diff --git "a/114259/metadata.json" "b/114259/metadata.json" new file mode 100644--- /dev/null +++ "b/114259/metadata.json" @@ -0,0 +1,53722 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "114259", + "quality_score": 0.8428, + "per_segment_quality_scores": [ + { + "start": 93.88, + "end": 96.56, + "probability": 0.1065 + }, + { + "start": 96.66, + "end": 96.78, + "probability": 0.171 + }, + { + "start": 103.2, + "end": 104.02, + "probability": 0.0796 + }, + { + "start": 105.0, + "end": 106.32, + "probability": 0.0 + }, + { + "start": 108.59, + "end": 113.25, + "probability": 0.0409 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.4, + "end": 131.64, + "probability": 0.1508 + }, + { + "start": 131.64, + "end": 132.7, + "probability": 0.1746 + }, + { + "start": 132.7, + "end": 137.78, + "probability": 0.9899 + }, + { + "start": 138.78, + "end": 139.48, + "probability": 0.2966 + }, + { + "start": 140.96, + "end": 144.56, + "probability": 0.9666 + }, + { + "start": 144.56, + "end": 146.98, + "probability": 0.9949 + }, + { + "start": 147.64, + "end": 150.73, + "probability": 0.5887 + }, + { + "start": 152.22, + "end": 153.76, + "probability": 0.9099 + }, + { + "start": 154.87, + "end": 159.42, + "probability": 0.8542 + }, + { + "start": 160.04, + "end": 160.14, + "probability": 0.9854 + }, + { + "start": 160.66, + "end": 162.1, + "probability": 0.9795 + }, + { + "start": 162.7, + "end": 164.02, + "probability": 0.9865 + }, + { + "start": 165.3, + "end": 165.5, + "probability": 0.6883 + }, + { + "start": 166.22, + "end": 167.52, + "probability": 0.9484 + }, + { + "start": 168.12, + "end": 170.88, + "probability": 0.9987 + }, + { + "start": 170.94, + "end": 175.08, + "probability": 0.9735 + }, + { + "start": 175.92, + "end": 180.3, + "probability": 0.9888 + }, + { + "start": 180.3, + "end": 185.78, + "probability": 0.9888 + }, + { + "start": 186.34, + "end": 191.34, + "probability": 0.9944 + }, + { + "start": 191.92, + "end": 193.4, + "probability": 0.9313 + }, + { + "start": 193.88, + "end": 196.6, + "probability": 0.9902 + }, + { + "start": 197.06, + "end": 202.08, + "probability": 0.9945 + }, + { + "start": 202.6, + "end": 206.34, + "probability": 0.9905 + }, + { + "start": 207.56, + "end": 209.84, + "probability": 0.7497 + }, + { + "start": 210.22, + "end": 210.22, + "probability": 0.3401 + }, + { + "start": 210.22, + "end": 210.8, + "probability": 0.7088 + }, + { + "start": 210.98, + "end": 211.3, + "probability": 0.7848 + }, + { + "start": 211.38, + "end": 212.26, + "probability": 0.8276 + }, + { + "start": 212.38, + "end": 215.54, + "probability": 0.9259 + }, + { + "start": 216.32, + "end": 221.2, + "probability": 0.9849 + }, + { + "start": 221.92, + "end": 225.92, + "probability": 0.9445 + }, + { + "start": 226.74, + "end": 229.28, + "probability": 0.8835 + }, + { + "start": 230.12, + "end": 233.72, + "probability": 0.9547 + }, + { + "start": 233.84, + "end": 236.06, + "probability": 0.8349 + }, + { + "start": 237.06, + "end": 238.38, + "probability": 0.9856 + }, + { + "start": 238.76, + "end": 242.6, + "probability": 0.9854 + }, + { + "start": 243.1, + "end": 244.98, + "probability": 0.9907 + }, + { + "start": 245.66, + "end": 247.0, + "probability": 0.9395 + }, + { + "start": 247.1, + "end": 248.16, + "probability": 0.9685 + }, + { + "start": 249.12, + "end": 251.04, + "probability": 0.9082 + }, + { + "start": 251.68, + "end": 252.52, + "probability": 0.9977 + }, + { + "start": 253.2, + "end": 253.8, + "probability": 0.7237 + }, + { + "start": 253.96, + "end": 256.06, + "probability": 0.9866 + }, + { + "start": 256.58, + "end": 261.56, + "probability": 0.9486 + }, + { + "start": 262.14, + "end": 265.86, + "probability": 0.9901 + }, + { + "start": 266.3, + "end": 267.86, + "probability": 0.6554 + }, + { + "start": 267.94, + "end": 270.64, + "probability": 0.563 + }, + { + "start": 271.1, + "end": 272.98, + "probability": 0.9713 + }, + { + "start": 273.26, + "end": 273.38, + "probability": 0.7383 + }, + { + "start": 273.9, + "end": 277.94, + "probability": 0.9923 + }, + { + "start": 278.48, + "end": 280.18, + "probability": 0.9544 + }, + { + "start": 280.18, + "end": 283.06, + "probability": 0.999 + }, + { + "start": 283.42, + "end": 285.82, + "probability": 0.9976 + }, + { + "start": 285.88, + "end": 286.64, + "probability": 0.6788 + }, + { + "start": 286.8, + "end": 289.06, + "probability": 0.9979 + }, + { + "start": 289.92, + "end": 292.34, + "probability": 0.9468 + }, + { + "start": 292.5, + "end": 295.32, + "probability": 0.6537 + }, + { + "start": 295.58, + "end": 297.12, + "probability": 0.9976 + }, + { + "start": 297.64, + "end": 298.34, + "probability": 0.6787 + }, + { + "start": 299.14, + "end": 302.84, + "probability": 0.9967 + }, + { + "start": 303.46, + "end": 307.78, + "probability": 0.9751 + }, + { + "start": 307.78, + "end": 309.02, + "probability": 0.8957 + }, + { + "start": 309.56, + "end": 311.86, + "probability": 0.8928 + }, + { + "start": 312.5, + "end": 314.14, + "probability": 0.9805 + }, + { + "start": 314.8, + "end": 315.38, + "probability": 0.9175 + }, + { + "start": 316.6, + "end": 320.92, + "probability": 0.9944 + }, + { + "start": 320.98, + "end": 321.22, + "probability": 0.8336 + }, + { + "start": 321.68, + "end": 322.89, + "probability": 0.9799 + }, + { + "start": 324.0, + "end": 325.66, + "probability": 0.9976 + }, + { + "start": 326.22, + "end": 328.36, + "probability": 0.9909 + }, + { + "start": 329.04, + "end": 332.84, + "probability": 0.9837 + }, + { + "start": 333.4, + "end": 335.2, + "probability": 0.5656 + }, + { + "start": 336.18, + "end": 337.7, + "probability": 0.7757 + }, + { + "start": 338.64, + "end": 342.06, + "probability": 0.8058 + }, + { + "start": 342.6, + "end": 342.96, + "probability": 0.487 + }, + { + "start": 342.98, + "end": 346.4, + "probability": 0.9391 + }, + { + "start": 347.22, + "end": 348.84, + "probability": 0.6435 + }, + { + "start": 349.4, + "end": 351.9, + "probability": 0.7915 + }, + { + "start": 352.02, + "end": 354.32, + "probability": 0.9523 + }, + { + "start": 354.84, + "end": 356.2, + "probability": 0.9956 + }, + { + "start": 356.64, + "end": 358.02, + "probability": 0.995 + }, + { + "start": 358.12, + "end": 360.98, + "probability": 0.9652 + }, + { + "start": 361.36, + "end": 363.28, + "probability": 0.9938 + }, + { + "start": 363.62, + "end": 364.92, + "probability": 0.894 + }, + { + "start": 365.28, + "end": 367.64, + "probability": 0.9768 + }, + { + "start": 368.02, + "end": 373.05, + "probability": 0.9854 + }, + { + "start": 373.1, + "end": 376.96, + "probability": 0.9966 + }, + { + "start": 377.2, + "end": 380.7, + "probability": 0.984 + }, + { + "start": 381.42, + "end": 382.12, + "probability": 0.812 + }, + { + "start": 382.34, + "end": 386.18, + "probability": 0.9817 + }, + { + "start": 386.72, + "end": 387.8, + "probability": 0.9214 + }, + { + "start": 388.24, + "end": 392.76, + "probability": 0.9889 + }, + { + "start": 393.34, + "end": 394.28, + "probability": 0.931 + }, + { + "start": 394.36, + "end": 395.48, + "probability": 0.9995 + }, + { + "start": 395.86, + "end": 398.12, + "probability": 0.9086 + }, + { + "start": 398.74, + "end": 400.9, + "probability": 0.9893 + }, + { + "start": 401.0, + "end": 401.16, + "probability": 0.7262 + }, + { + "start": 402.53, + "end": 404.22, + "probability": 0.9626 + }, + { + "start": 404.76, + "end": 408.14, + "probability": 0.9955 + }, + { + "start": 408.48, + "end": 409.96, + "probability": 0.9917 + }, + { + "start": 410.06, + "end": 412.78, + "probability": 0.9791 + }, + { + "start": 413.59, + "end": 414.77, + "probability": 0.4851 + }, + { + "start": 415.1, + "end": 417.28, + "probability": 0.9672 + }, + { + "start": 418.26, + "end": 419.98, + "probability": 0.984 + }, + { + "start": 420.02, + "end": 421.62, + "probability": 0.9576 + }, + { + "start": 421.7, + "end": 423.84, + "probability": 0.9756 + }, + { + "start": 423.84, + "end": 427.34, + "probability": 0.5385 + }, + { + "start": 428.2, + "end": 430.06, + "probability": 0.8867 + }, + { + "start": 430.48, + "end": 433.14, + "probability": 0.7605 + }, + { + "start": 434.28, + "end": 437.0, + "probability": 0.9954 + }, + { + "start": 437.34, + "end": 438.94, + "probability": 0.8086 + }, + { + "start": 439.46, + "end": 440.8, + "probability": 0.9165 + }, + { + "start": 441.24, + "end": 444.3, + "probability": 0.9712 + }, + { + "start": 444.88, + "end": 447.64, + "probability": 0.9952 + }, + { + "start": 448.1, + "end": 450.8, + "probability": 0.9629 + }, + { + "start": 451.28, + "end": 454.5, + "probability": 0.9698 + }, + { + "start": 455.04, + "end": 458.44, + "probability": 0.958 + }, + { + "start": 458.8, + "end": 459.44, + "probability": 0.6936 + }, + { + "start": 459.55, + "end": 460.04, + "probability": 0.8428 + }, + { + "start": 460.16, + "end": 460.76, + "probability": 0.5791 + }, + { + "start": 461.06, + "end": 463.28, + "probability": 0.8939 + }, + { + "start": 463.4, + "end": 464.74, + "probability": 0.8173 + }, + { + "start": 464.84, + "end": 467.44, + "probability": 0.8978 + }, + { + "start": 467.52, + "end": 470.48, + "probability": 0.9443 + }, + { + "start": 472.28, + "end": 476.96, + "probability": 0.9939 + }, + { + "start": 477.68, + "end": 478.88, + "probability": 0.8522 + }, + { + "start": 479.72, + "end": 483.84, + "probability": 0.9954 + }, + { + "start": 484.66, + "end": 485.6, + "probability": 0.9351 + }, + { + "start": 486.5, + "end": 487.22, + "probability": 0.7536 + }, + { + "start": 512.74, + "end": 513.66, + "probability": 0.9722 + }, + { + "start": 514.92, + "end": 515.18, + "probability": 0.9598 + }, + { + "start": 516.28, + "end": 516.62, + "probability": 0.816 + }, + { + "start": 527.86, + "end": 528.78, + "probability": 0.8823 + }, + { + "start": 529.32, + "end": 530.24, + "probability": 0.5778 + }, + { + "start": 530.34, + "end": 532.32, + "probability": 0.3528 + }, + { + "start": 534.2, + "end": 535.52, + "probability": 0.8328 + }, + { + "start": 536.28, + "end": 538.06, + "probability": 0.9269 + }, + { + "start": 538.82, + "end": 540.56, + "probability": 0.9864 + }, + { + "start": 541.8, + "end": 543.24, + "probability": 0.9111 + }, + { + "start": 544.94, + "end": 547.84, + "probability": 0.6907 + }, + { + "start": 549.5, + "end": 550.44, + "probability": 0.8588 + }, + { + "start": 550.54, + "end": 551.38, + "probability": 0.6611 + }, + { + "start": 551.52, + "end": 553.76, + "probability": 0.6213 + }, + { + "start": 554.66, + "end": 555.56, + "probability": 0.76 + }, + { + "start": 556.7, + "end": 561.38, + "probability": 0.9902 + }, + { + "start": 561.52, + "end": 563.48, + "probability": 0.8711 + }, + { + "start": 563.62, + "end": 566.96, + "probability": 0.6097 + }, + { + "start": 567.12, + "end": 568.0, + "probability": 0.9904 + }, + { + "start": 569.02, + "end": 572.26, + "probability": 0.9688 + }, + { + "start": 581.02, + "end": 581.84, + "probability": 0.7268 + }, + { + "start": 586.94, + "end": 588.84, + "probability": 0.9841 + }, + { + "start": 594.2, + "end": 597.1, + "probability": 0.6873 + }, + { + "start": 597.18, + "end": 600.46, + "probability": 0.9858 + }, + { + "start": 602.4, + "end": 603.54, + "probability": 0.8272 + }, + { + "start": 603.64, + "end": 606.48, + "probability": 0.9844 + }, + { + "start": 607.92, + "end": 608.02, + "probability": 0.7066 + }, + { + "start": 609.68, + "end": 612.3, + "probability": 0.9673 + }, + { + "start": 614.1, + "end": 614.36, + "probability": 0.2603 + }, + { + "start": 614.48, + "end": 615.24, + "probability": 0.8632 + }, + { + "start": 615.3, + "end": 615.72, + "probability": 0.8173 + }, + { + "start": 615.8, + "end": 617.61, + "probability": 0.9458 + }, + { + "start": 619.34, + "end": 621.7, + "probability": 0.8766 + }, + { + "start": 626.76, + "end": 627.9, + "probability": 0.8809 + }, + { + "start": 628.94, + "end": 633.14, + "probability": 0.9927 + }, + { + "start": 634.28, + "end": 636.74, + "probability": 0.8469 + }, + { + "start": 640.52, + "end": 644.5, + "probability": 0.9603 + }, + { + "start": 645.5, + "end": 647.62, + "probability": 0.8532 + }, + { + "start": 648.72, + "end": 649.8, + "probability": 0.9067 + }, + { + "start": 651.18, + "end": 653.68, + "probability": 0.9954 + }, + { + "start": 655.3, + "end": 658.46, + "probability": 0.9425 + }, + { + "start": 659.7, + "end": 662.54, + "probability": 0.9803 + }, + { + "start": 663.12, + "end": 665.04, + "probability": 0.6617 + }, + { + "start": 666.56, + "end": 667.6, + "probability": 0.9854 + }, + { + "start": 668.62, + "end": 672.1, + "probability": 0.9818 + }, + { + "start": 673.88, + "end": 676.6, + "probability": 0.8566 + }, + { + "start": 678.08, + "end": 680.66, + "probability": 0.8971 + }, + { + "start": 681.78, + "end": 686.38, + "probability": 0.9861 + }, + { + "start": 687.74, + "end": 689.4, + "probability": 0.9843 + }, + { + "start": 690.38, + "end": 692.54, + "probability": 0.9937 + }, + { + "start": 693.58, + "end": 694.28, + "probability": 0.6776 + }, + { + "start": 695.5, + "end": 697.12, + "probability": 0.7556 + }, + { + "start": 698.84, + "end": 702.92, + "probability": 0.908 + }, + { + "start": 703.66, + "end": 706.58, + "probability": 0.9216 + }, + { + "start": 709.22, + "end": 710.46, + "probability": 0.8131 + }, + { + "start": 711.86, + "end": 712.82, + "probability": 0.9039 + }, + { + "start": 713.62, + "end": 716.58, + "probability": 0.9983 + }, + { + "start": 717.8, + "end": 718.6, + "probability": 0.9103 + }, + { + "start": 719.64, + "end": 720.52, + "probability": 0.9402 + }, + { + "start": 721.46, + "end": 722.28, + "probability": 0.9822 + }, + { + "start": 723.44, + "end": 727.14, + "probability": 0.9319 + }, + { + "start": 728.46, + "end": 730.24, + "probability": 0.7388 + }, + { + "start": 731.12, + "end": 733.5, + "probability": 0.9351 + }, + { + "start": 734.36, + "end": 737.76, + "probability": 0.9021 + }, + { + "start": 738.94, + "end": 741.14, + "probability": 0.9912 + }, + { + "start": 742.9, + "end": 744.74, + "probability": 0.9762 + }, + { + "start": 745.44, + "end": 746.22, + "probability": 0.9795 + }, + { + "start": 747.34, + "end": 748.92, + "probability": 0.9976 + }, + { + "start": 749.94, + "end": 754.72, + "probability": 0.9919 + }, + { + "start": 756.1, + "end": 756.94, + "probability": 0.8566 + }, + { + "start": 757.92, + "end": 760.3, + "probability": 0.9961 + }, + { + "start": 762.28, + "end": 764.72, + "probability": 0.9957 + }, + { + "start": 765.62, + "end": 767.46, + "probability": 0.9327 + }, + { + "start": 768.04, + "end": 769.16, + "probability": 0.9788 + }, + { + "start": 769.8, + "end": 771.94, + "probability": 0.9945 + }, + { + "start": 773.22, + "end": 773.74, + "probability": 0.5193 + }, + { + "start": 774.52, + "end": 776.62, + "probability": 0.9788 + }, + { + "start": 777.9, + "end": 780.3, + "probability": 0.9894 + }, + { + "start": 781.92, + "end": 787.88, + "probability": 0.9961 + }, + { + "start": 788.12, + "end": 789.8, + "probability": 0.9664 + }, + { + "start": 792.24, + "end": 796.92, + "probability": 0.9614 + }, + { + "start": 798.34, + "end": 803.74, + "probability": 0.9871 + }, + { + "start": 803.74, + "end": 809.64, + "probability": 0.9533 + }, + { + "start": 811.06, + "end": 812.5, + "probability": 0.9985 + }, + { + "start": 813.3, + "end": 816.02, + "probability": 0.9966 + }, + { + "start": 818.02, + "end": 824.56, + "probability": 0.9965 + }, + { + "start": 825.2, + "end": 826.78, + "probability": 0.925 + }, + { + "start": 827.58, + "end": 832.18, + "probability": 0.9906 + }, + { + "start": 833.42, + "end": 834.22, + "probability": 0.8981 + }, + { + "start": 835.12, + "end": 837.88, + "probability": 0.9311 + }, + { + "start": 838.92, + "end": 840.16, + "probability": 0.971 + }, + { + "start": 840.9, + "end": 842.08, + "probability": 0.9718 + }, + { + "start": 843.36, + "end": 847.4, + "probability": 0.8952 + }, + { + "start": 849.18, + "end": 853.48, + "probability": 0.9968 + }, + { + "start": 853.48, + "end": 858.02, + "probability": 0.9875 + }, + { + "start": 858.96, + "end": 862.14, + "probability": 0.5787 + }, + { + "start": 863.7, + "end": 864.84, + "probability": 0.7762 + }, + { + "start": 865.5, + "end": 868.0, + "probability": 0.9848 + }, + { + "start": 870.02, + "end": 870.96, + "probability": 0.6761 + }, + { + "start": 871.08, + "end": 872.04, + "probability": 0.7662 + }, + { + "start": 872.18, + "end": 873.8, + "probability": 0.82 + }, + { + "start": 873.92, + "end": 875.72, + "probability": 0.6376 + }, + { + "start": 876.82, + "end": 880.26, + "probability": 0.9972 + }, + { + "start": 880.96, + "end": 884.56, + "probability": 0.9877 + }, + { + "start": 885.5, + "end": 887.34, + "probability": 0.9978 + }, + { + "start": 888.12, + "end": 894.76, + "probability": 0.9968 + }, + { + "start": 895.4, + "end": 901.6, + "probability": 0.998 + }, + { + "start": 902.82, + "end": 903.36, + "probability": 0.8447 + }, + { + "start": 903.98, + "end": 905.9, + "probability": 0.9824 + }, + { + "start": 906.84, + "end": 909.1, + "probability": 0.9941 + }, + { + "start": 911.86, + "end": 912.5, + "probability": 0.7017 + }, + { + "start": 913.68, + "end": 914.36, + "probability": 0.8139 + }, + { + "start": 915.04, + "end": 916.3, + "probability": 0.9925 + }, + { + "start": 917.32, + "end": 919.28, + "probability": 0.9982 + }, + { + "start": 920.42, + "end": 921.68, + "probability": 0.9868 + }, + { + "start": 922.52, + "end": 923.46, + "probability": 0.9929 + }, + { + "start": 925.88, + "end": 927.88, + "probability": 0.9883 + }, + { + "start": 927.96, + "end": 929.48, + "probability": 0.9846 + }, + { + "start": 930.48, + "end": 934.78, + "probability": 0.99 + }, + { + "start": 936.3, + "end": 938.4, + "probability": 0.9966 + }, + { + "start": 939.34, + "end": 942.8, + "probability": 0.9753 + }, + { + "start": 943.42, + "end": 945.98, + "probability": 0.9967 + }, + { + "start": 947.02, + "end": 947.36, + "probability": 0.9846 + }, + { + "start": 948.56, + "end": 949.0, + "probability": 0.9735 + }, + { + "start": 950.92, + "end": 951.72, + "probability": 0.9786 + }, + { + "start": 955.7, + "end": 959.34, + "probability": 0.9777 + }, + { + "start": 961.98, + "end": 968.26, + "probability": 0.9961 + }, + { + "start": 969.08, + "end": 972.82, + "probability": 0.9971 + }, + { + "start": 974.16, + "end": 974.72, + "probability": 0.736 + }, + { + "start": 976.3, + "end": 976.92, + "probability": 0.5586 + }, + { + "start": 980.22, + "end": 981.14, + "probability": 0.1734 + }, + { + "start": 981.14, + "end": 985.97, + "probability": 0.997 + }, + { + "start": 986.92, + "end": 987.42, + "probability": 0.9619 + }, + { + "start": 988.28, + "end": 989.94, + "probability": 0.9966 + }, + { + "start": 991.52, + "end": 992.0, + "probability": 0.8572 + }, + { + "start": 992.08, + "end": 992.9, + "probability": 0.713 + }, + { + "start": 993.0, + "end": 996.46, + "probability": 0.9451 + }, + { + "start": 997.72, + "end": 1002.46, + "probability": 0.9987 + }, + { + "start": 1003.2, + "end": 1004.5, + "probability": 0.8718 + }, + { + "start": 1005.7, + "end": 1006.76, + "probability": 0.6971 + }, + { + "start": 1007.8, + "end": 1009.12, + "probability": 0.8085 + }, + { + "start": 1009.78, + "end": 1014.88, + "probability": 0.9801 + }, + { + "start": 1015.62, + "end": 1016.27, + "probability": 0.8955 + }, + { + "start": 1017.42, + "end": 1020.8, + "probability": 0.9895 + }, + { + "start": 1021.38, + "end": 1022.2, + "probability": 0.9956 + }, + { + "start": 1023.1, + "end": 1025.58, + "probability": 0.8782 + }, + { + "start": 1026.36, + "end": 1028.62, + "probability": 0.7656 + }, + { + "start": 1029.46, + "end": 1031.88, + "probability": 0.9945 + }, + { + "start": 1032.64, + "end": 1033.4, + "probability": 0.8765 + }, + { + "start": 1034.12, + "end": 1034.86, + "probability": 0.9687 + }, + { + "start": 1036.06, + "end": 1036.28, + "probability": 0.7472 + }, + { + "start": 1036.82, + "end": 1037.22, + "probability": 0.9118 + }, + { + "start": 1039.02, + "end": 1041.06, + "probability": 0.989 + }, + { + "start": 1041.06, + "end": 1044.38, + "probability": 0.9976 + }, + { + "start": 1045.18, + "end": 1049.22, + "probability": 0.9901 + }, + { + "start": 1050.22, + "end": 1052.72, + "probability": 0.6517 + }, + { + "start": 1053.58, + "end": 1057.06, + "probability": 0.9631 + }, + { + "start": 1057.06, + "end": 1061.32, + "probability": 0.9957 + }, + { + "start": 1061.96, + "end": 1066.3, + "probability": 0.9847 + }, + { + "start": 1066.98, + "end": 1073.9, + "probability": 0.974 + }, + { + "start": 1074.72, + "end": 1075.74, + "probability": 0.9944 + }, + { + "start": 1076.54, + "end": 1077.46, + "probability": 0.8745 + }, + { + "start": 1078.22, + "end": 1080.46, + "probability": 0.9875 + }, + { + "start": 1082.66, + "end": 1083.78, + "probability": 0.9151 + }, + { + "start": 1084.76, + "end": 1085.7, + "probability": 0.9154 + }, + { + "start": 1086.5, + "end": 1089.66, + "probability": 0.9225 + }, + { + "start": 1090.4, + "end": 1093.76, + "probability": 0.949 + }, + { + "start": 1094.7, + "end": 1096.96, + "probability": 0.9834 + }, + { + "start": 1098.22, + "end": 1100.36, + "probability": 0.8729 + }, + { + "start": 1101.04, + "end": 1101.88, + "probability": 0.9842 + }, + { + "start": 1103.04, + "end": 1103.54, + "probability": 0.9192 + }, + { + "start": 1104.6, + "end": 1105.62, + "probability": 0.8782 + }, + { + "start": 1109.2, + "end": 1110.0, + "probability": 0.6448 + }, + { + "start": 1111.4, + "end": 1112.94, + "probability": 0.8965 + }, + { + "start": 1113.54, + "end": 1114.54, + "probability": 0.8456 + }, + { + "start": 1115.74, + "end": 1116.64, + "probability": 0.9839 + }, + { + "start": 1117.48, + "end": 1118.9, + "probability": 0.9691 + }, + { + "start": 1120.54, + "end": 1121.8, + "probability": 0.948 + }, + { + "start": 1122.8, + "end": 1123.9, + "probability": 0.8726 + }, + { + "start": 1126.1, + "end": 1128.96, + "probability": 0.9858 + }, + { + "start": 1129.88, + "end": 1131.56, + "probability": 0.991 + }, + { + "start": 1132.52, + "end": 1137.92, + "probability": 0.9976 + }, + { + "start": 1138.78, + "end": 1139.46, + "probability": 0.564 + }, + { + "start": 1140.06, + "end": 1142.18, + "probability": 0.8248 + }, + { + "start": 1142.9, + "end": 1147.98, + "probability": 0.99 + }, + { + "start": 1150.12, + "end": 1151.22, + "probability": 0.8394 + }, + { + "start": 1151.66, + "end": 1157.32, + "probability": 0.9829 + }, + { + "start": 1158.64, + "end": 1160.56, + "probability": 0.8876 + }, + { + "start": 1161.16, + "end": 1164.0, + "probability": 0.9866 + }, + { + "start": 1165.2, + "end": 1168.18, + "probability": 0.9978 + }, + { + "start": 1168.84, + "end": 1171.16, + "probability": 0.7914 + }, + { + "start": 1171.94, + "end": 1172.96, + "probability": 0.8644 + }, + { + "start": 1173.5, + "end": 1177.78, + "probability": 0.9964 + }, + { + "start": 1178.64, + "end": 1182.58, + "probability": 0.9878 + }, + { + "start": 1183.06, + "end": 1183.7, + "probability": 0.532 + }, + { + "start": 1183.76, + "end": 1184.34, + "probability": 0.8789 + }, + { + "start": 1185.48, + "end": 1190.54, + "probability": 0.9976 + }, + { + "start": 1191.04, + "end": 1191.62, + "probability": 0.9724 + }, + { + "start": 1191.74, + "end": 1195.47, + "probability": 0.9924 + }, + { + "start": 1196.5, + "end": 1199.9, + "probability": 0.9945 + }, + { + "start": 1200.58, + "end": 1205.04, + "probability": 0.9934 + }, + { + "start": 1205.8, + "end": 1206.24, + "probability": 0.8467 + }, + { + "start": 1207.06, + "end": 1210.66, + "probability": 0.9628 + }, + { + "start": 1212.04, + "end": 1214.38, + "probability": 0.9479 + }, + { + "start": 1214.4, + "end": 1218.5, + "probability": 0.9232 + }, + { + "start": 1218.62, + "end": 1220.16, + "probability": 0.9496 + }, + { + "start": 1221.06, + "end": 1223.06, + "probability": 0.9378 + }, + { + "start": 1223.64, + "end": 1225.94, + "probability": 0.9924 + }, + { + "start": 1226.82, + "end": 1230.06, + "probability": 0.9705 + }, + { + "start": 1231.32, + "end": 1234.68, + "probability": 0.9901 + }, + { + "start": 1235.6, + "end": 1237.84, + "probability": 0.9954 + }, + { + "start": 1238.54, + "end": 1239.22, + "probability": 0.9906 + }, + { + "start": 1241.2, + "end": 1242.29, + "probability": 0.7459 + }, + { + "start": 1243.08, + "end": 1243.76, + "probability": 0.818 + }, + { + "start": 1244.7, + "end": 1245.5, + "probability": 0.9712 + }, + { + "start": 1246.14, + "end": 1247.7, + "probability": 0.9885 + }, + { + "start": 1248.22, + "end": 1249.88, + "probability": 0.9993 + }, + { + "start": 1250.48, + "end": 1251.52, + "probability": 0.9792 + }, + { + "start": 1252.04, + "end": 1258.34, + "probability": 0.95 + }, + { + "start": 1260.12, + "end": 1261.66, + "probability": 0.7583 + }, + { + "start": 1263.2, + "end": 1264.1, + "probability": 0.7629 + }, + { + "start": 1265.08, + "end": 1267.2, + "probability": 0.9818 + }, + { + "start": 1268.12, + "end": 1270.68, + "probability": 0.9933 + }, + { + "start": 1271.28, + "end": 1273.66, + "probability": 0.9967 + }, + { + "start": 1274.94, + "end": 1276.4, + "probability": 0.998 + }, + { + "start": 1277.46, + "end": 1279.12, + "probability": 0.9209 + }, + { + "start": 1280.14, + "end": 1282.52, + "probability": 0.9769 + }, + { + "start": 1283.04, + "end": 1287.12, + "probability": 0.9894 + }, + { + "start": 1288.16, + "end": 1288.86, + "probability": 0.9847 + }, + { + "start": 1289.66, + "end": 1292.62, + "probability": 0.9593 + }, + { + "start": 1294.2, + "end": 1297.0, + "probability": 0.9909 + }, + { + "start": 1297.22, + "end": 1299.54, + "probability": 0.979 + }, + { + "start": 1300.2, + "end": 1303.38, + "probability": 0.9035 + }, + { + "start": 1304.38, + "end": 1307.14, + "probability": 0.9945 + }, + { + "start": 1307.98, + "end": 1311.76, + "probability": 0.7119 + }, + { + "start": 1313.92, + "end": 1314.44, + "probability": 0.6979 + }, + { + "start": 1316.36, + "end": 1317.94, + "probability": 0.9797 + }, + { + "start": 1320.62, + "end": 1320.7, + "probability": 0.5056 + }, + { + "start": 1320.74, + "end": 1322.08, + "probability": 0.7742 + }, + { + "start": 1322.14, + "end": 1324.14, + "probability": 0.9814 + }, + { + "start": 1325.04, + "end": 1327.24, + "probability": 0.985 + }, + { + "start": 1327.96, + "end": 1330.36, + "probability": 0.9843 + }, + { + "start": 1331.48, + "end": 1331.96, + "probability": 0.4726 + }, + { + "start": 1333.04, + "end": 1338.36, + "probability": 0.9777 + }, + { + "start": 1339.06, + "end": 1339.7, + "probability": 0.9231 + }, + { + "start": 1340.4, + "end": 1341.6, + "probability": 0.8809 + }, + { + "start": 1342.18, + "end": 1344.54, + "probability": 0.9751 + }, + { + "start": 1344.98, + "end": 1345.94, + "probability": 0.9895 + }, + { + "start": 1346.44, + "end": 1350.1, + "probability": 0.9433 + }, + { + "start": 1350.8, + "end": 1351.32, + "probability": 0.8841 + }, + { + "start": 1352.0, + "end": 1353.18, + "probability": 0.8652 + }, + { + "start": 1353.76, + "end": 1354.34, + "probability": 0.9694 + }, + { + "start": 1354.94, + "end": 1356.06, + "probability": 0.9624 + }, + { + "start": 1357.08, + "end": 1360.04, + "probability": 0.9905 + }, + { + "start": 1360.62, + "end": 1361.9, + "probability": 0.9475 + }, + { + "start": 1362.86, + "end": 1364.28, + "probability": 0.9353 + }, + { + "start": 1365.04, + "end": 1369.52, + "probability": 0.9297 + }, + { + "start": 1369.52, + "end": 1372.58, + "probability": 0.9774 + }, + { + "start": 1374.06, + "end": 1376.4, + "probability": 0.622 + }, + { + "start": 1376.4, + "end": 1379.78, + "probability": 0.9795 + }, + { + "start": 1381.28, + "end": 1384.22, + "probability": 0.8666 + }, + { + "start": 1384.78, + "end": 1385.74, + "probability": 0.6995 + }, + { + "start": 1386.8, + "end": 1388.6, + "probability": 0.9946 + }, + { + "start": 1389.62, + "end": 1390.32, + "probability": 0.9367 + }, + { + "start": 1391.1, + "end": 1391.84, + "probability": 0.9795 + }, + { + "start": 1393.04, + "end": 1393.88, + "probability": 0.9355 + }, + { + "start": 1394.46, + "end": 1394.56, + "probability": 0.7637 + }, + { + "start": 1395.76, + "end": 1396.54, + "probability": 0.6147 + }, + { + "start": 1397.58, + "end": 1399.42, + "probability": 0.9302 + }, + { + "start": 1400.1, + "end": 1401.68, + "probability": 0.8352 + }, + { + "start": 1402.08, + "end": 1402.26, + "probability": 0.7296 + }, + { + "start": 1404.9, + "end": 1406.46, + "probability": 0.9903 + }, + { + "start": 1406.54, + "end": 1407.18, + "probability": 0.9257 + }, + { + "start": 1407.24, + "end": 1407.9, + "probability": 0.9215 + }, + { + "start": 1408.36, + "end": 1411.26, + "probability": 0.9897 + }, + { + "start": 1411.42, + "end": 1412.64, + "probability": 0.8946 + }, + { + "start": 1413.86, + "end": 1416.15, + "probability": 0.988 + }, + { + "start": 1417.04, + "end": 1418.32, + "probability": 0.8164 + }, + { + "start": 1421.06, + "end": 1424.38, + "probability": 0.7679 + }, + { + "start": 1425.4, + "end": 1427.26, + "probability": 0.7703 + }, + { + "start": 1427.78, + "end": 1428.26, + "probability": 0.5279 + }, + { + "start": 1428.3, + "end": 1429.08, + "probability": 0.485 + }, + { + "start": 1443.56, + "end": 1444.12, + "probability": 0.6663 + }, + { + "start": 1444.8, + "end": 1447.08, + "probability": 0.7769 + }, + { + "start": 1448.34, + "end": 1453.24, + "probability": 0.9797 + }, + { + "start": 1454.04, + "end": 1455.96, + "probability": 0.9266 + }, + { + "start": 1457.56, + "end": 1459.38, + "probability": 0.8498 + }, + { + "start": 1460.92, + "end": 1461.92, + "probability": 0.9507 + }, + { + "start": 1462.52, + "end": 1463.54, + "probability": 0.9507 + }, + { + "start": 1464.26, + "end": 1464.86, + "probability": 0.8279 + }, + { + "start": 1465.48, + "end": 1466.84, + "probability": 0.8442 + }, + { + "start": 1467.86, + "end": 1469.38, + "probability": 0.9896 + }, + { + "start": 1470.42, + "end": 1470.78, + "probability": 0.8744 + }, + { + "start": 1471.46, + "end": 1473.34, + "probability": 0.9879 + }, + { + "start": 1473.98, + "end": 1475.76, + "probability": 0.5184 + }, + { + "start": 1477.4, + "end": 1480.98, + "probability": 0.7857 + }, + { + "start": 1481.62, + "end": 1482.02, + "probability": 0.8394 + }, + { + "start": 1482.98, + "end": 1483.5, + "probability": 0.9702 + }, + { + "start": 1485.64, + "end": 1489.06, + "probability": 0.9847 + }, + { + "start": 1489.74, + "end": 1492.7, + "probability": 0.9609 + }, + { + "start": 1493.78, + "end": 1495.34, + "probability": 0.7412 + }, + { + "start": 1496.32, + "end": 1497.84, + "probability": 0.9769 + }, + { + "start": 1499.12, + "end": 1500.7, + "probability": 0.7771 + }, + { + "start": 1501.44, + "end": 1503.2, + "probability": 0.9994 + }, + { + "start": 1503.74, + "end": 1505.04, + "probability": 0.8748 + }, + { + "start": 1505.66, + "end": 1508.32, + "probability": 0.9985 + }, + { + "start": 1509.2, + "end": 1510.52, + "probability": 0.9868 + }, + { + "start": 1510.76, + "end": 1511.82, + "probability": 0.9465 + }, + { + "start": 1512.62, + "end": 1513.08, + "probability": 0.9784 + }, + { + "start": 1513.7, + "end": 1516.82, + "probability": 0.9895 + }, + { + "start": 1517.94, + "end": 1519.52, + "probability": 0.7597 + }, + { + "start": 1520.42, + "end": 1524.06, + "probability": 0.9927 + }, + { + "start": 1524.88, + "end": 1526.68, + "probability": 0.9983 + }, + { + "start": 1528.36, + "end": 1532.02, + "probability": 0.9962 + }, + { + "start": 1532.02, + "end": 1535.42, + "probability": 0.8811 + }, + { + "start": 1536.16, + "end": 1540.86, + "probability": 0.9985 + }, + { + "start": 1544.12, + "end": 1545.0, + "probability": 0.7684 + }, + { + "start": 1556.66, + "end": 1557.94, + "probability": 0.9407 + }, + { + "start": 1558.6, + "end": 1560.28, + "probability": 0.9188 + }, + { + "start": 1561.46, + "end": 1562.24, + "probability": 0.9773 + }, + { + "start": 1564.74, + "end": 1568.16, + "probability": 0.8829 + }, + { + "start": 1568.34, + "end": 1571.36, + "probability": 0.9878 + }, + { + "start": 1572.42, + "end": 1578.7, + "probability": 0.7945 + }, + { + "start": 1584.0, + "end": 1585.76, + "probability": 0.9176 + }, + { + "start": 1586.42, + "end": 1587.42, + "probability": 0.9071 + }, + { + "start": 1587.98, + "end": 1589.84, + "probability": 0.9793 + }, + { + "start": 1591.8, + "end": 1594.06, + "probability": 0.7952 + }, + { + "start": 1595.44, + "end": 1599.5, + "probability": 0.9879 + }, + { + "start": 1600.8, + "end": 1605.36, + "probability": 0.9873 + }, + { + "start": 1606.8, + "end": 1607.43, + "probability": 0.7572 + }, + { + "start": 1608.34, + "end": 1609.52, + "probability": 0.9167 + }, + { + "start": 1610.72, + "end": 1611.9, + "probability": 0.9758 + }, + { + "start": 1613.94, + "end": 1617.32, + "probability": 0.9805 + }, + { + "start": 1618.46, + "end": 1619.72, + "probability": 0.9827 + }, + { + "start": 1620.3, + "end": 1626.1, + "probability": 0.9932 + }, + { + "start": 1627.1, + "end": 1628.58, + "probability": 0.999 + }, + { + "start": 1629.84, + "end": 1631.46, + "probability": 0.9558 + }, + { + "start": 1633.46, + "end": 1638.04, + "probability": 0.964 + }, + { + "start": 1638.74, + "end": 1640.4, + "probability": 0.9462 + }, + { + "start": 1641.28, + "end": 1641.78, + "probability": 0.9575 + }, + { + "start": 1646.34, + "end": 1647.34, + "probability": 0.5304 + }, + { + "start": 1647.44, + "end": 1648.42, + "probability": 0.6077 + }, + { + "start": 1648.52, + "end": 1649.6, + "probability": 0.6932 + }, + { + "start": 1650.02, + "end": 1653.1, + "probability": 0.991 + }, + { + "start": 1653.96, + "end": 1658.44, + "probability": 0.9983 + }, + { + "start": 1659.1, + "end": 1662.98, + "probability": 0.9891 + }, + { + "start": 1664.96, + "end": 1665.72, + "probability": 0.8289 + }, + { + "start": 1666.92, + "end": 1672.48, + "probability": 0.9629 + }, + { + "start": 1673.68, + "end": 1674.0, + "probability": 0.8275 + }, + { + "start": 1674.56, + "end": 1675.86, + "probability": 0.9338 + }, + { + "start": 1676.9, + "end": 1680.5, + "probability": 0.9946 + }, + { + "start": 1680.5, + "end": 1685.02, + "probability": 0.9961 + }, + { + "start": 1687.34, + "end": 1688.0, + "probability": 0.929 + }, + { + "start": 1688.74, + "end": 1690.6, + "probability": 0.998 + }, + { + "start": 1691.28, + "end": 1692.8, + "probability": 0.9792 + }, + { + "start": 1694.36, + "end": 1695.78, + "probability": 0.9896 + }, + { + "start": 1696.76, + "end": 1697.32, + "probability": 0.7778 + }, + { + "start": 1698.7, + "end": 1701.56, + "probability": 0.9964 + }, + { + "start": 1702.62, + "end": 1704.4, + "probability": 0.932 + }, + { + "start": 1705.38, + "end": 1710.96, + "probability": 0.9869 + }, + { + "start": 1712.18, + "end": 1713.12, + "probability": 0.9841 + }, + { + "start": 1713.84, + "end": 1714.2, + "probability": 0.7925 + }, + { + "start": 1715.08, + "end": 1715.94, + "probability": 0.5863 + }, + { + "start": 1715.94, + "end": 1716.36, + "probability": 0.5386 + }, + { + "start": 1717.42, + "end": 1721.06, + "probability": 0.0082 + }, + { + "start": 1722.42, + "end": 1726.0, + "probability": 0.0237 + }, + { + "start": 1729.86, + "end": 1731.3, + "probability": 0.0206 + }, + { + "start": 1731.48, + "end": 1732.78, + "probability": 0.0306 + }, + { + "start": 1734.65, + "end": 1735.84, + "probability": 0.0489 + }, + { + "start": 1737.42, + "end": 1737.48, + "probability": 0.0084 + }, + { + "start": 1832.18, + "end": 1832.38, + "probability": 0.5307 + }, + { + "start": 1836.16, + "end": 1840.31, + "probability": 0.9917 + }, + { + "start": 1840.78, + "end": 1841.78, + "probability": 0.9634 + }, + { + "start": 1842.56, + "end": 1843.68, + "probability": 0.7321 + }, + { + "start": 1845.3, + "end": 1847.34, + "probability": 0.9399 + }, + { + "start": 1847.4, + "end": 1850.42, + "probability": 0.9705 + }, + { + "start": 1850.54, + "end": 1851.48, + "probability": 0.9564 + }, + { + "start": 1852.2, + "end": 1854.38, + "probability": 0.7371 + }, + { + "start": 1855.28, + "end": 1856.95, + "probability": 0.9365 + }, + { + "start": 1859.72, + "end": 1861.29, + "probability": 0.8595 + }, + { + "start": 1864.48, + "end": 1867.64, + "probability": 0.8439 + }, + { + "start": 1868.14, + "end": 1869.28, + "probability": 0.9448 + }, + { + "start": 1870.14, + "end": 1871.46, + "probability": 0.8557 + }, + { + "start": 1872.16, + "end": 1874.78, + "probability": 0.9233 + }, + { + "start": 1875.0, + "end": 1875.9, + "probability": 0.6648 + }, + { + "start": 1879.2, + "end": 1880.82, + "probability": 0.6786 + }, + { + "start": 1881.78, + "end": 1882.56, + "probability": 0.8342 + }, + { + "start": 1883.78, + "end": 1888.22, + "probability": 0.9919 + }, + { + "start": 1889.28, + "end": 1890.69, + "probability": 0.9042 + }, + { + "start": 1894.7, + "end": 1895.96, + "probability": 0.5939 + }, + { + "start": 1896.6, + "end": 1899.14, + "probability": 0.8915 + }, + { + "start": 1900.14, + "end": 1902.06, + "probability": 0.8986 + }, + { + "start": 1903.26, + "end": 1907.34, + "probability": 0.8752 + }, + { + "start": 1908.52, + "end": 1909.22, + "probability": 0.9517 + }, + { + "start": 1910.4, + "end": 1911.72, + "probability": 0.8721 + }, + { + "start": 1912.76, + "end": 1913.88, + "probability": 0.9529 + }, + { + "start": 1914.56, + "end": 1914.82, + "probability": 0.515 + }, + { + "start": 1916.44, + "end": 1918.08, + "probability": 0.8008 + }, + { + "start": 1918.98, + "end": 1920.08, + "probability": 0.9443 + }, + { + "start": 1920.96, + "end": 1924.8, + "probability": 0.7554 + }, + { + "start": 1925.56, + "end": 1926.41, + "probability": 0.9604 + }, + { + "start": 1927.34, + "end": 1929.02, + "probability": 0.9938 + }, + { + "start": 1930.06, + "end": 1930.66, + "probability": 0.9537 + }, + { + "start": 1931.84, + "end": 1934.92, + "probability": 0.906 + }, + { + "start": 1935.46, + "end": 1936.94, + "probability": 0.7112 + }, + { + "start": 1938.62, + "end": 1939.5, + "probability": 0.9954 + }, + { + "start": 1941.2, + "end": 1942.26, + "probability": 0.9684 + }, + { + "start": 1943.4, + "end": 1943.84, + "probability": 0.9452 + }, + { + "start": 1945.14, + "end": 1945.98, + "probability": 0.9492 + }, + { + "start": 1947.06, + "end": 1947.8, + "probability": 0.993 + }, + { + "start": 1948.5, + "end": 1950.9, + "probability": 0.9718 + }, + { + "start": 1951.96, + "end": 1954.16, + "probability": 0.9502 + }, + { + "start": 1955.26, + "end": 1957.2, + "probability": 0.6684 + }, + { + "start": 1958.04, + "end": 1961.68, + "probability": 0.7121 + }, + { + "start": 1962.66, + "end": 1963.64, + "probability": 0.3823 + }, + { + "start": 1964.64, + "end": 1966.62, + "probability": 0.9068 + }, + { + "start": 1967.74, + "end": 1969.02, + "probability": 0.7198 + }, + { + "start": 1970.48, + "end": 1974.62, + "probability": 0.5885 + }, + { + "start": 1975.7, + "end": 1978.84, + "probability": 0.7637 + }, + { + "start": 1979.84, + "end": 1981.07, + "probability": 0.9019 + }, + { + "start": 1982.38, + "end": 1983.54, + "probability": 0.9763 + }, + { + "start": 1984.94, + "end": 1986.95, + "probability": 0.9961 + }, + { + "start": 1988.04, + "end": 1989.7, + "probability": 0.9691 + }, + { + "start": 1990.52, + "end": 1992.4, + "probability": 0.9863 + }, + { + "start": 1993.68, + "end": 1995.44, + "probability": 0.8442 + }, + { + "start": 1995.64, + "end": 1996.12, + "probability": 0.9873 + }, + { + "start": 1998.24, + "end": 1999.12, + "probability": 0.9849 + }, + { + "start": 2000.34, + "end": 2001.84, + "probability": 0.9285 + }, + { + "start": 2003.54, + "end": 2004.06, + "probability": 0.8395 + }, + { + "start": 2005.56, + "end": 2006.34, + "probability": 0.9428 + }, + { + "start": 2007.8, + "end": 2009.16, + "probability": 0.9982 + }, + { + "start": 2010.42, + "end": 2014.7, + "probability": 0.8271 + }, + { + "start": 2014.78, + "end": 2015.7, + "probability": 0.9188 + }, + { + "start": 2016.16, + "end": 2019.64, + "probability": 0.9883 + }, + { + "start": 2021.36, + "end": 2022.54, + "probability": 0.9839 + }, + { + "start": 2024.04, + "end": 2026.42, + "probability": 0.8194 + }, + { + "start": 2026.96, + "end": 2028.74, + "probability": 0.9948 + }, + { + "start": 2030.18, + "end": 2031.9, + "probability": 0.9775 + }, + { + "start": 2033.04, + "end": 2034.48, + "probability": 0.8953 + }, + { + "start": 2034.8, + "end": 2035.44, + "probability": 0.5288 + }, + { + "start": 2036.36, + "end": 2039.88, + "probability": 0.7567 + }, + { + "start": 2040.82, + "end": 2042.44, + "probability": 0.6858 + }, + { + "start": 2042.52, + "end": 2044.88, + "probability": 0.6253 + }, + { + "start": 2044.9, + "end": 2048.26, + "probability": 0.8714 + }, + { + "start": 2048.84, + "end": 2050.0, + "probability": 0.4871 + }, + { + "start": 2050.98, + "end": 2054.2, + "probability": 0.9281 + }, + { + "start": 2057.12, + "end": 2060.18, + "probability": 0.6674 + }, + { + "start": 2061.38, + "end": 2064.54, + "probability": 0.5332 + }, + { + "start": 2065.82, + "end": 2067.46, + "probability": 0.8593 + }, + { + "start": 2068.0, + "end": 2069.32, + "probability": 0.6831 + }, + { + "start": 2070.48, + "end": 2071.76, + "probability": 0.7558 + }, + { + "start": 2072.7, + "end": 2073.02, + "probability": 0.769 + }, + { + "start": 2074.38, + "end": 2076.74, + "probability": 0.8818 + }, + { + "start": 2077.86, + "end": 2083.46, + "probability": 0.9907 + }, + { + "start": 2083.6, + "end": 2085.44, + "probability": 0.7045 + }, + { + "start": 2085.48, + "end": 2086.1, + "probability": 0.6391 + }, + { + "start": 2087.94, + "end": 2091.52, + "probability": 0.9565 + }, + { + "start": 2091.72, + "end": 2092.78, + "probability": 0.9661 + }, + { + "start": 2094.34, + "end": 2096.5, + "probability": 0.441 + }, + { + "start": 2098.68, + "end": 2099.78, + "probability": 0.7969 + }, + { + "start": 2100.74, + "end": 2101.74, + "probability": 0.9976 + }, + { + "start": 2102.26, + "end": 2103.76, + "probability": 0.1231 + }, + { + "start": 2105.08, + "end": 2108.22, + "probability": 0.9686 + }, + { + "start": 2108.74, + "end": 2110.02, + "probability": 0.9954 + }, + { + "start": 2110.94, + "end": 2111.82, + "probability": 0.7654 + }, + { + "start": 2112.54, + "end": 2114.98, + "probability": 0.9237 + }, + { + "start": 2116.4, + "end": 2120.62, + "probability": 0.8668 + }, + { + "start": 2120.88, + "end": 2122.78, + "probability": 0.8917 + }, + { + "start": 2123.94, + "end": 2124.7, + "probability": 0.951 + }, + { + "start": 2125.82, + "end": 2126.86, + "probability": 0.9652 + }, + { + "start": 2127.82, + "end": 2129.34, + "probability": 0.941 + }, + { + "start": 2130.0, + "end": 2132.0, + "probability": 0.8982 + }, + { + "start": 2133.1, + "end": 2133.94, + "probability": 0.8833 + }, + { + "start": 2135.56, + "end": 2136.52, + "probability": 0.9323 + }, + { + "start": 2139.08, + "end": 2142.91, + "probability": 0.9828 + }, + { + "start": 2144.1, + "end": 2150.16, + "probability": 0.9875 + }, + { + "start": 2151.88, + "end": 2153.38, + "probability": 0.9964 + }, + { + "start": 2155.0, + "end": 2155.74, + "probability": 0.8646 + }, + { + "start": 2158.2, + "end": 2160.38, + "probability": 0.8734 + }, + { + "start": 2161.6, + "end": 2164.22, + "probability": 0.991 + }, + { + "start": 2167.36, + "end": 2169.5, + "probability": 0.9096 + }, + { + "start": 2170.68, + "end": 2174.12, + "probability": 0.9849 + }, + { + "start": 2174.84, + "end": 2175.5, + "probability": 0.8309 + }, + { + "start": 2177.22, + "end": 2178.2, + "probability": 0.8334 + }, + { + "start": 2179.3, + "end": 2180.36, + "probability": 0.8565 + }, + { + "start": 2181.54, + "end": 2183.1, + "probability": 0.9922 + }, + { + "start": 2184.02, + "end": 2186.78, + "probability": 0.9976 + }, + { + "start": 2187.8, + "end": 2188.44, + "probability": 0.7997 + }, + { + "start": 2190.54, + "end": 2190.94, + "probability": 0.2165 + }, + { + "start": 2191.06, + "end": 2191.5, + "probability": 0.7276 + }, + { + "start": 2192.0, + "end": 2195.66, + "probability": 0.8287 + }, + { + "start": 2196.78, + "end": 2198.14, + "probability": 0.874 + }, + { + "start": 2198.96, + "end": 2200.56, + "probability": 0.5992 + }, + { + "start": 2201.64, + "end": 2203.98, + "probability": 0.9958 + }, + { + "start": 2204.78, + "end": 2205.62, + "probability": 0.9797 + }, + { + "start": 2206.4, + "end": 2208.9, + "probability": 0.9546 + }, + { + "start": 2209.72, + "end": 2211.64, + "probability": 0.5253 + }, + { + "start": 2212.32, + "end": 2213.28, + "probability": 0.6143 + }, + { + "start": 2213.52, + "end": 2217.06, + "probability": 0.9781 + }, + { + "start": 2217.98, + "end": 2218.68, + "probability": 0.5071 + }, + { + "start": 2219.92, + "end": 2221.54, + "probability": 0.9456 + }, + { + "start": 2222.62, + "end": 2224.38, + "probability": 0.9956 + }, + { + "start": 2225.54, + "end": 2227.64, + "probability": 0.8199 + }, + { + "start": 2228.52, + "end": 2232.54, + "probability": 0.9478 + }, + { + "start": 2233.36, + "end": 2234.08, + "probability": 0.9056 + }, + { + "start": 2235.12, + "end": 2237.34, + "probability": 0.5677 + }, + { + "start": 2238.44, + "end": 2240.96, + "probability": 0.5257 + }, + { + "start": 2241.64, + "end": 2241.98, + "probability": 0.656 + }, + { + "start": 2243.14, + "end": 2244.3, + "probability": 0.5969 + }, + { + "start": 2244.32, + "end": 2248.4, + "probability": 0.8336 + }, + { + "start": 2248.84, + "end": 2251.4, + "probability": 0.7323 + }, + { + "start": 2252.04, + "end": 2253.88, + "probability": 0.8265 + }, + { + "start": 2254.08, + "end": 2257.6, + "probability": 0.985 + }, + { + "start": 2257.82, + "end": 2259.58, + "probability": 0.9541 + }, + { + "start": 2259.72, + "end": 2261.58, + "probability": 0.4044 + }, + { + "start": 2262.16, + "end": 2266.08, + "probability": 0.967 + }, + { + "start": 2266.76, + "end": 2267.2, + "probability": 0.5373 + }, + { + "start": 2267.28, + "end": 2268.28, + "probability": 0.935 + }, + { + "start": 2268.36, + "end": 2269.52, + "probability": 0.9575 + }, + { + "start": 2269.76, + "end": 2270.88, + "probability": 0.9727 + }, + { + "start": 2271.48, + "end": 2272.62, + "probability": 0.9745 + }, + { + "start": 2273.66, + "end": 2274.28, + "probability": 0.8395 + }, + { + "start": 2274.5, + "end": 2275.48, + "probability": 0.9663 + }, + { + "start": 2276.72, + "end": 2279.5, + "probability": 0.9702 + }, + { + "start": 2282.14, + "end": 2285.66, + "probability": 0.7064 + }, + { + "start": 2285.78, + "end": 2285.92, + "probability": 0.2197 + }, + { + "start": 2286.84, + "end": 2288.54, + "probability": 0.8624 + }, + { + "start": 2288.54, + "end": 2290.16, + "probability": 0.5804 + }, + { + "start": 2290.98, + "end": 2293.76, + "probability": 0.4824 + }, + { + "start": 2294.5, + "end": 2294.5, + "probability": 0.1012 + }, + { + "start": 2294.5, + "end": 2300.12, + "probability": 0.9497 + }, + { + "start": 2300.22, + "end": 2301.54, + "probability": 0.9946 + }, + { + "start": 2302.22, + "end": 2304.96, + "probability": 0.9967 + }, + { + "start": 2305.5, + "end": 2306.86, + "probability": 0.5116 + }, + { + "start": 2307.64, + "end": 2309.22, + "probability": 0.6911 + }, + { + "start": 2309.86, + "end": 2313.34, + "probability": 0.8342 + }, + { + "start": 2313.42, + "end": 2316.02, + "probability": 0.7032 + }, + { + "start": 2318.04, + "end": 2320.36, + "probability": 0.8465 + }, + { + "start": 2320.54, + "end": 2323.08, + "probability": 0.9137 + }, + { + "start": 2324.12, + "end": 2325.58, + "probability": 0.9804 + }, + { + "start": 2326.18, + "end": 2327.5, + "probability": 0.9379 + }, + { + "start": 2327.68, + "end": 2329.92, + "probability": 0.9757 + }, + { + "start": 2330.64, + "end": 2332.7, + "probability": 0.9529 + }, + { + "start": 2332.86, + "end": 2333.58, + "probability": 0.6879 + }, + { + "start": 2334.12, + "end": 2336.12, + "probability": 0.8115 + }, + { + "start": 2337.06, + "end": 2342.56, + "probability": 0.9855 + }, + { + "start": 2342.56, + "end": 2345.92, + "probability": 0.9968 + }, + { + "start": 2346.04, + "end": 2347.02, + "probability": 0.9838 + }, + { + "start": 2347.52, + "end": 2348.4, + "probability": 0.6363 + }, + { + "start": 2349.22, + "end": 2352.44, + "probability": 0.6157 + }, + { + "start": 2353.7, + "end": 2358.02, + "probability": 0.8247 + }, + { + "start": 2359.2, + "end": 2362.24, + "probability": 0.9953 + }, + { + "start": 2362.72, + "end": 2364.82, + "probability": 0.9503 + }, + { + "start": 2365.44, + "end": 2370.04, + "probability": 0.9954 + }, + { + "start": 2370.04, + "end": 2373.64, + "probability": 0.9833 + }, + { + "start": 2374.4, + "end": 2374.8, + "probability": 0.7247 + }, + { + "start": 2376.38, + "end": 2377.38, + "probability": 0.7581 + }, + { + "start": 2377.5, + "end": 2380.22, + "probability": 0.9194 + }, + { + "start": 2380.32, + "end": 2382.62, + "probability": 0.9983 + }, + { + "start": 2395.74, + "end": 2395.8, + "probability": 0.1243 + }, + { + "start": 2411.64, + "end": 2414.64, + "probability": 0.9946 + }, + { + "start": 2415.64, + "end": 2419.14, + "probability": 0.9409 + }, + { + "start": 2420.18, + "end": 2421.94, + "probability": 0.9607 + }, + { + "start": 2423.32, + "end": 2424.6, + "probability": 0.5572 + }, + { + "start": 2424.96, + "end": 2430.46, + "probability": 0.9376 + }, + { + "start": 2432.72, + "end": 2437.3, + "probability": 0.9968 + }, + { + "start": 2438.18, + "end": 2439.46, + "probability": 0.9917 + }, + { + "start": 2440.32, + "end": 2444.26, + "probability": 0.9971 + }, + { + "start": 2445.12, + "end": 2446.36, + "probability": 0.9915 + }, + { + "start": 2448.5, + "end": 2450.6, + "probability": 0.9902 + }, + { + "start": 2451.62, + "end": 2454.58, + "probability": 0.8141 + }, + { + "start": 2455.34, + "end": 2457.24, + "probability": 0.7692 + }, + { + "start": 2457.48, + "end": 2459.4, + "probability": 0.9863 + }, + { + "start": 2460.16, + "end": 2461.84, + "probability": 0.9657 + }, + { + "start": 2462.76, + "end": 2465.82, + "probability": 0.664 + }, + { + "start": 2466.58, + "end": 2469.44, + "probability": 0.9298 + }, + { + "start": 2470.16, + "end": 2472.34, + "probability": 0.953 + }, + { + "start": 2473.18, + "end": 2475.52, + "probability": 0.9807 + }, + { + "start": 2477.08, + "end": 2481.42, + "probability": 0.9955 + }, + { + "start": 2482.12, + "end": 2487.24, + "probability": 0.9515 + }, + { + "start": 2488.14, + "end": 2490.16, + "probability": 0.8911 + }, + { + "start": 2490.92, + "end": 2493.54, + "probability": 0.9344 + }, + { + "start": 2494.36, + "end": 2497.52, + "probability": 0.8535 + }, + { + "start": 2498.34, + "end": 2500.56, + "probability": 0.9162 + }, + { + "start": 2501.5, + "end": 2504.62, + "probability": 0.8923 + }, + { + "start": 2505.24, + "end": 2505.48, + "probability": 0.6071 + }, + { + "start": 2505.82, + "end": 2506.2, + "probability": 0.686 + }, + { + "start": 2506.36, + "end": 2508.4, + "probability": 0.9171 + }, + { + "start": 2509.42, + "end": 2512.98, + "probability": 0.8768 + }, + { + "start": 2513.58, + "end": 2517.22, + "probability": 0.9726 + }, + { + "start": 2517.22, + "end": 2523.26, + "probability": 0.9761 + }, + { + "start": 2523.52, + "end": 2526.66, + "probability": 0.9967 + }, + { + "start": 2526.72, + "end": 2528.72, + "probability": 0.9952 + }, + { + "start": 2529.4, + "end": 2533.22, + "probability": 0.9668 + }, + { + "start": 2534.12, + "end": 2536.34, + "probability": 0.7115 + }, + { + "start": 2537.08, + "end": 2540.86, + "probability": 0.994 + }, + { + "start": 2542.86, + "end": 2543.02, + "probability": 0.1569 + }, + { + "start": 2543.18, + "end": 2547.64, + "probability": 0.7661 + }, + { + "start": 2548.3, + "end": 2550.3, + "probability": 0.9608 + }, + { + "start": 2550.94, + "end": 2554.38, + "probability": 0.9805 + }, + { + "start": 2555.68, + "end": 2555.98, + "probability": 0.3991 + }, + { + "start": 2556.04, + "end": 2560.68, + "probability": 0.9736 + }, + { + "start": 2561.78, + "end": 2565.5, + "probability": 0.9834 + }, + { + "start": 2565.58, + "end": 2566.22, + "probability": 0.8484 + }, + { + "start": 2567.22, + "end": 2569.74, + "probability": 0.6644 + }, + { + "start": 2570.46, + "end": 2575.5, + "probability": 0.9564 + }, + { + "start": 2576.96, + "end": 2582.44, + "probability": 0.9854 + }, + { + "start": 2582.5, + "end": 2582.98, + "probability": 0.5308 + }, + { + "start": 2583.62, + "end": 2585.86, + "probability": 0.9424 + }, + { + "start": 2586.54, + "end": 2588.0, + "probability": 0.9076 + }, + { + "start": 2588.82, + "end": 2590.24, + "probability": 0.6053 + }, + { + "start": 2590.26, + "end": 2592.0, + "probability": 0.6991 + }, + { + "start": 2592.16, + "end": 2593.38, + "probability": 0.9916 + }, + { + "start": 2594.12, + "end": 2597.06, + "probability": 0.9858 + }, + { + "start": 2598.0, + "end": 2599.8, + "probability": 0.6907 + }, + { + "start": 2600.6, + "end": 2604.98, + "probability": 0.9548 + }, + { + "start": 2605.64, + "end": 2608.78, + "probability": 0.9204 + }, + { + "start": 2609.5, + "end": 2612.36, + "probability": 0.9992 + }, + { + "start": 2613.2, + "end": 2616.96, + "probability": 0.9972 + }, + { + "start": 2618.36, + "end": 2619.06, + "probability": 0.8644 + }, + { + "start": 2619.96, + "end": 2622.3, + "probability": 0.9756 + }, + { + "start": 2622.9, + "end": 2628.8, + "probability": 0.9902 + }, + { + "start": 2629.48, + "end": 2632.12, + "probability": 0.9945 + }, + { + "start": 2632.88, + "end": 2633.98, + "probability": 0.7121 + }, + { + "start": 2634.5, + "end": 2636.58, + "probability": 0.8209 + }, + { + "start": 2638.46, + "end": 2643.26, + "probability": 0.9831 + }, + { + "start": 2644.46, + "end": 2647.5, + "probability": 0.9965 + }, + { + "start": 2649.66, + "end": 2652.1, + "probability": 0.6912 + }, + { + "start": 2652.88, + "end": 2654.32, + "probability": 0.529 + }, + { + "start": 2654.94, + "end": 2656.5, + "probability": 0.9273 + }, + { + "start": 2657.62, + "end": 2660.84, + "probability": 0.8965 + }, + { + "start": 2661.98, + "end": 2662.94, + "probability": 0.7036 + }, + { + "start": 2663.52, + "end": 2665.56, + "probability": 0.9873 + }, + { + "start": 2666.18, + "end": 2668.06, + "probability": 0.974 + }, + { + "start": 2668.56, + "end": 2671.24, + "probability": 0.9933 + }, + { + "start": 2672.06, + "end": 2674.06, + "probability": 0.8666 + }, + { + "start": 2674.7, + "end": 2677.96, + "probability": 0.986 + }, + { + "start": 2679.06, + "end": 2681.04, + "probability": 0.9105 + }, + { + "start": 2681.42, + "end": 2683.66, + "probability": 0.9846 + }, + { + "start": 2684.48, + "end": 2686.52, + "probability": 0.9598 + }, + { + "start": 2687.96, + "end": 2689.92, + "probability": 0.766 + }, + { + "start": 2690.62, + "end": 2694.64, + "probability": 0.9852 + }, + { + "start": 2696.12, + "end": 2700.16, + "probability": 0.9504 + }, + { + "start": 2701.14, + "end": 2702.98, + "probability": 0.995 + }, + { + "start": 2703.66, + "end": 2707.14, + "probability": 0.9297 + }, + { + "start": 2707.8, + "end": 2708.86, + "probability": 0.8231 + }, + { + "start": 2709.66, + "end": 2710.12, + "probability": 0.9983 + }, + { + "start": 2710.92, + "end": 2712.44, + "probability": 0.9655 + }, + { + "start": 2713.24, + "end": 2716.44, + "probability": 0.7494 + }, + { + "start": 2717.36, + "end": 2718.4, + "probability": 0.7463 + }, + { + "start": 2719.6, + "end": 2723.06, + "probability": 0.9107 + }, + { + "start": 2724.16, + "end": 2726.1, + "probability": 0.4958 + }, + { + "start": 2727.03, + "end": 2730.26, + "probability": 0.9592 + }, + { + "start": 2731.06, + "end": 2732.18, + "probability": 0.7693 + }, + { + "start": 2733.36, + "end": 2737.6, + "probability": 0.9857 + }, + { + "start": 2738.6, + "end": 2738.98, + "probability": 0.8875 + }, + { + "start": 2741.16, + "end": 2743.68, + "probability": 0.9991 + }, + { + "start": 2744.28, + "end": 2745.52, + "probability": 0.9975 + }, + { + "start": 2746.14, + "end": 2748.88, + "probability": 0.9058 + }, + { + "start": 2749.08, + "end": 2749.67, + "probability": 0.9741 + }, + { + "start": 2750.72, + "end": 2751.68, + "probability": 0.9703 + }, + { + "start": 2752.36, + "end": 2755.0, + "probability": 0.9626 + }, + { + "start": 2756.84, + "end": 2757.92, + "probability": 0.5567 + }, + { + "start": 2757.96, + "end": 2759.38, + "probability": 0.7752 + }, + { + "start": 2760.62, + "end": 2764.26, + "probability": 0.9799 + }, + { + "start": 2764.4, + "end": 2766.14, + "probability": 0.8991 + }, + { + "start": 2766.28, + "end": 2768.34, + "probability": 0.3765 + }, + { + "start": 2769.1, + "end": 2772.04, + "probability": 0.9851 + }, + { + "start": 2773.16, + "end": 2773.37, + "probability": 0.519 + }, + { + "start": 2774.46, + "end": 2775.42, + "probability": 0.6386 + }, + { + "start": 2784.54, + "end": 2785.04, + "probability": 0.6822 + }, + { + "start": 2785.66, + "end": 2787.02, + "probability": 0.2395 + }, + { + "start": 2796.4, + "end": 2796.74, + "probability": 0.0002 + }, + { + "start": 2798.72, + "end": 2799.7, + "probability": 0.4037 + }, + { + "start": 2802.28, + "end": 2804.02, + "probability": 0.9141 + }, + { + "start": 2804.88, + "end": 2806.58, + "probability": 0.9637 + }, + { + "start": 2807.3, + "end": 2808.4, + "probability": 0.4805 + }, + { + "start": 2809.24, + "end": 2812.86, + "probability": 0.7484 + }, + { + "start": 2812.86, + "end": 2812.96, + "probability": 0.2801 + }, + { + "start": 2814.28, + "end": 2816.36, + "probability": 0.0981 + }, + { + "start": 2816.36, + "end": 2818.72, + "probability": 0.0526 + }, + { + "start": 2818.84, + "end": 2820.24, + "probability": 0.2741 + }, + { + "start": 2821.66, + "end": 2821.7, + "probability": 0.0647 + }, + { + "start": 2821.7, + "end": 2821.7, + "probability": 0.0666 + }, + { + "start": 2821.7, + "end": 2821.7, + "probability": 0.0781 + }, + { + "start": 2821.7, + "end": 2822.7, + "probability": 0.2198 + }, + { + "start": 2825.04, + "end": 2825.58, + "probability": 0.7984 + }, + { + "start": 2826.12, + "end": 2827.56, + "probability": 0.8589 + }, + { + "start": 2828.18, + "end": 2830.02, + "probability": 0.7969 + }, + { + "start": 2844.16, + "end": 2847.58, + "probability": 0.96 + }, + { + "start": 2847.74, + "end": 2848.3, + "probability": 0.9014 + }, + { + "start": 2848.62, + "end": 2849.5, + "probability": 0.9491 + }, + { + "start": 2850.4, + "end": 2851.0, + "probability": 0.8396 + }, + { + "start": 2853.64, + "end": 2856.18, + "probability": 0.8102 + }, + { + "start": 2857.32, + "end": 2861.0, + "probability": 0.9086 + }, + { + "start": 2863.42, + "end": 2867.88, + "probability": 0.9655 + }, + { + "start": 2869.3, + "end": 2873.66, + "probability": 0.9675 + }, + { + "start": 2873.84, + "end": 2874.86, + "probability": 0.6234 + }, + { + "start": 2875.66, + "end": 2877.42, + "probability": 0.8361 + }, + { + "start": 2878.38, + "end": 2881.88, + "probability": 0.9395 + }, + { + "start": 2882.18, + "end": 2883.66, + "probability": 0.9483 + }, + { + "start": 2884.4, + "end": 2886.42, + "probability": 0.9499 + }, + { + "start": 2887.04, + "end": 2888.92, + "probability": 0.7401 + }, + { + "start": 2890.06, + "end": 2897.82, + "probability": 0.9681 + }, + { + "start": 2899.3, + "end": 2900.58, + "probability": 0.7297 + }, + { + "start": 2901.46, + "end": 2904.11, + "probability": 0.9751 + }, + { + "start": 2905.06, + "end": 2906.22, + "probability": 0.858 + }, + { + "start": 2906.9, + "end": 2907.24, + "probability": 0.5336 + }, + { + "start": 2907.96, + "end": 2909.42, + "probability": 0.8806 + }, + { + "start": 2911.26, + "end": 2912.76, + "probability": 0.7045 + }, + { + "start": 2913.52, + "end": 2919.8, + "probability": 0.9806 + }, + { + "start": 2921.04, + "end": 2927.38, + "probability": 0.9885 + }, + { + "start": 2927.38, + "end": 2932.34, + "probability": 0.9875 + }, + { + "start": 2933.22, + "end": 2934.64, + "probability": 0.8266 + }, + { + "start": 2935.76, + "end": 2937.94, + "probability": 0.8524 + }, + { + "start": 2938.84, + "end": 2940.02, + "probability": 0.6831 + }, + { + "start": 2940.74, + "end": 2943.06, + "probability": 0.971 + }, + { + "start": 2944.32, + "end": 2948.84, + "probability": 0.9893 + }, + { + "start": 2949.44, + "end": 2953.96, + "probability": 0.9893 + }, + { + "start": 2954.56, + "end": 2957.52, + "probability": 0.9978 + }, + { + "start": 2959.74, + "end": 2964.92, + "probability": 0.9902 + }, + { + "start": 2966.1, + "end": 2970.42, + "probability": 0.9271 + }, + { + "start": 2971.04, + "end": 2972.14, + "probability": 0.6385 + }, + { + "start": 2972.92, + "end": 2975.46, + "probability": 0.9617 + }, + { + "start": 2975.62, + "end": 2977.94, + "probability": 0.9932 + }, + { + "start": 2978.74, + "end": 2982.74, + "probability": 0.9797 + }, + { + "start": 2983.84, + "end": 2984.76, + "probability": 0.6105 + }, + { + "start": 2985.38, + "end": 2987.26, + "probability": 0.6574 + }, + { + "start": 2987.86, + "end": 2991.34, + "probability": 0.9519 + }, + { + "start": 2992.02, + "end": 2992.4, + "probability": 0.5154 + }, + { + "start": 2993.74, + "end": 2996.08, + "probability": 0.3303 + }, + { + "start": 2997.96, + "end": 3005.18, + "probability": 0.9915 + }, + { + "start": 3005.82, + "end": 3006.46, + "probability": 0.8423 + }, + { + "start": 3008.27, + "end": 3012.95, + "probability": 0.7681 + }, + { + "start": 3014.18, + "end": 3016.35, + "probability": 0.9084 + }, + { + "start": 3017.42, + "end": 3020.74, + "probability": 0.9842 + }, + { + "start": 3022.72, + "end": 3025.48, + "probability": 0.6851 + }, + { + "start": 3025.64, + "end": 3029.06, + "probability": 0.8481 + }, + { + "start": 3030.32, + "end": 3031.96, + "probability": 0.7533 + }, + { + "start": 3032.02, + "end": 3034.04, + "probability": 0.8695 + }, + { + "start": 3034.56, + "end": 3036.52, + "probability": 0.9146 + }, + { + "start": 3037.54, + "end": 3038.86, + "probability": 0.7957 + }, + { + "start": 3039.34, + "end": 3042.44, + "probability": 0.936 + }, + { + "start": 3043.32, + "end": 3044.44, + "probability": 0.8436 + }, + { + "start": 3044.6, + "end": 3045.58, + "probability": 0.8211 + }, + { + "start": 3045.6, + "end": 3048.1, + "probability": 0.9531 + }, + { + "start": 3048.64, + "end": 3051.36, + "probability": 0.9879 + }, + { + "start": 3051.48, + "end": 3053.02, + "probability": 0.9505 + }, + { + "start": 3054.39, + "end": 3060.02, + "probability": 0.8949 + }, + { + "start": 3060.54, + "end": 3064.3, + "probability": 0.7451 + }, + { + "start": 3066.86, + "end": 3068.26, + "probability": 0.9664 + }, + { + "start": 3068.82, + "end": 3073.68, + "probability": 0.9729 + }, + { + "start": 3074.84, + "end": 3077.68, + "probability": 0.8807 + }, + { + "start": 3077.68, + "end": 3080.4, + "probability": 0.9979 + }, + { + "start": 3081.06, + "end": 3083.42, + "probability": 0.9955 + }, + { + "start": 3084.0, + "end": 3086.54, + "probability": 0.9026 + }, + { + "start": 3087.64, + "end": 3092.02, + "probability": 0.9969 + }, + { + "start": 3092.52, + "end": 3093.94, + "probability": 0.9124 + }, + { + "start": 3095.08, + "end": 3098.1, + "probability": 0.9577 + }, + { + "start": 3098.18, + "end": 3099.68, + "probability": 0.9986 + }, + { + "start": 3100.58, + "end": 3101.7, + "probability": 0.8135 + }, + { + "start": 3102.22, + "end": 3105.84, + "probability": 0.7766 + }, + { + "start": 3106.92, + "end": 3110.24, + "probability": 0.9545 + }, + { + "start": 3111.96, + "end": 3113.78, + "probability": 0.9927 + }, + { + "start": 3113.82, + "end": 3114.16, + "probability": 0.4491 + }, + { + "start": 3114.24, + "end": 3116.0, + "probability": 0.8981 + }, + { + "start": 3117.48, + "end": 3119.7, + "probability": 0.7766 + }, + { + "start": 3120.7, + "end": 3123.28, + "probability": 0.995 + }, + { + "start": 3123.34, + "end": 3124.22, + "probability": 0.8965 + }, + { + "start": 3124.78, + "end": 3128.76, + "probability": 0.9796 + }, + { + "start": 3128.8, + "end": 3131.2, + "probability": 0.9651 + }, + { + "start": 3132.68, + "end": 3133.12, + "probability": 0.5354 + }, + { + "start": 3133.26, + "end": 3136.92, + "probability": 0.6664 + }, + { + "start": 3137.46, + "end": 3144.18, + "probability": 0.6225 + }, + { + "start": 3144.72, + "end": 3145.92, + "probability": 0.6952 + }, + { + "start": 3146.26, + "end": 3148.26, + "probability": 0.5624 + }, + { + "start": 3148.9, + "end": 3150.72, + "probability": 0.2939 + }, + { + "start": 3152.36, + "end": 3153.78, + "probability": 0.8834 + }, + { + "start": 3154.2, + "end": 3155.44, + "probability": 0.8172 + }, + { + "start": 3155.6, + "end": 3156.56, + "probability": 0.9002 + }, + { + "start": 3156.68, + "end": 3157.58, + "probability": 0.8934 + }, + { + "start": 3158.42, + "end": 3160.44, + "probability": 0.998 + }, + { + "start": 3161.26, + "end": 3168.42, + "probability": 0.99 + }, + { + "start": 3168.94, + "end": 3174.28, + "probability": 0.9958 + }, + { + "start": 3174.74, + "end": 3176.76, + "probability": 0.9729 + }, + { + "start": 3177.44, + "end": 3183.0, + "probability": 0.9661 + }, + { + "start": 3183.62, + "end": 3185.24, + "probability": 0.9026 + }, + { + "start": 3185.92, + "end": 3186.38, + "probability": 0.7747 + }, + { + "start": 3186.68, + "end": 3188.58, + "probability": 0.8101 + }, + { + "start": 3188.74, + "end": 3191.3, + "probability": 0.9279 + }, + { + "start": 3191.4, + "end": 3194.58, + "probability": 0.7168 + }, + { + "start": 3194.68, + "end": 3196.56, + "probability": 0.9927 + }, + { + "start": 3197.2, + "end": 3198.16, + "probability": 0.9867 + }, + { + "start": 3215.36, + "end": 3217.76, + "probability": 0.8135 + }, + { + "start": 3218.96, + "end": 3221.21, + "probability": 0.0558 + }, + { + "start": 3221.84, + "end": 3222.66, + "probability": 0.6484 + }, + { + "start": 3223.92, + "end": 3228.56, + "probability": 0.9803 + }, + { + "start": 3230.08, + "end": 3235.43, + "probability": 0.7498 + }, + { + "start": 3235.6, + "end": 3242.46, + "probability": 0.9915 + }, + { + "start": 3243.5, + "end": 3253.02, + "probability": 0.4563 + }, + { + "start": 3254.1, + "end": 3259.82, + "probability": 0.9829 + }, + { + "start": 3260.5, + "end": 3264.96, + "probability": 0.9959 + }, + { + "start": 3265.44, + "end": 3271.52, + "probability": 0.9781 + }, + { + "start": 3272.38, + "end": 3273.48, + "probability": 0.7111 + }, + { + "start": 3273.56, + "end": 3275.04, + "probability": 0.8607 + }, + { + "start": 3275.32, + "end": 3281.4, + "probability": 0.9877 + }, + { + "start": 3281.68, + "end": 3284.28, + "probability": 0.9852 + }, + { + "start": 3285.02, + "end": 3286.48, + "probability": 0.9568 + }, + { + "start": 3286.54, + "end": 3293.9, + "probability": 0.9642 + }, + { + "start": 3294.3, + "end": 3298.02, + "probability": 0.9802 + }, + { + "start": 3298.56, + "end": 3298.92, + "probability": 0.3845 + }, + { + "start": 3300.38, + "end": 3300.94, + "probability": 0.2502 + }, + { + "start": 3301.46, + "end": 3304.26, + "probability": 0.576 + }, + { + "start": 3304.4, + "end": 3310.4, + "probability": 0.9767 + }, + { + "start": 3311.26, + "end": 3317.0, + "probability": 0.9848 + }, + { + "start": 3317.0, + "end": 3321.96, + "probability": 0.9802 + }, + { + "start": 3322.8, + "end": 3325.18, + "probability": 0.9971 + }, + { + "start": 3325.44, + "end": 3331.01, + "probability": 0.9355 + }, + { + "start": 3331.88, + "end": 3335.02, + "probability": 0.9889 + }, + { + "start": 3335.66, + "end": 3341.38, + "probability": 0.9865 + }, + { + "start": 3341.5, + "end": 3348.5, + "probability": 0.9954 + }, + { + "start": 3348.98, + "end": 3351.3, + "probability": 0.9615 + }, + { + "start": 3353.04, + "end": 3354.22, + "probability": 0.9985 + }, + { + "start": 3354.74, + "end": 3357.36, + "probability": 0.7048 + }, + { + "start": 3358.02, + "end": 3361.24, + "probability": 0.9064 + }, + { + "start": 3361.4, + "end": 3363.36, + "probability": 0.9668 + }, + { + "start": 3364.08, + "end": 3372.44, + "probability": 0.9788 + }, + { + "start": 3373.08, + "end": 3377.06, + "probability": 0.9854 + }, + { + "start": 3377.06, + "end": 3384.14, + "probability": 0.9987 + }, + { + "start": 3384.28, + "end": 3385.06, + "probability": 0.6593 + }, + { + "start": 3385.54, + "end": 3386.32, + "probability": 0.8164 + }, + { + "start": 3386.46, + "end": 3393.18, + "probability": 0.9846 + }, + { + "start": 3393.58, + "end": 3397.76, + "probability": 0.9942 + }, + { + "start": 3397.8, + "end": 3402.8, + "probability": 0.9922 + }, + { + "start": 3403.26, + "end": 3403.94, + "probability": 0.5022 + }, + { + "start": 3404.44, + "end": 3406.58, + "probability": 0.7169 + }, + { + "start": 3406.68, + "end": 3410.12, + "probability": 0.9898 + }, + { + "start": 3414.34, + "end": 3415.74, + "probability": 0.929 + }, + { + "start": 3416.52, + "end": 3417.46, + "probability": 0.9794 + }, + { + "start": 3429.32, + "end": 3431.94, + "probability": 0.6744 + }, + { + "start": 3432.3, + "end": 3433.66, + "probability": 0.5588 + }, + { + "start": 3433.78, + "end": 3434.64, + "probability": 0.686 + }, + { + "start": 3435.46, + "end": 3440.4, + "probability": 0.9699 + }, + { + "start": 3440.62, + "end": 3441.46, + "probability": 0.9561 + }, + { + "start": 3442.08, + "end": 3446.32, + "probability": 0.9773 + }, + { + "start": 3446.86, + "end": 3450.26, + "probability": 0.8644 + }, + { + "start": 3451.22, + "end": 3454.48, + "probability": 0.9521 + }, + { + "start": 3455.86, + "end": 3458.52, + "probability": 0.9924 + }, + { + "start": 3460.54, + "end": 3464.44, + "probability": 0.9534 + }, + { + "start": 3464.56, + "end": 3466.16, + "probability": 0.9469 + }, + { + "start": 3466.22, + "end": 3466.78, + "probability": 0.7214 + }, + { + "start": 3467.4, + "end": 3468.62, + "probability": 0.9929 + }, + { + "start": 3468.88, + "end": 3469.86, + "probability": 0.8466 + }, + { + "start": 3470.78, + "end": 3470.82, + "probability": 0.1464 + }, + { + "start": 3470.82, + "end": 3471.89, + "probability": 0.851 + }, + { + "start": 3472.88, + "end": 3476.46, + "probability": 0.8363 + }, + { + "start": 3476.62, + "end": 3476.72, + "probability": 0.5192 + }, + { + "start": 3477.86, + "end": 3478.62, + "probability": 0.8707 + }, + { + "start": 3479.7, + "end": 3481.32, + "probability": 0.7865 + }, + { + "start": 3481.42, + "end": 3483.96, + "probability": 0.8677 + }, + { + "start": 3484.66, + "end": 3490.88, + "probability": 0.9914 + }, + { + "start": 3490.98, + "end": 3493.02, + "probability": 0.7238 + }, + { + "start": 3493.82, + "end": 3494.34, + "probability": 0.1236 + }, + { + "start": 3494.34, + "end": 3496.06, + "probability": 0.6026 + }, + { + "start": 3496.66, + "end": 3497.8, + "probability": 0.9018 + }, + { + "start": 3497.84, + "end": 3498.68, + "probability": 0.9244 + }, + { + "start": 3498.72, + "end": 3499.78, + "probability": 0.9431 + }, + { + "start": 3500.88, + "end": 3503.56, + "probability": 0.9515 + }, + { + "start": 3504.78, + "end": 3508.02, + "probability": 0.8634 + }, + { + "start": 3508.3, + "end": 3509.94, + "probability": 0.7944 + }, + { + "start": 3510.04, + "end": 3512.64, + "probability": 0.9604 + }, + { + "start": 3513.26, + "end": 3514.71, + "probability": 0.8651 + }, + { + "start": 3515.4, + "end": 3519.1, + "probability": 0.9863 + }, + { + "start": 3520.76, + "end": 3524.72, + "probability": 0.7549 + }, + { + "start": 3525.6, + "end": 3528.28, + "probability": 0.9138 + }, + { + "start": 3530.6, + "end": 3535.52, + "probability": 0.6978 + }, + { + "start": 3536.6, + "end": 3537.41, + "probability": 0.2222 + }, + { + "start": 3538.58, + "end": 3539.88, + "probability": 0.7558 + }, + { + "start": 3541.18, + "end": 3542.94, + "probability": 0.9761 + }, + { + "start": 3543.54, + "end": 3546.18, + "probability": 0.9922 + }, + { + "start": 3547.72, + "end": 3548.44, + "probability": 0.7893 + }, + { + "start": 3549.08, + "end": 3550.4, + "probability": 0.9073 + }, + { + "start": 3551.04, + "end": 3552.5, + "probability": 0.9859 + }, + { + "start": 3552.92, + "end": 3556.0, + "probability": 0.999 + }, + { + "start": 3556.74, + "end": 3557.53, + "probability": 0.9922 + }, + { + "start": 3557.94, + "end": 3558.64, + "probability": 0.395 + }, + { + "start": 3559.06, + "end": 3560.72, + "probability": 0.8206 + }, + { + "start": 3561.62, + "end": 3564.22, + "probability": 0.8629 + }, + { + "start": 3565.26, + "end": 3565.67, + "probability": 0.578 + }, + { + "start": 3566.48, + "end": 3567.42, + "probability": 0.8575 + }, + { + "start": 3567.66, + "end": 3568.58, + "probability": 0.9737 + }, + { + "start": 3569.0, + "end": 3570.34, + "probability": 0.9859 + }, + { + "start": 3572.12, + "end": 3574.96, + "probability": 0.9521 + }, + { + "start": 3576.3, + "end": 3578.41, + "probability": 0.64 + }, + { + "start": 3579.28, + "end": 3582.18, + "probability": 0.8397 + }, + { + "start": 3583.16, + "end": 3585.4, + "probability": 0.9517 + }, + { + "start": 3585.92, + "end": 3586.64, + "probability": 0.4203 + }, + { + "start": 3587.06, + "end": 3587.7, + "probability": 0.93 + }, + { + "start": 3588.02, + "end": 3589.1, + "probability": 0.9883 + }, + { + "start": 3589.36, + "end": 3590.62, + "probability": 0.9324 + }, + { + "start": 3591.08, + "end": 3593.16, + "probability": 0.9693 + }, + { + "start": 3594.78, + "end": 3595.48, + "probability": 0.5017 + }, + { + "start": 3595.76, + "end": 3597.76, + "probability": 0.9657 + }, + { + "start": 3598.3, + "end": 3601.68, + "probability": 0.9834 + }, + { + "start": 3603.12, + "end": 3604.66, + "probability": 0.9781 + }, + { + "start": 3605.88, + "end": 3608.46, + "probability": 0.9865 + }, + { + "start": 3608.7, + "end": 3612.7, + "probability": 0.9961 + }, + { + "start": 3613.32, + "end": 3615.22, + "probability": 0.9578 + }, + { + "start": 3615.7, + "end": 3616.72, + "probability": 0.7377 + }, + { + "start": 3617.18, + "end": 3618.14, + "probability": 0.957 + }, + { + "start": 3618.74, + "end": 3620.02, + "probability": 0.8543 + }, + { + "start": 3620.58, + "end": 3624.9, + "probability": 0.9856 + }, + { + "start": 3625.86, + "end": 3631.1, + "probability": 0.8635 + }, + { + "start": 3631.96, + "end": 3636.94, + "probability": 0.9769 + }, + { + "start": 3636.94, + "end": 3640.9, + "probability": 0.9985 + }, + { + "start": 3641.26, + "end": 3642.0, + "probability": 0.6164 + }, + { + "start": 3642.34, + "end": 3643.1, + "probability": 0.6943 + }, + { + "start": 3643.62, + "end": 3646.18, + "probability": 0.9924 + }, + { + "start": 3646.5, + "end": 3646.64, + "probability": 0.5199 + }, + { + "start": 3647.26, + "end": 3649.48, + "probability": 0.9076 + }, + { + "start": 3649.56, + "end": 3651.84, + "probability": 0.929 + }, + { + "start": 3652.4, + "end": 3653.22, + "probability": 0.559 + }, + { + "start": 3653.98, + "end": 3656.6, + "probability": 0.9213 + }, + { + "start": 3666.3, + "end": 3668.0, + "probability": 0.7708 + }, + { + "start": 3670.14, + "end": 3671.12, + "probability": 0.8384 + }, + { + "start": 3672.28, + "end": 3673.66, + "probability": 0.862 + }, + { + "start": 3674.28, + "end": 3676.58, + "probability": 0.8938 + }, + { + "start": 3677.38, + "end": 3678.36, + "probability": 0.904 + }, + { + "start": 3678.9, + "end": 3680.66, + "probability": 0.9089 + }, + { + "start": 3681.56, + "end": 3682.1, + "probability": 0.8625 + }, + { + "start": 3691.0, + "end": 3694.76, + "probability": 0.9041 + }, + { + "start": 3696.94, + "end": 3697.28, + "probability": 0.6246 + }, + { + "start": 3699.52, + "end": 3702.28, + "probability": 0.9547 + }, + { + "start": 3703.36, + "end": 3704.88, + "probability": 0.9884 + }, + { + "start": 3706.54, + "end": 3708.2, + "probability": 0.9455 + }, + { + "start": 3709.14, + "end": 3711.18, + "probability": 0.966 + }, + { + "start": 3711.66, + "end": 3716.12, + "probability": 0.5899 + }, + { + "start": 3717.1, + "end": 3718.04, + "probability": 0.9536 + }, + { + "start": 3719.42, + "end": 3720.18, + "probability": 0.7744 + }, + { + "start": 3720.9, + "end": 3723.54, + "probability": 0.7027 + }, + { + "start": 3724.12, + "end": 3727.46, + "probability": 0.8991 + }, + { + "start": 3728.2, + "end": 3728.88, + "probability": 0.7899 + }, + { + "start": 3731.38, + "end": 3732.3, + "probability": 0.8667 + }, + { + "start": 3733.56, + "end": 3740.26, + "probability": 0.9971 + }, + { + "start": 3741.06, + "end": 3741.88, + "probability": 0.9513 + }, + { + "start": 3743.34, + "end": 3744.28, + "probability": 0.9425 + }, + { + "start": 3745.26, + "end": 3746.96, + "probability": 0.994 + }, + { + "start": 3748.04, + "end": 3749.12, + "probability": 0.9971 + }, + { + "start": 3749.88, + "end": 3751.42, + "probability": 0.9837 + }, + { + "start": 3752.78, + "end": 3753.3, + "probability": 0.5191 + }, + { + "start": 3754.88, + "end": 3755.76, + "probability": 0.9488 + }, + { + "start": 3756.38, + "end": 3757.86, + "probability": 0.9997 + }, + { + "start": 3758.98, + "end": 3760.28, + "probability": 0.9971 + }, + { + "start": 3761.66, + "end": 3762.72, + "probability": 0.9055 + }, + { + "start": 3763.96, + "end": 3765.14, + "probability": 0.7062 + }, + { + "start": 3765.76, + "end": 3769.96, + "probability": 0.9872 + }, + { + "start": 3771.28, + "end": 3772.66, + "probability": 0.902 + }, + { + "start": 3773.66, + "end": 3776.74, + "probability": 0.9955 + }, + { + "start": 3777.66, + "end": 3778.88, + "probability": 0.9719 + }, + { + "start": 3779.86, + "end": 3780.02, + "probability": 0.9233 + }, + { + "start": 3783.16, + "end": 3784.2, + "probability": 0.7279 + }, + { + "start": 3785.02, + "end": 3788.84, + "probability": 0.9896 + }, + { + "start": 3789.74, + "end": 3792.6, + "probability": 0.7326 + }, + { + "start": 3792.74, + "end": 3794.92, + "probability": 0.9207 + }, + { + "start": 3795.52, + "end": 3796.42, + "probability": 0.8926 + }, + { + "start": 3797.44, + "end": 3798.76, + "probability": 0.7688 + }, + { + "start": 3798.94, + "end": 3799.22, + "probability": 0.4836 + }, + { + "start": 3799.66, + "end": 3802.24, + "probability": 0.916 + }, + { + "start": 3803.22, + "end": 3803.9, + "probability": 0.6212 + }, + { + "start": 3804.14, + "end": 3804.58, + "probability": 0.7642 + }, + { + "start": 3805.4, + "end": 3810.22, + "probability": 0.9963 + }, + { + "start": 3811.4, + "end": 3812.22, + "probability": 0.9812 + }, + { + "start": 3812.9, + "end": 3814.8, + "probability": 0.9879 + }, + { + "start": 3815.78, + "end": 3821.76, + "probability": 0.9939 + }, + { + "start": 3822.7, + "end": 3824.88, + "probability": 0.9973 + }, + { + "start": 3826.54, + "end": 3827.04, + "probability": 0.8507 + }, + { + "start": 3827.08, + "end": 3831.19, + "probability": 0.9883 + }, + { + "start": 3832.66, + "end": 3833.58, + "probability": 0.8391 + }, + { + "start": 3834.74, + "end": 3837.28, + "probability": 0.9458 + }, + { + "start": 3838.22, + "end": 3841.1, + "probability": 0.8848 + }, + { + "start": 3842.86, + "end": 3845.08, + "probability": 0.9812 + }, + { + "start": 3845.46, + "end": 3847.22, + "probability": 0.996 + }, + { + "start": 3849.0, + "end": 3851.08, + "probability": 0.9957 + }, + { + "start": 3852.6, + "end": 3854.14, + "probability": 0.8712 + }, + { + "start": 3855.18, + "end": 3856.62, + "probability": 0.9852 + }, + { + "start": 3857.6, + "end": 3861.34, + "probability": 0.7167 + }, + { + "start": 3862.32, + "end": 3862.84, + "probability": 0.774 + }, + { + "start": 3863.4, + "end": 3869.0, + "probability": 0.9505 + }, + { + "start": 3870.2, + "end": 3873.86, + "probability": 0.9978 + }, + { + "start": 3874.68, + "end": 3876.18, + "probability": 0.9149 + }, + { + "start": 3876.98, + "end": 3880.7, + "probability": 0.5804 + }, + { + "start": 3881.78, + "end": 3886.42, + "probability": 0.9658 + }, + { + "start": 3887.3, + "end": 3889.44, + "probability": 0.9988 + }, + { + "start": 3889.88, + "end": 3892.94, + "probability": 0.8372 + }, + { + "start": 3893.6, + "end": 3898.36, + "probability": 0.9832 + }, + { + "start": 3899.62, + "end": 3900.82, + "probability": 0.7704 + }, + { + "start": 3901.86, + "end": 3902.98, + "probability": 0.8359 + }, + { + "start": 3903.46, + "end": 3904.38, + "probability": 0.9189 + }, + { + "start": 3904.86, + "end": 3906.46, + "probability": 0.9138 + }, + { + "start": 3906.96, + "end": 3911.36, + "probability": 0.9543 + }, + { + "start": 3912.18, + "end": 3914.86, + "probability": 0.993 + }, + { + "start": 3915.56, + "end": 3922.14, + "probability": 0.9956 + }, + { + "start": 3923.35, + "end": 3926.46, + "probability": 0.8172 + }, + { + "start": 3927.62, + "end": 3927.96, + "probability": 0.7592 + }, + { + "start": 3929.8, + "end": 3935.1, + "probability": 0.9629 + }, + { + "start": 3935.6, + "end": 3936.12, + "probability": 0.89 + }, + { + "start": 3936.74, + "end": 3937.84, + "probability": 0.9175 + }, + { + "start": 3938.98, + "end": 3941.08, + "probability": 0.9985 + }, + { + "start": 3941.74, + "end": 3944.4, + "probability": 0.9219 + }, + { + "start": 3945.82, + "end": 3946.6, + "probability": 0.9795 + }, + { + "start": 3947.26, + "end": 3949.34, + "probability": 0.924 + }, + { + "start": 3950.34, + "end": 3953.95, + "probability": 0.9794 + }, + { + "start": 3955.14, + "end": 3956.44, + "probability": 0.8626 + }, + { + "start": 3957.6, + "end": 3958.34, + "probability": 0.9829 + }, + { + "start": 3959.16, + "end": 3960.02, + "probability": 0.9914 + }, + { + "start": 3960.64, + "end": 3961.5, + "probability": 0.9936 + }, + { + "start": 3962.14, + "end": 3962.84, + "probability": 0.9521 + }, + { + "start": 3963.64, + "end": 3964.9, + "probability": 0.9658 + }, + { + "start": 3966.34, + "end": 3968.58, + "probability": 0.9976 + }, + { + "start": 3969.82, + "end": 3971.04, + "probability": 0.7693 + }, + { + "start": 3971.66, + "end": 3976.08, + "probability": 0.9592 + }, + { + "start": 3976.98, + "end": 3982.12, + "probability": 0.9783 + }, + { + "start": 3982.68, + "end": 3983.52, + "probability": 0.8124 + }, + { + "start": 3984.32, + "end": 3987.78, + "probability": 0.9473 + }, + { + "start": 3988.5, + "end": 3989.56, + "probability": 0.3182 + }, + { + "start": 3990.38, + "end": 3991.3, + "probability": 0.9932 + }, + { + "start": 3993.14, + "end": 3994.9, + "probability": 0.9967 + }, + { + "start": 3995.0, + "end": 3996.18, + "probability": 0.8949 + }, + { + "start": 3997.08, + "end": 3998.3, + "probability": 0.8394 + }, + { + "start": 3998.5, + "end": 3999.25, + "probability": 0.7518 + }, + { + "start": 4000.02, + "end": 4001.4, + "probability": 0.832 + }, + { + "start": 4001.7, + "end": 4002.42, + "probability": 0.9222 + }, + { + "start": 4002.94, + "end": 4003.68, + "probability": 0.6243 + }, + { + "start": 4004.32, + "end": 4007.37, + "probability": 0.9617 + }, + { + "start": 4008.24, + "end": 4009.78, + "probability": 0.8918 + }, + { + "start": 4012.7, + "end": 4013.02, + "probability": 0.9521 + }, + { + "start": 4013.08, + "end": 4013.7, + "probability": 0.9709 + }, + { + "start": 4013.84, + "end": 4016.94, + "probability": 0.9572 + }, + { + "start": 4017.08, + "end": 4017.28, + "probability": 0.9636 + }, + { + "start": 4018.42, + "end": 4021.04, + "probability": 0.995 + }, + { + "start": 4021.74, + "end": 4026.42, + "probability": 0.9563 + }, + { + "start": 4027.14, + "end": 4029.02, + "probability": 0.9578 + }, + { + "start": 4029.6, + "end": 4032.12, + "probability": 0.9539 + }, + { + "start": 4033.06, + "end": 4037.6, + "probability": 0.925 + }, + { + "start": 4038.18, + "end": 4040.12, + "probability": 0.9992 + }, + { + "start": 4041.3, + "end": 4048.3, + "probability": 0.9984 + }, + { + "start": 4048.36, + "end": 4049.24, + "probability": 0.6838 + }, + { + "start": 4050.46, + "end": 4051.62, + "probability": 0.9767 + }, + { + "start": 4053.04, + "end": 4054.3, + "probability": 0.6831 + }, + { + "start": 4055.0, + "end": 4059.22, + "probability": 0.9991 + }, + { + "start": 4060.08, + "end": 4061.94, + "probability": 0.9822 + }, + { + "start": 4062.54, + "end": 4062.84, + "probability": 0.925 + }, + { + "start": 4064.12, + "end": 4064.64, + "probability": 0.8652 + }, + { + "start": 4065.58, + "end": 4066.32, + "probability": 0.9806 + }, + { + "start": 4067.02, + "end": 4067.92, + "probability": 0.9745 + }, + { + "start": 4068.44, + "end": 4073.08, + "probability": 0.9194 + }, + { + "start": 4073.6, + "end": 4075.44, + "probability": 0.5093 + }, + { + "start": 4077.0, + "end": 4080.44, + "probability": 0.8262 + }, + { + "start": 4081.44, + "end": 4083.52, + "probability": 0.6498 + }, + { + "start": 4083.98, + "end": 4085.92, + "probability": 0.9709 + }, + { + "start": 4086.7, + "end": 4090.78, + "probability": 0.9471 + }, + { + "start": 4091.74, + "end": 4093.06, + "probability": 0.9197 + }, + { + "start": 4094.48, + "end": 4101.2, + "probability": 0.9886 + }, + { + "start": 4101.2, + "end": 4107.58, + "probability": 0.9957 + }, + { + "start": 4108.44, + "end": 4112.32, + "probability": 0.9894 + }, + { + "start": 4112.82, + "end": 4116.8, + "probability": 0.9425 + }, + { + "start": 4117.26, + "end": 4121.84, + "probability": 0.9971 + }, + { + "start": 4121.84, + "end": 4127.16, + "probability": 0.9972 + }, + { + "start": 4127.92, + "end": 4128.44, + "probability": 0.8364 + }, + { + "start": 4129.34, + "end": 4132.9, + "probability": 0.9945 + }, + { + "start": 4132.9, + "end": 4137.92, + "probability": 0.9943 + }, + { + "start": 4137.94, + "end": 4141.64, + "probability": 0.9971 + }, + { + "start": 4143.16, + "end": 4145.94, + "probability": 0.9178 + }, + { + "start": 4146.64, + "end": 4147.5, + "probability": 0.6105 + }, + { + "start": 4147.83, + "end": 4150.4, + "probability": 0.9121 + }, + { + "start": 4150.88, + "end": 4153.48, + "probability": 0.9836 + }, + { + "start": 4153.92, + "end": 4158.5, + "probability": 0.9936 + }, + { + "start": 4159.6, + "end": 4160.24, + "probability": 0.8893 + }, + { + "start": 4161.08, + "end": 4166.3, + "probability": 0.9843 + }, + { + "start": 4166.82, + "end": 4172.12, + "probability": 0.9784 + }, + { + "start": 4172.88, + "end": 4177.24, + "probability": 0.9529 + }, + { + "start": 4177.56, + "end": 4180.78, + "probability": 0.9142 + }, + { + "start": 4182.21, + "end": 4184.92, + "probability": 0.9995 + }, + { + "start": 4185.5, + "end": 4188.14, + "probability": 0.8581 + }, + { + "start": 4188.76, + "end": 4190.2, + "probability": 0.7843 + }, + { + "start": 4192.38, + "end": 4194.0, + "probability": 0.9517 + }, + { + "start": 4194.22, + "end": 4195.06, + "probability": 0.8853 + }, + { + "start": 4196.2, + "end": 4196.76, + "probability": 0.5269 + }, + { + "start": 4198.68, + "end": 4202.57, + "probability": 0.8004 + }, + { + "start": 4203.5, + "end": 4212.26, + "probability": 0.634 + }, + { + "start": 4213.14, + "end": 4214.94, + "probability": 0.7733 + }, + { + "start": 4215.94, + "end": 4219.4, + "probability": 0.9566 + }, + { + "start": 4219.92, + "end": 4220.66, + "probability": 0.8095 + }, + { + "start": 4221.58, + "end": 4222.42, + "probability": 0.971 + }, + { + "start": 4223.02, + "end": 4225.54, + "probability": 0.9939 + }, + { + "start": 4226.1, + "end": 4231.1, + "probability": 0.984 + }, + { + "start": 4232.02, + "end": 4235.12, + "probability": 0.7833 + }, + { + "start": 4235.7, + "end": 4239.08, + "probability": 0.9607 + }, + { + "start": 4240.02, + "end": 4244.58, + "probability": 0.7939 + }, + { + "start": 4244.72, + "end": 4246.14, + "probability": 0.7762 + }, + { + "start": 4247.0, + "end": 4248.0, + "probability": 0.9159 + }, + { + "start": 4249.6, + "end": 4253.64, + "probability": 0.9147 + }, + { + "start": 4255.2, + "end": 4255.4, + "probability": 0.9492 + }, + { + "start": 4255.92, + "end": 4258.66, + "probability": 0.5736 + }, + { + "start": 4259.06, + "end": 4260.6, + "probability": 0.8724 + }, + { + "start": 4261.14, + "end": 4262.1, + "probability": 0.9755 + }, + { + "start": 4262.18, + "end": 4262.88, + "probability": 0.9683 + }, + { + "start": 4262.9, + "end": 4263.52, + "probability": 0.9739 + }, + { + "start": 4263.56, + "end": 4264.6, + "probability": 0.9187 + }, + { + "start": 4265.3, + "end": 4265.78, + "probability": 0.5241 + }, + { + "start": 4266.92, + "end": 4268.42, + "probability": 0.9135 + }, + { + "start": 4269.12, + "end": 4270.46, + "probability": 0.7949 + }, + { + "start": 4270.58, + "end": 4272.44, + "probability": 0.7974 + }, + { + "start": 4273.02, + "end": 4274.6, + "probability": 0.7345 + }, + { + "start": 4275.36, + "end": 4277.02, + "probability": 0.7435 + }, + { + "start": 4277.94, + "end": 4281.42, + "probability": 0.6995 + }, + { + "start": 4281.96, + "end": 4284.1, + "probability": 0.9934 + }, + { + "start": 4284.88, + "end": 4288.5, + "probability": 0.9805 + }, + { + "start": 4288.9, + "end": 4291.8, + "probability": 0.8753 + }, + { + "start": 4292.24, + "end": 4295.18, + "probability": 0.9967 + }, + { + "start": 4295.88, + "end": 4298.38, + "probability": 0.9049 + }, + { + "start": 4298.5, + "end": 4299.3, + "probability": 0.9664 + }, + { + "start": 4301.32, + "end": 4301.42, + "probability": 0.0741 + }, + { + "start": 4301.42, + "end": 4303.36, + "probability": 0.8516 + }, + { + "start": 4303.4, + "end": 4307.36, + "probability": 0.985 + }, + { + "start": 4307.62, + "end": 4308.22, + "probability": 0.9746 + }, + { + "start": 4309.28, + "end": 4310.6, + "probability": 0.9952 + }, + { + "start": 4327.08, + "end": 4327.08, + "probability": 0.0099 + }, + { + "start": 4327.08, + "end": 4329.74, + "probability": 0.7991 + }, + { + "start": 4334.42, + "end": 4337.42, + "probability": 0.804 + }, + { + "start": 4338.86, + "end": 4340.36, + "probability": 0.9071 + }, + { + "start": 4341.78, + "end": 4343.86, + "probability": 0.9983 + }, + { + "start": 4344.8, + "end": 4346.98, + "probability": 0.9684 + }, + { + "start": 4349.44, + "end": 4350.52, + "probability": 0.9563 + }, + { + "start": 4351.72, + "end": 4353.12, + "probability": 0.9972 + }, + { + "start": 4354.32, + "end": 4357.92, + "probability": 0.9888 + }, + { + "start": 4358.82, + "end": 4361.3, + "probability": 0.8384 + }, + { + "start": 4363.02, + "end": 4365.3, + "probability": 0.8331 + }, + { + "start": 4366.04, + "end": 4366.78, + "probability": 0.7735 + }, + { + "start": 4366.9, + "end": 4368.48, + "probability": 0.9959 + }, + { + "start": 4369.56, + "end": 4372.22, + "probability": 0.9672 + }, + { + "start": 4373.06, + "end": 4374.82, + "probability": 0.9858 + }, + { + "start": 4374.9, + "end": 4376.24, + "probability": 0.9795 + }, + { + "start": 4377.1, + "end": 4377.44, + "probability": 0.4986 + }, + { + "start": 4377.72, + "end": 4378.35, + "probability": 0.8929 + }, + { + "start": 4379.52, + "end": 4380.32, + "probability": 0.6334 + }, + { + "start": 4380.34, + "end": 4380.98, + "probability": 0.7014 + }, + { + "start": 4381.68, + "end": 4385.62, + "probability": 0.2634 + }, + { + "start": 4385.84, + "end": 4388.8, + "probability": 0.9616 + }, + { + "start": 4388.84, + "end": 4390.41, + "probability": 0.5517 + }, + { + "start": 4391.24, + "end": 4392.74, + "probability": 0.0042 + }, + { + "start": 4392.88, + "end": 4392.98, + "probability": 0.1249 + }, + { + "start": 4392.98, + "end": 4393.36, + "probability": 0.4482 + }, + { + "start": 4393.6, + "end": 4395.51, + "probability": 0.4409 + }, + { + "start": 4395.64, + "end": 4397.06, + "probability": 0.1366 + }, + { + "start": 4397.08, + "end": 4397.26, + "probability": 0.0062 + }, + { + "start": 4398.16, + "end": 4400.82, + "probability": 0.2407 + }, + { + "start": 4400.82, + "end": 4402.04, + "probability": 0.3877 + }, + { + "start": 4402.04, + "end": 4402.4, + "probability": 0.2152 + }, + { + "start": 4403.38, + "end": 4404.16, + "probability": 0.3793 + }, + { + "start": 4404.4, + "end": 4404.84, + "probability": 0.0398 + }, + { + "start": 4404.84, + "end": 4404.84, + "probability": 0.0483 + }, + { + "start": 4404.84, + "end": 4404.84, + "probability": 0.0806 + }, + { + "start": 4404.84, + "end": 4407.42, + "probability": 0.8389 + }, + { + "start": 4407.46, + "end": 4408.23, + "probability": 0.6587 + }, + { + "start": 4408.46, + "end": 4410.26, + "probability": 0.9053 + }, + { + "start": 4410.38, + "end": 4411.0, + "probability": 0.7184 + }, + { + "start": 4411.82, + "end": 4412.8, + "probability": 0.6684 + }, + { + "start": 4413.14, + "end": 4414.38, + "probability": 0.8717 + }, + { + "start": 4414.98, + "end": 4415.84, + "probability": 0.601 + }, + { + "start": 4415.92, + "end": 4416.72, + "probability": 0.5206 + }, + { + "start": 4416.88, + "end": 4419.68, + "probability": 0.9892 + }, + { + "start": 4420.14, + "end": 4421.98, + "probability": 0.9973 + }, + { + "start": 4422.52, + "end": 4425.41, + "probability": 0.9191 + }, + { + "start": 4426.52, + "end": 4429.6, + "probability": 0.7317 + }, + { + "start": 4430.88, + "end": 4432.9, + "probability": 0.3897 + }, + { + "start": 4433.52, + "end": 4434.72, + "probability": 0.9526 + }, + { + "start": 4435.52, + "end": 4436.02, + "probability": 0.7498 + }, + { + "start": 4436.94, + "end": 4443.36, + "probability": 0.9795 + }, + { + "start": 4443.86, + "end": 4445.82, + "probability": 0.9896 + }, + { + "start": 4446.4, + "end": 4448.12, + "probability": 0.7868 + }, + { + "start": 4448.28, + "end": 4449.98, + "probability": 0.6687 + }, + { + "start": 4450.08, + "end": 4450.88, + "probability": 0.763 + }, + { + "start": 4450.92, + "end": 4451.12, + "probability": 0.7449 + }, + { + "start": 4451.59, + "end": 4452.23, + "probability": 0.1561 + }, + { + "start": 4452.96, + "end": 4454.04, + "probability": 0.8615 + }, + { + "start": 4454.92, + "end": 4458.8, + "probability": 0.9619 + }, + { + "start": 4458.84, + "end": 4460.32, + "probability": 0.835 + }, + { + "start": 4460.4, + "end": 4461.2, + "probability": 0.1679 + }, + { + "start": 4461.32, + "end": 4461.6, + "probability": 0.0032 + }, + { + "start": 4466.16, + "end": 4466.3, + "probability": 0.2759 + }, + { + "start": 4467.16, + "end": 4467.66, + "probability": 0.4691 + }, + { + "start": 4467.82, + "end": 4468.1, + "probability": 0.719 + }, + { + "start": 4468.72, + "end": 4471.32, + "probability": 0.9899 + }, + { + "start": 4472.58, + "end": 4473.6, + "probability": 0.7953 + }, + { + "start": 4474.24, + "end": 4474.9, + "probability": 0.4692 + }, + { + "start": 4475.24, + "end": 4476.44, + "probability": 0.868 + }, + { + "start": 4476.52, + "end": 4478.62, + "probability": 0.9607 + }, + { + "start": 4487.2, + "end": 4487.5, + "probability": 0.8197 + }, + { + "start": 4490.72, + "end": 4490.72, + "probability": 0.293 + }, + { + "start": 4490.72, + "end": 4490.72, + "probability": 0.1537 + }, + { + "start": 4490.72, + "end": 4492.62, + "probability": 0.8901 + }, + { + "start": 4492.7, + "end": 4494.02, + "probability": 0.9663 + }, + { + "start": 4495.34, + "end": 4497.4, + "probability": 0.6088 + }, + { + "start": 4497.7, + "end": 4498.48, + "probability": 0.8424 + }, + { + "start": 4499.68, + "end": 4503.48, + "probability": 0.7479 + }, + { + "start": 4504.58, + "end": 4506.14, + "probability": 0.5773 + }, + { + "start": 4506.78, + "end": 4507.1, + "probability": 0.7139 + }, + { + "start": 4507.38, + "end": 4508.38, + "probability": 0.5691 + }, + { + "start": 4508.5, + "end": 4509.4, + "probability": 0.6694 + }, + { + "start": 4509.7, + "end": 4510.56, + "probability": 0.9689 + }, + { + "start": 4511.88, + "end": 4513.32, + "probability": 0.9893 + }, + { + "start": 4514.28, + "end": 4514.92, + "probability": 0.9807 + }, + { + "start": 4515.62, + "end": 4517.26, + "probability": 0.8635 + }, + { + "start": 4518.58, + "end": 4518.96, + "probability": 0.7659 + }, + { + "start": 4519.7, + "end": 4522.7, + "probability": 0.9487 + }, + { + "start": 4524.28, + "end": 4527.98, + "probability": 0.9766 + }, + { + "start": 4530.4, + "end": 4533.7, + "probability": 0.9001 + }, + { + "start": 4533.8, + "end": 4535.06, + "probability": 0.7383 + }, + { + "start": 4535.98, + "end": 4536.68, + "probability": 0.5656 + }, + { + "start": 4537.42, + "end": 4538.1, + "probability": 0.9363 + }, + { + "start": 4539.38, + "end": 4541.9, + "probability": 0.6473 + }, + { + "start": 4542.72, + "end": 4545.04, + "probability": 0.9811 + }, + { + "start": 4545.12, + "end": 4547.1, + "probability": 0.7719 + }, + { + "start": 4547.76, + "end": 4549.26, + "probability": 0.9157 + }, + { + "start": 4551.18, + "end": 4553.37, + "probability": 0.9766 + }, + { + "start": 4554.62, + "end": 4556.68, + "probability": 0.5929 + }, + { + "start": 4558.44, + "end": 4562.24, + "probability": 0.551 + }, + { + "start": 4562.44, + "end": 4563.94, + "probability": 0.9902 + }, + { + "start": 4564.04, + "end": 4564.46, + "probability": 0.7534 + }, + { + "start": 4564.5, + "end": 4565.6, + "probability": 0.9075 + }, + { + "start": 4566.38, + "end": 4568.74, + "probability": 0.9662 + }, + { + "start": 4569.72, + "end": 4570.48, + "probability": 0.8132 + }, + { + "start": 4570.62, + "end": 4572.7, + "probability": 0.9686 + }, + { + "start": 4573.14, + "end": 4574.1, + "probability": 0.7084 + }, + { + "start": 4576.32, + "end": 4580.82, + "probability": 0.9692 + }, + { + "start": 4581.68, + "end": 4584.52, + "probability": 0.9814 + }, + { + "start": 4585.66, + "end": 4588.66, + "probability": 0.9822 + }, + { + "start": 4593.96, + "end": 4594.68, + "probability": 0.9678 + }, + { + "start": 4594.68, + "end": 4594.68, + "probability": 0.1978 + }, + { + "start": 4594.68, + "end": 4595.44, + "probability": 0.3427 + }, + { + "start": 4595.56, + "end": 4596.38, + "probability": 0.365 + }, + { + "start": 4597.16, + "end": 4598.38, + "probability": 0.8502 + }, + { + "start": 4599.08, + "end": 4600.7, + "probability": 0.9714 + }, + { + "start": 4601.52, + "end": 4604.34, + "probability": 0.9012 + }, + { + "start": 4605.66, + "end": 4607.2, + "probability": 0.6593 + }, + { + "start": 4608.2, + "end": 4613.2, + "probability": 0.9653 + }, + { + "start": 4614.28, + "end": 4615.46, + "probability": 0.9484 + }, + { + "start": 4616.22, + "end": 4619.66, + "probability": 0.9187 + }, + { + "start": 4620.34, + "end": 4620.98, + "probability": 0.71 + }, + { + "start": 4622.52, + "end": 4623.98, + "probability": 0.8933 + }, + { + "start": 4624.94, + "end": 4627.34, + "probability": 0.9092 + }, + { + "start": 4628.3, + "end": 4632.62, + "probability": 0.9946 + }, + { + "start": 4634.66, + "end": 4637.8, + "probability": 0.9956 + }, + { + "start": 4638.72, + "end": 4639.6, + "probability": 0.447 + }, + { + "start": 4639.64, + "end": 4640.98, + "probability": 0.9536 + }, + { + "start": 4642.56, + "end": 4645.14, + "probability": 0.6796 + }, + { + "start": 4646.18, + "end": 4648.41, + "probability": 0.9863 + }, + { + "start": 4650.22, + "end": 4655.18, + "probability": 0.9851 + }, + { + "start": 4656.98, + "end": 4658.46, + "probability": 0.9945 + }, + { + "start": 4659.56, + "end": 4661.26, + "probability": 0.7959 + }, + { + "start": 4661.9, + "end": 4663.86, + "probability": 0.7341 + }, + { + "start": 4664.7, + "end": 4667.04, + "probability": 0.7822 + }, + { + "start": 4667.38, + "end": 4669.12, + "probability": 0.9209 + }, + { + "start": 4669.9, + "end": 4671.48, + "probability": 0.7732 + }, + { + "start": 4671.56, + "end": 4672.32, + "probability": 0.5564 + }, + { + "start": 4672.42, + "end": 4673.2, + "probability": 0.7256 + }, + { + "start": 4673.78, + "end": 4674.84, + "probability": 0.8519 + }, + { + "start": 4674.88, + "end": 4675.78, + "probability": 0.5718 + }, + { + "start": 4675.84, + "end": 4677.12, + "probability": 0.669 + }, + { + "start": 4677.32, + "end": 4677.88, + "probability": 0.6523 + }, + { + "start": 4677.96, + "end": 4678.42, + "probability": 0.7738 + }, + { + "start": 4678.48, + "end": 4681.9, + "probability": 0.9238 + }, + { + "start": 4681.96, + "end": 4682.26, + "probability": 0.8567 + }, + { + "start": 4682.72, + "end": 4683.94, + "probability": 0.9616 + }, + { + "start": 4684.22, + "end": 4685.64, + "probability": 0.9089 + }, + { + "start": 4686.54, + "end": 4688.86, + "probability": 0.9391 + }, + { + "start": 4689.5, + "end": 4689.88, + "probability": 0.6406 + }, + { + "start": 4690.06, + "end": 4690.86, + "probability": 0.641 + }, + { + "start": 4691.28, + "end": 4692.25, + "probability": 0.9022 + }, + { + "start": 4692.64, + "end": 4693.62, + "probability": 0.9375 + }, + { + "start": 4693.66, + "end": 4695.2, + "probability": 0.9912 + }, + { + "start": 4695.78, + "end": 4697.42, + "probability": 0.9463 + }, + { + "start": 4697.78, + "end": 4699.74, + "probability": 0.8964 + }, + { + "start": 4699.84, + "end": 4701.9, + "probability": 0.9616 + }, + { + "start": 4702.16, + "end": 4702.58, + "probability": 0.8411 + }, + { + "start": 4703.16, + "end": 4705.12, + "probability": 0.7362 + }, + { + "start": 4705.96, + "end": 4708.06, + "probability": 0.9082 + }, + { + "start": 4709.6, + "end": 4711.18, + "probability": 0.7531 + }, + { + "start": 4718.14, + "end": 4718.22, + "probability": 0.0717 + }, + { + "start": 4718.22, + "end": 4718.22, + "probability": 0.0105 + }, + { + "start": 4718.22, + "end": 4718.22, + "probability": 0.3536 + }, + { + "start": 4718.22, + "end": 4718.58, + "probability": 0.0259 + }, + { + "start": 4718.58, + "end": 4718.58, + "probability": 0.0146 + }, + { + "start": 4718.58, + "end": 4719.7, + "probability": 0.5909 + }, + { + "start": 4720.06, + "end": 4720.6, + "probability": 0.0723 + }, + { + "start": 4720.78, + "end": 4721.72, + "probability": 0.2977 + }, + { + "start": 4722.2, + "end": 4726.56, + "probability": 0.899 + }, + { + "start": 4727.12, + "end": 4728.31, + "probability": 0.4964 + }, + { + "start": 4728.86, + "end": 4730.04, + "probability": 0.7663 + }, + { + "start": 4730.18, + "end": 4732.86, + "probability": 0.9303 + }, + { + "start": 4732.92, + "end": 4734.56, + "probability": 0.8766 + }, + { + "start": 4734.9, + "end": 4738.5, + "probability": 0.6402 + }, + { + "start": 4747.34, + "end": 4747.46, + "probability": 0.2176 + }, + { + "start": 4748.26, + "end": 4751.08, + "probability": 0.1288 + }, + { + "start": 4751.9, + "end": 4752.08, + "probability": 0.1483 + }, + { + "start": 4752.82, + "end": 4753.18, + "probability": 0.0099 + }, + { + "start": 4754.6, + "end": 4754.78, + "probability": 0.7374 + }, + { + "start": 4754.78, + "end": 4754.96, + "probability": 0.8335 + }, + { + "start": 4754.96, + "end": 4757.82, + "probability": 0.7187 + }, + { + "start": 4757.92, + "end": 4759.64, + "probability": 0.9878 + }, + { + "start": 4761.23, + "end": 4764.9, + "probability": 0.8833 + }, + { + "start": 4765.62, + "end": 4767.0, + "probability": 0.9963 + }, + { + "start": 4767.64, + "end": 4771.32, + "probability": 0.9944 + }, + { + "start": 4771.88, + "end": 4772.38, + "probability": 0.5213 + }, + { + "start": 4773.18, + "end": 4773.18, + "probability": 0.0389 + }, + { + "start": 4786.4, + "end": 4787.06, + "probability": 0.083 + }, + { + "start": 4787.06, + "end": 4787.06, + "probability": 0.0449 + }, + { + "start": 4787.06, + "end": 4790.71, + "probability": 0.8521 + }, + { + "start": 4799.92, + "end": 4801.0, + "probability": 0.0824 + }, + { + "start": 4801.0, + "end": 4801.0, + "probability": 0.1344 + }, + { + "start": 4801.0, + "end": 4802.42, + "probability": 0.5166 + }, + { + "start": 4804.16, + "end": 4806.14, + "probability": 0.3475 + }, + { + "start": 4806.74, + "end": 4808.86, + "probability": 0.6046 + }, + { + "start": 4809.16, + "end": 4810.89, + "probability": 0.9802 + }, + { + "start": 4811.48, + "end": 4814.34, + "probability": 0.9173 + }, + { + "start": 4814.72, + "end": 4821.24, + "probability": 0.9802 + }, + { + "start": 4821.92, + "end": 4822.64, + "probability": 0.7575 + }, + { + "start": 4823.16, + "end": 4827.82, + "probability": 0.9958 + }, + { + "start": 4828.44, + "end": 4828.86, + "probability": 0.7647 + }, + { + "start": 4830.32, + "end": 4830.34, + "probability": 0.1544 + }, + { + "start": 4842.04, + "end": 4842.88, + "probability": 0.1205 + }, + { + "start": 4842.88, + "end": 4842.88, + "probability": 0.177 + }, + { + "start": 4842.88, + "end": 4842.88, + "probability": 0.6436 + }, + { + "start": 4842.88, + "end": 4844.82, + "probability": 0.6222 + }, + { + "start": 4844.9, + "end": 4846.66, + "probability": 0.9873 + }, + { + "start": 4847.64, + "end": 4848.82, + "probability": 0.7825 + }, + { + "start": 4849.46, + "end": 4851.78, + "probability": 0.7466 + }, + { + "start": 4852.42, + "end": 4854.0, + "probability": 0.9913 + }, + { + "start": 4854.08, + "end": 4856.04, + "probability": 0.8445 + }, + { + "start": 4856.2, + "end": 4858.6, + "probability": 0.7988 + }, + { + "start": 4859.14, + "end": 4861.0, + "probability": 0.367 + }, + { + "start": 4861.58, + "end": 4864.04, + "probability": 0.9875 + }, + { + "start": 4864.78, + "end": 4868.71, + "probability": 0.8018 + }, + { + "start": 4876.0, + "end": 4876.84, + "probability": 0.6331 + }, + { + "start": 4876.86, + "end": 4879.04, + "probability": 0.7932 + }, + { + "start": 4879.36, + "end": 4880.64, + "probability": 0.7464 + }, + { + "start": 4881.88, + "end": 4886.34, + "probability": 0.9705 + }, + { + "start": 4887.0, + "end": 4887.7, + "probability": 0.2654 + }, + { + "start": 4888.42, + "end": 4892.6, + "probability": 0.9887 + }, + { + "start": 4893.48, + "end": 4896.32, + "probability": 0.9946 + }, + { + "start": 4896.32, + "end": 4900.02, + "probability": 0.9994 + }, + { + "start": 4900.9, + "end": 4904.62, + "probability": 0.9948 + }, + { + "start": 4904.62, + "end": 4906.88, + "probability": 0.998 + }, + { + "start": 4907.88, + "end": 4911.8, + "probability": 0.9986 + }, + { + "start": 4911.8, + "end": 4915.5, + "probability": 0.9995 + }, + { + "start": 4916.14, + "end": 4919.98, + "probability": 0.9961 + }, + { + "start": 4920.48, + "end": 4922.86, + "probability": 0.9982 + }, + { + "start": 4922.96, + "end": 4926.16, + "probability": 0.9951 + }, + { + "start": 4927.32, + "end": 4932.74, + "probability": 0.9858 + }, + { + "start": 4933.18, + "end": 4940.06, + "probability": 0.987 + }, + { + "start": 4940.06, + "end": 4945.5, + "probability": 0.9971 + }, + { + "start": 4946.1, + "end": 4949.22, + "probability": 0.9868 + }, + { + "start": 4950.42, + "end": 4950.42, + "probability": 0.4481 + }, + { + "start": 4950.5, + "end": 4954.16, + "probability": 0.9932 + }, + { + "start": 4954.16, + "end": 4959.56, + "probability": 0.9988 + }, + { + "start": 4959.7, + "end": 4960.3, + "probability": 0.4489 + }, + { + "start": 4960.3, + "end": 4964.58, + "probability": 0.9969 + }, + { + "start": 4964.86, + "end": 4967.66, + "probability": 0.9902 + }, + { + "start": 4968.24, + "end": 4972.42, + "probability": 0.9906 + }, + { + "start": 4972.8, + "end": 4973.54, + "probability": 0.9738 + }, + { + "start": 4973.68, + "end": 4975.06, + "probability": 0.8158 + }, + { + "start": 4975.14, + "end": 4979.12, + "probability": 0.9927 + }, + { + "start": 4992.14, + "end": 4992.96, + "probability": 0.8826 + }, + { + "start": 4993.64, + "end": 4993.76, + "probability": 0.8139 + }, + { + "start": 4994.28, + "end": 4996.54, + "probability": 0.8022 + }, + { + "start": 4996.86, + "end": 4998.2, + "probability": 0.9556 + }, + { + "start": 5000.34, + "end": 5001.22, + "probability": 0.623 + }, + { + "start": 5001.96, + "end": 5004.06, + "probability": 0.9351 + }, + { + "start": 5004.58, + "end": 5005.78, + "probability": 0.9204 + }, + { + "start": 5006.06, + "end": 5008.92, + "probability": 0.9772 + }, + { + "start": 5008.92, + "end": 5008.92, + "probability": 0.1834 + }, + { + "start": 5008.92, + "end": 5011.74, + "probability": 0.7827 + }, + { + "start": 5012.82, + "end": 5016.27, + "probability": 0.9526 + }, + { + "start": 5016.64, + "end": 5019.42, + "probability": 0.9648 + }, + { + "start": 5021.16, + "end": 5026.76, + "probability": 0.9921 + }, + { + "start": 5028.59, + "end": 5031.24, + "probability": 0.7321 + }, + { + "start": 5032.02, + "end": 5035.16, + "probability": 0.9958 + }, + { + "start": 5036.12, + "end": 5038.92, + "probability": 0.9934 + }, + { + "start": 5038.92, + "end": 5041.66, + "probability": 0.9965 + }, + { + "start": 5042.3, + "end": 5045.64, + "probability": 0.9969 + }, + { + "start": 5045.64, + "end": 5049.0, + "probability": 0.9857 + }, + { + "start": 5049.0, + "end": 5053.52, + "probability": 0.9889 + }, + { + "start": 5053.94, + "end": 5056.14, + "probability": 0.9867 + }, + { + "start": 5056.14, + "end": 5058.86, + "probability": 0.8569 + }, + { + "start": 5059.8, + "end": 5063.26, + "probability": 0.9951 + }, + { + "start": 5063.26, + "end": 5064.32, + "probability": 0.7687 + }, + { + "start": 5064.48, + "end": 5067.88, + "probability": 0.935 + }, + { + "start": 5067.88, + "end": 5070.54, + "probability": 0.9875 + }, + { + "start": 5071.16, + "end": 5076.24, + "probability": 0.9927 + }, + { + "start": 5076.24, + "end": 5080.56, + "probability": 0.9993 + }, + { + "start": 5081.28, + "end": 5085.8, + "probability": 0.9891 + }, + { + "start": 5086.32, + "end": 5088.44, + "probability": 0.9615 + }, + { + "start": 5089.46, + "end": 5091.98, + "probability": 0.991 + }, + { + "start": 5093.6, + "end": 5094.68, + "probability": 0.7414 + }, + { + "start": 5095.1, + "end": 5100.48, + "probability": 0.9976 + }, + { + "start": 5101.92, + "end": 5105.04, + "probability": 0.9906 + }, + { + "start": 5105.04, + "end": 5108.36, + "probability": 0.9769 + }, + { + "start": 5108.5, + "end": 5110.36, + "probability": 0.9961 + }, + { + "start": 5111.73, + "end": 5116.26, + "probability": 0.8491 + }, + { + "start": 5117.49, + "end": 5120.9, + "probability": 0.8993 + }, + { + "start": 5120.9, + "end": 5123.26, + "probability": 0.8727 + }, + { + "start": 5124.56, + "end": 5128.54, + "probability": 0.957 + }, + { + "start": 5128.6, + "end": 5131.5, + "probability": 0.9481 + }, + { + "start": 5132.68, + "end": 5137.74, + "probability": 0.9849 + }, + { + "start": 5138.68, + "end": 5143.78, + "probability": 0.9359 + }, + { + "start": 5143.78, + "end": 5149.9, + "probability": 0.9941 + }, + { + "start": 5150.38, + "end": 5151.24, + "probability": 0.4041 + }, + { + "start": 5151.4, + "end": 5156.38, + "probability": 0.971 + }, + { + "start": 5156.92, + "end": 5163.8, + "probability": 0.9951 + }, + { + "start": 5164.04, + "end": 5165.56, + "probability": 0.8282 + }, + { + "start": 5165.68, + "end": 5167.94, + "probability": 0.9967 + }, + { + "start": 5168.48, + "end": 5175.04, + "probability": 0.9958 + }, + { + "start": 5175.08, + "end": 5178.18, + "probability": 0.796 + }, + { + "start": 5178.3, + "end": 5180.54, + "probability": 0.831 + }, + { + "start": 5181.14, + "end": 5185.46, + "probability": 0.9966 + }, + { + "start": 5186.26, + "end": 5189.8, + "probability": 0.9964 + }, + { + "start": 5190.0, + "end": 5191.32, + "probability": 0.9946 + }, + { + "start": 5191.78, + "end": 5191.85, + "probability": 0.235 + }, + { + "start": 5192.08, + "end": 5192.34, + "probability": 0.253 + }, + { + "start": 5192.5, + "end": 5193.52, + "probability": 0.8303 + }, + { + "start": 5193.7, + "end": 5199.65, + "probability": 0.9443 + }, + { + "start": 5200.58, + "end": 5201.74, + "probability": 0.8958 + }, + { + "start": 5201.82, + "end": 5202.28, + "probability": 0.7207 + }, + { + "start": 5202.4, + "end": 5202.8, + "probability": 0.4692 + }, + { + "start": 5202.92, + "end": 5205.56, + "probability": 0.9898 + }, + { + "start": 5206.28, + "end": 5209.56, + "probability": 0.8475 + }, + { + "start": 5209.94, + "end": 5210.04, + "probability": 0.8943 + }, + { + "start": 5210.68, + "end": 5211.82, + "probability": 0.7358 + }, + { + "start": 5212.06, + "end": 5213.04, + "probability": 0.7748 + }, + { + "start": 5213.18, + "end": 5214.64, + "probability": 0.6641 + }, + { + "start": 5214.8, + "end": 5215.92, + "probability": 0.9066 + }, + { + "start": 5222.44, + "end": 5222.9, + "probability": 0.7478 + }, + { + "start": 5224.36, + "end": 5233.16, + "probability": 0.0777 + }, + { + "start": 5238.08, + "end": 5239.16, + "probability": 0.0238 + }, + { + "start": 5239.88, + "end": 5240.04, + "probability": 0.1129 + }, + { + "start": 5240.6, + "end": 5246.34, + "probability": 0.5504 + }, + { + "start": 5247.04, + "end": 5248.86, + "probability": 0.0241 + }, + { + "start": 5249.44, + "end": 5250.72, + "probability": 0.1198 + }, + { + "start": 5268.28, + "end": 5269.02, + "probability": 0.128 + }, + { + "start": 5269.6, + "end": 5274.18, + "probability": 0.2907 + }, + { + "start": 5274.22, + "end": 5274.36, + "probability": 0.0618 + }, + { + "start": 5274.36, + "end": 5275.2, + "probability": 0.0218 + }, + { + "start": 5277.6, + "end": 5282.18, + "probability": 0.0555 + }, + { + "start": 5283.0, + "end": 5283.1, + "probability": 0.1287 + }, + { + "start": 5283.1, + "end": 5283.1, + "probability": 0.0682 + }, + { + "start": 5283.1, + "end": 5283.8, + "probability": 0.1064 + }, + { + "start": 5285.24, + "end": 5288.0, + "probability": 0.0102 + }, + { + "start": 5291.24, + "end": 5292.64, + "probability": 0.2907 + }, + { + "start": 5293.42, + "end": 5294.58, + "probability": 0.062 + }, + { + "start": 5294.58, + "end": 5295.82, + "probability": 0.0727 + }, + { + "start": 5296.0, + "end": 5296.0, + "probability": 0.0 + }, + { + "start": 5296.0, + "end": 5296.0, + "probability": 0.0 + }, + { + "start": 5296.0, + "end": 5296.0, + "probability": 0.0 + }, + { + "start": 5296.0, + "end": 5296.0, + "probability": 0.0 + }, + { + "start": 5296.0, + "end": 5296.0, + "probability": 0.0 + }, + { + "start": 5296.0, + "end": 5296.0, + "probability": 0.0 + }, + { + "start": 5296.0, + "end": 5296.0, + "probability": 0.0 + }, + { + "start": 5296.0, + "end": 5296.0, + "probability": 0.0 + }, + { + "start": 5296.0, + "end": 5296.0, + "probability": 0.0 + }, + { + "start": 5296.0, + "end": 5296.0, + "probability": 0.0 + }, + { + "start": 5296.0, + "end": 5296.0, + "probability": 0.0 + }, + { + "start": 5296.0, + "end": 5296.0, + "probability": 0.0 + }, + { + "start": 5298.12, + "end": 5301.04, + "probability": 0.2892 + }, + { + "start": 5304.58, + "end": 5307.38, + "probability": 0.9297 + }, + { + "start": 5307.88, + "end": 5310.14, + "probability": 0.8802 + }, + { + "start": 5310.74, + "end": 5311.88, + "probability": 0.9854 + }, + { + "start": 5313.56, + "end": 5317.66, + "probability": 0.9654 + }, + { + "start": 5318.34, + "end": 5323.12, + "probability": 0.9962 + }, + { + "start": 5324.72, + "end": 5325.08, + "probability": 0.7117 + }, + { + "start": 5325.6, + "end": 5328.77, + "probability": 0.9976 + }, + { + "start": 5329.62, + "end": 5332.6, + "probability": 0.9973 + }, + { + "start": 5333.74, + "end": 5337.24, + "probability": 0.9873 + }, + { + "start": 5337.72, + "end": 5340.3, + "probability": 0.9222 + }, + { + "start": 5340.72, + "end": 5342.0, + "probability": 0.9829 + }, + { + "start": 5343.26, + "end": 5347.86, + "probability": 0.8356 + }, + { + "start": 5348.32, + "end": 5349.66, + "probability": 0.898 + }, + { + "start": 5350.9, + "end": 5356.4, + "probability": 0.8755 + }, + { + "start": 5356.82, + "end": 5358.36, + "probability": 0.9855 + }, + { + "start": 5358.8, + "end": 5359.8, + "probability": 0.863 + }, + { + "start": 5359.94, + "end": 5362.74, + "probability": 0.9331 + }, + { + "start": 5365.0, + "end": 5367.68, + "probability": 0.8363 + }, + { + "start": 5368.06, + "end": 5372.56, + "probability": 0.9818 + }, + { + "start": 5374.86, + "end": 5380.78, + "probability": 0.9885 + }, + { + "start": 5380.78, + "end": 5385.6, + "probability": 0.9985 + }, + { + "start": 5386.72, + "end": 5390.08, + "probability": 0.9171 + }, + { + "start": 5390.52, + "end": 5391.44, + "probability": 0.9439 + }, + { + "start": 5391.8, + "end": 5394.6, + "probability": 0.9984 + }, + { + "start": 5394.94, + "end": 5397.64, + "probability": 0.8994 + }, + { + "start": 5398.88, + "end": 5402.6, + "probability": 0.9861 + }, + { + "start": 5402.82, + "end": 5403.5, + "probability": 0.8203 + }, + { + "start": 5403.92, + "end": 5405.34, + "probability": 0.9141 + }, + { + "start": 5405.74, + "end": 5406.88, + "probability": 0.9784 + }, + { + "start": 5408.62, + "end": 5412.36, + "probability": 0.9178 + }, + { + "start": 5413.02, + "end": 5417.06, + "probability": 0.9947 + }, + { + "start": 5418.22, + "end": 5419.83, + "probability": 0.9734 + }, + { + "start": 5420.1, + "end": 5421.32, + "probability": 0.9934 + }, + { + "start": 5421.8, + "end": 5425.24, + "probability": 0.9929 + }, + { + "start": 5425.24, + "end": 5428.66, + "probability": 0.9887 + }, + { + "start": 5429.3, + "end": 5430.46, + "probability": 0.7838 + }, + { + "start": 5431.96, + "end": 5434.58, + "probability": 0.8187 + }, + { + "start": 5434.72, + "end": 5435.42, + "probability": 0.7488 + }, + { + "start": 5435.5, + "end": 5437.92, + "probability": 0.9217 + }, + { + "start": 5439.04, + "end": 5441.33, + "probability": 0.722 + }, + { + "start": 5442.54, + "end": 5445.72, + "probability": 0.9937 + }, + { + "start": 5446.38, + "end": 5446.94, + "probability": 0.829 + }, + { + "start": 5447.14, + "end": 5450.26, + "probability": 0.9951 + }, + { + "start": 5450.3, + "end": 5454.86, + "probability": 0.9941 + }, + { + "start": 5455.22, + "end": 5455.74, + "probability": 0.6058 + }, + { + "start": 5456.24, + "end": 5456.67, + "probability": 0.7334 + }, + { + "start": 5457.62, + "end": 5460.12, + "probability": 0.9927 + }, + { + "start": 5460.12, + "end": 5463.32, + "probability": 0.9973 + }, + { + "start": 5463.74, + "end": 5465.58, + "probability": 0.9843 + }, + { + "start": 5466.3, + "end": 5469.7, + "probability": 0.9976 + }, + { + "start": 5470.32, + "end": 5474.82, + "probability": 0.9203 + }, + { + "start": 5475.24, + "end": 5477.68, + "probability": 0.9917 + }, + { + "start": 5479.48, + "end": 5482.84, + "probability": 0.9432 + }, + { + "start": 5483.26, + "end": 5484.48, + "probability": 0.9472 + }, + { + "start": 5485.44, + "end": 5488.16, + "probability": 0.9814 + }, + { + "start": 5488.16, + "end": 5490.96, + "probability": 0.964 + }, + { + "start": 5492.32, + "end": 5494.1, + "probability": 0.9902 + }, + { + "start": 5494.62, + "end": 5498.5, + "probability": 0.997 + }, + { + "start": 5499.04, + "end": 5499.8, + "probability": 0.9205 + }, + { + "start": 5501.52, + "end": 5505.01, + "probability": 0.8719 + }, + { + "start": 5506.06, + "end": 5510.48, + "probability": 0.8737 + }, + { + "start": 5510.5, + "end": 5515.98, + "probability": 0.8817 + }, + { + "start": 5516.94, + "end": 5519.78, + "probability": 0.9561 + }, + { + "start": 5521.04, + "end": 5523.8, + "probability": 0.9138 + }, + { + "start": 5524.28, + "end": 5529.34, + "probability": 0.9883 + }, + { + "start": 5530.62, + "end": 5535.44, + "probability": 0.9819 + }, + { + "start": 5536.18, + "end": 5538.98, + "probability": 0.9985 + }, + { + "start": 5538.98, + "end": 5542.7, + "probability": 0.9845 + }, + { + "start": 5543.06, + "end": 5547.04, + "probability": 0.9822 + }, + { + "start": 5549.16, + "end": 5551.76, + "probability": 0.8442 + }, + { + "start": 5552.36, + "end": 5555.3, + "probability": 0.9959 + }, + { + "start": 5556.24, + "end": 5558.7, + "probability": 0.7487 + }, + { + "start": 5559.28, + "end": 5563.76, + "probability": 0.9568 + }, + { + "start": 5565.24, + "end": 5566.0, + "probability": 0.9315 + }, + { + "start": 5567.04, + "end": 5570.0, + "probability": 0.9962 + }, + { + "start": 5570.2, + "end": 5572.94, + "probability": 0.9794 + }, + { + "start": 5573.7, + "end": 5577.36, + "probability": 0.9945 + }, + { + "start": 5577.36, + "end": 5581.06, + "probability": 0.9915 + }, + { + "start": 5582.18, + "end": 5584.1, + "probability": 0.9927 + }, + { + "start": 5584.98, + "end": 5587.7, + "probability": 0.9829 + }, + { + "start": 5589.32, + "end": 5592.92, + "probability": 0.985 + }, + { + "start": 5593.16, + "end": 5598.0, + "probability": 0.9893 + }, + { + "start": 5599.24, + "end": 5602.9, + "probability": 0.9973 + }, + { + "start": 5603.22, + "end": 5605.54, + "probability": 0.9843 + }, + { + "start": 5606.5, + "end": 5610.52, + "probability": 0.9702 + }, + { + "start": 5610.8, + "end": 5613.34, + "probability": 0.9774 + }, + { + "start": 5615.2, + "end": 5617.44, + "probability": 0.9924 + }, + { + "start": 5617.68, + "end": 5620.32, + "probability": 0.8936 + }, + { + "start": 5621.2, + "end": 5625.16, + "probability": 0.9883 + }, + { + "start": 5625.6, + "end": 5631.5, + "probability": 0.9602 + }, + { + "start": 5633.4, + "end": 5634.06, + "probability": 0.6393 + }, + { + "start": 5634.44, + "end": 5637.28, + "probability": 0.9614 + }, + { + "start": 5637.6, + "end": 5639.9, + "probability": 0.9211 + }, + { + "start": 5640.1, + "end": 5644.98, + "probability": 0.9797 + }, + { + "start": 5646.48, + "end": 5646.58, + "probability": 0.0067 + }, + { + "start": 5646.72, + "end": 5651.12, + "probability": 0.9888 + }, + { + "start": 5651.12, + "end": 5656.3, + "probability": 0.9961 + }, + { + "start": 5656.74, + "end": 5661.12, + "probability": 0.9524 + }, + { + "start": 5662.18, + "end": 5664.76, + "probability": 0.8943 + }, + { + "start": 5664.98, + "end": 5668.96, + "probability": 0.978 + }, + { + "start": 5669.44, + "end": 5673.78, + "probability": 0.9922 + }, + { + "start": 5674.94, + "end": 5677.06, + "probability": 0.8518 + }, + { + "start": 5677.54, + "end": 5681.22, + "probability": 0.905 + }, + { + "start": 5683.24, + "end": 5685.2, + "probability": 0.9876 + }, + { + "start": 5685.56, + "end": 5687.68, + "probability": 0.9591 + }, + { + "start": 5687.98, + "end": 5691.08, + "probability": 0.9786 + }, + { + "start": 5691.82, + "end": 5694.8, + "probability": 0.9954 + }, + { + "start": 5694.8, + "end": 5699.48, + "probability": 0.9976 + }, + { + "start": 5700.72, + "end": 5704.0, + "probability": 0.9955 + }, + { + "start": 5704.0, + "end": 5709.96, + "probability": 0.9814 + }, + { + "start": 5709.96, + "end": 5714.3, + "probability": 0.9955 + }, + { + "start": 5714.7, + "end": 5717.02, + "probability": 0.9956 + }, + { + "start": 5717.9, + "end": 5722.94, + "probability": 0.988 + }, + { + "start": 5724.02, + "end": 5728.56, + "probability": 0.9956 + }, + { + "start": 5728.94, + "end": 5731.36, + "probability": 0.9984 + }, + { + "start": 5732.22, + "end": 5735.36, + "probability": 0.9279 + }, + { + "start": 5735.96, + "end": 5738.14, + "probability": 0.8852 + }, + { + "start": 5738.48, + "end": 5738.78, + "probability": 0.7759 + }, + { + "start": 5739.82, + "end": 5741.1, + "probability": 0.8401 + }, + { + "start": 5741.2, + "end": 5746.36, + "probability": 0.9419 + }, + { + "start": 5760.14, + "end": 5760.96, + "probability": 0.817 + }, + { + "start": 5761.72, + "end": 5765.88, + "probability": 0.9715 + }, + { + "start": 5769.92, + "end": 5770.66, + "probability": 0.7787 + }, + { + "start": 5771.2, + "end": 5771.36, + "probability": 0.3539 + }, + { + "start": 5771.44, + "end": 5774.12, + "probability": 0.868 + }, + { + "start": 5774.14, + "end": 5774.6, + "probability": 0.8379 + }, + { + "start": 5774.74, + "end": 5775.86, + "probability": 0.9617 + }, + { + "start": 5775.9, + "end": 5776.52, + "probability": 0.8882 + }, + { + "start": 5776.64, + "end": 5777.38, + "probability": 0.6456 + }, + { + "start": 5777.66, + "end": 5785.56, + "probability": 0.884 + }, + { + "start": 5785.66, + "end": 5789.8, + "probability": 0.981 + }, + { + "start": 5790.02, + "end": 5791.58, + "probability": 0.6249 + }, + { + "start": 5791.94, + "end": 5792.82, + "probability": 0.1769 + }, + { + "start": 5793.02, + "end": 5794.84, + "probability": 0.535 + }, + { + "start": 5794.84, + "end": 5795.38, + "probability": 0.341 + }, + { + "start": 5795.7, + "end": 5797.68, + "probability": 0.3472 + }, + { + "start": 5797.68, + "end": 5800.38, + "probability": 0.7585 + }, + { + "start": 5800.48, + "end": 5801.34, + "probability": 0.7541 + }, + { + "start": 5801.8, + "end": 5803.42, + "probability": 0.9908 + }, + { + "start": 5803.5, + "end": 5804.62, + "probability": 0.7218 + }, + { + "start": 5805.38, + "end": 5810.8, + "probability": 0.4569 + }, + { + "start": 5811.18, + "end": 5811.76, + "probability": 0.7567 + }, + { + "start": 5812.42, + "end": 5814.22, + "probability": 0.985 + }, + { + "start": 5815.48, + "end": 5817.86, + "probability": 0.8571 + }, + { + "start": 5820.55, + "end": 5821.78, + "probability": 0.8413 + }, + { + "start": 5822.84, + "end": 5825.44, + "probability": 0.8211 + }, + { + "start": 5826.58, + "end": 5832.62, + "probability": 0.4222 + }, + { + "start": 5835.06, + "end": 5835.14, + "probability": 0.0224 + }, + { + "start": 5835.14, + "end": 5835.16, + "probability": 0.0605 + }, + { + "start": 5835.16, + "end": 5835.16, + "probability": 0.0191 + }, + { + "start": 5835.16, + "end": 5835.24, + "probability": 0.045 + }, + { + "start": 5835.24, + "end": 5836.64, + "probability": 0.6029 + }, + { + "start": 5836.8, + "end": 5837.28, + "probability": 0.3588 + }, + { + "start": 5837.3, + "end": 5844.94, + "probability": 0.7989 + }, + { + "start": 5847.16, + "end": 5849.26, + "probability": 0.1964 + }, + { + "start": 5849.26, + "end": 5849.26, + "probability": 0.1268 + }, + { + "start": 5849.26, + "end": 5849.67, + "probability": 0.337 + }, + { + "start": 5850.06, + "end": 5850.55, + "probability": 0.9155 + }, + { + "start": 5850.68, + "end": 5852.54, + "probability": 0.9296 + }, + { + "start": 5853.08, + "end": 5858.84, + "probability": 0.9774 + }, + { + "start": 5859.62, + "end": 5863.64, + "probability": 0.8743 + }, + { + "start": 5863.76, + "end": 5868.12, + "probability": 0.5339 + }, + { + "start": 5869.54, + "end": 5876.3, + "probability": 0.9547 + }, + { + "start": 5877.2, + "end": 5878.72, + "probability": 0.6603 + }, + { + "start": 5879.22, + "end": 5884.12, + "probability": 0.6006 + }, + { + "start": 5885.63, + "end": 5888.46, + "probability": 0.9265 + }, + { + "start": 5889.42, + "end": 5893.92, + "probability": 0.9795 + }, + { + "start": 5896.89, + "end": 5902.4, + "probability": 0.973 + }, + { + "start": 5902.4, + "end": 5905.96, + "probability": 0.9489 + }, + { + "start": 5906.74, + "end": 5909.52, + "probability": 0.9272 + }, + { + "start": 5910.28, + "end": 5914.23, + "probability": 0.9966 + }, + { + "start": 5914.8, + "end": 5916.14, + "probability": 0.9169 + }, + { + "start": 5916.76, + "end": 5920.72, + "probability": 0.9858 + }, + { + "start": 5921.42, + "end": 5924.4, + "probability": 0.9596 + }, + { + "start": 5925.58, + "end": 5928.08, + "probability": 0.9144 + }, + { + "start": 5928.08, + "end": 5930.46, + "probability": 0.9983 + }, + { + "start": 5931.1, + "end": 5935.46, + "probability": 0.9897 + }, + { + "start": 5935.54, + "end": 5938.96, + "probability": 0.9898 + }, + { + "start": 5940.29, + "end": 5942.6, + "probability": 0.5963 + }, + { + "start": 5943.7, + "end": 5948.92, + "probability": 0.8966 + }, + { + "start": 5950.4, + "end": 5952.74, + "probability": 0.4217 + }, + { + "start": 5955.66, + "end": 5957.42, + "probability": 0.7498 + }, + { + "start": 5958.04, + "end": 5962.84, + "probability": 0.9683 + }, + { + "start": 5963.06, + "end": 5964.76, + "probability": 0.9432 + }, + { + "start": 5965.75, + "end": 5971.58, + "probability": 0.994 + }, + { + "start": 5971.98, + "end": 5978.84, + "probability": 0.9987 + }, + { + "start": 5979.04, + "end": 5983.8, + "probability": 0.9978 + }, + { + "start": 5984.4, + "end": 5991.0, + "probability": 0.9985 + }, + { + "start": 5991.0, + "end": 5997.52, + "probability": 0.9982 + }, + { + "start": 5998.98, + "end": 5999.0, + "probability": 0.4126 + }, + { + "start": 5999.0, + "end": 6004.24, + "probability": 0.8338 + }, + { + "start": 6004.66, + "end": 6009.54, + "probability": 0.9278 + }, + { + "start": 6010.12, + "end": 6011.4, + "probability": 0.6919 + }, + { + "start": 6013.14, + "end": 6013.82, + "probability": 0.9398 + }, + { + "start": 6016.76, + "end": 6018.58, + "probability": 0.7397 + }, + { + "start": 6019.68, + "end": 6023.28, + "probability": 0.8939 + }, + { + "start": 6023.94, + "end": 6026.26, + "probability": 0.9836 + }, + { + "start": 6026.96, + "end": 6034.52, + "probability": 0.9874 + }, + { + "start": 6035.12, + "end": 6037.3, + "probability": 0.9905 + }, + { + "start": 6038.1, + "end": 6046.92, + "probability": 0.9876 + }, + { + "start": 6047.1, + "end": 6048.4, + "probability": 0.9055 + }, + { + "start": 6049.52, + "end": 6054.7, + "probability": 0.9953 + }, + { + "start": 6054.7, + "end": 6059.48, + "probability": 0.9984 + }, + { + "start": 6060.12, + "end": 6061.14, + "probability": 0.9989 + }, + { + "start": 6061.74, + "end": 6064.18, + "probability": 0.9054 + }, + { + "start": 6066.74, + "end": 6073.04, + "probability": 0.9506 + }, + { + "start": 6073.2, + "end": 6074.7, + "probability": 0.963 + }, + { + "start": 6075.56, + "end": 6080.9, + "probability": 0.9986 + }, + { + "start": 6080.9, + "end": 6084.34, + "probability": 0.9882 + }, + { + "start": 6085.34, + "end": 6089.54, + "probability": 0.9324 + }, + { + "start": 6092.62, + "end": 6094.58, + "probability": 0.9828 + }, + { + "start": 6095.74, + "end": 6098.02, + "probability": 0.7895 + }, + { + "start": 6099.36, + "end": 6100.8, + "probability": 0.9653 + }, + { + "start": 6100.94, + "end": 6105.62, + "probability": 0.9875 + }, + { + "start": 6105.72, + "end": 6107.02, + "probability": 0.8473 + }, + { + "start": 6107.9, + "end": 6108.86, + "probability": 0.7005 + }, + { + "start": 6109.18, + "end": 6110.48, + "probability": 0.8322 + }, + { + "start": 6110.6, + "end": 6114.94, + "probability": 0.9453 + }, + { + "start": 6115.64, + "end": 6125.34, + "probability": 0.991 + }, + { + "start": 6126.36, + "end": 6130.54, + "probability": 0.8875 + }, + { + "start": 6131.32, + "end": 6134.1, + "probability": 0.8632 + }, + { + "start": 6134.78, + "end": 6137.5, + "probability": 0.7954 + }, + { + "start": 6138.16, + "end": 6141.82, + "probability": 0.9919 + }, + { + "start": 6142.46, + "end": 6149.74, + "probability": 0.8056 + }, + { + "start": 6150.08, + "end": 6150.66, + "probability": 0.9119 + }, + { + "start": 6153.24, + "end": 6155.66, + "probability": 0.5824 + }, + { + "start": 6155.66, + "end": 6156.42, + "probability": 0.5531 + }, + { + "start": 6158.0, + "end": 6162.52, + "probability": 0.9927 + }, + { + "start": 6163.14, + "end": 6168.53, + "probability": 0.9969 + }, + { + "start": 6169.9, + "end": 6172.48, + "probability": 0.9988 + }, + { + "start": 6172.56, + "end": 6179.54, + "probability": 0.9802 + }, + { + "start": 6179.7, + "end": 6182.14, + "probability": 0.6582 + }, + { + "start": 6182.68, + "end": 6184.74, + "probability": 0.9395 + }, + { + "start": 6185.9, + "end": 6188.98, + "probability": 0.8887 + }, + { + "start": 6189.06, + "end": 6191.3, + "probability": 0.9973 + }, + { + "start": 6192.24, + "end": 6194.2, + "probability": 0.9668 + }, + { + "start": 6194.9, + "end": 6195.96, + "probability": 0.6742 + }, + { + "start": 6196.96, + "end": 6198.52, + "probability": 0.9355 + }, + { + "start": 6199.14, + "end": 6201.72, + "probability": 0.9986 + }, + { + "start": 6202.58, + "end": 6203.56, + "probability": 0.7328 + }, + { + "start": 6203.6, + "end": 6205.48, + "probability": 0.7765 + }, + { + "start": 6205.94, + "end": 6207.24, + "probability": 0.9636 + }, + { + "start": 6208.02, + "end": 6209.06, + "probability": 0.6662 + }, + { + "start": 6210.36, + "end": 6211.24, + "probability": 0.9268 + }, + { + "start": 6212.28, + "end": 6214.8, + "probability": 0.8724 + }, + { + "start": 6215.84, + "end": 6220.12, + "probability": 0.9002 + }, + { + "start": 6221.28, + "end": 6224.02, + "probability": 0.9451 + }, + { + "start": 6224.82, + "end": 6226.96, + "probability": 0.9976 + }, + { + "start": 6228.12, + "end": 6233.64, + "probability": 0.9916 + }, + { + "start": 6234.18, + "end": 6241.28, + "probability": 0.9987 + }, + { + "start": 6242.36, + "end": 6242.36, + "probability": 0.1738 + }, + { + "start": 6243.02, + "end": 6247.68, + "probability": 0.998 + }, + { + "start": 6248.36, + "end": 6250.84, + "probability": 0.9893 + }, + { + "start": 6251.94, + "end": 6253.9, + "probability": 0.8811 + }, + { + "start": 6255.06, + "end": 6258.08, + "probability": 0.7183 + }, + { + "start": 6259.58, + "end": 6262.64, + "probability": 0.9985 + }, + { + "start": 6263.56, + "end": 6266.76, + "probability": 0.9941 + }, + { + "start": 6268.0, + "end": 6275.64, + "probability": 0.9976 + }, + { + "start": 6276.14, + "end": 6278.88, + "probability": 0.9389 + }, + { + "start": 6279.88, + "end": 6284.28, + "probability": 0.9834 + }, + { + "start": 6285.04, + "end": 6288.31, + "probability": 0.941 + }, + { + "start": 6289.34, + "end": 6291.6, + "probability": 0.9968 + }, + { + "start": 6292.1, + "end": 6294.8, + "probability": 0.7099 + }, + { + "start": 6294.8, + "end": 6295.74, + "probability": 0.8094 + }, + { + "start": 6295.84, + "end": 6297.14, + "probability": 0.9629 + }, + { + "start": 6297.92, + "end": 6300.63, + "probability": 0.9771 + }, + { + "start": 6301.28, + "end": 6302.92, + "probability": 0.9177 + }, + { + "start": 6303.38, + "end": 6305.56, + "probability": 0.9837 + }, + { + "start": 6306.08, + "end": 6312.58, + "probability": 0.8995 + }, + { + "start": 6313.02, + "end": 6314.84, + "probability": 0.9022 + }, + { + "start": 6315.42, + "end": 6319.22, + "probability": 0.9595 + }, + { + "start": 6319.34, + "end": 6319.56, + "probability": 0.7267 + }, + { + "start": 6320.16, + "end": 6321.06, + "probability": 0.7869 + }, + { + "start": 6321.44, + "end": 6323.58, + "probability": 0.8866 + }, + { + "start": 6323.72, + "end": 6326.86, + "probability": 0.9793 + }, + { + "start": 6327.84, + "end": 6327.84, + "probability": 0.0792 + }, + { + "start": 6330.28, + "end": 6330.56, + "probability": 0.0909 + }, + { + "start": 6340.16, + "end": 6340.24, + "probability": 0.1523 + }, + { + "start": 6340.24, + "end": 6341.46, + "probability": 0.702 + }, + { + "start": 6342.4, + "end": 6349.94, + "probability": 0.9703 + }, + { + "start": 6350.02, + "end": 6352.1, + "probability": 0.711 + }, + { + "start": 6352.46, + "end": 6353.88, + "probability": 0.8047 + }, + { + "start": 6353.96, + "end": 6357.02, + "probability": 0.9936 + }, + { + "start": 6357.24, + "end": 6357.82, + "probability": 0.4997 + }, + { + "start": 6358.36, + "end": 6360.96, + "probability": 0.9964 + }, + { + "start": 6361.58, + "end": 6364.06, + "probability": 0.9968 + }, + { + "start": 6364.6, + "end": 6365.5, + "probability": 0.8779 + }, + { + "start": 6366.3, + "end": 6368.32, + "probability": 0.9195 + }, + { + "start": 6369.52, + "end": 6370.86, + "probability": 0.7457 + }, + { + "start": 6370.88, + "end": 6371.97, + "probability": 0.4283 + }, + { + "start": 6372.76, + "end": 6373.14, + "probability": 0.9245 + }, + { + "start": 6373.72, + "end": 6374.26, + "probability": 0.9856 + }, + { + "start": 6375.54, + "end": 6376.3, + "probability": 0.7379 + }, + { + "start": 6376.98, + "end": 6377.34, + "probability": 0.9862 + }, + { + "start": 6377.9, + "end": 6380.06, + "probability": 0.9297 + }, + { + "start": 6380.76, + "end": 6383.06, + "probability": 0.9932 + }, + { + "start": 6383.74, + "end": 6384.4, + "probability": 0.9852 + }, + { + "start": 6385.42, + "end": 6389.8, + "probability": 0.9988 + }, + { + "start": 6390.68, + "end": 6391.86, + "probability": 0.8245 + }, + { + "start": 6394.62, + "end": 6398.04, + "probability": 0.9894 + }, + { + "start": 6398.7, + "end": 6401.0, + "probability": 0.9903 + }, + { + "start": 6401.54, + "end": 6404.54, + "probability": 0.8691 + }, + { + "start": 6405.02, + "end": 6407.42, + "probability": 0.9839 + }, + { + "start": 6408.42, + "end": 6410.44, + "probability": 0.8329 + }, + { + "start": 6411.22, + "end": 6415.54, + "probability": 0.9924 + }, + { + "start": 6417.76, + "end": 6418.2, + "probability": 0.9182 + }, + { + "start": 6418.8, + "end": 6421.38, + "probability": 0.9927 + }, + { + "start": 6423.02, + "end": 6425.66, + "probability": 0.8948 + }, + { + "start": 6426.46, + "end": 6427.99, + "probability": 0.726 + }, + { + "start": 6429.64, + "end": 6432.36, + "probability": 0.9839 + }, + { + "start": 6433.58, + "end": 6436.3, + "probability": 0.9893 + }, + { + "start": 6437.62, + "end": 6439.38, + "probability": 0.9258 + }, + { + "start": 6440.12, + "end": 6443.54, + "probability": 0.9886 + }, + { + "start": 6444.42, + "end": 6450.1, + "probability": 0.9964 + }, + { + "start": 6451.54, + "end": 6455.1, + "probability": 0.7393 + }, + { + "start": 6456.8, + "end": 6459.1, + "probability": 0.5697 + }, + { + "start": 6462.36, + "end": 6463.79, + "probability": 0.9733 + }, + { + "start": 6465.84, + "end": 6469.92, + "probability": 0.9698 + }, + { + "start": 6470.7, + "end": 6471.62, + "probability": 0.0329 + }, + { + "start": 6473.94, + "end": 6474.18, + "probability": 0.0214 + }, + { + "start": 6474.18, + "end": 6474.18, + "probability": 0.0195 + }, + { + "start": 6474.18, + "end": 6474.18, + "probability": 0.1989 + }, + { + "start": 6474.18, + "end": 6474.18, + "probability": 0.1541 + }, + { + "start": 6474.18, + "end": 6475.24, + "probability": 0.3314 + }, + { + "start": 6475.46, + "end": 6480.0, + "probability": 0.4063 + }, + { + "start": 6481.12, + "end": 6481.12, + "probability": 0.1911 + }, + { + "start": 6481.12, + "end": 6482.8, + "probability": 0.2219 + }, + { + "start": 6483.6, + "end": 6485.14, + "probability": 0.0653 + }, + { + "start": 6487.2, + "end": 6488.06, + "probability": 0.0836 + }, + { + "start": 6488.32, + "end": 6489.9, + "probability": 0.0475 + }, + { + "start": 6489.9, + "end": 6489.9, + "probability": 0.1172 + }, + { + "start": 6489.9, + "end": 6489.9, + "probability": 0.4392 + }, + { + "start": 6489.9, + "end": 6490.44, + "probability": 0.3317 + }, + { + "start": 6490.72, + "end": 6492.27, + "probability": 0.2681 + }, + { + "start": 6492.62, + "end": 6493.34, + "probability": 0.6214 + }, + { + "start": 6495.4, + "end": 6496.8, + "probability": 0.2218 + }, + { + "start": 6497.2, + "end": 6499.24, + "probability": 0.6846 + }, + { + "start": 6500.93, + "end": 6504.42, + "probability": 0.6551 + }, + { + "start": 6504.52, + "end": 6506.54, + "probability": 0.4848 + }, + { + "start": 6506.72, + "end": 6507.45, + "probability": 0.9417 + }, + { + "start": 6507.66, + "end": 6509.28, + "probability": 0.7839 + }, + { + "start": 6509.36, + "end": 6510.16, + "probability": 0.5469 + }, + { + "start": 6512.24, + "end": 6516.72, + "probability": 0.979 + }, + { + "start": 6517.58, + "end": 6521.22, + "probability": 0.9845 + }, + { + "start": 6521.98, + "end": 6524.2, + "probability": 0.9978 + }, + { + "start": 6525.0, + "end": 6529.25, + "probability": 0.919 + }, + { + "start": 6529.34, + "end": 6533.14, + "probability": 0.9964 + }, + { + "start": 6533.72, + "end": 6539.72, + "probability": 0.9972 + }, + { + "start": 6541.28, + "end": 6544.16, + "probability": 0.8758 + }, + { + "start": 6544.26, + "end": 6546.66, + "probability": 0.9604 + }, + { + "start": 6547.96, + "end": 6552.32, + "probability": 0.9915 + }, + { + "start": 6552.74, + "end": 6558.22, + "probability": 0.9858 + }, + { + "start": 6559.12, + "end": 6562.24, + "probability": 0.9941 + }, + { + "start": 6562.88, + "end": 6569.28, + "probability": 0.9796 + }, + { + "start": 6570.2, + "end": 6572.0, + "probability": 0.9939 + }, + { + "start": 6573.1, + "end": 6580.1, + "probability": 0.9904 + }, + { + "start": 6581.0, + "end": 6583.02, + "probability": 0.2305 + }, + { + "start": 6583.02, + "end": 6585.66, + "probability": 0.7443 + }, + { + "start": 6585.66, + "end": 6585.66, + "probability": 0.5072 + }, + { + "start": 6585.66, + "end": 6585.72, + "probability": 0.4727 + }, + { + "start": 6585.76, + "end": 6586.54, + "probability": 0.7846 + }, + { + "start": 6586.6, + "end": 6588.2, + "probability": 0.7139 + }, + { + "start": 6588.64, + "end": 6590.3, + "probability": 0.6437 + }, + { + "start": 6590.92, + "end": 6594.68, + "probability": 0.9961 + }, + { + "start": 6594.68, + "end": 6598.4, + "probability": 0.9993 + }, + { + "start": 6599.54, + "end": 6600.2, + "probability": 0.7892 + }, + { + "start": 6600.4, + "end": 6603.4, + "probability": 0.98 + }, + { + "start": 6603.78, + "end": 6606.86, + "probability": 0.9711 + }, + { + "start": 6608.72, + "end": 6613.08, + "probability": 0.9928 + }, + { + "start": 6613.88, + "end": 6614.46, + "probability": 0.9401 + }, + { + "start": 6616.36, + "end": 6618.22, + "probability": 0.9331 + }, + { + "start": 6619.04, + "end": 6622.18, + "probability": 0.8138 + }, + { + "start": 6624.66, + "end": 6626.78, + "probability": 0.871 + }, + { + "start": 6627.72, + "end": 6628.64, + "probability": 0.3338 + }, + { + "start": 6629.8, + "end": 6630.44, + "probability": 0.5714 + }, + { + "start": 6631.48, + "end": 6631.86, + "probability": 0.8667 + }, + { + "start": 6632.78, + "end": 6634.48, + "probability": 0.8707 + }, + { + "start": 6635.26, + "end": 6637.74, + "probability": 0.9054 + }, + { + "start": 6638.4, + "end": 6639.86, + "probability": 0.9607 + }, + { + "start": 6641.86, + "end": 6644.98, + "probability": 0.6331 + }, + { + "start": 6645.68, + "end": 6645.92, + "probability": 0.5485 + }, + { + "start": 6646.7, + "end": 6647.24, + "probability": 0.4568 + }, + { + "start": 6648.06, + "end": 6649.88, + "probability": 0.6918 + }, + { + "start": 6652.88, + "end": 6653.3, + "probability": 0.8892 + }, + { + "start": 6655.64, + "end": 6658.38, + "probability": 0.746 + }, + { + "start": 6659.76, + "end": 6660.48, + "probability": 0.9664 + }, + { + "start": 6661.1, + "end": 6662.1, + "probability": 0.9194 + }, + { + "start": 6663.1, + "end": 6663.56, + "probability": 0.9961 + }, + { + "start": 6664.54, + "end": 6665.32, + "probability": 0.9568 + }, + { + "start": 6666.22, + "end": 6668.38, + "probability": 0.9951 + }, + { + "start": 6669.12, + "end": 6669.44, + "probability": 0.9817 + }, + { + "start": 6670.34, + "end": 6670.9, + "probability": 0.8655 + }, + { + "start": 6671.8, + "end": 6672.22, + "probability": 0.5467 + }, + { + "start": 6673.5, + "end": 6674.26, + "probability": 0.7772 + }, + { + "start": 6675.04, + "end": 6675.9, + "probability": 0.8983 + }, + { + "start": 6676.54, + "end": 6677.48, + "probability": 0.787 + }, + { + "start": 6678.38, + "end": 6678.8, + "probability": 0.9497 + }, + { + "start": 6680.06, + "end": 6680.94, + "probability": 0.958 + }, + { + "start": 6681.7, + "end": 6682.14, + "probability": 0.9607 + }, + { + "start": 6682.88, + "end": 6683.78, + "probability": 0.9419 + }, + { + "start": 6684.6, + "end": 6685.06, + "probability": 0.9631 + }, + { + "start": 6685.94, + "end": 6686.96, + "probability": 0.9386 + }, + { + "start": 6687.94, + "end": 6690.2, + "probability": 0.9678 + }, + { + "start": 6691.5, + "end": 6692.5, + "probability": 0.9921 + }, + { + "start": 6694.74, + "end": 6695.56, + "probability": 0.9857 + }, + { + "start": 6698.29, + "end": 6699.42, + "probability": 0.6106 + }, + { + "start": 6700.76, + "end": 6703.94, + "probability": 0.854 + }, + { + "start": 6704.56, + "end": 6704.98, + "probability": 0.6482 + }, + { + "start": 6706.12, + "end": 6707.1, + "probability": 0.9267 + }, + { + "start": 6707.74, + "end": 6708.56, + "probability": 0.9368 + }, + { + "start": 6709.1, + "end": 6710.02, + "probability": 0.9258 + }, + { + "start": 6710.76, + "end": 6711.28, + "probability": 0.979 + }, + { + "start": 6712.38, + "end": 6713.06, + "probability": 0.9346 + }, + { + "start": 6714.86, + "end": 6717.04, + "probability": 0.9812 + }, + { + "start": 6718.42, + "end": 6719.26, + "probability": 0.9854 + }, + { + "start": 6719.94, + "end": 6720.58, + "probability": 0.8828 + }, + { + "start": 6721.89, + "end": 6723.24, + "probability": 0.9795 + }, + { + "start": 6727.34, + "end": 6728.16, + "probability": 0.8763 + }, + { + "start": 6728.86, + "end": 6729.56, + "probability": 0.5717 + }, + { + "start": 6734.14, + "end": 6734.58, + "probability": 0.7954 + }, + { + "start": 6735.66, + "end": 6736.4, + "probability": 0.9456 + }, + { + "start": 6737.16, + "end": 6737.9, + "probability": 0.9418 + }, + { + "start": 6739.1, + "end": 6739.58, + "probability": 0.9141 + }, + { + "start": 6741.06, + "end": 6743.52, + "probability": 0.9673 + }, + { + "start": 6744.18, + "end": 6746.12, + "probability": 0.9781 + }, + { + "start": 6747.07, + "end": 6749.9, + "probability": 0.8131 + }, + { + "start": 6750.54, + "end": 6750.98, + "probability": 0.9922 + }, + { + "start": 6751.68, + "end": 6752.48, + "probability": 0.8697 + }, + { + "start": 6753.2, + "end": 6754.76, + "probability": 0.9871 + }, + { + "start": 6756.46, + "end": 6758.54, + "probability": 0.5936 + }, + { + "start": 6759.38, + "end": 6759.88, + "probability": 0.8193 + }, + { + "start": 6760.84, + "end": 6761.62, + "probability": 0.3488 + }, + { + "start": 6762.48, + "end": 6763.28, + "probability": 0.8016 + }, + { + "start": 6764.08, + "end": 6764.7, + "probability": 0.9157 + }, + { + "start": 6765.7, + "end": 6766.18, + "probability": 0.9797 + }, + { + "start": 6768.04, + "end": 6769.0, + "probability": 0.5837 + }, + { + "start": 6772.72, + "end": 6773.62, + "probability": 0.8894 + }, + { + "start": 6774.4, + "end": 6775.22, + "probability": 0.8912 + }, + { + "start": 6775.92, + "end": 6776.9, + "probability": 0.988 + }, + { + "start": 6777.7, + "end": 6779.04, + "probability": 0.9757 + }, + { + "start": 6779.66, + "end": 6780.18, + "probability": 0.9839 + }, + { + "start": 6781.88, + "end": 6783.14, + "probability": 0.955 + }, + { + "start": 6783.72, + "end": 6784.1, + "probability": 0.9907 + }, + { + "start": 6786.18, + "end": 6787.02, + "probability": 0.6806 + }, + { + "start": 6792.0, + "end": 6792.72, + "probability": 0.7946 + }, + { + "start": 6793.86, + "end": 6795.02, + "probability": 0.7057 + }, + { + "start": 6795.92, + "end": 6796.22, + "probability": 0.9308 + }, + { + "start": 6797.54, + "end": 6798.3, + "probability": 0.3097 + }, + { + "start": 6798.94, + "end": 6801.48, + "probability": 0.9331 + }, + { + "start": 6801.8, + "end": 6803.82, + "probability": 0.8423 + }, + { + "start": 6804.12, + "end": 6805.92, + "probability": 0.9841 + }, + { + "start": 6807.32, + "end": 6807.8, + "probability": 0.9704 + }, + { + "start": 6809.66, + "end": 6810.2, + "probability": 0.8868 + }, + { + "start": 6811.52, + "end": 6812.7, + "probability": 0.5667 + }, + { + "start": 6813.64, + "end": 6814.02, + "probability": 0.8666 + }, + { + "start": 6814.8, + "end": 6816.94, + "probability": 0.9745 + }, + { + "start": 6819.17, + "end": 6821.14, + "probability": 0.9534 + }, + { + "start": 6821.74, + "end": 6823.34, + "probability": 0.9544 + }, + { + "start": 6824.12, + "end": 6827.56, + "probability": 0.9822 + }, + { + "start": 6828.46, + "end": 6830.52, + "probability": 0.981 + }, + { + "start": 6831.18, + "end": 6833.02, + "probability": 0.9377 + }, + { + "start": 6834.4, + "end": 6834.7, + "probability": 0.7485 + }, + { + "start": 6836.72, + "end": 6837.32, + "probability": 0.8413 + }, + { + "start": 6838.26, + "end": 6840.04, + "probability": 0.8572 + }, + { + "start": 6841.56, + "end": 6842.24, + "probability": 0.953 + }, + { + "start": 6843.36, + "end": 6845.6, + "probability": 0.7645 + }, + { + "start": 6846.32, + "end": 6848.06, + "probability": 0.9772 + }, + { + "start": 6848.9, + "end": 6850.86, + "probability": 0.9623 + }, + { + "start": 6851.46, + "end": 6853.02, + "probability": 0.9734 + }, + { + "start": 6853.76, + "end": 6854.68, + "probability": 0.917 + }, + { + "start": 6856.24, + "end": 6858.4, + "probability": 0.9877 + }, + { + "start": 6858.96, + "end": 6860.84, + "probability": 0.8332 + }, + { + "start": 6861.5, + "end": 6863.78, + "probability": 0.8553 + }, + { + "start": 6864.74, + "end": 6865.22, + "probability": 0.9287 + }, + { + "start": 6866.72, + "end": 6868.96, + "probability": 0.8565 + }, + { + "start": 6870.04, + "end": 6870.9, + "probability": 0.7587 + }, + { + "start": 6872.0, + "end": 6872.9, + "probability": 0.9951 + }, + { + "start": 6873.5, + "end": 6874.52, + "probability": 0.8804 + }, + { + "start": 6875.22, + "end": 6877.36, + "probability": 0.9464 + }, + { + "start": 6878.04, + "end": 6879.46, + "probability": 0.9736 + }, + { + "start": 6880.16, + "end": 6881.32, + "probability": 0.8353 + }, + { + "start": 6881.84, + "end": 6882.26, + "probability": 0.5726 + }, + { + "start": 6883.26, + "end": 6884.02, + "probability": 0.7074 + }, + { + "start": 6889.48, + "end": 6889.9, + "probability": 0.5921 + }, + { + "start": 6891.94, + "end": 6892.74, + "probability": 0.71 + }, + { + "start": 6893.88, + "end": 6896.02, + "probability": 0.8859 + }, + { + "start": 6897.63, + "end": 6899.38, + "probability": 0.8331 + }, + { + "start": 6900.86, + "end": 6901.82, + "probability": 0.9895 + }, + { + "start": 6902.44, + "end": 6903.1, + "probability": 0.9785 + }, + { + "start": 6903.96, + "end": 6905.72, + "probability": 0.9893 + }, + { + "start": 6907.74, + "end": 6908.64, + "probability": 0.9839 + }, + { + "start": 6911.22, + "end": 6912.32, + "probability": 0.9611 + }, + { + "start": 6919.38, + "end": 6920.52, + "probability": 0.5991 + }, + { + "start": 6921.74, + "end": 6922.84, + "probability": 0.782 + }, + { + "start": 6924.74, + "end": 6925.92, + "probability": 0.9205 + }, + { + "start": 6926.62, + "end": 6927.52, + "probability": 0.4744 + }, + { + "start": 6929.48, + "end": 6930.28, + "probability": 0.9601 + }, + { + "start": 6930.82, + "end": 6931.96, + "probability": 0.918 + }, + { + "start": 6933.5, + "end": 6933.96, + "probability": 0.9709 + }, + { + "start": 6935.42, + "end": 6936.44, + "probability": 0.8177 + }, + { + "start": 6937.61, + "end": 6939.48, + "probability": 0.8339 + }, + { + "start": 6940.32, + "end": 6942.86, + "probability": 0.9841 + }, + { + "start": 6944.75, + "end": 6946.82, + "probability": 0.983 + }, + { + "start": 6948.2, + "end": 6950.02, + "probability": 0.6616 + }, + { + "start": 6951.8, + "end": 6952.22, + "probability": 0.6334 + }, + { + "start": 6953.02, + "end": 6953.78, + "probability": 0.7852 + }, + { + "start": 6958.98, + "end": 6959.76, + "probability": 0.6924 + }, + { + "start": 6961.18, + "end": 6962.06, + "probability": 0.9727 + }, + { + "start": 6963.3, + "end": 6963.62, + "probability": 0.9404 + }, + { + "start": 6965.12, + "end": 6965.8, + "probability": 0.9487 + }, + { + "start": 6967.06, + "end": 6968.1, + "probability": 0.966 + }, + { + "start": 6968.94, + "end": 6969.92, + "probability": 0.9038 + }, + { + "start": 6971.72, + "end": 6974.52, + "probability": 0.8974 + }, + { + "start": 6975.54, + "end": 6976.52, + "probability": 0.5819 + }, + { + "start": 6977.64, + "end": 6978.06, + "probability": 0.9897 + }, + { + "start": 6979.22, + "end": 6979.94, + "probability": 0.7554 + }, + { + "start": 6980.98, + "end": 6981.46, + "probability": 0.8046 + }, + { + "start": 6982.34, + "end": 6983.18, + "probability": 0.8741 + }, + { + "start": 6984.66, + "end": 6985.16, + "probability": 0.9248 + }, + { + "start": 6986.04, + "end": 6986.9, + "probability": 0.927 + }, + { + "start": 6988.06, + "end": 6990.1, + "probability": 0.9665 + }, + { + "start": 6991.26, + "end": 6992.24, + "probability": 0.988 + }, + { + "start": 6993.28, + "end": 6994.2, + "probability": 0.9648 + }, + { + "start": 6996.1, + "end": 6996.98, + "probability": 0.9946 + }, + { + "start": 6998.88, + "end": 7000.08, + "probability": 0.8639 + }, + { + "start": 7001.08, + "end": 7002.06, + "probability": 0.9933 + }, + { + "start": 7004.0, + "end": 7005.48, + "probability": 0.8998 + }, + { + "start": 7006.22, + "end": 7007.26, + "probability": 0.5019 + }, + { + "start": 7008.64, + "end": 7009.52, + "probability": 0.2032 + }, + { + "start": 7010.68, + "end": 7011.16, + "probability": 0.536 + }, + { + "start": 7012.66, + "end": 7013.62, + "probability": 0.9019 + }, + { + "start": 7014.28, + "end": 7014.52, + "probability": 0.554 + }, + { + "start": 7015.9, + "end": 7016.28, + "probability": 0.7141 + }, + { + "start": 7018.16, + "end": 7022.16, + "probability": 0.9024 + }, + { + "start": 7023.0, + "end": 7024.8, + "probability": 0.5038 + }, + { + "start": 7026.18, + "end": 7028.98, + "probability": 0.6293 + }, + { + "start": 7030.62, + "end": 7031.52, + "probability": 0.8116 + }, + { + "start": 7038.0, + "end": 7038.34, + "probability": 0.4685 + }, + { + "start": 7039.04, + "end": 7039.94, + "probability": 0.936 + }, + { + "start": 7040.68, + "end": 7041.64, + "probability": 0.8284 + }, + { + "start": 7042.62, + "end": 7044.6, + "probability": 0.9009 + }, + { + "start": 7047.4, + "end": 7047.86, + "probability": 0.9834 + }, + { + "start": 7049.48, + "end": 7050.5, + "probability": 0.9303 + }, + { + "start": 7057.48, + "end": 7057.88, + "probability": 0.8464 + }, + { + "start": 7059.32, + "end": 7060.48, + "probability": 0.7526 + }, + { + "start": 7066.28, + "end": 7067.18, + "probability": 0.9277 + }, + { + "start": 7068.3, + "end": 7069.22, + "probability": 0.7592 + }, + { + "start": 7069.76, + "end": 7070.2, + "probability": 0.939 + }, + { + "start": 7071.58, + "end": 7072.7, + "probability": 0.8397 + }, + { + "start": 7074.18, + "end": 7077.9, + "probability": 0.7537 + }, + { + "start": 7079.12, + "end": 7080.66, + "probability": 0.8621 + }, + { + "start": 7086.22, + "end": 7087.04, + "probability": 0.7606 + }, + { + "start": 7087.68, + "end": 7089.54, + "probability": 0.7465 + }, + { + "start": 7092.4, + "end": 7095.42, + "probability": 0.479 + }, + { + "start": 7095.76, + "end": 7098.78, + "probability": 0.5274 + }, + { + "start": 7098.88, + "end": 7102.06, + "probability": 0.4755 + }, + { + "start": 7102.24, + "end": 7103.82, + "probability": 0.2726 + }, + { + "start": 7104.26, + "end": 7108.3, + "probability": 0.2994 + }, + { + "start": 7108.4, + "end": 7110.88, + "probability": 0.5322 + }, + { + "start": 7113.58, + "end": 7114.9, + "probability": 0.0637 + }, + { + "start": 7114.9, + "end": 7116.18, + "probability": 0.3205 + }, + { + "start": 7116.32, + "end": 7118.6, + "probability": 0.4058 + }, + { + "start": 7118.82, + "end": 7119.0, + "probability": 0.6455 + }, + { + "start": 7120.96, + "end": 7121.2, + "probability": 0.0565 + }, + { + "start": 7129.38, + "end": 7130.02, + "probability": 0.0902 + }, + { + "start": 7130.24, + "end": 7133.44, + "probability": 0.4188 + }, + { + "start": 7133.44, + "end": 7133.44, + "probability": 0.2566 + }, + { + "start": 7133.62, + "end": 7137.5, + "probability": 0.2911 + }, + { + "start": 7139.19, + "end": 7139.66, + "probability": 0.3306 + }, + { + "start": 7141.58, + "end": 7141.98, + "probability": 0.1682 + }, + { + "start": 7142.66, + "end": 7142.66, + "probability": 0.3247 + }, + { + "start": 7142.66, + "end": 7142.66, + "probability": 0.2547 + }, + { + "start": 7142.66, + "end": 7147.02, + "probability": 0.0358 + }, + { + "start": 7147.76, + "end": 7148.28, + "probability": 0.2128 + }, + { + "start": 7149.18, + "end": 7150.58, + "probability": 0.0901 + }, + { + "start": 7158.66, + "end": 7160.14, + "probability": 0.035 + }, + { + "start": 7167.32, + "end": 7168.14, + "probability": 0.6052 + }, + { + "start": 7170.04, + "end": 7172.76, + "probability": 0.8007 + }, + { + "start": 7173.86, + "end": 7174.22, + "probability": 0.885 + }, + { + "start": 7175.8, + "end": 7176.86, + "probability": 0.791 + }, + { + "start": 7177.98, + "end": 7178.4, + "probability": 0.9788 + }, + { + "start": 7179.72, + "end": 7180.48, + "probability": 0.623 + }, + { + "start": 7185.2, + "end": 7186.84, + "probability": 0.9531 + }, + { + "start": 7187.66, + "end": 7188.6, + "probability": 0.7234 + }, + { + "start": 7188.66, + "end": 7190.64, + "probability": 0.6616 + }, + { + "start": 7191.62, + "end": 7194.16, + "probability": 0.9906 + }, + { + "start": 7195.82, + "end": 7196.3, + "probability": 0.2379 + }, + { + "start": 7197.78, + "end": 7198.22, + "probability": 0.9627 + }, + { + "start": 7200.38, + "end": 7201.18, + "probability": 0.6392 + }, + { + "start": 7202.44, + "end": 7203.46, + "probability": 0.9958 + }, + { + "start": 7204.76, + "end": 7205.72, + "probability": 0.9382 + }, + { + "start": 7206.48, + "end": 7206.8, + "probability": 0.9562 + }, + { + "start": 7209.04, + "end": 7209.86, + "probability": 0.9828 + }, + { + "start": 7211.22, + "end": 7211.64, + "probability": 0.9958 + }, + { + "start": 7213.94, + "end": 7214.86, + "probability": 0.6734 + }, + { + "start": 7215.56, + "end": 7215.82, + "probability": 0.7402 + }, + { + "start": 7217.76, + "end": 7218.88, + "probability": 0.7331 + }, + { + "start": 7224.26, + "end": 7226.74, + "probability": 0.7672 + }, + { + "start": 7229.0, + "end": 7232.16, + "probability": 0.9379 + }, + { + "start": 7233.16, + "end": 7233.56, + "probability": 0.6506 + }, + { + "start": 7235.84, + "end": 7237.22, + "probability": 0.8749 + }, + { + "start": 7238.18, + "end": 7243.44, + "probability": 0.9336 + }, + { + "start": 7244.98, + "end": 7246.96, + "probability": 0.9565 + }, + { + "start": 7249.64, + "end": 7250.28, + "probability": 0.809 + }, + { + "start": 7251.58, + "end": 7251.82, + "probability": 0.9782 + }, + { + "start": 7255.2, + "end": 7255.36, + "probability": 0.6474 + }, + { + "start": 7264.4, + "end": 7265.32, + "probability": 0.251 + }, + { + "start": 7269.5, + "end": 7270.18, + "probability": 0.3811 + }, + { + "start": 7272.06, + "end": 7272.78, + "probability": 0.922 + }, + { + "start": 7273.78, + "end": 7274.48, + "probability": 0.6707 + }, + { + "start": 7275.5, + "end": 7275.82, + "probability": 0.4842 + }, + { + "start": 7277.62, + "end": 7279.04, + "probability": 0.2182 + }, + { + "start": 7279.96, + "end": 7280.52, + "probability": 0.9635 + }, + { + "start": 7283.52, + "end": 7284.38, + "probability": 0.6959 + }, + { + "start": 7287.26, + "end": 7289.48, + "probability": 0.3249 + }, + { + "start": 7290.22, + "end": 7292.28, + "probability": 0.8703 + }, + { + "start": 7293.7, + "end": 7295.82, + "probability": 0.8918 + }, + { + "start": 7304.66, + "end": 7305.22, + "probability": 0.7351 + }, + { + "start": 7306.24, + "end": 7306.72, + "probability": 0.9388 + }, + { + "start": 7308.78, + "end": 7309.58, + "probability": 0.8014 + }, + { + "start": 7311.48, + "end": 7313.3, + "probability": 0.9808 + }, + { + "start": 7314.44, + "end": 7315.82, + "probability": 0.9907 + }, + { + "start": 7317.06, + "end": 7317.98, + "probability": 0.9622 + }, + { + "start": 7319.72, + "end": 7320.68, + "probability": 0.9909 + }, + { + "start": 7322.72, + "end": 7323.32, + "probability": 0.9871 + }, + { + "start": 7324.66, + "end": 7325.06, + "probability": 0.9912 + }, + { + "start": 7333.88, + "end": 7335.08, + "probability": 0.3509 + }, + { + "start": 7336.24, + "end": 7336.54, + "probability": 0.9821 + }, + { + "start": 7338.78, + "end": 7339.4, + "probability": 0.919 + }, + { + "start": 7341.58, + "end": 7344.2, + "probability": 0.983 + }, + { + "start": 7345.36, + "end": 7345.94, + "probability": 0.0741 + }, + { + "start": 7345.94, + "end": 7345.94, + "probability": 0.01 + }, + { + "start": 7345.94, + "end": 7347.22, + "probability": 0.1113 + }, + { + "start": 7347.22, + "end": 7347.22, + "probability": 0.1076 + }, + { + "start": 7347.34, + "end": 7350.18, + "probability": 0.8109 + }, + { + "start": 7350.68, + "end": 7352.59, + "probability": 0.284 + }, + { + "start": 7353.6, + "end": 7353.86, + "probability": 0.9497 + }, + { + "start": 7355.52, + "end": 7356.26, + "probability": 0.7547 + }, + { + "start": 7356.96, + "end": 7357.42, + "probability": 0.9635 + }, + { + "start": 7359.06, + "end": 7359.86, + "probability": 0.8785 + }, + { + "start": 7360.92, + "end": 7361.26, + "probability": 0.9935 + }, + { + "start": 7363.04, + "end": 7363.92, + "probability": 0.7235 + }, + { + "start": 7365.48, + "end": 7366.4, + "probability": 0.5155 + }, + { + "start": 7367.64, + "end": 7368.62, + "probability": 0.8197 + }, + { + "start": 7369.34, + "end": 7369.8, + "probability": 0.7282 + }, + { + "start": 7372.12, + "end": 7373.12, + "probability": 0.5343 + }, + { + "start": 7374.22, + "end": 7374.68, + "probability": 0.9552 + }, + { + "start": 7376.62, + "end": 7377.34, + "probability": 0.7416 + }, + { + "start": 7378.18, + "end": 7378.66, + "probability": 0.7872 + }, + { + "start": 7382.14, + "end": 7383.08, + "probability": 0.6547 + }, + { + "start": 7384.02, + "end": 7384.48, + "probability": 0.9448 + }, + { + "start": 7386.02, + "end": 7386.86, + "probability": 0.6445 + }, + { + "start": 7387.94, + "end": 7391.64, + "probability": 0.8136 + }, + { + "start": 7392.82, + "end": 7394.42, + "probability": 0.9611 + }, + { + "start": 7395.4, + "end": 7396.34, + "probability": 0.8879 + }, + { + "start": 7397.5, + "end": 7398.68, + "probability": 0.9928 + }, + { + "start": 7399.88, + "end": 7400.7, + "probability": 0.9505 + }, + { + "start": 7403.16, + "end": 7406.62, + "probability": 0.8864 + }, + { + "start": 7409.28, + "end": 7410.34, + "probability": 0.9015 + }, + { + "start": 7411.2, + "end": 7413.88, + "probability": 0.5589 + }, + { + "start": 7418.22, + "end": 7419.0, + "probability": 0.3106 + }, + { + "start": 7419.58, + "end": 7419.98, + "probability": 0.8455 + }, + { + "start": 7422.58, + "end": 7423.68, + "probability": 0.7277 + }, + { + "start": 7427.21, + "end": 7430.36, + "probability": 0.9668 + }, + { + "start": 7431.04, + "end": 7434.4, + "probability": 0.4501 + }, + { + "start": 7435.2, + "end": 7436.4, + "probability": 0.9837 + }, + { + "start": 7437.14, + "end": 7440.32, + "probability": 0.9587 + }, + { + "start": 7440.66, + "end": 7441.16, + "probability": 0.3157 + }, + { + "start": 7441.72, + "end": 7441.72, + "probability": 0.2161 + }, + { + "start": 7441.72, + "end": 7441.74, + "probability": 0.0897 + }, + { + "start": 7441.74, + "end": 7443.2, + "probability": 0.6782 + }, + { + "start": 7443.76, + "end": 7444.16, + "probability": 0.8256 + }, + { + "start": 7444.74, + "end": 7446.86, + "probability": 0.6889 + }, + { + "start": 7447.26, + "end": 7448.62, + "probability": 0.3451 + }, + { + "start": 7448.62, + "end": 7452.32, + "probability": 0.2712 + }, + { + "start": 7453.72, + "end": 7456.04, + "probability": 0.112 + }, + { + "start": 7456.28, + "end": 7456.28, + "probability": 0.0969 + }, + { + "start": 7456.28, + "end": 7456.28, + "probability": 0.3901 + }, + { + "start": 7456.28, + "end": 7456.28, + "probability": 0.2651 + }, + { + "start": 7456.28, + "end": 7456.28, + "probability": 0.0634 + }, + { + "start": 7456.28, + "end": 7457.16, + "probability": 0.3463 + }, + { + "start": 7457.28, + "end": 7459.52, + "probability": 0.4808 + }, + { + "start": 7460.46, + "end": 7464.84, + "probability": 0.2049 + }, + { + "start": 7465.6, + "end": 7466.96, + "probability": 0.4895 + }, + { + "start": 7467.02, + "end": 7467.86, + "probability": 0.9765 + }, + { + "start": 7477.58, + "end": 7478.34, + "probability": 0.0241 + }, + { + "start": 7480.88, + "end": 7481.16, + "probability": 0.0223 + }, + { + "start": 7481.6, + "end": 7484.26, + "probability": 0.1177 + }, + { + "start": 7488.46, + "end": 7491.46, + "probability": 0.3484 + }, + { + "start": 7491.5, + "end": 7494.74, + "probability": 0.0348 + }, + { + "start": 7497.16, + "end": 7501.66, + "probability": 0.0384 + }, + { + "start": 7503.7, + "end": 7506.16, + "probability": 0.1118 + }, + { + "start": 7526.0, + "end": 7526.1, + "probability": 0.0118 + }, + { + "start": 7526.24, + "end": 7526.65, + "probability": 0.0791 + }, + { + "start": 7527.5, + "end": 7528.82, + "probability": 0.0255 + }, + { + "start": 7529.14, + "end": 7532.22, + "probability": 0.7461 + }, + { + "start": 7535.58, + "end": 7535.72, + "probability": 0.1216 + }, + { + "start": 7535.72, + "end": 7536.92, + "probability": 0.8024 + }, + { + "start": 7539.28, + "end": 7542.5, + "probability": 0.0045 + }, + { + "start": 7543.88, + "end": 7544.16, + "probability": 0.0 + }, + { + "start": 7656.0, + "end": 7656.0, + "probability": 0.0 + }, + { + "start": 7656.0, + "end": 7656.0, + "probability": 0.0 + }, + { + "start": 7656.34, + "end": 7659.37, + "probability": 0.3175 + }, + { + "start": 7660.52, + "end": 7661.12, + "probability": 0.0195 + }, + { + "start": 7661.14, + "end": 7661.74, + "probability": 0.1476 + }, + { + "start": 7661.76, + "end": 7661.76, + "probability": 0.4427 + }, + { + "start": 7661.76, + "end": 7662.04, + "probability": 0.0536 + }, + { + "start": 7662.04, + "end": 7662.64, + "probability": 0.1401 + }, + { + "start": 7664.49, + "end": 7668.49, + "probability": 0.6081 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.0, + "end": 7777.0, + "probability": 0.0 + }, + { + "start": 7777.32, + "end": 7778.42, + "probability": 0.013 + }, + { + "start": 7780.7, + "end": 7784.98, + "probability": 0.8325 + }, + { + "start": 7785.72, + "end": 7786.92, + "probability": 0.5869 + }, + { + "start": 7787.46, + "end": 7789.3, + "probability": 0.905 + }, + { + "start": 7789.84, + "end": 7791.34, + "probability": 0.8505 + }, + { + "start": 7792.12, + "end": 7796.94, + "probability": 0.9795 + }, + { + "start": 7797.8, + "end": 7800.48, + "probability": 0.9785 + }, + { + "start": 7801.51, + "end": 7807.3, + "probability": 0.8578 + }, + { + "start": 7807.9, + "end": 7812.17, + "probability": 0.9971 + }, + { + "start": 7813.04, + "end": 7813.78, + "probability": 0.7586 + }, + { + "start": 7814.58, + "end": 7816.78, + "probability": 0.9673 + }, + { + "start": 7817.44, + "end": 7819.96, + "probability": 0.9417 + }, + { + "start": 7821.3, + "end": 7822.6, + "probability": 0.835 + }, + { + "start": 7823.3, + "end": 7825.06, + "probability": 0.9629 + }, + { + "start": 7826.36, + "end": 7826.38, + "probability": 0.9482 + }, + { + "start": 7827.48, + "end": 7829.32, + "probability": 0.7476 + }, + { + "start": 7830.38, + "end": 7833.4, + "probability": 0.9966 + }, + { + "start": 7834.54, + "end": 7835.82, + "probability": 0.6896 + }, + { + "start": 7836.02, + "end": 7836.86, + "probability": 0.9737 + }, + { + "start": 7836.92, + "end": 7840.9, + "probability": 0.9585 + }, + { + "start": 7841.68, + "end": 7843.76, + "probability": 0.9928 + }, + { + "start": 7844.22, + "end": 7844.36, + "probability": 0.0677 + }, + { + "start": 7844.36, + "end": 7844.36, + "probability": 0.1596 + }, + { + "start": 7844.36, + "end": 7846.72, + "probability": 0.948 + }, + { + "start": 7848.32, + "end": 7848.32, + "probability": 0.0192 + }, + { + "start": 7848.32, + "end": 7850.7, + "probability": 0.9948 + }, + { + "start": 7850.96, + "end": 7852.14, + "probability": 0.4748 + }, + { + "start": 7853.22, + "end": 7855.24, + "probability": 0.4183 + }, + { + "start": 7857.14, + "end": 7857.94, + "probability": 0.1018 + }, + { + "start": 7857.94, + "end": 7858.28, + "probability": 0.1914 + }, + { + "start": 7859.2, + "end": 7861.04, + "probability": 0.2055 + }, + { + "start": 7861.24, + "end": 7862.82, + "probability": 0.354 + }, + { + "start": 7863.04, + "end": 7868.58, + "probability": 0.4498 + }, + { + "start": 7868.7, + "end": 7869.45, + "probability": 0.8306 + }, + { + "start": 7872.25, + "end": 7881.78, + "probability": 0.9128 + }, + { + "start": 7882.04, + "end": 7883.3, + "probability": 0.9564 + }, + { + "start": 7884.22, + "end": 7884.24, + "probability": 0.8594 + }, + { + "start": 7885.2, + "end": 7886.72, + "probability": 0.9397 + }, + { + "start": 7887.94, + "end": 7893.18, + "probability": 0.9823 + }, + { + "start": 7893.38, + "end": 7895.5, + "probability": 0.942 + }, + { + "start": 7895.56, + "end": 7896.42, + "probability": 0.407 + }, + { + "start": 7896.84, + "end": 7898.7, + "probability": 0.9812 + }, + { + "start": 7899.56, + "end": 7900.88, + "probability": 0.9717 + }, + { + "start": 7901.02, + "end": 7904.88, + "probability": 0.832 + }, + { + "start": 7905.5, + "end": 7906.98, + "probability": 0.9321 + }, + { + "start": 7906.98, + "end": 7909.54, + "probability": 0.9109 + }, + { + "start": 7912.02, + "end": 7917.06, + "probability": 0.9684 + }, + { + "start": 7919.72, + "end": 7921.88, + "probability": 0.4953 + }, + { + "start": 7922.46, + "end": 7925.78, + "probability": 0.89 + }, + { + "start": 7926.28, + "end": 7930.46, + "probability": 0.6772 + }, + { + "start": 7930.46, + "end": 7930.48, + "probability": 0.0553 + }, + { + "start": 7930.48, + "end": 7930.88, + "probability": 0.6613 + }, + { + "start": 7931.52, + "end": 7932.86, + "probability": 0.9958 + }, + { + "start": 7933.46, + "end": 7936.76, + "probability": 0.8543 + }, + { + "start": 7939.2, + "end": 7940.48, + "probability": 0.9333 + }, + { + "start": 7940.98, + "end": 7942.9, + "probability": 0.9985 + }, + { + "start": 7944.3, + "end": 7947.86, + "probability": 0.9457 + }, + { + "start": 7948.74, + "end": 7949.92, + "probability": 0.9968 + }, + { + "start": 7950.52, + "end": 7951.69, + "probability": 0.9558 + }, + { + "start": 7952.96, + "end": 7953.62, + "probability": 0.5606 + }, + { + "start": 7954.6, + "end": 7958.32, + "probability": 0.991 + }, + { + "start": 7958.94, + "end": 7960.0, + "probability": 0.9846 + }, + { + "start": 7961.9, + "end": 7961.98, + "probability": 0.0327 + }, + { + "start": 7961.98, + "end": 7963.62, + "probability": 0.972 + }, + { + "start": 7964.32, + "end": 7969.68, + "probability": 0.8365 + }, + { + "start": 7970.3, + "end": 7972.7, + "probability": 0.8555 + }, + { + "start": 7973.52, + "end": 7974.4, + "probability": 0.6455 + }, + { + "start": 7975.98, + "end": 7978.56, + "probability": 0.9596 + }, + { + "start": 7980.45, + "end": 7984.28, + "probability": 0.9106 + }, + { + "start": 7984.38, + "end": 7985.14, + "probability": 0.9534 + }, + { + "start": 7985.76, + "end": 7989.56, + "probability": 0.9031 + }, + { + "start": 7989.96, + "end": 7993.96, + "probability": 0.8597 + }, + { + "start": 7995.92, + "end": 7999.32, + "probability": 0.9951 + }, + { + "start": 7999.54, + "end": 8000.98, + "probability": 0.9109 + }, + { + "start": 8001.84, + "end": 8003.78, + "probability": 0.9751 + }, + { + "start": 8004.54, + "end": 8007.22, + "probability": 0.992 + }, + { + "start": 8008.36, + "end": 8012.84, + "probability": 0.9214 + }, + { + "start": 8013.48, + "end": 8015.38, + "probability": 0.9417 + }, + { + "start": 8015.46, + "end": 8016.32, + "probability": 0.717 + }, + { + "start": 8016.76, + "end": 8019.34, + "probability": 0.9967 + }, + { + "start": 8020.32, + "end": 8023.84, + "probability": 0.9673 + }, + { + "start": 8025.08, + "end": 8027.0, + "probability": 0.9805 + }, + { + "start": 8027.8, + "end": 8029.66, + "probability": 0.7211 + }, + { + "start": 8029.74, + "end": 8034.56, + "probability": 0.9919 + }, + { + "start": 8035.44, + "end": 8037.02, + "probability": 0.9572 + }, + { + "start": 8037.1, + "end": 8038.04, + "probability": 0.722 + }, + { + "start": 8038.68, + "end": 8041.5, + "probability": 0.9861 + }, + { + "start": 8042.28, + "end": 8042.9, + "probability": 0.6746 + }, + { + "start": 8042.98, + "end": 8045.74, + "probability": 0.7302 + }, + { + "start": 8045.76, + "end": 8046.0, + "probability": 0.8823 + }, + { + "start": 8046.5, + "end": 8049.3, + "probability": 0.8647 + }, + { + "start": 8049.36, + "end": 8051.54, + "probability": 0.9671 + }, + { + "start": 8051.9, + "end": 8055.22, + "probability": 0.9352 + }, + { + "start": 8055.68, + "end": 8059.04, + "probability": 0.9912 + }, + { + "start": 8059.42, + "end": 8060.98, + "probability": 0.9969 + }, + { + "start": 8061.92, + "end": 8065.9, + "probability": 0.914 + }, + { + "start": 8066.44, + "end": 8071.52, + "probability": 0.9956 + }, + { + "start": 8072.82, + "end": 8072.84, + "probability": 0.1653 + }, + { + "start": 8072.84, + "end": 8073.06, + "probability": 0.1663 + }, + { + "start": 8073.62, + "end": 8074.82, + "probability": 0.7653 + }, + { + "start": 8075.88, + "end": 8077.28, + "probability": 0.9155 + }, + { + "start": 8078.18, + "end": 8079.96, + "probability": 0.9567 + }, + { + "start": 8080.68, + "end": 8081.41, + "probability": 0.938 + }, + { + "start": 8082.28, + "end": 8083.72, + "probability": 0.9972 + }, + { + "start": 8084.32, + "end": 8086.32, + "probability": 0.9434 + }, + { + "start": 8086.48, + "end": 8089.46, + "probability": 0.9742 + }, + { + "start": 8089.88, + "end": 8093.34, + "probability": 0.8854 + }, + { + "start": 8093.5, + "end": 8093.8, + "probability": 0.705 + }, + { + "start": 8095.18, + "end": 8097.42, + "probability": 0.9946 + }, + { + "start": 8098.7, + "end": 8098.96, + "probability": 0.8824 + }, + { + "start": 8102.34, + "end": 8102.36, + "probability": 0.1746 + }, + { + "start": 8102.36, + "end": 8104.32, + "probability": 0.6292 + }, + { + "start": 8104.36, + "end": 8106.5, + "probability": 0.8335 + }, + { + "start": 8107.08, + "end": 8110.04, + "probability": 0.9951 + }, + { + "start": 8111.34, + "end": 8114.38, + "probability": 0.9312 + }, + { + "start": 8115.38, + "end": 8118.5, + "probability": 0.9966 + }, + { + "start": 8119.24, + "end": 8122.72, + "probability": 0.9904 + }, + { + "start": 8123.64, + "end": 8125.94, + "probability": 0.9915 + }, + { + "start": 8127.4, + "end": 8130.0, + "probability": 0.9944 + }, + { + "start": 8130.58, + "end": 8132.54, + "probability": 0.998 + }, + { + "start": 8133.24, + "end": 8135.32, + "probability": 0.2906 + }, + { + "start": 8136.8, + "end": 8139.96, + "probability": 0.7593 + }, + { + "start": 8140.42, + "end": 8143.58, + "probability": 0.9806 + }, + { + "start": 8144.48, + "end": 8148.04, + "probability": 0.9907 + }, + { + "start": 8148.66, + "end": 8150.26, + "probability": 0.9914 + }, + { + "start": 8150.86, + "end": 8151.9, + "probability": 0.7827 + }, + { + "start": 8153.19, + "end": 8160.48, + "probability": 0.9838 + }, + { + "start": 8160.98, + "end": 8163.26, + "probability": 0.9069 + }, + { + "start": 8164.2, + "end": 8164.9, + "probability": 0.4937 + }, + { + "start": 8165.6, + "end": 8169.62, + "probability": 0.9964 + }, + { + "start": 8169.62, + "end": 8173.48, + "probability": 0.9932 + }, + { + "start": 8173.98, + "end": 8175.16, + "probability": 0.9607 + }, + { + "start": 8175.3, + "end": 8178.88, + "probability": 0.9968 + }, + { + "start": 8179.32, + "end": 8181.24, + "probability": 0.8411 + }, + { + "start": 8181.84, + "end": 8185.28, + "probability": 0.9954 + }, + { + "start": 8187.1, + "end": 8189.62, + "probability": 0.7088 + }, + { + "start": 8190.58, + "end": 8191.28, + "probability": 0.8811 + }, + { + "start": 8191.48, + "end": 8196.49, + "probability": 0.9736 + }, + { + "start": 8196.84, + "end": 8201.34, + "probability": 0.9724 + }, + { + "start": 8201.78, + "end": 8202.83, + "probability": 0.9016 + }, + { + "start": 8203.58, + "end": 8208.36, + "probability": 0.9753 + }, + { + "start": 8208.36, + "end": 8212.4, + "probability": 0.9959 + }, + { + "start": 8212.6, + "end": 8213.22, + "probability": 0.7756 + }, + { + "start": 8213.42, + "end": 8213.74, + "probability": 0.6653 + }, + { + "start": 8214.5, + "end": 8216.46, + "probability": 0.6542 + }, + { + "start": 8216.84, + "end": 8220.98, + "probability": 0.923 + }, + { + "start": 8221.22, + "end": 8222.74, + "probability": 0.5549 + }, + { + "start": 8224.18, + "end": 8229.36, + "probability": 0.9775 + }, + { + "start": 8230.04, + "end": 8233.52, + "probability": 0.9989 + }, + { + "start": 8234.26, + "end": 8236.44, + "probability": 0.3787 + }, + { + "start": 8236.7, + "end": 8241.48, + "probability": 0.9351 + }, + { + "start": 8242.02, + "end": 8245.44, + "probability": 0.8091 + }, + { + "start": 8246.06, + "end": 8246.36, + "probability": 0.7952 + }, + { + "start": 8246.46, + "end": 8250.22, + "probability": 0.9467 + }, + { + "start": 8251.23, + "end": 8253.54, + "probability": 0.9244 + }, + { + "start": 8253.54, + "end": 8258.5, + "probability": 0.9238 + }, + { + "start": 8259.0, + "end": 8260.34, + "probability": 0.2103 + }, + { + "start": 8260.58, + "end": 8261.74, + "probability": 0.8012 + }, + { + "start": 8262.0, + "end": 8263.6, + "probability": 0.8241 + }, + { + "start": 8263.78, + "end": 8266.5, + "probability": 0.5861 + }, + { + "start": 8266.66, + "end": 8267.56, + "probability": 0.7617 + }, + { + "start": 8267.56, + "end": 8271.16, + "probability": 0.9418 + }, + { + "start": 8273.5, + "end": 8275.4, + "probability": 0.1662 + }, + { + "start": 8275.72, + "end": 8276.16, + "probability": 0.675 + }, + { + "start": 8277.32, + "end": 8279.98, + "probability": 0.3286 + }, + { + "start": 8280.18, + "end": 8281.78, + "probability": 0.4759 + }, + { + "start": 8282.14, + "end": 8284.12, + "probability": 0.6506 + }, + { + "start": 8284.5, + "end": 8285.94, + "probability": 0.6694 + }, + { + "start": 8286.08, + "end": 8290.7, + "probability": 0.9797 + }, + { + "start": 8291.42, + "end": 8291.96, + "probability": 0.9673 + }, + { + "start": 8293.2, + "end": 8295.08, + "probability": 0.011 + }, + { + "start": 8295.92, + "end": 8297.4, + "probability": 0.091 + }, + { + "start": 8300.32, + "end": 8301.12, + "probability": 0.1801 + }, + { + "start": 8301.68, + "end": 8301.68, + "probability": 0.0892 + }, + { + "start": 8301.68, + "end": 8301.68, + "probability": 0.2432 + }, + { + "start": 8301.68, + "end": 8302.8, + "probability": 0.1537 + }, + { + "start": 8303.38, + "end": 8304.08, + "probability": 0.4428 + }, + { + "start": 8306.32, + "end": 8310.04, + "probability": 0.0562 + }, + { + "start": 8310.3, + "end": 8310.6, + "probability": 0.1621 + }, + { + "start": 8311.38, + "end": 8314.64, + "probability": 0.0949 + }, + { + "start": 8315.08, + "end": 8315.76, + "probability": 0.0394 + }, + { + "start": 8317.04, + "end": 8317.7, + "probability": 0.0171 + }, + { + "start": 8318.12, + "end": 8318.7, + "probability": 0.0439 + }, + { + "start": 8318.7, + "end": 8320.84, + "probability": 0.0638 + }, + { + "start": 8321.88, + "end": 8323.54, + "probability": 0.0204 + }, + { + "start": 8323.86, + "end": 8325.64, + "probability": 0.0313 + }, + { + "start": 8325.64, + "end": 8327.26, + "probability": 0.0461 + }, + { + "start": 8327.26, + "end": 8327.58, + "probability": 0.0766 + }, + { + "start": 8327.88, + "end": 8331.48, + "probability": 0.0595 + }, + { + "start": 8332.32, + "end": 8332.76, + "probability": 0.0503 + }, + { + "start": 8332.76, + "end": 8332.82, + "probability": 0.0464 + }, + { + "start": 8332.82, + "end": 8335.38, + "probability": 0.2859 + }, + { + "start": 8336.42, + "end": 8338.56, + "probability": 0.1637 + }, + { + "start": 8367.0, + "end": 8367.0, + "probability": 0.0 + }, + { + "start": 8367.0, + "end": 8367.0, + "probability": 0.0 + }, + { + "start": 8367.0, + "end": 8367.0, + "probability": 0.0 + }, + { + "start": 8367.0, + "end": 8367.0, + "probability": 0.0 + }, + { + "start": 8367.0, + "end": 8367.0, + "probability": 0.0 + }, + { + "start": 8367.0, + "end": 8367.0, + "probability": 0.0 + }, + { + "start": 8367.0, + "end": 8367.0, + "probability": 0.0 + }, + { + "start": 8367.0, + "end": 8367.0, + "probability": 0.0 + }, + { + "start": 8367.0, + "end": 8367.0, + "probability": 0.0 + }, + { + "start": 8367.0, + "end": 8367.0, + "probability": 0.0 + }, + { + "start": 8367.0, + "end": 8367.0, + "probability": 0.0 + }, + { + "start": 8367.0, + "end": 8367.0, + "probability": 0.0 + }, + { + "start": 8367.0, + "end": 8367.0, + "probability": 0.0 + }, + { + "start": 8367.0, + "end": 8367.0, + "probability": 0.0 + }, + { + "start": 8367.0, + "end": 8367.0, + "probability": 0.0 + }, + { + "start": 8367.0, + "end": 8367.0, + "probability": 0.0 + }, + { + "start": 8367.0, + "end": 8367.0, + "probability": 0.0 + }, + { + "start": 8367.0, + "end": 8367.0, + "probability": 0.0 + }, + { + "start": 8367.0, + "end": 8367.0, + "probability": 0.0 + }, + { + "start": 8367.0, + "end": 8367.0, + "probability": 0.0 + }, + { + "start": 8367.0, + "end": 8367.0, + "probability": 0.0 + }, + { + "start": 8367.0, + "end": 8367.0, + "probability": 0.0 + }, + { + "start": 8367.0, + "end": 8367.0, + "probability": 0.0 + }, + { + "start": 8367.12, + "end": 8367.86, + "probability": 0.1704 + }, + { + "start": 8368.12, + "end": 8368.68, + "probability": 0.3445 + }, + { + "start": 8368.84, + "end": 8370.58, + "probability": 0.1878 + }, + { + "start": 8370.58, + "end": 8371.82, + "probability": 0.2341 + }, + { + "start": 8371.82, + "end": 8373.14, + "probability": 0.1947 + }, + { + "start": 8373.2, + "end": 8373.3, + "probability": 0.0578 + }, + { + "start": 8374.94, + "end": 8377.2, + "probability": 0.0393 + }, + { + "start": 8377.92, + "end": 8379.18, + "probability": 0.2335 + }, + { + "start": 8380.36, + "end": 8380.4, + "probability": 0.095 + }, + { + "start": 8380.98, + "end": 8382.72, + "probability": 0.0107 + }, + { + "start": 8382.72, + "end": 8384.18, + "probability": 0.1097 + }, + { + "start": 8384.94, + "end": 8386.44, + "probability": 0.08 + }, + { + "start": 8386.44, + "end": 8386.46, + "probability": 0.1419 + }, + { + "start": 8386.46, + "end": 8386.46, + "probability": 0.298 + }, + { + "start": 8386.46, + "end": 8387.46, + "probability": 0.2093 + }, + { + "start": 8387.46, + "end": 8387.92, + "probability": 0.0217 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.0, + "end": 8493.0, + "probability": 0.0 + }, + { + "start": 8493.86, + "end": 8494.66, + "probability": 0.0811 + }, + { + "start": 8494.66, + "end": 8504.86, + "probability": 0.9699 + }, + { + "start": 8506.06, + "end": 8511.44, + "probability": 0.9989 + }, + { + "start": 8512.26, + "end": 8517.06, + "probability": 0.9615 + }, + { + "start": 8517.06, + "end": 8520.7, + "probability": 0.9994 + }, + { + "start": 8522.94, + "end": 8525.22, + "probability": 0.9984 + }, + { + "start": 8525.22, + "end": 8533.46, + "probability": 0.9648 + }, + { + "start": 8533.56, + "end": 8535.22, + "probability": 0.7809 + }, + { + "start": 8535.88, + "end": 8538.94, + "probability": 0.9932 + }, + { + "start": 8539.48, + "end": 8545.5, + "probability": 0.9442 + }, + { + "start": 8546.1, + "end": 8549.82, + "probability": 0.8852 + }, + { + "start": 8550.52, + "end": 8553.56, + "probability": 0.9797 + }, + { + "start": 8554.68, + "end": 8561.36, + "probability": 0.9453 + }, + { + "start": 8561.36, + "end": 8568.06, + "probability": 0.9943 + }, + { + "start": 8568.24, + "end": 8570.78, + "probability": 0.8545 + }, + { + "start": 8570.84, + "end": 8577.0, + "probability": 0.9819 + }, + { + "start": 8577.58, + "end": 8578.48, + "probability": 0.9011 + }, + { + "start": 8578.56, + "end": 8582.9, + "probability": 0.9373 + }, + { + "start": 8582.9, + "end": 8587.7, + "probability": 0.9769 + }, + { + "start": 8587.78, + "end": 8592.04, + "probability": 0.998 + }, + { + "start": 8592.72, + "end": 8597.34, + "probability": 0.984 + }, + { + "start": 8598.65, + "end": 8601.36, + "probability": 0.0238 + }, + { + "start": 8602.78, + "end": 8602.98, + "probability": 0.0465 + }, + { + "start": 8602.98, + "end": 8603.52, + "probability": 0.0602 + }, + { + "start": 8604.16, + "end": 8608.56, + "probability": 0.9111 + }, + { + "start": 8608.56, + "end": 8614.1, + "probability": 0.9953 + }, + { + "start": 8614.24, + "end": 8614.64, + "probability": 0.6326 + }, + { + "start": 8614.78, + "end": 8616.82, + "probability": 0.9141 + }, + { + "start": 8616.86, + "end": 8620.1, + "probability": 0.0365 + }, + { + "start": 8620.68, + "end": 8621.22, + "probability": 0.0969 + }, + { + "start": 8623.53, + "end": 8633.0, + "probability": 0.9372 + }, + { + "start": 8633.22, + "end": 8637.36, + "probability": 0.9985 + }, + { + "start": 8637.36, + "end": 8640.64, + "probability": 0.9909 + }, + { + "start": 8641.32, + "end": 8644.6, + "probability": 0.9987 + }, + { + "start": 8644.6, + "end": 8647.6, + "probability": 0.998 + }, + { + "start": 8648.88, + "end": 8651.68, + "probability": 0.9868 + }, + { + "start": 8652.38, + "end": 8654.06, + "probability": 0.9439 + }, + { + "start": 8654.62, + "end": 8658.2, + "probability": 0.6578 + }, + { + "start": 8659.66, + "end": 8662.42, + "probability": 0.5833 + }, + { + "start": 8662.52, + "end": 8663.72, + "probability": 0.9129 + }, + { + "start": 8663.78, + "end": 8666.42, + "probability": 0.9883 + }, + { + "start": 8666.42, + "end": 8669.02, + "probability": 0.8467 + }, + { + "start": 8669.84, + "end": 8673.82, + "probability": 0.9657 + }, + { + "start": 8674.3, + "end": 8675.18, + "probability": 0.9773 + }, + { + "start": 8675.48, + "end": 8675.74, + "probability": 0.5115 + }, + { + "start": 8675.88, + "end": 8678.08, + "probability": 0.9824 + }, + { + "start": 8678.18, + "end": 8681.12, + "probability": 0.9785 + }, + { + "start": 8682.02, + "end": 8685.64, + "probability": 0.7339 + }, + { + "start": 8686.66, + "end": 8687.3, + "probability": 0.5976 + }, + { + "start": 8687.5, + "end": 8687.52, + "probability": 0.7794 + }, + { + "start": 8687.52, + "end": 8691.52, + "probability": 0.9721 + }, + { + "start": 8691.98, + "end": 8695.52, + "probability": 0.9938 + }, + { + "start": 8695.68, + "end": 8697.64, + "probability": 0.9955 + }, + { + "start": 8698.22, + "end": 8700.32, + "probability": 0.9828 + }, + { + "start": 8700.74, + "end": 8702.5, + "probability": 0.8574 + }, + { + "start": 8703.1, + "end": 8705.28, + "probability": 0.9876 + }, + { + "start": 8705.34, + "end": 8705.9, + "probability": 0.8457 + }, + { + "start": 8705.98, + "end": 8710.94, + "probability": 0.9967 + }, + { + "start": 8710.96, + "end": 8712.28, + "probability": 0.979 + }, + { + "start": 8713.24, + "end": 8718.2, + "probability": 0.9977 + }, + { + "start": 8718.92, + "end": 8719.44, + "probability": 0.557 + }, + { + "start": 8720.16, + "end": 8723.26, + "probability": 0.9646 + }, + { + "start": 8725.36, + "end": 8730.36, + "probability": 0.9405 + }, + { + "start": 8731.08, + "end": 8735.64, + "probability": 0.9734 + }, + { + "start": 8735.64, + "end": 8739.06, + "probability": 0.999 + }, + { + "start": 8739.62, + "end": 8745.74, + "probability": 0.9958 + }, + { + "start": 8746.32, + "end": 8750.94, + "probability": 0.9983 + }, + { + "start": 8751.14, + "end": 8756.02, + "probability": 0.9992 + }, + { + "start": 8756.5, + "end": 8761.92, + "probability": 0.9863 + }, + { + "start": 8762.02, + "end": 8763.18, + "probability": 0.9985 + }, + { + "start": 8763.82, + "end": 8767.4, + "probability": 0.9851 + }, + { + "start": 8768.98, + "end": 8777.72, + "probability": 0.9722 + }, + { + "start": 8777.72, + "end": 8783.26, + "probability": 0.8691 + }, + { + "start": 8784.04, + "end": 8790.92, + "probability": 0.9447 + }, + { + "start": 8791.06, + "end": 8792.94, + "probability": 0.9847 + }, + { + "start": 8793.0, + "end": 8794.92, + "probability": 0.9334 + }, + { + "start": 8795.58, + "end": 8800.02, + "probability": 0.9814 + }, + { + "start": 8800.36, + "end": 8800.76, + "probability": 0.5762 + }, + { + "start": 8801.22, + "end": 8806.18, + "probability": 0.9987 + }, + { + "start": 8806.2, + "end": 8810.76, + "probability": 0.9676 + }, + { + "start": 8811.34, + "end": 8811.74, + "probability": 0.5734 + }, + { + "start": 8812.34, + "end": 8813.66, + "probability": 0.9966 + }, + { + "start": 8813.78, + "end": 8816.82, + "probability": 0.9888 + }, + { + "start": 8817.4, + "end": 8819.96, + "probability": 0.9956 + }, + { + "start": 8820.01, + "end": 8823.1, + "probability": 0.9927 + }, + { + "start": 8823.22, + "end": 8823.44, + "probability": 0.786 + }, + { + "start": 8823.54, + "end": 8824.44, + "probability": 0.9787 + }, + { + "start": 8824.84, + "end": 8826.38, + "probability": 0.992 + }, + { + "start": 8826.52, + "end": 8826.94, + "probability": 0.7163 + }, + { + "start": 8828.18, + "end": 8833.2, + "probability": 0.993 + }, + { + "start": 8833.98, + "end": 8837.08, + "probability": 0.9965 + }, + { + "start": 8837.3, + "end": 8837.64, + "probability": 0.9863 + }, + { + "start": 8838.16, + "end": 8841.46, + "probability": 0.9129 + }, + { + "start": 8841.98, + "end": 8843.45, + "probability": 0.9489 + }, + { + "start": 8843.88, + "end": 8845.52, + "probability": 0.8278 + }, + { + "start": 8845.92, + "end": 8848.82, + "probability": 0.7337 + }, + { + "start": 8849.36, + "end": 8853.06, + "probability": 0.9706 + }, + { + "start": 8853.32, + "end": 8853.94, + "probability": 0.9139 + }, + { + "start": 8854.66, + "end": 8858.16, + "probability": 0.9208 + }, + { + "start": 8858.32, + "end": 8862.74, + "probability": 0.9628 + }, + { + "start": 8862.74, + "end": 8866.64, + "probability": 0.9963 + }, + { + "start": 8868.34, + "end": 8871.24, + "probability": 0.9745 + }, + { + "start": 8871.8, + "end": 8875.04, + "probability": 0.9745 + }, + { + "start": 8875.2, + "end": 8877.42, + "probability": 0.998 + }, + { + "start": 8878.24, + "end": 8885.12, + "probability": 0.9611 + }, + { + "start": 8885.76, + "end": 8887.94, + "probability": 0.9755 + }, + { + "start": 8888.22, + "end": 8888.5, + "probability": 0.7755 + }, + { + "start": 8888.78, + "end": 8889.62, + "probability": 0.7515 + }, + { + "start": 8889.68, + "end": 8893.64, + "probability": 0.9924 + }, + { + "start": 8893.68, + "end": 8896.0, + "probability": 0.9978 + }, + { + "start": 8902.62, + "end": 8903.08, + "probability": 0.7328 + }, + { + "start": 8903.16, + "end": 8903.86, + "probability": 0.6465 + }, + { + "start": 8903.88, + "end": 8904.54, + "probability": 0.7655 + }, + { + "start": 8904.58, + "end": 8906.94, + "probability": 0.9941 + }, + { + "start": 8907.04, + "end": 8907.7, + "probability": 0.7765 + }, + { + "start": 8908.94, + "end": 8911.22, + "probability": 0.9801 + }, + { + "start": 8912.06, + "end": 8914.28, + "probability": 0.8638 + }, + { + "start": 8915.48, + "end": 8916.92, + "probability": 0.8932 + }, + { + "start": 8917.72, + "end": 8921.26, + "probability": 0.993 + }, + { + "start": 8921.56, + "end": 8922.66, + "probability": 0.8276 + }, + { + "start": 8923.68, + "end": 8923.7, + "probability": 0.0093 + }, + { + "start": 8923.7, + "end": 8923.7, + "probability": 0.3396 + }, + { + "start": 8923.7, + "end": 8924.5, + "probability": 0.5759 + }, + { + "start": 8924.56, + "end": 8927.36, + "probability": 0.9204 + }, + { + "start": 8927.72, + "end": 8928.73, + "probability": 0.7979 + }, + { + "start": 8929.46, + "end": 8930.58, + "probability": 0.5638 + }, + { + "start": 8930.62, + "end": 8931.36, + "probability": 0.2435 + }, + { + "start": 8931.5, + "end": 8932.08, + "probability": 0.1662 + }, + { + "start": 8932.08, + "end": 8932.96, + "probability": 0.4635 + }, + { + "start": 8932.96, + "end": 8932.98, + "probability": 0.5778 + }, + { + "start": 8932.98, + "end": 8932.98, + "probability": 0.1563 + }, + { + "start": 8932.98, + "end": 8936.46, + "probability": 0.7473 + }, + { + "start": 8936.58, + "end": 8938.48, + "probability": 0.0414 + }, + { + "start": 8941.26, + "end": 8941.66, + "probability": 0.7527 + }, + { + "start": 8945.68, + "end": 8947.26, + "probability": 0.1529 + }, + { + "start": 8947.26, + "end": 8947.26, + "probability": 0.0166 + }, + { + "start": 8947.26, + "end": 8947.26, + "probability": 0.0714 + }, + { + "start": 8947.26, + "end": 8947.26, + "probability": 0.0558 + }, + { + "start": 8947.26, + "end": 8947.26, + "probability": 0.2319 + }, + { + "start": 8947.26, + "end": 8947.26, + "probability": 0.2136 + }, + { + "start": 8947.26, + "end": 8948.3, + "probability": 0.6298 + }, + { + "start": 8948.48, + "end": 8948.48, + "probability": 0.1045 + }, + { + "start": 8948.48, + "end": 8949.7, + "probability": 0.1867 + }, + { + "start": 8949.7, + "end": 8949.7, + "probability": 0.2118 + }, + { + "start": 8949.7, + "end": 8949.7, + "probability": 0.104 + }, + { + "start": 8949.7, + "end": 8949.7, + "probability": 0.2017 + }, + { + "start": 8949.7, + "end": 8952.6, + "probability": 0.2673 + }, + { + "start": 8952.6, + "end": 8957.8, + "probability": 0.9854 + }, + { + "start": 8958.14, + "end": 8959.84, + "probability": 0.9175 + }, + { + "start": 8960.12, + "end": 8961.75, + "probability": 0.6758 + }, + { + "start": 8961.9, + "end": 8962.24, + "probability": 0.2672 + }, + { + "start": 8962.26, + "end": 8963.98, + "probability": 0.9769 + }, + { + "start": 8964.22, + "end": 8967.18, + "probability": 0.9546 + }, + { + "start": 8967.76, + "end": 8969.88, + "probability": 0.5867 + }, + { + "start": 8970.24, + "end": 8974.58, + "probability": 0.9681 + }, + { + "start": 8975.16, + "end": 8976.2, + "probability": 0.7348 + }, + { + "start": 8976.34, + "end": 8977.57, + "probability": 0.8594 + }, + { + "start": 8978.2, + "end": 8978.24, + "probability": 0.2764 + }, + { + "start": 8978.24, + "end": 8979.56, + "probability": 0.8556 + }, + { + "start": 8979.58, + "end": 8980.18, + "probability": 0.669 + }, + { + "start": 8980.18, + "end": 8984.3, + "probability": 0.6663 + }, + { + "start": 8984.48, + "end": 8985.2, + "probability": 0.1308 + }, + { + "start": 8985.2, + "end": 8985.5, + "probability": 0.6485 + }, + { + "start": 8985.62, + "end": 8986.36, + "probability": 0.3758 + }, + { + "start": 8986.78, + "end": 8988.5, + "probability": 0.4621 + }, + { + "start": 8988.82, + "end": 8989.58, + "probability": 0.299 + }, + { + "start": 8989.68, + "end": 8991.02, + "probability": 0.4292 + }, + { + "start": 8992.44, + "end": 8993.3, + "probability": 0.4331 + }, + { + "start": 8994.28, + "end": 8994.28, + "probability": 0.0438 + }, + { + "start": 8994.28, + "end": 8994.28, + "probability": 0.0934 + }, + { + "start": 8994.28, + "end": 8995.36, + "probability": 0.0684 + }, + { + "start": 8996.4, + "end": 8997.51, + "probability": 0.6449 + }, + { + "start": 8997.94, + "end": 9000.62, + "probability": 0.7668 + }, + { + "start": 9001.98, + "end": 9002.72, + "probability": 0.272 + }, + { + "start": 9003.32, + "end": 9005.66, + "probability": 0.0159 + }, + { + "start": 9006.54, + "end": 9010.86, + "probability": 0.1119 + }, + { + "start": 9010.86, + "end": 9015.84, + "probability": 0.796 + }, + { + "start": 9016.18, + "end": 9017.62, + "probability": 0.729 + }, + { + "start": 9018.02, + "end": 9020.48, + "probability": 0.9791 + }, + { + "start": 9021.88, + "end": 9023.3, + "probability": 0.3286 + }, + { + "start": 9023.3, + "end": 9025.2, + "probability": 0.365 + }, + { + "start": 9026.4, + "end": 9028.9, + "probability": 0.9596 + }, + { + "start": 9029.58, + "end": 9030.2, + "probability": 0.3489 + }, + { + "start": 9030.56, + "end": 9031.66, + "probability": 0.8461 + }, + { + "start": 9036.06, + "end": 9037.08, + "probability": 0.6202 + }, + { + "start": 9037.92, + "end": 9040.96, + "probability": 0.842 + }, + { + "start": 9041.76, + "end": 9042.4, + "probability": 0.9675 + }, + { + "start": 9043.04, + "end": 9045.66, + "probability": 0.1438 + }, + { + "start": 9045.98, + "end": 9045.98, + "probability": 0.245 + }, + { + "start": 9046.0, + "end": 9047.46, + "probability": 0.2955 + }, + { + "start": 9047.46, + "end": 9049.52, + "probability": 0.2856 + }, + { + "start": 9049.8, + "end": 9050.96, + "probability": 0.9036 + }, + { + "start": 9051.98, + "end": 9052.18, + "probability": 0.4483 + }, + { + "start": 9052.18, + "end": 9053.3, + "probability": 0.463 + }, + { + "start": 9053.3, + "end": 9054.44, + "probability": 0.4928 + }, + { + "start": 9054.5, + "end": 9055.82, + "probability": 0.2595 + }, + { + "start": 9056.0, + "end": 9057.74, + "probability": 0.5208 + }, + { + "start": 9061.06, + "end": 9062.17, + "probability": 0.2369 + }, + { + "start": 9063.24, + "end": 9064.76, + "probability": 0.4709 + }, + { + "start": 9065.34, + "end": 9068.09, + "probability": 0.7839 + }, + { + "start": 9068.62, + "end": 9071.06, + "probability": 0.8041 + }, + { + "start": 9072.4, + "end": 9074.14, + "probability": 0.5884 + }, + { + "start": 9074.14, + "end": 9078.08, + "probability": 0.9936 + }, + { + "start": 9078.24, + "end": 9079.14, + "probability": 0.871 + }, + { + "start": 9079.35, + "end": 9082.29, + "probability": 0.9708 + }, + { + "start": 9087.48, + "end": 9090.56, + "probability": 0.4342 + }, + { + "start": 9090.56, + "end": 9092.68, + "probability": 0.7629 + }, + { + "start": 9094.54, + "end": 9097.12, + "probability": 0.681 + }, + { + "start": 9097.12, + "end": 9097.64, + "probability": 0.8896 + }, + { + "start": 9097.76, + "end": 9107.5, + "probability": 0.975 + }, + { + "start": 9107.62, + "end": 9109.74, + "probability": 0.2699 + }, + { + "start": 9109.88, + "end": 9111.6, + "probability": 0.5021 + }, + { + "start": 9111.92, + "end": 9113.28, + "probability": 0.126 + }, + { + "start": 9113.28, + "end": 9113.72, + "probability": 0.0766 + }, + { + "start": 9113.72, + "end": 9113.72, + "probability": 0.3187 + }, + { + "start": 9113.72, + "end": 9113.72, + "probability": 0.3982 + }, + { + "start": 9113.72, + "end": 9113.72, + "probability": 0.4754 + }, + { + "start": 9113.72, + "end": 9113.72, + "probability": 0.4716 + }, + { + "start": 9113.72, + "end": 9118.06, + "probability": 0.4892 + }, + { + "start": 9118.3, + "end": 9118.94, + "probability": 0.6535 + }, + { + "start": 9119.22, + "end": 9119.4, + "probability": 0.0516 + }, + { + "start": 9119.64, + "end": 9120.22, + "probability": 0.4284 + }, + { + "start": 9120.22, + "end": 9120.6, + "probability": 0.4764 + }, + { + "start": 9120.7, + "end": 9121.56, + "probability": 0.4932 + }, + { + "start": 9121.84, + "end": 9124.56, + "probability": 0.8018 + }, + { + "start": 9124.66, + "end": 9124.76, + "probability": 0.5766 + }, + { + "start": 9124.82, + "end": 9125.12, + "probability": 0.639 + }, + { + "start": 9125.12, + "end": 9126.12, + "probability": 0.6272 + }, + { + "start": 9128.1, + "end": 9130.04, + "probability": 0.8537 + }, + { + "start": 9146.36, + "end": 9147.02, + "probability": 0.0926 + }, + { + "start": 9147.02, + "end": 9147.16, + "probability": 0.4523 + }, + { + "start": 9147.16, + "end": 9148.4, + "probability": 0.627 + }, + { + "start": 9148.42, + "end": 9151.56, + "probability": 0.1408 + }, + { + "start": 9152.74, + "end": 9155.3, + "probability": 0.356 + }, + { + "start": 9155.9, + "end": 9156.7, + "probability": 0.1928 + }, + { + "start": 9157.2, + "end": 9158.36, + "probability": 0.1729 + }, + { + "start": 9160.22, + "end": 9161.98, + "probability": 0.1246 + }, + { + "start": 9162.34, + "end": 9163.9, + "probability": 0.2414 + }, + { + "start": 9175.68, + "end": 9180.88, + "probability": 0.0648 + }, + { + "start": 9180.96, + "end": 9181.92, + "probability": 0.0258 + }, + { + "start": 9181.92, + "end": 9182.36, + "probability": 0.0549 + }, + { + "start": 9182.52, + "end": 9184.28, + "probability": 0.0253 + }, + { + "start": 9184.98, + "end": 9186.3, + "probability": 0.0391 + }, + { + "start": 9194.0, + "end": 9194.0, + "probability": 0.0 + }, + { + "start": 9194.0, + "end": 9194.0, + "probability": 0.0 + }, + { + "start": 9194.0, + "end": 9194.0, + "probability": 0.0 + }, + { + "start": 9194.0, + "end": 9194.0, + "probability": 0.0 + }, + { + "start": 9194.0, + "end": 9194.0, + "probability": 0.0 + }, + { + "start": 9194.0, + "end": 9194.0, + "probability": 0.0 + }, + { + "start": 9194.0, + "end": 9194.0, + "probability": 0.0 + }, + { + "start": 9194.0, + "end": 9194.0, + "probability": 0.0 + }, + { + "start": 9194.0, + "end": 9194.0, + "probability": 0.0 + }, + { + "start": 9194.0, + "end": 9194.0, + "probability": 0.0 + }, + { + "start": 9194.0, + "end": 9194.0, + "probability": 0.0 + }, + { + "start": 9194.0, + "end": 9194.0, + "probability": 0.0 + }, + { + "start": 9194.0, + "end": 9194.0, + "probability": 0.0 + }, + { + "start": 9194.0, + "end": 9194.0, + "probability": 0.0 + }, + { + "start": 9194.0, + "end": 9194.0, + "probability": 0.0 + }, + { + "start": 9194.0, + "end": 9194.0, + "probability": 0.0 + }, + { + "start": 9194.0, + "end": 9194.0, + "probability": 0.0 + }, + { + "start": 9194.0, + "end": 9194.0, + "probability": 0.0 + }, + { + "start": 9194.0, + "end": 9194.0, + "probability": 0.0 + }, + { + "start": 9194.0, + "end": 9194.0, + "probability": 0.0 + }, + { + "start": 9194.0, + "end": 9194.0, + "probability": 0.0 + }, + { + "start": 9194.0, + "end": 9194.0, + "probability": 0.0 + }, + { + "start": 9194.0, + "end": 9194.0, + "probability": 0.0 + }, + { + "start": 9194.0, + "end": 9194.0, + "probability": 0.0 + }, + { + "start": 9194.6, + "end": 9194.6, + "probability": 0.2003 + }, + { + "start": 9194.6, + "end": 9194.6, + "probability": 0.0718 + }, + { + "start": 9194.6, + "end": 9196.64, + "probability": 0.1383 + }, + { + "start": 9196.64, + "end": 9197.72, + "probability": 0.3379 + }, + { + "start": 9197.86, + "end": 9198.6, + "probability": 0.6058 + }, + { + "start": 9199.16, + "end": 9202.42, + "probability": 0.9961 + }, + { + "start": 9202.68, + "end": 9202.78, + "probability": 0.1038 + }, + { + "start": 9202.78, + "end": 9205.46, + "probability": 0.4918 + }, + { + "start": 9206.34, + "end": 9207.04, + "probability": 0.1451 + }, + { + "start": 9207.16, + "end": 9207.68, + "probability": 0.0938 + }, + { + "start": 9207.7, + "end": 9207.96, + "probability": 0.0205 + }, + { + "start": 9207.96, + "end": 9208.34, + "probability": 0.0415 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.0, + "end": 9314.0, + "probability": 0.0 + }, + { + "start": 9314.22, + "end": 9315.8, + "probability": 0.8506 + }, + { + "start": 9316.8, + "end": 9316.86, + "probability": 0.0537 + }, + { + "start": 9316.86, + "end": 9316.96, + "probability": 0.0466 + }, + { + "start": 9316.96, + "end": 9316.96, + "probability": 0.2679 + }, + { + "start": 9316.96, + "end": 9316.96, + "probability": 0.2514 + }, + { + "start": 9316.96, + "end": 9318.04, + "probability": 0.6125 + }, + { + "start": 9319.48, + "end": 9329.66, + "probability": 0.7605 + }, + { + "start": 9329.7, + "end": 9334.7, + "probability": 0.991 + }, + { + "start": 9335.22, + "end": 9336.3, + "probability": 0.8478 + }, + { + "start": 9336.3, + "end": 9337.94, + "probability": 0.8085 + }, + { + "start": 9337.96, + "end": 9342.0, + "probability": 0.991 + }, + { + "start": 9342.32, + "end": 9344.46, + "probability": 0.9805 + }, + { + "start": 9344.46, + "end": 9346.54, + "probability": 0.826 + }, + { + "start": 9346.9, + "end": 9348.38, + "probability": 0.9896 + }, + { + "start": 9349.2, + "end": 9349.96, + "probability": 0.6034 + }, + { + "start": 9350.28, + "end": 9354.54, + "probability": 0.9917 + }, + { + "start": 9354.76, + "end": 9355.1, + "probability": 0.9141 + }, + { + "start": 9355.16, + "end": 9355.44, + "probability": 0.4333 + }, + { + "start": 9355.68, + "end": 9357.54, + "probability": 0.8376 + }, + { + "start": 9357.68, + "end": 9360.18, + "probability": 0.7803 + }, + { + "start": 9361.76, + "end": 9364.72, + "probability": 0.9714 + }, + { + "start": 9365.12, + "end": 9367.9, + "probability": 0.6714 + }, + { + "start": 9368.28, + "end": 9368.82, + "probability": 0.517 + }, + { + "start": 9370.44, + "end": 9371.44, + "probability": 0.0117 + }, + { + "start": 9371.44, + "end": 9372.8, + "probability": 0.5576 + }, + { + "start": 9373.98, + "end": 9377.26, + "probability": 0.8083 + }, + { + "start": 9378.32, + "end": 9379.26, + "probability": 0.6543 + }, + { + "start": 9379.84, + "end": 9382.18, + "probability": 0.9282 + }, + { + "start": 9392.86, + "end": 9396.8, + "probability": 0.7882 + }, + { + "start": 9397.92, + "end": 9398.22, + "probability": 0.5409 + }, + { + "start": 9399.2, + "end": 9399.8, + "probability": 0.478 + }, + { + "start": 9400.66, + "end": 9403.06, + "probability": 0.5738 + }, + { + "start": 9405.88, + "end": 9406.08, + "probability": 0.3805 + }, + { + "start": 9406.08, + "end": 9408.52, + "probability": 0.6719 + }, + { + "start": 9409.42, + "end": 9410.22, + "probability": 0.9424 + }, + { + "start": 9412.2, + "end": 9413.36, + "probability": 0.0117 + }, + { + "start": 9414.4, + "end": 9415.36, + "probability": 0.0376 + }, + { + "start": 9415.7, + "end": 9416.05, + "probability": 0.2685 + }, + { + "start": 9416.72, + "end": 9416.96, + "probability": 0.8116 + }, + { + "start": 9419.06, + "end": 9419.84, + "probability": 0.7251 + }, + { + "start": 9429.58, + "end": 9430.12, + "probability": 0.5662 + }, + { + "start": 9433.64, + "end": 9434.46, + "probability": 0.9134 + }, + { + "start": 9436.2, + "end": 9439.02, + "probability": 0.6967 + }, + { + "start": 9441.08, + "end": 9443.34, + "probability": 0.9756 + }, + { + "start": 9444.31, + "end": 9446.28, + "probability": 0.9876 + }, + { + "start": 9447.04, + "end": 9449.4, + "probability": 0.9802 + }, + { + "start": 9450.16, + "end": 9450.6, + "probability": 0.9878 + }, + { + "start": 9451.84, + "end": 9452.74, + "probability": 0.8555 + }, + { + "start": 9453.66, + "end": 9454.12, + "probability": 0.9819 + }, + { + "start": 9455.52, + "end": 9456.28, + "probability": 0.9727 + }, + { + "start": 9459.94, + "end": 9460.98, + "probability": 0.0038 + }, + { + "start": 9461.92, + "end": 9463.36, + "probability": 0.5052 + }, + { + "start": 9464.34, + "end": 9465.3, + "probability": 0.6817 + }, + { + "start": 9469.56, + "end": 9470.32, + "probability": 0.8113 + }, + { + "start": 9471.12, + "end": 9471.96, + "probability": 0.9189 + }, + { + "start": 9475.58, + "end": 9476.44, + "probability": 0.9483 + }, + { + "start": 9477.38, + "end": 9478.12, + "probability": 0.9502 + }, + { + "start": 9479.38, + "end": 9479.76, + "probability": 0.9497 + }, + { + "start": 9481.1, + "end": 9482.08, + "probability": 0.9635 + }, + { + "start": 9486.34, + "end": 9488.92, + "probability": 0.9765 + }, + { + "start": 9490.26, + "end": 9490.6, + "probability": 0.9849 + }, + { + "start": 9492.1, + "end": 9493.0, + "probability": 0.6586 + }, + { + "start": 9493.62, + "end": 9496.68, + "probability": 0.9017 + }, + { + "start": 9498.02, + "end": 9498.48, + "probability": 0.9875 + }, + { + "start": 9499.38, + "end": 9500.02, + "probability": 0.8244 + }, + { + "start": 9500.97, + "end": 9502.96, + "probability": 0.9922 + }, + { + "start": 9504.5, + "end": 9505.96, + "probability": 0.9932 + }, + { + "start": 9507.28, + "end": 9509.18, + "probability": 0.9674 + }, + { + "start": 9514.24, + "end": 9515.08, + "probability": 0.7218 + }, + { + "start": 9515.84, + "end": 9516.52, + "probability": 0.8244 + }, + { + "start": 9517.26, + "end": 9517.54, + "probability": 0.6185 + }, + { + "start": 9518.6, + "end": 9519.32, + "probability": 0.9703 + }, + { + "start": 9520.02, + "end": 9520.34, + "probability": 0.9385 + }, + { + "start": 9521.54, + "end": 9522.02, + "probability": 0.9594 + }, + { + "start": 9522.98, + "end": 9525.4, + "probability": 0.9655 + }, + { + "start": 9529.0, + "end": 9530.82, + "probability": 0.9834 + }, + { + "start": 9531.64, + "end": 9536.08, + "probability": 0.8114 + }, + { + "start": 9537.48, + "end": 9537.74, + "probability": 0.9941 + }, + { + "start": 9538.86, + "end": 9539.66, + "probability": 0.8131 + }, + { + "start": 9541.06, + "end": 9543.38, + "probability": 0.8698 + }, + { + "start": 9544.0, + "end": 9544.42, + "probability": 0.9766 + }, + { + "start": 9545.92, + "end": 9546.62, + "probability": 0.5043 + }, + { + "start": 9548.06, + "end": 9550.28, + "probability": 0.9333 + }, + { + "start": 9551.91, + "end": 9554.1, + "probability": 0.7345 + }, + { + "start": 9555.8, + "end": 9559.44, + "probability": 0.87 + }, + { + "start": 9560.6, + "end": 9561.04, + "probability": 0.9756 + }, + { + "start": 9562.52, + "end": 9563.61, + "probability": 0.9759 + }, + { + "start": 9564.62, + "end": 9565.04, + "probability": 0.938 + }, + { + "start": 9566.3, + "end": 9567.46, + "probability": 0.9176 + }, + { + "start": 9568.2, + "end": 9568.38, + "probability": 0.5255 + }, + { + "start": 9569.98, + "end": 9570.8, + "probability": 0.7588 + }, + { + "start": 9573.2, + "end": 9573.5, + "probability": 0.9854 + }, + { + "start": 9575.28, + "end": 9576.32, + "probability": 0.7047 + }, + { + "start": 9577.06, + "end": 9577.3, + "probability": 0.7356 + }, + { + "start": 9580.68, + "end": 9581.3, + "probability": 0.1157 + }, + { + "start": 9581.84, + "end": 9583.82, + "probability": 0.759 + }, + { + "start": 9584.5, + "end": 9586.36, + "probability": 0.8589 + }, + { + "start": 9587.32, + "end": 9587.76, + "probability": 0.9922 + }, + { + "start": 9590.22, + "end": 9590.98, + "probability": 0.9708 + }, + { + "start": 9593.02, + "end": 9593.46, + "probability": 0.9837 + }, + { + "start": 9595.24, + "end": 9595.98, + "probability": 0.9525 + }, + { + "start": 9597.24, + "end": 9597.62, + "probability": 0.8162 + }, + { + "start": 9598.5, + "end": 9599.16, + "probability": 0.9816 + }, + { + "start": 9599.94, + "end": 9600.26, + "probability": 0.9683 + }, + { + "start": 9601.08, + "end": 9601.94, + "probability": 0.9795 + }, + { + "start": 9603.02, + "end": 9605.0, + "probability": 0.9937 + }, + { + "start": 9606.22, + "end": 9606.84, + "probability": 0.8485 + }, + { + "start": 9607.7, + "end": 9608.1, + "probability": 0.9889 + }, + { + "start": 9608.74, + "end": 9609.02, + "probability": 0.8633 + }, + { + "start": 9611.46, + "end": 9612.58, + "probability": 0.4099 + }, + { + "start": 9613.34, + "end": 9614.36, + "probability": 0.5634 + }, + { + "start": 9615.14, + "end": 9615.82, + "probability": 0.7233 + }, + { + "start": 9616.64, + "end": 9616.98, + "probability": 0.939 + }, + { + "start": 9617.56, + "end": 9618.32, + "probability": 0.9536 + }, + { + "start": 9619.32, + "end": 9619.7, + "probability": 0.9731 + }, + { + "start": 9620.64, + "end": 9620.92, + "probability": 0.7705 + }, + { + "start": 9622.02, + "end": 9624.22, + "probability": 0.9281 + }, + { + "start": 9628.0, + "end": 9631.66, + "probability": 0.9803 + }, + { + "start": 9632.8, + "end": 9633.4, + "probability": 0.9072 + }, + { + "start": 9634.9, + "end": 9635.42, + "probability": 0.9831 + }, + { + "start": 9637.06, + "end": 9639.1, + "probability": 0.9697 + }, + { + "start": 9639.92, + "end": 9640.8, + "probability": 0.7422 + }, + { + "start": 9641.52, + "end": 9643.3, + "probability": 0.6006 + }, + { + "start": 9645.24, + "end": 9645.72, + "probability": 0.9867 + }, + { + "start": 9646.7, + "end": 9647.42, + "probability": 0.9032 + }, + { + "start": 9648.82, + "end": 9650.78, + "probability": 0.9647 + }, + { + "start": 9656.82, + "end": 9657.06, + "probability": 0.5953 + }, + { + "start": 9658.84, + "end": 9659.58, + "probability": 0.7101 + }, + { + "start": 9661.02, + "end": 9661.32, + "probability": 0.9245 + }, + { + "start": 9663.28, + "end": 9664.2, + "probability": 0.9672 + }, + { + "start": 9665.26, + "end": 9665.96, + "probability": 0.945 + }, + { + "start": 9666.82, + "end": 9667.52, + "probability": 0.9826 + }, + { + "start": 9668.18, + "end": 9668.98, + "probability": 0.98 + }, + { + "start": 9670.0, + "end": 9671.26, + "probability": 0.929 + }, + { + "start": 9672.48, + "end": 9673.72, + "probability": 0.9756 + }, + { + "start": 9674.54, + "end": 9675.6, + "probability": 0.8304 + }, + { + "start": 9680.04, + "end": 9680.48, + "probability": 0.98 + }, + { + "start": 9682.54, + "end": 9682.68, + "probability": 0.1298 + }, + { + "start": 9684.82, + "end": 9685.88, + "probability": 0.6792 + }, + { + "start": 9687.72, + "end": 9688.58, + "probability": 0.916 + }, + { + "start": 9689.22, + "end": 9690.16, + "probability": 0.8435 + }, + { + "start": 9690.8, + "end": 9691.18, + "probability": 0.8859 + }, + { + "start": 9692.5, + "end": 9693.46, + "probability": 0.82 + }, + { + "start": 9694.14, + "end": 9694.44, + "probability": 0.7336 + }, + { + "start": 9695.66, + "end": 9696.72, + "probability": 0.9234 + }, + { + "start": 9697.5, + "end": 9699.9, + "probability": 0.9933 + }, + { + "start": 9700.94, + "end": 9703.8, + "probability": 0.9871 + }, + { + "start": 9704.74, + "end": 9705.24, + "probability": 0.9883 + }, + { + "start": 9706.46, + "end": 9707.48, + "probability": 0.9622 + }, + { + "start": 9708.38, + "end": 9708.84, + "probability": 0.9922 + }, + { + "start": 9710.54, + "end": 9711.36, + "probability": 0.8393 + }, + { + "start": 9712.4, + "end": 9712.8, + "probability": 0.9946 + }, + { + "start": 9714.3, + "end": 9716.1, + "probability": 0.744 + }, + { + "start": 9717.9, + "end": 9718.72, + "probability": 0.8671 + }, + { + "start": 9720.88, + "end": 9721.36, + "probability": 0.9489 + }, + { + "start": 9724.92, + "end": 9725.82, + "probability": 0.7108 + }, + { + "start": 9726.94, + "end": 9727.34, + "probability": 0.6959 + }, + { + "start": 9728.08, + "end": 9729.22, + "probability": 0.7763 + }, + { + "start": 9730.8, + "end": 9733.08, + "probability": 0.8462 + }, + { + "start": 9735.18, + "end": 9737.54, + "probability": 0.9043 + }, + { + "start": 9738.6, + "end": 9739.0, + "probability": 0.9763 + }, + { + "start": 9740.02, + "end": 9740.82, + "probability": 0.8685 + }, + { + "start": 9744.88, + "end": 9745.22, + "probability": 0.6769 + }, + { + "start": 9747.2, + "end": 9748.24, + "probability": 0.6397 + }, + { + "start": 9749.92, + "end": 9752.12, + "probability": 0.9072 + }, + { + "start": 9753.4, + "end": 9754.28, + "probability": 0.8526 + }, + { + "start": 9757.98, + "end": 9758.32, + "probability": 0.7173 + }, + { + "start": 9760.32, + "end": 9761.04, + "probability": 0.8424 + }, + { + "start": 9762.16, + "end": 9762.5, + "probability": 0.9592 + }, + { + "start": 9763.36, + "end": 9764.06, + "probability": 0.9009 + }, + { + "start": 9765.14, + "end": 9767.42, + "probability": 0.9592 + }, + { + "start": 9769.24, + "end": 9769.62, + "probability": 0.9757 + }, + { + "start": 9771.02, + "end": 9771.9, + "probability": 0.857 + }, + { + "start": 9774.02, + "end": 9778.18, + "probability": 0.9539 + }, + { + "start": 9779.06, + "end": 9779.48, + "probability": 0.9624 + }, + { + "start": 9780.64, + "end": 9781.56, + "probability": 0.9355 + }, + { + "start": 9782.78, + "end": 9785.46, + "probability": 0.0952 + }, + { + "start": 9787.3, + "end": 9788.22, + "probability": 0.5447 + }, + { + "start": 9789.14, + "end": 9789.62, + "probability": 0.9006 + }, + { + "start": 9790.5, + "end": 9791.26, + "probability": 0.9189 + }, + { + "start": 9792.14, + "end": 9792.84, + "probability": 0.895 + }, + { + "start": 9793.46, + "end": 9794.28, + "probability": 0.9301 + }, + { + "start": 9798.12, + "end": 9800.2, + "probability": 0.9721 + }, + { + "start": 9801.44, + "end": 9801.88, + "probability": 0.9897 + }, + { + "start": 9802.98, + "end": 9803.96, + "probability": 0.9646 + }, + { + "start": 9804.5, + "end": 9805.28, + "probability": 0.9946 + }, + { + "start": 9807.48, + "end": 9808.76, + "probability": 0.8364 + }, + { + "start": 9809.88, + "end": 9812.56, + "probability": 0.9199 + }, + { + "start": 9813.14, + "end": 9813.42, + "probability": 0.9953 + }, + { + "start": 9814.66, + "end": 9815.5, + "probability": 0.8899 + }, + { + "start": 9816.38, + "end": 9816.78, + "probability": 0.5669 + }, + { + "start": 9817.96, + "end": 9818.86, + "probability": 0.9054 + }, + { + "start": 9819.44, + "end": 9821.76, + "probability": 0.949 + }, + { + "start": 9823.5, + "end": 9825.42, + "probability": 0.9746 + }, + { + "start": 9828.82, + "end": 9829.74, + "probability": 0.8363 + }, + { + "start": 9831.62, + "end": 9836.81, + "probability": 0.9792 + }, + { + "start": 9839.74, + "end": 9840.6, + "probability": 0.9142 + }, + { + "start": 9841.42, + "end": 9841.98, + "probability": 0.9912 + }, + { + "start": 9843.24, + "end": 9844.18, + "probability": 0.8473 + }, + { + "start": 9844.88, + "end": 9847.62, + "probability": 0.6865 + }, + { + "start": 9848.98, + "end": 9849.38, + "probability": 0.8807 + }, + { + "start": 9850.68, + "end": 9851.66, + "probability": 0.7467 + }, + { + "start": 9857.16, + "end": 9858.04, + "probability": 0.8735 + }, + { + "start": 9858.84, + "end": 9860.06, + "probability": 0.8618 + }, + { + "start": 9860.98, + "end": 9863.64, + "probability": 0.9313 + }, + { + "start": 9865.54, + "end": 9868.34, + "probability": 0.7916 + }, + { + "start": 9871.68, + "end": 9871.9, + "probability": 0.4702 + }, + { + "start": 9877.38, + "end": 9878.32, + "probability": 0.6653 + }, + { + "start": 9879.66, + "end": 9879.94, + "probability": 0.7886 + }, + { + "start": 9881.28, + "end": 9882.46, + "probability": 0.8725 + }, + { + "start": 9883.7, + "end": 9885.7, + "probability": 0.9307 + }, + { + "start": 9886.26, + "end": 9887.68, + "probability": 0.9722 + }, + { + "start": 9888.44, + "end": 9889.28, + "probability": 0.9121 + }, + { + "start": 9890.4, + "end": 9890.72, + "probability": 0.6179 + }, + { + "start": 9891.98, + "end": 9893.13, + "probability": 0.6501 + }, + { + "start": 9895.9, + "end": 9899.06, + "probability": 0.8815 + }, + { + "start": 9900.22, + "end": 9902.42, + "probability": 0.7495 + }, + { + "start": 9902.44, + "end": 9904.72, + "probability": 0.8398 + }, + { + "start": 9905.28, + "end": 9907.5, + "probability": 0.4744 + }, + { + "start": 9909.92, + "end": 9910.62, + "probability": 0.6593 + }, + { + "start": 9915.14, + "end": 9915.8, + "probability": 0.6646 + }, + { + "start": 9917.32, + "end": 9917.76, + "probability": 0.8169 + }, + { + "start": 9920.66, + "end": 9921.6, + "probability": 0.698 + }, + { + "start": 9922.42, + "end": 9922.8, + "probability": 0.9854 + }, + { + "start": 9924.5, + "end": 9925.34, + "probability": 0.9569 + }, + { + "start": 9926.44, + "end": 9927.14, + "probability": 0.9941 + }, + { + "start": 9928.98, + "end": 9929.88, + "probability": 0.9818 + }, + { + "start": 9937.22, + "end": 9937.8, + "probability": 0.5648 + }, + { + "start": 9941.38, + "end": 9943.92, + "probability": 0.8884 + }, + { + "start": 9944.76, + "end": 9945.14, + "probability": 0.9806 + }, + { + "start": 9946.84, + "end": 9947.62, + "probability": 0.6476 + }, + { + "start": 9948.52, + "end": 9949.18, + "probability": 0.9265 + }, + { + "start": 9949.84, + "end": 9951.1, + "probability": 0.224 + }, + { + "start": 9952.54, + "end": 9954.58, + "probability": 0.506 + }, + { + "start": 9958.2, + "end": 9958.62, + "probability": 0.953 + }, + { + "start": 9961.44, + "end": 9962.34, + "probability": 0.1406 + }, + { + "start": 9962.42, + "end": 9964.32, + "probability": 0.8136 + }, + { + "start": 9964.56, + "end": 9966.32, + "probability": 0.7956 + }, + { + "start": 9969.84, + "end": 9972.44, + "probability": 0.6444 + }, + { + "start": 9977.16, + "end": 9978.04, + "probability": 0.861 + }, + { + "start": 9980.04, + "end": 9980.98, + "probability": 0.7475 + }, + { + "start": 9982.86, + "end": 9983.28, + "probability": 0.9912 + }, + { + "start": 9985.8, + "end": 9986.74, + "probability": 0.9334 + }, + { + "start": 9988.46, + "end": 9991.8, + "probability": 0.2923 + }, + { + "start": 9995.9, + "end": 9996.34, + "probability": 0.8195 + }, + { + "start": 10000.38, + "end": 10001.42, + "probability": 0.4806 + }, + { + "start": 10005.04, + "end": 10006.88, + "probability": 0.984 + }, + { + "start": 10007.88, + "end": 10008.76, + "probability": 0.7697 + }, + { + "start": 10010.73, + "end": 10013.66, + "probability": 0.8506 + }, + { + "start": 10020.46, + "end": 10021.28, + "probability": 0.8953 + }, + { + "start": 10022.46, + "end": 10026.06, + "probability": 0.9883 + }, + { + "start": 10026.58, + "end": 10028.06, + "probability": 0.837 + }, + { + "start": 10031.04, + "end": 10031.28, + "probability": 0.4777 + }, + { + "start": 10031.38, + "end": 10032.64, + "probability": 0.8018 + }, + { + "start": 10032.68, + "end": 10033.56, + "probability": 0.9833 + }, + { + "start": 10046.03, + "end": 10046.61, + "probability": 0.0348 + }, + { + "start": 10046.63, + "end": 10050.61, + "probability": 0.03 + }, + { + "start": 10051.29, + "end": 10051.46, + "probability": 0.0952 + }, + { + "start": 10055.31, + "end": 10057.78, + "probability": 0.0145 + }, + { + "start": 10093.03, + "end": 10093.93, + "probability": 0.0102 + }, + { + "start": 10093.93, + "end": 10094.88, + "probability": 0.0502 + }, + { + "start": 10192.66, + "end": 10192.86, + "probability": 0.0375 + }, + { + "start": 10192.86, + "end": 10192.86, + "probability": 0.0658 + }, + { + "start": 10192.86, + "end": 10192.86, + "probability": 0.0496 + }, + { + "start": 10192.86, + "end": 10194.55, + "probability": 0.3188 + }, + { + "start": 10194.94, + "end": 10197.96, + "probability": 0.9559 + }, + { + "start": 10199.72, + "end": 10202.36, + "probability": 0.8031 + }, + { + "start": 10206.24, + "end": 10206.26, + "probability": 0.3652 + }, + { + "start": 10206.26, + "end": 10208.0, + "probability": 0.6077 + }, + { + "start": 10208.54, + "end": 10209.52, + "probability": 0.6998 + }, + { + "start": 10210.46, + "end": 10211.2, + "probability": 0.8477 + }, + { + "start": 10212.64, + "end": 10215.5, + "probability": 0.991 + }, + { + "start": 10215.66, + "end": 10216.4, + "probability": 0.2364 + }, + { + "start": 10216.46, + "end": 10217.64, + "probability": 0.6675 + }, + { + "start": 10218.26, + "end": 10219.62, + "probability": 0.9863 + }, + { + "start": 10222.32, + "end": 10224.52, + "probability": 0.7938 + }, + { + "start": 10225.1, + "end": 10228.38, + "probability": 0.875 + }, + { + "start": 10229.82, + "end": 10232.3, + "probability": 0.9067 + }, + { + "start": 10233.02, + "end": 10234.66, + "probability": 0.6872 + }, + { + "start": 10235.64, + "end": 10238.6, + "probability": 0.9686 + }, + { + "start": 10239.62, + "end": 10241.34, + "probability": 0.8222 + }, + { + "start": 10242.06, + "end": 10243.76, + "probability": 0.9735 + }, + { + "start": 10245.54, + "end": 10248.36, + "probability": 0.9707 + }, + { + "start": 10249.2, + "end": 10251.58, + "probability": 0.9455 + }, + { + "start": 10251.58, + "end": 10255.22, + "probability": 0.9988 + }, + { + "start": 10256.94, + "end": 10260.28, + "probability": 0.9686 + }, + { + "start": 10261.21, + "end": 10261.98, + "probability": 0.9106 + }, + { + "start": 10263.1, + "end": 10263.62, + "probability": 0.7333 + }, + { + "start": 10263.82, + "end": 10264.86, + "probability": 0.8309 + }, + { + "start": 10265.02, + "end": 10267.64, + "probability": 0.9612 + }, + { + "start": 10267.96, + "end": 10268.76, + "probability": 0.7871 + }, + { + "start": 10269.5, + "end": 10270.18, + "probability": 0.0161 + }, + { + "start": 10270.24, + "end": 10271.76, + "probability": 0.5409 + }, + { + "start": 10271.82, + "end": 10274.86, + "probability": 0.9966 + }, + { + "start": 10275.02, + "end": 10277.8, + "probability": 0.9976 + }, + { + "start": 10278.58, + "end": 10279.46, + "probability": 0.9001 + }, + { + "start": 10280.26, + "end": 10280.64, + "probability": 0.8422 + }, + { + "start": 10280.96, + "end": 10282.62, + "probability": 0.9906 + }, + { + "start": 10282.62, + "end": 10283.46, + "probability": 0.2257 + }, + { + "start": 10283.62, + "end": 10285.04, + "probability": 0.1419 + }, + { + "start": 10285.7, + "end": 10285.7, + "probability": 0.0891 + }, + { + "start": 10285.88, + "end": 10288.76, + "probability": 0.7488 + }, + { + "start": 10288.86, + "end": 10290.26, + "probability": 0.8687 + }, + { + "start": 10290.28, + "end": 10290.88, + "probability": 0.9615 + }, + { + "start": 10290.94, + "end": 10292.14, + "probability": 0.9636 + }, + { + "start": 10292.18, + "end": 10292.4, + "probability": 0.8205 + }, + { + "start": 10292.42, + "end": 10292.46, + "probability": 0.2121 + }, + { + "start": 10292.46, + "end": 10292.48, + "probability": 0.2237 + }, + { + "start": 10292.6, + "end": 10293.08, + "probability": 0.709 + }, + { + "start": 10293.96, + "end": 10294.22, + "probability": 0.8644 + }, + { + "start": 10295.08, + "end": 10296.28, + "probability": 0.3239 + }, + { + "start": 10297.78, + "end": 10297.98, + "probability": 0.7782 + }, + { + "start": 10298.14, + "end": 10299.91, + "probability": 0.9635 + }, + { + "start": 10300.52, + "end": 10303.8, + "probability": 0.9836 + }, + { + "start": 10304.8, + "end": 10307.04, + "probability": 0.9318 + }, + { + "start": 10307.04, + "end": 10310.96, + "probability": 0.9902 + }, + { + "start": 10311.84, + "end": 10314.34, + "probability": 0.9971 + }, + { + "start": 10314.34, + "end": 10317.16, + "probability": 0.9972 + }, + { + "start": 10318.1, + "end": 10320.2, + "probability": 0.998 + }, + { + "start": 10320.9, + "end": 10321.82, + "probability": 0.9618 + }, + { + "start": 10323.1, + "end": 10324.8, + "probability": 0.9244 + }, + { + "start": 10325.44, + "end": 10328.64, + "probability": 0.9846 + }, + { + "start": 10329.62, + "end": 10330.44, + "probability": 0.9587 + }, + { + "start": 10330.54, + "end": 10331.64, + "probability": 0.6188 + }, + { + "start": 10331.7, + "end": 10334.4, + "probability": 0.9582 + }, + { + "start": 10334.4, + "end": 10337.04, + "probability": 0.999 + }, + { + "start": 10337.78, + "end": 10339.88, + "probability": 0.9873 + }, + { + "start": 10340.14, + "end": 10340.58, + "probability": 0.1349 + }, + { + "start": 10340.58, + "end": 10345.64, + "probability": 0.9575 + }, + { + "start": 10346.48, + "end": 10347.96, + "probability": 0.9971 + }, + { + "start": 10349.06, + "end": 10353.16, + "probability": 0.9952 + }, + { + "start": 10354.27, + "end": 10354.74, + "probability": 0.0221 + }, + { + "start": 10354.74, + "end": 10355.09, + "probability": 0.0721 + }, + { + "start": 10355.46, + "end": 10360.42, + "probability": 0.9668 + }, + { + "start": 10360.72, + "end": 10362.52, + "probability": 0.9131 + }, + { + "start": 10364.38, + "end": 10366.0, + "probability": 0.9566 + }, + { + "start": 10366.3, + "end": 10368.68, + "probability": 0.9483 + }, + { + "start": 10369.68, + "end": 10374.54, + "probability": 0.9933 + }, + { + "start": 10375.06, + "end": 10377.22, + "probability": 0.9737 + }, + { + "start": 10378.94, + "end": 10382.08, + "probability": 0.9994 + }, + { + "start": 10382.66, + "end": 10384.36, + "probability": 0.9873 + }, + { + "start": 10385.26, + "end": 10388.5, + "probability": 0.9868 + }, + { + "start": 10389.06, + "end": 10389.88, + "probability": 0.6998 + }, + { + "start": 10391.02, + "end": 10391.82, + "probability": 0.8444 + }, + { + "start": 10392.56, + "end": 10397.32, + "probability": 0.9974 + }, + { + "start": 10397.74, + "end": 10398.9, + "probability": 0.8667 + }, + { + "start": 10399.14, + "end": 10400.96, + "probability": 0.8931 + }, + { + "start": 10402.7, + "end": 10404.77, + "probability": 0.9128 + }, + { + "start": 10405.7, + "end": 10407.22, + "probability": 0.9918 + }, + { + "start": 10408.18, + "end": 10410.28, + "probability": 0.9706 + }, + { + "start": 10411.16, + "end": 10412.74, + "probability": 0.9939 + }, + { + "start": 10413.76, + "end": 10414.0, + "probability": 0.3157 + }, + { + "start": 10414.0, + "end": 10416.04, + "probability": 0.7657 + }, + { + "start": 10416.5, + "end": 10418.84, + "probability": 0.9927 + }, + { + "start": 10420.16, + "end": 10422.34, + "probability": 0.9874 + }, + { + "start": 10422.44, + "end": 10423.44, + "probability": 0.4988 + }, + { + "start": 10423.8, + "end": 10426.02, + "probability": 0.6687 + }, + { + "start": 10427.04, + "end": 10430.92, + "probability": 0.9089 + }, + { + "start": 10431.76, + "end": 10434.78, + "probability": 0.9275 + }, + { + "start": 10435.42, + "end": 10437.4, + "probability": 0.9348 + }, + { + "start": 10438.68, + "end": 10440.14, + "probability": 0.8624 + }, + { + "start": 10440.38, + "end": 10441.56, + "probability": 0.9504 + }, + { + "start": 10442.04, + "end": 10442.78, + "probability": 0.9307 + }, + { + "start": 10442.86, + "end": 10443.52, + "probability": 0.5057 + }, + { + "start": 10443.72, + "end": 10444.2, + "probability": 0.9329 + }, + { + "start": 10444.36, + "end": 10444.6, + "probability": 0.5183 + }, + { + "start": 10444.72, + "end": 10445.26, + "probability": 0.8548 + }, + { + "start": 10445.68, + "end": 10446.24, + "probability": 0.9304 + }, + { + "start": 10447.74, + "end": 10450.32, + "probability": 0.9766 + }, + { + "start": 10450.92, + "end": 10451.48, + "probability": 0.4676 + }, + { + "start": 10451.72, + "end": 10453.84, + "probability": 0.9892 + }, + { + "start": 10454.36, + "end": 10455.6, + "probability": 0.9188 + }, + { + "start": 10458.42, + "end": 10464.94, + "probability": 0.9616 + }, + { + "start": 10466.08, + "end": 10468.7, + "probability": 0.9932 + }, + { + "start": 10469.4, + "end": 10469.8, + "probability": 0.5801 + }, + { + "start": 10470.56, + "end": 10471.95, + "probability": 0.9236 + }, + { + "start": 10473.2, + "end": 10475.72, + "probability": 0.998 + }, + { + "start": 10475.96, + "end": 10478.38, + "probability": 0.9119 + }, + { + "start": 10480.28, + "end": 10481.22, + "probability": 0.9951 + }, + { + "start": 10481.38, + "end": 10482.24, + "probability": 0.7959 + }, + { + "start": 10482.54, + "end": 10483.92, + "probability": 0.7598 + }, + { + "start": 10484.96, + "end": 10487.05, + "probability": 0.8636 + }, + { + "start": 10487.46, + "end": 10490.8, + "probability": 0.9932 + }, + { + "start": 10491.26, + "end": 10493.44, + "probability": 0.974 + }, + { + "start": 10496.14, + "end": 10499.48, + "probability": 0.8248 + }, + { + "start": 10499.76, + "end": 10501.6, + "probability": 0.6323 + }, + { + "start": 10507.1, + "end": 10509.76, + "probability": 0.0152 + }, + { + "start": 10509.93, + "end": 10510.58, + "probability": 0.4496 + }, + { + "start": 10511.64, + "end": 10514.2, + "probability": 0.8077 + }, + { + "start": 10514.62, + "end": 10515.45, + "probability": 0.3865 + }, + { + "start": 10516.06, + "end": 10517.66, + "probability": 0.8193 + }, + { + "start": 10518.18, + "end": 10522.28, + "probability": 0.5524 + }, + { + "start": 10522.56, + "end": 10524.29, + "probability": 0.7456 + }, + { + "start": 10524.66, + "end": 10526.48, + "probability": 0.7197 + }, + { + "start": 10527.08, + "end": 10528.47, + "probability": 0.9883 + }, + { + "start": 10529.0, + "end": 10530.5, + "probability": 0.3159 + }, + { + "start": 10530.5, + "end": 10531.44, + "probability": 0.0966 + }, + { + "start": 10531.5, + "end": 10532.62, + "probability": 0.4686 + }, + { + "start": 10532.76, + "end": 10533.3, + "probability": 0.5019 + }, + { + "start": 10534.1, + "end": 10534.1, + "probability": 0.0477 + }, + { + "start": 10534.1, + "end": 10534.1, + "probability": 0.135 + }, + { + "start": 10534.1, + "end": 10536.86, + "probability": 0.823 + }, + { + "start": 10536.86, + "end": 10536.96, + "probability": 0.78 + }, + { + "start": 10538.02, + "end": 10540.1, + "probability": 0.8564 + }, + { + "start": 10540.38, + "end": 10541.41, + "probability": 0.9719 + }, + { + "start": 10542.38, + "end": 10543.82, + "probability": 0.9985 + }, + { + "start": 10544.24, + "end": 10545.72, + "probability": 0.9802 + }, + { + "start": 10546.16, + "end": 10546.52, + "probability": 0.0528 + }, + { + "start": 10547.46, + "end": 10547.86, + "probability": 0.1256 + }, + { + "start": 10548.14, + "end": 10550.64, + "probability": 0.7787 + }, + { + "start": 10551.16, + "end": 10551.82, + "probability": 0.9336 + }, + { + "start": 10552.18, + "end": 10554.56, + "probability": 0.5705 + }, + { + "start": 10554.58, + "end": 10554.58, + "probability": 0.0313 + }, + { + "start": 10554.58, + "end": 10555.46, + "probability": 0.1625 + }, + { + "start": 10556.12, + "end": 10559.04, + "probability": 0.981 + }, + { + "start": 10559.82, + "end": 10561.72, + "probability": 0.7755 + }, + { + "start": 10562.38, + "end": 10566.7, + "probability": 0.9808 + }, + { + "start": 10567.24, + "end": 10568.72, + "probability": 0.741 + }, + { + "start": 10569.26, + "end": 10569.58, + "probability": 0.6522 + }, + { + "start": 10570.2, + "end": 10574.08, + "probability": 0.6885 + }, + { + "start": 10574.2, + "end": 10574.88, + "probability": 0.1231 + }, + { + "start": 10574.96, + "end": 10581.72, + "probability": 0.4895 + }, + { + "start": 10582.18, + "end": 10584.88, + "probability": 0.8188 + }, + { + "start": 10585.4, + "end": 10587.11, + "probability": 0.9882 + }, + { + "start": 10588.0, + "end": 10590.94, + "probability": 0.9648 + }, + { + "start": 10591.46, + "end": 10593.24, + "probability": 0.9971 + }, + { + "start": 10593.4, + "end": 10594.34, + "probability": 0.9873 + }, + { + "start": 10594.48, + "end": 10595.08, + "probability": 0.8209 + }, + { + "start": 10595.94, + "end": 10598.76, + "probability": 0.9554 + }, + { + "start": 10599.62, + "end": 10601.12, + "probability": 0.9572 + }, + { + "start": 10601.7, + "end": 10602.46, + "probability": 0.9095 + }, + { + "start": 10604.14, + "end": 10605.94, + "probability": 0.9964 + }, + { + "start": 10606.08, + "end": 10606.66, + "probability": 0.9809 + }, + { + "start": 10607.24, + "end": 10608.02, + "probability": 0.7796 + }, + { + "start": 10608.92, + "end": 10611.92, + "probability": 0.9144 + }, + { + "start": 10612.36, + "end": 10613.16, + "probability": 0.6334 + }, + { + "start": 10613.16, + "end": 10613.54, + "probability": 0.8312 + }, + { + "start": 10613.84, + "end": 10615.1, + "probability": 0.9134 + }, + { + "start": 10615.98, + "end": 10617.84, + "probability": 0.8099 + }, + { + "start": 10618.9, + "end": 10621.8, + "probability": 0.9865 + }, + { + "start": 10621.86, + "end": 10622.9, + "probability": 0.7956 + }, + { + "start": 10624.02, + "end": 10626.78, + "probability": 0.8307 + }, + { + "start": 10627.44, + "end": 10628.1, + "probability": 0.9227 + }, + { + "start": 10628.6, + "end": 10630.44, + "probability": 0.9448 + }, + { + "start": 10632.86, + "end": 10634.94, + "probability": 0.9462 + }, + { + "start": 10635.86, + "end": 10636.68, + "probability": 0.9637 + }, + { + "start": 10637.32, + "end": 10638.98, + "probability": 0.9579 + }, + { + "start": 10639.84, + "end": 10642.12, + "probability": 0.9805 + }, + { + "start": 10642.16, + "end": 10643.24, + "probability": 0.5248 + }, + { + "start": 10643.86, + "end": 10645.88, + "probability": 0.6226 + }, + { + "start": 10646.74, + "end": 10647.38, + "probability": 0.6736 + }, + { + "start": 10647.4, + "end": 10650.2, + "probability": 0.8936 + }, + { + "start": 10651.38, + "end": 10653.98, + "probability": 0.0589 + }, + { + "start": 10654.64, + "end": 10658.72, + "probability": 0.3676 + }, + { + "start": 10658.88, + "end": 10660.52, + "probability": 0.5331 + }, + { + "start": 10661.14, + "end": 10664.66, + "probability": 0.9152 + }, + { + "start": 10666.0, + "end": 10668.44, + "probability": 0.98 + }, + { + "start": 10668.88, + "end": 10670.04, + "probability": 0.8261 + }, + { + "start": 10670.48, + "end": 10670.96, + "probability": 0.7393 + }, + { + "start": 10671.08, + "end": 10672.22, + "probability": 0.8543 + }, + { + "start": 10673.43, + "end": 10675.56, + "probability": 0.6565 + }, + { + "start": 10676.62, + "end": 10677.0, + "probability": 0.6381 + }, + { + "start": 10679.52, + "end": 10681.82, + "probability": 0.9659 + }, + { + "start": 10681.82, + "end": 10684.34, + "probability": 0.9839 + }, + { + "start": 10684.44, + "end": 10684.84, + "probability": 0.9065 + }, + { + "start": 10685.2, + "end": 10686.88, + "probability": 0.8642 + }, + { + "start": 10687.56, + "end": 10688.2, + "probability": 0.8582 + }, + { + "start": 10689.06, + "end": 10690.22, + "probability": 0.7257 + }, + { + "start": 10690.24, + "end": 10691.82, + "probability": 0.6562 + }, + { + "start": 10692.46, + "end": 10695.64, + "probability": 0.674 + }, + { + "start": 10696.14, + "end": 10696.68, + "probability": 0.9626 + }, + { + "start": 10697.7, + "end": 10697.7, + "probability": 0.2047 + }, + { + "start": 10697.7, + "end": 10703.46, + "probability": 0.9842 + }, + { + "start": 10704.42, + "end": 10705.48, + "probability": 0.5224 + }, + { + "start": 10705.54, + "end": 10709.28, + "probability": 0.9622 + }, + { + "start": 10710.5, + "end": 10712.64, + "probability": 0.855 + }, + { + "start": 10712.86, + "end": 10714.8, + "probability": 0.9962 + }, + { + "start": 10715.36, + "end": 10716.54, + "probability": 0.9835 + }, + { + "start": 10717.2, + "end": 10719.7, + "probability": 0.9922 + }, + { + "start": 10720.3, + "end": 10722.44, + "probability": 0.6307 + }, + { + "start": 10723.42, + "end": 10725.58, + "probability": 0.9139 + }, + { + "start": 10726.92, + "end": 10729.2, + "probability": 0.9548 + }, + { + "start": 10729.74, + "end": 10732.74, + "probability": 0.9974 + }, + { + "start": 10732.74, + "end": 10737.16, + "probability": 0.9907 + }, + { + "start": 10737.8, + "end": 10740.44, + "probability": 0.9979 + }, + { + "start": 10740.72, + "end": 10741.88, + "probability": 0.9526 + }, + { + "start": 10743.78, + "end": 10747.9, + "probability": 0.7976 + }, + { + "start": 10747.92, + "end": 10749.06, + "probability": 0.8199 + }, + { + "start": 10749.72, + "end": 10752.38, + "probability": 0.9785 + }, + { + "start": 10753.14, + "end": 10753.28, + "probability": 0.8344 + }, + { + "start": 10753.82, + "end": 10754.81, + "probability": 0.9712 + }, + { + "start": 10756.02, + "end": 10756.26, + "probability": 0.7639 + }, + { + "start": 10757.26, + "end": 10761.72, + "probability": 0.9732 + }, + { + "start": 10764.3, + "end": 10768.26, + "probability": 0.9974 + }, + { + "start": 10768.98, + "end": 10771.26, + "probability": 0.9987 + }, + { + "start": 10773.06, + "end": 10775.74, + "probability": 0.9728 + }, + { + "start": 10776.76, + "end": 10777.36, + "probability": 0.9708 + }, + { + "start": 10778.66, + "end": 10779.34, + "probability": 0.9747 + }, + { + "start": 10779.4, + "end": 10783.58, + "probability": 0.9053 + }, + { + "start": 10785.34, + "end": 10786.34, + "probability": 0.8351 + }, + { + "start": 10786.46, + "end": 10787.16, + "probability": 0.7969 + }, + { + "start": 10787.16, + "end": 10789.0, + "probability": 0.8849 + }, + { + "start": 10791.72, + "end": 10795.5, + "probability": 0.9956 + }, + { + "start": 10797.28, + "end": 10798.36, + "probability": 0.9988 + }, + { + "start": 10799.38, + "end": 10801.58, + "probability": 0.9229 + }, + { + "start": 10802.14, + "end": 10804.26, + "probability": 0.7715 + }, + { + "start": 10804.32, + "end": 10805.84, + "probability": 0.8781 + }, + { + "start": 10806.5, + "end": 10807.38, + "probability": 0.7408 + }, + { + "start": 10807.62, + "end": 10808.12, + "probability": 0.6348 + }, + { + "start": 10811.08, + "end": 10812.3, + "probability": 0.9614 + }, + { + "start": 10812.84, + "end": 10814.64, + "probability": 0.8354 + }, + { + "start": 10814.9, + "end": 10817.96, + "probability": 0.9871 + }, + { + "start": 10818.58, + "end": 10821.7, + "probability": 0.9981 + }, + { + "start": 10821.92, + "end": 10822.58, + "probability": 0.6993 + }, + { + "start": 10822.88, + "end": 10824.14, + "probability": 0.2018 + }, + { + "start": 10824.24, + "end": 10824.28, + "probability": 0.2912 + }, + { + "start": 10824.46, + "end": 10828.8, + "probability": 0.9204 + }, + { + "start": 10828.8, + "end": 10833.48, + "probability": 0.9965 + }, + { + "start": 10833.54, + "end": 10837.04, + "probability": 0.9168 + }, + { + "start": 10838.17, + "end": 10839.12, + "probability": 0.3992 + }, + { + "start": 10839.12, + "end": 10840.54, + "probability": 0.8303 + }, + { + "start": 10841.38, + "end": 10843.92, + "probability": 0.9807 + }, + { + "start": 10844.6, + "end": 10846.4, + "probability": 0.9708 + }, + { + "start": 10846.7, + "end": 10848.84, + "probability": 0.7976 + }, + { + "start": 10850.16, + "end": 10853.68, + "probability": 0.9951 + }, + { + "start": 10853.68, + "end": 10857.64, + "probability": 0.9839 + }, + { + "start": 10858.54, + "end": 10860.92, + "probability": 0.9382 + }, + { + "start": 10861.6, + "end": 10863.1, + "probability": 0.8806 + }, + { + "start": 10863.26, + "end": 10863.72, + "probability": 0.9661 + }, + { + "start": 10864.26, + "end": 10865.64, + "probability": 0.7822 + }, + { + "start": 10865.86, + "end": 10866.2, + "probability": 0.5579 + }, + { + "start": 10866.84, + "end": 10867.14, + "probability": 0.7482 + }, + { + "start": 10867.72, + "end": 10868.74, + "probability": 0.9963 + }, + { + "start": 10869.74, + "end": 10871.22, + "probability": 0.9487 + }, + { + "start": 10871.92, + "end": 10876.02, + "probability": 0.972 + }, + { + "start": 10878.2, + "end": 10879.3, + "probability": 0.0357 + }, + { + "start": 10879.7, + "end": 10881.66, + "probability": 0.1937 + }, + { + "start": 10881.68, + "end": 10881.92, + "probability": 0.4805 + }, + { + "start": 10883.06, + "end": 10887.8, + "probability": 0.4385 + }, + { + "start": 10888.32, + "end": 10888.76, + "probability": 0.0824 + }, + { + "start": 10891.06, + "end": 10892.9, + "probability": 0.8694 + }, + { + "start": 10893.12, + "end": 10894.98, + "probability": 0.6261 + }, + { + "start": 10895.12, + "end": 10897.78, + "probability": 0.665 + }, + { + "start": 10898.9, + "end": 10899.18, + "probability": 0.6457 + }, + { + "start": 10899.94, + "end": 10902.44, + "probability": 0.7335 + }, + { + "start": 10902.64, + "end": 10904.78, + "probability": 0.7193 + }, + { + "start": 10904.94, + "end": 10908.44, + "probability": 0.2823 + }, + { + "start": 10908.64, + "end": 10908.64, + "probability": 0.1406 + }, + { + "start": 10908.64, + "end": 10909.66, + "probability": 0.6067 + }, + { + "start": 10911.04, + "end": 10911.88, + "probability": 0.8297 + }, + { + "start": 10911.98, + "end": 10912.32, + "probability": 0.6825 + }, + { + "start": 10912.4, + "end": 10913.84, + "probability": 0.9172 + }, + { + "start": 10914.12, + "end": 10915.32, + "probability": 0.6672 + }, + { + "start": 10916.04, + "end": 10919.52, + "probability": 0.7684 + }, + { + "start": 10919.6, + "end": 10921.24, + "probability": 0.813 + }, + { + "start": 10922.1, + "end": 10922.73, + "probability": 0.9434 + }, + { + "start": 10922.78, + "end": 10922.86, + "probability": 0.0306 + }, + { + "start": 10922.86, + "end": 10923.54, + "probability": 0.3883 + }, + { + "start": 10924.94, + "end": 10926.16, + "probability": 0.7872 + }, + { + "start": 10926.16, + "end": 10927.08, + "probability": 0.7429 + }, + { + "start": 10928.54, + "end": 10932.28, + "probability": 0.7477 + }, + { + "start": 10932.36, + "end": 10933.14, + "probability": 0.7319 + }, + { + "start": 10933.14, + "end": 10933.14, + "probability": 0.6854 + }, + { + "start": 10933.14, + "end": 10933.59, + "probability": 0.0123 + }, + { + "start": 10935.26, + "end": 10935.36, + "probability": 0.0206 + }, + { + "start": 10935.36, + "end": 10939.44, + "probability": 0.3245 + }, + { + "start": 10939.62, + "end": 10939.72, + "probability": 0.5684 + }, + { + "start": 10939.72, + "end": 10939.82, + "probability": 0.4665 + }, + { + "start": 10939.82, + "end": 10939.96, + "probability": 0.1078 + }, + { + "start": 10940.68, + "end": 10941.8, + "probability": 0.2505 + }, + { + "start": 10941.92, + "end": 10943.28, + "probability": 0.566 + }, + { + "start": 10944.17, + "end": 10944.88, + "probability": 0.0819 + }, + { + "start": 10945.34, + "end": 10946.18, + "probability": 0.3123 + }, + { + "start": 10946.84, + "end": 10947.58, + "probability": 0.7472 + }, + { + "start": 10947.64, + "end": 10948.72, + "probability": 0.8485 + }, + { + "start": 10948.93, + "end": 10953.8, + "probability": 0.8315 + }, + { + "start": 10954.42, + "end": 10955.66, + "probability": 0.7114 + }, + { + "start": 10956.3, + "end": 10961.12, + "probability": 0.993 + }, + { + "start": 10961.74, + "end": 10962.46, + "probability": 0.6916 + }, + { + "start": 10962.96, + "end": 10963.8, + "probability": 0.6768 + }, + { + "start": 10964.32, + "end": 10965.0, + "probability": 0.704 + }, + { + "start": 10965.68, + "end": 10967.2, + "probability": 0.8206 + }, + { + "start": 10967.94, + "end": 10970.18, + "probability": 0.9795 + }, + { + "start": 10971.42, + "end": 10973.74, + "probability": 0.9707 + }, + { + "start": 10974.08, + "end": 10980.44, + "probability": 0.7567 + }, + { + "start": 10981.2, + "end": 10983.11, + "probability": 0.9006 + }, + { + "start": 10983.92, + "end": 10984.88, + "probability": 0.5167 + }, + { + "start": 10984.96, + "end": 10985.68, + "probability": 0.8984 + }, + { + "start": 10986.66, + "end": 10987.72, + "probability": 0.7996 + }, + { + "start": 10988.28, + "end": 10990.94, + "probability": 0.9961 + }, + { + "start": 10991.58, + "end": 10993.48, + "probability": 0.9098 + }, + { + "start": 10994.1, + "end": 10996.78, + "probability": 0.9902 + }, + { + "start": 10996.94, + "end": 10999.1, + "probability": 0.8329 + }, + { + "start": 10999.22, + "end": 11000.58, + "probability": 0.9724 + }, + { + "start": 11001.06, + "end": 11002.08, + "probability": 0.9692 + }, + { + "start": 11002.26, + "end": 11002.38, + "probability": 0.7306 + }, + { + "start": 11002.74, + "end": 11003.36, + "probability": 0.846 + }, + { + "start": 11003.94, + "end": 11005.28, + "probability": 0.9737 + }, + { + "start": 11006.02, + "end": 11007.28, + "probability": 0.9835 + }, + { + "start": 11007.42, + "end": 11008.54, + "probability": 0.9933 + }, + { + "start": 11009.5, + "end": 11009.72, + "probability": 0.2633 + }, + { + "start": 11009.72, + "end": 11012.28, + "probability": 0.9719 + }, + { + "start": 11012.38, + "end": 11016.68, + "probability": 0.5258 + }, + { + "start": 11017.94, + "end": 11020.58, + "probability": 0.9934 + }, + { + "start": 11021.7, + "end": 11021.74, + "probability": 0.7676 + }, + { + "start": 11023.18, + "end": 11023.96, + "probability": 0.2793 + }, + { + "start": 11024.34, + "end": 11024.88, + "probability": 0.5093 + }, + { + "start": 11025.36, + "end": 11028.26, + "probability": 0.9527 + }, + { + "start": 11028.26, + "end": 11029.62, + "probability": 0.2323 + }, + { + "start": 11029.7, + "end": 11032.58, + "probability": 0.7372 + }, + { + "start": 11033.08, + "end": 11033.08, + "probability": 0.2765 + }, + { + "start": 11033.08, + "end": 11034.78, + "probability": 0.5774 + }, + { + "start": 11035.0, + "end": 11039.08, + "probability": 0.8701 + }, + { + "start": 11039.2, + "end": 11040.36, + "probability": 0.2468 + }, + { + "start": 11040.36, + "end": 11040.46, + "probability": 0.0662 + }, + { + "start": 11040.86, + "end": 11044.28, + "probability": 0.8537 + }, + { + "start": 11045.12, + "end": 11046.38, + "probability": 0.4749 + }, + { + "start": 11046.44, + "end": 11050.66, + "probability": 0.9933 + }, + { + "start": 11051.58, + "end": 11052.2, + "probability": 0.6327 + }, + { + "start": 11052.24, + "end": 11053.67, + "probability": 0.5796 + }, + { + "start": 11053.82, + "end": 11054.62, + "probability": 0.8542 + }, + { + "start": 11055.02, + "end": 11055.84, + "probability": 0.5067 + }, + { + "start": 11056.46, + "end": 11058.08, + "probability": 0.9725 + }, + { + "start": 11058.24, + "end": 11060.38, + "probability": 0.978 + }, + { + "start": 11061.16, + "end": 11062.5, + "probability": 0.7579 + }, + { + "start": 11070.42, + "end": 11072.58, + "probability": 0.9905 + }, + { + "start": 11072.58, + "end": 11075.52, + "probability": 0.9896 + }, + { + "start": 11077.62, + "end": 11080.42, + "probability": 0.999 + }, + { + "start": 11081.1, + "end": 11084.04, + "probability": 0.95 + }, + { + "start": 11084.72, + "end": 11087.0, + "probability": 0.9976 + }, + { + "start": 11088.38, + "end": 11092.92, + "probability": 0.9948 + }, + { + "start": 11093.58, + "end": 11097.7, + "probability": 0.9899 + }, + { + "start": 11098.5, + "end": 11098.82, + "probability": 0.5416 + }, + { + "start": 11098.88, + "end": 11100.94, + "probability": 0.9174 + }, + { + "start": 11101.52, + "end": 11102.98, + "probability": 0.7221 + }, + { + "start": 11103.08, + "end": 11106.46, + "probability": 0.8658 + }, + { + "start": 11107.2, + "end": 11108.76, + "probability": 0.9956 + }, + { + "start": 11109.18, + "end": 11113.82, + "probability": 0.9785 + }, + { + "start": 11113.94, + "end": 11114.58, + "probability": 0.713 + }, + { + "start": 11115.1, + "end": 11115.94, + "probability": 0.9729 + }, + { + "start": 11116.38, + "end": 11117.0, + "probability": 0.7751 + }, + { + "start": 11117.4, + "end": 11118.02, + "probability": 0.6605 + }, + { + "start": 11118.38, + "end": 11119.08, + "probability": 0.8287 + }, + { + "start": 11119.56, + "end": 11120.96, + "probability": 0.8164 + }, + { + "start": 11121.26, + "end": 11122.2, + "probability": 0.9089 + }, + { + "start": 11123.58, + "end": 11126.34, + "probability": 0.9873 + }, + { + "start": 11127.16, + "end": 11128.46, + "probability": 0.8642 + }, + { + "start": 11129.2, + "end": 11131.42, + "probability": 0.995 + }, + { + "start": 11131.42, + "end": 11133.44, + "probability": 0.9991 + }, + { + "start": 11134.7, + "end": 11135.3, + "probability": 0.6978 + }, + { + "start": 11135.64, + "end": 11136.56, + "probability": 0.6916 + }, + { + "start": 11137.06, + "end": 11142.36, + "probability": 0.9964 + }, + { + "start": 11142.48, + "end": 11143.28, + "probability": 0.8875 + }, + { + "start": 11143.72, + "end": 11144.64, + "probability": 0.7524 + }, + { + "start": 11145.1, + "end": 11146.64, + "probability": 0.597 + }, + { + "start": 11148.0, + "end": 11153.02, + "probability": 0.8389 + }, + { + "start": 11153.54, + "end": 11155.08, + "probability": 0.7287 + }, + { + "start": 11155.12, + "end": 11158.06, + "probability": 0.9935 + }, + { + "start": 11158.8, + "end": 11159.06, + "probability": 0.3278 + }, + { + "start": 11159.42, + "end": 11161.1, + "probability": 0.8777 + }, + { + "start": 11161.82, + "end": 11162.16, + "probability": 0.6009 + }, + { + "start": 11162.72, + "end": 11165.24, + "probability": 0.9859 + }, + { + "start": 11165.8, + "end": 11170.2, + "probability": 0.984 + }, + { + "start": 11170.2, + "end": 11172.8, + "probability": 0.9777 + }, + { + "start": 11172.98, + "end": 11173.56, + "probability": 0.8552 + }, + { + "start": 11174.08, + "end": 11174.58, + "probability": 0.8909 + }, + { + "start": 11174.62, + "end": 11174.62, + "probability": 0.79 + }, + { + "start": 11174.68, + "end": 11175.22, + "probability": 0.8334 + }, + { + "start": 11175.32, + "end": 11175.76, + "probability": 0.8782 + }, + { + "start": 11176.6, + "end": 11177.77, + "probability": 0.8223 + }, + { + "start": 11178.94, + "end": 11181.58, + "probability": 0.963 + }, + { + "start": 11181.68, + "end": 11182.4, + "probability": 0.771 + }, + { + "start": 11182.92, + "end": 11184.2, + "probability": 0.7415 + }, + { + "start": 11184.8, + "end": 11186.48, + "probability": 0.8999 + }, + { + "start": 11187.02, + "end": 11191.74, + "probability": 0.9583 + }, + { + "start": 11192.8, + "end": 11194.39, + "probability": 0.7277 + }, + { + "start": 11195.36, + "end": 11201.36, + "probability": 0.9688 + }, + { + "start": 11201.94, + "end": 11206.78, + "probability": 0.9832 + }, + { + "start": 11207.36, + "end": 11209.1, + "probability": 0.6056 + }, + { + "start": 11209.74, + "end": 11212.46, + "probability": 0.9224 + }, + { + "start": 11212.46, + "end": 11216.24, + "probability": 0.8575 + }, + { + "start": 11217.04, + "end": 11218.66, + "probability": 0.4847 + }, + { + "start": 11218.94, + "end": 11223.32, + "probability": 0.9888 + }, + { + "start": 11224.04, + "end": 11228.68, + "probability": 0.9635 + }, + { + "start": 11229.28, + "end": 11232.18, + "probability": 0.9592 + }, + { + "start": 11233.26, + "end": 11234.02, + "probability": 0.7278 + }, + { + "start": 11234.7, + "end": 11236.5, + "probability": 0.9954 + }, + { + "start": 11237.36, + "end": 11240.66, + "probability": 0.7768 + }, + { + "start": 11241.18, + "end": 11242.88, + "probability": 0.7425 + }, + { + "start": 11243.72, + "end": 11246.72, + "probability": 0.8052 + }, + { + "start": 11247.66, + "end": 11248.18, + "probability": 0.6747 + }, + { + "start": 11248.92, + "end": 11251.74, + "probability": 0.9505 + }, + { + "start": 11252.95, + "end": 11254.63, + "probability": 0.9961 + }, + { + "start": 11255.3, + "end": 11255.3, + "probability": 0.1897 + }, + { + "start": 11255.3, + "end": 11257.22, + "probability": 0.6725 + }, + { + "start": 11257.38, + "end": 11257.78, + "probability": 0.4201 + }, + { + "start": 11257.84, + "end": 11259.68, + "probability": 0.9119 + }, + { + "start": 11259.76, + "end": 11264.34, + "probability": 0.7475 + }, + { + "start": 11265.0, + "end": 11266.7, + "probability": 0.9743 + }, + { + "start": 11267.58, + "end": 11270.66, + "probability": 0.9171 + }, + { + "start": 11270.9, + "end": 11271.56, + "probability": 0.5199 + }, + { + "start": 11271.74, + "end": 11274.54, + "probability": 0.9316 + }, + { + "start": 11275.3, + "end": 11279.3, + "probability": 0.9508 + }, + { + "start": 11279.84, + "end": 11281.02, + "probability": 0.9949 + }, + { + "start": 11281.98, + "end": 11283.18, + "probability": 0.9828 + }, + { + "start": 11284.14, + "end": 11286.26, + "probability": 0.9712 + }, + { + "start": 11286.3, + "end": 11286.98, + "probability": 0.3449 + }, + { + "start": 11287.06, + "end": 11292.34, + "probability": 0.9976 + }, + { + "start": 11292.76, + "end": 11295.72, + "probability": 0.9617 + }, + { + "start": 11296.24, + "end": 11299.82, + "probability": 0.9651 + }, + { + "start": 11300.58, + "end": 11302.8, + "probability": 0.9913 + }, + { + "start": 11302.8, + "end": 11306.5, + "probability": 0.9917 + }, + { + "start": 11307.52, + "end": 11310.4, + "probability": 0.9987 + }, + { + "start": 11311.34, + "end": 11313.42, + "probability": 0.6767 + }, + { + "start": 11315.49, + "end": 11317.66, + "probability": 0.1136 + }, + { + "start": 11317.82, + "end": 11318.8, + "probability": 0.8959 + }, + { + "start": 11320.44, + "end": 11321.64, + "probability": 0.5757 + }, + { + "start": 11321.84, + "end": 11323.82, + "probability": 0.7532 + }, + { + "start": 11324.0, + "end": 11325.62, + "probability": 0.2868 + }, + { + "start": 11325.86, + "end": 11326.76, + "probability": 0.4639 + }, + { + "start": 11327.82, + "end": 11328.88, + "probability": 0.7058 + }, + { + "start": 11328.88, + "end": 11329.62, + "probability": 0.7244 + }, + { + "start": 11329.76, + "end": 11331.67, + "probability": 0.6469 + }, + { + "start": 11334.04, + "end": 11339.98, + "probability": 0.1321 + }, + { + "start": 11343.1, + "end": 11345.14, + "probability": 0.8404 + }, + { + "start": 11346.62, + "end": 11351.08, + "probability": 0.9956 + }, + { + "start": 11351.46, + "end": 11352.98, + "probability": 0.9708 + }, + { + "start": 11353.44, + "end": 11356.06, + "probability": 0.892 + }, + { + "start": 11356.5, + "end": 11362.64, + "probability": 0.9946 + }, + { + "start": 11363.38, + "end": 11367.98, + "probability": 0.6658 + }, + { + "start": 11368.62, + "end": 11372.02, + "probability": 0.4424 + }, + { + "start": 11373.22, + "end": 11374.86, + "probability": 0.3076 + }, + { + "start": 11375.3, + "end": 11378.94, + "probability": 0.328 + }, + { + "start": 11378.94, + "end": 11378.96, + "probability": 0.48 + }, + { + "start": 11378.96, + "end": 11379.79, + "probability": 0.2657 + }, + { + "start": 11380.3, + "end": 11380.38, + "probability": 0.4675 + }, + { + "start": 11380.38, + "end": 11381.4, + "probability": 0.8383 + }, + { + "start": 11381.5, + "end": 11382.32, + "probability": 0.6561 + }, + { + "start": 11383.3, + "end": 11385.08, + "probability": 0.8601 + }, + { + "start": 11385.88, + "end": 11389.78, + "probability": 0.8968 + }, + { + "start": 11390.06, + "end": 11391.16, + "probability": 0.8514 + }, + { + "start": 11391.66, + "end": 11395.8, + "probability": 0.8626 + }, + { + "start": 11396.5, + "end": 11398.34, + "probability": 0.9946 + }, + { + "start": 11398.34, + "end": 11399.58, + "probability": 0.867 + }, + { + "start": 11399.68, + "end": 11401.56, + "probability": 0.5523 + }, + { + "start": 11402.32, + "end": 11405.34, + "probability": 0.8948 + }, + { + "start": 11406.08, + "end": 11407.56, + "probability": 0.7951 + }, + { + "start": 11407.8, + "end": 11408.41, + "probability": 0.7993 + }, + { + "start": 11409.3, + "end": 11412.12, + "probability": 0.9969 + }, + { + "start": 11413.12, + "end": 11414.36, + "probability": 0.898 + }, + { + "start": 11414.82, + "end": 11417.76, + "probability": 0.9912 + }, + { + "start": 11418.38, + "end": 11421.0, + "probability": 0.9269 + }, + { + "start": 11422.34, + "end": 11423.08, + "probability": 0.9548 + }, + { + "start": 11423.7, + "end": 11426.04, + "probability": 0.924 + }, + { + "start": 11427.14, + "end": 11428.42, + "probability": 0.9077 + }, + { + "start": 11428.46, + "end": 11430.89, + "probability": 0.9663 + }, + { + "start": 11431.54, + "end": 11432.3, + "probability": 0.0224 + }, + { + "start": 11434.5, + "end": 11434.95, + "probability": 0.2095 + }, + { + "start": 11435.28, + "end": 11436.96, + "probability": 0.0808 + }, + { + "start": 11436.96, + "end": 11436.96, + "probability": 0.556 + }, + { + "start": 11436.96, + "end": 11439.46, + "probability": 0.8565 + }, + { + "start": 11440.06, + "end": 11440.54, + "probability": 0.7264 + }, + { + "start": 11440.62, + "end": 11441.12, + "probability": 0.8375 + }, + { + "start": 11441.2, + "end": 11446.84, + "probability": 0.9948 + }, + { + "start": 11447.8, + "end": 11450.32, + "probability": 0.159 + }, + { + "start": 11450.32, + "end": 11450.32, + "probability": 0.0947 + }, + { + "start": 11450.32, + "end": 11450.32, + "probability": 0.1332 + }, + { + "start": 11450.32, + "end": 11451.18, + "probability": 0.7955 + }, + { + "start": 11451.34, + "end": 11452.52, + "probability": 0.8101 + }, + { + "start": 11453.36, + "end": 11455.86, + "probability": 0.5712 + }, + { + "start": 11456.42, + "end": 11457.02, + "probability": 0.5269 + }, + { + "start": 11457.04, + "end": 11459.74, + "probability": 0.9769 + }, + { + "start": 11460.18, + "end": 11463.12, + "probability": 0.8901 + }, + { + "start": 11463.7, + "end": 11466.14, + "probability": 0.9253 + }, + { + "start": 11466.94, + "end": 11470.56, + "probability": 0.9945 + }, + { + "start": 11472.02, + "end": 11472.3, + "probability": 0.0284 + }, + { + "start": 11472.3, + "end": 11474.5, + "probability": 0.4285 + }, + { + "start": 11475.66, + "end": 11475.72, + "probability": 0.109 + }, + { + "start": 11475.72, + "end": 11477.52, + "probability": 0.7213 + }, + { + "start": 11477.64, + "end": 11477.88, + "probability": 0.2117 + }, + { + "start": 11477.88, + "end": 11479.8, + "probability": 0.98 + }, + { + "start": 11479.8, + "end": 11482.04, + "probability": 0.5462 + }, + { + "start": 11482.87, + "end": 11485.72, + "probability": 0.6664 + }, + { + "start": 11485.9, + "end": 11488.14, + "probability": 0.7653 + }, + { + "start": 11488.42, + "end": 11490.16, + "probability": 0.4891 + }, + { + "start": 11490.88, + "end": 11492.98, + "probability": 0.7617 + }, + { + "start": 11493.1, + "end": 11494.22, + "probability": 0.7456 + }, + { + "start": 11494.84, + "end": 11498.32, + "probability": 0.4576 + }, + { + "start": 11498.48, + "end": 11498.5, + "probability": 0.1491 + }, + { + "start": 11498.5, + "end": 11500.36, + "probability": 0.072 + }, + { + "start": 11500.38, + "end": 11500.58, + "probability": 0.0738 + }, + { + "start": 11500.58, + "end": 11501.44, + "probability": 0.317 + }, + { + "start": 11502.56, + "end": 11503.02, + "probability": 0.2126 + }, + { + "start": 11503.08, + "end": 11505.44, + "probability": 0.1287 + }, + { + "start": 11505.6, + "end": 11505.74, + "probability": 0.0416 + }, + { + "start": 11505.74, + "end": 11505.9, + "probability": 0.2233 + }, + { + "start": 11505.9, + "end": 11507.38, + "probability": 0.56 + }, + { + "start": 11508.86, + "end": 11513.66, + "probability": 0.5871 + }, + { + "start": 11513.74, + "end": 11515.68, + "probability": 0.0767 + }, + { + "start": 11515.96, + "end": 11517.86, + "probability": 0.7106 + }, + { + "start": 11517.96, + "end": 11518.84, + "probability": 0.0176 + }, + { + "start": 11518.92, + "end": 11519.28, + "probability": 0.1215 + }, + { + "start": 11519.28, + "end": 11520.42, + "probability": 0.0528 + }, + { + "start": 11520.64, + "end": 11521.08, + "probability": 0.298 + }, + { + "start": 11521.34, + "end": 11524.6, + "probability": 0.7772 + }, + { + "start": 11525.5, + "end": 11531.1, + "probability": 0.2003 + }, + { + "start": 11531.12, + "end": 11531.86, + "probability": 0.1381 + }, + { + "start": 11532.32, + "end": 11534.32, + "probability": 0.3974 + }, + { + "start": 11534.68, + "end": 11536.28, + "probability": 0.1396 + }, + { + "start": 11536.3, + "end": 11537.06, + "probability": 0.1115 + }, + { + "start": 11537.44, + "end": 11538.2, + "probability": 0.2094 + }, + { + "start": 11541.46, + "end": 11543.76, + "probability": 0.0119 + }, + { + "start": 11544.7, + "end": 11545.66, + "probability": 0.0495 + }, + { + "start": 11546.12, + "end": 11547.12, + "probability": 0.0833 + }, + { + "start": 11548.04, + "end": 11553.1, + "probability": 0.0353 + }, + { + "start": 11553.1, + "end": 11553.64, + "probability": 0.6173 + }, + { + "start": 11554.8, + "end": 11556.06, + "probability": 0.1028 + }, + { + "start": 11556.18, + "end": 11557.48, + "probability": 0.2066 + }, + { + "start": 11557.48, + "end": 11560.68, + "probability": 0.3634 + }, + { + "start": 11560.68, + "end": 11561.38, + "probability": 0.137 + }, + { + "start": 11561.66, + "end": 11561.84, + "probability": 0.3807 + }, + { + "start": 11562.9, + "end": 11565.08, + "probability": 0.4796 + }, + { + "start": 11565.24, + "end": 11568.9, + "probability": 0.0863 + }, + { + "start": 11573.0, + "end": 11573.0, + "probability": 0.0 + }, + { + "start": 11573.0, + "end": 11573.0, + "probability": 0.0 + }, + { + "start": 11573.0, + "end": 11573.0, + "probability": 0.0 + }, + { + "start": 11573.0, + "end": 11573.0, + "probability": 0.0 + }, + { + "start": 11573.0, + "end": 11573.0, + "probability": 0.0 + }, + { + "start": 11573.0, + "end": 11573.0, + "probability": 0.0 + }, + { + "start": 11573.0, + "end": 11573.0, + "probability": 0.0 + }, + { + "start": 11573.0, + "end": 11573.0, + "probability": 0.0 + }, + { + "start": 11573.0, + "end": 11573.0, + "probability": 0.0 + }, + { + "start": 11573.0, + "end": 11573.0, + "probability": 0.0 + }, + { + "start": 11573.0, + "end": 11573.0, + "probability": 0.0 + }, + { + "start": 11573.0, + "end": 11573.0, + "probability": 0.0 + }, + { + "start": 11573.0, + "end": 11573.0, + "probability": 0.0 + }, + { + "start": 11573.0, + "end": 11573.0, + "probability": 0.0 + }, + { + "start": 11573.0, + "end": 11573.0, + "probability": 0.0 + }, + { + "start": 11573.0, + "end": 11573.0, + "probability": 0.0 + }, + { + "start": 11573.0, + "end": 11573.0, + "probability": 0.0 + }, + { + "start": 11573.0, + "end": 11573.0, + "probability": 0.0 + }, + { + "start": 11573.0, + "end": 11573.0, + "probability": 0.0 + }, + { + "start": 11573.2, + "end": 11574.36, + "probability": 0.6204 + }, + { + "start": 11574.44, + "end": 11574.44, + "probability": 0.7494 + }, + { + "start": 11574.44, + "end": 11576.86, + "probability": 0.6468 + }, + { + "start": 11576.94, + "end": 11577.64, + "probability": 0.8751 + }, + { + "start": 11577.72, + "end": 11578.12, + "probability": 0.0114 + }, + { + "start": 11578.12, + "end": 11578.3, + "probability": 0.0209 + }, + { + "start": 11578.48, + "end": 11578.76, + "probability": 0.5616 + }, + { + "start": 11578.88, + "end": 11582.44, + "probability": 0.9812 + }, + { + "start": 11583.48, + "end": 11585.34, + "probability": 0.9059 + }, + { + "start": 11586.96, + "end": 11588.14, + "probability": 0.5203 + }, + { + "start": 11588.38, + "end": 11590.16, + "probability": 0.6127 + }, + { + "start": 11590.26, + "end": 11590.68, + "probability": 0.2343 + }, + { + "start": 11590.74, + "end": 11591.64, + "probability": 0.5806 + }, + { + "start": 11591.64, + "end": 11592.12, + "probability": 0.4884 + }, + { + "start": 11592.44, + "end": 11592.54, + "probability": 0.2689 + }, + { + "start": 11592.54, + "end": 11595.5, + "probability": 0.8853 + }, + { + "start": 11595.76, + "end": 11598.06, + "probability": 0.5399 + }, + { + "start": 11599.26, + "end": 11599.88, + "probability": 0.6068 + }, + { + "start": 11601.34, + "end": 11604.66, + "probability": 0.5774 + }, + { + "start": 11606.48, + "end": 11608.12, + "probability": 0.6125 + }, + { + "start": 11611.7, + "end": 11612.52, + "probability": 0.7765 + }, + { + "start": 11617.9, + "end": 11619.04, + "probability": 0.9495 + }, + { + "start": 11620.52, + "end": 11623.48, + "probability": 0.9976 + }, + { + "start": 11625.86, + "end": 11627.56, + "probability": 0.9971 + }, + { + "start": 11628.38, + "end": 11631.16, + "probability": 0.9669 + }, + { + "start": 11632.84, + "end": 11633.72, + "probability": 0.9971 + }, + { + "start": 11634.38, + "end": 11638.28, + "probability": 0.9561 + }, + { + "start": 11639.98, + "end": 11640.56, + "probability": 0.7522 + }, + { + "start": 11641.38, + "end": 11642.56, + "probability": 0.4644 + }, + { + "start": 11643.98, + "end": 11648.2, + "probability": 0.9995 + }, + { + "start": 11649.92, + "end": 11653.96, + "probability": 0.9655 + }, + { + "start": 11654.82, + "end": 11656.28, + "probability": 0.9677 + }, + { + "start": 11657.38, + "end": 11658.16, + "probability": 0.9564 + }, + { + "start": 11660.5, + "end": 11661.14, + "probability": 0.9935 + }, + { + "start": 11661.96, + "end": 11663.16, + "probability": 0.7366 + }, + { + "start": 11665.1, + "end": 11666.88, + "probability": 0.0188 + }, + { + "start": 11668.61, + "end": 11669.88, + "probability": 0.0904 + }, + { + "start": 11669.88, + "end": 11669.94, + "probability": 0.2022 + }, + { + "start": 11669.94, + "end": 11670.08, + "probability": 0.3282 + }, + { + "start": 11670.18, + "end": 11670.85, + "probability": 0.7035 + }, + { + "start": 11671.6, + "end": 11672.48, + "probability": 0.3594 + }, + { + "start": 11672.76, + "end": 11673.3, + "probability": 0.8713 + }, + { + "start": 11673.32, + "end": 11674.0, + "probability": 0.7908 + }, + { + "start": 11675.68, + "end": 11678.59, + "probability": 0.9961 + }, + { + "start": 11680.6, + "end": 11683.96, + "probability": 0.9251 + }, + { + "start": 11685.88, + "end": 11686.6, + "probability": 0.7362 + }, + { + "start": 11687.38, + "end": 11688.16, + "probability": 0.8587 + }, + { + "start": 11689.1, + "end": 11693.1, + "probability": 0.9979 + }, + { + "start": 11693.98, + "end": 11695.6, + "probability": 0.9594 + }, + { + "start": 11696.32, + "end": 11697.12, + "probability": 0.7228 + }, + { + "start": 11697.72, + "end": 11699.4, + "probability": 0.9193 + }, + { + "start": 11700.2, + "end": 11701.86, + "probability": 0.9626 + }, + { + "start": 11702.62, + "end": 11703.88, + "probability": 0.8631 + }, + { + "start": 11704.8, + "end": 11708.66, + "probability": 0.9878 + }, + { + "start": 11709.62, + "end": 11712.98, + "probability": 0.9883 + }, + { + "start": 11713.18, + "end": 11714.08, + "probability": 0.7321 + }, + { + "start": 11714.9, + "end": 11718.88, + "probability": 0.9874 + }, + { + "start": 11719.88, + "end": 11722.54, + "probability": 0.9993 + }, + { + "start": 11723.56, + "end": 11730.9, + "probability": 0.9971 + }, + { + "start": 11731.76, + "end": 11733.66, + "probability": 0.8709 + }, + { + "start": 11734.56, + "end": 11736.54, + "probability": 0.9875 + }, + { + "start": 11737.4, + "end": 11739.44, + "probability": 0.9946 + }, + { + "start": 11740.3, + "end": 11743.74, + "probability": 0.7502 + }, + { + "start": 11744.28, + "end": 11747.22, + "probability": 0.8862 + }, + { + "start": 11747.82, + "end": 11750.8, + "probability": 0.9342 + }, + { + "start": 11750.96, + "end": 11751.98, + "probability": 0.9319 + }, + { + "start": 11752.46, + "end": 11754.58, + "probability": 0.9863 + }, + { + "start": 11755.7, + "end": 11761.54, + "probability": 0.9995 + }, + { + "start": 11762.26, + "end": 11765.9, + "probability": 0.907 + }, + { + "start": 11766.82, + "end": 11769.77, + "probability": 0.1244 + }, + { + "start": 11771.96, + "end": 11772.14, + "probability": 0.0318 + }, + { + "start": 11772.14, + "end": 11772.14, + "probability": 0.4023 + }, + { + "start": 11772.14, + "end": 11772.14, + "probability": 0.0681 + }, + { + "start": 11772.14, + "end": 11773.32, + "probability": 0.2167 + }, + { + "start": 11774.28, + "end": 11776.02, + "probability": 0.67 + }, + { + "start": 11776.58, + "end": 11779.78, + "probability": 0.8247 + }, + { + "start": 11780.34, + "end": 11780.96, + "probability": 0.8329 + }, + { + "start": 11781.12, + "end": 11781.8, + "probability": 0.9672 + }, + { + "start": 11782.02, + "end": 11782.58, + "probability": 0.4987 + }, + { + "start": 11782.76, + "end": 11783.34, + "probability": 0.8154 + }, + { + "start": 11783.42, + "end": 11784.12, + "probability": 0.5806 + }, + { + "start": 11784.52, + "end": 11787.84, + "probability": 0.9985 + }, + { + "start": 11788.46, + "end": 11791.36, + "probability": 0.9567 + }, + { + "start": 11791.36, + "end": 11794.6, + "probability": 0.908 + }, + { + "start": 11795.18, + "end": 11795.74, + "probability": 0.3363 + }, + { + "start": 11795.74, + "end": 11798.6, + "probability": 0.9438 + }, + { + "start": 11799.72, + "end": 11801.26, + "probability": 0.8864 + }, + { + "start": 11801.76, + "end": 11803.68, + "probability": 0.9526 + }, + { + "start": 11803.78, + "end": 11806.24, + "probability": 0.9923 + }, + { + "start": 11806.74, + "end": 11808.1, + "probability": 0.8845 + }, + { + "start": 11808.26, + "end": 11810.22, + "probability": 0.8997 + }, + { + "start": 11810.44, + "end": 11811.24, + "probability": 0.7578 + }, + { + "start": 11818.38, + "end": 11820.06, + "probability": 0.9117 + }, + { + "start": 11821.68, + "end": 11822.46, + "probability": 0.9536 + }, + { + "start": 11823.18, + "end": 11823.66, + "probability": 0.8041 + }, + { + "start": 11824.84, + "end": 11826.52, + "probability": 0.9673 + }, + { + "start": 11827.26, + "end": 11828.8, + "probability": 0.9709 + }, + { + "start": 11829.02, + "end": 11830.9, + "probability": 0.452 + }, + { + "start": 11831.7, + "end": 11832.4, + "probability": 0.136 + }, + { + "start": 11834.96, + "end": 11836.54, + "probability": 0.3752 + }, + { + "start": 11837.06, + "end": 11840.62, + "probability": 0.8401 + }, + { + "start": 11840.62, + "end": 11842.36, + "probability": 0.5359 + }, + { + "start": 11842.36, + "end": 11844.72, + "probability": 0.5579 + }, + { + "start": 11845.12, + "end": 11846.16, + "probability": 0.2645 + }, + { + "start": 11846.16, + "end": 11846.42, + "probability": 0.9136 + }, + { + "start": 11847.22, + "end": 11851.46, + "probability": 0.9978 + }, + { + "start": 11851.94, + "end": 11856.0, + "probability": 0.9214 + }, + { + "start": 11856.06, + "end": 11856.12, + "probability": 0.005 + }, + { + "start": 11856.12, + "end": 11856.12, + "probability": 0.2744 + }, + { + "start": 11856.42, + "end": 11859.04, + "probability": 0.7887 + }, + { + "start": 11859.54, + "end": 11862.34, + "probability": 0.9937 + }, + { + "start": 11862.66, + "end": 11864.26, + "probability": 0.9282 + }, + { + "start": 11864.7, + "end": 11866.04, + "probability": 0.8651 + }, + { + "start": 11866.24, + "end": 11867.46, + "probability": 0.4483 + }, + { + "start": 11867.52, + "end": 11867.68, + "probability": 0.0188 + }, + { + "start": 11867.84, + "end": 11867.92, + "probability": 0.0494 + }, + { + "start": 11867.94, + "end": 11873.4, + "probability": 0.8195 + }, + { + "start": 11873.4, + "end": 11873.54, + "probability": 0.3495 + }, + { + "start": 11874.06, + "end": 11876.94, + "probability": 0.9781 + }, + { + "start": 11877.28, + "end": 11878.05, + "probability": 0.518 + }, + { + "start": 11878.5, + "end": 11879.54, + "probability": 0.6311 + }, + { + "start": 11879.88, + "end": 11881.6, + "probability": 0.808 + }, + { + "start": 11881.76, + "end": 11883.0, + "probability": 0.9402 + }, + { + "start": 11884.79, + "end": 11885.49, + "probability": 0.0063 + }, + { + "start": 11887.12, + "end": 11888.28, + "probability": 0.1053 + }, + { + "start": 11888.36, + "end": 11888.46, + "probability": 0.082 + }, + { + "start": 11888.46, + "end": 11888.46, + "probability": 0.0474 + }, + { + "start": 11888.46, + "end": 11888.96, + "probability": 0.0597 + }, + { + "start": 11890.08, + "end": 11890.84, + "probability": 0.254 + }, + { + "start": 11890.84, + "end": 11893.1, + "probability": 0.114 + }, + { + "start": 11893.1, + "end": 11893.22, + "probability": 0.1314 + }, + { + "start": 11893.22, + "end": 11893.57, + "probability": 0.1826 + }, + { + "start": 11894.3, + "end": 11894.3, + "probability": 0.1014 + }, + { + "start": 11894.3, + "end": 11895.05, + "probability": 0.7065 + }, + { + "start": 11895.64, + "end": 11896.34, + "probability": 0.0998 + }, + { + "start": 11896.4, + "end": 11902.4, + "probability": 0.8037 + }, + { + "start": 11902.82, + "end": 11903.58, + "probability": 0.015 + }, + { + "start": 11904.5, + "end": 11904.64, + "probability": 0.0885 + }, + { + "start": 11904.64, + "end": 11904.64, + "probability": 0.0277 + }, + { + "start": 11904.64, + "end": 11904.64, + "probability": 0.0966 + }, + { + "start": 11904.64, + "end": 11905.4, + "probability": 0.2146 + }, + { + "start": 11905.62, + "end": 11906.82, + "probability": 0.8554 + }, + { + "start": 11907.54, + "end": 11912.44, + "probability": 0.7874 + }, + { + "start": 11912.56, + "end": 11913.3, + "probability": 0.278 + }, + { + "start": 11913.3, + "end": 11915.94, + "probability": 0.5767 + }, + { + "start": 11916.46, + "end": 11916.46, + "probability": 0.0337 + }, + { + "start": 11916.46, + "end": 11916.46, + "probability": 0.0101 + }, + { + "start": 11916.46, + "end": 11917.28, + "probability": 0.8794 + }, + { + "start": 11917.98, + "end": 11919.34, + "probability": 0.0612 + }, + { + "start": 11920.34, + "end": 11920.86, + "probability": 0.3197 + }, + { + "start": 11923.28, + "end": 11924.4, + "probability": 0.0824 + }, + { + "start": 11925.4, + "end": 11928.12, + "probability": 0.7471 + }, + { + "start": 11928.58, + "end": 11929.96, + "probability": 0.5709 + }, + { + "start": 11930.04, + "end": 11930.44, + "probability": 0.6318 + }, + { + "start": 11930.44, + "end": 11933.9, + "probability": 0.9378 + }, + { + "start": 11933.92, + "end": 11934.44, + "probability": 0.9027 + }, + { + "start": 11934.56, + "end": 11935.04, + "probability": 0.9409 + }, + { + "start": 11935.2, + "end": 11935.92, + "probability": 0.7538 + }, + { + "start": 11936.06, + "end": 11936.5, + "probability": 0.1654 + }, + { + "start": 11936.5, + "end": 11937.18, + "probability": 0.8997 + }, + { + "start": 11937.18, + "end": 11937.98, + "probability": 0.7925 + }, + { + "start": 11938.38, + "end": 11939.28, + "probability": 0.9386 + }, + { + "start": 11941.18, + "end": 11941.92, + "probability": 0.0902 + }, + { + "start": 11942.12, + "end": 11943.72, + "probability": 0.5207 + }, + { + "start": 11943.88, + "end": 11944.68, + "probability": 0.5154 + }, + { + "start": 11944.9, + "end": 11946.2, + "probability": 0.9203 + }, + { + "start": 11946.42, + "end": 11949.16, + "probability": 0.9568 + }, + { + "start": 11949.26, + "end": 11951.26, + "probability": 0.6514 + }, + { + "start": 11951.28, + "end": 11952.16, + "probability": 0.7346 + }, + { + "start": 11952.2, + "end": 11953.32, + "probability": 0.64 + }, + { + "start": 11953.44, + "end": 11954.32, + "probability": 0.8426 + }, + { + "start": 11954.44, + "end": 11956.31, + "probability": 0.8857 + }, + { + "start": 11956.66, + "end": 11957.94, + "probability": 0.6583 + }, + { + "start": 11958.06, + "end": 11959.94, + "probability": 0.6064 + }, + { + "start": 11960.04, + "end": 11961.64, + "probability": 0.5697 + }, + { + "start": 11961.96, + "end": 11963.76, + "probability": 0.6338 + }, + { + "start": 11964.02, + "end": 11968.36, + "probability": 0.9092 + }, + { + "start": 11969.34, + "end": 11971.46, + "probability": 0.917 + }, + { + "start": 11971.74, + "end": 11973.58, + "probability": 0.085 + }, + { + "start": 11973.58, + "end": 11975.88, + "probability": 0.2729 + }, + { + "start": 11976.22, + "end": 11976.7, + "probability": 0.0021 + }, + { + "start": 11976.8, + "end": 11978.52, + "probability": 0.0933 + }, + { + "start": 11978.6, + "end": 11982.0, + "probability": 0.1393 + }, + { + "start": 11983.38, + "end": 11983.58, + "probability": 0.3855 + }, + { + "start": 11990.12, + "end": 11993.04, + "probability": 0.4758 + }, + { + "start": 11996.46, + "end": 11996.74, + "probability": 0.1866 + }, + { + "start": 11996.74, + "end": 11996.74, + "probability": 0.0665 + }, + { + "start": 11996.74, + "end": 11996.74, + "probability": 0.1189 + }, + { + "start": 11996.74, + "end": 11996.76, + "probability": 0.0181 + }, + { + "start": 11996.76, + "end": 11999.23, + "probability": 0.2396 + }, + { + "start": 12004.2, + "end": 12004.76, + "probability": 0.2698 + }, + { + "start": 12004.9, + "end": 12006.36, + "probability": 0.5777 + }, + { + "start": 12006.48, + "end": 12010.93, + "probability": 0.0373 + }, + { + "start": 12012.82, + "end": 12012.82, + "probability": 0.1031 + }, + { + "start": 12013.58, + "end": 12014.2, + "probability": 0.0856 + }, + { + "start": 12015.12, + "end": 12016.04, + "probability": 0.0172 + }, + { + "start": 12016.04, + "end": 12016.04, + "probability": 0.2668 + }, + { + "start": 12016.76, + "end": 12017.12, + "probability": 0.0276 + }, + { + "start": 12022.88, + "end": 12023.14, + "probability": 0.4939 + }, + { + "start": 12024.36, + "end": 12028.0, + "probability": 0.0451 + }, + { + "start": 12029.44, + "end": 12029.58, + "probability": 0.164 + }, + { + "start": 12029.58, + "end": 12029.58, + "probability": 0.4765 + }, + { + "start": 12029.58, + "end": 12029.93, + "probability": 0.5987 + }, + { + "start": 12030.46, + "end": 12031.1, + "probability": 0.6706 + }, + { + "start": 12033.58, + "end": 12034.54, + "probability": 0.5508 + }, + { + "start": 12036.06, + "end": 12039.3, + "probability": 0.786 + }, + { + "start": 12041.92, + "end": 12043.94, + "probability": 0.7234 + }, + { + "start": 12045.16, + "end": 12045.54, + "probability": 0.5114 + }, + { + "start": 12046.36, + "end": 12047.02, + "probability": 0.7532 + }, + { + "start": 12048.08, + "end": 12048.7, + "probability": 0.9597 + }, + { + "start": 12049.26, + "end": 12050.08, + "probability": 0.9565 + }, + { + "start": 12051.79, + "end": 12053.72, + "probability": 0.9847 + }, + { + "start": 12056.52, + "end": 12057.42, + "probability": 0.9307 + }, + { + "start": 12058.78, + "end": 12059.68, + "probability": 0.9837 + }, + { + "start": 12061.14, + "end": 12065.09, + "probability": 0.8 + }, + { + "start": 12067.26, + "end": 12067.7, + "probability": 0.7071 + }, + { + "start": 12071.06, + "end": 12071.92, + "probability": 0.5639 + }, + { + "start": 12073.4, + "end": 12073.74, + "probability": 0.8462 + }, + { + "start": 12075.36, + "end": 12076.1, + "probability": 0.8111 + }, + { + "start": 12077.0, + "end": 12077.28, + "probability": 0.9417 + }, + { + "start": 12078.56, + "end": 12079.46, + "probability": 0.9146 + }, + { + "start": 12081.06, + "end": 12081.7, + "probability": 0.9287 + }, + { + "start": 12082.72, + "end": 12083.48, + "probability": 0.9865 + }, + { + "start": 12085.02, + "end": 12086.98, + "probability": 0.9851 + }, + { + "start": 12088.12, + "end": 12088.84, + "probability": 0.9913 + }, + { + "start": 12089.36, + "end": 12090.28, + "probability": 0.9971 + }, + { + "start": 12091.16, + "end": 12091.54, + "probability": 0.9102 + }, + { + "start": 12093.36, + "end": 12094.24, + "probability": 0.9841 + }, + { + "start": 12095.42, + "end": 12095.88, + "probability": 0.991 + }, + { + "start": 12096.6, + "end": 12096.94, + "probability": 0.7712 + }, + { + "start": 12098.24, + "end": 12100.28, + "probability": 0.8179 + }, + { + "start": 12101.12, + "end": 12101.52, + "probability": 0.6608 + }, + { + "start": 12102.46, + "end": 12103.12, + "probability": 0.8072 + }, + { + "start": 12105.32, + "end": 12107.26, + "probability": 0.9778 + }, + { + "start": 12108.58, + "end": 12109.6, + "probability": 0.9812 + }, + { + "start": 12110.38, + "end": 12111.22, + "probability": 0.8969 + }, + { + "start": 12112.51, + "end": 12114.36, + "probability": 0.9878 + }, + { + "start": 12115.86, + "end": 12118.18, + "probability": 0.9873 + }, + { + "start": 12119.16, + "end": 12121.28, + "probability": 0.9902 + }, + { + "start": 12122.82, + "end": 12123.46, + "probability": 0.9692 + }, + { + "start": 12124.62, + "end": 12125.36, + "probability": 0.8963 + }, + { + "start": 12129.78, + "end": 12130.16, + "probability": 0.65 + }, + { + "start": 12131.52, + "end": 12132.42, + "probability": 0.7904 + }, + { + "start": 12133.86, + "end": 12134.56, + "probability": 0.6583 + }, + { + "start": 12135.12, + "end": 12135.82, + "probability": 0.9262 + }, + { + "start": 12136.56, + "end": 12138.74, + "probability": 0.8447 + }, + { + "start": 12139.59, + "end": 12141.12, + "probability": 0.8718 + }, + { + "start": 12143.52, + "end": 12147.92, + "probability": 0.9521 + }, + { + "start": 12148.54, + "end": 12149.04, + "probability": 0.9766 + }, + { + "start": 12149.96, + "end": 12150.68, + "probability": 0.7389 + }, + { + "start": 12151.36, + "end": 12153.34, + "probability": 0.921 + }, + { + "start": 12154.02, + "end": 12154.44, + "probability": 0.5557 + }, + { + "start": 12156.12, + "end": 12157.06, + "probability": 0.417 + }, + { + "start": 12158.96, + "end": 12159.78, + "probability": 0.8842 + }, + { + "start": 12160.88, + "end": 12161.74, + "probability": 0.7872 + }, + { + "start": 12162.64, + "end": 12163.08, + "probability": 0.9644 + }, + { + "start": 12164.8, + "end": 12165.78, + "probability": 0.9022 + }, + { + "start": 12166.42, + "end": 12166.88, + "probability": 0.8225 + }, + { + "start": 12168.04, + "end": 12168.5, + "probability": 0.9508 + }, + { + "start": 12171.78, + "end": 12172.58, + "probability": 0.4532 + }, + { + "start": 12173.9, + "end": 12174.28, + "probability": 0.6685 + }, + { + "start": 12176.38, + "end": 12177.26, + "probability": 0.7732 + }, + { + "start": 12178.4, + "end": 12178.7, + "probability": 0.9474 + }, + { + "start": 12180.14, + "end": 12181.3, + "probability": 0.7241 + }, + { + "start": 12182.66, + "end": 12184.56, + "probability": 0.3317 + }, + { + "start": 12185.06, + "end": 12187.24, + "probability": 0.8086 + }, + { + "start": 12187.48, + "end": 12189.28, + "probability": 0.832 + }, + { + "start": 12189.8, + "end": 12190.58, + "probability": 0.9926 + }, + { + "start": 12191.38, + "end": 12191.68, + "probability": 0.9845 + }, + { + "start": 12193.32, + "end": 12193.8, + "probability": 0.9836 + }, + { + "start": 12195.42, + "end": 12195.96, + "probability": 0.8433 + }, + { + "start": 12197.0, + "end": 12197.32, + "probability": 0.5237 + }, + { + "start": 12197.9, + "end": 12198.56, + "probability": 0.8391 + }, + { + "start": 12199.5, + "end": 12201.88, + "probability": 0.9652 + }, + { + "start": 12203.99, + "end": 12206.18, + "probability": 0.915 + }, + { + "start": 12207.48, + "end": 12208.14, + "probability": 0.9419 + }, + { + "start": 12208.68, + "end": 12209.48, + "probability": 0.8907 + }, + { + "start": 12211.24, + "end": 12213.3, + "probability": 0.978 + }, + { + "start": 12214.56, + "end": 12216.54, + "probability": 0.9704 + }, + { + "start": 12217.16, + "end": 12219.4, + "probability": 0.9771 + }, + { + "start": 12219.98, + "end": 12221.82, + "probability": 0.9657 + }, + { + "start": 12222.92, + "end": 12223.4, + "probability": 0.7718 + }, + { + "start": 12224.38, + "end": 12224.84, + "probability": 0.6727 + }, + { + "start": 12225.78, + "end": 12226.04, + "probability": 0.7357 + }, + { + "start": 12226.74, + "end": 12227.38, + "probability": 0.9481 + }, + { + "start": 12228.18, + "end": 12230.08, + "probability": 0.9414 + }, + { + "start": 12231.5, + "end": 12232.16, + "probability": 0.8244 + }, + { + "start": 12232.82, + "end": 12233.76, + "probability": 0.7448 + }, + { + "start": 12234.88, + "end": 12236.64, + "probability": 0.938 + }, + { + "start": 12237.38, + "end": 12239.16, + "probability": 0.9282 + }, + { + "start": 12240.14, + "end": 12240.56, + "probability": 0.9783 + }, + { + "start": 12241.7, + "end": 12242.54, + "probability": 0.8353 + }, + { + "start": 12244.12, + "end": 12246.5, + "probability": 0.991 + }, + { + "start": 12247.16, + "end": 12247.86, + "probability": 0.9846 + }, + { + "start": 12248.68, + "end": 12249.36, + "probability": 0.9711 + }, + { + "start": 12250.34, + "end": 12250.62, + "probability": 0.8013 + }, + { + "start": 12253.08, + "end": 12254.24, + "probability": 0.8297 + }, + { + "start": 12255.38, + "end": 12256.62, + "probability": 0.853 + }, + { + "start": 12257.56, + "end": 12258.68, + "probability": 0.9042 + }, + { + "start": 12259.92, + "end": 12260.66, + "probability": 0.9061 + }, + { + "start": 12261.54, + "end": 12262.44, + "probability": 0.7585 + }, + { + "start": 12263.94, + "end": 12264.8, + "probability": 0.9854 + }, + { + "start": 12265.7, + "end": 12266.7, + "probability": 0.895 + }, + { + "start": 12267.72, + "end": 12270.0, + "probability": 0.9497 + }, + { + "start": 12270.52, + "end": 12273.0, + "probability": 0.9493 + }, + { + "start": 12273.8, + "end": 12274.24, + "probability": 0.5786 + }, + { + "start": 12275.04, + "end": 12275.78, + "probability": 0.7015 + }, + { + "start": 12276.7, + "end": 12279.48, + "probability": 0.8846 + }, + { + "start": 12280.38, + "end": 12281.16, + "probability": 0.9255 + }, + { + "start": 12281.92, + "end": 12282.74, + "probability": 0.8933 + }, + { + "start": 12283.38, + "end": 12285.24, + "probability": 0.968 + }, + { + "start": 12285.9, + "end": 12286.54, + "probability": 0.7315 + }, + { + "start": 12287.74, + "end": 12288.48, + "probability": 0.9851 + }, + { + "start": 12289.7, + "end": 12290.44, + "probability": 0.9731 + }, + { + "start": 12291.13, + "end": 12293.12, + "probability": 0.9925 + }, + { + "start": 12294.7, + "end": 12295.6, + "probability": 0.9949 + }, + { + "start": 12298.2, + "end": 12299.22, + "probability": 0.9872 + }, + { + "start": 12300.92, + "end": 12303.4, + "probability": 0.8449 + }, + { + "start": 12304.74, + "end": 12305.14, + "probability": 0.7988 + }, + { + "start": 12306.52, + "end": 12307.26, + "probability": 0.6011 + }, + { + "start": 12308.18, + "end": 12310.58, + "probability": 0.8713 + }, + { + "start": 12311.46, + "end": 12311.86, + "probability": 0.8728 + }, + { + "start": 12312.9, + "end": 12313.8, + "probability": 0.8081 + }, + { + "start": 12316.02, + "end": 12318.1, + "probability": 0.8467 + }, + { + "start": 12319.68, + "end": 12320.12, + "probability": 0.9846 + }, + { + "start": 12321.58, + "end": 12322.6, + "probability": 0.9704 + }, + { + "start": 12324.32, + "end": 12325.8, + "probability": 0.9827 + }, + { + "start": 12326.48, + "end": 12327.16, + "probability": 0.6815 + }, + { + "start": 12329.8, + "end": 12331.46, + "probability": 0.918 + }, + { + "start": 12332.66, + "end": 12334.3, + "probability": 0.7215 + }, + { + "start": 12335.36, + "end": 12335.8, + "probability": 0.9342 + }, + { + "start": 12336.64, + "end": 12337.5, + "probability": 0.936 + }, + { + "start": 12339.74, + "end": 12340.44, + "probability": 0.8941 + }, + { + "start": 12341.22, + "end": 12341.92, + "probability": 0.9321 + }, + { + "start": 12342.94, + "end": 12344.1, + "probability": 0.8923 + }, + { + "start": 12344.7, + "end": 12345.64, + "probability": 0.925 + }, + { + "start": 12348.5, + "end": 12348.88, + "probability": 0.9971 + }, + { + "start": 12351.36, + "end": 12352.3, + "probability": 0.6913 + }, + { + "start": 12354.1, + "end": 12354.48, + "probability": 0.9656 + }, + { + "start": 12356.32, + "end": 12357.06, + "probability": 0.8827 + }, + { + "start": 12358.04, + "end": 12360.02, + "probability": 0.9739 + }, + { + "start": 12360.82, + "end": 12361.24, + "probability": 0.9709 + }, + { + "start": 12362.68, + "end": 12363.48, + "probability": 0.6651 + }, + { + "start": 12365.74, + "end": 12366.9, + "probability": 0.8899 + }, + { + "start": 12367.76, + "end": 12368.66, + "probability": 0.937 + }, + { + "start": 12369.82, + "end": 12370.28, + "probability": 0.9551 + }, + { + "start": 12371.5, + "end": 12372.48, + "probability": 0.9326 + }, + { + "start": 12373.62, + "end": 12374.4, + "probability": 0.9858 + }, + { + "start": 12375.18, + "end": 12376.3, + "probability": 0.9141 + }, + { + "start": 12381.24, + "end": 12382.08, + "probability": 0.7371 + }, + { + "start": 12382.96, + "end": 12384.38, + "probability": 0.8534 + }, + { + "start": 12385.64, + "end": 12387.66, + "probability": 0.958 + }, + { + "start": 12388.82, + "end": 12389.2, + "probability": 0.991 + }, + { + "start": 12390.62, + "end": 12391.36, + "probability": 0.8182 + }, + { + "start": 12392.06, + "end": 12394.36, + "probability": 0.9382 + }, + { + "start": 12395.46, + "end": 12397.58, + "probability": 0.9533 + }, + { + "start": 12399.38, + "end": 12399.84, + "probability": 0.9062 + }, + { + "start": 12401.44, + "end": 12402.28, + "probability": 0.878 + }, + { + "start": 12402.84, + "end": 12404.86, + "probability": 0.9899 + }, + { + "start": 12405.96, + "end": 12408.2, + "probability": 0.9912 + }, + { + "start": 12409.08, + "end": 12409.66, + "probability": 0.9316 + }, + { + "start": 12411.0, + "end": 12411.5, + "probability": 0.9951 + }, + { + "start": 12412.88, + "end": 12416.3, + "probability": 0.9951 + }, + { + "start": 12418.38, + "end": 12419.06, + "probability": 0.8982 + }, + { + "start": 12419.76, + "end": 12420.86, + "probability": 0.489 + }, + { + "start": 12422.98, + "end": 12423.96, + "probability": 0.8815 + }, + { + "start": 12424.48, + "end": 12425.5, + "probability": 0.7083 + }, + { + "start": 12426.2, + "end": 12427.06, + "probability": 0.9888 + }, + { + "start": 12427.76, + "end": 12431.3, + "probability": 0.9198 + }, + { + "start": 12432.16, + "end": 12432.58, + "probability": 0.9106 + }, + { + "start": 12433.96, + "end": 12434.92, + "probability": 0.8649 + }, + { + "start": 12442.88, + "end": 12443.26, + "probability": 0.8083 + }, + { + "start": 12445.84, + "end": 12446.94, + "probability": 0.8223 + }, + { + "start": 12448.26, + "end": 12450.22, + "probability": 0.8808 + }, + { + "start": 12451.26, + "end": 12451.96, + "probability": 0.9411 + }, + { + "start": 12452.78, + "end": 12453.56, + "probability": 0.925 + }, + { + "start": 12454.78, + "end": 12455.22, + "probability": 0.8821 + }, + { + "start": 12456.2, + "end": 12457.46, + "probability": 0.907 + }, + { + "start": 12459.14, + "end": 12459.6, + "probability": 0.9749 + }, + { + "start": 12461.06, + "end": 12461.84, + "probability": 0.83 + }, + { + "start": 12464.12, + "end": 12467.38, + "probability": 0.0264 + }, + { + "start": 12469.72, + "end": 12470.8, + "probability": 0.4915 + }, + { + "start": 12471.64, + "end": 12472.16, + "probability": 0.9539 + }, + { + "start": 12473.54, + "end": 12474.64, + "probability": 0.2563 + }, + { + "start": 12475.64, + "end": 12476.2, + "probability": 0.894 + }, + { + "start": 12478.18, + "end": 12479.1, + "probability": 0.8007 + }, + { + "start": 12483.42, + "end": 12484.24, + "probability": 0.8681 + }, + { + "start": 12484.98, + "end": 12485.88, + "probability": 0.8908 + }, + { + "start": 12486.8, + "end": 12487.34, + "probability": 0.973 + }, + { + "start": 12489.5, + "end": 12490.52, + "probability": 0.9052 + }, + { + "start": 12491.54, + "end": 12492.0, + "probability": 0.9824 + }, + { + "start": 12494.08, + "end": 12494.96, + "probability": 0.9902 + }, + { + "start": 12495.64, + "end": 12496.54, + "probability": 0.4966 + }, + { + "start": 12497.94, + "end": 12498.62, + "probability": 0.4427 + }, + { + "start": 12503.82, + "end": 12504.58, + "probability": 0.8211 + }, + { + "start": 12505.98, + "end": 12506.96, + "probability": 0.8154 + }, + { + "start": 12514.1, + "end": 12514.68, + "probability": 0.7402 + }, + { + "start": 12515.78, + "end": 12517.5, + "probability": 0.9759 + }, + { + "start": 12518.42, + "end": 12519.28, + "probability": 0.8951 + }, + { + "start": 12520.78, + "end": 12524.04, + "probability": 0.9783 + }, + { + "start": 12525.38, + "end": 12526.28, + "probability": 0.8989 + }, + { + "start": 12528.08, + "end": 12528.86, + "probability": 0.9659 + }, + { + "start": 12529.66, + "end": 12530.68, + "probability": 0.6312 + }, + { + "start": 12531.58, + "end": 12532.08, + "probability": 0.9878 + }, + { + "start": 12536.22, + "end": 12536.82, + "probability": 0.1583 + }, + { + "start": 12537.08, + "end": 12539.02, + "probability": 0.8071 + }, + { + "start": 12539.22, + "end": 12540.78, + "probability": 0.7358 + }, + { + "start": 12545.26, + "end": 12546.04, + "probability": 0.8394 + }, + { + "start": 12547.36, + "end": 12548.14, + "probability": 0.7306 + }, + { + "start": 12548.9, + "end": 12550.12, + "probability": 0.9699 + }, + { + "start": 12551.4, + "end": 12552.14, + "probability": 0.9045 + }, + { + "start": 12554.53, + "end": 12556.28, + "probability": 0.9341 + }, + { + "start": 12557.24, + "end": 12560.18, + "probability": 0.9515 + }, + { + "start": 12563.3, + "end": 12564.32, + "probability": 0.5776 + }, + { + "start": 12565.38, + "end": 12566.12, + "probability": 0.801 + }, + { + "start": 12567.56, + "end": 12568.1, + "probability": 0.7874 + }, + { + "start": 12568.9, + "end": 12569.38, + "probability": 0.9539 + }, + { + "start": 12571.08, + "end": 12573.1, + "probability": 0.728 + }, + { + "start": 12574.74, + "end": 12575.42, + "probability": 0.7541 + }, + { + "start": 12581.26, + "end": 12582.08, + "probability": 0.9108 + }, + { + "start": 12582.86, + "end": 12583.8, + "probability": 0.7941 + }, + { + "start": 12587.92, + "end": 12588.8, + "probability": 0.9536 + }, + { + "start": 12589.38, + "end": 12590.42, + "probability": 0.9107 + }, + { + "start": 12591.56, + "end": 12591.84, + "probability": 0.8035 + }, + { + "start": 12594.58, + "end": 12595.42, + "probability": 0.7404 + }, + { + "start": 12596.62, + "end": 12597.02, + "probability": 0.9884 + }, + { + "start": 12599.04, + "end": 12599.94, + "probability": 0.741 + }, + { + "start": 12601.78, + "end": 12602.18, + "probability": 0.736 + }, + { + "start": 12604.6, + "end": 12605.66, + "probability": 0.7338 + }, + { + "start": 12606.48, + "end": 12607.96, + "probability": 0.9517 + }, + { + "start": 12608.88, + "end": 12609.98, + "probability": 0.845 + }, + { + "start": 12612.56, + "end": 12614.4, + "probability": 0.9828 + }, + { + "start": 12615.8, + "end": 12617.32, + "probability": 0.9728 + }, + { + "start": 12621.1, + "end": 12621.42, + "probability": 0.7497 + }, + { + "start": 12624.74, + "end": 12625.8, + "probability": 0.4031 + }, + { + "start": 12626.74, + "end": 12627.16, + "probability": 0.6479 + }, + { + "start": 12629.16, + "end": 12630.02, + "probability": 0.7858 + }, + { + "start": 12630.82, + "end": 12631.28, + "probability": 0.9491 + }, + { + "start": 12634.38, + "end": 12635.1, + "probability": 0.773 + }, + { + "start": 12636.68, + "end": 12637.06, + "probability": 0.8518 + }, + { + "start": 12639.82, + "end": 12640.52, + "probability": 0.6717 + }, + { + "start": 12643.58, + "end": 12644.0, + "probability": 0.9811 + }, + { + "start": 12647.44, + "end": 12648.12, + "probability": 0.5049 + }, + { + "start": 12649.58, + "end": 12651.56, + "probability": 0.9854 + }, + { + "start": 12652.54, + "end": 12653.32, + "probability": 0.9363 + }, + { + "start": 12654.52, + "end": 12654.76, + "probability": 0.7803 + }, + { + "start": 12658.1, + "end": 12659.1, + "probability": 0.6936 + }, + { + "start": 12660.08, + "end": 12661.82, + "probability": 0.9803 + }, + { + "start": 12662.72, + "end": 12664.02, + "probability": 0.7507 + }, + { + "start": 12664.74, + "end": 12665.2, + "probability": 0.8345 + }, + { + "start": 12667.38, + "end": 12668.86, + "probability": 0.8673 + }, + { + "start": 12669.58, + "end": 12670.66, + "probability": 0.8996 + }, + { + "start": 12675.12, + "end": 12675.7, + "probability": 0.7578 + }, + { + "start": 12677.0, + "end": 12677.34, + "probability": 0.9871 + }, + { + "start": 12679.48, + "end": 12680.5, + "probability": 0.9121 + }, + { + "start": 12681.74, + "end": 12682.88, + "probability": 0.9961 + }, + { + "start": 12683.94, + "end": 12684.86, + "probability": 0.8774 + }, + { + "start": 12686.2, + "end": 12686.74, + "probability": 0.7303 + }, + { + "start": 12689.26, + "end": 12690.28, + "probability": 0.9506 + }, + { + "start": 12694.9, + "end": 12695.95, + "probability": 0.5954 + }, + { + "start": 12696.9, + "end": 12699.12, + "probability": 0.9648 + }, + { + "start": 12700.06, + "end": 12700.7, + "probability": 0.6637 + }, + { + "start": 12702.92, + "end": 12706.04, + "probability": 0.1068 + }, + { + "start": 12711.82, + "end": 12712.86, + "probability": 0.0004 + }, + { + "start": 12713.82, + "end": 12715.42, + "probability": 0.9619 + }, + { + "start": 12715.82, + "end": 12717.22, + "probability": 0.3778 + }, + { + "start": 12724.33, + "end": 12725.98, + "probability": 0.2677 + }, + { + "start": 12727.98, + "end": 12728.22, + "probability": 0.9373 + }, + { + "start": 12879.0, + "end": 12879.0, + "probability": 0.0 + }, + { + "start": 12879.0, + "end": 12879.0, + "probability": 0.0 + }, + { + "start": 12879.0, + "end": 12879.0, + "probability": 0.0 + }, + { + "start": 12879.0, + "end": 12879.0, + "probability": 0.0 + }, + { + "start": 12879.0, + "end": 12879.0, + "probability": 0.0 + }, + { + "start": 12879.0, + "end": 12879.0, + "probability": 0.0 + }, + { + "start": 12879.0, + "end": 12879.0, + "probability": 0.0 + }, + { + "start": 12879.0, + "end": 12879.0, + "probability": 0.0 + }, + { + "start": 12879.0, + "end": 12879.0, + "probability": 0.0 + }, + { + "start": 12879.0, + "end": 12879.0, + "probability": 0.0 + }, + { + "start": 12879.0, + "end": 12879.0, + "probability": 0.0 + }, + { + "start": 12879.0, + "end": 12879.0, + "probability": 0.0 + }, + { + "start": 12879.0, + "end": 12879.0, + "probability": 0.0 + }, + { + "start": 12879.0, + "end": 12879.0, + "probability": 0.0 + }, + { + "start": 12879.0, + "end": 12879.0, + "probability": 0.0 + }, + { + "start": 12882.92, + "end": 12883.0, + "probability": 0.0337 + }, + { + "start": 12887.1, + "end": 12888.16, + "probability": 0.0707 + }, + { + "start": 12915.18, + "end": 12918.12, + "probability": 0.0007 + }, + { + "start": 12921.0, + "end": 12924.52, + "probability": 0.0493 + }, + { + "start": 12924.52, + "end": 12928.14, + "probability": 0.0648 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.9, + "end": 13004.86, + "probability": 0.9175 + }, + { + "start": 13006.5, + "end": 13008.64, + "probability": 0.7368 + }, + { + "start": 13009.92, + "end": 13012.08, + "probability": 0.8577 + }, + { + "start": 13012.24, + "end": 13014.82, + "probability": 0.8598 + }, + { + "start": 13015.42, + "end": 13018.18, + "probability": 0.2957 + }, + { + "start": 13018.28, + "end": 13019.62, + "probability": 0.8511 + }, + { + "start": 13019.72, + "end": 13020.9, + "probability": 0.8776 + }, + { + "start": 13021.34, + "end": 13023.6, + "probability": 0.7095 + }, + { + "start": 13044.62, + "end": 13044.62, + "probability": 0.8892 + }, + { + "start": 13044.62, + "end": 13045.1, + "probability": 0.1085 + }, + { + "start": 13061.34, + "end": 13062.32, + "probability": 0.5656 + }, + { + "start": 13070.06, + "end": 13070.24, + "probability": 0.0476 + }, + { + "start": 13081.34, + "end": 13081.38, + "probability": 0.111 + }, + { + "start": 13081.38, + "end": 13082.02, + "probability": 0.256 + }, + { + "start": 13085.46, + "end": 13086.62, + "probability": 0.0691 + }, + { + "start": 13087.52, + "end": 13088.06, + "probability": 0.153 + }, + { + "start": 13088.79, + "end": 13089.25, + "probability": 0.1251 + }, + { + "start": 13090.44, + "end": 13092.44, + "probability": 0.0454 + }, + { + "start": 13095.28, + "end": 13095.28, + "probability": 0.0025 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.0, + "end": 13135.0, + "probability": 0.0 + }, + { + "start": 13135.12, + "end": 13136.96, + "probability": 0.2612 + }, + { + "start": 13137.9, + "end": 13139.54, + "probability": 0.9463 + }, + { + "start": 13139.64, + "end": 13141.52, + "probability": 0.9718 + }, + { + "start": 13142.18, + "end": 13143.86, + "probability": 0.7861 + }, + { + "start": 13145.62, + "end": 13146.52, + "probability": 0.9866 + }, + { + "start": 13146.84, + "end": 13149.62, + "probability": 0.989 + }, + { + "start": 13150.36, + "end": 13155.14, + "probability": 0.8423 + }, + { + "start": 13155.16, + "end": 13155.44, + "probability": 0.5263 + }, + { + "start": 13155.78, + "end": 13157.68, + "probability": 0.9867 + }, + { + "start": 13158.0, + "end": 13158.56, + "probability": 0.8683 + }, + { + "start": 13158.78, + "end": 13160.02, + "probability": 0.9281 + }, + { + "start": 13160.66, + "end": 13161.58, + "probability": 0.9616 + }, + { + "start": 13162.1, + "end": 13162.92, + "probability": 0.9729 + }, + { + "start": 13163.84, + "end": 13164.8, + "probability": 0.7065 + }, + { + "start": 13166.22, + "end": 13167.28, + "probability": 0.9258 + }, + { + "start": 13167.38, + "end": 13173.8, + "probability": 0.9772 + }, + { + "start": 13173.92, + "end": 13174.88, + "probability": 0.5265 + }, + { + "start": 13175.12, + "end": 13179.42, + "probability": 0.9957 + }, + { + "start": 13180.04, + "end": 13180.94, + "probability": 0.8913 + }, + { + "start": 13181.04, + "end": 13181.8, + "probability": 0.7855 + }, + { + "start": 13181.84, + "end": 13183.16, + "probability": 0.9416 + }, + { + "start": 13184.78, + "end": 13187.24, + "probability": 0.9644 + }, + { + "start": 13188.4, + "end": 13188.9, + "probability": 0.8965 + }, + { + "start": 13190.06, + "end": 13192.32, + "probability": 0.9274 + }, + { + "start": 13193.44, + "end": 13194.6, + "probability": 0.8774 + }, + { + "start": 13195.66, + "end": 13198.46, + "probability": 0.9884 + }, + { + "start": 13199.08, + "end": 13199.74, + "probability": 0.5586 + }, + { + "start": 13200.4, + "end": 13202.88, + "probability": 0.9706 + }, + { + "start": 13202.9, + "end": 13203.86, + "probability": 0.9873 + }, + { + "start": 13204.74, + "end": 13205.94, + "probability": 0.9539 + }, + { + "start": 13206.74, + "end": 13209.18, + "probability": 0.9916 + }, + { + "start": 13210.1, + "end": 13211.26, + "probability": 0.9842 + }, + { + "start": 13211.96, + "end": 13212.69, + "probability": 0.9101 + }, + { + "start": 13213.6, + "end": 13214.96, + "probability": 0.9106 + }, + { + "start": 13215.5, + "end": 13217.16, + "probability": 0.7888 + }, + { + "start": 13217.8, + "end": 13219.4, + "probability": 0.9828 + }, + { + "start": 13220.26, + "end": 13221.64, + "probability": 0.9087 + }, + { + "start": 13222.42, + "end": 13222.42, + "probability": 0.0327 + }, + { + "start": 13222.94, + "end": 13223.74, + "probability": 0.0564 + }, + { + "start": 13223.98, + "end": 13225.14, + "probability": 0.4475 + }, + { + "start": 13225.56, + "end": 13227.54, + "probability": 0.9899 + }, + { + "start": 13228.12, + "end": 13229.64, + "probability": 0.5463 + }, + { + "start": 13230.32, + "end": 13231.92, + "probability": 0.9317 + }, + { + "start": 13232.06, + "end": 13233.52, + "probability": 0.7338 + }, + { + "start": 13233.66, + "end": 13234.36, + "probability": 0.8057 + }, + { + "start": 13234.4, + "end": 13235.0, + "probability": 0.978 + }, + { + "start": 13235.36, + "end": 13236.34, + "probability": 0.7929 + }, + { + "start": 13237.02, + "end": 13240.4, + "probability": 0.978 + }, + { + "start": 13241.72, + "end": 13243.9, + "probability": 0.7472 + }, + { + "start": 13244.24, + "end": 13244.85, + "probability": 0.9161 + }, + { + "start": 13246.54, + "end": 13246.64, + "probability": 0.1368 + }, + { + "start": 13246.64, + "end": 13247.84, + "probability": 0.2036 + }, + { + "start": 13247.9, + "end": 13248.28, + "probability": 0.5251 + }, + { + "start": 13250.1, + "end": 13252.0, + "probability": 0.8033 + }, + { + "start": 13252.7, + "end": 13254.08, + "probability": 0.7057 + }, + { + "start": 13254.18, + "end": 13254.74, + "probability": 0.3409 + }, + { + "start": 13255.24, + "end": 13256.2, + "probability": 0.6764 + }, + { + "start": 13256.22, + "end": 13259.46, + "probability": 0.6475 + }, + { + "start": 13259.46, + "end": 13260.6, + "probability": 0.3926 + }, + { + "start": 13260.62, + "end": 13261.88, + "probability": 0.0141 + }, + { + "start": 13262.14, + "end": 13263.4, + "probability": 0.8 + }, + { + "start": 13263.5, + "end": 13264.58, + "probability": 0.7173 + }, + { + "start": 13265.36, + "end": 13270.14, + "probability": 0.9878 + }, + { + "start": 13270.96, + "end": 13273.05, + "probability": 0.8823 + }, + { + "start": 13273.35, + "end": 13275.53, + "probability": 0.953 + }, + { + "start": 13275.77, + "end": 13276.31, + "probability": 0.7938 + }, + { + "start": 13277.07, + "end": 13278.43, + "probability": 0.7889 + }, + { + "start": 13279.47, + "end": 13280.33, + "probability": 0.8758 + }, + { + "start": 13280.91, + "end": 13282.29, + "probability": 0.5018 + }, + { + "start": 13283.01, + "end": 13288.17, + "probability": 0.9971 + }, + { + "start": 13288.27, + "end": 13289.51, + "probability": 0.9218 + }, + { + "start": 13291.81, + "end": 13293.05, + "probability": 0.7643 + }, + { + "start": 13293.19, + "end": 13294.15, + "probability": 0.9733 + }, + { + "start": 13294.15, + "end": 13294.35, + "probability": 0.3135 + }, + { + "start": 13294.35, + "end": 13294.35, + "probability": 0.4799 + }, + { + "start": 13294.35, + "end": 13295.25, + "probability": 0.4246 + }, + { + "start": 13295.45, + "end": 13296.38, + "probability": 0.9632 + }, + { + "start": 13296.77, + "end": 13298.91, + "probability": 0.9932 + }, + { + "start": 13299.85, + "end": 13299.95, + "probability": 0.0367 + }, + { + "start": 13300.07, + "end": 13302.19, + "probability": 0.9178 + }, + { + "start": 13304.81, + "end": 13304.81, + "probability": 0.4035 + }, + { + "start": 13304.81, + "end": 13304.81, + "probability": 0.0725 + }, + { + "start": 13304.81, + "end": 13306.35, + "probability": 0.9399 + }, + { + "start": 13307.57, + "end": 13309.17, + "probability": 0.7601 + }, + { + "start": 13310.05, + "end": 13311.21, + "probability": 0.9013 + }, + { + "start": 13312.05, + "end": 13315.49, + "probability": 0.6455 + }, + { + "start": 13316.37, + "end": 13317.5, + "probability": 0.2686 + }, + { + "start": 13318.63, + "end": 13318.91, + "probability": 0.4966 + }, + { + "start": 13320.59, + "end": 13320.91, + "probability": 0.0118 + }, + { + "start": 13320.91, + "end": 13324.21, + "probability": 0.3368 + }, + { + "start": 13324.49, + "end": 13325.27, + "probability": 0.2167 + }, + { + "start": 13325.67, + "end": 13327.39, + "probability": 0.3907 + }, + { + "start": 13327.63, + "end": 13328.33, + "probability": 0.1975 + }, + { + "start": 13328.73, + "end": 13328.73, + "probability": 0.0039 + }, + { + "start": 13332.93, + "end": 13337.75, + "probability": 0.5808 + }, + { + "start": 13339.69, + "end": 13340.17, + "probability": 0.0174 + }, + { + "start": 13341.67, + "end": 13347.45, + "probability": 0.1808 + }, + { + "start": 13348.39, + "end": 13348.51, + "probability": 0.3779 + }, + { + "start": 13348.51, + "end": 13349.13, + "probability": 0.152 + }, + { + "start": 13352.31, + "end": 13358.57, + "probability": 0.1796 + }, + { + "start": 13358.59, + "end": 13358.97, + "probability": 0.5925 + }, + { + "start": 13365.93, + "end": 13367.39, + "probability": 0.2404 + }, + { + "start": 13367.47, + "end": 13368.19, + "probability": 0.0562 + }, + { + "start": 13368.19, + "end": 13371.33, + "probability": 0.0998 + }, + { + "start": 13371.51, + "end": 13371.51, + "probability": 0.2199 + }, + { + "start": 13371.61, + "end": 13372.17, + "probability": 0.0463 + }, + { + "start": 13373.27, + "end": 13376.95, + "probability": 0.0726 + }, + { + "start": 13378.79, + "end": 13379.17, + "probability": 0.1657 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.0, + "end": 13398.0, + "probability": 0.0 + }, + { + "start": 13398.58, + "end": 13399.1, + "probability": 0.3489 + }, + { + "start": 13399.22, + "end": 13400.51, + "probability": 0.6053 + }, + { + "start": 13401.42, + "end": 13402.76, + "probability": 0.334 + }, + { + "start": 13402.76, + "end": 13404.26, + "probability": 0.529 + }, + { + "start": 13404.5, + "end": 13406.24, + "probability": 0.6041 + }, + { + "start": 13406.6, + "end": 13408.42, + "probability": 0.1015 + }, + { + "start": 13410.44, + "end": 13412.68, + "probability": 0.9124 + }, + { + "start": 13412.98, + "end": 13416.3, + "probability": 0.7169 + }, + { + "start": 13416.9, + "end": 13418.78, + "probability": 0.7234 + }, + { + "start": 13419.14, + "end": 13419.34, + "probability": 0.0653 + }, + { + "start": 13419.34, + "end": 13419.34, + "probability": 0.0702 + }, + { + "start": 13419.34, + "end": 13419.68, + "probability": 0.1306 + }, + { + "start": 13419.68, + "end": 13419.92, + "probability": 0.0878 + }, + { + "start": 13419.92, + "end": 13420.68, + "probability": 0.0741 + }, + { + "start": 13420.92, + "end": 13421.34, + "probability": 0.3909 + }, + { + "start": 13421.34, + "end": 13422.08, + "probability": 0.5307 + }, + { + "start": 13422.18, + "end": 13425.12, + "probability": 0.8577 + }, + { + "start": 13425.4, + "end": 13428.64, + "probability": 0.7382 + }, + { + "start": 13428.7, + "end": 13430.8, + "probability": 0.9004 + }, + { + "start": 13431.0, + "end": 13433.15, + "probability": 0.7407 + }, + { + "start": 13433.68, + "end": 13433.78, + "probability": 0.3418 + }, + { + "start": 13433.78, + "end": 13434.84, + "probability": 0.0486 + }, + { + "start": 13435.8, + "end": 13437.8, + "probability": 0.9665 + }, + { + "start": 13438.14, + "end": 13438.28, + "probability": 0.0478 + }, + { + "start": 13438.6, + "end": 13439.5, + "probability": 0.3978 + }, + { + "start": 13439.68, + "end": 13443.16, + "probability": 0.867 + }, + { + "start": 13443.18, + "end": 13444.63, + "probability": 0.9827 + }, + { + "start": 13445.1, + "end": 13445.86, + "probability": 0.9468 + }, + { + "start": 13446.76, + "end": 13448.1, + "probability": 0.7188 + }, + { + "start": 13449.18, + "end": 13450.34, + "probability": 0.7431 + }, + { + "start": 13450.48, + "end": 13452.09, + "probability": 0.965 + }, + { + "start": 13452.88, + "end": 13454.04, + "probability": 0.9127 + }, + { + "start": 13454.64, + "end": 13456.0, + "probability": 0.9946 + }, + { + "start": 13456.5, + "end": 13458.17, + "probability": 0.885 + }, + { + "start": 13458.32, + "end": 13459.94, + "probability": 0.98 + }, + { + "start": 13460.46, + "end": 13461.76, + "probability": 0.8701 + }, + { + "start": 13461.76, + "end": 13464.12, + "probability": 0.9724 + }, + { + "start": 13464.62, + "end": 13465.74, + "probability": 0.15 + }, + { + "start": 13466.86, + "end": 13467.02, + "probability": 0.2761 + }, + { + "start": 13468.08, + "end": 13468.26, + "probability": 0.2547 + }, + { + "start": 13468.26, + "end": 13469.9, + "probability": 0.1024 + }, + { + "start": 13469.9, + "end": 13469.96, + "probability": 0.3181 + }, + { + "start": 13470.04, + "end": 13470.98, + "probability": 0.4948 + }, + { + "start": 13471.08, + "end": 13472.77, + "probability": 0.5503 + }, + { + "start": 13473.58, + "end": 13475.3, + "probability": 0.1729 + }, + { + "start": 13475.3, + "end": 13476.13, + "probability": 0.1372 + }, + { + "start": 13476.4, + "end": 13477.54, + "probability": 0.7729 + }, + { + "start": 13478.15, + "end": 13481.32, + "probability": 0.7598 + }, + { + "start": 13481.42, + "end": 13483.32, + "probability": 0.7271 + }, + { + "start": 13483.38, + "end": 13484.84, + "probability": 0.2899 + }, + { + "start": 13485.3, + "end": 13489.5, + "probability": 0.7664 + }, + { + "start": 13489.66, + "end": 13490.22, + "probability": 0.4923 + }, + { + "start": 13490.42, + "end": 13490.9, + "probability": 0.9675 + }, + { + "start": 13491.06, + "end": 13491.68, + "probability": 0.8959 + }, + { + "start": 13491.74, + "end": 13492.38, + "probability": 0.8514 + }, + { + "start": 13492.46, + "end": 13493.81, + "probability": 0.9873 + }, + { + "start": 13494.52, + "end": 13496.52, + "probability": 0.9216 + }, + { + "start": 13497.22, + "end": 13500.32, + "probability": 0.6342 + }, + { + "start": 13501.16, + "end": 13501.36, + "probability": 0.7449 + }, + { + "start": 13502.96, + "end": 13506.76, + "probability": 0.8961 + }, + { + "start": 13506.86, + "end": 13507.48, + "probability": 0.8766 + }, + { + "start": 13507.66, + "end": 13508.09, + "probability": 0.6875 + }, + { + "start": 13508.28, + "end": 13509.14, + "probability": 0.1903 + }, + { + "start": 13509.14, + "end": 13510.2, + "probability": 0.1628 + }, + { + "start": 13510.9, + "end": 13511.12, + "probability": 0.0656 + }, + { + "start": 13511.86, + "end": 13512.22, + "probability": 0.1006 + }, + { + "start": 13512.65, + "end": 13513.56, + "probability": 0.1104 + }, + { + "start": 13513.86, + "end": 13515.24, + "probability": 0.2472 + }, + { + "start": 13516.32, + "end": 13518.1, + "probability": 0.1745 + }, + { + "start": 13518.1, + "end": 13518.24, + "probability": 0.1485 + }, + { + "start": 13518.5, + "end": 13520.24, + "probability": 0.3996 + }, + { + "start": 13520.38, + "end": 13522.5, + "probability": 0.2041 + }, + { + "start": 13522.58, + "end": 13522.86, + "probability": 0.1371 + }, + { + "start": 13522.86, + "end": 13522.86, + "probability": 0.0621 + }, + { + "start": 13522.86, + "end": 13522.86, + "probability": 0.1372 + }, + { + "start": 13522.86, + "end": 13522.86, + "probability": 0.0796 + }, + { + "start": 13522.86, + "end": 13522.86, + "probability": 0.075 + }, + { + "start": 13523.0, + "end": 13523.0, + "probability": 0.6177 + }, + { + "start": 13524.26, + "end": 13529.76, + "probability": 0.9339 + }, + { + "start": 13530.4, + "end": 13533.28, + "probability": 0.9233 + }, + { + "start": 13534.3, + "end": 13535.12, + "probability": 0.6086 + }, + { + "start": 13537.56, + "end": 13538.66, + "probability": 0.8622 + }, + { + "start": 13540.3, + "end": 13541.88, + "probability": 0.7861 + }, + { + "start": 13542.4, + "end": 13543.76, + "probability": 0.9474 + }, + { + "start": 13545.12, + "end": 13546.3, + "probability": 0.7425 + }, + { + "start": 13546.92, + "end": 13549.78, + "probability": 0.7952 + }, + { + "start": 13550.7, + "end": 13552.5, + "probability": 0.9148 + }, + { + "start": 13552.64, + "end": 13556.14, + "probability": 0.9351 + }, + { + "start": 13556.32, + "end": 13557.4, + "probability": 0.7469 + }, + { + "start": 13559.0, + "end": 13560.3, + "probability": 0.8862 + }, + { + "start": 13561.18, + "end": 13563.18, + "probability": 0.8842 + }, + { + "start": 13564.34, + "end": 13566.46, + "probability": 0.9561 + }, + { + "start": 13567.92, + "end": 13568.1, + "probability": 0.6144 + }, + { + "start": 13568.22, + "end": 13569.7, + "probability": 0.9392 + }, + { + "start": 13570.28, + "end": 13574.28, + "probability": 0.9789 + }, + { + "start": 13574.78, + "end": 13579.02, + "probability": 0.9292 + }, + { + "start": 13579.42, + "end": 13581.13, + "probability": 0.5823 + }, + { + "start": 13582.68, + "end": 13584.88, + "probability": 0.8715 + }, + { + "start": 13585.44, + "end": 13586.82, + "probability": 0.0679 + }, + { + "start": 13587.88, + "end": 13588.64, + "probability": 0.9252 + }, + { + "start": 13589.3, + "end": 13590.48, + "probability": 0.9229 + }, + { + "start": 13591.68, + "end": 13593.88, + "probability": 0.7904 + }, + { + "start": 13594.78, + "end": 13596.22, + "probability": 0.4455 + }, + { + "start": 13596.52, + "end": 13598.62, + "probability": 0.5427 + }, + { + "start": 13598.72, + "end": 13601.7, + "probability": 0.8657 + }, + { + "start": 13601.76, + "end": 13603.0, + "probability": 0.7706 + }, + { + "start": 13603.1, + "end": 13603.69, + "probability": 0.7208 + }, + { + "start": 13604.58, + "end": 13606.28, + "probability": 0.9374 + }, + { + "start": 13606.9, + "end": 13610.38, + "probability": 0.4768 + }, + { + "start": 13611.32, + "end": 13614.38, + "probability": 0.9966 + }, + { + "start": 13614.82, + "end": 13616.96, + "probability": 0.7563 + }, + { + "start": 13616.96, + "end": 13619.42, + "probability": 0.5532 + }, + { + "start": 13619.5, + "end": 13620.1, + "probability": 0.3677 + }, + { + "start": 13620.4, + "end": 13623.28, + "probability": 0.3781 + }, + { + "start": 13623.36, + "end": 13623.8, + "probability": 0.5405 + }, + { + "start": 13624.48, + "end": 13624.94, + "probability": 0.856 + }, + { + "start": 13625.16, + "end": 13625.76, + "probability": 0.1927 + }, + { + "start": 13625.8, + "end": 13628.74, + "probability": 0.1231 + }, + { + "start": 13629.51, + "end": 13630.94, + "probability": 0.1575 + }, + { + "start": 13631.08, + "end": 13634.8, + "probability": 0.2263 + }, + { + "start": 13635.34, + "end": 13636.06, + "probability": 0.5724 + }, + { + "start": 13636.42, + "end": 13637.73, + "probability": 0.1286 + }, + { + "start": 13638.62, + "end": 13641.66, + "probability": 0.1844 + }, + { + "start": 13642.06, + "end": 13642.13, + "probability": 0.279 + }, + { + "start": 13642.62, + "end": 13645.14, + "probability": 0.5601 + }, + { + "start": 13645.36, + "end": 13647.76, + "probability": 0.8776 + }, + { + "start": 13647.84, + "end": 13648.8, + "probability": 0.818 + }, + { + "start": 13649.92, + "end": 13651.09, + "probability": 0.9854 + }, + { + "start": 13651.9, + "end": 13653.98, + "probability": 0.2133 + }, + { + "start": 13654.16, + "end": 13654.5, + "probability": 0.503 + }, + { + "start": 13654.96, + "end": 13656.1, + "probability": 0.7996 + }, + { + "start": 13657.04, + "end": 13658.27, + "probability": 0.7148 + }, + { + "start": 13658.36, + "end": 13659.54, + "probability": 0.0341 + }, + { + "start": 13660.14, + "end": 13663.34, + "probability": 0.0685 + }, + { + "start": 13674.78, + "end": 13675.32, + "probability": 0.0287 + }, + { + "start": 13675.32, + "end": 13677.93, + "probability": 0.1004 + }, + { + "start": 13678.36, + "end": 13679.52, + "probability": 0.0151 + }, + { + "start": 13679.64, + "end": 13680.02, + "probability": 0.1281 + }, + { + "start": 13680.02, + "end": 13681.4, + "probability": 0.008 + }, + { + "start": 13681.84, + "end": 13682.26, + "probability": 0.0081 + }, + { + "start": 13683.72, + "end": 13687.78, + "probability": 0.0331 + }, + { + "start": 13687.94, + "end": 13689.55, + "probability": 0.4003 + }, + { + "start": 13690.58, + "end": 13691.34, + "probability": 0.1939 + }, + { + "start": 13691.42, + "end": 13693.24, + "probability": 0.1048 + }, + { + "start": 13693.52, + "end": 13694.4, + "probability": 0.3405 + }, + { + "start": 13696.21, + "end": 13697.92, + "probability": 0.4114 + }, + { + "start": 13698.44, + "end": 13698.74, + "probability": 0.1689 + }, + { + "start": 13699.06, + "end": 13699.2, + "probability": 0.2016 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13811.0, + "end": 13811.0, + "probability": 0.0 + }, + { + "start": 13817.06, + "end": 13819.56, + "probability": 0.9636 + }, + { + "start": 13820.66, + "end": 13822.76, + "probability": 0.7577 + }, + { + "start": 13824.16, + "end": 13827.06, + "probability": 0.9183 + }, + { + "start": 13828.08, + "end": 13828.82, + "probability": 0.6359 + }, + { + "start": 13829.06, + "end": 13830.94, + "probability": 0.7559 + }, + { + "start": 13831.04, + "end": 13833.4, + "probability": 0.9041 + }, + { + "start": 13834.5, + "end": 13838.86, + "probability": 0.9981 + }, + { + "start": 13839.64, + "end": 13844.88, + "probability": 0.9915 + }, + { + "start": 13845.84, + "end": 13848.12, + "probability": 0.9993 + }, + { + "start": 13848.82, + "end": 13850.2, + "probability": 0.9906 + }, + { + "start": 13851.0, + "end": 13853.9, + "probability": 0.9381 + }, + { + "start": 13854.48, + "end": 13856.9, + "probability": 0.9953 + }, + { + "start": 13857.92, + "end": 13858.74, + "probability": 0.8931 + }, + { + "start": 13859.26, + "end": 13860.04, + "probability": 0.9487 + }, + { + "start": 13860.56, + "end": 13861.18, + "probability": 0.5736 + }, + { + "start": 13861.8, + "end": 13866.92, + "probability": 0.9771 + }, + { + "start": 13867.36, + "end": 13868.22, + "probability": 0.7725 + }, + { + "start": 13868.7, + "end": 13871.48, + "probability": 0.722 + }, + { + "start": 13872.66, + "end": 13878.32, + "probability": 0.9963 + }, + { + "start": 13878.86, + "end": 13882.4, + "probability": 0.8128 + }, + { + "start": 13883.98, + "end": 13888.6, + "probability": 0.9964 + }, + { + "start": 13888.6, + "end": 13894.08, + "probability": 0.9995 + }, + { + "start": 13894.62, + "end": 13896.64, + "probability": 0.9202 + }, + { + "start": 13897.28, + "end": 13898.58, + "probability": 0.6156 + }, + { + "start": 13898.68, + "end": 13900.08, + "probability": 0.9958 + }, + { + "start": 13901.08, + "end": 13901.88, + "probability": 0.8339 + }, + { + "start": 13902.9, + "end": 13906.36, + "probability": 0.9963 + }, + { + "start": 13907.7, + "end": 13909.32, + "probability": 0.6258 + }, + { + "start": 13910.5, + "end": 13914.48, + "probability": 0.8608 + }, + { + "start": 13915.14, + "end": 13916.88, + "probability": 0.9853 + }, + { + "start": 13917.6, + "end": 13921.8, + "probability": 0.8745 + }, + { + "start": 13921.8, + "end": 13925.12, + "probability": 0.9943 + }, + { + "start": 13925.96, + "end": 13931.22, + "probability": 0.967 + }, + { + "start": 13931.38, + "end": 13934.6, + "probability": 0.6148 + }, + { + "start": 13935.48, + "end": 13935.58, + "probability": 0.1757 + }, + { + "start": 13935.58, + "end": 13940.0, + "probability": 0.8735 + }, + { + "start": 13940.24, + "end": 13940.92, + "probability": 0.8048 + }, + { + "start": 13941.52, + "end": 13943.04, + "probability": 0.925 + }, + { + "start": 13944.26, + "end": 13949.82, + "probability": 0.9822 + }, + { + "start": 13950.62, + "end": 13953.6, + "probability": 0.7272 + }, + { + "start": 13954.2, + "end": 13956.16, + "probability": 0.6714 + }, + { + "start": 13957.08, + "end": 13960.04, + "probability": 0.9167 + }, + { + "start": 13961.02, + "end": 13965.2, + "probability": 0.9739 + }, + { + "start": 13966.1, + "end": 13970.28, + "probability": 0.9349 + }, + { + "start": 13970.8, + "end": 13974.8, + "probability": 0.9704 + }, + { + "start": 13975.36, + "end": 13977.74, + "probability": 0.9962 + }, + { + "start": 13978.34, + "end": 13979.12, + "probability": 0.9961 + }, + { + "start": 13979.72, + "end": 13986.36, + "probability": 0.96 + }, + { + "start": 13986.84, + "end": 13988.64, + "probability": 0.738 + }, + { + "start": 13988.88, + "end": 13991.78, + "probability": 0.9186 + }, + { + "start": 13992.58, + "end": 13995.08, + "probability": 0.9968 + }, + { + "start": 13995.62, + "end": 13996.8, + "probability": 0.7054 + }, + { + "start": 13998.16, + "end": 13998.94, + "probability": 0.9309 + }, + { + "start": 13999.08, + "end": 14002.8, + "probability": 0.9931 + }, + { + "start": 14003.56, + "end": 14004.74, + "probability": 0.6758 + }, + { + "start": 14005.5, + "end": 14006.2, + "probability": 0.6325 + }, + { + "start": 14006.34, + "end": 14008.52, + "probability": 0.9648 + }, + { + "start": 14009.0, + "end": 14010.38, + "probability": 0.7515 + }, + { + "start": 14010.56, + "end": 14011.82, + "probability": 0.9755 + }, + { + "start": 14014.24, + "end": 14016.42, + "probability": 0.9911 + }, + { + "start": 14016.52, + "end": 14016.7, + "probability": 0.1237 + }, + { + "start": 14016.7, + "end": 14016.7, + "probability": 0.1466 + }, + { + "start": 14016.7, + "end": 14017.28, + "probability": 0.2749 + }, + { + "start": 14017.28, + "end": 14018.51, + "probability": 0.5519 + }, + { + "start": 14018.8, + "end": 14020.94, + "probability": 0.8083 + }, + { + "start": 14021.08, + "end": 14022.18, + "probability": 0.7223 + }, + { + "start": 14022.3, + "end": 14022.66, + "probability": 0.4351 + }, + { + "start": 14022.66, + "end": 14023.96, + "probability": 0.6881 + }, + { + "start": 14024.02, + "end": 14027.92, + "probability": 0.6449 + }, + { + "start": 14028.04, + "end": 14031.54, + "probability": 0.57 + }, + { + "start": 14032.02, + "end": 14033.02, + "probability": 0.729 + }, + { + "start": 14033.24, + "end": 14036.82, + "probability": 0.7162 + }, + { + "start": 14037.34, + "end": 14037.62, + "probability": 0.6197 + }, + { + "start": 14038.44, + "end": 14038.78, + "probability": 0.6688 + }, + { + "start": 14038.98, + "end": 14040.28, + "probability": 0.9966 + }, + { + "start": 14041.32, + "end": 14042.06, + "probability": 0.9282 + }, + { + "start": 14042.86, + "end": 14043.92, + "probability": 0.6751 + }, + { + "start": 14044.44, + "end": 14046.16, + "probability": 0.0146 + }, + { + "start": 14048.44, + "end": 14048.8, + "probability": 0.0889 + }, + { + "start": 14048.8, + "end": 14048.8, + "probability": 0.1145 + }, + { + "start": 14048.8, + "end": 14048.8, + "probability": 0.0033 + }, + { + "start": 14048.8, + "end": 14049.04, + "probability": 0.218 + }, + { + "start": 14049.4, + "end": 14050.04, + "probability": 0.5318 + }, + { + "start": 14050.18, + "end": 14051.3, + "probability": 0.667 + }, + { + "start": 14052.82, + "end": 14057.72, + "probability": 0.9291 + }, + { + "start": 14058.28, + "end": 14059.64, + "probability": 0.4302 + }, + { + "start": 14060.04, + "end": 14061.46, + "probability": 0.3317 + }, + { + "start": 14061.9, + "end": 14063.86, + "probability": 0.9599 + }, + { + "start": 14064.04, + "end": 14065.98, + "probability": 0.7043 + }, + { + "start": 14066.52, + "end": 14069.94, + "probability": 0.9592 + }, + { + "start": 14070.38, + "end": 14070.9, + "probability": 0.8969 + }, + { + "start": 14071.66, + "end": 14073.36, + "probability": 0.8653 + }, + { + "start": 14074.08, + "end": 14076.7, + "probability": 0.8473 + }, + { + "start": 14077.66, + "end": 14080.06, + "probability": 0.9883 + }, + { + "start": 14080.5, + "end": 14083.26, + "probability": 0.9688 + }, + { + "start": 14083.78, + "end": 14084.74, + "probability": 0.7181 + }, + { + "start": 14084.98, + "end": 14085.24, + "probability": 0.8596 + }, + { + "start": 14085.3, + "end": 14087.6, + "probability": 0.6975 + }, + { + "start": 14087.8, + "end": 14091.52, + "probability": 0.813 + }, + { + "start": 14092.08, + "end": 14093.68, + "probability": 0.9395 + }, + { + "start": 14093.98, + "end": 14094.68, + "probability": 0.8097 + }, + { + "start": 14095.68, + "end": 14097.16, + "probability": 0.9952 + }, + { + "start": 14097.94, + "end": 14099.98, + "probability": 0.9958 + }, + { + "start": 14100.18, + "end": 14100.96, + "probability": 0.6365 + }, + { + "start": 14101.8, + "end": 14104.66, + "probability": 0.9927 + }, + { + "start": 14104.66, + "end": 14107.86, + "probability": 0.9988 + }, + { + "start": 14108.52, + "end": 14109.86, + "probability": 0.9938 + }, + { + "start": 14110.2, + "end": 14111.66, + "probability": 0.9634 + }, + { + "start": 14111.78, + "end": 14115.3, + "probability": 0.8845 + }, + { + "start": 14115.94, + "end": 14117.39, + "probability": 0.994 + }, + { + "start": 14117.9, + "end": 14119.4, + "probability": 0.8953 + }, + { + "start": 14119.88, + "end": 14126.08, + "probability": 0.978 + }, + { + "start": 14127.44, + "end": 14127.5, + "probability": 0.0001 + }, + { + "start": 14129.2, + "end": 14129.2, + "probability": 0.1807 + }, + { + "start": 14129.2, + "end": 14130.14, + "probability": 0.2012 + }, + { + "start": 14130.14, + "end": 14133.7, + "probability": 0.9745 + }, + { + "start": 14133.8, + "end": 14134.77, + "probability": 0.9748 + }, + { + "start": 14135.52, + "end": 14140.42, + "probability": 0.994 + }, + { + "start": 14140.52, + "end": 14143.65, + "probability": 0.9993 + }, + { + "start": 14144.08, + "end": 14148.32, + "probability": 0.9946 + }, + { + "start": 14148.9, + "end": 14149.39, + "probability": 0.9652 + }, + { + "start": 14150.24, + "end": 14151.5, + "probability": 0.9187 + }, + { + "start": 14151.86, + "end": 14155.72, + "probability": 0.8441 + }, + { + "start": 14156.0, + "end": 14156.96, + "probability": 0.7161 + }, + { + "start": 14157.32, + "end": 14157.82, + "probability": 0.5543 + }, + { + "start": 14158.2, + "end": 14158.38, + "probability": 0.171 + }, + { + "start": 14158.38, + "end": 14160.08, + "probability": 0.0333 + }, + { + "start": 14161.39, + "end": 14162.16, + "probability": 0.2327 + }, + { + "start": 14163.22, + "end": 14164.78, + "probability": 0.3511 + }, + { + "start": 14164.78, + "end": 14166.94, + "probability": 0.032 + }, + { + "start": 14170.58, + "end": 14173.23, + "probability": 0.6451 + }, + { + "start": 14174.14, + "end": 14176.16, + "probability": 0.0185 + }, + { + "start": 14176.36, + "end": 14178.72, + "probability": 0.1661 + }, + { + "start": 14179.32, + "end": 14180.47, + "probability": 0.0899 + }, + { + "start": 14182.59, + "end": 14186.84, + "probability": 0.068 + }, + { + "start": 14187.12, + "end": 14187.44, + "probability": 0.0154 + }, + { + "start": 14189.02, + "end": 14189.22, + "probability": 0.0931 + }, + { + "start": 14189.24, + "end": 14189.8, + "probability": 0.0527 + }, + { + "start": 14189.84, + "end": 14190.36, + "probability": 0.0511 + }, + { + "start": 14190.38, + "end": 14190.62, + "probability": 0.0214 + }, + { + "start": 14191.18, + "end": 14191.88, + "probability": 0.0681 + }, + { + "start": 14191.88, + "end": 14191.88, + "probability": 0.0675 + }, + { + "start": 14191.88, + "end": 14191.88, + "probability": 0.1372 + }, + { + "start": 14191.88, + "end": 14191.88, + "probability": 0.0817 + }, + { + "start": 14191.88, + "end": 14193.78, + "probability": 0.9047 + }, + { + "start": 14193.78, + "end": 14197.52, + "probability": 0.8213 + }, + { + "start": 14197.98, + "end": 14198.08, + "probability": 0.2709 + }, + { + "start": 14198.2, + "end": 14199.3, + "probability": 0.7008 + }, + { + "start": 14199.7, + "end": 14203.3, + "probability": 0.9375 + }, + { + "start": 14203.76, + "end": 14208.32, + "probability": 0.9911 + }, + { + "start": 14208.32, + "end": 14211.52, + "probability": 0.6365 + }, + { + "start": 14211.56, + "end": 14211.96, + "probability": 0.8696 + }, + { + "start": 14212.64, + "end": 14215.2, + "probability": 0.8889 + }, + { + "start": 14215.54, + "end": 14216.34, + "probability": 0.0001 + }, + { + "start": 14216.34, + "end": 14216.66, + "probability": 0.3087 + }, + { + "start": 14216.9, + "end": 14217.08, + "probability": 0.1356 + }, + { + "start": 14217.18, + "end": 14218.12, + "probability": 0.0392 + }, + { + "start": 14218.26, + "end": 14218.46, + "probability": 0.2121 + }, + { + "start": 14218.46, + "end": 14219.7, + "probability": 0.3322 + }, + { + "start": 14222.55, + "end": 14222.9, + "probability": 0.0455 + }, + { + "start": 14223.3, + "end": 14224.98, + "probability": 0.1394 + }, + { + "start": 14225.82, + "end": 14226.4, + "probability": 0.0946 + }, + { + "start": 14226.46, + "end": 14226.6, + "probability": 0.0212 + }, + { + "start": 14226.6, + "end": 14226.6, + "probability": 0.0609 + }, + { + "start": 14226.6, + "end": 14227.44, + "probability": 0.8033 + }, + { + "start": 14229.64, + "end": 14230.2, + "probability": 0.3758 + }, + { + "start": 14230.5, + "end": 14232.74, + "probability": 0.8232 + }, + { + "start": 14232.78, + "end": 14232.78, + "probability": 0.8551 + }, + { + "start": 14232.86, + "end": 14234.14, + "probability": 0.6166 + }, + { + "start": 14234.14, + "end": 14236.56, + "probability": 0.1222 + }, + { + "start": 14236.56, + "end": 14236.96, + "probability": 0.0786 + }, + { + "start": 14237.24, + "end": 14237.34, + "probability": 0.0469 + }, + { + "start": 14237.34, + "end": 14239.78, + "probability": 0.8204 + }, + { + "start": 14239.82, + "end": 14241.18, + "probability": 0.9015 + }, + { + "start": 14241.32, + "end": 14241.34, + "probability": 0.0998 + }, + { + "start": 14241.34, + "end": 14242.24, + "probability": 0.6012 + }, + { + "start": 14242.3, + "end": 14244.0, + "probability": 0.6811 + }, + { + "start": 14244.5, + "end": 14247.46, + "probability": 0.9455 + }, + { + "start": 14248.02, + "end": 14251.06, + "probability": 0.9876 + }, + { + "start": 14251.58, + "end": 14253.08, + "probability": 0.9985 + }, + { + "start": 14253.18, + "end": 14253.66, + "probability": 0.8787 + }, + { + "start": 14254.04, + "end": 14257.36, + "probability": 0.9948 + }, + { + "start": 14258.22, + "end": 14259.3, + "probability": 0.6754 + }, + { + "start": 14259.42, + "end": 14259.68, + "probability": 0.0069 + }, + { + "start": 14259.88, + "end": 14261.82, + "probability": 0.7721 + }, + { + "start": 14263.44, + "end": 14266.58, + "probability": 0.6866 + }, + { + "start": 14268.36, + "end": 14268.36, + "probability": 0.2469 + }, + { + "start": 14268.36, + "end": 14269.64, + "probability": 0.2077 + }, + { + "start": 14270.16, + "end": 14272.96, + "probability": 0.6211 + }, + { + "start": 14274.67, + "end": 14276.28, + "probability": 0.7062 + }, + { + "start": 14276.28, + "end": 14276.52, + "probability": 0.1114 + }, + { + "start": 14278.34, + "end": 14281.18, + "probability": 0.6565 + }, + { + "start": 14282.02, + "end": 14285.35, + "probability": 0.4089 + }, + { + "start": 14285.74, + "end": 14288.5, + "probability": 0.2075 + }, + { + "start": 14289.74, + "end": 14290.09, + "probability": 0.1267 + }, + { + "start": 14290.12, + "end": 14290.96, + "probability": 0.1331 + }, + { + "start": 14291.02, + "end": 14296.34, + "probability": 0.8995 + }, + { + "start": 14297.14, + "end": 14301.48, + "probability": 0.975 + }, + { + "start": 14302.8, + "end": 14303.83, + "probability": 0.7072 + }, + { + "start": 14304.72, + "end": 14310.26, + "probability": 0.9958 + }, + { + "start": 14310.56, + "end": 14311.36, + "probability": 0.8744 + }, + { + "start": 14311.56, + "end": 14313.32, + "probability": 0.8869 + }, + { + "start": 14313.84, + "end": 14314.98, + "probability": 0.9172 + }, + { + "start": 14315.8, + "end": 14317.84, + "probability": 0.9356 + }, + { + "start": 14318.16, + "end": 14320.38, + "probability": 0.988 + }, + { + "start": 14321.2, + "end": 14324.54, + "probability": 0.8541 + }, + { + "start": 14324.54, + "end": 14325.36, + "probability": 0.0089 + }, + { + "start": 14326.32, + "end": 14328.54, + "probability": 0.7274 + }, + { + "start": 14329.14, + "end": 14329.68, + "probability": 0.4966 + }, + { + "start": 14330.16, + "end": 14331.02, + "probability": 0.1534 + }, + { + "start": 14331.46, + "end": 14332.16, + "probability": 0.5939 + }, + { + "start": 14332.22, + "end": 14333.48, + "probability": 0.7761 + }, + { + "start": 14333.86, + "end": 14337.56, + "probability": 0.9757 + }, + { + "start": 14338.34, + "end": 14342.12, + "probability": 0.9706 + }, + { + "start": 14343.22, + "end": 14345.14, + "probability": 0.9348 + }, + { + "start": 14345.22, + "end": 14348.86, + "probability": 0.9863 + }, + { + "start": 14348.98, + "end": 14351.26, + "probability": 0.9973 + }, + { + "start": 14352.7, + "end": 14360.3, + "probability": 0.9591 + }, + { + "start": 14360.32, + "end": 14361.54, + "probability": 0.7524 + }, + { + "start": 14361.8, + "end": 14366.16, + "probability": 0.8247 + }, + { + "start": 14366.22, + "end": 14367.12, + "probability": 0.7907 + }, + { + "start": 14368.08, + "end": 14368.66, + "probability": 0.6701 + }, + { + "start": 14368.88, + "end": 14368.88, + "probability": 0.0277 + }, + { + "start": 14368.88, + "end": 14368.88, + "probability": 0.0313 + }, + { + "start": 14368.88, + "end": 14368.88, + "probability": 0.1519 + }, + { + "start": 14368.88, + "end": 14375.94, + "probability": 0.8988 + }, + { + "start": 14376.62, + "end": 14377.48, + "probability": 0.2374 + }, + { + "start": 14378.02, + "end": 14382.12, + "probability": 0.8093 + }, + { + "start": 14382.8, + "end": 14387.02, + "probability": 0.9974 + }, + { + "start": 14387.68, + "end": 14391.24, + "probability": 0.3912 + }, + { + "start": 14392.06, + "end": 14394.64, + "probability": 0.9717 + }, + { + "start": 14395.38, + "end": 14398.3, + "probability": 0.6805 + }, + { + "start": 14398.98, + "end": 14402.06, + "probability": 0.988 + }, + { + "start": 14402.52, + "end": 14408.12, + "probability": 0.9928 + }, + { + "start": 14408.8, + "end": 14410.48, + "probability": 0.9966 + }, + { + "start": 14411.06, + "end": 14412.52, + "probability": 0.9924 + }, + { + "start": 14413.24, + "end": 14415.69, + "probability": 0.9955 + }, + { + "start": 14416.62, + "end": 14419.82, + "probability": 0.9487 + }, + { + "start": 14420.32, + "end": 14421.58, + "probability": 0.9062 + }, + { + "start": 14422.08, + "end": 14426.04, + "probability": 0.9894 + }, + { + "start": 14426.56, + "end": 14431.54, + "probability": 0.9911 + }, + { + "start": 14432.08, + "end": 14434.94, + "probability": 0.8608 + }, + { + "start": 14435.48, + "end": 14437.7, + "probability": 0.9943 + }, + { + "start": 14437.7, + "end": 14440.3, + "probability": 0.8444 + }, + { + "start": 14440.76, + "end": 14442.64, + "probability": 0.993 + }, + { + "start": 14443.18, + "end": 14445.66, + "probability": 0.5599 + }, + { + "start": 14446.18, + "end": 14448.24, + "probability": 0.9896 + }, + { + "start": 14448.24, + "end": 14451.22, + "probability": 0.9894 + }, + { + "start": 14452.78, + "end": 14454.66, + "probability": 0.9326 + }, + { + "start": 14456.43, + "end": 14459.66, + "probability": 0.8281 + }, + { + "start": 14459.66, + "end": 14460.22, + "probability": 0.568 + }, + { + "start": 14461.06, + "end": 14463.4, + "probability": 0.8279 + }, + { + "start": 14464.66, + "end": 14466.18, + "probability": 0.8698 + }, + { + "start": 14466.34, + "end": 14468.46, + "probability": 0.5177 + }, + { + "start": 14469.54, + "end": 14471.64, + "probability": 0.7891 + }, + { + "start": 14471.72, + "end": 14476.18, + "probability": 0.9889 + }, + { + "start": 14476.84, + "end": 14478.32, + "probability": 0.8408 + }, + { + "start": 14478.96, + "end": 14480.7, + "probability": 0.9771 + }, + { + "start": 14480.82, + "end": 14484.14, + "probability": 0.8914 + }, + { + "start": 14484.28, + "end": 14487.66, + "probability": 0.9477 + }, + { + "start": 14488.32, + "end": 14492.44, + "probability": 0.9762 + }, + { + "start": 14493.02, + "end": 14496.37, + "probability": 0.988 + }, + { + "start": 14497.28, + "end": 14500.3, + "probability": 0.9956 + }, + { + "start": 14500.3, + "end": 14505.0, + "probability": 0.9962 + }, + { + "start": 14505.2, + "end": 14507.8, + "probability": 0.9213 + }, + { + "start": 14508.28, + "end": 14511.78, + "probability": 0.9902 + }, + { + "start": 14512.34, + "end": 14514.74, + "probability": 0.998 + }, + { + "start": 14514.74, + "end": 14517.58, + "probability": 0.9979 + }, + { + "start": 14518.18, + "end": 14518.6, + "probability": 0.5159 + }, + { + "start": 14519.16, + "end": 14519.92, + "probability": 0.6562 + }, + { + "start": 14520.44, + "end": 14522.8, + "probability": 0.9824 + }, + { + "start": 14522.8, + "end": 14525.6, + "probability": 0.9945 + }, + { + "start": 14526.22, + "end": 14527.58, + "probability": 0.7069 + }, + { + "start": 14527.72, + "end": 14530.8, + "probability": 0.7548 + }, + { + "start": 14531.48, + "end": 14535.52, + "probability": 0.9819 + }, + { + "start": 14536.1, + "end": 14539.62, + "probability": 0.9971 + }, + { + "start": 14540.22, + "end": 14543.5, + "probability": 0.9984 + }, + { + "start": 14544.02, + "end": 14545.94, + "probability": 0.8755 + }, + { + "start": 14546.52, + "end": 14549.62, + "probability": 0.9977 + }, + { + "start": 14550.18, + "end": 14550.54, + "probability": 0.7545 + }, + { + "start": 14552.12, + "end": 14554.14, + "probability": 0.8572 + }, + { + "start": 14554.46, + "end": 14559.76, + "probability": 0.7842 + }, + { + "start": 14560.52, + "end": 14561.18, + "probability": 0.617 + }, + { + "start": 14562.14, + "end": 14562.82, + "probability": 0.8276 + }, + { + "start": 14563.47, + "end": 14566.0, + "probability": 0.8867 + }, + { + "start": 14566.09, + "end": 14568.82, + "probability": 0.6691 + }, + { + "start": 14568.88, + "end": 14571.36, + "probability": 0.9012 + }, + { + "start": 14572.14, + "end": 14573.16, + "probability": 0.79 + }, + { + "start": 14574.22, + "end": 14574.88, + "probability": 0.8545 + }, + { + "start": 14588.8, + "end": 14589.82, + "probability": 0.7192 + }, + { + "start": 14596.62, + "end": 14597.28, + "probability": 0.5167 + }, + { + "start": 14597.94, + "end": 14599.2, + "probability": 0.6949 + }, + { + "start": 14599.26, + "end": 14600.18, + "probability": 0.6906 + }, + { + "start": 14600.32, + "end": 14601.48, + "probability": 0.833 + }, + { + "start": 14603.04, + "end": 14604.42, + "probability": 0.6873 + }, + { + "start": 14605.28, + "end": 14607.72, + "probability": 0.8993 + }, + { + "start": 14608.4, + "end": 14610.0, + "probability": 0.9701 + }, + { + "start": 14610.52, + "end": 14614.4, + "probability": 0.9971 + }, + { + "start": 14614.8, + "end": 14616.21, + "probability": 0.7826 + }, + { + "start": 14616.3, + "end": 14617.76, + "probability": 0.9639 + }, + { + "start": 14619.26, + "end": 14623.8, + "probability": 0.9407 + }, + { + "start": 14624.36, + "end": 14626.54, + "probability": 0.9373 + }, + { + "start": 14627.14, + "end": 14628.28, + "probability": 0.8102 + }, + { + "start": 14628.9, + "end": 14629.52, + "probability": 0.9928 + }, + { + "start": 14630.08, + "end": 14634.34, + "probability": 0.9825 + }, + { + "start": 14634.52, + "end": 14636.64, + "probability": 0.999 + }, + { + "start": 14637.52, + "end": 14640.34, + "probability": 0.999 + }, + { + "start": 14641.2, + "end": 14641.98, + "probability": 0.7386 + }, + { + "start": 14642.9, + "end": 14644.92, + "probability": 0.999 + }, + { + "start": 14644.92, + "end": 14647.64, + "probability": 0.9924 + }, + { + "start": 14648.28, + "end": 14649.56, + "probability": 0.504 + }, + { + "start": 14650.26, + "end": 14655.6, + "probability": 0.918 + }, + { + "start": 14655.66, + "end": 14656.46, + "probability": 0.7241 + }, + { + "start": 14657.36, + "end": 14660.2, + "probability": 0.9557 + }, + { + "start": 14661.0, + "end": 14662.62, + "probability": 0.4719 + }, + { + "start": 14662.9, + "end": 14664.58, + "probability": 0.7546 + }, + { + "start": 14664.96, + "end": 14666.36, + "probability": 0.9887 + }, + { + "start": 14667.12, + "end": 14669.88, + "probability": 0.8242 + }, + { + "start": 14670.02, + "end": 14675.38, + "probability": 0.9823 + }, + { + "start": 14675.46, + "end": 14681.74, + "probability": 0.9607 + }, + { + "start": 14682.32, + "end": 14686.3, + "probability": 0.9867 + }, + { + "start": 14686.38, + "end": 14686.98, + "probability": 0.7567 + }, + { + "start": 14687.02, + "end": 14689.54, + "probability": 0.8888 + }, + { + "start": 14689.78, + "end": 14693.46, + "probability": 0.9719 + }, + { + "start": 14693.62, + "end": 14695.74, + "probability": 0.8597 + }, + { + "start": 14695.86, + "end": 14696.49, + "probability": 0.5848 + }, + { + "start": 14697.26, + "end": 14699.98, + "probability": 0.9858 + }, + { + "start": 14700.08, + "end": 14701.26, + "probability": 0.9897 + }, + { + "start": 14701.9, + "end": 14702.92, + "probability": 0.564 + }, + { + "start": 14702.98, + "end": 14704.0, + "probability": 0.772 + }, + { + "start": 14704.08, + "end": 14704.64, + "probability": 0.7068 + }, + { + "start": 14704.86, + "end": 14707.64, + "probability": 0.9229 + }, + { + "start": 14708.14, + "end": 14709.92, + "probability": 0.6866 + }, + { + "start": 14710.94, + "end": 14712.3, + "probability": 0.5617 + }, + { + "start": 14712.78, + "end": 14716.1, + "probability": 0.5716 + }, + { + "start": 14717.0, + "end": 14718.32, + "probability": 0.4607 + }, + { + "start": 14718.38, + "end": 14719.96, + "probability": 0.6156 + }, + { + "start": 14720.46, + "end": 14722.44, + "probability": 0.9922 + }, + { + "start": 14722.44, + "end": 14724.02, + "probability": 0.8646 + }, + { + "start": 14724.5, + "end": 14725.94, + "probability": 0.9502 + }, + { + "start": 14726.02, + "end": 14727.0, + "probability": 0.8307 + }, + { + "start": 14728.18, + "end": 14728.9, + "probability": 0.8069 + }, + { + "start": 14729.12, + "end": 14732.3, + "probability": 0.9775 + }, + { + "start": 14732.7, + "end": 14735.58, + "probability": 0.959 + }, + { + "start": 14735.96, + "end": 14738.34, + "probability": 0.9954 + }, + { + "start": 14738.54, + "end": 14742.74, + "probability": 0.9941 + }, + { + "start": 14743.48, + "end": 14746.57, + "probability": 0.9902 + }, + { + "start": 14746.88, + "end": 14749.56, + "probability": 0.9123 + }, + { + "start": 14750.22, + "end": 14753.44, + "probability": 0.9902 + }, + { + "start": 14753.92, + "end": 14754.5, + "probability": 0.5379 + }, + { + "start": 14754.58, + "end": 14757.72, + "probability": 0.9546 + }, + { + "start": 14757.88, + "end": 14760.14, + "probability": 0.9819 + }, + { + "start": 14760.38, + "end": 14763.86, + "probability": 0.9795 + }, + { + "start": 14764.76, + "end": 14767.64, + "probability": 0.9146 + }, + { + "start": 14768.46, + "end": 14770.08, + "probability": 0.9982 + }, + { + "start": 14770.18, + "end": 14773.58, + "probability": 0.7989 + }, + { + "start": 14774.04, + "end": 14775.42, + "probability": 0.9912 + }, + { + "start": 14775.7, + "end": 14777.14, + "probability": 0.9954 + }, + { + "start": 14777.88, + "end": 14779.56, + "probability": 0.9663 + }, + { + "start": 14779.96, + "end": 14781.3, + "probability": 0.9944 + }, + { + "start": 14781.4, + "end": 14783.72, + "probability": 0.929 + }, + { + "start": 14784.28, + "end": 14786.92, + "probability": 0.9928 + }, + { + "start": 14787.46, + "end": 14789.04, + "probability": 0.9873 + }, + { + "start": 14789.52, + "end": 14790.4, + "probability": 0.6702 + }, + { + "start": 14790.5, + "end": 14791.68, + "probability": 0.5754 + }, + { + "start": 14791.88, + "end": 14796.22, + "probability": 0.9868 + }, + { + "start": 14796.36, + "end": 14798.1, + "probability": 0.9834 + }, + { + "start": 14798.22, + "end": 14798.22, + "probability": 0.1657 + }, + { + "start": 14798.22, + "end": 14798.22, + "probability": 0.1153 + }, + { + "start": 14798.22, + "end": 14804.74, + "probability": 0.9624 + }, + { + "start": 14805.64, + "end": 14807.42, + "probability": 0.9836 + }, + { + "start": 14808.04, + "end": 14810.34, + "probability": 0.953 + }, + { + "start": 14810.62, + "end": 14813.08, + "probability": 0.8235 + }, + { + "start": 14813.2, + "end": 14813.64, + "probability": 0.5807 + }, + { + "start": 14813.72, + "end": 14814.02, + "probability": 0.7176 + }, + { + "start": 14814.1, + "end": 14814.8, + "probability": 0.9812 + }, + { + "start": 14815.3, + "end": 14816.08, + "probability": 0.7544 + }, + { + "start": 14816.14, + "end": 14816.94, + "probability": 0.747 + }, + { + "start": 14817.7, + "end": 14821.76, + "probability": 0.9429 + }, + { + "start": 14822.34, + "end": 14823.5, + "probability": 0.6321 + }, + { + "start": 14823.72, + "end": 14826.06, + "probability": 0.5696 + }, + { + "start": 14826.26, + "end": 14829.82, + "probability": 0.8977 + }, + { + "start": 14829.82, + "end": 14833.62, + "probability": 0.9873 + }, + { + "start": 14834.6, + "end": 14836.98, + "probability": 0.9396 + }, + { + "start": 14838.14, + "end": 14838.92, + "probability": 0.8003 + }, + { + "start": 14838.92, + "end": 14839.46, + "probability": 0.3816 + }, + { + "start": 14839.94, + "end": 14840.48, + "probability": 0.9044 + }, + { + "start": 14841.2, + "end": 14844.7, + "probability": 0.9658 + }, + { + "start": 14845.62, + "end": 14848.48, + "probability": 0.9606 + }, + { + "start": 14848.86, + "end": 14849.1, + "probability": 0.9097 + }, + { + "start": 14850.54, + "end": 14853.1, + "probability": 0.9451 + }, + { + "start": 14853.88, + "end": 14856.98, + "probability": 0.6643 + }, + { + "start": 14857.22, + "end": 14857.9, + "probability": 0.4334 + }, + { + "start": 14858.28, + "end": 14860.0, + "probability": 0.7129 + }, + { + "start": 14862.1, + "end": 14862.98, + "probability": 0.5417 + }, + { + "start": 14863.08, + "end": 14864.08, + "probability": 0.6424 + }, + { + "start": 14866.54, + "end": 14868.88, + "probability": 0.9018 + }, + { + "start": 14869.04, + "end": 14869.78, + "probability": 0.6314 + }, + { + "start": 14869.84, + "end": 14870.18, + "probability": 0.5172 + }, + { + "start": 14872.12, + "end": 14873.6, + "probability": 0.6725 + }, + { + "start": 14878.14, + "end": 14879.36, + "probability": 0.2164 + }, + { + "start": 14881.76, + "end": 14883.12, + "probability": 0.6925 + }, + { + "start": 14901.6, + "end": 14901.82, + "probability": 0.0285 + }, + { + "start": 14901.82, + "end": 14902.4, + "probability": 0.4824 + }, + { + "start": 14907.16, + "end": 14908.7, + "probability": 0.7795 + }, + { + "start": 14910.36, + "end": 14912.3, + "probability": 0.9964 + }, + { + "start": 14913.68, + "end": 14915.24, + "probability": 0.7475 + }, + { + "start": 14916.08, + "end": 14917.46, + "probability": 0.8818 + }, + { + "start": 14918.64, + "end": 14920.98, + "probability": 0.8156 + }, + { + "start": 14921.3, + "end": 14925.24, + "probability": 0.8003 + }, + { + "start": 14926.12, + "end": 14926.54, + "probability": 0.9089 + }, + { + "start": 14934.34, + "end": 14935.4, + "probability": 0.9995 + }, + { + "start": 14937.28, + "end": 14939.88, + "probability": 0.981 + }, + { + "start": 14941.0, + "end": 14942.84, + "probability": 0.7802 + }, + { + "start": 14944.76, + "end": 14945.1, + "probability": 0.0008 + }, + { + "start": 14947.2, + "end": 14949.91, + "probability": 0.9902 + }, + { + "start": 14951.92, + "end": 14953.88, + "probability": 0.8707 + }, + { + "start": 14955.58, + "end": 14956.74, + "probability": 0.7775 + }, + { + "start": 14960.08, + "end": 14960.1, + "probability": 0.0102 + }, + { + "start": 14961.96, + "end": 14963.18, + "probability": 0.7057 + }, + { + "start": 14964.96, + "end": 14966.62, + "probability": 0.2768 + }, + { + "start": 14968.04, + "end": 14970.16, + "probability": 0.9583 + }, + { + "start": 14971.8, + "end": 14974.44, + "probability": 0.7967 + }, + { + "start": 14974.48, + "end": 14976.22, + "probability": 0.9942 + }, + { + "start": 14978.64, + "end": 14979.02, + "probability": 0.9431 + }, + { + "start": 14979.34, + "end": 14981.96, + "probability": 0.9863 + }, + { + "start": 14984.64, + "end": 14987.84, + "probability": 0.9985 + }, + { + "start": 14989.46, + "end": 14990.96, + "probability": 0.9948 + }, + { + "start": 14992.12, + "end": 14992.78, + "probability": 0.7143 + }, + { + "start": 14995.52, + "end": 14996.64, + "probability": 0.6928 + }, + { + "start": 14998.0, + "end": 14999.1, + "probability": 0.8525 + }, + { + "start": 15000.84, + "end": 15001.18, + "probability": 0.8087 + }, + { + "start": 15003.02, + "end": 15004.86, + "probability": 0.7633 + }, + { + "start": 15005.44, + "end": 15006.96, + "probability": 0.3644 + }, + { + "start": 15009.02, + "end": 15010.82, + "probability": 0.9256 + }, + { + "start": 15011.86, + "end": 15016.78, + "probability": 0.9916 + }, + { + "start": 15018.78, + "end": 15025.48, + "probability": 0.9989 + }, + { + "start": 15026.9, + "end": 15029.42, + "probability": 0.9924 + }, + { + "start": 15030.16, + "end": 15031.62, + "probability": 0.9908 + }, + { + "start": 15032.66, + "end": 15034.76, + "probability": 0.6022 + }, + { + "start": 15036.56, + "end": 15036.88, + "probability": 0.9678 + }, + { + "start": 15037.88, + "end": 15040.28, + "probability": 0.6991 + }, + { + "start": 15044.64, + "end": 15045.04, + "probability": 0.475 + }, + { + "start": 15045.18, + "end": 15046.22, + "probability": 0.6497 + }, + { + "start": 15046.32, + "end": 15049.6, + "probability": 0.9594 + }, + { + "start": 15055.58, + "end": 15057.56, + "probability": 0.4894 + }, + { + "start": 15057.72, + "end": 15058.9, + "probability": 0.9239 + }, + { + "start": 15060.2, + "end": 15060.68, + "probability": 0.469 + }, + { + "start": 15060.68, + "end": 15064.16, + "probability": 0.9908 + }, + { + "start": 15064.68, + "end": 15066.52, + "probability": 0.9499 + }, + { + "start": 15067.48, + "end": 15069.29, + "probability": 0.9915 + }, + { + "start": 15069.6, + "end": 15070.64, + "probability": 0.8694 + }, + { + "start": 15074.08, + "end": 15074.9, + "probability": 0.4466 + }, + { + "start": 15076.94, + "end": 15078.57, + "probability": 0.8464 + }, + { + "start": 15079.4, + "end": 15083.22, + "probability": 0.927 + }, + { + "start": 15084.06, + "end": 15085.32, + "probability": 0.0195 + }, + { + "start": 15085.92, + "end": 15086.12, + "probability": 0.7498 + }, + { + "start": 15087.42, + "end": 15090.12, + "probability": 0.5014 + }, + { + "start": 15091.24, + "end": 15093.3, + "probability": 0.9785 + }, + { + "start": 15094.32, + "end": 15096.38, + "probability": 0.989 + }, + { + "start": 15097.04, + "end": 15100.06, + "probability": 0.946 + }, + { + "start": 15101.38, + "end": 15102.3, + "probability": 0.7566 + }, + { + "start": 15104.58, + "end": 15106.7, + "probability": 0.9572 + }, + { + "start": 15106.72, + "end": 15108.92, + "probability": 0.9037 + }, + { + "start": 15108.96, + "end": 15110.2, + "probability": 0.5885 + }, + { + "start": 15110.7, + "end": 15111.14, + "probability": 0.0754 + }, + { + "start": 15111.14, + "end": 15113.84, + "probability": 0.7424 + }, + { + "start": 15113.84, + "end": 15115.92, + "probability": 0.466 + }, + { + "start": 15116.12, + "end": 15117.04, + "probability": 0.2189 + }, + { + "start": 15117.04, + "end": 15119.98, + "probability": 0.8979 + }, + { + "start": 15121.38, + "end": 15124.04, + "probability": 0.9429 + }, + { + "start": 15124.04, + "end": 15125.48, + "probability": 0.0492 + }, + { + "start": 15125.52, + "end": 15125.61, + "probability": 0.1676 + }, + { + "start": 15126.34, + "end": 15127.5, + "probability": 0.2932 + }, + { + "start": 15127.5, + "end": 15128.48, + "probability": 0.0898 + }, + { + "start": 15128.68, + "end": 15129.3, + "probability": 0.3403 + }, + { + "start": 15129.3, + "end": 15129.5, + "probability": 0.0184 + }, + { + "start": 15129.78, + "end": 15131.76, + "probability": 0.5027 + }, + { + "start": 15131.76, + "end": 15133.12, + "probability": 0.0953 + }, + { + "start": 15134.22, + "end": 15137.4, + "probability": 0.3915 + }, + { + "start": 15138.0, + "end": 15138.52, + "probability": 0.0367 + }, + { + "start": 15138.52, + "end": 15138.52, + "probability": 0.2849 + }, + { + "start": 15138.52, + "end": 15138.82, + "probability": 0.1409 + }, + { + "start": 15138.9, + "end": 15138.92, + "probability": 0.1774 + }, + { + "start": 15138.92, + "end": 15141.17, + "probability": 0.5263 + }, + { + "start": 15141.62, + "end": 15143.06, + "probability": 0.7409 + }, + { + "start": 15144.06, + "end": 15144.6, + "probability": 0.6669 + }, + { + "start": 15144.84, + "end": 15145.4, + "probability": 0.5457 + }, + { + "start": 15145.4, + "end": 15147.96, + "probability": 0.2374 + }, + { + "start": 15148.02, + "end": 15148.72, + "probability": 0.1618 + }, + { + "start": 15149.62, + "end": 15152.06, + "probability": 0.4452 + }, + { + "start": 15152.08, + "end": 15153.18, + "probability": 0.8188 + }, + { + "start": 15153.3, + "end": 15155.54, + "probability": 0.832 + }, + { + "start": 15155.78, + "end": 15158.8, + "probability": 0.8409 + }, + { + "start": 15158.86, + "end": 15161.22, + "probability": 0.8662 + }, + { + "start": 15161.36, + "end": 15163.36, + "probability": 0.7415 + }, + { + "start": 15164.54, + "end": 15167.04, + "probability": 0.179 + }, + { + "start": 15167.04, + "end": 15169.2, + "probability": 0.7514 + }, + { + "start": 15169.26, + "end": 15170.62, + "probability": 0.2986 + }, + { + "start": 15171.16, + "end": 15172.42, + "probability": 0.9214 + }, + { + "start": 15173.44, + "end": 15175.88, + "probability": 0.9762 + }, + { + "start": 15175.92, + "end": 15175.92, + "probability": 0.9557 + }, + { + "start": 15176.06, + "end": 15176.58, + "probability": 0.4001 + }, + { + "start": 15176.6, + "end": 15177.54, + "probability": 0.5127 + }, + { + "start": 15177.68, + "end": 15178.96, + "probability": 0.5823 + }, + { + "start": 15178.98, + "end": 15180.11, + "probability": 0.0769 + }, + { + "start": 15180.2, + "end": 15181.56, + "probability": 0.9746 + }, + { + "start": 15181.7, + "end": 15183.14, + "probability": 0.5263 + }, + { + "start": 15183.26, + "end": 15184.62, + "probability": 0.7474 + }, + { + "start": 15185.24, + "end": 15188.68, + "probability": 0.8452 + }, + { + "start": 15190.71, + "end": 15191.48, + "probability": 0.0305 + }, + { + "start": 15191.9, + "end": 15193.44, + "probability": 0.7255 + }, + { + "start": 15194.64, + "end": 15194.92, + "probability": 0.5111 + }, + { + "start": 15194.92, + "end": 15199.12, + "probability": 0.9961 + }, + { + "start": 15200.1, + "end": 15203.16, + "probability": 0.9667 + }, + { + "start": 15203.88, + "end": 15206.56, + "probability": 0.8238 + }, + { + "start": 15207.38, + "end": 15209.94, + "probability": 0.8991 + }, + { + "start": 15210.06, + "end": 15211.02, + "probability": 0.9636 + }, + { + "start": 15211.36, + "end": 15211.68, + "probability": 0.652 + }, + { + "start": 15213.02, + "end": 15214.66, + "probability": 0.6802 + }, + { + "start": 15215.8, + "end": 15220.08, + "probability": 0.0267 + }, + { + "start": 15223.22, + "end": 15224.11, + "probability": 0.4939 + }, + { + "start": 15225.46, + "end": 15226.78, + "probability": 0.7486 + }, + { + "start": 15227.98, + "end": 15228.05, + "probability": 0.2144 + }, + { + "start": 15229.7, + "end": 15231.86, + "probability": 0.9473 + }, + { + "start": 15232.9, + "end": 15234.02, + "probability": 0.5933 + }, + { + "start": 15234.02, + "end": 15236.4, + "probability": 0.9419 + }, + { + "start": 15237.4, + "end": 15240.12, + "probability": 0.9844 + }, + { + "start": 15240.86, + "end": 15242.32, + "probability": 0.7943 + }, + { + "start": 15243.62, + "end": 15244.82, + "probability": 0.7148 + }, + { + "start": 15244.86, + "end": 15248.02, + "probability": 0.5406 + }, + { + "start": 15250.3, + "end": 15250.91, + "probability": 0.9224 + }, + { + "start": 15251.56, + "end": 15253.58, + "probability": 0.1509 + }, + { + "start": 15255.14, + "end": 15255.9, + "probability": 0.6223 + }, + { + "start": 15257.55, + "end": 15259.6, + "probability": 0.0802 + }, + { + "start": 15259.64, + "end": 15260.22, + "probability": 0.9673 + }, + { + "start": 15262.18, + "end": 15262.88, + "probability": 0.9991 + }, + { + "start": 15263.42, + "end": 15265.8, + "probability": 0.9981 + }, + { + "start": 15266.38, + "end": 15268.88, + "probability": 0.9938 + }, + { + "start": 15269.64, + "end": 15275.32, + "probability": 0.931 + }, + { + "start": 15276.32, + "end": 15280.22, + "probability": 0.9736 + }, + { + "start": 15280.9, + "end": 15285.98, + "probability": 0.9868 + }, + { + "start": 15286.52, + "end": 15287.88, + "probability": 0.9761 + }, + { + "start": 15288.46, + "end": 15289.38, + "probability": 0.8385 + }, + { + "start": 15291.64, + "end": 15291.64, + "probability": 0.0149 + }, + { + "start": 15291.64, + "end": 15292.72, + "probability": 0.0525 + }, + { + "start": 15292.72, + "end": 15293.88, + "probability": 0.8093 + }, + { + "start": 15295.04, + "end": 15297.38, + "probability": 0.9049 + }, + { + "start": 15298.02, + "end": 15299.6, + "probability": 0.648 + }, + { + "start": 15300.2, + "end": 15301.42, + "probability": 0.8277 + }, + { + "start": 15302.02, + "end": 15303.52, + "probability": 0.8033 + }, + { + "start": 15304.54, + "end": 15309.36, + "probability": 0.9282 + }, + { + "start": 15310.24, + "end": 15310.74, + "probability": 0.98 + }, + { + "start": 15311.4, + "end": 15313.76, + "probability": 0.9774 + }, + { + "start": 15315.12, + "end": 15319.6, + "probability": 0.968 + }, + { + "start": 15320.42, + "end": 15323.18, + "probability": 0.9793 + }, + { + "start": 15323.96, + "end": 15325.58, + "probability": 0.9524 + }, + { + "start": 15328.42, + "end": 15328.66, + "probability": 0.9795 + }, + { + "start": 15329.62, + "end": 15333.16, + "probability": 0.995 + }, + { + "start": 15334.54, + "end": 15336.56, + "probability": 0.9814 + }, + { + "start": 15336.8, + "end": 15338.26, + "probability": 0.8829 + }, + { + "start": 15339.32, + "end": 15342.3, + "probability": 0.6509 + }, + { + "start": 15342.94, + "end": 15344.52, + "probability": 0.8903 + }, + { + "start": 15344.98, + "end": 15347.98, + "probability": 0.9741 + }, + { + "start": 15349.72, + "end": 15350.28, + "probability": 0.9453 + }, + { + "start": 15350.9, + "end": 15355.66, + "probability": 0.9954 + }, + { + "start": 15356.64, + "end": 15360.04, + "probability": 0.8613 + }, + { + "start": 15360.76, + "end": 15361.9, + "probability": 0.6631 + }, + { + "start": 15362.52, + "end": 15366.58, + "probability": 0.9924 + }, + { + "start": 15366.58, + "end": 15371.54, + "probability": 0.9626 + }, + { + "start": 15372.2, + "end": 15376.82, + "probability": 0.9731 + }, + { + "start": 15376.82, + "end": 15380.06, + "probability": 0.9969 + }, + { + "start": 15381.06, + "end": 15381.48, + "probability": 0.4811 + }, + { + "start": 15382.28, + "end": 15383.94, + "probability": 0.948 + }, + { + "start": 15384.76, + "end": 15389.76, + "probability": 0.9917 + }, + { + "start": 15389.9, + "end": 15390.82, + "probability": 0.9123 + }, + { + "start": 15391.36, + "end": 15394.7, + "probability": 0.9895 + }, + { + "start": 15395.5, + "end": 15399.18, + "probability": 0.9879 + }, + { + "start": 15399.8, + "end": 15400.38, + "probability": 0.8197 + }, + { + "start": 15401.36, + "end": 15402.26, + "probability": 0.9568 + }, + { + "start": 15402.92, + "end": 15409.24, + "probability": 0.9968 + }, + { + "start": 15410.0, + "end": 15412.58, + "probability": 0.9985 + }, + { + "start": 15413.42, + "end": 15415.66, + "probability": 0.9595 + }, + { + "start": 15416.18, + "end": 15418.82, + "probability": 0.9402 + }, + { + "start": 15419.72, + "end": 15423.04, + "probability": 0.912 + }, + { + "start": 15423.64, + "end": 15425.7, + "probability": 0.9862 + }, + { + "start": 15426.3, + "end": 15427.34, + "probability": 0.9314 + }, + { + "start": 15427.88, + "end": 15429.26, + "probability": 0.9714 + }, + { + "start": 15429.3, + "end": 15430.13, + "probability": 0.3555 + }, + { + "start": 15432.18, + "end": 15435.52, + "probability": 0.9933 + }, + { + "start": 15436.18, + "end": 15439.1, + "probability": 0.9816 + }, + { + "start": 15439.4, + "end": 15440.9, + "probability": 0.8911 + }, + { + "start": 15441.54, + "end": 15444.62, + "probability": 0.9698 + }, + { + "start": 15445.66, + "end": 15446.18, + "probability": 0.9519 + }, + { + "start": 15447.04, + "end": 15447.67, + "probability": 0.8521 + }, + { + "start": 15448.5, + "end": 15450.26, + "probability": 0.9981 + }, + { + "start": 15452.12, + "end": 15454.32, + "probability": 0.9165 + }, + { + "start": 15455.12, + "end": 15455.66, + "probability": 0.8663 + }, + { + "start": 15456.72, + "end": 15459.3, + "probability": 0.9961 + }, + { + "start": 15460.22, + "end": 15463.96, + "probability": 0.9996 + }, + { + "start": 15465.14, + "end": 15466.84, + "probability": 0.9255 + }, + { + "start": 15467.52, + "end": 15471.54, + "probability": 0.998 + }, + { + "start": 15472.5, + "end": 15474.08, + "probability": 0.9899 + }, + { + "start": 15474.82, + "end": 15475.62, + "probability": 0.7208 + }, + { + "start": 15476.34, + "end": 15481.64, + "probability": 0.9851 + }, + { + "start": 15482.14, + "end": 15484.1, + "probability": 0.9968 + }, + { + "start": 15484.54, + "end": 15484.76, + "probability": 0.8594 + }, + { + "start": 15486.6, + "end": 15487.14, + "probability": 0.643 + }, + { + "start": 15488.88, + "end": 15492.02, + "probability": 0.7314 + }, + { + "start": 15492.78, + "end": 15493.76, + "probability": 0.9188 + }, + { + "start": 15493.92, + "end": 15498.02, + "probability": 0.6926 + }, + { + "start": 15498.1, + "end": 15502.18, + "probability": 0.6512 + }, + { + "start": 15503.68, + "end": 15508.16, + "probability": 0.9393 + }, + { + "start": 15508.54, + "end": 15509.98, + "probability": 0.8363 + }, + { + "start": 15510.02, + "end": 15511.54, + "probability": 0.7302 + }, + { + "start": 15512.26, + "end": 15515.64, + "probability": 0.6326 + }, + { + "start": 15515.74, + "end": 15516.16, + "probability": 0.5011 + }, + { + "start": 15517.04, + "end": 15517.88, + "probability": 0.6819 + }, + { + "start": 15518.58, + "end": 15518.86, + "probability": 0.7035 + }, + { + "start": 15519.92, + "end": 15521.51, + "probability": 0.941 + }, + { + "start": 15521.9, + "end": 15523.08, + "probability": 0.9081 + }, + { + "start": 15523.2, + "end": 15525.76, + "probability": 0.9593 + }, + { + "start": 15525.86, + "end": 15526.8, + "probability": 0.7996 + }, + { + "start": 15527.72, + "end": 15531.12, + "probability": 0.7314 + }, + { + "start": 15531.68, + "end": 15534.54, + "probability": 0.9093 + }, + { + "start": 15535.0, + "end": 15537.31, + "probability": 0.998 + }, + { + "start": 15537.72, + "end": 15539.95, + "probability": 0.9832 + }, + { + "start": 15540.38, + "end": 15541.68, + "probability": 0.9619 + }, + { + "start": 15541.94, + "end": 15542.32, + "probability": 0.915 + }, + { + "start": 15542.6, + "end": 15543.16, + "probability": 0.9392 + }, + { + "start": 15543.16, + "end": 15543.86, + "probability": 0.4159 + }, + { + "start": 15544.32, + "end": 15545.2, + "probability": 0.407 + }, + { + "start": 15545.8, + "end": 15549.96, + "probability": 0.9565 + }, + { + "start": 15550.28, + "end": 15550.68, + "probability": 0.8463 + }, + { + "start": 15550.88, + "end": 15551.22, + "probability": 0.8699 + }, + { + "start": 15552.52, + "end": 15553.43, + "probability": 0.8335 + }, + { + "start": 15553.98, + "end": 15555.82, + "probability": 0.6685 + }, + { + "start": 15556.82, + "end": 15558.5, + "probability": 0.7332 + }, + { + "start": 15559.02, + "end": 15560.12, + "probability": 0.6325 + }, + { + "start": 15569.06, + "end": 15570.31, + "probability": 0.6162 + }, + { + "start": 15571.52, + "end": 15574.08, + "probability": 0.9917 + }, + { + "start": 15574.68, + "end": 15579.82, + "probability": 0.9924 + }, + { + "start": 15579.96, + "end": 15581.76, + "probability": 0.991 + }, + { + "start": 15582.22, + "end": 15586.44, + "probability": 0.9973 + }, + { + "start": 15586.84, + "end": 15588.8, + "probability": 0.7954 + }, + { + "start": 15588.86, + "end": 15591.72, + "probability": 0.9952 + }, + { + "start": 15592.98, + "end": 15596.38, + "probability": 0.9782 + }, + { + "start": 15597.78, + "end": 15599.9, + "probability": 0.9803 + }, + { + "start": 15600.02, + "end": 15603.56, + "probability": 0.9927 + }, + { + "start": 15604.44, + "end": 15606.58, + "probability": 0.9979 + }, + { + "start": 15606.58, + "end": 15608.44, + "probability": 0.9905 + }, + { + "start": 15608.52, + "end": 15609.88, + "probability": 0.8746 + }, + { + "start": 15610.3, + "end": 15611.58, + "probability": 0.6176 + }, + { + "start": 15612.0, + "end": 15613.6, + "probability": 0.8932 + }, + { + "start": 15614.42, + "end": 15616.86, + "probability": 0.9604 + }, + { + "start": 15616.94, + "end": 15617.62, + "probability": 0.9196 + }, + { + "start": 15617.92, + "end": 15619.16, + "probability": 0.7329 + }, + { + "start": 15619.54, + "end": 15625.08, + "probability": 0.9946 + }, + { + "start": 15625.7, + "end": 15625.7, + "probability": 0.0925 + }, + { + "start": 15625.7, + "end": 15625.7, + "probability": 0.0562 + }, + { + "start": 15625.7, + "end": 15625.88, + "probability": 0.3968 + }, + { + "start": 15625.9, + "end": 15627.44, + "probability": 0.9943 + }, + { + "start": 15627.56, + "end": 15629.46, + "probability": 0.9086 + }, + { + "start": 15630.04, + "end": 15631.12, + "probability": 0.5459 + }, + { + "start": 15631.62, + "end": 15633.28, + "probability": 0.9409 + }, + { + "start": 15633.54, + "end": 15637.36, + "probability": 0.9124 + }, + { + "start": 15638.42, + "end": 15639.34, + "probability": 0.9074 + }, + { + "start": 15640.12, + "end": 15640.78, + "probability": 0.7923 + }, + { + "start": 15640.98, + "end": 15641.42, + "probability": 0.9589 + }, + { + "start": 15643.58, + "end": 15644.28, + "probability": 0.7654 + }, + { + "start": 15644.8, + "end": 15646.3, + "probability": 0.8688 + }, + { + "start": 15648.14, + "end": 15652.68, + "probability": 0.9455 + }, + { + "start": 15653.54, + "end": 15656.4, + "probability": 0.9967 + }, + { + "start": 15657.0, + "end": 15657.92, + "probability": 0.9785 + }, + { + "start": 15659.24, + "end": 15661.44, + "probability": 0.8787 + }, + { + "start": 15662.1, + "end": 15664.44, + "probability": 0.6763 + }, + { + "start": 15665.16, + "end": 15666.5, + "probability": 0.7368 + }, + { + "start": 15666.94, + "end": 15668.4, + "probability": 0.8574 + }, + { + "start": 15668.56, + "end": 15670.08, + "probability": 0.9849 + }, + { + "start": 15670.92, + "end": 15674.12, + "probability": 0.9805 + }, + { + "start": 15674.9, + "end": 15677.14, + "probability": 0.9895 + }, + { + "start": 15677.82, + "end": 15679.28, + "probability": 0.9241 + }, + { + "start": 15680.06, + "end": 15684.76, + "probability": 0.9211 + }, + { + "start": 15685.66, + "end": 15689.1, + "probability": 0.994 + }, + { + "start": 15689.64, + "end": 15692.56, + "probability": 0.9821 + }, + { + "start": 15693.12, + "end": 15694.64, + "probability": 0.9932 + }, + { + "start": 15695.62, + "end": 15699.4, + "probability": 0.9958 + }, + { + "start": 15699.4, + "end": 15702.78, + "probability": 0.9989 + }, + { + "start": 15703.32, + "end": 15703.58, + "probability": 0.6415 + }, + { + "start": 15703.88, + "end": 15704.26, + "probability": 0.9547 + }, + { + "start": 15704.5, + "end": 15710.66, + "probability": 0.98 + }, + { + "start": 15710.78, + "end": 15712.6, + "probability": 0.9242 + }, + { + "start": 15713.36, + "end": 15713.36, + "probability": 0.025 + }, + { + "start": 15713.36, + "end": 15715.06, + "probability": 0.9912 + }, + { + "start": 15716.46, + "end": 15719.72, + "probability": 0.9543 + }, + { + "start": 15720.02, + "end": 15721.14, + "probability": 0.98 + }, + { + "start": 15721.52, + "end": 15723.54, + "probability": 0.932 + }, + { + "start": 15724.0, + "end": 15724.96, + "probability": 0.7035 + }, + { + "start": 15725.54, + "end": 15727.9, + "probability": 0.684 + }, + { + "start": 15729.2, + "end": 15731.38, + "probability": 0.6326 + }, + { + "start": 15731.76, + "end": 15732.46, + "probability": 0.2228 + }, + { + "start": 15732.46, + "end": 15732.94, + "probability": 0.0445 + }, + { + "start": 15732.94, + "end": 15735.36, + "probability": 0.2246 + }, + { + "start": 15735.6, + "end": 15735.68, + "probability": 0.2653 + }, + { + "start": 15735.74, + "end": 15736.16, + "probability": 0.0082 + }, + { + "start": 15737.32, + "end": 15737.98, + "probability": 0.2435 + }, + { + "start": 15738.78, + "end": 15738.78, + "probability": 0.378 + }, + { + "start": 15738.78, + "end": 15738.78, + "probability": 0.1206 + }, + { + "start": 15738.78, + "end": 15738.78, + "probability": 0.2316 + }, + { + "start": 15738.78, + "end": 15740.74, + "probability": 0.6612 + }, + { + "start": 15741.82, + "end": 15743.62, + "probability": 0.7853 + }, + { + "start": 15744.32, + "end": 15747.72, + "probability": 0.9687 + }, + { + "start": 15749.0, + "end": 15750.42, + "probability": 0.6212 + }, + { + "start": 15751.34, + "end": 15753.14, + "probability": 0.9556 + }, + { + "start": 15754.22, + "end": 15755.24, + "probability": 0.9809 + }, + { + "start": 15755.96, + "end": 15756.6, + "probability": 0.9949 + }, + { + "start": 15757.28, + "end": 15761.96, + "probability": 0.9893 + }, + { + "start": 15762.56, + "end": 15765.0, + "probability": 0.8847 + }, + { + "start": 15765.44, + "end": 15769.52, + "probability": 0.9828 + }, + { + "start": 15770.32, + "end": 15770.72, + "probability": 0.0674 + }, + { + "start": 15770.72, + "end": 15774.24, + "probability": 0.6851 + }, + { + "start": 15774.7, + "end": 15775.76, + "probability": 0.9292 + }, + { + "start": 15777.54, + "end": 15779.42, + "probability": 0.8571 + }, + { + "start": 15779.86, + "end": 15781.74, + "probability": 0.8106 + }, + { + "start": 15782.24, + "end": 15782.24, + "probability": 0.2085 + }, + { + "start": 15782.24, + "end": 15783.26, + "probability": 0.7886 + }, + { + "start": 15783.72, + "end": 15785.0, + "probability": 0.9294 + }, + { + "start": 15785.1, + "end": 15785.64, + "probability": 0.9373 + }, + { + "start": 15785.82, + "end": 15787.56, + "probability": 0.8538 + }, + { + "start": 15787.7, + "end": 15788.96, + "probability": 0.095 + }, + { + "start": 15790.42, + "end": 15791.34, + "probability": 0.0125 + }, + { + "start": 15791.38, + "end": 15794.88, + "probability": 0.0742 + }, + { + "start": 15794.88, + "end": 15794.9, + "probability": 0.0516 + }, + { + "start": 15794.9, + "end": 15794.9, + "probability": 0.1123 + }, + { + "start": 15794.9, + "end": 15795.72, + "probability": 0.0202 + }, + { + "start": 15796.02, + "end": 15798.08, + "probability": 0.8099 + }, + { + "start": 15798.24, + "end": 15801.36, + "probability": 0.8939 + }, + { + "start": 15801.4, + "end": 15805.76, + "probability": 0.9204 + }, + { + "start": 15806.06, + "end": 15807.16, + "probability": 0.7486 + }, + { + "start": 15807.16, + "end": 15807.38, + "probability": 0.5356 + }, + { + "start": 15807.46, + "end": 15810.12, + "probability": 0.807 + }, + { + "start": 15818.25, + "end": 15820.18, + "probability": 0.2025 + }, + { + "start": 15820.38, + "end": 15821.0, + "probability": 0.7324 + }, + { + "start": 15821.3, + "end": 15822.34, + "probability": 0.7707 + }, + { + "start": 15824.8, + "end": 15824.8, + "probability": 0.0965 + }, + { + "start": 15824.8, + "end": 15827.96, + "probability": 0.7699 + }, + { + "start": 15828.3, + "end": 15828.9, + "probability": 0.3039 + }, + { + "start": 15829.02, + "end": 15830.32, + "probability": 0.4905 + }, + { + "start": 15830.76, + "end": 15832.68, + "probability": 0.7484 + }, + { + "start": 15832.88, + "end": 15838.2, + "probability": 0.064 + }, + { + "start": 15838.76, + "end": 15838.76, + "probability": 0.2741 + }, + { + "start": 15838.86, + "end": 15839.16, + "probability": 0.1832 + }, + { + "start": 15839.16, + "end": 15839.16, + "probability": 0.671 + }, + { + "start": 15839.16, + "end": 15839.16, + "probability": 0.0035 + }, + { + "start": 15839.16, + "end": 15840.32, + "probability": 0.7734 + }, + { + "start": 15845.4, + "end": 15849.72, + "probability": 0.8183 + }, + { + "start": 15851.04, + "end": 15852.34, + "probability": 0.9631 + }, + { + "start": 15853.12, + "end": 15855.68, + "probability": 0.9901 + }, + { + "start": 15856.58, + "end": 15862.32, + "probability": 0.9508 + }, + { + "start": 15863.08, + "end": 15867.0, + "probability": 0.8118 + }, + { + "start": 15867.94, + "end": 15872.34, + "probability": 0.9971 + }, + { + "start": 15872.76, + "end": 15873.24, + "probability": 0.2776 + }, + { + "start": 15873.36, + "end": 15874.16, + "probability": 0.83 + }, + { + "start": 15874.48, + "end": 15875.32, + "probability": 0.6295 + }, + { + "start": 15876.0, + "end": 15876.7, + "probability": 0.9822 + }, + { + "start": 15876.72, + "end": 15878.08, + "probability": 0.9805 + }, + { + "start": 15878.32, + "end": 15879.57, + "probability": 0.9843 + }, + { + "start": 15880.64, + "end": 15880.76, + "probability": 0.3171 + }, + { + "start": 15880.76, + "end": 15880.78, + "probability": 0.0187 + }, + { + "start": 15880.78, + "end": 15881.32, + "probability": 0.31 + }, + { + "start": 15882.04, + "end": 15884.27, + "probability": 0.8308 + }, + { + "start": 15884.47, + "end": 15887.31, + "probability": 0.9572 + }, + { + "start": 15888.01, + "end": 15888.87, + "probability": 0.67 + }, + { + "start": 15889.31, + "end": 15890.69, + "probability": 0.7633 + }, + { + "start": 15891.47, + "end": 15891.85, + "probability": 0.9012 + }, + { + "start": 15892.53, + "end": 15893.97, + "probability": 0.6464 + }, + { + "start": 15895.11, + "end": 15900.67, + "probability": 0.9182 + }, + { + "start": 15900.85, + "end": 15901.61, + "probability": 0.9089 + }, + { + "start": 15902.35, + "end": 15904.15, + "probability": 0.9843 + }, + { + "start": 15904.75, + "end": 15907.33, + "probability": 0.9891 + }, + { + "start": 15907.99, + "end": 15909.43, + "probability": 0.0613 + }, + { + "start": 15911.49, + "end": 15912.55, + "probability": 0.2326 + }, + { + "start": 15912.55, + "end": 15913.52, + "probability": 0.4657 + }, + { + "start": 15914.03, + "end": 15915.67, + "probability": 0.6689 + }, + { + "start": 15915.73, + "end": 15918.97, + "probability": 0.7195 + }, + { + "start": 15919.65, + "end": 15920.81, + "probability": 0.5298 + }, + { + "start": 15921.49, + "end": 15922.97, + "probability": 0.4962 + }, + { + "start": 15923.57, + "end": 15925.03, + "probability": 0.9978 + }, + { + "start": 15925.89, + "end": 15926.61, + "probability": 0.8467 + }, + { + "start": 15927.41, + "end": 15928.57, + "probability": 0.6089 + }, + { + "start": 15930.23, + "end": 15931.63, + "probability": 0.7389 + }, + { + "start": 15932.67, + "end": 15933.29, + "probability": 0.9287 + }, + { + "start": 15933.91, + "end": 15933.93, + "probability": 0.0429 + }, + { + "start": 15933.93, + "end": 15936.09, + "probability": 0.8555 + }, + { + "start": 15936.15, + "end": 15937.41, + "probability": 0.9645 + }, + { + "start": 15937.87, + "end": 15939.55, + "probability": 0.9643 + }, + { + "start": 15939.87, + "end": 15941.17, + "probability": 0.4884 + }, + { + "start": 15941.47, + "end": 15944.05, + "probability": 0.3044 + }, + { + "start": 15944.83, + "end": 15945.71, + "probability": 0.1499 + }, + { + "start": 15945.71, + "end": 15945.71, + "probability": 0.2812 + }, + { + "start": 15945.71, + "end": 15948.35, + "probability": 0.2187 + }, + { + "start": 15948.91, + "end": 15949.61, + "probability": 0.3213 + }, + { + "start": 15957.83, + "end": 15959.05, + "probability": 0.7654 + }, + { + "start": 15960.25, + "end": 15961.53, + "probability": 0.9722 + }, + { + "start": 15970.51, + "end": 15970.51, + "probability": 0.0643 + }, + { + "start": 15970.51, + "end": 15972.83, + "probability": 0.0955 + }, + { + "start": 15975.45, + "end": 15978.63, + "probability": 0.0863 + }, + { + "start": 15978.99, + "end": 15979.79, + "probability": 0.1286 + }, + { + "start": 15979.79, + "end": 15980.07, + "probability": 0.1556 + }, + { + "start": 15981.57, + "end": 15984.39, + "probability": 0.0456 + }, + { + "start": 15985.83, + "end": 15990.03, + "probability": 0.0729 + }, + { + "start": 15992.07, + "end": 15993.41, + "probability": 0.6318 + }, + { + "start": 16000.79, + "end": 16002.23, + "probability": 0.2022 + }, + { + "start": 16007.21, + "end": 16007.57, + "probability": 0.0715 + }, + { + "start": 16011.2, + "end": 16016.23, + "probability": 0.2086 + }, + { + "start": 16017.74, + "end": 16018.83, + "probability": 0.0659 + }, + { + "start": 16019.33, + "end": 16019.75, + "probability": 0.4688 + }, + { + "start": 16020.83, + "end": 16021.61, + "probability": 0.0959 + }, + { + "start": 16021.61, + "end": 16022.03, + "probability": 0.1183 + }, + { + "start": 16022.07, + "end": 16023.19, + "probability": 0.0782 + }, + { + "start": 16023.53, + "end": 16024.39, + "probability": 0.0215 + }, + { + "start": 16024.41, + "end": 16024.87, + "probability": 0.0923 + }, + { + "start": 16024.87, + "end": 16024.95, + "probability": 0.133 + }, + { + "start": 16024.95, + "end": 16024.95, + "probability": 0.0119 + }, + { + "start": 16026.0, + "end": 16026.0, + "probability": 0.0 + }, + { + "start": 16026.0, + "end": 16026.0, + "probability": 0.0 + }, + { + "start": 16026.0, + "end": 16026.0, + "probability": 0.0 + }, + { + "start": 16026.0, + "end": 16026.0, + "probability": 0.0 + }, + { + "start": 16026.0, + "end": 16026.0, + "probability": 0.0 + }, + { + "start": 16026.0, + "end": 16026.0, + "probability": 0.0 + }, + { + "start": 16026.0, + "end": 16026.0, + "probability": 0.0 + }, + { + "start": 16030.86, + "end": 16031.7, + "probability": 0.243 + }, + { + "start": 16032.02, + "end": 16034.62, + "probability": 0.0146 + }, + { + "start": 16034.62, + "end": 16035.8, + "probability": 0.0623 + }, + { + "start": 16036.02, + "end": 16036.55, + "probability": 0.0252 + }, + { + "start": 16038.18, + "end": 16040.96, + "probability": 0.0933 + }, + { + "start": 16041.24, + "end": 16041.32, + "probability": 0.0075 + }, + { + "start": 16041.32, + "end": 16042.64, + "probability": 0.0102 + }, + { + "start": 16042.66, + "end": 16043.98, + "probability": 0.0389 + }, + { + "start": 16044.9, + "end": 16050.13, + "probability": 0.0661 + }, + { + "start": 16051.82, + "end": 16054.1, + "probability": 0.2833 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.0, + "end": 16146.0, + "probability": 0.0 + }, + { + "start": 16146.28, + "end": 16147.82, + "probability": 0.0843 + }, + { + "start": 16147.82, + "end": 16149.88, + "probability": 0.0228 + }, + { + "start": 16149.88, + "end": 16153.5, + "probability": 0.2671 + }, + { + "start": 16153.5, + "end": 16153.64, + "probability": 0.0822 + }, + { + "start": 16153.96, + "end": 16157.04, + "probability": 0.3009 + }, + { + "start": 16157.26, + "end": 16157.91, + "probability": 0.4753 + }, + { + "start": 16158.68, + "end": 16158.98, + "probability": 0.1138 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.0, + "end": 16267.0, + "probability": 0.0 + }, + { + "start": 16267.52, + "end": 16269.94, + "probability": 0.6014 + }, + { + "start": 16270.62, + "end": 16271.24, + "probability": 0.6059 + }, + { + "start": 16271.86, + "end": 16272.04, + "probability": 0.0862 + }, + { + "start": 16272.18, + "end": 16272.38, + "probability": 0.6221 + }, + { + "start": 16272.38, + "end": 16273.24, + "probability": 0.5556 + }, + { + "start": 16273.66, + "end": 16279.44, + "probability": 0.5583 + }, + { + "start": 16281.08, + "end": 16285.82, + "probability": 0.3411 + }, + { + "start": 16285.82, + "end": 16286.66, + "probability": 0.0952 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.0, + "end": 16448.0, + "probability": 0.0 + }, + { + "start": 16448.52, + "end": 16448.72, + "probability": 0.0369 + }, + { + "start": 16448.72, + "end": 16448.72, + "probability": 0.1578 + }, + { + "start": 16448.72, + "end": 16450.92, + "probability": 0.5757 + }, + { + "start": 16451.86, + "end": 16459.92, + "probability": 0.9455 + }, + { + "start": 16460.68, + "end": 16460.68, + "probability": 0.1484 + }, + { + "start": 16460.68, + "end": 16460.68, + "probability": 0.5524 + }, + { + "start": 16460.68, + "end": 16464.94, + "probability": 0.9689 + }, + { + "start": 16464.94, + "end": 16470.68, + "probability": 0.9199 + }, + { + "start": 16470.76, + "end": 16471.68, + "probability": 0.0253 + }, + { + "start": 16471.68, + "end": 16478.24, + "probability": 0.9393 + }, + { + "start": 16478.82, + "end": 16480.84, + "probability": 0.9731 + }, + { + "start": 16481.44, + "end": 16483.24, + "probability": 0.9802 + }, + { + "start": 16484.42, + "end": 16488.64, + "probability": 0.0047 + }, + { + "start": 16488.88, + "end": 16491.04, + "probability": 0.2212 + }, + { + "start": 16491.92, + "end": 16493.52, + "probability": 0.6984 + }, + { + "start": 16493.54, + "end": 16494.14, + "probability": 0.168 + }, + { + "start": 16494.28, + "end": 16500.1, + "probability": 0.0719 + }, + { + "start": 16500.12, + "end": 16502.18, + "probability": 0.0203 + }, + { + "start": 16502.48, + "end": 16502.48, + "probability": 0.5834 + }, + { + "start": 16502.48, + "end": 16505.08, + "probability": 0.144 + }, + { + "start": 16505.66, + "end": 16511.0, + "probability": 0.945 + }, + { + "start": 16511.58, + "end": 16518.06, + "probability": 0.9943 + }, + { + "start": 16518.7, + "end": 16520.12, + "probability": 0.7027 + }, + { + "start": 16520.48, + "end": 16520.6, + "probability": 0.0406 + }, + { + "start": 16520.6, + "end": 16520.62, + "probability": 0.1078 + }, + { + "start": 16520.62, + "end": 16520.64, + "probability": 0.0867 + }, + { + "start": 16520.64, + "end": 16520.7, + "probability": 0.0783 + }, + { + "start": 16520.7, + "end": 16520.7, + "probability": 0.1091 + }, + { + "start": 16520.7, + "end": 16523.5, + "probability": 0.8602 + }, + { + "start": 16523.9, + "end": 16526.12, + "probability": 0.9673 + }, + { + "start": 16526.64, + "end": 16527.84, + "probability": 0.5499 + }, + { + "start": 16528.38, + "end": 16532.48, + "probability": 0.9909 + }, + { + "start": 16532.74, + "end": 16535.56, + "probability": 0.9724 + }, + { + "start": 16535.88, + "end": 16537.48, + "probability": 0.6234 + }, + { + "start": 16537.5, + "end": 16537.98, + "probability": 0.526 + }, + { + "start": 16538.14, + "end": 16542.22, + "probability": 0.9858 + }, + { + "start": 16542.22, + "end": 16543.56, + "probability": 0.5932 + }, + { + "start": 16543.56, + "end": 16545.72, + "probability": 0.8096 + }, + { + "start": 16546.0, + "end": 16549.34, + "probability": 0.9063 + }, + { + "start": 16549.38, + "end": 16549.98, + "probability": 0.455 + }, + { + "start": 16551.14, + "end": 16551.14, + "probability": 0.2105 + }, + { + "start": 16551.14, + "end": 16552.62, + "probability": 0.3078 + }, + { + "start": 16553.74, + "end": 16558.6, + "probability": 0.9094 + }, + { + "start": 16558.88, + "end": 16559.02, + "probability": 0.5718 + }, + { + "start": 16559.02, + "end": 16563.08, + "probability": 0.139 + }, + { + "start": 16564.36, + "end": 16565.04, + "probability": 0.0229 + }, + { + "start": 16565.04, + "end": 16565.46, + "probability": 0.0635 + }, + { + "start": 16565.46, + "end": 16565.5, + "probability": 0.1758 + }, + { + "start": 16565.5, + "end": 16568.01, + "probability": 0.6436 + }, + { + "start": 16568.4, + "end": 16569.88, + "probability": 0.4385 + }, + { + "start": 16569.88, + "end": 16571.52, + "probability": 0.5288 + }, + { + "start": 16572.04, + "end": 16573.02, + "probability": 0.6626 + }, + { + "start": 16573.08, + "end": 16573.88, + "probability": 0.4838 + }, + { + "start": 16574.48, + "end": 16575.66, + "probability": 0.8863 + }, + { + "start": 16576.48, + "end": 16576.74, + "probability": 0.1676 + }, + { + "start": 16587.64, + "end": 16590.06, + "probability": 0.0712 + }, + { + "start": 16590.34, + "end": 16590.9, + "probability": 0.131 + }, + { + "start": 16592.4, + "end": 16593.52, + "probability": 0.3942 + }, + { + "start": 16598.48, + "end": 16599.72, + "probability": 0.8952 + }, + { + "start": 16602.74, + "end": 16606.15, + "probability": 0.9033 + }, + { + "start": 16606.74, + "end": 16609.22, + "probability": 0.9938 + }, + { + "start": 16609.6, + "end": 16610.06, + "probability": 0.743 + }, + { + "start": 16611.62, + "end": 16613.3, + "probability": 0.69 + }, + { + "start": 16615.02, + "end": 16615.12, + "probability": 0.0027 + }, + { + "start": 16619.68, + "end": 16621.86, + "probability": 0.6909 + }, + { + "start": 16624.02, + "end": 16627.4, + "probability": 0.9953 + }, + { + "start": 16627.4, + "end": 16629.92, + "probability": 0.9985 + }, + { + "start": 16631.08, + "end": 16631.9, + "probability": 0.7001 + }, + { + "start": 16632.46, + "end": 16635.76, + "probability": 0.9956 + }, + { + "start": 16635.76, + "end": 16638.92, + "probability": 0.9841 + }, + { + "start": 16639.34, + "end": 16640.69, + "probability": 0.5508 + }, + { + "start": 16641.1, + "end": 16643.38, + "probability": 0.9807 + }, + { + "start": 16643.92, + "end": 16649.36, + "probability": 0.957 + }, + { + "start": 16650.38, + "end": 16650.88, + "probability": 0.8952 + }, + { + "start": 16651.1, + "end": 16651.56, + "probability": 0.8214 + }, + { + "start": 16651.88, + "end": 16654.37, + "probability": 0.8283 + }, + { + "start": 16655.48, + "end": 16657.36, + "probability": 0.9922 + }, + { + "start": 16657.98, + "end": 16659.24, + "probability": 0.8572 + }, + { + "start": 16660.24, + "end": 16661.72, + "probability": 0.9702 + }, + { + "start": 16662.32, + "end": 16668.06, + "probability": 0.9854 + }, + { + "start": 16668.7, + "end": 16671.44, + "probability": 0.9958 + }, + { + "start": 16671.58, + "end": 16673.2, + "probability": 0.9982 + }, + { + "start": 16674.09, + "end": 16676.0, + "probability": 0.9987 + }, + { + "start": 16676.96, + "end": 16683.14, + "probability": 0.9919 + }, + { + "start": 16683.44, + "end": 16684.34, + "probability": 0.5727 + }, + { + "start": 16685.0, + "end": 16686.28, + "probability": 0.5378 + }, + { + "start": 16687.3, + "end": 16687.82, + "probability": 0.485 + }, + { + "start": 16688.5, + "end": 16691.14, + "probability": 0.9788 + }, + { + "start": 16691.52, + "end": 16693.62, + "probability": 0.9671 + }, + { + "start": 16694.52, + "end": 16695.72, + "probability": 0.9402 + }, + { + "start": 16696.26, + "end": 16698.46, + "probability": 0.9906 + }, + { + "start": 16699.1, + "end": 16701.78, + "probability": 0.9609 + }, + { + "start": 16702.76, + "end": 16707.82, + "probability": 0.9766 + }, + { + "start": 16708.84, + "end": 16712.6, + "probability": 0.7634 + }, + { + "start": 16713.78, + "end": 16716.67, + "probability": 0.7065 + }, + { + "start": 16717.3, + "end": 16720.06, + "probability": 0.6414 + }, + { + "start": 16720.94, + "end": 16723.1, + "probability": 0.9521 + }, + { + "start": 16723.84, + "end": 16728.48, + "probability": 0.9568 + }, + { + "start": 16730.22, + "end": 16731.86, + "probability": 0.7872 + }, + { + "start": 16733.76, + "end": 16736.78, + "probability": 0.9465 + }, + { + "start": 16737.94, + "end": 16739.34, + "probability": 0.087 + }, + { + "start": 16739.34, + "end": 16739.34, + "probability": 0.4923 + }, + { + "start": 16739.34, + "end": 16739.34, + "probability": 0.0194 + }, + { + "start": 16739.34, + "end": 16739.34, + "probability": 0.0486 + }, + { + "start": 16739.34, + "end": 16739.34, + "probability": 0.1107 + }, + { + "start": 16739.34, + "end": 16740.44, + "probability": 0.4387 + }, + { + "start": 16741.24, + "end": 16744.56, + "probability": 0.9784 + }, + { + "start": 16745.24, + "end": 16747.94, + "probability": 0.9604 + }, + { + "start": 16748.46, + "end": 16751.24, + "probability": 0.9939 + }, + { + "start": 16751.32, + "end": 16752.78, + "probability": 0.8474 + }, + { + "start": 16753.28, + "end": 16755.02, + "probability": 0.9085 + }, + { + "start": 16755.58, + "end": 16760.92, + "probability": 0.9608 + }, + { + "start": 16761.4, + "end": 16762.98, + "probability": 0.8502 + }, + { + "start": 16764.1, + "end": 16767.16, + "probability": 0.9266 + }, + { + "start": 16767.68, + "end": 16770.04, + "probability": 0.4697 + }, + { + "start": 16770.4, + "end": 16773.22, + "probability": 0.8232 + }, + { + "start": 16773.3, + "end": 16773.88, + "probability": 0.8777 + }, + { + "start": 16774.42, + "end": 16775.58, + "probability": 0.8644 + }, + { + "start": 16776.12, + "end": 16777.6, + "probability": 0.8022 + }, + { + "start": 16778.18, + "end": 16781.24, + "probability": 0.9948 + }, + { + "start": 16781.42, + "end": 16782.66, + "probability": 0.9658 + }, + { + "start": 16782.7, + "end": 16784.52, + "probability": 0.9575 + }, + { + "start": 16784.94, + "end": 16786.22, + "probability": 0.9836 + }, + { + "start": 16786.72, + "end": 16786.94, + "probability": 0.6195 + }, + { + "start": 16786.98, + "end": 16789.78, + "probability": 0.5948 + }, + { + "start": 16789.8, + "end": 16794.12, + "probability": 0.5943 + }, + { + "start": 16794.12, + "end": 16795.87, + "probability": 0.4805 + }, + { + "start": 16796.18, + "end": 16796.9, + "probability": 0.8836 + }, + { + "start": 16799.34, + "end": 16804.52, + "probability": 0.6258 + }, + { + "start": 16805.06, + "end": 16808.31, + "probability": 0.8633 + }, + { + "start": 16816.38, + "end": 16816.5, + "probability": 0.0487 + }, + { + "start": 16816.7, + "end": 16817.51, + "probability": 0.9 + }, + { + "start": 16834.78, + "end": 16838.08, + "probability": 0.7475 + }, + { + "start": 16839.08, + "end": 16839.52, + "probability": 0.8453 + }, + { + "start": 16840.5, + "end": 16843.28, + "probability": 0.9746 + }, + { + "start": 16844.26, + "end": 16845.64, + "probability": 0.9966 + }, + { + "start": 16846.64, + "end": 16848.08, + "probability": 0.8451 + }, + { + "start": 16849.02, + "end": 16849.08, + "probability": 0.0423 + }, + { + "start": 16849.08, + "end": 16854.1, + "probability": 0.974 + }, + { + "start": 16854.26, + "end": 16855.3, + "probability": 0.9785 + }, + { + "start": 16856.24, + "end": 16856.88, + "probability": 0.6941 + }, + { + "start": 16857.9, + "end": 16859.38, + "probability": 0.8916 + }, + { + "start": 16859.54, + "end": 16860.22, + "probability": 0.197 + }, + { + "start": 16860.8, + "end": 16861.38, + "probability": 0.4635 + }, + { + "start": 16861.42, + "end": 16861.76, + "probability": 0.4934 + }, + { + "start": 16861.8, + "end": 16864.3, + "probability": 0.9351 + }, + { + "start": 16865.34, + "end": 16867.96, + "probability": 0.9784 + }, + { + "start": 16868.96, + "end": 16870.48, + "probability": 0.5241 + }, + { + "start": 16871.12, + "end": 16873.2, + "probability": 0.9006 + }, + { + "start": 16873.86, + "end": 16874.44, + "probability": 0.0818 + }, + { + "start": 16874.44, + "end": 16874.44, + "probability": 0.3655 + }, + { + "start": 16874.44, + "end": 16876.04, + "probability": 0.6211 + }, + { + "start": 16876.34, + "end": 16877.68, + "probability": 0.9053 + }, + { + "start": 16878.84, + "end": 16879.24, + "probability": 0.705 + }, + { + "start": 16879.86, + "end": 16879.86, + "probability": 0.134 + }, + { + "start": 16879.86, + "end": 16879.86, + "probability": 0.3663 + }, + { + "start": 16879.86, + "end": 16879.86, + "probability": 0.0235 + }, + { + "start": 16879.86, + "end": 16882.26, + "probability": 0.7613 + }, + { + "start": 16882.74, + "end": 16884.88, + "probability": 0.3831 + }, + { + "start": 16884.88, + "end": 16886.68, + "probability": 0.8052 + }, + { + "start": 16887.6, + "end": 16887.6, + "probability": 0.2941 + }, + { + "start": 16887.6, + "end": 16887.6, + "probability": 0.366 + }, + { + "start": 16887.6, + "end": 16887.6, + "probability": 0.3944 + }, + { + "start": 16887.6, + "end": 16892.4, + "probability": 0.4489 + }, + { + "start": 16892.4, + "end": 16893.55, + "probability": 0.6036 + }, + { + "start": 16894.72, + "end": 16898.54, + "probability": 0.6659 + }, + { + "start": 16898.56, + "end": 16899.46, + "probability": 0.577 + }, + { + "start": 16899.94, + "end": 16903.76, + "probability": 0.1229 + }, + { + "start": 16903.86, + "end": 16903.86, + "probability": 0.2301 + }, + { + "start": 16903.86, + "end": 16903.86, + "probability": 0.2931 + }, + { + "start": 16903.86, + "end": 16903.86, + "probability": 0.3262 + }, + { + "start": 16903.86, + "end": 16906.06, + "probability": 0.4805 + }, + { + "start": 16906.1, + "end": 16907.38, + "probability": 0.5406 + }, + { + "start": 16907.46, + "end": 16908.64, + "probability": 0.2485 + }, + { + "start": 16909.06, + "end": 16913.86, + "probability": 0.9375 + }, + { + "start": 16914.2, + "end": 16914.72, + "probability": 0.1767 + }, + { + "start": 16915.0, + "end": 16915.78, + "probability": 0.9685 + }, + { + "start": 16916.38, + "end": 16917.72, + "probability": 0.5463 + }, + { + "start": 16917.82, + "end": 16918.8, + "probability": 0.5573 + }, + { + "start": 16919.0, + "end": 16921.54, + "probability": 0.4761 + }, + { + "start": 16922.1, + "end": 16924.16, + "probability": 0.7465 + }, + { + "start": 16925.0, + "end": 16928.12, + "probability": 0.9585 + }, + { + "start": 16928.86, + "end": 16928.88, + "probability": 0.0329 + }, + { + "start": 16928.88, + "end": 16934.98, + "probability": 0.9187 + }, + { + "start": 16935.76, + "end": 16938.39, + "probability": 0.8667 + }, + { + "start": 16938.62, + "end": 16939.7, + "probability": 0.4453 + }, + { + "start": 16939.7, + "end": 16941.18, + "probability": 0.9699 + }, + { + "start": 16942.14, + "end": 16943.14, + "probability": 0.5081 + }, + { + "start": 16943.14, + "end": 16944.18, + "probability": 0.4414 + }, + { + "start": 16947.26, + "end": 16948.16, + "probability": 0.1769 + }, + { + "start": 16948.16, + "end": 16948.16, + "probability": 0.0624 + }, + { + "start": 16948.16, + "end": 16949.1, + "probability": 0.4352 + }, + { + "start": 16949.1, + "end": 16950.4, + "probability": 0.2966 + }, + { + "start": 16950.4, + "end": 16951.56, + "probability": 0.7032 + }, + { + "start": 16952.32, + "end": 16953.96, + "probability": 0.9227 + }, + { + "start": 16955.8, + "end": 16958.76, + "probability": 0.0695 + }, + { + "start": 16959.82, + "end": 16960.14, + "probability": 0.2066 + }, + { + "start": 16960.44, + "end": 16961.38, + "probability": 0.4872 + }, + { + "start": 16961.38, + "end": 16963.43, + "probability": 0.3801 + }, + { + "start": 16964.0, + "end": 16964.4, + "probability": 0.5931 + }, + { + "start": 16964.4, + "end": 16967.06, + "probability": 0.5197 + }, + { + "start": 16967.18, + "end": 16967.24, + "probability": 0.0021 + }, + { + "start": 16967.78, + "end": 16969.08, + "probability": 0.0403 + }, + { + "start": 16970.14, + "end": 16972.77, + "probability": 0.5342 + }, + { + "start": 16973.44, + "end": 16975.64, + "probability": 0.4603 + }, + { + "start": 16976.24, + "end": 16978.0, + "probability": 0.608 + }, + { + "start": 16978.56, + "end": 16979.88, + "probability": 0.6033 + }, + { + "start": 16979.88, + "end": 16979.9, + "probability": 0.4707 + }, + { + "start": 16984.4, + "end": 16986.5, + "probability": 0.133 + }, + { + "start": 16986.5, + "end": 16986.5, + "probability": 0.0253 + }, + { + "start": 16986.72, + "end": 16987.52, + "probability": 0.221 + }, + { + "start": 16987.54, + "end": 16988.58, + "probability": 0.1875 + }, + { + "start": 16989.24, + "end": 16989.6, + "probability": 0.4547 + }, + { + "start": 16989.6, + "end": 16989.82, + "probability": 0.5026 + }, + { + "start": 16999.0, + "end": 16999.0, + "probability": 0.0 + }, + { + "start": 16999.0, + "end": 16999.0, + "probability": 0.0 + }, + { + "start": 16999.0, + "end": 16999.0, + "probability": 0.0 + }, + { + "start": 16999.0, + "end": 16999.0, + "probability": 0.0 + }, + { + "start": 16999.0, + "end": 16999.0, + "probability": 0.0 + }, + { + "start": 16999.0, + "end": 16999.0, + "probability": 0.0 + }, + { + "start": 16999.0, + "end": 16999.0, + "probability": 0.0 + }, + { + "start": 16999.0, + "end": 16999.0, + "probability": 0.0 + }, + { + "start": 16999.0, + "end": 16999.0, + "probability": 0.0 + }, + { + "start": 16999.0, + "end": 16999.0, + "probability": 0.0 + }, + { + "start": 16999.0, + "end": 16999.0, + "probability": 0.0 + }, + { + "start": 16999.0, + "end": 16999.0, + "probability": 0.0 + }, + { + "start": 16999.0, + "end": 16999.0, + "probability": 0.0 + }, + { + "start": 16999.0, + "end": 16999.0, + "probability": 0.0 + }, + { + "start": 16999.0, + "end": 16999.0, + "probability": 0.0 + }, + { + "start": 16999.0, + "end": 16999.0, + "probability": 0.0 + }, + { + "start": 17003.7, + "end": 17005.36, + "probability": 0.0872 + }, + { + "start": 17005.5, + "end": 17007.66, + "probability": 0.0877 + }, + { + "start": 17007.76, + "end": 17007.76, + "probability": 0.3952 + }, + { + "start": 17007.84, + "end": 17010.68, + "probability": 0.247 + }, + { + "start": 17010.68, + "end": 17010.75, + "probability": 0.2776 + }, + { + "start": 17011.9, + "end": 17012.26, + "probability": 0.0095 + }, + { + "start": 17012.26, + "end": 17015.09, + "probability": 0.9517 + }, + { + "start": 17015.24, + "end": 17015.56, + "probability": 0.1563 + }, + { + "start": 17015.82, + "end": 17016.68, + "probability": 0.603 + }, + { + "start": 17017.32, + "end": 17017.56, + "probability": 0.3389 + }, + { + "start": 17017.7, + "end": 17019.38, + "probability": 0.8739 + }, + { + "start": 17019.4, + "end": 17020.8, + "probability": 0.0854 + }, + { + "start": 17020.8, + "end": 17021.65, + "probability": 0.4657 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.0, + "end": 17130.0, + "probability": 0.0 + }, + { + "start": 17130.56, + "end": 17132.52, + "probability": 0.2791 + }, + { + "start": 17132.72, + "end": 17132.74, + "probability": 0.0419 + }, + { + "start": 17132.74, + "end": 17133.92, + "probability": 0.4804 + }, + { + "start": 17134.08, + "end": 17134.94, + "probability": 0.7122 + }, + { + "start": 17135.06, + "end": 17137.25, + "probability": 0.8461 + }, + { + "start": 17138.11, + "end": 17142.42, + "probability": 0.3639 + }, + { + "start": 17143.51, + "end": 17144.95, + "probability": 0.4668 + }, + { + "start": 17144.95, + "end": 17148.71, + "probability": 0.8901 + }, + { + "start": 17149.81, + "end": 17150.65, + "probability": 0.7388 + }, + { + "start": 17150.69, + "end": 17151.27, + "probability": 0.1458 + }, + { + "start": 17151.27, + "end": 17151.73, + "probability": 0.7305 + }, + { + "start": 17152.19, + "end": 17156.85, + "probability": 0.8692 + }, + { + "start": 17157.21, + "end": 17160.37, + "probability": 0.8785 + }, + { + "start": 17160.87, + "end": 17162.34, + "probability": 0.7889 + }, + { + "start": 17163.01, + "end": 17166.69, + "probability": 0.9493 + }, + { + "start": 17167.17, + "end": 17168.15, + "probability": 0.8615 + }, + { + "start": 17168.71, + "end": 17168.73, + "probability": 0.0342 + }, + { + "start": 17168.73, + "end": 17170.14, + "probability": 0.931 + }, + { + "start": 17170.81, + "end": 17172.47, + "probability": 0.7389 + }, + { + "start": 17172.57, + "end": 17172.71, + "probability": 0.3303 + }, + { + "start": 17172.71, + "end": 17174.55, + "probability": 0.7729 + }, + { + "start": 17174.63, + "end": 17174.87, + "probability": 0.0948 + }, + { + "start": 17174.87, + "end": 17174.91, + "probability": 0.1382 + }, + { + "start": 17174.91, + "end": 17177.18, + "probability": 0.8261 + }, + { + "start": 17177.49, + "end": 17181.04, + "probability": 0.5915 + }, + { + "start": 17181.67, + "end": 17183.45, + "probability": 0.9855 + }, + { + "start": 17183.95, + "end": 17187.01, + "probability": 0.5012 + }, + { + "start": 17187.69, + "end": 17187.81, + "probability": 0.3301 + }, + { + "start": 17187.81, + "end": 17187.81, + "probability": 0.5155 + }, + { + "start": 17187.81, + "end": 17189.89, + "probability": 0.6385 + }, + { + "start": 17189.97, + "end": 17190.93, + "probability": 0.8972 + }, + { + "start": 17191.31, + "end": 17195.55, + "probability": 0.5404 + }, + { + "start": 17195.55, + "end": 17197.57, + "probability": 0.1631 + }, + { + "start": 17198.73, + "end": 17198.73, + "probability": 0.0308 + }, + { + "start": 17198.73, + "end": 17198.73, + "probability": 0.4474 + }, + { + "start": 17198.73, + "end": 17198.73, + "probability": 0.0834 + }, + { + "start": 17198.73, + "end": 17198.73, + "probability": 0.0428 + }, + { + "start": 17198.73, + "end": 17199.35, + "probability": 0.5209 + }, + { + "start": 17200.07, + "end": 17202.53, + "probability": 0.8075 + }, + { + "start": 17202.77, + "end": 17203.19, + "probability": 0.2564 + }, + { + "start": 17204.03, + "end": 17205.18, + "probability": 0.0018 + }, + { + "start": 17205.87, + "end": 17206.39, + "probability": 0.0418 + }, + { + "start": 17206.39, + "end": 17206.66, + "probability": 0.1095 + }, + { + "start": 17207.75, + "end": 17208.94, + "probability": 0.2918 + }, + { + "start": 17209.53, + "end": 17212.21, + "probability": 0.1748 + }, + { + "start": 17212.21, + "end": 17213.75, + "probability": 0.1495 + }, + { + "start": 17218.51, + "end": 17220.63, + "probability": 0.0818 + }, + { + "start": 17220.63, + "end": 17222.53, + "probability": 0.0632 + }, + { + "start": 17223.09, + "end": 17223.31, + "probability": 0.3801 + }, + { + "start": 17223.83, + "end": 17225.31, + "probability": 0.0713 + }, + { + "start": 17225.75, + "end": 17230.75, + "probability": 0.0811 + }, + { + "start": 17231.47, + "end": 17233.37, + "probability": 0.4542 + }, + { + "start": 17235.39, + "end": 17236.51, + "probability": 0.0222 + }, + { + "start": 17238.97, + "end": 17244.55, + "probability": 0.1312 + }, + { + "start": 17244.69, + "end": 17244.83, + "probability": 0.0639 + }, + { + "start": 17244.83, + "end": 17248.75, + "probability": 0.0725 + }, + { + "start": 17249.61, + "end": 17251.78, + "probability": 0.3452 + }, + { + "start": 17252.99, + "end": 17252.99, + "probability": 0.1524 + }, + { + "start": 17253.93, + "end": 17254.77, + "probability": 0.0163 + }, + { + "start": 17259.0, + "end": 17259.0, + "probability": 0.0 + }, + { + "start": 17259.0, + "end": 17259.0, + "probability": 0.0 + }, + { + "start": 17259.0, + "end": 17259.0, + "probability": 0.0 + }, + { + "start": 17259.0, + "end": 17259.0, + "probability": 0.0 + }, + { + "start": 17259.0, + "end": 17259.0, + "probability": 0.0 + }, + { + "start": 17259.0, + "end": 17259.0, + "probability": 0.0 + }, + { + "start": 17259.0, + "end": 17259.0, + "probability": 0.0 + }, + { + "start": 17259.0, + "end": 17259.0, + "probability": 0.0 + }, + { + "start": 17272.66, + "end": 17275.21, + "probability": 0.6796 + }, + { + "start": 17275.44, + "end": 17276.12, + "probability": 0.1008 + }, + { + "start": 17276.98, + "end": 17278.88, + "probability": 0.0168 + }, + { + "start": 17278.92, + "end": 17279.2, + "probability": 0.0651 + }, + { + "start": 17279.2, + "end": 17282.05, + "probability": 0.9491 + }, + { + "start": 17283.03, + "end": 17289.33, + "probability": 0.8038 + }, + { + "start": 17289.37, + "end": 17292.05, + "probability": 0.6943 + }, + { + "start": 17292.59, + "end": 17296.15, + "probability": 0.9515 + }, + { + "start": 17296.95, + "end": 17298.89, + "probability": 0.6562 + }, + { + "start": 17298.89, + "end": 17300.27, + "probability": 0.5919 + }, + { + "start": 17301.07, + "end": 17302.11, + "probability": 0.323 + }, + { + "start": 17302.11, + "end": 17303.25, + "probability": 0.7393 + }, + { + "start": 17303.65, + "end": 17306.58, + "probability": 0.7206 + }, + { + "start": 17307.77, + "end": 17308.91, + "probability": 0.9585 + }, + { + "start": 17310.73, + "end": 17312.65, + "probability": 0.7719 + }, + { + "start": 17313.27, + "end": 17313.97, + "probability": 0.4224 + }, + { + "start": 17314.75, + "end": 17315.83, + "probability": 0.4709 + }, + { + "start": 17327.69, + "end": 17328.29, + "probability": 0.0522 + }, + { + "start": 17328.43, + "end": 17331.07, + "probability": 0.7173 + }, + { + "start": 17337.59, + "end": 17342.79, + "probability": 0.2293 + }, + { + "start": 17343.58, + "end": 17345.85, + "probability": 0.0319 + }, + { + "start": 17346.25, + "end": 17346.55, + "probability": 0.0463 + }, + { + "start": 17346.55, + "end": 17348.07, + "probability": 0.2557 + }, + { + "start": 17348.51, + "end": 17351.65, + "probability": 0.0405 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.0, + "end": 17422.0, + "probability": 0.0 + }, + { + "start": 17422.3, + "end": 17422.44, + "probability": 0.0 + }, + { + "start": 17424.0, + "end": 17424.52, + "probability": 0.0003 + }, + { + "start": 17426.56, + "end": 17430.02, + "probability": 0.3872 + }, + { + "start": 17435.04, + "end": 17435.76, + "probability": 0.153 + }, + { + "start": 17436.94, + "end": 17439.22, + "probability": 0.5001 + }, + { + "start": 17439.6, + "end": 17440.58, + "probability": 0.2099 + }, + { + "start": 17441.11, + "end": 17443.14, + "probability": 0.1119 + }, + { + "start": 17444.42, + "end": 17446.7, + "probability": 0.273 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.18, + "end": 17546.76, + "probability": 0.0593 + }, + { + "start": 17546.76, + "end": 17547.82, + "probability": 0.034 + }, + { + "start": 17548.4, + "end": 17551.38, + "probability": 0.6742 + }, + { + "start": 17551.88, + "end": 17554.22, + "probability": 0.9309 + }, + { + "start": 17554.54, + "end": 17555.34, + "probability": 0.9633 + }, + { + "start": 17578.58, + "end": 17579.46, + "probability": 0.3142 + }, + { + "start": 17582.94, + "end": 17587.54, + "probability": 0.8299 + }, + { + "start": 17589.5, + "end": 17591.6, + "probability": 0.8324 + }, + { + "start": 17591.76, + "end": 17593.06, + "probability": 0.8464 + }, + { + "start": 17593.36, + "end": 17597.94, + "probability": 0.9078 + }, + { + "start": 17598.9, + "end": 17599.74, + "probability": 0.9985 + }, + { + "start": 17603.22, + "end": 17604.74, + "probability": 0.9878 + }, + { + "start": 17605.5, + "end": 17606.74, + "probability": 0.994 + }, + { + "start": 17606.98, + "end": 17608.14, + "probability": 0.7394 + }, + { + "start": 17609.22, + "end": 17611.46, + "probability": 0.7756 + }, + { + "start": 17612.16, + "end": 17613.78, + "probability": 0.8658 + }, + { + "start": 17614.46, + "end": 17614.74, + "probability": 0.0194 + }, + { + "start": 17614.74, + "end": 17614.74, + "probability": 0.1486 + }, + { + "start": 17614.74, + "end": 17617.24, + "probability": 0.6674 + }, + { + "start": 17617.8, + "end": 17619.04, + "probability": 0.9847 + }, + { + "start": 17619.52, + "end": 17621.52, + "probability": 0.9941 + }, + { + "start": 17622.14, + "end": 17622.82, + "probability": 0.7537 + }, + { + "start": 17623.02, + "end": 17626.54, + "probability": 0.9939 + }, + { + "start": 17627.2, + "end": 17628.39, + "probability": 0.9937 + }, + { + "start": 17629.06, + "end": 17632.46, + "probability": 0.9684 + }, + { + "start": 17632.58, + "end": 17632.96, + "probability": 0.9613 + }, + { + "start": 17633.48, + "end": 17634.0, + "probability": 0.96 + }, + { + "start": 17634.8, + "end": 17635.72, + "probability": 0.8853 + }, + { + "start": 17635.86, + "end": 17636.64, + "probability": 0.5621 + }, + { + "start": 17637.18, + "end": 17639.7, + "probability": 0.9111 + }, + { + "start": 17640.67, + "end": 17643.66, + "probability": 0.9874 + }, + { + "start": 17644.38, + "end": 17646.68, + "probability": 0.95 + }, + { + "start": 17646.7, + "end": 17647.76, + "probability": 0.8617 + }, + { + "start": 17647.76, + "end": 17648.46, + "probability": 0.8987 + }, + { + "start": 17649.08, + "end": 17650.96, + "probability": 0.8358 + }, + { + "start": 17651.84, + "end": 17654.06, + "probability": 0.9985 + }, + { + "start": 17655.06, + "end": 17656.8, + "probability": 0.9871 + }, + { + "start": 17657.54, + "end": 17661.96, + "probability": 0.9488 + }, + { + "start": 17661.96, + "end": 17665.74, + "probability": 0.9844 + }, + { + "start": 17665.9, + "end": 17667.1, + "probability": 0.9722 + }, + { + "start": 17667.2, + "end": 17668.9, + "probability": 0.9763 + }, + { + "start": 17669.74, + "end": 17671.2, + "probability": 0.9475 + }, + { + "start": 17671.8, + "end": 17673.94, + "probability": 0.5677 + }, + { + "start": 17675.8, + "end": 17676.84, + "probability": 0.3386 + }, + { + "start": 17677.34, + "end": 17678.24, + "probability": 0.8139 + }, + { + "start": 17678.44, + "end": 17679.18, + "probability": 0.7686 + }, + { + "start": 17679.28, + "end": 17680.24, + "probability": 0.7829 + }, + { + "start": 17680.82, + "end": 17682.54, + "probability": 0.9517 + }, + { + "start": 17683.24, + "end": 17684.26, + "probability": 0.8746 + }, + { + "start": 17685.24, + "end": 17688.59, + "probability": 0.9211 + }, + { + "start": 17688.64, + "end": 17693.1, + "probability": 0.9902 + }, + { + "start": 17693.84, + "end": 17694.36, + "probability": 0.7277 + }, + { + "start": 17695.06, + "end": 17695.9, + "probability": 0.1272 + }, + { + "start": 17696.84, + "end": 17697.94, + "probability": 0.5882 + }, + { + "start": 17698.56, + "end": 17700.34, + "probability": 0.8825 + }, + { + "start": 17701.04, + "end": 17702.65, + "probability": 0.8115 + }, + { + "start": 17703.76, + "end": 17706.76, + "probability": 0.9155 + }, + { + "start": 17706.82, + "end": 17707.88, + "probability": 0.9155 + }, + { + "start": 17708.58, + "end": 17709.56, + "probability": 0.9816 + }, + { + "start": 17710.26, + "end": 17710.97, + "probability": 0.855 + }, + { + "start": 17712.44, + "end": 17713.08, + "probability": 0.7567 + }, + { + "start": 17713.76, + "end": 17714.44, + "probability": 0.6951 + }, + { + "start": 17714.78, + "end": 17719.52, + "probability": 0.9943 + }, + { + "start": 17719.68, + "end": 17720.0, + "probability": 0.0754 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0222 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0194 + }, + { + "start": 17720.0, + "end": 17720.07, + "probability": 0.3937 + }, + { + "start": 17721.24, + "end": 17724.16, + "probability": 0.8336 + }, + { + "start": 17725.3, + "end": 17727.62, + "probability": 0.8812 + }, + { + "start": 17728.14, + "end": 17729.96, + "probability": 0.9277 + }, + { + "start": 17730.44, + "end": 17731.02, + "probability": 0.7579 + }, + { + "start": 17735.76, + "end": 17737.98, + "probability": 0.8122 + }, + { + "start": 17738.22, + "end": 17739.37, + "probability": 0.8389 + }, + { + "start": 17740.08, + "end": 17740.62, + "probability": 0.8819 + }, + { + "start": 17743.2, + "end": 17743.42, + "probability": 0.8571 + }, + { + "start": 17746.78, + "end": 17749.86, + "probability": 0.7823 + }, + { + "start": 17750.3, + "end": 17752.48, + "probability": 0.8986 + }, + { + "start": 17752.54, + "end": 17755.08, + "probability": 0.9679 + }, + { + "start": 17755.78, + "end": 17758.64, + "probability": 0.9933 + }, + { + "start": 17759.24, + "end": 17761.54, + "probability": 0.6397 + }, + { + "start": 17761.6, + "end": 17764.58, + "probability": 0.7827 + }, + { + "start": 17765.18, + "end": 17768.5, + "probability": 0.8185 + }, + { + "start": 17769.2, + "end": 17771.24, + "probability": 0.6433 + }, + { + "start": 17771.76, + "end": 17772.92, + "probability": 0.9603 + }, + { + "start": 17773.36, + "end": 17777.14, + "probability": 0.9895 + }, + { + "start": 17777.14, + "end": 17780.2, + "probability": 0.9951 + }, + { + "start": 17781.06, + "end": 17784.04, + "probability": 0.99 + }, + { + "start": 17784.14, + "end": 17787.3, + "probability": 0.9868 + }, + { + "start": 17787.8, + "end": 17789.38, + "probability": 0.5338 + }, + { + "start": 17789.94, + "end": 17790.6, + "probability": 0.9697 + }, + { + "start": 17791.16, + "end": 17797.28, + "probability": 0.9965 + }, + { + "start": 17797.3, + "end": 17798.52, + "probability": 0.8139 + }, + { + "start": 17799.16, + "end": 17800.54, + "probability": 0.8048 + }, + { + "start": 17801.3, + "end": 17803.38, + "probability": 0.8695 + }, + { + "start": 17803.86, + "end": 17805.66, + "probability": 0.9953 + }, + { + "start": 17806.08, + "end": 17807.58, + "probability": 0.8416 + }, + { + "start": 17807.96, + "end": 17812.2, + "probability": 0.9685 + }, + { + "start": 17812.6, + "end": 17816.12, + "probability": 0.9518 + }, + { + "start": 17816.5, + "end": 17819.24, + "probability": 0.9973 + }, + { + "start": 17819.56, + "end": 17820.3, + "probability": 0.8338 + }, + { + "start": 17820.94, + "end": 17824.06, + "probability": 0.9036 + }, + { + "start": 17824.5, + "end": 17825.98, + "probability": 0.8053 + }, + { + "start": 17826.76, + "end": 17827.56, + "probability": 0.5781 + }, + { + "start": 17828.02, + "end": 17832.26, + "probability": 0.8467 + }, + { + "start": 17832.58, + "end": 17836.74, + "probability": 0.9558 + }, + { + "start": 17837.16, + "end": 17838.48, + "probability": 0.8739 + }, + { + "start": 17839.02, + "end": 17844.72, + "probability": 0.7255 + }, + { + "start": 17844.72, + "end": 17848.12, + "probability": 0.9651 + }, + { + "start": 17848.22, + "end": 17848.42, + "probability": 0.7554 + }, + { + "start": 17849.12, + "end": 17849.74, + "probability": 0.7382 + }, + { + "start": 17850.4, + "end": 17850.62, + "probability": 0.9214 + }, + { + "start": 17851.28, + "end": 17853.04, + "probability": 0.6281 + }, + { + "start": 17858.0, + "end": 17861.7, + "probability": 0.8904 + }, + { + "start": 17862.4, + "end": 17864.12, + "probability": 0.6649 + }, + { + "start": 17871.66, + "end": 17876.26, + "probability": 0.2345 + }, + { + "start": 17876.29, + "end": 17876.36, + "probability": 0.3531 + }, + { + "start": 17876.68, + "end": 17876.78, + "probability": 0.1284 + }, + { + "start": 17884.68, + "end": 17885.08, + "probability": 0.1826 + }, + { + "start": 17885.08, + "end": 17885.48, + "probability": 0.447 + }, + { + "start": 17885.72, + "end": 17886.06, + "probability": 0.1465 + }, + { + "start": 17888.36, + "end": 17890.26, + "probability": 0.3321 + }, + { + "start": 17890.52, + "end": 17893.54, + "probability": 0.0903 + }, + { + "start": 17894.82, + "end": 17897.0, + "probability": 0.1836 + }, + { + "start": 17901.0, + "end": 17901.8, + "probability": 0.0457 + }, + { + "start": 17905.32, + "end": 17905.32, + "probability": 0.0891 + }, + { + "start": 17905.52, + "end": 17905.52, + "probability": 0.0102 + }, + { + "start": 17912.88, + "end": 17913.22, + "probability": 0.0569 + }, + { + "start": 17913.74, + "end": 17915.32, + "probability": 0.0799 + }, + { + "start": 17915.98, + "end": 17916.5, + "probability": 0.0463 + }, + { + "start": 17916.84, + "end": 17917.02, + "probability": 0.3528 + }, + { + "start": 17917.02, + "end": 17917.51, + "probability": 0.0891 + }, + { + "start": 17918.42, + "end": 17919.54, + "probability": 0.1216 + }, + { + "start": 17938.66, + "end": 17938.66, + "probability": 0.1553 + }, + { + "start": 17938.76, + "end": 17939.58, + "probability": 0.0936 + }, + { + "start": 17939.58, + "end": 17943.3, + "probability": 0.1078 + }, + { + "start": 17944.74, + "end": 17946.6, + "probability": 0.5801 + }, + { + "start": 17947.44, + "end": 17949.77, + "probability": 0.578 + }, + { + "start": 17950.06, + "end": 17952.12, + "probability": 0.8488 + }, + { + "start": 17952.84, + "end": 17955.82, + "probability": 0.9532 + }, + { + "start": 17956.54, + "end": 17958.36, + "probability": 0.603 + }, + { + "start": 17958.96, + "end": 17961.66, + "probability": 0.8096 + }, + { + "start": 17962.5, + "end": 17966.92, + "probability": 0.8793 + }, + { + "start": 17967.6, + "end": 17969.68, + "probability": 0.9976 + }, + { + "start": 17970.22, + "end": 17970.94, + "probability": 0.6447 + }, + { + "start": 17971.1, + "end": 17971.68, + "probability": 0.7008 + }, + { + "start": 17972.18, + "end": 17974.5, + "probability": 0.9641 + }, + { + "start": 17975.1, + "end": 17978.64, + "probability": 0.885 + }, + { + "start": 17978.68, + "end": 17979.48, + "probability": 0.9178 + }, + { + "start": 17980.02, + "end": 17983.8, + "probability": 0.9885 + }, + { + "start": 17985.54, + "end": 17988.22, + "probability": 0.8301 + }, + { + "start": 17989.04, + "end": 17991.18, + "probability": 0.767 + }, + { + "start": 17991.74, + "end": 17996.08, + "probability": 0.8914 + }, + { + "start": 17997.34, + "end": 18001.0, + "probability": 0.7802 + }, + { + "start": 18001.0, + "end": 18002.26, + "probability": 0.7146 + }, + { + "start": 18002.86, + "end": 18005.48, + "probability": 0.7386 + }, + { + "start": 18006.2, + "end": 18009.12, + "probability": 0.9416 + }, + { + "start": 18009.68, + "end": 18011.56, + "probability": 0.9593 + }, + { + "start": 18020.2, + "end": 18023.2, + "probability": 0.8365 + }, + { + "start": 18024.4, + "end": 18026.62, + "probability": 0.993 + }, + { + "start": 18028.98, + "end": 18031.16, + "probability": 0.942 + }, + { + "start": 18050.74, + "end": 18050.74, + "probability": 0.697 + }, + { + "start": 18050.74, + "end": 18052.36, + "probability": 0.764 + }, + { + "start": 18052.6, + "end": 18053.74, + "probability": 0.6282 + }, + { + "start": 18054.62, + "end": 18056.66, + "probability": 0.935 + }, + { + "start": 18058.3, + "end": 18059.24, + "probability": 0.9824 + }, + { + "start": 18060.0, + "end": 18060.87, + "probability": 0.9722 + }, + { + "start": 18061.88, + "end": 18064.04, + "probability": 0.8324 + }, + { + "start": 18065.4, + "end": 18066.58, + "probability": 0.7923 + }, + { + "start": 18067.6, + "end": 18071.8, + "probability": 0.7316 + }, + { + "start": 18072.82, + "end": 18074.58, + "probability": 0.8998 + }, + { + "start": 18075.5, + "end": 18079.86, + "probability": 0.9809 + }, + { + "start": 18080.6, + "end": 18085.3, + "probability": 0.9479 + }, + { + "start": 18085.78, + "end": 18088.8, + "probability": 0.7722 + }, + { + "start": 18089.36, + "end": 18090.36, + "probability": 0.6002 + }, + { + "start": 18091.16, + "end": 18095.3, + "probability": 0.9799 + }, + { + "start": 18095.7, + "end": 18097.36, + "probability": 0.95 + }, + { + "start": 18098.2, + "end": 18098.56, + "probability": 0.7974 + }, + { + "start": 18099.2, + "end": 18104.22, + "probability": 0.9845 + }, + { + "start": 18104.92, + "end": 18105.92, + "probability": 0.6452 + }, + { + "start": 18106.58, + "end": 18110.84, + "probability": 0.8729 + }, + { + "start": 18111.4, + "end": 18112.62, + "probability": 0.967 + }, + { + "start": 18113.4, + "end": 18113.98, + "probability": 0.7925 + }, + { + "start": 18114.06, + "end": 18115.28, + "probability": 0.9431 + }, + { + "start": 18115.76, + "end": 18116.54, + "probability": 0.8911 + }, + { + "start": 18117.84, + "end": 18119.83, + "probability": 0.9526 + }, + { + "start": 18120.44, + "end": 18121.54, + "probability": 0.595 + }, + { + "start": 18121.92, + "end": 18122.5, + "probability": 0.8751 + }, + { + "start": 18123.8, + "end": 18124.22, + "probability": 0.8958 + }, + { + "start": 18124.86, + "end": 18125.46, + "probability": 0.6926 + }, + { + "start": 18126.0, + "end": 18127.0, + "probability": 0.7935 + }, + { + "start": 18127.56, + "end": 18128.22, + "probability": 0.5605 + }, + { + "start": 18129.36, + "end": 18131.72, + "probability": 0.9795 + }, + { + "start": 18132.36, + "end": 18136.92, + "probability": 0.9698 + }, + { + "start": 18137.96, + "end": 18139.82, + "probability": 0.4591 + }, + { + "start": 18140.54, + "end": 18144.2, + "probability": 0.9279 + }, + { + "start": 18145.74, + "end": 18147.64, + "probability": 0.9703 + }, + { + "start": 18148.34, + "end": 18148.94, + "probability": 0.8486 + }, + { + "start": 18149.5, + "end": 18150.86, + "probability": 0.8849 + }, + { + "start": 18151.48, + "end": 18154.88, + "probability": 0.7896 + }, + { + "start": 18155.06, + "end": 18155.3, + "probability": 0.6318 + }, + { + "start": 18155.6, + "end": 18159.17, + "probability": 0.9938 + }, + { + "start": 18159.86, + "end": 18163.12, + "probability": 0.9962 + }, + { + "start": 18163.6, + "end": 18165.07, + "probability": 0.9813 + }, + { + "start": 18165.92, + "end": 18169.38, + "probability": 0.9953 + }, + { + "start": 18169.86, + "end": 18170.72, + "probability": 0.8469 + }, + { + "start": 18170.8, + "end": 18177.32, + "probability": 0.9562 + }, + { + "start": 18177.92, + "end": 18181.41, + "probability": 0.9907 + }, + { + "start": 18182.42, + "end": 18184.16, + "probability": 0.9641 + }, + { + "start": 18184.86, + "end": 18189.44, + "probability": 0.9875 + }, + { + "start": 18190.08, + "end": 18192.68, + "probability": 0.9364 + }, + { + "start": 18193.66, + "end": 18197.86, + "probability": 0.9926 + }, + { + "start": 18198.24, + "end": 18202.92, + "probability": 0.9913 + }, + { + "start": 18203.92, + "end": 18205.5, + "probability": 0.8132 + }, + { + "start": 18206.12, + "end": 18208.08, + "probability": 0.8602 + }, + { + "start": 18208.28, + "end": 18212.02, + "probability": 0.8365 + }, + { + "start": 18212.74, + "end": 18217.36, + "probability": 0.9599 + }, + { + "start": 18218.06, + "end": 18221.04, + "probability": 0.9659 + }, + { + "start": 18221.98, + "end": 18227.12, + "probability": 0.9942 + }, + { + "start": 18227.4, + "end": 18231.74, + "probability": 0.9079 + }, + { + "start": 18232.46, + "end": 18234.0, + "probability": 0.5082 + }, + { + "start": 18234.46, + "end": 18236.44, + "probability": 0.9946 + }, + { + "start": 18237.02, + "end": 18239.4, + "probability": 0.9508 + }, + { + "start": 18239.94, + "end": 18241.0, + "probability": 0.7077 + }, + { + "start": 18241.56, + "end": 18244.94, + "probability": 0.9335 + }, + { + "start": 18245.52, + "end": 18247.64, + "probability": 0.796 + }, + { + "start": 18247.72, + "end": 18248.42, + "probability": 0.5232 + }, + { + "start": 18248.42, + "end": 18252.24, + "probability": 0.8867 + }, + { + "start": 18252.38, + "end": 18252.99, + "probability": 0.9814 + }, + { + "start": 18253.52, + "end": 18254.04, + "probability": 0.7185 + }, + { + "start": 18254.06, + "end": 18256.58, + "probability": 0.9199 + }, + { + "start": 18265.42, + "end": 18266.0, + "probability": 0.7187 + }, + { + "start": 18266.56, + "end": 18268.0, + "probability": 0.4232 + }, + { + "start": 18269.92, + "end": 18271.66, + "probability": 0.8633 + }, + { + "start": 18273.46, + "end": 18274.42, + "probability": 0.9585 + }, + { + "start": 18274.6, + "end": 18275.92, + "probability": 0.9567 + }, + { + "start": 18276.22, + "end": 18277.48, + "probability": 0.9796 + }, + { + "start": 18278.66, + "end": 18281.44, + "probability": 0.9922 + }, + { + "start": 18282.18, + "end": 18284.52, + "probability": 0.9509 + }, + { + "start": 18284.54, + "end": 18287.66, + "probability": 0.9987 + }, + { + "start": 18288.8, + "end": 18289.2, + "probability": 0.8965 + }, + { + "start": 18289.74, + "end": 18292.78, + "probability": 0.9919 + }, + { + "start": 18293.74, + "end": 18293.94, + "probability": 0.1739 + }, + { + "start": 18293.94, + "end": 18296.28, + "probability": 0.8434 + }, + { + "start": 18296.92, + "end": 18299.2, + "probability": 0.9868 + }, + { + "start": 18299.96, + "end": 18301.34, + "probability": 0.7869 + }, + { + "start": 18302.0, + "end": 18306.88, + "probability": 0.9375 + }, + { + "start": 18307.94, + "end": 18309.02, + "probability": 0.0688 + }, + { + "start": 18309.02, + "end": 18309.12, + "probability": 0.1127 + }, + { + "start": 18309.12, + "end": 18309.4, + "probability": 0.1558 + }, + { + "start": 18309.94, + "end": 18311.08, + "probability": 0.8273 + }, + { + "start": 18311.76, + "end": 18311.76, + "probability": 0.2559 + }, + { + "start": 18311.76, + "end": 18311.76, + "probability": 0.6127 + }, + { + "start": 18311.76, + "end": 18311.76, + "probability": 0.3478 + }, + { + "start": 18311.76, + "end": 18313.96, + "probability": 0.4225 + }, + { + "start": 18314.12, + "end": 18314.32, + "probability": 0.7574 + }, + { + "start": 18314.6, + "end": 18315.38, + "probability": 0.908 + }, + { + "start": 18315.84, + "end": 18319.36, + "probability": 0.9915 + }, + { + "start": 18320.0, + "end": 18320.7, + "probability": 0.7591 + }, + { + "start": 18321.52, + "end": 18325.74, + "probability": 0.7247 + }, + { + "start": 18325.74, + "end": 18329.66, + "probability": 0.351 + }, + { + "start": 18330.4, + "end": 18331.2, + "probability": 0.1057 + }, + { + "start": 18331.2, + "end": 18331.2, + "probability": 0.2775 + }, + { + "start": 18331.54, + "end": 18331.54, + "probability": 0.0249 + }, + { + "start": 18331.54, + "end": 18331.54, + "probability": 0.087 + }, + { + "start": 18331.54, + "end": 18334.09, + "probability": 0.4099 + }, + { + "start": 18334.34, + "end": 18339.36, + "probability": 0.9772 + }, + { + "start": 18339.46, + "end": 18340.72, + "probability": 0.0497 + }, + { + "start": 18341.06, + "end": 18342.56, + "probability": 0.1697 + }, + { + "start": 18342.66, + "end": 18343.12, + "probability": 0.5378 + }, + { + "start": 18343.98, + "end": 18346.56, + "probability": 0.1037 + }, + { + "start": 18347.7, + "end": 18348.32, + "probability": 0.0428 + }, + { + "start": 18348.88, + "end": 18348.88, + "probability": 0.031 + }, + { + "start": 18348.88, + "end": 18348.88, + "probability": 0.056 + }, + { + "start": 18348.88, + "end": 18349.52, + "probability": 0.0307 + }, + { + "start": 18350.34, + "end": 18350.34, + "probability": 0.088 + }, + { + "start": 18350.34, + "end": 18354.22, + "probability": 0.5367 + }, + { + "start": 18354.84, + "end": 18355.74, + "probability": 0.283 + }, + { + "start": 18355.92, + "end": 18356.8, + "probability": 0.3193 + }, + { + "start": 18357.28, + "end": 18362.34, + "probability": 0.4865 + }, + { + "start": 18362.78, + "end": 18366.86, + "probability": 0.5492 + }, + { + "start": 18367.4, + "end": 18368.56, + "probability": 0.3423 + }, + { + "start": 18369.18, + "end": 18370.74, + "probability": 0.4237 + }, + { + "start": 18371.12, + "end": 18373.68, + "probability": 0.6331 + }, + { + "start": 18374.86, + "end": 18375.62, + "probability": 0.8685 + }, + { + "start": 18376.66, + "end": 18379.52, + "probability": 0.9402 + }, + { + "start": 18379.74, + "end": 18383.28, + "probability": 0.9762 + }, + { + "start": 18383.28, + "end": 18388.12, + "probability": 0.822 + }, + { + "start": 18388.46, + "end": 18389.84, + "probability": 0.9362 + }, + { + "start": 18390.26, + "end": 18395.32, + "probability": 0.9922 + }, + { + "start": 18395.46, + "end": 18396.44, + "probability": 0.0519 + }, + { + "start": 18397.12, + "end": 18397.4, + "probability": 0.0975 + }, + { + "start": 18397.4, + "end": 18401.88, + "probability": 0.7716 + }, + { + "start": 18402.5, + "end": 18403.4, + "probability": 0.8946 + }, + { + "start": 18404.1, + "end": 18404.78, + "probability": 0.9873 + }, + { + "start": 18406.65, + "end": 18409.36, + "probability": 0.7233 + }, + { + "start": 18409.36, + "end": 18409.96, + "probability": 0.2573 + }, + { + "start": 18410.02, + "end": 18411.8, + "probability": 0.7698 + }, + { + "start": 18411.88, + "end": 18415.34, + "probability": 0.9423 + }, + { + "start": 18415.76, + "end": 18421.7, + "probability": 0.913 + }, + { + "start": 18422.1, + "end": 18423.54, + "probability": 0.7128 + }, + { + "start": 18424.38, + "end": 18425.76, + "probability": 0.8808 + }, + { + "start": 18426.52, + "end": 18426.84, + "probability": 0.7678 + }, + { + "start": 18427.3, + "end": 18429.72, + "probability": 0.9683 + }, + { + "start": 18429.86, + "end": 18430.98, + "probability": 0.7719 + }, + { + "start": 18432.06, + "end": 18433.56, + "probability": 0.9858 + }, + { + "start": 18434.28, + "end": 18437.14, + "probability": 0.9873 + }, + { + "start": 18438.38, + "end": 18439.66, + "probability": 0.986 + }, + { + "start": 18440.42, + "end": 18443.7, + "probability": 0.9563 + }, + { + "start": 18444.56, + "end": 18449.24, + "probability": 0.8867 + }, + { + "start": 18449.58, + "end": 18450.92, + "probability": 0.8605 + }, + { + "start": 18451.28, + "end": 18452.24, + "probability": 0.5353 + }, + { + "start": 18452.62, + "end": 18456.46, + "probability": 0.9839 + }, + { + "start": 18456.54, + "end": 18456.88, + "probability": 0.7113 + }, + { + "start": 18456.94, + "end": 18457.38, + "probability": 0.3343 + }, + { + "start": 18457.66, + "end": 18458.4, + "probability": 0.8711 + }, + { + "start": 18458.86, + "end": 18460.93, + "probability": 0.9663 + }, + { + "start": 18461.26, + "end": 18462.1, + "probability": 0.8113 + }, + { + "start": 18462.68, + "end": 18464.52, + "probability": 0.9944 + }, + { + "start": 18465.16, + "end": 18466.8, + "probability": 0.9676 + }, + { + "start": 18466.92, + "end": 18468.04, + "probability": 0.754 + }, + { + "start": 18468.1, + "end": 18470.12, + "probability": 0.9542 + }, + { + "start": 18470.26, + "end": 18470.42, + "probability": 0.3491 + }, + { + "start": 18470.42, + "end": 18470.98, + "probability": 0.2616 + }, + { + "start": 18475.3, + "end": 18476.0, + "probability": 0.046 + }, + { + "start": 18476.68, + "end": 18478.7, + "probability": 0.5155 + }, + { + "start": 18479.42, + "end": 18481.5, + "probability": 0.6745 + }, + { + "start": 18482.38, + "end": 18483.3, + "probability": 0.1511 + }, + { + "start": 18484.66, + "end": 18485.92, + "probability": 0.7228 + }, + { + "start": 18487.08, + "end": 18491.6, + "probability": 0.9867 + }, + { + "start": 18491.6, + "end": 18494.04, + "probability": 0.9568 + }, + { + "start": 18494.36, + "end": 18500.8, + "probability": 0.1611 + }, + { + "start": 18503.44, + "end": 18507.7, + "probability": 0.9966 + }, + { + "start": 18508.06, + "end": 18508.82, + "probability": 0.7021 + }, + { + "start": 18509.86, + "end": 18518.86, + "probability": 0.0986 + }, + { + "start": 18519.08, + "end": 18521.1, + "probability": 0.0295 + }, + { + "start": 18521.56, + "end": 18522.42, + "probability": 0.1298 + }, + { + "start": 18522.42, + "end": 18522.42, + "probability": 0.1789 + }, + { + "start": 18522.42, + "end": 18524.58, + "probability": 0.6471 + }, + { + "start": 18524.62, + "end": 18527.22, + "probability": 0.9928 + }, + { + "start": 18533.5, + "end": 18538.04, + "probability": 0.95 + }, + { + "start": 18545.72, + "end": 18550.7, + "probability": 0.9723 + }, + { + "start": 18551.16, + "end": 18552.43, + "probability": 0.8901 + }, + { + "start": 18552.96, + "end": 18555.4, + "probability": 0.4912 + }, + { + "start": 18555.5, + "end": 18556.82, + "probability": 0.7865 + }, + { + "start": 18558.17, + "end": 18563.38, + "probability": 0.9946 + }, + { + "start": 18564.3, + "end": 18564.76, + "probability": 0.5897 + }, + { + "start": 18565.38, + "end": 18571.46, + "probability": 0.0746 + }, + { + "start": 18572.36, + "end": 18574.1, + "probability": 0.0411 + }, + { + "start": 18575.6, + "end": 18576.74, + "probability": 0.7284 + }, + { + "start": 18577.82, + "end": 18578.22, + "probability": 0.2558 + }, + { + "start": 18578.22, + "end": 18579.12, + "probability": 0.406 + }, + { + "start": 18579.3, + "end": 18579.56, + "probability": 0.9397 + }, + { + "start": 18579.73, + "end": 18582.38, + "probability": 0.9866 + }, + { + "start": 18582.38, + "end": 18586.78, + "probability": 0.9979 + }, + { + "start": 18589.74, + "end": 18591.7, + "probability": 0.7342 + }, + { + "start": 18592.66, + "end": 18594.38, + "probability": 0.9897 + }, + { + "start": 18594.48, + "end": 18596.58, + "probability": 0.7971 + }, + { + "start": 18597.4, + "end": 18599.72, + "probability": 0.5259 + }, + { + "start": 18600.54, + "end": 18603.98, + "probability": 0.9648 + }, + { + "start": 18604.4, + "end": 18607.02, + "probability": 0.983 + }, + { + "start": 18607.6, + "end": 18608.78, + "probability": 0.9763 + }, + { + "start": 18611.52, + "end": 18612.3, + "probability": 0.6512 + }, + { + "start": 18612.76, + "end": 18614.9, + "probability": 0.7533 + }, + { + "start": 18615.5, + "end": 18617.13, + "probability": 0.9844 + }, + { + "start": 18618.5, + "end": 18621.96, + "probability": 0.9884 + }, + { + "start": 18622.1, + "end": 18623.04, + "probability": 0.9873 + }, + { + "start": 18623.74, + "end": 18626.64, + "probability": 0.9873 + }, + { + "start": 18627.4, + "end": 18631.54, + "probability": 0.9588 + }, + { + "start": 18632.6, + "end": 18634.4, + "probability": 0.9493 + }, + { + "start": 18635.14, + "end": 18636.18, + "probability": 0.9874 + }, + { + "start": 18637.22, + "end": 18643.48, + "probability": 0.9912 + }, + { + "start": 18644.58, + "end": 18645.14, + "probability": 0.9666 + }, + { + "start": 18645.32, + "end": 18645.5, + "probability": 0.871 + }, + { + "start": 18645.76, + "end": 18649.42, + "probability": 0.9972 + }, + { + "start": 18649.42, + "end": 18653.64, + "probability": 0.9867 + }, + { + "start": 18654.86, + "end": 18660.4, + "probability": 0.9932 + }, + { + "start": 18660.98, + "end": 18661.88, + "probability": 0.7226 + }, + { + "start": 18662.26, + "end": 18663.52, + "probability": 0.6697 + }, + { + "start": 18663.8, + "end": 18666.94, + "probability": 0.9598 + }, + { + "start": 18668.06, + "end": 18672.14, + "probability": 0.9728 + }, + { + "start": 18672.14, + "end": 18676.1, + "probability": 0.9956 + }, + { + "start": 18676.8, + "end": 18680.88, + "probability": 0.9974 + }, + { + "start": 18681.54, + "end": 18686.98, + "probability": 0.9764 + }, + { + "start": 18688.08, + "end": 18691.8, + "probability": 0.9626 + }, + { + "start": 18692.04, + "end": 18693.54, + "probability": 0.8751 + }, + { + "start": 18694.16, + "end": 18695.37, + "probability": 0.9763 + }, + { + "start": 18696.32, + "end": 18697.96, + "probability": 0.9973 + }, + { + "start": 18698.36, + "end": 18699.02, + "probability": 0.991 + }, + { + "start": 18699.2, + "end": 18703.8, + "probability": 0.9971 + }, + { + "start": 18704.3, + "end": 18706.76, + "probability": 0.9912 + }, + { + "start": 18707.92, + "end": 18708.44, + "probability": 0.7754 + }, + { + "start": 18709.02, + "end": 18713.5, + "probability": 0.9985 + }, + { + "start": 18713.9, + "end": 18717.32, + "probability": 0.9404 + }, + { + "start": 18717.84, + "end": 18719.1, + "probability": 0.9045 + }, + { + "start": 18719.48, + "end": 18722.44, + "probability": 0.962 + }, + { + "start": 18723.42, + "end": 18723.76, + "probability": 0.8164 + }, + { + "start": 18725.06, + "end": 18727.34, + "probability": 0.9452 + }, + { + "start": 18727.92, + "end": 18733.52, + "probability": 0.9463 + }, + { + "start": 18735.06, + "end": 18738.92, + "probability": 0.9788 + }, + { + "start": 18739.74, + "end": 18741.36, + "probability": 0.9928 + }, + { + "start": 18742.6, + "end": 18745.74, + "probability": 0.984 + }, + { + "start": 18746.36, + "end": 18747.18, + "probability": 0.9662 + }, + { + "start": 18748.26, + "end": 18748.82, + "probability": 0.9604 + }, + { + "start": 18749.76, + "end": 18753.36, + "probability": 0.9931 + }, + { + "start": 18753.96, + "end": 18759.58, + "probability": 0.9959 + }, + { + "start": 18759.58, + "end": 18764.8, + "probability": 0.9993 + }, + { + "start": 18765.44, + "end": 18767.12, + "probability": 0.9382 + }, + { + "start": 18767.62, + "end": 18769.73, + "probability": 0.9834 + }, + { + "start": 18769.76, + "end": 18773.64, + "probability": 0.982 + }, + { + "start": 18774.44, + "end": 18777.64, + "probability": 0.8684 + }, + { + "start": 18778.18, + "end": 18780.84, + "probability": 0.9783 + }, + { + "start": 18781.5, + "end": 18787.32, + "probability": 0.9994 + }, + { + "start": 18787.58, + "end": 18788.58, + "probability": 0.8199 + }, + { + "start": 18789.74, + "end": 18790.5, + "probability": 0.4043 + }, + { + "start": 18790.6, + "end": 18796.78, + "probability": 0.9821 + }, + { + "start": 18797.08, + "end": 18798.52, + "probability": 0.7432 + }, + { + "start": 18798.82, + "end": 18799.54, + "probability": 0.747 + }, + { + "start": 18799.96, + "end": 18802.88, + "probability": 0.9699 + }, + { + "start": 18803.24, + "end": 18803.54, + "probability": 0.332 + }, + { + "start": 18803.7, + "end": 18805.64, + "probability": 0.904 + }, + { + "start": 18805.78, + "end": 18806.58, + "probability": 0.8648 + }, + { + "start": 18806.98, + "end": 18809.5, + "probability": 0.9637 + }, + { + "start": 18810.04, + "end": 18811.94, + "probability": 0.9464 + }, + { + "start": 18812.62, + "end": 18815.98, + "probability": 0.8926 + }, + { + "start": 18818.42, + "end": 18821.74, + "probability": 0.9092 + }, + { + "start": 18822.54, + "end": 18823.84, + "probability": 0.9622 + }, + { + "start": 18824.82, + "end": 18828.1, + "probability": 0.9949 + }, + { + "start": 18828.1, + "end": 18831.52, + "probability": 0.996 + }, + { + "start": 18832.42, + "end": 18833.66, + "probability": 0.9609 + }, + { + "start": 18834.48, + "end": 18839.16, + "probability": 0.9972 + }, + { + "start": 18839.78, + "end": 18842.52, + "probability": 0.9794 + }, + { + "start": 18842.52, + "end": 18845.88, + "probability": 0.9537 + }, + { + "start": 18847.44, + "end": 18849.42, + "probability": 0.88 + }, + { + "start": 18849.54, + "end": 18853.1, + "probability": 0.9877 + }, + { + "start": 18853.68, + "end": 18855.6, + "probability": 0.9873 + }, + { + "start": 18857.74, + "end": 18857.94, + "probability": 0.4509 + }, + { + "start": 18858.96, + "end": 18862.76, + "probability": 0.9648 + }, + { + "start": 18863.02, + "end": 18864.0, + "probability": 0.3097 + }, + { + "start": 18864.96, + "end": 18867.32, + "probability": 0.8712 + }, + { + "start": 18867.62, + "end": 18870.4, + "probability": 0.8645 + }, + { + "start": 18871.04, + "end": 18872.8, + "probability": 0.9922 + }, + { + "start": 18873.2, + "end": 18874.06, + "probability": 0.9478 + }, + { + "start": 18874.4, + "end": 18878.62, + "probability": 0.986 + }, + { + "start": 18879.34, + "end": 18880.62, + "probability": 0.9717 + }, + { + "start": 18881.26, + "end": 18882.93, + "probability": 0.9638 + }, + { + "start": 18883.9, + "end": 18886.44, + "probability": 0.9932 + }, + { + "start": 18889.92, + "end": 18892.84, + "probability": 0.8593 + }, + { + "start": 18892.84, + "end": 18893.77, + "probability": 0.7022 + }, + { + "start": 18894.92, + "end": 18898.94, + "probability": 0.8275 + }, + { + "start": 18899.68, + "end": 18901.78, + "probability": 0.7953 + }, + { + "start": 18902.32, + "end": 18904.22, + "probability": 0.9543 + }, + { + "start": 18904.74, + "end": 18906.6, + "probability": 0.9724 + }, + { + "start": 18907.26, + "end": 18911.42, + "probability": 0.9541 + }, + { + "start": 18912.22, + "end": 18917.72, + "probability": 0.9335 + }, + { + "start": 18917.72, + "end": 18921.7, + "probability": 0.9947 + }, + { + "start": 18922.32, + "end": 18923.02, + "probability": 0.8026 + }, + { + "start": 18923.56, + "end": 18926.54, + "probability": 0.9959 + }, + { + "start": 18927.2, + "end": 18930.64, + "probability": 0.8799 + }, + { + "start": 18931.5, + "end": 18934.66, + "probability": 0.9904 + }, + { + "start": 18934.66, + "end": 18939.55, + "probability": 0.9912 + }, + { + "start": 18940.6, + "end": 18941.9, + "probability": 0.9654 + }, + { + "start": 18942.74, + "end": 18944.22, + "probability": 0.9711 + }, + { + "start": 18945.12, + "end": 18947.0, + "probability": 0.9863 + }, + { + "start": 18947.54, + "end": 18953.92, + "probability": 0.9985 + }, + { + "start": 18954.88, + "end": 18955.26, + "probability": 0.6857 + }, + { + "start": 18956.12, + "end": 18960.3, + "probability": 0.9752 + }, + { + "start": 18960.82, + "end": 18962.5, + "probability": 0.9963 + }, + { + "start": 18963.04, + "end": 18966.08, + "probability": 0.7684 + }, + { + "start": 18966.2, + "end": 18968.34, + "probability": 0.8905 + }, + { + "start": 18969.4, + "end": 18970.16, + "probability": 0.7767 + }, + { + "start": 18971.08, + "end": 18972.06, + "probability": 0.9152 + }, + { + "start": 18972.12, + "end": 18972.96, + "probability": 0.9431 + }, + { + "start": 18973.2, + "end": 18977.94, + "probability": 0.9372 + }, + { + "start": 18978.64, + "end": 18981.58, + "probability": 0.9964 + }, + { + "start": 18982.34, + "end": 18983.3, + "probability": 0.5638 + }, + { + "start": 18983.88, + "end": 18985.3, + "probability": 0.5486 + }, + { + "start": 18986.06, + "end": 18989.18, + "probability": 0.9631 + }, + { + "start": 18989.18, + "end": 18992.52, + "probability": 0.8076 + }, + { + "start": 18993.04, + "end": 18993.58, + "probability": 0.5717 + }, + { + "start": 18994.14, + "end": 18994.88, + "probability": 0.7441 + }, + { + "start": 18994.96, + "end": 18995.59, + "probability": 0.9658 + }, + { + "start": 18996.18, + "end": 18997.68, + "probability": 0.8403 + }, + { + "start": 18998.34, + "end": 18998.72, + "probability": 0.8866 + }, + { + "start": 18999.32, + "end": 19000.8, + "probability": 0.9834 + }, + { + "start": 19002.18, + "end": 19003.44, + "probability": 0.9477 + }, + { + "start": 19003.7, + "end": 19005.77, + "probability": 0.9889 + }, + { + "start": 19005.88, + "end": 19007.68, + "probability": 0.9715 + }, + { + "start": 19008.16, + "end": 19012.06, + "probability": 0.9976 + }, + { + "start": 19012.72, + "end": 19013.48, + "probability": 0.7667 + }, + { + "start": 19014.36, + "end": 19016.96, + "probability": 0.9941 + }, + { + "start": 19017.52, + "end": 19019.92, + "probability": 0.8615 + }, + { + "start": 19021.34, + "end": 19022.78, + "probability": 0.8769 + }, + { + "start": 19023.86, + "end": 19026.7, + "probability": 0.9974 + }, + { + "start": 19026.7, + "end": 19029.42, + "probability": 0.9966 + }, + { + "start": 19032.18, + "end": 19033.44, + "probability": 0.9757 + }, + { + "start": 19034.2, + "end": 19035.32, + "probability": 0.8867 + }, + { + "start": 19035.74, + "end": 19038.65, + "probability": 0.9986 + }, + { + "start": 19039.9, + "end": 19040.72, + "probability": 0.894 + }, + { + "start": 19041.42, + "end": 19046.24, + "probability": 0.9785 + }, + { + "start": 19046.8, + "end": 19049.42, + "probability": 0.9465 + }, + { + "start": 19050.28, + "end": 19051.08, + "probability": 0.9658 + }, + { + "start": 19051.68, + "end": 19052.86, + "probability": 0.94 + }, + { + "start": 19053.58, + "end": 19054.98, + "probability": 0.8385 + }, + { + "start": 19056.7, + "end": 19058.74, + "probability": 0.9885 + }, + { + "start": 19059.22, + "end": 19061.24, + "probability": 0.9608 + }, + { + "start": 19061.82, + "end": 19062.46, + "probability": 0.9588 + }, + { + "start": 19063.06, + "end": 19064.14, + "probability": 0.7157 + }, + { + "start": 19064.26, + "end": 19064.94, + "probability": 0.92 + }, + { + "start": 19065.54, + "end": 19068.1, + "probability": 0.9851 + }, + { + "start": 19068.4, + "end": 19069.12, + "probability": 0.9175 + }, + { + "start": 19069.22, + "end": 19069.8, + "probability": 0.8695 + }, + { + "start": 19070.2, + "end": 19072.12, + "probability": 0.8628 + }, + { + "start": 19073.34, + "end": 19074.64, + "probability": 0.9708 + }, + { + "start": 19074.72, + "end": 19076.62, + "probability": 0.9749 + }, + { + "start": 19077.02, + "end": 19080.71, + "probability": 0.9822 + }, + { + "start": 19081.88, + "end": 19082.94, + "probability": 0.7999 + }, + { + "start": 19083.14, + "end": 19087.18, + "probability": 0.9726 + }, + { + "start": 19087.92, + "end": 19091.8, + "probability": 0.8334 + }, + { + "start": 19092.4, + "end": 19094.72, + "probability": 0.9836 + }, + { + "start": 19095.66, + "end": 19097.92, + "probability": 0.9028 + }, + { + "start": 19098.44, + "end": 19100.54, + "probability": 0.9672 + }, + { + "start": 19101.24, + "end": 19105.64, + "probability": 0.936 + }, + { + "start": 19106.52, + "end": 19107.16, + "probability": 0.9805 + }, + { + "start": 19107.74, + "end": 19108.38, + "probability": 0.9005 + }, + { + "start": 19108.66, + "end": 19110.5, + "probability": 0.9282 + }, + { + "start": 19111.22, + "end": 19112.58, + "probability": 0.672 + }, + { + "start": 19113.52, + "end": 19113.56, + "probability": 0.7305 + }, + { + "start": 19113.56, + "end": 19113.56, + "probability": 0.1615 + }, + { + "start": 19132.88, + "end": 19133.06, + "probability": 0.1339 + }, + { + "start": 19133.5, + "end": 19134.06, + "probability": 0.1871 + }, + { + "start": 19134.06, + "end": 19134.46, + "probability": 0.0578 + }, + { + "start": 19136.22, + "end": 19137.36, + "probability": 0.088 + }, + { + "start": 19156.82, + "end": 19159.06, + "probability": 0.3473 + }, + { + "start": 19160.26, + "end": 19161.04, + "probability": 0.7687 + }, + { + "start": 19162.28, + "end": 19167.12, + "probability": 0.502 + }, + { + "start": 19168.2, + "end": 19172.14, + "probability": 0.9038 + }, + { + "start": 19172.5, + "end": 19172.98, + "probability": 0.9401 + }, + { + "start": 19174.24, + "end": 19176.24, + "probability": 0.9959 + }, + { + "start": 19176.9, + "end": 19179.02, + "probability": 0.9985 + }, + { + "start": 19179.54, + "end": 19182.08, + "probability": 0.9636 + }, + { + "start": 19182.84, + "end": 19185.26, + "probability": 0.9694 + }, + { + "start": 19186.0, + "end": 19188.32, + "probability": 0.9897 + }, + { + "start": 19190.08, + "end": 19192.14, + "probability": 0.983 + }, + { + "start": 19193.24, + "end": 19197.38, + "probability": 0.9894 + }, + { + "start": 19198.22, + "end": 19200.88, + "probability": 0.9288 + }, + { + "start": 19201.96, + "end": 19202.5, + "probability": 0.8618 + }, + { + "start": 19203.6, + "end": 19207.46, + "probability": 0.9326 + }, + { + "start": 19207.5, + "end": 19209.1, + "probability": 0.9926 + }, + { + "start": 19209.78, + "end": 19215.06, + "probability": 0.9923 + }, + { + "start": 19215.18, + "end": 19218.06, + "probability": 0.3056 + }, + { + "start": 19218.28, + "end": 19219.78, + "probability": 0.8167 + }, + { + "start": 19220.19, + "end": 19223.72, + "probability": 0.8613 + }, + { + "start": 19223.78, + "end": 19224.96, + "probability": 0.4188 + }, + { + "start": 19226.44, + "end": 19227.52, + "probability": 0.8137 + }, + { + "start": 19234.54, + "end": 19236.84, + "probability": 0.862 + }, + { + "start": 19237.72, + "end": 19240.24, + "probability": 0.7281 + }, + { + "start": 19241.4, + "end": 19243.96, + "probability": 0.9775 + }, + { + "start": 19245.24, + "end": 19248.46, + "probability": 0.9948 + }, + { + "start": 19249.52, + "end": 19252.52, + "probability": 0.9855 + }, + { + "start": 19253.6, + "end": 19257.86, + "probability": 0.9945 + }, + { + "start": 19264.18, + "end": 19265.98, + "probability": 0.843 + }, + { + "start": 19266.06, + "end": 19269.54, + "probability": 0.8198 + }, + { + "start": 19270.52, + "end": 19273.82, + "probability": 0.9812 + }, + { + "start": 19274.04, + "end": 19274.34, + "probability": 0.5344 + }, + { + "start": 19275.6, + "end": 19277.54, + "probability": 0.8978 + }, + { + "start": 19279.1, + "end": 19280.8, + "probability": 0.4869 + }, + { + "start": 19281.82, + "end": 19283.28, + "probability": 0.9986 + }, + { + "start": 19287.4, + "end": 19291.94, + "probability": 0.9549 + }, + { + "start": 19291.94, + "end": 19295.74, + "probability": 0.9773 + }, + { + "start": 19296.54, + "end": 19297.34, + "probability": 0.8886 + }, + { + "start": 19298.6, + "end": 19302.34, + "probability": 0.8888 + }, + { + "start": 19302.54, + "end": 19304.62, + "probability": 0.8073 + }, + { + "start": 19305.46, + "end": 19307.1, + "probability": 0.9948 + }, + { + "start": 19307.98, + "end": 19308.48, + "probability": 0.8822 + }, + { + "start": 19309.66, + "end": 19312.0, + "probability": 0.998 + }, + { + "start": 19312.86, + "end": 19314.32, + "probability": 0.9565 + }, + { + "start": 19315.12, + "end": 19316.16, + "probability": 0.9762 + }, + { + "start": 19317.6, + "end": 19319.42, + "probability": 0.8309 + }, + { + "start": 19320.36, + "end": 19322.74, + "probability": 0.5907 + }, + { + "start": 19323.7, + "end": 19326.28, + "probability": 0.6951 + }, + { + "start": 19326.28, + "end": 19329.04, + "probability": 0.9954 + }, + { + "start": 19330.02, + "end": 19330.02, + "probability": 0.0001 + }, + { + "start": 19332.26, + "end": 19333.2, + "probability": 0.1465 + }, + { + "start": 19338.4, + "end": 19341.74, + "probability": 0.6901 + }, + { + "start": 19342.44, + "end": 19342.86, + "probability": 0.2098 + }, + { + "start": 19342.94, + "end": 19345.24, + "probability": 0.5511 + }, + { + "start": 19345.32, + "end": 19346.44, + "probability": 0.7304 + }, + { + "start": 19347.06, + "end": 19348.32, + "probability": 0.2644 + }, + { + "start": 19348.98, + "end": 19349.6, + "probability": 0.4249 + }, + { + "start": 19352.68, + "end": 19354.64, + "probability": 0.5321 + }, + { + "start": 19355.78, + "end": 19357.44, + "probability": 0.0958 + }, + { + "start": 19357.7, + "end": 19361.6, + "probability": 0.6194 + }, + { + "start": 19362.18, + "end": 19364.28, + "probability": 0.5302 + }, + { + "start": 19364.46, + "end": 19367.86, + "probability": 0.1937 + }, + { + "start": 19368.04, + "end": 19368.14, + "probability": 0.6434 + }, + { + "start": 19368.56, + "end": 19369.38, + "probability": 0.8958 + }, + { + "start": 19369.42, + "end": 19369.8, + "probability": 0.4511 + }, + { + "start": 19369.86, + "end": 19370.18, + "probability": 0.7794 + }, + { + "start": 19370.56, + "end": 19373.38, + "probability": 0.4748 + }, + { + "start": 19373.44, + "end": 19374.44, + "probability": 0.4602 + }, + { + "start": 19375.44, + "end": 19376.3, + "probability": 0.9854 + }, + { + "start": 19377.05, + "end": 19377.12, + "probability": 0.1392 + }, + { + "start": 19377.22, + "end": 19378.64, + "probability": 0.5098 + }, + { + "start": 19379.62, + "end": 19380.44, + "probability": 0.0077 + }, + { + "start": 19380.96, + "end": 19381.5, + "probability": 0.2257 + }, + { + "start": 19382.95, + "end": 19387.6, + "probability": 0.4978 + }, + { + "start": 19387.62, + "end": 19387.72, + "probability": 0.1344 + }, + { + "start": 19387.92, + "end": 19390.62, + "probability": 0.9454 + }, + { + "start": 19390.76, + "end": 19393.0, + "probability": 0.941 + }, + { + "start": 19393.9, + "end": 19397.0, + "probability": 0.9711 + }, + { + "start": 19397.62, + "end": 19398.26, + "probability": 0.6374 + }, + { + "start": 19398.44, + "end": 19399.12, + "probability": 0.6503 + }, + { + "start": 19399.5, + "end": 19403.06, + "probability": 0.8761 + }, + { + "start": 19403.3, + "end": 19407.46, + "probability": 0.9635 + }, + { + "start": 19407.46, + "end": 19410.16, + "probability": 0.7464 + }, + { + "start": 19411.2, + "end": 19412.28, + "probability": 0.9907 + }, + { + "start": 19412.5, + "end": 19412.86, + "probability": 0.6899 + }, + { + "start": 19413.68, + "end": 19414.69, + "probability": 0.957 + }, + { + "start": 19414.98, + "end": 19417.1, + "probability": 0.8292 + }, + { + "start": 19417.16, + "end": 19418.08, + "probability": 0.9399 + }, + { + "start": 19418.28, + "end": 19418.98, + "probability": 0.2974 + }, + { + "start": 19419.26, + "end": 19424.8, + "probability": 0.9214 + }, + { + "start": 19424.88, + "end": 19427.94, + "probability": 0.8518 + }, + { + "start": 19430.3, + "end": 19432.68, + "probability": 0.1929 + }, + { + "start": 19433.16, + "end": 19433.74, + "probability": 0.2787 + }, + { + "start": 19435.08, + "end": 19436.24, + "probability": 0.6652 + }, + { + "start": 19436.62, + "end": 19436.88, + "probability": 0.2104 + }, + { + "start": 19437.74, + "end": 19438.0, + "probability": 0.2576 + }, + { + "start": 19438.64, + "end": 19439.42, + "probability": 0.7484 + }, + { + "start": 19441.38, + "end": 19444.16, + "probability": 0.6182 + }, + { + "start": 19447.2, + "end": 19449.8, + "probability": 0.9336 + }, + { + "start": 19449.8, + "end": 19452.04, + "probability": 0.9724 + }, + { + "start": 19452.12, + "end": 19452.86, + "probability": 0.7256 + }, + { + "start": 19453.68, + "end": 19457.2, + "probability": 0.9785 + }, + { + "start": 19457.2, + "end": 19460.2, + "probability": 0.9641 + }, + { + "start": 19460.96, + "end": 19462.0, + "probability": 0.7922 + }, + { + "start": 19462.96, + "end": 19464.82, + "probability": 0.9097 + }, + { + "start": 19464.9, + "end": 19468.42, + "probability": 0.8394 + }, + { + "start": 19469.0, + "end": 19469.86, + "probability": 0.6458 + }, + { + "start": 19470.48, + "end": 19471.56, + "probability": 0.8194 + }, + { + "start": 19471.72, + "end": 19473.08, + "probability": 0.8478 + }, + { + "start": 19473.14, + "end": 19473.7, + "probability": 0.4182 + }, + { + "start": 19474.44, + "end": 19475.22, + "probability": 0.3859 + }, + { + "start": 19475.32, + "end": 19477.8, + "probability": 0.5646 + }, + { + "start": 19477.82, + "end": 19480.42, + "probability": 0.879 + }, + { + "start": 19481.04, + "end": 19483.4, + "probability": 0.9281 + }, + { + "start": 19484.14, + "end": 19485.22, + "probability": 0.7537 + }, + { + "start": 19486.04, + "end": 19492.24, + "probability": 0.8045 + }, + { + "start": 19492.26, + "end": 19492.76, + "probability": 0.4819 + }, + { + "start": 19494.18, + "end": 19495.02, + "probability": 0.7732 + }, + { + "start": 19495.12, + "end": 19496.22, + "probability": 0.7651 + }, + { + "start": 19496.26, + "end": 19496.84, + "probability": 0.0523 + }, + { + "start": 19499.98, + "end": 19500.58, + "probability": 0.4931 + }, + { + "start": 19501.16, + "end": 19502.07, + "probability": 0.5332 + }, + { + "start": 19504.16, + "end": 19506.14, + "probability": 0.5555 + }, + { + "start": 19506.14, + "end": 19506.4, + "probability": 0.2014 + }, + { + "start": 19506.72, + "end": 19508.82, + "probability": 0.9861 + }, + { + "start": 19509.26, + "end": 19511.4, + "probability": 0.8155 + }, + { + "start": 19511.82, + "end": 19513.48, + "probability": 0.0931 + }, + { + "start": 19513.76, + "end": 19516.74, + "probability": 0.7089 + }, + { + "start": 19517.2, + "end": 19517.88, + "probability": 0.3809 + }, + { + "start": 19518.68, + "end": 19519.82, + "probability": 0.4774 + }, + { + "start": 19521.92, + "end": 19522.86, + "probability": 0.8201 + }, + { + "start": 19524.02, + "end": 19525.42, + "probability": 0.9535 + }, + { + "start": 19526.66, + "end": 19528.35, + "probability": 0.5949 + }, + { + "start": 19529.22, + "end": 19531.1, + "probability": 0.8563 + }, + { + "start": 19531.34, + "end": 19533.3, + "probability": 0.8232 + }, + { + "start": 19533.38, + "end": 19536.88, + "probability": 0.9722 + }, + { + "start": 19538.3, + "end": 19539.58, + "probability": 0.7759 + }, + { + "start": 19539.64, + "end": 19540.16, + "probability": 0.6226 + }, + { + "start": 19542.34, + "end": 19543.8, + "probability": 0.1647 + }, + { + "start": 19543.8, + "end": 19543.8, + "probability": 0.104 + }, + { + "start": 19543.8, + "end": 19547.02, + "probability": 0.1312 + }, + { + "start": 19547.02, + "end": 19549.3, + "probability": 0.0397 + }, + { + "start": 19551.85, + "end": 19552.08, + "probability": 0.0873 + }, + { + "start": 19552.14, + "end": 19553.48, + "probability": 0.0372 + }, + { + "start": 19554.14, + "end": 19558.38, + "probability": 0.9314 + }, + { + "start": 19559.28, + "end": 19565.38, + "probability": 0.9557 + }, + { + "start": 19565.98, + "end": 19567.76, + "probability": 0.9276 + }, + { + "start": 19568.46, + "end": 19573.38, + "probability": 0.8281 + }, + { + "start": 19574.04, + "end": 19577.8, + "probability": 0.8029 + }, + { + "start": 19579.16, + "end": 19581.06, + "probability": 0.7843 + }, + { + "start": 19581.68, + "end": 19583.74, + "probability": 0.9739 + }, + { + "start": 19583.86, + "end": 19587.74, + "probability": 0.9336 + }, + { + "start": 19588.86, + "end": 19589.94, + "probability": 0.8728 + }, + { + "start": 19589.94, + "end": 19592.9, + "probability": 0.9692 + }, + { + "start": 19593.62, + "end": 19594.8, + "probability": 0.8701 + }, + { + "start": 19594.96, + "end": 19601.04, + "probability": 0.8179 + }, + { + "start": 19601.52, + "end": 19602.22, + "probability": 0.7302 + }, + { + "start": 19602.34, + "end": 19603.96, + "probability": 0.8887 + }, + { + "start": 19604.48, + "end": 19609.36, + "probability": 0.7682 + }, + { + "start": 19609.5, + "end": 19611.28, + "probability": 0.4421 + }, + { + "start": 19611.32, + "end": 19611.98, + "probability": 0.8562 + }, + { + "start": 19612.52, + "end": 19613.76, + "probability": 0.9136 + }, + { + "start": 19614.58, + "end": 19617.04, + "probability": 0.7155 + }, + { + "start": 19618.28, + "end": 19622.46, + "probability": 0.9758 + }, + { + "start": 19622.62, + "end": 19627.54, + "probability": 0.9741 + }, + { + "start": 19627.66, + "end": 19628.32, + "probability": 0.4934 + }, + { + "start": 19629.58, + "end": 19632.83, + "probability": 0.1254 + }, + { + "start": 19633.42, + "end": 19634.16, + "probability": 0.9287 + }, + { + "start": 19635.34, + "end": 19636.18, + "probability": 0.2181 + }, + { + "start": 19637.26, + "end": 19637.96, + "probability": 0.9437 + }, + { + "start": 19638.1, + "end": 19643.17, + "probability": 0.5068 + }, + { + "start": 19644.08, + "end": 19645.22, + "probability": 0.4252 + }, + { + "start": 19645.8, + "end": 19646.68, + "probability": 0.135 + }, + { + "start": 19647.56, + "end": 19649.64, + "probability": 0.122 + }, + { + "start": 19651.13, + "end": 19655.74, + "probability": 0.8461 + }, + { + "start": 19655.8, + "end": 19657.54, + "probability": 0.6669 + }, + { + "start": 19657.66, + "end": 19657.76, + "probability": 0.5333 + }, + { + "start": 19659.62, + "end": 19660.34, + "probability": 0.6184 + }, + { + "start": 19660.49, + "end": 19662.4, + "probability": 0.942 + }, + { + "start": 19664.92, + "end": 19667.5, + "probability": 0.6785 + }, + { + "start": 19668.66, + "end": 19671.26, + "probability": 0.9855 + }, + { + "start": 19671.74, + "end": 19672.26, + "probability": 0.4761 + }, + { + "start": 19672.8, + "end": 19674.78, + "probability": 0.7031 + }, + { + "start": 19674.98, + "end": 19677.74, + "probability": 0.9633 + }, + { + "start": 19678.46, + "end": 19678.72, + "probability": 0.3979 + }, + { + "start": 19678.72, + "end": 19678.86, + "probability": 0.2116 + }, + { + "start": 19678.88, + "end": 19680.76, + "probability": 0.9356 + }, + { + "start": 19681.58, + "end": 19683.76, + "probability": 0.9942 + }, + { + "start": 19684.4, + "end": 19686.02, + "probability": 0.9704 + }, + { + "start": 19686.16, + "end": 19690.74, + "probability": 0.9302 + }, + { + "start": 19690.74, + "end": 19694.56, + "probability": 0.9368 + }, + { + "start": 19694.7, + "end": 19696.28, + "probability": 0.7121 + }, + { + "start": 19696.8, + "end": 19698.14, + "probability": 0.9552 + }, + { + "start": 19700.28, + "end": 19701.08, + "probability": 0.9283 + }, + { + "start": 19701.2, + "end": 19704.72, + "probability": 0.5372 + }, + { + "start": 19705.58, + "end": 19707.64, + "probability": 0.5338 + }, + { + "start": 19708.36, + "end": 19712.42, + "probability": 0.429 + }, + { + "start": 19713.5, + "end": 19714.9, + "probability": 0.9232 + }, + { + "start": 19715.64, + "end": 19718.98, + "probability": 0.7952 + }, + { + "start": 19719.88, + "end": 19722.68, + "probability": 0.767 + }, + { + "start": 19722.76, + "end": 19723.63, + "probability": 0.9805 + }, + { + "start": 19724.5, + "end": 19725.76, + "probability": 0.7131 + }, + { + "start": 19725.88, + "end": 19727.86, + "probability": 0.9744 + }, + { + "start": 19728.68, + "end": 19732.06, + "probability": 0.782 + }, + { + "start": 19732.86, + "end": 19733.84, + "probability": 0.3621 + }, + { + "start": 19735.06, + "end": 19736.4, + "probability": 0.7912 + }, + { + "start": 19736.46, + "end": 19737.44, + "probability": 0.7003 + }, + { + "start": 19737.72, + "end": 19741.98, + "probability": 0.2674 + }, + { + "start": 19742.62, + "end": 19742.62, + "probability": 0.9252 + }, + { + "start": 19742.62, + "end": 19744.5, + "probability": 0.7651 + }, + { + "start": 19745.9, + "end": 19751.32, + "probability": 0.5109 + }, + { + "start": 19751.58, + "end": 19752.68, + "probability": 0.8444 + }, + { + "start": 19753.46, + "end": 19756.82, + "probability": 0.9145 + }, + { + "start": 19758.47, + "end": 19763.8, + "probability": 0.2455 + }, + { + "start": 19763.8, + "end": 19766.52, + "probability": 0.242 + }, + { + "start": 19778.06, + "end": 19783.54, + "probability": 0.657 + }, + { + "start": 19783.54, + "end": 19785.54, + "probability": 0.0161 + }, + { + "start": 19785.84, + "end": 19787.34, + "probability": 0.8472 + }, + { + "start": 19787.5, + "end": 19789.12, + "probability": 0.8199 + }, + { + "start": 19789.66, + "end": 19790.2, + "probability": 0.5948 + }, + { + "start": 19790.74, + "end": 19796.72, + "probability": 0.8542 + }, + { + "start": 19797.34, + "end": 19798.74, + "probability": 0.6002 + }, + { + "start": 19798.78, + "end": 19799.96, + "probability": 0.8302 + }, + { + "start": 19800.42, + "end": 19800.91, + "probability": 0.5021 + }, + { + "start": 19801.64, + "end": 19806.3, + "probability": 0.7855 + }, + { + "start": 19806.98, + "end": 19807.56, + "probability": 0.8374 + }, + { + "start": 19807.84, + "end": 19808.24, + "probability": 0.1188 + }, + { + "start": 19808.24, + "end": 19808.68, + "probability": 0.5149 + }, + { + "start": 19808.76, + "end": 19808.92, + "probability": 0.5139 + }, + { + "start": 19810.12, + "end": 19814.36, + "probability": 0.9236 + }, + { + "start": 19814.54, + "end": 19815.4, + "probability": 0.4228 + }, + { + "start": 19815.48, + "end": 19815.66, + "probability": 0.2081 + }, + { + "start": 19815.66, + "end": 19815.66, + "probability": 0.3023 + }, + { + "start": 19815.82, + "end": 19817.44, + "probability": 0.5599 + }, + { + "start": 19817.44, + "end": 19817.98, + "probability": 0.6316 + }, + { + "start": 19819.1, + "end": 19820.24, + "probability": 0.4209 + }, + { + "start": 19820.24, + "end": 19820.54, + "probability": 0.0375 + }, + { + "start": 19820.86, + "end": 19822.51, + "probability": 0.9238 + }, + { + "start": 19822.8, + "end": 19823.76, + "probability": 0.8447 + }, + { + "start": 19824.38, + "end": 19825.26, + "probability": 0.7998 + }, + { + "start": 19825.28, + "end": 19825.5, + "probability": 0.1598 + }, + { + "start": 19825.72, + "end": 19827.22, + "probability": 0.9911 + }, + { + "start": 19827.3, + "end": 19827.48, + "probability": 0.4503 + }, + { + "start": 19828.42, + "end": 19829.52, + "probability": 0.866 + }, + { + "start": 19829.58, + "end": 19830.22, + "probability": 0.2507 + }, + { + "start": 19830.38, + "end": 19831.7, + "probability": 0.974 + }, + { + "start": 19832.92, + "end": 19834.22, + "probability": 0.9664 + }, + { + "start": 19835.62, + "end": 19837.2, + "probability": 0.9588 + }, + { + "start": 19837.28, + "end": 19839.88, + "probability": 0.9905 + }, + { + "start": 19840.2, + "end": 19841.16, + "probability": 0.8248 + }, + { + "start": 19841.36, + "end": 19842.38, + "probability": 0.9386 + }, + { + "start": 19842.72, + "end": 19843.58, + "probability": 0.7966 + }, + { + "start": 19843.78, + "end": 19845.8, + "probability": 0.967 + }, + { + "start": 19846.04, + "end": 19846.8, + "probability": 0.0307 + }, + { + "start": 19847.52, + "end": 19847.92, + "probability": 0.1237 + }, + { + "start": 19848.08, + "end": 19851.22, + "probability": 0.3317 + }, + { + "start": 19851.42, + "end": 19852.4, + "probability": 0.9196 + }, + { + "start": 19852.54, + "end": 19854.12, + "probability": 0.834 + }, + { + "start": 19854.22, + "end": 19855.36, + "probability": 0.9514 + }, + { + "start": 19855.64, + "end": 19856.38, + "probability": 0.8306 + }, + { + "start": 19856.44, + "end": 19857.4, + "probability": 0.4177 + }, + { + "start": 19857.64, + "end": 19858.04, + "probability": 0.6308 + }, + { + "start": 19858.12, + "end": 19859.25, + "probability": 0.6023 + }, + { + "start": 19860.0, + "end": 19860.52, + "probability": 0.0129 + }, + { + "start": 19860.65, + "end": 19862.3, + "probability": 0.5542 + }, + { + "start": 19863.06, + "end": 19863.89, + "probability": 0.253 + }, + { + "start": 19865.86, + "end": 19868.16, + "probability": 0.4159 + }, + { + "start": 19869.04, + "end": 19869.92, + "probability": 0.2829 + }, + { + "start": 19870.04, + "end": 19872.56, + "probability": 0.8656 + }, + { + "start": 19872.9, + "end": 19873.48, + "probability": 0.1457 + }, + { + "start": 19873.56, + "end": 19876.5, + "probability": 0.9125 + }, + { + "start": 19877.44, + "end": 19882.34, + "probability": 0.91 + }, + { + "start": 19883.37, + "end": 19885.3, + "probability": 0.6678 + }, + { + "start": 19885.98, + "end": 19886.08, + "probability": 0.2508 + }, + { + "start": 19886.88, + "end": 19889.18, + "probability": 0.8619 + }, + { + "start": 19889.8, + "end": 19892.0, + "probability": 0.9587 + }, + { + "start": 19892.52, + "end": 19895.02, + "probability": 0.955 + }, + { + "start": 19895.12, + "end": 19896.01, + "probability": 0.901 + }, + { + "start": 19896.5, + "end": 19896.76, + "probability": 0.4197 + }, + { + "start": 19896.84, + "end": 19898.56, + "probability": 0.5061 + }, + { + "start": 19898.78, + "end": 19901.28, + "probability": 0.9688 + }, + { + "start": 19901.62, + "end": 19902.52, + "probability": 0.475 + }, + { + "start": 19902.66, + "end": 19904.06, + "probability": 0.8 + }, + { + "start": 19904.42, + "end": 19906.4, + "probability": 0.5382 + }, + { + "start": 19925.3, + "end": 19926.3, + "probability": 0.3308 + }, + { + "start": 19926.94, + "end": 19929.66, + "probability": 0.7495 + }, + { + "start": 19930.08, + "end": 19931.26, + "probability": 0.633 + }, + { + "start": 19932.0, + "end": 19938.92, + "probability": 0.0267 + }, + { + "start": 19939.98, + "end": 19941.28, + "probability": 0.0686 + }, + { + "start": 19941.86, + "end": 19943.18, + "probability": 0.0622 + }, + { + "start": 19945.98, + "end": 19946.48, + "probability": 0.0345 + }, + { + "start": 19946.48, + "end": 19946.54, + "probability": 0.0741 + }, + { + "start": 19946.54, + "end": 19947.06, + "probability": 0.039 + }, + { + "start": 19947.26, + "end": 19948.96, + "probability": 0.8222 + }, + { + "start": 19949.36, + "end": 19950.7, + "probability": 0.6313 + }, + { + "start": 19951.68, + "end": 19952.9, + "probability": 0.9067 + }, + { + "start": 19954.48, + "end": 19954.7, + "probability": 0.0041 + }, + { + "start": 19955.12, + "end": 19956.02, + "probability": 0.088 + }, + { + "start": 19956.02, + "end": 19957.58, + "probability": 0.9612 + }, + { + "start": 19957.58, + "end": 19960.92, + "probability": 0.0578 + }, + { + "start": 19961.06, + "end": 19962.58, + "probability": 0.9196 + }, + { + "start": 19962.9, + "end": 19963.72, + "probability": 0.983 + }, + { + "start": 19963.9, + "end": 19965.1, + "probability": 0.8505 + }, + { + "start": 19965.24, + "end": 19967.4, + "probability": 0.9937 + }, + { + "start": 19967.98, + "end": 19970.44, + "probability": 0.3779 + }, + { + "start": 19970.74, + "end": 19974.76, + "probability": 0.9494 + }, + { + "start": 19975.32, + "end": 19979.16, + "probability": 0.9727 + }, + { + "start": 19987.18, + "end": 19987.32, + "probability": 0.2585 + }, + { + "start": 19987.34, + "end": 19988.54, + "probability": 0.8134 + }, + { + "start": 19989.06, + "end": 19989.16, + "probability": 0.3757 + }, + { + "start": 19990.32, + "end": 19991.6, + "probability": 0.3291 + }, + { + "start": 19991.92, + "end": 19994.23, + "probability": 0.9446 + }, + { + "start": 19999.0, + "end": 20001.86, + "probability": 0.7108 + }, + { + "start": 20003.08, + "end": 20006.94, + "probability": 0.9142 + }, + { + "start": 20007.1, + "end": 20009.42, + "probability": 0.9946 + }, + { + "start": 20010.66, + "end": 20017.03, + "probability": 0.9956 + }, + { + "start": 20018.3, + "end": 20018.92, + "probability": 0.7608 + }, + { + "start": 20019.68, + "end": 20021.64, + "probability": 0.6332 + }, + { + "start": 20024.18, + "end": 20027.7, + "probability": 0.9861 + }, + { + "start": 20028.22, + "end": 20029.64, + "probability": 0.9827 + }, + { + "start": 20030.9, + "end": 20033.56, + "probability": 0.9366 + }, + { + "start": 20035.18, + "end": 20041.0, + "probability": 0.9949 + }, + { + "start": 20041.52, + "end": 20043.18, + "probability": 0.834 + }, + { + "start": 20044.38, + "end": 20046.46, + "probability": 0.9951 + }, + { + "start": 20048.02, + "end": 20052.46, + "probability": 0.996 + }, + { + "start": 20053.24, + "end": 20054.08, + "probability": 0.9946 + }, + { + "start": 20054.6, + "end": 20055.34, + "probability": 0.9777 + }, + { + "start": 20057.1, + "end": 20060.48, + "probability": 0.9871 + }, + { + "start": 20061.08, + "end": 20062.38, + "probability": 0.9969 + }, + { + "start": 20064.0, + "end": 20065.22, + "probability": 0.9712 + }, + { + "start": 20066.52, + "end": 20067.68, + "probability": 0.6646 + }, + { + "start": 20068.4, + "end": 20069.3, + "probability": 0.9767 + }, + { + "start": 20070.2, + "end": 20071.12, + "probability": 0.777 + }, + { + "start": 20072.0, + "end": 20074.76, + "probability": 0.9732 + }, + { + "start": 20076.2, + "end": 20078.56, + "probability": 0.9871 + }, + { + "start": 20080.18, + "end": 20082.8, + "probability": 0.8182 + }, + { + "start": 20083.36, + "end": 20084.58, + "probability": 0.9046 + }, + { + "start": 20085.18, + "end": 20085.68, + "probability": 0.8734 + }, + { + "start": 20087.0, + "end": 20089.7, + "probability": 0.9849 + }, + { + "start": 20091.1, + "end": 20099.26, + "probability": 0.9805 + }, + { + "start": 20100.42, + "end": 20102.4, + "probability": 0.9517 + }, + { + "start": 20103.22, + "end": 20105.34, + "probability": 0.998 + }, + { + "start": 20106.0, + "end": 20107.9, + "probability": 0.9547 + }, + { + "start": 20110.12, + "end": 20114.36, + "probability": 0.9696 + }, + { + "start": 20115.52, + "end": 20116.74, + "probability": 0.9089 + }, + { + "start": 20117.66, + "end": 20121.64, + "probability": 0.9493 + }, + { + "start": 20123.0, + "end": 20123.86, + "probability": 0.876 + }, + { + "start": 20126.1, + "end": 20131.64, + "probability": 0.9974 + }, + { + "start": 20132.96, + "end": 20138.11, + "probability": 0.9951 + }, + { + "start": 20138.16, + "end": 20142.44, + "probability": 0.9077 + }, + { + "start": 20143.0, + "end": 20146.08, + "probability": 0.964 + }, + { + "start": 20146.72, + "end": 20150.24, + "probability": 0.9928 + }, + { + "start": 20151.98, + "end": 20153.1, + "probability": 0.9429 + }, + { + "start": 20155.04, + "end": 20159.3, + "probability": 0.9355 + }, + { + "start": 20160.24, + "end": 20164.08, + "probability": 0.9758 + }, + { + "start": 20165.42, + "end": 20169.78, + "probability": 0.997 + }, + { + "start": 20170.86, + "end": 20173.94, + "probability": 0.9749 + }, + { + "start": 20175.1, + "end": 20176.6, + "probability": 0.7975 + }, + { + "start": 20177.86, + "end": 20183.88, + "probability": 0.9863 + }, + { + "start": 20186.4, + "end": 20190.42, + "probability": 0.9953 + }, + { + "start": 20191.22, + "end": 20192.36, + "probability": 0.9993 + }, + { + "start": 20193.88, + "end": 20198.54, + "probability": 0.9753 + }, + { + "start": 20199.44, + "end": 20203.28, + "probability": 0.9024 + }, + { + "start": 20203.72, + "end": 20205.8, + "probability": 0.9915 + }, + { + "start": 20206.58, + "end": 20208.24, + "probability": 0.9555 + }, + { + "start": 20210.08, + "end": 20212.88, + "probability": 0.9938 + }, + { + "start": 20213.6, + "end": 20216.16, + "probability": 0.872 + }, + { + "start": 20216.9, + "end": 20225.52, + "probability": 0.9862 + }, + { + "start": 20226.68, + "end": 20228.96, + "probability": 0.9806 + }, + { + "start": 20229.38, + "end": 20232.92, + "probability": 0.9624 + }, + { + "start": 20233.92, + "end": 20236.48, + "probability": 0.9951 + }, + { + "start": 20237.3, + "end": 20238.14, + "probability": 0.8435 + }, + { + "start": 20239.8, + "end": 20241.08, + "probability": 0.9983 + }, + { + "start": 20242.2, + "end": 20243.28, + "probability": 0.9983 + }, + { + "start": 20244.32, + "end": 20245.0, + "probability": 0.9595 + }, + { + "start": 20246.72, + "end": 20249.04, + "probability": 0.991 + }, + { + "start": 20250.3, + "end": 20251.42, + "probability": 0.9747 + }, + { + "start": 20252.84, + "end": 20254.64, + "probability": 0.7485 + }, + { + "start": 20255.9, + "end": 20256.46, + "probability": 0.4777 + }, + { + "start": 20257.58, + "end": 20259.06, + "probability": 0.8194 + }, + { + "start": 20261.22, + "end": 20263.24, + "probability": 0.6666 + }, + { + "start": 20265.92, + "end": 20266.86, + "probability": 0.7799 + }, + { + "start": 20268.06, + "end": 20269.36, + "probability": 0.9765 + }, + { + "start": 20270.7, + "end": 20270.7, + "probability": 0.5693 + }, + { + "start": 20270.7, + "end": 20276.72, + "probability": 0.9281 + }, + { + "start": 20278.06, + "end": 20279.9, + "probability": 0.9861 + }, + { + "start": 20280.9, + "end": 20285.52, + "probability": 0.7601 + }, + { + "start": 20288.26, + "end": 20289.74, + "probability": 0.9736 + }, + { + "start": 20290.98, + "end": 20293.28, + "probability": 0.7086 + }, + { + "start": 20294.58, + "end": 20297.7, + "probability": 0.9878 + }, + { + "start": 20298.3, + "end": 20299.16, + "probability": 0.9827 + }, + { + "start": 20299.94, + "end": 20302.36, + "probability": 0.9961 + }, + { + "start": 20303.18, + "end": 20306.04, + "probability": 0.7667 + }, + { + "start": 20306.56, + "end": 20309.48, + "probability": 0.8439 + }, + { + "start": 20309.6, + "end": 20314.48, + "probability": 0.9463 + }, + { + "start": 20314.48, + "end": 20315.14, + "probability": 0.546 + }, + { + "start": 20316.62, + "end": 20322.44, + "probability": 0.9634 + }, + { + "start": 20322.94, + "end": 20323.86, + "probability": 0.7563 + }, + { + "start": 20326.2, + "end": 20329.36, + "probability": 0.9387 + }, + { + "start": 20330.02, + "end": 20331.16, + "probability": 0.6913 + }, + { + "start": 20332.0, + "end": 20335.42, + "probability": 0.8186 + }, + { + "start": 20336.22, + "end": 20336.88, + "probability": 0.6919 + }, + { + "start": 20337.6, + "end": 20338.2, + "probability": 0.6629 + }, + { + "start": 20338.94, + "end": 20340.64, + "probability": 0.9736 + }, + { + "start": 20341.68, + "end": 20344.52, + "probability": 0.9255 + }, + { + "start": 20344.9, + "end": 20346.58, + "probability": 0.9915 + }, + { + "start": 20346.62, + "end": 20346.88, + "probability": 0.8486 + }, + { + "start": 20348.66, + "end": 20350.78, + "probability": 0.9274 + }, + { + "start": 20351.7, + "end": 20352.0, + "probability": 0.7063 + }, + { + "start": 20353.1, + "end": 20355.32, + "probability": 0.8401 + }, + { + "start": 20361.08, + "end": 20363.06, + "probability": 0.9295 + }, + { + "start": 20363.78, + "end": 20364.2, + "probability": 0.6757 + }, + { + "start": 20365.78, + "end": 20367.1, + "probability": 0.9614 + }, + { + "start": 20370.66, + "end": 20374.68, + "probability": 0.8856 + }, + { + "start": 20375.04, + "end": 20375.4, + "probability": 0.0732 + }, + { + "start": 20376.82, + "end": 20376.84, + "probability": 0.1885 + }, + { + "start": 20376.84, + "end": 20379.74, + "probability": 0.0428 + }, + { + "start": 20383.28, + "end": 20384.18, + "probability": 0.1775 + }, + { + "start": 20384.62, + "end": 20385.5, + "probability": 0.0168 + }, + { + "start": 20390.52, + "end": 20392.5, + "probability": 0.6887 + }, + { + "start": 20405.04, + "end": 20405.04, + "probability": 0.1167 + }, + { + "start": 20405.04, + "end": 20407.56, + "probability": 0.8646 + }, + { + "start": 20410.48, + "end": 20412.72, + "probability": 0.0763 + }, + { + "start": 20413.75, + "end": 20417.98, + "probability": 0.9595 + }, + { + "start": 20419.2, + "end": 20419.99, + "probability": 0.053 + }, + { + "start": 20420.22, + "end": 20421.24, + "probability": 0.6836 + }, + { + "start": 20422.08, + "end": 20422.48, + "probability": 0.3784 + }, + { + "start": 20422.6, + "end": 20424.12, + "probability": 0.856 + }, + { + "start": 20425.12, + "end": 20427.92, + "probability": 0.6497 + }, + { + "start": 20428.04, + "end": 20429.3, + "probability": 0.7655 + }, + { + "start": 20429.6, + "end": 20430.4, + "probability": 0.778 + }, + { + "start": 20430.7, + "end": 20433.26, + "probability": 0.9959 + }, + { + "start": 20433.48, + "end": 20434.76, + "probability": 0.3694 + }, + { + "start": 20436.03, + "end": 20436.71, + "probability": 0.0996 + }, + { + "start": 20437.22, + "end": 20438.14, + "probability": 0.2719 + }, + { + "start": 20438.22, + "end": 20440.16, + "probability": 0.5977 + }, + { + "start": 20440.4, + "end": 20446.2, + "probability": 0.999 + }, + { + "start": 20446.78, + "end": 20451.38, + "probability": 0.9912 + }, + { + "start": 20451.66, + "end": 20452.78, + "probability": 0.8486 + }, + { + "start": 20454.88, + "end": 20461.24, + "probability": 0.9175 + }, + { + "start": 20463.25, + "end": 20466.34, + "probability": 0.9958 + }, + { + "start": 20466.46, + "end": 20468.74, + "probability": 0.9683 + }, + { + "start": 20469.8, + "end": 20475.72, + "probability": 0.9976 + }, + { + "start": 20475.86, + "end": 20477.98, + "probability": 0.6438 + }, + { + "start": 20478.6, + "end": 20481.42, + "probability": 0.7268 + }, + { + "start": 20482.84, + "end": 20482.84, + "probability": 0.0196 + }, + { + "start": 20482.84, + "end": 20485.72, + "probability": 0.9268 + }, + { + "start": 20485.92, + "end": 20488.46, + "probability": 0.9961 + }, + { + "start": 20489.24, + "end": 20490.7, + "probability": 0.9241 + }, + { + "start": 20490.84, + "end": 20492.12, + "probability": 0.9902 + }, + { + "start": 20492.42, + "end": 20492.6, + "probability": 0.5022 + }, + { + "start": 20492.76, + "end": 20492.98, + "probability": 0.8429 + }, + { + "start": 20493.04, + "end": 20496.9, + "probability": 0.8298 + }, + { + "start": 20497.06, + "end": 20498.44, + "probability": 0.8346 + }, + { + "start": 20499.0, + "end": 20502.44, + "probability": 0.9866 + }, + { + "start": 20503.72, + "end": 20504.24, + "probability": 0.9209 + }, + { + "start": 20504.92, + "end": 20505.46, + "probability": 0.492 + }, + { + "start": 20505.88, + "end": 20506.6, + "probability": 0.9956 + }, + { + "start": 20507.6, + "end": 20509.52, + "probability": 0.8185 + }, + { + "start": 20509.74, + "end": 20511.06, + "probability": 0.9736 + }, + { + "start": 20511.68, + "end": 20513.18, + "probability": 0.9969 + }, + { + "start": 20513.94, + "end": 20514.86, + "probability": 0.107 + }, + { + "start": 20515.44, + "end": 20515.9, + "probability": 0.0837 + }, + { + "start": 20515.94, + "end": 20518.8, + "probability": 0.8521 + }, + { + "start": 20519.38, + "end": 20520.1, + "probability": 0.8896 + }, + { + "start": 20520.16, + "end": 20522.59, + "probability": 0.957 + }, + { + "start": 20523.36, + "end": 20526.9, + "probability": 0.6241 + }, + { + "start": 20528.56, + "end": 20528.74, + "probability": 0.0755 + }, + { + "start": 20528.74, + "end": 20528.74, + "probability": 0.0625 + }, + { + "start": 20528.74, + "end": 20530.14, + "probability": 0.1152 + }, + { + "start": 20530.14, + "end": 20532.62, + "probability": 0.9498 + }, + { + "start": 20532.7, + "end": 20534.08, + "probability": 0.7502 + }, + { + "start": 20534.7, + "end": 20536.54, + "probability": 0.9929 + }, + { + "start": 20536.72, + "end": 20539.02, + "probability": 0.6774 + }, + { + "start": 20539.26, + "end": 20539.92, + "probability": 0.6172 + }, + { + "start": 20540.34, + "end": 20541.63, + "probability": 0.6964 + }, + { + "start": 20542.06, + "end": 20543.24, + "probability": 0.5893 + }, + { + "start": 20543.3, + "end": 20545.58, + "probability": 0.8943 + }, + { + "start": 20546.76, + "end": 20547.18, + "probability": 0.3978 + }, + { + "start": 20547.32, + "end": 20550.84, + "probability": 0.7394 + }, + { + "start": 20568.14, + "end": 20570.0, + "probability": 0.2598 + }, + { + "start": 20571.5, + "end": 20572.48, + "probability": 0.106 + }, + { + "start": 20572.6, + "end": 20576.88, + "probability": 0.1027 + }, + { + "start": 20583.56, + "end": 20584.38, + "probability": 0.0101 + }, + { + "start": 20588.82, + "end": 20589.71, + "probability": 0.0729 + }, + { + "start": 20590.54, + "end": 20596.34, + "probability": 0.02 + }, + { + "start": 20607.05, + "end": 20609.02, + "probability": 0.3265 + }, + { + "start": 20611.1, + "end": 20614.54, + "probability": 0.0485 + }, + { + "start": 20614.84, + "end": 20616.96, + "probability": 0.7818 + }, + { + "start": 20617.98, + "end": 20622.0, + "probability": 0.7881 + }, + { + "start": 20623.78, + "end": 20625.24, + "probability": 0.9155 + }, + { + "start": 20626.2, + "end": 20629.44, + "probability": 0.952 + }, + { + "start": 20630.58, + "end": 20634.1, + "probability": 0.8672 + }, + { + "start": 20634.64, + "end": 20635.2, + "probability": 0.7216 + }, + { + "start": 20635.76, + "end": 20636.96, + "probability": 0.93 + }, + { + "start": 20637.68, + "end": 20638.96, + "probability": 0.9836 + }, + { + "start": 20639.06, + "end": 20640.84, + "probability": 0.9965 + }, + { + "start": 20641.0, + "end": 20643.94, + "probability": 0.9817 + }, + { + "start": 20645.04, + "end": 20646.64, + "probability": 0.6673 + }, + { + "start": 20646.86, + "end": 20649.84, + "probability": 0.9742 + }, + { + "start": 20650.4, + "end": 20653.5, + "probability": 0.9833 + }, + { + "start": 20654.62, + "end": 20655.69, + "probability": 0.897 + }, + { + "start": 20657.26, + "end": 20660.0, + "probability": 0.9933 + }, + { + "start": 20661.34, + "end": 20663.74, + "probability": 0.5863 + }, + { + "start": 20664.58, + "end": 20665.01, + "probability": 0.7495 + }, + { + "start": 20666.28, + "end": 20670.18, + "probability": 0.9761 + }, + { + "start": 20672.44, + "end": 20675.96, + "probability": 0.8163 + }, + { + "start": 20677.08, + "end": 20679.56, + "probability": 0.9972 + }, + { + "start": 20679.76, + "end": 20682.08, + "probability": 0.9897 + }, + { + "start": 20682.52, + "end": 20684.62, + "probability": 0.9879 + }, + { + "start": 20685.94, + "end": 20690.7, + "probability": 0.996 + }, + { + "start": 20691.7, + "end": 20694.84, + "probability": 0.9851 + }, + { + "start": 20695.46, + "end": 20697.96, + "probability": 0.9699 + }, + { + "start": 20699.32, + "end": 20706.7, + "probability": 0.9895 + }, + { + "start": 20707.84, + "end": 20709.24, + "probability": 0.9031 + }, + { + "start": 20710.6, + "end": 20715.06, + "probability": 0.9666 + }, + { + "start": 20716.12, + "end": 20719.48, + "probability": 0.9497 + }, + { + "start": 20721.18, + "end": 20724.14, + "probability": 0.9822 + }, + { + "start": 20724.42, + "end": 20725.56, + "probability": 0.9632 + }, + { + "start": 20726.52, + "end": 20727.34, + "probability": 0.6089 + }, + { + "start": 20727.84, + "end": 20730.32, + "probability": 0.9719 + }, + { + "start": 20731.1, + "end": 20731.68, + "probability": 0.8501 + }, + { + "start": 20732.62, + "end": 20733.1, + "probability": 0.4671 + }, + { + "start": 20733.26, + "end": 20734.94, + "probability": 0.5808 + }, + { + "start": 20735.3, + "end": 20737.06, + "probability": 0.9713 + }, + { + "start": 20738.08, + "end": 20739.42, + "probability": 0.7852 + }, + { + "start": 20740.2, + "end": 20744.12, + "probability": 0.983 + }, + { + "start": 20744.22, + "end": 20745.72, + "probability": 0.9968 + }, + { + "start": 20746.6, + "end": 20748.2, + "probability": 0.7275 + }, + { + "start": 20748.46, + "end": 20750.9, + "probability": 0.4701 + }, + { + "start": 20750.96, + "end": 20751.76, + "probability": 0.8324 + }, + { + "start": 20751.84, + "end": 20756.54, + "probability": 0.9604 + }, + { + "start": 20758.48, + "end": 20759.08, + "probability": 0.9072 + }, + { + "start": 20760.14, + "end": 20760.78, + "probability": 0.6513 + }, + { + "start": 20761.52, + "end": 20761.8, + "probability": 0.9167 + }, + { + "start": 20761.92, + "end": 20762.54, + "probability": 0.8277 + }, + { + "start": 20762.74, + "end": 20764.94, + "probability": 0.9824 + }, + { + "start": 20765.94, + "end": 20766.58, + "probability": 0.8228 + }, + { + "start": 20767.12, + "end": 20767.82, + "probability": 0.1406 + }, + { + "start": 20767.82, + "end": 20770.46, + "probability": 0.8496 + }, + { + "start": 20770.94, + "end": 20771.94, + "probability": 0.5866 + }, + { + "start": 20771.99, + "end": 20773.04, + "probability": 0.7416 + }, + { + "start": 20773.38, + "end": 20774.38, + "probability": 0.9543 + }, + { + "start": 20778.0, + "end": 20778.32, + "probability": 0.4748 + }, + { + "start": 20778.54, + "end": 20779.28, + "probability": 0.9016 + }, + { + "start": 20779.38, + "end": 20783.54, + "probability": 0.9645 + }, + { + "start": 20784.6, + "end": 20785.26, + "probability": 0.8652 + }, + { + "start": 20786.06, + "end": 20787.84, + "probability": 0.9958 + }, + { + "start": 20787.96, + "end": 20790.46, + "probability": 0.7168 + }, + { + "start": 20793.18, + "end": 20797.02, + "probability": 0.532 + }, + { + "start": 20797.38, + "end": 20798.34, + "probability": 0.6587 + }, + { + "start": 20798.34, + "end": 20800.68, + "probability": 0.9195 + }, + { + "start": 20800.84, + "end": 20802.22, + "probability": 0.9487 + }, + { + "start": 20803.3, + "end": 20806.62, + "probability": 0.9115 + }, + { + "start": 20807.48, + "end": 20809.7, + "probability": 0.9755 + }, + { + "start": 20810.94, + "end": 20814.9, + "probability": 0.994 + }, + { + "start": 20815.64, + "end": 20819.64, + "probability": 0.9814 + }, + { + "start": 20820.7, + "end": 20821.74, + "probability": 0.8762 + }, + { + "start": 20823.36, + "end": 20823.68, + "probability": 0.7715 + }, + { + "start": 20824.3, + "end": 20826.96, + "probability": 0.8535 + }, + { + "start": 20827.8, + "end": 20833.66, + "probability": 0.9258 + }, + { + "start": 20834.46, + "end": 20835.72, + "probability": 0.6819 + }, + { + "start": 20836.64, + "end": 20841.28, + "probability": 0.9647 + }, + { + "start": 20843.12, + "end": 20845.04, + "probability": 0.9829 + }, + { + "start": 20845.08, + "end": 20847.38, + "probability": 0.9102 + }, + { + "start": 20847.94, + "end": 20851.94, + "probability": 0.9345 + }, + { + "start": 20853.08, + "end": 20853.94, + "probability": 0.9478 + }, + { + "start": 20855.14, + "end": 20858.1, + "probability": 0.9922 + }, + { + "start": 20859.22, + "end": 20861.84, + "probability": 0.9979 + }, + { + "start": 20862.36, + "end": 20865.64, + "probability": 0.9969 + }, + { + "start": 20866.88, + "end": 20870.52, + "probability": 0.994 + }, + { + "start": 20871.5, + "end": 20877.34, + "probability": 0.9942 + }, + { + "start": 20879.08, + "end": 20885.78, + "probability": 0.9481 + }, + { + "start": 20885.86, + "end": 20887.5, + "probability": 0.8755 + }, + { + "start": 20887.58, + "end": 20888.26, + "probability": 0.5123 + }, + { + "start": 20888.26, + "end": 20889.32, + "probability": 0.8788 + }, + { + "start": 20892.32, + "end": 20892.82, + "probability": 0.9683 + }, + { + "start": 20893.36, + "end": 20897.98, + "probability": 0.9824 + }, + { + "start": 20898.62, + "end": 20900.14, + "probability": 0.9663 + }, + { + "start": 20900.14, + "end": 20904.2, + "probability": 0.9824 + }, + { + "start": 20904.82, + "end": 20906.06, + "probability": 0.863 + }, + { + "start": 20906.82, + "end": 20907.32, + "probability": 0.4139 + }, + { + "start": 20907.94, + "end": 20908.84, + "probability": 0.7035 + }, + { + "start": 20910.5, + "end": 20918.18, + "probability": 0.9463 + }, + { + "start": 20919.3, + "end": 20920.98, + "probability": 0.9979 + }, + { + "start": 20921.68, + "end": 20925.92, + "probability": 0.9416 + }, + { + "start": 20926.8, + "end": 20931.02, + "probability": 0.998 + }, + { + "start": 20931.08, + "end": 20931.76, + "probability": 0.9609 + }, + { + "start": 20932.7, + "end": 20934.52, + "probability": 0.9929 + }, + { + "start": 20935.86, + "end": 20938.28, + "probability": 0.9764 + }, + { + "start": 20938.88, + "end": 20943.68, + "probability": 0.985 + }, + { + "start": 20945.24, + "end": 20946.52, + "probability": 0.9204 + }, + { + "start": 20947.16, + "end": 20949.0, + "probability": 0.9182 + }, + { + "start": 20949.52, + "end": 20952.3, + "probability": 0.999 + }, + { + "start": 20953.08, + "end": 20957.34, + "probability": 0.9888 + }, + { + "start": 20958.5, + "end": 20958.8, + "probability": 0.6923 + }, + { + "start": 20959.36, + "end": 20964.4, + "probability": 0.9825 + }, + { + "start": 20965.08, + "end": 20968.42, + "probability": 0.9961 + }, + { + "start": 20968.42, + "end": 20972.54, + "probability": 0.9985 + }, + { + "start": 20973.54, + "end": 20978.6, + "probability": 0.9939 + }, + { + "start": 20979.52, + "end": 20981.18, + "probability": 0.9971 + }, + { + "start": 20981.74, + "end": 20984.5, + "probability": 0.9954 + }, + { + "start": 20985.64, + "end": 20988.58, + "probability": 0.9987 + }, + { + "start": 20988.58, + "end": 20993.6, + "probability": 0.9976 + }, + { + "start": 20994.6, + "end": 20996.06, + "probability": 0.9962 + }, + { + "start": 20996.64, + "end": 21001.5, + "probability": 0.9989 + }, + { + "start": 21002.3, + "end": 21006.4, + "probability": 0.9994 + }, + { + "start": 21006.98, + "end": 21009.18, + "probability": 0.9978 + }, + { + "start": 21009.64, + "end": 21011.62, + "probability": 0.9973 + }, + { + "start": 21012.26, + "end": 21013.22, + "probability": 0.7414 + }, + { + "start": 21013.44, + "end": 21014.5, + "probability": 0.9439 + }, + { + "start": 21014.56, + "end": 21019.82, + "probability": 0.991 + }, + { + "start": 21020.46, + "end": 21025.3, + "probability": 0.9719 + }, + { + "start": 21025.3, + "end": 21029.7, + "probability": 0.8666 + }, + { + "start": 21031.56, + "end": 21032.68, + "probability": 0.8875 + }, + { + "start": 21033.28, + "end": 21033.7, + "probability": 0.7108 + }, + { + "start": 21034.3, + "end": 21037.92, + "probability": 0.9648 + }, + { + "start": 21038.24, + "end": 21042.54, + "probability": 0.999 + }, + { + "start": 21043.4, + "end": 21046.28, + "probability": 0.936 + }, + { + "start": 21046.9, + "end": 21047.54, + "probability": 0.9405 + }, + { + "start": 21048.58, + "end": 21051.58, + "probability": 0.9968 + }, + { + "start": 21051.88, + "end": 21055.76, + "probability": 0.9307 + }, + { + "start": 21056.84, + "end": 21063.2, + "probability": 0.9871 + }, + { + "start": 21063.96, + "end": 21068.84, + "probability": 0.9981 + }, + { + "start": 21069.88, + "end": 21073.8, + "probability": 0.9816 + }, + { + "start": 21074.34, + "end": 21078.56, + "probability": 0.998 + }, + { + "start": 21080.5, + "end": 21081.94, + "probability": 0.8928 + }, + { + "start": 21083.26, + "end": 21084.54, + "probability": 0.9302 + }, + { + "start": 21086.12, + "end": 21087.98, + "probability": 0.9917 + }, + { + "start": 21088.6, + "end": 21093.8, + "probability": 0.9961 + }, + { + "start": 21094.48, + "end": 21100.7, + "probability": 0.9976 + }, + { + "start": 21100.7, + "end": 21105.78, + "probability": 0.9985 + }, + { + "start": 21106.62, + "end": 21109.74, + "probability": 0.9971 + }, + { + "start": 21110.5, + "end": 21114.92, + "probability": 0.9505 + }, + { + "start": 21115.78, + "end": 21118.1, + "probability": 0.9944 + }, + { + "start": 21118.1, + "end": 21122.44, + "probability": 0.8717 + }, + { + "start": 21123.26, + "end": 21127.28, + "probability": 0.9917 + }, + { + "start": 21127.98, + "end": 21131.82, + "probability": 0.9221 + }, + { + "start": 21132.4, + "end": 21136.94, + "probability": 0.993 + }, + { + "start": 21137.0, + "end": 21138.02, + "probability": 0.9318 + }, + { + "start": 21138.6, + "end": 21141.68, + "probability": 0.8594 + }, + { + "start": 21142.34, + "end": 21145.54, + "probability": 0.8389 + }, + { + "start": 21146.12, + "end": 21147.46, + "probability": 0.9702 + }, + { + "start": 21148.02, + "end": 21148.32, + "probability": 0.7642 + }, + { + "start": 21151.2, + "end": 21153.18, + "probability": 0.9383 + }, + { + "start": 21154.12, + "end": 21156.5, + "probability": 0.9415 + }, + { + "start": 21158.47, + "end": 21162.86, + "probability": 0.9618 + }, + { + "start": 21164.5, + "end": 21164.62, + "probability": 0.2423 + }, + { + "start": 21183.14, + "end": 21184.48, + "probability": 0.5902 + }, + { + "start": 21184.58, + "end": 21184.82, + "probability": 0.808 + }, + { + "start": 21192.96, + "end": 21192.96, + "probability": 0.093 + }, + { + "start": 21200.12, + "end": 21202.86, + "probability": 0.7697 + }, + { + "start": 21203.6, + "end": 21204.22, + "probability": 0.8506 + }, + { + "start": 21204.4, + "end": 21205.74, + "probability": 0.6865 + }, + { + "start": 21206.7, + "end": 21208.9, + "probability": 0.8326 + }, + { + "start": 21209.36, + "end": 21211.86, + "probability": 0.9679 + }, + { + "start": 21212.16, + "end": 21213.24, + "probability": 0.7261 + }, + { + "start": 21213.36, + "end": 21215.04, + "probability": 0.9847 + }, + { + "start": 21217.28, + "end": 21218.8, + "probability": 0.9417 + }, + { + "start": 21219.72, + "end": 21220.98, + "probability": 0.4683 + }, + { + "start": 21222.04, + "end": 21225.74, + "probability": 0.8864 + }, + { + "start": 21227.46, + "end": 21230.06, + "probability": 0.9919 + }, + { + "start": 21230.88, + "end": 21232.4, + "probability": 0.9578 + }, + { + "start": 21233.22, + "end": 21234.86, + "probability": 0.982 + }, + { + "start": 21237.06, + "end": 21240.38, + "probability": 0.9964 + }, + { + "start": 21240.38, + "end": 21243.58, + "probability": 0.9924 + }, + { + "start": 21244.04, + "end": 21245.4, + "probability": 0.7678 + }, + { + "start": 21246.22, + "end": 21248.04, + "probability": 0.9407 + }, + { + "start": 21248.74, + "end": 21253.98, + "probability": 0.9759 + }, + { + "start": 21254.7, + "end": 21260.06, + "probability": 0.9989 + }, + { + "start": 21260.72, + "end": 21264.68, + "probability": 0.9013 + }, + { + "start": 21266.0, + "end": 21271.5, + "probability": 0.9165 + }, + { + "start": 21272.96, + "end": 21278.34, + "probability": 0.9951 + }, + { + "start": 21278.34, + "end": 21284.66, + "probability": 0.9966 + }, + { + "start": 21285.58, + "end": 21291.2, + "probability": 0.6613 + }, + { + "start": 21292.08, + "end": 21293.38, + "probability": 0.9408 + }, + { + "start": 21294.04, + "end": 21298.55, + "probability": 0.9273 + }, + { + "start": 21300.06, + "end": 21304.02, + "probability": 0.8956 + }, + { + "start": 21305.0, + "end": 21309.0, + "probability": 0.9928 + }, + { + "start": 21309.56, + "end": 21314.56, + "probability": 0.9871 + }, + { + "start": 21315.46, + "end": 21318.9, + "probability": 0.9862 + }, + { + "start": 21319.8, + "end": 21322.14, + "probability": 0.9365 + }, + { + "start": 21323.44, + "end": 21324.76, + "probability": 0.8956 + }, + { + "start": 21325.78, + "end": 21326.18, + "probability": 0.185 + }, + { + "start": 21326.4, + "end": 21327.02, + "probability": 0.6743 + }, + { + "start": 21328.14, + "end": 21330.16, + "probability": 0.9638 + }, + { + "start": 21330.74, + "end": 21334.72, + "probability": 0.9478 + }, + { + "start": 21334.98, + "end": 21337.02, + "probability": 0.7404 + }, + { + "start": 21337.84, + "end": 21341.6, + "probability": 0.9846 + }, + { + "start": 21343.22, + "end": 21347.46, + "probability": 0.9838 + }, + { + "start": 21347.46, + "end": 21349.78, + "probability": 0.7939 + }, + { + "start": 21351.0, + "end": 21353.14, + "probability": 0.973 + }, + { + "start": 21354.16, + "end": 21356.1, + "probability": 0.8374 + }, + { + "start": 21356.82, + "end": 21361.8, + "probability": 0.9542 + }, + { + "start": 21361.98, + "end": 21364.4, + "probability": 0.9926 + }, + { + "start": 21364.9, + "end": 21366.84, + "probability": 0.9149 + }, + { + "start": 21367.3, + "end": 21371.22, + "probability": 0.9832 + }, + { + "start": 21372.38, + "end": 21373.08, + "probability": 0.8926 + }, + { + "start": 21373.62, + "end": 21378.18, + "probability": 0.9943 + }, + { + "start": 21378.18, + "end": 21382.82, + "probability": 0.9805 + }, + { + "start": 21383.66, + "end": 21385.36, + "probability": 0.9291 + }, + { + "start": 21390.08, + "end": 21392.3, + "probability": 0.9785 + }, + { + "start": 21392.9, + "end": 21396.2, + "probability": 0.8494 + }, + { + "start": 21397.02, + "end": 21400.4, + "probability": 0.7863 + }, + { + "start": 21401.06, + "end": 21402.16, + "probability": 0.7474 + }, + { + "start": 21403.0, + "end": 21406.66, + "probability": 0.998 + }, + { + "start": 21407.16, + "end": 21407.77, + "probability": 0.4756 + }, + { + "start": 21409.48, + "end": 21411.98, + "probability": 0.9758 + }, + { + "start": 21412.82, + "end": 21414.22, + "probability": 0.9854 + }, + { + "start": 21414.78, + "end": 21418.29, + "probability": 0.9733 + }, + { + "start": 21418.32, + "end": 21421.2, + "probability": 0.9973 + }, + { + "start": 21422.1, + "end": 21423.74, + "probability": 0.9578 + }, + { + "start": 21423.86, + "end": 21424.47, + "probability": 0.4996 + }, + { + "start": 21424.9, + "end": 21425.88, + "probability": 0.926 + }, + { + "start": 21426.48, + "end": 21428.46, + "probability": 0.8413 + }, + { + "start": 21429.54, + "end": 21431.12, + "probability": 0.9265 + }, + { + "start": 21431.88, + "end": 21432.96, + "probability": 0.9849 + }, + { + "start": 21433.04, + "end": 21436.08, + "probability": 0.9778 + }, + { + "start": 21437.04, + "end": 21438.84, + "probability": 0.9839 + }, + { + "start": 21439.44, + "end": 21439.98, + "probability": 0.8009 + }, + { + "start": 21440.16, + "end": 21440.8, + "probability": 0.769 + }, + { + "start": 21441.44, + "end": 21442.24, + "probability": 0.904 + }, + { + "start": 21443.42, + "end": 21444.54, + "probability": 0.951 + }, + { + "start": 21446.9, + "end": 21451.3, + "probability": 0.9486 + }, + { + "start": 21451.92, + "end": 21454.46, + "probability": 0.9567 + }, + { + "start": 21455.12, + "end": 21459.58, + "probability": 0.9785 + }, + { + "start": 21460.1, + "end": 21461.62, + "probability": 0.7171 + }, + { + "start": 21462.02, + "end": 21463.6, + "probability": 0.9897 + }, + { + "start": 21464.72, + "end": 21465.36, + "probability": 0.9031 + }, + { + "start": 21466.18, + "end": 21469.46, + "probability": 0.9715 + }, + { + "start": 21469.96, + "end": 21472.64, + "probability": 0.9251 + }, + { + "start": 21473.26, + "end": 21475.0, + "probability": 0.9901 + }, + { + "start": 21475.22, + "end": 21477.88, + "probability": 0.9492 + }, + { + "start": 21478.42, + "end": 21479.48, + "probability": 0.9295 + }, + { + "start": 21481.92, + "end": 21482.0, + "probability": 0.0173 + }, + { + "start": 21482.0, + "end": 21483.07, + "probability": 0.9193 + }, + { + "start": 21484.0, + "end": 21488.08, + "probability": 0.8975 + }, + { + "start": 21488.56, + "end": 21493.58, + "probability": 0.967 + }, + { + "start": 21495.82, + "end": 21499.62, + "probability": 0.8814 + }, + { + "start": 21500.4, + "end": 21503.56, + "probability": 0.9946 + }, + { + "start": 21504.06, + "end": 21504.38, + "probability": 0.7391 + }, + { + "start": 21504.46, + "end": 21505.84, + "probability": 0.9066 + }, + { + "start": 21506.5, + "end": 21507.92, + "probability": 0.8164 + }, + { + "start": 21507.96, + "end": 21509.86, + "probability": 0.9963 + }, + { + "start": 21511.46, + "end": 21512.8, + "probability": 0.9893 + }, + { + "start": 21513.46, + "end": 21515.28, + "probability": 0.6855 + }, + { + "start": 21515.9, + "end": 21517.3, + "probability": 0.9624 + }, + { + "start": 21517.76, + "end": 21519.5, + "probability": 0.6429 + }, + { + "start": 21520.34, + "end": 21523.58, + "probability": 0.9924 + }, + { + "start": 21523.58, + "end": 21527.62, + "probability": 0.9585 + }, + { + "start": 21528.54, + "end": 21530.3, + "probability": 0.8656 + }, + { + "start": 21530.84, + "end": 21533.08, + "probability": 0.7306 + }, + { + "start": 21533.18, + "end": 21534.38, + "probability": 0.9172 + }, + { + "start": 21535.04, + "end": 21537.94, + "probability": 0.9912 + }, + { + "start": 21537.94, + "end": 21540.84, + "probability": 0.9857 + }, + { + "start": 21541.6, + "end": 21545.0, + "probability": 0.9443 + }, + { + "start": 21546.68, + "end": 21547.18, + "probability": 0.501 + }, + { + "start": 21547.2, + "end": 21549.94, + "probability": 0.8271 + }, + { + "start": 21550.06, + "end": 21551.34, + "probability": 0.9777 + }, + { + "start": 21551.42, + "end": 21553.76, + "probability": 0.7645 + }, + { + "start": 21553.84, + "end": 21555.7, + "probability": 0.9709 + }, + { + "start": 21556.38, + "end": 21559.06, + "probability": 0.9894 + }, + { + "start": 21560.78, + "end": 21562.26, + "probability": 0.7654 + }, + { + "start": 21562.9, + "end": 21565.02, + "probability": 0.9882 + }, + { + "start": 21565.82, + "end": 21568.84, + "probability": 0.993 + }, + { + "start": 21569.26, + "end": 21569.68, + "probability": 0.9927 + }, + { + "start": 21570.22, + "end": 21571.54, + "probability": 0.7502 + }, + { + "start": 21572.1, + "end": 21575.64, + "probability": 0.9845 + }, + { + "start": 21576.36, + "end": 21578.72, + "probability": 0.8542 + }, + { + "start": 21579.16, + "end": 21582.12, + "probability": 0.9781 + }, + { + "start": 21582.84, + "end": 21586.12, + "probability": 0.9727 + }, + { + "start": 21586.12, + "end": 21591.02, + "probability": 0.9969 + }, + { + "start": 21591.48, + "end": 21591.9, + "probability": 0.7476 + }, + { + "start": 21595.36, + "end": 21597.32, + "probability": 0.8047 + }, + { + "start": 21598.06, + "end": 21600.76, + "probability": 0.7854 + }, + { + "start": 21624.42, + "end": 21624.96, + "probability": 0.4828 + }, + { + "start": 21626.98, + "end": 21627.26, + "probability": 0.4122 + }, + { + "start": 21632.28, + "end": 21634.34, + "probability": 0.9549 + }, + { + "start": 21643.02, + "end": 21644.92, + "probability": 0.7332 + }, + { + "start": 21645.83, + "end": 21650.2, + "probability": 0.6188 + }, + { + "start": 21654.02, + "end": 21657.8, + "probability": 0.7563 + }, + { + "start": 21660.64, + "end": 21662.16, + "probability": 0.7566 + }, + { + "start": 21662.26, + "end": 21662.68, + "probability": 0.4973 + }, + { + "start": 21663.28, + "end": 21664.72, + "probability": 0.3865 + }, + { + "start": 21666.32, + "end": 21667.86, + "probability": 0.7053 + }, + { + "start": 21667.94, + "end": 21670.16, + "probability": 0.9251 + }, + { + "start": 21670.16, + "end": 21670.56, + "probability": 0.203 + }, + { + "start": 21671.12, + "end": 21674.68, + "probability": 0.9248 + }, + { + "start": 21674.68, + "end": 21676.9, + "probability": 0.8841 + }, + { + "start": 21676.96, + "end": 21678.76, + "probability": 0.7 + }, + { + "start": 21678.78, + "end": 21678.94, + "probability": 0.9143 + }, + { + "start": 21679.94, + "end": 21680.46, + "probability": 0.848 + }, + { + "start": 21682.64, + "end": 21684.78, + "probability": 0.9888 + }, + { + "start": 21685.54, + "end": 21687.12, + "probability": 0.9984 + }, + { + "start": 21687.48, + "end": 21690.64, + "probability": 0.958 + }, + { + "start": 21691.58, + "end": 21693.02, + "probability": 0.9164 + }, + { + "start": 21693.32, + "end": 21693.74, + "probability": 0.6913 + }, + { + "start": 21693.74, + "end": 21696.24, + "probability": 0.8884 + }, + { + "start": 21696.32, + "end": 21697.08, + "probability": 0.9736 + }, + { + "start": 21697.28, + "end": 21698.22, + "probability": 0.8862 + }, + { + "start": 21699.34, + "end": 21703.08, + "probability": 0.9215 + }, + { + "start": 21703.18, + "end": 21705.48, + "probability": 0.9012 + }, + { + "start": 21705.86, + "end": 21709.82, + "probability": 0.8922 + }, + { + "start": 21711.91, + "end": 21713.37, + "probability": 0.644 + }, + { + "start": 21713.76, + "end": 21715.24, + "probability": 0.9937 + }, + { + "start": 21715.82, + "end": 21717.0, + "probability": 0.7954 + }, + { + "start": 21718.02, + "end": 21719.36, + "probability": 0.9951 + }, + { + "start": 21720.28, + "end": 21720.76, + "probability": 0.9049 + }, + { + "start": 21720.98, + "end": 21722.4, + "probability": 0.9818 + }, + { + "start": 21722.78, + "end": 21727.14, + "probability": 0.8922 + }, + { + "start": 21727.84, + "end": 21728.46, + "probability": 0.813 + }, + { + "start": 21729.02, + "end": 21731.14, + "probability": 0.9973 + }, + { + "start": 21732.1, + "end": 21736.16, + "probability": 0.9767 + }, + { + "start": 21736.62, + "end": 21739.26, + "probability": 0.9969 + }, + { + "start": 21740.68, + "end": 21742.86, + "probability": 0.9988 + }, + { + "start": 21742.86, + "end": 21746.98, + "probability": 0.9987 + }, + { + "start": 21747.6, + "end": 21751.46, + "probability": 0.9922 + }, + { + "start": 21751.96, + "end": 21755.7, + "probability": 0.9924 + }, + { + "start": 21757.2, + "end": 21761.3, + "probability": 0.7309 + }, + { + "start": 21762.04, + "end": 21765.64, + "probability": 0.6655 + }, + { + "start": 21767.3, + "end": 21772.16, + "probability": 0.9932 + }, + { + "start": 21772.72, + "end": 21774.78, + "probability": 0.2686 + }, + { + "start": 21774.78, + "end": 21779.54, + "probability": 0.8889 + }, + { + "start": 21780.64, + "end": 21781.84, + "probability": 0.9827 + }, + { + "start": 21782.4, + "end": 21786.04, + "probability": 0.9954 + }, + { + "start": 21786.9, + "end": 21791.5, + "probability": 0.9846 + }, + { + "start": 21792.72, + "end": 21798.0, + "probability": 0.9988 + }, + { + "start": 21798.74, + "end": 21802.32, + "probability": 0.8986 + }, + { + "start": 21803.18, + "end": 21806.42, + "probability": 0.9973 + }, + { + "start": 21806.94, + "end": 21810.88, + "probability": 0.9899 + }, + { + "start": 21811.56, + "end": 21817.9, + "probability": 0.9857 + }, + { + "start": 21818.72, + "end": 21821.72, + "probability": 0.7842 + }, + { + "start": 21822.68, + "end": 21825.4, + "probability": 0.9779 + }, + { + "start": 21825.98, + "end": 21830.46, + "probability": 0.9952 + }, + { + "start": 21831.08, + "end": 21834.46, + "probability": 0.9954 + }, + { + "start": 21835.26, + "end": 21838.18, + "probability": 0.9615 + }, + { + "start": 21839.2, + "end": 21840.6, + "probability": 0.916 + }, + { + "start": 21840.74, + "end": 21843.62, + "probability": 0.9952 + }, + { + "start": 21844.1, + "end": 21845.56, + "probability": 0.6944 + }, + { + "start": 21846.36, + "end": 21850.96, + "probability": 0.9923 + }, + { + "start": 21851.02, + "end": 21855.16, + "probability": 0.9776 + }, + { + "start": 21856.52, + "end": 21860.68, + "probability": 0.9989 + }, + { + "start": 21860.68, + "end": 21866.46, + "probability": 0.9851 + }, + { + "start": 21867.72, + "end": 21871.02, + "probability": 0.9905 + }, + { + "start": 21871.56, + "end": 21874.92, + "probability": 0.9655 + }, + { + "start": 21875.52, + "end": 21877.72, + "probability": 0.9905 + }, + { + "start": 21878.54, + "end": 21880.11, + "probability": 0.9717 + }, + { + "start": 21880.58, + "end": 21884.06, + "probability": 0.9961 + }, + { + "start": 21884.06, + "end": 21888.64, + "probability": 0.9971 + }, + { + "start": 21889.56, + "end": 21891.98, + "probability": 0.9969 + }, + { + "start": 21891.98, + "end": 21895.2, + "probability": 0.9945 + }, + { + "start": 21895.8, + "end": 21900.94, + "probability": 0.9956 + }, + { + "start": 21901.6, + "end": 21906.6, + "probability": 0.9958 + }, + { + "start": 21907.12, + "end": 21909.28, + "probability": 0.9628 + }, + { + "start": 21910.9, + "end": 21916.9, + "probability": 0.984 + }, + { + "start": 21917.66, + "end": 21919.6, + "probability": 0.9688 + }, + { + "start": 21920.32, + "end": 21925.06, + "probability": 0.9975 + }, + { + "start": 21926.02, + "end": 21929.98, + "probability": 0.9722 + }, + { + "start": 21930.46, + "end": 21931.9, + "probability": 0.978 + }, + { + "start": 21932.52, + "end": 21937.32, + "probability": 0.9958 + }, + { + "start": 21937.88, + "end": 21940.16, + "probability": 0.763 + }, + { + "start": 21941.18, + "end": 21944.38, + "probability": 0.9687 + }, + { + "start": 21944.96, + "end": 21946.68, + "probability": 0.7681 + }, + { + "start": 21947.52, + "end": 21952.64, + "probability": 0.9639 + }, + { + "start": 21953.22, + "end": 21959.86, + "probability": 0.9863 + }, + { + "start": 21960.46, + "end": 21963.28, + "probability": 0.9103 + }, + { + "start": 21963.96, + "end": 21964.26, + "probability": 0.6044 + }, + { + "start": 21964.96, + "end": 21966.7, + "probability": 0.7748 + }, + { + "start": 21967.12, + "end": 21971.42, + "probability": 0.8945 + }, + { + "start": 21971.84, + "end": 21972.42, + "probability": 0.614 + }, + { + "start": 21972.5, + "end": 21975.1, + "probability": 0.9856 + }, + { + "start": 21975.96, + "end": 21976.76, + "probability": 0.784 + }, + { + "start": 21978.0, + "end": 21980.8, + "probability": 0.9056 + }, + { + "start": 21980.9, + "end": 21982.94, + "probability": 0.8276 + }, + { + "start": 21983.8, + "end": 21985.32, + "probability": 0.9878 + }, + { + "start": 21985.9, + "end": 21987.92, + "probability": 0.8273 + }, + { + "start": 21988.0, + "end": 21990.76, + "probability": 0.8914 + }, + { + "start": 21990.82, + "end": 21993.28, + "probability": 0.7926 + }, + { + "start": 21993.9, + "end": 21996.94, + "probability": 0.9912 + }, + { + "start": 21997.36, + "end": 22002.58, + "probability": 0.9356 + }, + { + "start": 22003.18, + "end": 22003.4, + "probability": 0.3193 + }, + { + "start": 22003.5, + "end": 22004.68, + "probability": 0.8142 + }, + { + "start": 22004.72, + "end": 22006.96, + "probability": 0.9859 + }, + { + "start": 22009.54, + "end": 22009.62, + "probability": 0.0115 + }, + { + "start": 22009.62, + "end": 22011.46, + "probability": 0.6292 + }, + { + "start": 22012.22, + "end": 22015.74, + "probability": 0.7056 + }, + { + "start": 22016.84, + "end": 22020.64, + "probability": 0.9678 + }, + { + "start": 22024.24, + "end": 22028.42, + "probability": 0.9007 + }, + { + "start": 22029.08, + "end": 22030.78, + "probability": 0.7018 + }, + { + "start": 22031.46, + "end": 22035.92, + "probability": 0.9946 + }, + { + "start": 22036.74, + "end": 22039.66, + "probability": 0.9969 + }, + { + "start": 22039.66, + "end": 22042.14, + "probability": 0.999 + }, + { + "start": 22042.72, + "end": 22045.58, + "probability": 0.9532 + }, + { + "start": 22045.7, + "end": 22047.28, + "probability": 0.4129 + }, + { + "start": 22047.36, + "end": 22050.86, + "probability": 0.9755 + }, + { + "start": 22051.6, + "end": 22052.54, + "probability": 0.8342 + }, + { + "start": 22053.44, + "end": 22055.78, + "probability": 0.9075 + }, + { + "start": 22056.34, + "end": 22060.32, + "probability": 0.9414 + }, + { + "start": 22060.38, + "end": 22062.96, + "probability": 0.9749 + }, + { + "start": 22063.54, + "end": 22064.96, + "probability": 0.8187 + }, + { + "start": 22065.12, + "end": 22067.44, + "probability": 0.8248 + }, + { + "start": 22067.94, + "end": 22068.82, + "probability": 0.659 + }, + { + "start": 22068.86, + "end": 22072.2, + "probability": 0.8531 + }, + { + "start": 22072.62, + "end": 22077.26, + "probability": 0.9827 + }, + { + "start": 22078.08, + "end": 22078.86, + "probability": 0.3876 + }, + { + "start": 22079.52, + "end": 22081.28, + "probability": 0.7402 + }, + { + "start": 22081.36, + "end": 22084.02, + "probability": 0.9663 + }, + { + "start": 22084.3, + "end": 22088.5, + "probability": 0.9904 + }, + { + "start": 22089.26, + "end": 22092.28, + "probability": 0.8871 + }, + { + "start": 22092.38, + "end": 22095.98, + "probability": 0.8397 + }, + { + "start": 22096.1, + "end": 22098.9, + "probability": 0.9828 + }, + { + "start": 22099.82, + "end": 22100.66, + "probability": 0.7785 + }, + { + "start": 22101.22, + "end": 22105.44, + "probability": 0.8828 + }, + { + "start": 22106.04, + "end": 22109.54, + "probability": 0.9966 + }, + { + "start": 22110.32, + "end": 22114.08, + "probability": 0.9819 + }, + { + "start": 22114.48, + "end": 22115.4, + "probability": 0.9481 + }, + { + "start": 22116.04, + "end": 22121.2, + "probability": 0.9983 + }, + { + "start": 22121.86, + "end": 22125.58, + "probability": 0.9968 + }, + { + "start": 22125.58, + "end": 22130.74, + "probability": 0.9914 + }, + { + "start": 22130.74, + "end": 22133.89, + "probability": 0.9899 + }, + { + "start": 22134.4, + "end": 22141.38, + "probability": 0.9805 + }, + { + "start": 22142.16, + "end": 22142.38, + "probability": 0.1845 + }, + { + "start": 22142.54, + "end": 22146.68, + "probability": 0.947 + }, + { + "start": 22147.18, + "end": 22147.68, + "probability": 0.806 + }, + { + "start": 22148.22, + "end": 22152.36, + "probability": 0.9929 + }, + { + "start": 22152.36, + "end": 22157.96, + "probability": 0.9932 + }, + { + "start": 22158.8, + "end": 22161.42, + "probability": 0.8358 + }, + { + "start": 22161.94, + "end": 22165.76, + "probability": 0.8726 + }, + { + "start": 22165.76, + "end": 22169.62, + "probability": 0.9962 + }, + { + "start": 22170.44, + "end": 22175.03, + "probability": 0.9863 + }, + { + "start": 22176.9, + "end": 22181.06, + "probability": 0.996 + }, + { + "start": 22181.68, + "end": 22183.46, + "probability": 0.916 + }, + { + "start": 22183.46, + "end": 22187.22, + "probability": 0.8323 + }, + { + "start": 22188.4, + "end": 22190.1, + "probability": 0.3399 + }, + { + "start": 22190.7, + "end": 22194.16, + "probability": 0.9846 + }, + { + "start": 22195.18, + "end": 22197.92, + "probability": 0.6971 + }, + { + "start": 22198.02, + "end": 22202.3, + "probability": 0.9633 + }, + { + "start": 22202.3, + "end": 22205.58, + "probability": 0.9925 + }, + { + "start": 22205.96, + "end": 22209.66, + "probability": 0.8293 + }, + { + "start": 22210.12, + "end": 22212.3, + "probability": 0.9562 + }, + { + "start": 22212.86, + "end": 22217.1, + "probability": 0.9362 + }, + { + "start": 22217.66, + "end": 22219.84, + "probability": 0.9928 + }, + { + "start": 22220.48, + "end": 22223.1, + "probability": 0.6884 + }, + { + "start": 22223.7, + "end": 22226.42, + "probability": 0.9924 + }, + { + "start": 22226.42, + "end": 22229.44, + "probability": 0.9971 + }, + { + "start": 22230.1, + "end": 22235.22, + "probability": 0.9982 + }, + { + "start": 22235.32, + "end": 22235.82, + "probability": 0.5253 + }, + { + "start": 22235.84, + "end": 22238.86, + "probability": 0.9236 + }, + { + "start": 22238.98, + "end": 22240.76, + "probability": 0.9655 + }, + { + "start": 22241.18, + "end": 22244.38, + "probability": 0.9943 + }, + { + "start": 22244.38, + "end": 22248.7, + "probability": 0.9916 + }, + { + "start": 22249.38, + "end": 22250.36, + "probability": 0.8154 + }, + { + "start": 22250.96, + "end": 22255.76, + "probability": 0.9985 + }, + { + "start": 22256.32, + "end": 22258.04, + "probability": 0.9819 + }, + { + "start": 22258.68, + "end": 22265.04, + "probability": 0.999 + }, + { + "start": 22265.7, + "end": 22268.54, + "probability": 0.9739 + }, + { + "start": 22269.48, + "end": 22272.98, + "probability": 0.9683 + }, + { + "start": 22273.98, + "end": 22276.68, + "probability": 0.9965 + }, + { + "start": 22276.82, + "end": 22280.42, + "probability": 0.9988 + }, + { + "start": 22280.5, + "end": 22282.42, + "probability": 0.9093 + }, + { + "start": 22283.14, + "end": 22284.8, + "probability": 0.9982 + }, + { + "start": 22285.66, + "end": 22286.12, + "probability": 0.685 + }, + { + "start": 22287.32, + "end": 22292.06, + "probability": 0.9731 + }, + { + "start": 22292.5, + "end": 22295.06, + "probability": 0.9979 + }, + { + "start": 22295.24, + "end": 22298.04, + "probability": 0.9395 + }, + { + "start": 22298.58, + "end": 22302.41, + "probability": 0.9984 + }, + { + "start": 22303.26, + "end": 22306.24, + "probability": 0.8676 + }, + { + "start": 22306.8, + "end": 22309.04, + "probability": 0.9944 + }, + { + "start": 22309.3, + "end": 22314.18, + "probability": 0.9844 + }, + { + "start": 22314.68, + "end": 22318.22, + "probability": 0.9893 + }, + { + "start": 22318.32, + "end": 22319.2, + "probability": 0.9683 + }, + { + "start": 22320.0, + "end": 22320.32, + "probability": 0.6404 + }, + { + "start": 22320.92, + "end": 22324.5, + "probability": 0.8732 + }, + { + "start": 22325.12, + "end": 22328.08, + "probability": 0.9841 + }, + { + "start": 22328.08, + "end": 22331.86, + "probability": 0.9967 + }, + { + "start": 22332.28, + "end": 22333.07, + "probability": 0.9782 + }, + { + "start": 22334.06, + "end": 22335.32, + "probability": 0.9449 + }, + { + "start": 22335.46, + "end": 22341.66, + "probability": 0.9451 + }, + { + "start": 22342.46, + "end": 22347.3, + "probability": 0.8158 + }, + { + "start": 22348.38, + "end": 22348.96, + "probability": 0.236 + }, + { + "start": 22349.54, + "end": 22353.48, + "probability": 0.9758 + }, + { + "start": 22354.3, + "end": 22356.54, + "probability": 0.8387 + }, + { + "start": 22357.1, + "end": 22358.12, + "probability": 0.9683 + }, + { + "start": 22358.78, + "end": 22361.98, + "probability": 0.9878 + }, + { + "start": 22361.98, + "end": 22365.48, + "probability": 0.9348 + }, + { + "start": 22366.06, + "end": 22370.46, + "probability": 0.9953 + }, + { + "start": 22371.02, + "end": 22373.8, + "probability": 0.9787 + }, + { + "start": 22373.8, + "end": 22377.85, + "probability": 0.9002 + }, + { + "start": 22378.74, + "end": 22381.92, + "probability": 0.9907 + }, + { + "start": 22382.76, + "end": 22385.62, + "probability": 0.9277 + }, + { + "start": 22386.3, + "end": 22388.76, + "probability": 0.8276 + }, + { + "start": 22389.16, + "end": 22389.78, + "probability": 0.4948 + }, + { + "start": 22389.84, + "end": 22394.42, + "probability": 0.8193 + }, + { + "start": 22395.56, + "end": 22397.24, + "probability": 0.9604 + }, + { + "start": 22398.64, + "end": 22403.18, + "probability": 0.9333 + }, + { + "start": 22403.18, + "end": 22407.44, + "probability": 0.9973 + }, + { + "start": 22408.08, + "end": 22410.74, + "probability": 0.7917 + }, + { + "start": 22410.92, + "end": 22414.2, + "probability": 0.9893 + }, + { + "start": 22414.84, + "end": 22420.18, + "probability": 0.9635 + }, + { + "start": 22420.92, + "end": 22422.38, + "probability": 0.72 + }, + { + "start": 22423.14, + "end": 22424.22, + "probability": 0.8917 + }, + { + "start": 22424.26, + "end": 22426.76, + "probability": 0.9689 + }, + { + "start": 22426.88, + "end": 22427.42, + "probability": 0.7875 + }, + { + "start": 22427.48, + "end": 22432.54, + "probability": 0.9669 + }, + { + "start": 22433.04, + "end": 22438.2, + "probability": 0.9849 + }, + { + "start": 22439.12, + "end": 22440.76, + "probability": 0.9531 + }, + { + "start": 22441.12, + "end": 22444.98, + "probability": 0.9963 + }, + { + "start": 22445.0, + "end": 22447.46, + "probability": 0.9939 + }, + { + "start": 22448.06, + "end": 22450.96, + "probability": 0.9963 + }, + { + "start": 22451.32, + "end": 22452.22, + "probability": 0.9005 + }, + { + "start": 22452.3, + "end": 22453.6, + "probability": 0.9544 + }, + { + "start": 22453.68, + "end": 22454.68, + "probability": 0.846 + }, + { + "start": 22455.04, + "end": 22459.46, + "probability": 0.8643 + }, + { + "start": 22460.08, + "end": 22463.3, + "probability": 0.8181 + }, + { + "start": 22464.76, + "end": 22466.0, + "probability": 0.8092 + }, + { + "start": 22466.92, + "end": 22467.66, + "probability": 0.9017 + }, + { + "start": 22468.22, + "end": 22472.9, + "probability": 0.9795 + }, + { + "start": 22472.9, + "end": 22477.12, + "probability": 0.9969 + }, + { + "start": 22477.72, + "end": 22482.36, + "probability": 0.9865 + }, + { + "start": 22482.46, + "end": 22484.66, + "probability": 0.9796 + }, + { + "start": 22485.1, + "end": 22489.64, + "probability": 0.9524 + }, + { + "start": 22489.64, + "end": 22494.78, + "probability": 0.8857 + }, + { + "start": 22494.82, + "end": 22498.92, + "probability": 0.9945 + }, + { + "start": 22499.5, + "end": 22502.36, + "probability": 0.4865 + }, + { + "start": 22503.06, + "end": 22505.86, + "probability": 0.9645 + }, + { + "start": 22505.94, + "end": 22508.2, + "probability": 0.9763 + }, + { + "start": 22508.32, + "end": 22509.48, + "probability": 0.8051 + }, + { + "start": 22510.52, + "end": 22514.58, + "probability": 0.9556 + }, + { + "start": 22514.64, + "end": 22516.56, + "probability": 0.9623 + }, + { + "start": 22516.94, + "end": 22518.5, + "probability": 0.8797 + }, + { + "start": 22518.56, + "end": 22521.6, + "probability": 0.9709 + }, + { + "start": 22522.08, + "end": 22523.86, + "probability": 0.842 + }, + { + "start": 22524.34, + "end": 22525.24, + "probability": 0.8951 + }, + { + "start": 22525.32, + "end": 22527.6, + "probability": 0.9814 + }, + { + "start": 22528.32, + "end": 22531.64, + "probability": 0.8875 + }, + { + "start": 22532.16, + "end": 22532.94, + "probability": 0.9626 + }, + { + "start": 22533.08, + "end": 22533.74, + "probability": 0.8932 + }, + { + "start": 22534.1, + "end": 22536.34, + "probability": 0.9851 + }, + { + "start": 22536.92, + "end": 22539.84, + "probability": 0.9905 + }, + { + "start": 22540.42, + "end": 22543.48, + "probability": 0.9845 + }, + { + "start": 22543.94, + "end": 22544.38, + "probability": 0.5738 + }, + { + "start": 22544.5, + "end": 22544.92, + "probability": 0.9172 + }, + { + "start": 22545.64, + "end": 22545.78, + "probability": 0.7513 + }, + { + "start": 22545.9, + "end": 22547.24, + "probability": 0.9866 + }, + { + "start": 22547.58, + "end": 22548.64, + "probability": 0.8792 + }, + { + "start": 22548.76, + "end": 22551.08, + "probability": 0.8904 + }, + { + "start": 22551.16, + "end": 22552.0, + "probability": 0.6229 + }, + { + "start": 22552.28, + "end": 22553.26, + "probability": 0.787 + }, + { + "start": 22553.42, + "end": 22556.98, + "probability": 0.9146 + }, + { + "start": 22557.78, + "end": 22560.98, + "probability": 0.9653 + }, + { + "start": 22561.62, + "end": 22564.5, + "probability": 0.9153 + }, + { + "start": 22565.0, + "end": 22568.9, + "probability": 0.995 + }, + { + "start": 22570.76, + "end": 22572.1, + "probability": 0.9013 + }, + { + "start": 22572.94, + "end": 22574.96, + "probability": 0.9911 + }, + { + "start": 22575.66, + "end": 22580.6, + "probability": 0.9528 + }, + { + "start": 22581.46, + "end": 22581.72, + "probability": 0.8315 + }, + { + "start": 22583.1, + "end": 22584.78, + "probability": 0.7823 + }, + { + "start": 22585.06, + "end": 22589.14, + "probability": 0.8461 + }, + { + "start": 22596.3, + "end": 22596.68, + "probability": 0.8855 + }, + { + "start": 22599.52, + "end": 22600.76, + "probability": 0.7621 + }, + { + "start": 22601.34, + "end": 22602.1, + "probability": 0.6736 + }, + { + "start": 22602.94, + "end": 22607.18, + "probability": 0.6673 + }, + { + "start": 22607.18, + "end": 22607.48, + "probability": 0.395 + }, + { + "start": 22607.48, + "end": 22611.08, + "probability": 0.9419 + }, + { + "start": 22611.18, + "end": 22612.88, + "probability": 0.9912 + }, + { + "start": 22613.56, + "end": 22617.08, + "probability": 0.9575 + }, + { + "start": 22617.66, + "end": 22620.64, + "probability": 0.9958 + }, + { + "start": 22622.0, + "end": 22628.06, + "probability": 0.9731 + }, + { + "start": 22628.66, + "end": 22631.88, + "probability": 0.9717 + }, + { + "start": 22632.66, + "end": 22635.74, + "probability": 0.8989 + }, + { + "start": 22635.74, + "end": 22639.18, + "probability": 0.897 + }, + { + "start": 22640.1, + "end": 22644.04, + "probability": 0.7072 + }, + { + "start": 22644.68, + "end": 22647.82, + "probability": 0.9245 + }, + { + "start": 22648.62, + "end": 22649.52, + "probability": 0.8184 + }, + { + "start": 22649.72, + "end": 22651.9, + "probability": 0.7971 + }, + { + "start": 22652.38, + "end": 22654.4, + "probability": 0.7659 + }, + { + "start": 22654.5, + "end": 22655.21, + "probability": 0.896 + }, + { + "start": 22655.34, + "end": 22656.02, + "probability": 0.8185 + }, + { + "start": 22656.48, + "end": 22657.0, + "probability": 0.8061 + }, + { + "start": 22657.86, + "end": 22658.54, + "probability": 0.9497 + }, + { + "start": 22659.2, + "end": 22659.65, + "probability": 0.9683 + }, + { + "start": 22660.0, + "end": 22660.74, + "probability": 0.9863 + }, + { + "start": 22661.4, + "end": 22663.32, + "probability": 0.8206 + }, + { + "start": 22663.7, + "end": 22667.82, + "probability": 0.9265 + }, + { + "start": 22668.42, + "end": 22671.02, + "probability": 0.6541 + }, + { + "start": 22671.6, + "end": 22675.06, + "probability": 0.9933 + }, + { + "start": 22676.16, + "end": 22679.58, + "probability": 0.9543 + }, + { + "start": 22680.04, + "end": 22680.84, + "probability": 0.9023 + }, + { + "start": 22681.28, + "end": 22682.82, + "probability": 0.9863 + }, + { + "start": 22683.32, + "end": 22684.0, + "probability": 0.9362 + }, + { + "start": 22684.66, + "end": 22687.78, + "probability": 0.9578 + }, + { + "start": 22688.14, + "end": 22691.3, + "probability": 0.9811 + }, + { + "start": 22691.88, + "end": 22693.78, + "probability": 0.9939 + }, + { + "start": 22694.66, + "end": 22695.28, + "probability": 0.6162 + }, + { + "start": 22695.84, + "end": 22697.15, + "probability": 0.896 + }, + { + "start": 22697.96, + "end": 22700.76, + "probability": 0.9152 + }, + { + "start": 22701.3, + "end": 22704.28, + "probability": 0.9939 + }, + { + "start": 22704.92, + "end": 22708.32, + "probability": 0.9795 + }, + { + "start": 22708.62, + "end": 22710.98, + "probability": 0.9943 + }, + { + "start": 22711.62, + "end": 22713.08, + "probability": 0.9067 + }, + { + "start": 22713.6, + "end": 22716.26, + "probability": 0.99 + }, + { + "start": 22717.46, + "end": 22719.08, + "probability": 0.9982 + }, + { + "start": 22719.68, + "end": 22722.48, + "probability": 0.9722 + }, + { + "start": 22723.06, + "end": 22724.5, + "probability": 0.989 + }, + { + "start": 22725.04, + "end": 22725.36, + "probability": 0.6912 + }, + { + "start": 22725.96, + "end": 22726.76, + "probability": 0.7063 + }, + { + "start": 22727.42, + "end": 22729.44, + "probability": 0.8539 + }, + { + "start": 22729.92, + "end": 22731.4, + "probability": 0.9829 + }, + { + "start": 22732.16, + "end": 22736.92, + "probability": 0.9924 + }, + { + "start": 22737.58, + "end": 22739.66, + "probability": 0.999 + }, + { + "start": 22740.36, + "end": 22744.86, + "probability": 0.9872 + }, + { + "start": 22745.64, + "end": 22746.36, + "probability": 0.8229 + }, + { + "start": 22746.78, + "end": 22749.08, + "probability": 0.9829 + }, + { + "start": 22749.64, + "end": 22751.52, + "probability": 0.9816 + }, + { + "start": 22752.16, + "end": 22752.7, + "probability": 0.9221 + }, + { + "start": 22753.4, + "end": 22760.22, + "probability": 0.9846 + }, + { + "start": 22761.06, + "end": 22762.88, + "probability": 0.922 + }, + { + "start": 22763.46, + "end": 22766.1, + "probability": 0.9964 + }, + { + "start": 22766.1, + "end": 22770.34, + "probability": 0.9973 + }, + { + "start": 22771.16, + "end": 22772.1, + "probability": 0.8171 + }, + { + "start": 22772.94, + "end": 22775.58, + "probability": 0.9883 + }, + { + "start": 22775.58, + "end": 22779.12, + "probability": 0.9861 + }, + { + "start": 22779.88, + "end": 22781.86, + "probability": 0.998 + }, + { + "start": 22781.86, + "end": 22784.78, + "probability": 0.9903 + }, + { + "start": 22785.48, + "end": 22789.12, + "probability": 0.9896 + }, + { + "start": 22789.86, + "end": 22792.0, + "probability": 0.9707 + }, + { + "start": 22792.84, + "end": 22794.0, + "probability": 0.6413 + }, + { + "start": 22794.72, + "end": 22796.16, + "probability": 0.8744 + }, + { + "start": 22796.76, + "end": 22797.82, + "probability": 0.8173 + }, + { + "start": 22798.4, + "end": 22800.14, + "probability": 0.984 + }, + { + "start": 22800.94, + "end": 22803.8, + "probability": 0.8785 + }, + { + "start": 22804.92, + "end": 22805.74, + "probability": 0.9979 + }, + { + "start": 22806.28, + "end": 22807.62, + "probability": 0.7214 + }, + { + "start": 22807.8, + "end": 22810.26, + "probability": 0.9463 + }, + { + "start": 22811.06, + "end": 22811.81, + "probability": 0.8643 + }, + { + "start": 22812.88, + "end": 22815.26, + "probability": 0.9377 + }, + { + "start": 22815.82, + "end": 22816.42, + "probability": 0.3349 + }, + { + "start": 22818.0, + "end": 22818.78, + "probability": 0.7725 + }, + { + "start": 22819.38, + "end": 22820.32, + "probability": 0.7188 + }, + { + "start": 22820.84, + "end": 22822.96, + "probability": 0.8475 + }, + { + "start": 22823.58, + "end": 22825.08, + "probability": 0.9389 + }, + { + "start": 22825.64, + "end": 22826.55, + "probability": 0.2195 + }, + { + "start": 22827.1, + "end": 22828.2, + "probability": 0.7454 + }, + { + "start": 22828.34, + "end": 22828.96, + "probability": 0.5931 + }, + { + "start": 22829.58, + "end": 22831.36, + "probability": 0.8556 + }, + { + "start": 22832.06, + "end": 22836.6, + "probability": 0.7579 + }, + { + "start": 22837.0, + "end": 22838.32, + "probability": 0.8943 + }, + { + "start": 22838.7, + "end": 22840.4, + "probability": 0.9905 + }, + { + "start": 22840.85, + "end": 22841.55, + "probability": 0.0571 + }, + { + "start": 22842.94, + "end": 22843.88, + "probability": 0.3579 + }, + { + "start": 22845.26, + "end": 22848.76, + "probability": 0.9836 + }, + { + "start": 22849.38, + "end": 22849.54, + "probability": 0.6952 + }, + { + "start": 22849.6, + "end": 22851.0, + "probability": 0.8519 + }, + { + "start": 22851.32, + "end": 22852.1, + "probability": 0.8696 + }, + { + "start": 22852.52, + "end": 22855.98, + "probability": 0.9946 + }, + { + "start": 22857.22, + "end": 22858.96, + "probability": 0.8857 + }, + { + "start": 22859.42, + "end": 22863.78, + "probability": 0.8595 + }, + { + "start": 22864.22, + "end": 22868.7, + "probability": 0.9791 + }, + { + "start": 22868.84, + "end": 22871.62, + "probability": 0.9399 + }, + { + "start": 22871.78, + "end": 22874.22, + "probability": 0.9661 + }, + { + "start": 22874.5, + "end": 22874.62, + "probability": 0.4692 + }, + { + "start": 22876.94, + "end": 22879.62, + "probability": 0.8195 + }, + { + "start": 22879.78, + "end": 22881.24, + "probability": 0.9768 + }, + { + "start": 22881.9, + "end": 22882.88, + "probability": 0.8138 + }, + { + "start": 22883.5, + "end": 22888.08, + "probability": 0.918 + }, + { + "start": 22889.16, + "end": 22890.38, + "probability": 0.998 + }, + { + "start": 22890.96, + "end": 22892.24, + "probability": 0.9387 + }, + { + "start": 22892.48, + "end": 22893.02, + "probability": 0.7594 + }, + { + "start": 22893.44, + "end": 22894.78, + "probability": 0.3128 + }, + { + "start": 22911.25, + "end": 22914.37, + "probability": 0.4943 + }, + { + "start": 22914.58, + "end": 22915.29, + "probability": 0.022 + }, + { + "start": 22915.99, + "end": 22918.24, + "probability": 0.3711 + }, + { + "start": 22942.57, + "end": 22944.85, + "probability": 0.2532 + }, + { + "start": 22945.37, + "end": 22948.11, + "probability": 0.5365 + }, + { + "start": 22948.19, + "end": 22951.81, + "probability": 0.8947 + }, + { + "start": 22980.73, + "end": 22983.23, + "probability": 0.5679 + }, + { + "start": 22985.18, + "end": 22987.13, + "probability": 0.0326 + }, + { + "start": 22988.83, + "end": 22989.81, + "probability": 0.0496 + }, + { + "start": 22990.23, + "end": 22991.39, + "probability": 0.0846 + }, + { + "start": 22991.59, + "end": 22992.71, + "probability": 0.1813 + }, + { + "start": 22993.55, + "end": 22998.95, + "probability": 0.3348 + }, + { + "start": 23001.0, + "end": 23001.0, + "probability": 0.0 + }, + { + "start": 23001.0, + "end": 23001.0, + "probability": 0.0 + }, + { + "start": 23001.0, + "end": 23001.0, + "probability": 0.0 + }, + { + "start": 23001.0, + "end": 23001.0, + "probability": 0.0 + }, + { + "start": 23001.0, + "end": 23001.0, + "probability": 0.0 + }, + { + "start": 23001.0, + "end": 23001.0, + "probability": 0.0 + }, + { + "start": 23001.0, + "end": 23001.0, + "probability": 0.0 + }, + { + "start": 23001.0, + "end": 23001.0, + "probability": 0.0 + }, + { + "start": 23001.0, + "end": 23001.0, + "probability": 0.0 + }, + { + "start": 23001.0, + "end": 23001.0, + "probability": 0.0 + }, + { + "start": 23001.0, + "end": 23001.0, + "probability": 0.0 + }, + { + "start": 23001.0, + "end": 23001.0, + "probability": 0.0 + }, + { + "start": 23001.0, + "end": 23001.0, + "probability": 0.0 + }, + { + "start": 23001.0, + "end": 23001.0, + "probability": 0.0 + }, + { + "start": 23001.0, + "end": 23001.0, + "probability": 0.0 + }, + { + "start": 23001.0, + "end": 23001.0, + "probability": 0.0 + }, + { + "start": 23001.0, + "end": 23001.0, + "probability": 0.0 + }, + { + "start": 23001.0, + "end": 23001.0, + "probability": 0.0 + }, + { + "start": 23001.0, + "end": 23001.0, + "probability": 0.0 + }, + { + "start": 23016.51, + "end": 23024.84, + "probability": 0.0881 + }, + { + "start": 23024.86, + "end": 23025.64, + "probability": 0.047 + }, + { + "start": 23026.4, + "end": 23030.72, + "probability": 0.0408 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23135.0, + "end": 23135.0, + "probability": 0.0 + }, + { + "start": 23145.48, + "end": 23147.46, + "probability": 0.1003 + }, + { + "start": 23158.84, + "end": 23160.98, + "probability": 0.0286 + }, + { + "start": 23160.98, + "end": 23164.42, + "probability": 0.0516 + }, + { + "start": 23168.59, + "end": 23170.52, + "probability": 0.0434 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.0, + "end": 23262.0, + "probability": 0.0 + }, + { + "start": 23262.2, + "end": 23262.2, + "probability": 0.0696 + }, + { + "start": 23262.2, + "end": 23263.36, + "probability": 0.331 + }, + { + "start": 23264.82, + "end": 23266.28, + "probability": 0.7554 + }, + { + "start": 23266.38, + "end": 23267.98, + "probability": 0.8149 + }, + { + "start": 23268.36, + "end": 23270.86, + "probability": 0.9612 + }, + { + "start": 23271.46, + "end": 23274.4, + "probability": 0.7726 + }, + { + "start": 23276.02, + "end": 23278.94, + "probability": 0.9657 + }, + { + "start": 23279.48, + "end": 23281.68, + "probability": 0.9938 + }, + { + "start": 23281.74, + "end": 23282.87, + "probability": 0.8943 + }, + { + "start": 23285.46, + "end": 23286.66, + "probability": 0.7167 + }, + { + "start": 23286.84, + "end": 23290.7, + "probability": 0.9844 + }, + { + "start": 23290.84, + "end": 23294.84, + "probability": 0.9981 + }, + { + "start": 23296.28, + "end": 23298.78, + "probability": 0.76 + }, + { + "start": 23300.46, + "end": 23303.26, + "probability": 0.9971 + }, + { + "start": 23303.26, + "end": 23306.62, + "probability": 0.9887 + }, + { + "start": 23307.28, + "end": 23311.18, + "probability": 0.8809 + }, + { + "start": 23311.82, + "end": 23313.0, + "probability": 0.8536 + }, + { + "start": 23313.66, + "end": 23319.38, + "probability": 0.9875 + }, + { + "start": 23319.38, + "end": 23324.18, + "probability": 0.9978 + }, + { + "start": 23324.7, + "end": 23325.36, + "probability": 0.7978 + }, + { + "start": 23330.06, + "end": 23335.62, + "probability": 0.6958 + }, + { + "start": 23335.62, + "end": 23340.76, + "probability": 0.9613 + }, + { + "start": 23341.86, + "end": 23347.86, + "probability": 0.9927 + }, + { + "start": 23348.68, + "end": 23353.44, + "probability": 0.9886 + }, + { + "start": 23353.98, + "end": 23356.04, + "probability": 0.8866 + }, + { + "start": 23357.2, + "end": 23360.46, + "probability": 0.9443 + }, + { + "start": 23360.72, + "end": 23362.34, + "probability": 0.948 + }, + { + "start": 23362.56, + "end": 23364.54, + "probability": 0.9227 + }, + { + "start": 23366.7, + "end": 23372.18, + "probability": 0.992 + }, + { + "start": 23373.42, + "end": 23374.66, + "probability": 0.7866 + }, + { + "start": 23374.7, + "end": 23377.46, + "probability": 0.99 + }, + { + "start": 23378.14, + "end": 23380.68, + "probability": 0.9901 + }, + { + "start": 23381.28, + "end": 23383.54, + "probability": 0.981 + }, + { + "start": 23384.38, + "end": 23387.8, + "probability": 0.9902 + }, + { + "start": 23388.32, + "end": 23391.52, + "probability": 0.9629 + }, + { + "start": 23392.08, + "end": 23395.16, + "probability": 0.9757 + }, + { + "start": 23396.4, + "end": 23398.8, + "probability": 0.9684 + }, + { + "start": 23399.3, + "end": 23400.94, + "probability": 0.9921 + }, + { + "start": 23401.94, + "end": 23404.12, + "probability": 0.6099 + }, + { + "start": 23404.52, + "end": 23407.66, + "probability": 0.9953 + }, + { + "start": 23407.66, + "end": 23412.88, + "probability": 0.8214 + }, + { + "start": 23413.36, + "end": 23414.22, + "probability": 0.946 + }, + { + "start": 23416.3, + "end": 23417.87, + "probability": 0.9856 + }, + { + "start": 23419.1, + "end": 23424.56, + "probability": 0.9977 + }, + { + "start": 23424.56, + "end": 23430.84, + "probability": 0.9829 + }, + { + "start": 23431.36, + "end": 23439.74, + "probability": 0.99 + }, + { + "start": 23440.8, + "end": 23442.8, + "probability": 0.908 + }, + { + "start": 23443.06, + "end": 23448.2, + "probability": 0.7495 + }, + { + "start": 23448.2, + "end": 23452.72, + "probability": 0.9935 + }, + { + "start": 23454.34, + "end": 23454.56, + "probability": 0.3917 + }, + { + "start": 23454.64, + "end": 23455.1, + "probability": 0.8335 + }, + { + "start": 23455.18, + "end": 23457.94, + "probability": 0.9966 + }, + { + "start": 23458.64, + "end": 23462.1, + "probability": 0.996 + }, + { + "start": 23462.1, + "end": 23464.36, + "probability": 0.9634 + }, + { + "start": 23465.18, + "end": 23466.46, + "probability": 0.7862 + }, + { + "start": 23467.02, + "end": 23469.54, + "probability": 0.9935 + }, + { + "start": 23470.14, + "end": 23474.28, + "probability": 0.9891 + }, + { + "start": 23474.48, + "end": 23480.18, + "probability": 0.9805 + }, + { + "start": 23480.18, + "end": 23486.68, + "probability": 0.9969 + }, + { + "start": 23490.1, + "end": 23493.56, + "probability": 0.9604 + }, + { + "start": 23495.08, + "end": 23500.58, + "probability": 0.9937 + }, + { + "start": 23501.14, + "end": 23502.08, + "probability": 0.8229 + }, + { + "start": 23502.88, + "end": 23503.72, + "probability": 0.9519 + }, + { + "start": 23504.44, + "end": 23506.08, + "probability": 0.9868 + }, + { + "start": 23506.88, + "end": 23509.04, + "probability": 0.7672 + }, + { + "start": 23509.6, + "end": 23515.14, + "probability": 0.9624 + }, + { + "start": 23515.14, + "end": 23519.38, + "probability": 0.9984 + }, + { + "start": 23519.66, + "end": 23522.76, + "probability": 0.9984 + }, + { + "start": 23523.34, + "end": 23529.08, + "probability": 0.9757 + }, + { + "start": 23529.78, + "end": 23532.58, + "probability": 0.9274 + }, + { + "start": 23533.78, + "end": 23535.46, + "probability": 0.8671 + }, + { + "start": 23535.72, + "end": 23536.64, + "probability": 0.5436 + }, + { + "start": 23536.76, + "end": 23537.62, + "probability": 0.9417 + }, + { + "start": 23537.74, + "end": 23543.7, + "probability": 0.9277 + }, + { + "start": 23544.52, + "end": 23548.82, + "probability": 0.9858 + }, + { + "start": 23549.66, + "end": 23554.52, + "probability": 0.9678 + }, + { + "start": 23555.12, + "end": 23557.54, + "probability": 0.9038 + }, + { + "start": 23558.06, + "end": 23561.66, + "probability": 0.9941 + }, + { + "start": 23561.9, + "end": 23563.18, + "probability": 0.7534 + }, + { + "start": 23563.64, + "end": 23565.8, + "probability": 0.9961 + }, + { + "start": 23566.46, + "end": 23567.75, + "probability": 0.9878 + }, + { + "start": 23568.02, + "end": 23569.32, + "probability": 0.9939 + }, + { + "start": 23570.12, + "end": 23572.16, + "probability": 0.6456 + }, + { + "start": 23572.72, + "end": 23576.72, + "probability": 0.995 + }, + { + "start": 23577.18, + "end": 23579.44, + "probability": 0.9963 + }, + { + "start": 23579.84, + "end": 23582.2, + "probability": 0.9966 + }, + { + "start": 23582.32, + "end": 23587.84, + "probability": 0.9839 + }, + { + "start": 23588.48, + "end": 23590.82, + "probability": 0.8948 + }, + { + "start": 23591.62, + "end": 23592.48, + "probability": 0.7546 + }, + { + "start": 23593.2, + "end": 23597.0, + "probability": 0.9984 + }, + { + "start": 23597.14, + "end": 23600.22, + "probability": 0.9888 + }, + { + "start": 23600.84, + "end": 23604.14, + "probability": 0.8788 + }, + { + "start": 23604.26, + "end": 23604.96, + "probability": 0.7507 + }, + { + "start": 23605.3, + "end": 23605.3, + "probability": 0.7063 + }, + { + "start": 23605.82, + "end": 23608.3, + "probability": 0.5758 + }, + { + "start": 23609.38, + "end": 23613.38, + "probability": 0.9619 + }, + { + "start": 23614.5, + "end": 23616.14, + "probability": 0.4236 + }, + { + "start": 23616.84, + "end": 23619.8, + "probability": 0.2074 + }, + { + "start": 23629.54, + "end": 23630.14, + "probability": 0.0462 + }, + { + "start": 23630.14, + "end": 23630.34, + "probability": 0.1057 + }, + { + "start": 23630.34, + "end": 23630.34, + "probability": 0.844 + }, + { + "start": 23630.34, + "end": 23630.34, + "probability": 0.0565 + }, + { + "start": 23630.34, + "end": 23630.9, + "probability": 0.1698 + }, + { + "start": 23631.46, + "end": 23632.96, + "probability": 0.3909 + }, + { + "start": 23632.96, + "end": 23636.56, + "probability": 0.7832 + }, + { + "start": 23641.8, + "end": 23642.72, + "probability": 0.7383 + }, + { + "start": 23643.44, + "end": 23644.78, + "probability": 0.7885 + }, + { + "start": 23650.6, + "end": 23651.46, + "probability": 0.6092 + }, + { + "start": 23651.84, + "end": 23651.84, + "probability": 0.0024 + }, + { + "start": 23654.48, + "end": 23655.28, + "probability": 0.5949 + }, + { + "start": 23656.04, + "end": 23656.54, + "probability": 0.9937 + }, + { + "start": 23657.48, + "end": 23663.28, + "probability": 0.8344 + }, + { + "start": 23664.46, + "end": 23664.68, + "probability": 0.7382 + }, + { + "start": 23664.78, + "end": 23666.92, + "probability": 0.1222 + }, + { + "start": 23670.44, + "end": 23671.46, + "probability": 0.7545 + }, + { + "start": 23673.14, + "end": 23673.66, + "probability": 0.6459 + }, + { + "start": 23675.3, + "end": 23675.86, + "probability": 0.163 + }, + { + "start": 23675.92, + "end": 23676.76, + "probability": 0.6509 + }, + { + "start": 23677.7, + "end": 23681.02, + "probability": 0.7571 + }, + { + "start": 23682.14, + "end": 23685.12, + "probability": 0.9382 + }, + { + "start": 23685.2, + "end": 23686.22, + "probability": 0.045 + }, + { + "start": 23686.8, + "end": 23686.82, + "probability": 0.6948 + }, + { + "start": 23686.82, + "end": 23689.03, + "probability": 0.5615 + }, + { + "start": 23689.54, + "end": 23693.06, + "probability": 0.8263 + }, + { + "start": 23711.5, + "end": 23714.98, + "probability": 0.8043 + }, + { + "start": 23716.68, + "end": 23717.16, + "probability": 0.3855 + }, + { + "start": 23717.26, + "end": 23717.88, + "probability": 0.6656 + }, + { + "start": 23717.92, + "end": 23718.38, + "probability": 0.4428 + }, + { + "start": 23730.0, + "end": 23730.0, + "probability": 0.0 + }, + { + "start": 23730.0, + "end": 23730.0, + "probability": 0.0 + }, + { + "start": 23730.72, + "end": 23730.76, + "probability": 0.1378 + }, + { + "start": 23730.76, + "end": 23730.76, + "probability": 0.2241 + }, + { + "start": 23730.76, + "end": 23730.76, + "probability": 0.0412 + }, + { + "start": 23730.76, + "end": 23730.76, + "probability": 0.1088 + }, + { + "start": 23730.76, + "end": 23731.44, + "probability": 0.6648 + }, + { + "start": 23731.44, + "end": 23733.16, + "probability": 0.5163 + }, + { + "start": 23733.26, + "end": 23733.82, + "probability": 0.3653 + }, + { + "start": 23735.34, + "end": 23736.0, + "probability": 0.9192 + }, + { + "start": 23737.38, + "end": 23738.66, + "probability": 0.9563 + }, + { + "start": 23738.7, + "end": 23740.22, + "probability": 0.9869 + }, + { + "start": 23741.26, + "end": 23741.44, + "probability": 0.5158 + }, + { + "start": 23741.5, + "end": 23744.68, + "probability": 0.9576 + }, + { + "start": 23745.5, + "end": 23748.48, + "probability": 0.9562 + }, + { + "start": 23750.96, + "end": 23751.78, + "probability": 0.3502 + }, + { + "start": 23752.3, + "end": 23755.62, + "probability": 0.2483 + }, + { + "start": 23755.82, + "end": 23755.82, + "probability": 0.096 + }, + { + "start": 23755.82, + "end": 23756.48, + "probability": 0.25 + }, + { + "start": 23756.8, + "end": 23757.74, + "probability": 0.9305 + }, + { + "start": 23758.1, + "end": 23759.16, + "probability": 0.0475 + }, + { + "start": 23760.24, + "end": 23760.34, + "probability": 0.375 + }, + { + "start": 23760.92, + "end": 23762.22, + "probability": 0.4062 + }, + { + "start": 23763.04, + "end": 23764.92, + "probability": 0.612 + }, + { + "start": 23764.94, + "end": 23766.16, + "probability": 0.686 + }, + { + "start": 23766.64, + "end": 23767.63, + "probability": 0.849 + }, + { + "start": 23768.28, + "end": 23768.88, + "probability": 0.0222 + }, + { + "start": 23768.88, + "end": 23768.88, + "probability": 0.0526 + }, + { + "start": 23768.88, + "end": 23769.98, + "probability": 0.45 + }, + { + "start": 23770.14, + "end": 23772.16, + "probability": 0.4654 + }, + { + "start": 23772.48, + "end": 23773.06, + "probability": 0.4019 + }, + { + "start": 23773.24, + "end": 23774.22, + "probability": 0.0842 + }, + { + "start": 23775.4, + "end": 23776.76, + "probability": 0.4566 + }, + { + "start": 23777.0, + "end": 23777.1, + "probability": 0.3591 + }, + { + "start": 23777.1, + "end": 23779.8, + "probability": 0.8358 + }, + { + "start": 23781.34, + "end": 23782.36, + "probability": 0.7007 + }, + { + "start": 23783.1, + "end": 23783.1, + "probability": 0.0583 + }, + { + "start": 23783.2, + "end": 23785.64, + "probability": 0.9827 + }, + { + "start": 23785.72, + "end": 23786.12, + "probability": 0.782 + }, + { + "start": 23787.24, + "end": 23791.68, + "probability": 0.6455 + }, + { + "start": 23792.08, + "end": 23799.9, + "probability": 0.9811 + }, + { + "start": 23800.16, + "end": 23801.1, + "probability": 0.1363 + }, + { + "start": 23801.86, + "end": 23801.86, + "probability": 0.0387 + }, + { + "start": 23801.86, + "end": 23803.74, + "probability": 0.9917 + }, + { + "start": 23804.24, + "end": 23804.68, + "probability": 0.4971 + }, + { + "start": 23804.8, + "end": 23806.7, + "probability": 0.8223 + }, + { + "start": 23807.0, + "end": 23809.84, + "probability": 0.4064 + }, + { + "start": 23810.04, + "end": 23811.62, + "probability": 0.4954 + }, + { + "start": 23812.46, + "end": 23815.66, + "probability": 0.5044 + }, + { + "start": 23816.04, + "end": 23816.26, + "probability": 0.0455 + }, + { + "start": 23816.26, + "end": 23817.6, + "probability": 0.1018 + }, + { + "start": 23823.48, + "end": 23823.6, + "probability": 0.034 + }, + { + "start": 23823.6, + "end": 23825.23, + "probability": 0.806 + }, + { + "start": 23825.8, + "end": 23826.08, + "probability": 0.5815 + }, + { + "start": 23826.24, + "end": 23829.06, + "probability": 0.9084 + }, + { + "start": 23831.26, + "end": 23835.38, + "probability": 0.885 + }, + { + "start": 23835.94, + "end": 23837.7, + "probability": 0.8055 + }, + { + "start": 23838.22, + "end": 23839.94, + "probability": 0.7886 + }, + { + "start": 23840.7, + "end": 23841.96, + "probability": 0.8755 + }, + { + "start": 23842.0, + "end": 23844.7, + "probability": 0.9556 + }, + { + "start": 23845.68, + "end": 23846.54, + "probability": 0.772 + }, + { + "start": 23847.1, + "end": 23850.82, + "probability": 0.8262 + }, + { + "start": 23852.5, + "end": 23853.62, + "probability": 0.0908 + }, + { + "start": 23854.26, + "end": 23854.52, + "probability": 0.1731 + }, + { + "start": 23855.1, + "end": 23857.9, + "probability": 0.746 + }, + { + "start": 23858.3, + "end": 23860.44, + "probability": 0.9902 + }, + { + "start": 23861.68, + "end": 23861.78, + "probability": 0.0407 + }, + { + "start": 23861.78, + "end": 23863.75, + "probability": 0.6774 + }, + { + "start": 23864.06, + "end": 23864.9, + "probability": 0.5468 + }, + { + "start": 23865.22, + "end": 23866.5, + "probability": 0.1213 + }, + { + "start": 23866.68, + "end": 23868.56, + "probability": 0.3289 + }, + { + "start": 23868.94, + "end": 23874.3, + "probability": 0.5023 + }, + { + "start": 23874.42, + "end": 23875.16, + "probability": 0.7789 + }, + { + "start": 23875.26, + "end": 23876.54, + "probability": 0.8154 + }, + { + "start": 23878.28, + "end": 23884.78, + "probability": 0.6998 + }, + { + "start": 23884.8, + "end": 23886.66, + "probability": 0.7537 + }, + { + "start": 23886.74, + "end": 23888.98, + "probability": 0.9081 + }, + { + "start": 23891.22, + "end": 23894.76, + "probability": 0.9549 + }, + { + "start": 23894.92, + "end": 23895.7, + "probability": 0.5327 + }, + { + "start": 23896.96, + "end": 23901.69, + "probability": 0.8949 + }, + { + "start": 23902.88, + "end": 23904.32, + "probability": 0.8867 + }, + { + "start": 23904.9, + "end": 23907.32, + "probability": 0.9504 + }, + { + "start": 23908.06, + "end": 23912.26, + "probability": 0.9845 + }, + { + "start": 23912.92, + "end": 23917.06, + "probability": 0.9888 + }, + { + "start": 23917.18, + "end": 23918.02, + "probability": 0.5021 + }, + { + "start": 23918.14, + "end": 23920.96, + "probability": 0.7922 + }, + { + "start": 23921.06, + "end": 23924.16, + "probability": 0.8892 + }, + { + "start": 23924.3, + "end": 23924.75, + "probability": 0.9153 + }, + { + "start": 23925.96, + "end": 23928.68, + "probability": 0.8003 + }, + { + "start": 23929.0, + "end": 23930.8, + "probability": 0.7589 + }, + { + "start": 23930.84, + "end": 23930.94, + "probability": 0.9544 + }, + { + "start": 23932.98, + "end": 23935.98, + "probability": 0.9842 + }, + { + "start": 23936.58, + "end": 23939.8, + "probability": 0.9967 + }, + { + "start": 23940.4, + "end": 23940.88, + "probability": 0.9024 + }, + { + "start": 23943.76, + "end": 23947.38, + "probability": 0.8798 + }, + { + "start": 23951.06, + "end": 23952.7, + "probability": 0.4813 + }, + { + "start": 23952.76, + "end": 23955.44, + "probability": 0.7173 + }, + { + "start": 23955.64, + "end": 23958.46, + "probability": 0.8191 + }, + { + "start": 23958.54, + "end": 23960.48, + "probability": 0.8443 + }, + { + "start": 23962.48, + "end": 23964.3, + "probability": 0.9932 + }, + { + "start": 23965.02, + "end": 23965.84, + "probability": 0.8055 + }, + { + "start": 23966.92, + "end": 23968.6, + "probability": 0.6777 + }, + { + "start": 23969.22, + "end": 23971.38, + "probability": 0.7712 + }, + { + "start": 23972.3, + "end": 23973.98, + "probability": 0.4519 + }, + { + "start": 23975.12, + "end": 23975.26, + "probability": 0.0771 + }, + { + "start": 23975.3, + "end": 23975.4, + "probability": 0.003 + }, + { + "start": 23975.4, + "end": 23979.52, + "probability": 0.8065 + }, + { + "start": 23979.52, + "end": 23982.04, + "probability": 0.7047 + }, + { + "start": 23984.6, + "end": 23990.06, + "probability": 0.9521 + }, + { + "start": 23990.26, + "end": 23991.4, + "probability": 0.9316 + }, + { + "start": 23993.0, + "end": 23996.74, + "probability": 0.9875 + }, + { + "start": 23996.84, + "end": 23997.38, + "probability": 0.9151 + }, + { + "start": 23997.48, + "end": 23998.22, + "probability": 0.979 + }, + { + "start": 23998.34, + "end": 23998.62, + "probability": 0.4012 + }, + { + "start": 23998.68, + "end": 23999.18, + "probability": 0.6703 + }, + { + "start": 23999.96, + "end": 24002.36, + "probability": 0.9855 + }, + { + "start": 24003.02, + "end": 24004.98, + "probability": 0.9824 + }, + { + "start": 24006.02, + "end": 24006.68, + "probability": 0.769 + }, + { + "start": 24006.86, + "end": 24007.0, + "probability": 0.7737 + }, + { + "start": 24007.08, + "end": 24007.84, + "probability": 0.8804 + }, + { + "start": 24007.96, + "end": 24009.3, + "probability": 0.9841 + }, + { + "start": 24010.18, + "end": 24014.02, + "probability": 0.9456 + }, + { + "start": 24014.34, + "end": 24015.48, + "probability": 0.8368 + }, + { + "start": 24016.66, + "end": 24021.82, + "probability": 0.9546 + }, + { + "start": 24022.56, + "end": 24024.04, + "probability": 0.8701 + }, + { + "start": 24024.36, + "end": 24027.0, + "probability": 0.9618 + }, + { + "start": 24027.48, + "end": 24031.74, + "probability": 0.8677 + }, + { + "start": 24031.76, + "end": 24033.35, + "probability": 0.9843 + }, + { + "start": 24034.38, + "end": 24036.88, + "probability": 0.9954 + }, + { + "start": 24037.68, + "end": 24039.8, + "probability": 0.8256 + }, + { + "start": 24040.5, + "end": 24042.82, + "probability": 0.8192 + }, + { + "start": 24043.24, + "end": 24043.94, + "probability": 0.8604 + }, + { + "start": 24044.8, + "end": 24046.42, + "probability": 0.8313 + }, + { + "start": 24047.26, + "end": 24050.62, + "probability": 0.986 + }, + { + "start": 24052.22, + "end": 24053.22, + "probability": 0.8506 + }, + { + "start": 24053.74, + "end": 24054.12, + "probability": 0.9028 + }, + { + "start": 24054.32, + "end": 24055.38, + "probability": 0.9641 + }, + { + "start": 24055.42, + "end": 24057.84, + "probability": 0.7586 + }, + { + "start": 24059.42, + "end": 24061.38, + "probability": 0.9237 + }, + { + "start": 24061.8, + "end": 24064.34, + "probability": 0.8965 + }, + { + "start": 24067.0, + "end": 24067.26, + "probability": 0.0099 + }, + { + "start": 24067.26, + "end": 24067.32, + "probability": 0.0354 + }, + { + "start": 24067.32, + "end": 24067.82, + "probability": 0.3482 + }, + { + "start": 24067.82, + "end": 24069.79, + "probability": 0.9834 + }, + { + "start": 24073.34, + "end": 24073.6, + "probability": 0.4591 + }, + { + "start": 24073.6, + "end": 24073.62, + "probability": 0.374 + }, + { + "start": 24073.62, + "end": 24074.54, + "probability": 0.705 + }, + { + "start": 24075.24, + "end": 24076.44, + "probability": 0.8207 + }, + { + "start": 24080.46, + "end": 24081.3, + "probability": 0.3557 + }, + { + "start": 24081.38, + "end": 24082.2, + "probability": 0.4992 + }, + { + "start": 24082.92, + "end": 24083.9, + "probability": 0.7539 + }, + { + "start": 24084.0, + "end": 24086.68, + "probability": 0.4148 + }, + { + "start": 24086.82, + "end": 24091.1, + "probability": 0.7484 + }, + { + "start": 24091.12, + "end": 24091.88, + "probability": 0.7634 + }, + { + "start": 24093.48, + "end": 24095.26, + "probability": 0.6766 + }, + { + "start": 24095.34, + "end": 24097.82, + "probability": 0.9149 + }, + { + "start": 24097.86, + "end": 24099.0, + "probability": 0.8121 + }, + { + "start": 24099.88, + "end": 24101.12, + "probability": 0.7472 + }, + { + "start": 24102.76, + "end": 24104.62, + "probability": 0.6487 + }, + { + "start": 24106.44, + "end": 24108.38, + "probability": 0.9331 + }, + { + "start": 24109.64, + "end": 24112.84, + "probability": 0.8159 + }, + { + "start": 24113.5, + "end": 24114.82, + "probability": 0.7233 + }, + { + "start": 24114.86, + "end": 24118.2, + "probability": 0.9917 + }, + { + "start": 24118.26, + "end": 24119.34, + "probability": 0.9863 + }, + { + "start": 24121.43, + "end": 24124.04, + "probability": 0.6274 + }, + { + "start": 24125.08, + "end": 24126.36, + "probability": 0.9536 + }, + { + "start": 24126.36, + "end": 24128.96, + "probability": 0.9702 + }, + { + "start": 24129.06, + "end": 24130.59, + "probability": 0.9219 + }, + { + "start": 24131.38, + "end": 24131.98, + "probability": 0.8073 + }, + { + "start": 24132.16, + "end": 24134.31, + "probability": 0.9883 + }, + { + "start": 24134.72, + "end": 24135.1, + "probability": 0.6238 + }, + { + "start": 24135.14, + "end": 24137.68, + "probability": 0.6422 + }, + { + "start": 24139.18, + "end": 24139.54, + "probability": 0.915 + }, + { + "start": 24140.1, + "end": 24140.68, + "probability": 0.5043 + }, + { + "start": 24140.84, + "end": 24144.24, + "probability": 0.9912 + }, + { + "start": 24145.16, + "end": 24146.96, + "probability": 0.7754 + }, + { + "start": 24147.1, + "end": 24148.34, + "probability": 0.9397 + }, + { + "start": 24148.68, + "end": 24149.84, + "probability": 0.8936 + }, + { + "start": 24149.96, + "end": 24150.34, + "probability": 0.8764 + }, + { + "start": 24150.42, + "end": 24154.02, + "probability": 0.9438 + }, + { + "start": 24154.04, + "end": 24154.53, + "probability": 0.0315 + }, + { + "start": 24155.3, + "end": 24156.4, + "probability": 0.775 + }, + { + "start": 24156.98, + "end": 24157.9, + "probability": 0.7359 + }, + { + "start": 24157.98, + "end": 24159.32, + "probability": 0.9565 + }, + { + "start": 24159.78, + "end": 24161.02, + "probability": 0.7631 + }, + { + "start": 24161.36, + "end": 24162.12, + "probability": 0.7052 + }, + { + "start": 24162.2, + "end": 24165.18, + "probability": 0.8648 + }, + { + "start": 24165.22, + "end": 24165.88, + "probability": 0.9102 + }, + { + "start": 24166.48, + "end": 24167.9, + "probability": 0.9094 + }, + { + "start": 24168.04, + "end": 24170.46, + "probability": 0.8785 + }, + { + "start": 24172.28, + "end": 24172.8, + "probability": 0.7866 + }, + { + "start": 24173.58, + "end": 24174.28, + "probability": 0.7767 + }, + { + "start": 24174.82, + "end": 24177.82, + "probability": 0.9771 + }, + { + "start": 24178.46, + "end": 24179.64, + "probability": 0.8747 + }, + { + "start": 24180.94, + "end": 24185.82, + "probability": 0.8875 + }, + { + "start": 24207.64, + "end": 24209.72, + "probability": 0.5837 + }, + { + "start": 24211.23, + "end": 24214.34, + "probability": 0.5352 + }, + { + "start": 24215.22, + "end": 24218.66, + "probability": 0.9904 + }, + { + "start": 24219.58, + "end": 24223.84, + "probability": 0.9956 + }, + { + "start": 24223.84, + "end": 24227.82, + "probability": 0.9971 + }, + { + "start": 24228.94, + "end": 24233.64, + "probability": 0.9439 + }, + { + "start": 24234.12, + "end": 24234.84, + "probability": 0.4654 + }, + { + "start": 24235.08, + "end": 24235.6, + "probability": 0.5204 + }, + { + "start": 24236.26, + "end": 24240.12, + "probability": 0.9723 + }, + { + "start": 24241.32, + "end": 24244.8, + "probability": 0.9951 + }, + { + "start": 24245.74, + "end": 24250.62, + "probability": 0.9766 + }, + { + "start": 24250.62, + "end": 24254.88, + "probability": 0.9457 + }, + { + "start": 24255.66, + "end": 24256.9, + "probability": 0.9467 + }, + { + "start": 24257.44, + "end": 24259.98, + "probability": 0.9987 + }, + { + "start": 24260.52, + "end": 24266.68, + "probability": 0.9965 + }, + { + "start": 24268.12, + "end": 24268.9, + "probability": 0.5064 + }, + { + "start": 24269.78, + "end": 24271.78, + "probability": 0.9748 + }, + { + "start": 24273.26, + "end": 24279.78, + "probability": 0.991 + }, + { + "start": 24280.38, + "end": 24281.56, + "probability": 0.5078 + }, + { + "start": 24281.7, + "end": 24286.74, + "probability": 0.9795 + }, + { + "start": 24286.74, + "end": 24291.54, + "probability": 0.9951 + }, + { + "start": 24292.6, + "end": 24293.62, + "probability": 0.6394 + }, + { + "start": 24294.32, + "end": 24298.44, + "probability": 0.9968 + }, + { + "start": 24298.44, + "end": 24303.18, + "probability": 0.9896 + }, + { + "start": 24303.76, + "end": 24309.46, + "probability": 0.9947 + }, + { + "start": 24310.6, + "end": 24311.2, + "probability": 0.5795 + }, + { + "start": 24311.88, + "end": 24313.34, + "probability": 0.9575 + }, + { + "start": 24313.96, + "end": 24316.5, + "probability": 0.9902 + }, + { + "start": 24316.98, + "end": 24319.94, + "probability": 0.7485 + }, + { + "start": 24320.7, + "end": 24323.42, + "probability": 0.9417 + }, + { + "start": 24323.42, + "end": 24323.94, + "probability": 0.3907 + }, + { + "start": 24323.96, + "end": 24327.38, + "probability": 0.8757 + }, + { + "start": 24328.58, + "end": 24330.1, + "probability": 0.8794 + }, + { + "start": 24330.62, + "end": 24334.78, + "probability": 0.979 + }, + { + "start": 24336.44, + "end": 24336.78, + "probability": 0.8652 + }, + { + "start": 24337.46, + "end": 24340.24, + "probability": 0.9838 + }, + { + "start": 24340.78, + "end": 24343.56, + "probability": 0.974 + }, + { + "start": 24344.12, + "end": 24346.14, + "probability": 0.8225 + }, + { + "start": 24347.38, + "end": 24353.95, + "probability": 0.9962 + }, + { + "start": 24355.1, + "end": 24355.92, + "probability": 0.9953 + }, + { + "start": 24357.0, + "end": 24361.72, + "probability": 0.993 + }, + { + "start": 24362.18, + "end": 24364.04, + "probability": 0.6995 + }, + { + "start": 24364.62, + "end": 24366.3, + "probability": 0.9705 + }, + { + "start": 24367.14, + "end": 24371.58, + "probability": 0.9946 + }, + { + "start": 24371.58, + "end": 24375.98, + "probability": 0.9958 + }, + { + "start": 24376.8, + "end": 24382.68, + "probability": 0.9891 + }, + { + "start": 24383.36, + "end": 24385.18, + "probability": 0.6428 + }, + { + "start": 24385.72, + "end": 24387.64, + "probability": 0.2501 + }, + { + "start": 24388.4, + "end": 24393.82, + "probability": 0.9731 + }, + { + "start": 24394.64, + "end": 24400.9, + "probability": 0.9863 + }, + { + "start": 24401.74, + "end": 24405.2, + "probability": 0.8452 + }, + { + "start": 24406.36, + "end": 24409.38, + "probability": 0.8698 + }, + { + "start": 24410.18, + "end": 24411.5, + "probability": 0.6883 + }, + { + "start": 24412.1, + "end": 24414.64, + "probability": 0.9883 + }, + { + "start": 24415.08, + "end": 24417.44, + "probability": 0.3659 + }, + { + "start": 24418.4, + "end": 24421.38, + "probability": 0.7437 + }, + { + "start": 24421.7, + "end": 24423.22, + "probability": 0.9226 + }, + { + "start": 24423.56, + "end": 24424.16, + "probability": 0.3555 + }, + { + "start": 24424.24, + "end": 24427.46, + "probability": 0.9567 + }, + { + "start": 24428.32, + "end": 24432.3, + "probability": 0.9398 + }, + { + "start": 24432.86, + "end": 24434.62, + "probability": 0.9837 + }, + { + "start": 24435.16, + "end": 24436.62, + "probability": 0.7855 + }, + { + "start": 24437.06, + "end": 24440.68, + "probability": 0.9736 + }, + { + "start": 24440.84, + "end": 24440.9, + "probability": 0.5079 + }, + { + "start": 24441.14, + "end": 24441.56, + "probability": 0.79 + }, + { + "start": 24442.76, + "end": 24443.94, + "probability": 0.9917 + }, + { + "start": 24444.06, + "end": 24444.82, + "probability": 0.8406 + }, + { + "start": 24444.9, + "end": 24446.66, + "probability": 0.9815 + }, + { + "start": 24447.0, + "end": 24447.4, + "probability": 0.1912 + }, + { + "start": 24448.38, + "end": 24453.46, + "probability": 0.9888 + }, + { + "start": 24454.42, + "end": 24454.68, + "probability": 0.6554 + }, + { + "start": 24455.52, + "end": 24457.26, + "probability": 0.8057 + }, + { + "start": 24457.26, + "end": 24457.9, + "probability": 0.6062 + }, + { + "start": 24458.42, + "end": 24459.67, + "probability": 0.8867 + }, + { + "start": 24460.12, + "end": 24463.38, + "probability": 0.9337 + }, + { + "start": 24463.54, + "end": 24464.5, + "probability": 0.3301 + }, + { + "start": 24464.5, + "end": 24465.5, + "probability": 0.8682 + }, + { + "start": 24465.72, + "end": 24467.45, + "probability": 0.9445 + }, + { + "start": 24467.48, + "end": 24468.12, + "probability": 0.9507 + }, + { + "start": 24468.22, + "end": 24469.52, + "probability": 0.9377 + }, + { + "start": 24469.7, + "end": 24469.98, + "probability": 0.7722 + }, + { + "start": 24470.58, + "end": 24471.96, + "probability": 0.8511 + }, + { + "start": 24472.34, + "end": 24475.06, + "probability": 0.0549 + }, + { + "start": 24475.82, + "end": 24476.9, + "probability": 0.9875 + }, + { + "start": 24477.5, + "end": 24479.25, + "probability": 0.0 + }, + { + "start": 24483.92, + "end": 24486.7, + "probability": 0.8911 + }, + { + "start": 24487.06, + "end": 24489.84, + "probability": 0.9658 + }, + { + "start": 24490.36, + "end": 24492.04, + "probability": 0.6232 + }, + { + "start": 24492.66, + "end": 24496.06, + "probability": 0.7573 + }, + { + "start": 24496.36, + "end": 24499.82, + "probability": 0.969 + }, + { + "start": 24500.18, + "end": 24501.1, + "probability": 0.8325 + }, + { + "start": 24501.66, + "end": 24504.5, + "probability": 0.9214 + }, + { + "start": 24504.5, + "end": 24507.14, + "probability": 0.9897 + }, + { + "start": 24507.5, + "end": 24508.08, + "probability": 0.5503 + }, + { + "start": 24508.28, + "end": 24510.76, + "probability": 0.8013 + }, + { + "start": 24511.22, + "end": 24516.66, + "probability": 0.9938 + }, + { + "start": 24516.98, + "end": 24518.92, + "probability": 0.5227 + }, + { + "start": 24519.12, + "end": 24519.45, + "probability": 0.1125 + }, + { + "start": 24519.82, + "end": 24520.42, + "probability": 0.7221 + }, + { + "start": 24522.32, + "end": 24525.0, + "probability": 0.6903 + }, + { + "start": 24527.22, + "end": 24528.36, + "probability": 0.3082 + }, + { + "start": 24528.46, + "end": 24529.54, + "probability": 0.355 + }, + { + "start": 24530.72, + "end": 24531.2, + "probability": 0.0264 + }, + { + "start": 24532.38, + "end": 24534.64, + "probability": 0.7546 + }, + { + "start": 24535.78, + "end": 24538.2, + "probability": 0.1323 + }, + { + "start": 24539.04, + "end": 24542.22, + "probability": 0.6779 + }, + { + "start": 24548.92, + "end": 24549.72, + "probability": 0.8621 + }, + { + "start": 24552.34, + "end": 24555.14, + "probability": 0.9976 + }, + { + "start": 24556.28, + "end": 24557.2, + "probability": 0.8994 + }, + { + "start": 24557.26, + "end": 24558.32, + "probability": 0.8149 + }, + { + "start": 24558.38, + "end": 24559.4, + "probability": 0.9347 + }, + { + "start": 24559.44, + "end": 24560.32, + "probability": 0.7724 + }, + { + "start": 24563.38, + "end": 24565.36, + "probability": 0.6866 + }, + { + "start": 24566.0, + "end": 24568.56, + "probability": 0.8207 + }, + { + "start": 24569.58, + "end": 24570.54, + "probability": 0.6529 + }, + { + "start": 24572.68, + "end": 24577.14, + "probability": 0.7282 + }, + { + "start": 24577.16, + "end": 24580.7, + "probability": 0.8347 + }, + { + "start": 24580.88, + "end": 24586.48, + "probability": 0.9229 + }, + { + "start": 24587.8, + "end": 24594.14, + "probability": 0.9938 + }, + { + "start": 24595.28, + "end": 24598.22, + "probability": 0.9977 + }, + { + "start": 24600.12, + "end": 24603.64, + "probability": 0.9473 + }, + { + "start": 24604.44, + "end": 24608.96, + "probability": 0.9681 + }, + { + "start": 24610.26, + "end": 24615.82, + "probability": 0.9968 + }, + { + "start": 24616.96, + "end": 24621.32, + "probability": 0.9949 + }, + { + "start": 24622.14, + "end": 24627.26, + "probability": 0.9925 + }, + { + "start": 24627.46, + "end": 24628.0, + "probability": 0.7641 + }, + { + "start": 24628.2, + "end": 24628.96, + "probability": 0.8135 + }, + { + "start": 24630.58, + "end": 24636.64, + "probability": 0.9945 + }, + { + "start": 24637.3, + "end": 24638.44, + "probability": 0.9336 + }, + { + "start": 24639.14, + "end": 24641.54, + "probability": 0.9437 + }, + { + "start": 24642.28, + "end": 24647.18, + "probability": 0.9954 + }, + { + "start": 24647.52, + "end": 24648.54, + "probability": 0.986 + }, + { + "start": 24648.98, + "end": 24654.04, + "probability": 0.9888 + }, + { + "start": 24655.54, + "end": 24659.12, + "probability": 0.9728 + }, + { + "start": 24659.12, + "end": 24659.7, + "probability": 0.0222 + }, + { + "start": 24660.06, + "end": 24660.6, + "probability": 0.0006 + }, + { + "start": 24661.99, + "end": 24668.66, + "probability": 0.7009 + }, + { + "start": 24670.02, + "end": 24670.14, + "probability": 0.0575 + }, + { + "start": 24670.14, + "end": 24670.86, + "probability": 0.8518 + }, + { + "start": 24671.08, + "end": 24673.72, + "probability": 0.8325 + }, + { + "start": 24674.04, + "end": 24675.6, + "probability": 0.1323 + }, + { + "start": 24676.2, + "end": 24676.56, + "probability": 0.1921 + }, + { + "start": 24677.02, + "end": 24677.88, + "probability": 0.35 + }, + { + "start": 24677.88, + "end": 24679.16, + "probability": 0.338 + }, + { + "start": 24680.6, + "end": 24683.12, + "probability": 0.1081 + }, + { + "start": 24683.98, + "end": 24684.82, + "probability": 0.2343 + }, + { + "start": 24684.9, + "end": 24686.78, + "probability": 0.0085 + }, + { + "start": 24688.32, + "end": 24688.5, + "probability": 0.3398 + }, + { + "start": 24688.5, + "end": 24689.02, + "probability": 0.1065 + }, + { + "start": 24692.62, + "end": 24696.26, + "probability": 0.0858 + }, + { + "start": 24697.14, + "end": 24699.36, + "probability": 0.5181 + }, + { + "start": 24700.16, + "end": 24701.1, + "probability": 0.3231 + }, + { + "start": 24701.2, + "end": 24702.34, + "probability": 0.1061 + }, + { + "start": 24702.48, + "end": 24704.8, + "probability": 0.5532 + }, + { + "start": 24704.96, + "end": 24709.31, + "probability": 0.8217 + }, + { + "start": 24709.98, + "end": 24711.22, + "probability": 0.0631 + }, + { + "start": 24711.68, + "end": 24713.7, + "probability": 0.8809 + }, + { + "start": 24713.9, + "end": 24714.54, + "probability": 0.2285 + }, + { + "start": 24714.76, + "end": 24715.2, + "probability": 0.1225 + }, + { + "start": 24715.34, + "end": 24715.48, + "probability": 0.3577 + }, + { + "start": 24715.6, + "end": 24717.28, + "probability": 0.3294 + }, + { + "start": 24717.52, + "end": 24720.02, + "probability": 0.1788 + }, + { + "start": 24720.14, + "end": 24721.42, + "probability": 0.1616 + }, + { + "start": 24722.66, + "end": 24724.1, + "probability": 0.0881 + }, + { + "start": 24724.26, + "end": 24724.6, + "probability": 0.0492 + }, + { + "start": 24724.6, + "end": 24724.6, + "probability": 0.0356 + }, + { + "start": 24724.6, + "end": 24724.6, + "probability": 0.1584 + }, + { + "start": 24724.6, + "end": 24726.84, + "probability": 0.5401 + }, + { + "start": 24727.06, + "end": 24727.64, + "probability": 0.4585 + }, + { + "start": 24727.98, + "end": 24730.62, + "probability": 0.1915 + }, + { + "start": 24731.08, + "end": 24733.36, + "probability": 0.4585 + }, + { + "start": 24733.76, + "end": 24733.76, + "probability": 0.267 + }, + { + "start": 24733.76, + "end": 24734.82, + "probability": 0.2432 + }, + { + "start": 24734.94, + "end": 24736.6, + "probability": 0.5017 + }, + { + "start": 24736.78, + "end": 24737.42, + "probability": 0.0652 + }, + { + "start": 24737.74, + "end": 24740.32, + "probability": 0.143 + }, + { + "start": 24743.36, + "end": 24749.46, + "probability": 0.0702 + }, + { + "start": 24750.8, + "end": 24751.25, + "probability": 0.8833 + }, + { + "start": 24751.54, + "end": 24752.06, + "probability": 0.9436 + }, + { + "start": 24758.0, + "end": 24758.0, + "probability": 0.0 + }, + { + "start": 24758.14, + "end": 24758.28, + "probability": 0.0565 + }, + { + "start": 24758.28, + "end": 24759.38, + "probability": 0.6186 + }, + { + "start": 24760.52, + "end": 24761.66, + "probability": 0.3705 + }, + { + "start": 24761.66, + "end": 24761.86, + "probability": 0.1252 + }, + { + "start": 24761.86, + "end": 24762.82, + "probability": 0.7889 + }, + { + "start": 24763.2, + "end": 24764.72, + "probability": 0.924 + }, + { + "start": 24765.3, + "end": 24766.42, + "probability": 0.7155 + }, + { + "start": 24766.44, + "end": 24766.74, + "probability": 0.1268 + }, + { + "start": 24766.84, + "end": 24769.73, + "probability": 0.3172 + }, + { + "start": 24770.7, + "end": 24771.44, + "probability": 0.2784 + }, + { + "start": 24771.92, + "end": 24774.4, + "probability": 0.0431 + }, + { + "start": 24774.4, + "end": 24775.1, + "probability": 0.0661 + }, + { + "start": 24776.42, + "end": 24779.26, + "probability": 0.1406 + }, + { + "start": 24783.34, + "end": 24787.22, + "probability": 0.7378 + }, + { + "start": 24787.24, + "end": 24787.78, + "probability": 0.4226 + }, + { + "start": 24788.82, + "end": 24792.28, + "probability": 0.1251 + }, + { + "start": 24792.72, + "end": 24793.14, + "probability": 0.3719 + }, + { + "start": 24793.3, + "end": 24794.16, + "probability": 0.3692 + }, + { + "start": 24794.18, + "end": 24794.62, + "probability": 0.7899 + }, + { + "start": 24794.7, + "end": 24797.62, + "probability": 0.4525 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.0, + "end": 24884.0, + "probability": 0.0 + }, + { + "start": 24884.58, + "end": 24884.58, + "probability": 0.0014 + }, + { + "start": 24884.58, + "end": 24886.14, + "probability": 0.2083 + }, + { + "start": 24887.6, + "end": 24889.9, + "probability": 0.4145 + }, + { + "start": 24889.94, + "end": 24891.54, + "probability": 0.9541 + }, + { + "start": 24892.48, + "end": 24892.94, + "probability": 0.6711 + }, + { + "start": 24893.2, + "end": 24896.68, + "probability": 0.9795 + }, + { + "start": 24896.82, + "end": 24897.88, + "probability": 0.7885 + }, + { + "start": 24898.56, + "end": 24902.14, + "probability": 0.9849 + }, + { + "start": 24903.46, + "end": 24908.88, + "probability": 0.7024 + }, + { + "start": 24909.5, + "end": 24911.62, + "probability": 0.8225 + }, + { + "start": 24911.8, + "end": 24917.04, + "probability": 0.9747 + }, + { + "start": 24917.04, + "end": 24922.98, + "probability": 0.9654 + }, + { + "start": 24924.16, + "end": 24926.18, + "probability": 0.8781 + }, + { + "start": 24926.7, + "end": 24930.08, + "probability": 0.9929 + }, + { + "start": 24930.84, + "end": 24932.9, + "probability": 0.9927 + }, + { + "start": 24933.64, + "end": 24936.86, + "probability": 0.9792 + }, + { + "start": 24936.88, + "end": 24940.58, + "probability": 0.9382 + }, + { + "start": 24941.8, + "end": 24945.2, + "probability": 0.9789 + }, + { + "start": 24946.0, + "end": 24950.16, + "probability": 0.9943 + }, + { + "start": 24951.62, + "end": 24955.22, + "probability": 0.9842 + }, + { + "start": 24956.14, + "end": 24958.64, + "probability": 0.6974 + }, + { + "start": 24959.66, + "end": 24962.34, + "probability": 0.8155 + }, + { + "start": 24963.4, + "end": 24964.36, + "probability": 0.8067 + }, + { + "start": 24964.94, + "end": 24966.97, + "probability": 0.7334 + }, + { + "start": 24968.06, + "end": 24972.84, + "probability": 0.9916 + }, + { + "start": 24974.38, + "end": 24974.38, + "probability": 0.0816 + }, + { + "start": 24974.38, + "end": 24981.86, + "probability": 0.9491 + }, + { + "start": 24983.12, + "end": 24985.26, + "probability": 0.6078 + }, + { + "start": 24986.1, + "end": 24993.16, + "probability": 0.9943 + }, + { + "start": 24993.84, + "end": 24997.82, + "probability": 0.9888 + }, + { + "start": 24998.82, + "end": 25004.2, + "probability": 0.9977 + }, + { + "start": 25004.98, + "end": 25008.34, + "probability": 0.9993 + }, + { + "start": 25008.34, + "end": 25011.98, + "probability": 0.9966 + }, + { + "start": 25012.44, + "end": 25013.84, + "probability": 0.937 + }, + { + "start": 25014.66, + "end": 25016.12, + "probability": 0.9008 + }, + { + "start": 25016.38, + "end": 25016.88, + "probability": 0.3956 + }, + { + "start": 25017.06, + "end": 25017.48, + "probability": 0.4913 + }, + { + "start": 25017.48, + "end": 25019.36, + "probability": 0.8054 + }, + { + "start": 25024.44, + "end": 25027.04, + "probability": 0.9192 + }, + { + "start": 25029.26, + "end": 25032.04, + "probability": 0.7702 + }, + { + "start": 25033.22, + "end": 25035.68, + "probability": 0.9913 + }, + { + "start": 25035.86, + "end": 25038.36, + "probability": 0.7064 + }, + { + "start": 25038.9, + "end": 25039.36, + "probability": 0.6389 + }, + { + "start": 25039.44, + "end": 25039.86, + "probability": 0.5405 + }, + { + "start": 25039.94, + "end": 25040.78, + "probability": 0.7988 + }, + { + "start": 25042.48, + "end": 25047.32, + "probability": 0.0328 + }, + { + "start": 25055.6, + "end": 25056.18, + "probability": 0.0087 + }, + { + "start": 25056.18, + "end": 25056.18, + "probability": 0.0404 + }, + { + "start": 25056.18, + "end": 25056.18, + "probability": 0.033 + }, + { + "start": 25056.18, + "end": 25056.18, + "probability": 0.0608 + }, + { + "start": 25056.18, + "end": 25056.76, + "probability": 0.4102 + }, + { + "start": 25057.42, + "end": 25058.46, + "probability": 0.6351 + }, + { + "start": 25058.96, + "end": 25059.86, + "probability": 0.6264 + }, + { + "start": 25066.84, + "end": 25067.7, + "probability": 0.9054 + }, + { + "start": 25070.38, + "end": 25074.5, + "probability": 0.7494 + }, + { + "start": 25074.56, + "end": 25075.56, + "probability": 0.63 + }, + { + "start": 25075.72, + "end": 25077.74, + "probability": 0.0517 + }, + { + "start": 25077.78, + "end": 25078.76, + "probability": 0.1949 + }, + { + "start": 25079.16, + "end": 25079.82, + "probability": 0.6414 + }, + { + "start": 25080.3, + "end": 25080.6, + "probability": 0.1914 + }, + { + "start": 25081.16, + "end": 25081.6, + "probability": 0.6262 + }, + { + "start": 25083.48, + "end": 25084.84, + "probability": 0.0397 + }, + { + "start": 25084.96, + "end": 25085.3, + "probability": 0.0528 + }, + { + "start": 25086.7, + "end": 25086.9, + "probability": 0.2843 + }, + { + "start": 25088.28, + "end": 25088.28, + "probability": 0.4003 + }, + { + "start": 25088.28, + "end": 25088.92, + "probability": 0.2745 + }, + { + "start": 25089.28, + "end": 25089.6, + "probability": 0.5146 + }, + { + "start": 25091.02, + "end": 25092.64, + "probability": 0.8322 + }, + { + "start": 25093.14, + "end": 25095.14, + "probability": 0.6419 + }, + { + "start": 25095.2, + "end": 25096.08, + "probability": 0.8463 + }, + { + "start": 25096.94, + "end": 25096.94, + "probability": 0.0003 + }, + { + "start": 25100.57, + "end": 25100.65, + "probability": 0.0895 + }, + { + "start": 25100.65, + "end": 25103.35, + "probability": 0.9033 + }, + { + "start": 25104.04, + "end": 25104.34, + "probability": 0.7844 + }, + { + "start": 25109.27, + "end": 25109.55, + "probability": 0.0707 + }, + { + "start": 25119.09, + "end": 25120.61, + "probability": 0.3541 + }, + { + "start": 25120.75, + "end": 25121.98, + "probability": 0.1497 + }, + { + "start": 25122.31, + "end": 25125.19, + "probability": 0.4515 + }, + { + "start": 25125.97, + "end": 25125.97, + "probability": 0.053 + }, + { + "start": 25125.99, + "end": 25127.63, + "probability": 0.5081 + }, + { + "start": 25127.99, + "end": 25130.57, + "probability": 0.4186 + }, + { + "start": 25130.89, + "end": 25135.93, + "probability": 0.8901 + }, + { + "start": 25136.51, + "end": 25138.21, + "probability": 0.7122 + }, + { + "start": 25140.76, + "end": 25143.75, + "probability": 0.0969 + }, + { + "start": 25143.75, + "end": 25144.35, + "probability": 0.0157 + }, + { + "start": 25144.35, + "end": 25144.89, + "probability": 0.2797 + }, + { + "start": 25144.89, + "end": 25145.35, + "probability": 0.5873 + }, + { + "start": 25146.61, + "end": 25147.91, + "probability": 0.6465 + }, + { + "start": 25149.06, + "end": 25150.79, + "probability": 0.734 + }, + { + "start": 25160.0, + "end": 25160.0, + "probability": 0.0 + }, + { + "start": 25160.0, + "end": 25160.0, + "probability": 0.0 + }, + { + "start": 25160.0, + "end": 25160.0, + "probability": 0.0 + }, + { + "start": 25160.0, + "end": 25160.0, + "probability": 0.0 + }, + { + "start": 25160.0, + "end": 25160.0, + "probability": 0.0 + }, + { + "start": 25160.0, + "end": 25160.0, + "probability": 0.0 + }, + { + "start": 25160.0, + "end": 25160.0, + "probability": 0.0 + }, + { + "start": 25161.26, + "end": 25166.92, + "probability": 0.9691 + }, + { + "start": 25171.0, + "end": 25177.3, + "probability": 0.8781 + }, + { + "start": 25177.3, + "end": 25181.14, + "probability": 0.7694 + }, + { + "start": 25181.48, + "end": 25184.38, + "probability": 0.9329 + }, + { + "start": 25184.48, + "end": 25185.6, + "probability": 0.9795 + }, + { + "start": 25187.14, + "end": 25188.64, + "probability": 0.7561 + }, + { + "start": 25192.28, + "end": 25193.6, + "probability": 0.692 + }, + { + "start": 25194.22, + "end": 25195.98, + "probability": 0.1625 + }, + { + "start": 25197.04, + "end": 25198.64, + "probability": 0.6769 + }, + { + "start": 25199.3, + "end": 25200.22, + "probability": 0.0456 + }, + { + "start": 25200.26, + "end": 25201.88, + "probability": 0.3735 + }, + { + "start": 25201.98, + "end": 25205.02, + "probability": 0.2394 + }, + { + "start": 25205.3, + "end": 25209.3, + "probability": 0.1594 + }, + { + "start": 25209.4, + "end": 25209.42, + "probability": 0.0222 + }, + { + "start": 25209.42, + "end": 25212.64, + "probability": 0.7127 + }, + { + "start": 25213.32, + "end": 25213.88, + "probability": 0.8072 + }, + { + "start": 25214.38, + "end": 25215.58, + "probability": 0.919 + }, + { + "start": 25220.62, + "end": 25222.1, + "probability": 0.6215 + }, + { + "start": 25223.66, + "end": 25225.58, + "probability": 0.916 + }, + { + "start": 25226.56, + "end": 25227.74, + "probability": 0.8685 + }, + { + "start": 25228.78, + "end": 25232.48, + "probability": 0.9584 + }, + { + "start": 25233.36, + "end": 25234.0, + "probability": 0.9915 + }, + { + "start": 25235.08, + "end": 25237.22, + "probability": 0.9966 + }, + { + "start": 25239.12, + "end": 25243.66, + "probability": 0.9733 + }, + { + "start": 25244.58, + "end": 25251.72, + "probability": 0.9829 + }, + { + "start": 25253.44, + "end": 25258.5, + "probability": 0.9891 + }, + { + "start": 25261.2, + "end": 25262.72, + "probability": 0.8735 + }, + { + "start": 25263.6, + "end": 25268.3, + "probability": 0.9937 + }, + { + "start": 25269.12, + "end": 25269.64, + "probability": 0.6212 + }, + { + "start": 25269.96, + "end": 25271.66, + "probability": 0.8759 + }, + { + "start": 25271.78, + "end": 25273.01, + "probability": 0.4466 + }, + { + "start": 25274.18, + "end": 25276.7, + "probability": 0.9845 + }, + { + "start": 25277.36, + "end": 25281.36, + "probability": 0.8932 + }, + { + "start": 25285.68, + "end": 25291.04, + "probability": 0.9846 + }, + { + "start": 25291.98, + "end": 25301.24, + "probability": 0.9199 + }, + { + "start": 25301.88, + "end": 25303.94, + "probability": 0.9441 + }, + { + "start": 25304.84, + "end": 25309.84, + "probability": 0.8204 + }, + { + "start": 25310.7, + "end": 25314.04, + "probability": 0.816 + }, + { + "start": 25316.18, + "end": 25319.86, + "probability": 0.9862 + }, + { + "start": 25320.1, + "end": 25324.72, + "probability": 0.9685 + }, + { + "start": 25325.42, + "end": 25329.26, + "probability": 0.9171 + }, + { + "start": 25330.64, + "end": 25332.02, + "probability": 0.9366 + }, + { + "start": 25332.26, + "end": 25339.02, + "probability": 0.9637 + }, + { + "start": 25339.12, + "end": 25341.54, + "probability": 0.7687 + }, + { + "start": 25341.76, + "end": 25343.24, + "probability": 0.8391 + }, + { + "start": 25345.41, + "end": 25347.62, + "probability": 0.7474 + }, + { + "start": 25349.14, + "end": 25352.16, + "probability": 0.8354 + }, + { + "start": 25354.72, + "end": 25358.38, + "probability": 0.8817 + }, + { + "start": 25359.08, + "end": 25360.48, + "probability": 0.8799 + }, + { + "start": 25361.44, + "end": 25365.32, + "probability": 0.8951 + }, + { + "start": 25366.42, + "end": 25371.48, + "probability": 0.806 + }, + { + "start": 25372.84, + "end": 25375.14, + "probability": 0.8418 + }, + { + "start": 25376.36, + "end": 25381.08, + "probability": 0.9789 + }, + { + "start": 25381.68, + "end": 25386.28, + "probability": 0.5997 + }, + { + "start": 25386.98, + "end": 25391.0, + "probability": 0.4777 + }, + { + "start": 25392.18, + "end": 25392.8, + "probability": 0.9696 + }, + { + "start": 25394.04, + "end": 25394.68, + "probability": 0.7905 + }, + { + "start": 25395.68, + "end": 25397.02, + "probability": 0.9808 + }, + { + "start": 25399.16, + "end": 25405.28, + "probability": 0.9495 + }, + { + "start": 25405.98, + "end": 25409.7, + "probability": 0.4817 + }, + { + "start": 25410.54, + "end": 25412.64, + "probability": 0.5968 + }, + { + "start": 25413.36, + "end": 25418.04, + "probability": 0.9427 + }, + { + "start": 25418.52, + "end": 25426.14, + "probability": 0.9316 + }, + { + "start": 25426.72, + "end": 25428.64, + "probability": 0.9456 + }, + { + "start": 25429.5, + "end": 25430.34, + "probability": 0.832 + }, + { + "start": 25431.06, + "end": 25432.08, + "probability": 0.022 + }, + { + "start": 25433.24, + "end": 25434.96, + "probability": 0.9696 + }, + { + "start": 25435.56, + "end": 25438.26, + "probability": 0.9934 + }, + { + "start": 25438.94, + "end": 25439.72, + "probability": 0.7352 + }, + { + "start": 25440.48, + "end": 25441.72, + "probability": 0.4765 + }, + { + "start": 25443.44, + "end": 25445.6, + "probability": 0.7988 + }, + { + "start": 25445.88, + "end": 25448.56, + "probability": 0.9953 + }, + { + "start": 25449.16, + "end": 25449.74, + "probability": 0.8065 + }, + { + "start": 25451.56, + "end": 25455.38, + "probability": 0.6555 + }, + { + "start": 25455.9, + "end": 25456.84, + "probability": 0.9539 + }, + { + "start": 25456.94, + "end": 25457.54, + "probability": 0.8708 + }, + { + "start": 25457.76, + "end": 25458.16, + "probability": 0.8402 + }, + { + "start": 25458.26, + "end": 25458.68, + "probability": 0.9128 + }, + { + "start": 25458.82, + "end": 25459.32, + "probability": 0.9294 + }, + { + "start": 25459.42, + "end": 25459.98, + "probability": 0.9565 + }, + { + "start": 25460.06, + "end": 25460.66, + "probability": 0.7882 + }, + { + "start": 25461.3, + "end": 25463.32, + "probability": 0.8603 + }, + { + "start": 25463.82, + "end": 25468.96, + "probability": 0.9903 + }, + { + "start": 25469.14, + "end": 25473.1, + "probability": 0.9899 + }, + { + "start": 25474.58, + "end": 25474.84, + "probability": 0.5441 + }, + { + "start": 25475.64, + "end": 25480.11, + "probability": 0.988 + }, + { + "start": 25481.66, + "end": 25484.42, + "probability": 0.7472 + }, + { + "start": 25485.0, + "end": 25485.54, + "probability": 0.1165 + }, + { + "start": 25486.32, + "end": 25490.24, + "probability": 0.8254 + }, + { + "start": 25491.5, + "end": 25492.62, + "probability": 0.937 + }, + { + "start": 25493.48, + "end": 25494.12, + "probability": 0.6943 + }, + { + "start": 25494.72, + "end": 25499.68, + "probability": 0.9165 + }, + { + "start": 25500.3, + "end": 25501.44, + "probability": 0.9044 + }, + { + "start": 25505.2, + "end": 25507.82, + "probability": 0.7815 + }, + { + "start": 25508.44, + "end": 25509.32, + "probability": 0.9399 + }, + { + "start": 25511.04, + "end": 25512.3, + "probability": 0.6543 + }, + { + "start": 25514.82, + "end": 25515.92, + "probability": 0.0764 + }, + { + "start": 25516.92, + "end": 25518.02, + "probability": 0.0028 + }, + { + "start": 25518.74, + "end": 25519.66, + "probability": 0.0368 + }, + { + "start": 25519.66, + "end": 25523.04, + "probability": 0.1693 + }, + { + "start": 25526.61, + "end": 25528.94, + "probability": 0.0189 + }, + { + "start": 25528.94, + "end": 25531.84, + "probability": 0.526 + }, + { + "start": 25533.42, + "end": 25534.64, + "probability": 0.3718 + }, + { + "start": 25535.32, + "end": 25538.16, + "probability": 0.145 + }, + { + "start": 25539.2, + "end": 25541.7, + "probability": 0.0408 + }, + { + "start": 25542.7, + "end": 25548.04, + "probability": 0.3139 + }, + { + "start": 25548.04, + "end": 25549.34, + "probability": 0.2601 + }, + { + "start": 25549.88, + "end": 25551.18, + "probability": 0.6199 + }, + { + "start": 25551.84, + "end": 25552.08, + "probability": 0.6249 + }, + { + "start": 25553.46, + "end": 25555.14, + "probability": 0.2695 + }, + { + "start": 25555.42, + "end": 25559.0, + "probability": 0.0451 + }, + { + "start": 25560.12, + "end": 25560.92, + "probability": 0.3674 + }, + { + "start": 25563.32, + "end": 25566.52, + "probability": 0.7835 + }, + { + "start": 25566.86, + "end": 25569.76, + "probability": 0.0916 + }, + { + "start": 25570.94, + "end": 25571.52, + "probability": 0.0033 + }, + { + "start": 25573.97, + "end": 25577.36, + "probability": 0.0416 + }, + { + "start": 25578.04, + "end": 25580.34, + "probability": 0.0685 + }, + { + "start": 25581.56, + "end": 25586.61, + "probability": 0.082 + }, + { + "start": 25586.82, + "end": 25587.06, + "probability": 0.1845 + }, + { + "start": 25626.0, + "end": 25626.0, + "probability": 0.0 + }, + { + "start": 25626.0, + "end": 25626.0, + "probability": 0.0 + }, + { + "start": 25626.0, + "end": 25626.0, + "probability": 0.0 + }, + { + "start": 25626.0, + "end": 25626.0, + "probability": 0.0 + }, + { + "start": 25626.0, + "end": 25626.0, + "probability": 0.0 + }, + { + "start": 25626.0, + "end": 25626.0, + "probability": 0.0 + }, + { + "start": 25626.0, + "end": 25626.0, + "probability": 0.0 + }, + { + "start": 25626.0, + "end": 25626.0, + "probability": 0.0 + }, + { + "start": 25626.0, + "end": 25626.0, + "probability": 0.0 + }, + { + "start": 25626.0, + "end": 25626.0, + "probability": 0.0 + }, + { + "start": 25626.0, + "end": 25626.0, + "probability": 0.0 + }, + { + "start": 25627.1, + "end": 25628.38, + "probability": 0.0236 + }, + { + "start": 25629.22, + "end": 25629.86, + "probability": 0.0203 + }, + { + "start": 25631.76, + "end": 25632.56, + "probability": 0.1182 + }, + { + "start": 25633.34, + "end": 25634.02, + "probability": 0.0402 + }, + { + "start": 25634.88, + "end": 25635.56, + "probability": 0.0571 + }, + { + "start": 25636.48, + "end": 25641.45, + "probability": 0.1056 + }, + { + "start": 25642.58, + "end": 25642.82, + "probability": 0.2064 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.0, + "end": 25789.0, + "probability": 0.0 + }, + { + "start": 25789.98, + "end": 25790.29, + "probability": 0.1874 + }, + { + "start": 25791.22, + "end": 25792.62, + "probability": 0.9907 + }, + { + "start": 25793.68, + "end": 25795.12, + "probability": 0.9103 + }, + { + "start": 25797.02, + "end": 25802.04, + "probability": 0.9379 + }, + { + "start": 25802.64, + "end": 25803.15, + "probability": 0.7743 + }, + { + "start": 25804.9, + "end": 25808.12, + "probability": 0.9719 + }, + { + "start": 25808.62, + "end": 25810.12, + "probability": 0.9393 + }, + { + "start": 25810.89, + "end": 25812.57, + "probability": 0.4752 + }, + { + "start": 25814.64, + "end": 25817.94, + "probability": 0.0416 + }, + { + "start": 25819.04, + "end": 25820.28, + "probability": 0.2307 + }, + { + "start": 25821.18, + "end": 25825.32, + "probability": 0.154 + }, + { + "start": 25825.9, + "end": 25828.5, + "probability": 0.2342 + }, + { + "start": 25829.28, + "end": 25829.56, + "probability": 0.6741 + }, + { + "start": 25829.96, + "end": 25830.62, + "probability": 0.7784 + }, + { + "start": 25852.88, + "end": 25856.04, + "probability": 0.9597 + }, + { + "start": 25856.4, + "end": 25857.48, + "probability": 0.7726 + }, + { + "start": 25862.18, + "end": 25863.18, + "probability": 0.3716 + }, + { + "start": 25877.74, + "end": 25877.86, + "probability": 0.0098 + }, + { + "start": 25877.86, + "end": 25879.56, + "probability": 0.6732 + }, + { + "start": 25881.52, + "end": 25885.7, + "probability": 0.9833 + }, + { + "start": 25886.42, + "end": 25892.38, + "probability": 0.8687 + }, + { + "start": 25893.18, + "end": 25896.92, + "probability": 0.9962 + }, + { + "start": 25897.82, + "end": 25899.0, + "probability": 0.6848 + }, + { + "start": 25899.64, + "end": 25900.06, + "probability": 0.7918 + }, + { + "start": 25900.58, + "end": 25901.66, + "probability": 0.9653 + }, + { + "start": 25902.68, + "end": 25905.1, + "probability": 0.4531 + }, + { + "start": 25907.52, + "end": 25909.94, + "probability": 0.7974 + }, + { + "start": 25910.0, + "end": 25911.16, + "probability": 0.9403 + }, + { + "start": 25912.0, + "end": 25918.76, + "probability": 0.9568 + }, + { + "start": 25919.3, + "end": 25922.64, + "probability": 0.6662 + }, + { + "start": 25923.5, + "end": 25926.38, + "probability": 0.9869 + }, + { + "start": 25926.58, + "end": 25928.03, + "probability": 0.7053 + }, + { + "start": 25928.9, + "end": 25929.18, + "probability": 0.8325 + }, + { + "start": 25929.26, + "end": 25930.52, + "probability": 0.8962 + }, + { + "start": 25931.43, + "end": 25933.36, + "probability": 0.2369 + }, + { + "start": 25933.36, + "end": 25933.36, + "probability": 0.003 + }, + { + "start": 25933.36, + "end": 25933.66, + "probability": 0.5344 + }, + { + "start": 25934.24, + "end": 25934.94, + "probability": 0.6493 + }, + { + "start": 25936.0, + "end": 25938.04, + "probability": 0.9013 + }, + { + "start": 25939.46, + "end": 25940.58, + "probability": 0.6456 + }, + { + "start": 25940.74, + "end": 25943.62, + "probability": 0.9829 + }, + { + "start": 25944.1, + "end": 25945.64, + "probability": 0.9429 + }, + { + "start": 25946.46, + "end": 25947.38, + "probability": 0.9971 + }, + { + "start": 25948.0, + "end": 25949.2, + "probability": 0.9491 + }, + { + "start": 25949.96, + "end": 25953.3, + "probability": 0.9622 + }, + { + "start": 25953.44, + "end": 25954.22, + "probability": 0.9714 + }, + { + "start": 25954.5, + "end": 25955.24, + "probability": 0.4836 + }, + { + "start": 25955.84, + "end": 25956.19, + "probability": 0.48 + }, + { + "start": 25957.54, + "end": 25958.3, + "probability": 0.896 + }, + { + "start": 25959.66, + "end": 25963.16, + "probability": 0.8743 + }, + { + "start": 25963.5, + "end": 25967.15, + "probability": 0.9552 + }, + { + "start": 25968.56, + "end": 25972.36, + "probability": 0.9953 + }, + { + "start": 25973.22, + "end": 25974.6, + "probability": 0.9318 + }, + { + "start": 25974.68, + "end": 25975.2, + "probability": 0.8636 + }, + { + "start": 25975.34, + "end": 25976.16, + "probability": 0.8699 + }, + { + "start": 25976.58, + "end": 25979.2, + "probability": 0.9431 + }, + { + "start": 25979.72, + "end": 25979.9, + "probability": 0.7655 + }, + { + "start": 25980.66, + "end": 25981.18, + "probability": 0.9526 + }, + { + "start": 25981.98, + "end": 25984.06, + "probability": 0.7441 + }, + { + "start": 25984.62, + "end": 25988.44, + "probability": 0.8857 + }, + { + "start": 25988.44, + "end": 25992.88, + "probability": 0.9531 + }, + { + "start": 25994.34, + "end": 25997.04, + "probability": 0.7661 + }, + { + "start": 25997.74, + "end": 26000.26, + "probability": 0.981 + }, + { + "start": 26000.86, + "end": 26004.1, + "probability": 0.0668 + }, + { + "start": 26004.1, + "end": 26005.01, + "probability": 0.4582 + }, + { + "start": 26005.04, + "end": 26005.98, + "probability": 0.601 + }, + { + "start": 26006.38, + "end": 26007.64, + "probability": 0.714 + }, + { + "start": 26008.26, + "end": 26010.8, + "probability": 0.9546 + }, + { + "start": 26010.8, + "end": 26014.14, + "probability": 0.9802 + }, + { + "start": 26014.74, + "end": 26015.4, + "probability": 0.5944 + }, + { + "start": 26015.96, + "end": 26018.82, + "probability": 0.7817 + }, + { + "start": 26019.16, + "end": 26019.36, + "probability": 0.7175 + }, + { + "start": 26019.44, + "end": 26020.14, + "probability": 0.9066 + }, + { + "start": 26020.62, + "end": 26022.94, + "probability": 0.8777 + }, + { + "start": 26023.76, + "end": 26026.02, + "probability": 0.7322 + }, + { + "start": 26026.92, + "end": 26029.7, + "probability": 0.6366 + }, + { + "start": 26030.54, + "end": 26033.36, + "probability": 0.7966 + }, + { + "start": 26034.54, + "end": 26037.46, + "probability": 0.9865 + }, + { + "start": 26037.56, + "end": 26038.2, + "probability": 0.8232 + }, + { + "start": 26038.22, + "end": 26042.4, + "probability": 0.9661 + }, + { + "start": 26043.16, + "end": 26047.74, + "probability": 0.7028 + }, + { + "start": 26048.04, + "end": 26048.76, + "probability": 0.657 + }, + { + "start": 26048.82, + "end": 26050.28, + "probability": 0.9512 + }, + { + "start": 26050.62, + "end": 26052.56, + "probability": 0.8433 + }, + { + "start": 26052.9, + "end": 26055.3, + "probability": 0.8857 + }, + { + "start": 26055.3, + "end": 26055.66, + "probability": 0.5433 + }, + { + "start": 26055.78, + "end": 26056.72, + "probability": 0.8296 + }, + { + "start": 26057.92, + "end": 26059.42, + "probability": 0.9587 + }, + { + "start": 26060.24, + "end": 26061.42, + "probability": 0.9194 + }, + { + "start": 26063.16, + "end": 26064.34, + "probability": 0.8715 + }, + { + "start": 26076.96, + "end": 26079.76, + "probability": 0.6386 + }, + { + "start": 26080.02, + "end": 26081.8, + "probability": 0.6986 + }, + { + "start": 26082.7, + "end": 26085.02, + "probability": 0.5561 + }, + { + "start": 26085.62, + "end": 26090.32, + "probability": 0.9753 + }, + { + "start": 26090.52, + "end": 26091.62, + "probability": 0.8823 + }, + { + "start": 26092.42, + "end": 26099.08, + "probability": 0.9722 + }, + { + "start": 26099.14, + "end": 26100.37, + "probability": 0.7824 + }, + { + "start": 26103.88, + "end": 26109.26, + "probability": 0.991 + }, + { + "start": 26109.26, + "end": 26113.72, + "probability": 0.9927 + }, + { + "start": 26113.72, + "end": 26117.4, + "probability": 0.9906 + }, + { + "start": 26118.2, + "end": 26123.46, + "probability": 0.9865 + }, + { + "start": 26123.98, + "end": 26127.24, + "probability": 0.9868 + }, + { + "start": 26127.92, + "end": 26130.18, + "probability": 0.8173 + }, + { + "start": 26130.72, + "end": 26134.58, + "probability": 0.9927 + }, + { + "start": 26134.62, + "end": 26136.74, + "probability": 0.9055 + }, + { + "start": 26137.84, + "end": 26141.16, + "probability": 0.995 + }, + { + "start": 26141.9, + "end": 26145.34, + "probability": 0.8743 + }, + { + "start": 26145.34, + "end": 26148.84, + "probability": 0.9912 + }, + { + "start": 26149.14, + "end": 26151.46, + "probability": 0.9729 + }, + { + "start": 26152.58, + "end": 26159.04, + "probability": 0.9862 + }, + { + "start": 26159.04, + "end": 26162.08, + "probability": 0.9977 + }, + { + "start": 26162.7, + "end": 26166.62, + "probability": 0.74 + }, + { + "start": 26168.06, + "end": 26168.98, + "probability": 0.1295 + }, + { + "start": 26170.1, + "end": 26172.56, + "probability": 0.9207 + }, + { + "start": 26173.9, + "end": 26177.22, + "probability": 0.9727 + }, + { + "start": 26177.22, + "end": 26180.64, + "probability": 0.9985 + }, + { + "start": 26181.4, + "end": 26184.72, + "probability": 0.9982 + }, + { + "start": 26185.22, + "end": 26188.11, + "probability": 0.9798 + }, + { + "start": 26188.12, + "end": 26191.58, + "probability": 0.9983 + }, + { + "start": 26191.74, + "end": 26192.4, + "probability": 0.8353 + }, + { + "start": 26192.52, + "end": 26194.58, + "probability": 0.9887 + }, + { + "start": 26195.28, + "end": 26197.64, + "probability": 0.9985 + }, + { + "start": 26197.82, + "end": 26203.22, + "probability": 0.8889 + }, + { + "start": 26203.78, + "end": 26208.62, + "probability": 0.9919 + }, + { + "start": 26209.54, + "end": 26212.52, + "probability": 0.89 + }, + { + "start": 26212.72, + "end": 26213.26, + "probability": 0.8147 + }, + { + "start": 26216.02, + "end": 26221.96, + "probability": 0.9705 + }, + { + "start": 26233.66, + "end": 26234.5, + "probability": 0.5821 + }, + { + "start": 26234.64, + "end": 26235.3, + "probability": 0.6346 + }, + { + "start": 26235.46, + "end": 26236.08, + "probability": 0.9827 + }, + { + "start": 26236.78, + "end": 26237.5, + "probability": 0.8057 + }, + { + "start": 26238.26, + "end": 26242.74, + "probability": 0.7354 + }, + { + "start": 26243.44, + "end": 26246.47, + "probability": 0.9629 + }, + { + "start": 26246.96, + "end": 26247.16, + "probability": 0.7422 + }, + { + "start": 26247.9, + "end": 26250.04, + "probability": 0.8556 + }, + { + "start": 26250.12, + "end": 26252.88, + "probability": 0.9789 + }, + { + "start": 26253.56, + "end": 26255.06, + "probability": 0.9985 + }, + { + "start": 26256.74, + "end": 26257.84, + "probability": 0.9915 + }, + { + "start": 26258.2, + "end": 26260.22, + "probability": 0.8584 + }, + { + "start": 26261.5, + "end": 26264.64, + "probability": 0.9956 + }, + { + "start": 26265.2, + "end": 26266.04, + "probability": 0.7589 + }, + { + "start": 26266.7, + "end": 26269.58, + "probability": 0.9578 + }, + { + "start": 26270.14, + "end": 26271.5, + "probability": 0.9525 + }, + { + "start": 26272.04, + "end": 26274.5, + "probability": 0.9555 + }, + { + "start": 26274.94, + "end": 26278.2, + "probability": 0.9719 + }, + { + "start": 26278.32, + "end": 26281.08, + "probability": 0.9872 + }, + { + "start": 26282.11, + "end": 26286.34, + "probability": 0.9554 + }, + { + "start": 26287.74, + "end": 26288.7, + "probability": 0.9505 + }, + { + "start": 26291.9, + "end": 26295.66, + "probability": 0.9456 + }, + { + "start": 26296.46, + "end": 26297.27, + "probability": 0.7788 + }, + { + "start": 26297.46, + "end": 26299.98, + "probability": 0.8969 + }, + { + "start": 26301.22, + "end": 26302.8, + "probability": 0.9963 + }, + { + "start": 26302.9, + "end": 26304.19, + "probability": 0.9956 + }, + { + "start": 26304.9, + "end": 26308.68, + "probability": 0.9948 + }, + { + "start": 26309.4, + "end": 26312.78, + "probability": 0.839 + }, + { + "start": 26313.44, + "end": 26317.8, + "probability": 0.9971 + }, + { + "start": 26318.84, + "end": 26321.8, + "probability": 0.6542 + }, + { + "start": 26322.34, + "end": 26326.1, + "probability": 0.9971 + }, + { + "start": 26326.6, + "end": 26329.84, + "probability": 0.9992 + }, + { + "start": 26330.6, + "end": 26332.78, + "probability": 0.9961 + }, + { + "start": 26333.3, + "end": 26334.94, + "probability": 0.8897 + }, + { + "start": 26335.72, + "end": 26337.2, + "probability": 0.9919 + }, + { + "start": 26337.3, + "end": 26338.2, + "probability": 0.6323 + }, + { + "start": 26338.34, + "end": 26340.38, + "probability": 0.9946 + }, + { + "start": 26341.16, + "end": 26343.04, + "probability": 0.918 + }, + { + "start": 26344.36, + "end": 26345.14, + "probability": 0.8784 + }, + { + "start": 26346.4, + "end": 26346.64, + "probability": 0.7928 + }, + { + "start": 26346.78, + "end": 26349.76, + "probability": 0.9814 + }, + { + "start": 26350.2, + "end": 26350.36, + "probability": 0.4896 + }, + { + "start": 26350.54, + "end": 26352.68, + "probability": 0.8282 + }, + { + "start": 26352.84, + "end": 26353.1, + "probability": 0.8243 + }, + { + "start": 26353.14, + "end": 26353.62, + "probability": 0.9325 + }, + { + "start": 26353.7, + "end": 26354.12, + "probability": 0.8811 + }, + { + "start": 26354.22, + "end": 26354.52, + "probability": 0.981 + }, + { + "start": 26354.58, + "end": 26355.1, + "probability": 0.9594 + }, + { + "start": 26355.14, + "end": 26356.14, + "probability": 0.9159 + }, + { + "start": 26356.72, + "end": 26359.56, + "probability": 0.9933 + }, + { + "start": 26359.68, + "end": 26360.08, + "probability": 0.7892 + }, + { + "start": 26364.02, + "end": 26366.1, + "probability": 0.9515 + }, + { + "start": 26368.08, + "end": 26370.78, + "probability": 0.7256 + }, + { + "start": 26376.13, + "end": 26378.82, + "probability": 0.8967 + }, + { + "start": 26378.9, + "end": 26383.08, + "probability": 0.9495 + }, + { + "start": 26383.88, + "end": 26386.2, + "probability": 0.8593 + }, + { + "start": 26386.72, + "end": 26388.16, + "probability": 0.6905 + }, + { + "start": 26388.92, + "end": 26393.12, + "probability": 0.109 + }, + { + "start": 26407.46, + "end": 26412.72, + "probability": 0.1058 + }, + { + "start": 26412.8, + "end": 26413.92, + "probability": 0.0237 + }, + { + "start": 26414.58, + "end": 26415.5, + "probability": 0.069 + }, + { + "start": 26423.6, + "end": 26425.33, + "probability": 0.2238 + }, + { + "start": 26425.76, + "end": 26427.12, + "probability": 0.0782 + }, + { + "start": 26429.46, + "end": 26430.32, + "probability": 0.1119 + }, + { + "start": 26430.68, + "end": 26431.68, + "probability": 0.1222 + }, + { + "start": 26434.3, + "end": 26435.66, + "probability": 0.1237 + }, + { + "start": 26438.04, + "end": 26443.72, + "probability": 0.0986 + }, + { + "start": 26512.0, + "end": 26512.0, + "probability": 0.0 + }, + { + "start": 26512.0, + "end": 26512.0, + "probability": 0.0 + }, + { + "start": 26512.0, + "end": 26512.0, + "probability": 0.0 + }, + { + "start": 26512.0, + "end": 26512.0, + "probability": 0.0 + }, + { + "start": 26512.0, + "end": 26512.0, + "probability": 0.0 + }, + { + "start": 26512.0, + "end": 26512.0, + "probability": 0.0 + }, + { + "start": 26512.0, + "end": 26512.0, + "probability": 0.0 + }, + { + "start": 26512.0, + "end": 26512.0, + "probability": 0.0 + }, + { + "start": 26512.0, + "end": 26512.0, + "probability": 0.0 + }, + { + "start": 26512.0, + "end": 26512.0, + "probability": 0.0 + }, + { + "start": 26512.0, + "end": 26512.0, + "probability": 0.0 + }, + { + "start": 26512.0, + "end": 26512.0, + "probability": 0.0 + }, + { + "start": 26512.0, + "end": 26512.0, + "probability": 0.0 + }, + { + "start": 26512.0, + "end": 26512.0, + "probability": 0.0 + }, + { + "start": 26512.0, + "end": 26512.0, + "probability": 0.0 + }, + { + "start": 26512.0, + "end": 26512.0, + "probability": 0.0 + }, + { + "start": 26512.0, + "end": 26512.0, + "probability": 0.0 + }, + { + "start": 26512.0, + "end": 26512.0, + "probability": 0.0 + }, + { + "start": 26512.0, + "end": 26512.0, + "probability": 0.0 + }, + { + "start": 26512.16, + "end": 26515.16, + "probability": 0.0134 + }, + { + "start": 26516.34, + "end": 26517.1, + "probability": 0.0936 + }, + { + "start": 26518.06, + "end": 26519.46, + "probability": 0.0922 + }, + { + "start": 26523.96, + "end": 26531.76, + "probability": 0.173 + }, + { + "start": 26531.88, + "end": 26533.28, + "probability": 0.0269 + }, + { + "start": 26533.28, + "end": 26534.68, + "probability": 0.3275 + }, + { + "start": 26534.82, + "end": 26536.69, + "probability": 0.5449 + }, + { + "start": 26633.0, + "end": 26633.0, + "probability": 0.0 + }, + { + "start": 26633.0, + "end": 26633.0, + "probability": 0.0 + }, + { + "start": 26633.0, + "end": 26633.0, + "probability": 0.0 + }, + { + "start": 26633.0, + "end": 26633.0, + "probability": 0.0 + }, + { + "start": 26633.0, + "end": 26633.0, + "probability": 0.0 + }, + { + "start": 26633.0, + "end": 26633.0, + "probability": 0.0 + }, + { + "start": 26633.0, + "end": 26633.0, + "probability": 0.0 + }, + { + "start": 26633.0, + "end": 26633.0, + "probability": 0.0 + }, + { + "start": 26633.0, + "end": 26633.0, + "probability": 0.0 + }, + { + "start": 26633.0, + "end": 26633.0, + "probability": 0.0 + }, + { + "start": 26633.0, + "end": 26633.0, + "probability": 0.0 + }, + { + "start": 26633.0, + "end": 26633.0, + "probability": 0.0 + }, + { + "start": 26633.0, + "end": 26633.0, + "probability": 0.0 + }, + { + "start": 26633.0, + "end": 26633.0, + "probability": 0.0 + }, + { + "start": 26633.0, + "end": 26633.0, + "probability": 0.0 + }, + { + "start": 26633.0, + "end": 26633.0, + "probability": 0.0 + }, + { + "start": 26633.0, + "end": 26633.0, + "probability": 0.0 + }, + { + "start": 26633.0, + "end": 26633.0, + "probability": 0.0 + }, + { + "start": 26633.0, + "end": 26633.0, + "probability": 0.0 + }, + { + "start": 26633.0, + "end": 26633.0, + "probability": 0.0 + }, + { + "start": 26633.0, + "end": 26633.0, + "probability": 0.0 + }, + { + "start": 26633.0, + "end": 26633.0, + "probability": 0.0 + }, + { + "start": 26633.0, + "end": 26633.0, + "probability": 0.0 + }, + { + "start": 26633.0, + "end": 26633.0, + "probability": 0.0 + }, + { + "start": 26633.56, + "end": 26633.76, + "probability": 0.1028 + }, + { + "start": 26633.76, + "end": 26633.76, + "probability": 0.0579 + }, + { + "start": 26633.76, + "end": 26634.96, + "probability": 0.3421 + }, + { + "start": 26634.98, + "end": 26637.18, + "probability": 0.9264 + }, + { + "start": 26641.02, + "end": 26642.5, + "probability": 0.9994 + }, + { + "start": 26643.88, + "end": 26644.26, + "probability": 0.2524 + }, + { + "start": 26646.1, + "end": 26646.94, + "probability": 0.4199 + }, + { + "start": 26647.96, + "end": 26650.8, + "probability": 0.9705 + }, + { + "start": 26653.16, + "end": 26656.66, + "probability": 0.9921 + }, + { + "start": 26658.26, + "end": 26658.54, + "probability": 0.9429 + }, + { + "start": 26660.18, + "end": 26660.94, + "probability": 0.9919 + }, + { + "start": 26662.42, + "end": 26666.12, + "probability": 0.9351 + }, + { + "start": 26667.18, + "end": 26668.54, + "probability": 0.787 + }, + { + "start": 26669.62, + "end": 26672.04, + "probability": 0.9162 + }, + { + "start": 26673.96, + "end": 26676.9, + "probability": 0.9756 + }, + { + "start": 26677.8, + "end": 26680.64, + "probability": 0.9957 + }, + { + "start": 26681.6, + "end": 26682.58, + "probability": 0.8988 + }, + { + "start": 26684.64, + "end": 26685.22, + "probability": 0.9728 + }, + { + "start": 26687.2, + "end": 26687.3, + "probability": 0.583 + }, + { + "start": 26690.84, + "end": 26694.08, + "probability": 0.9998 + }, + { + "start": 26694.76, + "end": 26697.86, + "probability": 0.9989 + }, + { + "start": 26698.86, + "end": 26700.05, + "probability": 0.9451 + }, + { + "start": 26701.0, + "end": 26701.75, + "probability": 0.9828 + }, + { + "start": 26702.56, + "end": 26703.0, + "probability": 0.9231 + }, + { + "start": 26703.58, + "end": 26706.96, + "probability": 0.9854 + }, + { + "start": 26707.88, + "end": 26714.72, + "probability": 0.9882 + }, + { + "start": 26715.46, + "end": 26721.66, + "probability": 0.9629 + }, + { + "start": 26721.98, + "end": 26722.84, + "probability": 0.5971 + }, + { + "start": 26723.04, + "end": 26723.47, + "probability": 0.9666 + }, + { + "start": 26723.9, + "end": 26728.36, + "probability": 0.9748 + }, + { + "start": 26728.62, + "end": 26730.32, + "probability": 0.1234 + }, + { + "start": 26730.32, + "end": 26731.83, + "probability": 0.0436 + }, + { + "start": 26733.4, + "end": 26734.3, + "probability": 0.6635 + }, + { + "start": 26735.14, + "end": 26736.14, + "probability": 0.9627 + }, + { + "start": 26736.94, + "end": 26740.84, + "probability": 0.9977 + }, + { + "start": 26741.74, + "end": 26742.81, + "probability": 0.9716 + }, + { + "start": 26744.14, + "end": 26745.78, + "probability": 0.9844 + }, + { + "start": 26746.5, + "end": 26751.12, + "probability": 0.9946 + }, + { + "start": 26751.4, + "end": 26752.62, + "probability": 0.9976 + }, + { + "start": 26752.96, + "end": 26754.7, + "probability": 0.9995 + }, + { + "start": 26755.48, + "end": 26759.66, + "probability": 0.9386 + }, + { + "start": 26761.16, + "end": 26768.02, + "probability": 0.98 + }, + { + "start": 26768.14, + "end": 26768.68, + "probability": 0.6468 + }, + { + "start": 26769.74, + "end": 26770.64, + "probability": 0.7692 + }, + { + "start": 26771.28, + "end": 26772.95, + "probability": 0.911 + }, + { + "start": 26779.58, + "end": 26781.7, + "probability": 0.9051 + }, + { + "start": 26783.12, + "end": 26784.44, + "probability": 0.9942 + }, + { + "start": 26785.44, + "end": 26788.9, + "probability": 0.9871 + }, + { + "start": 26789.72, + "end": 26792.08, + "probability": 0.9626 + }, + { + "start": 26792.92, + "end": 26793.92, + "probability": 0.7513 + }, + { + "start": 26794.48, + "end": 26797.12, + "probability": 0.9883 + }, + { + "start": 26798.32, + "end": 26802.8, + "probability": 0.9827 + }, + { + "start": 26802.8, + "end": 26808.88, + "probability": 0.9154 + }, + { + "start": 26810.34, + "end": 26811.46, + "probability": 0.8471 + }, + { + "start": 26812.04, + "end": 26814.7, + "probability": 0.991 + }, + { + "start": 26818.12, + "end": 26821.04, + "probability": 0.822 + }, + { + "start": 26821.76, + "end": 26823.99, + "probability": 0.998 + }, + { + "start": 26825.42, + "end": 26827.86, + "probability": 0.8915 + }, + { + "start": 26828.52, + "end": 26830.16, + "probability": 0.9532 + }, + { + "start": 26831.32, + "end": 26832.24, + "probability": 0.9574 + }, + { + "start": 26833.98, + "end": 26837.42, + "probability": 0.8117 + }, + { + "start": 26838.76, + "end": 26839.4, + "probability": 0.9751 + }, + { + "start": 26840.94, + "end": 26841.92, + "probability": 0.9752 + }, + { + "start": 26843.32, + "end": 26844.42, + "probability": 0.8764 + }, + { + "start": 26846.88, + "end": 26850.9, + "probability": 0.9795 + }, + { + "start": 26851.94, + "end": 26854.0, + "probability": 0.7525 + }, + { + "start": 26854.56, + "end": 26857.14, + "probability": 0.9824 + }, + { + "start": 26857.14, + "end": 26863.86, + "probability": 0.9879 + }, + { + "start": 26865.56, + "end": 26866.24, + "probability": 0.9646 + }, + { + "start": 26868.72, + "end": 26873.38, + "probability": 0.9948 + }, + { + "start": 26874.58, + "end": 26879.94, + "probability": 0.7662 + }, + { + "start": 26880.78, + "end": 26884.8, + "probability": 0.9941 + }, + { + "start": 26885.3, + "end": 26887.2, + "probability": 0.998 + }, + { + "start": 26890.68, + "end": 26893.6, + "probability": 0.9824 + }, + { + "start": 26894.76, + "end": 26895.58, + "probability": 0.9674 + }, + { + "start": 26899.26, + "end": 26901.9, + "probability": 0.9959 + }, + { + "start": 26903.54, + "end": 26905.04, + "probability": 0.861 + }, + { + "start": 26905.82, + "end": 26909.12, + "probability": 0.872 + }, + { + "start": 26910.12, + "end": 26910.66, + "probability": 0.8228 + }, + { + "start": 26911.56, + "end": 26914.06, + "probability": 0.9963 + }, + { + "start": 26915.72, + "end": 26916.9, + "probability": 0.98 + }, + { + "start": 26917.74, + "end": 26919.24, + "probability": 0.9881 + }, + { + "start": 26921.44, + "end": 26924.1, + "probability": 0.9978 + }, + { + "start": 26924.1, + "end": 26929.48, + "probability": 0.8615 + }, + { + "start": 26930.06, + "end": 26936.32, + "probability": 0.9894 + }, + { + "start": 26937.22, + "end": 26940.51, + "probability": 0.9742 + }, + { + "start": 26942.28, + "end": 26947.49, + "probability": 0.8446 + }, + { + "start": 26947.78, + "end": 26952.1, + "probability": 0.9469 + }, + { + "start": 26953.48, + "end": 26957.46, + "probability": 0.9824 + }, + { + "start": 26958.6, + "end": 26961.86, + "probability": 0.9782 + }, + { + "start": 26963.52, + "end": 26965.7, + "probability": 0.9963 + }, + { + "start": 26966.4, + "end": 26967.72, + "probability": 0.9934 + }, + { + "start": 26969.94, + "end": 26973.16, + "probability": 0.8413 + }, + { + "start": 26974.14, + "end": 26976.51, + "probability": 0.9893 + }, + { + "start": 26977.14, + "end": 26979.02, + "probability": 0.9769 + }, + { + "start": 26980.12, + "end": 26981.14, + "probability": 0.9362 + }, + { + "start": 26981.24, + "end": 26986.24, + "probability": 0.979 + }, + { + "start": 26986.78, + "end": 26989.88, + "probability": 0.9971 + }, + { + "start": 26990.58, + "end": 26992.7, + "probability": 0.9941 + }, + { + "start": 26994.62, + "end": 26996.98, + "probability": 0.9213 + }, + { + "start": 26997.88, + "end": 26999.18, + "probability": 0.9648 + }, + { + "start": 26999.96, + "end": 27005.04, + "probability": 0.9775 + }, + { + "start": 27005.04, + "end": 27010.38, + "probability": 0.9952 + }, + { + "start": 27011.12, + "end": 27012.52, + "probability": 0.6696 + }, + { + "start": 27013.52, + "end": 27013.98, + "probability": 0.0941 + }, + { + "start": 27013.98, + "end": 27016.1, + "probability": 0.2654 + }, + { + "start": 27016.58, + "end": 27019.0, + "probability": 0.9227 + }, + { + "start": 27019.9, + "end": 27023.94, + "probability": 0.6318 + }, + { + "start": 27024.46, + "end": 27024.62, + "probability": 0.4456 + }, + { + "start": 27026.02, + "end": 27028.6, + "probability": 0.6392 + }, + { + "start": 27029.06, + "end": 27031.2, + "probability": 0.8491 + }, + { + "start": 27031.44, + "end": 27032.57, + "probability": 0.832 + }, + { + "start": 27032.7, + "end": 27034.18, + "probability": 0.9249 + }, + { + "start": 27034.28, + "end": 27034.64, + "probability": 0.9005 + }, + { + "start": 27034.76, + "end": 27035.06, + "probability": 0.9363 + }, + { + "start": 27035.22, + "end": 27035.82, + "probability": 0.9833 + }, + { + "start": 27035.88, + "end": 27036.38, + "probability": 0.8361 + }, + { + "start": 27037.12, + "end": 27040.9, + "probability": 0.9762 + }, + { + "start": 27054.68, + "end": 27055.14, + "probability": 0.5568 + }, + { + "start": 27055.14, + "end": 27055.14, + "probability": 0.038 + }, + { + "start": 27055.14, + "end": 27055.14, + "probability": 0.039 + }, + { + "start": 27055.14, + "end": 27058.14, + "probability": 0.2774 + }, + { + "start": 27059.18, + "end": 27060.98, + "probability": 0.7939 + }, + { + "start": 27062.16, + "end": 27063.4, + "probability": 0.7217 + }, + { + "start": 27063.58, + "end": 27065.4, + "probability": 0.973 + }, + { + "start": 27066.36, + "end": 27068.4, + "probability": 0.922 + }, + { + "start": 27069.5, + "end": 27069.72, + "probability": 0.7927 + }, + { + "start": 27070.52, + "end": 27072.48, + "probability": 0.4985 + }, + { + "start": 27073.62, + "end": 27079.08, + "probability": 0.9908 + }, + { + "start": 27080.38, + "end": 27081.32, + "probability": 0.8206 + }, + { + "start": 27082.3, + "end": 27084.22, + "probability": 0.9994 + }, + { + "start": 27085.32, + "end": 27086.38, + "probability": 0.9958 + }, + { + "start": 27087.4, + "end": 27094.08, + "probability": 0.9771 + }, + { + "start": 27094.82, + "end": 27095.36, + "probability": 0.7494 + }, + { + "start": 27095.46, + "end": 27096.16, + "probability": 0.98 + }, + { + "start": 27096.18, + "end": 27098.0, + "probability": 0.9614 + }, + { + "start": 27102.46, + "end": 27105.8, + "probability": 0.9951 + }, + { + "start": 27106.44, + "end": 27106.88, + "probability": 0.6755 + }, + { + "start": 27107.4, + "end": 27110.1, + "probability": 0.9784 + }, + { + "start": 27111.4, + "end": 27113.32, + "probability": 0.8708 + }, + { + "start": 27115.86, + "end": 27117.68, + "probability": 0.8944 + }, + { + "start": 27118.22, + "end": 27119.46, + "probability": 0.988 + }, + { + "start": 27120.7, + "end": 27123.42, + "probability": 0.9839 + }, + { + "start": 27123.5, + "end": 27124.18, + "probability": 0.8406 + }, + { + "start": 27124.76, + "end": 27127.72, + "probability": 0.9795 + }, + { + "start": 27128.46, + "end": 27129.16, + "probability": 0.9851 + }, + { + "start": 27130.0, + "end": 27130.78, + "probability": 0.9719 + }, + { + "start": 27131.0, + "end": 27133.12, + "probability": 0.9089 + }, + { + "start": 27133.54, + "end": 27139.36, + "probability": 0.6655 + }, + { + "start": 27139.94, + "end": 27143.98, + "probability": 0.0774 + }, + { + "start": 27147.46, + "end": 27147.56, + "probability": 0.1636 + }, + { + "start": 27147.56, + "end": 27147.56, + "probability": 0.0707 + }, + { + "start": 27147.56, + "end": 27147.56, + "probability": 0.2469 + }, + { + "start": 27147.56, + "end": 27147.56, + "probability": 0.0983 + }, + { + "start": 27147.56, + "end": 27147.56, + "probability": 0.0126 + }, + { + "start": 27147.56, + "end": 27153.94, + "probability": 0.7451 + }, + { + "start": 27154.34, + "end": 27157.72, + "probability": 0.9229 + }, + { + "start": 27157.78, + "end": 27157.78, + "probability": 0.3571 + }, + { + "start": 27157.78, + "end": 27157.78, + "probability": 0.3017 + }, + { + "start": 27157.78, + "end": 27159.68, + "probability": 0.9453 + }, + { + "start": 27159.78, + "end": 27161.68, + "probability": 0.9287 + }, + { + "start": 27162.14, + "end": 27163.3, + "probability": 0.0277 + }, + { + "start": 27165.88, + "end": 27165.96, + "probability": 0.4124 + }, + { + "start": 27165.96, + "end": 27167.58, + "probability": 0.8458 + }, + { + "start": 27168.04, + "end": 27169.06, + "probability": 0.775 + }, + { + "start": 27169.14, + "end": 27171.9, + "probability": 0.8218 + }, + { + "start": 27172.28, + "end": 27174.34, + "probability": 0.9879 + }, + { + "start": 27174.7, + "end": 27176.32, + "probability": 0.9789 + }, + { + "start": 27176.42, + "end": 27177.7, + "probability": 0.9972 + }, + { + "start": 27177.92, + "end": 27178.94, + "probability": 0.5538 + }, + { + "start": 27178.96, + "end": 27180.06, + "probability": 0.9896 + }, + { + "start": 27180.16, + "end": 27181.1, + "probability": 0.4871 + }, + { + "start": 27181.22, + "end": 27182.3, + "probability": 0.5354 + }, + { + "start": 27182.44, + "end": 27183.28, + "probability": 0.8035 + }, + { + "start": 27183.36, + "end": 27185.47, + "probability": 0.9873 + }, + { + "start": 27186.58, + "end": 27189.02, + "probability": 0.7585 + }, + { + "start": 27189.16, + "end": 27190.88, + "probability": 0.5356 + }, + { + "start": 27191.24, + "end": 27192.4, + "probability": 0.931 + }, + { + "start": 27193.3, + "end": 27195.2, + "probability": 0.9392 + }, + { + "start": 27195.22, + "end": 27195.75, + "probability": 0.9629 + }, + { + "start": 27196.22, + "end": 27200.64, + "probability": 0.9897 + }, + { + "start": 27200.74, + "end": 27201.22, + "probability": 0.7772 + }, + { + "start": 27205.0, + "end": 27208.08, + "probability": 0.6707 + }, + { + "start": 27208.72, + "end": 27209.94, + "probability": 0.0053 + }, + { + "start": 27224.06, + "end": 27224.16, + "probability": 0.2056 + }, + { + "start": 27224.16, + "end": 27225.14, + "probability": 0.8736 + }, + { + "start": 27225.44, + "end": 27228.0, + "probability": 0.9957 + }, + { + "start": 27229.73, + "end": 27233.57, + "probability": 0.8137 + }, + { + "start": 27233.72, + "end": 27239.12, + "probability": 0.9827 + }, + { + "start": 27239.46, + "end": 27241.98, + "probability": 0.8552 + }, + { + "start": 27241.98, + "end": 27243.08, + "probability": 0.0246 + }, + { + "start": 27243.08, + "end": 27243.68, + "probability": 0.1799 + }, + { + "start": 27243.68, + "end": 27244.08, + "probability": 0.4894 + }, + { + "start": 27244.24, + "end": 27247.5, + "probability": 0.3002 + }, + { + "start": 27247.66, + "end": 27248.16, + "probability": 0.3031 + }, + { + "start": 27248.4, + "end": 27249.06, + "probability": 0.4745 + }, + { + "start": 27249.3, + "end": 27255.16, + "probability": 0.9948 + }, + { + "start": 27256.0, + "end": 27258.5, + "probability": 0.0637 + }, + { + "start": 27258.68, + "end": 27258.68, + "probability": 0.0905 + }, + { + "start": 27258.68, + "end": 27262.19, + "probability": 0.2878 + }, + { + "start": 27266.38, + "end": 27268.78, + "probability": 0.1247 + }, + { + "start": 27271.88, + "end": 27275.9, + "probability": 0.1865 + }, + { + "start": 27276.12, + "end": 27277.08, + "probability": 0.0768 + }, + { + "start": 27277.48, + "end": 27281.53, + "probability": 0.1296 + }, + { + "start": 27282.22, + "end": 27282.64, + "probability": 0.0525 + }, + { + "start": 27286.08, + "end": 27289.84, + "probability": 0.1074 + }, + { + "start": 27289.84, + "end": 27292.24, + "probability": 0.095 + }, + { + "start": 27292.24, + "end": 27295.76, + "probability": 0.048 + }, + { + "start": 27295.76, + "end": 27296.92, + "probability": 0.0415 + }, + { + "start": 27296.92, + "end": 27302.8, + "probability": 0.1097 + }, + { + "start": 27302.94, + "end": 27304.98, + "probability": 0.2462 + }, + { + "start": 27305.0, + "end": 27305.0, + "probability": 0.0 + }, + { + "start": 27305.0, + "end": 27305.0, + "probability": 0.0 + }, + { + "start": 27305.0, + "end": 27305.0, + "probability": 0.0 + }, + { + "start": 27305.0, + "end": 27305.0, + "probability": 0.0 + }, + { + "start": 27305.0, + "end": 27305.0, + "probability": 0.0 + }, + { + "start": 27305.0, + "end": 27305.0, + "probability": 0.0 + }, + { + "start": 27305.0, + "end": 27305.0, + "probability": 0.0 + }, + { + "start": 27305.0, + "end": 27305.0, + "probability": 0.0 + }, + { + "start": 27305.0, + "end": 27305.0, + "probability": 0.0 + }, + { + "start": 27305.0, + "end": 27305.0, + "probability": 0.0 + }, + { + "start": 27305.0, + "end": 27305.0, + "probability": 0.0 + }, + { + "start": 27305.0, + "end": 27305.0, + "probability": 0.0 + }, + { + "start": 27305.08, + "end": 27307.56, + "probability": 0.957 + }, + { + "start": 27307.64, + "end": 27307.86, + "probability": 0.0672 + }, + { + "start": 27307.86, + "end": 27307.86, + "probability": 0.0279 + }, + { + "start": 27307.86, + "end": 27307.86, + "probability": 0.1148 + }, + { + "start": 27307.86, + "end": 27308.14, + "probability": 0.842 + }, + { + "start": 27308.82, + "end": 27311.34, + "probability": 0.9436 + }, + { + "start": 27311.4, + "end": 27316.14, + "probability": 0.9458 + }, + { + "start": 27316.64, + "end": 27317.34, + "probability": 0.6294 + }, + { + "start": 27318.14, + "end": 27318.18, + "probability": 0.025 + }, + { + "start": 27318.18, + "end": 27319.76, + "probability": 0.8858 + }, + { + "start": 27320.28, + "end": 27322.16, + "probability": 0.7218 + }, + { + "start": 27322.32, + "end": 27322.82, + "probability": 0.7342 + }, + { + "start": 27323.08, + "end": 27324.78, + "probability": 0.9713 + }, + { + "start": 27325.12, + "end": 27330.44, + "probability": 0.8154 + }, + { + "start": 27330.86, + "end": 27331.51, + "probability": 0.1225 + }, + { + "start": 27331.94, + "end": 27333.62, + "probability": 0.1109 + }, + { + "start": 27333.62, + "end": 27338.28, + "probability": 0.9832 + }, + { + "start": 27338.5, + "end": 27342.04, + "probability": 0.9961 + }, + { + "start": 27342.36, + "end": 27344.1, + "probability": 0.9937 + }, + { + "start": 27344.16, + "end": 27344.16, + "probability": 0.043 + }, + { + "start": 27344.24, + "end": 27346.16, + "probability": 0.8587 + }, + { + "start": 27346.2, + "end": 27346.72, + "probability": 0.3118 + }, + { + "start": 27347.6, + "end": 27349.79, + "probability": 0.5196 + }, + { + "start": 27351.74, + "end": 27352.46, + "probability": 0.0859 + }, + { + "start": 27352.46, + "end": 27352.46, + "probability": 0.0444 + }, + { + "start": 27352.56, + "end": 27353.42, + "probability": 0.394 + }, + { + "start": 27353.78, + "end": 27359.18, + "probability": 0.973 + }, + { + "start": 27359.54, + "end": 27361.0, + "probability": 0.115 + }, + { + "start": 27364.04, + "end": 27364.48, + "probability": 0.1449 + }, + { + "start": 27364.48, + "end": 27364.48, + "probability": 0.1328 + }, + { + "start": 27364.48, + "end": 27364.48, + "probability": 0.4263 + }, + { + "start": 27364.48, + "end": 27365.56, + "probability": 0.1137 + }, + { + "start": 27365.56, + "end": 27368.54, + "probability": 0.991 + }, + { + "start": 27368.54, + "end": 27371.52, + "probability": 0.9997 + }, + { + "start": 27371.96, + "end": 27373.99, + "probability": 0.9934 + }, + { + "start": 27374.17, + "end": 27374.25, + "probability": 0.0131 + }, + { + "start": 27374.45, + "end": 27374.97, + "probability": 0.3314 + }, + { + "start": 27375.07, + "end": 27375.25, + "probability": 0.1102 + }, + { + "start": 27375.25, + "end": 27375.25, + "probability": 0.2999 + }, + { + "start": 27375.25, + "end": 27378.01, + "probability": 0.9538 + }, + { + "start": 27378.01, + "end": 27381.27, + "probability": 0.9184 + }, + { + "start": 27381.63, + "end": 27385.53, + "probability": 0.9954 + }, + { + "start": 27385.71, + "end": 27386.13, + "probability": 0.4355 + }, + { + "start": 27386.15, + "end": 27387.53, + "probability": 0.9443 + }, + { + "start": 27387.99, + "end": 27389.19, + "probability": 0.3932 + }, + { + "start": 27389.27, + "end": 27390.59, + "probability": 0.3515 + }, + { + "start": 27390.67, + "end": 27391.71, + "probability": 0.3099 + }, + { + "start": 27394.63, + "end": 27399.57, + "probability": 0.7976 + }, + { + "start": 27399.97, + "end": 27401.89, + "probability": 0.8323 + }, + { + "start": 27402.19, + "end": 27402.67, + "probability": 0.8672 + }, + { + "start": 27402.75, + "end": 27411.77, + "probability": 0.972 + }, + { + "start": 27412.07, + "end": 27413.15, + "probability": 0.7031 + }, + { + "start": 27413.59, + "end": 27413.65, + "probability": 0.1351 + }, + { + "start": 27413.65, + "end": 27413.65, + "probability": 0.1278 + }, + { + "start": 27413.65, + "end": 27414.07, + "probability": 0.6735 + }, + { + "start": 27414.13, + "end": 27415.35, + "probability": 0.9819 + }, + { + "start": 27415.43, + "end": 27416.11, + "probability": 0.8013 + }, + { + "start": 27416.17, + "end": 27416.69, + "probability": 0.87 + }, + { + "start": 27417.07, + "end": 27417.23, + "probability": 0.5406 + }, + { + "start": 27417.33, + "end": 27417.81, + "probability": 0.7319 + }, + { + "start": 27418.39, + "end": 27422.69, + "probability": 0.5302 + }, + { + "start": 27422.79, + "end": 27424.15, + "probability": 0.2514 + }, + { + "start": 27425.13, + "end": 27426.99, + "probability": 0.6667 + }, + { + "start": 27427.49, + "end": 27430.33, + "probability": 0.9088 + }, + { + "start": 27430.33, + "end": 27433.01, + "probability": 0.8408 + }, + { + "start": 27433.39, + "end": 27433.39, + "probability": 0.0561 + }, + { + "start": 27433.39, + "end": 27437.34, + "probability": 0.9669 + }, + { + "start": 27437.77, + "end": 27438.25, + "probability": 0.0354 + }, + { + "start": 27438.77, + "end": 27439.05, + "probability": 0.0175 + }, + { + "start": 27439.07, + "end": 27439.97, + "probability": 0.2312 + }, + { + "start": 27440.05, + "end": 27440.79, + "probability": 0.2867 + }, + { + "start": 27440.79, + "end": 27440.87, + "probability": 0.0072 + }, + { + "start": 27440.87, + "end": 27441.01, + "probability": 0.5751 + }, + { + "start": 27441.01, + "end": 27441.99, + "probability": 0.084 + }, + { + "start": 27442.49, + "end": 27447.71, + "probability": 0.8652 + }, + { + "start": 27447.87, + "end": 27448.38, + "probability": 0.3391 + }, + { + "start": 27449.55, + "end": 27452.55, + "probability": 0.7558 + }, + { + "start": 27452.59, + "end": 27454.59, + "probability": 0.5357 + }, + { + "start": 27455.05, + "end": 27456.93, + "probability": 0.908 + }, + { + "start": 27457.07, + "end": 27459.29, + "probability": 0.0287 + }, + { + "start": 27463.49, + "end": 27464.87, + "probability": 0.0903 + }, + { + "start": 27469.37, + "end": 27470.79, + "probability": 0.7562 + }, + { + "start": 27471.41, + "end": 27471.41, + "probability": 0.1811 + }, + { + "start": 27471.41, + "end": 27471.41, + "probability": 0.0494 + }, + { + "start": 27471.41, + "end": 27471.41, + "probability": 0.277 + }, + { + "start": 27471.41, + "end": 27473.29, + "probability": 0.3478 + }, + { + "start": 27474.07, + "end": 27478.03, + "probability": 0.0617 + }, + { + "start": 27478.03, + "end": 27478.05, + "probability": 0.0563 + }, + { + "start": 27478.05, + "end": 27478.49, + "probability": 0.2072 + }, + { + "start": 27478.51, + "end": 27484.05, + "probability": 0.1967 + }, + { + "start": 27484.35, + "end": 27485.55, + "probability": 0.4969 + }, + { + "start": 27485.85, + "end": 27488.75, + "probability": 0.5188 + }, + { + "start": 27489.59, + "end": 27491.45, + "probability": 0.5264 + }, + { + "start": 27491.47, + "end": 27492.59, + "probability": 0.0292 + }, + { + "start": 27492.59, + "end": 27494.65, + "probability": 0.086 + }, + { + "start": 27494.65, + "end": 27495.77, + "probability": 0.1112 + }, + { + "start": 27496.05, + "end": 27498.52, + "probability": 0.0459 + }, + { + "start": 27499.35, + "end": 27500.08, + "probability": 0.2065 + }, + { + "start": 27501.53, + "end": 27503.29, + "probability": 0.0441 + }, + { + "start": 27503.52, + "end": 27504.97, + "probability": 0.0897 + }, + { + "start": 27505.05, + "end": 27505.97, + "probability": 0.0784 + }, + { + "start": 27506.55, + "end": 27508.99, + "probability": 0.0799 + }, + { + "start": 27509.11, + "end": 27511.05, + "probability": 0.5018 + }, + { + "start": 27541.0, + "end": 27541.0, + "probability": 0.0 + }, + { + "start": 27541.0, + "end": 27541.0, + "probability": 0.0 + }, + { + "start": 27541.0, + "end": 27541.0, + "probability": 0.0 + }, + { + "start": 27541.0, + "end": 27541.0, + "probability": 0.0 + }, + { + "start": 27541.0, + "end": 27541.0, + "probability": 0.0 + }, + { + "start": 27541.0, + "end": 27541.0, + "probability": 0.0 + }, + { + "start": 27541.0, + "end": 27541.0, + "probability": 0.0 + }, + { + "start": 27541.0, + "end": 27541.0, + "probability": 0.0 + }, + { + "start": 27541.0, + "end": 27541.0, + "probability": 0.0 + }, + { + "start": 27541.0, + "end": 27541.0, + "probability": 0.0 + }, + { + "start": 27541.0, + "end": 27541.0, + "probability": 0.0 + }, + { + "start": 27541.0, + "end": 27541.0, + "probability": 0.0 + }, + { + "start": 27541.0, + "end": 27541.0, + "probability": 0.0 + }, + { + "start": 27541.0, + "end": 27541.0, + "probability": 0.0 + }, + { + "start": 27541.0, + "end": 27541.0, + "probability": 0.0 + }, + { + "start": 27541.0, + "end": 27541.0, + "probability": 0.0 + }, + { + "start": 27541.0, + "end": 27541.0, + "probability": 0.0 + }, + { + "start": 27541.0, + "end": 27541.0, + "probability": 0.0 + }, + { + "start": 27541.0, + "end": 27541.0, + "probability": 0.0 + }, + { + "start": 27541.0, + "end": 27541.0, + "probability": 0.0 + }, + { + "start": 27541.0, + "end": 27541.0, + "probability": 0.0 + }, + { + "start": 27541.0, + "end": 27541.0, + "probability": 0.0 + }, + { + "start": 27541.43, + "end": 27545.02, + "probability": 0.0761 + }, + { + "start": 27545.02, + "end": 27545.02, + "probability": 0.1014 + }, + { + "start": 27545.14, + "end": 27548.72, + "probability": 0.2377 + }, + { + "start": 27554.38, + "end": 27555.24, + "probability": 0.1149 + }, + { + "start": 27555.24, + "end": 27558.46, + "probability": 0.3695 + }, + { + "start": 27559.92, + "end": 27560.66, + "probability": 0.3232 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.0, + "end": 27662.0, + "probability": 0.0 + }, + { + "start": 27662.12, + "end": 27662.24, + "probability": 0.0018 + }, + { + "start": 27662.26, + "end": 27662.28, + "probability": 0.1175 + }, + { + "start": 27662.28, + "end": 27662.86, + "probability": 0.1738 + }, + { + "start": 27662.96, + "end": 27664.4, + "probability": 0.7723 + }, + { + "start": 27664.4, + "end": 27664.88, + "probability": 0.6931 + }, + { + "start": 27665.22, + "end": 27667.48, + "probability": 0.1337 + }, + { + "start": 27667.76, + "end": 27669.68, + "probability": 0.0326 + }, + { + "start": 27670.18, + "end": 27671.44, + "probability": 0.2616 + }, + { + "start": 27671.52, + "end": 27671.52, + "probability": 0.1376 + }, + { + "start": 27671.52, + "end": 27671.64, + "probability": 0.0536 + }, + { + "start": 27671.64, + "end": 27672.32, + "probability": 0.0747 + }, + { + "start": 27673.66, + "end": 27674.84, + "probability": 0.3145 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.0, + "end": 27783.0, + "probability": 0.0 + }, + { + "start": 27783.42, + "end": 27784.66, + "probability": 0.0146 + }, + { + "start": 27784.66, + "end": 27785.82, + "probability": 0.4696 + }, + { + "start": 27785.82, + "end": 27785.96, + "probability": 0.2413 + }, + { + "start": 27785.96, + "end": 27788.26, + "probability": 0.925 + }, + { + "start": 27788.56, + "end": 27791.5, + "probability": 0.7075 + }, + { + "start": 27792.76, + "end": 27793.08, + "probability": 0.0434 + }, + { + "start": 27793.08, + "end": 27793.08, + "probability": 0.0396 + }, + { + "start": 27793.08, + "end": 27793.08, + "probability": 0.2738 + }, + { + "start": 27793.08, + "end": 27796.88, + "probability": 0.967 + }, + { + "start": 27796.9, + "end": 27797.8, + "probability": 0.7429 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.0, + "end": 27908.0, + "probability": 0.0 + }, + { + "start": 27908.26, + "end": 27908.42, + "probability": 0.0173 + }, + { + "start": 27908.42, + "end": 27912.94, + "probability": 0.9756 + }, + { + "start": 27913.1, + "end": 27915.48, + "probability": 0.8596 + }, + { + "start": 27916.02, + "end": 27918.64, + "probability": 0.99 + }, + { + "start": 27918.94, + "end": 27922.76, + "probability": 0.9875 + }, + { + "start": 27923.56, + "end": 27925.76, + "probability": 0.9073 + }, + { + "start": 27926.22, + "end": 27927.86, + "probability": 0.9529 + }, + { + "start": 27928.12, + "end": 27931.58, + "probability": 0.9728 + }, + { + "start": 27932.56, + "end": 27932.72, + "probability": 0.3062 + }, + { + "start": 27932.78, + "end": 27934.5, + "probability": 0.5026 + }, + { + "start": 27934.6, + "end": 27934.64, + "probability": 0.0812 + }, + { + "start": 27934.64, + "end": 27935.47, + "probability": 0.4838 + }, + { + "start": 27935.62, + "end": 27935.82, + "probability": 0.1851 + }, + { + "start": 27935.86, + "end": 27937.28, + "probability": 0.5563 + }, + { + "start": 27937.3, + "end": 27938.66, + "probability": 0.2896 + }, + { + "start": 27940.02, + "end": 27942.66, + "probability": 0.4516 + }, + { + "start": 27943.26, + "end": 27944.1, + "probability": 0.1197 + }, + { + "start": 27944.16, + "end": 27944.64, + "probability": 0.0428 + }, + { + "start": 27944.64, + "end": 27944.66, + "probability": 0.0834 + }, + { + "start": 27944.66, + "end": 27944.68, + "probability": 0.0478 + }, + { + "start": 27944.68, + "end": 27944.82, + "probability": 0.3267 + }, + { + "start": 27945.0, + "end": 27950.5, + "probability": 0.7376 + }, + { + "start": 27950.58, + "end": 27954.58, + "probability": 0.1151 + }, + { + "start": 27954.74, + "end": 27955.44, + "probability": 0.0315 + }, + { + "start": 27955.44, + "end": 27955.48, + "probability": 0.0511 + }, + { + "start": 27955.48, + "end": 27956.04, + "probability": 0.6208 + }, + { + "start": 27956.48, + "end": 27962.04, + "probability": 0.9189 + }, + { + "start": 27962.18, + "end": 27963.54, + "probability": 0.6396 + }, + { + "start": 27963.66, + "end": 27963.66, + "probability": 0.7665 + }, + { + "start": 27963.78, + "end": 27966.36, + "probability": 0.9075 + }, + { + "start": 27966.82, + "end": 27967.64, + "probability": 0.1363 + }, + { + "start": 27968.46, + "end": 27968.64, + "probability": 0.4731 + }, + { + "start": 27968.7, + "end": 27969.86, + "probability": 0.7413 + }, + { + "start": 27970.26, + "end": 27970.46, + "probability": 0.2733 + }, + { + "start": 27970.98, + "end": 27971.28, + "probability": 0.7111 + }, + { + "start": 27975.02, + "end": 27979.66, + "probability": 0.9919 + }, + { + "start": 27979.66, + "end": 27983.3, + "probability": 0.9242 + }, + { + "start": 27983.88, + "end": 27987.2, + "probability": 0.7099 + }, + { + "start": 27987.48, + "end": 27988.68, + "probability": 0.7853 + }, + { + "start": 27989.06, + "end": 27992.54, + "probability": 0.1155 + }, + { + "start": 28003.64, + "end": 28010.72, + "probability": 0.3179 + }, + { + "start": 28010.72, + "end": 28014.68, + "probability": 0.7791 + }, + { + "start": 28014.7, + "end": 28015.86, + "probability": 0.5565 + }, + { + "start": 28015.86, + "end": 28019.39, + "probability": 0.037 + }, + { + "start": 28020.42, + "end": 28021.9, + "probability": 0.1033 + }, + { + "start": 28021.9, + "end": 28021.9, + "probability": 0.0391 + }, + { + "start": 28022.58, + "end": 28027.56, + "probability": 0.0246 + }, + { + "start": 28028.72, + "end": 28029.88, + "probability": 0.1274 + }, + { + "start": 28030.36, + "end": 28034.02, + "probability": 0.13 + }, + { + "start": 28034.02, + "end": 28034.62, + "probability": 0.0262 + }, + { + "start": 28034.74, + "end": 28035.38, + "probability": 0.0638 + }, + { + "start": 28036.74, + "end": 28036.74, + "probability": 0.0125 + }, + { + "start": 28041.96, + "end": 28043.62, + "probability": 0.0177 + }, + { + "start": 28052.0, + "end": 28052.0, + "probability": 0.0 + }, + { + "start": 28052.0, + "end": 28052.0, + "probability": 0.0 + }, + { + "start": 28052.0, + "end": 28052.0, + "probability": 0.0 + }, + { + "start": 28052.0, + "end": 28052.0, + "probability": 0.0 + }, + { + "start": 28052.0, + "end": 28052.0, + "probability": 0.0 + }, + { + "start": 28052.0, + "end": 28052.0, + "probability": 0.0 + }, + { + "start": 28052.0, + "end": 28052.0, + "probability": 0.0 + }, + { + "start": 28052.0, + "end": 28052.0, + "probability": 0.0 + }, + { + "start": 28052.0, + "end": 28052.0, + "probability": 0.0 + }, + { + "start": 28052.0, + "end": 28052.0, + "probability": 0.0455 + }, + { + "start": 28052.0, + "end": 28052.28, + "probability": 0.1912 + }, + { + "start": 28052.76, + "end": 28053.78, + "probability": 0.0419 + }, + { + "start": 28053.78, + "end": 28054.82, + "probability": 0.9656 + }, + { + "start": 28055.2, + "end": 28055.3, + "probability": 0.5459 + }, + { + "start": 28055.64, + "end": 28055.88, + "probability": 0.1995 + }, + { + "start": 28055.88, + "end": 28056.58, + "probability": 0.4009 + }, + { + "start": 28056.68, + "end": 28057.06, + "probability": 0.5308 + }, + { + "start": 28057.18, + "end": 28057.58, + "probability": 0.7894 + }, + { + "start": 28058.24, + "end": 28061.34, + "probability": 0.7959 + }, + { + "start": 28061.98, + "end": 28062.48, + "probability": 0.854 + }, + { + "start": 28064.54, + "end": 28066.82, + "probability": 0.853 + }, + { + "start": 28068.54, + "end": 28071.24, + "probability": 0.9217 + }, + { + "start": 28071.3, + "end": 28075.54, + "probability": 0.9562 + }, + { + "start": 28076.12, + "end": 28076.82, + "probability": 0.8343 + }, + { + "start": 28077.48, + "end": 28080.36, + "probability": 0.7738 + }, + { + "start": 28086.74, + "end": 28086.74, + "probability": 0.1214 + }, + { + "start": 28102.71, + "end": 28105.48, + "probability": 0.8047 + }, + { + "start": 28105.88, + "end": 28105.88, + "probability": 0.4595 + }, + { + "start": 28105.88, + "end": 28105.88, + "probability": 0.3614 + }, + { + "start": 28105.88, + "end": 28106.0, + "probability": 0.1846 + }, + { + "start": 28106.0, + "end": 28106.0, + "probability": 0.1582 + }, + { + "start": 28131.0, + "end": 28131.1, + "probability": 0.0068 + }, + { + "start": 28141.28, + "end": 28143.18, + "probability": 0.7191 + }, + { + "start": 28143.64, + "end": 28144.16, + "probability": 0.7047 + }, + { + "start": 28144.26, + "end": 28145.62, + "probability": 0.1848 + }, + { + "start": 28146.3, + "end": 28148.78, + "probability": 0.3454 + }, + { + "start": 28150.28, + "end": 28151.1, + "probability": 0.6636 + }, + { + "start": 28151.28, + "end": 28154.26, + "probability": 0.9271 + }, + { + "start": 28155.06, + "end": 28161.76, + "probability": 0.9172 + }, + { + "start": 28161.82, + "end": 28162.9, + "probability": 0.8966 + }, + { + "start": 28163.44, + "end": 28164.34, + "probability": 0.9738 + }, + { + "start": 28165.32, + "end": 28169.08, + "probability": 0.8364 + }, + { + "start": 28171.88, + "end": 28175.5, + "probability": 0.9348 + }, + { + "start": 28176.46, + "end": 28177.77, + "probability": 0.9941 + }, + { + "start": 28178.52, + "end": 28179.34, + "probability": 0.5779 + }, + { + "start": 28179.44, + "end": 28180.22, + "probability": 0.5725 + }, + { + "start": 28180.26, + "end": 28182.68, + "probability": 0.6182 + }, + { + "start": 28183.96, + "end": 28187.86, + "probability": 0.9686 + }, + { + "start": 28189.08, + "end": 28192.58, + "probability": 0.9941 + }, + { + "start": 28193.0, + "end": 28196.0, + "probability": 0.9973 + }, + { + "start": 28196.0, + "end": 28198.7, + "probability": 0.9957 + }, + { + "start": 28198.78, + "end": 28203.08, + "probability": 0.8011 + }, + { + "start": 28203.62, + "end": 28207.14, + "probability": 0.962 + }, + { + "start": 28207.86, + "end": 28211.42, + "probability": 0.9233 + }, + { + "start": 28211.42, + "end": 28215.92, + "probability": 0.9889 + }, + { + "start": 28216.52, + "end": 28219.66, + "probability": 0.865 + }, + { + "start": 28219.66, + "end": 28224.56, + "probability": 0.9963 + }, + { + "start": 28225.1, + "end": 28229.26, + "probability": 0.9064 + }, + { + "start": 28229.98, + "end": 28232.58, + "probability": 0.7802 + }, + { + "start": 28233.22, + "end": 28236.24, + "probability": 0.8809 + }, + { + "start": 28236.7, + "end": 28240.2, + "probability": 0.9643 + }, + { + "start": 28240.68, + "end": 28246.08, + "probability": 0.7866 + }, + { + "start": 28247.06, + "end": 28248.82, + "probability": 0.9658 + }, + { + "start": 28249.16, + "end": 28253.92, + "probability": 0.9333 + }, + { + "start": 28254.6, + "end": 28256.72, + "probability": 0.8304 + }, + { + "start": 28257.42, + "end": 28259.76, + "probability": 0.961 + }, + { + "start": 28259.88, + "end": 28261.66, + "probability": 0.7478 + }, + { + "start": 28262.02, + "end": 28264.66, + "probability": 0.8942 + }, + { + "start": 28265.22, + "end": 28269.92, + "probability": 0.9638 + }, + { + "start": 28270.1, + "end": 28271.8, + "probability": 0.7708 + }, + { + "start": 28272.64, + "end": 28276.36, + "probability": 0.9936 + }, + { + "start": 28276.36, + "end": 28279.44, + "probability": 0.9775 + }, + { + "start": 28279.6, + "end": 28282.32, + "probability": 0.7011 + }, + { + "start": 28282.78, + "end": 28285.78, + "probability": 0.9871 + }, + { + "start": 28285.78, + "end": 28289.0, + "probability": 0.9602 + }, + { + "start": 28289.42, + "end": 28291.58, + "probability": 0.9431 + }, + { + "start": 28291.64, + "end": 28293.96, + "probability": 0.9838 + }, + { + "start": 28294.96, + "end": 28298.56, + "probability": 0.9904 + }, + { + "start": 28298.56, + "end": 28303.0, + "probability": 0.9888 + }, + { + "start": 28303.36, + "end": 28304.86, + "probability": 0.975 + }, + { + "start": 28305.6, + "end": 28305.8, + "probability": 0.6814 + }, + { + "start": 28307.38, + "end": 28307.86, + "probability": 0.6866 + }, + { + "start": 28318.3, + "end": 28320.1, + "probability": 0.5444 + }, + { + "start": 28320.58, + "end": 28322.38, + "probability": 0.6691 + }, + { + "start": 28328.0, + "end": 28328.92, + "probability": 0.096 + }, + { + "start": 28328.92, + "end": 28330.12, + "probability": 0.1827 + }, + { + "start": 28330.12, + "end": 28330.12, + "probability": 0.1486 + }, + { + "start": 28330.12, + "end": 28330.12, + "probability": 0.0273 + }, + { + "start": 28347.24, + "end": 28347.48, + "probability": 0.6572 + }, + { + "start": 28348.44, + "end": 28350.82, + "probability": 0.9976 + }, + { + "start": 28351.12, + "end": 28355.08, + "probability": 0.9314 + }, + { + "start": 28355.86, + "end": 28358.02, + "probability": 0.991 + }, + { + "start": 28358.36, + "end": 28358.92, + "probability": 0.5817 + }, + { + "start": 28361.13, + "end": 28362.58, + "probability": 0.1183 + }, + { + "start": 28363.54, + "end": 28366.06, + "probability": 0.9928 + }, + { + "start": 28367.16, + "end": 28367.8, + "probability": 0.8796 + }, + { + "start": 28367.98, + "end": 28369.18, + "probability": 0.9849 + }, + { + "start": 28369.3, + "end": 28373.64, + "probability": 0.9707 + }, + { + "start": 28375.48, + "end": 28376.3, + "probability": 0.5736 + }, + { + "start": 28377.4, + "end": 28379.94, + "probability": 0.9714 + }, + { + "start": 28380.36, + "end": 28381.6, + "probability": 0.6734 + }, + { + "start": 28382.18, + "end": 28382.96, + "probability": 0.9663 + }, + { + "start": 28383.74, + "end": 28385.8, + "probability": 0.9726 + }, + { + "start": 28385.8, + "end": 28388.82, + "probability": 0.908 + }, + { + "start": 28390.52, + "end": 28394.98, + "probability": 0.9741 + }, + { + "start": 28396.0, + "end": 28396.6, + "probability": 0.8414 + }, + { + "start": 28397.12, + "end": 28398.42, + "probability": 0.5002 + }, + { + "start": 28399.0, + "end": 28402.58, + "probability": 0.989 + }, + { + "start": 28405.16, + "end": 28406.1, + "probability": 0.5465 + }, + { + "start": 28406.36, + "end": 28407.38, + "probability": 0.9142 + }, + { + "start": 28407.78, + "end": 28409.6, + "probability": 0.9809 + }, + { + "start": 28409.76, + "end": 28411.58, + "probability": 0.9442 + }, + { + "start": 28412.9, + "end": 28415.2, + "probability": 0.8652 + }, + { + "start": 28415.72, + "end": 28418.18, + "probability": 0.9819 + }, + { + "start": 28418.18, + "end": 28422.76, + "probability": 0.9382 + }, + { + "start": 28423.7, + "end": 28426.98, + "probability": 0.9845 + }, + { + "start": 28427.86, + "end": 28429.92, + "probability": 0.9907 + }, + { + "start": 28430.72, + "end": 28431.86, + "probability": 0.9047 + }, + { + "start": 28432.08, + "end": 28433.26, + "probability": 0.984 + }, + { + "start": 28433.54, + "end": 28434.96, + "probability": 0.9716 + }, + { + "start": 28435.02, + "end": 28435.64, + "probability": 0.685 + }, + { + "start": 28436.08, + "end": 28439.4, + "probability": 0.9204 + }, + { + "start": 28439.98, + "end": 28440.96, + "probability": 0.9736 + }, + { + "start": 28442.06, + "end": 28445.48, + "probability": 0.8704 + }, + { + "start": 28446.28, + "end": 28447.36, + "probability": 0.9935 + }, + { + "start": 28448.52, + "end": 28453.88, + "probability": 0.7585 + }, + { + "start": 28453.88, + "end": 28454.08, + "probability": 0.6959 + }, + { + "start": 28457.72, + "end": 28458.2, + "probability": 0.7868 + }, + { + "start": 28458.8, + "end": 28460.72, + "probability": 0.8101 + }, + { + "start": 28481.86, + "end": 28483.84, + "probability": 0.6172 + }, + { + "start": 28484.54, + "end": 28488.02, + "probability": 0.9512 + }, + { + "start": 28488.02, + "end": 28492.74, + "probability": 0.9453 + }, + { + "start": 28493.04, + "end": 28494.32, + "probability": 0.889 + }, + { + "start": 28494.54, + "end": 28496.01, + "probability": 0.9381 + }, + { + "start": 28496.98, + "end": 28499.74, + "probability": 0.9543 + }, + { + "start": 28499.82, + "end": 28500.4, + "probability": 0.7944 + }, + { + "start": 28500.48, + "end": 28501.72, + "probability": 0.6893 + }, + { + "start": 28503.42, + "end": 28506.08, + "probability": 0.9676 + }, + { + "start": 28506.08, + "end": 28508.54, + "probability": 0.9985 + }, + { + "start": 28509.98, + "end": 28512.92, + "probability": 0.9977 + }, + { + "start": 28512.92, + "end": 28515.66, + "probability": 0.999 + }, + { + "start": 28516.46, + "end": 28523.7, + "probability": 0.9596 + }, + { + "start": 28524.28, + "end": 28528.46, + "probability": 0.9927 + }, + { + "start": 28528.98, + "end": 28529.42, + "probability": 0.6796 + }, + { + "start": 28529.6, + "end": 28531.32, + "probability": 0.9113 + }, + { + "start": 28531.4, + "end": 28532.72, + "probability": 0.8817 + }, + { + "start": 28532.76, + "end": 28532.92, + "probability": 0.394 + }, + { + "start": 28534.28, + "end": 28535.54, + "probability": 0.8111 + }, + { + "start": 28536.6, + "end": 28545.34, + "probability": 0.9881 + }, + { + "start": 28545.92, + "end": 28547.82, + "probability": 0.7186 + }, + { + "start": 28549.24, + "end": 28552.96, + "probability": 0.9213 + }, + { + "start": 28553.08, + "end": 28557.76, + "probability": 0.8419 + }, + { + "start": 28558.62, + "end": 28562.74, + "probability": 0.9895 + }, + { + "start": 28562.74, + "end": 28566.54, + "probability": 0.9959 + }, + { + "start": 28567.5, + "end": 28569.9, + "probability": 0.9986 + }, + { + "start": 28569.9, + "end": 28573.24, + "probability": 0.8502 + }, + { + "start": 28573.3, + "end": 28573.76, + "probability": 0.3816 + }, + { + "start": 28573.78, + "end": 28576.64, + "probability": 0.9618 + }, + { + "start": 28577.32, + "end": 28580.3, + "probability": 0.9717 + }, + { + "start": 28580.88, + "end": 28583.82, + "probability": 0.8598 + }, + { + "start": 28584.38, + "end": 28589.74, + "probability": 0.95 + }, + { + "start": 28590.9, + "end": 28592.56, + "probability": 0.8846 + }, + { + "start": 28593.54, + "end": 28594.14, + "probability": 0.6118 + }, + { + "start": 28594.48, + "end": 28599.18, + "probability": 0.959 + }, + { + "start": 28599.68, + "end": 28602.0, + "probability": 0.9981 + }, + { + "start": 28602.0, + "end": 28605.38, + "probability": 0.9816 + }, + { + "start": 28605.46, + "end": 28606.54, + "probability": 0.8306 + }, + { + "start": 28607.0, + "end": 28609.9, + "probability": 0.9486 + }, + { + "start": 28610.52, + "end": 28614.76, + "probability": 0.9976 + }, + { + "start": 28614.9, + "end": 28615.74, + "probability": 0.9717 + }, + { + "start": 28616.56, + "end": 28617.16, + "probability": 0.7221 + }, + { + "start": 28618.04, + "end": 28622.74, + "probability": 0.9747 + }, + { + "start": 28624.12, + "end": 28627.04, + "probability": 0.9922 + }, + { + "start": 28627.54, + "end": 28631.94, + "probability": 0.9487 + }, + { + "start": 28632.46, + "end": 28637.32, + "probability": 0.997 + }, + { + "start": 28637.7, + "end": 28639.96, + "probability": 0.9575 + }, + { + "start": 28640.54, + "end": 28641.3, + "probability": 0.8439 + }, + { + "start": 28641.94, + "end": 28646.86, + "probability": 0.9554 + }, + { + "start": 28647.0, + "end": 28648.26, + "probability": 0.6771 + }, + { + "start": 28650.48, + "end": 28653.66, + "probability": 0.997 + }, + { + "start": 28653.66, + "end": 28656.36, + "probability": 0.9304 + }, + { + "start": 28656.8, + "end": 28659.1, + "probability": 0.9971 + }, + { + "start": 28660.06, + "end": 28660.84, + "probability": 0.7789 + }, + { + "start": 28661.52, + "end": 28664.74, + "probability": 0.959 + }, + { + "start": 28664.82, + "end": 28667.66, + "probability": 0.988 + }, + { + "start": 28668.64, + "end": 28671.58, + "probability": 0.9706 + }, + { + "start": 28672.52, + "end": 28674.84, + "probability": 0.9937 + }, + { + "start": 28675.6, + "end": 28678.58, + "probability": 0.9763 + }, + { + "start": 28678.94, + "end": 28683.32, + "probability": 0.9356 + }, + { + "start": 28683.86, + "end": 28688.94, + "probability": 0.9934 + }, + { + "start": 28689.1, + "end": 28693.84, + "probability": 0.9971 + }, + { + "start": 28694.32, + "end": 28696.18, + "probability": 0.9727 + }, + { + "start": 28696.32, + "end": 28697.26, + "probability": 0.7388 + }, + { + "start": 28697.62, + "end": 28699.14, + "probability": 0.9807 + }, + { + "start": 28699.24, + "end": 28701.18, + "probability": 0.948 + }, + { + "start": 28702.06, + "end": 28705.9, + "probability": 0.956 + }, + { + "start": 28705.9, + "end": 28709.04, + "probability": 0.9845 + }, + { + "start": 28710.3, + "end": 28711.78, + "probability": 0.8177 + }, + { + "start": 28711.96, + "end": 28714.16, + "probability": 0.975 + }, + { + "start": 28714.48, + "end": 28717.44, + "probability": 0.9957 + }, + { + "start": 28717.86, + "end": 28721.34, + "probability": 0.9951 + }, + { + "start": 28721.36, + "end": 28725.74, + "probability": 0.9883 + }, + { + "start": 28726.4, + "end": 28729.68, + "probability": 0.8355 + }, + { + "start": 28730.14, + "end": 28732.44, + "probability": 0.9921 + }, + { + "start": 28733.08, + "end": 28735.6, + "probability": 0.9932 + }, + { + "start": 28735.6, + "end": 28739.0, + "probability": 0.946 + }, + { + "start": 28739.5, + "end": 28740.14, + "probability": 0.5961 + }, + { + "start": 28740.78, + "end": 28742.28, + "probability": 0.976 + }, + { + "start": 28743.18, + "end": 28744.4, + "probability": 0.9606 + }, + { + "start": 28745.0, + "end": 28749.52, + "probability": 0.9952 + }, + { + "start": 28750.1, + "end": 28750.38, + "probability": 0.9613 + }, + { + "start": 28750.64, + "end": 28753.48, + "probability": 0.9303 + }, + { + "start": 28753.66, + "end": 28755.02, + "probability": 0.994 + }, + { + "start": 28755.82, + "end": 28760.64, + "probability": 0.9995 + }, + { + "start": 28761.3, + "end": 28762.46, + "probability": 0.7746 + }, + { + "start": 28762.6, + "end": 28764.74, + "probability": 0.9797 + }, + { + "start": 28764.82, + "end": 28767.68, + "probability": 0.9844 + }, + { + "start": 28768.16, + "end": 28771.82, + "probability": 0.9904 + }, + { + "start": 28772.24, + "end": 28773.04, + "probability": 0.9758 + }, + { + "start": 28773.2, + "end": 28773.66, + "probability": 0.8737 + }, + { + "start": 28773.86, + "end": 28775.4, + "probability": 0.9835 + }, + { + "start": 28775.9, + "end": 28777.34, + "probability": 0.9358 + }, + { + "start": 28777.4, + "end": 28783.36, + "probability": 0.9662 + }, + { + "start": 28783.78, + "end": 28785.18, + "probability": 0.9348 + }, + { + "start": 28785.3, + "end": 28788.6, + "probability": 0.998 + }, + { + "start": 28788.98, + "end": 28792.46, + "probability": 0.9624 + }, + { + "start": 28793.7, + "end": 28796.14, + "probability": 0.8071 + }, + { + "start": 28796.78, + "end": 28799.86, + "probability": 0.915 + }, + { + "start": 28800.42, + "end": 28801.58, + "probability": 0.6694 + }, + { + "start": 28802.14, + "end": 28803.38, + "probability": 0.9521 + }, + { + "start": 28803.98, + "end": 28807.84, + "probability": 0.9715 + }, + { + "start": 28808.44, + "end": 28812.92, + "probability": 0.9218 + }, + { + "start": 28813.38, + "end": 28818.16, + "probability": 0.9351 + }, + { + "start": 28818.38, + "end": 28819.2, + "probability": 0.5553 + }, + { + "start": 28820.92, + "end": 28821.86, + "probability": 0.5195 + }, + { + "start": 28821.96, + "end": 28821.96, + "probability": 0.5475 + }, + { + "start": 28822.06, + "end": 28823.28, + "probability": 0.6728 + }, + { + "start": 28823.5, + "end": 28827.66, + "probability": 0.9761 + }, + { + "start": 28827.74, + "end": 28829.18, + "probability": 0.8025 + }, + { + "start": 28829.48, + "end": 28832.8, + "probability": 0.9933 + }, + { + "start": 28833.6, + "end": 28838.04, + "probability": 0.9829 + }, + { + "start": 28838.16, + "end": 28839.0, + "probability": 0.9594 + }, + { + "start": 28839.12, + "end": 28839.62, + "probability": 0.7029 + }, + { + "start": 28839.94, + "end": 28841.72, + "probability": 0.9928 + }, + { + "start": 28841.8, + "end": 28844.56, + "probability": 0.9523 + }, + { + "start": 28845.08, + "end": 28848.88, + "probability": 0.9929 + }, + { + "start": 28849.68, + "end": 28849.96, + "probability": 0.5515 + }, + { + "start": 28850.1, + "end": 28854.82, + "probability": 0.9889 + }, + { + "start": 28854.98, + "end": 28855.66, + "probability": 0.6835 + }, + { + "start": 28855.78, + "end": 28858.92, + "probability": 0.9523 + }, + { + "start": 28859.32, + "end": 28862.2, + "probability": 0.998 + }, + { + "start": 28863.02, + "end": 28866.0, + "probability": 0.9181 + }, + { + "start": 28866.64, + "end": 28869.78, + "probability": 0.9763 + }, + { + "start": 28870.44, + "end": 28873.1, + "probability": 0.999 + }, + { + "start": 28873.64, + "end": 28875.62, + "probability": 0.8813 + }, + { + "start": 28875.96, + "end": 28880.46, + "probability": 0.9365 + }, + { + "start": 28880.54, + "end": 28881.18, + "probability": 0.7251 + }, + { + "start": 28881.66, + "end": 28882.66, + "probability": 0.8688 + }, + { + "start": 28883.12, + "end": 28883.82, + "probability": 0.9893 + }, + { + "start": 28885.14, + "end": 28889.48, + "probability": 0.9368 + }, + { + "start": 28889.94, + "end": 28890.3, + "probability": 0.4901 + }, + { + "start": 28890.54, + "end": 28895.16, + "probability": 0.993 + }, + { + "start": 28895.16, + "end": 28901.26, + "probability": 0.9983 + }, + { + "start": 28902.18, + "end": 28904.12, + "probability": 0.9512 + }, + { + "start": 28905.74, + "end": 28905.84, + "probability": 0.2943 + }, + { + "start": 28906.06, + "end": 28907.4, + "probability": 0.91 + }, + { + "start": 28907.82, + "end": 28911.88, + "probability": 0.8865 + }, + { + "start": 28912.2, + "end": 28916.06, + "probability": 0.9597 + }, + { + "start": 28916.64, + "end": 28917.98, + "probability": 0.9985 + }, + { + "start": 28918.2, + "end": 28920.12, + "probability": 0.9935 + }, + { + "start": 28920.48, + "end": 28921.7, + "probability": 0.9072 + }, + { + "start": 28921.82, + "end": 28922.34, + "probability": 0.598 + }, + { + "start": 28922.4, + "end": 28924.3, + "probability": 0.9791 + }, + { + "start": 28924.7, + "end": 28927.88, + "probability": 0.9728 + }, + { + "start": 28929.04, + "end": 28933.24, + "probability": 0.9928 + }, + { + "start": 28934.0, + "end": 28936.26, + "probability": 0.477 + }, + { + "start": 28937.02, + "end": 28938.68, + "probability": 0.8795 + }, + { + "start": 28938.86, + "end": 28939.92, + "probability": 0.9042 + }, + { + "start": 28940.12, + "end": 28941.68, + "probability": 0.9261 + }, + { + "start": 28942.14, + "end": 28944.28, + "probability": 0.9532 + }, + { + "start": 28944.42, + "end": 28945.96, + "probability": 0.8848 + }, + { + "start": 28946.6, + "end": 28954.86, + "probability": 0.8419 + }, + { + "start": 28954.96, + "end": 28955.2, + "probability": 0.6229 + }, + { + "start": 28955.32, + "end": 28956.84, + "probability": 0.9899 + }, + { + "start": 28956.9, + "end": 28958.12, + "probability": 0.9949 + }, + { + "start": 28958.7, + "end": 28962.86, + "probability": 0.9277 + }, + { + "start": 28963.1, + "end": 28963.52, + "probability": 0.9592 + }, + { + "start": 28963.92, + "end": 28965.12, + "probability": 0.4994 + }, + { + "start": 28965.56, + "end": 28968.04, + "probability": 0.9965 + }, + { + "start": 28969.04, + "end": 28971.08, + "probability": 0.9927 + }, + { + "start": 28971.32, + "end": 28972.65, + "probability": 0.9941 + }, + { + "start": 28973.34, + "end": 28977.22, + "probability": 0.8848 + }, + { + "start": 28977.28, + "end": 28978.08, + "probability": 0.7026 + }, + { + "start": 28978.42, + "end": 28981.84, + "probability": 0.9972 + }, + { + "start": 28982.3, + "end": 28982.46, + "probability": 0.7309 + }, + { + "start": 28984.02, + "end": 28985.6, + "probability": 0.905 + }, + { + "start": 28987.02, + "end": 28990.86, + "probability": 0.7735 + }, + { + "start": 28991.4, + "end": 28992.78, + "probability": 0.4075 + }, + { + "start": 28992.78, + "end": 28993.7, + "probability": 0.3132 + }, + { + "start": 28994.54, + "end": 29000.62, + "probability": 0.7804 + }, + { + "start": 29000.72, + "end": 29000.82, + "probability": 0.2499 + }, + { + "start": 29011.34, + "end": 29014.74, + "probability": 0.7732 + }, + { + "start": 29014.74, + "end": 29018.72, + "probability": 0.9777 + }, + { + "start": 29019.28, + "end": 29019.7, + "probability": 0.7015 + }, + { + "start": 29021.32, + "end": 29022.5, + "probability": 0.3912 + }, + { + "start": 29034.58, + "end": 29034.58, + "probability": 0.9363 + }, + { + "start": 29034.58, + "end": 29035.4, + "probability": 0.3537 + }, + { + "start": 29036.06, + "end": 29036.94, + "probability": 0.3237 + }, + { + "start": 29037.42, + "end": 29037.94, + "probability": 0.4131 + }, + { + "start": 29038.9, + "end": 29043.44, + "probability": 0.9854 + }, + { + "start": 29043.66, + "end": 29044.24, + "probability": 0.7091 + }, + { + "start": 29045.12, + "end": 29048.0, + "probability": 0.7022 + }, + { + "start": 29048.86, + "end": 29051.44, + "probability": 0.8451 + }, + { + "start": 29051.44, + "end": 29054.48, + "probability": 0.9982 + }, + { + "start": 29055.38, + "end": 29058.34, + "probability": 0.9578 + }, + { + "start": 29059.28, + "end": 29059.98, + "probability": 0.7037 + }, + { + "start": 29066.18, + "end": 29067.98, + "probability": 0.6058 + }, + { + "start": 29096.18, + "end": 29097.2, + "probability": 0.7638 + }, + { + "start": 29098.26, + "end": 29099.3, + "probability": 0.8411 + }, + { + "start": 29099.94, + "end": 29102.46, + "probability": 0.8851 + }, + { + "start": 29103.92, + "end": 29105.0, + "probability": 0.5122 + }, + { + "start": 29105.1, + "end": 29107.76, + "probability": 0.9955 + }, + { + "start": 29109.18, + "end": 29112.44, + "probability": 0.9966 + }, + { + "start": 29114.18, + "end": 29115.24, + "probability": 0.7026 + }, + { + "start": 29115.54, + "end": 29119.74, + "probability": 0.9901 + }, + { + "start": 29121.28, + "end": 29124.38, + "probability": 0.9526 + }, + { + "start": 29124.38, + "end": 29127.24, + "probability": 0.9928 + }, + { + "start": 29129.6, + "end": 29131.66, + "probability": 0.7858 + }, + { + "start": 29132.18, + "end": 29136.22, + "probability": 0.7756 + }, + { + "start": 29137.12, + "end": 29141.94, + "probability": 0.96 + }, + { + "start": 29142.04, + "end": 29143.0, + "probability": 0.9061 + }, + { + "start": 29145.6, + "end": 29148.56, + "probability": 0.9807 + }, + { + "start": 29149.24, + "end": 29152.68, + "probability": 0.9719 + }, + { + "start": 29154.04, + "end": 29156.42, + "probability": 0.9503 + }, + { + "start": 29157.28, + "end": 29159.52, + "probability": 0.9268 + }, + { + "start": 29159.52, + "end": 29162.66, + "probability": 0.8299 + }, + { + "start": 29165.3, + "end": 29165.9, + "probability": 0.175 + }, + { + "start": 29166.08, + "end": 29168.68, + "probability": 0.9317 + }, + { + "start": 29169.24, + "end": 29172.92, + "probability": 0.9966 + }, + { + "start": 29173.8, + "end": 29175.28, + "probability": 0.991 + }, + { + "start": 29176.36, + "end": 29176.84, + "probability": 0.943 + }, + { + "start": 29178.04, + "end": 29179.7, + "probability": 0.9701 + }, + { + "start": 29180.94, + "end": 29182.82, + "probability": 0.9855 + }, + { + "start": 29184.86, + "end": 29187.72, + "probability": 0.9973 + }, + { + "start": 29187.8, + "end": 29192.06, + "probability": 0.9925 + }, + { + "start": 29192.96, + "end": 29198.72, + "probability": 0.9042 + }, + { + "start": 29200.32, + "end": 29202.2, + "probability": 0.7053 + }, + { + "start": 29203.76, + "end": 29208.72, + "probability": 0.9741 + }, + { + "start": 29210.06, + "end": 29212.26, + "probability": 0.7686 + }, + { + "start": 29214.3, + "end": 29215.4, + "probability": 0.4593 + }, + { + "start": 29215.4, + "end": 29215.9, + "probability": 0.327 + }, + { + "start": 29216.06, + "end": 29219.02, + "probability": 0.9473 + }, + { + "start": 29219.66, + "end": 29222.94, + "probability": 0.9596 + }, + { + "start": 29223.58, + "end": 29226.8, + "probability": 0.9853 + }, + { + "start": 29228.24, + "end": 29232.64, + "probability": 0.9952 + }, + { + "start": 29233.0, + "end": 29237.46, + "probability": 0.9858 + }, + { + "start": 29238.7, + "end": 29241.22, + "probability": 0.9528 + }, + { + "start": 29243.08, + "end": 29244.2, + "probability": 0.8942 + }, + { + "start": 29244.38, + "end": 29247.96, + "probability": 0.9924 + }, + { + "start": 29249.0, + "end": 29252.66, + "probability": 0.9955 + }, + { + "start": 29253.28, + "end": 29257.34, + "probability": 0.9951 + }, + { + "start": 29258.1, + "end": 29259.7, + "probability": 0.9657 + }, + { + "start": 29262.56, + "end": 29264.92, + "probability": 0.9446 + }, + { + "start": 29264.92, + "end": 29267.1, + "probability": 0.9987 + }, + { + "start": 29268.08, + "end": 29269.2, + "probability": 0.8373 + }, + { + "start": 29269.28, + "end": 29273.58, + "probability": 0.981 + }, + { + "start": 29274.4, + "end": 29278.4, + "probability": 0.9952 + }, + { + "start": 29279.36, + "end": 29283.7, + "probability": 0.9883 + }, + { + "start": 29284.42, + "end": 29285.04, + "probability": 0.6918 + }, + { + "start": 29287.04, + "end": 29287.62, + "probability": 0.7988 + }, + { + "start": 29289.54, + "end": 29291.5, + "probability": 0.7687 + }, + { + "start": 29318.8, + "end": 29320.54, + "probability": 0.6136 + }, + { + "start": 29321.76, + "end": 29327.36, + "probability": 0.951 + }, + { + "start": 29328.5, + "end": 29332.06, + "probability": 0.7963 + }, + { + "start": 29332.06, + "end": 29335.58, + "probability": 0.8219 + }, + { + "start": 29336.78, + "end": 29339.52, + "probability": 0.7134 + }, + { + "start": 29339.68, + "end": 29341.52, + "probability": 0.9774 + }, + { + "start": 29342.3, + "end": 29347.45, + "probability": 0.9404 + }, + { + "start": 29348.66, + "end": 29351.2, + "probability": 0.8301 + }, + { + "start": 29351.34, + "end": 29352.75, + "probability": 0.9037 + }, + { + "start": 29353.28, + "end": 29354.62, + "probability": 0.5216 + }, + { + "start": 29354.88, + "end": 29356.74, + "probability": 0.8494 + }, + { + "start": 29357.7, + "end": 29360.5, + "probability": 0.975 + }, + { + "start": 29360.5, + "end": 29362.84, + "probability": 0.9767 + }, + { + "start": 29364.0, + "end": 29366.6, + "probability": 0.9773 + }, + { + "start": 29367.12, + "end": 29368.9, + "probability": 0.9575 + }, + { + "start": 29369.6, + "end": 29370.46, + "probability": 0.8065 + }, + { + "start": 29371.24, + "end": 29376.12, + "probability": 0.9212 + }, + { + "start": 29376.76, + "end": 29380.64, + "probability": 0.9389 + }, + { + "start": 29381.08, + "end": 29383.6, + "probability": 0.9028 + }, + { + "start": 29384.06, + "end": 29387.34, + "probability": 0.8141 + }, + { + "start": 29388.62, + "end": 29392.94, + "probability": 0.8726 + }, + { + "start": 29392.94, + "end": 29396.58, + "probability": 0.9819 + }, + { + "start": 29397.72, + "end": 29401.3, + "probability": 0.9707 + }, + { + "start": 29401.98, + "end": 29405.54, + "probability": 0.9543 + }, + { + "start": 29405.65, + "end": 29410.14, + "probability": 0.9742 + }, + { + "start": 29410.62, + "end": 29412.9, + "probability": 0.9783 + }, + { + "start": 29413.06, + "end": 29413.6, + "probability": 0.9371 + }, + { + "start": 29413.76, + "end": 29414.22, + "probability": 0.9739 + }, + { + "start": 29414.64, + "end": 29415.18, + "probability": 0.924 + }, + { + "start": 29415.54, + "end": 29415.96, + "probability": 0.9772 + }, + { + "start": 29416.1, + "end": 29416.32, + "probability": 0.6578 + }, + { + "start": 29416.48, + "end": 29417.38, + "probability": 0.8139 + }, + { + "start": 29418.28, + "end": 29418.96, + "probability": 0.6573 + }, + { + "start": 29419.04, + "end": 29422.8, + "probability": 0.9286 + }, + { + "start": 29422.96, + "end": 29424.5, + "probability": 0.9785 + }, + { + "start": 29425.62, + "end": 29429.64, + "probability": 0.7937 + }, + { + "start": 29430.36, + "end": 29431.78, + "probability": 0.5553 + }, + { + "start": 29432.84, + "end": 29435.54, + "probability": 0.9924 + }, + { + "start": 29436.46, + "end": 29441.4, + "probability": 0.8667 + }, + { + "start": 29441.86, + "end": 29447.96, + "probability": 0.8977 + }, + { + "start": 29448.04, + "end": 29454.38, + "probability": 0.969 + }, + { + "start": 29455.48, + "end": 29458.44, + "probability": 0.7187 + }, + { + "start": 29459.16, + "end": 29462.7, + "probability": 0.9377 + }, + { + "start": 29463.24, + "end": 29465.1, + "probability": 0.8963 + }, + { + "start": 29465.6, + "end": 29467.28, + "probability": 0.7588 + }, + { + "start": 29467.52, + "end": 29471.48, + "probability": 0.8724 + }, + { + "start": 29471.96, + "end": 29475.7, + "probability": 0.9304 + }, + { + "start": 29477.56, + "end": 29478.88, + "probability": 0.6575 + }, + { + "start": 29479.58, + "end": 29481.8, + "probability": 0.6948 + }, + { + "start": 29482.34, + "end": 29484.76, + "probability": 0.8494 + }, + { + "start": 29486.82, + "end": 29490.24, + "probability": 0.7529 + }, + { + "start": 29490.88, + "end": 29492.52, + "probability": 0.8891 + }, + { + "start": 29492.7, + "end": 29493.76, + "probability": 0.4024 + }, + { + "start": 29493.82, + "end": 29495.26, + "probability": 0.4513 + }, + { + "start": 29495.68, + "end": 29498.28, + "probability": 0.3648 + }, + { + "start": 29498.6, + "end": 29504.94, + "probability": 0.9094 + }, + { + "start": 29506.02, + "end": 29508.9, + "probability": 0.9266 + }, + { + "start": 29510.48, + "end": 29514.62, + "probability": 0.9463 + }, + { + "start": 29514.62, + "end": 29517.56, + "probability": 0.958 + }, + { + "start": 29518.02, + "end": 29518.94, + "probability": 0.8445 + }, + { + "start": 29519.06, + "end": 29519.48, + "probability": 0.8765 + }, + { + "start": 29519.68, + "end": 29520.4, + "probability": 0.9765 + }, + { + "start": 29520.54, + "end": 29521.42, + "probability": 0.7326 + }, + { + "start": 29522.46, + "end": 29526.92, + "probability": 0.9937 + }, + { + "start": 29527.92, + "end": 29528.42, + "probability": 0.6469 + }, + { + "start": 29528.56, + "end": 29532.62, + "probability": 0.8325 + }, + { + "start": 29532.7, + "end": 29536.32, + "probability": 0.9968 + }, + { + "start": 29536.32, + "end": 29540.42, + "probability": 0.9862 + }, + { + "start": 29541.4, + "end": 29543.3, + "probability": 0.7442 + }, + { + "start": 29543.74, + "end": 29546.36, + "probability": 0.9088 + }, + { + "start": 29547.8, + "end": 29555.14, + "probability": 0.9054 + }, + { + "start": 29555.84, + "end": 29557.46, + "probability": 0.7907 + }, + { + "start": 29557.88, + "end": 29560.62, + "probability": 0.6824 + }, + { + "start": 29560.62, + "end": 29565.42, + "probability": 0.8847 + }, + { + "start": 29565.76, + "end": 29567.64, + "probability": 0.8378 + }, + { + "start": 29568.0, + "end": 29569.44, + "probability": 0.9529 + }, + { + "start": 29570.02, + "end": 29572.4, + "probability": 0.9577 + }, + { + "start": 29573.1, + "end": 29574.48, + "probability": 0.855 + }, + { + "start": 29577.87, + "end": 29580.62, + "probability": 0.988 + }, + { + "start": 29580.8, + "end": 29582.14, + "probability": 0.8727 + }, + { + "start": 29582.96, + "end": 29587.36, + "probability": 0.9954 + }, + { + "start": 29587.36, + "end": 29591.38, + "probability": 0.9863 + }, + { + "start": 29592.32, + "end": 29596.1, + "probability": 0.9866 + }, + { + "start": 29596.1, + "end": 29600.28, + "probability": 0.933 + }, + { + "start": 29600.94, + "end": 29604.26, + "probability": 0.8543 + }, + { + "start": 29605.14, + "end": 29608.8, + "probability": 0.978 + }, + { + "start": 29608.86, + "end": 29611.0, + "probability": 0.6913 + }, + { + "start": 29611.92, + "end": 29614.96, + "probability": 0.9213 + }, + { + "start": 29615.7, + "end": 29620.48, + "probability": 0.9858 + }, + { + "start": 29621.02, + "end": 29622.74, + "probability": 0.8206 + }, + { + "start": 29623.5, + "end": 29624.4, + "probability": 0.7669 + }, + { + "start": 29624.48, + "end": 29631.02, + "probability": 0.8775 + }, + { + "start": 29631.82, + "end": 29636.04, + "probability": 0.9837 + }, + { + "start": 29636.46, + "end": 29638.84, + "probability": 0.7786 + }, + { + "start": 29639.3, + "end": 29642.08, + "probability": 0.9756 + }, + { + "start": 29642.98, + "end": 29646.66, + "probability": 0.8893 + }, + { + "start": 29646.66, + "end": 29649.62, + "probability": 0.9968 + }, + { + "start": 29650.36, + "end": 29655.08, + "probability": 0.9014 + }, + { + "start": 29655.64, + "end": 29658.9, + "probability": 0.9299 + }, + { + "start": 29659.44, + "end": 29661.02, + "probability": 0.6997 + }, + { + "start": 29661.22, + "end": 29664.54, + "probability": 0.9648 + }, + { + "start": 29664.54, + "end": 29669.46, + "probability": 0.8537 + }, + { + "start": 29670.16, + "end": 29670.6, + "probability": 0.7614 + }, + { + "start": 29672.32, + "end": 29674.14, + "probability": 0.6971 + }, + { + "start": 29675.26, + "end": 29676.54, + "probability": 0.3877 + }, + { + "start": 29676.94, + "end": 29677.58, + "probability": 0.5774 + }, + { + "start": 29677.82, + "end": 29677.92, + "probability": 0.4275 + }, + { + "start": 29677.92, + "end": 29678.38, + "probability": 0.704 + }, + { + "start": 29678.4, + "end": 29679.48, + "probability": 0.8064 + }, + { + "start": 29682.9, + "end": 29684.6, + "probability": 0.783 + }, + { + "start": 29686.5, + "end": 29690.86, + "probability": 0.9974 + }, + { + "start": 29700.86, + "end": 29702.04, + "probability": 0.5629 + }, + { + "start": 29702.04, + "end": 29703.62, + "probability": 0.6956 + }, + { + "start": 29703.76, + "end": 29704.08, + "probability": 0.5744 + }, + { + "start": 29704.34, + "end": 29712.16, + "probability": 0.885 + }, + { + "start": 29714.24, + "end": 29716.72, + "probability": 0.994 + }, + { + "start": 29717.58, + "end": 29723.22, + "probability": 0.9971 + }, + { + "start": 29723.92, + "end": 29725.12, + "probability": 0.91 + }, + { + "start": 29725.9, + "end": 29728.54, + "probability": 0.9966 + }, + { + "start": 29728.86, + "end": 29734.38, + "probability": 0.9807 + }, + { + "start": 29735.22, + "end": 29740.82, + "probability": 0.984 + }, + { + "start": 29740.94, + "end": 29741.82, + "probability": 0.8786 + }, + { + "start": 29742.04, + "end": 29744.26, + "probability": 0.7121 + }, + { + "start": 29744.34, + "end": 29751.0, + "probability": 0.9965 + }, + { + "start": 29752.4, + "end": 29756.34, + "probability": 0.9264 + }, + { + "start": 29756.34, + "end": 29764.12, + "probability": 0.9925 + }, + { + "start": 29764.92, + "end": 29767.44, + "probability": 0.9864 + }, + { + "start": 29767.66, + "end": 29773.14, + "probability": 0.9292 + }, + { + "start": 29774.58, + "end": 29777.54, + "probability": 0.9104 + }, + { + "start": 29777.64, + "end": 29780.9, + "probability": 0.8593 + }, + { + "start": 29782.48, + "end": 29785.6, + "probability": 0.9573 + }, + { + "start": 29785.66, + "end": 29787.98, + "probability": 0.7148 + }, + { + "start": 29788.08, + "end": 29790.9, + "probability": 0.9313 + }, + { + "start": 29791.72, + "end": 29792.3, + "probability": 0.5325 + }, + { + "start": 29792.38, + "end": 29794.88, + "probability": 0.9963 + }, + { + "start": 29794.96, + "end": 29796.98, + "probability": 0.7703 + }, + { + "start": 29796.98, + "end": 29799.96, + "probability": 0.7479 + }, + { + "start": 29800.3, + "end": 29801.5, + "probability": 0.9943 + }, + { + "start": 29802.18, + "end": 29806.76, + "probability": 0.8804 + }, + { + "start": 29806.8, + "end": 29809.17, + "probability": 0.9946 + }, + { + "start": 29810.32, + "end": 29811.84, + "probability": 0.9653 + }, + { + "start": 29812.28, + "end": 29815.66, + "probability": 0.9588 + }, + { + "start": 29816.38, + "end": 29820.18, + "probability": 0.9697 + }, + { + "start": 29821.0, + "end": 29822.9, + "probability": 0.9053 + }, + { + "start": 29823.06, + "end": 29823.44, + "probability": 0.4537 + }, + { + "start": 29823.48, + "end": 29826.24, + "probability": 0.9464 + }, + { + "start": 29826.3, + "end": 29828.89, + "probability": 0.9028 + }, + { + "start": 29830.0, + "end": 29836.64, + "probability": 0.9962 + }, + { + "start": 29837.18, + "end": 29840.49, + "probability": 0.9991 + }, + { + "start": 29841.14, + "end": 29849.72, + "probability": 0.9972 + }, + { + "start": 29850.06, + "end": 29850.48, + "probability": 0.7474 + }, + { + "start": 29851.92, + "end": 29852.92, + "probability": 0.8938 + }, + { + "start": 29853.69, + "end": 29856.72, + "probability": 0.9084 + }, + { + "start": 29857.78, + "end": 29857.88, + "probability": 0.2715 + }, + { + "start": 29858.7, + "end": 29859.36, + "probability": 0.3085 + }, + { + "start": 29859.56, + "end": 29860.02, + "probability": 0.4271 + }, + { + "start": 29860.02, + "end": 29861.62, + "probability": 0.9328 + }, + { + "start": 29862.64, + "end": 29863.32, + "probability": 0.5262 + }, + { + "start": 29866.0, + "end": 29869.68, + "probability": 0.647 + }, + { + "start": 29869.76, + "end": 29869.78, + "probability": 0.0456 + }, + { + "start": 29869.78, + "end": 29870.94, + "probability": 0.8005 + }, + { + "start": 29871.7, + "end": 29874.86, + "probability": 0.9711 + }, + { + "start": 29902.96, + "end": 29902.96, + "probability": 0.1463 + }, + { + "start": 29902.96, + "end": 29902.96, + "probability": 0.0426 + }, + { + "start": 29902.96, + "end": 29902.96, + "probability": 0.1728 + }, + { + "start": 29902.96, + "end": 29902.96, + "probability": 0.0278 + }, + { + "start": 29921.64, + "end": 29926.94, + "probability": 0.6255 + }, + { + "start": 29927.64, + "end": 29928.6, + "probability": 0.9558 + }, + { + "start": 29929.28, + "end": 29930.46, + "probability": 0.999 + }, + { + "start": 29931.42, + "end": 29932.4, + "probability": 0.9943 + }, + { + "start": 29933.16, + "end": 29935.76, + "probability": 0.9982 + }, + { + "start": 29936.02, + "end": 29936.82, + "probability": 0.5045 + }, + { + "start": 29937.18, + "end": 29937.88, + "probability": 0.8173 + }, + { + "start": 29938.06, + "end": 29938.68, + "probability": 0.674 + }, + { + "start": 29939.63, + "end": 29941.7, + "probability": 0.8252 + }, + { + "start": 29941.76, + "end": 29944.88, + "probability": 0.9522 + }, + { + "start": 29945.1, + "end": 29945.56, + "probability": 0.973 + }, + { + "start": 29945.68, + "end": 29946.16, + "probability": 0.8173 + }, + { + "start": 29947.38, + "end": 29948.22, + "probability": 0.9782 + }, + { + "start": 29948.4, + "end": 29949.38, + "probability": 0.8951 + }, + { + "start": 29950.26, + "end": 29952.82, + "probability": 0.9415 + }, + { + "start": 29953.32, + "end": 29956.26, + "probability": 0.9343 + }, + { + "start": 29956.54, + "end": 29957.34, + "probability": 0.8304 + }, + { + "start": 29958.12, + "end": 29959.44, + "probability": 0.9357 + }, + { + "start": 29960.14, + "end": 29963.22, + "probability": 0.9058 + }, + { + "start": 29964.48, + "end": 29965.04, + "probability": 0.8472 + }, + { + "start": 29965.16, + "end": 29966.02, + "probability": 0.949 + }, + { + "start": 29966.3, + "end": 29967.54, + "probability": 0.6481 + }, + { + "start": 29967.72, + "end": 29973.3, + "probability": 0.8887 + }, + { + "start": 29973.94, + "end": 29976.74, + "probability": 0.9163 + }, + { + "start": 29977.56, + "end": 29982.96, + "probability": 0.63 + }, + { + "start": 29982.96, + "end": 29987.16, + "probability": 0.8736 + }, + { + "start": 29988.06, + "end": 29992.0, + "probability": 0.9854 + }, + { + "start": 29992.8, + "end": 29993.0, + "probability": 0.4859 + }, + { + "start": 29994.48, + "end": 29997.12, + "probability": 0.9528 + }, + { + "start": 29997.3, + "end": 29998.3, + "probability": 0.8783 + }, + { + "start": 29998.54, + "end": 29999.7, + "probability": 0.8121 + }, + { + "start": 30000.26, + "end": 30000.88, + "probability": 0.7561 + }, + { + "start": 30001.3, + "end": 30004.76, + "probability": 0.9977 + }, + { + "start": 30004.76, + "end": 30007.76, + "probability": 0.9955 + }, + { + "start": 30008.44, + "end": 30009.48, + "probability": 0.9193 + }, + { + "start": 30010.88, + "end": 30011.24, + "probability": 0.5269 + }, + { + "start": 30012.2, + "end": 30013.2, + "probability": 0.9084 + }, + { + "start": 30014.08, + "end": 30015.38, + "probability": 0.8286 + }, + { + "start": 30016.2, + "end": 30017.78, + "probability": 0.9503 + }, + { + "start": 30018.48, + "end": 30019.44, + "probability": 0.9916 + }, + { + "start": 30021.38, + "end": 30021.92, + "probability": 0.4086 + }, + { + "start": 30023.82, + "end": 30025.62, + "probability": 0.0017 + }, + { + "start": 30025.66, + "end": 30029.92, + "probability": 0.5082 + }, + { + "start": 30030.02, + "end": 30030.7, + "probability": 0.758 + }, + { + "start": 30030.9, + "end": 30032.14, + "probability": 0.7164 + }, + { + "start": 30032.74, + "end": 30035.66, + "probability": 0.9092 + }, + { + "start": 30036.48, + "end": 30036.66, + "probability": 0.7156 + }, + { + "start": 30036.72, + "end": 30043.72, + "probability": 0.9443 + }, + { + "start": 30046.0, + "end": 30048.72, + "probability": 0.9453 + }, + { + "start": 30048.72, + "end": 30051.96, + "probability": 0.9432 + }, + { + "start": 30052.62, + "end": 30054.32, + "probability": 0.8481 + }, + { + "start": 30055.0, + "end": 30055.8, + "probability": 0.7327 + }, + { + "start": 30056.48, + "end": 30057.68, + "probability": 0.7264 + }, + { + "start": 30058.24, + "end": 30058.58, + "probability": 0.7275 + }, + { + "start": 30058.86, + "end": 30059.44, + "probability": 0.9365 + }, + { + "start": 30059.98, + "end": 30060.4, + "probability": 0.803 + }, + { + "start": 30060.84, + "end": 30062.22, + "probability": 0.909 + }, + { + "start": 30062.37, + "end": 30066.44, + "probability": 0.836 + }, + { + "start": 30068.1, + "end": 30073.86, + "probability": 0.9888 + }, + { + "start": 30073.86, + "end": 30078.9, + "probability": 0.9993 + }, + { + "start": 30079.24, + "end": 30079.48, + "probability": 0.3688 + }, + { + "start": 30079.52, + "end": 30082.02, + "probability": 0.9986 + }, + { + "start": 30083.36, + "end": 30083.56, + "probability": 0.5794 + }, + { + "start": 30083.66, + "end": 30084.61, + "probability": 0.9583 + }, + { + "start": 30084.76, + "end": 30087.12, + "probability": 0.9807 + }, + { + "start": 30087.88, + "end": 30090.78, + "probability": 0.9844 + }, + { + "start": 30090.94, + "end": 30095.42, + "probability": 0.9939 + }, + { + "start": 30095.86, + "end": 30097.26, + "probability": 0.661 + }, + { + "start": 30098.48, + "end": 30099.86, + "probability": 0.9679 + }, + { + "start": 30099.94, + "end": 30104.32, + "probability": 0.9932 + }, + { + "start": 30104.96, + "end": 30105.48, + "probability": 0.7676 + }, + { + "start": 30106.24, + "end": 30109.8, + "probability": 0.8973 + }, + { + "start": 30110.04, + "end": 30111.04, + "probability": 0.9417 + }, + { + "start": 30111.16, + "end": 30111.6, + "probability": 0.9692 + }, + { + "start": 30111.7, + "end": 30112.34, + "probability": 0.9154 + }, + { + "start": 30112.52, + "end": 30114.0, + "probability": 0.9795 + }, + { + "start": 30114.7, + "end": 30117.02, + "probability": 0.9919 + }, + { + "start": 30117.5, + "end": 30119.56, + "probability": 0.8702 + }, + { + "start": 30120.08, + "end": 30122.12, + "probability": 0.9683 + }, + { + "start": 30122.9, + "end": 30123.94, + "probability": 0.9443 + }, + { + "start": 30125.16, + "end": 30128.4, + "probability": 0.9561 + }, + { + "start": 30128.44, + "end": 30130.04, + "probability": 0.9867 + }, + { + "start": 30130.1, + "end": 30130.92, + "probability": 0.7883 + }, + { + "start": 30131.54, + "end": 30136.76, + "probability": 0.9969 + }, + { + "start": 30137.32, + "end": 30137.98, + "probability": 0.9187 + }, + { + "start": 30138.42, + "end": 30141.26, + "probability": 0.7877 + }, + { + "start": 30143.1, + "end": 30144.52, + "probability": 0.9857 + }, + { + "start": 30144.62, + "end": 30145.08, + "probability": 0.7788 + }, + { + "start": 30145.1, + "end": 30145.84, + "probability": 0.6289 + }, + { + "start": 30146.44, + "end": 30146.96, + "probability": 0.7026 + }, + { + "start": 30147.74, + "end": 30148.5, + "probability": 0.9434 + }, + { + "start": 30149.02, + "end": 30154.32, + "probability": 0.4922 + }, + { + "start": 30156.4, + "end": 30158.18, + "probability": 0.4893 + }, + { + "start": 30158.36, + "end": 30158.36, + "probability": 0.1004 + }, + { + "start": 30158.36, + "end": 30160.04, + "probability": 0.2626 + }, + { + "start": 30160.22, + "end": 30161.54, + "probability": 0.9 + }, + { + "start": 30161.86, + "end": 30162.12, + "probability": 0.6163 + }, + { + "start": 30162.2, + "end": 30162.84, + "probability": 0.7458 + }, + { + "start": 30163.28, + "end": 30166.92, + "probability": 0.931 + }, + { + "start": 30167.14, + "end": 30168.22, + "probability": 0.669 + }, + { + "start": 30169.04, + "end": 30169.58, + "probability": 0.8712 + }, + { + "start": 30169.76, + "end": 30170.42, + "probability": 0.9136 + }, + { + "start": 30170.58, + "end": 30171.24, + "probability": 0.9095 + }, + { + "start": 30171.62, + "end": 30172.14, + "probability": 0.974 + }, + { + "start": 30172.26, + "end": 30172.98, + "probability": 0.9869 + }, + { + "start": 30173.3, + "end": 30174.34, + "probability": 0.9677 + }, + { + "start": 30174.4, + "end": 30175.24, + "probability": 0.8513 + }, + { + "start": 30175.34, + "end": 30175.64, + "probability": 0.6853 + }, + { + "start": 30176.1, + "end": 30176.72, + "probability": 0.9609 + }, + { + "start": 30177.24, + "end": 30177.68, + "probability": 0.9767 + }, + { + "start": 30178.4, + "end": 30180.0, + "probability": 0.9846 + }, + { + "start": 30180.2, + "end": 30181.28, + "probability": 0.9897 + }, + { + "start": 30184.16, + "end": 30186.48, + "probability": 0.6659 + }, + { + "start": 30187.0, + "end": 30187.16, + "probability": 0.9722 + }, + { + "start": 30188.16, + "end": 30189.32, + "probability": 0.9436 + }, + { + "start": 30190.54, + "end": 30191.44, + "probability": 0.7548 + }, + { + "start": 30192.8, + "end": 30195.46, + "probability": 0.8975 + }, + { + "start": 30196.22, + "end": 30198.02, + "probability": 0.9085 + }, + { + "start": 30198.46, + "end": 30200.12, + "probability": 0.9941 + }, + { + "start": 30200.36, + "end": 30202.94, + "probability": 0.9605 + }, + { + "start": 30203.0, + "end": 30203.58, + "probability": 0.8435 + }, + { + "start": 30203.64, + "end": 30204.44, + "probability": 0.738 + }, + { + "start": 30204.6, + "end": 30205.51, + "probability": 0.9993 + }, + { + "start": 30206.42, + "end": 30208.78, + "probability": 0.9928 + }, + { + "start": 30210.02, + "end": 30213.36, + "probability": 0.7004 + }, + { + "start": 30216.4, + "end": 30219.32, + "probability": 0.9579 + }, + { + "start": 30219.68, + "end": 30223.54, + "probability": 0.9758 + }, + { + "start": 30224.28, + "end": 30224.9, + "probability": 0.9366 + }, + { + "start": 30225.5, + "end": 30226.43, + "probability": 0.9403 + }, + { + "start": 30227.28, + "end": 30230.62, + "probability": 0.9796 + }, + { + "start": 30230.66, + "end": 30231.7, + "probability": 0.9424 + }, + { + "start": 30232.48, + "end": 30234.58, + "probability": 0.9546 + }, + { + "start": 30234.9, + "end": 30236.0, + "probability": 0.7222 + }, + { + "start": 30236.94, + "end": 30237.92, + "probability": 0.7408 + }, + { + "start": 30238.58, + "end": 30239.38, + "probability": 0.9177 + }, + { + "start": 30240.46, + "end": 30241.2, + "probability": 0.9976 + }, + { + "start": 30241.78, + "end": 30242.48, + "probability": 0.981 + }, + { + "start": 30248.68, + "end": 30251.38, + "probability": 0.761 + }, + { + "start": 30252.68, + "end": 30254.34, + "probability": 0.9952 + }, + { + "start": 30254.82, + "end": 30256.36, + "probability": 0.9786 + }, + { + "start": 30257.7, + "end": 30260.22, + "probability": 0.9871 + }, + { + "start": 30261.54, + "end": 30265.34, + "probability": 0.6906 + }, + { + "start": 30265.38, + "end": 30270.2, + "probability": 0.9862 + }, + { + "start": 30271.84, + "end": 30274.2, + "probability": 0.8524 + }, + { + "start": 30274.88, + "end": 30278.2, + "probability": 0.9942 + }, + { + "start": 30279.2, + "end": 30279.66, + "probability": 0.7586 + }, + { + "start": 30279.78, + "end": 30282.4, + "probability": 0.8368 + }, + { + "start": 30282.46, + "end": 30283.46, + "probability": 0.5033 + }, + { + "start": 30284.08, + "end": 30285.72, + "probability": 0.7782 + }, + { + "start": 30285.84, + "end": 30289.66, + "probability": 0.8695 + }, + { + "start": 30290.28, + "end": 30292.02, + "probability": 0.8713 + }, + { + "start": 30292.3, + "end": 30294.14, + "probability": 0.9712 + }, + { + "start": 30294.76, + "end": 30296.18, + "probability": 0.9956 + }, + { + "start": 30297.02, + "end": 30298.24, + "probability": 0.7139 + }, + { + "start": 30299.06, + "end": 30299.91, + "probability": 0.964 + }, + { + "start": 30300.02, + "end": 30302.48, + "probability": 0.9918 + }, + { + "start": 30303.28, + "end": 30304.14, + "probability": 0.5324 + }, + { + "start": 30305.05, + "end": 30307.22, + "probability": 0.6325 + }, + { + "start": 30307.94, + "end": 30308.84, + "probability": 0.7149 + }, + { + "start": 30309.5, + "end": 30311.58, + "probability": 0.9866 + }, + { + "start": 30311.58, + "end": 30315.26, + "probability": 0.8484 + }, + { + "start": 30315.34, + "end": 30321.06, + "probability": 0.9926 + }, + { + "start": 30322.1, + "end": 30327.82, + "probability": 0.9993 + }, + { + "start": 30327.88, + "end": 30328.12, + "probability": 0.8263 + }, + { + "start": 30328.2, + "end": 30332.84, + "probability": 0.9814 + }, + { + "start": 30333.34, + "end": 30335.62, + "probability": 0.7017 + }, + { + "start": 30336.2, + "end": 30338.94, + "probability": 0.9926 + }, + { + "start": 30340.44, + "end": 30342.14, + "probability": 0.6798 + }, + { + "start": 30342.6, + "end": 30346.02, + "probability": 0.9509 + }, + { + "start": 30347.14, + "end": 30348.72, + "probability": 0.978 + }, + { + "start": 30349.34, + "end": 30350.88, + "probability": 0.9207 + }, + { + "start": 30350.96, + "end": 30356.1, + "probability": 0.9343 + }, + { + "start": 30356.2, + "end": 30358.62, + "probability": 0.9767 + }, + { + "start": 30359.14, + "end": 30360.34, + "probability": 0.9886 + }, + { + "start": 30360.54, + "end": 30361.84, + "probability": 0.9766 + }, + { + "start": 30362.18, + "end": 30363.82, + "probability": 0.9489 + }, + { + "start": 30363.98, + "end": 30366.7, + "probability": 0.9351 + }, + { + "start": 30366.74, + "end": 30367.49, + "probability": 0.7992 + }, + { + "start": 30368.12, + "end": 30372.76, + "probability": 0.9792 + }, + { + "start": 30373.48, + "end": 30375.68, + "probability": 0.9902 + }, + { + "start": 30375.84, + "end": 30377.18, + "probability": 0.966 + }, + { + "start": 30377.68, + "end": 30378.54, + "probability": 0.5481 + }, + { + "start": 30378.54, + "end": 30379.42, + "probability": 0.8823 + }, + { + "start": 30380.16, + "end": 30382.64, + "probability": 0.9883 + }, + { + "start": 30383.6, + "end": 30386.54, + "probability": 0.9894 + }, + { + "start": 30386.98, + "end": 30387.96, + "probability": 0.9654 + }, + { + "start": 30388.82, + "end": 30391.1, + "probability": 0.6996 + }, + { + "start": 30391.6, + "end": 30394.8, + "probability": 0.9932 + }, + { + "start": 30395.02, + "end": 30398.08, + "probability": 0.9028 + }, + { + "start": 30398.18, + "end": 30398.64, + "probability": 0.8436 + }, + { + "start": 30399.88, + "end": 30400.54, + "probability": 0.8163 + }, + { + "start": 30400.84, + "end": 30404.74, + "probability": 0.8584 + }, + { + "start": 30421.12, + "end": 30422.16, + "probability": 0.3402 + }, + { + "start": 30424.22, + "end": 30424.78, + "probability": 0.8079 + }, + { + "start": 30424.86, + "end": 30427.03, + "probability": 0.9321 + }, + { + "start": 30428.48, + "end": 30431.16, + "probability": 0.7362 + }, + { + "start": 30432.34, + "end": 30440.7, + "probability": 0.8717 + }, + { + "start": 30442.92, + "end": 30446.16, + "probability": 0.8675 + }, + { + "start": 30446.48, + "end": 30446.94, + "probability": 0.9741 + }, + { + "start": 30450.44, + "end": 30451.3, + "probability": 0.8656 + }, + { + "start": 30451.34, + "end": 30456.48, + "probability": 0.8683 + }, + { + "start": 30459.02, + "end": 30463.28, + "probability": 0.75 + }, + { + "start": 30463.62, + "end": 30467.18, + "probability": 0.9272 + }, + { + "start": 30467.28, + "end": 30470.7, + "probability": 0.9873 + }, + { + "start": 30470.8, + "end": 30472.6, + "probability": 0.9111 + }, + { + "start": 30473.5, + "end": 30476.1, + "probability": 0.9718 + }, + { + "start": 30476.1, + "end": 30478.94, + "probability": 0.875 + }, + { + "start": 30479.06, + "end": 30480.98, + "probability": 0.9699 + }, + { + "start": 30481.06, + "end": 30481.7, + "probability": 0.7986 + }, + { + "start": 30482.66, + "end": 30485.16, + "probability": 0.9247 + }, + { + "start": 30486.5, + "end": 30488.66, + "probability": 0.9646 + }, + { + "start": 30488.74, + "end": 30490.94, + "probability": 0.9783 + }, + { + "start": 30491.06, + "end": 30493.98, + "probability": 0.986 + }, + { + "start": 30494.14, + "end": 30495.48, + "probability": 0.7523 + }, + { + "start": 30495.66, + "end": 30499.28, + "probability": 0.9908 + }, + { + "start": 30499.28, + "end": 30504.2, + "probability": 0.9548 + }, + { + "start": 30504.32, + "end": 30505.24, + "probability": 0.8709 + }, + { + "start": 30505.96, + "end": 30509.02, + "probability": 0.9835 + }, + { + "start": 30509.02, + "end": 30512.52, + "probability": 0.9435 + }, + { + "start": 30512.76, + "end": 30514.74, + "probability": 0.9873 + }, + { + "start": 30515.76, + "end": 30516.7, + "probability": 0.6355 + }, + { + "start": 30516.78, + "end": 30521.4, + "probability": 0.9789 + }, + { + "start": 30521.4, + "end": 30524.54, + "probability": 0.8451 + }, + { + "start": 30524.7, + "end": 30528.7, + "probability": 0.9735 + }, + { + "start": 30529.78, + "end": 30532.92, + "probability": 0.9645 + }, + { + "start": 30532.92, + "end": 30536.02, + "probability": 0.964 + }, + { + "start": 30536.2, + "end": 30540.6, + "probability": 0.9858 + }, + { + "start": 30540.76, + "end": 30544.06, + "probability": 0.7821 + }, + { + "start": 30544.38, + "end": 30547.86, + "probability": 0.9795 + }, + { + "start": 30547.88, + "end": 30548.84, + "probability": 0.5367 + }, + { + "start": 30549.02, + "end": 30551.92, + "probability": 0.9802 + }, + { + "start": 30552.78, + "end": 30554.76, + "probability": 0.6465 + }, + { + "start": 30554.76, + "end": 30556.14, + "probability": 0.6851 + }, + { + "start": 30556.72, + "end": 30561.34, + "probability": 0.9664 + }, + { + "start": 30561.86, + "end": 30563.26, + "probability": 0.8046 + }, + { + "start": 30563.32, + "end": 30563.98, + "probability": 0.7968 + }, + { + "start": 30564.3, + "end": 30569.34, + "probability": 0.9885 + }, + { + "start": 30569.4, + "end": 30570.96, + "probability": 0.9619 + }, + { + "start": 30571.66, + "end": 30572.86, + "probability": 0.9294 + }, + { + "start": 30572.96, + "end": 30575.58, + "probability": 0.8799 + }, + { + "start": 30575.68, + "end": 30578.48, + "probability": 0.9487 + }, + { + "start": 30579.58, + "end": 30581.18, + "probability": 0.75 + }, + { + "start": 30581.34, + "end": 30584.62, + "probability": 0.8313 + }, + { + "start": 30585.06, + "end": 30588.36, + "probability": 0.9083 + }, + { + "start": 30588.36, + "end": 30591.18, + "probability": 0.9984 + }, + { + "start": 30591.18, + "end": 30594.78, + "probability": 0.9951 + }, + { + "start": 30595.58, + "end": 30596.28, + "probability": 0.7457 + }, + { + "start": 30596.48, + "end": 30599.96, + "probability": 0.9631 + }, + { + "start": 30600.3, + "end": 30602.3, + "probability": 0.9957 + }, + { + "start": 30602.3, + "end": 30604.94, + "probability": 0.8885 + }, + { + "start": 30605.8, + "end": 30607.82, + "probability": 0.9716 + }, + { + "start": 30607.98, + "end": 30611.14, + "probability": 0.986 + }, + { + "start": 30611.7, + "end": 30616.9, + "probability": 0.7693 + }, + { + "start": 30617.3, + "end": 30624.02, + "probability": 0.9788 + }, + { + "start": 30624.02, + "end": 30627.44, + "probability": 0.9845 + }, + { + "start": 30628.7, + "end": 30632.02, + "probability": 0.6459 + }, + { + "start": 30632.26, + "end": 30636.22, + "probability": 0.9191 + }, + { + "start": 30636.4, + "end": 30637.41, + "probability": 0.6846 + }, + { + "start": 30638.06, + "end": 30643.04, + "probability": 0.988 + }, + { + "start": 30643.14, + "end": 30643.2, + "probability": 0.099 + }, + { + "start": 30643.2, + "end": 30647.62, + "probability": 0.7526 + }, + { + "start": 30647.62, + "end": 30651.72, + "probability": 0.9989 + }, + { + "start": 30652.36, + "end": 30655.0, + "probability": 0.9625 + }, + { + "start": 30655.6, + "end": 30660.72, + "probability": 0.5768 + }, + { + "start": 30660.86, + "end": 30665.48, + "probability": 0.7236 + }, + { + "start": 30665.64, + "end": 30666.58, + "probability": 0.8622 + }, + { + "start": 30666.9, + "end": 30668.76, + "probability": 0.7946 + }, + { + "start": 30668.98, + "end": 30669.96, + "probability": 0.6696 + }, + { + "start": 30670.26, + "end": 30671.88, + "probability": 0.5157 + }, + { + "start": 30672.34, + "end": 30674.12, + "probability": 0.8978 + }, + { + "start": 30674.48, + "end": 30675.78, + "probability": 0.9482 + }, + { + "start": 30677.04, + "end": 30677.98, + "probability": 0.8799 + }, + { + "start": 30679.08, + "end": 30682.5, + "probability": 0.9081 + }, + { + "start": 30683.58, + "end": 30685.68, + "probability": 0.9911 + }, + { + "start": 30685.68, + "end": 30688.14, + "probability": 0.9125 + }, + { + "start": 30688.28, + "end": 30689.4, + "probability": 0.9725 + }, + { + "start": 30689.5, + "end": 30691.32, + "probability": 0.8625 + }, + { + "start": 30691.42, + "end": 30693.98, + "probability": 0.9378 + }, + { + "start": 30694.62, + "end": 30696.36, + "probability": 0.9778 + }, + { + "start": 30696.44, + "end": 30699.58, + "probability": 0.928 + }, + { + "start": 30699.58, + "end": 30701.82, + "probability": 0.694 + }, + { + "start": 30701.92, + "end": 30705.8, + "probability": 0.9541 + }, + { + "start": 30706.4, + "end": 30708.08, + "probability": 0.8746 + }, + { + "start": 30708.14, + "end": 30711.06, + "probability": 0.9429 + }, + { + "start": 30712.42, + "end": 30715.04, + "probability": 0.7671 + }, + { + "start": 30715.58, + "end": 30717.68, + "probability": 0.8824 + }, + { + "start": 30717.78, + "end": 30719.5, + "probability": 0.6583 + }, + { + "start": 30719.68, + "end": 30719.76, + "probability": 0.443 + }, + { + "start": 30719.88, + "end": 30720.72, + "probability": 0.8453 + }, + { + "start": 30720.82, + "end": 30722.82, + "probability": 0.7467 + }, + { + "start": 30723.0, + "end": 30723.43, + "probability": 0.2813 + }, + { + "start": 30723.92, + "end": 30725.14, + "probability": 0.7743 + }, + { + "start": 30725.78, + "end": 30726.12, + "probability": 0.6591 + }, + { + "start": 30726.2, + "end": 30728.34, + "probability": 0.9893 + }, + { + "start": 30728.44, + "end": 30730.48, + "probability": 0.9839 + }, + { + "start": 30730.74, + "end": 30733.44, + "probability": 0.8407 + }, + { + "start": 30734.42, + "end": 30736.88, + "probability": 0.8951 + }, + { + "start": 30738.32, + "end": 30744.52, + "probability": 0.984 + }, + { + "start": 30745.23, + "end": 30749.08, + "probability": 0.9968 + }, + { + "start": 30749.1, + "end": 30754.08, + "probability": 0.9613 + }, + { + "start": 30754.08, + "end": 30758.3, + "probability": 0.6977 + }, + { + "start": 30760.94, + "end": 30763.84, + "probability": 0.9699 + }, + { + "start": 30763.94, + "end": 30766.58, + "probability": 0.9946 + }, + { + "start": 30767.14, + "end": 30772.52, + "probability": 0.998 + }, + { + "start": 30772.74, + "end": 30775.8, + "probability": 0.993 + }, + { + "start": 30776.02, + "end": 30779.64, + "probability": 0.9766 + }, + { + "start": 30782.38, + "end": 30786.44, + "probability": 0.9902 + }, + { + "start": 30786.6, + "end": 30787.24, + "probability": 0.6128 + }, + { + "start": 30787.24, + "end": 30789.1, + "probability": 0.8548 + }, + { + "start": 30794.68, + "end": 30801.42, + "probability": 0.6205 + }, + { + "start": 30801.42, + "end": 30804.76, + "probability": 0.8133 + }, + { + "start": 30806.12, + "end": 30810.0, + "probability": 0.989 + }, + { + "start": 30810.12, + "end": 30812.24, + "probability": 0.9052 + }, + { + "start": 30812.38, + "end": 30815.58, + "probability": 0.9084 + }, + { + "start": 30816.25, + "end": 30821.8, + "probability": 0.9748 + }, + { + "start": 30822.0, + "end": 30822.36, + "probability": 0.7277 + }, + { + "start": 30823.02, + "end": 30826.72, + "probability": 0.9974 + }, + { + "start": 30826.86, + "end": 30829.1, + "probability": 0.9236 + }, + { + "start": 30829.66, + "end": 30830.96, + "probability": 0.7301 + }, + { + "start": 30831.04, + "end": 30832.31, + "probability": 0.8826 + }, + { + "start": 30832.98, + "end": 30838.64, + "probability": 0.8194 + }, + { + "start": 30839.77, + "end": 30842.12, + "probability": 0.5886 + }, + { + "start": 30842.3, + "end": 30844.04, + "probability": 0.954 + }, + { + "start": 30844.18, + "end": 30846.78, + "probability": 0.9913 + }, + { + "start": 30847.93, + "end": 30856.42, + "probability": 0.9949 + }, + { + "start": 30857.26, + "end": 30857.42, + "probability": 0.2688 + }, + { + "start": 30860.36, + "end": 30860.44, + "probability": 0.0113 + }, + { + "start": 30866.12, + "end": 30868.42, + "probability": 0.7883 + }, + { + "start": 30869.06, + "end": 30872.58, + "probability": 0.2686 + }, + { + "start": 30873.93, + "end": 30876.6, + "probability": 0.7988 + }, + { + "start": 30876.6, + "end": 30882.58, + "probability": 0.7332 + }, + { + "start": 30883.36, + "end": 30887.42, + "probability": 0.9911 + }, + { + "start": 30887.48, + "end": 30889.72, + "probability": 0.5112 + }, + { + "start": 30890.94, + "end": 30894.32, + "probability": 0.9989 + }, + { + "start": 30895.71, + "end": 30898.42, + "probability": 0.8477 + }, + { + "start": 30898.58, + "end": 30900.94, + "probability": 0.994 + }, + { + "start": 30901.0, + "end": 30903.3, + "probability": 0.9991 + }, + { + "start": 30903.88, + "end": 30907.92, + "probability": 0.9302 + }, + { + "start": 30908.1, + "end": 30910.02, + "probability": 0.8326 + }, + { + "start": 30910.66, + "end": 30912.12, + "probability": 0.7192 + }, + { + "start": 30912.78, + "end": 30917.04, + "probability": 0.9712 + }, + { + "start": 30917.6, + "end": 30920.24, + "probability": 0.9508 + }, + { + "start": 30920.88, + "end": 30923.54, + "probability": 0.9956 + }, + { + "start": 30923.72, + "end": 30927.52, + "probability": 0.9799 + }, + { + "start": 30927.52, + "end": 30933.44, + "probability": 0.9888 + }, + { + "start": 30934.26, + "end": 30934.48, + "probability": 0.2546 + }, + { + "start": 30934.56, + "end": 30938.0, + "probability": 0.9961 + }, + { + "start": 30938.0, + "end": 30941.72, + "probability": 0.9943 + }, + { + "start": 30942.62, + "end": 30945.2, + "probability": 0.9875 + }, + { + "start": 30945.32, + "end": 30946.82, + "probability": 0.9344 + }, + { + "start": 30947.38, + "end": 30947.5, + "probability": 0.4652 + }, + { + "start": 30947.6, + "end": 30948.4, + "probability": 0.7971 + }, + { + "start": 30948.9, + "end": 30952.46, + "probability": 0.9987 + }, + { + "start": 30952.56, + "end": 30954.58, + "probability": 0.9413 + }, + { + "start": 30954.68, + "end": 30956.96, + "probability": 0.9643 + }, + { + "start": 30957.18, + "end": 30960.34, + "probability": 0.9655 + }, + { + "start": 30960.56, + "end": 30963.4, + "probability": 0.9681 + }, + { + "start": 30963.6, + "end": 30964.04, + "probability": 0.8605 + }, + { + "start": 30964.32, + "end": 30966.7, + "probability": 0.9795 + }, + { + "start": 30966.82, + "end": 30970.1, + "probability": 0.994 + }, + { + "start": 30970.92, + "end": 30977.6, + "probability": 0.995 + }, + { + "start": 30978.44, + "end": 30978.86, + "probability": 0.737 + }, + { + "start": 30980.04, + "end": 30983.46, + "probability": 0.7344 + }, + { + "start": 30983.64, + "end": 30985.28, + "probability": 0.6119 + }, + { + "start": 30985.36, + "end": 30986.1, + "probability": 0.4416 + }, + { + "start": 30986.1, + "end": 30986.72, + "probability": 0.7699 + }, + { + "start": 30989.96, + "end": 30990.22, + "probability": 0.3618 + }, + { + "start": 30991.3, + "end": 30992.68, + "probability": 0.2362 + }, + { + "start": 30994.92, + "end": 30997.3, + "probability": 0.8823 + }, + { + "start": 31001.5, + "end": 31003.38, + "probability": 0.4021 + }, + { + "start": 31003.7, + "end": 31003.7, + "probability": 0.0029 + }, + { + "start": 31005.7, + "end": 31008.61, + "probability": 0.9953 + }, + { + "start": 31008.8, + "end": 31012.48, + "probability": 0.6703 + }, + { + "start": 31012.75, + "end": 31014.82, + "probability": 0.7306 + }, + { + "start": 31014.9, + "end": 31016.58, + "probability": 0.7529 + }, + { + "start": 31020.42, + "end": 31024.78, + "probability": 0.4563 + }, + { + "start": 31025.72, + "end": 31027.24, + "probability": 0.9126 + }, + { + "start": 31027.36, + "end": 31028.61, + "probability": 0.9856 + }, + { + "start": 31028.9, + "end": 31029.92, + "probability": 0.7949 + }, + { + "start": 31035.54, + "end": 31036.42, + "probability": 0.4971 + }, + { + "start": 31043.34, + "end": 31046.44, + "probability": 0.3332 + }, + { + "start": 31046.58, + "end": 31049.06, + "probability": 0.7281 + }, + { + "start": 31050.18, + "end": 31051.04, + "probability": 0.7151 + }, + { + "start": 31051.62, + "end": 31054.6, + "probability": 0.984 + }, + { + "start": 31054.7, + "end": 31056.2, + "probability": 0.6232 + }, + { + "start": 31056.8, + "end": 31058.78, + "probability": 0.9361 + }, + { + "start": 31059.8, + "end": 31060.68, + "probability": 0.3667 + }, + { + "start": 31060.92, + "end": 31063.8, + "probability": 0.8718 + }, + { + "start": 31063.96, + "end": 31066.3, + "probability": 0.9468 + }, + { + "start": 31066.34, + "end": 31068.94, + "probability": 0.9811 + }, + { + "start": 31070.12, + "end": 31070.52, + "probability": 0.9031 + }, + { + "start": 31070.8, + "end": 31070.92, + "probability": 0.1675 + } + ], + "segments_count": 10741, + "words_count": 51409, + "avg_words_per_segment": 4.7862, + "avg_segment_duration": 1.8042, + "avg_words_per_minute": 99.2306, + "plenum_id": "114259", + "duration": 31084.55, + "title": null, + "plenum_date": "2023-02-22" +} \ No newline at end of file