12053.42, + "probability": 0.9712 + }, + { + "start": 12053.42, + "end": 12054.55, + "probability": 0.9229 + }, + { + "start": 12055.12, + "end": 12058.02, + "probability": 0.9266 + }, + { + "start": 12058.76, + "end": 12060.6, + "probability": 0.7656 + }, + { + "start": 12060.66, + "end": 12064.7, + "probability": 0.9645 + }, + { + "start": 12064.7, + "end": 12068.74, + "probability": 0.9984 + }, + { + "start": 12069.56, + "end": 12072.88, + "probability": 0.9554 + }, + { + "start": 12074.04, + "end": 12076.44, + "probability": 0.9675 + }, + { + "start": 12077.28, + "end": 12081.7, + "probability": 0.9844 + }, + { + "start": 12082.56, + "end": 12083.06, + "probability": 0.7844 + }, + { + "start": 12084.3, + "end": 12086.85, + "probability": 0.9562 + }, + { + "start": 12087.76, + "end": 12089.44, + "probability": 0.7812 + }, + { + "start": 12089.76, + "end": 12091.62, + "probability": 0.8662 + }, + { + "start": 12092.38, + "end": 12094.66, + "probability": 0.9971 + }, + { + "start": 12095.62, + "end": 12096.52, + "probability": 0.8958 + }, + { + "start": 12096.58, + "end": 12097.66, + "probability": 0.5618 + }, + { + "start": 12097.88, + "end": 12102.94, + "probability": 0.9924 + }, + { + "start": 12103.38, + "end": 12106.2, + "probability": 0.999 + }, + { + "start": 12106.87, + "end": 12110.86, + "probability": 0.9668 + }, + { + "start": 12111.84, + "end": 12111.94, + "probability": 0.4023 + }, + { + "start": 12112.02, + "end": 12114.06, + "probability": 0.7494 + }, + { + "start": 12114.06, + "end": 12115.04, + "probability": 0.6388 + }, + { + "start": 12115.12, + "end": 12116.9, + "probability": 0.9885 + }, + { + "start": 12117.56, + "end": 12119.36, + "probability": 0.1933 + }, + { + "start": 12119.4, + "end": 12119.56, + "probability": 0.3372 + }, + { + "start": 12119.74, + "end": 12123.2, + "probability": 0.2791 + }, + { + "start": 12123.36, + "end": 12123.38, + "probability": 0.0605 + }, + { + "start": 12123.38, + "end": 12126.01, + "probability": 0.9666 + }, + { + "start": 12126.8, + "end": 12127.24, + "probability": 0.4512 + }, + { + "start": 12127.3, + "end": 12128.84, + "probability": 0.2416 + }, + { + "start": 12128.94, + "end": 12130.28, + "probability": 0.711 + }, + { + "start": 12130.7, + "end": 12135.12, + "probability": 0.7622 + }, + { + "start": 12135.42, + "end": 12136.48, + "probability": 0.0527 + }, + { + "start": 12137.9, + "end": 12139.54, + "probability": 0.1067 + }, + { + "start": 12139.54, + "end": 12142.6, + "probability": 0.481 + }, + { + "start": 12142.94, + "end": 12144.02, + "probability": 0.8694 + }, + { + "start": 12144.02, + "end": 12144.02, + "probability": 0.1622 + }, + { + "start": 12144.02, + "end": 12145.3, + "probability": 0.8652 + }, + { + "start": 12145.98, + "end": 12148.88, + "probability": 0.9252 + }, + { + "start": 12149.94, + "end": 12150.78, + "probability": 0.8606 + }, + { + "start": 12151.66, + "end": 12154.94, + "probability": 0.9979 + }, + { + "start": 12155.52, + "end": 12156.6, + "probability": 0.9941 + }, + { + "start": 12156.62, + "end": 12158.54, + "probability": 0.9381 + }, + { + "start": 12159.14, + "end": 12164.26, + "probability": 0.9885 + }, + { + "start": 12165.44, + "end": 12165.94, + "probability": 0.3414 + }, + { + "start": 12166.78, + "end": 12168.84, + "probability": 0.9985 + }, + { + "start": 12168.84, + "end": 12172.0, + "probability": 0.9965 + }, + { + "start": 12172.8, + "end": 12174.08, + "probability": 0.8763 + }, + { + "start": 12174.98, + "end": 12179.06, + "probability": 0.9978 + }, + { + "start": 12179.84, + "end": 12185.02, + "probability": 0.5071 + }, + { + "start": 12185.64, + "end": 12186.24, + "probability": 0.6968 + }, + { + "start": 12186.56, + "end": 12187.34, + "probability": 0.824 + }, + { + "start": 12187.42, + "end": 12189.1, + "probability": 0.9972 + }, + { + "start": 12190.22, + "end": 12191.54, + "probability": 0.7091 + }, + { + "start": 12191.98, + "end": 12192.74, + "probability": 0.9932 + }, + { + "start": 12192.82, + "end": 12193.24, + "probability": 0.9187 + }, + { + "start": 12194.1, + "end": 12195.76, + "probability": 0.9547 + }, + { + "start": 12196.48, + "end": 12198.3, + "probability": 0.9946 + }, + { + "start": 12198.82, + "end": 12201.42, + "probability": 0.9051 + }, + { + "start": 12202.48, + "end": 12203.32, + "probability": 0.7355 + }, + { + "start": 12203.62, + "end": 12209.4, + "probability": 0.9895 + }, + { + "start": 12209.92, + "end": 12212.22, + "probability": 0.6756 + }, + { + "start": 12213.34, + "end": 12214.68, + "probability": 0.8378 + }, + { + "start": 12214.78, + "end": 12215.52, + "probability": 0.8934 + }, + { + "start": 12215.92, + "end": 12216.92, + "probability": 0.9194 + }, + { + "start": 12217.28, + "end": 12219.24, + "probability": 0.9532 + }, + { + "start": 12220.18, + "end": 12220.84, + "probability": 0.5344 + }, + { + "start": 12221.48, + "end": 12223.24, + "probability": 0.9714 + }, + { + "start": 12223.62, + "end": 12224.6, + "probability": 0.2538 + }, + { + "start": 12227.3, + "end": 12227.6, + "probability": 0.1447 + }, + { + "start": 12227.6, + "end": 12228.72, + "probability": 0.9294 + }, + { + "start": 12228.76, + "end": 12228.95, + "probability": 0.0877 + }, + { + "start": 12229.62, + "end": 12230.14, + "probability": 0.5102 + }, + { + "start": 12230.26, + "end": 12230.76, + "probability": 0.8477 + }, + { + "start": 12230.86, + "end": 12232.2, + "probability": 0.9363 + }, + { + "start": 12232.36, + "end": 12233.34, + "probability": 0.7818 + }, + { + "start": 12233.64, + "end": 12236.16, + "probability": 0.9562 + }, + { + "start": 12237.44, + "end": 12237.7, + "probability": 0.9111 + }, + { + "start": 12237.78, + "end": 12238.24, + "probability": 0.8574 + }, + { + "start": 12238.5, + "end": 12244.38, + "probability": 0.9969 + }, + { + "start": 12244.44, + "end": 12245.0, + "probability": 0.999 + }, + { + "start": 12245.92, + "end": 12246.34, + "probability": 0.494 + }, + { + "start": 12246.36, + "end": 12248.24, + "probability": 0.9738 + }, + { + "start": 12248.96, + "end": 12251.2, + "probability": 0.1923 + }, + { + "start": 12251.32, + "end": 12252.12, + "probability": 0.7454 + }, + { + "start": 12252.34, + "end": 12253.66, + "probability": 0.9087 + }, + { + "start": 12253.8, + "end": 12255.84, + "probability": 0.7153 + }, + { + "start": 12256.44, + "end": 12257.45, + "probability": 0.7421 + }, + { + "start": 12258.18, + "end": 12262.36, + "probability": 0.7878 + }, + { + "start": 12262.98, + "end": 12265.12, + "probability": 0.939 + }, + { + "start": 12265.34, + "end": 12266.98, + "probability": 0.8173 + }, + { + "start": 12267.3, + "end": 12269.5, + "probability": 0.9905 + }, + { + "start": 12269.66, + "end": 12270.26, + "probability": 0.8792 + }, + { + "start": 12270.98, + "end": 12274.04, + "probability": 0.8019 + }, + { + "start": 12275.04, + "end": 12278.42, + "probability": 0.8267 + }, + { + "start": 12279.12, + "end": 12280.64, + "probability": 0.7532 + }, + { + "start": 12281.46, + "end": 12283.76, + "probability": 0.9811 + }, + { + "start": 12284.72, + "end": 12286.88, + "probability": 0.9971 + }, + { + "start": 12287.44, + "end": 12290.0, + "probability": 0.9758 + }, + { + "start": 12290.14, + "end": 12290.5, + "probability": 0.4117 + }, + { + "start": 12290.58, + "end": 12291.36, + "probability": 0.8948 + }, + { + "start": 12292.0, + "end": 12292.28, + "probability": 0.22 + }, + { + "start": 12292.28, + "end": 12294.97, + "probability": 0.9144 + }, + { + "start": 12295.4, + "end": 12296.58, + "probability": 0.7025 + }, + { + "start": 12296.92, + "end": 12298.61, + "probability": 0.3204 + }, + { + "start": 12299.52, + "end": 12301.3, + "probability": 0.5282 + }, + { + "start": 12301.34, + "end": 12304.06, + "probability": 0.5542 + }, + { + "start": 12304.36, + "end": 12304.9, + "probability": 0.2749 + }, + { + "start": 12304.94, + "end": 12305.82, + "probability": 0.4383 + }, + { + "start": 12305.92, + "end": 12306.06, + "probability": 0.1637 + }, + { + "start": 12306.18, + "end": 12306.8, + "probability": 0.5454 + }, + { + "start": 12307.14, + "end": 12309.08, + "probability": 0.7177 + }, + { + "start": 12309.16, + "end": 12310.74, + "probability": 0.5548 + }, + { + "start": 12310.74, + "end": 12310.74, + "probability": 0.6096 + }, + { + "start": 12310.74, + "end": 12314.58, + "probability": 0.2377 + }, + { + "start": 12316.48, + "end": 12317.8, + "probability": 0.0178 + }, + { + "start": 12317.8, + "end": 12318.6, + "probability": 0.0674 + }, + { + "start": 12318.6, + "end": 12318.6, + "probability": 0.5144 + }, + { + "start": 12318.6, + "end": 12319.2, + "probability": 0.091 + }, + { + "start": 12319.26, + "end": 12322.76, + "probability": 0.4347 + }, + { + "start": 12323.78, + "end": 12324.16, + "probability": 0.3023 + }, + { + "start": 12324.16, + "end": 12324.16, + "probability": 0.0935 + }, + { + "start": 12324.16, + "end": 12324.66, + "probability": 0.2571 + }, + { + "start": 12325.24, + "end": 12326.8, + "probability": 0.7759 + }, + { + "start": 12327.06, + "end": 12327.56, + "probability": 0.7802 + }, + { + "start": 12328.32, + "end": 12332.38, + "probability": 0.061 + }, + { + "start": 12333.12, + "end": 12333.12, + "probability": 0.0966 + }, + { + "start": 12333.12, + "end": 12333.12, + "probability": 0.1635 + }, + { + "start": 12333.12, + "end": 12334.62, + "probability": 0.6975 + }, + { + "start": 12334.9, + "end": 12336.76, + "probability": 0.9294 + }, + { + "start": 12337.46, + "end": 12338.54, + "probability": 0.9983 + }, + { + "start": 12339.66, + "end": 12344.68, + "probability": 0.9741 + }, + { + "start": 12344.96, + "end": 12345.48, + "probability": 0.5853 + }, + { + "start": 12345.54, + "end": 12346.06, + "probability": 0.7611 + }, + { + "start": 12347.72, + "end": 12348.56, + "probability": 0.9117 + }, + { + "start": 12349.64, + "end": 12350.22, + "probability": 0.8922 + }, + { + "start": 12350.76, + "end": 12353.04, + "probability": 0.9588 + }, + { + "start": 12354.4, + "end": 12356.1, + "probability": 0.9974 + }, + { + "start": 12356.9, + "end": 12359.1, + "probability": 0.9973 + }, + { + "start": 12359.72, + "end": 12362.06, + "probability": 0.9463 + }, + { + "start": 12362.46, + "end": 12364.41, + "probability": 0.7629 + }, + { + "start": 12364.96, + "end": 12367.44, + "probability": 0.9264 + }, + { + "start": 12367.94, + "end": 12370.94, + "probability": 0.9498 + }, + { + "start": 12371.28, + "end": 12371.81, + "probability": 0.7363 + }, + { + "start": 12372.9, + "end": 12379.1, + "probability": 0.981 + }, + { + "start": 12379.6, + "end": 12380.51, + "probability": 0.2758 + }, + { + "start": 12381.14, + "end": 12381.68, + "probability": 0.4074 + }, + { + "start": 12381.68, + "end": 12384.02, + "probability": 0.7891 + }, + { + "start": 12384.64, + "end": 12387.56, + "probability": 0.9775 + }, + { + "start": 12387.76, + "end": 12389.24, + "probability": 0.6731 + }, + { + "start": 12389.44, + "end": 12390.82, + "probability": 0.7071 + }, + { + "start": 12398.64, + "end": 12400.02, + "probability": 0.9716 + }, + { + "start": 12402.52, + "end": 12403.66, + "probability": 0.5734 + }, + { + "start": 12404.42, + "end": 12406.04, + "probability": 0.6031 + }, + { + "start": 12407.42, + "end": 12409.54, + "probability": 0.7114 + }, + { + "start": 12409.76, + "end": 12411.82, + "probability": 0.9376 + }, + { + "start": 12411.9, + "end": 12412.2, + "probability": 0.6906 + }, + { + "start": 12412.28, + "end": 12413.56, + "probability": 0.7424 + }, + { + "start": 12415.5, + "end": 12418.82, + "probability": 0.9471 + }, + { + "start": 12420.66, + "end": 12422.3, + "probability": 0.6849 + }, + { + "start": 12424.06, + "end": 12426.88, + "probability": 0.8552 + }, + { + "start": 12428.04, + "end": 12430.9, + "probability": 0.9576 + }, + { + "start": 12431.02, + "end": 12432.3, + "probability": 0.9586 + }, + { + "start": 12432.4, + "end": 12433.44, + "probability": 0.653 + }, + { + "start": 12434.26, + "end": 12435.48, + "probability": 0.1879 + }, + { + "start": 12436.72, + "end": 12437.5, + "probability": 0.0825 + }, + { + "start": 12437.5, + "end": 12438.92, + "probability": 0.1568 + }, + { + "start": 12439.08, + "end": 12439.5, + "probability": 0.3854 + }, + { + "start": 12439.82, + "end": 12441.16, + "probability": 0.2716 + }, + { + "start": 12441.24, + "end": 12442.46, + "probability": 0.0701 + }, + { + "start": 12442.62, + "end": 12444.64, + "probability": 0.099 + }, + { + "start": 12444.82, + "end": 12446.33, + "probability": 0.4351 + }, + { + "start": 12447.26, + "end": 12448.22, + "probability": 0.4956 + }, + { + "start": 12449.38, + "end": 12453.68, + "probability": 0.6527 + }, + { + "start": 12454.54, + "end": 12454.54, + "probability": 0.0857 + }, + { + "start": 12454.54, + "end": 12457.98, + "probability": 0.9153 + }, + { + "start": 12459.0, + "end": 12461.96, + "probability": 0.9978 + }, + { + "start": 12461.96, + "end": 12465.42, + "probability": 0.9767 + }, + { + "start": 12465.66, + "end": 12468.04, + "probability": 0.7478 + }, + { + "start": 12468.44, + "end": 12470.12, + "probability": 0.8473 + }, + { + "start": 12470.22, + "end": 12471.04, + "probability": 0.3372 + }, + { + "start": 12471.2, + "end": 12471.62, + "probability": 0.0825 + }, + { + "start": 12471.62, + "end": 12474.5, + "probability": 0.7848 + }, + { + "start": 12474.62, + "end": 12475.62, + "probability": 0.0635 + }, + { + "start": 12475.62, + "end": 12476.38, + "probability": 0.5036 + }, + { + "start": 12477.6, + "end": 12477.96, + "probability": 0.584 + }, + { + "start": 12477.96, + "end": 12479.1, + "probability": 0.253 + }, + { + "start": 12479.22, + "end": 12481.66, + "probability": 0.0381 + }, + { + "start": 12483.36, + "end": 12483.72, + "probability": 0.2676 + }, + { + "start": 12484.42, + "end": 12487.24, + "probability": 0.4408 + }, + { + "start": 12487.32, + "end": 12488.28, + "probability": 0.6678 + }, + { + "start": 12488.44, + "end": 12491.32, + "probability": 0.928 + }, + { + "start": 12491.8, + "end": 12494.14, + "probability": 0.9876 + }, + { + "start": 12494.76, + "end": 12495.48, + "probability": 0.8513 + }, + { + "start": 12495.6, + "end": 12497.44, + "probability": 0.926 + }, + { + "start": 12497.44, + "end": 12501.06, + "probability": 0.9956 + }, + { + "start": 12502.04, + "end": 12502.18, + "probability": 0.3401 + }, + { + "start": 12502.18, + "end": 12507.28, + "probability": 0.3826 + }, + { + "start": 12507.28, + "end": 12511.62, + "probability": 0.6434 + }, + { + "start": 12511.86, + "end": 12513.14, + "probability": 0.6475 + }, + { + "start": 12513.2, + "end": 12515.2, + "probability": 0.5307 + }, + { + "start": 12516.08, + "end": 12516.66, + "probability": 0.0429 + }, + { + "start": 12516.84, + "end": 12518.82, + "probability": 0.302 + }, + { + "start": 12518.88, + "end": 12520.54, + "probability": 0.9764 + }, + { + "start": 12520.98, + "end": 12521.48, + "probability": 0.5403 + }, + { + "start": 12521.56, + "end": 12521.56, + "probability": 0.1821 + }, + { + "start": 12521.56, + "end": 12523.86, + "probability": 0.8539 + }, + { + "start": 12524.06, + "end": 12526.3, + "probability": 0.8649 + }, + { + "start": 12526.84, + "end": 12529.78, + "probability": 0.8025 + }, + { + "start": 12530.26, + "end": 12532.13, + "probability": 0.8604 + }, + { + "start": 12534.16, + "end": 12536.56, + "probability": 0.9365 + }, + { + "start": 12540.04, + "end": 12543.66, + "probability": 0.9824 + }, + { + "start": 12544.84, + "end": 12550.56, + "probability": 0.9624 + }, + { + "start": 12552.24, + "end": 12557.2, + "probability": 0.8509 + }, + { + "start": 12557.7, + "end": 12558.5, + "probability": 0.7593 + }, + { + "start": 12559.86, + "end": 12564.24, + "probability": 0.2724 + }, + { + "start": 12564.52, + "end": 12564.66, + "probability": 0.1134 + }, + { + "start": 12565.1, + "end": 12569.42, + "probability": 0.7923 + }, + { + "start": 12569.78, + "end": 12569.78, + "probability": 0.0427 + }, + { + "start": 12569.78, + "end": 12574.16, + "probability": 0.8242 + }, + { + "start": 12575.48, + "end": 12578.54, + "probability": 0.8443 + }, + { + "start": 12578.6, + "end": 12581.44, + "probability": 0.8362 + }, + { + "start": 12582.64, + "end": 12584.44, + "probability": 0.9795 + }, + { + "start": 12585.4, + "end": 12593.48, + "probability": 0.9905 + }, + { + "start": 12593.68, + "end": 12598.58, + "probability": 0.9089 + }, + { + "start": 12598.58, + "end": 12603.04, + "probability": 0.9319 + }, + { + "start": 12603.92, + "end": 12604.28, + "probability": 0.4 + }, + { + "start": 12604.28, + "end": 12604.28, + "probability": 0.4493 + }, + { + "start": 12604.28, + "end": 12604.66, + "probability": 0.017 + }, + { + "start": 12604.78, + "end": 12614.4, + "probability": 0.9941 + }, + { + "start": 12615.64, + "end": 12617.34, + "probability": 0.5851 + }, + { + "start": 12618.47, + "end": 12620.92, + "probability": 0.5256 + }, + { + "start": 12620.92, + "end": 12623.12, + "probability": 0.6526 + }, + { + "start": 12623.6, + "end": 12625.04, + "probability": 0.998 + }, + { + "start": 12625.3, + "end": 12626.88, + "probability": 0.9648 + }, + { + "start": 12628.42, + "end": 12628.42, + "probability": 0.0124 + }, + { + "start": 12628.6, + "end": 12628.94, + "probability": 0.1821 + }, + { + "start": 12629.42, + "end": 12629.62, + "probability": 0.1535 + }, + { + "start": 12629.62, + "end": 12631.4, + "probability": 0.7039 + }, + { + "start": 12631.78, + "end": 12633.64, + "probability": 0.6869 + }, + { + "start": 12633.8, + "end": 12634.08, + "probability": 0.1382 + }, + { + "start": 12635.56, + "end": 12639.54, + "probability": 0.6999 + }, + { + "start": 12639.76, + "end": 12640.5, + "probability": 0.6321 + }, + { + "start": 12640.66, + "end": 12642.36, + "probability": 0.9706 + }, + { + "start": 12642.36, + "end": 12642.9, + "probability": 0.2806 + }, + { + "start": 12643.02, + "end": 12646.88, + "probability": 0.6597 + }, + { + "start": 12646.9, + "end": 12651.48, + "probability": 0.9719 + }, + { + "start": 12651.56, + "end": 12652.34, + "probability": 0.5734 + }, + { + "start": 12652.42, + "end": 12652.86, + "probability": 0.0782 + }, + { + "start": 12652.88, + "end": 12653.54, + "probability": 0.7214 + }, + { + "start": 12653.8, + "end": 12653.88, + "probability": 0.4984 + }, + { + "start": 12653.88, + "end": 12655.16, + "probability": 0.9769 + }, + { + "start": 12655.16, + "end": 12655.56, + "probability": 0.0082 + }, + { + "start": 12655.79, + "end": 12655.86, + "probability": 0.2346 + }, + { + "start": 12655.86, + "end": 12657.1, + "probability": 0.8657 + }, + { + "start": 12657.1, + "end": 12659.1, + "probability": 0.8991 + }, + { + "start": 12659.3, + "end": 12659.46, + "probability": 0.063 + }, + { + "start": 12659.46, + "end": 12660.06, + "probability": 0.2979 + }, + { + "start": 12660.1, + "end": 12660.36, + "probability": 0.111 + }, + { + "start": 12660.4, + "end": 12661.26, + "probability": 0.2699 + }, + { + "start": 12661.26, + "end": 12662.1, + "probability": 0.7544 + }, + { + "start": 12662.24, + "end": 12664.62, + "probability": 0.8647 + }, + { + "start": 12664.96, + "end": 12665.87, + "probability": 0.998 + }, + { + "start": 12666.7, + "end": 12668.34, + "probability": 0.8198 + }, + { + "start": 12668.86, + "end": 12671.72, + "probability": 0.8883 + }, + { + "start": 12672.56, + "end": 12674.3, + "probability": 0.1486 + }, + { + "start": 12674.3, + "end": 12676.4, + "probability": 0.7032 + }, + { + "start": 12676.44, + "end": 12678.46, + "probability": 0.3272 + }, + { + "start": 12678.94, + "end": 12679.66, + "probability": 0.1863 + }, + { + "start": 12680.24, + "end": 12681.16, + "probability": 0.3625 + }, + { + "start": 12681.16, + "end": 12682.57, + "probability": 0.6001 + }, + { + "start": 12682.96, + "end": 12682.96, + "probability": 0.4363 + }, + { + "start": 12682.96, + "end": 12685.18, + "probability": 0.4637 + }, + { + "start": 12685.38, + "end": 12688.34, + "probability": 0.8039 + }, + { + "start": 12688.34, + "end": 12689.26, + "probability": 0.331 + }, + { + "start": 12689.4, + "end": 12690.08, + "probability": 0.6191 + }, + { + "start": 12690.08, + "end": 12690.32, + "probability": 0.6415 + }, + { + "start": 12690.72, + "end": 12692.41, + "probability": 0.6816 + }, + { + "start": 12692.62, + "end": 12695.1, + "probability": 0.5027 + }, + { + "start": 12695.1, + "end": 12697.68, + "probability": 0.3799 + }, + { + "start": 12697.68, + "end": 12700.62, + "probability": 0.9232 + }, + { + "start": 12700.9, + "end": 12701.69, + "probability": 0.1664 + }, + { + "start": 12703.58, + "end": 12705.0, + "probability": 0.4485 + }, + { + "start": 12705.7, + "end": 12705.7, + "probability": 0.1039 + }, + { + "start": 12705.7, + "end": 12705.7, + "probability": 0.1506 + }, + { + "start": 12705.7, + "end": 12710.0, + "probability": 0.3523 + }, + { + "start": 12710.06, + "end": 12710.62, + "probability": 0.9161 + }, + { + "start": 12711.16, + "end": 12711.54, + "probability": 0.1497 + }, + { + "start": 12712.1, + "end": 12713.04, + "probability": 0.0493 + }, + { + "start": 12713.12, + "end": 12714.84, + "probability": 0.2649 + }, + { + "start": 12714.84, + "end": 12715.22, + "probability": 0.034 + }, + { + "start": 12715.44, + "end": 12716.84, + "probability": 0.269 + }, + { + "start": 12716.84, + "end": 12719.5, + "probability": 0.4459 + }, + { + "start": 12719.74, + "end": 12720.73, + "probability": 0.0793 + }, + { + "start": 12723.23, + "end": 12723.6, + "probability": 0.0138 + }, + { + "start": 12723.6, + "end": 12723.6, + "probability": 0.0757 + }, + { + "start": 12723.6, + "end": 12724.01, + "probability": 0.3354 + }, + { + "start": 12724.96, + "end": 12726.92, + "probability": 0.78 + }, + { + "start": 12727.0, + "end": 12728.95, + "probability": 0.3955 + }, + { + "start": 12729.12, + "end": 12729.12, + "probability": 0.1503 + }, + { + "start": 12729.12, + "end": 12731.62, + "probability": 0.3012 + }, + { + "start": 12731.62, + "end": 12732.4, + "probability": 0.2095 + }, + { + "start": 12732.4, + "end": 12734.84, + "probability": 0.8654 + }, + { + "start": 12734.92, + "end": 12735.58, + "probability": 0.9165 + }, + { + "start": 12735.98, + "end": 12737.42, + "probability": 0.8821 + }, + { + "start": 12739.04, + "end": 12742.46, + "probability": 0.892 + }, + { + "start": 12743.02, + "end": 12744.56, + "probability": 0.4193 + }, + { + "start": 12745.34, + "end": 12746.96, + "probability": 0.5761 + }, + { + "start": 12755.68, + "end": 12758.62, + "probability": 0.8672 + }, + { + "start": 12760.46, + "end": 12764.04, + "probability": 0.8853 + }, + { + "start": 12764.08, + "end": 12765.42, + "probability": 0.9565 + }, + { + "start": 12766.5, + "end": 12767.02, + "probability": 0.3321 + }, + { + "start": 12768.98, + "end": 12771.12, + "probability": 0.7202 + }, + { + "start": 12771.7, + "end": 12772.78, + "probability": 0.2773 + }, + { + "start": 12774.28, + "end": 12774.28, + "probability": 0.0405 + }, + { + "start": 12774.28, + "end": 12775.44, + "probability": 0.4789 + }, + { + "start": 12775.5, + "end": 12776.13, + "probability": 0.2077 + }, + { + "start": 12776.36, + "end": 12777.48, + "probability": 0.2134 + }, + { + "start": 12778.02, + "end": 12778.96, + "probability": 0.535 + }, + { + "start": 12779.1, + "end": 12779.16, + "probability": 0.4385 + }, + { + "start": 12779.98, + "end": 12780.5, + "probability": 0.7204 + }, + { + "start": 12780.66, + "end": 12781.9, + "probability": 0.8405 + }, + { + "start": 12783.58, + "end": 12783.68, + "probability": 0.9111 + }, + { + "start": 12785.72, + "end": 12787.18, + "probability": 0.4338 + }, + { + "start": 12787.36, + "end": 12790.92, + "probability": 0.667 + }, + { + "start": 12791.02, + "end": 12794.76, + "probability": 0.843 + }, + { + "start": 12795.08, + "end": 12795.6, + "probability": 0.7311 + }, + { + "start": 12796.16, + "end": 12798.86, + "probability": 0.9564 + }, + { + "start": 12801.46, + "end": 12803.74, + "probability": 0.8352 + }, + { + "start": 12805.86, + "end": 12808.62, + "probability": 0.6256 + }, + { + "start": 12809.26, + "end": 12810.84, + "probability": 0.7161 + }, + { + "start": 12810.88, + "end": 12813.72, + "probability": 0.6212 + }, + { + "start": 12813.8, + "end": 12813.82, + "probability": 0.3457 + }, + { + "start": 12813.82, + "end": 12814.58, + "probability": 0.7967 + }, + { + "start": 12814.7, + "end": 12815.58, + "probability": 0.904 + }, + { + "start": 12815.7, + "end": 12816.88, + "probability": 0.8703 + }, + { + "start": 12816.98, + "end": 12821.0, + "probability": 0.986 + }, + { + "start": 12821.62, + "end": 12822.66, + "probability": 0.9666 + }, + { + "start": 12825.54, + "end": 12826.98, + "probability": 0.0432 + }, + { + "start": 12827.04, + "end": 12832.44, + "probability": 0.9958 + }, + { + "start": 12833.7, + "end": 12837.03, + "probability": 0.9735 + }, + { + "start": 12839.08, + "end": 12841.1, + "probability": 0.8434 + }, + { + "start": 12841.24, + "end": 12844.6, + "probability": 0.9255 + }, + { + "start": 12844.74, + "end": 12848.38, + "probability": 0.887 + }, + { + "start": 12848.6, + "end": 12849.1, + "probability": 0.338 + }, + { + "start": 12849.88, + "end": 12850.56, + "probability": 0.8112 + }, + { + "start": 12850.74, + "end": 12853.96, + "probability": 0.9956 + }, + { + "start": 12854.58, + "end": 12855.48, + "probability": 0.8047 + }, + { + "start": 12855.6, + "end": 12859.0, + "probability": 0.9977 + }, + { + "start": 12860.46, + "end": 12863.86, + "probability": 0.9902 + }, + { + "start": 12864.72, + "end": 12868.76, + "probability": 0.9483 + }, + { + "start": 12869.34, + "end": 12870.42, + "probability": 0.9674 + }, + { + "start": 12871.18, + "end": 12873.2, + "probability": 0.9926 + }, + { + "start": 12873.68, + "end": 12878.78, + "probability": 0.9779 + }, + { + "start": 12879.98, + "end": 12880.38, + "probability": 0.568 + }, + { + "start": 12880.42, + "end": 12883.28, + "probability": 0.9964 + }, + { + "start": 12883.42, + "end": 12885.56, + "probability": 0.9944 + }, + { + "start": 12887.08, + "end": 12889.64, + "probability": 0.9729 + }, + { + "start": 12889.66, + "end": 12893.58, + "probability": 0.9676 + }, + { + "start": 12893.64, + "end": 12893.86, + "probability": 0.2584 + }, + { + "start": 12893.98, + "end": 12899.44, + "probability": 0.9583 + }, + { + "start": 12900.54, + "end": 12902.34, + "probability": 0.9959 + }, + { + "start": 12902.72, + "end": 12905.18, + "probability": 0.9482 + }, + { + "start": 12905.58, + "end": 12908.5, + "probability": 0.9156 + }, + { + "start": 12909.1, + "end": 12909.66, + "probability": 0.4604 + }, + { + "start": 12910.46, + "end": 12911.46, + "probability": 0.6975 + }, + { + "start": 12911.58, + "end": 12913.9, + "probability": 0.8066 + }, + { + "start": 12914.24, + "end": 12916.42, + "probability": 0.983 + }, + { + "start": 12916.52, + "end": 12917.08, + "probability": 0.7984 + }, + { + "start": 12917.44, + "end": 12920.98, + "probability": 0.985 + }, + { + "start": 12921.96, + "end": 12923.46, + "probability": 0.994 + }, + { + "start": 12924.22, + "end": 12925.8, + "probability": 0.9871 + }, + { + "start": 12926.78, + "end": 12931.94, + "probability": 0.9692 + }, + { + "start": 12931.94, + "end": 12937.08, + "probability": 0.9955 + }, + { + "start": 12937.08, + "end": 12941.34, + "probability": 0.9409 + }, + { + "start": 12942.32, + "end": 12943.04, + "probability": 0.9077 + }, + { + "start": 12943.08, + "end": 12944.86, + "probability": 0.89 + }, + { + "start": 12944.96, + "end": 12945.6, + "probability": 0.66 + }, + { + "start": 12945.82, + "end": 12946.02, + "probability": 0.7392 + }, + { + "start": 12946.24, + "end": 12946.48, + "probability": 0.7002 + }, + { + "start": 12947.2, + "end": 12949.58, + "probability": 0.8845 + }, + { + "start": 12950.56, + "end": 12952.84, + "probability": 0.9021 + }, + { + "start": 12954.2, + "end": 12954.96, + "probability": 0.7785 + }, + { + "start": 12955.06, + "end": 12957.08, + "probability": 0.9985 + }, + { + "start": 12957.3, + "end": 12958.1, + "probability": 0.9409 + }, + { + "start": 12958.74, + "end": 12960.82, + "probability": 0.9746 + }, + { + "start": 12961.22, + "end": 12963.65, + "probability": 0.9738 + }, + { + "start": 12963.66, + "end": 12966.38, + "probability": 0.9995 + }, + { + "start": 12966.52, + "end": 12966.86, + "probability": 0.728 + }, + { + "start": 12967.38, + "end": 12973.2, + "probability": 0.9048 + }, + { + "start": 12974.42, + "end": 12975.3, + "probability": 0.7443 + }, + { + "start": 12975.46, + "end": 12976.16, + "probability": 0.491 + }, + { + "start": 12976.24, + "end": 12977.52, + "probability": 0.8999 + }, + { + "start": 12978.5, + "end": 12980.2, + "probability": 0.9751 + }, + { + "start": 12980.26, + "end": 12981.6, + "probability": 0.9847 + }, + { + "start": 12981.98, + "end": 12983.1, + "probability": 0.754 + }, + { + "start": 12983.18, + "end": 12983.44, + "probability": 0.5487 + }, + { + "start": 12983.48, + "end": 12985.96, + "probability": 0.9354 + }, + { + "start": 12986.02, + "end": 12986.72, + "probability": 0.8086 + }, + { + "start": 12986.82, + "end": 12987.52, + "probability": 0.749 + }, + { + "start": 12987.62, + "end": 12989.41, + "probability": 0.7412 + }, + { + "start": 12990.84, + "end": 12991.72, + "probability": 0.8921 + }, + { + "start": 12992.42, + "end": 12996.52, + "probability": 0.9839 + }, + { + "start": 12997.22, + "end": 12998.99, + "probability": 0.899 + }, + { + "start": 12999.72, + "end": 13001.0, + "probability": 0.8814 + }, + { + "start": 13001.66, + "end": 13006.35, + "probability": 0.9977 + }, + { + "start": 13007.42, + "end": 13009.76, + "probability": 0.9671 + }, + { + "start": 13010.88, + "end": 13014.02, + "probability": 0.8811 + }, + { + "start": 13014.36, + "end": 13016.98, + "probability": 0.9961 + }, + { + "start": 13017.0, + "end": 13018.56, + "probability": 0.7553 + }, + { + "start": 13019.14, + "end": 13021.08, + "probability": 0.9886 + }, + { + "start": 13021.18, + "end": 13022.0, + "probability": 0.0806 + }, + { + "start": 13022.16, + "end": 13022.28, + "probability": 0.1901 + }, + { + "start": 13022.28, + "end": 13023.9, + "probability": 0.96 + }, + { + "start": 13024.58, + "end": 13024.58, + "probability": 0.0142 + }, + { + "start": 13026.42, + "end": 13027.1, + "probability": 0.2556 + }, + { + "start": 13027.1, + "end": 13027.76, + "probability": 0.0652 + }, + { + "start": 13028.04, + "end": 13029.24, + "probability": 0.2599 + }, + { + "start": 13029.24, + "end": 13029.36, + "probability": 0.4103 + }, + { + "start": 13029.36, + "end": 13029.76, + "probability": 0.2174 + }, + { + "start": 13029.76, + "end": 13029.8, + "probability": 0.0034 + }, + { + "start": 13029.8, + "end": 13030.34, + "probability": 0.2561 + }, + { + "start": 13030.42, + "end": 13032.16, + "probability": 0.7689 + }, + { + "start": 13032.18, + "end": 13033.74, + "probability": 0.9206 + }, + { + "start": 13034.32, + "end": 13036.96, + "probability": 0.6206 + }, + { + "start": 13038.12, + "end": 13039.7, + "probability": 0.9704 + }, + { + "start": 13039.84, + "end": 13040.44, + "probability": 0.0022 + }, + { + "start": 13040.62, + "end": 13043.62, + "probability": 0.7849 + }, + { + "start": 13044.62, + "end": 13045.3, + "probability": 0.0465 + }, + { + "start": 13045.3, + "end": 13046.38, + "probability": 0.3834 + }, + { + "start": 13046.78, + "end": 13048.34, + "probability": 0.8783 + }, + { + "start": 13048.42, + "end": 13050.66, + "probability": 0.9631 + }, + { + "start": 13051.66, + "end": 13053.7, + "probability": 0.839 + }, + { + "start": 13053.74, + "end": 13054.68, + "probability": 0.9337 + }, + { + "start": 13054.78, + "end": 13059.26, + "probability": 0.9424 + }, + { + "start": 13059.76, + "end": 13061.62, + "probability": 0.7971 + }, + { + "start": 13061.94, + "end": 13063.68, + "probability": 0.9037 + }, + { + "start": 13063.94, + "end": 13064.44, + "probability": 0.8593 + }, + { + "start": 13064.88, + "end": 13067.96, + "probability": 0.7743 + }, + { + "start": 13068.28, + "end": 13071.16, + "probability": 0.6823 + }, + { + "start": 13071.58, + "end": 13073.18, + "probability": 0.6655 + }, + { + "start": 13073.78, + "end": 13077.84, + "probability": 0.9294 + }, + { + "start": 13083.46, + "end": 13085.82, + "probability": 0.695 + }, + { + "start": 13088.74, + "end": 13089.36, + "probability": 0.2672 + }, + { + "start": 13089.6, + "end": 13090.32, + "probability": 0.5888 + }, + { + "start": 13091.14, + "end": 13092.74, + "probability": 0.841 + }, + { + "start": 13093.86, + "end": 13101.36, + "probability": 0.7432 + }, + { + "start": 13104.29, + "end": 13107.69, + "probability": 0.3693 + }, + { + "start": 13109.24, + "end": 13110.86, + "probability": 0.935 + }, + { + "start": 13112.02, + "end": 13115.1, + "probability": 0.9187 + }, + { + "start": 13115.84, + "end": 13121.44, + "probability": 0.7897 + }, + { + "start": 13122.14, + "end": 13124.04, + "probability": 0.9104 + }, + { + "start": 13124.84, + "end": 13125.38, + "probability": 0.9512 + }, + { + "start": 13126.2, + "end": 13127.24, + "probability": 0.4522 + }, + { + "start": 13128.18, + "end": 13129.06, + "probability": 0.6498 + }, + { + "start": 13129.24, + "end": 13133.78, + "probability": 0.973 + }, + { + "start": 13134.56, + "end": 13135.5, + "probability": 0.8134 + }, + { + "start": 13135.6, + "end": 13137.54, + "probability": 0.9844 + }, + { + "start": 13138.1, + "end": 13138.72, + "probability": 0.9375 + }, + { + "start": 13138.8, + "end": 13139.66, + "probability": 0.7154 + }, + { + "start": 13140.02, + "end": 13143.74, + "probability": 0.8014 + }, + { + "start": 13144.66, + "end": 13145.78, + "probability": 0.6764 + }, + { + "start": 13146.38, + "end": 13148.42, + "probability": 0.5343 + }, + { + "start": 13148.56, + "end": 13155.4, + "probability": 0.9883 + }, + { + "start": 13156.0, + "end": 13157.78, + "probability": 0.5983 + }, + { + "start": 13160.78, + "end": 13162.04, + "probability": 0.6745 + }, + { + "start": 13164.8, + "end": 13165.28, + "probability": 0.5804 + }, + { + "start": 13165.54, + "end": 13170.68, + "probability": 0.9596 + }, + { + "start": 13171.22, + "end": 13173.4, + "probability": 0.8726 + }, + { + "start": 13173.76, + "end": 13176.8, + "probability": 0.8279 + }, + { + "start": 13177.94, + "end": 13183.82, + "probability": 0.9849 + }, + { + "start": 13184.24, + "end": 13189.84, + "probability": 0.8401 + }, + { + "start": 13190.68, + "end": 13192.32, + "probability": 0.9099 + }, + { + "start": 13192.54, + "end": 13197.22, + "probability": 0.9788 + }, + { + "start": 13197.68, + "end": 13200.88, + "probability": 0.9312 + }, + { + "start": 13201.08, + "end": 13201.6, + "probability": 0.919 + }, + { + "start": 13201.68, + "end": 13202.41, + "probability": 0.7827 + }, + { + "start": 13202.78, + "end": 13204.88, + "probability": 0.8444 + }, + { + "start": 13205.0, + "end": 13207.26, + "probability": 0.9687 + }, + { + "start": 13207.72, + "end": 13208.8, + "probability": 0.9442 + }, + { + "start": 13209.1, + "end": 13210.72, + "probability": 0.9923 + }, + { + "start": 13211.44, + "end": 13215.58, + "probability": 0.9829 + }, + { + "start": 13216.98, + "end": 13219.62, + "probability": 0.9284 + }, + { + "start": 13220.22, + "end": 13224.12, + "probability": 0.9475 + }, + { + "start": 13224.86, + "end": 13226.26, + "probability": 0.6673 + }, + { + "start": 13227.7, + "end": 13228.44, + "probability": 0.4518 + }, + { + "start": 13228.76, + "end": 13229.52, + "probability": 0.7692 + }, + { + "start": 13230.98, + "end": 13233.64, + "probability": 0.9429 + }, + { + "start": 13234.9, + "end": 13240.76, + "probability": 0.9429 + }, + { + "start": 13241.08, + "end": 13241.7, + "probability": 0.6978 + }, + { + "start": 13242.34, + "end": 13243.3, + "probability": 0.6473 + }, + { + "start": 13243.86, + "end": 13245.66, + "probability": 0.752 + }, + { + "start": 13248.53, + "end": 13252.86, + "probability": 0.7872 + }, + { + "start": 13252.9, + "end": 13257.42, + "probability": 0.91 + }, + { + "start": 13257.46, + "end": 13258.28, + "probability": 0.5753 + }, + { + "start": 13258.96, + "end": 13261.9, + "probability": 0.9868 + }, + { + "start": 13262.2, + "end": 13264.78, + "probability": 0.9904 + }, + { + "start": 13276.64, + "end": 13277.22, + "probability": 0.504 + }, + { + "start": 13277.26, + "end": 13277.42, + "probability": 0.168 + }, + { + "start": 13277.42, + "end": 13277.42, + "probability": 0.1603 + }, + { + "start": 13277.42, + "end": 13281.76, + "probability": 0.8407 + }, + { + "start": 13282.22, + "end": 13282.94, + "probability": 0.0561 + }, + { + "start": 13283.8, + "end": 13287.26, + "probability": 0.511 + }, + { + "start": 13288.4, + "end": 13290.8, + "probability": 0.8906 + }, + { + "start": 13292.38, + "end": 13293.38, + "probability": 0.8134 + }, + { + "start": 13293.78, + "end": 13297.44, + "probability": 0.9879 + }, + { + "start": 13297.44, + "end": 13301.18, + "probability": 0.8518 + }, + { + "start": 13301.8, + "end": 13304.76, + "probability": 0.9688 + }, + { + "start": 13305.26, + "end": 13306.26, + "probability": 0.6099 + }, + { + "start": 13306.34, + "end": 13309.24, + "probability": 0.8874 + }, + { + "start": 13309.68, + "end": 13311.54, + "probability": 0.4121 + }, + { + "start": 13312.32, + "end": 13314.56, + "probability": 0.9456 + }, + { + "start": 13315.46, + "end": 13316.14, + "probability": 0.7271 + }, + { + "start": 13316.32, + "end": 13316.76, + "probability": 0.6616 + }, + { + "start": 13316.8, + "end": 13317.92, + "probability": 0.7607 + }, + { + "start": 13318.3, + "end": 13322.46, + "probability": 0.9314 + }, + { + "start": 13323.48, + "end": 13324.96, + "probability": 0.9678 + }, + { + "start": 13325.14, + "end": 13329.74, + "probability": 0.9294 + }, + { + "start": 13330.4, + "end": 13334.28, + "probability": 0.8705 + }, + { + "start": 13334.6, + "end": 13337.12, + "probability": 0.999 + }, + { + "start": 13337.5, + "end": 13338.68, + "probability": 0.9458 + }, + { + "start": 13338.94, + "end": 13340.36, + "probability": 0.8514 + }, + { + "start": 13340.6, + "end": 13341.45, + "probability": 0.5837 + }, + { + "start": 13343.24, + "end": 13344.86, + "probability": 0.8949 + }, + { + "start": 13345.02, + "end": 13349.76, + "probability": 0.7638 + }, + { + "start": 13349.78, + "end": 13352.08, + "probability": 0.7191 + }, + { + "start": 13353.79, + "end": 13357.72, + "probability": 0.9447 + }, + { + "start": 13357.72, + "end": 13361.1, + "probability": 0.801 + }, + { + "start": 13361.2, + "end": 13364.38, + "probability": 0.9689 + }, + { + "start": 13364.56, + "end": 13367.46, + "probability": 0.9593 + }, + { + "start": 13367.74, + "end": 13368.44, + "probability": 0.4932 + }, + { + "start": 13368.8, + "end": 13370.4, + "probability": 0.7806 + }, + { + "start": 13371.54, + "end": 13372.68, + "probability": 0.7935 + }, + { + "start": 13373.0, + "end": 13376.6, + "probability": 0.9029 + }, + { + "start": 13376.92, + "end": 13380.9, + "probability": 0.9908 + }, + { + "start": 13381.32, + "end": 13382.32, + "probability": 0.6985 + }, + { + "start": 13382.78, + "end": 13384.22, + "probability": 0.8857 + }, + { + "start": 13384.82, + "end": 13390.48, + "probability": 0.9058 + }, + { + "start": 13390.92, + "end": 13394.18, + "probability": 0.9956 + }, + { + "start": 13394.98, + "end": 13396.42, + "probability": 0.9054 + }, + { + "start": 13397.16, + "end": 13400.6, + "probability": 0.9395 + }, + { + "start": 13400.72, + "end": 13402.58, + "probability": 0.9918 + }, + { + "start": 13403.46, + "end": 13406.98, + "probability": 0.8009 + }, + { + "start": 13407.7, + "end": 13409.3, + "probability": 0.9451 + }, + { + "start": 13409.88, + "end": 13413.66, + "probability": 0.9494 + }, + { + "start": 13413.76, + "end": 13415.42, + "probability": 0.9691 + }, + { + "start": 13415.78, + "end": 13417.36, + "probability": 0.9172 + }, + { + "start": 13417.6, + "end": 13420.12, + "probability": 0.9108 + }, + { + "start": 13420.58, + "end": 13424.14, + "probability": 0.7803 + }, + { + "start": 13424.3, + "end": 13424.88, + "probability": 0.6216 + }, + { + "start": 13425.04, + "end": 13425.56, + "probability": 0.9311 + }, + { + "start": 13425.86, + "end": 13429.26, + "probability": 0.9873 + }, + { + "start": 13429.28, + "end": 13433.74, + "probability": 0.8811 + }, + { + "start": 13434.24, + "end": 13438.7, + "probability": 0.9712 + }, + { + "start": 13439.1, + "end": 13440.86, + "probability": 0.8763 + }, + { + "start": 13441.54, + "end": 13443.14, + "probability": 0.5706 + }, + { + "start": 13443.44, + "end": 13445.06, + "probability": 0.8604 + }, + { + "start": 13446.18, + "end": 13446.4, + "probability": 0.523 + }, + { + "start": 13446.48, + "end": 13450.58, + "probability": 0.7022 + }, + { + "start": 13451.1, + "end": 13454.5, + "probability": 0.8434 + }, + { + "start": 13454.6, + "end": 13456.02, + "probability": 0.8674 + }, + { + "start": 13466.32, + "end": 13467.12, + "probability": 0.5482 + }, + { + "start": 13468.8, + "end": 13470.73, + "probability": 0.9568 + }, + { + "start": 13473.52, + "end": 13476.44, + "probability": 0.9709 + }, + { + "start": 13477.98, + "end": 13480.34, + "probability": 0.99 + }, + { + "start": 13481.0, + "end": 13483.76, + "probability": 0.9062 + }, + { + "start": 13484.68, + "end": 13485.84, + "probability": 0.9482 + }, + { + "start": 13486.6, + "end": 13489.58, + "probability": 0.8676 + }, + { + "start": 13490.44, + "end": 13494.78, + "probability": 0.6837 + }, + { + "start": 13496.82, + "end": 13498.74, + "probability": 0.9238 + }, + { + "start": 13499.28, + "end": 13503.56, + "probability": 0.9617 + }, + { + "start": 13504.76, + "end": 13507.8, + "probability": 0.8132 + }, + { + "start": 13508.86, + "end": 13509.68, + "probability": 0.8955 + }, + { + "start": 13510.3, + "end": 13512.3, + "probability": 0.9406 + }, + { + "start": 13513.18, + "end": 13514.66, + "probability": 0.9043 + }, + { + "start": 13515.4, + "end": 13522.86, + "probability": 0.974 + }, + { + "start": 13522.96, + "end": 13523.7, + "probability": 0.6992 + }, + { + "start": 13524.3, + "end": 13525.26, + "probability": 0.9494 + }, + { + "start": 13526.74, + "end": 13528.32, + "probability": 0.9206 + }, + { + "start": 13529.04, + "end": 13529.6, + "probability": 0.8375 + }, + { + "start": 13532.34, + "end": 13535.6, + "probability": 0.777 + }, + { + "start": 13535.98, + "end": 13536.42, + "probability": 0.4301 + }, + { + "start": 13536.82, + "end": 13537.28, + "probability": 0.3406 + }, + { + "start": 13537.28, + "end": 13537.28, + "probability": 0.2145 + }, + { + "start": 13537.28, + "end": 13539.16, + "probability": 0.0598 + }, + { + "start": 13539.52, + "end": 13541.54, + "probability": 0.905 + }, + { + "start": 13541.62, + "end": 13544.04, + "probability": 0.9507 + }, + { + "start": 13545.28, + "end": 13546.5, + "probability": 0.7067 + }, + { + "start": 13547.32, + "end": 13548.6, + "probability": 0.5438 + }, + { + "start": 13549.4, + "end": 13553.64, + "probability": 0.7496 + }, + { + "start": 13554.54, + "end": 13560.92, + "probability": 0.9552 + }, + { + "start": 13561.9, + "end": 13563.54, + "probability": 0.99 + }, + { + "start": 13563.62, + "end": 13564.6, + "probability": 0.9932 + }, + { + "start": 13565.3, + "end": 13566.44, + "probability": 0.9075 + }, + { + "start": 13567.42, + "end": 13569.38, + "probability": 0.9946 + }, + { + "start": 13569.9, + "end": 13572.32, + "probability": 0.6435 + }, + { + "start": 13572.7, + "end": 13576.22, + "probability": 0.91 + }, + { + "start": 13576.64, + "end": 13577.49, + "probability": 0.5671 + }, + { + "start": 13578.68, + "end": 13584.58, + "probability": 0.9694 + }, + { + "start": 13585.32, + "end": 13588.61, + "probability": 0.763 + }, + { + "start": 13590.58, + "end": 13590.58, + "probability": 0.0258 + }, + { + "start": 13590.58, + "end": 13592.88, + "probability": 0.3525 + }, + { + "start": 13593.66, + "end": 13595.86, + "probability": 0.9231 + }, + { + "start": 13596.1, + "end": 13597.3, + "probability": 0.6755 + }, + { + "start": 13598.32, + "end": 13598.8, + "probability": 0.906 + }, + { + "start": 13598.88, + "end": 13599.78, + "probability": 0.91 + }, + { + "start": 13599.96, + "end": 13601.94, + "probability": 0.8587 + }, + { + "start": 13602.28, + "end": 13604.3, + "probability": 0.8657 + }, + { + "start": 13604.38, + "end": 13607.32, + "probability": 0.9736 + }, + { + "start": 13607.46, + "end": 13608.44, + "probability": 0.8455 + }, + { + "start": 13608.56, + "end": 13609.34, + "probability": 0.7085 + }, + { + "start": 13609.84, + "end": 13611.54, + "probability": 0.9457 + }, + { + "start": 13611.92, + "end": 13613.44, + "probability": 0.9097 + }, + { + "start": 13614.02, + "end": 13614.42, + "probability": 0.9438 + }, + { + "start": 13614.78, + "end": 13620.1, + "probability": 0.9457 + }, + { + "start": 13620.74, + "end": 13621.26, + "probability": 0.5535 + }, + { + "start": 13622.94, + "end": 13624.08, + "probability": 0.5054 + }, + { + "start": 13624.08, + "end": 13625.36, + "probability": 0.6813 + }, + { + "start": 13626.26, + "end": 13628.28, + "probability": 0.7162 + }, + { + "start": 13628.42, + "end": 13632.32, + "probability": 0.7603 + }, + { + "start": 13632.6, + "end": 13635.32, + "probability": 0.8951 + }, + { + "start": 13635.38, + "end": 13636.58, + "probability": 0.7912 + }, + { + "start": 13636.74, + "end": 13637.88, + "probability": 0.812 + }, + { + "start": 13638.02, + "end": 13638.6, + "probability": 0.6198 + }, + { + "start": 13638.72, + "end": 13640.26, + "probability": 0.6905 + }, + { + "start": 13640.62, + "end": 13644.3, + "probability": 0.9166 + }, + { + "start": 13644.58, + "end": 13645.02, + "probability": 0.874 + }, + { + "start": 13645.08, + "end": 13647.66, + "probability": 0.9504 + }, + { + "start": 13647.78, + "end": 13649.92, + "probability": 0.9639 + }, + { + "start": 13650.18, + "end": 13651.98, + "probability": 0.8386 + }, + { + "start": 13652.32, + "end": 13653.45, + "probability": 0.9385 + }, + { + "start": 13654.0, + "end": 13654.36, + "probability": 0.5735 + }, + { + "start": 13654.44, + "end": 13655.8, + "probability": 0.6396 + }, + { + "start": 13656.46, + "end": 13658.4, + "probability": 0.4313 + }, + { + "start": 13658.5, + "end": 13661.25, + "probability": 0.8523 + }, + { + "start": 13661.32, + "end": 13666.66, + "probability": 0.6523 + }, + { + "start": 13667.08, + "end": 13674.58, + "probability": 0.8843 + }, + { + "start": 13675.44, + "end": 13676.2, + "probability": 0.6181 + }, + { + "start": 13676.86, + "end": 13678.14, + "probability": 0.8777 + }, + { + "start": 13678.26, + "end": 13679.0, + "probability": 0.7609 + }, + { + "start": 13679.16, + "end": 13680.04, + "probability": 0.7736 + }, + { + "start": 13680.44, + "end": 13684.46, + "probability": 0.9477 + }, + { + "start": 13685.12, + "end": 13685.48, + "probability": 0.9772 + }, + { + "start": 13685.56, + "end": 13690.32, + "probability": 0.9333 + }, + { + "start": 13691.02, + "end": 13696.3, + "probability": 0.8485 + }, + { + "start": 13697.54, + "end": 13698.0, + "probability": 0.4018 + }, + { + "start": 13698.6, + "end": 13699.34, + "probability": 0.9456 + }, + { + "start": 13700.14, + "end": 13701.2, + "probability": 0.9293 + }, + { + "start": 13703.8, + "end": 13704.22, + "probability": 0.0004 + }, + { + "start": 13704.86, + "end": 13707.64, + "probability": 0.9423 + }, + { + "start": 13708.46, + "end": 13709.88, + "probability": 0.8843 + }, + { + "start": 13710.5, + "end": 13711.08, + "probability": 0.921 + }, + { + "start": 13711.7, + "end": 13712.34, + "probability": 0.9666 + }, + { + "start": 13712.92, + "end": 13713.66, + "probability": 0.9176 + }, + { + "start": 13714.12, + "end": 13719.52, + "probability": 0.802 + }, + { + "start": 13720.26, + "end": 13723.05, + "probability": 0.6058 + }, + { + "start": 13723.62, + "end": 13728.4, + "probability": 0.8771 + }, + { + "start": 13729.0, + "end": 13729.86, + "probability": 0.8629 + }, + { + "start": 13731.66, + "end": 13735.72, + "probability": 0.9032 + }, + { + "start": 13737.44, + "end": 13739.18, + "probability": 0.7751 + }, + { + "start": 13739.94, + "end": 13743.36, + "probability": 0.8769 + }, + { + "start": 13744.9, + "end": 13746.0, + "probability": 0.908 + }, + { + "start": 13746.08, + "end": 13748.0, + "probability": 0.9844 + }, + { + "start": 13749.06, + "end": 13751.1, + "probability": 0.967 + }, + { + "start": 13752.18, + "end": 13753.4, + "probability": 0.7507 + }, + { + "start": 13755.94, + "end": 13761.1, + "probability": 0.9686 + }, + { + "start": 13761.7, + "end": 13765.42, + "probability": 0.8822 + }, + { + "start": 13765.8, + "end": 13766.51, + "probability": 0.9713 + }, + { + "start": 13767.16, + "end": 13768.4, + "probability": 0.6393 + }, + { + "start": 13768.42, + "end": 13769.74, + "probability": 0.8165 + }, + { + "start": 13769.74, + "end": 13771.58, + "probability": 0.9025 + }, + { + "start": 13771.72, + "end": 13771.88, + "probability": 0.225 + }, + { + "start": 13771.88, + "end": 13772.02, + "probability": 0.2971 + }, + { + "start": 13772.22, + "end": 13773.04, + "probability": 0.8843 + }, + { + "start": 13773.58, + "end": 13778.2, + "probability": 0.9729 + }, + { + "start": 13778.9, + "end": 13779.14, + "probability": 0.3818 + }, + { + "start": 13779.3, + "end": 13782.08, + "probability": 0.7589 + }, + { + "start": 13782.38, + "end": 13783.24, + "probability": 0.6215 + }, + { + "start": 13783.58, + "end": 13784.62, + "probability": 0.795 + }, + { + "start": 13785.6, + "end": 13787.12, + "probability": 0.5829 + }, + { + "start": 13787.12, + "end": 13788.72, + "probability": 0.6829 + }, + { + "start": 13789.2, + "end": 13789.62, + "probability": 0.9409 + }, + { + "start": 13789.68, + "end": 13793.7, + "probability": 0.809 + }, + { + "start": 13794.14, + "end": 13797.54, + "probability": 0.9937 + }, + { + "start": 13797.88, + "end": 13799.34, + "probability": 0.9471 + }, + { + "start": 13799.68, + "end": 13800.02, + "probability": 0.2245 + }, + { + "start": 13800.06, + "end": 13800.84, + "probability": 0.9656 + }, + { + "start": 13801.48, + "end": 13803.5, + "probability": 0.9777 + }, + { + "start": 13803.62, + "end": 13804.12, + "probability": 0.8808 + }, + { + "start": 13804.42, + "end": 13806.88, + "probability": 0.9341 + }, + { + "start": 13808.08, + "end": 13808.92, + "probability": 0.5843 + }, + { + "start": 13809.0, + "end": 13811.62, + "probability": 0.7312 + }, + { + "start": 13811.82, + "end": 13814.22, + "probability": 0.7979 + }, + { + "start": 13819.02, + "end": 13820.42, + "probability": 0.609 + }, + { + "start": 13821.14, + "end": 13822.84, + "probability": 0.6948 + }, + { + "start": 13822.84, + "end": 13824.06, + "probability": 0.727 + }, + { + "start": 13824.14, + "end": 13824.82, + "probability": 0.6277 + }, + { + "start": 13826.24, + "end": 13826.82, + "probability": 0.4908 + }, + { + "start": 13827.28, + "end": 13828.38, + "probability": 0.7054 + }, + { + "start": 13829.2, + "end": 13830.1, + "probability": 0.9097 + }, + { + "start": 13834.76, + "end": 13836.82, + "probability": 0.7538 + }, + { + "start": 13839.06, + "end": 13840.9, + "probability": 0.981 + }, + { + "start": 13841.36, + "end": 13843.42, + "probability": 0.275 + }, + { + "start": 13843.85, + "end": 13845.98, + "probability": 0.9966 + }, + { + "start": 13848.0, + "end": 13848.0, + "probability": 0.9058 + }, + { + "start": 13848.82, + "end": 13850.98, + "probability": 0.9634 + }, + { + "start": 13851.48, + "end": 13852.88, + "probability": 0.0414 + }, + { + "start": 13852.9, + "end": 13853.44, + "probability": 0.9092 + }, + { + "start": 13853.84, + "end": 13855.3, + "probability": 0.029 + }, + { + "start": 13855.7, + "end": 13858.16, + "probability": 0.8311 + }, + { + "start": 13859.43, + "end": 13863.92, + "probability": 0.9943 + }, + { + "start": 13865.46, + "end": 13867.88, + "probability": 0.9928 + }, + { + "start": 13869.32, + "end": 13870.72, + "probability": 0.6892 + }, + { + "start": 13871.36, + "end": 13875.8, + "probability": 0.9818 + }, + { + "start": 13877.56, + "end": 13882.28, + "probability": 0.9659 + }, + { + "start": 13883.5, + "end": 13886.9, + "probability": 0.9126 + }, + { + "start": 13888.22, + "end": 13896.2, + "probability": 0.8721 + }, + { + "start": 13898.46, + "end": 13900.3, + "probability": 0.9971 + }, + { + "start": 13901.82, + "end": 13905.1, + "probability": 0.9344 + }, + { + "start": 13905.84, + "end": 13909.48, + "probability": 0.7916 + }, + { + "start": 13911.26, + "end": 13916.22, + "probability": 0.9471 + }, + { + "start": 13917.22, + "end": 13918.2, + "probability": 0.7078 + }, + { + "start": 13919.64, + "end": 13930.24, + "probability": 0.9888 + }, + { + "start": 13930.41, + "end": 13940.36, + "probability": 0.9964 + }, + { + "start": 13942.06, + "end": 13943.38, + "probability": 0.985 + }, + { + "start": 13944.02, + "end": 13945.44, + "probability": 0.7869 + }, + { + "start": 13946.12, + "end": 13947.08, + "probability": 0.5857 + }, + { + "start": 13947.96, + "end": 13958.62, + "probability": 0.9688 + }, + { + "start": 13959.88, + "end": 13962.5, + "probability": 0.9174 + }, + { + "start": 13965.5, + "end": 13972.14, + "probability": 0.9297 + }, + { + "start": 13974.54, + "end": 13975.68, + "probability": 0.5595 + }, + { + "start": 13976.56, + "end": 13978.04, + "probability": 0.8385 + }, + { + "start": 13978.3, + "end": 13979.46, + "probability": 0.9568 + }, + { + "start": 13979.56, + "end": 13980.46, + "probability": 0.7349 + }, + { + "start": 13980.48, + "end": 13983.86, + "probability": 0.9841 + }, + { + "start": 13985.0, + "end": 13986.18, + "probability": 0.9932 + }, + { + "start": 13988.5, + "end": 13995.38, + "probability": 0.9089 + }, + { + "start": 13996.9, + "end": 13999.76, + "probability": 0.9909 + }, + { + "start": 13999.76, + "end": 14002.44, + "probability": 0.9925 + }, + { + "start": 14006.04, + "end": 14008.8, + "probability": 0.9639 + }, + { + "start": 14009.16, + "end": 14010.94, + "probability": 0.9733 + }, + { + "start": 14012.54, + "end": 14014.0, + "probability": 0.9706 + }, + { + "start": 14017.52, + "end": 14020.88, + "probability": 0.999 + }, + { + "start": 14020.88, + "end": 14023.12, + "probability": 0.5508 + }, + { + "start": 14024.48, + "end": 14027.04, + "probability": 0.8412 + }, + { + "start": 14028.1, + "end": 14028.48, + "probability": 0.4164 + }, + { + "start": 14028.6, + "end": 14032.12, + "probability": 0.9949 + }, + { + "start": 14032.18, + "end": 14034.32, + "probability": 0.032 + }, + { + "start": 14034.38, + "end": 14036.16, + "probability": 0.9515 + }, + { + "start": 14037.16, + "end": 14037.8, + "probability": 0.6524 + }, + { + "start": 14037.88, + "end": 14039.17, + "probability": 0.925 + }, + { + "start": 14039.66, + "end": 14040.4, + "probability": 0.9362 + }, + { + "start": 14042.14, + "end": 14050.4, + "probability": 0.9618 + }, + { + "start": 14051.98, + "end": 14053.28, + "probability": 0.9697 + }, + { + "start": 14054.68, + "end": 14055.62, + "probability": 0.6567 + }, + { + "start": 14057.4, + "end": 14066.78, + "probability": 0.8714 + }, + { + "start": 14067.98, + "end": 14069.1, + "probability": 0.9575 + }, + { + "start": 14069.88, + "end": 14073.38, + "probability": 0.8794 + }, + { + "start": 14074.34, + "end": 14079.44, + "probability": 0.9199 + }, + { + "start": 14082.46, + "end": 14085.14, + "probability": 0.91 + }, + { + "start": 14087.02, + "end": 14089.86, + "probability": 0.9607 + }, + { + "start": 14091.02, + "end": 14093.74, + "probability": 0.9245 + }, + { + "start": 14094.78, + "end": 14097.28, + "probability": 0.9323 + }, + { + "start": 14098.44, + "end": 14099.02, + "probability": 0.5541 + }, + { + "start": 14099.84, + "end": 14101.96, + "probability": 0.9528 + }, + { + "start": 14103.06, + "end": 14103.56, + "probability": 0.5258 + }, + { + "start": 14103.98, + "end": 14107.58, + "probability": 0.9778 + }, + { + "start": 14108.64, + "end": 14109.68, + "probability": 0.9838 + }, + { + "start": 14111.58, + "end": 14115.96, + "probability": 0.9323 + }, + { + "start": 14116.06, + "end": 14121.0, + "probability": 0.9106 + }, + { + "start": 14121.74, + "end": 14122.52, + "probability": 0.4223 + }, + { + "start": 14123.46, + "end": 14126.32, + "probability": 0.9349 + }, + { + "start": 14127.24, + "end": 14130.52, + "probability": 0.9939 + }, + { + "start": 14131.62, + "end": 14133.5, + "probability": 0.8756 + }, + { + "start": 14133.86, + "end": 14139.2, + "probability": 0.9604 + }, + { + "start": 14140.74, + "end": 14146.7, + "probability": 0.9839 + }, + { + "start": 14147.4, + "end": 14148.36, + "probability": 0.5524 + }, + { + "start": 14148.8, + "end": 14149.82, + "probability": 0.9686 + }, + { + "start": 14151.46, + "end": 14153.32, + "probability": 0.9966 + }, + { + "start": 14154.92, + "end": 14157.32, + "probability": 0.8196 + }, + { + "start": 14159.06, + "end": 14160.42, + "probability": 0.8655 + }, + { + "start": 14161.66, + "end": 14165.22, + "probability": 0.9951 + }, + { + "start": 14166.1, + "end": 14168.44, + "probability": 0.94 + }, + { + "start": 14169.46, + "end": 14173.32, + "probability": 0.8713 + }, + { + "start": 14173.38, + "end": 14173.66, + "probability": 0.5068 + }, + { + "start": 14173.8, + "end": 14177.2, + "probability": 0.9814 + }, + { + "start": 14178.16, + "end": 14179.26, + "probability": 0.8389 + }, + { + "start": 14180.6, + "end": 14183.38, + "probability": 0.9507 + }, + { + "start": 14184.92, + "end": 14185.08, + "probability": 0.311 + }, + { + "start": 14185.3, + "end": 14188.52, + "probability": 0.9086 + }, + { + "start": 14188.56, + "end": 14189.68, + "probability": 0.8573 + }, + { + "start": 14191.02, + "end": 14195.56, + "probability": 0.9862 + }, + { + "start": 14196.44, + "end": 14196.44, + "probability": 0.0647 + }, + { + "start": 14198.02, + "end": 14198.48, + "probability": 0.3621 + }, + { + "start": 14199.26, + "end": 14200.14, + "probability": 0.9792 + }, + { + "start": 14206.02, + "end": 14208.98, + "probability": 0.5125 + }, + { + "start": 14209.02, + "end": 14209.56, + "probability": 0.5336 + }, + { + "start": 14210.04, + "end": 14211.98, + "probability": 0.6882 + }, + { + "start": 14211.98, + "end": 14214.14, + "probability": 0.0391 + }, + { + "start": 14214.18, + "end": 14215.06, + "probability": 0.7546 + }, + { + "start": 14215.22, + "end": 14217.68, + "probability": 0.7592 + }, + { + "start": 14218.8, + "end": 14221.96, + "probability": 0.9922 + }, + { + "start": 14222.02, + "end": 14223.3, + "probability": 0.8232 + }, + { + "start": 14224.3, + "end": 14227.7, + "probability": 0.8122 + }, + { + "start": 14228.78, + "end": 14230.08, + "probability": 0.7148 + }, + { + "start": 14232.4, + "end": 14237.06, + "probability": 0.444 + }, + { + "start": 14238.82, + "end": 14242.54, + "probability": 0.8973 + }, + { + "start": 14243.34, + "end": 14244.45, + "probability": 0.9578 + }, + { + "start": 14245.1, + "end": 14249.88, + "probability": 0.9825 + }, + { + "start": 14250.4, + "end": 14252.06, + "probability": 0.4209 + }, + { + "start": 14253.52, + "end": 14255.1, + "probability": 0.7292 + }, + { + "start": 14256.88, + "end": 14259.82, + "probability": 0.9316 + }, + { + "start": 14261.0, + "end": 14263.72, + "probability": 0.9679 + }, + { + "start": 14264.08, + "end": 14265.43, + "probability": 0.8872 + }, + { + "start": 14265.74, + "end": 14271.96, + "probability": 0.9302 + }, + { + "start": 14272.8, + "end": 14275.55, + "probability": 0.9982 + }, + { + "start": 14276.58, + "end": 14281.16, + "probability": 0.9927 + }, + { + "start": 14281.94, + "end": 14285.02, + "probability": 0.9739 + }, + { + "start": 14287.3, + "end": 14288.44, + "probability": 0.9463 + }, + { + "start": 14288.52, + "end": 14288.78, + "probability": 0.6832 + }, + { + "start": 14289.0, + "end": 14289.1, + "probability": 0.1021 + }, + { + "start": 14289.16, + "end": 14290.26, + "probability": 0.8286 + }, + { + "start": 14290.36, + "end": 14291.88, + "probability": 0.9613 + }, + { + "start": 14292.02, + "end": 14295.18, + "probability": 0.9487 + }, + { + "start": 14295.18, + "end": 14297.86, + "probability": 0.9801 + }, + { + "start": 14299.14, + "end": 14307.28, + "probability": 0.9564 + }, + { + "start": 14308.22, + "end": 14311.84, + "probability": 0.9978 + }, + { + "start": 14312.7, + "end": 14314.44, + "probability": 0.8821 + }, + { + "start": 14315.76, + "end": 14316.74, + "probability": 0.9971 + }, + { + "start": 14318.06, + "end": 14319.58, + "probability": 0.9583 + }, + { + "start": 14320.04, + "end": 14320.36, + "probability": 0.9215 + }, + { + "start": 14320.42, + "end": 14321.72, + "probability": 0.9531 + }, + { + "start": 14321.76, + "end": 14322.42, + "probability": 0.8017 + }, + { + "start": 14322.5, + "end": 14323.62, + "probability": 0.8176 + }, + { + "start": 14324.3, + "end": 14328.2, + "probability": 0.8871 + }, + { + "start": 14330.12, + "end": 14331.28, + "probability": 0.5833 + }, + { + "start": 14331.28, + "end": 14332.38, + "probability": 0.9017 + }, + { + "start": 14332.48, + "end": 14335.48, + "probability": 0.7117 + }, + { + "start": 14336.52, + "end": 14338.1, + "probability": 0.991 + }, + { + "start": 14338.26, + "end": 14340.5, + "probability": 0.9927 + }, + { + "start": 14341.26, + "end": 14343.28, + "probability": 0.9946 + }, + { + "start": 14344.38, + "end": 14347.26, + "probability": 0.9979 + }, + { + "start": 14348.6, + "end": 14351.52, + "probability": 0.936 + }, + { + "start": 14352.18, + "end": 14355.46, + "probability": 0.841 + }, + { + "start": 14356.88, + "end": 14362.76, + "probability": 0.968 + }, + { + "start": 14362.82, + "end": 14369.48, + "probability": 0.9325 + }, + { + "start": 14370.52, + "end": 14373.56, + "probability": 0.9983 + }, + { + "start": 14374.78, + "end": 14376.74, + "probability": 0.7951 + }, + { + "start": 14376.9, + "end": 14379.9, + "probability": 0.9915 + }, + { + "start": 14383.36, + "end": 14387.34, + "probability": 0.9963 + }, + { + "start": 14387.38, + "end": 14388.99, + "probability": 0.8675 + }, + { + "start": 14391.52, + "end": 14392.3, + "probability": 0.907 + }, + { + "start": 14393.46, + "end": 14399.9, + "probability": 0.9711 + }, + { + "start": 14400.6, + "end": 14401.16, + "probability": 0.3492 + }, + { + "start": 14402.04, + "end": 14404.72, + "probability": 0.9341 + }, + { + "start": 14406.48, + "end": 14413.06, + "probability": 0.9841 + }, + { + "start": 14413.32, + "end": 14417.36, + "probability": 0.9802 + }, + { + "start": 14417.36, + "end": 14420.92, + "probability": 0.9844 + }, + { + "start": 14422.02, + "end": 14424.12, + "probability": 0.6621 + }, + { + "start": 14424.86, + "end": 14427.08, + "probability": 0.8882 + }, + { + "start": 14427.84, + "end": 14430.2, + "probability": 0.8684 + }, + { + "start": 14430.82, + "end": 14437.96, + "probability": 0.9588 + }, + { + "start": 14438.3, + "end": 14438.72, + "probability": 0.8188 + }, + { + "start": 14439.64, + "end": 14442.5, + "probability": 0.7188 + }, + { + "start": 14443.1, + "end": 14444.14, + "probability": 0.7282 + }, + { + "start": 14444.66, + "end": 14448.42, + "probability": 0.6622 + }, + { + "start": 14448.7, + "end": 14451.24, + "probability": 0.6648 + }, + { + "start": 14452.26, + "end": 14455.7, + "probability": 0.9503 + }, + { + "start": 14456.44, + "end": 14461.56, + "probability": 0.3812 + }, + { + "start": 14461.62, + "end": 14463.86, + "probability": 0.0353 + }, + { + "start": 14464.02, + "end": 14464.54, + "probability": 0.0443 + }, + { + "start": 14470.48, + "end": 14471.5, + "probability": 0.0062 + }, + { + "start": 14471.5, + "end": 14473.96, + "probability": 0.0393 + }, + { + "start": 14474.3, + "end": 14474.3, + "probability": 0.1036 + }, + { + "start": 14474.3, + "end": 14475.36, + "probability": 0.0577 + }, + { + "start": 14475.5, + "end": 14477.98, + "probability": 0.0867 + }, + { + "start": 14478.32, + "end": 14478.46, + "probability": 0.0927 + }, + { + "start": 14478.46, + "end": 14479.06, + "probability": 0.0257 + }, + { + "start": 14479.06, + "end": 14479.3, + "probability": 0.1305 + }, + { + "start": 14482.38, + "end": 14482.92, + "probability": 0.1446 + }, + { + "start": 14487.34, + "end": 14488.18, + "probability": 0.1685 + }, + { + "start": 14497.3, + "end": 14498.7, + "probability": 0.0787 + }, + { + "start": 14498.86, + "end": 14501.14, + "probability": 0.1726 + }, + { + "start": 14501.14, + "end": 14501.38, + "probability": 0.0482 + }, + { + "start": 14501.5, + "end": 14503.64, + "probability": 0.0372 + }, + { + "start": 14504.72, + "end": 14509.98, + "probability": 0.0523 + }, + { + "start": 14511.14, + "end": 14511.48, + "probability": 0.0881 + }, + { + "start": 14513.0, + "end": 14514.74, + "probability": 0.1029 + }, + { + "start": 14515.62, + "end": 14517.24, + "probability": 0.1694 + }, + { + "start": 14522.04, + "end": 14522.06, + "probability": 0.0133 + }, + { + "start": 14524.32, + "end": 14527.2, + "probability": 0.0898 + }, + { + "start": 14527.2, + "end": 14528.76, + "probability": 0.0447 + }, + { + "start": 14528.96, + "end": 14529.94, + "probability": 0.0218 + }, + { + "start": 14529.94, + "end": 14530.26, + "probability": 0.1153 + }, + { + "start": 14530.72, + "end": 14531.34, + "probability": 0.2059 + }, + { + "start": 14531.34, + "end": 14531.5, + "probability": 0.162 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.06, + "end": 14534.98, + "probability": 0.4155 + }, + { + "start": 14535.08, + "end": 14539.02, + "probability": 0.891 + }, + { + "start": 14539.14, + "end": 14539.77, + "probability": 0.4816 + }, + { + "start": 14540.66, + "end": 14542.64, + "probability": 0.5636 + }, + { + "start": 14545.2, + "end": 14546.67, + "probability": 0.0134 + }, + { + "start": 14556.52, + "end": 14558.12, + "probability": 0.127 + }, + { + "start": 14558.24, + "end": 14565.08, + "probability": 0.1142 + }, + { + "start": 14566.0, + "end": 14567.94, + "probability": 0.2795 + }, + { + "start": 14568.54, + "end": 14572.38, + "probability": 0.3324 + }, + { + "start": 14573.57, + "end": 14574.7, + "probability": 0.564 + }, + { + "start": 14575.36, + "end": 14576.06, + "probability": 0.7942 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.0, + "end": 14655.0, + "probability": 0.0 + }, + { + "start": 14655.7, + "end": 14656.5, + "probability": 0.0157 + }, + { + "start": 14661.18, + "end": 14664.5, + "probability": 0.02 + }, + { + "start": 14681.2, + "end": 14685.84, + "probability": 0.6552 + }, + { + "start": 14685.86, + "end": 14687.36, + "probability": 0.8552 + }, + { + "start": 14688.24, + "end": 14690.1, + "probability": 0.8261 + }, + { + "start": 14690.16, + "end": 14696.18, + "probability": 0.985 + }, + { + "start": 14696.18, + "end": 14696.66, + "probability": 0.9564 + }, + { + "start": 14696.66, + "end": 14700.06, + "probability": 0.4861 + }, + { + "start": 14700.14, + "end": 14702.2, + "probability": 0.3222 + }, + { + "start": 14703.55, + "end": 14708.62, + "probability": 0.9313 + }, + { + "start": 14708.72, + "end": 14712.42, + "probability": 0.9585 + }, + { + "start": 14721.16, + "end": 14724.16, + "probability": 0.0171 + }, + { + "start": 14726.02, + "end": 14728.48, + "probability": 0.7886 + }, + { + "start": 14729.04, + "end": 14729.92, + "probability": 0.7135 + }, + { + "start": 14730.94, + "end": 14732.18, + "probability": 0.7422 + }, + { + "start": 14732.88, + "end": 14737.86, + "probability": 0.8766 + }, + { + "start": 14737.86, + "end": 14742.44, + "probability": 0.9938 + }, + { + "start": 14743.06, + "end": 14747.3, + "probability": 0.6913 + }, + { + "start": 14747.8, + "end": 14751.76, + "probability": 0.9966 + }, + { + "start": 14751.76, + "end": 14757.68, + "probability": 0.9891 + }, + { + "start": 14758.44, + "end": 14760.76, + "probability": 0.9889 + }, + { + "start": 14761.76, + "end": 14766.68, + "probability": 0.9883 + }, + { + "start": 14767.44, + "end": 14770.7, + "probability": 0.8288 + }, + { + "start": 14771.26, + "end": 14772.64, + "probability": 0.6108 + }, + { + "start": 14773.0, + "end": 14775.82, + "probability": 0.8186 + }, + { + "start": 14776.24, + "end": 14777.84, + "probability": 0.6902 + }, + { + "start": 14777.94, + "end": 14780.22, + "probability": 0.7753 + }, + { + "start": 14780.28, + "end": 14781.22, + "probability": 0.8913 + }, + { + "start": 14781.28, + "end": 14782.44, + "probability": 0.9095 + }, + { + "start": 14782.94, + "end": 14784.52, + "probability": 0.9453 + }, + { + "start": 14784.72, + "end": 14786.42, + "probability": 0.975 + }, + { + "start": 14786.54, + "end": 14789.24, + "probability": 0.891 + }, + { + "start": 14789.32, + "end": 14793.56, + "probability": 0.9132 + }, + { + "start": 14793.68, + "end": 14795.46, + "probability": 0.7142 + }, + { + "start": 14798.34, + "end": 14799.98, + "probability": 0.6679 + }, + { + "start": 14801.15, + "end": 14807.44, + "probability": 0.8227 + }, + { + "start": 14807.64, + "end": 14808.42, + "probability": 0.8592 + }, + { + "start": 14808.76, + "end": 14809.26, + "probability": 0.9109 + }, + { + "start": 14809.4, + "end": 14811.98, + "probability": 0.6835 + }, + { + "start": 14812.36, + "end": 14815.66, + "probability": 0.7786 + }, + { + "start": 14815.8, + "end": 14817.64, + "probability": 0.9979 + }, + { + "start": 14817.96, + "end": 14819.8, + "probability": 0.9248 + }, + { + "start": 14820.2, + "end": 14823.1, + "probability": 0.9985 + }, + { + "start": 14823.42, + "end": 14826.4, + "probability": 0.9857 + }, + { + "start": 14826.4, + "end": 14829.72, + "probability": 0.9415 + }, + { + "start": 14830.68, + "end": 14832.92, + "probability": 0.955 + }, + { + "start": 14833.4, + "end": 14834.43, + "probability": 0.9313 + }, + { + "start": 14834.7, + "end": 14835.4, + "probability": 0.6446 + }, + { + "start": 14835.74, + "end": 14838.32, + "probability": 0.999 + }, + { + "start": 14838.6, + "end": 14840.16, + "probability": 0.9886 + }, + { + "start": 14840.42, + "end": 14844.3, + "probability": 0.6644 + }, + { + "start": 14845.04, + "end": 14845.04, + "probability": 0.0069 + }, + { + "start": 14845.04, + "end": 14845.04, + "probability": 0.0981 + }, + { + "start": 14845.04, + "end": 14845.04, + "probability": 0.0311 + }, + { + "start": 14845.04, + "end": 14845.04, + "probability": 0.0358 + }, + { + "start": 14845.04, + "end": 14845.04, + "probability": 0.2104 + }, + { + "start": 14845.04, + "end": 14845.46, + "probability": 0.0409 + }, + { + "start": 14845.46, + "end": 14849.98, + "probability": 0.5476 + }, + { + "start": 14850.54, + "end": 14851.24, + "probability": 0.1296 + }, + { + "start": 14851.76, + "end": 14854.62, + "probability": 0.733 + }, + { + "start": 14855.18, + "end": 14857.78, + "probability": 0.9237 + }, + { + "start": 14857.9, + "end": 14861.7, + "probability": 0.6889 + }, + { + "start": 14865.12, + "end": 14866.58, + "probability": 0.8406 + }, + { + "start": 14867.38, + "end": 14868.46, + "probability": 0.7574 + }, + { + "start": 14868.54, + "end": 14873.68, + "probability": 0.9901 + }, + { + "start": 14874.82, + "end": 14878.24, + "probability": 0.9933 + }, + { + "start": 14878.36, + "end": 14882.14, + "probability": 0.9776 + }, + { + "start": 14883.74, + "end": 14885.14, + "probability": 0.7882 + }, + { + "start": 14886.16, + "end": 14889.22, + "probability": 0.612 + }, + { + "start": 14890.0, + "end": 14890.68, + "probability": 0.7711 + }, + { + "start": 14892.04, + "end": 14894.92, + "probability": 0.5044 + }, + { + "start": 14895.66, + "end": 14898.04, + "probability": 0.9614 + }, + { + "start": 14899.62, + "end": 14900.7, + "probability": 0.9113 + }, + { + "start": 14901.34, + "end": 14903.08, + "probability": 0.739 + }, + { + "start": 14903.64, + "end": 14909.52, + "probability": 0.8039 + }, + { + "start": 14910.22, + "end": 14916.78, + "probability": 0.8531 + }, + { + "start": 14917.48, + "end": 14920.24, + "probability": 0.9323 + }, + { + "start": 14921.02, + "end": 14922.46, + "probability": 0.6893 + }, + { + "start": 14923.54, + "end": 14926.11, + "probability": 0.935 + }, + { + "start": 14926.4, + "end": 14928.52, + "probability": 0.9554 + }, + { + "start": 14928.64, + "end": 14930.74, + "probability": 0.9498 + }, + { + "start": 14931.22, + "end": 14932.98, + "probability": 0.9893 + }, + { + "start": 14932.98, + "end": 14933.46, + "probability": 0.6384 + }, + { + "start": 14934.14, + "end": 14938.78, + "probability": 0.8628 + }, + { + "start": 14938.78, + "end": 14944.98, + "probability": 0.9781 + }, + { + "start": 14946.32, + "end": 14949.92, + "probability": 0.9723 + }, + { + "start": 14950.74, + "end": 14957.82, + "probability": 0.9152 + }, + { + "start": 14958.64, + "end": 14961.2, + "probability": 0.9823 + }, + { + "start": 14961.9, + "end": 14965.66, + "probability": 0.9712 + }, + { + "start": 14966.28, + "end": 14967.77, + "probability": 0.9731 + }, + { + "start": 14968.47, + "end": 14973.19, + "probability": 0.9928 + }, + { + "start": 14976.38, + "end": 14980.82, + "probability": 0.7809 + }, + { + "start": 14981.74, + "end": 14984.2, + "probability": 0.9979 + }, + { + "start": 14984.24, + "end": 14984.88, + "probability": 0.7502 + }, + { + "start": 14984.94, + "end": 14986.06, + "probability": 0.913 + }, + { + "start": 14986.26, + "end": 14986.66, + "probability": 0.3156 + }, + { + "start": 14987.1, + "end": 14988.6, + "probability": 0.7222 + }, + { + "start": 14988.7, + "end": 14992.08, + "probability": 0.6434 + }, + { + "start": 14992.62, + "end": 14998.36, + "probability": 0.9878 + }, + { + "start": 14998.52, + "end": 15002.68, + "probability": 0.955 + }, + { + "start": 15004.83, + "end": 15010.08, + "probability": 0.9934 + }, + { + "start": 15010.32, + "end": 15012.96, + "probability": 0.65 + }, + { + "start": 15013.96, + "end": 15019.96, + "probability": 0.5169 + }, + { + "start": 15021.4, + "end": 15023.03, + "probability": 0.6946 + }, + { + "start": 15024.3, + "end": 15027.3, + "probability": 0.9363 + }, + { + "start": 15027.98, + "end": 15034.22, + "probability": 0.9862 + }, + { + "start": 15034.96, + "end": 15039.46, + "probability": 0.9963 + }, + { + "start": 15039.46, + "end": 15043.76, + "probability": 0.9863 + }, + { + "start": 15045.02, + "end": 15051.06, + "probability": 0.9766 + }, + { + "start": 15051.78, + "end": 15056.72, + "probability": 0.593 + }, + { + "start": 15057.32, + "end": 15064.3, + "probability": 0.9872 + }, + { + "start": 15065.32, + "end": 15069.0, + "probability": 0.6543 + }, + { + "start": 15069.0, + "end": 15073.46, + "probability": 0.9133 + }, + { + "start": 15073.6, + "end": 15075.62, + "probability": 0.8346 + }, + { + "start": 15076.06, + "end": 15081.86, + "probability": 0.8825 + }, + { + "start": 15081.86, + "end": 15086.1, + "probability": 0.5039 + }, + { + "start": 15086.62, + "end": 15087.92, + "probability": 0.7468 + }, + { + "start": 15088.56, + "end": 15090.16, + "probability": 0.8423 + }, + { + "start": 15090.28, + "end": 15090.88, + "probability": 0.8534 + }, + { + "start": 15091.26, + "end": 15092.4, + "probability": 0.8159 + }, + { + "start": 15092.5, + "end": 15092.78, + "probability": 0.5671 + }, + { + "start": 15093.86, + "end": 15096.0, + "probability": 0.8718 + }, + { + "start": 15096.54, + "end": 15101.6, + "probability": 0.8459 + }, + { + "start": 15101.82, + "end": 15102.22, + "probability": 0.5449 + }, + { + "start": 15103.2, + "end": 15104.62, + "probability": 0.8709 + }, + { + "start": 15105.28, + "end": 15106.1, + "probability": 0.8574 + }, + { + "start": 15106.16, + "end": 15111.1, + "probability": 0.9215 + }, + { + "start": 15112.24, + "end": 15114.44, + "probability": 0.7957 + }, + { + "start": 15115.24, + "end": 15116.9, + "probability": 0.9663 + }, + { + "start": 15120.81, + "end": 15122.84, + "probability": 0.7603 + }, + { + "start": 15125.6, + "end": 15128.66, + "probability": 0.6813 + }, + { + "start": 15129.82, + "end": 15134.06, + "probability": 0.9839 + }, + { + "start": 15135.72, + "end": 15138.28, + "probability": 0.7967 + }, + { + "start": 15138.44, + "end": 15142.36, + "probability": 0.8823 + }, + { + "start": 15142.58, + "end": 15142.88, + "probability": 0.4402 + }, + { + "start": 15142.96, + "end": 15145.66, + "probability": 0.999 + }, + { + "start": 15145.9, + "end": 15147.56, + "probability": 0.5863 + }, + { + "start": 15148.5, + "end": 15148.5, + "probability": 0.3206 + }, + { + "start": 15148.5, + "end": 15150.92, + "probability": 0.6358 + }, + { + "start": 15150.92, + "end": 15151.8, + "probability": 0.9574 + }, + { + "start": 15153.91, + "end": 15154.2, + "probability": 0.1805 + }, + { + "start": 15154.2, + "end": 15154.2, + "probability": 0.1786 + }, + { + "start": 15154.2, + "end": 15157.84, + "probability": 0.8966 + }, + { + "start": 15158.08, + "end": 15158.96, + "probability": 0.846 + }, + { + "start": 15160.32, + "end": 15161.9, + "probability": 0.6138 + }, + { + "start": 15162.1, + "end": 15162.52, + "probability": 0.7459 + }, + { + "start": 15162.56, + "end": 15166.88, + "probability": 0.9871 + }, + { + "start": 15169.1, + "end": 15170.16, + "probability": 0.6309 + }, + { + "start": 15171.84, + "end": 15174.56, + "probability": 0.7352 + }, + { + "start": 15176.92, + "end": 15181.48, + "probability": 0.9893 + }, + { + "start": 15182.06, + "end": 15187.24, + "probability": 0.9969 + }, + { + "start": 15187.76, + "end": 15189.18, + "probability": 0.6754 + }, + { + "start": 15189.8, + "end": 15192.98, + "probability": 0.9915 + }, + { + "start": 15194.54, + "end": 15197.3, + "probability": 0.9702 + }, + { + "start": 15197.66, + "end": 15202.12, + "probability": 0.9667 + }, + { + "start": 15202.68, + "end": 15208.48, + "probability": 0.9641 + }, + { + "start": 15209.26, + "end": 15212.1, + "probability": 0.9948 + }, + { + "start": 15212.28, + "end": 15213.16, + "probability": 0.8204 + }, + { + "start": 15213.22, + "end": 15215.16, + "probability": 0.9443 + }, + { + "start": 15215.68, + "end": 15216.8, + "probability": 0.7513 + }, + { + "start": 15217.18, + "end": 15221.24, + "probability": 0.9763 + }, + { + "start": 15223.2, + "end": 15225.11, + "probability": 0.4886 + }, + { + "start": 15226.04, + "end": 15229.52, + "probability": 0.9748 + }, + { + "start": 15229.72, + "end": 15230.94, + "probability": 0.5419 + }, + { + "start": 15230.94, + "end": 15234.32, + "probability": 0.783 + }, + { + "start": 15235.18, + "end": 15237.78, + "probability": 0.8691 + }, + { + "start": 15238.3, + "end": 15239.36, + "probability": 0.8557 + }, + { + "start": 15240.06, + "end": 15244.82, + "probability": 0.0143 + }, + { + "start": 15246.34, + "end": 15246.82, + "probability": 0.1211 + }, + { + "start": 15246.82, + "end": 15247.04, + "probability": 0.0076 + }, + { + "start": 15247.04, + "end": 15247.94, + "probability": 0.2231 + }, + { + "start": 15249.28, + "end": 15253.32, + "probability": 0.9467 + }, + { + "start": 15253.36, + "end": 15253.96, + "probability": 0.8216 + }, + { + "start": 15254.16, + "end": 15255.14, + "probability": 0.9663 + }, + { + "start": 15255.84, + "end": 15262.4, + "probability": 0.9873 + }, + { + "start": 15263.24, + "end": 15263.56, + "probability": 0.18 + }, + { + "start": 15263.58, + "end": 15264.16, + "probability": 0.2291 + }, + { + "start": 15265.98, + "end": 15267.06, + "probability": 0.8583 + }, + { + "start": 15267.94, + "end": 15275.02, + "probability": 0.8812 + }, + { + "start": 15275.7, + "end": 15279.48, + "probability": 0.9709 + }, + { + "start": 15280.18, + "end": 15285.74, + "probability": 0.9951 + }, + { + "start": 15286.96, + "end": 15289.78, + "probability": 0.9676 + }, + { + "start": 15292.98, + "end": 15296.72, + "probability": 0.7586 + }, + { + "start": 15296.98, + "end": 15305.42, + "probability": 0.9439 + }, + { + "start": 15310.98, + "end": 15311.3, + "probability": 0.9611 + }, + { + "start": 15312.22, + "end": 15315.3, + "probability": 0.9943 + }, + { + "start": 15315.84, + "end": 15317.84, + "probability": 0.8123 + }, + { + "start": 15318.38, + "end": 15320.96, + "probability": 0.6805 + }, + { + "start": 15322.24, + "end": 15327.06, + "probability": 0.9563 + }, + { + "start": 15327.74, + "end": 15332.42, + "probability": 0.8712 + }, + { + "start": 15332.58, + "end": 15333.74, + "probability": 0.4053 + }, + { + "start": 15334.18, + "end": 15335.0, + "probability": 0.9023 + }, + { + "start": 15335.42, + "end": 15342.27, + "probability": 0.8771 + }, + { + "start": 15343.48, + "end": 15345.9, + "probability": 0.9728 + }, + { + "start": 15346.4, + "end": 15352.78, + "probability": 0.9748 + }, + { + "start": 15353.84, + "end": 15355.02, + "probability": 0.4891 + }, + { + "start": 15355.42, + "end": 15360.3, + "probability": 0.8377 + }, + { + "start": 15360.76, + "end": 15363.88, + "probability": 0.9778 + }, + { + "start": 15363.88, + "end": 15367.36, + "probability": 0.8229 + }, + { + "start": 15368.64, + "end": 15372.8, + "probability": 0.8214 + }, + { + "start": 15376.15, + "end": 15380.68, + "probability": 0.6097 + }, + { + "start": 15381.71, + "end": 15382.41, + "probability": 0.6482 + }, + { + "start": 15385.15, + "end": 15387.35, + "probability": 0.4773 + }, + { + "start": 15387.87, + "end": 15390.14, + "probability": 0.9338 + }, + { + "start": 15390.91, + "end": 15396.15, + "probability": 0.8945 + }, + { + "start": 15396.75, + "end": 15398.0, + "probability": 0.7384 + }, + { + "start": 15398.96, + "end": 15401.37, + "probability": 0.991 + }, + { + "start": 15402.06, + "end": 15407.39, + "probability": 0.9789 + }, + { + "start": 15408.05, + "end": 15410.05, + "probability": 0.6105 + }, + { + "start": 15410.53, + "end": 15411.53, + "probability": 0.6821 + }, + { + "start": 15412.03, + "end": 15417.65, + "probability": 0.9829 + }, + { + "start": 15419.41, + "end": 15419.75, + "probability": 0.3867 + }, + { + "start": 15420.35, + "end": 15426.47, + "probability": 0.6747 + }, + { + "start": 15428.67, + "end": 15435.35, + "probability": 0.8784 + }, + { + "start": 15435.79, + "end": 15442.69, + "probability": 0.8475 + }, + { + "start": 15443.37, + "end": 15447.61, + "probability": 0.9165 + }, + { + "start": 15455.13, + "end": 15463.27, + "probability": 0.9915 + }, + { + "start": 15464.27, + "end": 15469.59, + "probability": 0.9934 + }, + { + "start": 15470.59, + "end": 15475.39, + "probability": 0.8914 + }, + { + "start": 15476.19, + "end": 15479.59, + "probability": 0.9008 + }, + { + "start": 15480.51, + "end": 15482.23, + "probability": 0.8206 + }, + { + "start": 15483.13, + "end": 15485.85, + "probability": 0.7192 + }, + { + "start": 15485.85, + "end": 15490.73, + "probability": 0.9898 + }, + { + "start": 15491.23, + "end": 15492.91, + "probability": 0.6527 + }, + { + "start": 15493.81, + "end": 15502.33, + "probability": 0.9688 + }, + { + "start": 15503.43, + "end": 15509.47, + "probability": 0.9745 + }, + { + "start": 15509.77, + "end": 15510.51, + "probability": 0.5958 + }, + { + "start": 15511.05, + "end": 15512.29, + "probability": 0.921 + }, + { + "start": 15513.51, + "end": 15514.65, + "probability": 0.7421 + }, + { + "start": 15516.45, + "end": 15519.77, + "probability": 0.9775 + }, + { + "start": 15520.39, + "end": 15521.19, + "probability": 0.9871 + }, + { + "start": 15521.99, + "end": 15532.67, + "probability": 0.9033 + }, + { + "start": 15535.35, + "end": 15541.07, + "probability": 0.9907 + }, + { + "start": 15542.33, + "end": 15542.55, + "probability": 0.269 + }, + { + "start": 15542.61, + "end": 15545.9, + "probability": 0.8789 + }, + { + "start": 15546.01, + "end": 15549.29, + "probability": 0.7206 + }, + { + "start": 15549.83, + "end": 15551.15, + "probability": 0.9532 + }, + { + "start": 15552.03, + "end": 15554.56, + "probability": 0.9571 + }, + { + "start": 15555.31, + "end": 15555.79, + "probability": 0.257 + }, + { + "start": 15556.43, + "end": 15560.03, + "probability": 0.924 + }, + { + "start": 15561.73, + "end": 15570.67, + "probability": 0.7882 + }, + { + "start": 15572.39, + "end": 15574.61, + "probability": 0.6824 + }, + { + "start": 15575.79, + "end": 15579.25, + "probability": 0.856 + }, + { + "start": 15579.49, + "end": 15582.65, + "probability": 0.9941 + }, + { + "start": 15583.27, + "end": 15586.21, + "probability": 0.999 + }, + { + "start": 15587.07, + "end": 15592.25, + "probability": 0.9879 + }, + { + "start": 15592.65, + "end": 15599.17, + "probability": 0.7423 + }, + { + "start": 15599.17, + "end": 15600.61, + "probability": 0.8987 + }, + { + "start": 15601.17, + "end": 15602.69, + "probability": 0.8445 + }, + { + "start": 15603.55, + "end": 15604.23, + "probability": 0.8697 + }, + { + "start": 15605.03, + "end": 15608.27, + "probability": 0.9537 + }, + { + "start": 15609.05, + "end": 15610.15, + "probability": 0.8725 + }, + { + "start": 15610.81, + "end": 15611.81, + "probability": 0.91 + }, + { + "start": 15613.21, + "end": 15614.17, + "probability": 0.1078 + }, + { + "start": 15614.17, + "end": 15618.23, + "probability": 0.9792 + }, + { + "start": 15618.63, + "end": 15620.01, + "probability": 0.7453 + }, + { + "start": 15620.59, + "end": 15625.07, + "probability": 0.939 + }, + { + "start": 15625.73, + "end": 15629.13, + "probability": 0.8446 + }, + { + "start": 15629.25, + "end": 15629.43, + "probability": 0.5313 + }, + { + "start": 15631.15, + "end": 15633.03, + "probability": 0.8615 + }, + { + "start": 15633.15, + "end": 15635.55, + "probability": 0.5434 + }, + { + "start": 15636.07, + "end": 15639.99, + "probability": 0.8549 + }, + { + "start": 15640.69, + "end": 15642.37, + "probability": 0.8336 + }, + { + "start": 15643.25, + "end": 15647.19, + "probability": 0.8931 + }, + { + "start": 15648.87, + "end": 15652.05, + "probability": 0.9923 + }, + { + "start": 15652.05, + "end": 15655.41, + "probability": 0.1199 + }, + { + "start": 15655.99, + "end": 15659.41, + "probability": 0.7515 + }, + { + "start": 15660.03, + "end": 15662.85, + "probability": 0.7647 + }, + { + "start": 15663.57, + "end": 15665.67, + "probability": 0.0001 + }, + { + "start": 15676.67, + "end": 15677.79, + "probability": 0.0686 + }, + { + "start": 15680.31, + "end": 15684.29, + "probability": 0.8222 + }, + { + "start": 15684.43, + "end": 15686.33, + "probability": 0.5968 + }, + { + "start": 15686.73, + "end": 15689.93, + "probability": 0.9824 + }, + { + "start": 15690.55, + "end": 15691.55, + "probability": 0.3427 + }, + { + "start": 15699.75, + "end": 15701.99, + "probability": 0.0494 + }, + { + "start": 15707.79, + "end": 15709.03, + "probability": 0.0142 + }, + { + "start": 15712.99, + "end": 15715.63, + "probability": 0.9873 + }, + { + "start": 15716.21, + "end": 15718.93, + "probability": 0.1936 + }, + { + "start": 15719.71, + "end": 15722.19, + "probability": 0.1084 + }, + { + "start": 15728.81, + "end": 15733.47, + "probability": 0.0688 + }, + { + "start": 15737.83, + "end": 15739.75, + "probability": 0.1994 + }, + { + "start": 15740.59, + "end": 15742.17, + "probability": 0.0455 + }, + { + "start": 15742.91, + "end": 15749.33, + "probability": 0.2385 + }, + { + "start": 15750.67, + "end": 15754.63, + "probability": 0.0899 + }, + { + "start": 15755.49, + "end": 15756.19, + "probability": 0.0351 + }, + { + "start": 15756.27, + "end": 15757.25, + "probability": 0.5256 + }, + { + "start": 15758.01, + "end": 15758.71, + "probability": 0.1464 + }, + { + "start": 15759.0, + "end": 15759.0, + "probability": 0.0 + }, + { + "start": 15759.0, + "end": 15759.0, + "probability": 0.0 + }, + { + "start": 15759.0, + "end": 15759.0, + "probability": 0.0 + }, + { + "start": 15759.0, + "end": 15759.0, + "probability": 0.0 + }, + { + "start": 15759.0, + "end": 15759.0, + "probability": 0.0 + }, + { + "start": 15759.0, + "end": 15759.0, + "probability": 0.0 + }, + { + "start": 15764.44, + "end": 15768.96, + "probability": 0.6118 + }, + { + "start": 15770.36, + "end": 15776.78, + "probability": 0.249 + }, + { + "start": 15777.74, + "end": 15781.42, + "probability": 0.9233 + }, + { + "start": 15805.8, + "end": 15809.82, + "probability": 0.16 + }, + { + "start": 15812.34, + "end": 15814.02, + "probability": 0.0132 + }, + { + "start": 15814.02, + "end": 15814.06, + "probability": 0.2456 + }, + { + "start": 15814.06, + "end": 15817.48, + "probability": 0.0711 + }, + { + "start": 15821.26, + "end": 15822.88, + "probability": 0.1578 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.0, + "end": 15913.0, + "probability": 0.0 + }, + { + "start": 15913.1, + "end": 15913.48, + "probability": 0.1427 + }, + { + "start": 15913.94, + "end": 15916.56, + "probability": 0.9604 + }, + { + "start": 15916.56, + "end": 15921.18, + "probability": 0.9912 + }, + { + "start": 15921.9, + "end": 15925.88, + "probability": 0.9906 + }, + { + "start": 15926.42, + "end": 15932.0, + "probability": 0.9889 + }, + { + "start": 15932.68, + "end": 15935.58, + "probability": 0.993 + }, + { + "start": 15936.2, + "end": 15940.72, + "probability": 0.9027 + }, + { + "start": 15941.16, + "end": 15941.52, + "probability": 0.7314 + }, + { + "start": 15941.54, + "end": 15947.0, + "probability": 0.8346 + }, + { + "start": 15947.54, + "end": 15950.78, + "probability": 0.6936 + }, + { + "start": 15951.54, + "end": 15956.66, + "probability": 0.9568 + }, + { + "start": 15956.66, + "end": 15961.84, + "probability": 0.9517 + }, + { + "start": 15961.98, + "end": 15966.88, + "probability": 0.8586 + }, + { + "start": 15967.9, + "end": 15968.34, + "probability": 0.1798 + }, + { + "start": 15971.0, + "end": 15972.14, + "probability": 0.9023 + }, + { + "start": 15972.32, + "end": 15973.18, + "probability": 0.6815 + }, + { + "start": 15973.34, + "end": 15975.74, + "probability": 0.9537 + }, + { + "start": 15976.5, + "end": 15978.38, + "probability": 0.9409 + }, + { + "start": 15978.48, + "end": 15982.9, + "probability": 0.9586 + }, + { + "start": 15983.06, + "end": 15983.82, + "probability": 0.8441 + }, + { + "start": 15984.2, + "end": 15986.16, + "probability": 0.9922 + }, + { + "start": 15986.34, + "end": 15987.82, + "probability": 0.9176 + }, + { + "start": 15988.1, + "end": 15990.02, + "probability": 0.9765 + }, + { + "start": 15990.18, + "end": 15991.94, + "probability": 0.718 + }, + { + "start": 15992.62, + "end": 15994.66, + "probability": 0.725 + }, + { + "start": 15994.76, + "end": 15997.92, + "probability": 0.8323 + }, + { + "start": 15997.94, + "end": 16002.5, + "probability": 0.8693 + }, + { + "start": 16002.72, + "end": 16006.0, + "probability": 0.606 + }, + { + "start": 16006.94, + "end": 16011.78, + "probability": 0.3302 + }, + { + "start": 16013.46, + "end": 16014.66, + "probability": 0.2307 + }, + { + "start": 16015.06, + "end": 16016.96, + "probability": 0.5266 + }, + { + "start": 16017.1, + "end": 16019.76, + "probability": 0.9611 + }, + { + "start": 16020.32, + "end": 16027.3, + "probability": 0.9907 + }, + { + "start": 16027.4, + "end": 16028.32, + "probability": 0.8233 + }, + { + "start": 16029.1, + "end": 16034.98, + "probability": 0.9916 + }, + { + "start": 16035.2, + "end": 16038.64, + "probability": 0.9963 + }, + { + "start": 16039.0, + "end": 16042.86, + "probability": 0.9922 + }, + { + "start": 16042.96, + "end": 16045.3, + "probability": 0.8465 + }, + { + "start": 16045.72, + "end": 16047.2, + "probability": 0.9016 + }, + { + "start": 16047.44, + "end": 16050.36, + "probability": 0.9619 + }, + { + "start": 16050.42, + "end": 16053.48, + "probability": 0.8738 + }, + { + "start": 16054.8, + "end": 16057.12, + "probability": 0.9419 + }, + { + "start": 16057.36, + "end": 16058.12, + "probability": 0.7961 + }, + { + "start": 16058.56, + "end": 16063.18, + "probability": 0.8855 + }, + { + "start": 16063.5, + "end": 16069.7, + "probability": 0.9786 + }, + { + "start": 16070.56, + "end": 16073.56, + "probability": 0.869 + }, + { + "start": 16073.74, + "end": 16074.9, + "probability": 0.6889 + }, + { + "start": 16075.78, + "end": 16079.42, + "probability": 0.9329 + }, + { + "start": 16079.64, + "end": 16083.4, + "probability": 0.78 + }, + { + "start": 16084.06, + "end": 16085.5, + "probability": 0.6666 + }, + { + "start": 16087.08, + "end": 16090.34, + "probability": 0.5102 + }, + { + "start": 16091.23, + "end": 16096.08, + "probability": 0.3853 + }, + { + "start": 16096.6, + "end": 16099.08, + "probability": 0.1233 + }, + { + "start": 16100.34, + "end": 16101.28, + "probability": 0.3956 + }, + { + "start": 16103.55, + "end": 16107.3, + "probability": 0.1114 + }, + { + "start": 16107.52, + "end": 16109.04, + "probability": 0.0495 + }, + { + "start": 16112.92, + "end": 16113.72, + "probability": 0.0151 + }, + { + "start": 16113.72, + "end": 16113.72, + "probability": 0.0268 + }, + { + "start": 16113.72, + "end": 16113.72, + "probability": 0.125 + }, + { + "start": 16113.72, + "end": 16117.2, + "probability": 0.8923 + }, + { + "start": 16117.66, + "end": 16121.48, + "probability": 0.9786 + }, + { + "start": 16121.74, + "end": 16124.48, + "probability": 0.9121 + }, + { + "start": 16125.84, + "end": 16127.32, + "probability": 0.8505 + }, + { + "start": 16128.32, + "end": 16130.77, + "probability": 0.9932 + }, + { + "start": 16132.06, + "end": 16137.34, + "probability": 0.949 + }, + { + "start": 16158.68, + "end": 16161.9, + "probability": 0.9971 + }, + { + "start": 16162.12, + "end": 16162.16, + "probability": 0.4117 + }, + { + "start": 16162.28, + "end": 16162.54, + "probability": 0.7791 + }, + { + "start": 16162.6, + "end": 16162.9, + "probability": 0.8576 + }, + { + "start": 16163.02, + "end": 16164.74, + "probability": 0.9758 + }, + { + "start": 16165.64, + "end": 16166.6, + "probability": 0.211 + }, + { + "start": 16166.7, + "end": 16168.68, + "probability": 0.7993 + }, + { + "start": 16170.04, + "end": 16171.5, + "probability": 0.9963 + }, + { + "start": 16181.82, + "end": 16184.28, + "probability": 0.6846 + }, + { + "start": 16184.38, + "end": 16184.72, + "probability": 0.734 + }, + { + "start": 16185.24, + "end": 16190.36, + "probability": 0.9665 + }, + { + "start": 16190.88, + "end": 16194.58, + "probability": 0.5268 + }, + { + "start": 16195.1, + "end": 16196.42, + "probability": 0.5912 + }, + { + "start": 16196.64, + "end": 16197.88, + "probability": 0.9746 + }, + { + "start": 16198.44, + "end": 16199.16, + "probability": 0.6226 + }, + { + "start": 16199.2, + "end": 16199.64, + "probability": 0.489 + }, + { + "start": 16199.72, + "end": 16199.82, + "probability": 0.5646 + }, + { + "start": 16202.08, + "end": 16207.68, + "probability": 0.9602 + }, + { + "start": 16207.68, + "end": 16213.88, + "probability": 0.6548 + }, + { + "start": 16219.04, + "end": 16220.32, + "probability": 0.7483 + }, + { + "start": 16221.64, + "end": 16224.44, + "probability": 0.9868 + }, + { + "start": 16224.54, + "end": 16225.36, + "probability": 0.6769 + }, + { + "start": 16225.4, + "end": 16226.28, + "probability": 0.8996 + }, + { + "start": 16227.08, + "end": 16230.72, + "probability": 0.9824 + }, + { + "start": 16231.64, + "end": 16233.1, + "probability": 0.8925 + }, + { + "start": 16234.02, + "end": 16237.56, + "probability": 0.9576 + }, + { + "start": 16238.82, + "end": 16247.06, + "probability": 0.9884 + }, + { + "start": 16247.14, + "end": 16249.14, + "probability": 0.8768 + }, + { + "start": 16249.2, + "end": 16250.82, + "probability": 0.8057 + }, + { + "start": 16252.32, + "end": 16253.4, + "probability": 0.3333 + }, + { + "start": 16253.42, + "end": 16255.8, + "probability": 0.8419 + }, + { + "start": 16258.02, + "end": 16259.44, + "probability": 0.923 + }, + { + "start": 16260.5, + "end": 16263.7, + "probability": 0.8228 + }, + { + "start": 16263.8, + "end": 16264.78, + "probability": 0.4461 + }, + { + "start": 16265.22, + "end": 16265.82, + "probability": 0.5256 + }, + { + "start": 16265.94, + "end": 16266.66, + "probability": 0.8449 + }, + { + "start": 16269.34, + "end": 16273.46, + "probability": 0.9544 + }, + { + "start": 16277.24, + "end": 16279.51, + "probability": 0.9722 + }, + { + "start": 16282.46, + "end": 16286.6, + "probability": 0.9116 + }, + { + "start": 16287.46, + "end": 16288.62, + "probability": 0.0197 + }, + { + "start": 16289.8, + "end": 16292.98, + "probability": 0.8815 + }, + { + "start": 16292.98, + "end": 16296.3, + "probability": 0.9934 + }, + { + "start": 16299.7, + "end": 16301.71, + "probability": 0.2761 + }, + { + "start": 16303.84, + "end": 16305.06, + "probability": 0.3246 + }, + { + "start": 16305.46, + "end": 16307.32, + "probability": 0.9845 + }, + { + "start": 16307.32, + "end": 16310.44, + "probability": 0.8433 + }, + { + "start": 16310.44, + "end": 16314.04, + "probability": 0.9749 + }, + { + "start": 16314.16, + "end": 16317.62, + "probability": 0.7348 + }, + { + "start": 16318.24, + "end": 16319.02, + "probability": 0.7316 + }, + { + "start": 16319.08, + "end": 16321.14, + "probability": 0.5754 + }, + { + "start": 16321.14, + "end": 16322.0, + "probability": 0.9046 + }, + { + "start": 16322.08, + "end": 16322.9, + "probability": 0.448 + }, + { + "start": 16323.72, + "end": 16325.82, + "probability": 0.7579 + }, + { + "start": 16346.19, + "end": 16348.2, + "probability": 0.5809 + }, + { + "start": 16348.36, + "end": 16348.82, + "probability": 0.9644 + }, + { + "start": 16352.8, + "end": 16353.64, + "probability": 0.2093 + }, + { + "start": 16353.86, + "end": 16357.1, + "probability": 0.6675 + }, + { + "start": 16358.72, + "end": 16366.0, + "probability": 0.5009 + }, + { + "start": 16366.0, + "end": 16366.48, + "probability": 0.0641 + }, + { + "start": 16367.38, + "end": 16370.62, + "probability": 0.8258 + }, + { + "start": 16371.68, + "end": 16373.3, + "probability": 0.9451 + }, + { + "start": 16374.3, + "end": 16375.1, + "probability": 0.7893 + }, + { + "start": 16376.28, + "end": 16378.0, + "probability": 0.8962 + }, + { + "start": 16379.0, + "end": 16379.54, + "probability": 0.9419 + }, + { + "start": 16380.06, + "end": 16383.7, + "probability": 0.9819 + }, + { + "start": 16385.16, + "end": 16388.18, + "probability": 0.6069 + }, + { + "start": 16388.94, + "end": 16389.66, + "probability": 0.7147 + }, + { + "start": 16390.56, + "end": 16392.06, + "probability": 0.8948 + }, + { + "start": 16392.78, + "end": 16393.76, + "probability": 0.5285 + }, + { + "start": 16394.38, + "end": 16395.04, + "probability": 0.9597 + }, + { + "start": 16395.96, + "end": 16399.22, + "probability": 0.9993 + }, + { + "start": 16399.94, + "end": 16400.52, + "probability": 0.7555 + }, + { + "start": 16401.14, + "end": 16402.8, + "probability": 0.8991 + }, + { + "start": 16404.28, + "end": 16408.72, + "probability": 0.8278 + }, + { + "start": 16409.84, + "end": 16410.14, + "probability": 0.9482 + }, + { + "start": 16412.38, + "end": 16412.52, + "probability": 0.2055 + }, + { + "start": 16413.82, + "end": 16414.5, + "probability": 0.5909 + }, + { + "start": 16415.06, + "end": 16417.84, + "probability": 0.0805 + }, + { + "start": 16418.64, + "end": 16420.08, + "probability": 0.0046 + }, + { + "start": 16421.22, + "end": 16423.22, + "probability": 0.1387 + }, + { + "start": 16424.12, + "end": 16425.72, + "probability": 0.1643 + }, + { + "start": 16426.24, + "end": 16427.86, + "probability": 0.7983 + }, + { + "start": 16428.3, + "end": 16429.7, + "probability": 0.8231 + }, + { + "start": 16430.18, + "end": 16430.98, + "probability": 0.7638 + }, + { + "start": 16431.52, + "end": 16435.0, + "probability": 0.9746 + }, + { + "start": 16435.2, + "end": 16435.96, + "probability": 0.5651 + }, + { + "start": 16436.24, + "end": 16440.04, + "probability": 0.9883 + }, + { + "start": 16440.58, + "end": 16441.93, + "probability": 0.9949 + }, + { + "start": 16442.46, + "end": 16444.48, + "probability": 0.9975 + }, + { + "start": 16444.98, + "end": 16446.88, + "probability": 0.9377 + }, + { + "start": 16447.72, + "end": 16448.18, + "probability": 0.7269 + }, + { + "start": 16448.32, + "end": 16450.82, + "probability": 0.9404 + }, + { + "start": 16452.6, + "end": 16456.26, + "probability": 0.9139 + }, + { + "start": 16456.74, + "end": 16457.84, + "probability": 0.9775 + }, + { + "start": 16459.44, + "end": 16463.8, + "probability": 0.9024 + }, + { + "start": 16464.3, + "end": 16466.72, + "probability": 0.9709 + }, + { + "start": 16467.56, + "end": 16468.64, + "probability": 0.8828 + }, + { + "start": 16468.78, + "end": 16474.26, + "probability": 0.8273 + }, + { + "start": 16474.74, + "end": 16475.52, + "probability": 0.7183 + }, + { + "start": 16476.2, + "end": 16480.84, + "probability": 0.9711 + }, + { + "start": 16481.56, + "end": 16483.78, + "probability": 0.9199 + }, + { + "start": 16484.62, + "end": 16487.2, + "probability": 0.9829 + }, + { + "start": 16487.3, + "end": 16487.94, + "probability": 0.7639 + }, + { + "start": 16487.98, + "end": 16488.6, + "probability": 0.512 + }, + { + "start": 16489.2, + "end": 16490.72, + "probability": 0.7738 + }, + { + "start": 16491.28, + "end": 16494.02, + "probability": 0.8118 + }, + { + "start": 16494.36, + "end": 16494.7, + "probability": 0.7497 + }, + { + "start": 16496.02, + "end": 16497.7, + "probability": 0.7969 + }, + { + "start": 16497.8, + "end": 16500.2, + "probability": 0.7725 + }, + { + "start": 16501.19, + "end": 16503.4, + "probability": 0.7583 + }, + { + "start": 16513.18, + "end": 16514.48, + "probability": 0.7111 + }, + { + "start": 16515.18, + "end": 16516.62, + "probability": 0.7156 + }, + { + "start": 16517.06, + "end": 16517.72, + "probability": 0.8957 + }, + { + "start": 16517.88, + "end": 16518.94, + "probability": 0.7367 + }, + { + "start": 16519.06, + "end": 16522.62, + "probability": 0.9978 + }, + { + "start": 16522.65, + "end": 16529.0, + "probability": 0.9873 + }, + { + "start": 16529.88, + "end": 16530.7, + "probability": 0.6452 + }, + { + "start": 16530.74, + "end": 16531.62, + "probability": 0.7808 + }, + { + "start": 16531.84, + "end": 16535.36, + "probability": 0.57 + }, + { + "start": 16535.48, + "end": 16539.24, + "probability": 0.9828 + }, + { + "start": 16539.84, + "end": 16540.54, + "probability": 0.8281 + }, + { + "start": 16541.04, + "end": 16546.72, + "probability": 0.9158 + }, + { + "start": 16547.14, + "end": 16547.77, + "probability": 0.9929 + }, + { + "start": 16548.56, + "end": 16548.56, + "probability": 0.0362 + }, + { + "start": 16548.56, + "end": 16549.38, + "probability": 0.5779 + }, + { + "start": 16549.52, + "end": 16550.72, + "probability": 0.6584 + }, + { + "start": 16550.8, + "end": 16551.58, + "probability": 0.592 + }, + { + "start": 16551.64, + "end": 16552.82, + "probability": 0.7068 + }, + { + "start": 16553.06, + "end": 16554.2, + "probability": 0.6607 + }, + { + "start": 16554.22, + "end": 16557.46, + "probability": 0.918 + }, + { + "start": 16557.54, + "end": 16558.58, + "probability": 0.5446 + }, + { + "start": 16559.95, + "end": 16564.16, + "probability": 0.6072 + }, + { + "start": 16564.46, + "end": 16565.31, + "probability": 0.9664 + }, + { + "start": 16565.98, + "end": 16567.38, + "probability": 0.4456 + }, + { + "start": 16567.44, + "end": 16569.08, + "probability": 0.7835 + }, + { + "start": 16569.26, + "end": 16573.84, + "probability": 0.9824 + }, + { + "start": 16574.08, + "end": 16575.42, + "probability": 0.9154 + }, + { + "start": 16576.02, + "end": 16579.6, + "probability": 0.9859 + }, + { + "start": 16579.9, + "end": 16584.32, + "probability": 0.9531 + }, + { + "start": 16584.84, + "end": 16586.18, + "probability": 0.7423 + }, + { + "start": 16586.56, + "end": 16594.46, + "probability": 0.9724 + }, + { + "start": 16595.44, + "end": 16599.4, + "probability": 0.9788 + }, + { + "start": 16599.84, + "end": 16600.18, + "probability": 0.8357 + }, + { + "start": 16601.08, + "end": 16606.22, + "probability": 0.6306 + }, + { + "start": 16607.46, + "end": 16610.88, + "probability": 0.9036 + }, + { + "start": 16611.46, + "end": 16612.6, + "probability": 0.7392 + }, + { + "start": 16613.16, + "end": 16614.26, + "probability": 0.7756 + }, + { + "start": 16614.4, + "end": 16617.12, + "probability": 0.9783 + }, + { + "start": 16617.58, + "end": 16618.92, + "probability": 0.8616 + }, + { + "start": 16619.02, + "end": 16622.82, + "probability": 0.988 + }, + { + "start": 16623.44, + "end": 16624.66, + "probability": 0.7461 + }, + { + "start": 16624.96, + "end": 16625.3, + "probability": 0.4707 + }, + { + "start": 16625.4, + "end": 16627.04, + "probability": 0.555 + }, + { + "start": 16627.22, + "end": 16629.1, + "probability": 0.8115 + }, + { + "start": 16629.46, + "end": 16632.12, + "probability": 0.9724 + }, + { + "start": 16633.12, + "end": 16636.2, + "probability": 0.8813 + }, + { + "start": 16636.7, + "end": 16637.28, + "probability": 0.4335 + }, + { + "start": 16637.6, + "end": 16638.48, + "probability": 0.4964 + }, + { + "start": 16638.96, + "end": 16639.12, + "probability": 0.1037 + }, + { + "start": 16639.14, + "end": 16642.6, + "probability": 0.981 + }, + { + "start": 16642.98, + "end": 16643.92, + "probability": 0.9382 + }, + { + "start": 16644.42, + "end": 16647.21, + "probability": 0.9905 + }, + { + "start": 16647.96, + "end": 16649.14, + "probability": 0.9023 + }, + { + "start": 16649.46, + "end": 16650.22, + "probability": 0.9094 + }, + { + "start": 16650.56, + "end": 16651.4, + "probability": 0.884 + }, + { + "start": 16651.84, + "end": 16653.72, + "probability": 0.9607 + }, + { + "start": 16654.18, + "end": 16655.98, + "probability": 0.6665 + }, + { + "start": 16656.42, + "end": 16657.34, + "probability": 0.8206 + }, + { + "start": 16657.74, + "end": 16658.56, + "probability": 0.7786 + }, + { + "start": 16658.98, + "end": 16659.9, + "probability": 0.6869 + }, + { + "start": 16659.98, + "end": 16662.62, + "probability": 0.9876 + }, + { + "start": 16662.96, + "end": 16665.44, + "probability": 0.9149 + }, + { + "start": 16665.86, + "end": 16666.64, + "probability": 0.8805 + }, + { + "start": 16667.04, + "end": 16667.46, + "probability": 0.8843 + }, + { + "start": 16671.24, + "end": 16673.42, + "probability": 0.7367 + }, + { + "start": 16673.46, + "end": 16674.98, + "probability": 0.9464 + }, + { + "start": 16675.76, + "end": 16678.24, + "probability": 0.9112 + }, + { + "start": 16678.92, + "end": 16681.28, + "probability": 0.8959 + }, + { + "start": 16682.18, + "end": 16684.28, + "probability": 0.9541 + }, + { + "start": 16691.1, + "end": 16693.0, + "probability": 0.6861 + }, + { + "start": 16700.38, + "end": 16702.86, + "probability": 0.5908 + }, + { + "start": 16705.34, + "end": 16708.56, + "probability": 0.998 + }, + { + "start": 16709.58, + "end": 16711.08, + "probability": 0.995 + }, + { + "start": 16712.2, + "end": 16712.8, + "probability": 0.9752 + }, + { + "start": 16714.74, + "end": 16718.58, + "probability": 0.9963 + }, + { + "start": 16718.96, + "end": 16721.24, + "probability": 0.7089 + }, + { + "start": 16722.48, + "end": 16725.54, + "probability": 0.9617 + }, + { + "start": 16725.68, + "end": 16726.48, + "probability": 0.984 + }, + { + "start": 16726.58, + "end": 16727.14, + "probability": 0.9318 + }, + { + "start": 16727.16, + "end": 16727.78, + "probability": 0.7446 + }, + { + "start": 16728.3, + "end": 16730.12, + "probability": 0.9893 + }, + { + "start": 16730.7, + "end": 16731.64, + "probability": 0.9688 + }, + { + "start": 16733.1, + "end": 16734.54, + "probability": 0.9955 + }, + { + "start": 16735.08, + "end": 16736.54, + "probability": 0.7316 + }, + { + "start": 16737.56, + "end": 16742.42, + "probability": 0.9688 + }, + { + "start": 16742.42, + "end": 16746.88, + "probability": 0.9968 + }, + { + "start": 16747.6, + "end": 16750.1, + "probability": 0.9692 + }, + { + "start": 16750.78, + "end": 16751.62, + "probability": 0.7029 + }, + { + "start": 16752.2, + "end": 16753.02, + "probability": 0.7357 + }, + { + "start": 16753.06, + "end": 16756.02, + "probability": 0.9497 + }, + { + "start": 16756.1, + "end": 16757.64, + "probability": 0.999 + }, + { + "start": 16758.34, + "end": 16761.58, + "probability": 0.9788 + }, + { + "start": 16762.24, + "end": 16770.34, + "probability": 0.8975 + }, + { + "start": 16770.5, + "end": 16771.52, + "probability": 0.9253 + }, + { + "start": 16772.74, + "end": 16774.76, + "probability": 0.7706 + }, + { + "start": 16774.92, + "end": 16777.66, + "probability": 0.9982 + }, + { + "start": 16778.1, + "end": 16780.02, + "probability": 0.9341 + }, + { + "start": 16780.98, + "end": 16781.56, + "probability": 0.7935 + }, + { + "start": 16781.66, + "end": 16781.76, + "probability": 0.8931 + }, + { + "start": 16781.84, + "end": 16785.92, + "probability": 0.9929 + }, + { + "start": 16786.04, + "end": 16786.39, + "probability": 0.5313 + }, + { + "start": 16786.62, + "end": 16788.5, + "probability": 0.9208 + }, + { + "start": 16789.74, + "end": 16793.88, + "probability": 0.8798 + }, + { + "start": 16794.52, + "end": 16796.44, + "probability": 0.926 + }, + { + "start": 16796.98, + "end": 16798.1, + "probability": 0.834 + }, + { + "start": 16799.1, + "end": 16802.22, + "probability": 0.9937 + }, + { + "start": 16803.48, + "end": 16806.04, + "probability": 0.991 + }, + { + "start": 16806.78, + "end": 16809.12, + "probability": 0.9774 + }, + { + "start": 16810.48, + "end": 16813.89, + "probability": 0.9912 + }, + { + "start": 16814.46, + "end": 16815.5, + "probability": 0.9009 + }, + { + "start": 16816.44, + "end": 16818.8, + "probability": 0.9858 + }, + { + "start": 16818.8, + "end": 16823.66, + "probability": 0.9935 + }, + { + "start": 16823.7, + "end": 16824.38, + "probability": 0.9091 + }, + { + "start": 16825.76, + "end": 16831.54, + "probability": 0.9933 + }, + { + "start": 16832.16, + "end": 16833.26, + "probability": 0.958 + }, + { + "start": 16834.1, + "end": 16837.34, + "probability": 0.9757 + }, + { + "start": 16838.02, + "end": 16841.48, + "probability": 0.9965 + }, + { + "start": 16842.48, + "end": 16843.02, + "probability": 0.9902 + }, + { + "start": 16843.86, + "end": 16846.18, + "probability": 0.9041 + }, + { + "start": 16846.22, + "end": 16847.36, + "probability": 0.6264 + }, + { + "start": 16848.06, + "end": 16851.92, + "probability": 0.9941 + }, + { + "start": 16852.8, + "end": 16853.52, + "probability": 0.8572 + }, + { + "start": 16854.2, + "end": 16856.22, + "probability": 0.9839 + }, + { + "start": 16856.54, + "end": 16860.58, + "probability": 0.8696 + }, + { + "start": 16861.2, + "end": 16861.42, + "probability": 0.0873 + }, + { + "start": 16861.62, + "end": 16862.94, + "probability": 0.7455 + }, + { + "start": 16863.04, + "end": 16863.62, + "probability": 0.9698 + }, + { + "start": 16863.72, + "end": 16864.68, + "probability": 0.9846 + }, + { + "start": 16865.38, + "end": 16869.0, + "probability": 0.9569 + }, + { + "start": 16869.36, + "end": 16870.32, + "probability": 0.9115 + }, + { + "start": 16871.02, + "end": 16873.34, + "probability": 0.9453 + }, + { + "start": 16873.72, + "end": 16876.8, + "probability": 0.9954 + }, + { + "start": 16876.8, + "end": 16879.58, + "probability": 0.9976 + }, + { + "start": 16879.94, + "end": 16881.88, + "probability": 0.7616 + }, + { + "start": 16882.16, + "end": 16884.04, + "probability": 0.9779 + }, + { + "start": 16884.5, + "end": 16887.38, + "probability": 0.9302 + }, + { + "start": 16888.14, + "end": 16889.56, + "probability": 0.7576 + }, + { + "start": 16889.56, + "end": 16890.4, + "probability": 0.9418 + }, + { + "start": 16890.72, + "end": 16893.16, + "probability": 0.9834 + }, + { + "start": 16893.28, + "end": 16893.76, + "probability": 0.9819 + }, + { + "start": 16893.88, + "end": 16894.26, + "probability": 0.9647 + }, + { + "start": 16894.52, + "end": 16895.94, + "probability": 0.9972 + }, + { + "start": 16896.28, + "end": 16896.56, + "probability": 0.881 + }, + { + "start": 16896.8, + "end": 16898.52, + "probability": 0.9714 + }, + { + "start": 16898.58, + "end": 16899.52, + "probability": 0.6478 + }, + { + "start": 16902.1, + "end": 16904.4, + "probability": 0.8597 + }, + { + "start": 16923.38, + "end": 16924.72, + "probability": 0.7144 + }, + { + "start": 16926.54, + "end": 16932.76, + "probability": 0.9084 + }, + { + "start": 16933.46, + "end": 16934.5, + "probability": 0.6861 + }, + { + "start": 16935.08, + "end": 16935.92, + "probability": 0.9705 + }, + { + "start": 16936.6, + "end": 16937.54, + "probability": 0.9125 + }, + { + "start": 16938.18, + "end": 16938.8, + "probability": 0.8748 + }, + { + "start": 16940.14, + "end": 16941.01, + "probability": 0.8813 + }, + { + "start": 16941.56, + "end": 16949.08, + "probability": 0.958 + }, + { + "start": 16949.26, + "end": 16950.46, + "probability": 0.4806 + }, + { + "start": 16951.14, + "end": 16953.18, + "probability": 0.9438 + }, + { + "start": 16954.4, + "end": 16958.26, + "probability": 0.9785 + }, + { + "start": 16958.32, + "end": 16962.1, + "probability": 0.9949 + }, + { + "start": 16962.54, + "end": 16964.14, + "probability": 0.6285 + }, + { + "start": 16964.5, + "end": 16965.44, + "probability": 0.7392 + }, + { + "start": 16965.86, + "end": 16970.66, + "probability": 0.9739 + }, + { + "start": 16971.32, + "end": 16972.7, + "probability": 0.8216 + }, + { + "start": 16973.16, + "end": 16975.7, + "probability": 0.9465 + }, + { + "start": 16976.22, + "end": 16979.64, + "probability": 0.9645 + }, + { + "start": 16980.94, + "end": 16985.28, + "probability": 0.9901 + }, + { + "start": 16986.62, + "end": 16987.76, + "probability": 0.9092 + }, + { + "start": 16988.1, + "end": 16991.44, + "probability": 0.8655 + }, + { + "start": 16991.88, + "end": 16995.28, + "probability": 0.8274 + }, + { + "start": 16996.94, + "end": 16998.36, + "probability": 0.6158 + }, + { + "start": 16999.04, + "end": 17000.22, + "probability": 0.7306 + }, + { + "start": 17001.14, + "end": 17002.86, + "probability": 0.9483 + }, + { + "start": 17003.42, + "end": 17005.6, + "probability": 0.8869 + }, + { + "start": 17006.2, + "end": 17009.68, + "probability": 0.9956 + }, + { + "start": 17009.68, + "end": 17012.46, + "probability": 0.9971 + }, + { + "start": 17013.54, + "end": 17016.88, + "probability": 0.9658 + }, + { + "start": 17017.94, + "end": 17020.72, + "probability": 0.7295 + }, + { + "start": 17021.48, + "end": 17023.78, + "probability": 0.7781 + }, + { + "start": 17024.32, + "end": 17027.4, + "probability": 0.8563 + }, + { + "start": 17028.18, + "end": 17030.32, + "probability": 0.5917 + }, + { + "start": 17030.4, + "end": 17031.24, + "probability": 0.7672 + }, + { + "start": 17031.66, + "end": 17034.18, + "probability": 0.5365 + }, + { + "start": 17034.7, + "end": 17037.84, + "probability": 0.5845 + }, + { + "start": 17038.54, + "end": 17040.7, + "probability": 0.7548 + }, + { + "start": 17040.86, + "end": 17042.94, + "probability": 0.6122 + }, + { + "start": 17043.64, + "end": 17045.48, + "probability": 0.818 + }, + { + "start": 17045.56, + "end": 17047.1, + "probability": 0.6788 + }, + { + "start": 17047.12, + "end": 17049.14, + "probability": 0.716 + }, + { + "start": 17049.78, + "end": 17052.72, + "probability": 0.741 + }, + { + "start": 17053.28, + "end": 17054.5, + "probability": 0.4714 + }, + { + "start": 17054.54, + "end": 17055.8, + "probability": 0.7232 + }, + { + "start": 17056.2, + "end": 17058.88, + "probability": 0.695 + }, + { + "start": 17058.98, + "end": 17061.4, + "probability": 0.8145 + }, + { + "start": 17062.06, + "end": 17062.86, + "probability": 0.4162 + }, + { + "start": 17063.42, + "end": 17068.28, + "probability": 0.6794 + }, + { + "start": 17068.84, + "end": 17072.24, + "probability": 0.8744 + }, + { + "start": 17072.84, + "end": 17073.3, + "probability": 0.8072 + }, + { + "start": 17074.26, + "end": 17076.06, + "probability": 0.4358 + }, + { + "start": 17076.46, + "end": 17078.08, + "probability": 0.9703 + }, + { + "start": 17078.12, + "end": 17080.2, + "probability": 0.9873 + }, + { + "start": 17080.58, + "end": 17086.2, + "probability": 0.937 + }, + { + "start": 17086.5, + "end": 17091.38, + "probability": 0.9866 + }, + { + "start": 17091.7, + "end": 17093.04, + "probability": 0.999 + }, + { + "start": 17093.42, + "end": 17098.46, + "probability": 0.9906 + }, + { + "start": 17099.06, + "end": 17099.56, + "probability": 0.8466 + }, + { + "start": 17100.36, + "end": 17101.9, + "probability": 0.9517 + }, + { + "start": 17102.12, + "end": 17103.58, + "probability": 0.7413 + }, + { + "start": 17103.7, + "end": 17105.84, + "probability": 0.0978 + }, + { + "start": 17106.35, + "end": 17110.08, + "probability": 0.5055 + }, + { + "start": 17117.6, + "end": 17118.5, + "probability": 0.3613 + }, + { + "start": 17118.5, + "end": 17121.18, + "probability": 0.512 + }, + { + "start": 17121.84, + "end": 17122.92, + "probability": 0.7839 + }, + { + "start": 17123.22, + "end": 17123.68, + "probability": 0.4837 + }, + { + "start": 17123.7, + "end": 17127.5, + "probability": 0.7785 + }, + { + "start": 17127.66, + "end": 17129.8, + "probability": 0.9719 + }, + { + "start": 17129.98, + "end": 17131.1, + "probability": 0.8041 + }, + { + "start": 17131.9, + "end": 17137.48, + "probability": 0.9292 + }, + { + "start": 17138.24, + "end": 17146.38, + "probability": 0.9846 + }, + { + "start": 17147.06, + "end": 17150.9, + "probability": 0.9834 + }, + { + "start": 17151.78, + "end": 17153.98, + "probability": 0.8604 + }, + { + "start": 17154.6, + "end": 17156.06, + "probability": 0.9175 + }, + { + "start": 17156.6, + "end": 17157.98, + "probability": 0.5969 + }, + { + "start": 17158.6, + "end": 17161.58, + "probability": 0.6281 + }, + { + "start": 17161.76, + "end": 17162.51, + "probability": 0.9119 + }, + { + "start": 17162.94, + "end": 17168.04, + "probability": 0.9476 + }, + { + "start": 17168.92, + "end": 17169.52, + "probability": 0.9056 + }, + { + "start": 17170.48, + "end": 17172.98, + "probability": 0.6345 + }, + { + "start": 17173.64, + "end": 17176.76, + "probability": 0.9008 + }, + { + "start": 17177.22, + "end": 17180.2, + "probability": 0.9568 + }, + { + "start": 17180.82, + "end": 17181.31, + "probability": 0.8242 + }, + { + "start": 17181.46, + "end": 17182.14, + "probability": 0.7432 + }, + { + "start": 17182.28, + "end": 17184.64, + "probability": 0.9811 + }, + { + "start": 17185.5, + "end": 17186.98, + "probability": 0.985 + }, + { + "start": 17187.82, + "end": 17192.22, + "probability": 0.8181 + }, + { + "start": 17192.7, + "end": 17197.04, + "probability": 0.9956 + }, + { + "start": 17197.5, + "end": 17205.28, + "probability": 0.9891 + }, + { + "start": 17206.14, + "end": 17208.66, + "probability": 0.9954 + }, + { + "start": 17209.46, + "end": 17215.8, + "probability": 0.9081 + }, + { + "start": 17216.56, + "end": 17218.66, + "probability": 0.9178 + }, + { + "start": 17219.16, + "end": 17222.06, + "probability": 0.99 + }, + { + "start": 17222.68, + "end": 17228.42, + "probability": 0.9897 + }, + { + "start": 17228.64, + "end": 17234.76, + "probability": 0.734 + }, + { + "start": 17235.5, + "end": 17236.9, + "probability": 0.6077 + }, + { + "start": 17237.52, + "end": 17242.48, + "probability": 0.9855 + }, + { + "start": 17243.02, + "end": 17243.86, + "probability": 0.8587 + }, + { + "start": 17245.6, + "end": 17248.16, + "probability": 0.9912 + }, + { + "start": 17248.16, + "end": 17251.2, + "probability": 0.9817 + }, + { + "start": 17251.9, + "end": 17255.66, + "probability": 0.9626 + }, + { + "start": 17255.8, + "end": 17256.9, + "probability": 0.7564 + }, + { + "start": 17257.94, + "end": 17260.68, + "probability": 0.746 + }, + { + "start": 17261.46, + "end": 17262.04, + "probability": 0.8735 + }, + { + "start": 17262.76, + "end": 17267.06, + "probability": 0.6353 + }, + { + "start": 17267.28, + "end": 17273.42, + "probability": 0.97 + }, + { + "start": 17273.52, + "end": 17275.96, + "probability": 0.8613 + }, + { + "start": 17276.5, + "end": 17277.04, + "probability": 0.4881 + }, + { + "start": 17277.2, + "end": 17280.88, + "probability": 0.8828 + }, + { + "start": 17281.4, + "end": 17287.6, + "probability": 0.9934 + }, + { + "start": 17287.82, + "end": 17289.04, + "probability": 0.846 + }, + { + "start": 17289.62, + "end": 17292.6, + "probability": 0.9807 + }, + { + "start": 17292.6, + "end": 17295.3, + "probability": 0.9548 + }, + { + "start": 17295.78, + "end": 17300.18, + "probability": 0.9933 + }, + { + "start": 17300.68, + "end": 17302.9, + "probability": 0.8492 + }, + { + "start": 17302.98, + "end": 17310.46, + "probability": 0.8436 + }, + { + "start": 17310.58, + "end": 17311.06, + "probability": 0.3296 + }, + { + "start": 17311.06, + "end": 17313.42, + "probability": 0.6014 + }, + { + "start": 17313.7, + "end": 17316.08, + "probability": 0.961 + }, + { + "start": 17316.18, + "end": 17317.44, + "probability": 0.686 + }, + { + "start": 17318.18, + "end": 17319.6, + "probability": 0.6095 + }, + { + "start": 17319.6, + "end": 17320.94, + "probability": 0.8026 + }, + { + "start": 17321.28, + "end": 17323.9, + "probability": 0.9735 + }, + { + "start": 17324.02, + "end": 17330.54, + "probability": 0.9191 + }, + { + "start": 17330.54, + "end": 17335.5, + "probability": 0.8258 + }, + { + "start": 17335.62, + "end": 17335.72, + "probability": 0.5276 + }, + { + "start": 17336.1, + "end": 17337.36, + "probability": 0.9023 + }, + { + "start": 17337.4, + "end": 17341.54, + "probability": 0.8951 + }, + { + "start": 17341.64, + "end": 17343.64, + "probability": 0.8387 + }, + { + "start": 17343.7, + "end": 17347.3, + "probability": 0.9955 + }, + { + "start": 17347.38, + "end": 17347.58, + "probability": 0.8606 + }, + { + "start": 17348.42, + "end": 17348.88, + "probability": 0.1142 + }, + { + "start": 17348.88, + "end": 17348.88, + "probability": 0.098 + }, + { + "start": 17348.88, + "end": 17349.44, + "probability": 0.4845 + }, + { + "start": 17349.98, + "end": 17352.68, + "probability": 0.5324 + }, + { + "start": 17353.72, + "end": 17355.2, + "probability": 0.7299 + }, + { + "start": 17387.48, + "end": 17388.26, + "probability": 0.6535 + }, + { + "start": 17390.6, + "end": 17394.86, + "probability": 0.9445 + }, + { + "start": 17395.8, + "end": 17396.86, + "probability": 0.9215 + }, + { + "start": 17398.86, + "end": 17403.74, + "probability": 0.9943 + }, + { + "start": 17405.02, + "end": 17406.66, + "probability": 0.9927 + }, + { + "start": 17406.76, + "end": 17407.5, + "probability": 0.9795 + }, + { + "start": 17407.68, + "end": 17408.44, + "probability": 0.8883 + }, + { + "start": 17408.52, + "end": 17409.34, + "probability": 0.4315 + }, + { + "start": 17410.52, + "end": 17412.18, + "probability": 0.8538 + }, + { + "start": 17412.34, + "end": 17421.28, + "probability": 0.7674 + }, + { + "start": 17421.66, + "end": 17423.58, + "probability": 0.8592 + }, + { + "start": 17423.6, + "end": 17429.42, + "probability": 0.984 + }, + { + "start": 17430.16, + "end": 17434.24, + "probability": 0.9591 + }, + { + "start": 17436.6, + "end": 17445.18, + "probability": 0.9973 + }, + { + "start": 17445.44, + "end": 17445.98, + "probability": 0.9874 + }, + { + "start": 17446.64, + "end": 17449.06, + "probability": 0.9682 + }, + { + "start": 17451.38, + "end": 17454.2, + "probability": 0.9858 + }, + { + "start": 17455.04, + "end": 17456.62, + "probability": 0.9722 + }, + { + "start": 17457.42, + "end": 17461.98, + "probability": 0.98 + }, + { + "start": 17462.6, + "end": 17464.54, + "probability": 0.9128 + }, + { + "start": 17465.72, + "end": 17466.76, + "probability": 0.9947 + }, + { + "start": 17467.32, + "end": 17468.36, + "probability": 0.8997 + }, + { + "start": 17469.5, + "end": 17471.58, + "probability": 0.9928 + }, + { + "start": 17472.8, + "end": 17475.08, + "probability": 0.9921 + }, + { + "start": 17476.26, + "end": 17477.72, + "probability": 0.708 + }, + { + "start": 17478.34, + "end": 17479.4, + "probability": 0.7098 + }, + { + "start": 17480.02, + "end": 17484.82, + "probability": 0.9985 + }, + { + "start": 17485.64, + "end": 17488.7, + "probability": 0.98 + }, + { + "start": 17489.22, + "end": 17492.5, + "probability": 0.9955 + }, + { + "start": 17493.46, + "end": 17495.04, + "probability": 0.8304 + }, + { + "start": 17495.6, + "end": 17497.18, + "probability": 0.9089 + }, + { + "start": 17497.54, + "end": 17501.9, + "probability": 0.9937 + }, + { + "start": 17502.56, + "end": 17504.3, + "probability": 0.8867 + }, + { + "start": 17504.84, + "end": 17506.98, + "probability": 0.908 + }, + { + "start": 17507.54, + "end": 17508.6, + "probability": 0.9986 + }, + { + "start": 17509.16, + "end": 17511.06, + "probability": 0.9249 + }, + { + "start": 17511.18, + "end": 17512.08, + "probability": 0.9721 + }, + { + "start": 17512.56, + "end": 17516.9, + "probability": 0.9798 + }, + { + "start": 17517.44, + "end": 17518.46, + "probability": 0.9983 + }, + { + "start": 17518.98, + "end": 17522.26, + "probability": 0.9653 + }, + { + "start": 17522.64, + "end": 17524.74, + "probability": 0.9951 + }, + { + "start": 17525.06, + "end": 17527.34, + "probability": 0.9729 + }, + { + "start": 17528.48, + "end": 17530.34, + "probability": 0.9209 + }, + { + "start": 17530.48, + "end": 17531.72, + "probability": 0.7513 + }, + { + "start": 17531.94, + "end": 17533.48, + "probability": 0.9622 + }, + { + "start": 17534.1, + "end": 17538.64, + "probability": 0.9613 + }, + { + "start": 17539.74, + "end": 17544.42, + "probability": 0.9644 + }, + { + "start": 17545.16, + "end": 17548.94, + "probability": 0.9971 + }, + { + "start": 17549.88, + "end": 17555.2, + "probability": 0.9971 + }, + { + "start": 17555.92, + "end": 17557.24, + "probability": 0.7605 + }, + { + "start": 17557.94, + "end": 17559.58, + "probability": 0.662 + }, + { + "start": 17560.06, + "end": 17563.82, + "probability": 0.8294 + }, + { + "start": 17564.24, + "end": 17566.04, + "probability": 0.7759 + }, + { + "start": 17566.66, + "end": 17572.94, + "probability": 0.9868 + }, + { + "start": 17573.62, + "end": 17576.6, + "probability": 0.8803 + }, + { + "start": 17577.18, + "end": 17580.14, + "probability": 0.9001 + }, + { + "start": 17580.58, + "end": 17582.62, + "probability": 0.996 + }, + { + "start": 17583.04, + "end": 17587.76, + "probability": 0.9913 + }, + { + "start": 17587.86, + "end": 17590.62, + "probability": 0.8612 + }, + { + "start": 17590.98, + "end": 17592.36, + "probability": 0.9411 + }, + { + "start": 17593.04, + "end": 17594.98, + "probability": 0.7811 + }, + { + "start": 17595.12, + "end": 17596.38, + "probability": 0.8802 + }, + { + "start": 17609.24, + "end": 17609.24, + "probability": 0.2448 + }, + { + "start": 17609.24, + "end": 17609.24, + "probability": 0.0193 + }, + { + "start": 17609.24, + "end": 17609.26, + "probability": 0.1501 + }, + { + "start": 17609.26, + "end": 17609.26, + "probability": 0.1535 + }, + { + "start": 17609.26, + "end": 17609.26, + "probability": 0.0427 + }, + { + "start": 17609.26, + "end": 17609.26, + "probability": 0.0505 + }, + { + "start": 17627.76, + "end": 17631.74, + "probability": 0.4079 + }, + { + "start": 17631.78, + "end": 17634.72, + "probability": 0.9684 + }, + { + "start": 17636.66, + "end": 17640.26, + "probability": 0.9852 + }, + { + "start": 17641.3, + "end": 17642.52, + "probability": 0.9689 + }, + { + "start": 17643.28, + "end": 17645.06, + "probability": 0.8149 + }, + { + "start": 17645.74, + "end": 17648.42, + "probability": 0.9041 + }, + { + "start": 17649.34, + "end": 17656.7, + "probability": 0.9862 + }, + { + "start": 17656.84, + "end": 17663.16, + "probability": 0.9957 + }, + { + "start": 17664.18, + "end": 17665.56, + "probability": 0.9884 + }, + { + "start": 17666.36, + "end": 17667.88, + "probability": 0.9727 + }, + { + "start": 17668.26, + "end": 17671.44, + "probability": 0.852 + }, + { + "start": 17671.96, + "end": 17672.86, + "probability": 0.8821 + }, + { + "start": 17673.48, + "end": 17674.38, + "probability": 0.9279 + }, + { + "start": 17675.58, + "end": 17676.76, + "probability": 0.6664 + }, + { + "start": 17677.64, + "end": 17679.8, + "probability": 0.9895 + }, + { + "start": 17680.8, + "end": 17683.81, + "probability": 0.8893 + }, + { + "start": 17684.46, + "end": 17686.18, + "probability": 0.9863 + }, + { + "start": 17686.74, + "end": 17687.9, + "probability": 0.8106 + }, + { + "start": 17688.08, + "end": 17691.42, + "probability": 0.9789 + }, + { + "start": 17691.9, + "end": 17693.71, + "probability": 0.937 + }, + { + "start": 17694.38, + "end": 17697.3, + "probability": 0.9075 + }, + { + "start": 17698.02, + "end": 17701.18, + "probability": 0.9761 + }, + { + "start": 17701.9, + "end": 17704.12, + "probability": 0.991 + }, + { + "start": 17704.96, + "end": 17706.08, + "probability": 0.8982 + }, + { + "start": 17706.68, + "end": 17712.04, + "probability": 0.9783 + }, + { + "start": 17713.22, + "end": 17714.54, + "probability": 0.9149 + }, + { + "start": 17715.68, + "end": 17720.72, + "probability": 0.9949 + }, + { + "start": 17721.84, + "end": 17727.58, + "probability": 0.9883 + }, + { + "start": 17728.38, + "end": 17730.6, + "probability": 0.9886 + }, + { + "start": 17730.68, + "end": 17731.97, + "probability": 0.9858 + }, + { + "start": 17732.86, + "end": 17733.44, + "probability": 0.9656 + }, + { + "start": 17736.92, + "end": 17740.48, + "probability": 0.5405 + }, + { + "start": 17741.62, + "end": 17741.74, + "probability": 0.5649 + }, + { + "start": 17741.74, + "end": 17742.0, + "probability": 0.9608 + }, + { + "start": 17744.5, + "end": 17745.64, + "probability": 0.1692 + }, + { + "start": 17745.64, + "end": 17745.86, + "probability": 0.4229 + }, + { + "start": 17747.5, + "end": 17748.44, + "probability": 0.5793 + }, + { + "start": 17749.3, + "end": 17751.92, + "probability": 0.9525 + }, + { + "start": 17753.98, + "end": 17757.3, + "probability": 0.9848 + }, + { + "start": 17757.5, + "end": 17759.29, + "probability": 0.9963 + }, + { + "start": 17760.16, + "end": 17764.62, + "probability": 0.9904 + }, + { + "start": 17765.28, + "end": 17765.92, + "probability": 0.6042 + }, + { + "start": 17766.38, + "end": 17770.14, + "probability": 0.9938 + }, + { + "start": 17770.14, + "end": 17773.38, + "probability": 0.9189 + }, + { + "start": 17774.5, + "end": 17776.62, + "probability": 0.9979 + }, + { + "start": 17776.62, + "end": 17779.96, + "probability": 0.998 + }, + { + "start": 17780.46, + "end": 17782.84, + "probability": 0.7819 + }, + { + "start": 17783.6, + "end": 17786.22, + "probability": 0.6106 + }, + { + "start": 17786.38, + "end": 17788.5, + "probability": 0.9668 + }, + { + "start": 17788.6, + "end": 17790.52, + "probability": 0.9773 + }, + { + "start": 17790.94, + "end": 17795.11, + "probability": 0.9939 + }, + { + "start": 17795.5, + "end": 17796.5, + "probability": 0.8858 + }, + { + "start": 17796.66, + "end": 17797.66, + "probability": 0.6081 + }, + { + "start": 17798.36, + "end": 17802.74, + "probability": 0.9958 + }, + { + "start": 17803.79, + "end": 17804.97, + "probability": 0.9634 + }, + { + "start": 17805.68, + "end": 17807.96, + "probability": 0.9989 + }, + { + "start": 17808.5, + "end": 17814.02, + "probability": 0.9705 + }, + { + "start": 17814.2, + "end": 17817.56, + "probability": 0.8582 + }, + { + "start": 17818.0, + "end": 17820.16, + "probability": 0.8317 + }, + { + "start": 17820.76, + "end": 17821.72, + "probability": 0.8197 + }, + { + "start": 17822.38, + "end": 17822.84, + "probability": 0.4444 + }, + { + "start": 17823.96, + "end": 17826.3, + "probability": 0.9133 + }, + { + "start": 17826.82, + "end": 17827.4, + "probability": 0.7495 + }, + { + "start": 17827.62, + "end": 17827.98, + "probability": 0.5004 + }, + { + "start": 17828.0, + "end": 17832.9, + "probability": 0.9117 + }, + { + "start": 17833.62, + "end": 17837.46, + "probability": 0.8034 + }, + { + "start": 17837.6, + "end": 17838.25, + "probability": 0.771 + }, + { + "start": 17839.02, + "end": 17841.62, + "probability": 0.8549 + }, + { + "start": 17841.64, + "end": 17842.06, + "probability": 0.6821 + }, + { + "start": 17842.2, + "end": 17843.99, + "probability": 0.7024 + }, + { + "start": 17844.28, + "end": 17846.76, + "probability": 0.7599 + }, + { + "start": 17847.4, + "end": 17848.08, + "probability": 0.7044 + }, + { + "start": 17848.18, + "end": 17849.32, + "probability": 0.7297 + }, + { + "start": 17849.44, + "end": 17852.2, + "probability": 0.9566 + }, + { + "start": 17852.2, + "end": 17856.82, + "probability": 0.9941 + }, + { + "start": 17856.92, + "end": 17859.46, + "probability": 0.8671 + }, + { + "start": 17860.2, + "end": 17861.74, + "probability": 0.9851 + }, + { + "start": 17862.28, + "end": 17866.72, + "probability": 0.9953 + }, + { + "start": 17866.92, + "end": 17867.4, + "probability": 0.5617 + }, + { + "start": 17867.56, + "end": 17868.2, + "probability": 0.9897 + }, + { + "start": 17868.32, + "end": 17869.94, + "probability": 0.8803 + }, + { + "start": 17870.44, + "end": 17873.8, + "probability": 0.9858 + }, + { + "start": 17874.34, + "end": 17876.94, + "probability": 0.9927 + }, + { + "start": 17877.54, + "end": 17881.8, + "probability": 0.998 + }, + { + "start": 17881.8, + "end": 17886.12, + "probability": 0.9807 + }, + { + "start": 17886.28, + "end": 17887.08, + "probability": 0.9728 + }, + { + "start": 17887.34, + "end": 17888.58, + "probability": 0.6412 + }, + { + "start": 17889.16, + "end": 17893.72, + "probability": 0.9569 + }, + { + "start": 17893.78, + "end": 17894.8, + "probability": 0.9534 + }, + { + "start": 17895.24, + "end": 17899.4, + "probability": 0.9965 + }, + { + "start": 17899.8, + "end": 17900.16, + "probability": 0.7505 + }, + { + "start": 17900.48, + "end": 17902.28, + "probability": 0.8162 + }, + { + "start": 17902.76, + "end": 17905.06, + "probability": 0.872 + }, + { + "start": 17915.36, + "end": 17916.56, + "probability": 0.463 + }, + { + "start": 17917.68, + "end": 17921.7, + "probability": 0.7698 + }, + { + "start": 17921.7, + "end": 17927.12, + "probability": 0.7544 + }, + { + "start": 17927.98, + "end": 17928.36, + "probability": 0.518 + }, + { + "start": 17928.46, + "end": 17932.34, + "probability": 0.8946 + }, + { + "start": 17933.16, + "end": 17935.86, + "probability": 0.7665 + }, + { + "start": 17936.3, + "end": 17937.04, + "probability": 0.2348 + }, + { + "start": 17937.04, + "end": 17938.66, + "probability": 0.7523 + }, + { + "start": 17939.24, + "end": 17943.88, + "probability": 0.9888 + }, + { + "start": 17943.96, + "end": 17945.7, + "probability": 0.6879 + }, + { + "start": 17946.56, + "end": 17950.84, + "probability": 0.6654 + }, + { + "start": 17951.34, + "end": 17952.16, + "probability": 0.9428 + }, + { + "start": 17952.32, + "end": 17954.48, + "probability": 0.8755 + }, + { + "start": 17954.98, + "end": 17959.46, + "probability": 0.8291 + }, + { + "start": 17960.38, + "end": 17960.68, + "probability": 0.5124 + }, + { + "start": 17961.98, + "end": 17965.46, + "probability": 0.9431 + }, + { + "start": 17965.54, + "end": 17969.52, + "probability": 0.9946 + }, + { + "start": 17970.18, + "end": 17974.16, + "probability": 0.9461 + }, + { + "start": 17974.34, + "end": 17975.78, + "probability": 0.9266 + }, + { + "start": 17976.26, + "end": 17978.28, + "probability": 0.9861 + }, + { + "start": 17978.74, + "end": 17982.06, + "probability": 0.8035 + }, + { + "start": 17982.06, + "end": 17986.18, + "probability": 0.9969 + }, + { + "start": 17987.6, + "end": 17992.08, + "probability": 0.9989 + }, + { + "start": 17992.84, + "end": 17996.68, + "probability": 0.9561 + }, + { + "start": 17997.12, + "end": 17999.64, + "probability": 0.9183 + }, + { + "start": 18000.36, + "end": 18003.18, + "probability": 0.9786 + }, + { + "start": 18004.08, + "end": 18006.12, + "probability": 0.989 + }, + { + "start": 18006.18, + "end": 18009.74, + "probability": 0.7666 + }, + { + "start": 18010.86, + "end": 18011.04, + "probability": 0.317 + }, + { + "start": 18011.24, + "end": 18013.48, + "probability": 0.9939 + }, + { + "start": 18013.88, + "end": 18016.72, + "probability": 0.9786 + }, + { + "start": 18017.36, + "end": 18023.44, + "probability": 0.9883 + }, + { + "start": 18024.48, + "end": 18029.92, + "probability": 0.9722 + }, + { + "start": 18030.56, + "end": 18033.18, + "probability": 0.9828 + }, + { + "start": 18033.84, + "end": 18036.28, + "probability": 0.9482 + }, + { + "start": 18036.84, + "end": 18037.96, + "probability": 0.7574 + }, + { + "start": 18038.7, + "end": 18041.9, + "probability": 0.9937 + }, + { + "start": 18042.54, + "end": 18045.94, + "probability": 0.9963 + }, + { + "start": 18046.6, + "end": 18048.7, + "probability": 0.9671 + }, + { + "start": 18050.0, + "end": 18053.6, + "probability": 0.9744 + }, + { + "start": 18054.2, + "end": 18054.76, + "probability": 0.9667 + }, + { + "start": 18055.18, + "end": 18057.32, + "probability": 0.9719 + }, + { + "start": 18057.58, + "end": 18058.34, + "probability": 0.4891 + }, + { + "start": 18058.84, + "end": 18062.52, + "probability": 0.6868 + }, + { + "start": 18063.48, + "end": 18069.0, + "probability": 0.9896 + }, + { + "start": 18069.0, + "end": 18072.66, + "probability": 0.9523 + }, + { + "start": 18073.26, + "end": 18077.48, + "probability": 0.9795 + }, + { + "start": 18078.4, + "end": 18078.94, + "probability": 0.9771 + }, + { + "start": 18079.94, + "end": 18081.62, + "probability": 0.9951 + }, + { + "start": 18081.68, + "end": 18083.94, + "probability": 0.9929 + }, + { + "start": 18084.3, + "end": 18085.62, + "probability": 0.9521 + }, + { + "start": 18085.72, + "end": 18087.74, + "probability": 0.9547 + }, + { + "start": 18088.28, + "end": 18089.38, + "probability": 0.8315 + }, + { + "start": 18090.04, + "end": 18092.26, + "probability": 0.9965 + }, + { + "start": 18092.26, + "end": 18095.84, + "probability": 0.9594 + }, + { + "start": 18096.48, + "end": 18098.01, + "probability": 0.9863 + }, + { + "start": 18098.12, + "end": 18098.5, + "probability": 0.4773 + }, + { + "start": 18098.9, + "end": 18101.06, + "probability": 0.8265 + }, + { + "start": 18101.44, + "end": 18103.36, + "probability": 0.9434 + }, + { + "start": 18103.74, + "end": 18105.3, + "probability": 0.858 + }, + { + "start": 18105.92, + "end": 18106.88, + "probability": 0.6782 + }, + { + "start": 18107.5, + "end": 18109.0, + "probability": 0.834 + }, + { + "start": 18109.52, + "end": 18110.9, + "probability": 0.9861 + }, + { + "start": 18111.38, + "end": 18116.08, + "probability": 0.9782 + }, + { + "start": 18116.2, + "end": 18116.58, + "probability": 0.4004 + }, + { + "start": 18117.48, + "end": 18119.48, + "probability": 0.7795 + }, + { + "start": 18119.62, + "end": 18120.64, + "probability": 0.9701 + }, + { + "start": 18121.22, + "end": 18121.9, + "probability": 0.5267 + }, + { + "start": 18123.16, + "end": 18123.44, + "probability": 0.757 + }, + { + "start": 18123.54, + "end": 18125.7, + "probability": 0.9832 + }, + { + "start": 18125.7, + "end": 18129.38, + "probability": 0.7899 + }, + { + "start": 18129.5, + "end": 18129.5, + "probability": 0.0424 + }, + { + "start": 18129.5, + "end": 18129.5, + "probability": 0.3214 + }, + { + "start": 18129.5, + "end": 18132.7, + "probability": 0.8774 + }, + { + "start": 18133.16, + "end": 18134.86, + "probability": 0.9077 + }, + { + "start": 18136.16, + "end": 18138.16, + "probability": 0.7956 + }, + { + "start": 18138.16, + "end": 18140.78, + "probability": 0.9424 + }, + { + "start": 18141.14, + "end": 18144.7, + "probability": 0.9761 + }, + { + "start": 18144.7, + "end": 18148.04, + "probability": 0.905 + }, + { + "start": 18148.72, + "end": 18152.76, + "probability": 0.6777 + }, + { + "start": 18153.1, + "end": 18157.48, + "probability": 0.8642 + }, + { + "start": 18157.52, + "end": 18157.64, + "probability": 0.2551 + }, + { + "start": 18157.76, + "end": 18160.7, + "probability": 0.9828 + }, + { + "start": 18161.18, + "end": 18161.18, + "probability": 0.5201 + }, + { + "start": 18161.18, + "end": 18163.24, + "probability": 0.6861 + }, + { + "start": 18163.74, + "end": 18165.62, + "probability": 0.5812 + }, + { + "start": 18165.88, + "end": 18166.64, + "probability": 0.6852 + }, + { + "start": 18166.78, + "end": 18168.16, + "probability": 0.8831 + }, + { + "start": 18168.2, + "end": 18169.6, + "probability": 0.9446 + }, + { + "start": 18170.04, + "end": 18171.34, + "probability": 0.8482 + }, + { + "start": 18172.46, + "end": 18173.2, + "probability": 0.8934 + }, + { + "start": 18173.64, + "end": 18175.3, + "probability": 0.9862 + }, + { + "start": 18178.54, + "end": 18180.58, + "probability": 0.9526 + }, + { + "start": 18181.7, + "end": 18183.0, + "probability": 0.9809 + }, + { + "start": 18184.66, + "end": 18185.54, + "probability": 0.7837 + }, + { + "start": 18186.14, + "end": 18188.36, + "probability": 0.8537 + }, + { + "start": 18189.86, + "end": 18190.68, + "probability": 0.929 + }, + { + "start": 18191.36, + "end": 18192.74, + "probability": 0.9932 + }, + { + "start": 18193.8, + "end": 18194.64, + "probability": 0.9169 + }, + { + "start": 18195.94, + "end": 18198.46, + "probability": 0.7722 + }, + { + "start": 18199.44, + "end": 18201.94, + "probability": 0.6337 + }, + { + "start": 18208.32, + "end": 18209.5, + "probability": 0.9688 + }, + { + "start": 18215.48, + "end": 18217.08, + "probability": 0.6085 + }, + { + "start": 18218.22, + "end": 18219.24, + "probability": 0.662 + }, + { + "start": 18220.94, + "end": 18223.1, + "probability": 0.7441 + }, + { + "start": 18223.78, + "end": 18225.42, + "probability": 0.9438 + }, + { + "start": 18226.24, + "end": 18229.38, + "probability": 0.9582 + }, + { + "start": 18229.44, + "end": 18233.24, + "probability": 0.9939 + }, + { + "start": 18234.24, + "end": 18237.82, + "probability": 0.9386 + }, + { + "start": 18238.9, + "end": 18241.96, + "probability": 0.9807 + }, + { + "start": 18242.16, + "end": 18245.36, + "probability": 0.9956 + }, + { + "start": 18245.62, + "end": 18251.48, + "probability": 0.9931 + }, + { + "start": 18251.8, + "end": 18254.06, + "probability": 0.8651 + }, + { + "start": 18254.38, + "end": 18254.98, + "probability": 0.7725 + }, + { + "start": 18255.46, + "end": 18256.4, + "probability": 0.5027 + }, + { + "start": 18256.8, + "end": 18259.76, + "probability": 0.9785 + }, + { + "start": 18259.76, + "end": 18263.2, + "probability": 0.6615 + }, + { + "start": 18263.78, + "end": 18267.88, + "probability": 0.7555 + }, + { + "start": 18268.54, + "end": 18271.1, + "probability": 0.9902 + }, + { + "start": 18271.44, + "end": 18276.02, + "probability": 0.9523 + }, + { + "start": 18276.58, + "end": 18278.68, + "probability": 0.9967 + }, + { + "start": 18279.04, + "end": 18282.24, + "probability": 0.9126 + }, + { + "start": 18282.9, + "end": 18286.3, + "probability": 0.9927 + }, + { + "start": 18286.72, + "end": 18287.37, + "probability": 0.8591 + }, + { + "start": 18287.72, + "end": 18288.9, + "probability": 0.9385 + }, + { + "start": 18289.54, + "end": 18290.76, + "probability": 0.1682 + }, + { + "start": 18291.36, + "end": 18291.98, + "probability": 0.4947 + }, + { + "start": 18292.38, + "end": 18293.1, + "probability": 0.8185 + }, + { + "start": 18293.38, + "end": 18294.34, + "probability": 0.821 + }, + { + "start": 18294.68, + "end": 18295.78, + "probability": 0.9053 + }, + { + "start": 18296.46, + "end": 18297.34, + "probability": 0.2679 + }, + { + "start": 18298.14, + "end": 18299.42, + "probability": 0.9645 + }, + { + "start": 18300.22, + "end": 18301.36, + "probability": 0.8123 + }, + { + "start": 18302.12, + "end": 18309.34, + "probability": 0.9873 + }, + { + "start": 18310.28, + "end": 18316.72, + "probability": 0.975 + }, + { + "start": 18317.42, + "end": 18320.36, + "probability": 0.9856 + }, + { + "start": 18320.64, + "end": 18322.38, + "probability": 0.7689 + }, + { + "start": 18322.7, + "end": 18323.3, + "probability": 0.7971 + }, + { + "start": 18323.56, + "end": 18326.36, + "probability": 0.9857 + }, + { + "start": 18327.22, + "end": 18328.32, + "probability": 0.5341 + }, + { + "start": 18328.9, + "end": 18331.74, + "probability": 0.8667 + }, + { + "start": 18332.58, + "end": 18338.14, + "probability": 0.9887 + }, + { + "start": 18338.5, + "end": 18343.05, + "probability": 0.9985 + }, + { + "start": 18344.68, + "end": 18348.06, + "probability": 0.9831 + }, + { + "start": 18348.62, + "end": 18351.3, + "probability": 0.9353 + }, + { + "start": 18351.82, + "end": 18352.92, + "probability": 0.8093 + }, + { + "start": 18353.18, + "end": 18356.92, + "probability": 0.9761 + }, + { + "start": 18357.24, + "end": 18359.1, + "probability": 0.9964 + }, + { + "start": 18359.44, + "end": 18361.34, + "probability": 0.9783 + }, + { + "start": 18361.8, + "end": 18363.03, + "probability": 0.9596 + }, + { + "start": 18364.54, + "end": 18367.98, + "probability": 0.9891 + }, + { + "start": 18368.74, + "end": 18375.14, + "probability": 0.9961 + }, + { + "start": 18375.66, + "end": 18379.52, + "probability": 0.9947 + }, + { + "start": 18380.12, + "end": 18383.96, + "probability": 0.976 + }, + { + "start": 18383.96, + "end": 18388.52, + "probability": 0.9966 + }, + { + "start": 18388.98, + "end": 18389.98, + "probability": 0.7302 + }, + { + "start": 18390.16, + "end": 18393.26, + "probability": 0.946 + }, + { + "start": 18393.5, + "end": 18394.2, + "probability": 0.8968 + }, + { + "start": 18394.3, + "end": 18394.86, + "probability": 0.9776 + }, + { + "start": 18394.96, + "end": 18395.62, + "probability": 0.9568 + }, + { + "start": 18395.86, + "end": 18396.46, + "probability": 0.9687 + }, + { + "start": 18396.54, + "end": 18397.46, + "probability": 0.9014 + }, + { + "start": 18397.6, + "end": 18398.54, + "probability": 0.9379 + }, + { + "start": 18398.92, + "end": 18400.04, + "probability": 0.7329 + }, + { + "start": 18400.54, + "end": 18403.58, + "probability": 0.8127 + }, + { + "start": 18403.82, + "end": 18407.34, + "probability": 0.9114 + }, + { + "start": 18407.64, + "end": 18409.95, + "probability": 0.9039 + }, + { + "start": 18410.96, + "end": 18412.24, + "probability": 0.9858 + }, + { + "start": 18412.82, + "end": 18413.6, + "probability": 0.8738 + }, + { + "start": 18413.84, + "end": 18418.12, + "probability": 0.9634 + }, + { + "start": 18418.66, + "end": 18420.42, + "probability": 0.9897 + }, + { + "start": 18420.48, + "end": 18421.66, + "probability": 0.9516 + }, + { + "start": 18421.9, + "end": 18424.04, + "probability": 0.9221 + }, + { + "start": 18424.36, + "end": 18430.5, + "probability": 0.9298 + }, + { + "start": 18431.22, + "end": 18432.14, + "probability": 0.9426 + }, + { + "start": 18432.44, + "end": 18433.58, + "probability": 0.9222 + }, + { + "start": 18433.98, + "end": 18434.92, + "probability": 0.5954 + }, + { + "start": 18435.16, + "end": 18436.14, + "probability": 0.8555 + }, + { + "start": 18436.32, + "end": 18440.68, + "probability": 0.9858 + }, + { + "start": 18441.22, + "end": 18442.88, + "probability": 0.98 + }, + { + "start": 18443.24, + "end": 18444.08, + "probability": 0.5886 + }, + { + "start": 18444.32, + "end": 18445.34, + "probability": 0.7973 + }, + { + "start": 18445.7, + "end": 18446.96, + "probability": 0.9924 + }, + { + "start": 18447.34, + "end": 18449.0, + "probability": 0.9587 + }, + { + "start": 18449.42, + "end": 18450.31, + "probability": 0.7983 + }, + { + "start": 18451.04, + "end": 18451.32, + "probability": 0.7957 + }, + { + "start": 18454.02, + "end": 18456.24, + "probability": 0.0571 + }, + { + "start": 18460.9, + "end": 18464.72, + "probability": 0.8317 + }, + { + "start": 18466.46, + "end": 18468.6, + "probability": 0.7096 + }, + { + "start": 18475.52, + "end": 18476.48, + "probability": 0.4837 + }, + { + "start": 18477.04, + "end": 18478.28, + "probability": 0.6584 + }, + { + "start": 18479.8, + "end": 18481.98, + "probability": 0.9762 + }, + { + "start": 18483.48, + "end": 18485.6, + "probability": 0.9374 + }, + { + "start": 18487.1, + "end": 18489.61, + "probability": 0.9106 + }, + { + "start": 18491.0, + "end": 18491.68, + "probability": 0.6859 + }, + { + "start": 18493.02, + "end": 18495.94, + "probability": 0.9167 + }, + { + "start": 18498.9, + "end": 18501.1, + "probability": 0.853 + }, + { + "start": 18502.5, + "end": 18506.0, + "probability": 0.9551 + }, + { + "start": 18507.36, + "end": 18509.22, + "probability": 0.8623 + }, + { + "start": 18510.86, + "end": 18511.22, + "probability": 0.5013 + }, + { + "start": 18512.3, + "end": 18514.84, + "probability": 0.991 + }, + { + "start": 18516.58, + "end": 18518.82, + "probability": 0.974 + }, + { + "start": 18520.16, + "end": 18520.95, + "probability": 0.6475 + }, + { + "start": 18522.34, + "end": 18524.18, + "probability": 0.8931 + }, + { + "start": 18526.58, + "end": 18531.38, + "probability": 0.7605 + }, + { + "start": 18532.54, + "end": 18534.04, + "probability": 0.8329 + }, + { + "start": 18535.86, + "end": 18537.88, + "probability": 0.9698 + }, + { + "start": 18538.86, + "end": 18539.9, + "probability": 0.8378 + }, + { + "start": 18542.7, + "end": 18543.78, + "probability": 0.8854 + }, + { + "start": 18545.5, + "end": 18547.4, + "probability": 0.994 + }, + { + "start": 18549.82, + "end": 18553.52, + "probability": 0.8665 + }, + { + "start": 18554.68, + "end": 18556.64, + "probability": 0.9125 + }, + { + "start": 18560.1, + "end": 18560.7, + "probability": 0.5897 + }, + { + "start": 18561.96, + "end": 18563.24, + "probability": 0.851 + }, + { + "start": 18564.52, + "end": 18565.34, + "probability": 0.6899 + }, + { + "start": 18565.42, + "end": 18568.92, + "probability": 0.9636 + }, + { + "start": 18571.32, + "end": 18572.06, + "probability": 0.6965 + }, + { + "start": 18572.72, + "end": 18573.5, + "probability": 0.9616 + }, + { + "start": 18576.46, + "end": 18581.22, + "probability": 0.9941 + }, + { + "start": 18583.86, + "end": 18585.92, + "probability": 0.8823 + }, + { + "start": 18586.02, + "end": 18587.4, + "probability": 0.6649 + }, + { + "start": 18587.86, + "end": 18589.46, + "probability": 0.4853 + }, + { + "start": 18591.38, + "end": 18593.68, + "probability": 0.777 + }, + { + "start": 18595.58, + "end": 18597.66, + "probability": 0.9814 + }, + { + "start": 18600.22, + "end": 18602.36, + "probability": 0.8781 + }, + { + "start": 18604.48, + "end": 18606.84, + "probability": 0.9401 + }, + { + "start": 18608.44, + "end": 18609.22, + "probability": 0.8223 + }, + { + "start": 18611.96, + "end": 18615.54, + "probability": 0.9598 + }, + { + "start": 18617.02, + "end": 18618.17, + "probability": 0.6872 + }, + { + "start": 18620.96, + "end": 18622.84, + "probability": 0.7125 + }, + { + "start": 18623.58, + "end": 18626.16, + "probability": 0.7489 + }, + { + "start": 18627.02, + "end": 18629.28, + "probability": 0.8932 + }, + { + "start": 18632.12, + "end": 18636.64, + "probability": 0.9709 + }, + { + "start": 18637.66, + "end": 18641.82, + "probability": 0.7234 + }, + { + "start": 18641.82, + "end": 18645.38, + "probability": 0.8569 + }, + { + "start": 18646.3, + "end": 18647.98, + "probability": 0.7256 + }, + { + "start": 18648.76, + "end": 18652.62, + "probability": 0.6909 + }, + { + "start": 18652.78, + "end": 18653.68, + "probability": 0.9635 + }, + { + "start": 18654.4, + "end": 18655.48, + "probability": 0.9561 + }, + { + "start": 18655.52, + "end": 18656.48, + "probability": 0.0632 + }, + { + "start": 18656.64, + "end": 18660.46, + "probability": 0.5433 + }, + { + "start": 18661.8, + "end": 18662.52, + "probability": 0.4204 + }, + { + "start": 18662.8, + "end": 18663.78, + "probability": 0.3189 + }, + { + "start": 18664.3, + "end": 18665.2, + "probability": 0.476 + }, + { + "start": 18667.12, + "end": 18669.24, + "probability": 0.9 + }, + { + "start": 18669.88, + "end": 18672.01, + "probability": 0.9912 + }, + { + "start": 18672.24, + "end": 18674.2, + "probability": 0.7479 + }, + { + "start": 18674.38, + "end": 18674.76, + "probability": 0.694 + }, + { + "start": 18675.04, + "end": 18678.16, + "probability": 0.7092 + }, + { + "start": 18678.24, + "end": 18678.98, + "probability": 0.4779 + }, + { + "start": 18679.0, + "end": 18679.1, + "probability": 0.7903 + }, + { + "start": 18681.4, + "end": 18681.74, + "probability": 0.6448 + }, + { + "start": 18681.78, + "end": 18687.96, + "probability": 0.9839 + }, + { + "start": 18688.78, + "end": 18690.7, + "probability": 0.5259 + }, + { + "start": 18690.7, + "end": 18691.26, + "probability": 0.7069 + }, + { + "start": 18691.3, + "end": 18694.84, + "probability": 0.8864 + }, + { + "start": 18697.0, + "end": 18698.58, + "probability": 0.3268 + }, + { + "start": 18699.02, + "end": 18699.04, + "probability": 0.7087 + }, + { + "start": 18699.04, + "end": 18701.58, + "probability": 0.61 + }, + { + "start": 18702.1, + "end": 18703.42, + "probability": 0.9451 + }, + { + "start": 18703.96, + "end": 18706.86, + "probability": 0.8311 + }, + { + "start": 18706.92, + "end": 18707.56, + "probability": 0.7568 + }, + { + "start": 18707.82, + "end": 18710.36, + "probability": 0.802 + }, + { + "start": 18710.5, + "end": 18710.8, + "probability": 0.3007 + }, + { + "start": 18710.8, + "end": 18711.3, + "probability": 0.6946 + }, + { + "start": 18711.46, + "end": 18713.74, + "probability": 0.8456 + }, + { + "start": 18714.32, + "end": 18717.22, + "probability": 0.8776 + }, + { + "start": 18717.76, + "end": 18721.94, + "probability": 0.9871 + }, + { + "start": 18727.32, + "end": 18727.94, + "probability": 0.7218 + }, + { + "start": 18736.72, + "end": 18737.6, + "probability": 0.5261 + }, + { + "start": 18737.7, + "end": 18739.0, + "probability": 0.8683 + }, + { + "start": 18739.46, + "end": 18741.34, + "probability": 0.9787 + }, + { + "start": 18742.24, + "end": 18744.0, + "probability": 0.8998 + }, + { + "start": 18744.14, + "end": 18745.5, + "probability": 0.9961 + }, + { + "start": 18746.58, + "end": 18747.62, + "probability": 0.4717 + }, + { + "start": 18749.68, + "end": 18752.3, + "probability": 0.874 + }, + { + "start": 18755.76, + "end": 18755.96, + "probability": 0.724 + }, + { + "start": 18756.8, + "end": 18756.92, + "probability": 0.7056 + }, + { + "start": 18757.4, + "end": 18757.54, + "probability": 0.2342 + }, + { + "start": 18757.58, + "end": 18759.58, + "probability": 0.5736 + }, + { + "start": 18759.62, + "end": 18761.72, + "probability": 0.9915 + }, + { + "start": 18762.72, + "end": 18764.5, + "probability": 0.7715 + }, + { + "start": 18766.78, + "end": 18767.5, + "probability": 0.7568 + }, + { + "start": 18769.5, + "end": 18772.7, + "probability": 0.8466 + }, + { + "start": 18774.46, + "end": 18777.1, + "probability": 0.9854 + }, + { + "start": 18778.38, + "end": 18779.86, + "probability": 0.9897 + }, + { + "start": 18781.42, + "end": 18783.24, + "probability": 0.9855 + }, + { + "start": 18784.6, + "end": 18785.6, + "probability": 0.7734 + }, + { + "start": 18786.76, + "end": 18790.52, + "probability": 0.9755 + }, + { + "start": 18791.24, + "end": 18793.7, + "probability": 0.9954 + }, + { + "start": 18794.72, + "end": 18797.66, + "probability": 0.928 + }, + { + "start": 18798.5, + "end": 18799.68, + "probability": 0.8421 + }, + { + "start": 18800.58, + "end": 18801.62, + "probability": 0.5651 + }, + { + "start": 18802.28, + "end": 18802.66, + "probability": 0.2257 + }, + { + "start": 18802.7, + "end": 18803.06, + "probability": 0.0094 + }, + { + "start": 18803.06, + "end": 18804.04, + "probability": 0.788 + }, + { + "start": 18804.32, + "end": 18806.16, + "probability": 0.5985 + }, + { + "start": 18806.16, + "end": 18806.98, + "probability": 0.3766 + }, + { + "start": 18807.42, + "end": 18809.02, + "probability": 0.274 + }, + { + "start": 18809.18, + "end": 18809.94, + "probability": 0.2238 + }, + { + "start": 18809.94, + "end": 18811.46, + "probability": 0.5514 + }, + { + "start": 18812.22, + "end": 18812.58, + "probability": 0.3954 + }, + { + "start": 18812.66, + "end": 18813.22, + "probability": 0.2286 + }, + { + "start": 18813.38, + "end": 18816.1, + "probability": 0.5956 + }, + { + "start": 18816.16, + "end": 18817.15, + "probability": 0.4757 + }, + { + "start": 18817.3, + "end": 18818.82, + "probability": 0.8527 + }, + { + "start": 18818.84, + "end": 18820.42, + "probability": 0.3379 + }, + { + "start": 18820.82, + "end": 18821.94, + "probability": 0.1257 + }, + { + "start": 18822.52, + "end": 18825.0, + "probability": 0.4612 + }, + { + "start": 18827.56, + "end": 18828.46, + "probability": 0.5929 + }, + { + "start": 18828.72, + "end": 18828.72, + "probability": 0.1488 + }, + { + "start": 18828.72, + "end": 18828.72, + "probability": 0.0636 + }, + { + "start": 18828.72, + "end": 18828.72, + "probability": 0.5592 + }, + { + "start": 18828.72, + "end": 18828.72, + "probability": 0.577 + }, + { + "start": 18828.72, + "end": 18829.51, + "probability": 0.1342 + }, + { + "start": 18829.72, + "end": 18831.46, + "probability": 0.5567 + }, + { + "start": 18832.34, + "end": 18832.94, + "probability": 0.8679 + }, + { + "start": 18833.04, + "end": 18837.3, + "probability": 0.9681 + }, + { + "start": 18837.42, + "end": 18837.98, + "probability": 0.5419 + }, + { + "start": 18838.1, + "end": 18838.92, + "probability": 0.8269 + }, + { + "start": 18839.56, + "end": 18841.42, + "probability": 0.9552 + }, + { + "start": 18841.76, + "end": 18844.9, + "probability": 0.8505 + }, + { + "start": 18845.46, + "end": 18845.58, + "probability": 0.6982 + }, + { + "start": 18846.8, + "end": 18847.42, + "probability": 0.9441 + }, + { + "start": 18848.14, + "end": 18853.58, + "probability": 0.9107 + }, + { + "start": 18854.16, + "end": 18857.08, + "probability": 0.9928 + }, + { + "start": 18857.8, + "end": 18859.32, + "probability": 0.7678 + }, + { + "start": 18860.16, + "end": 18861.6, + "probability": 0.9441 + }, + { + "start": 18862.66, + "end": 18865.24, + "probability": 0.9835 + }, + { + "start": 18865.94, + "end": 18869.55, + "probability": 0.9628 + }, + { + "start": 18870.4, + "end": 18872.44, + "probability": 0.9941 + }, + { + "start": 18872.5, + "end": 18874.88, + "probability": 0.9551 + }, + { + "start": 18875.94, + "end": 18877.66, + "probability": 0.9541 + }, + { + "start": 18878.64, + "end": 18882.66, + "probability": 0.988 + }, + { + "start": 18883.44, + "end": 18887.32, + "probability": 0.9995 + }, + { + "start": 18887.32, + "end": 18890.78, + "probability": 0.9826 + }, + { + "start": 18891.22, + "end": 18891.62, + "probability": 0.73 + }, + { + "start": 18892.62, + "end": 18893.1, + "probability": 0.625 + }, + { + "start": 18893.34, + "end": 18896.22, + "probability": 0.8701 + }, + { + "start": 18915.04, + "end": 18916.3, + "probability": 0.4651 + }, + { + "start": 18917.12, + "end": 18918.54, + "probability": 0.9093 + }, + { + "start": 18919.92, + "end": 18924.86, + "probability": 0.9163 + }, + { + "start": 18924.96, + "end": 18930.8, + "probability": 0.9917 + }, + { + "start": 18931.48, + "end": 18932.72, + "probability": 0.995 + }, + { + "start": 18933.5, + "end": 18934.44, + "probability": 0.9875 + }, + { + "start": 18934.58, + "end": 18936.28, + "probability": 0.9966 + }, + { + "start": 18936.92, + "end": 18938.92, + "probability": 0.9862 + }, + { + "start": 18939.32, + "end": 18945.36, + "probability": 0.9788 + }, + { + "start": 18945.82, + "end": 18949.2, + "probability": 0.9737 + }, + { + "start": 18949.86, + "end": 18951.22, + "probability": 0.7928 + }, + { + "start": 18952.18, + "end": 18955.02, + "probability": 0.8794 + }, + { + "start": 18955.02, + "end": 18957.52, + "probability": 0.9906 + }, + { + "start": 18957.66, + "end": 18958.8, + "probability": 0.7771 + }, + { + "start": 18959.54, + "end": 18961.42, + "probability": 0.9448 + }, + { + "start": 18962.02, + "end": 18964.8, + "probability": 0.9709 + }, + { + "start": 18965.0, + "end": 18966.52, + "probability": 0.967 + }, + { + "start": 18967.14, + "end": 18970.64, + "probability": 0.8887 + }, + { + "start": 18970.64, + "end": 18974.96, + "probability": 0.9976 + }, + { + "start": 18975.58, + "end": 18979.98, + "probability": 0.996 + }, + { + "start": 18979.98, + "end": 18984.62, + "probability": 0.9988 + }, + { + "start": 18984.88, + "end": 18985.82, + "probability": 0.7793 + }, + { + "start": 18986.58, + "end": 18987.1, + "probability": 0.6744 + }, + { + "start": 18988.2, + "end": 18991.88, + "probability": 0.7929 + }, + { + "start": 18992.58, + "end": 18998.42, + "probability": 0.9931 + }, + { + "start": 18998.42, + "end": 19004.74, + "probability": 0.9976 + }, + { + "start": 19004.74, + "end": 19012.7, + "probability": 0.9791 + }, + { + "start": 19013.34, + "end": 19018.5, + "probability": 0.9978 + }, + { + "start": 19018.74, + "end": 19025.16, + "probability": 0.9824 + }, + { + "start": 19025.16, + "end": 19032.62, + "probability": 0.9987 + }, + { + "start": 19032.7, + "end": 19033.28, + "probability": 0.8566 + }, + { + "start": 19033.44, + "end": 19036.32, + "probability": 0.9295 + }, + { + "start": 19037.16, + "end": 19043.18, + "probability": 0.9844 + }, + { + "start": 19043.86, + "end": 19049.3, + "probability": 0.9969 + }, + { + "start": 19050.7, + "end": 19053.98, + "probability": 0.7691 + }, + { + "start": 19054.52, + "end": 19057.08, + "probability": 0.883 + }, + { + "start": 19057.74, + "end": 19061.78, + "probability": 0.8826 + }, + { + "start": 19062.74, + "end": 19064.24, + "probability": 0.7031 + }, + { + "start": 19064.28, + "end": 19066.32, + "probability": 0.9162 + }, + { + "start": 19066.7, + "end": 19069.32, + "probability": 0.8511 + }, + { + "start": 19071.18, + "end": 19077.48, + "probability": 0.9956 + }, + { + "start": 19078.06, + "end": 19079.0, + "probability": 0.6335 + }, + { + "start": 19079.64, + "end": 19082.94, + "probability": 0.9765 + }, + { + "start": 19083.16, + "end": 19083.74, + "probability": 0.7494 + }, + { + "start": 19083.86, + "end": 19085.94, + "probability": 0.8423 + }, + { + "start": 19086.14, + "end": 19088.6, + "probability": 0.9788 + }, + { + "start": 19088.9, + "end": 19090.68, + "probability": 0.9743 + }, + { + "start": 19091.26, + "end": 19093.7, + "probability": 0.9824 + }, + { + "start": 19094.16, + "end": 19097.2, + "probability": 0.9459 + }, + { + "start": 19098.52, + "end": 19099.94, + "probability": 0.7652 + }, + { + "start": 19100.0, + "end": 19108.06, + "probability": 0.9215 + }, + { + "start": 19108.66, + "end": 19110.26, + "probability": 0.4414 + }, + { + "start": 19110.26, + "end": 19111.04, + "probability": 0.6253 + }, + { + "start": 19111.04, + "end": 19112.6, + "probability": 0.9972 + }, + { + "start": 19112.7, + "end": 19117.68, + "probability": 0.9923 + }, + { + "start": 19117.74, + "end": 19121.48, + "probability": 0.9887 + }, + { + "start": 19123.18, + "end": 19123.8, + "probability": 0.5871 + }, + { + "start": 19123.88, + "end": 19125.42, + "probability": 0.9267 + }, + { + "start": 19126.12, + "end": 19127.1, + "probability": 0.7847 + }, + { + "start": 19127.78, + "end": 19130.28, + "probability": 0.9296 + }, + { + "start": 19130.82, + "end": 19132.46, + "probability": 0.9788 + }, + { + "start": 19146.4, + "end": 19146.48, + "probability": 0.1336 + }, + { + "start": 19158.62, + "end": 19159.86, + "probability": 0.3631 + }, + { + "start": 19160.54, + "end": 19161.48, + "probability": 0.7802 + }, + { + "start": 19161.74, + "end": 19168.56, + "probability": 0.9664 + }, + { + "start": 19169.16, + "end": 19175.2, + "probability": 0.8611 + }, + { + "start": 19175.58, + "end": 19177.46, + "probability": 0.9895 + }, + { + "start": 19177.88, + "end": 19179.02, + "probability": 0.9573 + }, + { + "start": 19179.7, + "end": 19184.72, + "probability": 0.9368 + }, + { + "start": 19184.9, + "end": 19184.9, + "probability": 0.5591 + }, + { + "start": 19185.54, + "end": 19187.08, + "probability": 0.9038 + }, + { + "start": 19187.12, + "end": 19187.98, + "probability": 0.8976 + }, + { + "start": 19188.24, + "end": 19188.68, + "probability": 0.9104 + }, + { + "start": 19188.74, + "end": 19190.02, + "probability": 0.8949 + }, + { + "start": 19191.07, + "end": 19192.6, + "probability": 0.9907 + }, + { + "start": 19192.96, + "end": 19193.58, + "probability": 0.8172 + }, + { + "start": 19193.7, + "end": 19194.52, + "probability": 0.9773 + }, + { + "start": 19194.58, + "end": 19194.94, + "probability": 0.92 + }, + { + "start": 19195.82, + "end": 19196.08, + "probability": 0.3191 + }, + { + "start": 19196.88, + "end": 19197.1, + "probability": 0.0153 + }, + { + "start": 19197.1, + "end": 19197.94, + "probability": 0.3478 + }, + { + "start": 19198.62, + "end": 19199.72, + "probability": 0.8108 + }, + { + "start": 19200.54, + "end": 19203.36, + "probability": 0.8438 + }, + { + "start": 19204.02, + "end": 19205.88, + "probability": 0.9141 + }, + { + "start": 19206.24, + "end": 19206.48, + "probability": 0.8749 + }, + { + "start": 19206.6, + "end": 19210.34, + "probability": 0.9746 + }, + { + "start": 19210.7, + "end": 19212.14, + "probability": 0.8061 + }, + { + "start": 19212.52, + "end": 19216.09, + "probability": 0.8753 + }, + { + "start": 19216.44, + "end": 19217.56, + "probability": 0.3164 + }, + { + "start": 19217.74, + "end": 19219.54, + "probability": 0.5669 + }, + { + "start": 19219.66, + "end": 19220.58, + "probability": 0.5039 + }, + { + "start": 19220.84, + "end": 19224.28, + "probability": 0.5459 + }, + { + "start": 19224.28, + "end": 19226.6, + "probability": 0.8892 + }, + { + "start": 19226.62, + "end": 19227.4, + "probability": 0.8472 + }, + { + "start": 19227.53, + "end": 19227.74, + "probability": 0.0043 + }, + { + "start": 19227.74, + "end": 19227.92, + "probability": 0.5588 + }, + { + "start": 19227.92, + "end": 19228.68, + "probability": 0.6125 + }, + { + "start": 19229.36, + "end": 19232.14, + "probability": 0.7052 + }, + { + "start": 19232.3, + "end": 19236.02, + "probability": 0.8821 + }, + { + "start": 19236.1, + "end": 19238.88, + "probability": 0.9924 + }, + { + "start": 19239.3, + "end": 19242.37, + "probability": 0.3385 + }, + { + "start": 19242.98, + "end": 19243.5, + "probability": 0.4783 + }, + { + "start": 19243.64, + "end": 19244.2, + "probability": 0.593 + }, + { + "start": 19244.22, + "end": 19247.56, + "probability": 0.9292 + }, + { + "start": 19247.94, + "end": 19249.66, + "probability": 0.9803 + }, + { + "start": 19249.7, + "end": 19250.62, + "probability": 0.7618 + }, + { + "start": 19251.3, + "end": 19254.13, + "probability": 0.8258 + }, + { + "start": 19254.42, + "end": 19256.6, + "probability": 0.0318 + }, + { + "start": 19256.94, + "end": 19259.44, + "probability": 0.882 + }, + { + "start": 19259.79, + "end": 19265.26, + "probability": 0.7742 + }, + { + "start": 19265.9, + "end": 19266.5, + "probability": 0.3648 + }, + { + "start": 19266.9, + "end": 19272.26, + "probability": 0.9885 + }, + { + "start": 19272.8, + "end": 19275.6, + "probability": 0.943 + }, + { + "start": 19276.14, + "end": 19279.59, + "probability": 0.1686 + }, + { + "start": 19279.9, + "end": 19280.84, + "probability": 0.6334 + }, + { + "start": 19282.3, + "end": 19282.38, + "probability": 0.1289 + }, + { + "start": 19282.38, + "end": 19283.26, + "probability": 0.0915 + }, + { + "start": 19283.54, + "end": 19283.98, + "probability": 0.0574 + }, + { + "start": 19283.98, + "end": 19283.98, + "probability": 0.1939 + }, + { + "start": 19283.98, + "end": 19284.83, + "probability": 0.9265 + }, + { + "start": 19285.08, + "end": 19285.54, + "probability": 0.3372 + }, + { + "start": 19285.7, + "end": 19287.36, + "probability": 0.4952 + }, + { + "start": 19289.24, + "end": 19291.06, + "probability": 0.6766 + }, + { + "start": 19291.26, + "end": 19291.94, + "probability": 0.6905 + }, + { + "start": 19292.04, + "end": 19293.02, + "probability": 0.8971 + }, + { + "start": 19293.18, + "end": 19294.32, + "probability": 0.8744 + }, + { + "start": 19294.42, + "end": 19295.02, + "probability": 0.8367 + }, + { + "start": 19295.2, + "end": 19298.06, + "probability": 0.4981 + }, + { + "start": 19298.54, + "end": 19300.6, + "probability": 0.9337 + }, + { + "start": 19301.06, + "end": 19301.82, + "probability": 0.4689 + }, + { + "start": 19301.92, + "end": 19302.74, + "probability": 0.9618 + }, + { + "start": 19303.78, + "end": 19303.8, + "probability": 0.8259 + }, + { + "start": 19304.06, + "end": 19304.96, + "probability": 0.8854 + }, + { + "start": 19305.08, + "end": 19306.56, + "probability": 0.9403 + }, + { + "start": 19306.66, + "end": 19306.9, + "probability": 0.875 + }, + { + "start": 19307.34, + "end": 19307.78, + "probability": 0.3194 + }, + { + "start": 19307.82, + "end": 19311.34, + "probability": 0.6082 + }, + { + "start": 19312.9, + "end": 19313.76, + "probability": 0.7065 + }, + { + "start": 19313.84, + "end": 19314.48, + "probability": 0.9768 + }, + { + "start": 19315.36, + "end": 19315.58, + "probability": 0.1426 + }, + { + "start": 19315.94, + "end": 19318.78, + "probability": 0.9864 + }, + { + "start": 19319.06, + "end": 19321.9, + "probability": 0.9617 + }, + { + "start": 19322.16, + "end": 19323.32, + "probability": 0.9753 + }, + { + "start": 19324.14, + "end": 19326.22, + "probability": 0.9644 + }, + { + "start": 19326.52, + "end": 19330.24, + "probability": 0.6588 + }, + { + "start": 19330.32, + "end": 19332.01, + "probability": 0.9875 + }, + { + "start": 19332.2, + "end": 19333.28, + "probability": 0.9703 + }, + { + "start": 19333.76, + "end": 19334.28, + "probability": 0.8164 + }, + { + "start": 19334.4, + "end": 19337.94, + "probability": 0.9304 + }, + { + "start": 19338.16, + "end": 19340.96, + "probability": 0.7819 + }, + { + "start": 19341.64, + "end": 19346.9, + "probability": 0.7208 + }, + { + "start": 19346.98, + "end": 19348.88, + "probability": 0.7859 + }, + { + "start": 19348.94, + "end": 19349.78, + "probability": 0.9705 + }, + { + "start": 19350.36, + "end": 19350.48, + "probability": 0.4592 + }, + { + "start": 19350.7, + "end": 19357.26, + "probability": 0.9749 + }, + { + "start": 19357.26, + "end": 19357.64, + "probability": 0.183 + }, + { + "start": 19357.68, + "end": 19359.88, + "probability": 0.792 + }, + { + "start": 19360.1, + "end": 19360.1, + "probability": 0.6897 + }, + { + "start": 19360.38, + "end": 19361.5, + "probability": 0.9407 + }, + { + "start": 19361.54, + "end": 19363.04, + "probability": 0.9921 + }, + { + "start": 19363.94, + "end": 19364.72, + "probability": 0.7455 + }, + { + "start": 19365.06, + "end": 19368.06, + "probability": 0.7321 + }, + { + "start": 19368.78, + "end": 19370.04, + "probability": 0.8277 + }, + { + "start": 19374.78, + "end": 19376.46, + "probability": 0.7159 + }, + { + "start": 19377.44, + "end": 19379.6, + "probability": 0.95 + }, + { + "start": 19388.92, + "end": 19389.92, + "probability": 0.4764 + }, + { + "start": 19391.36, + "end": 19396.42, + "probability": 0.3364 + }, + { + "start": 19396.42, + "end": 19396.42, + "probability": 0.1963 + }, + { + "start": 19396.62, + "end": 19396.82, + "probability": 0.0181 + }, + { + "start": 19396.84, + "end": 19397.94, + "probability": 0.7544 + }, + { + "start": 19399.82, + "end": 19400.42, + "probability": 0.7866 + }, + { + "start": 19402.34, + "end": 19405.0, + "probability": 0.9695 + }, + { + "start": 19406.12, + "end": 19407.36, + "probability": 0.8818 + }, + { + "start": 19408.02, + "end": 19409.6, + "probability": 0.0043 + }, + { + "start": 19410.2, + "end": 19411.92, + "probability": 0.385 + }, + { + "start": 19412.2, + "end": 19413.24, + "probability": 0.5156 + }, + { + "start": 19413.48, + "end": 19415.0, + "probability": 0.2653 + }, + { + "start": 19415.14, + "end": 19416.14, + "probability": 0.8112 + }, + { + "start": 19417.35, + "end": 19421.38, + "probability": 0.1859 + }, + { + "start": 19421.92, + "end": 19424.4, + "probability": 0.5147 + }, + { + "start": 19424.9, + "end": 19427.04, + "probability": 0.4776 + }, + { + "start": 19429.78, + "end": 19433.22, + "probability": 0.7435 + }, + { + "start": 19433.86, + "end": 19436.3, + "probability": 0.8568 + }, + { + "start": 19436.4, + "end": 19439.06, + "probability": 0.8857 + }, + { + "start": 19439.74, + "end": 19443.14, + "probability": 0.6628 + }, + { + "start": 19444.0, + "end": 19444.42, + "probability": 0.388 + }, + { + "start": 19444.64, + "end": 19448.46, + "probability": 0.8331 + }, + { + "start": 19448.52, + "end": 19449.24, + "probability": 0.6236 + }, + { + "start": 19454.26, + "end": 19457.4, + "probability": 0.9473 + }, + { + "start": 19458.24, + "end": 19459.72, + "probability": 0.981 + }, + { + "start": 19461.06, + "end": 19462.08, + "probability": 0.9553 + }, + { + "start": 19463.32, + "end": 19465.7, + "probability": 0.9679 + }, + { + "start": 19469.2, + "end": 19471.64, + "probability": 0.896 + }, + { + "start": 19473.36, + "end": 19478.46, + "probability": 0.9908 + }, + { + "start": 19479.88, + "end": 19484.04, + "probability": 0.7938 + }, + { + "start": 19487.04, + "end": 19487.96, + "probability": 0.4485 + }, + { + "start": 19495.26, + "end": 19496.04, + "probability": 0.3568 + }, + { + "start": 19499.98, + "end": 19502.0, + "probability": 0.9215 + }, + { + "start": 19502.82, + "end": 19504.64, + "probability": 0.7597 + }, + { + "start": 19505.24, + "end": 19506.86, + "probability": 0.2589 + }, + { + "start": 19507.74, + "end": 19514.44, + "probability": 0.9941 + }, + { + "start": 19518.24, + "end": 19525.94, + "probability": 0.8045 + }, + { + "start": 19526.08, + "end": 19526.92, + "probability": 0.6889 + }, + { + "start": 19527.02, + "end": 19527.42, + "probability": 0.7 + }, + { + "start": 19527.46, + "end": 19527.86, + "probability": 0.8856 + }, + { + "start": 19528.26, + "end": 19529.44, + "probability": 0.8743 + }, + { + "start": 19532.42, + "end": 19535.7, + "probability": 0.664 + }, + { + "start": 19536.96, + "end": 19540.9, + "probability": 0.9344 + }, + { + "start": 19543.14, + "end": 19547.38, + "probability": 0.7551 + }, + { + "start": 19548.44, + "end": 19548.9, + "probability": 0.9648 + }, + { + "start": 19550.84, + "end": 19554.2, + "probability": 0.9802 + }, + { + "start": 19554.2, + "end": 19557.92, + "probability": 0.9854 + }, + { + "start": 19560.42, + "end": 19561.68, + "probability": 0.9498 + }, + { + "start": 19563.32, + "end": 19564.78, + "probability": 0.8625 + }, + { + "start": 19565.22, + "end": 19567.34, + "probability": 0.8493 + }, + { + "start": 19567.46, + "end": 19570.84, + "probability": 0.8084 + }, + { + "start": 19570.94, + "end": 19571.88, + "probability": 0.7386 + }, + { + "start": 19572.1, + "end": 19572.86, + "probability": 0.3561 + }, + { + "start": 19573.34, + "end": 19576.06, + "probability": 0.9243 + }, + { + "start": 19577.28, + "end": 19579.88, + "probability": 0.9614 + }, + { + "start": 19579.92, + "end": 19580.62, + "probability": 0.519 + }, + { + "start": 19580.7, + "end": 19580.7, + "probability": 0.0 + }, + { + "start": 19582.08, + "end": 19588.16, + "probability": 0.9228 + }, + { + "start": 19588.24, + "end": 19588.66, + "probability": 0.6706 + }, + { + "start": 19588.66, + "end": 19588.68, + "probability": 0.4659 + }, + { + "start": 19590.62, + "end": 19590.82, + "probability": 0.2548 + }, + { + "start": 19590.82, + "end": 19595.86, + "probability": 0.9032 + }, + { + "start": 19596.8, + "end": 19597.46, + "probability": 0.4963 + }, + { + "start": 19597.72, + "end": 19598.46, + "probability": 0.7759 + }, + { + "start": 19598.86, + "end": 19603.8, + "probability": 0.9902 + }, + { + "start": 19604.42, + "end": 19605.34, + "probability": 0.6546 + }, + { + "start": 19605.76, + "end": 19606.82, + "probability": 0.5606 + }, + { + "start": 19606.9, + "end": 19611.1, + "probability": 0.7619 + }, + { + "start": 19611.82, + "end": 19616.74, + "probability": 0.8717 + }, + { + "start": 19617.2, + "end": 19617.8, + "probability": 0.8451 + }, + { + "start": 19617.8, + "end": 19618.3, + "probability": 0.3631 + }, + { + "start": 19618.32, + "end": 19619.62, + "probability": 0.957 + }, + { + "start": 19619.74, + "end": 19622.86, + "probability": 0.6108 + }, + { + "start": 19623.0, + "end": 19623.12, + "probability": 0.0252 + }, + { + "start": 19623.12, + "end": 19624.96, + "probability": 0.5925 + }, + { + "start": 19625.44, + "end": 19626.16, + "probability": 0.5826 + }, + { + "start": 19626.78, + "end": 19627.68, + "probability": 0.5166 + }, + { + "start": 19628.02, + "end": 19628.3, + "probability": 0.0191 + }, + { + "start": 19628.66, + "end": 19630.52, + "probability": 0.8371 + }, + { + "start": 19630.92, + "end": 19633.56, + "probability": 0.4022 + }, + { + "start": 19633.58, + "end": 19633.66, + "probability": 0.0588 + }, + { + "start": 19633.66, + "end": 19633.88, + "probability": 0.5557 + }, + { + "start": 19633.92, + "end": 19634.22, + "probability": 0.611 + }, + { + "start": 19634.3, + "end": 19636.44, + "probability": 0.9232 + }, + { + "start": 19636.64, + "end": 19637.42, + "probability": 0.7532 + }, + { + "start": 19637.42, + "end": 19637.86, + "probability": 0.3717 + }, + { + "start": 19638.0, + "end": 19639.92, + "probability": 0.9284 + }, + { + "start": 19640.0, + "end": 19642.32, + "probability": 0.5007 + }, + { + "start": 19642.52, + "end": 19642.52, + "probability": 0.0871 + }, + { + "start": 19642.52, + "end": 19643.26, + "probability": 0.7111 + }, + { + "start": 19643.56, + "end": 19645.46, + "probability": 0.7222 + }, + { + "start": 19646.26, + "end": 19650.9, + "probability": 0.9061 + }, + { + "start": 19650.96, + "end": 19651.72, + "probability": 0.8859 + }, + { + "start": 19652.24, + "end": 19653.89, + "probability": 0.9331 + }, + { + "start": 19657.74, + "end": 19664.38, + "probability": 0.8262 + }, + { + "start": 19664.92, + "end": 19668.68, + "probability": 0.7478 + }, + { + "start": 19669.88, + "end": 19671.78, + "probability": 0.8369 + }, + { + "start": 19672.02, + "end": 19672.88, + "probability": 0.9892 + }, + { + "start": 19673.72, + "end": 19674.34, + "probability": 0.2261 + }, + { + "start": 19675.7, + "end": 19676.0, + "probability": 0.2318 + }, + { + "start": 19676.78, + "end": 19677.48, + "probability": 0.058 + }, + { + "start": 19678.74, + "end": 19682.1, + "probability": 0.03 + }, + { + "start": 19683.15, + "end": 19688.06, + "probability": 0.0454 + }, + { + "start": 19690.66, + "end": 19692.28, + "probability": 0.0568 + }, + { + "start": 19694.62, + "end": 19699.82, + "probability": 0.7031 + }, + { + "start": 19701.06, + "end": 19708.14, + "probability": 0.9582 + }, + { + "start": 19708.34, + "end": 19709.1, + "probability": 0.76 + }, + { + "start": 19711.12, + "end": 19713.48, + "probability": 0.8821 + }, + { + "start": 19714.76, + "end": 19717.64, + "probability": 0.4257 + }, + { + "start": 19718.6, + "end": 19719.0, + "probability": 0.3734 + }, + { + "start": 19719.52, + "end": 19721.38, + "probability": 0.1996 + }, + { + "start": 19721.98, + "end": 19724.46, + "probability": 0.3804 + }, + { + "start": 19724.46, + "end": 19725.28, + "probability": 0.4897 + }, + { + "start": 19725.28, + "end": 19727.18, + "probability": 0.821 + }, + { + "start": 19727.51, + "end": 19731.7, + "probability": 0.8317 + }, + { + "start": 19732.58, + "end": 19733.12, + "probability": 0.5404 + }, + { + "start": 19734.36, + "end": 19737.36, + "probability": 0.6182 + }, + { + "start": 19737.74, + "end": 19743.08, + "probability": 0.7792 + }, + { + "start": 19743.62, + "end": 19744.68, + "probability": 0.6307 + }, + { + "start": 19745.08, + "end": 19748.34, + "probability": 0.9596 + }, + { + "start": 19754.98, + "end": 19755.72, + "probability": 0.3963 + }, + { + "start": 19755.74, + "end": 19756.41, + "probability": 0.8743 + }, + { + "start": 19757.68, + "end": 19760.38, + "probability": 0.6552 + }, + { + "start": 19761.66, + "end": 19762.12, + "probability": 0.4197 + }, + { + "start": 19766.48, + "end": 19774.8, + "probability": 0.9917 + }, + { + "start": 19776.42, + "end": 19777.28, + "probability": 0.8206 + }, + { + "start": 19778.32, + "end": 19780.17, + "probability": 0.9766 + }, + { + "start": 19782.12, + "end": 19783.94, + "probability": 0.9815 + }, + { + "start": 19784.98, + "end": 19788.3, + "probability": 0.042 + }, + { + "start": 19791.28, + "end": 19792.8, + "probability": 0.9294 + }, + { + "start": 19793.48, + "end": 19794.56, + "probability": 0.7399 + }, + { + "start": 19795.1, + "end": 19797.46, + "probability": 0.8933 + }, + { + "start": 19798.78, + "end": 19801.12, + "probability": 0.9973 + }, + { + "start": 19802.08, + "end": 19808.1, + "probability": 0.9896 + }, + { + "start": 19808.1, + "end": 19812.12, + "probability": 0.998 + }, + { + "start": 19816.34, + "end": 19817.24, + "probability": 0.2354 + }, + { + "start": 19818.44, + "end": 19818.66, + "probability": 0.5319 + }, + { + "start": 19819.48, + "end": 19823.8, + "probability": 0.9465 + }, + { + "start": 19824.72, + "end": 19826.58, + "probability": 0.9803 + }, + { + "start": 19827.24, + "end": 19831.62, + "probability": 0.981 + }, + { + "start": 19832.84, + "end": 19833.98, + "probability": 0.7646 + }, + { + "start": 19834.04, + "end": 19834.76, + "probability": 0.664 + }, + { + "start": 19834.82, + "end": 19837.02, + "probability": 0.9891 + }, + { + "start": 19838.12, + "end": 19839.34, + "probability": 0.9766 + }, + { + "start": 19840.3, + "end": 19846.22, + "probability": 0.959 + }, + { + "start": 19847.2, + "end": 19852.26, + "probability": 0.8737 + }, + { + "start": 19852.26, + "end": 19856.38, + "probability": 0.9985 + }, + { + "start": 19857.7, + "end": 19858.22, + "probability": 0.4987 + }, + { + "start": 19858.78, + "end": 19860.84, + "probability": 0.9971 + }, + { + "start": 19861.42, + "end": 19864.26, + "probability": 0.9425 + }, + { + "start": 19867.02, + "end": 19869.36, + "probability": 0.915 + }, + { + "start": 19870.12, + "end": 19872.9, + "probability": 0.9424 + }, + { + "start": 19873.7, + "end": 19876.58, + "probability": 0.9908 + }, + { + "start": 19877.14, + "end": 19878.08, + "probability": 0.8848 + }, + { + "start": 19879.26, + "end": 19881.1, + "probability": 0.9719 + }, + { + "start": 19882.08, + "end": 19886.52, + "probability": 0.9706 + }, + { + "start": 19887.76, + "end": 19891.68, + "probability": 0.9954 + }, + { + "start": 19893.64, + "end": 19896.06, + "probability": 0.7098 + }, + { + "start": 19897.26, + "end": 19902.96, + "probability": 0.9974 + }, + { + "start": 19905.54, + "end": 19905.64, + "probability": 0.4025 + }, + { + "start": 19905.74, + "end": 19906.14, + "probability": 0.8872 + }, + { + "start": 19906.14, + "end": 19909.32, + "probability": 0.9812 + }, + { + "start": 19909.38, + "end": 19910.64, + "probability": 0.7669 + }, + { + "start": 19912.18, + "end": 19914.74, + "probability": 0.7648 + }, + { + "start": 19915.74, + "end": 19918.2, + "probability": 0.9547 + }, + { + "start": 19918.88, + "end": 19923.3, + "probability": 0.9602 + }, + { + "start": 19924.5, + "end": 19926.53, + "probability": 0.9971 + }, + { + "start": 19927.96, + "end": 19929.74, + "probability": 0.9896 + }, + { + "start": 19930.48, + "end": 19931.55, + "probability": 0.874 + }, + { + "start": 19933.26, + "end": 19933.66, + "probability": 0.4318 + }, + { + "start": 19933.78, + "end": 19936.7, + "probability": 0.9826 + }, + { + "start": 19937.22, + "end": 19941.66, + "probability": 0.9101 + }, + { + "start": 19942.58, + "end": 19944.73, + "probability": 0.9985 + }, + { + "start": 19946.22, + "end": 19946.98, + "probability": 0.4099 + }, + { + "start": 19947.62, + "end": 19948.41, + "probability": 0.7716 + }, + { + "start": 19949.48, + "end": 19952.5, + "probability": 0.9995 + }, + { + "start": 19952.5, + "end": 19957.68, + "probability": 0.9997 + }, + { + "start": 19958.56, + "end": 19959.06, + "probability": 0.3326 + }, + { + "start": 19959.84, + "end": 19961.0, + "probability": 0.8895 + }, + { + "start": 19962.24, + "end": 19963.14, + "probability": 0.5566 + }, + { + "start": 19964.74, + "end": 19967.0, + "probability": 0.9438 + }, + { + "start": 19967.92, + "end": 19970.64, + "probability": 0.8712 + }, + { + "start": 19970.72, + "end": 19973.18, + "probability": 0.8823 + }, + { + "start": 19974.04, + "end": 19976.8, + "probability": 0.7118 + }, + { + "start": 19977.4, + "end": 19978.03, + "probability": 0.8604 + }, + { + "start": 19979.82, + "end": 19983.58, + "probability": 0.9378 + }, + { + "start": 19984.34, + "end": 19988.96, + "probability": 0.989 + }, + { + "start": 19990.54, + "end": 19993.48, + "probability": 0.8875 + }, + { + "start": 19994.42, + "end": 19999.16, + "probability": 0.9956 + }, + { + "start": 19999.16, + "end": 20003.46, + "probability": 0.9976 + }, + { + "start": 20004.5, + "end": 20005.7, + "probability": 0.7485 + }, + { + "start": 20006.46, + "end": 20006.9, + "probability": 0.4246 + }, + { + "start": 20008.6, + "end": 20009.9, + "probability": 0.9021 + }, + { + "start": 20011.22, + "end": 20013.02, + "probability": 0.9464 + }, + { + "start": 20015.54, + "end": 20016.1, + "probability": 0.8889 + }, + { + "start": 20017.96, + "end": 20019.24, + "probability": 0.9507 + }, + { + "start": 20020.2, + "end": 20022.72, + "probability": 0.9014 + }, + { + "start": 20022.72, + "end": 20026.8, + "probability": 0.9114 + }, + { + "start": 20027.76, + "end": 20029.32, + "probability": 0.989 + }, + { + "start": 20030.08, + "end": 20030.64, + "probability": 0.8282 + }, + { + "start": 20032.74, + "end": 20036.14, + "probability": 0.8266 + }, + { + "start": 20037.04, + "end": 20037.7, + "probability": 0.9148 + }, + { + "start": 20039.02, + "end": 20039.72, + "probability": 0.8228 + }, + { + "start": 20040.68, + "end": 20041.21, + "probability": 0.5001 + }, + { + "start": 20041.26, + "end": 20048.62, + "probability": 0.9581 + }, + { + "start": 20049.5, + "end": 20054.02, + "probability": 0.9778 + }, + { + "start": 20055.34, + "end": 20055.96, + "probability": 0.7213 + }, + { + "start": 20057.7, + "end": 20060.86, + "probability": 0.7201 + }, + { + "start": 20062.3, + "end": 20064.76, + "probability": 0.8919 + }, + { + "start": 20065.6, + "end": 20066.9, + "probability": 0.7209 + }, + { + "start": 20069.52, + "end": 20072.66, + "probability": 0.9977 + }, + { + "start": 20073.38, + "end": 20077.28, + "probability": 0.9978 + }, + { + "start": 20078.02, + "end": 20080.42, + "probability": 0.9122 + }, + { + "start": 20081.84, + "end": 20085.24, + "probability": 0.9966 + }, + { + "start": 20085.24, + "end": 20088.3, + "probability": 0.9492 + }, + { + "start": 20090.74, + "end": 20091.02, + "probability": 0.7477 + }, + { + "start": 20091.54, + "end": 20099.12, + "probability": 0.8391 + }, + { + "start": 20100.16, + "end": 20100.52, + "probability": 0.8173 + }, + { + "start": 20101.3, + "end": 20105.08, + "probability": 0.9903 + }, + { + "start": 20105.08, + "end": 20108.66, + "probability": 0.9622 + }, + { + "start": 20109.5, + "end": 20111.22, + "probability": 0.5986 + }, + { + "start": 20113.0, + "end": 20113.9, + "probability": 0.7629 + }, + { + "start": 20114.84, + "end": 20117.7, + "probability": 0.9423 + }, + { + "start": 20118.52, + "end": 20123.32, + "probability": 0.6105 + }, + { + "start": 20124.18, + "end": 20127.6, + "probability": 0.814 + }, + { + "start": 20127.6, + "end": 20128.88, + "probability": 0.9469 + }, + { + "start": 20130.4, + "end": 20134.72, + "probability": 0.9663 + }, + { + "start": 20135.6, + "end": 20139.58, + "probability": 0.9849 + }, + { + "start": 20140.08, + "end": 20143.82, + "probability": 0.9818 + }, + { + "start": 20143.82, + "end": 20147.5, + "probability": 0.9625 + }, + { + "start": 20148.38, + "end": 20150.32, + "probability": 0.9951 + }, + { + "start": 20151.0, + "end": 20151.68, + "probability": 0.9917 + }, + { + "start": 20152.94, + "end": 20155.58, + "probability": 0.9072 + }, + { + "start": 20157.22, + "end": 20158.3, + "probability": 0.7202 + }, + { + "start": 20158.86, + "end": 20162.5, + "probability": 0.9702 + }, + { + "start": 20163.98, + "end": 20165.12, + "probability": 0.9976 + }, + { + "start": 20166.44, + "end": 20168.18, + "probability": 0.9761 + }, + { + "start": 20168.9, + "end": 20170.46, + "probability": 0.9982 + }, + { + "start": 20171.1, + "end": 20174.06, + "probability": 0.9541 + }, + { + "start": 20174.98, + "end": 20177.78, + "probability": 0.6286 + }, + { + "start": 20178.4, + "end": 20181.22, + "probability": 0.9545 + }, + { + "start": 20182.14, + "end": 20185.46, + "probability": 0.9754 + }, + { + "start": 20186.22, + "end": 20187.92, + "probability": 0.6561 + }, + { + "start": 20189.24, + "end": 20191.5, + "probability": 0.9422 + }, + { + "start": 20192.08, + "end": 20194.7, + "probability": 0.7541 + }, + { + "start": 20195.54, + "end": 20200.66, + "probability": 0.9959 + }, + { + "start": 20201.42, + "end": 20202.88, + "probability": 0.8435 + }, + { + "start": 20203.98, + "end": 20206.3, + "probability": 0.7187 + }, + { + "start": 20207.2, + "end": 20211.92, + "probability": 0.9944 + }, + { + "start": 20212.46, + "end": 20213.46, + "probability": 0.9775 + }, + { + "start": 20214.56, + "end": 20216.9, + "probability": 0.9247 + }, + { + "start": 20218.78, + "end": 20224.44, + "probability": 0.9958 + }, + { + "start": 20224.52, + "end": 20225.06, + "probability": 0.5318 + }, + { + "start": 20225.12, + "end": 20226.34, + "probability": 0.8591 + }, + { + "start": 20227.26, + "end": 20230.62, + "probability": 0.9558 + }, + { + "start": 20231.64, + "end": 20234.92, + "probability": 0.9922 + }, + { + "start": 20235.6, + "end": 20237.74, + "probability": 0.9967 + }, + { + "start": 20238.32, + "end": 20243.2, + "probability": 0.9934 + }, + { + "start": 20243.92, + "end": 20246.38, + "probability": 0.9958 + }, + { + "start": 20247.56, + "end": 20247.8, + "probability": 0.7631 + }, + { + "start": 20249.84, + "end": 20250.62, + "probability": 0.2996 + }, + { + "start": 20250.68, + "end": 20252.26, + "probability": 0.5541 + }, + { + "start": 20254.3, + "end": 20255.62, + "probability": 0.6072 + }, + { + "start": 20256.92, + "end": 20260.72, + "probability": 0.616 + }, + { + "start": 20275.3, + "end": 20275.8, + "probability": 0.8745 + }, + { + "start": 20282.12, + "end": 20282.94, + "probability": 0.5435 + }, + { + "start": 20283.06, + "end": 20284.34, + "probability": 0.7245 + }, + { + "start": 20284.4, + "end": 20289.56, + "probability": 0.8334 + }, + { + "start": 20290.96, + "end": 20294.9, + "probability": 0.9731 + }, + { + "start": 20296.12, + "end": 20300.78, + "probability": 0.979 + }, + { + "start": 20301.6, + "end": 20304.96, + "probability": 0.9971 + }, + { + "start": 20305.66, + "end": 20306.9, + "probability": 0.4672 + }, + { + "start": 20308.64, + "end": 20313.16, + "probability": 0.9781 + }, + { + "start": 20314.1, + "end": 20316.36, + "probability": 0.7219 + }, + { + "start": 20316.96, + "end": 20321.68, + "probability": 0.9737 + }, + { + "start": 20322.06, + "end": 20323.5, + "probability": 0.6952 + }, + { + "start": 20324.1, + "end": 20328.64, + "probability": 0.7521 + }, + { + "start": 20329.26, + "end": 20331.96, + "probability": 0.984 + }, + { + "start": 20331.96, + "end": 20335.98, + "probability": 0.9293 + }, + { + "start": 20336.2, + "end": 20337.14, + "probability": 0.6095 + }, + { + "start": 20337.46, + "end": 20340.2, + "probability": 0.9597 + }, + { + "start": 20340.7, + "end": 20342.4, + "probability": 0.37 + }, + { + "start": 20342.76, + "end": 20344.18, + "probability": 0.7689 + }, + { + "start": 20344.54, + "end": 20347.62, + "probability": 0.8355 + }, + { + "start": 20347.92, + "end": 20350.82, + "probability": 0.9552 + }, + { + "start": 20351.12, + "end": 20356.6, + "probability": 0.9281 + }, + { + "start": 20356.6, + "end": 20361.66, + "probability": 0.998 + }, + { + "start": 20362.18, + "end": 20367.44, + "probability": 0.9934 + }, + { + "start": 20367.56, + "end": 20368.38, + "probability": 0.8348 + }, + { + "start": 20368.78, + "end": 20373.8, + "probability": 0.8435 + }, + { + "start": 20374.22, + "end": 20376.7, + "probability": 0.9823 + }, + { + "start": 20377.36, + "end": 20379.52, + "probability": 0.9817 + }, + { + "start": 20380.22, + "end": 20383.78, + "probability": 0.9006 + }, + { + "start": 20383.82, + "end": 20387.04, + "probability": 0.9795 + }, + { + "start": 20387.4, + "end": 20388.54, + "probability": 0.4779 + }, + { + "start": 20388.6, + "end": 20391.16, + "probability": 0.8674 + }, + { + "start": 20391.36, + "end": 20392.78, + "probability": 0.8412 + }, + { + "start": 20393.16, + "end": 20394.99, + "probability": 0.967 + }, + { + "start": 20395.32, + "end": 20398.86, + "probability": 0.8069 + }, + { + "start": 20399.72, + "end": 20403.72, + "probability": 0.9603 + }, + { + "start": 20404.14, + "end": 20409.18, + "probability": 0.7949 + }, + { + "start": 20409.56, + "end": 20412.56, + "probability": 0.9954 + }, + { + "start": 20412.76, + "end": 20417.28, + "probability": 0.9835 + }, + { + "start": 20417.6, + "end": 20419.24, + "probability": 0.9935 + }, + { + "start": 20419.36, + "end": 20420.74, + "probability": 0.6795 + }, + { + "start": 20421.3, + "end": 20425.76, + "probability": 0.9352 + }, + { + "start": 20426.14, + "end": 20427.2, + "probability": 0.6279 + }, + { + "start": 20427.48, + "end": 20429.6, + "probability": 0.9653 + }, + { + "start": 20430.06, + "end": 20431.18, + "probability": 0.9225 + }, + { + "start": 20431.44, + "end": 20432.6, + "probability": 0.4953 + }, + { + "start": 20433.26, + "end": 20434.84, + "probability": 0.5801 + }, + { + "start": 20435.52, + "end": 20437.6, + "probability": 0.9292 + }, + { + "start": 20438.72, + "end": 20440.47, + "probability": 0.907 + }, + { + "start": 20440.78, + "end": 20441.54, + "probability": 0.8535 + }, + { + "start": 20441.82, + "end": 20443.8, + "probability": 0.9824 + }, + { + "start": 20445.1, + "end": 20447.72, + "probability": 0.9805 + }, + { + "start": 20448.2, + "end": 20448.38, + "probability": 0.8628 + }, + { + "start": 20450.0, + "end": 20450.66, + "probability": 0.6365 + }, + { + "start": 20450.82, + "end": 20456.21, + "probability": 0.6754 + }, + { + "start": 20457.0, + "end": 20459.16, + "probability": 0.8238 + }, + { + "start": 20475.44, + "end": 20475.84, + "probability": 0.0828 + }, + { + "start": 20476.36, + "end": 20477.76, + "probability": 0.6705 + }, + { + "start": 20479.56, + "end": 20481.04, + "probability": 0.8838 + }, + { + "start": 20481.28, + "end": 20482.57, + "probability": 0.9444 + }, + { + "start": 20483.12, + "end": 20484.4, + "probability": 0.9261 + }, + { + "start": 20484.98, + "end": 20486.84, + "probability": 0.6238 + }, + { + "start": 20487.66, + "end": 20490.96, + "probability": 0.6455 + }, + { + "start": 20491.8, + "end": 20495.3, + "probability": 0.8169 + }, + { + "start": 20495.98, + "end": 20497.35, + "probability": 0.7065 + }, + { + "start": 20499.46, + "end": 20501.54, + "probability": 0.8757 + }, + { + "start": 20501.66, + "end": 20502.87, + "probability": 0.9011 + }, + { + "start": 20503.42, + "end": 20505.21, + "probability": 0.8315 + }, + { + "start": 20506.26, + "end": 20509.48, + "probability": 0.7126 + }, + { + "start": 20510.2, + "end": 20512.0, + "probability": 0.7495 + }, + { + "start": 20512.54, + "end": 20517.24, + "probability": 0.9526 + }, + { + "start": 20517.24, + "end": 20522.02, + "probability": 0.9746 + }, + { + "start": 20522.8, + "end": 20525.32, + "probability": 0.8481 + }, + { + "start": 20526.94, + "end": 20532.94, + "probability": 0.9036 + }, + { + "start": 20534.52, + "end": 20538.48, + "probability": 0.9515 + }, + { + "start": 20539.32, + "end": 20541.38, + "probability": 0.8598 + }, + { + "start": 20542.9, + "end": 20543.5, + "probability": 0.4069 + }, + { + "start": 20544.98, + "end": 20549.1, + "probability": 0.7517 + }, + { + "start": 20549.7, + "end": 20552.82, + "probability": 0.8994 + }, + { + "start": 20552.84, + "end": 20556.16, + "probability": 0.8698 + }, + { + "start": 20557.34, + "end": 20559.34, + "probability": 0.901 + }, + { + "start": 20560.76, + "end": 20562.88, + "probability": 0.7325 + }, + { + "start": 20563.66, + "end": 20566.64, + "probability": 0.9357 + }, + { + "start": 20568.56, + "end": 20569.32, + "probability": 0.5446 + }, + { + "start": 20569.68, + "end": 20572.38, + "probability": 0.9232 + }, + { + "start": 20572.64, + "end": 20573.72, + "probability": 0.9245 + }, + { + "start": 20575.32, + "end": 20577.3, + "probability": 0.9038 + }, + { + "start": 20578.68, + "end": 20582.92, + "probability": 0.7199 + }, + { + "start": 20583.46, + "end": 20584.48, + "probability": 0.8362 + }, + { + "start": 20584.94, + "end": 20585.85, + "probability": 0.9058 + }, + { + "start": 20587.02, + "end": 20591.58, + "probability": 0.8951 + }, + { + "start": 20591.64, + "end": 20592.34, + "probability": 0.5889 + }, + { + "start": 20592.42, + "end": 20594.46, + "probability": 0.987 + }, + { + "start": 20594.56, + "end": 20595.36, + "probability": 0.9076 + }, + { + "start": 20596.72, + "end": 20598.52, + "probability": 0.8238 + }, + { + "start": 20598.58, + "end": 20602.18, + "probability": 0.9854 + }, + { + "start": 20602.8, + "end": 20606.14, + "probability": 0.7545 + }, + { + "start": 20606.14, + "end": 20608.78, + "probability": 0.9186 + }, + { + "start": 20609.1, + "end": 20612.03, + "probability": 0.9551 + }, + { + "start": 20613.0, + "end": 20616.12, + "probability": 0.7441 + }, + { + "start": 20616.74, + "end": 20619.92, + "probability": 0.6556 + }, + { + "start": 20620.06, + "end": 20620.82, + "probability": 0.8291 + }, + { + "start": 20621.5, + "end": 20625.42, + "probability": 0.9957 + }, + { + "start": 20626.16, + "end": 20627.6, + "probability": 0.9414 + }, + { + "start": 20628.86, + "end": 20631.35, + "probability": 0.654 + }, + { + "start": 20632.94, + "end": 20634.54, + "probability": 0.9035 + }, + { + "start": 20635.42, + "end": 20636.64, + "probability": 0.9161 + }, + { + "start": 20637.02, + "end": 20642.12, + "probability": 0.9042 + }, + { + "start": 20642.46, + "end": 20644.52, + "probability": 0.9675 + }, + { + "start": 20645.06, + "end": 20648.98, + "probability": 0.9573 + }, + { + "start": 20649.72, + "end": 20652.94, + "probability": 0.9498 + }, + { + "start": 20653.36, + "end": 20655.12, + "probability": 0.8458 + }, + { + "start": 20655.82, + "end": 20656.82, + "probability": 0.9189 + }, + { + "start": 20658.28, + "end": 20662.4, + "probability": 0.8276 + }, + { + "start": 20663.58, + "end": 20665.36, + "probability": 0.5276 + }, + { + "start": 20665.88, + "end": 20667.72, + "probability": 0.6646 + }, + { + "start": 20668.0, + "end": 20670.92, + "probability": 0.9716 + }, + { + "start": 20671.2, + "end": 20672.46, + "probability": 0.7239 + }, + { + "start": 20672.76, + "end": 20673.4, + "probability": 0.911 + }, + { + "start": 20673.74, + "end": 20674.76, + "probability": 0.8596 + }, + { + "start": 20675.04, + "end": 20676.1, + "probability": 0.9778 + }, + { + "start": 20676.6, + "end": 20677.2, + "probability": 0.6743 + }, + { + "start": 20677.3, + "end": 20678.34, + "probability": 0.9637 + }, + { + "start": 20692.76, + "end": 20692.78, + "probability": 0.4224 + }, + { + "start": 20692.78, + "end": 20693.98, + "probability": 0.7583 + }, + { + "start": 20698.82, + "end": 20700.42, + "probability": 0.6274 + }, + { + "start": 20701.1, + "end": 20702.56, + "probability": 0.6879 + }, + { + "start": 20704.74, + "end": 20704.74, + "probability": 0.8716 + }, + { + "start": 20707.24, + "end": 20711.0, + "probability": 0.9694 + }, + { + "start": 20712.26, + "end": 20715.58, + "probability": 0.9707 + }, + { + "start": 20717.2, + "end": 20724.68, + "probability": 0.9956 + }, + { + "start": 20725.2, + "end": 20726.59, + "probability": 0.054 + }, + { + "start": 20728.2, + "end": 20729.58, + "probability": 0.7636 + }, + { + "start": 20730.49, + "end": 20732.34, + "probability": 0.7314 + }, + { + "start": 20732.44, + "end": 20733.51, + "probability": 0.8953 + }, + { + "start": 20733.82, + "end": 20734.16, + "probability": 0.0424 + }, + { + "start": 20734.16, + "end": 20734.16, + "probability": 0.2026 + }, + { + "start": 20734.16, + "end": 20735.08, + "probability": 0.6802 + }, + { + "start": 20735.18, + "end": 20738.4, + "probability": 0.8182 + }, + { + "start": 20739.62, + "end": 20747.42, + "probability": 0.9908 + }, + { + "start": 20747.64, + "end": 20751.12, + "probability": 0.9861 + }, + { + "start": 20752.06, + "end": 20756.56, + "probability": 0.9906 + }, + { + "start": 20757.36, + "end": 20759.06, + "probability": 0.8905 + }, + { + "start": 20760.02, + "end": 20762.72, + "probability": 0.7991 + }, + { + "start": 20762.78, + "end": 20762.78, + "probability": 0.2346 + }, + { + "start": 20762.78, + "end": 20762.84, + "probability": 0.4045 + }, + { + "start": 20762.84, + "end": 20762.84, + "probability": 0.1592 + }, + { + "start": 20762.84, + "end": 20766.63, + "probability": 0.6139 + }, + { + "start": 20766.98, + "end": 20767.84, + "probability": 0.3249 + }, + { + "start": 20767.92, + "end": 20770.96, + "probability": 0.3677 + }, + { + "start": 20771.42, + "end": 20772.24, + "probability": 0.1765 + }, + { + "start": 20772.24, + "end": 20776.36, + "probability": 0.7465 + }, + { + "start": 20776.36, + "end": 20777.34, + "probability": 0.1614 + }, + { + "start": 20777.36, + "end": 20779.68, + "probability": 0.7347 + }, + { + "start": 20779.8, + "end": 20780.2, + "probability": 0.4272 + }, + { + "start": 20780.32, + "end": 20781.48, + "probability": 0.9029 + }, + { + "start": 20781.76, + "end": 20791.62, + "probability": 0.814 + }, + { + "start": 20791.62, + "end": 20791.74, + "probability": 0.2874 + }, + { + "start": 20792.92, + "end": 20794.84, + "probability": 0.9785 + }, + { + "start": 20794.84, + "end": 20797.72, + "probability": 0.9561 + }, + { + "start": 20797.84, + "end": 20798.4, + "probability": 0.27 + }, + { + "start": 20798.5, + "end": 20802.86, + "probability": 0.9534 + }, + { + "start": 20802.94, + "end": 20804.3, + "probability": 0.9728 + }, + { + "start": 20804.74, + "end": 20807.76, + "probability": 0.9406 + }, + { + "start": 20808.18, + "end": 20810.04, + "probability": 0.1345 + }, + { + "start": 20810.04, + "end": 20811.3, + "probability": 0.6265 + }, + { + "start": 20812.2, + "end": 20817.28, + "probability": 0.8888 + }, + { + "start": 20817.38, + "end": 20819.28, + "probability": 0.9371 + }, + { + "start": 20819.42, + "end": 20820.62, + "probability": 0.1747 + }, + { + "start": 20820.72, + "end": 20823.55, + "probability": 0.7103 + }, + { + "start": 20824.34, + "end": 20829.7, + "probability": 0.9145 + }, + { + "start": 20830.22, + "end": 20836.46, + "probability": 0.5193 + }, + { + "start": 20836.46, + "end": 20836.46, + "probability": 0.0592 + }, + { + "start": 20836.46, + "end": 20841.82, + "probability": 0.5773 + }, + { + "start": 20841.88, + "end": 20843.33, + "probability": 0.3251 + }, + { + "start": 20844.48, + "end": 20846.02, + "probability": 0.8282 + }, + { + "start": 20847.52, + "end": 20848.52, + "probability": 0.5013 + }, + { + "start": 20849.68, + "end": 20850.64, + "probability": 0.0511 + }, + { + "start": 20851.44, + "end": 20852.16, + "probability": 0.0207 + }, + { + "start": 20852.3, + "end": 20855.18, + "probability": 0.0382 + }, + { + "start": 20856.18, + "end": 20856.74, + "probability": 0.0502 + }, + { + "start": 20857.58, + "end": 20857.58, + "probability": 0.1195 + }, + { + "start": 20857.58, + "end": 20857.58, + "probability": 0.323 + }, + { + "start": 20857.58, + "end": 20858.58, + "probability": 0.0822 + }, + { + "start": 20858.58, + "end": 20860.82, + "probability": 0.5343 + }, + { + "start": 20861.96, + "end": 20862.26, + "probability": 0.4779 + }, + { + "start": 20863.3, + "end": 20863.9, + "probability": 0.003 + }, + { + "start": 20864.06, + "end": 20865.74, + "probability": 0.6907 + }, + { + "start": 20865.82, + "end": 20868.52, + "probability": 0.923 + }, + { + "start": 20873.98, + "end": 20875.7, + "probability": 0.7054 + }, + { + "start": 20876.28, + "end": 20881.2, + "probability": 0.7832 + }, + { + "start": 20881.84, + "end": 20883.64, + "probability": 0.9466 + }, + { + "start": 20883.74, + "end": 20886.94, + "probability": 0.906 + }, + { + "start": 20887.02, + "end": 20888.18, + "probability": 0.848 + }, + { + "start": 20888.7, + "end": 20890.82, + "probability": 0.9286 + }, + { + "start": 20891.02, + "end": 20891.38, + "probability": 0.0039 + }, + { + "start": 20891.38, + "end": 20893.58, + "probability": 0.5349 + }, + { + "start": 20893.82, + "end": 20895.7, + "probability": 0.9927 + }, + { + "start": 20895.86, + "end": 20899.5, + "probability": 0.9295 + }, + { + "start": 20899.74, + "end": 20902.82, + "probability": 0.9758 + }, + { + "start": 20903.0, + "end": 20903.2, + "probability": 0.8654 + }, + { + "start": 20903.22, + "end": 20903.88, + "probability": 0.6202 + }, + { + "start": 20904.56, + "end": 20906.66, + "probability": 0.9119 + }, + { + "start": 20908.0, + "end": 20908.88, + "probability": 0.629 + }, + { + "start": 20909.34, + "end": 20910.78, + "probability": 0.9494 + }, + { + "start": 20911.44, + "end": 20912.08, + "probability": 0.7902 + }, + { + "start": 20926.96, + "end": 20928.04, + "probability": 0.9768 + }, + { + "start": 20931.34, + "end": 20933.08, + "probability": 0.5663 + }, + { + "start": 20934.18, + "end": 20935.36, + "probability": 0.8835 + }, + { + "start": 20936.78, + "end": 20938.92, + "probability": 0.9897 + }, + { + "start": 20939.1, + "end": 20940.54, + "probability": 0.9087 + }, + { + "start": 20941.48, + "end": 20942.68, + "probability": 0.9818 + }, + { + "start": 20943.42, + "end": 20944.32, + "probability": 0.8266 + }, + { + "start": 20945.68, + "end": 20946.18, + "probability": 0.3452 + }, + { + "start": 20946.6, + "end": 20947.5, + "probability": 0.1913 + }, + { + "start": 20947.5, + "end": 20947.78, + "probability": 0.2767 + }, + { + "start": 20947.9, + "end": 20948.38, + "probability": 0.6754 + }, + { + "start": 20948.7, + "end": 20954.12, + "probability": 0.865 + }, + { + "start": 20954.12, + "end": 20954.78, + "probability": 0.2949 + }, + { + "start": 20954.78, + "end": 20957.3, + "probability": 0.9417 + }, + { + "start": 20957.36, + "end": 20959.11, + "probability": 0.8008 + }, + { + "start": 20959.66, + "end": 20960.88, + "probability": 0.8 + }, + { + "start": 20960.94, + "end": 20963.04, + "probability": 0.1816 + }, + { + "start": 20963.66, + "end": 20964.08, + "probability": 0.0949 + }, + { + "start": 20964.12, + "end": 20964.6, + "probability": 0.6564 + }, + { + "start": 20965.44, + "end": 20967.66, + "probability": 0.8292 + }, + { + "start": 20968.2, + "end": 20971.94, + "probability": 0.9089 + }, + { + "start": 20972.82, + "end": 20972.84, + "probability": 0.0866 + }, + { + "start": 20972.84, + "end": 20975.2, + "probability": 0.7344 + }, + { + "start": 20975.52, + "end": 20977.32, + "probability": 0.8719 + }, + { + "start": 20977.52, + "end": 20979.4, + "probability": 0.9324 + }, + { + "start": 20979.46, + "end": 20983.02, + "probability": 0.5754 + }, + { + "start": 20983.82, + "end": 20983.9, + "probability": 0.0971 + }, + { + "start": 20983.9, + "end": 20985.84, + "probability": 0.2739 + }, + { + "start": 20986.3, + "end": 20991.36, + "probability": 0.981 + }, + { + "start": 20991.56, + "end": 20992.2, + "probability": 0.85 + }, + { + "start": 20993.68, + "end": 20995.96, + "probability": 0.9087 + }, + { + "start": 20996.0, + "end": 20997.16, + "probability": 0.9173 + }, + { + "start": 20997.2, + "end": 20998.92, + "probability": 0.683 + }, + { + "start": 21000.92, + "end": 21005.84, + "probability": 0.865 + }, + { + "start": 21006.8, + "end": 21008.02, + "probability": 0.998 + }, + { + "start": 21009.1, + "end": 21012.82, + "probability": 0.9014 + }, + { + "start": 21013.16, + "end": 21016.72, + "probability": 0.9665 + }, + { + "start": 21016.96, + "end": 21017.76, + "probability": 0.6847 + }, + { + "start": 21017.98, + "end": 21020.64, + "probability": 0.8618 + }, + { + "start": 21021.54, + "end": 21023.14, + "probability": 0.7619 + }, + { + "start": 21023.8, + "end": 21025.58, + "probability": 0.9473 + }, + { + "start": 21027.34, + "end": 21031.16, + "probability": 0.7597 + }, + { + "start": 21031.74, + "end": 21032.92, + "probability": 0.9751 + }, + { + "start": 21032.98, + "end": 21034.06, + "probability": 0.6679 + }, + { + "start": 21034.52, + "end": 21035.92, + "probability": 0.9924 + }, + { + "start": 21037.62, + "end": 21042.5, + "probability": 0.9285 + }, + { + "start": 21043.76, + "end": 21046.5, + "probability": 0.9963 + }, + { + "start": 21046.5, + "end": 21051.74, + "probability": 0.8794 + }, + { + "start": 21052.18, + "end": 21053.9, + "probability": 0.6718 + }, + { + "start": 21054.46, + "end": 21056.2, + "probability": 0.7741 + }, + { + "start": 21056.56, + "end": 21058.82, + "probability": 0.9734 + }, + { + "start": 21058.98, + "end": 21059.56, + "probability": 0.2306 + }, + { + "start": 21061.04, + "end": 21063.74, + "probability": 0.5903 + }, + { + "start": 21064.56, + "end": 21066.88, + "probability": 0.886 + }, + { + "start": 21067.7, + "end": 21071.1, + "probability": 0.9548 + }, + { + "start": 21072.2, + "end": 21074.5, + "probability": 0.9295 + }, + { + "start": 21076.62, + "end": 21078.28, + "probability": 0.7765 + }, + { + "start": 21078.44, + "end": 21080.22, + "probability": 0.9701 + }, + { + "start": 21081.7, + "end": 21083.2, + "probability": 0.7934 + }, + { + "start": 21083.54, + "end": 21084.46, + "probability": 0.965 + }, + { + "start": 21084.58, + "end": 21085.96, + "probability": 0.7787 + }, + { + "start": 21086.1, + "end": 21087.86, + "probability": 0.3457 + }, + { + "start": 21088.58, + "end": 21089.53, + "probability": 0.5375 + }, + { + "start": 21089.76, + "end": 21092.32, + "probability": 0.6246 + }, + { + "start": 21093.14, + "end": 21094.42, + "probability": 0.9812 + }, + { + "start": 21096.52, + "end": 21100.64, + "probability": 0.9785 + }, + { + "start": 21102.26, + "end": 21103.06, + "probability": 0.1855 + }, + { + "start": 21104.16, + "end": 21108.46, + "probability": 0.9138 + }, + { + "start": 21109.42, + "end": 21111.12, + "probability": 0.9233 + }, + { + "start": 21112.16, + "end": 21116.82, + "probability": 0.7231 + }, + { + "start": 21117.72, + "end": 21120.46, + "probability": 0.9941 + }, + { + "start": 21122.44, + "end": 21127.68, + "probability": 0.9771 + }, + { + "start": 21129.38, + "end": 21130.48, + "probability": 0.7142 + }, + { + "start": 21131.34, + "end": 21131.78, + "probability": 0.6455 + }, + { + "start": 21131.78, + "end": 21133.08, + "probability": 0.6049 + }, + { + "start": 21133.42, + "end": 21135.72, + "probability": 0.8666 + }, + { + "start": 21136.0, + "end": 21136.8, + "probability": 0.4557 + }, + { + "start": 21137.58, + "end": 21141.12, + "probability": 0.9777 + }, + { + "start": 21141.14, + "end": 21141.78, + "probability": 0.6426 + }, + { + "start": 21141.78, + "end": 21142.4, + "probability": 0.9652 + }, + { + "start": 21143.02, + "end": 21143.64, + "probability": 0.724 + }, + { + "start": 21143.86, + "end": 21145.92, + "probability": 0.9365 + }, + { + "start": 21147.34, + "end": 21148.0, + "probability": 0.4939 + }, + { + "start": 21148.54, + "end": 21151.64, + "probability": 0.9295 + }, + { + "start": 21152.22, + "end": 21154.34, + "probability": 0.8936 + }, + { + "start": 21155.56, + "end": 21158.22, + "probability": 0.8443 + }, + { + "start": 21158.62, + "end": 21162.22, + "probability": 0.6953 + }, + { + "start": 21162.86, + "end": 21164.12, + "probability": 0.897 + }, + { + "start": 21164.9, + "end": 21167.78, + "probability": 0.9189 + }, + { + "start": 21167.78, + "end": 21168.9, + "probability": 0.9255 + }, + { + "start": 21169.48, + "end": 21170.22, + "probability": 0.9932 + }, + { + "start": 21170.74, + "end": 21171.88, + "probability": 0.9944 + }, + { + "start": 21172.7, + "end": 21175.48, + "probability": 0.9257 + }, + { + "start": 21176.18, + "end": 21176.8, + "probability": 0.866 + }, + { + "start": 21177.32, + "end": 21177.68, + "probability": 0.7366 + }, + { + "start": 21177.78, + "end": 21177.94, + "probability": 0.6161 + }, + { + "start": 21178.72, + "end": 21180.96, + "probability": 0.7551 + }, + { + "start": 21205.4, + "end": 21207.32, + "probability": 0.617 + }, + { + "start": 21208.64, + "end": 21211.28, + "probability": 0.6931 + }, + { + "start": 21212.74, + "end": 21213.96, + "probability": 0.9804 + }, + { + "start": 21215.28, + "end": 21219.94, + "probability": 0.8905 + }, + { + "start": 21220.48, + "end": 21222.26, + "probability": 0.5306 + }, + { + "start": 21223.96, + "end": 21227.09, + "probability": 0.9932 + }, + { + "start": 21228.68, + "end": 21231.12, + "probability": 0.9698 + }, + { + "start": 21232.08, + "end": 21235.82, + "probability": 0.7957 + }, + { + "start": 21236.68, + "end": 21238.02, + "probability": 0.9493 + }, + { + "start": 21239.66, + "end": 21244.08, + "probability": 0.8565 + }, + { + "start": 21245.56, + "end": 21248.54, + "probability": 0.9254 + }, + { + "start": 21250.74, + "end": 21252.61, + "probability": 0.9824 + }, + { + "start": 21254.2, + "end": 21256.14, + "probability": 0.9323 + }, + { + "start": 21257.3, + "end": 21259.48, + "probability": 0.7115 + }, + { + "start": 21260.9, + "end": 21262.94, + "probability": 0.5673 + }, + { + "start": 21264.74, + "end": 21267.44, + "probability": 0.6626 + }, + { + "start": 21269.92, + "end": 21273.8, + "probability": 0.6652 + }, + { + "start": 21274.64, + "end": 21276.7, + "probability": 0.9443 + }, + { + "start": 21276.88, + "end": 21278.6, + "probability": 0.8564 + }, + { + "start": 21280.32, + "end": 21282.36, + "probability": 0.7478 + }, + { + "start": 21282.4, + "end": 21286.36, + "probability": 0.811 + }, + { + "start": 21286.42, + "end": 21287.5, + "probability": 0.9232 + }, + { + "start": 21288.9, + "end": 21294.28, + "probability": 0.8498 + }, + { + "start": 21294.34, + "end": 21295.32, + "probability": 0.8511 + }, + { + "start": 21295.98, + "end": 21297.06, + "probability": 0.3634 + }, + { + "start": 21297.16, + "end": 21300.42, + "probability": 0.7321 + }, + { + "start": 21302.06, + "end": 21306.98, + "probability": 0.7405 + }, + { + "start": 21310.6, + "end": 21313.24, + "probability": 0.6919 + }, + { + "start": 21314.76, + "end": 21315.34, + "probability": 0.8584 + }, + { + "start": 21317.5, + "end": 21320.92, + "probability": 0.853 + }, + { + "start": 21321.88, + "end": 21322.37, + "probability": 0.9556 + }, + { + "start": 21323.36, + "end": 21325.28, + "probability": 0.7655 + }, + { + "start": 21326.26, + "end": 21330.22, + "probability": 0.9536 + }, + { + "start": 21332.46, + "end": 21335.94, + "probability": 0.3697 + }, + { + "start": 21335.94, + "end": 21336.44, + "probability": 0.3589 + }, + { + "start": 21336.6, + "end": 21337.54, + "probability": 0.7241 + }, + { + "start": 21337.96, + "end": 21338.6, + "probability": 0.9338 + }, + { + "start": 21338.66, + "end": 21339.52, + "probability": 0.9194 + }, + { + "start": 21341.92, + "end": 21343.52, + "probability": 0.7262 + }, + { + "start": 21343.86, + "end": 21346.22, + "probability": 0.8018 + }, + { + "start": 21346.34, + "end": 21347.82, + "probability": 0.7767 + }, + { + "start": 21348.14, + "end": 21350.26, + "probability": 0.7737 + }, + { + "start": 21351.18, + "end": 21352.98, + "probability": 0.8613 + }, + { + "start": 21353.76, + "end": 21356.74, + "probability": 0.8551 + }, + { + "start": 21357.2, + "end": 21358.86, + "probability": 0.9974 + }, + { + "start": 21358.94, + "end": 21359.62, + "probability": 0.5542 + }, + { + "start": 21361.24, + "end": 21362.58, + "probability": 0.6628 + }, + { + "start": 21364.48, + "end": 21366.12, + "probability": 0.6206 + }, + { + "start": 21366.2, + "end": 21367.08, + "probability": 0.8664 + }, + { + "start": 21367.28, + "end": 21368.66, + "probability": 0.7515 + }, + { + "start": 21368.66, + "end": 21369.34, + "probability": 0.3851 + }, + { + "start": 21371.36, + "end": 21372.46, + "probability": 0.7219 + }, + { + "start": 21373.7, + "end": 21374.9, + "probability": 0.6714 + }, + { + "start": 21375.0, + "end": 21380.04, + "probability": 0.1527 + }, + { + "start": 21380.1, + "end": 21382.62, + "probability": 0.1973 + }, + { + "start": 21382.9, + "end": 21384.14, + "probability": 0.5458 + }, + { + "start": 21384.48, + "end": 21387.04, + "probability": 0.8762 + }, + { + "start": 21388.36, + "end": 21389.44, + "probability": 0.6632 + }, + { + "start": 21390.48, + "end": 21392.18, + "probability": 0.8327 + }, + { + "start": 21392.4, + "end": 21397.86, + "probability": 0.6371 + }, + { + "start": 21399.58, + "end": 21404.18, + "probability": 0.575 + }, + { + "start": 21405.06, + "end": 21405.58, + "probability": 0.5436 + }, + { + "start": 21406.12, + "end": 21406.24, + "probability": 0.4323 + }, + { + "start": 21406.26, + "end": 21409.21, + "probability": 0.819 + }, + { + "start": 21427.2, + "end": 21427.86, + "probability": 0.8226 + }, + { + "start": 21429.42, + "end": 21430.34, + "probability": 0.5307 + }, + { + "start": 21431.28, + "end": 21432.96, + "probability": 0.7522 + }, + { + "start": 21433.72, + "end": 21434.92, + "probability": 0.7471 + }, + { + "start": 21435.94, + "end": 21440.18, + "probability": 0.9604 + }, + { + "start": 21440.18, + "end": 21445.44, + "probability": 0.986 + }, + { + "start": 21446.64, + "end": 21453.86, + "probability": 0.5795 + }, + { + "start": 21454.6, + "end": 21459.44, + "probability": 0.9287 + }, + { + "start": 21460.5, + "end": 21462.84, + "probability": 0.9235 + }, + { + "start": 21464.14, + "end": 21465.78, + "probability": 0.9709 + }, + { + "start": 21465.86, + "end": 21470.18, + "probability": 0.8975 + }, + { + "start": 21471.28, + "end": 21475.34, + "probability": 0.7572 + }, + { + "start": 21475.54, + "end": 21478.28, + "probability": 0.9634 + }, + { + "start": 21479.12, + "end": 21482.75, + "probability": 0.9868 + }, + { + "start": 21483.06, + "end": 21483.4, + "probability": 0.3486 + }, + { + "start": 21484.0, + "end": 21487.34, + "probability": 0.8584 + }, + { + "start": 21488.24, + "end": 21495.78, + "probability": 0.9688 + }, + { + "start": 21496.78, + "end": 21498.02, + "probability": 0.6654 + }, + { + "start": 21498.74, + "end": 21500.64, + "probability": 0.9959 + }, + { + "start": 21501.24, + "end": 21502.96, + "probability": 0.97 + }, + { + "start": 21503.62, + "end": 21506.18, + "probability": 0.9774 + }, + { + "start": 21507.12, + "end": 21515.04, + "probability": 0.9771 + }, + { + "start": 21515.82, + "end": 21519.86, + "probability": 0.9944 + }, + { + "start": 21520.42, + "end": 21522.88, + "probability": 0.5188 + }, + { + "start": 21523.2, + "end": 21528.7, + "probability": 0.8454 + }, + { + "start": 21529.38, + "end": 21535.48, + "probability": 0.988 + }, + { + "start": 21536.02, + "end": 21540.38, + "probability": 0.984 + }, + { + "start": 21540.7, + "end": 21542.36, + "probability": 0.82 + }, + { + "start": 21542.7, + "end": 21544.06, + "probability": 0.9465 + }, + { + "start": 21544.62, + "end": 21548.02, + "probability": 0.9985 + }, + { + "start": 21548.5, + "end": 21548.92, + "probability": 0.9533 + }, + { + "start": 21549.38, + "end": 21552.12, + "probability": 0.9985 + }, + { + "start": 21553.04, + "end": 21554.84, + "probability": 0.8219 + }, + { + "start": 21555.58, + "end": 21556.36, + "probability": 0.6161 + }, + { + "start": 21557.08, + "end": 21557.86, + "probability": 0.9072 + }, + { + "start": 21558.38, + "end": 21560.42, + "probability": 0.6175 + }, + { + "start": 21561.02, + "end": 21563.53, + "probability": 0.989 + }, + { + "start": 21564.32, + "end": 21567.68, + "probability": 0.991 + }, + { + "start": 21567.68, + "end": 21570.66, + "probability": 0.9971 + }, + { + "start": 21571.22, + "end": 21572.34, + "probability": 0.858 + }, + { + "start": 21573.66, + "end": 21574.78, + "probability": 0.9829 + }, + { + "start": 21575.48, + "end": 21577.1, + "probability": 0.98 + }, + { + "start": 21577.88, + "end": 21579.04, + "probability": 0.8467 + }, + { + "start": 21580.34, + "end": 21581.68, + "probability": 0.9893 + }, + { + "start": 21582.24, + "end": 21588.74, + "probability": 0.7525 + }, + { + "start": 21589.32, + "end": 21592.6, + "probability": 0.7959 + }, + { + "start": 21593.14, + "end": 21596.38, + "probability": 0.7561 + }, + { + "start": 21596.92, + "end": 21597.94, + "probability": 0.9631 + }, + { + "start": 21598.18, + "end": 21598.9, + "probability": 0.2301 + }, + { + "start": 21599.12, + "end": 21599.92, + "probability": 0.5646 + }, + { + "start": 21600.12, + "end": 21602.22, + "probability": 0.016 + }, + { + "start": 21602.22, + "end": 21602.64, + "probability": 0.1381 + }, + { + "start": 21602.64, + "end": 21606.24, + "probability": 0.3609 + }, + { + "start": 21606.36, + "end": 21606.5, + "probability": 0.1005 + }, + { + "start": 21607.32, + "end": 21610.44, + "probability": 0.2943 + }, + { + "start": 21612.54, + "end": 21613.16, + "probability": 0.0777 + }, + { + "start": 21613.16, + "end": 21614.58, + "probability": 0.2134 + }, + { + "start": 21614.79, + "end": 21615.23, + "probability": 0.0604 + }, + { + "start": 21615.56, + "end": 21616.06, + "probability": 0.0819 + }, + { + "start": 21616.06, + "end": 21617.44, + "probability": 0.9512 + }, + { + "start": 21618.42, + "end": 21620.28, + "probability": 0.6104 + }, + { + "start": 21620.38, + "end": 21621.28, + "probability": 0.5876 + }, + { + "start": 21621.28, + "end": 21624.65, + "probability": 0.8399 + }, + { + "start": 21624.66, + "end": 21627.0, + "probability": 0.4792 + }, + { + "start": 21627.0, + "end": 21627.4, + "probability": 0.0866 + }, + { + "start": 21627.64, + "end": 21630.44, + "probability": 0.1076 + }, + { + "start": 21632.87, + "end": 21633.78, + "probability": 0.0372 + }, + { + "start": 21633.78, + "end": 21634.5, + "probability": 0.0068 + }, + { + "start": 21634.9, + "end": 21635.84, + "probability": 0.1388 + }, + { + "start": 21636.3, + "end": 21636.3, + "probability": 0.0363 + }, + { + "start": 21636.3, + "end": 21637.94, + "probability": 0.2661 + }, + { + "start": 21638.54, + "end": 21638.54, + "probability": 0.0976 + }, + { + "start": 21639.22, + "end": 21639.32, + "probability": 0.0376 + }, + { + "start": 21639.32, + "end": 21639.64, + "probability": 0.6319 + }, + { + "start": 21648.66, + "end": 21650.82, + "probability": 0.4404 + }, + { + "start": 21650.82, + "end": 21651.88, + "probability": 0.3431 + }, + { + "start": 21652.16, + "end": 21653.52, + "probability": 0.3437 + }, + { + "start": 21656.88, + "end": 21656.98, + "probability": 0.034 + }, + { + "start": 21656.98, + "end": 21656.98, + "probability": 0.1459 + }, + { + "start": 21656.98, + "end": 21656.98, + "probability": 0.0109 + }, + { + "start": 21656.98, + "end": 21656.98, + "probability": 0.4749 + }, + { + "start": 21656.98, + "end": 21662.6, + "probability": 0.8186 + }, + { + "start": 21663.84, + "end": 21666.0, + "probability": 0.9878 + }, + { + "start": 21666.94, + "end": 21668.94, + "probability": 0.5011 + }, + { + "start": 21670.04, + "end": 21673.28, + "probability": 0.9867 + }, + { + "start": 21674.76, + "end": 21675.3, + "probability": 0.938 + }, + { + "start": 21676.02, + "end": 21677.08, + "probability": 0.7132 + }, + { + "start": 21677.72, + "end": 21681.68, + "probability": 0.9779 + }, + { + "start": 21682.72, + "end": 21687.64, + "probability": 0.9731 + }, + { + "start": 21687.7, + "end": 21695.36, + "probability": 0.9391 + }, + { + "start": 21696.0, + "end": 21696.78, + "probability": 0.3156 + }, + { + "start": 21697.64, + "end": 21700.86, + "probability": 0.7505 + }, + { + "start": 21701.62, + "end": 21703.77, + "probability": 0.9246 + }, + { + "start": 21704.64, + "end": 21705.84, + "probability": 0.9856 + }, + { + "start": 21706.44, + "end": 21707.78, + "probability": 0.6683 + }, + { + "start": 21708.61, + "end": 21711.48, + "probability": 0.9653 + }, + { + "start": 21711.66, + "end": 21713.24, + "probability": 0.9888 + }, + { + "start": 21713.56, + "end": 21718.78, + "probability": 0.9981 + }, + { + "start": 21721.02, + "end": 21729.74, + "probability": 0.9404 + }, + { + "start": 21730.14, + "end": 21734.58, + "probability": 0.9821 + }, + { + "start": 21735.28, + "end": 21737.08, + "probability": 0.7202 + }, + { + "start": 21737.2, + "end": 21742.44, + "probability": 0.9899 + }, + { + "start": 21743.0, + "end": 21745.02, + "probability": 0.9602 + }, + { + "start": 21745.56, + "end": 21750.18, + "probability": 0.9768 + }, + { + "start": 21750.62, + "end": 21752.26, + "probability": 0.9067 + }, + { + "start": 21752.56, + "end": 21753.6, + "probability": 0.8914 + }, + { + "start": 21753.76, + "end": 21754.02, + "probability": 0.9404 + }, + { + "start": 21754.7, + "end": 21756.1, + "probability": 0.9651 + }, + { + "start": 21756.46, + "end": 21762.34, + "probability": 0.9916 + }, + { + "start": 21762.76, + "end": 21764.9, + "probability": 0.994 + }, + { + "start": 21765.64, + "end": 21772.12, + "probability": 0.9955 + }, + { + "start": 21772.76, + "end": 21773.84, + "probability": 0.9653 + }, + { + "start": 21774.24, + "end": 21775.42, + "probability": 0.958 + }, + { + "start": 21775.8, + "end": 21776.98, + "probability": 0.9868 + }, + { + "start": 21777.38, + "end": 21779.7, + "probability": 0.9482 + }, + { + "start": 21779.84, + "end": 21780.32, + "probability": 0.7144 + }, + { + "start": 21780.4, + "end": 21781.1, + "probability": 0.6773 + }, + { + "start": 21781.3, + "end": 21781.48, + "probability": 0.3596 + }, + { + "start": 21781.96, + "end": 21783.36, + "probability": 0.8848 + }, + { + "start": 21783.46, + "end": 21784.76, + "probability": 0.9918 + }, + { + "start": 21785.56, + "end": 21791.3, + "probability": 0.9771 + }, + { + "start": 21791.68, + "end": 21797.6, + "probability": 0.9695 + }, + { + "start": 21797.64, + "end": 21803.38, + "probability": 0.998 + }, + { + "start": 21804.6, + "end": 21807.18, + "probability": 0.9054 + }, + { + "start": 21807.24, + "end": 21807.82, + "probability": 0.8273 + }, + { + "start": 21807.88, + "end": 21809.18, + "probability": 0.8087 + }, + { + "start": 21809.3, + "end": 21810.66, + "probability": 0.9817 + }, + { + "start": 21811.12, + "end": 21811.6, + "probability": 0.4896 + }, + { + "start": 21811.86, + "end": 21814.18, + "probability": 0.6018 + }, + { + "start": 21814.4, + "end": 21815.16, + "probability": 0.9508 + }, + { + "start": 21815.54, + "end": 21818.82, + "probability": 0.9807 + }, + { + "start": 21819.38, + "end": 21822.3, + "probability": 0.9611 + }, + { + "start": 21822.7, + "end": 21822.94, + "probability": 0.818 + }, + { + "start": 21823.2, + "end": 21824.04, + "probability": 0.7712 + }, + { + "start": 21824.38, + "end": 21825.9, + "probability": 0.9255 + }, + { + "start": 21843.4, + "end": 21844.5, + "probability": 0.672 + }, + { + "start": 21848.26, + "end": 21849.7, + "probability": 0.5785 + }, + { + "start": 21851.14, + "end": 21852.98, + "probability": 0.8087 + }, + { + "start": 21853.76, + "end": 21854.28, + "probability": 0.9469 + }, + { + "start": 21854.98, + "end": 21858.64, + "probability": 0.9418 + }, + { + "start": 21859.06, + "end": 21861.02, + "probability": 0.9453 + }, + { + "start": 21862.1, + "end": 21863.62, + "probability": 0.942 + }, + { + "start": 21865.18, + "end": 21868.66, + "probability": 0.9232 + }, + { + "start": 21869.0, + "end": 21869.6, + "probability": 0.9474 + }, + { + "start": 21870.78, + "end": 21873.32, + "probability": 0.8324 + }, + { + "start": 21874.68, + "end": 21882.4, + "probability": 0.9496 + }, + { + "start": 21883.02, + "end": 21887.1, + "probability": 0.8475 + }, + { + "start": 21888.42, + "end": 21895.12, + "probability": 0.9685 + }, + { + "start": 21895.86, + "end": 21900.1, + "probability": 0.8919 + }, + { + "start": 21900.92, + "end": 21903.0, + "probability": 0.9268 + }, + { + "start": 21903.88, + "end": 21909.86, + "probability": 0.9886 + }, + { + "start": 21909.94, + "end": 21911.9, + "probability": 0.8745 + }, + { + "start": 21912.1, + "end": 21913.22, + "probability": 0.8164 + }, + { + "start": 21914.04, + "end": 21917.44, + "probability": 0.2273 + }, + { + "start": 21918.12, + "end": 21918.12, + "probability": 0.176 + }, + { + "start": 21918.12, + "end": 21919.38, + "probability": 0.331 + }, + { + "start": 21919.38, + "end": 21920.48, + "probability": 0.2955 + }, + { + "start": 21920.76, + "end": 21922.84, + "probability": 0.7573 + }, + { + "start": 21923.28, + "end": 21924.96, + "probability": 0.9465 + }, + { + "start": 21925.14, + "end": 21926.42, + "probability": 0.7672 + }, + { + "start": 21926.48, + "end": 21930.38, + "probability": 0.8657 + }, + { + "start": 21930.84, + "end": 21932.34, + "probability": 0.707 + }, + { + "start": 21932.74, + "end": 21933.88, + "probability": 0.5006 + }, + { + "start": 21933.92, + "end": 21936.54, + "probability": 0.9498 + }, + { + "start": 21936.84, + "end": 21941.16, + "probability": 0.9346 + }, + { + "start": 21941.48, + "end": 21942.88, + "probability": 0.9489 + }, + { + "start": 21943.32, + "end": 21944.66, + "probability": 0.9465 + }, + { + "start": 21945.24, + "end": 21946.68, + "probability": 0.7147 + }, + { + "start": 21947.12, + "end": 21950.73, + "probability": 0.9937 + }, + { + "start": 21950.94, + "end": 21952.99, + "probability": 0.9756 + }, + { + "start": 21953.14, + "end": 21953.94, + "probability": 0.5484 + }, + { + "start": 21954.42, + "end": 21956.41, + "probability": 0.968 + }, + { + "start": 21956.84, + "end": 21958.84, + "probability": 0.7606 + }, + { + "start": 21959.34, + "end": 21959.88, + "probability": 0.6894 + }, + { + "start": 21960.72, + "end": 21961.42, + "probability": 0.5599 + }, + { + "start": 21961.68, + "end": 21963.06, + "probability": 0.8793 + }, + { + "start": 21965.88, + "end": 21969.12, + "probability": 0.7073 + }, + { + "start": 21969.75, + "end": 21971.64, + "probability": 0.8799 + }, + { + "start": 21972.0, + "end": 21974.6, + "probability": 0.1149 + }, + { + "start": 21974.84, + "end": 21979.02, + "probability": 0.2271 + }, + { + "start": 21979.36, + "end": 21981.58, + "probability": 0.0931 + }, + { + "start": 21981.58, + "end": 21981.92, + "probability": 0.0044 + }, + { + "start": 21998.88, + "end": 22000.5, + "probability": 0.4431 + }, + { + "start": 22001.58, + "end": 22009.16, + "probability": 0.9839 + }, + { + "start": 22010.14, + "end": 22011.28, + "probability": 0.9457 + }, + { + "start": 22011.9, + "end": 22013.04, + "probability": 0.9427 + }, + { + "start": 22014.4, + "end": 22020.06, + "probability": 0.9534 + }, + { + "start": 22021.48, + "end": 22024.92, + "probability": 0.9954 + }, + { + "start": 22025.78, + "end": 22030.42, + "probability": 0.9805 + }, + { + "start": 22031.48, + "end": 22034.52, + "probability": 0.9802 + }, + { + "start": 22034.84, + "end": 22036.3, + "probability": 0.9255 + }, + { + "start": 22036.44, + "end": 22038.24, + "probability": 0.8808 + }, + { + "start": 22039.72, + "end": 22040.44, + "probability": 0.853 + }, + { + "start": 22041.84, + "end": 22043.44, + "probability": 0.7428 + }, + { + "start": 22044.58, + "end": 22046.92, + "probability": 0.9587 + }, + { + "start": 22047.58, + "end": 22052.02, + "probability": 0.9873 + }, + { + "start": 22052.88, + "end": 22054.92, + "probability": 0.9892 + }, + { + "start": 22057.28, + "end": 22060.26, + "probability": 0.7614 + }, + { + "start": 22061.92, + "end": 22062.58, + "probability": 0.8135 + }, + { + "start": 22062.98, + "end": 22066.18, + "probability": 0.9847 + }, + { + "start": 22066.58, + "end": 22068.72, + "probability": 0.9944 + }, + { + "start": 22070.53, + "end": 22074.14, + "probability": 0.9194 + }, + { + "start": 22075.08, + "end": 22083.66, + "probability": 0.9851 + }, + { + "start": 22084.38, + "end": 22085.56, + "probability": 0.9958 + }, + { + "start": 22086.22, + "end": 22086.98, + "probability": 0.7317 + }, + { + "start": 22088.38, + "end": 22092.0, + "probability": 0.9841 + }, + { + "start": 22092.56, + "end": 22093.44, + "probability": 0.9751 + }, + { + "start": 22094.12, + "end": 22095.08, + "probability": 0.1211 + }, + { + "start": 22095.9, + "end": 22097.14, + "probability": 0.889 + }, + { + "start": 22098.22, + "end": 22098.84, + "probability": 0.5898 + }, + { + "start": 22098.84, + "end": 22099.68, + "probability": 0.8056 + }, + { + "start": 22101.38, + "end": 22104.66, + "probability": 0.9912 + }, + { + "start": 22105.64, + "end": 22107.18, + "probability": 0.9976 + }, + { + "start": 22107.9, + "end": 22109.74, + "probability": 0.9655 + }, + { + "start": 22110.8, + "end": 22111.46, + "probability": 0.7886 + }, + { + "start": 22112.3, + "end": 22113.84, + "probability": 0.7968 + }, + { + "start": 22113.98, + "end": 22117.6, + "probability": 0.9944 + }, + { + "start": 22118.7, + "end": 22121.02, + "probability": 0.9971 + }, + { + "start": 22121.64, + "end": 22123.4, + "probability": 0.8737 + }, + { + "start": 22124.06, + "end": 22124.8, + "probability": 0.7228 + }, + { + "start": 22125.7, + "end": 22127.74, + "probability": 0.9174 + }, + { + "start": 22128.64, + "end": 22130.88, + "probability": 0.9695 + }, + { + "start": 22131.68, + "end": 22133.16, + "probability": 0.961 + }, + { + "start": 22133.38, + "end": 22135.0, + "probability": 0.9615 + }, + { + "start": 22135.44, + "end": 22137.18, + "probability": 0.8899 + }, + { + "start": 22138.3, + "end": 22139.36, + "probability": 0.9307 + }, + { + "start": 22139.48, + "end": 22140.5, + "probability": 0.6417 + }, + { + "start": 22140.54, + "end": 22141.46, + "probability": 0.7701 + }, + { + "start": 22141.58, + "end": 22141.62, + "probability": 0.4197 + }, + { + "start": 22141.62, + "end": 22143.74, + "probability": 0.9559 + }, + { + "start": 22144.9, + "end": 22146.94, + "probability": 0.7325 + }, + { + "start": 22148.06, + "end": 22151.0, + "probability": 0.9575 + }, + { + "start": 22152.26, + "end": 22154.98, + "probability": 0.9736 + }, + { + "start": 22154.98, + "end": 22155.7, + "probability": 0.7178 + }, + { + "start": 22156.04, + "end": 22158.54, + "probability": 0.9591 + }, + { + "start": 22159.08, + "end": 22160.2, + "probability": 0.9722 + }, + { + "start": 22160.46, + "end": 22161.16, + "probability": 0.8203 + }, + { + "start": 22161.24, + "end": 22162.74, + "probability": 0.7694 + }, + { + "start": 22164.46, + "end": 22167.1, + "probability": 0.8538 + }, + { + "start": 22169.9, + "end": 22170.58, + "probability": 0.7599 + }, + { + "start": 22175.88, + "end": 22176.68, + "probability": 0.648 + }, + { + "start": 22178.46, + "end": 22180.24, + "probability": 0.863 + }, + { + "start": 22182.26, + "end": 22183.04, + "probability": 0.7036 + }, + { + "start": 22189.22, + "end": 22191.94, + "probability": 0.9803 + }, + { + "start": 22194.46, + "end": 22197.2, + "probability": 0.8837 + }, + { + "start": 22199.02, + "end": 22203.26, + "probability": 0.9901 + }, + { + "start": 22203.42, + "end": 22206.88, + "probability": 0.9965 + }, + { + "start": 22208.88, + "end": 22209.78, + "probability": 0.8312 + }, + { + "start": 22211.4, + "end": 22213.96, + "probability": 0.9382 + }, + { + "start": 22215.4, + "end": 22217.12, + "probability": 0.9884 + }, + { + "start": 22219.04, + "end": 22222.82, + "probability": 0.8394 + }, + { + "start": 22225.66, + "end": 22226.28, + "probability": 0.7521 + }, + { + "start": 22226.98, + "end": 22229.25, + "probability": 0.9734 + }, + { + "start": 22230.92, + "end": 22232.86, + "probability": 0.8615 + }, + { + "start": 22234.24, + "end": 22234.8, + "probability": 0.9624 + }, + { + "start": 22236.26, + "end": 22239.28, + "probability": 0.986 + }, + { + "start": 22240.2, + "end": 22243.32, + "probability": 0.9518 + }, + { + "start": 22244.66, + "end": 22251.32, + "probability": 0.9852 + }, + { + "start": 22252.14, + "end": 22253.78, + "probability": 0.9497 + }, + { + "start": 22254.58, + "end": 22260.08, + "probability": 0.9419 + }, + { + "start": 22260.86, + "end": 22262.92, + "probability": 0.9951 + }, + { + "start": 22265.64, + "end": 22268.76, + "probability": 0.972 + }, + { + "start": 22269.96, + "end": 22274.02, + "probability": 0.9717 + }, + { + "start": 22275.72, + "end": 22282.64, + "probability": 0.994 + }, + { + "start": 22284.28, + "end": 22286.76, + "probability": 0.9922 + }, + { + "start": 22287.46, + "end": 22291.18, + "probability": 0.9937 + }, + { + "start": 22292.16, + "end": 22296.86, + "probability": 0.9814 + }, + { + "start": 22297.32, + "end": 22297.98, + "probability": 0.6688 + }, + { + "start": 22298.82, + "end": 22300.14, + "probability": 0.9554 + }, + { + "start": 22303.29, + "end": 22307.04, + "probability": 0.981 + }, + { + "start": 22309.36, + "end": 22310.82, + "probability": 0.9704 + }, + { + "start": 22311.9, + "end": 22312.76, + "probability": 0.9576 + }, + { + "start": 22313.98, + "end": 22316.74, + "probability": 0.9941 + }, + { + "start": 22318.26, + "end": 22319.08, + "probability": 0.1675 + }, + { + "start": 22319.58, + "end": 22321.66, + "probability": 0.5605 + }, + { + "start": 22321.66, + "end": 22322.42, + "probability": 0.2154 + }, + { + "start": 22322.54, + "end": 22323.34, + "probability": 0.5988 + }, + { + "start": 22323.86, + "end": 22324.3, + "probability": 0.1559 + }, + { + "start": 22324.3, + "end": 22326.7, + "probability": 0.651 + }, + { + "start": 22327.5, + "end": 22331.28, + "probability": 0.7198 + }, + { + "start": 22332.44, + "end": 22335.08, + "probability": 0.6494 + }, + { + "start": 22337.6, + "end": 22338.97, + "probability": 0.6016 + }, + { + "start": 22340.66, + "end": 22341.86, + "probability": 0.6259 + }, + { + "start": 22342.98, + "end": 22347.06, + "probability": 0.3338 + }, + { + "start": 22348.44, + "end": 22352.36, + "probability": 0.9723 + }, + { + "start": 22352.98, + "end": 22353.56, + "probability": 0.6486 + }, + { + "start": 22354.62, + "end": 22356.94, + "probability": 0.9588 + }, + { + "start": 22357.42, + "end": 22359.12, + "probability": 0.9204 + }, + { + "start": 22360.06, + "end": 22362.1, + "probability": 0.8635 + }, + { + "start": 22363.2, + "end": 22371.14, + "probability": 0.9465 + }, + { + "start": 22371.36, + "end": 22372.5, + "probability": 0.79 + }, + { + "start": 22372.56, + "end": 22375.18, + "probability": 0.2896 + }, + { + "start": 22375.4, + "end": 22381.46, + "probability": 0.0529 + }, + { + "start": 22381.72, + "end": 22382.18, + "probability": 0.0172 + }, + { + "start": 22382.5, + "end": 22383.22, + "probability": 0.036 + }, + { + "start": 22383.86, + "end": 22385.16, + "probability": 0.1874 + }, + { + "start": 22385.16, + "end": 22386.62, + "probability": 0.1358 + }, + { + "start": 22387.24, + "end": 22388.96, + "probability": 0.214 + }, + { + "start": 22389.12, + "end": 22390.88, + "probability": 0.1366 + }, + { + "start": 22390.88, + "end": 22392.3, + "probability": 0.1135 + }, + { + "start": 22393.0, + "end": 22393.68, + "probability": 0.209 + }, + { + "start": 22393.68, + "end": 22394.6, + "probability": 0.2527 + }, + { + "start": 22394.84, + "end": 22395.9, + "probability": 0.0914 + }, + { + "start": 22396.36, + "end": 22396.88, + "probability": 0.0255 + }, + { + "start": 22397.46, + "end": 22400.14, + "probability": 0.0574 + }, + { + "start": 22401.12, + "end": 22401.38, + "probability": 0.2871 + }, + { + "start": 22401.8, + "end": 22406.02, + "probability": 0.0119 + }, + { + "start": 22406.68, + "end": 22408.0, + "probability": 0.0231 + }, + { + "start": 22408.0, + "end": 22408.84, + "probability": 0.532 + }, + { + "start": 22409.38, + "end": 22411.5, + "probability": 0.078 + }, + { + "start": 22412.56, + "end": 22413.63, + "probability": 0.1166 + }, + { + "start": 22413.88, + "end": 22418.18, + "probability": 0.1327 + }, + { + "start": 22418.98, + "end": 22423.0, + "probability": 0.2702 + }, + { + "start": 22423.72, + "end": 22423.94, + "probability": 0.0739 + }, + { + "start": 22423.94, + "end": 22423.94, + "probability": 0.0327 + }, + { + "start": 22423.94, + "end": 22423.98, + "probability": 0.255 + }, + { + "start": 22424.0, + "end": 22424.0, + "probability": 0.0 + }, + { + "start": 22424.0, + "end": 22424.0, + "probability": 0.0 + }, + { + "start": 22424.0, + "end": 22424.0, + "probability": 0.0 + }, + { + "start": 22424.0, + "end": 22424.0, + "probability": 0.0 + }, + { + "start": 22424.0, + "end": 22424.0, + "probability": 0.0 + }, + { + "start": 22424.0, + "end": 22424.0, + "probability": 0.0 + }, + { + "start": 22424.0, + "end": 22424.0, + "probability": 0.0 + }, + { + "start": 22424.26, + "end": 22424.26, + "probability": 0.0467 + }, + { + "start": 22424.26, + "end": 22424.26, + "probability": 0.136 + }, + { + "start": 22424.26, + "end": 22425.38, + "probability": 0.0394 + }, + { + "start": 22425.42, + "end": 22426.32, + "probability": 0.4814 + }, + { + "start": 22426.38, + "end": 22428.56, + "probability": 0.7254 + }, + { + "start": 22428.66, + "end": 22429.24, + "probability": 0.7216 + }, + { + "start": 22429.56, + "end": 22430.38, + "probability": 0.9185 + }, + { + "start": 22430.52, + "end": 22432.36, + "probability": 0.2935 + }, + { + "start": 22432.36, + "end": 22433.0, + "probability": 0.1085 + }, + { + "start": 22433.0, + "end": 22435.96, + "probability": 0.3076 + }, + { + "start": 22436.68, + "end": 22440.42, + "probability": 0.1049 + }, + { + "start": 22441.14, + "end": 22441.76, + "probability": 0.188 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.0, + "end": 22544.0, + "probability": 0.0 + }, + { + "start": 22544.64, + "end": 22553.08, + "probability": 0.9871 + }, + { + "start": 22554.9, + "end": 22559.32, + "probability": 0.9943 + }, + { + "start": 22560.2, + "end": 22561.16, + "probability": 0.8534 + }, + { + "start": 22562.4, + "end": 22563.1, + "probability": 0.7388 + }, + { + "start": 22563.84, + "end": 22567.68, + "probability": 0.9453 + }, + { + "start": 22568.78, + "end": 22572.52, + "probability": 0.9963 + }, + { + "start": 22573.26, + "end": 22574.38, + "probability": 0.7959 + }, + { + "start": 22574.9, + "end": 22576.14, + "probability": 0.8877 + }, + { + "start": 22576.96, + "end": 22578.07, + "probability": 0.8775 + }, + { + "start": 22579.16, + "end": 22583.24, + "probability": 0.8913 + }, + { + "start": 22583.92, + "end": 22584.62, + "probability": 0.7042 + }, + { + "start": 22585.72, + "end": 22587.38, + "probability": 0.7502 + }, + { + "start": 22588.72, + "end": 22590.3, + "probability": 0.9497 + }, + { + "start": 22591.24, + "end": 22591.96, + "probability": 0.6248 + }, + { + "start": 22592.02, + "end": 22592.96, + "probability": 0.9433 + }, + { + "start": 22593.14, + "end": 22594.04, + "probability": 0.9626 + }, + { + "start": 22594.12, + "end": 22595.54, + "probability": 0.9674 + }, + { + "start": 22595.84, + "end": 22596.6, + "probability": 0.9248 + }, + { + "start": 22596.76, + "end": 22600.16, + "probability": 0.7305 + }, + { + "start": 22600.76, + "end": 22602.36, + "probability": 0.998 + }, + { + "start": 22603.9, + "end": 22606.62, + "probability": 0.9438 + }, + { + "start": 22607.56, + "end": 22610.56, + "probability": 0.9671 + }, + { + "start": 22611.62, + "end": 22613.12, + "probability": 0.9661 + }, + { + "start": 22614.3, + "end": 22614.7, + "probability": 0.9005 + }, + { + "start": 22614.8, + "end": 22620.12, + "probability": 0.9653 + }, + { + "start": 22620.56, + "end": 22624.04, + "probability": 0.9978 + }, + { + "start": 22624.96, + "end": 22628.58, + "probability": 0.8885 + }, + { + "start": 22628.74, + "end": 22631.4, + "probability": 0.9333 + }, + { + "start": 22632.0, + "end": 22634.12, + "probability": 0.9827 + }, + { + "start": 22634.44, + "end": 22634.9, + "probability": 0.5179 + }, + { + "start": 22634.96, + "end": 22637.04, + "probability": 0.9183 + }, + { + "start": 22637.06, + "end": 22637.42, + "probability": 0.6226 + }, + { + "start": 22637.62, + "end": 22639.58, + "probability": 0.6073 + }, + { + "start": 22639.94, + "end": 22640.7, + "probability": 0.5766 + }, + { + "start": 22640.7, + "end": 22642.12, + "probability": 0.5527 + }, + { + "start": 22642.12, + "end": 22647.6, + "probability": 0.9034 + }, + { + "start": 22647.66, + "end": 22648.02, + "probability": 0.3613 + }, + { + "start": 22648.02, + "end": 22650.34, + "probability": 0.0483 + }, + { + "start": 22650.64, + "end": 22650.9, + "probability": 0.0241 + }, + { + "start": 22653.44, + "end": 22653.94, + "probability": 0.0276 + }, + { + "start": 22653.94, + "end": 22653.94, + "probability": 0.239 + }, + { + "start": 22653.94, + "end": 22653.94, + "probability": 0.0324 + }, + { + "start": 22653.94, + "end": 22653.94, + "probability": 0.0859 + }, + { + "start": 22653.94, + "end": 22653.94, + "probability": 0.0589 + }, + { + "start": 22653.94, + "end": 22658.16, + "probability": 0.7062 + }, + { + "start": 22659.08, + "end": 22664.34, + "probability": 0.7704 + }, + { + "start": 22665.14, + "end": 22667.5, + "probability": 0.9761 + }, + { + "start": 22668.4, + "end": 22669.46, + "probability": 0.9561 + }, + { + "start": 22669.72, + "end": 22670.84, + "probability": 0.9128 + }, + { + "start": 22671.12, + "end": 22674.96, + "probability": 0.9702 + }, + { + "start": 22674.96, + "end": 22680.4, + "probability": 0.9509 + }, + { + "start": 22681.3, + "end": 22683.74, + "probability": 0.9821 + }, + { + "start": 22684.38, + "end": 22685.68, + "probability": 0.5653 + }, + { + "start": 22686.48, + "end": 22690.42, + "probability": 0.9604 + }, + { + "start": 22691.28, + "end": 22695.32, + "probability": 0.8296 + }, + { + "start": 22696.04, + "end": 22698.28, + "probability": 0.9891 + }, + { + "start": 22698.46, + "end": 22700.02, + "probability": 0.6745 + }, + { + "start": 22700.48, + "end": 22701.78, + "probability": 0.9797 + }, + { + "start": 22701.98, + "end": 22703.76, + "probability": 0.6607 + }, + { + "start": 22703.76, + "end": 22704.54, + "probability": 0.3529 + }, + { + "start": 22704.78, + "end": 22707.62, + "probability": 0.9738 + }, + { + "start": 22707.86, + "end": 22712.8, + "probability": 0.9946 + }, + { + "start": 22714.42, + "end": 22716.74, + "probability": 0.7358 + }, + { + "start": 22716.86, + "end": 22717.64, + "probability": 0.3023 + }, + { + "start": 22717.94, + "end": 22719.02, + "probability": 0.633 + }, + { + "start": 22719.2, + "end": 22720.0, + "probability": 0.7017 + }, + { + "start": 22720.88, + "end": 22722.3, + "probability": 0.9316 + }, + { + "start": 22727.46, + "end": 22729.04, + "probability": 0.8373 + }, + { + "start": 22731.58, + "end": 22732.7, + "probability": 0.6169 + }, + { + "start": 22733.66, + "end": 22734.38, + "probability": 0.6888 + }, + { + "start": 22734.48, + "end": 22735.18, + "probability": 0.8012 + }, + { + "start": 22735.38, + "end": 22736.74, + "probability": 0.4661 + }, + { + "start": 22737.84, + "end": 22740.5, + "probability": 0.9684 + }, + { + "start": 22741.56, + "end": 22742.0, + "probability": 0.6766 + }, + { + "start": 22743.14, + "end": 22746.18, + "probability": 0.2753 + }, + { + "start": 22746.6, + "end": 22746.72, + "probability": 0.3849 + }, + { + "start": 22746.76, + "end": 22752.58, + "probability": 0.9224 + }, + { + "start": 22753.4, + "end": 22758.08, + "probability": 0.9912 + }, + { + "start": 22758.14, + "end": 22763.38, + "probability": 0.9745 + }, + { + "start": 22764.04, + "end": 22766.02, + "probability": 0.7452 + }, + { + "start": 22766.02, + "end": 22766.72, + "probability": 0.2615 + }, + { + "start": 22767.04, + "end": 22767.68, + "probability": 0.1635 + }, + { + "start": 22769.06, + "end": 22770.68, + "probability": 0.7167 + }, + { + "start": 22770.68, + "end": 22771.52, + "probability": 0.2669 + }, + { + "start": 22771.52, + "end": 22776.46, + "probability": 0.9928 + }, + { + "start": 22776.7, + "end": 22777.67, + "probability": 0.942 + }, + { + "start": 22778.46, + "end": 22779.26, + "probability": 0.4768 + }, + { + "start": 22780.0, + "end": 22781.22, + "probability": 0.9157 + }, + { + "start": 22781.9, + "end": 22783.92, + "probability": 0.9059 + }, + { + "start": 22784.0, + "end": 22788.42, + "probability": 0.9976 + }, + { + "start": 22789.18, + "end": 22790.54, + "probability": 0.8999 + }, + { + "start": 22791.74, + "end": 22794.12, + "probability": 0.8312 + }, + { + "start": 22794.78, + "end": 22796.02, + "probability": 0.9554 + }, + { + "start": 22796.72, + "end": 22800.48, + "probability": 0.9906 + }, + { + "start": 22801.08, + "end": 22805.72, + "probability": 0.9813 + }, + { + "start": 22806.74, + "end": 22812.72, + "probability": 0.8797 + }, + { + "start": 22813.38, + "end": 22815.56, + "probability": 0.995 + }, + { + "start": 22815.84, + "end": 22819.62, + "probability": 0.9881 + }, + { + "start": 22819.94, + "end": 22820.58, + "probability": 0.7704 + }, + { + "start": 22821.46, + "end": 22822.4, + "probability": 0.999 + }, + { + "start": 22824.13, + "end": 22827.9, + "probability": 0.9789 + }, + { + "start": 22828.7, + "end": 22831.12, + "probability": 0.9979 + }, + { + "start": 22831.32, + "end": 22832.02, + "probability": 0.7258 + }, + { + "start": 22832.1, + "end": 22834.76, + "probability": 0.7402 + }, + { + "start": 22835.46, + "end": 22838.22, + "probability": 0.9588 + }, + { + "start": 22838.4, + "end": 22840.42, + "probability": 0.9227 + }, + { + "start": 22840.78, + "end": 22842.06, + "probability": 0.7285 + }, + { + "start": 22842.46, + "end": 22843.34, + "probability": 0.9793 + }, + { + "start": 22844.3, + "end": 22845.32, + "probability": 0.993 + }, + { + "start": 22846.22, + "end": 22849.4, + "probability": 0.7877 + }, + { + "start": 22850.0, + "end": 22851.7, + "probability": 0.9928 + }, + { + "start": 22851.9, + "end": 22853.02, + "probability": 0.9911 + }, + { + "start": 22854.08, + "end": 22855.1, + "probability": 0.155 + }, + { + "start": 22856.56, + "end": 22857.64, + "probability": 0.5135 + }, + { + "start": 22858.38, + "end": 22865.12, + "probability": 0.9685 + }, + { + "start": 22866.46, + "end": 22868.72, + "probability": 0.993 + }, + { + "start": 22870.06, + "end": 22872.9, + "probability": 0.9822 + }, + { + "start": 22874.2, + "end": 22876.34, + "probability": 0.9974 + }, + { + "start": 22879.08, + "end": 22883.92, + "probability": 0.9956 + }, + { + "start": 22884.06, + "end": 22885.52, + "probability": 0.9985 + }, + { + "start": 22886.62, + "end": 22887.42, + "probability": 0.9993 + }, + { + "start": 22888.24, + "end": 22889.04, + "probability": 0.7508 + }, + { + "start": 22889.24, + "end": 22893.42, + "probability": 0.9821 + }, + { + "start": 22893.86, + "end": 22894.99, + "probability": 0.901 + }, + { + "start": 22897.02, + "end": 22899.68, + "probability": 0.9597 + }, + { + "start": 22900.58, + "end": 22901.38, + "probability": 0.8996 + }, + { + "start": 22902.72, + "end": 22905.06, + "probability": 0.9193 + }, + { + "start": 22905.74, + "end": 22907.43, + "probability": 0.9058 + }, + { + "start": 22908.3, + "end": 22910.24, + "probability": 0.9915 + }, + { + "start": 22910.88, + "end": 22911.62, + "probability": 0.9855 + }, + { + "start": 22912.58, + "end": 22913.52, + "probability": 0.7979 + }, + { + "start": 22913.62, + "end": 22914.16, + "probability": 0.6491 + }, + { + "start": 22914.26, + "end": 22915.08, + "probability": 0.8384 + }, + { + "start": 22915.34, + "end": 22916.06, + "probability": 0.5602 + }, + { + "start": 22916.06, + "end": 22916.54, + "probability": 0.7339 + }, + { + "start": 22916.54, + "end": 22920.88, + "probability": 0.9847 + }, + { + "start": 22921.94, + "end": 22924.84, + "probability": 0.9282 + }, + { + "start": 22925.28, + "end": 22926.1, + "probability": 0.7169 + }, + { + "start": 22926.44, + "end": 22926.44, + "probability": 0.5338 + }, + { + "start": 22926.78, + "end": 22928.26, + "probability": 0.8774 + }, + { + "start": 22939.1, + "end": 22940.94, + "probability": 0.5736 + }, + { + "start": 22942.0, + "end": 22946.14, + "probability": 0.9882 + }, + { + "start": 22947.1, + "end": 22950.76, + "probability": 0.9927 + }, + { + "start": 22951.84, + "end": 22955.0, + "probability": 0.97 + }, + { + "start": 22955.86, + "end": 22957.96, + "probability": 0.9805 + }, + { + "start": 22958.1, + "end": 22960.43, + "probability": 0.9846 + }, + { + "start": 22961.38, + "end": 22963.6, + "probability": 0.8984 + }, + { + "start": 22964.42, + "end": 22966.78, + "probability": 0.9801 + }, + { + "start": 22967.76, + "end": 22971.77, + "probability": 0.9498 + }, + { + "start": 22972.6, + "end": 22975.04, + "probability": 0.9207 + }, + { + "start": 22975.74, + "end": 22979.72, + "probability": 0.9919 + }, + { + "start": 22979.72, + "end": 22983.98, + "probability": 0.9976 + }, + { + "start": 22984.78, + "end": 22987.22, + "probability": 0.9966 + }, + { + "start": 22987.74, + "end": 22990.34, + "probability": 0.9945 + }, + { + "start": 22991.14, + "end": 22992.58, + "probability": 0.832 + }, + { + "start": 22993.18, + "end": 22994.78, + "probability": 0.8443 + }, + { + "start": 22995.5, + "end": 22998.0, + "probability": 0.969 + }, + { + "start": 22998.48, + "end": 23001.28, + "probability": 0.9967 + }, + { + "start": 23001.48, + "end": 23002.98, + "probability": 0.9795 + }, + { + "start": 23003.06, + "end": 23003.54, + "probability": 0.8728 + }, + { + "start": 23004.2, + "end": 23009.6, + "probability": 0.9985 + }, + { + "start": 23010.3, + "end": 23015.78, + "probability": 0.9823 + }, + { + "start": 23015.98, + "end": 23017.24, + "probability": 0.8486 + }, + { + "start": 23017.78, + "end": 23018.9, + "probability": 0.903 + }, + { + "start": 23019.42, + "end": 23022.46, + "probability": 0.901 + }, + { + "start": 23022.82, + "end": 23025.56, + "probability": 0.976 + }, + { + "start": 23026.34, + "end": 23028.86, + "probability": 0.9634 + }, + { + "start": 23029.24, + "end": 23034.32, + "probability": 0.7788 + }, + { + "start": 23034.86, + "end": 23036.38, + "probability": 0.3629 + }, + { + "start": 23036.74, + "end": 23037.88, + "probability": 0.7072 + }, + { + "start": 23038.94, + "end": 23040.62, + "probability": 0.4275 + }, + { + "start": 23041.42, + "end": 23043.26, + "probability": 0.9762 + }, + { + "start": 23043.72, + "end": 23045.92, + "probability": 0.9434 + }, + { + "start": 23046.64, + "end": 23049.32, + "probability": 0.9953 + }, + { + "start": 23049.6, + "end": 23051.92, + "probability": 0.9846 + }, + { + "start": 23052.26, + "end": 23054.98, + "probability": 0.9966 + }, + { + "start": 23055.46, + "end": 23056.58, + "probability": 0.9829 + }, + { + "start": 23057.06, + "end": 23060.1, + "probability": 0.9589 + }, + { + "start": 23060.76, + "end": 23063.44, + "probability": 0.9542 + }, + { + "start": 23063.8, + "end": 23064.0, + "probability": 0.3307 + }, + { + "start": 23064.32, + "end": 23068.86, + "probability": 0.9474 + }, + { + "start": 23068.86, + "end": 23072.86, + "probability": 0.9873 + }, + { + "start": 23073.44, + "end": 23074.21, + "probability": 0.5007 + }, + { + "start": 23075.12, + "end": 23080.08, + "probability": 0.9929 + }, + { + "start": 23080.38, + "end": 23085.06, + "probability": 0.9637 + }, + { + "start": 23085.84, + "end": 23088.26, + "probability": 0.8945 + }, + { + "start": 23089.22, + "end": 23091.94, + "probability": 0.9854 + }, + { + "start": 23091.94, + "end": 23096.1, + "probability": 0.9964 + }, + { + "start": 23096.26, + "end": 23099.5, + "probability": 0.9604 + }, + { + "start": 23100.6, + "end": 23103.6, + "probability": 0.892 + }, + { + "start": 23104.4, + "end": 23107.4, + "probability": 0.9966 + }, + { + "start": 23108.04, + "end": 23111.86, + "probability": 0.9804 + }, + { + "start": 23112.06, + "end": 23113.06, + "probability": 0.55 + }, + { + "start": 23114.06, + "end": 23115.08, + "probability": 0.7681 + }, + { + "start": 23115.68, + "end": 23118.74, + "probability": 0.9954 + }, + { + "start": 23118.92, + "end": 23120.4, + "probability": 0.9554 + }, + { + "start": 23120.8, + "end": 23123.62, + "probability": 0.9131 + }, + { + "start": 23123.68, + "end": 23126.38, + "probability": 0.9451 + }, + { + "start": 23126.84, + "end": 23127.38, + "probability": 0.6578 + }, + { + "start": 23127.38, + "end": 23128.58, + "probability": 0.9846 + }, + { + "start": 23129.8, + "end": 23131.92, + "probability": 0.9685 + }, + { + "start": 23132.56, + "end": 23133.9, + "probability": 0.858 + }, + { + "start": 23134.66, + "end": 23136.63, + "probability": 0.9966 + }, + { + "start": 23136.9, + "end": 23138.92, + "probability": 0.7352 + }, + { + "start": 23138.92, + "end": 23140.84, + "probability": 0.9689 + }, + { + "start": 23142.62, + "end": 23144.26, + "probability": 0.9486 + }, + { + "start": 23146.52, + "end": 23147.56, + "probability": 0.921 + }, + { + "start": 23149.5, + "end": 23150.02, + "probability": 0.7927 + }, + { + "start": 23152.76, + "end": 23153.76, + "probability": 0.0217 + }, + { + "start": 23153.8, + "end": 23153.96, + "probability": 0.3301 + }, + { + "start": 23153.96, + "end": 23154.31, + "probability": 0.0952 + }, + { + "start": 23155.78, + "end": 23158.2, + "probability": 0.0673 + }, + { + "start": 23159.46, + "end": 23161.92, + "probability": 0.5464 + }, + { + "start": 23162.34, + "end": 23164.28, + "probability": 0.9439 + }, + { + "start": 23164.6, + "end": 23164.9, + "probability": 0.5097 + }, + { + "start": 23164.9, + "end": 23165.5, + "probability": 0.9249 + }, + { + "start": 23167.8, + "end": 23168.94, + "probability": 0.8054 + }, + { + "start": 23169.02, + "end": 23169.2, + "probability": 0.3493 + }, + { + "start": 23169.26, + "end": 23171.57, + "probability": 0.9336 + }, + { + "start": 23172.74, + "end": 23175.29, + "probability": 0.6309 + }, + { + "start": 23175.68, + "end": 23176.6, + "probability": 0.9886 + }, + { + "start": 23178.09, + "end": 23180.34, + "probability": 0.6623 + }, + { + "start": 23180.88, + "end": 23181.54, + "probability": 0.7386 + }, + { + "start": 23181.58, + "end": 23184.32, + "probability": 0.8661 + }, + { + "start": 23184.54, + "end": 23185.97, + "probability": 0.6823 + }, + { + "start": 23186.7, + "end": 23189.14, + "probability": 0.697 + }, + { + "start": 23189.9, + "end": 23193.8, + "probability": 0.6582 + }, + { + "start": 23194.32, + "end": 23194.86, + "probability": 0.4541 + }, + { + "start": 23195.06, + "end": 23197.86, + "probability": 0.9951 + }, + { + "start": 23198.56, + "end": 23201.3, + "probability": 0.9969 + }, + { + "start": 23201.48, + "end": 23201.98, + "probability": 0.966 + }, + { + "start": 23203.1, + "end": 23204.4, + "probability": 0.8821 + }, + { + "start": 23204.92, + "end": 23206.84, + "probability": 0.8849 + }, + { + "start": 23208.16, + "end": 23209.62, + "probability": 0.9293 + }, + { + "start": 23209.92, + "end": 23211.9, + "probability": 0.9509 + }, + { + "start": 23211.98, + "end": 23212.58, + "probability": 0.6818 + }, + { + "start": 23212.72, + "end": 23213.28, + "probability": 0.8584 + }, + { + "start": 23213.8, + "end": 23214.6, + "probability": 0.7827 + }, + { + "start": 23215.1, + "end": 23216.36, + "probability": 0.7747 + }, + { + "start": 23217.04, + "end": 23218.12, + "probability": 0.79 + }, + { + "start": 23218.3, + "end": 23219.08, + "probability": 0.5946 + }, + { + "start": 23219.4, + "end": 23224.55, + "probability": 0.7573 + }, + { + "start": 23224.72, + "end": 23225.28, + "probability": 0.7056 + }, + { + "start": 23225.44, + "end": 23225.98, + "probability": 0.4342 + }, + { + "start": 23226.08, + "end": 23231.2, + "probability": 0.9545 + }, + { + "start": 23231.68, + "end": 23232.76, + "probability": 0.9922 + }, + { + "start": 23232.94, + "end": 23234.5, + "probability": 0.9675 + }, + { + "start": 23235.34, + "end": 23237.16, + "probability": 0.8299 + }, + { + "start": 23237.94, + "end": 23239.6, + "probability": 0.9895 + }, + { + "start": 23240.34, + "end": 23241.88, + "probability": 0.8402 + }, + { + "start": 23242.1, + "end": 23245.94, + "probability": 0.9897 + }, + { + "start": 23246.06, + "end": 23246.26, + "probability": 0.5084 + }, + { + "start": 23246.32, + "end": 23246.84, + "probability": 0.652 + }, + { + "start": 23247.14, + "end": 23251.72, + "probability": 0.9912 + }, + { + "start": 23251.72, + "end": 23253.86, + "probability": 0.9902 + }, + { + "start": 23254.52, + "end": 23254.62, + "probability": 0.4269 + }, + { + "start": 23254.62, + "end": 23255.18, + "probability": 0.7651 + }, + { + "start": 23255.38, + "end": 23256.56, + "probability": 0.6124 + }, + { + "start": 23257.0, + "end": 23257.26, + "probability": 0.3629 + }, + { + "start": 23257.26, + "end": 23259.6, + "probability": 0.7219 + }, + { + "start": 23260.74, + "end": 23263.14, + "probability": 0.1764 + }, + { + "start": 23263.38, + "end": 23264.76, + "probability": 0.3223 + }, + { + "start": 23265.68, + "end": 23270.72, + "probability": 0.8476 + }, + { + "start": 23271.04, + "end": 23272.5, + "probability": 0.9723 + }, + { + "start": 23272.56, + "end": 23274.26, + "probability": 0.4764 + }, + { + "start": 23274.32, + "end": 23275.12, + "probability": 0.5031 + }, + { + "start": 23275.24, + "end": 23277.06, + "probability": 0.923 + }, + { + "start": 23277.2, + "end": 23277.76, + "probability": 0.9603 + }, + { + "start": 23277.96, + "end": 23279.32, + "probability": 0.5168 + }, + { + "start": 23279.9, + "end": 23280.44, + "probability": 0.9414 + }, + { + "start": 23280.44, + "end": 23280.78, + "probability": 0.7212 + }, + { + "start": 23280.84, + "end": 23281.24, + "probability": 0.6465 + }, + { + "start": 23281.42, + "end": 23283.9, + "probability": 0.9899 + }, + { + "start": 23283.94, + "end": 23287.6, + "probability": 0.5667 + }, + { + "start": 23287.98, + "end": 23290.7, + "probability": 0.9725 + }, + { + "start": 23291.22, + "end": 23293.32, + "probability": 0.9471 + }, + { + "start": 23293.38, + "end": 23295.22, + "probability": 0.9888 + }, + { + "start": 23296.56, + "end": 23298.07, + "probability": 0.98 + }, + { + "start": 23299.2, + "end": 23301.38, + "probability": 0.9907 + }, + { + "start": 23301.6, + "end": 23303.44, + "probability": 0.9203 + }, + { + "start": 23303.8, + "end": 23304.02, + "probability": 0.3567 + }, + { + "start": 23304.04, + "end": 23305.44, + "probability": 0.7289 + }, + { + "start": 23305.92, + "end": 23310.98, + "probability": 0.7397 + }, + { + "start": 23311.2, + "end": 23312.28, + "probability": 0.9276 + }, + { + "start": 23312.52, + "end": 23313.62, + "probability": 0.751 + }, + { + "start": 23314.24, + "end": 23320.06, + "probability": 0.8437 + }, + { + "start": 23320.12, + "end": 23322.8, + "probability": 0.9349 + }, + { + "start": 23323.69, + "end": 23327.42, + "probability": 0.9697 + }, + { + "start": 23327.76, + "end": 23328.22, + "probability": 0.8012 + }, + { + "start": 23328.64, + "end": 23329.59, + "probability": 0.8876 + }, + { + "start": 23330.26, + "end": 23331.24, + "probability": 0.8221 + }, + { + "start": 23331.48, + "end": 23333.44, + "probability": 0.8907 + }, + { + "start": 23333.62, + "end": 23334.34, + "probability": 0.8838 + }, + { + "start": 23334.58, + "end": 23337.03, + "probability": 0.9831 + }, + { + "start": 23337.3, + "end": 23338.56, + "probability": 0.7942 + }, + { + "start": 23338.66, + "end": 23341.08, + "probability": 0.9826 + }, + { + "start": 23341.32, + "end": 23343.1, + "probability": 0.8289 + }, + { + "start": 23343.3, + "end": 23343.44, + "probability": 0.3837 + }, + { + "start": 23343.44, + "end": 23345.1, + "probability": 0.6607 + }, + { + "start": 23345.42, + "end": 23345.66, + "probability": 0.4389 + }, + { + "start": 23345.72, + "end": 23347.28, + "probability": 0.8992 + }, + { + "start": 23347.48, + "end": 23349.43, + "probability": 0.9258 + }, + { + "start": 23351.4, + "end": 23351.4, + "probability": 0.0483 + }, + { + "start": 23351.4, + "end": 23353.58, + "probability": 0.8722 + }, + { + "start": 23353.9, + "end": 23355.9, + "probability": 0.9714 + }, + { + "start": 23355.92, + "end": 23356.38, + "probability": 0.6392 + }, + { + "start": 23356.46, + "end": 23360.48, + "probability": 0.9993 + }, + { + "start": 23360.7, + "end": 23362.1, + "probability": 0.9296 + }, + { + "start": 23362.44, + "end": 23362.6, + "probability": 0.6272 + }, + { + "start": 23362.74, + "end": 23363.88, + "probability": 0.88 + }, + { + "start": 23363.98, + "end": 23364.34, + "probability": 0.6418 + }, + { + "start": 23364.38, + "end": 23365.06, + "probability": 0.9092 + }, + { + "start": 23365.16, + "end": 23365.86, + "probability": 0.9543 + }, + { + "start": 23365.94, + "end": 23368.86, + "probability": 0.9561 + }, + { + "start": 23369.22, + "end": 23373.32, + "probability": 0.9867 + }, + { + "start": 23373.64, + "end": 23373.78, + "probability": 0.6983 + }, + { + "start": 23373.86, + "end": 23374.3, + "probability": 0.5826 + }, + { + "start": 23374.52, + "end": 23377.86, + "probability": 0.8716 + }, + { + "start": 23378.16, + "end": 23379.48, + "probability": 0.0413 + }, + { + "start": 23381.36, + "end": 23385.94, + "probability": 0.587 + }, + { + "start": 23387.74, + "end": 23388.4, + "probability": 0.2343 + }, + { + "start": 23388.4, + "end": 23388.58, + "probability": 0.0218 + }, + { + "start": 23388.66, + "end": 23390.44, + "probability": 0.1738 + }, + { + "start": 23390.58, + "end": 23392.52, + "probability": 0.7391 + }, + { + "start": 23392.84, + "end": 23394.84, + "probability": 0.5543 + }, + { + "start": 23395.66, + "end": 23398.3, + "probability": 0.8953 + }, + { + "start": 23398.62, + "end": 23399.66, + "probability": 0.7406 + }, + { + "start": 23400.0, + "end": 23401.36, + "probability": 0.8337 + }, + { + "start": 23402.16, + "end": 23403.43, + "probability": 0.9867 + }, + { + "start": 23403.84, + "end": 23404.76, + "probability": 0.9371 + }, + { + "start": 23405.0, + "end": 23406.31, + "probability": 0.9649 + }, + { + "start": 23407.14, + "end": 23410.42, + "probability": 0.9937 + }, + { + "start": 23410.86, + "end": 23411.88, + "probability": 0.9059 + }, + { + "start": 23412.46, + "end": 23414.56, + "probability": 0.9878 + }, + { + "start": 23415.22, + "end": 23417.36, + "probability": 0.9341 + }, + { + "start": 23417.62, + "end": 23418.62, + "probability": 0.9725 + }, + { + "start": 23418.82, + "end": 23420.06, + "probability": 0.9861 + }, + { + "start": 23420.88, + "end": 23425.07, + "probability": 0.9963 + }, + { + "start": 23426.32, + "end": 23431.52, + "probability": 0.9579 + }, + { + "start": 23431.68, + "end": 23435.16, + "probability": 0.9965 + }, + { + "start": 23435.8, + "end": 23439.0, + "probability": 0.9451 + }, + { + "start": 23439.46, + "end": 23443.02, + "probability": 0.9466 + }, + { + "start": 23443.02, + "end": 23444.8, + "probability": 0.4418 + }, + { + "start": 23445.44, + "end": 23449.9, + "probability": 0.9954 + }, + { + "start": 23450.48, + "end": 23452.12, + "probability": 0.9827 + }, + { + "start": 23452.92, + "end": 23456.56, + "probability": 0.9503 + }, + { + "start": 23456.9, + "end": 23457.2, + "probability": 0.4027 + }, + { + "start": 23457.72, + "end": 23460.48, + "probability": 0.8771 + }, + { + "start": 23460.56, + "end": 23465.8, + "probability": 0.6873 + }, + { + "start": 23466.34, + "end": 23468.98, + "probability": 0.8817 + }, + { + "start": 23469.3, + "end": 23469.68, + "probability": 0.7405 + }, + { + "start": 23470.14, + "end": 23472.04, + "probability": 0.9437 + }, + { + "start": 23472.14, + "end": 23475.14, + "probability": 0.9324 + }, + { + "start": 23475.3, + "end": 23477.86, + "probability": 0.9501 + }, + { + "start": 23478.12, + "end": 23480.6, + "probability": 0.9907 + }, + { + "start": 23480.98, + "end": 23482.24, + "probability": 0.5386 + }, + { + "start": 23482.48, + "end": 23484.74, + "probability": 0.9576 + }, + { + "start": 23485.14, + "end": 23485.48, + "probability": 0.4479 + }, + { + "start": 23485.48, + "end": 23486.26, + "probability": 0.9266 + }, + { + "start": 23486.6, + "end": 23487.2, + "probability": 0.8051 + }, + { + "start": 23487.46, + "end": 23489.26, + "probability": 0.6528 + }, + { + "start": 23489.68, + "end": 23490.98, + "probability": 0.9009 + }, + { + "start": 23491.68, + "end": 23495.06, + "probability": 0.7824 + }, + { + "start": 23495.14, + "end": 23498.62, + "probability": 0.9973 + }, + { + "start": 23498.62, + "end": 23501.74, + "probability": 0.9961 + }, + { + "start": 23502.14, + "end": 23503.92, + "probability": 0.7118 + }, + { + "start": 23504.42, + "end": 23504.96, + "probability": 0.5726 + }, + { + "start": 23505.06, + "end": 23505.96, + "probability": 0.837 + }, + { + "start": 23506.02, + "end": 23506.32, + "probability": 0.4876 + }, + { + "start": 23506.34, + "end": 23507.18, + "probability": 0.8093 + }, + { + "start": 23507.48, + "end": 23510.2, + "probability": 0.92 + }, + { + "start": 23510.58, + "end": 23513.62, + "probability": 0.9072 + }, + { + "start": 23514.16, + "end": 23515.42, + "probability": 0.9833 + }, + { + "start": 23515.86, + "end": 23517.2, + "probability": 0.9446 + }, + { + "start": 23517.3, + "end": 23521.32, + "probability": 0.8286 + }, + { + "start": 23521.4, + "end": 23523.96, + "probability": 0.9912 + }, + { + "start": 23524.36, + "end": 23526.9, + "probability": 0.9917 + }, + { + "start": 23527.52, + "end": 23528.66, + "probability": 0.9834 + }, + { + "start": 23529.14, + "end": 23531.34, + "probability": 0.9946 + }, + { + "start": 23531.52, + "end": 23532.3, + "probability": 0.8412 + }, + { + "start": 23533.1, + "end": 23536.02, + "probability": 0.9707 + }, + { + "start": 23536.36, + "end": 23538.12, + "probability": 0.5169 + }, + { + "start": 23538.26, + "end": 23540.72, + "probability": 0.8405 + }, + { + "start": 23541.24, + "end": 23544.02, + "probability": 0.9195 + }, + { + "start": 23544.1, + "end": 23548.68, + "probability": 0.9943 + }, + { + "start": 23548.8, + "end": 23549.22, + "probability": 0.8389 + }, + { + "start": 23549.26, + "end": 23555.04, + "probability": 0.916 + }, + { + "start": 23555.18, + "end": 23557.12, + "probability": 0.8398 + }, + { + "start": 23557.56, + "end": 23561.26, + "probability": 0.9964 + }, + { + "start": 23561.66, + "end": 23561.96, + "probability": 0.8778 + }, + { + "start": 23562.76, + "end": 23565.5, + "probability": 0.9792 + }, + { + "start": 23565.54, + "end": 23568.66, + "probability": 0.911 + }, + { + "start": 23568.72, + "end": 23574.16, + "probability": 0.8862 + }, + { + "start": 23574.48, + "end": 23576.06, + "probability": 0.8284 + }, + { + "start": 23576.26, + "end": 23576.78, + "probability": 0.7195 + }, + { + "start": 23577.08, + "end": 23580.0, + "probability": 0.9691 + }, + { + "start": 23580.4, + "end": 23581.86, + "probability": 0.9925 + }, + { + "start": 23581.96, + "end": 23583.06, + "probability": 0.9025 + }, + { + "start": 23583.44, + "end": 23585.46, + "probability": 0.9967 + }, + { + "start": 23585.46, + "end": 23588.5, + "probability": 0.9646 + }, + { + "start": 23588.84, + "end": 23589.42, + "probability": 0.9513 + }, + { + "start": 23589.5, + "end": 23590.24, + "probability": 0.7342 + }, + { + "start": 23591.9, + "end": 23593.3, + "probability": 0.9535 + }, + { + "start": 23603.24, + "end": 23603.76, + "probability": 0.3165 + }, + { + "start": 23603.88, + "end": 23604.86, + "probability": 0.8008 + }, + { + "start": 23607.76, + "end": 23610.46, + "probability": 0.7367 + }, + { + "start": 23611.02, + "end": 23612.26, + "probability": 0.7689 + }, + { + "start": 23614.6, + "end": 23616.16, + "probability": 0.9397 + }, + { + "start": 23619.96, + "end": 23623.62, + "probability": 0.9759 + }, + { + "start": 23625.32, + "end": 23631.52, + "probability": 0.9956 + }, + { + "start": 23631.72, + "end": 23633.18, + "probability": 0.2618 + }, + { + "start": 23633.3, + "end": 23634.72, + "probability": 0.5422 + }, + { + "start": 23635.24, + "end": 23639.16, + "probability": 0.9265 + }, + { + "start": 23640.24, + "end": 23643.76, + "probability": 0.9174 + }, + { + "start": 23643.8, + "end": 23645.64, + "probability": 0.9675 + }, + { + "start": 23646.76, + "end": 23649.66, + "probability": 0.8638 + }, + { + "start": 23650.92, + "end": 23657.32, + "probability": 0.9051 + }, + { + "start": 23660.08, + "end": 23660.74, + "probability": 0.4033 + }, + { + "start": 23660.86, + "end": 23663.34, + "probability": 0.792 + }, + { + "start": 23663.52, + "end": 23667.11, + "probability": 0.8951 + }, + { + "start": 23667.84, + "end": 23674.16, + "probability": 0.984 + }, + { + "start": 23675.42, + "end": 23681.92, + "probability": 0.9652 + }, + { + "start": 23682.8, + "end": 23683.58, + "probability": 0.4339 + }, + { + "start": 23684.7, + "end": 23687.56, + "probability": 0.864 + }, + { + "start": 23688.7, + "end": 23689.56, + "probability": 0.874 + }, + { + "start": 23690.72, + "end": 23697.24, + "probability": 0.9594 + }, + { + "start": 23698.08, + "end": 23703.14, + "probability": 0.8312 + }, + { + "start": 23703.72, + "end": 23708.84, + "probability": 0.947 + }, + { + "start": 23709.42, + "end": 23711.3, + "probability": 0.745 + }, + { + "start": 23712.42, + "end": 23714.04, + "probability": 0.9946 + }, + { + "start": 23715.6, + "end": 23722.8, + "probability": 0.9912 + }, + { + "start": 23723.64, + "end": 23729.52, + "probability": 0.9673 + }, + { + "start": 23729.72, + "end": 23731.0, + "probability": 0.937 + }, + { + "start": 23734.68, + "end": 23736.08, + "probability": 0.6619 + }, + { + "start": 23737.28, + "end": 23740.87, + "probability": 0.8309 + }, + { + "start": 23742.1, + "end": 23746.22, + "probability": 0.9489 + }, + { + "start": 23746.3, + "end": 23748.14, + "probability": 0.7932 + }, + { + "start": 23748.34, + "end": 23749.42, + "probability": 0.9692 + }, + { + "start": 23749.52, + "end": 23750.57, + "probability": 0.9961 + }, + { + "start": 23750.94, + "end": 23751.66, + "probability": 0.9712 + }, + { + "start": 23756.0, + "end": 23759.38, + "probability": 0.7118 + }, + { + "start": 23759.38, + "end": 23760.34, + "probability": 0.3999 + }, + { + "start": 23760.92, + "end": 23762.86, + "probability": 0.1151 + }, + { + "start": 23763.0, + "end": 23763.0, + "probability": 0.6437 + }, + { + "start": 23763.0, + "end": 23764.82, + "probability": 0.9995 + }, + { + "start": 23767.79, + "end": 23770.2, + "probability": 0.9158 + }, + { + "start": 23770.52, + "end": 23774.2, + "probability": 0.9858 + }, + { + "start": 23774.6, + "end": 23775.84, + "probability": 0.9606 + }, + { + "start": 23776.7, + "end": 23778.08, + "probability": 0.7428 + }, + { + "start": 23778.8, + "end": 23780.26, + "probability": 0.8587 + }, + { + "start": 23780.96, + "end": 23782.34, + "probability": 0.9545 + }, + { + "start": 23782.92, + "end": 23784.5, + "probability": 0.7908 + }, + { + "start": 23786.98, + "end": 23789.28, + "probability": 0.9902 + }, + { + "start": 23789.74, + "end": 23790.6, + "probability": 0.9536 + }, + { + "start": 23790.68, + "end": 23793.42, + "probability": 0.9748 + }, + { + "start": 23793.42, + "end": 23794.48, + "probability": 0.8982 + }, + { + "start": 23794.62, + "end": 23794.86, + "probability": 0.6815 + }, + { + "start": 23795.18, + "end": 23795.98, + "probability": 0.8541 + }, + { + "start": 23796.34, + "end": 23797.86, + "probability": 0.8717 + }, + { + "start": 23799.12, + "end": 23802.2, + "probability": 0.923 + }, + { + "start": 23803.6, + "end": 23807.28, + "probability": 0.8301 + }, + { + "start": 23808.44, + "end": 23811.76, + "probability": 0.8763 + }, + { + "start": 23812.52, + "end": 23813.48, + "probability": 0.9741 + }, + { + "start": 23814.04, + "end": 23815.6, + "probability": 0.9781 + }, + { + "start": 23816.62, + "end": 23819.82, + "probability": 0.9739 + }, + { + "start": 23820.62, + "end": 23824.64, + "probability": 0.9129 + }, + { + "start": 23825.52, + "end": 23828.28, + "probability": 0.845 + }, + { + "start": 23829.62, + "end": 23829.62, + "probability": 0.3563 + }, + { + "start": 23842.14, + "end": 23843.46, + "probability": 0.6556 + }, + { + "start": 23849.0, + "end": 23851.04, + "probability": 0.3491 + }, + { + "start": 23851.8, + "end": 23853.1, + "probability": 0.8862 + }, + { + "start": 23853.22, + "end": 23856.94, + "probability": 0.9138 + }, + { + "start": 23857.14, + "end": 23858.88, + "probability": 0.9153 + }, + { + "start": 23859.7, + "end": 23860.3, + "probability": 0.8496 + }, + { + "start": 23860.42, + "end": 23864.8, + "probability": 0.8772 + }, + { + "start": 23865.72, + "end": 23866.52, + "probability": 0.0162 + }, + { + "start": 23866.52, + "end": 23867.02, + "probability": 0.4789 + }, + { + "start": 23867.72, + "end": 23868.1, + "probability": 0.5625 + }, + { + "start": 23869.12, + "end": 23870.06, + "probability": 0.9691 + }, + { + "start": 23870.8, + "end": 23873.66, + "probability": 0.5079 + }, + { + "start": 23875.96, + "end": 23877.32, + "probability": 0.9092 + }, + { + "start": 23877.8, + "end": 23882.82, + "probability": 0.9905 + }, + { + "start": 23883.36, + "end": 23884.3, + "probability": 0.8552 + }, + { + "start": 23884.3, + "end": 23887.46, + "probability": 0.9063 + }, + { + "start": 23887.7, + "end": 23888.4, + "probability": 0.3167 + }, + { + "start": 23889.36, + "end": 23890.06, + "probability": 0.7543 + }, + { + "start": 23890.86, + "end": 23892.54, + "probability": 0.9084 + }, + { + "start": 23892.72, + "end": 23893.7, + "probability": 0.6353 + }, + { + "start": 23893.86, + "end": 23897.52, + "probability": 0.6682 + }, + { + "start": 23897.62, + "end": 23900.96, + "probability": 0.9791 + }, + { + "start": 23901.64, + "end": 23906.7, + "probability": 0.9507 + }, + { + "start": 23908.3, + "end": 23910.9, + "probability": 0.9787 + }, + { + "start": 23911.46, + "end": 23914.12, + "probability": 0.7289 + }, + { + "start": 23914.66, + "end": 23915.62, + "probability": 0.5179 + }, + { + "start": 23916.38, + "end": 23920.52, + "probability": 0.8592 + }, + { + "start": 23920.78, + "end": 23922.64, + "probability": 0.6716 + }, + { + "start": 23922.72, + "end": 23925.9, + "probability": 0.9836 + }, + { + "start": 23927.94, + "end": 23930.14, + "probability": 0.8843 + }, + { + "start": 23931.44, + "end": 23933.56, + "probability": 0.9089 + }, + { + "start": 23934.26, + "end": 23939.32, + "probability": 0.971 + }, + { + "start": 23939.36, + "end": 23939.72, + "probability": 0.3744 + }, + { + "start": 23940.5, + "end": 23941.52, + "probability": 0.7238 + }, + { + "start": 23941.62, + "end": 23942.76, + "probability": 0.78 + }, + { + "start": 23943.0, + "end": 23946.18, + "probability": 0.8789 + }, + { + "start": 23947.24, + "end": 23948.28, + "probability": 0.4484 + }, + { + "start": 23948.46, + "end": 23952.54, + "probability": 0.7219 + }, + { + "start": 23952.6, + "end": 23953.68, + "probability": 0.8432 + }, + { + "start": 23953.82, + "end": 23954.58, + "probability": 0.987 + }, + { + "start": 23954.66, + "end": 23957.58, + "probability": 0.9158 + }, + { + "start": 23958.74, + "end": 23960.32, + "probability": 0.5615 + }, + { + "start": 23961.06, + "end": 23964.58, + "probability": 0.8013 + }, + { + "start": 23964.98, + "end": 23965.96, + "probability": 0.9912 + }, + { + "start": 23966.06, + "end": 23966.9, + "probability": 0.8031 + }, + { + "start": 23967.74, + "end": 23970.64, + "probability": 0.8928 + }, + { + "start": 23971.08, + "end": 23972.61, + "probability": 0.9535 + }, + { + "start": 23973.28, + "end": 23978.38, + "probability": 0.9828 + }, + { + "start": 23978.86, + "end": 23983.92, + "probability": 0.7419 + }, + { + "start": 23984.94, + "end": 23985.9, + "probability": 0.6332 + }, + { + "start": 23987.04, + "end": 23993.36, + "probability": 0.9849 + }, + { + "start": 23993.96, + "end": 23995.02, + "probability": 0.7193 + }, + { + "start": 23995.76, + "end": 23999.19, + "probability": 0.9924 + }, + { + "start": 24000.06, + "end": 24005.78, + "probability": 0.8822 + }, + { + "start": 24007.7, + "end": 24008.06, + "probability": 0.4818 + }, + { + "start": 24008.2, + "end": 24009.78, + "probability": 0.9941 + }, + { + "start": 24009.88, + "end": 24011.62, + "probability": 0.8049 + }, + { + "start": 24012.04, + "end": 24014.32, + "probability": 0.7064 + }, + { + "start": 24014.74, + "end": 24018.34, + "probability": 0.9705 + }, + { + "start": 24019.24, + "end": 24020.49, + "probability": 0.8659 + }, + { + "start": 24020.94, + "end": 24021.68, + "probability": 0.0611 + }, + { + "start": 24022.04, + "end": 24024.44, + "probability": 0.5544 + }, + { + "start": 24025.0, + "end": 24025.0, + "probability": 0.2461 + }, + { + "start": 24025.0, + "end": 24025.08, + "probability": 0.1176 + }, + { + "start": 24025.08, + "end": 24027.52, + "probability": 0.1672 + }, + { + "start": 24027.6, + "end": 24029.4, + "probability": 0.3301 + }, + { + "start": 24029.7, + "end": 24030.82, + "probability": 0.3964 + }, + { + "start": 24031.54, + "end": 24031.54, + "probability": 0.0212 + }, + { + "start": 24031.54, + "end": 24031.54, + "probability": 0.7515 + }, + { + "start": 24031.54, + "end": 24036.56, + "probability": 0.2124 + }, + { + "start": 24036.98, + "end": 24039.36, + "probability": 0.1132 + }, + { + "start": 24040.42, + "end": 24042.72, + "probability": 0.5052 + }, + { + "start": 24042.72, + "end": 24042.72, + "probability": 0.6431 + }, + { + "start": 24042.72, + "end": 24042.72, + "probability": 0.1205 + }, + { + "start": 24046.82, + "end": 24052.66, + "probability": 0.0672 + }, + { + "start": 24053.28, + "end": 24055.94, + "probability": 0.0752 + }, + { + "start": 24060.34, + "end": 24060.64, + "probability": 0.224 + }, + { + "start": 24062.06, + "end": 24065.74, + "probability": 0.3049 + }, + { + "start": 24068.58, + "end": 24069.38, + "probability": 0.0104 + }, + { + "start": 24070.0, + "end": 24070.43, + "probability": 0.1389 + }, + { + "start": 24072.14, + "end": 24074.04, + "probability": 0.0908 + }, + { + "start": 24116.0, + "end": 24116.0, + "probability": 0.0 + }, + { + "start": 24116.0, + "end": 24116.0, + "probability": 0.0 + }, + { + "start": 24116.0, + "end": 24116.0, + "probability": 0.0 + }, + { + "start": 24116.0, + "end": 24116.0, + "probability": 0.0 + }, + { + "start": 24116.0, + "end": 24116.0, + "probability": 0.0 + }, + { + "start": 24116.0, + "end": 24116.0, + "probability": 0.0 + }, + { + "start": 24116.0, + "end": 24116.0, + "probability": 0.0 + }, + { + "start": 24116.0, + "end": 24116.0, + "probability": 0.0 + }, + { + "start": 24116.0, + "end": 24116.0, + "probability": 0.0 + }, + { + "start": 24116.0, + "end": 24116.0, + "probability": 0.0 + }, + { + "start": 24116.0, + "end": 24116.0, + "probability": 0.0 + }, + { + "start": 24116.0, + "end": 24116.0, + "probability": 0.0 + }, + { + "start": 24116.0, + "end": 24116.0, + "probability": 0.0 + }, + { + "start": 24116.0, + "end": 24116.0, + "probability": 0.0 + }, + { + "start": 24116.0, + "end": 24116.0, + "probability": 0.0 + }, + { + "start": 24116.0, + "end": 24116.0, + "probability": 0.0 + }, + { + "start": 24116.0, + "end": 24116.0, + "probability": 0.0 + }, + { + "start": 24116.0, + "end": 24116.0, + "probability": 0.0 + }, + { + "start": 24116.0, + "end": 24116.0, + "probability": 0.0 + }, + { + "start": 24116.16, + "end": 24116.16, + "probability": 0.0 + }, + { + "start": 24116.16, + "end": 24116.16, + "probability": 0.1764 + }, + { + "start": 24116.16, + "end": 24116.16, + "probability": 0.1023 + }, + { + "start": 24116.16, + "end": 24120.54, + "probability": 0.6213 + }, + { + "start": 24121.02, + "end": 24125.1, + "probability": 0.9654 + }, + { + "start": 24125.62, + "end": 24128.88, + "probability": 0.9956 + }, + { + "start": 24128.88, + "end": 24132.06, + "probability": 0.9997 + }, + { + "start": 24133.46, + "end": 24134.16, + "probability": 0.717 + }, + { + "start": 24134.98, + "end": 24135.76, + "probability": 0.8567 + }, + { + "start": 24136.44, + "end": 24142.28, + "probability": 0.9989 + }, + { + "start": 24143.1, + "end": 24148.82, + "probability": 0.9956 + }, + { + "start": 24149.86, + "end": 24151.12, + "probability": 0.2403 + }, + { + "start": 24151.28, + "end": 24152.45, + "probability": 0.6775 + }, + { + "start": 24153.14, + "end": 24157.12, + "probability": 0.997 + }, + { + "start": 24158.18, + "end": 24158.92, + "probability": 0.8315 + }, + { + "start": 24159.5, + "end": 24164.4, + "probability": 0.9944 + }, + { + "start": 24165.08, + "end": 24169.04, + "probability": 0.974 + }, + { + "start": 24169.66, + "end": 24170.84, + "probability": 0.8486 + }, + { + "start": 24171.4, + "end": 24175.74, + "probability": 0.9232 + }, + { + "start": 24176.5, + "end": 24178.24, + "probability": 0.9834 + }, + { + "start": 24178.8, + "end": 24179.73, + "probability": 0.732 + }, + { + "start": 24180.42, + "end": 24180.78, + "probability": 0.5278 + }, + { + "start": 24180.86, + "end": 24181.68, + "probability": 0.8068 + }, + { + "start": 24182.14, + "end": 24184.18, + "probability": 0.9702 + }, + { + "start": 24184.22, + "end": 24185.32, + "probability": 0.8472 + }, + { + "start": 24185.82, + "end": 24189.2, + "probability": 0.9878 + }, + { + "start": 24189.66, + "end": 24193.62, + "probability": 0.9722 + }, + { + "start": 24194.64, + "end": 24196.18, + "probability": 0.8522 + }, + { + "start": 24196.76, + "end": 24199.96, + "probability": 0.988 + }, + { + "start": 24199.96, + "end": 24203.06, + "probability": 0.9836 + }, + { + "start": 24204.08, + "end": 24210.76, + "probability": 0.9959 + }, + { + "start": 24211.44, + "end": 24215.08, + "probability": 0.9955 + }, + { + "start": 24215.08, + "end": 24218.82, + "probability": 0.9982 + }, + { + "start": 24221.38, + "end": 24226.1, + "probability": 0.0169 + }, + { + "start": 24226.36, + "end": 24228.84, + "probability": 0.5038 + }, + { + "start": 24228.84, + "end": 24230.26, + "probability": 0.2388 + }, + { + "start": 24231.6, + "end": 24232.2, + "probability": 0.7705 + }, + { + "start": 24233.42, + "end": 24236.76, + "probability": 0.81 + }, + { + "start": 24237.26, + "end": 24239.5, + "probability": 0.9851 + }, + { + "start": 24239.54, + "end": 24241.74, + "probability": 0.7888 + }, + { + "start": 24242.24, + "end": 24243.16, + "probability": 0.8773 + }, + { + "start": 24243.66, + "end": 24249.54, + "probability": 0.9639 + }, + { + "start": 24250.0, + "end": 24251.56, + "probability": 0.9829 + }, + { + "start": 24253.32, + "end": 24256.28, + "probability": 0.6827 + }, + { + "start": 24257.68, + "end": 24259.84, + "probability": 0.8348 + }, + { + "start": 24262.88, + "end": 24264.48, + "probability": 0.8296 + }, + { + "start": 24271.88, + "end": 24272.4, + "probability": 0.6482 + }, + { + "start": 24280.82, + "end": 24282.66, + "probability": 0.8278 + }, + { + "start": 24282.84, + "end": 24289.96, + "probability": 0.9973 + }, + { + "start": 24290.68, + "end": 24293.9, + "probability": 0.8611 + }, + { + "start": 24293.9, + "end": 24297.84, + "probability": 0.9941 + }, + { + "start": 24298.2, + "end": 24299.28, + "probability": 0.7231 + }, + { + "start": 24299.3, + "end": 24300.22, + "probability": 0.7838 + }, + { + "start": 24300.34, + "end": 24301.42, + "probability": 0.927 + }, + { + "start": 24301.6, + "end": 24304.78, + "probability": 0.9935 + }, + { + "start": 24304.78, + "end": 24309.3, + "probability": 0.9633 + }, + { + "start": 24309.78, + "end": 24315.01, + "probability": 0.9913 + }, + { + "start": 24315.36, + "end": 24316.1, + "probability": 0.7543 + }, + { + "start": 24316.18, + "end": 24317.24, + "probability": 0.9164 + }, + { + "start": 24317.32, + "end": 24319.8, + "probability": 0.9152 + }, + { + "start": 24319.96, + "end": 24321.84, + "probability": 0.7027 + }, + { + "start": 24321.84, + "end": 24322.86, + "probability": 0.8043 + }, + { + "start": 24323.06, + "end": 24324.7, + "probability": 0.9276 + }, + { + "start": 24325.24, + "end": 24326.24, + "probability": 0.8815 + }, + { + "start": 24326.38, + "end": 24327.76, + "probability": 0.9804 + }, + { + "start": 24327.84, + "end": 24331.1, + "probability": 0.9894 + }, + { + "start": 24331.54, + "end": 24333.56, + "probability": 0.7855 + }, + { + "start": 24334.02, + "end": 24335.66, + "probability": 0.6615 + }, + { + "start": 24336.04, + "end": 24336.94, + "probability": 0.9419 + }, + { + "start": 24337.08, + "end": 24338.04, + "probability": 0.9658 + }, + { + "start": 24338.14, + "end": 24339.8, + "probability": 0.979 + }, + { + "start": 24340.2, + "end": 24342.32, + "probability": 0.6661 + }, + { + "start": 24342.76, + "end": 24344.14, + "probability": 0.9966 + }, + { + "start": 24344.26, + "end": 24345.44, + "probability": 0.6606 + }, + { + "start": 24346.28, + "end": 24347.42, + "probability": 0.9202 + }, + { + "start": 24347.96, + "end": 24352.04, + "probability": 0.9967 + }, + { + "start": 24352.36, + "end": 24355.4, + "probability": 0.9797 + }, + { + "start": 24355.96, + "end": 24362.94, + "probability": 0.9797 + }, + { + "start": 24363.44, + "end": 24364.5, + "probability": 0.5829 + }, + { + "start": 24364.9, + "end": 24367.12, + "probability": 0.9656 + }, + { + "start": 24367.5, + "end": 24368.74, + "probability": 0.9076 + }, + { + "start": 24369.32, + "end": 24372.41, + "probability": 0.9958 + }, + { + "start": 24372.78, + "end": 24374.6, + "probability": 0.9614 + }, + { + "start": 24374.82, + "end": 24376.26, + "probability": 0.6117 + }, + { + "start": 24376.34, + "end": 24379.6, + "probability": 0.9679 + }, + { + "start": 24379.6, + "end": 24382.12, + "probability": 0.9871 + }, + { + "start": 24382.56, + "end": 24384.82, + "probability": 0.9574 + }, + { + "start": 24385.86, + "end": 24388.31, + "probability": 0.9931 + }, + { + "start": 24388.56, + "end": 24391.72, + "probability": 0.7598 + }, + { + "start": 24391.84, + "end": 24393.46, + "probability": 0.9917 + }, + { + "start": 24393.78, + "end": 24396.54, + "probability": 0.9871 + }, + { + "start": 24397.4, + "end": 24401.18, + "probability": 0.9961 + }, + { + "start": 24401.18, + "end": 24404.86, + "probability": 0.9981 + }, + { + "start": 24404.94, + "end": 24406.1, + "probability": 0.7825 + }, + { + "start": 24406.42, + "end": 24407.74, + "probability": 0.8314 + }, + { + "start": 24408.46, + "end": 24409.9, + "probability": 0.9578 + }, + { + "start": 24410.82, + "end": 24417.02, + "probability": 0.9966 + }, + { + "start": 24417.36, + "end": 24418.2, + "probability": 0.9883 + }, + { + "start": 24418.88, + "end": 24420.2, + "probability": 0.9136 + }, + { + "start": 24420.88, + "end": 24421.77, + "probability": 0.6641 + }, + { + "start": 24422.36, + "end": 24425.58, + "probability": 0.9067 + }, + { + "start": 24425.7, + "end": 24425.96, + "probability": 0.6909 + }, + { + "start": 24428.42, + "end": 24429.28, + "probability": 0.7289 + }, + { + "start": 24430.64, + "end": 24432.88, + "probability": 0.8469 + }, + { + "start": 24433.28, + "end": 24433.52, + "probability": 0.2522 + }, + { + "start": 24455.7, + "end": 24457.04, + "probability": 0.5035 + }, + { + "start": 24457.28, + "end": 24459.66, + "probability": 0.7336 + }, + { + "start": 24460.0, + "end": 24461.3, + "probability": 0.762 + }, + { + "start": 24461.48, + "end": 24464.72, + "probability": 0.9218 + }, + { + "start": 24465.16, + "end": 24466.02, + "probability": 0.8628 + }, + { + "start": 24466.08, + "end": 24467.66, + "probability": 0.9927 + }, + { + "start": 24468.38, + "end": 24470.98, + "probability": 0.903 + }, + { + "start": 24471.68, + "end": 24473.54, + "probability": 0.7886 + }, + { + "start": 24474.1, + "end": 24476.16, + "probability": 0.932 + }, + { + "start": 24477.26, + "end": 24479.8, + "probability": 0.9448 + }, + { + "start": 24480.36, + "end": 24487.84, + "probability": 0.994 + }, + { + "start": 24487.88, + "end": 24490.04, + "probability": 0.9948 + }, + { + "start": 24490.78, + "end": 24491.66, + "probability": 0.9976 + }, + { + "start": 24493.4, + "end": 24496.98, + "probability": 0.8983 + }, + { + "start": 24497.9, + "end": 24502.22, + "probability": 0.9854 + }, + { + "start": 24502.76, + "end": 24503.53, + "probability": 0.9845 + }, + { + "start": 24504.26, + "end": 24505.82, + "probability": 0.9928 + }, + { + "start": 24506.16, + "end": 24507.78, + "probability": 0.9801 + }, + { + "start": 24508.08, + "end": 24508.98, + "probability": 0.9683 + }, + { + "start": 24509.36, + "end": 24510.36, + "probability": 0.7791 + }, + { + "start": 24510.46, + "end": 24511.44, + "probability": 0.7593 + }, + { + "start": 24511.56, + "end": 24512.42, + "probability": 0.8743 + }, + { + "start": 24512.82, + "end": 24514.38, + "probability": 0.8602 + }, + { + "start": 24515.0, + "end": 24520.54, + "probability": 0.9386 + }, + { + "start": 24520.54, + "end": 24526.86, + "probability": 0.9045 + }, + { + "start": 24527.38, + "end": 24529.26, + "probability": 0.9487 + }, + { + "start": 24529.44, + "end": 24531.3, + "probability": 0.9886 + }, + { + "start": 24531.4, + "end": 24534.14, + "probability": 0.9124 + }, + { + "start": 24534.14, + "end": 24537.2, + "probability": 0.9905 + }, + { + "start": 24537.6, + "end": 24539.33, + "probability": 0.9966 + }, + { + "start": 24539.48, + "end": 24540.18, + "probability": 0.6035 + }, + { + "start": 24540.36, + "end": 24541.66, + "probability": 0.9981 + }, + { + "start": 24542.3, + "end": 24548.7, + "probability": 0.9866 + }, + { + "start": 24549.24, + "end": 24552.5, + "probability": 0.9421 + }, + { + "start": 24552.62, + "end": 24554.44, + "probability": 0.9551 + }, + { + "start": 24554.52, + "end": 24556.14, + "probability": 0.7264 + }, + { + "start": 24556.92, + "end": 24563.86, + "probability": 0.9719 + }, + { + "start": 24563.98, + "end": 24566.34, + "probability": 0.983 + }, + { + "start": 24567.8, + "end": 24571.02, + "probability": 0.8992 + }, + { + "start": 24571.5, + "end": 24573.42, + "probability": 0.9948 + }, + { + "start": 24573.98, + "end": 24575.3, + "probability": 0.9268 + }, + { + "start": 24575.86, + "end": 24581.1, + "probability": 0.9683 + }, + { + "start": 24581.18, + "end": 24581.92, + "probability": 0.6262 + }, + { + "start": 24582.54, + "end": 24585.0, + "probability": 0.9625 + }, + { + "start": 24585.38, + "end": 24586.48, + "probability": 0.9306 + }, + { + "start": 24586.66, + "end": 24590.88, + "probability": 0.9927 + }, + { + "start": 24591.28, + "end": 24594.34, + "probability": 0.9966 + }, + { + "start": 24597.72, + "end": 24602.94, + "probability": 0.9928 + }, + { + "start": 24603.4, + "end": 24606.46, + "probability": 0.9654 + }, + { + "start": 24606.46, + "end": 24609.18, + "probability": 0.9897 + }, + { + "start": 24609.6, + "end": 24611.96, + "probability": 0.9751 + }, + { + "start": 24612.54, + "end": 24615.0, + "probability": 0.998 + }, + { + "start": 24615.58, + "end": 24615.8, + "probability": 0.5362 + }, + { + "start": 24617.34, + "end": 24618.18, + "probability": 0.7689 + }, + { + "start": 24618.54, + "end": 24620.22, + "probability": 0.9449 + }, + { + "start": 24621.86, + "end": 24624.94, + "probability": 0.8938 + }, + { + "start": 24627.8, + "end": 24629.28, + "probability": 0.6057 + }, + { + "start": 24630.24, + "end": 24632.0, + "probability": 0.3672 + }, + { + "start": 24634.08, + "end": 24637.22, + "probability": 0.8903 + }, + { + "start": 24637.38, + "end": 24638.56, + "probability": 0.9055 + }, + { + "start": 24674.02, + "end": 24676.14, + "probability": 0.6314 + }, + { + "start": 24676.88, + "end": 24680.46, + "probability": 0.9823 + }, + { + "start": 24682.22, + "end": 24682.88, + "probability": 0.7469 + }, + { + "start": 24685.28, + "end": 24686.16, + "probability": 0.5931 + }, + { + "start": 24687.56, + "end": 24690.4, + "probability": 0.9956 + }, + { + "start": 24691.22, + "end": 24691.5, + "probability": 0.1263 + }, + { + "start": 24693.42, + "end": 24696.28, + "probability": 0.9954 + }, + { + "start": 24697.44, + "end": 24700.3, + "probability": 0.0346 + }, + { + "start": 24703.36, + "end": 24706.09, + "probability": 0.6129 + }, + { + "start": 24707.4, + "end": 24708.4, + "probability": 0.127 + }, + { + "start": 24712.02, + "end": 24715.32, + "probability": 0.0287 + }, + { + "start": 24716.22, + "end": 24718.88, + "probability": 0.673 + }, + { + "start": 24719.1, + "end": 24720.94, + "probability": 0.2051 + }, + { + "start": 24721.22, + "end": 24723.45, + "probability": 0.5954 + }, + { + "start": 24732.02, + "end": 24733.68, + "probability": 0.4383 + }, + { + "start": 24733.72, + "end": 24734.52, + "probability": 0.6778 + }, + { + "start": 24734.62, + "end": 24738.14, + "probability": 0.9969 + }, + { + "start": 24738.66, + "end": 24740.54, + "probability": 0.951 + }, + { + "start": 24741.06, + "end": 24742.38, + "probability": 0.6544 + }, + { + "start": 24742.9, + "end": 24747.54, + "probability": 0.995 + }, + { + "start": 24748.12, + "end": 24751.22, + "probability": 0.7786 + }, + { + "start": 24751.74, + "end": 24752.86, + "probability": 0.9989 + }, + { + "start": 24753.4, + "end": 24756.16, + "probability": 0.9971 + }, + { + "start": 24757.52, + "end": 24758.84, + "probability": 0.9862 + }, + { + "start": 24763.42, + "end": 24763.92, + "probability": 0.9355 + }, + { + "start": 24767.48, + "end": 24769.8, + "probability": 0.9756 + }, + { + "start": 24770.32, + "end": 24771.42, + "probability": 0.6759 + }, + { + "start": 24772.12, + "end": 24774.21, + "probability": 0.2442 + }, + { + "start": 24775.24, + "end": 24777.58, + "probability": 0.7426 + }, + { + "start": 24778.54, + "end": 24779.42, + "probability": 0.9863 + }, + { + "start": 24782.3, + "end": 24783.28, + "probability": 0.9456 + }, + { + "start": 24785.8, + "end": 24787.36, + "probability": 0.7528 + }, + { + "start": 24787.92, + "end": 24788.92, + "probability": 0.9924 + }, + { + "start": 24790.1, + "end": 24793.84, + "probability": 0.8572 + }, + { + "start": 24794.66, + "end": 24796.26, + "probability": 0.9771 + }, + { + "start": 24797.1, + "end": 24800.15, + "probability": 0.9744 + }, + { + "start": 24801.34, + "end": 24805.62, + "probability": 0.8859 + }, + { + "start": 24806.3, + "end": 24807.94, + "probability": 0.9523 + }, + { + "start": 24808.46, + "end": 24811.9, + "probability": 0.9707 + }, + { + "start": 24813.26, + "end": 24813.26, + "probability": 0.0739 + }, + { + "start": 24813.26, + "end": 24813.26, + "probability": 0.0307 + }, + { + "start": 24813.26, + "end": 24817.88, + "probability": 0.9062 + }, + { + "start": 24818.96, + "end": 24819.8, + "probability": 0.8146 + }, + { + "start": 24820.62, + "end": 24822.36, + "probability": 0.9705 + }, + { + "start": 24822.96, + "end": 24825.62, + "probability": 0.9641 + }, + { + "start": 24826.74, + "end": 24830.16, + "probability": 0.9443 + }, + { + "start": 24831.04, + "end": 24834.02, + "probability": 0.9824 + }, + { + "start": 24834.24, + "end": 24836.52, + "probability": 0.9868 + }, + { + "start": 24837.94, + "end": 24838.74, + "probability": 0.7535 + }, + { + "start": 24839.3, + "end": 24844.9, + "probability": 0.9927 + }, + { + "start": 24845.5, + "end": 24846.94, + "probability": 0.9023 + }, + { + "start": 24847.48, + "end": 24850.16, + "probability": 0.9893 + }, + { + "start": 24851.04, + "end": 24851.94, + "probability": 0.5626 + }, + { + "start": 24852.52, + "end": 24855.76, + "probability": 0.9951 + }, + { + "start": 24856.2, + "end": 24857.9, + "probability": 0.684 + }, + { + "start": 24858.08, + "end": 24858.18, + "probability": 0.0227 + }, + { + "start": 24858.18, + "end": 24858.18, + "probability": 0.5997 + }, + { + "start": 24858.18, + "end": 24860.92, + "probability": 0.9705 + }, + { + "start": 24860.92, + "end": 24864.86, + "probability": 0.7759 + }, + { + "start": 24865.26, + "end": 24868.3, + "probability": 0.2443 + }, + { + "start": 24868.4, + "end": 24869.43, + "probability": 0.0045 + }, + { + "start": 24870.52, + "end": 24870.54, + "probability": 0.1365 + }, + { + "start": 24870.54, + "end": 24873.78, + "probability": 0.4992 + }, + { + "start": 24873.78, + "end": 24877.8, + "probability": 0.7356 + }, + { + "start": 24878.22, + "end": 24878.88, + "probability": 0.6692 + }, + { + "start": 24879.92, + "end": 24880.06, + "probability": 0.0501 + }, + { + "start": 24880.06, + "end": 24882.24, + "probability": 0.4025 + }, + { + "start": 24882.92, + "end": 24884.66, + "probability": 0.9199 + }, + { + "start": 24886.31, + "end": 24892.12, + "probability": 0.6438 + }, + { + "start": 24893.12, + "end": 24893.12, + "probability": 0.1165 + }, + { + "start": 24895.34, + "end": 24900.08, + "probability": 0.6378 + }, + { + "start": 24900.64, + "end": 24904.82, + "probability": 0.7496 + }, + { + "start": 24904.92, + "end": 24906.37, + "probability": 0.6613 + }, + { + "start": 24906.88, + "end": 24912.04, + "probability": 0.9822 + }, + { + "start": 24912.04, + "end": 24916.18, + "probability": 0.9919 + }, + { + "start": 24916.22, + "end": 24917.8, + "probability": 0.7375 + }, + { + "start": 24918.08, + "end": 24919.0, + "probability": 0.7141 + }, + { + "start": 24919.14, + "end": 24923.0, + "probability": 0.9575 + }, + { + "start": 24924.24, + "end": 24926.8, + "probability": 0.9434 + }, + { + "start": 24927.78, + "end": 24930.06, + "probability": 0.9272 + }, + { + "start": 24930.66, + "end": 24934.4, + "probability": 0.9312 + }, + { + "start": 24934.4, + "end": 24939.5, + "probability": 0.7106 + }, + { + "start": 24939.94, + "end": 24944.1, + "probability": 0.927 + }, + { + "start": 24944.1, + "end": 24947.62, + "probability": 0.9976 + }, + { + "start": 24948.0, + "end": 24951.06, + "probability": 0.7303 + }, + { + "start": 24951.4, + "end": 24953.62, + "probability": 0.9351 + }, + { + "start": 24953.96, + "end": 24955.26, + "probability": 0.9534 + }, + { + "start": 24955.54, + "end": 24956.84, + "probability": 0.991 + }, + { + "start": 24957.0, + "end": 24961.84, + "probability": 0.9975 + }, + { + "start": 24962.06, + "end": 24966.42, + "probability": 0.9854 + }, + { + "start": 24966.7, + "end": 24969.31, + "probability": 0.9902 + }, + { + "start": 24969.54, + "end": 24970.54, + "probability": 0.0791 + }, + { + "start": 24970.8, + "end": 24973.12, + "probability": 0.8556 + }, + { + "start": 24975.96, + "end": 24979.88, + "probability": 0.8794 + }, + { + "start": 24983.26, + "end": 24987.44, + "probability": 0.5858 + }, + { + "start": 24987.64, + "end": 24993.84, + "probability": 0.7134 + }, + { + "start": 24994.06, + "end": 24994.88, + "probability": 0.9524 + }, + { + "start": 24996.3, + "end": 24999.02, + "probability": 0.0884 + }, + { + "start": 25004.26, + "end": 25006.4, + "probability": 0.1701 + }, + { + "start": 25013.28, + "end": 25013.92, + "probability": 0.0323 + }, + { + "start": 25013.92, + "end": 25013.92, + "probability": 0.5179 + }, + { + "start": 25013.92, + "end": 25014.42, + "probability": 0.3248 + }, + { + "start": 25015.06, + "end": 25016.6, + "probability": 0.4871 + }, + { + "start": 25017.36, + "end": 25018.24, + "probability": 0.6427 + }, + { + "start": 25018.56, + "end": 25023.46, + "probability": 0.9189 + }, + { + "start": 25023.9, + "end": 25025.08, + "probability": 0.7117 + }, + { + "start": 25025.76, + "end": 25028.34, + "probability": 0.777 + }, + { + "start": 25029.06, + "end": 25030.24, + "probability": 0.5645 + }, + { + "start": 25038.26, + "end": 25039.56, + "probability": 0.4948 + }, + { + "start": 25041.34, + "end": 25042.28, + "probability": 0.4278 + }, + { + "start": 25042.42, + "end": 25045.08, + "probability": 0.956 + }, + { + "start": 25045.4, + "end": 25046.1, + "probability": 0.6949 + }, + { + "start": 25046.16, + "end": 25047.76, + "probability": 0.5327 + }, + { + "start": 25047.92, + "end": 25050.46, + "probability": 0.623 + }, + { + "start": 25050.7, + "end": 25053.88, + "probability": 0.9489 + }, + { + "start": 25054.1, + "end": 25054.4, + "probability": 0.9362 + }, + { + "start": 25055.28, + "end": 25055.72, + "probability": 0.1281 + } + ], + "segments_count": 8414, + "words_count": 41341, + "avg_words_per_segment": 4.9134, + "avg_segment_duration": 2.086, + "avg_words_per_minute": 98.4396, + "plenum_id": "60618", + "duration": 25197.78, + "title": null, + "plenum_date": "2017-01-16" +} \ No newline at end of file