diff --git "a/2120/metadata.json" "b/2120/metadata.json" new file mode 100644--- /dev/null +++ "b/2120/metadata.json" @@ -0,0 +1,21147 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "2120", + "quality_score": 0.8774, + "per_segment_quality_scores": [ + { + "start": 51.92, + "end": 53.28, + "probability": 0.6772 + }, + { + "start": 53.38, + "end": 54.9, + "probability": 0.9329 + }, + { + "start": 55.24, + "end": 55.86, + "probability": 0.713 + }, + { + "start": 55.96, + "end": 56.78, + "probability": 0.7353 + }, + { + "start": 57.56, + "end": 60.18, + "probability": 0.6281 + }, + { + "start": 60.18, + "end": 65.42, + "probability": 0.6356 + }, + { + "start": 66.08, + "end": 69.61, + "probability": 0.7442 + }, + { + "start": 71.06, + "end": 74.16, + "probability": 0.6826 + }, + { + "start": 74.72, + "end": 76.32, + "probability": 0.1593 + }, + { + "start": 76.9, + "end": 81.68, + "probability": 0.7305 + }, + { + "start": 84.72, + "end": 89.08, + "probability": 0.7459 + }, + { + "start": 89.6, + "end": 96.26, + "probability": 0.7491 + }, + { + "start": 97.44, + "end": 98.02, + "probability": 0.7398 + }, + { + "start": 98.02, + "end": 100.92, + "probability": 0.7528 + }, + { + "start": 101.08, + "end": 102.7, + "probability": 0.8351 + }, + { + "start": 103.16, + "end": 104.7, + "probability": 0.3929 + }, + { + "start": 104.72, + "end": 106.33, + "probability": 0.6081 + }, + { + "start": 108.58, + "end": 109.34, + "probability": 0.68 + }, + { + "start": 110.23, + "end": 113.98, + "probability": 0.0132 + }, + { + "start": 114.64, + "end": 117.78, + "probability": 0.0715 + }, + { + "start": 119.55, + "end": 122.39, + "probability": 0.0437 + }, + { + "start": 123.66, + "end": 124.26, + "probability": 0.1103 + }, + { + "start": 124.26, + "end": 126.62, + "probability": 0.0706 + }, + { + "start": 126.62, + "end": 126.62, + "probability": 0.0402 + }, + { + "start": 126.62, + "end": 126.62, + "probability": 0.0488 + }, + { + "start": 126.62, + "end": 126.78, + "probability": 0.01 + }, + { + "start": 126.88, + "end": 126.88, + "probability": 0.0128 + }, + { + "start": 126.88, + "end": 126.88, + "probability": 0.3721 + }, + { + "start": 126.88, + "end": 126.98, + "probability": 0.0632 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.26, + "end": 127.5, + "probability": 0.0848 + }, + { + "start": 127.5, + "end": 127.5, + "probability": 0.0892 + }, + { + "start": 127.5, + "end": 129.14, + "probability": 0.544 + }, + { + "start": 129.38, + "end": 130.62, + "probability": 0.7294 + }, + { + "start": 131.08, + "end": 131.18, + "probability": 0.7671 + }, + { + "start": 132.38, + "end": 133.36, + "probability": 0.8436 + }, + { + "start": 133.38, + "end": 136.66, + "probability": 0.9877 + }, + { + "start": 137.52, + "end": 139.98, + "probability": 0.7285 + }, + { + "start": 142.32, + "end": 144.26, + "probability": 0.648 + }, + { + "start": 144.62, + "end": 145.86, + "probability": 0.9244 + }, + { + "start": 146.78, + "end": 148.26, + "probability": 0.5897 + }, + { + "start": 149.22, + "end": 151.62, + "probability": 0.9224 + }, + { + "start": 152.64, + "end": 153.68, + "probability": 0.6733 + }, + { + "start": 153.7, + "end": 155.16, + "probability": 0.7655 + }, + { + "start": 156.94, + "end": 158.36, + "probability": 0.5261 + }, + { + "start": 159.24, + "end": 161.4, + "probability": 0.5445 + }, + { + "start": 161.82, + "end": 164.34, + "probability": 0.9831 + }, + { + "start": 164.96, + "end": 166.48, + "probability": 0.8735 + }, + { + "start": 167.66, + "end": 169.08, + "probability": 0.3239 + }, + { + "start": 169.5, + "end": 172.02, + "probability": 0.7996 + }, + { + "start": 172.76, + "end": 173.52, + "probability": 0.7891 + }, + { + "start": 175.22, + "end": 177.34, + "probability": 0.8535 + }, + { + "start": 177.78, + "end": 181.26, + "probability": 0.8721 + }, + { + "start": 181.34, + "end": 184.3, + "probability": 0.298 + }, + { + "start": 189.28, + "end": 192.4, + "probability": 0.9805 + }, + { + "start": 192.96, + "end": 193.61, + "probability": 0.8345 + }, + { + "start": 193.78, + "end": 194.82, + "probability": 0.9589 + }, + { + "start": 195.12, + "end": 195.84, + "probability": 0.8251 + }, + { + "start": 196.34, + "end": 197.6, + "probability": 0.9868 + }, + { + "start": 197.78, + "end": 198.02, + "probability": 0.8022 + }, + { + "start": 198.86, + "end": 200.78, + "probability": 0.9861 + }, + { + "start": 201.22, + "end": 203.66, + "probability": 0.9966 + }, + { + "start": 204.12, + "end": 206.36, + "probability": 0.9722 + }, + { + "start": 207.14, + "end": 208.36, + "probability": 0.9453 + }, + { + "start": 210.02, + "end": 211.06, + "probability": 0.693 + }, + { + "start": 212.14, + "end": 214.02, + "probability": 0.0846 + }, + { + "start": 214.2, + "end": 215.4, + "probability": 0.53 + }, + { + "start": 216.32, + "end": 216.52, + "probability": 0.5836 + }, + { + "start": 216.62, + "end": 217.26, + "probability": 0.8072 + }, + { + "start": 217.44, + "end": 218.06, + "probability": 0.7993 + }, + { + "start": 218.2, + "end": 219.22, + "probability": 0.7654 + }, + { + "start": 220.44, + "end": 221.82, + "probability": 0.6687 + }, + { + "start": 221.82, + "end": 223.4, + "probability": 0.8006 + }, + { + "start": 223.9, + "end": 224.62, + "probability": 0.9051 + }, + { + "start": 225.84, + "end": 227.61, + "probability": 0.6611 + }, + { + "start": 227.83, + "end": 229.72, + "probability": 0.984 + }, + { + "start": 231.7, + "end": 232.18, + "probability": 0.6455 + }, + { + "start": 233.06, + "end": 233.78, + "probability": 0.8035 + }, + { + "start": 234.18, + "end": 235.48, + "probability": 0.3489 + }, + { + "start": 236.26, + "end": 237.32, + "probability": 0.9493 + }, + { + "start": 237.42, + "end": 239.08, + "probability": 0.9268 + }, + { + "start": 239.74, + "end": 241.86, + "probability": 0.8541 + }, + { + "start": 243.6, + "end": 243.9, + "probability": 0.0039 + }, + { + "start": 243.96, + "end": 244.8, + "probability": 0.7627 + }, + { + "start": 245.16, + "end": 247.0, + "probability": 0.9917 + }, + { + "start": 248.52, + "end": 250.22, + "probability": 0.976 + }, + { + "start": 250.96, + "end": 257.96, + "probability": 0.9736 + }, + { + "start": 258.04, + "end": 259.0, + "probability": 0.9074 + }, + { + "start": 259.54, + "end": 259.92, + "probability": 0.7407 + }, + { + "start": 261.16, + "end": 262.2, + "probability": 0.7991 + }, + { + "start": 262.28, + "end": 262.76, + "probability": 0.8481 + }, + { + "start": 263.7, + "end": 265.92, + "probability": 0.7942 + }, + { + "start": 266.18, + "end": 267.44, + "probability": 0.9684 + }, + { + "start": 268.48, + "end": 270.3, + "probability": 0.9031 + }, + { + "start": 270.34, + "end": 271.34, + "probability": 0.8871 + }, + { + "start": 271.58, + "end": 272.5, + "probability": 0.9507 + }, + { + "start": 272.64, + "end": 272.94, + "probability": 0.7809 + }, + { + "start": 273.66, + "end": 275.88, + "probability": 0.8758 + }, + { + "start": 276.6, + "end": 277.82, + "probability": 0.9604 + }, + { + "start": 278.56, + "end": 280.74, + "probability": 0.9513 + }, + { + "start": 280.84, + "end": 281.6, + "probability": 0.525 + }, + { + "start": 282.12, + "end": 282.74, + "probability": 0.9268 + }, + { + "start": 282.96, + "end": 284.66, + "probability": 0.9944 + }, + { + "start": 284.78, + "end": 285.38, + "probability": 0.2614 + }, + { + "start": 285.5, + "end": 287.0, + "probability": 0.792 + }, + { + "start": 287.12, + "end": 288.26, + "probability": 0.7516 + }, + { + "start": 288.38, + "end": 289.58, + "probability": 0.7767 + }, + { + "start": 290.38, + "end": 292.98, + "probability": 0.5107 + }, + { + "start": 293.48, + "end": 293.98, + "probability": 0.6212 + }, + { + "start": 294.56, + "end": 295.46, + "probability": 0.5922 + }, + { + "start": 296.04, + "end": 298.26, + "probability": 0.9038 + }, + { + "start": 299.54, + "end": 301.78, + "probability": 0.6533 + }, + { + "start": 301.96, + "end": 304.46, + "probability": 0.6182 + }, + { + "start": 304.62, + "end": 304.72, + "probability": 0.8086 + }, + { + "start": 305.1, + "end": 306.59, + "probability": 0.951 + }, + { + "start": 307.1, + "end": 309.62, + "probability": 0.8762 + }, + { + "start": 309.66, + "end": 310.67, + "probability": 0.8142 + }, + { + "start": 311.4, + "end": 312.2, + "probability": 0.989 + }, + { + "start": 312.82, + "end": 313.74, + "probability": 0.8849 + }, + { + "start": 315.06, + "end": 316.42, + "probability": 0.9336 + }, + { + "start": 317.98, + "end": 318.96, + "probability": 0.3412 + }, + { + "start": 319.1, + "end": 322.5, + "probability": 0.7259 + }, + { + "start": 324.2, + "end": 325.62, + "probability": 0.9899 + }, + { + "start": 326.2, + "end": 327.9, + "probability": 0.9081 + }, + { + "start": 329.0, + "end": 332.79, + "probability": 0.913 + }, + { + "start": 333.84, + "end": 335.3, + "probability": 0.9619 + }, + { + "start": 336.24, + "end": 338.3, + "probability": 0.9639 + }, + { + "start": 338.8, + "end": 339.38, + "probability": 0.5252 + }, + { + "start": 340.26, + "end": 344.2, + "probability": 0.8431 + }, + { + "start": 344.44, + "end": 347.66, + "probability": 0.6433 + }, + { + "start": 348.62, + "end": 352.74, + "probability": 0.7968 + }, + { + "start": 353.44, + "end": 355.2, + "probability": 0.5332 + }, + { + "start": 355.24, + "end": 357.23, + "probability": 0.7516 + }, + { + "start": 357.6, + "end": 360.38, + "probability": 0.979 + }, + { + "start": 361.36, + "end": 364.98, + "probability": 0.6607 + }, + { + "start": 366.26, + "end": 367.46, + "probability": 0.7011 + }, + { + "start": 368.04, + "end": 368.4, + "probability": 0.4671 + }, + { + "start": 368.96, + "end": 371.92, + "probability": 0.514 + }, + { + "start": 373.62, + "end": 374.36, + "probability": 0.7966 + }, + { + "start": 374.44, + "end": 376.9, + "probability": 0.9351 + }, + { + "start": 377.72, + "end": 378.7, + "probability": 0.5786 + }, + { + "start": 379.34, + "end": 383.84, + "probability": 0.9832 + }, + { + "start": 384.9, + "end": 385.34, + "probability": 0.7527 + }, + { + "start": 386.66, + "end": 388.56, + "probability": 0.7524 + }, + { + "start": 388.8, + "end": 389.84, + "probability": 0.6671 + }, + { + "start": 390.12, + "end": 391.84, + "probability": 0.8385 + }, + { + "start": 392.4, + "end": 395.22, + "probability": 0.9478 + }, + { + "start": 396.14, + "end": 398.48, + "probability": 0.8407 + }, + { + "start": 399.06, + "end": 399.92, + "probability": 0.4944 + }, + { + "start": 400.04, + "end": 400.63, + "probability": 0.9696 + }, + { + "start": 400.96, + "end": 402.22, + "probability": 0.9944 + }, + { + "start": 402.7, + "end": 404.58, + "probability": 0.9731 + }, + { + "start": 405.08, + "end": 407.76, + "probability": 0.9854 + }, + { + "start": 409.3, + "end": 410.48, + "probability": 0.6653 + }, + { + "start": 411.86, + "end": 414.98, + "probability": 0.1532 + }, + { + "start": 415.02, + "end": 416.78, + "probability": 0.8182 + }, + { + "start": 417.06, + "end": 417.06, + "probability": 0.0095 + }, + { + "start": 417.06, + "end": 417.38, + "probability": 0.2342 + }, + { + "start": 418.06, + "end": 419.48, + "probability": 0.208 + }, + { + "start": 419.54, + "end": 420.64, + "probability": 0.5126 + }, + { + "start": 421.54, + "end": 421.98, + "probability": 0.2894 + }, + { + "start": 422.12, + "end": 423.12, + "probability": 0.68 + }, + { + "start": 423.82, + "end": 428.34, + "probability": 0.8752 + }, + { + "start": 428.94, + "end": 431.16, + "probability": 0.7158 + }, + { + "start": 431.62, + "end": 434.12, + "probability": 0.9742 + }, + { + "start": 434.22, + "end": 434.86, + "probability": 0.8259 + }, + { + "start": 435.3, + "end": 435.74, + "probability": 0.5064 + }, + { + "start": 435.88, + "end": 437.32, + "probability": 0.8194 + }, + { + "start": 437.72, + "end": 439.33, + "probability": 0.7158 + }, + { + "start": 439.48, + "end": 439.9, + "probability": 0.3972 + }, + { + "start": 440.46, + "end": 441.32, + "probability": 0.9365 + }, + { + "start": 441.4, + "end": 442.0, + "probability": 0.6311 + }, + { + "start": 442.34, + "end": 443.06, + "probability": 0.9448 + }, + { + "start": 443.2, + "end": 444.2, + "probability": 0.8923 + }, + { + "start": 445.48, + "end": 446.32, + "probability": 0.9161 + }, + { + "start": 446.44, + "end": 447.1, + "probability": 0.4665 + }, + { + "start": 447.46, + "end": 448.78, + "probability": 0.4643 + }, + { + "start": 449.8, + "end": 451.48, + "probability": 0.568 + }, + { + "start": 452.4, + "end": 457.22, + "probability": 0.9454 + }, + { + "start": 457.22, + "end": 462.14, + "probability": 0.9935 + }, + { + "start": 462.84, + "end": 464.56, + "probability": 0.1466 + }, + { + "start": 465.46, + "end": 465.92, + "probability": 0.2898 + }, + { + "start": 465.92, + "end": 467.56, + "probability": 0.7296 + }, + { + "start": 468.1, + "end": 468.42, + "probability": 0.078 + }, + { + "start": 468.42, + "end": 471.34, + "probability": 0.6861 + }, + { + "start": 471.86, + "end": 473.48, + "probability": 0.8279 + }, + { + "start": 474.12, + "end": 476.48, + "probability": 0.86 + }, + { + "start": 476.58, + "end": 476.83, + "probability": 0.8951 + }, + { + "start": 477.22, + "end": 478.64, + "probability": 0.0477 + }, + { + "start": 479.7, + "end": 480.56, + "probability": 0.0814 + }, + { + "start": 480.96, + "end": 481.72, + "probability": 0.5138 + }, + { + "start": 481.88, + "end": 483.6, + "probability": 0.721 + }, + { + "start": 484.22, + "end": 486.83, + "probability": 0.5724 + }, + { + "start": 487.0, + "end": 490.43, + "probability": 0.8089 + }, + { + "start": 491.6, + "end": 494.24, + "probability": 0.5585 + }, + { + "start": 494.96, + "end": 496.74, + "probability": 0.9419 + }, + { + "start": 496.9, + "end": 497.22, + "probability": 0.9373 + }, + { + "start": 498.02, + "end": 499.96, + "probability": 0.9834 + }, + { + "start": 500.14, + "end": 501.74, + "probability": 0.758 + }, + { + "start": 502.16, + "end": 503.24, + "probability": 0.9859 + }, + { + "start": 504.04, + "end": 506.4, + "probability": 0.821 + }, + { + "start": 506.64, + "end": 508.92, + "probability": 0.8691 + }, + { + "start": 509.5, + "end": 510.42, + "probability": 0.7759 + }, + { + "start": 511.46, + "end": 512.48, + "probability": 0.5301 + }, + { + "start": 513.16, + "end": 514.7, + "probability": 0.8546 + }, + { + "start": 515.36, + "end": 517.18, + "probability": 0.646 + }, + { + "start": 517.78, + "end": 519.48, + "probability": 0.063 + }, + { + "start": 519.48, + "end": 520.05, + "probability": 0.2912 + }, + { + "start": 520.76, + "end": 521.2, + "probability": 0.4645 + }, + { + "start": 521.9, + "end": 523.7, + "probability": 0.627 + }, + { + "start": 523.84, + "end": 525.03, + "probability": 0.9672 + }, + { + "start": 526.28, + "end": 526.36, + "probability": 0.604 + }, + { + "start": 526.46, + "end": 526.68, + "probability": 0.7612 + }, + { + "start": 526.72, + "end": 529.46, + "probability": 0.8608 + }, + { + "start": 529.82, + "end": 530.96, + "probability": 0.6641 + }, + { + "start": 531.64, + "end": 534.46, + "probability": 0.815 + }, + { + "start": 535.42, + "end": 535.96, + "probability": 0.8849 + }, + { + "start": 537.22, + "end": 539.18, + "probability": 0.8877 + }, + { + "start": 540.38, + "end": 543.84, + "probability": 0.9358 + }, + { + "start": 544.83, + "end": 545.52, + "probability": 0.3159 + }, + { + "start": 545.52, + "end": 545.52, + "probability": 0.1443 + }, + { + "start": 545.52, + "end": 546.2, + "probability": 0.4575 + }, + { + "start": 547.36, + "end": 548.68, + "probability": 0.6866 + }, + { + "start": 549.12, + "end": 552.38, + "probability": 0.9451 + }, + { + "start": 553.42, + "end": 554.08, + "probability": 0.9296 + }, + { + "start": 555.36, + "end": 556.98, + "probability": 0.979 + }, + { + "start": 557.02, + "end": 561.5, + "probability": 0.9215 + }, + { + "start": 562.12, + "end": 563.67, + "probability": 0.8414 + }, + { + "start": 564.7, + "end": 566.62, + "probability": 0.8413 + }, + { + "start": 567.1, + "end": 571.48, + "probability": 0.964 + }, + { + "start": 572.62, + "end": 579.1, + "probability": 0.8931 + }, + { + "start": 580.28, + "end": 580.94, + "probability": 0.9948 + }, + { + "start": 581.56, + "end": 582.26, + "probability": 0.8345 + }, + { + "start": 583.12, + "end": 583.78, + "probability": 0.626 + }, + { + "start": 584.36, + "end": 585.98, + "probability": 0.9888 + }, + { + "start": 588.04, + "end": 589.1, + "probability": 0.9951 + }, + { + "start": 589.46, + "end": 590.04, + "probability": 0.7291 + }, + { + "start": 590.24, + "end": 591.14, + "probability": 0.9849 + }, + { + "start": 592.32, + "end": 594.14, + "probability": 0.737 + }, + { + "start": 594.84, + "end": 597.16, + "probability": 0.8793 + }, + { + "start": 597.42, + "end": 600.26, + "probability": 0.9935 + }, + { + "start": 600.98, + "end": 602.14, + "probability": 0.4725 + }, + { + "start": 603.06, + "end": 606.34, + "probability": 0.9397 + }, + { + "start": 607.32, + "end": 610.68, + "probability": 0.9189 + }, + { + "start": 611.12, + "end": 611.82, + "probability": 0.9261 + }, + { + "start": 611.96, + "end": 613.1, + "probability": 0.7334 + }, + { + "start": 613.5, + "end": 616.06, + "probability": 0.9248 + }, + { + "start": 616.44, + "end": 620.5, + "probability": 0.8808 + }, + { + "start": 620.66, + "end": 620.98, + "probability": 0.9408 + }, + { + "start": 621.54, + "end": 623.14, + "probability": 0.9785 + }, + { + "start": 624.34, + "end": 626.72, + "probability": 0.9873 + }, + { + "start": 628.4, + "end": 629.26, + "probability": 0.9696 + }, + { + "start": 630.46, + "end": 633.52, + "probability": 0.9924 + }, + { + "start": 635.22, + "end": 636.3, + "probability": 0.875 + }, + { + "start": 636.36, + "end": 637.18, + "probability": 0.7345 + }, + { + "start": 637.26, + "end": 637.4, + "probability": 0.4832 + }, + { + "start": 638.58, + "end": 640.02, + "probability": 0.9539 + }, + { + "start": 641.06, + "end": 641.74, + "probability": 0.723 + }, + { + "start": 643.26, + "end": 644.81, + "probability": 0.9668 + }, + { + "start": 647.62, + "end": 649.5, + "probability": 0.9425 + }, + { + "start": 650.38, + "end": 653.22, + "probability": 0.9094 + }, + { + "start": 653.78, + "end": 655.96, + "probability": 0.9972 + }, + { + "start": 656.56, + "end": 657.84, + "probability": 0.9519 + }, + { + "start": 658.64, + "end": 661.02, + "probability": 0.9641 + }, + { + "start": 661.02, + "end": 662.38, + "probability": 0.7774 + }, + { + "start": 663.66, + "end": 664.18, + "probability": 0.4276 + }, + { + "start": 664.28, + "end": 664.82, + "probability": 0.9458 + }, + { + "start": 665.76, + "end": 666.5, + "probability": 0.8352 + }, + { + "start": 667.84, + "end": 669.13, + "probability": 0.9126 + }, + { + "start": 669.62, + "end": 671.6, + "probability": 0.581 + }, + { + "start": 671.82, + "end": 672.94, + "probability": 0.8547 + }, + { + "start": 673.16, + "end": 675.82, + "probability": 0.9788 + }, + { + "start": 676.04, + "end": 677.73, + "probability": 0.7006 + }, + { + "start": 677.98, + "end": 679.28, + "probability": 0.7162 + }, + { + "start": 680.58, + "end": 682.48, + "probability": 0.4198 + }, + { + "start": 682.8, + "end": 683.24, + "probability": 0.7164 + }, + { + "start": 684.56, + "end": 685.72, + "probability": 0.9961 + }, + { + "start": 686.18, + "end": 686.74, + "probability": 0.7374 + }, + { + "start": 687.74, + "end": 689.12, + "probability": 0.7922 + }, + { + "start": 689.66, + "end": 691.49, + "probability": 0.8023 + }, + { + "start": 692.52, + "end": 693.58, + "probability": 0.7211 + }, + { + "start": 694.18, + "end": 694.98, + "probability": 0.6985 + }, + { + "start": 695.96, + "end": 697.26, + "probability": 0.6348 + }, + { + "start": 698.78, + "end": 700.36, + "probability": 0.615 + }, + { + "start": 700.52, + "end": 704.06, + "probability": 0.969 + }, + { + "start": 704.1, + "end": 706.4, + "probability": 0.979 + }, + { + "start": 706.72, + "end": 708.16, + "probability": 0.9198 + }, + { + "start": 709.06, + "end": 712.58, + "probability": 0.9677 + }, + { + "start": 714.02, + "end": 714.64, + "probability": 0.7929 + }, + { + "start": 715.3, + "end": 717.6, + "probability": 0.7582 + }, + { + "start": 719.4, + "end": 721.32, + "probability": 0.7868 + }, + { + "start": 721.94, + "end": 723.62, + "probability": 0.4004 + }, + { + "start": 723.68, + "end": 725.94, + "probability": 0.922 + }, + { + "start": 727.58, + "end": 728.31, + "probability": 0.9232 + }, + { + "start": 729.06, + "end": 730.0, + "probability": 0.7562 + }, + { + "start": 730.08, + "end": 731.14, + "probability": 0.9192 + }, + { + "start": 731.5, + "end": 732.34, + "probability": 0.7016 + }, + { + "start": 733.18, + "end": 734.0, + "probability": 0.7839 + }, + { + "start": 735.64, + "end": 737.4, + "probability": 0.5061 + }, + { + "start": 737.46, + "end": 739.22, + "probability": 0.8401 + }, + { + "start": 740.58, + "end": 741.78, + "probability": 0.818 + }, + { + "start": 742.22, + "end": 743.16, + "probability": 0.9752 + }, + { + "start": 744.44, + "end": 745.44, + "probability": 0.9604 + }, + { + "start": 745.56, + "end": 748.08, + "probability": 0.9847 + }, + { + "start": 749.38, + "end": 751.36, + "probability": 0.8256 + }, + { + "start": 753.16, + "end": 754.0, + "probability": 0.9102 + }, + { + "start": 754.12, + "end": 755.22, + "probability": 0.5959 + }, + { + "start": 756.5, + "end": 757.18, + "probability": 0.6123 + }, + { + "start": 757.66, + "end": 757.9, + "probability": 0.9219 + }, + { + "start": 758.7, + "end": 760.92, + "probability": 0.9666 + }, + { + "start": 761.42, + "end": 765.25, + "probability": 0.8713 + }, + { + "start": 765.32, + "end": 765.98, + "probability": 0.9297 + }, + { + "start": 767.72, + "end": 769.08, + "probability": 0.6655 + }, + { + "start": 770.78, + "end": 770.9, + "probability": 0.6985 + }, + { + "start": 771.54, + "end": 771.54, + "probability": 0.6396 + }, + { + "start": 771.56, + "end": 772.04, + "probability": 0.7875 + }, + { + "start": 772.1, + "end": 773.48, + "probability": 0.8567 + }, + { + "start": 773.64, + "end": 774.84, + "probability": 0.6399 + }, + { + "start": 777.34, + "end": 780.0, + "probability": 0.7139 + }, + { + "start": 781.22, + "end": 783.58, + "probability": 0.6532 + }, + { + "start": 785.02, + "end": 787.0, + "probability": 0.8878 + }, + { + "start": 788.1, + "end": 790.7, + "probability": 0.8578 + }, + { + "start": 791.62, + "end": 791.97, + "probability": 0.9654 + }, + { + "start": 793.54, + "end": 793.96, + "probability": 0.4663 + }, + { + "start": 794.0, + "end": 794.76, + "probability": 0.8471 + }, + { + "start": 794.76, + "end": 796.0, + "probability": 0.9151 + }, + { + "start": 801.32, + "end": 803.78, + "probability": 0.9552 + }, + { + "start": 804.68, + "end": 806.36, + "probability": 0.9718 + }, + { + "start": 807.4, + "end": 807.52, + "probability": 0.3536 + }, + { + "start": 807.58, + "end": 809.66, + "probability": 0.9476 + }, + { + "start": 810.46, + "end": 810.9, + "probability": 0.7701 + }, + { + "start": 813.64, + "end": 813.78, + "probability": 0.0479 + }, + { + "start": 813.78, + "end": 817.52, + "probability": 0.979 + }, + { + "start": 818.64, + "end": 822.02, + "probability": 0.9424 + }, + { + "start": 822.92, + "end": 825.26, + "probability": 0.5634 + }, + { + "start": 825.86, + "end": 826.8, + "probability": 0.7053 + }, + { + "start": 827.9, + "end": 829.58, + "probability": 0.5108 + }, + { + "start": 830.22, + "end": 830.82, + "probability": 0.9246 + }, + { + "start": 831.44, + "end": 834.16, + "probability": 0.9863 + }, + { + "start": 834.74, + "end": 835.32, + "probability": 0.6036 + }, + { + "start": 835.88, + "end": 836.87, + "probability": 0.8716 + }, + { + "start": 837.78, + "end": 838.24, + "probability": 0.8625 + }, + { + "start": 839.16, + "end": 839.86, + "probability": 0.9208 + }, + { + "start": 841.86, + "end": 843.24, + "probability": 0.9653 + }, + { + "start": 844.7, + "end": 846.77, + "probability": 0.7087 + }, + { + "start": 847.54, + "end": 848.76, + "probability": 0.83 + }, + { + "start": 850.26, + "end": 851.7, + "probability": 0.8486 + }, + { + "start": 853.54, + "end": 856.18, + "probability": 0.6528 + }, + { + "start": 856.18, + "end": 858.06, + "probability": 0.9738 + }, + { + "start": 858.92, + "end": 860.16, + "probability": 0.9394 + }, + { + "start": 860.4, + "end": 860.5, + "probability": 0.7644 + }, + { + "start": 860.88, + "end": 862.28, + "probability": 0.7492 + }, + { + "start": 862.76, + "end": 863.36, + "probability": 0.5723 + }, + { + "start": 864.55, + "end": 868.68, + "probability": 0.7906 + }, + { + "start": 869.02, + "end": 869.24, + "probability": 0.0554 + }, + { + "start": 870.24, + "end": 872.08, + "probability": 0.0917 + }, + { + "start": 872.08, + "end": 872.08, + "probability": 0.7192 + }, + { + "start": 872.72, + "end": 873.0, + "probability": 0.3415 + }, + { + "start": 873.18, + "end": 873.6, + "probability": 0.6005 + }, + { + "start": 874.08, + "end": 875.02, + "probability": 0.6333 + }, + { + "start": 881.2, + "end": 881.69, + "probability": 0.6092 + }, + { + "start": 881.86, + "end": 883.1, + "probability": 0.7737 + }, + { + "start": 883.66, + "end": 887.48, + "probability": 0.2379 + }, + { + "start": 887.5, + "end": 889.26, + "probability": 0.6302 + }, + { + "start": 889.48, + "end": 890.5, + "probability": 0.1448 + }, + { + "start": 890.8, + "end": 891.45, + "probability": 0.3349 + }, + { + "start": 892.02, + "end": 893.68, + "probability": 0.5958 + }, + { + "start": 896.9, + "end": 900.22, + "probability": 0.3784 + }, + { + "start": 900.32, + "end": 901.06, + "probability": 0.6962 + }, + { + "start": 901.8, + "end": 906.04, + "probability": 0.9197 + }, + { + "start": 907.04, + "end": 908.62, + "probability": 0.6609 + }, + { + "start": 909.71, + "end": 913.12, + "probability": 0.918 + }, + { + "start": 915.87, + "end": 921.56, + "probability": 0.9866 + }, + { + "start": 922.36, + "end": 922.46, + "probability": 0.6242 + }, + { + "start": 924.46, + "end": 927.12, + "probability": 0.7519 + }, + { + "start": 927.32, + "end": 928.2, + "probability": 0.8879 + }, + { + "start": 928.94, + "end": 931.7, + "probability": 0.9839 + }, + { + "start": 932.22, + "end": 934.74, + "probability": 0.9663 + }, + { + "start": 935.26, + "end": 935.46, + "probability": 0.6113 + }, + { + "start": 936.35, + "end": 937.64, + "probability": 0.0139 + }, + { + "start": 939.12, + "end": 939.5, + "probability": 0.3838 + }, + { + "start": 941.25, + "end": 942.9, + "probability": 0.3715 + }, + { + "start": 942.9, + "end": 945.04, + "probability": 0.8491 + }, + { + "start": 946.36, + "end": 948.58, + "probability": 0.9641 + }, + { + "start": 951.26, + "end": 954.1, + "probability": 0.9801 + }, + { + "start": 954.7, + "end": 957.23, + "probability": 0.4056 + }, + { + "start": 958.52, + "end": 961.44, + "probability": 0.9966 + }, + { + "start": 961.44, + "end": 965.48, + "probability": 0.7857 + }, + { + "start": 966.6, + "end": 971.1, + "probability": 0.9585 + }, + { + "start": 972.48, + "end": 976.5, + "probability": 0.9211 + }, + { + "start": 978.12, + "end": 980.06, + "probability": 0.8338 + }, + { + "start": 981.04, + "end": 983.48, + "probability": 0.9839 + }, + { + "start": 983.54, + "end": 986.74, + "probability": 0.9914 + }, + { + "start": 987.24, + "end": 990.56, + "probability": 0.989 + }, + { + "start": 991.18, + "end": 993.08, + "probability": 0.8446 + }, + { + "start": 993.74, + "end": 994.02, + "probability": 0.5368 + }, + { + "start": 994.24, + "end": 994.44, + "probability": 0.8615 + }, + { + "start": 994.96, + "end": 996.04, + "probability": 0.9839 + }, + { + "start": 996.12, + "end": 996.92, + "probability": 0.5019 + }, + { + "start": 997.32, + "end": 999.4, + "probability": 0.1339 + }, + { + "start": 1000.74, + "end": 1002.44, + "probability": 0.814 + }, + { + "start": 1003.72, + "end": 1005.94, + "probability": 0.8894 + }, + { + "start": 1007.06, + "end": 1009.5, + "probability": 0.567 + }, + { + "start": 1011.08, + "end": 1012.54, + "probability": 0.8813 + }, + { + "start": 1013.52, + "end": 1015.5, + "probability": 0.9692 + }, + { + "start": 1016.52, + "end": 1017.24, + "probability": 0.936 + }, + { + "start": 1018.72, + "end": 1021.16, + "probability": 0.8264 + }, + { + "start": 1021.81, + "end": 1024.63, + "probability": 0.9567 + }, + { + "start": 1025.26, + "end": 1026.76, + "probability": 0.802 + }, + { + "start": 1028.12, + "end": 1028.73, + "probability": 0.7148 + }, + { + "start": 1028.88, + "end": 1029.4, + "probability": 0.678 + }, + { + "start": 1030.94, + "end": 1032.16, + "probability": 0.9653 + }, + { + "start": 1032.92, + "end": 1033.94, + "probability": 0.8027 + }, + { + "start": 1034.0, + "end": 1035.4, + "probability": 0.7694 + }, + { + "start": 1035.58, + "end": 1036.02, + "probability": 0.7875 + }, + { + "start": 1036.04, + "end": 1036.5, + "probability": 0.6275 + }, + { + "start": 1036.62, + "end": 1036.94, + "probability": 0.7895 + }, + { + "start": 1036.98, + "end": 1037.22, + "probability": 0.9011 + }, + { + "start": 1038.38, + "end": 1039.08, + "probability": 0.906 + }, + { + "start": 1040.42, + "end": 1041.08, + "probability": 0.7103 + }, + { + "start": 1041.5, + "end": 1044.38, + "probability": 0.6982 + }, + { + "start": 1045.1, + "end": 1045.66, + "probability": 0.3124 + }, + { + "start": 1046.2, + "end": 1046.82, + "probability": 0.8096 + }, + { + "start": 1047.36, + "end": 1049.96, + "probability": 0.9346 + }, + { + "start": 1050.42, + "end": 1051.64, + "probability": 0.9238 + }, + { + "start": 1052.42, + "end": 1054.08, + "probability": 0.9504 + }, + { + "start": 1055.72, + "end": 1058.48, + "probability": 0.8617 + }, + { + "start": 1059.84, + "end": 1061.86, + "probability": 0.9948 + }, + { + "start": 1062.52, + "end": 1064.52, + "probability": 0.9918 + }, + { + "start": 1065.42, + "end": 1066.12, + "probability": 0.9393 + }, + { + "start": 1066.72, + "end": 1069.48, + "probability": 0.991 + }, + { + "start": 1072.0, + "end": 1074.04, + "probability": 0.6466 + }, + { + "start": 1075.24, + "end": 1076.87, + "probability": 0.7618 + }, + { + "start": 1077.96, + "end": 1078.78, + "probability": 0.9212 + }, + { + "start": 1080.02, + "end": 1082.62, + "probability": 0.9961 + }, + { + "start": 1084.16, + "end": 1084.76, + "probability": 0.7774 + }, + { + "start": 1086.38, + "end": 1089.08, + "probability": 0.9988 + }, + { + "start": 1090.1, + "end": 1091.16, + "probability": 0.9607 + }, + { + "start": 1091.68, + "end": 1092.88, + "probability": 0.9233 + }, + { + "start": 1093.56, + "end": 1094.28, + "probability": 0.9648 + }, + { + "start": 1094.44, + "end": 1095.49, + "probability": 0.9438 + }, + { + "start": 1095.7, + "end": 1096.26, + "probability": 0.1833 + }, + { + "start": 1096.32, + "end": 1097.08, + "probability": 0.6495 + }, + { + "start": 1097.32, + "end": 1099.62, + "probability": 0.9974 + }, + { + "start": 1100.14, + "end": 1100.66, + "probability": 0.7518 + }, + { + "start": 1100.68, + "end": 1103.76, + "probability": 0.9631 + }, + { + "start": 1103.76, + "end": 1106.6, + "probability": 0.9976 + }, + { + "start": 1107.58, + "end": 1108.26, + "probability": 0.8938 + }, + { + "start": 1109.16, + "end": 1111.38, + "probability": 0.9773 + }, + { + "start": 1112.64, + "end": 1114.08, + "probability": 0.8268 + }, + { + "start": 1116.16, + "end": 1117.12, + "probability": 0.9888 + }, + { + "start": 1118.26, + "end": 1121.2, + "probability": 0.935 + }, + { + "start": 1126.3, + "end": 1127.38, + "probability": 0.8564 + }, + { + "start": 1127.6, + "end": 1127.84, + "probability": 0.5602 + }, + { + "start": 1128.26, + "end": 1128.6, + "probability": 0.9101 + }, + { + "start": 1128.84, + "end": 1131.79, + "probability": 0.949 + }, + { + "start": 1133.12, + "end": 1136.48, + "probability": 0.905 + }, + { + "start": 1137.98, + "end": 1139.6, + "probability": 0.9532 + }, + { + "start": 1141.1, + "end": 1142.76, + "probability": 0.9802 + }, + { + "start": 1143.7, + "end": 1145.15, + "probability": 0.9634 + }, + { + "start": 1146.0, + "end": 1146.46, + "probability": 0.8577 + }, + { + "start": 1146.46, + "end": 1148.3, + "probability": 0.9469 + }, + { + "start": 1150.3, + "end": 1151.2, + "probability": 0.9193 + }, + { + "start": 1152.36, + "end": 1154.66, + "probability": 0.9969 + }, + { + "start": 1154.94, + "end": 1156.24, + "probability": 0.9756 + }, + { + "start": 1157.68, + "end": 1159.06, + "probability": 0.8449 + }, + { + "start": 1159.16, + "end": 1160.14, + "probability": 0.9364 + }, + { + "start": 1160.4, + "end": 1161.12, + "probability": 0.366 + }, + { + "start": 1161.52, + "end": 1163.14, + "probability": 0.7965 + }, + { + "start": 1163.32, + "end": 1163.86, + "probability": 0.7957 + }, + { + "start": 1165.58, + "end": 1166.72, + "probability": 0.9455 + }, + { + "start": 1167.8, + "end": 1168.32, + "probability": 0.974 + }, + { + "start": 1168.94, + "end": 1169.64, + "probability": 0.9044 + }, + { + "start": 1171.42, + "end": 1172.82, + "probability": 0.993 + }, + { + "start": 1172.86, + "end": 1173.94, + "probability": 0.4779 + }, + { + "start": 1175.24, + "end": 1176.24, + "probability": 0.9744 + }, + { + "start": 1176.42, + "end": 1176.72, + "probability": 0.305 + }, + { + "start": 1176.72, + "end": 1177.52, + "probability": 0.9516 + }, + { + "start": 1179.11, + "end": 1181.18, + "probability": 0.7695 + }, + { + "start": 1182.88, + "end": 1185.24, + "probability": 0.8794 + }, + { + "start": 1187.56, + "end": 1189.44, + "probability": 0.9557 + }, + { + "start": 1190.56, + "end": 1194.48, + "probability": 0.929 + }, + { + "start": 1195.8, + "end": 1197.64, + "probability": 0.8241 + }, + { + "start": 1198.42, + "end": 1200.28, + "probability": 0.8017 + }, + { + "start": 1200.86, + "end": 1201.36, + "probability": 0.6393 + }, + { + "start": 1201.4, + "end": 1202.64, + "probability": 0.9172 + }, + { + "start": 1203.06, + "end": 1204.34, + "probability": 0.7629 + }, + { + "start": 1206.26, + "end": 1206.42, + "probability": 0.4097 + }, + { + "start": 1206.44, + "end": 1207.72, + "probability": 0.6913 + }, + { + "start": 1207.82, + "end": 1211.04, + "probability": 0.9496 + }, + { + "start": 1211.19, + "end": 1214.18, + "probability": 0.9655 + }, + { + "start": 1214.54, + "end": 1216.26, + "probability": 0.9051 + }, + { + "start": 1217.9, + "end": 1219.92, + "probability": 0.9818 + }, + { + "start": 1220.34, + "end": 1220.36, + "probability": 0.2888 + }, + { + "start": 1220.46, + "end": 1223.66, + "probability": 0.9656 + }, + { + "start": 1224.4, + "end": 1227.12, + "probability": 0.9346 + }, + { + "start": 1228.18, + "end": 1228.64, + "probability": 0.9258 + }, + { + "start": 1228.68, + "end": 1228.98, + "probability": 0.959 + }, + { + "start": 1229.04, + "end": 1231.1, + "probability": 0.9812 + }, + { + "start": 1231.24, + "end": 1231.94, + "probability": 0.4102 + }, + { + "start": 1232.74, + "end": 1233.98, + "probability": 0.9272 + }, + { + "start": 1235.04, + "end": 1237.12, + "probability": 0.9303 + }, + { + "start": 1237.98, + "end": 1238.2, + "probability": 0.4157 + }, + { + "start": 1239.66, + "end": 1239.84, + "probability": 0.605 + }, + { + "start": 1240.76, + "end": 1241.2, + "probability": 0.9382 + }, + { + "start": 1241.54, + "end": 1243.52, + "probability": 0.9088 + }, + { + "start": 1243.89, + "end": 1244.98, + "probability": 0.7952 + }, + { + "start": 1246.62, + "end": 1248.46, + "probability": 0.8042 + }, + { + "start": 1248.98, + "end": 1251.26, + "probability": 0.9633 + }, + { + "start": 1251.92, + "end": 1252.58, + "probability": 0.7865 + }, + { + "start": 1252.72, + "end": 1255.12, + "probability": 0.9899 + }, + { + "start": 1255.42, + "end": 1256.95, + "probability": 0.962 + }, + { + "start": 1257.44, + "end": 1259.3, + "probability": 0.8541 + }, + { + "start": 1259.38, + "end": 1260.84, + "probability": 0.716 + }, + { + "start": 1260.98, + "end": 1262.8, + "probability": 0.968 + }, + { + "start": 1263.44, + "end": 1263.76, + "probability": 0.352 + }, + { + "start": 1264.3, + "end": 1266.32, + "probability": 0.9904 + }, + { + "start": 1267.0, + "end": 1267.89, + "probability": 0.9442 + }, + { + "start": 1268.78, + "end": 1269.3, + "probability": 0.8781 + }, + { + "start": 1269.4, + "end": 1269.88, + "probability": 0.5178 + }, + { + "start": 1269.98, + "end": 1270.95, + "probability": 0.9001 + }, + { + "start": 1271.04, + "end": 1271.56, + "probability": 0.6564 + }, + { + "start": 1273.09, + "end": 1273.34, + "probability": 0.1282 + }, + { + "start": 1273.34, + "end": 1273.34, + "probability": 0.2134 + }, + { + "start": 1273.34, + "end": 1273.58, + "probability": 0.1305 + }, + { + "start": 1273.62, + "end": 1275.78, + "probability": 0.5177 + }, + { + "start": 1276.54, + "end": 1277.64, + "probability": 0.2659 + }, + { + "start": 1277.68, + "end": 1277.76, + "probability": 0.002 + }, + { + "start": 1290.18, + "end": 1296.02, + "probability": 0.2635 + }, + { + "start": 1296.18, + "end": 1296.44, + "probability": 0.0478 + }, + { + "start": 1296.44, + "end": 1302.36, + "probability": 0.0149 + }, + { + "start": 1307.96, + "end": 1308.59, + "probability": 0.0091 + }, + { + "start": 1311.92, + "end": 1313.2, + "probability": 0.0499 + }, + { + "start": 1315.86, + "end": 1318.84, + "probability": 0.028 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1414.0, + "end": 1414.0, + "probability": 0.0 + }, + { + "start": 1420.16, + "end": 1423.2, + "probability": 0.0275 + }, + { + "start": 1423.2, + "end": 1423.9, + "probability": 0.0674 + }, + { + "start": 1424.56, + "end": 1425.9, + "probability": 0.078 + }, + { + "start": 1426.38, + "end": 1426.53, + "probability": 0.0517 + }, + { + "start": 1443.56, + "end": 1444.54, + "probability": 0.0383 + }, + { + "start": 1445.0, + "end": 1445.1, + "probability": 0.2248 + }, + { + "start": 1445.1, + "end": 1445.1, + "probability": 0.0323 + }, + { + "start": 1445.1, + "end": 1445.1, + "probability": 0.1722 + }, + { + "start": 1445.28, + "end": 1446.12, + "probability": 0.0302 + }, + { + "start": 1446.14, + "end": 1446.37, + "probability": 0.0964 + }, + { + "start": 1448.58, + "end": 1449.39, + "probability": 0.0369 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.0, + "end": 1538.0, + "probability": 0.0 + }, + { + "start": 1538.27, + "end": 1543.03, + "probability": 0.0693 + }, + { + "start": 1543.44, + "end": 1546.22, + "probability": 0.1774 + }, + { + "start": 1548.55, + "end": 1549.46, + "probability": 0.2865 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1672.0, + "end": 1672.0, + "probability": 0.0 + }, + { + "start": 1679.6, + "end": 1680.78, + "probability": 0.0286 + }, + { + "start": 1681.86, + "end": 1682.66, + "probability": 0.12 + }, + { + "start": 1684.72, + "end": 1686.1, + "probability": 0.0265 + }, + { + "start": 1686.1, + "end": 1686.1, + "probability": 0.1238 + }, + { + "start": 1686.1, + "end": 1686.1, + "probability": 0.0788 + }, + { + "start": 1686.1, + "end": 1686.1, + "probability": 0.1087 + }, + { + "start": 1686.1, + "end": 1686.54, + "probability": 0.139 + }, + { + "start": 1694.82, + "end": 1695.16, + "probability": 0.0559 + }, + { + "start": 1707.04, + "end": 1709.08, + "probability": 0.1163 + }, + { + "start": 1710.38, + "end": 1712.0, + "probability": 0.1684 + }, + { + "start": 1712.0, + "end": 1712.0, + "probability": 0.1291 + }, + { + "start": 1713.16, + "end": 1714.82, + "probability": 0.0582 + }, + { + "start": 1715.68, + "end": 1718.15, + "probability": 0.0234 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.0, + "end": 1796.0, + "probability": 0.0 + }, + { + "start": 1796.88, + "end": 1797.12, + "probability": 0.2898 + }, + { + "start": 1797.18, + "end": 1799.1, + "probability": 0.5864 + }, + { + "start": 1799.24, + "end": 1799.44, + "probability": 0.5999 + }, + { + "start": 1799.52, + "end": 1800.44, + "probability": 0.8647 + }, + { + "start": 1800.5, + "end": 1800.84, + "probability": 0.9758 + }, + { + "start": 1801.6, + "end": 1804.24, + "probability": 0.9826 + }, + { + "start": 1804.54, + "end": 1808.48, + "probability": 0.5742 + }, + { + "start": 1808.74, + "end": 1812.06, + "probability": 0.901 + }, + { + "start": 1813.14, + "end": 1813.72, + "probability": 0.2366 + }, + { + "start": 1814.0, + "end": 1815.5, + "probability": 0.6318 + }, + { + "start": 1816.12, + "end": 1821.42, + "probability": 0.043 + }, + { + "start": 1821.42, + "end": 1822.8, + "probability": 0.129 + }, + { + "start": 1827.0, + "end": 1827.46, + "probability": 0.0042 + }, + { + "start": 1860.24, + "end": 1864.22, + "probability": 0.9979 + }, + { + "start": 1865.68, + "end": 1866.92, + "probability": 0.9993 + }, + { + "start": 1867.94, + "end": 1869.32, + "probability": 0.5409 + }, + { + "start": 1871.44, + "end": 1873.16, + "probability": 0.6667 + }, + { + "start": 1874.44, + "end": 1877.44, + "probability": 0.9697 + }, + { + "start": 1878.6, + "end": 1882.04, + "probability": 0.9936 + }, + { + "start": 1883.18, + "end": 1886.96, + "probability": 0.9838 + }, + { + "start": 1893.24, + "end": 1894.34, + "probability": 0.8799 + }, + { + "start": 1895.12, + "end": 1895.58, + "probability": 0.9948 + }, + { + "start": 1897.2, + "end": 1898.2, + "probability": 0.9649 + }, + { + "start": 1898.76, + "end": 1899.72, + "probability": 0.9901 + }, + { + "start": 1900.96, + "end": 1902.82, + "probability": 0.9567 + }, + { + "start": 1903.62, + "end": 1909.04, + "probability": 0.9956 + }, + { + "start": 1909.04, + "end": 1910.7, + "probability": 0.9839 + }, + { + "start": 1912.98, + "end": 1914.2, + "probability": 0.9885 + }, + { + "start": 1915.18, + "end": 1916.64, + "probability": 0.859 + }, + { + "start": 1919.2, + "end": 1923.18, + "probability": 0.9852 + }, + { + "start": 1923.36, + "end": 1925.56, + "probability": 0.998 + }, + { + "start": 1927.76, + "end": 1929.56, + "probability": 0.8852 + }, + { + "start": 1929.72, + "end": 1936.76, + "probability": 0.991 + }, + { + "start": 1939.9, + "end": 1945.64, + "probability": 0.8146 + }, + { + "start": 1946.62, + "end": 1947.88, + "probability": 0.8254 + }, + { + "start": 1949.88, + "end": 1954.78, + "probability": 0.9642 + }, + { + "start": 1956.16, + "end": 1957.68, + "probability": 0.9958 + }, + { + "start": 1958.2, + "end": 1959.04, + "probability": 0.9881 + }, + { + "start": 1961.16, + "end": 1962.48, + "probability": 0.9425 + }, + { + "start": 1964.22, + "end": 1965.14, + "probability": 0.8896 + }, + { + "start": 1966.48, + "end": 1969.5, + "probability": 0.8682 + }, + { + "start": 1971.62, + "end": 1973.25, + "probability": 0.9485 + }, + { + "start": 1976.2, + "end": 1979.88, + "probability": 0.8585 + }, + { + "start": 1981.26, + "end": 1983.3, + "probability": 0.988 + }, + { + "start": 1985.0, + "end": 1985.9, + "probability": 0.7496 + }, + { + "start": 1989.2, + "end": 1991.28, + "probability": 0.9957 + }, + { + "start": 1992.9, + "end": 1996.34, + "probability": 0.6484 + }, + { + "start": 1997.9, + "end": 1999.94, + "probability": 0.9387 + }, + { + "start": 2001.3, + "end": 2003.86, + "probability": 0.9892 + }, + { + "start": 2004.56, + "end": 2005.46, + "probability": 0.9863 + }, + { + "start": 2006.38, + "end": 2007.66, + "probability": 0.4299 + }, + { + "start": 2009.28, + "end": 2010.5, + "probability": 0.9474 + }, + { + "start": 2011.6, + "end": 2012.36, + "probability": 0.8214 + }, + { + "start": 2013.1, + "end": 2013.32, + "probability": 0.9895 + }, + { + "start": 2017.12, + "end": 2022.74, + "probability": 0.7577 + }, + { + "start": 2024.08, + "end": 2025.56, + "probability": 0.7513 + }, + { + "start": 2027.52, + "end": 2029.5, + "probability": 0.7778 + }, + { + "start": 2031.34, + "end": 2035.3, + "probability": 0.7759 + }, + { + "start": 2038.02, + "end": 2039.64, + "probability": 0.9209 + }, + { + "start": 2042.0, + "end": 2042.64, + "probability": 0.9427 + }, + { + "start": 2044.16, + "end": 2045.28, + "probability": 0.9692 + }, + { + "start": 2047.36, + "end": 2050.46, + "probability": 0.7515 + }, + { + "start": 2051.58, + "end": 2052.54, + "probability": 0.9519 + }, + { + "start": 2054.34, + "end": 2056.94, + "probability": 0.8389 + }, + { + "start": 2057.64, + "end": 2059.18, + "probability": 0.9968 + }, + { + "start": 2061.04, + "end": 2062.96, + "probability": 0.937 + }, + { + "start": 2064.6, + "end": 2068.12, + "probability": 0.9821 + }, + { + "start": 2068.92, + "end": 2074.28, + "probability": 0.9768 + }, + { + "start": 2074.44, + "end": 2075.4, + "probability": 0.8678 + }, + { + "start": 2077.24, + "end": 2082.34, + "probability": 0.9619 + }, + { + "start": 2089.1, + "end": 2090.14, + "probability": 0.6838 + }, + { + "start": 2090.78, + "end": 2091.78, + "probability": 0.6757 + }, + { + "start": 2093.91, + "end": 2100.08, + "probability": 0.1711 + }, + { + "start": 2101.14, + "end": 2102.2, + "probability": 0.8024 + }, + { + "start": 2103.8, + "end": 2103.92, + "probability": 0.5143 + }, + { + "start": 2103.92, + "end": 2104.92, + "probability": 0.8975 + }, + { + "start": 2105.26, + "end": 2105.94, + "probability": 0.4862 + }, + { + "start": 2105.94, + "end": 2106.01, + "probability": 0.5162 + }, + { + "start": 2106.74, + "end": 2107.52, + "probability": 0.5393 + }, + { + "start": 2107.78, + "end": 2108.76, + "probability": 0.2957 + }, + { + "start": 2109.3, + "end": 2109.58, + "probability": 0.7486 + }, + { + "start": 2109.86, + "end": 2112.56, + "probability": 0.4246 + }, + { + "start": 2112.84, + "end": 2114.52, + "probability": 0.5605 + }, + { + "start": 2114.86, + "end": 2116.6, + "probability": 0.544 + }, + { + "start": 2117.08, + "end": 2121.46, + "probability": 0.6766 + }, + { + "start": 2121.66, + "end": 2124.38, + "probability": 0.7283 + }, + { + "start": 2127.8, + "end": 2129.62, + "probability": 0.8511 + }, + { + "start": 2130.3, + "end": 2132.43, + "probability": 0.5049 + }, + { + "start": 2133.14, + "end": 2135.98, + "probability": 0.967 + }, + { + "start": 2139.11, + "end": 2140.94, + "probability": 0.3787 + }, + { + "start": 2141.04, + "end": 2146.48, + "probability": 0.9757 + }, + { + "start": 2146.54, + "end": 2146.78, + "probability": 0.8411 + }, + { + "start": 2147.9, + "end": 2152.49, + "probability": 0.8107 + }, + { + "start": 2153.66, + "end": 2155.26, + "probability": 0.3761 + }, + { + "start": 2156.56, + "end": 2157.02, + "probability": 0.4577 + }, + { + "start": 2157.32, + "end": 2160.96, + "probability": 0.6043 + }, + { + "start": 2161.22, + "end": 2161.42, + "probability": 0.5844 + }, + { + "start": 2161.42, + "end": 2161.52, + "probability": 0.206 + }, + { + "start": 2161.52, + "end": 2164.62, + "probability": 0.972 + }, + { + "start": 2167.58, + "end": 2170.56, + "probability": 0.9438 + }, + { + "start": 2170.82, + "end": 2171.56, + "probability": 0.4796 + }, + { + "start": 2171.92, + "end": 2173.06, + "probability": 0.7208 + }, + { + "start": 2173.4, + "end": 2175.3, + "probability": 0.96 + }, + { + "start": 2176.72, + "end": 2179.02, + "probability": 0.9042 + }, + { + "start": 2179.78, + "end": 2180.3, + "probability": 0.0861 + }, + { + "start": 2180.34, + "end": 2181.48, + "probability": 0.9893 + }, + { + "start": 2181.58, + "end": 2183.28, + "probability": 0.998 + }, + { + "start": 2183.28, + "end": 2184.78, + "probability": 0.9861 + }, + { + "start": 2187.08, + "end": 2189.96, + "probability": 0.4754 + }, + { + "start": 2191.16, + "end": 2192.36, + "probability": 0.9327 + }, + { + "start": 2194.3, + "end": 2195.68, + "probability": 0.7137 + }, + { + "start": 2199.08, + "end": 2200.44, + "probability": 0.6393 + }, + { + "start": 2203.36, + "end": 2205.84, + "probability": 0.8347 + }, + { + "start": 2207.4, + "end": 2211.2, + "probability": 0.9766 + }, + { + "start": 2211.52, + "end": 2216.08, + "probability": 0.5764 + }, + { + "start": 2216.12, + "end": 2216.6, + "probability": 0.7388 + }, + { + "start": 2222.86, + "end": 2224.86, + "probability": 0.8586 + }, + { + "start": 2225.92, + "end": 2227.62, + "probability": 0.1568 + }, + { + "start": 2227.76, + "end": 2232.2, + "probability": 0.976 + }, + { + "start": 2234.22, + "end": 2234.98, + "probability": 0.9788 + }, + { + "start": 2236.56, + "end": 2239.07, + "probability": 0.9932 + }, + { + "start": 2241.74, + "end": 2242.74, + "probability": 0.734 + }, + { + "start": 2244.2, + "end": 2247.08, + "probability": 0.9902 + }, + { + "start": 2248.32, + "end": 2253.3, + "probability": 0.8429 + }, + { + "start": 2255.8, + "end": 2256.42, + "probability": 0.4819 + }, + { + "start": 2257.7, + "end": 2261.9, + "probability": 0.8993 + }, + { + "start": 2263.16, + "end": 2266.06, + "probability": 0.9512 + }, + { + "start": 2269.56, + "end": 2269.82, + "probability": 0.8944 + }, + { + "start": 2275.66, + "end": 2277.15, + "probability": 0.7294 + }, + { + "start": 2279.46, + "end": 2282.92, + "probability": 0.8516 + }, + { + "start": 2284.24, + "end": 2286.78, + "probability": 0.8652 + }, + { + "start": 2287.32, + "end": 2288.34, + "probability": 0.9712 + }, + { + "start": 2289.78, + "end": 2290.48, + "probability": 0.876 + }, + { + "start": 2291.54, + "end": 2295.88, + "probability": 0.9916 + }, + { + "start": 2298.6, + "end": 2299.22, + "probability": 0.2569 + }, + { + "start": 2300.28, + "end": 2302.3, + "probability": 0.6574 + }, + { + "start": 2307.22, + "end": 2308.24, + "probability": 0.7339 + }, + { + "start": 2309.2, + "end": 2312.04, + "probability": 0.3278 + }, + { + "start": 2312.48, + "end": 2314.08, + "probability": 0.8608 + }, + { + "start": 2314.14, + "end": 2316.68, + "probability": 0.5987 + }, + { + "start": 2318.3, + "end": 2320.62, + "probability": 0.9645 + }, + { + "start": 2322.58, + "end": 2323.4, + "probability": 0.9604 + }, + { + "start": 2324.74, + "end": 2325.24, + "probability": 0.8651 + }, + { + "start": 2329.5, + "end": 2332.7, + "probability": 0.9894 + }, + { + "start": 2333.72, + "end": 2338.92, + "probability": 0.8125 + }, + { + "start": 2340.1, + "end": 2341.16, + "probability": 0.7382 + }, + { + "start": 2342.52, + "end": 2343.52, + "probability": 0.9904 + }, + { + "start": 2345.28, + "end": 2347.92, + "probability": 0.8448 + }, + { + "start": 2349.12, + "end": 2350.08, + "probability": 0.8282 + }, + { + "start": 2350.98, + "end": 2351.54, + "probability": 0.8503 + }, + { + "start": 2352.48, + "end": 2354.32, + "probability": 0.6645 + }, + { + "start": 2354.58, + "end": 2355.18, + "probability": 0.6792 + }, + { + "start": 2355.44, + "end": 2359.82, + "probability": 0.9854 + }, + { + "start": 2360.72, + "end": 2363.12, + "probability": 0.9993 + }, + { + "start": 2364.46, + "end": 2367.36, + "probability": 0.7404 + }, + { + "start": 2368.4, + "end": 2370.86, + "probability": 0.905 + }, + { + "start": 2371.7, + "end": 2375.25, + "probability": 0.5453 + }, + { + "start": 2375.52, + "end": 2377.48, + "probability": 0.7486 + }, + { + "start": 2377.64, + "end": 2380.44, + "probability": 0.4203 + }, + { + "start": 2381.08, + "end": 2381.52, + "probability": 0.9902 + }, + { + "start": 2382.38, + "end": 2383.24, + "probability": 0.0599 + }, + { + "start": 2383.89, + "end": 2391.92, + "probability": 0.8836 + }, + { + "start": 2392.84, + "end": 2394.06, + "probability": 0.6198 + }, + { + "start": 2395.36, + "end": 2396.78, + "probability": 0.9578 + }, + { + "start": 2397.36, + "end": 2398.5, + "probability": 0.7088 + }, + { + "start": 2399.0, + "end": 2400.22, + "probability": 0.7852 + }, + { + "start": 2400.98, + "end": 2401.54, + "probability": 0.4357 + }, + { + "start": 2402.84, + "end": 2404.16, + "probability": 0.8804 + }, + { + "start": 2405.43, + "end": 2408.0, + "probability": 0.4615 + }, + { + "start": 2408.22, + "end": 2409.2, + "probability": 0.2465 + }, + { + "start": 2409.26, + "end": 2410.36, + "probability": 0.4845 + }, + { + "start": 2410.48, + "end": 2415.18, + "probability": 0.4819 + }, + { + "start": 2418.0, + "end": 2420.82, + "probability": 0.8066 + }, + { + "start": 2421.48, + "end": 2423.5, + "probability": 0.8366 + }, + { + "start": 2424.02, + "end": 2429.32, + "probability": 0.9865 + }, + { + "start": 2429.32, + "end": 2433.83, + "probability": 0.8931 + }, + { + "start": 2435.18, + "end": 2436.7, + "probability": 0.6143 + }, + { + "start": 2437.28, + "end": 2441.56, + "probability": 0.7714 + }, + { + "start": 2442.26, + "end": 2446.04, + "probability": 0.9845 + }, + { + "start": 2447.76, + "end": 2451.36, + "probability": 0.9675 + }, + { + "start": 2451.72, + "end": 2454.38, + "probability": 0.9224 + }, + { + "start": 2454.86, + "end": 2459.52, + "probability": 0.9818 + }, + { + "start": 2459.7, + "end": 2460.32, + "probability": 0.8411 + }, + { + "start": 2461.32, + "end": 2462.9, + "probability": 0.6843 + }, + { + "start": 2463.68, + "end": 2468.38, + "probability": 0.9815 + }, + { + "start": 2468.88, + "end": 2474.94, + "probability": 0.9601 + }, + { + "start": 2475.54, + "end": 2479.1, + "probability": 0.9276 + }, + { + "start": 2479.8, + "end": 2483.96, + "probability": 0.9503 + }, + { + "start": 2484.48, + "end": 2487.18, + "probability": 0.8439 + }, + { + "start": 2487.4, + "end": 2491.28, + "probability": 0.9136 + }, + { + "start": 2491.32, + "end": 2492.08, + "probability": 0.8606 + }, + { + "start": 2492.46, + "end": 2494.06, + "probability": 0.9437 + }, + { + "start": 2494.2, + "end": 2497.7, + "probability": 0.9749 + }, + { + "start": 2497.88, + "end": 2498.18, + "probability": 0.8679 + }, + { + "start": 2498.54, + "end": 2500.98, + "probability": 0.5961 + }, + { + "start": 2501.78, + "end": 2506.1, + "probability": 0.9211 + }, + { + "start": 2506.76, + "end": 2510.64, + "probability": 0.7704 + }, + { + "start": 2511.38, + "end": 2514.14, + "probability": 0.8918 + }, + { + "start": 2517.92, + "end": 2519.1, + "probability": 0.7841 + }, + { + "start": 2519.26, + "end": 2520.56, + "probability": 0.5863 + }, + { + "start": 2520.88, + "end": 2521.98, + "probability": 0.4738 + }, + { + "start": 2522.18, + "end": 2523.24, + "probability": 0.7135 + }, + { + "start": 2523.36, + "end": 2529.42, + "probability": 0.5691 + }, + { + "start": 2529.68, + "end": 2531.16, + "probability": 0.8561 + }, + { + "start": 2531.86, + "end": 2534.48, + "probability": 0.9036 + }, + { + "start": 2535.2, + "end": 2538.96, + "probability": 0.9985 + }, + { + "start": 2539.16, + "end": 2541.0, + "probability": 0.8119 + }, + { + "start": 2541.74, + "end": 2550.42, + "probability": 0.8094 + }, + { + "start": 2551.1, + "end": 2555.02, + "probability": 0.7543 + }, + { + "start": 2555.48, + "end": 2559.36, + "probability": 0.9956 + }, + { + "start": 2560.04, + "end": 2564.72, + "probability": 0.9911 + }, + { + "start": 2564.84, + "end": 2569.62, + "probability": 0.8248 + }, + { + "start": 2570.08, + "end": 2573.54, + "probability": 0.9888 + }, + { + "start": 2574.24, + "end": 2574.6, + "probability": 0.8334 + }, + { + "start": 2575.2, + "end": 2582.66, + "probability": 0.6715 + }, + { + "start": 2582.95, + "end": 2589.4, + "probability": 0.991 + }, + { + "start": 2590.12, + "end": 2595.44, + "probability": 0.9971 + }, + { + "start": 2595.98, + "end": 2600.88, + "probability": 0.9139 + }, + { + "start": 2601.34, + "end": 2602.56, + "probability": 0.6191 + }, + { + "start": 2602.62, + "end": 2605.64, + "probability": 0.9861 + }, + { + "start": 2606.08, + "end": 2610.95, + "probability": 0.9042 + }, + { + "start": 2612.2, + "end": 2613.96, + "probability": 0.995 + }, + { + "start": 2614.58, + "end": 2616.86, + "probability": 0.9815 + }, + { + "start": 2617.76, + "end": 2625.68, + "probability": 0.9785 + }, + { + "start": 2626.62, + "end": 2629.84, + "probability": 0.9126 + }, + { + "start": 2629.84, + "end": 2633.16, + "probability": 0.9963 + }, + { + "start": 2634.08, + "end": 2634.84, + "probability": 0.8136 + }, + { + "start": 2635.48, + "end": 2638.3, + "probability": 0.8654 + }, + { + "start": 2638.94, + "end": 2641.48, + "probability": 0.9641 + }, + { + "start": 2641.6, + "end": 2644.78, + "probability": 0.9532 + }, + { + "start": 2645.34, + "end": 2650.6, + "probability": 0.981 + }, + { + "start": 2650.6, + "end": 2655.78, + "probability": 0.9856 + }, + { + "start": 2656.24, + "end": 2656.73, + "probability": 0.8743 + }, + { + "start": 2657.44, + "end": 2661.1, + "probability": 0.9953 + }, + { + "start": 2661.94, + "end": 2661.94, + "probability": 0.6358 + }, + { + "start": 2661.94, + "end": 2666.84, + "probability": 0.9119 + }, + { + "start": 2666.92, + "end": 2671.86, + "probability": 0.9213 + }, + { + "start": 2672.3, + "end": 2672.84, + "probability": 0.8845 + }, + { + "start": 2674.04, + "end": 2676.02, + "probability": 0.889 + }, + { + "start": 2676.28, + "end": 2679.0, + "probability": 0.938 + }, + { + "start": 2679.46, + "end": 2680.7, + "probability": 0.9553 + }, + { + "start": 2681.42, + "end": 2682.68, + "probability": 0.9696 + }, + { + "start": 2682.76, + "end": 2687.92, + "probability": 0.9987 + }, + { + "start": 2688.84, + "end": 2692.0, + "probability": 0.9953 + }, + { + "start": 2692.88, + "end": 2697.84, + "probability": 0.9959 + }, + { + "start": 2698.34, + "end": 2700.74, + "probability": 0.9984 + }, + { + "start": 2701.34, + "end": 2701.96, + "probability": 0.982 + }, + { + "start": 2702.82, + "end": 2707.82, + "probability": 0.9987 + }, + { + "start": 2708.48, + "end": 2711.32, + "probability": 0.9988 + }, + { + "start": 2711.92, + "end": 2712.58, + "probability": 0.5888 + }, + { + "start": 2712.74, + "end": 2713.58, + "probability": 0.9296 + }, + { + "start": 2713.66, + "end": 2715.94, + "probability": 0.9974 + }, + { + "start": 2716.54, + "end": 2720.76, + "probability": 0.9854 + }, + { + "start": 2721.6, + "end": 2721.98, + "probability": 0.5302 + }, + { + "start": 2722.14, + "end": 2726.12, + "probability": 0.9916 + }, + { + "start": 2727.32, + "end": 2732.68, + "probability": 0.9868 + }, + { + "start": 2732.68, + "end": 2737.78, + "probability": 0.9993 + }, + { + "start": 2738.54, + "end": 2742.3, + "probability": 0.9961 + }, + { + "start": 2742.3, + "end": 2744.72, + "probability": 0.9849 + }, + { + "start": 2745.54, + "end": 2751.38, + "probability": 0.9861 + }, + { + "start": 2751.62, + "end": 2753.92, + "probability": 0.9248 + }, + { + "start": 2754.4, + "end": 2756.12, + "probability": 0.9894 + }, + { + "start": 2756.24, + "end": 2758.74, + "probability": 0.8756 + }, + { + "start": 2759.36, + "end": 2761.16, + "probability": 0.9951 + }, + { + "start": 2761.82, + "end": 2763.82, + "probability": 0.8442 + }, + { + "start": 2763.96, + "end": 2766.98, + "probability": 0.6909 + }, + { + "start": 2767.4, + "end": 2772.0, + "probability": 0.9563 + }, + { + "start": 2772.0, + "end": 2774.9, + "probability": 0.9937 + }, + { + "start": 2776.04, + "end": 2778.22, + "probability": 0.9874 + }, + { + "start": 2778.54, + "end": 2780.06, + "probability": 0.8189 + }, + { + "start": 2780.54, + "end": 2782.7, + "probability": 0.8726 + }, + { + "start": 2783.18, + "end": 2789.58, + "probability": 0.9858 + }, + { + "start": 2790.52, + "end": 2793.54, + "probability": 0.8615 + }, + { + "start": 2793.54, + "end": 2797.98, + "probability": 0.9809 + }, + { + "start": 2799.54, + "end": 2800.68, + "probability": 0.7465 + }, + { + "start": 2801.38, + "end": 2802.13, + "probability": 0.9971 + }, + { + "start": 2802.96, + "end": 2807.5, + "probability": 0.9907 + }, + { + "start": 2808.4, + "end": 2813.02, + "probability": 0.9899 + }, + { + "start": 2813.48, + "end": 2817.36, + "probability": 0.9967 + }, + { + "start": 2817.92, + "end": 2818.9, + "probability": 0.895 + }, + { + "start": 2819.26, + "end": 2822.04, + "probability": 0.9707 + }, + { + "start": 2823.02, + "end": 2824.94, + "probability": 0.9929 + }, + { + "start": 2825.64, + "end": 2826.36, + "probability": 0.9642 + }, + { + "start": 2826.4, + "end": 2827.4, + "probability": 0.9491 + }, + { + "start": 2827.86, + "end": 2829.4, + "probability": 0.9365 + }, + { + "start": 2829.56, + "end": 2830.58, + "probability": 0.7884 + }, + { + "start": 2831.18, + "end": 2834.2, + "probability": 0.9971 + }, + { + "start": 2834.84, + "end": 2838.42, + "probability": 0.9966 + }, + { + "start": 2839.14, + "end": 2840.58, + "probability": 0.9968 + }, + { + "start": 2842.2, + "end": 2849.32, + "probability": 0.9809 + }, + { + "start": 2849.44, + "end": 2853.36, + "probability": 0.9991 + }, + { + "start": 2853.36, + "end": 2857.24, + "probability": 0.9894 + }, + { + "start": 2857.6, + "end": 2859.96, + "probability": 0.9946 + }, + { + "start": 2860.22, + "end": 2862.06, + "probability": 0.9566 + }, + { + "start": 2865.75, + "end": 2869.0, + "probability": 0.528 + }, + { + "start": 2870.06, + "end": 2874.94, + "probability": 0.8581 + }, + { + "start": 2874.94, + "end": 2883.86, + "probability": 0.9988 + }, + { + "start": 2884.8, + "end": 2891.58, + "probability": 0.9645 + }, + { + "start": 2891.6, + "end": 2895.9, + "probability": 0.99 + }, + { + "start": 2896.34, + "end": 2900.88, + "probability": 0.9727 + }, + { + "start": 2901.32, + "end": 2901.77, + "probability": 0.748 + }, + { + "start": 2902.1, + "end": 2908.38, + "probability": 0.9979 + }, + { + "start": 2908.92, + "end": 2917.18, + "probability": 0.9897 + }, + { + "start": 2917.56, + "end": 2922.4, + "probability": 0.9251 + }, + { + "start": 2922.78, + "end": 2927.4, + "probability": 0.9988 + }, + { + "start": 2927.4, + "end": 2931.68, + "probability": 0.9867 + }, + { + "start": 2931.9, + "end": 2933.64, + "probability": 0.9433 + }, + { + "start": 2933.98, + "end": 2939.12, + "probability": 0.9829 + }, + { + "start": 2939.88, + "end": 2945.19, + "probability": 0.9976 + }, + { + "start": 2945.72, + "end": 2946.46, + "probability": 0.7683 + }, + { + "start": 2946.84, + "end": 2951.8, + "probability": 0.9629 + }, + { + "start": 2951.8, + "end": 2959.24, + "probability": 0.9542 + }, + { + "start": 2959.24, + "end": 2963.92, + "probability": 0.9973 + }, + { + "start": 2964.56, + "end": 2967.34, + "probability": 0.9863 + }, + { + "start": 2967.88, + "end": 2971.14, + "probability": 0.895 + }, + { + "start": 2971.14, + "end": 2974.96, + "probability": 0.9796 + }, + { + "start": 2974.96, + "end": 2979.5, + "probability": 0.9858 + }, + { + "start": 2980.31, + "end": 2981.98, + "probability": 0.9905 + }, + { + "start": 2984.42, + "end": 2985.54, + "probability": 0.2764 + }, + { + "start": 2986.36, + "end": 2990.46, + "probability": 0.9761 + }, + { + "start": 2990.62, + "end": 2997.44, + "probability": 0.9941 + }, + { + "start": 2997.44, + "end": 3004.5, + "probability": 0.9978 + }, + { + "start": 3004.56, + "end": 3011.62, + "probability": 0.998 + }, + { + "start": 3012.4, + "end": 3016.68, + "probability": 0.9927 + }, + { + "start": 3017.18, + "end": 3018.0, + "probability": 0.9744 + }, + { + "start": 3018.66, + "end": 3019.64, + "probability": 0.9097 + }, + { + "start": 3019.8, + "end": 3022.82, + "probability": 0.9636 + }, + { + "start": 3022.96, + "end": 3025.2, + "probability": 0.9885 + }, + { + "start": 3025.98, + "end": 3028.4, + "probability": 0.6494 + }, + { + "start": 3028.84, + "end": 3029.44, + "probability": 0.9336 + }, + { + "start": 3029.84, + "end": 3034.78, + "probability": 0.9547 + }, + { + "start": 3035.1, + "end": 3038.14, + "probability": 0.5109 + }, + { + "start": 3038.62, + "end": 3042.14, + "probability": 0.9971 + }, + { + "start": 3042.58, + "end": 3043.3, + "probability": 0.9028 + }, + { + "start": 3043.52, + "end": 3046.64, + "probability": 0.947 + }, + { + "start": 3046.68, + "end": 3047.56, + "probability": 0.4759 + }, + { + "start": 3047.64, + "end": 3049.1, + "probability": 0.9223 + }, + { + "start": 3049.62, + "end": 3051.7, + "probability": 0.7897 + }, + { + "start": 3051.8, + "end": 3057.44, + "probability": 0.9854 + }, + { + "start": 3057.98, + "end": 3060.26, + "probability": 0.7031 + }, + { + "start": 3060.46, + "end": 3061.16, + "probability": 0.8426 + }, + { + "start": 3061.28, + "end": 3062.9, + "probability": 0.9724 + }, + { + "start": 3063.36, + "end": 3067.96, + "probability": 0.9775 + }, + { + "start": 3068.36, + "end": 3070.42, + "probability": 0.766 + }, + { + "start": 3070.84, + "end": 3071.66, + "probability": 0.8257 + }, + { + "start": 3071.78, + "end": 3073.02, + "probability": 0.9669 + }, + { + "start": 3073.16, + "end": 3074.98, + "probability": 0.9862 + }, + { + "start": 3076.08, + "end": 3079.76, + "probability": 0.9954 + }, + { + "start": 3081.68, + "end": 3082.0, + "probability": 0.0319 + }, + { + "start": 3082.0, + "end": 3083.72, + "probability": 0.561 + }, + { + "start": 3084.71, + "end": 3087.82, + "probability": 0.6952 + }, + { + "start": 3087.82, + "end": 3090.68, + "probability": 0.9888 + }, + { + "start": 3091.18, + "end": 3096.24, + "probability": 0.9491 + }, + { + "start": 3096.24, + "end": 3100.56, + "probability": 0.9987 + }, + { + "start": 3101.04, + "end": 3101.7, + "probability": 0.806 + }, + { + "start": 3102.34, + "end": 3102.58, + "probability": 0.6656 + }, + { + "start": 3102.64, + "end": 3103.9, + "probability": 0.9407 + }, + { + "start": 3104.0, + "end": 3107.54, + "probability": 0.8916 + }, + { + "start": 3108.74, + "end": 3110.88, + "probability": 0.9612 + }, + { + "start": 3111.32, + "end": 3113.46, + "probability": 0.9988 + }, + { + "start": 3114.0, + "end": 3115.56, + "probability": 0.5983 + }, + { + "start": 3116.86, + "end": 3119.56, + "probability": 0.9406 + }, + { + "start": 3120.26, + "end": 3122.28, + "probability": 0.5391 + }, + { + "start": 3122.92, + "end": 3128.5, + "probability": 0.8916 + }, + { + "start": 3129.06, + "end": 3129.36, + "probability": 0.0821 + }, + { + "start": 3129.36, + "end": 3130.22, + "probability": 0.7242 + }, + { + "start": 3130.64, + "end": 3131.78, + "probability": 0.8369 + }, + { + "start": 3132.54, + "end": 3134.76, + "probability": 0.9429 + }, + { + "start": 3134.86, + "end": 3136.12, + "probability": 0.8564 + }, + { + "start": 3136.22, + "end": 3136.48, + "probability": 0.6698 + }, + { + "start": 3136.52, + "end": 3139.22, + "probability": 0.9923 + }, + { + "start": 3139.58, + "end": 3141.84, + "probability": 0.9673 + }, + { + "start": 3142.2, + "end": 3144.23, + "probability": 0.9817 + }, + { + "start": 3144.58, + "end": 3145.92, + "probability": 0.7138 + }, + { + "start": 3146.08, + "end": 3146.83, + "probability": 0.8724 + }, + { + "start": 3147.66, + "end": 3148.22, + "probability": 0.9368 + }, + { + "start": 3148.28, + "end": 3149.5, + "probability": 0.7552 + }, + { + "start": 3150.24, + "end": 3151.92, + "probability": 0.8159 + }, + { + "start": 3151.96, + "end": 3152.58, + "probability": 0.5904 + }, + { + "start": 3152.72, + "end": 3153.52, + "probability": 0.8978 + }, + { + "start": 3154.44, + "end": 3156.16, + "probability": 0.2822 + }, + { + "start": 3156.52, + "end": 3157.24, + "probability": 0.0894 + }, + { + "start": 3161.74, + "end": 3162.1, + "probability": 0.2215 + }, + { + "start": 3162.1, + "end": 3163.76, + "probability": 0.3627 + }, + { + "start": 3163.86, + "end": 3168.12, + "probability": 0.594 + }, + { + "start": 3168.12, + "end": 3168.2, + "probability": 0.1458 + }, + { + "start": 3168.38, + "end": 3168.38, + "probability": 0.2602 + }, + { + "start": 3168.38, + "end": 3169.12, + "probability": 0.5941 + }, + { + "start": 3170.16, + "end": 3171.58, + "probability": 0.3404 + }, + { + "start": 3172.6, + "end": 3174.4, + "probability": 0.5825 + }, + { + "start": 3174.62, + "end": 3179.02, + "probability": 0.8923 + }, + { + "start": 3181.4, + "end": 3181.54, + "probability": 0.1047 + }, + { + "start": 3181.54, + "end": 3182.7, + "probability": 0.1213 + }, + { + "start": 3182.7, + "end": 3184.56, + "probability": 0.9888 + }, + { + "start": 3184.56, + "end": 3188.48, + "probability": 0.9724 + }, + { + "start": 3188.78, + "end": 3193.12, + "probability": 0.9927 + }, + { + "start": 3193.64, + "end": 3196.06, + "probability": 0.6236 + }, + { + "start": 3196.58, + "end": 3199.36, + "probability": 0.78 + }, + { + "start": 3199.76, + "end": 3204.56, + "probability": 0.8369 + }, + { + "start": 3204.82, + "end": 3205.31, + "probability": 0.9888 + }, + { + "start": 3206.1, + "end": 3210.26, + "probability": 0.9449 + }, + { + "start": 3211.12, + "end": 3211.92, + "probability": 0.0542 + }, + { + "start": 3211.92, + "end": 3211.92, + "probability": 0.0578 + }, + { + "start": 3211.92, + "end": 3212.2, + "probability": 0.1031 + }, + { + "start": 3212.2, + "end": 3214.38, + "probability": 0.4864 + }, + { + "start": 3214.56, + "end": 3215.68, + "probability": 0.2472 + }, + { + "start": 3216.56, + "end": 3216.56, + "probability": 0.0331 + }, + { + "start": 3217.1, + "end": 3220.4, + "probability": 0.1635 + }, + { + "start": 3222.92, + "end": 3225.04, + "probability": 0.0529 + }, + { + "start": 3225.04, + "end": 3225.22, + "probability": 0.1067 + }, + { + "start": 3225.22, + "end": 3227.64, + "probability": 0.1478 + }, + { + "start": 3228.62, + "end": 3228.94, + "probability": 0.7152 + }, + { + "start": 3230.22, + "end": 3231.4, + "probability": 0.7344 + }, + { + "start": 3233.48, + "end": 3234.79, + "probability": 0.2702 + }, + { + "start": 3236.4, + "end": 3236.86, + "probability": 0.0521 + }, + { + "start": 3237.1, + "end": 3237.4, + "probability": 0.3492 + }, + { + "start": 3237.52, + "end": 3241.18, + "probability": 0.8942 + }, + { + "start": 3241.3, + "end": 3242.16, + "probability": 0.5572 + }, + { + "start": 3242.44, + "end": 3244.44, + "probability": 0.0889 + }, + { + "start": 3244.44, + "end": 3245.72, + "probability": 0.1161 + }, + { + "start": 3245.72, + "end": 3245.76, + "probability": 0.1119 + }, + { + "start": 3245.76, + "end": 3246.51, + "probability": 0.3144 + }, + { + "start": 3247.06, + "end": 3249.2, + "probability": 0.9283 + }, + { + "start": 3249.3, + "end": 3251.64, + "probability": 0.8904 + }, + { + "start": 3251.76, + "end": 3253.08, + "probability": 0.8306 + }, + { + "start": 3253.42, + "end": 3253.9, + "probability": 0.4303 + }, + { + "start": 3254.0, + "end": 3255.02, + "probability": 0.5465 + }, + { + "start": 3255.16, + "end": 3256.38, + "probability": 0.8975 + }, + { + "start": 3256.46, + "end": 3257.84, + "probability": 0.9946 + }, + { + "start": 3258.28, + "end": 3263.8, + "probability": 0.8638 + }, + { + "start": 3264.42, + "end": 3267.9, + "probability": 0.986 + }, + { + "start": 3268.2, + "end": 3271.44, + "probability": 0.9944 + }, + { + "start": 3271.56, + "end": 3275.9, + "probability": 0.7452 + }, + { + "start": 3276.02, + "end": 3277.88, + "probability": 0.8103 + }, + { + "start": 3277.98, + "end": 3281.68, + "probability": 0.974 + }, + { + "start": 3282.0, + "end": 3284.3, + "probability": 0.9927 + }, + { + "start": 3284.3, + "end": 3286.42, + "probability": 0.9987 + }, + { + "start": 3287.64, + "end": 3291.44, + "probability": 0.9959 + }, + { + "start": 3291.58, + "end": 3294.14, + "probability": 0.9215 + }, + { + "start": 3294.34, + "end": 3296.62, + "probability": 0.9774 + }, + { + "start": 3296.62, + "end": 3300.84, + "probability": 0.9818 + }, + { + "start": 3300.98, + "end": 3301.28, + "probability": 0.6642 + }, + { + "start": 3301.8, + "end": 3305.0, + "probability": 0.9105 + }, + { + "start": 3306.52, + "end": 3308.14, + "probability": 0.7321 + }, + { + "start": 3308.72, + "end": 3313.06, + "probability": 0.9318 + }, + { + "start": 3313.58, + "end": 3315.04, + "probability": 0.825 + }, + { + "start": 3315.52, + "end": 3317.0, + "probability": 0.626 + }, + { + "start": 3317.08, + "end": 3319.28, + "probability": 0.9879 + }, + { + "start": 3319.42, + "end": 3322.32, + "probability": 0.941 + }, + { + "start": 3322.84, + "end": 3327.08, + "probability": 0.9937 + }, + { + "start": 3327.68, + "end": 3329.46, + "probability": 0.9973 + }, + { + "start": 3329.48, + "end": 3330.62, + "probability": 0.7115 + }, + { + "start": 3330.98, + "end": 3335.02, + "probability": 0.9963 + }, + { + "start": 3335.52, + "end": 3342.24, + "probability": 0.9663 + }, + { + "start": 3342.42, + "end": 3343.98, + "probability": 0.9961 + }, + { + "start": 3344.42, + "end": 3345.6, + "probability": 0.9932 + }, + { + "start": 3345.72, + "end": 3346.58, + "probability": 0.6096 + }, + { + "start": 3346.98, + "end": 3351.2, + "probability": 0.9775 + }, + { + "start": 3351.56, + "end": 3353.64, + "probability": 0.9771 + }, + { + "start": 3354.08, + "end": 3356.18, + "probability": 0.9902 + }, + { + "start": 3356.6, + "end": 3358.8, + "probability": 0.7913 + }, + { + "start": 3358.9, + "end": 3364.1, + "probability": 0.9969 + }, + { + "start": 3364.5, + "end": 3365.96, + "probability": 0.9816 + }, + { + "start": 3366.32, + "end": 3369.98, + "probability": 0.9971 + }, + { + "start": 3370.08, + "end": 3374.02, + "probability": 0.7785 + }, + { + "start": 3374.58, + "end": 3378.89, + "probability": 0.8562 + }, + { + "start": 3379.54, + "end": 3382.84, + "probability": 0.8277 + }, + { + "start": 3383.0, + "end": 3386.66, + "probability": 0.9778 + }, + { + "start": 3386.72, + "end": 3389.1, + "probability": 0.9061 + }, + { + "start": 3389.84, + "end": 3390.81, + "probability": 0.7855 + }, + { + "start": 3391.22, + "end": 3395.4, + "probability": 0.774 + }, + { + "start": 3395.54, + "end": 3396.08, + "probability": 0.7766 + }, + { + "start": 3396.5, + "end": 3399.7, + "probability": 0.9954 + }, + { + "start": 3400.44, + "end": 3401.22, + "probability": 0.9808 + }, + { + "start": 3401.28, + "end": 3402.08, + "probability": 0.9955 + }, + { + "start": 3402.38, + "end": 3403.42, + "probability": 0.7665 + }, + { + "start": 3403.56, + "end": 3406.78, + "probability": 0.8706 + }, + { + "start": 3406.78, + "end": 3410.36, + "probability": 0.9792 + }, + { + "start": 3410.68, + "end": 3413.8, + "probability": 0.9948 + }, + { + "start": 3413.94, + "end": 3417.5, + "probability": 0.8978 + }, + { + "start": 3418.04, + "end": 3421.2, + "probability": 0.6739 + }, + { + "start": 3421.64, + "end": 3424.38, + "probability": 0.6278 + }, + { + "start": 3425.38, + "end": 3427.52, + "probability": 0.9325 + }, + { + "start": 3428.04, + "end": 3431.56, + "probability": 0.9841 + }, + { + "start": 3432.22, + "end": 3434.74, + "probability": 0.9576 + }, + { + "start": 3435.04, + "end": 3437.38, + "probability": 0.949 + }, + { + "start": 3437.5, + "end": 3440.62, + "probability": 0.9875 + }, + { + "start": 3441.16, + "end": 3442.54, + "probability": 0.8085 + }, + { + "start": 3443.06, + "end": 3443.38, + "probability": 0.7651 + }, + { + "start": 3443.92, + "end": 3445.72, + "probability": 0.9111 + }, + { + "start": 3446.26, + "end": 3448.92, + "probability": 0.9559 + }, + { + "start": 3448.92, + "end": 3453.02, + "probability": 0.9118 + }, + { + "start": 3453.36, + "end": 3455.76, + "probability": 0.9805 + }, + { + "start": 3455.9, + "end": 3459.44, + "probability": 0.9761 + }, + { + "start": 3459.56, + "end": 3465.9, + "probability": 0.5586 + }, + { + "start": 3466.26, + "end": 3468.74, + "probability": 0.9917 + }, + { + "start": 3468.88, + "end": 3469.12, + "probability": 0.8625 + }, + { + "start": 3469.3, + "end": 3471.4, + "probability": 0.9946 + }, + { + "start": 3471.72, + "end": 3475.14, + "probability": 0.9995 + }, + { + "start": 3475.28, + "end": 3475.83, + "probability": 0.9966 + }, + { + "start": 3476.18, + "end": 3478.52, + "probability": 0.9891 + }, + { + "start": 3478.92, + "end": 3483.22, + "probability": 0.8207 + }, + { + "start": 3483.22, + "end": 3486.08, + "probability": 0.8621 + }, + { + "start": 3486.62, + "end": 3488.84, + "probability": 0.9983 + }, + { + "start": 3489.66, + "end": 3494.58, + "probability": 0.9969 + }, + { + "start": 3495.64, + "end": 3499.54, + "probability": 0.9448 + }, + { + "start": 3499.7, + "end": 3501.7, + "probability": 0.9686 + }, + { + "start": 3502.16, + "end": 3504.34, + "probability": 0.8734 + }, + { + "start": 3504.5, + "end": 3508.48, + "probability": 0.9773 + }, + { + "start": 3508.54, + "end": 3511.58, + "probability": 0.9842 + }, + { + "start": 3511.68, + "end": 3513.12, + "probability": 0.9779 + }, + { + "start": 3513.68, + "end": 3516.62, + "probability": 0.9814 + }, + { + "start": 3516.98, + "end": 3518.36, + "probability": 0.9751 + }, + { + "start": 3518.44, + "end": 3519.12, + "probability": 0.4439 + }, + { + "start": 3519.54, + "end": 3520.7, + "probability": 0.8896 + }, + { + "start": 3521.4, + "end": 3523.48, + "probability": 0.9197 + }, + { + "start": 3524.0, + "end": 3525.6, + "probability": 0.9791 + }, + { + "start": 3526.56, + "end": 3528.86, + "probability": 0.9679 + }, + { + "start": 3529.28, + "end": 3531.32, + "probability": 0.7923 + }, + { + "start": 3532.18, + "end": 3535.98, + "probability": 0.9513 + }, + { + "start": 3536.62, + "end": 3541.16, + "probability": 0.9846 + }, + { + "start": 3541.56, + "end": 3544.7, + "probability": 0.9683 + }, + { + "start": 3545.56, + "end": 3548.04, + "probability": 0.9878 + }, + { + "start": 3548.04, + "end": 3552.39, + "probability": 0.9989 + }, + { + "start": 3553.24, + "end": 3556.62, + "probability": 0.8711 + }, + { + "start": 3557.75, + "end": 3561.52, + "probability": 0.2764 + }, + { + "start": 3562.78, + "end": 3567.42, + "probability": 0.6317 + }, + { + "start": 3567.76, + "end": 3571.78, + "probability": 0.9746 + }, + { + "start": 3572.58, + "end": 3573.4, + "probability": 0.9805 + }, + { + "start": 3573.86, + "end": 3574.6, + "probability": 0.7906 + }, + { + "start": 3574.74, + "end": 3575.04, + "probability": 0.3624 + }, + { + "start": 3575.28, + "end": 3575.6, + "probability": 0.8601 + }, + { + "start": 3575.64, + "end": 3578.32, + "probability": 0.9123 + }, + { + "start": 3578.74, + "end": 3580.82, + "probability": 0.9446 + }, + { + "start": 3581.22, + "end": 3587.3, + "probability": 0.9685 + }, + { + "start": 3587.8, + "end": 3591.38, + "probability": 0.9281 + }, + { + "start": 3591.38, + "end": 3595.34, + "probability": 0.9932 + }, + { + "start": 3595.42, + "end": 3596.14, + "probability": 0.6066 + }, + { + "start": 3596.68, + "end": 3599.88, + "probability": 0.9811 + }, + { + "start": 3600.68, + "end": 3602.5, + "probability": 0.9008 + }, + { + "start": 3603.06, + "end": 3607.16, + "probability": 0.9957 + }, + { + "start": 3607.54, + "end": 3610.4, + "probability": 0.9951 + }, + { + "start": 3610.76, + "end": 3613.3, + "probability": 0.9893 + }, + { + "start": 3613.64, + "end": 3616.3, + "probability": 0.9841 + }, + { + "start": 3616.74, + "end": 3620.4, + "probability": 0.8612 + }, + { + "start": 3620.46, + "end": 3622.36, + "probability": 0.9607 + }, + { + "start": 3623.02, + "end": 3625.26, + "probability": 0.9722 + }, + { + "start": 3625.74, + "end": 3627.72, + "probability": 0.8829 + }, + { + "start": 3627.84, + "end": 3631.48, + "probability": 0.9771 + }, + { + "start": 3632.83, + "end": 3638.1, + "probability": 0.9873 + }, + { + "start": 3638.58, + "end": 3639.16, + "probability": 0.8572 + }, + { + "start": 3639.2, + "end": 3640.12, + "probability": 0.9285 + }, + { + "start": 3640.18, + "end": 3642.96, + "probability": 0.9878 + }, + { + "start": 3643.56, + "end": 3647.32, + "probability": 0.99 + }, + { + "start": 3647.32, + "end": 3652.36, + "probability": 0.9954 + }, + { + "start": 3652.4, + "end": 3657.08, + "probability": 0.9761 + }, + { + "start": 3657.5, + "end": 3661.7, + "probability": 0.988 + }, + { + "start": 3662.26, + "end": 3665.48, + "probability": 0.6629 + }, + { + "start": 3665.72, + "end": 3667.7, + "probability": 0.9978 + }, + { + "start": 3667.76, + "end": 3669.24, + "probability": 0.9845 + }, + { + "start": 3669.58, + "end": 3673.74, + "probability": 0.979 + }, + { + "start": 3673.9, + "end": 3674.6, + "probability": 0.4485 + }, + { + "start": 3675.18, + "end": 3676.74, + "probability": 0.98 + }, + { + "start": 3677.78, + "end": 3682.52, + "probability": 0.9126 + }, + { + "start": 3682.66, + "end": 3686.89, + "probability": 0.9885 + }, + { + "start": 3687.5, + "end": 3688.22, + "probability": 0.913 + }, + { + "start": 3688.84, + "end": 3690.92, + "probability": 0.9355 + }, + { + "start": 3691.52, + "end": 3694.1, + "probability": 0.9403 + }, + { + "start": 3694.68, + "end": 3698.5, + "probability": 0.9995 + }, + { + "start": 3699.58, + "end": 3700.88, + "probability": 0.8118 + }, + { + "start": 3701.56, + "end": 3706.08, + "probability": 0.8921 + }, + { + "start": 3706.5, + "end": 3711.76, + "probability": 0.9957 + }, + { + "start": 3712.6, + "end": 3717.18, + "probability": 0.9982 + }, + { + "start": 3717.74, + "end": 3721.14, + "probability": 0.9431 + }, + { + "start": 3721.32, + "end": 3721.66, + "probability": 0.3917 + }, + { + "start": 3721.94, + "end": 3722.62, + "probability": 0.6879 + }, + { + "start": 3723.44, + "end": 3729.66, + "probability": 0.9982 + }, + { + "start": 3730.18, + "end": 3733.08, + "probability": 0.9954 + }, + { + "start": 3733.56, + "end": 3737.84, + "probability": 0.9991 + }, + { + "start": 3738.22, + "end": 3740.4, + "probability": 0.9475 + }, + { + "start": 3740.84, + "end": 3745.32, + "probability": 0.9847 + }, + { + "start": 3745.4, + "end": 3747.2, + "probability": 0.926 + }, + { + "start": 3747.28, + "end": 3750.44, + "probability": 0.9602 + }, + { + "start": 3750.54, + "end": 3752.01, + "probability": 0.7969 + }, + { + "start": 3752.84, + "end": 3754.14, + "probability": 0.7642 + }, + { + "start": 3754.24, + "end": 3760.38, + "probability": 0.9646 + }, + { + "start": 3760.9, + "end": 3765.88, + "probability": 0.9921 + }, + { + "start": 3765.88, + "end": 3771.38, + "probability": 0.994 + }, + { + "start": 3771.4, + "end": 3774.88, + "probability": 0.8394 + }, + { + "start": 3775.62, + "end": 3779.9, + "probability": 0.9862 + }, + { + "start": 3780.22, + "end": 3780.62, + "probability": 0.8594 + }, + { + "start": 3780.78, + "end": 3784.76, + "probability": 0.8521 + }, + { + "start": 3785.86, + "end": 3786.8, + "probability": 0.915 + }, + { + "start": 3788.16, + "end": 3788.92, + "probability": 0.8257 + }, + { + "start": 3789.66, + "end": 3790.62, + "probability": 0.6688 + }, + { + "start": 3791.98, + "end": 3796.7, + "probability": 0.9624 + }, + { + "start": 3796.78, + "end": 3797.74, + "probability": 0.799 + }, + { + "start": 3798.74, + "end": 3800.36, + "probability": 0.761 + }, + { + "start": 3800.88, + "end": 3801.68, + "probability": 0.8912 + }, + { + "start": 3802.22, + "end": 3804.14, + "probability": 0.2058 + }, + { + "start": 3805.24, + "end": 3806.24, + "probability": 0.8866 + }, + { + "start": 3806.86, + "end": 3808.06, + "probability": 0.9088 + }, + { + "start": 3809.12, + "end": 3812.46, + "probability": 0.3329 + }, + { + "start": 3812.46, + "end": 3821.0, + "probability": 0.8246 + }, + { + "start": 3821.44, + "end": 3822.04, + "probability": 0.549 + }, + { + "start": 3822.06, + "end": 3823.48, + "probability": 0.8495 + }, + { + "start": 3823.64, + "end": 3825.34, + "probability": 0.8201 + }, + { + "start": 3825.6, + "end": 3826.24, + "probability": 0.8581 + }, + { + "start": 3826.64, + "end": 3827.16, + "probability": 0.427 + }, + { + "start": 3827.2, + "end": 3828.42, + "probability": 0.9813 + }, + { + "start": 3828.98, + "end": 3829.92, + "probability": 0.6502 + }, + { + "start": 3830.8, + "end": 3832.48, + "probability": 0.8988 + }, + { + "start": 3836.08, + "end": 3837.16, + "probability": 0.3119 + }, + { + "start": 3839.08, + "end": 3840.06, + "probability": 0.7392 + }, + { + "start": 3840.98, + "end": 3843.62, + "probability": 0.7079 + }, + { + "start": 3845.42, + "end": 3847.52, + "probability": 0.8486 + }, + { + "start": 3848.42, + "end": 3851.28, + "probability": 0.9939 + }, + { + "start": 3852.16, + "end": 3855.88, + "probability": 0.9972 + }, + { + "start": 3856.12, + "end": 3857.44, + "probability": 0.8918 + }, + { + "start": 3858.18, + "end": 3859.72, + "probability": 0.7033 + }, + { + "start": 3860.84, + "end": 3861.5, + "probability": 0.9516 + }, + { + "start": 3861.94, + "end": 3866.28, + "probability": 0.9869 + }, + { + "start": 3867.68, + "end": 3870.7, + "probability": 0.9321 + }, + { + "start": 3871.3, + "end": 3873.62, + "probability": 0.948 + }, + { + "start": 3874.04, + "end": 3875.38, + "probability": 0.7591 + }, + { + "start": 3875.64, + "end": 3875.84, + "probability": 0.8086 + }, + { + "start": 3877.78, + "end": 3879.16, + "probability": 0.9652 + }, + { + "start": 3880.92, + "end": 3884.0, + "probability": 0.9797 + }, + { + "start": 3885.76, + "end": 3886.42, + "probability": 0.9888 + }, + { + "start": 3887.06, + "end": 3888.4, + "probability": 0.9367 + }, + { + "start": 3889.36, + "end": 3890.6, + "probability": 0.9951 + }, + { + "start": 3891.26, + "end": 3892.1, + "probability": 0.776 + }, + { + "start": 3893.16, + "end": 3897.22, + "probability": 0.9734 + }, + { + "start": 3897.22, + "end": 3901.58, + "probability": 0.9964 + }, + { + "start": 3903.54, + "end": 3906.38, + "probability": 0.9829 + }, + { + "start": 3906.8, + "end": 3907.56, + "probability": 0.4915 + }, + { + "start": 3908.96, + "end": 3910.57, + "probability": 0.9901 + }, + { + "start": 3911.4, + "end": 3914.32, + "probability": 0.993 + }, + { + "start": 3914.74, + "end": 3917.04, + "probability": 0.2795 + }, + { + "start": 3917.2, + "end": 3919.16, + "probability": 0.9849 + }, + { + "start": 3919.52, + "end": 3921.72, + "probability": 0.5082 + }, + { + "start": 3925.26, + "end": 3929.88, + "probability": 0.6319 + }, + { + "start": 3932.02, + "end": 3934.8, + "probability": 0.8611 + }, + { + "start": 3936.12, + "end": 3938.24, + "probability": 0.8864 + }, + { + "start": 3939.86, + "end": 3940.48, + "probability": 0.6497 + }, + { + "start": 3942.62, + "end": 3944.08, + "probability": 0.8699 + }, + { + "start": 3944.92, + "end": 3946.94, + "probability": 0.8914 + }, + { + "start": 3947.76, + "end": 3951.72, + "probability": 0.9783 + }, + { + "start": 3952.28, + "end": 3953.74, + "probability": 0.4371 + }, + { + "start": 3953.74, + "end": 3956.98, + "probability": 0.8888 + }, + { + "start": 3958.86, + "end": 3961.42, + "probability": 0.9594 + }, + { + "start": 3962.58, + "end": 3964.28, + "probability": 0.9909 + }, + { + "start": 3965.38, + "end": 3968.29, + "probability": 0.856 + }, + { + "start": 3969.44, + "end": 3972.12, + "probability": 0.8192 + }, + { + "start": 3972.6, + "end": 3974.02, + "probability": 0.8546 + }, + { + "start": 3974.16, + "end": 3975.4, + "probability": 0.919 + }, + { + "start": 3976.48, + "end": 3979.62, + "probability": 0.9893 + }, + { + "start": 3980.9, + "end": 3986.48, + "probability": 0.9753 + }, + { + "start": 3987.18, + "end": 3988.64, + "probability": 0.8349 + }, + { + "start": 3990.0, + "end": 3993.06, + "probability": 0.4912 + }, + { + "start": 3995.1, + "end": 3996.52, + "probability": 0.9807 + }, + { + "start": 3997.48, + "end": 3998.72, + "probability": 0.9991 + }, + { + "start": 3999.3, + "end": 4000.56, + "probability": 0.8999 + }, + { + "start": 4001.18, + "end": 4004.88, + "probability": 0.8402 + }, + { + "start": 4005.58, + "end": 4008.5, + "probability": 0.9204 + }, + { + "start": 4009.06, + "end": 4013.5, + "probability": 0.9973 + }, + { + "start": 4014.74, + "end": 4017.06, + "probability": 0.9438 + }, + { + "start": 4017.72, + "end": 4020.62, + "probability": 0.6343 + }, + { + "start": 4021.54, + "end": 4022.2, + "probability": 0.887 + }, + { + "start": 4023.54, + "end": 4026.46, + "probability": 0.8814 + }, + { + "start": 4027.48, + "end": 4028.48, + "probability": 0.8879 + }, + { + "start": 4029.98, + "end": 4031.38, + "probability": 0.9816 + }, + { + "start": 4032.64, + "end": 4034.92, + "probability": 0.8761 + }, + { + "start": 4035.46, + "end": 4039.12, + "probability": 0.9932 + }, + { + "start": 4040.74, + "end": 4041.54, + "probability": 0.9661 + }, + { + "start": 4043.84, + "end": 4046.88, + "probability": 0.9924 + }, + { + "start": 4047.5, + "end": 4048.56, + "probability": 0.9614 + }, + { + "start": 4049.04, + "end": 4051.38, + "probability": 0.4892 + }, + { + "start": 4051.48, + "end": 4052.3, + "probability": 0.6676 + }, + { + "start": 4053.12, + "end": 4053.96, + "probability": 0.7384 + }, + { + "start": 4054.72, + "end": 4058.76, + "probability": 0.9882 + }, + { + "start": 4059.0, + "end": 4059.94, + "probability": 0.2848 + }, + { + "start": 4061.02, + "end": 4062.36, + "probability": 0.9858 + }, + { + "start": 4062.92, + "end": 4064.78, + "probability": 0.9727 + }, + { + "start": 4065.46, + "end": 4067.0, + "probability": 0.9963 + }, + { + "start": 4067.62, + "end": 4069.02, + "probability": 0.9645 + }, + { + "start": 4069.14, + "end": 4069.86, + "probability": 0.9884 + }, + { + "start": 4071.32, + "end": 4073.48, + "probability": 0.9951 + }, + { + "start": 4075.08, + "end": 4078.48, + "probability": 0.6263 + }, + { + "start": 4078.58, + "end": 4081.06, + "probability": 0.9926 + }, + { + "start": 4083.26, + "end": 4085.9, + "probability": 0.9839 + }, + { + "start": 4087.08, + "end": 4088.9, + "probability": 0.6687 + }, + { + "start": 4090.64, + "end": 4091.98, + "probability": 0.9663 + }, + { + "start": 4093.22, + "end": 4095.48, + "probability": 0.7451 + }, + { + "start": 4095.72, + "end": 4097.58, + "probability": 0.9327 + }, + { + "start": 4098.44, + "end": 4101.26, + "probability": 0.9941 + }, + { + "start": 4101.5, + "end": 4103.7, + "probability": 0.971 + }, + { + "start": 4104.36, + "end": 4105.84, + "probability": 0.9441 + }, + { + "start": 4106.64, + "end": 4107.98, + "probability": 0.7745 + }, + { + "start": 4109.28, + "end": 4109.64, + "probability": 0.7953 + }, + { + "start": 4110.36, + "end": 4113.28, + "probability": 0.9798 + }, + { + "start": 4114.32, + "end": 4114.98, + "probability": 0.989 + }, + { + "start": 4115.52, + "end": 4116.42, + "probability": 0.8866 + }, + { + "start": 4116.62, + "end": 4117.38, + "probability": 0.618 + }, + { + "start": 4117.8, + "end": 4121.12, + "probability": 0.9037 + }, + { + "start": 4122.06, + "end": 4123.04, + "probability": 0.9705 + }, + { + "start": 4123.58, + "end": 4124.32, + "probability": 0.7795 + }, + { + "start": 4124.34, + "end": 4125.93, + "probability": 0.8183 + }, + { + "start": 4126.12, + "end": 4128.08, + "probability": 0.9572 + }, + { + "start": 4128.44, + "end": 4130.46, + "probability": 0.9823 + }, + { + "start": 4131.58, + "end": 4131.99, + "probability": 0.7055 + }, + { + "start": 4132.5, + "end": 4133.77, + "probability": 0.6174 + }, + { + "start": 4134.0, + "end": 4136.48, + "probability": 0.853 + }, + { + "start": 4139.44, + "end": 4140.72, + "probability": 0.2452 + }, + { + "start": 4140.72, + "end": 4141.62, + "probability": 0.2451 + }, + { + "start": 4142.22, + "end": 4146.24, + "probability": 0.9937 + }, + { + "start": 4146.94, + "end": 4151.38, + "probability": 0.9669 + }, + { + "start": 4153.32, + "end": 4156.38, + "probability": 0.9715 + }, + { + "start": 4157.32, + "end": 4161.16, + "probability": 0.9572 + }, + { + "start": 4162.48, + "end": 4168.68, + "probability": 0.8506 + }, + { + "start": 4168.98, + "end": 4170.74, + "probability": 0.9438 + }, + { + "start": 4171.26, + "end": 4174.0, + "probability": 0.811 + }, + { + "start": 4174.82, + "end": 4177.4, + "probability": 0.9465 + }, + { + "start": 4177.9, + "end": 4179.4, + "probability": 0.7812 + }, + { + "start": 4180.34, + "end": 4183.04, + "probability": 0.7657 + }, + { + "start": 4183.72, + "end": 4186.7, + "probability": 0.9966 + }, + { + "start": 4187.52, + "end": 4188.78, + "probability": 0.9937 + }, + { + "start": 4188.9, + "end": 4191.56, + "probability": 0.9663 + }, + { + "start": 4192.48, + "end": 4194.5, + "probability": 0.842 + }, + { + "start": 4195.0, + "end": 4196.0, + "probability": 0.9336 + }, + { + "start": 4197.1, + "end": 4198.5, + "probability": 0.869 + }, + { + "start": 4199.44, + "end": 4200.84, + "probability": 0.9928 + }, + { + "start": 4201.66, + "end": 4205.3, + "probability": 0.9968 + }, + { + "start": 4206.4, + "end": 4209.54, + "probability": 0.6307 + }, + { + "start": 4210.24, + "end": 4214.66, + "probability": 0.9852 + }, + { + "start": 4214.66, + "end": 4220.3, + "probability": 0.9353 + }, + { + "start": 4220.3, + "end": 4225.52, + "probability": 0.9546 + }, + { + "start": 4227.32, + "end": 4230.12, + "probability": 0.7483 + }, + { + "start": 4230.72, + "end": 4233.04, + "probability": 0.9464 + }, + { + "start": 4233.64, + "end": 4235.4, + "probability": 0.9956 + }, + { + "start": 4235.74, + "end": 4236.06, + "probability": 0.8015 + }, + { + "start": 4237.14, + "end": 4239.54, + "probability": 0.9258 + }, + { + "start": 4241.12, + "end": 4243.5, + "probability": 0.9761 + }, + { + "start": 4243.82, + "end": 4244.46, + "probability": 0.9055 + }, + { + "start": 4246.56, + "end": 4249.58, + "probability": 0.9084 + }, + { + "start": 4252.34, + "end": 4254.72, + "probability": 0.6126 + }, + { + "start": 4255.78, + "end": 4258.9, + "probability": 0.8437 + }, + { + "start": 4274.46, + "end": 4275.44, + "probability": 0.7903 + }, + { + "start": 4276.78, + "end": 4278.12, + "probability": 0.6526 + }, + { + "start": 4280.82, + "end": 4281.58, + "probability": 0.5142 + }, + { + "start": 4282.16, + "end": 4285.66, + "probability": 0.9696 + }, + { + "start": 4286.92, + "end": 4290.18, + "probability": 0.9804 + }, + { + "start": 4291.68, + "end": 4292.76, + "probability": 0.9346 + }, + { + "start": 4292.94, + "end": 4294.42, + "probability": 0.9768 + }, + { + "start": 4294.84, + "end": 4297.4, + "probability": 0.9887 + }, + { + "start": 4298.92, + "end": 4300.84, + "probability": 0.2537 + }, + { + "start": 4301.78, + "end": 4305.66, + "probability": 0.9482 + }, + { + "start": 4305.7, + "end": 4308.56, + "probability": 0.9915 + }, + { + "start": 4310.84, + "end": 4313.92, + "probability": 0.9535 + }, + { + "start": 4316.36, + "end": 4317.2, + "probability": 0.9977 + }, + { + "start": 4317.8, + "end": 4318.7, + "probability": 0.6878 + }, + { + "start": 4321.46, + "end": 4323.8, + "probability": 0.6611 + }, + { + "start": 4325.28, + "end": 4326.64, + "probability": 0.8608 + }, + { + "start": 4327.68, + "end": 4332.06, + "probability": 0.9622 + }, + { + "start": 4333.22, + "end": 4336.56, + "probability": 0.7518 + }, + { + "start": 4337.54, + "end": 4338.64, + "probability": 0.8061 + }, + { + "start": 4339.64, + "end": 4342.2, + "probability": 0.959 + }, + { + "start": 4343.92, + "end": 4344.8, + "probability": 0.8667 + }, + { + "start": 4345.56, + "end": 4345.68, + "probability": 0.7053 + }, + { + "start": 4346.4, + "end": 4349.6, + "probability": 0.7389 + }, + { + "start": 4349.88, + "end": 4353.26, + "probability": 0.9852 + }, + { + "start": 4354.54, + "end": 4358.5, + "probability": 0.8538 + }, + { + "start": 4359.12, + "end": 4360.64, + "probability": 0.6862 + }, + { + "start": 4360.94, + "end": 4362.04, + "probability": 0.9203 + }, + { + "start": 4362.3, + "end": 4365.74, + "probability": 0.9842 + }, + { + "start": 4365.74, + "end": 4366.85, + "probability": 0.9585 + }, + { + "start": 4367.4, + "end": 4369.3, + "probability": 0.9659 + }, + { + "start": 4370.0, + "end": 4374.85, + "probability": 0.9762 + }, + { + "start": 4376.72, + "end": 4376.72, + "probability": 0.1095 + }, + { + "start": 4376.72, + "end": 4378.48, + "probability": 0.9417 + }, + { + "start": 4378.78, + "end": 4381.82, + "probability": 0.4311 + }, + { + "start": 4382.2, + "end": 4385.18, + "probability": 0.9261 + }, + { + "start": 4385.26, + "end": 4387.4, + "probability": 0.3882 + }, + { + "start": 4387.6, + "end": 4389.42, + "probability": 0.4133 + }, + { + "start": 4391.64, + "end": 4392.26, + "probability": 0.7747 + }, + { + "start": 4393.46, + "end": 4396.1, + "probability": 0.9211 + }, + { + "start": 4397.5, + "end": 4399.48, + "probability": 0.771 + }, + { + "start": 4400.96, + "end": 4402.28, + "probability": 0.9616 + }, + { + "start": 4403.48, + "end": 4407.44, + "probability": 0.9621 + }, + { + "start": 4409.0, + "end": 4410.38, + "probability": 0.8993 + }, + { + "start": 4410.84, + "end": 4411.96, + "probability": 0.6503 + }, + { + "start": 4413.12, + "end": 4415.26, + "probability": 0.9443 + }, + { + "start": 4415.48, + "end": 4416.92, + "probability": 0.9488 + }, + { + "start": 4417.8, + "end": 4418.6, + "probability": 0.9098 + }, + { + "start": 4418.96, + "end": 4419.26, + "probability": 0.9648 + }, + { + "start": 4419.84, + "end": 4420.91, + "probability": 0.7715 + }, + { + "start": 4422.96, + "end": 4424.96, + "probability": 0.9819 + }, + { + "start": 4426.7, + "end": 4429.4, + "probability": 0.9973 + }, + { + "start": 4430.1, + "end": 4432.44, + "probability": 0.984 + }, + { + "start": 4433.46, + "end": 4436.28, + "probability": 0.9797 + }, + { + "start": 4438.0, + "end": 4440.58, + "probability": 0.9766 + }, + { + "start": 4441.2, + "end": 4443.0, + "probability": 0.9152 + }, + { + "start": 4443.64, + "end": 4449.24, + "probability": 0.9572 + }, + { + "start": 4449.7, + "end": 4449.7, + "probability": 0.3983 + }, + { + "start": 4449.7, + "end": 4453.02, + "probability": 0.8661 + }, + { + "start": 4453.08, + "end": 4457.12, + "probability": 0.9645 + }, + { + "start": 4458.34, + "end": 4458.95, + "probability": 0.9731 + }, + { + "start": 4459.92, + "end": 4461.74, + "probability": 0.9861 + }, + { + "start": 4462.18, + "end": 4463.4, + "probability": 0.9526 + }, + { + "start": 4464.5, + "end": 4466.28, + "probability": 0.5856 + }, + { + "start": 4467.46, + "end": 4470.18, + "probability": 0.9325 + }, + { + "start": 4470.22, + "end": 4470.4, + "probability": 0.827 + }, + { + "start": 4470.4, + "end": 4474.08, + "probability": 0.8335 + }, + { + "start": 4474.74, + "end": 4477.5, + "probability": 0.5768 + }, + { + "start": 4478.08, + "end": 4480.6, + "probability": 0.8122 + }, + { + "start": 4481.56, + "end": 4481.8, + "probability": 0.1351 + }, + { + "start": 4481.8, + "end": 4483.92, + "probability": 0.4222 + }, + { + "start": 4484.22, + "end": 4487.52, + "probability": 0.7944 + }, + { + "start": 4488.52, + "end": 4489.88, + "probability": 0.9207 + }, + { + "start": 4490.42, + "end": 4491.28, + "probability": 0.9417 + }, + { + "start": 4491.56, + "end": 4492.3, + "probability": 0.7564 + }, + { + "start": 4492.5, + "end": 4493.36, + "probability": 0.3245 + }, + { + "start": 4494.12, + "end": 4496.34, + "probability": 0.5532 + }, + { + "start": 4496.8, + "end": 4496.9, + "probability": 0.7182 + }, + { + "start": 4497.04, + "end": 4498.3, + "probability": 0.853 + }, + { + "start": 4498.78, + "end": 4500.34, + "probability": 0.9482 + }, + { + "start": 4500.48, + "end": 4502.46, + "probability": 0.6612 + }, + { + "start": 4502.46, + "end": 4502.86, + "probability": 0.5958 + }, + { + "start": 4504.74, + "end": 4506.1, + "probability": 0.9865 + }, + { + "start": 4507.28, + "end": 4509.32, + "probability": 0.7748 + }, + { + "start": 4510.14, + "end": 4511.34, + "probability": 0.9848 + }, + { + "start": 4512.78, + "end": 4514.84, + "probability": 0.5025 + }, + { + "start": 4515.74, + "end": 4518.0, + "probability": 0.9385 + }, + { + "start": 4519.74, + "end": 4522.9, + "probability": 0.9412 + }, + { + "start": 4523.62, + "end": 4524.46, + "probability": 0.6207 + }, + { + "start": 4525.1, + "end": 4526.66, + "probability": 0.8277 + }, + { + "start": 4526.68, + "end": 4530.72, + "probability": 0.8246 + }, + { + "start": 4531.24, + "end": 4531.28, + "probability": 0.3383 + }, + { + "start": 4531.28, + "end": 4531.64, + "probability": 0.4107 + }, + { + "start": 4532.48, + "end": 4532.48, + "probability": 0.0676 + }, + { + "start": 4532.48, + "end": 4533.04, + "probability": 0.8286 + }, + { + "start": 4533.14, + "end": 4538.64, + "probability": 0.8534 + }, + { + "start": 4538.98, + "end": 4542.7, + "probability": 0.3554 + }, + { + "start": 4544.48, + "end": 4544.8, + "probability": 0.0557 + }, + { + "start": 4544.8, + "end": 4544.8, + "probability": 0.1565 + }, + { + "start": 4544.8, + "end": 4545.52, + "probability": 0.0567 + }, + { + "start": 4546.4, + "end": 4546.4, + "probability": 0.1666 + }, + { + "start": 4546.4, + "end": 4549.66, + "probability": 0.7951 + }, + { + "start": 4550.36, + "end": 4555.18, + "probability": 0.8623 + }, + { + "start": 4556.02, + "end": 4558.12, + "probability": 0.6097 + }, + { + "start": 4558.7, + "end": 4559.68, + "probability": 0.925 + }, + { + "start": 4560.34, + "end": 4561.18, + "probability": 0.5441 + }, + { + "start": 4562.04, + "end": 4567.48, + "probability": 0.9882 + }, + { + "start": 4568.08, + "end": 4569.88, + "probability": 0.9978 + }, + { + "start": 4570.42, + "end": 4572.52, + "probability": 0.9892 + }, + { + "start": 4573.0, + "end": 4575.06, + "probability": 0.9618 + }, + { + "start": 4576.02, + "end": 4576.42, + "probability": 0.0898 + }, + { + "start": 4576.98, + "end": 4580.92, + "probability": 0.1385 + }, + { + "start": 4581.14, + "end": 4585.3, + "probability": 0.9482 + }, + { + "start": 4585.3, + "end": 4587.32, + "probability": 0.6235 + }, + { + "start": 4587.8, + "end": 4587.8, + "probability": 0.1618 + }, + { + "start": 4587.8, + "end": 4587.8, + "probability": 0.0858 + }, + { + "start": 4587.8, + "end": 4588.72, + "probability": 0.744 + }, + { + "start": 4588.74, + "end": 4590.08, + "probability": 0.7585 + }, + { + "start": 4591.06, + "end": 4594.24, + "probability": 0.5381 + }, + { + "start": 4595.62, + "end": 4599.2, + "probability": 0.9368 + }, + { + "start": 4600.18, + "end": 4606.14, + "probability": 0.9692 + }, + { + "start": 4606.7, + "end": 4608.34, + "probability": 0.8956 + }, + { + "start": 4608.98, + "end": 4615.32, + "probability": 0.991 + }, + { + "start": 4615.32, + "end": 4621.66, + "probability": 0.9897 + }, + { + "start": 4621.76, + "end": 4622.0, + "probability": 0.892 + }, + { + "start": 4622.42, + "end": 4624.34, + "probability": 0.9822 + }, + { + "start": 4625.04, + "end": 4627.24, + "probability": 0.7151 + }, + { + "start": 4628.7, + "end": 4631.3, + "probability": 0.9656 + }, + { + "start": 4632.32, + "end": 4635.78, + "probability": 0.8983 + }, + { + "start": 4638.8, + "end": 4641.06, + "probability": 0.8403 + }, + { + "start": 4645.68, + "end": 4647.44, + "probability": 0.6132 + }, + { + "start": 4649.4, + "end": 4652.05, + "probability": 0.9934 + }, + { + "start": 4653.44, + "end": 4655.8, + "probability": 0.9961 + }, + { + "start": 4656.82, + "end": 4659.04, + "probability": 0.8513 + }, + { + "start": 4659.28, + "end": 4660.56, + "probability": 0.7936 + }, + { + "start": 4661.94, + "end": 4664.34, + "probability": 0.9819 + }, + { + "start": 4665.48, + "end": 4665.98, + "probability": 0.6063 + }, + { + "start": 4667.58, + "end": 4671.52, + "probability": 0.9392 + }, + { + "start": 4673.08, + "end": 4673.82, + "probability": 0.9093 + }, + { + "start": 4675.08, + "end": 4676.02, + "probability": 0.7508 + }, + { + "start": 4677.66, + "end": 4686.38, + "probability": 0.6628 + }, + { + "start": 4687.26, + "end": 4688.2, + "probability": 0.6321 + }, + { + "start": 4688.4, + "end": 4692.9, + "probability": 0.9971 + }, + { + "start": 4693.9, + "end": 4695.06, + "probability": 0.9954 + }, + { + "start": 4696.5, + "end": 4697.7, + "probability": 0.6075 + }, + { + "start": 4699.08, + "end": 4702.4, + "probability": 0.9945 + }, + { + "start": 4703.32, + "end": 4703.94, + "probability": 0.4962 + }, + { + "start": 4704.04, + "end": 4704.46, + "probability": 0.6781 + }, + { + "start": 4705.36, + "end": 4707.9, + "probability": 0.8543 + }, + { + "start": 4708.54, + "end": 4709.66, + "probability": 0.9401 + }, + { + "start": 4710.72, + "end": 4713.1, + "probability": 0.7684 + }, + { + "start": 4715.14, + "end": 4720.26, + "probability": 0.9504 + }, + { + "start": 4721.06, + "end": 4724.56, + "probability": 0.9712 + }, + { + "start": 4726.68, + "end": 4728.0, + "probability": 0.7443 + }, + { + "start": 4729.46, + "end": 4730.82, + "probability": 0.9902 + }, + { + "start": 4732.8, + "end": 4736.06, + "probability": 0.9846 + }, + { + "start": 4737.18, + "end": 4740.88, + "probability": 0.9335 + }, + { + "start": 4741.64, + "end": 4742.62, + "probability": 0.9474 + }, + { + "start": 4744.46, + "end": 4745.86, + "probability": 0.9021 + }, + { + "start": 4746.84, + "end": 4750.06, + "probability": 0.7604 + }, + { + "start": 4751.0, + "end": 4751.0, + "probability": 0.0106 + }, + { + "start": 4751.14, + "end": 4751.88, + "probability": 0.6985 + }, + { + "start": 4752.06, + "end": 4753.96, + "probability": 0.9946 + }, + { + "start": 4754.7, + "end": 4756.34, + "probability": 0.9754 + }, + { + "start": 4756.9, + "end": 4758.06, + "probability": 0.7632 + }, + { + "start": 4758.84, + "end": 4762.82, + "probability": 0.7083 + }, + { + "start": 4763.48, + "end": 4766.24, + "probability": 0.9245 + }, + { + "start": 4767.06, + "end": 4771.06, + "probability": 0.9753 + }, + { + "start": 4771.34, + "end": 4772.42, + "probability": 0.9487 + }, + { + "start": 4772.84, + "end": 4775.12, + "probability": 0.9717 + }, + { + "start": 4775.82, + "end": 4778.24, + "probability": 0.6534 + }, + { + "start": 4779.22, + "end": 4780.02, + "probability": 0.8069 + }, + { + "start": 4780.84, + "end": 4781.86, + "probability": 0.7489 + }, + { + "start": 4782.64, + "end": 4786.58, + "probability": 0.9868 + }, + { + "start": 4787.16, + "end": 4788.36, + "probability": 0.8512 + }, + { + "start": 4789.02, + "end": 4789.9, + "probability": 0.866 + }, + { + "start": 4791.8, + "end": 4798.68, + "probability": 0.9839 + }, + { + "start": 4799.34, + "end": 4801.12, + "probability": 0.5855 + }, + { + "start": 4801.64, + "end": 4802.5, + "probability": 0.6831 + }, + { + "start": 4802.98, + "end": 4804.1, + "probability": 0.9467 + }, + { + "start": 4805.3, + "end": 4808.32, + "probability": 0.9403 + }, + { + "start": 4809.04, + "end": 4809.78, + "probability": 0.9224 + }, + { + "start": 4810.42, + "end": 4810.76, + "probability": 0.9874 + }, + { + "start": 4811.78, + "end": 4813.45, + "probability": 0.9392 + }, + { + "start": 4814.4, + "end": 4817.36, + "probability": 0.9517 + }, + { + "start": 4817.42, + "end": 4820.14, + "probability": 0.9878 + }, + { + "start": 4820.8, + "end": 4821.69, + "probability": 0.9577 + }, + { + "start": 4822.56, + "end": 4826.96, + "probability": 0.9936 + }, + { + "start": 4827.56, + "end": 4832.24, + "probability": 0.9312 + }, + { + "start": 4832.86, + "end": 4836.46, + "probability": 0.9936 + }, + { + "start": 4837.44, + "end": 4837.82, + "probability": 0.6615 + }, + { + "start": 4839.5, + "end": 4839.64, + "probability": 0.4247 + }, + { + "start": 4839.72, + "end": 4840.94, + "probability": 0.7528 + }, + { + "start": 4841.26, + "end": 4844.22, + "probability": 0.9857 + }, + { + "start": 4844.42, + "end": 4847.08, + "probability": 0.996 + }, + { + "start": 4847.88, + "end": 4850.68, + "probability": 0.9969 + }, + { + "start": 4851.48, + "end": 4854.44, + "probability": 0.9015 + }, + { + "start": 4855.16, + "end": 4858.58, + "probability": 0.6484 + }, + { + "start": 4859.44, + "end": 4860.37, + "probability": 0.9452 + }, + { + "start": 4861.2, + "end": 4862.72, + "probability": 0.7612 + }, + { + "start": 4863.68, + "end": 4863.88, + "probability": 0.5737 + }, + { + "start": 4864.82, + "end": 4866.8, + "probability": 0.9844 + }, + { + "start": 4867.24, + "end": 4873.44, + "probability": 0.5545 + }, + { + "start": 4873.84, + "end": 4875.82, + "probability": 0.5447 + }, + { + "start": 4876.14, + "end": 4876.26, + "probability": 0.5238 + }, + { + "start": 4876.4, + "end": 4880.5, + "probability": 0.7937 + }, + { + "start": 4880.5, + "end": 4882.89, + "probability": 0.7566 + }, + { + "start": 4884.16, + "end": 4889.76, + "probability": 0.9658 + }, + { + "start": 4890.74, + "end": 4895.46, + "probability": 0.5307 + }, + { + "start": 4895.82, + "end": 4897.54, + "probability": 0.4473 + }, + { + "start": 4897.54, + "end": 4899.08, + "probability": 0.3429 + }, + { + "start": 4899.08, + "end": 4899.36, + "probability": 0.5517 + }, + { + "start": 4900.2, + "end": 4901.2, + "probability": 0.916 + }, + { + "start": 4901.3, + "end": 4901.79, + "probability": 0.9764 + }, + { + "start": 4903.22, + "end": 4904.4, + "probability": 0.9736 + }, + { + "start": 4905.46, + "end": 4908.2, + "probability": 0.7842 + }, + { + "start": 4909.08, + "end": 4910.58, + "probability": 0.8244 + }, + { + "start": 4911.66, + "end": 4912.68, + "probability": 0.792 + }, + { + "start": 4913.26, + "end": 4915.08, + "probability": 0.5015 + }, + { + "start": 4915.24, + "end": 4916.87, + "probability": 0.8047 + }, + { + "start": 4917.48, + "end": 4922.04, + "probability": 0.9702 + }, + { + "start": 4923.04, + "end": 4926.26, + "probability": 0.9512 + }, + { + "start": 4927.1, + "end": 4927.84, + "probability": 0.3284 + }, + { + "start": 4928.68, + "end": 4931.78, + "probability": 0.5071 + }, + { + "start": 4931.94, + "end": 4933.8, + "probability": 0.8527 + }, + { + "start": 4934.44, + "end": 4935.52, + "probability": 0.8403 + }, + { + "start": 4936.08, + "end": 4937.08, + "probability": 0.7527 + }, + { + "start": 4937.56, + "end": 4940.58, + "probability": 0.9427 + }, + { + "start": 4941.24, + "end": 4941.24, + "probability": 0.1369 + }, + { + "start": 4941.24, + "end": 4942.88, + "probability": 0.8679 + }, + { + "start": 4943.68, + "end": 4944.58, + "probability": 0.4084 + }, + { + "start": 4944.58, + "end": 4946.12, + "probability": 0.6925 + }, + { + "start": 4946.52, + "end": 4949.7, + "probability": 0.9618 + }, + { + "start": 4950.28, + "end": 4952.86, + "probability": 0.3233 + }, + { + "start": 4953.68, + "end": 4953.68, + "probability": 0.2207 + }, + { + "start": 4953.68, + "end": 4956.66, + "probability": 0.6046 + }, + { + "start": 4958.04, + "end": 4959.48, + "probability": 0.5212 + }, + { + "start": 4959.56, + "end": 4961.44, + "probability": 0.624 + }, + { + "start": 4962.16, + "end": 4963.4, + "probability": 0.4579 + }, + { + "start": 4963.62, + "end": 4965.24, + "probability": 0.8582 + }, + { + "start": 4965.52, + "end": 4968.46, + "probability": 0.3223 + }, + { + "start": 4968.56, + "end": 4971.4, + "probability": 0.3116 + }, + { + "start": 4971.76, + "end": 4973.0, + "probability": 0.3529 + }, + { + "start": 4973.0, + "end": 4973.14, + "probability": 0.5219 + }, + { + "start": 4974.14, + "end": 4975.3, + "probability": 0.9758 + }, + { + "start": 4975.84, + "end": 4976.74, + "probability": 0.9939 + }, + { + "start": 4979.56, + "end": 4980.6, + "probability": 0.8665 + }, + { + "start": 4982.22, + "end": 4985.26, + "probability": 0.8697 + }, + { + "start": 4986.04, + "end": 4987.9, + "probability": 0.952 + }, + { + "start": 4988.44, + "end": 4991.02, + "probability": 0.9515 + }, + { + "start": 4991.92, + "end": 4996.9, + "probability": 0.9852 + }, + { + "start": 4997.42, + "end": 4997.88, + "probability": 0.8363 + }, + { + "start": 4998.44, + "end": 4999.32, + "probability": 0.4326 + }, + { + "start": 5000.74, + "end": 5003.06, + "probability": 0.5969 + }, + { + "start": 5006.6, + "end": 5011.14, + "probability": 0.6389 + }, + { + "start": 5011.22, + "end": 5011.74, + "probability": 0.4733 + }, + { + "start": 5012.99, + "end": 5013.81, + "probability": 0.0459 + }, + { + "start": 5014.24, + "end": 5015.48, + "probability": 0.2875 + }, + { + "start": 5019.62, + "end": 5023.56, + "probability": 0.0165 + }, + { + "start": 5024.26, + "end": 5029.38, + "probability": 0.2225 + }, + { + "start": 5030.88, + "end": 5030.94, + "probability": 0.0634 + }, + { + "start": 5030.94, + "end": 5031.86, + "probability": 0.0458 + }, + { + "start": 5031.86, + "end": 5031.86, + "probability": 0.1062 + }, + { + "start": 5031.86, + "end": 5033.58, + "probability": 0.3644 + }, + { + "start": 5035.04, + "end": 5035.06, + "probability": 0.1068 + }, + { + "start": 5035.06, + "end": 5035.06, + "probability": 0.391 + }, + { + "start": 5035.06, + "end": 5035.06, + "probability": 0.0091 + }, + { + "start": 5035.06, + "end": 5035.06, + "probability": 0.1601 + }, + { + "start": 5035.06, + "end": 5035.06, + "probability": 0.1949 + }, + { + "start": 5035.06, + "end": 5037.94, + "probability": 0.2474 + }, + { + "start": 5039.96, + "end": 5041.56, + "probability": 0.6123 + }, + { + "start": 5049.36, + "end": 5050.4, + "probability": 0.436 + }, + { + "start": 5051.34, + "end": 5053.18, + "probability": 0.6682 + }, + { + "start": 5054.18, + "end": 5055.66, + "probability": 0.922 + }, + { + "start": 5056.36, + "end": 5058.52, + "probability": 0.9932 + }, + { + "start": 5059.5, + "end": 5061.58, + "probability": 0.9922 + }, + { + "start": 5062.38, + "end": 5068.16, + "probability": 0.9697 + }, + { + "start": 5069.68, + "end": 5072.58, + "probability": 0.8513 + }, + { + "start": 5072.58, + "end": 5076.18, + "probability": 0.9789 + }, + { + "start": 5077.1, + "end": 5079.8, + "probability": 0.9966 + }, + { + "start": 5081.4, + "end": 5082.08, + "probability": 0.4797 + }, + { + "start": 5082.34, + "end": 5083.8, + "probability": 0.8287 + }, + { + "start": 5083.94, + "end": 5087.06, + "probability": 0.9855 + }, + { + "start": 5087.72, + "end": 5089.14, + "probability": 0.9944 + }, + { + "start": 5090.04, + "end": 5091.6, + "probability": 0.9606 + }, + { + "start": 5091.68, + "end": 5092.0, + "probability": 0.4104 + }, + { + "start": 5092.16, + "end": 5093.58, + "probability": 0.874 + }, + { + "start": 5094.12, + "end": 5097.04, + "probability": 0.8354 + }, + { + "start": 5097.12, + "end": 5099.86, + "probability": 0.9497 + }, + { + "start": 5100.54, + "end": 5100.88, + "probability": 0.6677 + }, + { + "start": 5101.64, + "end": 5103.74, + "probability": 0.8948 + }, + { + "start": 5104.34, + "end": 5105.84, + "probability": 0.9722 + }, + { + "start": 5106.62, + "end": 5111.0, + "probability": 0.969 + }, + { + "start": 5112.58, + "end": 5113.96, + "probability": 0.8816 + }, + { + "start": 5114.12, + "end": 5115.76, + "probability": 0.9608 + }, + { + "start": 5116.56, + "end": 5117.38, + "probability": 0.9959 + }, + { + "start": 5118.26, + "end": 5120.62, + "probability": 0.9858 + }, + { + "start": 5121.14, + "end": 5123.0, + "probability": 0.9131 + }, + { + "start": 5123.48, + "end": 5127.56, + "probability": 0.9614 + }, + { + "start": 5128.58, + "end": 5129.94, + "probability": 0.7821 + }, + { + "start": 5130.66, + "end": 5131.42, + "probability": 0.5451 + }, + { + "start": 5132.04, + "end": 5133.94, + "probability": 0.673 + }, + { + "start": 5134.48, + "end": 5137.92, + "probability": 0.9023 + }, + { + "start": 5139.46, + "end": 5140.32, + "probability": 0.8197 + }, + { + "start": 5141.06, + "end": 5141.66, + "probability": 0.9862 + }, + { + "start": 5142.36, + "end": 5145.82, + "probability": 0.9899 + }, + { + "start": 5147.24, + "end": 5149.64, + "probability": 0.9496 + }, + { + "start": 5150.06, + "end": 5150.48, + "probability": 0.7869 + }, + { + "start": 5151.2, + "end": 5154.08, + "probability": 0.9899 + }, + { + "start": 5154.58, + "end": 5156.42, + "probability": 0.9851 + }, + { + "start": 5157.32, + "end": 5163.12, + "probability": 0.9008 + }, + { + "start": 5163.98, + "end": 5166.74, + "probability": 0.9529 + }, + { + "start": 5167.54, + "end": 5168.44, + "probability": 0.7479 + }, + { + "start": 5169.16, + "end": 5171.14, + "probability": 0.8099 + }, + { + "start": 5171.66, + "end": 5172.78, + "probability": 0.8352 + }, + { + "start": 5173.32, + "end": 5173.92, + "probability": 0.7687 + }, + { + "start": 5174.58, + "end": 5174.9, + "probability": 0.7471 + }, + { + "start": 5175.74, + "end": 5179.88, + "probability": 0.9125 + }, + { + "start": 5180.44, + "end": 5181.02, + "probability": 0.8231 + }, + { + "start": 5181.06, + "end": 5181.52, + "probability": 0.9622 + }, + { + "start": 5181.86, + "end": 5183.6, + "probability": 0.8724 + }, + { + "start": 5183.66, + "end": 5184.18, + "probability": 0.5973 + }, + { + "start": 5185.14, + "end": 5186.22, + "probability": 0.9917 + }, + { + "start": 5186.82, + "end": 5187.88, + "probability": 0.9888 + }, + { + "start": 5188.58, + "end": 5190.04, + "probability": 0.9922 + }, + { + "start": 5190.76, + "end": 5193.2, + "probability": 0.8906 + }, + { + "start": 5194.32, + "end": 5195.48, + "probability": 0.968 + }, + { + "start": 5195.58, + "end": 5199.54, + "probability": 0.9292 + }, + { + "start": 5199.54, + "end": 5205.62, + "probability": 0.9875 + }, + { + "start": 5206.16, + "end": 5209.4, + "probability": 0.6688 + }, + { + "start": 5210.36, + "end": 5214.0, + "probability": 0.9854 + }, + { + "start": 5214.0, + "end": 5217.38, + "probability": 0.9633 + }, + { + "start": 5217.78, + "end": 5218.26, + "probability": 0.3922 + }, + { + "start": 5218.36, + "end": 5219.58, + "probability": 0.9088 + }, + { + "start": 5219.88, + "end": 5222.36, + "probability": 0.7935 + }, + { + "start": 5222.8, + "end": 5223.04, + "probability": 0.7987 + }, + { + "start": 5223.82, + "end": 5225.64, + "probability": 0.6675 + }, + { + "start": 5226.26, + "end": 5227.4, + "probability": 0.9781 + }, + { + "start": 5227.96, + "end": 5230.86, + "probability": 0.9565 + }, + { + "start": 5231.48, + "end": 5234.88, + "probability": 0.7049 + }, + { + "start": 5235.54, + "end": 5238.66, + "probability": 0.9617 + }, + { + "start": 5239.64, + "end": 5241.8, + "probability": 0.8057 + }, + { + "start": 5242.38, + "end": 5244.16, + "probability": 0.8559 + }, + { + "start": 5244.94, + "end": 5246.08, + "probability": 0.503 + }, + { + "start": 5246.6, + "end": 5248.0, + "probability": 0.9716 + }, + { + "start": 5248.88, + "end": 5250.4, + "probability": 0.8589 + }, + { + "start": 5251.24, + "end": 5254.7, + "probability": 0.7725 + }, + { + "start": 5255.38, + "end": 5256.64, + "probability": 0.9186 + }, + { + "start": 5257.54, + "end": 5259.74, + "probability": 0.9678 + }, + { + "start": 5260.36, + "end": 5260.98, + "probability": 0.6403 + }, + { + "start": 5262.28, + "end": 5263.52, + "probability": 0.4051 + }, + { + "start": 5264.16, + "end": 5268.87, + "probability": 0.7143 + }, + { + "start": 5270.18, + "end": 5272.08, + "probability": 0.8691 + }, + { + "start": 5272.39, + "end": 5275.48, + "probability": 0.9898 + }, + { + "start": 5276.2, + "end": 5277.66, + "probability": 0.9014 + }, + { + "start": 5278.84, + "end": 5280.66, + "probability": 0.6648 + }, + { + "start": 5280.96, + "end": 5284.58, + "probability": 0.7987 + }, + { + "start": 5285.28, + "end": 5287.96, + "probability": 0.959 + }, + { + "start": 5288.56, + "end": 5289.82, + "probability": 0.9941 + }, + { + "start": 5290.02, + "end": 5290.26, + "probability": 0.4191 + }, + { + "start": 5290.86, + "end": 5291.54, + "probability": 0.96 + }, + { + "start": 5292.2, + "end": 5295.86, + "probability": 0.973 + }, + { + "start": 5296.66, + "end": 5298.9, + "probability": 0.8467 + }, + { + "start": 5299.96, + "end": 5302.82, + "probability": 0.8981 + }, + { + "start": 5303.52, + "end": 5305.33, + "probability": 0.8599 + }, + { + "start": 5306.28, + "end": 5307.56, + "probability": 0.8605 + }, + { + "start": 5308.22, + "end": 5311.5, + "probability": 0.9279 + }, + { + "start": 5312.16, + "end": 5315.62, + "probability": 0.9198 + }, + { + "start": 5316.1, + "end": 5318.57, + "probability": 0.9812 + }, + { + "start": 5319.3, + "end": 5320.84, + "probability": 0.8801 + }, + { + "start": 5321.44, + "end": 5323.4, + "probability": 0.9286 + }, + { + "start": 5324.08, + "end": 5324.36, + "probability": 0.4317 + }, + { + "start": 5325.02, + "end": 5327.02, + "probability": 0.8517 + }, + { + "start": 5327.8, + "end": 5329.58, + "probability": 0.8703 + }, + { + "start": 5330.7, + "end": 5334.96, + "probability": 0.9618 + }, + { + "start": 5335.04, + "end": 5336.4, + "probability": 0.796 + }, + { + "start": 5337.0, + "end": 5339.08, + "probability": 0.7278 + }, + { + "start": 5339.26, + "end": 5339.64, + "probability": 0.5316 + }, + { + "start": 5340.66, + "end": 5341.18, + "probability": 0.8434 + }, + { + "start": 5341.88, + "end": 5343.46, + "probability": 0.7324 + }, + { + "start": 5343.7, + "end": 5345.66, + "probability": 0.7488 + }, + { + "start": 5346.52, + "end": 5350.52, + "probability": 0.8179 + }, + { + "start": 5351.2, + "end": 5354.22, + "probability": 0.9872 + }, + { + "start": 5355.56, + "end": 5358.26, + "probability": 0.9666 + }, + { + "start": 5358.48, + "end": 5359.52, + "probability": 0.496 + }, + { + "start": 5359.64, + "end": 5360.94, + "probability": 0.9822 + }, + { + "start": 5361.82, + "end": 5362.12, + "probability": 0.2599 + }, + { + "start": 5362.68, + "end": 5362.82, + "probability": 0.4578 + }, + { + "start": 5363.18, + "end": 5363.72, + "probability": 0.8973 + }, + { + "start": 5363.82, + "end": 5365.98, + "probability": 0.8914 + }, + { + "start": 5368.02, + "end": 5372.16, + "probability": 0.33 + }, + { + "start": 5375.22, + "end": 5378.26, + "probability": 0.625 + }, + { + "start": 5379.24, + "end": 5382.72, + "probability": 0.9935 + }, + { + "start": 5382.72, + "end": 5386.58, + "probability": 0.9968 + }, + { + "start": 5387.68, + "end": 5391.68, + "probability": 0.9833 + }, + { + "start": 5391.84, + "end": 5392.34, + "probability": 0.4025 + }, + { + "start": 5392.4, + "end": 5392.91, + "probability": 0.9946 + }, + { + "start": 5394.26, + "end": 5396.0, + "probability": 0.9747 + }, + { + "start": 5398.22, + "end": 5402.4, + "probability": 0.8865 + }, + { + "start": 5403.9, + "end": 5407.24, + "probability": 0.9266 + }, + { + "start": 5408.26, + "end": 5410.14, + "probability": 0.7312 + }, + { + "start": 5410.36, + "end": 5413.34, + "probability": 0.8252 + }, + { + "start": 5414.82, + "end": 5416.02, + "probability": 0.9307 + }, + { + "start": 5417.68, + "end": 5418.82, + "probability": 0.9402 + }, + { + "start": 5419.96, + "end": 5421.24, + "probability": 0.9 + }, + { + "start": 5425.74, + "end": 5425.74, + "probability": 0.2079 + }, + { + "start": 5425.74, + "end": 5426.04, + "probability": 0.4947 + }, + { + "start": 5426.16, + "end": 5426.86, + "probability": 0.668 + }, + { + "start": 5427.08, + "end": 5431.78, + "probability": 0.5471 + }, + { + "start": 5432.55, + "end": 5436.58, + "probability": 0.9445 + }, + { + "start": 5437.42, + "end": 5438.12, + "probability": 0.9346 + }, + { + "start": 5439.5, + "end": 5441.38, + "probability": 0.6032 + }, + { + "start": 5442.82, + "end": 5445.38, + "probability": 0.9487 + }, + { + "start": 5446.56, + "end": 5447.42, + "probability": 0.8024 + }, + { + "start": 5448.48, + "end": 5450.24, + "probability": 0.9773 + }, + { + "start": 5451.0, + "end": 5452.14, + "probability": 0.7731 + }, + { + "start": 5453.24, + "end": 5453.84, + "probability": 0.8868 + }, + { + "start": 5453.9, + "end": 5454.48, + "probability": 0.9832 + }, + { + "start": 5454.54, + "end": 5459.18, + "probability": 0.7725 + }, + { + "start": 5460.1, + "end": 5462.12, + "probability": 0.481 + }, + { + "start": 5462.22, + "end": 5462.88, + "probability": 0.6957 + }, + { + "start": 5462.98, + "end": 5463.66, + "probability": 0.5361 + }, + { + "start": 5463.78, + "end": 5464.84, + "probability": 0.4138 + }, + { + "start": 5465.04, + "end": 5466.32, + "probability": 0.768 + }, + { + "start": 5466.38, + "end": 5468.6, + "probability": 0.7941 + }, + { + "start": 5468.84, + "end": 5472.46, + "probability": 0.9754 + }, + { + "start": 5472.52, + "end": 5477.44, + "probability": 0.9914 + }, + { + "start": 5478.52, + "end": 5485.02, + "probability": 0.9871 + }, + { + "start": 5486.2, + "end": 5489.96, + "probability": 0.994 + }, + { + "start": 5490.56, + "end": 5493.17, + "probability": 0.9744 + }, + { + "start": 5494.1, + "end": 5498.3, + "probability": 0.9895 + }, + { + "start": 5498.76, + "end": 5501.7, + "probability": 0.8509 + }, + { + "start": 5502.08, + "end": 5505.1, + "probability": 0.9731 + }, + { + "start": 5505.92, + "end": 5506.8, + "probability": 0.7058 + }, + { + "start": 5506.8, + "end": 5507.66, + "probability": 0.8621 + }, + { + "start": 5507.76, + "end": 5508.56, + "probability": 0.922 + }, + { + "start": 5510.18, + "end": 5514.66, + "probability": 0.8377 + }, + { + "start": 5514.66, + "end": 5517.26, + "probability": 0.9095 + }, + { + "start": 5518.26, + "end": 5518.68, + "probability": 0.837 + }, + { + "start": 5519.46, + "end": 5524.62, + "probability": 0.9881 + }, + { + "start": 5524.62, + "end": 5534.4, + "probability": 0.9858 + }, + { + "start": 5535.38, + "end": 5537.98, + "probability": 0.8612 + }, + { + "start": 5538.9, + "end": 5543.98, + "probability": 0.9974 + }, + { + "start": 5543.98, + "end": 5549.24, + "probability": 0.9797 + }, + { + "start": 5549.4, + "end": 5550.3, + "probability": 0.8383 + }, + { + "start": 5551.14, + "end": 5552.24, + "probability": 0.75 + }, + { + "start": 5554.16, + "end": 5555.52, + "probability": 0.8109 + }, + { + "start": 5556.44, + "end": 5558.6, + "probability": 0.9767 + }, + { + "start": 5558.74, + "end": 5559.64, + "probability": 0.7678 + }, + { + "start": 5560.1, + "end": 5560.94, + "probability": 0.6677 + }, + { + "start": 5561.58, + "end": 5566.02, + "probability": 0.5874 + }, + { + "start": 5566.5, + "end": 5567.48, + "probability": 0.8212 + }, + { + "start": 5568.72, + "end": 5573.68, + "probability": 0.9884 + }, + { + "start": 5573.78, + "end": 5574.54, + "probability": 0.8136 + }, + { + "start": 5574.84, + "end": 5575.68, + "probability": 0.7749 + }, + { + "start": 5575.92, + "end": 5581.2, + "probability": 0.9629 + }, + { + "start": 5581.26, + "end": 5584.6, + "probability": 0.9757 + }, + { + "start": 5584.66, + "end": 5586.8, + "probability": 0.9688 + }, + { + "start": 5587.92, + "end": 5588.32, + "probability": 0.9306 + }, + { + "start": 5588.92, + "end": 5591.14, + "probability": 0.5062 + }, + { + "start": 5592.06, + "end": 5594.22, + "probability": 0.7984 + }, + { + "start": 5595.58, + "end": 5598.66, + "probability": 0.9949 + }, + { + "start": 5601.44, + "end": 5602.26, + "probability": 0.5963 + }, + { + "start": 5602.78, + "end": 5605.34, + "probability": 0.865 + }, + { + "start": 5605.66, + "end": 5606.5, + "probability": 0.4952 + }, + { + "start": 5607.52, + "end": 5614.08, + "probability": 0.8855 + }, + { + "start": 5614.54, + "end": 5616.16, + "probability": 0.8838 + }, + { + "start": 5616.58, + "end": 5618.28, + "probability": 0.9789 + }, + { + "start": 5619.18, + "end": 5620.16, + "probability": 0.5981 + }, + { + "start": 5620.32, + "end": 5622.16, + "probability": 0.5714 + }, + { + "start": 5622.74, + "end": 5626.9, + "probability": 0.959 + }, + { + "start": 5626.9, + "end": 5631.84, + "probability": 0.6691 + }, + { + "start": 5632.7, + "end": 5638.2, + "probability": 0.9419 + }, + { + "start": 5639.86, + "end": 5643.96, + "probability": 0.9938 + }, + { + "start": 5644.62, + "end": 5647.18, + "probability": 0.9912 + }, + { + "start": 5647.26, + "end": 5648.0, + "probability": 0.9756 + }, + { + "start": 5648.1, + "end": 5651.38, + "probability": 0.9934 + }, + { + "start": 5652.16, + "end": 5657.96, + "probability": 0.9866 + }, + { + "start": 5658.74, + "end": 5660.38, + "probability": 0.998 + }, + { + "start": 5661.38, + "end": 5669.92, + "probability": 0.7365 + }, + { + "start": 5670.0, + "end": 5677.56, + "probability": 0.0303 + }, + { + "start": 5677.56, + "end": 5677.56, + "probability": 0.0775 + }, + { + "start": 5677.56, + "end": 5677.56, + "probability": 0.0139 + }, + { + "start": 5677.56, + "end": 5681.26, + "probability": 0.5759 + }, + { + "start": 5681.98, + "end": 5686.88, + "probability": 0.8202 + }, + { + "start": 5687.74, + "end": 5694.94, + "probability": 0.9966 + }, + { + "start": 5695.12, + "end": 5697.58, + "probability": 0.8172 + }, + { + "start": 5698.54, + "end": 5699.92, + "probability": 0.6795 + }, + { + "start": 5700.84, + "end": 5705.5, + "probability": 0.3099 + }, + { + "start": 5705.5, + "end": 5710.22, + "probability": 0.9865 + }, + { + "start": 5711.04, + "end": 5712.58, + "probability": 0.999 + }, + { + "start": 5713.2, + "end": 5717.48, + "probability": 0.9933 + }, + { + "start": 5718.02, + "end": 5719.92, + "probability": 0.5053 + }, + { + "start": 5720.42, + "end": 5721.16, + "probability": 0.9023 + }, + { + "start": 5721.44, + "end": 5723.78, + "probability": 0.8244 + }, + { + "start": 5723.88, + "end": 5725.78, + "probability": 0.7261 + }, + { + "start": 5726.6, + "end": 5727.64, + "probability": 0.6713 + }, + { + "start": 5727.7, + "end": 5732.88, + "probability": 0.9518 + }, + { + "start": 5732.88, + "end": 5734.02, + "probability": 0.7554 + }, + { + "start": 5734.28, + "end": 5735.56, + "probability": 0.617 + }, + { + "start": 5735.68, + "end": 5738.48, + "probability": 0.6351 + }, + { + "start": 5739.1, + "end": 5742.18, + "probability": 0.9536 + }, + { + "start": 5743.16, + "end": 5745.4, + "probability": 0.9326 + }, + { + "start": 5745.48, + "end": 5747.64, + "probability": 0.8586 + }, + { + "start": 5749.14, + "end": 5755.86, + "probability": 0.9837 + }, + { + "start": 5755.86, + "end": 5761.2, + "probability": 0.9961 + }, + { + "start": 5762.2, + "end": 5764.54, + "probability": 0.896 + }, + { + "start": 5765.5, + "end": 5771.34, + "probability": 0.7933 + }, + { + "start": 5771.34, + "end": 5776.28, + "probability": 0.7584 + }, + { + "start": 5776.98, + "end": 5781.74, + "probability": 0.9919 + }, + { + "start": 5781.88, + "end": 5782.82, + "probability": 0.8985 + }, + { + "start": 5783.5, + "end": 5784.52, + "probability": 0.8531 + }, + { + "start": 5785.04, + "end": 5786.1, + "probability": 0.5061 + }, + { + "start": 5786.7, + "end": 5789.9, + "probability": 0.8876 + }, + { + "start": 5790.04, + "end": 5791.28, + "probability": 0.9108 + }, + { + "start": 5791.52, + "end": 5794.16, + "probability": 0.9668 + }, + { + "start": 5794.3, + "end": 5796.88, + "probability": 0.7246 + }, + { + "start": 5797.38, + "end": 5797.98, + "probability": 0.7145 + }, + { + "start": 5798.26, + "end": 5799.72, + "probability": 0.0004 + }, + { + "start": 5800.12, + "end": 5807.94, + "probability": 0.7071 + }, + { + "start": 5807.94, + "end": 5808.84, + "probability": 0.9668 + }, + { + "start": 5809.18, + "end": 5811.42, + "probability": 0.913 + }, + { + "start": 5811.66, + "end": 5811.8, + "probability": 0.6887 + }, + { + "start": 5812.16, + "end": 5814.66, + "probability": 0.7783 + }, + { + "start": 5815.9, + "end": 5818.74, + "probability": 0.9884 + }, + { + "start": 5819.14, + "end": 5819.74, + "probability": 0.6091 + }, + { + "start": 5819.96, + "end": 5821.4, + "probability": 0.7383 + }, + { + "start": 5825.38, + "end": 5828.12, + "probability": 0.8658 + }, + { + "start": 5834.64, + "end": 5836.06, + "probability": 0.5072 + }, + { + "start": 5836.74, + "end": 5838.24, + "probability": 0.8019 + }, + { + "start": 5838.98, + "end": 5841.08, + "probability": 0.9536 + }, + { + "start": 5841.92, + "end": 5842.52, + "probability": 0.8433 + }, + { + "start": 5842.92, + "end": 5846.48, + "probability": 0.7314 + }, + { + "start": 5846.48, + "end": 5850.8, + "probability": 0.9294 + }, + { + "start": 5851.48, + "end": 5853.34, + "probability": 0.5599 + }, + { + "start": 5854.14, + "end": 5856.55, + "probability": 0.9461 + }, + { + "start": 5857.7, + "end": 5861.0, + "probability": 0.7129 + }, + { + "start": 5861.98, + "end": 5863.62, + "probability": 0.9907 + }, + { + "start": 5864.36, + "end": 5866.43, + "probability": 0.7145 + }, + { + "start": 5867.28, + "end": 5867.42, + "probability": 0.4774 + }, + { + "start": 5867.8, + "end": 5868.6, + "probability": 0.9247 + }, + { + "start": 5869.42, + "end": 5870.9, + "probability": 0.8906 + }, + { + "start": 5871.74, + "end": 5874.06, + "probability": 0.9272 + }, + { + "start": 5874.68, + "end": 5878.76, + "probability": 0.8477 + }, + { + "start": 5879.0, + "end": 5880.02, + "probability": 0.5792 + }, + { + "start": 5881.32, + "end": 5882.86, + "probability": 0.9237 + }, + { + "start": 5883.74, + "end": 5885.38, + "probability": 0.8719 + }, + { + "start": 5886.04, + "end": 5887.94, + "probability": 0.929 + }, + { + "start": 5888.48, + "end": 5889.6, + "probability": 0.9966 + }, + { + "start": 5890.42, + "end": 5892.3, + "probability": 0.9746 + }, + { + "start": 5892.58, + "end": 5895.86, + "probability": 0.988 + }, + { + "start": 5896.52, + "end": 5897.42, + "probability": 0.852 + }, + { + "start": 5898.1, + "end": 5900.66, + "probability": 0.9713 + }, + { + "start": 5901.22, + "end": 5901.98, + "probability": 0.953 + }, + { + "start": 5902.8, + "end": 5903.34, + "probability": 0.925 + }, + { + "start": 5905.32, + "end": 5905.83, + "probability": 0.978 + }, + { + "start": 5906.72, + "end": 5910.96, + "probability": 0.943 + }, + { + "start": 5913.38, + "end": 5914.86, + "probability": 0.583 + }, + { + "start": 5915.44, + "end": 5917.34, + "probability": 0.9627 + }, + { + "start": 5918.06, + "end": 5918.7, + "probability": 0.8323 + }, + { + "start": 5918.76, + "end": 5919.75, + "probability": 0.9162 + }, + { + "start": 5920.22, + "end": 5922.02, + "probability": 0.9756 + }, + { + "start": 5923.08, + "end": 5926.08, + "probability": 0.8851 + }, + { + "start": 5926.54, + "end": 5927.12, + "probability": 0.1244 + }, + { + "start": 5927.54, + "end": 5927.86, + "probability": 0.5287 + }, + { + "start": 5928.26, + "end": 5929.66, + "probability": 0.2367 + }, + { + "start": 5931.02, + "end": 5932.91, + "probability": 0.6103 + }, + { + "start": 5933.52, + "end": 5934.93, + "probability": 0.2515 + }, + { + "start": 5935.82, + "end": 5939.08, + "probability": 0.7678 + }, + { + "start": 5939.08, + "end": 5939.84, + "probability": 0.8279 + }, + { + "start": 5940.2, + "end": 5942.63, + "probability": 0.5847 + }, + { + "start": 5943.08, + "end": 5948.32, + "probability": 0.5698 + }, + { + "start": 5948.44, + "end": 5953.04, + "probability": 0.9855 + }, + { + "start": 5953.62, + "end": 5956.16, + "probability": 0.7534 + }, + { + "start": 5957.46, + "end": 5961.76, + "probability": 0.0232 + }, + { + "start": 5981.22, + "end": 5987.02, + "probability": 0.9252 + }, + { + "start": 5987.08, + "end": 5989.1, + "probability": 0.6351 + }, + { + "start": 5989.24, + "end": 5990.84, + "probability": 0.9988 + }, + { + "start": 5991.36, + "end": 5993.66, + "probability": 0.9906 + }, + { + "start": 5993.66, + "end": 5994.3, + "probability": 0.22 + }, + { + "start": 5994.32, + "end": 5994.32, + "probability": 0.1561 + }, + { + "start": 5994.46, + "end": 5996.4, + "probability": 0.6674 + }, + { + "start": 5996.62, + "end": 6000.16, + "probability": 0.9132 + }, + { + "start": 6000.52, + "end": 6002.52, + "probability": 0.6168 + }, + { + "start": 6003.02, + "end": 6004.88, + "probability": 0.8712 + }, + { + "start": 6005.48, + "end": 6008.24, + "probability": 0.9273 + }, + { + "start": 6008.48, + "end": 6010.24, + "probability": 0.6674 + }, + { + "start": 6010.52, + "end": 6011.72, + "probability": 0.3179 + }, + { + "start": 6011.92, + "end": 6012.28, + "probability": 0.5567 + }, + { + "start": 6012.36, + "end": 6012.86, + "probability": 0.0751 + }, + { + "start": 6012.94, + "end": 6015.86, + "probability": 0.6606 + }, + { + "start": 6016.32, + "end": 6017.36, + "probability": 0.9702 + }, + { + "start": 6017.68, + "end": 6020.27, + "probability": 0.7022 + }, + { + "start": 6020.68, + "end": 6025.6, + "probability": 0.5704 + }, + { + "start": 6026.34, + "end": 6031.1, + "probability": 0.8872 + }, + { + "start": 6031.62, + "end": 6034.08, + "probability": 0.8004 + }, + { + "start": 6034.66, + "end": 6035.29, + "probability": 0.9514 + }, + { + "start": 6035.74, + "end": 6037.42, + "probability": 0.7355 + }, + { + "start": 6037.8, + "end": 6039.2, + "probability": 0.784 + }, + { + "start": 6039.62, + "end": 6040.82, + "probability": 0.8889 + }, + { + "start": 6040.88, + "end": 6041.48, + "probability": 0.9096 + }, + { + "start": 6041.84, + "end": 6043.62, + "probability": 0.9295 + }, + { + "start": 6044.24, + "end": 6044.84, + "probability": 0.8981 + }, + { + "start": 6044.96, + "end": 6046.22, + "probability": 0.9899 + }, + { + "start": 6046.72, + "end": 6049.96, + "probability": 0.9639 + }, + { + "start": 6050.32, + "end": 6051.68, + "probability": 0.9256 + }, + { + "start": 6052.62, + "end": 6053.44, + "probability": 0.7787 + }, + { + "start": 6053.58, + "end": 6054.38, + "probability": 0.9878 + }, + { + "start": 6054.66, + "end": 6058.75, + "probability": 0.9925 + }, + { + "start": 6059.04, + "end": 6063.44, + "probability": 0.7913 + }, + { + "start": 6063.98, + "end": 6067.92, + "probability": 0.9513 + }, + { + "start": 6068.36, + "end": 6072.42, + "probability": 0.9288 + }, + { + "start": 6072.82, + "end": 6073.02, + "probability": 0.82 + }, + { + "start": 6073.58, + "end": 6076.7, + "probability": 0.7795 + }, + { + "start": 6076.7, + "end": 6080.92, + "probability": 0.6644 + }, + { + "start": 6081.42, + "end": 6083.38, + "probability": 0.8441 + }, + { + "start": 6083.9, + "end": 6085.72, + "probability": 0.9496 + }, + { + "start": 6086.1, + "end": 6086.44, + "probability": 0.8202 + }, + { + "start": 6086.76, + "end": 6088.42, + "probability": 0.9425 + }, + { + "start": 6088.58, + "end": 6089.42, + "probability": 0.9398 + }, + { + "start": 6089.8, + "end": 6090.36, + "probability": 0.8467 + }, + { + "start": 6090.5, + "end": 6091.74, + "probability": 0.7812 + }, + { + "start": 6092.26, + "end": 6093.62, + "probability": 0.8638 + }, + { + "start": 6093.88, + "end": 6094.9, + "probability": 0.91 + }, + { + "start": 6095.44, + "end": 6098.54, + "probability": 0.5991 + }, + { + "start": 6099.5, + "end": 6103.92, + "probability": 0.9053 + }, + { + "start": 6103.92, + "end": 6106.62, + "probability": 0.9933 + }, + { + "start": 6107.58, + "end": 6110.82, + "probability": 0.9983 + }, + { + "start": 6111.08, + "end": 6113.8, + "probability": 0.6423 + }, + { + "start": 6114.34, + "end": 6115.14, + "probability": 0.7841 + }, + { + "start": 6115.28, + "end": 6115.38, + "probability": 0.9073 + }, + { + "start": 6115.68, + "end": 6116.1, + "probability": 0.8173 + }, + { + "start": 6116.18, + "end": 6118.14, + "probability": 0.8431 + }, + { + "start": 6118.62, + "end": 6119.16, + "probability": 0.8567 + }, + { + "start": 6119.22, + "end": 6119.66, + "probability": 0.8901 + }, + { + "start": 6120.52, + "end": 6121.46, + "probability": 0.8561 + }, + { + "start": 6121.46, + "end": 6126.16, + "probability": 0.6618 + }, + { + "start": 6126.16, + "end": 6128.52, + "probability": 0.9638 + }, + { + "start": 6128.98, + "end": 6131.52, + "probability": 0.9323 + }, + { + "start": 6132.38, + "end": 6135.82, + "probability": 0.7526 + }, + { + "start": 6136.68, + "end": 6139.68, + "probability": 0.949 + }, + { + "start": 6140.02, + "end": 6142.36, + "probability": 0.6891 + }, + { + "start": 6142.56, + "end": 6143.68, + "probability": 0.8581 + }, + { + "start": 6144.5, + "end": 6145.92, + "probability": 0.891 + }, + { + "start": 6146.42, + "end": 6148.78, + "probability": 0.9661 + }, + { + "start": 6149.34, + "end": 6151.56, + "probability": 0.973 + }, + { + "start": 6152.32, + "end": 6157.48, + "probability": 0.9325 + }, + { + "start": 6158.06, + "end": 6159.22, + "probability": 0.9657 + }, + { + "start": 6159.6, + "end": 6161.76, + "probability": 0.8597 + }, + { + "start": 6162.2, + "end": 6163.98, + "probability": 0.8459 + }, + { + "start": 6164.62, + "end": 6166.04, + "probability": 0.9486 + }, + { + "start": 6166.16, + "end": 6166.74, + "probability": 0.8041 + }, + { + "start": 6167.18, + "end": 6167.59, + "probability": 0.9606 + }, + { + "start": 6168.3, + "end": 6171.74, + "probability": 0.8199 + }, + { + "start": 6173.22, + "end": 6173.96, + "probability": 0.8782 + }, + { + "start": 6174.02, + "end": 6177.92, + "probability": 0.9364 + }, + { + "start": 6178.2, + "end": 6181.74, + "probability": 0.9149 + }, + { + "start": 6181.86, + "end": 6186.72, + "probability": 0.9885 + }, + { + "start": 6186.86, + "end": 6187.0, + "probability": 0.322 + }, + { + "start": 6187.24, + "end": 6189.34, + "probability": 0.9885 + }, + { + "start": 6190.22, + "end": 6192.0, + "probability": 0.6714 + }, + { + "start": 6193.58, + "end": 6195.7, + "probability": 0.8923 + }, + { + "start": 6201.48, + "end": 6203.38, + "probability": 0.7498 + }, + { + "start": 6216.16, + "end": 6216.98, + "probability": 0.7694 + }, + { + "start": 6218.06, + "end": 6219.1, + "probability": 0.7718 + }, + { + "start": 6221.08, + "end": 6225.3, + "probability": 0.9989 + }, + { + "start": 6226.9, + "end": 6232.74, + "probability": 0.998 + }, + { + "start": 6233.3, + "end": 6234.5, + "probability": 0.9856 + }, + { + "start": 6235.6, + "end": 6237.64, + "probability": 0.7639 + }, + { + "start": 6238.38, + "end": 6239.52, + "probability": 0.89 + }, + { + "start": 6240.18, + "end": 6243.36, + "probability": 0.9612 + }, + { + "start": 6249.98, + "end": 6255.82, + "probability": 0.8176 + }, + { + "start": 6257.56, + "end": 6260.54, + "probability": 0.9925 + }, + { + "start": 6261.24, + "end": 6264.68, + "probability": 0.9924 + }, + { + "start": 6265.12, + "end": 6270.38, + "probability": 0.9919 + }, + { + "start": 6271.94, + "end": 6276.8, + "probability": 0.9797 + }, + { + "start": 6278.0, + "end": 6284.7, + "probability": 0.9883 + }, + { + "start": 6285.32, + "end": 6287.48, + "probability": 0.9402 + }, + { + "start": 6288.38, + "end": 6294.6, + "probability": 0.9904 + }, + { + "start": 6296.06, + "end": 6297.18, + "probability": 0.9713 + }, + { + "start": 6297.28, + "end": 6302.9, + "probability": 0.9421 + }, + { + "start": 6303.48, + "end": 6307.9, + "probability": 0.8145 + }, + { + "start": 6308.46, + "end": 6312.1, + "probability": 0.9819 + }, + { + "start": 6312.42, + "end": 6318.7, + "probability": 0.983 + }, + { + "start": 6321.32, + "end": 6325.1, + "probability": 0.9968 + }, + { + "start": 6325.1, + "end": 6328.64, + "probability": 0.9989 + }, + { + "start": 6329.16, + "end": 6330.02, + "probability": 0.9519 + }, + { + "start": 6330.14, + "end": 6331.42, + "probability": 0.3616 + }, + { + "start": 6331.58, + "end": 6335.38, + "probability": 0.9677 + }, + { + "start": 6336.12, + "end": 6341.14, + "probability": 0.9537 + }, + { + "start": 6342.1, + "end": 6344.72, + "probability": 0.974 + }, + { + "start": 6345.3, + "end": 6350.68, + "probability": 0.9967 + }, + { + "start": 6351.48, + "end": 6352.04, + "probability": 0.5378 + }, + { + "start": 6352.86, + "end": 6353.72, + "probability": 0.6432 + }, + { + "start": 6353.78, + "end": 6359.32, + "probability": 0.8751 + }, + { + "start": 6360.12, + "end": 6363.52, + "probability": 0.8017 + }, + { + "start": 6364.16, + "end": 6365.38, + "probability": 0.9567 + }, + { + "start": 6369.06, + "end": 6373.8, + "probability": 0.9738 + }, + { + "start": 6373.86, + "end": 6377.38, + "probability": 0.8776 + }, + { + "start": 6377.7, + "end": 6379.22, + "probability": 0.9922 + }, + { + "start": 6379.88, + "end": 6383.72, + "probability": 0.9795 + }, + { + "start": 6384.14, + "end": 6388.76, + "probability": 0.9967 + }, + { + "start": 6388.76, + "end": 6394.2, + "probability": 0.9977 + }, + { + "start": 6394.66, + "end": 6397.36, + "probability": 0.9951 + }, + { + "start": 6398.32, + "end": 6401.74, + "probability": 0.9985 + }, + { + "start": 6401.74, + "end": 6406.52, + "probability": 0.9958 + }, + { + "start": 6407.14, + "end": 6408.2, + "probability": 0.9854 + }, + { + "start": 6410.68, + "end": 6413.52, + "probability": 0.8907 + }, + { + "start": 6414.3, + "end": 6416.4, + "probability": 0.9209 + }, + { + "start": 6416.56, + "end": 6420.06, + "probability": 0.9747 + }, + { + "start": 6420.96, + "end": 6427.62, + "probability": 0.9962 + }, + { + "start": 6427.78, + "end": 6432.54, + "probability": 0.9845 + }, + { + "start": 6433.08, + "end": 6439.08, + "probability": 0.9907 + }, + { + "start": 6440.76, + "end": 6445.22, + "probability": 0.8213 + }, + { + "start": 6445.78, + "end": 6446.48, + "probability": 0.8902 + }, + { + "start": 6447.46, + "end": 6452.2, + "probability": 0.9886 + }, + { + "start": 6452.74, + "end": 6453.2, + "probability": 0.968 + }, + { + "start": 6455.52, + "end": 6459.1, + "probability": 0.9941 + }, + { + "start": 6459.92, + "end": 6464.22, + "probability": 0.9812 + }, + { + "start": 6464.88, + "end": 6468.04, + "probability": 0.9709 + }, + { + "start": 6468.24, + "end": 6471.78, + "probability": 0.981 + }, + { + "start": 6471.78, + "end": 6475.16, + "probability": 0.9822 + }, + { + "start": 6477.68, + "end": 6481.56, + "probability": 0.993 + }, + { + "start": 6482.36, + "end": 6488.84, + "probability": 0.9911 + }, + { + "start": 6489.36, + "end": 6495.34, + "probability": 0.9967 + }, + { + "start": 6495.34, + "end": 6501.5, + "probability": 0.9983 + }, + { + "start": 6504.88, + "end": 6508.62, + "probability": 0.9916 + }, + { + "start": 6509.16, + "end": 6510.88, + "probability": 0.9958 + }, + { + "start": 6511.52, + "end": 6513.36, + "probability": 0.9174 + }, + { + "start": 6513.48, + "end": 6514.48, + "probability": 0.837 + }, + { + "start": 6514.82, + "end": 6519.7, + "probability": 0.9983 + }, + { + "start": 6520.58, + "end": 6521.24, + "probability": 0.9924 + }, + { + "start": 6522.16, + "end": 6522.42, + "probability": 0.5632 + }, + { + "start": 6522.68, + "end": 6524.88, + "probability": 0.5088 + }, + { + "start": 6526.0, + "end": 6529.44, + "probability": 0.6195 + }, + { + "start": 6530.12, + "end": 6531.74, + "probability": 0.9609 + }, + { + "start": 6533.14, + "end": 6536.8, + "probability": 0.2339 + }, + { + "start": 6554.38, + "end": 6556.35, + "probability": 0.6596 + }, + { + "start": 6558.18, + "end": 6559.06, + "probability": 0.762 + }, + { + "start": 6559.12, + "end": 6559.96, + "probability": 0.8432 + }, + { + "start": 6560.26, + "end": 6562.57, + "probability": 0.9611 + }, + { + "start": 6562.98, + "end": 6564.06, + "probability": 0.6187 + }, + { + "start": 6564.46, + "end": 6567.61, + "probability": 0.9498 + }, + { + "start": 6569.4, + "end": 6571.2, + "probability": 0.7388 + }, + { + "start": 6571.2, + "end": 6574.98, + "probability": 0.7441 + }, + { + "start": 6575.26, + "end": 6576.72, + "probability": 0.7309 + }, + { + "start": 6578.19, + "end": 6579.52, + "probability": 0.0943 + }, + { + "start": 6584.49, + "end": 6587.78, + "probability": 0.735 + }, + { + "start": 6588.08, + "end": 6589.46, + "probability": 0.7128 + }, + { + "start": 6589.88, + "end": 6591.48, + "probability": 0.1071 + }, + { + "start": 6591.7, + "end": 6592.92, + "probability": 0.2944 + }, + { + "start": 6592.92, + "end": 6593.85, + "probability": 0.5091 + }, + { + "start": 6593.98, + "end": 6594.08, + "probability": 0.5184 + }, + { + "start": 6594.38, + "end": 6595.08, + "probability": 0.1852 + }, + { + "start": 6597.82, + "end": 6599.28, + "probability": 0.5576 + }, + { + "start": 6599.88, + "end": 6600.94, + "probability": 0.9382 + }, + { + "start": 6602.04, + "end": 6605.52, + "probability": 0.4192 + }, + { + "start": 6606.68, + "end": 6613.42, + "probability": 0.954 + }, + { + "start": 6613.7, + "end": 6615.98, + "probability": 0.7282 + }, + { + "start": 6617.96, + "end": 6620.72, + "probability": 0.8718 + }, + { + "start": 6621.9, + "end": 6623.74, + "probability": 0.8463 + }, + { + "start": 6624.8, + "end": 6626.22, + "probability": 0.6714 + }, + { + "start": 6626.48, + "end": 6628.96, + "probability": 0.8438 + }, + { + "start": 6629.88, + "end": 6632.38, + "probability": 0.9976 + }, + { + "start": 6633.14, + "end": 6634.04, + "probability": 0.8015 + }, + { + "start": 6635.74, + "end": 6636.02, + "probability": 0.6206 + }, + { + "start": 6637.6, + "end": 6638.86, + "probability": 0.9382 + }, + { + "start": 6639.0, + "end": 6639.3, + "probability": 0.7311 + }, + { + "start": 6639.4, + "end": 6641.12, + "probability": 0.9299 + }, + { + "start": 6641.54, + "end": 6641.92, + "probability": 0.2912 + }, + { + "start": 6642.36, + "end": 6643.48, + "probability": 0.807 + }, + { + "start": 6643.64, + "end": 6647.32, + "probability": 0.9744 + }, + { + "start": 6648.66, + "end": 6650.68, + "probability": 0.9546 + }, + { + "start": 6650.86, + "end": 6656.44, + "probability": 0.9924 + }, + { + "start": 6656.68, + "end": 6657.28, + "probability": 0.6457 + }, + { + "start": 6658.06, + "end": 6661.25, + "probability": 0.6067 + }, + { + "start": 6662.14, + "end": 6663.16, + "probability": 0.8593 + }, + { + "start": 6664.2, + "end": 6665.07, + "probability": 0.9013 + }, + { + "start": 6665.98, + "end": 6667.0, + "probability": 0.9585 + }, + { + "start": 6667.1, + "end": 6667.98, + "probability": 0.6599 + }, + { + "start": 6668.86, + "end": 6669.32, + "probability": 0.8193 + }, + { + "start": 6669.56, + "end": 6671.46, + "probability": 0.8631 + }, + { + "start": 6672.06, + "end": 6678.08, + "probability": 0.7816 + }, + { + "start": 6679.04, + "end": 6681.38, + "probability": 0.7939 + }, + { + "start": 6682.44, + "end": 6682.44, + "probability": 0.2865 + }, + { + "start": 6682.44, + "end": 6683.89, + "probability": 0.6445 + }, + { + "start": 6684.32, + "end": 6686.95, + "probability": 0.9915 + }, + { + "start": 6687.5, + "end": 6691.2, + "probability": 0.7003 + }, + { + "start": 6691.84, + "end": 6695.12, + "probability": 0.997 + }, + { + "start": 6695.2, + "end": 6699.86, + "probability": 0.8713 + }, + { + "start": 6700.32, + "end": 6703.1, + "probability": 0.9932 + }, + { + "start": 6703.3, + "end": 6704.14, + "probability": 0.9329 + }, + { + "start": 6704.18, + "end": 6705.38, + "probability": 0.077 + }, + { + "start": 6706.44, + "end": 6708.52, + "probability": 0.5994 + }, + { + "start": 6708.62, + "end": 6709.44, + "probability": 0.9591 + }, + { + "start": 6710.2, + "end": 6710.76, + "probability": 0.8982 + }, + { + "start": 6712.22, + "end": 6713.24, + "probability": 0.938 + }, + { + "start": 6713.46, + "end": 6714.76, + "probability": 0.6999 + }, + { + "start": 6714.8, + "end": 6717.86, + "probability": 0.9339 + }, + { + "start": 6718.66, + "end": 6720.85, + "probability": 0.7893 + }, + { + "start": 6721.64, + "end": 6723.18, + "probability": 0.6313 + }, + { + "start": 6723.46, + "end": 6726.62, + "probability": 0.715 + }, + { + "start": 6728.32, + "end": 6730.74, + "probability": 0.8137 + }, + { + "start": 6731.26, + "end": 6734.06, + "probability": 0.9709 + }, + { + "start": 6735.18, + "end": 6737.22, + "probability": 0.764 + }, + { + "start": 6737.52, + "end": 6739.38, + "probability": 0.8481 + }, + { + "start": 6741.1, + "end": 6742.76, + "probability": 0.9946 + }, + { + "start": 6743.04, + "end": 6745.06, + "probability": 0.9818 + }, + { + "start": 6745.32, + "end": 6746.32, + "probability": 0.6571 + }, + { + "start": 6747.28, + "end": 6748.24, + "probability": 0.5132 + }, + { + "start": 6749.5, + "end": 6750.2, + "probability": 0.6677 + }, + { + "start": 6750.44, + "end": 6754.08, + "probability": 0.943 + }, + { + "start": 6755.97, + "end": 6759.94, + "probability": 0.9839 + }, + { + "start": 6760.58, + "end": 6761.68, + "probability": 0.9165 + }, + { + "start": 6762.88, + "end": 6765.46, + "probability": 0.9651 + }, + { + "start": 6765.5, + "end": 6766.2, + "probability": 0.5732 + }, + { + "start": 6766.24, + "end": 6771.88, + "probability": 0.9814 + }, + { + "start": 6772.84, + "end": 6773.98, + "probability": 0.8074 + }, + { + "start": 6775.34, + "end": 6775.74, + "probability": 0.7116 + }, + { + "start": 6775.78, + "end": 6781.2, + "probability": 0.9557 + }, + { + "start": 6782.52, + "end": 6782.68, + "probability": 0.7932 + }, + { + "start": 6783.28, + "end": 6783.88, + "probability": 0.6135 + }, + { + "start": 6784.04, + "end": 6785.12, + "probability": 0.6395 + }, + { + "start": 6785.42, + "end": 6787.12, + "probability": 0.8308 + }, + { + "start": 6789.96, + "end": 6794.26, + "probability": 0.9517 + }, + { + "start": 6794.64, + "end": 6796.64, + "probability": 0.6613 + }, + { + "start": 6797.06, + "end": 6799.1, + "probability": 0.8804 + }, + { + "start": 6799.16, + "end": 6800.48, + "probability": 0.948 + }, + { + "start": 6802.7, + "end": 6803.12, + "probability": 0.5614 + }, + { + "start": 6803.68, + "end": 6804.74, + "probability": 0.9336 + }, + { + "start": 6805.16, + "end": 6807.24, + "probability": 0.6346 + }, + { + "start": 6807.42, + "end": 6810.88, + "probability": 0.7964 + }, + { + "start": 6810.94, + "end": 6813.52, + "probability": 0.9894 + }, + { + "start": 6814.42, + "end": 6815.86, + "probability": 0.9355 + }, + { + "start": 6818.64, + "end": 6820.54, + "probability": 0.6511 + }, + { + "start": 6820.54, + "end": 6823.68, + "probability": 0.9908 + }, + { + "start": 6823.86, + "end": 6826.26, + "probability": 0.8451 + }, + { + "start": 6827.16, + "end": 6829.5, + "probability": 0.9917 + }, + { + "start": 6829.62, + "end": 6832.58, + "probability": 0.9937 + }, + { + "start": 6832.58, + "end": 6836.48, + "probability": 0.979 + }, + { + "start": 6836.52, + "end": 6839.98, + "probability": 0.9455 + }, + { + "start": 6840.5, + "end": 6842.8, + "probability": 0.9668 + }, + { + "start": 6843.44, + "end": 6844.26, + "probability": 0.5843 + }, + { + "start": 6844.32, + "end": 6845.0, + "probability": 0.8489 + }, + { + "start": 6845.56, + "end": 6846.64, + "probability": 0.581 + }, + { + "start": 6846.94, + "end": 6847.78, + "probability": 0.7716 + }, + { + "start": 6848.62, + "end": 6851.32, + "probability": 0.5176 + }, + { + "start": 6852.3, + "end": 6853.63, + "probability": 0.6276 + }, + { + "start": 6854.58, + "end": 6856.22, + "probability": 0.9683 + }, + { + "start": 6856.48, + "end": 6857.1, + "probability": 0.1932 + }, + { + "start": 6857.4, + "end": 6858.97, + "probability": 0.8989 + }, + { + "start": 6859.12, + "end": 6860.34, + "probability": 0.8657 + }, + { + "start": 6860.7, + "end": 6861.78, + "probability": 0.1467 + }, + { + "start": 6861.84, + "end": 6862.68, + "probability": 0.8387 + }, + { + "start": 6863.02, + "end": 6865.38, + "probability": 0.8848 + }, + { + "start": 6866.3, + "end": 6871.38, + "probability": 0.9902 + }, + { + "start": 6871.48, + "end": 6873.04, + "probability": 0.9898 + }, + { + "start": 6874.48, + "end": 6874.94, + "probability": 0.7615 + }, + { + "start": 6875.64, + "end": 6876.06, + "probability": 0.8699 + }, + { + "start": 6876.4, + "end": 6877.68, + "probability": 0.7017 + }, + { + "start": 6877.72, + "end": 6878.5, + "probability": 0.7847 + }, + { + "start": 6878.52, + "end": 6879.38, + "probability": 0.9558 + }, + { + "start": 6880.3, + "end": 6880.82, + "probability": 0.9316 + }, + { + "start": 6880.86, + "end": 6882.3, + "probability": 0.9355 + }, + { + "start": 6882.74, + "end": 6883.82, + "probability": 0.8446 + }, + { + "start": 6884.54, + "end": 6888.18, + "probability": 0.9953 + }, + { + "start": 6888.36, + "end": 6893.1, + "probability": 0.9844 + }, + { + "start": 6894.16, + "end": 6896.68, + "probability": 0.943 + }, + { + "start": 6897.56, + "end": 6899.24, + "probability": 0.9702 + }, + { + "start": 6899.96, + "end": 6900.38, + "probability": 0.9469 + }, + { + "start": 6901.24, + "end": 6902.02, + "probability": 0.6414 + }, + { + "start": 6902.68, + "end": 6903.38, + "probability": 0.9061 + }, + { + "start": 6903.92, + "end": 6904.86, + "probability": 0.7508 + }, + { + "start": 6905.72, + "end": 6909.26, + "probability": 0.978 + }, + { + "start": 6910.08, + "end": 6911.74, + "probability": 0.9922 + }, + { + "start": 6911.8, + "end": 6913.0, + "probability": 0.8096 + }, + { + "start": 6913.7, + "end": 6916.3, + "probability": 0.9983 + }, + { + "start": 6916.86, + "end": 6920.42, + "probability": 0.9417 + }, + { + "start": 6920.74, + "end": 6923.04, + "probability": 0.9822 + }, + { + "start": 6923.78, + "end": 6924.82, + "probability": 0.9264 + }, + { + "start": 6925.8, + "end": 6926.8, + "probability": 0.4118 + }, + { + "start": 6927.18, + "end": 6933.74, + "probability": 0.9675 + }, + { + "start": 6934.38, + "end": 6935.9, + "probability": 0.9619 + }, + { + "start": 6936.4, + "end": 6938.06, + "probability": 0.606 + }, + { + "start": 6939.42, + "end": 6942.92, + "probability": 0.7424 + }, + { + "start": 6943.42, + "end": 6943.88, + "probability": 0.3797 + }, + { + "start": 6944.98, + "end": 6947.26, + "probability": 0.5782 + }, + { + "start": 6948.0, + "end": 6951.12, + "probability": 0.9023 + }, + { + "start": 6951.52, + "end": 6954.1, + "probability": 0.9567 + }, + { + "start": 6954.56, + "end": 6958.68, + "probability": 0.9639 + }, + { + "start": 6959.32, + "end": 6961.4, + "probability": 0.8104 + }, + { + "start": 6962.26, + "end": 6963.1, + "probability": 0.3897 + }, + { + "start": 6963.74, + "end": 6966.22, + "probability": 0.9641 + }, + { + "start": 6967.12, + "end": 6969.42, + "probability": 0.9623 + }, + { + "start": 6970.36, + "end": 6973.46, + "probability": 0.7018 + }, + { + "start": 6974.82, + "end": 6980.28, + "probability": 0.8521 + }, + { + "start": 6981.04, + "end": 6983.92, + "probability": 0.6957 + }, + { + "start": 6986.62, + "end": 6987.76, + "probability": 0.7498 + }, + { + "start": 6990.58, + "end": 6996.36, + "probability": 0.958 + }, + { + "start": 6996.74, + "end": 6998.34, + "probability": 0.9609 + }, + { + "start": 7000.32, + "end": 7001.72, + "probability": 0.976 + }, + { + "start": 7004.7, + "end": 7007.14, + "probability": 0.9824 + }, + { + "start": 7008.18, + "end": 7009.32, + "probability": 0.8995 + }, + { + "start": 7010.24, + "end": 7012.82, + "probability": 0.6523 + }, + { + "start": 7013.56, + "end": 7014.12, + "probability": 0.6068 + }, + { + "start": 7014.12, + "end": 7017.5, + "probability": 0.9928 + }, + { + "start": 7018.22, + "end": 7024.78, + "probability": 0.9976 + }, + { + "start": 7025.36, + "end": 7027.54, + "probability": 0.8795 + }, + { + "start": 7028.82, + "end": 7029.72, + "probability": 0.9636 + }, + { + "start": 7030.28, + "end": 7030.94, + "probability": 0.9202 + }, + { + "start": 7031.74, + "end": 7032.64, + "probability": 0.834 + }, + { + "start": 7033.54, + "end": 7036.77, + "probability": 0.9556 + }, + { + "start": 7037.9, + "end": 7039.46, + "probability": 0.702 + }, + { + "start": 7039.64, + "end": 7042.44, + "probability": 0.9844 + }, + { + "start": 7042.5, + "end": 7045.84, + "probability": 0.9421 + }, + { + "start": 7046.2, + "end": 7047.82, + "probability": 0.9388 + }, + { + "start": 7048.8, + "end": 7052.28, + "probability": 0.7856 + }, + { + "start": 7052.88, + "end": 7055.44, + "probability": 0.9964 + }, + { + "start": 7056.18, + "end": 7057.52, + "probability": 0.8936 + }, + { + "start": 7058.4, + "end": 7063.96, + "probability": 0.9694 + }, + { + "start": 7064.9, + "end": 7068.58, + "probability": 0.9706 + }, + { + "start": 7069.28, + "end": 7073.56, + "probability": 0.9832 + }, + { + "start": 7074.34, + "end": 7080.06, + "probability": 0.9912 + }, + { + "start": 7080.32, + "end": 7084.28, + "probability": 0.9361 + }, + { + "start": 7084.34, + "end": 7087.36, + "probability": 0.9938 + }, + { + "start": 7088.18, + "end": 7090.31, + "probability": 0.9956 + }, + { + "start": 7090.52, + "end": 7094.1, + "probability": 0.9991 + }, + { + "start": 7094.38, + "end": 7096.32, + "probability": 0.6498 + }, + { + "start": 7096.34, + "end": 7098.64, + "probability": 0.5703 + }, + { + "start": 7099.22, + "end": 7101.58, + "probability": 0.7461 + }, + { + "start": 7101.66, + "end": 7104.12, + "probability": 0.9768 + }, + { + "start": 7104.3, + "end": 7106.34, + "probability": 0.9929 + }, + { + "start": 7107.38, + "end": 7108.08, + "probability": 0.6979 + }, + { + "start": 7108.22, + "end": 7109.7, + "probability": 0.4628 + }, + { + "start": 7109.7, + "end": 7109.94, + "probability": 0.255 + }, + { + "start": 7110.02, + "end": 7110.4, + "probability": 0.8572 + }, + { + "start": 7111.98, + "end": 7114.86, + "probability": 0.844 + }, + { + "start": 7115.34, + "end": 7118.04, + "probability": 0.6228 + }, + { + "start": 7118.12, + "end": 7119.5, + "probability": 0.9653 + }, + { + "start": 7119.8, + "end": 7120.96, + "probability": 0.7037 + }, + { + "start": 7121.06, + "end": 7121.16, + "probability": 0.2914 + }, + { + "start": 7121.88, + "end": 7124.0, + "probability": 0.917 + }, + { + "start": 7127.8, + "end": 7128.68, + "probability": 0.0192 + }, + { + "start": 7128.68, + "end": 7128.68, + "probability": 0.0197 + }, + { + "start": 7128.68, + "end": 7128.68, + "probability": 0.0407 + }, + { + "start": 7128.68, + "end": 7128.68, + "probability": 0.0227 + }, + { + "start": 7128.68, + "end": 7130.76, + "probability": 0.7544 + }, + { + "start": 7131.66, + "end": 7132.84, + "probability": 0.8754 + }, + { + "start": 7132.94, + "end": 7133.64, + "probability": 0.8308 + }, + { + "start": 7133.98, + "end": 7135.84, + "probability": 0.9006 + }, + { + "start": 7138.34, + "end": 7142.44, + "probability": 0.7959 + }, + { + "start": 7142.6, + "end": 7145.68, + "probability": 0.9766 + }, + { + "start": 7145.76, + "end": 7146.04, + "probability": 0.5267 + }, + { + "start": 7146.12, + "end": 7147.96, + "probability": 0.8481 + }, + { + "start": 7148.36, + "end": 7149.4, + "probability": 0.8618 + }, + { + "start": 7150.52, + "end": 7151.94, + "probability": 0.8118 + }, + { + "start": 7153.46, + "end": 7157.12, + "probability": 0.835 + }, + { + "start": 7157.84, + "end": 7160.02, + "probability": 0.9561 + }, + { + "start": 7161.38, + "end": 7163.98, + "probability": 0.9833 + }, + { + "start": 7164.14, + "end": 7166.26, + "probability": 0.9438 + }, + { + "start": 7166.26, + "end": 7169.48, + "probability": 0.998 + }, + { + "start": 7170.32, + "end": 7174.82, + "probability": 0.9749 + }, + { + "start": 7175.06, + "end": 7177.6, + "probability": 0.9897 + }, + { + "start": 7178.4, + "end": 7180.44, + "probability": 0.7823 + }, + { + "start": 7180.84, + "end": 7181.86, + "probability": 0.6175 + }, + { + "start": 7181.92, + "end": 7184.54, + "probability": 0.9685 + }, + { + "start": 7185.06, + "end": 7189.24, + "probability": 0.9933 + }, + { + "start": 7189.36, + "end": 7191.2, + "probability": 0.7834 + }, + { + "start": 7191.7, + "end": 7193.78, + "probability": 0.9216 + }, + { + "start": 7194.06, + "end": 7195.42, + "probability": 0.8985 + }, + { + "start": 7195.9, + "end": 7198.92, + "probability": 0.866 + }, + { + "start": 7199.48, + "end": 7200.74, + "probability": 0.8501 + }, + { + "start": 7201.46, + "end": 7202.28, + "probability": 0.9309 + }, + { + "start": 7202.46, + "end": 7208.18, + "probability": 0.9729 + }, + { + "start": 7208.74, + "end": 7212.06, + "probability": 0.7841 + }, + { + "start": 7213.26, + "end": 7216.07, + "probability": 0.9839 + }, + { + "start": 7216.68, + "end": 7218.52, + "probability": 0.991 + }, + { + "start": 7219.0, + "end": 7221.36, + "probability": 0.9219 + }, + { + "start": 7221.86, + "end": 7224.48, + "probability": 0.9726 + }, + { + "start": 7224.72, + "end": 7227.23, + "probability": 0.9883 + }, + { + "start": 7227.88, + "end": 7230.68, + "probability": 0.9038 + }, + { + "start": 7230.96, + "end": 7231.96, + "probability": 0.959 + }, + { + "start": 7232.04, + "end": 7234.76, + "probability": 0.8835 + }, + { + "start": 7235.06, + "end": 7241.26, + "probability": 0.9731 + }, + { + "start": 7241.62, + "end": 7245.52, + "probability": 0.9945 + }, + { + "start": 7246.32, + "end": 7249.39, + "probability": 0.806 + }, + { + "start": 7249.44, + "end": 7251.84, + "probability": 0.7508 + }, + { + "start": 7252.36, + "end": 7254.68, + "probability": 0.9771 + }, + { + "start": 7254.84, + "end": 7255.33, + "probability": 0.9448 + }, + { + "start": 7255.6, + "end": 7258.42, + "probability": 0.9939 + }, + { + "start": 7258.86, + "end": 7260.78, + "probability": 0.9912 + }, + { + "start": 7261.04, + "end": 7262.06, + "probability": 0.6542 + }, + { + "start": 7262.06, + "end": 7263.9, + "probability": 0.7704 + }, + { + "start": 7264.36, + "end": 7266.32, + "probability": 0.6405 + }, + { + "start": 7266.44, + "end": 7267.86, + "probability": 0.5829 + }, + { + "start": 7267.86, + "end": 7268.38, + "probability": 0.8193 + }, + { + "start": 7268.92, + "end": 7271.59, + "probability": 0.3855 + }, + { + "start": 7271.92, + "end": 7273.02, + "probability": 0.6224 + }, + { + "start": 7273.04, + "end": 7273.06, + "probability": 0.3149 + }, + { + "start": 7273.06, + "end": 7273.06, + "probability": 0.1055 + }, + { + "start": 7273.06, + "end": 7274.1, + "probability": 0.6581 + }, + { + "start": 7275.9, + "end": 7276.84, + "probability": 0.8181 + }, + { + "start": 7277.54, + "end": 7279.24, + "probability": 0.8172 + }, + { + "start": 7279.94, + "end": 7281.4, + "probability": 0.9474 + }, + { + "start": 7281.54, + "end": 7283.56, + "probability": 0.7666 + }, + { + "start": 7283.92, + "end": 7286.38, + "probability": 0.9929 + }, + { + "start": 7287.18, + "end": 7288.3, + "probability": 0.8959 + }, + { + "start": 7289.26, + "end": 7291.92, + "probability": 0.9978 + }, + { + "start": 7291.92, + "end": 7293.99, + "probability": 0.911 + }, + { + "start": 7294.68, + "end": 7300.48, + "probability": 0.9248 + }, + { + "start": 7300.76, + "end": 7302.3, + "probability": 0.9529 + }, + { + "start": 7302.68, + "end": 7303.31, + "probability": 0.847 + }, + { + "start": 7303.86, + "end": 7306.58, + "probability": 0.9592 + }, + { + "start": 7307.38, + "end": 7308.1, + "probability": 0.8624 + }, + { + "start": 7308.88, + "end": 7309.52, + "probability": 0.8664 + }, + { + "start": 7310.08, + "end": 7310.36, + "probability": 0.7676 + }, + { + "start": 7310.66, + "end": 7312.92, + "probability": 0.9469 + }, + { + "start": 7313.16, + "end": 7316.32, + "probability": 0.9058 + }, + { + "start": 7324.7, + "end": 7326.04, + "probability": 0.5075 + }, + { + "start": 7328.38, + "end": 7328.64, + "probability": 0.7347 + }, + { + "start": 7329.68, + "end": 7333.62, + "probability": 0.9512 + }, + { + "start": 7333.62, + "end": 7339.26, + "probability": 0.998 + }, + { + "start": 7339.82, + "end": 7344.61, + "probability": 0.9518 + }, + { + "start": 7345.66, + "end": 7347.8, + "probability": 0.4736 + }, + { + "start": 7348.34, + "end": 7348.54, + "probability": 0.9177 + }, + { + "start": 7349.7, + "end": 7351.94, + "probability": 0.8939 + }, + { + "start": 7352.2, + "end": 7353.66, + "probability": 0.9213 + }, + { + "start": 7354.04, + "end": 7357.68, + "probability": 0.9921 + }, + { + "start": 7357.8, + "end": 7357.9, + "probability": 0.9016 + }, + { + "start": 7358.76, + "end": 7360.4, + "probability": 0.3935 + }, + { + "start": 7360.94, + "end": 7361.26, + "probability": 0.8346 + }, + { + "start": 7363.98, + "end": 7367.06, + "probability": 0.9622 + }, + { + "start": 7367.42, + "end": 7369.26, + "probability": 0.9595 + }, + { + "start": 7370.32, + "end": 7370.78, + "probability": 0.5572 + }, + { + "start": 7371.36, + "end": 7371.5, + "probability": 0.7712 + }, + { + "start": 7372.84, + "end": 7374.42, + "probability": 0.9654 + }, + { + "start": 7375.58, + "end": 7379.84, + "probability": 0.9844 + }, + { + "start": 7380.44, + "end": 7383.48, + "probability": 0.9959 + }, + { + "start": 7384.0, + "end": 7386.5, + "probability": 0.9958 + }, + { + "start": 7387.48, + "end": 7388.32, + "probability": 0.7904 + }, + { + "start": 7389.16, + "end": 7390.98, + "probability": 0.9646 + }, + { + "start": 7391.68, + "end": 7392.32, + "probability": 0.9893 + }, + { + "start": 7393.82, + "end": 7397.66, + "probability": 0.998 + }, + { + "start": 7397.86, + "end": 7400.96, + "probability": 0.979 + }, + { + "start": 7401.64, + "end": 7404.92, + "probability": 0.9101 + }, + { + "start": 7406.1, + "end": 7407.78, + "probability": 0.9695 + }, + { + "start": 7408.5, + "end": 7412.04, + "probability": 0.8012 + }, + { + "start": 7413.2, + "end": 7416.14, + "probability": 0.9963 + }, + { + "start": 7416.14, + "end": 7419.72, + "probability": 0.9891 + }, + { + "start": 7420.38, + "end": 7421.82, + "probability": 0.7672 + }, + { + "start": 7422.18, + "end": 7424.76, + "probability": 0.7404 + }, + { + "start": 7425.9, + "end": 7427.24, + "probability": 0.9944 + }, + { + "start": 7429.16, + "end": 7429.44, + "probability": 0.9242 + }, + { + "start": 7430.26, + "end": 7432.6, + "probability": 0.9366 + }, + { + "start": 7433.66, + "end": 7436.75, + "probability": 0.9979 + }, + { + "start": 7437.84, + "end": 7441.02, + "probability": 0.9648 + }, + { + "start": 7441.56, + "end": 7442.05, + "probability": 0.7959 + }, + { + "start": 7443.12, + "end": 7448.06, + "probability": 0.9523 + }, + { + "start": 7449.34, + "end": 7450.72, + "probability": 0.8645 + }, + { + "start": 7451.66, + "end": 7452.42, + "probability": 0.7214 + }, + { + "start": 7453.42, + "end": 7455.76, + "probability": 0.962 + }, + { + "start": 7456.0, + "end": 7458.58, + "probability": 0.9919 + }, + { + "start": 7459.38, + "end": 7461.5, + "probability": 0.9988 + }, + { + "start": 7462.66, + "end": 7465.38, + "probability": 0.9192 + }, + { + "start": 7465.98, + "end": 7472.06, + "probability": 0.9946 + }, + { + "start": 7472.82, + "end": 7475.2, + "probability": 0.9706 + }, + { + "start": 7476.52, + "end": 7477.72, + "probability": 0.9995 + }, + { + "start": 7478.3, + "end": 7481.36, + "probability": 0.9997 + }, + { + "start": 7482.64, + "end": 7483.46, + "probability": 0.8506 + }, + { + "start": 7484.28, + "end": 7488.1, + "probability": 0.9951 + }, + { + "start": 7488.46, + "end": 7489.88, + "probability": 0.8521 + }, + { + "start": 7490.5, + "end": 7494.22, + "probability": 0.9923 + }, + { + "start": 7494.58, + "end": 7495.46, + "probability": 0.6414 + }, + { + "start": 7495.98, + "end": 7496.7, + "probability": 0.46 + }, + { + "start": 7497.02, + "end": 7499.24, + "probability": 0.9805 + }, + { + "start": 7499.8, + "end": 7502.6, + "probability": 0.8769 + }, + { + "start": 7502.96, + "end": 7506.7, + "probability": 0.998 + }, + { + "start": 7507.86, + "end": 7511.06, + "probability": 0.9973 + }, + { + "start": 7511.6, + "end": 7514.74, + "probability": 0.9937 + }, + { + "start": 7515.54, + "end": 7515.72, + "probability": 0.709 + }, + { + "start": 7517.12, + "end": 7518.3, + "probability": 0.8511 + }, + { + "start": 7520.72, + "end": 7525.66, + "probability": 0.995 + }, + { + "start": 7526.98, + "end": 7531.14, + "probability": 0.9956 + }, + { + "start": 7531.94, + "end": 7535.28, + "probability": 0.9974 + }, + { + "start": 7536.1, + "end": 7539.26, + "probability": 0.9922 + }, + { + "start": 7540.94, + "end": 7541.14, + "probability": 0.9109 + }, + { + "start": 7542.44, + "end": 7542.78, + "probability": 0.7078 + }, + { + "start": 7543.46, + "end": 7547.3, + "probability": 0.9937 + }, + { + "start": 7547.82, + "end": 7553.82, + "probability": 0.9955 + }, + { + "start": 7554.28, + "end": 7557.92, + "probability": 0.9807 + }, + { + "start": 7559.58, + "end": 7562.16, + "probability": 0.9625 + }, + { + "start": 7562.68, + "end": 7567.18, + "probability": 0.999 + }, + { + "start": 7568.02, + "end": 7568.86, + "probability": 0.8095 + }, + { + "start": 7569.28, + "end": 7573.5, + "probability": 0.9636 + }, + { + "start": 7574.88, + "end": 7578.63, + "probability": 0.9036 + }, + { + "start": 7579.46, + "end": 7580.86, + "probability": 0.9046 + }, + { + "start": 7580.96, + "end": 7582.5, + "probability": 0.8507 + }, + { + "start": 7583.44, + "end": 7585.42, + "probability": 0.9316 + }, + { + "start": 7592.64, + "end": 7596.28, + "probability": 0.9482 + }, + { + "start": 7596.82, + "end": 7597.74, + "probability": 0.0867 + }, + { + "start": 7597.82, + "end": 7598.34, + "probability": 0.0736 + }, + { + "start": 7598.34, + "end": 7599.8, + "probability": 0.0462 + }, + { + "start": 7600.12, + "end": 7600.12, + "probability": 0.0981 + }, + { + "start": 7600.18, + "end": 7600.94, + "probability": 0.1179 + }, + { + "start": 7601.04, + "end": 7601.72, + "probability": 0.0303 + }, + { + "start": 7602.3, + "end": 7602.52, + "probability": 0.1191 + }, + { + "start": 7603.32, + "end": 7603.86, + "probability": 0.356 + }, + { + "start": 7605.09, + "end": 7605.44, + "probability": 0.5113 + }, + { + "start": 7605.46, + "end": 7605.58, + "probability": 0.6566 + }, + { + "start": 7606.58, + "end": 7607.42, + "probability": 0.5648 + }, + { + "start": 7608.28, + "end": 7610.74, + "probability": 0.0366 + }, + { + "start": 7611.96, + "end": 7613.84, + "probability": 0.0884 + }, + { + "start": 7616.37, + "end": 7618.41, + "probability": 0.0435 + }, + { + "start": 7621.36, + "end": 7621.58, + "probability": 0.2765 + }, + { + "start": 7641.14, + "end": 7642.74, + "probability": 0.1576 + }, + { + "start": 7642.74, + "end": 7645.52, + "probability": 0.729 + }, + { + "start": 7646.02, + "end": 7647.52, + "probability": 0.7035 + }, + { + "start": 7648.9, + "end": 7649.7, + "probability": 0.7459 + }, + { + "start": 7650.38, + "end": 7651.0, + "probability": 0.5371 + }, + { + "start": 7652.2, + "end": 7653.68, + "probability": 0.9291 + }, + { + "start": 7654.44, + "end": 7658.0, + "probability": 0.7004 + }, + { + "start": 7660.02, + "end": 7660.9, + "probability": 0.8796 + }, + { + "start": 7662.36, + "end": 7663.7, + "probability": 0.9752 + }, + { + "start": 7676.13, + "end": 7678.78, + "probability": 0.7788 + }, + { + "start": 7679.44, + "end": 7681.78, + "probability": 0.9939 + }, + { + "start": 7682.02, + "end": 7684.74, + "probability": 0.8773 + }, + { + "start": 7685.36, + "end": 7689.82, + "probability": 0.8555 + }, + { + "start": 7690.26, + "end": 7695.16, + "probability": 0.9985 + }, + { + "start": 7695.76, + "end": 7698.68, + "probability": 0.9995 + }, + { + "start": 7699.16, + "end": 7701.17, + "probability": 0.8665 + }, + { + "start": 7701.62, + "end": 7703.9, + "probability": 0.7018 + }, + { + "start": 7704.54, + "end": 7705.9, + "probability": 0.9948 + }, + { + "start": 7706.76, + "end": 7707.26, + "probability": 0.8378 + }, + { + "start": 7707.5, + "end": 7708.14, + "probability": 0.4275 + }, + { + "start": 7708.14, + "end": 7708.68, + "probability": 0.4807 + }, + { + "start": 7708.72, + "end": 7709.64, + "probability": 0.8726 + }, + { + "start": 7709.72, + "end": 7711.42, + "probability": 0.9945 + }, + { + "start": 7711.92, + "end": 7717.18, + "probability": 0.9659 + }, + { + "start": 7717.64, + "end": 7719.26, + "probability": 0.9827 + }, + { + "start": 7719.64, + "end": 7722.66, + "probability": 0.9944 + }, + { + "start": 7723.08, + "end": 7723.78, + "probability": 0.7607 + }, + { + "start": 7723.86, + "end": 7727.56, + "probability": 0.8937 + }, + { + "start": 7727.62, + "end": 7727.78, + "probability": 0.8005 + }, + { + "start": 7727.78, + "end": 7730.27, + "probability": 0.9802 + }, + { + "start": 7730.38, + "end": 7731.78, + "probability": 0.8313 + }, + { + "start": 7737.4, + "end": 7738.82, + "probability": 0.9666 + }, + { + "start": 7739.4, + "end": 7740.38, + "probability": 0.9548 + }, + { + "start": 7740.54, + "end": 7744.6, + "probability": 0.9032 + }, + { + "start": 7745.02, + "end": 7748.36, + "probability": 0.9969 + }, + { + "start": 7749.58, + "end": 7750.32, + "probability": 0.9204 + }, + { + "start": 7750.46, + "end": 7753.12, + "probability": 0.9511 + }, + { + "start": 7753.18, + "end": 7755.06, + "probability": 0.9681 + }, + { + "start": 7755.44, + "end": 7755.8, + "probability": 0.8848 + }, + { + "start": 7756.18, + "end": 7757.46, + "probability": 0.7227 + }, + { + "start": 7758.08, + "end": 7759.56, + "probability": 0.9209 + }, + { + "start": 7760.12, + "end": 7761.08, + "probability": 0.7695 + }, + { + "start": 7761.2, + "end": 7761.8, + "probability": 0.5743 + }, + { + "start": 7761.84, + "end": 7764.04, + "probability": 0.7929 + }, + { + "start": 7764.62, + "end": 7767.22, + "probability": 0.9699 + }, + { + "start": 7767.58, + "end": 7768.98, + "probability": 0.4532 + }, + { + "start": 7769.68, + "end": 7771.06, + "probability": 0.7794 + }, + { + "start": 7771.38, + "end": 7776.78, + "probability": 0.9803 + }, + { + "start": 7776.78, + "end": 7780.84, + "probability": 0.9407 + }, + { + "start": 7781.04, + "end": 7783.46, + "probability": 0.9648 + }, + { + "start": 7786.12, + "end": 7786.78, + "probability": 0.7534 + }, + { + "start": 7786.94, + "end": 7791.36, + "probability": 0.9961 + }, + { + "start": 7791.36, + "end": 7797.68, + "probability": 0.9988 + }, + { + "start": 7800.71, + "end": 7804.5, + "probability": 0.9429 + }, + { + "start": 7805.38, + "end": 7809.84, + "probability": 0.0373 + }, + { + "start": 7809.98, + "end": 7810.71, + "probability": 0.3879 + }, + { + "start": 7814.74, + "end": 7816.22, + "probability": 0.7212 + }, + { + "start": 7817.34, + "end": 7820.1, + "probability": 0.9458 + }, + { + "start": 7821.0, + "end": 7822.38, + "probability": 0.9889 + }, + { + "start": 7822.42, + "end": 7824.04, + "probability": 0.7839 + }, + { + "start": 7824.78, + "end": 7825.68, + "probability": 0.705 + }, + { + "start": 7825.68, + "end": 7826.54, + "probability": 0.9746 + }, + { + "start": 7826.98, + "end": 7828.08, + "probability": 0.9742 + }, + { + "start": 7828.64, + "end": 7829.52, + "probability": 0.7948 + }, + { + "start": 7830.04, + "end": 7831.36, + "probability": 0.9503 + }, + { + "start": 7831.38, + "end": 7832.1, + "probability": 0.7994 + }, + { + "start": 7832.5, + "end": 7833.43, + "probability": 0.915 + }, + { + "start": 7833.54, + "end": 7834.6, + "probability": 0.9437 + }, + { + "start": 7834.76, + "end": 7835.7, + "probability": 0.8818 + }, + { + "start": 7836.18, + "end": 7837.04, + "probability": 0.9524 + }, + { + "start": 7837.58, + "end": 7838.56, + "probability": 0.6075 + }, + { + "start": 7838.56, + "end": 7841.22, + "probability": 0.7708 + }, + { + "start": 7841.44, + "end": 7845.82, + "probability": 0.7822 + }, + { + "start": 7845.88, + "end": 7845.88, + "probability": 0.2684 + }, + { + "start": 7845.9, + "end": 7847.12, + "probability": 0.6354 + }, + { + "start": 7847.44, + "end": 7848.0, + "probability": 0.973 + }, + { + "start": 7848.14, + "end": 7850.28, + "probability": 0.8998 + }, + { + "start": 7851.16, + "end": 7851.88, + "probability": 0.7191 + }, + { + "start": 7851.94, + "end": 7853.62, + "probability": 0.8402 + }, + { + "start": 7853.98, + "end": 7856.56, + "probability": 0.98 + }, + { + "start": 7856.72, + "end": 7858.12, + "probability": 0.877 + }, + { + "start": 7858.24, + "end": 7859.54, + "probability": 0.1334 + }, + { + "start": 7859.78, + "end": 7860.42, + "probability": 0.6131 + }, + { + "start": 7860.58, + "end": 7860.58, + "probability": 0.1911 + }, + { + "start": 7860.58, + "end": 7862.1, + "probability": 0.8286 + }, + { + "start": 7862.24, + "end": 7863.22, + "probability": 0.6761 + }, + { + "start": 7863.26, + "end": 7864.14, + "probability": 0.517 + }, + { + "start": 7864.52, + "end": 7864.52, + "probability": 0.1246 + }, + { + "start": 7864.52, + "end": 7864.52, + "probability": 0.0347 + }, + { + "start": 7864.52, + "end": 7867.58, + "probability": 0.7803 + }, + { + "start": 7869.04, + "end": 7871.26, + "probability": 0.4483 + }, + { + "start": 7871.46, + "end": 7872.7, + "probability": 0.775 + }, + { + "start": 7873.2, + "end": 7873.8, + "probability": 0.7019 + }, + { + "start": 7873.88, + "end": 7877.62, + "probability": 0.9677 + }, + { + "start": 7878.38, + "end": 7879.88, + "probability": 0.5981 + }, + { + "start": 7880.34, + "end": 7881.54, + "probability": 0.9561 + }, + { + "start": 7883.52, + "end": 7885.92, + "probability": 0.3952 + }, + { + "start": 7886.38, + "end": 7887.66, + "probability": 0.56 + }, + { + "start": 7888.14, + "end": 7890.76, + "probability": 0.835 + }, + { + "start": 7891.9, + "end": 7893.5, + "probability": 0.8794 + }, + { + "start": 7893.64, + "end": 7894.52, + "probability": 0.8813 + }, + { + "start": 7895.3, + "end": 7896.68, + "probability": 0.9885 + }, + { + "start": 7897.06, + "end": 7897.98, + "probability": 0.9915 + }, + { + "start": 7898.46, + "end": 7899.0, + "probability": 0.9731 + }, + { + "start": 7899.72, + "end": 7899.92, + "probability": 0.13 + }, + { + "start": 7899.98, + "end": 7903.22, + "probability": 0.8761 + }, + { + "start": 7903.68, + "end": 7903.92, + "probability": 0.6541 + }, + { + "start": 7904.02, + "end": 7904.58, + "probability": 0.8428 + }, + { + "start": 7904.66, + "end": 7905.88, + "probability": 0.9587 + }, + { + "start": 7908.34, + "end": 7909.06, + "probability": 0.7816 + }, + { + "start": 7909.24, + "end": 7909.24, + "probability": 0.2148 + }, + { + "start": 7909.24, + "end": 7914.32, + "probability": 0.9245 + }, + { + "start": 7914.74, + "end": 7919.84, + "probability": 0.9418 + }, + { + "start": 7920.64, + "end": 7923.28, + "probability": 0.145 + }, + { + "start": 7923.28, + "end": 7923.48, + "probability": 0.2248 + }, + { + "start": 7923.7, + "end": 7925.54, + "probability": 0.5235 + }, + { + "start": 7926.56, + "end": 7929.02, + "probability": 0.7063 + }, + { + "start": 7929.28, + "end": 7931.74, + "probability": 0.9198 + }, + { + "start": 7932.28, + "end": 7935.2, + "probability": 0.8455 + }, + { + "start": 7935.28, + "end": 7936.22, + "probability": 0.9029 + }, + { + "start": 7936.32, + "end": 7936.56, + "probability": 0.4557 + }, + { + "start": 7936.6, + "end": 7937.36, + "probability": 0.8221 + }, + { + "start": 7937.48, + "end": 7939.32, + "probability": 0.9893 + }, + { + "start": 7939.9, + "end": 7941.86, + "probability": 0.7669 + }, + { + "start": 7942.84, + "end": 7944.1, + "probability": 0.8458 + }, + { + "start": 7944.42, + "end": 7946.36, + "probability": 0.573 + }, + { + "start": 7947.16, + "end": 7948.53, + "probability": 0.9854 + }, + { + "start": 7949.38, + "end": 7950.22, + "probability": 0.8873 + }, + { + "start": 7950.36, + "end": 7950.7, + "probability": 0.6845 + }, + { + "start": 7951.52, + "end": 7952.8, + "probability": 0.9692 + }, + { + "start": 7953.54, + "end": 7954.7, + "probability": 0.9858 + }, + { + "start": 7955.36, + "end": 7958.5, + "probability": 0.9763 + }, + { + "start": 7958.74, + "end": 7959.96, + "probability": 0.9968 + }, + { + "start": 7960.68, + "end": 7960.9, + "probability": 0.073 + }, + { + "start": 7960.96, + "end": 7964.82, + "probability": 0.9816 + }, + { + "start": 7965.4, + "end": 7966.8, + "probability": 0.9261 + }, + { + "start": 7967.16, + "end": 7967.78, + "probability": 0.4863 + }, + { + "start": 7967.78, + "end": 7968.22, + "probability": 0.8745 + }, + { + "start": 7968.34, + "end": 7969.24, + "probability": 0.9201 + }, + { + "start": 7969.28, + "end": 7970.08, + "probability": 0.9646 + }, + { + "start": 7970.24, + "end": 7972.76, + "probability": 0.7581 + }, + { + "start": 7972.94, + "end": 7973.28, + "probability": 0.5354 + }, + { + "start": 7973.3, + "end": 7973.54, + "probability": 0.3609 + }, + { + "start": 7973.54, + "end": 7975.26, + "probability": 0.7233 + }, + { + "start": 7975.36, + "end": 7976.31, + "probability": 0.9939 + }, + { + "start": 7976.98, + "end": 7979.34, + "probability": 0.9364 + }, + { + "start": 7979.7, + "end": 7982.14, + "probability": 0.9265 + }, + { + "start": 7982.74, + "end": 7984.84, + "probability": 0.678 + }, + { + "start": 7985.34, + "end": 7985.34, + "probability": 0.0748 + }, + { + "start": 7985.34, + "end": 7987.06, + "probability": 0.5791 + }, + { + "start": 7987.2, + "end": 7989.7, + "probability": 0.8675 + }, + { + "start": 7990.26, + "end": 7991.18, + "probability": 0.2886 + }, + { + "start": 7991.18, + "end": 7991.38, + "probability": 0.3265 + }, + { + "start": 7992.2, + "end": 7993.42, + "probability": 0.7466 + }, + { + "start": 7993.52, + "end": 7994.2, + "probability": 0.9579 + }, + { + "start": 7994.2, + "end": 7994.66, + "probability": 0.1965 + }, + { + "start": 7995.1, + "end": 7995.34, + "probability": 0.8532 + }, + { + "start": 7995.98, + "end": 7996.44, + "probability": 0.801 + }, + { + "start": 7996.56, + "end": 7997.42, + "probability": 0.9878 + }, + { + "start": 7997.56, + "end": 7998.54, + "probability": 0.6429 + }, + { + "start": 7999.18, + "end": 8002.06, + "probability": 0.7481 + }, + { + "start": 8002.58, + "end": 8003.36, + "probability": 0.587 + }, + { + "start": 8003.48, + "end": 8004.26, + "probability": 0.9667 + }, + { + "start": 8005.0, + "end": 8006.92, + "probability": 0.9956 + }, + { + "start": 8008.12, + "end": 8010.14, + "probability": 0.9812 + }, + { + "start": 8010.76, + "end": 8011.52, + "probability": 0.9725 + }, + { + "start": 8011.96, + "end": 8014.34, + "probability": 0.9761 + }, + { + "start": 8014.7, + "end": 8015.98, + "probability": 0.9027 + }, + { + "start": 8016.68, + "end": 8017.46, + "probability": 0.5112 + }, + { + "start": 8018.56, + "end": 8019.42, + "probability": 0.8262 + }, + { + "start": 8019.48, + "end": 8020.64, + "probability": 0.6664 + }, + { + "start": 8020.72, + "end": 8023.02, + "probability": 0.9843 + }, + { + "start": 8023.5, + "end": 8024.64, + "probability": 0.9828 + }, + { + "start": 8024.98, + "end": 8028.66, + "probability": 0.9357 + }, + { + "start": 8029.14, + "end": 8031.18, + "probability": 0.4443 + }, + { + "start": 8031.18, + "end": 8034.08, + "probability": 0.8454 + }, + { + "start": 8034.08, + "end": 8037.42, + "probability": 0.9891 + }, + { + "start": 8038.28, + "end": 8040.76, + "probability": 0.9689 + }, + { + "start": 8041.24, + "end": 8042.4, + "probability": 0.9663 + }, + { + "start": 8043.04, + "end": 8045.94, + "probability": 0.9879 + }, + { + "start": 8046.82, + "end": 8047.71, + "probability": 0.991 + }, + { + "start": 8047.96, + "end": 8050.3, + "probability": 0.6841 + }, + { + "start": 8050.52, + "end": 8052.02, + "probability": 0.9871 + }, + { + "start": 8052.7, + "end": 8054.22, + "probability": 0.7843 + }, + { + "start": 8054.44, + "end": 8056.44, + "probability": 0.9609 + }, + { + "start": 8056.6, + "end": 8056.84, + "probability": 0.479 + }, + { + "start": 8057.72, + "end": 8058.64, + "probability": 0.2725 + }, + { + "start": 8059.53, + "end": 8063.2, + "probability": 0.9894 + }, + { + "start": 8063.44, + "end": 8066.14, + "probability": 0.7652 + }, + { + "start": 8066.26, + "end": 8068.16, + "probability": 0.7151 + }, + { + "start": 8069.66, + "end": 8072.75, + "probability": 0.9073 + }, + { + "start": 8074.68, + "end": 8076.18, + "probability": 0.7945 + }, + { + "start": 8077.08, + "end": 8078.08, + "probability": 0.549 + }, + { + "start": 8078.1, + "end": 8078.82, + "probability": 0.493 + }, + { + "start": 8079.1, + "end": 8079.32, + "probability": 0.1391 + }, + { + "start": 8079.32, + "end": 8079.32, + "probability": 0.2099 + }, + { + "start": 8079.32, + "end": 8082.26, + "probability": 0.6968 + }, + { + "start": 8082.3, + "end": 8083.36, + "probability": 0.7734 + }, + { + "start": 8083.52, + "end": 8085.38, + "probability": 0.9611 + }, + { + "start": 8085.92, + "end": 8086.14, + "probability": 0.426 + }, + { + "start": 8086.44, + "end": 8086.44, + "probability": 0.4052 + }, + { + "start": 8086.52, + "end": 8087.34, + "probability": 0.2234 + }, + { + "start": 8088.78, + "end": 8090.42, + "probability": 0.7533 + }, + { + "start": 8090.46, + "end": 8092.02, + "probability": 0.6699 + }, + { + "start": 8092.18, + "end": 8093.41, + "probability": 0.9951 + }, + { + "start": 8093.6, + "end": 8098.02, + "probability": 0.9624 + }, + { + "start": 8098.46, + "end": 8101.18, + "probability": 0.8835 + }, + { + "start": 8101.66, + "end": 8102.34, + "probability": 0.7916 + }, + { + "start": 8102.8, + "end": 8102.92, + "probability": 0.4976 + }, + { + "start": 8102.96, + "end": 8104.18, + "probability": 0.9408 + }, + { + "start": 8104.64, + "end": 8105.86, + "probability": 0.9102 + }, + { + "start": 8106.04, + "end": 8107.18, + "probability": 0.978 + }, + { + "start": 8107.96, + "end": 8109.24, + "probability": 0.979 + }, + { + "start": 8110.18, + "end": 8110.52, + "probability": 0.6311 + }, + { + "start": 8110.56, + "end": 8110.8, + "probability": 0.9263 + }, + { + "start": 8110.9, + "end": 8111.92, + "probability": 0.8989 + }, + { + "start": 8112.36, + "end": 8112.76, + "probability": 0.5986 + }, + { + "start": 8112.76, + "end": 8113.66, + "probability": 0.981 + }, + { + "start": 8113.74, + "end": 8114.72, + "probability": 0.8734 + }, + { + "start": 8114.86, + "end": 8115.68, + "probability": 0.3564 + }, + { + "start": 8115.96, + "end": 8116.94, + "probability": 0.7159 + }, + { + "start": 8117.24, + "end": 8118.02, + "probability": 0.0722 + }, + { + "start": 8118.02, + "end": 8122.4, + "probability": 0.8391 + }, + { + "start": 8122.68, + "end": 8123.16, + "probability": 0.7219 + }, + { + "start": 8125.18, + "end": 8129.0, + "probability": 0.9413 + }, + { + "start": 8130.3, + "end": 8130.44, + "probability": 0.6628 + }, + { + "start": 8130.58, + "end": 8134.7, + "probability": 0.9849 + }, + { + "start": 8134.98, + "end": 8135.34, + "probability": 0.974 + }, + { + "start": 8136.5, + "end": 8137.16, + "probability": 0.512 + }, + { + "start": 8137.22, + "end": 8138.04, + "probability": 0.8826 + }, + { + "start": 8138.12, + "end": 8139.8, + "probability": 0.9391 + }, + { + "start": 8140.4, + "end": 8141.04, + "probability": 0.91 + }, + { + "start": 8141.34, + "end": 8143.06, + "probability": 0.9775 + }, + { + "start": 8143.18, + "end": 8145.82, + "probability": 0.9049 + }, + { + "start": 8146.2, + "end": 8148.24, + "probability": 0.8927 + }, + { + "start": 8149.28, + "end": 8149.96, + "probability": 0.7908 + }, + { + "start": 8150.56, + "end": 8151.36, + "probability": 0.7861 + }, + { + "start": 8151.56, + "end": 8152.87, + "probability": 0.9335 + }, + { + "start": 8153.46, + "end": 8156.32, + "probability": 0.9193 + }, + { + "start": 8156.96, + "end": 8160.28, + "probability": 0.9521 + }, + { + "start": 8161.8, + "end": 8162.59, + "probability": 0.4986 + }, + { + "start": 8163.32, + "end": 8165.24, + "probability": 0.8087 + }, + { + "start": 8165.64, + "end": 8166.28, + "probability": 0.471 + }, + { + "start": 8167.98, + "end": 8168.82, + "probability": 0.8865 + }, + { + "start": 8169.34, + "end": 8170.84, + "probability": 0.9429 + }, + { + "start": 8171.38, + "end": 8171.88, + "probability": 0.4182 + }, + { + "start": 8172.98, + "end": 8173.14, + "probability": 0.1967 + }, + { + "start": 8173.14, + "end": 8173.42, + "probability": 0.7091 + }, + { + "start": 8174.5, + "end": 8174.72, + "probability": 0.7422 + }, + { + "start": 8174.72, + "end": 8175.14, + "probability": 0.4412 + }, + { + "start": 8175.28, + "end": 8175.44, + "probability": 0.4719 + }, + { + "start": 8175.66, + "end": 8176.46, + "probability": 0.7808 + }, + { + "start": 8176.56, + "end": 8177.02, + "probability": 0.6572 + }, + { + "start": 8177.72, + "end": 8178.86, + "probability": 0.3445 + }, + { + "start": 8178.96, + "end": 8181.08, + "probability": 0.839 + }, + { + "start": 8181.58, + "end": 8182.14, + "probability": 0.7134 + }, + { + "start": 8182.36, + "end": 8182.46, + "probability": 0.6505 + }, + { + "start": 8183.06, + "end": 8185.44, + "probability": 0.9067 + }, + { + "start": 8186.0, + "end": 8186.76, + "probability": 0.8292 + }, + { + "start": 8187.56, + "end": 8191.12, + "probability": 0.9456 + }, + { + "start": 8191.28, + "end": 8191.44, + "probability": 0.9744 + }, + { + "start": 8191.98, + "end": 8193.58, + "probability": 0.6469 + }, + { + "start": 8194.17, + "end": 8194.66, + "probability": 0.0224 + }, + { + "start": 8194.72, + "end": 8196.82, + "probability": 0.312 + }, + { + "start": 8196.88, + "end": 8197.44, + "probability": 0.6471 + }, + { + "start": 8197.56, + "end": 8198.0, + "probability": 0.2517 + }, + { + "start": 8199.2, + "end": 8200.52, + "probability": 0.9806 + }, + { + "start": 8201.01, + "end": 8203.12, + "probability": 0.5259 + }, + { + "start": 8203.64, + "end": 8205.22, + "probability": 0.9189 + }, + { + "start": 8205.34, + "end": 8205.76, + "probability": 0.6749 + }, + { + "start": 8205.98, + "end": 8208.46, + "probability": 0.4399 + }, + { + "start": 8208.8, + "end": 8208.92, + "probability": 0.6036 + }, + { + "start": 8208.92, + "end": 8208.92, + "probability": 0.5042 + }, + { + "start": 8208.96, + "end": 8209.62, + "probability": 0.6595 + }, + { + "start": 8209.82, + "end": 8210.54, + "probability": 0.939 + }, + { + "start": 8211.2, + "end": 8213.1, + "probability": 0.9889 + }, + { + "start": 8213.26, + "end": 8215.48, + "probability": 0.9196 + }, + { + "start": 8215.8, + "end": 8216.06, + "probability": 0.2974 + }, + { + "start": 8216.9, + "end": 8218.74, + "probability": 0.0921 + }, + { + "start": 8218.74, + "end": 8220.5, + "probability": 0.4602 + }, + { + "start": 8221.32, + "end": 8222.28, + "probability": 0.8048 + }, + { + "start": 8222.28, + "end": 8223.88, + "probability": 0.656 + }, + { + "start": 8224.32, + "end": 8226.6, + "probability": 0.9714 + }, + { + "start": 8226.76, + "end": 8228.26, + "probability": 0.9995 + }, + { + "start": 8228.96, + "end": 8231.34, + "probability": 0.9724 + }, + { + "start": 8231.44, + "end": 8232.42, + "probability": 0.6829 + }, + { + "start": 8232.5, + "end": 8233.58, + "probability": 0.8409 + }, + { + "start": 8234.5, + "end": 8236.98, + "probability": 0.8009 + }, + { + "start": 8239.43, + "end": 8246.48, + "probability": 0.9797 + }, + { + "start": 8247.26, + "end": 8248.92, + "probability": 0.5219 + }, + { + "start": 8249.1, + "end": 8252.08, + "probability": 0.8786 + }, + { + "start": 8252.52, + "end": 8256.82, + "probability": 0.9189 + }, + { + "start": 8257.06, + "end": 8257.9, + "probability": 0.8656 + }, + { + "start": 8258.7, + "end": 8260.92, + "probability": 0.9971 + }, + { + "start": 8261.5, + "end": 8263.94, + "probability": 0.9834 + }, + { + "start": 8264.52, + "end": 8272.82, + "probability": 0.7128 + }, + { + "start": 8273.96, + "end": 8275.44, + "probability": 0.7552 + }, + { + "start": 8277.86, + "end": 8280.62, + "probability": 0.9243 + }, + { + "start": 8281.16, + "end": 8282.22, + "probability": 0.8668 + }, + { + "start": 8283.14, + "end": 8286.72, + "probability": 0.9851 + }, + { + "start": 8286.72, + "end": 8291.48, + "probability": 0.9662 + }, + { + "start": 8291.58, + "end": 8294.08, + "probability": 0.9603 + }, + { + "start": 8295.0, + "end": 8296.02, + "probability": 0.5969 + }, + { + "start": 8296.18, + "end": 8296.9, + "probability": 0.5348 + }, + { + "start": 8297.22, + "end": 8297.88, + "probability": 0.7448 + }, + { + "start": 8298.22, + "end": 8298.92, + "probability": 0.7773 + }, + { + "start": 8299.82, + "end": 8300.56, + "probability": 0.9891 + }, + { + "start": 8308.68, + "end": 8308.92, + "probability": 0.4067 + }, + { + "start": 8309.72, + "end": 8310.2, + "probability": 0.3306 + }, + { + "start": 8310.32, + "end": 8310.52, + "probability": 0.5518 + }, + { + "start": 8310.52, + "end": 8310.52, + "probability": 0.6884 + }, + { + "start": 8310.52, + "end": 8310.58, + "probability": 0.0282 + }, + { + "start": 8310.58, + "end": 8310.88, + "probability": 0.2451 + }, + { + "start": 8326.22, + "end": 8326.8, + "probability": 0.476 + }, + { + "start": 8326.92, + "end": 8331.36, + "probability": 0.9828 + }, + { + "start": 8332.18, + "end": 8335.16, + "probability": 0.959 + }, + { + "start": 8336.04, + "end": 8340.44, + "probability": 0.9556 + }, + { + "start": 8340.62, + "end": 8344.0, + "probability": 0.6974 + }, + { + "start": 8344.0, + "end": 8347.38, + "probability": 0.8954 + }, + { + "start": 8347.38, + "end": 8352.14, + "probability": 0.9884 + }, + { + "start": 8352.58, + "end": 8353.52, + "probability": 0.4807 + }, + { + "start": 8353.54, + "end": 8354.26, + "probability": 0.5197 + }, + { + "start": 8354.32, + "end": 8354.94, + "probability": 0.8152 + }, + { + "start": 8355.36, + "end": 8356.0, + "probability": 0.6588 + }, + { + "start": 8356.0, + "end": 8356.54, + "probability": 0.5038 + }, + { + "start": 8367.22, + "end": 8367.68, + "probability": 0.3746 + }, + { + "start": 8369.06, + "end": 8369.34, + "probability": 0.0795 + }, + { + "start": 8369.48, + "end": 8370.26, + "probability": 0.4616 + }, + { + "start": 8370.84, + "end": 8373.66, + "probability": 0.5886 + }, + { + "start": 8374.08, + "end": 8377.06, + "probability": 0.6234 + }, + { + "start": 8377.12, + "end": 8379.9, + "probability": 0.8268 + }, + { + "start": 8386.1, + "end": 8393.02, + "probability": 0.9949 + }, + { + "start": 8393.6, + "end": 8396.82, + "probability": 0.9009 + }, + { + "start": 8397.96, + "end": 8401.78, + "probability": 0.6785 + }, + { + "start": 8402.02, + "end": 8405.18, + "probability": 0.9823 + }, + { + "start": 8428.72, + "end": 8432.88, + "probability": 0.0967 + }, + { + "start": 8440.28, + "end": 8440.58, + "probability": 0.5257 + }, + { + "start": 8441.46, + "end": 8442.4, + "probability": 0.6837 + }, + { + "start": 8443.54, + "end": 8445.94, + "probability": 0.7344 + }, + { + "start": 8447.72, + "end": 8449.66, + "probability": 0.9435 + }, + { + "start": 8450.36, + "end": 8450.8, + "probability": 0.9168 + }, + { + "start": 8451.52, + "end": 8453.48, + "probability": 0.9582 + }, + { + "start": 8454.64, + "end": 8457.32, + "probability": 0.9803 + }, + { + "start": 8458.5, + "end": 8459.56, + "probability": 0.8628 + }, + { + "start": 8460.46, + "end": 8461.36, + "probability": 0.8035 + }, + { + "start": 8462.9, + "end": 8466.1, + "probability": 0.9956 + }, + { + "start": 8467.44, + "end": 8469.94, + "probability": 0.9259 + }, + { + "start": 8471.46, + "end": 8473.52, + "probability": 0.9435 + }, + { + "start": 8474.34, + "end": 8479.64, + "probability": 0.9873 + }, + { + "start": 8480.48, + "end": 8482.4, + "probability": 0.9322 + }, + { + "start": 8483.34, + "end": 8484.22, + "probability": 0.9734 + }, + { + "start": 8485.88, + "end": 8488.79, + "probability": 0.9979 + }, + { + "start": 8489.34, + "end": 8493.88, + "probability": 0.9824 + }, + { + "start": 8495.62, + "end": 8498.88, + "probability": 0.9255 + }, + { + "start": 8499.52, + "end": 8503.84, + "probability": 0.9674 + }, + { + "start": 8504.78, + "end": 8512.2, + "probability": 0.9937 + }, + { + "start": 8513.06, + "end": 8515.82, + "probability": 0.9694 + }, + { + "start": 8517.94, + "end": 8518.58, + "probability": 0.9319 + }, + { + "start": 8519.52, + "end": 8522.28, + "probability": 0.9854 + }, + { + "start": 8523.28, + "end": 8528.42, + "probability": 0.9916 + }, + { + "start": 8529.62, + "end": 8531.24, + "probability": 0.9843 + }, + { + "start": 8531.92, + "end": 8532.58, + "probability": 0.9873 + }, + { + "start": 8534.32, + "end": 8538.26, + "probability": 0.9035 + }, + { + "start": 8539.54, + "end": 8542.38, + "probability": 0.9333 + }, + { + "start": 8543.3, + "end": 8545.1, + "probability": 0.9629 + }, + { + "start": 8545.36, + "end": 8548.78, + "probability": 0.9428 + }, + { + "start": 8550.98, + "end": 8554.24, + "probability": 0.8801 + }, + { + "start": 8555.28, + "end": 8560.46, + "probability": 0.8357 + }, + { + "start": 8561.44, + "end": 8565.06, + "probability": 0.9616 + }, + { + "start": 8565.06, + "end": 8567.42, + "probability": 0.7221 + }, + { + "start": 8568.58, + "end": 8570.8, + "probability": 0.747 + }, + { + "start": 8571.42, + "end": 8574.6, + "probability": 0.8101 + }, + { + "start": 8575.4, + "end": 8579.4, + "probability": 0.9812 + }, + { + "start": 8579.4, + "end": 8582.96, + "probability": 0.9954 + }, + { + "start": 8583.68, + "end": 8584.84, + "probability": 0.9865 + }, + { + "start": 8587.04, + "end": 8589.34, + "probability": 0.9888 + }, + { + "start": 8589.58, + "end": 8590.72, + "probability": 0.8571 + }, + { + "start": 8591.94, + "end": 8594.3, + "probability": 0.975 + }, + { + "start": 8595.06, + "end": 8597.74, + "probability": 0.9113 + }, + { + "start": 8598.88, + "end": 8599.76, + "probability": 0.3982 + }, + { + "start": 8600.32, + "end": 8601.42, + "probability": 0.9666 + }, + { + "start": 8602.16, + "end": 8602.86, + "probability": 0.6463 + }, + { + "start": 8603.68, + "end": 8604.54, + "probability": 0.7796 + }, + { + "start": 8605.14, + "end": 8606.66, + "probability": 0.9745 + }, + { + "start": 8607.4, + "end": 8607.74, + "probability": 0.4018 + }, + { + "start": 8608.9, + "end": 8609.76, + "probability": 0.8844 + }, + { + "start": 8611.26, + "end": 8613.34, + "probability": 0.8582 + }, + { + "start": 8614.42, + "end": 8615.68, + "probability": 0.9459 + }, + { + "start": 8616.4, + "end": 8620.18, + "probability": 0.9937 + }, + { + "start": 8620.66, + "end": 8624.67, + "probability": 0.9959 + }, + { + "start": 8626.44, + "end": 8627.08, + "probability": 0.9625 + }, + { + "start": 8628.14, + "end": 8630.8, + "probability": 0.9664 + }, + { + "start": 8632.96, + "end": 8633.82, + "probability": 0.9956 + }, + { + "start": 8634.42, + "end": 8638.22, + "probability": 0.8455 + }, + { + "start": 8638.96, + "end": 8641.06, + "probability": 0.8596 + }, + { + "start": 8642.04, + "end": 8644.5, + "probability": 0.9327 + }, + { + "start": 8645.88, + "end": 8647.34, + "probability": 0.5762 + }, + { + "start": 8648.06, + "end": 8648.7, + "probability": 0.8977 + }, + { + "start": 8649.72, + "end": 8650.72, + "probability": 0.8693 + }, + { + "start": 8651.92, + "end": 8654.24, + "probability": 0.9657 + }, + { + "start": 8656.14, + "end": 8660.86, + "probability": 0.9821 + }, + { + "start": 8661.9, + "end": 8662.3, + "probability": 0.9449 + }, + { + "start": 8662.36, + "end": 8663.05, + "probability": 0.9595 + }, + { + "start": 8663.18, + "end": 8663.64, + "probability": 0.5286 + }, + { + "start": 8663.74, + "end": 8665.28, + "probability": 0.8862 + }, + { + "start": 8667.4, + "end": 8672.72, + "probability": 0.9575 + }, + { + "start": 8673.0, + "end": 8677.2, + "probability": 0.9478 + }, + { + "start": 8678.46, + "end": 8681.1, + "probability": 0.9778 + }, + { + "start": 8681.78, + "end": 8682.82, + "probability": 0.9983 + }, + { + "start": 8684.64, + "end": 8685.92, + "probability": 0.9006 + }, + { + "start": 8686.52, + "end": 8688.66, + "probability": 0.9275 + }, + { + "start": 8689.24, + "end": 8689.88, + "probability": 0.6116 + }, + { + "start": 8691.52, + "end": 8693.58, + "probability": 0.7497 + }, + { + "start": 8694.34, + "end": 8695.2, + "probability": 0.8459 + }, + { + "start": 8695.92, + "end": 8697.14, + "probability": 0.9973 + }, + { + "start": 8697.66, + "end": 8699.4, + "probability": 0.9908 + }, + { + "start": 8700.24, + "end": 8701.5, + "probability": 0.9929 + }, + { + "start": 8702.12, + "end": 8702.46, + "probability": 0.7221 + }, + { + "start": 8704.42, + "end": 8705.4, + "probability": 0.9644 + }, + { + "start": 8706.56, + "end": 8709.28, + "probability": 0.9983 + }, + { + "start": 8710.56, + "end": 8711.56, + "probability": 0.911 + }, + { + "start": 8712.1, + "end": 8715.36, + "probability": 0.9958 + }, + { + "start": 8717.0, + "end": 8717.84, + "probability": 0.7653 + }, + { + "start": 8719.02, + "end": 8721.58, + "probability": 0.8377 + }, + { + "start": 8722.38, + "end": 8724.06, + "probability": 0.9757 + }, + { + "start": 8725.3, + "end": 8730.04, + "probability": 0.985 + }, + { + "start": 8748.7, + "end": 8750.54, + "probability": 0.7891 + }, + { + "start": 8753.54, + "end": 8755.44, + "probability": 0.9306 + }, + { + "start": 8759.86, + "end": 8760.2, + "probability": 0.6408 + }, + { + "start": 8763.22, + "end": 8769.52, + "probability": 0.9131 + }, + { + "start": 8770.78, + "end": 8771.92, + "probability": 0.9828 + }, + { + "start": 8773.5, + "end": 8774.1, + "probability": 0.9761 + }, + { + "start": 8776.6, + "end": 8777.5, + "probability": 0.8108 + }, + { + "start": 8779.74, + "end": 8780.76, + "probability": 0.9867 + }, + { + "start": 8782.82, + "end": 8785.72, + "probability": 0.9521 + }, + { + "start": 8786.93, + "end": 8789.6, + "probability": 0.568 + }, + { + "start": 8791.54, + "end": 8794.16, + "probability": 0.9823 + }, + { + "start": 8795.08, + "end": 8796.86, + "probability": 0.9229 + }, + { + "start": 8798.48, + "end": 8801.88, + "probability": 0.994 + }, + { + "start": 8805.84, + "end": 8812.44, + "probability": 0.9915 + }, + { + "start": 8814.66, + "end": 8816.92, + "probability": 0.9895 + }, + { + "start": 8818.28, + "end": 8821.12, + "probability": 0.988 + }, + { + "start": 8822.52, + "end": 8824.1, + "probability": 0.9983 + }, + { + "start": 8825.68, + "end": 8827.44, + "probability": 0.9908 + }, + { + "start": 8829.72, + "end": 8830.72, + "probability": 0.9971 + }, + { + "start": 8832.62, + "end": 8834.02, + "probability": 0.7418 + }, + { + "start": 8835.18, + "end": 8836.48, + "probability": 0.9484 + }, + { + "start": 8836.58, + "end": 8837.98, + "probability": 0.9445 + }, + { + "start": 8838.12, + "end": 8839.5, + "probability": 0.9951 + }, + { + "start": 8842.2, + "end": 8843.92, + "probability": 0.9919 + }, + { + "start": 8844.08, + "end": 8845.34, + "probability": 0.9982 + }, + { + "start": 8846.62, + "end": 8847.86, + "probability": 0.9761 + }, + { + "start": 8848.62, + "end": 8850.38, + "probability": 0.9647 + }, + { + "start": 8852.4, + "end": 8855.44, + "probability": 0.9961 + }, + { + "start": 8856.08, + "end": 8857.2, + "probability": 0.9091 + }, + { + "start": 8859.38, + "end": 8859.98, + "probability": 0.7171 + }, + { + "start": 8861.6, + "end": 8862.28, + "probability": 0.8062 + }, + { + "start": 8864.3, + "end": 8867.04, + "probability": 0.9928 + }, + { + "start": 8869.08, + "end": 8870.36, + "probability": 0.9586 + }, + { + "start": 8871.64, + "end": 8874.14, + "probability": 0.9759 + }, + { + "start": 8875.8, + "end": 8877.16, + "probability": 0.9636 + }, + { + "start": 8877.86, + "end": 8878.48, + "probability": 0.3332 + }, + { + "start": 8878.64, + "end": 8881.08, + "probability": 0.9292 + }, + { + "start": 8883.88, + "end": 8885.3, + "probability": 0.9973 + }, + { + "start": 8886.72, + "end": 8889.2, + "probability": 0.9963 + }, + { + "start": 8890.84, + "end": 8892.7, + "probability": 0.9877 + }, + { + "start": 8894.68, + "end": 8897.12, + "probability": 0.9129 + }, + { + "start": 8898.66, + "end": 8901.69, + "probability": 0.9642 + }, + { + "start": 8904.07, + "end": 8908.98, + "probability": 0.8242 + }, + { + "start": 8910.2, + "end": 8911.26, + "probability": 0.3483 + }, + { + "start": 8911.28, + "end": 8912.79, + "probability": 0.5569 + }, + { + "start": 8912.82, + "end": 8913.54, + "probability": 0.9983 + }, + { + "start": 8916.2, + "end": 8919.2, + "probability": 0.9917 + }, + { + "start": 8919.2, + "end": 8922.8, + "probability": 0.994 + }, + { + "start": 8924.24, + "end": 8924.94, + "probability": 0.8466 + }, + { + "start": 8928.1, + "end": 8932.37, + "probability": 0.9927 + }, + { + "start": 8932.5, + "end": 8935.76, + "probability": 0.9973 + }, + { + "start": 8937.58, + "end": 8940.4, + "probability": 0.6251 + }, + { + "start": 8940.42, + "end": 8942.28, + "probability": 0.8465 + }, + { + "start": 8942.52, + "end": 8943.46, + "probability": 0.8077 + }, + { + "start": 8944.1, + "end": 8948.0, + "probability": 0.9823 + }, + { + "start": 8948.94, + "end": 8951.9, + "probability": 0.9941 + }, + { + "start": 8951.9, + "end": 8954.64, + "probability": 0.9714 + }, + { + "start": 8955.8, + "end": 8956.24, + "probability": 0.7891 + }, + { + "start": 8958.04, + "end": 8958.92, + "probability": 0.9902 + }, + { + "start": 8960.3, + "end": 8963.68, + "probability": 0.9921 + }, + { + "start": 8964.26, + "end": 8964.68, + "probability": 0.9117 + }, + { + "start": 8965.62, + "end": 8968.86, + "probability": 0.9989 + }, + { + "start": 8970.1, + "end": 8972.24, + "probability": 0.9924 + }, + { + "start": 8973.96, + "end": 8976.08, + "probability": 0.9725 + }, + { + "start": 8977.12, + "end": 8978.04, + "probability": 0.9943 + }, + { + "start": 8980.72, + "end": 8981.42, + "probability": 0.8334 + }, + { + "start": 8982.8, + "end": 8986.36, + "probability": 0.9668 + }, + { + "start": 8986.88, + "end": 8992.02, + "probability": 0.9643 + }, + { + "start": 8993.1, + "end": 8994.5, + "probability": 0.7216 + }, + { + "start": 8995.06, + "end": 8996.18, + "probability": 0.9756 + }, + { + "start": 8997.24, + "end": 8999.78, + "probability": 0.9785 + }, + { + "start": 8999.98, + "end": 9003.64, + "probability": 0.9886 + }, + { + "start": 9004.66, + "end": 9007.46, + "probability": 0.8582 + }, + { + "start": 9008.32, + "end": 9010.6, + "probability": 0.9109 + }, + { + "start": 9011.74, + "end": 9013.86, + "probability": 0.9735 + }, + { + "start": 9014.86, + "end": 9015.84, + "probability": 0.9718 + }, + { + "start": 9016.86, + "end": 9020.12, + "probability": 0.9766 + }, + { + "start": 9021.24, + "end": 9022.98, + "probability": 0.9924 + }, + { + "start": 9024.18, + "end": 9025.48, + "probability": 0.9361 + }, + { + "start": 9026.92, + "end": 9028.18, + "probability": 0.7699 + }, + { + "start": 9028.88, + "end": 9029.52, + "probability": 0.7874 + }, + { + "start": 9030.44, + "end": 9033.52, + "probability": 0.9858 + }, + { + "start": 9034.78, + "end": 9037.44, + "probability": 0.8389 + }, + { + "start": 9038.4, + "end": 9040.4, + "probability": 0.9977 + }, + { + "start": 9042.34, + "end": 9043.66, + "probability": 0.9043 + }, + { + "start": 9044.58, + "end": 9045.06, + "probability": 0.8157 + }, + { + "start": 9046.44, + "end": 9048.24, + "probability": 0.8584 + }, + { + "start": 9050.56, + "end": 9051.06, + "probability": 0.716 + }, + { + "start": 9052.06, + "end": 9054.08, + "probability": 0.9968 + }, + { + "start": 9055.4, + "end": 9057.88, + "probability": 0.9934 + }, + { + "start": 9059.18, + "end": 9062.5, + "probability": 0.9546 + }, + { + "start": 9063.66, + "end": 9065.46, + "probability": 0.9257 + }, + { + "start": 9065.56, + "end": 9066.38, + "probability": 0.981 + }, + { + "start": 9068.88, + "end": 9070.6, + "probability": 0.8903 + }, + { + "start": 9072.11, + "end": 9072.76, + "probability": 0.6434 + }, + { + "start": 9074.14, + "end": 9077.06, + "probability": 0.8012 + }, + { + "start": 9078.06, + "end": 9079.86, + "probability": 0.9056 + }, + { + "start": 9080.06, + "end": 9080.4, + "probability": 0.9722 + }, + { + "start": 9080.56, + "end": 9080.92, + "probability": 0.4338 + }, + { + "start": 9081.18, + "end": 9081.74, + "probability": 0.7876 + }, + { + "start": 9083.2, + "end": 9087.02, + "probability": 0.9932 + }, + { + "start": 9088.64, + "end": 9090.86, + "probability": 0.9979 + }, + { + "start": 9091.72, + "end": 9094.22, + "probability": 0.9989 + }, + { + "start": 9096.52, + "end": 9099.02, + "probability": 0.8667 + }, + { + "start": 9100.16, + "end": 9105.48, + "probability": 0.9948 + }, + { + "start": 9106.12, + "end": 9108.84, + "probability": 0.9946 + }, + { + "start": 9109.42, + "end": 9111.0, + "probability": 0.943 + }, + { + "start": 9112.28, + "end": 9113.08, + "probability": 0.8003 + }, + { + "start": 9114.42, + "end": 9115.26, + "probability": 0.6067 + }, + { + "start": 9116.58, + "end": 9118.54, + "probability": 0.828 + }, + { + "start": 9119.74, + "end": 9121.16, + "probability": 0.834 + }, + { + "start": 9121.76, + "end": 9123.68, + "probability": 0.9971 + }, + { + "start": 9124.08, + "end": 9126.28, + "probability": 0.9113 + }, + { + "start": 9129.4, + "end": 9130.23, + "probability": 0.9977 + }, + { + "start": 9132.74, + "end": 9133.64, + "probability": 0.9216 + }, + { + "start": 9134.76, + "end": 9136.56, + "probability": 0.9966 + }, + { + "start": 9137.24, + "end": 9140.04, + "probability": 0.8033 + }, + { + "start": 9141.44, + "end": 9143.22, + "probability": 0.8315 + }, + { + "start": 9144.3, + "end": 9146.58, + "probability": 0.9855 + }, + { + "start": 9147.56, + "end": 9148.6, + "probability": 0.9379 + }, + { + "start": 9150.66, + "end": 9153.86, + "probability": 0.9846 + }, + { + "start": 9155.22, + "end": 9157.12, + "probability": 0.9983 + }, + { + "start": 9158.56, + "end": 9161.1, + "probability": 0.9902 + }, + { + "start": 9161.34, + "end": 9163.3, + "probability": 0.9592 + }, + { + "start": 9163.4, + "end": 9164.05, + "probability": 0.9529 + }, + { + "start": 9165.9, + "end": 9168.76, + "probability": 0.9558 + }, + { + "start": 9170.0, + "end": 9171.26, + "probability": 0.9983 + }, + { + "start": 9172.32, + "end": 9174.1, + "probability": 0.9871 + }, + { + "start": 9176.5, + "end": 9176.94, + "probability": 0.7529 + }, + { + "start": 9179.36, + "end": 9183.34, + "probability": 0.8911 + }, + { + "start": 9186.2, + "end": 9187.4, + "probability": 0.9923 + }, + { + "start": 9189.52, + "end": 9190.17, + "probability": 0.9983 + }, + { + "start": 9192.56, + "end": 9193.92, + "probability": 0.9992 + }, + { + "start": 9194.94, + "end": 9195.96, + "probability": 0.8334 + }, + { + "start": 9197.54, + "end": 9199.5, + "probability": 0.7334 + }, + { + "start": 9201.76, + "end": 9202.74, + "probability": 0.8394 + }, + { + "start": 9203.52, + "end": 9203.9, + "probability": 0.4927 + }, + { + "start": 9204.08, + "end": 9207.88, + "probability": 0.9108 + }, + { + "start": 9208.0, + "end": 9209.92, + "probability": 0.8958 + }, + { + "start": 9210.02, + "end": 9212.76, + "probability": 0.9867 + }, + { + "start": 9213.72, + "end": 9215.22, + "probability": 0.969 + }, + { + "start": 9219.44, + "end": 9220.44, + "probability": 0.998 + }, + { + "start": 9221.6, + "end": 9222.36, + "probability": 0.5254 + }, + { + "start": 9224.26, + "end": 9228.72, + "probability": 0.7502 + }, + { + "start": 9230.78, + "end": 9234.3, + "probability": 0.9312 + }, + { + "start": 9236.34, + "end": 9237.28, + "probability": 0.8645 + }, + { + "start": 9240.04, + "end": 9244.24, + "probability": 0.9832 + }, + { + "start": 9248.06, + "end": 9250.13, + "probability": 0.951 + }, + { + "start": 9252.1, + "end": 9253.08, + "probability": 0.7378 + }, + { + "start": 9255.2, + "end": 9256.66, + "probability": 0.995 + }, + { + "start": 9260.44, + "end": 9261.58, + "probability": 0.8872 + }, + { + "start": 9263.24, + "end": 9264.1, + "probability": 0.9156 + }, + { + "start": 9266.66, + "end": 9267.7, + "probability": 0.8071 + }, + { + "start": 9268.02, + "end": 9269.12, + "probability": 0.9137 + }, + { + "start": 9269.3, + "end": 9272.06, + "probability": 0.9713 + }, + { + "start": 9272.18, + "end": 9273.18, + "probability": 0.5284 + }, + { + "start": 9273.5, + "end": 9274.88, + "probability": 0.799 + }, + { + "start": 9278.31, + "end": 9278.93, + "probability": 0.0192 + }, + { + "start": 9279.96, + "end": 9281.58, + "probability": 0.4583 + }, + { + "start": 9286.24, + "end": 9288.34, + "probability": 0.8768 + }, + { + "start": 9290.82, + "end": 9292.76, + "probability": 0.9823 + }, + { + "start": 9295.06, + "end": 9296.04, + "probability": 0.9971 + }, + { + "start": 9297.62, + "end": 9300.24, + "probability": 0.7327 + }, + { + "start": 9302.94, + "end": 9303.7, + "probability": 0.9956 + }, + { + "start": 9305.74, + "end": 9307.69, + "probability": 0.9354 + }, + { + "start": 9312.44, + "end": 9313.84, + "probability": 0.7074 + }, + { + "start": 9317.2, + "end": 9317.78, + "probability": 0.9325 + }, + { + "start": 9319.5, + "end": 9321.3, + "probability": 0.9998 + }, + { + "start": 9323.84, + "end": 9324.42, + "probability": 0.6569 + }, + { + "start": 9325.98, + "end": 9327.06, + "probability": 0.6334 + }, + { + "start": 9328.86, + "end": 9331.16, + "probability": 0.8826 + }, + { + "start": 9332.78, + "end": 9334.58, + "probability": 0.9667 + }, + { + "start": 9335.64, + "end": 9336.34, + "probability": 0.8865 + }, + { + "start": 9337.66, + "end": 9339.34, + "probability": 0.9441 + }, + { + "start": 9339.68, + "end": 9340.76, + "probability": 0.9691 + }, + { + "start": 9340.92, + "end": 9341.34, + "probability": 0.7583 + }, + { + "start": 9344.84, + "end": 9347.0, + "probability": 0.7446 + }, + { + "start": 9348.66, + "end": 9349.74, + "probability": 0.9131 + }, + { + "start": 9351.96, + "end": 9352.92, + "probability": 0.8226 + }, + { + "start": 9353.08, + "end": 9354.16, + "probability": 0.9832 + }, + { + "start": 9354.36, + "end": 9355.42, + "probability": 0.9756 + }, + { + "start": 9357.22, + "end": 9358.52, + "probability": 0.9722 + }, + { + "start": 9360.1, + "end": 9361.72, + "probability": 0.9873 + }, + { + "start": 9364.92, + "end": 9365.34, + "probability": 0.5144 + }, + { + "start": 9366.62, + "end": 9368.74, + "probability": 0.8999 + }, + { + "start": 9371.54, + "end": 9373.68, + "probability": 0.9976 + }, + { + "start": 9375.52, + "end": 9376.52, + "probability": 0.926 + }, + { + "start": 9378.24, + "end": 9379.58, + "probability": 0.9889 + }, + { + "start": 9381.54, + "end": 9382.4, + "probability": 0.6056 + }, + { + "start": 9383.34, + "end": 9385.68, + "probability": 0.8009 + }, + { + "start": 9386.84, + "end": 9387.26, + "probability": 0.8604 + }, + { + "start": 9388.18, + "end": 9388.76, + "probability": 0.8397 + }, + { + "start": 9391.68, + "end": 9392.78, + "probability": 0.9589 + }, + { + "start": 9393.5, + "end": 9394.24, + "probability": 0.9045 + }, + { + "start": 9395.44, + "end": 9398.86, + "probability": 0.9731 + }, + { + "start": 9399.58, + "end": 9400.24, + "probability": 0.8859 + }, + { + "start": 9400.98, + "end": 9402.86, + "probability": 0.9827 + }, + { + "start": 9404.22, + "end": 9404.56, + "probability": 0.9753 + }, + { + "start": 9406.62, + "end": 9407.86, + "probability": 0.7125 + }, + { + "start": 9408.0, + "end": 9408.94, + "probability": 0.8737 + }, + { + "start": 9409.06, + "end": 9409.78, + "probability": 0.9461 + }, + { + "start": 9409.88, + "end": 9411.38, + "probability": 0.9614 + }, + { + "start": 9412.14, + "end": 9413.8, + "probability": 0.9825 + }, + { + "start": 9414.94, + "end": 9415.66, + "probability": 0.7932 + }, + { + "start": 9415.7, + "end": 9416.58, + "probability": 0.8944 + }, + { + "start": 9416.68, + "end": 9418.2, + "probability": 0.9949 + }, + { + "start": 9419.02, + "end": 9421.5, + "probability": 0.9897 + }, + { + "start": 9421.8, + "end": 9425.52, + "probability": 0.9556 + }, + { + "start": 9426.78, + "end": 9429.94, + "probability": 0.9657 + }, + { + "start": 9431.58, + "end": 9436.1, + "probability": 0.9968 + }, + { + "start": 9437.42, + "end": 9441.15, + "probability": 0.7584 + }, + { + "start": 9442.12, + "end": 9445.1, + "probability": 0.9838 + }, + { + "start": 9446.12, + "end": 9447.94, + "probability": 0.9869 + }, + { + "start": 9448.08, + "end": 9449.0, + "probability": 0.8585 + }, + { + "start": 9449.12, + "end": 9450.78, + "probability": 0.4359 + }, + { + "start": 9450.9, + "end": 9451.71, + "probability": 0.7119 + }, + { + "start": 9452.42, + "end": 9452.8, + "probability": 0.6814 + }, + { + "start": 9453.8, + "end": 9457.86, + "probability": 0.979 + }, + { + "start": 9458.78, + "end": 9460.76, + "probability": 0.9292 + }, + { + "start": 9461.0, + "end": 9463.86, + "probability": 0.9878 + }, + { + "start": 9463.94, + "end": 9467.12, + "probability": 0.9543 + }, + { + "start": 9467.76, + "end": 9468.9, + "probability": 0.7655 + }, + { + "start": 9469.04, + "end": 9469.58, + "probability": 0.7926 + }, + { + "start": 9469.68, + "end": 9471.12, + "probability": 0.9657 + }, + { + "start": 9472.66, + "end": 9473.46, + "probability": 0.9322 + }, + { + "start": 9473.58, + "end": 9475.62, + "probability": 0.9653 + }, + { + "start": 9475.9, + "end": 9481.42, + "probability": 0.9438 + }, + { + "start": 9482.36, + "end": 9488.0, + "probability": 0.9948 + }, + { + "start": 9489.4, + "end": 9491.44, + "probability": 0.932 + }, + { + "start": 9492.04, + "end": 9494.94, + "probability": 0.9371 + }, + { + "start": 9495.3, + "end": 9496.52, + "probability": 0.7885 + }, + { + "start": 9498.88, + "end": 9504.5, + "probability": 0.9805 + }, + { + "start": 9504.88, + "end": 9507.42, + "probability": 0.9727 + }, + { + "start": 9508.18, + "end": 9512.96, + "probability": 0.9851 + }, + { + "start": 9514.06, + "end": 9517.56, + "probability": 0.9874 + }, + { + "start": 9518.14, + "end": 9520.22, + "probability": 0.9333 + }, + { + "start": 9520.3, + "end": 9523.32, + "probability": 0.9619 + }, + { + "start": 9523.64, + "end": 9526.42, + "probability": 0.9643 + }, + { + "start": 9526.92, + "end": 9529.92, + "probability": 0.9502 + }, + { + "start": 9530.0, + "end": 9531.3, + "probability": 0.804 + }, + { + "start": 9532.38, + "end": 9534.68, + "probability": 0.9632 + }, + { + "start": 9536.78, + "end": 9540.36, + "probability": 0.952 + }, + { + "start": 9540.78, + "end": 9545.54, + "probability": 0.9985 + }, + { + "start": 9546.36, + "end": 9547.62, + "probability": 0.8777 + }, + { + "start": 9547.7, + "end": 9548.6, + "probability": 0.8293 + }, + { + "start": 9548.82, + "end": 9549.4, + "probability": 0.5521 + }, + { + "start": 9549.46, + "end": 9551.6, + "probability": 0.9966 + }, + { + "start": 9552.06, + "end": 9553.48, + "probability": 0.9773 + }, + { + "start": 9554.16, + "end": 9557.52, + "probability": 0.9917 + }, + { + "start": 9558.76, + "end": 9561.18, + "probability": 0.9595 + }, + { + "start": 9561.82, + "end": 9563.75, + "probability": 0.9749 + }, + { + "start": 9564.4, + "end": 9565.88, + "probability": 0.9722 + }, + { + "start": 9567.04, + "end": 9569.34, + "probability": 0.9922 + }, + { + "start": 9570.06, + "end": 9574.7, + "probability": 0.9897 + }, + { + "start": 9574.92, + "end": 9579.7, + "probability": 0.8219 + }, + { + "start": 9579.94, + "end": 9581.8, + "probability": 0.9535 + }, + { + "start": 9582.48, + "end": 9585.2, + "probability": 0.9955 + }, + { + "start": 9586.12, + "end": 9588.44, + "probability": 0.9572 + }, + { + "start": 9588.7, + "end": 9591.5, + "probability": 0.8999 + }, + { + "start": 9591.5, + "end": 9594.01, + "probability": 0.9985 + }, + { + "start": 9595.58, + "end": 9600.96, + "probability": 0.9954 + }, + { + "start": 9601.78, + "end": 9602.7, + "probability": 0.8118 + }, + { + "start": 9603.76, + "end": 9607.12, + "probability": 0.9711 + }, + { + "start": 9607.96, + "end": 9609.52, + "probability": 0.8872 + }, + { + "start": 9611.42, + "end": 9614.74, + "probability": 0.9992 + }, + { + "start": 9614.74, + "end": 9617.96, + "probability": 0.999 + }, + { + "start": 9618.0, + "end": 9620.02, + "probability": 0.8706 + }, + { + "start": 9621.71, + "end": 9625.88, + "probability": 0.9683 + }, + { + "start": 9625.88, + "end": 9629.32, + "probability": 0.9902 + }, + { + "start": 9630.4, + "end": 9634.66, + "probability": 0.9509 + }, + { + "start": 9635.72, + "end": 9637.96, + "probability": 0.8091 + }, + { + "start": 9638.88, + "end": 9642.3, + "probability": 0.882 + }, + { + "start": 9643.44, + "end": 9647.86, + "probability": 0.995 + }, + { + "start": 9648.2, + "end": 9649.68, + "probability": 0.9616 + }, + { + "start": 9650.44, + "end": 9654.1, + "probability": 0.8742 + }, + { + "start": 9655.42, + "end": 9659.16, + "probability": 0.982 + }, + { + "start": 9661.48, + "end": 9664.6, + "probability": 0.9557 + }, + { + "start": 9664.72, + "end": 9667.24, + "probability": 0.9875 + }, + { + "start": 9668.12, + "end": 9670.21, + "probability": 0.9972 + }, + { + "start": 9671.74, + "end": 9673.52, + "probability": 0.9738 + }, + { + "start": 9673.58, + "end": 9675.18, + "probability": 0.8507 + }, + { + "start": 9675.36, + "end": 9676.54, + "probability": 0.6934 + }, + { + "start": 9676.66, + "end": 9677.94, + "probability": 0.998 + }, + { + "start": 9678.74, + "end": 9680.2, + "probability": 0.96 + }, + { + "start": 9680.96, + "end": 9682.42, + "probability": 0.9607 + }, + { + "start": 9684.0, + "end": 9685.08, + "probability": 0.8177 + }, + { + "start": 9685.4, + "end": 9685.68, + "probability": 0.6028 + }, + { + "start": 9685.74, + "end": 9686.72, + "probability": 0.8189 + }, + { + "start": 9686.76, + "end": 9688.72, + "probability": 0.5632 + }, + { + "start": 9688.86, + "end": 9689.3, + "probability": 0.9716 + }, + { + "start": 9689.34, + "end": 9693.22, + "probability": 0.9868 + }, + { + "start": 9693.3, + "end": 9698.44, + "probability": 0.9854 + }, + { + "start": 9699.38, + "end": 9702.58, + "probability": 0.9941 + }, + { + "start": 9703.36, + "end": 9707.96, + "probability": 0.9951 + }, + { + "start": 9708.12, + "end": 9708.44, + "probability": 0.4974 + }, + { + "start": 9708.64, + "end": 9708.86, + "probability": 0.6566 + }, + { + "start": 9709.0, + "end": 9710.34, + "probability": 0.963 + }, + { + "start": 9711.46, + "end": 9714.16, + "probability": 0.9614 + }, + { + "start": 9714.96, + "end": 9716.26, + "probability": 0.9337 + }, + { + "start": 9717.42, + "end": 9720.76, + "probability": 0.9494 + }, + { + "start": 9721.38, + "end": 9725.02, + "probability": 0.8409 + }, + { + "start": 9726.4, + "end": 9728.3, + "probability": 0.9336 + }, + { + "start": 9729.24, + "end": 9730.8, + "probability": 0.9753 + }, + { + "start": 9730.98, + "end": 9733.26, + "probability": 0.9795 + }, + { + "start": 9733.42, + "end": 9735.12, + "probability": 0.9231 + }, + { + "start": 9735.6, + "end": 9737.26, + "probability": 0.9493 + }, + { + "start": 9738.08, + "end": 9741.96, + "probability": 0.9441 + }, + { + "start": 9743.08, + "end": 9744.24, + "probability": 0.9239 + }, + { + "start": 9745.02, + "end": 9749.66, + "probability": 0.9924 + }, + { + "start": 9750.28, + "end": 9752.06, + "probability": 0.9961 + }, + { + "start": 9752.06, + "end": 9758.24, + "probability": 0.9596 + }, + { + "start": 9759.26, + "end": 9760.38, + "probability": 0.7423 + }, + { + "start": 9761.18, + "end": 9761.9, + "probability": 0.9033 + }, + { + "start": 9762.4, + "end": 9764.88, + "probability": 0.6383 + }, + { + "start": 9765.28, + "end": 9769.2, + "probability": 0.7038 + }, + { + "start": 9769.58, + "end": 9770.02, + "probability": 0.4133 + }, + { + "start": 9770.1, + "end": 9772.98, + "probability": 0.6996 + }, + { + "start": 9773.38, + "end": 9773.74, + "probability": 0.8897 + }, + { + "start": 9788.38, + "end": 9789.24, + "probability": 0.64 + }, + { + "start": 9790.26, + "end": 9791.52, + "probability": 0.8787 + }, + { + "start": 9792.74, + "end": 9794.06, + "probability": 0.906 + }, + { + "start": 9795.54, + "end": 9800.84, + "probability": 0.8637 + }, + { + "start": 9802.28, + "end": 9804.4, + "probability": 0.9893 + }, + { + "start": 9804.4, + "end": 9808.14, + "probability": 0.9846 + }, + { + "start": 9809.34, + "end": 9812.26, + "probability": 0.9053 + }, + { + "start": 9812.94, + "end": 9814.44, + "probability": 0.8951 + }, + { + "start": 9815.12, + "end": 9816.64, + "probability": 0.7158 + }, + { + "start": 9817.24, + "end": 9821.6, + "probability": 0.995 + }, + { + "start": 9822.36, + "end": 9824.88, + "probability": 0.9901 + }, + { + "start": 9825.5, + "end": 9829.12, + "probability": 0.9896 + }, + { + "start": 9830.18, + "end": 9834.02, + "probability": 0.9402 + }, + { + "start": 9835.16, + "end": 9839.38, + "probability": 0.9893 + }, + { + "start": 9840.38, + "end": 9844.32, + "probability": 0.9854 + }, + { + "start": 9845.6, + "end": 9847.86, + "probability": 0.78 + }, + { + "start": 9848.58, + "end": 9854.16, + "probability": 0.9919 + }, + { + "start": 9855.2, + "end": 9858.94, + "probability": 0.9751 + }, + { + "start": 9859.46, + "end": 9860.62, + "probability": 0.9582 + }, + { + "start": 9861.38, + "end": 9864.96, + "probability": 0.9819 + }, + { + "start": 9865.6, + "end": 9868.04, + "probability": 0.9945 + }, + { + "start": 9868.96, + "end": 9872.82, + "probability": 0.9793 + }, + { + "start": 9873.64, + "end": 9876.96, + "probability": 0.9519 + }, + { + "start": 9877.82, + "end": 9880.96, + "probability": 0.9739 + }, + { + "start": 9881.54, + "end": 9883.36, + "probability": 0.8111 + }, + { + "start": 9884.0, + "end": 9884.68, + "probability": 0.9395 + }, + { + "start": 9885.3, + "end": 9886.1, + "probability": 0.5658 + }, + { + "start": 9886.64, + "end": 9888.24, + "probability": 0.9849 + }, + { + "start": 9888.84, + "end": 9892.6, + "probability": 0.925 + }, + { + "start": 9893.42, + "end": 9895.42, + "probability": 0.9938 + }, + { + "start": 9895.86, + "end": 9897.68, + "probability": 0.9417 + }, + { + "start": 9898.56, + "end": 9899.9, + "probability": 0.4952 + }, + { + "start": 9900.52, + "end": 9901.78, + "probability": 0.928 + }, + { + "start": 9902.3, + "end": 9904.76, + "probability": 0.938 + }, + { + "start": 9905.84, + "end": 9912.42, + "probability": 0.5803 + }, + { + "start": 9913.4, + "end": 9916.66, + "probability": 0.9938 + }, + { + "start": 9917.64, + "end": 9918.98, + "probability": 0.6963 + }, + { + "start": 9919.74, + "end": 9923.42, + "probability": 0.9898 + }, + { + "start": 9924.16, + "end": 9925.06, + "probability": 0.9924 + }, + { + "start": 9925.74, + "end": 9927.4, + "probability": 0.9939 + }, + { + "start": 9928.4, + "end": 9930.06, + "probability": 0.9551 + }, + { + "start": 9931.06, + "end": 9933.7, + "probability": 0.9908 + }, + { + "start": 9934.34, + "end": 9935.68, + "probability": 0.7467 + }, + { + "start": 9936.42, + "end": 9938.68, + "probability": 0.9953 + }, + { + "start": 9939.66, + "end": 9942.7, + "probability": 0.993 + }, + { + "start": 9943.9, + "end": 9944.76, + "probability": 0.8599 + }, + { + "start": 9945.44, + "end": 9946.4, + "probability": 0.7684 + }, + { + "start": 9946.76, + "end": 9951.56, + "probability": 0.9844 + }, + { + "start": 9952.32, + "end": 9954.22, + "probability": 0.9824 + }, + { + "start": 9955.2, + "end": 9958.64, + "probability": 0.9965 + }, + { + "start": 9959.46, + "end": 9963.1, + "probability": 0.9954 + }, + { + "start": 9963.68, + "end": 9964.88, + "probability": 0.9548 + }, + { + "start": 9965.54, + "end": 9967.8, + "probability": 0.7874 + }, + { + "start": 9968.62, + "end": 9970.32, + "probability": 0.7658 + }, + { + "start": 9971.06, + "end": 9973.08, + "probability": 0.916 + }, + { + "start": 9974.16, + "end": 9975.44, + "probability": 0.9941 + }, + { + "start": 9976.36, + "end": 9977.7, + "probability": 0.9293 + }, + { + "start": 9978.56, + "end": 9982.86, + "probability": 0.9967 + }, + { + "start": 9984.16, + "end": 9985.18, + "probability": 0.9922 + }, + { + "start": 9985.88, + "end": 9987.46, + "probability": 0.9472 + }, + { + "start": 9988.16, + "end": 9990.04, + "probability": 0.9777 + }, + { + "start": 9990.72, + "end": 9992.94, + "probability": 0.9873 + }, + { + "start": 9994.06, + "end": 9995.76, + "probability": 0.9969 + }, + { + "start": 9996.46, + "end": 10000.18, + "probability": 0.9876 + }, + { + "start": 10000.76, + "end": 10005.94, + "probability": 0.7737 + }, + { + "start": 10007.5, + "end": 10008.54, + "probability": 0.6731 + }, + { + "start": 10009.48, + "end": 10013.82, + "probability": 0.9943 + }, + { + "start": 10014.72, + "end": 10015.52, + "probability": 0.9498 + }, + { + "start": 10016.64, + "end": 10018.46, + "probability": 0.9844 + }, + { + "start": 10019.38, + "end": 10021.9, + "probability": 0.9616 + }, + { + "start": 10022.78, + "end": 10026.08, + "probability": 0.6842 + }, + { + "start": 10026.88, + "end": 10027.68, + "probability": 0.8698 + }, + { + "start": 10028.64, + "end": 10032.06, + "probability": 0.9833 + }, + { + "start": 10032.9, + "end": 10037.5, + "probability": 0.9713 + }, + { + "start": 10038.5, + "end": 10039.78, + "probability": 0.9536 + }, + { + "start": 10040.54, + "end": 10043.02, + "probability": 0.9995 + }, + { + "start": 10043.54, + "end": 10044.06, + "probability": 0.5737 + }, + { + "start": 10045.2, + "end": 10046.52, + "probability": 0.9022 + }, + { + "start": 10047.06, + "end": 10048.56, + "probability": 0.8088 + }, + { + "start": 10049.18, + "end": 10050.38, + "probability": 0.9707 + }, + { + "start": 10051.04, + "end": 10051.8, + "probability": 0.9795 + }, + { + "start": 10052.74, + "end": 10055.04, + "probability": 0.9821 + }, + { + "start": 10055.46, + "end": 10057.22, + "probability": 0.9413 + }, + { + "start": 10058.14, + "end": 10058.8, + "probability": 0.975 + }, + { + "start": 10059.62, + "end": 10061.66, + "probability": 0.7743 + }, + { + "start": 10062.24, + "end": 10064.14, + "probability": 0.8337 + }, + { + "start": 10065.0, + "end": 10066.36, + "probability": 0.7629 + }, + { + "start": 10067.2, + "end": 10069.04, + "probability": 0.9893 + }, + { + "start": 10069.62, + "end": 10070.78, + "probability": 0.9832 + }, + { + "start": 10072.1, + "end": 10073.06, + "probability": 0.8117 + }, + { + "start": 10074.22, + "end": 10079.16, + "probability": 0.9978 + }, + { + "start": 10079.2, + "end": 10083.56, + "probability": 0.9761 + }, + { + "start": 10084.36, + "end": 10085.56, + "probability": 0.8878 + }, + { + "start": 10086.34, + "end": 10088.66, + "probability": 0.9947 + }, + { + "start": 10089.46, + "end": 10094.0, + "probability": 0.9604 + }, + { + "start": 10094.92, + "end": 10095.42, + "probability": 0.9207 + }, + { + "start": 10096.16, + "end": 10098.82, + "probability": 0.9946 + }, + { + "start": 10099.54, + "end": 10101.76, + "probability": 0.8269 + }, + { + "start": 10102.52, + "end": 10105.02, + "probability": 0.9876 + }, + { + "start": 10105.82, + "end": 10107.84, + "probability": 0.9673 + }, + { + "start": 10108.48, + "end": 10110.62, + "probability": 0.9792 + }, + { + "start": 10111.38, + "end": 10112.4, + "probability": 0.9736 + }, + { + "start": 10113.12, + "end": 10116.98, + "probability": 0.7085 + }, + { + "start": 10117.92, + "end": 10120.16, + "probability": 0.9558 + }, + { + "start": 10120.72, + "end": 10124.36, + "probability": 0.9865 + }, + { + "start": 10125.2, + "end": 10128.68, + "probability": 0.9849 + }, + { + "start": 10129.0, + "end": 10130.2, + "probability": 0.789 + }, + { + "start": 10131.0, + "end": 10132.54, + "probability": 0.5856 + }, + { + "start": 10133.02, + "end": 10135.39, + "probability": 0.749 + }, + { + "start": 10136.18, + "end": 10137.72, + "probability": 0.6466 + }, + { + "start": 10138.2, + "end": 10138.96, + "probability": 0.3629 + }, + { + "start": 10139.46, + "end": 10140.5, + "probability": 0.6904 + }, + { + "start": 10140.62, + "end": 10140.96, + "probability": 0.431 + }, + { + "start": 10141.06, + "end": 10142.04, + "probability": 0.7081 + }, + { + "start": 10142.48, + "end": 10144.66, + "probability": 0.6437 + }, + { + "start": 10145.42, + "end": 10145.78, + "probability": 0.9749 + }, + { + "start": 10152.76, + "end": 10153.68, + "probability": 0.7219 + }, + { + "start": 10154.3, + "end": 10158.02, + "probability": 0.9495 + }, + { + "start": 10159.04, + "end": 10159.92, + "probability": 0.9472 + }, + { + "start": 10160.86, + "end": 10163.0, + "probability": 0.9774 + }, + { + "start": 10164.8, + "end": 10166.26, + "probability": 0.9532 + }, + { + "start": 10166.8, + "end": 10167.36, + "probability": 0.8774 + }, + { + "start": 10169.14, + "end": 10170.5, + "probability": 0.9686 + }, + { + "start": 10171.04, + "end": 10173.08, + "probability": 0.985 + }, + { + "start": 10174.16, + "end": 10176.38, + "probability": 0.7656 + }, + { + "start": 10177.44, + "end": 10179.94, + "probability": 0.989 + }, + { + "start": 10179.94, + "end": 10183.78, + "probability": 0.5035 + }, + { + "start": 10186.2, + "end": 10188.74, + "probability": 0.9795 + }, + { + "start": 10189.28, + "end": 10192.92, + "probability": 0.9885 + }, + { + "start": 10193.58, + "end": 10196.34, + "probability": 0.9766 + }, + { + "start": 10197.68, + "end": 10200.28, + "probability": 0.908 + }, + { + "start": 10201.3, + "end": 10203.14, + "probability": 0.9782 + }, + { + "start": 10203.68, + "end": 10209.66, + "probability": 0.9642 + }, + { + "start": 10210.56, + "end": 10211.44, + "probability": 0.9044 + }, + { + "start": 10211.96, + "end": 10214.48, + "probability": 0.8491 + }, + { + "start": 10215.12, + "end": 10216.14, + "probability": 0.219 + }, + { + "start": 10216.56, + "end": 10217.54, + "probability": 0.8761 + }, + { + "start": 10217.68, + "end": 10219.62, + "probability": 0.823 + }, + { + "start": 10219.78, + "end": 10220.21, + "probability": 0.6094 + }, + { + "start": 10221.68, + "end": 10225.34, + "probability": 0.9797 + }, + { + "start": 10228.02, + "end": 10232.46, + "probability": 0.9641 + }, + { + "start": 10233.26, + "end": 10233.7, + "probability": 0.7032 + }, + { + "start": 10233.84, + "end": 10234.96, + "probability": 0.9478 + }, + { + "start": 10235.04, + "end": 10239.48, + "probability": 0.9924 + }, + { + "start": 10240.22, + "end": 10240.98, + "probability": 0.8762 + }, + { + "start": 10241.58, + "end": 10243.66, + "probability": 0.9803 + }, + { + "start": 10245.12, + "end": 10247.24, + "probability": 0.9079 + }, + { + "start": 10248.26, + "end": 10250.48, + "probability": 0.8336 + }, + { + "start": 10251.4, + "end": 10254.34, + "probability": 0.8463 + }, + { + "start": 10255.1, + "end": 10256.16, + "probability": 0.9799 + }, + { + "start": 10256.84, + "end": 10258.32, + "probability": 0.9821 + }, + { + "start": 10258.94, + "end": 10259.48, + "probability": 0.8894 + }, + { + "start": 10260.8, + "end": 10261.48, + "probability": 0.6255 + }, + { + "start": 10262.88, + "end": 10266.42, + "probability": 0.9727 + }, + { + "start": 10269.06, + "end": 10271.66, + "probability": 0.8865 + }, + { + "start": 10271.72, + "end": 10273.0, + "probability": 0.8109 + }, + { + "start": 10273.02, + "end": 10277.52, + "probability": 0.8421 + }, + { + "start": 10277.92, + "end": 10279.14, + "probability": 0.6868 + }, + { + "start": 10280.02, + "end": 10282.4, + "probability": 0.9968 + }, + { + "start": 10282.4, + "end": 10285.1, + "probability": 0.9795 + }, + { + "start": 10286.08, + "end": 10290.18, + "probability": 0.9917 + }, + { + "start": 10291.38, + "end": 10291.89, + "probability": 0.6191 + }, + { + "start": 10292.82, + "end": 10293.96, + "probability": 0.5875 + }, + { + "start": 10294.66, + "end": 10297.18, + "probability": 0.9297 + }, + { + "start": 10297.8, + "end": 10300.04, + "probability": 0.9954 + }, + { + "start": 10300.16, + "end": 10302.84, + "probability": 0.9355 + }, + { + "start": 10303.74, + "end": 10306.08, + "probability": 0.9966 + }, + { + "start": 10307.06, + "end": 10308.28, + "probability": 0.7088 + }, + { + "start": 10308.92, + "end": 10312.88, + "probability": 0.907 + }, + { + "start": 10313.04, + "end": 10314.04, + "probability": 0.5759 + }, + { + "start": 10314.1, + "end": 10314.66, + "probability": 0.9388 + }, + { + "start": 10315.0, + "end": 10316.59, + "probability": 0.9426 + }, + { + "start": 10317.84, + "end": 10324.32, + "probability": 0.9892 + }, + { + "start": 10324.9, + "end": 10326.72, + "probability": 0.9539 + }, + { + "start": 10326.82, + "end": 10329.56, + "probability": 0.9857 + }, + { + "start": 10330.22, + "end": 10333.38, + "probability": 0.8454 + }, + { + "start": 10333.38, + "end": 10337.3, + "probability": 0.9976 + }, + { + "start": 10337.52, + "end": 10337.52, + "probability": 0.0369 + }, + { + "start": 10337.68, + "end": 10337.94, + "probability": 0.7204 + }, + { + "start": 10338.04, + "end": 10339.12, + "probability": 0.5954 + }, + { + "start": 10340.0, + "end": 10342.26, + "probability": 0.7387 + }, + { + "start": 10342.52, + "end": 10344.42, + "probability": 0.7022 + }, + { + "start": 10344.6, + "end": 10346.06, + "probability": 0.9194 + }, + { + "start": 10346.2, + "end": 10346.78, + "probability": 0.5059 + }, + { + "start": 10347.24, + "end": 10350.72, + "probability": 0.7784 + }, + { + "start": 10351.34, + "end": 10355.14, + "probability": 0.8074 + }, + { + "start": 10356.58, + "end": 10359.04, + "probability": 0.8315 + }, + { + "start": 10359.64, + "end": 10363.48, + "probability": 0.9854 + }, + { + "start": 10364.12, + "end": 10366.62, + "probability": 0.9873 + }, + { + "start": 10369.62, + "end": 10371.79, + "probability": 0.9619 + }, + { + "start": 10372.14, + "end": 10377.12, + "probability": 0.9844 + }, + { + "start": 10378.32, + "end": 10379.84, + "probability": 0.9561 + }, + { + "start": 10379.98, + "end": 10381.93, + "probability": 0.9883 + }, + { + "start": 10382.34, + "end": 10382.68, + "probability": 0.9169 + }, + { + "start": 10382.84, + "end": 10383.2, + "probability": 0.8997 + }, + { + "start": 10383.24, + "end": 10384.56, + "probability": 0.715 + }, + { + "start": 10384.88, + "end": 10385.32, + "probability": 0.5016 + }, + { + "start": 10386.4, + "end": 10390.38, + "probability": 0.9182 + }, + { + "start": 10392.74, + "end": 10395.44, + "probability": 0.9478 + }, + { + "start": 10395.56, + "end": 10398.0, + "probability": 0.9089 + }, + { + "start": 10398.1, + "end": 10404.88, + "probability": 0.9531 + }, + { + "start": 10405.04, + "end": 10405.8, + "probability": 0.4698 + }, + { + "start": 10406.38, + "end": 10409.04, + "probability": 0.9873 + }, + { + "start": 10409.94, + "end": 10411.98, + "probability": 0.8949 + }, + { + "start": 10413.36, + "end": 10414.32, + "probability": 0.7539 + }, + { + "start": 10415.5, + "end": 10417.2, + "probability": 0.887 + }, + { + "start": 10417.84, + "end": 10419.24, + "probability": 0.7857 + }, + { + "start": 10420.24, + "end": 10421.46, + "probability": 0.9917 + }, + { + "start": 10421.58, + "end": 10423.44, + "probability": 0.9984 + }, + { + "start": 10423.5, + "end": 10424.44, + "probability": 0.7232 + }, + { + "start": 10424.56, + "end": 10426.9, + "probability": 0.9757 + }, + { + "start": 10427.18, + "end": 10428.66, + "probability": 0.8847 + }, + { + "start": 10429.3, + "end": 10430.17, + "probability": 0.9559 + }, + { + "start": 10430.94, + "end": 10431.76, + "probability": 0.9181 + }, + { + "start": 10433.1, + "end": 10434.1, + "probability": 0.9121 + }, + { + "start": 10434.58, + "end": 10436.3, + "probability": 0.9469 + }, + { + "start": 10436.78, + "end": 10439.66, + "probability": 0.9634 + }, + { + "start": 10439.84, + "end": 10441.22, + "probability": 0.856 + }, + { + "start": 10441.42, + "end": 10442.56, + "probability": 0.4207 + }, + { + "start": 10443.32, + "end": 10445.18, + "probability": 0.9788 + }, + { + "start": 10445.6, + "end": 10448.5, + "probability": 0.8091 + }, + { + "start": 10449.0, + "end": 10449.92, + "probability": 0.5478 + }, + { + "start": 10450.3, + "end": 10450.9, + "probability": 0.5818 + }, + { + "start": 10452.24, + "end": 10457.92, + "probability": 0.9814 + }, + { + "start": 10458.86, + "end": 10462.8, + "probability": 0.9705 + }, + { + "start": 10463.56, + "end": 10465.76, + "probability": 0.9653 + }, + { + "start": 10466.72, + "end": 10468.6, + "probability": 0.8969 + }, + { + "start": 10469.46, + "end": 10474.92, + "probability": 0.9633 + }, + { + "start": 10475.56, + "end": 10476.36, + "probability": 0.9729 + }, + { + "start": 10478.8, + "end": 10481.2, + "probability": 0.7311 + }, + { + "start": 10481.54, + "end": 10484.16, + "probability": 0.8869 + }, + { + "start": 10484.86, + "end": 10486.9, + "probability": 0.7828 + }, + { + "start": 10502.64, + "end": 10505.06, + "probability": 0.7571 + }, + { + "start": 10507.26, + "end": 10508.78, + "probability": 0.9102 + }, + { + "start": 10510.98, + "end": 10514.16, + "probability": 0.7511 + }, + { + "start": 10515.22, + "end": 10520.96, + "probability": 0.9897 + }, + { + "start": 10521.82, + "end": 10524.18, + "probability": 0.9985 + }, + { + "start": 10524.86, + "end": 10527.58, + "probability": 0.7434 + }, + { + "start": 10528.22, + "end": 10529.85, + "probability": 0.9634 + }, + { + "start": 10531.4, + "end": 10533.72, + "probability": 0.9958 + }, + { + "start": 10535.24, + "end": 10536.54, + "probability": 0.4055 + }, + { + "start": 10537.06, + "end": 10540.82, + "probability": 0.9889 + }, + { + "start": 10541.92, + "end": 10544.76, + "probability": 0.9961 + }, + { + "start": 10545.8, + "end": 10547.98, + "probability": 0.9926 + }, + { + "start": 10549.54, + "end": 10551.24, + "probability": 0.9718 + }, + { + "start": 10552.08, + "end": 10558.32, + "probability": 0.9926 + }, + { + "start": 10558.32, + "end": 10561.66, + "probability": 0.8962 + }, + { + "start": 10563.22, + "end": 10565.14, + "probability": 0.9878 + }, + { + "start": 10566.4, + "end": 10569.42, + "probability": 0.9902 + }, + { + "start": 10570.48, + "end": 10572.0, + "probability": 0.9893 + }, + { + "start": 10572.84, + "end": 10577.46, + "probability": 0.9956 + }, + { + "start": 10578.68, + "end": 10580.08, + "probability": 0.9712 + }, + { + "start": 10580.7, + "end": 10586.36, + "probability": 0.9873 + }, + { + "start": 10588.3, + "end": 10590.82, + "probability": 0.837 + }, + { + "start": 10593.72, + "end": 10595.36, + "probability": 0.9157 + }, + { + "start": 10596.5, + "end": 10597.4, + "probability": 0.7994 + }, + { + "start": 10599.7, + "end": 10603.36, + "probability": 0.9937 + }, + { + "start": 10605.14, + "end": 10607.46, + "probability": 0.9507 + }, + { + "start": 10608.36, + "end": 10610.38, + "probability": 0.5932 + }, + { + "start": 10612.22, + "end": 10612.84, + "probability": 0.6884 + }, + { + "start": 10613.64, + "end": 10615.56, + "probability": 0.958 + }, + { + "start": 10617.44, + "end": 10621.66, + "probability": 0.9646 + }, + { + "start": 10622.92, + "end": 10624.38, + "probability": 0.9068 + }, + { + "start": 10625.72, + "end": 10627.08, + "probability": 0.9983 + }, + { + "start": 10629.52, + "end": 10635.12, + "probability": 0.9756 + }, + { + "start": 10637.3, + "end": 10640.62, + "probability": 0.9927 + }, + { + "start": 10642.32, + "end": 10645.66, + "probability": 0.9977 + }, + { + "start": 10645.66, + "end": 10649.34, + "probability": 0.9539 + }, + { + "start": 10652.1, + "end": 10653.86, + "probability": 0.9902 + }, + { + "start": 10655.36, + "end": 10660.81, + "probability": 0.9914 + }, + { + "start": 10660.94, + "end": 10665.42, + "probability": 0.989 + }, + { + "start": 10666.96, + "end": 10668.7, + "probability": 0.9944 + }, + { + "start": 10669.6, + "end": 10672.02, + "probability": 0.995 + }, + { + "start": 10672.2, + "end": 10674.36, + "probability": 0.9792 + }, + { + "start": 10676.08, + "end": 10681.3, + "probability": 0.967 + }, + { + "start": 10682.6, + "end": 10683.98, + "probability": 0.8407 + }, + { + "start": 10684.52, + "end": 10685.02, + "probability": 0.5699 + }, + { + "start": 10686.78, + "end": 10690.84, + "probability": 0.8833 + }, + { + "start": 10691.38, + "end": 10693.12, + "probability": 0.9827 + }, + { + "start": 10694.34, + "end": 10698.38, + "probability": 0.9956 + }, + { + "start": 10698.88, + "end": 10701.38, + "probability": 0.8837 + }, + { + "start": 10702.74, + "end": 10704.4, + "probability": 0.9802 + }, + { + "start": 10705.12, + "end": 10707.14, + "probability": 0.7764 + }, + { + "start": 10707.76, + "end": 10710.26, + "probability": 0.9968 + }, + { + "start": 10711.54, + "end": 10716.48, + "probability": 0.9874 + }, + { + "start": 10717.48, + "end": 10720.14, + "probability": 0.999 + }, + { + "start": 10722.1, + "end": 10729.42, + "probability": 0.9944 + }, + { + "start": 10730.28, + "end": 10732.26, + "probability": 0.9938 + }, + { + "start": 10733.34, + "end": 10735.36, + "probability": 0.9988 + }, + { + "start": 10736.16, + "end": 10737.94, + "probability": 0.9918 + }, + { + "start": 10738.98, + "end": 10741.16, + "probability": 0.9941 + }, + { + "start": 10742.18, + "end": 10747.4, + "probability": 0.9977 + }, + { + "start": 10747.56, + "end": 10751.0, + "probability": 0.9997 + }, + { + "start": 10752.48, + "end": 10753.24, + "probability": 0.6152 + }, + { + "start": 10754.82, + "end": 10756.74, + "probability": 0.9995 + }, + { + "start": 10757.52, + "end": 10759.3, + "probability": 0.7499 + }, + { + "start": 10759.92, + "end": 10762.74, + "probability": 0.9912 + }, + { + "start": 10764.5, + "end": 10769.76, + "probability": 0.9933 + }, + { + "start": 10771.52, + "end": 10774.52, + "probability": 0.7403 + }, + { + "start": 10775.16, + "end": 10776.04, + "probability": 0.7379 + }, + { + "start": 10777.34, + "end": 10777.92, + "probability": 0.6989 + }, + { + "start": 10782.44, + "end": 10784.1, + "probability": 0.9971 + }, + { + "start": 10785.6, + "end": 10788.6, + "probability": 0.9459 + }, + { + "start": 10789.32, + "end": 10790.52, + "probability": 0.9457 + }, + { + "start": 10791.38, + "end": 10793.06, + "probability": 0.9971 + }, + { + "start": 10794.86, + "end": 10796.92, + "probability": 0.7908 + }, + { + "start": 10799.44, + "end": 10807.58, + "probability": 0.9929 + }, + { + "start": 10808.42, + "end": 10810.24, + "probability": 0.84 + }, + { + "start": 10812.58, + "end": 10815.2, + "probability": 0.9678 + }, + { + "start": 10815.54, + "end": 10817.5, + "probability": 0.9791 + }, + { + "start": 10818.4, + "end": 10820.4, + "probability": 0.9806 + }, + { + "start": 10821.94, + "end": 10822.5, + "probability": 0.3669 + }, + { + "start": 10822.64, + "end": 10823.4, + "probability": 0.6502 + }, + { + "start": 10823.66, + "end": 10824.56, + "probability": 0.6188 + }, + { + "start": 10826.36, + "end": 10828.02, + "probability": 0.9401 + }, + { + "start": 10830.04, + "end": 10835.16, + "probability": 0.9814 + }, + { + "start": 10835.24, + "end": 10839.62, + "probability": 0.9495 + }, + { + "start": 10839.62, + "end": 10841.16, + "probability": 0.8682 + }, + { + "start": 10841.84, + "end": 10842.56, + "probability": 0.6522 + }, + { + "start": 10843.32, + "end": 10845.8, + "probability": 0.781 + }, + { + "start": 10846.58, + "end": 10853.18, + "probability": 0.9565 + }, + { + "start": 10853.84, + "end": 10854.52, + "probability": 0.9509 + }, + { + "start": 10855.22, + "end": 10856.56, + "probability": 0.8034 + }, + { + "start": 10857.2, + "end": 10858.2, + "probability": 0.4589 + }, + { + "start": 10858.76, + "end": 10860.32, + "probability": 0.9746 + }, + { + "start": 10860.4, + "end": 10863.4, + "probability": 0.8097 + }, + { + "start": 10866.02, + "end": 10876.88, + "probability": 0.8002 + }, + { + "start": 10877.0, + "end": 10878.62, + "probability": 0.8374 + }, + { + "start": 10878.76, + "end": 10878.96, + "probability": 0.9412 + }, + { + "start": 10880.2, + "end": 10883.78, + "probability": 0.9185 + }, + { + "start": 10885.66, + "end": 10890.36, + "probability": 0.9946 + }, + { + "start": 10891.98, + "end": 10893.86, + "probability": 0.9293 + }, + { + "start": 10895.06, + "end": 10897.68, + "probability": 0.209 + }, + { + "start": 10898.08, + "end": 10901.3, + "probability": 0.8137 + }, + { + "start": 10903.36, + "end": 10907.32, + "probability": 0.9756 + }, + { + "start": 10908.92, + "end": 10910.73, + "probability": 0.9914 + }, + { + "start": 10912.42, + "end": 10913.0, + "probability": 0.8186 + }, + { + "start": 10914.7, + "end": 10917.22, + "probability": 0.986 + }, + { + "start": 10918.36, + "end": 10921.82, + "probability": 0.9639 + }, + { + "start": 10923.68, + "end": 10925.14, + "probability": 0.9841 + }, + { + "start": 10926.24, + "end": 10930.66, + "probability": 0.802 + }, + { + "start": 10931.84, + "end": 10941.56, + "probability": 0.9784 + }, + { + "start": 10943.58, + "end": 10945.8, + "probability": 0.7959 + }, + { + "start": 10946.62, + "end": 10949.38, + "probability": 0.7732 + }, + { + "start": 10951.02, + "end": 10954.38, + "probability": 0.9233 + }, + { + "start": 10955.52, + "end": 10958.46, + "probability": 0.8708 + }, + { + "start": 10959.46, + "end": 10960.9, + "probability": 0.9663 + }, + { + "start": 10961.12, + "end": 10962.36, + "probability": 0.8819 + }, + { + "start": 10962.38, + "end": 10964.14, + "probability": 0.9755 + }, + { + "start": 10967.06, + "end": 10967.86, + "probability": 0.7492 + }, + { + "start": 10969.0, + "end": 10969.62, + "probability": 0.844 + }, + { + "start": 10972.48, + "end": 10973.36, + "probability": 0.8729 + }, + { + "start": 10974.93, + "end": 10977.12, + "probability": 0.9928 + }, + { + "start": 10978.64, + "end": 10984.14, + "probability": 0.9133 + }, + { + "start": 10985.34, + "end": 10991.06, + "probability": 0.9933 + }, + { + "start": 10991.6, + "end": 10991.88, + "probability": 0.7483 + }, + { + "start": 10995.08, + "end": 10996.12, + "probability": 0.9971 + }, + { + "start": 10996.52, + "end": 10997.26, + "probability": 0.691 + }, + { + "start": 10997.3, + "end": 10999.18, + "probability": 0.9592 + }, + { + "start": 11001.12, + "end": 11003.0, + "probability": 0.9746 + }, + { + "start": 11003.08, + "end": 11005.06, + "probability": 0.9603 + }, + { + "start": 11005.28, + "end": 11006.52, + "probability": 0.9984 + }, + { + "start": 11007.4, + "end": 11010.8, + "probability": 0.8277 + }, + { + "start": 11012.16, + "end": 11014.12, + "probability": 0.9629 + }, + { + "start": 11015.8, + "end": 11019.44, + "probability": 0.9854 + }, + { + "start": 11020.22, + "end": 11023.8, + "probability": 0.8344 + }, + { + "start": 11024.68, + "end": 11026.04, + "probability": 0.9856 + }, + { + "start": 11026.94, + "end": 11027.66, + "probability": 0.9648 + }, + { + "start": 11028.24, + "end": 11028.9, + "probability": 0.8941 + }, + { + "start": 11030.9, + "end": 11033.74, + "probability": 0.453 + }, + { + "start": 11036.42, + "end": 11036.56, + "probability": 0.094 + }, + { + "start": 11036.56, + "end": 11041.4, + "probability": 0.8951 + }, + { + "start": 11041.54, + "end": 11042.52, + "probability": 0.7113 + }, + { + "start": 11042.62, + "end": 11043.36, + "probability": 0.2729 + }, + { + "start": 11044.4, + "end": 11046.22, + "probability": 0.8259 + }, + { + "start": 11047.48, + "end": 11049.68, + "probability": 0.8014 + }, + { + "start": 11050.38, + "end": 11050.73, + "probability": 0.5886 + }, + { + "start": 11053.1, + "end": 11056.88, + "probability": 0.7094 + }, + { + "start": 11056.92, + "end": 11058.44, + "probability": 0.9697 + }, + { + "start": 11059.74, + "end": 11062.14, + "probability": 0.7775 + }, + { + "start": 11063.66, + "end": 11069.1, + "probability": 0.9648 + }, + { + "start": 11070.28, + "end": 11072.84, + "probability": 0.8999 + }, + { + "start": 11072.96, + "end": 11077.78, + "probability": 0.971 + }, + { + "start": 11078.3, + "end": 11079.24, + "probability": 0.716 + }, + { + "start": 11080.18, + "end": 11081.08, + "probability": 0.9784 + }, + { + "start": 11082.56, + "end": 11085.88, + "probability": 0.9692 + }, + { + "start": 11086.54, + "end": 11087.68, + "probability": 0.7518 + }, + { + "start": 11087.78, + "end": 11089.48, + "probability": 0.3992 + }, + { + "start": 11090.14, + "end": 11093.04, + "probability": 0.8427 + }, + { + "start": 11093.22, + "end": 11095.16, + "probability": 0.8834 + }, + { + "start": 11099.86, + "end": 11101.34, + "probability": 0.7702 + }, + { + "start": 11102.64, + "end": 11103.68, + "probability": 0.9504 + }, + { + "start": 11105.64, + "end": 11109.02, + "probability": 0.9926 + }, + { + "start": 11109.58, + "end": 11110.04, + "probability": 0.8233 + }, + { + "start": 11111.38, + "end": 11113.7, + "probability": 0.9942 + }, + { + "start": 11115.02, + "end": 11116.32, + "probability": 0.9949 + }, + { + "start": 11117.08, + "end": 11118.64, + "probability": 0.8622 + }, + { + "start": 11119.24, + "end": 11120.72, + "probability": 0.8267 + }, + { + "start": 11121.56, + "end": 11122.08, + "probability": 0.9784 + }, + { + "start": 11123.28, + "end": 11124.17, + "probability": 0.6755 + }, + { + "start": 11125.16, + "end": 11125.52, + "probability": 0.3662 + }, + { + "start": 11126.66, + "end": 11132.2, + "probability": 0.9653 + }, + { + "start": 11134.0, + "end": 11136.86, + "probability": 0.6998 + }, + { + "start": 11138.38, + "end": 11139.76, + "probability": 0.944 + }, + { + "start": 11140.04, + "end": 11140.76, + "probability": 0.8344 + }, + { + "start": 11141.44, + "end": 11144.54, + "probability": 0.6907 + }, + { + "start": 11144.84, + "end": 11146.31, + "probability": 0.8984 + }, + { + "start": 11147.96, + "end": 11149.2, + "probability": 0.6083 + }, + { + "start": 11149.34, + "end": 11149.34, + "probability": 0.6218 + }, + { + "start": 11149.48, + "end": 11153.4, + "probability": 0.9763 + }, + { + "start": 11153.76, + "end": 11157.48, + "probability": 0.6901 + }, + { + "start": 11158.18, + "end": 11161.6, + "probability": 0.9912 + }, + { + "start": 11162.34, + "end": 11163.5, + "probability": 0.8964 + }, + { + "start": 11164.9, + "end": 11166.42, + "probability": 0.822 + }, + { + "start": 11167.02, + "end": 11167.56, + "probability": 0.9272 + }, + { + "start": 11168.28, + "end": 11168.64, + "probability": 0.7153 + }, + { + "start": 11170.38, + "end": 11170.82, + "probability": 0.9003 + }, + { + "start": 11171.52, + "end": 11172.41, + "probability": 0.2384 + }, + { + "start": 11174.74, + "end": 11176.44, + "probability": 0.8125 + }, + { + "start": 11177.08, + "end": 11179.04, + "probability": 0.8074 + }, + { + "start": 11180.06, + "end": 11183.06, + "probability": 0.8979 + }, + { + "start": 11185.8, + "end": 11186.94, + "probability": 0.3203 + }, + { + "start": 11186.94, + "end": 11192.48, + "probability": 0.1043 + }, + { + "start": 11206.04, + "end": 11206.94, + "probability": 0.0949 + }, + { + "start": 11211.46, + "end": 11212.42, + "probability": 0.7578 + }, + { + "start": 11214.46, + "end": 11219.47, + "probability": 0.9307 + }, + { + "start": 11222.76, + "end": 11225.98, + "probability": 0.9612 + }, + { + "start": 11226.16, + "end": 11226.88, + "probability": 0.7978 + }, + { + "start": 11228.74, + "end": 11231.46, + "probability": 0.9762 + }, + { + "start": 11231.54, + "end": 11233.66, + "probability": 0.899 + }, + { + "start": 11234.88, + "end": 11237.92, + "probability": 0.8952 + }, + { + "start": 11240.0, + "end": 11244.32, + "probability": 0.6901 + }, + { + "start": 11246.1, + "end": 11250.36, + "probability": 0.9081 + }, + { + "start": 11251.64, + "end": 11254.88, + "probability": 0.9989 + }, + { + "start": 11256.08, + "end": 11258.86, + "probability": 0.9555 + }, + { + "start": 11260.7, + "end": 11261.8, + "probability": 0.9771 + }, + { + "start": 11263.92, + "end": 11265.02, + "probability": 0.6779 + }, + { + "start": 11266.26, + "end": 11270.56, + "probability": 0.9954 + }, + { + "start": 11271.72, + "end": 11277.46, + "probability": 0.9941 + }, + { + "start": 11279.96, + "end": 11282.08, + "probability": 0.8938 + }, + { + "start": 11282.98, + "end": 11284.0, + "probability": 0.7441 + }, + { + "start": 11285.44, + "end": 11286.0, + "probability": 0.9856 + }, + { + "start": 11287.62, + "end": 11289.1, + "probability": 0.9877 + }, + { + "start": 11290.02, + "end": 11292.86, + "probability": 0.9319 + }, + { + "start": 11294.86, + "end": 11300.2, + "probability": 0.8108 + }, + { + "start": 11301.66, + "end": 11303.08, + "probability": 0.9858 + }, + { + "start": 11304.14, + "end": 11305.48, + "probability": 0.9967 + }, + { + "start": 11306.64, + "end": 11307.4, + "probability": 0.3501 + }, + { + "start": 11309.04, + "end": 11310.2, + "probability": 0.9431 + }, + { + "start": 11312.6, + "end": 11313.36, + "probability": 0.5481 + }, + { + "start": 11313.58, + "end": 11316.3, + "probability": 0.9886 + }, + { + "start": 11317.5, + "end": 11319.04, + "probability": 0.3808 + }, + { + "start": 11320.86, + "end": 11321.54, + "probability": 0.9839 + }, + { + "start": 11322.88, + "end": 11324.8, + "probability": 0.707 + }, + { + "start": 11325.62, + "end": 11326.46, + "probability": 0.9012 + }, + { + "start": 11329.58, + "end": 11330.56, + "probability": 0.8131 + }, + { + "start": 11333.04, + "end": 11337.42, + "probability": 0.9813 + }, + { + "start": 11338.46, + "end": 11344.3, + "probability": 0.8958 + }, + { + "start": 11344.44, + "end": 11345.6, + "probability": 0.6937 + }, + { + "start": 11347.06, + "end": 11350.54, + "probability": 0.9483 + }, + { + "start": 11352.12, + "end": 11352.84, + "probability": 0.9778 + }, + { + "start": 11354.7, + "end": 11355.6, + "probability": 0.9482 + }, + { + "start": 11360.46, + "end": 11364.18, + "probability": 0.9636 + }, + { + "start": 11365.04, + "end": 11365.9, + "probability": 0.974 + }, + { + "start": 11366.82, + "end": 11368.08, + "probability": 0.9924 + }, + { + "start": 11369.44, + "end": 11370.28, + "probability": 0.6459 + }, + { + "start": 11370.48, + "end": 11373.02, + "probability": 0.9992 + }, + { + "start": 11373.92, + "end": 11375.28, + "probability": 0.8814 + }, + { + "start": 11375.34, + "end": 11379.14, + "probability": 0.6577 + }, + { + "start": 11379.38, + "end": 11380.32, + "probability": 0.972 + }, + { + "start": 11381.06, + "end": 11382.06, + "probability": 0.9958 + }, + { + "start": 11383.68, + "end": 11386.72, + "probability": 0.9639 + }, + { + "start": 11387.9, + "end": 11389.54, + "probability": 0.8516 + }, + { + "start": 11390.3, + "end": 11391.72, + "probability": 0.8452 + }, + { + "start": 11392.42, + "end": 11393.5, + "probability": 0.8252 + }, + { + "start": 11394.28, + "end": 11396.01, + "probability": 0.9617 + }, + { + "start": 11397.12, + "end": 11397.54, + "probability": 0.8839 + }, + { + "start": 11398.66, + "end": 11400.34, + "probability": 0.9858 + }, + { + "start": 11401.42, + "end": 11404.28, + "probability": 0.9694 + }, + { + "start": 11405.3, + "end": 11408.76, + "probability": 0.9751 + }, + { + "start": 11409.68, + "end": 11411.4, + "probability": 0.9833 + }, + { + "start": 11412.66, + "end": 11414.6, + "probability": 0.8687 + }, + { + "start": 11415.42, + "end": 11418.2, + "probability": 0.9429 + }, + { + "start": 11419.5, + "end": 11421.72, + "probability": 0.9134 + }, + { + "start": 11423.1, + "end": 11425.02, + "probability": 0.9849 + }, + { + "start": 11426.08, + "end": 11428.98, + "probability": 0.9808 + }, + { + "start": 11429.8, + "end": 11431.14, + "probability": 0.7504 + }, + { + "start": 11432.48, + "end": 11433.58, + "probability": 0.9895 + }, + { + "start": 11434.72, + "end": 11435.84, + "probability": 0.9829 + }, + { + "start": 11436.96, + "end": 11438.06, + "probability": 0.9652 + }, + { + "start": 11439.88, + "end": 11442.54, + "probability": 0.9963 + }, + { + "start": 11443.4, + "end": 11444.72, + "probability": 0.6513 + }, + { + "start": 11445.34, + "end": 11446.68, + "probability": 0.9541 + }, + { + "start": 11447.62, + "end": 11452.44, + "probability": 0.9662 + }, + { + "start": 11453.48, + "end": 11455.58, + "probability": 0.9135 + }, + { + "start": 11456.1, + "end": 11459.28, + "probability": 0.9883 + }, + { + "start": 11460.32, + "end": 11462.11, + "probability": 0.9127 + }, + { + "start": 11465.1, + "end": 11466.0, + "probability": 0.9309 + }, + { + "start": 11467.26, + "end": 11468.22, + "probability": 0.8246 + }, + { + "start": 11470.36, + "end": 11472.8, + "probability": 0.9771 + }, + { + "start": 11473.94, + "end": 11475.7, + "probability": 0.9928 + }, + { + "start": 11475.92, + "end": 11477.38, + "probability": 0.9915 + }, + { + "start": 11479.22, + "end": 11483.32, + "probability": 0.6917 + }, + { + "start": 11484.66, + "end": 11488.08, + "probability": 0.9644 + }, + { + "start": 11489.1, + "end": 11492.14, + "probability": 0.7147 + }, + { + "start": 11492.32, + "end": 11493.42, + "probability": 0.8581 + }, + { + "start": 11493.52, + "end": 11495.62, + "probability": 0.6792 + }, + { + "start": 11495.68, + "end": 11496.26, + "probability": 0.8138 + }, + { + "start": 11497.1, + "end": 11499.6, + "probability": 0.9946 + }, + { + "start": 11499.92, + "end": 11500.26, + "probability": 0.8479 + }, + { + "start": 11501.56, + "end": 11503.88, + "probability": 0.7969 + }, + { + "start": 11505.98, + "end": 11506.96, + "probability": 0.8779 + }, + { + "start": 11507.58, + "end": 11509.52, + "probability": 0.9531 + }, + { + "start": 11510.74, + "end": 11511.74, + "probability": 0.9861 + }, + { + "start": 11512.54, + "end": 11514.18, + "probability": 0.9497 + }, + { + "start": 11515.76, + "end": 11517.1, + "probability": 0.8309 + }, + { + "start": 11517.78, + "end": 11521.08, + "probability": 0.8818 + }, + { + "start": 11521.08, + "end": 11525.38, + "probability": 0.0228 + }, + { + "start": 11525.38, + "end": 11525.96, + "probability": 0.0357 + }, + { + "start": 11527.02, + "end": 11529.74, + "probability": 0.5397 + }, + { + "start": 11529.82, + "end": 11530.16, + "probability": 0.5769 + }, + { + "start": 11531.22, + "end": 11533.48, + "probability": 0.9139 + }, + { + "start": 11534.0, + "end": 11537.48, + "probability": 0.9325 + }, + { + "start": 11538.88, + "end": 11542.26, + "probability": 0.999 + }, + { + "start": 11542.86, + "end": 11543.46, + "probability": 0.9967 + }, + { + "start": 11544.54, + "end": 11546.08, + "probability": 0.8019 + }, + { + "start": 11547.52, + "end": 11549.36, + "probability": 0.8132 + }, + { + "start": 11549.82, + "end": 11550.2, + "probability": 0.6812 + }, + { + "start": 11550.44, + "end": 11552.0, + "probability": 0.965 + }, + { + "start": 11552.08, + "end": 11553.44, + "probability": 0.9873 + }, + { + "start": 11554.3, + "end": 11556.77, + "probability": 0.5626 + }, + { + "start": 11557.96, + "end": 11560.4, + "probability": 0.7489 + }, + { + "start": 11561.54, + "end": 11563.7, + "probability": 0.9245 + }, + { + "start": 11564.34, + "end": 11566.78, + "probability": 0.8626 + }, + { + "start": 11567.84, + "end": 11568.48, + "probability": 0.94 + }, + { + "start": 11569.16, + "end": 11569.54, + "probability": 0.4845 + }, + { + "start": 11570.42, + "end": 11571.16, + "probability": 0.9799 + }, + { + "start": 11572.38, + "end": 11574.6, + "probability": 0.746 + }, + { + "start": 11575.16, + "end": 11575.76, + "probability": 0.936 + }, + { + "start": 11576.88, + "end": 11577.72, + "probability": 0.9692 + }, + { + "start": 11579.62, + "end": 11580.14, + "probability": 0.907 + }, + { + "start": 11581.52, + "end": 11582.54, + "probability": 0.9468 + }, + { + "start": 11584.24, + "end": 11587.06, + "probability": 0.9521 + }, + { + "start": 11589.54, + "end": 11592.22, + "probability": 0.9604 + }, + { + "start": 11592.38, + "end": 11593.17, + "probability": 0.9668 + }, + { + "start": 11594.52, + "end": 11597.11, + "probability": 0.9967 + }, + { + "start": 11597.28, + "end": 11597.94, + "probability": 0.8965 + }, + { + "start": 11598.06, + "end": 11598.62, + "probability": 0.8618 + }, + { + "start": 11598.76, + "end": 11599.28, + "probability": 0.8775 + }, + { + "start": 11601.08, + "end": 11603.06, + "probability": 0.8789 + }, + { + "start": 11604.64, + "end": 11605.7, + "probability": 0.9819 + }, + { + "start": 11606.98, + "end": 11607.54, + "probability": 0.662 + }, + { + "start": 11609.38, + "end": 11611.72, + "probability": 0.8262 + }, + { + "start": 11613.34, + "end": 11615.2, + "probability": 0.8547 + }, + { + "start": 11615.36, + "end": 11617.56, + "probability": 0.9934 + }, + { + "start": 11619.74, + "end": 11622.44, + "probability": 0.9182 + }, + { + "start": 11622.98, + "end": 11624.14, + "probability": 0.9808 + }, + { + "start": 11624.28, + "end": 11626.04, + "probability": 0.9886 + }, + { + "start": 11627.08, + "end": 11628.38, + "probability": 0.9799 + }, + { + "start": 11628.46, + "end": 11631.26, + "probability": 0.2926 + }, + { + "start": 11631.26, + "end": 11632.6, + "probability": 0.8936 + }, + { + "start": 11633.22, + "end": 11634.64, + "probability": 0.9184 + }, + { + "start": 11635.06, + "end": 11636.46, + "probability": 0.8628 + }, + { + "start": 11636.6, + "end": 11641.18, + "probability": 0.9374 + }, + { + "start": 11642.06, + "end": 11643.4, + "probability": 0.9674 + }, + { + "start": 11644.1, + "end": 11645.52, + "probability": 0.759 + }, + { + "start": 11648.12, + "end": 11649.14, + "probability": 0.9092 + }, + { + "start": 11649.9, + "end": 11650.84, + "probability": 0.9932 + }, + { + "start": 11651.76, + "end": 11652.68, + "probability": 0.7434 + }, + { + "start": 11655.72, + "end": 11658.62, + "probability": 0.8477 + }, + { + "start": 11658.84, + "end": 11659.04, + "probability": 0.9101 + }, + { + "start": 11661.02, + "end": 11662.88, + "probability": 0.9214 + }, + { + "start": 11664.18, + "end": 11674.12, + "probability": 0.9808 + }, + { + "start": 11675.14, + "end": 11676.36, + "probability": 0.7624 + }, + { + "start": 11684.1, + "end": 11685.18, + "probability": 0.4629 + }, + { + "start": 11685.18, + "end": 11686.64, + "probability": 0.4685 + }, + { + "start": 11687.38, + "end": 11688.98, + "probability": 0.5929 + }, + { + "start": 11689.44, + "end": 11691.58, + "probability": 0.4778 + }, + { + "start": 11692.3, + "end": 11694.04, + "probability": 0.819 + }, + { + "start": 11694.16, + "end": 11695.16, + "probability": 0.5905 + }, + { + "start": 11695.22, + "end": 11696.2, + "probability": 0.8672 + }, + { + "start": 11696.66, + "end": 11700.51, + "probability": 0.842 + }, + { + "start": 11700.68, + "end": 11701.38, + "probability": 0.6311 + }, + { + "start": 11701.44, + "end": 11702.92, + "probability": 0.3893 + }, + { + "start": 11703.14, + "end": 11704.62, + "probability": 0.217 + }, + { + "start": 11705.02, + "end": 11705.66, + "probability": 0.6861 + }, + { + "start": 11705.88, + "end": 11706.66, + "probability": 0.5317 + }, + { + "start": 11707.5, + "end": 11708.0, + "probability": 0.8443 + }, + { + "start": 11708.06, + "end": 11711.4, + "probability": 0.7121 + }, + { + "start": 11711.4, + "end": 11714.52, + "probability": 0.8022 + }, + { + "start": 11723.14, + "end": 11725.04, + "probability": 0.5229 + }, + { + "start": 11730.38, + "end": 11732.58, + "probability": 0.0444 + }, + { + "start": 11735.32, + "end": 11737.4, + "probability": 0.0218 + }, + { + "start": 11738.42, + "end": 11738.7, + "probability": 0.1838 + }, + { + "start": 11739.2, + "end": 11739.56, + "probability": 0.2343 + }, + { + "start": 11740.02, + "end": 11741.68, + "probability": 0.3435 + }, + { + "start": 11742.28, + "end": 11742.94, + "probability": 0.0829 + }, + { + "start": 11743.78, + "end": 11744.84, + "probability": 0.1081 + }, + { + "start": 11744.84, + "end": 11748.36, + "probability": 0.0591 + }, + { + "start": 11748.36, + "end": 11752.22, + "probability": 0.0494 + }, + { + "start": 11752.76, + "end": 11752.86, + "probability": 0.2559 + }, + { + "start": 11753.67, + "end": 11758.36, + "probability": 0.0274 + }, + { + "start": 11761.34, + "end": 11764.32, + "probability": 0.2124 + }, + { + "start": 11764.32, + "end": 11765.18, + "probability": 0.585 + }, + { + "start": 11766.8, + "end": 11769.404, + "probability": 0.0 + }, + { + "start": 11769.404, + "end": 11769.404, + "probability": 0.0 + }, + { + "start": 11769.404, + "end": 11769.404, + "probability": 0.0 + }, + { + "start": 11769.404, + "end": 11769.404, + "probability": 0.0 + }, + { + "start": 11769.404, + "end": 11769.404, + "probability": 0.0 + }, + { + "start": 11769.404, + "end": 11769.404, + "probability": 0.0 + }, + { + "start": 11769.404, + "end": 11769.404, + "probability": 0.0 + } + ], + "segments_count": 4226, + "words_count": 20889, + "avg_words_per_segment": 4.943, + "avg_segment_duration": 1.8849, + "avg_words_per_minute": 106.4914, + "plenum_id": "2120", + "duration": 11769.4, + "title": null, + "plenum_date": "2009-05-25" +} \ No newline at end of file