diff --git "a/127041/metadata.json" "b/127041/metadata.json" new file mode 100644--- /dev/null +++ "b/127041/metadata.json" @@ -0,0 +1,17562 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "127041", + "quality_score": 0.9334, + "per_segment_quality_scores": [ + { + "start": 8.86, + "end": 11.92, + "probability": 0.1675 + }, + { + "start": 45.98, + "end": 46.66, + "probability": 0.4676 + }, + { + "start": 52.98, + "end": 54.08, + "probability": 0.5964 + }, + { + "start": 54.2, + "end": 55.4, + "probability": 0.6094 + }, + { + "start": 55.48, + "end": 56.94, + "probability": 0.9661 + }, + { + "start": 57.32, + "end": 58.32, + "probability": 0.7845 + }, + { + "start": 58.56, + "end": 62.5, + "probability": 0.9564 + }, + { + "start": 62.5, + "end": 67.98, + "probability": 0.9961 + }, + { + "start": 68.02, + "end": 69.36, + "probability": 0.662 + }, + { + "start": 69.5, + "end": 70.62, + "probability": 0.5778 + }, + { + "start": 70.74, + "end": 72.42, + "probability": 0.9631 + }, + { + "start": 72.52, + "end": 72.78, + "probability": 0.7581 + }, + { + "start": 83.2, + "end": 83.8, + "probability": 0.7714 + }, + { + "start": 83.94, + "end": 85.38, + "probability": 0.7638 + }, + { + "start": 85.46, + "end": 87.02, + "probability": 0.6757 + }, + { + "start": 87.54, + "end": 93.58, + "probability": 0.9873 + }, + { + "start": 94.42, + "end": 96.06, + "probability": 0.9244 + }, + { + "start": 96.16, + "end": 96.7, + "probability": 0.8073 + }, + { + "start": 121.68, + "end": 121.78, + "probability": 0.4946 + }, + { + "start": 122.5, + "end": 123.42, + "probability": 0.6741 + }, + { + "start": 123.8, + "end": 124.62, + "probability": 0.8169 + }, + { + "start": 126.92, + "end": 128.58, + "probability": 0.5787 + }, + { + "start": 146.04, + "end": 149.26, + "probability": 0.981 + }, + { + "start": 154.06, + "end": 155.24, + "probability": 0.3127 + }, + { + "start": 156.08, + "end": 156.28, + "probability": 0.5138 + }, + { + "start": 156.5, + "end": 160.1, + "probability": 0.9768 + }, + { + "start": 160.26, + "end": 163.74, + "probability": 0.8992 + }, + { + "start": 164.74, + "end": 169.22, + "probability": 0.9933 + }, + { + "start": 169.4, + "end": 169.94, + "probability": 0.5341 + }, + { + "start": 170.58, + "end": 172.92, + "probability": 0.98 + }, + { + "start": 174.08, + "end": 179.0, + "probability": 0.9723 + }, + { + "start": 179.38, + "end": 182.5, + "probability": 0.9957 + }, + { + "start": 183.12, + "end": 186.62, + "probability": 0.9955 + }, + { + "start": 186.62, + "end": 190.19, + "probability": 0.9946 + }, + { + "start": 190.86, + "end": 191.26, + "probability": 0.9654 + }, + { + "start": 191.34, + "end": 193.26, + "probability": 0.8901 + }, + { + "start": 193.38, + "end": 194.08, + "probability": 0.9361 + }, + { + "start": 194.22, + "end": 195.06, + "probability": 0.88 + }, + { + "start": 195.54, + "end": 199.8, + "probability": 0.9927 + }, + { + "start": 200.44, + "end": 203.54, + "probability": 0.9339 + }, + { + "start": 204.42, + "end": 207.14, + "probability": 0.9927 + }, + { + "start": 207.14, + "end": 210.1, + "probability": 0.9987 + }, + { + "start": 210.66, + "end": 215.92, + "probability": 0.9952 + }, + { + "start": 216.66, + "end": 216.86, + "probability": 0.4579 + }, + { + "start": 216.96, + "end": 218.81, + "probability": 0.9548 + }, + { + "start": 219.52, + "end": 219.68, + "probability": 0.6838 + }, + { + "start": 219.71, + "end": 221.16, + "probability": 0.9178 + }, + { + "start": 221.16, + "end": 225.3, + "probability": 0.969 + }, + { + "start": 225.78, + "end": 225.78, + "probability": 0.2642 + }, + { + "start": 225.9, + "end": 229.86, + "probability": 0.9767 + }, + { + "start": 229.96, + "end": 230.32, + "probability": 0.5958 + }, + { + "start": 230.76, + "end": 231.06, + "probability": 0.2103 + }, + { + "start": 231.12, + "end": 235.82, + "probability": 0.9984 + }, + { + "start": 236.4, + "end": 237.64, + "probability": 0.6441 + }, + { + "start": 237.78, + "end": 240.97, + "probability": 0.9958 + }, + { + "start": 241.26, + "end": 243.66, + "probability": 0.9986 + }, + { + "start": 244.1, + "end": 246.34, + "probability": 0.9985 + }, + { + "start": 246.5, + "end": 246.98, + "probability": 0.6075 + }, + { + "start": 247.9, + "end": 248.14, + "probability": 0.4126 + }, + { + "start": 248.14, + "end": 249.88, + "probability": 0.8831 + }, + { + "start": 254.9, + "end": 256.52, + "probability": 0.5932 + }, + { + "start": 257.22, + "end": 260.66, + "probability": 0.9907 + }, + { + "start": 260.8, + "end": 261.48, + "probability": 0.5097 + }, + { + "start": 261.56, + "end": 262.0, + "probability": 0.6102 + }, + { + "start": 262.06, + "end": 263.22, + "probability": 0.9924 + }, + { + "start": 265.95, + "end": 266.52, + "probability": 0.2774 + }, + { + "start": 266.52, + "end": 268.22, + "probability": 0.8494 + }, + { + "start": 268.22, + "end": 271.24, + "probability": 0.8775 + }, + { + "start": 271.32, + "end": 272.0, + "probability": 0.9322 + }, + { + "start": 272.7, + "end": 275.7, + "probability": 0.9406 + }, + { + "start": 276.22, + "end": 278.32, + "probability": 0.9488 + }, + { + "start": 278.32, + "end": 280.86, + "probability": 0.7373 + }, + { + "start": 281.5, + "end": 282.24, + "probability": 0.5198 + }, + { + "start": 282.38, + "end": 283.5, + "probability": 0.8976 + }, + { + "start": 283.86, + "end": 285.76, + "probability": 0.7252 + }, + { + "start": 285.92, + "end": 286.3, + "probability": 0.74 + }, + { + "start": 286.92, + "end": 289.16, + "probability": 0.7172 + }, + { + "start": 289.74, + "end": 292.12, + "probability": 0.9945 + }, + { + "start": 292.3, + "end": 293.16, + "probability": 0.7116 + }, + { + "start": 293.94, + "end": 295.08, + "probability": 0.6754 + }, + { + "start": 295.22, + "end": 296.76, + "probability": 0.7419 + }, + { + "start": 297.28, + "end": 297.88, + "probability": 0.3216 + }, + { + "start": 297.92, + "end": 299.72, + "probability": 0.979 + }, + { + "start": 299.9, + "end": 300.4, + "probability": 0.5794 + }, + { + "start": 300.5, + "end": 302.14, + "probability": 0.9854 + }, + { + "start": 302.64, + "end": 304.5, + "probability": 0.7622 + }, + { + "start": 304.7, + "end": 305.94, + "probability": 0.9095 + }, + { + "start": 306.42, + "end": 308.92, + "probability": 0.7887 + }, + { + "start": 309.04, + "end": 310.08, + "probability": 0.9336 + }, + { + "start": 310.12, + "end": 311.18, + "probability": 0.9011 + }, + { + "start": 311.32, + "end": 311.64, + "probability": 0.5521 + }, + { + "start": 312.0, + "end": 312.98, + "probability": 0.9683 + }, + { + "start": 313.18, + "end": 314.34, + "probability": 0.9688 + }, + { + "start": 314.82, + "end": 316.53, + "probability": 0.9966 + }, + { + "start": 316.8, + "end": 317.92, + "probability": 0.8136 + }, + { + "start": 318.06, + "end": 318.48, + "probability": 0.7942 + }, + { + "start": 318.6, + "end": 319.16, + "probability": 0.769 + }, + { + "start": 319.7, + "end": 321.8, + "probability": 0.9791 + }, + { + "start": 321.94, + "end": 324.16, + "probability": 0.9977 + }, + { + "start": 324.7, + "end": 326.74, + "probability": 0.9441 + }, + { + "start": 327.32, + "end": 329.2, + "probability": 0.9961 + }, + { + "start": 329.34, + "end": 329.88, + "probability": 0.7324 + }, + { + "start": 329.98, + "end": 330.92, + "probability": 0.8256 + }, + { + "start": 330.96, + "end": 333.6, + "probability": 0.9976 + }, + { + "start": 333.76, + "end": 335.74, + "probability": 0.9941 + }, + { + "start": 336.1, + "end": 336.34, + "probability": 0.7257 + }, + { + "start": 336.34, + "end": 337.72, + "probability": 0.7522 + }, + { + "start": 338.14, + "end": 339.84, + "probability": 0.995 + }, + { + "start": 340.28, + "end": 341.56, + "probability": 0.4838 + }, + { + "start": 341.74, + "end": 342.5, + "probability": 0.6568 + }, + { + "start": 343.66, + "end": 344.52, + "probability": 0.8359 + }, + { + "start": 344.82, + "end": 347.24, + "probability": 0.8567 + }, + { + "start": 350.1, + "end": 352.08, + "probability": 0.7346 + }, + { + "start": 353.9, + "end": 356.5, + "probability": 0.7103 + }, + { + "start": 359.3, + "end": 360.04, + "probability": 0.576 + }, + { + "start": 360.06, + "end": 360.88, + "probability": 0.6736 + }, + { + "start": 361.0, + "end": 364.5, + "probability": 0.9966 + }, + { + "start": 364.5, + "end": 367.72, + "probability": 0.7424 + }, + { + "start": 368.58, + "end": 373.38, + "probability": 0.8775 + }, + { + "start": 373.38, + "end": 380.58, + "probability": 0.9166 + }, + { + "start": 380.7, + "end": 381.72, + "probability": 0.7645 + }, + { + "start": 382.28, + "end": 384.62, + "probability": 0.9947 + }, + { + "start": 385.3, + "end": 394.0, + "probability": 0.9437 + }, + { + "start": 394.0, + "end": 396.76, + "probability": 0.9119 + }, + { + "start": 397.28, + "end": 399.6, + "probability": 0.9483 + }, + { + "start": 399.66, + "end": 401.14, + "probability": 0.8214 + }, + { + "start": 401.92, + "end": 405.08, + "probability": 0.9588 + }, + { + "start": 405.8, + "end": 408.16, + "probability": 0.5143 + }, + { + "start": 408.8, + "end": 410.53, + "probability": 0.5775 + }, + { + "start": 410.9, + "end": 414.26, + "probability": 0.993 + }, + { + "start": 414.8, + "end": 415.62, + "probability": 0.979 + }, + { + "start": 415.76, + "end": 417.3, + "probability": 0.9975 + }, + { + "start": 418.18, + "end": 419.66, + "probability": 0.9587 + }, + { + "start": 420.62, + "end": 423.54, + "probability": 0.9244 + }, + { + "start": 424.32, + "end": 427.2, + "probability": 0.7533 + }, + { + "start": 427.36, + "end": 428.54, + "probability": 0.628 + }, + { + "start": 428.62, + "end": 428.8, + "probability": 0.793 + }, + { + "start": 428.8, + "end": 429.44, + "probability": 0.7406 + }, + { + "start": 430.2, + "end": 431.2, + "probability": 0.9682 + }, + { + "start": 431.42, + "end": 434.16, + "probability": 0.9656 + }, + { + "start": 434.26, + "end": 436.84, + "probability": 0.893 + }, + { + "start": 437.28, + "end": 439.22, + "probability": 0.8696 + }, + { + "start": 439.9, + "end": 440.92, + "probability": 0.2117 + }, + { + "start": 442.04, + "end": 442.48, + "probability": 0.534 + }, + { + "start": 442.48, + "end": 442.96, + "probability": 0.0146 + }, + { + "start": 462.44, + "end": 463.26, + "probability": 0.2764 + }, + { + "start": 467.95, + "end": 472.72, + "probability": 0.984 + }, + { + "start": 472.86, + "end": 473.88, + "probability": 0.9315 + }, + { + "start": 474.26, + "end": 475.44, + "probability": 0.9924 + }, + { + "start": 475.74, + "end": 478.63, + "probability": 0.9832 + }, + { + "start": 480.64, + "end": 482.24, + "probability": 0.9189 + }, + { + "start": 498.02, + "end": 499.45, + "probability": 0.6271 + }, + { + "start": 499.64, + "end": 500.72, + "probability": 0.7469 + }, + { + "start": 511.84, + "end": 513.04, + "probability": 0.8629 + }, + { + "start": 515.54, + "end": 515.82, + "probability": 0.4688 + }, + { + "start": 515.84, + "end": 519.94, + "probability": 0.9825 + }, + { + "start": 519.94, + "end": 522.62, + "probability": 0.9917 + }, + { + "start": 523.66, + "end": 526.72, + "probability": 0.9891 + }, + { + "start": 526.86, + "end": 527.98, + "probability": 0.9875 + }, + { + "start": 529.54, + "end": 531.48, + "probability": 0.994 + }, + { + "start": 534.1, + "end": 535.32, + "probability": 0.9468 + }, + { + "start": 537.28, + "end": 540.02, + "probability": 0.9941 + }, + { + "start": 540.12, + "end": 544.2, + "probability": 0.9896 + }, + { + "start": 544.36, + "end": 548.2, + "probability": 0.9114 + }, + { + "start": 548.52, + "end": 550.84, + "probability": 0.8848 + }, + { + "start": 551.56, + "end": 553.76, + "probability": 0.8547 + }, + { + "start": 554.28, + "end": 557.84, + "probability": 0.7107 + }, + { + "start": 558.16, + "end": 560.8, + "probability": 0.8779 + }, + { + "start": 560.92, + "end": 562.66, + "probability": 0.9834 + }, + { + "start": 563.34, + "end": 566.72, + "probability": 0.6853 + }, + { + "start": 566.72, + "end": 569.14, + "probability": 0.8025 + }, + { + "start": 569.32, + "end": 572.64, + "probability": 0.6737 + }, + { + "start": 573.36, + "end": 578.38, + "probability": 0.999 + }, + { + "start": 578.68, + "end": 581.38, + "probability": 0.7246 + }, + { + "start": 581.98, + "end": 583.28, + "probability": 0.7877 + }, + { + "start": 583.5, + "end": 586.58, + "probability": 0.9695 + }, + { + "start": 586.82, + "end": 589.36, + "probability": 0.8857 + }, + { + "start": 589.92, + "end": 597.28, + "probability": 0.9895 + }, + { + "start": 597.38, + "end": 600.02, + "probability": 0.999 + }, + { + "start": 600.86, + "end": 606.32, + "probability": 0.9212 + }, + { + "start": 606.44, + "end": 609.86, + "probability": 0.6771 + }, + { + "start": 610.02, + "end": 611.88, + "probability": 0.7347 + }, + { + "start": 612.86, + "end": 615.74, + "probability": 0.9087 + }, + { + "start": 616.0, + "end": 619.88, + "probability": 0.9932 + }, + { + "start": 620.08, + "end": 621.0, + "probability": 0.5034 + }, + { + "start": 621.44, + "end": 623.2, + "probability": 0.973 + }, + { + "start": 623.78, + "end": 624.78, + "probability": 0.9704 + }, + { + "start": 625.4, + "end": 626.13, + "probability": 0.9105 + }, + { + "start": 626.98, + "end": 628.82, + "probability": 0.9983 + }, + { + "start": 628.92, + "end": 631.44, + "probability": 0.9651 + }, + { + "start": 631.44, + "end": 635.42, + "probability": 0.9886 + }, + { + "start": 635.94, + "end": 640.8, + "probability": 0.9962 + }, + { + "start": 641.32, + "end": 641.84, + "probability": 0.9229 + }, + { + "start": 642.84, + "end": 648.52, + "probability": 0.9986 + }, + { + "start": 648.52, + "end": 653.86, + "probability": 0.9989 + }, + { + "start": 654.26, + "end": 655.5, + "probability": 0.964 + }, + { + "start": 655.54, + "end": 656.8, + "probability": 0.9424 + }, + { + "start": 657.14, + "end": 659.12, + "probability": 0.9985 + }, + { + "start": 659.24, + "end": 662.6, + "probability": 0.9985 + }, + { + "start": 662.84, + "end": 668.4, + "probability": 0.9767 + }, + { + "start": 669.06, + "end": 670.6, + "probability": 0.9989 + }, + { + "start": 670.66, + "end": 671.91, + "probability": 0.998 + }, + { + "start": 672.2, + "end": 673.0, + "probability": 0.8494 + }, + { + "start": 673.44, + "end": 676.96, + "probability": 0.9767 + }, + { + "start": 677.14, + "end": 680.14, + "probability": 0.991 + }, + { + "start": 680.28, + "end": 681.6, + "probability": 0.7891 + }, + { + "start": 682.32, + "end": 682.92, + "probability": 0.8141 + }, + { + "start": 683.1, + "end": 686.38, + "probability": 0.9717 + }, + { + "start": 686.52, + "end": 687.5, + "probability": 0.9607 + }, + { + "start": 687.82, + "end": 690.68, + "probability": 0.9819 + }, + { + "start": 690.68, + "end": 693.74, + "probability": 0.9989 + }, + { + "start": 693.96, + "end": 695.62, + "probability": 0.8594 + }, + { + "start": 695.76, + "end": 699.38, + "probability": 0.9932 + }, + { + "start": 700.82, + "end": 704.58, + "probability": 0.9868 + }, + { + "start": 704.58, + "end": 708.52, + "probability": 0.9983 + }, + { + "start": 708.58, + "end": 709.8, + "probability": 0.8993 + }, + { + "start": 710.3, + "end": 711.76, + "probability": 0.8641 + }, + { + "start": 712.18, + "end": 714.45, + "probability": 0.9966 + }, + { + "start": 714.98, + "end": 716.24, + "probability": 0.7877 + }, + { + "start": 716.62, + "end": 717.16, + "probability": 0.8876 + }, + { + "start": 718.3, + "end": 719.91, + "probability": 0.9407 + }, + { + "start": 720.96, + "end": 725.94, + "probability": 0.9828 + }, + { + "start": 726.04, + "end": 726.56, + "probability": 0.942 + }, + { + "start": 726.68, + "end": 728.26, + "probability": 0.8666 + }, + { + "start": 729.32, + "end": 730.82, + "probability": 0.9185 + }, + { + "start": 731.4, + "end": 732.84, + "probability": 0.6796 + }, + { + "start": 732.92, + "end": 734.18, + "probability": 0.9894 + }, + { + "start": 734.74, + "end": 739.0, + "probability": 0.3314 + }, + { + "start": 739.32, + "end": 745.6, + "probability": 0.7466 + }, + { + "start": 745.6, + "end": 746.0, + "probability": 0.7851 + }, + { + "start": 746.06, + "end": 748.1, + "probability": 0.9697 + }, + { + "start": 748.14, + "end": 749.22, + "probability": 0.8364 + }, + { + "start": 749.22, + "end": 750.6, + "probability": 0.8077 + }, + { + "start": 750.68, + "end": 751.88, + "probability": 0.8683 + }, + { + "start": 752.12, + "end": 752.9, + "probability": 0.4221 + }, + { + "start": 753.0, + "end": 754.25, + "probability": 0.5116 + }, + { + "start": 755.04, + "end": 757.84, + "probability": 0.9663 + }, + { + "start": 757.94, + "end": 761.84, + "probability": 0.9973 + }, + { + "start": 761.84, + "end": 766.36, + "probability": 0.9476 + }, + { + "start": 766.6, + "end": 767.18, + "probability": 0.5896 + }, + { + "start": 767.28, + "end": 767.7, + "probability": 0.7969 + }, + { + "start": 767.78, + "end": 771.36, + "probability": 0.9894 + }, + { + "start": 772.1, + "end": 773.3, + "probability": 0.9241 + }, + { + "start": 773.72, + "end": 777.38, + "probability": 0.98 + }, + { + "start": 777.54, + "end": 778.46, + "probability": 0.8326 + }, + { + "start": 778.92, + "end": 779.98, + "probability": 0.8634 + }, + { + "start": 780.04, + "end": 783.16, + "probability": 0.998 + }, + { + "start": 783.3, + "end": 787.78, + "probability": 0.9775 + }, + { + "start": 788.36, + "end": 792.98, + "probability": 0.9854 + }, + { + "start": 793.42, + "end": 795.3, + "probability": 0.9993 + }, + { + "start": 796.2, + "end": 797.16, + "probability": 0.8953 + }, + { + "start": 797.6, + "end": 800.48, + "probability": 0.8431 + }, + { + "start": 800.76, + "end": 803.62, + "probability": 0.9956 + }, + { + "start": 804.56, + "end": 805.0, + "probability": 0.7503 + }, + { + "start": 805.06, + "end": 806.64, + "probability": 0.9413 + }, + { + "start": 806.94, + "end": 808.2, + "probability": 0.9793 + }, + { + "start": 808.26, + "end": 811.12, + "probability": 0.9717 + }, + { + "start": 811.12, + "end": 814.38, + "probability": 0.9832 + }, + { + "start": 815.24, + "end": 816.04, + "probability": 0.6369 + }, + { + "start": 817.14, + "end": 820.46, + "probability": 0.9971 + }, + { + "start": 820.84, + "end": 822.78, + "probability": 0.956 + }, + { + "start": 823.02, + "end": 827.34, + "probability": 0.7117 + }, + { + "start": 827.96, + "end": 834.72, + "probability": 0.9355 + }, + { + "start": 834.8, + "end": 835.16, + "probability": 0.8243 + }, + { + "start": 835.28, + "end": 837.76, + "probability": 0.9902 + }, + { + "start": 837.94, + "end": 840.7, + "probability": 0.509 + }, + { + "start": 841.0, + "end": 841.04, + "probability": 0.0896 + }, + { + "start": 841.18, + "end": 841.46, + "probability": 0.5404 + }, + { + "start": 842.74, + "end": 846.3, + "probability": 0.7481 + }, + { + "start": 846.66, + "end": 850.2, + "probability": 0.9952 + }, + { + "start": 850.2, + "end": 852.96, + "probability": 0.9991 + }, + { + "start": 853.84, + "end": 859.12, + "probability": 0.9736 + }, + { + "start": 859.18, + "end": 863.82, + "probability": 0.9827 + }, + { + "start": 864.38, + "end": 865.48, + "probability": 0.8501 + }, + { + "start": 865.62, + "end": 871.5, + "probability": 0.9891 + }, + { + "start": 871.5, + "end": 878.14, + "probability": 0.9913 + }, + { + "start": 878.18, + "end": 878.36, + "probability": 0.7374 + }, + { + "start": 878.44, + "end": 879.22, + "probability": 0.9158 + }, + { + "start": 879.34, + "end": 880.04, + "probability": 0.6491 + }, + { + "start": 880.1, + "end": 881.0, + "probability": 0.9912 + }, + { + "start": 881.58, + "end": 883.06, + "probability": 0.6716 + }, + { + "start": 883.66, + "end": 884.78, + "probability": 0.9785 + }, + { + "start": 904.74, + "end": 908.46, + "probability": 0.7791 + }, + { + "start": 909.16, + "end": 910.14, + "probability": 0.7826 + }, + { + "start": 910.26, + "end": 913.04, + "probability": 0.9448 + }, + { + "start": 913.18, + "end": 918.94, + "probability": 0.9784 + }, + { + "start": 919.06, + "end": 920.28, + "probability": 0.8076 + }, + { + "start": 920.84, + "end": 923.24, + "probability": 0.4727 + }, + { + "start": 923.34, + "end": 928.81, + "probability": 0.9932 + }, + { + "start": 931.22, + "end": 931.32, + "probability": 0.7109 + }, + { + "start": 931.7, + "end": 932.54, + "probability": 0.7778 + }, + { + "start": 932.72, + "end": 939.96, + "probability": 0.9955 + }, + { + "start": 939.96, + "end": 945.48, + "probability": 0.9985 + }, + { + "start": 946.24, + "end": 949.96, + "probability": 0.8987 + }, + { + "start": 950.56, + "end": 952.38, + "probability": 0.9678 + }, + { + "start": 952.78, + "end": 956.72, + "probability": 0.96 + }, + { + "start": 957.88, + "end": 961.24, + "probability": 0.9802 + }, + { + "start": 961.4, + "end": 966.1, + "probability": 0.9257 + }, + { + "start": 966.6, + "end": 967.98, + "probability": 0.9757 + }, + { + "start": 968.04, + "end": 972.86, + "probability": 0.6643 + }, + { + "start": 972.86, + "end": 977.24, + "probability": 0.7829 + }, + { + "start": 978.3, + "end": 981.86, + "probability": 0.9552 + }, + { + "start": 982.3, + "end": 983.48, + "probability": 0.6789 + }, + { + "start": 984.32, + "end": 987.36, + "probability": 0.9204 + }, + { + "start": 987.98, + "end": 991.92, + "probability": 0.9655 + }, + { + "start": 992.54, + "end": 994.6, + "probability": 0.9986 + }, + { + "start": 995.12, + "end": 996.42, + "probability": 0.9499 + }, + { + "start": 996.78, + "end": 998.76, + "probability": 0.7838 + }, + { + "start": 999.2, + "end": 1001.66, + "probability": 0.9912 + }, + { + "start": 1001.66, + "end": 1004.58, + "probability": 0.7695 + }, + { + "start": 1004.72, + "end": 1006.36, + "probability": 0.9501 + }, + { + "start": 1007.02, + "end": 1009.44, + "probability": 0.7252 + }, + { + "start": 1010.0, + "end": 1013.4, + "probability": 0.6854 + }, + { + "start": 1014.14, + "end": 1018.18, + "probability": 0.9805 + }, + { + "start": 1018.22, + "end": 1019.02, + "probability": 0.8772 + }, + { + "start": 1019.68, + "end": 1021.26, + "probability": 0.9662 + }, + { + "start": 1023.46, + "end": 1028.52, + "probability": 0.3384 + }, + { + "start": 1028.52, + "end": 1034.24, + "probability": 0.9957 + }, + { + "start": 1034.46, + "end": 1036.66, + "probability": 0.616 + }, + { + "start": 1036.72, + "end": 1041.28, + "probability": 0.9917 + }, + { + "start": 1042.28, + "end": 1045.08, + "probability": 0.7399 + }, + { + "start": 1046.12, + "end": 1049.62, + "probability": 0.9186 + }, + { + "start": 1050.1, + "end": 1052.3, + "probability": 0.9761 + }, + { + "start": 1052.74, + "end": 1053.5, + "probability": 0.9881 + }, + { + "start": 1054.4, + "end": 1055.79, + "probability": 0.9952 + }, + { + "start": 1057.0, + "end": 1057.48, + "probability": 0.752 + }, + { + "start": 1057.54, + "end": 1061.18, + "probability": 0.9961 + }, + { + "start": 1062.64, + "end": 1068.78, + "probability": 0.9989 + }, + { + "start": 1069.8, + "end": 1070.36, + "probability": 0.7781 + }, + { + "start": 1071.62, + "end": 1073.95, + "probability": 0.8361 + }, + { + "start": 1074.9, + "end": 1077.68, + "probability": 0.9087 + }, + { + "start": 1078.76, + "end": 1082.77, + "probability": 0.972 + }, + { + "start": 1083.84, + "end": 1089.36, + "probability": 0.9504 + }, + { + "start": 1089.98, + "end": 1092.04, + "probability": 0.9833 + }, + { + "start": 1092.5, + "end": 1093.38, + "probability": 0.8885 + }, + { + "start": 1093.54, + "end": 1098.04, + "probability": 0.9943 + }, + { + "start": 1098.54, + "end": 1100.76, + "probability": 0.9366 + }, + { + "start": 1101.32, + "end": 1102.21, + "probability": 0.9663 + }, + { + "start": 1102.62, + "end": 1107.68, + "probability": 0.9757 + }, + { + "start": 1109.54, + "end": 1110.66, + "probability": 0.7544 + }, + { + "start": 1111.32, + "end": 1112.98, + "probability": 0.99 + }, + { + "start": 1113.62, + "end": 1114.38, + "probability": 0.7827 + }, + { + "start": 1114.44, + "end": 1115.34, + "probability": 0.8701 + }, + { + "start": 1115.36, + "end": 1116.26, + "probability": 0.6104 + }, + { + "start": 1116.76, + "end": 1118.98, + "probability": 0.9852 + }, + { + "start": 1119.58, + "end": 1122.42, + "probability": 0.8958 + }, + { + "start": 1122.96, + "end": 1125.52, + "probability": 0.9942 + }, + { + "start": 1127.04, + "end": 1133.52, + "probability": 0.9902 + }, + { + "start": 1133.98, + "end": 1135.02, + "probability": 0.7112 + }, + { + "start": 1136.0, + "end": 1138.86, + "probability": 0.9969 + }, + { + "start": 1139.46, + "end": 1141.26, + "probability": 0.9035 + }, + { + "start": 1141.7, + "end": 1143.0, + "probability": 0.9353 + }, + { + "start": 1143.42, + "end": 1146.36, + "probability": 0.9937 + }, + { + "start": 1147.12, + "end": 1149.64, + "probability": 0.9626 + }, + { + "start": 1150.72, + "end": 1154.98, + "probability": 0.985 + }, + { + "start": 1155.74, + "end": 1160.04, + "probability": 0.9672 + }, + { + "start": 1160.22, + "end": 1161.86, + "probability": 0.9072 + }, + { + "start": 1162.44, + "end": 1168.16, + "probability": 0.6129 + }, + { + "start": 1168.4, + "end": 1172.36, + "probability": 0.9493 + }, + { + "start": 1173.32, + "end": 1176.52, + "probability": 0.9517 + }, + { + "start": 1176.52, + "end": 1180.32, + "probability": 0.9958 + }, + { + "start": 1180.78, + "end": 1185.74, + "probability": 0.9963 + }, + { + "start": 1186.34, + "end": 1189.92, + "probability": 0.932 + }, + { + "start": 1190.42, + "end": 1194.66, + "probability": 0.9972 + }, + { + "start": 1195.2, + "end": 1197.68, + "probability": 0.9731 + }, + { + "start": 1198.56, + "end": 1202.94, + "probability": 0.8587 + }, + { + "start": 1202.94, + "end": 1205.98, + "probability": 0.9675 + }, + { + "start": 1206.06, + "end": 1210.48, + "probability": 0.9962 + }, + { + "start": 1211.0, + "end": 1212.0, + "probability": 0.7086 + }, + { + "start": 1213.68, + "end": 1216.28, + "probability": 0.8541 + }, + { + "start": 1217.62, + "end": 1222.4, + "probability": 0.9858 + }, + { + "start": 1222.88, + "end": 1227.16, + "probability": 0.9979 + }, + { + "start": 1227.16, + "end": 1233.62, + "probability": 0.9969 + }, + { + "start": 1234.84, + "end": 1236.4, + "probability": 0.7498 + }, + { + "start": 1237.22, + "end": 1238.52, + "probability": 0.7362 + }, + { + "start": 1238.6, + "end": 1238.78, + "probability": 0.5528 + }, + { + "start": 1238.88, + "end": 1239.6, + "probability": 0.4909 + }, + { + "start": 1239.6, + "end": 1240.34, + "probability": 0.9251 + }, + { + "start": 1242.04, + "end": 1243.78, + "probability": 0.7736 + }, + { + "start": 1243.78, + "end": 1244.63, + "probability": 0.0693 + }, + { + "start": 1248.26, + "end": 1248.28, + "probability": 0.0184 + }, + { + "start": 1248.28, + "end": 1248.64, + "probability": 0.0689 + }, + { + "start": 1249.36, + "end": 1255.02, + "probability": 0.5848 + }, + { + "start": 1255.06, + "end": 1255.78, + "probability": 0.3855 + }, + { + "start": 1255.86, + "end": 1256.42, + "probability": 0.7272 + }, + { + "start": 1256.84, + "end": 1258.24, + "probability": 0.7541 + }, + { + "start": 1258.38, + "end": 1262.1, + "probability": 0.6325 + }, + { + "start": 1262.2, + "end": 1263.86, + "probability": 0.5695 + }, + { + "start": 1264.0, + "end": 1265.22, + "probability": 0.681 + }, + { + "start": 1265.22, + "end": 1267.2, + "probability": 0.0801 + }, + { + "start": 1267.2, + "end": 1268.6, + "probability": 0.6758 + }, + { + "start": 1268.6, + "end": 1270.56, + "probability": 0.0486 + }, + { + "start": 1272.68, + "end": 1273.28, + "probability": 0.0012 + }, + { + "start": 1276.56, + "end": 1277.28, + "probability": 0.0647 + }, + { + "start": 1277.46, + "end": 1278.54, + "probability": 0.2439 + }, + { + "start": 1281.14, + "end": 1284.18, + "probability": 0.9017 + }, + { + "start": 1285.26, + "end": 1290.02, + "probability": 0.8631 + }, + { + "start": 1290.7, + "end": 1294.22, + "probability": 0.9663 + }, + { + "start": 1294.6, + "end": 1295.82, + "probability": 0.8025 + }, + { + "start": 1295.9, + "end": 1296.78, + "probability": 0.4891 + }, + { + "start": 1299.04, + "end": 1300.24, + "probability": 0.286 + }, + { + "start": 1300.24, + "end": 1303.08, + "probability": 0.9473 + }, + { + "start": 1304.5, + "end": 1305.14, + "probability": 0.8655 + }, + { + "start": 1305.9, + "end": 1307.28, + "probability": 0.9875 + }, + { + "start": 1307.4, + "end": 1312.76, + "probability": 0.991 + }, + { + "start": 1313.14, + "end": 1313.82, + "probability": 0.9898 + }, + { + "start": 1315.12, + "end": 1318.7, + "probability": 0.8691 + }, + { + "start": 1319.34, + "end": 1323.36, + "probability": 0.8083 + }, + { + "start": 1323.88, + "end": 1325.94, + "probability": 0.7987 + }, + { + "start": 1326.12, + "end": 1328.08, + "probability": 0.9697 + }, + { + "start": 1329.36, + "end": 1330.9, + "probability": 0.6583 + }, + { + "start": 1331.42, + "end": 1338.48, + "probability": 0.9793 + }, + { + "start": 1338.54, + "end": 1340.6, + "probability": 0.7772 + }, + { + "start": 1340.9, + "end": 1344.14, + "probability": 0.8993 + }, + { + "start": 1344.82, + "end": 1347.24, + "probability": 0.7335 + }, + { + "start": 1347.76, + "end": 1352.3, + "probability": 0.933 + }, + { + "start": 1352.42, + "end": 1354.16, + "probability": 0.9946 + }, + { + "start": 1354.45, + "end": 1357.3, + "probability": 0.8879 + }, + { + "start": 1357.54, + "end": 1359.12, + "probability": 0.7426 + }, + { + "start": 1359.18, + "end": 1360.14, + "probability": 0.7289 + }, + { + "start": 1360.46, + "end": 1365.18, + "probability": 0.4088 + }, + { + "start": 1365.94, + "end": 1368.94, + "probability": 0.6779 + }, + { + "start": 1369.1, + "end": 1369.1, + "probability": 0.7498 + }, + { + "start": 1369.48, + "end": 1370.02, + "probability": 0.6369 + }, + { + "start": 1370.1, + "end": 1371.32, + "probability": 0.958 + }, + { + "start": 1371.44, + "end": 1374.16, + "probability": 0.665 + }, + { + "start": 1375.18, + "end": 1377.98, + "probability": 0.6844 + }, + { + "start": 1378.04, + "end": 1381.33, + "probability": 0.9242 + }, + { + "start": 1381.46, + "end": 1388.94, + "probability": 0.9839 + }, + { + "start": 1389.16, + "end": 1396.32, + "probability": 0.9665 + }, + { + "start": 1396.46, + "end": 1399.02, + "probability": 0.9854 + }, + { + "start": 1399.6, + "end": 1401.22, + "probability": 0.9689 + }, + { + "start": 1401.42, + "end": 1402.12, + "probability": 0.4836 + }, + { + "start": 1402.26, + "end": 1402.84, + "probability": 0.7139 + }, + { + "start": 1403.16, + "end": 1405.9, + "probability": 0.5782 + }, + { + "start": 1406.18, + "end": 1407.4, + "probability": 0.9248 + }, + { + "start": 1407.5, + "end": 1407.93, + "probability": 0.6929 + }, + { + "start": 1408.6, + "end": 1412.06, + "probability": 0.98 + }, + { + "start": 1412.32, + "end": 1413.54, + "probability": 0.9102 + }, + { + "start": 1413.64, + "end": 1418.32, + "probability": 0.987 + }, + { + "start": 1418.36, + "end": 1422.3, + "probability": 0.9992 + }, + { + "start": 1422.94, + "end": 1425.64, + "probability": 0.8679 + }, + { + "start": 1425.78, + "end": 1427.56, + "probability": 0.6123 + }, + { + "start": 1428.04, + "end": 1428.48, + "probability": 0.6131 + }, + { + "start": 1428.62, + "end": 1434.06, + "probability": 0.9948 + }, + { + "start": 1434.18, + "end": 1437.2, + "probability": 0.7391 + }, + { + "start": 1437.76, + "end": 1444.08, + "probability": 0.9902 + }, + { + "start": 1444.9, + "end": 1447.6, + "probability": 0.882 + }, + { + "start": 1448.34, + "end": 1452.9, + "probability": 0.9529 + }, + { + "start": 1453.72, + "end": 1457.08, + "probability": 0.9898 + }, + { + "start": 1457.74, + "end": 1460.7, + "probability": 0.9739 + }, + { + "start": 1460.8, + "end": 1461.68, + "probability": 0.696 + }, + { + "start": 1462.08, + "end": 1463.3, + "probability": 0.9932 + }, + { + "start": 1463.32, + "end": 1464.9, + "probability": 0.8438 + }, + { + "start": 1465.6, + "end": 1466.14, + "probability": 0.3563 + }, + { + "start": 1466.3, + "end": 1466.98, + "probability": 0.6729 + }, + { + "start": 1467.12, + "end": 1472.32, + "probability": 0.9566 + }, + { + "start": 1472.94, + "end": 1477.5, + "probability": 0.9607 + }, + { + "start": 1477.5, + "end": 1478.14, + "probability": 0.5791 + }, + { + "start": 1480.28, + "end": 1482.84, + "probability": 0.9315 + }, + { + "start": 1483.68, + "end": 1485.5, + "probability": 0.938 + }, + { + "start": 1485.64, + "end": 1486.54, + "probability": 0.719 + }, + { + "start": 1487.14, + "end": 1489.3, + "probability": 0.8945 + }, + { + "start": 1489.82, + "end": 1493.23, + "probability": 0.9912 + }, + { + "start": 1493.62, + "end": 1494.1, + "probability": 0.8927 + }, + { + "start": 1494.2, + "end": 1495.2, + "probability": 0.9679 + }, + { + "start": 1495.38, + "end": 1496.5, + "probability": 0.895 + }, + { + "start": 1496.84, + "end": 1500.64, + "probability": 0.9782 + }, + { + "start": 1501.28, + "end": 1502.54, + "probability": 0.3846 + }, + { + "start": 1502.66, + "end": 1505.28, + "probability": 0.7144 + }, + { + "start": 1505.58, + "end": 1506.3, + "probability": 0.6224 + }, + { + "start": 1506.42, + "end": 1508.78, + "probability": 0.8863 + }, + { + "start": 1509.06, + "end": 1510.96, + "probability": 0.9753 + }, + { + "start": 1511.44, + "end": 1512.24, + "probability": 0.9598 + }, + { + "start": 1512.38, + "end": 1513.18, + "probability": 0.9088 + }, + { + "start": 1513.34, + "end": 1514.38, + "probability": 0.808 + }, + { + "start": 1514.56, + "end": 1516.27, + "probability": 0.8402 + }, + { + "start": 1516.82, + "end": 1518.94, + "probability": 0.9355 + }, + { + "start": 1519.22, + "end": 1520.66, + "probability": 0.9711 + }, + { + "start": 1521.18, + "end": 1523.02, + "probability": 0.9958 + }, + { + "start": 1523.84, + "end": 1524.94, + "probability": 0.9966 + }, + { + "start": 1525.3, + "end": 1528.48, + "probability": 0.9906 + }, + { + "start": 1528.74, + "end": 1529.42, + "probability": 0.9799 + }, + { + "start": 1529.5, + "end": 1533.84, + "probability": 0.9734 + }, + { + "start": 1533.96, + "end": 1535.1, + "probability": 0.8288 + }, + { + "start": 1535.9, + "end": 1536.62, + "probability": 0.9169 + }, + { + "start": 1537.24, + "end": 1538.3, + "probability": 0.8188 + }, + { + "start": 1538.92, + "end": 1539.82, + "probability": 0.8173 + }, + { + "start": 1540.42, + "end": 1541.46, + "probability": 0.9498 + }, + { + "start": 1541.82, + "end": 1545.1, + "probability": 0.9811 + }, + { + "start": 1545.52, + "end": 1546.42, + "probability": 0.9498 + }, + { + "start": 1546.56, + "end": 1547.44, + "probability": 0.4903 + }, + { + "start": 1548.2, + "end": 1552.48, + "probability": 0.7028 + }, + { + "start": 1552.72, + "end": 1557.72, + "probability": 0.8239 + }, + { + "start": 1558.36, + "end": 1559.9, + "probability": 0.9648 + }, + { + "start": 1561.12, + "end": 1561.8, + "probability": 0.54 + }, + { + "start": 1562.94, + "end": 1564.18, + "probability": 0.7836 + }, + { + "start": 1565.29, + "end": 1567.7, + "probability": 0.6788 + }, + { + "start": 1567.7, + "end": 1568.6, + "probability": 0.7284 + }, + { + "start": 1569.84, + "end": 1573.8, + "probability": 0.9515 + }, + { + "start": 1574.74, + "end": 1576.04, + "probability": 0.7686 + }, + { + "start": 1576.24, + "end": 1583.32, + "probability": 0.9943 + }, + { + "start": 1583.62, + "end": 1588.54, + "probability": 0.9959 + }, + { + "start": 1589.06, + "end": 1592.44, + "probability": 0.9903 + }, + { + "start": 1593.22, + "end": 1596.7, + "probability": 0.961 + }, + { + "start": 1596.76, + "end": 1597.24, + "probability": 0.7879 + }, + { + "start": 1597.56, + "end": 1598.32, + "probability": 0.5304 + }, + { + "start": 1598.36, + "end": 1600.96, + "probability": 0.7782 + }, + { + "start": 1601.9, + "end": 1603.12, + "probability": 0.8896 + }, + { + "start": 1608.32, + "end": 1609.1, + "probability": 0.8996 + }, + { + "start": 1609.24, + "end": 1610.58, + "probability": 0.7279 + }, + { + "start": 1610.58, + "end": 1611.3, + "probability": 0.7088 + }, + { + "start": 1611.36, + "end": 1612.46, + "probability": 0.4404 + }, + { + "start": 1612.94, + "end": 1614.66, + "probability": 0.7294 + }, + { + "start": 1615.14, + "end": 1617.06, + "probability": 0.8083 + }, + { + "start": 1619.95, + "end": 1621.86, + "probability": 0.5401 + }, + { + "start": 1635.28, + "end": 1636.08, + "probability": 0.5831 + }, + { + "start": 1636.68, + "end": 1637.8, + "probability": 0.5469 + }, + { + "start": 1639.4, + "end": 1642.84, + "probability": 0.999 + }, + { + "start": 1643.88, + "end": 1645.36, + "probability": 0.9822 + }, + { + "start": 1645.94, + "end": 1647.94, + "probability": 0.8926 + }, + { + "start": 1649.42, + "end": 1651.76, + "probability": 0.9973 + }, + { + "start": 1651.76, + "end": 1654.86, + "probability": 0.9967 + }, + { + "start": 1657.44, + "end": 1661.38, + "probability": 0.9908 + }, + { + "start": 1662.42, + "end": 1662.96, + "probability": 0.6489 + }, + { + "start": 1663.1, + "end": 1665.66, + "probability": 0.9815 + }, + { + "start": 1666.68, + "end": 1668.88, + "probability": 0.9595 + }, + { + "start": 1669.8, + "end": 1670.84, + "probability": 0.9548 + }, + { + "start": 1671.38, + "end": 1672.72, + "probability": 0.6296 + }, + { + "start": 1672.74, + "end": 1675.24, + "probability": 0.8645 + }, + { + "start": 1675.32, + "end": 1675.86, + "probability": 0.7282 + }, + { + "start": 1676.98, + "end": 1678.28, + "probability": 0.9318 + }, + { + "start": 1678.5, + "end": 1682.84, + "probability": 0.9923 + }, + { + "start": 1683.5, + "end": 1687.26, + "probability": 0.9899 + }, + { + "start": 1688.78, + "end": 1691.54, + "probability": 0.9825 + }, + { + "start": 1691.8, + "end": 1696.84, + "probability": 0.9946 + }, + { + "start": 1697.36, + "end": 1700.86, + "probability": 0.9889 + }, + { + "start": 1702.3, + "end": 1704.16, + "probability": 0.5776 + }, + { + "start": 1705.14, + "end": 1707.22, + "probability": 0.9839 + }, + { + "start": 1708.36, + "end": 1710.48, + "probability": 0.9814 + }, + { + "start": 1711.5, + "end": 1711.96, + "probability": 0.728 + }, + { + "start": 1712.8, + "end": 1716.5, + "probability": 0.9832 + }, + { + "start": 1717.36, + "end": 1718.24, + "probability": 0.7599 + }, + { + "start": 1719.2, + "end": 1719.96, + "probability": 0.939 + }, + { + "start": 1720.92, + "end": 1729.73, + "probability": 0.9806 + }, + { + "start": 1729.88, + "end": 1729.88, + "probability": 0.095 + }, + { + "start": 1729.88, + "end": 1732.26, + "probability": 0.7603 + }, + { + "start": 1733.6, + "end": 1735.14, + "probability": 0.9738 + }, + { + "start": 1735.97, + "end": 1742.24, + "probability": 0.8151 + }, + { + "start": 1743.74, + "end": 1744.92, + "probability": 0.6827 + }, + { + "start": 1744.96, + "end": 1746.3, + "probability": 0.9227 + }, + { + "start": 1746.4, + "end": 1751.6, + "probability": 0.9255 + }, + { + "start": 1752.52, + "end": 1753.57, + "probability": 0.1802 + }, + { + "start": 1754.76, + "end": 1755.26, + "probability": 0.7388 + }, + { + "start": 1755.36, + "end": 1756.68, + "probability": 0.9646 + }, + { + "start": 1756.8, + "end": 1758.28, + "probability": 0.9565 + }, + { + "start": 1760.56, + "end": 1764.12, + "probability": 0.9482 + }, + { + "start": 1765.42, + "end": 1766.26, + "probability": 0.8695 + }, + { + "start": 1766.46, + "end": 1769.4, + "probability": 0.9824 + }, + { + "start": 1771.42, + "end": 1774.74, + "probability": 0.983 + }, + { + "start": 1775.56, + "end": 1775.86, + "probability": 0.2787 + }, + { + "start": 1776.04, + "end": 1776.64, + "probability": 0.6866 + }, + { + "start": 1777.2, + "end": 1777.66, + "probability": 0.6924 + }, + { + "start": 1778.3, + "end": 1780.38, + "probability": 0.642 + }, + { + "start": 1780.4, + "end": 1781.42, + "probability": 0.3778 + }, + { + "start": 1781.64, + "end": 1782.52, + "probability": 0.6897 + }, + { + "start": 1784.38, + "end": 1785.64, + "probability": 0.1189 + }, + { + "start": 1785.8, + "end": 1788.96, + "probability": 0.6192 + }, + { + "start": 1789.08, + "end": 1792.54, + "probability": 0.4059 + }, + { + "start": 1793.16, + "end": 1793.78, + "probability": 0.4158 + }, + { + "start": 1793.8, + "end": 1798.56, + "probability": 0.0994 + }, + { + "start": 1799.24, + "end": 1799.98, + "probability": 0.4717 + }, + { + "start": 1801.38, + "end": 1803.27, + "probability": 0.6416 + }, + { + "start": 1804.02, + "end": 1804.12, + "probability": 0.0031 + }, + { + "start": 1804.12, + "end": 1805.42, + "probability": 0.4098 + }, + { + "start": 1805.54, + "end": 1805.94, + "probability": 0.7317 + }, + { + "start": 1805.94, + "end": 1808.16, + "probability": 0.9658 + }, + { + "start": 1808.26, + "end": 1812.16, + "probability": 0.6296 + }, + { + "start": 1813.96, + "end": 1815.81, + "probability": 0.5716 + }, + { + "start": 1816.24, + "end": 1817.26, + "probability": 0.6655 + }, + { + "start": 1817.32, + "end": 1817.68, + "probability": 0.9261 + }, + { + "start": 1817.8, + "end": 1820.89, + "probability": 0.7042 + }, + { + "start": 1821.24, + "end": 1822.08, + "probability": 0.2308 + }, + { + "start": 1822.46, + "end": 1825.06, + "probability": 0.5968 + }, + { + "start": 1825.3, + "end": 1825.76, + "probability": 0.789 + }, + { + "start": 1825.76, + "end": 1827.52, + "probability": 0.9032 + }, + { + "start": 1827.58, + "end": 1828.76, + "probability": 0.8152 + }, + { + "start": 1830.64, + "end": 1832.16, + "probability": 0.9894 + }, + { + "start": 1832.48, + "end": 1834.1, + "probability": 0.9977 + }, + { + "start": 1834.22, + "end": 1834.36, + "probability": 0.2547 + }, + { + "start": 1834.42, + "end": 1834.82, + "probability": 0.5561 + }, + { + "start": 1835.44, + "end": 1836.56, + "probability": 0.9066 + }, + { + "start": 1837.16, + "end": 1840.72, + "probability": 0.9973 + }, + { + "start": 1842.58, + "end": 1843.2, + "probability": 0.7207 + }, + { + "start": 1843.3, + "end": 1844.98, + "probability": 0.9342 + }, + { + "start": 1846.42, + "end": 1847.18, + "probability": 0.8921 + }, + { + "start": 1847.18, + "end": 1847.92, + "probability": 0.5467 + }, + { + "start": 1848.44, + "end": 1853.14, + "probability": 0.9872 + }, + { + "start": 1854.3, + "end": 1858.04, + "probability": 0.9761 + }, + { + "start": 1859.02, + "end": 1860.26, + "probability": 0.941 + }, + { + "start": 1860.52, + "end": 1862.2, + "probability": 0.6275 + }, + { + "start": 1862.96, + "end": 1863.6, + "probability": 0.5356 + }, + { + "start": 1864.02, + "end": 1864.96, + "probability": 0.3353 + }, + { + "start": 1866.0, + "end": 1871.62, + "probability": 0.7586 + }, + { + "start": 1871.62, + "end": 1874.72, + "probability": 0.642 + }, + { + "start": 1874.72, + "end": 1875.84, + "probability": 0.6293 + }, + { + "start": 1876.63, + "end": 1878.92, + "probability": 0.5551 + }, + { + "start": 1879.06, + "end": 1880.2, + "probability": 0.5101 + }, + { + "start": 1880.82, + "end": 1880.92, + "probability": 0.1829 + }, + { + "start": 1880.92, + "end": 1881.27, + "probability": 0.3782 + }, + { + "start": 1889.58, + "end": 1890.8, + "probability": 0.692 + }, + { + "start": 1891.72, + "end": 1892.92, + "probability": 0.8975 + }, + { + "start": 1893.9, + "end": 1895.26, + "probability": 0.9714 + }, + { + "start": 1896.5, + "end": 1898.78, + "probability": 0.5428 + }, + { + "start": 1899.44, + "end": 1899.84, + "probability": 0.293 + }, + { + "start": 1899.84, + "end": 1900.44, + "probability": 0.883 + }, + { + "start": 1900.68, + "end": 1901.58, + "probability": 0.4622 + }, + { + "start": 1901.88, + "end": 1903.34, + "probability": 0.9941 + }, + { + "start": 1904.91, + "end": 1907.22, + "probability": 0.6496 + }, + { + "start": 1907.8, + "end": 1909.4, + "probability": 0.9675 + }, + { + "start": 1909.88, + "end": 1910.92, + "probability": 0.976 + }, + { + "start": 1911.0, + "end": 1911.9, + "probability": 0.037 + }, + { + "start": 1912.1, + "end": 1915.36, + "probability": 0.9496 + }, + { + "start": 1915.52, + "end": 1917.52, + "probability": 0.7661 + }, + { + "start": 1917.72, + "end": 1919.72, + "probability": 0.1274 + }, + { + "start": 1919.72, + "end": 1922.6, + "probability": 0.6217 + }, + { + "start": 1922.7, + "end": 1923.18, + "probability": 0.8236 + }, + { + "start": 1923.2, + "end": 1927.04, + "probability": 0.9902 + }, + { + "start": 1927.16, + "end": 1930.96, + "probability": 0.9135 + }, + { + "start": 1930.98, + "end": 1933.18, + "probability": 0.5342 + }, + { + "start": 1933.34, + "end": 1933.48, + "probability": 0.5159 + }, + { + "start": 1933.6, + "end": 1936.1, + "probability": 0.868 + }, + { + "start": 1936.76, + "end": 1940.68, + "probability": 0.7311 + }, + { + "start": 1942.28, + "end": 1944.38, + "probability": 0.8721 + }, + { + "start": 1945.24, + "end": 1946.78, + "probability": 0.8071 + }, + { + "start": 1947.46, + "end": 1948.58, + "probability": 0.8721 + }, + { + "start": 1949.46, + "end": 1951.1, + "probability": 0.8574 + }, + { + "start": 1951.78, + "end": 1959.04, + "probability": 0.9785 + }, + { + "start": 1959.72, + "end": 1960.5, + "probability": 0.8201 + }, + { + "start": 1960.7, + "end": 1965.39, + "probability": 0.6822 + }, + { + "start": 1965.6, + "end": 1968.54, + "probability": 0.9465 + }, + { + "start": 1968.68, + "end": 1969.96, + "probability": 0.9567 + }, + { + "start": 1971.46, + "end": 1974.1, + "probability": 0.9868 + }, + { + "start": 1975.0, + "end": 1978.8, + "probability": 0.8385 + }, + { + "start": 1980.28, + "end": 1983.48, + "probability": 0.9003 + }, + { + "start": 1983.68, + "end": 1984.82, + "probability": 0.8765 + }, + { + "start": 1984.96, + "end": 1987.74, + "probability": 0.9709 + }, + { + "start": 1989.22, + "end": 1997.72, + "probability": 0.8633 + }, + { + "start": 1998.0, + "end": 2000.96, + "probability": 0.9664 + }, + { + "start": 2001.68, + "end": 2005.24, + "probability": 0.8282 + }, + { + "start": 2005.86, + "end": 2007.9, + "probability": 0.9971 + }, + { + "start": 2007.98, + "end": 2009.18, + "probability": 0.9839 + }, + { + "start": 2010.72, + "end": 2017.78, + "probability": 0.9751 + }, + { + "start": 2017.78, + "end": 2021.74, + "probability": 0.9832 + }, + { + "start": 2023.64, + "end": 2025.44, + "probability": 0.571 + }, + { + "start": 2026.08, + "end": 2027.48, + "probability": 0.6531 + }, + { + "start": 2029.56, + "end": 2030.32, + "probability": 0.8229 + }, + { + "start": 2031.26, + "end": 2033.7, + "probability": 0.8762 + }, + { + "start": 2033.8, + "end": 2035.58, + "probability": 0.9668 + }, + { + "start": 2036.62, + "end": 2042.42, + "probability": 0.986 + }, + { + "start": 2042.64, + "end": 2044.06, + "probability": 0.8051 + }, + { + "start": 2044.1, + "end": 2045.86, + "probability": 0.9503 + }, + { + "start": 2045.94, + "end": 2047.13, + "probability": 0.6768 + }, + { + "start": 2048.36, + "end": 2048.7, + "probability": 0.3812 + }, + { + "start": 2050.36, + "end": 2057.64, + "probability": 0.9902 + }, + { + "start": 2058.22, + "end": 2060.32, + "probability": 0.9912 + }, + { + "start": 2060.66, + "end": 2063.36, + "probability": 0.9847 + }, + { + "start": 2063.86, + "end": 2066.8, + "probability": 0.9683 + }, + { + "start": 2067.24, + "end": 2071.46, + "probability": 0.9857 + }, + { + "start": 2072.1, + "end": 2074.68, + "probability": 0.992 + }, + { + "start": 2075.58, + "end": 2078.22, + "probability": 0.9575 + }, + { + "start": 2079.68, + "end": 2082.6, + "probability": 0.2792 + }, + { + "start": 2082.6, + "end": 2087.16, + "probability": 0.951 + }, + { + "start": 2087.32, + "end": 2089.07, + "probability": 0.9984 + }, + { + "start": 2090.06, + "end": 2094.28, + "probability": 0.8451 + }, + { + "start": 2095.04, + "end": 2097.1, + "probability": 0.9987 + }, + { + "start": 2097.72, + "end": 2098.92, + "probability": 0.8584 + }, + { + "start": 2098.98, + "end": 2101.12, + "probability": 0.9856 + }, + { + "start": 2102.8, + "end": 2104.26, + "probability": 0.8082 + }, + { + "start": 2104.86, + "end": 2109.32, + "probability": 0.8404 + }, + { + "start": 2110.26, + "end": 2114.54, + "probability": 0.9695 + }, + { + "start": 2115.28, + "end": 2119.12, + "probability": 0.9916 + }, + { + "start": 2119.8, + "end": 2124.9, + "probability": 0.9952 + }, + { + "start": 2126.0, + "end": 2126.52, + "probability": 0.6103 + }, + { + "start": 2126.58, + "end": 2127.2, + "probability": 0.79 + }, + { + "start": 2127.26, + "end": 2127.96, + "probability": 0.9119 + }, + { + "start": 2128.42, + "end": 2132.98, + "probability": 0.868 + }, + { + "start": 2132.98, + "end": 2133.77, + "probability": 0.8314 + }, + { + "start": 2135.84, + "end": 2140.02, + "probability": 0.9849 + }, + { + "start": 2140.74, + "end": 2143.44, + "probability": 0.7419 + }, + { + "start": 2144.1, + "end": 2146.66, + "probability": 0.9746 + }, + { + "start": 2147.36, + "end": 2149.88, + "probability": 0.7569 + }, + { + "start": 2151.14, + "end": 2156.6, + "probability": 0.9849 + }, + { + "start": 2156.9, + "end": 2159.54, + "probability": 0.9907 + }, + { + "start": 2160.0, + "end": 2162.33, + "probability": 0.8989 + }, + { + "start": 2163.22, + "end": 2165.38, + "probability": 0.7701 + }, + { + "start": 2165.46, + "end": 2168.6, + "probability": 0.9842 + }, + { + "start": 2168.86, + "end": 2172.38, + "probability": 0.9219 + }, + { + "start": 2173.3, + "end": 2176.52, + "probability": 0.991 + }, + { + "start": 2177.1, + "end": 2179.54, + "probability": 0.9706 + }, + { + "start": 2180.18, + "end": 2183.77, + "probability": 0.8618 + }, + { + "start": 2184.78, + "end": 2188.96, + "probability": 0.9941 + }, + { + "start": 2189.7, + "end": 2191.48, + "probability": 0.6506 + }, + { + "start": 2191.9, + "end": 2194.08, + "probability": 0.9961 + }, + { + "start": 2194.16, + "end": 2196.24, + "probability": 0.9617 + }, + { + "start": 2196.52, + "end": 2197.54, + "probability": 0.9482 + }, + { + "start": 2198.38, + "end": 2201.08, + "probability": 0.9805 + }, + { + "start": 2201.14, + "end": 2202.98, + "probability": 0.6716 + }, + { + "start": 2202.98, + "end": 2203.08, + "probability": 0.1906 + }, + { + "start": 2203.32, + "end": 2204.71, + "probability": 0.7405 + }, + { + "start": 2205.1, + "end": 2209.72, + "probability": 0.792 + }, + { + "start": 2209.78, + "end": 2212.02, + "probability": 0.6881 + }, + { + "start": 2212.68, + "end": 2216.4, + "probability": 0.9705 + }, + { + "start": 2216.96, + "end": 2220.54, + "probability": 0.9331 + }, + { + "start": 2221.62, + "end": 2223.44, + "probability": 0.9271 + }, + { + "start": 2223.54, + "end": 2225.2, + "probability": 0.9714 + }, + { + "start": 2225.6, + "end": 2227.08, + "probability": 0.8432 + }, + { + "start": 2227.4, + "end": 2228.68, + "probability": 0.8887 + }, + { + "start": 2229.42, + "end": 2231.54, + "probability": 0.8194 + }, + { + "start": 2233.66, + "end": 2233.74, + "probability": 0.1051 + }, + { + "start": 2233.74, + "end": 2235.46, + "probability": 0.6957 + }, + { + "start": 2236.0, + "end": 2237.4, + "probability": 0.8671 + }, + { + "start": 2238.02, + "end": 2241.54, + "probability": 0.9932 + }, + { + "start": 2241.78, + "end": 2243.29, + "probability": 0.7549 + }, + { + "start": 2244.46, + "end": 2247.96, + "probability": 0.9598 + }, + { + "start": 2248.78, + "end": 2251.28, + "probability": 0.9573 + }, + { + "start": 2252.56, + "end": 2254.88, + "probability": 0.897 + }, + { + "start": 2255.46, + "end": 2257.88, + "probability": 0.9769 + }, + { + "start": 2258.58, + "end": 2259.04, + "probability": 0.9531 + }, + { + "start": 2261.88, + "end": 2264.84, + "probability": 0.9849 + }, + { + "start": 2264.98, + "end": 2269.2, + "probability": 0.9793 + }, + { + "start": 2269.7, + "end": 2272.4, + "probability": 0.972 + }, + { + "start": 2272.66, + "end": 2273.34, + "probability": 0.7705 + }, + { + "start": 2273.64, + "end": 2274.3, + "probability": 0.4243 + }, + { + "start": 2274.52, + "end": 2278.42, + "probability": 0.8902 + }, + { + "start": 2278.54, + "end": 2279.7, + "probability": 0.8396 + }, + { + "start": 2281.98, + "end": 2283.84, + "probability": 0.9888 + }, + { + "start": 2283.9, + "end": 2284.33, + "probability": 0.816 + }, + { + "start": 2284.92, + "end": 2285.38, + "probability": 0.1239 + }, + { + "start": 2285.38, + "end": 2286.34, + "probability": 0.4524 + }, + { + "start": 2286.46, + "end": 2287.68, + "probability": 0.8277 + }, + { + "start": 2289.46, + "end": 2290.74, + "probability": 0.9825 + }, + { + "start": 2290.98, + "end": 2292.58, + "probability": 0.0948 + }, + { + "start": 2293.44, + "end": 2293.58, + "probability": 0.0047 + }, + { + "start": 2296.5, + "end": 2297.18, + "probability": 0.0208 + }, + { + "start": 2297.18, + "end": 2297.46, + "probability": 0.0924 + }, + { + "start": 2298.24, + "end": 2299.28, + "probability": 0.1056 + }, + { + "start": 2299.52, + "end": 2300.95, + "probability": 0.8821 + }, + { + "start": 2301.78, + "end": 2302.44, + "probability": 0.7427 + }, + { + "start": 2303.3, + "end": 2306.28, + "probability": 0.7408 + }, + { + "start": 2306.28, + "end": 2307.2, + "probability": 0.6444 + }, + { + "start": 2307.34, + "end": 2308.24, + "probability": 0.9022 + }, + { + "start": 2308.36, + "end": 2309.45, + "probability": 0.9754 + }, + { + "start": 2309.88, + "end": 2311.1, + "probability": 0.7703 + }, + { + "start": 2311.26, + "end": 2312.28, + "probability": 0.4976 + }, + { + "start": 2312.56, + "end": 2313.7, + "probability": 0.8402 + }, + { + "start": 2314.34, + "end": 2318.06, + "probability": 0.9901 + }, + { + "start": 2318.72, + "end": 2321.2, + "probability": 0.979 + }, + { + "start": 2321.8, + "end": 2323.38, + "probability": 0.9917 + }, + { + "start": 2324.18, + "end": 2326.78, + "probability": 0.9927 + }, + { + "start": 2327.62, + "end": 2330.12, + "probability": 0.9908 + }, + { + "start": 2330.88, + "end": 2333.48, + "probability": 0.9963 + }, + { + "start": 2334.14, + "end": 2336.22, + "probability": 0.9976 + }, + { + "start": 2336.7, + "end": 2338.5, + "probability": 0.9902 + }, + { + "start": 2339.08, + "end": 2342.06, + "probability": 0.9836 + }, + { + "start": 2342.84, + "end": 2347.28, + "probability": 0.9805 + }, + { + "start": 2347.56, + "end": 2348.2, + "probability": 0.284 + }, + { + "start": 2348.24, + "end": 2349.02, + "probability": 0.829 + }, + { + "start": 2349.82, + "end": 2351.62, + "probability": 0.9844 + }, + { + "start": 2352.08, + "end": 2354.9, + "probability": 0.9961 + }, + { + "start": 2354.9, + "end": 2359.12, + "probability": 0.9118 + }, + { + "start": 2359.64, + "end": 2361.96, + "probability": 0.9894 + }, + { + "start": 2362.38, + "end": 2363.8, + "probability": 0.9349 + }, + { + "start": 2363.94, + "end": 2365.02, + "probability": 0.9963 + }, + { + "start": 2365.46, + "end": 2366.52, + "probability": 0.9296 + }, + { + "start": 2366.86, + "end": 2369.88, + "probability": 0.9846 + }, + { + "start": 2370.46, + "end": 2374.0, + "probability": 0.9905 + }, + { + "start": 2374.08, + "end": 2374.92, + "probability": 0.9299 + }, + { + "start": 2374.98, + "end": 2375.6, + "probability": 0.8198 + }, + { + "start": 2376.34, + "end": 2378.72, + "probability": 0.7305 + }, + { + "start": 2379.38, + "end": 2380.04, + "probability": 0.5066 + }, + { + "start": 2380.61, + "end": 2383.78, + "probability": 0.6919 + }, + { + "start": 2384.5, + "end": 2386.96, + "probability": 0.9639 + }, + { + "start": 2387.64, + "end": 2389.64, + "probability": 0.8023 + }, + { + "start": 2390.02, + "end": 2391.52, + "probability": 0.7824 + }, + { + "start": 2392.02, + "end": 2397.02, + "probability": 0.8894 + }, + { + "start": 2397.86, + "end": 2400.12, + "probability": 0.9604 + }, + { + "start": 2400.26, + "end": 2401.16, + "probability": 0.8183 + }, + { + "start": 2401.6, + "end": 2402.46, + "probability": 0.5931 + }, + { + "start": 2402.92, + "end": 2404.56, + "probability": 0.904 + }, + { + "start": 2404.98, + "end": 2409.38, + "probability": 0.8939 + }, + { + "start": 2409.82, + "end": 2410.66, + "probability": 0.8166 + }, + { + "start": 2411.22, + "end": 2414.9, + "probability": 0.9918 + }, + { + "start": 2415.9, + "end": 2418.42, + "probability": 0.9731 + }, + { + "start": 2418.96, + "end": 2420.5, + "probability": 0.9138 + }, + { + "start": 2421.14, + "end": 2423.7, + "probability": 0.9299 + }, + { + "start": 2424.42, + "end": 2425.76, + "probability": 0.9836 + }, + { + "start": 2426.58, + "end": 2431.0, + "probability": 0.9819 + }, + { + "start": 2431.62, + "end": 2435.36, + "probability": 0.9575 + }, + { + "start": 2435.5, + "end": 2436.0, + "probability": 0.9585 + }, + { + "start": 2436.1, + "end": 2439.62, + "probability": 0.9849 + }, + { + "start": 2439.62, + "end": 2443.84, + "probability": 0.9997 + }, + { + "start": 2444.54, + "end": 2445.84, + "probability": 0.8472 + }, + { + "start": 2445.94, + "end": 2447.34, + "probability": 0.9873 + }, + { + "start": 2447.82, + "end": 2449.76, + "probability": 0.9637 + }, + { + "start": 2450.28, + "end": 2452.68, + "probability": 0.9717 + }, + { + "start": 2453.34, + "end": 2455.6, + "probability": 0.9881 + }, + { + "start": 2455.98, + "end": 2459.3, + "probability": 0.999 + }, + { + "start": 2459.96, + "end": 2462.28, + "probability": 0.9901 + }, + { + "start": 2462.9, + "end": 2465.12, + "probability": 0.9976 + }, + { + "start": 2465.98, + "end": 2468.58, + "probability": 0.9453 + }, + { + "start": 2469.16, + "end": 2471.6, + "probability": 0.9858 + }, + { + "start": 2472.26, + "end": 2475.42, + "probability": 0.9924 + }, + { + "start": 2475.96, + "end": 2476.36, + "probability": 0.649 + }, + { + "start": 2476.44, + "end": 2481.5, + "probability": 0.9535 + }, + { + "start": 2482.04, + "end": 2484.68, + "probability": 0.8688 + }, + { + "start": 2485.22, + "end": 2487.66, + "probability": 0.9727 + }, + { + "start": 2488.42, + "end": 2491.9, + "probability": 0.9241 + }, + { + "start": 2492.46, + "end": 2494.24, + "probability": 0.9819 + }, + { + "start": 2494.46, + "end": 2495.16, + "probability": 0.7974 + }, + { + "start": 2495.3, + "end": 2496.2, + "probability": 0.9849 + }, + { + "start": 2496.64, + "end": 2497.34, + "probability": 0.9727 + }, + { + "start": 2497.42, + "end": 2498.54, + "probability": 0.9872 + }, + { + "start": 2498.82, + "end": 2499.44, + "probability": 0.9767 + }, + { + "start": 2499.44, + "end": 2500.02, + "probability": 0.8968 + }, + { + "start": 2500.36, + "end": 2501.96, + "probability": 0.991 + }, + { + "start": 2502.22, + "end": 2502.88, + "probability": 0.7199 + }, + { + "start": 2503.24, + "end": 2503.96, + "probability": 0.8664 + }, + { + "start": 2504.58, + "end": 2506.88, + "probability": 0.999 + }, + { + "start": 2507.4, + "end": 2511.7, + "probability": 0.9207 + }, + { + "start": 2512.58, + "end": 2512.98, + "probability": 0.7557 + }, + { + "start": 2513.06, + "end": 2515.38, + "probability": 0.9243 + }, + { + "start": 2515.72, + "end": 2516.6, + "probability": 0.5161 + }, + { + "start": 2516.6, + "end": 2516.6, + "probability": 0.4228 + }, + { + "start": 2516.6, + "end": 2517.47, + "probability": 0.3382 + }, + { + "start": 2518.02, + "end": 2519.14, + "probability": 0.413 + }, + { + "start": 2519.26, + "end": 2520.58, + "probability": 0.6697 + }, + { + "start": 2520.58, + "end": 2521.34, + "probability": 0.7778 + }, + { + "start": 2521.42, + "end": 2521.88, + "probability": 0.5707 + }, + { + "start": 2521.96, + "end": 2523.65, + "probability": 0.7581 + }, + { + "start": 2524.22, + "end": 2525.2, + "probability": 0.2305 + }, + { + "start": 2525.54, + "end": 2526.0, + "probability": 0.7381 + }, + { + "start": 2526.02, + "end": 2526.16, + "probability": 0.5675 + }, + { + "start": 2526.62, + "end": 2527.0, + "probability": 0.892 + }, + { + "start": 2527.48, + "end": 2528.86, + "probability": 0.936 + }, + { + "start": 2531.28, + "end": 2532.08, + "probability": 0.7343 + }, + { + "start": 2532.84, + "end": 2534.6, + "probability": 0.7163 + }, + { + "start": 2535.74, + "end": 2538.9, + "probability": 0.6168 + }, + { + "start": 2539.26, + "end": 2542.12, + "probability": 0.9526 + }, + { + "start": 2545.44, + "end": 2548.1, + "probability": 0.6536 + }, + { + "start": 2548.5, + "end": 2549.7, + "probability": 0.9457 + }, + { + "start": 2551.1, + "end": 2553.44, + "probability": 0.3789 + }, + { + "start": 2553.66, + "end": 2554.54, + "probability": 0.894 + }, + { + "start": 2554.58, + "end": 2556.64, + "probability": 0.2721 + }, + { + "start": 2556.64, + "end": 2557.33, + "probability": 0.3991 + }, + { + "start": 2557.8, + "end": 2558.46, + "probability": 0.0353 + }, + { + "start": 2558.46, + "end": 2558.8, + "probability": 0.1259 + }, + { + "start": 2558.82, + "end": 2559.26, + "probability": 0.103 + }, + { + "start": 2559.44, + "end": 2560.16, + "probability": 0.716 + }, + { + "start": 2560.36, + "end": 2560.86, + "probability": 0.6366 + }, + { + "start": 2560.96, + "end": 2561.76, + "probability": 0.3257 + }, + { + "start": 2562.06, + "end": 2562.7, + "probability": 0.5103 + }, + { + "start": 2562.76, + "end": 2563.66, + "probability": 0.6451 + }, + { + "start": 2563.82, + "end": 2564.26, + "probability": 0.602 + }, + { + "start": 2564.32, + "end": 2565.82, + "probability": 0.8324 + }, + { + "start": 2565.96, + "end": 2566.6, + "probability": 0.6959 + }, + { + "start": 2566.92, + "end": 2568.9, + "probability": 0.5433 + }, + { + "start": 2569.04, + "end": 2569.58, + "probability": 0.4711 + }, + { + "start": 2569.58, + "end": 2569.88, + "probability": 0.5925 + }, + { + "start": 2569.88, + "end": 2573.1, + "probability": 0.8893 + }, + { + "start": 2573.92, + "end": 2579.0, + "probability": 0.9939 + }, + { + "start": 2579.34, + "end": 2580.08, + "probability": 0.7809 + }, + { + "start": 2581.2, + "end": 2582.54, + "probability": 0.5945 + }, + { + "start": 2583.12, + "end": 2586.52, + "probability": 0.9879 + }, + { + "start": 2587.22, + "end": 2589.22, + "probability": 0.9937 + }, + { + "start": 2589.3, + "end": 2590.94, + "probability": 0.7452 + }, + { + "start": 2591.46, + "end": 2593.64, + "probability": 0.988 + }, + { + "start": 2594.22, + "end": 2595.66, + "probability": 0.9806 + }, + { + "start": 2595.98, + "end": 2598.72, + "probability": 0.8532 + }, + { + "start": 2599.22, + "end": 2603.64, + "probability": 0.782 + }, + { + "start": 2605.44, + "end": 2606.28, + "probability": 0.8845 + }, + { + "start": 2606.38, + "end": 2609.68, + "probability": 0.9865 + }, + { + "start": 2609.8, + "end": 2610.5, + "probability": 0.8391 + }, + { + "start": 2610.58, + "end": 2611.14, + "probability": 0.8558 + }, + { + "start": 2612.1, + "end": 2614.0, + "probability": 0.8763 + }, + { + "start": 2614.14, + "end": 2616.7, + "probability": 0.8354 + }, + { + "start": 2616.9, + "end": 2619.28, + "probability": 0.8827 + }, + { + "start": 2619.34, + "end": 2620.34, + "probability": 0.9787 + }, + { + "start": 2620.54, + "end": 2625.56, + "probability": 0.918 + }, + { + "start": 2626.38, + "end": 2628.54, + "probability": 0.9076 + }, + { + "start": 2628.58, + "end": 2629.86, + "probability": 0.9726 + }, + { + "start": 2630.08, + "end": 2630.88, + "probability": 0.8675 + }, + { + "start": 2631.66, + "end": 2634.8, + "probability": 0.8823 + }, + { + "start": 2635.58, + "end": 2636.84, + "probability": 0.9119 + }, + { + "start": 2637.02, + "end": 2637.76, + "probability": 0.8652 + }, + { + "start": 2638.14, + "end": 2639.46, + "probability": 0.897 + }, + { + "start": 2639.58, + "end": 2640.57, + "probability": 0.9046 + }, + { + "start": 2641.4, + "end": 2645.44, + "probability": 0.874 + }, + { + "start": 2646.36, + "end": 2647.84, + "probability": 0.9788 + }, + { + "start": 2648.1, + "end": 2648.82, + "probability": 0.9412 + }, + { + "start": 2648.84, + "end": 2651.78, + "probability": 0.9935 + }, + { + "start": 2652.87, + "end": 2657.7, + "probability": 0.9974 + }, + { + "start": 2658.22, + "end": 2661.72, + "probability": 0.9988 + }, + { + "start": 2662.74, + "end": 2667.62, + "probability": 0.7492 + }, + { + "start": 2667.64, + "end": 2674.04, + "probability": 0.9766 + }, + { + "start": 2674.76, + "end": 2675.7, + "probability": 0.7185 + }, + { + "start": 2675.9, + "end": 2684.64, + "probability": 0.9756 + }, + { + "start": 2685.42, + "end": 2688.08, + "probability": 0.959 + }, + { + "start": 2689.24, + "end": 2692.31, + "probability": 0.9957 + }, + { + "start": 2694.36, + "end": 2697.28, + "probability": 0.7513 + }, + { + "start": 2698.08, + "end": 2703.02, + "probability": 0.887 + }, + { + "start": 2703.58, + "end": 2705.92, + "probability": 0.9976 + }, + { + "start": 2706.34, + "end": 2708.68, + "probability": 0.7692 + }, + { + "start": 2709.28, + "end": 2710.76, + "probability": 0.9712 + }, + { + "start": 2710.78, + "end": 2713.68, + "probability": 0.9845 + }, + { + "start": 2714.84, + "end": 2715.94, + "probability": 0.9673 + }, + { + "start": 2717.0, + "end": 2723.36, + "probability": 0.9946 + }, + { + "start": 2723.64, + "end": 2725.9, + "probability": 0.7607 + }, + { + "start": 2727.82, + "end": 2730.36, + "probability": 0.9863 + }, + { + "start": 2731.72, + "end": 2732.84, + "probability": 0.7498 + }, + { + "start": 2736.38, + "end": 2737.78, + "probability": 0.7065 + }, + { + "start": 2738.62, + "end": 2740.27, + "probability": 0.9073 + }, + { + "start": 2741.84, + "end": 2745.86, + "probability": 0.8743 + }, + { + "start": 2746.48, + "end": 2749.96, + "probability": 0.9229 + }, + { + "start": 2750.22, + "end": 2754.28, + "probability": 0.9976 + }, + { + "start": 2754.98, + "end": 2757.84, + "probability": 0.8664 + }, + { + "start": 2758.0, + "end": 2758.94, + "probability": 0.7685 + }, + { + "start": 2759.06, + "end": 2760.84, + "probability": 0.8397 + }, + { + "start": 2760.86, + "end": 2764.1, + "probability": 0.9834 + }, + { + "start": 2764.48, + "end": 2766.16, + "probability": 0.8722 + }, + { + "start": 2766.56, + "end": 2768.82, + "probability": 0.6427 + }, + { + "start": 2769.04, + "end": 2770.44, + "probability": 0.6734 + }, + { + "start": 2770.72, + "end": 2771.34, + "probability": 0.8864 + }, + { + "start": 2771.46, + "end": 2773.84, + "probability": 0.8966 + }, + { + "start": 2773.9, + "end": 2774.9, + "probability": 0.6301 + }, + { + "start": 2775.76, + "end": 2776.32, + "probability": 0.9033 + }, + { + "start": 2776.5, + "end": 2777.56, + "probability": 0.8896 + }, + { + "start": 2777.6, + "end": 2780.72, + "probability": 0.9648 + }, + { + "start": 2780.76, + "end": 2784.8, + "probability": 0.9912 + }, + { + "start": 2786.24, + "end": 2787.3, + "probability": 0.738 + }, + { + "start": 2787.48, + "end": 2791.12, + "probability": 0.996 + }, + { + "start": 2791.4, + "end": 2793.83, + "probability": 0.9868 + }, + { + "start": 2794.96, + "end": 2798.6, + "probability": 0.8085 + }, + { + "start": 2799.62, + "end": 2802.64, + "probability": 0.9646 + }, + { + "start": 2804.28, + "end": 2808.02, + "probability": 0.9977 + }, + { + "start": 2808.84, + "end": 2811.8, + "probability": 0.9624 + }, + { + "start": 2812.5, + "end": 2814.0, + "probability": 0.5055 + }, + { + "start": 2815.2, + "end": 2820.3, + "probability": 0.6383 + }, + { + "start": 2821.26, + "end": 2823.42, + "probability": 0.7459 + }, + { + "start": 2824.06, + "end": 2827.38, + "probability": 0.8803 + }, + { + "start": 2827.38, + "end": 2831.1, + "probability": 0.9473 + }, + { + "start": 2831.16, + "end": 2834.38, + "probability": 0.9843 + }, + { + "start": 2834.64, + "end": 2837.94, + "probability": 0.9401 + }, + { + "start": 2837.94, + "end": 2839.3, + "probability": 0.8745 + }, + { + "start": 2839.92, + "end": 2842.42, + "probability": 0.9814 + }, + { + "start": 2843.08, + "end": 2846.24, + "probability": 0.9673 + }, + { + "start": 2846.5, + "end": 2851.6, + "probability": 0.9736 + }, + { + "start": 2852.24, + "end": 2859.04, + "probability": 0.9232 + }, + { + "start": 2859.16, + "end": 2861.94, + "probability": 0.9893 + }, + { + "start": 2862.64, + "end": 2865.58, + "probability": 0.9956 + }, + { + "start": 2866.02, + "end": 2866.62, + "probability": 0.8289 + }, + { + "start": 2866.76, + "end": 2866.9, + "probability": 0.6355 + }, + { + "start": 2866.96, + "end": 2867.4, + "probability": 0.5637 + }, + { + "start": 2867.78, + "end": 2872.82, + "probability": 0.9924 + }, + { + "start": 2873.02, + "end": 2875.49, + "probability": 0.9834 + }, + { + "start": 2876.54, + "end": 2880.3, + "probability": 0.9929 + }, + { + "start": 2880.86, + "end": 2882.84, + "probability": 0.8939 + }, + { + "start": 2883.36, + "end": 2884.24, + "probability": 0.9783 + }, + { + "start": 2884.88, + "end": 2890.28, + "probability": 0.9542 + }, + { + "start": 2890.82, + "end": 2892.66, + "probability": 0.9631 + }, + { + "start": 2893.16, + "end": 2897.98, + "probability": 0.8442 + }, + { + "start": 2898.12, + "end": 2899.48, + "probability": 0.8774 + }, + { + "start": 2899.88, + "end": 2900.34, + "probability": 0.8236 + }, + { + "start": 2900.96, + "end": 2903.24, + "probability": 0.9471 + }, + { + "start": 2906.3, + "end": 2909.86, + "probability": 0.8812 + }, + { + "start": 2910.5, + "end": 2914.54, + "probability": 0.9985 + }, + { + "start": 2915.12, + "end": 2920.9, + "probability": 0.9392 + }, + { + "start": 2921.14, + "end": 2923.92, + "probability": 0.9958 + }, + { + "start": 2924.44, + "end": 2929.54, + "probability": 0.9991 + }, + { + "start": 2930.34, + "end": 2931.3, + "probability": 0.5819 + }, + { + "start": 2931.52, + "end": 2934.64, + "probability": 0.9756 + }, + { + "start": 2935.1, + "end": 2937.9, + "probability": 0.9095 + }, + { + "start": 2938.3, + "end": 2939.8, + "probability": 0.9966 + }, + { + "start": 2940.44, + "end": 2944.5, + "probability": 0.9969 + }, + { + "start": 2945.2, + "end": 2945.72, + "probability": 0.9215 + }, + { + "start": 2945.84, + "end": 2946.9, + "probability": 0.9313 + }, + { + "start": 2947.1, + "end": 2950.9, + "probability": 0.7995 + }, + { + "start": 2950.98, + "end": 2954.08, + "probability": 0.9617 + }, + { + "start": 2955.32, + "end": 2959.52, + "probability": 0.9963 + }, + { + "start": 2960.22, + "end": 2964.02, + "probability": 0.9836 + }, + { + "start": 2964.58, + "end": 2969.8, + "probability": 0.9976 + }, + { + "start": 2970.4, + "end": 2972.26, + "probability": 0.9352 + }, + { + "start": 2972.84, + "end": 2976.38, + "probability": 0.9983 + }, + { + "start": 2976.46, + "end": 2977.4, + "probability": 0.947 + }, + { + "start": 2978.04, + "end": 2983.86, + "probability": 0.9963 + }, + { + "start": 2984.48, + "end": 2985.98, + "probability": 0.9741 + }, + { + "start": 2986.54, + "end": 2989.84, + "probability": 0.997 + }, + { + "start": 2989.9, + "end": 2991.06, + "probability": 0.8466 + }, + { + "start": 2991.6, + "end": 2993.8, + "probability": 0.9818 + }, + { + "start": 2994.46, + "end": 3000.44, + "probability": 0.9958 + }, + { + "start": 3001.28, + "end": 3006.36, + "probability": 0.9235 + }, + { + "start": 3007.3, + "end": 3011.0, + "probability": 0.9989 + }, + { + "start": 3011.68, + "end": 3012.58, + "probability": 0.9958 + }, + { + "start": 3013.36, + "end": 3018.48, + "probability": 0.9922 + }, + { + "start": 3019.06, + "end": 3021.38, + "probability": 0.9845 + }, + { + "start": 3021.44, + "end": 3025.64, + "probability": 0.9968 + }, + { + "start": 3025.64, + "end": 3030.0, + "probability": 0.9993 + }, + { + "start": 3030.82, + "end": 3031.76, + "probability": 0.8351 + }, + { + "start": 3031.96, + "end": 3032.94, + "probability": 0.9887 + }, + { + "start": 3033.3, + "end": 3038.62, + "probability": 0.9827 + }, + { + "start": 3039.2, + "end": 3042.14, + "probability": 0.7105 + }, + { + "start": 3042.66, + "end": 3046.62, + "probability": 0.9941 + }, + { + "start": 3047.42, + "end": 3053.42, + "probability": 0.974 + }, + { + "start": 3053.86, + "end": 3055.28, + "probability": 0.9862 + }, + { + "start": 3056.16, + "end": 3059.38, + "probability": 0.775 + }, + { + "start": 3060.16, + "end": 3063.52, + "probability": 0.8866 + }, + { + "start": 3063.92, + "end": 3070.86, + "probability": 0.9902 + }, + { + "start": 3071.4, + "end": 3073.26, + "probability": 0.9521 + }, + { + "start": 3073.34, + "end": 3075.84, + "probability": 0.9585 + }, + { + "start": 3076.38, + "end": 3079.22, + "probability": 0.997 + }, + { + "start": 3079.3, + "end": 3079.9, + "probability": 0.6073 + }, + { + "start": 3079.98, + "end": 3080.8, + "probability": 0.8492 + }, + { + "start": 3081.88, + "end": 3086.18, + "probability": 0.996 + }, + { + "start": 3086.84, + "end": 3087.76, + "probability": 0.6554 + }, + { + "start": 3087.88, + "end": 3091.82, + "probability": 0.9421 + }, + { + "start": 3091.82, + "end": 3094.7, + "probability": 0.9937 + }, + { + "start": 3095.32, + "end": 3098.26, + "probability": 0.9938 + }, + { + "start": 3098.26, + "end": 3102.0, + "probability": 0.998 + }, + { + "start": 3102.76, + "end": 3106.14, + "probability": 0.9515 + }, + { + "start": 3106.32, + "end": 3108.56, + "probability": 0.9428 + }, + { + "start": 3109.14, + "end": 3112.18, + "probability": 0.9637 + }, + { + "start": 3112.34, + "end": 3112.94, + "probability": 0.8268 + }, + { + "start": 3113.0, + "end": 3113.46, + "probability": 0.7691 + }, + { + "start": 3113.52, + "end": 3115.52, + "probability": 0.9963 + }, + { + "start": 3116.12, + "end": 3118.64, + "probability": 0.9983 + }, + { + "start": 3119.42, + "end": 3122.3, + "probability": 0.9857 + }, + { + "start": 3122.88, + "end": 3124.6, + "probability": 0.948 + }, + { + "start": 3124.68, + "end": 3125.91, + "probability": 0.6347 + }, + { + "start": 3126.14, + "end": 3129.2, + "probability": 0.8009 + }, + { + "start": 3129.86, + "end": 3133.04, + "probability": 0.794 + }, + { + "start": 3133.46, + "end": 3135.4, + "probability": 0.9738 + }, + { + "start": 3135.64, + "end": 3137.01, + "probability": 0.6374 + }, + { + "start": 3138.82, + "end": 3139.6, + "probability": 0.5973 + }, + { + "start": 3140.1, + "end": 3144.96, + "probability": 0.9053 + }, + { + "start": 3145.34, + "end": 3146.02, + "probability": 0.4669 + }, + { + "start": 3146.14, + "end": 3146.32, + "probability": 0.519 + }, + { + "start": 3146.32, + "end": 3148.6, + "probability": 0.8081 + }, + { + "start": 3148.64, + "end": 3150.16, + "probability": 0.9796 + }, + { + "start": 3150.16, + "end": 3154.14, + "probability": 0.989 + }, + { + "start": 3154.28, + "end": 3156.66, + "probability": 0.1372 + }, + { + "start": 3156.7, + "end": 3159.1, + "probability": 0.813 + }, + { + "start": 3159.1, + "end": 3159.14, + "probability": 0.2637 + }, + { + "start": 3159.14, + "end": 3159.18, + "probability": 0.1022 + }, + { + "start": 3159.18, + "end": 3160.92, + "probability": 0.5342 + }, + { + "start": 3160.98, + "end": 3161.9, + "probability": 0.716 + }, + { + "start": 3161.9, + "end": 3162.1, + "probability": 0.2422 + }, + { + "start": 3162.36, + "end": 3163.34, + "probability": 0.1401 + }, + { + "start": 3163.34, + "end": 3166.32, + "probability": 0.9658 + }, + { + "start": 3166.46, + "end": 3169.44, + "probability": 0.8958 + }, + { + "start": 3169.66, + "end": 3172.56, + "probability": 0.9863 + }, + { + "start": 3172.66, + "end": 3174.5, + "probability": 0.8873 + }, + { + "start": 3174.5, + "end": 3175.74, + "probability": 0.6824 + }, + { + "start": 3175.74, + "end": 3175.86, + "probability": 0.5929 + }, + { + "start": 3175.86, + "end": 3176.64, + "probability": 0.4642 + }, + { + "start": 3176.72, + "end": 3177.88, + "probability": 0.9412 + }, + { + "start": 3178.06, + "end": 3183.48, + "probability": 0.9906 + }, + { + "start": 3183.6, + "end": 3185.14, + "probability": 0.819 + }, + { + "start": 3185.56, + "end": 3188.92, + "probability": 0.9932 + }, + { + "start": 3189.02, + "end": 3193.72, + "probability": 0.8019 + }, + { + "start": 3193.94, + "end": 3194.74, + "probability": 0.8806 + }, + { + "start": 3195.18, + "end": 3198.48, + "probability": 0.9719 + }, + { + "start": 3198.64, + "end": 3202.3, + "probability": 0.9884 + }, + { + "start": 3202.34, + "end": 3204.8, + "probability": 0.9973 + }, + { + "start": 3205.26, + "end": 3206.38, + "probability": 0.7368 + }, + { + "start": 3206.94, + "end": 3208.74, + "probability": 0.7495 + }, + { + "start": 3208.92, + "end": 3210.52, + "probability": 0.9508 + }, + { + "start": 3210.66, + "end": 3211.68, + "probability": 0.9491 + }, + { + "start": 3211.92, + "end": 3213.16, + "probability": 0.9871 + }, + { + "start": 3213.22, + "end": 3215.43, + "probability": 0.5514 + }, + { + "start": 3215.88, + "end": 3219.28, + "probability": 0.9835 + }, + { + "start": 3219.98, + "end": 3221.2, + "probability": 0.7616 + }, + { + "start": 3221.76, + "end": 3223.48, + "probability": 0.7838 + }, + { + "start": 3223.62, + "end": 3224.44, + "probability": 0.7493 + }, + { + "start": 3224.46, + "end": 3224.98, + "probability": 0.5171 + }, + { + "start": 3225.0, + "end": 3227.18, + "probability": 0.9573 + }, + { + "start": 3227.3, + "end": 3228.26, + "probability": 0.8334 + }, + { + "start": 3228.78, + "end": 3229.9, + "probability": 0.8357 + }, + { + "start": 3230.76, + "end": 3231.8, + "probability": 0.952 + }, + { + "start": 3250.76, + "end": 3251.52, + "probability": 0.6095 + }, + { + "start": 3252.44, + "end": 3254.66, + "probability": 0.9785 + }, + { + "start": 3255.34, + "end": 3257.44, + "probability": 0.8405 + }, + { + "start": 3258.3, + "end": 3260.7, + "probability": 0.9965 + }, + { + "start": 3261.04, + "end": 3266.0, + "probability": 0.9854 + }, + { + "start": 3266.14, + "end": 3266.68, + "probability": 0.884 + }, + { + "start": 3266.8, + "end": 3267.36, + "probability": 0.2616 + }, + { + "start": 3267.4, + "end": 3267.96, + "probability": 0.8107 + }, + { + "start": 3268.4, + "end": 3270.6, + "probability": 0.9186 + }, + { + "start": 3271.88, + "end": 3272.86, + "probability": 0.9578 + }, + { + "start": 3274.08, + "end": 3274.74, + "probability": 0.9508 + }, + { + "start": 3275.14, + "end": 3277.72, + "probability": 0.7085 + }, + { + "start": 3278.52, + "end": 3279.17, + "probability": 0.9263 + }, + { + "start": 3279.5, + "end": 3280.7, + "probability": 0.4523 + }, + { + "start": 3280.82, + "end": 3281.71, + "probability": 0.2361 + }, + { + "start": 3285.08, + "end": 3286.68, + "probability": 0.5455 + }, + { + "start": 3287.89, + "end": 3290.78, + "probability": 0.9246 + }, + { + "start": 3293.18, + "end": 3294.9, + "probability": 0.0266 + }, + { + "start": 3295.08, + "end": 3298.08, + "probability": 0.6758 + }, + { + "start": 3300.26, + "end": 3302.82, + "probability": 0.6077 + }, + { + "start": 3304.1, + "end": 3305.07, + "probability": 0.9192 + }, + { + "start": 3307.34, + "end": 3310.9, + "probability": 0.9236 + }, + { + "start": 3312.08, + "end": 3313.64, + "probability": 0.8066 + }, + { + "start": 3315.02, + "end": 3319.52, + "probability": 0.9262 + }, + { + "start": 3320.26, + "end": 3323.38, + "probability": 0.9204 + }, + { + "start": 3324.92, + "end": 3325.94, + "probability": 0.6896 + }, + { + "start": 3327.32, + "end": 3331.16, + "probability": 0.9183 + }, + { + "start": 3333.8, + "end": 3337.74, + "probability": 0.9773 + }, + { + "start": 3339.26, + "end": 3341.1, + "probability": 0.9745 + }, + { + "start": 3341.88, + "end": 3342.52, + "probability": 0.9213 + }, + { + "start": 3344.72, + "end": 3350.56, + "probability": 0.8647 + }, + { + "start": 3351.4, + "end": 3353.94, + "probability": 0.9585 + }, + { + "start": 3356.1, + "end": 3356.74, + "probability": 0.5308 + }, + { + "start": 3358.12, + "end": 3359.1, + "probability": 0.9923 + }, + { + "start": 3360.9, + "end": 3363.56, + "probability": 0.9988 + }, + { + "start": 3364.2, + "end": 3367.12, + "probability": 0.9969 + }, + { + "start": 3367.16, + "end": 3371.84, + "probability": 0.969 + }, + { + "start": 3372.56, + "end": 3375.56, + "probability": 0.596 + }, + { + "start": 3375.94, + "end": 3379.94, + "probability": 0.9859 + }, + { + "start": 3380.34, + "end": 3382.36, + "probability": 0.6528 + }, + { + "start": 3383.1, + "end": 3384.02, + "probability": 0.9477 + }, + { + "start": 3384.68, + "end": 3388.56, + "probability": 0.9474 + }, + { + "start": 3388.7, + "end": 3390.1, + "probability": 0.8788 + }, + { + "start": 3391.02, + "end": 3393.54, + "probability": 0.8922 + }, + { + "start": 3393.7, + "end": 3396.28, + "probability": 0.9831 + }, + { + "start": 3396.32, + "end": 3397.72, + "probability": 0.7755 + }, + { + "start": 3398.22, + "end": 3403.7, + "probability": 0.938 + }, + { + "start": 3404.28, + "end": 3406.4, + "probability": 0.9882 + }, + { + "start": 3406.94, + "end": 3408.12, + "probability": 0.9904 + }, + { + "start": 3412.06, + "end": 3412.6, + "probability": 0.9884 + }, + { + "start": 3412.76, + "end": 3416.78, + "probability": 0.9486 + }, + { + "start": 3417.2, + "end": 3421.24, + "probability": 0.857 + }, + { + "start": 3422.8, + "end": 3424.94, + "probability": 0.9971 + }, + { + "start": 3425.46, + "end": 3426.54, + "probability": 0.8059 + }, + { + "start": 3427.9, + "end": 3432.18, + "probability": 0.9861 + }, + { + "start": 3432.46, + "end": 3436.6, + "probability": 0.9776 + }, + { + "start": 3437.52, + "end": 3438.44, + "probability": 0.9985 + }, + { + "start": 3439.0, + "end": 3444.58, + "probability": 0.8741 + }, + { + "start": 3446.0, + "end": 3449.26, + "probability": 0.9646 + }, + { + "start": 3452.94, + "end": 3453.34, + "probability": 0.6528 + }, + { + "start": 3454.88, + "end": 3456.76, + "probability": 0.5349 + }, + { + "start": 3459.32, + "end": 3462.26, + "probability": 0.8875 + }, + { + "start": 3463.36, + "end": 3470.58, + "probability": 0.9869 + }, + { + "start": 3475.1, + "end": 3482.38, + "probability": 0.7036 + }, + { + "start": 3483.48, + "end": 3484.72, + "probability": 0.9594 + }, + { + "start": 3485.2, + "end": 3486.92, + "probability": 0.9079 + }, + { + "start": 3487.56, + "end": 3494.1, + "probability": 0.9453 + }, + { + "start": 3496.04, + "end": 3498.72, + "probability": 0.7075 + }, + { + "start": 3499.66, + "end": 3502.18, + "probability": 0.932 + }, + { + "start": 3505.1, + "end": 3508.8, + "probability": 0.9889 + }, + { + "start": 3510.6, + "end": 3511.18, + "probability": 0.4513 + }, + { + "start": 3514.12, + "end": 3516.02, + "probability": 0.9915 + }, + { + "start": 3519.98, + "end": 3524.48, + "probability": 0.772 + }, + { + "start": 3525.4, + "end": 3527.94, + "probability": 0.8734 + }, + { + "start": 3530.04, + "end": 3535.12, + "probability": 0.7278 + }, + { + "start": 3535.12, + "end": 3537.44, + "probability": 0.5391 + }, + { + "start": 3538.1, + "end": 3545.8, + "probability": 0.9507 + }, + { + "start": 3546.5, + "end": 3554.32, + "probability": 0.7424 + }, + { + "start": 3555.98, + "end": 3557.72, + "probability": 0.6068 + }, + { + "start": 3561.24, + "end": 3562.06, + "probability": 0.8003 + }, + { + "start": 3562.66, + "end": 3563.76, + "probability": 0.9806 + }, + { + "start": 3564.54, + "end": 3566.98, + "probability": 0.9708 + }, + { + "start": 3569.04, + "end": 3569.73, + "probability": 0.9678 + }, + { + "start": 3572.0, + "end": 3572.66, + "probability": 0.9573 + }, + { + "start": 3575.2, + "end": 3580.24, + "probability": 0.9758 + }, + { + "start": 3581.76, + "end": 3583.0, + "probability": 0.9775 + }, + { + "start": 3584.98, + "end": 3588.26, + "probability": 0.8114 + }, + { + "start": 3590.7, + "end": 3594.82, + "probability": 0.8802 + }, + { + "start": 3599.5, + "end": 3603.74, + "probability": 0.9532 + }, + { + "start": 3603.74, + "end": 3609.08, + "probability": 0.9891 + }, + { + "start": 3610.68, + "end": 3612.12, + "probability": 0.3389 + }, + { + "start": 3614.04, + "end": 3619.02, + "probability": 0.946 + }, + { + "start": 3620.64, + "end": 3623.02, + "probability": 0.9178 + }, + { + "start": 3623.9, + "end": 3626.64, + "probability": 0.9937 + }, + { + "start": 3627.28, + "end": 3633.0, + "probability": 0.9656 + }, + { + "start": 3633.1, + "end": 3636.64, + "probability": 0.988 + }, + { + "start": 3636.68, + "end": 3637.16, + "probability": 0.6424 + }, + { + "start": 3638.74, + "end": 3640.36, + "probability": 0.8722 + }, + { + "start": 3640.54, + "end": 3643.64, + "probability": 0.92 + }, + { + "start": 3644.0, + "end": 3647.86, + "probability": 0.9155 + }, + { + "start": 3648.42, + "end": 3649.22, + "probability": 0.5816 + }, + { + "start": 3659.92, + "end": 3662.0, + "probability": 0.7468 + }, + { + "start": 3663.14, + "end": 3666.14, + "probability": 0.9956 + }, + { + "start": 3666.94, + "end": 3668.76, + "probability": 0.8278 + }, + { + "start": 3669.48, + "end": 3672.1, + "probability": 0.9775 + }, + { + "start": 3672.74, + "end": 3675.92, + "probability": 0.9761 + }, + { + "start": 3676.54, + "end": 3678.74, + "probability": 0.9679 + }, + { + "start": 3679.38, + "end": 3682.3, + "probability": 0.9921 + }, + { + "start": 3683.02, + "end": 3685.72, + "probability": 0.9693 + }, + { + "start": 3686.58, + "end": 3689.94, + "probability": 0.972 + }, + { + "start": 3690.76, + "end": 3692.22, + "probability": 0.9813 + }, + { + "start": 3693.2, + "end": 3696.18, + "probability": 0.6499 + }, + { + "start": 3696.42, + "end": 3699.14, + "probability": 0.7335 + }, + { + "start": 3699.64, + "end": 3703.74, + "probability": 0.9824 + }, + { + "start": 3704.44, + "end": 3708.2, + "probability": 0.9417 + }, + { + "start": 3709.12, + "end": 3709.7, + "probability": 0.908 + }, + { + "start": 3710.64, + "end": 3714.88, + "probability": 0.8962 + }, + { + "start": 3715.7, + "end": 3719.0, + "probability": 0.9958 + }, + { + "start": 3720.02, + "end": 3722.98, + "probability": 0.9919 + }, + { + "start": 3723.52, + "end": 3727.0, + "probability": 0.9919 + }, + { + "start": 3727.8, + "end": 3729.9, + "probability": 0.8797 + }, + { + "start": 3730.54, + "end": 3731.92, + "probability": 0.9872 + }, + { + "start": 3732.84, + "end": 3735.5, + "probability": 0.9945 + }, + { + "start": 3735.5, + "end": 3738.6, + "probability": 0.9738 + }, + { + "start": 3739.62, + "end": 3742.56, + "probability": 0.9937 + }, + { + "start": 3743.4, + "end": 3743.89, + "probability": 0.9665 + }, + { + "start": 3744.88, + "end": 3746.04, + "probability": 0.9932 + }, + { + "start": 3746.84, + "end": 3750.18, + "probability": 0.9332 + }, + { + "start": 3750.92, + "end": 3753.5, + "probability": 0.9989 + }, + { + "start": 3753.5, + "end": 3757.18, + "probability": 0.998 + }, + { + "start": 3757.96, + "end": 3759.7, + "probability": 0.9932 + }, + { + "start": 3759.82, + "end": 3760.94, + "probability": 0.964 + }, + { + "start": 3761.94, + "end": 3764.18, + "probability": 0.9975 + }, + { + "start": 3764.36, + "end": 3765.04, + "probability": 0.8554 + }, + { + "start": 3765.48, + "end": 3769.36, + "probability": 0.9976 + }, + { + "start": 3770.18, + "end": 3772.4, + "probability": 0.9154 + }, + { + "start": 3773.02, + "end": 3775.32, + "probability": 0.994 + }, + { + "start": 3776.08, + "end": 3779.3, + "probability": 0.9955 + }, + { + "start": 3780.06, + "end": 3781.21, + "probability": 0.9895 + }, + { + "start": 3782.06, + "end": 3784.88, + "probability": 0.8337 + }, + { + "start": 3785.48, + "end": 3787.78, + "probability": 0.9884 + }, + { + "start": 3787.8, + "end": 3789.0, + "probability": 0.9972 + }, + { + "start": 3789.86, + "end": 3792.26, + "probability": 0.7578 + }, + { + "start": 3792.9, + "end": 3794.88, + "probability": 0.972 + }, + { + "start": 3795.52, + "end": 3799.22, + "probability": 0.9593 + }, + { + "start": 3800.22, + "end": 3803.18, + "probability": 0.9976 + }, + { + "start": 3803.94, + "end": 3807.14, + "probability": 0.9897 + }, + { + "start": 3807.74, + "end": 3809.44, + "probability": 0.9984 + }, + { + "start": 3810.16, + "end": 3813.56, + "probability": 0.9873 + }, + { + "start": 3814.6, + "end": 3817.12, + "probability": 0.9882 + }, + { + "start": 3817.3, + "end": 3821.34, + "probability": 0.7858 + }, + { + "start": 3821.98, + "end": 3823.2, + "probability": 0.9631 + }, + { + "start": 3823.66, + "end": 3824.7, + "probability": 0.884 + }, + { + "start": 3825.2, + "end": 3826.4, + "probability": 0.989 + }, + { + "start": 3826.5, + "end": 3829.62, + "probability": 0.9872 + }, + { + "start": 3829.82, + "end": 3831.82, + "probability": 0.8932 + }, + { + "start": 3832.64, + "end": 3836.58, + "probability": 0.9984 + }, + { + "start": 3836.8, + "end": 3840.18, + "probability": 0.9983 + }, + { + "start": 3841.34, + "end": 3844.64, + "probability": 0.9913 + }, + { + "start": 3845.82, + "end": 3848.36, + "probability": 0.9283 + }, + { + "start": 3849.04, + "end": 3849.94, + "probability": 0.9093 + }, + { + "start": 3850.52, + "end": 3852.1, + "probability": 0.9774 + }, + { + "start": 3852.82, + "end": 3853.22, + "probability": 0.4559 + }, + { + "start": 3853.84, + "end": 3856.08, + "probability": 0.9831 + }, + { + "start": 3856.24, + "end": 3857.84, + "probability": 0.984 + }, + { + "start": 3858.5, + "end": 3861.36, + "probability": 0.8431 + }, + { + "start": 3862.06, + "end": 3864.62, + "probability": 0.9966 + }, + { + "start": 3864.62, + "end": 3871.38, + "probability": 0.9961 + }, + { + "start": 3871.76, + "end": 3872.02, + "probability": 0.409 + }, + { + "start": 3872.36, + "end": 3873.46, + "probability": 0.7987 + }, + { + "start": 3873.46, + "end": 3874.5, + "probability": 0.8916 + }, + { + "start": 3875.0, + "end": 3876.58, + "probability": 0.7367 + }, + { + "start": 3876.58, + "end": 3881.18, + "probability": 0.9774 + }, + { + "start": 3883.11, + "end": 3886.4, + "probability": 0.9651 + }, + { + "start": 3887.08, + "end": 3890.44, + "probability": 0.9941 + }, + { + "start": 3890.96, + "end": 3894.48, + "probability": 0.9919 + }, + { + "start": 3895.1, + "end": 3896.78, + "probability": 0.8684 + }, + { + "start": 3896.92, + "end": 3899.04, + "probability": 0.9602 + }, + { + "start": 3899.72, + "end": 3903.16, + "probability": 0.9857 + }, + { + "start": 3903.72, + "end": 3905.82, + "probability": 0.9565 + }, + { + "start": 3905.82, + "end": 3907.72, + "probability": 0.9982 + }, + { + "start": 3908.4, + "end": 3910.18, + "probability": 0.9888 + }, + { + "start": 3911.02, + "end": 3912.92, + "probability": 0.9896 + }, + { + "start": 3913.42, + "end": 3918.48, + "probability": 0.9934 + }, + { + "start": 3918.98, + "end": 3921.58, + "probability": 0.9946 + }, + { + "start": 3922.12, + "end": 3925.0, + "probability": 0.9445 + }, + { + "start": 3925.6, + "end": 3931.0, + "probability": 0.9935 + }, + { + "start": 3932.04, + "end": 3933.2, + "probability": 0.9245 + }, + { + "start": 3933.76, + "end": 3936.56, + "probability": 0.9941 + }, + { + "start": 3937.3, + "end": 3940.2, + "probability": 0.7678 + }, + { + "start": 3940.26, + "end": 3941.76, + "probability": 0.9795 + }, + { + "start": 3942.34, + "end": 3943.36, + "probability": 0.9169 + }, + { + "start": 3943.88, + "end": 3945.34, + "probability": 0.9214 + }, + { + "start": 3945.72, + "end": 3946.16, + "probability": 0.8671 + }, + { + "start": 3948.46, + "end": 3951.06, + "probability": 0.9774 + }, + { + "start": 3951.7, + "end": 3954.54, + "probability": 0.9582 + }, + { + "start": 3955.5, + "end": 3957.46, + "probability": 0.8296 + }, + { + "start": 3957.88, + "end": 3959.46, + "probability": 0.9743 + }, + { + "start": 3960.46, + "end": 3961.46, + "probability": 0.5031 + }, + { + "start": 3962.66, + "end": 3966.1, + "probability": 0.8854 + }, + { + "start": 3966.12, + "end": 3967.8, + "probability": 0.9951 + }, + { + "start": 3969.28, + "end": 3971.48, + "probability": 0.8503 + }, + { + "start": 3972.44, + "end": 3975.56, + "probability": 0.9538 + }, + { + "start": 3975.62, + "end": 3976.07, + "probability": 0.8593 + }, + { + "start": 3978.26, + "end": 3978.98, + "probability": 0.4978 + }, + { + "start": 3979.72, + "end": 3982.02, + "probability": 0.3879 + }, + { + "start": 3982.1, + "end": 3983.98, + "probability": 0.9398 + }, + { + "start": 3984.56, + "end": 3987.24, + "probability": 0.7062 + }, + { + "start": 3987.7, + "end": 3991.34, + "probability": 0.7096 + }, + { + "start": 3992.16, + "end": 3994.48, + "probability": 0.8247 + }, + { + "start": 3995.28, + "end": 3996.02, + "probability": 0.4694 + }, + { + "start": 3996.7, + "end": 3998.24, + "probability": 0.9401 + }, + { + "start": 3998.34, + "end": 3999.93, + "probability": 0.9442 + }, + { + "start": 4000.98, + "end": 4003.88, + "probability": 0.7521 + }, + { + "start": 4004.78, + "end": 4005.88, + "probability": 0.9318 + }, + { + "start": 4006.04, + "end": 4007.84, + "probability": 0.6636 + }, + { + "start": 4007.94, + "end": 4011.52, + "probability": 0.9937 + }, + { + "start": 4012.06, + "end": 4013.44, + "probability": 0.5058 + }, + { + "start": 4014.42, + "end": 4019.98, + "probability": 0.8311 + }, + { + "start": 4020.74, + "end": 4022.28, + "probability": 0.985 + }, + { + "start": 4022.98, + "end": 4028.0, + "probability": 0.9713 + }, + { + "start": 4029.38, + "end": 4030.2, + "probability": 0.8176 + }, + { + "start": 4030.66, + "end": 4036.62, + "probability": 0.9893 + }, + { + "start": 4037.08, + "end": 4041.14, + "probability": 0.9804 + }, + { + "start": 4042.04, + "end": 4046.42, + "probability": 0.9757 + }, + { + "start": 4047.14, + "end": 4048.82, + "probability": 0.9908 + }, + { + "start": 4049.1, + "end": 4052.9, + "probability": 0.9421 + }, + { + "start": 4052.9, + "end": 4058.1, + "probability": 0.8039 + }, + { + "start": 4059.32, + "end": 4063.98, + "probability": 0.9881 + }, + { + "start": 4063.98, + "end": 4067.86, + "probability": 0.9956 + }, + { + "start": 4068.6, + "end": 4073.12, + "probability": 0.9972 + }, + { + "start": 4073.12, + "end": 4078.4, + "probability": 0.9949 + }, + { + "start": 4079.14, + "end": 4080.64, + "probability": 0.9604 + }, + { + "start": 4080.86, + "end": 4084.9, + "probability": 0.949 + }, + { + "start": 4084.9, + "end": 4089.74, + "probability": 0.9985 + }, + { + "start": 4090.56, + "end": 4090.96, + "probability": 0.4628 + }, + { + "start": 4091.4, + "end": 4096.76, + "probability": 0.9974 + }, + { + "start": 4097.24, + "end": 4101.52, + "probability": 0.9968 + }, + { + "start": 4102.6, + "end": 4106.66, + "probability": 0.9294 + }, + { + "start": 4107.2, + "end": 4109.8, + "probability": 0.9985 + }, + { + "start": 4110.28, + "end": 4113.98, + "probability": 0.9872 + }, + { + "start": 4115.12, + "end": 4117.96, + "probability": 0.9919 + }, + { + "start": 4117.96, + "end": 4121.34, + "probability": 0.9976 + }, + { + "start": 4122.04, + "end": 4126.18, + "probability": 0.9482 + }, + { + "start": 4126.58, + "end": 4129.6, + "probability": 0.9908 + }, + { + "start": 4129.68, + "end": 4131.74, + "probability": 0.9932 + }, + { + "start": 4132.42, + "end": 4134.96, + "probability": 0.974 + }, + { + "start": 4135.76, + "end": 4142.14, + "probability": 0.9911 + }, + { + "start": 4142.98, + "end": 4144.26, + "probability": 0.7327 + }, + { + "start": 4144.36, + "end": 4145.92, + "probability": 0.9303 + }, + { + "start": 4146.38, + "end": 4147.62, + "probability": 0.9904 + }, + { + "start": 4149.94, + "end": 4156.3, + "probability": 0.9584 + }, + { + "start": 4156.86, + "end": 4161.3, + "probability": 0.9991 + }, + { + "start": 4162.22, + "end": 4162.9, + "probability": 0.7196 + }, + { + "start": 4163.08, + "end": 4167.4, + "probability": 0.7983 + }, + { + "start": 4167.54, + "end": 4168.18, + "probability": 0.8465 + }, + { + "start": 4168.78, + "end": 4169.82, + "probability": 0.8458 + }, + { + "start": 4170.44, + "end": 4171.2, + "probability": 0.6745 + }, + { + "start": 4172.0, + "end": 4175.92, + "probability": 0.9287 + }, + { + "start": 4176.52, + "end": 4182.2, + "probability": 0.9832 + }, + { + "start": 4182.64, + "end": 4183.3, + "probability": 0.8791 + }, + { + "start": 4183.74, + "end": 4187.2, + "probability": 0.9957 + }, + { + "start": 4188.2, + "end": 4190.7, + "probability": 0.9349 + }, + { + "start": 4191.56, + "end": 4193.44, + "probability": 0.8635 + }, + { + "start": 4194.08, + "end": 4195.6, + "probability": 0.948 + }, + { + "start": 4196.58, + "end": 4199.94, + "probability": 0.9902 + }, + { + "start": 4200.72, + "end": 4203.9, + "probability": 0.9071 + }, + { + "start": 4204.62, + "end": 4209.42, + "probability": 0.9332 + }, + { + "start": 4210.58, + "end": 4213.46, + "probability": 0.9622 + }, + { + "start": 4213.46, + "end": 4218.3, + "probability": 0.9924 + }, + { + "start": 4218.86, + "end": 4220.78, + "probability": 0.9517 + }, + { + "start": 4222.2, + "end": 4225.98, + "probability": 0.9901 + }, + { + "start": 4225.98, + "end": 4230.66, + "probability": 0.9939 + }, + { + "start": 4231.2, + "end": 4232.92, + "probability": 0.6027 + }, + { + "start": 4233.7, + "end": 4238.26, + "probability": 0.9971 + }, + { + "start": 4238.26, + "end": 4242.5, + "probability": 0.9919 + }, + { + "start": 4243.08, + "end": 4246.7, + "probability": 0.8275 + }, + { + "start": 4246.9, + "end": 4250.16, + "probability": 0.9991 + }, + { + "start": 4250.92, + "end": 4253.46, + "probability": 0.8641 + }, + { + "start": 4255.46, + "end": 4260.58, + "probability": 0.9115 + }, + { + "start": 4261.2, + "end": 4263.46, + "probability": 0.9891 + }, + { + "start": 4264.16, + "end": 4267.18, + "probability": 0.9956 + }, + { + "start": 4267.6, + "end": 4269.78, + "probability": 0.9946 + }, + { + "start": 4270.92, + "end": 4271.18, + "probability": 0.7692 + }, + { + "start": 4273.5, + "end": 4275.62, + "probability": 0.8158 + }, + { + "start": 4275.78, + "end": 4277.7, + "probability": 0.9973 + }, + { + "start": 4277.86, + "end": 4280.04, + "probability": 0.6319 + }, + { + "start": 4280.12, + "end": 4281.8, + "probability": 0.9167 + }, + { + "start": 4282.14, + "end": 4282.58, + "probability": 0.6069 + }, + { + "start": 4283.7, + "end": 4284.36, + "probability": 0.782 + }, + { + "start": 4307.5, + "end": 4309.18, + "probability": 0.9097 + }, + { + "start": 4309.58, + "end": 4310.22, + "probability": 0.8364 + }, + { + "start": 4310.36, + "end": 4311.36, + "probability": 0.859 + }, + { + "start": 4311.76, + "end": 4312.58, + "probability": 0.6679 + }, + { + "start": 4313.82, + "end": 4317.58, + "probability": 0.9732 + }, + { + "start": 4318.84, + "end": 4323.4, + "probability": 0.9582 + }, + { + "start": 4323.46, + "end": 4328.1, + "probability": 0.981 + }, + { + "start": 4328.76, + "end": 4335.94, + "probability": 0.9987 + }, + { + "start": 4336.62, + "end": 4336.92, + "probability": 0.6972 + }, + { + "start": 4337.3, + "end": 4339.98, + "probability": 0.928 + }, + { + "start": 4340.04, + "end": 4343.16, + "probability": 0.9785 + }, + { + "start": 4344.18, + "end": 4352.82, + "probability": 0.9836 + }, + { + "start": 4353.06, + "end": 4355.34, + "probability": 0.9976 + }, + { + "start": 4355.4, + "end": 4355.98, + "probability": 0.8255 + }, + { + "start": 4356.18, + "end": 4357.9, + "probability": 0.9108 + }, + { + "start": 4359.7, + "end": 4367.76, + "probability": 0.9962 + }, + { + "start": 4367.76, + "end": 4373.96, + "probability": 0.7538 + }, + { + "start": 4374.82, + "end": 4374.9, + "probability": 0.7043 + }, + { + "start": 4374.9, + "end": 4379.08, + "probability": 0.9729 + }, + { + "start": 4379.44, + "end": 4386.48, + "probability": 0.7456 + }, + { + "start": 4388.12, + "end": 4391.34, + "probability": 0.8726 + }, + { + "start": 4391.58, + "end": 4393.14, + "probability": 0.7092 + }, + { + "start": 4393.86, + "end": 4395.18, + "probability": 0.8931 + }, + { + "start": 4396.1, + "end": 4399.38, + "probability": 0.9635 + }, + { + "start": 4399.9, + "end": 4403.52, + "probability": 0.8457 + }, + { + "start": 4404.42, + "end": 4407.32, + "probability": 0.947 + }, + { + "start": 4410.16, + "end": 4410.84, + "probability": 0.4993 + }, + { + "start": 4411.82, + "end": 4413.76, + "probability": 0.6074 + }, + { + "start": 4414.58, + "end": 4414.78, + "probability": 0.7407 + }, + { + "start": 4415.36, + "end": 4417.7, + "probability": 0.9797 + }, + { + "start": 4417.7, + "end": 4422.58, + "probability": 0.9858 + }, + { + "start": 4422.64, + "end": 4425.92, + "probability": 0.7986 + }, + { + "start": 4426.02, + "end": 4429.44, + "probability": 0.744 + }, + { + "start": 4430.96, + "end": 4433.42, + "probability": 0.9178 + }, + { + "start": 4433.54, + "end": 4436.52, + "probability": 0.9292 + }, + { + "start": 4436.68, + "end": 4443.56, + "probability": 0.9898 + }, + { + "start": 4444.7, + "end": 4447.88, + "probability": 0.9852 + }, + { + "start": 4448.72, + "end": 4451.02, + "probability": 0.9905 + }, + { + "start": 4451.22, + "end": 4454.67, + "probability": 0.9896 + }, + { + "start": 4455.2, + "end": 4459.2, + "probability": 0.9805 + }, + { + "start": 4460.0, + "end": 4463.88, + "probability": 0.7155 + }, + { + "start": 4465.14, + "end": 4466.6, + "probability": 0.9567 + }, + { + "start": 4467.12, + "end": 4468.02, + "probability": 0.7615 + }, + { + "start": 4468.46, + "end": 4475.58, + "probability": 0.9825 + }, + { + "start": 4475.7, + "end": 4480.8, + "probability": 0.992 + }, + { + "start": 4480.8, + "end": 4486.88, + "probability": 0.9858 + }, + { + "start": 4487.8, + "end": 4492.26, + "probability": 0.9846 + }, + { + "start": 4492.64, + "end": 4498.04, + "probability": 0.9939 + }, + { + "start": 4498.86, + "end": 4498.86, + "probability": 0.2339 + }, + { + "start": 4499.44, + "end": 4501.86, + "probability": 0.4994 + }, + { + "start": 4502.84, + "end": 4506.4, + "probability": 0.9866 + }, + { + "start": 4506.46, + "end": 4509.34, + "probability": 0.9883 + }, + { + "start": 4510.68, + "end": 4514.4, + "probability": 0.9749 + }, + { + "start": 4515.3, + "end": 4517.36, + "probability": 0.8283 + }, + { + "start": 4518.6, + "end": 4520.7, + "probability": 0.9971 + }, + { + "start": 4521.56, + "end": 4523.4, + "probability": 0.903 + }, + { + "start": 4524.82, + "end": 4526.16, + "probability": 0.0399 + }, + { + "start": 4529.48, + "end": 4534.74, + "probability": 0.0896 + }, + { + "start": 4535.82, + "end": 4543.64, + "probability": 0.1037 + }, + { + "start": 4546.04, + "end": 4546.82, + "probability": 0.0309 + }, + { + "start": 4546.82, + "end": 4549.34, + "probability": 0.1313 + }, + { + "start": 4552.62, + "end": 4557.0, + "probability": 0.0807 + }, + { + "start": 4560.88, + "end": 4561.88, + "probability": 0.1687 + }, + { + "start": 4564.04, + "end": 4567.92, + "probability": 0.08 + }, + { + "start": 4567.92, + "end": 4568.84, + "probability": 0.1655 + }, + { + "start": 4569.52, + "end": 4572.6, + "probability": 0.0205 + }, + { + "start": 4572.92, + "end": 4576.5, + "probability": 0.089 + }, + { + "start": 4577.06, + "end": 4581.47, + "probability": 0.1961 + }, + { + "start": 4582.06, + "end": 4586.99, + "probability": 0.1488 + }, + { + "start": 4589.31, + "end": 4594.16, + "probability": 0.2014 + }, + { + "start": 4594.76, + "end": 4596.16, + "probability": 0.1474 + }, + { + "start": 4597.04, + "end": 4597.18, + "probability": 0.0453 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4710.0, + "end": 4710.0, + "probability": 0.0 + }, + { + "start": 4712.57, + "end": 4713.12, + "probability": 0.412 + }, + { + "start": 4713.28, + "end": 4716.1, + "probability": 0.972 + }, + { + "start": 4716.35, + "end": 4719.4, + "probability": 0.9919 + }, + { + "start": 4719.44, + "end": 4720.39, + "probability": 0.7806 + }, + { + "start": 4721.72, + "end": 4722.4, + "probability": 0.818 + }, + { + "start": 4723.3, + "end": 4727.62, + "probability": 0.9519 + }, + { + "start": 4728.32, + "end": 4730.38, + "probability": 0.8692 + }, + { + "start": 4730.96, + "end": 4732.94, + "probability": 0.9845 + }, + { + "start": 4733.66, + "end": 4734.34, + "probability": 0.9184 + }, + { + "start": 4735.44, + "end": 4736.48, + "probability": 0.8381 + }, + { + "start": 4736.98, + "end": 4738.12, + "probability": 0.9109 + }, + { + "start": 4738.24, + "end": 4741.64, + "probability": 0.8391 + }, + { + "start": 4741.9, + "end": 4743.72, + "probability": 0.9793 + }, + { + "start": 4744.46, + "end": 4747.02, + "probability": 0.3473 + }, + { + "start": 4748.28, + "end": 4749.6, + "probability": 0.1725 + }, + { + "start": 4749.68, + "end": 4752.1, + "probability": 0.8469 + }, + { + "start": 4752.16, + "end": 4754.12, + "probability": 0.6582 + }, + { + "start": 4754.24, + "end": 4755.28, + "probability": 0.9479 + }, + { + "start": 4755.88, + "end": 4759.58, + "probability": 0.9176 + }, + { + "start": 4760.4, + "end": 4761.96, + "probability": 0.9885 + }, + { + "start": 4762.04, + "end": 4763.96, + "probability": 0.8587 + }, + { + "start": 4765.46, + "end": 4770.64, + "probability": 0.6409 + }, + { + "start": 4771.36, + "end": 4773.76, + "probability": 0.754 + }, + { + "start": 4774.32, + "end": 4774.92, + "probability": 0.5007 + }, + { + "start": 4775.14, + "end": 4777.14, + "probability": 0.9926 + }, + { + "start": 4777.18, + "end": 4779.96, + "probability": 0.951 + }, + { + "start": 4780.2, + "end": 4781.14, + "probability": 0.4265 + }, + { + "start": 4781.86, + "end": 4784.56, + "probability": 0.6127 + }, + { + "start": 4784.76, + "end": 4785.68, + "probability": 0.5621 + }, + { + "start": 4786.62, + "end": 4788.52, + "probability": 0.9177 + }, + { + "start": 4788.92, + "end": 4791.12, + "probability": 0.9609 + }, + { + "start": 4791.54, + "end": 4793.1, + "probability": 0.9879 + }, + { + "start": 4793.44, + "end": 4795.86, + "probability": 0.9593 + }, + { + "start": 4796.87, + "end": 4801.46, + "probability": 0.9679 + }, + { + "start": 4801.72, + "end": 4806.7, + "probability": 0.9848 + }, + { + "start": 4807.4, + "end": 4811.51, + "probability": 0.9956 + }, + { + "start": 4812.2, + "end": 4814.25, + "probability": 0.9967 + }, + { + "start": 4815.26, + "end": 4818.08, + "probability": 0.942 + }, + { + "start": 4818.08, + "end": 4822.0, + "probability": 0.9938 + }, + { + "start": 4822.66, + "end": 4825.12, + "probability": 0.9977 + }, + { + "start": 4825.12, + "end": 4828.72, + "probability": 0.9885 + }, + { + "start": 4829.3, + "end": 4832.8, + "probability": 0.8698 + }, + { + "start": 4833.64, + "end": 4836.5, + "probability": 0.9029 + }, + { + "start": 4837.08, + "end": 4838.46, + "probability": 0.9893 + }, + { + "start": 4838.98, + "end": 4842.56, + "probability": 0.9907 + }, + { + "start": 4843.04, + "end": 4845.34, + "probability": 0.7207 + }, + { + "start": 4845.98, + "end": 4846.59, + "probability": 0.9961 + }, + { + "start": 4847.64, + "end": 4852.36, + "probability": 0.9854 + }, + { + "start": 4852.36, + "end": 4855.82, + "probability": 0.9981 + }, + { + "start": 4856.88, + "end": 4862.0, + "probability": 0.9712 + }, + { + "start": 4862.0, + "end": 4868.08, + "probability": 0.9575 + }, + { + "start": 4868.62, + "end": 4873.54, + "probability": 0.997 + }, + { + "start": 4874.0, + "end": 4879.34, + "probability": 0.9919 + }, + { + "start": 4879.98, + "end": 4881.52, + "probability": 0.7616 + }, + { + "start": 4881.66, + "end": 4885.66, + "probability": 0.9926 + }, + { + "start": 4885.66, + "end": 4888.64, + "probability": 0.9951 + }, + { + "start": 4889.36, + "end": 4892.3, + "probability": 0.9777 + }, + { + "start": 4892.3, + "end": 4894.82, + "probability": 0.9858 + }, + { + "start": 4895.46, + "end": 4897.72, + "probability": 0.9443 + }, + { + "start": 4898.12, + "end": 4902.84, + "probability": 0.9782 + }, + { + "start": 4903.78, + "end": 4907.58, + "probability": 0.7956 + }, + { + "start": 4908.24, + "end": 4914.86, + "probability": 0.4974 + }, + { + "start": 4915.16, + "end": 4917.28, + "probability": 0.5705 + }, + { + "start": 4917.84, + "end": 4918.52, + "probability": 0.7918 + }, + { + "start": 4918.76, + "end": 4919.92, + "probability": 0.9226 + }, + { + "start": 4920.4, + "end": 4920.8, + "probability": 0.4244 + }, + { + "start": 4920.88, + "end": 4921.18, + "probability": 0.9319 + }, + { + "start": 4921.4, + "end": 4922.22, + "probability": 0.8677 + }, + { + "start": 4922.26, + "end": 4924.66, + "probability": 0.5382 + }, + { + "start": 4924.9, + "end": 4926.98, + "probability": 0.6684 + }, + { + "start": 4928.24, + "end": 4930.7, + "probability": 0.9952 + }, + { + "start": 4930.84, + "end": 4931.18, + "probability": 0.8341 + }, + { + "start": 4931.28, + "end": 4936.04, + "probability": 0.9923 + }, + { + "start": 4936.76, + "end": 4939.94, + "probability": 0.989 + }, + { + "start": 4939.94, + "end": 4943.56, + "probability": 0.9912 + }, + { + "start": 4943.56, + "end": 4945.64, + "probability": 0.6404 + }, + { + "start": 4946.18, + "end": 4949.08, + "probability": 0.9782 + }, + { + "start": 4949.26, + "end": 4951.3, + "probability": 0.8335 + }, + { + "start": 4951.34, + "end": 4952.6, + "probability": 0.9402 + }, + { + "start": 4952.9, + "end": 4954.24, + "probability": 0.906 + }, + { + "start": 4954.46, + "end": 4955.46, + "probability": 0.9674 + }, + { + "start": 4956.0, + "end": 4958.12, + "probability": 0.968 + }, + { + "start": 4958.3, + "end": 4961.54, + "probability": 0.958 + }, + { + "start": 4961.54, + "end": 4963.8, + "probability": 0.9783 + }, + { + "start": 4964.24, + "end": 4966.09, + "probability": 0.979 + }, + { + "start": 4966.34, + "end": 4972.12, + "probability": 0.9911 + }, + { + "start": 4972.52, + "end": 4974.24, + "probability": 0.4817 + }, + { + "start": 4974.5, + "end": 4977.08, + "probability": 0.9897 + }, + { + "start": 4977.46, + "end": 4977.92, + "probability": 0.7563 + }, + { + "start": 4978.34, + "end": 4980.78, + "probability": 0.706 + }, + { + "start": 4981.04, + "end": 4984.42, + "probability": 0.9705 + }, + { + "start": 4984.42, + "end": 4988.3, + "probability": 0.9841 + }, + { + "start": 4988.5, + "end": 4989.9, + "probability": 0.5392 + }, + { + "start": 4990.3, + "end": 4990.66, + "probability": 0.815 + }, + { + "start": 4991.56, + "end": 4993.16, + "probability": 0.7843 + }, + { + "start": 4993.22, + "end": 4994.88, + "probability": 0.8385 + }, + { + "start": 4995.76, + "end": 4996.6, + "probability": 0.8465 + }, + { + "start": 4996.66, + "end": 4997.88, + "probability": 0.6488 + }, + { + "start": 4997.94, + "end": 4999.08, + "probability": 0.4744 + }, + { + "start": 4999.24, + "end": 5002.46, + "probability": 0.7507 + }, + { + "start": 5002.48, + "end": 5005.68, + "probability": 0.9015 + }, + { + "start": 5006.4, + "end": 5008.06, + "probability": 0.8556 + }, + { + "start": 5008.2, + "end": 5008.58, + "probability": 0.6923 + }, + { + "start": 5008.74, + "end": 5010.96, + "probability": 0.8608 + }, + { + "start": 5011.4, + "end": 5015.18, + "probability": 0.7695 + }, + { + "start": 5015.32, + "end": 5022.22, + "probability": 0.9672 + }, + { + "start": 5022.24, + "end": 5025.22, + "probability": 0.9977 + }, + { + "start": 5025.34, + "end": 5026.22, + "probability": 0.5675 + }, + { + "start": 5026.7, + "end": 5030.2, + "probability": 0.913 + }, + { + "start": 5030.62, + "end": 5033.42, + "probability": 0.9711 + }, + { + "start": 5033.42, + "end": 5036.36, + "probability": 0.9905 + }, + { + "start": 5036.76, + "end": 5039.12, + "probability": 0.7656 + }, + { + "start": 5039.66, + "end": 5040.82, + "probability": 0.9763 + }, + { + "start": 5041.52, + "end": 5045.14, + "probability": 0.9163 + }, + { + "start": 5045.3, + "end": 5047.8, + "probability": 0.5565 + }, + { + "start": 5048.24, + "end": 5048.83, + "probability": 0.8584 + }, + { + "start": 5049.68, + "end": 5051.24, + "probability": 0.8638 + }, + { + "start": 5051.32, + "end": 5051.9, + "probability": 0.2628 + }, + { + "start": 5052.42, + "end": 5052.58, + "probability": 0.2894 + }, + { + "start": 5052.58, + "end": 5057.32, + "probability": 0.1075 + }, + { + "start": 5057.42, + "end": 5058.04, + "probability": 0.6008 + }, + { + "start": 5058.08, + "end": 5058.56, + "probability": 0.6451 + }, + { + "start": 5058.96, + "end": 5061.98, + "probability": 0.8224 + }, + { + "start": 5062.04, + "end": 5065.5, + "probability": 0.921 + }, + { + "start": 5065.8, + "end": 5067.28, + "probability": 0.4991 + }, + { + "start": 5067.92, + "end": 5069.84, + "probability": 0.9518 + }, + { + "start": 5080.48, + "end": 5081.6, + "probability": 0.6981 + }, + { + "start": 5083.02, + "end": 5084.52, + "probability": 0.7035 + }, + { + "start": 5085.94, + "end": 5088.58, + "probability": 0.8678 + }, + { + "start": 5088.86, + "end": 5092.22, + "probability": 0.9585 + }, + { + "start": 5093.78, + "end": 5096.7, + "probability": 0.7123 + }, + { + "start": 5098.86, + "end": 5102.24, + "probability": 0.7711 + }, + { + "start": 5102.84, + "end": 5104.4, + "probability": 0.7876 + }, + { + "start": 5105.54, + "end": 5107.64, + "probability": 0.794 + }, + { + "start": 5108.08, + "end": 5108.9, + "probability": 0.5902 + }, + { + "start": 5109.38, + "end": 5111.12, + "probability": 0.7385 + }, + { + "start": 5111.92, + "end": 5112.88, + "probability": 0.9793 + }, + { + "start": 5114.48, + "end": 5117.44, + "probability": 0.7659 + }, + { + "start": 5118.26, + "end": 5125.84, + "probability": 0.9911 + }, + { + "start": 5127.08, + "end": 5129.14, + "probability": 0.9943 + }, + { + "start": 5129.24, + "end": 5130.66, + "probability": 0.9628 + }, + { + "start": 5131.24, + "end": 5132.6, + "probability": 0.9917 + }, + { + "start": 5133.48, + "end": 5136.76, + "probability": 0.7391 + }, + { + "start": 5138.24, + "end": 5138.9, + "probability": 0.724 + }, + { + "start": 5139.84, + "end": 5140.46, + "probability": 0.9326 + }, + { + "start": 5140.54, + "end": 5142.36, + "probability": 0.9382 + }, + { + "start": 5142.68, + "end": 5146.76, + "probability": 0.7897 + }, + { + "start": 5147.46, + "end": 5148.44, + "probability": 0.6591 + }, + { + "start": 5149.74, + "end": 5150.86, + "probability": 0.9949 + }, + { + "start": 5152.64, + "end": 5153.76, + "probability": 0.735 + }, + { + "start": 5155.34, + "end": 5156.76, + "probability": 0.5136 + }, + { + "start": 5156.96, + "end": 5158.08, + "probability": 0.8022 + }, + { + "start": 5158.18, + "end": 5161.22, + "probability": 0.9302 + }, + { + "start": 5162.2, + "end": 5164.3, + "probability": 0.8137 + }, + { + "start": 5165.9, + "end": 5168.08, + "probability": 0.9844 + }, + { + "start": 5168.72, + "end": 5169.32, + "probability": 0.9426 + }, + { + "start": 5170.36, + "end": 5172.98, + "probability": 0.9635 + }, + { + "start": 5177.2, + "end": 5182.0, + "probability": 0.9884 + }, + { + "start": 5182.9, + "end": 5187.26, + "probability": 0.9857 + }, + { + "start": 5188.34, + "end": 5189.27, + "probability": 0.9773 + }, + { + "start": 5190.24, + "end": 5194.6, + "probability": 0.9665 + }, + { + "start": 5196.28, + "end": 5200.14, + "probability": 0.9599 + }, + { + "start": 5202.24, + "end": 5202.76, + "probability": 0.7691 + }, + { + "start": 5203.04, + "end": 5206.94, + "probability": 0.9692 + }, + { + "start": 5208.6, + "end": 5210.44, + "probability": 0.9823 + }, + { + "start": 5211.64, + "end": 5214.68, + "probability": 0.9246 + }, + { + "start": 5215.62, + "end": 5217.77, + "probability": 0.8467 + }, + { + "start": 5219.31, + "end": 5223.12, + "probability": 0.9846 + }, + { + "start": 5224.76, + "end": 5227.66, + "probability": 0.9452 + }, + { + "start": 5230.48, + "end": 5236.76, + "probability": 0.3763 + }, + { + "start": 5237.28, + "end": 5238.98, + "probability": 0.7514 + }, + { + "start": 5239.84, + "end": 5241.62, + "probability": 0.9436 + }, + { + "start": 5242.58, + "end": 5246.08, + "probability": 0.8071 + }, + { + "start": 5246.1, + "end": 5252.2, + "probability": 0.9751 + }, + { + "start": 5252.96, + "end": 5254.1, + "probability": 0.9773 + }, + { + "start": 5255.16, + "end": 5259.0, + "probability": 0.9817 + }, + { + "start": 5259.96, + "end": 5260.94, + "probability": 0.7003 + }, + { + "start": 5261.36, + "end": 5264.18, + "probability": 0.9702 + }, + { + "start": 5264.84, + "end": 5265.88, + "probability": 0.9769 + }, + { + "start": 5267.12, + "end": 5270.6, + "probability": 0.994 + }, + { + "start": 5271.46, + "end": 5274.12, + "probability": 0.9232 + }, + { + "start": 5274.12, + "end": 5277.46, + "probability": 0.9154 + }, + { + "start": 5278.22, + "end": 5278.76, + "probability": 0.7505 + }, + { + "start": 5279.76, + "end": 5280.96, + "probability": 0.9049 + }, + { + "start": 5281.62, + "end": 5283.56, + "probability": 0.7474 + }, + { + "start": 5283.64, + "end": 5287.02, + "probability": 0.9018 + }, + { + "start": 5288.04, + "end": 5289.58, + "probability": 0.7945 + }, + { + "start": 5290.54, + "end": 5292.1, + "probability": 0.8355 + }, + { + "start": 5292.62, + "end": 5294.92, + "probability": 0.9717 + }, + { + "start": 5295.92, + "end": 5296.96, + "probability": 0.9932 + }, + { + "start": 5297.54, + "end": 5302.16, + "probability": 0.9775 + }, + { + "start": 5303.22, + "end": 5303.58, + "probability": 0.4144 + }, + { + "start": 5303.68, + "end": 5306.42, + "probability": 0.8777 + }, + { + "start": 5306.42, + "end": 5312.9, + "probability": 0.9269 + }, + { + "start": 5312.96, + "end": 5314.14, + "probability": 0.9766 + }, + { + "start": 5315.76, + "end": 5322.86, + "probability": 0.8645 + }, + { + "start": 5324.92, + "end": 5326.1, + "probability": 0.5467 + }, + { + "start": 5327.44, + "end": 5331.87, + "probability": 0.9297 + }, + { + "start": 5332.72, + "end": 5335.52, + "probability": 0.9905 + }, + { + "start": 5336.1, + "end": 5340.22, + "probability": 0.8675 + }, + { + "start": 5340.7, + "end": 5341.58, + "probability": 0.8259 + }, + { + "start": 5342.1, + "end": 5344.3, + "probability": 0.9836 + }, + { + "start": 5345.8, + "end": 5346.98, + "probability": 0.9306 + }, + { + "start": 5348.16, + "end": 5348.7, + "probability": 0.8114 + }, + { + "start": 5350.02, + "end": 5351.56, + "probability": 0.9531 + }, + { + "start": 5352.42, + "end": 5354.62, + "probability": 0.8299 + }, + { + "start": 5355.3, + "end": 5357.5, + "probability": 0.9707 + }, + { + "start": 5357.64, + "end": 5361.28, + "probability": 0.9875 + }, + { + "start": 5362.08, + "end": 5364.53, + "probability": 0.9916 + }, + { + "start": 5365.34, + "end": 5366.86, + "probability": 0.9285 + }, + { + "start": 5368.52, + "end": 5369.32, + "probability": 0.978 + }, + { + "start": 5371.0, + "end": 5372.26, + "probability": 0.7587 + }, + { + "start": 5372.68, + "end": 5376.94, + "probability": 0.9801 + }, + { + "start": 5379.34, + "end": 5380.96, + "probability": 0.3635 + }, + { + "start": 5380.96, + "end": 5383.38, + "probability": 0.979 + }, + { + "start": 5385.0, + "end": 5387.24, + "probability": 0.9181 + }, + { + "start": 5389.72, + "end": 5390.48, + "probability": 0.5923 + }, + { + "start": 5393.44, + "end": 5395.32, + "probability": 0.4003 + }, + { + "start": 5396.46, + "end": 5399.08, + "probability": 0.7167 + }, + { + "start": 5400.14, + "end": 5401.9, + "probability": 0.8922 + }, + { + "start": 5403.58, + "end": 5408.32, + "probability": 0.9682 + }, + { + "start": 5409.16, + "end": 5410.42, + "probability": 0.9471 + }, + { + "start": 5411.34, + "end": 5412.38, + "probability": 0.8577 + }, + { + "start": 5413.32, + "end": 5414.46, + "probability": 0.8076 + }, + { + "start": 5415.0, + "end": 5416.26, + "probability": 0.8783 + }, + { + "start": 5417.72, + "end": 5418.1, + "probability": 0.8726 + }, + { + "start": 5418.66, + "end": 5419.28, + "probability": 0.9578 + }, + { + "start": 5420.56, + "end": 5424.44, + "probability": 0.9468 + }, + { + "start": 5424.44, + "end": 5430.82, + "probability": 0.8422 + }, + { + "start": 5431.84, + "end": 5432.08, + "probability": 0.3613 + }, + { + "start": 5432.14, + "end": 5434.86, + "probability": 0.8181 + }, + { + "start": 5435.32, + "end": 5439.74, + "probability": 0.835 + }, + { + "start": 5441.56, + "end": 5444.64, + "probability": 0.928 + }, + { + "start": 5444.86, + "end": 5445.59, + "probability": 0.9216 + }, + { + "start": 5446.6, + "end": 5448.4, + "probability": 0.9043 + }, + { + "start": 5449.84, + "end": 5453.22, + "probability": 0.9607 + }, + { + "start": 5454.04, + "end": 5457.4, + "probability": 0.9738 + }, + { + "start": 5457.88, + "end": 5461.08, + "probability": 0.8584 + }, + { + "start": 5461.16, + "end": 5464.38, + "probability": 0.9878 + }, + { + "start": 5465.52, + "end": 5468.9, + "probability": 0.8661 + }, + { + "start": 5469.56, + "end": 5472.12, + "probability": 0.994 + }, + { + "start": 5472.96, + "end": 5475.04, + "probability": 0.9912 + }, + { + "start": 5475.94, + "end": 5479.46, + "probability": 0.8835 + }, + { + "start": 5480.9, + "end": 5481.48, + "probability": 0.8336 + }, + { + "start": 5482.58, + "end": 5483.74, + "probability": 0.6531 + }, + { + "start": 5484.18, + "end": 5485.48, + "probability": 0.8789 + }, + { + "start": 5485.58, + "end": 5486.62, + "probability": 0.8314 + }, + { + "start": 5487.14, + "end": 5492.72, + "probability": 0.9172 + }, + { + "start": 5493.44, + "end": 5495.04, + "probability": 0.7804 + }, + { + "start": 5496.0, + "end": 5497.0, + "probability": 0.8608 + }, + { + "start": 5498.94, + "end": 5501.52, + "probability": 0.9877 + }, + { + "start": 5502.46, + "end": 5503.14, + "probability": 0.9385 + }, + { + "start": 5504.98, + "end": 5505.56, + "probability": 0.8659 + }, + { + "start": 5506.58, + "end": 5507.54, + "probability": 0.9954 + }, + { + "start": 5508.4, + "end": 5510.2, + "probability": 0.9844 + }, + { + "start": 5511.06, + "end": 5511.3, + "probability": 0.8635 + }, + { + "start": 5512.4, + "end": 5513.2, + "probability": 0.7309 + }, + { + "start": 5515.36, + "end": 5516.1, + "probability": 0.6354 + }, + { + "start": 5518.6, + "end": 5519.76, + "probability": 0.9974 + }, + { + "start": 5520.9, + "end": 5524.26, + "probability": 0.9917 + }, + { + "start": 5527.64, + "end": 5528.26, + "probability": 0.9603 + }, + { + "start": 5529.04, + "end": 5529.5, + "probability": 0.9482 + }, + { + "start": 5530.28, + "end": 5533.42, + "probability": 0.9925 + }, + { + "start": 5535.66, + "end": 5536.78, + "probability": 0.9814 + }, + { + "start": 5537.54, + "end": 5538.46, + "probability": 0.9355 + }, + { + "start": 5539.52, + "end": 5542.9, + "probability": 0.7147 + }, + { + "start": 5543.84, + "end": 5546.26, + "probability": 0.9464 + }, + { + "start": 5546.94, + "end": 5550.19, + "probability": 0.9572 + }, + { + "start": 5551.12, + "end": 5552.1, + "probability": 0.8787 + }, + { + "start": 5552.16, + "end": 5554.26, + "probability": 0.9666 + }, + { + "start": 5556.28, + "end": 5556.68, + "probability": 0.7556 + }, + { + "start": 5557.36, + "end": 5559.78, + "probability": 0.9968 + }, + { + "start": 5559.78, + "end": 5561.96, + "probability": 0.991 + }, + { + "start": 5562.66, + "end": 5563.34, + "probability": 0.8208 + }, + { + "start": 5563.44, + "end": 5566.22, + "probability": 0.9106 + }, + { + "start": 5566.22, + "end": 5569.02, + "probability": 0.8838 + }, + { + "start": 5569.64, + "end": 5571.53, + "probability": 0.9624 + }, + { + "start": 5572.26, + "end": 5573.46, + "probability": 0.9266 + }, + { + "start": 5574.06, + "end": 5579.6, + "probability": 0.9823 + }, + { + "start": 5580.56, + "end": 5582.8, + "probability": 0.9667 + }, + { + "start": 5582.8, + "end": 5584.92, + "probability": 0.7608 + }, + { + "start": 5585.74, + "end": 5588.42, + "probability": 0.8877 + }, + { + "start": 5589.0, + "end": 5591.86, + "probability": 0.985 + }, + { + "start": 5593.08, + "end": 5593.58, + "probability": 0.9468 + }, + { + "start": 5594.1, + "end": 5597.06, + "probability": 0.9748 + }, + { + "start": 5597.88, + "end": 5600.14, + "probability": 0.8414 + }, + { + "start": 5602.3, + "end": 5603.44, + "probability": 0.6858 + }, + { + "start": 5603.44, + "end": 5604.18, + "probability": 0.9272 + }, + { + "start": 5604.52, + "end": 5605.12, + "probability": 0.7771 + }, + { + "start": 5606.0, + "end": 5606.38, + "probability": 0.923 + }, + { + "start": 5607.66, + "end": 5609.02, + "probability": 0.9285 + }, + { + "start": 5609.72, + "end": 5610.48, + "probability": 0.6539 + }, + { + "start": 5611.2, + "end": 5613.52, + "probability": 0.9417 + }, + { + "start": 5613.52, + "end": 5616.46, + "probability": 0.9757 + }, + { + "start": 5617.58, + "end": 5618.56, + "probability": 0.5827 + }, + { + "start": 5619.5, + "end": 5620.08, + "probability": 0.6323 + }, + { + "start": 5620.68, + "end": 5621.2, + "probability": 0.5593 + }, + { + "start": 5621.34, + "end": 5624.18, + "probability": 0.8296 + }, + { + "start": 5624.18, + "end": 5626.34, + "probability": 0.8898 + }, + { + "start": 5626.44, + "end": 5628.76, + "probability": 0.7222 + }, + { + "start": 5629.14, + "end": 5631.08, + "probability": 0.5228 + }, + { + "start": 5631.22, + "end": 5632.72, + "probability": 0.5843 + }, + { + "start": 5632.78, + "end": 5634.02, + "probability": 0.9879 + }, + { + "start": 5634.18, + "end": 5635.42, + "probability": 0.6875 + }, + { + "start": 5636.02, + "end": 5636.36, + "probability": 0.7741 + }, + { + "start": 5636.42, + "end": 5637.6, + "probability": 0.7978 + }, + { + "start": 5637.8, + "end": 5640.82, + "probability": 0.3955 + }, + { + "start": 5642.24, + "end": 5646.56, + "probability": 0.5343 + }, + { + "start": 5646.82, + "end": 5650.76, + "probability": 0.7688 + }, + { + "start": 5650.76, + "end": 5654.04, + "probability": 0.9245 + }, + { + "start": 5654.46, + "end": 5655.76, + "probability": 0.9161 + }, + { + "start": 5696.52, + "end": 5698.54, + "probability": 0.8019 + }, + { + "start": 5699.54, + "end": 5701.82, + "probability": 0.9954 + }, + { + "start": 5701.82, + "end": 5705.66, + "probability": 0.9785 + }, + { + "start": 5706.5, + "end": 5707.6, + "probability": 0.3856 + }, + { + "start": 5707.8, + "end": 5712.38, + "probability": 0.998 + }, + { + "start": 5712.38, + "end": 5717.24, + "probability": 0.9488 + }, + { + "start": 5717.34, + "end": 5718.38, + "probability": 0.8281 + }, + { + "start": 5718.6, + "end": 5719.42, + "probability": 0.7355 + }, + { + "start": 5720.1, + "end": 5722.8, + "probability": 0.9897 + }, + { + "start": 5722.8, + "end": 5725.42, + "probability": 0.9563 + }, + { + "start": 5726.06, + "end": 5726.91, + "probability": 0.7787 + }, + { + "start": 5727.16, + "end": 5729.3, + "probability": 0.978 + }, + { + "start": 5729.8, + "end": 5734.02, + "probability": 0.9019 + }, + { + "start": 5734.02, + "end": 5737.62, + "probability": 0.9732 + }, + { + "start": 5739.02, + "end": 5740.3, + "probability": 0.6561 + }, + { + "start": 5741.04, + "end": 5742.4, + "probability": 0.9889 + }, + { + "start": 5742.64, + "end": 5747.47, + "probability": 0.8967 + }, + { + "start": 5748.52, + "end": 5748.86, + "probability": 0.6246 + }, + { + "start": 5749.06, + "end": 5751.94, + "probability": 0.9862 + }, + { + "start": 5751.94, + "end": 5758.76, + "probability": 0.9971 + }, + { + "start": 5759.68, + "end": 5763.74, + "probability": 0.9572 + }, + { + "start": 5764.34, + "end": 5770.04, + "probability": 0.953 + }, + { + "start": 5770.74, + "end": 5775.27, + "probability": 0.874 + }, + { + "start": 5775.66, + "end": 5779.34, + "probability": 0.9898 + }, + { + "start": 5780.38, + "end": 5783.58, + "probability": 0.9956 + }, + { + "start": 5784.46, + "end": 5784.84, + "probability": 0.7973 + }, + { + "start": 5785.68, + "end": 5789.96, + "probability": 0.9144 + }, + { + "start": 5790.62, + "end": 5795.4, + "probability": 0.9675 + }, + { + "start": 5795.68, + "end": 5799.88, + "probability": 0.9902 + }, + { + "start": 5800.9, + "end": 5803.14, + "probability": 0.8136 + }, + { + "start": 5803.68, + "end": 5807.54, + "probability": 0.9823 + }, + { + "start": 5807.54, + "end": 5810.9, + "probability": 0.9931 + }, + { + "start": 5812.28, + "end": 5817.8, + "probability": 0.9933 + }, + { + "start": 5818.48, + "end": 5821.18, + "probability": 0.9782 + }, + { + "start": 5821.84, + "end": 5822.58, + "probability": 0.9706 + }, + { + "start": 5823.1, + "end": 5834.4, + "probability": 0.9891 + }, + { + "start": 5835.16, + "end": 5839.0, + "probability": 0.9881 + }, + { + "start": 5839.42, + "end": 5841.8, + "probability": 0.876 + }, + { + "start": 5842.38, + "end": 5844.06, + "probability": 0.934 + }, + { + "start": 5844.32, + "end": 5846.9, + "probability": 0.9779 + }, + { + "start": 5846.96, + "end": 5848.86, + "probability": 0.7754 + }, + { + "start": 5849.1, + "end": 5852.08, + "probability": 0.9521 + }, + { + "start": 5852.5, + "end": 5854.64, + "probability": 0.9921 + }, + { + "start": 5854.7, + "end": 5855.74, + "probability": 0.6155 + }, + { + "start": 5855.82, + "end": 5856.94, + "probability": 0.9027 + }, + { + "start": 5857.76, + "end": 5859.58, + "probability": 0.9676 + }, + { + "start": 5860.24, + "end": 5864.48, + "probability": 0.9927 + }, + { + "start": 5865.12, + "end": 5867.36, + "probability": 0.9528 + }, + { + "start": 5868.16, + "end": 5869.52, + "probability": 0.6345 + }, + { + "start": 5870.84, + "end": 5872.26, + "probability": 0.958 + }, + { + "start": 5872.42, + "end": 5873.9, + "probability": 0.8827 + }, + { + "start": 5874.22, + "end": 5875.0, + "probability": 0.9753 + }, + { + "start": 5875.16, + "end": 5875.58, + "probability": 0.8278 + }, + { + "start": 5876.0, + "end": 5877.14, + "probability": 0.9733 + }, + { + "start": 5877.34, + "end": 5880.44, + "probability": 0.9856 + }, + { + "start": 5881.28, + "end": 5884.88, + "probability": 0.9896 + }, + { + "start": 5885.78, + "end": 5886.62, + "probability": 0.6948 + }, + { + "start": 5886.92, + "end": 5889.28, + "probability": 0.9185 + }, + { + "start": 5889.88, + "end": 5891.5, + "probability": 0.6613 + }, + { + "start": 5892.2, + "end": 5896.1, + "probability": 0.9797 + }, + { + "start": 5896.78, + "end": 5901.0, + "probability": 0.9878 + }, + { + "start": 5901.52, + "end": 5905.74, + "probability": 0.9893 + }, + { + "start": 5906.92, + "end": 5908.5, + "probability": 0.9027 + }, + { + "start": 5909.32, + "end": 5911.76, + "probability": 0.8954 + }, + { + "start": 5912.46, + "end": 5915.26, + "probability": 0.9859 + }, + { + "start": 5916.16, + "end": 5918.54, + "probability": 0.9805 + }, + { + "start": 5918.6, + "end": 5921.16, + "probability": 0.9882 + }, + { + "start": 5922.5, + "end": 5924.28, + "probability": 0.813 + }, + { + "start": 5924.4, + "end": 5930.38, + "probability": 0.9532 + }, + { + "start": 5931.04, + "end": 5935.28, + "probability": 0.9707 + }, + { + "start": 5935.74, + "end": 5938.6, + "probability": 0.8247 + }, + { + "start": 5939.46, + "end": 5941.09, + "probability": 0.9822 + }, + { + "start": 5941.84, + "end": 5945.54, + "probability": 0.9277 + }, + { + "start": 5946.46, + "end": 5949.68, + "probability": 0.9695 + }, + { + "start": 5949.76, + "end": 5952.7, + "probability": 0.9203 + }, + { + "start": 5953.72, + "end": 5957.35, + "probability": 0.9696 + }, + { + "start": 5957.56, + "end": 5961.84, + "probability": 0.9935 + }, + { + "start": 5962.54, + "end": 5965.04, + "probability": 0.9635 + }, + { + "start": 5965.46, + "end": 5966.96, + "probability": 0.8639 + }, + { + "start": 5967.36, + "end": 5968.1, + "probability": 0.8755 + }, + { + "start": 5968.68, + "end": 5972.2, + "probability": 0.9387 + }, + { + "start": 5972.2, + "end": 5975.2, + "probability": 0.8885 + }, + { + "start": 5975.74, + "end": 5979.18, + "probability": 0.9825 + }, + { + "start": 5979.72, + "end": 5981.38, + "probability": 0.9542 + }, + { + "start": 5981.46, + "end": 5985.62, + "probability": 0.8497 + }, + { + "start": 5985.62, + "end": 5987.7, + "probability": 0.9711 + }, + { + "start": 5988.48, + "end": 5990.72, + "probability": 0.8985 + }, + { + "start": 5991.32, + "end": 5995.68, + "probability": 0.7557 + }, + { + "start": 5995.76, + "end": 5996.4, + "probability": 0.5386 + }, + { + "start": 5996.44, + "end": 5997.32, + "probability": 0.8882 + }, + { + "start": 5997.82, + "end": 6000.1, + "probability": 0.9612 + }, + { + "start": 6000.24, + "end": 6004.42, + "probability": 0.9412 + }, + { + "start": 6005.3, + "end": 6007.48, + "probability": 0.7649 + }, + { + "start": 6007.66, + "end": 6010.38, + "probability": 0.9778 + }, + { + "start": 6010.5, + "end": 6011.04, + "probability": 0.8452 + }, + { + "start": 6012.7, + "end": 6016.7, + "probability": 0.9856 + }, + { + "start": 6016.7, + "end": 6020.0, + "probability": 0.9922 + }, + { + "start": 6020.0, + "end": 6023.7, + "probability": 0.9919 + }, + { + "start": 6024.74, + "end": 6026.2, + "probability": 0.7098 + }, + { + "start": 6028.78, + "end": 6029.48, + "probability": 0.1737 + }, + { + "start": 6030.48, + "end": 6034.96, + "probability": 0.7831 + }, + { + "start": 6035.42, + "end": 6038.26, + "probability": 0.978 + }, + { + "start": 6038.26, + "end": 6041.68, + "probability": 0.9885 + }, + { + "start": 6042.46, + "end": 6044.28, + "probability": 0.8091 + }, + { + "start": 6044.64, + "end": 6046.84, + "probability": 0.8087 + }, + { + "start": 6046.84, + "end": 6050.34, + "probability": 0.9645 + }, + { + "start": 6051.12, + "end": 6053.8, + "probability": 0.7748 + }, + { + "start": 6055.18, + "end": 6059.54, + "probability": 0.986 + }, + { + "start": 6059.66, + "end": 6064.84, + "probability": 0.9637 + }, + { + "start": 6065.52, + "end": 6068.6, + "probability": 0.9914 + }, + { + "start": 6068.72, + "end": 6069.88, + "probability": 0.9888 + }, + { + "start": 6070.82, + "end": 6073.72, + "probability": 0.7925 + }, + { + "start": 6074.3, + "end": 6077.22, + "probability": 0.941 + }, + { + "start": 6077.22, + "end": 6082.12, + "probability": 0.9535 + }, + { + "start": 6082.12, + "end": 6085.2, + "probability": 0.8045 + }, + { + "start": 6085.44, + "end": 6087.92, + "probability": 0.9531 + }, + { + "start": 6088.48, + "end": 6090.82, + "probability": 0.8765 + }, + { + "start": 6091.32, + "end": 6095.3, + "probability": 0.9917 + }, + { + "start": 6096.08, + "end": 6097.98, + "probability": 0.8455 + }, + { + "start": 6097.98, + "end": 6100.26, + "probability": 0.993 + }, + { + "start": 6100.82, + "end": 6102.02, + "probability": 0.9592 + }, + { + "start": 6102.62, + "end": 6103.44, + "probability": 0.6661 + }, + { + "start": 6104.36, + "end": 6108.16, + "probability": 0.9221 + }, + { + "start": 6108.16, + "end": 6111.9, + "probability": 0.9375 + }, + { + "start": 6113.14, + "end": 6115.48, + "probability": 0.9179 + }, + { + "start": 6115.88, + "end": 6116.14, + "probability": 0.6055 + }, + { + "start": 6116.32, + "end": 6121.16, + "probability": 0.9827 + }, + { + "start": 6121.16, + "end": 6124.56, + "probability": 0.9882 + }, + { + "start": 6125.02, + "end": 6127.72, + "probability": 0.9124 + }, + { + "start": 6127.82, + "end": 6129.62, + "probability": 0.9919 + }, + { + "start": 6129.62, + "end": 6131.84, + "probability": 0.9707 + }, + { + "start": 6132.56, + "end": 6132.86, + "probability": 0.4256 + }, + { + "start": 6132.94, + "end": 6135.46, + "probability": 0.9648 + }, + { + "start": 6135.46, + "end": 6138.5, + "probability": 0.9595 + }, + { + "start": 6139.28, + "end": 6142.32, + "probability": 0.8168 + }, + { + "start": 6142.42, + "end": 6144.92, + "probability": 0.9888 + }, + { + "start": 6145.04, + "end": 6147.12, + "probability": 0.7197 + }, + { + "start": 6147.86, + "end": 6151.24, + "probability": 0.9141 + }, + { + "start": 6152.26, + "end": 6155.8, + "probability": 0.7927 + }, + { + "start": 6155.84, + "end": 6156.66, + "probability": 0.8001 + }, + { + "start": 6157.24, + "end": 6158.0, + "probability": 0.6896 + }, + { + "start": 6158.68, + "end": 6161.94, + "probability": 0.6099 + }, + { + "start": 6162.66, + "end": 6163.9, + "probability": 0.7852 + }, + { + "start": 6164.04, + "end": 6165.24, + "probability": 0.8823 + }, + { + "start": 6165.48, + "end": 6166.5, + "probability": 0.6587 + }, + { + "start": 6166.84, + "end": 6169.1, + "probability": 0.8163 + }, + { + "start": 6170.22, + "end": 6173.78, + "probability": 0.9094 + }, + { + "start": 6173.98, + "end": 6175.48, + "probability": 0.8862 + }, + { + "start": 6175.92, + "end": 6177.44, + "probability": 0.8329 + }, + { + "start": 6177.82, + "end": 6178.82, + "probability": 0.9076 + }, + { + "start": 6179.86, + "end": 6182.28, + "probability": 0.8338 + }, + { + "start": 6182.92, + "end": 6185.16, + "probability": 0.9491 + }, + { + "start": 6185.96, + "end": 6189.2, + "probability": 0.9917 + }, + { + "start": 6190.36, + "end": 6192.06, + "probability": 0.7718 + }, + { + "start": 6192.16, + "end": 6194.3, + "probability": 0.9962 + }, + { + "start": 6194.4, + "end": 6197.18, + "probability": 0.9634 + }, + { + "start": 6197.5, + "end": 6200.18, + "probability": 0.9868 + }, + { + "start": 6200.18, + "end": 6207.16, + "probability": 0.9873 + }, + { + "start": 6207.16, + "end": 6211.1, + "probability": 0.9814 + }, + { + "start": 6211.6, + "end": 6214.98, + "probability": 0.6426 + }, + { + "start": 6214.98, + "end": 6218.26, + "probability": 0.6957 + }, + { + "start": 6218.42, + "end": 6218.92, + "probability": 0.7473 + }, + { + "start": 6220.98, + "end": 6222.86, + "probability": 0.9757 + }, + { + "start": 6222.94, + "end": 6224.82, + "probability": 0.6472 + }, + { + "start": 6224.84, + "end": 6227.28, + "probability": 0.9689 + }, + { + "start": 6227.64, + "end": 6230.62, + "probability": 0.8804 + }, + { + "start": 6230.88, + "end": 6231.46, + "probability": 0.8374 + }, + { + "start": 6231.94, + "end": 6233.5, + "probability": 0.9798 + }, + { + "start": 6233.62, + "end": 6238.3, + "probability": 0.9952 + }, + { + "start": 6238.38, + "end": 6238.7, + "probability": 0.5383 + }, + { + "start": 6239.22, + "end": 6242.98, + "probability": 0.9886 + }, + { + "start": 6243.4, + "end": 6243.98, + "probability": 0.5937 + }, + { + "start": 6244.22, + "end": 6245.84, + "probability": 0.8012 + }, + { + "start": 6245.88, + "end": 6247.2, + "probability": 0.8161 + }, + { + "start": 6247.44, + "end": 6250.1, + "probability": 0.6711 + }, + { + "start": 6250.88, + "end": 6253.82, + "probability": 0.9875 + }, + { + "start": 6254.36, + "end": 6255.66, + "probability": 0.0909 + }, + { + "start": 6255.74, + "end": 6256.52, + "probability": 0.7065 + }, + { + "start": 6256.64, + "end": 6259.7, + "probability": 0.9673 + }, + { + "start": 6260.72, + "end": 6261.66, + "probability": 0.6731 + }, + { + "start": 6261.8, + "end": 6263.68, + "probability": 0.8452 + }, + { + "start": 6264.22, + "end": 6264.84, + "probability": 0.8303 + }, + { + "start": 6266.78, + "end": 6271.7, + "probability": 0.911 + }, + { + "start": 6271.84, + "end": 6275.2, + "probability": 0.9221 + }, + { + "start": 6289.14, + "end": 6290.6, + "probability": 0.77 + }, + { + "start": 6290.6, + "end": 6294.66, + "probability": 0.7515 + }, + { + "start": 6295.24, + "end": 6297.44, + "probability": 0.8348 + }, + { + "start": 6298.14, + "end": 6300.04, + "probability": 0.9824 + }, + { + "start": 6300.5, + "end": 6303.76, + "probability": 0.9971 + }, + { + "start": 6303.76, + "end": 6306.48, + "probability": 0.9821 + }, + { + "start": 6307.18, + "end": 6310.44, + "probability": 0.9975 + }, + { + "start": 6311.12, + "end": 6312.08, + "probability": 0.9401 + }, + { + "start": 6312.24, + "end": 6314.08, + "probability": 0.9852 + }, + { + "start": 6314.08, + "end": 6316.38, + "probability": 0.9957 + }, + { + "start": 6317.08, + "end": 6320.7, + "probability": 0.9854 + }, + { + "start": 6321.16, + "end": 6322.86, + "probability": 0.9922 + }, + { + "start": 6323.7, + "end": 6325.18, + "probability": 0.9785 + }, + { + "start": 6325.38, + "end": 6326.7, + "probability": 0.9585 + }, + { + "start": 6327.0, + "end": 6329.42, + "probability": 0.9827 + }, + { + "start": 6330.26, + "end": 6331.48, + "probability": 0.9609 + }, + { + "start": 6332.02, + "end": 6334.0, + "probability": 0.8487 + }, + { + "start": 6335.08, + "end": 6338.0, + "probability": 0.8688 + }, + { + "start": 6338.06, + "end": 6342.4, + "probability": 0.9963 + }, + { + "start": 6343.0, + "end": 6344.58, + "probability": 0.8974 + }, + { + "start": 6345.04, + "end": 6348.06, + "probability": 0.8216 + }, + { + "start": 6348.06, + "end": 6350.34, + "probability": 0.9133 + }, + { + "start": 6350.96, + "end": 6353.12, + "probability": 0.9924 + }, + { + "start": 6353.12, + "end": 6356.2, + "probability": 0.9843 + }, + { + "start": 6356.8, + "end": 6359.58, + "probability": 0.7996 + }, + { + "start": 6360.18, + "end": 6361.92, + "probability": 0.9607 + }, + { + "start": 6362.02, + "end": 6362.4, + "probability": 0.8917 + }, + { + "start": 6362.48, + "end": 6363.52, + "probability": 0.7614 + }, + { + "start": 6363.86, + "end": 6364.82, + "probability": 0.6932 + }, + { + "start": 6365.28, + "end": 6368.04, + "probability": 0.9897 + }, + { + "start": 6368.54, + "end": 6372.24, + "probability": 0.9962 + }, + { + "start": 6372.24, + "end": 6376.8, + "probability": 0.9991 + }, + { + "start": 6377.2, + "end": 6381.46, + "probability": 0.9787 + }, + { + "start": 6382.02, + "end": 6383.82, + "probability": 0.952 + }, + { + "start": 6384.2, + "end": 6386.96, + "probability": 0.9974 + }, + { + "start": 6387.62, + "end": 6388.18, + "probability": 0.7236 + }, + { + "start": 6388.22, + "end": 6389.56, + "probability": 0.9934 + }, + { + "start": 6389.72, + "end": 6394.08, + "probability": 0.9674 + }, + { + "start": 6394.08, + "end": 6397.9, + "probability": 0.9819 + }, + { + "start": 6398.44, + "end": 6403.04, + "probability": 0.9801 + }, + { + "start": 6403.54, + "end": 6405.5, + "probability": 0.9891 + }, + { + "start": 6406.14, + "end": 6409.54, + "probability": 0.9853 + }, + { + "start": 6410.12, + "end": 6411.48, + "probability": 0.8973 + }, + { + "start": 6411.88, + "end": 6413.52, + "probability": 0.9361 + }, + { + "start": 6413.6, + "end": 6415.7, + "probability": 0.9731 + }, + { + "start": 6416.14, + "end": 6418.86, + "probability": 0.9541 + }, + { + "start": 6419.52, + "end": 6424.58, + "probability": 0.916 + }, + { + "start": 6425.42, + "end": 6428.74, + "probability": 0.9648 + }, + { + "start": 6429.16, + "end": 6431.92, + "probability": 0.8989 + }, + { + "start": 6431.92, + "end": 6435.74, + "probability": 0.9793 + }, + { + "start": 6436.46, + "end": 6439.46, + "probability": 0.9589 + }, + { + "start": 6440.22, + "end": 6441.28, + "probability": 0.8708 + }, + { + "start": 6441.92, + "end": 6446.82, + "probability": 0.9991 + }, + { + "start": 6446.9, + "end": 6450.22, + "probability": 0.9905 + }, + { + "start": 6450.58, + "end": 6455.22, + "probability": 0.9835 + }, + { + "start": 6456.08, + "end": 6459.6, + "probability": 0.9373 + }, + { + "start": 6460.06, + "end": 6462.12, + "probability": 0.9535 + }, + { + "start": 6462.12, + "end": 6464.96, + "probability": 0.9972 + }, + { + "start": 6465.14, + "end": 6465.72, + "probability": 0.7558 + }, + { + "start": 6465.84, + "end": 6469.72, + "probability": 0.9879 + }, + { + "start": 6470.32, + "end": 6471.7, + "probability": 0.9109 + }, + { + "start": 6471.72, + "end": 6473.78, + "probability": 0.8583 + }, + { + "start": 6474.3, + "end": 6476.12, + "probability": 0.7262 + }, + { + "start": 6476.7, + "end": 6479.96, + "probability": 0.9955 + }, + { + "start": 6480.06, + "end": 6481.3, + "probability": 0.9428 + }, + { + "start": 6481.64, + "end": 6483.4, + "probability": 0.9841 + }, + { + "start": 6484.02, + "end": 6484.68, + "probability": 0.7923 + }, + { + "start": 6484.88, + "end": 6487.08, + "probability": 0.9652 + }, + { + "start": 6487.72, + "end": 6490.66, + "probability": 0.9829 + }, + { + "start": 6491.38, + "end": 6493.06, + "probability": 0.9871 + }, + { + "start": 6493.46, + "end": 6494.46, + "probability": 0.9871 + }, + { + "start": 6494.6, + "end": 6495.24, + "probability": 0.7697 + }, + { + "start": 6495.76, + "end": 6496.86, + "probability": 0.631 + }, + { + "start": 6496.96, + "end": 6501.12, + "probability": 0.9746 + }, + { + "start": 6501.94, + "end": 6504.36, + "probability": 0.7976 + }, + { + "start": 6504.36, + "end": 6507.06, + "probability": 0.9867 + }, + { + "start": 6507.82, + "end": 6510.12, + "probability": 0.9578 + }, + { + "start": 6510.26, + "end": 6513.08, + "probability": 0.9071 + }, + { + "start": 6513.5, + "end": 6516.14, + "probability": 0.9923 + }, + { + "start": 6516.36, + "end": 6518.46, + "probability": 0.9221 + }, + { + "start": 6518.92, + "end": 6519.46, + "probability": 0.6289 + }, + { + "start": 6519.58, + "end": 6519.96, + "probability": 0.7642 + }, + { + "start": 6520.18, + "end": 6524.08, + "probability": 0.9889 + }, + { + "start": 6524.24, + "end": 6525.46, + "probability": 0.8745 + }, + { + "start": 6525.82, + "end": 6526.74, + "probability": 0.5911 + }, + { + "start": 6527.12, + "end": 6530.14, + "probability": 0.9982 + }, + { + "start": 6530.82, + "end": 6535.66, + "probability": 0.9932 + }, + { + "start": 6535.72, + "end": 6536.7, + "probability": 0.7988 + }, + { + "start": 6536.98, + "end": 6537.94, + "probability": 0.9917 + }, + { + "start": 6538.04, + "end": 6538.46, + "probability": 0.9651 + }, + { + "start": 6538.54, + "end": 6540.48, + "probability": 0.9459 + }, + { + "start": 6541.0, + "end": 6543.92, + "probability": 0.9685 + }, + { + "start": 6544.54, + "end": 6547.24, + "probability": 0.914 + }, + { + "start": 6547.86, + "end": 6548.22, + "probability": 0.1621 + }, + { + "start": 6548.24, + "end": 6551.02, + "probability": 0.9885 + }, + { + "start": 6551.16, + "end": 6552.82, + "probability": 0.9931 + }, + { + "start": 6553.2, + "end": 6556.54, + "probability": 0.9827 + }, + { + "start": 6556.54, + "end": 6561.46, + "probability": 0.9954 + }, + { + "start": 6562.12, + "end": 6565.72, + "probability": 0.8738 + }, + { + "start": 6566.02, + "end": 6567.74, + "probability": 0.787 + }, + { + "start": 6568.34, + "end": 6570.96, + "probability": 0.9979 + }, + { + "start": 6571.46, + "end": 6571.92, + "probability": 0.9625 + }, + { + "start": 6572.02, + "end": 6573.88, + "probability": 0.8012 + }, + { + "start": 6574.18, + "end": 6577.38, + "probability": 0.7797 + }, + { + "start": 6577.74, + "end": 6581.56, + "probability": 0.9922 + }, + { + "start": 6581.66, + "end": 6584.94, + "probability": 0.9744 + }, + { + "start": 6584.94, + "end": 6588.68, + "probability": 0.9275 + }, + { + "start": 6589.18, + "end": 6589.98, + "probability": 0.746 + }, + { + "start": 6590.12, + "end": 6590.72, + "probability": 0.7334 + }, + { + "start": 6590.78, + "end": 6593.82, + "probability": 0.8765 + }, + { + "start": 6594.2, + "end": 6596.6, + "probability": 0.8539 + }, + { + "start": 6596.6, + "end": 6600.92, + "probability": 0.9044 + }, + { + "start": 6603.89, + "end": 6604.44, + "probability": 0.2983 + }, + { + "start": 6604.44, + "end": 6607.4, + "probability": 0.9767 + }, + { + "start": 6607.62, + "end": 6611.04, + "probability": 0.6687 + }, + { + "start": 6611.1, + "end": 6612.94, + "probability": 0.9175 + }, + { + "start": 6613.54, + "end": 6613.86, + "probability": 0.4839 + }, + { + "start": 6613.92, + "end": 6617.3, + "probability": 0.9922 + }, + { + "start": 6617.3, + "end": 6621.1, + "probability": 0.9395 + }, + { + "start": 6621.64, + "end": 6624.6, + "probability": 0.9901 + }, + { + "start": 6625.24, + "end": 6628.3, + "probability": 0.9975 + }, + { + "start": 6628.72, + "end": 6631.48, + "probability": 0.9988 + }, + { + "start": 6632.22, + "end": 6634.4, + "probability": 0.7855 + }, + { + "start": 6634.78, + "end": 6636.08, + "probability": 0.9434 + }, + { + "start": 6636.62, + "end": 6636.9, + "probability": 0.2478 + }, + { + "start": 6637.04, + "end": 6638.86, + "probability": 0.8832 + }, + { + "start": 6639.28, + "end": 6639.84, + "probability": 0.6031 + }, + { + "start": 6640.22, + "end": 6640.88, + "probability": 0.9697 + }, + { + "start": 6641.44, + "end": 6642.7, + "probability": 0.9304 + }, + { + "start": 6642.86, + "end": 6645.96, + "probability": 0.9707 + }, + { + "start": 6646.3, + "end": 6648.32, + "probability": 0.9634 + }, + { + "start": 6648.42, + "end": 6652.24, + "probability": 0.9386 + }, + { + "start": 6652.76, + "end": 6655.18, + "probability": 0.947 + }, + { + "start": 6655.58, + "end": 6656.34, + "probability": 0.9404 + }, + { + "start": 6656.48, + "end": 6657.5, + "probability": 0.9912 + }, + { + "start": 6657.98, + "end": 6659.2, + "probability": 0.9882 + }, + { + "start": 6659.52, + "end": 6660.28, + "probability": 0.9839 + }, + { + "start": 6660.4, + "end": 6661.08, + "probability": 0.6411 + }, + { + "start": 6661.52, + "end": 6663.08, + "probability": 0.9946 + }, + { + "start": 6663.4, + "end": 6664.52, + "probability": 0.8218 + }, + { + "start": 6664.58, + "end": 6665.74, + "probability": 0.8618 + }, + { + "start": 6666.1, + "end": 6666.58, + "probability": 0.477 + }, + { + "start": 6666.7, + "end": 6671.08, + "probability": 0.974 + }, + { + "start": 6671.58, + "end": 6673.52, + "probability": 0.9851 + }, + { + "start": 6673.62, + "end": 6675.0, + "probability": 0.965 + }, + { + "start": 6675.42, + "end": 6677.58, + "probability": 0.9435 + }, + { + "start": 6677.92, + "end": 6681.08, + "probability": 0.9427 + }, + { + "start": 6681.42, + "end": 6683.08, + "probability": 0.9875 + }, + { + "start": 6683.44, + "end": 6684.14, + "probability": 0.9867 + }, + { + "start": 6684.2, + "end": 6684.66, + "probability": 0.9936 + }, + { + "start": 6684.8, + "end": 6685.22, + "probability": 0.9709 + }, + { + "start": 6685.62, + "end": 6687.38, + "probability": 0.7406 + }, + { + "start": 6687.48, + "end": 6690.48, + "probability": 0.8968 + }, + { + "start": 6690.94, + "end": 6692.64, + "probability": 0.9563 + }, + { + "start": 6692.64, + "end": 6695.06, + "probability": 0.7027 + }, + { + "start": 6695.1, + "end": 6695.94, + "probability": 0.838 + }, + { + "start": 6696.52, + "end": 6698.56, + "probability": 0.9736 + }, + { + "start": 6698.62, + "end": 6702.22, + "probability": 0.9645 + }, + { + "start": 6702.74, + "end": 6707.4, + "probability": 0.8589 + }, + { + "start": 6708.78, + "end": 6709.68, + "probability": 0.9883 + }, + { + "start": 6710.66, + "end": 6711.72, + "probability": 0.6052 + }, + { + "start": 6711.84, + "end": 6712.05, + "probability": 0.7949 + }, + { + "start": 6712.62, + "end": 6714.42, + "probability": 0.8953 + }, + { + "start": 6714.52, + "end": 6716.36, + "probability": 0.8677 + }, + { + "start": 6717.12, + "end": 6721.2, + "probability": 0.9729 + }, + { + "start": 6721.72, + "end": 6723.65, + "probability": 0.7296 + }, + { + "start": 6725.08, + "end": 6725.08, + "probability": 0.2559 + }, + { + "start": 6725.08, + "end": 6725.78, + "probability": 0.3501 + }, + { + "start": 6725.8, + "end": 6727.6, + "probability": 0.9255 + }, + { + "start": 6728.06, + "end": 6730.2, + "probability": 0.9396 + }, + { + "start": 6730.84, + "end": 6733.68, + "probability": 0.9772 + }, + { + "start": 6733.7, + "end": 6738.2, + "probability": 0.9765 + }, + { + "start": 6738.2, + "end": 6743.44, + "probability": 0.9945 + }, + { + "start": 6744.0, + "end": 6745.74, + "probability": 0.966 + }, + { + "start": 6745.8, + "end": 6746.79, + "probability": 0.9777 + }, + { + "start": 6747.2, + "end": 6747.96, + "probability": 0.7816 + }, + { + "start": 6748.52, + "end": 6753.26, + "probability": 0.9959 + }, + { + "start": 6753.82, + "end": 6756.24, + "probability": 0.9961 + }, + { + "start": 6756.34, + "end": 6758.2, + "probability": 0.9656 + }, + { + "start": 6758.76, + "end": 6761.34, + "probability": 0.9961 + }, + { + "start": 6761.34, + "end": 6763.56, + "probability": 0.9834 + }, + { + "start": 6765.56, + "end": 6766.7, + "probability": 0.8105 + }, + { + "start": 6766.78, + "end": 6768.04, + "probability": 0.7298 + }, + { + "start": 6768.14, + "end": 6770.86, + "probability": 0.7586 + }, + { + "start": 6771.22, + "end": 6774.0, + "probability": 0.7597 + }, + { + "start": 6774.48, + "end": 6777.18, + "probability": 0.9717 + }, + { + "start": 6777.66, + "end": 6779.84, + "probability": 0.9689 + }, + { + "start": 6780.32, + "end": 6783.12, + "probability": 0.67 + }, + { + "start": 6783.92, + "end": 6785.7, + "probability": 0.8016 + }, + { + "start": 6785.76, + "end": 6786.42, + "probability": 0.8856 + }, + { + "start": 6786.58, + "end": 6787.7, + "probability": 0.9525 + }, + { + "start": 6788.02, + "end": 6788.74, + "probability": 0.8155 + }, + { + "start": 6788.82, + "end": 6789.68, + "probability": 0.3129 + }, + { + "start": 6789.8, + "end": 6790.16, + "probability": 0.96 + }, + { + "start": 6805.58, + "end": 6806.9, + "probability": 0.7246 + }, + { + "start": 6807.12, + "end": 6808.3, + "probability": 0.8008 + }, + { + "start": 6808.6, + "end": 6809.92, + "probability": 0.6829 + }, + { + "start": 6810.22, + "end": 6812.01, + "probability": 0.8201 + }, + { + "start": 6813.28, + "end": 6818.88, + "probability": 0.9331 + }, + { + "start": 6819.84, + "end": 6823.26, + "probability": 0.9917 + }, + { + "start": 6824.12, + "end": 6831.52, + "probability": 0.9916 + }, + { + "start": 6832.82, + "end": 6838.12, + "probability": 0.8127 + }, + { + "start": 6839.44, + "end": 6843.02, + "probability": 0.9661 + }, + { + "start": 6843.76, + "end": 6854.1, + "probability": 0.961 + }, + { + "start": 6854.22, + "end": 6860.08, + "probability": 0.9976 + }, + { + "start": 6861.46, + "end": 6863.14, + "probability": 0.7014 + }, + { + "start": 6863.98, + "end": 6866.72, + "probability": 0.9694 + }, + { + "start": 6866.8, + "end": 6867.5, + "probability": 0.8406 + }, + { + "start": 6867.54, + "end": 6872.92, + "probability": 0.9966 + }, + { + "start": 6872.92, + "end": 6878.22, + "probability": 0.9615 + }, + { + "start": 6879.2, + "end": 6885.14, + "probability": 0.991 + }, + { + "start": 6885.14, + "end": 6891.32, + "probability": 0.9984 + }, + { + "start": 6892.78, + "end": 6899.22, + "probability": 0.9978 + }, + { + "start": 6899.22, + "end": 6905.4, + "probability": 0.9993 + }, + { + "start": 6906.1, + "end": 6908.06, + "probability": 0.8985 + }, + { + "start": 6908.86, + "end": 6913.6, + "probability": 0.9987 + }, + { + "start": 6913.6, + "end": 6917.08, + "probability": 0.9982 + }, + { + "start": 6917.66, + "end": 6919.66, + "probability": 0.8771 + }, + { + "start": 6920.2, + "end": 6920.98, + "probability": 0.5826 + }, + { + "start": 6921.22, + "end": 6921.82, + "probability": 0.9818 + }, + { + "start": 6921.96, + "end": 6923.92, + "probability": 0.9288 + }, + { + "start": 6923.98, + "end": 6925.38, + "probability": 0.7724 + }, + { + "start": 6925.9, + "end": 6927.3, + "probability": 0.9793 + }, + { + "start": 6927.36, + "end": 6930.9, + "probability": 0.9952 + }, + { + "start": 6930.94, + "end": 6936.1, + "probability": 0.9991 + }, + { + "start": 6936.7, + "end": 6939.62, + "probability": 0.8401 + }, + { + "start": 6940.4, + "end": 6941.28, + "probability": 0.5405 + }, + { + "start": 6941.82, + "end": 6943.49, + "probability": 0.812 + }, + { + "start": 6944.12, + "end": 6947.16, + "probability": 0.9818 + }, + { + "start": 6947.96, + "end": 6953.28, + "probability": 0.8685 + }, + { + "start": 6953.28, + "end": 6959.0, + "probability": 0.991 + }, + { + "start": 6959.68, + "end": 6960.36, + "probability": 0.5857 + }, + { + "start": 6960.44, + "end": 6963.24, + "probability": 0.8925 + }, + { + "start": 6963.42, + "end": 6965.52, + "probability": 0.9572 + }, + { + "start": 6966.52, + "end": 6969.5, + "probability": 0.9354 + }, + { + "start": 6969.86, + "end": 6970.9, + "probability": 0.6915 + }, + { + "start": 6971.1, + "end": 6971.88, + "probability": 0.3445 + }, + { + "start": 6972.7, + "end": 6974.16, + "probability": 0.999 + }, + { + "start": 6975.14, + "end": 6984.32, + "probability": 0.9914 + }, + { + "start": 6984.32, + "end": 6995.02, + "probability": 0.9976 + }, + { + "start": 6995.02, + "end": 7003.26, + "probability": 0.998 + }, + { + "start": 7003.98, + "end": 7009.72, + "probability": 0.9966 + }, + { + "start": 7009.72, + "end": 7017.88, + "probability": 0.999 + }, + { + "start": 7018.86, + "end": 7023.06, + "probability": 0.9229 + }, + { + "start": 7023.86, + "end": 7026.76, + "probability": 0.9997 + }, + { + "start": 7026.76, + "end": 7030.84, + "probability": 0.9989 + }, + { + "start": 7031.82, + "end": 7035.6, + "probability": 0.9319 + }, + { + "start": 7036.22, + "end": 7037.86, + "probability": 0.799 + }, + { + "start": 7038.04, + "end": 7041.76, + "probability": 0.9766 + }, + { + "start": 7042.82, + "end": 7049.96, + "probability": 0.9702 + }, + { + "start": 7049.96, + "end": 7055.88, + "probability": 0.9985 + }, + { + "start": 7056.9, + "end": 7060.92, + "probability": 0.9872 + }, + { + "start": 7061.9, + "end": 7068.24, + "probability": 0.9563 + }, + { + "start": 7068.24, + "end": 7076.76, + "probability": 0.9958 + }, + { + "start": 7077.94, + "end": 7080.78, + "probability": 0.9329 + }, + { + "start": 7081.34, + "end": 7085.5, + "probability": 0.9723 + }, + { + "start": 7086.4, + "end": 7092.78, + "probability": 0.9868 + }, + { + "start": 7092.8, + "end": 7099.02, + "probability": 0.8744 + }, + { + "start": 7100.52, + "end": 7107.74, + "probability": 0.9979 + }, + { + "start": 7108.38, + "end": 7114.8, + "probability": 0.9962 + }, + { + "start": 7115.28, + "end": 7119.4, + "probability": 0.7541 + }, + { + "start": 7120.88, + "end": 7126.9, + "probability": 0.9334 + }, + { + "start": 7128.18, + "end": 7129.58, + "probability": 0.9841 + }, + { + "start": 7130.42, + "end": 7133.28, + "probability": 0.9967 + }, + { + "start": 7133.28, + "end": 7136.02, + "probability": 0.9983 + }, + { + "start": 7136.12, + "end": 7138.12, + "probability": 0.9901 + }, + { + "start": 7138.96, + "end": 7140.0, + "probability": 0.7897 + }, + { + "start": 7141.34, + "end": 7144.9, + "probability": 0.9784 + }, + { + "start": 7146.02, + "end": 7151.74, + "probability": 0.9895 + }, + { + "start": 7152.16, + "end": 7154.44, + "probability": 0.8654 + }, + { + "start": 7155.34, + "end": 7160.8, + "probability": 0.9954 + }, + { + "start": 7161.68, + "end": 7166.19, + "probability": 0.9958 + }, + { + "start": 7167.62, + "end": 7168.42, + "probability": 0.6944 + }, + { + "start": 7169.66, + "end": 7172.0, + "probability": 0.9774 + }, + { + "start": 7172.66, + "end": 7175.68, + "probability": 0.8707 + }, + { + "start": 7175.7, + "end": 7182.94, + "probability": 0.9536 + }, + { + "start": 7183.7, + "end": 7188.32, + "probability": 0.9869 + }, + { + "start": 7188.96, + "end": 7195.32, + "probability": 0.9133 + }, + { + "start": 7196.44, + "end": 7201.14, + "probability": 0.9985 + }, + { + "start": 7202.28, + "end": 7207.32, + "probability": 0.9977 + }, + { + "start": 7207.74, + "end": 7214.28, + "probability": 0.9979 + }, + { + "start": 7215.06, + "end": 7217.82, + "probability": 0.7881 + }, + { + "start": 7218.36, + "end": 7220.78, + "probability": 0.9983 + }, + { + "start": 7220.94, + "end": 7221.64, + "probability": 0.7324 + }, + { + "start": 7221.88, + "end": 7222.46, + "probability": 0.7277 + }, + { + "start": 7222.84, + "end": 7232.15, + "probability": 0.9883 + }, + { + "start": 7232.9, + "end": 7241.92, + "probability": 0.9986 + }, + { + "start": 7241.92, + "end": 7250.44, + "probability": 0.9914 + }, + { + "start": 7250.9, + "end": 7251.42, + "probability": 0.764 + }, + { + "start": 7252.08, + "end": 7254.24, + "probability": 0.8449 + }, + { + "start": 7255.22, + "end": 7257.9, + "probability": 0.6994 + }, + { + "start": 7258.0, + "end": 7258.98, + "probability": 0.7508 + }, + { + "start": 7259.12, + "end": 7259.62, + "probability": 0.9194 + }, + { + "start": 7274.36, + "end": 7275.06, + "probability": 0.6039 + }, + { + "start": 7275.54, + "end": 7276.56, + "probability": 0.7164 + }, + { + "start": 7277.1, + "end": 7278.36, + "probability": 0.5784 + }, + { + "start": 7280.06, + "end": 7282.27, + "probability": 0.6642 + }, + { + "start": 7283.0, + "end": 7284.4, + "probability": 0.845 + }, + { + "start": 7285.6, + "end": 7289.54, + "probability": 0.9741 + }, + { + "start": 7290.26, + "end": 7291.76, + "probability": 0.8625 + }, + { + "start": 7292.42, + "end": 7293.14, + "probability": 0.8398 + }, + { + "start": 7293.98, + "end": 7295.16, + "probability": 0.969 + }, + { + "start": 7296.72, + "end": 7301.2, + "probability": 0.9897 + }, + { + "start": 7302.42, + "end": 7307.64, + "probability": 0.903 + }, + { + "start": 7308.98, + "end": 7311.32, + "probability": 0.8572 + }, + { + "start": 7311.32, + "end": 7314.62, + "probability": 0.9756 + }, + { + "start": 7315.68, + "end": 7321.2, + "probability": 0.9954 + }, + { + "start": 7321.88, + "end": 7330.94, + "probability": 0.9951 + }, + { + "start": 7332.78, + "end": 7336.2, + "probability": 0.6994 + }, + { + "start": 7336.86, + "end": 7341.36, + "probability": 0.5679 + }, + { + "start": 7342.28, + "end": 7345.4, + "probability": 0.8005 + }, + { + "start": 7345.48, + "end": 7349.36, + "probability": 0.7738 + }, + { + "start": 7350.24, + "end": 7352.44, + "probability": 0.9834 + }, + { + "start": 7352.96, + "end": 7357.56, + "probability": 0.9572 + }, + { + "start": 7358.66, + "end": 7361.27, + "probability": 0.6617 + }, + { + "start": 7362.58, + "end": 7364.06, + "probability": 0.9208 + }, + { + "start": 7365.86, + "end": 7370.56, + "probability": 0.8547 + }, + { + "start": 7371.24, + "end": 7374.6, + "probability": 0.9017 + }, + { + "start": 7376.06, + "end": 7378.62, + "probability": 0.9648 + }, + { + "start": 7379.24, + "end": 7386.98, + "probability": 0.8029 + }, + { + "start": 7387.12, + "end": 7388.64, + "probability": 0.7739 + }, + { + "start": 7389.44, + "end": 7393.24, + "probability": 0.9729 + }, + { + "start": 7394.68, + "end": 7395.4, + "probability": 0.7678 + }, + { + "start": 7396.06, + "end": 7398.76, + "probability": 0.8704 + }, + { + "start": 7399.48, + "end": 7403.36, + "probability": 0.9492 + }, + { + "start": 7403.98, + "end": 7406.0, + "probability": 0.9684 + }, + { + "start": 7407.6, + "end": 7411.72, + "probability": 0.9857 + }, + { + "start": 7414.26, + "end": 7415.46, + "probability": 0.99 + }, + { + "start": 7415.56, + "end": 7419.02, + "probability": 0.9714 + }, + { + "start": 7419.68, + "end": 7420.3, + "probability": 0.7552 + }, + { + "start": 7423.08, + "end": 7425.9, + "probability": 0.7801 + }, + { + "start": 7427.76, + "end": 7431.84, + "probability": 0.9257 + }, + { + "start": 7433.26, + "end": 7433.84, + "probability": 0.5071 + }, + { + "start": 7434.54, + "end": 7435.5, + "probability": 0.9305 + }, + { + "start": 7436.02, + "end": 7436.9, + "probability": 0.6986 + }, + { + "start": 7436.96, + "end": 7437.76, + "probability": 0.931 + }, + { + "start": 7437.86, + "end": 7440.78, + "probability": 0.7588 + }, + { + "start": 7441.68, + "end": 7447.96, + "probability": 0.9795 + }, + { + "start": 7448.96, + "end": 7451.54, + "probability": 0.8818 + }, + { + "start": 7452.64, + "end": 7456.6, + "probability": 0.8365 + }, + { + "start": 7457.38, + "end": 7460.84, + "probability": 0.8818 + }, + { + "start": 7461.42, + "end": 7464.54, + "probability": 0.9743 + }, + { + "start": 7467.34, + "end": 7468.0, + "probability": 0.7466 + }, + { + "start": 7468.26, + "end": 7474.58, + "probability": 0.863 + }, + { + "start": 7474.66, + "end": 7476.96, + "probability": 0.9716 + }, + { + "start": 7477.76, + "end": 7479.56, + "probability": 0.9954 + }, + { + "start": 7482.38, + "end": 7483.18, + "probability": 0.9966 + }, + { + "start": 7484.28, + "end": 7487.04, + "probability": 0.9327 + }, + { + "start": 7487.76, + "end": 7493.52, + "probability": 0.8813 + }, + { + "start": 7494.16, + "end": 7496.04, + "probability": 0.8091 + }, + { + "start": 7497.64, + "end": 7500.44, + "probability": 0.8668 + }, + { + "start": 7501.3, + "end": 7503.98, + "probability": 0.9438 + }, + { + "start": 7505.0, + "end": 7505.56, + "probability": 0.95 + }, + { + "start": 7507.42, + "end": 7512.84, + "probability": 0.9964 + }, + { + "start": 7512.84, + "end": 7516.28, + "probability": 0.7632 + }, + { + "start": 7517.56, + "end": 7519.76, + "probability": 0.9961 + }, + { + "start": 7520.46, + "end": 7523.92, + "probability": 0.9278 + }, + { + "start": 7525.6, + "end": 7529.36, + "probability": 0.9902 + }, + { + "start": 7531.34, + "end": 7536.0, + "probability": 0.8773 + }, + { + "start": 7537.54, + "end": 7538.32, + "probability": 0.9685 + }, + { + "start": 7538.86, + "end": 7544.04, + "probability": 0.7327 + }, + { + "start": 7545.36, + "end": 7546.0, + "probability": 0.5002 + }, + { + "start": 7549.28, + "end": 7552.06, + "probability": 0.9462 + }, + { + "start": 7552.26, + "end": 7552.92, + "probability": 0.8433 + }, + { + "start": 7553.04, + "end": 7555.94, + "probability": 0.88 + }, + { + "start": 7557.52, + "end": 7558.98, + "probability": 0.9583 + }, + { + "start": 7560.64, + "end": 7562.05, + "probability": 0.9829 + }, + { + "start": 7562.96, + "end": 7563.44, + "probability": 0.7861 + }, + { + "start": 7565.06, + "end": 7566.06, + "probability": 0.9124 + }, + { + "start": 7566.16, + "end": 7572.48, + "probability": 0.9969 + }, + { + "start": 7573.76, + "end": 7580.16, + "probability": 0.9816 + }, + { + "start": 7580.52, + "end": 7581.66, + "probability": 0.8407 + }, + { + "start": 7582.38, + "end": 7584.59, + "probability": 0.9536 + }, + { + "start": 7589.4, + "end": 7592.14, + "probability": 0.9979 + }, + { + "start": 7592.72, + "end": 7596.82, + "probability": 0.9453 + }, + { + "start": 7596.88, + "end": 7600.52, + "probability": 0.998 + }, + { + "start": 7600.62, + "end": 7601.02, + "probability": 0.6808 + }, + { + "start": 7601.74, + "end": 7603.74, + "probability": 0.8436 + }, + { + "start": 7604.32, + "end": 7606.38, + "probability": 0.8103 + }, + { + "start": 7606.46, + "end": 7609.18, + "probability": 0.9633 + }, + { + "start": 7609.76, + "end": 7611.0, + "probability": 0.6776 + }, + { + "start": 7611.18, + "end": 7612.5, + "probability": 0.7224 + }, + { + "start": 7613.14, + "end": 7618.58, + "probability": 0.7123 + }, + { + "start": 7619.16, + "end": 7624.46, + "probability": 0.3589 + }, + { + "start": 7625.08, + "end": 7625.6, + "probability": 0.7545 + }, + { + "start": 7633.36, + "end": 7635.6, + "probability": 0.0039 + }, + { + "start": 7639.4, + "end": 7641.2, + "probability": 0.3091 + }, + { + "start": 7641.3, + "end": 7643.82, + "probability": 0.9621 + }, + { + "start": 7644.0, + "end": 7646.52, + "probability": 0.9902 + }, + { + "start": 7646.52, + "end": 7651.28, + "probability": 0.6159 + }, + { + "start": 7651.52, + "end": 7655.86, + "probability": 0.3472 + }, + { + "start": 7657.66, + "end": 7657.88, + "probability": 0.0012 + }, + { + "start": 7659.24, + "end": 7661.94, + "probability": 0.2721 + }, + { + "start": 7670.68, + "end": 7670.68, + "probability": 0.0607 + }, + { + "start": 7670.68, + "end": 7672.56, + "probability": 0.1579 + }, + { + "start": 7673.16, + "end": 7676.74, + "probability": 0.5045 + }, + { + "start": 7676.84, + "end": 7677.24, + "probability": 0.2104 + }, + { + "start": 7677.28, + "end": 7677.96, + "probability": 0.7409 + }, + { + "start": 7678.22, + "end": 7679.7, + "probability": 0.4482 + }, + { + "start": 7680.0, + "end": 7681.64, + "probability": 0.886 + }, + { + "start": 7681.76, + "end": 7683.7, + "probability": 0.9932 + }, + { + "start": 7684.36, + "end": 7687.82, + "probability": 0.9902 + }, + { + "start": 7688.24, + "end": 7689.2, + "probability": 0.718 + }, + { + "start": 7689.36, + "end": 7690.46, + "probability": 0.9482 + }, + { + "start": 7690.58, + "end": 7691.8, + "probability": 0.5117 + }, + { + "start": 7692.76, + "end": 7693.86, + "probability": 0.6679 + }, + { + "start": 7694.02, + "end": 7696.94, + "probability": 0.9594 + }, + { + "start": 7697.1, + "end": 7699.48, + "probability": 0.8293 + }, + { + "start": 7699.58, + "end": 7701.2, + "probability": 0.8685 + }, + { + "start": 7701.66, + "end": 7703.02, + "probability": 0.9751 + }, + { + "start": 7703.06, + "end": 7703.58, + "probability": 0.9212 + }, + { + "start": 7715.55, + "end": 7719.7, + "probability": 0.8118 + }, + { + "start": 7720.64, + "end": 7723.92, + "probability": 0.9915 + }, + { + "start": 7724.04, + "end": 7728.94, + "probability": 0.9958 + }, + { + "start": 7729.04, + "end": 7734.28, + "probability": 0.9886 + }, + { + "start": 7734.3, + "end": 7739.42, + "probability": 0.9793 + }, + { + "start": 7740.44, + "end": 7744.16, + "probability": 0.9982 + }, + { + "start": 7744.34, + "end": 7747.34, + "probability": 0.9844 + }, + { + "start": 7747.94, + "end": 7752.74, + "probability": 0.9929 + }, + { + "start": 7754.46, + "end": 7757.92, + "probability": 0.9362 + }, + { + "start": 7758.54, + "end": 7762.4, + "probability": 0.9759 + }, + { + "start": 7763.32, + "end": 7765.56, + "probability": 0.7668 + }, + { + "start": 7765.64, + "end": 7767.0, + "probability": 0.9575 + }, + { + "start": 7767.14, + "end": 7767.84, + "probability": 0.7831 + }, + { + "start": 7768.0, + "end": 7768.54, + "probability": 0.9792 + }, + { + "start": 7768.58, + "end": 7769.58, + "probability": 0.9909 + }, + { + "start": 7769.62, + "end": 7769.94, + "probability": 0.908 + }, + { + "start": 7771.02, + "end": 7772.72, + "probability": 0.9678 + }, + { + "start": 7773.34, + "end": 7776.46, + "probability": 0.7878 + }, + { + "start": 7776.82, + "end": 7780.88, + "probability": 0.9558 + }, + { + "start": 7780.92, + "end": 7784.74, + "probability": 0.9862 + }, + { + "start": 7786.0, + "end": 7786.48, + "probability": 0.8637 + }, + { + "start": 7787.26, + "end": 7789.54, + "probability": 0.9234 + }, + { + "start": 7789.68, + "end": 7792.04, + "probability": 0.9564 + }, + { + "start": 7792.64, + "end": 7796.12, + "probability": 0.9914 + }, + { + "start": 7797.26, + "end": 7800.98, + "probability": 0.786 + }, + { + "start": 7801.55, + "end": 7806.3, + "probability": 0.9902 + }, + { + "start": 7807.42, + "end": 7810.02, + "probability": 0.7502 + }, + { + "start": 7810.86, + "end": 7813.54, + "probability": 0.9673 + }, + { + "start": 7813.66, + "end": 7813.88, + "probability": 0.4227 + }, + { + "start": 7814.02, + "end": 7814.26, + "probability": 0.285 + }, + { + "start": 7814.42, + "end": 7817.14, + "probability": 0.9497 + }, + { + "start": 7817.38, + "end": 7820.8, + "probability": 0.8981 + }, + { + "start": 7821.38, + "end": 7824.36, + "probability": 0.9575 + }, + { + "start": 7824.88, + "end": 7826.68, + "probability": 0.9043 + }, + { + "start": 7827.48, + "end": 7832.7, + "probability": 0.9955 + }, + { + "start": 7834.0, + "end": 7834.52, + "probability": 0.7551 + }, + { + "start": 7835.3, + "end": 7841.66, + "probability": 0.9366 + }, + { + "start": 7842.6, + "end": 7843.48, + "probability": 0.9073 + }, + { + "start": 7843.88, + "end": 7845.08, + "probability": 0.8488 + }, + { + "start": 7845.9, + "end": 7850.02, + "probability": 0.9069 + }, + { + "start": 7850.92, + "end": 7854.76, + "probability": 0.9502 + }, + { + "start": 7855.62, + "end": 7860.76, + "probability": 0.9955 + }, + { + "start": 7861.6, + "end": 7863.3, + "probability": 0.9122 + }, + { + "start": 7863.96, + "end": 7867.68, + "probability": 0.9964 + }, + { + "start": 7868.66, + "end": 7870.54, + "probability": 0.8322 + }, + { + "start": 7871.31, + "end": 7875.1, + "probability": 0.9983 + }, + { + "start": 7875.8, + "end": 7879.16, + "probability": 0.9526 + }, + { + "start": 7879.68, + "end": 7881.56, + "probability": 0.988 + }, + { + "start": 7882.48, + "end": 7883.26, + "probability": 0.9401 + }, + { + "start": 7884.1, + "end": 7885.98, + "probability": 0.9706 + }, + { + "start": 7886.62, + "end": 7889.8, + "probability": 0.888 + }, + { + "start": 7890.78, + "end": 7893.0, + "probability": 0.7162 + }, + { + "start": 7893.08, + "end": 7893.98, + "probability": 0.993 + }, + { + "start": 7894.14, + "end": 7895.84, + "probability": 0.9796 + }, + { + "start": 7896.48, + "end": 7900.86, + "probability": 0.9467 + }, + { + "start": 7902.3, + "end": 7907.0, + "probability": 0.9944 + }, + { + "start": 7907.0, + "end": 7910.22, + "probability": 0.9767 + }, + { + "start": 7911.22, + "end": 7915.04, + "probability": 0.9535 + }, + { + "start": 7915.44, + "end": 7916.78, + "probability": 0.7828 + }, + { + "start": 7917.3, + "end": 7918.26, + "probability": 0.9985 + }, + { + "start": 7918.9, + "end": 7921.44, + "probability": 0.9851 + }, + { + "start": 7922.2, + "end": 7926.98, + "probability": 0.9873 + }, + { + "start": 7927.22, + "end": 7930.36, + "probability": 0.975 + }, + { + "start": 7930.78, + "end": 7933.38, + "probability": 0.7431 + }, + { + "start": 7934.0, + "end": 7936.14, + "probability": 0.8202 + }, + { + "start": 7937.14, + "end": 7938.46, + "probability": 0.5522 + }, + { + "start": 7938.78, + "end": 7940.0, + "probability": 0.7153 + }, + { + "start": 7940.18, + "end": 7944.54, + "probability": 0.7149 + }, + { + "start": 7944.68, + "end": 7947.78, + "probability": 0.4201 + }, + { + "start": 7947.96, + "end": 7951.96, + "probability": 0.9221 + }, + { + "start": 7951.96, + "end": 7955.72, + "probability": 0.9961 + }, + { + "start": 7956.46, + "end": 7960.5, + "probability": 0.8553 + }, + { + "start": 7960.66, + "end": 7961.06, + "probability": 0.6628 + }, + { + "start": 7962.24, + "end": 7965.62, + "probability": 0.8423 + }, + { + "start": 7966.85, + "end": 7971.04, + "probability": 0.7454 + }, + { + "start": 7973.5, + "end": 7974.06, + "probability": 0.1098 + }, + { + "start": 7975.24, + "end": 7977.86, + "probability": 0.6264 + }, + { + "start": 7978.02, + "end": 7981.82, + "probability": 0.9832 + }, + { + "start": 7982.0, + "end": 7985.28, + "probability": 0.6172 + }, + { + "start": 7985.56, + "end": 7988.8, + "probability": 0.9728 + }, + { + "start": 7988.98, + "end": 7991.6, + "probability": 0.9465 + }, + { + "start": 7991.64, + "end": 7992.14, + "probability": 0.862 + }, + { + "start": 7992.2, + "end": 7993.08, + "probability": 0.8798 + }, + { + "start": 7993.22, + "end": 7995.8, + "probability": 0.9659 + }, + { + "start": 7995.84, + "end": 7995.96, + "probability": 0.3833 + }, + { + "start": 7997.62, + "end": 8000.2, + "probability": 0.9722 + }, + { + "start": 8013.32, + "end": 8013.6, + "probability": 0.3685 + }, + { + "start": 8013.74, + "end": 8015.48, + "probability": 0.5618 + }, + { + "start": 8016.1, + "end": 8018.37, + "probability": 0.8392 + }, + { + "start": 8018.68, + "end": 8022.94, + "probability": 0.8592 + }, + { + "start": 8023.8, + "end": 8028.12, + "probability": 0.994 + }, + { + "start": 8028.24, + "end": 8032.06, + "probability": 0.8195 + }, + { + "start": 8033.13, + "end": 8036.4, + "probability": 0.5219 + }, + { + "start": 8037.14, + "end": 8045.3, + "probability": 0.8927 + }, + { + "start": 8045.74, + "end": 8046.7, + "probability": 0.6982 + }, + { + "start": 8047.08, + "end": 8050.54, + "probability": 0.9408 + }, + { + "start": 8050.58, + "end": 8056.22, + "probability": 0.9927 + }, + { + "start": 8056.86, + "end": 8060.12, + "probability": 0.8954 + }, + { + "start": 8060.56, + "end": 8063.82, + "probability": 0.9875 + }, + { + "start": 8063.94, + "end": 8066.24, + "probability": 0.7505 + }, + { + "start": 8066.42, + "end": 8070.66, + "probability": 0.9739 + }, + { + "start": 8070.82, + "end": 8071.46, + "probability": 0.7653 + }, + { + "start": 8071.98, + "end": 8073.08, + "probability": 0.978 + }, + { + "start": 8073.64, + "end": 8076.98, + "probability": 0.9889 + }, + { + "start": 8077.64, + "end": 8080.2, + "probability": 0.9635 + }, + { + "start": 8081.26, + "end": 8081.98, + "probability": 0.6075 + }, + { + "start": 8082.6, + "end": 8085.76, + "probability": 0.6755 + }, + { + "start": 8087.34, + "end": 8093.2, + "probability": 0.9972 + }, + { + "start": 8093.52, + "end": 8094.24, + "probability": 0.7762 + }, + { + "start": 8094.5, + "end": 8095.46, + "probability": 0.7694 + }, + { + "start": 8096.64, + "end": 8101.36, + "probability": 0.9917 + }, + { + "start": 8102.12, + "end": 8106.56, + "probability": 0.9916 + }, + { + "start": 8106.62, + "end": 8107.94, + "probability": 0.922 + }, + { + "start": 8108.88, + "end": 8111.6, + "probability": 0.985 + }, + { + "start": 8112.44, + "end": 8115.78, + "probability": 0.9682 + }, + { + "start": 8116.22, + "end": 8117.54, + "probability": 0.7597 + }, + { + "start": 8117.64, + "end": 8121.62, + "probability": 0.9864 + }, + { + "start": 8122.5, + "end": 8125.28, + "probability": 0.782 + }, + { + "start": 8125.9, + "end": 8128.68, + "probability": 0.9761 + }, + { + "start": 8129.44, + "end": 8131.26, + "probability": 0.9888 + }, + { + "start": 8131.32, + "end": 8134.88, + "probability": 0.9979 + }, + { + "start": 8134.88, + "end": 8137.6, + "probability": 0.992 + }, + { + "start": 8139.04, + "end": 8140.48, + "probability": 0.9373 + }, + { + "start": 8140.58, + "end": 8141.64, + "probability": 0.9815 + }, + { + "start": 8141.96, + "end": 8144.54, + "probability": 0.9924 + }, + { + "start": 8145.16, + "end": 8148.66, + "probability": 0.9974 + }, + { + "start": 8149.06, + "end": 8152.38, + "probability": 0.6559 + }, + { + "start": 8152.68, + "end": 8153.95, + "probability": 0.9822 + }, + { + "start": 8154.32, + "end": 8158.22, + "probability": 0.937 + }, + { + "start": 8158.46, + "end": 8159.44, + "probability": 0.778 + }, + { + "start": 8159.68, + "end": 8162.06, + "probability": 0.4456 + }, + { + "start": 8162.38, + "end": 8163.74, + "probability": 0.9332 + }, + { + "start": 8164.04, + "end": 8165.46, + "probability": 0.9834 + }, + { + "start": 8166.78, + "end": 8167.52, + "probability": 0.9889 + }, + { + "start": 8167.6, + "end": 8171.34, + "probability": 0.9882 + }, + { + "start": 8171.8, + "end": 8174.86, + "probability": 0.9969 + }, + { + "start": 8175.48, + "end": 8180.52, + "probability": 0.8901 + }, + { + "start": 8180.66, + "end": 8182.64, + "probability": 0.7822 + }, + { + "start": 8182.98, + "end": 8188.18, + "probability": 0.9822 + }, + { + "start": 8188.4, + "end": 8189.62, + "probability": 0.7719 + }, + { + "start": 8190.26, + "end": 8192.22, + "probability": 0.887 + }, + { + "start": 8192.83, + "end": 8197.28, + "probability": 0.9944 + }, + { + "start": 8197.82, + "end": 8200.34, + "probability": 0.9968 + }, + { + "start": 8200.62, + "end": 8203.44, + "probability": 0.9999 + }, + { + "start": 8204.0, + "end": 8204.55, + "probability": 0.9196 + }, + { + "start": 8205.24, + "end": 8206.34, + "probability": 0.9938 + }, + { + "start": 8206.56, + "end": 8211.0, + "probability": 0.8452 + }, + { + "start": 8211.54, + "end": 8213.58, + "probability": 0.9792 + }, + { + "start": 8213.7, + "end": 8217.72, + "probability": 0.9553 + }, + { + "start": 8218.3, + "end": 8218.88, + "probability": 0.9828 + }, + { + "start": 8219.72, + "end": 8222.28, + "probability": 0.9538 + }, + { + "start": 8222.52, + "end": 8222.98, + "probability": 0.7401 + }, + { + "start": 8224.36, + "end": 8225.46, + "probability": 0.8695 + }, + { + "start": 8225.72, + "end": 8227.04, + "probability": 0.8136 + }, + { + "start": 8227.04, + "end": 8228.02, + "probability": 0.408 + }, + { + "start": 8228.06, + "end": 8230.06, + "probability": 0.8935 + }, + { + "start": 8230.2, + "end": 8230.58, + "probability": 0.9087 + }, + { + "start": 8230.9, + "end": 8231.64, + "probability": 0.8541 + }, + { + "start": 8231.72, + "end": 8231.96, + "probability": 0.9113 + }, + { + "start": 8232.06, + "end": 8235.62, + "probability": 0.9374 + }, + { + "start": 8235.78, + "end": 8238.56, + "probability": 0.7169 + }, + { + "start": 8238.66, + "end": 8239.7, + "probability": 0.8446 + }, + { + "start": 8239.84, + "end": 8241.22, + "probability": 0.7318 + }, + { + "start": 8241.92, + "end": 8243.28, + "probability": 0.9207 + }, + { + "start": 8243.56, + "end": 8244.0, + "probability": 0.5957 + }, + { + "start": 8257.02, + "end": 8257.02, + "probability": 0.0035 + }, + { + "start": 8257.02, + "end": 8258.22, + "probability": 0.5315 + }, + { + "start": 8258.3, + "end": 8260.48, + "probability": 0.8333 + }, + { + "start": 8260.56, + "end": 8263.68, + "probability": 0.9334 + }, + { + "start": 8263.76, + "end": 8281.24, + "probability": 0.2437 + }, + { + "start": 8281.24, + "end": 8281.24, + "probability": 0.3117 + }, + { + "start": 8281.24, + "end": 8282.5, + "probability": 0.444 + }, + { + "start": 8282.62, + "end": 8285.1, + "probability": 0.9365 + }, + { + "start": 8285.2, + "end": 8286.92, + "probability": 0.4752 + }, + { + "start": 8287.4, + "end": 8289.14, + "probability": 0.9145 + }, + { + "start": 8289.2, + "end": 8290.62, + "probability": 0.929 + }, + { + "start": 8291.56, + "end": 8291.86, + "probability": 0.8053 + }, + { + "start": 8291.92, + "end": 8292.9, + "probability": 0.7678 + }, + { + "start": 8293.0, + "end": 8297.12, + "probability": 0.9614 + }, + { + "start": 8297.12, + "end": 8298.26, + "probability": 0.8291 + }, + { + "start": 8298.34, + "end": 8298.78, + "probability": 0.9507 + }, + { + "start": 8298.9, + "end": 8299.36, + "probability": 0.9722 + }, + { + "start": 8299.46, + "end": 8301.34, + "probability": 0.9041 + }, + { + "start": 8302.15, + "end": 8307.32, + "probability": 0.8979 + }, + { + "start": 8307.32, + "end": 8309.52, + "probability": 0.9767 + }, + { + "start": 8324.86, + "end": 8327.58, + "probability": 0.7746 + }, + { + "start": 8329.2, + "end": 8329.74, + "probability": 0.748 + }, + { + "start": 8331.42, + "end": 8334.34, + "probability": 0.9953 + }, + { + "start": 8335.34, + "end": 8336.32, + "probability": 0.6122 + }, + { + "start": 8337.84, + "end": 8343.56, + "probability": 0.9774 + }, + { + "start": 8343.88, + "end": 8345.46, + "probability": 0.9838 + }, + { + "start": 8346.72, + "end": 8348.5, + "probability": 0.9625 + }, + { + "start": 8349.18, + "end": 8349.28, + "probability": 0.9997 + }, + { + "start": 8352.14, + "end": 8354.88, + "probability": 0.993 + }, + { + "start": 8355.82, + "end": 8356.31, + "probability": 0.993 + }, + { + "start": 8357.58, + "end": 8358.54, + "probability": 0.6971 + }, + { + "start": 8358.62, + "end": 8360.86, + "probability": 0.9837 + }, + { + "start": 8361.98, + "end": 8363.98, + "probability": 0.9468 + }, + { + "start": 8365.44, + "end": 8367.26, + "probability": 0.9755 + }, + { + "start": 8367.8, + "end": 8369.92, + "probability": 0.8357 + }, + { + "start": 8370.78, + "end": 8373.22, + "probability": 0.9894 + }, + { + "start": 8374.26, + "end": 8376.22, + "probability": 0.9461 + }, + { + "start": 8376.96, + "end": 8379.36, + "probability": 0.9787 + }, + { + "start": 8381.2, + "end": 8382.08, + "probability": 0.9304 + }, + { + "start": 8383.88, + "end": 8384.42, + "probability": 0.8605 + }, + { + "start": 8384.52, + "end": 8385.54, + "probability": 0.7924 + }, + { + "start": 8385.74, + "end": 8388.52, + "probability": 0.9983 + }, + { + "start": 8388.52, + "end": 8392.96, + "probability": 0.9757 + }, + { + "start": 8392.96, + "end": 8394.06, + "probability": 0.9059 + }, + { + "start": 8394.16, + "end": 8394.62, + "probability": 0.9443 + }, + { + "start": 8394.68, + "end": 8397.44, + "probability": 0.8963 + }, + { + "start": 8397.64, + "end": 8399.66, + "probability": 0.3519 + }, + { + "start": 8400.84, + "end": 8404.68, + "probability": 0.9936 + }, + { + "start": 8405.96, + "end": 8408.52, + "probability": 0.9989 + }, + { + "start": 8408.68, + "end": 8409.48, + "probability": 0.591 + }, + { + "start": 8409.58, + "end": 8415.04, + "probability": 0.9857 + }, + { + "start": 8415.04, + "end": 8421.06, + "probability": 0.9077 + }, + { + "start": 8421.24, + "end": 8422.92, + "probability": 0.5678 + }, + { + "start": 8424.04, + "end": 8426.32, + "probability": 0.9939 + }, + { + "start": 8427.42, + "end": 8428.64, + "probability": 0.8213 + }, + { + "start": 8428.78, + "end": 8433.3, + "probability": 0.9868 + }, + { + "start": 8433.3, + "end": 8438.48, + "probability": 0.991 + }, + { + "start": 8438.6, + "end": 8440.56, + "probability": 0.9967 + }, + { + "start": 8441.18, + "end": 8443.98, + "probability": 0.9952 + }, + { + "start": 8444.94, + "end": 8445.26, + "probability": 0.7763 + }, + { + "start": 8445.44, + "end": 8445.96, + "probability": 0.8158 + }, + { + "start": 8446.06, + "end": 8450.64, + "probability": 0.992 + }, + { + "start": 8450.64, + "end": 8453.44, + "probability": 0.985 + }, + { + "start": 8454.04, + "end": 8456.28, + "probability": 0.8706 + }, + { + "start": 8456.9, + "end": 8457.52, + "probability": 0.7481 + }, + { + "start": 8458.22, + "end": 8460.22, + "probability": 0.9905 + }, + { + "start": 8461.5, + "end": 8462.08, + "probability": 0.5923 + }, + { + "start": 8462.68, + "end": 8464.5, + "probability": 0.9702 + }, + { + "start": 8464.56, + "end": 8468.04, + "probability": 0.9973 + }, + { + "start": 8468.04, + "end": 8471.28, + "probability": 0.9998 + }, + { + "start": 8472.06, + "end": 8472.52, + "probability": 0.7325 + }, + { + "start": 8472.58, + "end": 8475.04, + "probability": 0.8707 + }, + { + "start": 8475.04, + "end": 8481.36, + "probability": 0.9958 + }, + { + "start": 8482.1, + "end": 8484.78, + "probability": 0.9876 + }, + { + "start": 8484.78, + "end": 8487.58, + "probability": 0.9989 + }, + { + "start": 8488.38, + "end": 8494.28, + "probability": 0.9957 + }, + { + "start": 8494.52, + "end": 8501.7, + "probability": 0.9895 + }, + { + "start": 8502.48, + "end": 8503.1, + "probability": 0.6179 + }, + { + "start": 8503.88, + "end": 8509.86, + "probability": 0.9789 + }, + { + "start": 8510.46, + "end": 8511.8, + "probability": 0.9255 + }, + { + "start": 8512.16, + "end": 8513.83, + "probability": 0.8123 + }, + { + "start": 8514.66, + "end": 8515.54, + "probability": 0.9021 + }, + { + "start": 8516.5, + "end": 8517.56, + "probability": 0.995 + }, + { + "start": 8517.72, + "end": 8518.72, + "probability": 0.8018 + }, + { + "start": 8518.96, + "end": 8523.1, + "probability": 0.8619 + }, + { + "start": 8523.66, + "end": 8525.64, + "probability": 0.9624 + }, + { + "start": 8525.78, + "end": 8527.42, + "probability": 0.806 + }, + { + "start": 8527.5, + "end": 8528.82, + "probability": 0.9916 + }, + { + "start": 8529.48, + "end": 8531.26, + "probability": 0.9823 + }, + { + "start": 8531.94, + "end": 8533.21, + "probability": 0.9714 + }, + { + "start": 8533.88, + "end": 8534.86, + "probability": 0.8439 + }, + { + "start": 8534.96, + "end": 8538.7, + "probability": 0.9459 + }, + { + "start": 8539.58, + "end": 8541.56, + "probability": 0.9956 + }, + { + "start": 8543.44, + "end": 8549.32, + "probability": 0.9962 + }, + { + "start": 8549.84, + "end": 8552.86, + "probability": 0.986 + }, + { + "start": 8552.86, + "end": 8557.02, + "probability": 0.9966 + }, + { + "start": 8557.02, + "end": 8561.5, + "probability": 0.9941 + }, + { + "start": 8562.16, + "end": 8562.58, + "probability": 0.8272 + }, + { + "start": 8563.48, + "end": 8566.62, + "probability": 0.9932 + }, + { + "start": 8566.62, + "end": 8569.1, + "probability": 0.9927 + }, + { + "start": 8569.76, + "end": 8570.86, + "probability": 0.7962 + }, + { + "start": 8571.38, + "end": 8574.9, + "probability": 0.9979 + }, + { + "start": 8575.34, + "end": 8578.32, + "probability": 0.9891 + }, + { + "start": 8578.32, + "end": 8582.28, + "probability": 0.9952 + }, + { + "start": 8582.86, + "end": 8583.3, + "probability": 0.4904 + }, + { + "start": 8583.8, + "end": 8588.86, + "probability": 0.9802 + }, + { + "start": 8588.86, + "end": 8594.68, + "probability": 0.9989 + }, + { + "start": 8595.4, + "end": 8596.02, + "probability": 0.4374 + }, + { + "start": 8596.72, + "end": 8600.64, + "probability": 0.9959 + }, + { + "start": 8600.8, + "end": 8606.5, + "probability": 0.985 + }, + { + "start": 8607.2, + "end": 8609.84, + "probability": 0.9584 + }, + { + "start": 8610.32, + "end": 8611.22, + "probability": 0.6796 + }, + { + "start": 8611.6, + "end": 8612.34, + "probability": 0.9895 + }, + { + "start": 8612.7, + "end": 8614.62, + "probability": 0.9172 + }, + { + "start": 8615.72, + "end": 8619.38, + "probability": 0.9252 + }, + { + "start": 8619.72, + "end": 8623.66, + "probability": 0.9927 + }, + { + "start": 8623.66, + "end": 8628.94, + "probability": 0.9873 + }, + { + "start": 8629.38, + "end": 8632.96, + "probability": 0.9703 + }, + { + "start": 8633.52, + "end": 8637.18, + "probability": 0.9613 + }, + { + "start": 8637.3, + "end": 8639.02, + "probability": 0.8816 + }, + { + "start": 8639.6, + "end": 8642.02, + "probability": 0.9321 + }, + { + "start": 8642.76, + "end": 8646.8, + "probability": 0.9915 + }, + { + "start": 8647.36, + "end": 8651.5, + "probability": 0.7657 + }, + { + "start": 8651.84, + "end": 8652.06, + "probability": 0.7449 + }, + { + "start": 8652.66, + "end": 8653.76, + "probability": 0.6589 + }, + { + "start": 8653.84, + "end": 8657.54, + "probability": 0.8291 + }, + { + "start": 8657.78, + "end": 8661.92, + "probability": 0.9768 + }, + { + "start": 8662.64, + "end": 8664.02, + "probability": 0.4654 + }, + { + "start": 8664.02, + "end": 8666.56, + "probability": 0.9349 + }, + { + "start": 8666.64, + "end": 8667.32, + "probability": 0.6634 + }, + { + "start": 8667.34, + "end": 8667.6, + "probability": 0.5633 + }, + { + "start": 8667.92, + "end": 8669.62, + "probability": 0.9927 + }, + { + "start": 8670.84, + "end": 8674.22, + "probability": 0.9955 + }, + { + "start": 8675.36, + "end": 8675.52, + "probability": 0.1747 + }, + { + "start": 8675.82, + "end": 8678.74, + "probability": 0.9768 + }, + { + "start": 8678.82, + "end": 8682.26, + "probability": 0.9929 + }, + { + "start": 8682.98, + "end": 8683.48, + "probability": 0.8796 + }, + { + "start": 8683.48, + "end": 8684.48, + "probability": 0.7166 + }, + { + "start": 8684.58, + "end": 8687.32, + "probability": 0.9961 + }, + { + "start": 8687.32, + "end": 8690.02, + "probability": 0.7519 + }, + { + "start": 8690.02, + "end": 8691.04, + "probability": 0.6404 + }, + { + "start": 8691.12, + "end": 8691.76, + "probability": 0.9395 + }, + { + "start": 8692.26, + "end": 8693.92, + "probability": 0.9577 + }, + { + "start": 8694.08, + "end": 8697.16, + "probability": 0.5037 + }, + { + "start": 8712.14, + "end": 8716.28, + "probability": 0.797 + }, + { + "start": 8716.28, + "end": 8717.52, + "probability": 0.6352 + }, + { + "start": 8717.58, + "end": 8718.12, + "probability": 0.9735 + }, + { + "start": 8718.24, + "end": 8719.76, + "probability": 0.9572 + }, + { + "start": 8719.94, + "end": 8721.88, + "probability": 0.3432 + }, + { + "start": 8722.4, + "end": 8722.96, + "probability": 0.8024 + }, + { + "start": 8724.4, + "end": 8725.4, + "probability": 0.0136 + }, + { + "start": 8725.46, + "end": 8726.28, + "probability": 0.1931 + }, + { + "start": 8726.32, + "end": 8726.48, + "probability": 0.2021 + }, + { + "start": 8726.48, + "end": 8727.16, + "probability": 0.1468 + }, + { + "start": 8727.16, + "end": 8728.15, + "probability": 0.0187 + }, + { + "start": 8728.54, + "end": 8728.61, + "probability": 0.0144 + }, + { + "start": 8728.7, + "end": 8729.04, + "probability": 0.0789 + }, + { + "start": 8729.42, + "end": 8729.86, + "probability": 0.1394 + }, + { + "start": 8730.48, + "end": 8732.52, + "probability": 0.1022 + }, + { + "start": 8733.38, + "end": 8735.28, + "probability": 0.0607 + }, + { + "start": 8737.45, + "end": 8738.87, + "probability": 0.034 + }, + { + "start": 8739.04, + "end": 8742.38, + "probability": 0.0256 + }, + { + "start": 8748.1, + "end": 8748.48, + "probability": 0.0036 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.56, + "end": 8794.56, + "probability": 0.0834 + }, + { + "start": 8794.56, + "end": 8795.46, + "probability": 0.0473 + }, + { + "start": 8795.58, + "end": 8798.08, + "probability": 0.9796 + }, + { + "start": 8798.6, + "end": 8803.3, + "probability": 0.9302 + }, + { + "start": 8803.88, + "end": 8808.26, + "probability": 0.975 + }, + { + "start": 8809.2, + "end": 8811.58, + "probability": 0.8581 + }, + { + "start": 8812.1, + "end": 8813.34, + "probability": 0.9946 + }, + { + "start": 8813.46, + "end": 8818.54, + "probability": 0.9946 + }, + { + "start": 8819.66, + "end": 8821.98, + "probability": 0.9993 + }, + { + "start": 8822.12, + "end": 8822.74, + "probability": 0.964 + }, + { + "start": 8823.4, + "end": 8824.36, + "probability": 0.9661 + }, + { + "start": 8825.06, + "end": 8827.1, + "probability": 0.9707 + }, + { + "start": 8827.14, + "end": 8827.48, + "probability": 0.704 + }, + { + "start": 8829.18, + "end": 8831.16, + "probability": 0.8521 + }, + { + "start": 8831.42, + "end": 8831.68, + "probability": 0.8608 + }, + { + "start": 8831.76, + "end": 8835.16, + "probability": 0.9578 + }, + { + "start": 8835.32, + "end": 8838.24, + "probability": 0.8337 + }, + { + "start": 8838.48, + "end": 8840.94, + "probability": 0.9566 + }, + { + "start": 8847.72, + "end": 8850.12, + "probability": 0.6703 + }, + { + "start": 8850.24, + "end": 8853.28, + "probability": 0.5579 + }, + { + "start": 8853.4, + "end": 8855.3, + "probability": 0.145 + }, + { + "start": 8855.44, + "end": 8856.32, + "probability": 0.5726 + }, + { + "start": 8856.74, + "end": 8857.34, + "probability": 0.7585 + }, + { + "start": 8858.38, + "end": 8858.9, + "probability": 0.2923 + }, + { + "start": 8870.78, + "end": 8874.88, + "probability": 0.6031 + }, + { + "start": 8875.0, + "end": 8878.06, + "probability": 0.3615 + }, + { + "start": 8878.12, + "end": 8879.46, + "probability": 0.3147 + }, + { + "start": 8880.28, + "end": 8884.84, + "probability": 0.48 + }, + { + "start": 8894.46, + "end": 8895.34, + "probability": 0.0695 + }, + { + "start": 8895.76, + "end": 8896.88, + "probability": 0.1228 + }, + { + "start": 8896.88, + "end": 8898.78, + "probability": 0.1309 + }, + { + "start": 8899.34, + "end": 8899.98, + "probability": 0.0002 + }, + { + "start": 8902.04, + "end": 8902.04, + "probability": 0.0156 + }, + { + "start": 8902.04, + "end": 8903.52, + "probability": 0.0485 + }, + { + "start": 8903.92, + "end": 8908.52, + "probability": 0.0496 + }, + { + "start": 8908.52, + "end": 8909.42, + "probability": 0.1423 + }, + { + "start": 8919.4, + "end": 8922.02, + "probability": 0.1492 + }, + { + "start": 8923.36, + "end": 8926.16, + "probability": 0.0479 + }, + { + "start": 8926.2, + "end": 8928.48, + "probability": 0.0244 + }, + { + "start": 8949.0, + "end": 8949.0, + "probability": 0.0 + }, + { + "start": 8949.0, + "end": 8949.0, + "probability": 0.0 + }, + { + "start": 8949.0, + "end": 8949.0, + "probability": 0.0 + }, + { + "start": 8949.0, + "end": 8949.0, + "probability": 0.0 + }, + { + "start": 8949.0, + "end": 8949.0, + "probability": 0.0 + }, + { + "start": 8949.0, + "end": 8949.0, + "probability": 0.0 + }, + { + "start": 8949.0, + "end": 8949.0, + "probability": 0.0 + }, + { + "start": 8949.0, + "end": 8949.0, + "probability": 0.0 + }, + { + "start": 8949.0, + "end": 8949.0, + "probability": 0.0 + }, + { + "start": 8949.0, + "end": 8949.0, + "probability": 0.0 + }, + { + "start": 8949.0, + "end": 8949.0, + "probability": 0.0 + }, + { + "start": 8949.0, + "end": 8949.0, + "probability": 0.0 + }, + { + "start": 8949.0, + "end": 8949.0, + "probability": 0.0 + }, + { + "start": 8949.0, + "end": 8949.0, + "probability": 0.0 + }, + { + "start": 8949.0, + "end": 8949.0, + "probability": 0.0 + }, + { + "start": 8949.0, + "end": 8949.0, + "probability": 0.0 + }, + { + "start": 8949.2, + "end": 8949.38, + "probability": 0.1558 + }, + { + "start": 8949.38, + "end": 8949.38, + "probability": 0.2048 + }, + { + "start": 8949.38, + "end": 8949.38, + "probability": 0.0921 + }, + { + "start": 8949.38, + "end": 8951.08, + "probability": 0.4806 + }, + { + "start": 8951.88, + "end": 8952.46, + "probability": 0.8871 + }, + { + "start": 8952.52, + "end": 8954.56, + "probability": 0.896 + }, + { + "start": 8954.56, + "end": 8955.52, + "probability": 0.6645 + }, + { + "start": 8955.68, + "end": 8957.14, + "probability": 0.6454 + }, + { + "start": 8957.36, + "end": 8958.94, + "probability": 0.4392 + }, + { + "start": 8959.2, + "end": 8960.42, + "probability": 0.8464 + }, + { + "start": 8961.34, + "end": 8964.64, + "probability": 0.9932 + }, + { + "start": 8964.64, + "end": 8969.42, + "probability": 0.9889 + }, + { + "start": 8969.42, + "end": 8973.9, + "probability": 0.9853 + }, + { + "start": 8974.26, + "end": 8975.28, + "probability": 0.5849 + }, + { + "start": 8978.44, + "end": 8978.6, + "probability": 0.1366 + }, + { + "start": 8978.6, + "end": 8980.42, + "probability": 0.1909 + }, + { + "start": 8980.64, + "end": 8984.34, + "probability": 0.9802 + }, + { + "start": 8984.34, + "end": 8987.64, + "probability": 0.9391 + }, + { + "start": 8987.72, + "end": 8988.68, + "probability": 0.5115 + }, + { + "start": 8988.78, + "end": 8991.08, + "probability": 0.4196 + }, + { + "start": 8991.18, + "end": 8994.94, + "probability": 0.9508 + }, + { + "start": 8995.28, + "end": 8997.98, + "probability": 0.9774 + }, + { + "start": 8998.58, + "end": 9002.14, + "probability": 0.8912 + }, + { + "start": 9002.16, + "end": 9003.54, + "probability": 0.9618 + }, + { + "start": 9003.68, + "end": 9005.76, + "probability": 0.4536 + }, + { + "start": 9006.96, + "end": 9009.26, + "probability": 0.8753 + }, + { + "start": 9009.46, + "end": 9015.12, + "probability": 0.9397 + }, + { + "start": 9015.12, + "end": 9017.64, + "probability": 0.7781 + }, + { + "start": 9018.1, + "end": 9019.58, + "probability": 0.6857 + }, + { + "start": 9020.06, + "end": 9022.0, + "probability": 0.4539 + }, + { + "start": 9022.1, + "end": 9024.26, + "probability": 0.9388 + }, + { + "start": 9025.64, + "end": 9028.7, + "probability": 0.9978 + }, + { + "start": 9028.72, + "end": 9029.92, + "probability": 0.8473 + }, + { + "start": 9030.02, + "end": 9031.2, + "probability": 0.5658 + }, + { + "start": 9031.6, + "end": 9033.3, + "probability": 0.4797 + }, + { + "start": 9033.48, + "end": 9034.8, + "probability": 0.7945 + }, + { + "start": 9035.5, + "end": 9038.76, + "probability": 0.981 + }, + { + "start": 9038.76, + "end": 9042.36, + "probability": 0.6272 + }, + { + "start": 9042.42, + "end": 9043.02, + "probability": 0.7171 + }, + { + "start": 9043.4, + "end": 9044.62, + "probability": 0.4283 + }, + { + "start": 9045.02, + "end": 9046.46, + "probability": 0.571 + }, + { + "start": 9046.6, + "end": 9046.86, + "probability": 0.8514 + }, + { + "start": 9048.44, + "end": 9051.3, + "probability": 0.713 + }, + { + "start": 9052.99, + "end": 9057.36, + "probability": 0.9605 + }, + { + "start": 9057.54, + "end": 9063.76, + "probability": 0.3748 + }, + { + "start": 9064.24, + "end": 9068.84, + "probability": 0.6935 + }, + { + "start": 9074.66, + "end": 9075.5, + "probability": 0.0645 + }, + { + "start": 9076.42, + "end": 9076.84, + "probability": 0.1159 + }, + { + "start": 9079.7, + "end": 9079.7, + "probability": 0.0693 + }, + { + "start": 9079.7, + "end": 9079.7, + "probability": 0.0715 + }, + { + "start": 9079.7, + "end": 9079.7, + "probability": 0.1015 + }, + { + "start": 9079.7, + "end": 9079.7, + "probability": 0.1733 + }, + { + "start": 9079.7, + "end": 9079.9, + "probability": 0.1845 + }, + { + "start": 9079.9, + "end": 9080.92, + "probability": 0.4405 + }, + { + "start": 9081.4, + "end": 9083.86, + "probability": 0.3127 + }, + { + "start": 9084.34, + "end": 9085.72, + "probability": 0.9908 + }, + { + "start": 9086.02, + "end": 9086.8, + "probability": 0.6683 + }, + { + "start": 9087.44, + "end": 9088.66, + "probability": 0.9079 + }, + { + "start": 9089.82, + "end": 9092.28, + "probability": 0.9774 + }, + { + "start": 9092.96, + "end": 9093.54, + "probability": 0.7445 + }, + { + "start": 9094.44, + "end": 9095.96, + "probability": 0.8213 + }, + { + "start": 9096.78, + "end": 9099.9, + "probability": 0.8503 + }, + { + "start": 9101.26, + "end": 9108.26, + "probability": 0.9974 + }, + { + "start": 9109.18, + "end": 9111.68, + "probability": 0.9823 + }, + { + "start": 9111.88, + "end": 9112.96, + "probability": 0.8514 + }, + { + "start": 9113.62, + "end": 9115.88, + "probability": 0.9677 + }, + { + "start": 9116.68, + "end": 9117.08, + "probability": 0.7109 + }, + { + "start": 9117.14, + "end": 9117.58, + "probability": 0.9817 + }, + { + "start": 9118.46, + "end": 9121.44, + "probability": 0.9797 + }, + { + "start": 9121.98, + "end": 9125.34, + "probability": 0.9976 + }, + { + "start": 9128.24, + "end": 9129.52, + "probability": 0.9843 + }, + { + "start": 9130.04, + "end": 9132.62, + "probability": 0.9683 + }, + { + "start": 9133.34, + "end": 9134.5, + "probability": 0.9956 + }, + { + "start": 9135.34, + "end": 9138.82, + "probability": 0.9904 + }, + { + "start": 9139.54, + "end": 9142.2, + "probability": 0.9961 + }, + { + "start": 9142.28, + "end": 9142.76, + "probability": 0.8762 + }, + { + "start": 9142.88, + "end": 9144.6, + "probability": 0.8963 + }, + { + "start": 9145.32, + "end": 9147.2, + "probability": 0.9371 + }, + { + "start": 9147.86, + "end": 9151.36, + "probability": 0.9923 + }, + { + "start": 9151.88, + "end": 9155.7, + "probability": 0.9591 + }, + { + "start": 9156.58, + "end": 9158.72, + "probability": 0.9933 + }, + { + "start": 9158.8, + "end": 9160.7, + "probability": 0.6838 + }, + { + "start": 9161.3, + "end": 9166.2, + "probability": 0.9602 + }, + { + "start": 9168.26, + "end": 9170.88, + "probability": 0.9318 + }, + { + "start": 9170.88, + "end": 9173.92, + "probability": 0.9956 + }, + { + "start": 9174.64, + "end": 9177.24, + "probability": 0.9253 + }, + { + "start": 9177.86, + "end": 9181.44, + "probability": 0.9973 + }, + { + "start": 9181.96, + "end": 9185.62, + "probability": 0.9146 + }, + { + "start": 9186.5, + "end": 9189.38, + "probability": 0.9795 + }, + { + "start": 9190.52, + "end": 9191.38, + "probability": 0.6646 + }, + { + "start": 9192.0, + "end": 9194.54, + "probability": 0.9615 + }, + { + "start": 9195.2, + "end": 9201.46, + "probability": 0.9616 + }, + { + "start": 9202.42, + "end": 9205.84, + "probability": 0.9649 + }, + { + "start": 9206.5, + "end": 9208.46, + "probability": 0.646 + }, + { + "start": 9208.62, + "end": 9212.34, + "probability": 0.9477 + }, + { + "start": 9212.84, + "end": 9213.72, + "probability": 0.5217 + }, + { + "start": 9214.3, + "end": 9217.72, + "probability": 0.8783 + }, + { + "start": 9217.72, + "end": 9221.88, + "probability": 0.9956 + }, + { + "start": 9222.56, + "end": 9227.22, + "probability": 0.7642 + }, + { + "start": 9227.82, + "end": 9231.82, + "probability": 0.9972 + }, + { + "start": 9231.82, + "end": 9234.5, + "probability": 0.9919 + }, + { + "start": 9235.14, + "end": 9237.52, + "probability": 0.995 + }, + { + "start": 9238.24, + "end": 9245.04, + "probability": 0.9919 + }, + { + "start": 9245.04, + "end": 9250.68, + "probability": 0.9971 + }, + { + "start": 9251.6, + "end": 9252.62, + "probability": 0.5456 + }, + { + "start": 9253.52, + "end": 9255.38, + "probability": 0.8303 + }, + { + "start": 9256.4, + "end": 9262.2, + "probability": 0.9901 + }, + { + "start": 9262.56, + "end": 9264.4, + "probability": 0.7296 + }, + { + "start": 9264.66, + "end": 9266.84, + "probability": 0.6049 + }, + { + "start": 9267.36, + "end": 9270.12, + "probability": 0.9278 + }, + { + "start": 9270.12, + "end": 9272.52, + "probability": 0.9956 + }, + { + "start": 9273.1, + "end": 9278.36, + "probability": 0.994 + }, + { + "start": 9278.36, + "end": 9283.98, + "probability": 0.9971 + }, + { + "start": 9284.06, + "end": 9285.02, + "probability": 0.568 + }, + { + "start": 9285.62, + "end": 9290.82, + "probability": 0.9923 + }, + { + "start": 9291.36, + "end": 9293.0, + "probability": 0.94 + }, + { + "start": 9293.94, + "end": 9297.04, + "probability": 0.9897 + }, + { + "start": 9297.56, + "end": 9298.78, + "probability": 0.9126 + }, + { + "start": 9299.34, + "end": 9300.54, + "probability": 0.8947 + }, + { + "start": 9300.64, + "end": 9301.44, + "probability": 0.8322 + }, + { + "start": 9301.56, + "end": 9302.28, + "probability": 0.4558 + }, + { + "start": 9302.4, + "end": 9303.82, + "probability": 0.9277 + }, + { + "start": 9304.4, + "end": 9307.32, + "probability": 0.9937 + }, + { + "start": 9307.32, + "end": 9311.56, + "probability": 0.9948 + }, + { + "start": 9311.76, + "end": 9315.48, + "probability": 0.9829 + }, + { + "start": 9315.56, + "end": 9316.5, + "probability": 0.7599 + }, + { + "start": 9317.12, + "end": 9317.64, + "probability": 0.6853 + }, + { + "start": 9317.78, + "end": 9320.24, + "probability": 0.9883 + }, + { + "start": 9320.24, + "end": 9325.04, + "probability": 0.9557 + }, + { + "start": 9325.2, + "end": 9326.24, + "probability": 0.7916 + }, + { + "start": 9326.72, + "end": 9330.56, + "probability": 0.9954 + }, + { + "start": 9331.62, + "end": 9334.58, + "probability": 0.9542 + }, + { + "start": 9335.1, + "end": 9337.85, + "probability": 0.8978 + }, + { + "start": 9337.96, + "end": 9341.66, + "probability": 0.9937 + }, + { + "start": 9342.26, + "end": 9342.58, + "probability": 0.2746 + }, + { + "start": 9342.96, + "end": 9347.56, + "probability": 0.9907 + }, + { + "start": 9347.72, + "end": 9348.06, + "probability": 0.3408 + }, + { + "start": 9348.26, + "end": 9350.2, + "probability": 0.9974 + }, + { + "start": 9351.1, + "end": 9352.6, + "probability": 0.9463 + }, + { + "start": 9353.4, + "end": 9358.74, + "probability": 0.9924 + }, + { + "start": 9358.74, + "end": 9362.0, + "probability": 0.8188 + }, + { + "start": 9362.08, + "end": 9363.66, + "probability": 0.8237 + }, + { + "start": 9364.6, + "end": 9366.56, + "probability": 0.6636 + }, + { + "start": 9367.14, + "end": 9370.36, + "probability": 0.9945 + }, + { + "start": 9371.16, + "end": 9375.12, + "probability": 0.9876 + }, + { + "start": 9375.12, + "end": 9381.14, + "probability": 0.9952 + }, + { + "start": 9381.14, + "end": 9386.6, + "probability": 0.9951 + }, + { + "start": 9387.26, + "end": 9391.88, + "probability": 0.8923 + }, + { + "start": 9392.28, + "end": 9392.52, + "probability": 0.3735 + }, + { + "start": 9392.66, + "end": 9393.1, + "probability": 0.8788 + }, + { + "start": 9393.16, + "end": 9398.88, + "probability": 0.9891 + }, + { + "start": 9400.78, + "end": 9403.74, + "probability": 0.9738 + }, + { + "start": 9403.74, + "end": 9408.0, + "probability": 0.9982 + }, + { + "start": 9408.02, + "end": 9408.72, + "probability": 0.6497 + }, + { + "start": 9408.8, + "end": 9409.84, + "probability": 0.9402 + }, + { + "start": 9410.64, + "end": 9412.78, + "probability": 0.9077 + }, + { + "start": 9412.92, + "end": 9415.5, + "probability": 0.9599 + }, + { + "start": 9416.04, + "end": 9422.92, + "probability": 0.9978 + }, + { + "start": 9422.92, + "end": 9428.36, + "probability": 0.9904 + }, + { + "start": 9428.56, + "end": 9429.75, + "probability": 0.2939 + }, + { + "start": 9430.76, + "end": 9434.86, + "probability": 0.8799 + }, + { + "start": 9436.02, + "end": 9436.14, + "probability": 0.4054 + }, + { + "start": 9436.18, + "end": 9441.26, + "probability": 0.7066 + }, + { + "start": 9441.74, + "end": 9446.12, + "probability": 0.9883 + }, + { + "start": 9446.64, + "end": 9447.06, + "probability": 0.8815 + }, + { + "start": 9447.08, + "end": 9450.54, + "probability": 0.9824 + }, + { + "start": 9450.66, + "end": 9452.52, + "probability": 0.989 + }, + { + "start": 9452.76, + "end": 9453.46, + "probability": 0.8014 + }, + { + "start": 9454.3, + "end": 9455.1, + "probability": 0.6208 + }, + { + "start": 9455.2, + "end": 9456.66, + "probability": 0.7157 + }, + { + "start": 9456.7, + "end": 9458.28, + "probability": 0.9917 + }, + { + "start": 9458.56, + "end": 9458.86, + "probability": 0.7615 + }, + { + "start": 9458.96, + "end": 9462.46, + "probability": 0.9531 + }, + { + "start": 9463.16, + "end": 9470.78, + "probability": 0.9331 + }, + { + "start": 9471.18, + "end": 9474.9, + "probability": 0.9635 + }, + { + "start": 9475.2, + "end": 9479.3, + "probability": 0.996 + }, + { + "start": 9480.06, + "end": 9484.86, + "probability": 0.9917 + }, + { + "start": 9484.96, + "end": 9485.4, + "probability": 0.7777 + }, + { + "start": 9486.94, + "end": 9488.76, + "probability": 0.7918 + }, + { + "start": 9489.24, + "end": 9492.2, + "probability": 0.9835 + }, + { + "start": 9492.58, + "end": 9495.48, + "probability": 0.731 + }, + { + "start": 9496.46, + "end": 9497.91, + "probability": 0.6874 + }, + { + "start": 9498.3, + "end": 9500.86, + "probability": 0.2156 + }, + { + "start": 9502.46, + "end": 9508.08, + "probability": 0.8478 + }, + { + "start": 9509.5, + "end": 9517.88, + "probability": 0.9359 + }, + { + "start": 9518.02, + "end": 9519.98, + "probability": 0.4672 + }, + { + "start": 9520.6, + "end": 9522.1, + "probability": 0.6418 + }, + { + "start": 9522.2, + "end": 9523.55, + "probability": 0.9751 + }, + { + "start": 9528.06, + "end": 9528.46, + "probability": 0.2351 + }, + { + "start": 9536.66, + "end": 9541.78, + "probability": 0.741 + }, + { + "start": 9541.92, + "end": 9543.36, + "probability": 0.3491 + }, + { + "start": 9543.74, + "end": 9546.28, + "probability": 0.6425 + }, + { + "start": 9546.36, + "end": 9548.49, + "probability": 0.505 + }, + { + "start": 9551.98, + "end": 9553.66, + "probability": 0.0957 + }, + { + "start": 9553.66, + "end": 9555.74, + "probability": 0.0774 + }, + { + "start": 9556.48, + "end": 9560.44, + "probability": 0.0685 + }, + { + "start": 9560.44, + "end": 9561.76, + "probability": 0.1377 + }, + { + "start": 9562.14, + "end": 9564.85, + "probability": 0.1105 + }, + { + "start": 9565.56, + "end": 9566.5, + "probability": 0.0128 + }, + { + "start": 9567.58, + "end": 9569.88, + "probability": 0.0842 + }, + { + "start": 9569.88, + "end": 9569.88, + "probability": 0.0342 + }, + { + "start": 9569.88, + "end": 9572.06, + "probability": 0.0285 + }, + { + "start": 9572.62, + "end": 9573.1, + "probability": 0.0 + }, + { + "start": 9573.62, + "end": 9575.5, + "probability": 0.0601 + }, + { + "start": 9580.5, + "end": 9584.02, + "probability": 0.0271 + }, + { + "start": 9593.82, + "end": 9596.04, + "probability": 0.1785 + }, + { + "start": 9596.04, + "end": 9598.6, + "probability": 0.3133 + }, + { + "start": 9598.6, + "end": 9598.72, + "probability": 0.1021 + }, + { + "start": 9598.74, + "end": 9599.83, + "probability": 0.2106 + }, + { + "start": 9608.0, + "end": 9608.0, + "probability": 0.0 + }, + { + "start": 9608.0, + "end": 9608.0, + "probability": 0.0 + }, + { + "start": 9608.0, + "end": 9608.0, + "probability": 0.0 + }, + { + "start": 9608.0, + "end": 9608.0, + "probability": 0.0 + }, + { + "start": 9608.0, + "end": 9608.0, + "probability": 0.0 + }, + { + "start": 9608.0, + "end": 9608.0, + "probability": 0.0 + }, + { + "start": 9608.0, + "end": 9608.0, + "probability": 0.0 + }, + { + "start": 9608.0, + "end": 9608.0, + "probability": 0.0 + }, + { + "start": 9609.91, + "end": 9617.06, + "probability": 0.8123 + }, + { + "start": 9617.9, + "end": 9623.16, + "probability": 0.9899 + }, + { + "start": 9625.08, + "end": 9630.8, + "probability": 0.9762 + }, + { + "start": 9631.5, + "end": 9632.6, + "probability": 0.9426 + }, + { + "start": 9633.36, + "end": 9634.4, + "probability": 0.9585 + }, + { + "start": 9635.52, + "end": 9637.22, + "probability": 0.9954 + }, + { + "start": 9637.76, + "end": 9639.52, + "probability": 0.9334 + }, + { + "start": 9640.14, + "end": 9640.78, + "probability": 0.8893 + }, + { + "start": 9640.86, + "end": 9643.44, + "probability": 0.9688 + }, + { + "start": 9643.58, + "end": 9645.92, + "probability": 0.9786 + }, + { + "start": 9647.0, + "end": 9649.54, + "probability": 0.9274 + }, + { + "start": 9650.22, + "end": 9651.98, + "probability": 0.807 + }, + { + "start": 9653.08, + "end": 9654.25, + "probability": 0.9995 + }, + { + "start": 9654.98, + "end": 9658.23, + "probability": 0.9951 + }, + { + "start": 9658.56, + "end": 9662.02, + "probability": 0.9786 + }, + { + "start": 9662.76, + "end": 9666.02, + "probability": 0.9814 + }, + { + "start": 9666.1, + "end": 9667.06, + "probability": 0.8988 + }, + { + "start": 9667.98, + "end": 9669.48, + "probability": 0.7111 + }, + { + "start": 9670.04, + "end": 9673.2, + "probability": 0.8994 + }, + { + "start": 9674.1, + "end": 9678.84, + "probability": 0.9571 + }, + { + "start": 9680.02, + "end": 9687.48, + "probability": 0.8194 + }, + { + "start": 9688.16, + "end": 9691.96, + "probability": 0.9784 + }, + { + "start": 9692.46, + "end": 9695.4, + "probability": 0.9675 + }, + { + "start": 9696.46, + "end": 9699.6, + "probability": 0.9931 + }, + { + "start": 9699.66, + "end": 9699.82, + "probability": 0.3809 + }, + { + "start": 9699.88, + "end": 9700.3, + "probability": 0.8392 + }, + { + "start": 9700.88, + "end": 9707.24, + "probability": 0.9254 + }, + { + "start": 9707.32, + "end": 9707.8, + "probability": 0.7964 + }, + { + "start": 9708.78, + "end": 9712.96, + "probability": 0.9935 + }, + { + "start": 9713.82, + "end": 9714.8, + "probability": 0.9388 + }, + { + "start": 9715.28, + "end": 9719.0, + "probability": 0.9846 + }, + { + "start": 9719.38, + "end": 9723.2, + "probability": 0.9806 + }, + { + "start": 9723.58, + "end": 9724.22, + "probability": 0.7705 + }, + { + "start": 9724.26, + "end": 9726.12, + "probability": 0.93 + }, + { + "start": 9726.64, + "end": 9729.36, + "probability": 0.9883 + }, + { + "start": 9729.68, + "end": 9733.64, + "probability": 0.9849 + }, + { + "start": 9733.74, + "end": 9736.52, + "probability": 0.1123 + }, + { + "start": 9736.68, + "end": 9737.42, + "probability": 0.1951 + }, + { + "start": 9738.12, + "end": 9739.2, + "probability": 0.5405 + }, + { + "start": 9739.54, + "end": 9739.94, + "probability": 0.5916 + }, + { + "start": 9740.0, + "end": 9742.4, + "probability": 0.3676 + }, + { + "start": 9742.48, + "end": 9745.44, + "probability": 0.7325 + }, + { + "start": 9746.27, + "end": 9750.06, + "probability": 0.9937 + }, + { + "start": 9750.44, + "end": 9754.56, + "probability": 0.8616 + }, + { + "start": 9754.96, + "end": 9761.72, + "probability": 0.9945 + }, + { + "start": 9762.66, + "end": 9768.26, + "probability": 0.9317 + }, + { + "start": 9769.18, + "end": 9771.96, + "probability": 0.8988 + }, + { + "start": 9772.28, + "end": 9775.26, + "probability": 0.9908 + }, + { + "start": 9775.48, + "end": 9776.94, + "probability": 0.8911 + }, + { + "start": 9777.18, + "end": 9777.76, + "probability": 0.6749 + }, + { + "start": 9777.86, + "end": 9780.46, + "probability": 0.9888 + }, + { + "start": 9780.62, + "end": 9782.84, + "probability": 0.9824 + }, + { + "start": 9783.8, + "end": 9787.5, + "probability": 0.9934 + }, + { + "start": 9787.64, + "end": 9789.88, + "probability": 0.9932 + }, + { + "start": 9791.82, + "end": 9792.36, + "probability": 0.5851 + }, + { + "start": 9792.38, + "end": 9797.54, + "probability": 0.8933 + }, + { + "start": 9798.02, + "end": 9804.58, + "probability": 0.9777 + }, + { + "start": 9805.18, + "end": 9808.48, + "probability": 0.7571 + }, + { + "start": 9809.26, + "end": 9814.34, + "probability": 0.9541 + }, + { + "start": 9814.58, + "end": 9816.82, + "probability": 0.9973 + }, + { + "start": 9816.9, + "end": 9817.48, + "probability": 0.4961 + }, + { + "start": 9819.62, + "end": 9823.5, + "probability": 0.9895 + }, + { + "start": 9824.12, + "end": 9827.04, + "probability": 0.9712 + }, + { + "start": 9827.16, + "end": 9831.62, + "probability": 0.9956 + }, + { + "start": 9831.7, + "end": 9834.74, + "probability": 0.9574 + }, + { + "start": 9835.24, + "end": 9838.84, + "probability": 0.9874 + }, + { + "start": 9839.68, + "end": 9839.68, + "probability": 0.2048 + }, + { + "start": 9839.68, + "end": 9843.5, + "probability": 0.8556 + }, + { + "start": 9843.92, + "end": 9850.98, + "probability": 0.951 + }, + { + "start": 9851.54, + "end": 9856.8, + "probability": 0.9521 + }, + { + "start": 9857.16, + "end": 9859.1, + "probability": 0.8197 + }, + { + "start": 9859.52, + "end": 9861.69, + "probability": 0.6724 + }, + { + "start": 9862.2, + "end": 9866.86, + "probability": 0.9771 + }, + { + "start": 9867.2, + "end": 9868.52, + "probability": 0.9721 + }, + { + "start": 9868.66, + "end": 9871.1, + "probability": 0.9825 + }, + { + "start": 9871.8, + "end": 9876.44, + "probability": 0.926 + }, + { + "start": 9876.76, + "end": 9880.64, + "probability": 0.9919 + }, + { + "start": 9881.06, + "end": 9884.64, + "probability": 0.736 + }, + { + "start": 9885.16, + "end": 9887.16, + "probability": 0.9932 + }, + { + "start": 9887.24, + "end": 9889.98, + "probability": 0.8245 + }, + { + "start": 9890.02, + "end": 9891.26, + "probability": 0.8738 + }, + { + "start": 9891.34, + "end": 9895.1, + "probability": 0.9597 + }, + { + "start": 9896.18, + "end": 9899.68, + "probability": 0.9868 + }, + { + "start": 9899.94, + "end": 9903.46, + "probability": 0.7569 + }, + { + "start": 9903.54, + "end": 9906.14, + "probability": 0.9955 + }, + { + "start": 9906.24, + "end": 9912.82, + "probability": 0.9795 + }, + { + "start": 9914.54, + "end": 9914.62, + "probability": 0.1346 + }, + { + "start": 9914.62, + "end": 9920.78, + "probability": 0.9868 + }, + { + "start": 9920.78, + "end": 9924.46, + "probability": 0.8615 + }, + { + "start": 9924.98, + "end": 9925.08, + "probability": 0.9609 + }, + { + "start": 9925.9, + "end": 9926.74, + "probability": 0.9083 + }, + { + "start": 9927.22, + "end": 9930.7, + "probability": 0.9691 + }, + { + "start": 9931.08, + "end": 9936.44, + "probability": 0.9954 + }, + { + "start": 9937.02, + "end": 9938.58, + "probability": 0.841 + }, + { + "start": 9939.44, + "end": 9944.22, + "probability": 0.9692 + }, + { + "start": 9944.82, + "end": 9947.44, + "probability": 0.7857 + }, + { + "start": 9947.98, + "end": 9949.6, + "probability": 0.9927 + }, + { + "start": 9949.72, + "end": 9955.04, + "probability": 0.8984 + }, + { + "start": 9955.76, + "end": 9961.7, + "probability": 0.994 + }, + { + "start": 9962.43, + "end": 9964.62, + "probability": 0.6008 + }, + { + "start": 9964.62, + "end": 9965.78, + "probability": 0.4963 + }, + { + "start": 9966.14, + "end": 9967.98, + "probability": 0.8748 + }, + { + "start": 9968.1, + "end": 9970.08, + "probability": 0.9449 + }, + { + "start": 9980.58, + "end": 9982.14, + "probability": 0.9162 + }, + { + "start": 9984.0, + "end": 9987.54, + "probability": 0.8473 + }, + { + "start": 9988.96, + "end": 9990.22, + "probability": 0.9985 + }, + { + "start": 9991.36, + "end": 9993.76, + "probability": 0.9882 + }, + { + "start": 9994.6, + "end": 9998.72, + "probability": 0.6691 + }, + { + "start": 9998.78, + "end": 10000.68, + "probability": 0.8884 + }, + { + "start": 10002.06, + "end": 10002.62, + "probability": 0.5935 + }, + { + "start": 10002.74, + "end": 10006.12, + "probability": 0.9893 + }, + { + "start": 10006.12, + "end": 10009.34, + "probability": 0.998 + }, + { + "start": 10010.24, + "end": 10011.44, + "probability": 0.7308 + }, + { + "start": 10011.76, + "end": 10013.04, + "probability": 0.9771 + }, + { + "start": 10013.16, + "end": 10021.06, + "probability": 0.9802 + }, + { + "start": 10021.6, + "end": 10025.96, + "probability": 0.9975 + }, + { + "start": 10026.5, + "end": 10028.46, + "probability": 0.974 + }, + { + "start": 10029.18, + "end": 10031.02, + "probability": 0.9872 + }, + { + "start": 10031.8, + "end": 10034.42, + "probability": 0.9644 + }, + { + "start": 10034.88, + "end": 10036.02, + "probability": 0.9819 + }, + { + "start": 10036.2, + "end": 10040.98, + "probability": 0.9987 + }, + { + "start": 10041.1, + "end": 10043.72, + "probability": 0.9988 + }, + { + "start": 10044.26, + "end": 10049.06, + "probability": 0.9875 + }, + { + "start": 10049.68, + "end": 10051.62, + "probability": 0.9987 + }, + { + "start": 10051.72, + "end": 10054.42, + "probability": 0.9446 + }, + { + "start": 10054.54, + "end": 10055.0, + "probability": 0.9409 + }, + { + "start": 10055.1, + "end": 10055.62, + "probability": 0.9623 + }, + { + "start": 10055.7, + "end": 10056.22, + "probability": 0.9325 + }, + { + "start": 10056.3, + "end": 10056.78, + "probability": 0.953 + }, + { + "start": 10056.96, + "end": 10059.36, + "probability": 0.4998 + }, + { + "start": 10059.36, + "end": 10061.62, + "probability": 0.4079 + }, + { + "start": 10062.42, + "end": 10063.36, + "probability": 0.9279 + }, + { + "start": 10064.5, + "end": 10068.37, + "probability": 0.9701 + }, + { + "start": 10069.2, + "end": 10072.4, + "probability": 0.9834 + }, + { + "start": 10072.56, + "end": 10073.51, + "probability": 0.9888 + }, + { + "start": 10074.48, + "end": 10077.91, + "probability": 0.9749 + }, + { + "start": 10079.02, + "end": 10082.12, + "probability": 0.9551 + }, + { + "start": 10082.76, + "end": 10087.38, + "probability": 0.9814 + }, + { + "start": 10087.96, + "end": 10089.92, + "probability": 0.9271 + }, + { + "start": 10090.02, + "end": 10091.8, + "probability": 0.989 + }, + { + "start": 10092.48, + "end": 10098.4, + "probability": 0.9893 + }, + { + "start": 10099.36, + "end": 10101.32, + "probability": 0.9169 + }, + { + "start": 10103.24, + "end": 10105.1, + "probability": 0.75 + }, + { + "start": 10105.4, + "end": 10106.98, + "probability": 0.9522 + }, + { + "start": 10107.2, + "end": 10108.78, + "probability": 0.848 + }, + { + "start": 10109.16, + "end": 10114.58, + "probability": 0.894 + }, + { + "start": 10115.1, + "end": 10117.57, + "probability": 0.9933 + }, + { + "start": 10117.88, + "end": 10118.72, + "probability": 0.7275 + }, + { + "start": 10118.86, + "end": 10121.08, + "probability": 0.9643 + }, + { + "start": 10121.82, + "end": 10125.66, + "probability": 0.9907 + }, + { + "start": 10125.66, + "end": 10130.0, + "probability": 0.9902 + }, + { + "start": 10131.16, + "end": 10136.67, + "probability": 0.9826 + }, + { + "start": 10137.12, + "end": 10142.0, + "probability": 0.9783 + }, + { + "start": 10142.4, + "end": 10144.81, + "probability": 0.9884 + }, + { + "start": 10144.94, + "end": 10146.2, + "probability": 0.7409 + }, + { + "start": 10146.58, + "end": 10150.78, + "probability": 0.9935 + }, + { + "start": 10151.08, + "end": 10151.84, + "probability": 0.4298 + }, + { + "start": 10152.36, + "end": 10155.26, + "probability": 0.9922 + }, + { + "start": 10155.54, + "end": 10157.72, + "probability": 0.999 + }, + { + "start": 10158.22, + "end": 10159.62, + "probability": 0.9421 + }, + { + "start": 10160.06, + "end": 10160.66, + "probability": 0.714 + }, + { + "start": 10160.82, + "end": 10163.6, + "probability": 0.9983 + }, + { + "start": 10163.6, + "end": 10167.12, + "probability": 0.9978 + }, + { + "start": 10167.48, + "end": 10169.14, + "probability": 0.8258 + }, + { + "start": 10169.52, + "end": 10172.14, + "probability": 0.9187 + }, + { + "start": 10172.64, + "end": 10172.78, + "probability": 0.4736 + }, + { + "start": 10172.88, + "end": 10173.64, + "probability": 0.8163 + }, + { + "start": 10173.8, + "end": 10175.54, + "probability": 0.9585 + }, + { + "start": 10175.9, + "end": 10178.82, + "probability": 0.9931 + }, + { + "start": 10179.34, + "end": 10184.18, + "probability": 0.8831 + }, + { + "start": 10184.28, + "end": 10184.98, + "probability": 0.738 + }, + { + "start": 10185.52, + "end": 10186.18, + "probability": 0.6341 + }, + { + "start": 10186.36, + "end": 10188.2, + "probability": 0.9577 + }, + { + "start": 10189.08, + "end": 10191.5, + "probability": 0.9961 + }, + { + "start": 10191.98, + "end": 10193.66, + "probability": 0.9967 + }, + { + "start": 10195.52, + "end": 10199.22, + "probability": 0.9789 + }, + { + "start": 10199.46, + "end": 10200.28, + "probability": 0.5168 + }, + { + "start": 10200.56, + "end": 10203.46, + "probability": 0.9323 + }, + { + "start": 10204.12, + "end": 10207.72, + "probability": 0.9773 + }, + { + "start": 10208.32, + "end": 10211.88, + "probability": 0.9398 + }, + { + "start": 10212.6, + "end": 10215.9, + "probability": 0.8021 + }, + { + "start": 10215.92, + "end": 10218.34, + "probability": 0.082 + }, + { + "start": 10218.46, + "end": 10221.08, + "probability": 0.8993 + }, + { + "start": 10221.52, + "end": 10224.62, + "probability": 0.9956 + }, + { + "start": 10224.84, + "end": 10226.98, + "probability": 0.9884 + }, + { + "start": 10227.18, + "end": 10227.66, + "probability": 0.8479 + }, + { + "start": 10229.36, + "end": 10231.5, + "probability": 0.9282 + }, + { + "start": 10231.9, + "end": 10234.18, + "probability": 0.9838 + }, + { + "start": 10234.24, + "end": 10235.4, + "probability": 0.4232 + }, + { + "start": 10235.42, + "end": 10236.22, + "probability": 0.9867 + }, + { + "start": 10237.64, + "end": 10240.88, + "probability": 0.8182 + }, + { + "start": 10241.52, + "end": 10242.9, + "probability": 0.988 + }, + { + "start": 10247.92, + "end": 10249.88, + "probability": 0.9797 + }, + { + "start": 10261.86, + "end": 10263.7, + "probability": 0.5953 + }, + { + "start": 10263.9, + "end": 10268.98, + "probability": 0.972 + }, + { + "start": 10270.0, + "end": 10275.98, + "probability": 0.8649 + }, + { + "start": 10276.04, + "end": 10280.88, + "probability": 0.9197 + }, + { + "start": 10280.98, + "end": 10283.44, + "probability": 0.8504 + }, + { + "start": 10284.28, + "end": 10288.02, + "probability": 0.9287 + }, + { + "start": 10289.08, + "end": 10293.88, + "probability": 0.9332 + }, + { + "start": 10293.88, + "end": 10298.2, + "probability": 0.9689 + }, + { + "start": 10299.54, + "end": 10302.88, + "probability": 0.9873 + }, + { + "start": 10303.12, + "end": 10303.66, + "probability": 0.7017 + }, + { + "start": 10303.8, + "end": 10304.12, + "probability": 0.9005 + }, + { + "start": 10304.32, + "end": 10308.14, + "probability": 0.9504 + }, + { + "start": 10308.4, + "end": 10310.5, + "probability": 0.8058 + }, + { + "start": 10311.86, + "end": 10316.36, + "probability": 0.9901 + }, + { + "start": 10316.46, + "end": 10320.04, + "probability": 0.4145 + }, + { + "start": 10320.3, + "end": 10321.37, + "probability": 0.9004 + }, + { + "start": 10322.02, + "end": 10324.26, + "probability": 0.8651 + }, + { + "start": 10324.44, + "end": 10324.84, + "probability": 0.8296 + }, + { + "start": 10324.88, + "end": 10325.4, + "probability": 0.6183 + }, + { + "start": 10326.12, + "end": 10329.56, + "probability": 0.9791 + }, + { + "start": 10330.5, + "end": 10333.52, + "probability": 0.9578 + }, + { + "start": 10333.98, + "end": 10338.66, + "probability": 0.976 + }, + { + "start": 10339.38, + "end": 10342.38, + "probability": 0.7547 + }, + { + "start": 10342.98, + "end": 10347.38, + "probability": 0.9941 + }, + { + "start": 10347.48, + "end": 10348.06, + "probability": 0.816 + }, + { + "start": 10348.72, + "end": 10352.74, + "probability": 0.9147 + }, + { + "start": 10353.34, + "end": 10359.48, + "probability": 0.9898 + }, + { + "start": 10360.08, + "end": 10361.74, + "probability": 0.9896 + }, + { + "start": 10361.8, + "end": 10365.9, + "probability": 0.9725 + }, + { + "start": 10366.7, + "end": 10369.08, + "probability": 0.9901 + }, + { + "start": 10369.68, + "end": 10372.58, + "probability": 0.8287 + }, + { + "start": 10373.16, + "end": 10375.56, + "probability": 0.8726 + }, + { + "start": 10376.1, + "end": 10380.32, + "probability": 0.8196 + }, + { + "start": 10380.48, + "end": 10382.41, + "probability": 0.9639 + }, + { + "start": 10383.28, + "end": 10383.98, + "probability": 0.6872 + }, + { + "start": 10384.24, + "end": 10392.5, + "probability": 0.9421 + }, + { + "start": 10393.1, + "end": 10394.8, + "probability": 0.9929 + }, + { + "start": 10394.96, + "end": 10396.14, + "probability": 0.9857 + }, + { + "start": 10396.24, + "end": 10397.68, + "probability": 0.9641 + }, + { + "start": 10398.64, + "end": 10402.27, + "probability": 0.933 + }, + { + "start": 10403.72, + "end": 10404.82, + "probability": 0.7817 + }, + { + "start": 10404.92, + "end": 10407.77, + "probability": 0.9874 + }, + { + "start": 10408.4, + "end": 10410.68, + "probability": 0.9951 + }, + { + "start": 10411.14, + "end": 10415.16, + "probability": 0.9216 + }, + { + "start": 10416.14, + "end": 10421.24, + "probability": 0.9906 + }, + { + "start": 10421.24, + "end": 10426.74, + "probability": 0.9984 + }, + { + "start": 10427.52, + "end": 10428.08, + "probability": 0.588 + }, + { + "start": 10428.28, + "end": 10428.4, + "probability": 0.3581 + }, + { + "start": 10428.52, + "end": 10428.88, + "probability": 0.446 + }, + { + "start": 10429.0, + "end": 10431.56, + "probability": 0.9463 + }, + { + "start": 10431.56, + "end": 10433.34, + "probability": 0.998 + }, + { + "start": 10434.18, + "end": 10435.38, + "probability": 0.9909 + }, + { + "start": 10436.04, + "end": 10438.38, + "probability": 0.9908 + }, + { + "start": 10438.4, + "end": 10438.88, + "probability": 0.3796 + }, + { + "start": 10438.98, + "end": 10441.48, + "probability": 0.8451 + }, + { + "start": 10441.6, + "end": 10444.0, + "probability": 0.952 + }, + { + "start": 10444.26, + "end": 10446.1, + "probability": 0.9818 + }, + { + "start": 10446.7, + "end": 10449.94, + "probability": 0.9903 + }, + { + "start": 10451.26, + "end": 10452.5, + "probability": 0.5829 + }, + { + "start": 10452.58, + "end": 10454.46, + "probability": 0.7798 + }, + { + "start": 10455.12, + "end": 10457.54, + "probability": 0.9584 + }, + { + "start": 10457.54, + "end": 10460.84, + "probability": 0.9893 + }, + { + "start": 10461.2, + "end": 10462.96, + "probability": 0.9786 + }, + { + "start": 10463.16, + "end": 10463.94, + "probability": 0.879 + }, + { + "start": 10464.02, + "end": 10464.82, + "probability": 0.6686 + }, + { + "start": 10464.92, + "end": 10465.84, + "probability": 0.8908 + }, + { + "start": 10466.4, + "end": 10467.4, + "probability": 0.9714 + }, + { + "start": 10467.46, + "end": 10469.14, + "probability": 0.8455 + }, + { + "start": 10469.28, + "end": 10470.5, + "probability": 0.7097 + }, + { + "start": 10470.7, + "end": 10471.6, + "probability": 0.8067 + }, + { + "start": 10472.02, + "end": 10476.8, + "probability": 0.9917 + }, + { + "start": 10477.0, + "end": 10478.56, + "probability": 0.9839 + }, + { + "start": 10478.66, + "end": 10479.48, + "probability": 0.6055 + }, + { + "start": 10479.56, + "end": 10480.54, + "probability": 0.9019 + }, + { + "start": 10480.94, + "end": 10482.8, + "probability": 0.969 + }, + { + "start": 10483.62, + "end": 10486.92, + "probability": 0.9891 + }, + { + "start": 10487.18, + "end": 10487.64, + "probability": 0.8077 + }, + { + "start": 10487.78, + "end": 10489.84, + "probability": 0.9987 + }, + { + "start": 10490.26, + "end": 10492.32, + "probability": 0.7029 + }, + { + "start": 10492.44, + "end": 10494.46, + "probability": 0.7963 + }, + { + "start": 10494.96, + "end": 10496.72, + "probability": 0.8482 + }, + { + "start": 10496.8, + "end": 10497.66, + "probability": 0.6549 + }, + { + "start": 10498.28, + "end": 10500.14, + "probability": 0.7689 + }, + { + "start": 10500.3, + "end": 10502.02, + "probability": 0.8395 + }, + { + "start": 10513.72, + "end": 10513.72, + "probability": 0.4123 + }, + { + "start": 10513.72, + "end": 10514.32, + "probability": 0.5913 + }, + { + "start": 10515.68, + "end": 10516.42, + "probability": 0.8143 + }, + { + "start": 10518.38, + "end": 10524.0, + "probability": 0.9909 + }, + { + "start": 10524.16, + "end": 10528.26, + "probability": 0.9683 + }, + { + "start": 10528.3, + "end": 10529.0, + "probability": 0.9874 + }, + { + "start": 10530.24, + "end": 10531.98, + "probability": 0.8499 + }, + { + "start": 10534.1, + "end": 10535.82, + "probability": 0.8792 + }, + { + "start": 10536.56, + "end": 10537.2, + "probability": 0.5314 + }, + { + "start": 10537.38, + "end": 10539.76, + "probability": 0.906 + }, + { + "start": 10540.46, + "end": 10541.31, + "probability": 0.5348 + }, + { + "start": 10542.5, + "end": 10549.12, + "probability": 0.6455 + }, + { + "start": 10549.2, + "end": 10555.46, + "probability": 0.8668 + }, + { + "start": 10556.6, + "end": 10559.28, + "probability": 0.6742 + }, + { + "start": 10560.3, + "end": 10561.4, + "probability": 0.7471 + }, + { + "start": 10561.48, + "end": 10564.58, + "probability": 0.9568 + }, + { + "start": 10564.7, + "end": 10566.84, + "probability": 0.9922 + }, + { + "start": 10567.94, + "end": 10572.98, + "probability": 0.9639 + }, + { + "start": 10573.14, + "end": 10574.4, + "probability": 0.9147 + }, + { + "start": 10574.54, + "end": 10576.0, + "probability": 0.9349 + }, + { + "start": 10576.9, + "end": 10579.5, + "probability": 0.9887 + }, + { + "start": 10579.68, + "end": 10583.82, + "probability": 0.9944 + }, + { + "start": 10583.82, + "end": 10589.92, + "probability": 0.9974 + }, + { + "start": 10590.84, + "end": 10593.74, + "probability": 0.9418 + }, + { + "start": 10594.18, + "end": 10598.04, + "probability": 0.9934 + }, + { + "start": 10599.1, + "end": 10600.92, + "probability": 0.999 + }, + { + "start": 10601.18, + "end": 10603.43, + "probability": 0.9941 + }, + { + "start": 10605.42, + "end": 10608.96, + "probability": 0.988 + }, + { + "start": 10609.68, + "end": 10612.16, + "probability": 0.9595 + }, + { + "start": 10612.84, + "end": 10614.18, + "probability": 0.9826 + }, + { + "start": 10614.66, + "end": 10617.42, + "probability": 0.9919 + }, + { + "start": 10618.14, + "end": 10622.54, + "probability": 0.9353 + }, + { + "start": 10623.34, + "end": 10626.46, + "probability": 0.7751 + }, + { + "start": 10626.66, + "end": 10629.0, + "probability": 0.973 + }, + { + "start": 10629.04, + "end": 10629.98, + "probability": 0.7276 + }, + { + "start": 10630.44, + "end": 10631.52, + "probability": 0.889 + }, + { + "start": 10633.11, + "end": 10633.16, + "probability": 0.5061 + }, + { + "start": 10633.28, + "end": 10637.08, + "probability": 0.9468 + }, + { + "start": 10637.22, + "end": 10642.08, + "probability": 0.9983 + }, + { + "start": 10642.54, + "end": 10642.82, + "probability": 0.8922 + }, + { + "start": 10644.4, + "end": 10646.6, + "probability": 0.9006 + }, + { + "start": 10646.84, + "end": 10650.5, + "probability": 0.8693 + }, + { + "start": 10650.6, + "end": 10651.16, + "probability": 0.6336 + }, + { + "start": 10651.9, + "end": 10654.12, + "probability": 0.9553 + }, + { + "start": 10654.12, + "end": 10658.9, + "probability": 0.6366 + }, + { + "start": 10659.14, + "end": 10660.7, + "probability": 0.1038 + }, + { + "start": 10660.76, + "end": 10661.7, + "probability": 0.7314 + }, + { + "start": 10662.38, + "end": 10662.86, + "probability": 0.7588 + }, + { + "start": 10677.0, + "end": 10682.34, + "probability": 0.3617 + }, + { + "start": 10682.52, + "end": 10685.26, + "probability": 0.2492 + }, + { + "start": 10685.52, + "end": 10688.14, + "probability": 0.6506 + }, + { + "start": 10688.6, + "end": 10690.12, + "probability": 0.9429 + }, + { + "start": 10692.28, + "end": 10693.96, + "probability": 0.0938 + }, + { + "start": 10700.7, + "end": 10701.2, + "probability": 0.1411 + }, + { + "start": 10701.22, + "end": 10702.06, + "probability": 0.1442 + }, + { + "start": 10702.74, + "end": 10702.88, + "probability": 0.9766 + }, + { + "start": 10704.62, + "end": 10711.76, + "probability": 0.0651 + }, + { + "start": 10711.88, + "end": 10714.2, + "probability": 0.3956 + }, + { + "start": 10714.86, + "end": 10722.22, + "probability": 0.1586 + }, + { + "start": 10729.58, + "end": 10732.72, + "probability": 0.0225 + }, + { + "start": 10732.72, + "end": 10733.76, + "probability": 0.2252 + }, + { + "start": 10734.82, + "end": 10736.74, + "probability": 0.1818 + }, + { + "start": 10769.0, + "end": 10769.0, + "probability": 0.0 + }, + { + "start": 10769.0, + "end": 10769.0, + "probability": 0.0 + }, + { + "start": 10769.0, + "end": 10769.0, + "probability": 0.0 + }, + { + "start": 10769.0, + "end": 10769.0, + "probability": 0.0 + }, + { + "start": 10769.0, + "end": 10769.0, + "probability": 0.0 + }, + { + "start": 10769.0, + "end": 10769.0, + "probability": 0.0 + }, + { + "start": 10769.0, + "end": 10769.0, + "probability": 0.0 + }, + { + "start": 10769.0, + "end": 10769.0, + "probability": 0.0 + }, + { + "start": 10769.0, + "end": 10769.0, + "probability": 0.0 + }, + { + "start": 10769.0, + "end": 10769.0, + "probability": 0.0 + }, + { + "start": 10769.0, + "end": 10769.0, + "probability": 0.0 + }, + { + "start": 10769.0, + "end": 10769.0, + "probability": 0.0 + }, + { + "start": 10769.0, + "end": 10769.0, + "probability": 0.0 + }, + { + "start": 10769.0, + "end": 10769.0, + "probability": 0.0 + }, + { + "start": 10769.0, + "end": 10769.0, + "probability": 0.0 + }, + { + "start": 10769.0, + "end": 10769.0, + "probability": 0.0 + }, + { + "start": 10769.0, + "end": 10769.0, + "probability": 0.0 + }, + { + "start": 10769.0, + "end": 10769.0, + "probability": 0.0 + }, + { + "start": 10769.0, + "end": 10769.0, + "probability": 0.0 + }, + { + "start": 10769.0, + "end": 10769.0, + "probability": 0.0 + }, + { + "start": 10769.0, + "end": 10769.0, + "probability": 0.0 + }, + { + "start": 10769.0, + "end": 10769.0, + "probability": 0.0 + }, + { + "start": 10769.56, + "end": 10769.72, + "probability": 0.0248 + }, + { + "start": 10769.72, + "end": 10770.54, + "probability": 0.0473 + }, + { + "start": 10779.47, + "end": 10782.22, + "probability": 0.0417 + }, + { + "start": 10782.78, + "end": 10784.98, + "probability": 0.4695 + }, + { + "start": 10784.98, + "end": 10787.76, + "probability": 0.5467 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.0, + "end": 10892.0, + "probability": 0.0 + }, + { + "start": 10892.08, + "end": 10892.1, + "probability": 0.0831 + }, + { + "start": 10892.1, + "end": 10892.1, + "probability": 0.013 + }, + { + "start": 10892.1, + "end": 10892.1, + "probability": 0.0356 + }, + { + "start": 10892.1, + "end": 10892.1, + "probability": 0.03 + }, + { + "start": 10892.1, + "end": 10897.12, + "probability": 0.1917 + }, + { + "start": 10897.8, + "end": 10897.8, + "probability": 0.1169 + }, + { + "start": 10897.8, + "end": 10903.26, + "probability": 0.0688 + }, + { + "start": 10917.3, + "end": 10921.98, + "probability": 0.5433 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.1, + "end": 11025.9, + "probability": 0.9775 + }, + { + "start": 11026.24, + "end": 11028.96, + "probability": 0.9978 + }, + { + "start": 11029.3, + "end": 11029.7, + "probability": 0.7635 + }, + { + "start": 11030.1, + "end": 11031.38, + "probability": 0.3252 + }, + { + "start": 11031.82, + "end": 11034.28, + "probability": 0.9862 + }, + { + "start": 11035.12, + "end": 11036.3, + "probability": 0.9937 + }, + { + "start": 11036.5, + "end": 11038.74, + "probability": 0.7141 + }, + { + "start": 11038.82, + "end": 11041.52, + "probability": 0.5816 + }, + { + "start": 11041.52, + "end": 11042.58, + "probability": 0.6455 + }, + { + "start": 11042.66, + "end": 11043.16, + "probability": 0.7941 + }, + { + "start": 11043.26, + "end": 11046.18, + "probability": 0.9442 + }, + { + "start": 11046.4, + "end": 11048.78, + "probability": 0.4353 + }, + { + "start": 11048.84, + "end": 11049.76, + "probability": 0.5312 + }, + { + "start": 11050.38, + "end": 11051.22, + "probability": 0.7207 + }, + { + "start": 11051.6, + "end": 11056.2, + "probability": 0.8311 + }, + { + "start": 11058.18, + "end": 11058.68, + "probability": 0.7097 + }, + { + "start": 11060.34, + "end": 11060.46, + "probability": 0.3913 + }, + { + "start": 11071.6, + "end": 11074.88, + "probability": 0.2785 + }, + { + "start": 11074.88, + "end": 11075.76, + "probability": 0.8526 + }, + { + "start": 11075.9, + "end": 11076.36, + "probability": 0.9521 + }, + { + "start": 11076.46, + "end": 11078.06, + "probability": 0.9503 + }, + { + "start": 11078.98, + "end": 11083.72, + "probability": 0.3954 + }, + { + "start": 11085.74, + "end": 11086.66, + "probability": 0.0659 + }, + { + "start": 11086.66, + "end": 11087.22, + "probability": 0.067 + }, + { + "start": 11087.84, + "end": 11089.18, + "probability": 0.1103 + }, + { + "start": 11089.5, + "end": 11093.58, + "probability": 0.0108 + }, + { + "start": 11093.58, + "end": 11094.14, + "probability": 0.0137 + }, + { + "start": 11094.38, + "end": 11095.02, + "probability": 0.0869 + }, + { + "start": 11095.48, + "end": 11098.76, + "probability": 0.073 + }, + { + "start": 11122.8, + "end": 11123.24, + "probability": 0.154 + }, + { + "start": 11123.68, + "end": 11123.9, + "probability": 0.0417 + }, + { + "start": 11123.9, + "end": 11124.26, + "probability": 0.087 + }, + { + "start": 11124.26, + "end": 11124.38, + "probability": 0.1286 + }, + { + "start": 11124.38, + "end": 11124.78, + "probability": 0.1342 + }, + { + "start": 11124.78, + "end": 11125.86, + "probability": 0.0359 + }, + { + "start": 11125.88, + "end": 11126.664, + "probability": 0.0019 + }, + { + "start": 11126.664, + "end": 11126.664, + "probability": 0.0 + }, + { + "start": 11126.664, + "end": 11126.664, + "probability": 0.0 + }, + { + "start": 11126.664, + "end": 11126.664, + "probability": 0.0 + } + ], + "segments_count": 3509, + "words_count": 18640, + "avg_words_per_segment": 5.3121, + "avg_segment_duration": 2.3334, + "avg_words_per_minute": 100.5153, + "plenum_id": "127041", + "duration": 11126.66, + "title": null, + "plenum_date": "2024-06-04" +} \ No newline at end of file