diff --git "a/122151/metadata.json" "b/122151/metadata.json" new file mode 100644--- /dev/null +++ "b/122151/metadata.json" @@ -0,0 +1,41482 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "122151", + "quality_score": 0.8986, + "per_segment_quality_scores": [ + { + "start": 60.0, + "end": 60.04, + "probability": 0.1473 + }, + { + "start": 60.04, + "end": 60.88, + "probability": 0.8068 + }, + { + "start": 61.1, + "end": 62.4, + "probability": 0.8487 + }, + { + "start": 62.48, + "end": 63.08, + "probability": 0.7151 + }, + { + "start": 63.1, + "end": 63.96, + "probability": 0.6825 + }, + { + "start": 64.54, + "end": 67.84, + "probability": 0.9615 + }, + { + "start": 67.84, + "end": 70.52, + "probability": 0.9327 + }, + { + "start": 70.86, + "end": 71.52, + "probability": 0.7083 + }, + { + "start": 71.64, + "end": 78.62, + "probability": 0.7369 + }, + { + "start": 78.62, + "end": 82.78, + "probability": 0.6049 + }, + { + "start": 83.24, + "end": 88.38, + "probability": 0.913 + }, + { + "start": 88.38, + "end": 93.14, + "probability": 0.8583 + }, + { + "start": 93.22, + "end": 93.82, + "probability": 0.7188 + }, + { + "start": 94.38, + "end": 94.7, + "probability": 0.7531 + }, + { + "start": 94.85, + "end": 97.56, + "probability": 0.2562 + }, + { + "start": 97.56, + "end": 97.74, + "probability": 0.1853 + }, + { + "start": 97.74, + "end": 98.52, + "probability": 0.7712 + }, + { + "start": 98.68, + "end": 100.12, + "probability": 0.6646 + }, + { + "start": 100.42, + "end": 102.44, + "probability": 0.905 + }, + { + "start": 102.96, + "end": 106.27, + "probability": 0.9798 + }, + { + "start": 106.52, + "end": 111.22, + "probability": 0.9922 + }, + { + "start": 111.94, + "end": 114.16, + "probability": 0.989 + }, + { + "start": 115.02, + "end": 116.34, + "probability": 0.8198 + }, + { + "start": 118.18, + "end": 118.2, + "probability": 0.0034 + }, + { + "start": 130.12, + "end": 130.26, + "probability": 0.1455 + }, + { + "start": 130.26, + "end": 130.26, + "probability": 0.1745 + }, + { + "start": 130.26, + "end": 132.2, + "probability": 0.5643 + }, + { + "start": 133.1, + "end": 137.18, + "probability": 0.946 + }, + { + "start": 138.0, + "end": 139.28, + "probability": 0.7681 + }, + { + "start": 139.86, + "end": 141.66, + "probability": 0.9812 + }, + { + "start": 142.26, + "end": 147.0, + "probability": 0.9109 + }, + { + "start": 147.08, + "end": 148.16, + "probability": 0.9839 + }, + { + "start": 148.56, + "end": 149.26, + "probability": 0.9443 + }, + { + "start": 149.72, + "end": 153.12, + "probability": 0.9939 + }, + { + "start": 153.5, + "end": 154.19, + "probability": 0.9768 + }, + { + "start": 156.35, + "end": 157.56, + "probability": 0.8463 + }, + { + "start": 159.14, + "end": 159.5, + "probability": 0.4669 + }, + { + "start": 159.72, + "end": 160.52, + "probability": 0.9518 + }, + { + "start": 160.64, + "end": 161.62, + "probability": 0.7073 + }, + { + "start": 162.06, + "end": 162.68, + "probability": 0.9694 + }, + { + "start": 162.78, + "end": 163.66, + "probability": 0.6269 + }, + { + "start": 165.28, + "end": 166.74, + "probability": 0.7883 + }, + { + "start": 168.04, + "end": 169.96, + "probability": 0.9625 + }, + { + "start": 170.84, + "end": 173.08, + "probability": 0.9193 + }, + { + "start": 173.74, + "end": 174.48, + "probability": 0.6525 + }, + { + "start": 175.9, + "end": 177.42, + "probability": 0.9803 + }, + { + "start": 179.1, + "end": 181.52, + "probability": 0.8812 + }, + { + "start": 181.96, + "end": 185.56, + "probability": 0.8559 + }, + { + "start": 186.82, + "end": 189.3, + "probability": 0.7858 + }, + { + "start": 189.3, + "end": 192.08, + "probability": 0.9858 + }, + { + "start": 193.12, + "end": 193.72, + "probability": 0.8912 + }, + { + "start": 194.0, + "end": 194.86, + "probability": 0.9149 + }, + { + "start": 194.96, + "end": 196.62, + "probability": 0.9919 + }, + { + "start": 196.8, + "end": 196.8, + "probability": 0.7876 + }, + { + "start": 197.74, + "end": 198.92, + "probability": 0.8144 + }, + { + "start": 204.0, + "end": 206.54, + "probability": 0.9413 + }, + { + "start": 208.64, + "end": 212.1, + "probability": 0.9162 + }, + { + "start": 212.16, + "end": 215.42, + "probability": 0.8205 + }, + { + "start": 215.64, + "end": 216.18, + "probability": 0.6218 + }, + { + "start": 216.98, + "end": 217.88, + "probability": 0.9561 + }, + { + "start": 217.9, + "end": 218.94, + "probability": 0.9584 + }, + { + "start": 219.04, + "end": 221.1, + "probability": 0.875 + }, + { + "start": 221.32, + "end": 223.28, + "probability": 0.9873 + }, + { + "start": 224.58, + "end": 227.72, + "probability": 0.8962 + }, + { + "start": 228.48, + "end": 229.9, + "probability": 0.9705 + }, + { + "start": 230.28, + "end": 232.8, + "probability": 0.906 + }, + { + "start": 233.68, + "end": 237.2, + "probability": 0.8528 + }, + { + "start": 237.2, + "end": 240.62, + "probability": 0.9901 + }, + { + "start": 241.44, + "end": 243.7, + "probability": 0.7903 + }, + { + "start": 244.6, + "end": 248.18, + "probability": 0.9895 + }, + { + "start": 248.18, + "end": 252.5, + "probability": 0.9852 + }, + { + "start": 253.62, + "end": 254.28, + "probability": 0.3666 + }, + { + "start": 254.38, + "end": 254.8, + "probability": 0.4254 + }, + { + "start": 254.86, + "end": 255.86, + "probability": 0.501 + }, + { + "start": 256.48, + "end": 256.7, + "probability": 0.7599 + }, + { + "start": 256.74, + "end": 258.64, + "probability": 0.7421 + }, + { + "start": 258.84, + "end": 259.42, + "probability": 0.3994 + }, + { + "start": 260.51, + "end": 263.98, + "probability": 0.75 + }, + { + "start": 263.98, + "end": 264.06, + "probability": 0.0339 + }, + { + "start": 264.06, + "end": 264.5, + "probability": 0.6697 + }, + { + "start": 264.66, + "end": 265.44, + "probability": 0.5823 + }, + { + "start": 266.44, + "end": 269.9, + "probability": 0.8414 + }, + { + "start": 270.46, + "end": 273.04, + "probability": 0.9809 + }, + { + "start": 273.06, + "end": 275.98, + "probability": 0.9196 + }, + { + "start": 276.74, + "end": 278.02, + "probability": 0.9368 + }, + { + "start": 278.48, + "end": 282.06, + "probability": 0.8184 + }, + { + "start": 282.14, + "end": 283.38, + "probability": 0.9841 + }, + { + "start": 284.7, + "end": 287.15, + "probability": 0.981 + }, + { + "start": 287.6, + "end": 290.12, + "probability": 0.8205 + }, + { + "start": 290.42, + "end": 292.2, + "probability": 0.7094 + }, + { + "start": 292.26, + "end": 294.16, + "probability": 0.9963 + }, + { + "start": 296.3, + "end": 296.74, + "probability": 0.9302 + }, + { + "start": 296.8, + "end": 299.12, + "probability": 0.9383 + }, + { + "start": 299.12, + "end": 301.52, + "probability": 0.9988 + }, + { + "start": 301.62, + "end": 303.3, + "probability": 0.6418 + }, + { + "start": 303.48, + "end": 306.22, + "probability": 0.9461 + }, + { + "start": 306.38, + "end": 307.7, + "probability": 0.3184 + }, + { + "start": 308.34, + "end": 310.64, + "probability": 0.9456 + }, + { + "start": 311.64, + "end": 312.72, + "probability": 0.92 + }, + { + "start": 312.76, + "end": 315.6, + "probability": 0.9971 + }, + { + "start": 316.12, + "end": 318.54, + "probability": 0.9673 + }, + { + "start": 318.66, + "end": 320.74, + "probability": 0.9236 + }, + { + "start": 320.98, + "end": 322.74, + "probability": 0.9871 + }, + { + "start": 324.28, + "end": 327.02, + "probability": 0.9803 + }, + { + "start": 327.24, + "end": 331.98, + "probability": 0.88 + }, + { + "start": 332.64, + "end": 335.28, + "probability": 0.9857 + }, + { + "start": 336.0, + "end": 336.9, + "probability": 0.7411 + }, + { + "start": 338.38, + "end": 339.26, + "probability": 0.8699 + }, + { + "start": 340.02, + "end": 341.66, + "probability": 0.781 + }, + { + "start": 341.7, + "end": 345.26, + "probability": 0.9637 + }, + { + "start": 345.86, + "end": 348.56, + "probability": 0.8846 + }, + { + "start": 348.72, + "end": 350.44, + "probability": 0.917 + }, + { + "start": 351.08, + "end": 357.06, + "probability": 0.9293 + }, + { + "start": 357.64, + "end": 359.9, + "probability": 0.9253 + }, + { + "start": 359.96, + "end": 362.34, + "probability": 0.9753 + }, + { + "start": 362.98, + "end": 365.44, + "probability": 0.9523 + }, + { + "start": 365.5, + "end": 366.2, + "probability": 0.7759 + }, + { + "start": 366.34, + "end": 366.42, + "probability": 0.5278 + }, + { + "start": 367.42, + "end": 369.24, + "probability": 0.9413 + }, + { + "start": 369.44, + "end": 373.72, + "probability": 0.8718 + }, + { + "start": 374.1, + "end": 375.63, + "probability": 0.8337 + }, + { + "start": 376.26, + "end": 376.98, + "probability": 0.7146 + }, + { + "start": 377.54, + "end": 382.02, + "probability": 0.9569 + }, + { + "start": 383.14, + "end": 387.16, + "probability": 0.9671 + }, + { + "start": 387.24, + "end": 390.54, + "probability": 0.9411 + }, + { + "start": 390.92, + "end": 394.28, + "probability": 0.9858 + }, + { + "start": 394.34, + "end": 396.76, + "probability": 0.8112 + }, + { + "start": 396.76, + "end": 400.5, + "probability": 0.6992 + }, + { + "start": 401.08, + "end": 403.8, + "probability": 0.8966 + }, + { + "start": 404.16, + "end": 406.88, + "probability": 0.918 + }, + { + "start": 406.9, + "end": 407.72, + "probability": 0.7876 + }, + { + "start": 407.74, + "end": 408.2, + "probability": 0.7151 + }, + { + "start": 408.64, + "end": 412.1, + "probability": 0.9585 + }, + { + "start": 413.98, + "end": 417.38, + "probability": 0.8529 + }, + { + "start": 419.24, + "end": 422.04, + "probability": 0.5042 + }, + { + "start": 422.04, + "end": 422.04, + "probability": 0.2555 + }, + { + "start": 422.04, + "end": 422.04, + "probability": 0.1512 + }, + { + "start": 422.04, + "end": 422.5, + "probability": 0.0666 + }, + { + "start": 422.6, + "end": 423.15, + "probability": 0.6002 + }, + { + "start": 424.08, + "end": 427.04, + "probability": 0.9754 + }, + { + "start": 427.04, + "end": 432.98, + "probability": 0.9378 + }, + { + "start": 433.1, + "end": 434.76, + "probability": 0.6272 + }, + { + "start": 435.3, + "end": 436.66, + "probability": 0.9226 + }, + { + "start": 437.22, + "end": 438.78, + "probability": 0.4098 + }, + { + "start": 439.56, + "end": 441.84, + "probability": 0.7689 + }, + { + "start": 442.22, + "end": 442.66, + "probability": 0.9431 + }, + { + "start": 445.12, + "end": 445.2, + "probability": 0.3544 + }, + { + "start": 445.2, + "end": 445.82, + "probability": 0.4954 + }, + { + "start": 446.14, + "end": 447.06, + "probability": 0.9559 + }, + { + "start": 447.42, + "end": 448.2, + "probability": 0.9917 + }, + { + "start": 448.46, + "end": 450.5, + "probability": 0.9968 + }, + { + "start": 450.94, + "end": 453.9, + "probability": 0.9258 + }, + { + "start": 454.82, + "end": 458.18, + "probability": 0.8883 + }, + { + "start": 458.38, + "end": 461.85, + "probability": 0.8584 + }, + { + "start": 462.32, + "end": 464.42, + "probability": 0.9951 + }, + { + "start": 464.52, + "end": 465.14, + "probability": 0.9907 + }, + { + "start": 465.96, + "end": 466.18, + "probability": 0.6371 + }, + { + "start": 466.24, + "end": 466.92, + "probability": 0.8204 + }, + { + "start": 466.94, + "end": 467.48, + "probability": 0.9057 + }, + { + "start": 467.62, + "end": 470.84, + "probability": 0.8254 + }, + { + "start": 471.02, + "end": 471.84, + "probability": 0.752 + }, + { + "start": 472.08, + "end": 473.62, + "probability": 0.787 + }, + { + "start": 474.34, + "end": 475.76, + "probability": 0.9199 + }, + { + "start": 475.82, + "end": 477.58, + "probability": 0.8558 + }, + { + "start": 477.62, + "end": 479.4, + "probability": 0.83 + }, + { + "start": 479.78, + "end": 481.76, + "probability": 0.9718 + }, + { + "start": 481.92, + "end": 483.8, + "probability": 0.8801 + }, + { + "start": 483.9, + "end": 485.7, + "probability": 0.832 + }, + { + "start": 486.16, + "end": 489.1, + "probability": 0.7284 + }, + { + "start": 489.48, + "end": 491.61, + "probability": 0.937 + }, + { + "start": 491.72, + "end": 493.36, + "probability": 0.9414 + }, + { + "start": 493.64, + "end": 496.68, + "probability": 0.8884 + }, + { + "start": 497.06, + "end": 498.28, + "probability": 0.8975 + }, + { + "start": 498.82, + "end": 503.88, + "probability": 0.9426 + }, + { + "start": 504.26, + "end": 504.6, + "probability": 0.6675 + }, + { + "start": 505.46, + "end": 507.7, + "probability": 0.9444 + }, + { + "start": 508.36, + "end": 512.66, + "probability": 0.9729 + }, + { + "start": 513.14, + "end": 513.38, + "probability": 0.465 + }, + { + "start": 513.4, + "end": 514.08, + "probability": 0.6669 + }, + { + "start": 514.28, + "end": 515.86, + "probability": 0.9564 + }, + { + "start": 515.9, + "end": 516.56, + "probability": 0.6393 + }, + { + "start": 516.64, + "end": 517.98, + "probability": 0.4116 + }, + { + "start": 521.22, + "end": 521.86, + "probability": 0.0121 + }, + { + "start": 522.72, + "end": 524.82, + "probability": 0.7373 + }, + { + "start": 525.46, + "end": 528.8, + "probability": 0.8773 + }, + { + "start": 529.72, + "end": 534.12, + "probability": 0.8831 + }, + { + "start": 534.74, + "end": 538.76, + "probability": 0.9752 + }, + { + "start": 539.2, + "end": 544.26, + "probability": 0.9836 + }, + { + "start": 544.26, + "end": 547.0, + "probability": 0.995 + }, + { + "start": 547.6, + "end": 550.72, + "probability": 0.9043 + }, + { + "start": 551.24, + "end": 556.74, + "probability": 0.9836 + }, + { + "start": 557.68, + "end": 561.82, + "probability": 0.9789 + }, + { + "start": 561.82, + "end": 565.84, + "probability": 0.9963 + }, + { + "start": 566.48, + "end": 569.58, + "probability": 0.9408 + }, + { + "start": 569.62, + "end": 572.04, + "probability": 0.7728 + }, + { + "start": 572.62, + "end": 577.4, + "probability": 0.9243 + }, + { + "start": 577.84, + "end": 582.84, + "probability": 0.9885 + }, + { + "start": 583.56, + "end": 586.42, + "probability": 0.9619 + }, + { + "start": 586.44, + "end": 591.52, + "probability": 0.9984 + }, + { + "start": 591.52, + "end": 596.78, + "probability": 0.9879 + }, + { + "start": 597.36, + "end": 602.08, + "probability": 0.9927 + }, + { + "start": 602.28, + "end": 602.86, + "probability": 0.6215 + }, + { + "start": 603.04, + "end": 604.04, + "probability": 0.8235 + }, + { + "start": 604.16, + "end": 606.26, + "probability": 0.8508 + }, + { + "start": 612.68, + "end": 615.6, + "probability": 0.7203 + }, + { + "start": 616.78, + "end": 621.3, + "probability": 0.9777 + }, + { + "start": 621.3, + "end": 626.44, + "probability": 0.9661 + }, + { + "start": 627.34, + "end": 630.08, + "probability": 0.8049 + }, + { + "start": 630.9, + "end": 634.76, + "probability": 0.6717 + }, + { + "start": 634.82, + "end": 636.02, + "probability": 0.9459 + }, + { + "start": 636.1, + "end": 638.38, + "probability": 0.9266 + }, + { + "start": 638.88, + "end": 641.16, + "probability": 0.9479 + }, + { + "start": 642.28, + "end": 645.26, + "probability": 0.8916 + }, + { + "start": 645.9, + "end": 647.68, + "probability": 0.507 + }, + { + "start": 648.2, + "end": 650.24, + "probability": 0.9515 + }, + { + "start": 651.2, + "end": 654.22, + "probability": 0.9792 + }, + { + "start": 655.16, + "end": 656.46, + "probability": 0.5302 + }, + { + "start": 656.9, + "end": 662.64, + "probability": 0.9819 + }, + { + "start": 663.28, + "end": 665.2, + "probability": 0.9972 + }, + { + "start": 665.2, + "end": 667.46, + "probability": 0.9835 + }, + { + "start": 667.74, + "end": 668.66, + "probability": 0.7914 + }, + { + "start": 668.98, + "end": 671.42, + "probability": 0.8847 + }, + { + "start": 671.48, + "end": 673.68, + "probability": 0.7837 + }, + { + "start": 673.96, + "end": 675.38, + "probability": 0.9937 + }, + { + "start": 676.12, + "end": 677.9, + "probability": 0.9211 + }, + { + "start": 678.46, + "end": 680.5, + "probability": 0.8967 + }, + { + "start": 680.56, + "end": 684.2, + "probability": 0.803 + }, + { + "start": 684.28, + "end": 685.4, + "probability": 0.8494 + }, + { + "start": 685.86, + "end": 686.98, + "probability": 0.8575 + }, + { + "start": 687.5, + "end": 689.88, + "probability": 0.8294 + }, + { + "start": 690.46, + "end": 692.74, + "probability": 0.8002 + }, + { + "start": 693.32, + "end": 695.1, + "probability": 0.7174 + }, + { + "start": 695.94, + "end": 696.9, + "probability": 0.8944 + }, + { + "start": 696.98, + "end": 697.2, + "probability": 0.4439 + }, + { + "start": 697.38, + "end": 701.26, + "probability": 0.9313 + }, + { + "start": 701.54, + "end": 702.76, + "probability": 0.6784 + }, + { + "start": 703.32, + "end": 704.96, + "probability": 0.9644 + }, + { + "start": 705.08, + "end": 707.08, + "probability": 0.987 + }, + { + "start": 707.78, + "end": 709.08, + "probability": 0.8162 + }, + { + "start": 710.19, + "end": 713.67, + "probability": 0.8818 + }, + { + "start": 715.8, + "end": 717.84, + "probability": 0.8331 + }, + { + "start": 718.3, + "end": 719.8, + "probability": 0.8644 + }, + { + "start": 720.6, + "end": 721.96, + "probability": 0.7579 + }, + { + "start": 722.08, + "end": 723.12, + "probability": 0.6267 + }, + { + "start": 723.18, + "end": 727.18, + "probability": 0.8989 + }, + { + "start": 727.38, + "end": 730.74, + "probability": 0.9927 + }, + { + "start": 731.74, + "end": 733.42, + "probability": 0.9907 + }, + { + "start": 733.78, + "end": 734.94, + "probability": 0.4521 + }, + { + "start": 735.9, + "end": 736.9, + "probability": 0.3436 + }, + { + "start": 737.5, + "end": 738.94, + "probability": 0.9735 + }, + { + "start": 739.02, + "end": 739.6, + "probability": 0.6082 + }, + { + "start": 740.46, + "end": 742.2, + "probability": 0.9964 + }, + { + "start": 742.3, + "end": 743.38, + "probability": 0.6224 + }, + { + "start": 743.56, + "end": 744.02, + "probability": 0.939 + }, + { + "start": 744.14, + "end": 744.76, + "probability": 0.9297 + }, + { + "start": 746.01, + "end": 747.99, + "probability": 0.5052 + }, + { + "start": 748.16, + "end": 749.04, + "probability": 0.9976 + }, + { + "start": 750.64, + "end": 751.32, + "probability": 0.7843 + }, + { + "start": 751.46, + "end": 752.08, + "probability": 0.9536 + }, + { + "start": 752.14, + "end": 753.68, + "probability": 0.9694 + }, + { + "start": 753.76, + "end": 755.05, + "probability": 0.9912 + }, + { + "start": 756.08, + "end": 756.76, + "probability": 0.7376 + }, + { + "start": 757.38, + "end": 758.26, + "probability": 0.7096 + }, + { + "start": 758.8, + "end": 762.56, + "probability": 0.9714 + }, + { + "start": 762.86, + "end": 764.51, + "probability": 0.0643 + }, + { + "start": 765.28, + "end": 766.12, + "probability": 0.7498 + }, + { + "start": 766.52, + "end": 770.7, + "probability": 0.9205 + }, + { + "start": 770.98, + "end": 775.72, + "probability": 0.8417 + }, + { + "start": 776.1, + "end": 779.78, + "probability": 0.7699 + }, + { + "start": 780.52, + "end": 782.24, + "probability": 0.9126 + }, + { + "start": 782.94, + "end": 784.2, + "probability": 0.6517 + }, + { + "start": 784.38, + "end": 785.42, + "probability": 0.8815 + }, + { + "start": 785.56, + "end": 786.04, + "probability": 0.9466 + }, + { + "start": 786.38, + "end": 786.77, + "probability": 0.6679 + }, + { + "start": 787.02, + "end": 788.76, + "probability": 0.9321 + }, + { + "start": 788.98, + "end": 789.86, + "probability": 0.8635 + }, + { + "start": 790.36, + "end": 791.26, + "probability": 0.999 + }, + { + "start": 791.36, + "end": 792.0, + "probability": 0.9935 + }, + { + "start": 792.08, + "end": 793.66, + "probability": 0.9644 + }, + { + "start": 794.08, + "end": 795.34, + "probability": 0.9973 + }, + { + "start": 795.88, + "end": 799.16, + "probability": 0.6228 + }, + { + "start": 799.68, + "end": 801.74, + "probability": 0.7544 + }, + { + "start": 803.04, + "end": 803.6, + "probability": 0.8627 + }, + { + "start": 803.64, + "end": 804.16, + "probability": 0.8629 + }, + { + "start": 804.22, + "end": 806.28, + "probability": 0.8096 + }, + { + "start": 806.28, + "end": 809.54, + "probability": 0.8488 + }, + { + "start": 811.0, + "end": 811.66, + "probability": 0.3718 + }, + { + "start": 812.8, + "end": 815.44, + "probability": 0.865 + }, + { + "start": 815.54, + "end": 817.72, + "probability": 0.9954 + }, + { + "start": 817.86, + "end": 819.78, + "probability": 0.8443 + }, + { + "start": 820.68, + "end": 822.48, + "probability": 0.7193 + }, + { + "start": 823.26, + "end": 824.12, + "probability": 0.7587 + }, + { + "start": 824.64, + "end": 827.66, + "probability": 0.9969 + }, + { + "start": 827.66, + "end": 831.74, + "probability": 0.999 + }, + { + "start": 832.64, + "end": 835.6, + "probability": 0.9951 + }, + { + "start": 835.98, + "end": 838.72, + "probability": 0.9987 + }, + { + "start": 839.26, + "end": 842.38, + "probability": 0.9907 + }, + { + "start": 842.52, + "end": 843.14, + "probability": 0.9124 + }, + { + "start": 843.22, + "end": 844.66, + "probability": 0.9456 + }, + { + "start": 845.28, + "end": 850.4, + "probability": 0.9932 + }, + { + "start": 850.94, + "end": 851.78, + "probability": 0.9067 + }, + { + "start": 852.06, + "end": 855.24, + "probability": 0.9545 + }, + { + "start": 855.68, + "end": 858.18, + "probability": 0.9973 + }, + { + "start": 858.44, + "end": 860.52, + "probability": 0.9948 + }, + { + "start": 861.22, + "end": 865.32, + "probability": 0.975 + }, + { + "start": 865.84, + "end": 867.68, + "probability": 0.9979 + }, + { + "start": 867.82, + "end": 869.46, + "probability": 0.9917 + }, + { + "start": 869.96, + "end": 870.1, + "probability": 0.2755 + }, + { + "start": 871.12, + "end": 872.88, + "probability": 0.9971 + }, + { + "start": 872.96, + "end": 874.7, + "probability": 0.8176 + }, + { + "start": 875.4, + "end": 877.18, + "probability": 0.9269 + }, + { + "start": 877.28, + "end": 881.52, + "probability": 0.6745 + }, + { + "start": 881.52, + "end": 884.3, + "probability": 0.9981 + }, + { + "start": 884.78, + "end": 886.4, + "probability": 0.9148 + }, + { + "start": 887.78, + "end": 890.54, + "probability": 0.8128 + }, + { + "start": 890.54, + "end": 893.3, + "probability": 0.9927 + }, + { + "start": 894.02, + "end": 897.64, + "probability": 0.9889 + }, + { + "start": 898.04, + "end": 898.67, + "probability": 0.9585 + }, + { + "start": 899.16, + "end": 900.2, + "probability": 0.9231 + }, + { + "start": 900.64, + "end": 903.62, + "probability": 0.8351 + }, + { + "start": 903.68, + "end": 903.98, + "probability": 0.0628 + }, + { + "start": 904.1, + "end": 906.7, + "probability": 0.9657 + }, + { + "start": 906.9, + "end": 907.52, + "probability": 0.7967 + }, + { + "start": 908.26, + "end": 908.48, + "probability": 0.6733 + }, + { + "start": 908.48, + "end": 908.48, + "probability": 0.574 + }, + { + "start": 908.56, + "end": 910.02, + "probability": 0.9722 + }, + { + "start": 910.04, + "end": 911.2, + "probability": 0.6328 + }, + { + "start": 911.66, + "end": 913.2, + "probability": 0.6755 + }, + { + "start": 913.86, + "end": 915.4, + "probability": 0.8111 + }, + { + "start": 917.4, + "end": 918.84, + "probability": 0.8449 + }, + { + "start": 918.98, + "end": 919.66, + "probability": 0.8402 + }, + { + "start": 919.8, + "end": 920.98, + "probability": 0.9124 + }, + { + "start": 920.98, + "end": 921.88, + "probability": 0.5122 + }, + { + "start": 922.1, + "end": 923.56, + "probability": 0.9821 + }, + { + "start": 923.66, + "end": 923.9, + "probability": 0.9371 + }, + { + "start": 924.12, + "end": 928.24, + "probability": 0.984 + }, + { + "start": 928.36, + "end": 930.4, + "probability": 0.915 + }, + { + "start": 930.44, + "end": 931.26, + "probability": 0.5457 + }, + { + "start": 931.32, + "end": 932.06, + "probability": 0.8521 + }, + { + "start": 932.48, + "end": 935.86, + "probability": 0.5891 + }, + { + "start": 936.06, + "end": 936.94, + "probability": 0.9536 + }, + { + "start": 938.12, + "end": 942.94, + "probability": 0.7863 + }, + { + "start": 942.94, + "end": 947.0, + "probability": 0.8007 + }, + { + "start": 947.88, + "end": 948.74, + "probability": 0.842 + }, + { + "start": 952.04, + "end": 954.76, + "probability": 0.9963 + }, + { + "start": 955.44, + "end": 958.82, + "probability": 0.9863 + }, + { + "start": 958.82, + "end": 963.62, + "probability": 0.9896 + }, + { + "start": 963.7, + "end": 966.71, + "probability": 0.9613 + }, + { + "start": 967.42, + "end": 971.2, + "probability": 0.9428 + }, + { + "start": 971.2, + "end": 975.56, + "probability": 0.9977 + }, + { + "start": 975.56, + "end": 978.98, + "probability": 0.9922 + }, + { + "start": 980.18, + "end": 980.2, + "probability": 0.1061 + }, + { + "start": 980.2, + "end": 982.96, + "probability": 0.7906 + }, + { + "start": 983.1, + "end": 983.7, + "probability": 0.8672 + }, + { + "start": 985.16, + "end": 987.42, + "probability": 0.9924 + }, + { + "start": 987.42, + "end": 989.2, + "probability": 0.9592 + }, + { + "start": 989.34, + "end": 994.04, + "probability": 0.9388 + }, + { + "start": 994.94, + "end": 996.5, + "probability": 0.7897 + }, + { + "start": 996.82, + "end": 998.72, + "probability": 0.8261 + }, + { + "start": 999.58, + "end": 1000.08, + "probability": 0.8867 + }, + { + "start": 1002.48, + "end": 1004.38, + "probability": 0.5923 + }, + { + "start": 1004.54, + "end": 1007.52, + "probability": 0.9672 + }, + { + "start": 1008.36, + "end": 1011.32, + "probability": 0.847 + }, + { + "start": 1011.32, + "end": 1014.34, + "probability": 0.9187 + }, + { + "start": 1014.98, + "end": 1017.84, + "probability": 0.9788 + }, + { + "start": 1018.2, + "end": 1019.32, + "probability": 0.6527 + }, + { + "start": 1019.38, + "end": 1019.98, + "probability": 0.6538 + }, + { + "start": 1020.04, + "end": 1022.24, + "probability": 0.5893 + }, + { + "start": 1024.8, + "end": 1029.4, + "probability": 0.9055 + }, + { + "start": 1030.32, + "end": 1032.4, + "probability": 0.8247 + }, + { + "start": 1033.22, + "end": 1035.3, + "probability": 0.9897 + }, + { + "start": 1035.54, + "end": 1037.14, + "probability": 0.9007 + }, + { + "start": 1037.6, + "end": 1039.0, + "probability": 0.8707 + }, + { + "start": 1039.86, + "end": 1040.96, + "probability": 0.8162 + }, + { + "start": 1041.5, + "end": 1042.16, + "probability": 0.8547 + }, + { + "start": 1042.22, + "end": 1043.0, + "probability": 0.7504 + }, + { + "start": 1043.1, + "end": 1045.0, + "probability": 0.9167 + }, + { + "start": 1045.1, + "end": 1047.56, + "probability": 0.9826 + }, + { + "start": 1047.96, + "end": 1049.58, + "probability": 0.9832 + }, + { + "start": 1049.66, + "end": 1051.16, + "probability": 0.8846 + }, + { + "start": 1051.68, + "end": 1052.78, + "probability": 0.9964 + }, + { + "start": 1053.78, + "end": 1054.6, + "probability": 0.5935 + }, + { + "start": 1054.8, + "end": 1055.5, + "probability": 0.9249 + }, + { + "start": 1055.94, + "end": 1056.76, + "probability": 0.7645 + }, + { + "start": 1056.78, + "end": 1057.86, + "probability": 0.6886 + }, + { + "start": 1058.48, + "end": 1064.06, + "probability": 0.6982 + }, + { + "start": 1064.18, + "end": 1065.84, + "probability": 0.9902 + }, + { + "start": 1066.14, + "end": 1067.58, + "probability": 0.9929 + }, + { + "start": 1068.08, + "end": 1069.28, + "probability": 0.8551 + }, + { + "start": 1069.76, + "end": 1074.52, + "probability": 0.9882 + }, + { + "start": 1074.8, + "end": 1079.66, + "probability": 0.9902 + }, + { + "start": 1080.1, + "end": 1082.62, + "probability": 0.8501 + }, + { + "start": 1083.08, + "end": 1085.68, + "probability": 0.9241 + }, + { + "start": 1086.18, + "end": 1087.52, + "probability": 0.9977 + }, + { + "start": 1087.76, + "end": 1090.14, + "probability": 0.6929 + }, + { + "start": 1090.6, + "end": 1091.86, + "probability": 0.742 + }, + { + "start": 1091.94, + "end": 1093.34, + "probability": 0.9976 + }, + { + "start": 1093.48, + "end": 1095.9, + "probability": 0.9903 + }, + { + "start": 1096.12, + "end": 1099.96, + "probability": 0.9746 + }, + { + "start": 1100.34, + "end": 1100.76, + "probability": 0.6347 + }, + { + "start": 1100.8, + "end": 1102.02, + "probability": 0.9771 + }, + { + "start": 1102.02, + "end": 1103.18, + "probability": 0.8962 + }, + { + "start": 1103.38, + "end": 1103.82, + "probability": 0.8286 + }, + { + "start": 1104.24, + "end": 1108.4, + "probability": 0.9976 + }, + { + "start": 1108.44, + "end": 1112.78, + "probability": 0.999 + }, + { + "start": 1113.42, + "end": 1113.52, + "probability": 0.0064 + }, + { + "start": 1113.52, + "end": 1115.44, + "probability": 0.9825 + }, + { + "start": 1115.86, + "end": 1117.14, + "probability": 0.6689 + }, + { + "start": 1117.56, + "end": 1121.76, + "probability": 0.9958 + }, + { + "start": 1122.26, + "end": 1125.88, + "probability": 0.8343 + }, + { + "start": 1126.16, + "end": 1126.9, + "probability": 0.4718 + }, + { + "start": 1126.92, + "end": 1129.06, + "probability": 0.8485 + }, + { + "start": 1129.28, + "end": 1129.94, + "probability": 0.796 + }, + { + "start": 1130.08, + "end": 1130.29, + "probability": 0.0859 + }, + { + "start": 1130.9, + "end": 1136.1, + "probability": 0.9901 + }, + { + "start": 1138.08, + "end": 1138.44, + "probability": 0.2805 + }, + { + "start": 1138.6, + "end": 1141.18, + "probability": 0.2632 + }, + { + "start": 1141.22, + "end": 1142.12, + "probability": 0.7236 + }, + { + "start": 1142.18, + "end": 1143.3, + "probability": 0.8075 + }, + { + "start": 1143.44, + "end": 1144.1, + "probability": 0.4216 + }, + { + "start": 1144.1, + "end": 1144.1, + "probability": 0.2721 + }, + { + "start": 1144.22, + "end": 1147.72, + "probability": 0.6851 + }, + { + "start": 1147.9, + "end": 1148.78, + "probability": 0.6967 + }, + { + "start": 1148.92, + "end": 1149.2, + "probability": 0.0776 + }, + { + "start": 1149.2, + "end": 1149.2, + "probability": 0.0713 + }, + { + "start": 1149.2, + "end": 1149.2, + "probability": 0.0519 + }, + { + "start": 1149.2, + "end": 1151.28, + "probability": 0.8398 + }, + { + "start": 1151.42, + "end": 1152.64, + "probability": 0.8757 + }, + { + "start": 1152.68, + "end": 1154.31, + "probability": 0.7282 + }, + { + "start": 1155.34, + "end": 1157.88, + "probability": 0.6534 + }, + { + "start": 1157.94, + "end": 1159.32, + "probability": 0.9803 + }, + { + "start": 1159.86, + "end": 1162.0, + "probability": 0.9911 + }, + { + "start": 1162.0, + "end": 1164.02, + "probability": 0.7439 + }, + { + "start": 1164.7, + "end": 1166.29, + "probability": 0.8851 + }, + { + "start": 1167.06, + "end": 1168.04, + "probability": 0.7119 + }, + { + "start": 1168.18, + "end": 1168.74, + "probability": 0.8996 + }, + { + "start": 1168.74, + "end": 1170.22, + "probability": 0.9713 + }, + { + "start": 1170.42, + "end": 1171.9, + "probability": 0.8457 + }, + { + "start": 1171.98, + "end": 1175.84, + "probability": 0.9695 + }, + { + "start": 1176.54, + "end": 1178.98, + "probability": 0.9813 + }, + { + "start": 1179.08, + "end": 1179.64, + "probability": 0.8199 + }, + { + "start": 1179.74, + "end": 1180.34, + "probability": 0.9518 + }, + { + "start": 1180.42, + "end": 1181.18, + "probability": 0.9411 + }, + { + "start": 1181.3, + "end": 1182.0, + "probability": 0.6854 + }, + { + "start": 1182.52, + "end": 1185.24, + "probability": 0.9651 + }, + { + "start": 1185.74, + "end": 1189.04, + "probability": 0.8804 + }, + { + "start": 1201.38, + "end": 1202.64, + "probability": 0.9074 + }, + { + "start": 1202.96, + "end": 1204.7, + "probability": 0.4255 + }, + { + "start": 1204.88, + "end": 1205.7, + "probability": 0.6143 + }, + { + "start": 1206.29, + "end": 1210.18, + "probability": 0.9793 + }, + { + "start": 1210.18, + "end": 1213.18, + "probability": 0.9953 + }, + { + "start": 1213.5, + "end": 1218.22, + "probability": 0.937 + }, + { + "start": 1218.7, + "end": 1218.9, + "probability": 0.6634 + }, + { + "start": 1219.16, + "end": 1222.64, + "probability": 0.9889 + }, + { + "start": 1223.16, + "end": 1230.96, + "probability": 0.9678 + }, + { + "start": 1232.16, + "end": 1235.18, + "probability": 0.951 + }, + { + "start": 1235.26, + "end": 1238.54, + "probability": 0.9647 + }, + { + "start": 1238.58, + "end": 1239.24, + "probability": 0.7513 + }, + { + "start": 1239.62, + "end": 1241.2, + "probability": 0.8113 + }, + { + "start": 1241.26, + "end": 1243.48, + "probability": 0.9155 + }, + { + "start": 1244.0, + "end": 1247.74, + "probability": 0.922 + }, + { + "start": 1248.76, + "end": 1253.08, + "probability": 0.9722 + }, + { + "start": 1253.14, + "end": 1253.96, + "probability": 0.8587 + }, + { + "start": 1254.68, + "end": 1256.72, + "probability": 0.9271 + }, + { + "start": 1257.26, + "end": 1257.7, + "probability": 0.3976 + }, + { + "start": 1258.04, + "end": 1259.18, + "probability": 0.9556 + }, + { + "start": 1259.68, + "end": 1261.54, + "probability": 0.9835 + }, + { + "start": 1262.06, + "end": 1263.24, + "probability": 0.8849 + }, + { + "start": 1264.04, + "end": 1268.78, + "probability": 0.9719 + }, + { + "start": 1269.98, + "end": 1272.92, + "probability": 0.998 + }, + { + "start": 1272.92, + "end": 1280.78, + "probability": 0.9832 + }, + { + "start": 1280.92, + "end": 1285.53, + "probability": 0.5848 + }, + { + "start": 1286.2, + "end": 1291.52, + "probability": 0.9941 + }, + { + "start": 1291.52, + "end": 1295.08, + "probability": 0.9908 + }, + { + "start": 1295.78, + "end": 1299.02, + "probability": 0.9323 + }, + { + "start": 1299.52, + "end": 1300.48, + "probability": 0.9719 + }, + { + "start": 1301.02, + "end": 1303.14, + "probability": 0.9932 + }, + { + "start": 1303.24, + "end": 1304.8, + "probability": 0.6587 + }, + { + "start": 1304.94, + "end": 1311.34, + "probability": 0.9971 + }, + { + "start": 1312.74, + "end": 1315.6, + "probability": 0.7176 + }, + { + "start": 1315.84, + "end": 1319.2, + "probability": 0.9844 + }, + { + "start": 1319.74, + "end": 1320.78, + "probability": 0.9456 + }, + { + "start": 1321.72, + "end": 1322.78, + "probability": 0.6545 + }, + { + "start": 1323.38, + "end": 1324.48, + "probability": 0.6574 + }, + { + "start": 1324.88, + "end": 1328.24, + "probability": 0.9057 + }, + { + "start": 1328.54, + "end": 1331.08, + "probability": 0.6606 + }, + { + "start": 1331.34, + "end": 1332.16, + "probability": 0.9946 + }, + { + "start": 1332.28, + "end": 1333.22, + "probability": 0.9578 + }, + { + "start": 1333.86, + "end": 1335.98, + "probability": 0.9336 + }, + { + "start": 1336.06, + "end": 1337.8, + "probability": 0.851 + }, + { + "start": 1337.9, + "end": 1340.84, + "probability": 0.9718 + }, + { + "start": 1340.84, + "end": 1345.36, + "probability": 0.9797 + }, + { + "start": 1345.44, + "end": 1346.68, + "probability": 0.9482 + }, + { + "start": 1348.02, + "end": 1352.76, + "probability": 0.9965 + }, + { + "start": 1353.84, + "end": 1357.06, + "probability": 0.9957 + }, + { + "start": 1357.62, + "end": 1361.84, + "probability": 0.991 + }, + { + "start": 1362.36, + "end": 1364.6, + "probability": 0.9925 + }, + { + "start": 1364.68, + "end": 1367.66, + "probability": 0.9359 + }, + { + "start": 1368.14, + "end": 1370.54, + "probability": 0.9555 + }, + { + "start": 1370.94, + "end": 1371.8, + "probability": 0.8777 + }, + { + "start": 1371.86, + "end": 1375.32, + "probability": 0.899 + }, + { + "start": 1375.42, + "end": 1377.08, + "probability": 0.7665 + }, + { + "start": 1377.16, + "end": 1377.82, + "probability": 0.8082 + }, + { + "start": 1378.48, + "end": 1384.28, + "probability": 0.7152 + }, + { + "start": 1384.28, + "end": 1385.72, + "probability": 0.6497 + }, + { + "start": 1385.78, + "end": 1389.6, + "probability": 0.967 + }, + { + "start": 1389.74, + "end": 1390.16, + "probability": 0.7994 + }, + { + "start": 1390.54, + "end": 1392.14, + "probability": 0.9867 + }, + { + "start": 1392.28, + "end": 1394.7, + "probability": 0.9138 + }, + { + "start": 1403.76, + "end": 1406.42, + "probability": 0.7385 + }, + { + "start": 1407.5, + "end": 1410.38, + "probability": 0.7293 + }, + { + "start": 1411.46, + "end": 1416.64, + "probability": 0.9954 + }, + { + "start": 1417.78, + "end": 1421.5, + "probability": 0.9921 + }, + { + "start": 1422.92, + "end": 1424.42, + "probability": 0.7955 + }, + { + "start": 1425.0, + "end": 1429.2, + "probability": 0.9421 + }, + { + "start": 1429.38, + "end": 1430.58, + "probability": 0.7655 + }, + { + "start": 1431.64, + "end": 1434.76, + "probability": 0.9932 + }, + { + "start": 1435.28, + "end": 1435.68, + "probability": 0.7186 + }, + { + "start": 1435.78, + "end": 1442.22, + "probability": 0.8711 + }, + { + "start": 1442.64, + "end": 1445.94, + "probability": 0.9056 + }, + { + "start": 1446.42, + "end": 1447.74, + "probability": 0.9355 + }, + { + "start": 1448.3, + "end": 1453.12, + "probability": 0.9418 + }, + { + "start": 1453.88, + "end": 1454.9, + "probability": 0.8167 + }, + { + "start": 1456.6, + "end": 1460.52, + "probability": 0.7017 + }, + { + "start": 1461.76, + "end": 1467.34, + "probability": 0.8613 + }, + { + "start": 1467.62, + "end": 1469.24, + "probability": 0.9513 + }, + { + "start": 1470.76, + "end": 1473.96, + "probability": 0.995 + }, + { + "start": 1474.5, + "end": 1478.62, + "probability": 0.9949 + }, + { + "start": 1479.96, + "end": 1481.13, + "probability": 0.9927 + }, + { + "start": 1482.1, + "end": 1486.46, + "probability": 0.9103 + }, + { + "start": 1486.54, + "end": 1489.64, + "probability": 0.9951 + }, + { + "start": 1490.06, + "end": 1492.78, + "probability": 0.9819 + }, + { + "start": 1493.32, + "end": 1496.34, + "probability": 0.8894 + }, + { + "start": 1497.06, + "end": 1501.38, + "probability": 0.9956 + }, + { + "start": 1501.66, + "end": 1501.66, + "probability": 0.1699 + }, + { + "start": 1501.66, + "end": 1503.72, + "probability": 0.8127 + }, + { + "start": 1505.4, + "end": 1505.54, + "probability": 0.0233 + }, + { + "start": 1505.64, + "end": 1505.76, + "probability": 0.0406 + }, + { + "start": 1505.76, + "end": 1507.08, + "probability": 0.0261 + }, + { + "start": 1507.8, + "end": 1507.86, + "probability": 0.0849 + }, + { + "start": 1507.86, + "end": 1507.86, + "probability": 0.3102 + }, + { + "start": 1507.86, + "end": 1507.86, + "probability": 0.1766 + }, + { + "start": 1507.86, + "end": 1511.56, + "probability": 0.8856 + }, + { + "start": 1512.0, + "end": 1512.26, + "probability": 0.026 + }, + { + "start": 1512.26, + "end": 1516.4, + "probability": 0.068 + }, + { + "start": 1516.92, + "end": 1518.2, + "probability": 0.0423 + }, + { + "start": 1520.18, + "end": 1523.22, + "probability": 0.066 + }, + { + "start": 1525.76, + "end": 1528.66, + "probability": 0.0783 + }, + { + "start": 1528.96, + "end": 1529.34, + "probability": 0.2642 + }, + { + "start": 1529.34, + "end": 1529.82, + "probability": 0.0366 + }, + { + "start": 1529.82, + "end": 1532.1, + "probability": 0.0719 + }, + { + "start": 1532.1, + "end": 1532.86, + "probability": 0.4617 + }, + { + "start": 1538.36, + "end": 1540.36, + "probability": 0.378 + }, + { + "start": 1540.36, + "end": 1541.79, + "probability": 0.0482 + }, + { + "start": 1544.8, + "end": 1545.74, + "probability": 0.233 + }, + { + "start": 1545.83, + "end": 1547.66, + "probability": 0.0841 + }, + { + "start": 1548.02, + "end": 1548.98, + "probability": 0.0393 + }, + { + "start": 1549.64, + "end": 1552.42, + "probability": 0.1051 + }, + { + "start": 1552.6, + "end": 1555.5, + "probability": 0.1904 + }, + { + "start": 1558.14, + "end": 1564.2, + "probability": 0.0738 + }, + { + "start": 1564.66, + "end": 1566.52, + "probability": 0.0134 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.14, + "end": 1576.88, + "probability": 0.0428 + }, + { + "start": 1577.0, + "end": 1578.14, + "probability": 0.3059 + }, + { + "start": 1578.34, + "end": 1579.44, + "probability": 0.1524 + }, + { + "start": 1579.44, + "end": 1580.78, + "probability": 0.7071 + }, + { + "start": 1580.78, + "end": 1581.66, + "probability": 0.3179 + }, + { + "start": 1581.66, + "end": 1582.68, + "probability": 0.6904 + }, + { + "start": 1582.7, + "end": 1583.22, + "probability": 0.4225 + }, + { + "start": 1583.28, + "end": 1583.52, + "probability": 0.7289 + }, + { + "start": 1583.54, + "end": 1584.08, + "probability": 0.1071 + }, + { + "start": 1584.08, + "end": 1584.99, + "probability": 0.4972 + }, + { + "start": 1585.24, + "end": 1585.82, + "probability": 0.2804 + }, + { + "start": 1585.82, + "end": 1586.66, + "probability": 0.4024 + }, + { + "start": 1586.8, + "end": 1587.8, + "probability": 0.4559 + }, + { + "start": 1587.86, + "end": 1587.98, + "probability": 0.0498 + }, + { + "start": 1587.98, + "end": 1590.06, + "probability": 0.9207 + }, + { + "start": 1590.18, + "end": 1590.18, + "probability": 0.1594 + }, + { + "start": 1590.39, + "end": 1591.36, + "probability": 0.0398 + }, + { + "start": 1591.36, + "end": 1595.52, + "probability": 0.754 + }, + { + "start": 1596.16, + "end": 1599.44, + "probability": 0.9868 + }, + { + "start": 1599.58, + "end": 1599.76, + "probability": 0.314 + }, + { + "start": 1599.98, + "end": 1600.08, + "probability": 0.1835 + }, + { + "start": 1600.08, + "end": 1600.68, + "probability": 0.3738 + }, + { + "start": 1601.52, + "end": 1606.46, + "probability": 0.947 + }, + { + "start": 1607.26, + "end": 1608.32, + "probability": 0.9336 + }, + { + "start": 1608.7, + "end": 1608.92, + "probability": 0.0182 + }, + { + "start": 1608.92, + "end": 1612.44, + "probability": 0.6332 + }, + { + "start": 1614.79, + "end": 1616.18, + "probability": 0.0077 + }, + { + "start": 1616.24, + "end": 1616.24, + "probability": 0.0321 + }, + { + "start": 1616.24, + "end": 1618.44, + "probability": 0.4709 + }, + { + "start": 1619.18, + "end": 1620.67, + "probability": 0.5329 + }, + { + "start": 1620.92, + "end": 1620.92, + "probability": 0.2043 + }, + { + "start": 1620.92, + "end": 1622.04, + "probability": 0.6774 + }, + { + "start": 1622.32, + "end": 1624.28, + "probability": 0.0202 + }, + { + "start": 1624.86, + "end": 1624.86, + "probability": 0.0732 + }, + { + "start": 1624.86, + "end": 1624.86, + "probability": 0.2626 + }, + { + "start": 1624.86, + "end": 1624.86, + "probability": 0.1106 + }, + { + "start": 1624.86, + "end": 1629.16, + "probability": 0.9845 + }, + { + "start": 1629.16, + "end": 1633.22, + "probability": 0.9791 + }, + { + "start": 1633.64, + "end": 1633.84, + "probability": 0.0373 + }, + { + "start": 1633.84, + "end": 1633.84, + "probability": 0.1772 + }, + { + "start": 1633.84, + "end": 1638.3, + "probability": 0.7019 + }, + { + "start": 1638.96, + "end": 1638.96, + "probability": 0.0243 + }, + { + "start": 1638.96, + "end": 1640.26, + "probability": 0.6035 + }, + { + "start": 1640.42, + "end": 1643.6, + "probability": 0.9779 + }, + { + "start": 1643.88, + "end": 1644.04, + "probability": 0.7291 + }, + { + "start": 1644.04, + "end": 1644.7, + "probability": 0.6623 + }, + { + "start": 1645.04, + "end": 1651.28, + "probability": 0.0077 + }, + { + "start": 1652.22, + "end": 1652.86, + "probability": 0.1851 + }, + { + "start": 1656.28, + "end": 1656.58, + "probability": 0.003 + }, + { + "start": 1656.95, + "end": 1658.99, + "probability": 0.2918 + }, + { + "start": 1659.82, + "end": 1661.5, + "probability": 0.0672 + }, + { + "start": 1662.02, + "end": 1662.84, + "probability": 0.1342 + }, + { + "start": 1663.34, + "end": 1663.44, + "probability": 0.0357 + }, + { + "start": 1663.48, + "end": 1667.74, + "probability": 0.1012 + }, + { + "start": 1667.8, + "end": 1670.4, + "probability": 0.0262 + }, + { + "start": 1671.58, + "end": 1677.62, + "probability": 0.0381 + }, + { + "start": 1677.62, + "end": 1677.96, + "probability": 0.0466 + }, + { + "start": 1677.96, + "end": 1678.86, + "probability": 0.0665 + }, + { + "start": 1678.92, + "end": 1681.24, + "probability": 0.2324 + }, + { + "start": 1681.52, + "end": 1681.6, + "probability": 0.0585 + }, + { + "start": 1682.44, + "end": 1683.52, + "probability": 0.1905 + }, + { + "start": 1683.54, + "end": 1686.54, + "probability": 0.1036 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.0, + "end": 1698.0, + "probability": 0.0 + }, + { + "start": 1698.86, + "end": 1698.88, + "probability": 0.1574 + }, + { + "start": 1698.88, + "end": 1698.88, + "probability": 0.0934 + }, + { + "start": 1698.88, + "end": 1700.16, + "probability": 0.7956 + }, + { + "start": 1700.34, + "end": 1702.14, + "probability": 0.9793 + }, + { + "start": 1703.04, + "end": 1706.82, + "probability": 0.7802 + }, + { + "start": 1707.4, + "end": 1710.54, + "probability": 0.919 + }, + { + "start": 1710.54, + "end": 1714.54, + "probability": 0.999 + }, + { + "start": 1715.66, + "end": 1717.1, + "probability": 0.8802 + }, + { + "start": 1718.16, + "end": 1720.94, + "probability": 0.9893 + }, + { + "start": 1721.56, + "end": 1725.74, + "probability": 0.9937 + }, + { + "start": 1726.56, + "end": 1730.82, + "probability": 0.9813 + }, + { + "start": 1731.54, + "end": 1734.62, + "probability": 0.999 + }, + { + "start": 1734.62, + "end": 1738.06, + "probability": 0.9989 + }, + { + "start": 1738.6, + "end": 1742.58, + "probability": 0.9593 + }, + { + "start": 1743.6, + "end": 1746.74, + "probability": 0.9984 + }, + { + "start": 1746.74, + "end": 1752.76, + "probability": 0.9943 + }, + { + "start": 1753.58, + "end": 1757.28, + "probability": 0.9977 + }, + { + "start": 1758.26, + "end": 1763.64, + "probability": 0.9906 + }, + { + "start": 1765.2, + "end": 1767.92, + "probability": 0.9979 + }, + { + "start": 1768.8, + "end": 1769.58, + "probability": 0.9183 + }, + { + "start": 1770.68, + "end": 1774.22, + "probability": 0.9961 + }, + { + "start": 1774.96, + "end": 1776.4, + "probability": 0.9245 + }, + { + "start": 1777.88, + "end": 1781.93, + "probability": 0.9697 + }, + { + "start": 1783.22, + "end": 1786.36, + "probability": 0.9903 + }, + { + "start": 1787.66, + "end": 1789.8, + "probability": 0.9934 + }, + { + "start": 1790.32, + "end": 1792.14, + "probability": 0.7951 + }, + { + "start": 1792.98, + "end": 1799.9, + "probability": 0.9928 + }, + { + "start": 1801.02, + "end": 1805.14, + "probability": 0.9382 + }, + { + "start": 1805.96, + "end": 1808.5, + "probability": 0.9941 + }, + { + "start": 1809.46, + "end": 1811.76, + "probability": 0.9972 + }, + { + "start": 1812.42, + "end": 1817.62, + "probability": 0.9053 + }, + { + "start": 1818.8, + "end": 1822.34, + "probability": 0.9763 + }, + { + "start": 1823.02, + "end": 1826.9, + "probability": 0.9204 + }, + { + "start": 1828.18, + "end": 1829.96, + "probability": 0.8534 + }, + { + "start": 1830.8, + "end": 1832.94, + "probability": 0.9938 + }, + { + "start": 1833.78, + "end": 1836.16, + "probability": 0.9717 + }, + { + "start": 1837.08, + "end": 1842.74, + "probability": 0.9887 + }, + { + "start": 1843.38, + "end": 1847.06, + "probability": 0.8462 + }, + { + "start": 1848.26, + "end": 1850.74, + "probability": 0.9712 + }, + { + "start": 1851.32, + "end": 1857.42, + "probability": 0.9637 + }, + { + "start": 1858.64, + "end": 1862.41, + "probability": 0.8868 + }, + { + "start": 1863.68, + "end": 1865.96, + "probability": 0.983 + }, + { + "start": 1866.84, + "end": 1869.2, + "probability": 0.9868 + }, + { + "start": 1869.98, + "end": 1870.92, + "probability": 0.8525 + }, + { + "start": 1871.5, + "end": 1873.6, + "probability": 0.9935 + }, + { + "start": 1874.9, + "end": 1879.86, + "probability": 0.961 + }, + { + "start": 1880.86, + "end": 1885.32, + "probability": 0.998 + }, + { + "start": 1886.12, + "end": 1892.78, + "probability": 0.9934 + }, + { + "start": 1893.86, + "end": 1898.44, + "probability": 0.9431 + }, + { + "start": 1899.1, + "end": 1902.2, + "probability": 0.9668 + }, + { + "start": 1902.7, + "end": 1905.48, + "probability": 0.9875 + }, + { + "start": 1906.32, + "end": 1906.4, + "probability": 0.6144 + }, + { + "start": 1906.48, + "end": 1906.92, + "probability": 0.7332 + }, + { + "start": 1906.92, + "end": 1908.74, + "probability": 0.9591 + }, + { + "start": 1926.0, + "end": 1927.26, + "probability": 0.7102 + }, + { + "start": 1927.76, + "end": 1928.86, + "probability": 0.6209 + }, + { + "start": 1929.78, + "end": 1931.9, + "probability": 0.8874 + }, + { + "start": 1932.42, + "end": 1933.58, + "probability": 0.1565 + }, + { + "start": 1936.64, + "end": 1939.04, + "probability": 0.9986 + }, + { + "start": 1939.94, + "end": 1940.9, + "probability": 0.931 + }, + { + "start": 1941.54, + "end": 1942.46, + "probability": 0.9187 + }, + { + "start": 1943.48, + "end": 1944.6, + "probability": 0.946 + }, + { + "start": 1945.62, + "end": 1949.0, + "probability": 0.7501 + }, + { + "start": 1949.8, + "end": 1951.7, + "probability": 0.998 + }, + { + "start": 1952.7, + "end": 1954.64, + "probability": 0.9883 + }, + { + "start": 1955.76, + "end": 1960.1, + "probability": 0.9412 + }, + { + "start": 1960.74, + "end": 1963.42, + "probability": 0.976 + }, + { + "start": 1963.94, + "end": 1965.46, + "probability": 0.9971 + }, + { + "start": 1966.46, + "end": 1967.36, + "probability": 0.9619 + }, + { + "start": 1968.18, + "end": 1971.18, + "probability": 0.9849 + }, + { + "start": 1972.38, + "end": 1973.86, + "probability": 0.99 + }, + { + "start": 1974.44, + "end": 1977.64, + "probability": 0.9932 + }, + { + "start": 1978.86, + "end": 1981.68, + "probability": 0.9808 + }, + { + "start": 1981.68, + "end": 1984.98, + "probability": 0.9989 + }, + { + "start": 1986.42, + "end": 1989.4, + "probability": 0.9951 + }, + { + "start": 1990.44, + "end": 1994.38, + "probability": 0.9932 + }, + { + "start": 1995.6, + "end": 2000.38, + "probability": 0.992 + }, + { + "start": 2001.32, + "end": 2003.82, + "probability": 0.9983 + }, + { + "start": 2004.4, + "end": 2007.62, + "probability": 0.6982 + }, + { + "start": 2008.58, + "end": 2013.28, + "probability": 0.9637 + }, + { + "start": 2014.18, + "end": 2017.96, + "probability": 0.9953 + }, + { + "start": 2018.74, + "end": 2021.28, + "probability": 0.7248 + }, + { + "start": 2021.28, + "end": 2024.4, + "probability": 0.9677 + }, + { + "start": 2025.1, + "end": 2028.7, + "probability": 0.7377 + }, + { + "start": 2029.9, + "end": 2030.02, + "probability": 0.5859 + }, + { + "start": 2031.74, + "end": 2033.12, + "probability": 0.7666 + }, + { + "start": 2033.78, + "end": 2036.96, + "probability": 0.9927 + }, + { + "start": 2037.62, + "end": 2040.84, + "probability": 0.9099 + }, + { + "start": 2041.88, + "end": 2046.04, + "probability": 0.9823 + }, + { + "start": 2047.24, + "end": 2048.2, + "probability": 0.9675 + }, + { + "start": 2048.88, + "end": 2051.56, + "probability": 0.9951 + }, + { + "start": 2052.86, + "end": 2055.68, + "probability": 0.96 + }, + { + "start": 2056.56, + "end": 2057.64, + "probability": 0.828 + }, + { + "start": 2058.86, + "end": 2059.59, + "probability": 0.9888 + }, + { + "start": 2060.62, + "end": 2063.32, + "probability": 0.7386 + }, + { + "start": 2064.06, + "end": 2065.68, + "probability": 0.8772 + }, + { + "start": 2067.06, + "end": 2073.34, + "probability": 0.8062 + }, + { + "start": 2074.44, + "end": 2075.5, + "probability": 0.8674 + }, + { + "start": 2076.34, + "end": 2078.74, + "probability": 0.99 + }, + { + "start": 2079.5, + "end": 2083.68, + "probability": 0.8844 + }, + { + "start": 2084.1, + "end": 2085.88, + "probability": 0.9961 + }, + { + "start": 2086.42, + "end": 2087.46, + "probability": 0.9842 + }, + { + "start": 2088.6, + "end": 2089.92, + "probability": 0.7037 + }, + { + "start": 2090.08, + "end": 2091.3, + "probability": 0.2658 + }, + { + "start": 2091.68, + "end": 2095.68, + "probability": 0.9897 + }, + { + "start": 2096.9, + "end": 2100.62, + "probability": 0.9587 + }, + { + "start": 2101.32, + "end": 2102.32, + "probability": 0.9233 + }, + { + "start": 2102.46, + "end": 2103.1, + "probability": 0.9536 + }, + { + "start": 2103.24, + "end": 2103.84, + "probability": 0.3197 + }, + { + "start": 2104.24, + "end": 2105.34, + "probability": 0.9244 + }, + { + "start": 2105.56, + "end": 2106.08, + "probability": 0.8476 + }, + { + "start": 2106.82, + "end": 2107.34, + "probability": 0.6703 + }, + { + "start": 2108.11, + "end": 2112.16, + "probability": 0.8261 + }, + { + "start": 2113.18, + "end": 2115.08, + "probability": 0.8736 + }, + { + "start": 2115.96, + "end": 2117.6, + "probability": 0.9414 + }, + { + "start": 2129.66, + "end": 2130.5, + "probability": 0.653 + }, + { + "start": 2130.64, + "end": 2133.6, + "probability": 0.9802 + }, + { + "start": 2134.66, + "end": 2139.56, + "probability": 0.9674 + }, + { + "start": 2140.16, + "end": 2142.02, + "probability": 0.9077 + }, + { + "start": 2142.92, + "end": 2145.48, + "probability": 0.9972 + }, + { + "start": 2145.56, + "end": 2146.62, + "probability": 0.992 + }, + { + "start": 2147.68, + "end": 2149.2, + "probability": 0.9823 + }, + { + "start": 2150.34, + "end": 2155.2, + "probability": 0.8107 + }, + { + "start": 2155.42, + "end": 2156.32, + "probability": 0.9683 + }, + { + "start": 2157.16, + "end": 2161.96, + "probability": 0.9928 + }, + { + "start": 2162.6, + "end": 2164.96, + "probability": 0.9691 + }, + { + "start": 2165.64, + "end": 2168.48, + "probability": 0.9907 + }, + { + "start": 2169.52, + "end": 2171.56, + "probability": 0.988 + }, + { + "start": 2171.56, + "end": 2175.46, + "probability": 0.9955 + }, + { + "start": 2176.6, + "end": 2180.56, + "probability": 0.999 + }, + { + "start": 2181.2, + "end": 2185.1, + "probability": 0.996 + }, + { + "start": 2185.76, + "end": 2186.54, + "probability": 0.8393 + }, + { + "start": 2188.04, + "end": 2192.16, + "probability": 0.997 + }, + { + "start": 2192.82, + "end": 2197.52, + "probability": 0.9717 + }, + { + "start": 2197.64, + "end": 2198.06, + "probability": 0.6864 + }, + { + "start": 2198.98, + "end": 2200.42, + "probability": 0.5597 + }, + { + "start": 2200.96, + "end": 2206.7, + "probability": 0.9973 + }, + { + "start": 2207.78, + "end": 2213.4, + "probability": 0.9973 + }, + { + "start": 2214.16, + "end": 2216.5, + "probability": 0.9939 + }, + { + "start": 2217.4, + "end": 2221.54, + "probability": 0.9223 + }, + { + "start": 2223.14, + "end": 2225.46, + "probability": 0.9945 + }, + { + "start": 2226.12, + "end": 2227.31, + "probability": 0.9681 + }, + { + "start": 2228.24, + "end": 2230.62, + "probability": 0.9932 + }, + { + "start": 2231.64, + "end": 2234.56, + "probability": 0.9878 + }, + { + "start": 2234.66, + "end": 2237.95, + "probability": 0.9951 + }, + { + "start": 2238.88, + "end": 2239.04, + "probability": 0.3976 + }, + { + "start": 2239.14, + "end": 2241.2, + "probability": 0.9933 + }, + { + "start": 2241.3, + "end": 2242.52, + "probability": 0.9448 + }, + { + "start": 2242.74, + "end": 2244.57, + "probability": 0.9108 + }, + { + "start": 2245.6, + "end": 2248.16, + "probability": 0.8981 + }, + { + "start": 2248.8, + "end": 2252.8, + "probability": 0.9209 + }, + { + "start": 2252.98, + "end": 2253.1, + "probability": 0.5381 + }, + { + "start": 2253.74, + "end": 2256.24, + "probability": 0.9722 + }, + { + "start": 2256.32, + "end": 2257.2, + "probability": 0.6822 + }, + { + "start": 2257.78, + "end": 2261.08, + "probability": 0.9933 + }, + { + "start": 2261.16, + "end": 2261.98, + "probability": 0.8357 + }, + { + "start": 2262.5, + "end": 2265.86, + "probability": 0.902 + }, + { + "start": 2266.44, + "end": 2268.38, + "probability": 0.9951 + }, + { + "start": 2268.54, + "end": 2269.03, + "probability": 0.9346 + }, + { + "start": 2269.5, + "end": 2271.96, + "probability": 0.9987 + }, + { + "start": 2272.02, + "end": 2272.57, + "probability": 0.9966 + }, + { + "start": 2273.2, + "end": 2273.76, + "probability": 0.5531 + }, + { + "start": 2274.38, + "end": 2277.1, + "probability": 0.9245 + }, + { + "start": 2277.2, + "end": 2277.7, + "probability": 0.9717 + }, + { + "start": 2277.78, + "end": 2279.38, + "probability": 0.9598 + }, + { + "start": 2280.18, + "end": 2283.98, + "probability": 0.9554 + }, + { + "start": 2284.06, + "end": 2285.58, + "probability": 0.9883 + }, + { + "start": 2286.14, + "end": 2288.88, + "probability": 0.8162 + }, + { + "start": 2288.88, + "end": 2292.48, + "probability": 0.9995 + }, + { + "start": 2293.12, + "end": 2293.78, + "probability": 0.8981 + }, + { + "start": 2294.54, + "end": 2296.18, + "probability": 0.9451 + }, + { + "start": 2296.28, + "end": 2296.98, + "probability": 0.9167 + }, + { + "start": 2297.48, + "end": 2299.52, + "probability": 0.9964 + }, + { + "start": 2299.66, + "end": 2300.27, + "probability": 0.9761 + }, + { + "start": 2300.64, + "end": 2302.44, + "probability": 0.9971 + }, + { + "start": 2303.04, + "end": 2309.42, + "probability": 0.7528 + }, + { + "start": 2309.82, + "end": 2310.8, + "probability": 0.8064 + }, + { + "start": 2310.94, + "end": 2311.92, + "probability": 0.9 + }, + { + "start": 2312.78, + "end": 2314.52, + "probability": 0.7077 + }, + { + "start": 2314.78, + "end": 2316.8, + "probability": 0.943 + }, + { + "start": 2317.26, + "end": 2322.66, + "probability": 0.9902 + }, + { + "start": 2323.28, + "end": 2324.92, + "probability": 0.9915 + }, + { + "start": 2325.58, + "end": 2326.3, + "probability": 0.6281 + }, + { + "start": 2326.46, + "end": 2328.82, + "probability": 0.9888 + }, + { + "start": 2328.96, + "end": 2332.16, + "probability": 0.9958 + }, + { + "start": 2332.26, + "end": 2333.15, + "probability": 0.9347 + }, + { + "start": 2333.98, + "end": 2338.1, + "probability": 0.9648 + }, + { + "start": 2338.62, + "end": 2339.66, + "probability": 0.9951 + }, + { + "start": 2340.14, + "end": 2340.68, + "probability": 0.8535 + }, + { + "start": 2341.42, + "end": 2344.14, + "probability": 0.9778 + }, + { + "start": 2345.04, + "end": 2347.98, + "probability": 0.9896 + }, + { + "start": 2348.84, + "end": 2353.2, + "probability": 0.9955 + }, + { + "start": 2353.76, + "end": 2354.3, + "probability": 0.2831 + }, + { + "start": 2354.46, + "end": 2355.8, + "probability": 0.9175 + }, + { + "start": 2356.82, + "end": 2357.26, + "probability": 0.981 + }, + { + "start": 2358.44, + "end": 2360.0, + "probability": 0.9155 + }, + { + "start": 2360.64, + "end": 2361.1, + "probability": 0.4458 + }, + { + "start": 2361.1, + "end": 2362.36, + "probability": 0.7666 + }, + { + "start": 2362.58, + "end": 2364.62, + "probability": 0.9634 + }, + { + "start": 2365.2, + "end": 2365.5, + "probability": 0.5243 + }, + { + "start": 2366.5, + "end": 2367.64, + "probability": 0.2354 + }, + { + "start": 2367.9, + "end": 2368.86, + "probability": 0.5052 + }, + { + "start": 2369.44, + "end": 2372.01, + "probability": 0.8723 + }, + { + "start": 2372.92, + "end": 2373.54, + "probability": 0.6349 + }, + { + "start": 2373.62, + "end": 2376.82, + "probability": 0.9424 + }, + { + "start": 2377.6, + "end": 2378.46, + "probability": 0.6166 + }, + { + "start": 2379.27, + "end": 2384.02, + "probability": 0.8938 + }, + { + "start": 2384.98, + "end": 2388.2, + "probability": 0.7525 + }, + { + "start": 2388.74, + "end": 2388.82, + "probability": 0.4734 + }, + { + "start": 2388.94, + "end": 2389.42, + "probability": 0.882 + }, + { + "start": 2389.44, + "end": 2392.56, + "probability": 0.9922 + }, + { + "start": 2393.02, + "end": 2396.2, + "probability": 0.9749 + }, + { + "start": 2397.08, + "end": 2398.08, + "probability": 0.982 + }, + { + "start": 2398.48, + "end": 2402.02, + "probability": 0.9936 + }, + { + "start": 2402.14, + "end": 2404.6, + "probability": 0.7535 + }, + { + "start": 2405.06, + "end": 2405.96, + "probability": 0.7233 + }, + { + "start": 2406.02, + "end": 2406.88, + "probability": 0.9812 + }, + { + "start": 2407.26, + "end": 2408.76, + "probability": 0.9464 + }, + { + "start": 2409.28, + "end": 2411.64, + "probability": 0.9089 + }, + { + "start": 2411.88, + "end": 2413.3, + "probability": 0.8765 + }, + { + "start": 2413.82, + "end": 2416.08, + "probability": 0.8938 + }, + { + "start": 2416.2, + "end": 2417.06, + "probability": 0.7637 + }, + { + "start": 2417.52, + "end": 2420.3, + "probability": 0.9944 + }, + { + "start": 2420.84, + "end": 2424.36, + "probability": 0.842 + }, + { + "start": 2424.9, + "end": 2425.65, + "probability": 0.8489 + }, + { + "start": 2426.42, + "end": 2428.36, + "probability": 0.6483 + }, + { + "start": 2428.42, + "end": 2431.0, + "probability": 0.9148 + }, + { + "start": 2431.4, + "end": 2433.44, + "probability": 0.9834 + }, + { + "start": 2433.96, + "end": 2438.83, + "probability": 0.8203 + }, + { + "start": 2439.56, + "end": 2443.3, + "probability": 0.9326 + }, + { + "start": 2443.36, + "end": 2443.94, + "probability": 0.7405 + }, + { + "start": 2444.3, + "end": 2445.76, + "probability": 0.9154 + }, + { + "start": 2445.88, + "end": 2448.84, + "probability": 0.8311 + }, + { + "start": 2449.88, + "end": 2450.48, + "probability": 0.8628 + }, + { + "start": 2465.94, + "end": 2467.78, + "probability": 0.9423 + }, + { + "start": 2469.78, + "end": 2471.42, + "probability": 0.523 + }, + { + "start": 2472.38, + "end": 2477.0, + "probability": 0.991 + }, + { + "start": 2477.31, + "end": 2482.2, + "probability": 0.9938 + }, + { + "start": 2482.26, + "end": 2489.12, + "probability": 0.8622 + }, + { + "start": 2489.42, + "end": 2491.66, + "probability": 0.8641 + }, + { + "start": 2492.38, + "end": 2494.94, + "probability": 0.9424 + }, + { + "start": 2495.28, + "end": 2497.56, + "probability": 0.9841 + }, + { + "start": 2497.7, + "end": 2498.63, + "probability": 0.891 + }, + { + "start": 2499.34, + "end": 2505.16, + "probability": 0.9928 + }, + { + "start": 2505.34, + "end": 2506.18, + "probability": 0.6302 + }, + { + "start": 2506.44, + "end": 2506.74, + "probability": 0.2317 + }, + { + "start": 2507.48, + "end": 2512.26, + "probability": 0.9033 + }, + { + "start": 2512.38, + "end": 2518.74, + "probability": 0.9945 + }, + { + "start": 2519.4, + "end": 2521.18, + "probability": 0.9185 + }, + { + "start": 2521.64, + "end": 2523.5, + "probability": 0.8788 + }, + { + "start": 2524.02, + "end": 2524.8, + "probability": 0.558 + }, + { + "start": 2524.94, + "end": 2530.32, + "probability": 0.9749 + }, + { + "start": 2530.52, + "end": 2535.66, + "probability": 0.9128 + }, + { + "start": 2535.66, + "end": 2539.72, + "probability": 0.9782 + }, + { + "start": 2539.78, + "end": 2545.18, + "probability": 0.8242 + }, + { + "start": 2545.86, + "end": 2549.76, + "probability": 0.988 + }, + { + "start": 2549.94, + "end": 2550.14, + "probability": 0.5773 + }, + { + "start": 2550.88, + "end": 2551.5, + "probability": 0.5369 + }, + { + "start": 2551.68, + "end": 2553.4, + "probability": 0.7871 + }, + { + "start": 2554.32, + "end": 2555.98, + "probability": 0.9797 + }, + { + "start": 2571.84, + "end": 2572.7, + "probability": 0.6423 + }, + { + "start": 2573.62, + "end": 2576.2, + "probability": 0.7168 + }, + { + "start": 2576.84, + "end": 2581.22, + "probability": 0.9182 + }, + { + "start": 2581.99, + "end": 2584.28, + "probability": 0.9957 + }, + { + "start": 2584.74, + "end": 2585.5, + "probability": 0.987 + }, + { + "start": 2585.56, + "end": 2587.82, + "probability": 0.9852 + }, + { + "start": 2588.94, + "end": 2592.52, + "probability": 0.9866 + }, + { + "start": 2593.79, + "end": 2597.68, + "probability": 0.9927 + }, + { + "start": 2598.28, + "end": 2598.84, + "probability": 0.8516 + }, + { + "start": 2599.94, + "end": 2603.1, + "probability": 0.9346 + }, + { + "start": 2604.1, + "end": 2607.22, + "probability": 0.3272 + }, + { + "start": 2607.22, + "end": 2607.68, + "probability": 0.4822 + }, + { + "start": 2608.06, + "end": 2609.0, + "probability": 0.8127 + }, + { + "start": 2609.2, + "end": 2609.96, + "probability": 0.6473 + }, + { + "start": 2610.08, + "end": 2610.95, + "probability": 0.95 + }, + { + "start": 2611.5, + "end": 2613.32, + "probability": 0.8952 + }, + { + "start": 2613.74, + "end": 2613.96, + "probability": 0.5033 + }, + { + "start": 2614.66, + "end": 2616.24, + "probability": 0.9952 + }, + { + "start": 2617.3, + "end": 2622.42, + "probability": 0.9837 + }, + { + "start": 2622.84, + "end": 2623.76, + "probability": 0.4943 + }, + { + "start": 2625.32, + "end": 2627.92, + "probability": 0.5607 + }, + { + "start": 2627.92, + "end": 2630.32, + "probability": 0.9788 + }, + { + "start": 2630.84, + "end": 2633.1, + "probability": 0.9985 + }, + { + "start": 2633.92, + "end": 2635.14, + "probability": 0.9772 + }, + { + "start": 2635.56, + "end": 2638.9, + "probability": 0.9476 + }, + { + "start": 2639.42, + "end": 2641.3, + "probability": 0.8965 + }, + { + "start": 2642.28, + "end": 2643.54, + "probability": 0.915 + }, + { + "start": 2644.06, + "end": 2649.24, + "probability": 0.9801 + }, + { + "start": 2649.68, + "end": 2651.56, + "probability": 0.5381 + }, + { + "start": 2652.34, + "end": 2654.22, + "probability": 0.9412 + }, + { + "start": 2654.9, + "end": 2658.92, + "probability": 0.8153 + }, + { + "start": 2659.56, + "end": 2663.7, + "probability": 0.9254 + }, + { + "start": 2663.84, + "end": 2664.64, + "probability": 0.9296 + }, + { + "start": 2666.08, + "end": 2667.86, + "probability": 0.7749 + }, + { + "start": 2667.94, + "end": 2670.0, + "probability": 0.979 + }, + { + "start": 2670.52, + "end": 2673.32, + "probability": 0.7782 + }, + { + "start": 2673.4, + "end": 2673.68, + "probability": 0.3869 + }, + { + "start": 2673.76, + "end": 2675.28, + "probability": 0.2583 + }, + { + "start": 2675.4, + "end": 2677.42, + "probability": 0.6893 + }, + { + "start": 2678.32, + "end": 2680.54, + "probability": 0.8739 + }, + { + "start": 2680.78, + "end": 2683.0, + "probability": 0.9978 + }, + { + "start": 2683.14, + "end": 2683.6, + "probability": 0.3284 + }, + { + "start": 2684.52, + "end": 2685.68, + "probability": 0.9626 + }, + { + "start": 2686.28, + "end": 2689.06, + "probability": 0.9951 + }, + { + "start": 2689.06, + "end": 2690.78, + "probability": 0.9938 + }, + { + "start": 2690.88, + "end": 2692.74, + "probability": 0.8826 + }, + { + "start": 2692.98, + "end": 2695.02, + "probability": 0.8674 + }, + { + "start": 2695.54, + "end": 2697.07, + "probability": 0.6947 + }, + { + "start": 2697.74, + "end": 2700.02, + "probability": 0.9971 + }, + { + "start": 2700.44, + "end": 2703.04, + "probability": 0.9465 + }, + { + "start": 2703.04, + "end": 2705.54, + "probability": 0.9934 + }, + { + "start": 2706.62, + "end": 2708.86, + "probability": 0.994 + }, + { + "start": 2708.86, + "end": 2712.16, + "probability": 0.9638 + }, + { + "start": 2712.26, + "end": 2714.98, + "probability": 0.9957 + }, + { + "start": 2715.64, + "end": 2717.66, + "probability": 0.7008 + }, + { + "start": 2718.18, + "end": 2721.18, + "probability": 0.9587 + }, + { + "start": 2721.9, + "end": 2725.56, + "probability": 0.935 + }, + { + "start": 2726.4, + "end": 2730.22, + "probability": 0.9344 + }, + { + "start": 2730.22, + "end": 2733.28, + "probability": 0.9688 + }, + { + "start": 2734.16, + "end": 2735.02, + "probability": 0.9182 + }, + { + "start": 2736.36, + "end": 2739.22, + "probability": 0.9294 + }, + { + "start": 2739.7, + "end": 2740.84, + "probability": 0.757 + }, + { + "start": 2740.92, + "end": 2743.94, + "probability": 0.9442 + }, + { + "start": 2743.94, + "end": 2746.96, + "probability": 0.9907 + }, + { + "start": 2747.1, + "end": 2750.58, + "probability": 0.9624 + }, + { + "start": 2750.58, + "end": 2753.42, + "probability": 0.9873 + }, + { + "start": 2754.24, + "end": 2758.46, + "probability": 0.9649 + }, + { + "start": 2759.18, + "end": 2763.42, + "probability": 0.927 + }, + { + "start": 2763.9, + "end": 2764.82, + "probability": 0.7624 + }, + { + "start": 2764.94, + "end": 2765.16, + "probability": 0.5057 + }, + { + "start": 2765.74, + "end": 2767.58, + "probability": 0.9666 + }, + { + "start": 2767.8, + "end": 2768.64, + "probability": 0.1321 + }, + { + "start": 2768.64, + "end": 2770.7, + "probability": 0.1654 + }, + { + "start": 2770.92, + "end": 2774.36, + "probability": 0.4922 + }, + { + "start": 2774.5, + "end": 2775.18, + "probability": 0.3353 + }, + { + "start": 2775.18, + "end": 2775.96, + "probability": 0.5604 + }, + { + "start": 2776.38, + "end": 2778.3, + "probability": 0.4472 + }, + { + "start": 2778.5, + "end": 2778.93, + "probability": 0.9152 + }, + { + "start": 2779.6, + "end": 2782.28, + "probability": 0.8765 + }, + { + "start": 2782.68, + "end": 2782.68, + "probability": 0.0916 + }, + { + "start": 2782.68, + "end": 2782.82, + "probability": 0.3503 + }, + { + "start": 2782.9, + "end": 2787.22, + "probability": 0.9568 + }, + { + "start": 2788.26, + "end": 2789.06, + "probability": 0.0951 + }, + { + "start": 2789.06, + "end": 2790.22, + "probability": 0.8927 + }, + { + "start": 2790.84, + "end": 2790.98, + "probability": 0.3037 + }, + { + "start": 2791.08, + "end": 2794.42, + "probability": 0.8613 + }, + { + "start": 2794.42, + "end": 2798.21, + "probability": 0.7752 + }, + { + "start": 2798.48, + "end": 2803.7, + "probability": 0.8382 + }, + { + "start": 2804.22, + "end": 2805.58, + "probability": 0.9673 + }, + { + "start": 2805.74, + "end": 2806.98, + "probability": 0.9702 + }, + { + "start": 2807.1, + "end": 2808.4, + "probability": 0.9577 + }, + { + "start": 2808.94, + "end": 2810.54, + "probability": 0.9646 + }, + { + "start": 2810.54, + "end": 2814.33, + "probability": 0.7391 + }, + { + "start": 2814.68, + "end": 2818.06, + "probability": 0.9857 + }, + { + "start": 2818.18, + "end": 2822.24, + "probability": 0.9934 + }, + { + "start": 2823.0, + "end": 2829.38, + "probability": 0.9819 + }, + { + "start": 2829.44, + "end": 2829.96, + "probability": 0.8747 + }, + { + "start": 2830.42, + "end": 2833.62, + "probability": 0.937 + }, + { + "start": 2833.62, + "end": 2836.32, + "probability": 0.8304 + }, + { + "start": 2836.98, + "end": 2837.26, + "probability": 0.4709 + }, + { + "start": 2837.7, + "end": 2841.12, + "probability": 0.9287 + }, + { + "start": 2841.12, + "end": 2845.82, + "probability": 0.953 + }, + { + "start": 2845.96, + "end": 2846.1, + "probability": 0.412 + }, + { + "start": 2846.2, + "end": 2847.78, + "probability": 0.8448 + }, + { + "start": 2848.26, + "end": 2850.46, + "probability": 0.9915 + }, + { + "start": 2850.64, + "end": 2852.2, + "probability": 0.9834 + }, + { + "start": 2852.66, + "end": 2856.34, + "probability": 0.9352 + }, + { + "start": 2856.42, + "end": 2857.44, + "probability": 0.7445 + }, + { + "start": 2858.64, + "end": 2859.02, + "probability": 0.2924 + }, + { + "start": 2859.06, + "end": 2861.26, + "probability": 0.8044 + }, + { + "start": 2861.26, + "end": 2863.62, + "probability": 0.9916 + }, + { + "start": 2864.18, + "end": 2865.46, + "probability": 0.8824 + }, + { + "start": 2865.82, + "end": 2867.32, + "probability": 0.9201 + }, + { + "start": 2867.64, + "end": 2868.78, + "probability": 0.8651 + }, + { + "start": 2868.94, + "end": 2871.48, + "probability": 0.9884 + }, + { + "start": 2871.48, + "end": 2875.6, + "probability": 0.9529 + }, + { + "start": 2876.0, + "end": 2878.56, + "probability": 0.9907 + }, + { + "start": 2878.56, + "end": 2880.84, + "probability": 0.9874 + }, + { + "start": 2881.22, + "end": 2883.28, + "probability": 0.8626 + }, + { + "start": 2883.38, + "end": 2886.02, + "probability": 0.9375 + }, + { + "start": 2886.62, + "end": 2891.1, + "probability": 0.9227 + }, + { + "start": 2891.18, + "end": 2894.76, + "probability": 0.9507 + }, + { + "start": 2894.86, + "end": 2895.46, + "probability": 0.9235 + }, + { + "start": 2895.54, + "end": 2897.82, + "probability": 0.86 + }, + { + "start": 2897.82, + "end": 2901.06, + "probability": 0.9857 + }, + { + "start": 2901.52, + "end": 2901.76, + "probability": 0.7339 + }, + { + "start": 2901.88, + "end": 2905.14, + "probability": 0.9211 + }, + { + "start": 2905.66, + "end": 2908.14, + "probability": 0.9959 + }, + { + "start": 2908.18, + "end": 2911.94, + "probability": 0.9166 + }, + { + "start": 2911.94, + "end": 2916.16, + "probability": 0.9456 + }, + { + "start": 2916.7, + "end": 2919.34, + "probability": 0.9885 + }, + { + "start": 2919.42, + "end": 2921.48, + "probability": 0.8844 + }, + { + "start": 2921.56, + "end": 2926.74, + "probability": 0.9831 + }, + { + "start": 2926.74, + "end": 2930.98, + "probability": 0.9274 + }, + { + "start": 2931.06, + "end": 2932.45, + "probability": 0.5297 + }, + { + "start": 2932.9, + "end": 2934.86, + "probability": 0.8564 + }, + { + "start": 2934.94, + "end": 2935.98, + "probability": 0.6409 + }, + { + "start": 2936.16, + "end": 2937.14, + "probability": 0.6966 + }, + { + "start": 2938.77, + "end": 2940.98, + "probability": 0.7458 + }, + { + "start": 2941.52, + "end": 2943.4, + "probability": 0.9904 + }, + { + "start": 2943.64, + "end": 2944.26, + "probability": 0.8646 + }, + { + "start": 2944.34, + "end": 2944.84, + "probability": 0.789 + }, + { + "start": 2944.84, + "end": 2946.18, + "probability": 0.7069 + }, + { + "start": 2946.28, + "end": 2946.63, + "probability": 0.9625 + }, + { + "start": 2946.82, + "end": 2947.29, + "probability": 0.9882 + }, + { + "start": 2947.82, + "end": 2950.34, + "probability": 0.938 + }, + { + "start": 2951.06, + "end": 2952.6, + "probability": 0.5854 + }, + { + "start": 2953.32, + "end": 2954.64, + "probability": 0.8635 + }, + { + "start": 2955.16, + "end": 2957.42, + "probability": 0.8829 + }, + { + "start": 2957.98, + "end": 2960.87, + "probability": 0.8633 + }, + { + "start": 2961.06, + "end": 2963.3, + "probability": 0.6205 + }, + { + "start": 2963.44, + "end": 2964.0, + "probability": 0.493 + }, + { + "start": 2964.02, + "end": 2968.32, + "probability": 0.9709 + }, + { + "start": 2969.84, + "end": 2972.42, + "probability": 0.9983 + }, + { + "start": 2972.5, + "end": 2973.08, + "probability": 0.9055 + }, + { + "start": 2973.48, + "end": 2976.19, + "probability": 0.74 + }, + { + "start": 2976.82, + "end": 2978.24, + "probability": 0.9212 + }, + { + "start": 2978.46, + "end": 2979.58, + "probability": 0.7434 + }, + { + "start": 2979.96, + "end": 2980.5, + "probability": 0.7459 + }, + { + "start": 2980.92, + "end": 2982.6, + "probability": 0.9058 + }, + { + "start": 2983.12, + "end": 2984.88, + "probability": 0.7868 + }, + { + "start": 2986.14, + "end": 2986.3, + "probability": 0.8806 + }, + { + "start": 2986.78, + "end": 2990.06, + "probability": 0.9697 + }, + { + "start": 2990.46, + "end": 2992.8, + "probability": 0.4688 + }, + { + "start": 2993.6, + "end": 2995.34, + "probability": 0.6862 + }, + { + "start": 2995.68, + "end": 2998.62, + "probability": 0.9668 + }, + { + "start": 2998.98, + "end": 3000.06, + "probability": 0.9866 + }, + { + "start": 3000.5, + "end": 3001.82, + "probability": 0.8518 + }, + { + "start": 3002.16, + "end": 3004.38, + "probability": 0.9888 + }, + { + "start": 3004.38, + "end": 3007.46, + "probability": 0.8852 + }, + { + "start": 3007.72, + "end": 3007.93, + "probability": 0.1707 + }, + { + "start": 3009.5, + "end": 3010.1, + "probability": 0.5737 + }, + { + "start": 3010.2, + "end": 3012.26, + "probability": 0.9873 + }, + { + "start": 3012.26, + "end": 3014.68, + "probability": 0.9915 + }, + { + "start": 3014.86, + "end": 3015.7, + "probability": 0.9897 + }, + { + "start": 3016.36, + "end": 3016.96, + "probability": 0.8806 + }, + { + "start": 3017.0, + "end": 3019.76, + "probability": 0.9236 + }, + { + "start": 3019.8, + "end": 3021.74, + "probability": 0.6659 + }, + { + "start": 3022.3, + "end": 3023.26, + "probability": 0.186 + }, + { + "start": 3023.9, + "end": 3025.04, + "probability": 0.1804 + }, + { + "start": 3025.12, + "end": 3029.48, + "probability": 0.0382 + }, + { + "start": 3029.62, + "end": 3030.2, + "probability": 0.1663 + }, + { + "start": 3030.3, + "end": 3034.07, + "probability": 0.1394 + }, + { + "start": 3034.74, + "end": 3036.68, + "probability": 0.5687 + }, + { + "start": 3037.68, + "end": 3041.15, + "probability": 0.1114 + }, + { + "start": 3044.3, + "end": 3045.28, + "probability": 0.1063 + }, + { + "start": 3045.5, + "end": 3047.24, + "probability": 0.3206 + }, + { + "start": 3047.34, + "end": 3049.44, + "probability": 0.8141 + }, + { + "start": 3049.44, + "end": 3052.94, + "probability": 0.7581 + }, + { + "start": 3052.98, + "end": 3054.86, + "probability": 0.6882 + }, + { + "start": 3054.96, + "end": 3056.5, + "probability": 0.5446 + }, + { + "start": 3056.62, + "end": 3057.86, + "probability": 0.6776 + }, + { + "start": 3058.2, + "end": 3060.4, + "probability": 0.6628 + }, + { + "start": 3060.94, + "end": 3062.12, + "probability": 0.0923 + }, + { + "start": 3063.1, + "end": 3065.71, + "probability": 0.7519 + }, + { + "start": 3066.34, + "end": 3071.88, + "probability": 0.8806 + }, + { + "start": 3072.62, + "end": 3074.56, + "probability": 0.937 + }, + { + "start": 3074.72, + "end": 3082.76, + "probability": 0.8901 + }, + { + "start": 3082.76, + "end": 3087.32, + "probability": 0.9968 + }, + { + "start": 3087.44, + "end": 3090.56, + "probability": 0.9576 + }, + { + "start": 3091.06, + "end": 3091.9, + "probability": 0.7464 + }, + { + "start": 3092.04, + "end": 3093.64, + "probability": 0.8347 + }, + { + "start": 3094.1, + "end": 3095.34, + "probability": 0.0272 + }, + { + "start": 3095.38, + "end": 3095.98, + "probability": 0.0522 + }, + { + "start": 3096.48, + "end": 3097.92, + "probability": 0.4201 + }, + { + "start": 3098.1, + "end": 3099.05, + "probability": 0.6207 + }, + { + "start": 3099.14, + "end": 3102.62, + "probability": 0.8384 + }, + { + "start": 3102.72, + "end": 3103.82, + "probability": 0.885 + }, + { + "start": 3104.26, + "end": 3106.7, + "probability": 0.7886 + }, + { + "start": 3106.7, + "end": 3110.36, + "probability": 0.8979 + }, + { + "start": 3110.92, + "end": 3113.02, + "probability": 0.9175 + }, + { + "start": 3113.02, + "end": 3116.34, + "probability": 0.7793 + }, + { + "start": 3116.4, + "end": 3118.72, + "probability": 0.8409 + }, + { + "start": 3119.34, + "end": 3119.94, + "probability": 0.9191 + }, + { + "start": 3120.26, + "end": 3123.14, + "probability": 0.9954 + }, + { + "start": 3123.66, + "end": 3123.78, + "probability": 0.6514 + }, + { + "start": 3123.86, + "end": 3126.09, + "probability": 0.9685 + }, + { + "start": 3126.5, + "end": 3127.28, + "probability": 0.7476 + }, + { + "start": 3127.46, + "end": 3128.58, + "probability": 0.9877 + }, + { + "start": 3128.64, + "end": 3129.12, + "probability": 0.7278 + }, + { + "start": 3129.36, + "end": 3132.02, + "probability": 0.844 + }, + { + "start": 3132.06, + "end": 3133.72, + "probability": 0.9158 + }, + { + "start": 3133.98, + "end": 3136.6, + "probability": 0.4182 + }, + { + "start": 3137.08, + "end": 3143.66, + "probability": 0.8213 + }, + { + "start": 3143.9, + "end": 3144.18, + "probability": 0.7925 + }, + { + "start": 3146.48, + "end": 3148.48, + "probability": 0.8738 + }, + { + "start": 3149.18, + "end": 3150.04, + "probability": 0.8386 + }, + { + "start": 3150.18, + "end": 3155.88, + "probability": 0.9763 + }, + { + "start": 3157.92, + "end": 3159.42, + "probability": 0.3581 + }, + { + "start": 3160.22, + "end": 3160.54, + "probability": 0.8167 + }, + { + "start": 3161.97, + "end": 3166.78, + "probability": 0.9486 + }, + { + "start": 3167.78, + "end": 3172.34, + "probability": 0.7365 + }, + { + "start": 3172.46, + "end": 3174.12, + "probability": 0.7592 + }, + { + "start": 3175.6, + "end": 3181.24, + "probability": 0.9819 + }, + { + "start": 3182.26, + "end": 3186.88, + "probability": 0.965 + }, + { + "start": 3186.9, + "end": 3190.18, + "probability": 0.9925 + }, + { + "start": 3190.8, + "end": 3191.1, + "probability": 0.6029 + }, + { + "start": 3192.1, + "end": 3196.34, + "probability": 0.6777 + }, + { + "start": 3196.34, + "end": 3196.66, + "probability": 0.8314 + }, + { + "start": 3196.8, + "end": 3201.6, + "probability": 0.9214 + }, + { + "start": 3201.62, + "end": 3202.01, + "probability": 0.6543 + }, + { + "start": 3202.58, + "end": 3203.36, + "probability": 0.6937 + }, + { + "start": 3203.54, + "end": 3204.62, + "probability": 0.5085 + }, + { + "start": 3204.76, + "end": 3205.3, + "probability": 0.6843 + }, + { + "start": 3205.9, + "end": 3207.66, + "probability": 0.7573 + }, + { + "start": 3207.68, + "end": 3209.18, + "probability": 0.8824 + }, + { + "start": 3209.28, + "end": 3210.02, + "probability": 0.8287 + }, + { + "start": 3210.34, + "end": 3213.48, + "probability": 0.9932 + }, + { + "start": 3214.1, + "end": 3215.32, + "probability": 0.9175 + }, + { + "start": 3216.36, + "end": 3218.0, + "probability": 0.949 + }, + { + "start": 3218.48, + "end": 3220.68, + "probability": 0.9451 + }, + { + "start": 3221.2, + "end": 3224.12, + "probability": 0.9922 + }, + { + "start": 3224.12, + "end": 3227.74, + "probability": 0.9939 + }, + { + "start": 3229.02, + "end": 3229.74, + "probability": 0.0966 + }, + { + "start": 3229.78, + "end": 3234.48, + "probability": 0.8369 + }, + { + "start": 3234.54, + "end": 3235.04, + "probability": 0.542 + }, + { + "start": 3235.16, + "end": 3236.18, + "probability": 0.9282 + }, + { + "start": 3236.94, + "end": 3238.1, + "probability": 0.8684 + }, + { + "start": 3238.2, + "end": 3239.87, + "probability": 0.9844 + }, + { + "start": 3240.34, + "end": 3241.08, + "probability": 0.4695 + }, + { + "start": 3241.44, + "end": 3243.52, + "probability": 0.7095 + }, + { + "start": 3244.26, + "end": 3245.0, + "probability": 0.7303 + }, + { + "start": 3245.44, + "end": 3248.81, + "probability": 0.9736 + }, + { + "start": 3248.9, + "end": 3251.34, + "probability": 0.9943 + }, + { + "start": 3251.34, + "end": 3254.86, + "probability": 0.9034 + }, + { + "start": 3255.74, + "end": 3257.0, + "probability": 0.772 + }, + { + "start": 3257.46, + "end": 3258.22, + "probability": 0.0622 + }, + { + "start": 3258.4, + "end": 3260.08, + "probability": 0.8372 + }, + { + "start": 3261.2, + "end": 3264.5, + "probability": 0.3422 + }, + { + "start": 3264.6, + "end": 3267.48, + "probability": 0.5349 + }, + { + "start": 3268.1, + "end": 3270.1, + "probability": 0.0134 + }, + { + "start": 3270.12, + "end": 3272.0, + "probability": 0.6183 + }, + { + "start": 3272.26, + "end": 3275.36, + "probability": 0.6723 + }, + { + "start": 3278.5, + "end": 3280.78, + "probability": 0.8022 + }, + { + "start": 3281.88, + "end": 3282.08, + "probability": 0.4697 + }, + { + "start": 3282.2, + "end": 3286.9, + "probability": 0.9912 + }, + { + "start": 3286.9, + "end": 3290.58, + "probability": 0.9912 + }, + { + "start": 3291.2, + "end": 3291.76, + "probability": 0.7777 + }, + { + "start": 3291.94, + "end": 3292.74, + "probability": 0.9938 + }, + { + "start": 3292.82, + "end": 3296.16, + "probability": 0.9185 + }, + { + "start": 3297.1, + "end": 3302.44, + "probability": 0.8341 + }, + { + "start": 3302.75, + "end": 3304.88, + "probability": 0.959 + }, + { + "start": 3306.5, + "end": 3306.86, + "probability": 0.5745 + }, + { + "start": 3306.94, + "end": 3307.4, + "probability": 0.9351 + }, + { + "start": 3307.46, + "end": 3308.9, + "probability": 0.8723 + }, + { + "start": 3308.98, + "end": 3309.36, + "probability": 0.8038 + }, + { + "start": 3309.42, + "end": 3310.36, + "probability": 0.9415 + }, + { + "start": 3310.6, + "end": 3312.74, + "probability": 0.9772 + }, + { + "start": 3313.3, + "end": 3315.84, + "probability": 0.9849 + }, + { + "start": 3315.9, + "end": 3316.87, + "probability": 0.8917 + }, + { + "start": 3317.6, + "end": 3319.84, + "probability": 0.9736 + }, + { + "start": 3320.3, + "end": 3322.66, + "probability": 0.9797 + }, + { + "start": 3322.82, + "end": 3324.06, + "probability": 0.4721 + }, + { + "start": 3324.14, + "end": 3324.74, + "probability": 0.8319 + }, + { + "start": 3325.32, + "end": 3326.96, + "probability": 0.8931 + }, + { + "start": 3327.04, + "end": 3327.96, + "probability": 0.9415 + }, + { + "start": 3328.08, + "end": 3331.02, + "probability": 0.9708 + }, + { + "start": 3332.2, + "end": 3335.66, + "probability": 0.9619 + }, + { + "start": 3336.3, + "end": 3338.92, + "probability": 0.8626 + }, + { + "start": 3339.14, + "end": 3341.73, + "probability": 0.9907 + }, + { + "start": 3342.2, + "end": 3343.4, + "probability": 0.755 + }, + { + "start": 3343.96, + "end": 3345.18, + "probability": 0.6013 + }, + { + "start": 3345.78, + "end": 3349.3, + "probability": 0.9264 + }, + { + "start": 3349.42, + "end": 3350.44, + "probability": 0.9216 + }, + { + "start": 3350.8, + "end": 3351.7, + "probability": 0.9623 + }, + { + "start": 3351.8, + "end": 3351.98, + "probability": 0.6083 + }, + { + "start": 3352.76, + "end": 3355.82, + "probability": 0.5295 + }, + { + "start": 3356.36, + "end": 3358.5, + "probability": 0.9924 + }, + { + "start": 3359.14, + "end": 3360.82, + "probability": 0.9825 + }, + { + "start": 3361.14, + "end": 3363.92, + "probability": 0.824 + }, + { + "start": 3364.42, + "end": 3364.62, + "probability": 0.9207 + }, + { + "start": 3364.74, + "end": 3367.82, + "probability": 0.7364 + }, + { + "start": 3367.84, + "end": 3368.58, + "probability": 0.9108 + }, + { + "start": 3369.6, + "end": 3371.88, + "probability": 0.8303 + }, + { + "start": 3372.0, + "end": 3372.6, + "probability": 0.5195 + }, + { + "start": 3372.68, + "end": 3374.68, + "probability": 0.956 + }, + { + "start": 3375.02, + "end": 3375.5, + "probability": 0.6789 + }, + { + "start": 3375.76, + "end": 3376.24, + "probability": 0.7078 + }, + { + "start": 3376.78, + "end": 3377.36, + "probability": 0.3022 + }, + { + "start": 3377.66, + "end": 3379.5, + "probability": 0.841 + }, + { + "start": 3379.58, + "end": 3382.38, + "probability": 0.9897 + }, + { + "start": 3382.46, + "end": 3385.5, + "probability": 0.9514 + }, + { + "start": 3386.32, + "end": 3392.1, + "probability": 0.8485 + }, + { + "start": 3392.32, + "end": 3394.84, + "probability": 0.9857 + }, + { + "start": 3395.5, + "end": 3396.06, + "probability": 0.8103 + }, + { + "start": 3396.12, + "end": 3397.48, + "probability": 0.7292 + }, + { + "start": 3397.48, + "end": 3397.72, + "probability": 0.4779 + }, + { + "start": 3397.72, + "end": 3398.26, + "probability": 0.5946 + }, + { + "start": 3401.24, + "end": 3403.94, + "probability": 0.6079 + }, + { + "start": 3406.5, + "end": 3407.38, + "probability": 0.0679 + }, + { + "start": 3407.38, + "end": 3407.86, + "probability": 0.4184 + }, + { + "start": 3407.98, + "end": 3411.86, + "probability": 0.9856 + }, + { + "start": 3411.92, + "end": 3412.98, + "probability": 0.7656 + }, + { + "start": 3413.72, + "end": 3415.04, + "probability": 0.691 + }, + { + "start": 3417.72, + "end": 3417.82, + "probability": 0.2325 + }, + { + "start": 3417.9, + "end": 3417.9, + "probability": 0.0519 + }, + { + "start": 3417.9, + "end": 3421.74, + "probability": 0.5252 + }, + { + "start": 3422.56, + "end": 3426.38, + "probability": 0.5962 + }, + { + "start": 3427.76, + "end": 3431.02, + "probability": 0.5626 + }, + { + "start": 3431.38, + "end": 3431.38, + "probability": 0.0529 + }, + { + "start": 3432.66, + "end": 3433.52, + "probability": 0.0424 + }, + { + "start": 3433.84, + "end": 3434.72, + "probability": 0.2625 + }, + { + "start": 3436.88, + "end": 3438.9, + "probability": 0.8105 + }, + { + "start": 3445.4, + "end": 3447.02, + "probability": 0.7049 + }, + { + "start": 3447.72, + "end": 3449.32, + "probability": 0.7856 + }, + { + "start": 3452.74, + "end": 3455.3, + "probability": 0.8352 + }, + { + "start": 3455.82, + "end": 3460.92, + "probability": 0.4483 + }, + { + "start": 3461.58, + "end": 3466.22, + "probability": 0.9137 + }, + { + "start": 3466.34, + "end": 3467.06, + "probability": 0.6853 + }, + { + "start": 3472.56, + "end": 3473.02, + "probability": 0.5237 + }, + { + "start": 3480.28, + "end": 3483.4, + "probability": 0.6291 + }, + { + "start": 3485.64, + "end": 3488.52, + "probability": 0.7384 + }, + { + "start": 3491.12, + "end": 3492.34, + "probability": 0.7546 + }, + { + "start": 3493.46, + "end": 3495.6, + "probability": 0.4985 + }, + { + "start": 3496.24, + "end": 3499.24, + "probability": 0.9576 + }, + { + "start": 3499.78, + "end": 3500.48, + "probability": 0.9554 + }, + { + "start": 3501.8, + "end": 3503.34, + "probability": 0.4727 + }, + { + "start": 3503.44, + "end": 3506.26, + "probability": 0.8285 + }, + { + "start": 3506.66, + "end": 3511.94, + "probability": 0.8923 + }, + { + "start": 3512.76, + "end": 3512.94, + "probability": 0.4213 + }, + { + "start": 3513.0, + "end": 3513.42, + "probability": 0.4859 + }, + { + "start": 3513.8, + "end": 3516.14, + "probability": 0.3286 + }, + { + "start": 3529.3, + "end": 3529.42, + "probability": 0.165 + }, + { + "start": 3529.42, + "end": 3532.38, + "probability": 0.4858 + }, + { + "start": 3532.84, + "end": 3534.44, + "probability": 0.6992 + }, + { + "start": 3535.8, + "end": 3539.5, + "probability": 0.9622 + }, + { + "start": 3540.68, + "end": 3541.12, + "probability": 0.8268 + }, + { + "start": 3541.38, + "end": 3542.86, + "probability": 0.621 + }, + { + "start": 3543.68, + "end": 3546.54, + "probability": 0.7871 + }, + { + "start": 3547.38, + "end": 3550.04, + "probability": 0.8807 + }, + { + "start": 3550.28, + "end": 3551.92, + "probability": 0.7556 + }, + { + "start": 3552.88, + "end": 3555.08, + "probability": 0.9045 + }, + { + "start": 3560.3, + "end": 3561.6, + "probability": 0.4816 + }, + { + "start": 3574.18, + "end": 3576.46, + "probability": 0.4766 + }, + { + "start": 3576.46, + "end": 3576.86, + "probability": 0.5404 + }, + { + "start": 3578.96, + "end": 3580.72, + "probability": 0.5594 + }, + { + "start": 3581.58, + "end": 3583.84, + "probability": 0.9128 + }, + { + "start": 3584.44, + "end": 3585.81, + "probability": 0.8429 + }, + { + "start": 3586.26, + "end": 3587.24, + "probability": 0.5904 + }, + { + "start": 3589.04, + "end": 3591.74, + "probability": 0.494 + }, + { + "start": 3593.46, + "end": 3600.3, + "probability": 0.9032 + }, + { + "start": 3601.78, + "end": 3605.48, + "probability": 0.973 + }, + { + "start": 3605.48, + "end": 3608.98, + "probability": 0.9963 + }, + { + "start": 3610.54, + "end": 3618.66, + "probability": 0.9668 + }, + { + "start": 3620.56, + "end": 3624.02, + "probability": 0.7123 + }, + { + "start": 3624.34, + "end": 3628.4, + "probability": 0.9883 + }, + { + "start": 3629.1, + "end": 3629.98, + "probability": 0.7298 + }, + { + "start": 3631.04, + "end": 3638.84, + "probability": 0.9937 + }, + { + "start": 3639.74, + "end": 3640.92, + "probability": 0.7708 + }, + { + "start": 3641.48, + "end": 3644.18, + "probability": 0.9083 + }, + { + "start": 3644.62, + "end": 3646.38, + "probability": 0.9381 + }, + { + "start": 3647.06, + "end": 3649.12, + "probability": 0.9733 + }, + { + "start": 3650.46, + "end": 3652.72, + "probability": 0.9791 + }, + { + "start": 3652.74, + "end": 3655.42, + "probability": 0.9329 + }, + { + "start": 3655.8, + "end": 3658.56, + "probability": 0.7684 + }, + { + "start": 3658.58, + "end": 3659.14, + "probability": 0.929 + }, + { + "start": 3659.2, + "end": 3660.18, + "probability": 0.9521 + }, + { + "start": 3661.68, + "end": 3665.76, + "probability": 0.9462 + }, + { + "start": 3666.36, + "end": 3669.2, + "probability": 0.9901 + }, + { + "start": 3669.46, + "end": 3673.84, + "probability": 0.9824 + }, + { + "start": 3674.18, + "end": 3675.08, + "probability": 0.8651 + }, + { + "start": 3675.36, + "end": 3675.98, + "probability": 0.725 + }, + { + "start": 3676.4, + "end": 3677.56, + "probability": 0.8504 + }, + { + "start": 3677.9, + "end": 3679.5, + "probability": 0.9487 + }, + { + "start": 3680.78, + "end": 3684.42, + "probability": 0.9898 + }, + { + "start": 3685.1, + "end": 3688.88, + "probability": 0.9975 + }, + { + "start": 3689.98, + "end": 3690.98, + "probability": 0.8774 + }, + { + "start": 3691.98, + "end": 3694.94, + "probability": 0.9808 + }, + { + "start": 3695.78, + "end": 3698.48, + "probability": 0.9959 + }, + { + "start": 3698.48, + "end": 3702.42, + "probability": 0.9922 + }, + { + "start": 3703.14, + "end": 3705.42, + "probability": 0.9938 + }, + { + "start": 3705.48, + "end": 3710.12, + "probability": 0.9536 + }, + { + "start": 3710.84, + "end": 3711.48, + "probability": 0.8198 + }, + { + "start": 3711.64, + "end": 3714.28, + "probability": 0.9858 + }, + { + "start": 3714.5, + "end": 3715.88, + "probability": 0.9948 + }, + { + "start": 3716.76, + "end": 3717.78, + "probability": 0.8936 + }, + { + "start": 3718.78, + "end": 3721.52, + "probability": 0.9976 + }, + { + "start": 3722.86, + "end": 3726.98, + "probability": 0.9902 + }, + { + "start": 3728.58, + "end": 3731.88, + "probability": 0.9942 + }, + { + "start": 3732.34, + "end": 3734.5, + "probability": 0.9458 + }, + { + "start": 3735.02, + "end": 3740.3, + "probability": 0.9844 + }, + { + "start": 3741.28, + "end": 3743.93, + "probability": 0.9888 + }, + { + "start": 3744.9, + "end": 3746.88, + "probability": 0.9307 + }, + { + "start": 3748.32, + "end": 3749.76, + "probability": 0.8249 + }, + { + "start": 3750.4, + "end": 3753.28, + "probability": 0.9995 + }, + { + "start": 3754.14, + "end": 3756.9, + "probability": 0.9857 + }, + { + "start": 3757.3, + "end": 3758.36, + "probability": 0.8126 + }, + { + "start": 3758.94, + "end": 3761.36, + "probability": 0.9259 + }, + { + "start": 3762.04, + "end": 3763.34, + "probability": 0.9634 + }, + { + "start": 3763.7, + "end": 3769.34, + "probability": 0.9808 + }, + { + "start": 3770.76, + "end": 3772.6, + "probability": 0.7194 + }, + { + "start": 3773.12, + "end": 3774.22, + "probability": 0.8063 + }, + { + "start": 3774.34, + "end": 3774.91, + "probability": 0.4127 + }, + { + "start": 3775.86, + "end": 3776.68, + "probability": 0.9555 + }, + { + "start": 3776.78, + "end": 3776.98, + "probability": 0.7101 + }, + { + "start": 3777.62, + "end": 3778.18, + "probability": 0.791 + }, + { + "start": 3778.64, + "end": 3781.24, + "probability": 0.8824 + }, + { + "start": 3782.18, + "end": 3782.18, + "probability": 0.2823 + }, + { + "start": 3806.48, + "end": 3807.72, + "probability": 0.5383 + }, + { + "start": 3807.8, + "end": 3808.64, + "probability": 0.7719 + }, + { + "start": 3808.96, + "end": 3811.98, + "probability": 0.9766 + }, + { + "start": 3813.12, + "end": 3815.92, + "probability": 0.9939 + }, + { + "start": 3815.92, + "end": 3819.26, + "probability": 0.9965 + }, + { + "start": 3820.18, + "end": 3822.66, + "probability": 0.993 + }, + { + "start": 3823.3, + "end": 3825.66, + "probability": 0.9937 + }, + { + "start": 3826.38, + "end": 3829.62, + "probability": 0.9958 + }, + { + "start": 3829.8, + "end": 3834.96, + "probability": 0.9832 + }, + { + "start": 3836.2, + "end": 3837.8, + "probability": 0.87 + }, + { + "start": 3837.88, + "end": 3839.66, + "probability": 0.5341 + }, + { + "start": 3840.26, + "end": 3840.75, + "probability": 0.775 + }, + { + "start": 3840.9, + "end": 3842.7, + "probability": 0.9858 + }, + { + "start": 3842.76, + "end": 3845.24, + "probability": 0.9939 + }, + { + "start": 3846.0, + "end": 3848.22, + "probability": 0.8088 + }, + { + "start": 3848.7, + "end": 3851.2, + "probability": 0.9899 + }, + { + "start": 3851.66, + "end": 3853.88, + "probability": 0.848 + }, + { + "start": 3855.52, + "end": 3858.42, + "probability": 0.9803 + }, + { + "start": 3858.56, + "end": 3861.04, + "probability": 0.9038 + }, + { + "start": 3861.32, + "end": 3861.9, + "probability": 0.908 + }, + { + "start": 3862.5, + "end": 3867.08, + "probability": 0.9919 + }, + { + "start": 3867.08, + "end": 3870.74, + "probability": 0.9894 + }, + { + "start": 3871.16, + "end": 3874.56, + "probability": 0.9553 + }, + { + "start": 3875.24, + "end": 3877.51, + "probability": 0.973 + }, + { + "start": 3877.88, + "end": 3883.12, + "probability": 0.9333 + }, + { + "start": 3884.08, + "end": 3887.0, + "probability": 0.9448 + }, + { + "start": 3887.14, + "end": 3887.66, + "probability": 0.6898 + }, + { + "start": 3888.32, + "end": 3889.66, + "probability": 0.9271 + }, + { + "start": 3890.1, + "end": 3893.64, + "probability": 0.9509 + }, + { + "start": 3894.54, + "end": 3896.24, + "probability": 0.9836 + }, + { + "start": 3896.86, + "end": 3899.24, + "probability": 0.9241 + }, + { + "start": 3899.88, + "end": 3904.24, + "probability": 0.9029 + }, + { + "start": 3904.76, + "end": 3908.82, + "probability": 0.8967 + }, + { + "start": 3909.64, + "end": 3911.56, + "probability": 0.9513 + }, + { + "start": 3912.18, + "end": 3921.02, + "probability": 0.9858 + }, + { + "start": 3921.52, + "end": 3922.02, + "probability": 0.1069 + }, + { + "start": 3922.02, + "end": 3925.58, + "probability": 0.9386 + }, + { + "start": 3925.58, + "end": 3928.58, + "probability": 0.9878 + }, + { + "start": 3929.97, + "end": 3931.87, + "probability": 0.802 + }, + { + "start": 3932.78, + "end": 3937.46, + "probability": 0.9828 + }, + { + "start": 3937.46, + "end": 3942.75, + "probability": 0.9803 + }, + { + "start": 3943.98, + "end": 3947.96, + "probability": 0.9956 + }, + { + "start": 3947.96, + "end": 3951.84, + "probability": 0.9987 + }, + { + "start": 3952.7, + "end": 3955.46, + "probability": 0.9512 + }, + { + "start": 3955.54, + "end": 3959.47, + "probability": 0.9863 + }, + { + "start": 3960.02, + "end": 3961.14, + "probability": 0.8835 + }, + { + "start": 3961.74, + "end": 3964.4, + "probability": 0.9628 + }, + { + "start": 3964.48, + "end": 3966.22, + "probability": 0.8728 + }, + { + "start": 3966.99, + "end": 3968.71, + "probability": 0.9503 + }, + { + "start": 3970.52, + "end": 3970.52, + "probability": 0.088 + }, + { + "start": 3970.52, + "end": 3973.78, + "probability": 0.9896 + }, + { + "start": 3974.28, + "end": 3976.38, + "probability": 0.9741 + }, + { + "start": 3978.98, + "end": 3981.74, + "probability": 0.8691 + }, + { + "start": 3982.0, + "end": 3983.24, + "probability": 0.993 + }, + { + "start": 3983.52, + "end": 3983.68, + "probability": 0.4561 + }, + { + "start": 3983.68, + "end": 3986.38, + "probability": 0.9875 + }, + { + "start": 3986.84, + "end": 3990.78, + "probability": 0.9986 + }, + { + "start": 3991.18, + "end": 3991.74, + "probability": 0.7512 + }, + { + "start": 3991.82, + "end": 3996.04, + "probability": 0.986 + }, + { + "start": 3996.96, + "end": 3998.72, + "probability": 0.8112 + }, + { + "start": 3999.36, + "end": 4001.86, + "probability": 0.9946 + }, + { + "start": 4002.18, + "end": 4006.19, + "probability": 0.9976 + }, + { + "start": 4007.06, + "end": 4011.48, + "probability": 0.8965 + }, + { + "start": 4012.04, + "end": 4013.38, + "probability": 0.9054 + }, + { + "start": 4013.96, + "end": 4016.38, + "probability": 0.9949 + }, + { + "start": 4016.82, + "end": 4019.72, + "probability": 0.9836 + }, + { + "start": 4019.8, + "end": 4021.08, + "probability": 0.7231 + }, + { + "start": 4021.22, + "end": 4024.22, + "probability": 0.9374 + }, + { + "start": 4024.22, + "end": 4027.32, + "probability": 0.9984 + }, + { + "start": 4027.76, + "end": 4029.6, + "probability": 0.7862 + }, + { + "start": 4029.7, + "end": 4031.76, + "probability": 0.9979 + }, + { + "start": 4031.86, + "end": 4032.04, + "probability": 0.7761 + }, + { + "start": 4032.28, + "end": 4032.88, + "probability": 0.8295 + }, + { + "start": 4033.46, + "end": 4035.56, + "probability": 0.994 + }, + { + "start": 4036.9, + "end": 4037.34, + "probability": 0.7179 + }, + { + "start": 4037.94, + "end": 4040.06, + "probability": 0.9105 + }, + { + "start": 4040.94, + "end": 4043.53, + "probability": 0.7587 + }, + { + "start": 4043.64, + "end": 4044.12, + "probability": 0.8879 + }, + { + "start": 4059.34, + "end": 4061.52, + "probability": 0.6823 + }, + { + "start": 4062.91, + "end": 4065.71, + "probability": 0.9912 + }, + { + "start": 4067.04, + "end": 4070.28, + "probability": 0.966 + }, + { + "start": 4071.38, + "end": 4072.36, + "probability": 0.7972 + }, + { + "start": 4072.72, + "end": 4076.4, + "probability": 0.9321 + }, + { + "start": 4076.46, + "end": 4077.08, + "probability": 0.9857 + }, + { + "start": 4077.8, + "end": 4081.24, + "probability": 0.9997 + }, + { + "start": 4083.7, + "end": 4086.9, + "probability": 0.8574 + }, + { + "start": 4087.11, + "end": 4089.26, + "probability": 0.9942 + }, + { + "start": 4089.3, + "end": 4091.36, + "probability": 0.9963 + }, + { + "start": 4095.12, + "end": 4097.46, + "probability": 0.5023 + }, + { + "start": 4097.46, + "end": 4098.78, + "probability": 0.8281 + }, + { + "start": 4101.36, + "end": 4103.02, + "probability": 0.4006 + }, + { + "start": 4103.36, + "end": 4105.38, + "probability": 0.9043 + }, + { + "start": 4106.72, + "end": 4108.91, + "probability": 0.9182 + }, + { + "start": 4110.16, + "end": 4113.0, + "probability": 0.9276 + }, + { + "start": 4113.02, + "end": 4118.98, + "probability": 0.9917 + }, + { + "start": 4119.6, + "end": 4121.9, + "probability": 0.5838 + }, + { + "start": 4123.02, + "end": 4123.94, + "probability": 0.8312 + }, + { + "start": 4124.5, + "end": 4124.84, + "probability": 0.5943 + }, + { + "start": 4125.88, + "end": 4128.4, + "probability": 0.9885 + }, + { + "start": 4129.3, + "end": 4132.48, + "probability": 0.9771 + }, + { + "start": 4133.5, + "end": 4136.36, + "probability": 0.9939 + }, + { + "start": 4137.2, + "end": 4139.7, + "probability": 0.8587 + }, + { + "start": 4140.5, + "end": 4142.86, + "probability": 0.7516 + }, + { + "start": 4142.94, + "end": 4144.94, + "probability": 0.9106 + }, + { + "start": 4145.8, + "end": 4148.02, + "probability": 0.8506 + }, + { + "start": 4148.94, + "end": 4151.86, + "probability": 0.5636 + }, + { + "start": 4152.42, + "end": 4154.38, + "probability": 0.9574 + }, + { + "start": 4154.98, + "end": 4156.62, + "probability": 0.9911 + }, + { + "start": 4157.16, + "end": 4158.12, + "probability": 0.9985 + }, + { + "start": 4158.86, + "end": 4159.88, + "probability": 0.8921 + }, + { + "start": 4160.8, + "end": 4162.44, + "probability": 0.9938 + }, + { + "start": 4163.16, + "end": 4164.98, + "probability": 0.8502 + }, + { + "start": 4165.5, + "end": 4165.96, + "probability": 0.9238 + }, + { + "start": 4167.24, + "end": 4170.58, + "probability": 0.9512 + }, + { + "start": 4170.66, + "end": 4174.22, + "probability": 0.9421 + }, + { + "start": 4174.82, + "end": 4180.56, + "probability": 0.9951 + }, + { + "start": 4181.44, + "end": 4182.58, + "probability": 0.9263 + }, + { + "start": 4183.24, + "end": 4184.12, + "probability": 0.7846 + }, + { + "start": 4185.28, + "end": 4186.2, + "probability": 0.8941 + }, + { + "start": 4186.78, + "end": 4188.16, + "probability": 0.93 + }, + { + "start": 4188.8, + "end": 4190.7, + "probability": 0.9985 + }, + { + "start": 4191.16, + "end": 4195.24, + "probability": 0.9677 + }, + { + "start": 4195.9, + "end": 4198.54, + "probability": 0.968 + }, + { + "start": 4199.34, + "end": 4202.0, + "probability": 0.7033 + }, + { + "start": 4202.4, + "end": 4204.8, + "probability": 0.9229 + }, + { + "start": 4205.6, + "end": 4207.58, + "probability": 0.7658 + }, + { + "start": 4207.58, + "end": 4209.84, + "probability": 0.9382 + }, + { + "start": 4209.84, + "end": 4210.42, + "probability": 0.6964 + }, + { + "start": 4211.88, + "end": 4212.48, + "probability": 0.771 + }, + { + "start": 4213.36, + "end": 4216.28, + "probability": 0.9969 + }, + { + "start": 4216.28, + "end": 4220.06, + "probability": 0.9888 + }, + { + "start": 4221.24, + "end": 4223.22, + "probability": 0.9381 + }, + { + "start": 4224.22, + "end": 4226.36, + "probability": 0.7993 + }, + { + "start": 4226.36, + "end": 4230.28, + "probability": 0.8788 + }, + { + "start": 4231.62, + "end": 4234.42, + "probability": 0.9084 + }, + { + "start": 4235.16, + "end": 4238.42, + "probability": 0.9766 + }, + { + "start": 4238.42, + "end": 4240.76, + "probability": 0.8749 + }, + { + "start": 4241.6, + "end": 4245.88, + "probability": 0.8917 + }, + { + "start": 4246.9, + "end": 4247.38, + "probability": 0.7714 + }, + { + "start": 4248.86, + "end": 4250.12, + "probability": 0.7715 + }, + { + "start": 4251.3, + "end": 4254.46, + "probability": 0.9758 + }, + { + "start": 4254.96, + "end": 4255.74, + "probability": 0.3019 + }, + { + "start": 4258.6, + "end": 4259.42, + "probability": 0.7947 + }, + { + "start": 4259.58, + "end": 4260.86, + "probability": 0.7809 + }, + { + "start": 4261.02, + "end": 4265.78, + "probability": 0.9942 + }, + { + "start": 4266.2, + "end": 4271.46, + "probability": 0.9977 + }, + { + "start": 4271.64, + "end": 4272.28, + "probability": 0.5573 + }, + { + "start": 4272.82, + "end": 4278.38, + "probability": 0.9433 + }, + { + "start": 4279.12, + "end": 4283.48, + "probability": 0.8715 + }, + { + "start": 4283.84, + "end": 4284.9, + "probability": 0.9272 + }, + { + "start": 4285.02, + "end": 4286.2, + "probability": 0.8964 + }, + { + "start": 4286.68, + "end": 4288.16, + "probability": 0.9773 + }, + { + "start": 4288.28, + "end": 4291.4, + "probability": 0.9942 + }, + { + "start": 4292.6, + "end": 4294.94, + "probability": 0.9985 + }, + { + "start": 4295.56, + "end": 4297.58, + "probability": 0.9124 + }, + { + "start": 4298.14, + "end": 4302.48, + "probability": 0.9909 + }, + { + "start": 4302.54, + "end": 4307.98, + "probability": 0.972 + }, + { + "start": 4308.52, + "end": 4311.88, + "probability": 0.789 + }, + { + "start": 4312.5, + "end": 4315.14, + "probability": 0.8067 + }, + { + "start": 4315.7, + "end": 4320.86, + "probability": 0.9478 + }, + { + "start": 4321.56, + "end": 4321.56, + "probability": 0.2496 + }, + { + "start": 4321.56, + "end": 4325.0, + "probability": 0.9639 + }, + { + "start": 4325.42, + "end": 4330.32, + "probability": 0.9988 + }, + { + "start": 4330.32, + "end": 4335.86, + "probability": 0.9993 + }, + { + "start": 4335.92, + "end": 4339.98, + "probability": 0.9796 + }, + { + "start": 4339.98, + "end": 4343.78, + "probability": 0.9127 + }, + { + "start": 4343.82, + "end": 4347.94, + "probability": 0.9387 + }, + { + "start": 4348.0, + "end": 4348.44, + "probability": 0.6898 + }, + { + "start": 4348.6, + "end": 4351.7, + "probability": 0.4089 + }, + { + "start": 4351.8, + "end": 4352.82, + "probability": 0.6714 + }, + { + "start": 4353.02, + "end": 4353.78, + "probability": 0.3022 + }, + { + "start": 4354.86, + "end": 4359.62, + "probability": 0.9588 + }, + { + "start": 4360.42, + "end": 4361.33, + "probability": 0.579 + }, + { + "start": 4362.32, + "end": 4362.88, + "probability": 0.7078 + }, + { + "start": 4377.58, + "end": 4380.16, + "probability": 0.6974 + }, + { + "start": 4380.4, + "end": 4386.96, + "probability": 0.7404 + }, + { + "start": 4386.96, + "end": 4389.04, + "probability": 0.4351 + }, + { + "start": 4389.96, + "end": 4391.9, + "probability": 0.5137 + }, + { + "start": 4392.24, + "end": 4392.48, + "probability": 0.804 + }, + { + "start": 4393.18, + "end": 4394.38, + "probability": 0.6691 + }, + { + "start": 4394.5, + "end": 4395.86, + "probability": 0.5086 + }, + { + "start": 4396.28, + "end": 4398.0, + "probability": 0.8713 + }, + { + "start": 4398.14, + "end": 4401.48, + "probability": 0.985 + }, + { + "start": 4401.48, + "end": 4406.1, + "probability": 0.9961 + }, + { + "start": 4406.1, + "end": 4410.88, + "probability": 0.9958 + }, + { + "start": 4411.1, + "end": 4412.96, + "probability": 0.6219 + }, + { + "start": 4413.2, + "end": 4414.92, + "probability": 0.9242 + }, + { + "start": 4415.82, + "end": 4420.9, + "probability": 0.9903 + }, + { + "start": 4420.9, + "end": 4424.84, + "probability": 0.9815 + }, + { + "start": 4425.34, + "end": 4432.06, + "probability": 0.8009 + }, + { + "start": 4432.22, + "end": 4436.28, + "probability": 0.9128 + }, + { + "start": 4436.28, + "end": 4440.48, + "probability": 0.9355 + }, + { + "start": 4440.6, + "end": 4441.2, + "probability": 0.7086 + }, + { + "start": 4441.4, + "end": 4443.08, + "probability": 0.8123 + }, + { + "start": 4443.62, + "end": 4446.74, + "probability": 0.7729 + }, + { + "start": 4447.04, + "end": 4447.28, + "probability": 0.8596 + }, + { + "start": 4448.44, + "end": 4449.36, + "probability": 0.8011 + }, + { + "start": 4449.42, + "end": 4453.8, + "probability": 0.8435 + }, + { + "start": 4453.8, + "end": 4458.84, + "probability": 0.9971 + }, + { + "start": 4459.58, + "end": 4462.44, + "probability": 0.9894 + }, + { + "start": 4462.52, + "end": 4462.82, + "probability": 0.9205 + }, + { + "start": 4463.46, + "end": 4463.98, + "probability": 0.7869 + }, + { + "start": 4464.72, + "end": 4465.7, + "probability": 0.7934 + }, + { + "start": 4465.86, + "end": 4467.7, + "probability": 0.7747 + }, + { + "start": 4467.78, + "end": 4469.18, + "probability": 0.9132 + }, + { + "start": 4470.06, + "end": 4472.44, + "probability": 0.7293 + }, + { + "start": 4490.2, + "end": 4492.02, + "probability": 0.447 + }, + { + "start": 4492.14, + "end": 4492.16, + "probability": 0.5327 + }, + { + "start": 4492.16, + "end": 4493.12, + "probability": 0.5509 + }, + { + "start": 4493.44, + "end": 4495.12, + "probability": 0.671 + }, + { + "start": 4495.95, + "end": 4499.35, + "probability": 0.6944 + }, + { + "start": 4499.94, + "end": 4503.08, + "probability": 0.9966 + }, + { + "start": 4503.26, + "end": 4503.88, + "probability": 0.9065 + }, + { + "start": 4503.92, + "end": 4505.22, + "probability": 0.987 + }, + { + "start": 4505.28, + "end": 4506.08, + "probability": 0.6519 + }, + { + "start": 4506.28, + "end": 4507.1, + "probability": 0.9307 + }, + { + "start": 4507.96, + "end": 4510.44, + "probability": 0.9984 + }, + { + "start": 4511.14, + "end": 4513.38, + "probability": 0.9836 + }, + { + "start": 4513.56, + "end": 4515.06, + "probability": 0.999 + }, + { + "start": 4516.41, + "end": 4521.12, + "probability": 0.8169 + }, + { + "start": 4521.88, + "end": 4524.76, + "probability": 0.96 + }, + { + "start": 4525.06, + "end": 4525.58, + "probability": 0.82 + }, + { + "start": 4525.64, + "end": 4528.64, + "probability": 0.9644 + }, + { + "start": 4528.7, + "end": 4531.66, + "probability": 0.9874 + }, + { + "start": 4531.79, + "end": 4532.28, + "probability": 0.7182 + }, + { + "start": 4533.04, + "end": 4534.08, + "probability": 0.7021 + }, + { + "start": 4534.18, + "end": 4534.84, + "probability": 0.9088 + }, + { + "start": 4535.32, + "end": 4538.16, + "probability": 0.9855 + }, + { + "start": 4538.16, + "end": 4540.82, + "probability": 0.999 + }, + { + "start": 4540.98, + "end": 4541.58, + "probability": 0.4699 + }, + { + "start": 4541.58, + "end": 4542.24, + "probability": 0.613 + }, + { + "start": 4542.52, + "end": 4548.92, + "probability": 0.9104 + }, + { + "start": 4549.23, + "end": 4554.72, + "probability": 0.9023 + }, + { + "start": 4554.8, + "end": 4555.14, + "probability": 0.8243 + }, + { + "start": 4555.8, + "end": 4560.4, + "probability": 0.9767 + }, + { + "start": 4560.74, + "end": 4563.0, + "probability": 0.7586 + }, + { + "start": 4563.04, + "end": 4567.02, + "probability": 0.9544 + }, + { + "start": 4567.14, + "end": 4568.98, + "probability": 0.9417 + }, + { + "start": 4569.08, + "end": 4573.24, + "probability": 0.9954 + }, + { + "start": 4573.7, + "end": 4574.56, + "probability": 0.8647 + }, + { + "start": 4575.8, + "end": 4577.3, + "probability": 0.8142 + }, + { + "start": 4577.96, + "end": 4580.74, + "probability": 0.8943 + }, + { + "start": 4600.52, + "end": 4602.22, + "probability": 0.8208 + }, + { + "start": 4602.4, + "end": 4604.42, + "probability": 0.7173 + }, + { + "start": 4604.52, + "end": 4605.08, + "probability": 0.943 + }, + { + "start": 4605.2, + "end": 4610.32, + "probability": 0.9668 + }, + { + "start": 4610.52, + "end": 4611.88, + "probability": 0.9487 + }, + { + "start": 4612.0, + "end": 4612.3, + "probability": 0.6929 + }, + { + "start": 4612.52, + "end": 4614.0, + "probability": 0.9268 + }, + { + "start": 4614.08, + "end": 4615.64, + "probability": 0.9906 + }, + { + "start": 4615.72, + "end": 4616.82, + "probability": 0.8756 + }, + { + "start": 4617.24, + "end": 4618.52, + "probability": 0.9869 + }, + { + "start": 4618.64, + "end": 4619.32, + "probability": 0.7379 + }, + { + "start": 4619.38, + "end": 4622.78, + "probability": 0.9382 + }, + { + "start": 4623.58, + "end": 4625.54, + "probability": 0.9954 + }, + { + "start": 4625.76, + "end": 4628.74, + "probability": 0.9587 + }, + { + "start": 4628.84, + "end": 4631.96, + "probability": 0.8005 + }, + { + "start": 4632.32, + "end": 4634.92, + "probability": 0.8826 + }, + { + "start": 4635.06, + "end": 4635.72, + "probability": 0.6256 + }, + { + "start": 4636.16, + "end": 4637.9, + "probability": 0.862 + }, + { + "start": 4638.68, + "end": 4639.16, + "probability": 0.9877 + }, + { + "start": 4639.52, + "end": 4640.4, + "probability": 0.9396 + }, + { + "start": 4640.54, + "end": 4640.92, + "probability": 0.7638 + }, + { + "start": 4641.02, + "end": 4642.94, + "probability": 0.8506 + }, + { + "start": 4642.94, + "end": 4644.74, + "probability": 0.9968 + }, + { + "start": 4645.6, + "end": 4647.1, + "probability": 0.6637 + }, + { + "start": 4647.2, + "end": 4650.96, + "probability": 0.9392 + }, + { + "start": 4651.26, + "end": 4652.14, + "probability": 0.8745 + }, + { + "start": 4652.52, + "end": 4654.14, + "probability": 0.9618 + }, + { + "start": 4654.22, + "end": 4658.84, + "probability": 0.9825 + }, + { + "start": 4659.26, + "end": 4659.99, + "probability": 0.6908 + }, + { + "start": 4660.3, + "end": 4660.68, + "probability": 0.7198 + }, + { + "start": 4660.74, + "end": 4663.12, + "probability": 0.8569 + }, + { + "start": 4663.64, + "end": 4667.28, + "probability": 0.9873 + }, + { + "start": 4667.82, + "end": 4669.88, + "probability": 0.9982 + }, + { + "start": 4670.2, + "end": 4671.86, + "probability": 0.9977 + }, + { + "start": 4672.28, + "end": 4674.44, + "probability": 0.9951 + }, + { + "start": 4674.44, + "end": 4677.14, + "probability": 0.9942 + }, + { + "start": 4677.62, + "end": 4680.88, + "probability": 0.9609 + }, + { + "start": 4681.18, + "end": 4681.76, + "probability": 0.958 + }, + { + "start": 4682.46, + "end": 4685.02, + "probability": 0.9979 + }, + { + "start": 4685.02, + "end": 4688.0, + "probability": 0.9893 + }, + { + "start": 4688.2, + "end": 4690.46, + "probability": 0.5584 + }, + { + "start": 4690.56, + "end": 4691.3, + "probability": 0.6478 + }, + { + "start": 4691.78, + "end": 4693.18, + "probability": 0.94 + }, + { + "start": 4693.3, + "end": 4694.88, + "probability": 0.8862 + }, + { + "start": 4695.3, + "end": 4696.38, + "probability": 0.9959 + }, + { + "start": 4696.52, + "end": 4697.1, + "probability": 0.3693 + }, + { + "start": 4697.2, + "end": 4699.6, + "probability": 0.9824 + }, + { + "start": 4699.68, + "end": 4700.88, + "probability": 0.724 + }, + { + "start": 4701.08, + "end": 4703.84, + "probability": 0.896 + }, + { + "start": 4703.9, + "end": 4705.04, + "probability": 0.8455 + }, + { + "start": 4705.1, + "end": 4705.5, + "probability": 0.8423 + }, + { + "start": 4705.5, + "end": 4707.08, + "probability": 0.79 + }, + { + "start": 4707.6, + "end": 4709.66, + "probability": 0.9902 + }, + { + "start": 4710.04, + "end": 4713.3, + "probability": 0.9124 + }, + { + "start": 4713.4, + "end": 4717.72, + "probability": 0.9253 + }, + { + "start": 4717.9, + "end": 4718.24, + "probability": 0.3382 + }, + { + "start": 4718.36, + "end": 4718.62, + "probability": 0.4266 + }, + { + "start": 4718.7, + "end": 4719.36, + "probability": 0.5102 + }, + { + "start": 4719.74, + "end": 4723.2, + "probability": 0.9497 + }, + { + "start": 4723.62, + "end": 4729.16, + "probability": 0.9877 + }, + { + "start": 4729.48, + "end": 4729.98, + "probability": 0.9163 + }, + { + "start": 4730.16, + "end": 4732.18, + "probability": 0.9165 + }, + { + "start": 4732.22, + "end": 4732.5, + "probability": 0.8102 + }, + { + "start": 4732.64, + "end": 4732.9, + "probability": 0.5058 + }, + { + "start": 4733.0, + "end": 4733.64, + "probability": 0.9315 + }, + { + "start": 4734.32, + "end": 4736.12, + "probability": 0.7594 + }, + { + "start": 4762.02, + "end": 4762.04, + "probability": 0.7398 + }, + { + "start": 4762.04, + "end": 4763.62, + "probability": 0.6472 + }, + { + "start": 4765.12, + "end": 4769.62, + "probability": 0.7015 + }, + { + "start": 4770.32, + "end": 4776.6, + "probability": 0.9419 + }, + { + "start": 4778.48, + "end": 4780.48, + "probability": 0.8079 + }, + { + "start": 4785.36, + "end": 4790.74, + "probability": 0.8598 + }, + { + "start": 4791.6, + "end": 4795.36, + "probability": 0.943 + }, + { + "start": 4795.88, + "end": 4797.8, + "probability": 0.9686 + }, + { + "start": 4798.98, + "end": 4801.33, + "probability": 0.6303 + }, + { + "start": 4804.8, + "end": 4808.72, + "probability": 0.6628 + }, + { + "start": 4808.8, + "end": 4809.3, + "probability": 0.8689 + }, + { + "start": 4809.36, + "end": 4810.42, + "probability": 0.8501 + }, + { + "start": 4810.54, + "end": 4811.8, + "probability": 0.7882 + }, + { + "start": 4812.96, + "end": 4815.12, + "probability": 0.7504 + }, + { + "start": 4815.58, + "end": 4817.04, + "probability": 0.9297 + }, + { + "start": 4817.62, + "end": 4817.78, + "probability": 0.6755 + }, + { + "start": 4818.32, + "end": 4821.4, + "probability": 0.8448 + }, + { + "start": 4822.22, + "end": 4825.44, + "probability": 0.9035 + }, + { + "start": 4825.72, + "end": 4828.64, + "probability": 0.9957 + }, + { + "start": 4829.36, + "end": 4832.98, + "probability": 0.834 + }, + { + "start": 4833.64, + "end": 4834.24, + "probability": 0.9982 + }, + { + "start": 4835.04, + "end": 4838.54, + "probability": 0.9912 + }, + { + "start": 4839.76, + "end": 4840.23, + "probability": 0.5263 + }, + { + "start": 4840.56, + "end": 4846.56, + "probability": 0.9932 + }, + { + "start": 4847.86, + "end": 4850.74, + "probability": 0.9522 + }, + { + "start": 4850.74, + "end": 4854.5, + "probability": 0.9817 + }, + { + "start": 4855.08, + "end": 4858.26, + "probability": 0.5285 + }, + { + "start": 4861.56, + "end": 4863.1, + "probability": 0.0959 + }, + { + "start": 4863.1, + "end": 4864.24, + "probability": 0.676 + }, + { + "start": 4864.32, + "end": 4865.06, + "probability": 0.8336 + }, + { + "start": 4865.16, + "end": 4865.6, + "probability": 0.4007 + }, + { + "start": 4865.7, + "end": 4867.86, + "probability": 0.0286 + }, + { + "start": 4867.86, + "end": 4869.73, + "probability": 0.3207 + }, + { + "start": 4870.4, + "end": 4875.26, + "probability": 0.8585 + }, + { + "start": 4876.42, + "end": 4880.52, + "probability": 0.8237 + }, + { + "start": 4882.2, + "end": 4885.22, + "probability": 0.9947 + }, + { + "start": 4885.92, + "end": 4888.54, + "probability": 0.9629 + }, + { + "start": 4889.32, + "end": 4893.44, + "probability": 0.929 + }, + { + "start": 4893.8, + "end": 4894.26, + "probability": 0.7455 + }, + { + "start": 4895.54, + "end": 4896.12, + "probability": 0.7851 + }, + { + "start": 4897.16, + "end": 4900.9, + "probability": 0.8575 + }, + { + "start": 4902.76, + "end": 4903.6, + "probability": 0.6363 + }, + { + "start": 4904.42, + "end": 4907.22, + "probability": 0.9293 + }, + { + "start": 4908.72, + "end": 4910.88, + "probability": 0.602 + }, + { + "start": 4912.36, + "end": 4912.94, + "probability": 0.9186 + }, + { + "start": 4914.68, + "end": 4915.48, + "probability": 0.5601 + }, + { + "start": 4915.96, + "end": 4918.4, + "probability": 0.6834 + }, + { + "start": 4918.4, + "end": 4918.64, + "probability": 0.8141 + }, + { + "start": 4919.16, + "end": 4921.9, + "probability": 0.6031 + }, + { + "start": 4923.18, + "end": 4926.54, + "probability": 0.0164 + }, + { + "start": 4926.62, + "end": 4927.71, + "probability": 0.7064 + }, + { + "start": 4931.18, + "end": 4934.06, + "probability": 0.7867 + }, + { + "start": 4934.28, + "end": 4937.46, + "probability": 0.9686 + }, + { + "start": 4937.96, + "end": 4938.42, + "probability": 0.5588 + }, + { + "start": 4938.58, + "end": 4939.68, + "probability": 0.6901 + }, + { + "start": 4940.92, + "end": 4946.74, + "probability": 0.7196 + }, + { + "start": 4947.76, + "end": 4947.76, + "probability": 0.7303 + }, + { + "start": 4947.76, + "end": 4949.32, + "probability": 0.9824 + }, + { + "start": 4949.42, + "end": 4950.74, + "probability": 0.9545 + }, + { + "start": 4951.2, + "end": 4951.9, + "probability": 0.6917 + }, + { + "start": 4952.38, + "end": 4953.78, + "probability": 0.9912 + }, + { + "start": 4954.36, + "end": 4957.08, + "probability": 0.8484 + }, + { + "start": 4957.52, + "end": 4959.46, + "probability": 0.9858 + }, + { + "start": 4960.16, + "end": 4963.04, + "probability": 0.7083 + }, + { + "start": 4963.26, + "end": 4967.2, + "probability": 0.605 + }, + { + "start": 4967.32, + "end": 4967.98, + "probability": 0.806 + }, + { + "start": 4968.24, + "end": 4970.64, + "probability": 0.7636 + }, + { + "start": 4970.92, + "end": 4971.48, + "probability": 0.5764 + }, + { + "start": 4973.39, + "end": 4976.32, + "probability": 0.879 + }, + { + "start": 4976.64, + "end": 4978.88, + "probability": 0.9987 + }, + { + "start": 4978.88, + "end": 4982.02, + "probability": 0.9912 + }, + { + "start": 4982.1, + "end": 4983.68, + "probability": 0.7651 + }, + { + "start": 4983.78, + "end": 4984.84, + "probability": 0.9981 + }, + { + "start": 4986.24, + "end": 4988.8, + "probability": 0.4622 + }, + { + "start": 4989.32, + "end": 4991.22, + "probability": 0.9707 + }, + { + "start": 4991.88, + "end": 4996.46, + "probability": 0.9587 + }, + { + "start": 4997.18, + "end": 4998.74, + "probability": 0.9965 + }, + { + "start": 4998.82, + "end": 5004.4, + "probability": 0.9927 + }, + { + "start": 5004.4, + "end": 5008.7, + "probability": 0.7004 + }, + { + "start": 5009.44, + "end": 5010.86, + "probability": 0.7585 + }, + { + "start": 5011.02, + "end": 5011.86, + "probability": 0.9517 + }, + { + "start": 5011.9, + "end": 5012.86, + "probability": 0.7529 + }, + { + "start": 5013.38, + "end": 5017.96, + "probability": 0.9492 + }, + { + "start": 5018.36, + "end": 5020.4, + "probability": 0.9797 + }, + { + "start": 5020.5, + "end": 5022.92, + "probability": 0.9898 + }, + { + "start": 5023.0, + "end": 5023.82, + "probability": 0.819 + }, + { + "start": 5024.28, + "end": 5024.66, + "probability": 0.7293 + }, + { + "start": 5024.8, + "end": 5026.72, + "probability": 0.8092 + }, + { + "start": 5027.46, + "end": 5032.24, + "probability": 0.9849 + }, + { + "start": 5033.16, + "end": 5041.18, + "probability": 0.893 + }, + { + "start": 5041.34, + "end": 5044.88, + "probability": 0.9726 + }, + { + "start": 5045.54, + "end": 5048.24, + "probability": 0.9164 + }, + { + "start": 5049.1, + "end": 5053.4, + "probability": 0.8361 + }, + { + "start": 5053.8, + "end": 5055.64, + "probability": 0.9677 + }, + { + "start": 5056.04, + "end": 5058.44, + "probability": 0.3024 + }, + { + "start": 5058.44, + "end": 5058.92, + "probability": 0.4144 + }, + { + "start": 5058.92, + "end": 5061.4, + "probability": 0.4007 + }, + { + "start": 5061.58, + "end": 5064.04, + "probability": 0.7571 + }, + { + "start": 5064.22, + "end": 5068.2, + "probability": 0.9579 + }, + { + "start": 5068.86, + "end": 5070.56, + "probability": 0.9927 + }, + { + "start": 5071.08, + "end": 5073.52, + "probability": 0.9648 + }, + { + "start": 5073.98, + "end": 5077.92, + "probability": 0.9907 + }, + { + "start": 5078.54, + "end": 5079.5, + "probability": 0.8718 + }, + { + "start": 5079.68, + "end": 5081.3, + "probability": 0.9465 + }, + { + "start": 5081.64, + "end": 5083.18, + "probability": 0.7904 + }, + { + "start": 5083.82, + "end": 5089.68, + "probability": 0.9917 + }, + { + "start": 5090.12, + "end": 5090.64, + "probability": 0.5526 + }, + { + "start": 5090.71, + "end": 5098.72, + "probability": 0.8338 + }, + { + "start": 5098.78, + "end": 5100.7, + "probability": 0.9935 + }, + { + "start": 5101.18, + "end": 5101.54, + "probability": 0.5411 + }, + { + "start": 5101.82, + "end": 5107.64, + "probability": 0.9589 + }, + { + "start": 5107.66, + "end": 5110.54, + "probability": 0.9969 + }, + { + "start": 5110.94, + "end": 5111.42, + "probability": 0.6328 + }, + { + "start": 5111.5, + "end": 5113.72, + "probability": 0.7211 + }, + { + "start": 5114.32, + "end": 5116.12, + "probability": 0.9978 + }, + { + "start": 5117.02, + "end": 5117.92, + "probability": 0.9243 + }, + { + "start": 5118.32, + "end": 5122.8, + "probability": 0.8418 + }, + { + "start": 5123.12, + "end": 5124.48, + "probability": 0.4114 + }, + { + "start": 5125.28, + "end": 5126.58, + "probability": 0.951 + }, + { + "start": 5127.1, + "end": 5132.98, + "probability": 0.9331 + }, + { + "start": 5133.92, + "end": 5135.42, + "probability": 0.9599 + }, + { + "start": 5136.26, + "end": 5137.02, + "probability": 0.8724 + }, + { + "start": 5137.56, + "end": 5138.68, + "probability": 0.707 + }, + { + "start": 5139.32, + "end": 5142.6, + "probability": 0.922 + }, + { + "start": 5142.64, + "end": 5147.08, + "probability": 0.9902 + }, + { + "start": 5147.46, + "end": 5150.18, + "probability": 0.9788 + }, + { + "start": 5150.9, + "end": 5151.54, + "probability": 0.7635 + }, + { + "start": 5152.02, + "end": 5154.12, + "probability": 0.8479 + }, + { + "start": 5164.16, + "end": 5164.32, + "probability": 0.7789 + }, + { + "start": 5164.34, + "end": 5165.32, + "probability": 0.5524 + }, + { + "start": 5167.86, + "end": 5168.16, + "probability": 0.8369 + }, + { + "start": 5170.04, + "end": 5170.76, + "probability": 0.6174 + }, + { + "start": 5170.84, + "end": 5174.78, + "probability": 0.9177 + }, + { + "start": 5175.1, + "end": 5177.32, + "probability": 0.6614 + }, + { + "start": 5178.18, + "end": 5180.96, + "probability": 0.9043 + }, + { + "start": 5181.88, + "end": 5184.82, + "probability": 0.9678 + }, + { + "start": 5187.66, + "end": 5190.74, + "probability": 0.6662 + }, + { + "start": 5191.6, + "end": 5194.3, + "probability": 0.8447 + }, + { + "start": 5194.84, + "end": 5197.92, + "probability": 0.9873 + }, + { + "start": 5198.78, + "end": 5200.98, + "probability": 0.9735 + }, + { + "start": 5202.02, + "end": 5202.95, + "probability": 0.9365 + }, + { + "start": 5203.88, + "end": 5204.6, + "probability": 0.9614 + }, + { + "start": 5205.98, + "end": 5207.86, + "probability": 0.6382 + }, + { + "start": 5208.0, + "end": 5209.46, + "probability": 0.6409 + }, + { + "start": 5210.18, + "end": 5212.42, + "probability": 0.931 + }, + { + "start": 5213.08, + "end": 5214.1, + "probability": 0.8346 + }, + { + "start": 5214.18, + "end": 5214.7, + "probability": 0.922 + }, + { + "start": 5214.74, + "end": 5216.18, + "probability": 0.9921 + }, + { + "start": 5217.36, + "end": 5220.1, + "probability": 0.8853 + }, + { + "start": 5220.22, + "end": 5223.5, + "probability": 0.9891 + }, + { + "start": 5223.64, + "end": 5224.14, + "probability": 0.8008 + }, + { + "start": 5224.86, + "end": 5227.3, + "probability": 0.7237 + }, + { + "start": 5229.54, + "end": 5233.18, + "probability": 0.9668 + }, + { + "start": 5233.18, + "end": 5236.23, + "probability": 0.9943 + }, + { + "start": 5236.92, + "end": 5237.4, + "probability": 0.8581 + }, + { + "start": 5237.48, + "end": 5238.5, + "probability": 0.9489 + }, + { + "start": 5239.46, + "end": 5241.29, + "probability": 0.7598 + }, + { + "start": 5242.46, + "end": 5246.14, + "probability": 0.9958 + }, + { + "start": 5246.94, + "end": 5251.6, + "probability": 0.6741 + }, + { + "start": 5253.06, + "end": 5256.6, + "probability": 0.861 + }, + { + "start": 5257.58, + "end": 5260.26, + "probability": 0.8623 + }, + { + "start": 5262.5, + "end": 5264.3, + "probability": 0.9777 + }, + { + "start": 5265.22, + "end": 5265.98, + "probability": 0.7731 + }, + { + "start": 5266.7, + "end": 5268.04, + "probability": 0.9536 + }, + { + "start": 5268.98, + "end": 5269.98, + "probability": 0.5734 + }, + { + "start": 5270.94, + "end": 5273.22, + "probability": 0.8735 + }, + { + "start": 5273.28, + "end": 5275.74, + "probability": 0.7855 + }, + { + "start": 5275.76, + "end": 5277.28, + "probability": 0.9327 + }, + { + "start": 5277.98, + "end": 5281.68, + "probability": 0.99 + }, + { + "start": 5283.38, + "end": 5286.26, + "probability": 0.9334 + }, + { + "start": 5286.42, + "end": 5289.4, + "probability": 0.9874 + }, + { + "start": 5289.74, + "end": 5290.24, + "probability": 0.7393 + }, + { + "start": 5290.36, + "end": 5290.76, + "probability": 0.7311 + }, + { + "start": 5290.96, + "end": 5291.94, + "probability": 0.9666 + }, + { + "start": 5292.38, + "end": 5295.64, + "probability": 0.993 + }, + { + "start": 5296.04, + "end": 5296.94, + "probability": 0.6229 + }, + { + "start": 5297.36, + "end": 5298.32, + "probability": 0.8477 + }, + { + "start": 5298.48, + "end": 5299.04, + "probability": 0.3882 + }, + { + "start": 5299.24, + "end": 5300.52, + "probability": 0.7373 + }, + { + "start": 5300.58, + "end": 5305.92, + "probability": 0.9893 + }, + { + "start": 5306.5, + "end": 5309.66, + "probability": 0.9945 + }, + { + "start": 5309.76, + "end": 5310.1, + "probability": 0.9026 + }, + { + "start": 5310.6, + "end": 5312.44, + "probability": 0.8477 + }, + { + "start": 5312.52, + "end": 5312.84, + "probability": 0.8614 + }, + { + "start": 5313.78, + "end": 5314.48, + "probability": 0.6844 + }, + { + "start": 5314.72, + "end": 5317.9, + "probability": 0.9368 + }, + { + "start": 5334.5, + "end": 5338.1, + "probability": 0.7289 + }, + { + "start": 5338.74, + "end": 5344.66, + "probability": 0.9614 + }, + { + "start": 5345.32, + "end": 5347.78, + "probability": 0.8746 + }, + { + "start": 5349.7, + "end": 5353.78, + "probability": 0.8774 + }, + { + "start": 5354.4, + "end": 5355.76, + "probability": 0.9436 + }, + { + "start": 5356.46, + "end": 5360.54, + "probability": 0.9734 + }, + { + "start": 5361.68, + "end": 5369.38, + "probability": 0.9583 + }, + { + "start": 5370.88, + "end": 5371.48, + "probability": 0.656 + }, + { + "start": 5372.82, + "end": 5378.98, + "probability": 0.9958 + }, + { + "start": 5379.84, + "end": 5381.32, + "probability": 0.9722 + }, + { + "start": 5381.42, + "end": 5382.54, + "probability": 0.8145 + }, + { + "start": 5383.5, + "end": 5387.78, + "probability": 0.828 + }, + { + "start": 5387.92, + "end": 5394.76, + "probability": 0.8772 + }, + { + "start": 5396.52, + "end": 5397.28, + "probability": 0.5842 + }, + { + "start": 5397.46, + "end": 5398.68, + "probability": 0.903 + }, + { + "start": 5398.74, + "end": 5404.06, + "probability": 0.97 + }, + { + "start": 5404.76, + "end": 5410.36, + "probability": 0.9985 + }, + { + "start": 5411.08, + "end": 5413.44, + "probability": 0.8924 + }, + { + "start": 5414.35, + "end": 5418.76, + "probability": 0.9042 + }, + { + "start": 5419.62, + "end": 5423.38, + "probability": 0.9258 + }, + { + "start": 5423.9, + "end": 5424.36, + "probability": 0.9821 + }, + { + "start": 5424.7, + "end": 5424.94, + "probability": 0.8312 + }, + { + "start": 5426.44, + "end": 5427.1, + "probability": 0.6714 + }, + { + "start": 5427.48, + "end": 5430.2, + "probability": 0.6601 + }, + { + "start": 5430.28, + "end": 5431.42, + "probability": 0.6392 + }, + { + "start": 5431.9, + "end": 5433.28, + "probability": 0.8175 + }, + { + "start": 5448.3, + "end": 5448.76, + "probability": 0.7132 + }, + { + "start": 5450.04, + "end": 5451.1, + "probability": 0.6675 + }, + { + "start": 5451.4, + "end": 5452.52, + "probability": 0.8289 + }, + { + "start": 5452.58, + "end": 5456.62, + "probability": 0.9681 + }, + { + "start": 5456.74, + "end": 5457.72, + "probability": 0.9952 + }, + { + "start": 5458.5, + "end": 5459.5, + "probability": 0.9072 + }, + { + "start": 5461.0, + "end": 5462.32, + "probability": 0.88 + }, + { + "start": 5462.54, + "end": 5464.22, + "probability": 0.9253 + }, + { + "start": 5465.9, + "end": 5466.9, + "probability": 0.6194 + }, + { + "start": 5466.98, + "end": 5469.76, + "probability": 0.9226 + }, + { + "start": 5471.0, + "end": 5471.88, + "probability": 0.5888 + }, + { + "start": 5477.16, + "end": 5479.62, + "probability": 0.86 + }, + { + "start": 5479.62, + "end": 5484.26, + "probability": 0.9764 + }, + { + "start": 5485.92, + "end": 5486.02, + "probability": 0.323 + }, + { + "start": 5486.66, + "end": 5488.34, + "probability": 0.9855 + }, + { + "start": 5488.46, + "end": 5490.9, + "probability": 0.9481 + }, + { + "start": 5492.48, + "end": 5496.22, + "probability": 0.9861 + }, + { + "start": 5497.54, + "end": 5498.26, + "probability": 0.7505 + }, + { + "start": 5499.72, + "end": 5503.52, + "probability": 0.9709 + }, + { + "start": 5503.7, + "end": 5505.82, + "probability": 0.9304 + }, + { + "start": 5508.38, + "end": 5510.74, + "probability": 0.8037 + }, + { + "start": 5511.32, + "end": 5512.44, + "probability": 0.9915 + }, + { + "start": 5513.36, + "end": 5516.5, + "probability": 0.9824 + }, + { + "start": 5517.6, + "end": 5521.2, + "probability": 0.9645 + }, + { + "start": 5521.92, + "end": 5522.92, + "probability": 0.9223 + }, + { + "start": 5524.1, + "end": 5530.2, + "probability": 0.9985 + }, + { + "start": 5530.2, + "end": 5534.46, + "probability": 0.9777 + }, + { + "start": 5536.78, + "end": 5541.8, + "probability": 0.9978 + }, + { + "start": 5541.92, + "end": 5543.54, + "probability": 0.9148 + }, + { + "start": 5544.3, + "end": 5546.3, + "probability": 0.7462 + }, + { + "start": 5547.12, + "end": 5549.5, + "probability": 0.9702 + }, + { + "start": 5551.08, + "end": 5554.52, + "probability": 0.8057 + }, + { + "start": 5554.52, + "end": 5559.4, + "probability": 0.9919 + }, + { + "start": 5561.16, + "end": 5563.2, + "probability": 0.8755 + }, + { + "start": 5563.28, + "end": 5566.32, + "probability": 0.958 + }, + { + "start": 5567.0, + "end": 5570.84, + "probability": 0.9914 + }, + { + "start": 5571.98, + "end": 5574.5, + "probability": 0.9363 + }, + { + "start": 5574.54, + "end": 5576.52, + "probability": 0.8246 + }, + { + "start": 5577.26, + "end": 5579.28, + "probability": 0.9956 + }, + { + "start": 5581.28, + "end": 5585.02, + "probability": 0.9591 + }, + { + "start": 5585.02, + "end": 5588.02, + "probability": 0.9893 + }, + { + "start": 5589.06, + "end": 5589.8, + "probability": 0.666 + }, + { + "start": 5591.82, + "end": 5593.34, + "probability": 0.6175 + }, + { + "start": 5593.44, + "end": 5597.22, + "probability": 0.9756 + }, + { + "start": 5597.86, + "end": 5599.48, + "probability": 0.7561 + }, + { + "start": 5599.66, + "end": 5602.66, + "probability": 0.974 + }, + { + "start": 5602.66, + "end": 5605.9, + "probability": 0.9969 + }, + { + "start": 5605.94, + "end": 5607.34, + "probability": 0.9753 + }, + { + "start": 5608.32, + "end": 5612.12, + "probability": 0.6603 + }, + { + "start": 5612.2, + "end": 5613.46, + "probability": 0.8948 + }, + { + "start": 5614.96, + "end": 5615.6, + "probability": 0.4005 + }, + { + "start": 5615.62, + "end": 5615.88, + "probability": 0.5157 + }, + { + "start": 5617.44, + "end": 5620.3, + "probability": 0.6064 + }, + { + "start": 5620.52, + "end": 5620.62, + "probability": 0.5728 + }, + { + "start": 5621.54, + "end": 5622.22, + "probability": 0.852 + }, + { + "start": 5623.38, + "end": 5624.3, + "probability": 0.8589 + }, + { + "start": 5624.94, + "end": 5627.72, + "probability": 0.9956 + }, + { + "start": 5627.82, + "end": 5630.14, + "probability": 0.988 + }, + { + "start": 5630.76, + "end": 5638.04, + "probability": 0.9606 + }, + { + "start": 5638.04, + "end": 5641.84, + "probability": 0.9915 + }, + { + "start": 5642.58, + "end": 5645.84, + "probability": 0.9674 + }, + { + "start": 5647.38, + "end": 5651.16, + "probability": 0.9362 + }, + { + "start": 5651.72, + "end": 5653.06, + "probability": 0.9592 + }, + { + "start": 5653.86, + "end": 5654.56, + "probability": 0.82 + }, + { + "start": 5655.84, + "end": 5657.32, + "probability": 0.9835 + }, + { + "start": 5657.4, + "end": 5659.3, + "probability": 0.9679 + }, + { + "start": 5659.9, + "end": 5662.16, + "probability": 0.8686 + }, + { + "start": 5663.76, + "end": 5668.88, + "probability": 0.9197 + }, + { + "start": 5669.84, + "end": 5671.52, + "probability": 0.8306 + }, + { + "start": 5672.28, + "end": 5675.32, + "probability": 0.6966 + }, + { + "start": 5676.9, + "end": 5679.62, + "probability": 0.8447 + }, + { + "start": 5680.58, + "end": 5681.68, + "probability": 0.4814 + }, + { + "start": 5682.78, + "end": 5684.6, + "probability": 0.824 + }, + { + "start": 5687.28, + "end": 5688.34, + "probability": 0.6588 + }, + { + "start": 5688.5, + "end": 5689.38, + "probability": 0.9385 + }, + { + "start": 5689.44, + "end": 5693.46, + "probability": 0.9468 + }, + { + "start": 5695.24, + "end": 5695.62, + "probability": 0.5184 + }, + { + "start": 5695.92, + "end": 5696.76, + "probability": 0.5061 + }, + { + "start": 5696.86, + "end": 5698.0, + "probability": 0.9618 + }, + { + "start": 5698.1, + "end": 5700.78, + "probability": 0.9082 + }, + { + "start": 5701.94, + "end": 5702.74, + "probability": 0.7456 + }, + { + "start": 5703.24, + "end": 5707.94, + "probability": 0.6576 + }, + { + "start": 5708.06, + "end": 5709.08, + "probability": 0.9334 + }, + { + "start": 5709.56, + "end": 5710.79, + "probability": 0.7864 + }, + { + "start": 5711.02, + "end": 5711.8, + "probability": 0.9305 + }, + { + "start": 5712.64, + "end": 5715.1, + "probability": 0.7126 + }, + { + "start": 5715.1, + "end": 5717.54, + "probability": 0.9876 + }, + { + "start": 5720.84, + "end": 5723.06, + "probability": 0.8402 + }, + { + "start": 5723.12, + "end": 5725.82, + "probability": 0.7662 + }, + { + "start": 5725.82, + "end": 5729.42, + "probability": 0.9907 + }, + { + "start": 5730.38, + "end": 5731.22, + "probability": 0.5838 + }, + { + "start": 5731.26, + "end": 5733.82, + "probability": 0.953 + }, + { + "start": 5733.92, + "end": 5736.16, + "probability": 0.845 + }, + { + "start": 5736.28, + "end": 5738.04, + "probability": 0.9673 + }, + { + "start": 5738.76, + "end": 5740.88, + "probability": 0.9894 + }, + { + "start": 5742.08, + "end": 5744.76, + "probability": 0.754 + }, + { + "start": 5745.74, + "end": 5746.9, + "probability": 0.6901 + }, + { + "start": 5748.4, + "end": 5750.84, + "probability": 0.9603 + }, + { + "start": 5750.84, + "end": 5753.36, + "probability": 0.8707 + }, + { + "start": 5753.52, + "end": 5757.36, + "probability": 0.6391 + }, + { + "start": 5757.44, + "end": 5757.56, + "probability": 0.2826 + }, + { + "start": 5757.62, + "end": 5758.56, + "probability": 0.7386 + }, + { + "start": 5758.6, + "end": 5761.0, + "probability": 0.9545 + }, + { + "start": 5761.64, + "end": 5764.5, + "probability": 0.9172 + }, + { + "start": 5766.24, + "end": 5768.34, + "probability": 0.9717 + }, + { + "start": 5768.34, + "end": 5770.68, + "probability": 0.9995 + }, + { + "start": 5772.22, + "end": 5776.82, + "probability": 0.9895 + }, + { + "start": 5776.99, + "end": 5781.14, + "probability": 0.9976 + }, + { + "start": 5781.14, + "end": 5783.32, + "probability": 0.9136 + }, + { + "start": 5783.98, + "end": 5786.96, + "probability": 0.5658 + }, + { + "start": 5787.92, + "end": 5788.9, + "probability": 0.9635 + }, + { + "start": 5789.64, + "end": 5790.16, + "probability": 0.694 + }, + { + "start": 5790.52, + "end": 5791.16, + "probability": 0.9576 + }, + { + "start": 5792.44, + "end": 5793.68, + "probability": 0.8589 + }, + { + "start": 5793.88, + "end": 5796.78, + "probability": 0.9693 + }, + { + "start": 5796.98, + "end": 5797.2, + "probability": 0.029 + }, + { + "start": 5797.9, + "end": 5798.39, + "probability": 0.9787 + }, + { + "start": 5798.76, + "end": 5799.86, + "probability": 0.5935 + }, + { + "start": 5800.86, + "end": 5801.78, + "probability": 0.8987 + }, + { + "start": 5802.04, + "end": 5802.14, + "probability": 0.5537 + }, + { + "start": 5802.5, + "end": 5803.64, + "probability": 0.0614 + }, + { + "start": 5804.36, + "end": 5809.46, + "probability": 0.8218 + }, + { + "start": 5810.52, + "end": 5812.66, + "probability": 0.6782 + }, + { + "start": 5813.52, + "end": 5814.87, + "probability": 0.6294 + }, + { + "start": 5815.64, + "end": 5816.54, + "probability": 0.2063 + }, + { + "start": 5818.06, + "end": 5818.94, + "probability": 0.3355 + }, + { + "start": 5819.06, + "end": 5819.88, + "probability": 0.5349 + }, + { + "start": 5819.98, + "end": 5819.98, + "probability": 0.5605 + }, + { + "start": 5819.98, + "end": 5820.56, + "probability": 0.4832 + }, + { + "start": 5820.8, + "end": 5821.34, + "probability": 0.7382 + }, + { + "start": 5823.32, + "end": 5824.06, + "probability": 0.9316 + }, + { + "start": 5824.36, + "end": 5825.7, + "probability": 0.8555 + }, + { + "start": 5827.56, + "end": 5829.54, + "probability": 0.9166 + }, + { + "start": 5829.78, + "end": 5830.06, + "probability": 0.4996 + }, + { + "start": 5831.56, + "end": 5836.58, + "probability": 0.9833 + }, + { + "start": 5837.26, + "end": 5837.54, + "probability": 0.5383 + }, + { + "start": 5853.02, + "end": 5853.02, + "probability": 0.3279 + }, + { + "start": 5853.02, + "end": 5855.62, + "probability": 0.6286 + }, + { + "start": 5855.7, + "end": 5859.8, + "probability": 0.79 + }, + { + "start": 5863.98, + "end": 5866.82, + "probability": 0.6392 + }, + { + "start": 5867.0, + "end": 5867.24, + "probability": 0.7449 + }, + { + "start": 5867.62, + "end": 5867.62, + "probability": 0.5978 + }, + { + "start": 5868.0, + "end": 5869.24, + "probability": 0.6978 + }, + { + "start": 5869.36, + "end": 5870.54, + "probability": 0.5548 + }, + { + "start": 5870.6, + "end": 5872.18, + "probability": 0.9585 + }, + { + "start": 5872.28, + "end": 5873.6, + "probability": 0.9736 + }, + { + "start": 5873.82, + "end": 5878.06, + "probability": 0.499 + }, + { + "start": 5878.18, + "end": 5878.52, + "probability": 0.7643 + }, + { + "start": 5879.04, + "end": 5883.0, + "probability": 0.9771 + }, + { + "start": 5883.22, + "end": 5883.44, + "probability": 0.7419 + }, + { + "start": 5884.66, + "end": 5885.38, + "probability": 0.845 + }, + { + "start": 5887.04, + "end": 5889.66, + "probability": 0.6992 + }, + { + "start": 5890.54, + "end": 5891.22, + "probability": 0.7907 + }, + { + "start": 5891.98, + "end": 5897.18, + "probability": 0.6677 + }, + { + "start": 5898.08, + "end": 5898.8, + "probability": 0.6977 + }, + { + "start": 5899.12, + "end": 5901.22, + "probability": 0.9644 + }, + { + "start": 5901.86, + "end": 5903.82, + "probability": 0.937 + }, + { + "start": 5904.6, + "end": 5907.56, + "probability": 0.7952 + }, + { + "start": 5918.26, + "end": 5920.74, + "probability": 0.5735 + }, + { + "start": 5923.13, + "end": 5927.2, + "probability": 0.9568 + }, + { + "start": 5927.26, + "end": 5931.96, + "probability": 0.8511 + }, + { + "start": 5933.6, + "end": 5934.42, + "probability": 0.839 + }, + { + "start": 5936.86, + "end": 5938.56, + "probability": 0.9763 + }, + { + "start": 5940.98, + "end": 5941.7, + "probability": 0.9446 + }, + { + "start": 5943.44, + "end": 5947.24, + "probability": 0.6341 + }, + { + "start": 5947.24, + "end": 5950.44, + "probability": 0.7169 + }, + { + "start": 5952.3, + "end": 5954.82, + "probability": 0.8159 + }, + { + "start": 5955.06, + "end": 5956.64, + "probability": 0.8328 + }, + { + "start": 5956.72, + "end": 5958.54, + "probability": 0.5084 + }, + { + "start": 5960.84, + "end": 5963.3, + "probability": 0.9954 + }, + { + "start": 5966.48, + "end": 5970.42, + "probability": 0.753 + }, + { + "start": 5970.6, + "end": 5972.3, + "probability": 0.9741 + }, + { + "start": 5972.36, + "end": 5974.26, + "probability": 0.7994 + }, + { + "start": 5975.72, + "end": 5977.7, + "probability": 0.8547 + }, + { + "start": 5977.8, + "end": 5979.58, + "probability": 0.996 + }, + { + "start": 5979.7, + "end": 5982.56, + "probability": 0.9555 + }, + { + "start": 5982.74, + "end": 5985.02, + "probability": 0.9945 + }, + { + "start": 5987.62, + "end": 5988.88, + "probability": 0.6671 + }, + { + "start": 5988.96, + "end": 5989.56, + "probability": 0.8928 + }, + { + "start": 5989.68, + "end": 5991.3, + "probability": 0.9078 + }, + { + "start": 5991.38, + "end": 5992.32, + "probability": 0.9473 + }, + { + "start": 5993.2, + "end": 5995.66, + "probability": 0.7986 + }, + { + "start": 5995.78, + "end": 5996.24, + "probability": 0.256 + }, + { + "start": 5996.28, + "end": 6000.04, + "probability": 0.9092 + }, + { + "start": 6001.58, + "end": 6004.33, + "probability": 0.8718 + }, + { + "start": 6005.38, + "end": 6006.3, + "probability": 0.7287 + }, + { + "start": 6006.78, + "end": 6008.18, + "probability": 0.9433 + }, + { + "start": 6008.9, + "end": 6010.2, + "probability": 0.9155 + }, + { + "start": 6013.86, + "end": 6015.74, + "probability": 0.979 + }, + { + "start": 6017.42, + "end": 6019.62, + "probability": 0.8862 + }, + { + "start": 6021.08, + "end": 6021.36, + "probability": 0.8697 + }, + { + "start": 6022.2, + "end": 6026.42, + "probability": 0.9383 + }, + { + "start": 6026.42, + "end": 6029.9, + "probability": 0.9985 + }, + { + "start": 6031.22, + "end": 6033.6, + "probability": 0.9904 + }, + { + "start": 6035.12, + "end": 6036.56, + "probability": 0.8599 + }, + { + "start": 6036.68, + "end": 6038.44, + "probability": 0.997 + }, + { + "start": 6039.68, + "end": 6040.46, + "probability": 0.5341 + }, + { + "start": 6041.24, + "end": 6044.86, + "probability": 0.9679 + }, + { + "start": 6044.86, + "end": 6048.38, + "probability": 0.9453 + }, + { + "start": 6048.48, + "end": 6049.58, + "probability": 0.9784 + }, + { + "start": 6051.12, + "end": 6054.1, + "probability": 0.9865 + }, + { + "start": 6054.74, + "end": 6058.84, + "probability": 0.8929 + }, + { + "start": 6059.4, + "end": 6060.56, + "probability": 0.8603 + }, + { + "start": 6061.52, + "end": 6063.82, + "probability": 0.9944 + }, + { + "start": 6064.86, + "end": 6066.18, + "probability": 0.8313 + }, + { + "start": 6066.74, + "end": 6070.56, + "probability": 0.9865 + }, + { + "start": 6071.56, + "end": 6073.94, + "probability": 0.7369 + }, + { + "start": 6074.68, + "end": 6075.24, + "probability": 0.8536 + }, + { + "start": 6075.38, + "end": 6075.68, + "probability": 0.8154 + }, + { + "start": 6075.72, + "end": 6077.22, + "probability": 0.9522 + }, + { + "start": 6077.38, + "end": 6077.98, + "probability": 0.9761 + }, + { + "start": 6079.3, + "end": 6080.28, + "probability": 0.9154 + }, + { + "start": 6080.54, + "end": 6081.28, + "probability": 0.8722 + }, + { + "start": 6081.48, + "end": 6081.84, + "probability": 0.7784 + }, + { + "start": 6081.9, + "end": 6082.4, + "probability": 0.9378 + }, + { + "start": 6082.42, + "end": 6083.0, + "probability": 0.8659 + }, + { + "start": 6083.06, + "end": 6084.4, + "probability": 0.9514 + }, + { + "start": 6084.52, + "end": 6084.78, + "probability": 0.7889 + }, + { + "start": 6085.4, + "end": 6090.2, + "probability": 0.9951 + }, + { + "start": 6092.82, + "end": 6095.02, + "probability": 0.9979 + }, + { + "start": 6095.92, + "end": 6098.36, + "probability": 0.9851 + }, + { + "start": 6099.14, + "end": 6100.79, + "probability": 0.9207 + }, + { + "start": 6102.68, + "end": 6104.5, + "probability": 0.9792 + }, + { + "start": 6104.5, + "end": 6106.8, + "probability": 0.9946 + }, + { + "start": 6108.8, + "end": 6109.44, + "probability": 0.6928 + }, + { + "start": 6109.52, + "end": 6114.78, + "probability": 0.9929 + }, + { + "start": 6115.66, + "end": 6117.22, + "probability": 0.9346 + }, + { + "start": 6117.32, + "end": 6117.72, + "probability": 0.7098 + }, + { + "start": 6117.8, + "end": 6119.72, + "probability": 0.995 + }, + { + "start": 6120.04, + "end": 6120.58, + "probability": 0.8966 + }, + { + "start": 6120.88, + "end": 6121.4, + "probability": 0.6257 + }, + { + "start": 6122.64, + "end": 6123.52, + "probability": 0.991 + }, + { + "start": 6124.86, + "end": 6127.18, + "probability": 0.9759 + }, + { + "start": 6127.58, + "end": 6129.94, + "probability": 0.9968 + }, + { + "start": 6131.3, + "end": 6137.04, + "probability": 0.9241 + }, + { + "start": 6138.02, + "end": 6140.7, + "probability": 0.9876 + }, + { + "start": 6140.78, + "end": 6141.62, + "probability": 0.8342 + }, + { + "start": 6141.7, + "end": 6142.52, + "probability": 0.8439 + }, + { + "start": 6144.1, + "end": 6147.72, + "probability": 0.9886 + }, + { + "start": 6148.62, + "end": 6152.5, + "probability": 0.993 + }, + { + "start": 6152.9, + "end": 6154.74, + "probability": 0.9712 + }, + { + "start": 6154.78, + "end": 6158.0, + "probability": 0.9778 + }, + { + "start": 6158.12, + "end": 6159.06, + "probability": 0.8015 + }, + { + "start": 6159.2, + "end": 6162.28, + "probability": 0.9697 + }, + { + "start": 6163.66, + "end": 6168.46, + "probability": 0.9964 + }, + { + "start": 6170.32, + "end": 6173.84, + "probability": 0.805 + }, + { + "start": 6174.84, + "end": 6178.06, + "probability": 0.9899 + }, + { + "start": 6178.2, + "end": 6181.3, + "probability": 0.9518 + }, + { + "start": 6181.82, + "end": 6183.2, + "probability": 0.867 + }, + { + "start": 6183.76, + "end": 6185.46, + "probability": 0.55 + }, + { + "start": 6187.34, + "end": 6190.88, + "probability": 0.9377 + }, + { + "start": 6192.1, + "end": 6192.98, + "probability": 0.6634 + }, + { + "start": 6193.54, + "end": 6194.36, + "probability": 0.9935 + }, + { + "start": 6195.54, + "end": 6196.42, + "probability": 0.7705 + }, + { + "start": 6197.64, + "end": 6199.96, + "probability": 0.9968 + }, + { + "start": 6200.0, + "end": 6201.21, + "probability": 0.8642 + }, + { + "start": 6201.62, + "end": 6203.68, + "probability": 0.666 + }, + { + "start": 6205.18, + "end": 6207.54, + "probability": 0.9296 + }, + { + "start": 6209.16, + "end": 6210.94, + "probability": 0.5463 + }, + { + "start": 6212.12, + "end": 6214.7, + "probability": 0.9968 + }, + { + "start": 6214.84, + "end": 6216.28, + "probability": 0.8447 + }, + { + "start": 6217.76, + "end": 6220.42, + "probability": 0.9807 + }, + { + "start": 6222.2, + "end": 6227.66, + "probability": 0.9905 + }, + { + "start": 6227.86, + "end": 6230.96, + "probability": 0.899 + }, + { + "start": 6230.96, + "end": 6233.62, + "probability": 0.9946 + }, + { + "start": 6234.76, + "end": 6236.64, + "probability": 0.9347 + }, + { + "start": 6237.18, + "end": 6238.22, + "probability": 0.7489 + }, + { + "start": 6238.34, + "end": 6240.68, + "probability": 0.9729 + }, + { + "start": 6240.82, + "end": 6242.88, + "probability": 0.8353 + }, + { + "start": 6244.59, + "end": 6247.96, + "probability": 0.9914 + }, + { + "start": 6248.4, + "end": 6249.02, + "probability": 0.3101 + }, + { + "start": 6249.14, + "end": 6249.74, + "probability": 0.9534 + }, + { + "start": 6252.08, + "end": 6252.14, + "probability": 0.828 + }, + { + "start": 6252.22, + "end": 6254.16, + "probability": 0.9943 + }, + { + "start": 6254.4, + "end": 6256.48, + "probability": 0.9775 + }, + { + "start": 6256.64, + "end": 6258.64, + "probability": 0.5878 + }, + { + "start": 6258.64, + "end": 6263.38, + "probability": 0.8612 + }, + { + "start": 6264.08, + "end": 6267.0, + "probability": 0.9459 + }, + { + "start": 6267.06, + "end": 6268.6, + "probability": 0.8277 + }, + { + "start": 6268.6, + "end": 6268.64, + "probability": 0.1999 + }, + { + "start": 6268.64, + "end": 6271.22, + "probability": 0.4869 + }, + { + "start": 6271.22, + "end": 6273.34, + "probability": 0.3327 + }, + { + "start": 6273.74, + "end": 6274.68, + "probability": 0.8392 + }, + { + "start": 6275.92, + "end": 6277.3, + "probability": 0.9866 + }, + { + "start": 6277.88, + "end": 6279.32, + "probability": 0.771 + }, + { + "start": 6279.46, + "end": 6283.14, + "probability": 0.9744 + }, + { + "start": 6283.34, + "end": 6284.32, + "probability": 0.8171 + }, + { + "start": 6285.34, + "end": 6285.42, + "probability": 0.4216 + }, + { + "start": 6285.44, + "end": 6288.32, + "probability": 0.6491 + }, + { + "start": 6290.34, + "end": 6292.66, + "probability": 0.9995 + }, + { + "start": 6292.76, + "end": 6293.32, + "probability": 0.9006 + }, + { + "start": 6293.44, + "end": 6295.68, + "probability": 0.6666 + }, + { + "start": 6296.4, + "end": 6296.8, + "probability": 0.5587 + }, + { + "start": 6296.88, + "end": 6298.79, + "probability": 0.3746 + }, + { + "start": 6299.58, + "end": 6300.74, + "probability": 0.9746 + }, + { + "start": 6301.16, + "end": 6301.92, + "probability": 0.4829 + }, + { + "start": 6302.34, + "end": 6303.46, + "probability": 0.9656 + }, + { + "start": 6304.62, + "end": 6304.88, + "probability": 0.2763 + }, + { + "start": 6304.88, + "end": 6305.2, + "probability": 0.3223 + }, + { + "start": 6305.26, + "end": 6306.84, + "probability": 0.9956 + }, + { + "start": 6306.84, + "end": 6308.64, + "probability": 0.7442 + }, + { + "start": 6308.8, + "end": 6311.58, + "probability": 0.7273 + }, + { + "start": 6311.68, + "end": 6312.74, + "probability": 0.9414 + }, + { + "start": 6313.08, + "end": 6315.24, + "probability": 0.9974 + }, + { + "start": 6315.4, + "end": 6316.36, + "probability": 0.865 + }, + { + "start": 6317.08, + "end": 6317.42, + "probability": 0.8027 + }, + { + "start": 6317.54, + "end": 6318.84, + "probability": 0.8899 + }, + { + "start": 6318.84, + "end": 6320.7, + "probability": 0.989 + }, + { + "start": 6323.1, + "end": 6323.3, + "probability": 0.1266 + }, + { + "start": 6323.3, + "end": 6323.3, + "probability": 0.0621 + }, + { + "start": 6323.3, + "end": 6325.04, + "probability": 0.3828 + }, + { + "start": 6325.14, + "end": 6327.54, + "probability": 0.9308 + }, + { + "start": 6327.68, + "end": 6328.72, + "probability": 0.7043 + }, + { + "start": 6329.04, + "end": 6330.1, + "probability": 0.9539 + }, + { + "start": 6330.18, + "end": 6330.44, + "probability": 0.7583 + }, + { + "start": 6332.12, + "end": 6334.66, + "probability": 0.9952 + }, + { + "start": 6334.78, + "end": 6337.86, + "probability": 0.9971 + }, + { + "start": 6338.42, + "end": 6339.52, + "probability": 0.9878 + }, + { + "start": 6339.6, + "end": 6341.0, + "probability": 0.896 + }, + { + "start": 6341.34, + "end": 6342.08, + "probability": 0.7783 + }, + { + "start": 6343.58, + "end": 6346.26, + "probability": 0.9353 + }, + { + "start": 6346.4, + "end": 6349.14, + "probability": 0.9408 + }, + { + "start": 6349.2, + "end": 6349.72, + "probability": 0.8275 + }, + { + "start": 6349.82, + "end": 6351.2, + "probability": 0.7048 + }, + { + "start": 6351.76, + "end": 6352.88, + "probability": 0.6982 + }, + { + "start": 6352.88, + "end": 6353.82, + "probability": 0.8887 + }, + { + "start": 6353.86, + "end": 6355.4, + "probability": 0.9455 + }, + { + "start": 6355.49, + "end": 6357.25, + "probability": 0.9064 + }, + { + "start": 6358.06, + "end": 6358.77, + "probability": 0.8609 + }, + { + "start": 6359.48, + "end": 6363.44, + "probability": 0.0083 + }, + { + "start": 6365.12, + "end": 6365.22, + "probability": 0.0026 + }, + { + "start": 6365.22, + "end": 6365.22, + "probability": 0.1521 + }, + { + "start": 6365.22, + "end": 6365.22, + "probability": 0.0512 + }, + { + "start": 6365.22, + "end": 6365.86, + "probability": 0.9443 + }, + { + "start": 6367.2, + "end": 6369.62, + "probability": 0.97 + }, + { + "start": 6369.98, + "end": 6370.08, + "probability": 0.7253 + }, + { + "start": 6370.8, + "end": 6371.24, + "probability": 0.4203 + }, + { + "start": 6371.62, + "end": 6372.22, + "probability": 0.4015 + }, + { + "start": 6372.28, + "end": 6373.92, + "probability": 0.9966 + }, + { + "start": 6374.64, + "end": 6376.61, + "probability": 0.9124 + }, + { + "start": 6377.46, + "end": 6379.54, + "probability": 0.9994 + }, + { + "start": 6379.76, + "end": 6381.72, + "probability": 0.7971 + }, + { + "start": 6381.94, + "end": 6382.82, + "probability": 0.7639 + }, + { + "start": 6383.84, + "end": 6385.14, + "probability": 0.9507 + }, + { + "start": 6386.02, + "end": 6387.64, + "probability": 0.9673 + }, + { + "start": 6387.74, + "end": 6387.94, + "probability": 0.0256 + }, + { + "start": 6387.94, + "end": 6388.48, + "probability": 0.0131 + }, + { + "start": 6388.98, + "end": 6389.1, + "probability": 0.5869 + }, + { + "start": 6389.24, + "end": 6392.94, + "probability": 0.6725 + }, + { + "start": 6393.64, + "end": 6393.7, + "probability": 0.4286 + }, + { + "start": 6393.7, + "end": 6394.3, + "probability": 0.683 + }, + { + "start": 6394.34, + "end": 6394.9, + "probability": 0.5643 + }, + { + "start": 6395.44, + "end": 6396.98, + "probability": 0.6107 + }, + { + "start": 6397.74, + "end": 6399.34, + "probability": 0.7067 + }, + { + "start": 6400.32, + "end": 6400.42, + "probability": 0.1089 + }, + { + "start": 6400.42, + "end": 6401.96, + "probability": 0.1538 + }, + { + "start": 6402.26, + "end": 6402.4, + "probability": 0.4391 + }, + { + "start": 6402.4, + "end": 6403.6, + "probability": 0.9779 + }, + { + "start": 6403.7, + "end": 6404.08, + "probability": 0.4454 + }, + { + "start": 6405.36, + "end": 6405.74, + "probability": 0.029 + }, + { + "start": 6405.74, + "end": 6407.28, + "probability": 0.815 + }, + { + "start": 6408.64, + "end": 6412.28, + "probability": 0.8058 + }, + { + "start": 6412.36, + "end": 6414.54, + "probability": 0.9801 + }, + { + "start": 6414.94, + "end": 6417.96, + "probability": 0.9956 + }, + { + "start": 6418.62, + "end": 6420.28, + "probability": 0.5347 + }, + { + "start": 6420.56, + "end": 6420.94, + "probability": 0.7295 + }, + { + "start": 6421.18, + "end": 6421.72, + "probability": 0.6197 + }, + { + "start": 6422.02, + "end": 6423.08, + "probability": 0.9934 + }, + { + "start": 6423.14, + "end": 6423.66, + "probability": 0.998 + }, + { + "start": 6424.22, + "end": 6424.72, + "probability": 0.9387 + }, + { + "start": 6425.26, + "end": 6426.3, + "probability": 0.6536 + }, + { + "start": 6426.4, + "end": 6429.04, + "probability": 0.8972 + }, + { + "start": 6429.56, + "end": 6431.76, + "probability": 0.995 + }, + { + "start": 6431.76, + "end": 6433.32, + "probability": 0.9985 + }, + { + "start": 6434.04, + "end": 6436.7, + "probability": 0.9749 + }, + { + "start": 6436.78, + "end": 6437.48, + "probability": 0.9902 + }, + { + "start": 6438.18, + "end": 6439.32, + "probability": 0.8726 + }, + { + "start": 6440.8, + "end": 6442.82, + "probability": 0.9196 + }, + { + "start": 6445.16, + "end": 6449.05, + "probability": 0.9814 + }, + { + "start": 6449.2, + "end": 6451.4, + "probability": 0.9814 + }, + { + "start": 6451.4, + "end": 6453.32, + "probability": 0.9889 + }, + { + "start": 6453.4, + "end": 6455.84, + "probability": 0.7556 + }, + { + "start": 6456.14, + "end": 6456.88, + "probability": 0.8446 + }, + { + "start": 6457.2, + "end": 6457.96, + "probability": 0.9601 + }, + { + "start": 6458.68, + "end": 6458.94, + "probability": 0.8054 + }, + { + "start": 6459.0, + "end": 6459.89, + "probability": 0.9442 + }, + { + "start": 6460.18, + "end": 6460.64, + "probability": 0.8842 + }, + { + "start": 6460.66, + "end": 6461.84, + "probability": 0.9653 + }, + { + "start": 6461.88, + "end": 6465.52, + "probability": 0.6676 + }, + { + "start": 6465.6, + "end": 6465.88, + "probability": 0.8005 + }, + { + "start": 6466.1, + "end": 6466.46, + "probability": 0.9173 + }, + { + "start": 6466.52, + "end": 6469.08, + "probability": 0.7671 + }, + { + "start": 6469.22, + "end": 6470.38, + "probability": 0.9818 + }, + { + "start": 6471.02, + "end": 6473.54, + "probability": 0.5158 + }, + { + "start": 6473.7, + "end": 6474.8, + "probability": 0.8887 + }, + { + "start": 6474.92, + "end": 6475.5, + "probability": 0.7943 + }, + { + "start": 6475.92, + "end": 6476.8, + "probability": 0.935 + }, + { + "start": 6476.86, + "end": 6478.78, + "probability": 0.9814 + }, + { + "start": 6478.88, + "end": 6481.34, + "probability": 0.9947 + }, + { + "start": 6481.46, + "end": 6483.88, + "probability": 0.919 + }, + { + "start": 6483.9, + "end": 6485.86, + "probability": 0.8853 + }, + { + "start": 6487.04, + "end": 6488.52, + "probability": 0.9995 + }, + { + "start": 6489.12, + "end": 6491.7, + "probability": 0.8414 + }, + { + "start": 6492.32, + "end": 6493.74, + "probability": 0.8904 + }, + { + "start": 6494.84, + "end": 6496.16, + "probability": 0.8887 + }, + { + "start": 6496.92, + "end": 6497.68, + "probability": 0.7718 + }, + { + "start": 6497.7, + "end": 6498.32, + "probability": 0.7006 + }, + { + "start": 6498.58, + "end": 6501.66, + "probability": 0.9885 + }, + { + "start": 6501.7, + "end": 6502.18, + "probability": 0.3861 + }, + { + "start": 6502.3, + "end": 6503.78, + "probability": 0.8412 + }, + { + "start": 6504.24, + "end": 6504.88, + "probability": 0.6263 + }, + { + "start": 6506.02, + "end": 6507.82, + "probability": 0.9602 + }, + { + "start": 6508.64, + "end": 6510.04, + "probability": 0.982 + }, + { + "start": 6510.68, + "end": 6511.66, + "probability": 0.0721 + }, + { + "start": 6513.62, + "end": 6515.0, + "probability": 0.0437 + }, + { + "start": 6516.22, + "end": 6516.7, + "probability": 0.3315 + }, + { + "start": 6516.88, + "end": 6516.88, + "probability": 0.0167 + }, + { + "start": 6516.88, + "end": 6516.88, + "probability": 0.0768 + }, + { + "start": 6516.88, + "end": 6516.88, + "probability": 0.048 + }, + { + "start": 6516.88, + "end": 6517.36, + "probability": 0.4225 + }, + { + "start": 6517.98, + "end": 6518.4, + "probability": 0.712 + }, + { + "start": 6518.9, + "end": 6519.0, + "probability": 0.0573 + }, + { + "start": 6519.0, + "end": 6519.0, + "probability": 0.1969 + }, + { + "start": 6519.0, + "end": 6522.96, + "probability": 0.9422 + }, + { + "start": 6523.1, + "end": 6526.74, + "probability": 0.9696 + }, + { + "start": 6527.34, + "end": 6527.34, + "probability": 0.0421 + }, + { + "start": 6527.34, + "end": 6527.5, + "probability": 0.0527 + }, + { + "start": 6527.56, + "end": 6528.46, + "probability": 0.8493 + }, + { + "start": 6528.54, + "end": 6532.72, + "probability": 0.9869 + }, + { + "start": 6533.42, + "end": 6534.78, + "probability": 0.9603 + }, + { + "start": 6535.72, + "end": 6536.36, + "probability": 0.7848 + }, + { + "start": 6536.88, + "end": 6537.6, + "probability": 0.2956 + }, + { + "start": 6537.66, + "end": 6539.52, + "probability": 0.9385 + }, + { + "start": 6540.64, + "end": 6541.36, + "probability": 0.966 + }, + { + "start": 6541.48, + "end": 6543.2, + "probability": 0.7311 + }, + { + "start": 6543.52, + "end": 6548.12, + "probability": 0.9676 + }, + { + "start": 6548.54, + "end": 6548.56, + "probability": 0.4096 + }, + { + "start": 6548.68, + "end": 6550.4, + "probability": 0.9912 + }, + { + "start": 6552.86, + "end": 6555.84, + "probability": 0.8997 + }, + { + "start": 6555.92, + "end": 6558.74, + "probability": 0.9542 + }, + { + "start": 6558.74, + "end": 6561.46, + "probability": 0.9906 + }, + { + "start": 6562.12, + "end": 6563.28, + "probability": 0.8772 + }, + { + "start": 6563.34, + "end": 6564.22, + "probability": 0.9943 + }, + { + "start": 6565.78, + "end": 6570.08, + "probability": 0.7241 + }, + { + "start": 6570.26, + "end": 6572.7, + "probability": 0.4543 + }, + { + "start": 6572.78, + "end": 6576.84, + "probability": 0.9844 + }, + { + "start": 6577.56, + "end": 6579.78, + "probability": 0.9976 + }, + { + "start": 6580.38, + "end": 6582.32, + "probability": 0.9837 + }, + { + "start": 6583.06, + "end": 6584.75, + "probability": 0.9313 + }, + { + "start": 6585.62, + "end": 6586.86, + "probability": 0.9303 + }, + { + "start": 6587.0, + "end": 6587.68, + "probability": 0.8514 + }, + { + "start": 6587.82, + "end": 6590.02, + "probability": 0.9895 + }, + { + "start": 6590.96, + "end": 6594.08, + "probability": 0.7715 + }, + { + "start": 6594.54, + "end": 6595.36, + "probability": 0.8188 + }, + { + "start": 6595.44, + "end": 6597.86, + "probability": 0.9942 + }, + { + "start": 6597.86, + "end": 6599.82, + "probability": 0.6816 + }, + { + "start": 6601.08, + "end": 6603.14, + "probability": 0.9203 + }, + { + "start": 6603.74, + "end": 6609.74, + "probability": 0.9924 + }, + { + "start": 6609.86, + "end": 6610.78, + "probability": 0.687 + }, + { + "start": 6610.84, + "end": 6612.64, + "probability": 0.9556 + }, + { + "start": 6612.76, + "end": 6614.0, + "probability": 0.9769 + }, + { + "start": 6615.04, + "end": 6617.32, + "probability": 0.8874 + }, + { + "start": 6617.66, + "end": 6621.46, + "probability": 0.9924 + }, + { + "start": 6621.56, + "end": 6624.1, + "probability": 0.9831 + }, + { + "start": 6624.14, + "end": 6625.78, + "probability": 0.75 + }, + { + "start": 6626.32, + "end": 6626.32, + "probability": 0.099 + }, + { + "start": 6626.32, + "end": 6628.12, + "probability": 0.7891 + }, + { + "start": 6628.3, + "end": 6630.18, + "probability": 0.9827 + }, + { + "start": 6631.56, + "end": 6634.62, + "probability": 0.9991 + }, + { + "start": 6634.74, + "end": 6636.82, + "probability": 0.9663 + }, + { + "start": 6637.42, + "end": 6638.56, + "probability": 0.7252 + }, + { + "start": 6638.84, + "end": 6641.7, + "probability": 0.9429 + }, + { + "start": 6642.38, + "end": 6643.32, + "probability": 0.9268 + }, + { + "start": 6643.56, + "end": 6643.8, + "probability": 0.9733 + }, + { + "start": 6644.3, + "end": 6647.2, + "probability": 0.8428 + }, + { + "start": 6648.64, + "end": 6648.8, + "probability": 0.7449 + }, + { + "start": 6650.16, + "end": 6650.64, + "probability": 0.8688 + }, + { + "start": 6650.86, + "end": 6651.86, + "probability": 0.9947 + }, + { + "start": 6652.56, + "end": 6652.8, + "probability": 0.9833 + }, + { + "start": 6653.3, + "end": 6654.16, + "probability": 0.7971 + }, + { + "start": 6654.22, + "end": 6654.6, + "probability": 0.639 + }, + { + "start": 6654.62, + "end": 6655.0, + "probability": 0.887 + }, + { + "start": 6655.1, + "end": 6656.54, + "probability": 0.9763 + }, + { + "start": 6656.8, + "end": 6657.66, + "probability": 0.6478 + }, + { + "start": 6657.7, + "end": 6658.8, + "probability": 0.632 + }, + { + "start": 6660.06, + "end": 6662.98, + "probability": 0.9929 + }, + { + "start": 6664.11, + "end": 6664.98, + "probability": 0.6308 + }, + { + "start": 6665.04, + "end": 6665.22, + "probability": 0.8923 + }, + { + "start": 6665.32, + "end": 6666.56, + "probability": 0.9943 + }, + { + "start": 6666.64, + "end": 6667.52, + "probability": 0.9691 + }, + { + "start": 6667.58, + "end": 6670.46, + "probability": 0.9965 + }, + { + "start": 6670.46, + "end": 6674.16, + "probability": 0.9844 + }, + { + "start": 6674.66, + "end": 6676.0, + "probability": 0.9814 + }, + { + "start": 6676.4, + "end": 6681.12, + "probability": 0.9729 + }, + { + "start": 6681.74, + "end": 6682.8, + "probability": 0.9565 + }, + { + "start": 6683.4, + "end": 6685.96, + "probability": 0.8758 + }, + { + "start": 6686.28, + "end": 6687.15, + "probability": 0.959 + }, + { + "start": 6688.16, + "end": 6689.86, + "probability": 0.9446 + }, + { + "start": 6690.14, + "end": 6692.04, + "probability": 0.8018 + }, + { + "start": 6692.32, + "end": 6693.98, + "probability": 0.6715 + }, + { + "start": 6694.86, + "end": 6695.7, + "probability": 0.9949 + }, + { + "start": 6695.82, + "end": 6696.36, + "probability": 0.8159 + }, + { + "start": 6696.42, + "end": 6698.04, + "probability": 0.9543 + }, + { + "start": 6698.08, + "end": 6699.78, + "probability": 0.9401 + }, + { + "start": 6700.68, + "end": 6702.95, + "probability": 0.9009 + }, + { + "start": 6703.38, + "end": 6705.04, + "probability": 0.0254 + }, + { + "start": 6705.7, + "end": 6713.3, + "probability": 0.0674 + }, + { + "start": 6716.46, + "end": 6721.6, + "probability": 0.0805 + }, + { + "start": 6730.18, + "end": 6730.52, + "probability": 0.1259 + }, + { + "start": 6730.52, + "end": 6731.52, + "probability": 0.1369 + }, + { + "start": 6736.16, + "end": 6737.42, + "probability": 0.0163 + }, + { + "start": 6737.78, + "end": 6737.98, + "probability": 0.0831 + }, + { + "start": 6737.98, + "end": 6739.36, + "probability": 0.2481 + }, + { + "start": 6756.22, + "end": 6759.2, + "probability": 0.319 + }, + { + "start": 6774.0, + "end": 6779.8, + "probability": 0.1653 + }, + { + "start": 6782.34, + "end": 6784.46, + "probability": 0.3299 + }, + { + "start": 6785.94, + "end": 6787.08, + "probability": 0.0765 + }, + { + "start": 6787.34, + "end": 6787.44, + "probability": 0.3062 + }, + { + "start": 6788.05, + "end": 6789.34, + "probability": 0.3542 + }, + { + "start": 6790.87, + "end": 6792.52, + "probability": 0.0556 + }, + { + "start": 6797.34, + "end": 6798.98, + "probability": 0.042 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.0, + "end": 6811.0, + "probability": 0.0 + }, + { + "start": 6811.68, + "end": 6811.68, + "probability": 0.0769 + }, + { + "start": 6811.68, + "end": 6814.02, + "probability": 0.9963 + }, + { + "start": 6815.46, + "end": 6817.18, + "probability": 0.7353 + }, + { + "start": 6818.72, + "end": 6825.7, + "probability": 0.9472 + }, + { + "start": 6826.8, + "end": 6833.1, + "probability": 0.9254 + }, + { + "start": 6833.68, + "end": 6839.16, + "probability": 0.9637 + }, + { + "start": 6839.56, + "end": 6843.5, + "probability": 0.9984 + }, + { + "start": 6843.76, + "end": 6844.32, + "probability": 0.9166 + }, + { + "start": 6844.66, + "end": 6845.56, + "probability": 0.9219 + }, + { + "start": 6846.42, + "end": 6847.46, + "probability": 0.7482 + }, + { + "start": 6847.86, + "end": 6849.76, + "probability": 0.7562 + }, + { + "start": 6850.44, + "end": 6852.12, + "probability": 0.9995 + }, + { + "start": 6852.76, + "end": 6853.44, + "probability": 0.9609 + }, + { + "start": 6854.06, + "end": 6857.78, + "probability": 0.9835 + }, + { + "start": 6858.78, + "end": 6861.78, + "probability": 0.962 + }, + { + "start": 6862.1, + "end": 6862.88, + "probability": 0.9334 + }, + { + "start": 6863.44, + "end": 6864.18, + "probability": 0.6157 + }, + { + "start": 6864.28, + "end": 6865.66, + "probability": 0.7231 + }, + { + "start": 6865.71, + "end": 6867.22, + "probability": 0.8669 + }, + { + "start": 6867.3, + "end": 6869.44, + "probability": 0.9978 + }, + { + "start": 6871.94, + "end": 6876.82, + "probability": 0.7781 + }, + { + "start": 6877.48, + "end": 6877.48, + "probability": 0.0154 + }, + { + "start": 6877.48, + "end": 6881.12, + "probability": 0.9842 + }, + { + "start": 6882.42, + "end": 6883.76, + "probability": 0.8503 + }, + { + "start": 6884.98, + "end": 6889.02, + "probability": 0.2583 + }, + { + "start": 6889.82, + "end": 6893.26, + "probability": 0.9041 + }, + { + "start": 6893.98, + "end": 6899.68, + "probability": 0.955 + }, + { + "start": 6900.94, + "end": 6903.06, + "probability": 0.9853 + }, + { + "start": 6904.02, + "end": 6908.24, + "probability": 0.953 + }, + { + "start": 6909.02, + "end": 6915.22, + "probability": 0.9649 + }, + { + "start": 6915.64, + "end": 6918.1, + "probability": 0.9794 + }, + { + "start": 6918.68, + "end": 6919.62, + "probability": 0.4439 + }, + { + "start": 6919.62, + "end": 6920.4, + "probability": 0.15 + }, + { + "start": 6923.06, + "end": 6923.06, + "probability": 0.2605 + }, + { + "start": 6923.06, + "end": 6923.06, + "probability": 0.0762 + }, + { + "start": 6923.06, + "end": 6924.32, + "probability": 0.6344 + }, + { + "start": 6924.56, + "end": 6925.88, + "probability": 0.673 + }, + { + "start": 6926.48, + "end": 6927.02, + "probability": 0.9653 + }, + { + "start": 6928.24, + "end": 6935.42, + "probability": 0.9981 + }, + { + "start": 6936.7, + "end": 6940.14, + "probability": 0.9972 + }, + { + "start": 6940.58, + "end": 6942.08, + "probability": 0.9278 + }, + { + "start": 6942.7, + "end": 6944.66, + "probability": 0.7939 + }, + { + "start": 6945.02, + "end": 6950.46, + "probability": 0.9905 + }, + { + "start": 6950.72, + "end": 6952.96, + "probability": 0.9154 + }, + { + "start": 6953.38, + "end": 6955.94, + "probability": 0.9908 + }, + { + "start": 6956.68, + "end": 6957.58, + "probability": 0.7361 + }, + { + "start": 6958.5, + "end": 6958.84, + "probability": 0.4952 + }, + { + "start": 6959.32, + "end": 6959.98, + "probability": 0.737 + }, + { + "start": 6960.14, + "end": 6960.63, + "probability": 0.7173 + }, + { + "start": 6961.48, + "end": 6964.3, + "probability": 0.7396 + }, + { + "start": 6964.4, + "end": 6966.06, + "probability": 0.7169 + }, + { + "start": 6966.16, + "end": 6967.17, + "probability": 0.8535 + }, + { + "start": 6967.7, + "end": 6968.83, + "probability": 0.7013 + }, + { + "start": 6968.94, + "end": 6971.36, + "probability": 0.9084 + }, + { + "start": 6972.14, + "end": 6974.08, + "probability": 0.7538 + }, + { + "start": 6975.5, + "end": 6976.28, + "probability": 0.5781 + }, + { + "start": 6977.24, + "end": 6979.2, + "probability": 0.8693 + }, + { + "start": 6981.38, + "end": 6982.16, + "probability": 0.9587 + }, + { + "start": 6983.04, + "end": 6984.7, + "probability": 0.9015 + }, + { + "start": 6985.58, + "end": 6986.44, + "probability": 0.7454 + }, + { + "start": 6987.06, + "end": 6988.36, + "probability": 0.6774 + }, + { + "start": 6989.4, + "end": 6991.18, + "probability": 0.7901 + }, + { + "start": 7013.32, + "end": 7014.69, + "probability": 0.7905 + }, + { + "start": 7014.92, + "end": 7016.9, + "probability": 0.8134 + }, + { + "start": 7018.22, + "end": 7019.74, + "probability": 0.8099 + }, + { + "start": 7021.04, + "end": 7021.76, + "probability": 0.8614 + }, + { + "start": 7021.9, + "end": 7024.01, + "probability": 0.7939 + }, + { + "start": 7024.26, + "end": 7029.08, + "probability": 0.976 + }, + { + "start": 7029.92, + "end": 7031.68, + "probability": 0.8021 + }, + { + "start": 7032.84, + "end": 7036.12, + "probability": 0.9924 + }, + { + "start": 7038.02, + "end": 7044.6, + "probability": 0.9948 + }, + { + "start": 7045.18, + "end": 7047.38, + "probability": 0.9968 + }, + { + "start": 7048.14, + "end": 7052.1, + "probability": 0.9092 + }, + { + "start": 7054.26, + "end": 7056.96, + "probability": 0.9911 + }, + { + "start": 7056.96, + "end": 7060.3, + "probability": 0.9938 + }, + { + "start": 7061.1, + "end": 7063.0, + "probability": 0.8909 + }, + { + "start": 7064.1, + "end": 7065.4, + "probability": 0.9869 + }, + { + "start": 7067.06, + "end": 7069.38, + "probability": 0.695 + }, + { + "start": 7070.12, + "end": 7073.7, + "probability": 0.8591 + }, + { + "start": 7074.4, + "end": 7075.72, + "probability": 0.8196 + }, + { + "start": 7077.9, + "end": 7078.79, + "probability": 0.9987 + }, + { + "start": 7080.06, + "end": 7081.35, + "probability": 0.9919 + }, + { + "start": 7081.92, + "end": 7084.9, + "probability": 0.9814 + }, + { + "start": 7086.42, + "end": 7088.7, + "probability": 0.9269 + }, + { + "start": 7088.76, + "end": 7093.4, + "probability": 0.9791 + }, + { + "start": 7093.4, + "end": 7098.0, + "probability": 0.9688 + }, + { + "start": 7098.34, + "end": 7099.26, + "probability": 0.0992 + }, + { + "start": 7100.7, + "end": 7103.92, + "probability": 0.9606 + }, + { + "start": 7103.92, + "end": 7106.5, + "probability": 0.9977 + }, + { + "start": 7108.2, + "end": 7109.05, + "probability": 0.4849 + }, + { + "start": 7109.9, + "end": 7114.32, + "probability": 0.9967 + }, + { + "start": 7114.74, + "end": 7119.42, + "probability": 0.9773 + }, + { + "start": 7120.28, + "end": 7123.38, + "probability": 0.998 + }, + { + "start": 7124.2, + "end": 7125.58, + "probability": 0.7427 + }, + { + "start": 7126.32, + "end": 7126.84, + "probability": 0.8358 + }, + { + "start": 7127.72, + "end": 7131.06, + "probability": 0.9948 + }, + { + "start": 7132.02, + "end": 7136.7, + "probability": 0.8388 + }, + { + "start": 7137.92, + "end": 7139.36, + "probability": 0.8036 + }, + { + "start": 7140.78, + "end": 7141.5, + "probability": 0.9902 + }, + { + "start": 7142.56, + "end": 7143.66, + "probability": 0.9509 + }, + { + "start": 7144.3, + "end": 7148.56, + "probability": 0.9962 + }, + { + "start": 7149.5, + "end": 7150.48, + "probability": 0.6155 + }, + { + "start": 7151.38, + "end": 7155.46, + "probability": 0.9907 + }, + { + "start": 7155.9, + "end": 7157.36, + "probability": 0.8134 + }, + { + "start": 7158.3, + "end": 7163.52, + "probability": 0.9979 + }, + { + "start": 7165.1, + "end": 7169.06, + "probability": 0.9868 + }, + { + "start": 7170.2, + "end": 7175.16, + "probability": 0.98 + }, + { + "start": 7177.14, + "end": 7179.9, + "probability": 0.8123 + }, + { + "start": 7180.44, + "end": 7186.5, + "probability": 0.9889 + }, + { + "start": 7187.6, + "end": 7191.7, + "probability": 0.8763 + }, + { + "start": 7192.74, + "end": 7195.36, + "probability": 0.8896 + }, + { + "start": 7195.46, + "end": 7196.22, + "probability": 0.7942 + }, + { + "start": 7196.7, + "end": 7199.48, + "probability": 0.9801 + }, + { + "start": 7200.18, + "end": 7206.06, + "probability": 0.9436 + }, + { + "start": 7206.12, + "end": 7206.46, + "probability": 0.5852 + }, + { + "start": 7206.56, + "end": 7208.9, + "probability": 0.9973 + }, + { + "start": 7209.4, + "end": 7211.02, + "probability": 0.5226 + }, + { + "start": 7211.02, + "end": 7211.44, + "probability": 0.8937 + }, + { + "start": 7211.44, + "end": 7215.7, + "probability": 0.9841 + }, + { + "start": 7216.58, + "end": 7221.34, + "probability": 0.9639 + }, + { + "start": 7221.42, + "end": 7222.42, + "probability": 0.6225 + }, + { + "start": 7223.04, + "end": 7224.52, + "probability": 0.8097 + }, + { + "start": 7225.74, + "end": 7227.86, + "probability": 0.4399 + }, + { + "start": 7227.94, + "end": 7232.04, + "probability": 0.7412 + }, + { + "start": 7232.16, + "end": 7233.16, + "probability": 0.7522 + }, + { + "start": 7233.48, + "end": 7234.32, + "probability": 0.6637 + }, + { + "start": 7234.48, + "end": 7235.44, + "probability": 0.6467 + }, + { + "start": 7235.58, + "end": 7238.14, + "probability": 0.9832 + }, + { + "start": 7239.05, + "end": 7244.02, + "probability": 0.9834 + }, + { + "start": 7244.86, + "end": 7247.74, + "probability": 0.9971 + }, + { + "start": 7247.9, + "end": 7251.82, + "probability": 0.9961 + }, + { + "start": 7253.36, + "end": 7253.98, + "probability": 0.5558 + }, + { + "start": 7254.6, + "end": 7258.48, + "probability": 0.9875 + }, + { + "start": 7258.78, + "end": 7260.06, + "probability": 0.9398 + }, + { + "start": 7260.18, + "end": 7261.02, + "probability": 0.9691 + }, + { + "start": 7261.22, + "end": 7265.04, + "probability": 0.894 + }, + { + "start": 7266.12, + "end": 7268.48, + "probability": 0.9019 + }, + { + "start": 7270.28, + "end": 7271.98, + "probability": 0.9922 + }, + { + "start": 7273.06, + "end": 7274.9, + "probability": 0.8297 + }, + { + "start": 7276.32, + "end": 7278.98, + "probability": 0.9893 + }, + { + "start": 7280.38, + "end": 7281.3, + "probability": 0.999 + }, + { + "start": 7282.54, + "end": 7284.03, + "probability": 0.9807 + }, + { + "start": 7284.62, + "end": 7290.94, + "probability": 0.9468 + }, + { + "start": 7291.48, + "end": 7293.48, + "probability": 0.9667 + }, + { + "start": 7295.44, + "end": 7297.92, + "probability": 0.9948 + }, + { + "start": 7298.96, + "end": 7301.5, + "probability": 0.7469 + }, + { + "start": 7301.92, + "end": 7308.6, + "probability": 0.9927 + }, + { + "start": 7311.8, + "end": 7312.92, + "probability": 0.3767 + }, + { + "start": 7314.56, + "end": 7315.22, + "probability": 0.6236 + }, + { + "start": 7315.52, + "end": 7316.34, + "probability": 0.917 + }, + { + "start": 7316.46, + "end": 7317.98, + "probability": 0.9901 + }, + { + "start": 7319.26, + "end": 7321.04, + "probability": 0.9868 + }, + { + "start": 7321.28, + "end": 7327.14, + "probability": 0.9929 + }, + { + "start": 7329.06, + "end": 7331.0, + "probability": 0.9971 + }, + { + "start": 7331.0, + "end": 7334.52, + "probability": 0.9975 + }, + { + "start": 7336.44, + "end": 7339.06, + "probability": 0.9845 + }, + { + "start": 7339.28, + "end": 7340.76, + "probability": 0.7747 + }, + { + "start": 7343.82, + "end": 7344.6, + "probability": 0.6956 + }, + { + "start": 7345.26, + "end": 7345.94, + "probability": 0.8631 + }, + { + "start": 7346.76, + "end": 7348.6, + "probability": 0.9598 + }, + { + "start": 7350.26, + "end": 7352.0, + "probability": 0.7906 + }, + { + "start": 7352.26, + "end": 7353.44, + "probability": 0.9613 + }, + { + "start": 7353.82, + "end": 7355.86, + "probability": 0.9945 + }, + { + "start": 7356.28, + "end": 7357.34, + "probability": 0.999 + }, + { + "start": 7358.14, + "end": 7359.02, + "probability": 0.9635 + }, + { + "start": 7359.92, + "end": 7360.66, + "probability": 0.8262 + }, + { + "start": 7361.18, + "end": 7365.48, + "probability": 0.6767 + }, + { + "start": 7366.12, + "end": 7366.94, + "probability": 0.9782 + }, + { + "start": 7367.98, + "end": 7369.35, + "probability": 0.9764 + }, + { + "start": 7370.0, + "end": 7370.78, + "probability": 0.7485 + }, + { + "start": 7370.94, + "end": 7371.62, + "probability": 0.9343 + }, + { + "start": 7372.5, + "end": 7374.04, + "probability": 0.9492 + }, + { + "start": 7374.46, + "end": 7377.26, + "probability": 0.986 + }, + { + "start": 7377.42, + "end": 7377.85, + "probability": 0.9417 + }, + { + "start": 7378.3, + "end": 7378.73, + "probability": 0.5084 + }, + { + "start": 7379.54, + "end": 7380.52, + "probability": 0.8266 + }, + { + "start": 7381.7, + "end": 7383.8, + "probability": 0.9929 + }, + { + "start": 7384.2, + "end": 7385.78, + "probability": 0.9456 + }, + { + "start": 7386.31, + "end": 7392.08, + "probability": 0.8197 + }, + { + "start": 7392.08, + "end": 7395.22, + "probability": 0.9957 + }, + { + "start": 7396.18, + "end": 7398.9, + "probability": 0.9966 + }, + { + "start": 7399.04, + "end": 7400.98, + "probability": 0.224 + }, + { + "start": 7400.98, + "end": 7403.82, + "probability": 0.8693 + }, + { + "start": 7404.8, + "end": 7406.86, + "probability": 0.9951 + }, + { + "start": 7408.2, + "end": 7412.8, + "probability": 0.9965 + }, + { + "start": 7413.5, + "end": 7414.9, + "probability": 0.9926 + }, + { + "start": 7415.88, + "end": 7416.32, + "probability": 0.7442 + }, + { + "start": 7418.74, + "end": 7421.4, + "probability": 0.776 + }, + { + "start": 7436.82, + "end": 7437.4, + "probability": 0.2197 + }, + { + "start": 7438.44, + "end": 7439.66, + "probability": 0.8 + }, + { + "start": 7442.91, + "end": 7445.44, + "probability": 0.9215 + }, + { + "start": 7446.66, + "end": 7447.72, + "probability": 0.5047 + }, + { + "start": 7448.12, + "end": 7450.94, + "probability": 0.9458 + }, + { + "start": 7451.8, + "end": 7453.4, + "probability": 0.8411 + }, + { + "start": 7453.5, + "end": 7456.9, + "probability": 0.9112 + }, + { + "start": 7456.98, + "end": 7458.2, + "probability": 0.8573 + }, + { + "start": 7459.32, + "end": 7463.24, + "probability": 0.989 + }, + { + "start": 7464.48, + "end": 7465.2, + "probability": 0.9366 + }, + { + "start": 7466.72, + "end": 7469.3, + "probability": 0.971 + }, + { + "start": 7470.2, + "end": 7471.86, + "probability": 0.9934 + }, + { + "start": 7472.68, + "end": 7474.2, + "probability": 0.8371 + }, + { + "start": 7474.94, + "end": 7477.74, + "probability": 0.965 + }, + { + "start": 7478.96, + "end": 7482.94, + "probability": 0.9295 + }, + { + "start": 7483.96, + "end": 7484.94, + "probability": 0.9506 + }, + { + "start": 7487.18, + "end": 7490.84, + "probability": 0.9796 + }, + { + "start": 7492.74, + "end": 7495.7, + "probability": 0.6517 + }, + { + "start": 7496.46, + "end": 7499.12, + "probability": 0.9968 + }, + { + "start": 7500.18, + "end": 7501.3, + "probability": 0.1478 + }, + { + "start": 7502.5, + "end": 7505.4, + "probability": 0.7549 + }, + { + "start": 7506.9, + "end": 7507.96, + "probability": 0.8316 + }, + { + "start": 7508.6, + "end": 7510.52, + "probability": 0.922 + }, + { + "start": 7511.32, + "end": 7513.12, + "probability": 0.9451 + }, + { + "start": 7514.22, + "end": 7518.96, + "probability": 0.8971 + }, + { + "start": 7519.0, + "end": 7520.84, + "probability": 0.6673 + }, + { + "start": 7521.56, + "end": 7522.12, + "probability": 0.828 + }, + { + "start": 7522.94, + "end": 7528.84, + "probability": 0.9807 + }, + { + "start": 7529.04, + "end": 7529.94, + "probability": 0.968 + }, + { + "start": 7530.48, + "end": 7532.16, + "probability": 0.9519 + }, + { + "start": 7532.68, + "end": 7536.56, + "probability": 0.9618 + }, + { + "start": 7537.24, + "end": 7539.52, + "probability": 0.9373 + }, + { + "start": 7540.28, + "end": 7543.92, + "probability": 0.9211 + }, + { + "start": 7544.62, + "end": 7545.54, + "probability": 0.9646 + }, + { + "start": 7546.38, + "end": 7549.0, + "probability": 0.7769 + }, + { + "start": 7550.88, + "end": 7553.32, + "probability": 0.9083 + }, + { + "start": 7553.44, + "end": 7555.08, + "probability": 0.7821 + }, + { + "start": 7556.2, + "end": 7559.58, + "probability": 0.9305 + }, + { + "start": 7560.92, + "end": 7564.82, + "probability": 0.8287 + }, + { + "start": 7565.92, + "end": 7568.12, + "probability": 0.9851 + }, + { + "start": 7569.4, + "end": 7573.3, + "probability": 0.8405 + }, + { + "start": 7574.1, + "end": 7575.82, + "probability": 0.6148 + }, + { + "start": 7576.56, + "end": 7576.7, + "probability": 0.7693 + }, + { + "start": 7576.76, + "end": 7577.94, + "probability": 0.9478 + }, + { + "start": 7577.98, + "end": 7578.98, + "probability": 0.9779 + }, + { + "start": 7579.08, + "end": 7579.78, + "probability": 0.6648 + }, + { + "start": 7579.92, + "end": 7586.0, + "probability": 0.7731 + }, + { + "start": 7586.52, + "end": 7587.96, + "probability": 0.9045 + }, + { + "start": 7589.0, + "end": 7589.74, + "probability": 0.6163 + }, + { + "start": 7590.42, + "end": 7596.14, + "probability": 0.9882 + }, + { + "start": 7597.12, + "end": 7600.56, + "probability": 0.8123 + }, + { + "start": 7601.42, + "end": 7602.64, + "probability": 0.774 + }, + { + "start": 7603.2, + "end": 7604.64, + "probability": 0.8459 + }, + { + "start": 7605.54, + "end": 7610.16, + "probability": 0.8355 + }, + { + "start": 7611.28, + "end": 7613.48, + "probability": 0.9801 + }, + { + "start": 7614.0, + "end": 7615.46, + "probability": 0.8734 + }, + { + "start": 7615.92, + "end": 7619.86, + "probability": 0.9958 + }, + { + "start": 7620.66, + "end": 7622.32, + "probability": 0.9251 + }, + { + "start": 7622.46, + "end": 7623.16, + "probability": 0.6278 + }, + { + "start": 7623.24, + "end": 7623.86, + "probability": 0.3604 + }, + { + "start": 7624.02, + "end": 7625.08, + "probability": 0.9803 + }, + { + "start": 7625.32, + "end": 7630.46, + "probability": 0.9977 + }, + { + "start": 7630.82, + "end": 7634.98, + "probability": 0.9893 + }, + { + "start": 7635.12, + "end": 7637.26, + "probability": 0.9784 + }, + { + "start": 7637.44, + "end": 7640.8, + "probability": 0.9828 + }, + { + "start": 7641.14, + "end": 7642.62, + "probability": 0.9657 + }, + { + "start": 7642.84, + "end": 7643.54, + "probability": 0.8327 + }, + { + "start": 7646.1, + "end": 7648.34, + "probability": 0.8227 + }, + { + "start": 7649.4, + "end": 7653.3, + "probability": 0.2206 + }, + { + "start": 7654.22, + "end": 7654.68, + "probability": 0.6953 + }, + { + "start": 7654.76, + "end": 7655.6, + "probability": 0.8325 + }, + { + "start": 7658.12, + "end": 7659.7, + "probability": 0.548 + }, + { + "start": 7659.88, + "end": 7663.6, + "probability": 0.7707 + }, + { + "start": 7663.68, + "end": 7665.2, + "probability": 0.6078 + }, + { + "start": 7668.08, + "end": 7670.24, + "probability": 0.6868 + }, + { + "start": 7671.04, + "end": 7672.64, + "probability": 0.7196 + }, + { + "start": 7672.94, + "end": 7673.66, + "probability": 0.6747 + }, + { + "start": 7675.68, + "end": 7677.4, + "probability": 0.8481 + }, + { + "start": 7677.52, + "end": 7678.82, + "probability": 0.9951 + }, + { + "start": 7679.98, + "end": 7685.9, + "probability": 0.9984 + }, + { + "start": 7686.5, + "end": 7687.68, + "probability": 0.9844 + }, + { + "start": 7688.3, + "end": 7689.04, + "probability": 0.9436 + }, + { + "start": 7689.78, + "end": 7692.96, + "probability": 0.989 + }, + { + "start": 7693.9, + "end": 7695.4, + "probability": 0.8983 + }, + { + "start": 7695.74, + "end": 7699.18, + "probability": 0.9887 + }, + { + "start": 7700.26, + "end": 7701.3, + "probability": 0.4715 + }, + { + "start": 7701.38, + "end": 7702.72, + "probability": 0.8038 + }, + { + "start": 7703.02, + "end": 7705.76, + "probability": 0.9487 + }, + { + "start": 7706.42, + "end": 7710.0, + "probability": 0.8388 + }, + { + "start": 7710.34, + "end": 7715.04, + "probability": 0.978 + }, + { + "start": 7715.84, + "end": 7716.56, + "probability": 0.7118 + }, + { + "start": 7717.18, + "end": 7720.1, + "probability": 0.8187 + }, + { + "start": 7720.42, + "end": 7723.18, + "probability": 0.9937 + }, + { + "start": 7723.18, + "end": 7727.12, + "probability": 0.9808 + }, + { + "start": 7727.48, + "end": 7727.76, + "probability": 0.4428 + }, + { + "start": 7727.9, + "end": 7732.3, + "probability": 0.9878 + }, + { + "start": 7732.78, + "end": 7733.6, + "probability": 0.8965 + }, + { + "start": 7734.1, + "end": 7735.1, + "probability": 0.9451 + }, + { + "start": 7735.24, + "end": 7738.48, + "probability": 0.9614 + }, + { + "start": 7738.8, + "end": 7739.62, + "probability": 0.9751 + }, + { + "start": 7739.78, + "end": 7742.94, + "probability": 0.9956 + }, + { + "start": 7743.16, + "end": 7743.98, + "probability": 0.9978 + }, + { + "start": 7744.94, + "end": 7745.54, + "probability": 0.8685 + }, + { + "start": 7746.44, + "end": 7749.82, + "probability": 0.9954 + }, + { + "start": 7749.9, + "end": 7750.62, + "probability": 0.9056 + }, + { + "start": 7751.06, + "end": 7752.32, + "probability": 0.9287 + }, + { + "start": 7752.87, + "end": 7753.64, + "probability": 0.9323 + }, + { + "start": 7754.38, + "end": 7756.6, + "probability": 0.9909 + }, + { + "start": 7757.04, + "end": 7758.08, + "probability": 0.9845 + }, + { + "start": 7758.16, + "end": 7758.74, + "probability": 0.7431 + }, + { + "start": 7758.84, + "end": 7759.54, + "probability": 0.6693 + }, + { + "start": 7760.06, + "end": 7761.2, + "probability": 0.9734 + }, + { + "start": 7761.26, + "end": 7763.1, + "probability": 0.9961 + }, + { + "start": 7763.18, + "end": 7766.02, + "probability": 0.9983 + }, + { + "start": 7767.08, + "end": 7770.52, + "probability": 0.9064 + }, + { + "start": 7771.22, + "end": 7772.24, + "probability": 0.9191 + }, + { + "start": 7773.14, + "end": 7774.04, + "probability": 0.5859 + }, + { + "start": 7774.64, + "end": 7776.76, + "probability": 0.8954 + }, + { + "start": 7777.1, + "end": 7779.3, + "probability": 0.9854 + }, + { + "start": 7779.4, + "end": 7781.82, + "probability": 0.9989 + }, + { + "start": 7781.82, + "end": 7785.18, + "probability": 0.9982 + }, + { + "start": 7785.64, + "end": 7787.5, + "probability": 0.7695 + }, + { + "start": 7787.78, + "end": 7789.56, + "probability": 0.9922 + }, + { + "start": 7789.62, + "end": 7791.64, + "probability": 0.999 + }, + { + "start": 7792.0, + "end": 7795.72, + "probability": 0.9897 + }, + { + "start": 7795.96, + "end": 7797.0, + "probability": 0.9779 + }, + { + "start": 7797.72, + "end": 7801.94, + "probability": 0.9907 + }, + { + "start": 7803.46, + "end": 7804.78, + "probability": 0.8225 + }, + { + "start": 7805.16, + "end": 7805.42, + "probability": 0.8276 + }, + { + "start": 7805.8, + "end": 7808.34, + "probability": 0.9595 + }, + { + "start": 7808.56, + "end": 7809.24, + "probability": 0.4092 + }, + { + "start": 7810.12, + "end": 7811.82, + "probability": 0.8963 + }, + { + "start": 7812.1, + "end": 7814.08, + "probability": 0.9829 + }, + { + "start": 7814.28, + "end": 7816.32, + "probability": 0.9946 + }, + { + "start": 7816.4, + "end": 7817.32, + "probability": 0.8996 + }, + { + "start": 7817.36, + "end": 7820.7, + "probability": 0.98 + }, + { + "start": 7821.12, + "end": 7824.96, + "probability": 0.8548 + }, + { + "start": 7825.58, + "end": 7827.06, + "probability": 0.9907 + }, + { + "start": 7827.12, + "end": 7829.6, + "probability": 0.9941 + }, + { + "start": 7829.86, + "end": 7832.24, + "probability": 0.9799 + }, + { + "start": 7832.24, + "end": 7835.54, + "probability": 0.9957 + }, + { + "start": 7836.3, + "end": 7837.4, + "probability": 0.9774 + }, + { + "start": 7837.98, + "end": 7838.34, + "probability": 0.8376 + }, + { + "start": 7838.42, + "end": 7839.86, + "probability": 0.9956 + }, + { + "start": 7840.38, + "end": 7843.28, + "probability": 0.9971 + }, + { + "start": 7843.5, + "end": 7845.2, + "probability": 0.9973 + }, + { + "start": 7845.2, + "end": 7848.42, + "probability": 0.9973 + }, + { + "start": 7848.92, + "end": 7850.38, + "probability": 0.9786 + }, + { + "start": 7850.7, + "end": 7851.94, + "probability": 0.9273 + }, + { + "start": 7852.8, + "end": 7854.76, + "probability": 0.9679 + }, + { + "start": 7854.98, + "end": 7856.92, + "probability": 0.9968 + }, + { + "start": 7857.08, + "end": 7857.46, + "probability": 0.8073 + }, + { + "start": 7857.72, + "end": 7858.44, + "probability": 0.7011 + }, + { + "start": 7858.76, + "end": 7861.88, + "probability": 0.7366 + }, + { + "start": 7877.28, + "end": 7881.08, + "probability": 0.6489 + }, + { + "start": 7881.42, + "end": 7882.94, + "probability": 0.6617 + }, + { + "start": 7883.12, + "end": 7885.54, + "probability": 0.8533 + }, + { + "start": 7887.04, + "end": 7888.14, + "probability": 0.7656 + }, + { + "start": 7888.62, + "end": 7893.9, + "probability": 0.8286 + }, + { + "start": 7894.12, + "end": 7895.18, + "probability": 0.9233 + }, + { + "start": 7895.42, + "end": 7896.68, + "probability": 0.982 + }, + { + "start": 7897.76, + "end": 7898.0, + "probability": 0.6052 + }, + { + "start": 7898.06, + "end": 7899.18, + "probability": 0.9224 + }, + { + "start": 7899.18, + "end": 7899.76, + "probability": 0.2627 + }, + { + "start": 7899.98, + "end": 7900.28, + "probability": 0.9515 + }, + { + "start": 7900.34, + "end": 7901.56, + "probability": 0.9647 + }, + { + "start": 7902.34, + "end": 7906.74, + "probability": 0.9293 + }, + { + "start": 7907.81, + "end": 7909.88, + "probability": 0.9419 + }, + { + "start": 7910.28, + "end": 7912.78, + "probability": 0.2414 + }, + { + "start": 7912.78, + "end": 7913.99, + "probability": 0.776 + }, + { + "start": 7914.26, + "end": 7915.35, + "probability": 0.8168 + }, + { + "start": 7916.48, + "end": 7920.64, + "probability": 0.9722 + }, + { + "start": 7921.26, + "end": 7924.28, + "probability": 0.9213 + }, + { + "start": 7924.74, + "end": 7926.26, + "probability": 0.77 + }, + { + "start": 7926.88, + "end": 7929.04, + "probability": 0.9251 + }, + { + "start": 7930.08, + "end": 7935.4, + "probability": 0.7956 + }, + { + "start": 7936.34, + "end": 7937.78, + "probability": 0.4838 + }, + { + "start": 7939.1, + "end": 7939.12, + "probability": 0.6166 + }, + { + "start": 7939.44, + "end": 7939.54, + "probability": 0.4586 + }, + { + "start": 7940.16, + "end": 7943.88, + "probability": 0.6255 + }, + { + "start": 7944.26, + "end": 7945.41, + "probability": 0.7409 + }, + { + "start": 7946.34, + "end": 7947.62, + "probability": 0.6484 + }, + { + "start": 7948.18, + "end": 7952.76, + "probability": 0.8902 + }, + { + "start": 7953.56, + "end": 7959.96, + "probability": 0.9336 + }, + { + "start": 7960.96, + "end": 7963.58, + "probability": 0.2255 + }, + { + "start": 7963.88, + "end": 7964.36, + "probability": 0.5882 + }, + { + "start": 7965.0, + "end": 7967.22, + "probability": 0.9973 + }, + { + "start": 7967.98, + "end": 7972.16, + "probability": 0.9135 + }, + { + "start": 7973.52, + "end": 7973.9, + "probability": 0.8247 + }, + { + "start": 7974.78, + "end": 7979.98, + "probability": 0.9959 + }, + { + "start": 7980.5, + "end": 7982.5, + "probability": 0.942 + }, + { + "start": 7983.48, + "end": 7984.73, + "probability": 0.0377 + }, + { + "start": 7986.84, + "end": 7989.84, + "probability": 0.9118 + }, + { + "start": 7990.52, + "end": 7995.04, + "probability": 0.7801 + }, + { + "start": 7995.06, + "end": 7996.51, + "probability": 0.0349 + }, + { + "start": 7996.92, + "end": 7997.58, + "probability": 0.7962 + }, + { + "start": 7997.62, + "end": 8001.48, + "probability": 0.9275 + }, + { + "start": 8002.9, + "end": 8003.2, + "probability": 0.7773 + }, + { + "start": 8003.26, + "end": 8003.75, + "probability": 0.8738 + }, + { + "start": 8004.2, + "end": 8004.54, + "probability": 0.5527 + }, + { + "start": 8005.01, + "end": 8006.32, + "probability": 0.8959 + }, + { + "start": 8006.44, + "end": 8007.16, + "probability": 0.4744 + }, + { + "start": 8007.26, + "end": 8008.66, + "probability": 0.9102 + }, + { + "start": 8008.8, + "end": 8010.64, + "probability": 0.9621 + }, + { + "start": 8010.68, + "end": 8011.72, + "probability": 0.9661 + }, + { + "start": 8011.72, + "end": 8012.92, + "probability": 0.9556 + }, + { + "start": 8013.94, + "end": 8015.74, + "probability": 0.9863 + }, + { + "start": 8016.0, + "end": 8017.64, + "probability": 0.5399 + }, + { + "start": 8018.2, + "end": 8018.82, + "probability": 0.878 + }, + { + "start": 8019.28, + "end": 8019.54, + "probability": 0.8013 + }, + { + "start": 8019.66, + "end": 8021.54, + "probability": 0.7673 + }, + { + "start": 8021.8, + "end": 8024.1, + "probability": 0.9872 + }, + { + "start": 8024.98, + "end": 8025.18, + "probability": 0.5107 + }, + { + "start": 8025.38, + "end": 8026.36, + "probability": 0.9062 + }, + { + "start": 8026.42, + "end": 8028.44, + "probability": 0.9407 + }, + { + "start": 8029.42, + "end": 8032.24, + "probability": 0.9038 + }, + { + "start": 8034.0, + "end": 8036.7, + "probability": 0.6055 + }, + { + "start": 8036.84, + "end": 8038.46, + "probability": 0.8971 + }, + { + "start": 8039.34, + "end": 8040.16, + "probability": 0.9497 + }, + { + "start": 8040.78, + "end": 8041.93, + "probability": 0.8456 + }, + { + "start": 8042.78, + "end": 8048.26, + "probability": 0.9948 + }, + { + "start": 8048.78, + "end": 8050.88, + "probability": 0.9976 + }, + { + "start": 8051.18, + "end": 8053.9, + "probability": 0.9717 + }, + { + "start": 8054.68, + "end": 8058.24, + "probability": 0.9937 + }, + { + "start": 8059.3, + "end": 8060.42, + "probability": 0.5429 + }, + { + "start": 8061.36, + "end": 8065.0, + "probability": 0.8781 + }, + { + "start": 8065.2, + "end": 8066.4, + "probability": 0.7194 + }, + { + "start": 8067.04, + "end": 8070.02, + "probability": 0.7917 + }, + { + "start": 8070.98, + "end": 8076.3, + "probability": 0.9151 + }, + { + "start": 8076.42, + "end": 8078.75, + "probability": 0.8472 + }, + { + "start": 8080.48, + "end": 8084.96, + "probability": 0.9907 + }, + { + "start": 8085.06, + "end": 8086.16, + "probability": 0.2315 + }, + { + "start": 8086.16, + "end": 8086.16, + "probability": 0.0946 + }, + { + "start": 8086.16, + "end": 8086.4, + "probability": 0.0537 + }, + { + "start": 8087.3, + "end": 8091.14, + "probability": 0.8669 + }, + { + "start": 8091.38, + "end": 8091.7, + "probability": 0.8778 + }, + { + "start": 8091.8, + "end": 8095.22, + "probability": 0.9662 + }, + { + "start": 8095.48, + "end": 8095.64, + "probability": 0.1065 + }, + { + "start": 8095.7, + "end": 8097.82, + "probability": 0.9827 + }, + { + "start": 8099.06, + "end": 8101.08, + "probability": 0.0898 + }, + { + "start": 8101.32, + "end": 8101.46, + "probability": 0.3187 + }, + { + "start": 8101.46, + "end": 8102.52, + "probability": 0.5219 + }, + { + "start": 8102.98, + "end": 8104.66, + "probability": 0.3506 + }, + { + "start": 8104.7, + "end": 8104.72, + "probability": 0.3055 + }, + { + "start": 8104.72, + "end": 8108.14, + "probability": 0.7404 + }, + { + "start": 8108.28, + "end": 8110.88, + "probability": 0.8975 + }, + { + "start": 8110.96, + "end": 8111.6, + "probability": 0.7393 + }, + { + "start": 8112.06, + "end": 8113.12, + "probability": 0.8166 + }, + { + "start": 8113.7, + "end": 8115.98, + "probability": 0.7405 + }, + { + "start": 8117.42, + "end": 8119.32, + "probability": 0.0792 + }, + { + "start": 8119.56, + "end": 8119.82, + "probability": 0.7983 + }, + { + "start": 8119.88, + "end": 8122.26, + "probability": 0.9269 + }, + { + "start": 8122.88, + "end": 8126.24, + "probability": 0.8772 + }, + { + "start": 8126.38, + "end": 8128.57, + "probability": 0.8477 + }, + { + "start": 8129.54, + "end": 8130.08, + "probability": 0.1819 + }, + { + "start": 8130.42, + "end": 8131.9, + "probability": 0.9061 + }, + { + "start": 8132.0, + "end": 8132.92, + "probability": 0.6234 + }, + { + "start": 8133.3, + "end": 8135.71, + "probability": 0.3263 + }, + { + "start": 8136.08, + "end": 8136.26, + "probability": 0.3689 + }, + { + "start": 8136.54, + "end": 8137.64, + "probability": 0.588 + }, + { + "start": 8137.86, + "end": 8138.5, + "probability": 0.0179 + }, + { + "start": 8138.5, + "end": 8138.5, + "probability": 0.0562 + }, + { + "start": 8138.5, + "end": 8141.42, + "probability": 0.8115 + }, + { + "start": 8141.42, + "end": 8143.48, + "probability": 0.9583 + }, + { + "start": 8144.56, + "end": 8146.88, + "probability": 0.7093 + }, + { + "start": 8147.3, + "end": 8148.8, + "probability": 0.5156 + }, + { + "start": 8149.36, + "end": 8150.84, + "probability": 0.804 + }, + { + "start": 8150.88, + "end": 8153.11, + "probability": 0.5575 + }, + { + "start": 8154.53, + "end": 8156.82, + "probability": 0.9983 + }, + { + "start": 8157.62, + "end": 8160.58, + "probability": 0.994 + }, + { + "start": 8161.56, + "end": 8162.48, + "probability": 0.5033 + }, + { + "start": 8163.06, + "end": 8163.94, + "probability": 0.9937 + }, + { + "start": 8164.58, + "end": 8165.81, + "probability": 0.3362 + }, + { + "start": 8166.14, + "end": 8171.4, + "probability": 0.4704 + }, + { + "start": 8172.3, + "end": 8172.98, + "probability": 0.0635 + }, + { + "start": 8173.02, + "end": 8173.32, + "probability": 0.4357 + }, + { + "start": 8173.38, + "end": 8174.98, + "probability": 0.7482 + }, + { + "start": 8174.98, + "end": 8181.52, + "probability": 0.9892 + }, + { + "start": 8181.64, + "end": 8182.96, + "probability": 0.9966 + }, + { + "start": 8183.9, + "end": 8188.52, + "probability": 0.9798 + }, + { + "start": 8190.18, + "end": 8191.78, + "probability": 0.7067 + }, + { + "start": 8192.7, + "end": 8195.06, + "probability": 0.8892 + }, + { + "start": 8195.58, + "end": 8200.24, + "probability": 0.9834 + }, + { + "start": 8201.58, + "end": 8202.48, + "probability": 0.6329 + }, + { + "start": 8203.9, + "end": 8204.66, + "probability": 0.835 + }, + { + "start": 8205.56, + "end": 8210.32, + "probability": 0.9315 + }, + { + "start": 8212.22, + "end": 8216.74, + "probability": 0.9729 + }, + { + "start": 8217.8, + "end": 8220.18, + "probability": 0.993 + }, + { + "start": 8221.66, + "end": 8226.58, + "probability": 0.7105 + }, + { + "start": 8227.52, + "end": 8229.9, + "probability": 0.9866 + }, + { + "start": 8229.9, + "end": 8233.06, + "probability": 0.9664 + }, + { + "start": 8234.02, + "end": 8235.31, + "probability": 0.9937 + }, + { + "start": 8236.68, + "end": 8239.48, + "probability": 0.9826 + }, + { + "start": 8239.52, + "end": 8240.22, + "probability": 0.8288 + }, + { + "start": 8240.3, + "end": 8241.04, + "probability": 0.7592 + }, + { + "start": 8241.2, + "end": 8242.26, + "probability": 0.9257 + }, + { + "start": 8242.96, + "end": 8244.74, + "probability": 0.8794 + }, + { + "start": 8245.52, + "end": 8245.82, + "probability": 0.9823 + }, + { + "start": 8246.54, + "end": 8247.76, + "probability": 0.9756 + }, + { + "start": 8249.16, + "end": 8250.0, + "probability": 0.7429 + }, + { + "start": 8250.34, + "end": 8251.2, + "probability": 0.9413 + }, + { + "start": 8251.24, + "end": 8254.96, + "probability": 0.9952 + }, + { + "start": 8255.82, + "end": 8257.95, + "probability": 0.9967 + }, + { + "start": 8258.58, + "end": 8259.4, + "probability": 0.7447 + }, + { + "start": 8260.68, + "end": 8262.88, + "probability": 0.996 + }, + { + "start": 8263.92, + "end": 8265.92, + "probability": 0.9444 + }, + { + "start": 8266.44, + "end": 8267.44, + "probability": 0.8118 + }, + { + "start": 8268.28, + "end": 8271.28, + "probability": 0.9678 + }, + { + "start": 8271.96, + "end": 8273.78, + "probability": 0.8347 + }, + { + "start": 8274.82, + "end": 8275.74, + "probability": 0.8359 + }, + { + "start": 8276.58, + "end": 8279.5, + "probability": 0.9667 + }, + { + "start": 8280.58, + "end": 8284.14, + "probability": 0.9258 + }, + { + "start": 8285.78, + "end": 8286.38, + "probability": 0.9135 + }, + { + "start": 8288.3, + "end": 8289.08, + "probability": 0.9851 + }, + { + "start": 8290.2, + "end": 8291.8, + "probability": 0.9894 + }, + { + "start": 8293.9, + "end": 8293.96, + "probability": 0.7822 + }, + { + "start": 8295.08, + "end": 8295.5, + "probability": 0.6871 + }, + { + "start": 8296.76, + "end": 8298.48, + "probability": 0.9858 + }, + { + "start": 8299.4, + "end": 8301.86, + "probability": 0.9941 + }, + { + "start": 8302.68, + "end": 8307.26, + "probability": 0.9287 + }, + { + "start": 8308.0, + "end": 8310.34, + "probability": 0.7688 + }, + { + "start": 8310.9, + "end": 8312.1, + "probability": 0.7604 + }, + { + "start": 8312.18, + "end": 8312.66, + "probability": 0.8673 + }, + { + "start": 8313.76, + "end": 8314.46, + "probability": 0.8213 + }, + { + "start": 8315.12, + "end": 8317.6, + "probability": 0.6327 + }, + { + "start": 8322.98, + "end": 8325.2, + "probability": 0.7672 + }, + { + "start": 8325.66, + "end": 8326.82, + "probability": 0.8281 + }, + { + "start": 8327.98, + "end": 8329.72, + "probability": 0.475 + }, + { + "start": 8329.72, + "end": 8330.24, + "probability": 0.0827 + }, + { + "start": 8330.4, + "end": 8332.18, + "probability": 0.8169 + }, + { + "start": 8333.3, + "end": 8334.16, + "probability": 0.5945 + }, + { + "start": 8335.16, + "end": 8335.6, + "probability": 0.2511 + }, + { + "start": 8336.34, + "end": 8337.04, + "probability": 0.5226 + }, + { + "start": 8337.34, + "end": 8339.18, + "probability": 0.7429 + }, + { + "start": 8339.42, + "end": 8340.2, + "probability": 0.0915 + }, + { + "start": 8340.92, + "end": 8342.38, + "probability": 0.5306 + }, + { + "start": 8342.84, + "end": 8344.8, + "probability": 0.6557 + }, + { + "start": 8346.16, + "end": 8351.42, + "probability": 0.9198 + }, + { + "start": 8352.62, + "end": 8354.3, + "probability": 0.9962 + }, + { + "start": 8354.96, + "end": 8356.08, + "probability": 0.9482 + }, + { + "start": 8357.34, + "end": 8357.74, + "probability": 0.7024 + }, + { + "start": 8358.7, + "end": 8362.52, + "probability": 0.973 + }, + { + "start": 8364.06, + "end": 8367.74, + "probability": 0.9496 + }, + { + "start": 8368.74, + "end": 8369.74, + "probability": 0.7744 + }, + { + "start": 8370.74, + "end": 8371.9, + "probability": 0.9966 + }, + { + "start": 8373.26, + "end": 8374.7, + "probability": 0.9967 + }, + { + "start": 8375.54, + "end": 8379.44, + "probability": 0.9885 + }, + { + "start": 8380.68, + "end": 8380.7, + "probability": 0.0485 + }, + { + "start": 8381.48, + "end": 8382.08, + "probability": 0.6187 + }, + { + "start": 8382.92, + "end": 8383.46, + "probability": 0.9697 + }, + { + "start": 8385.58, + "end": 8389.6, + "probability": 0.8641 + }, + { + "start": 8391.02, + "end": 8392.8, + "probability": 0.9902 + }, + { + "start": 8393.92, + "end": 8396.24, + "probability": 0.9772 + }, + { + "start": 8400.76, + "end": 8401.44, + "probability": 0.6638 + }, + { + "start": 8402.38, + "end": 8404.26, + "probability": 0.9939 + }, + { + "start": 8404.9, + "end": 8410.82, + "probability": 0.9974 + }, + { + "start": 8413.82, + "end": 8420.58, + "probability": 0.9951 + }, + { + "start": 8421.52, + "end": 8424.06, + "probability": 0.9934 + }, + { + "start": 8424.62, + "end": 8426.78, + "probability": 0.9985 + }, + { + "start": 8427.62, + "end": 8429.38, + "probability": 0.866 + }, + { + "start": 8430.06, + "end": 8430.56, + "probability": 0.6875 + }, + { + "start": 8432.32, + "end": 8436.44, + "probability": 0.8439 + }, + { + "start": 8437.48, + "end": 8442.08, + "probability": 0.9855 + }, + { + "start": 8442.72, + "end": 8444.7, + "probability": 0.9945 + }, + { + "start": 8446.26, + "end": 8447.95, + "probability": 0.9841 + }, + { + "start": 8448.82, + "end": 8450.32, + "probability": 0.9922 + }, + { + "start": 8451.38, + "end": 8452.22, + "probability": 0.9858 + }, + { + "start": 8452.88, + "end": 8455.54, + "probability": 0.9945 + }, + { + "start": 8456.02, + "end": 8456.58, + "probability": 0.9873 + }, + { + "start": 8457.84, + "end": 8459.74, + "probability": 0.9907 + }, + { + "start": 8460.6, + "end": 8462.52, + "probability": 0.9663 + }, + { + "start": 8463.64, + "end": 8464.88, + "probability": 0.7263 + }, + { + "start": 8465.9, + "end": 8468.8, + "probability": 0.8279 + }, + { + "start": 8470.46, + "end": 8475.3, + "probability": 0.8615 + }, + { + "start": 8476.06, + "end": 8478.42, + "probability": 0.9848 + }, + { + "start": 8480.66, + "end": 8483.76, + "probability": 0.7684 + }, + { + "start": 8484.5, + "end": 8485.28, + "probability": 0.9165 + }, + { + "start": 8486.88, + "end": 8487.6, + "probability": 0.9116 + }, + { + "start": 8488.12, + "end": 8489.52, + "probability": 0.969 + }, + { + "start": 8490.3, + "end": 8491.75, + "probability": 0.998 + }, + { + "start": 8493.22, + "end": 8497.46, + "probability": 0.9513 + }, + { + "start": 8498.04, + "end": 8503.24, + "probability": 0.9936 + }, + { + "start": 8503.24, + "end": 8506.78, + "probability": 0.999 + }, + { + "start": 8507.38, + "end": 8508.76, + "probability": 0.9557 + }, + { + "start": 8509.48, + "end": 8511.14, + "probability": 0.4407 + }, + { + "start": 8511.18, + "end": 8512.76, + "probability": 0.975 + }, + { + "start": 8513.26, + "end": 8514.79, + "probability": 0.9902 + }, + { + "start": 8515.3, + "end": 8518.26, + "probability": 0.7804 + }, + { + "start": 8518.78, + "end": 8519.66, + "probability": 0.9642 + }, + { + "start": 8520.36, + "end": 8521.04, + "probability": 0.5173 + }, + { + "start": 8521.74, + "end": 8522.62, + "probability": 0.6501 + }, + { + "start": 8523.36, + "end": 8524.42, + "probability": 0.7484 + }, + { + "start": 8524.9, + "end": 8530.12, + "probability": 0.9561 + }, + { + "start": 8530.3, + "end": 8530.6, + "probability": 0.2588 + }, + { + "start": 8530.6, + "end": 8530.7, + "probability": 0.6602 + }, + { + "start": 8530.76, + "end": 8530.78, + "probability": 0.2738 + }, + { + "start": 8530.78, + "end": 8531.68, + "probability": 0.8956 + }, + { + "start": 8532.32, + "end": 8533.8, + "probability": 0.9606 + }, + { + "start": 8534.24, + "end": 8535.72, + "probability": 0.9647 + }, + { + "start": 8535.78, + "end": 8536.46, + "probability": 0.6181 + }, + { + "start": 8536.9, + "end": 8539.48, + "probability": 0.7388 + }, + { + "start": 8540.99, + "end": 8541.34, + "probability": 0.1527 + }, + { + "start": 8541.34, + "end": 8545.74, + "probability": 0.7562 + }, + { + "start": 8546.18, + "end": 8547.88, + "probability": 0.9798 + }, + { + "start": 8548.44, + "end": 8550.82, + "probability": 0.9845 + }, + { + "start": 8551.58, + "end": 8555.54, + "probability": 0.9261 + }, + { + "start": 8556.04, + "end": 8559.2, + "probability": 0.7343 + }, + { + "start": 8560.26, + "end": 8563.32, + "probability": 0.9487 + }, + { + "start": 8563.9, + "end": 8565.82, + "probability": 0.9731 + }, + { + "start": 8566.34, + "end": 8567.84, + "probability": 0.9512 + }, + { + "start": 8568.14, + "end": 8568.58, + "probability": 0.8076 + }, + { + "start": 8568.68, + "end": 8569.7, + "probability": 0.9179 + }, + { + "start": 8570.02, + "end": 8570.68, + "probability": 0.7933 + }, + { + "start": 8571.02, + "end": 8572.66, + "probability": 0.866 + }, + { + "start": 8595.02, + "end": 8598.08, + "probability": 0.7852 + }, + { + "start": 8598.34, + "end": 8599.54, + "probability": 0.8488 + }, + { + "start": 8600.56, + "end": 8604.02, + "probability": 0.9704 + }, + { + "start": 8605.46, + "end": 8607.0, + "probability": 0.9812 + }, + { + "start": 8607.1, + "end": 8609.4, + "probability": 0.9878 + }, + { + "start": 8610.0, + "end": 8611.62, + "probability": 0.936 + }, + { + "start": 8614.59, + "end": 8616.09, + "probability": 0.4848 + }, + { + "start": 8616.22, + "end": 8617.12, + "probability": 0.236 + }, + { + "start": 8617.38, + "end": 8621.06, + "probability": 0.8877 + }, + { + "start": 8621.28, + "end": 8621.93, + "probability": 0.9624 + }, + { + "start": 8622.14, + "end": 8624.92, + "probability": 0.9941 + }, + { + "start": 8624.92, + "end": 8628.14, + "probability": 0.7438 + }, + { + "start": 8628.24, + "end": 8629.4, + "probability": 0.359 + }, + { + "start": 8630.32, + "end": 8631.64, + "probability": 0.6707 + }, + { + "start": 8631.72, + "end": 8633.9, + "probability": 0.7384 + }, + { + "start": 8634.8, + "end": 8636.48, + "probability": 0.7406 + }, + { + "start": 8636.6, + "end": 8638.84, + "probability": 0.9941 + }, + { + "start": 8639.26, + "end": 8639.74, + "probability": 0.9255 + }, + { + "start": 8639.9, + "end": 8641.12, + "probability": 0.8564 + }, + { + "start": 8642.0, + "end": 8645.46, + "probability": 0.981 + }, + { + "start": 8645.5, + "end": 8649.24, + "probability": 0.9334 + }, + { + "start": 8649.4, + "end": 8651.14, + "probability": 0.9726 + }, + { + "start": 8651.38, + "end": 8656.32, + "probability": 0.894 + }, + { + "start": 8656.86, + "end": 8658.84, + "probability": 0.9383 + }, + { + "start": 8660.72, + "end": 8663.46, + "probability": 0.9843 + }, + { + "start": 8664.28, + "end": 8665.1, + "probability": 0.9363 + }, + { + "start": 8665.18, + "end": 8665.59, + "probability": 0.9819 + }, + { + "start": 8665.72, + "end": 8667.54, + "probability": 0.8246 + }, + { + "start": 8668.0, + "end": 8671.18, + "probability": 0.9915 + }, + { + "start": 8671.24, + "end": 8671.8, + "probability": 0.7505 + }, + { + "start": 8672.1, + "end": 8673.94, + "probability": 0.9894 + }, + { + "start": 8674.04, + "end": 8674.64, + "probability": 0.8031 + }, + { + "start": 8674.9, + "end": 8676.58, + "probability": 0.9585 + }, + { + "start": 8676.58, + "end": 8678.38, + "probability": 0.9989 + }, + { + "start": 8679.42, + "end": 8680.01, + "probability": 0.6104 + }, + { + "start": 8680.46, + "end": 8682.46, + "probability": 0.9116 + }, + { + "start": 8683.02, + "end": 8683.86, + "probability": 0.7646 + }, + { + "start": 8683.92, + "end": 8685.46, + "probability": 0.978 + }, + { + "start": 8685.82, + "end": 8687.14, + "probability": 0.9666 + }, + { + "start": 8687.76, + "end": 8691.56, + "probability": 0.9862 + }, + { + "start": 8691.7, + "end": 8695.42, + "probability": 0.9682 + }, + { + "start": 8695.8, + "end": 8698.66, + "probability": 0.9927 + }, + { + "start": 8699.44, + "end": 8700.26, + "probability": 0.6035 + }, + { + "start": 8700.34, + "end": 8701.4, + "probability": 0.9778 + }, + { + "start": 8702.26, + "end": 8702.48, + "probability": 0.8005 + }, + { + "start": 8705.44, + "end": 8708.42, + "probability": 0.9829 + }, + { + "start": 8708.5, + "end": 8710.32, + "probability": 0.9946 + }, + { + "start": 8710.66, + "end": 8712.28, + "probability": 0.7737 + }, + { + "start": 8712.32, + "end": 8712.8, + "probability": 0.8223 + }, + { + "start": 8712.86, + "end": 8713.94, + "probability": 0.9717 + }, + { + "start": 8714.32, + "end": 8716.02, + "probability": 0.8524 + }, + { + "start": 8717.12, + "end": 8720.0, + "probability": 0.8137 + }, + { + "start": 8720.94, + "end": 8723.68, + "probability": 0.9097 + }, + { + "start": 8723.96, + "end": 8726.22, + "probability": 0.8681 + }, + { + "start": 8727.52, + "end": 8728.98, + "probability": 0.988 + }, + { + "start": 8729.02, + "end": 8731.28, + "probability": 0.4907 + }, + { + "start": 8731.78, + "end": 8732.06, + "probability": 0.2925 + }, + { + "start": 8732.06, + "end": 8733.48, + "probability": 0.7338 + }, + { + "start": 8734.18, + "end": 8739.82, + "probability": 0.8336 + }, + { + "start": 8740.28, + "end": 8740.54, + "probability": 0.5047 + }, + { + "start": 8740.6, + "end": 8741.14, + "probability": 0.6783 + }, + { + "start": 8741.38, + "end": 8744.48, + "probability": 0.9886 + }, + { + "start": 8744.48, + "end": 8747.34, + "probability": 0.9491 + }, + { + "start": 8748.18, + "end": 8749.82, + "probability": 0.9561 + }, + { + "start": 8750.54, + "end": 8751.74, + "probability": 0.8637 + }, + { + "start": 8752.46, + "end": 8756.24, + "probability": 0.9694 + }, + { + "start": 8756.7, + "end": 8758.24, + "probability": 0.9818 + }, + { + "start": 8758.34, + "end": 8759.08, + "probability": 0.3871 + }, + { + "start": 8759.56, + "end": 8760.68, + "probability": 0.9067 + }, + { + "start": 8760.82, + "end": 8764.1, + "probability": 0.8472 + }, + { + "start": 8764.24, + "end": 8767.56, + "probability": 0.8034 + }, + { + "start": 8767.66, + "end": 8771.72, + "probability": 0.9984 + }, + { + "start": 8771.9, + "end": 8772.82, + "probability": 0.3468 + }, + { + "start": 8773.08, + "end": 8774.66, + "probability": 0.8196 + }, + { + "start": 8774.84, + "end": 8775.54, + "probability": 0.1911 + }, + { + "start": 8775.62, + "end": 8775.92, + "probability": 0.4368 + }, + { + "start": 8775.92, + "end": 8776.1, + "probability": 0.3557 + }, + { + "start": 8776.12, + "end": 8777.1, + "probability": 0.5645 + }, + { + "start": 8777.52, + "end": 8778.28, + "probability": 0.87 + }, + { + "start": 8778.32, + "end": 8781.84, + "probability": 0.6831 + }, + { + "start": 8782.02, + "end": 8782.86, + "probability": 0.589 + }, + { + "start": 8783.4, + "end": 8784.32, + "probability": 0.9277 + }, + { + "start": 8785.46, + "end": 8790.48, + "probability": 0.7383 + }, + { + "start": 8790.82, + "end": 8791.54, + "probability": 0.5172 + }, + { + "start": 8791.78, + "end": 8791.78, + "probability": 0.3444 + }, + { + "start": 8791.78, + "end": 8791.78, + "probability": 0.5449 + }, + { + "start": 8791.78, + "end": 8793.38, + "probability": 0.8502 + }, + { + "start": 8793.58, + "end": 8795.96, + "probability": 0.9475 + }, + { + "start": 8796.08, + "end": 8796.94, + "probability": 0.9336 + }, + { + "start": 8796.94, + "end": 8799.32, + "probability": 0.918 + }, + { + "start": 8799.36, + "end": 8800.06, + "probability": 0.859 + }, + { + "start": 8800.12, + "end": 8801.44, + "probability": 0.8755 + }, + { + "start": 8801.92, + "end": 8806.28, + "probability": 0.8684 + }, + { + "start": 8806.62, + "end": 8808.6, + "probability": 0.8608 + }, + { + "start": 8808.76, + "end": 8812.56, + "probability": 0.9717 + }, + { + "start": 8812.92, + "end": 8813.92, + "probability": 0.5941 + }, + { + "start": 8814.1, + "end": 8815.12, + "probability": 0.6918 + }, + { + "start": 8815.88, + "end": 8817.36, + "probability": 0.8849 + }, + { + "start": 8817.84, + "end": 8817.84, + "probability": 0.0952 + }, + { + "start": 8817.84, + "end": 8821.26, + "probability": 0.8411 + }, + { + "start": 8821.26, + "end": 8823.94, + "probability": 0.6254 + }, + { + "start": 8824.16, + "end": 8824.5, + "probability": 0.0902 + }, + { + "start": 8824.5, + "end": 8824.54, + "probability": 0.3809 + }, + { + "start": 8824.54, + "end": 8826.17, + "probability": 0.3978 + }, + { + "start": 8826.42, + "end": 8829.22, + "probability": 0.3582 + }, + { + "start": 8829.78, + "end": 8834.0, + "probability": 0.1118 + }, + { + "start": 8834.0, + "end": 8839.08, + "probability": 0.0732 + }, + { + "start": 8839.38, + "end": 8842.74, + "probability": 0.1034 + }, + { + "start": 8842.92, + "end": 8844.06, + "probability": 0.0267 + }, + { + "start": 8844.06, + "end": 8844.06, + "probability": 0.1336 + }, + { + "start": 8844.06, + "end": 8844.06, + "probability": 0.1511 + }, + { + "start": 8844.06, + "end": 8847.14, + "probability": 0.1909 + }, + { + "start": 8847.5, + "end": 8850.5, + "probability": 0.0833 + }, + { + "start": 8850.5, + "end": 8850.82, + "probability": 0.0835 + }, + { + "start": 8850.82, + "end": 8850.82, + "probability": 0.3581 + }, + { + "start": 8850.82, + "end": 8850.82, + "probability": 0.1525 + }, + { + "start": 8850.82, + "end": 8851.82, + "probability": 0.1371 + }, + { + "start": 8851.86, + "end": 8854.44, + "probability": 0.28 + }, + { + "start": 8855.98, + "end": 8855.98, + "probability": 0.2866 + }, + { + "start": 8855.98, + "end": 8856.78, + "probability": 0.4048 + }, + { + "start": 8856.86, + "end": 8857.09, + "probability": 0.0978 + }, + { + "start": 8857.72, + "end": 8858.68, + "probability": 0.3546 + }, + { + "start": 8858.82, + "end": 8858.82, + "probability": 0.0115 + }, + { + "start": 8858.82, + "end": 8860.65, + "probability": 0.741 + }, + { + "start": 8860.94, + "end": 8865.78, + "probability": 0.1176 + }, + { + "start": 8865.8, + "end": 8868.64, + "probability": 0.1258 + }, + { + "start": 8868.66, + "end": 8870.98, + "probability": 0.0322 + }, + { + "start": 8871.58, + "end": 8871.88, + "probability": 0.0288 + }, + { + "start": 8873.52, + "end": 8878.46, + "probability": 0.1749 + }, + { + "start": 8878.46, + "end": 8880.6, + "probability": 0.0474 + }, + { + "start": 8880.6, + "end": 8883.28, + "probability": 0.2352 + }, + { + "start": 8885.86, + "end": 8887.78, + "probability": 0.3479 + }, + { + "start": 8888.44, + "end": 8891.42, + "probability": 0.021 + }, + { + "start": 8904.0, + "end": 8904.0, + "probability": 0.0 + }, + { + "start": 8904.0, + "end": 8904.0, + "probability": 0.0 + }, + { + "start": 8904.0, + "end": 8904.0, + "probability": 0.0 + }, + { + "start": 8904.0, + "end": 8904.0, + "probability": 0.0 + }, + { + "start": 8904.0, + "end": 8904.0, + "probability": 0.0 + }, + { + "start": 8904.0, + "end": 8904.0, + "probability": 0.0 + }, + { + "start": 8904.0, + "end": 8904.0, + "probability": 0.0 + }, + { + "start": 8904.0, + "end": 8904.0, + "probability": 0.0 + }, + { + "start": 8904.0, + "end": 8904.0, + "probability": 0.0 + }, + { + "start": 8904.0, + "end": 8904.0, + "probability": 0.0 + }, + { + "start": 8904.0, + "end": 8904.0, + "probability": 0.0 + }, + { + "start": 8904.0, + "end": 8904.0, + "probability": 0.0 + }, + { + "start": 8904.0, + "end": 8904.0, + "probability": 0.0 + }, + { + "start": 8904.0, + "end": 8904.0, + "probability": 0.0 + }, + { + "start": 8904.0, + "end": 8904.0, + "probability": 0.0 + }, + { + "start": 8904.0, + "end": 8904.0, + "probability": 0.0 + }, + { + "start": 8904.0, + "end": 8904.0, + "probability": 0.0 + }, + { + "start": 8904.0, + "end": 8904.0, + "probability": 0.0 + }, + { + "start": 8904.0, + "end": 8904.0, + "probability": 0.0 + }, + { + "start": 8904.0, + "end": 8904.0, + "probability": 0.0 + }, + { + "start": 8904.0, + "end": 8904.0, + "probability": 0.0 + }, + { + "start": 8904.08, + "end": 8905.92, + "probability": 0.7844 + }, + { + "start": 8906.62, + "end": 8907.44, + "probability": 0.5666 + }, + { + "start": 8907.94, + "end": 8909.32, + "probability": 0.7754 + }, + { + "start": 8910.1, + "end": 8911.12, + "probability": 0.9252 + }, + { + "start": 8912.06, + "end": 8914.5, + "probability": 0.9856 + }, + { + "start": 8914.76, + "end": 8916.68, + "probability": 0.8813 + }, + { + "start": 8917.3, + "end": 8920.5, + "probability": 0.9976 + }, + { + "start": 8921.0, + "end": 8925.2, + "probability": 0.9935 + }, + { + "start": 8925.36, + "end": 8925.54, + "probability": 0.1827 + }, + { + "start": 8925.66, + "end": 8929.66, + "probability": 0.967 + }, + { + "start": 8930.42, + "end": 8933.88, + "probability": 0.9993 + }, + { + "start": 8934.44, + "end": 8938.34, + "probability": 0.9613 + }, + { + "start": 8938.38, + "end": 8941.96, + "probability": 0.7881 + }, + { + "start": 8942.22, + "end": 8942.98, + "probability": 0.6665 + }, + { + "start": 8943.42, + "end": 8948.98, + "probability": 0.9719 + }, + { + "start": 8949.16, + "end": 8949.84, + "probability": 0.9924 + }, + { + "start": 8950.36, + "end": 8952.78, + "probability": 0.9437 + }, + { + "start": 8952.92, + "end": 8953.24, + "probability": 0.8583 + }, + { + "start": 8953.58, + "end": 8957.54, + "probability": 0.9873 + }, + { + "start": 8958.14, + "end": 8958.38, + "probability": 0.8832 + }, + { + "start": 8958.42, + "end": 8959.86, + "probability": 0.9807 + }, + { + "start": 8960.52, + "end": 8961.92, + "probability": 0.9932 + }, + { + "start": 8962.46, + "end": 8962.78, + "probability": 0.9244 + }, + { + "start": 8962.88, + "end": 8963.2, + "probability": 0.816 + }, + { + "start": 8963.2, + "end": 8964.92, + "probability": 0.9824 + }, + { + "start": 8965.42, + "end": 8968.5, + "probability": 0.9492 + }, + { + "start": 8969.9, + "end": 8971.3, + "probability": 0.9409 + }, + { + "start": 8971.5, + "end": 8972.14, + "probability": 0.7562 + }, + { + "start": 8973.26, + "end": 8973.84, + "probability": 0.7263 + }, + { + "start": 8976.88, + "end": 8977.46, + "probability": 0.0311 + }, + { + "start": 8977.98, + "end": 8981.22, + "probability": 0.2471 + }, + { + "start": 8981.34, + "end": 8981.44, + "probability": 0.1716 + }, + { + "start": 8981.44, + "end": 8984.18, + "probability": 0.2188 + }, + { + "start": 8984.32, + "end": 8984.54, + "probability": 0.274 + }, + { + "start": 8986.42, + "end": 8987.12, + "probability": 0.01 + }, + { + "start": 8987.12, + "end": 8987.14, + "probability": 0.2001 + }, + { + "start": 8987.14, + "end": 8987.14, + "probability": 0.0284 + }, + { + "start": 8987.14, + "end": 8987.14, + "probability": 0.0552 + }, + { + "start": 8987.14, + "end": 8988.81, + "probability": 0.0308 + }, + { + "start": 8989.88, + "end": 8994.02, + "probability": 0.2245 + }, + { + "start": 8994.46, + "end": 8995.31, + "probability": 0.0349 + }, + { + "start": 8997.57, + "end": 9004.67, + "probability": 0.1602 + }, + { + "start": 9005.26, + "end": 9005.47, + "probability": 0.0705 + }, + { + "start": 9007.52, + "end": 9010.22, + "probability": 0.0927 + }, + { + "start": 9010.22, + "end": 9010.24, + "probability": 0.0072 + }, + { + "start": 9010.24, + "end": 9010.4, + "probability": 0.3621 + }, + { + "start": 9010.4, + "end": 9010.82, + "probability": 0.1465 + }, + { + "start": 9010.92, + "end": 9012.52, + "probability": 0.4911 + }, + { + "start": 9012.7, + "end": 9017.24, + "probability": 0.1029 + }, + { + "start": 9017.83, + "end": 9017.95, + "probability": 0.0343 + }, + { + "start": 9019.9, + "end": 9021.64, + "probability": 0.0815 + }, + { + "start": 9022.0, + "end": 9022.6, + "probability": 0.0443 + }, + { + "start": 9022.6, + "end": 9022.6, + "probability": 0.0463 + }, + { + "start": 9023.56, + "end": 9025.19, + "probability": 0.0962 + }, + { + "start": 9026.2, + "end": 9030.28, + "probability": 0.1182 + }, + { + "start": 9030.28, + "end": 9030.94, + "probability": 0.0909 + }, + { + "start": 9031.6, + "end": 9034.37, + "probability": 0.195 + }, + { + "start": 9035.04, + "end": 9037.96, + "probability": 0.2194 + }, + { + "start": 9042.46, + "end": 9042.92, + "probability": 0.0338 + }, + { + "start": 9043.0, + "end": 9043.0, + "probability": 0.0 + }, + { + "start": 9043.0, + "end": 9043.0, + "probability": 0.0 + }, + { + "start": 9043.0, + "end": 9043.0, + "probability": 0.0 + }, + { + "start": 9043.0, + "end": 9043.0, + "probability": 0.0 + }, + { + "start": 9043.0, + "end": 9043.0, + "probability": 0.0 + }, + { + "start": 9043.0, + "end": 9043.0, + "probability": 0.0 + }, + { + "start": 9043.0, + "end": 9043.0, + "probability": 0.0 + }, + { + "start": 9043.0, + "end": 9043.0, + "probability": 0.0 + }, + { + "start": 9043.0, + "end": 9043.0, + "probability": 0.0 + }, + { + "start": 9043.0, + "end": 9043.0, + "probability": 0.0 + }, + { + "start": 9043.0, + "end": 9043.0, + "probability": 0.0 + }, + { + "start": 9043.0, + "end": 9043.0, + "probability": 0.0 + }, + { + "start": 9043.0, + "end": 9043.0, + "probability": 0.0 + }, + { + "start": 9043.0, + "end": 9043.0, + "probability": 0.0 + }, + { + "start": 9043.0, + "end": 9043.0, + "probability": 0.0 + }, + { + "start": 9043.0, + "end": 9043.0, + "probability": 0.0 + }, + { + "start": 9043.0, + "end": 9043.0, + "probability": 0.0 + }, + { + "start": 9043.0, + "end": 9043.0, + "probability": 0.0 + }, + { + "start": 9043.0, + "end": 9043.0, + "probability": 0.0 + }, + { + "start": 9043.5, + "end": 9044.7, + "probability": 0.19 + }, + { + "start": 9044.72, + "end": 9045.54, + "probability": 0.3055 + }, + { + "start": 9045.78, + "end": 9047.3, + "probability": 0.879 + }, + { + "start": 9047.58, + "end": 9047.86, + "probability": 0.1126 + }, + { + "start": 9048.04, + "end": 9048.2, + "probability": 0.1872 + }, + { + "start": 9048.2, + "end": 9050.38, + "probability": 0.9959 + }, + { + "start": 9051.18, + "end": 9051.68, + "probability": 0.4595 + }, + { + "start": 9051.7, + "end": 9053.04, + "probability": 0.6831 + }, + { + "start": 9053.04, + "end": 9054.12, + "probability": 0.8214 + }, + { + "start": 9054.68, + "end": 9058.3, + "probability": 0.9824 + }, + { + "start": 9058.74, + "end": 9060.64, + "probability": 0.9186 + }, + { + "start": 9061.18, + "end": 9062.25, + "probability": 0.986 + }, + { + "start": 9062.7, + "end": 9064.64, + "probability": 0.9961 + }, + { + "start": 9064.64, + "end": 9067.34, + "probability": 0.998 + }, + { + "start": 9067.78, + "end": 9067.82, + "probability": 0.0624 + }, + { + "start": 9067.82, + "end": 9067.82, + "probability": 0.0726 + }, + { + "start": 9067.82, + "end": 9071.46, + "probability": 0.8222 + }, + { + "start": 9071.46, + "end": 9072.66, + "probability": 0.0907 + }, + { + "start": 9074.78, + "end": 9076.04, + "probability": 0.0733 + }, + { + "start": 9076.62, + "end": 9076.62, + "probability": 0.0565 + }, + { + "start": 9076.62, + "end": 9076.62, + "probability": 0.0464 + }, + { + "start": 9076.62, + "end": 9076.62, + "probability": 0.1592 + }, + { + "start": 9076.62, + "end": 9077.14, + "probability": 0.1166 + }, + { + "start": 9077.14, + "end": 9077.34, + "probability": 0.5776 + }, + { + "start": 9077.34, + "end": 9077.66, + "probability": 0.619 + }, + { + "start": 9078.18, + "end": 9080.42, + "probability": 0.9944 + }, + { + "start": 9080.62, + "end": 9081.86, + "probability": 0.7958 + }, + { + "start": 9082.06, + "end": 9084.78, + "probability": 0.6421 + }, + { + "start": 9085.28, + "end": 9086.46, + "probability": 0.4238 + }, + { + "start": 9087.58, + "end": 9087.86, + "probability": 0.6923 + }, + { + "start": 9087.86, + "end": 9088.52, + "probability": 0.1991 + }, + { + "start": 9088.62, + "end": 9089.42, + "probability": 0.2792 + }, + { + "start": 9089.72, + "end": 9089.82, + "probability": 0.0235 + }, + { + "start": 9089.82, + "end": 9090.17, + "probability": 0.177 + }, + { + "start": 9090.84, + "end": 9092.46, + "probability": 0.9149 + }, + { + "start": 9092.5, + "end": 9093.26, + "probability": 0.8021 + }, + { + "start": 9093.74, + "end": 9094.44, + "probability": 0.2903 + }, + { + "start": 9094.48, + "end": 9095.71, + "probability": 0.1251 + }, + { + "start": 9096.8, + "end": 9097.46, + "probability": 0.1893 + }, + { + "start": 9112.18, + "end": 9116.68, + "probability": 0.1254 + }, + { + "start": 9116.72, + "end": 9117.17, + "probability": 0.0064 + }, + { + "start": 9117.82, + "end": 9120.82, + "probability": 0.1635 + }, + { + "start": 9121.08, + "end": 9123.82, + "probability": 0.0254 + }, + { + "start": 9124.69, + "end": 9125.18, + "probability": 0.0435 + }, + { + "start": 9125.18, + "end": 9127.88, + "probability": 0.0687 + }, + { + "start": 9145.34, + "end": 9146.18, + "probability": 0.0749 + }, + { + "start": 9146.18, + "end": 9147.32, + "probability": 0.0694 + }, + { + "start": 9150.49, + "end": 9152.09, + "probability": 0.0395 + }, + { + "start": 9152.34, + "end": 9152.38, + "probability": 0.0573 + }, + { + "start": 9152.92, + "end": 9153.1, + "probability": 0.0526 + }, + { + "start": 9153.14, + "end": 9158.1, + "probability": 0.0424 + }, + { + "start": 9158.78, + "end": 9159.68, + "probability": 0.0473 + }, + { + "start": 9166.0, + "end": 9166.0, + "probability": 0.0 + }, + { + "start": 9166.0, + "end": 9166.0, + "probability": 0.0 + }, + { + "start": 9166.0, + "end": 9166.0, + "probability": 0.0 + }, + { + "start": 9166.0, + "end": 9166.0, + "probability": 0.0 + }, + { + "start": 9166.0, + "end": 9166.0, + "probability": 0.0 + }, + { + "start": 9166.0, + "end": 9166.0, + "probability": 0.0 + }, + { + "start": 9166.0, + "end": 9166.0, + "probability": 0.0 + }, + { + "start": 9166.0, + "end": 9166.0, + "probability": 0.0 + }, + { + "start": 9166.0, + "end": 9166.0, + "probability": 0.0 + }, + { + "start": 9166.0, + "end": 9166.0, + "probability": 0.0 + }, + { + "start": 9166.0, + "end": 9166.0, + "probability": 0.0 + }, + { + "start": 9166.0, + "end": 9166.0, + "probability": 0.0 + }, + { + "start": 9166.0, + "end": 9166.0, + "probability": 0.0 + }, + { + "start": 9166.0, + "end": 9166.0, + "probability": 0.0 + }, + { + "start": 9166.0, + "end": 9166.0, + "probability": 0.0 + }, + { + "start": 9178.41, + "end": 9179.72, + "probability": 0.1235 + }, + { + "start": 9191.9, + "end": 9192.28, + "probability": 0.0651 + }, + { + "start": 9192.64, + "end": 9194.38, + "probability": 0.0778 + }, + { + "start": 9194.62, + "end": 9195.08, + "probability": 0.0092 + }, + { + "start": 9195.08, + "end": 9197.34, + "probability": 0.0476 + }, + { + "start": 9197.96, + "end": 9200.72, + "probability": 0.1739 + }, + { + "start": 9212.7, + "end": 9213.02, + "probability": 0.0055 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.0, + "end": 9294.0, + "probability": 0.0 + }, + { + "start": 9294.3, + "end": 9294.3, + "probability": 0.1454 + }, + { + "start": 9294.3, + "end": 9294.3, + "probability": 0.0443 + }, + { + "start": 9294.3, + "end": 9295.65, + "probability": 0.0989 + }, + { + "start": 9296.12, + "end": 9297.16, + "probability": 0.788 + }, + { + "start": 9297.26, + "end": 9300.94, + "probability": 0.9579 + }, + { + "start": 9314.02, + "end": 9316.62, + "probability": 0.8832 + }, + { + "start": 9317.88, + "end": 9319.16, + "probability": 0.0244 + }, + { + "start": 9320.32, + "end": 9320.32, + "probability": 0.2211 + }, + { + "start": 9320.64, + "end": 9324.24, + "probability": 0.0205 + }, + { + "start": 9324.24, + "end": 9326.64, + "probability": 0.0361 + }, + { + "start": 9326.68, + "end": 9328.3, + "probability": 0.0118 + }, + { + "start": 9329.72, + "end": 9331.44, + "probability": 0.0706 + }, + { + "start": 9335.18, + "end": 9336.0, + "probability": 0.3016 + }, + { + "start": 9337.16, + "end": 9339.08, + "probability": 0.0234 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9414.0, + "end": 9414.0, + "probability": 0.0 + }, + { + "start": 9417.04, + "end": 9417.78, + "probability": 0.72 + }, + { + "start": 9417.78, + "end": 9418.14, + "probability": 0.3987 + }, + { + "start": 9418.24, + "end": 9420.3, + "probability": 0.2549 + }, + { + "start": 9420.36, + "end": 9423.4, + "probability": 0.1078 + }, + { + "start": 9424.08, + "end": 9425.58, + "probability": 0.0954 + }, + { + "start": 9425.86, + "end": 9426.88, + "probability": 0.1452 + }, + { + "start": 9426.88, + "end": 9428.24, + "probability": 0.0603 + }, + { + "start": 9428.44, + "end": 9428.9, + "probability": 0.129 + }, + { + "start": 9428.9, + "end": 9431.34, + "probability": 0.0354 + }, + { + "start": 9431.34, + "end": 9431.36, + "probability": 0.0669 + }, + { + "start": 9431.36, + "end": 9431.36, + "probability": 0.0464 + }, + { + "start": 9431.56, + "end": 9432.3, + "probability": 0.0874 + }, + { + "start": 9432.3, + "end": 9432.3, + "probability": 0.1438 + }, + { + "start": 9432.3, + "end": 9433.08, + "probability": 0.2177 + }, + { + "start": 9449.4, + "end": 9449.8, + "probability": 0.0198 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.0, + "probability": 0.0 + }, + { + "start": 9535.0, + "end": 9535.38, + "probability": 0.2991 + }, + { + "start": 9535.38, + "end": 9536.39, + "probability": 0.5869 + }, + { + "start": 9536.88, + "end": 9537.28, + "probability": 0.811 + }, + { + "start": 9537.32, + "end": 9537.52, + "probability": 0.1372 + }, + { + "start": 9537.52, + "end": 9538.7, + "probability": 0.9548 + }, + { + "start": 9540.42, + "end": 9541.9, + "probability": 0.577 + }, + { + "start": 9542.24, + "end": 9543.48, + "probability": 0.5131 + }, + { + "start": 9543.66, + "end": 9544.54, + "probability": 0.7689 + }, + { + "start": 9545.5, + "end": 9547.28, + "probability": 0.6995 + }, + { + "start": 9548.0, + "end": 9551.41, + "probability": 0.9878 + }, + { + "start": 9552.56, + "end": 9555.92, + "probability": 0.9875 + }, + { + "start": 9556.66, + "end": 9558.96, + "probability": 0.9815 + }, + { + "start": 9559.52, + "end": 9560.86, + "probability": 0.9937 + }, + { + "start": 9561.48, + "end": 9562.72, + "probability": 0.9033 + }, + { + "start": 9563.32, + "end": 9564.76, + "probability": 0.9815 + }, + { + "start": 9565.48, + "end": 9567.18, + "probability": 0.9928 + }, + { + "start": 9567.66, + "end": 9569.46, + "probability": 0.9194 + }, + { + "start": 9569.9, + "end": 9570.56, + "probability": 0.4761 + }, + { + "start": 9570.6, + "end": 9571.54, + "probability": 0.9425 + }, + { + "start": 9572.64, + "end": 9574.7, + "probability": 0.9845 + }, + { + "start": 9575.66, + "end": 9580.86, + "probability": 0.9932 + }, + { + "start": 9580.86, + "end": 9586.28, + "probability": 0.9977 + }, + { + "start": 9587.46, + "end": 9590.42, + "probability": 0.9775 + }, + { + "start": 9591.22, + "end": 9594.3, + "probability": 0.8902 + }, + { + "start": 9594.96, + "end": 9600.22, + "probability": 0.9904 + }, + { + "start": 9601.16, + "end": 9604.04, + "probability": 0.9568 + }, + { + "start": 9604.82, + "end": 9606.56, + "probability": 0.8813 + }, + { + "start": 9607.4, + "end": 9611.04, + "probability": 0.9463 + }, + { + "start": 9612.38, + "end": 9613.0, + "probability": 0.8456 + }, + { + "start": 9613.14, + "end": 9619.28, + "probability": 0.9922 + }, + { + "start": 9619.96, + "end": 9624.42, + "probability": 0.8999 + }, + { + "start": 9625.1, + "end": 9628.58, + "probability": 0.9871 + }, + { + "start": 9629.1, + "end": 9635.4, + "probability": 0.9992 + }, + { + "start": 9635.94, + "end": 9636.56, + "probability": 0.76 + }, + { + "start": 9638.06, + "end": 9644.83, + "probability": 0.9877 + }, + { + "start": 9645.5, + "end": 9648.82, + "probability": 0.9983 + }, + { + "start": 9648.82, + "end": 9653.44, + "probability": 0.999 + }, + { + "start": 9654.32, + "end": 9658.74, + "probability": 0.988 + }, + { + "start": 9659.4, + "end": 9660.86, + "probability": 0.9409 + }, + { + "start": 9662.68, + "end": 9663.8, + "probability": 0.7375 + }, + { + "start": 9664.42, + "end": 9668.32, + "probability": 0.9942 + }, + { + "start": 9669.52, + "end": 9674.72, + "probability": 0.9828 + }, + { + "start": 9675.24, + "end": 9675.78, + "probability": 0.7718 + }, + { + "start": 9675.94, + "end": 9680.16, + "probability": 0.9803 + }, + { + "start": 9680.32, + "end": 9681.18, + "probability": 0.673 + }, + { + "start": 9681.18, + "end": 9685.12, + "probability": 0.9874 + }, + { + "start": 9685.62, + "end": 9688.74, + "probability": 0.9971 + }, + { + "start": 9688.74, + "end": 9692.74, + "probability": 0.9152 + }, + { + "start": 9693.24, + "end": 9693.82, + "probability": 0.7921 + }, + { + "start": 9694.48, + "end": 9700.84, + "probability": 0.9952 + }, + { + "start": 9701.16, + "end": 9703.18, + "probability": 0.897 + }, + { + "start": 9703.3, + "end": 9705.02, + "probability": 0.9272 + }, + { + "start": 9705.72, + "end": 9707.58, + "probability": 0.947 + }, + { + "start": 9708.26, + "end": 9710.96, + "probability": 0.9891 + }, + { + "start": 9712.6, + "end": 9714.34, + "probability": 0.8468 + }, + { + "start": 9715.2, + "end": 9718.36, + "probability": 0.6201 + }, + { + "start": 9719.0, + "end": 9721.2, + "probability": 0.9456 + }, + { + "start": 9721.94, + "end": 9725.18, + "probability": 0.8712 + }, + { + "start": 9726.2, + "end": 9729.5, + "probability": 0.9702 + }, + { + "start": 9729.62, + "end": 9729.62, + "probability": 0.5366 + }, + { + "start": 9729.8, + "end": 9730.88, + "probability": 0.6782 + }, + { + "start": 9732.24, + "end": 9733.36, + "probability": 0.5195 + }, + { + "start": 9733.44, + "end": 9734.54, + "probability": 0.7436 + }, + { + "start": 9734.74, + "end": 9736.04, + "probability": 0.9183 + }, + { + "start": 9736.62, + "end": 9739.52, + "probability": 0.981 + }, + { + "start": 9739.9, + "end": 9743.36, + "probability": 0.9603 + }, + { + "start": 9743.36, + "end": 9743.82, + "probability": 0.4312 + }, + { + "start": 9743.84, + "end": 9744.26, + "probability": 0.2821 + }, + { + "start": 9744.28, + "end": 9749.9, + "probability": 0.9928 + }, + { + "start": 9750.6, + "end": 9755.06, + "probability": 0.9896 + }, + { + "start": 9755.44, + "end": 9761.12, + "probability": 0.9492 + }, + { + "start": 9761.12, + "end": 9761.7, + "probability": 0.2523 + }, + { + "start": 9761.76, + "end": 9762.02, + "probability": 0.5294 + }, + { + "start": 9762.02, + "end": 9763.8, + "probability": 0.9403 + }, + { + "start": 9763.82, + "end": 9764.34, + "probability": 0.2634 + }, + { + "start": 9765.0, + "end": 9767.38, + "probability": 0.9331 + }, + { + "start": 9769.46, + "end": 9770.48, + "probability": 0.8381 + }, + { + "start": 9771.48, + "end": 9773.88, + "probability": 0.974 + }, + { + "start": 9774.84, + "end": 9779.04, + "probability": 0.9917 + }, + { + "start": 9779.04, + "end": 9782.48, + "probability": 0.986 + }, + { + "start": 9782.56, + "end": 9782.72, + "probability": 0.5686 + }, + { + "start": 9782.72, + "end": 9783.58, + "probability": 0.3882 + }, + { + "start": 9784.0, + "end": 9786.3, + "probability": 0.7347 + }, + { + "start": 9792.06, + "end": 9793.16, + "probability": 0.6029 + }, + { + "start": 9793.22, + "end": 9794.6, + "probability": 0.8346 + }, + { + "start": 9794.7, + "end": 9796.38, + "probability": 0.93 + }, + { + "start": 9796.48, + "end": 9798.14, + "probability": 0.288 + }, + { + "start": 9798.24, + "end": 9800.24, + "probability": 0.746 + }, + { + "start": 9809.74, + "end": 9810.95, + "probability": 0.7499 + }, + { + "start": 9811.3, + "end": 9811.7, + "probability": 0.749 + }, + { + "start": 9813.22, + "end": 9814.32, + "probability": 0.7803 + }, + { + "start": 9814.44, + "end": 9816.64, + "probability": 0.7973 + }, + { + "start": 9818.2, + "end": 9823.4, + "probability": 0.987 + }, + { + "start": 9824.8, + "end": 9827.38, + "probability": 0.9174 + }, + { + "start": 9827.44, + "end": 9828.76, + "probability": 0.9567 + }, + { + "start": 9828.88, + "end": 9829.56, + "probability": 0.9839 + }, + { + "start": 9829.58, + "end": 9830.14, + "probability": 0.9132 + }, + { + "start": 9830.2, + "end": 9830.98, + "probability": 0.7517 + }, + { + "start": 9832.1, + "end": 9832.64, + "probability": 0.9857 + }, + { + "start": 9833.94, + "end": 9837.46, + "probability": 0.9686 + }, + { + "start": 9838.54, + "end": 9841.73, + "probability": 0.9962 + }, + { + "start": 9842.6, + "end": 9844.14, + "probability": 0.9873 + }, + { + "start": 9844.82, + "end": 9845.54, + "probability": 0.9878 + }, + { + "start": 9846.26, + "end": 9850.24, + "probability": 0.9949 + }, + { + "start": 9853.14, + "end": 9854.66, + "probability": 0.9569 + }, + { + "start": 9854.82, + "end": 9858.88, + "probability": 0.9453 + }, + { + "start": 9860.02, + "end": 9861.12, + "probability": 0.9987 + }, + { + "start": 9862.9, + "end": 9868.4, + "probability": 0.9888 + }, + { + "start": 9871.02, + "end": 9871.62, + "probability": 0.8326 + }, + { + "start": 9873.44, + "end": 9877.0, + "probability": 0.9829 + }, + { + "start": 9877.48, + "end": 9878.28, + "probability": 0.9921 + }, + { + "start": 9879.84, + "end": 9880.14, + "probability": 0.8242 + }, + { + "start": 9880.66, + "end": 9881.22, + "probability": 0.7481 + }, + { + "start": 9881.48, + "end": 9882.04, + "probability": 0.7701 + }, + { + "start": 9882.6, + "end": 9884.1, + "probability": 0.9724 + }, + { + "start": 9885.36, + "end": 9887.98, + "probability": 0.9844 + }, + { + "start": 9889.14, + "end": 9893.7, + "probability": 0.9777 + }, + { + "start": 9894.58, + "end": 9895.03, + "probability": 0.9883 + }, + { + "start": 9896.78, + "end": 9897.02, + "probability": 0.2848 + }, + { + "start": 9897.02, + "end": 9897.34, + "probability": 0.4955 + }, + { + "start": 9897.4, + "end": 9897.94, + "probability": 0.6405 + }, + { + "start": 9898.04, + "end": 9898.98, + "probability": 0.9624 + }, + { + "start": 9899.2, + "end": 9902.22, + "probability": 0.9846 + }, + { + "start": 9902.32, + "end": 9903.32, + "probability": 0.751 + }, + { + "start": 9905.14, + "end": 9906.92, + "probability": 0.7429 + }, + { + "start": 9909.54, + "end": 9916.12, + "probability": 0.9649 + }, + { + "start": 9916.74, + "end": 9918.4, + "probability": 0.8358 + }, + { + "start": 9918.9, + "end": 9921.3, + "probability": 0.9858 + }, + { + "start": 9921.88, + "end": 9923.48, + "probability": 0.9634 + }, + { + "start": 9924.02, + "end": 9925.12, + "probability": 0.9575 + }, + { + "start": 9927.08, + "end": 9928.58, + "probability": 0.3257 + }, + { + "start": 9928.58, + "end": 9928.58, + "probability": 0.1348 + }, + { + "start": 9928.58, + "end": 9931.04, + "probability": 0.1453 + }, + { + "start": 9931.32, + "end": 9932.56, + "probability": 0.9807 + }, + { + "start": 9932.8, + "end": 9934.08, + "probability": 0.577 + }, + { + "start": 9934.22, + "end": 9936.72, + "probability": 0.2363 + }, + { + "start": 9936.88, + "end": 9938.06, + "probability": 0.7498 + }, + { + "start": 9938.16, + "end": 9939.0, + "probability": 0.8405 + }, + { + "start": 9939.3, + "end": 9939.86, + "probability": 0.0068 + }, + { + "start": 9939.86, + "end": 9940.92, + "probability": 0.5777 + }, + { + "start": 9940.98, + "end": 9943.02, + "probability": 0.3514 + }, + { + "start": 9943.14, + "end": 9945.31, + "probability": 0.9059 + }, + { + "start": 9945.72, + "end": 9946.06, + "probability": 0.0629 + }, + { + "start": 9946.98, + "end": 9947.46, + "probability": 0.0914 + }, + { + "start": 9950.16, + "end": 9950.74, + "probability": 0.0313 + }, + { + "start": 9952.34, + "end": 9953.72, + "probability": 0.045 + }, + { + "start": 9953.72, + "end": 9954.32, + "probability": 0.1669 + }, + { + "start": 9954.42, + "end": 9954.42, + "probability": 0.3902 + }, + { + "start": 9954.42, + "end": 9954.42, + "probability": 0.0087 + }, + { + "start": 9954.74, + "end": 9954.96, + "probability": 0.2942 + }, + { + "start": 9954.96, + "end": 9954.96, + "probability": 0.2775 + }, + { + "start": 9954.96, + "end": 9955.92, + "probability": 0.8315 + }, + { + "start": 9956.06, + "end": 9956.7, + "probability": 0.8315 + }, + { + "start": 9956.96, + "end": 9957.76, + "probability": 0.5855 + }, + { + "start": 9959.32, + "end": 9959.74, + "probability": 0.0723 + }, + { + "start": 9960.22, + "end": 9960.36, + "probability": 0.1234 + }, + { + "start": 9960.36, + "end": 9960.36, + "probability": 0.7215 + }, + { + "start": 9960.36, + "end": 9960.62, + "probability": 0.3975 + }, + { + "start": 9960.62, + "end": 9963.26, + "probability": 0.3838 + }, + { + "start": 9963.36, + "end": 9964.52, + "probability": 0.7463 + }, + { + "start": 9964.52, + "end": 9965.9, + "probability": 0.8882 + }, + { + "start": 9966.66, + "end": 9968.22, + "probability": 0.9093 + }, + { + "start": 9968.9, + "end": 9968.92, + "probability": 0.2529 + }, + { + "start": 9968.92, + "end": 9970.3, + "probability": 0.9954 + }, + { + "start": 9970.78, + "end": 9970.78, + "probability": 0.1405 + }, + { + "start": 9970.78, + "end": 9974.46, + "probability": 0.9976 + }, + { + "start": 9974.6, + "end": 9974.84, + "probability": 0.134 + }, + { + "start": 9974.92, + "end": 9975.87, + "probability": 0.959 + }, + { + "start": 9976.32, + "end": 9976.32, + "probability": 0.1775 + }, + { + "start": 9976.32, + "end": 9980.18, + "probability": 0.9181 + }, + { + "start": 9980.5, + "end": 9986.46, + "probability": 0.7929 + }, + { + "start": 9986.58, + "end": 9988.52, + "probability": 0.7074 + }, + { + "start": 9988.52, + "end": 9989.0, + "probability": 0.1281 + }, + { + "start": 9989.08, + "end": 9993.36, + "probability": 0.8921 + }, + { + "start": 9993.48, + "end": 9994.96, + "probability": 0.9906 + }, + { + "start": 9995.02, + "end": 9997.14, + "probability": 0.973 + }, + { + "start": 9997.14, + "end": 9997.92, + "probability": 0.1455 + }, + { + "start": 9997.94, + "end": 10001.68, + "probability": 0.9573 + }, + { + "start": 10001.68, + "end": 10002.2, + "probability": 0.1044 + }, + { + "start": 10002.2, + "end": 10004.18, + "probability": 0.9169 + }, + { + "start": 10004.24, + "end": 10006.04, + "probability": 0.8183 + }, + { + "start": 10006.2, + "end": 10008.78, + "probability": 0.8789 + }, + { + "start": 10009.32, + "end": 10014.52, + "probability": 0.4312 + }, + { + "start": 10017.42, + "end": 10018.16, + "probability": 0.0913 + }, + { + "start": 10018.16, + "end": 10018.16, + "probability": 0.2107 + }, + { + "start": 10018.16, + "end": 10019.44, + "probability": 0.4795 + }, + { + "start": 10019.54, + "end": 10020.02, + "probability": 0.4284 + }, + { + "start": 10020.46, + "end": 10023.1, + "probability": 0.0982 + }, + { + "start": 10024.06, + "end": 10024.12, + "probability": 0.1971 + }, + { + "start": 10024.12, + "end": 10024.47, + "probability": 0.4993 + }, + { + "start": 10025.52, + "end": 10028.68, + "probability": 0.9912 + }, + { + "start": 10028.8, + "end": 10030.6, + "probability": 0.8748 + }, + { + "start": 10030.8, + "end": 10032.68, + "probability": 0.7787 + }, + { + "start": 10032.68, + "end": 10034.3, + "probability": 0.823 + }, + { + "start": 10034.6, + "end": 10035.54, + "probability": 0.7329 + }, + { + "start": 10035.74, + "end": 10036.74, + "probability": 0.9873 + }, + { + "start": 10036.88, + "end": 10037.4, + "probability": 0.6521 + }, + { + "start": 10037.46, + "end": 10038.48, + "probability": 0.8513 + }, + { + "start": 10038.79, + "end": 10038.94, + "probability": 0.0114 + }, + { + "start": 10039.18, + "end": 10041.8, + "probability": 0.988 + }, + { + "start": 10042.0, + "end": 10043.48, + "probability": 0.9679 + }, + { + "start": 10045.4, + "end": 10045.42, + "probability": 0.591 + }, + { + "start": 10045.42, + "end": 10045.42, + "probability": 0.2008 + }, + { + "start": 10045.42, + "end": 10046.54, + "probability": 0.2781 + }, + { + "start": 10046.74, + "end": 10049.42, + "probability": 0.8442 + }, + { + "start": 10049.56, + "end": 10050.4, + "probability": 0.1416 + }, + { + "start": 10052.92, + "end": 10056.3, + "probability": 0.3378 + }, + { + "start": 10057.04, + "end": 10057.34, + "probability": 0.0234 + }, + { + "start": 10057.34, + "end": 10057.34, + "probability": 0.3005 + }, + { + "start": 10057.34, + "end": 10060.88, + "probability": 0.6616 + }, + { + "start": 10060.94, + "end": 10061.68, + "probability": 0.842 + }, + { + "start": 10062.06, + "end": 10066.52, + "probability": 0.9888 + }, + { + "start": 10067.08, + "end": 10067.08, + "probability": 0.0099 + }, + { + "start": 10067.08, + "end": 10072.92, + "probability": 0.9543 + }, + { + "start": 10072.92, + "end": 10073.14, + "probability": 0.5252 + }, + { + "start": 10073.14, + "end": 10076.42, + "probability": 0.9217 + }, + { + "start": 10076.78, + "end": 10080.2, + "probability": 0.9694 + }, + { + "start": 10081.0, + "end": 10084.86, + "probability": 0.9939 + }, + { + "start": 10084.98, + "end": 10086.32, + "probability": 0.9972 + }, + { + "start": 10086.34, + "end": 10086.62, + "probability": 0.0284 + }, + { + "start": 10086.62, + "end": 10087.46, + "probability": 0.7605 + }, + { + "start": 10087.7, + "end": 10089.47, + "probability": 0.9987 + }, + { + "start": 10090.04, + "end": 10091.98, + "probability": 0.9951 + }, + { + "start": 10092.44, + "end": 10094.76, + "probability": 0.998 + }, + { + "start": 10094.84, + "end": 10095.54, + "probability": 0.5206 + }, + { + "start": 10095.54, + "end": 10097.59, + "probability": 0.9703 + }, + { + "start": 10097.68, + "end": 10098.68, + "probability": 0.9839 + }, + { + "start": 10098.82, + "end": 10099.66, + "probability": 0.9131 + }, + { + "start": 10099.88, + "end": 10101.2, + "probability": 0.9932 + }, + { + "start": 10101.24, + "end": 10102.56, + "probability": 0.9685 + }, + { + "start": 10103.02, + "end": 10104.7, + "probability": 0.9839 + }, + { + "start": 10105.48, + "end": 10105.56, + "probability": 0.4377 + }, + { + "start": 10105.84, + "end": 10107.78, + "probability": 0.9467 + }, + { + "start": 10117.52, + "end": 10118.98, + "probability": 0.6385 + }, + { + "start": 10118.98, + "end": 10122.4, + "probability": 0.6176 + }, + { + "start": 10123.1, + "end": 10123.88, + "probability": 0.8581 + }, + { + "start": 10124.56, + "end": 10125.32, + "probability": 0.6091 + }, + { + "start": 10125.88, + "end": 10126.36, + "probability": 0.9322 + }, + { + "start": 10127.32, + "end": 10129.12, + "probability": 0.26 + }, + { + "start": 10129.12, + "end": 10132.08, + "probability": 0.7788 + }, + { + "start": 10132.2, + "end": 10132.6, + "probability": 0.415 + }, + { + "start": 10132.8, + "end": 10134.34, + "probability": 0.5687 + }, + { + "start": 10142.22, + "end": 10143.8, + "probability": 0.1998 + }, + { + "start": 10144.02, + "end": 10146.22, + "probability": 0.732 + }, + { + "start": 10146.56, + "end": 10152.34, + "probability": 0.9855 + }, + { + "start": 10153.44, + "end": 10158.66, + "probability": 0.9632 + }, + { + "start": 10158.66, + "end": 10164.5, + "probability": 0.9992 + }, + { + "start": 10166.16, + "end": 10167.78, + "probability": 0.9937 + }, + { + "start": 10168.72, + "end": 10173.36, + "probability": 0.9895 + }, + { + "start": 10173.9, + "end": 10175.62, + "probability": 0.9677 + }, + { + "start": 10176.28, + "end": 10180.28, + "probability": 0.9971 + }, + { + "start": 10183.26, + "end": 10185.28, + "probability": 0.7828 + }, + { + "start": 10186.22, + "end": 10186.26, + "probability": 0.1935 + }, + { + "start": 10186.26, + "end": 10186.26, + "probability": 0.2944 + }, + { + "start": 10186.26, + "end": 10188.66, + "probability": 0.8129 + }, + { + "start": 10188.68, + "end": 10189.44, + "probability": 0.5121 + }, + { + "start": 10189.46, + "end": 10190.5, + "probability": 0.4528 + }, + { + "start": 10191.76, + "end": 10196.08, + "probability": 0.9204 + }, + { + "start": 10196.24, + "end": 10200.0, + "probability": 0.9924 + }, + { + "start": 10200.68, + "end": 10201.84, + "probability": 0.5938 + }, + { + "start": 10202.92, + "end": 10205.44, + "probability": 0.946 + }, + { + "start": 10206.72, + "end": 10211.28, + "probability": 0.882 + }, + { + "start": 10212.12, + "end": 10213.76, + "probability": 0.8493 + }, + { + "start": 10215.16, + "end": 10219.88, + "probability": 0.9121 + }, + { + "start": 10220.44, + "end": 10222.1, + "probability": 0.8465 + }, + { + "start": 10223.2, + "end": 10226.14, + "probability": 0.9083 + }, + { + "start": 10226.7, + "end": 10228.34, + "probability": 0.9858 + }, + { + "start": 10229.16, + "end": 10232.26, + "probability": 0.9829 + }, + { + "start": 10232.84, + "end": 10235.24, + "probability": 0.6668 + }, + { + "start": 10235.88, + "end": 10242.48, + "probability": 0.9941 + }, + { + "start": 10242.78, + "end": 10247.44, + "probability": 0.9927 + }, + { + "start": 10247.98, + "end": 10250.66, + "probability": 0.9884 + }, + { + "start": 10251.5, + "end": 10255.88, + "probability": 0.9941 + }, + { + "start": 10256.5, + "end": 10259.34, + "probability": 0.8611 + }, + { + "start": 10259.98, + "end": 10263.82, + "probability": 0.966 + }, + { + "start": 10264.34, + "end": 10270.1, + "probability": 0.9975 + }, + { + "start": 10270.88, + "end": 10273.22, + "probability": 0.9266 + }, + { + "start": 10273.84, + "end": 10275.26, + "probability": 0.8905 + }, + { + "start": 10275.52, + "end": 10275.98, + "probability": 0.8787 + }, + { + "start": 10276.44, + "end": 10277.3, + "probability": 0.7643 + }, + { + "start": 10277.34, + "end": 10282.5, + "probability": 0.9945 + }, + { + "start": 10283.3, + "end": 10284.98, + "probability": 0.8006 + }, + { + "start": 10285.06, + "end": 10285.7, + "probability": 0.6099 + }, + { + "start": 10286.54, + "end": 10291.46, + "probability": 0.7515 + }, + { + "start": 10291.92, + "end": 10294.12, + "probability": 0.9958 + }, + { + "start": 10294.54, + "end": 10296.16, + "probability": 0.9565 + }, + { + "start": 10296.5, + "end": 10298.08, + "probability": 0.7489 + }, + { + "start": 10298.22, + "end": 10305.8, + "probability": 0.896 + }, + { + "start": 10306.38, + "end": 10306.72, + "probability": 0.6263 + }, + { + "start": 10306.8, + "end": 10308.58, + "probability": 0.2586 + }, + { + "start": 10308.62, + "end": 10309.36, + "probability": 0.7904 + }, + { + "start": 10309.56, + "end": 10312.16, + "probability": 0.8346 + }, + { + "start": 10321.82, + "end": 10322.24, + "probability": 0.3492 + }, + { + "start": 10323.5, + "end": 10324.16, + "probability": 0.6639 + }, + { + "start": 10324.5, + "end": 10326.38, + "probability": 0.6807 + }, + { + "start": 10326.52, + "end": 10327.46, + "probability": 0.8044 + }, + { + "start": 10327.8, + "end": 10329.62, + "probability": 0.8441 + }, + { + "start": 10330.38, + "end": 10334.22, + "probability": 0.9949 + }, + { + "start": 10336.12, + "end": 10336.86, + "probability": 0.9562 + }, + { + "start": 10337.96, + "end": 10338.38, + "probability": 0.0407 + }, + { + "start": 10338.86, + "end": 10341.92, + "probability": 0.9026 + }, + { + "start": 10342.16, + "end": 10345.48, + "probability": 0.7143 + }, + { + "start": 10346.12, + "end": 10347.06, + "probability": 0.333 + }, + { + "start": 10347.1, + "end": 10349.4, + "probability": 0.9966 + }, + { + "start": 10352.36, + "end": 10355.18, + "probability": 0.1867 + }, + { + "start": 10355.18, + "end": 10356.98, + "probability": 0.1926 + }, + { + "start": 10358.16, + "end": 10358.16, + "probability": 0.0492 + }, + { + "start": 10358.16, + "end": 10358.78, + "probability": 0.5281 + }, + { + "start": 10358.84, + "end": 10359.34, + "probability": 0.5697 + }, + { + "start": 10359.58, + "end": 10361.58, + "probability": 0.073 + }, + { + "start": 10365.52, + "end": 10367.46, + "probability": 0.4281 + }, + { + "start": 10367.72, + "end": 10367.8, + "probability": 0.404 + }, + { + "start": 10367.8, + "end": 10367.8, + "probability": 0.0134 + }, + { + "start": 10367.8, + "end": 10367.8, + "probability": 0.0632 + }, + { + "start": 10367.8, + "end": 10368.46, + "probability": 0.5528 + }, + { + "start": 10368.9, + "end": 10369.32, + "probability": 0.73 + }, + { + "start": 10369.4, + "end": 10370.0, + "probability": 0.9358 + }, + { + "start": 10370.08, + "end": 10371.52, + "probability": 0.9531 + }, + { + "start": 10371.58, + "end": 10372.36, + "probability": 0.9143 + }, + { + "start": 10372.38, + "end": 10372.96, + "probability": 0.9438 + }, + { + "start": 10373.34, + "end": 10375.0, + "probability": 0.0017 + }, + { + "start": 10375.0, + "end": 10375.06, + "probability": 0.0285 + }, + { + "start": 10375.06, + "end": 10378.94, + "probability": 0.5531 + }, + { + "start": 10379.34, + "end": 10379.54, + "probability": 0.9049 + }, + { + "start": 10379.66, + "end": 10381.02, + "probability": 0.9808 + }, + { + "start": 10381.42, + "end": 10384.12, + "probability": 0.8936 + }, + { + "start": 10384.22, + "end": 10390.58, + "probability": 0.9937 + }, + { + "start": 10391.22, + "end": 10392.56, + "probability": 0.9908 + }, + { + "start": 10393.64, + "end": 10397.22, + "probability": 0.9837 + }, + { + "start": 10397.22, + "end": 10400.06, + "probability": 0.9951 + }, + { + "start": 10400.42, + "end": 10401.24, + "probability": 0.9505 + }, + { + "start": 10401.3, + "end": 10402.22, + "probability": 0.7289 + }, + { + "start": 10402.78, + "end": 10406.22, + "probability": 0.9747 + }, + { + "start": 10406.52, + "end": 10407.52, + "probability": 0.9683 + }, + { + "start": 10407.58, + "end": 10411.15, + "probability": 0.7498 + }, + { + "start": 10411.76, + "end": 10413.71, + "probability": 0.993 + }, + { + "start": 10413.9, + "end": 10415.2, + "probability": 0.0827 + }, + { + "start": 10415.32, + "end": 10417.35, + "probability": 0.0673 + }, + { + "start": 10418.96, + "end": 10418.96, + "probability": 0.2643 + }, + { + "start": 10418.96, + "end": 10418.96, + "probability": 0.2291 + }, + { + "start": 10418.96, + "end": 10419.44, + "probability": 0.0826 + }, + { + "start": 10419.46, + "end": 10422.22, + "probability": 0.9654 + }, + { + "start": 10422.3, + "end": 10423.34, + "probability": 0.8712 + }, + { + "start": 10423.4, + "end": 10426.22, + "probability": 0.9712 + }, + { + "start": 10426.86, + "end": 10432.84, + "probability": 0.9786 + }, + { + "start": 10433.14, + "end": 10438.6, + "probability": 0.9568 + }, + { + "start": 10438.78, + "end": 10439.5, + "probability": 0.7476 + }, + { + "start": 10439.94, + "end": 10440.82, + "probability": 0.9504 + }, + { + "start": 10441.1, + "end": 10445.2, + "probability": 0.8893 + }, + { + "start": 10445.82, + "end": 10449.16, + "probability": 0.8566 + }, + { + "start": 10449.78, + "end": 10455.78, + "probability": 0.9785 + }, + { + "start": 10456.26, + "end": 10456.64, + "probability": 0.4248 + }, + { + "start": 10456.7, + "end": 10457.34, + "probability": 0.957 + }, + { + "start": 10457.56, + "end": 10463.44, + "probability": 0.9724 + }, + { + "start": 10463.66, + "end": 10465.62, + "probability": 0.8662 + }, + { + "start": 10465.98, + "end": 10469.02, + "probability": 0.9989 + }, + { + "start": 10469.78, + "end": 10471.36, + "probability": 0.9895 + }, + { + "start": 10471.54, + "end": 10474.08, + "probability": 0.9092 + }, + { + "start": 10475.5, + "end": 10482.18, + "probability": 0.9935 + }, + { + "start": 10482.34, + "end": 10483.04, + "probability": 0.6881 + }, + { + "start": 10484.36, + "end": 10487.04, + "probability": 0.7133 + }, + { + "start": 10487.66, + "end": 10491.6, + "probability": 0.6955 + }, + { + "start": 10492.74, + "end": 10497.1, + "probability": 0.779 + }, + { + "start": 10498.06, + "end": 10499.12, + "probability": 0.9434 + }, + { + "start": 10499.78, + "end": 10503.98, + "probability": 0.9857 + }, + { + "start": 10503.98, + "end": 10509.98, + "probability": 0.9973 + }, + { + "start": 10510.12, + "end": 10512.92, + "probability": 0.9897 + }, + { + "start": 10514.22, + "end": 10514.52, + "probability": 0.1064 + }, + { + "start": 10514.52, + "end": 10515.96, + "probability": 0.565 + }, + { + "start": 10516.0, + "end": 10516.88, + "probability": 0.6601 + }, + { + "start": 10517.02, + "end": 10522.16, + "probability": 0.9974 + }, + { + "start": 10522.34, + "end": 10524.04, + "probability": 0.9573 + }, + { + "start": 10524.12, + "end": 10525.3, + "probability": 0.6909 + }, + { + "start": 10525.78, + "end": 10530.52, + "probability": 0.9884 + }, + { + "start": 10531.04, + "end": 10532.54, + "probability": 0.9813 + }, + { + "start": 10532.92, + "end": 10534.92, + "probability": 0.992 + }, + { + "start": 10535.38, + "end": 10536.48, + "probability": 0.7842 + }, + { + "start": 10536.66, + "end": 10538.02, + "probability": 0.9142 + }, + { + "start": 10539.16, + "end": 10539.82, + "probability": 0.7617 + }, + { + "start": 10540.0, + "end": 10543.08, + "probability": 0.8429 + }, + { + "start": 10558.8, + "end": 10560.3, + "probability": 0.0444 + }, + { + "start": 10560.82, + "end": 10561.48, + "probability": 0.1882 + }, + { + "start": 10562.28, + "end": 10563.1, + "probability": 0.1704 + }, + { + "start": 10563.12, + "end": 10568.5, + "probability": 0.686 + }, + { + "start": 10568.76, + "end": 10569.22, + "probability": 0.9706 + }, + { + "start": 10570.18, + "end": 10571.26, + "probability": 0.755 + }, + { + "start": 10572.44, + "end": 10573.38, + "probability": 0.7951 + }, + { + "start": 10574.74, + "end": 10579.76, + "probability": 0.8315 + }, + { + "start": 10580.66, + "end": 10582.36, + "probability": 0.6989 + }, + { + "start": 10583.36, + "end": 10586.44, + "probability": 0.8949 + }, + { + "start": 10587.86, + "end": 10594.94, + "probability": 0.9251 + }, + { + "start": 10596.36, + "end": 10598.06, + "probability": 0.9374 + }, + { + "start": 10599.26, + "end": 10600.34, + "probability": 0.9028 + }, + { + "start": 10600.86, + "end": 10603.64, + "probability": 0.9315 + }, + { + "start": 10604.74, + "end": 10612.52, + "probability": 0.9886 + }, + { + "start": 10613.56, + "end": 10619.84, + "probability": 0.9801 + }, + { + "start": 10620.8, + "end": 10624.96, + "probability": 0.9628 + }, + { + "start": 10624.96, + "end": 10629.14, + "probability": 0.9935 + }, + { + "start": 10630.73, + "end": 10632.72, + "probability": 0.6299 + }, + { + "start": 10633.3, + "end": 10635.1, + "probability": 0.5684 + }, + { + "start": 10635.34, + "end": 10635.68, + "probability": 0.7341 + }, + { + "start": 10636.14, + "end": 10636.34, + "probability": 0.4299 + }, + { + "start": 10636.74, + "end": 10637.98, + "probability": 0.9624 + }, + { + "start": 10638.48, + "end": 10639.66, + "probability": 0.9795 + }, + { + "start": 10640.45, + "end": 10646.16, + "probability": 0.9659 + }, + { + "start": 10648.79, + "end": 10651.86, + "probability": 0.7968 + }, + { + "start": 10652.68, + "end": 10652.88, + "probability": 0.1352 + }, + { + "start": 10653.6, + "end": 10654.54, + "probability": 0.6062 + }, + { + "start": 10654.96, + "end": 10655.56, + "probability": 0.5898 + }, + { + "start": 10656.1, + "end": 10660.3, + "probability": 0.9922 + }, + { + "start": 10661.02, + "end": 10661.92, + "probability": 0.4318 + }, + { + "start": 10662.28, + "end": 10663.26, + "probability": 0.8226 + }, + { + "start": 10663.72, + "end": 10664.86, + "probability": 0.7009 + }, + { + "start": 10664.92, + "end": 10666.48, + "probability": 0.7531 + }, + { + "start": 10666.96, + "end": 10668.92, + "probability": 0.8405 + }, + { + "start": 10669.06, + "end": 10669.92, + "probability": 0.8977 + }, + { + "start": 10670.82, + "end": 10678.02, + "probability": 0.9074 + }, + { + "start": 10678.46, + "end": 10681.82, + "probability": 0.608 + }, + { + "start": 10682.44, + "end": 10684.04, + "probability": 0.3392 + }, + { + "start": 10684.94, + "end": 10686.04, + "probability": 0.8396 + }, + { + "start": 10686.26, + "end": 10686.78, + "probability": 0.7744 + }, + { + "start": 10687.34, + "end": 10690.08, + "probability": 0.9944 + }, + { + "start": 10690.74, + "end": 10693.14, + "probability": 0.9515 + }, + { + "start": 10693.7, + "end": 10696.98, + "probability": 0.9927 + }, + { + "start": 10698.92, + "end": 10699.4, + "probability": 0.9845 + }, + { + "start": 10700.12, + "end": 10701.36, + "probability": 0.8229 + }, + { + "start": 10702.5, + "end": 10705.96, + "probability": 0.924 + }, + { + "start": 10706.5, + "end": 10712.5, + "probability": 0.9157 + }, + { + "start": 10712.56, + "end": 10714.9, + "probability": 0.6431 + }, + { + "start": 10716.48, + "end": 10717.34, + "probability": 0.8019 + }, + { + "start": 10718.24, + "end": 10719.42, + "probability": 0.8298 + }, + { + "start": 10720.24, + "end": 10722.6, + "probability": 0.8202 + }, + { + "start": 10723.12, + "end": 10727.24, + "probability": 0.7577 + }, + { + "start": 10728.7, + "end": 10731.12, + "probability": 0.9055 + }, + { + "start": 10731.74, + "end": 10732.54, + "probability": 0.9277 + }, + { + "start": 10733.1, + "end": 10734.02, + "probability": 0.7482 + }, + { + "start": 10734.76, + "end": 10740.66, + "probability": 0.8465 + }, + { + "start": 10741.38, + "end": 10742.96, + "probability": 0.9474 + }, + { + "start": 10743.94, + "end": 10749.02, + "probability": 0.9928 + }, + { + "start": 10749.74, + "end": 10752.14, + "probability": 0.8743 + }, + { + "start": 10752.74, + "end": 10754.7, + "probability": 0.7663 + }, + { + "start": 10755.1, + "end": 10756.08, + "probability": 0.3875 + }, + { + "start": 10756.18, + "end": 10757.36, + "probability": 0.6109 + }, + { + "start": 10758.8, + "end": 10762.82, + "probability": 0.825 + }, + { + "start": 10763.66, + "end": 10769.28, + "probability": 0.8749 + }, + { + "start": 10769.68, + "end": 10771.76, + "probability": 0.6869 + }, + { + "start": 10772.24, + "end": 10773.78, + "probability": 0.8477 + }, + { + "start": 10774.22, + "end": 10777.02, + "probability": 0.2887 + }, + { + "start": 10777.32, + "end": 10777.32, + "probability": 0.0273 + }, + { + "start": 10777.32, + "end": 10780.12, + "probability": 0.6469 + }, + { + "start": 10780.12, + "end": 10783.96, + "probability": 0.7686 + }, + { + "start": 10783.96, + "end": 10784.06, + "probability": 0.2693 + }, + { + "start": 10784.06, + "end": 10785.0, + "probability": 0.686 + }, + { + "start": 10785.18, + "end": 10785.68, + "probability": 0.8126 + }, + { + "start": 10786.9, + "end": 10790.5, + "probability": 0.8246 + }, + { + "start": 10794.04, + "end": 10795.88, + "probability": 0.8689 + }, + { + "start": 10796.1, + "end": 10798.72, + "probability": 0.8998 + }, + { + "start": 10798.74, + "end": 10799.26, + "probability": 0.9384 + }, + { + "start": 10800.6, + "end": 10801.56, + "probability": 0.9432 + }, + { + "start": 10806.76, + "end": 10808.86, + "probability": 0.1557 + }, + { + "start": 10809.76, + "end": 10810.78, + "probability": 0.6919 + }, + { + "start": 10811.36, + "end": 10811.54, + "probability": 0.0088 + }, + { + "start": 10811.54, + "end": 10811.88, + "probability": 0.4989 + }, + { + "start": 10813.04, + "end": 10814.88, + "probability": 0.4626 + }, + { + "start": 10815.6, + "end": 10816.84, + "probability": 0.6755 + }, + { + "start": 10817.36, + "end": 10818.8, + "probability": 0.7295 + }, + { + "start": 10818.92, + "end": 10821.36, + "probability": 0.8423 + }, + { + "start": 10824.06, + "end": 10825.36, + "probability": 0.9431 + }, + { + "start": 10827.26, + "end": 10828.72, + "probability": 0.8531 + }, + { + "start": 10830.6, + "end": 10831.68, + "probability": 0.6966 + }, + { + "start": 10833.08, + "end": 10840.26, + "probability": 0.9792 + }, + { + "start": 10841.74, + "end": 10845.6, + "probability": 0.8474 + }, + { + "start": 10847.88, + "end": 10853.51, + "probability": 0.9771 + }, + { + "start": 10855.62, + "end": 10859.06, + "probability": 0.9849 + }, + { + "start": 10860.12, + "end": 10860.98, + "probability": 0.9946 + }, + { + "start": 10863.2, + "end": 10865.18, + "probability": 0.9734 + }, + { + "start": 10867.86, + "end": 10871.12, + "probability": 0.964 + }, + { + "start": 10871.94, + "end": 10876.16, + "probability": 0.8912 + }, + { + "start": 10877.0, + "end": 10879.4, + "probability": 0.9741 + }, + { + "start": 10880.36, + "end": 10883.96, + "probability": 0.9847 + }, + { + "start": 10884.52, + "end": 10886.1, + "probability": 0.8537 + }, + { + "start": 10886.36, + "end": 10891.0, + "probability": 0.9705 + }, + { + "start": 10893.7, + "end": 10894.48, + "probability": 0.9517 + }, + { + "start": 10895.58, + "end": 10898.4, + "probability": 0.6986 + }, + { + "start": 10899.1, + "end": 10900.26, + "probability": 0.8684 + }, + { + "start": 10900.7, + "end": 10905.84, + "probability": 0.975 + }, + { + "start": 10908.78, + "end": 10911.44, + "probability": 0.8876 + }, + { + "start": 10912.52, + "end": 10915.28, + "probability": 0.998 + }, + { + "start": 10915.96, + "end": 10917.32, + "probability": 0.9991 + }, + { + "start": 10918.06, + "end": 10920.06, + "probability": 0.8802 + }, + { + "start": 10920.8, + "end": 10923.46, + "probability": 0.9118 + }, + { + "start": 10924.86, + "end": 10927.32, + "probability": 0.9479 + }, + { + "start": 10927.7, + "end": 10929.56, + "probability": 0.9301 + }, + { + "start": 10930.42, + "end": 10933.42, + "probability": 0.9923 + }, + { + "start": 10933.94, + "end": 10935.3, + "probability": 0.9596 + }, + { + "start": 10937.6, + "end": 10937.8, + "probability": 0.1388 + }, + { + "start": 10937.8, + "end": 10940.4, + "probability": 0.9396 + }, + { + "start": 10942.02, + "end": 10947.08, + "probability": 0.9263 + }, + { + "start": 10947.92, + "end": 10948.96, + "probability": 0.8585 + }, + { + "start": 10950.38, + "end": 10953.15, + "probability": 0.7349 + }, + { + "start": 10954.66, + "end": 10955.6, + "probability": 0.9936 + }, + { + "start": 10956.86, + "end": 10959.74, + "probability": 0.99 + }, + { + "start": 10960.64, + "end": 10962.4, + "probability": 0.9485 + }, + { + "start": 10962.98, + "end": 10964.48, + "probability": 0.994 + }, + { + "start": 10965.06, + "end": 10966.9, + "probability": 0.9573 + }, + { + "start": 10967.02, + "end": 10967.38, + "probability": 0.6403 + }, + { + "start": 10967.48, + "end": 10968.72, + "probability": 0.8966 + }, + { + "start": 10970.7, + "end": 10975.02, + "probability": 0.9928 + }, + { + "start": 10975.22, + "end": 10978.0, + "probability": 0.9968 + }, + { + "start": 10979.44, + "end": 10982.02, + "probability": 0.969 + }, + { + "start": 10982.2, + "end": 10985.46, + "probability": 0.9416 + }, + { + "start": 10986.04, + "end": 10987.64, + "probability": 0.9886 + }, + { + "start": 10992.54, + "end": 10996.48, + "probability": 0.827 + }, + { + "start": 10997.1, + "end": 10998.7, + "probability": 0.8293 + }, + { + "start": 10998.78, + "end": 10999.34, + "probability": 0.9778 + }, + { + "start": 10999.62, + "end": 11003.68, + "probability": 0.9855 + }, + { + "start": 11003.78, + "end": 11004.84, + "probability": 0.7932 + }, + { + "start": 11005.54, + "end": 11006.6, + "probability": 0.9802 + }, + { + "start": 11007.76, + "end": 11008.88, + "probability": 0.9971 + }, + { + "start": 11010.3, + "end": 11012.7, + "probability": 0.9972 + }, + { + "start": 11013.5, + "end": 11016.68, + "probability": 0.9991 + }, + { + "start": 11016.68, + "end": 11020.26, + "probability": 0.9983 + }, + { + "start": 11020.32, + "end": 11021.8, + "probability": 0.9856 + }, + { + "start": 11023.96, + "end": 11024.9, + "probability": 0.6895 + }, + { + "start": 11025.22, + "end": 11025.44, + "probability": 0.7747 + }, + { + "start": 11026.16, + "end": 11026.96, + "probability": 0.633 + }, + { + "start": 11027.76, + "end": 11028.22, + "probability": 0.9248 + }, + { + "start": 11029.66, + "end": 11030.55, + "probability": 0.9077 + }, + { + "start": 11031.92, + "end": 11033.18, + "probability": 0.9955 + }, + { + "start": 11033.96, + "end": 11035.6, + "probability": 0.9341 + }, + { + "start": 11037.1, + "end": 11037.4, + "probability": 0.9785 + }, + { + "start": 11038.28, + "end": 11042.28, + "probability": 0.9743 + }, + { + "start": 11043.56, + "end": 11044.88, + "probability": 0.9853 + }, + { + "start": 11045.9, + "end": 11052.5, + "probability": 0.9991 + }, + { + "start": 11052.5, + "end": 11056.9, + "probability": 0.9991 + }, + { + "start": 11057.6, + "end": 11059.26, + "probability": 0.9848 + }, + { + "start": 11059.92, + "end": 11061.6, + "probability": 0.996 + }, + { + "start": 11062.66, + "end": 11062.8, + "probability": 0.3217 + }, + { + "start": 11063.58, + "end": 11064.23, + "probability": 0.9438 + }, + { + "start": 11065.04, + "end": 11065.6, + "probability": 0.9206 + }, + { + "start": 11066.46, + "end": 11071.66, + "probability": 0.9966 + }, + { + "start": 11072.18, + "end": 11078.22, + "probability": 0.997 + }, + { + "start": 11078.94, + "end": 11079.7, + "probability": 0.6771 + }, + { + "start": 11080.86, + "end": 11082.34, + "probability": 0.4311 + }, + { + "start": 11083.38, + "end": 11084.4, + "probability": 0.0211 + }, + { + "start": 11084.4, + "end": 11086.8, + "probability": 0.8648 + }, + { + "start": 11086.88, + "end": 11089.3, + "probability": 0.9215 + }, + { + "start": 11090.66, + "end": 11092.74, + "probability": 0.6343 + }, + { + "start": 11095.52, + "end": 11097.82, + "probability": 0.8208 + }, + { + "start": 11099.76, + "end": 11102.68, + "probability": 0.9934 + }, + { + "start": 11104.64, + "end": 11108.2, + "probability": 0.8439 + }, + { + "start": 11108.94, + "end": 11111.74, + "probability": 0.9189 + }, + { + "start": 11113.14, + "end": 11116.18, + "probability": 0.9918 + }, + { + "start": 11116.38, + "end": 11118.88, + "probability": 0.7497 + }, + { + "start": 11119.68, + "end": 11121.62, + "probability": 0.9885 + }, + { + "start": 11123.04, + "end": 11124.0, + "probability": 0.8693 + }, + { + "start": 11127.16, + "end": 11128.1, + "probability": 0.9852 + }, + { + "start": 11130.6, + "end": 11133.24, + "probability": 0.9982 + }, + { + "start": 11135.66, + "end": 11138.88, + "probability": 0.9715 + }, + { + "start": 11140.32, + "end": 11143.96, + "probability": 0.9968 + }, + { + "start": 11144.12, + "end": 11145.24, + "probability": 0.9099 + }, + { + "start": 11145.34, + "end": 11146.4, + "probability": 0.9881 + }, + { + "start": 11148.04, + "end": 11149.44, + "probability": 0.9765 + }, + { + "start": 11149.8, + "end": 11151.18, + "probability": 0.802 + }, + { + "start": 11151.3, + "end": 11152.14, + "probability": 0.896 + }, + { + "start": 11152.3, + "end": 11153.14, + "probability": 0.982 + }, + { + "start": 11153.36, + "end": 11154.18, + "probability": 0.9795 + }, + { + "start": 11156.12, + "end": 11156.34, + "probability": 0.752 + }, + { + "start": 11158.14, + "end": 11160.64, + "probability": 0.9929 + }, + { + "start": 11163.32, + "end": 11165.28, + "probability": 0.9958 + }, + { + "start": 11166.74, + "end": 11172.18, + "probability": 0.9951 + }, + { + "start": 11174.18, + "end": 11179.28, + "probability": 0.863 + }, + { + "start": 11179.48, + "end": 11180.32, + "probability": 0.7666 + }, + { + "start": 11184.14, + "end": 11185.94, + "probability": 0.9858 + }, + { + "start": 11186.14, + "end": 11187.14, + "probability": 0.9626 + }, + { + "start": 11188.02, + "end": 11188.34, + "probability": 0.8057 + }, + { + "start": 11188.42, + "end": 11190.14, + "probability": 0.8979 + }, + { + "start": 11190.26, + "end": 11194.51, + "probability": 0.9632 + }, + { + "start": 11194.62, + "end": 11199.48, + "probability": 0.9835 + }, + { + "start": 11200.54, + "end": 11201.02, + "probability": 0.746 + }, + { + "start": 11202.84, + "end": 11203.06, + "probability": 0.7461 + }, + { + "start": 11205.08, + "end": 11206.88, + "probability": 0.979 + }, + { + "start": 11208.84, + "end": 11210.64, + "probability": 0.9954 + }, + { + "start": 11210.82, + "end": 11213.98, + "probability": 0.9341 + }, + { + "start": 11216.0, + "end": 11217.36, + "probability": 0.9894 + }, + { + "start": 11219.4, + "end": 11220.18, + "probability": 0.9644 + }, + { + "start": 11221.5, + "end": 11222.3, + "probability": 0.972 + }, + { + "start": 11224.64, + "end": 11227.92, + "probability": 0.983 + }, + { + "start": 11228.8, + "end": 11232.4, + "probability": 0.9847 + }, + { + "start": 11233.82, + "end": 11235.18, + "probability": 0.7035 + }, + { + "start": 11237.76, + "end": 11239.38, + "probability": 0.7559 + }, + { + "start": 11239.4, + "end": 11240.1, + "probability": 0.8692 + }, + { + "start": 11241.46, + "end": 11243.22, + "probability": 0.988 + }, + { + "start": 11244.82, + "end": 11245.6, + "probability": 0.8978 + }, + { + "start": 11247.38, + "end": 11250.02, + "probability": 0.9774 + }, + { + "start": 11250.94, + "end": 11252.64, + "probability": 0.9233 + }, + { + "start": 11253.0, + "end": 11253.36, + "probability": 0.8311 + }, + { + "start": 11254.12, + "end": 11257.0, + "probability": 0.9956 + }, + { + "start": 11258.36, + "end": 11260.28, + "probability": 0.9976 + }, + { + "start": 11261.1, + "end": 11262.88, + "probability": 0.8478 + }, + { + "start": 11263.68, + "end": 11264.94, + "probability": 0.9937 + }, + { + "start": 11267.38, + "end": 11269.08, + "probability": 0.9342 + }, + { + "start": 11269.84, + "end": 11270.99, + "probability": 0.9766 + }, + { + "start": 11271.1, + "end": 11271.94, + "probability": 0.951 + }, + { + "start": 11272.82, + "end": 11274.13, + "probability": 0.7787 + }, + { + "start": 11274.68, + "end": 11275.83, + "probability": 0.8354 + }, + { + "start": 11276.52, + "end": 11278.64, + "probability": 0.9958 + }, + { + "start": 11279.68, + "end": 11282.6, + "probability": 0.9572 + }, + { + "start": 11282.8, + "end": 11283.72, + "probability": 0.9038 + }, + { + "start": 11284.7, + "end": 11285.8, + "probability": 0.9938 + }, + { + "start": 11287.84, + "end": 11289.7, + "probability": 0.9747 + }, + { + "start": 11291.3, + "end": 11294.63, + "probability": 0.924 + }, + { + "start": 11295.86, + "end": 11297.32, + "probability": 0.9973 + }, + { + "start": 11298.2, + "end": 11299.13, + "probability": 0.8359 + }, + { + "start": 11300.88, + "end": 11304.1, + "probability": 0.9288 + }, + { + "start": 11306.22, + "end": 11307.9, + "probability": 0.9933 + }, + { + "start": 11309.08, + "end": 11310.18, + "probability": 0.9988 + }, + { + "start": 11310.94, + "end": 11313.36, + "probability": 0.9954 + }, + { + "start": 11314.34, + "end": 11316.26, + "probability": 0.821 + }, + { + "start": 11316.26, + "end": 11317.2, + "probability": 0.3906 + }, + { + "start": 11317.3, + "end": 11318.08, + "probability": 0.9355 + }, + { + "start": 11320.04, + "end": 11321.68, + "probability": 0.9914 + }, + { + "start": 11322.42, + "end": 11324.62, + "probability": 0.6698 + }, + { + "start": 11324.64, + "end": 11327.82, + "probability": 0.8551 + }, + { + "start": 11328.42, + "end": 11329.76, + "probability": 0.9559 + }, + { + "start": 11330.5, + "end": 11331.6, + "probability": 0.5995 + }, + { + "start": 11331.74, + "end": 11333.08, + "probability": 0.9403 + }, + { + "start": 11333.58, + "end": 11335.86, + "probability": 0.9976 + }, + { + "start": 11335.98, + "end": 11337.24, + "probability": 0.9593 + }, + { + "start": 11337.66, + "end": 11338.84, + "probability": 0.964 + }, + { + "start": 11339.38, + "end": 11340.52, + "probability": 0.9109 + }, + { + "start": 11340.58, + "end": 11341.12, + "probability": 0.6488 + }, + { + "start": 11341.42, + "end": 11342.36, + "probability": 0.4221 + }, + { + "start": 11342.44, + "end": 11345.14, + "probability": 0.9135 + }, + { + "start": 11358.66, + "end": 11359.86, + "probability": 0.8941 + }, + { + "start": 11360.54, + "end": 11361.5, + "probability": 0.634 + }, + { + "start": 11362.76, + "end": 11368.92, + "probability": 0.9736 + }, + { + "start": 11369.98, + "end": 11376.22, + "probability": 0.9835 + }, + { + "start": 11376.74, + "end": 11379.6, + "probability": 0.9858 + }, + { + "start": 11380.7, + "end": 11381.72, + "probability": 0.9667 + }, + { + "start": 11381.84, + "end": 11384.54, + "probability": 0.9563 + }, + { + "start": 11385.04, + "end": 11386.14, + "probability": 0.8856 + }, + { + "start": 11386.52, + "end": 11387.5, + "probability": 0.8581 + }, + { + "start": 11388.04, + "end": 11392.02, + "probability": 0.9795 + }, + { + "start": 11392.3, + "end": 11397.2, + "probability": 0.9576 + }, + { + "start": 11397.32, + "end": 11401.64, + "probability": 0.9631 + }, + { + "start": 11401.9, + "end": 11402.9, + "probability": 0.9961 + }, + { + "start": 11404.66, + "end": 11406.9, + "probability": 0.9776 + }, + { + "start": 11407.68, + "end": 11412.64, + "probability": 0.9971 + }, + { + "start": 11413.48, + "end": 11419.32, + "probability": 0.9819 + }, + { + "start": 11420.3, + "end": 11421.24, + "probability": 0.434 + }, + { + "start": 11421.36, + "end": 11430.28, + "probability": 0.9921 + }, + { + "start": 11432.54, + "end": 11436.14, + "probability": 0.9542 + }, + { + "start": 11437.06, + "end": 11438.92, + "probability": 0.9727 + }, + { + "start": 11439.6, + "end": 11442.64, + "probability": 0.9944 + }, + { + "start": 11443.58, + "end": 11451.6, + "probability": 0.9984 + }, + { + "start": 11452.94, + "end": 11458.96, + "probability": 0.9992 + }, + { + "start": 11459.56, + "end": 11465.12, + "probability": 0.999 + }, + { + "start": 11465.7, + "end": 11470.82, + "probability": 0.9808 + }, + { + "start": 11473.12, + "end": 11477.04, + "probability": 0.9979 + }, + { + "start": 11477.04, + "end": 11480.4, + "probability": 0.9974 + }, + { + "start": 11480.96, + "end": 11485.26, + "probability": 0.9994 + }, + { + "start": 11485.98, + "end": 11491.6, + "probability": 0.9972 + }, + { + "start": 11493.14, + "end": 11498.78, + "probability": 0.9794 + }, + { + "start": 11498.78, + "end": 11505.4, + "probability": 0.998 + }, + { + "start": 11506.14, + "end": 11507.0, + "probability": 0.9967 + }, + { + "start": 11508.3, + "end": 11508.84, + "probability": 0.6179 + }, + { + "start": 11510.5, + "end": 11513.54, + "probability": 0.7821 + }, + { + "start": 11532.26, + "end": 11533.46, + "probability": 0.639 + }, + { + "start": 11534.24, + "end": 11535.98, + "probability": 0.5985 + }, + { + "start": 11536.62, + "end": 11538.82, + "probability": 0.7045 + }, + { + "start": 11539.26, + "end": 11542.66, + "probability": 0.8349 + }, + { + "start": 11543.88, + "end": 11544.34, + "probability": 0.5494 + }, + { + "start": 11544.5, + "end": 11547.28, + "probability": 0.7988 + }, + { + "start": 11547.56, + "end": 11549.58, + "probability": 0.9111 + }, + { + "start": 11550.28, + "end": 11552.06, + "probability": 0.9446 + }, + { + "start": 11552.72, + "end": 11555.4, + "probability": 0.8152 + }, + { + "start": 11555.46, + "end": 11559.12, + "probability": 0.9824 + }, + { + "start": 11559.8, + "end": 11561.46, + "probability": 0.835 + }, + { + "start": 11561.66, + "end": 11564.84, + "probability": 0.7781 + }, + { + "start": 11565.02, + "end": 11567.13, + "probability": 0.7458 + }, + { + "start": 11568.22, + "end": 11572.74, + "probability": 0.8667 + }, + { + "start": 11572.94, + "end": 11574.2, + "probability": 0.066 + }, + { + "start": 11574.42, + "end": 11574.56, + "probability": 0.4737 + }, + { + "start": 11575.54, + "end": 11577.12, + "probability": 0.9685 + }, + { + "start": 11577.2, + "end": 11577.64, + "probability": 0.7322 + }, + { + "start": 11577.7, + "end": 11578.98, + "probability": 0.9458 + }, + { + "start": 11579.1, + "end": 11581.54, + "probability": 0.9905 + }, + { + "start": 11582.4, + "end": 11583.68, + "probability": 0.7101 + }, + { + "start": 11584.66, + "end": 11587.7, + "probability": 0.9966 + }, + { + "start": 11588.6, + "end": 11593.64, + "probability": 0.9294 + }, + { + "start": 11593.84, + "end": 11595.04, + "probability": 0.7327 + }, + { + "start": 11595.24, + "end": 11596.12, + "probability": 0.807 + }, + { + "start": 11596.18, + "end": 11599.18, + "probability": 0.962 + }, + { + "start": 11599.18, + "end": 11602.7, + "probability": 0.9971 + }, + { + "start": 11603.76, + "end": 11607.86, + "probability": 0.9921 + }, + { + "start": 11608.6, + "end": 11612.68, + "probability": 0.9704 + }, + { + "start": 11613.32, + "end": 11613.82, + "probability": 0.7411 + }, + { + "start": 11614.86, + "end": 11616.22, + "probability": 0.8309 + }, + { + "start": 11616.78, + "end": 11618.14, + "probability": 0.8704 + }, + { + "start": 11618.8, + "end": 11623.34, + "probability": 0.8937 + }, + { + "start": 11624.54, + "end": 11628.18, + "probability": 0.9662 + }, + { + "start": 11629.24, + "end": 11631.92, + "probability": 0.9648 + }, + { + "start": 11632.78, + "end": 11637.52, + "probability": 0.8737 + }, + { + "start": 11638.2, + "end": 11639.4, + "probability": 0.9252 + }, + { + "start": 11641.06, + "end": 11643.06, + "probability": 0.9886 + }, + { + "start": 11643.48, + "end": 11647.6, + "probability": 0.9581 + }, + { + "start": 11648.2, + "end": 11649.16, + "probability": 0.9451 + }, + { + "start": 11649.78, + "end": 11653.08, + "probability": 0.9504 + }, + { + "start": 11653.92, + "end": 11657.8, + "probability": 0.978 + }, + { + "start": 11661.22, + "end": 11663.42, + "probability": 0.9754 + }, + { + "start": 11664.0, + "end": 11665.92, + "probability": 0.8386 + }, + { + "start": 11666.48, + "end": 11669.32, + "probability": 0.9302 + }, + { + "start": 11670.08, + "end": 11672.24, + "probability": 0.8543 + }, + { + "start": 11673.16, + "end": 11674.96, + "probability": 0.9172 + }, + { + "start": 11675.9, + "end": 11678.26, + "probability": 0.9172 + }, + { + "start": 11678.98, + "end": 11679.84, + "probability": 0.8558 + }, + { + "start": 11680.58, + "end": 11681.12, + "probability": 0.6838 + }, + { + "start": 11681.22, + "end": 11687.74, + "probability": 0.9836 + }, + { + "start": 11688.66, + "end": 11689.96, + "probability": 0.9368 + }, + { + "start": 11691.02, + "end": 11692.74, + "probability": 0.98 + }, + { + "start": 11693.32, + "end": 11696.48, + "probability": 0.7549 + }, + { + "start": 11697.22, + "end": 11700.8, + "probability": 0.9409 + }, + { + "start": 11700.9, + "end": 11705.74, + "probability": 0.7645 + }, + { + "start": 11705.8, + "end": 11706.54, + "probability": 0.8853 + }, + { + "start": 11707.1, + "end": 11707.62, + "probability": 0.6808 + }, + { + "start": 11708.96, + "end": 11712.3, + "probability": 0.6442 + }, + { + "start": 11712.94, + "end": 11716.16, + "probability": 0.9976 + }, + { + "start": 11716.16, + "end": 11718.94, + "probability": 0.9977 + }, + { + "start": 11719.38, + "end": 11720.2, + "probability": 0.3463 + }, + { + "start": 11720.6, + "end": 11724.56, + "probability": 0.9434 + }, + { + "start": 11724.56, + "end": 11728.0, + "probability": 0.9972 + }, + { + "start": 11728.0, + "end": 11728.28, + "probability": 0.6474 + }, + { + "start": 11728.68, + "end": 11731.56, + "probability": 0.8716 + }, + { + "start": 11731.68, + "end": 11732.12, + "probability": 0.7465 + }, + { + "start": 11732.26, + "end": 11735.38, + "probability": 0.9566 + }, + { + "start": 11736.0, + "end": 11738.36, + "probability": 0.9972 + }, + { + "start": 11738.58, + "end": 11740.08, + "probability": 0.9407 + }, + { + "start": 11740.74, + "end": 11740.74, + "probability": 0.1818 + }, + { + "start": 11740.74, + "end": 11743.72, + "probability": 0.652 + }, + { + "start": 11747.86, + "end": 11750.34, + "probability": 0.7893 + }, + { + "start": 11750.78, + "end": 11750.96, + "probability": 0.8075 + }, + { + "start": 11752.34, + "end": 11753.14, + "probability": 0.9043 + }, + { + "start": 11765.12, + "end": 11765.78, + "probability": 0.6882 + }, + { + "start": 11766.14, + "end": 11768.5, + "probability": 0.6441 + }, + { + "start": 11769.66, + "end": 11775.76, + "probability": 0.9201 + }, + { + "start": 11775.76, + "end": 11781.86, + "probability": 0.991 + }, + { + "start": 11782.04, + "end": 11785.78, + "probability": 0.9942 + }, + { + "start": 11786.72, + "end": 11789.14, + "probability": 0.9884 + }, + { + "start": 11790.18, + "end": 11794.18, + "probability": 0.9715 + }, + { + "start": 11797.46, + "end": 11798.14, + "probability": 0.6832 + }, + { + "start": 11799.52, + "end": 11801.62, + "probability": 0.9574 + }, + { + "start": 11802.72, + "end": 11804.34, + "probability": 0.9946 + }, + { + "start": 11805.46, + "end": 11808.44, + "probability": 0.9766 + }, + { + "start": 11809.66, + "end": 11811.04, + "probability": 0.9796 + }, + { + "start": 11812.14, + "end": 11816.34, + "probability": 0.9419 + }, + { + "start": 11817.16, + "end": 11820.68, + "probability": 0.9858 + }, + { + "start": 11821.66, + "end": 11823.16, + "probability": 0.9933 + }, + { + "start": 11824.42, + "end": 11828.56, + "probability": 0.9943 + }, + { + "start": 11830.18, + "end": 11834.18, + "probability": 0.9906 + }, + { + "start": 11835.96, + "end": 11836.44, + "probability": 0.8414 + }, + { + "start": 11837.2, + "end": 11838.78, + "probability": 0.9886 + }, + { + "start": 11839.6, + "end": 11843.08, + "probability": 0.9059 + }, + { + "start": 11843.68, + "end": 11845.62, + "probability": 0.966 + }, + { + "start": 11847.5, + "end": 11851.56, + "probability": 0.9821 + }, + { + "start": 11851.64, + "end": 11852.7, + "probability": 0.889 + }, + { + "start": 11853.34, + "end": 11857.2, + "probability": 0.9541 + }, + { + "start": 11857.78, + "end": 11859.86, + "probability": 0.9584 + }, + { + "start": 11860.5, + "end": 11864.46, + "probability": 0.9609 + }, + { + "start": 11864.76, + "end": 11865.72, + "probability": 0.8445 + }, + { + "start": 11866.12, + "end": 11866.92, + "probability": 0.916 + }, + { + "start": 11867.44, + "end": 11867.74, + "probability": 0.6156 + }, + { + "start": 11869.1, + "end": 11871.6, + "probability": 0.9991 + }, + { + "start": 11872.42, + "end": 11873.28, + "probability": 0.6329 + }, + { + "start": 11874.26, + "end": 11877.3, + "probability": 0.9697 + }, + { + "start": 11878.3, + "end": 11880.28, + "probability": 0.8975 + }, + { + "start": 11880.9, + "end": 11884.78, + "probability": 0.9455 + }, + { + "start": 11885.48, + "end": 11886.38, + "probability": 0.9631 + }, + { + "start": 11886.98, + "end": 11891.18, + "probability": 0.9396 + }, + { + "start": 11891.72, + "end": 11894.6, + "probability": 0.7044 + }, + { + "start": 11895.26, + "end": 11895.98, + "probability": 0.9644 + }, + { + "start": 11897.3, + "end": 11902.08, + "probability": 0.9752 + }, + { + "start": 11902.66, + "end": 11903.44, + "probability": 0.9585 + }, + { + "start": 11904.4, + "end": 11909.0, + "probability": 0.9947 + }, + { + "start": 11909.86, + "end": 11916.94, + "probability": 0.998 + }, + { + "start": 11918.22, + "end": 11920.56, + "probability": 0.8474 + }, + { + "start": 11921.08, + "end": 11921.56, + "probability": 0.8491 + }, + { + "start": 11921.94, + "end": 11922.76, + "probability": 0.9409 + }, + { + "start": 11924.02, + "end": 11925.98, + "probability": 0.9927 + }, + { + "start": 11926.56, + "end": 11929.1, + "probability": 0.8732 + }, + { + "start": 11929.86, + "end": 11932.46, + "probability": 0.9806 + }, + { + "start": 11933.3, + "end": 11938.0, + "probability": 0.9954 + }, + { + "start": 11938.5, + "end": 11941.46, + "probability": 0.9949 + }, + { + "start": 11942.22, + "end": 11943.98, + "probability": 0.9979 + }, + { + "start": 11944.4, + "end": 11945.3, + "probability": 0.7623 + }, + { + "start": 11945.68, + "end": 11948.02, + "probability": 0.9954 + }, + { + "start": 11948.72, + "end": 11954.72, + "probability": 0.9965 + }, + { + "start": 11954.8, + "end": 11955.12, + "probability": 0.3461 + }, + { + "start": 11955.66, + "end": 11956.42, + "probability": 0.4849 + }, + { + "start": 11956.52, + "end": 11957.06, + "probability": 0.936 + }, + { + "start": 11958.72, + "end": 11960.96, + "probability": 0.9443 + }, + { + "start": 11972.84, + "end": 11972.84, + "probability": 0.2305 + }, + { + "start": 11972.84, + "end": 11975.02, + "probability": 0.6633 + }, + { + "start": 11975.84, + "end": 11977.66, + "probability": 0.6161 + }, + { + "start": 11977.96, + "end": 11979.56, + "probability": 0.8398 + }, + { + "start": 11980.08, + "end": 11980.2, + "probability": 0.6619 + }, + { + "start": 11980.24, + "end": 11984.02, + "probability": 0.9888 + }, + { + "start": 11984.42, + "end": 11988.2, + "probability": 0.9909 + }, + { + "start": 11988.3, + "end": 11989.0, + "probability": 0.9023 + }, + { + "start": 11989.16, + "end": 11989.26, + "probability": 0.4528 + }, + { + "start": 11989.76, + "end": 11994.16, + "probability": 0.9832 + }, + { + "start": 11994.66, + "end": 11997.1, + "probability": 0.997 + }, + { + "start": 11997.1, + "end": 11999.66, + "probability": 0.9044 + }, + { + "start": 12001.92, + "end": 12001.92, + "probability": 0.1501 + }, + { + "start": 12001.92, + "end": 12003.52, + "probability": 0.4329 + }, + { + "start": 12003.52, + "end": 12006.92, + "probability": 0.9615 + }, + { + "start": 12007.46, + "end": 12011.51, + "probability": 0.9988 + }, + { + "start": 12011.64, + "end": 12016.06, + "probability": 0.8369 + }, + { + "start": 12016.8, + "end": 12018.56, + "probability": 0.9342 + }, + { + "start": 12019.06, + "end": 12021.28, + "probability": 0.9521 + }, + { + "start": 12021.78, + "end": 12025.28, + "probability": 0.8778 + }, + { + "start": 12025.96, + "end": 12027.46, + "probability": 0.9891 + }, + { + "start": 12027.7, + "end": 12028.38, + "probability": 0.9526 + }, + { + "start": 12028.78, + "end": 12031.28, + "probability": 0.9977 + }, + { + "start": 12031.44, + "end": 12034.82, + "probability": 0.9939 + }, + { + "start": 12035.66, + "end": 12039.48, + "probability": 0.9764 + }, + { + "start": 12039.84, + "end": 12041.3, + "probability": 0.9642 + }, + { + "start": 12042.02, + "end": 12045.9, + "probability": 0.9969 + }, + { + "start": 12046.52, + "end": 12048.72, + "probability": 0.9288 + }, + { + "start": 12049.18, + "end": 12050.76, + "probability": 0.8312 + }, + { + "start": 12051.96, + "end": 12056.62, + "probability": 0.9954 + }, + { + "start": 12058.2, + "end": 12058.74, + "probability": 0.991 + }, + { + "start": 12058.92, + "end": 12062.1, + "probability": 0.9933 + }, + { + "start": 12062.6, + "end": 12066.04, + "probability": 0.8395 + }, + { + "start": 12066.04, + "end": 12069.28, + "probability": 0.9972 + }, + { + "start": 12070.0, + "end": 12070.86, + "probability": 0.9727 + }, + { + "start": 12070.94, + "end": 12073.42, + "probability": 0.9874 + }, + { + "start": 12073.76, + "end": 12075.1, + "probability": 0.8802 + }, + { + "start": 12075.76, + "end": 12076.02, + "probability": 0.0874 + }, + { + "start": 12076.22, + "end": 12080.31, + "probability": 0.9663 + }, + { + "start": 12080.52, + "end": 12080.66, + "probability": 0.0754 + }, + { + "start": 12081.12, + "end": 12084.36, + "probability": 0.9642 + }, + { + "start": 12084.36, + "end": 12087.8, + "probability": 0.9458 + }, + { + "start": 12087.98, + "end": 12088.16, + "probability": 0.2819 + }, + { + "start": 12088.82, + "end": 12091.08, + "probability": 0.9749 + }, + { + "start": 12091.08, + "end": 12094.7, + "probability": 0.976 + }, + { + "start": 12094.82, + "end": 12097.86, + "probability": 0.9869 + }, + { + "start": 12098.3, + "end": 12100.48, + "probability": 0.9585 + }, + { + "start": 12101.3, + "end": 12105.82, + "probability": 0.9741 + }, + { + "start": 12106.32, + "end": 12108.76, + "probability": 0.9985 + }, + { + "start": 12109.06, + "end": 12110.6, + "probability": 0.3859 + }, + { + "start": 12110.86, + "end": 12112.8, + "probability": 0.8643 + }, + { + "start": 12112.88, + "end": 12113.32, + "probability": 0.8543 + }, + { + "start": 12113.5, + "end": 12117.52, + "probability": 0.9723 + }, + { + "start": 12117.92, + "end": 12118.82, + "probability": 0.9512 + }, + { + "start": 12119.38, + "end": 12122.34, + "probability": 0.9827 + }, + { + "start": 12122.76, + "end": 12124.56, + "probability": 0.8943 + }, + { + "start": 12125.04, + "end": 12125.74, + "probability": 0.8532 + }, + { + "start": 12126.08, + "end": 12128.72, + "probability": 0.984 + }, + { + "start": 12128.72, + "end": 12132.8, + "probability": 0.9937 + }, + { + "start": 12133.28, + "end": 12137.3, + "probability": 0.9895 + }, + { + "start": 12137.76, + "end": 12139.56, + "probability": 0.9756 + }, + { + "start": 12140.2, + "end": 12142.06, + "probability": 0.9702 + }, + { + "start": 12142.4, + "end": 12142.7, + "probability": 0.7604 + }, + { + "start": 12147.68, + "end": 12149.24, + "probability": 0.8749 + }, + { + "start": 12159.08, + "end": 12160.9, + "probability": 0.6642 + }, + { + "start": 12161.2, + "end": 12162.43, + "probability": 0.9822 + }, + { + "start": 12163.66, + "end": 12165.64, + "probability": 0.91 + }, + { + "start": 12165.9, + "end": 12166.98, + "probability": 0.9795 + }, + { + "start": 12167.7, + "end": 12168.52, + "probability": 0.7979 + }, + { + "start": 12170.08, + "end": 12172.66, + "probability": 0.7659 + }, + { + "start": 12173.24, + "end": 12175.48, + "probability": 0.9795 + }, + { + "start": 12177.46, + "end": 12179.83, + "probability": 0.9956 + }, + { + "start": 12181.22, + "end": 12182.58, + "probability": 0.8501 + }, + { + "start": 12183.64, + "end": 12185.08, + "probability": 0.9519 + }, + { + "start": 12186.4, + "end": 12189.32, + "probability": 0.9664 + }, + { + "start": 12189.98, + "end": 12191.32, + "probability": 0.9299 + }, + { + "start": 12193.32, + "end": 12193.92, + "probability": 0.9666 + }, + { + "start": 12194.5, + "end": 12194.5, + "probability": 0.0308 + }, + { + "start": 12194.5, + "end": 12195.42, + "probability": 0.8106 + }, + { + "start": 12197.1, + "end": 12197.24, + "probability": 0.7624 + }, + { + "start": 12198.76, + "end": 12201.3, + "probability": 0.9795 + }, + { + "start": 12202.82, + "end": 12205.18, + "probability": 0.9658 + }, + { + "start": 12206.78, + "end": 12208.1, + "probability": 0.9496 + }, + { + "start": 12208.64, + "end": 12210.72, + "probability": 0.947 + }, + { + "start": 12211.34, + "end": 12211.78, + "probability": 0.4356 + }, + { + "start": 12211.92, + "end": 12212.84, + "probability": 0.9561 + }, + { + "start": 12212.92, + "end": 12213.88, + "probability": 0.9273 + }, + { + "start": 12214.9, + "end": 12215.16, + "probability": 0.6173 + }, + { + "start": 12215.68, + "end": 12216.34, + "probability": 0.9005 + }, + { + "start": 12217.0, + "end": 12220.27, + "probability": 0.9823 + }, + { + "start": 12222.04, + "end": 12225.88, + "probability": 0.9502 + }, + { + "start": 12227.54, + "end": 12229.66, + "probability": 0.9094 + }, + { + "start": 12230.46, + "end": 12233.44, + "probability": 0.988 + }, + { + "start": 12234.84, + "end": 12237.08, + "probability": 0.7296 + }, + { + "start": 12237.18, + "end": 12237.84, + "probability": 0.9577 + }, + { + "start": 12238.74, + "end": 12239.66, + "probability": 0.9709 + }, + { + "start": 12240.96, + "end": 12247.14, + "probability": 0.9902 + }, + { + "start": 12248.0, + "end": 12250.56, + "probability": 0.817 + }, + { + "start": 12251.78, + "end": 12252.74, + "probability": 0.5575 + }, + { + "start": 12253.86, + "end": 12254.28, + "probability": 0.9821 + }, + { + "start": 12255.02, + "end": 12261.38, + "probability": 0.9764 + }, + { + "start": 12264.8, + "end": 12265.71, + "probability": 0.9927 + }, + { + "start": 12266.44, + "end": 12272.12, + "probability": 0.9775 + }, + { + "start": 12273.52, + "end": 12273.72, + "probability": 0.4131 + }, + { + "start": 12274.46, + "end": 12275.32, + "probability": 0.9871 + }, + { + "start": 12277.06, + "end": 12281.76, + "probability": 0.9131 + }, + { + "start": 12283.86, + "end": 12284.44, + "probability": 0.9956 + }, + { + "start": 12285.56, + "end": 12287.06, + "probability": 0.9501 + }, + { + "start": 12288.3, + "end": 12289.74, + "probability": 0.9834 + }, + { + "start": 12291.68, + "end": 12292.76, + "probability": 0.9485 + }, + { + "start": 12293.48, + "end": 12299.22, + "probability": 0.9752 + }, + { + "start": 12300.6, + "end": 12301.74, + "probability": 0.6745 + }, + { + "start": 12301.88, + "end": 12302.9, + "probability": 0.7912 + }, + { + "start": 12303.02, + "end": 12304.72, + "probability": 0.9364 + }, + { + "start": 12307.04, + "end": 12307.68, + "probability": 0.9545 + }, + { + "start": 12309.66, + "end": 12310.54, + "probability": 0.9952 + }, + { + "start": 12311.44, + "end": 12312.48, + "probability": 0.9043 + }, + { + "start": 12313.4, + "end": 12314.06, + "probability": 0.978 + }, + { + "start": 12314.86, + "end": 12318.66, + "probability": 0.9908 + }, + { + "start": 12318.72, + "end": 12322.1, + "probability": 0.9851 + }, + { + "start": 12322.72, + "end": 12330.56, + "probability": 0.9763 + }, + { + "start": 12333.22, + "end": 12336.54, + "probability": 0.8546 + }, + { + "start": 12337.64, + "end": 12338.8, + "probability": 0.9847 + }, + { + "start": 12340.42, + "end": 12341.32, + "probability": 0.5557 + }, + { + "start": 12342.32, + "end": 12345.38, + "probability": 0.9259 + }, + { + "start": 12345.74, + "end": 12348.66, + "probability": 0.9948 + }, + { + "start": 12348.8, + "end": 12349.74, + "probability": 0.8821 + }, + { + "start": 12349.8, + "end": 12352.3, + "probability": 0.9482 + }, + { + "start": 12353.64, + "end": 12360.04, + "probability": 0.8611 + }, + { + "start": 12361.2, + "end": 12363.36, + "probability": 0.8682 + }, + { + "start": 12364.26, + "end": 12368.02, + "probability": 0.8873 + }, + { + "start": 12369.56, + "end": 12374.84, + "probability": 0.9967 + }, + { + "start": 12375.9, + "end": 12376.86, + "probability": 0.742 + }, + { + "start": 12378.22, + "end": 12381.08, + "probability": 0.8217 + }, + { + "start": 12382.22, + "end": 12387.42, + "probability": 0.9993 + }, + { + "start": 12388.92, + "end": 12392.28, + "probability": 0.9922 + }, + { + "start": 12393.6, + "end": 12396.64, + "probability": 0.9956 + }, + { + "start": 12397.22, + "end": 12399.02, + "probability": 0.3365 + }, + { + "start": 12399.34, + "end": 12399.44, + "probability": 0.1804 + }, + { + "start": 12400.38, + "end": 12401.58, + "probability": 0.766 + }, + { + "start": 12402.54, + "end": 12403.28, + "probability": 0.8731 + }, + { + "start": 12404.16, + "end": 12406.0, + "probability": 0.8856 + }, + { + "start": 12406.82, + "end": 12407.32, + "probability": 0.9598 + }, + { + "start": 12407.98, + "end": 12409.8, + "probability": 0.9829 + }, + { + "start": 12410.06, + "end": 12410.38, + "probability": 0.3134 + }, + { + "start": 12410.38, + "end": 12410.6, + "probability": 0.7069 + }, + { + "start": 12412.06, + "end": 12413.58, + "probability": 0.9116 + }, + { + "start": 12415.32, + "end": 12416.56, + "probability": 0.5122 + }, + { + "start": 12416.86, + "end": 12417.74, + "probability": 0.2176 + }, + { + "start": 12418.42, + "end": 12418.8, + "probability": 0.5354 + }, + { + "start": 12419.82, + "end": 12420.93, + "probability": 0.8564 + }, + { + "start": 12422.2, + "end": 12423.42, + "probability": 0.6847 + }, + { + "start": 12424.1, + "end": 12425.68, + "probability": 0.6941 + }, + { + "start": 12426.84, + "end": 12430.0, + "probability": 0.9548 + }, + { + "start": 12435.1, + "end": 12436.72, + "probability": 0.5114 + }, + { + "start": 12444.14, + "end": 12445.36, + "probability": 0.8059 + }, + { + "start": 12445.48, + "end": 12446.3, + "probability": 0.611 + }, + { + "start": 12447.34, + "end": 12448.34, + "probability": 0.8782 + }, + { + "start": 12449.34, + "end": 12452.54, + "probability": 0.9632 + }, + { + "start": 12453.42, + "end": 12455.22, + "probability": 0.8458 + }, + { + "start": 12456.04, + "end": 12459.26, + "probability": 0.8893 + }, + { + "start": 12461.72, + "end": 12465.48, + "probability": 0.9771 + }, + { + "start": 12466.42, + "end": 12470.02, + "probability": 0.946 + }, + { + "start": 12470.84, + "end": 12471.5, + "probability": 0.565 + }, + { + "start": 12472.52, + "end": 12472.82, + "probability": 0.5285 + }, + { + "start": 12475.08, + "end": 12477.89, + "probability": 0.9808 + }, + { + "start": 12479.46, + "end": 12483.2, + "probability": 0.995 + }, + { + "start": 12484.64, + "end": 12486.36, + "probability": 0.8387 + }, + { + "start": 12488.04, + "end": 12494.38, + "probability": 0.9777 + }, + { + "start": 12495.72, + "end": 12497.01, + "probability": 0.8758 + }, + { + "start": 12498.26, + "end": 12503.76, + "probability": 0.9784 + }, + { + "start": 12506.48, + "end": 12510.62, + "probability": 0.9982 + }, + { + "start": 12511.28, + "end": 12511.78, + "probability": 0.9543 + }, + { + "start": 12512.56, + "end": 12516.7, + "probability": 0.9969 + }, + { + "start": 12518.5, + "end": 12519.26, + "probability": 0.6765 + }, + { + "start": 12519.82, + "end": 12523.02, + "probability": 0.9502 + }, + { + "start": 12524.42, + "end": 12524.76, + "probability": 0.8685 + }, + { + "start": 12525.42, + "end": 12530.02, + "probability": 0.9912 + }, + { + "start": 12531.1, + "end": 12535.42, + "probability": 0.9943 + }, + { + "start": 12535.52, + "end": 12536.66, + "probability": 0.9937 + }, + { + "start": 12537.98, + "end": 12538.88, + "probability": 0.7004 + }, + { + "start": 12538.96, + "end": 12539.82, + "probability": 0.8822 + }, + { + "start": 12540.82, + "end": 12542.45, + "probability": 0.9187 + }, + { + "start": 12543.5, + "end": 12545.08, + "probability": 0.9979 + }, + { + "start": 12545.18, + "end": 12547.22, + "probability": 0.9982 + }, + { + "start": 12548.06, + "end": 12551.48, + "probability": 0.9949 + }, + { + "start": 12551.66, + "end": 12553.66, + "probability": 0.9779 + }, + { + "start": 12553.74, + "end": 12554.36, + "probability": 0.6889 + }, + { + "start": 12554.66, + "end": 12556.92, + "probability": 0.9942 + }, + { + "start": 12558.36, + "end": 12559.28, + "probability": 0.4795 + }, + { + "start": 12559.42, + "end": 12560.66, + "probability": 0.6552 + }, + { + "start": 12561.22, + "end": 12561.34, + "probability": 0.6398 + }, + { + "start": 12561.38, + "end": 12562.08, + "probability": 0.6692 + }, + { + "start": 12562.36, + "end": 12563.48, + "probability": 0.9863 + }, + { + "start": 12563.68, + "end": 12565.06, + "probability": 0.9926 + }, + { + "start": 12567.98, + "end": 12570.32, + "probability": 0.9812 + }, + { + "start": 12571.62, + "end": 12571.88, + "probability": 0.6265 + }, + { + "start": 12572.44, + "end": 12574.78, + "probability": 0.7224 + }, + { + "start": 12574.98, + "end": 12578.0, + "probability": 0.9192 + }, + { + "start": 12578.8, + "end": 12580.3, + "probability": 0.9029 + }, + { + "start": 12581.52, + "end": 12583.88, + "probability": 0.9633 + }, + { + "start": 12584.34, + "end": 12588.66, + "probability": 0.9932 + }, + { + "start": 12589.38, + "end": 12595.16, + "probability": 0.9893 + }, + { + "start": 12596.3, + "end": 12597.38, + "probability": 0.8024 + }, + { + "start": 12600.14, + "end": 12602.7, + "probability": 0.8093 + }, + { + "start": 12603.12, + "end": 12603.82, + "probability": 0.923 + }, + { + "start": 12603.9, + "end": 12606.18, + "probability": 0.9935 + }, + { + "start": 12606.8, + "end": 12608.84, + "probability": 0.9954 + }, + { + "start": 12610.34, + "end": 12610.88, + "probability": 0.8621 + }, + { + "start": 12611.92, + "end": 12614.06, + "probability": 0.8395 + }, + { + "start": 12615.1, + "end": 12616.96, + "probability": 0.9974 + }, + { + "start": 12617.56, + "end": 12621.44, + "probability": 0.9326 + }, + { + "start": 12621.44, + "end": 12624.48, + "probability": 0.9978 + }, + { + "start": 12624.68, + "end": 12627.52, + "probability": 0.9906 + }, + { + "start": 12627.78, + "end": 12628.68, + "probability": 0.5243 + }, + { + "start": 12629.1, + "end": 12630.76, + "probability": 0.1672 + }, + { + "start": 12636.56, + "end": 12639.78, + "probability": 0.5546 + }, + { + "start": 12641.46, + "end": 12642.05, + "probability": 0.8433 + }, + { + "start": 12642.68, + "end": 12644.14, + "probability": 0.9727 + }, + { + "start": 12645.86, + "end": 12646.72, + "probability": 0.2687 + }, + { + "start": 12649.18, + "end": 12655.5, + "probability": 0.024 + }, + { + "start": 12656.58, + "end": 12658.76, + "probability": 0.3807 + }, + { + "start": 12660.54, + "end": 12662.44, + "probability": 0.7591 + }, + { + "start": 12662.52, + "end": 12663.46, + "probability": 0.67 + }, + { + "start": 12663.59, + "end": 12667.76, + "probability": 0.9901 + }, + { + "start": 12667.76, + "end": 12671.66, + "probability": 0.998 + }, + { + "start": 12672.88, + "end": 12677.02, + "probability": 0.9952 + }, + { + "start": 12677.96, + "end": 12678.58, + "probability": 0.4643 + }, + { + "start": 12679.66, + "end": 12681.9, + "probability": 0.9928 + }, + { + "start": 12682.8, + "end": 12684.7, + "probability": 0.9849 + }, + { + "start": 12685.24, + "end": 12686.12, + "probability": 0.7874 + }, + { + "start": 12686.36, + "end": 12690.12, + "probability": 0.9639 + }, + { + "start": 12691.0, + "end": 12692.98, + "probability": 0.9951 + }, + { + "start": 12693.62, + "end": 12695.6, + "probability": 0.9702 + }, + { + "start": 12696.52, + "end": 12698.28, + "probability": 0.8147 + }, + { + "start": 12698.96, + "end": 12700.34, + "probability": 0.985 + }, + { + "start": 12701.78, + "end": 12705.94, + "probability": 0.9941 + }, + { + "start": 12706.04, + "end": 12708.22, + "probability": 0.8675 + }, + { + "start": 12709.16, + "end": 12709.88, + "probability": 0.497 + }, + { + "start": 12710.76, + "end": 12713.1, + "probability": 0.9167 + }, + { + "start": 12713.66, + "end": 12715.66, + "probability": 0.462 + }, + { + "start": 12717.4, + "end": 12717.56, + "probability": 0.285 + }, + { + "start": 12717.56, + "end": 12718.19, + "probability": 0.7161 + }, + { + "start": 12719.02, + "end": 12721.54, + "probability": 0.98 + }, + { + "start": 12722.12, + "end": 12723.28, + "probability": 0.5767 + }, + { + "start": 12723.98, + "end": 12724.68, + "probability": 0.7272 + }, + { + "start": 12724.74, + "end": 12725.22, + "probability": 0.9243 + }, + { + "start": 12725.32, + "end": 12726.96, + "probability": 0.9042 + }, + { + "start": 12726.98, + "end": 12728.82, + "probability": 0.6166 + }, + { + "start": 12729.66, + "end": 12732.2, + "probability": 0.8984 + }, + { + "start": 12732.86, + "end": 12736.32, + "probability": 0.9519 + }, + { + "start": 12737.1, + "end": 12739.74, + "probability": 0.9246 + }, + { + "start": 12740.56, + "end": 12742.06, + "probability": 0.9466 + }, + { + "start": 12742.44, + "end": 12743.72, + "probability": 0.7891 + }, + { + "start": 12744.38, + "end": 12747.12, + "probability": 0.7879 + }, + { + "start": 12748.04, + "end": 12750.84, + "probability": 0.9984 + }, + { + "start": 12751.34, + "end": 12752.78, + "probability": 0.8766 + }, + { + "start": 12754.46, + "end": 12755.68, + "probability": 0.936 + }, + { + "start": 12755.74, + "end": 12759.26, + "probability": 0.9349 + }, + { + "start": 12759.94, + "end": 12763.9, + "probability": 0.9004 + }, + { + "start": 12764.72, + "end": 12769.42, + "probability": 0.989 + }, + { + "start": 12770.16, + "end": 12773.5, + "probability": 0.9944 + }, + { + "start": 12774.58, + "end": 12778.32, + "probability": 0.9922 + }, + { + "start": 12779.08, + "end": 12780.22, + "probability": 0.6532 + }, + { + "start": 12780.8, + "end": 12781.64, + "probability": 0.9379 + }, + { + "start": 12782.28, + "end": 12783.08, + "probability": 0.8529 + }, + { + "start": 12783.7, + "end": 12786.4, + "probability": 0.9563 + }, + { + "start": 12786.96, + "end": 12788.74, + "probability": 0.9264 + }, + { + "start": 12789.38, + "end": 12790.94, + "probability": 0.8784 + }, + { + "start": 12791.48, + "end": 12792.7, + "probability": 0.5864 + }, + { + "start": 12793.08, + "end": 12796.22, + "probability": 0.885 + }, + { + "start": 12796.7, + "end": 12798.06, + "probability": 0.721 + }, + { + "start": 12798.52, + "end": 12800.5, + "probability": 0.9494 + }, + { + "start": 12801.26, + "end": 12803.38, + "probability": 0.8384 + }, + { + "start": 12805.58, + "end": 12809.35, + "probability": 0.688 + }, + { + "start": 12810.02, + "end": 12812.08, + "probability": 0.9561 + }, + { + "start": 12812.62, + "end": 12817.26, + "probability": 0.9917 + }, + { + "start": 12818.04, + "end": 12821.98, + "probability": 0.9976 + }, + { + "start": 12822.54, + "end": 12823.96, + "probability": 0.9814 + }, + { + "start": 12824.68, + "end": 12826.28, + "probability": 0.7783 + }, + { + "start": 12826.98, + "end": 12827.68, + "probability": 0.8214 + }, + { + "start": 12828.96, + "end": 12831.16, + "probability": 0.7364 + }, + { + "start": 12831.88, + "end": 12834.82, + "probability": 0.9954 + }, + { + "start": 12835.28, + "end": 12837.04, + "probability": 0.998 + }, + { + "start": 12837.48, + "end": 12838.68, + "probability": 0.9775 + }, + { + "start": 12839.52, + "end": 12842.54, + "probability": 0.9684 + }, + { + "start": 12843.16, + "end": 12845.6, + "probability": 0.9729 + }, + { + "start": 12846.32, + "end": 12849.1, + "probability": 0.9288 + }, + { + "start": 12849.82, + "end": 12852.6, + "probability": 0.9767 + }, + { + "start": 12853.1, + "end": 12853.36, + "probability": 0.7639 + }, + { + "start": 12853.5, + "end": 12855.46, + "probability": 0.379 + }, + { + "start": 12855.5, + "end": 12856.5, + "probability": 0.8942 + }, + { + "start": 12857.1, + "end": 12857.66, + "probability": 0.8328 + }, + { + "start": 12877.0, + "end": 12878.96, + "probability": 0.7169 + }, + { + "start": 12879.88, + "end": 12884.68, + "probability": 0.9965 + }, + { + "start": 12885.6, + "end": 12887.3, + "probability": 0.9198 + }, + { + "start": 12887.8, + "end": 12890.14, + "probability": 0.9849 + }, + { + "start": 12890.56, + "end": 12892.5, + "probability": 0.9951 + }, + { + "start": 12893.36, + "end": 12897.38, + "probability": 0.9946 + }, + { + "start": 12898.16, + "end": 12898.96, + "probability": 0.9413 + }, + { + "start": 12899.48, + "end": 12901.04, + "probability": 0.9781 + }, + { + "start": 12901.8, + "end": 12905.32, + "probability": 0.9392 + }, + { + "start": 12905.96, + "end": 12908.68, + "probability": 0.9958 + }, + { + "start": 12909.52, + "end": 12912.56, + "probability": 0.9971 + }, + { + "start": 12913.32, + "end": 12914.28, + "probability": 0.9194 + }, + { + "start": 12914.86, + "end": 12915.88, + "probability": 0.8236 + }, + { + "start": 12916.56, + "end": 12919.38, + "probability": 0.9766 + }, + { + "start": 12919.38, + "end": 12922.36, + "probability": 0.9917 + }, + { + "start": 12922.78, + "end": 12926.22, + "probability": 0.9974 + }, + { + "start": 12927.02, + "end": 12930.2, + "probability": 0.9512 + }, + { + "start": 12930.82, + "end": 12935.26, + "probability": 0.9989 + }, + { + "start": 12935.92, + "end": 12940.5, + "probability": 0.9972 + }, + { + "start": 12940.94, + "end": 12945.88, + "probability": 0.9 + }, + { + "start": 12946.4, + "end": 12948.96, + "probability": 0.9501 + }, + { + "start": 12949.98, + "end": 12953.38, + "probability": 0.9636 + }, + { + "start": 12954.02, + "end": 12956.08, + "probability": 0.9611 + }, + { + "start": 12956.7, + "end": 12957.48, + "probability": 0.9753 + }, + { + "start": 12958.64, + "end": 12961.42, + "probability": 0.9993 + }, + { + "start": 12961.42, + "end": 12965.44, + "probability": 0.9995 + }, + { + "start": 12966.24, + "end": 12970.64, + "probability": 0.9867 + }, + { + "start": 12970.64, + "end": 12974.78, + "probability": 0.9417 + }, + { + "start": 12975.54, + "end": 12980.12, + "probability": 0.9888 + }, + { + "start": 12980.52, + "end": 12983.86, + "probability": 0.997 + }, + { + "start": 12984.58, + "end": 12988.16, + "probability": 0.9526 + }, + { + "start": 12989.04, + "end": 12991.5, + "probability": 0.7776 + }, + { + "start": 12992.14, + "end": 12995.12, + "probability": 0.9952 + }, + { + "start": 12995.12, + "end": 13000.1, + "probability": 0.9426 + }, + { + "start": 13000.16, + "end": 13001.88, + "probability": 0.8315 + }, + { + "start": 13002.12, + "end": 13003.44, + "probability": 0.7989 + }, + { + "start": 13004.7, + "end": 13011.48, + "probability": 0.9568 + }, + { + "start": 13012.18, + "end": 13013.8, + "probability": 0.9635 + }, + { + "start": 13014.4, + "end": 13016.52, + "probability": 0.9123 + }, + { + "start": 13017.08, + "end": 13020.3, + "probability": 0.9979 + }, + { + "start": 13020.32, + "end": 13024.68, + "probability": 0.9959 + }, + { + "start": 13024.84, + "end": 13026.32, + "probability": 0.9613 + }, + { + "start": 13027.1, + "end": 13029.22, + "probability": 0.9842 + }, + { + "start": 13029.68, + "end": 13033.12, + "probability": 0.9958 + }, + { + "start": 13033.7, + "end": 13037.72, + "probability": 0.923 + }, + { + "start": 13039.72, + "end": 13040.58, + "probability": 0.7917 + }, + { + "start": 13041.14, + "end": 13046.36, + "probability": 0.9868 + }, + { + "start": 13046.94, + "end": 13048.6, + "probability": 0.9532 + }, + { + "start": 13048.98, + "end": 13050.08, + "probability": 0.826 + }, + { + "start": 13050.16, + "end": 13051.08, + "probability": 0.8137 + }, + { + "start": 13051.12, + "end": 13053.02, + "probability": 0.7742 + }, + { + "start": 13053.42, + "end": 13055.5, + "probability": 0.9646 + }, + { + "start": 13055.98, + "end": 13057.8, + "probability": 0.9645 + }, + { + "start": 13059.19, + "end": 13060.54, + "probability": 0.988 + }, + { + "start": 13060.54, + "end": 13061.02, + "probability": 0.4795 + }, + { + "start": 13061.6, + "end": 13064.84, + "probability": 0.9899 + }, + { + "start": 13064.9, + "end": 13068.5, + "probability": 0.9899 + }, + { + "start": 13069.22, + "end": 13075.92, + "probability": 0.9875 + }, + { + "start": 13076.48, + "end": 13082.52, + "probability": 0.9409 + }, + { + "start": 13083.02, + "end": 13086.46, + "probability": 0.8436 + }, + { + "start": 13086.9, + "end": 13088.56, + "probability": 0.6943 + }, + { + "start": 13089.12, + "end": 13090.18, + "probability": 0.7706 + }, + { + "start": 13090.7, + "end": 13092.54, + "probability": 0.9822 + }, + { + "start": 13092.88, + "end": 13093.1, + "probability": 0.3101 + }, + { + "start": 13093.1, + "end": 13093.72, + "probability": 0.724 + }, + { + "start": 13094.76, + "end": 13096.42, + "probability": 0.7049 + }, + { + "start": 13104.34, + "end": 13104.52, + "probability": 0.2743 + }, + { + "start": 13106.0, + "end": 13108.08, + "probability": 0.664 + }, + { + "start": 13109.16, + "end": 13111.62, + "probability": 0.9455 + }, + { + "start": 13112.7, + "end": 13118.28, + "probability": 0.9916 + }, + { + "start": 13118.38, + "end": 13119.66, + "probability": 0.9683 + }, + { + "start": 13119.66, + "end": 13120.72, + "probability": 0.8603 + }, + { + "start": 13122.28, + "end": 13122.52, + "probability": 0.4603 + }, + { + "start": 13122.78, + "end": 13124.06, + "probability": 0.6873 + }, + { + "start": 13124.06, + "end": 13132.3, + "probability": 0.9966 + }, + { + "start": 13132.44, + "end": 13133.7, + "probability": 0.5136 + }, + { + "start": 13134.9, + "end": 13136.16, + "probability": 0.8433 + }, + { + "start": 13136.7, + "end": 13142.3, + "probability": 0.9696 + }, + { + "start": 13142.4, + "end": 13145.36, + "probability": 0.999 + }, + { + "start": 13145.88, + "end": 13148.94, + "probability": 0.8781 + }, + { + "start": 13149.9, + "end": 13154.4, + "probability": 0.9141 + }, + { + "start": 13154.8, + "end": 13158.68, + "probability": 0.9445 + }, + { + "start": 13159.5, + "end": 13162.42, + "probability": 0.9965 + }, + { + "start": 13162.42, + "end": 13166.0, + "probability": 0.994 + }, + { + "start": 13166.08, + "end": 13169.96, + "probability": 0.999 + }, + { + "start": 13170.64, + "end": 13176.36, + "probability": 0.9589 + }, + { + "start": 13177.06, + "end": 13183.56, + "probability": 0.9757 + }, + { + "start": 13183.96, + "end": 13187.06, + "probability": 0.9573 + }, + { + "start": 13187.52, + "end": 13189.72, + "probability": 0.9642 + }, + { + "start": 13189.84, + "end": 13190.78, + "probability": 0.9322 + }, + { + "start": 13191.66, + "end": 13192.54, + "probability": 0.8559 + }, + { + "start": 13193.26, + "end": 13196.56, + "probability": 0.9949 + }, + { + "start": 13196.88, + "end": 13199.0, + "probability": 0.9917 + }, + { + "start": 13199.1, + "end": 13199.52, + "probability": 0.7974 + }, + { + "start": 13200.34, + "end": 13201.96, + "probability": 0.9867 + }, + { + "start": 13202.06, + "end": 13205.16, + "probability": 0.8208 + }, + { + "start": 13205.54, + "end": 13206.28, + "probability": 0.9785 + }, + { + "start": 13206.52, + "end": 13206.88, + "probability": 0.9835 + }, + { + "start": 13207.7, + "end": 13208.58, + "probability": 0.7168 + }, + { + "start": 13209.14, + "end": 13210.19, + "probability": 0.3908 + }, + { + "start": 13210.24, + "end": 13211.22, + "probability": 0.7864 + }, + { + "start": 13211.64, + "end": 13216.06, + "probability": 0.994 + }, + { + "start": 13216.66, + "end": 13218.74, + "probability": 0.9712 + }, + { + "start": 13218.88, + "end": 13220.06, + "probability": 0.9875 + }, + { + "start": 13220.18, + "end": 13220.62, + "probability": 0.5116 + }, + { + "start": 13221.28, + "end": 13223.59, + "probability": 0.8987 + }, + { + "start": 13225.88, + "end": 13228.12, + "probability": 0.9846 + }, + { + "start": 13228.12, + "end": 13231.18, + "probability": 0.9766 + }, + { + "start": 13232.0, + "end": 13232.96, + "probability": 0.9521 + }, + { + "start": 13233.72, + "end": 13235.93, + "probability": 0.981 + }, + { + "start": 13236.34, + "end": 13237.32, + "probability": 0.842 + }, + { + "start": 13237.88, + "end": 13240.98, + "probability": 0.9502 + }, + { + "start": 13241.5, + "end": 13245.38, + "probability": 0.9866 + }, + { + "start": 13245.48, + "end": 13247.31, + "probability": 0.9424 + }, + { + "start": 13247.66, + "end": 13248.7, + "probability": 0.5002 + }, + { + "start": 13249.22, + "end": 13250.98, + "probability": 0.9406 + }, + { + "start": 13251.16, + "end": 13253.92, + "probability": 0.9292 + }, + { + "start": 13254.38, + "end": 13256.94, + "probability": 0.99 + }, + { + "start": 13257.26, + "end": 13260.28, + "probability": 0.9666 + }, + { + "start": 13261.12, + "end": 13262.18, + "probability": 0.9018 + }, + { + "start": 13263.78, + "end": 13267.22, + "probability": 0.9963 + }, + { + "start": 13267.38, + "end": 13267.9, + "probability": 0.8999 + }, + { + "start": 13268.02, + "end": 13270.44, + "probability": 0.8571 + }, + { + "start": 13270.76, + "end": 13272.52, + "probability": 0.7957 + }, + { + "start": 13273.3, + "end": 13274.54, + "probability": 0.7686 + }, + { + "start": 13274.6, + "end": 13275.54, + "probability": 0.9862 + }, + { + "start": 13275.98, + "end": 13281.42, + "probability": 0.9849 + }, + { + "start": 13281.68, + "end": 13284.6, + "probability": 0.9919 + }, + { + "start": 13285.22, + "end": 13289.64, + "probability": 0.9684 + }, + { + "start": 13289.68, + "end": 13290.14, + "probability": 0.7598 + }, + { + "start": 13290.24, + "end": 13291.28, + "probability": 0.7759 + }, + { + "start": 13291.38, + "end": 13293.46, + "probability": 0.9297 + }, + { + "start": 13296.3, + "end": 13298.5, + "probability": 0.833 + }, + { + "start": 13306.0, + "end": 13309.32, + "probability": 0.7209 + }, + { + "start": 13314.1, + "end": 13315.72, + "probability": 0.8484 + }, + { + "start": 13317.12, + "end": 13324.74, + "probability": 0.9869 + }, + { + "start": 13324.74, + "end": 13327.98, + "probability": 0.996 + }, + { + "start": 13329.44, + "end": 13330.72, + "probability": 0.9859 + }, + { + "start": 13331.38, + "end": 13333.16, + "probability": 0.9995 + }, + { + "start": 13333.94, + "end": 13339.1, + "probability": 0.9935 + }, + { + "start": 13339.88, + "end": 13346.3, + "probability": 0.7452 + }, + { + "start": 13347.02, + "end": 13349.04, + "probability": 0.8923 + }, + { + "start": 13349.08, + "end": 13354.5, + "probability": 0.9814 + }, + { + "start": 13356.58, + "end": 13364.18, + "probability": 0.653 + }, + { + "start": 13367.12, + "end": 13371.92, + "probability": 0.9332 + }, + { + "start": 13374.02, + "end": 13374.82, + "probability": 0.8805 + }, + { + "start": 13376.42, + "end": 13378.12, + "probability": 0.8236 + }, + { + "start": 13378.26, + "end": 13381.88, + "probability": 0.9868 + }, + { + "start": 13384.52, + "end": 13388.68, + "probability": 0.9043 + }, + { + "start": 13389.62, + "end": 13391.48, + "probability": 0.7563 + }, + { + "start": 13391.6, + "end": 13394.87, + "probability": 0.8765 + }, + { + "start": 13395.84, + "end": 13399.24, + "probability": 0.9983 + }, + { + "start": 13399.24, + "end": 13404.5, + "probability": 0.9962 + }, + { + "start": 13405.26, + "end": 13406.86, + "probability": 0.7552 + }, + { + "start": 13407.16, + "end": 13407.88, + "probability": 0.8182 + }, + { + "start": 13408.38, + "end": 13411.24, + "probability": 0.9893 + }, + { + "start": 13411.9, + "end": 13413.98, + "probability": 0.9715 + }, + { + "start": 13414.98, + "end": 13419.74, + "probability": 0.9633 + }, + { + "start": 13420.38, + "end": 13424.06, + "probability": 0.9929 + }, + { + "start": 13424.7, + "end": 13427.72, + "probability": 0.9804 + }, + { + "start": 13428.58, + "end": 13428.98, + "probability": 0.6823 + }, + { + "start": 13429.12, + "end": 13434.98, + "probability": 0.9826 + }, + { + "start": 13435.54, + "end": 13437.9, + "probability": 0.6748 + }, + { + "start": 13440.42, + "end": 13445.36, + "probability": 0.9725 + }, + { + "start": 13446.48, + "end": 13447.94, + "probability": 0.744 + }, + { + "start": 13447.98, + "end": 13453.24, + "probability": 0.7312 + }, + { + "start": 13456.8, + "end": 13462.58, + "probability": 0.9814 + }, + { + "start": 13464.7, + "end": 13465.74, + "probability": 0.964 + }, + { + "start": 13466.1, + "end": 13467.12, + "probability": 0.7075 + }, + { + "start": 13467.24, + "end": 13467.56, + "probability": 0.5451 + }, + { + "start": 13467.64, + "end": 13468.86, + "probability": 0.9509 + }, + { + "start": 13470.38, + "end": 13478.54, + "probability": 0.9751 + }, + { + "start": 13478.86, + "end": 13484.92, + "probability": 0.83 + }, + { + "start": 13486.46, + "end": 13489.44, + "probability": 0.6085 + }, + { + "start": 13489.54, + "end": 13493.04, + "probability": 0.9103 + }, + { + "start": 13494.18, + "end": 13498.3, + "probability": 0.9711 + }, + { + "start": 13498.46, + "end": 13500.9, + "probability": 0.9206 + }, + { + "start": 13500.98, + "end": 13502.8, + "probability": 0.6627 + }, + { + "start": 13503.54, + "end": 13505.32, + "probability": 0.9902 + }, + { + "start": 13505.94, + "end": 13505.96, + "probability": 0.937 + }, + { + "start": 13506.48, + "end": 13507.9, + "probability": 0.5991 + }, + { + "start": 13508.1, + "end": 13510.76, + "probability": 0.8415 + }, + { + "start": 13511.28, + "end": 13512.28, + "probability": 0.3773 + }, + { + "start": 13512.48, + "end": 13514.98, + "probability": 0.986 + }, + { + "start": 13515.8, + "end": 13519.1, + "probability": 0.6679 + }, + { + "start": 13520.54, + "end": 13520.54, + "probability": 0.0719 + }, + { + "start": 13520.54, + "end": 13522.24, + "probability": 0.6718 + }, + { + "start": 13522.38, + "end": 13523.74, + "probability": 0.7531 + }, + { + "start": 13526.02, + "end": 13531.48, + "probability": 0.9547 + }, + { + "start": 13532.96, + "end": 13535.84, + "probability": 0.8828 + }, + { + "start": 13535.88, + "end": 13537.34, + "probability": 0.8175 + }, + { + "start": 13537.48, + "end": 13540.02, + "probability": 0.8376 + }, + { + "start": 13540.16, + "end": 13541.46, + "probability": 0.9113 + }, + { + "start": 13542.72, + "end": 13546.64, + "probability": 0.9594 + }, + { + "start": 13546.8, + "end": 13547.3, + "probability": 0.5288 + }, + { + "start": 13547.42, + "end": 13548.16, + "probability": 0.7398 + }, + { + "start": 13549.26, + "end": 13552.1, + "probability": 0.991 + }, + { + "start": 13552.54, + "end": 13557.08, + "probability": 0.9898 + }, + { + "start": 13557.16, + "end": 13557.64, + "probability": 0.9501 + }, + { + "start": 13558.18, + "end": 13559.14, + "probability": 0.8317 + }, + { + "start": 13559.96, + "end": 13560.82, + "probability": 0.6973 + }, + { + "start": 13560.98, + "end": 13563.12, + "probability": 0.765 + }, + { + "start": 13563.18, + "end": 13565.24, + "probability": 0.991 + }, + { + "start": 13566.08, + "end": 13567.06, + "probability": 0.519 + }, + { + "start": 13567.54, + "end": 13570.86, + "probability": 0.6867 + }, + { + "start": 13570.94, + "end": 13572.64, + "probability": 0.9646 + }, + { + "start": 13573.18, + "end": 13573.94, + "probability": 0.7665 + }, + { + "start": 13574.6, + "end": 13576.82, + "probability": 0.9959 + }, + { + "start": 13579.84, + "end": 13588.0, + "probability": 0.9482 + }, + { + "start": 13588.26, + "end": 13588.7, + "probability": 0.6905 + }, + { + "start": 13588.7, + "end": 13589.06, + "probability": 0.4136 + }, + { + "start": 13589.06, + "end": 13589.46, + "probability": 0.5126 + }, + { + "start": 13589.66, + "end": 13594.74, + "probability": 0.8825 + }, + { + "start": 13595.14, + "end": 13595.3, + "probability": 0.6471 + }, + { + "start": 13595.54, + "end": 13598.4, + "probability": 0.9928 + }, + { + "start": 13598.46, + "end": 13599.34, + "probability": 0.4794 + }, + { + "start": 13599.7, + "end": 13601.32, + "probability": 0.8208 + }, + { + "start": 13602.66, + "end": 13605.54, + "probability": 0.9603 + }, + { + "start": 13605.64, + "end": 13607.1, + "probability": 0.5982 + }, + { + "start": 13607.1, + "end": 13608.74, + "probability": 0.9019 + }, + { + "start": 13611.54, + "end": 13612.19, + "probability": 0.8823 + }, + { + "start": 13613.46, + "end": 13614.52, + "probability": 0.6441 + }, + { + "start": 13615.34, + "end": 13617.42, + "probability": 0.2455 + }, + { + "start": 13617.54, + "end": 13617.86, + "probability": 0.8474 + }, + { + "start": 13630.98, + "end": 13633.92, + "probability": 0.8298 + }, + { + "start": 13635.76, + "end": 13641.22, + "probability": 0.9956 + }, + { + "start": 13642.88, + "end": 13646.86, + "probability": 0.9861 + }, + { + "start": 13647.54, + "end": 13651.46, + "probability": 0.9825 + }, + { + "start": 13652.38, + "end": 13657.7, + "probability": 0.9965 + }, + { + "start": 13658.78, + "end": 13660.61, + "probability": 0.6831 + }, + { + "start": 13662.26, + "end": 13664.9, + "probability": 0.8062 + }, + { + "start": 13665.52, + "end": 13667.08, + "probability": 0.7855 + }, + { + "start": 13667.74, + "end": 13668.56, + "probability": 0.6421 + }, + { + "start": 13669.4, + "end": 13672.72, + "probability": 0.9917 + }, + { + "start": 13672.84, + "end": 13673.3, + "probability": 0.845 + }, + { + "start": 13674.1, + "end": 13674.58, + "probability": 0.9733 + }, + { + "start": 13675.14, + "end": 13676.48, + "probability": 0.7649 + }, + { + "start": 13677.73, + "end": 13681.0, + "probability": 0.9965 + }, + { + "start": 13681.14, + "end": 13682.18, + "probability": 0.7924 + }, + { + "start": 13682.64, + "end": 13688.3, + "probability": 0.9886 + }, + { + "start": 13689.42, + "end": 13691.92, + "probability": 0.9978 + }, + { + "start": 13692.42, + "end": 13696.28, + "probability": 0.9678 + }, + { + "start": 13696.68, + "end": 13700.7, + "probability": 0.991 + }, + { + "start": 13701.48, + "end": 13704.06, + "probability": 0.9917 + }, + { + "start": 13704.2, + "end": 13707.42, + "probability": 0.9974 + }, + { + "start": 13707.86, + "end": 13710.66, + "probability": 0.9882 + }, + { + "start": 13711.14, + "end": 13714.02, + "probability": 0.99 + }, + { + "start": 13714.58, + "end": 13716.98, + "probability": 0.8938 + }, + { + "start": 13716.98, + "end": 13722.2, + "probability": 0.9885 + }, + { + "start": 13722.46, + "end": 13723.42, + "probability": 0.9803 + }, + { + "start": 13723.72, + "end": 13726.7, + "probability": 0.9807 + }, + { + "start": 13726.98, + "end": 13729.28, + "probability": 0.9627 + }, + { + "start": 13729.92, + "end": 13731.44, + "probability": 0.962 + }, + { + "start": 13731.94, + "end": 13732.98, + "probability": 0.98 + }, + { + "start": 13733.46, + "end": 13735.4, + "probability": 0.9919 + }, + { + "start": 13735.94, + "end": 13738.36, + "probability": 0.9816 + }, + { + "start": 13738.68, + "end": 13743.14, + "probability": 0.7835 + }, + { + "start": 13743.74, + "end": 13744.78, + "probability": 0.6667 + }, + { + "start": 13744.84, + "end": 13746.3, + "probability": 0.8201 + }, + { + "start": 13746.56, + "end": 13746.88, + "probability": 0.2284 + }, + { + "start": 13747.02, + "end": 13750.61, + "probability": 0.8654 + }, + { + "start": 13751.2, + "end": 13754.96, + "probability": 0.7412 + }, + { + "start": 13755.46, + "end": 13756.1, + "probability": 0.9297 + }, + { + "start": 13756.64, + "end": 13757.84, + "probability": 0.9694 + }, + { + "start": 13758.16, + "end": 13759.5, + "probability": 0.9575 + }, + { + "start": 13759.76, + "end": 13763.3, + "probability": 0.9666 + }, + { + "start": 13763.3, + "end": 13767.36, + "probability": 0.9988 + }, + { + "start": 13768.08, + "end": 13769.44, + "probability": 0.7797 + }, + { + "start": 13770.14, + "end": 13774.56, + "probability": 0.9929 + }, + { + "start": 13774.88, + "end": 13775.96, + "probability": 0.6738 + }, + { + "start": 13776.66, + "end": 13782.64, + "probability": 0.8413 + }, + { + "start": 13782.64, + "end": 13787.84, + "probability": 0.9914 + }, + { + "start": 13788.06, + "end": 13789.16, + "probability": 0.749 + }, + { + "start": 13789.9, + "end": 13792.14, + "probability": 0.9547 + }, + { + "start": 13792.74, + "end": 13794.3, + "probability": 0.8717 + }, + { + "start": 13794.44, + "end": 13795.68, + "probability": 0.8469 + }, + { + "start": 13795.82, + "end": 13798.56, + "probability": 0.8647 + }, + { + "start": 13798.78, + "end": 13804.46, + "probability": 0.9622 + }, + { + "start": 13805.2, + "end": 13805.88, + "probability": 0.6375 + }, + { + "start": 13806.2, + "end": 13810.26, + "probability": 0.9346 + }, + { + "start": 13810.34, + "end": 13810.72, + "probability": 0.903 + }, + { + "start": 13811.2, + "end": 13812.54, + "probability": 0.9753 + }, + { + "start": 13813.16, + "end": 13814.16, + "probability": 0.9646 + }, + { + "start": 13814.72, + "end": 13815.6, + "probability": 0.8483 + }, + { + "start": 13815.64, + "end": 13819.44, + "probability": 0.9244 + }, + { + "start": 13819.78, + "end": 13824.72, + "probability": 0.9941 + }, + { + "start": 13824.86, + "end": 13825.84, + "probability": 0.9519 + }, + { + "start": 13825.92, + "end": 13827.06, + "probability": 0.9911 + }, + { + "start": 13827.18, + "end": 13828.64, + "probability": 0.94 + }, + { + "start": 13828.74, + "end": 13829.9, + "probability": 0.9013 + }, + { + "start": 13830.5, + "end": 13833.72, + "probability": 0.9838 + }, + { + "start": 13833.72, + "end": 13837.54, + "probability": 0.9975 + }, + { + "start": 13838.4, + "end": 13838.4, + "probability": 0.2543 + }, + { + "start": 13838.4, + "end": 13839.16, + "probability": 0.5393 + }, + { + "start": 13839.72, + "end": 13841.82, + "probability": 0.7654 + }, + { + "start": 13842.14, + "end": 13846.82, + "probability": 0.9877 + }, + { + "start": 13847.74, + "end": 13847.74, + "probability": 0.0593 + }, + { + "start": 13847.74, + "end": 13847.74, + "probability": 0.3967 + }, + { + "start": 13847.74, + "end": 13852.04, + "probability": 0.981 + }, + { + "start": 13852.32, + "end": 13854.06, + "probability": 0.9663 + }, + { + "start": 13854.1, + "end": 13854.88, + "probability": 0.6941 + }, + { + "start": 13855.0, + "end": 13857.24, + "probability": 0.9589 + }, + { + "start": 13857.54, + "end": 13858.96, + "probability": 0.9966 + }, + { + "start": 13859.48, + "end": 13861.36, + "probability": 0.8932 + }, + { + "start": 13861.54, + "end": 13862.82, + "probability": 0.7652 + }, + { + "start": 13862.86, + "end": 13862.92, + "probability": 0.4756 + }, + { + "start": 13862.94, + "end": 13863.68, + "probability": 0.7244 + }, + { + "start": 13863.7, + "end": 13864.32, + "probability": 0.5525 + }, + { + "start": 13864.34, + "end": 13864.48, + "probability": 0.3978 + }, + { + "start": 13864.48, + "end": 13865.46, + "probability": 0.9866 + }, + { + "start": 13865.7, + "end": 13867.24, + "probability": 0.9726 + }, + { + "start": 13867.3, + "end": 13869.84, + "probability": 0.8809 + }, + { + "start": 13870.02, + "end": 13871.58, + "probability": 0.8153 + }, + { + "start": 13872.04, + "end": 13875.38, + "probability": 0.9348 + }, + { + "start": 13875.66, + "end": 13880.28, + "probability": 0.8892 + }, + { + "start": 13880.38, + "end": 13880.78, + "probability": 0.0681 + }, + { + "start": 13880.78, + "end": 13880.8, + "probability": 0.0859 + }, + { + "start": 13880.86, + "end": 13882.66, + "probability": 0.8854 + }, + { + "start": 13882.66, + "end": 13882.98, + "probability": 0.7451 + }, + { + "start": 13883.14, + "end": 13883.9, + "probability": 0.6977 + }, + { + "start": 13883.9, + "end": 13883.9, + "probability": 0.565 + }, + { + "start": 13883.9, + "end": 13884.3, + "probability": 0.4419 + }, + { + "start": 13884.62, + "end": 13887.86, + "probability": 0.9961 + }, + { + "start": 13888.3, + "end": 13891.68, + "probability": 0.9927 + }, + { + "start": 13891.68, + "end": 13895.48, + "probability": 0.8701 + }, + { + "start": 13895.48, + "end": 13898.44, + "probability": 0.9834 + }, + { + "start": 13898.44, + "end": 13900.76, + "probability": 0.999 + }, + { + "start": 13900.84, + "end": 13901.18, + "probability": 0.8016 + }, + { + "start": 13901.3, + "end": 13901.7, + "probability": 0.9366 + }, + { + "start": 13902.28, + "end": 13902.68, + "probability": 0.9064 + }, + { + "start": 13902.84, + "end": 13903.68, + "probability": 0.8029 + }, + { + "start": 13904.5, + "end": 13907.66, + "probability": 0.7621 + }, + { + "start": 13908.14, + "end": 13909.3, + "probability": 0.9802 + }, + { + "start": 13909.4, + "end": 13911.44, + "probability": 0.9825 + }, + { + "start": 13911.6, + "end": 13912.54, + "probability": 0.8628 + }, + { + "start": 13913.06, + "end": 13915.88, + "probability": 0.9803 + }, + { + "start": 13916.1, + "end": 13917.46, + "probability": 0.8174 + }, + { + "start": 13917.62, + "end": 13917.92, + "probability": 0.8469 + }, + { + "start": 13919.28, + "end": 13920.04, + "probability": 0.7304 + }, + { + "start": 13926.32, + "end": 13926.68, + "probability": 0.3709 + }, + { + "start": 13926.72, + "end": 13927.16, + "probability": 0.63 + }, + { + "start": 13927.26, + "end": 13928.44, + "probability": 0.6033 + }, + { + "start": 13928.74, + "end": 13931.72, + "probability": 0.7058 + }, + { + "start": 13931.72, + "end": 13935.62, + "probability": 0.8879 + }, + { + "start": 13935.76, + "end": 13937.5, + "probability": 0.9857 + }, + { + "start": 13938.06, + "end": 13939.15, + "probability": 0.9892 + }, + { + "start": 13940.66, + "end": 13943.0, + "probability": 0.8133 + }, + { + "start": 13943.32, + "end": 13946.04, + "probability": 0.9824 + }, + { + "start": 13946.04, + "end": 13949.72, + "probability": 0.9988 + }, + { + "start": 13949.88, + "end": 13953.36, + "probability": 0.9591 + }, + { + "start": 13953.88, + "end": 13956.92, + "probability": 0.8882 + }, + { + "start": 13956.92, + "end": 13960.6, + "probability": 0.9974 + }, + { + "start": 13960.76, + "end": 13961.26, + "probability": 0.5886 + }, + { + "start": 13962.1, + "end": 13967.24, + "probability": 0.9736 + }, + { + "start": 13967.8, + "end": 13969.55, + "probability": 0.9993 + }, + { + "start": 13970.68, + "end": 13972.32, + "probability": 0.9579 + }, + { + "start": 13972.9, + "end": 13974.42, + "probability": 0.9754 + }, + { + "start": 13974.58, + "end": 13976.35, + "probability": 0.3017 + }, + { + "start": 13977.74, + "end": 13978.63, + "probability": 0.4921 + }, + { + "start": 13979.21, + "end": 13984.62, + "probability": 0.9268 + }, + { + "start": 13985.14, + "end": 13986.74, + "probability": 0.6117 + }, + { + "start": 13987.28, + "end": 13992.22, + "probability": 0.9154 + }, + { + "start": 13992.62, + "end": 13996.52, + "probability": 0.9797 + }, + { + "start": 13996.52, + "end": 13999.5, + "probability": 0.99 + }, + { + "start": 13999.58, + "end": 14000.46, + "probability": 0.8979 + }, + { + "start": 14001.02, + "end": 14002.62, + "probability": 0.7639 + }, + { + "start": 14003.76, + "end": 14006.54, + "probability": 0.9537 + }, + { + "start": 14006.68, + "end": 14007.38, + "probability": 0.6456 + }, + { + "start": 14007.68, + "end": 14012.94, + "probability": 0.9689 + }, + { + "start": 14012.94, + "end": 14018.16, + "probability": 0.9437 + }, + { + "start": 14018.88, + "end": 14021.32, + "probability": 0.5615 + }, + { + "start": 14021.9, + "end": 14026.22, + "probability": 0.6989 + }, + { + "start": 14027.46, + "end": 14029.94, + "probability": 0.9843 + }, + { + "start": 14030.62, + "end": 14037.52, + "probability": 0.9836 + }, + { + "start": 14038.28, + "end": 14038.66, + "probability": 0.8159 + }, + { + "start": 14039.08, + "end": 14039.46, + "probability": 0.432 + }, + { + "start": 14039.7, + "end": 14041.32, + "probability": 0.868 + }, + { + "start": 14041.46, + "end": 14043.48, + "probability": 0.9956 + }, + { + "start": 14043.56, + "end": 14047.28, + "probability": 0.9409 + }, + { + "start": 14047.4, + "end": 14051.44, + "probability": 0.9689 + }, + { + "start": 14051.88, + "end": 14052.62, + "probability": 0.7035 + }, + { + "start": 14052.92, + "end": 14055.7, + "probability": 0.9746 + }, + { + "start": 14056.22, + "end": 14058.44, + "probability": 0.9478 + }, + { + "start": 14058.78, + "end": 14061.12, + "probability": 0.9697 + }, + { + "start": 14061.4, + "end": 14062.64, + "probability": 0.7569 + }, + { + "start": 14063.14, + "end": 14067.2, + "probability": 0.993 + }, + { + "start": 14067.36, + "end": 14069.83, + "probability": 0.6957 + }, + { + "start": 14070.44, + "end": 14072.98, + "probability": 0.9093 + }, + { + "start": 14073.62, + "end": 14075.12, + "probability": 0.6047 + }, + { + "start": 14075.22, + "end": 14075.86, + "probability": 0.8985 + }, + { + "start": 14076.22, + "end": 14077.12, + "probability": 0.9067 + }, + { + "start": 14077.38, + "end": 14078.34, + "probability": 0.938 + }, + { + "start": 14078.9, + "end": 14080.44, + "probability": 0.9985 + }, + { + "start": 14081.0, + "end": 14081.78, + "probability": 0.6247 + }, + { + "start": 14082.32, + "end": 14085.6, + "probability": 0.9377 + }, + { + "start": 14086.84, + "end": 14090.08, + "probability": 0.9941 + }, + { + "start": 14090.58, + "end": 14090.92, + "probability": 0.8481 + }, + { + "start": 14091.06, + "end": 14091.92, + "probability": 0.8513 + }, + { + "start": 14092.48, + "end": 14096.04, + "probability": 0.9974 + }, + { + "start": 14096.76, + "end": 14100.5, + "probability": 0.998 + }, + { + "start": 14101.08, + "end": 14103.78, + "probability": 0.9913 + }, + { + "start": 14103.9, + "end": 14104.2, + "probability": 0.9669 + }, + { + "start": 14104.24, + "end": 14104.91, + "probability": 0.9957 + }, + { + "start": 14105.72, + "end": 14106.98, + "probability": 0.6718 + }, + { + "start": 14107.36, + "end": 14112.02, + "probability": 0.9824 + }, + { + "start": 14112.44, + "end": 14117.5, + "probability": 0.9971 + }, + { + "start": 14117.58, + "end": 14117.8, + "probability": 0.2757 + }, + { + "start": 14117.92, + "end": 14118.42, + "probability": 0.7407 + }, + { + "start": 14118.46, + "end": 14119.2, + "probability": 0.8366 + }, + { + "start": 14119.54, + "end": 14120.52, + "probability": 0.9825 + }, + { + "start": 14120.9, + "end": 14123.22, + "probability": 0.9818 + }, + { + "start": 14123.64, + "end": 14124.4, + "probability": 0.7382 + }, + { + "start": 14124.7, + "end": 14125.16, + "probability": 0.7517 + }, + { + "start": 14126.14, + "end": 14130.2, + "probability": 0.9507 + }, + { + "start": 14130.2, + "end": 14130.9, + "probability": 0.8038 + }, + { + "start": 14130.94, + "end": 14131.06, + "probability": 0.7073 + }, + { + "start": 14131.72, + "end": 14135.42, + "probability": 0.6353 + }, + { + "start": 14135.66, + "end": 14137.36, + "probability": 0.4125 + }, + { + "start": 14137.9, + "end": 14139.56, + "probability": 0.1054 + }, + { + "start": 14139.98, + "end": 14141.08, + "probability": 0.8105 + }, + { + "start": 14142.1, + "end": 14142.74, + "probability": 0.042 + }, + { + "start": 14143.93, + "end": 14144.14, + "probability": 0.1008 + }, + { + "start": 14144.78, + "end": 14146.18, + "probability": 0.8279 + }, + { + "start": 14147.68, + "end": 14149.38, + "probability": 0.6874 + }, + { + "start": 14166.0, + "end": 14166.74, + "probability": 0.8288 + }, + { + "start": 14174.44, + "end": 14175.74, + "probability": 0.697 + }, + { + "start": 14177.04, + "end": 14178.78, + "probability": 0.8027 + }, + { + "start": 14179.64, + "end": 14180.98, + "probability": 0.9995 + }, + { + "start": 14181.74, + "end": 14183.24, + "probability": 0.9419 + }, + { + "start": 14183.86, + "end": 14186.96, + "probability": 0.9941 + }, + { + "start": 14187.64, + "end": 14191.14, + "probability": 0.9881 + }, + { + "start": 14191.16, + "end": 14194.4, + "probability": 0.9988 + }, + { + "start": 14195.68, + "end": 14199.7, + "probability": 0.8156 + }, + { + "start": 14200.6, + "end": 14202.88, + "probability": 0.9622 + }, + { + "start": 14202.98, + "end": 14203.28, + "probability": 0.9587 + }, + { + "start": 14203.72, + "end": 14207.58, + "probability": 0.9968 + }, + { + "start": 14208.52, + "end": 14208.66, + "probability": 0.1339 + }, + { + "start": 14208.66, + "end": 14211.74, + "probability": 0.9005 + }, + { + "start": 14212.4, + "end": 14214.0, + "probability": 0.8281 + }, + { + "start": 14214.62, + "end": 14219.04, + "probability": 0.9859 + }, + { + "start": 14219.46, + "end": 14225.8, + "probability": 0.9802 + }, + { + "start": 14226.42, + "end": 14228.96, + "probability": 0.8902 + }, + { + "start": 14229.78, + "end": 14231.46, + "probability": 0.558 + }, + { + "start": 14231.52, + "end": 14235.78, + "probability": 0.8633 + }, + { + "start": 14236.44, + "end": 14238.45, + "probability": 0.7578 + }, + { + "start": 14239.6, + "end": 14240.46, + "probability": 0.8813 + }, + { + "start": 14241.1, + "end": 14244.12, + "probability": 0.8778 + }, + { + "start": 14245.08, + "end": 14247.3, + "probability": 0.9816 + }, + { + "start": 14248.36, + "end": 14249.8, + "probability": 0.6329 + }, + { + "start": 14249.86, + "end": 14251.58, + "probability": 0.7678 + }, + { + "start": 14252.54, + "end": 14253.96, + "probability": 0.7357 + }, + { + "start": 14254.8, + "end": 14257.1, + "probability": 0.8148 + }, + { + "start": 14257.84, + "end": 14257.94, + "probability": 0.7587 + }, + { + "start": 14259.4, + "end": 14262.72, + "probability": 0.6553 + }, + { + "start": 14263.72, + "end": 14266.04, + "probability": 0.8792 + }, + { + "start": 14267.06, + "end": 14268.26, + "probability": 0.9399 + }, + { + "start": 14268.26, + "end": 14269.66, + "probability": 0.9049 + }, + { + "start": 14269.66, + "end": 14271.9, + "probability": 0.9944 + }, + { + "start": 14273.14, + "end": 14275.36, + "probability": 0.9926 + }, + { + "start": 14275.36, + "end": 14277.38, + "probability": 0.9182 + }, + { + "start": 14277.56, + "end": 14279.46, + "probability": 0.9976 + }, + { + "start": 14279.5, + "end": 14280.22, + "probability": 0.4587 + }, + { + "start": 14280.96, + "end": 14282.16, + "probability": 0.4559 + }, + { + "start": 14282.24, + "end": 14284.48, + "probability": 0.9325 + }, + { + "start": 14284.7, + "end": 14288.8, + "probability": 0.7257 + }, + { + "start": 14289.32, + "end": 14290.2, + "probability": 0.8792 + }, + { + "start": 14291.22, + "end": 14292.8, + "probability": 0.5244 + }, + { + "start": 14293.42, + "end": 14295.3, + "probability": 0.6454 + }, + { + "start": 14296.42, + "end": 14299.1, + "probability": 0.8537 + }, + { + "start": 14299.64, + "end": 14303.14, + "probability": 0.783 + }, + { + "start": 14303.14, + "end": 14306.92, + "probability": 0.7865 + }, + { + "start": 14307.96, + "end": 14309.92, + "probability": 0.7144 + }, + { + "start": 14311.0, + "end": 14313.1, + "probability": 0.7234 + }, + { + "start": 14313.2, + "end": 14318.68, + "probability": 0.9801 + }, + { + "start": 14319.42, + "end": 14320.2, + "probability": 0.6357 + }, + { + "start": 14321.02, + "end": 14322.7, + "probability": 0.8853 + }, + { + "start": 14323.34, + "end": 14324.24, + "probability": 0.6155 + }, + { + "start": 14325.5, + "end": 14329.8, + "probability": 0.998 + }, + { + "start": 14330.2, + "end": 14332.18, + "probability": 0.9907 + }, + { + "start": 14335.1, + "end": 14337.7, + "probability": 0.9917 + }, + { + "start": 14338.2, + "end": 14339.16, + "probability": 0.6696 + }, + { + "start": 14339.3, + "end": 14341.72, + "probability": 0.8599 + }, + { + "start": 14342.46, + "end": 14343.02, + "probability": 0.7505 + }, + { + "start": 14343.68, + "end": 14346.08, + "probability": 0.6488 + }, + { + "start": 14346.14, + "end": 14348.4, + "probability": 0.991 + }, + { + "start": 14348.84, + "end": 14354.36, + "probability": 0.9364 + }, + { + "start": 14355.44, + "end": 14357.54, + "probability": 0.8878 + }, + { + "start": 14358.24, + "end": 14362.06, + "probability": 0.9417 + }, + { + "start": 14362.16, + "end": 14369.34, + "probability": 0.7111 + }, + { + "start": 14369.68, + "end": 14371.72, + "probability": 0.7982 + }, + { + "start": 14372.18, + "end": 14374.52, + "probability": 0.9155 + }, + { + "start": 14374.78, + "end": 14376.36, + "probability": 0.6311 + }, + { + "start": 14376.48, + "end": 14377.96, + "probability": 0.5456 + }, + { + "start": 14378.06, + "end": 14379.78, + "probability": 0.8916 + }, + { + "start": 14380.04, + "end": 14381.34, + "probability": 0.9728 + }, + { + "start": 14385.98, + "end": 14389.0, + "probability": 0.8153 + }, + { + "start": 14393.76, + "end": 14395.4, + "probability": 0.7494 + }, + { + "start": 14398.98, + "end": 14403.56, + "probability": 0.9581 + }, + { + "start": 14404.14, + "end": 14406.68, + "probability": 0.7703 + }, + { + "start": 14407.66, + "end": 14410.1, + "probability": 0.9828 + }, + { + "start": 14410.68, + "end": 14412.66, + "probability": 0.9599 + }, + { + "start": 14413.54, + "end": 14414.56, + "probability": 0.8731 + }, + { + "start": 14415.3, + "end": 14417.24, + "probability": 0.9557 + }, + { + "start": 14417.9, + "end": 14419.88, + "probability": 0.9198 + }, + { + "start": 14420.68, + "end": 14423.12, + "probability": 0.9116 + }, + { + "start": 14424.4, + "end": 14427.92, + "probability": 0.982 + }, + { + "start": 14428.58, + "end": 14431.09, + "probability": 0.9756 + }, + { + "start": 14431.62, + "end": 14433.24, + "probability": 0.9516 + }, + { + "start": 14433.94, + "end": 14434.88, + "probability": 0.4959 + }, + { + "start": 14435.7, + "end": 14437.36, + "probability": 0.95 + }, + { + "start": 14438.18, + "end": 14439.9, + "probability": 0.9736 + }, + { + "start": 14440.9, + "end": 14444.86, + "probability": 0.9956 + }, + { + "start": 14445.54, + "end": 14446.46, + "probability": 0.9946 + }, + { + "start": 14447.06, + "end": 14449.51, + "probability": 0.9956 + }, + { + "start": 14450.38, + "end": 14451.04, + "probability": 0.9871 + }, + { + "start": 14452.0, + "end": 14452.64, + "probability": 0.5474 + }, + { + "start": 14453.22, + "end": 14454.34, + "probability": 0.9812 + }, + { + "start": 14455.4, + "end": 14455.78, + "probability": 0.9193 + }, + { + "start": 14456.4, + "end": 14459.3, + "probability": 0.9521 + }, + { + "start": 14460.32, + "end": 14461.22, + "probability": 0.9147 + }, + { + "start": 14461.74, + "end": 14463.44, + "probability": 0.9872 + }, + { + "start": 14464.08, + "end": 14465.08, + "probability": 0.9565 + }, + { + "start": 14466.24, + "end": 14468.5, + "probability": 0.734 + }, + { + "start": 14469.44, + "end": 14471.52, + "probability": 0.9841 + }, + { + "start": 14471.66, + "end": 14472.56, + "probability": 0.4729 + }, + { + "start": 14472.64, + "end": 14475.98, + "probability": 0.9595 + }, + { + "start": 14477.14, + "end": 14481.06, + "probability": 0.9809 + }, + { + "start": 14481.98, + "end": 14485.5, + "probability": 0.9856 + }, + { + "start": 14486.64, + "end": 14488.86, + "probability": 0.7856 + }, + { + "start": 14490.18, + "end": 14494.8, + "probability": 0.9741 + }, + { + "start": 14495.68, + "end": 14499.52, + "probability": 0.9883 + }, + { + "start": 14500.42, + "end": 14503.4, + "probability": 0.9639 + }, + { + "start": 14504.38, + "end": 14505.2, + "probability": 0.8799 + }, + { + "start": 14505.96, + "end": 14507.83, + "probability": 0.9872 + }, + { + "start": 14509.28, + "end": 14513.14, + "probability": 0.9971 + }, + { + "start": 14513.7, + "end": 14516.08, + "probability": 0.9916 + }, + { + "start": 14518.54, + "end": 14522.48, + "probability": 0.9956 + }, + { + "start": 14522.98, + "end": 14526.0, + "probability": 0.9862 + }, + { + "start": 14526.58, + "end": 14529.22, + "probability": 0.9945 + }, + { + "start": 14529.38, + "end": 14530.26, + "probability": 0.9873 + }, + { + "start": 14530.66, + "end": 14532.52, + "probability": 0.9586 + }, + { + "start": 14533.26, + "end": 14537.86, + "probability": 0.9383 + }, + { + "start": 14538.56, + "end": 14539.54, + "probability": 0.9053 + }, + { + "start": 14540.08, + "end": 14542.02, + "probability": 0.9847 + }, + { + "start": 14542.9, + "end": 14544.96, + "probability": 0.9238 + }, + { + "start": 14545.52, + "end": 14548.26, + "probability": 0.9728 + }, + { + "start": 14548.88, + "end": 14549.1, + "probability": 0.4995 + }, + { + "start": 14549.1, + "end": 14550.0, + "probability": 0.5609 + }, + { + "start": 14550.02, + "end": 14552.82, + "probability": 0.7934 + }, + { + "start": 14564.58, + "end": 14566.68, + "probability": 0.5763 + }, + { + "start": 14568.38, + "end": 14569.74, + "probability": 0.9757 + }, + { + "start": 14571.46, + "end": 14572.86, + "probability": 0.8943 + }, + { + "start": 14574.54, + "end": 14575.29, + "probability": 0.8774 + }, + { + "start": 14575.6, + "end": 14582.74, + "probability": 0.8808 + }, + { + "start": 14583.76, + "end": 14584.32, + "probability": 0.9209 + }, + { + "start": 14586.12, + "end": 14587.28, + "probability": 0.5884 + }, + { + "start": 14588.6, + "end": 14589.38, + "probability": 0.8304 + }, + { + "start": 14590.92, + "end": 14592.66, + "probability": 0.84 + }, + { + "start": 14593.86, + "end": 14594.6, + "probability": 0.801 + }, + { + "start": 14596.14, + "end": 14597.2, + "probability": 0.9921 + }, + { + "start": 14598.36, + "end": 14599.42, + "probability": 0.9906 + }, + { + "start": 14601.32, + "end": 14604.7, + "probability": 0.9408 + }, + { + "start": 14605.3, + "end": 14609.54, + "probability": 0.9607 + }, + { + "start": 14611.24, + "end": 14613.36, + "probability": 0.9707 + }, + { + "start": 14614.24, + "end": 14615.12, + "probability": 0.8429 + }, + { + "start": 14616.8, + "end": 14622.06, + "probability": 0.978 + }, + { + "start": 14623.38, + "end": 14625.64, + "probability": 0.7625 + }, + { + "start": 14626.18, + "end": 14626.82, + "probability": 0.6516 + }, + { + "start": 14627.88, + "end": 14633.02, + "probability": 0.9749 + }, + { + "start": 14634.16, + "end": 14636.52, + "probability": 0.8615 + }, + { + "start": 14637.18, + "end": 14638.36, + "probability": 0.9884 + }, + { + "start": 14639.94, + "end": 14641.24, + "probability": 0.856 + }, + { + "start": 14642.74, + "end": 14645.16, + "probability": 0.795 + }, + { + "start": 14646.08, + "end": 14646.92, + "probability": 0.7881 + }, + { + "start": 14647.96, + "end": 14648.32, + "probability": 0.9693 + }, + { + "start": 14649.44, + "end": 14650.26, + "probability": 0.7822 + }, + { + "start": 14651.5, + "end": 14657.22, + "probability": 0.9829 + }, + { + "start": 14658.06, + "end": 14659.34, + "probability": 0.9461 + }, + { + "start": 14660.26, + "end": 14665.16, + "probability": 0.874 + }, + { + "start": 14666.52, + "end": 14669.0, + "probability": 0.9502 + }, + { + "start": 14670.06, + "end": 14670.8, + "probability": 0.996 + }, + { + "start": 14671.78, + "end": 14680.64, + "probability": 0.9974 + }, + { + "start": 14681.12, + "end": 14682.28, + "probability": 0.9923 + }, + { + "start": 14682.82, + "end": 14684.08, + "probability": 0.9948 + }, + { + "start": 14685.92, + "end": 14686.62, + "probability": 0.6558 + }, + { + "start": 14686.94, + "end": 14687.14, + "probability": 0.7086 + }, + { + "start": 14687.24, + "end": 14690.16, + "probability": 0.8551 + }, + { + "start": 14691.9, + "end": 14693.3, + "probability": 0.9663 + }, + { + "start": 14694.8, + "end": 14696.72, + "probability": 0.9963 + }, + { + "start": 14697.52, + "end": 14698.96, + "probability": 0.9717 + }, + { + "start": 14699.84, + "end": 14704.5, + "probability": 0.9165 + }, + { + "start": 14704.5, + "end": 14708.28, + "probability": 0.9982 + }, + { + "start": 14709.26, + "end": 14713.54, + "probability": 0.9985 + }, + { + "start": 14714.24, + "end": 14719.02, + "probability": 0.999 + }, + { + "start": 14719.74, + "end": 14721.58, + "probability": 0.9564 + }, + { + "start": 14723.96, + "end": 14724.74, + "probability": 0.6371 + }, + { + "start": 14725.6, + "end": 14727.76, + "probability": 0.9349 + }, + { + "start": 14742.46, + "end": 14742.98, + "probability": 0.6756 + }, + { + "start": 14743.82, + "end": 14745.32, + "probability": 0.6578 + }, + { + "start": 14745.84, + "end": 14746.56, + "probability": 0.9393 + }, + { + "start": 14747.82, + "end": 14749.48, + "probability": 0.7656 + }, + { + "start": 14750.24, + "end": 14751.31, + "probability": 0.9136 + }, + { + "start": 14751.78, + "end": 14752.62, + "probability": 0.6187 + }, + { + "start": 14753.76, + "end": 14754.94, + "probability": 0.7163 + }, + { + "start": 14755.54, + "end": 14760.96, + "probability": 0.964 + }, + { + "start": 14762.2, + "end": 14764.54, + "probability": 0.9987 + }, + { + "start": 14766.0, + "end": 14769.38, + "probability": 0.9716 + }, + { + "start": 14769.38, + "end": 14770.4, + "probability": 0.9531 + }, + { + "start": 14770.86, + "end": 14776.08, + "probability": 0.9901 + }, + { + "start": 14776.82, + "end": 14778.04, + "probability": 0.9746 + }, + { + "start": 14778.68, + "end": 14779.76, + "probability": 0.5686 + }, + { + "start": 14780.0, + "end": 14784.3, + "probability": 0.9791 + }, + { + "start": 14784.48, + "end": 14790.84, + "probability": 0.9964 + }, + { + "start": 14791.06, + "end": 14797.32, + "probability": 0.9987 + }, + { + "start": 14798.84, + "end": 14800.82, + "probability": 0.9937 + }, + { + "start": 14801.34, + "end": 14803.06, + "probability": 0.9946 + }, + { + "start": 14803.78, + "end": 14810.5, + "probability": 0.9941 + }, + { + "start": 14811.06, + "end": 14812.08, + "probability": 0.9851 + }, + { + "start": 14812.16, + "end": 14814.58, + "probability": 0.1817 + }, + { + "start": 14815.5, + "end": 14817.38, + "probability": 0.9958 + }, + { + "start": 14818.4, + "end": 14823.14, + "probability": 0.9852 + }, + { + "start": 14823.5, + "end": 14825.92, + "probability": 0.9653 + }, + { + "start": 14826.04, + "end": 14831.42, + "probability": 0.9988 + }, + { + "start": 14831.42, + "end": 14834.52, + "probability": 0.9993 + }, + { + "start": 14835.14, + "end": 14837.16, + "probability": 0.9824 + }, + { + "start": 14838.14, + "end": 14842.0, + "probability": 0.9946 + }, + { + "start": 14842.56, + "end": 14845.18, + "probability": 0.8405 + }, + { + "start": 14845.2, + "end": 14850.24, + "probability": 0.9915 + }, + { + "start": 14850.24, + "end": 14853.5, + "probability": 0.8629 + }, + { + "start": 14854.84, + "end": 14857.66, + "probability": 0.9732 + }, + { + "start": 14857.92, + "end": 14860.16, + "probability": 0.8339 + }, + { + "start": 14860.28, + "end": 14862.02, + "probability": 0.9961 + }, + { + "start": 14862.08, + "end": 14864.92, + "probability": 0.9076 + }, + { + "start": 14865.32, + "end": 14870.4, + "probability": 0.9912 + }, + { + "start": 14871.84, + "end": 14874.48, + "probability": 0.9824 + }, + { + "start": 14874.84, + "end": 14875.32, + "probability": 0.7126 + }, + { + "start": 14875.48, + "end": 14877.8, + "probability": 0.988 + }, + { + "start": 14878.06, + "end": 14881.24, + "probability": 0.9959 + }, + { + "start": 14881.82, + "end": 14885.86, + "probability": 0.9984 + }, + { + "start": 14887.6, + "end": 14891.26, + "probability": 0.9531 + }, + { + "start": 14891.5, + "end": 14893.94, + "probability": 0.864 + }, + { + "start": 14894.8, + "end": 14896.36, + "probability": 0.9974 + }, + { + "start": 14896.98, + "end": 14898.96, + "probability": 0.8916 + }, + { + "start": 14900.04, + "end": 14900.12, + "probability": 0.0438 + }, + { + "start": 14900.2, + "end": 14900.66, + "probability": 0.9352 + }, + { + "start": 14900.74, + "end": 14903.5, + "probability": 0.9747 + }, + { + "start": 14903.68, + "end": 14905.06, + "probability": 0.6796 + }, + { + "start": 14905.34, + "end": 14906.88, + "probability": 0.9814 + }, + { + "start": 14907.56, + "end": 14910.56, + "probability": 0.979 + }, + { + "start": 14910.58, + "end": 14911.78, + "probability": 0.8697 + }, + { + "start": 14912.18, + "end": 14912.76, + "probability": 0.9493 + }, + { + "start": 14912.84, + "end": 14915.18, + "probability": 0.7203 + }, + { + "start": 14915.56, + "end": 14920.3, + "probability": 0.9946 + }, + { + "start": 14921.18, + "end": 14924.22, + "probability": 0.8808 + }, + { + "start": 14924.78, + "end": 14925.74, + "probability": 0.9726 + }, + { + "start": 14926.56, + "end": 14929.48, + "probability": 0.9198 + }, + { + "start": 14930.78, + "end": 14931.38, + "probability": 0.9512 + }, + { + "start": 14932.6, + "end": 14936.58, + "probability": 0.9578 + }, + { + "start": 14938.0, + "end": 14939.16, + "probability": 0.6947 + }, + { + "start": 14940.88, + "end": 14942.58, + "probability": 0.9238 + }, + { + "start": 14943.52, + "end": 14946.42, + "probability": 0.9842 + }, + { + "start": 14946.44, + "end": 14948.98, + "probability": 0.943 + }, + { + "start": 14950.2, + "end": 14951.62, + "probability": 0.5069 + }, + { + "start": 14952.5, + "end": 14952.76, + "probability": 0.1542 + }, + { + "start": 14953.32, + "end": 14955.08, + "probability": 0.8232 + }, + { + "start": 14955.64, + "end": 14956.28, + "probability": 0.4245 + }, + { + "start": 14956.96, + "end": 14957.52, + "probability": 0.6125 + }, + { + "start": 14958.14, + "end": 14960.66, + "probability": 0.8948 + }, + { + "start": 14961.38, + "end": 14961.92, + "probability": 0.7843 + }, + { + "start": 14962.3, + "end": 14963.64, + "probability": 0.9375 + }, + { + "start": 14964.12, + "end": 14969.42, + "probability": 0.9941 + }, + { + "start": 14970.14, + "end": 14970.82, + "probability": 0.5967 + }, + { + "start": 14971.22, + "end": 14971.76, + "probability": 0.9014 + }, + { + "start": 14971.86, + "end": 14973.58, + "probability": 0.6958 + }, + { + "start": 14974.8, + "end": 14976.02, + "probability": 0.9396 + }, + { + "start": 14976.58, + "end": 14979.28, + "probability": 0.918 + }, + { + "start": 14979.86, + "end": 14980.42, + "probability": 0.2488 + }, + { + "start": 14980.46, + "end": 14984.26, + "probability": 0.9547 + }, + { + "start": 14984.32, + "end": 14984.88, + "probability": 0.807 + }, + { + "start": 14984.9, + "end": 14985.56, + "probability": 0.9204 + }, + { + "start": 14986.16, + "end": 14986.9, + "probability": 0.8853 + }, + { + "start": 14987.32, + "end": 14990.9, + "probability": 0.9971 + }, + { + "start": 14990.98, + "end": 14991.98, + "probability": 0.9619 + }, + { + "start": 14992.06, + "end": 14992.42, + "probability": 0.69 + }, + { + "start": 14992.5, + "end": 14994.64, + "probability": 0.8647 + }, + { + "start": 14995.28, + "end": 14998.16, + "probability": 0.9511 + }, + { + "start": 15002.82, + "end": 15002.92, + "probability": 0.5394 + }, + { + "start": 15004.46, + "end": 15005.82, + "probability": 0.879 + }, + { + "start": 15011.4, + "end": 15012.38, + "probability": 0.5889 + }, + { + "start": 15013.62, + "end": 15014.66, + "probability": 0.7746 + }, + { + "start": 15017.52, + "end": 15021.79, + "probability": 0.9945 + }, + { + "start": 15022.86, + "end": 15025.22, + "probability": 0.8993 + }, + { + "start": 15026.48, + "end": 15029.2, + "probability": 0.9856 + }, + { + "start": 15029.8, + "end": 15031.2, + "probability": 0.7286 + }, + { + "start": 15032.28, + "end": 15036.28, + "probability": 0.9365 + }, + { + "start": 15037.24, + "end": 15038.08, + "probability": 0.5214 + }, + { + "start": 15038.62, + "end": 15045.0, + "probability": 0.7615 + }, + { + "start": 15045.56, + "end": 15052.06, + "probability": 0.7854 + }, + { + "start": 15053.42, + "end": 15054.26, + "probability": 0.6359 + }, + { + "start": 15055.54, + "end": 15062.74, + "probability": 0.9232 + }, + { + "start": 15063.94, + "end": 15070.34, + "probability": 0.9973 + }, + { + "start": 15070.66, + "end": 15074.22, + "probability": 0.9753 + }, + { + "start": 15075.06, + "end": 15077.58, + "probability": 0.9834 + }, + { + "start": 15078.46, + "end": 15086.38, + "probability": 0.9654 + }, + { + "start": 15088.1, + "end": 15091.56, + "probability": 0.8911 + }, + { + "start": 15091.98, + "end": 15093.66, + "probability": 0.9935 + }, + { + "start": 15094.22, + "end": 15097.94, + "probability": 0.9805 + }, + { + "start": 15098.74, + "end": 15104.7, + "probability": 0.9968 + }, + { + "start": 15104.86, + "end": 15108.42, + "probability": 0.9913 + }, + { + "start": 15108.96, + "end": 15110.58, + "probability": 0.9531 + }, + { + "start": 15111.76, + "end": 15115.36, + "probability": 0.9081 + }, + { + "start": 15116.16, + "end": 15120.0, + "probability": 0.9858 + }, + { + "start": 15120.68, + "end": 15125.72, + "probability": 0.9976 + }, + { + "start": 15126.12, + "end": 15127.58, + "probability": 0.4406 + }, + { + "start": 15129.2, + "end": 15130.9, + "probability": 0.8552 + }, + { + "start": 15131.66, + "end": 15135.32, + "probability": 0.9595 + }, + { + "start": 15135.66, + "end": 15139.68, + "probability": 0.9644 + }, + { + "start": 15139.88, + "end": 15143.62, + "probability": 0.7257 + }, + { + "start": 15143.64, + "end": 15146.82, + "probability": 0.9953 + }, + { + "start": 15148.18, + "end": 15152.88, + "probability": 0.9875 + }, + { + "start": 15153.4, + "end": 15156.42, + "probability": 0.9686 + }, + { + "start": 15156.42, + "end": 15160.82, + "probability": 0.9831 + }, + { + "start": 15161.14, + "end": 15162.56, + "probability": 0.7825 + }, + { + "start": 15162.92, + "end": 15164.7, + "probability": 0.931 + }, + { + "start": 15164.82, + "end": 15167.88, + "probability": 0.986 + }, + { + "start": 15168.34, + "end": 15169.02, + "probability": 0.8399 + }, + { + "start": 15170.92, + "end": 15173.02, + "probability": 0.8279 + }, + { + "start": 15173.76, + "end": 15174.58, + "probability": 0.9475 + }, + { + "start": 15176.04, + "end": 15176.4, + "probability": 0.4501 + }, + { + "start": 15176.48, + "end": 15181.94, + "probability": 0.9896 + }, + { + "start": 15182.32, + "end": 15185.04, + "probability": 0.975 + }, + { + "start": 15185.66, + "end": 15186.34, + "probability": 0.9089 + }, + { + "start": 15186.88, + "end": 15190.6, + "probability": 0.9961 + }, + { + "start": 15190.6, + "end": 15195.7, + "probability": 0.9979 + }, + { + "start": 15196.32, + "end": 15196.32, + "probability": 0.5312 + }, + { + "start": 15196.82, + "end": 15197.56, + "probability": 0.5756 + }, + { + "start": 15197.9, + "end": 15204.26, + "probability": 0.993 + }, + { + "start": 15204.36, + "end": 15205.24, + "probability": 0.7051 + }, + { + "start": 15205.62, + "end": 15206.66, + "probability": 0.8198 + }, + { + "start": 15207.0, + "end": 15207.74, + "probability": 0.9056 + }, + { + "start": 15208.18, + "end": 15211.99, + "probability": 0.9642 + }, + { + "start": 15212.88, + "end": 15217.28, + "probability": 0.9931 + }, + { + "start": 15218.8, + "end": 15219.2, + "probability": 0.853 + }, + { + "start": 15219.9, + "end": 15221.3, + "probability": 0.7972 + }, + { + "start": 15222.24, + "end": 15222.86, + "probability": 0.6751 + }, + { + "start": 15224.16, + "end": 15224.52, + "probability": 0.7288 + }, + { + "start": 15225.12, + "end": 15227.08, + "probability": 0.9745 + }, + { + "start": 15228.24, + "end": 15228.86, + "probability": 0.7288 + }, + { + "start": 15229.66, + "end": 15231.52, + "probability": 0.9136 + }, + { + "start": 15236.9, + "end": 15238.26, + "probability": 0.8504 + }, + { + "start": 15244.94, + "end": 15245.86, + "probability": 0.556 + }, + { + "start": 15246.38, + "end": 15247.44, + "probability": 0.8826 + }, + { + "start": 15249.46, + "end": 15252.24, + "probability": 0.943 + }, + { + "start": 15252.76, + "end": 15256.44, + "probability": 0.8937 + }, + { + "start": 15257.42, + "end": 15259.66, + "probability": 0.806 + }, + { + "start": 15260.0, + "end": 15264.06, + "probability": 0.9007 + }, + { + "start": 15266.3, + "end": 15271.51, + "probability": 0.8127 + }, + { + "start": 15273.56, + "end": 15276.22, + "probability": 0.707 + }, + { + "start": 15276.98, + "end": 15278.62, + "probability": 0.8739 + }, + { + "start": 15280.32, + "end": 15282.8, + "probability": 0.9878 + }, + { + "start": 15283.48, + "end": 15285.88, + "probability": 0.9902 + }, + { + "start": 15286.8, + "end": 15288.72, + "probability": 0.9981 + }, + { + "start": 15289.32, + "end": 15291.3, + "probability": 0.9849 + }, + { + "start": 15292.74, + "end": 15293.88, + "probability": 0.7492 + }, + { + "start": 15294.0, + "end": 15296.5, + "probability": 0.9036 + }, + { + "start": 15296.56, + "end": 15300.16, + "probability": 0.9468 + }, + { + "start": 15302.26, + "end": 15305.66, + "probability": 0.74 + }, + { + "start": 15305.66, + "end": 15310.54, + "probability": 0.9966 + }, + { + "start": 15311.26, + "end": 15317.18, + "probability": 0.7825 + }, + { + "start": 15317.32, + "end": 15318.42, + "probability": 0.6613 + }, + { + "start": 15319.66, + "end": 15323.32, + "probability": 0.9782 + }, + { + "start": 15323.32, + "end": 15327.44, + "probability": 0.9927 + }, + { + "start": 15331.12, + "end": 15333.06, + "probability": 0.9567 + }, + { + "start": 15334.0, + "end": 15335.28, + "probability": 0.6204 + }, + { + "start": 15336.02, + "end": 15338.02, + "probability": 0.9528 + }, + { + "start": 15339.06, + "end": 15341.26, + "probability": 0.9583 + }, + { + "start": 15341.6, + "end": 15342.98, + "probability": 0.8368 + }, + { + "start": 15344.32, + "end": 15344.97, + "probability": 0.8408 + }, + { + "start": 15346.18, + "end": 15350.58, + "probability": 0.9399 + }, + { + "start": 15350.9, + "end": 15354.54, + "probability": 0.9613 + }, + { + "start": 15355.58, + "end": 15358.12, + "probability": 0.9722 + }, + { + "start": 15358.92, + "end": 15360.38, + "probability": 0.9658 + }, + { + "start": 15361.18, + "end": 15361.8, + "probability": 0.9438 + }, + { + "start": 15364.72, + "end": 15364.92, + "probability": 0.9885 + }, + { + "start": 15365.46, + "end": 15369.86, + "probability": 0.6581 + }, + { + "start": 15370.26, + "end": 15372.92, + "probability": 0.6507 + }, + { + "start": 15373.1, + "end": 15375.14, + "probability": 0.9123 + }, + { + "start": 15375.28, + "end": 15375.38, + "probability": 0.5494 + }, + { + "start": 15375.94, + "end": 15376.42, + "probability": 0.1406 + }, + { + "start": 15378.24, + "end": 15382.66, + "probability": 0.8365 + }, + { + "start": 15384.94, + "end": 15385.94, + "probability": 0.3268 + }, + { + "start": 15386.48, + "end": 15390.64, + "probability": 0.7949 + }, + { + "start": 15390.96, + "end": 15396.14, + "probability": 0.9079 + }, + { + "start": 15396.86, + "end": 15398.0, + "probability": 0.8868 + }, + { + "start": 15398.68, + "end": 15399.98, + "probability": 0.9685 + }, + { + "start": 15400.58, + "end": 15405.26, + "probability": 0.9612 + }, + { + "start": 15406.34, + "end": 15406.94, + "probability": 0.441 + }, + { + "start": 15407.02, + "end": 15412.4, + "probability": 0.9558 + }, + { + "start": 15413.96, + "end": 15417.68, + "probability": 0.5866 + }, + { + "start": 15418.24, + "end": 15421.4, + "probability": 0.7422 + }, + { + "start": 15423.43, + "end": 15426.7, + "probability": 0.9197 + }, + { + "start": 15426.7, + "end": 15426.8, + "probability": 0.0599 + }, + { + "start": 15426.84, + "end": 15427.74, + "probability": 0.7261 + }, + { + "start": 15428.48, + "end": 15432.96, + "probability": 0.8831 + }, + { + "start": 15432.98, + "end": 15434.62, + "probability": 0.7145 + }, + { + "start": 15435.26, + "end": 15435.9, + "probability": 0.7017 + }, + { + "start": 15437.02, + "end": 15440.8, + "probability": 0.8648 + }, + { + "start": 15441.76, + "end": 15447.38, + "probability": 0.8295 + }, + { + "start": 15449.04, + "end": 15451.5, + "probability": 0.9304 + }, + { + "start": 15452.3, + "end": 15455.76, + "probability": 0.7416 + }, + { + "start": 15455.82, + "end": 15457.48, + "probability": 0.793 + }, + { + "start": 15457.58, + "end": 15458.6, + "probability": 0.662 + }, + { + "start": 15458.9, + "end": 15460.92, + "probability": 0.5675 + }, + { + "start": 15462.1, + "end": 15463.14, + "probability": 0.5897 + }, + { + "start": 15464.32, + "end": 15465.48, + "probability": 0.8456 + }, + { + "start": 15467.1, + "end": 15469.92, + "probability": 0.8167 + }, + { + "start": 15474.84, + "end": 15475.99, + "probability": 0.2456 + }, + { + "start": 15488.54, + "end": 15490.56, + "probability": 0.8007 + }, + { + "start": 15491.46, + "end": 15496.78, + "probability": 0.9648 + }, + { + "start": 15498.02, + "end": 15499.6, + "probability": 0.9891 + }, + { + "start": 15499.66, + "end": 15504.38, + "probability": 0.9961 + }, + { + "start": 15504.68, + "end": 15507.6, + "probability": 0.7748 + }, + { + "start": 15508.0, + "end": 15510.48, + "probability": 0.9934 + }, + { + "start": 15510.74, + "end": 15511.76, + "probability": 0.9482 + }, + { + "start": 15512.14, + "end": 15512.56, + "probability": 0.9712 + }, + { + "start": 15512.76, + "end": 15512.96, + "probability": 0.8619 + }, + { + "start": 15513.02, + "end": 15514.33, + "probability": 0.9852 + }, + { + "start": 15514.88, + "end": 15516.22, + "probability": 0.9801 + }, + { + "start": 15516.32, + "end": 15516.99, + "probability": 0.8061 + }, + { + "start": 15517.24, + "end": 15518.4, + "probability": 0.9954 + }, + { + "start": 15518.84, + "end": 15519.54, + "probability": 0.9454 + }, + { + "start": 15519.86, + "end": 15521.22, + "probability": 0.9072 + }, + { + "start": 15521.7, + "end": 15522.32, + "probability": 0.9296 + }, + { + "start": 15522.66, + "end": 15525.24, + "probability": 0.9831 + }, + { + "start": 15525.76, + "end": 15529.78, + "probability": 0.9918 + }, + { + "start": 15530.06, + "end": 15531.3, + "probability": 0.784 + }, + { + "start": 15531.72, + "end": 15534.32, + "probability": 0.9817 + }, + { + "start": 15534.72, + "end": 15535.16, + "probability": 0.3392 + }, + { + "start": 15535.22, + "end": 15537.54, + "probability": 0.9658 + }, + { + "start": 15537.94, + "end": 15539.46, + "probability": 0.9782 + }, + { + "start": 15539.74, + "end": 15540.5, + "probability": 0.9766 + }, + { + "start": 15540.56, + "end": 15541.48, + "probability": 0.932 + }, + { + "start": 15541.8, + "end": 15542.58, + "probability": 0.852 + }, + { + "start": 15542.9, + "end": 15544.08, + "probability": 0.9914 + }, + { + "start": 15544.16, + "end": 15547.04, + "probability": 0.8889 + }, + { + "start": 15547.58, + "end": 15552.04, + "probability": 0.7876 + }, + { + "start": 15552.34, + "end": 15553.18, + "probability": 0.9875 + }, + { + "start": 15553.54, + "end": 15554.56, + "probability": 0.8412 + }, + { + "start": 15554.86, + "end": 15561.14, + "probability": 0.8638 + }, + { + "start": 15561.72, + "end": 15565.0, + "probability": 0.9536 + }, + { + "start": 15565.16, + "end": 15567.04, + "probability": 0.9922 + }, + { + "start": 15567.32, + "end": 15570.0, + "probability": 0.988 + }, + { + "start": 15570.1, + "end": 15570.36, + "probability": 0.8135 + }, + { + "start": 15570.46, + "end": 15570.94, + "probability": 0.2694 + }, + { + "start": 15571.32, + "end": 15575.02, + "probability": 0.9943 + }, + { + "start": 15575.02, + "end": 15578.44, + "probability": 0.9525 + }, + { + "start": 15579.18, + "end": 15581.0, + "probability": 0.9702 + }, + { + "start": 15581.08, + "end": 15581.78, + "probability": 0.8846 + }, + { + "start": 15582.36, + "end": 15583.3, + "probability": 0.8748 + }, + { + "start": 15584.28, + "end": 15585.84, + "probability": 0.7378 + }, + { + "start": 15585.86, + "end": 15586.74, + "probability": 0.8598 + }, + { + "start": 15587.16, + "end": 15587.8, + "probability": 0.6718 + }, + { + "start": 15587.86, + "end": 15587.96, + "probability": 0.7172 + }, + { + "start": 15588.06, + "end": 15591.66, + "probability": 0.9855 + }, + { + "start": 15591.82, + "end": 15594.76, + "probability": 0.6739 + }, + { + "start": 15595.32, + "end": 15596.34, + "probability": 0.897 + }, + { + "start": 15596.56, + "end": 15597.16, + "probability": 0.9132 + }, + { + "start": 15597.22, + "end": 15598.4, + "probability": 0.9452 + }, + { + "start": 15598.76, + "end": 15599.16, + "probability": 0.521 + }, + { + "start": 15599.22, + "end": 15599.6, + "probability": 0.8999 + }, + { + "start": 15600.04, + "end": 15603.3, + "probability": 0.9822 + }, + { + "start": 15603.6, + "end": 15607.02, + "probability": 0.8516 + }, + { + "start": 15607.2, + "end": 15608.82, + "probability": 0.9286 + }, + { + "start": 15609.14, + "end": 15609.42, + "probability": 0.5527 + }, + { + "start": 15609.42, + "end": 15610.14, + "probability": 0.7482 + }, + { + "start": 15610.2, + "end": 15612.48, + "probability": 0.9538 + }, + { + "start": 15612.78, + "end": 15614.42, + "probability": 0.856 + }, + { + "start": 15614.5, + "end": 15615.34, + "probability": 0.9205 + }, + { + "start": 15615.86, + "end": 15616.95, + "probability": 0.9015 + }, + { + "start": 15617.82, + "end": 15619.26, + "probability": 0.6046 + }, + { + "start": 15619.82, + "end": 15620.24, + "probability": 0.1884 + }, + { + "start": 15620.24, + "end": 15620.96, + "probability": 0.1749 + }, + { + "start": 15620.96, + "end": 15622.42, + "probability": 0.7898 + }, + { + "start": 15622.74, + "end": 15623.86, + "probability": 0.5736 + }, + { + "start": 15623.94, + "end": 15624.54, + "probability": 0.5146 + }, + { + "start": 15624.82, + "end": 15630.74, + "probability": 0.9546 + }, + { + "start": 15631.0, + "end": 15634.68, + "probability": 0.8918 + }, + { + "start": 15635.52, + "end": 15636.24, + "probability": 0.6574 + }, + { + "start": 15636.72, + "end": 15639.42, + "probability": 0.9966 + }, + { + "start": 15639.42, + "end": 15641.68, + "probability": 0.9979 + }, + { + "start": 15642.08, + "end": 15643.06, + "probability": 0.8363 + }, + { + "start": 15643.38, + "end": 15646.16, + "probability": 0.9932 + }, + { + "start": 15646.66, + "end": 15648.24, + "probability": 0.9915 + }, + { + "start": 15648.6, + "end": 15650.6, + "probability": 0.8337 + }, + { + "start": 15650.92, + "end": 15653.4, + "probability": 0.8442 + }, + { + "start": 15653.64, + "end": 15654.06, + "probability": 0.9332 + }, + { + "start": 15654.14, + "end": 15655.1, + "probability": 0.9661 + }, + { + "start": 15655.48, + "end": 15660.64, + "probability": 0.9827 + }, + { + "start": 15661.06, + "end": 15665.04, + "probability": 0.8433 + }, + { + "start": 15665.04, + "end": 15668.46, + "probability": 0.9976 + }, + { + "start": 15670.1, + "end": 15670.72, + "probability": 0.7308 + }, + { + "start": 15670.82, + "end": 15671.8, + "probability": 0.8041 + }, + { + "start": 15672.08, + "end": 15672.32, + "probability": 0.2264 + }, + { + "start": 15672.68, + "end": 15674.06, + "probability": 0.7868 + }, + { + "start": 15674.06, + "end": 15674.24, + "probability": 0.5223 + }, + { + "start": 15674.36, + "end": 15678.44, + "probability": 0.9689 + }, + { + "start": 15679.0, + "end": 15679.98, + "probability": 0.9715 + }, + { + "start": 15680.1, + "end": 15680.9, + "probability": 0.5995 + }, + { + "start": 15681.02, + "end": 15681.24, + "probability": 0.8338 + }, + { + "start": 15681.34, + "end": 15683.76, + "probability": 0.3111 + }, + { + "start": 15684.06, + "end": 15684.42, + "probability": 0.6664 + }, + { + "start": 15685.24, + "end": 15687.98, + "probability": 0.0214 + }, + { + "start": 15687.98, + "end": 15688.38, + "probability": 0.0214 + }, + { + "start": 15688.38, + "end": 15688.38, + "probability": 0.4915 + }, + { + "start": 15688.38, + "end": 15689.74, + "probability": 0.8127 + }, + { + "start": 15690.63, + "end": 15695.5, + "probability": 0.7279 + }, + { + "start": 15695.56, + "end": 15695.58, + "probability": 0.1334 + }, + { + "start": 15695.84, + "end": 15695.84, + "probability": 0.3589 + }, + { + "start": 15695.88, + "end": 15697.78, + "probability": 0.9517 + }, + { + "start": 15698.02, + "end": 15699.78, + "probability": 0.9665 + }, + { + "start": 15699.84, + "end": 15700.84, + "probability": 0.7678 + }, + { + "start": 15700.84, + "end": 15701.24, + "probability": 0.5892 + }, + { + "start": 15701.3, + "end": 15702.88, + "probability": 0.9969 + }, + { + "start": 15703.12, + "end": 15704.08, + "probability": 0.6969 + }, + { + "start": 15704.78, + "end": 15707.52, + "probability": 0.8179 + }, + { + "start": 15707.7, + "end": 15708.82, + "probability": 0.9171 + }, + { + "start": 15716.14, + "end": 15717.64, + "probability": 0.7504 + }, + { + "start": 15717.78, + "end": 15718.14, + "probability": 0.6658 + }, + { + "start": 15718.9, + "end": 15721.22, + "probability": 0.9139 + }, + { + "start": 15721.52, + "end": 15722.02, + "probability": 0.1772 + }, + { + "start": 15722.1, + "end": 15722.12, + "probability": 0.6031 + }, + { + "start": 15722.12, + "end": 15725.74, + "probability": 0.4337 + }, + { + "start": 15725.96, + "end": 15728.44, + "probability": 0.9502 + }, + { + "start": 15728.58, + "end": 15731.48, + "probability": 0.7534 + }, + { + "start": 15731.48, + "end": 15731.64, + "probability": 0.0336 + }, + { + "start": 15731.64, + "end": 15731.92, + "probability": 0.634 + }, + { + "start": 15731.92, + "end": 15731.96, + "probability": 0.6367 + }, + { + "start": 15732.08, + "end": 15733.14, + "probability": 0.9809 + }, + { + "start": 15733.28, + "end": 15734.16, + "probability": 0.7577 + }, + { + "start": 15734.24, + "end": 15735.88, + "probability": 0.609 + }, + { + "start": 15736.98, + "end": 15740.62, + "probability": 0.1512 + }, + { + "start": 15740.74, + "end": 15742.85, + "probability": 0.6628 + }, + { + "start": 15745.64, + "end": 15746.04, + "probability": 0.0247 + }, + { + "start": 15746.04, + "end": 15746.04, + "probability": 0.2768 + }, + { + "start": 15746.04, + "end": 15748.0, + "probability": 0.4331 + }, + { + "start": 15748.72, + "end": 15748.79, + "probability": 0.3336 + }, + { + "start": 15749.06, + "end": 15751.64, + "probability": 0.9446 + }, + { + "start": 15752.48, + "end": 15758.92, + "probability": 0.9993 + }, + { + "start": 15759.52, + "end": 15761.64, + "probability": 0.5116 + }, + { + "start": 15762.52, + "end": 15763.61, + "probability": 0.8594 + }, + { + "start": 15764.34, + "end": 15764.48, + "probability": 0.0003 + }, + { + "start": 15764.48, + "end": 15769.18, + "probability": 0.8733 + }, + { + "start": 15769.86, + "end": 15770.46, + "probability": 0.5358 + }, + { + "start": 15771.16, + "end": 15774.6, + "probability": 0.989 + }, + { + "start": 15774.6, + "end": 15777.6, + "probability": 0.9924 + }, + { + "start": 15778.32, + "end": 15780.98, + "probability": 0.0799 + }, + { + "start": 15780.98, + "end": 15780.98, + "probability": 0.0461 + }, + { + "start": 15780.98, + "end": 15780.98, + "probability": 0.0774 + }, + { + "start": 15780.98, + "end": 15782.46, + "probability": 0.2191 + }, + { + "start": 15782.8, + "end": 15784.94, + "probability": 0.8987 + }, + { + "start": 15785.56, + "end": 15786.96, + "probability": 0.2756 + }, + { + "start": 15789.5, + "end": 15789.6, + "probability": 0.0578 + }, + { + "start": 15789.96, + "end": 15789.96, + "probability": 0.2055 + }, + { + "start": 15789.96, + "end": 15789.96, + "probability": 0.5465 + }, + { + "start": 15790.16, + "end": 15790.16, + "probability": 0.6403 + }, + { + "start": 15790.16, + "end": 15794.02, + "probability": 0.7368 + }, + { + "start": 15794.48, + "end": 15795.16, + "probability": 0.6286 + }, + { + "start": 15795.28, + "end": 15796.92, + "probability": 0.2029 + }, + { + "start": 15797.14, + "end": 15799.66, + "probability": 0.081 + }, + { + "start": 15799.66, + "end": 15799.66, + "probability": 0.1335 + }, + { + "start": 15799.66, + "end": 15800.4, + "probability": 0.4733 + }, + { + "start": 15800.4, + "end": 15800.44, + "probability": 0.5487 + }, + { + "start": 15800.44, + "end": 15801.21, + "probability": 0.3018 + }, + { + "start": 15801.7, + "end": 15802.48, + "probability": 0.7608 + }, + { + "start": 15802.98, + "end": 15803.72, + "probability": 0.0541 + }, + { + "start": 15805.66, + "end": 15806.22, + "probability": 0.1362 + }, + { + "start": 15806.38, + "end": 15806.68, + "probability": 0.1998 + }, + { + "start": 15806.82, + "end": 15807.92, + "probability": 0.1888 + }, + { + "start": 15811.4, + "end": 15812.14, + "probability": 0.0561 + }, + { + "start": 15812.14, + "end": 15812.14, + "probability": 0.1394 + }, + { + "start": 15812.14, + "end": 15812.14, + "probability": 0.0848 + }, + { + "start": 15812.14, + "end": 15812.2, + "probability": 0.295 + }, + { + "start": 15812.22, + "end": 15812.26, + "probability": 0.0611 + }, + { + "start": 15812.26, + "end": 15813.16, + "probability": 0.4088 + }, + { + "start": 15813.3, + "end": 15814.1, + "probability": 0.0992 + }, + { + "start": 15814.62, + "end": 15817.54, + "probability": 0.7873 + }, + { + "start": 15818.52, + "end": 15819.06, + "probability": 0.4418 + }, + { + "start": 15819.12, + "end": 15819.88, + "probability": 0.6967 + }, + { + "start": 15819.94, + "end": 15821.47, + "probability": 0.9067 + }, + { + "start": 15821.94, + "end": 15823.85, + "probability": 0.8872 + }, + { + "start": 15824.38, + "end": 15825.4, + "probability": 0.9238 + }, + { + "start": 15825.98, + "end": 15826.98, + "probability": 0.6923 + }, + { + "start": 15827.62, + "end": 15830.98, + "probability": 0.9287 + }, + { + "start": 15831.4, + "end": 15834.76, + "probability": 0.719 + }, + { + "start": 15835.3, + "end": 15837.16, + "probability": 0.8393 + }, + { + "start": 15837.58, + "end": 15840.12, + "probability": 0.9956 + }, + { + "start": 15840.7, + "end": 15843.1, + "probability": 0.9912 + }, + { + "start": 15843.56, + "end": 15844.28, + "probability": 0.4418 + }, + { + "start": 15844.56, + "end": 15846.3, + "probability": 0.7806 + }, + { + "start": 15846.7, + "end": 15847.3, + "probability": 0.9414 + }, + { + "start": 15847.74, + "end": 15849.4, + "probability": 0.6688 + }, + { + "start": 15849.76, + "end": 15850.38, + "probability": 0.9561 + }, + { + "start": 15850.98, + "end": 15851.76, + "probability": 0.9483 + }, + { + "start": 15851.8, + "end": 15852.34, + "probability": 0.7056 + }, + { + "start": 15852.44, + "end": 15852.74, + "probability": 0.7395 + }, + { + "start": 15853.18, + "end": 15854.82, + "probability": 0.9866 + }, + { + "start": 15855.59, + "end": 15856.28, + "probability": 0.1472 + }, + { + "start": 15856.46, + "end": 15857.58, + "probability": 0.7231 + }, + { + "start": 15858.24, + "end": 15859.24, + "probability": 0.4595 + }, + { + "start": 15860.36, + "end": 15860.72, + "probability": 0.1899 + }, + { + "start": 15860.72, + "end": 15860.72, + "probability": 0.1694 + }, + { + "start": 15860.72, + "end": 15860.72, + "probability": 0.214 + }, + { + "start": 15860.72, + "end": 15861.07, + "probability": 0.6267 + }, + { + "start": 15862.05, + "end": 15864.96, + "probability": 0.8096 + }, + { + "start": 15865.28, + "end": 15866.56, + "probability": 0.9679 + }, + { + "start": 15867.22, + "end": 15869.8, + "probability": 0.9788 + }, + { + "start": 15870.94, + "end": 15871.2, + "probability": 0.4417 + }, + { + "start": 15871.2, + "end": 15871.62, + "probability": 0.334 + }, + { + "start": 15871.66, + "end": 15871.66, + "probability": 0.2711 + }, + { + "start": 15871.66, + "end": 15871.66, + "probability": 0.6277 + }, + { + "start": 15871.66, + "end": 15871.66, + "probability": 0.5249 + }, + { + "start": 15871.66, + "end": 15872.76, + "probability": 0.5323 + }, + { + "start": 15872.92, + "end": 15874.78, + "probability": 0.9519 + }, + { + "start": 15875.08, + "end": 15875.56, + "probability": 0.8528 + }, + { + "start": 15875.56, + "end": 15875.65, + "probability": 0.7639 + }, + { + "start": 15876.24, + "end": 15879.04, + "probability": 0.9869 + }, + { + "start": 15879.58, + "end": 15880.05, + "probability": 0.2918 + }, + { + "start": 15881.23, + "end": 15881.94, + "probability": 0.9739 + }, + { + "start": 15883.04, + "end": 15885.42, + "probability": 0.5713 + }, + { + "start": 15885.98, + "end": 15888.25, + "probability": 0.8687 + }, + { + "start": 15888.6, + "end": 15889.14, + "probability": 0.9311 + }, + { + "start": 15889.52, + "end": 15892.24, + "probability": 0.9932 + }, + { + "start": 15892.4, + "end": 15892.82, + "probability": 0.6378 + }, + { + "start": 15893.5, + "end": 15894.38, + "probability": 0.9793 + }, + { + "start": 15895.12, + "end": 15896.2, + "probability": 0.8368 + }, + { + "start": 15896.38, + "end": 15897.68, + "probability": 0.9333 + }, + { + "start": 15898.1, + "end": 15899.96, + "probability": 0.9902 + }, + { + "start": 15900.32, + "end": 15901.02, + "probability": 0.9048 + }, + { + "start": 15901.6, + "end": 15902.52, + "probability": 0.4942 + }, + { + "start": 15902.86, + "end": 15905.6, + "probability": 0.8071 + }, + { + "start": 15905.96, + "end": 15907.04, + "probability": 0.6016 + }, + { + "start": 15907.64, + "end": 15909.38, + "probability": 0.6938 + }, + { + "start": 15909.48, + "end": 15912.96, + "probability": 0.9467 + }, + { + "start": 15913.73, + "end": 15914.335, + "probability": 0.6739 + }, + { + "start": 15915.08, + "end": 15920.58, + "probability": 0.931 + }, + { + "start": 15921.04, + "end": 15922.26, + "probability": 0.9671 + }, + { + "start": 15922.84, + "end": 15924.02, + "probability": 0.826 + }, + { + "start": 15924.62, + "end": 15925.84, + "probability": 0.8917 + }, + { + "start": 15927.06, + "end": 15932.32, + "probability": 0.8361 + }, + { + "start": 15933.24, + "end": 15933.4, + "probability": 0.1431 + }, + { + "start": 15933.4, + "end": 15934.4, + "probability": 0.2952 + }, + { + "start": 15934.4, + "end": 15934.76, + "probability": 0.668 + }, + { + "start": 15935.32, + "end": 15935.44, + "probability": 0.523 + }, + { + "start": 15935.44, + "end": 15935.44, + "probability": 0.593 + }, + { + "start": 15935.44, + "end": 15936.84, + "probability": 0.7852 + }, + { + "start": 15936.84, + "end": 15937.2, + "probability": 0.9518 + }, + { + "start": 15937.64, + "end": 15938.88, + "probability": 0.9289 + }, + { + "start": 15939.08, + "end": 15939.66, + "probability": 0.8794 + }, + { + "start": 15940.64, + "end": 15941.1, + "probability": 0.5233 + }, + { + "start": 15941.74, + "end": 15943.14, + "probability": 0.9888 + }, + { + "start": 15944.02, + "end": 15947.68, + "probability": 0.9452 + }, + { + "start": 15948.22, + "end": 15954.58, + "probability": 0.9926 + }, + { + "start": 15954.64, + "end": 15955.08, + "probability": 0.5891 + }, + { + "start": 15955.14, + "end": 15957.58, + "probability": 0.996 + }, + { + "start": 15957.86, + "end": 15959.5, + "probability": 0.8918 + }, + { + "start": 15959.8, + "end": 15960.96, + "probability": 0.9681 + }, + { + "start": 15961.24, + "end": 15961.44, + "probability": 0.6596 + }, + { + "start": 15961.52, + "end": 15963.5, + "probability": 0.9899 + }, + { + "start": 15964.3, + "end": 15966.7, + "probability": 0.1711 + }, + { + "start": 15968.59, + "end": 15968.84, + "probability": 0.1409 + }, + { + "start": 15969.12, + "end": 15969.12, + "probability": 0.2679 + }, + { + "start": 15969.12, + "end": 15969.12, + "probability": 0.4597 + }, + { + "start": 15969.12, + "end": 15969.12, + "probability": 0.1058 + }, + { + "start": 15969.12, + "end": 15971.76, + "probability": 0.484 + }, + { + "start": 15972.9, + "end": 15981.9, + "probability": 0.0638 + }, + { + "start": 15982.42, + "end": 15983.12, + "probability": 0.0481 + }, + { + "start": 15983.42, + "end": 15984.96, + "probability": 0.1581 + }, + { + "start": 15985.96, + "end": 15986.72, + "probability": 0.0074 + }, + { + "start": 15987.38, + "end": 15988.24, + "probability": 0.2522 + }, + { + "start": 15988.9, + "end": 15990.66, + "probability": 0.048 + }, + { + "start": 15992.03, + "end": 15992.1, + "probability": 0.0278 + }, + { + "start": 15992.78, + "end": 15992.98, + "probability": 0.375 + }, + { + "start": 15993.6, + "end": 15995.28, + "probability": 0.0581 + }, + { + "start": 15996.2, + "end": 15999.0, + "probability": 0.1669 + }, + { + "start": 15999.0, + "end": 15999.21, + "probability": 0.1019 + }, + { + "start": 15999.38, + "end": 15999.56, + "probability": 0.0901 + }, + { + "start": 16000.04, + "end": 16000.68, + "probability": 0.1529 + }, + { + "start": 16003.37, + "end": 16004.66, + "probability": 0.0692 + }, + { + "start": 16011.3, + "end": 16016.9, + "probability": 0.0502 + }, + { + "start": 16018.85, + "end": 16020.06, + "probability": 0.1949 + }, + { + "start": 16020.22, + "end": 16021.32, + "probability": 0.0389 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.0, + "end": 16033.0, + "probability": 0.0 + }, + { + "start": 16033.34, + "end": 16033.34, + "probability": 0.0137 + }, + { + "start": 16033.34, + "end": 16034.78, + "probability": 0.6771 + }, + { + "start": 16034.9, + "end": 16037.82, + "probability": 0.6507 + }, + { + "start": 16038.14, + "end": 16039.9, + "probability": 0.9395 + }, + { + "start": 16040.36, + "end": 16043.28, + "probability": 0.9843 + }, + { + "start": 16043.34, + "end": 16046.54, + "probability": 0.8735 + }, + { + "start": 16047.3, + "end": 16048.92, + "probability": 0.7701 + }, + { + "start": 16049.22, + "end": 16051.82, + "probability": 0.8876 + }, + { + "start": 16052.38, + "end": 16053.93, + "probability": 0.9749 + }, + { + "start": 16054.68, + "end": 16056.92, + "probability": 0.9443 + }, + { + "start": 16057.5, + "end": 16062.52, + "probability": 0.9505 + }, + { + "start": 16063.0, + "end": 16063.82, + "probability": 0.6615 + }, + { + "start": 16064.42, + "end": 16065.34, + "probability": 0.6116 + }, + { + "start": 16065.76, + "end": 16067.08, + "probability": 0.8487 + }, + { + "start": 16067.54, + "end": 16068.52, + "probability": 0.9246 + }, + { + "start": 16069.06, + "end": 16070.46, + "probability": 0.9958 + }, + { + "start": 16071.08, + "end": 16073.42, + "probability": 0.9924 + }, + { + "start": 16073.84, + "end": 16075.62, + "probability": 0.7458 + }, + { + "start": 16075.72, + "end": 16076.28, + "probability": 0.6556 + }, + { + "start": 16076.76, + "end": 16077.44, + "probability": 0.9146 + }, + { + "start": 16078.46, + "end": 16082.66, + "probability": 0.9588 + }, + { + "start": 16083.34, + "end": 16085.62, + "probability": 0.7986 + }, + { + "start": 16085.92, + "end": 16087.12, + "probability": 0.9681 + }, + { + "start": 16088.12, + "end": 16094.92, + "probability": 0.9568 + }, + { + "start": 16095.3, + "end": 16096.4, + "probability": 0.9976 + }, + { + "start": 16097.04, + "end": 16099.94, + "probability": 0.9938 + }, + { + "start": 16100.06, + "end": 16101.13, + "probability": 0.69 + }, + { + "start": 16101.78, + "end": 16105.44, + "probability": 0.9976 + }, + { + "start": 16105.56, + "end": 16106.8, + "probability": 0.5037 + }, + { + "start": 16107.34, + "end": 16108.78, + "probability": 0.8578 + }, + { + "start": 16109.62, + "end": 16114.28, + "probability": 0.9932 + }, + { + "start": 16115.0, + "end": 16118.06, + "probability": 0.6233 + }, + { + "start": 16118.58, + "end": 16124.26, + "probability": 0.9927 + }, + { + "start": 16124.98, + "end": 16126.36, + "probability": 0.8839 + }, + { + "start": 16127.0, + "end": 16127.9, + "probability": 0.9588 + }, + { + "start": 16128.4, + "end": 16129.46, + "probability": 0.9901 + }, + { + "start": 16129.58, + "end": 16132.72, + "probability": 0.9267 + }, + { + "start": 16133.14, + "end": 16134.36, + "probability": 0.847 + }, + { + "start": 16134.86, + "end": 16139.24, + "probability": 0.9878 + }, + { + "start": 16139.82, + "end": 16140.64, + "probability": 0.8895 + }, + { + "start": 16141.62, + "end": 16143.24, + "probability": 0.8408 + }, + { + "start": 16143.66, + "end": 16149.4, + "probability": 0.9932 + }, + { + "start": 16149.74, + "end": 16151.46, + "probability": 0.9895 + }, + { + "start": 16151.58, + "end": 16151.88, + "probability": 0.8349 + }, + { + "start": 16152.22, + "end": 16153.08, + "probability": 0.8639 + }, + { + "start": 16153.28, + "end": 16154.08, + "probability": 0.5596 + }, + { + "start": 16154.52, + "end": 16155.38, + "probability": 0.6921 + }, + { + "start": 16155.52, + "end": 16156.4, + "probability": 0.9142 + }, + { + "start": 16157.14, + "end": 16160.08, + "probability": 0.9902 + }, + { + "start": 16160.44, + "end": 16162.76, + "probability": 0.9648 + }, + { + "start": 16163.48, + "end": 16164.84, + "probability": 0.8379 + }, + { + "start": 16165.32, + "end": 16167.76, + "probability": 0.988 + }, + { + "start": 16168.42, + "end": 16171.56, + "probability": 0.9891 + }, + { + "start": 16172.24, + "end": 16173.7, + "probability": 0.7573 + }, + { + "start": 16174.28, + "end": 16176.14, + "probability": 0.9169 + }, + { + "start": 16176.68, + "end": 16177.8, + "probability": 0.9568 + }, + { + "start": 16178.26, + "end": 16182.5, + "probability": 0.9813 + }, + { + "start": 16183.12, + "end": 16191.04, + "probability": 0.999 + }, + { + "start": 16191.54, + "end": 16194.96, + "probability": 0.9945 + }, + { + "start": 16195.4, + "end": 16196.42, + "probability": 0.6057 + }, + { + "start": 16196.88, + "end": 16198.16, + "probability": 0.7712 + }, + { + "start": 16198.9, + "end": 16199.36, + "probability": 0.5218 + }, + { + "start": 16199.6, + "end": 16200.1, + "probability": 0.736 + }, + { + "start": 16200.58, + "end": 16201.26, + "probability": 0.6719 + }, + { + "start": 16201.38, + "end": 16203.7, + "probability": 0.9862 + }, + { + "start": 16204.52, + "end": 16205.8, + "probability": 0.9709 + }, + { + "start": 16212.06, + "end": 16213.9, + "probability": 0.7542 + }, + { + "start": 16228.36, + "end": 16230.06, + "probability": 0.6242 + }, + { + "start": 16231.86, + "end": 16233.82, + "probability": 0.7449 + }, + { + "start": 16235.2, + "end": 16239.88, + "probability": 0.9495 + }, + { + "start": 16239.88, + "end": 16244.7, + "probability": 0.9959 + }, + { + "start": 16245.76, + "end": 16246.44, + "probability": 0.9329 + }, + { + "start": 16246.98, + "end": 16247.94, + "probability": 0.9924 + }, + { + "start": 16248.44, + "end": 16250.1, + "probability": 0.8849 + }, + { + "start": 16251.08, + "end": 16253.64, + "probability": 0.9578 + }, + { + "start": 16254.56, + "end": 16257.1, + "probability": 0.9559 + }, + { + "start": 16257.94, + "end": 16260.58, + "probability": 0.9817 + }, + { + "start": 16261.16, + "end": 16266.58, + "probability": 0.9927 + }, + { + "start": 16267.66, + "end": 16272.62, + "probability": 0.9426 + }, + { + "start": 16273.64, + "end": 16277.31, + "probability": 0.9964 + }, + { + "start": 16277.56, + "end": 16284.06, + "probability": 0.9904 + }, + { + "start": 16284.82, + "end": 16285.4, + "probability": 0.8495 + }, + { + "start": 16286.48, + "end": 16288.02, + "probability": 0.8176 + }, + { + "start": 16288.5, + "end": 16292.56, + "probability": 0.97 + }, + { + "start": 16293.3, + "end": 16296.36, + "probability": 0.9946 + }, + { + "start": 16296.36, + "end": 16300.94, + "probability": 0.9956 + }, + { + "start": 16302.16, + "end": 16303.2, + "probability": 0.999 + }, + { + "start": 16303.92, + "end": 16307.54, + "probability": 0.9993 + }, + { + "start": 16307.54, + "end": 16311.54, + "probability": 0.9981 + }, + { + "start": 16312.52, + "end": 16316.74, + "probability": 0.9994 + }, + { + "start": 16317.16, + "end": 16320.26, + "probability": 0.9987 + }, + { + "start": 16320.26, + "end": 16324.1, + "probability": 0.9707 + }, + { + "start": 16325.86, + "end": 16329.34, + "probability": 0.9928 + }, + { + "start": 16329.34, + "end": 16333.26, + "probability": 0.9995 + }, + { + "start": 16333.6, + "end": 16336.58, + "probability": 0.9495 + }, + { + "start": 16337.1, + "end": 16342.38, + "probability": 0.9868 + }, + { + "start": 16343.46, + "end": 16348.52, + "probability": 0.9976 + }, + { + "start": 16349.0, + "end": 16354.34, + "probability": 0.9987 + }, + { + "start": 16354.98, + "end": 16360.92, + "probability": 0.9948 + }, + { + "start": 16362.32, + "end": 16365.34, + "probability": 0.9343 + }, + { + "start": 16365.86, + "end": 16367.1, + "probability": 0.9308 + }, + { + "start": 16367.86, + "end": 16370.43, + "probability": 0.9925 + }, + { + "start": 16371.26, + "end": 16373.74, + "probability": 0.9939 + }, + { + "start": 16374.26, + "end": 16377.54, + "probability": 0.9493 + }, + { + "start": 16378.48, + "end": 16382.24, + "probability": 0.9863 + }, + { + "start": 16382.96, + "end": 16387.12, + "probability": 0.9979 + }, + { + "start": 16387.82, + "end": 16392.68, + "probability": 0.9951 + }, + { + "start": 16393.38, + "end": 16395.6, + "probability": 0.8345 + }, + { + "start": 16396.2, + "end": 16399.0, + "probability": 0.9995 + }, + { + "start": 16399.38, + "end": 16402.06, + "probability": 0.746 + }, + { + "start": 16402.7, + "end": 16403.66, + "probability": 0.7095 + }, + { + "start": 16404.96, + "end": 16406.6, + "probability": 0.9825 + }, + { + "start": 16406.94, + "end": 16407.6, + "probability": 0.8205 + }, + { + "start": 16407.68, + "end": 16409.2, + "probability": 0.9915 + }, + { + "start": 16409.98, + "end": 16410.8, + "probability": 0.9512 + }, + { + "start": 16414.4, + "end": 16415.46, + "probability": 0.3702 + }, + { + "start": 16415.46, + "end": 16415.46, + "probability": 0.3559 + }, + { + "start": 16415.46, + "end": 16415.95, + "probability": 0.6848 + }, + { + "start": 16417.42, + "end": 16418.1, + "probability": 0.5669 + }, + { + "start": 16418.96, + "end": 16422.9, + "probability": 0.7873 + }, + { + "start": 16423.26, + "end": 16424.92, + "probability": 0.625 + }, + { + "start": 16433.84, + "end": 16434.2, + "probability": 0.8091 + }, + { + "start": 16437.72, + "end": 16439.1, + "probability": 0.6621 + }, + { + "start": 16439.24, + "end": 16440.28, + "probability": 0.6604 + }, + { + "start": 16440.61, + "end": 16444.12, + "probability": 0.9571 + }, + { + "start": 16444.12, + "end": 16447.16, + "probability": 0.9935 + }, + { + "start": 16447.86, + "end": 16451.18, + "probability": 0.9859 + }, + { + "start": 16451.8, + "end": 16452.52, + "probability": 0.5916 + }, + { + "start": 16453.08, + "end": 16457.5, + "probability": 0.4231 + }, + { + "start": 16458.36, + "end": 16461.94, + "probability": 0.9939 + }, + { + "start": 16462.16, + "end": 16463.16, + "probability": 0.9738 + }, + { + "start": 16464.34, + "end": 16465.46, + "probability": 0.978 + }, + { + "start": 16468.54, + "end": 16469.18, + "probability": 0.0496 + }, + { + "start": 16469.18, + "end": 16471.44, + "probability": 0.8911 + }, + { + "start": 16472.04, + "end": 16476.34, + "probability": 0.9908 + }, + { + "start": 16476.38, + "end": 16480.68, + "probability": 0.9984 + }, + { + "start": 16480.68, + "end": 16484.68, + "probability": 0.9951 + }, + { + "start": 16485.44, + "end": 16488.64, + "probability": 0.8958 + }, + { + "start": 16489.96, + "end": 16498.56, + "probability": 0.9941 + }, + { + "start": 16498.76, + "end": 16499.84, + "probability": 0.7575 + }, + { + "start": 16500.74, + "end": 16506.6, + "probability": 0.9852 + }, + { + "start": 16506.6, + "end": 16512.58, + "probability": 0.9994 + }, + { + "start": 16513.26, + "end": 16514.4, + "probability": 0.9747 + }, + { + "start": 16515.26, + "end": 16521.68, + "probability": 0.9967 + }, + { + "start": 16522.34, + "end": 16524.36, + "probability": 0.9736 + }, + { + "start": 16525.18, + "end": 16525.6, + "probability": 0.9688 + }, + { + "start": 16526.4, + "end": 16530.48, + "probability": 0.9952 + }, + { + "start": 16531.46, + "end": 16537.12, + "probability": 0.9939 + }, + { + "start": 16537.82, + "end": 16538.62, + "probability": 0.5338 + }, + { + "start": 16539.14, + "end": 16540.1, + "probability": 0.6715 + }, + { + "start": 16540.62, + "end": 16543.3, + "probability": 0.9796 + }, + { + "start": 16543.84, + "end": 16546.16, + "probability": 0.9874 + }, + { + "start": 16546.16, + "end": 16550.7, + "probability": 0.9907 + }, + { + "start": 16551.8, + "end": 16556.96, + "probability": 0.969 + }, + { + "start": 16557.68, + "end": 16564.98, + "probability": 0.9951 + }, + { + "start": 16565.4, + "end": 16566.34, + "probability": 0.9602 + }, + { + "start": 16566.76, + "end": 16567.72, + "probability": 0.99 + }, + { + "start": 16568.1, + "end": 16568.92, + "probability": 0.8841 + }, + { + "start": 16570.0, + "end": 16577.68, + "probability": 0.9969 + }, + { + "start": 16577.68, + "end": 16583.42, + "probability": 0.9973 + }, + { + "start": 16584.42, + "end": 16585.44, + "probability": 0.768 + }, + { + "start": 16586.32, + "end": 16588.36, + "probability": 0.9304 + }, + { + "start": 16590.18, + "end": 16595.2, + "probability": 0.9863 + }, + { + "start": 16595.4, + "end": 16597.54, + "probability": 0.7045 + }, + { + "start": 16599.76, + "end": 16603.72, + "probability": 0.9709 + }, + { + "start": 16604.46, + "end": 16608.12, + "probability": 0.9913 + }, + { + "start": 16608.88, + "end": 16612.54, + "probability": 0.9563 + }, + { + "start": 16613.14, + "end": 16616.46, + "probability": 0.9372 + }, + { + "start": 16616.9, + "end": 16620.48, + "probability": 0.9907 + }, + { + "start": 16620.48, + "end": 16624.4, + "probability": 0.9965 + }, + { + "start": 16624.42, + "end": 16624.9, + "probability": 0.565 + }, + { + "start": 16625.0, + "end": 16625.1, + "probability": 0.3235 + }, + { + "start": 16625.32, + "end": 16627.02, + "probability": 0.9702 + }, + { + "start": 16627.22, + "end": 16627.98, + "probability": 0.8534 + }, + { + "start": 16628.08, + "end": 16628.74, + "probability": 0.5444 + }, + { + "start": 16629.42, + "end": 16632.36, + "probability": 0.9628 + }, + { + "start": 16633.02, + "end": 16636.78, + "probability": 0.9906 + }, + { + "start": 16637.2, + "end": 16638.28, + "probability": 0.6793 + }, + { + "start": 16638.86, + "end": 16641.82, + "probability": 0.7783 + }, + { + "start": 16642.12, + "end": 16645.76, + "probability": 0.9985 + }, + { + "start": 16645.76, + "end": 16649.6, + "probability": 0.9973 + }, + { + "start": 16650.06, + "end": 16654.82, + "probability": 0.9778 + }, + { + "start": 16655.34, + "end": 16659.64, + "probability": 0.9595 + }, + { + "start": 16660.0, + "end": 16661.6, + "probability": 0.7334 + }, + { + "start": 16661.68, + "end": 16664.12, + "probability": 0.9915 + }, + { + "start": 16664.18, + "end": 16664.62, + "probability": 0.6913 + }, + { + "start": 16664.98, + "end": 16665.77, + "probability": 0.7295 + }, + { + "start": 16666.06, + "end": 16667.88, + "probability": 0.9669 + }, + { + "start": 16670.2, + "end": 16670.82, + "probability": 0.5179 + }, + { + "start": 16670.98, + "end": 16672.88, + "probability": 0.9539 + }, + { + "start": 16673.62, + "end": 16676.34, + "probability": 0.991 + }, + { + "start": 16676.8, + "end": 16678.74, + "probability": 0.9478 + }, + { + "start": 16696.96, + "end": 16698.86, + "probability": 0.5001 + }, + { + "start": 16699.44, + "end": 16700.78, + "probability": 0.4789 + }, + { + "start": 16701.78, + "end": 16702.06, + "probability": 0.2819 + }, + { + "start": 16706.84, + "end": 16709.5, + "probability": 0.8083 + }, + { + "start": 16709.7, + "end": 16711.65, + "probability": 0.8855 + }, + { + "start": 16712.66, + "end": 16714.6, + "probability": 0.98 + }, + { + "start": 16714.66, + "end": 16715.22, + "probability": 0.93 + }, + { + "start": 16715.44, + "end": 16721.06, + "probability": 0.9874 + }, + { + "start": 16721.3, + "end": 16728.56, + "probability": 0.9984 + }, + { + "start": 16728.56, + "end": 16738.48, + "probability": 0.9967 + }, + { + "start": 16738.48, + "end": 16740.22, + "probability": 0.9807 + }, + { + "start": 16740.42, + "end": 16740.9, + "probability": 0.6283 + }, + { + "start": 16741.86, + "end": 16744.74, + "probability": 0.7094 + }, + { + "start": 16745.18, + "end": 16745.18, + "probability": 0.3131 + }, + { + "start": 16745.18, + "end": 16746.42, + "probability": 0.8868 + }, + { + "start": 16747.4, + "end": 16747.98, + "probability": 0.5737 + }, + { + "start": 16748.0, + "end": 16748.63, + "probability": 0.9946 + }, + { + "start": 16748.98, + "end": 16750.63, + "probability": 0.9758 + }, + { + "start": 16753.49, + "end": 16757.18, + "probability": 0.9966 + }, + { + "start": 16757.24, + "end": 16758.7, + "probability": 0.9969 + }, + { + "start": 16758.7, + "end": 16760.94, + "probability": 0.8763 + }, + { + "start": 16761.8, + "end": 16766.66, + "probability": 0.9985 + }, + { + "start": 16766.66, + "end": 16770.98, + "probability": 0.9888 + }, + { + "start": 16772.74, + "end": 16778.44, + "probability": 0.999 + }, + { + "start": 16778.9, + "end": 16783.58, + "probability": 0.9966 + }, + { + "start": 16783.66, + "end": 16786.26, + "probability": 0.9817 + }, + { + "start": 16786.68, + "end": 16788.93, + "probability": 0.9409 + }, + { + "start": 16789.62, + "end": 16791.74, + "probability": 0.9963 + }, + { + "start": 16791.82, + "end": 16798.46, + "probability": 0.9818 + }, + { + "start": 16798.64, + "end": 16800.22, + "probability": 0.9951 + }, + { + "start": 16800.34, + "end": 16801.46, + "probability": 0.9069 + }, + { + "start": 16801.94, + "end": 16803.62, + "probability": 0.849 + }, + { + "start": 16803.96, + "end": 16810.48, + "probability": 0.9971 + }, + { + "start": 16811.44, + "end": 16812.69, + "probability": 0.7579 + }, + { + "start": 16813.14, + "end": 16819.66, + "probability": 0.992 + }, + { + "start": 16820.3, + "end": 16822.88, + "probability": 0.6958 + }, + { + "start": 16822.98, + "end": 16824.08, + "probability": 0.7417 + }, + { + "start": 16825.04, + "end": 16827.1, + "probability": 0.9932 + }, + { + "start": 16828.04, + "end": 16830.52, + "probability": 0.9614 + }, + { + "start": 16830.56, + "end": 16831.44, + "probability": 0.7829 + }, + { + "start": 16831.56, + "end": 16832.7, + "probability": 0.8738 + }, + { + "start": 16833.36, + "end": 16837.86, + "probability": 0.7807 + }, + { + "start": 16838.92, + "end": 16842.58, + "probability": 0.7623 + }, + { + "start": 16844.92, + "end": 16845.9, + "probability": 0.3847 + }, + { + "start": 16847.62, + "end": 16850.56, + "probability": 0.9869 + }, + { + "start": 16852.26, + "end": 16855.5, + "probability": 0.9968 + }, + { + "start": 16855.5, + "end": 16858.16, + "probability": 0.9978 + }, + { + "start": 16859.54, + "end": 16861.52, + "probability": 0.8291 + }, + { + "start": 16861.7, + "end": 16863.82, + "probability": 0.8021 + }, + { + "start": 16864.2, + "end": 16865.3, + "probability": 0.9237 + }, + { + "start": 16865.94, + "end": 16868.05, + "probability": 0.9891 + }, + { + "start": 16868.74, + "end": 16872.4, + "probability": 0.9606 + }, + { + "start": 16874.6, + "end": 16879.02, + "probability": 0.9984 + }, + { + "start": 16879.12, + "end": 16879.7, + "probability": 0.7664 + }, + { + "start": 16880.4, + "end": 16881.48, + "probability": 0.9914 + }, + { + "start": 16882.42, + "end": 16885.8, + "probability": 0.8921 + }, + { + "start": 16886.32, + "end": 16890.2, + "probability": 0.9192 + }, + { + "start": 16890.26, + "end": 16894.74, + "probability": 0.9963 + }, + { + "start": 16895.66, + "end": 16898.76, + "probability": 0.9609 + }, + { + "start": 16899.54, + "end": 16901.38, + "probability": 0.9989 + }, + { + "start": 16902.0, + "end": 16904.66, + "probability": 0.9041 + }, + { + "start": 16905.68, + "end": 16906.1, + "probability": 0.5859 + }, + { + "start": 16906.24, + "end": 16911.54, + "probability": 0.995 + }, + { + "start": 16911.68, + "end": 16914.94, + "probability": 0.9021 + }, + { + "start": 16915.58, + "end": 16919.0, + "probability": 0.9991 + }, + { + "start": 16919.9, + "end": 16920.82, + "probability": 0.5052 + }, + { + "start": 16924.46, + "end": 16925.7, + "probability": 0.9713 + }, + { + "start": 16931.14, + "end": 16931.77, + "probability": 0.6276 + }, + { + "start": 16934.22, + "end": 16937.18, + "probability": 0.7975 + }, + { + "start": 16937.66, + "end": 16938.38, + "probability": 0.921 + }, + { + "start": 16939.68, + "end": 16940.36, + "probability": 0.5309 + }, + { + "start": 16940.46, + "end": 16941.5, + "probability": 0.7889 + }, + { + "start": 16941.82, + "end": 16947.0, + "probability": 0.986 + }, + { + "start": 16947.08, + "end": 16948.52, + "probability": 0.9702 + }, + { + "start": 16948.64, + "end": 16949.31, + "probability": 0.9976 + }, + { + "start": 16949.56, + "end": 16952.82, + "probability": 0.8898 + }, + { + "start": 16953.48, + "end": 16954.72, + "probability": 0.8582 + }, + { + "start": 16956.93, + "end": 16959.88, + "probability": 0.9961 + }, + { + "start": 16961.6, + "end": 16965.1, + "probability": 0.9865 + }, + { + "start": 16965.1, + "end": 16967.82, + "probability": 0.9963 + }, + { + "start": 16968.68, + "end": 16971.12, + "probability": 0.9923 + }, + { + "start": 16972.26, + "end": 16973.3, + "probability": 0.6851 + }, + { + "start": 16974.7, + "end": 16976.1, + "probability": 0.979 + }, + { + "start": 16977.2, + "end": 16978.6, + "probability": 0.9529 + }, + { + "start": 16979.82, + "end": 16982.44, + "probability": 0.9976 + }, + { + "start": 16983.4, + "end": 16988.43, + "probability": 0.9064 + }, + { + "start": 16989.42, + "end": 16990.46, + "probability": 0.9915 + }, + { + "start": 16990.68, + "end": 16992.76, + "probability": 0.9108 + }, + { + "start": 16994.12, + "end": 16998.64, + "probability": 0.9218 + }, + { + "start": 16999.16, + "end": 17004.1, + "probability": 0.9825 + }, + { + "start": 17004.68, + "end": 17006.76, + "probability": 0.9215 + }, + { + "start": 17007.9, + "end": 17009.2, + "probability": 0.7807 + }, + { + "start": 17009.28, + "end": 17011.1, + "probability": 0.9761 + }, + { + "start": 17011.18, + "end": 17012.22, + "probability": 0.984 + }, + { + "start": 17014.88, + "end": 17022.26, + "probability": 0.9914 + }, + { + "start": 17023.24, + "end": 17025.92, + "probability": 0.9981 + }, + { + "start": 17026.46, + "end": 17027.93, + "probability": 0.979 + }, + { + "start": 17028.72, + "end": 17033.88, + "probability": 0.9946 + }, + { + "start": 17034.26, + "end": 17036.12, + "probability": 0.9969 + }, + { + "start": 17036.74, + "end": 17037.14, + "probability": 0.8066 + }, + { + "start": 17038.12, + "end": 17038.74, + "probability": 0.6332 + }, + { + "start": 17038.8, + "end": 17042.24, + "probability": 0.7954 + }, + { + "start": 17042.48, + "end": 17042.88, + "probability": 0.7872 + }, + { + "start": 17069.4, + "end": 17070.58, + "probability": 0.5715 + }, + { + "start": 17071.26, + "end": 17073.2, + "probability": 0.7262 + }, + { + "start": 17075.46, + "end": 17080.22, + "probability": 0.9964 + }, + { + "start": 17082.08, + "end": 17087.6, + "probability": 0.999 + }, + { + "start": 17088.36, + "end": 17090.42, + "probability": 0.5095 + }, + { + "start": 17091.5, + "end": 17093.3, + "probability": 0.8922 + }, + { + "start": 17094.1, + "end": 17096.16, + "probability": 0.9287 + }, + { + "start": 17096.86, + "end": 17098.32, + "probability": 0.9656 + }, + { + "start": 17099.14, + "end": 17101.1, + "probability": 0.994 + }, + { + "start": 17101.58, + "end": 17104.37, + "probability": 0.9832 + }, + { + "start": 17105.5, + "end": 17106.7, + "probability": 0.7341 + }, + { + "start": 17107.22, + "end": 17109.46, + "probability": 0.9648 + }, + { + "start": 17110.02, + "end": 17111.82, + "probability": 0.9494 + }, + { + "start": 17112.5, + "end": 17114.8, + "probability": 0.9902 + }, + { + "start": 17115.52, + "end": 17117.68, + "probability": 0.9799 + }, + { + "start": 17118.56, + "end": 17120.28, + "probability": 0.8029 + }, + { + "start": 17120.84, + "end": 17126.14, + "probability": 0.7339 + }, + { + "start": 17126.78, + "end": 17130.74, + "probability": 0.9917 + }, + { + "start": 17131.86, + "end": 17132.56, + "probability": 0.9316 + }, + { + "start": 17133.22, + "end": 17134.46, + "probability": 0.6187 + }, + { + "start": 17134.48, + "end": 17135.5, + "probability": 0.7524 + }, + { + "start": 17136.44, + "end": 17138.48, + "probability": 0.8371 + }, + { + "start": 17139.04, + "end": 17141.22, + "probability": 0.9974 + }, + { + "start": 17142.7, + "end": 17143.88, + "probability": 0.8093 + }, + { + "start": 17143.98, + "end": 17147.0, + "probability": 0.8757 + }, + { + "start": 17147.82, + "end": 17153.74, + "probability": 0.9794 + }, + { + "start": 17154.66, + "end": 17161.1, + "probability": 0.9714 + }, + { + "start": 17161.72, + "end": 17167.48, + "probability": 0.9969 + }, + { + "start": 17167.54, + "end": 17168.74, + "probability": 0.9795 + }, + { + "start": 17170.38, + "end": 17172.14, + "probability": 0.783 + }, + { + "start": 17179.64, + "end": 17180.74, + "probability": 0.4924 + }, + { + "start": 17181.62, + "end": 17184.0, + "probability": 0.9596 + }, + { + "start": 17184.88, + "end": 17186.2, + "probability": 0.8802 + }, + { + "start": 17186.82, + "end": 17188.12, + "probability": 0.9623 + }, + { + "start": 17188.64, + "end": 17189.78, + "probability": 0.9774 + }, + { + "start": 17190.32, + "end": 17191.22, + "probability": 0.7908 + }, + { + "start": 17193.98, + "end": 17196.8, + "probability": 0.9666 + }, + { + "start": 17197.28, + "end": 17198.04, + "probability": 0.9819 + }, + { + "start": 17198.12, + "end": 17199.46, + "probability": 0.9477 + }, + { + "start": 17200.58, + "end": 17202.94, + "probability": 0.9307 + }, + { + "start": 17204.14, + "end": 17205.68, + "probability": 0.9655 + }, + { + "start": 17206.68, + "end": 17209.84, + "probability": 0.9939 + }, + { + "start": 17210.36, + "end": 17214.22, + "probability": 0.9638 + }, + { + "start": 17214.86, + "end": 17219.62, + "probability": 0.989 + }, + { + "start": 17219.72, + "end": 17222.12, + "probability": 0.9863 + }, + { + "start": 17222.8, + "end": 17229.08, + "probability": 0.9874 + }, + { + "start": 17229.98, + "end": 17232.58, + "probability": 0.9988 + }, + { + "start": 17233.1, + "end": 17235.62, + "probability": 0.9876 + }, + { + "start": 17236.2, + "end": 17236.72, + "probability": 0.8064 + }, + { + "start": 17238.32, + "end": 17242.64, + "probability": 0.8963 + }, + { + "start": 17242.64, + "end": 17247.26, + "probability": 0.9883 + }, + { + "start": 17248.18, + "end": 17248.98, + "probability": 0.9277 + }, + { + "start": 17251.6, + "end": 17261.26, + "probability": 0.9831 + }, + { + "start": 17262.04, + "end": 17263.26, + "probability": 0.6288 + }, + { + "start": 17263.34, + "end": 17265.86, + "probability": 0.7825 + }, + { + "start": 17265.98, + "end": 17266.61, + "probability": 0.1821 + }, + { + "start": 17267.16, + "end": 17267.58, + "probability": 0.07 + }, + { + "start": 17267.66, + "end": 17273.7, + "probability": 0.9182 + }, + { + "start": 17273.92, + "end": 17274.02, + "probability": 0.0271 + }, + { + "start": 17274.02, + "end": 17277.26, + "probability": 0.6752 + }, + { + "start": 17277.84, + "end": 17277.86, + "probability": 0.2038 + }, + { + "start": 17277.86, + "end": 17279.0, + "probability": 0.0209 + }, + { + "start": 17279.0, + "end": 17279.0, + "probability": 0.067 + }, + { + "start": 17279.0, + "end": 17285.82, + "probability": 0.9494 + }, + { + "start": 17286.32, + "end": 17287.08, + "probability": 0.7818 + }, + { + "start": 17287.58, + "end": 17291.46, + "probability": 0.1496 + }, + { + "start": 17291.46, + "end": 17291.64, + "probability": 0.4196 + }, + { + "start": 17291.64, + "end": 17291.74, + "probability": 0.4539 + }, + { + "start": 17291.74, + "end": 17291.74, + "probability": 0.0105 + }, + { + "start": 17291.74, + "end": 17291.74, + "probability": 0.0979 + }, + { + "start": 17291.74, + "end": 17291.82, + "probability": 0.0791 + }, + { + "start": 17291.82, + "end": 17292.38, + "probability": 0.8606 + }, + { + "start": 17292.7, + "end": 17292.77, + "probability": 0.7004 + }, + { + "start": 17293.38, + "end": 17296.48, + "probability": 0.8196 + }, + { + "start": 17297.2, + "end": 17297.46, + "probability": 0.0956 + }, + { + "start": 17297.46, + "end": 17299.56, + "probability": 0.9904 + }, + { + "start": 17300.12, + "end": 17306.88, + "probability": 0.8418 + }, + { + "start": 17307.02, + "end": 17312.34, + "probability": 0.096 + }, + { + "start": 17312.34, + "end": 17312.34, + "probability": 0.0206 + }, + { + "start": 17312.34, + "end": 17312.46, + "probability": 0.1306 + }, + { + "start": 17312.46, + "end": 17312.46, + "probability": 0.0939 + }, + { + "start": 17312.46, + "end": 17312.46, + "probability": 0.2111 + }, + { + "start": 17312.46, + "end": 17313.46, + "probability": 0.075 + }, + { + "start": 17313.46, + "end": 17316.18, + "probability": 0.9821 + }, + { + "start": 17316.92, + "end": 17320.08, + "probability": 0.086 + }, + { + "start": 17320.08, + "end": 17320.68, + "probability": 0.1746 + }, + { + "start": 17321.08, + "end": 17325.26, + "probability": 0.8887 + }, + { + "start": 17325.6, + "end": 17327.18, + "probability": 0.9961 + }, + { + "start": 17328.16, + "end": 17330.78, + "probability": 0.9333 + }, + { + "start": 17331.24, + "end": 17334.58, + "probability": 0.9081 + }, + { + "start": 17334.66, + "end": 17336.56, + "probability": 0.7078 + }, + { + "start": 17336.92, + "end": 17338.32, + "probability": 0.7436 + }, + { + "start": 17338.54, + "end": 17340.94, + "probability": 0.9767 + }, + { + "start": 17340.98, + "end": 17341.94, + "probability": 0.9332 + }, + { + "start": 17341.96, + "end": 17344.88, + "probability": 0.9928 + }, + { + "start": 17346.54, + "end": 17348.38, + "probability": 0.9626 + }, + { + "start": 17348.68, + "end": 17352.78, + "probability": 0.8635 + }, + { + "start": 17354.82, + "end": 17355.38, + "probability": 0.0009 + }, + { + "start": 17355.38, + "end": 17356.58, + "probability": 0.6599 + }, + { + "start": 17357.6, + "end": 17359.6, + "probability": 0.9967 + }, + { + "start": 17359.72, + "end": 17363.9, + "probability": 0.8546 + }, + { + "start": 17364.22, + "end": 17364.9, + "probability": 0.0576 + }, + { + "start": 17365.1, + "end": 17370.98, + "probability": 0.9985 + }, + { + "start": 17371.02, + "end": 17375.62, + "probability": 0.9927 + }, + { + "start": 17376.0, + "end": 17383.64, + "probability": 0.9961 + }, + { + "start": 17383.92, + "end": 17384.88, + "probability": 0.8976 + }, + { + "start": 17387.44, + "end": 17387.64, + "probability": 0.0258 + }, + { + "start": 17387.64, + "end": 17387.66, + "probability": 0.0277 + }, + { + "start": 17387.66, + "end": 17387.9, + "probability": 0.0393 + }, + { + "start": 17388.26, + "end": 17390.2, + "probability": 0.6264 + }, + { + "start": 17390.66, + "end": 17391.62, + "probability": 0.9567 + }, + { + "start": 17392.04, + "end": 17393.68, + "probability": 0.8713 + }, + { + "start": 17394.2, + "end": 17395.48, + "probability": 0.9395 + }, + { + "start": 17396.88, + "end": 17399.64, + "probability": 0.1112 + }, + { + "start": 17399.68, + "end": 17401.12, + "probability": 0.0151 + }, + { + "start": 17401.16, + "end": 17403.64, + "probability": 0.7379 + }, + { + "start": 17404.38, + "end": 17405.52, + "probability": 0.5113 + }, + { + "start": 17405.64, + "end": 17407.54, + "probability": 0.0089 + }, + { + "start": 17407.7, + "end": 17412.58, + "probability": 0.1791 + }, + { + "start": 17413.86, + "end": 17416.38, + "probability": 0.3054 + }, + { + "start": 17417.92, + "end": 17421.36, + "probability": 0.5157 + }, + { + "start": 17421.36, + "end": 17421.36, + "probability": 0.0454 + }, + { + "start": 17423.32, + "end": 17425.04, + "probability": 0.0158 + }, + { + "start": 17426.22, + "end": 17428.18, + "probability": 0.209 + }, + { + "start": 17428.72, + "end": 17428.72, + "probability": 0.0142 + }, + { + "start": 17428.72, + "end": 17429.72, + "probability": 0.0533 + }, + { + "start": 17429.96, + "end": 17430.16, + "probability": 0.1576 + }, + { + "start": 17431.3, + "end": 17436.52, + "probability": 0.089 + }, + { + "start": 17436.52, + "end": 17437.36, + "probability": 0.0661 + }, + { + "start": 17437.73, + "end": 17438.1, + "probability": 0.0342 + }, + { + "start": 17438.2, + "end": 17439.3, + "probability": 0.0456 + }, + { + "start": 17439.54, + "end": 17440.94, + "probability": 0.1749 + }, + { + "start": 17442.38, + "end": 17442.46, + "probability": 0.152 + }, + { + "start": 17442.46, + "end": 17443.88, + "probability": 0.1155 + }, + { + "start": 17443.96, + "end": 17445.58, + "probability": 0.1991 + }, + { + "start": 17446.24, + "end": 17447.7, + "probability": 0.0253 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.0, + "end": 17485.0, + "probability": 0.0 + }, + { + "start": 17485.68, + "end": 17487.86, + "probability": 0.0244 + }, + { + "start": 17488.52, + "end": 17491.08, + "probability": 0.8647 + }, + { + "start": 17491.1, + "end": 17492.17, + "probability": 0.0567 + }, + { + "start": 17492.5, + "end": 17495.46, + "probability": 0.9976 + }, + { + "start": 17495.96, + "end": 17497.5, + "probability": 0.9281 + }, + { + "start": 17498.04, + "end": 17499.5, + "probability": 0.8958 + }, + { + "start": 17499.84, + "end": 17500.28, + "probability": 0.8997 + }, + { + "start": 17501.1, + "end": 17502.88, + "probability": 0.1938 + }, + { + "start": 17502.88, + "end": 17503.65, + "probability": 0.2644 + }, + { + "start": 17504.5, + "end": 17511.06, + "probability": 0.4083 + }, + { + "start": 17511.58, + "end": 17514.02, + "probability": 0.7941 + }, + { + "start": 17515.68, + "end": 17517.58, + "probability": 0.4924 + }, + { + "start": 17517.82, + "end": 17518.8, + "probability": 0.476 + }, + { + "start": 17519.9, + "end": 17521.32, + "probability": 0.0318 + }, + { + "start": 17521.94, + "end": 17523.52, + "probability": 0.1244 + }, + { + "start": 17523.94, + "end": 17525.2, + "probability": 0.0577 + }, + { + "start": 17526.14, + "end": 17527.4, + "probability": 0.0031 + }, + { + "start": 17527.46, + "end": 17529.46, + "probability": 0.1585 + }, + { + "start": 17530.78, + "end": 17532.3, + "probability": 0.1136 + }, + { + "start": 17532.3, + "end": 17532.38, + "probability": 0.0931 + }, + { + "start": 17532.5, + "end": 17534.76, + "probability": 0.0208 + }, + { + "start": 17535.26, + "end": 17538.58, + "probability": 0.0141 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.0, + "end": 17605.0, + "probability": 0.0 + }, + { + "start": 17605.58, + "end": 17607.26, + "probability": 0.5881 + }, + { + "start": 17607.38, + "end": 17607.38, + "probability": 0.33 + }, + { + "start": 17607.38, + "end": 17608.4, + "probability": 0.6141 + }, + { + "start": 17609.18, + "end": 17610.32, + "probability": 0.2747 + }, + { + "start": 17611.14, + "end": 17613.14, + "probability": 0.1594 + }, + { + "start": 17613.14, + "end": 17613.14, + "probability": 0.2516 + }, + { + "start": 17613.14, + "end": 17615.22, + "probability": 0.7104 + }, + { + "start": 17615.8, + "end": 17621.02, + "probability": 0.8542 + }, + { + "start": 17623.18, + "end": 17626.88, + "probability": 0.8011 + }, + { + "start": 17627.02, + "end": 17630.16, + "probability": 0.8485 + }, + { + "start": 17630.32, + "end": 17632.22, + "probability": 0.8785 + }, + { + "start": 17633.04, + "end": 17635.14, + "probability": 0.9258 + }, + { + "start": 17635.8, + "end": 17639.6, + "probability": 0.9262 + }, + { + "start": 17640.58, + "end": 17642.86, + "probability": 0.9648 + }, + { + "start": 17643.5, + "end": 17646.34, + "probability": 0.9858 + }, + { + "start": 17647.08, + "end": 17652.02, + "probability": 0.9583 + }, + { + "start": 17652.66, + "end": 17652.86, + "probability": 0.6418 + }, + { + "start": 17653.4, + "end": 17658.07, + "probability": 0.9601 + }, + { + "start": 17658.58, + "end": 17661.36, + "probability": 0.6291 + }, + { + "start": 17662.72, + "end": 17663.73, + "probability": 0.0981 + }, + { + "start": 17664.1, + "end": 17665.46, + "probability": 0.9919 + }, + { + "start": 17666.38, + "end": 17668.2, + "probability": 0.3226 + }, + { + "start": 17668.26, + "end": 17669.02, + "probability": 0.0267 + }, + { + "start": 17669.02, + "end": 17670.51, + "probability": 0.8185 + }, + { + "start": 17670.64, + "end": 17670.72, + "probability": 0.0994 + }, + { + "start": 17670.72, + "end": 17670.72, + "probability": 0.3436 + }, + { + "start": 17670.72, + "end": 17670.82, + "probability": 0.1083 + }, + { + "start": 17670.9, + "end": 17671.04, + "probability": 0.058 + }, + { + "start": 17671.04, + "end": 17671.46, + "probability": 0.4391 + }, + { + "start": 17672.5, + "end": 17674.48, + "probability": 0.2532 + }, + { + "start": 17685.56, + "end": 17686.36, + "probability": 0.7077 + }, + { + "start": 17686.72, + "end": 17688.26, + "probability": 0.8405 + }, + { + "start": 17699.84, + "end": 17699.92, + "probability": 0.0242 + }, + { + "start": 17703.06, + "end": 17704.16, + "probability": 0.0286 + }, + { + "start": 17708.36, + "end": 17708.54, + "probability": 0.1835 + }, + { + "start": 17708.54, + "end": 17709.4, + "probability": 0.0257 + }, + { + "start": 17709.4, + "end": 17709.64, + "probability": 0.1149 + }, + { + "start": 17709.64, + "end": 17709.64, + "probability": 0.0185 + }, + { + "start": 17711.3, + "end": 17713.06, + "probability": 0.0883 + }, + { + "start": 17713.06, + "end": 17714.36, + "probability": 0.1737 + }, + { + "start": 17723.22, + "end": 17724.74, + "probability": 0.1529 + }, + { + "start": 17724.74, + "end": 17725.56, + "probability": 0.1494 + }, + { + "start": 17725.58, + "end": 17728.38, + "probability": 0.0876 + }, + { + "start": 17738.4, + "end": 17745.94, + "probability": 0.0317 + }, + { + "start": 17748.43, + "end": 17750.64, + "probability": 0.0432 + }, + { + "start": 17750.64, + "end": 17754.28, + "probability": 0.1463 + }, + { + "start": 17754.28, + "end": 17755.08, + "probability": 0.0926 + }, + { + "start": 17755.08, + "end": 17755.1, + "probability": 0.1739 + }, + { + "start": 17757.16, + "end": 17758.62, + "probability": 0.0776 + }, + { + "start": 17759.4, + "end": 17759.56, + "probability": 0.1166 + }, + { + "start": 17760.0, + "end": 17760.0, + "probability": 0.0 + }, + { + "start": 17760.0, + "end": 17760.0, + "probability": 0.0 + }, + { + "start": 17760.0, + "end": 17760.0, + "probability": 0.0 + }, + { + "start": 17760.0, + "end": 17760.0, + "probability": 0.0 + }, + { + "start": 17760.0, + "end": 17760.0, + "probability": 0.0 + }, + { + "start": 17760.0, + "end": 17760.0, + "probability": 0.0 + }, + { + "start": 17760.0, + "end": 17760.0, + "probability": 0.0 + }, + { + "start": 17760.0, + "end": 17760.0, + "probability": 0.0 + }, + { + "start": 17760.0, + "end": 17760.0, + "probability": 0.0 + }, + { + "start": 17760.0, + "end": 17760.0, + "probability": 0.0 + }, + { + "start": 17760.0, + "end": 17760.0, + "probability": 0.0 + }, + { + "start": 17760.0, + "end": 17760.0, + "probability": 0.0 + }, + { + "start": 17760.0, + "end": 17760.0, + "probability": 0.0 + }, + { + "start": 17771.34, + "end": 17774.78, + "probability": 0.0307 + }, + { + "start": 17775.22, + "end": 17779.04, + "probability": 0.345 + }, + { + "start": 17779.04, + "end": 17779.28, + "probability": 0.1157 + }, + { + "start": 17779.28, + "end": 17780.46, + "probability": 0.0491 + }, + { + "start": 17782.12, + "end": 17785.18, + "probability": 0.0498 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.0, + "end": 17882.0, + "probability": 0.0 + }, + { + "start": 17882.26, + "end": 17887.78, + "probability": 0.8905 + }, + { + "start": 17887.82, + "end": 17888.34, + "probability": 0.5155 + }, + { + "start": 17888.36, + "end": 17889.12, + "probability": 0.7932 + }, + { + "start": 17889.82, + "end": 17896.6, + "probability": 0.9986 + }, + { + "start": 17897.02, + "end": 17899.56, + "probability": 0.7987 + }, + { + "start": 17900.04, + "end": 17902.36, + "probability": 0.9856 + }, + { + "start": 17902.78, + "end": 17903.94, + "probability": 0.9526 + }, + { + "start": 17904.34, + "end": 17906.1, + "probability": 0.9777 + }, + { + "start": 17906.72, + "end": 17907.34, + "probability": 0.0184 + }, + { + "start": 17907.34, + "end": 17907.34, + "probability": 0.0439 + }, + { + "start": 17907.34, + "end": 17908.0, + "probability": 0.0759 + }, + { + "start": 17908.76, + "end": 17915.28, + "probability": 0.9467 + }, + { + "start": 17915.82, + "end": 17916.39, + "probability": 0.2901 + }, + { + "start": 17917.84, + "end": 17920.62, + "probability": 0.9383 + }, + { + "start": 17920.68, + "end": 17921.28, + "probability": 0.9111 + }, + { + "start": 17921.4, + "end": 17922.45, + "probability": 0.9736 + }, + { + "start": 17923.5, + "end": 17926.04, + "probability": 0.9869 + }, + { + "start": 17926.64, + "end": 17928.1, + "probability": 0.9498 + }, + { + "start": 17928.64, + "end": 17929.02, + "probability": 0.0218 + }, + { + "start": 17929.02, + "end": 17929.02, + "probability": 0.0663 + }, + { + "start": 17929.02, + "end": 17931.32, + "probability": 0.9967 + }, + { + "start": 17931.32, + "end": 17934.72, + "probability": 0.9869 + }, + { + "start": 17935.06, + "end": 17936.46, + "probability": 0.9854 + }, + { + "start": 17936.9, + "end": 17940.26, + "probability": 0.9612 + }, + { + "start": 17941.31, + "end": 17944.68, + "probability": 0.0588 + }, + { + "start": 17945.0, + "end": 17948.5, + "probability": 0.9127 + }, + { + "start": 17948.5, + "end": 17948.5, + "probability": 0.0401 + }, + { + "start": 17948.5, + "end": 17953.0, + "probability": 0.9969 + }, + { + "start": 17953.0, + "end": 17957.62, + "probability": 0.9988 + }, + { + "start": 17957.76, + "end": 17959.44, + "probability": 0.9889 + }, + { + "start": 17959.7, + "end": 17961.72, + "probability": 0.9389 + }, + { + "start": 17962.04, + "end": 17963.2, + "probability": 0.9803 + }, + { + "start": 17963.54, + "end": 17964.0, + "probability": 0.9851 + }, + { + "start": 17964.18, + "end": 17964.88, + "probability": 0.9963 + }, + { + "start": 17964.94, + "end": 17965.62, + "probability": 0.9913 + }, + { + "start": 17965.9, + "end": 17967.54, + "probability": 0.9482 + }, + { + "start": 17967.96, + "end": 17970.14, + "probability": 0.9304 + }, + { + "start": 17970.52, + "end": 17973.46, + "probability": 0.9932 + }, + { + "start": 17973.46, + "end": 17976.78, + "probability": 0.994 + }, + { + "start": 17977.22, + "end": 17977.8, + "probability": 0.7997 + }, + { + "start": 17978.54, + "end": 17981.07, + "probability": 0.8813 + }, + { + "start": 17981.78, + "end": 17985.0, + "probability": 0.9805 + }, + { + "start": 17985.32, + "end": 17988.24, + "probability": 0.7482 + }, + { + "start": 17988.7, + "end": 17991.14, + "probability": 0.8137 + }, + { + "start": 17991.32, + "end": 17992.52, + "probability": 0.9731 + }, + { + "start": 17992.92, + "end": 17996.92, + "probability": 0.9511 + }, + { + "start": 17997.48, + "end": 18000.4, + "probability": 0.9964 + }, + { + "start": 18007.12, + "end": 18007.62, + "probability": 0.257 + }, + { + "start": 18007.62, + "end": 18007.84, + "probability": 0.5705 + }, + { + "start": 18007.88, + "end": 18009.5, + "probability": 0.8411 + }, + { + "start": 18010.08, + "end": 18012.54, + "probability": 0.8889 + }, + { + "start": 18012.66, + "end": 18012.92, + "probability": 0.5069 + }, + { + "start": 18012.98, + "end": 18014.34, + "probability": 0.9092 + }, + { + "start": 18014.7, + "end": 18016.8, + "probability": 0.8751 + }, + { + "start": 18024.34, + "end": 18029.31, + "probability": 0.9974 + }, + { + "start": 18030.32, + "end": 18032.66, + "probability": 0.8173 + }, + { + "start": 18033.6, + "end": 18034.76, + "probability": 0.7363 + }, + { + "start": 18035.24, + "end": 18036.82, + "probability": 0.9791 + }, + { + "start": 18037.92, + "end": 18040.72, + "probability": 0.9358 + }, + { + "start": 18041.98, + "end": 18045.44, + "probability": 0.0306 + }, + { + "start": 18046.66, + "end": 18049.26, + "probability": 0.6386 + }, + { + "start": 18050.74, + "end": 18051.82, + "probability": 0.1744 + }, + { + "start": 18053.27, + "end": 18055.96, + "probability": 0.9727 + }, + { + "start": 18056.02, + "end": 18057.18, + "probability": 0.9696 + }, + { + "start": 18057.48, + "end": 18057.58, + "probability": 0.1242 + }, + { + "start": 18057.58, + "end": 18057.98, + "probability": 0.8346 + }, + { + "start": 18058.56, + "end": 18059.66, + "probability": 0.6508 + }, + { + "start": 18060.26, + "end": 18061.48, + "probability": 0.3877 + }, + { + "start": 18062.26, + "end": 18062.4, + "probability": 0.0345 + }, + { + "start": 18063.72, + "end": 18064.42, + "probability": 0.6394 + }, + { + "start": 18064.96, + "end": 18065.18, + "probability": 0.9055 + }, + { + "start": 18065.74, + "end": 18066.52, + "probability": 0.575 + }, + { + "start": 18067.18, + "end": 18067.4, + "probability": 0.8889 + }, + { + "start": 18067.94, + "end": 18068.7, + "probability": 0.4468 + }, + { + "start": 18070.28, + "end": 18070.54, + "probability": 0.8854 + }, + { + "start": 18071.12, + "end": 18073.18, + "probability": 0.714 + }, + { + "start": 18074.5, + "end": 18076.94, + "probability": 0.8282 + }, + { + "start": 18077.88, + "end": 18078.14, + "probability": 0.9673 + }, + { + "start": 18079.22, + "end": 18079.66, + "probability": 0.552 + }, + { + "start": 18082.06, + "end": 18083.38, + "probability": 0.4806 + }, + { + "start": 18084.62, + "end": 18085.82, + "probability": 0.856 + }, + { + "start": 18086.38, + "end": 18088.36, + "probability": 0.5892 + }, + { + "start": 18090.84, + "end": 18091.5, + "probability": 0.9725 + }, + { + "start": 18093.28, + "end": 18094.38, + "probability": 0.9588 + }, + { + "start": 18095.58, + "end": 18095.88, + "probability": 0.9583 + }, + { + "start": 18096.56, + "end": 18098.86, + "probability": 0.9465 + }, + { + "start": 18099.72, + "end": 18100.16, + "probability": 0.9333 + }, + { + "start": 18101.2, + "end": 18102.28, + "probability": 0.9899 + }, + { + "start": 18103.58, + "end": 18104.06, + "probability": 0.9832 + }, + { + "start": 18104.74, + "end": 18105.56, + "probability": 0.9894 + }, + { + "start": 18106.48, + "end": 18107.38, + "probability": 0.9736 + }, + { + "start": 18108.3, + "end": 18109.36, + "probability": 0.9897 + }, + { + "start": 18110.42, + "end": 18110.52, + "probability": 0.7874 + }, + { + "start": 18111.84, + "end": 18114.16, + "probability": 0.9709 + }, + { + "start": 18115.48, + "end": 18118.84, + "probability": 0.9468 + }, + { + "start": 18119.7, + "end": 18120.14, + "probability": 0.7384 + }, + { + "start": 18120.9, + "end": 18121.84, + "probability": 0.9358 + }, + { + "start": 18122.98, + "end": 18126.24, + "probability": 0.9343 + }, + { + "start": 18127.02, + "end": 18127.42, + "probability": 0.7416 + }, + { + "start": 18128.24, + "end": 18129.24, + "probability": 0.9868 + }, + { + "start": 18130.08, + "end": 18130.6, + "probability": 0.96 + }, + { + "start": 18131.26, + "end": 18132.34, + "probability": 0.9858 + }, + { + "start": 18133.28, + "end": 18136.3, + "probability": 0.9916 + }, + { + "start": 18137.1, + "end": 18137.48, + "probability": 0.95 + }, + { + "start": 18139.08, + "end": 18139.92, + "probability": 0.679 + }, + { + "start": 18141.16, + "end": 18142.0, + "probability": 0.9417 + }, + { + "start": 18143.2, + "end": 18144.16, + "probability": 0.9058 + }, + { + "start": 18145.67, + "end": 18148.12, + "probability": 0.8994 + }, + { + "start": 18150.83, + "end": 18158.96, + "probability": 0.8789 + }, + { + "start": 18159.5, + "end": 18161.38, + "probability": 0.9907 + }, + { + "start": 18162.36, + "end": 18165.38, + "probability": 0.8842 + }, + { + "start": 18166.38, + "end": 18166.76, + "probability": 0.9973 + }, + { + "start": 18167.64, + "end": 18168.56, + "probability": 0.8065 + }, + { + "start": 18172.0, + "end": 18174.06, + "probability": 0.8321 + }, + { + "start": 18176.2, + "end": 18176.64, + "probability": 0.9849 + }, + { + "start": 18178.22, + "end": 18179.42, + "probability": 0.9851 + }, + { + "start": 18181.42, + "end": 18181.82, + "probability": 0.9902 + }, + { + "start": 18182.92, + "end": 18184.1, + "probability": 0.9423 + }, + { + "start": 18184.86, + "end": 18185.82, + "probability": 0.9905 + }, + { + "start": 18186.54, + "end": 18188.6, + "probability": 0.9821 + }, + { + "start": 18189.78, + "end": 18192.08, + "probability": 0.9937 + }, + { + "start": 18193.1, + "end": 18194.26, + "probability": 0.4386 + }, + { + "start": 18194.94, + "end": 18195.28, + "probability": 0.9614 + }, + { + "start": 18196.0, + "end": 18196.9, + "probability": 0.6165 + }, + { + "start": 18198.08, + "end": 18199.96, + "probability": 0.9929 + }, + { + "start": 18200.8, + "end": 18202.86, + "probability": 0.9946 + }, + { + "start": 18204.0, + "end": 18206.14, + "probability": 0.9446 + }, + { + "start": 18208.9, + "end": 18210.28, + "probability": 0.9941 + }, + { + "start": 18211.26, + "end": 18212.54, + "probability": 0.9593 + }, + { + "start": 18213.58, + "end": 18214.94, + "probability": 0.9934 + }, + { + "start": 18215.66, + "end": 18217.28, + "probability": 0.7607 + }, + { + "start": 18221.98, + "end": 18224.28, + "probability": 0.6315 + }, + { + "start": 18224.84, + "end": 18225.66, + "probability": 0.7786 + }, + { + "start": 18227.08, + "end": 18228.74, + "probability": 0.9839 + }, + { + "start": 18229.58, + "end": 18231.04, + "probability": 0.9858 + }, + { + "start": 18231.76, + "end": 18233.4, + "probability": 0.9414 + }, + { + "start": 18234.62, + "end": 18236.74, + "probability": 0.9774 + }, + { + "start": 18238.44, + "end": 18238.9, + "probability": 0.9909 + }, + { + "start": 18240.32, + "end": 18242.36, + "probability": 0.7503 + }, + { + "start": 18243.94, + "end": 18246.64, + "probability": 0.9004 + }, + { + "start": 18247.24, + "end": 18248.24, + "probability": 0.327 + }, + { + "start": 18250.12, + "end": 18250.58, + "probability": 0.9946 + }, + { + "start": 18252.68, + "end": 18253.0, + "probability": 0.6373 + }, + { + "start": 18254.68, + "end": 18255.04, + "probability": 0.9764 + }, + { + "start": 18255.88, + "end": 18256.9, + "probability": 0.7388 + }, + { + "start": 18258.5, + "end": 18259.46, + "probability": 0.9915 + }, + { + "start": 18260.2, + "end": 18262.9, + "probability": 0.9886 + }, + { + "start": 18264.6, + "end": 18265.58, + "probability": 0.9087 + }, + { + "start": 18266.34, + "end": 18267.22, + "probability": 0.7079 + }, + { + "start": 18267.84, + "end": 18272.86, + "probability": 0.9885 + }, + { + "start": 18273.62, + "end": 18274.1, + "probability": 0.9951 + }, + { + "start": 18274.74, + "end": 18277.6, + "probability": 0.962 + }, + { + "start": 18278.76, + "end": 18279.24, + "probability": 0.9961 + }, + { + "start": 18280.62, + "end": 18281.28, + "probability": 0.5654 + }, + { + "start": 18282.52, + "end": 18283.16, + "probability": 0.8065 + }, + { + "start": 18284.16, + "end": 18284.86, + "probability": 0.8569 + }, + { + "start": 18285.58, + "end": 18288.44, + "probability": 0.9769 + }, + { + "start": 18289.26, + "end": 18291.54, + "probability": 0.9946 + }, + { + "start": 18293.14, + "end": 18294.48, + "probability": 0.9954 + }, + { + "start": 18295.3, + "end": 18296.3, + "probability": 0.962 + }, + { + "start": 18297.1, + "end": 18297.52, + "probability": 0.9856 + }, + { + "start": 18298.4, + "end": 18301.68, + "probability": 0.9862 + }, + { + "start": 18302.68, + "end": 18303.82, + "probability": 0.9834 + }, + { + "start": 18304.42, + "end": 18306.22, + "probability": 0.5329 + }, + { + "start": 18307.06, + "end": 18309.22, + "probability": 0.9644 + }, + { + "start": 18310.02, + "end": 18312.4, + "probability": 0.8369 + }, + { + "start": 18313.72, + "end": 18315.92, + "probability": 0.98 + }, + { + "start": 18317.32, + "end": 18317.72, + "probability": 0.9561 + }, + { + "start": 18318.58, + "end": 18319.48, + "probability": 0.9598 + }, + { + "start": 18320.92, + "end": 18323.82, + "probability": 0.9945 + }, + { + "start": 18324.54, + "end": 18327.92, + "probability": 0.9894 + }, + { + "start": 18328.76, + "end": 18329.2, + "probability": 0.9937 + }, + { + "start": 18330.38, + "end": 18331.62, + "probability": 0.9405 + }, + { + "start": 18332.16, + "end": 18333.18, + "probability": 0.9846 + }, + { + "start": 18334.36, + "end": 18335.42, + "probability": 0.9356 + }, + { + "start": 18337.9, + "end": 18338.32, + "probability": 0.6624 + }, + { + "start": 18339.86, + "end": 18340.32, + "probability": 0.9748 + }, + { + "start": 18340.92, + "end": 18342.54, + "probability": 0.8855 + }, + { + "start": 18343.2, + "end": 18343.66, + "probability": 0.9884 + }, + { + "start": 18344.72, + "end": 18346.3, + "probability": 0.8333 + }, + { + "start": 18347.26, + "end": 18347.7, + "probability": 0.8899 + }, + { + "start": 18348.46, + "end": 18351.58, + "probability": 0.8524 + }, + { + "start": 18352.44, + "end": 18353.66, + "probability": 0.9907 + }, + { + "start": 18354.8, + "end": 18356.16, + "probability": 0.9934 + }, + { + "start": 18356.8, + "end": 18359.62, + "probability": 0.9938 + }, + { + "start": 18361.14, + "end": 18362.58, + "probability": 0.9679 + }, + { + "start": 18363.44, + "end": 18363.84, + "probability": 0.9956 + }, + { + "start": 18367.6, + "end": 18369.22, + "probability": 0.5657 + }, + { + "start": 18370.2, + "end": 18371.44, + "probability": 0.7001 + }, + { + "start": 18372.88, + "end": 18374.04, + "probability": 0.805 + }, + { + "start": 18375.12, + "end": 18377.06, + "probability": 0.981 + }, + { + "start": 18378.5, + "end": 18378.9, + "probability": 0.8483 + }, + { + "start": 18379.72, + "end": 18380.86, + "probability": 0.9882 + }, + { + "start": 18382.14, + "end": 18385.4, + "probability": 0.967 + }, + { + "start": 18386.08, + "end": 18388.16, + "probability": 0.9541 + }, + { + "start": 18389.18, + "end": 18392.6, + "probability": 0.9848 + }, + { + "start": 18394.78, + "end": 18394.88, + "probability": 0.5526 + }, + { + "start": 18395.7, + "end": 18397.4, + "probability": 0.5918 + }, + { + "start": 18398.26, + "end": 18399.42, + "probability": 0.5529 + }, + { + "start": 18400.4, + "end": 18402.24, + "probability": 0.9442 + }, + { + "start": 18403.14, + "end": 18405.54, + "probability": 0.9185 + }, + { + "start": 18406.62, + "end": 18407.8, + "probability": 0.99 + }, + { + "start": 18408.74, + "end": 18410.24, + "probability": 0.9653 + }, + { + "start": 18411.4, + "end": 18413.36, + "probability": 0.966 + }, + { + "start": 18413.92, + "end": 18414.3, + "probability": 0.9868 + }, + { + "start": 18415.04, + "end": 18416.34, + "probability": 0.8687 + }, + { + "start": 18418.46, + "end": 18424.66, + "probability": 0.9513 + }, + { + "start": 18426.26, + "end": 18429.56, + "probability": 0.7912 + }, + { + "start": 18430.64, + "end": 18431.6, + "probability": 0.965 + }, + { + "start": 18433.14, + "end": 18434.9, + "probability": 0.5079 + }, + { + "start": 18435.5, + "end": 18436.0, + "probability": 0.8293 + }, + { + "start": 18436.84, + "end": 18438.1, + "probability": 0.8729 + }, + { + "start": 18439.52, + "end": 18442.4, + "probability": 0.9857 + }, + { + "start": 18442.98, + "end": 18443.52, + "probability": 0.9932 + }, + { + "start": 18444.34, + "end": 18445.2, + "probability": 0.9791 + }, + { + "start": 18446.18, + "end": 18446.7, + "probability": 0.9946 + }, + { + "start": 18447.54, + "end": 18448.66, + "probability": 0.9222 + }, + { + "start": 18451.98, + "end": 18453.26, + "probability": 0.7532 + }, + { + "start": 18454.58, + "end": 18455.62, + "probability": 0.8157 + }, + { + "start": 18456.38, + "end": 18457.34, + "probability": 0.6219 + }, + { + "start": 18458.08, + "end": 18459.94, + "probability": 0.868 + }, + { + "start": 18461.06, + "end": 18461.32, + "probability": 0.9546 + }, + { + "start": 18462.04, + "end": 18464.18, + "probability": 0.9058 + }, + { + "start": 18465.12, + "end": 18468.76, + "probability": 0.9315 + }, + { + "start": 18469.56, + "end": 18472.6, + "probability": 0.9919 + }, + { + "start": 18473.92, + "end": 18475.14, + "probability": 0.988 + }, + { + "start": 18476.02, + "end": 18477.54, + "probability": 0.943 + }, + { + "start": 18478.62, + "end": 18481.38, + "probability": 0.967 + }, + { + "start": 18488.38, + "end": 18492.2, + "probability": 0.4857 + }, + { + "start": 18493.34, + "end": 18496.3, + "probability": 0.8573 + }, + { + "start": 18497.72, + "end": 18499.24, + "probability": 0.8311 + }, + { + "start": 18501.18, + "end": 18502.34, + "probability": 0.9834 + }, + { + "start": 18504.34, + "end": 18505.92, + "probability": 0.9846 + }, + { + "start": 18506.64, + "end": 18509.08, + "probability": 0.9737 + }, + { + "start": 18510.7, + "end": 18513.16, + "probability": 0.9062 + }, + { + "start": 18513.78, + "end": 18514.0, + "probability": 0.9806 + }, + { + "start": 18514.72, + "end": 18520.42, + "probability": 0.7345 + }, + { + "start": 18521.3, + "end": 18525.02, + "probability": 0.9339 + }, + { + "start": 18525.86, + "end": 18526.36, + "probability": 0.7637 + }, + { + "start": 18527.26, + "end": 18528.36, + "probability": 0.9226 + }, + { + "start": 18531.04, + "end": 18537.02, + "probability": 0.7151 + }, + { + "start": 18541.6, + "end": 18542.14, + "probability": 0.8035 + }, + { + "start": 18543.08, + "end": 18545.12, + "probability": 0.7974 + }, + { + "start": 18546.12, + "end": 18548.54, + "probability": 0.9657 + }, + { + "start": 18549.26, + "end": 18551.9, + "probability": 0.6237 + }, + { + "start": 18553.18, + "end": 18553.52, + "probability": 0.986 + }, + { + "start": 18554.26, + "end": 18554.94, + "probability": 0.4016 + }, + { + "start": 18560.64, + "end": 18562.08, + "probability": 0.5752 + }, + { + "start": 18562.18, + "end": 18564.38, + "probability": 0.7513 + }, + { + "start": 18565.86, + "end": 18567.38, + "probability": 0.2951 + }, + { + "start": 18568.08, + "end": 18573.22, + "probability": 0.939 + }, + { + "start": 18574.63, + "end": 18579.28, + "probability": 0.6027 + }, + { + "start": 18580.94, + "end": 18584.26, + "probability": 0.918 + }, + { + "start": 18586.88, + "end": 18587.8, + "probability": 0.9904 + }, + { + "start": 18588.38, + "end": 18590.32, + "probability": 0.7567 + }, + { + "start": 18592.24, + "end": 18593.14, + "probability": 0.9946 + }, + { + "start": 18597.4, + "end": 18598.66, + "probability": 0.7107 + }, + { + "start": 18599.62, + "end": 18603.76, + "probability": 0.8349 + }, + { + "start": 18604.72, + "end": 18605.08, + "probability": 0.9118 + }, + { + "start": 18612.34, + "end": 18615.82, + "probability": 0.9888 + }, + { + "start": 18622.34, + "end": 18622.46, + "probability": 0.0004 + }, + { + "start": 18623.24, + "end": 18623.54, + "probability": 0.0029 + }, + { + "start": 18756.54, + "end": 18756.54, + "probability": 0.013 + }, + { + "start": 18757.74, + "end": 18758.34, + "probability": 0.2359 + }, + { + "start": 18758.34, + "end": 18758.34, + "probability": 0.0591 + }, + { + "start": 18758.34, + "end": 18758.82, + "probability": 0.3551 + }, + { + "start": 18758.82, + "end": 18762.98, + "probability": 0.8446 + }, + { + "start": 18763.02, + "end": 18766.55, + "probability": 0.9929 + }, + { + "start": 18767.36, + "end": 18768.9, + "probability": 0.5078 + }, + { + "start": 18768.9, + "end": 18772.12, + "probability": 0.9425 + }, + { + "start": 18772.3, + "end": 18775.6, + "probability": 0.9651 + }, + { + "start": 18776.34, + "end": 18776.74, + "probability": 0.7006 + }, + { + "start": 18776.8, + "end": 18780.16, + "probability": 0.9973 + }, + { + "start": 18780.68, + "end": 18783.4, + "probability": 0.9897 + }, + { + "start": 18783.4, + "end": 18785.64, + "probability": 0.7964 + }, + { + "start": 18785.82, + "end": 18787.86, + "probability": 0.9868 + }, + { + "start": 18788.62, + "end": 18790.78, + "probability": 0.9785 + }, + { + "start": 18790.78, + "end": 18793.34, + "probability": 0.9922 + }, + { + "start": 18793.94, + "end": 18794.18, + "probability": 0.506 + }, + { + "start": 18794.22, + "end": 18794.96, + "probability": 0.9292 + }, + { + "start": 18796.5, + "end": 18796.84, + "probability": 0.9382 + }, + { + "start": 18796.92, + "end": 18798.72, + "probability": 0.8698 + }, + { + "start": 18798.94, + "end": 18801.76, + "probability": 0.9906 + }, + { + "start": 18801.76, + "end": 18805.28, + "probability": 0.9897 + }, + { + "start": 18805.84, + "end": 18806.64, + "probability": 0.3688 + }, + { + "start": 18806.78, + "end": 18807.6, + "probability": 0.6902 + }, + { + "start": 18807.66, + "end": 18810.02, + "probability": 0.3341 + }, + { + "start": 18810.38, + "end": 18811.34, + "probability": 0.7026 + }, + { + "start": 18812.18, + "end": 18817.34, + "probability": 0.995 + }, + { + "start": 18817.36, + "end": 18818.28, + "probability": 0.7731 + }, + { + "start": 18819.14, + "end": 18821.34, + "probability": 0.9015 + }, + { + "start": 18827.58, + "end": 18828.92, + "probability": 0.734 + }, + { + "start": 18829.24, + "end": 18831.01, + "probability": 0.9028 + }, + { + "start": 18831.16, + "end": 18832.12, + "probability": 0.8728 + }, + { + "start": 18832.26, + "end": 18833.76, + "probability": 0.9956 + }, + { + "start": 18834.34, + "end": 18836.36, + "probability": 0.9948 + }, + { + "start": 18837.12, + "end": 18843.68, + "probability": 0.9753 + }, + { + "start": 18844.1, + "end": 18845.06, + "probability": 0.7945 + }, + { + "start": 18845.72, + "end": 18848.02, + "probability": 0.9982 + }, + { + "start": 18849.62, + "end": 18857.64, + "probability": 0.9561 + }, + { + "start": 18858.48, + "end": 18860.34, + "probability": 0.9937 + }, + { + "start": 18860.5, + "end": 18862.26, + "probability": 0.8977 + }, + { + "start": 18863.0, + "end": 18872.04, + "probability": 0.9976 + }, + { + "start": 18873.48, + "end": 18877.4, + "probability": 0.9323 + }, + { + "start": 18878.32, + "end": 18884.56, + "probability": 0.9848 + }, + { + "start": 18884.72, + "end": 18887.96, + "probability": 0.998 + }, + { + "start": 18889.3, + "end": 18894.0, + "probability": 0.9946 + }, + { + "start": 18895.24, + "end": 18896.82, + "probability": 0.903 + }, + { + "start": 18897.78, + "end": 18898.82, + "probability": 0.8087 + }, + { + "start": 18899.92, + "end": 18904.26, + "probability": 0.9638 + }, + { + "start": 18905.1, + "end": 18907.48, + "probability": 0.9432 + }, + { + "start": 18908.2, + "end": 18911.82, + "probability": 0.9909 + }, + { + "start": 18911.82, + "end": 18915.82, + "probability": 0.9976 + }, + { + "start": 18916.92, + "end": 18921.22, + "probability": 0.9972 + }, + { + "start": 18921.26, + "end": 18925.98, + "probability": 0.998 + }, + { + "start": 18927.0, + "end": 18930.58, + "probability": 0.9984 + }, + { + "start": 18931.16, + "end": 18935.84, + "probability": 0.9977 + }, + { + "start": 18936.0, + "end": 18939.6, + "probability": 0.7987 + }, + { + "start": 18940.08, + "end": 18942.92, + "probability": 0.9987 + }, + { + "start": 18943.6, + "end": 18945.82, + "probability": 0.9946 + }, + { + "start": 18945.82, + "end": 18950.38, + "probability": 0.9938 + }, + { + "start": 18951.52, + "end": 18957.7, + "probability": 0.9958 + }, + { + "start": 18958.36, + "end": 18962.74, + "probability": 0.9282 + }, + { + "start": 18962.74, + "end": 18966.98, + "probability": 0.9978 + }, + { + "start": 18967.52, + "end": 18972.0, + "probability": 0.999 + }, + { + "start": 18973.48, + "end": 18978.48, + "probability": 0.9896 + }, + { + "start": 18978.48, + "end": 18984.1, + "probability": 0.9998 + }, + { + "start": 18984.66, + "end": 18986.96, + "probability": 0.9993 + }, + { + "start": 18988.06, + "end": 18993.86, + "probability": 0.9972 + }, + { + "start": 18993.86, + "end": 18999.98, + "probability": 0.9976 + }, + { + "start": 19000.34, + "end": 19005.56, + "probability": 0.9947 + }, + { + "start": 19006.5, + "end": 19010.78, + "probability": 0.949 + }, + { + "start": 19010.82, + "end": 19015.24, + "probability": 0.9971 + }, + { + "start": 19016.04, + "end": 19022.5, + "probability": 0.9933 + }, + { + "start": 19022.5, + "end": 19029.7, + "probability": 0.9995 + }, + { + "start": 19030.68, + "end": 19036.32, + "probability": 0.9969 + }, + { + "start": 19036.82, + "end": 19042.2, + "probability": 0.9997 + }, + { + "start": 19042.9, + "end": 19043.9, + "probability": 0.8146 + }, + { + "start": 19045.54, + "end": 19046.4, + "probability": 0.9438 + }, + { + "start": 19046.56, + "end": 19052.6, + "probability": 0.9805 + }, + { + "start": 19053.24, + "end": 19055.44, + "probability": 0.8557 + }, + { + "start": 19055.84, + "end": 19057.86, + "probability": 0.9897 + }, + { + "start": 19057.94, + "end": 19058.44, + "probability": 0.7927 + }, + { + "start": 19059.7, + "end": 19060.78, + "probability": 0.7528 + }, + { + "start": 19061.32, + "end": 19062.68, + "probability": 0.9384 + }, + { + "start": 19062.74, + "end": 19065.46, + "probability": 0.9348 + }, + { + "start": 19071.6, + "end": 19073.28, + "probability": 0.5685 + }, + { + "start": 19074.6, + "end": 19076.98, + "probability": 0.8127 + }, + { + "start": 19078.54, + "end": 19079.36, + "probability": 0.7366 + }, + { + "start": 19080.1, + "end": 19081.22, + "probability": 0.9893 + }, + { + "start": 19082.64, + "end": 19083.76, + "probability": 0.7297 + }, + { + "start": 19083.8, + "end": 19085.36, + "probability": 0.0151 + }, + { + "start": 19085.4, + "end": 19086.26, + "probability": 0.9596 + }, + { + "start": 19086.89, + "end": 19091.32, + "probability": 0.7841 + }, + { + "start": 19101.84, + "end": 19102.26, + "probability": 0.504 + }, + { + "start": 19102.32, + "end": 19104.54, + "probability": 0.6674 + }, + { + "start": 19105.06, + "end": 19108.76, + "probability": 0.991 + }, + { + "start": 19108.76, + "end": 19111.88, + "probability": 0.9935 + }, + { + "start": 19114.28, + "end": 19118.46, + "probability": 0.9987 + }, + { + "start": 19118.98, + "end": 19119.7, + "probability": 0.6812 + }, + { + "start": 19120.38, + "end": 19121.54, + "probability": 0.851 + }, + { + "start": 19124.0, + "end": 19125.72, + "probability": 0.9749 + }, + { + "start": 19129.94, + "end": 19130.5, + "probability": 0.7041 + }, + { + "start": 19130.6, + "end": 19131.0, + "probability": 0.3245 + }, + { + "start": 19131.56, + "end": 19133.02, + "probability": 0.9884 + }, + { + "start": 19137.22, + "end": 19139.92, + "probability": 0.482 + }, + { + "start": 19146.25, + "end": 19148.78, + "probability": 0.5615 + }, + { + "start": 19148.9, + "end": 19149.68, + "probability": 0.6511 + }, + { + "start": 19150.14, + "end": 19153.8, + "probability": 0.996 + }, + { + "start": 19153.8, + "end": 19158.82, + "probability": 0.9958 + }, + { + "start": 19160.14, + "end": 19163.54, + "probability": 0.9629 + }, + { + "start": 19164.52, + "end": 19165.64, + "probability": 0.9081 + }, + { + "start": 19166.12, + "end": 19170.66, + "probability": 0.9835 + }, + { + "start": 19171.3, + "end": 19175.76, + "probability": 0.9883 + }, + { + "start": 19175.76, + "end": 19179.42, + "probability": 0.983 + }, + { + "start": 19181.48, + "end": 19184.22, + "probability": 0.9113 + }, + { + "start": 19185.62, + "end": 19186.78, + "probability": 0.8782 + }, + { + "start": 19187.04, + "end": 19189.58, + "probability": 0.9725 + }, + { + "start": 19189.8, + "end": 19193.28, + "probability": 0.8284 + }, + { + "start": 19193.36, + "end": 19193.46, + "probability": 0.3261 + }, + { + "start": 19194.04, + "end": 19196.56, + "probability": 0.1385 + }, + { + "start": 19196.72, + "end": 19199.06, + "probability": 0.1977 + }, + { + "start": 19200.04, + "end": 19200.66, + "probability": 0.1667 + }, + { + "start": 19200.88, + "end": 19202.08, + "probability": 0.3178 + }, + { + "start": 19202.74, + "end": 19204.56, + "probability": 0.5602 + }, + { + "start": 19205.08, + "end": 19206.78, + "probability": 0.6072 + }, + { + "start": 19206.78, + "end": 19207.52, + "probability": 0.2772 + }, + { + "start": 19207.62, + "end": 19208.78, + "probability": 0.7335 + }, + { + "start": 19208.82, + "end": 19209.94, + "probability": 0.9772 + }, + { + "start": 19209.98, + "end": 19211.24, + "probability": 0.7527 + }, + { + "start": 19213.24, + "end": 19215.16, + "probability": 0.1073 + }, + { + "start": 19215.28, + "end": 19215.28, + "probability": 0.0193 + }, + { + "start": 19215.28, + "end": 19215.86, + "probability": 0.5931 + }, + { + "start": 19216.06, + "end": 19217.04, + "probability": 0.936 + }, + { + "start": 19217.54, + "end": 19219.9, + "probability": 0.9958 + }, + { + "start": 19220.16, + "end": 19221.0, + "probability": 0.7598 + }, + { + "start": 19222.0, + "end": 19223.64, + "probability": 0.9976 + }, + { + "start": 19224.24, + "end": 19228.18, + "probability": 0.9657 + }, + { + "start": 19228.18, + "end": 19230.76, + "probability": 0.9824 + }, + { + "start": 19231.54, + "end": 19235.9, + "probability": 0.8876 + }, + { + "start": 19236.04, + "end": 19239.12, + "probability": 0.9869 + }, + { + "start": 19239.6, + "end": 19241.4, + "probability": 0.989 + }, + { + "start": 19241.94, + "end": 19245.4, + "probability": 0.8607 + }, + { + "start": 19245.98, + "end": 19247.94, + "probability": 0.9758 + }, + { + "start": 19248.74, + "end": 19251.26, + "probability": 0.9515 + }, + { + "start": 19251.68, + "end": 19254.58, + "probability": 0.9984 + }, + { + "start": 19254.9, + "end": 19257.1, + "probability": 0.9971 + }, + { + "start": 19257.5, + "end": 19260.5, + "probability": 0.9625 + }, + { + "start": 19261.2, + "end": 19262.34, + "probability": 0.7604 + }, + { + "start": 19262.96, + "end": 19267.54, + "probability": 0.9961 + }, + { + "start": 19267.54, + "end": 19272.26, + "probability": 0.9976 + }, + { + "start": 19272.56, + "end": 19273.16, + "probability": 0.9291 + }, + { + "start": 19273.88, + "end": 19277.1, + "probability": 0.9844 + }, + { + "start": 19277.44, + "end": 19279.7, + "probability": 0.9985 + }, + { + "start": 19280.24, + "end": 19281.56, + "probability": 0.9925 + }, + { + "start": 19282.46, + "end": 19284.06, + "probability": 0.9744 + }, + { + "start": 19284.24, + "end": 19287.4, + "probability": 0.9969 + }, + { + "start": 19287.4, + "end": 19290.94, + "probability": 0.9471 + }, + { + "start": 19291.3, + "end": 19292.8, + "probability": 0.9574 + }, + { + "start": 19293.48, + "end": 19296.5, + "probability": 0.9913 + }, + { + "start": 19297.08, + "end": 19298.5, + "probability": 0.9978 + }, + { + "start": 19299.14, + "end": 19300.1, + "probability": 0.673 + }, + { + "start": 19302.12, + "end": 19302.98, + "probability": 0.8569 + }, + { + "start": 19303.1, + "end": 19307.18, + "probability": 0.9902 + }, + { + "start": 19307.92, + "end": 19311.98, + "probability": 0.9982 + }, + { + "start": 19312.48, + "end": 19315.56, + "probability": 0.9596 + }, + { + "start": 19316.08, + "end": 19318.52, + "probability": 0.8192 + }, + { + "start": 19318.7, + "end": 19319.02, + "probability": 0.5855 + }, + { + "start": 19320.08, + "end": 19320.92, + "probability": 0.293 + }, + { + "start": 19320.96, + "end": 19324.12, + "probability": 0.9757 + }, + { + "start": 19324.34, + "end": 19325.2, + "probability": 0.976 + }, + { + "start": 19325.5, + "end": 19326.12, + "probability": 0.7579 + }, + { + "start": 19326.74, + "end": 19329.64, + "probability": 0.996 + }, + { + "start": 19329.72, + "end": 19332.08, + "probability": 0.9976 + }, + { + "start": 19332.38, + "end": 19333.73, + "probability": 0.8608 + }, + { + "start": 19335.06, + "end": 19337.32, + "probability": 0.9957 + }, + { + "start": 19337.62, + "end": 19338.42, + "probability": 0.9603 + }, + { + "start": 19338.98, + "end": 19340.9, + "probability": 0.9784 + }, + { + "start": 19341.52, + "end": 19342.56, + "probability": 0.9919 + }, + { + "start": 19342.94, + "end": 19345.9, + "probability": 0.9702 + }, + { + "start": 19346.32, + "end": 19347.66, + "probability": 0.959 + }, + { + "start": 19348.12, + "end": 19349.34, + "probability": 0.8509 + }, + { + "start": 19349.94, + "end": 19354.2, + "probability": 0.9677 + }, + { + "start": 19354.8, + "end": 19355.68, + "probability": 0.747 + }, + { + "start": 19355.86, + "end": 19356.74, + "probability": 0.9832 + }, + { + "start": 19357.08, + "end": 19361.02, + "probability": 0.9875 + }, + { + "start": 19361.5, + "end": 19363.36, + "probability": 0.9938 + }, + { + "start": 19363.6, + "end": 19366.78, + "probability": 0.9929 + }, + { + "start": 19366.92, + "end": 19368.09, + "probability": 0.6842 + }, + { + "start": 19368.82, + "end": 19369.44, + "probability": 0.3202 + }, + { + "start": 19370.04, + "end": 19371.24, + "probability": 0.9109 + }, + { + "start": 19371.64, + "end": 19373.2, + "probability": 0.9958 + }, + { + "start": 19373.7, + "end": 19377.88, + "probability": 0.8386 + }, + { + "start": 19378.1, + "end": 19379.4, + "probability": 0.9659 + }, + { + "start": 19379.68, + "end": 19382.0, + "probability": 0.9968 + }, + { + "start": 19382.32, + "end": 19383.58, + "probability": 0.7845 + }, + { + "start": 19384.0, + "end": 19384.38, + "probability": 0.7441 + }, + { + "start": 19385.14, + "end": 19386.22, + "probability": 0.6577 + }, + { + "start": 19387.32, + "end": 19389.66, + "probability": 0.9556 + }, + { + "start": 19397.3, + "end": 19400.22, + "probability": 0.7138 + }, + { + "start": 19402.12, + "end": 19404.38, + "probability": 0.811 + }, + { + "start": 19408.4, + "end": 19409.36, + "probability": 0.6608 + }, + { + "start": 19411.54, + "end": 19413.96, + "probability": 0.817 + }, + { + "start": 19414.94, + "end": 19420.68, + "probability": 0.9689 + }, + { + "start": 19421.42, + "end": 19422.48, + "probability": 0.9004 + }, + { + "start": 19422.56, + "end": 19423.16, + "probability": 0.9543 + }, + { + "start": 19423.3, + "end": 19426.38, + "probability": 0.9964 + }, + { + "start": 19427.04, + "end": 19427.98, + "probability": 0.8876 + }, + { + "start": 19428.16, + "end": 19430.08, + "probability": 0.9204 + }, + { + "start": 19430.48, + "end": 19432.24, + "probability": 0.8917 + }, + { + "start": 19432.4, + "end": 19433.42, + "probability": 0.8778 + }, + { + "start": 19433.96, + "end": 19435.18, + "probability": 0.7925 + }, + { + "start": 19435.42, + "end": 19441.24, + "probability": 0.9458 + }, + { + "start": 19441.24, + "end": 19447.42, + "probability": 0.9972 + }, + { + "start": 19447.54, + "end": 19448.66, + "probability": 0.898 + }, + { + "start": 19449.12, + "end": 19451.92, + "probability": 0.6661 + }, + { + "start": 19452.52, + "end": 19455.3, + "probability": 0.8895 + }, + { + "start": 19455.78, + "end": 19458.9, + "probability": 0.9422 + }, + { + "start": 19459.3, + "end": 19460.52, + "probability": 0.9535 + }, + { + "start": 19460.86, + "end": 19461.6, + "probability": 0.7496 + }, + { + "start": 19461.7, + "end": 19463.04, + "probability": 0.6658 + }, + { + "start": 19463.7, + "end": 19464.28, + "probability": 0.8281 + }, + { + "start": 19464.96, + "end": 19466.04, + "probability": 0.918 + }, + { + "start": 19466.36, + "end": 19467.99, + "probability": 0.9614 + }, + { + "start": 19468.4, + "end": 19469.08, + "probability": 0.9904 + }, + { + "start": 19469.98, + "end": 19470.89, + "probability": 0.9441 + }, + { + "start": 19471.2, + "end": 19475.28, + "probability": 0.9984 + }, + { + "start": 19475.66, + "end": 19476.17, + "probability": 0.5917 + }, + { + "start": 19476.8, + "end": 19480.2, + "probability": 0.9875 + }, + { + "start": 19480.62, + "end": 19481.22, + "probability": 0.9238 + }, + { + "start": 19481.9, + "end": 19483.03, + "probability": 0.9956 + }, + { + "start": 19483.42, + "end": 19484.19, + "probability": 0.9966 + }, + { + "start": 19484.72, + "end": 19485.62, + "probability": 0.6273 + }, + { + "start": 19485.96, + "end": 19487.02, + "probability": 0.4912 + }, + { + "start": 19487.5, + "end": 19489.5, + "probability": 0.8566 + }, + { + "start": 19489.78, + "end": 19492.56, + "probability": 0.8876 + }, + { + "start": 19492.56, + "end": 19495.66, + "probability": 0.8055 + }, + { + "start": 19496.02, + "end": 19497.45, + "probability": 0.6397 + }, + { + "start": 19498.12, + "end": 19498.6, + "probability": 0.7896 + }, + { + "start": 19498.76, + "end": 19500.28, + "probability": 0.915 + }, + { + "start": 19500.76, + "end": 19505.78, + "probability": 0.8501 + }, + { + "start": 19506.06, + "end": 19508.12, + "probability": 0.9539 + }, + { + "start": 19508.12, + "end": 19510.52, + "probability": 0.9308 + }, + { + "start": 19511.0, + "end": 19511.72, + "probability": 0.9695 + }, + { + "start": 19512.06, + "end": 19513.04, + "probability": 0.7493 + }, + { + "start": 19513.16, + "end": 19515.6, + "probability": 0.7808 + }, + { + "start": 19516.0, + "end": 19517.3, + "probability": 0.9359 + }, + { + "start": 19517.48, + "end": 19520.06, + "probability": 0.9353 + }, + { + "start": 19520.56, + "end": 19522.06, + "probability": 0.8782 + }, + { + "start": 19522.48, + "end": 19524.92, + "probability": 0.9924 + }, + { + "start": 19525.34, + "end": 19527.12, + "probability": 0.9529 + }, + { + "start": 19527.42, + "end": 19528.8, + "probability": 0.9331 + }, + { + "start": 19529.28, + "end": 19530.42, + "probability": 0.8385 + }, + { + "start": 19530.68, + "end": 19532.26, + "probability": 0.7681 + }, + { + "start": 19532.82, + "end": 19534.78, + "probability": 0.8794 + }, + { + "start": 19535.52, + "end": 19536.26, + "probability": 0.6555 + }, + { + "start": 19536.94, + "end": 19539.66, + "probability": 0.9943 + }, + { + "start": 19540.58, + "end": 19541.64, + "probability": 0.9523 + }, + { + "start": 19542.06, + "end": 19543.58, + "probability": 0.7929 + }, + { + "start": 19544.1, + "end": 19547.9, + "probability": 0.8342 + }, + { + "start": 19548.42, + "end": 19548.88, + "probability": 0.6773 + }, + { + "start": 19549.16, + "end": 19550.8, + "probability": 0.928 + }, + { + "start": 19551.06, + "end": 19553.04, + "probability": 0.9912 + }, + { + "start": 19553.84, + "end": 19556.76, + "probability": 0.9886 + }, + { + "start": 19557.08, + "end": 19558.18, + "probability": 0.932 + }, + { + "start": 19558.76, + "end": 19559.64, + "probability": 0.7017 + }, + { + "start": 19560.1, + "end": 19564.86, + "probability": 0.984 + }, + { + "start": 19565.1, + "end": 19567.72, + "probability": 0.9857 + }, + { + "start": 19568.26, + "end": 19572.78, + "probability": 0.8819 + }, + { + "start": 19573.54, + "end": 19576.52, + "probability": 0.9691 + }, + { + "start": 19576.78, + "end": 19578.44, + "probability": 0.8988 + }, + { + "start": 19578.82, + "end": 19579.62, + "probability": 0.926 + }, + { + "start": 19580.5, + "end": 19581.84, + "probability": 0.2703 + }, + { + "start": 19581.98, + "end": 19582.2, + "probability": 0.8577 + }, + { + "start": 19582.28, + "end": 19583.17, + "probability": 0.9927 + }, + { + "start": 19583.76, + "end": 19585.76, + "probability": 0.8004 + }, + { + "start": 19585.78, + "end": 19586.6, + "probability": 0.852 + }, + { + "start": 19587.5, + "end": 19588.06, + "probability": 0.4526 + }, + { + "start": 19588.52, + "end": 19589.59, + "probability": 0.9683 + }, + { + "start": 19590.52, + "end": 19592.12, + "probability": 0.9689 + }, + { + "start": 19592.72, + "end": 19593.84, + "probability": 0.8918 + }, + { + "start": 19594.32, + "end": 19596.94, + "probability": 0.9454 + }, + { + "start": 19597.36, + "end": 19598.68, + "probability": 0.9329 + }, + { + "start": 19598.88, + "end": 19599.67, + "probability": 0.8862 + }, + { + "start": 19600.26, + "end": 19601.96, + "probability": 0.7425 + }, + { + "start": 19602.24, + "end": 19604.14, + "probability": 0.9483 + }, + { + "start": 19604.62, + "end": 19604.92, + "probability": 0.2738 + }, + { + "start": 19604.92, + "end": 19607.2, + "probability": 0.7383 + }, + { + "start": 19608.48, + "end": 19610.08, + "probability": 0.4738 + }, + { + "start": 19610.14, + "end": 19611.9, + "probability": 0.8189 + }, + { + "start": 19612.74, + "end": 19614.6, + "probability": 0.8789 + }, + { + "start": 19615.72, + "end": 19618.08, + "probability": 0.8835 + }, + { + "start": 19619.26, + "end": 19619.92, + "probability": 0.5559 + }, + { + "start": 19621.84, + "end": 19622.82, + "probability": 0.7155 + }, + { + "start": 19624.06, + "end": 19625.14, + "probability": 0.8045 + }, + { + "start": 19625.72, + "end": 19627.56, + "probability": 0.7812 + }, + { + "start": 19628.52, + "end": 19628.94, + "probability": 0.9897 + }, + { + "start": 19629.92, + "end": 19630.7, + "probability": 0.9876 + }, + { + "start": 19631.94, + "end": 19632.64, + "probability": 0.6978 + }, + { + "start": 19633.02, + "end": 19633.78, + "probability": 0.9037 + }, + { + "start": 19652.62, + "end": 19653.4, + "probability": 0.4977 + }, + { + "start": 19653.48, + "end": 19654.38, + "probability": 0.6414 + }, + { + "start": 19655.9, + "end": 19658.1, + "probability": 0.8784 + }, + { + "start": 19658.9, + "end": 19660.06, + "probability": 0.6051 + }, + { + "start": 19661.1, + "end": 19668.26, + "probability": 0.9752 + }, + { + "start": 19669.46, + "end": 19670.68, + "probability": 0.901 + }, + { + "start": 19670.78, + "end": 19671.58, + "probability": 0.346 + }, + { + "start": 19672.26, + "end": 19676.54, + "probability": 0.7502 + }, + { + "start": 19677.48, + "end": 19680.06, + "probability": 0.9675 + }, + { + "start": 19681.38, + "end": 19682.6, + "probability": 0.8236 + }, + { + "start": 19684.18, + "end": 19688.92, + "probability": 0.9829 + }, + { + "start": 19689.48, + "end": 19692.18, + "probability": 0.9963 + }, + { + "start": 19693.24, + "end": 19694.35, + "probability": 0.9966 + }, + { + "start": 19696.96, + "end": 19699.82, + "probability": 0.1386 + }, + { + "start": 19701.1, + "end": 19701.74, + "probability": 0.8176 + }, + { + "start": 19702.66, + "end": 19705.56, + "probability": 0.9991 + }, + { + "start": 19706.7, + "end": 19709.34, + "probability": 0.9813 + }, + { + "start": 19711.08, + "end": 19712.26, + "probability": 0.8758 + }, + { + "start": 19713.12, + "end": 19715.4, + "probability": 0.9995 + }, + { + "start": 19716.14, + "end": 19720.7, + "probability": 0.9953 + }, + { + "start": 19722.24, + "end": 19722.7, + "probability": 0.4213 + }, + { + "start": 19723.82, + "end": 19726.26, + "probability": 0.9117 + }, + { + "start": 19726.8, + "end": 19733.84, + "probability": 0.9991 + }, + { + "start": 19733.98, + "end": 19738.6, + "probability": 0.9973 + }, + { + "start": 19740.4, + "end": 19741.43, + "probability": 0.973 + }, + { + "start": 19743.06, + "end": 19744.2, + "probability": 0.9945 + }, + { + "start": 19746.06, + "end": 19748.92, + "probability": 0.7493 + }, + { + "start": 19749.72, + "end": 19750.56, + "probability": 0.9838 + }, + { + "start": 19751.5, + "end": 19754.5, + "probability": 0.9798 + }, + { + "start": 19756.12, + "end": 19757.72, + "probability": 0.9878 + }, + { + "start": 19757.9, + "end": 19758.4, + "probability": 0.7418 + }, + { + "start": 19759.62, + "end": 19760.3, + "probability": 0.8472 + }, + { + "start": 19765.18, + "end": 19769.3, + "probability": 0.6695 + }, + { + "start": 19769.5, + "end": 19770.26, + "probability": 0.3473 + }, + { + "start": 19770.52, + "end": 19772.02, + "probability": 0.7369 + }, + { + "start": 19773.0, + "end": 19773.78, + "probability": 0.8894 + }, + { + "start": 19774.94, + "end": 19776.54, + "probability": 0.9844 + }, + { + "start": 19776.84, + "end": 19777.4, + "probability": 0.7616 + }, + { + "start": 19777.6, + "end": 19779.08, + "probability": 0.9928 + }, + { + "start": 19779.1, + "end": 19779.94, + "probability": 0.8733 + }, + { + "start": 19780.18, + "end": 19781.66, + "probability": 0.8232 + }, + { + "start": 19782.22, + "end": 19782.96, + "probability": 0.7579 + }, + { + "start": 19783.62, + "end": 19785.24, + "probability": 0.8451 + }, + { + "start": 19785.46, + "end": 19786.14, + "probability": 0.9449 + }, + { + "start": 19786.62, + "end": 19787.8, + "probability": 0.9878 + }, + { + "start": 19787.96, + "end": 19788.5, + "probability": 0.874 + }, + { + "start": 19788.98, + "end": 19790.36, + "probability": 0.9436 + }, + { + "start": 19791.58, + "end": 19792.88, + "probability": 0.9254 + }, + { + "start": 19793.84, + "end": 19796.48, + "probability": 0.9714 + }, + { + "start": 19796.48, + "end": 19798.92, + "probability": 0.7448 + }, + { + "start": 19825.84, + "end": 19827.2, + "probability": 0.6455 + }, + { + "start": 19828.5, + "end": 19830.86, + "probability": 0.9912 + }, + { + "start": 19830.86, + "end": 19833.82, + "probability": 0.7839 + }, + { + "start": 19834.04, + "end": 19837.78, + "probability": 0.9928 + }, + { + "start": 19838.32, + "end": 19843.0, + "probability": 0.7962 + }, + { + "start": 19843.47, + "end": 19849.68, + "probability": 0.9738 + }, + { + "start": 19849.78, + "end": 19851.22, + "probability": 0.8674 + }, + { + "start": 19852.82, + "end": 19855.24, + "probability": 0.9962 + }, + { + "start": 19855.24, + "end": 19858.38, + "probability": 0.9871 + }, + { + "start": 19858.54, + "end": 19859.52, + "probability": 0.5431 + }, + { + "start": 19859.76, + "end": 19861.82, + "probability": 0.7535 + }, + { + "start": 19861.84, + "end": 19862.9, + "probability": 0.9612 + }, + { + "start": 19863.0, + "end": 19864.28, + "probability": 0.7684 + }, + { + "start": 19864.54, + "end": 19865.68, + "probability": 0.9858 + }, + { + "start": 19865.8, + "end": 19868.76, + "probability": 0.9055 + }, + { + "start": 19868.88, + "end": 19869.94, + "probability": 0.8872 + }, + { + "start": 19870.24, + "end": 19876.26, + "probability": 0.9888 + }, + { + "start": 19876.3, + "end": 19878.84, + "probability": 0.9896 + }, + { + "start": 19878.98, + "end": 19882.88, + "probability": 0.9718 + }, + { + "start": 19883.72, + "end": 19883.96, + "probability": 0.8958 + }, + { + "start": 19884.12, + "end": 19888.9, + "probability": 0.9738 + }, + { + "start": 19889.0, + "end": 19892.66, + "probability": 0.9876 + }, + { + "start": 19893.38, + "end": 19895.56, + "probability": 0.8646 + }, + { + "start": 19896.08, + "end": 19899.74, + "probability": 0.936 + }, + { + "start": 19900.2, + "end": 19905.24, + "probability": 0.9831 + }, + { + "start": 19905.74, + "end": 19906.44, + "probability": 0.8195 + }, + { + "start": 19906.6, + "end": 19907.12, + "probability": 0.9435 + }, + { + "start": 19907.24, + "end": 19912.96, + "probability": 0.9864 + }, + { + "start": 19913.48, + "end": 19917.12, + "probability": 0.8723 + }, + { + "start": 19917.86, + "end": 19919.52, + "probability": 0.8067 + }, + { + "start": 19920.22, + "end": 19920.68, + "probability": 0.4989 + }, + { + "start": 19920.68, + "end": 19922.18, + "probability": 0.647 + }, + { + "start": 19922.36, + "end": 19926.06, + "probability": 0.9951 + }, + { + "start": 19926.32, + "end": 19927.32, + "probability": 0.4326 + }, + { + "start": 19927.7, + "end": 19933.6, + "probability": 0.9565 + }, + { + "start": 19934.12, + "end": 19937.82, + "probability": 0.8242 + }, + { + "start": 19938.08, + "end": 19940.0, + "probability": 0.7304 + }, + { + "start": 19940.48, + "end": 19942.78, + "probability": 0.9915 + }, + { + "start": 19943.2, + "end": 19944.56, + "probability": 0.9451 + }, + { + "start": 19945.18, + "end": 19949.48, + "probability": 0.995 + }, + { + "start": 19949.6, + "end": 19950.3, + "probability": 0.6112 + }, + { + "start": 19950.82, + "end": 19955.0, + "probability": 0.9866 + }, + { + "start": 19955.58, + "end": 19957.82, + "probability": 0.9131 + }, + { + "start": 19957.86, + "end": 19959.82, + "probability": 0.9903 + }, + { + "start": 19960.06, + "end": 19961.58, + "probability": 0.9956 + }, + { + "start": 19961.64, + "end": 19962.76, + "probability": 0.8331 + }, + { + "start": 19964.06, + "end": 19967.62, + "probability": 0.9915 + }, + { + "start": 19968.54, + "end": 19970.96, + "probability": 0.9891 + }, + { + "start": 19971.64, + "end": 19974.06, + "probability": 0.9482 + }, + { + "start": 19974.74, + "end": 19976.16, + "probability": 0.9796 + }, + { + "start": 19977.74, + "end": 19978.92, + "probability": 0.7911 + }, + { + "start": 19979.56, + "end": 19983.64, + "probability": 0.9903 + }, + { + "start": 19984.08, + "end": 19988.18, + "probability": 0.9773 + }, + { + "start": 19988.48, + "end": 19988.58, + "probability": 0.0273 + }, + { + "start": 19988.66, + "end": 19992.66, + "probability": 0.6666 + }, + { + "start": 19992.84, + "end": 19994.72, + "probability": 0.7849 + }, + { + "start": 19995.26, + "end": 19997.2, + "probability": 0.5935 + }, + { + "start": 19997.24, + "end": 19999.14, + "probability": 0.9857 + }, + { + "start": 19999.52, + "end": 20000.9, + "probability": 0.9836 + }, + { + "start": 20001.2, + "end": 20002.56, + "probability": 0.9656 + }, + { + "start": 20002.9, + "end": 20004.08, + "probability": 0.9218 + }, + { + "start": 20004.26, + "end": 20006.06, + "probability": 0.9844 + }, + { + "start": 20007.05, + "end": 20007.6, + "probability": 0.3682 + }, + { + "start": 20007.6, + "end": 20010.86, + "probability": 0.9956 + }, + { + "start": 20011.62, + "end": 20012.68, + "probability": 0.9848 + }, + { + "start": 20013.4, + "end": 20015.62, + "probability": 0.9894 + }, + { + "start": 20016.2, + "end": 20017.88, + "probability": 0.9931 + }, + { + "start": 20018.3, + "end": 20020.58, + "probability": 0.9954 + }, + { + "start": 20021.08, + "end": 20024.56, + "probability": 0.9645 + }, + { + "start": 20030.88, + "end": 20031.38, + "probability": 0.6955 + }, + { + "start": 20032.14, + "end": 20033.38, + "probability": 0.9343 + }, + { + "start": 20034.34, + "end": 20037.0, + "probability": 0.9175 + }, + { + "start": 20037.0, + "end": 20037.98, + "probability": 0.975 + }, + { + "start": 20038.9, + "end": 20040.36, + "probability": 0.4695 + }, + { + "start": 20048.64, + "end": 20049.62, + "probability": 0.0297 + }, + { + "start": 20049.74, + "end": 20053.46, + "probability": 0.7455 + }, + { + "start": 20055.1, + "end": 20055.74, + "probability": 0.5729 + }, + { + "start": 20058.92, + "end": 20062.58, + "probability": 0.3047 + }, + { + "start": 20062.82, + "end": 20063.84, + "probability": 0.726 + }, + { + "start": 20064.36, + "end": 20071.18, + "probability": 0.8518 + }, + { + "start": 20071.18, + "end": 20071.4, + "probability": 0.0041 + }, + { + "start": 20071.4, + "end": 20074.38, + "probability": 0.8397 + }, + { + "start": 20074.42, + "end": 20074.96, + "probability": 0.6985 + }, + { + "start": 20076.58, + "end": 20077.26, + "probability": 0.5915 + }, + { + "start": 20077.48, + "end": 20079.6, + "probability": 0.6067 + }, + { + "start": 20080.42, + "end": 20086.1, + "probability": 0.9714 + }, + { + "start": 20086.58, + "end": 20088.98, + "probability": 0.956 + }, + { + "start": 20089.64, + "end": 20090.72, + "probability": 0.9934 + }, + { + "start": 20092.2, + "end": 20095.14, + "probability": 0.9906 + }, + { + "start": 20095.14, + "end": 20097.94, + "probability": 0.9982 + }, + { + "start": 20098.62, + "end": 20100.34, + "probability": 0.9993 + }, + { + "start": 20100.88, + "end": 20104.64, + "probability": 0.9917 + }, + { + "start": 20105.3, + "end": 20109.98, + "probability": 0.9955 + }, + { + "start": 20110.7, + "end": 20114.02, + "probability": 0.9354 + }, + { + "start": 20114.96, + "end": 20118.66, + "probability": 0.9842 + }, + { + "start": 20119.56, + "end": 20120.94, + "probability": 0.8812 + }, + { + "start": 20121.06, + "end": 20121.84, + "probability": 0.9686 + }, + { + "start": 20122.02, + "end": 20124.38, + "probability": 0.9893 + }, + { + "start": 20125.06, + "end": 20129.5, + "probability": 0.9993 + }, + { + "start": 20131.32, + "end": 20134.12, + "probability": 0.9892 + }, + { + "start": 20135.1, + "end": 20136.5, + "probability": 0.9286 + }, + { + "start": 20137.66, + "end": 20141.56, + "probability": 0.9931 + }, + { + "start": 20142.28, + "end": 20145.0, + "probability": 0.9954 + }, + { + "start": 20145.84, + "end": 20149.34, + "probability": 0.9902 + }, + { + "start": 20150.0, + "end": 20153.34, + "probability": 0.9887 + }, + { + "start": 20154.36, + "end": 20159.48, + "probability": 0.9976 + }, + { + "start": 20160.14, + "end": 20163.58, + "probability": 0.9596 + }, + { + "start": 20164.18, + "end": 20167.24, + "probability": 0.9598 + }, + { + "start": 20167.98, + "end": 20173.86, + "probability": 0.9925 + }, + { + "start": 20175.08, + "end": 20175.34, + "probability": 0.7177 + }, + { + "start": 20176.16, + "end": 20177.28, + "probability": 0.9049 + }, + { + "start": 20178.92, + "end": 20180.74, + "probability": 0.9959 + }, + { + "start": 20181.9, + "end": 20185.86, + "probability": 0.9962 + }, + { + "start": 20186.7, + "end": 20188.06, + "probability": 0.9634 + }, + { + "start": 20188.98, + "end": 20191.98, + "probability": 0.9456 + }, + { + "start": 20192.88, + "end": 20196.84, + "probability": 0.9517 + }, + { + "start": 20197.36, + "end": 20199.22, + "probability": 0.9992 + }, + { + "start": 20200.08, + "end": 20202.1, + "probability": 0.998 + }, + { + "start": 20202.88, + "end": 20205.44, + "probability": 0.9941 + }, + { + "start": 20205.84, + "end": 20206.36, + "probability": 0.9084 + }, + { + "start": 20206.96, + "end": 20212.4, + "probability": 0.9987 + }, + { + "start": 20212.54, + "end": 20215.12, + "probability": 0.9976 + }, + { + "start": 20215.94, + "end": 20221.06, + "probability": 0.9949 + }, + { + "start": 20221.06, + "end": 20225.82, + "probability": 0.999 + }, + { + "start": 20226.62, + "end": 20227.68, + "probability": 0.6396 + }, + { + "start": 20228.32, + "end": 20234.04, + "probability": 0.9961 + }, + { + "start": 20234.88, + "end": 20238.24, + "probability": 0.9873 + }, + { + "start": 20238.24, + "end": 20243.08, + "probability": 0.9997 + }, + { + "start": 20243.86, + "end": 20245.14, + "probability": 0.8299 + }, + { + "start": 20245.86, + "end": 20249.0, + "probability": 0.9718 + }, + { + "start": 20249.78, + "end": 20252.06, + "probability": 0.9951 + }, + { + "start": 20252.6, + "end": 20255.48, + "probability": 0.9873 + }, + { + "start": 20259.48, + "end": 20260.48, + "probability": 0.7371 + }, + { + "start": 20261.68, + "end": 20263.04, + "probability": 0.8591 + }, + { + "start": 20265.16, + "end": 20266.66, + "probability": 0.9348 + }, + { + "start": 20267.8, + "end": 20268.64, + "probability": 0.4996 + }, + { + "start": 20269.4, + "end": 20271.73, + "probability": 0.9855 + }, + { + "start": 20274.36, + "end": 20275.1, + "probability": 0.352 + }, + { + "start": 20275.1, + "end": 20275.1, + "probability": 0.2532 + }, + { + "start": 20275.1, + "end": 20275.62, + "probability": 0.5978 + }, + { + "start": 20275.76, + "end": 20276.38, + "probability": 0.5326 + }, + { + "start": 20276.4, + "end": 20277.66, + "probability": 0.8212 + }, + { + "start": 20277.74, + "end": 20278.3, + "probability": 0.4778 + }, + { + "start": 20278.4, + "end": 20280.1, + "probability": 0.9077 + }, + { + "start": 20299.58, + "end": 20300.74, + "probability": 0.6899 + }, + { + "start": 20300.84, + "end": 20303.54, + "probability": 0.8718 + }, + { + "start": 20304.14, + "end": 20306.82, + "probability": 0.9785 + }, + { + "start": 20306.94, + "end": 20308.0, + "probability": 0.981 + }, + { + "start": 20308.2, + "end": 20310.06, + "probability": 0.9956 + }, + { + "start": 20310.76, + "end": 20315.48, + "probability": 0.8617 + }, + { + "start": 20315.54, + "end": 20317.2, + "probability": 0.9982 + }, + { + "start": 20317.68, + "end": 20319.2, + "probability": 0.8837 + }, + { + "start": 20319.54, + "end": 20319.82, + "probability": 0.9333 + }, + { + "start": 20319.88, + "end": 20325.1, + "probability": 0.9941 + }, + { + "start": 20325.54, + "end": 20329.58, + "probability": 0.9832 + }, + { + "start": 20329.98, + "end": 20331.28, + "probability": 0.7172 + }, + { + "start": 20331.36, + "end": 20331.94, + "probability": 0.8535 + }, + { + "start": 20331.98, + "end": 20332.62, + "probability": 0.5149 + }, + { + "start": 20332.62, + "end": 20337.08, + "probability": 0.8875 + }, + { + "start": 20337.22, + "end": 20339.68, + "probability": 0.6462 + }, + { + "start": 20339.86, + "end": 20341.58, + "probability": 0.803 + }, + { + "start": 20341.88, + "end": 20342.6, + "probability": 0.8532 + }, + { + "start": 20342.84, + "end": 20344.38, + "probability": 0.6953 + }, + { + "start": 20344.44, + "end": 20347.68, + "probability": 0.3567 + }, + { + "start": 20348.04, + "end": 20348.04, + "probability": 0.3499 + }, + { + "start": 20348.04, + "end": 20348.72, + "probability": 0.4543 + }, + { + "start": 20348.82, + "end": 20354.66, + "probability": 0.7414 + }, + { + "start": 20354.72, + "end": 20355.46, + "probability": 0.6647 + }, + { + "start": 20355.7, + "end": 20356.72, + "probability": 0.7277 + }, + { + "start": 20357.24, + "end": 20358.82, + "probability": 0.5179 + }, + { + "start": 20360.0, + "end": 20362.84, + "probability": 0.8488 + }, + { + "start": 20363.12, + "end": 20364.45, + "probability": 0.9302 + }, + { + "start": 20364.72, + "end": 20365.54, + "probability": 0.8794 + }, + { + "start": 20365.62, + "end": 20366.95, + "probability": 0.9941 + }, + { + "start": 20367.28, + "end": 20368.5, + "probability": 0.8804 + }, + { + "start": 20368.64, + "end": 20369.72, + "probability": 0.8917 + }, + { + "start": 20370.26, + "end": 20371.36, + "probability": 0.8341 + }, + { + "start": 20371.64, + "end": 20374.52, + "probability": 0.9873 + }, + { + "start": 20374.96, + "end": 20378.03, + "probability": 0.8836 + }, + { + "start": 20378.12, + "end": 20380.82, + "probability": 0.9985 + }, + { + "start": 20381.32, + "end": 20384.06, + "probability": 0.9519 + }, + { + "start": 20385.27, + "end": 20387.3, + "probability": 0.6028 + }, + { + "start": 20387.98, + "end": 20389.76, + "probability": 0.9942 + }, + { + "start": 20390.5, + "end": 20394.16, + "probability": 0.9214 + }, + { + "start": 20394.2, + "end": 20396.7, + "probability": 0.9701 + }, + { + "start": 20397.44, + "end": 20400.06, + "probability": 0.5418 + }, + { + "start": 20400.72, + "end": 20402.04, + "probability": 0.8548 + }, + { + "start": 20402.4, + "end": 20403.2, + "probability": 0.3488 + }, + { + "start": 20403.28, + "end": 20407.4, + "probability": 0.9966 + }, + { + "start": 20407.46, + "end": 20410.2, + "probability": 0.9073 + }, + { + "start": 20410.48, + "end": 20411.16, + "probability": 0.6388 + }, + { + "start": 20411.72, + "end": 20413.36, + "probability": 0.9575 + }, + { + "start": 20413.52, + "end": 20413.96, + "probability": 0.8564 + }, + { + "start": 20414.22, + "end": 20414.62, + "probability": 0.6623 + }, + { + "start": 20415.3, + "end": 20416.84, + "probability": 0.982 + }, + { + "start": 20417.02, + "end": 20418.44, + "probability": 0.9414 + }, + { + "start": 20418.52, + "end": 20418.7, + "probability": 0.7538 + }, + { + "start": 20418.7, + "end": 20422.61, + "probability": 0.9078 + }, + { + "start": 20422.78, + "end": 20423.16, + "probability": 0.6098 + }, + { + "start": 20423.32, + "end": 20426.52, + "probability": 0.9934 + }, + { + "start": 20427.0, + "end": 20429.4, + "probability": 0.9971 + }, + { + "start": 20429.56, + "end": 20429.96, + "probability": 0.5564 + }, + { + "start": 20430.02, + "end": 20431.08, + "probability": 0.769 + }, + { + "start": 20431.46, + "end": 20434.92, + "probability": 0.9673 + }, + { + "start": 20434.98, + "end": 20435.92, + "probability": 0.7414 + }, + { + "start": 20436.32, + "end": 20438.42, + "probability": 0.9565 + }, + { + "start": 20438.68, + "end": 20440.0, + "probability": 0.8493 + }, + { + "start": 20440.5, + "end": 20440.74, + "probability": 0.642 + }, + { + "start": 20440.82, + "end": 20441.1, + "probability": 0.6858 + }, + { + "start": 20441.36, + "end": 20442.76, + "probability": 0.9397 + }, + { + "start": 20442.9, + "end": 20444.08, + "probability": 0.9863 + }, + { + "start": 20444.58, + "end": 20445.18, + "probability": 0.7252 + }, + { + "start": 20445.2, + "end": 20446.0, + "probability": 0.9323 + }, + { + "start": 20446.08, + "end": 20446.98, + "probability": 0.9106 + }, + { + "start": 20447.12, + "end": 20448.56, + "probability": 0.7991 + }, + { + "start": 20448.88, + "end": 20450.22, + "probability": 0.9822 + }, + { + "start": 20450.76, + "end": 20453.68, + "probability": 0.8419 + }, + { + "start": 20453.76, + "end": 20458.1, + "probability": 0.9762 + }, + { + "start": 20458.2, + "end": 20459.61, + "probability": 0.9919 + }, + { + "start": 20460.26, + "end": 20460.52, + "probability": 0.6709 + }, + { + "start": 20460.54, + "end": 20461.04, + "probability": 0.8319 + }, + { + "start": 20461.5, + "end": 20465.42, + "probability": 0.9647 + }, + { + "start": 20465.5, + "end": 20466.93, + "probability": 0.6338 + }, + { + "start": 20467.4, + "end": 20471.2, + "probability": 0.9941 + }, + { + "start": 20471.32, + "end": 20471.6, + "probability": 0.8691 + }, + { + "start": 20472.1, + "end": 20476.26, + "probability": 0.7461 + }, + { + "start": 20476.8, + "end": 20478.4, + "probability": 0.9173 + }, + { + "start": 20479.16, + "end": 20482.16, + "probability": 0.5847 + }, + { + "start": 20483.08, + "end": 20484.76, + "probability": 0.8569 + }, + { + "start": 20485.62, + "end": 20487.78, + "probability": 0.9922 + }, + { + "start": 20488.74, + "end": 20490.98, + "probability": 0.7382 + }, + { + "start": 20491.1, + "end": 20491.88, + "probability": 0.9531 + }, + { + "start": 20492.02, + "end": 20492.48, + "probability": 0.5389 + }, + { + "start": 20492.78, + "end": 20494.16, + "probability": 0.9985 + }, + { + "start": 20494.54, + "end": 20496.88, + "probability": 0.9949 + }, + { + "start": 20497.28, + "end": 20497.84, + "probability": 0.5461 + }, + { + "start": 20498.42, + "end": 20502.72, + "probability": 0.9062 + }, + { + "start": 20503.28, + "end": 20504.44, + "probability": 0.9426 + }, + { + "start": 20504.54, + "end": 20505.18, + "probability": 0.8963 + }, + { + "start": 20505.44, + "end": 20505.56, + "probability": 0.9226 + }, + { + "start": 20505.66, + "end": 20506.16, + "probability": 0.8944 + }, + { + "start": 20506.64, + "end": 20507.35, + "probability": 0.9658 + }, + { + "start": 20507.44, + "end": 20508.78, + "probability": 0.9964 + }, + { + "start": 20510.28, + "end": 20513.86, + "probability": 0.8828 + }, + { + "start": 20514.36, + "end": 20515.68, + "probability": 0.8531 + }, + { + "start": 20516.36, + "end": 20517.28, + "probability": 0.9233 + }, + { + "start": 20517.3, + "end": 20518.52, + "probability": 0.9713 + }, + { + "start": 20518.64, + "end": 20519.24, + "probability": 0.8252 + }, + { + "start": 20519.56, + "end": 20521.2, + "probability": 0.9559 + }, + { + "start": 20521.38, + "end": 20521.9, + "probability": 0.9016 + }, + { + "start": 20522.0, + "end": 20522.64, + "probability": 0.5827 + }, + { + "start": 20523.02, + "end": 20523.52, + "probability": 0.5665 + }, + { + "start": 20523.64, + "end": 20524.6, + "probability": 0.8506 + }, + { + "start": 20524.9, + "end": 20527.56, + "probability": 0.6859 + }, + { + "start": 20527.9, + "end": 20530.78, + "probability": 0.9656 + }, + { + "start": 20531.42, + "end": 20534.12, + "probability": 0.8699 + }, + { + "start": 20534.63, + "end": 20535.32, + "probability": 0.2737 + }, + { + "start": 20535.32, + "end": 20536.32, + "probability": 0.38 + }, + { + "start": 20536.82, + "end": 20537.54, + "probability": 0.9196 + }, + { + "start": 20538.46, + "end": 20543.1, + "probability": 0.5347 + }, + { + "start": 20543.46, + "end": 20546.34, + "probability": 0.9403 + }, + { + "start": 20546.72, + "end": 20547.4, + "probability": 0.8742 + }, + { + "start": 20548.0, + "end": 20550.52, + "probability": 0.999 + }, + { + "start": 20550.88, + "end": 20555.6, + "probability": 0.9937 + }, + { + "start": 20555.68, + "end": 20555.78, + "probability": 0.7246 + }, + { + "start": 20556.42, + "end": 20557.18, + "probability": 0.757 + }, + { + "start": 20557.76, + "end": 20559.64, + "probability": 0.9259 + }, + { + "start": 20560.34, + "end": 20561.24, + "probability": 0.8043 + }, + { + "start": 20565.41, + "end": 20567.0, + "probability": 0.8362 + }, + { + "start": 20567.96, + "end": 20569.64, + "probability": 0.8029 + }, + { + "start": 20580.31, + "end": 20582.08, + "probability": 0.7284 + }, + { + "start": 20582.2, + "end": 20584.76, + "probability": 0.9893 + }, + { + "start": 20585.56, + "end": 20586.66, + "probability": 0.8841 + }, + { + "start": 20586.84, + "end": 20588.44, + "probability": 0.995 + }, + { + "start": 20589.04, + "end": 20591.42, + "probability": 0.9888 + }, + { + "start": 20591.6, + "end": 20593.06, + "probability": 0.802 + }, + { + "start": 20593.08, + "end": 20594.7, + "probability": 0.8906 + }, + { + "start": 20594.92, + "end": 20600.28, + "probability": 0.749 + }, + { + "start": 20600.6, + "end": 20601.4, + "probability": 0.7141 + }, + { + "start": 20602.06, + "end": 20603.72, + "probability": 0.5251 + }, + { + "start": 20603.94, + "end": 20605.08, + "probability": 0.9236 + }, + { + "start": 20606.3, + "end": 20610.02, + "probability": 0.8457 + }, + { + "start": 20610.9, + "end": 20614.58, + "probability": 0.998 + }, + { + "start": 20614.58, + "end": 20618.02, + "probability": 0.9368 + }, + { + "start": 20618.82, + "end": 20619.54, + "probability": 0.4725 + }, + { + "start": 20620.26, + "end": 20621.12, + "probability": 0.8289 + }, + { + "start": 20622.0, + "end": 20625.74, + "probability": 0.8623 + }, + { + "start": 20626.56, + "end": 20629.46, + "probability": 0.9969 + }, + { + "start": 20629.86, + "end": 20631.2, + "probability": 0.9636 + }, + { + "start": 20631.26, + "end": 20631.94, + "probability": 0.7399 + }, + { + "start": 20632.5, + "end": 20633.54, + "probability": 0.97 + }, + { + "start": 20634.0, + "end": 20635.46, + "probability": 0.3048 + }, + { + "start": 20638.48, + "end": 20639.82, + "probability": 0.8087 + }, + { + "start": 20640.6, + "end": 20645.14, + "probability": 0.9882 + }, + { + "start": 20645.66, + "end": 20646.76, + "probability": 0.4466 + }, + { + "start": 20648.72, + "end": 20651.82, + "probability": 0.9337 + }, + { + "start": 20652.92, + "end": 20656.22, + "probability": 0.982 + }, + { + "start": 20656.84, + "end": 20658.88, + "probability": 0.9128 + }, + { + "start": 20659.02, + "end": 20659.8, + "probability": 0.6933 + }, + { + "start": 20660.02, + "end": 20661.74, + "probability": 0.8886 + }, + { + "start": 20662.08, + "end": 20664.4, + "probability": 0.972 + }, + { + "start": 20665.16, + "end": 20666.38, + "probability": 0.9655 + }, + { + "start": 20667.2, + "end": 20667.96, + "probability": 0.5551 + }, + { + "start": 20668.56, + "end": 20670.34, + "probability": 0.9829 + }, + { + "start": 20670.8, + "end": 20672.18, + "probability": 0.8771 + }, + { + "start": 20673.18, + "end": 20675.92, + "probability": 0.8965 + }, + { + "start": 20675.98, + "end": 20677.32, + "probability": 0.999 + }, + { + "start": 20677.86, + "end": 20679.5, + "probability": 0.9715 + }, + { + "start": 20680.28, + "end": 20682.98, + "probability": 0.9597 + }, + { + "start": 20683.76, + "end": 20685.26, + "probability": 0.948 + }, + { + "start": 20685.8, + "end": 20686.7, + "probability": 0.9298 + }, + { + "start": 20687.0, + "end": 20690.86, + "probability": 0.8987 + }, + { + "start": 20691.68, + "end": 20691.78, + "probability": 0.9753 + }, + { + "start": 20692.74, + "end": 20694.3, + "probability": 0.8266 + }, + { + "start": 20694.8, + "end": 20697.24, + "probability": 0.8169 + }, + { + "start": 20698.06, + "end": 20699.64, + "probability": 0.791 + }, + { + "start": 20700.74, + "end": 20702.26, + "probability": 0.9873 + }, + { + "start": 20703.02, + "end": 20703.54, + "probability": 0.5712 + }, + { + "start": 20703.62, + "end": 20705.04, + "probability": 0.7641 + }, + { + "start": 20705.48, + "end": 20709.32, + "probability": 0.9917 + }, + { + "start": 20709.9, + "end": 20710.62, + "probability": 0.9086 + }, + { + "start": 20711.8, + "end": 20713.28, + "probability": 0.7733 + }, + { + "start": 20714.5, + "end": 20715.54, + "probability": 0.9254 + }, + { + "start": 20715.64, + "end": 20717.24, + "probability": 0.7048 + }, + { + "start": 20717.84, + "end": 20718.54, + "probability": 0.9746 + }, + { + "start": 20718.68, + "end": 20720.3, + "probability": 0.9826 + }, + { + "start": 20720.36, + "end": 20721.06, + "probability": 0.9922 + }, + { + "start": 20721.64, + "end": 20722.68, + "probability": 0.6846 + }, + { + "start": 20722.8, + "end": 20724.28, + "probability": 0.8375 + }, + { + "start": 20724.68, + "end": 20728.38, + "probability": 0.9761 + }, + { + "start": 20728.5, + "end": 20729.38, + "probability": 0.6345 + }, + { + "start": 20729.48, + "end": 20729.58, + "probability": 0.5517 + }, + { + "start": 20730.38, + "end": 20733.62, + "probability": 0.8409 + }, + { + "start": 20733.7, + "end": 20735.46, + "probability": 0.8857 + }, + { + "start": 20737.15, + "end": 20740.08, + "probability": 0.9917 + }, + { + "start": 20740.64, + "end": 20742.52, + "probability": 0.5452 + }, + { + "start": 20742.68, + "end": 20743.48, + "probability": 0.7106 + }, + { + "start": 20743.52, + "end": 20745.16, + "probability": 0.8101 + }, + { + "start": 20747.1, + "end": 20748.44, + "probability": 0.7942 + }, + { + "start": 20749.0, + "end": 20750.46, + "probability": 0.6435 + }, + { + "start": 20750.62, + "end": 20753.58, + "probability": 0.9261 + }, + { + "start": 20754.0, + "end": 20755.92, + "probability": 0.9564 + }, + { + "start": 20756.26, + "end": 20759.7, + "probability": 0.9978 + }, + { + "start": 20760.3, + "end": 20761.42, + "probability": 0.8687 + }, + { + "start": 20761.78, + "end": 20764.22, + "probability": 0.9091 + }, + { + "start": 20765.14, + "end": 20769.28, + "probability": 0.6997 + }, + { + "start": 20770.63, + "end": 20772.35, + "probability": 0.9294 + }, + { + "start": 20773.24, + "end": 20779.08, + "probability": 0.9976 + }, + { + "start": 20780.02, + "end": 20783.7, + "probability": 0.992 + }, + { + "start": 20784.28, + "end": 20786.94, + "probability": 0.8575 + }, + { + "start": 20789.7, + "end": 20793.46, + "probability": 0.9678 + }, + { + "start": 20794.6, + "end": 20795.79, + "probability": 0.8626 + }, + { + "start": 20796.26, + "end": 20800.22, + "probability": 0.9885 + }, + { + "start": 20801.0, + "end": 20802.42, + "probability": 0.7239 + }, + { + "start": 20802.94, + "end": 20803.66, + "probability": 0.4818 + }, + { + "start": 20804.2, + "end": 20807.6, + "probability": 0.9467 + }, + { + "start": 20807.64, + "end": 20810.08, + "probability": 0.9924 + }, + { + "start": 20810.24, + "end": 20811.9, + "probability": 0.4036 + }, + { + "start": 20811.92, + "end": 20812.46, + "probability": 0.8518 + }, + { + "start": 20816.68, + "end": 20819.54, + "probability": 0.6495 + }, + { + "start": 20820.12, + "end": 20821.08, + "probability": 0.8429 + }, + { + "start": 20821.14, + "end": 20824.92, + "probability": 0.9859 + }, + { + "start": 20825.4, + "end": 20828.52, + "probability": 0.9661 + }, + { + "start": 20828.6, + "end": 20829.58, + "probability": 0.7594 + }, + { + "start": 20829.96, + "end": 20831.4, + "probability": 0.7535 + }, + { + "start": 20831.5, + "end": 20832.44, + "probability": 0.6809 + }, + { + "start": 20833.02, + "end": 20834.36, + "probability": 0.8528 + }, + { + "start": 20838.66, + "end": 20839.38, + "probability": 0.6313 + }, + { + "start": 20845.04, + "end": 20847.44, + "probability": 0.2141 + }, + { + "start": 20859.82, + "end": 20863.24, + "probability": 0.9696 + }, + { + "start": 20863.24, + "end": 20866.08, + "probability": 0.8091 + }, + { + "start": 20866.1, + "end": 20866.86, + "probability": 0.6618 + }, + { + "start": 20866.9, + "end": 20867.46, + "probability": 0.5039 + }, + { + "start": 20869.24, + "end": 20874.62, + "probability": 0.4074 + }, + { + "start": 20875.82, + "end": 20876.22, + "probability": 0.0625 + }, + { + "start": 20879.78, + "end": 20880.26, + "probability": 0.0092 + }, + { + "start": 20881.5, + "end": 20881.8, + "probability": 0.078 + }, + { + "start": 20881.8, + "end": 20883.86, + "probability": 0.0398 + }, + { + "start": 20884.49, + "end": 20886.05, + "probability": 0.0465 + }, + { + "start": 20886.16, + "end": 20886.86, + "probability": 0.575 + }, + { + "start": 20887.06, + "end": 20887.46, + "probability": 0.547 + }, + { + "start": 20890.81, + "end": 20892.38, + "probability": 0.1832 + }, + { + "start": 20892.38, + "end": 20894.6, + "probability": 0.4598 + }, + { + "start": 20894.84, + "end": 20896.26, + "probability": 0.3031 + }, + { + "start": 20896.62, + "end": 20897.16, + "probability": 0.0535 + }, + { + "start": 20897.16, + "end": 20899.38, + "probability": 0.2126 + }, + { + "start": 20900.68, + "end": 20903.58, + "probability": 0.0074 + }, + { + "start": 20946.0, + "end": 20946.0, + "probability": 0.0 + }, + { + "start": 20946.0, + "end": 20946.0, + "probability": 0.0 + }, + { + "start": 20946.0, + "end": 20946.0, + "probability": 0.0 + }, + { + "start": 20946.0, + "end": 20946.0, + "probability": 0.0 + }, + { + "start": 20946.0, + "end": 20946.0, + "probability": 0.0 + }, + { + "start": 20946.0, + "end": 20946.0, + "probability": 0.0 + }, + { + "start": 20946.0, + "end": 20946.0, + "probability": 0.0 + }, + { + "start": 20946.0, + "end": 20946.0, + "probability": 0.0 + }, + { + "start": 20946.0, + "end": 20946.0, + "probability": 0.0 + }, + { + "start": 20946.0, + "end": 20946.0, + "probability": 0.0 + }, + { + "start": 20946.0, + "end": 20946.0, + "probability": 0.0 + }, + { + "start": 20946.0, + "end": 20946.0, + "probability": 0.0 + }, + { + "start": 20946.0, + "end": 20946.0, + "probability": 0.0 + }, + { + "start": 20946.0, + "end": 20946.0, + "probability": 0.0 + }, + { + "start": 20951.08, + "end": 20956.06, + "probability": 0.292 + }, + { + "start": 20956.86, + "end": 20960.34, + "probability": 0.0183 + }, + { + "start": 20963.12, + "end": 20967.06, + "probability": 0.0075 + }, + { + "start": 20967.58, + "end": 20969.98, + "probability": 0.0122 + }, + { + "start": 20969.98, + "end": 20975.3, + "probability": 0.0618 + }, + { + "start": 20975.3, + "end": 20977.74, + "probability": 0.0226 + }, + { + "start": 20978.54, + "end": 20978.86, + "probability": 0.1012 + }, + { + "start": 21067.0, + "end": 21067.0, + "probability": 0.0 + }, + { + "start": 21067.0, + "end": 21067.0, + "probability": 0.0 + }, + { + "start": 21067.0, + "end": 21067.0, + "probability": 0.0 + }, + { + "start": 21067.0, + "end": 21067.0, + "probability": 0.0 + }, + { + "start": 21067.0, + "end": 21067.0, + "probability": 0.0 + }, + { + "start": 21067.0, + "end": 21067.0, + "probability": 0.0 + }, + { + "start": 21067.0, + "end": 21067.0, + "probability": 0.0 + }, + { + "start": 21067.0, + "end": 21067.0, + "probability": 0.0 + }, + { + "start": 21067.0, + "end": 21067.0, + "probability": 0.0 + }, + { + "start": 21067.0, + "end": 21067.0, + "probability": 0.0 + }, + { + "start": 21067.0, + "end": 21067.0, + "probability": 0.0 + }, + { + "start": 21067.0, + "end": 21067.0, + "probability": 0.0 + }, + { + "start": 21067.0, + "end": 21067.0, + "probability": 0.0 + }, + { + "start": 21067.0, + "end": 21067.0, + "probability": 0.0 + }, + { + "start": 21068.52, + "end": 21068.52, + "probability": 0.0136 + }, + { + "start": 21068.52, + "end": 21068.52, + "probability": 0.1568 + }, + { + "start": 21068.52, + "end": 21070.75, + "probability": 0.454 + }, + { + "start": 21070.84, + "end": 21076.48, + "probability": 0.9234 + }, + { + "start": 21077.34, + "end": 21080.28, + "probability": 0.9816 + }, + { + "start": 21080.84, + "end": 21083.08, + "probability": 0.9109 + }, + { + "start": 21084.06, + "end": 21089.48, + "probability": 0.7689 + }, + { + "start": 21090.62, + "end": 21093.34, + "probability": 0.9132 + }, + { + "start": 21094.08, + "end": 21095.48, + "probability": 0.9874 + }, + { + "start": 21096.34, + "end": 21099.8, + "probability": 0.8977 + }, + { + "start": 21100.68, + "end": 21108.1, + "probability": 0.9322 + }, + { + "start": 21108.32, + "end": 21109.35, + "probability": 0.7343 + }, + { + "start": 21109.52, + "end": 21110.0, + "probability": 0.7407 + }, + { + "start": 21110.56, + "end": 21112.22, + "probability": 0.989 + }, + { + "start": 21115.42, + "end": 21116.7, + "probability": 0.8682 + }, + { + "start": 21117.12, + "end": 21119.48, + "probability": 0.9941 + }, + { + "start": 21120.84, + "end": 21123.64, + "probability": 0.9801 + }, + { + "start": 21124.48, + "end": 21127.52, + "probability": 0.9907 + }, + { + "start": 21128.84, + "end": 21130.74, + "probability": 0.8918 + }, + { + "start": 21130.9, + "end": 21135.82, + "probability": 0.9919 + }, + { + "start": 21135.94, + "end": 21138.48, + "probability": 0.7295 + }, + { + "start": 21138.6, + "end": 21141.28, + "probability": 0.9319 + }, + { + "start": 21141.92, + "end": 21145.96, + "probability": 0.4306 + }, + { + "start": 21148.65, + "end": 21149.56, + "probability": 0.3283 + }, + { + "start": 21149.56, + "end": 21150.8, + "probability": 0.8683 + }, + { + "start": 21151.34, + "end": 21153.53, + "probability": 0.7087 + }, + { + "start": 21154.4, + "end": 21158.5, + "probability": 0.8919 + }, + { + "start": 21159.1, + "end": 21160.94, + "probability": 0.9871 + }, + { + "start": 21161.5, + "end": 21163.44, + "probability": 0.9985 + }, + { + "start": 21164.9, + "end": 21166.38, + "probability": 0.8573 + }, + { + "start": 21167.38, + "end": 21168.58, + "probability": 0.9813 + }, + { + "start": 21169.1, + "end": 21170.42, + "probability": 0.6902 + }, + { + "start": 21171.16, + "end": 21177.34, + "probability": 0.9922 + }, + { + "start": 21177.34, + "end": 21182.06, + "probability": 0.9919 + }, + { + "start": 21182.6, + "end": 21186.1, + "probability": 0.9912 + }, + { + "start": 21187.14, + "end": 21189.1, + "probability": 0.9507 + }, + { + "start": 21190.22, + "end": 21193.0, + "probability": 0.9663 + }, + { + "start": 21193.74, + "end": 21197.0, + "probability": 0.989 + }, + { + "start": 21197.0, + "end": 21200.04, + "probability": 0.9917 + }, + { + "start": 21201.44, + "end": 21204.96, + "probability": 0.8504 + }, + { + "start": 21206.0, + "end": 21210.36, + "probability": 0.9826 + }, + { + "start": 21210.52, + "end": 21211.22, + "probability": 0.8795 + }, + { + "start": 21212.4, + "end": 21217.1, + "probability": 0.9089 + }, + { + "start": 21218.66, + "end": 21221.7, + "probability": 0.9797 + }, + { + "start": 21222.32, + "end": 21223.39, + "probability": 0.9971 + }, + { + "start": 21224.32, + "end": 21225.4, + "probability": 0.8599 + }, + { + "start": 21225.56, + "end": 21230.02, + "probability": 0.9005 + }, + { + "start": 21232.46, + "end": 21236.35, + "probability": 0.9821 + }, + { + "start": 21237.42, + "end": 21240.94, + "probability": 0.9451 + }, + { + "start": 21240.94, + "end": 21244.76, + "probability": 0.8896 + }, + { + "start": 21245.57, + "end": 21250.0, + "probability": 0.6635 + }, + { + "start": 21250.86, + "end": 21251.98, + "probability": 0.9209 + }, + { + "start": 21253.18, + "end": 21254.94, + "probability": 0.9429 + }, + { + "start": 21255.5, + "end": 21257.02, + "probability": 0.8957 + }, + { + "start": 21257.88, + "end": 21260.82, + "probability": 0.9315 + }, + { + "start": 21261.78, + "end": 21264.94, + "probability": 0.8893 + }, + { + "start": 21265.59, + "end": 21267.12, + "probability": 0.9868 + }, + { + "start": 21267.28, + "end": 21269.76, + "probability": 0.9948 + }, + { + "start": 21273.46, + "end": 21279.5, + "probability": 0.9697 + }, + { + "start": 21279.62, + "end": 21281.12, + "probability": 0.591 + }, + { + "start": 21281.22, + "end": 21281.7, + "probability": 0.7355 + }, + { + "start": 21281.76, + "end": 21282.78, + "probability": 0.9729 + }, + { + "start": 21283.6, + "end": 21285.26, + "probability": 0.9889 + }, + { + "start": 21285.46, + "end": 21286.4, + "probability": 0.9832 + }, + { + "start": 21286.58, + "end": 21288.0, + "probability": 0.9779 + }, + { + "start": 21288.68, + "end": 21293.76, + "probability": 0.9863 + }, + { + "start": 21293.76, + "end": 21298.12, + "probability": 0.9969 + }, + { + "start": 21300.2, + "end": 21302.64, + "probability": 0.6754 + }, + { + "start": 21302.66, + "end": 21304.34, + "probability": 0.7109 + }, + { + "start": 21304.86, + "end": 21308.14, + "probability": 0.7088 + }, + { + "start": 21308.14, + "end": 21311.42, + "probability": 0.9161 + }, + { + "start": 21311.98, + "end": 21316.8, + "probability": 0.9481 + }, + { + "start": 21318.84, + "end": 21322.78, + "probability": 0.7785 + }, + { + "start": 21322.84, + "end": 21325.18, + "probability": 0.9395 + }, + { + "start": 21325.7, + "end": 21328.08, + "probability": 0.9725 + }, + { + "start": 21329.38, + "end": 21331.58, + "probability": 0.9962 + }, + { + "start": 21332.26, + "end": 21334.92, + "probability": 0.8091 + }, + { + "start": 21335.04, + "end": 21336.68, + "probability": 0.8097 + }, + { + "start": 21337.5, + "end": 21343.04, + "probability": 0.9771 + }, + { + "start": 21344.06, + "end": 21344.96, + "probability": 0.9031 + }, + { + "start": 21345.22, + "end": 21345.6, + "probability": 0.0489 + }, + { + "start": 21345.6, + "end": 21346.32, + "probability": 0.2527 + }, + { + "start": 21348.62, + "end": 21352.44, + "probability": 0.9276 + }, + { + "start": 21352.64, + "end": 21358.38, + "probability": 0.9659 + }, + { + "start": 21358.76, + "end": 21359.84, + "probability": 0.876 + }, + { + "start": 21360.32, + "end": 21363.38, + "probability": 0.9978 + }, + { + "start": 21363.5, + "end": 21366.66, + "probability": 0.9951 + }, + { + "start": 21367.78, + "end": 21370.44, + "probability": 0.9884 + }, + { + "start": 21372.5, + "end": 21375.46, + "probability": 0.973 + }, + { + "start": 21376.26, + "end": 21379.02, + "probability": 0.9873 + }, + { + "start": 21379.02, + "end": 21382.62, + "probability": 0.9003 + }, + { + "start": 21383.28, + "end": 21385.65, + "probability": 0.7654 + }, + { + "start": 21386.24, + "end": 21388.2, + "probability": 0.7595 + }, + { + "start": 21389.38, + "end": 21395.22, + "probability": 0.8587 + }, + { + "start": 21395.72, + "end": 21398.14, + "probability": 0.9864 + }, + { + "start": 21398.66, + "end": 21401.16, + "probability": 0.9766 + }, + { + "start": 21401.78, + "end": 21404.78, + "probability": 0.984 + }, + { + "start": 21405.26, + "end": 21407.9, + "probability": 0.9894 + }, + { + "start": 21408.54, + "end": 21412.14, + "probability": 0.7346 + }, + { + "start": 21412.68, + "end": 21418.6, + "probability": 0.9302 + }, + { + "start": 21419.84, + "end": 21422.82, + "probability": 0.9927 + }, + { + "start": 21422.82, + "end": 21426.32, + "probability": 0.9927 + }, + { + "start": 21427.38, + "end": 21431.28, + "probability": 0.9163 + }, + { + "start": 21431.96, + "end": 21435.78, + "probability": 0.8822 + }, + { + "start": 21437.98, + "end": 21442.64, + "probability": 0.9399 + }, + { + "start": 21442.8, + "end": 21443.64, + "probability": 0.6648 + }, + { + "start": 21444.2, + "end": 21447.64, + "probability": 0.9771 + }, + { + "start": 21447.64, + "end": 21452.72, + "probability": 0.9958 + }, + { + "start": 21453.14, + "end": 21454.18, + "probability": 0.6738 + }, + { + "start": 21454.8, + "end": 21457.6, + "probability": 0.978 + }, + { + "start": 21458.28, + "end": 21464.42, + "probability": 0.9093 + }, + { + "start": 21465.2, + "end": 21467.76, + "probability": 0.9668 + }, + { + "start": 21469.98, + "end": 21470.74, + "probability": 0.4935 + }, + { + "start": 21471.12, + "end": 21473.92, + "probability": 0.9826 + }, + { + "start": 21474.06, + "end": 21479.14, + "probability": 0.8733 + }, + { + "start": 21479.68, + "end": 21482.06, + "probability": 0.8134 + }, + { + "start": 21482.6, + "end": 21487.74, + "probability": 0.9953 + }, + { + "start": 21487.74, + "end": 21491.61, + "probability": 0.9629 + }, + { + "start": 21492.34, + "end": 21494.52, + "probability": 0.7731 + }, + { + "start": 21494.98, + "end": 21497.5, + "probability": 0.9928 + }, + { + "start": 21498.08, + "end": 21502.9, + "probability": 0.9342 + }, + { + "start": 21503.64, + "end": 21504.96, + "probability": 0.8083 + }, + { + "start": 21505.5, + "end": 21509.43, + "probability": 0.7237 + }, + { + "start": 21510.38, + "end": 21512.58, + "probability": 0.9712 + }, + { + "start": 21512.68, + "end": 21515.42, + "probability": 0.8815 + }, + { + "start": 21515.96, + "end": 21518.34, + "probability": 0.9897 + }, + { + "start": 21519.14, + "end": 21522.22, + "probability": 0.9917 + }, + { + "start": 21522.84, + "end": 21524.48, + "probability": 0.6318 + }, + { + "start": 21525.04, + "end": 21526.36, + "probability": 0.8354 + }, + { + "start": 21526.88, + "end": 21528.42, + "probability": 0.9258 + }, + { + "start": 21528.78, + "end": 21532.3, + "probability": 0.9928 + }, + { + "start": 21535.34, + "end": 21535.82, + "probability": 0.2373 + }, + { + "start": 21535.96, + "end": 21539.34, + "probability": 0.524 + }, + { + "start": 21539.34, + "end": 21542.64, + "probability": 0.876 + }, + { + "start": 21543.34, + "end": 21545.16, + "probability": 0.5734 + }, + { + "start": 21545.66, + "end": 21551.14, + "probability": 0.9871 + }, + { + "start": 21551.14, + "end": 21558.7, + "probability": 0.8407 + }, + { + "start": 21559.9, + "end": 21560.3, + "probability": 0.323 + }, + { + "start": 21560.84, + "end": 21565.07, + "probability": 0.954 + }, + { + "start": 21565.36, + "end": 21569.66, + "probability": 0.9427 + }, + { + "start": 21570.26, + "end": 21574.14, + "probability": 0.9846 + }, + { + "start": 21575.38, + "end": 21576.14, + "probability": 0.6104 + }, + { + "start": 21576.22, + "end": 21577.0, + "probability": 0.6871 + }, + { + "start": 21577.1, + "end": 21578.07, + "probability": 0.9338 + }, + { + "start": 21579.62, + "end": 21582.02, + "probability": 0.889 + }, + { + "start": 21583.42, + "end": 21590.54, + "probability": 0.9815 + }, + { + "start": 21591.34, + "end": 21593.8, + "probability": 0.9426 + }, + { + "start": 21594.3, + "end": 21595.7, + "probability": 0.8972 + }, + { + "start": 21596.62, + "end": 21599.34, + "probability": 0.9653 + }, + { + "start": 21600.44, + "end": 21602.2, + "probability": 0.5945 + }, + { + "start": 21603.26, + "end": 21608.6, + "probability": 0.9664 + }, + { + "start": 21609.78, + "end": 21612.18, + "probability": 0.9951 + }, + { + "start": 21613.16, + "end": 21615.45, + "probability": 0.9884 + }, + { + "start": 21616.7, + "end": 21617.9, + "probability": 0.9568 + }, + { + "start": 21617.94, + "end": 21619.6, + "probability": 0.6874 + }, + { + "start": 21620.47, + "end": 21623.34, + "probability": 0.9747 + }, + { + "start": 21623.96, + "end": 21625.64, + "probability": 0.9339 + }, + { + "start": 21626.08, + "end": 21628.84, + "probability": 0.6627 + }, + { + "start": 21629.96, + "end": 21634.22, + "probability": 0.9808 + }, + { + "start": 21635.02, + "end": 21637.96, + "probability": 0.9924 + }, + { + "start": 21639.34, + "end": 21642.44, + "probability": 0.9845 + }, + { + "start": 21642.44, + "end": 21644.46, + "probability": 0.5873 + }, + { + "start": 21644.54, + "end": 21645.74, + "probability": 0.4059 + }, + { + "start": 21645.96, + "end": 21646.9, + "probability": 0.5807 + }, + { + "start": 21646.9, + "end": 21647.49, + "probability": 0.0688 + }, + { + "start": 21647.72, + "end": 21649.24, + "probability": 0.5033 + }, + { + "start": 21649.56, + "end": 21650.42, + "probability": 0.2837 + }, + { + "start": 21650.5, + "end": 21651.68, + "probability": 0.261 + }, + { + "start": 21652.04, + "end": 21654.0, + "probability": 0.9956 + }, + { + "start": 21654.02, + "end": 21654.72, + "probability": 0.3839 + }, + { + "start": 21655.02, + "end": 21656.84, + "probability": 0.776 + }, + { + "start": 21656.84, + "end": 21657.32, + "probability": 0.2566 + }, + { + "start": 21657.94, + "end": 21663.6, + "probability": 0.0279 + }, + { + "start": 21663.62, + "end": 21663.78, + "probability": 0.058 + }, + { + "start": 21663.78, + "end": 21663.78, + "probability": 0.1374 + }, + { + "start": 21663.78, + "end": 21663.78, + "probability": 0.0181 + }, + { + "start": 21663.78, + "end": 21665.58, + "probability": 0.1138 + }, + { + "start": 21666.14, + "end": 21669.8, + "probability": 0.9414 + }, + { + "start": 21670.16, + "end": 21670.72, + "probability": 0.1351 + }, + { + "start": 21671.68, + "end": 21672.32, + "probability": 0.071 + }, + { + "start": 21672.32, + "end": 21674.78, + "probability": 0.0526 + }, + { + "start": 21675.96, + "end": 21677.39, + "probability": 0.06 + }, + { + "start": 21678.14, + "end": 21680.12, + "probability": 0.4481 + }, + { + "start": 21683.86, + "end": 21684.3, + "probability": 0.7943 + }, + { + "start": 21684.46, + "end": 21684.46, + "probability": 0.1655 + }, + { + "start": 21684.46, + "end": 21684.46, + "probability": 0.0075 + }, + { + "start": 21684.46, + "end": 21684.46, + "probability": 0.0599 + }, + { + "start": 21684.46, + "end": 21684.46, + "probability": 0.2882 + }, + { + "start": 21684.46, + "end": 21686.82, + "probability": 0.5999 + }, + { + "start": 21687.7, + "end": 21689.38, + "probability": 0.7709 + }, + { + "start": 21690.14, + "end": 21694.26, + "probability": 0.9909 + }, + { + "start": 21694.88, + "end": 21696.7, + "probability": 0.759 + }, + { + "start": 21697.68, + "end": 21698.84, + "probability": 0.7806 + }, + { + "start": 21699.53, + "end": 21702.41, + "probability": 0.6582 + }, + { + "start": 21703.3, + "end": 21704.82, + "probability": 0.8065 + }, + { + "start": 21705.62, + "end": 21711.06, + "probability": 0.9949 + }, + { + "start": 21711.26, + "end": 21715.5, + "probability": 0.6584 + }, + { + "start": 21716.0, + "end": 21716.72, + "probability": 0.5044 + }, + { + "start": 21718.74, + "end": 21719.88, + "probability": 0.6161 + }, + { + "start": 21720.0, + "end": 21722.18, + "probability": 0.8323 + }, + { + "start": 21722.2, + "end": 21722.52, + "probability": 0.9254 + }, + { + "start": 21722.56, + "end": 21724.62, + "probability": 0.8533 + }, + { + "start": 21726.68, + "end": 21730.16, + "probability": 0.942 + }, + { + "start": 21731.12, + "end": 21733.14, + "probability": 0.7988 + }, + { + "start": 21734.98, + "end": 21735.76, + "probability": 0.6619 + }, + { + "start": 21735.86, + "end": 21736.98, + "probability": 0.645 + }, + { + "start": 21737.46, + "end": 21738.68, + "probability": 0.7933 + }, + { + "start": 21739.62, + "end": 21742.48, + "probability": 0.2726 + }, + { + "start": 21744.44, + "end": 21748.78, + "probability": 0.5961 + }, + { + "start": 21749.06, + "end": 21752.86, + "probability": 0.9019 + }, + { + "start": 21752.94, + "end": 21755.2, + "probability": 0.9909 + }, + { + "start": 21755.3, + "end": 21757.3, + "probability": 0.9255 + }, + { + "start": 21757.4, + "end": 21759.02, + "probability": 0.9908 + }, + { + "start": 21760.04, + "end": 21760.64, + "probability": 0.7125 + }, + { + "start": 21763.04, + "end": 21764.94, + "probability": 0.7487 + }, + { + "start": 21765.06, + "end": 21767.36, + "probability": 0.9634 + }, + { + "start": 21767.68, + "end": 21771.0, + "probability": 0.9856 + }, + { + "start": 21771.12, + "end": 21772.52, + "probability": 0.8066 + }, + { + "start": 21773.9, + "end": 21776.06, + "probability": 0.9629 + }, + { + "start": 21777.04, + "end": 21777.94, + "probability": 0.9666 + }, + { + "start": 21779.24, + "end": 21783.1, + "probability": 0.9918 + }, + { + "start": 21783.9, + "end": 21785.92, + "probability": 0.9766 + }, + { + "start": 21787.16, + "end": 21788.18, + "probability": 0.8772 + }, + { + "start": 21788.32, + "end": 21789.3, + "probability": 0.9922 + }, + { + "start": 21789.32, + "end": 21790.33, + "probability": 0.9083 + }, + { + "start": 21793.04, + "end": 21796.82, + "probability": 0.7423 + }, + { + "start": 21797.58, + "end": 21799.82, + "probability": 0.929 + }, + { + "start": 21800.04, + "end": 21802.1, + "probability": 0.3144 + }, + { + "start": 21802.24, + "end": 21802.66, + "probability": 0.5524 + }, + { + "start": 21803.08, + "end": 21803.7, + "probability": 0.8139 + }, + { + "start": 21804.04, + "end": 21804.86, + "probability": 0.6764 + }, + { + "start": 21804.94, + "end": 21805.44, + "probability": 0.2207 + }, + { + "start": 21806.46, + "end": 21809.82, + "probability": 0.7596 + }, + { + "start": 21810.38, + "end": 21812.54, + "probability": 0.7954 + }, + { + "start": 21813.12, + "end": 21815.28, + "probability": 0.949 + }, + { + "start": 21816.12, + "end": 21817.3, + "probability": 0.9976 + }, + { + "start": 21817.94, + "end": 21819.64, + "probability": 0.9951 + }, + { + "start": 21820.34, + "end": 21822.54, + "probability": 0.9437 + }, + { + "start": 21822.6, + "end": 21823.04, + "probability": 0.8796 + }, + { + "start": 21823.66, + "end": 21824.38, + "probability": 0.7985 + }, + { + "start": 21832.14, + "end": 21833.02, + "probability": 0.6217 + }, + { + "start": 21833.24, + "end": 21837.42, + "probability": 0.9813 + }, + { + "start": 21837.56, + "end": 21837.88, + "probability": 0.8707 + }, + { + "start": 21838.06, + "end": 21838.84, + "probability": 0.7318 + }, + { + "start": 21839.12, + "end": 21840.56, + "probability": 0.9914 + }, + { + "start": 21842.26, + "end": 21842.58, + "probability": 0.8737 + }, + { + "start": 21843.02, + "end": 21844.94, + "probability": 0.9515 + }, + { + "start": 21847.52, + "end": 21850.88, + "probability": 0.5344 + }, + { + "start": 21850.88, + "end": 21852.26, + "probability": 0.818 + }, + { + "start": 21853.16, + "end": 21855.76, + "probability": 0.9319 + }, + { + "start": 21856.28, + "end": 21857.42, + "probability": 0.9909 + }, + { + "start": 21857.48, + "end": 21860.14, + "probability": 0.9598 + }, + { + "start": 21860.44, + "end": 21861.0, + "probability": 0.3919 + }, + { + "start": 21861.0, + "end": 21861.0, + "probability": 0.2675 + }, + { + "start": 21861.0, + "end": 21861.46, + "probability": 0.7209 + }, + { + "start": 21861.78, + "end": 21862.44, + "probability": 0.907 + }, + { + "start": 21862.52, + "end": 21864.4, + "probability": 0.8277 + }, + { + "start": 21864.84, + "end": 21865.46, + "probability": 0.969 + }, + { + "start": 21865.58, + "end": 21866.7, + "probability": 0.793 + }, + { + "start": 21866.82, + "end": 21867.42, + "probability": 0.8223 + }, + { + "start": 21872.66, + "end": 21873.78, + "probability": 0.4968 + }, + { + "start": 21874.56, + "end": 21876.5, + "probability": 0.282 + }, + { + "start": 21877.72, + "end": 21878.14, + "probability": 0.1934 + }, + { + "start": 21880.62, + "end": 21884.44, + "probability": 0.4827 + }, + { + "start": 21885.42, + "end": 21886.64, + "probability": 0.5346 + }, + { + "start": 21886.8, + "end": 21888.52, + "probability": 0.7396 + }, + { + "start": 21890.32, + "end": 21890.78, + "probability": 0.7046 + }, + { + "start": 21897.84, + "end": 21899.94, + "probability": 0.7175 + }, + { + "start": 21901.0, + "end": 21901.72, + "probability": 0.8953 + }, + { + "start": 21909.78, + "end": 21914.12, + "probability": 0.9755 + }, + { + "start": 21914.9, + "end": 21917.3, + "probability": 0.9936 + }, + { + "start": 21917.98, + "end": 21921.46, + "probability": 0.8848 + }, + { + "start": 21922.16, + "end": 21923.62, + "probability": 0.8383 + }, + { + "start": 21924.2, + "end": 21927.8, + "probability": 0.9979 + }, + { + "start": 21928.4, + "end": 21932.42, + "probability": 0.9763 + }, + { + "start": 21932.42, + "end": 21935.68, + "probability": 0.998 + }, + { + "start": 21936.92, + "end": 21940.84, + "probability": 0.9982 + }, + { + "start": 21940.84, + "end": 21944.06, + "probability": 0.996 + }, + { + "start": 21944.72, + "end": 21946.44, + "probability": 0.9722 + }, + { + "start": 21947.52, + "end": 21949.66, + "probability": 0.9537 + }, + { + "start": 21950.22, + "end": 21952.06, + "probability": 0.719 + }, + { + "start": 21952.66, + "end": 21953.06, + "probability": 0.4368 + }, + { + "start": 21953.16, + "end": 21954.74, + "probability": 0.8231 + }, + { + "start": 21955.68, + "end": 21959.53, + "probability": 0.9659 + }, + { + "start": 21959.58, + "end": 21964.1, + "probability": 0.9983 + }, + { + "start": 21965.12, + "end": 21967.4, + "probability": 0.9961 + }, + { + "start": 21968.0, + "end": 21970.64, + "probability": 0.9979 + }, + { + "start": 21971.52, + "end": 21975.26, + "probability": 0.9954 + }, + { + "start": 21976.26, + "end": 21978.06, + "probability": 0.9075 + }, + { + "start": 21978.58, + "end": 21979.94, + "probability": 0.9937 + }, + { + "start": 21980.52, + "end": 21984.12, + "probability": 0.993 + }, + { + "start": 21985.52, + "end": 21991.62, + "probability": 0.9662 + }, + { + "start": 21992.4, + "end": 21996.36, + "probability": 0.9832 + }, + { + "start": 21997.62, + "end": 22003.86, + "probability": 0.9912 + }, + { + "start": 22004.58, + "end": 22008.9, + "probability": 0.9929 + }, + { + "start": 22010.06, + "end": 22015.42, + "probability": 0.9335 + }, + { + "start": 22016.04, + "end": 22019.94, + "probability": 0.8533 + }, + { + "start": 22020.48, + "end": 22027.14, + "probability": 0.9973 + }, + { + "start": 22028.28, + "end": 22028.58, + "probability": 0.613 + }, + { + "start": 22028.62, + "end": 22033.8, + "probability": 0.8605 + }, + { + "start": 22033.92, + "end": 22035.44, + "probability": 0.9133 + }, + { + "start": 22036.62, + "end": 22040.9, + "probability": 0.9971 + }, + { + "start": 22041.6, + "end": 22044.5, + "probability": 0.8419 + }, + { + "start": 22045.6, + "end": 22048.06, + "probability": 0.8962 + }, + { + "start": 22048.76, + "end": 22050.3, + "probability": 0.9491 + }, + { + "start": 22051.16, + "end": 22056.8, + "probability": 0.8939 + }, + { + "start": 22056.8, + "end": 22060.78, + "probability": 0.9919 + }, + { + "start": 22061.42, + "end": 22066.0, + "probability": 0.9948 + }, + { + "start": 22066.16, + "end": 22070.22, + "probability": 0.9663 + }, + { + "start": 22070.98, + "end": 22072.2, + "probability": 0.955 + }, + { + "start": 22072.9, + "end": 22076.92, + "probability": 0.9976 + }, + { + "start": 22077.72, + "end": 22079.3, + "probability": 0.9757 + }, + { + "start": 22080.2, + "end": 22082.22, + "probability": 0.9919 + }, + { + "start": 22082.82, + "end": 22085.02, + "probability": 0.9912 + }, + { + "start": 22085.98, + "end": 22089.28, + "probability": 0.9966 + }, + { + "start": 22090.28, + "end": 22091.52, + "probability": 0.9296 + }, + { + "start": 22092.2, + "end": 22095.68, + "probability": 0.9892 + }, + { + "start": 22096.26, + "end": 22097.62, + "probability": 0.9142 + }, + { + "start": 22098.46, + "end": 22100.86, + "probability": 0.8699 + }, + { + "start": 22101.44, + "end": 22102.8, + "probability": 0.7454 + }, + { + "start": 22103.5, + "end": 22104.86, + "probability": 0.7438 + }, + { + "start": 22105.66, + "end": 22109.38, + "probability": 0.9822 + }, + { + "start": 22109.9, + "end": 22112.62, + "probability": 0.9966 + }, + { + "start": 22113.28, + "end": 22118.42, + "probability": 0.9876 + }, + { + "start": 22119.9, + "end": 22123.94, + "probability": 0.992 + }, + { + "start": 22123.94, + "end": 22128.8, + "probability": 0.9934 + }, + { + "start": 22129.68, + "end": 22130.64, + "probability": 0.7559 + }, + { + "start": 22131.18, + "end": 22134.34, + "probability": 0.9536 + }, + { + "start": 22134.34, + "end": 22139.42, + "probability": 0.925 + }, + { + "start": 22140.34, + "end": 22144.78, + "probability": 0.9976 + }, + { + "start": 22144.78, + "end": 22151.64, + "probability": 0.9911 + }, + { + "start": 22152.72, + "end": 22154.88, + "probability": 0.8514 + }, + { + "start": 22155.46, + "end": 22156.64, + "probability": 0.9083 + }, + { + "start": 22157.58, + "end": 22157.96, + "probability": 0.567 + }, + { + "start": 22158.04, + "end": 22162.84, + "probability": 0.9589 + }, + { + "start": 22163.6, + "end": 22169.68, + "probability": 0.9912 + }, + { + "start": 22170.68, + "end": 22171.02, + "probability": 0.4983 + }, + { + "start": 22171.66, + "end": 22175.26, + "probability": 0.9966 + }, + { + "start": 22175.96, + "end": 22180.4, + "probability": 0.9958 + }, + { + "start": 22181.02, + "end": 22183.46, + "probability": 0.9985 + }, + { + "start": 22184.54, + "end": 22187.66, + "probability": 0.999 + }, + { + "start": 22188.16, + "end": 22192.22, + "probability": 0.9971 + }, + { + "start": 22193.3, + "end": 22196.12, + "probability": 0.936 + }, + { + "start": 22196.98, + "end": 22198.26, + "probability": 0.9954 + }, + { + "start": 22199.04, + "end": 22202.58, + "probability": 0.9828 + }, + { + "start": 22203.12, + "end": 22207.26, + "probability": 0.7162 + }, + { + "start": 22207.74, + "end": 22210.08, + "probability": 0.9188 + }, + { + "start": 22210.62, + "end": 22217.7, + "probability": 0.9775 + }, + { + "start": 22218.12, + "end": 22218.44, + "probability": 0.803 + }, + { + "start": 22220.33, + "end": 22222.16, + "probability": 0.0064 + }, + { + "start": 22222.16, + "end": 22222.16, + "probability": 0.1831 + }, + { + "start": 22222.16, + "end": 22222.16, + "probability": 0.3675 + }, + { + "start": 22222.16, + "end": 22222.16, + "probability": 0.0671 + }, + { + "start": 22222.16, + "end": 22222.16, + "probability": 0.2963 + }, + { + "start": 22222.16, + "end": 22222.72, + "probability": 0.0868 + }, + { + "start": 22223.42, + "end": 22224.3, + "probability": 0.5361 + }, + { + "start": 22226.12, + "end": 22227.12, + "probability": 0.0109 + }, + { + "start": 22229.64, + "end": 22230.02, + "probability": 0.2853 + }, + { + "start": 22230.02, + "end": 22230.26, + "probability": 0.0415 + }, + { + "start": 22231.52, + "end": 22232.84, + "probability": 0.1584 + }, + { + "start": 22235.32, + "end": 22240.3, + "probability": 0.022 + }, + { + "start": 22240.4, + "end": 22240.52, + "probability": 0.0057 + }, + { + "start": 22240.52, + "end": 22241.24, + "probability": 0.4937 + }, + { + "start": 22251.56, + "end": 22253.24, + "probability": 0.0361 + }, + { + "start": 22255.24, + "end": 22257.54, + "probability": 0.5856 + }, + { + "start": 22258.66, + "end": 22259.98, + "probability": 0.8594 + }, + { + "start": 22260.74, + "end": 22262.62, + "probability": 0.2258 + }, + { + "start": 22262.86, + "end": 22263.64, + "probability": 0.0302 + }, + { + "start": 22265.42, + "end": 22265.78, + "probability": 0.1157 + }, + { + "start": 22265.78, + "end": 22266.06, + "probability": 0.0326 + }, + { + "start": 22266.18, + "end": 22268.06, + "probability": 0.6528 + }, + { + "start": 22268.24, + "end": 22269.96, + "probability": 0.8232 + }, + { + "start": 22271.36, + "end": 22274.22, + "probability": 0.9142 + }, + { + "start": 22275.1, + "end": 22275.84, + "probability": 0.6951 + }, + { + "start": 22275.92, + "end": 22277.54, + "probability": 0.9773 + }, + { + "start": 22278.14, + "end": 22279.22, + "probability": 0.6119 + }, + { + "start": 22279.3, + "end": 22280.24, + "probability": 0.9318 + }, + { + "start": 22280.34, + "end": 22281.55, + "probability": 0.1943 + }, + { + "start": 22281.84, + "end": 22283.72, + "probability": 0.2396 + }, + { + "start": 22285.02, + "end": 22288.38, + "probability": 0.2197 + }, + { + "start": 22288.92, + "end": 22290.62, + "probability": 0.7941 + }, + { + "start": 22291.26, + "end": 22292.2, + "probability": 0.3173 + }, + { + "start": 22292.32, + "end": 22294.22, + "probability": 0.8769 + }, + { + "start": 22294.43, + "end": 22296.96, + "probability": 0.0434 + }, + { + "start": 22297.2, + "end": 22298.48, + "probability": 0.4978 + }, + { + "start": 22298.8, + "end": 22300.54, + "probability": 0.6968 + }, + { + "start": 22302.12, + "end": 22303.1, + "probability": 0.7436 + }, + { + "start": 22303.88, + "end": 22304.84, + "probability": 0.8526 + }, + { + "start": 22307.22, + "end": 22309.34, + "probability": 0.9624 + }, + { + "start": 22310.16, + "end": 22313.14, + "probability": 0.5605 + }, + { + "start": 22314.42, + "end": 22321.0, + "probability": 0.8404 + }, + { + "start": 22322.9, + "end": 22324.44, + "probability": 0.9827 + }, + { + "start": 22326.45, + "end": 22331.16, + "probability": 0.806 + }, + { + "start": 22332.62, + "end": 22337.14, + "probability": 0.9822 + }, + { + "start": 22338.04, + "end": 22340.1, + "probability": 0.9412 + }, + { + "start": 22340.46, + "end": 22346.2, + "probability": 0.7758 + }, + { + "start": 22346.72, + "end": 22347.18, + "probability": 0.8361 + }, + { + "start": 22349.18, + "end": 22353.7, + "probability": 0.9648 + }, + { + "start": 22355.46, + "end": 22356.7, + "probability": 0.4722 + }, + { + "start": 22357.22, + "end": 22358.9, + "probability": 0.812 + }, + { + "start": 22360.48, + "end": 22362.56, + "probability": 0.9817 + }, + { + "start": 22364.42, + "end": 22366.98, + "probability": 0.9744 + }, + { + "start": 22368.24, + "end": 22369.22, + "probability": 0.7406 + }, + { + "start": 22371.08, + "end": 22378.2, + "probability": 0.9665 + }, + { + "start": 22379.22, + "end": 22383.78, + "probability": 0.952 + }, + { + "start": 22384.92, + "end": 22386.04, + "probability": 0.6209 + }, + { + "start": 22387.22, + "end": 22389.02, + "probability": 0.4989 + }, + { + "start": 22389.86, + "end": 22390.86, + "probability": 0.9073 + }, + { + "start": 22392.2, + "end": 22393.5, + "probability": 0.873 + }, + { + "start": 22394.9, + "end": 22397.14, + "probability": 0.8547 + }, + { + "start": 22397.7, + "end": 22400.22, + "probability": 0.8415 + }, + { + "start": 22402.96, + "end": 22404.62, + "probability": 0.8702 + }, + { + "start": 22405.68, + "end": 22410.64, + "probability": 0.9263 + }, + { + "start": 22413.0, + "end": 22413.98, + "probability": 0.9285 + }, + { + "start": 22414.54, + "end": 22416.6, + "probability": 0.9512 + }, + { + "start": 22417.7, + "end": 22419.14, + "probability": 0.9656 + }, + { + "start": 22420.18, + "end": 22425.18, + "probability": 0.9199 + }, + { + "start": 22426.38, + "end": 22427.36, + "probability": 0.4591 + }, + { + "start": 22428.38, + "end": 22431.24, + "probability": 0.9921 + }, + { + "start": 22432.42, + "end": 22434.22, + "probability": 0.9406 + }, + { + "start": 22435.26, + "end": 22440.3, + "probability": 0.8821 + }, + { + "start": 22440.9, + "end": 22441.62, + "probability": 0.9935 + }, + { + "start": 22443.18, + "end": 22446.74, + "probability": 0.6493 + }, + { + "start": 22448.0, + "end": 22452.31, + "probability": 0.9629 + }, + { + "start": 22453.54, + "end": 22458.76, + "probability": 0.9074 + }, + { + "start": 22459.3, + "end": 22460.48, + "probability": 0.9826 + }, + { + "start": 22462.1, + "end": 22463.82, + "probability": 0.9705 + }, + { + "start": 22464.96, + "end": 22466.34, + "probability": 0.8613 + }, + { + "start": 22467.12, + "end": 22468.34, + "probability": 0.9987 + }, + { + "start": 22469.26, + "end": 22473.26, + "probability": 0.9676 + }, + { + "start": 22474.36, + "end": 22475.88, + "probability": 0.5598 + }, + { + "start": 22476.92, + "end": 22478.96, + "probability": 0.9985 + }, + { + "start": 22480.04, + "end": 22483.46, + "probability": 0.7463 + }, + { + "start": 22484.18, + "end": 22487.88, + "probability": 0.9631 + }, + { + "start": 22488.48, + "end": 22490.9, + "probability": 0.8371 + }, + { + "start": 22491.7, + "end": 22493.64, + "probability": 0.7118 + }, + { + "start": 22494.22, + "end": 22497.48, + "probability": 0.9733 + }, + { + "start": 22497.98, + "end": 22499.47, + "probability": 0.787 + }, + { + "start": 22500.22, + "end": 22504.38, + "probability": 0.8923 + }, + { + "start": 22504.8, + "end": 22510.16, + "probability": 0.9564 + }, + { + "start": 22510.58, + "end": 22515.18, + "probability": 0.982 + }, + { + "start": 22516.1, + "end": 22517.72, + "probability": 0.9089 + }, + { + "start": 22518.18, + "end": 22522.54, + "probability": 0.8006 + }, + { + "start": 22522.96, + "end": 22524.18, + "probability": 0.6812 + }, + { + "start": 22524.56, + "end": 22528.22, + "probability": 0.961 + }, + { + "start": 22528.96, + "end": 22532.48, + "probability": 0.9888 + }, + { + "start": 22532.84, + "end": 22533.32, + "probability": 0.8629 + }, + { + "start": 22534.66, + "end": 22535.16, + "probability": 0.8254 + }, + { + "start": 22538.36, + "end": 22539.2, + "probability": 0.9275 + }, + { + "start": 22539.68, + "end": 22543.24, + "probability": 0.8359 + }, + { + "start": 22543.86, + "end": 22544.88, + "probability": 0.3245 + }, + { + "start": 22544.98, + "end": 22545.54, + "probability": 0.796 + }, + { + "start": 22545.68, + "end": 22547.1, + "probability": 0.6012 + }, + { + "start": 22547.58, + "end": 22548.56, + "probability": 0.8209 + }, + { + "start": 22548.72, + "end": 22549.85, + "probability": 0.7704 + }, + { + "start": 22562.46, + "end": 22562.84, + "probability": 0.5835 + }, + { + "start": 22563.8, + "end": 22564.86, + "probability": 0.0455 + }, + { + "start": 22565.46, + "end": 22565.96, + "probability": 0.6287 + }, + { + "start": 22566.74, + "end": 22569.22, + "probability": 0.3866 + }, + { + "start": 22569.3, + "end": 22570.06, + "probability": 0.6032 + }, + { + "start": 22570.88, + "end": 22572.14, + "probability": 0.335 + }, + { + "start": 22572.68, + "end": 22575.64, + "probability": 0.0033 + }, + { + "start": 22577.56, + "end": 22579.98, + "probability": 0.8823 + }, + { + "start": 22580.3, + "end": 22582.74, + "probability": 0.9924 + }, + { + "start": 22583.84, + "end": 22584.42, + "probability": 0.8712 + }, + { + "start": 22584.48, + "end": 22586.6, + "probability": 0.9651 + }, + { + "start": 22586.6, + "end": 22590.28, + "probability": 0.6481 + }, + { + "start": 22590.36, + "end": 22590.96, + "probability": 0.7566 + }, + { + "start": 22591.12, + "end": 22594.34, + "probability": 0.6921 + }, + { + "start": 22609.91, + "end": 22614.58, + "probability": 0.3208 + }, + { + "start": 22614.94, + "end": 22615.58, + "probability": 0.7478 + }, + { + "start": 22615.74, + "end": 22617.1, + "probability": 0.6213 + }, + { + "start": 22617.58, + "end": 22617.96, + "probability": 0.2355 + }, + { + "start": 22618.24, + "end": 22621.64, + "probability": 0.7421 + }, + { + "start": 22623.1, + "end": 22626.2, + "probability": 0.9554 + }, + { + "start": 22637.52, + "end": 22638.34, + "probability": 0.0242 + }, + { + "start": 22638.88, + "end": 22639.98, + "probability": 0.4282 + }, + { + "start": 22640.62, + "end": 22642.84, + "probability": 0.1553 + }, + { + "start": 22642.92, + "end": 22643.48, + "probability": 0.3758 + }, + { + "start": 22643.62, + "end": 22645.02, + "probability": 0.069 + }, + { + "start": 22645.04, + "end": 22646.06, + "probability": 0.4115 + }, + { + "start": 22652.8, + "end": 22654.9, + "probability": 0.1559 + }, + { + "start": 22655.27, + "end": 22656.52, + "probability": 0.0307 + }, + { + "start": 22657.22, + "end": 22658.96, + "probability": 0.0061 + }, + { + "start": 22713.0, + "end": 22713.0, + "probability": 0.0 + }, + { + "start": 22713.0, + "end": 22713.0, + "probability": 0.0 + }, + { + "start": 22713.0, + "end": 22713.0, + "probability": 0.0 + }, + { + "start": 22713.0, + "end": 22713.0, + "probability": 0.0 + }, + { + "start": 22713.0, + "end": 22713.0, + "probability": 0.0 + }, + { + "start": 22713.0, + "end": 22713.0, + "probability": 0.0 + }, + { + "start": 22713.0, + "end": 22713.0, + "probability": 0.0 + }, + { + "start": 22713.0, + "end": 22713.0, + "probability": 0.0 + }, + { + "start": 22713.0, + "end": 22713.0, + "probability": 0.0 + }, + { + "start": 22713.0, + "end": 22713.0, + "probability": 0.0 + }, + { + "start": 22713.0, + "end": 22713.0, + "probability": 0.0 + }, + { + "start": 22713.0, + "end": 22713.0, + "probability": 0.0 + }, + { + "start": 22713.0, + "end": 22713.0, + "probability": 0.0 + }, + { + "start": 22713.0, + "end": 22713.0, + "probability": 0.0 + }, + { + "start": 22713.0, + "end": 22713.0, + "probability": 0.0 + }, + { + "start": 22713.0, + "end": 22713.0, + "probability": 0.0 + }, + { + "start": 22713.0, + "end": 22713.0, + "probability": 0.0 + }, + { + "start": 22713.0, + "end": 22713.0, + "probability": 0.0 + }, + { + "start": 22713.0, + "end": 22713.0, + "probability": 0.0 + }, + { + "start": 22713.0, + "end": 22713.0, + "probability": 0.0 + }, + { + "start": 22713.0, + "end": 22713.0, + "probability": 0.0 + }, + { + "start": 22713.2, + "end": 22713.2, + "probability": 0.065 + }, + { + "start": 22713.2, + "end": 22713.2, + "probability": 0.1152 + }, + { + "start": 22713.2, + "end": 22713.2, + "probability": 0.0258 + }, + { + "start": 22713.2, + "end": 22715.4, + "probability": 0.1369 + }, + { + "start": 22716.3, + "end": 22717.6, + "probability": 0.062 + }, + { + "start": 22717.6, + "end": 22718.36, + "probability": 0.6031 + }, + { + "start": 22718.66, + "end": 22721.02, + "probability": 0.5069 + }, + { + "start": 22721.6, + "end": 22723.44, + "probability": 0.7001 + }, + { + "start": 22724.1, + "end": 22728.08, + "probability": 0.9854 + }, + { + "start": 22728.08, + "end": 22732.72, + "probability": 0.996 + }, + { + "start": 22732.72, + "end": 22738.6, + "probability": 0.993 + }, + { + "start": 22739.24, + "end": 22741.06, + "probability": 0.6912 + }, + { + "start": 22741.62, + "end": 22745.72, + "probability": 0.7381 + }, + { + "start": 22747.14, + "end": 22751.54, + "probability": 0.9919 + }, + { + "start": 22751.8, + "end": 22754.82, + "probability": 0.9816 + }, + { + "start": 22755.44, + "end": 22757.1, + "probability": 0.9603 + }, + { + "start": 22758.2, + "end": 22762.1, + "probability": 0.9977 + }, + { + "start": 22762.1, + "end": 22766.52, + "probability": 0.9757 + }, + { + "start": 22767.3, + "end": 22772.64, + "probability": 0.9937 + }, + { + "start": 22773.16, + "end": 22775.98, + "probability": 0.9784 + }, + { + "start": 22776.98, + "end": 22779.34, + "probability": 0.9933 + }, + { + "start": 22780.38, + "end": 22780.9, + "probability": 0.6699 + }, + { + "start": 22781.48, + "end": 22789.22, + "probability": 0.9542 + }, + { + "start": 22789.32, + "end": 22795.04, + "probability": 0.9948 + }, + { + "start": 22795.7, + "end": 22798.8, + "probability": 0.9744 + }, + { + "start": 22800.26, + "end": 22803.52, + "probability": 0.9928 + }, + { + "start": 22803.58, + "end": 22806.44, + "probability": 0.9937 + }, + { + "start": 22807.18, + "end": 22808.28, + "probability": 0.7604 + }, + { + "start": 22808.56, + "end": 22813.38, + "probability": 0.9833 + }, + { + "start": 22813.38, + "end": 22816.86, + "probability": 0.9976 + }, + { + "start": 22817.54, + "end": 22822.1, + "probability": 0.9775 + }, + { + "start": 22822.1, + "end": 22827.12, + "probability": 0.9845 + }, + { + "start": 22828.0, + "end": 22828.42, + "probability": 0.5701 + }, + { + "start": 22829.12, + "end": 22833.22, + "probability": 0.9898 + }, + { + "start": 22833.66, + "end": 22836.8, + "probability": 0.7222 + }, + { + "start": 22837.56, + "end": 22838.32, + "probability": 0.7989 + }, + { + "start": 22839.04, + "end": 22840.06, + "probability": 0.9446 + }, + { + "start": 22840.48, + "end": 22845.86, + "probability": 0.998 + }, + { + "start": 22846.54, + "end": 22846.94, + "probability": 0.7683 + }, + { + "start": 22847.9, + "end": 22850.6, + "probability": 0.9921 + }, + { + "start": 22850.6, + "end": 22854.0, + "probability": 0.9919 + }, + { + "start": 22854.7, + "end": 22859.88, + "probability": 0.9838 + }, + { + "start": 22861.8, + "end": 22863.84, + "probability": 0.9764 + }, + { + "start": 22864.66, + "end": 22867.66, + "probability": 0.9899 + }, + { + "start": 22867.7, + "end": 22873.28, + "probability": 0.9604 + }, + { + "start": 22873.64, + "end": 22879.58, + "probability": 0.9694 + }, + { + "start": 22880.5, + "end": 22883.48, + "probability": 0.8734 + }, + { + "start": 22883.86, + "end": 22886.62, + "probability": 0.8521 + }, + { + "start": 22887.08, + "end": 22889.52, + "probability": 0.7642 + }, + { + "start": 22889.52, + "end": 22893.18, + "probability": 0.9796 + }, + { + "start": 22893.62, + "end": 22897.86, + "probability": 0.9743 + }, + { + "start": 22897.86, + "end": 22900.3, + "probability": 0.9641 + }, + { + "start": 22901.22, + "end": 22902.18, + "probability": 0.8233 + }, + { + "start": 22902.46, + "end": 22910.0, + "probability": 0.9579 + }, + { + "start": 22910.0, + "end": 22914.7, + "probability": 0.9955 + }, + { + "start": 22915.8, + "end": 22916.3, + "probability": 0.8336 + }, + { + "start": 22917.18, + "end": 22920.42, + "probability": 0.9573 + }, + { + "start": 22920.92, + "end": 22925.32, + "probability": 0.9871 + }, + { + "start": 22925.74, + "end": 22931.98, + "probability": 0.9758 + }, + { + "start": 22932.1, + "end": 22936.82, + "probability": 0.8432 + }, + { + "start": 22936.82, + "end": 22940.88, + "probability": 0.9746 + }, + { + "start": 22942.26, + "end": 22943.08, + "probability": 0.8355 + }, + { + "start": 22943.66, + "end": 22943.66, + "probability": 0.6289 + }, + { + "start": 22943.8, + "end": 22946.52, + "probability": 0.9792 + }, + { + "start": 22946.6, + "end": 22948.7, + "probability": 0.6526 + }, + { + "start": 22948.94, + "end": 22953.36, + "probability": 0.9712 + }, + { + "start": 22953.36, + "end": 22959.24, + "probability": 0.988 + }, + { + "start": 22959.84, + "end": 22963.64, + "probability": 0.9329 + }, + { + "start": 22964.22, + "end": 22966.35, + "probability": 0.9453 + }, + { + "start": 22966.48, + "end": 22968.5, + "probability": 0.8609 + }, + { + "start": 22969.26, + "end": 22974.2, + "probability": 0.9923 + }, + { + "start": 22975.02, + "end": 22975.28, + "probability": 0.5085 + }, + { + "start": 22975.42, + "end": 22976.16, + "probability": 0.625 + }, + { + "start": 22976.18, + "end": 22978.64, + "probability": 0.8679 + }, + { + "start": 22979.25, + "end": 22984.56, + "probability": 0.9953 + }, + { + "start": 22984.66, + "end": 22990.6, + "probability": 0.9587 + }, + { + "start": 22990.6, + "end": 22996.96, + "probability": 0.7947 + }, + { + "start": 22997.3, + "end": 22997.72, + "probability": 0.75 + }, + { + "start": 22998.56, + "end": 22999.06, + "probability": 0.3978 + }, + { + "start": 22999.5, + "end": 23000.14, + "probability": 0.8445 + }, + { + "start": 23000.3, + "end": 23001.0, + "probability": 0.6246 + }, + { + "start": 23001.16, + "end": 23002.12, + "probability": 0.9055 + }, + { + "start": 23002.74, + "end": 23004.24, + "probability": 0.6399 + }, + { + "start": 23004.32, + "end": 23005.44, + "probability": 0.9922 + }, + { + "start": 23005.82, + "end": 23007.28, + "probability": 0.9008 + }, + { + "start": 23007.48, + "end": 23009.92, + "probability": 0.9564 + }, + { + "start": 23009.92, + "end": 23011.78, + "probability": 0.9337 + }, + { + "start": 23012.14, + "end": 23017.52, + "probability": 0.9971 + }, + { + "start": 23017.96, + "end": 23021.22, + "probability": 0.895 + }, + { + "start": 23021.68, + "end": 23023.64, + "probability": 0.8186 + }, + { + "start": 23024.12, + "end": 23025.17, + "probability": 0.3329 + }, + { + "start": 23027.02, + "end": 23028.48, + "probability": 0.6392 + }, + { + "start": 23028.6, + "end": 23029.08, + "probability": 0.3939 + }, + { + "start": 23029.08, + "end": 23031.06, + "probability": 0.4832 + }, + { + "start": 23031.06, + "end": 23032.96, + "probability": 0.4998 + }, + { + "start": 23033.06, + "end": 23035.02, + "probability": 0.813 + }, + { + "start": 23035.08, + "end": 23037.64, + "probability": 0.9081 + }, + { + "start": 23038.12, + "end": 23039.22, + "probability": 0.9038 + }, + { + "start": 23039.22, + "end": 23039.87, + "probability": 0.4083 + }, + { + "start": 23040.76, + "end": 23041.12, + "probability": 0.6511 + }, + { + "start": 23041.26, + "end": 23041.8, + "probability": 0.5926 + }, + { + "start": 23041.96, + "end": 23042.34, + "probability": 0.8708 + }, + { + "start": 23042.48, + "end": 23045.06, + "probability": 0.7257 + }, + { + "start": 23045.4, + "end": 23049.68, + "probability": 0.9961 + }, + { + "start": 23050.18, + "end": 23052.16, + "probability": 0.8506 + }, + { + "start": 23052.54, + "end": 23055.78, + "probability": 0.9956 + }, + { + "start": 23056.1, + "end": 23056.96, + "probability": 0.7616 + }, + { + "start": 23057.24, + "end": 23057.86, + "probability": 0.965 + }, + { + "start": 23057.96, + "end": 23061.24, + "probability": 0.9723 + }, + { + "start": 23061.54, + "end": 23062.02, + "probability": 0.7751 + }, + { + "start": 23062.3, + "end": 23063.62, + "probability": 0.6603 + }, + { + "start": 23063.7, + "end": 23065.44, + "probability": 0.9163 + }, + { + "start": 23066.06, + "end": 23067.65, + "probability": 0.7477 + }, + { + "start": 23068.16, + "end": 23071.78, + "probability": 0.937 + }, + { + "start": 23072.36, + "end": 23073.7, + "probability": 0.6448 + }, + { + "start": 23073.78, + "end": 23074.26, + "probability": 0.6783 + }, + { + "start": 23074.34, + "end": 23075.04, + "probability": 0.9432 + }, + { + "start": 23075.14, + "end": 23075.58, + "probability": 0.5957 + }, + { + "start": 23075.7, + "end": 23076.48, + "probability": 0.6691 + }, + { + "start": 23076.92, + "end": 23077.58, + "probability": 0.9688 + }, + { + "start": 23077.68, + "end": 23078.18, + "probability": 0.9555 + }, + { + "start": 23078.32, + "end": 23079.0, + "probability": 0.9665 + }, + { + "start": 23079.4, + "end": 23080.32, + "probability": 0.6939 + }, + { + "start": 23080.36, + "end": 23080.98, + "probability": 0.9581 + }, + { + "start": 23081.06, + "end": 23081.6, + "probability": 0.8048 + }, + { + "start": 23081.72, + "end": 23082.3, + "probability": 0.9718 + }, + { + "start": 23082.74, + "end": 23083.52, + "probability": 0.8457 + }, + { + "start": 23083.54, + "end": 23084.12, + "probability": 0.9911 + }, + { + "start": 23084.24, + "end": 23084.92, + "probability": 0.7959 + }, + { + "start": 23085.02, + "end": 23085.58, + "probability": 0.4538 + }, + { + "start": 23086.08, + "end": 23086.38, + "probability": 0.7979 + }, + { + "start": 23086.84, + "end": 23087.56, + "probability": 0.7885 + }, + { + "start": 23087.62, + "end": 23089.3, + "probability": 0.8771 + }, + { + "start": 23089.62, + "end": 23090.76, + "probability": 0.7463 + }, + { + "start": 23092.34, + "end": 23092.92, + "probability": 0.7486 + }, + { + "start": 23092.92, + "end": 23098.22, + "probability": 0.979 + }, + { + "start": 23098.22, + "end": 23101.62, + "probability": 0.989 + }, + { + "start": 23101.62, + "end": 23106.24, + "probability": 0.9987 + }, + { + "start": 23106.34, + "end": 23106.98, + "probability": 0.691 + }, + { + "start": 23107.08, + "end": 23108.38, + "probability": 0.6438 + }, + { + "start": 23108.9, + "end": 23110.14, + "probability": 0.7115 + }, + { + "start": 23110.68, + "end": 23112.02, + "probability": 0.5493 + }, + { + "start": 23112.24, + "end": 23113.04, + "probability": 0.7774 + }, + { + "start": 23113.26, + "end": 23113.96, + "probability": 0.6505 + }, + { + "start": 23114.62, + "end": 23116.92, + "probability": 0.0015 + }, + { + "start": 23127.88, + "end": 23128.08, + "probability": 0.0216 + }, + { + "start": 23128.08, + "end": 23130.92, + "probability": 0.8234 + }, + { + "start": 23131.9, + "end": 23135.38, + "probability": 0.6241 + }, + { + "start": 23136.46, + "end": 23138.96, + "probability": 0.9811 + }, + { + "start": 23139.76, + "end": 23140.08, + "probability": 0.7847 + }, + { + "start": 23140.34, + "end": 23144.04, + "probability": 0.971 + }, + { + "start": 23144.04, + "end": 23148.82, + "probability": 0.9967 + }, + { + "start": 23149.38, + "end": 23150.28, + "probability": 0.2985 + }, + { + "start": 23150.52, + "end": 23151.72, + "probability": 0.4808 + }, + { + "start": 23151.94, + "end": 23155.14, + "probability": 0.6254 + }, + { + "start": 23170.24, + "end": 23174.9, + "probability": 0.9719 + }, + { + "start": 23174.9, + "end": 23180.06, + "probability": 0.995 + }, + { + "start": 23180.2, + "end": 23180.86, + "probability": 0.7313 + }, + { + "start": 23180.96, + "end": 23182.3, + "probability": 0.5803 + }, + { + "start": 23205.64, + "end": 23206.04, + "probability": 0.0682 + }, + { + "start": 23206.04, + "end": 23209.2, + "probability": 0.0549 + }, + { + "start": 23210.55, + "end": 23214.0, + "probability": 0.0431 + }, + { + "start": 23214.0, + "end": 23215.06, + "probability": 0.0179 + }, + { + "start": 23216.04, + "end": 23216.84, + "probability": 0.0038 + }, + { + "start": 23216.84, + "end": 23217.843, + "probability": 0.0 + }, + { + "start": 23217.843, + "end": 23217.843, + "probability": 0.0 + }, + { + "start": 23217.843, + "end": 23217.843, + "probability": 0.0 + }, + { + "start": 23217.843, + "end": 23217.843, + "probability": 0.0 + }, + { + "start": 23217.843, + "end": 23217.843, + "probability": 0.0 + }, + { + "start": 23217.843, + "end": 23217.843, + "probability": 0.0 + }, + { + "start": 23217.843, + "end": 23217.843, + "probability": 0.0 + }, + { + "start": 23217.843, + "end": 23217.843, + "probability": 0.0 + }, + { + "start": 23217.843, + "end": 23217.843, + "probability": 0.0 + }, + { + "start": 23217.843, + "end": 23217.843, + "probability": 0.0 + }, + { + "start": 23217.843, + "end": 23217.843, + "probability": 0.0 + } + ], + "segments_count": 8293, + "words_count": 40663, + "avg_words_per_segment": 4.9033, + "avg_segment_duration": 1.9677, + "avg_words_per_minute": 105.0822, + "plenum_id": "122151", + "duration": 23217.83, + "title": null, + "plenum_date": "2023-12-06" +} \ No newline at end of file