diff --git "a/25192/metadata.json" "b/25192/metadata.json" new file mode 100644--- /dev/null +++ "b/25192/metadata.json" @@ -0,0 +1,18472 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "25192", + "quality_score": 0.901, + "per_segment_quality_scores": [ + { + "start": 20.88, + "end": 23.22, + "probability": 0.5279 + }, + { + "start": 24.36, + "end": 26.88, + "probability": 0.9344 + }, + { + "start": 27.66, + "end": 28.94, + "probability": 0.8442 + }, + { + "start": 30.2, + "end": 31.74, + "probability": 0.5276 + }, + { + "start": 34.38, + "end": 38.7, + "probability": 0.386 + }, + { + "start": 39.44, + "end": 42.06, + "probability": 0.9954 + }, + { + "start": 42.64, + "end": 44.72, + "probability": 0.618 + }, + { + "start": 45.28, + "end": 47.06, + "probability": 0.9592 + }, + { + "start": 47.54, + "end": 48.54, + "probability": 0.0867 + }, + { + "start": 48.72, + "end": 49.18, + "probability": 0.7548 + }, + { + "start": 49.66, + "end": 52.26, + "probability": 0.9501 + }, + { + "start": 52.34, + "end": 53.78, + "probability": 0.8942 + }, + { + "start": 54.52, + "end": 54.98, + "probability": 0.8985 + }, + { + "start": 55.86, + "end": 60.64, + "probability": 0.2449 + }, + { + "start": 60.88, + "end": 60.88, + "probability": 0.1883 + }, + { + "start": 60.88, + "end": 60.88, + "probability": 0.0189 + }, + { + "start": 60.88, + "end": 62.32, + "probability": 0.7903 + }, + { + "start": 62.82, + "end": 65.2, + "probability": 0.9116 + }, + { + "start": 65.5, + "end": 66.2, + "probability": 0.1394 + }, + { + "start": 66.4, + "end": 67.2, + "probability": 0.6893 + }, + { + "start": 67.3, + "end": 67.8, + "probability": 0.6463 + }, + { + "start": 68.0, + "end": 69.72, + "probability": 0.9883 + }, + { + "start": 70.54, + "end": 73.96, + "probability": 0.998 + }, + { + "start": 74.52, + "end": 75.2, + "probability": 0.7451 + }, + { + "start": 75.7, + "end": 75.96, + "probability": 0.2259 + }, + { + "start": 75.96, + "end": 78.45, + "probability": 0.5282 + }, + { + "start": 78.64, + "end": 79.14, + "probability": 0.7367 + }, + { + "start": 79.4, + "end": 83.16, + "probability": 0.3753 + }, + { + "start": 84.38, + "end": 86.56, + "probability": 0.8538 + }, + { + "start": 88.72, + "end": 89.82, + "probability": 0.9511 + }, + { + "start": 89.94, + "end": 91.32, + "probability": 0.9012 + }, + { + "start": 91.38, + "end": 93.74, + "probability": 0.9647 + }, + { + "start": 94.28, + "end": 98.64, + "probability": 0.9902 + }, + { + "start": 99.14, + "end": 101.42, + "probability": 0.9936 + }, + { + "start": 101.94, + "end": 105.26, + "probability": 0.9995 + }, + { + "start": 105.76, + "end": 105.96, + "probability": 0.8873 + }, + { + "start": 106.54, + "end": 107.88, + "probability": 0.8778 + }, + { + "start": 108.02, + "end": 109.26, + "probability": 0.9389 + }, + { + "start": 109.8, + "end": 111.26, + "probability": 0.9839 + }, + { + "start": 112.38, + "end": 112.64, + "probability": 0.7816 + }, + { + "start": 114.54, + "end": 118.48, + "probability": 0.9674 + }, + { + "start": 119.64, + "end": 123.0, + "probability": 0.8721 + }, + { + "start": 123.56, + "end": 126.9, + "probability": 0.9782 + }, + { + "start": 127.42, + "end": 134.68, + "probability": 0.9359 + }, + { + "start": 134.74, + "end": 136.2, + "probability": 0.9089 + }, + { + "start": 136.98, + "end": 137.02, + "probability": 0.1863 + }, + { + "start": 137.02, + "end": 141.2, + "probability": 0.9884 + }, + { + "start": 141.4, + "end": 142.18, + "probability": 0.5967 + }, + { + "start": 143.52, + "end": 144.6, + "probability": 0.0543 + }, + { + "start": 144.6, + "end": 145.3, + "probability": 0.2822 + }, + { + "start": 145.64, + "end": 147.38, + "probability": 0.9961 + }, + { + "start": 147.38, + "end": 151.44, + "probability": 0.6352 + }, + { + "start": 151.52, + "end": 151.62, + "probability": 0.4782 + }, + { + "start": 152.38, + "end": 152.38, + "probability": 0.4775 + }, + { + "start": 152.8, + "end": 153.7, + "probability": 0.7377 + }, + { + "start": 153.74, + "end": 154.46, + "probability": 0.8888 + }, + { + "start": 154.8, + "end": 159.2, + "probability": 0.9646 + }, + { + "start": 159.88, + "end": 160.26, + "probability": 0.3599 + }, + { + "start": 160.38, + "end": 162.82, + "probability": 0.9207 + }, + { + "start": 163.3, + "end": 172.02, + "probability": 0.9944 + }, + { + "start": 172.22, + "end": 177.66, + "probability": 0.9875 + }, + { + "start": 178.24, + "end": 180.62, + "probability": 0.999 + }, + { + "start": 180.88, + "end": 182.42, + "probability": 0.9468 + }, + { + "start": 183.04, + "end": 186.22, + "probability": 0.9829 + }, + { + "start": 187.02, + "end": 189.88, + "probability": 0.9985 + }, + { + "start": 190.56, + "end": 193.64, + "probability": 0.9692 + }, + { + "start": 195.88, + "end": 199.78, + "probability": 0.9958 + }, + { + "start": 200.8, + "end": 201.32, + "probability": 0.4754 + }, + { + "start": 201.44, + "end": 201.82, + "probability": 0.76 + }, + { + "start": 202.08, + "end": 206.82, + "probability": 0.8893 + }, + { + "start": 207.44, + "end": 211.82, + "probability": 0.9905 + }, + { + "start": 213.02, + "end": 220.04, + "probability": 0.8826 + }, + { + "start": 220.04, + "end": 226.64, + "probability": 0.9885 + }, + { + "start": 227.06, + "end": 228.98, + "probability": 0.0486 + }, + { + "start": 229.64, + "end": 232.64, + "probability": 0.033 + }, + { + "start": 233.14, + "end": 233.14, + "probability": 0.1886 + }, + { + "start": 233.14, + "end": 233.14, + "probability": 0.3689 + }, + { + "start": 233.14, + "end": 233.14, + "probability": 0.5378 + }, + { + "start": 233.14, + "end": 233.14, + "probability": 0.0698 + }, + { + "start": 233.14, + "end": 235.84, + "probability": 0.8412 + }, + { + "start": 236.18, + "end": 236.78, + "probability": 0.4921 + }, + { + "start": 236.78, + "end": 237.46, + "probability": 0.8435 + }, + { + "start": 237.74, + "end": 239.08, + "probability": 0.9101 + }, + { + "start": 239.52, + "end": 241.34, + "probability": 0.9643 + }, + { + "start": 241.76, + "end": 244.94, + "probability": 0.8975 + }, + { + "start": 246.24, + "end": 247.94, + "probability": 0.4039 + }, + { + "start": 250.98, + "end": 252.73, + "probability": 0.9714 + }, + { + "start": 255.02, + "end": 257.6, + "probability": 0.861 + }, + { + "start": 258.38, + "end": 262.4, + "probability": 0.9298 + }, + { + "start": 264.88, + "end": 268.88, + "probability": 0.9937 + }, + { + "start": 269.54, + "end": 271.95, + "probability": 0.9951 + }, + { + "start": 272.7, + "end": 277.48, + "probability": 0.9893 + }, + { + "start": 279.12, + "end": 283.34, + "probability": 0.9528 + }, + { + "start": 283.34, + "end": 286.82, + "probability": 0.9705 + }, + { + "start": 287.52, + "end": 292.08, + "probability": 0.9902 + }, + { + "start": 292.54, + "end": 293.0, + "probability": 0.7535 + }, + { + "start": 295.42, + "end": 296.35, + "probability": 0.9744 + }, + { + "start": 296.78, + "end": 300.96, + "probability": 0.963 + }, + { + "start": 301.68, + "end": 303.56, + "probability": 0.877 + }, + { + "start": 304.64, + "end": 306.14, + "probability": 0.9718 + }, + { + "start": 306.74, + "end": 307.76, + "probability": 0.8532 + }, + { + "start": 308.28, + "end": 309.16, + "probability": 0.8995 + }, + { + "start": 310.74, + "end": 312.5, + "probability": 0.9916 + }, + { + "start": 313.62, + "end": 314.64, + "probability": 0.9095 + }, + { + "start": 315.46, + "end": 317.98, + "probability": 0.9419 + }, + { + "start": 319.64, + "end": 320.14, + "probability": 0.8123 + }, + { + "start": 320.22, + "end": 321.17, + "probability": 0.9204 + }, + { + "start": 321.74, + "end": 326.4, + "probability": 0.9985 + }, + { + "start": 327.86, + "end": 332.54, + "probability": 0.9984 + }, + { + "start": 334.76, + "end": 335.18, + "probability": 0.7766 + }, + { + "start": 335.54, + "end": 338.6, + "probability": 0.951 + }, + { + "start": 338.6, + "end": 338.96, + "probability": 0.8511 + }, + { + "start": 339.12, + "end": 340.7, + "probability": 0.9391 + }, + { + "start": 341.96, + "end": 346.1, + "probability": 0.9946 + }, + { + "start": 347.18, + "end": 348.1, + "probability": 0.9761 + }, + { + "start": 348.82, + "end": 349.94, + "probability": 0.9844 + }, + { + "start": 350.48, + "end": 351.56, + "probability": 0.998 + }, + { + "start": 352.16, + "end": 354.58, + "probability": 0.7564 + }, + { + "start": 355.18, + "end": 359.18, + "probability": 0.8278 + }, + { + "start": 360.12, + "end": 361.6, + "probability": 0.804 + }, + { + "start": 364.76, + "end": 369.24, + "probability": 0.987 + }, + { + "start": 370.16, + "end": 375.1, + "probability": 0.9992 + }, + { + "start": 375.9, + "end": 381.6, + "probability": 0.976 + }, + { + "start": 382.46, + "end": 386.84, + "probability": 0.9982 + }, + { + "start": 389.7, + "end": 391.1, + "probability": 0.9097 + }, + { + "start": 391.2, + "end": 391.93, + "probability": 0.9771 + }, + { + "start": 392.7, + "end": 396.3, + "probability": 0.9595 + }, + { + "start": 397.26, + "end": 402.66, + "probability": 0.9926 + }, + { + "start": 403.22, + "end": 406.84, + "probability": 0.9954 + }, + { + "start": 408.16, + "end": 408.5, + "probability": 0.868 + }, + { + "start": 408.7, + "end": 412.32, + "probability": 0.9968 + }, + { + "start": 413.24, + "end": 414.32, + "probability": 0.8433 + }, + { + "start": 414.94, + "end": 417.3, + "probability": 0.9578 + }, + { + "start": 419.32, + "end": 422.16, + "probability": 0.9723 + }, + { + "start": 423.86, + "end": 426.96, + "probability": 0.9938 + }, + { + "start": 427.56, + "end": 428.98, + "probability": 0.8914 + }, + { + "start": 429.78, + "end": 431.22, + "probability": 0.9847 + }, + { + "start": 433.6, + "end": 437.42, + "probability": 0.9978 + }, + { + "start": 438.02, + "end": 438.54, + "probability": 0.7529 + }, + { + "start": 439.78, + "end": 440.76, + "probability": 0.9731 + }, + { + "start": 441.88, + "end": 443.98, + "probability": 0.9952 + }, + { + "start": 444.58, + "end": 448.84, + "probability": 0.9922 + }, + { + "start": 451.18, + "end": 452.1, + "probability": 0.5213 + }, + { + "start": 452.24, + "end": 454.94, + "probability": 0.9718 + }, + { + "start": 455.32, + "end": 459.48, + "probability": 0.9568 + }, + { + "start": 461.0, + "end": 461.08, + "probability": 0.001 + }, + { + "start": 463.88, + "end": 464.42, + "probability": 0.1562 + }, + { + "start": 464.42, + "end": 464.58, + "probability": 0.1019 + }, + { + "start": 464.58, + "end": 465.24, + "probability": 0.2252 + }, + { + "start": 465.92, + "end": 467.24, + "probability": 0.3512 + }, + { + "start": 467.24, + "end": 467.24, + "probability": 0.0585 + }, + { + "start": 467.24, + "end": 467.24, + "probability": 0.4808 + }, + { + "start": 467.24, + "end": 467.34, + "probability": 0.3642 + }, + { + "start": 467.68, + "end": 467.98, + "probability": 0.1616 + }, + { + "start": 468.4, + "end": 470.52, + "probability": 0.9021 + }, + { + "start": 472.0, + "end": 473.68, + "probability": 0.8127 + }, + { + "start": 474.2, + "end": 475.24, + "probability": 0.6372 + }, + { + "start": 475.38, + "end": 475.92, + "probability": 0.7912 + }, + { + "start": 476.54, + "end": 476.8, + "probability": 0.0793 + }, + { + "start": 476.8, + "end": 477.3, + "probability": 0.2575 + }, + { + "start": 477.54, + "end": 478.7, + "probability": 0.5624 + }, + { + "start": 479.24, + "end": 481.08, + "probability": 0.4521 + }, + { + "start": 481.3, + "end": 482.34, + "probability": 0.8765 + }, + { + "start": 482.48, + "end": 483.32, + "probability": 0.2194 + }, + { + "start": 483.34, + "end": 485.04, + "probability": 0.796 + }, + { + "start": 485.18, + "end": 488.0, + "probability": 0.8054 + }, + { + "start": 488.84, + "end": 489.12, + "probability": 0.2961 + }, + { + "start": 489.12, + "end": 492.48, + "probability": 0.8387 + }, + { + "start": 492.52, + "end": 493.66, + "probability": 0.946 + }, + { + "start": 494.04, + "end": 494.72, + "probability": 0.7429 + }, + { + "start": 494.82, + "end": 496.06, + "probability": 0.8087 + }, + { + "start": 496.2, + "end": 497.98, + "probability": 0.9801 + }, + { + "start": 499.04, + "end": 502.98, + "probability": 0.995 + }, + { + "start": 503.08, + "end": 506.06, + "probability": 0.9978 + }, + { + "start": 508.36, + "end": 509.2, + "probability": 0.6904 + }, + { + "start": 509.48, + "end": 510.38, + "probability": 0.6096 + }, + { + "start": 510.56, + "end": 514.28, + "probability": 0.9889 + }, + { + "start": 514.76, + "end": 515.38, + "probability": 0.9426 + }, + { + "start": 515.52, + "end": 516.2, + "probability": 0.9616 + }, + { + "start": 516.48, + "end": 517.2, + "probability": 0.9672 + }, + { + "start": 517.6, + "end": 519.38, + "probability": 0.9937 + }, + { + "start": 520.3, + "end": 521.28, + "probability": 0.9004 + }, + { + "start": 522.56, + "end": 525.55, + "probability": 0.9691 + }, + { + "start": 529.06, + "end": 530.1, + "probability": 0.9471 + }, + { + "start": 532.0, + "end": 532.96, + "probability": 0.9347 + }, + { + "start": 534.3, + "end": 538.68, + "probability": 0.9947 + }, + { + "start": 538.94, + "end": 544.44, + "probability": 0.9944 + }, + { + "start": 545.14, + "end": 547.02, + "probability": 0.9443 + }, + { + "start": 547.52, + "end": 548.5, + "probability": 0.9106 + }, + { + "start": 548.68, + "end": 551.1, + "probability": 0.9569 + }, + { + "start": 551.58, + "end": 553.48, + "probability": 0.9723 + }, + { + "start": 554.62, + "end": 560.28, + "probability": 0.9956 + }, + { + "start": 560.86, + "end": 564.46, + "probability": 0.9946 + }, + { + "start": 566.42, + "end": 570.58, + "probability": 0.9967 + }, + { + "start": 571.44, + "end": 575.88, + "probability": 0.99 + }, + { + "start": 577.88, + "end": 578.48, + "probability": 0.9191 + }, + { + "start": 578.54, + "end": 582.22, + "probability": 0.9956 + }, + { + "start": 582.24, + "end": 587.12, + "probability": 0.998 + }, + { + "start": 587.86, + "end": 588.68, + "probability": 0.6833 + }, + { + "start": 590.46, + "end": 590.84, + "probability": 0.8247 + }, + { + "start": 591.62, + "end": 594.68, + "probability": 0.9975 + }, + { + "start": 594.68, + "end": 599.16, + "probability": 0.996 + }, + { + "start": 599.74, + "end": 600.56, + "probability": 0.8687 + }, + { + "start": 602.36, + "end": 605.78, + "probability": 0.9385 + }, + { + "start": 607.22, + "end": 608.98, + "probability": 0.8439 + }, + { + "start": 609.54, + "end": 610.6, + "probability": 0.9476 + }, + { + "start": 611.3, + "end": 613.1, + "probability": 0.9648 + }, + { + "start": 613.96, + "end": 616.22, + "probability": 0.9106 + }, + { + "start": 617.32, + "end": 622.08, + "probability": 0.8978 + }, + { + "start": 625.9, + "end": 629.02, + "probability": 0.9778 + }, + { + "start": 630.7, + "end": 634.34, + "probability": 0.9709 + }, + { + "start": 634.9, + "end": 636.2, + "probability": 0.8406 + }, + { + "start": 637.28, + "end": 639.1, + "probability": 0.9961 + }, + { + "start": 640.52, + "end": 641.8, + "probability": 0.9912 + }, + { + "start": 642.54, + "end": 645.1, + "probability": 0.9922 + }, + { + "start": 646.5, + "end": 647.98, + "probability": 0.9971 + }, + { + "start": 648.56, + "end": 651.28, + "probability": 0.9282 + }, + { + "start": 652.38, + "end": 653.6, + "probability": 0.9421 + }, + { + "start": 654.46, + "end": 655.89, + "probability": 0.6818 + }, + { + "start": 656.16, + "end": 657.66, + "probability": 0.6964 + }, + { + "start": 657.96, + "end": 659.26, + "probability": 0.8862 + }, + { + "start": 659.6, + "end": 660.92, + "probability": 0.9851 + }, + { + "start": 661.26, + "end": 662.36, + "probability": 0.7405 + }, + { + "start": 663.82, + "end": 665.2, + "probability": 0.7109 + }, + { + "start": 665.24, + "end": 669.2, + "probability": 0.9795 + }, + { + "start": 670.36, + "end": 672.2, + "probability": 0.9815 + }, + { + "start": 673.22, + "end": 675.04, + "probability": 0.9878 + }, + { + "start": 675.98, + "end": 680.76, + "probability": 0.9805 + }, + { + "start": 680.76, + "end": 685.78, + "probability": 0.9856 + }, + { + "start": 686.4, + "end": 690.46, + "probability": 0.8035 + }, + { + "start": 691.48, + "end": 693.22, + "probability": 0.7951 + }, + { + "start": 693.24, + "end": 694.3, + "probability": 0.9139 + }, + { + "start": 694.76, + "end": 695.82, + "probability": 0.945 + }, + { + "start": 697.8, + "end": 700.02, + "probability": 0.7528 + }, + { + "start": 700.54, + "end": 702.66, + "probability": 0.9973 + }, + { + "start": 702.66, + "end": 706.62, + "probability": 0.9772 + }, + { + "start": 707.9, + "end": 708.98, + "probability": 0.6884 + }, + { + "start": 709.74, + "end": 711.8, + "probability": 0.945 + }, + { + "start": 712.24, + "end": 716.42, + "probability": 0.7826 + }, + { + "start": 717.56, + "end": 721.46, + "probability": 0.9983 + }, + { + "start": 721.84, + "end": 724.8, + "probability": 0.9995 + }, + { + "start": 725.96, + "end": 726.78, + "probability": 0.7148 + }, + { + "start": 726.88, + "end": 727.66, + "probability": 0.7621 + }, + { + "start": 728.14, + "end": 734.58, + "probability": 0.9373 + }, + { + "start": 735.76, + "end": 738.0, + "probability": 0.7847 + }, + { + "start": 739.18, + "end": 744.14, + "probability": 0.9862 + }, + { + "start": 745.12, + "end": 746.92, + "probability": 0.9403 + }, + { + "start": 747.34, + "end": 751.62, + "probability": 0.9918 + }, + { + "start": 752.66, + "end": 756.82, + "probability": 0.9906 + }, + { + "start": 758.04, + "end": 759.1, + "probability": 0.9771 + }, + { + "start": 760.88, + "end": 767.32, + "probability": 0.9961 + }, + { + "start": 768.84, + "end": 774.22, + "probability": 0.9846 + }, + { + "start": 774.92, + "end": 777.36, + "probability": 0.9937 + }, + { + "start": 777.76, + "end": 781.12, + "probability": 0.9888 + }, + { + "start": 781.98, + "end": 783.02, + "probability": 0.9845 + }, + { + "start": 785.78, + "end": 786.65, + "probability": 0.6062 + }, + { + "start": 786.82, + "end": 790.66, + "probability": 0.8974 + }, + { + "start": 791.58, + "end": 794.78, + "probability": 0.9963 + }, + { + "start": 794.78, + "end": 799.58, + "probability": 0.9885 + }, + { + "start": 801.6, + "end": 805.38, + "probability": 0.9991 + }, + { + "start": 807.26, + "end": 807.94, + "probability": 0.8617 + }, + { + "start": 808.6, + "end": 809.46, + "probability": 0.7784 + }, + { + "start": 809.9, + "end": 812.6, + "probability": 0.9903 + }, + { + "start": 814.02, + "end": 817.0, + "probability": 0.9761 + }, + { + "start": 817.6, + "end": 819.72, + "probability": 0.9939 + }, + { + "start": 821.18, + "end": 822.54, + "probability": 0.6805 + }, + { + "start": 823.1, + "end": 825.24, + "probability": 0.8087 + }, + { + "start": 825.78, + "end": 829.0, + "probability": 0.9957 + }, + { + "start": 829.52, + "end": 830.34, + "probability": 0.842 + }, + { + "start": 834.8, + "end": 836.8, + "probability": 0.9845 + }, + { + "start": 837.84, + "end": 840.78, + "probability": 0.9474 + }, + { + "start": 841.94, + "end": 843.3, + "probability": 0.9878 + }, + { + "start": 844.48, + "end": 846.32, + "probability": 0.9207 + }, + { + "start": 847.38, + "end": 850.28, + "probability": 0.9578 + }, + { + "start": 853.52, + "end": 856.06, + "probability": 0.5541 + }, + { + "start": 856.74, + "end": 858.06, + "probability": 0.9849 + }, + { + "start": 858.58, + "end": 859.42, + "probability": 0.7084 + }, + { + "start": 859.74, + "end": 860.8, + "probability": 0.9829 + }, + { + "start": 861.48, + "end": 864.12, + "probability": 0.9963 + }, + { + "start": 865.04, + "end": 865.7, + "probability": 0.7281 + }, + { + "start": 866.38, + "end": 869.28, + "probability": 0.7763 + }, + { + "start": 869.82, + "end": 871.86, + "probability": 0.8675 + }, + { + "start": 872.48, + "end": 875.48, + "probability": 0.9365 + }, + { + "start": 876.56, + "end": 879.24, + "probability": 0.9884 + }, + { + "start": 879.24, + "end": 882.78, + "probability": 0.9974 + }, + { + "start": 884.8, + "end": 888.02, + "probability": 0.9375 + }, + { + "start": 889.2, + "end": 889.76, + "probability": 0.2947 + }, + { + "start": 890.58, + "end": 891.82, + "probability": 0.9035 + }, + { + "start": 893.1, + "end": 894.28, + "probability": 0.8623 + }, + { + "start": 894.82, + "end": 896.44, + "probability": 0.9799 + }, + { + "start": 898.86, + "end": 899.89, + "probability": 0.9738 + }, + { + "start": 900.4, + "end": 902.92, + "probability": 0.8879 + }, + { + "start": 903.84, + "end": 905.54, + "probability": 0.9885 + }, + { + "start": 906.78, + "end": 910.02, + "probability": 0.8022 + }, + { + "start": 910.74, + "end": 912.44, + "probability": 0.805 + }, + { + "start": 912.98, + "end": 914.48, + "probability": 0.6927 + }, + { + "start": 915.36, + "end": 919.06, + "probability": 0.93 + }, + { + "start": 919.8, + "end": 923.44, + "probability": 0.9901 + }, + { + "start": 924.98, + "end": 927.2, + "probability": 0.9947 + }, + { + "start": 928.22, + "end": 932.08, + "probability": 0.948 + }, + { + "start": 933.22, + "end": 935.92, + "probability": 0.9845 + }, + { + "start": 936.94, + "end": 940.06, + "probability": 0.9761 + }, + { + "start": 940.8, + "end": 944.04, + "probability": 0.9559 + }, + { + "start": 944.58, + "end": 945.32, + "probability": 0.9906 + }, + { + "start": 946.14, + "end": 947.52, + "probability": 0.7481 + }, + { + "start": 948.08, + "end": 949.06, + "probability": 0.9462 + }, + { + "start": 949.88, + "end": 953.36, + "probability": 0.9521 + }, + { + "start": 954.08, + "end": 955.44, + "probability": 0.9678 + }, + { + "start": 957.64, + "end": 959.42, + "probability": 0.8932 + }, + { + "start": 960.4, + "end": 963.5, + "probability": 0.972 + }, + { + "start": 963.5, + "end": 966.0, + "probability": 0.994 + }, + { + "start": 967.54, + "end": 968.92, + "probability": 0.791 + }, + { + "start": 970.36, + "end": 972.54, + "probability": 0.995 + }, + { + "start": 973.56, + "end": 975.66, + "probability": 0.9935 + }, + { + "start": 976.64, + "end": 977.22, + "probability": 0.9876 + }, + { + "start": 978.28, + "end": 982.42, + "probability": 0.9949 + }, + { + "start": 983.73, + "end": 989.48, + "probability": 0.999 + }, + { + "start": 990.3, + "end": 993.54, + "probability": 0.9941 + }, + { + "start": 997.82, + "end": 999.56, + "probability": 0.9728 + }, + { + "start": 1000.22, + "end": 1003.64, + "probability": 0.9961 + }, + { + "start": 1004.3, + "end": 1005.12, + "probability": 0.8199 + }, + { + "start": 1006.16, + "end": 1007.96, + "probability": 0.8142 + }, + { + "start": 1009.22, + "end": 1013.38, + "probability": 0.9756 + }, + { + "start": 1017.34, + "end": 1021.98, + "probability": 0.9648 + }, + { + "start": 1022.52, + "end": 1025.7, + "probability": 0.9731 + }, + { + "start": 1026.56, + "end": 1027.52, + "probability": 0.9459 + }, + { + "start": 1028.08, + "end": 1033.34, + "probability": 0.9919 + }, + { + "start": 1034.34, + "end": 1036.06, + "probability": 0.9993 + }, + { + "start": 1036.84, + "end": 1038.64, + "probability": 0.9983 + }, + { + "start": 1039.04, + "end": 1041.26, + "probability": 0.9586 + }, + { + "start": 1041.64, + "end": 1042.42, + "probability": 0.992 + }, + { + "start": 1042.54, + "end": 1043.86, + "probability": 0.9606 + }, + { + "start": 1044.9, + "end": 1047.7, + "probability": 0.7678 + }, + { + "start": 1048.42, + "end": 1051.12, + "probability": 0.9725 + }, + { + "start": 1051.78, + "end": 1056.62, + "probability": 0.9945 + }, + { + "start": 1057.02, + "end": 1059.78, + "probability": 0.8181 + }, + { + "start": 1060.38, + "end": 1062.48, + "probability": 0.8046 + }, + { + "start": 1062.94, + "end": 1067.9, + "probability": 0.967 + }, + { + "start": 1068.8, + "end": 1071.64, + "probability": 0.922 + }, + { + "start": 1074.12, + "end": 1076.86, + "probability": 0.9904 + }, + { + "start": 1077.76, + "end": 1079.58, + "probability": 0.7916 + }, + { + "start": 1079.62, + "end": 1080.68, + "probability": 0.8694 + }, + { + "start": 1081.04, + "end": 1082.52, + "probability": 0.8543 + }, + { + "start": 1084.78, + "end": 1089.24, + "probability": 0.8403 + }, + { + "start": 1090.04, + "end": 1091.48, + "probability": 0.747 + }, + { + "start": 1091.54, + "end": 1092.43, + "probability": 0.9044 + }, + { + "start": 1092.9, + "end": 1094.5, + "probability": 0.9683 + }, + { + "start": 1095.46, + "end": 1099.64, + "probability": 0.9843 + }, + { + "start": 1100.82, + "end": 1103.66, + "probability": 0.9983 + }, + { + "start": 1104.26, + "end": 1104.84, + "probability": 0.9314 + }, + { + "start": 1106.64, + "end": 1111.24, + "probability": 0.9825 + }, + { + "start": 1112.2, + "end": 1115.96, + "probability": 0.898 + }, + { + "start": 1116.48, + "end": 1117.38, + "probability": 0.5802 + }, + { + "start": 1118.62, + "end": 1122.04, + "probability": 0.9927 + }, + { + "start": 1122.92, + "end": 1124.58, + "probability": 0.8647 + }, + { + "start": 1125.5, + "end": 1129.14, + "probability": 0.8359 + }, + { + "start": 1130.8, + "end": 1133.96, + "probability": 0.9883 + }, + { + "start": 1133.96, + "end": 1137.88, + "probability": 0.9905 + }, + { + "start": 1138.48, + "end": 1139.66, + "probability": 0.9994 + }, + { + "start": 1140.5, + "end": 1146.22, + "probability": 0.9943 + }, + { + "start": 1146.22, + "end": 1151.14, + "probability": 0.9988 + }, + { + "start": 1151.66, + "end": 1154.7, + "probability": 0.9974 + }, + { + "start": 1155.84, + "end": 1157.02, + "probability": 0.9663 + }, + { + "start": 1157.62, + "end": 1159.76, + "probability": 0.9973 + }, + { + "start": 1159.76, + "end": 1164.3, + "probability": 0.8649 + }, + { + "start": 1164.88, + "end": 1169.32, + "probability": 0.9975 + }, + { + "start": 1169.32, + "end": 1172.8, + "probability": 0.9998 + }, + { + "start": 1175.28, + "end": 1176.28, + "probability": 0.9528 + }, + { + "start": 1176.38, + "end": 1180.54, + "probability": 0.9957 + }, + { + "start": 1182.12, + "end": 1183.1, + "probability": 0.9714 + }, + { + "start": 1183.2, + "end": 1186.3, + "probability": 0.962 + }, + { + "start": 1187.92, + "end": 1188.24, + "probability": 0.7769 + }, + { + "start": 1188.34, + "end": 1188.92, + "probability": 0.9673 + }, + { + "start": 1188.98, + "end": 1193.12, + "probability": 0.9817 + }, + { + "start": 1194.4, + "end": 1197.22, + "probability": 0.9611 + }, + { + "start": 1198.4, + "end": 1202.96, + "probability": 0.9948 + }, + { + "start": 1203.14, + "end": 1207.52, + "probability": 0.9989 + }, + { + "start": 1208.5, + "end": 1213.2, + "probability": 0.9766 + }, + { + "start": 1216.36, + "end": 1218.7, + "probability": 0.5077 + }, + { + "start": 1219.42, + "end": 1220.5, + "probability": 0.7368 + }, + { + "start": 1221.56, + "end": 1223.14, + "probability": 0.942 + }, + { + "start": 1223.64, + "end": 1226.56, + "probability": 0.8936 + }, + { + "start": 1228.34, + "end": 1234.54, + "probability": 0.9856 + }, + { + "start": 1235.54, + "end": 1239.02, + "probability": 0.9982 + }, + { + "start": 1239.64, + "end": 1242.52, + "probability": 0.9889 + }, + { + "start": 1243.76, + "end": 1247.52, + "probability": 0.999 + }, + { + "start": 1247.52, + "end": 1251.04, + "probability": 0.9743 + }, + { + "start": 1253.02, + "end": 1255.2, + "probability": 0.8609 + }, + { + "start": 1256.06, + "end": 1257.21, + "probability": 0.9609 + }, + { + "start": 1257.38, + "end": 1260.7, + "probability": 0.991 + }, + { + "start": 1261.14, + "end": 1263.88, + "probability": 0.9935 + }, + { + "start": 1265.24, + "end": 1265.92, + "probability": 0.7433 + }, + { + "start": 1266.54, + "end": 1268.02, + "probability": 0.7157 + }, + { + "start": 1268.68, + "end": 1270.12, + "probability": 0.8658 + }, + { + "start": 1270.6, + "end": 1271.4, + "probability": 0.9258 + }, + { + "start": 1271.76, + "end": 1273.3, + "probability": 0.9473 + }, + { + "start": 1273.5, + "end": 1278.0, + "probability": 0.9935 + }, + { + "start": 1278.86, + "end": 1285.32, + "probability": 0.9534 + }, + { + "start": 1286.7, + "end": 1286.86, + "probability": 0.5276 + }, + { + "start": 1287.8, + "end": 1288.52, + "probability": 0.8808 + }, + { + "start": 1289.12, + "end": 1294.7, + "probability": 0.9811 + }, + { + "start": 1295.74, + "end": 1298.88, + "probability": 0.9852 + }, + { + "start": 1299.72, + "end": 1301.92, + "probability": 0.861 + }, + { + "start": 1302.94, + "end": 1307.72, + "probability": 0.988 + }, + { + "start": 1308.3, + "end": 1310.14, + "probability": 0.9971 + }, + { + "start": 1310.9, + "end": 1312.28, + "probability": 0.9478 + }, + { + "start": 1312.36, + "end": 1317.16, + "probability": 0.9906 + }, + { + "start": 1317.86, + "end": 1318.52, + "probability": 0.9489 + }, + { + "start": 1322.88, + "end": 1323.85, + "probability": 0.8925 + }, + { + "start": 1323.94, + "end": 1328.34, + "probability": 0.7857 + }, + { + "start": 1329.04, + "end": 1332.0, + "probability": 0.8591 + }, + { + "start": 1334.44, + "end": 1337.66, + "probability": 0.8245 + }, + { + "start": 1338.48, + "end": 1343.22, + "probability": 0.9965 + }, + { + "start": 1344.06, + "end": 1345.7, + "probability": 0.9922 + }, + { + "start": 1346.24, + "end": 1350.1, + "probability": 0.971 + }, + { + "start": 1350.58, + "end": 1355.5, + "probability": 0.9803 + }, + { + "start": 1356.34, + "end": 1359.18, + "probability": 0.9912 + }, + { + "start": 1359.68, + "end": 1360.28, + "probability": 0.93 + }, + { + "start": 1360.82, + "end": 1366.84, + "probability": 0.7555 + }, + { + "start": 1366.98, + "end": 1370.56, + "probability": 0.9735 + }, + { + "start": 1370.66, + "end": 1373.98, + "probability": 0.9077 + }, + { + "start": 1382.66, + "end": 1385.58, + "probability": 0.7981 + }, + { + "start": 1386.52, + "end": 1388.04, + "probability": 0.5795 + }, + { + "start": 1388.52, + "end": 1388.86, + "probability": 0.9409 + }, + { + "start": 1389.24, + "end": 1390.4, + "probability": 0.685 + }, + { + "start": 1391.06, + "end": 1392.64, + "probability": 0.7383 + }, + { + "start": 1394.18, + "end": 1394.82, + "probability": 0.7548 + }, + { + "start": 1395.56, + "end": 1396.28, + "probability": 0.958 + }, + { + "start": 1397.1, + "end": 1399.06, + "probability": 0.9311 + }, + { + "start": 1401.04, + "end": 1404.58, + "probability": 0.73 + }, + { + "start": 1405.28, + "end": 1405.74, + "probability": 0.9102 + }, + { + "start": 1407.22, + "end": 1408.5, + "probability": 0.8679 + }, + { + "start": 1408.78, + "end": 1409.74, + "probability": 0.8662 + }, + { + "start": 1409.88, + "end": 1411.58, + "probability": 0.9472 + }, + { + "start": 1412.12, + "end": 1413.44, + "probability": 0.9494 + }, + { + "start": 1414.12, + "end": 1417.78, + "probability": 0.9861 + }, + { + "start": 1417.78, + "end": 1422.4, + "probability": 0.9926 + }, + { + "start": 1422.86, + "end": 1427.76, + "probability": 0.9871 + }, + { + "start": 1429.16, + "end": 1432.3, + "probability": 0.7845 + }, + { + "start": 1432.9, + "end": 1434.16, + "probability": 0.9907 + }, + { + "start": 1435.38, + "end": 1438.02, + "probability": 0.895 + }, + { + "start": 1438.88, + "end": 1441.22, + "probability": 0.9903 + }, + { + "start": 1442.06, + "end": 1443.22, + "probability": 0.7927 + }, + { + "start": 1444.18, + "end": 1448.72, + "probability": 0.986 + }, + { + "start": 1449.6, + "end": 1450.1, + "probability": 0.5048 + }, + { + "start": 1450.46, + "end": 1452.37, + "probability": 0.8524 + }, + { + "start": 1452.79, + "end": 1456.56, + "probability": 0.9316 + }, + { + "start": 1457.62, + "end": 1459.22, + "probability": 0.9906 + }, + { + "start": 1459.7, + "end": 1460.78, + "probability": 0.2222 + }, + { + "start": 1462.96, + "end": 1463.02, + "probability": 0.0881 + }, + { + "start": 1463.02, + "end": 1463.02, + "probability": 0.2932 + }, + { + "start": 1463.02, + "end": 1463.68, + "probability": 0.5529 + }, + { + "start": 1464.88, + "end": 1466.73, + "probability": 0.9424 + }, + { + "start": 1467.32, + "end": 1468.5, + "probability": 0.8706 + }, + { + "start": 1468.98, + "end": 1470.06, + "probability": 0.948 + }, + { + "start": 1471.36, + "end": 1472.32, + "probability": 0.8443 + }, + { + "start": 1472.38, + "end": 1476.18, + "probability": 0.9636 + }, + { + "start": 1476.6, + "end": 1477.9, + "probability": 0.936 + }, + { + "start": 1478.48, + "end": 1480.92, + "probability": 0.9635 + }, + { + "start": 1481.56, + "end": 1482.62, + "probability": 0.9235 + }, + { + "start": 1483.8, + "end": 1484.7, + "probability": 0.8917 + }, + { + "start": 1484.82, + "end": 1489.0, + "probability": 0.9443 + }, + { + "start": 1489.04, + "end": 1489.88, + "probability": 0.8638 + }, + { + "start": 1489.9, + "end": 1490.86, + "probability": 0.8414 + }, + { + "start": 1491.18, + "end": 1492.1, + "probability": 0.7643 + }, + { + "start": 1492.14, + "end": 1492.92, + "probability": 0.5832 + }, + { + "start": 1492.98, + "end": 1494.24, + "probability": 0.954 + }, + { + "start": 1494.46, + "end": 1495.14, + "probability": 0.3409 + }, + { + "start": 1495.14, + "end": 1496.94, + "probability": 0.2135 + }, + { + "start": 1497.48, + "end": 1497.48, + "probability": 0.4285 + }, + { + "start": 1497.48, + "end": 1501.36, + "probability": 0.9699 + }, + { + "start": 1501.94, + "end": 1502.02, + "probability": 0.1379 + }, + { + "start": 1502.02, + "end": 1503.21, + "probability": 0.7085 + }, + { + "start": 1503.38, + "end": 1504.48, + "probability": 0.8967 + }, + { + "start": 1504.56, + "end": 1505.67, + "probability": 0.6643 + }, + { + "start": 1506.02, + "end": 1507.92, + "probability": 0.9312 + }, + { + "start": 1508.62, + "end": 1509.92, + "probability": 0.3221 + }, + { + "start": 1510.0, + "end": 1511.26, + "probability": 0.4965 + }, + { + "start": 1513.48, + "end": 1515.96, + "probability": 0.9714 + }, + { + "start": 1516.66, + "end": 1519.8, + "probability": 0.9698 + }, + { + "start": 1519.8, + "end": 1524.2, + "probability": 0.9941 + }, + { + "start": 1524.26, + "end": 1525.8, + "probability": 0.9699 + }, + { + "start": 1527.18, + "end": 1527.76, + "probability": 0.6342 + }, + { + "start": 1528.54, + "end": 1531.94, + "probability": 0.995 + }, + { + "start": 1532.52, + "end": 1535.7, + "probability": 0.9001 + }, + { + "start": 1536.22, + "end": 1537.7, + "probability": 0.8262 + }, + { + "start": 1537.98, + "end": 1540.98, + "probability": 0.972 + }, + { + "start": 1542.52, + "end": 1547.28, + "probability": 0.9989 + }, + { + "start": 1548.08, + "end": 1549.82, + "probability": 0.4772 + }, + { + "start": 1550.9, + "end": 1553.62, + "probability": 0.4124 + }, + { + "start": 1553.8, + "end": 1557.38, + "probability": 0.9801 + }, + { + "start": 1559.66, + "end": 1561.34, + "probability": 0.9922 + }, + { + "start": 1562.08, + "end": 1565.82, + "probability": 0.9976 + }, + { + "start": 1566.3, + "end": 1568.58, + "probability": 0.9829 + }, + { + "start": 1569.18, + "end": 1571.02, + "probability": 0.9511 + }, + { + "start": 1571.16, + "end": 1571.7, + "probability": 0.3997 + }, + { + "start": 1571.82, + "end": 1574.18, + "probability": 0.9733 + }, + { + "start": 1574.8, + "end": 1577.46, + "probability": 0.9956 + }, + { + "start": 1578.44, + "end": 1581.54, + "probability": 0.9916 + }, + { + "start": 1581.54, + "end": 1584.6, + "probability": 0.7678 + }, + { + "start": 1584.7, + "end": 1585.66, + "probability": 0.9323 + }, + { + "start": 1586.28, + "end": 1586.92, + "probability": 0.5015 + }, + { + "start": 1587.74, + "end": 1589.66, + "probability": 0.9966 + }, + { + "start": 1590.88, + "end": 1591.44, + "probability": 0.5305 + }, + { + "start": 1592.48, + "end": 1595.82, + "probability": 0.9744 + }, + { + "start": 1596.42, + "end": 1598.26, + "probability": 0.9897 + }, + { + "start": 1598.36, + "end": 1600.94, + "probability": 0.9691 + }, + { + "start": 1601.36, + "end": 1605.36, + "probability": 0.99 + }, + { + "start": 1605.88, + "end": 1613.08, + "probability": 0.996 + }, + { + "start": 1613.62, + "end": 1614.8, + "probability": 0.9898 + }, + { + "start": 1615.58, + "end": 1617.56, + "probability": 0.959 + }, + { + "start": 1618.02, + "end": 1621.42, + "probability": 0.9599 + }, + { + "start": 1622.2, + "end": 1628.24, + "probability": 0.9951 + }, + { + "start": 1629.04, + "end": 1632.94, + "probability": 0.957 + }, + { + "start": 1633.4, + "end": 1634.06, + "probability": 0.6471 + }, + { + "start": 1634.18, + "end": 1635.66, + "probability": 0.9273 + }, + { + "start": 1635.72, + "end": 1640.04, + "probability": 0.9727 + }, + { + "start": 1641.56, + "end": 1644.3, + "probability": 0.9778 + }, + { + "start": 1644.3, + "end": 1649.0, + "probability": 0.9932 + }, + { + "start": 1649.2, + "end": 1650.0, + "probability": 0.9548 + }, + { + "start": 1650.9, + "end": 1654.46, + "probability": 0.8871 + }, + { + "start": 1654.9, + "end": 1659.34, + "probability": 0.8621 + }, + { + "start": 1660.64, + "end": 1661.72, + "probability": 0.9567 + }, + { + "start": 1662.26, + "end": 1662.48, + "probability": 0.8319 + }, + { + "start": 1662.84, + "end": 1663.16, + "probability": 0.6038 + }, + { + "start": 1663.42, + "end": 1667.37, + "probability": 0.7843 + }, + { + "start": 1668.32, + "end": 1674.16, + "probability": 0.9539 + }, + { + "start": 1674.16, + "end": 1677.92, + "probability": 0.9992 + }, + { + "start": 1679.08, + "end": 1681.32, + "probability": 0.9888 + }, + { + "start": 1681.68, + "end": 1686.56, + "probability": 0.9949 + }, + { + "start": 1687.46, + "end": 1688.26, + "probability": 0.9656 + }, + { + "start": 1688.36, + "end": 1688.96, + "probability": 0.6122 + }, + { + "start": 1689.02, + "end": 1689.42, + "probability": 0.7949 + }, + { + "start": 1689.46, + "end": 1690.54, + "probability": 0.7018 + }, + { + "start": 1691.14, + "end": 1695.08, + "probability": 0.983 + }, + { + "start": 1695.66, + "end": 1696.42, + "probability": 0.9437 + }, + { + "start": 1696.94, + "end": 1697.76, + "probability": 0.9443 + }, + { + "start": 1699.14, + "end": 1701.8, + "probability": 0.9977 + }, + { + "start": 1702.48, + "end": 1703.7, + "probability": 0.7643 + }, + { + "start": 1704.2, + "end": 1705.24, + "probability": 0.7909 + }, + { + "start": 1705.6, + "end": 1708.92, + "probability": 0.9962 + }, + { + "start": 1709.92, + "end": 1713.15, + "probability": 0.9894 + }, + { + "start": 1713.66, + "end": 1716.94, + "probability": 0.947 + }, + { + "start": 1718.82, + "end": 1721.76, + "probability": 0.9743 + }, + { + "start": 1722.4, + "end": 1727.52, + "probability": 0.9976 + }, + { + "start": 1727.52, + "end": 1731.4, + "probability": 0.9976 + }, + { + "start": 1732.76, + "end": 1733.82, + "probability": 0.7346 + }, + { + "start": 1734.8, + "end": 1734.8, + "probability": 0.0751 + }, + { + "start": 1734.8, + "end": 1736.74, + "probability": 0.6743 + }, + { + "start": 1736.74, + "end": 1737.16, + "probability": 0.3278 + }, + { + "start": 1737.58, + "end": 1737.96, + "probability": 0.3618 + }, + { + "start": 1737.96, + "end": 1738.74, + "probability": 0.6489 + }, + { + "start": 1738.8, + "end": 1739.6, + "probability": 0.9038 + }, + { + "start": 1739.76, + "end": 1741.3, + "probability": 0.7124 + }, + { + "start": 1741.48, + "end": 1743.14, + "probability": 0.871 + }, + { + "start": 1744.52, + "end": 1746.82, + "probability": 0.6178 + }, + { + "start": 1746.86, + "end": 1747.24, + "probability": 0.7134 + }, + { + "start": 1748.14, + "end": 1751.76, + "probability": 0.9697 + }, + { + "start": 1752.58, + "end": 1755.56, + "probability": 0.9976 + }, + { + "start": 1756.1, + "end": 1757.7, + "probability": 0.8699 + }, + { + "start": 1759.08, + "end": 1761.95, + "probability": 0.5585 + }, + { + "start": 1762.18, + "end": 1763.68, + "probability": 0.9752 + }, + { + "start": 1763.74, + "end": 1765.18, + "probability": 0.9774 + }, + { + "start": 1765.7, + "end": 1767.68, + "probability": 0.9953 + }, + { + "start": 1767.68, + "end": 1768.5, + "probability": 0.8327 + }, + { + "start": 1768.82, + "end": 1771.36, + "probability": 0.8146 + }, + { + "start": 1771.66, + "end": 1772.2, + "probability": 0.6553 + }, + { + "start": 1772.2, + "end": 1773.1, + "probability": 0.894 + }, + { + "start": 1773.32, + "end": 1776.72, + "probability": 0.9595 + }, + { + "start": 1776.82, + "end": 1777.16, + "probability": 0.0601 + }, + { + "start": 1777.16, + "end": 1780.04, + "probability": 0.9872 + }, + { + "start": 1780.3, + "end": 1780.94, + "probability": 0.8656 + }, + { + "start": 1781.64, + "end": 1783.1, + "probability": 0.9368 + }, + { + "start": 1783.32, + "end": 1788.7, + "probability": 0.9875 + }, + { + "start": 1789.36, + "end": 1791.74, + "probability": 0.9759 + }, + { + "start": 1791.98, + "end": 1795.32, + "probability": 0.8427 + }, + { + "start": 1795.36, + "end": 1796.92, + "probability": 0.9836 + }, + { + "start": 1797.22, + "end": 1798.04, + "probability": 0.9756 + }, + { + "start": 1799.02, + "end": 1804.94, + "probability": 0.9845 + }, + { + "start": 1805.52, + "end": 1808.7, + "probability": 0.9411 + }, + { + "start": 1808.7, + "end": 1811.98, + "probability": 0.9965 + }, + { + "start": 1812.24, + "end": 1816.38, + "probability": 0.9895 + }, + { + "start": 1817.08, + "end": 1818.18, + "probability": 0.8227 + }, + { + "start": 1818.24, + "end": 1820.26, + "probability": 0.9771 + }, + { + "start": 1820.88, + "end": 1822.84, + "probability": 0.9956 + }, + { + "start": 1823.56, + "end": 1830.84, + "probability": 0.9834 + }, + { + "start": 1831.24, + "end": 1835.44, + "probability": 0.9888 + }, + { + "start": 1836.58, + "end": 1838.46, + "probability": 0.9604 + }, + { + "start": 1838.5, + "end": 1842.76, + "probability": 0.9629 + }, + { + "start": 1843.68, + "end": 1846.66, + "probability": 0.9939 + }, + { + "start": 1847.78, + "end": 1848.24, + "probability": 0.8496 + }, + { + "start": 1848.46, + "end": 1850.4, + "probability": 0.939 + }, + { + "start": 1850.78, + "end": 1851.69, + "probability": 0.9673 + }, + { + "start": 1853.22, + "end": 1853.22, + "probability": 0.1141 + }, + { + "start": 1853.22, + "end": 1856.54, + "probability": 0.9878 + }, + { + "start": 1856.54, + "end": 1859.48, + "probability": 0.9791 + }, + { + "start": 1859.68, + "end": 1860.54, + "probability": 0.5356 + }, + { + "start": 1861.38, + "end": 1865.48, + "probability": 0.9915 + }, + { + "start": 1865.8, + "end": 1868.82, + "probability": 0.9897 + }, + { + "start": 1869.36, + "end": 1870.4, + "probability": 0.9799 + }, + { + "start": 1872.14, + "end": 1873.1, + "probability": 0.8601 + }, + { + "start": 1873.18, + "end": 1873.68, + "probability": 0.6376 + }, + { + "start": 1874.02, + "end": 1874.82, + "probability": 0.6806 + }, + { + "start": 1874.94, + "end": 1875.62, + "probability": 0.6997 + }, + { + "start": 1875.8, + "end": 1877.6, + "probability": 0.9249 + }, + { + "start": 1878.44, + "end": 1881.58, + "probability": 0.9137 + }, + { + "start": 1882.26, + "end": 1884.78, + "probability": 0.9801 + }, + { + "start": 1885.26, + "end": 1887.62, + "probability": 0.9817 + }, + { + "start": 1887.8, + "end": 1890.18, + "probability": 0.9993 + }, + { + "start": 1890.42, + "end": 1891.94, + "probability": 0.9295 + }, + { + "start": 1892.8, + "end": 1894.84, + "probability": 0.8906 + }, + { + "start": 1895.62, + "end": 1897.9, + "probability": 0.999 + }, + { + "start": 1898.34, + "end": 1900.46, + "probability": 0.999 + }, + { + "start": 1900.82, + "end": 1902.92, + "probability": 0.9908 + }, + { + "start": 1904.54, + "end": 1907.9, + "probability": 0.9874 + }, + { + "start": 1908.28, + "end": 1912.0, + "probability": 0.8889 + }, + { + "start": 1912.46, + "end": 1914.92, + "probability": 0.991 + }, + { + "start": 1915.26, + "end": 1917.0, + "probability": 0.9968 + }, + { + "start": 1917.48, + "end": 1919.28, + "probability": 0.9628 + }, + { + "start": 1919.74, + "end": 1920.58, + "probability": 0.879 + }, + { + "start": 1920.8, + "end": 1924.1, + "probability": 0.9941 + }, + { + "start": 1924.48, + "end": 1927.68, + "probability": 0.9391 + }, + { + "start": 1927.78, + "end": 1931.74, + "probability": 0.9939 + }, + { + "start": 1931.86, + "end": 1936.58, + "probability": 0.9993 + }, + { + "start": 1937.18, + "end": 1940.12, + "probability": 0.9773 + }, + { + "start": 1940.12, + "end": 1943.1, + "probability": 0.9987 + }, + { + "start": 1943.52, + "end": 1946.8, + "probability": 0.9434 + }, + { + "start": 1947.2, + "end": 1950.36, + "probability": 0.9836 + }, + { + "start": 1950.42, + "end": 1954.44, + "probability": 0.9897 + }, + { + "start": 1955.34, + "end": 1957.54, + "probability": 0.9883 + }, + { + "start": 1957.56, + "end": 1960.02, + "probability": 0.9854 + }, + { + "start": 1960.44, + "end": 1962.78, + "probability": 0.9616 + }, + { + "start": 1962.78, + "end": 1965.08, + "probability": 0.7879 + }, + { + "start": 1965.5, + "end": 1968.1, + "probability": 0.9765 + }, + { + "start": 1968.42, + "end": 1969.8, + "probability": 0.6616 + }, + { + "start": 1970.24, + "end": 1972.82, + "probability": 0.9932 + }, + { + "start": 1973.34, + "end": 1977.64, + "probability": 0.998 + }, + { + "start": 1977.64, + "end": 1982.68, + "probability": 0.974 + }, + { + "start": 1982.86, + "end": 1984.32, + "probability": 0.9852 + }, + { + "start": 1985.0, + "end": 1988.72, + "probability": 0.9507 + }, + { + "start": 1991.46, + "end": 1995.5, + "probability": 0.9954 + }, + { + "start": 1996.6, + "end": 1998.3, + "probability": 0.9939 + }, + { + "start": 1999.44, + "end": 2000.54, + "probability": 0.6888 + }, + { + "start": 2000.68, + "end": 2002.27, + "probability": 0.9854 + }, + { + "start": 2003.24, + "end": 2004.04, + "probability": 0.6299 + }, + { + "start": 2004.38, + "end": 2005.64, + "probability": 0.9491 + }, + { + "start": 2005.68, + "end": 2007.82, + "probability": 0.8585 + }, + { + "start": 2007.9, + "end": 2009.12, + "probability": 0.776 + }, + { + "start": 2009.12, + "end": 2009.34, + "probability": 0.4679 + }, + { + "start": 2009.72, + "end": 2012.06, + "probability": 0.9907 + }, + { + "start": 2012.86, + "end": 2013.58, + "probability": 0.665 + }, + { + "start": 2014.26, + "end": 2016.04, + "probability": 0.9844 + }, + { + "start": 2016.56, + "end": 2022.88, + "probability": 0.9705 + }, + { + "start": 2023.04, + "end": 2025.68, + "probability": 0.9974 + }, + { + "start": 2025.84, + "end": 2026.62, + "probability": 0.8475 + }, + { + "start": 2026.74, + "end": 2027.68, + "probability": 0.9751 + }, + { + "start": 2028.3, + "end": 2030.56, + "probability": 0.9419 + }, + { + "start": 2030.66, + "end": 2032.36, + "probability": 0.9856 + }, + { + "start": 2032.7, + "end": 2033.2, + "probability": 0.5052 + }, + { + "start": 2033.76, + "end": 2035.12, + "probability": 0.9766 + }, + { + "start": 2035.64, + "end": 2036.32, + "probability": 0.7943 + }, + { + "start": 2036.44, + "end": 2036.98, + "probability": 0.6799 + }, + { + "start": 2037.1, + "end": 2037.74, + "probability": 0.9683 + }, + { + "start": 2037.88, + "end": 2039.6, + "probability": 0.9105 + }, + { + "start": 2040.06, + "end": 2045.52, + "probability": 0.9959 + }, + { + "start": 2045.52, + "end": 2048.8, + "probability": 0.9926 + }, + { + "start": 2049.3, + "end": 2052.66, + "probability": 0.922 + }, + { + "start": 2053.14, + "end": 2053.9, + "probability": 0.4636 + }, + { + "start": 2053.98, + "end": 2056.0, + "probability": 0.566 + }, + { + "start": 2056.16, + "end": 2057.62, + "probability": 0.8524 + }, + { + "start": 2057.76, + "end": 2058.66, + "probability": 0.6589 + }, + { + "start": 2058.74, + "end": 2059.44, + "probability": 0.5102 + }, + { + "start": 2059.76, + "end": 2059.76, + "probability": 0.339 + }, + { + "start": 2059.82, + "end": 2062.36, + "probability": 0.6954 + }, + { + "start": 2062.36, + "end": 2062.76, + "probability": 0.75 + }, + { + "start": 2063.04, + "end": 2069.5, + "probability": 0.9641 + }, + { + "start": 2069.6, + "end": 2072.14, + "probability": 0.9301 + }, + { + "start": 2073.47, + "end": 2076.36, + "probability": 0.9366 + }, + { + "start": 2076.52, + "end": 2076.8, + "probability": 0.7479 + }, + { + "start": 2077.04, + "end": 2077.98, + "probability": 0.9422 + }, + { + "start": 2078.6, + "end": 2079.58, + "probability": 0.971 + }, + { + "start": 2079.94, + "end": 2082.16, + "probability": 0.9472 + }, + { + "start": 2082.66, + "end": 2087.52, + "probability": 0.9899 + }, + { + "start": 2087.74, + "end": 2089.82, + "probability": 0.653 + }, + { + "start": 2090.54, + "end": 2092.74, + "probability": 0.7749 + }, + { + "start": 2092.82, + "end": 2097.04, + "probability": 0.9534 + }, + { + "start": 2097.54, + "end": 2102.86, + "probability": 0.987 + }, + { + "start": 2103.24, + "end": 2107.3, + "probability": 0.9926 + }, + { + "start": 2107.64, + "end": 2107.78, + "probability": 0.0377 + }, + { + "start": 2107.96, + "end": 2112.9, + "probability": 0.9526 + }, + { + "start": 2113.2, + "end": 2118.78, + "probability": 0.9851 + }, + { + "start": 2119.12, + "end": 2123.34, + "probability": 0.9626 + }, + { + "start": 2123.9, + "end": 2128.38, + "probability": 0.9662 + }, + { + "start": 2128.5, + "end": 2129.98, + "probability": 0.7854 + }, + { + "start": 2130.44, + "end": 2132.34, + "probability": 0.9922 + }, + { + "start": 2132.34, + "end": 2134.52, + "probability": 0.8717 + }, + { + "start": 2134.52, + "end": 2138.12, + "probability": 0.9688 + }, + { + "start": 2138.32, + "end": 2140.0, + "probability": 0.9754 + }, + { + "start": 2140.92, + "end": 2143.54, + "probability": 0.8823 + }, + { + "start": 2143.86, + "end": 2144.6, + "probability": 0.7577 + }, + { + "start": 2145.0, + "end": 2151.7, + "probability": 0.9984 + }, + { + "start": 2152.06, + "end": 2152.92, + "probability": 0.9198 + }, + { + "start": 2152.98, + "end": 2156.6, + "probability": 0.9705 + }, + { + "start": 2156.92, + "end": 2160.56, + "probability": 0.9996 + }, + { + "start": 2160.72, + "end": 2163.84, + "probability": 0.9757 + }, + { + "start": 2163.92, + "end": 2164.54, + "probability": 0.4454 + }, + { + "start": 2164.64, + "end": 2164.82, + "probability": 0.838 + }, + { + "start": 2165.26, + "end": 2165.85, + "probability": 0.978 + }, + { + "start": 2166.22, + "end": 2167.96, + "probability": 0.9927 + }, + { + "start": 2168.3, + "end": 2169.22, + "probability": 0.9946 + }, + { + "start": 2169.36, + "end": 2174.4, + "probability": 0.9961 + }, + { + "start": 2174.62, + "end": 2180.86, + "probability": 0.8846 + }, + { + "start": 2181.0, + "end": 2181.92, + "probability": 0.7351 + }, + { + "start": 2182.34, + "end": 2183.26, + "probability": 0.9409 + }, + { + "start": 2183.84, + "end": 2184.62, + "probability": 0.8668 + }, + { + "start": 2184.68, + "end": 2186.48, + "probability": 0.8704 + }, + { + "start": 2186.94, + "end": 2190.02, + "probability": 0.9784 + }, + { + "start": 2190.52, + "end": 2191.92, + "probability": 0.9008 + }, + { + "start": 2192.16, + "end": 2192.64, + "probability": 0.5614 + }, + { + "start": 2192.68, + "end": 2193.06, + "probability": 0.691 + }, + { + "start": 2193.2, + "end": 2193.5, + "probability": 0.6174 + }, + { + "start": 2193.56, + "end": 2194.3, + "probability": 0.6278 + }, + { + "start": 2194.3, + "end": 2195.26, + "probability": 0.6457 + }, + { + "start": 2195.44, + "end": 2198.12, + "probability": 0.9893 + }, + { + "start": 2198.62, + "end": 2201.14, + "probability": 0.9408 + }, + { + "start": 2201.4, + "end": 2203.04, + "probability": 0.9321 + }, + { + "start": 2203.54, + "end": 2204.49, + "probability": 0.9363 + }, + { + "start": 2204.84, + "end": 2209.92, + "probability": 0.8229 + }, + { + "start": 2210.58, + "end": 2213.8, + "probability": 0.964 + }, + { + "start": 2213.86, + "end": 2215.24, + "probability": 0.8924 + }, + { + "start": 2219.66, + "end": 2220.7, + "probability": 0.6391 + }, + { + "start": 2222.06, + "end": 2223.16, + "probability": 0.9678 + }, + { + "start": 2225.2, + "end": 2228.58, + "probability": 0.9332 + }, + { + "start": 2229.56, + "end": 2232.3, + "probability": 0.8996 + }, + { + "start": 2234.2, + "end": 2236.54, + "probability": 0.8416 + }, + { + "start": 2237.72, + "end": 2240.02, + "probability": 0.9819 + }, + { + "start": 2240.3, + "end": 2242.42, + "probability": 0.7345 + }, + { + "start": 2243.54, + "end": 2245.46, + "probability": 0.9077 + }, + { + "start": 2245.75, + "end": 2249.64, + "probability": 0.9589 + }, + { + "start": 2249.78, + "end": 2252.56, + "probability": 0.9928 + }, + { + "start": 2252.64, + "end": 2253.66, + "probability": 0.9157 + }, + { + "start": 2254.82, + "end": 2255.34, + "probability": 0.4942 + }, + { + "start": 2255.48, + "end": 2258.32, + "probability": 0.9626 + }, + { + "start": 2258.48, + "end": 2260.68, + "probability": 0.8877 + }, + { + "start": 2261.3, + "end": 2261.92, + "probability": 0.9024 + }, + { + "start": 2263.02, + "end": 2265.04, + "probability": 0.7905 + }, + { + "start": 2265.04, + "end": 2268.14, + "probability": 0.9354 + }, + { + "start": 2268.8, + "end": 2269.85, + "probability": 0.8412 + }, + { + "start": 2271.52, + "end": 2275.32, + "probability": 0.0973 + }, + { + "start": 2275.32, + "end": 2275.62, + "probability": 0.032 + }, + { + "start": 2275.78, + "end": 2276.58, + "probability": 0.0519 + }, + { + "start": 2276.58, + "end": 2277.06, + "probability": 0.8059 + }, + { + "start": 2277.26, + "end": 2278.49, + "probability": 0.96 + }, + { + "start": 2279.56, + "end": 2280.26, + "probability": 0.7497 + }, + { + "start": 2281.67, + "end": 2284.21, + "probability": 0.054 + }, + { + "start": 2285.16, + "end": 2285.22, + "probability": 0.5737 + }, + { + "start": 2286.28, + "end": 2287.34, + "probability": 0.067 + }, + { + "start": 2287.84, + "end": 2287.84, + "probability": 0.3062 + }, + { + "start": 2287.84, + "end": 2288.86, + "probability": 0.685 + }, + { + "start": 2289.32, + "end": 2291.24, + "probability": 0.9638 + }, + { + "start": 2292.12, + "end": 2296.78, + "probability": 0.9239 + }, + { + "start": 2297.74, + "end": 2299.26, + "probability": 0.99 + }, + { + "start": 2300.62, + "end": 2302.04, + "probability": 0.7543 + }, + { + "start": 2303.44, + "end": 2304.62, + "probability": 0.9958 + }, + { + "start": 2306.36, + "end": 2307.02, + "probability": 0.9324 + }, + { + "start": 2308.0, + "end": 2308.88, + "probability": 0.7695 + }, + { + "start": 2309.8, + "end": 2310.34, + "probability": 0.9429 + }, + { + "start": 2310.64, + "end": 2312.22, + "probability": 0.9346 + }, + { + "start": 2313.36, + "end": 2317.8, + "probability": 0.9471 + }, + { + "start": 2317.8, + "end": 2321.72, + "probability": 0.9394 + }, + { + "start": 2322.56, + "end": 2322.98, + "probability": 0.4808 + }, + { + "start": 2323.08, + "end": 2326.34, + "probability": 0.3778 + }, + { + "start": 2327.08, + "end": 2330.46, + "probability": 0.7433 + }, + { + "start": 2331.54, + "end": 2332.6, + "probability": 0.8359 + }, + { + "start": 2332.68, + "end": 2338.0, + "probability": 0.887 + }, + { + "start": 2338.14, + "end": 2339.42, + "probability": 0.9919 + }, + { + "start": 2340.04, + "end": 2343.18, + "probability": 0.8276 + }, + { + "start": 2343.64, + "end": 2347.42, + "probability": 0.9414 + }, + { + "start": 2348.16, + "end": 2350.24, + "probability": 0.8785 + }, + { + "start": 2350.78, + "end": 2353.66, + "probability": 0.9699 + }, + { + "start": 2354.98, + "end": 2357.4, + "probability": 0.9732 + }, + { + "start": 2357.48, + "end": 2359.08, + "probability": 0.7469 + }, + { + "start": 2360.18, + "end": 2361.54, + "probability": 0.9524 + }, + { + "start": 2362.36, + "end": 2363.7, + "probability": 0.9545 + }, + { + "start": 2365.67, + "end": 2368.18, + "probability": 0.2516 + }, + { + "start": 2369.34, + "end": 2371.5, + "probability": 0.8546 + }, + { + "start": 2373.44, + "end": 2375.54, + "probability": 0.8346 + }, + { + "start": 2376.58, + "end": 2379.5, + "probability": 0.9707 + }, + { + "start": 2380.46, + "end": 2384.0, + "probability": 0.9181 + }, + { + "start": 2384.0, + "end": 2386.14, + "probability": 0.9487 + }, + { + "start": 2387.5, + "end": 2388.02, + "probability": 0.3874 + }, + { + "start": 2388.96, + "end": 2390.0, + "probability": 0.7884 + }, + { + "start": 2391.0, + "end": 2392.72, + "probability": 0.6621 + }, + { + "start": 2392.8, + "end": 2393.97, + "probability": 0.7982 + }, + { + "start": 2394.76, + "end": 2396.14, + "probability": 0.9673 + }, + { + "start": 2397.24, + "end": 2400.6, + "probability": 0.9408 + }, + { + "start": 2401.12, + "end": 2402.56, + "probability": 0.8015 + }, + { + "start": 2403.4, + "end": 2405.0, + "probability": 0.9689 + }, + { + "start": 2405.54, + "end": 2408.4, + "probability": 0.96 + }, + { + "start": 2408.48, + "end": 2410.31, + "probability": 0.4798 + }, + { + "start": 2411.02, + "end": 2413.48, + "probability": 0.9921 + }, + { + "start": 2414.96, + "end": 2418.76, + "probability": 0.9214 + }, + { + "start": 2420.32, + "end": 2421.16, + "probability": 0.8335 + }, + { + "start": 2421.86, + "end": 2423.0, + "probability": 0.48 + }, + { + "start": 2424.12, + "end": 2428.98, + "probability": 0.9624 + }, + { + "start": 2429.04, + "end": 2430.14, + "probability": 0.6446 + }, + { + "start": 2430.2, + "end": 2431.02, + "probability": 0.8679 + }, + { + "start": 2432.34, + "end": 2435.44, + "probability": 0.9995 + }, + { + "start": 2435.92, + "end": 2437.12, + "probability": 0.9894 + }, + { + "start": 2437.2, + "end": 2438.38, + "probability": 0.9885 + }, + { + "start": 2438.98, + "end": 2439.88, + "probability": 0.9581 + }, + { + "start": 2440.7, + "end": 2446.68, + "probability": 0.98 + }, + { + "start": 2447.68, + "end": 2451.94, + "probability": 0.9969 + }, + { + "start": 2452.76, + "end": 2454.76, + "probability": 0.9049 + }, + { + "start": 2455.56, + "end": 2456.44, + "probability": 0.6212 + }, + { + "start": 2457.66, + "end": 2462.76, + "probability": 0.9718 + }, + { + "start": 2463.56, + "end": 2467.44, + "probability": 0.9406 + }, + { + "start": 2468.34, + "end": 2471.22, + "probability": 0.9812 + }, + { + "start": 2472.02, + "end": 2475.18, + "probability": 0.8514 + }, + { + "start": 2475.8, + "end": 2477.38, + "probability": 0.9692 + }, + { + "start": 2478.16, + "end": 2484.16, + "probability": 0.9758 + }, + { + "start": 2484.7, + "end": 2487.0, + "probability": 0.9503 + }, + { + "start": 2487.54, + "end": 2494.08, + "probability": 0.9758 + }, + { + "start": 2494.96, + "end": 2495.44, + "probability": 0.7598 + }, + { + "start": 2496.1, + "end": 2498.36, + "probability": 0.7123 + }, + { + "start": 2499.28, + "end": 2500.48, + "probability": 0.3371 + }, + { + "start": 2500.52, + "end": 2504.06, + "probability": 0.969 + }, + { + "start": 2504.7, + "end": 2505.92, + "probability": 0.9551 + }, + { + "start": 2506.86, + "end": 2509.52, + "probability": 0.9382 + }, + { + "start": 2509.84, + "end": 2510.46, + "probability": 0.7089 + }, + { + "start": 2510.58, + "end": 2511.82, + "probability": 0.8348 + }, + { + "start": 2512.68, + "end": 2513.26, + "probability": 0.8713 + }, + { + "start": 2513.4, + "end": 2514.96, + "probability": 0.8022 + }, + { + "start": 2515.14, + "end": 2516.96, + "probability": 0.886 + }, + { + "start": 2518.12, + "end": 2520.82, + "probability": 0.9785 + }, + { + "start": 2521.4, + "end": 2524.04, + "probability": 0.929 + }, + { + "start": 2524.04, + "end": 2528.24, + "probability": 0.8933 + }, + { + "start": 2529.07, + "end": 2533.51, + "probability": 0.2413 + }, + { + "start": 2533.54, + "end": 2536.82, + "probability": 0.7489 + }, + { + "start": 2537.42, + "end": 2538.18, + "probability": 0.2376 + }, + { + "start": 2539.54, + "end": 2539.96, + "probability": 0.0849 + }, + { + "start": 2540.0, + "end": 2547.94, + "probability": 0.9816 + }, + { + "start": 2548.04, + "end": 2550.8, + "probability": 0.9519 + }, + { + "start": 2551.12, + "end": 2553.62, + "probability": 0.9522 + }, + { + "start": 2553.68, + "end": 2555.58, + "probability": 0.811 + }, + { + "start": 2556.3, + "end": 2556.78, + "probability": 0.3973 + }, + { + "start": 2557.56, + "end": 2559.62, + "probability": 0.9884 + }, + { + "start": 2560.3, + "end": 2562.53, + "probability": 0.7864 + }, + { + "start": 2563.24, + "end": 2564.54, + "probability": 0.8765 + }, + { + "start": 2564.68, + "end": 2565.56, + "probability": 0.9468 + }, + { + "start": 2566.14, + "end": 2570.3, + "probability": 0.9873 + }, + { + "start": 2570.54, + "end": 2571.08, + "probability": 0.6992 + }, + { + "start": 2571.2, + "end": 2571.76, + "probability": 0.8439 + }, + { + "start": 2572.58, + "end": 2573.82, + "probability": 0.619 + }, + { + "start": 2574.52, + "end": 2579.12, + "probability": 0.9696 + }, + { + "start": 2579.74, + "end": 2582.58, + "probability": 0.9871 + }, + { + "start": 2583.36, + "end": 2585.58, + "probability": 0.9856 + }, + { + "start": 2585.72, + "end": 2586.76, + "probability": 0.808 + }, + { + "start": 2587.58, + "end": 2590.92, + "probability": 0.823 + }, + { + "start": 2591.78, + "end": 2592.58, + "probability": 0.7285 + }, + { + "start": 2592.76, + "end": 2594.92, + "probability": 0.7353 + }, + { + "start": 2595.68, + "end": 2596.4, + "probability": 0.8525 + }, + { + "start": 2597.96, + "end": 2600.82, + "probability": 0.9062 + }, + { + "start": 2603.02, + "end": 2604.88, + "probability": 0.8331 + }, + { + "start": 2606.26, + "end": 2608.18, + "probability": 0.8015 + }, + { + "start": 2608.32, + "end": 2609.61, + "probability": 0.8447 + }, + { + "start": 2611.12, + "end": 2611.9, + "probability": 0.9683 + }, + { + "start": 2612.82, + "end": 2616.41, + "probability": 0.7369 + }, + { + "start": 2616.68, + "end": 2618.2, + "probability": 0.8963 + }, + { + "start": 2619.38, + "end": 2621.18, + "probability": 0.9115 + }, + { + "start": 2622.28, + "end": 2625.98, + "probability": 0.9734 + }, + { + "start": 2626.88, + "end": 2627.06, + "probability": 0.4835 + }, + { + "start": 2627.12, + "end": 2628.3, + "probability": 0.9526 + }, + { + "start": 2628.38, + "end": 2629.4, + "probability": 0.9993 + }, + { + "start": 2630.02, + "end": 2631.12, + "probability": 0.9894 + }, + { + "start": 2631.94, + "end": 2632.88, + "probability": 0.7533 + }, + { + "start": 2633.66, + "end": 2634.84, + "probability": 0.9128 + }, + { + "start": 2636.1, + "end": 2639.26, + "probability": 0.9419 + }, + { + "start": 2640.02, + "end": 2644.74, + "probability": 0.9878 + }, + { + "start": 2644.74, + "end": 2650.56, + "probability": 0.9771 + }, + { + "start": 2651.16, + "end": 2653.74, + "probability": 0.9407 + }, + { + "start": 2653.84, + "end": 2654.32, + "probability": 0.567 + }, + { + "start": 2654.4, + "end": 2655.1, + "probability": 0.9587 + }, + { + "start": 2655.22, + "end": 2657.88, + "probability": 0.9658 + }, + { + "start": 2658.58, + "end": 2661.18, + "probability": 0.9804 + }, + { + "start": 2661.3, + "end": 2661.62, + "probability": 0.833 + }, + { + "start": 2664.42, + "end": 2664.42, + "probability": 0.1032 + }, + { + "start": 2664.42, + "end": 2668.16, + "probability": 0.9871 + }, + { + "start": 2668.22, + "end": 2668.54, + "probability": 0.4735 + }, + { + "start": 2669.52, + "end": 2670.02, + "probability": 0.4836 + }, + { + "start": 2670.7, + "end": 2673.14, + "probability": 0.9456 + }, + { + "start": 2674.0, + "end": 2675.3, + "probability": 0.6801 + }, + { + "start": 2676.16, + "end": 2679.74, + "probability": 0.7985 + }, + { + "start": 2680.06, + "end": 2681.28, + "probability": 0.866 + }, + { + "start": 2682.32, + "end": 2685.1, + "probability": 0.993 + }, + { + "start": 2685.16, + "end": 2688.16, + "probability": 0.9839 + }, + { + "start": 2688.38, + "end": 2689.4, + "probability": 0.9912 + }, + { + "start": 2692.06, + "end": 2694.7, + "probability": 0.9801 + }, + { + "start": 2696.2, + "end": 2698.34, + "probability": 0.9963 + }, + { + "start": 2698.77, + "end": 2699.9, + "probability": 0.7428 + }, + { + "start": 2700.02, + "end": 2700.44, + "probability": 0.7651 + }, + { + "start": 2700.44, + "end": 2702.12, + "probability": 0.9921 + }, + { + "start": 2703.46, + "end": 2704.4, + "probability": 0.7432 + }, + { + "start": 2704.5, + "end": 2706.03, + "probability": 0.8271 + }, + { + "start": 2706.9, + "end": 2707.84, + "probability": 0.9643 + }, + { + "start": 2708.08, + "end": 2710.12, + "probability": 0.6795 + }, + { + "start": 2710.92, + "end": 2713.28, + "probability": 0.9814 + }, + { + "start": 2714.56, + "end": 2715.82, + "probability": 0.9575 + }, + { + "start": 2716.14, + "end": 2718.3, + "probability": 0.9505 + }, + { + "start": 2718.78, + "end": 2720.2, + "probability": 0.8545 + }, + { + "start": 2720.38, + "end": 2721.14, + "probability": 0.7853 + }, + { + "start": 2721.96, + "end": 2723.4, + "probability": 0.9373 + }, + { + "start": 2723.84, + "end": 2725.24, + "probability": 0.9481 + }, + { + "start": 2726.14, + "end": 2729.34, + "probability": 0.9453 + }, + { + "start": 2730.52, + "end": 2732.14, + "probability": 0.9961 + }, + { + "start": 2732.32, + "end": 2732.7, + "probability": 0.8738 + }, + { + "start": 2732.84, + "end": 2733.32, + "probability": 0.9705 + }, + { + "start": 2733.42, + "end": 2733.82, + "probability": 0.971 + }, + { + "start": 2734.18, + "end": 2734.62, + "probability": 0.9469 + }, + { + "start": 2735.06, + "end": 2736.96, + "probability": 0.924 + }, + { + "start": 2737.16, + "end": 2738.1, + "probability": 0.6934 + }, + { + "start": 2738.94, + "end": 2739.92, + "probability": 0.9985 + }, + { + "start": 2740.06, + "end": 2741.08, + "probability": 0.8978 + }, + { + "start": 2742.0, + "end": 2742.46, + "probability": 0.9286 + }, + { + "start": 2742.58, + "end": 2747.26, + "probability": 0.9442 + }, + { + "start": 2748.28, + "end": 2750.14, + "probability": 0.8687 + }, + { + "start": 2750.94, + "end": 2751.64, + "probability": 0.8508 + }, + { + "start": 2751.72, + "end": 2755.14, + "probability": 0.9692 + }, + { + "start": 2756.22, + "end": 2758.04, + "probability": 0.6654 + }, + { + "start": 2759.22, + "end": 2761.56, + "probability": 0.9852 + }, + { + "start": 2761.8, + "end": 2762.78, + "probability": 0.7221 + }, + { + "start": 2763.2, + "end": 2764.0, + "probability": 0.9905 + }, + { + "start": 2764.1, + "end": 2764.56, + "probability": 0.8039 + }, + { + "start": 2765.36, + "end": 2766.28, + "probability": 0.9869 + }, + { + "start": 2767.24, + "end": 2768.24, + "probability": 0.9395 + }, + { + "start": 2768.6, + "end": 2769.16, + "probability": 0.4909 + }, + { + "start": 2769.26, + "end": 2770.74, + "probability": 0.9868 + }, + { + "start": 2771.5, + "end": 2775.92, + "probability": 0.9384 + }, + { + "start": 2776.2, + "end": 2777.42, + "probability": 0.9692 + }, + { + "start": 2778.52, + "end": 2781.4, + "probability": 0.9618 + }, + { + "start": 2782.78, + "end": 2784.8, + "probability": 0.9932 + }, + { + "start": 2785.4, + "end": 2787.84, + "probability": 0.4869 + }, + { + "start": 2789.22, + "end": 2790.2, + "probability": 0.7767 + }, + { + "start": 2790.56, + "end": 2793.32, + "probability": 0.9887 + }, + { + "start": 2794.86, + "end": 2803.22, + "probability": 0.9844 + }, + { + "start": 2803.28, + "end": 2804.2, + "probability": 0.3909 + }, + { + "start": 2804.6, + "end": 2805.68, + "probability": 0.8942 + }, + { + "start": 2806.44, + "end": 2808.08, + "probability": 0.9922 + }, + { + "start": 2808.54, + "end": 2808.8, + "probability": 0.8434 + }, + { + "start": 2808.86, + "end": 2809.36, + "probability": 0.928 + }, + { + "start": 2809.38, + "end": 2810.08, + "probability": 0.9556 + }, + { + "start": 2810.74, + "end": 2812.94, + "probability": 0.9154 + }, + { + "start": 2813.4, + "end": 2816.32, + "probability": 0.9912 + }, + { + "start": 2816.94, + "end": 2817.51, + "probability": 0.6725 + }, + { + "start": 2818.46, + "end": 2820.16, + "probability": 0.721 + }, + { + "start": 2820.66, + "end": 2821.78, + "probability": 0.3419 + }, + { + "start": 2822.86, + "end": 2824.68, + "probability": 0.9905 + }, + { + "start": 2825.36, + "end": 2826.9, + "probability": 0.998 + }, + { + "start": 2828.08, + "end": 2829.36, + "probability": 0.962 + }, + { + "start": 2829.9, + "end": 2831.1, + "probability": 0.9837 + }, + { + "start": 2831.86, + "end": 2833.12, + "probability": 0.7591 + }, + { + "start": 2834.48, + "end": 2835.2, + "probability": 0.873 + }, + { + "start": 2836.2, + "end": 2839.32, + "probability": 0.6234 + }, + { + "start": 2840.6, + "end": 2844.5, + "probability": 0.6341 + }, + { + "start": 2845.44, + "end": 2846.3, + "probability": 0.75 + }, + { + "start": 2846.4, + "end": 2847.66, + "probability": 0.8479 + }, + { + "start": 2847.96, + "end": 2848.96, + "probability": 0.63 + }, + { + "start": 2849.46, + "end": 2852.02, + "probability": 0.9952 + }, + { + "start": 2852.66, + "end": 2853.91, + "probability": 0.939 + }, + { + "start": 2854.44, + "end": 2855.32, + "probability": 0.9609 + }, + { + "start": 2856.1, + "end": 2860.4, + "probability": 0.997 + }, + { + "start": 2861.34, + "end": 2862.4, + "probability": 0.8971 + }, + { + "start": 2862.72, + "end": 2864.44, + "probability": 0.9032 + }, + { + "start": 2865.6, + "end": 2866.16, + "probability": 0.4888 + }, + { + "start": 2866.9, + "end": 2867.3, + "probability": 0.1171 + }, + { + "start": 2867.44, + "end": 2867.64, + "probability": 0.936 + }, + { + "start": 2868.92, + "end": 2873.4, + "probability": 0.7948 + }, + { + "start": 2874.24, + "end": 2876.0, + "probability": 0.586 + }, + { + "start": 2876.02, + "end": 2876.88, + "probability": 0.9353 + }, + { + "start": 2878.12, + "end": 2878.98, + "probability": 0.9828 + }, + { + "start": 2879.96, + "end": 2880.82, + "probability": 0.7516 + }, + { + "start": 2881.54, + "end": 2882.5, + "probability": 0.991 + }, + { + "start": 2884.94, + "end": 2886.88, + "probability": 0.981 + }, + { + "start": 2887.74, + "end": 2888.2, + "probability": 0.8857 + }, + { + "start": 2888.34, + "end": 2889.4, + "probability": 0.9347 + }, + { + "start": 2889.66, + "end": 2889.87, + "probability": 0.7396 + }, + { + "start": 2890.36, + "end": 2891.11, + "probability": 0.7148 + }, + { + "start": 2891.8, + "end": 2894.94, + "probability": 0.8929 + }, + { + "start": 2895.58, + "end": 2896.08, + "probability": 0.9548 + }, + { + "start": 2897.24, + "end": 2901.36, + "probability": 0.7946 + }, + { + "start": 2901.48, + "end": 2902.28, + "probability": 0.6281 + }, + { + "start": 2903.06, + "end": 2906.86, + "probability": 0.9844 + }, + { + "start": 2907.55, + "end": 2910.46, + "probability": 0.7947 + }, + { + "start": 2912.88, + "end": 2917.2, + "probability": 0.9917 + }, + { + "start": 2918.74, + "end": 2922.32, + "probability": 0.9914 + }, + { + "start": 2923.6, + "end": 2926.46, + "probability": 0.9648 + }, + { + "start": 2926.78, + "end": 2928.56, + "probability": 0.7695 + }, + { + "start": 2929.46, + "end": 2929.76, + "probability": 0.6825 + }, + { + "start": 2930.3, + "end": 2932.7, + "probability": 0.9509 + }, + { + "start": 2933.44, + "end": 2935.5, + "probability": 0.8804 + }, + { + "start": 2936.16, + "end": 2937.12, + "probability": 0.5382 + }, + { + "start": 2937.22, + "end": 2938.74, + "probability": 0.8602 + }, + { + "start": 2938.76, + "end": 2939.18, + "probability": 0.7782 + }, + { + "start": 2940.0, + "end": 2940.51, + "probability": 0.9393 + }, + { + "start": 2941.06, + "end": 2941.51, + "probability": 0.9909 + }, + { + "start": 2942.5, + "end": 2945.0, + "probability": 0.9582 + }, + { + "start": 2945.54, + "end": 2946.28, + "probability": 0.7817 + }, + { + "start": 2946.3, + "end": 2948.26, + "probability": 0.9772 + }, + { + "start": 2949.16, + "end": 2949.62, + "probability": 0.6791 + }, + { + "start": 2950.42, + "end": 2952.0, + "probability": 0.9139 + }, + { + "start": 2952.74, + "end": 2955.12, + "probability": 0.9818 + }, + { + "start": 2955.82, + "end": 2956.76, + "probability": 0.8632 + }, + { + "start": 2957.56, + "end": 2958.0, + "probability": 0.9409 + }, + { + "start": 2958.7, + "end": 2960.78, + "probability": 0.7991 + }, + { + "start": 2962.6, + "end": 2964.52, + "probability": 0.8394 + }, + { + "start": 2965.86, + "end": 2968.36, + "probability": 0.6373 + }, + { + "start": 2969.98, + "end": 2972.4, + "probability": 0.8795 + }, + { + "start": 2972.52, + "end": 2975.66, + "probability": 0.9176 + }, + { + "start": 2976.1, + "end": 2978.5, + "probability": 0.924 + }, + { + "start": 2979.94, + "end": 2983.52, + "probability": 0.7749 + }, + { + "start": 2984.34, + "end": 2985.52, + "probability": 0.7659 + }, + { + "start": 2986.42, + "end": 2988.56, + "probability": 0.7904 + }, + { + "start": 2989.22, + "end": 2990.22, + "probability": 0.5312 + }, + { + "start": 2991.16, + "end": 2995.12, + "probability": 0.9209 + }, + { + "start": 2995.46, + "end": 2995.88, + "probability": 0.1237 + }, + { + "start": 2996.9, + "end": 2997.68, + "probability": 0.3179 + }, + { + "start": 2997.72, + "end": 3001.42, + "probability": 0.9595 + }, + { + "start": 3002.76, + "end": 3006.2, + "probability": 0.8607 + }, + { + "start": 3007.0, + "end": 3008.06, + "probability": 0.8721 + }, + { + "start": 3008.16, + "end": 3010.44, + "probability": 0.9614 + }, + { + "start": 3011.58, + "end": 3013.37, + "probability": 0.9596 + }, + { + "start": 3014.02, + "end": 3016.66, + "probability": 0.9907 + }, + { + "start": 3017.46, + "end": 3018.1, + "probability": 0.9594 + }, + { + "start": 3018.3, + "end": 3019.32, + "probability": 0.9998 + }, + { + "start": 3020.12, + "end": 3020.7, + "probability": 0.708 + }, + { + "start": 3021.92, + "end": 3025.16, + "probability": 0.9986 + }, + { + "start": 3025.16, + "end": 3027.68, + "probability": 0.9746 + }, + { + "start": 3027.82, + "end": 3028.88, + "probability": 0.9987 + }, + { + "start": 3029.42, + "end": 3030.8, + "probability": 0.9863 + }, + { + "start": 3031.54, + "end": 3034.3, + "probability": 0.6887 + }, + { + "start": 3035.18, + "end": 3038.52, + "probability": 0.8397 + }, + { + "start": 3039.46, + "end": 3040.78, + "probability": 0.8145 + }, + { + "start": 3041.2, + "end": 3045.08, + "probability": 0.8992 + }, + { + "start": 3045.66, + "end": 3046.72, + "probability": 0.9379 + }, + { + "start": 3047.6, + "end": 3048.84, + "probability": 0.8738 + }, + { + "start": 3049.42, + "end": 3051.14, + "probability": 0.8685 + }, + { + "start": 3052.34, + "end": 3054.42, + "probability": 0.9179 + }, + { + "start": 3054.56, + "end": 3055.04, + "probability": 0.876 + }, + { + "start": 3055.26, + "end": 3055.38, + "probability": 0.5069 + }, + { + "start": 3055.46, + "end": 3056.92, + "probability": 0.9475 + }, + { + "start": 3057.0, + "end": 3057.92, + "probability": 0.9446 + }, + { + "start": 3058.62, + "end": 3062.04, + "probability": 0.9893 + }, + { + "start": 3062.58, + "end": 3063.37, + "probability": 0.8993 + }, + { + "start": 3064.22, + "end": 3066.94, + "probability": 0.6164 + }, + { + "start": 3067.52, + "end": 3068.37, + "probability": 0.9288 + }, + { + "start": 3068.94, + "end": 3070.06, + "probability": 0.9238 + }, + { + "start": 3070.78, + "end": 3072.78, + "probability": 0.883 + }, + { + "start": 3073.5, + "end": 3075.46, + "probability": 0.953 + }, + { + "start": 3075.98, + "end": 3078.14, + "probability": 0.8818 + }, + { + "start": 3079.58, + "end": 3081.12, + "probability": 0.9958 + }, + { + "start": 3082.44, + "end": 3083.62, + "probability": 0.8081 + }, + { + "start": 3084.8, + "end": 3085.52, + "probability": 0.8867 + }, + { + "start": 3085.7, + "end": 3086.12, + "probability": 0.9822 + }, + { + "start": 3086.58, + "end": 3087.98, + "probability": 0.9917 + }, + { + "start": 3088.12, + "end": 3089.54, + "probability": 0.9976 + }, + { + "start": 3090.26, + "end": 3095.24, + "probability": 0.9026 + }, + { + "start": 3096.08, + "end": 3097.84, + "probability": 0.8295 + }, + { + "start": 3097.94, + "end": 3101.04, + "probability": 0.9956 + }, + { + "start": 3101.92, + "end": 3103.25, + "probability": 0.8595 + }, + { + "start": 3103.92, + "end": 3106.64, + "probability": 0.9814 + }, + { + "start": 3107.36, + "end": 3109.16, + "probability": 0.9857 + }, + { + "start": 3109.82, + "end": 3110.42, + "probability": 0.9354 + }, + { + "start": 3113.24, + "end": 3116.5, + "probability": 0.9419 + }, + { + "start": 3117.28, + "end": 3117.74, + "probability": 0.9963 + }, + { + "start": 3118.44, + "end": 3119.82, + "probability": 0.9827 + }, + { + "start": 3119.98, + "end": 3120.76, + "probability": 0.3991 + }, + { + "start": 3120.96, + "end": 3121.12, + "probability": 0.8959 + }, + { + "start": 3121.2, + "end": 3122.98, + "probability": 0.797 + }, + { + "start": 3123.04, + "end": 3124.48, + "probability": 0.9584 + }, + { + "start": 3125.2, + "end": 3127.07, + "probability": 0.9676 + }, + { + "start": 3127.12, + "end": 3128.38, + "probability": 0.7694 + }, + { + "start": 3129.18, + "end": 3131.54, + "probability": 0.9214 + }, + { + "start": 3132.08, + "end": 3132.84, + "probability": 0.5759 + }, + { + "start": 3133.08, + "end": 3136.32, + "probability": 0.9863 + }, + { + "start": 3136.88, + "end": 3139.44, + "probability": 0.9779 + }, + { + "start": 3139.44, + "end": 3139.82, + "probability": 0.7336 + }, + { + "start": 3139.92, + "end": 3141.56, + "probability": 0.9552 + }, + { + "start": 3142.16, + "end": 3143.04, + "probability": 0.8525 + }, + { + "start": 3143.18, + "end": 3149.0, + "probability": 0.9536 + }, + { + "start": 3151.66, + "end": 3154.88, + "probability": 0.9277 + }, + { + "start": 3156.36, + "end": 3158.5, + "probability": 0.84 + }, + { + "start": 3159.64, + "end": 3161.34, + "probability": 0.9204 + }, + { + "start": 3162.24, + "end": 3164.18, + "probability": 0.9886 + }, + { + "start": 3165.08, + "end": 3167.54, + "probability": 0.9972 + }, + { + "start": 3168.58, + "end": 3172.44, + "probability": 0.9488 + }, + { + "start": 3173.84, + "end": 3175.9, + "probability": 0.9971 + }, + { + "start": 3177.44, + "end": 3179.86, + "probability": 0.9977 + }, + { + "start": 3179.92, + "end": 3181.18, + "probability": 0.9966 + }, + { + "start": 3181.32, + "end": 3183.22, + "probability": 0.9681 + }, + { + "start": 3184.02, + "end": 3186.58, + "probability": 0.9595 + }, + { + "start": 3187.38, + "end": 3189.46, + "probability": 0.9169 + }, + { + "start": 3190.08, + "end": 3193.64, + "probability": 0.946 + }, + { + "start": 3194.36, + "end": 3198.7, + "probability": 0.9076 + }, + { + "start": 3199.44, + "end": 3201.32, + "probability": 0.7449 + }, + { + "start": 3202.82, + "end": 3205.68, + "probability": 0.9883 + }, + { + "start": 3206.66, + "end": 3209.14, + "probability": 0.993 + }, + { + "start": 3209.32, + "end": 3211.3, + "probability": 0.4633 + }, + { + "start": 3212.86, + "end": 3213.14, + "probability": 0.5007 + }, + { + "start": 3213.14, + "end": 3214.8, + "probability": 0.7601 + }, + { + "start": 3215.36, + "end": 3218.32, + "probability": 0.5672 + }, + { + "start": 3219.32, + "end": 3220.56, + "probability": 0.915 + }, + { + "start": 3221.36, + "end": 3222.94, + "probability": 0.9053 + }, + { + "start": 3223.0, + "end": 3224.32, + "probability": 0.9888 + }, + { + "start": 3224.98, + "end": 3227.8, + "probability": 0.9886 + }, + { + "start": 3227.88, + "end": 3229.86, + "probability": 0.4324 + }, + { + "start": 3230.46, + "end": 3230.56, + "probability": 0.4433 + }, + { + "start": 3230.64, + "end": 3233.14, + "probability": 0.7984 + }, + { + "start": 3233.78, + "end": 3236.07, + "probability": 0.6683 + }, + { + "start": 3237.34, + "end": 3238.84, + "probability": 0.9029 + }, + { + "start": 3239.5, + "end": 3241.04, + "probability": 0.4005 + }, + { + "start": 3241.48, + "end": 3245.5, + "probability": 0.8156 + }, + { + "start": 3245.72, + "end": 3246.6, + "probability": 0.4773 + }, + { + "start": 3246.74, + "end": 3247.63, + "probability": 0.6929 + }, + { + "start": 3247.9, + "end": 3248.48, + "probability": 0.9489 + }, + { + "start": 3249.68, + "end": 3250.72, + "probability": 0.5156 + }, + { + "start": 3250.88, + "end": 3252.52, + "probability": 0.5444 + }, + { + "start": 3252.66, + "end": 3254.28, + "probability": 0.9912 + }, + { + "start": 3255.18, + "end": 3258.48, + "probability": 0.9736 + }, + { + "start": 3259.62, + "end": 3263.78, + "probability": 0.9987 + }, + { + "start": 3264.4, + "end": 3268.2, + "probability": 0.9998 + }, + { + "start": 3268.96, + "end": 3271.04, + "probability": 0.6908 + }, + { + "start": 3271.88, + "end": 3272.4, + "probability": 0.3557 + }, + { + "start": 3272.96, + "end": 3273.89, + "probability": 0.5088 + }, + { + "start": 3274.88, + "end": 3276.78, + "probability": 0.6362 + }, + { + "start": 3277.0, + "end": 3279.3, + "probability": 0.9417 + }, + { + "start": 3280.68, + "end": 3283.66, + "probability": 0.9907 + }, + { + "start": 3284.38, + "end": 3285.66, + "probability": 0.6181 + }, + { + "start": 3285.72, + "end": 3286.96, + "probability": 0.6853 + }, + { + "start": 3287.74, + "end": 3289.54, + "probability": 0.7942 + }, + { + "start": 3290.14, + "end": 3290.68, + "probability": 0.5767 + }, + { + "start": 3290.8, + "end": 3291.72, + "probability": 0.9401 + }, + { + "start": 3291.9, + "end": 3292.48, + "probability": 0.7127 + }, + { + "start": 3292.6, + "end": 3293.56, + "probability": 0.946 + }, + { + "start": 3293.92, + "end": 3294.96, + "probability": 0.9504 + }, + { + "start": 3295.8, + "end": 3296.9, + "probability": 0.9878 + }, + { + "start": 3298.38, + "end": 3299.2, + "probability": 0.6333 + }, + { + "start": 3299.88, + "end": 3303.92, + "probability": 0.9587 + }, + { + "start": 3304.84, + "end": 3305.34, + "probability": 0.9895 + }, + { + "start": 3305.98, + "end": 3307.8, + "probability": 0.9663 + }, + { + "start": 3308.66, + "end": 3310.04, + "probability": 0.8417 + }, + { + "start": 3310.78, + "end": 3311.94, + "probability": 0.884 + }, + { + "start": 3312.54, + "end": 3313.42, + "probability": 0.849 + }, + { + "start": 3314.2, + "end": 3315.08, + "probability": 0.9844 + }, + { + "start": 3315.14, + "end": 3315.96, + "probability": 0.9856 + }, + { + "start": 3317.22, + "end": 3320.72, + "probability": 0.9697 + }, + { + "start": 3320.86, + "end": 3323.4, + "probability": 0.6694 + }, + { + "start": 3323.5, + "end": 3323.74, + "probability": 0.1184 + }, + { + "start": 3324.04, + "end": 3326.4, + "probability": 0.8635 + }, + { + "start": 3328.4, + "end": 3330.7, + "probability": 0.137 + }, + { + "start": 3336.28, + "end": 3337.1, + "probability": 0.1548 + }, + { + "start": 3337.1, + "end": 3338.1, + "probability": 0.2089 + }, + { + "start": 3338.12, + "end": 3338.12, + "probability": 0.1313 + }, + { + "start": 3338.38, + "end": 3339.3, + "probability": 0.1543 + }, + { + "start": 3339.3, + "end": 3339.3, + "probability": 0.2756 + }, + { + "start": 3339.3, + "end": 3342.62, + "probability": 0.496 + }, + { + "start": 3343.57, + "end": 3348.46, + "probability": 0.5887 + }, + { + "start": 3349.06, + "end": 3350.16, + "probability": 0.7036 + }, + { + "start": 3350.18, + "end": 3350.78, + "probability": 0.5018 + }, + { + "start": 3350.92, + "end": 3351.42, + "probability": 0.9313 + }, + { + "start": 3352.64, + "end": 3354.4, + "probability": 0.7779 + }, + { + "start": 3354.68, + "end": 3356.28, + "probability": 0.7717 + }, + { + "start": 3357.18, + "end": 3359.48, + "probability": 0.9905 + }, + { + "start": 3360.02, + "end": 3364.34, + "probability": 0.8699 + }, + { + "start": 3364.78, + "end": 3367.46, + "probability": 0.92 + }, + { + "start": 3367.6, + "end": 3369.5, + "probability": 0.6012 + }, + { + "start": 3370.44, + "end": 3370.82, + "probability": 0.4514 + }, + { + "start": 3371.24, + "end": 3372.58, + "probability": 0.9406 + }, + { + "start": 3373.04, + "end": 3375.18, + "probability": 0.9713 + }, + { + "start": 3376.34, + "end": 3378.12, + "probability": 0.9973 + }, + { + "start": 3379.22, + "end": 3383.06, + "probability": 0.7508 + }, + { + "start": 3383.9, + "end": 3386.22, + "probability": 0.9943 + }, + { + "start": 3386.32, + "end": 3387.56, + "probability": 0.971 + }, + { + "start": 3387.96, + "end": 3389.12, + "probability": 0.9399 + }, + { + "start": 3389.96, + "end": 3391.68, + "probability": 0.763 + }, + { + "start": 3392.48, + "end": 3395.3, + "probability": 0.9535 + }, + { + "start": 3396.11, + "end": 3396.7, + "probability": 0.6906 + }, + { + "start": 3397.68, + "end": 3398.9, + "probability": 0.8109 + }, + { + "start": 3398.96, + "end": 3401.14, + "probability": 0.8725 + }, + { + "start": 3401.18, + "end": 3403.8, + "probability": 0.9696 + }, + { + "start": 3404.4, + "end": 3406.7, + "probability": 0.8071 + }, + { + "start": 3407.86, + "end": 3408.8, + "probability": 0.7795 + }, + { + "start": 3409.2, + "end": 3410.94, + "probability": 0.9893 + }, + { + "start": 3411.56, + "end": 3411.64, + "probability": 0.4 + }, + { + "start": 3411.78, + "end": 3412.26, + "probability": 0.8275 + }, + { + "start": 3412.56, + "end": 3415.96, + "probability": 0.9649 + }, + { + "start": 3416.16, + "end": 3417.96, + "probability": 0.9954 + }, + { + "start": 3418.74, + "end": 3420.14, + "probability": 0.8027 + }, + { + "start": 3420.74, + "end": 3425.82, + "probability": 0.9637 + }, + { + "start": 3426.12, + "end": 3429.54, + "probability": 0.9743 + }, + { + "start": 3430.48, + "end": 3433.73, + "probability": 0.9513 + }, + { + "start": 3434.52, + "end": 3435.5, + "probability": 0.79 + }, + { + "start": 3436.5, + "end": 3437.75, + "probability": 0.9941 + }, + { + "start": 3438.74, + "end": 3440.42, + "probability": 0.9879 + }, + { + "start": 3441.26, + "end": 3442.46, + "probability": 0.8049 + }, + { + "start": 3442.6, + "end": 3446.74, + "probability": 0.9851 + }, + { + "start": 3446.74, + "end": 3449.72, + "probability": 0.9204 + }, + { + "start": 3450.26, + "end": 3453.74, + "probability": 0.7725 + }, + { + "start": 3454.2, + "end": 3455.26, + "probability": 0.8001 + }, + { + "start": 3455.88, + "end": 3456.68, + "probability": 0.9891 + }, + { + "start": 3457.52, + "end": 3458.89, + "probability": 0.4995 + }, + { + "start": 3459.52, + "end": 3460.96, + "probability": 0.9479 + }, + { + "start": 3461.8, + "end": 3462.38, + "probability": 0.7307 + }, + { + "start": 3462.52, + "end": 3467.49, + "probability": 0.9518 + }, + { + "start": 3468.38, + "end": 3472.75, + "probability": 0.8715 + }, + { + "start": 3472.96, + "end": 3477.84, + "probability": 0.7648 + }, + { + "start": 3478.46, + "end": 3479.48, + "probability": 0.9965 + }, + { + "start": 3480.2, + "end": 3484.08, + "probability": 0.9412 + }, + { + "start": 3484.9, + "end": 3487.18, + "probability": 0.4974 + }, + { + "start": 3487.84, + "end": 3490.12, + "probability": 0.851 + }, + { + "start": 3490.6, + "end": 3493.88, + "probability": 0.9935 + }, + { + "start": 3494.2, + "end": 3494.66, + "probability": 0.2218 + }, + { + "start": 3494.99, + "end": 3495.4, + "probability": 0.7103 + }, + { + "start": 3495.5, + "end": 3497.86, + "probability": 0.5964 + }, + { + "start": 3497.86, + "end": 3501.96, + "probability": 0.9858 + }, + { + "start": 3502.74, + "end": 3504.74, + "probability": 0.8329 + }, + { + "start": 3505.22, + "end": 3512.34, + "probability": 0.9211 + }, + { + "start": 3513.26, + "end": 3515.96, + "probability": 0.9674 + }, + { + "start": 3516.7, + "end": 3522.4, + "probability": 0.9345 + }, + { + "start": 3523.42, + "end": 3525.25, + "probability": 0.9842 + }, + { + "start": 3526.22, + "end": 3531.12, + "probability": 0.7433 + }, + { + "start": 3531.6, + "end": 3535.56, + "probability": 0.9764 + }, + { + "start": 3535.9, + "end": 3538.56, + "probability": 0.9838 + }, + { + "start": 3539.02, + "end": 3540.16, + "probability": 0.878 + }, + { + "start": 3540.54, + "end": 3541.66, + "probability": 0.9287 + }, + { + "start": 3542.08, + "end": 3546.76, + "probability": 0.9932 + }, + { + "start": 3547.2, + "end": 3548.4, + "probability": 0.6907 + }, + { + "start": 3549.24, + "end": 3550.48, + "probability": 0.9934 + }, + { + "start": 3550.74, + "end": 3552.4, + "probability": 0.3 + }, + { + "start": 3552.46, + "end": 3555.1, + "probability": 0.6845 + }, + { + "start": 3555.82, + "end": 3558.4, + "probability": 0.8001 + }, + { + "start": 3558.6, + "end": 3559.6, + "probability": 0.9451 + }, + { + "start": 3559.68, + "end": 3562.8, + "probability": 0.9315 + }, + { + "start": 3564.37, + "end": 3566.68, + "probability": 0.9168 + }, + { + "start": 3567.44, + "end": 3572.52, + "probability": 0.9775 + }, + { + "start": 3572.6, + "end": 3575.24, + "probability": 0.851 + }, + { + "start": 3575.74, + "end": 3583.12, + "probability": 0.9749 + }, + { + "start": 3583.66, + "end": 3587.52, + "probability": 0.998 + }, + { + "start": 3587.9, + "end": 3588.2, + "probability": 0.8108 + }, + { + "start": 3588.62, + "end": 3590.29, + "probability": 0.9424 + }, + { + "start": 3590.74, + "end": 3594.04, + "probability": 0.9225 + }, + { + "start": 3594.98, + "end": 3595.48, + "probability": 0.708 + }, + { + "start": 3595.66, + "end": 3596.36, + "probability": 0.7164 + }, + { + "start": 3596.42, + "end": 3599.96, + "probability": 0.9378 + }, + { + "start": 3600.44, + "end": 3600.92, + "probability": 0.7039 + }, + { + "start": 3601.7, + "end": 3602.24, + "probability": 0.7615 + }, + { + "start": 3602.54, + "end": 3604.64, + "probability": 0.7896 + }, + { + "start": 3605.34, + "end": 3608.84, + "probability": 0.9925 + }, + { + "start": 3608.86, + "end": 3611.3, + "probability": 0.7661 + }, + { + "start": 3611.66, + "end": 3613.06, + "probability": 0.9651 + }, + { + "start": 3613.54, + "end": 3615.96, + "probability": 0.8361 + }, + { + "start": 3616.84, + "end": 3621.94, + "probability": 0.9724 + }, + { + "start": 3622.36, + "end": 3624.78, + "probability": 0.895 + }, + { + "start": 3628.22, + "end": 3630.16, + "probability": 0.8392 + }, + { + "start": 3630.76, + "end": 3630.9, + "probability": 0.1569 + }, + { + "start": 3631.24, + "end": 3632.04, + "probability": 0.6853 + }, + { + "start": 3632.16, + "end": 3633.08, + "probability": 0.7089 + }, + { + "start": 3633.16, + "end": 3635.94, + "probability": 0.8078 + }, + { + "start": 3636.02, + "end": 3637.14, + "probability": 0.6768 + }, + { + "start": 3637.82, + "end": 3640.38, + "probability": 0.9738 + }, + { + "start": 3641.32, + "end": 3643.18, + "probability": 0.9981 + }, + { + "start": 3643.72, + "end": 3645.24, + "probability": 0.8903 + }, + { + "start": 3645.96, + "end": 3646.52, + "probability": 0.6552 + }, + { + "start": 3647.74, + "end": 3649.02, + "probability": 0.856 + }, + { + "start": 3649.04, + "end": 3653.38, + "probability": 0.9765 + }, + { + "start": 3654.22, + "end": 3657.04, + "probability": 0.9193 + }, + { + "start": 3657.7, + "end": 3660.04, + "probability": 0.7961 + }, + { + "start": 3660.54, + "end": 3662.44, + "probability": 0.9773 + }, + { + "start": 3663.0, + "end": 3667.3, + "probability": 0.7913 + }, + { + "start": 3667.74, + "end": 3670.96, + "probability": 0.9457 + }, + { + "start": 3671.0, + "end": 3671.54, + "probability": 0.6757 + }, + { + "start": 3671.6, + "end": 3672.06, + "probability": 0.9725 + }, + { + "start": 3672.76, + "end": 3673.76, + "probability": 0.4337 + }, + { + "start": 3674.44, + "end": 3677.26, + "probability": 0.7977 + }, + { + "start": 3677.5, + "end": 3678.32, + "probability": 0.6792 + }, + { + "start": 3678.42, + "end": 3682.22, + "probability": 0.7949 + }, + { + "start": 3682.84, + "end": 3684.32, + "probability": 0.7387 + }, + { + "start": 3684.66, + "end": 3685.42, + "probability": 0.7273 + }, + { + "start": 3685.7, + "end": 3687.92, + "probability": 0.9799 + }, + { + "start": 3688.4, + "end": 3689.56, + "probability": 0.4833 + }, + { + "start": 3690.6, + "end": 3692.46, + "probability": 0.7937 + }, + { + "start": 3692.94, + "end": 3696.04, + "probability": 0.9309 + }, + { + "start": 3696.56, + "end": 3701.02, + "probability": 0.9173 + }, + { + "start": 3701.3, + "end": 3706.56, + "probability": 0.991 + }, + { + "start": 3706.68, + "end": 3708.11, + "probability": 0.9496 + }, + { + "start": 3709.1, + "end": 3712.7, + "probability": 0.7383 + }, + { + "start": 3712.7, + "end": 3717.42, + "probability": 0.9925 + }, + { + "start": 3717.82, + "end": 3720.76, + "probability": 0.834 + }, + { + "start": 3721.1, + "end": 3721.24, + "probability": 0.7805 + }, + { + "start": 3722.66, + "end": 3723.0, + "probability": 0.6523 + }, + { + "start": 3724.12, + "end": 3725.78, + "probability": 0.9697 + }, + { + "start": 3726.74, + "end": 3728.24, + "probability": 0.9355 + }, + { + "start": 3729.08, + "end": 3729.74, + "probability": 0.8656 + }, + { + "start": 3730.46, + "end": 3733.42, + "probability": 0.9927 + }, + { + "start": 3734.52, + "end": 3739.04, + "probability": 0.9262 + }, + { + "start": 3739.68, + "end": 3743.9, + "probability": 0.9922 + }, + { + "start": 3743.9, + "end": 3749.08, + "probability": 0.9971 + }, + { + "start": 3749.6, + "end": 3750.44, + "probability": 0.9816 + }, + { + "start": 3751.22, + "end": 3752.7, + "probability": 0.8402 + }, + { + "start": 3752.98, + "end": 3754.3, + "probability": 0.9976 + }, + { + "start": 3755.18, + "end": 3759.44, + "probability": 0.9756 + }, + { + "start": 3759.44, + "end": 3766.44, + "probability": 0.9964 + }, + { + "start": 3767.14, + "end": 3767.52, + "probability": 0.9342 + }, + { + "start": 3768.1, + "end": 3769.36, + "probability": 0.6573 + }, + { + "start": 3770.4, + "end": 3771.8, + "probability": 0.9686 + }, + { + "start": 3776.4, + "end": 3777.08, + "probability": 0.7595 + }, + { + "start": 3777.2, + "end": 3777.7, + "probability": 0.8712 + }, + { + "start": 3778.06, + "end": 3779.38, + "probability": 0.6474 + }, + { + "start": 3779.66, + "end": 3780.7, + "probability": 0.951 + }, + { + "start": 3780.74, + "end": 3781.06, + "probability": 0.7124 + }, + { + "start": 3781.2, + "end": 3782.1, + "probability": 0.6768 + }, + { + "start": 3782.16, + "end": 3782.36, + "probability": 0.8215 + }, + { + "start": 3783.2, + "end": 3784.12, + "probability": 0.9497 + }, + { + "start": 3784.84, + "end": 3786.4, + "probability": 0.9146 + }, + { + "start": 3787.1, + "end": 3790.62, + "probability": 0.9797 + }, + { + "start": 3791.76, + "end": 3794.6, + "probability": 0.9985 + }, + { + "start": 3795.1, + "end": 3799.14, + "probability": 0.992 + }, + { + "start": 3799.28, + "end": 3799.78, + "probability": 0.5485 + }, + { + "start": 3799.96, + "end": 3801.8, + "probability": 0.9883 + }, + { + "start": 3802.34, + "end": 3802.86, + "probability": 0.9614 + }, + { + "start": 3802.94, + "end": 3805.76, + "probability": 0.9954 + }, + { + "start": 3807.1, + "end": 3810.14, + "probability": 0.9651 + }, + { + "start": 3810.48, + "end": 3813.16, + "probability": 0.9271 + }, + { + "start": 3813.16, + "end": 3818.34, + "probability": 0.9918 + }, + { + "start": 3818.44, + "end": 3819.36, + "probability": 0.6376 + }, + { + "start": 3819.42, + "end": 3820.22, + "probability": 0.7038 + }, + { + "start": 3820.54, + "end": 3821.93, + "probability": 0.9976 + }, + { + "start": 3822.32, + "end": 3822.8, + "probability": 0.9473 + }, + { + "start": 3823.78, + "end": 3825.42, + "probability": 0.8824 + }, + { + "start": 3825.74, + "end": 3826.76, + "probability": 0.4879 + }, + { + "start": 3826.84, + "end": 3829.32, + "probability": 0.9404 + }, + { + "start": 3829.78, + "end": 3831.68, + "probability": 0.8968 + }, + { + "start": 3831.94, + "end": 3833.45, + "probability": 0.5999 + }, + { + "start": 3834.1, + "end": 3834.96, + "probability": 0.7064 + }, + { + "start": 3834.98, + "end": 3835.96, + "probability": 0.9612 + }, + { + "start": 3836.06, + "end": 3837.18, + "probability": 0.9546 + }, + { + "start": 3837.28, + "end": 3838.72, + "probability": 0.9678 + }, + { + "start": 3841.44, + "end": 3846.54, + "probability": 0.998 + }, + { + "start": 3846.68, + "end": 3848.14, + "probability": 0.8049 + }, + { + "start": 3849.0, + "end": 3851.18, + "probability": 0.9769 + }, + { + "start": 3851.42, + "end": 3854.02, + "probability": 0.9952 + }, + { + "start": 3854.56, + "end": 3856.3, + "probability": 0.8103 + }, + { + "start": 3856.38, + "end": 3857.39, + "probability": 0.7784 + }, + { + "start": 3858.18, + "end": 3859.28, + "probability": 0.9368 + }, + { + "start": 3859.78, + "end": 3860.86, + "probability": 0.9736 + }, + { + "start": 3861.22, + "end": 3863.0, + "probability": 0.9886 + }, + { + "start": 3864.52, + "end": 3867.82, + "probability": 0.9943 + }, + { + "start": 3867.88, + "end": 3869.69, + "probability": 0.9573 + }, + { + "start": 3870.8, + "end": 3872.97, + "probability": 0.543 + }, + { + "start": 3873.26, + "end": 3874.21, + "probability": 0.9287 + }, + { + "start": 3875.02, + "end": 3878.04, + "probability": 0.9744 + }, + { + "start": 3878.26, + "end": 3880.7, + "probability": 0.8841 + }, + { + "start": 3881.04, + "end": 3882.72, + "probability": 0.9767 + }, + { + "start": 3882.8, + "end": 3883.16, + "probability": 0.8952 + }, + { + "start": 3883.68, + "end": 3885.14, + "probability": 0.7761 + }, + { + "start": 3885.56, + "end": 3886.92, + "probability": 0.412 + }, + { + "start": 3886.94, + "end": 3891.42, + "probability": 0.9004 + }, + { + "start": 3896.6, + "end": 3897.36, + "probability": 0.583 + }, + { + "start": 3897.58, + "end": 3901.16, + "probability": 0.751 + }, + { + "start": 3901.96, + "end": 3906.46, + "probability": 0.8838 + }, + { + "start": 3906.6, + "end": 3908.48, + "probability": 0.9912 + }, + { + "start": 3908.92, + "end": 3914.32, + "probability": 0.9778 + }, + { + "start": 3915.12, + "end": 3915.84, + "probability": 0.6636 + }, + { + "start": 3915.98, + "end": 3917.26, + "probability": 0.6442 + }, + { + "start": 3918.08, + "end": 3925.14, + "probability": 0.981 + }, + { + "start": 3925.56, + "end": 3927.12, + "probability": 0.7095 + }, + { + "start": 3927.12, + "end": 3931.96, + "probability": 0.8926 + }, + { + "start": 3932.08, + "end": 3932.84, + "probability": 0.9966 + }, + { + "start": 3932.96, + "end": 3935.57, + "probability": 0.8481 + }, + { + "start": 3935.94, + "end": 3937.57, + "probability": 0.9194 + }, + { + "start": 3937.69, + "end": 3940.33, + "probability": 0.993 + }, + { + "start": 3940.73, + "end": 3941.15, + "probability": 0.8466 + }, + { + "start": 3941.25, + "end": 3944.49, + "probability": 0.9796 + }, + { + "start": 3944.51, + "end": 3944.83, + "probability": 0.3747 + }, + { + "start": 3944.97, + "end": 3945.97, + "probability": 0.9395 + }, + { + "start": 3946.31, + "end": 3948.99, + "probability": 0.9723 + }, + { + "start": 3949.27, + "end": 3949.37, + "probability": 0.8831 + }, + { + "start": 3950.03, + "end": 3950.29, + "probability": 0.4426 + }, + { + "start": 3950.29, + "end": 3950.65, + "probability": 0.427 + }, + { + "start": 3950.69, + "end": 3951.25, + "probability": 0.602 + }, + { + "start": 3951.25, + "end": 3951.71, + "probability": 0.7084 + }, + { + "start": 3953.11, + "end": 3953.73, + "probability": 0.5214 + }, + { + "start": 3954.35, + "end": 3955.21, + "probability": 0.3471 + }, + { + "start": 3956.15, + "end": 3956.39, + "probability": 0.5297 + }, + { + "start": 3956.43, + "end": 3957.57, + "probability": 0.9041 + }, + { + "start": 3957.63, + "end": 3961.83, + "probability": 0.9902 + }, + { + "start": 3964.25, + "end": 3966.09, + "probability": 0.6133 + }, + { + "start": 3967.39, + "end": 3967.81, + "probability": 0.3106 + }, + { + "start": 3967.81, + "end": 3969.41, + "probability": 0.5194 + }, + { + "start": 3969.49, + "end": 3973.73, + "probability": 0.9872 + }, + { + "start": 3974.19, + "end": 3978.27, + "probability": 0.7646 + }, + { + "start": 3978.93, + "end": 3979.63, + "probability": 0.7454 + }, + { + "start": 3980.23, + "end": 3980.63, + "probability": 0.0197 + }, + { + "start": 3983.75, + "end": 3987.57, + "probability": 0.3392 + }, + { + "start": 4004.67, + "end": 4007.47, + "probability": 0.0443 + }, + { + "start": 4017.77, + "end": 4018.27, + "probability": 0.0559 + }, + { + "start": 4018.37, + "end": 4020.37, + "probability": 0.0238 + }, + { + "start": 4021.6, + "end": 4021.98, + "probability": 0.0504 + }, + { + "start": 4027.07, + "end": 4031.35, + "probability": 0.151 + }, + { + "start": 4043.37, + "end": 4043.87, + "probability": 0.0875 + }, + { + "start": 4043.87, + "end": 4044.19, + "probability": 0.0463 + }, + { + "start": 4044.79, + "end": 4047.24, + "probability": 0.0588 + }, + { + "start": 4047.79, + "end": 4049.19, + "probability": 0.1885 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4064.18, + "end": 4067.42, + "probability": 0.9966 + }, + { + "start": 4068.46, + "end": 4072.22, + "probability": 0.9969 + }, + { + "start": 4072.48, + "end": 4073.24, + "probability": 0.638 + }, + { + "start": 4073.68, + "end": 4075.2, + "probability": 0.9761 + }, + { + "start": 4076.92, + "end": 4078.72, + "probability": 0.9936 + }, + { + "start": 4079.86, + "end": 4085.56, + "probability": 0.9816 + }, + { + "start": 4086.36, + "end": 4088.4, + "probability": 0.9921 + }, + { + "start": 4089.16, + "end": 4090.04, + "probability": 0.998 + }, + { + "start": 4090.86, + "end": 4093.16, + "probability": 0.9398 + }, + { + "start": 4093.8, + "end": 4097.64, + "probability": 0.996 + }, + { + "start": 4098.2, + "end": 4100.62, + "probability": 0.9485 + }, + { + "start": 4101.5, + "end": 4104.18, + "probability": 0.813 + }, + { + "start": 4104.7, + "end": 4105.56, + "probability": 0.7513 + }, + { + "start": 4105.66, + "end": 4108.66, + "probability": 0.9641 + }, + { + "start": 4109.18, + "end": 4112.2, + "probability": 0.9915 + }, + { + "start": 4112.42, + "end": 4114.12, + "probability": 0.9722 + }, + { + "start": 4114.84, + "end": 4117.82, + "probability": 0.9299 + }, + { + "start": 4117.82, + "end": 4121.88, + "probability": 0.9901 + }, + { + "start": 4121.96, + "end": 4123.49, + "probability": 0.6792 + }, + { + "start": 4124.18, + "end": 4125.2, + "probability": 0.8884 + }, + { + "start": 4125.4, + "end": 4129.16, + "probability": 0.9878 + }, + { + "start": 4129.16, + "end": 4132.6, + "probability": 0.998 + }, + { + "start": 4133.06, + "end": 4136.9, + "probability": 0.9912 + }, + { + "start": 4136.98, + "end": 4140.08, + "probability": 0.9963 + }, + { + "start": 4140.26, + "end": 4141.24, + "probability": 0.8987 + }, + { + "start": 4141.8, + "end": 4143.2, + "probability": 0.4506 + }, + { + "start": 4143.62, + "end": 4145.3, + "probability": 0.9248 + }, + { + "start": 4145.42, + "end": 4147.96, + "probability": 0.9594 + }, + { + "start": 4148.02, + "end": 4150.76, + "probability": 0.9414 + }, + { + "start": 4151.46, + "end": 4152.8, + "probability": 0.4938 + }, + { + "start": 4153.18, + "end": 4156.54, + "probability": 0.9878 + }, + { + "start": 4156.92, + "end": 4159.66, + "probability": 0.9967 + }, + { + "start": 4159.7, + "end": 4162.48, + "probability": 0.9963 + }, + { + "start": 4163.22, + "end": 4165.04, + "probability": 0.9927 + }, + { + "start": 4165.28, + "end": 4166.21, + "probability": 0.5767 + }, + { + "start": 4166.4, + "end": 4168.28, + "probability": 0.9983 + }, + { + "start": 4168.56, + "end": 4169.02, + "probability": 0.7869 + }, + { + "start": 4169.56, + "end": 4170.52, + "probability": 0.9377 + }, + { + "start": 4170.66, + "end": 4172.55, + "probability": 0.9956 + }, + { + "start": 4172.92, + "end": 4174.12, + "probability": 0.9521 + }, + { + "start": 4174.18, + "end": 4176.14, + "probability": 0.9865 + }, + { + "start": 4176.64, + "end": 4177.06, + "probability": 0.8757 + }, + { + "start": 4177.72, + "end": 4180.24, + "probability": 0.881 + }, + { + "start": 4180.76, + "end": 4181.78, + "probability": 0.9565 + }, + { + "start": 4182.24, + "end": 4183.46, + "probability": 0.8557 + }, + { + "start": 4183.92, + "end": 4186.18, + "probability": 0.9029 + }, + { + "start": 4186.84, + "end": 4188.48, + "probability": 0.9468 + }, + { + "start": 4188.8, + "end": 4191.04, + "probability": 0.9753 + }, + { + "start": 4191.14, + "end": 4192.54, + "probability": 0.9961 + }, + { + "start": 4192.74, + "end": 4194.1, + "probability": 0.902 + }, + { + "start": 4194.5, + "end": 4198.26, + "probability": 0.9437 + }, + { + "start": 4198.86, + "end": 4203.6, + "probability": 0.9174 + }, + { + "start": 4203.9, + "end": 4204.8, + "probability": 0.9106 + }, + { + "start": 4204.86, + "end": 4207.62, + "probability": 0.9858 + }, + { + "start": 4208.08, + "end": 4210.4, + "probability": 0.8316 + }, + { + "start": 4210.7, + "end": 4215.46, + "probability": 0.7222 + }, + { + "start": 4216.16, + "end": 4216.54, + "probability": 0.7361 + }, + { + "start": 4216.62, + "end": 4218.18, + "probability": 0.999 + }, + { + "start": 4218.64, + "end": 4219.84, + "probability": 0.8687 + }, + { + "start": 4219.9, + "end": 4221.6, + "probability": 0.9868 + }, + { + "start": 4221.68, + "end": 4223.2, + "probability": 0.9946 + }, + { + "start": 4224.02, + "end": 4226.88, + "probability": 0.9962 + }, + { + "start": 4227.44, + "end": 4228.0, + "probability": 0.8292 + }, + { + "start": 4228.9, + "end": 4233.22, + "probability": 0.7938 + }, + { + "start": 4233.58, + "end": 4238.28, + "probability": 0.9306 + }, + { + "start": 4238.36, + "end": 4242.34, + "probability": 0.9905 + }, + { + "start": 4242.96, + "end": 4244.98, + "probability": 0.9889 + }, + { + "start": 4245.18, + "end": 4246.06, + "probability": 0.9975 + }, + { + "start": 4246.18, + "end": 4247.22, + "probability": 0.8394 + }, + { + "start": 4247.7, + "end": 4248.92, + "probability": 0.7387 + }, + { + "start": 4248.98, + "end": 4251.36, + "probability": 0.9216 + }, + { + "start": 4251.38, + "end": 4251.96, + "probability": 0.367 + }, + { + "start": 4252.12, + "end": 4252.8, + "probability": 0.8723 + }, + { + "start": 4253.26, + "end": 4257.62, + "probability": 0.9944 + }, + { + "start": 4258.26, + "end": 4259.66, + "probability": 0.788 + }, + { + "start": 4259.72, + "end": 4261.06, + "probability": 0.9902 + }, + { + "start": 4261.16, + "end": 4264.6, + "probability": 0.9904 + }, + { + "start": 4265.1, + "end": 4265.66, + "probability": 0.7073 + }, + { + "start": 4265.82, + "end": 4266.66, + "probability": 0.8935 + }, + { + "start": 4267.14, + "end": 4267.94, + "probability": 0.4653 + }, + { + "start": 4267.96, + "end": 4270.32, + "probability": 0.8747 + }, + { + "start": 4271.0, + "end": 4271.1, + "probability": 0.9988 + }, + { + "start": 4271.86, + "end": 4273.78, + "probability": 0.5876 + }, + { + "start": 4273.78, + "end": 4275.36, + "probability": 0.5707 + }, + { + "start": 4275.6, + "end": 4276.02, + "probability": 0.7547 + }, + { + "start": 4276.12, + "end": 4276.78, + "probability": 0.9726 + }, + { + "start": 4276.94, + "end": 4277.44, + "probability": 0.3488 + }, + { + "start": 4277.56, + "end": 4277.68, + "probability": 0.5488 + }, + { + "start": 4277.82, + "end": 4279.4, + "probability": 0.742 + }, + { + "start": 4279.42, + "end": 4279.62, + "probability": 0.9081 + }, + { + "start": 4279.74, + "end": 4280.8, + "probability": 0.9458 + }, + { + "start": 4281.02, + "end": 4282.06, + "probability": 0.9297 + }, + { + "start": 4282.6, + "end": 4285.7, + "probability": 0.9348 + }, + { + "start": 4285.78, + "end": 4286.1, + "probability": 0.9058 + }, + { + "start": 4286.26, + "end": 4287.78, + "probability": 0.8959 + }, + { + "start": 4288.0, + "end": 4288.74, + "probability": 0.8014 + }, + { + "start": 4289.12, + "end": 4290.34, + "probability": 0.8516 + }, + { + "start": 4290.86, + "end": 4292.52, + "probability": 0.9414 + }, + { + "start": 4292.64, + "end": 4295.2, + "probability": 0.9689 + }, + { + "start": 4295.84, + "end": 4297.7, + "probability": 0.8913 + }, + { + "start": 4297.72, + "end": 4298.87, + "probability": 0.982 + }, + { + "start": 4299.06, + "end": 4300.0, + "probability": 0.9768 + }, + { + "start": 4300.04, + "end": 4300.82, + "probability": 0.9124 + }, + { + "start": 4301.08, + "end": 4302.1, + "probability": 0.9738 + }, + { + "start": 4303.0, + "end": 4305.58, + "probability": 0.9885 + }, + { + "start": 4306.16, + "end": 4309.98, + "probability": 0.96 + }, + { + "start": 4310.74, + "end": 4316.92, + "probability": 0.7498 + }, + { + "start": 4317.66, + "end": 4319.78, + "probability": 0.9979 + }, + { + "start": 4320.32, + "end": 4323.06, + "probability": 0.8428 + }, + { + "start": 4323.12, + "end": 4323.4, + "probability": 0.16 + }, + { + "start": 4323.52, + "end": 4323.78, + "probability": 0.6193 + }, + { + "start": 4323.8, + "end": 4324.02, + "probability": 0.6002 + }, + { + "start": 4324.02, + "end": 4324.12, + "probability": 0.5624 + }, + { + "start": 4324.28, + "end": 4324.3, + "probability": 0.5532 + }, + { + "start": 4324.48, + "end": 4325.76, + "probability": 0.9899 + }, + { + "start": 4326.18, + "end": 4329.38, + "probability": 0.9502 + }, + { + "start": 4329.66, + "end": 4329.94, + "probability": 0.5197 + }, + { + "start": 4330.64, + "end": 4331.3, + "probability": 0.7156 + }, + { + "start": 4332.0, + "end": 4332.32, + "probability": 0.9556 + }, + { + "start": 4332.44, + "end": 4333.24, + "probability": 0.8719 + }, + { + "start": 4333.38, + "end": 4336.3, + "probability": 0.7856 + }, + { + "start": 4336.86, + "end": 4338.02, + "probability": 0.9624 + }, + { + "start": 4338.18, + "end": 4338.84, + "probability": 0.8618 + }, + { + "start": 4339.2, + "end": 4339.86, + "probability": 0.9189 + }, + { + "start": 4339.92, + "end": 4343.64, + "probability": 0.8773 + }, + { + "start": 4343.7, + "end": 4345.38, + "probability": 0.9287 + }, + { + "start": 4346.42, + "end": 4347.32, + "probability": 0.7471 + }, + { + "start": 4347.74, + "end": 4349.56, + "probability": 0.9199 + }, + { + "start": 4349.86, + "end": 4351.94, + "probability": 0.9757 + }, + { + "start": 4352.7, + "end": 4354.7, + "probability": 0.9764 + }, + { + "start": 4355.28, + "end": 4360.1, + "probability": 0.8408 + }, + { + "start": 4360.3, + "end": 4362.1, + "probability": 0.9958 + }, + { + "start": 4362.62, + "end": 4363.42, + "probability": 0.5645 + }, + { + "start": 4363.48, + "end": 4367.16, + "probability": 0.9287 + }, + { + "start": 4367.44, + "end": 4371.06, + "probability": 0.863 + }, + { + "start": 4371.12, + "end": 4372.18, + "probability": 0.772 + }, + { + "start": 4372.58, + "end": 4374.82, + "probability": 0.9951 + }, + { + "start": 4374.98, + "end": 4377.86, + "probability": 0.9585 + }, + { + "start": 4377.9, + "end": 4379.98, + "probability": 0.9915 + }, + { + "start": 4380.06, + "end": 4382.2, + "probability": 0.9634 + }, + { + "start": 4382.94, + "end": 4385.44, + "probability": 0.7729 + }, + { + "start": 4386.18, + "end": 4389.32, + "probability": 0.9731 + }, + { + "start": 4389.38, + "end": 4390.84, + "probability": 0.9773 + }, + { + "start": 4390.88, + "end": 4395.16, + "probability": 0.9365 + }, + { + "start": 4395.24, + "end": 4396.84, + "probability": 0.9439 + }, + { + "start": 4396.88, + "end": 4397.14, + "probability": 0.7408 + }, + { + "start": 4398.06, + "end": 4398.44, + "probability": 0.4748 + }, + { + "start": 4398.56, + "end": 4399.38, + "probability": 0.7519 + }, + { + "start": 4399.58, + "end": 4400.14, + "probability": 0.6934 + }, + { + "start": 4400.58, + "end": 4403.66, + "probability": 0.7257 + }, + { + "start": 4404.16, + "end": 4404.8, + "probability": 0.7946 + }, + { + "start": 4404.82, + "end": 4407.64, + "probability": 0.7103 + }, + { + "start": 4408.42, + "end": 4412.22, + "probability": 0.9816 + }, + { + "start": 4412.72, + "end": 4413.5, + "probability": 0.5134 + }, + { + "start": 4413.8, + "end": 4416.7, + "probability": 0.9932 + }, + { + "start": 4416.96, + "end": 4419.66, + "probability": 0.9806 + }, + { + "start": 4419.82, + "end": 4421.62, + "probability": 0.8892 + }, + { + "start": 4422.22, + "end": 4424.24, + "probability": 0.5478 + }, + { + "start": 4424.96, + "end": 4425.48, + "probability": 0.816 + }, + { + "start": 4425.54, + "end": 4430.52, + "probability": 0.9718 + }, + { + "start": 4430.78, + "end": 4432.96, + "probability": 0.8884 + }, + { + "start": 4433.14, + "end": 4435.84, + "probability": 0.97 + }, + { + "start": 4436.32, + "end": 4437.9, + "probability": 0.9896 + }, + { + "start": 4438.42, + "end": 4440.58, + "probability": 0.8992 + }, + { + "start": 4441.18, + "end": 4443.1, + "probability": 0.9705 + }, + { + "start": 4443.26, + "end": 4443.76, + "probability": 0.7397 + }, + { + "start": 4443.98, + "end": 4448.78, + "probability": 0.9932 + }, + { + "start": 4448.9, + "end": 4450.1, + "probability": 0.9961 + }, + { + "start": 4450.52, + "end": 4451.74, + "probability": 0.8835 + }, + { + "start": 4452.52, + "end": 4455.48, + "probability": 0.9954 + }, + { + "start": 4455.48, + "end": 4458.88, + "probability": 0.9993 + }, + { + "start": 4459.88, + "end": 4461.3, + "probability": 0.8567 + }, + { + "start": 4461.58, + "end": 4462.54, + "probability": 0.8951 + }, + { + "start": 4462.64, + "end": 4463.02, + "probability": 0.8006 + }, + { + "start": 4463.4, + "end": 4466.92, + "probability": 0.9989 + }, + { + "start": 4468.34, + "end": 4468.46, + "probability": 0.1683 + }, + { + "start": 4468.46, + "end": 4468.46, + "probability": 0.4443 + }, + { + "start": 4468.46, + "end": 4470.7, + "probability": 0.703 + }, + { + "start": 4471.32, + "end": 4473.9, + "probability": 0.9922 + }, + { + "start": 4474.9, + "end": 4478.24, + "probability": 0.8643 + }, + { + "start": 4478.82, + "end": 4480.9, + "probability": 0.9916 + }, + { + "start": 4481.02, + "end": 4481.62, + "probability": 0.9272 + }, + { + "start": 4481.74, + "end": 4482.74, + "probability": 0.9255 + }, + { + "start": 4482.94, + "end": 4484.52, + "probability": 0.9902 + }, + { + "start": 4484.76, + "end": 4487.96, + "probability": 0.9856 + }, + { + "start": 4488.4, + "end": 4492.22, + "probability": 0.9956 + }, + { + "start": 4492.38, + "end": 4496.88, + "probability": 0.9985 + }, + { + "start": 4497.68, + "end": 4500.6, + "probability": 0.9813 + }, + { + "start": 4500.82, + "end": 4501.3, + "probability": 0.5507 + }, + { + "start": 4501.48, + "end": 4505.22, + "probability": 0.7886 + }, + { + "start": 4505.22, + "end": 4507.74, + "probability": 0.9951 + }, + { + "start": 4507.96, + "end": 4509.82, + "probability": 0.6597 + }, + { + "start": 4509.82, + "end": 4509.82, + "probability": 0.5347 + }, + { + "start": 4509.82, + "end": 4510.58, + "probability": 0.8599 + }, + { + "start": 4511.52, + "end": 4512.2, + "probability": 0.8332 + }, + { + "start": 4512.3, + "end": 4514.18, + "probability": 0.8981 + }, + { + "start": 4514.24, + "end": 4514.84, + "probability": 0.9525 + }, + { + "start": 4514.96, + "end": 4517.6, + "probability": 0.981 + }, + { + "start": 4517.76, + "end": 4518.69, + "probability": 0.9619 + }, + { + "start": 4519.38, + "end": 4520.08, + "probability": 0.8979 + }, + { + "start": 4520.18, + "end": 4520.54, + "probability": 0.3506 + }, + { + "start": 4520.56, + "end": 4521.76, + "probability": 0.9607 + }, + { + "start": 4521.96, + "end": 4522.28, + "probability": 0.1513 + }, + { + "start": 4522.32, + "end": 4522.7, + "probability": 0.8712 + }, + { + "start": 4522.98, + "end": 4525.3, + "probability": 0.9149 + }, + { + "start": 4525.42, + "end": 4525.76, + "probability": 0.9145 + }, + { + "start": 4526.06, + "end": 4526.38, + "probability": 0.5186 + }, + { + "start": 4526.96, + "end": 4528.6, + "probability": 0.9521 + }, + { + "start": 4530.56, + "end": 4533.34, + "probability": 0.8143 + }, + { + "start": 4533.4, + "end": 4533.72, + "probability": 0.5814 + }, + { + "start": 4533.92, + "end": 4534.78, + "probability": 0.941 + }, + { + "start": 4534.98, + "end": 4537.14, + "probability": 0.9605 + }, + { + "start": 4537.28, + "end": 4537.52, + "probability": 0.5814 + }, + { + "start": 4537.86, + "end": 4540.52, + "probability": 0.8332 + }, + { + "start": 4540.98, + "end": 4542.72, + "probability": 0.8335 + }, + { + "start": 4542.86, + "end": 4543.4, + "probability": 0.7409 + }, + { + "start": 4543.48, + "end": 4544.0, + "probability": 0.6598 + }, + { + "start": 4544.04, + "end": 4545.7, + "probability": 0.8033 + }, + { + "start": 4546.3, + "end": 4547.76, + "probability": 0.8029 + }, + { + "start": 4548.4, + "end": 4549.64, + "probability": 0.9777 + }, + { + "start": 4549.7, + "end": 4550.12, + "probability": 0.7886 + }, + { + "start": 4550.16, + "end": 4550.76, + "probability": 0.2123 + }, + { + "start": 4550.78, + "end": 4552.2, + "probability": 0.2797 + }, + { + "start": 4552.2, + "end": 4552.64, + "probability": 0.8962 + }, + { + "start": 4552.92, + "end": 4553.72, + "probability": 0.6387 + }, + { + "start": 4553.84, + "end": 4554.42, + "probability": 0.3189 + }, + { + "start": 4554.6, + "end": 4555.24, + "probability": 0.7801 + }, + { + "start": 4555.4, + "end": 4556.12, + "probability": 0.7506 + }, + { + "start": 4556.2, + "end": 4557.04, + "probability": 0.9756 + }, + { + "start": 4557.5, + "end": 4559.06, + "probability": 0.8397 + }, + { + "start": 4559.24, + "end": 4561.38, + "probability": 0.9329 + }, + { + "start": 4562.06, + "end": 4564.04, + "probability": 0.9967 + }, + { + "start": 4564.48, + "end": 4567.16, + "probability": 0.8429 + }, + { + "start": 4567.24, + "end": 4570.22, + "probability": 0.9917 + }, + { + "start": 4570.54, + "end": 4577.04, + "probability": 0.9883 + }, + { + "start": 4577.26, + "end": 4579.0, + "probability": 0.8198 + }, + { + "start": 4579.1, + "end": 4579.52, + "probability": 0.6108 + }, + { + "start": 4579.76, + "end": 4581.68, + "probability": 0.9288 + }, + { + "start": 4581.76, + "end": 4583.08, + "probability": 0.8074 + }, + { + "start": 4583.08, + "end": 4583.72, + "probability": 0.9385 + }, + { + "start": 4584.5, + "end": 4584.9, + "probability": 0.576 + }, + { + "start": 4585.1, + "end": 4588.76, + "probability": 0.7997 + }, + { + "start": 4588.78, + "end": 4592.0, + "probability": 0.881 + }, + { + "start": 4592.04, + "end": 4594.6, + "probability": 0.884 + }, + { + "start": 4595.14, + "end": 4597.4, + "probability": 0.9746 + }, + { + "start": 4597.58, + "end": 4600.68, + "probability": 0.8871 + }, + { + "start": 4600.68, + "end": 4603.78, + "probability": 0.9896 + }, + { + "start": 4605.2, + "end": 4605.68, + "probability": 0.6482 + }, + { + "start": 4605.88, + "end": 4606.64, + "probability": 0.9755 + }, + { + "start": 4606.74, + "end": 4609.62, + "probability": 0.9862 + }, + { + "start": 4610.64, + "end": 4613.18, + "probability": 0.9963 + }, + { + "start": 4613.5, + "end": 4619.62, + "probability": 0.9952 + }, + { + "start": 4619.68, + "end": 4621.06, + "probability": 0.8359 + }, + { + "start": 4621.38, + "end": 4623.32, + "probability": 0.9639 + }, + { + "start": 4623.6, + "end": 4624.8, + "probability": 0.8502 + }, + { + "start": 4625.14, + "end": 4630.54, + "probability": 0.9935 + }, + { + "start": 4630.54, + "end": 4631.52, + "probability": 0.8538 + }, + { + "start": 4631.64, + "end": 4633.71, + "probability": 0.9681 + }, + { + "start": 4634.14, + "end": 4636.02, + "probability": 0.9971 + }, + { + "start": 4636.36, + "end": 4639.14, + "probability": 0.9948 + }, + { + "start": 4639.82, + "end": 4647.1, + "probability": 0.9788 + }, + { + "start": 4647.5, + "end": 4651.42, + "probability": 0.8691 + }, + { + "start": 4651.6, + "end": 4652.83, + "probability": 0.9927 + }, + { + "start": 4653.78, + "end": 4659.54, + "probability": 0.9952 + }, + { + "start": 4660.32, + "end": 4660.62, + "probability": 0.6133 + }, + { + "start": 4660.92, + "end": 4664.2, + "probability": 0.9991 + }, + { + "start": 4664.44, + "end": 4666.84, + "probability": 0.9961 + }, + { + "start": 4667.8, + "end": 4670.5, + "probability": 0.9917 + }, + { + "start": 4671.3, + "end": 4675.1, + "probability": 0.9973 + }, + { + "start": 4675.94, + "end": 4678.7, + "probability": 0.9932 + }, + { + "start": 4678.98, + "end": 4683.68, + "probability": 0.9749 + }, + { + "start": 4684.42, + "end": 4688.18, + "probability": 0.9761 + }, + { + "start": 4688.18, + "end": 4691.7, + "probability": 0.9841 + }, + { + "start": 4691.94, + "end": 4696.86, + "probability": 0.9924 + }, + { + "start": 4698.0, + "end": 4699.34, + "probability": 0.8066 + }, + { + "start": 4699.48, + "end": 4700.36, + "probability": 0.979 + }, + { + "start": 4700.62, + "end": 4702.86, + "probability": 0.8566 + }, + { + "start": 4703.42, + "end": 4704.46, + "probability": 0.7331 + }, + { + "start": 4704.54, + "end": 4706.66, + "probability": 0.8608 + }, + { + "start": 4706.84, + "end": 4707.7, + "probability": 0.939 + }, + { + "start": 4707.82, + "end": 4709.88, + "probability": 0.9929 + }, + { + "start": 4710.52, + "end": 4714.38, + "probability": 0.9935 + }, + { + "start": 4714.96, + "end": 4717.0, + "probability": 0.5225 + }, + { + "start": 4717.32, + "end": 4718.6, + "probability": 0.7959 + }, + { + "start": 4718.72, + "end": 4721.28, + "probability": 0.9445 + }, + { + "start": 4721.28, + "end": 4724.1, + "probability": 0.9882 + }, + { + "start": 4724.76, + "end": 4725.38, + "probability": 0.6013 + }, + { + "start": 4726.84, + "end": 4726.92, + "probability": 0.0082 + }, + { + "start": 4726.92, + "end": 4728.26, + "probability": 0.7534 + }, + { + "start": 4728.36, + "end": 4729.18, + "probability": 0.9729 + }, + { + "start": 4729.68, + "end": 4734.3, + "probability": 0.7776 + }, + { + "start": 4734.86, + "end": 4738.04, + "probability": 0.984 + }, + { + "start": 4738.58, + "end": 4744.42, + "probability": 0.9486 + }, + { + "start": 4744.8, + "end": 4746.88, + "probability": 0.9781 + }, + { + "start": 4747.0, + "end": 4749.32, + "probability": 0.9958 + }, + { + "start": 4750.02, + "end": 4754.84, + "probability": 0.9615 + }, + { + "start": 4755.48, + "end": 4761.38, + "probability": 0.9467 + }, + { + "start": 4762.5, + "end": 4766.56, + "probability": 0.9902 + }, + { + "start": 4767.28, + "end": 4769.8, + "probability": 0.9697 + }, + { + "start": 4770.54, + "end": 4772.96, + "probability": 0.914 + }, + { + "start": 4773.56, + "end": 4775.64, + "probability": 0.2638 + }, + { + "start": 4776.22, + "end": 4780.32, + "probability": 0.9956 + }, + { + "start": 4780.32, + "end": 4784.42, + "probability": 0.9996 + }, + { + "start": 4784.5, + "end": 4787.24, + "probability": 0.9987 + }, + { + "start": 4787.6, + "end": 4788.0, + "probability": 0.7849 + }, + { + "start": 4788.12, + "end": 4789.86, + "probability": 0.6211 + }, + { + "start": 4790.34, + "end": 4792.42, + "probability": 0.9136 + }, + { + "start": 4794.72, + "end": 4795.22, + "probability": 0.8219 + }, + { + "start": 4814.28, + "end": 4817.36, + "probability": 0.6412 + }, + { + "start": 4819.46, + "end": 4825.52, + "probability": 0.9989 + }, + { + "start": 4826.82, + "end": 4828.5, + "probability": 0.9775 + }, + { + "start": 4830.48, + "end": 4840.34, + "probability": 0.993 + }, + { + "start": 4841.08, + "end": 4842.76, + "probability": 0.9926 + }, + { + "start": 4843.86, + "end": 4845.8, + "probability": 0.9608 + }, + { + "start": 4846.86, + "end": 4851.18, + "probability": 0.8708 + }, + { + "start": 4851.94, + "end": 4854.32, + "probability": 0.853 + }, + { + "start": 4856.7, + "end": 4858.18, + "probability": 0.8485 + }, + { + "start": 4859.88, + "end": 4861.32, + "probability": 0.7824 + }, + { + "start": 4862.78, + "end": 4863.36, + "probability": 0.9804 + }, + { + "start": 4864.58, + "end": 4865.0, + "probability": 0.9857 + }, + { + "start": 4866.12, + "end": 4866.58, + "probability": 0.6755 + }, + { + "start": 4868.48, + "end": 4871.32, + "probability": 0.9055 + }, + { + "start": 4874.22, + "end": 4874.88, + "probability": 0.9069 + }, + { + "start": 4875.78, + "end": 4876.78, + "probability": 0.686 + }, + { + "start": 4877.76, + "end": 4881.12, + "probability": 0.9148 + }, + { + "start": 4882.1, + "end": 4883.76, + "probability": 0.8615 + }, + { + "start": 4885.14, + "end": 4890.58, + "probability": 0.9946 + }, + { + "start": 4893.4, + "end": 4895.22, + "probability": 0.7724 + }, + { + "start": 4896.98, + "end": 4898.08, + "probability": 0.9769 + }, + { + "start": 4898.76, + "end": 4899.54, + "probability": 0.9403 + }, + { + "start": 4900.48, + "end": 4901.79, + "probability": 0.2356 + }, + { + "start": 4903.64, + "end": 4906.26, + "probability": 0.8535 + }, + { + "start": 4907.66, + "end": 4913.1, + "probability": 0.895 + }, + { + "start": 4914.04, + "end": 4915.14, + "probability": 0.7852 + }, + { + "start": 4915.72, + "end": 4920.74, + "probability": 0.6565 + }, + { + "start": 4922.0, + "end": 4926.56, + "probability": 0.9889 + }, + { + "start": 4929.28, + "end": 4934.22, + "probability": 0.9705 + }, + { + "start": 4936.48, + "end": 4939.0, + "probability": 0.8637 + }, + { + "start": 4940.72, + "end": 4943.56, + "probability": 0.9523 + }, + { + "start": 4944.88, + "end": 4948.36, + "probability": 0.9906 + }, + { + "start": 4950.74, + "end": 4951.24, + "probability": 0.5848 + }, + { + "start": 4952.52, + "end": 4956.12, + "probability": 0.9915 + }, + { + "start": 4958.8, + "end": 4961.9, + "probability": 0.8516 + }, + { + "start": 4963.56, + "end": 4965.06, + "probability": 0.9007 + }, + { + "start": 4966.36, + "end": 4967.32, + "probability": 0.9703 + }, + { + "start": 4968.06, + "end": 4969.1, + "probability": 0.8713 + }, + { + "start": 4970.44, + "end": 4971.92, + "probability": 0.7798 + }, + { + "start": 4973.22, + "end": 4974.18, + "probability": 0.8007 + }, + { + "start": 4975.1, + "end": 4975.42, + "probability": 0.6726 + }, + { + "start": 4976.1, + "end": 4979.56, + "probability": 0.9823 + }, + { + "start": 4981.7, + "end": 4987.42, + "probability": 0.807 + }, + { + "start": 4989.9, + "end": 4994.26, + "probability": 0.9456 + }, + { + "start": 4996.66, + "end": 4999.14, + "probability": 0.9459 + }, + { + "start": 5000.14, + "end": 5006.18, + "probability": 0.9549 + }, + { + "start": 5008.48, + "end": 5009.46, + "probability": 0.6848 + }, + { + "start": 5011.0, + "end": 5016.58, + "probability": 0.9811 + }, + { + "start": 5018.08, + "end": 5019.72, + "probability": 0.9232 + }, + { + "start": 5021.56, + "end": 5022.92, + "probability": 0.7885 + }, + { + "start": 5024.18, + "end": 5026.86, + "probability": 0.9954 + }, + { + "start": 5028.42, + "end": 5030.78, + "probability": 0.9619 + }, + { + "start": 5031.68, + "end": 5032.22, + "probability": 0.9933 + }, + { + "start": 5032.92, + "end": 5033.5, + "probability": 0.7483 + }, + { + "start": 5034.24, + "end": 5035.24, + "probability": 0.9678 + }, + { + "start": 5037.62, + "end": 5041.66, + "probability": 0.9748 + }, + { + "start": 5043.0, + "end": 5046.56, + "probability": 0.9764 + }, + { + "start": 5047.64, + "end": 5051.4, + "probability": 0.9943 + }, + { + "start": 5051.58, + "end": 5054.46, + "probability": 0.7609 + }, + { + "start": 5055.96, + "end": 5056.62, + "probability": 0.6502 + }, + { + "start": 5057.5, + "end": 5059.34, + "probability": 0.988 + }, + { + "start": 5059.86, + "end": 5061.46, + "probability": 0.8343 + }, + { + "start": 5062.26, + "end": 5063.92, + "probability": 0.6945 + }, + { + "start": 5064.52, + "end": 5065.34, + "probability": 0.8275 + }, + { + "start": 5065.96, + "end": 5069.36, + "probability": 0.9551 + }, + { + "start": 5072.76, + "end": 5076.88, + "probability": 0.9692 + }, + { + "start": 5078.48, + "end": 5081.12, + "probability": 0.6826 + }, + { + "start": 5081.98, + "end": 5082.32, + "probability": 0.4874 + }, + { + "start": 5082.46, + "end": 5086.18, + "probability": 0.9718 + }, + { + "start": 5087.16, + "end": 5088.8, + "probability": 0.8589 + }, + { + "start": 5089.7, + "end": 5096.52, + "probability": 0.9354 + }, + { + "start": 5097.66, + "end": 5099.44, + "probability": 0.8994 + }, + { + "start": 5100.14, + "end": 5102.58, + "probability": 0.9201 + }, + { + "start": 5105.14, + "end": 5106.18, + "probability": 0.8187 + }, + { + "start": 5110.02, + "end": 5112.0, + "probability": 0.511 + }, + { + "start": 5113.1, + "end": 5117.42, + "probability": 0.9958 + }, + { + "start": 5117.42, + "end": 5122.34, + "probability": 0.8513 + }, + { + "start": 5123.18, + "end": 5124.54, + "probability": 0.783 + }, + { + "start": 5126.26, + "end": 5130.14, + "probability": 0.9839 + }, + { + "start": 5130.14, + "end": 5133.38, + "probability": 0.9748 + }, + { + "start": 5134.42, + "end": 5136.6, + "probability": 0.8467 + }, + { + "start": 5137.22, + "end": 5140.9, + "probability": 0.9858 + }, + { + "start": 5141.64, + "end": 5143.18, + "probability": 0.8553 + }, + { + "start": 5143.9, + "end": 5150.22, + "probability": 0.9811 + }, + { + "start": 5150.22, + "end": 5154.26, + "probability": 0.7698 + }, + { + "start": 5154.86, + "end": 5157.66, + "probability": 0.9714 + }, + { + "start": 5157.8, + "end": 5158.54, + "probability": 0.6626 + }, + { + "start": 5158.84, + "end": 5160.74, + "probability": 0.9252 + }, + { + "start": 5161.32, + "end": 5161.92, + "probability": 0.6349 + }, + { + "start": 5162.82, + "end": 5167.92, + "probability": 0.9884 + }, + { + "start": 5168.72, + "end": 5170.94, + "probability": 0.6771 + }, + { + "start": 5171.02, + "end": 5173.58, + "probability": 0.582 + }, + { + "start": 5174.02, + "end": 5177.76, + "probability": 0.9727 + }, + { + "start": 5179.92, + "end": 5181.24, + "probability": 0.6106 + }, + { + "start": 5181.78, + "end": 5183.56, + "probability": 0.9006 + }, + { + "start": 5184.48, + "end": 5186.94, + "probability": 0.95 + }, + { + "start": 5188.12, + "end": 5192.0, + "probability": 0.9674 + }, + { + "start": 5193.82, + "end": 5199.82, + "probability": 0.9682 + }, + { + "start": 5201.24, + "end": 5204.72, + "probability": 0.97 + }, + { + "start": 5204.74, + "end": 5206.7, + "probability": 0.8671 + }, + { + "start": 5208.02, + "end": 5211.68, + "probability": 0.8441 + }, + { + "start": 5212.98, + "end": 5215.22, + "probability": 0.9719 + }, + { + "start": 5216.06, + "end": 5218.9, + "probability": 0.9871 + }, + { + "start": 5219.76, + "end": 5226.24, + "probability": 0.9857 + }, + { + "start": 5227.46, + "end": 5228.46, + "probability": 0.5883 + }, + { + "start": 5229.64, + "end": 5230.2, + "probability": 0.7305 + }, + { + "start": 5231.04, + "end": 5231.72, + "probability": 0.9921 + }, + { + "start": 5232.7, + "end": 5234.24, + "probability": 0.8669 + }, + { + "start": 5234.92, + "end": 5237.28, + "probability": 0.9952 + }, + { + "start": 5238.26, + "end": 5244.12, + "probability": 0.975 + }, + { + "start": 5248.94, + "end": 5255.46, + "probability": 0.8744 + }, + { + "start": 5256.64, + "end": 5257.92, + "probability": 0.9315 + }, + { + "start": 5258.82, + "end": 5261.62, + "probability": 0.9969 + }, + { + "start": 5262.58, + "end": 5265.88, + "probability": 0.9958 + }, + { + "start": 5266.72, + "end": 5271.5, + "probability": 0.9448 + }, + { + "start": 5274.8, + "end": 5280.14, + "probability": 0.998 + }, + { + "start": 5281.2, + "end": 5283.22, + "probability": 0.945 + }, + { + "start": 5286.38, + "end": 5286.98, + "probability": 0.3494 + }, + { + "start": 5287.02, + "end": 5292.18, + "probability": 0.9653 + }, + { + "start": 5292.18, + "end": 5296.86, + "probability": 0.9941 + }, + { + "start": 5297.46, + "end": 5297.7, + "probability": 0.7738 + }, + { + "start": 5299.46, + "end": 5304.52, + "probability": 0.9868 + }, + { + "start": 5306.06, + "end": 5312.96, + "probability": 0.6899 + }, + { + "start": 5313.14, + "end": 5315.94, + "probability": 0.8831 + }, + { + "start": 5315.94, + "end": 5320.16, + "probability": 0.9647 + }, + { + "start": 5320.7, + "end": 5321.58, + "probability": 0.9311 + }, + { + "start": 5322.98, + "end": 5323.92, + "probability": 0.497 + }, + { + "start": 5325.66, + "end": 5329.3, + "probability": 0.976 + }, + { + "start": 5329.38, + "end": 5331.5, + "probability": 0.9857 + }, + { + "start": 5334.08, + "end": 5335.08, + "probability": 0.6138 + }, + { + "start": 5339.36, + "end": 5339.52, + "probability": 0.0286 + }, + { + "start": 5339.72, + "end": 5342.18, + "probability": 0.9619 + }, + { + "start": 5342.46, + "end": 5343.14, + "probability": 0.4989 + }, + { + "start": 5343.3, + "end": 5345.62, + "probability": 0.5927 + }, + { + "start": 5346.28, + "end": 5347.5, + "probability": 0.5458 + }, + { + "start": 5348.22, + "end": 5352.9, + "probability": 0.7395 + }, + { + "start": 5353.16, + "end": 5355.66, + "probability": 0.8748 + }, + { + "start": 5356.36, + "end": 5357.28, + "probability": 0.9685 + }, + { + "start": 5357.88, + "end": 5359.88, + "probability": 0.9388 + }, + { + "start": 5361.22, + "end": 5365.16, + "probability": 0.985 + }, + { + "start": 5366.24, + "end": 5371.94, + "probability": 0.9656 + }, + { + "start": 5372.62, + "end": 5376.24, + "probability": 0.7136 + }, + { + "start": 5376.88, + "end": 5378.68, + "probability": 0.9764 + }, + { + "start": 5379.32, + "end": 5380.12, + "probability": 0.9591 + }, + { + "start": 5380.64, + "end": 5381.5, + "probability": 0.9911 + }, + { + "start": 5381.94, + "end": 5384.2, + "probability": 0.9432 + }, + { + "start": 5384.7, + "end": 5385.96, + "probability": 0.9902 + }, + { + "start": 5386.72, + "end": 5388.88, + "probability": 0.7657 + }, + { + "start": 5389.36, + "end": 5390.46, + "probability": 0.7522 + }, + { + "start": 5390.98, + "end": 5397.22, + "probability": 0.8851 + }, + { + "start": 5397.94, + "end": 5398.5, + "probability": 0.6183 + }, + { + "start": 5399.12, + "end": 5401.2, + "probability": 0.9971 + }, + { + "start": 5401.92, + "end": 5403.32, + "probability": 0.987 + }, + { + "start": 5404.86, + "end": 5410.3, + "probability": 0.9639 + }, + { + "start": 5410.98, + "end": 5413.66, + "probability": 0.6704 + }, + { + "start": 5414.16, + "end": 5414.7, + "probability": 0.7401 + }, + { + "start": 5415.58, + "end": 5418.0, + "probability": 0.9948 + }, + { + "start": 5419.06, + "end": 5420.08, + "probability": 0.7177 + }, + { + "start": 5420.84, + "end": 5421.42, + "probability": 0.9284 + }, + { + "start": 5425.98, + "end": 5426.44, + "probability": 0.5432 + }, + { + "start": 5426.86, + "end": 5426.86, + "probability": 0.3562 + }, + { + "start": 5427.58, + "end": 5428.36, + "probability": 0.6736 + }, + { + "start": 5428.84, + "end": 5430.28, + "probability": 0.636 + }, + { + "start": 5430.42, + "end": 5432.1, + "probability": 0.6644 + }, + { + "start": 5432.18, + "end": 5435.46, + "probability": 0.9485 + }, + { + "start": 5436.82, + "end": 5438.26, + "probability": 0.603 + }, + { + "start": 5438.58, + "end": 5438.82, + "probability": 0.7919 + }, + { + "start": 5439.38, + "end": 5439.5, + "probability": 0.021 + }, + { + "start": 5440.76, + "end": 5443.18, + "probability": 0.8872 + }, + { + "start": 5445.22, + "end": 5445.42, + "probability": 0.0451 + }, + { + "start": 5451.34, + "end": 5454.18, + "probability": 0.6228 + }, + { + "start": 5454.26, + "end": 5457.66, + "probability": 0.9182 + }, + { + "start": 5457.78, + "end": 5457.78, + "probability": 0.0857 + }, + { + "start": 5457.78, + "end": 5460.18, + "probability": 0.5155 + }, + { + "start": 5460.5, + "end": 5461.36, + "probability": 0.8172 + }, + { + "start": 5462.32, + "end": 5464.54, + "probability": 0.7861 + }, + { + "start": 5490.46, + "end": 5491.34, + "probability": 0.5269 + }, + { + "start": 5493.4, + "end": 5497.28, + "probability": 0.6692 + }, + { + "start": 5498.72, + "end": 5503.86, + "probability": 0.9888 + }, + { + "start": 5507.76, + "end": 5508.88, + "probability": 0.47 + }, + { + "start": 5511.7, + "end": 5514.16, + "probability": 0.0913 + }, + { + "start": 5514.19, + "end": 5514.3, + "probability": 0.0562 + }, + { + "start": 5519.1, + "end": 5523.06, + "probability": 0.5138 + }, + { + "start": 5524.86, + "end": 5525.34, + "probability": 0.2178 + }, + { + "start": 5525.44, + "end": 5525.88, + "probability": 0.4182 + }, + { + "start": 5526.02, + "end": 5532.62, + "probability": 0.938 + }, + { + "start": 5533.82, + "end": 5534.92, + "probability": 0.7362 + }, + { + "start": 5536.84, + "end": 5538.86, + "probability": 0.9514 + }, + { + "start": 5538.9, + "end": 5539.28, + "probability": 0.6239 + }, + { + "start": 5545.62, + "end": 5548.06, + "probability": 0.4728 + }, + { + "start": 5548.1, + "end": 5548.62, + "probability": 0.8499 + }, + { + "start": 5549.9, + "end": 5553.31, + "probability": 0.5663 + }, + { + "start": 5554.1, + "end": 5556.54, + "probability": 0.4595 + }, + { + "start": 5556.54, + "end": 5557.46, + "probability": 0.514 + }, + { + "start": 5557.52, + "end": 5557.72, + "probability": 0.7912 + }, + { + "start": 5557.8, + "end": 5559.04, + "probability": 0.9036 + }, + { + "start": 5559.72, + "end": 5562.76, + "probability": 0.4974 + }, + { + "start": 5562.98, + "end": 5563.84, + "probability": 0.8156 + }, + { + "start": 5564.78, + "end": 5567.16, + "probability": 0.9382 + }, + { + "start": 5567.5, + "end": 5568.52, + "probability": 0.0343 + }, + { + "start": 5568.52, + "end": 5568.92, + "probability": 0.1344 + }, + { + "start": 5568.92, + "end": 5570.26, + "probability": 0.825 + }, + { + "start": 5570.36, + "end": 5572.12, + "probability": 0.9741 + }, + { + "start": 5572.54, + "end": 5574.8, + "probability": 0.9263 + }, + { + "start": 5575.58, + "end": 5578.84, + "probability": 0.9878 + }, + { + "start": 5578.98, + "end": 5580.1, + "probability": 0.7617 + }, + { + "start": 5580.18, + "end": 5581.1, + "probability": 0.9124 + }, + { + "start": 5581.74, + "end": 5582.15, + "probability": 0.9736 + }, + { + "start": 5584.24, + "end": 5586.08, + "probability": 0.8413 + }, + { + "start": 5586.26, + "end": 5588.54, + "probability": 0.8432 + }, + { + "start": 5589.58, + "end": 5590.84, + "probability": 0.4493 + }, + { + "start": 5591.02, + "end": 5593.52, + "probability": 0.6617 + }, + { + "start": 5594.82, + "end": 5602.34, + "probability": 0.8843 + }, + { + "start": 5604.92, + "end": 5607.38, + "probability": 0.8075 + }, + { + "start": 5607.46, + "end": 5611.76, + "probability": 0.9971 + }, + { + "start": 5613.98, + "end": 5615.36, + "probability": 0.873 + }, + { + "start": 5616.1, + "end": 5617.5, + "probability": 0.6691 + }, + { + "start": 5618.52, + "end": 5619.48, + "probability": 0.4993 + }, + { + "start": 5620.06, + "end": 5622.34, + "probability": 0.5592 + }, + { + "start": 5623.76, + "end": 5625.22, + "probability": 0.8127 + }, + { + "start": 5627.96, + "end": 5628.38, + "probability": 0.3881 + }, + { + "start": 5629.22, + "end": 5632.7, + "probability": 0.9841 + }, + { + "start": 5634.0, + "end": 5635.88, + "probability": 0.6667 + }, + { + "start": 5636.74, + "end": 5638.42, + "probability": 0.9957 + }, + { + "start": 5639.04, + "end": 5640.88, + "probability": 0.6469 + }, + { + "start": 5641.34, + "end": 5642.86, + "probability": 0.9339 + }, + { + "start": 5643.02, + "end": 5646.48, + "probability": 0.7847 + }, + { + "start": 5646.88, + "end": 5647.32, + "probability": 0.809 + }, + { + "start": 5650.06, + "end": 5652.26, + "probability": 0.747 + }, + { + "start": 5652.3, + "end": 5653.15, + "probability": 0.7388 + }, + { + "start": 5654.48, + "end": 5657.46, + "probability": 0.9771 + }, + { + "start": 5658.28, + "end": 5659.2, + "probability": 0.9332 + }, + { + "start": 5660.02, + "end": 5663.66, + "probability": 0.8848 + }, + { + "start": 5663.9, + "end": 5665.64, + "probability": 0.9431 + }, + { + "start": 5667.2, + "end": 5668.16, + "probability": 0.7874 + }, + { + "start": 5671.4, + "end": 5673.24, + "probability": 0.9424 + }, + { + "start": 5674.42, + "end": 5676.86, + "probability": 0.8236 + }, + { + "start": 5677.76, + "end": 5678.4, + "probability": 0.6413 + }, + { + "start": 5678.84, + "end": 5680.4, + "probability": 0.7268 + }, + { + "start": 5680.5, + "end": 5681.56, + "probability": 0.7246 + }, + { + "start": 5681.86, + "end": 5682.84, + "probability": 0.927 + }, + { + "start": 5682.96, + "end": 5684.02, + "probability": 0.3567 + }, + { + "start": 5684.66, + "end": 5687.3, + "probability": 0.9873 + }, + { + "start": 5687.48, + "end": 5689.8, + "probability": 0.9692 + }, + { + "start": 5691.16, + "end": 5692.94, + "probability": 0.7249 + }, + { + "start": 5694.66, + "end": 5695.66, + "probability": 0.638 + }, + { + "start": 5697.04, + "end": 5698.22, + "probability": 0.7068 + }, + { + "start": 5700.65, + "end": 5703.56, + "probability": 0.8123 + }, + { + "start": 5704.64, + "end": 5706.1, + "probability": 0.9766 + }, + { + "start": 5707.4, + "end": 5708.8, + "probability": 0.9849 + }, + { + "start": 5710.32, + "end": 5711.91, + "probability": 0.9658 + }, + { + "start": 5712.34, + "end": 5712.64, + "probability": 0.2496 + }, + { + "start": 5712.64, + "end": 5713.08, + "probability": 0.4003 + }, + { + "start": 5713.1, + "end": 5713.84, + "probability": 0.7653 + }, + { + "start": 5713.94, + "end": 5714.4, + "probability": 0.7542 + }, + { + "start": 5715.94, + "end": 5717.3, + "probability": 0.9252 + }, + { + "start": 5720.5, + "end": 5722.7, + "probability": 0.7467 + }, + { + "start": 5723.66, + "end": 5725.44, + "probability": 0.935 + }, + { + "start": 5727.14, + "end": 5728.5, + "probability": 0.9856 + }, + { + "start": 5729.54, + "end": 5730.5, + "probability": 0.6505 + }, + { + "start": 5731.54, + "end": 5732.58, + "probability": 0.9899 + }, + { + "start": 5733.34, + "end": 5734.5, + "probability": 0.8059 + }, + { + "start": 5735.36, + "end": 5735.92, + "probability": 0.9683 + }, + { + "start": 5738.14, + "end": 5741.9, + "probability": 0.9959 + }, + { + "start": 5743.12, + "end": 5744.0, + "probability": 0.6734 + }, + { + "start": 5744.96, + "end": 5745.71, + "probability": 0.9854 + }, + { + "start": 5746.84, + "end": 5747.48, + "probability": 0.7485 + }, + { + "start": 5748.5, + "end": 5749.7, + "probability": 0.9951 + }, + { + "start": 5750.4, + "end": 5751.82, + "probability": 0.9844 + }, + { + "start": 5752.76, + "end": 5754.92, + "probability": 0.6402 + }, + { + "start": 5754.98, + "end": 5758.3, + "probability": 0.9179 + }, + { + "start": 5758.84, + "end": 5759.74, + "probability": 0.9565 + }, + { + "start": 5762.92, + "end": 5764.04, + "probability": 0.596 + }, + { + "start": 5764.72, + "end": 5765.36, + "probability": 0.7962 + }, + { + "start": 5765.42, + "end": 5766.98, + "probability": 0.7622 + }, + { + "start": 5767.02, + "end": 5767.6, + "probability": 0.6814 + }, + { + "start": 5767.6, + "end": 5768.16, + "probability": 0.5021 + }, + { + "start": 5768.62, + "end": 5773.46, + "probability": 0.9734 + }, + { + "start": 5775.28, + "end": 5776.02, + "probability": 0.4375 + }, + { + "start": 5777.02, + "end": 5777.9, + "probability": 0.8295 + }, + { + "start": 5778.76, + "end": 5783.14, + "probability": 0.7932 + }, + { + "start": 5784.18, + "end": 5786.68, + "probability": 0.8241 + }, + { + "start": 5787.3, + "end": 5790.6, + "probability": 0.9758 + }, + { + "start": 5792.26, + "end": 5795.16, + "probability": 0.8078 + }, + { + "start": 5796.5, + "end": 5797.34, + "probability": 0.9534 + }, + { + "start": 5797.98, + "end": 5801.68, + "probability": 0.745 + }, + { + "start": 5802.28, + "end": 5802.98, + "probability": 0.9391 + }, + { + "start": 5805.5, + "end": 5806.54, + "probability": 0.473 + }, + { + "start": 5807.22, + "end": 5816.1, + "probability": 0.9625 + }, + { + "start": 5816.6, + "end": 5817.96, + "probability": 0.894 + }, + { + "start": 5818.04, + "end": 5819.42, + "probability": 0.8875 + }, + { + "start": 5820.3, + "end": 5821.48, + "probability": 0.5567 + }, + { + "start": 5822.22, + "end": 5825.1, + "probability": 0.7404 + }, + { + "start": 5825.82, + "end": 5829.06, + "probability": 0.818 + }, + { + "start": 5830.84, + "end": 5833.48, + "probability": 0.7245 + }, + { + "start": 5834.44, + "end": 5835.56, + "probability": 0.8578 + }, + { + "start": 5836.72, + "end": 5837.78, + "probability": 0.8718 + }, + { + "start": 5839.1, + "end": 5841.26, + "probability": 0.939 + }, + { + "start": 5842.1, + "end": 5843.24, + "probability": 0.8619 + }, + { + "start": 5845.0, + "end": 5845.74, + "probability": 0.8772 + }, + { + "start": 5846.72, + "end": 5847.45, + "probability": 0.5086 + }, + { + "start": 5848.48, + "end": 5849.59, + "probability": 0.9308 + }, + { + "start": 5850.42, + "end": 5854.47, + "probability": 0.9455 + }, + { + "start": 5855.16, + "end": 5857.9, + "probability": 0.9929 + }, + { + "start": 5858.66, + "end": 5860.82, + "probability": 0.7823 + }, + { + "start": 5863.14, + "end": 5863.76, + "probability": 0.6205 + }, + { + "start": 5863.86, + "end": 5865.24, + "probability": 0.4991 + }, + { + "start": 5866.24, + "end": 5866.38, + "probability": 0.2739 + }, + { + "start": 5866.58, + "end": 5868.38, + "probability": 0.9616 + }, + { + "start": 5869.08, + "end": 5872.46, + "probability": 0.5058 + }, + { + "start": 5875.04, + "end": 5876.3, + "probability": 0.4819 + }, + { + "start": 5877.62, + "end": 5879.21, + "probability": 0.3446 + }, + { + "start": 5880.86, + "end": 5881.58, + "probability": 0.9037 + }, + { + "start": 5882.22, + "end": 5882.68, + "probability": 0.7867 + }, + { + "start": 5883.38, + "end": 5884.22, + "probability": 0.5774 + }, + { + "start": 5884.22, + "end": 5884.44, + "probability": 0.2679 + }, + { + "start": 5884.66, + "end": 5885.04, + "probability": 0.5308 + }, + { + "start": 5885.04, + "end": 5885.74, + "probability": 0.7977 + }, + { + "start": 5885.88, + "end": 5886.9, + "probability": 0.4424 + }, + { + "start": 5887.63, + "end": 5888.24, + "probability": 0.6288 + }, + { + "start": 5888.24, + "end": 5889.44, + "probability": 0.9929 + }, + { + "start": 5890.18, + "end": 5891.58, + "probability": 0.8947 + }, + { + "start": 5893.72, + "end": 5896.22, + "probability": 0.9842 + }, + { + "start": 5896.26, + "end": 5896.86, + "probability": 0.9233 + }, + { + "start": 5896.88, + "end": 5897.68, + "probability": 0.5961 + }, + { + "start": 5898.18, + "end": 5899.48, + "probability": 0.6653 + }, + { + "start": 5900.12, + "end": 5900.98, + "probability": 0.8434 + }, + { + "start": 5901.76, + "end": 5902.26, + "probability": 0.6741 + }, + { + "start": 5903.72, + "end": 5908.98, + "probability": 0.8477 + }, + { + "start": 5909.6, + "end": 5911.64, + "probability": 0.9883 + }, + { + "start": 5912.0, + "end": 5913.72, + "probability": 0.9481 + }, + { + "start": 5914.28, + "end": 5917.2, + "probability": 0.9887 + }, + { + "start": 5917.42, + "end": 5918.28, + "probability": 0.6923 + }, + { + "start": 5918.98, + "end": 5924.26, + "probability": 0.9943 + }, + { + "start": 5925.7, + "end": 5927.9, + "probability": 0.9977 + }, + { + "start": 5927.9, + "end": 5931.32, + "probability": 0.9963 + }, + { + "start": 5932.26, + "end": 5933.66, + "probability": 0.7995 + }, + { + "start": 5934.54, + "end": 5935.38, + "probability": 0.7522 + }, + { + "start": 5936.0, + "end": 5938.18, + "probability": 0.99 + }, + { + "start": 5938.4, + "end": 5939.66, + "probability": 0.6501 + }, + { + "start": 5940.44, + "end": 5942.58, + "probability": 0.9895 + }, + { + "start": 5943.64, + "end": 5945.8, + "probability": 0.9925 + }, + { + "start": 5946.64, + "end": 5947.41, + "probability": 0.6437 + }, + { + "start": 5947.6, + "end": 5948.98, + "probability": 0.9834 + }, + { + "start": 5949.78, + "end": 5951.04, + "probability": 0.9904 + }, + { + "start": 5951.78, + "end": 5954.98, + "probability": 0.9702 + }, + { + "start": 5956.1, + "end": 5957.62, + "probability": 0.5174 + }, + { + "start": 5959.36, + "end": 5960.36, + "probability": 0.9505 + }, + { + "start": 5962.04, + "end": 5963.1, + "probability": 0.8728 + }, + { + "start": 5963.32, + "end": 5964.62, + "probability": 0.9858 + }, + { + "start": 5965.24, + "end": 5969.44, + "probability": 0.9579 + }, + { + "start": 5969.44, + "end": 5973.7, + "probability": 0.9956 + }, + { + "start": 5975.44, + "end": 5977.6, + "probability": 0.7599 + }, + { + "start": 5978.18, + "end": 5982.32, + "probability": 0.9793 + }, + { + "start": 5983.4, + "end": 5986.1, + "probability": 0.8921 + }, + { + "start": 5986.16, + "end": 5986.86, + "probability": 0.9502 + }, + { + "start": 5986.96, + "end": 5987.36, + "probability": 0.8062 + }, + { + "start": 5988.64, + "end": 5989.86, + "probability": 0.9841 + }, + { + "start": 5990.88, + "end": 5995.76, + "probability": 0.9969 + }, + { + "start": 5996.44, + "end": 5997.74, + "probability": 0.94 + }, + { + "start": 5998.88, + "end": 6001.28, + "probability": 0.7714 + }, + { + "start": 6001.92, + "end": 6002.3, + "probability": 0.5169 + }, + { + "start": 6003.66, + "end": 6005.08, + "probability": 0.8854 + }, + { + "start": 6005.19, + "end": 6007.44, + "probability": 0.5356 + }, + { + "start": 6009.24, + "end": 6009.5, + "probability": 0.2008 + }, + { + "start": 6009.5, + "end": 6009.5, + "probability": 0.0296 + }, + { + "start": 6009.5, + "end": 6011.74, + "probability": 0.0659 + }, + { + "start": 6011.88, + "end": 6013.26, + "probability": 0.4165 + }, + { + "start": 6013.7, + "end": 6015.96, + "probability": 0.5454 + }, + { + "start": 6016.34, + "end": 6019.68, + "probability": 0.3872 + }, + { + "start": 6020.64, + "end": 6023.88, + "probability": 0.8471 + }, + { + "start": 6024.42, + "end": 6028.34, + "probability": 0.8574 + }, + { + "start": 6029.38, + "end": 6032.32, + "probability": 0.9414 + }, + { + "start": 6032.7, + "end": 6034.1, + "probability": 0.679 + }, + { + "start": 6034.62, + "end": 6037.16, + "probability": 0.3433 + }, + { + "start": 6037.96, + "end": 6040.28, + "probability": 0.8975 + }, + { + "start": 6042.28, + "end": 6043.02, + "probability": 0.7441 + }, + { + "start": 6044.24, + "end": 6048.94, + "probability": 0.9701 + }, + { + "start": 6049.06, + "end": 6049.48, + "probability": 0.345 + }, + { + "start": 6049.6, + "end": 6050.28, + "probability": 0.5255 + }, + { + "start": 6051.08, + "end": 6054.6, + "probability": 0.9473 + }, + { + "start": 6056.38, + "end": 6056.74, + "probability": 0.5859 + }, + { + "start": 6056.76, + "end": 6059.0, + "probability": 0.6867 + }, + { + "start": 6059.4, + "end": 6063.52, + "probability": 0.9822 + }, + { + "start": 6064.06, + "end": 6066.88, + "probability": 0.9807 + }, + { + "start": 6067.26, + "end": 6070.4, + "probability": 0.9956 + }, + { + "start": 6072.64, + "end": 6073.26, + "probability": 0.9636 + }, + { + "start": 6074.54, + "end": 6076.94, + "probability": 0.975 + }, + { + "start": 6079.1, + "end": 6079.2, + "probability": 0.0068 + }, + { + "start": 6081.16, + "end": 6081.36, + "probability": 0.0975 + }, + { + "start": 6081.36, + "end": 6082.02, + "probability": 0.1043 + }, + { + "start": 6082.54, + "end": 6084.56, + "probability": 0.7916 + }, + { + "start": 6085.84, + "end": 6086.76, + "probability": 0.0099 + }, + { + "start": 6086.76, + "end": 6088.28, + "probability": 0.3988 + }, + { + "start": 6088.84, + "end": 6091.88, + "probability": 0.9785 + }, + { + "start": 6092.46, + "end": 6093.64, + "probability": 0.9783 + }, + { + "start": 6093.76, + "end": 6095.24, + "probability": 0.5321 + }, + { + "start": 6095.32, + "end": 6097.24, + "probability": 0.9526 + }, + { + "start": 6098.08, + "end": 6100.48, + "probability": 0.8771 + }, + { + "start": 6100.76, + "end": 6100.9, + "probability": 0.636 + }, + { + "start": 6101.08, + "end": 6102.66, + "probability": 0.5472 + }, + { + "start": 6102.76, + "end": 6102.76, + "probability": 0.3938 + }, + { + "start": 6102.76, + "end": 6103.5, + "probability": 0.6254 + }, + { + "start": 6104.2, + "end": 6106.22, + "probability": 0.0244 + }, + { + "start": 6107.16, + "end": 6107.98, + "probability": 0.0059 + }, + { + "start": 6107.98, + "end": 6107.98, + "probability": 0.0632 + }, + { + "start": 6107.98, + "end": 6109.28, + "probability": 0.3496 + }, + { + "start": 6109.72, + "end": 6110.84, + "probability": 0.9253 + }, + { + "start": 6111.52, + "end": 6113.02, + "probability": 0.4826 + }, + { + "start": 6114.56, + "end": 6116.84, + "probability": 0.7324 + }, + { + "start": 6118.08, + "end": 6118.88, + "probability": 0.8496 + }, + { + "start": 6118.94, + "end": 6120.2, + "probability": 0.6077 + }, + { + "start": 6122.12, + "end": 6123.67, + "probability": 0.9624 + }, + { + "start": 6124.72, + "end": 6125.74, + "probability": 0.5789 + }, + { + "start": 6126.96, + "end": 6128.86, + "probability": 0.7213 + }, + { + "start": 6129.88, + "end": 6133.94, + "probability": 0.9783 + }, + { + "start": 6135.2, + "end": 6139.36, + "probability": 0.8957 + }, + { + "start": 6140.06, + "end": 6145.36, + "probability": 0.8926 + }, + { + "start": 6146.5, + "end": 6147.96, + "probability": 0.746 + }, + { + "start": 6148.98, + "end": 6150.72, + "probability": 0.7808 + }, + { + "start": 6151.38, + "end": 6154.26, + "probability": 0.8496 + }, + { + "start": 6155.72, + "end": 6156.68, + "probability": 0.9563 + }, + { + "start": 6157.34, + "end": 6158.26, + "probability": 0.9113 + }, + { + "start": 6159.26, + "end": 6160.46, + "probability": 0.9853 + }, + { + "start": 6161.46, + "end": 6162.84, + "probability": 0.9023 + }, + { + "start": 6163.44, + "end": 6164.5, + "probability": 0.7401 + }, + { + "start": 6167.02, + "end": 6171.14, + "probability": 0.8192 + }, + { + "start": 6172.04, + "end": 6174.08, + "probability": 0.7424 + }, + { + "start": 6175.78, + "end": 6176.8, + "probability": 0.9609 + }, + { + "start": 6179.64, + "end": 6181.54, + "probability": 0.9837 + }, + { + "start": 6182.18, + "end": 6187.5, + "probability": 0.8919 + }, + { + "start": 6188.66, + "end": 6190.4, + "probability": 0.7507 + }, + { + "start": 6191.06, + "end": 6192.68, + "probability": 0.8937 + }, + { + "start": 6194.38, + "end": 6195.31, + "probability": 0.9552 + }, + { + "start": 6195.46, + "end": 6197.7, + "probability": 0.3884 + }, + { + "start": 6197.9, + "end": 6200.48, + "probability": 0.8889 + }, + { + "start": 6201.4, + "end": 6204.88, + "probability": 0.9758 + }, + { + "start": 6205.06, + "end": 6207.1, + "probability": 0.8404 + }, + { + "start": 6207.74, + "end": 6207.74, + "probability": 0.111 + }, + { + "start": 6207.74, + "end": 6209.24, + "probability": 0.9157 + }, + { + "start": 6209.24, + "end": 6210.0, + "probability": 0.698 + }, + { + "start": 6210.04, + "end": 6210.98, + "probability": 0.7189 + }, + { + "start": 6213.06, + "end": 6215.54, + "probability": 0.8999 + }, + { + "start": 6216.8, + "end": 6217.94, + "probability": 0.9902 + }, + { + "start": 6218.8, + "end": 6219.3, + "probability": 0.9839 + }, + { + "start": 6220.22, + "end": 6223.08, + "probability": 0.8403 + }, + { + "start": 6224.1, + "end": 6230.7, + "probability": 0.8248 + }, + { + "start": 6231.38, + "end": 6232.54, + "probability": 0.9072 + }, + { + "start": 6233.08, + "end": 6237.0, + "probability": 0.955 + }, + { + "start": 6237.48, + "end": 6238.18, + "probability": 0.9556 + }, + { + "start": 6238.3, + "end": 6238.62, + "probability": 0.8873 + }, + { + "start": 6238.88, + "end": 6241.42, + "probability": 0.97 + }, + { + "start": 6241.9, + "end": 6242.69, + "probability": 0.8635 + }, + { + "start": 6243.28, + "end": 6244.56, + "probability": 0.9365 + }, + { + "start": 6244.8, + "end": 6246.16, + "probability": 0.9736 + }, + { + "start": 6246.56, + "end": 6249.54, + "probability": 0.925 + }, + { + "start": 6249.86, + "end": 6250.86, + "probability": 0.9506 + }, + { + "start": 6251.12, + "end": 6253.3, + "probability": 0.6846 + }, + { + "start": 6253.6, + "end": 6255.54, + "probability": 0.6714 + }, + { + "start": 6255.88, + "end": 6255.88, + "probability": 0.3299 + }, + { + "start": 6255.98, + "end": 6258.7, + "probability": 0.9053 + }, + { + "start": 6258.86, + "end": 6259.32, + "probability": 0.9659 + }, + { + "start": 6259.4, + "end": 6259.82, + "probability": 0.6959 + }, + { + "start": 6260.44, + "end": 6262.32, + "probability": 0.8374 + }, + { + "start": 6285.82, + "end": 6287.06, + "probability": 0.6865 + }, + { + "start": 6288.12, + "end": 6290.9, + "probability": 0.8335 + }, + { + "start": 6292.3, + "end": 6299.94, + "probability": 0.9916 + }, + { + "start": 6300.6, + "end": 6303.62, + "probability": 0.9843 + }, + { + "start": 6304.72, + "end": 6310.7, + "probability": 0.9919 + }, + { + "start": 6311.5, + "end": 6317.2, + "probability": 0.8076 + }, + { + "start": 6318.18, + "end": 6320.48, + "probability": 0.5008 + }, + { + "start": 6321.0, + "end": 6322.6, + "probability": 0.9123 + }, + { + "start": 6324.9, + "end": 6328.14, + "probability": 0.8103 + }, + { + "start": 6329.32, + "end": 6333.75, + "probability": 0.9709 + }, + { + "start": 6334.6, + "end": 6336.06, + "probability": 0.9337 + }, + { + "start": 6337.16, + "end": 6339.58, + "probability": 0.9579 + }, + { + "start": 6340.36, + "end": 6343.12, + "probability": 0.9704 + }, + { + "start": 6343.24, + "end": 6344.29, + "probability": 0.8718 + }, + { + "start": 6344.5, + "end": 6345.22, + "probability": 0.8826 + }, + { + "start": 6345.34, + "end": 6346.24, + "probability": 0.7378 + }, + { + "start": 6346.44, + "end": 6348.64, + "probability": 0.662 + }, + { + "start": 6348.84, + "end": 6349.16, + "probability": 0.6681 + }, + { + "start": 6349.42, + "end": 6353.28, + "probability": 0.9817 + }, + { + "start": 6353.42, + "end": 6355.1, + "probability": 0.8993 + }, + { + "start": 6355.14, + "end": 6356.74, + "probability": 0.9124 + }, + { + "start": 6357.06, + "end": 6360.38, + "probability": 0.9202 + }, + { + "start": 6360.64, + "end": 6361.14, + "probability": 0.9825 + }, + { + "start": 6361.42, + "end": 6362.28, + "probability": 0.7781 + }, + { + "start": 6362.34, + "end": 6363.96, + "probability": 0.717 + }, + { + "start": 6364.0, + "end": 6365.04, + "probability": 0.7649 + }, + { + "start": 6365.14, + "end": 6365.72, + "probability": 0.836 + }, + { + "start": 6365.82, + "end": 6366.34, + "probability": 0.7829 + }, + { + "start": 6366.86, + "end": 6369.98, + "probability": 0.9431 + }, + { + "start": 6370.5, + "end": 6374.22, + "probability": 0.9049 + }, + { + "start": 6374.98, + "end": 6378.02, + "probability": 0.9296 + }, + { + "start": 6378.2, + "end": 6380.52, + "probability": 0.7446 + }, + { + "start": 6381.1, + "end": 6386.0, + "probability": 0.9972 + }, + { + "start": 6386.6, + "end": 6390.46, + "probability": 0.984 + }, + { + "start": 6390.46, + "end": 6394.22, + "probability": 0.9989 + }, + { + "start": 6394.56, + "end": 6398.72, + "probability": 0.9941 + }, + { + "start": 6398.72, + "end": 6402.98, + "probability": 0.9981 + }, + { + "start": 6403.74, + "end": 6405.4, + "probability": 0.7785 + }, + { + "start": 6405.68, + "end": 6407.2, + "probability": 0.8446 + }, + { + "start": 6407.8, + "end": 6409.28, + "probability": 0.9607 + }, + { + "start": 6409.86, + "end": 6414.6, + "probability": 0.9614 + }, + { + "start": 6414.76, + "end": 6415.76, + "probability": 0.581 + }, + { + "start": 6416.64, + "end": 6419.82, + "probability": 0.7861 + }, + { + "start": 6420.82, + "end": 6422.78, + "probability": 0.9238 + }, + { + "start": 6423.6, + "end": 6424.76, + "probability": 0.9041 + }, + { + "start": 6425.76, + "end": 6428.74, + "probability": 0.8929 + }, + { + "start": 6429.38, + "end": 6431.04, + "probability": 0.9692 + }, + { + "start": 6431.48, + "end": 6434.54, + "probability": 0.9955 + }, + { + "start": 6434.76, + "end": 6437.14, + "probability": 0.8391 + }, + { + "start": 6437.32, + "end": 6439.1, + "probability": 0.9944 + }, + { + "start": 6439.8, + "end": 6441.04, + "probability": 0.9649 + }, + { + "start": 6441.56, + "end": 6444.26, + "probability": 0.9713 + }, + { + "start": 6445.06, + "end": 6447.82, + "probability": 0.8765 + }, + { + "start": 6448.18, + "end": 6451.1, + "probability": 0.7837 + }, + { + "start": 6451.3, + "end": 6451.34, + "probability": 0.2189 + }, + { + "start": 6451.92, + "end": 6452.02, + "probability": 0.2837 + }, + { + "start": 6452.02, + "end": 6452.5, + "probability": 0.4974 + }, + { + "start": 6452.52, + "end": 6453.92, + "probability": 0.8456 + }, + { + "start": 6454.18, + "end": 6456.16, + "probability": 0.7541 + }, + { + "start": 6456.28, + "end": 6460.26, + "probability": 0.8765 + }, + { + "start": 6461.12, + "end": 6466.4, + "probability": 0.9243 + }, + { + "start": 6466.86, + "end": 6469.16, + "probability": 0.9805 + }, + { + "start": 6469.24, + "end": 6470.42, + "probability": 0.7805 + }, + { + "start": 6470.48, + "end": 6472.91, + "probability": 0.9971 + }, + { + "start": 6473.44, + "end": 6474.34, + "probability": 0.7674 + }, + { + "start": 6474.46, + "end": 6475.56, + "probability": 0.9146 + }, + { + "start": 6476.17, + "end": 6479.2, + "probability": 0.9487 + }, + { + "start": 6479.56, + "end": 6484.78, + "probability": 0.9924 + }, + { + "start": 6484.86, + "end": 6488.92, + "probability": 0.9924 + }, + { + "start": 6489.0, + "end": 6492.46, + "probability": 0.9958 + }, + { + "start": 6493.0, + "end": 6497.4, + "probability": 0.9868 + }, + { + "start": 6497.98, + "end": 6499.84, + "probability": 0.8916 + }, + { + "start": 6500.36, + "end": 6501.3, + "probability": 0.3978 + }, + { + "start": 6502.16, + "end": 6504.88, + "probability": 0.9935 + }, + { + "start": 6506.46, + "end": 6513.34, + "probability": 0.9955 + }, + { + "start": 6513.48, + "end": 6514.1, + "probability": 0.4175 + }, + { + "start": 6514.52, + "end": 6518.22, + "probability": 0.929 + }, + { + "start": 6518.48, + "end": 6520.0, + "probability": 0.6198 + }, + { + "start": 6520.86, + "end": 6523.94, + "probability": 0.997 + }, + { + "start": 6524.52, + "end": 6527.98, + "probability": 0.9988 + }, + { + "start": 6528.08, + "end": 6529.14, + "probability": 0.8298 + }, + { + "start": 6530.06, + "end": 6532.04, + "probability": 0.9971 + }, + { + "start": 6532.12, + "end": 6532.96, + "probability": 0.918 + }, + { + "start": 6533.08, + "end": 6534.39, + "probability": 0.9468 + }, + { + "start": 6535.16, + "end": 6537.56, + "probability": 0.9894 + }, + { + "start": 6537.56, + "end": 6541.3, + "probability": 0.9641 + }, + { + "start": 6541.64, + "end": 6543.22, + "probability": 0.7035 + }, + { + "start": 6543.76, + "end": 6544.7, + "probability": 0.9297 + }, + { + "start": 6544.76, + "end": 6546.06, + "probability": 0.983 + }, + { + "start": 6546.24, + "end": 6547.12, + "probability": 0.9407 + }, + { + "start": 6547.18, + "end": 6549.48, + "probability": 0.9907 + }, + { + "start": 6549.94, + "end": 6554.3, + "probability": 0.9884 + }, + { + "start": 6555.79, + "end": 6561.32, + "probability": 0.9743 + }, + { + "start": 6561.98, + "end": 6563.56, + "probability": 0.9645 + }, + { + "start": 6564.42, + "end": 6568.04, + "probability": 0.427 + }, + { + "start": 6568.44, + "end": 6574.1, + "probability": 0.9437 + }, + { + "start": 6574.26, + "end": 6580.2, + "probability": 0.9881 + }, + { + "start": 6580.44, + "end": 6581.44, + "probability": 0.5718 + }, + { + "start": 6582.8, + "end": 6583.82, + "probability": 0.8318 + }, + { + "start": 6584.08, + "end": 6587.44, + "probability": 0.9863 + }, + { + "start": 6587.98, + "end": 6590.58, + "probability": 0.9799 + }, + { + "start": 6591.32, + "end": 6592.46, + "probability": 0.591 + }, + { + "start": 6592.84, + "end": 6593.74, + "probability": 0.8662 + }, + { + "start": 6594.0, + "end": 6594.8, + "probability": 0.9632 + }, + { + "start": 6594.94, + "end": 6598.28, + "probability": 0.9355 + }, + { + "start": 6598.74, + "end": 6599.86, + "probability": 0.9729 + }, + { + "start": 6600.06, + "end": 6602.56, + "probability": 0.7701 + }, + { + "start": 6603.0, + "end": 6603.52, + "probability": 0.0794 + }, + { + "start": 6604.38, + "end": 6605.28, + "probability": 0.4473 + }, + { + "start": 6605.56, + "end": 6607.58, + "probability": 0.9935 + }, + { + "start": 6608.06, + "end": 6616.36, + "probability": 0.979 + }, + { + "start": 6616.96, + "end": 6618.46, + "probability": 0.9762 + }, + { + "start": 6618.8, + "end": 6621.92, + "probability": 0.8922 + }, + { + "start": 6622.02, + "end": 6623.94, + "probability": 0.7038 + }, + { + "start": 6624.02, + "end": 6627.72, + "probability": 0.8435 + }, + { + "start": 6627.72, + "end": 6633.42, + "probability": 0.9794 + }, + { + "start": 6633.96, + "end": 6636.34, + "probability": 0.9543 + }, + { + "start": 6636.6, + "end": 6638.64, + "probability": 0.9536 + }, + { + "start": 6639.38, + "end": 6641.92, + "probability": 0.9232 + }, + { + "start": 6641.94, + "end": 6647.68, + "probability": 0.9854 + }, + { + "start": 6648.44, + "end": 6654.7, + "probability": 0.8396 + }, + { + "start": 6655.08, + "end": 6656.48, + "probability": 0.8784 + }, + { + "start": 6657.02, + "end": 6662.5, + "probability": 0.9834 + }, + { + "start": 6662.8, + "end": 6663.78, + "probability": 0.7268 + }, + { + "start": 6663.92, + "end": 6665.28, + "probability": 0.6255 + }, + { + "start": 6665.94, + "end": 6670.88, + "probability": 0.7432 + }, + { + "start": 6671.44, + "end": 6676.82, + "probability": 0.9557 + }, + { + "start": 6677.86, + "end": 6679.36, + "probability": 0.846 + }, + { + "start": 6679.82, + "end": 6680.82, + "probability": 0.8364 + }, + { + "start": 6681.18, + "end": 6687.66, + "probability": 0.9922 + }, + { + "start": 6689.08, + "end": 6693.46, + "probability": 0.9884 + }, + { + "start": 6693.56, + "end": 6699.22, + "probability": 0.9487 + }, + { + "start": 6700.56, + "end": 6703.12, + "probability": 0.9307 + }, + { + "start": 6703.84, + "end": 6705.14, + "probability": 0.6966 + }, + { + "start": 6705.78, + "end": 6707.52, + "probability": 0.8097 + }, + { + "start": 6708.7, + "end": 6709.66, + "probability": 0.7588 + }, + { + "start": 6710.38, + "end": 6711.52, + "probability": 0.8739 + }, + { + "start": 6711.66, + "end": 6712.52, + "probability": 0.8985 + }, + { + "start": 6712.58, + "end": 6713.8, + "probability": 0.886 + }, + { + "start": 6713.94, + "end": 6715.36, + "probability": 0.9467 + }, + { + "start": 6716.12, + "end": 6718.16, + "probability": 0.9399 + }, + { + "start": 6718.74, + "end": 6721.38, + "probability": 0.9955 + }, + { + "start": 6721.44, + "end": 6723.58, + "probability": 0.8119 + }, + { + "start": 6724.04, + "end": 6725.1, + "probability": 0.8683 + }, + { + "start": 6725.14, + "end": 6728.08, + "probability": 0.9763 + }, + { + "start": 6728.72, + "end": 6730.54, + "probability": 0.9362 + }, + { + "start": 6730.94, + "end": 6731.92, + "probability": 0.9194 + }, + { + "start": 6732.16, + "end": 6732.94, + "probability": 0.9308 + }, + { + "start": 6733.14, + "end": 6733.62, + "probability": 0.9617 + }, + { + "start": 6734.56, + "end": 6737.2, + "probability": 0.8999 + }, + { + "start": 6737.44, + "end": 6738.54, + "probability": 0.9872 + }, + { + "start": 6738.82, + "end": 6740.94, + "probability": 0.9927 + }, + { + "start": 6741.78, + "end": 6744.64, + "probability": 0.8618 + }, + { + "start": 6745.08, + "end": 6746.8, + "probability": 0.9439 + }, + { + "start": 6747.44, + "end": 6747.84, + "probability": 0.8142 + }, + { + "start": 6748.36, + "end": 6749.92, + "probability": 0.959 + }, + { + "start": 6750.8, + "end": 6755.0, + "probability": 0.9513 + }, + { + "start": 6755.18, + "end": 6756.54, + "probability": 0.8794 + }, + { + "start": 6757.02, + "end": 6757.67, + "probability": 0.9409 + }, + { + "start": 6758.08, + "end": 6763.28, + "probability": 0.98 + }, + { + "start": 6763.48, + "end": 6765.46, + "probability": 0.8652 + }, + { + "start": 6765.96, + "end": 6768.44, + "probability": 0.9107 + }, + { + "start": 6769.02, + "end": 6770.74, + "probability": 0.9597 + }, + { + "start": 6771.54, + "end": 6772.9, + "probability": 0.7913 + }, + { + "start": 6773.12, + "end": 6777.33, + "probability": 0.937 + }, + { + "start": 6777.5, + "end": 6781.14, + "probability": 0.7259 + }, + { + "start": 6781.94, + "end": 6787.94, + "probability": 0.9806 + }, + { + "start": 6788.38, + "end": 6789.36, + "probability": 0.9245 + }, + { + "start": 6789.58, + "end": 6791.52, + "probability": 0.9833 + }, + { + "start": 6791.96, + "end": 6793.24, + "probability": 0.6598 + }, + { + "start": 6793.38, + "end": 6794.16, + "probability": 0.8784 + }, + { + "start": 6794.2, + "end": 6795.54, + "probability": 0.9688 + }, + { + "start": 6795.6, + "end": 6798.86, + "probability": 0.9841 + }, + { + "start": 6799.12, + "end": 6803.66, + "probability": 0.9861 + }, + { + "start": 6803.66, + "end": 6807.68, + "probability": 0.9949 + }, + { + "start": 6808.86, + "end": 6812.41, + "probability": 0.9182 + }, + { + "start": 6812.96, + "end": 6815.44, + "probability": 0.9971 + }, + { + "start": 6816.02, + "end": 6818.78, + "probability": 0.819 + }, + { + "start": 6818.94, + "end": 6820.6, + "probability": 0.9948 + }, + { + "start": 6820.76, + "end": 6826.86, + "probability": 0.9386 + }, + { + "start": 6827.62, + "end": 6833.22, + "probability": 0.8989 + }, + { + "start": 6833.52, + "end": 6833.68, + "probability": 0.243 + }, + { + "start": 6833.82, + "end": 6834.52, + "probability": 0.8539 + }, + { + "start": 6834.6, + "end": 6835.2, + "probability": 0.9255 + }, + { + "start": 6835.26, + "end": 6836.42, + "probability": 0.981 + }, + { + "start": 6836.58, + "end": 6838.52, + "probability": 0.814 + }, + { + "start": 6838.94, + "end": 6840.64, + "probability": 0.8451 + }, + { + "start": 6840.66, + "end": 6843.04, + "probability": 0.9757 + }, + { + "start": 6843.4, + "end": 6844.5, + "probability": 0.7779 + }, + { + "start": 6846.27, + "end": 6849.08, + "probability": 0.9067 + }, + { + "start": 6849.14, + "end": 6851.24, + "probability": 0.9539 + }, + { + "start": 6851.34, + "end": 6852.6, + "probability": 0.9696 + }, + { + "start": 6852.68, + "end": 6856.36, + "probability": 0.7776 + }, + { + "start": 6856.88, + "end": 6857.82, + "probability": 0.8583 + }, + { + "start": 6858.16, + "end": 6858.94, + "probability": 0.9612 + }, + { + "start": 6859.28, + "end": 6860.32, + "probability": 0.8458 + }, + { + "start": 6860.42, + "end": 6862.46, + "probability": 0.9661 + }, + { + "start": 6862.52, + "end": 6863.91, + "probability": 0.9867 + }, + { + "start": 6864.44, + "end": 6865.48, + "probability": 0.9807 + }, + { + "start": 6866.12, + "end": 6866.64, + "probability": 0.6744 + }, + { + "start": 6867.14, + "end": 6868.64, + "probability": 0.6958 + }, + { + "start": 6868.72, + "end": 6869.18, + "probability": 0.3856 + }, + { + "start": 6869.68, + "end": 6876.46, + "probability": 0.9922 + }, + { + "start": 6876.66, + "end": 6878.16, + "probability": 0.9984 + }, + { + "start": 6878.64, + "end": 6882.9, + "probability": 0.9914 + }, + { + "start": 6883.72, + "end": 6884.44, + "probability": 0.7895 + }, + { + "start": 6884.6, + "end": 6884.78, + "probability": 0.562 + }, + { + "start": 6885.24, + "end": 6885.42, + "probability": 0.6105 + }, + { + "start": 6885.86, + "end": 6886.9, + "probability": 0.8091 + }, + { + "start": 6887.14, + "end": 6892.64, + "probability": 0.9248 + }, + { + "start": 6893.74, + "end": 6897.16, + "probability": 0.9903 + }, + { + "start": 6897.42, + "end": 6898.46, + "probability": 0.6573 + }, + { + "start": 6898.56, + "end": 6899.06, + "probability": 0.6964 + }, + { + "start": 6899.14, + "end": 6903.4, + "probability": 0.9889 + }, + { + "start": 6903.82, + "end": 6908.98, + "probability": 0.9861 + }, + { + "start": 6909.04, + "end": 6912.42, + "probability": 0.8993 + }, + { + "start": 6913.06, + "end": 6913.62, + "probability": 0.9015 + }, + { + "start": 6913.96, + "end": 6917.34, + "probability": 0.9338 + }, + { + "start": 6917.88, + "end": 6920.44, + "probability": 0.7007 + }, + { + "start": 6920.98, + "end": 6925.06, + "probability": 0.8651 + }, + { + "start": 6925.88, + "end": 6928.2, + "probability": 0.8225 + }, + { + "start": 6929.0, + "end": 6929.72, + "probability": 0.8094 + }, + { + "start": 6930.38, + "end": 6933.16, + "probability": 0.984 + }, + { + "start": 6933.62, + "end": 6934.72, + "probability": 0.9709 + }, + { + "start": 6934.84, + "end": 6936.12, + "probability": 0.9421 + }, + { + "start": 6936.26, + "end": 6938.6, + "probability": 0.7248 + }, + { + "start": 6939.2, + "end": 6941.54, + "probability": 0.9186 + }, + { + "start": 6941.82, + "end": 6943.88, + "probability": 0.9575 + }, + { + "start": 6944.4, + "end": 6944.86, + "probability": 0.9041 + }, + { + "start": 6945.76, + "end": 6948.48, + "probability": 0.9918 + }, + { + "start": 6948.66, + "end": 6952.24, + "probability": 0.9819 + }, + { + "start": 6952.32, + "end": 6953.14, + "probability": 0.8309 + }, + { + "start": 6953.98, + "end": 6957.18, + "probability": 0.9694 + }, + { + "start": 6958.28, + "end": 6961.22, + "probability": 0.9401 + }, + { + "start": 6961.84, + "end": 6966.68, + "probability": 0.8376 + }, + { + "start": 6966.9, + "end": 6968.96, + "probability": 0.9635 + }, + { + "start": 6969.1, + "end": 6971.12, + "probability": 0.9302 + }, + { + "start": 6971.7, + "end": 6976.0, + "probability": 0.9957 + }, + { + "start": 6976.36, + "end": 6981.46, + "probability": 0.8551 + }, + { + "start": 6981.92, + "end": 6984.08, + "probability": 0.9822 + }, + { + "start": 6984.26, + "end": 6986.7, + "probability": 0.9771 + }, + { + "start": 6986.88, + "end": 6990.54, + "probability": 0.9578 + }, + { + "start": 6991.0, + "end": 6997.3, + "probability": 0.8957 + }, + { + "start": 6997.38, + "end": 6998.16, + "probability": 0.7181 + }, + { + "start": 6998.36, + "end": 6999.18, + "probability": 0.5676 + }, + { + "start": 6999.5, + "end": 7001.64, + "probability": 0.9688 + }, + { + "start": 7001.84, + "end": 7004.2, + "probability": 0.8462 + }, + { + "start": 7004.84, + "end": 7005.7, + "probability": 0.8254 + }, + { + "start": 7006.7, + "end": 7009.64, + "probability": 0.8778 + }, + { + "start": 7010.04, + "end": 7016.14, + "probability": 0.993 + }, + { + "start": 7016.38, + "end": 7018.02, + "probability": 0.933 + }, + { + "start": 7018.1, + "end": 7019.76, + "probability": 0.9432 + }, + { + "start": 7020.14, + "end": 7023.92, + "probability": 0.9785 + }, + { + "start": 7023.96, + "end": 7024.64, + "probability": 0.6147 + }, + { + "start": 7025.26, + "end": 7025.26, + "probability": 0.4028 + }, + { + "start": 7025.44, + "end": 7027.82, + "probability": 0.729 + }, + { + "start": 7029.04, + "end": 7031.87, + "probability": 0.6157 + }, + { + "start": 7032.58, + "end": 7034.24, + "probability": 0.3246 + }, + { + "start": 7037.46, + "end": 7037.46, + "probability": 0.009 + }, + { + "start": 7037.46, + "end": 7037.46, + "probability": 0.1431 + }, + { + "start": 7037.46, + "end": 7039.22, + "probability": 0.7775 + }, + { + "start": 7047.56, + "end": 7052.62, + "probability": 0.7516 + }, + { + "start": 7053.82, + "end": 7055.42, + "probability": 0.9606 + }, + { + "start": 7055.52, + "end": 7056.52, + "probability": 0.9206 + }, + { + "start": 7056.62, + "end": 7061.09, + "probability": 0.9509 + }, + { + "start": 7062.42, + "end": 7064.82, + "probability": 0.945 + }, + { + "start": 7065.5, + "end": 7069.16, + "probability": 0.9407 + }, + { + "start": 7069.34, + "end": 7070.44, + "probability": 0.8429 + }, + { + "start": 7070.94, + "end": 7072.0, + "probability": 0.7595 + }, + { + "start": 7072.62, + "end": 7073.56, + "probability": 0.9668 + }, + { + "start": 7074.12, + "end": 7076.56, + "probability": 0.9929 + }, + { + "start": 7076.9, + "end": 7077.48, + "probability": 0.9726 + }, + { + "start": 7077.64, + "end": 7078.76, + "probability": 0.9441 + }, + { + "start": 7079.46, + "end": 7080.3, + "probability": 0.9764 + }, + { + "start": 7080.58, + "end": 7084.38, + "probability": 0.9394 + }, + { + "start": 7084.98, + "end": 7087.82, + "probability": 0.994 + }, + { + "start": 7088.82, + "end": 7093.68, + "probability": 0.9985 + }, + { + "start": 7094.5, + "end": 7097.2, + "probability": 0.8801 + }, + { + "start": 7097.82, + "end": 7102.4, + "probability": 0.9869 + }, + { + "start": 7102.4, + "end": 7107.62, + "probability": 0.9961 + }, + { + "start": 7107.62, + "end": 7112.6, + "probability": 0.9979 + }, + { + "start": 7113.26, + "end": 7114.87, + "probability": 0.7839 + }, + { + "start": 7115.0, + "end": 7119.46, + "probability": 0.9911 + }, + { + "start": 7119.56, + "end": 7119.88, + "probability": 0.5516 + }, + { + "start": 7120.08, + "end": 7125.7, + "probability": 0.9883 + }, + { + "start": 7125.7, + "end": 7129.18, + "probability": 0.9957 + }, + { + "start": 7130.3, + "end": 7131.14, + "probability": 0.6659 + }, + { + "start": 7131.18, + "end": 7132.56, + "probability": 0.9395 + }, + { + "start": 7132.64, + "end": 7137.72, + "probability": 0.8376 + }, + { + "start": 7138.14, + "end": 7141.44, + "probability": 0.9897 + }, + { + "start": 7141.84, + "end": 7143.7, + "probability": 0.9627 + }, + { + "start": 7144.18, + "end": 7146.62, + "probability": 0.9385 + }, + { + "start": 7146.92, + "end": 7148.34, + "probability": 0.9679 + }, + { + "start": 7148.8, + "end": 7151.95, + "probability": 0.9944 + }, + { + "start": 7152.5, + "end": 7155.5, + "probability": 0.8716 + }, + { + "start": 7155.94, + "end": 7160.42, + "probability": 0.9936 + }, + { + "start": 7160.64, + "end": 7161.84, + "probability": 0.9016 + }, + { + "start": 7162.5, + "end": 7168.1, + "probability": 0.9909 + }, + { + "start": 7168.52, + "end": 7170.24, + "probability": 0.9991 + }, + { + "start": 7170.28, + "end": 7172.82, + "probability": 0.9841 + }, + { + "start": 7173.42, + "end": 7173.46, + "probability": 0.0316 + }, + { + "start": 7186.52, + "end": 7189.16, + "probability": 0.769 + }, + { + "start": 7189.26, + "end": 7190.86, + "probability": 0.9453 + }, + { + "start": 7191.1, + "end": 7192.78, + "probability": 0.7735 + }, + { + "start": 7193.26, + "end": 7196.96, + "probability": 0.9724 + }, + { + "start": 7197.5, + "end": 7200.92, + "probability": 0.9629 + }, + { + "start": 7201.6, + "end": 7204.56, + "probability": 0.8152 + }, + { + "start": 7205.44, + "end": 7206.44, + "probability": 0.971 + }, + { + "start": 7207.58, + "end": 7213.78, + "probability": 0.9983 + }, + { + "start": 7213.78, + "end": 7218.02, + "probability": 0.9957 + }, + { + "start": 7218.46, + "end": 7220.84, + "probability": 0.7552 + }, + { + "start": 7221.46, + "end": 7221.72, + "probability": 0.5921 + }, + { + "start": 7221.78, + "end": 7227.98, + "probability": 0.9885 + }, + { + "start": 7228.34, + "end": 7228.46, + "probability": 0.6919 + }, + { + "start": 7228.6, + "end": 7231.04, + "probability": 0.9591 + }, + { + "start": 7231.14, + "end": 7232.68, + "probability": 0.8185 + }, + { + "start": 7232.68, + "end": 7236.08, + "probability": 0.9844 + }, + { + "start": 7236.56, + "end": 7239.18, + "probability": 0.9842 + }, + { + "start": 7239.26, + "end": 7241.8, + "probability": 0.9961 + }, + { + "start": 7242.42, + "end": 7244.32, + "probability": 0.9932 + }, + { + "start": 7244.72, + "end": 7246.36, + "probability": 0.7821 + }, + { + "start": 7246.98, + "end": 7250.54, + "probability": 0.989 + }, + { + "start": 7250.54, + "end": 7255.84, + "probability": 0.9795 + }, + { + "start": 7256.92, + "end": 7261.4, + "probability": 0.9485 + }, + { + "start": 7261.46, + "end": 7265.22, + "probability": 0.8663 + }, + { + "start": 7265.44, + "end": 7269.22, + "probability": 0.9146 + }, + { + "start": 7269.34, + "end": 7269.92, + "probability": 0.7686 + }, + { + "start": 7270.48, + "end": 7272.94, + "probability": 0.8553 + }, + { + "start": 7273.06, + "end": 7274.26, + "probability": 0.7254 + }, + { + "start": 7274.4, + "end": 7277.0, + "probability": 0.9063 + }, + { + "start": 7277.74, + "end": 7278.7, + "probability": 0.8851 + }, + { + "start": 7278.8, + "end": 7279.66, + "probability": 0.9544 + }, + { + "start": 7279.74, + "end": 7280.64, + "probability": 0.8004 + }, + { + "start": 7280.8, + "end": 7284.74, + "probability": 0.5519 + }, + { + "start": 7284.88, + "end": 7289.28, + "probability": 0.8874 + }, + { + "start": 7289.38, + "end": 7293.45, + "probability": 0.9979 + }, + { + "start": 7294.04, + "end": 7294.58, + "probability": 0.6963 + }, + { + "start": 7294.72, + "end": 7297.38, + "probability": 0.8262 + }, + { + "start": 7298.08, + "end": 7299.66, + "probability": 0.7993 + }, + { + "start": 7299.74, + "end": 7300.4, + "probability": 0.7457 + }, + { + "start": 7300.42, + "end": 7302.0, + "probability": 0.9632 + }, + { + "start": 7302.58, + "end": 7305.42, + "probability": 0.9952 + }, + { + "start": 7305.5, + "end": 7307.22, + "probability": 0.7137 + }, + { + "start": 7307.36, + "end": 7308.68, + "probability": 0.939 + }, + { + "start": 7309.94, + "end": 7313.98, + "probability": 0.9076 + }, + { + "start": 7314.52, + "end": 7316.48, + "probability": 0.7464 + }, + { + "start": 7316.8, + "end": 7323.92, + "probability": 0.9822 + }, + { + "start": 7325.86, + "end": 7327.28, + "probability": 0.9902 + }, + { + "start": 7327.72, + "end": 7330.16, + "probability": 0.7643 + }, + { + "start": 7330.3, + "end": 7333.78, + "probability": 0.9822 + }, + { + "start": 7334.06, + "end": 7334.2, + "probability": 0.5657 + }, + { + "start": 7334.28, + "end": 7334.85, + "probability": 0.7169 + }, + { + "start": 7335.46, + "end": 7336.92, + "probability": 0.8556 + }, + { + "start": 7337.06, + "end": 7337.56, + "probability": 0.9424 + }, + { + "start": 7337.84, + "end": 7338.52, + "probability": 0.7289 + }, + { + "start": 7338.62, + "end": 7339.74, + "probability": 0.8591 + }, + { + "start": 7339.9, + "end": 7343.24, + "probability": 0.9459 + }, + { + "start": 7343.98, + "end": 7344.6, + "probability": 0.6772 + }, + { + "start": 7344.74, + "end": 7345.44, + "probability": 0.9152 + }, + { + "start": 7345.8, + "end": 7349.7, + "probability": 0.7388 + }, + { + "start": 7349.86, + "end": 7352.98, + "probability": 0.9941 + }, + { + "start": 7353.26, + "end": 7354.52, + "probability": 0.8804 + }, + { + "start": 7354.96, + "end": 7357.8, + "probability": 0.9074 + }, + { + "start": 7358.32, + "end": 7359.88, + "probability": 0.8813 + }, + { + "start": 7360.72, + "end": 7364.24, + "probability": 0.796 + }, + { + "start": 7364.94, + "end": 7366.48, + "probability": 0.6762 + }, + { + "start": 7366.48, + "end": 7366.76, + "probability": 0.1329 + }, + { + "start": 7366.76, + "end": 7367.42, + "probability": 0.7993 + }, + { + "start": 7367.48, + "end": 7367.92, + "probability": 0.7249 + }, + { + "start": 7368.06, + "end": 7369.9, + "probability": 0.9217 + }, + { + "start": 7372.76, + "end": 7376.64, + "probability": 0.9792 + }, + { + "start": 7377.08, + "end": 7379.96, + "probability": 0.979 + }, + { + "start": 7380.08, + "end": 7380.58, + "probability": 0.7841 + }, + { + "start": 7381.34, + "end": 7383.44, + "probability": 0.8376 + }, + { + "start": 7383.54, + "end": 7384.64, + "probability": 0.9647 + }, + { + "start": 7384.78, + "end": 7386.54, + "probability": 0.9202 + }, + { + "start": 7387.08, + "end": 7388.06, + "probability": 0.9879 + }, + { + "start": 7388.1, + "end": 7388.84, + "probability": 0.8779 + }, + { + "start": 7389.12, + "end": 7393.14, + "probability": 0.9961 + }, + { + "start": 7393.16, + "end": 7395.92, + "probability": 0.9896 + }, + { + "start": 7396.54, + "end": 7397.12, + "probability": 0.8123 + }, + { + "start": 7397.9, + "end": 7398.92, + "probability": 0.6617 + }, + { + "start": 7399.27, + "end": 7404.0, + "probability": 0.9607 + }, + { + "start": 7404.64, + "end": 7405.4, + "probability": 0.836 + }, + { + "start": 7405.52, + "end": 7405.8, + "probability": 0.832 + }, + { + "start": 7405.86, + "end": 7409.44, + "probability": 0.958 + }, + { + "start": 7409.5, + "end": 7410.82, + "probability": 0.8996 + }, + { + "start": 7411.62, + "end": 7416.6, + "probability": 0.9772 + }, + { + "start": 7416.6, + "end": 7420.4, + "probability": 0.9985 + }, + { + "start": 7420.62, + "end": 7421.44, + "probability": 0.8516 + }, + { + "start": 7421.9, + "end": 7425.1, + "probability": 0.9617 + }, + { + "start": 7425.2, + "end": 7428.72, + "probability": 0.9798 + }, + { + "start": 7429.3, + "end": 7432.84, + "probability": 0.999 + }, + { + "start": 7433.24, + "end": 7434.9, + "probability": 0.9862 + }, + { + "start": 7435.08, + "end": 7437.18, + "probability": 0.9954 + }, + { + "start": 7437.46, + "end": 7439.26, + "probability": 0.9941 + }, + { + "start": 7439.32, + "end": 7440.7, + "probability": 0.7937 + }, + { + "start": 7441.54, + "end": 7444.32, + "probability": 0.9937 + }, + { + "start": 7444.9, + "end": 7445.3, + "probability": 0.5176 + }, + { + "start": 7445.3, + "end": 7449.02, + "probability": 0.9904 + }, + { + "start": 7449.14, + "end": 7450.12, + "probability": 0.7708 + }, + { + "start": 7450.56, + "end": 7454.46, + "probability": 0.9939 + }, + { + "start": 7454.46, + "end": 7460.6, + "probability": 0.9471 + }, + { + "start": 7461.26, + "end": 7463.9, + "probability": 0.7178 + }, + { + "start": 7465.62, + "end": 7465.62, + "probability": 0.4984 + }, + { + "start": 7465.62, + "end": 7469.32, + "probability": 0.3069 + }, + { + "start": 7469.32, + "end": 7471.64, + "probability": 0.3324 + }, + { + "start": 7471.82, + "end": 7474.22, + "probability": 0.5279 + }, + { + "start": 7477.06, + "end": 7477.68, + "probability": 0.0723 + }, + { + "start": 7478.02, + "end": 7481.96, + "probability": 0.1017 + }, + { + "start": 7485.77, + "end": 7486.28, + "probability": 0.053 + }, + { + "start": 7486.34, + "end": 7488.68, + "probability": 0.5264 + }, + { + "start": 7488.7, + "end": 7490.98, + "probability": 0.4062 + }, + { + "start": 7490.98, + "end": 7491.12, + "probability": 0.2899 + }, + { + "start": 7491.5, + "end": 7491.6, + "probability": 0.2275 + }, + { + "start": 7492.36, + "end": 7498.92, + "probability": 0.3267 + }, + { + "start": 7500.22, + "end": 7500.38, + "probability": 0.0276 + }, + { + "start": 7501.42, + "end": 7505.56, + "probability": 0.0997 + }, + { + "start": 7544.02, + "end": 7544.38, + "probability": 0.0042 + }, + { + "start": 7545.04, + "end": 7545.58, + "probability": 0.0385 + }, + { + "start": 7548.96, + "end": 7552.16, + "probability": 0.0353 + }, + { + "start": 7552.16, + "end": 7552.16, + "probability": 0.0287 + }, + { + "start": 7552.96, + "end": 7553.98, + "probability": 0.2386 + }, + { + "start": 7554.0, + "end": 7554.0, + "probability": 0.0 + }, + { + "start": 7554.0, + "end": 7554.0, + "probability": 0.0 + }, + { + "start": 7554.0, + "end": 7554.0, + "probability": 0.0 + }, + { + "start": 7554.0, + "end": 7554.0, + "probability": 0.0 + }, + { + "start": 7554.0, + "end": 7554.0, + "probability": 0.0 + }, + { + "start": 7554.0, + "end": 7554.0, + "probability": 0.0 + }, + { + "start": 7554.0, + "end": 7554.0, + "probability": 0.0 + }, + { + "start": 7554.0, + "end": 7554.0, + "probability": 0.0 + }, + { + "start": 7554.0, + "end": 7554.0, + "probability": 0.0 + }, + { + "start": 7554.0, + "end": 7554.0, + "probability": 0.0 + }, + { + "start": 7554.0, + "end": 7554.0, + "probability": 0.0 + }, + { + "start": 7554.0, + "end": 7554.0, + "probability": 0.0 + }, + { + "start": 7554.0, + "end": 7554.0, + "probability": 0.0 + }, + { + "start": 7554.0, + "end": 7554.0, + "probability": 0.0 + }, + { + "start": 7554.0, + "end": 7554.0, + "probability": 0.0 + }, + { + "start": 7554.0, + "end": 7554.0, + "probability": 0.0 + }, + { + "start": 7554.0, + "end": 7554.0, + "probability": 0.0 + }, + { + "start": 7554.0, + "end": 7554.0, + "probability": 0.0 + }, + { + "start": 7554.0, + "end": 7554.0, + "probability": 0.0 + }, + { + "start": 7554.1, + "end": 7555.46, + "probability": 0.122 + }, + { + "start": 7555.46, + "end": 7556.38, + "probability": 0.0257 + }, + { + "start": 7556.38, + "end": 7559.6, + "probability": 0.0782 + }, + { + "start": 7561.72, + "end": 7561.82, + "probability": 0.0031 + }, + { + "start": 7564.52, + "end": 7569.16, + "probability": 0.9941 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.6, + "end": 7718.52, + "probability": 0.2655 + }, + { + "start": 7719.58, + "end": 7722.61, + "probability": 0.1793 + }, + { + "start": 7722.9, + "end": 7724.88, + "probability": 0.1511 + }, + { + "start": 7724.88, + "end": 7725.42, + "probability": 0.0979 + }, + { + "start": 7725.48, + "end": 7725.74, + "probability": 0.0611 + }, + { + "start": 7725.74, + "end": 7725.82, + "probability": 0.1497 + }, + { + "start": 7725.88, + "end": 7725.88, + "probability": 0.3169 + }, + { + "start": 7725.88, + "end": 7727.28, + "probability": 0.3337 + }, + { + "start": 7728.44, + "end": 7728.98, + "probability": 0.1929 + }, + { + "start": 7731.2, + "end": 7736.32, + "probability": 0.0123 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.0, + "end": 7869.0, + "probability": 0.0 + }, + { + "start": 7869.16, + "end": 7869.64, + "probability": 0.0596 + }, + { + "start": 7870.4, + "end": 7870.76, + "probability": 0.0306 + }, + { + "start": 7871.52, + "end": 7873.4, + "probability": 0.8918 + }, + { + "start": 7875.38, + "end": 7876.28, + "probability": 0.9102 + }, + { + "start": 7877.6, + "end": 7878.44, + "probability": 0.8916 + }, + { + "start": 7880.3, + "end": 7881.68, + "probability": 0.9728 + }, + { + "start": 7882.24, + "end": 7883.86, + "probability": 0.9625 + }, + { + "start": 7884.36, + "end": 7885.36, + "probability": 0.8875 + }, + { + "start": 7885.7, + "end": 7888.02, + "probability": 0.9558 + }, + { + "start": 7889.58, + "end": 7891.28, + "probability": 0.9746 + }, + { + "start": 7891.74, + "end": 7898.3, + "probability": 0.902 + }, + { + "start": 7900.42, + "end": 7901.06, + "probability": 0.9719 + }, + { + "start": 7901.26, + "end": 7904.38, + "probability": 0.991 + }, + { + "start": 7904.68, + "end": 7905.44, + "probability": 0.8781 + }, + { + "start": 7905.56, + "end": 7905.9, + "probability": 0.4712 + }, + { + "start": 7907.32, + "end": 7909.66, + "probability": 0.8505 + }, + { + "start": 7911.56, + "end": 7914.06, + "probability": 0.8378 + }, + { + "start": 7914.12, + "end": 7914.9, + "probability": 0.9951 + }, + { + "start": 7915.66, + "end": 7918.12, + "probability": 0.9023 + }, + { + "start": 7918.96, + "end": 7920.0, + "probability": 0.9448 + }, + { + "start": 7921.64, + "end": 7922.18, + "probability": 0.9795 + }, + { + "start": 7923.94, + "end": 7925.9, + "probability": 0.9944 + }, + { + "start": 7926.74, + "end": 7927.88, + "probability": 0.7592 + }, + { + "start": 7928.82, + "end": 7938.22, + "probability": 0.9865 + }, + { + "start": 7938.22, + "end": 7939.0, + "probability": 0.2941 + }, + { + "start": 7939.0, + "end": 7940.46, + "probability": 0.95 + }, + { + "start": 7941.08, + "end": 7943.28, + "probability": 0.9858 + }, + { + "start": 7943.72, + "end": 7944.74, + "probability": 0.7583 + }, + { + "start": 7944.92, + "end": 7945.96, + "probability": 0.7761 + }, + { + "start": 7946.24, + "end": 7946.76, + "probability": 0.4218 + }, + { + "start": 7949.42, + "end": 7949.86, + "probability": 0.8999 + }, + { + "start": 7952.14, + "end": 7954.46, + "probability": 0.5937 + }, + { + "start": 7954.78, + "end": 7957.54, + "probability": 0.9409 + }, + { + "start": 7957.9, + "end": 7961.02, + "probability": 0.8579 + }, + { + "start": 7962.12, + "end": 7964.44, + "probability": 0.8317 + }, + { + "start": 7966.3, + "end": 7971.78, + "probability": 0.898 + }, + { + "start": 7973.22, + "end": 7974.16, + "probability": 0.9927 + }, + { + "start": 7975.74, + "end": 7977.3, + "probability": 0.9918 + }, + { + "start": 7978.14, + "end": 7981.12, + "probability": 0.8375 + }, + { + "start": 7982.74, + "end": 7983.88, + "probability": 0.8796 + }, + { + "start": 7984.92, + "end": 7985.66, + "probability": 0.9902 + }, + { + "start": 7986.78, + "end": 7989.5, + "probability": 0.7859 + }, + { + "start": 7990.54, + "end": 7995.01, + "probability": 0.9785 + }, + { + "start": 7996.64, + "end": 7997.24, + "probability": 0.5906 + }, + { + "start": 7998.42, + "end": 8000.6, + "probability": 0.9005 + }, + { + "start": 8004.52, + "end": 8009.18, + "probability": 0.9987 + }, + { + "start": 8012.92, + "end": 8014.68, + "probability": 0.9634 + }, + { + "start": 8015.66, + "end": 8016.22, + "probability": 0.565 + }, + { + "start": 8016.38, + "end": 8019.72, + "probability": 0.9438 + }, + { + "start": 8019.92, + "end": 8022.46, + "probability": 0.9651 + }, + { + "start": 8025.62, + "end": 8029.36, + "probability": 0.9934 + }, + { + "start": 8030.26, + "end": 8031.14, + "probability": 0.893 + }, + { + "start": 8032.74, + "end": 8033.9, + "probability": 0.7149 + }, + { + "start": 8034.16, + "end": 8035.54, + "probability": 0.8564 + }, + { + "start": 8035.7, + "end": 8036.58, + "probability": 0.9292 + }, + { + "start": 8037.34, + "end": 8038.92, + "probability": 0.9935 + }, + { + "start": 8039.86, + "end": 8043.04, + "probability": 0.9783 + }, + { + "start": 8045.08, + "end": 8045.98, + "probability": 0.7104 + }, + { + "start": 8047.52, + "end": 8050.68, + "probability": 0.9941 + }, + { + "start": 8052.24, + "end": 8054.04, + "probability": 0.6958 + }, + { + "start": 8055.04, + "end": 8057.2, + "probability": 0.9128 + }, + { + "start": 8058.16, + "end": 8061.48, + "probability": 0.9482 + }, + { + "start": 8063.78, + "end": 8064.66, + "probability": 0.9858 + }, + { + "start": 8068.04, + "end": 8070.44, + "probability": 0.98 + }, + { + "start": 8072.02, + "end": 8074.5, + "probability": 0.8984 + }, + { + "start": 8075.88, + "end": 8077.28, + "probability": 0.9684 + }, + { + "start": 8078.28, + "end": 8080.12, + "probability": 0.8418 + }, + { + "start": 8080.7, + "end": 8083.54, + "probability": 0.9282 + }, + { + "start": 8085.76, + "end": 8088.86, + "probability": 0.8042 + }, + { + "start": 8089.66, + "end": 8091.06, + "probability": 0.9983 + }, + { + "start": 8091.7, + "end": 8092.32, + "probability": 0.8065 + }, + { + "start": 8093.34, + "end": 8094.36, + "probability": 0.794 + }, + { + "start": 8094.5, + "end": 8095.02, + "probability": 0.6887 + }, + { + "start": 8095.18, + "end": 8096.94, + "probability": 0.9964 + }, + { + "start": 8097.48, + "end": 8098.36, + "probability": 0.9928 + }, + { + "start": 8099.48, + "end": 8100.16, + "probability": 0.9534 + }, + { + "start": 8100.26, + "end": 8102.1, + "probability": 0.9714 + }, + { + "start": 8103.24, + "end": 8104.56, + "probability": 0.9744 + }, + { + "start": 8105.5, + "end": 8108.3, + "probability": 0.9645 + }, + { + "start": 8109.14, + "end": 8110.08, + "probability": 0.9941 + }, + { + "start": 8111.14, + "end": 8114.4, + "probability": 0.9277 + }, + { + "start": 8116.44, + "end": 8116.44, + "probability": 0.1752 + }, + { + "start": 8116.44, + "end": 8116.76, + "probability": 0.583 + }, + { + "start": 8117.06, + "end": 8118.39, + "probability": 0.9221 + }, + { + "start": 8119.08, + "end": 8122.16, + "probability": 0.7819 + }, + { + "start": 8122.92, + "end": 8123.88, + "probability": 0.9834 + }, + { + "start": 8124.48, + "end": 8125.7, + "probability": 0.9646 + }, + { + "start": 8127.4, + "end": 8134.3, + "probability": 0.9686 + }, + { + "start": 8134.43, + "end": 8138.38, + "probability": 0.9847 + }, + { + "start": 8139.24, + "end": 8140.32, + "probability": 0.6778 + }, + { + "start": 8142.12, + "end": 8143.14, + "probability": 0.999 + }, + { + "start": 8143.76, + "end": 8148.2, + "probability": 0.7208 + }, + { + "start": 8149.84, + "end": 8150.76, + "probability": 0.7852 + }, + { + "start": 8151.8, + "end": 8154.3, + "probability": 0.9827 + }, + { + "start": 8155.56, + "end": 8158.08, + "probability": 0.9674 + }, + { + "start": 8158.16, + "end": 8159.04, + "probability": 0.6953 + }, + { + "start": 8160.24, + "end": 8160.92, + "probability": 0.802 + }, + { + "start": 8162.96, + "end": 8165.14, + "probability": 0.9542 + }, + { + "start": 8165.6, + "end": 8167.36, + "probability": 0.7775 + }, + { + "start": 8168.66, + "end": 8171.52, + "probability": 0.6915 + }, + { + "start": 8171.57, + "end": 8172.02, + "probability": 0.9628 + }, + { + "start": 8173.04, + "end": 8173.04, + "probability": 0.1738 + }, + { + "start": 8173.04, + "end": 8175.84, + "probability": 0.8025 + }, + { + "start": 8176.94, + "end": 8179.38, + "probability": 0.9623 + }, + { + "start": 8179.64, + "end": 8181.42, + "probability": 0.8694 + }, + { + "start": 8181.46, + "end": 8182.5, + "probability": 0.7795 + }, + { + "start": 8183.34, + "end": 8184.96, + "probability": 0.5116 + }, + { + "start": 8185.18, + "end": 8185.18, + "probability": 0.2229 + }, + { + "start": 8185.18, + "end": 8185.18, + "probability": 0.0448 + }, + { + "start": 8185.18, + "end": 8186.92, + "probability": 0.7642 + }, + { + "start": 8187.0, + "end": 8187.96, + "probability": 0.7832 + }, + { + "start": 8188.62, + "end": 8190.14, + "probability": 0.6647 + }, + { + "start": 8190.18, + "end": 8191.7, + "probability": 0.7856 + }, + { + "start": 8193.18, + "end": 8193.92, + "probability": 0.006 + }, + { + "start": 8197.58, + "end": 8200.38, + "probability": 0.2524 + }, + { + "start": 8205.68, + "end": 8209.72, + "probability": 0.7955 + }, + { + "start": 8209.98, + "end": 8210.2, + "probability": 0.0626 + }, + { + "start": 8210.2, + "end": 8210.2, + "probability": 0.0433 + }, + { + "start": 8210.2, + "end": 8210.2, + "probability": 0.0544 + }, + { + "start": 8210.2, + "end": 8210.2, + "probability": 0.2769 + }, + { + "start": 8210.2, + "end": 8210.2, + "probability": 0.2716 + }, + { + "start": 8210.2, + "end": 8213.16, + "probability": 0.4612 + }, + { + "start": 8214.48, + "end": 8216.18, + "probability": 0.8508 + }, + { + "start": 8216.28, + "end": 8217.46, + "probability": 0.9976 + }, + { + "start": 8218.14, + "end": 8223.64, + "probability": 0.9626 + }, + { + "start": 8224.5, + "end": 8226.02, + "probability": 0.8766 + }, + { + "start": 8226.64, + "end": 8228.62, + "probability": 0.7639 + }, + { + "start": 8229.7, + "end": 8233.08, + "probability": 0.8021 + }, + { + "start": 8233.76, + "end": 8235.96, + "probability": 0.8963 + }, + { + "start": 8237.12, + "end": 8237.3, + "probability": 0.6018 + }, + { + "start": 8237.34, + "end": 8238.27, + "probability": 0.9214 + }, + { + "start": 8239.62, + "end": 8241.6, + "probability": 0.9977 + }, + { + "start": 8242.04, + "end": 8244.96, + "probability": 0.991 + }, + { + "start": 8245.72, + "end": 8249.4, + "probability": 0.9971 + }, + { + "start": 8249.6, + "end": 8250.04, + "probability": 0.6327 + }, + { + "start": 8250.46, + "end": 8252.68, + "probability": 0.9382 + }, + { + "start": 8253.22, + "end": 8256.26, + "probability": 0.9002 + }, + { + "start": 8256.38, + "end": 8260.74, + "probability": 0.9556 + }, + { + "start": 8260.96, + "end": 8262.78, + "probability": 0.9846 + }, + { + "start": 8263.32, + "end": 8264.86, + "probability": 0.7419 + }, + { + "start": 8264.94, + "end": 8266.87, + "probability": 0.9785 + }, + { + "start": 8267.6, + "end": 8271.78, + "probability": 0.9661 + }, + { + "start": 8272.3, + "end": 8274.26, + "probability": 0.8716 + }, + { + "start": 8274.32, + "end": 8274.86, + "probability": 0.7952 + }, + { + "start": 8275.54, + "end": 8275.54, + "probability": 0.2709 + }, + { + "start": 8275.58, + "end": 8278.64, + "probability": 0.9434 + }, + { + "start": 8278.76, + "end": 8280.96, + "probability": 0.9592 + }, + { + "start": 8282.88, + "end": 8284.0, + "probability": 0.4418 + }, + { + "start": 8288.82, + "end": 8290.83, + "probability": 0.8049 + }, + { + "start": 8302.62, + "end": 8303.64, + "probability": 0.3698 + }, + { + "start": 8304.34, + "end": 8304.96, + "probability": 0.1466 + }, + { + "start": 8304.96, + "end": 8304.96, + "probability": 0.1331 + }, + { + "start": 8304.96, + "end": 8304.96, + "probability": 0.1375 + }, + { + "start": 8304.96, + "end": 8305.36, + "probability": 0.2766 + }, + { + "start": 8305.36, + "end": 8305.4, + "probability": 0.0189 + }, + { + "start": 8313.56, + "end": 8314.24, + "probability": 0.2882 + }, + { + "start": 8319.3, + "end": 8320.58, + "probability": 0.5018 + }, + { + "start": 8321.3, + "end": 8321.7, + "probability": 0.3365 + }, + { + "start": 8321.76, + "end": 8321.92, + "probability": 0.3956 + }, + { + "start": 8321.96, + "end": 8322.1, + "probability": 0.012 + }, + { + "start": 8322.16, + "end": 8322.82, + "probability": 0.0399 + }, + { + "start": 8322.82, + "end": 8324.48, + "probability": 0.817 + }, + { + "start": 8324.66, + "end": 8325.62, + "probability": 0.7202 + }, + { + "start": 8326.22, + "end": 8327.14, + "probability": 0.9795 + }, + { + "start": 8328.72, + "end": 8328.74, + "probability": 0.3024 + }, + { + "start": 8328.74, + "end": 8328.74, + "probability": 0.2903 + }, + { + "start": 8328.74, + "end": 8328.95, + "probability": 0.0332 + }, + { + "start": 8331.46, + "end": 8332.82, + "probability": 0.8894 + }, + { + "start": 8333.0, + "end": 8333.98, + "probability": 0.7195 + }, + { + "start": 8335.64, + "end": 8335.78, + "probability": 0.3225 + }, + { + "start": 8337.04, + "end": 8338.24, + "probability": 0.222 + }, + { + "start": 8338.24, + "end": 8338.24, + "probability": 0.0076 + }, + { + "start": 8338.24, + "end": 8340.38, + "probability": 0.7578 + }, + { + "start": 8340.4, + "end": 8340.68, + "probability": 0.3017 + }, + { + "start": 8340.68, + "end": 8342.1, + "probability": 0.8133 + }, + { + "start": 8342.48, + "end": 8344.36, + "probability": 0.5851 + }, + { + "start": 8344.42, + "end": 8345.05, + "probability": 0.3025 + }, + { + "start": 8345.44, + "end": 8346.14, + "probability": 0.3161 + }, + { + "start": 8346.18, + "end": 8347.82, + "probability": 0.8859 + }, + { + "start": 8348.87, + "end": 8350.0, + "probability": 0.918 + }, + { + "start": 8350.06, + "end": 8350.66, + "probability": 0.6576 + }, + { + "start": 8351.3, + "end": 8352.41, + "probability": 0.3504 + }, + { + "start": 8354.08, + "end": 8354.64, + "probability": 0.4534 + }, + { + "start": 8354.74, + "end": 8359.0, + "probability": 0.9254 + }, + { + "start": 8359.0, + "end": 8363.18, + "probability": 0.9832 + }, + { + "start": 8363.62, + "end": 8365.68, + "probability": 0.9805 + }, + { + "start": 8366.6, + "end": 8367.82, + "probability": 0.9563 + }, + { + "start": 8369.46, + "end": 8371.36, + "probability": 0.8315 + }, + { + "start": 8372.1, + "end": 8374.14, + "probability": 0.6056 + }, + { + "start": 8375.7, + "end": 8377.94, + "probability": 0.8491 + }, + { + "start": 8378.66, + "end": 8381.88, + "probability": 0.9563 + }, + { + "start": 8382.28, + "end": 8384.2, + "probability": 0.9385 + }, + { + "start": 8384.42, + "end": 8384.56, + "probability": 0.3332 + }, + { + "start": 8385.02, + "end": 8386.8, + "probability": 0.4601 + }, + { + "start": 8387.0, + "end": 8388.62, + "probability": 0.8823 + }, + { + "start": 8389.14, + "end": 8389.36, + "probability": 0.8917 + }, + { + "start": 8389.46, + "end": 8390.38, + "probability": 0.9275 + }, + { + "start": 8391.18, + "end": 8392.32, + "probability": 0.8877 + }, + { + "start": 8393.34, + "end": 8394.08, + "probability": 0.818 + }, + { + "start": 8394.3, + "end": 8395.8, + "probability": 0.8052 + }, + { + "start": 8396.84, + "end": 8398.06, + "probability": 0.9744 + }, + { + "start": 8398.1, + "end": 8398.87, + "probability": 0.9271 + }, + { + "start": 8399.04, + "end": 8399.94, + "probability": 0.9113 + }, + { + "start": 8400.04, + "end": 8401.8, + "probability": 0.8581 + }, + { + "start": 8402.9, + "end": 8406.68, + "probability": 0.9703 + }, + { + "start": 8407.0, + "end": 8409.21, + "probability": 0.9004 + }, + { + "start": 8410.42, + "end": 8410.98, + "probability": 0.8699 + }, + { + "start": 8411.14, + "end": 8411.54, + "probability": 0.8201 + }, + { + "start": 8413.16, + "end": 8413.28, + "probability": 0.035 + }, + { + "start": 8413.28, + "end": 8414.92, + "probability": 0.5778 + }, + { + "start": 8415.14, + "end": 8416.62, + "probability": 0.6769 + }, + { + "start": 8416.72, + "end": 8418.37, + "probability": 0.9185 + }, + { + "start": 8419.46, + "end": 8421.28, + "probability": 0.9524 + }, + { + "start": 8422.24, + "end": 8424.98, + "probability": 0.8283 + }, + { + "start": 8425.92, + "end": 8428.1, + "probability": 0.826 + }, + { + "start": 8430.24, + "end": 8433.88, + "probability": 0.9792 + }, + { + "start": 8434.02, + "end": 8436.1, + "probability": 0.9946 + }, + { + "start": 8436.94, + "end": 8440.0, + "probability": 0.8236 + }, + { + "start": 8440.88, + "end": 8445.14, + "probability": 0.8853 + }, + { + "start": 8446.22, + "end": 8449.62, + "probability": 0.7793 + }, + { + "start": 8449.62, + "end": 8451.76, + "probability": 0.9697 + }, + { + "start": 8452.24, + "end": 8452.9, + "probability": 0.5961 + }, + { + "start": 8453.54, + "end": 8455.68, + "probability": 0.9957 + }, + { + "start": 8456.38, + "end": 8461.54, + "probability": 0.9948 + }, + { + "start": 8461.66, + "end": 8462.76, + "probability": 0.903 + }, + { + "start": 8463.3, + "end": 8463.64, + "probability": 0.7433 + }, + { + "start": 8590.0, + "end": 8590.0, + "probability": 0.0 + }, + { + "start": 8590.0, + "end": 8590.0, + "probability": 0.0 + }, + { + "start": 8590.0, + "end": 8590.0, + "probability": 0.0 + }, + { + "start": 8590.0, + "end": 8590.0, + "probability": 0.0 + }, + { + "start": 8590.0, + "end": 8590.0, + "probability": 0.0 + }, + { + "start": 8590.0, + "end": 8590.0, + "probability": 0.0 + }, + { + "start": 8590.0, + "end": 8590.0, + "probability": 0.0 + }, + { + "start": 8590.0, + "end": 8590.0, + "probability": 0.0 + }, + { + "start": 8590.0, + "end": 8590.0, + "probability": 0.0 + }, + { + "start": 8590.0, + "end": 8590.0, + "probability": 0.0 + }, + { + "start": 8590.0, + "end": 8590.0, + "probability": 0.0 + }, + { + "start": 8590.0, + "end": 8590.0, + "probability": 0.0 + }, + { + "start": 8590.0, + "end": 8590.0, + "probability": 0.0 + }, + { + "start": 8590.0, + "end": 8590.0, + "probability": 0.0 + }, + { + "start": 8590.0, + "end": 8590.0, + "probability": 0.0 + }, + { + "start": 8590.0, + "end": 8590.0, + "probability": 0.0 + }, + { + "start": 8590.0, + "end": 8590.0, + "probability": 0.0 + }, + { + "start": 8590.0, + "end": 8590.0, + "probability": 0.0 + }, + { + "start": 8606.22, + "end": 8608.98, + "probability": 0.3088 + }, + { + "start": 8609.0, + "end": 8609.0, + "probability": 0.0 + }, + { + "start": 8609.0, + "end": 8609.0, + "probability": 0.0 + }, + { + "start": 8609.0, + "end": 8609.0, + "probability": 0.0 + }, + { + "start": 8609.0, + "end": 8609.0, + "probability": 0.0 + }, + { + "start": 8609.0, + "end": 8609.0, + "probability": 0.0 + }, + { + "start": 8609.0, + "end": 8609.0, + "probability": 0.0 + }, + { + "start": 8609.0, + "end": 8609.0, + "probability": 0.0 + }, + { + "start": 8622.88, + "end": 8623.56, + "probability": 0.0261 + }, + { + "start": 8623.78, + "end": 8626.58, + "probability": 0.0005 + }, + { + "start": 8626.78, + "end": 8626.98, + "probability": 0.1583 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8640.0, + "end": 8642.48, + "probability": 0.0442 + }, + { + "start": 8643.42, + "end": 8644.7, + "probability": 0.1001 + }, + { + "start": 8644.7, + "end": 8646.98, + "probability": 0.0014 + }, + { + "start": 8647.0, + "end": 8647.0, + "probability": 0.0 + }, + { + "start": 8647.0, + "end": 8647.0, + "probability": 0.0 + }, + { + "start": 8647.0, + "end": 8647.0, + "probability": 0.0 + }, + { + "start": 8660.23, + "end": 8661.38, + "probability": 0.0452 + }, + { + "start": 8661.38, + "end": 8661.82, + "probability": 0.1144 + }, + { + "start": 8661.82, + "end": 8661.94, + "probability": 0.1108 + }, + { + "start": 8662.0, + "end": 8662.0, + "probability": 0.0 + }, + { + "start": 8662.0, + "end": 8662.0, + "probability": 0.0 + }, + { + "start": 8662.0, + "end": 8662.0, + "probability": 0.0 + }, + { + "start": 8662.0, + "end": 8662.0, + "probability": 0.0 + }, + { + "start": 8662.0, + "end": 8662.0, + "probability": 0.0 + }, + { + "start": 8662.0, + "end": 8662.0, + "probability": 0.0 + }, + { + "start": 8662.0, + "end": 8662.0, + "probability": 0.0 + }, + { + "start": 8738.37, + "end": 8738.86, + "probability": 0.0862 + }, + { + "start": 8755.14, + "end": 8755.7, + "probability": 0.0217 + }, + { + "start": 8769.08, + "end": 8769.3, + "probability": 0.074 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8794.0, + "end": 8794.0, + "probability": 0.0 + }, + { + "start": 8871.86, + "end": 8872.02, + "probability": 0.0302 + }, + { + "start": 8872.02, + "end": 8872.2, + "probability": 0.0441 + }, + { + "start": 8904.28, + "end": 8906.08, + "probability": 0.0194 + }, + { + "start": 8906.34, + "end": 8909.0, + "probability": 0.1015 + }, + { + "start": 8909.0, + "end": 8912.52, + "probability": 0.0312 + }, + { + "start": 8912.52, + "end": 8912.52, + "probability": 0.2807 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8914.0, + "end": 8914.0, + "probability": 0.0 + }, + { + "start": 8991.44, + "end": 8993.62, + "probability": 0.1214 + }, + { + "start": 8993.78, + "end": 8995.1, + "probability": 0.075 + }, + { + "start": 8995.22, + "end": 8996.22, + "probability": 0.0473 + }, + { + "start": 8998.55, + "end": 8999.9, + "probability": 0.013 + }, + { + "start": 8999.9, + "end": 9001.32, + "probability": 0.2206 + }, + { + "start": 9001.42, + "end": 9002.56, + "probability": 0.0726 + }, + { + "start": 9002.56, + "end": 9002.66, + "probability": 0.0205 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.0, + "end": 9038.0, + "probability": 0.0 + }, + { + "start": 9038.44, + "end": 9038.88, + "probability": 0.521 + }, + { + "start": 9039.0, + "end": 9041.4, + "probability": 0.6312 + }, + { + "start": 9041.48, + "end": 9043.16, + "probability": 0.9536 + }, + { + "start": 9044.62, + "end": 9047.16, + "probability": 0.7673 + }, + { + "start": 9047.24, + "end": 9050.52, + "probability": 0.7904 + }, + { + "start": 9051.76, + "end": 9056.58, + "probability": 0.9745 + }, + { + "start": 9057.6, + "end": 9060.76, + "probability": 0.9113 + }, + { + "start": 9061.74, + "end": 9062.86, + "probability": 0.7669 + }, + { + "start": 9062.98, + "end": 9066.28, + "probability": 0.9844 + }, + { + "start": 9067.4, + "end": 9069.05, + "probability": 0.8134 + }, + { + "start": 9069.06, + "end": 9071.36, + "probability": 0.9795 + }, + { + "start": 9071.42, + "end": 9072.98, + "probability": 0.9718 + }, + { + "start": 9073.86, + "end": 9076.76, + "probability": 0.867 + }, + { + "start": 9077.64, + "end": 9077.92, + "probability": 0.491 + }, + { + "start": 9078.1, + "end": 9080.96, + "probability": 0.797 + }, + { + "start": 9081.62, + "end": 9083.76, + "probability": 0.9119 + }, + { + "start": 9083.9, + "end": 9084.86, + "probability": 0.9597 + }, + { + "start": 9085.5, + "end": 9090.0, + "probability": 0.9565 + }, + { + "start": 9090.76, + "end": 9093.8, + "probability": 0.7717 + }, + { + "start": 9095.4, + "end": 9097.4, + "probability": 0.7928 + }, + { + "start": 9098.14, + "end": 9099.42, + "probability": 0.9471 + }, + { + "start": 9101.24, + "end": 9102.54, + "probability": 0.1615 + }, + { + "start": 9103.54, + "end": 9105.3, + "probability": 0.7203 + }, + { + "start": 9105.44, + "end": 9111.5, + "probability": 0.9212 + }, + { + "start": 9112.22, + "end": 9112.74, + "probability": 0.0674 + }, + { + "start": 9113.26, + "end": 9114.4, + "probability": 0.915 + }, + { + "start": 9114.82, + "end": 9116.22, + "probability": 0.4893 + }, + { + "start": 9116.22, + "end": 9117.38, + "probability": 0.595 + }, + { + "start": 9117.42, + "end": 9121.68, + "probability": 0.9334 + }, + { + "start": 9121.74, + "end": 9125.16, + "probability": 0.9863 + }, + { + "start": 9127.14, + "end": 9130.68, + "probability": 0.9373 + }, + { + "start": 9130.8, + "end": 9133.16, + "probability": 0.8137 + }, + { + "start": 9134.0, + "end": 9137.56, + "probability": 0.8744 + }, + { + "start": 9137.68, + "end": 9140.34, + "probability": 0.7049 + }, + { + "start": 9142.86, + "end": 9143.02, + "probability": 0.0221 + }, + { + "start": 9143.1, + "end": 9143.1, + "probability": 0.1822 + }, + { + "start": 9143.1, + "end": 9143.64, + "probability": 0.3555 + }, + { + "start": 9143.72, + "end": 9143.88, + "probability": 0.0764 + }, + { + "start": 9143.9, + "end": 9144.64, + "probability": 0.4145 + }, + { + "start": 9144.64, + "end": 9145.74, + "probability": 0.9827 + }, + { + "start": 9146.46, + "end": 9148.92, + "probability": 0.8529 + }, + { + "start": 9149.16, + "end": 9153.14, + "probability": 0.9173 + }, + { + "start": 9153.76, + "end": 9158.32, + "probability": 0.898 + }, + { + "start": 9158.58, + "end": 9162.88, + "probability": 0.9419 + }, + { + "start": 9163.68, + "end": 9169.02, + "probability": 0.9438 + }, + { + "start": 9169.1, + "end": 9169.78, + "probability": 0.4471 + }, + { + "start": 9170.12, + "end": 9170.22, + "probability": 0.4705 + }, + { + "start": 9170.6, + "end": 9171.06, + "probability": 0.8639 + }, + { + "start": 9171.16, + "end": 9174.9, + "probability": 0.5843 + }, + { + "start": 9175.86, + "end": 9176.14, + "probability": 0.8085 + }, + { + "start": 9176.22, + "end": 9176.66, + "probability": 0.58 + }, + { + "start": 9176.74, + "end": 9178.04, + "probability": 0.6798 + }, + { + "start": 9178.24, + "end": 9180.14, + "probability": 0.9553 + }, + { + "start": 9180.58, + "end": 9181.86, + "probability": 0.8298 + }, + { + "start": 9181.88, + "end": 9184.15, + "probability": 0.806 + }, + { + "start": 9187.96, + "end": 9188.8, + "probability": 0.6934 + }, + { + "start": 9188.8, + "end": 9188.8, + "probability": 0.0327 + }, + { + "start": 9188.8, + "end": 9189.04, + "probability": 0.1991 + }, + { + "start": 9189.04, + "end": 9189.04, + "probability": 0.0644 + }, + { + "start": 9189.04, + "end": 9189.04, + "probability": 0.0624 + }, + { + "start": 9189.04, + "end": 9189.53, + "probability": 0.3102 + }, + { + "start": 9190.0, + "end": 9191.54, + "probability": 0.7307 + }, + { + "start": 9192.2, + "end": 9193.98, + "probability": 0.7041 + }, + { + "start": 9195.3, + "end": 9195.3, + "probability": 0.1395 + }, + { + "start": 9195.3, + "end": 9197.88, + "probability": 0.6782 + }, + { + "start": 9197.88, + "end": 9203.52, + "probability": 0.7509 + }, + { + "start": 9204.8, + "end": 9207.7, + "probability": 0.901 + }, + { + "start": 9207.84, + "end": 9208.92, + "probability": 0.9835 + }, + { + "start": 9209.86, + "end": 9211.26, + "probability": 0.5534 + }, + { + "start": 9211.42, + "end": 9215.54, + "probability": 0.819 + }, + { + "start": 9216.24, + "end": 9217.74, + "probability": 0.6978 + }, + { + "start": 9217.84, + "end": 9218.72, + "probability": 0.8856 + }, + { + "start": 9219.28, + "end": 9220.97, + "probability": 0.1864 + }, + { + "start": 9222.16, + "end": 9225.1, + "probability": 0.8098 + }, + { + "start": 9225.1, + "end": 9227.46, + "probability": 0.9469 + }, + { + "start": 9228.06, + "end": 9229.2, + "probability": 0.8663 + }, + { + "start": 9229.3, + "end": 9230.34, + "probability": 0.9712 + }, + { + "start": 9230.58, + "end": 9231.16, + "probability": 0.6148 + }, + { + "start": 9232.14, + "end": 9233.18, + "probability": 0.8266 + }, + { + "start": 9233.36, + "end": 9234.5, + "probability": 0.5429 + }, + { + "start": 9234.85, + "end": 9234.92, + "probability": 0.6767 + }, + { + "start": 9234.92, + "end": 9236.5, + "probability": 0.5871 + }, + { + "start": 9236.54, + "end": 9237.58, + "probability": 0.8638 + }, + { + "start": 9237.74, + "end": 9238.48, + "probability": 0.4453 + }, + { + "start": 9238.64, + "end": 9242.4, + "probability": 0.597 + }, + { + "start": 9242.54, + "end": 9243.4, + "probability": 0.4799 + }, + { + "start": 9243.56, + "end": 9245.94, + "probability": 0.6911 + }, + { + "start": 9246.1, + "end": 9246.26, + "probability": 0.2271 + }, + { + "start": 9246.34, + "end": 9247.71, + "probability": 0.9801 + }, + { + "start": 9248.36, + "end": 9249.54, + "probability": 0.6194 + }, + { + "start": 9249.6, + "end": 9250.97, + "probability": 0.4267 + }, + { + "start": 9251.86, + "end": 9253.62, + "probability": 0.7731 + }, + { + "start": 9254.26, + "end": 9255.1, + "probability": 0.8039 + }, + { + "start": 9255.16, + "end": 9255.8, + "probability": 0.8319 + }, + { + "start": 9255.86, + "end": 9256.31, + "probability": 0.8116 + }, + { + "start": 9256.9, + "end": 9258.04, + "probability": 0.3926 + }, + { + "start": 9258.78, + "end": 9260.22, + "probability": 0.3442 + }, + { + "start": 9260.22, + "end": 9260.42, + "probability": 0.1985 + }, + { + "start": 9261.24, + "end": 9262.26, + "probability": 0.9526 + }, + { + "start": 9262.46, + "end": 9265.98, + "probability": 0.3755 + }, + { + "start": 9266.06, + "end": 9266.86, + "probability": 0.316 + }, + { + "start": 9266.96, + "end": 9267.74, + "probability": 0.3843 + }, + { + "start": 9268.22, + "end": 9268.9, + "probability": 0.7904 + }, + { + "start": 9269.58, + "end": 9269.82, + "probability": 0.2866 + }, + { + "start": 9270.0, + "end": 9271.26, + "probability": 0.6516 + }, + { + "start": 9271.72, + "end": 9272.84, + "probability": 0.2498 + }, + { + "start": 9272.88, + "end": 9274.16, + "probability": 0.531 + }, + { + "start": 9274.2, + "end": 9276.46, + "probability": 0.7393 + }, + { + "start": 9277.24, + "end": 9277.68, + "probability": 0.6577 + }, + { + "start": 9278.36, + "end": 9279.28, + "probability": 0.5898 + }, + { + "start": 9279.54, + "end": 9280.46, + "probability": 0.635 + }, + { + "start": 9281.26, + "end": 9281.9, + "probability": 0.3566 + }, + { + "start": 9282.08, + "end": 9283.76, + "probability": 0.8475 + }, + { + "start": 9284.0, + "end": 9284.98, + "probability": 0.9586 + }, + { + "start": 9285.32, + "end": 9285.8, + "probability": 0.5081 + }, + { + "start": 9285.9, + "end": 9287.94, + "probability": 0.9456 + }, + { + "start": 9288.1, + "end": 9289.6, + "probability": 0.9863 + }, + { + "start": 9290.1, + "end": 9291.94, + "probability": 0.8418 + }, + { + "start": 9292.72, + "end": 9293.68, + "probability": 0.9695 + }, + { + "start": 9293.74, + "end": 9294.4, + "probability": 0.8675 + }, + { + "start": 9294.8, + "end": 9295.5, + "probability": 0.8223 + }, + { + "start": 9295.58, + "end": 9296.08, + "probability": 0.7741 + }, + { + "start": 9296.74, + "end": 9297.26, + "probability": 0.7218 + }, + { + "start": 9297.48, + "end": 9301.3, + "probability": 0.8165 + }, + { + "start": 9301.72, + "end": 9303.2, + "probability": 0.9654 + }, + { + "start": 9304.12, + "end": 9304.84, + "probability": 0.7695 + }, + { + "start": 9305.9, + "end": 9308.66, + "probability": 0.901 + }, + { + "start": 9309.28, + "end": 9311.3, + "probability": 0.9867 + }, + { + "start": 9311.42, + "end": 9314.62, + "probability": 0.8122 + }, + { + "start": 9314.9, + "end": 9314.9, + "probability": 0.5597 + }, + { + "start": 9315.02, + "end": 9317.08, + "probability": 0.7053 + }, + { + "start": 9317.98, + "end": 9319.28, + "probability": 0.041 + }, + { + "start": 9319.38, + "end": 9321.24, + "probability": 0.8047 + }, + { + "start": 9321.28, + "end": 9328.18, + "probability": 0.7613 + }, + { + "start": 9328.32, + "end": 9328.84, + "probability": 0.4562 + }, + { + "start": 9328.84, + "end": 9330.46, + "probability": 0.6251 + }, + { + "start": 9330.46, + "end": 9335.26, + "probability": 0.7249 + }, + { + "start": 9335.46, + "end": 9337.02, + "probability": 0.6613 + }, + { + "start": 9337.12, + "end": 9337.88, + "probability": 0.5653 + }, + { + "start": 9337.98, + "end": 9338.42, + "probability": 0.3277 + }, + { + "start": 9338.42, + "end": 9339.61, + "probability": 0.4988 + }, + { + "start": 9340.42, + "end": 9341.58, + "probability": 0.7518 + }, + { + "start": 9341.72, + "end": 9342.72, + "probability": 0.9338 + }, + { + "start": 9342.78, + "end": 9345.3, + "probability": 0.6754 + }, + { + "start": 9345.46, + "end": 9345.82, + "probability": 0.3116 + }, + { + "start": 9345.82, + "end": 9346.0, + "probability": 0.7938 + }, + { + "start": 9346.0, + "end": 9346.16, + "probability": 0.1418 + }, + { + "start": 9346.42, + "end": 9346.78, + "probability": 0.1637 + }, + { + "start": 9346.94, + "end": 9349.32, + "probability": 0.9827 + }, + { + "start": 9349.74, + "end": 9349.74, + "probability": 0.1865 + }, + { + "start": 9349.76, + "end": 9353.2, + "probability": 0.9839 + }, + { + "start": 9355.38, + "end": 9355.42, + "probability": 0.2545 + }, + { + "start": 9355.42, + "end": 9355.7, + "probability": 0.1294 + }, + { + "start": 9355.72, + "end": 9356.88, + "probability": 0.5424 + }, + { + "start": 9356.9, + "end": 9358.76, + "probability": 0.4797 + }, + { + "start": 9359.6, + "end": 9359.6, + "probability": 0.0248 + }, + { + "start": 9359.6, + "end": 9360.6, + "probability": 0.4269 + }, + { + "start": 9360.82, + "end": 9361.34, + "probability": 0.1838 + }, + { + "start": 9361.34, + "end": 9362.87, + "probability": 0.5014 + }, + { + "start": 9367.32, + "end": 9367.56, + "probability": 0.0648 + }, + { + "start": 9367.56, + "end": 9367.56, + "probability": 0.0335 + }, + { + "start": 9367.56, + "end": 9367.56, + "probability": 0.0484 + }, + { + "start": 9367.56, + "end": 9367.56, + "probability": 0.2829 + }, + { + "start": 9367.56, + "end": 9368.24, + "probability": 0.0784 + }, + { + "start": 9368.64, + "end": 9369.66, + "probability": 0.7432 + }, + { + "start": 9370.38, + "end": 9372.8, + "probability": 0.7427 + }, + { + "start": 9373.34, + "end": 9375.08, + "probability": 0.8625 + }, + { + "start": 9375.42, + "end": 9375.92, + "probability": 0.7244 + }, + { + "start": 9376.16, + "end": 9377.06, + "probability": 0.6104 + }, + { + "start": 9377.16, + "end": 9378.2, + "probability": 0.4356 + }, + { + "start": 9379.2, + "end": 9380.22, + "probability": 0.2383 + }, + { + "start": 9380.54, + "end": 9380.54, + "probability": 0.3225 + }, + { + "start": 9380.58, + "end": 9381.7, + "probability": 0.8891 + }, + { + "start": 9381.92, + "end": 9384.88, + "probability": 0.9811 + }, + { + "start": 9385.36, + "end": 9386.86, + "probability": 0.7361 + }, + { + "start": 9387.42, + "end": 9387.74, + "probability": 0.4349 + }, + { + "start": 9387.88, + "end": 9389.68, + "probability": 0.9587 + }, + { + "start": 9389.88, + "end": 9389.92, + "probability": 0.0054 + }, + { + "start": 9389.92, + "end": 9389.92, + "probability": 0.069 + }, + { + "start": 9389.92, + "end": 9392.68, + "probability": 0.8561 + }, + { + "start": 9392.84, + "end": 9394.44, + "probability": 0.7966 + }, + { + "start": 9394.54, + "end": 9399.88, + "probability": 0.9893 + }, + { + "start": 9399.88, + "end": 9403.08, + "probability": 0.9594 + }, + { + "start": 9403.36, + "end": 9406.44, + "probability": 0.9934 + }, + { + "start": 9406.5, + "end": 9407.22, + "probability": 0.9691 + }, + { + "start": 9407.56, + "end": 9409.1, + "probability": 0.6938 + }, + { + "start": 9409.34, + "end": 9410.18, + "probability": 0.8617 + }, + { + "start": 9410.28, + "end": 9410.7, + "probability": 0.783 + }, + { + "start": 9410.9, + "end": 9411.9, + "probability": 0.9482 + }, + { + "start": 9411.9, + "end": 9413.16, + "probability": 0.5911 + }, + { + "start": 9413.2, + "end": 9414.82, + "probability": 0.3753 + }, + { + "start": 9414.86, + "end": 9415.44, + "probability": 0.8064 + }, + { + "start": 9416.26, + "end": 9416.5, + "probability": 0.0604 + }, + { + "start": 9416.6, + "end": 9416.98, + "probability": 0.63 + }, + { + "start": 9416.98, + "end": 9420.38, + "probability": 0.8081 + }, + { + "start": 9421.0, + "end": 9422.04, + "probability": 0.7743 + }, + { + "start": 9422.54, + "end": 9425.96, + "probability": 0.9211 + }, + { + "start": 9425.96, + "end": 9426.47, + "probability": 0.6136 + }, + { + "start": 9426.8, + "end": 9427.35, + "probability": 0.0575 + }, + { + "start": 9427.84, + "end": 9428.91, + "probability": 0.9382 + }, + { + "start": 9429.4, + "end": 9431.23, + "probability": 0.9855 + }, + { + "start": 9431.34, + "end": 9437.24, + "probability": 0.9743 + }, + { + "start": 9437.6, + "end": 9437.9, + "probability": 0.8722 + }, + { + "start": 9439.22, + "end": 9439.36, + "probability": 0.0317 + }, + { + "start": 9439.44, + "end": 9439.58, + "probability": 0.4932 + }, + { + "start": 9439.62, + "end": 9439.76, + "probability": 0.6742 + }, + { + "start": 9439.78, + "end": 9439.78, + "probability": 0.5203 + }, + { + "start": 9439.82, + "end": 9440.28, + "probability": 0.8598 + }, + { + "start": 9440.52, + "end": 9441.58, + "probability": 0.829 + }, + { + "start": 9441.62, + "end": 9442.56, + "probability": 0.5315 + }, + { + "start": 9442.58, + "end": 9442.72, + "probability": 0.5553 + }, + { + "start": 9443.14, + "end": 9443.22, + "probability": 0.2099 + }, + { + "start": 9443.22, + "end": 9443.98, + "probability": 0.6452 + }, + { + "start": 9444.1, + "end": 9444.9, + "probability": 0.5808 + }, + { + "start": 9444.92, + "end": 9445.12, + "probability": 0.5453 + }, + { + "start": 9445.18, + "end": 9445.6, + "probability": 0.5417 + }, + { + "start": 9445.88, + "end": 9446.57, + "probability": 0.6889 + }, + { + "start": 9446.96, + "end": 9449.22, + "probability": 0.2449 + }, + { + "start": 9449.22, + "end": 9450.0, + "probability": 0.1008 + }, + { + "start": 9450.08, + "end": 9451.4, + "probability": 0.8749 + }, + { + "start": 9451.54, + "end": 9451.88, + "probability": 0.4414 + }, + { + "start": 9451.88, + "end": 9453.38, + "probability": 0.8165 + }, + { + "start": 9454.02, + "end": 9455.8, + "probability": 0.8946 + }, + { + "start": 9455.8, + "end": 9455.9, + "probability": 0.8613 + }, + { + "start": 9456.3, + "end": 9457.02, + "probability": 0.864 + }, + { + "start": 9457.64, + "end": 9460.4, + "probability": 0.9478 + }, + { + "start": 9460.56, + "end": 9460.92, + "probability": 0.7475 + }, + { + "start": 9461.34, + "end": 9464.42, + "probability": 0.9364 + }, + { + "start": 9464.86, + "end": 9466.52, + "probability": 0.8938 + }, + { + "start": 9466.74, + "end": 9468.06, + "probability": 0.9792 + }, + { + "start": 9469.02, + "end": 9470.48, + "probability": 0.9585 + }, + { + "start": 9470.5, + "end": 9473.06, + "probability": 0.955 + }, + { + "start": 9473.88, + "end": 9476.6, + "probability": 0.97 + }, + { + "start": 9477.02, + "end": 9480.16, + "probability": 0.9233 + }, + { + "start": 9481.68, + "end": 9482.54, + "probability": 0.7268 + }, + { + "start": 9482.54, + "end": 9483.28, + "probability": 0.577 + }, + { + "start": 9484.12, + "end": 9486.06, + "probability": 0.8211 + }, + { + "start": 9486.14, + "end": 9487.08, + "probability": 0.7216 + }, + { + "start": 9488.04, + "end": 9492.74, + "probability": 0.9086 + }, + { + "start": 9492.76, + "end": 9494.7, + "probability": 0.6564 + }, + { + "start": 9494.7, + "end": 9495.14, + "probability": 0.1321 + }, + { + "start": 9495.18, + "end": 9497.78, + "probability": 0.8088 + }, + { + "start": 9497.78, + "end": 9499.24, + "probability": 0.4251 + }, + { + "start": 9499.38, + "end": 9500.76, + "probability": 0.8464 + }, + { + "start": 9500.78, + "end": 9504.28, + "probability": 0.5913 + }, + { + "start": 9504.28, + "end": 9504.56, + "probability": 0.205 + }, + { + "start": 9504.68, + "end": 9504.94, + "probability": 0.017 + }, + { + "start": 9504.94, + "end": 9505.18, + "probability": 0.136 + }, + { + "start": 9505.18, + "end": 9506.46, + "probability": 0.4296 + }, + { + "start": 9506.6, + "end": 9506.66, + "probability": 0.3999 + }, + { + "start": 9506.76, + "end": 9507.8, + "probability": 0.545 + }, + { + "start": 9507.88, + "end": 9508.52, + "probability": 0.4851 + }, + { + "start": 9508.52, + "end": 9508.74, + "probability": 0.2653 + }, + { + "start": 9508.74, + "end": 9510.52, + "probability": 0.5646 + }, + { + "start": 9510.62, + "end": 9511.84, + "probability": 0.6784 + }, + { + "start": 9511.88, + "end": 9514.66, + "probability": 0.9191 + }, + { + "start": 9515.04, + "end": 9516.48, + "probability": 0.6313 + }, + { + "start": 9516.96, + "end": 9518.56, + "probability": 0.7348 + }, + { + "start": 9518.9, + "end": 9520.56, + "probability": 0.888 + }, + { + "start": 9520.94, + "end": 9521.24, + "probability": 0.8315 + }, + { + "start": 9521.74, + "end": 9522.82, + "probability": 0.6614 + }, + { + "start": 9523.1, + "end": 9523.78, + "probability": 0.8635 + }, + { + "start": 9524.22, + "end": 9525.42, + "probability": 0.2307 + }, + { + "start": 9525.42, + "end": 9526.38, + "probability": 0.2728 + }, + { + "start": 9527.22, + "end": 9529.12, + "probability": 0.7093 + }, + { + "start": 9529.72, + "end": 9530.22, + "probability": 0.921 + }, + { + "start": 9530.64, + "end": 9533.66, + "probability": 0.7252 + }, + { + "start": 9534.42, + "end": 9534.92, + "probability": 0.904 + }, + { + "start": 9535.04, + "end": 9535.66, + "probability": 0.9677 + }, + { + "start": 9535.82, + "end": 9537.23, + "probability": 0.9793 + }, + { + "start": 9537.44, + "end": 9538.2, + "probability": 0.9995 + }, + { + "start": 9539.06, + "end": 9541.44, + "probability": 0.995 + }, + { + "start": 9541.9, + "end": 9544.84, + "probability": 0.9761 + }, + { + "start": 9544.84, + "end": 9545.18, + "probability": 0.834 + }, + { + "start": 9545.32, + "end": 9547.57, + "probability": 0.9972 + }, + { + "start": 9548.44, + "end": 9549.56, + "probability": 0.9527 + }, + { + "start": 9549.58, + "end": 9550.34, + "probability": 0.9494 + }, + { + "start": 9550.4, + "end": 9551.3, + "probability": 0.9766 + }, + { + "start": 9552.02, + "end": 9553.74, + "probability": 0.991 + }, + { + "start": 9554.3, + "end": 9557.44, + "probability": 0.8522 + }, + { + "start": 9557.96, + "end": 9559.32, + "probability": 0.9937 + }, + { + "start": 9560.14, + "end": 9560.68, + "probability": 0.5624 + }, + { + "start": 9560.78, + "end": 9561.88, + "probability": 0.9099 + }, + { + "start": 9561.96, + "end": 9563.96, + "probability": 0.97 + }, + { + "start": 9564.18, + "end": 9564.5, + "probability": 0.6992 + }, + { + "start": 9564.58, + "end": 9565.06, + "probability": 0.5043 + }, + { + "start": 9565.14, + "end": 9565.6, + "probability": 0.7158 + }, + { + "start": 9565.94, + "end": 9566.5, + "probability": 0.8854 + }, + { + "start": 9567.34, + "end": 9567.86, + "probability": 0.6208 + }, + { + "start": 9567.9, + "end": 9568.26, + "probability": 0.5005 + }, + { + "start": 9568.32, + "end": 9568.92, + "probability": 0.877 + }, + { + "start": 9569.04, + "end": 9569.26, + "probability": 0.5876 + }, + { + "start": 9569.6, + "end": 9570.4, + "probability": 0.8888 + }, + { + "start": 9570.62, + "end": 9571.28, + "probability": 0.9431 + }, + { + "start": 9571.6, + "end": 9572.1, + "probability": 0.394 + }, + { + "start": 9572.76, + "end": 9573.4, + "probability": 0.7275 + }, + { + "start": 9574.1, + "end": 9574.84, + "probability": 0.6101 + }, + { + "start": 9576.04, + "end": 9576.6, + "probability": 0.6575 + }, + { + "start": 9577.36, + "end": 9578.46, + "probability": 0.9651 + }, + { + "start": 9579.04, + "end": 9579.9, + "probability": 0.6628 + }, + { + "start": 9580.16, + "end": 9580.84, + "probability": 0.9062 + }, + { + "start": 9581.08, + "end": 9583.26, + "probability": 0.9825 + }, + { + "start": 9583.44, + "end": 9584.1, + "probability": 0.9077 + }, + { + "start": 9584.7, + "end": 9586.2, + "probability": 0.9521 + }, + { + "start": 9586.84, + "end": 9588.8, + "probability": 0.9453 + }, + { + "start": 9589.48, + "end": 9590.08, + "probability": 0.6803 + }, + { + "start": 9590.82, + "end": 9591.66, + "probability": 0.811 + }, + { + "start": 9592.06, + "end": 9593.92, + "probability": 0.9955 + }, + { + "start": 9594.36, + "end": 9595.08, + "probability": 0.6715 + }, + { + "start": 9595.14, + "end": 9597.75, + "probability": 0.9349 + }, + { + "start": 9598.3, + "end": 9598.74, + "probability": 0.4051 + }, + { + "start": 9598.96, + "end": 9601.84, + "probability": 0.9846 + }, + { + "start": 9602.36, + "end": 9602.64, + "probability": 0.8755 + }, + { + "start": 9603.16, + "end": 9605.82, + "probability": 0.8627 + }, + { + "start": 9606.28, + "end": 9610.76, + "probability": 0.9922 + }, + { + "start": 9611.38, + "end": 9614.16, + "probability": 0.8486 + }, + { + "start": 9614.3, + "end": 9614.4, + "probability": 0.3351 + }, + { + "start": 9615.26, + "end": 9617.24, + "probability": 0.8076 + }, + { + "start": 9617.28, + "end": 9618.62, + "probability": 0.9968 + }, + { + "start": 9619.06, + "end": 9621.26, + "probability": 0.967 + }, + { + "start": 9621.28, + "end": 9622.06, + "probability": 0.5767 + }, + { + "start": 9622.06, + "end": 9624.94, + "probability": 0.9864 + }, + { + "start": 9625.1, + "end": 9626.52, + "probability": 0.9787 + }, + { + "start": 9627.22, + "end": 9629.7, + "probability": 0.9194 + }, + { + "start": 9630.72, + "end": 9631.08, + "probability": 0.7986 + }, + { + "start": 9631.34, + "end": 9632.48, + "probability": 0.7993 + }, + { + "start": 9632.6, + "end": 9636.02, + "probability": 0.9919 + }, + { + "start": 9636.06, + "end": 9636.5, + "probability": 0.5433 + }, + { + "start": 9636.74, + "end": 9639.62, + "probability": 0.8554 + }, + { + "start": 9639.64, + "end": 9642.24, + "probability": 0.8694 + }, + { + "start": 9642.28, + "end": 9642.98, + "probability": 0.8972 + }, + { + "start": 9643.92, + "end": 9647.38, + "probability": 0.937 + }, + { + "start": 9647.46, + "end": 9648.06, + "probability": 0.606 + }, + { + "start": 9648.3, + "end": 9651.48, + "probability": 0.9869 + }, + { + "start": 9651.62, + "end": 9652.52, + "probability": 0.936 + }, + { + "start": 9652.98, + "end": 9657.6, + "probability": 0.9373 + }, + { + "start": 9658.12, + "end": 9659.74, + "probability": 0.8098 + }, + { + "start": 9665.94, + "end": 9666.6, + "probability": 0.5726 + }, + { + "start": 9667.4, + "end": 9670.62, + "probability": 0.9265 + }, + { + "start": 9671.11, + "end": 9674.44, + "probability": 0.9756 + }, + { + "start": 9674.54, + "end": 9677.26, + "probability": 0.9847 + }, + { + "start": 9677.4, + "end": 9679.42, + "probability": 0.878 + }, + { + "start": 9680.1, + "end": 9681.12, + "probability": 0.6457 + }, + { + "start": 9681.74, + "end": 9682.46, + "probability": 0.9199 + }, + { + "start": 9682.56, + "end": 9684.86, + "probability": 0.7614 + }, + { + "start": 9684.88, + "end": 9685.59, + "probability": 0.9417 + }, + { + "start": 9686.1, + "end": 9688.21, + "probability": 0.9326 + }, + { + "start": 9688.76, + "end": 9689.84, + "probability": 0.6055 + }, + { + "start": 9690.36, + "end": 9692.64, + "probability": 0.9456 + }, + { + "start": 9693.28, + "end": 9693.96, + "probability": 0.9426 + }, + { + "start": 9694.04, + "end": 9699.37, + "probability": 0.9913 + }, + { + "start": 9700.1, + "end": 9701.34, + "probability": 0.9314 + }, + { + "start": 9701.4, + "end": 9705.06, + "probability": 0.8585 + }, + { + "start": 9705.44, + "end": 9706.86, + "probability": 0.3657 + }, + { + "start": 9706.86, + "end": 9707.22, + "probability": 0.1056 + }, + { + "start": 9707.22, + "end": 9707.98, + "probability": 0.8879 + }, + { + "start": 9708.64, + "end": 9709.69, + "probability": 0.849 + }, + { + "start": 9709.82, + "end": 9715.48, + "probability": 0.9479 + }, + { + "start": 9715.5, + "end": 9719.78, + "probability": 0.9736 + }, + { + "start": 9720.1, + "end": 9720.86, + "probability": 0.6391 + }, + { + "start": 9720.96, + "end": 9721.82, + "probability": 0.8647 + }, + { + "start": 9722.16, + "end": 9723.16, + "probability": 0.9543 + }, + { + "start": 9723.5, + "end": 9727.68, + "probability": 0.9922 + }, + { + "start": 9727.98, + "end": 9730.0, + "probability": 0.9858 + }, + { + "start": 9730.46, + "end": 9731.62, + "probability": 0.8131 + }, + { + "start": 9731.68, + "end": 9732.66, + "probability": 0.8898 + }, + { + "start": 9732.78, + "end": 9734.24, + "probability": 0.8913 + }, + { + "start": 9734.86, + "end": 9737.6, + "probability": 0.9097 + }, + { + "start": 9737.66, + "end": 9738.4, + "probability": 0.567 + }, + { + "start": 9738.72, + "end": 9742.28, + "probability": 0.9356 + }, + { + "start": 9742.28, + "end": 9746.22, + "probability": 0.9993 + }, + { + "start": 9746.6, + "end": 9749.12, + "probability": 0.9351 + }, + { + "start": 9749.12, + "end": 9749.44, + "probability": 0.7215 + }, + { + "start": 9749.52, + "end": 9752.36, + "probability": 0.9779 + }, + { + "start": 9752.36, + "end": 9756.54, + "probability": 0.9922 + }, + { + "start": 9756.7, + "end": 9760.08, + "probability": 0.9434 + }, + { + "start": 9760.56, + "end": 9761.8, + "probability": 0.8538 + }, + { + "start": 9761.86, + "end": 9764.78, + "probability": 0.9757 + }, + { + "start": 9764.84, + "end": 9765.44, + "probability": 0.5631 + }, + { + "start": 9765.72, + "end": 9769.04, + "probability": 0.6561 + }, + { + "start": 9769.82, + "end": 9770.43, + "probability": 0.93 + }, + { + "start": 9770.9, + "end": 9771.14, + "probability": 0.7272 + }, + { + "start": 9771.8, + "end": 9772.32, + "probability": 0.374 + }, + { + "start": 9772.38, + "end": 9773.16, + "probability": 0.824 + }, + { + "start": 9773.58, + "end": 9776.1, + "probability": 0.896 + }, + { + "start": 9776.68, + "end": 9777.44, + "probability": 0.7796 + }, + { + "start": 9777.76, + "end": 9778.84, + "probability": 0.7705 + }, + { + "start": 9779.06, + "end": 9781.22, + "probability": 0.9958 + }, + { + "start": 9781.28, + "end": 9784.56, + "probability": 0.9629 + }, + { + "start": 9784.72, + "end": 9788.6, + "probability": 0.9608 + }, + { + "start": 9789.22, + "end": 9791.96, + "probability": 0.9236 + }, + { + "start": 9792.2, + "end": 9793.1, + "probability": 0.4199 + }, + { + "start": 9793.22, + "end": 9793.98, + "probability": 0.637 + }, + { + "start": 9794.06, + "end": 9797.08, + "probability": 0.74 + }, + { + "start": 9797.98, + "end": 9800.42, + "probability": 0.8943 + }, + { + "start": 9800.42, + "end": 9802.9, + "probability": 0.9939 + }, + { + "start": 9803.56, + "end": 9806.16, + "probability": 0.9164 + }, + { + "start": 9806.74, + "end": 9809.66, + "probability": 0.9863 + }, + { + "start": 9810.82, + "end": 9813.16, + "probability": 0.8121 + }, + { + "start": 9813.66, + "end": 9817.99, + "probability": 0.9424 + }, + { + "start": 9819.1, + "end": 9821.94, + "probability": 0.7463 + }, + { + "start": 9823.42, + "end": 9827.16, + "probability": 0.9716 + }, + { + "start": 9827.38, + "end": 9836.64, + "probability": 0.8574 + }, + { + "start": 9836.64, + "end": 9839.14, + "probability": 0.6353 + }, + { + "start": 9839.26, + "end": 9841.95, + "probability": 0.9878 + }, + { + "start": 9842.66, + "end": 9843.6, + "probability": 0.5599 + }, + { + "start": 9844.46, + "end": 9846.24, + "probability": 0.9475 + }, + { + "start": 9846.8, + "end": 9849.52, + "probability": 0.7334 + }, + { + "start": 9850.14, + "end": 9851.44, + "probability": 0.9493 + }, + { + "start": 9852.34, + "end": 9853.18, + "probability": 0.7184 + }, + { + "start": 9853.7, + "end": 9858.12, + "probability": 0.9827 + }, + { + "start": 9858.68, + "end": 9862.42, + "probability": 0.7638 + }, + { + "start": 9863.04, + "end": 9863.84, + "probability": 0.9179 + }, + { + "start": 9864.44, + "end": 9868.94, + "probability": 0.8744 + }, + { + "start": 9869.56, + "end": 9873.02, + "probability": 0.6634 + }, + { + "start": 9873.74, + "end": 9879.1, + "probability": 0.9692 + }, + { + "start": 9879.1, + "end": 9880.02, + "probability": 0.7469 + }, + { + "start": 9880.54, + "end": 9886.22, + "probability": 0.9578 + }, + { + "start": 9886.5, + "end": 9889.4, + "probability": 0.9976 + }, + { + "start": 9889.82, + "end": 9892.58, + "probability": 0.9929 + }, + { + "start": 9892.64, + "end": 9896.96, + "probability": 0.9018 + }, + { + "start": 9897.72, + "end": 9897.92, + "probability": 0.6444 + }, + { + "start": 9897.96, + "end": 9898.44, + "probability": 0.6716 + }, + { + "start": 9899.1, + "end": 9900.18, + "probability": 0.6065 + }, + { + "start": 9900.46, + "end": 9901.34, + "probability": 0.4039 + }, + { + "start": 9901.38, + "end": 9902.9, + "probability": 0.69 + }, + { + "start": 9903.06, + "end": 9904.3, + "probability": 0.9553 + }, + { + "start": 9904.74, + "end": 9908.06, + "probability": 0.9768 + }, + { + "start": 9910.38, + "end": 9913.86, + "probability": 0.1541 + }, + { + "start": 9914.92, + "end": 9915.36, + "probability": 0.542 + }, + { + "start": 9915.58, + "end": 9917.25, + "probability": 0.8601 + }, + { + "start": 9917.5, + "end": 9917.56, + "probability": 0.2638 + }, + { + "start": 9917.78, + "end": 9919.16, + "probability": 0.915 + }, + { + "start": 9919.34, + "end": 9920.2, + "probability": 0.1678 + }, + { + "start": 9920.54, + "end": 9924.74, + "probability": 0.9886 + }, + { + "start": 9924.84, + "end": 9926.04, + "probability": 0.959 + }, + { + "start": 9926.22, + "end": 9928.88, + "probability": 0.9484 + }, + { + "start": 9929.1, + "end": 9931.17, + "probability": 0.936 + }, + { + "start": 9931.6, + "end": 9932.84, + "probability": 0.9207 + }, + { + "start": 9932.94, + "end": 9933.48, + "probability": 0.8762 + }, + { + "start": 9933.62, + "end": 9935.22, + "probability": 0.7178 + }, + { + "start": 9935.42, + "end": 9939.26, + "probability": 0.4347 + }, + { + "start": 9940.16, + "end": 9942.09, + "probability": 0.813 + }, + { + "start": 9942.32, + "end": 9944.02, + "probability": 0.0288 + }, + { + "start": 9944.04, + "end": 9948.88, + "probability": 0.9215 + }, + { + "start": 9949.44, + "end": 9950.04, + "probability": 0.7931 + }, + { + "start": 9950.24, + "end": 9951.72, + "probability": 0.9708 + }, + { + "start": 9952.04, + "end": 9953.14, + "probability": 0.9413 + }, + { + "start": 9954.46, + "end": 9957.04, + "probability": 0.9951 + }, + { + "start": 9957.66, + "end": 9959.52, + "probability": 0.7724 + }, + { + "start": 9959.56, + "end": 9962.0, + "probability": 0.8373 + }, + { + "start": 9962.14, + "end": 9965.12, + "probability": 0.787 + }, + { + "start": 9965.26, + "end": 9966.04, + "probability": 0.9577 + }, + { + "start": 9966.9, + "end": 9967.58, + "probability": 0.7837 + }, + { + "start": 9967.98, + "end": 9973.74, + "probability": 0.7785 + }, + { + "start": 9974.12, + "end": 9979.02, + "probability": 0.702 + }, + { + "start": 9979.04, + "end": 9985.06, + "probability": 0.9841 + }, + { + "start": 9986.64, + "end": 9988.98, + "probability": 0.8599 + }, + { + "start": 9988.98, + "end": 9990.5, + "probability": 0.6698 + }, + { + "start": 9990.52, + "end": 9994.9, + "probability": 0.9091 + }, + { + "start": 9995.38, + "end": 9995.52, + "probability": 0.182 + }, + { + "start": 9995.6, + "end": 9996.58, + "probability": 0.7872 + }, + { + "start": 9996.8, + "end": 9998.64, + "probability": 0.983 + }, + { + "start": 9998.86, + "end": 10003.04, + "probability": 0.9491 + }, + { + "start": 10003.2, + "end": 10003.78, + "probability": 0.5252 + }, + { + "start": 10004.04, + "end": 10006.9, + "probability": 0.9967 + }, + { + "start": 10007.18, + "end": 10007.86, + "probability": 0.2257 + }, + { + "start": 10007.96, + "end": 10010.7, + "probability": 0.6687 + }, + { + "start": 10010.84, + "end": 10012.98, + "probability": 0.9966 + }, + { + "start": 10013.6, + "end": 10015.36, + "probability": 0.0001 + }, + { + "start": 10017.96, + "end": 10018.52, + "probability": 0.0305 + }, + { + "start": 10018.52, + "end": 10018.52, + "probability": 0.0895 + }, + { + "start": 10018.52, + "end": 10018.52, + "probability": 0.0925 + }, + { + "start": 10018.52, + "end": 10019.89, + "probability": 0.28 + }, + { + "start": 10020.44, + "end": 10021.16, + "probability": 0.6145 + }, + { + "start": 10021.76, + "end": 10023.02, + "probability": 0.4684 + }, + { + "start": 10023.1, + "end": 10023.84, + "probability": 0.8107 + }, + { + "start": 10024.56, + "end": 10027.5, + "probability": 0.9415 + }, + { + "start": 10027.7, + "end": 10028.74, + "probability": 0.7269 + }, + { + "start": 10028.94, + "end": 10029.34, + "probability": 0.4604 + }, + { + "start": 10029.48, + "end": 10030.04, + "probability": 0.5869 + }, + { + "start": 10030.04, + "end": 10031.5, + "probability": 0.9419 + }, + { + "start": 10031.88, + "end": 10032.61, + "probability": 0.9177 + }, + { + "start": 10032.74, + "end": 10036.26, + "probability": 0.7609 + }, + { + "start": 10036.42, + "end": 10039.26, + "probability": 0.43 + }, + { + "start": 10040.04, + "end": 10040.04, + "probability": 0.0346 + }, + { + "start": 10040.04, + "end": 10040.04, + "probability": 0.313 + }, + { + "start": 10040.04, + "end": 10040.04, + "probability": 0.381 + }, + { + "start": 10040.04, + "end": 10041.14, + "probability": 0.7554 + }, + { + "start": 10044.26, + "end": 10045.76, + "probability": 0.2024 + }, + { + "start": 10045.76, + "end": 10050.98, + "probability": 0.6544 + }, + { + "start": 10054.14, + "end": 10057.9, + "probability": 0.9132 + }, + { + "start": 10058.26, + "end": 10059.86, + "probability": 0.8772 + }, + { + "start": 10060.2, + "end": 10061.8, + "probability": 0.9712 + }, + { + "start": 10062.1, + "end": 10065.22, + "probability": 0.9906 + }, + { + "start": 10065.3, + "end": 10066.26, + "probability": 0.838 + }, + { + "start": 10066.74, + "end": 10073.24, + "probability": 0.8416 + }, + { + "start": 10073.42, + "end": 10074.7, + "probability": 0.8546 + }, + { + "start": 10075.22, + "end": 10078.16, + "probability": 0.9983 + }, + { + "start": 10078.82, + "end": 10083.0, + "probability": 0.9561 + }, + { + "start": 10083.54, + "end": 10084.64, + "probability": 0.6015 + }, + { + "start": 10085.24, + "end": 10090.28, + "probability": 0.9712 + }, + { + "start": 10090.68, + "end": 10092.8, + "probability": 0.8433 + }, + { + "start": 10093.32, + "end": 10095.86, + "probability": 0.9692 + }, + { + "start": 10096.4, + "end": 10101.96, + "probability": 0.9834 + }, + { + "start": 10102.48, + "end": 10102.72, + "probability": 0.3099 + }, + { + "start": 10102.82, + "end": 10108.02, + "probability": 0.9443 + }, + { + "start": 10108.58, + "end": 10116.18, + "probability": 0.9934 + }, + { + "start": 10116.72, + "end": 10120.12, + "probability": 0.8926 + }, + { + "start": 10120.88, + "end": 10121.48, + "probability": 0.8246 + }, + { + "start": 10122.52, + "end": 10125.06, + "probability": 0.712 + }, + { + "start": 10125.36, + "end": 10125.94, + "probability": 0.1617 + } + ], + "segments_count": 3691, + "words_count": 17907, + "avg_words_per_segment": 4.8515, + "avg_segment_duration": 1.8851, + "avg_words_per_minute": 104.4719, + "plenum_id": "25192", + "duration": 10284.3, + "title": null, + "plenum_date": "2012-09-12" +} \ No newline at end of file