diff --git "a/26489/metadata.json" "b/26489/metadata.json" new file mode 100644--- /dev/null +++ "b/26489/metadata.json" @@ -0,0 +1,19017 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "26489", + "quality_score": 0.9604, + "per_segment_quality_scores": [ + { + "start": 135.0, + "end": 135.0, + "probability": 0.0 + }, + { + "start": 135.0, + "end": 135.0, + "probability": 0.0 + }, + { + "start": 135.0, + "end": 135.0, + "probability": 0.0 + }, + { + "start": 135.0, + "end": 135.0, + "probability": 0.0 + }, + { + "start": 135.0, + "end": 135.0, + "probability": 0.0 + }, + { + "start": 135.32, + "end": 136.17, + "probability": 0.7151 + }, + { + "start": 138.76, + "end": 140.7, + "probability": 0.8253 + }, + { + "start": 142.08, + "end": 144.12, + "probability": 0.9508 + }, + { + "start": 144.26, + "end": 145.84, + "probability": 0.8174 + }, + { + "start": 146.14, + "end": 149.1, + "probability": 0.9969 + }, + { + "start": 149.26, + "end": 153.64, + "probability": 0.9959 + }, + { + "start": 153.64, + "end": 156.94, + "probability": 0.9927 + }, + { + "start": 157.32, + "end": 157.68, + "probability": 0.7109 + }, + { + "start": 159.96, + "end": 164.82, + "probability": 0.974 + }, + { + "start": 165.64, + "end": 167.22, + "probability": 0.8398 + }, + { + "start": 174.68, + "end": 176.36, + "probability": 0.6423 + }, + { + "start": 177.1, + "end": 177.94, + "probability": 0.7603 + }, + { + "start": 179.04, + "end": 184.34, + "probability": 0.804 + }, + { + "start": 185.06, + "end": 187.52, + "probability": 0.7377 + }, + { + "start": 187.94, + "end": 190.88, + "probability": 0.7561 + }, + { + "start": 190.96, + "end": 194.0, + "probability": 0.9178 + }, + { + "start": 194.88, + "end": 200.28, + "probability": 0.7586 + }, + { + "start": 200.92, + "end": 204.52, + "probability": 0.9885 + }, + { + "start": 204.54, + "end": 208.48, + "probability": 0.9612 + }, + { + "start": 209.06, + "end": 211.86, + "probability": 0.959 + }, + { + "start": 211.86, + "end": 215.6, + "probability": 0.8636 + }, + { + "start": 216.18, + "end": 218.28, + "probability": 0.867 + }, + { + "start": 218.46, + "end": 218.8, + "probability": 0.7204 + }, + { + "start": 219.42, + "end": 222.88, + "probability": 0.9146 + }, + { + "start": 223.18, + "end": 224.84, + "probability": 0.7952 + }, + { + "start": 224.9, + "end": 226.4, + "probability": 0.9399 + }, + { + "start": 227.38, + "end": 229.44, + "probability": 0.7595 + }, + { + "start": 229.88, + "end": 232.48, + "probability": 0.8917 + }, + { + "start": 232.62, + "end": 233.32, + "probability": 0.3473 + }, + { + "start": 233.94, + "end": 236.6, + "probability": 0.9259 + }, + { + "start": 237.02, + "end": 239.04, + "probability": 0.9538 + }, + { + "start": 239.74, + "end": 242.2, + "probability": 0.7138 + }, + { + "start": 243.14, + "end": 243.56, + "probability": 0.6273 + }, + { + "start": 243.64, + "end": 244.24, + "probability": 0.8037 + }, + { + "start": 244.38, + "end": 244.98, + "probability": 0.9231 + }, + { + "start": 245.06, + "end": 245.62, + "probability": 0.8146 + }, + { + "start": 245.7, + "end": 246.22, + "probability": 0.967 + }, + { + "start": 246.34, + "end": 246.66, + "probability": 0.9249 + }, + { + "start": 247.22, + "end": 248.42, + "probability": 0.7584 + }, + { + "start": 249.18, + "end": 251.12, + "probability": 0.5976 + }, + { + "start": 251.68, + "end": 252.28, + "probability": 0.7131 + }, + { + "start": 252.36, + "end": 252.88, + "probability": 0.9255 + }, + { + "start": 253.02, + "end": 253.68, + "probability": 0.8826 + }, + { + "start": 253.78, + "end": 255.1, + "probability": 0.6249 + }, + { + "start": 255.84, + "end": 256.7, + "probability": 0.8458 + }, + { + "start": 256.76, + "end": 258.56, + "probability": 0.9627 + }, + { + "start": 258.62, + "end": 259.24, + "probability": 0.6476 + }, + { + "start": 259.32, + "end": 260.62, + "probability": 0.7957 + }, + { + "start": 261.44, + "end": 263.46, + "probability": 0.8283 + }, + { + "start": 264.14, + "end": 266.6, + "probability": 0.8278 + }, + { + "start": 267.18, + "end": 268.0, + "probability": 0.9329 + }, + { + "start": 268.16, + "end": 270.16, + "probability": 0.9164 + }, + { + "start": 270.26, + "end": 271.72, + "probability": 0.8077 + }, + { + "start": 272.38, + "end": 273.42, + "probability": 0.5565 + }, + { + "start": 273.5, + "end": 275.78, + "probability": 0.7355 + }, + { + "start": 276.42, + "end": 279.56, + "probability": 0.8508 + }, + { + "start": 280.88, + "end": 283.48, + "probability": 0.8608 + }, + { + "start": 284.0, + "end": 286.44, + "probability": 0.7736 + }, + { + "start": 286.92, + "end": 289.26, + "probability": 0.95 + }, + { + "start": 289.98, + "end": 293.5, + "probability": 0.7392 + }, + { + "start": 293.6, + "end": 294.92, + "probability": 0.8162 + }, + { + "start": 295.3, + "end": 296.14, + "probability": 0.9391 + }, + { + "start": 296.2, + "end": 297.42, + "probability": 0.9437 + }, + { + "start": 298.02, + "end": 299.98, + "probability": 0.8389 + }, + { + "start": 300.9, + "end": 301.16, + "probability": 0.655 + }, + { + "start": 305.2, + "end": 305.96, + "probability": 0.6119 + }, + { + "start": 324.4, + "end": 325.77, + "probability": 0.1627 + }, + { + "start": 334.34, + "end": 335.06, + "probability": 0.2371 + }, + { + "start": 336.18, + "end": 337.28, + "probability": 0.2596 + }, + { + "start": 340.02, + "end": 341.02, + "probability": 0.8651 + }, + { + "start": 343.06, + "end": 345.08, + "probability": 0.6516 + }, + { + "start": 348.3, + "end": 349.06, + "probability": 0.8619 + }, + { + "start": 352.82, + "end": 357.42, + "probability": 0.8785 + }, + { + "start": 358.5, + "end": 359.54, + "probability": 0.729 + }, + { + "start": 359.7, + "end": 365.12, + "probability": 0.989 + }, + { + "start": 366.12, + "end": 370.5, + "probability": 0.9863 + }, + { + "start": 370.78, + "end": 373.24, + "probability": 0.9807 + }, + { + "start": 374.74, + "end": 379.0, + "probability": 0.8262 + }, + { + "start": 380.02, + "end": 383.5, + "probability": 0.3621 + }, + { + "start": 384.0, + "end": 385.74, + "probability": 0.8672 + }, + { + "start": 385.74, + "end": 392.18, + "probability": 0.9869 + }, + { + "start": 392.58, + "end": 393.16, + "probability": 0.9104 + }, + { + "start": 400.3, + "end": 403.08, + "probability": 0.7104 + }, + { + "start": 404.94, + "end": 407.64, + "probability": 0.9097 + }, + { + "start": 408.28, + "end": 409.62, + "probability": 0.9613 + }, + { + "start": 410.68, + "end": 412.06, + "probability": 0.9878 + }, + { + "start": 413.06, + "end": 416.38, + "probability": 0.9582 + }, + { + "start": 417.4, + "end": 420.9, + "probability": 0.9659 + }, + { + "start": 421.74, + "end": 423.28, + "probability": 0.9682 + }, + { + "start": 425.42, + "end": 426.05, + "probability": 0.9222 + }, + { + "start": 426.94, + "end": 432.96, + "probability": 0.9678 + }, + { + "start": 433.74, + "end": 437.58, + "probability": 0.9972 + }, + { + "start": 438.34, + "end": 442.56, + "probability": 0.8898 + }, + { + "start": 443.5, + "end": 447.1, + "probability": 0.9991 + }, + { + "start": 447.1, + "end": 450.5, + "probability": 0.9712 + }, + { + "start": 451.52, + "end": 452.4, + "probability": 0.8359 + }, + { + "start": 453.22, + "end": 455.96, + "probability": 0.9723 + }, + { + "start": 456.88, + "end": 459.0, + "probability": 0.938 + }, + { + "start": 459.62, + "end": 461.68, + "probability": 0.7911 + }, + { + "start": 462.6, + "end": 465.86, + "probability": 0.8281 + }, + { + "start": 467.0, + "end": 473.88, + "probability": 0.9787 + }, + { + "start": 474.94, + "end": 479.14, + "probability": 0.9961 + }, + { + "start": 479.14, + "end": 484.06, + "probability": 0.9985 + }, + { + "start": 485.18, + "end": 490.24, + "probability": 0.9683 + }, + { + "start": 491.14, + "end": 495.64, + "probability": 0.9985 + }, + { + "start": 496.2, + "end": 497.86, + "probability": 0.9985 + }, + { + "start": 498.5, + "end": 502.72, + "probability": 0.9908 + }, + { + "start": 503.54, + "end": 506.52, + "probability": 0.9183 + }, + { + "start": 507.22, + "end": 511.22, + "probability": 0.8615 + }, + { + "start": 512.2, + "end": 518.44, + "probability": 0.9861 + }, + { + "start": 519.28, + "end": 520.54, + "probability": 0.9451 + }, + { + "start": 521.16, + "end": 522.72, + "probability": 0.7671 + }, + { + "start": 523.64, + "end": 531.82, + "probability": 0.9993 + }, + { + "start": 532.6, + "end": 538.34, + "probability": 0.9937 + }, + { + "start": 539.4, + "end": 543.54, + "probability": 0.9812 + }, + { + "start": 544.1, + "end": 547.22, + "probability": 0.9305 + }, + { + "start": 548.3, + "end": 553.3, + "probability": 0.991 + }, + { + "start": 553.72, + "end": 554.72, + "probability": 0.849 + }, + { + "start": 555.44, + "end": 560.68, + "probability": 0.9927 + }, + { + "start": 561.48, + "end": 568.5, + "probability": 0.9952 + }, + { + "start": 569.44, + "end": 575.7, + "probability": 0.9952 + }, + { + "start": 576.46, + "end": 581.48, + "probability": 0.9902 + }, + { + "start": 581.48, + "end": 587.08, + "probability": 0.993 + }, + { + "start": 587.62, + "end": 591.66, + "probability": 0.9949 + }, + { + "start": 592.54, + "end": 600.36, + "probability": 0.9856 + }, + { + "start": 601.1, + "end": 601.98, + "probability": 0.687 + }, + { + "start": 602.04, + "end": 602.92, + "probability": 0.8347 + }, + { + "start": 603.4, + "end": 605.82, + "probability": 0.9937 + }, + { + "start": 606.5, + "end": 611.28, + "probability": 0.9421 + }, + { + "start": 612.0, + "end": 612.9, + "probability": 0.7339 + }, + { + "start": 613.66, + "end": 615.56, + "probability": 0.978 + }, + { + "start": 616.08, + "end": 619.38, + "probability": 0.9924 + }, + { + "start": 620.32, + "end": 621.12, + "probability": 0.8178 + }, + { + "start": 621.62, + "end": 625.18, + "probability": 0.9925 + }, + { + "start": 625.28, + "end": 627.0, + "probability": 0.9187 + }, + { + "start": 627.46, + "end": 629.06, + "probability": 0.8576 + }, + { + "start": 630.04, + "end": 630.68, + "probability": 0.7434 + }, + { + "start": 631.26, + "end": 637.5, + "probability": 0.9834 + }, + { + "start": 638.36, + "end": 646.2, + "probability": 0.9861 + }, + { + "start": 646.7, + "end": 649.7, + "probability": 0.9231 + }, + { + "start": 650.34, + "end": 651.68, + "probability": 0.6979 + }, + { + "start": 652.76, + "end": 657.08, + "probability": 0.9839 + }, + { + "start": 657.9, + "end": 665.18, + "probability": 0.96 + }, + { + "start": 666.48, + "end": 670.36, + "probability": 0.9388 + }, + { + "start": 670.36, + "end": 675.18, + "probability": 0.9941 + }, + { + "start": 676.26, + "end": 678.32, + "probability": 0.9763 + }, + { + "start": 678.88, + "end": 681.6, + "probability": 0.8735 + }, + { + "start": 682.26, + "end": 686.04, + "probability": 0.9954 + }, + { + "start": 686.78, + "end": 692.8, + "probability": 0.9909 + }, + { + "start": 693.68, + "end": 695.18, + "probability": 0.8005 + }, + { + "start": 695.88, + "end": 698.76, + "probability": 0.9775 + }, + { + "start": 699.32, + "end": 705.4, + "probability": 0.9843 + }, + { + "start": 706.2, + "end": 712.9, + "probability": 0.9885 + }, + { + "start": 713.8, + "end": 715.58, + "probability": 0.9745 + }, + { + "start": 716.16, + "end": 720.26, + "probability": 0.7814 + }, + { + "start": 721.34, + "end": 727.26, + "probability": 0.9532 + }, + { + "start": 727.88, + "end": 733.44, + "probability": 0.998 + }, + { + "start": 734.28, + "end": 739.12, + "probability": 0.9905 + }, + { + "start": 739.12, + "end": 743.76, + "probability": 0.9997 + }, + { + "start": 744.48, + "end": 746.42, + "probability": 0.9698 + }, + { + "start": 747.28, + "end": 753.78, + "probability": 0.9833 + }, + { + "start": 754.26, + "end": 760.8, + "probability": 0.9786 + }, + { + "start": 761.6, + "end": 768.9, + "probability": 0.9927 + }, + { + "start": 769.4, + "end": 770.02, + "probability": 0.3616 + }, + { + "start": 770.24, + "end": 772.02, + "probability": 0.8644 + }, + { + "start": 773.44, + "end": 777.6, + "probability": 0.9837 + }, + { + "start": 777.7, + "end": 780.06, + "probability": 0.644 + }, + { + "start": 780.26, + "end": 783.02, + "probability": 0.9875 + }, + { + "start": 783.86, + "end": 788.16, + "probability": 0.9976 + }, + { + "start": 789.18, + "end": 791.02, + "probability": 0.9993 + }, + { + "start": 791.56, + "end": 795.98, + "probability": 0.9982 + }, + { + "start": 796.66, + "end": 802.5, + "probability": 0.9971 + }, + { + "start": 802.5, + "end": 809.42, + "probability": 0.9847 + }, + { + "start": 810.36, + "end": 816.54, + "probability": 0.9374 + }, + { + "start": 817.4, + "end": 819.18, + "probability": 0.7394 + }, + { + "start": 819.98, + "end": 823.47, + "probability": 0.9934 + }, + { + "start": 824.42, + "end": 826.2, + "probability": 0.9797 + }, + { + "start": 826.76, + "end": 827.54, + "probability": 0.9146 + }, + { + "start": 827.82, + "end": 829.64, + "probability": 0.9861 + }, + { + "start": 830.08, + "end": 832.78, + "probability": 0.9468 + }, + { + "start": 833.82, + "end": 836.62, + "probability": 0.9612 + }, + { + "start": 837.34, + "end": 841.16, + "probability": 0.9808 + }, + { + "start": 841.8, + "end": 847.14, + "probability": 0.9451 + }, + { + "start": 847.88, + "end": 850.08, + "probability": 0.8714 + }, + { + "start": 850.54, + "end": 851.9, + "probability": 0.9699 + }, + { + "start": 852.38, + "end": 856.94, + "probability": 0.9814 + }, + { + "start": 857.74, + "end": 861.44, + "probability": 0.9971 + }, + { + "start": 861.44, + "end": 863.86, + "probability": 0.8318 + }, + { + "start": 865.32, + "end": 868.18, + "probability": 0.994 + }, + { + "start": 869.12, + "end": 870.44, + "probability": 0.8842 + }, + { + "start": 871.22, + "end": 875.24, + "probability": 0.8582 + }, + { + "start": 876.0, + "end": 878.24, + "probability": 0.9923 + }, + { + "start": 878.96, + "end": 882.62, + "probability": 0.9688 + }, + { + "start": 883.14, + "end": 887.3, + "probability": 0.9491 + }, + { + "start": 887.3, + "end": 891.04, + "probability": 0.9966 + }, + { + "start": 892.08, + "end": 896.12, + "probability": 0.9924 + }, + { + "start": 896.62, + "end": 899.08, + "probability": 0.9769 + }, + { + "start": 899.78, + "end": 903.12, + "probability": 0.9953 + }, + { + "start": 903.12, + "end": 907.4, + "probability": 0.9973 + }, + { + "start": 908.44, + "end": 915.76, + "probability": 0.9841 + }, + { + "start": 916.48, + "end": 920.94, + "probability": 0.9911 + }, + { + "start": 921.8, + "end": 925.58, + "probability": 0.9775 + }, + { + "start": 926.32, + "end": 929.52, + "probability": 0.9955 + }, + { + "start": 930.34, + "end": 936.84, + "probability": 0.9826 + }, + { + "start": 937.5, + "end": 938.22, + "probability": 0.7036 + }, + { + "start": 938.82, + "end": 942.7, + "probability": 0.9836 + }, + { + "start": 943.32, + "end": 948.36, + "probability": 0.9598 + }, + { + "start": 948.36, + "end": 954.44, + "probability": 0.9801 + }, + { + "start": 955.3, + "end": 960.52, + "probability": 0.9921 + }, + { + "start": 960.52, + "end": 965.58, + "probability": 0.9932 + }, + { + "start": 966.68, + "end": 971.14, + "probability": 0.8541 + }, + { + "start": 972.04, + "end": 972.72, + "probability": 0.723 + }, + { + "start": 973.26, + "end": 981.0, + "probability": 0.9875 + }, + { + "start": 981.6, + "end": 983.7, + "probability": 0.9139 + }, + { + "start": 984.28, + "end": 989.2, + "probability": 0.9896 + }, + { + "start": 989.2, + "end": 994.18, + "probability": 0.9276 + }, + { + "start": 994.78, + "end": 999.8, + "probability": 0.9533 + }, + { + "start": 1000.76, + "end": 1003.44, + "probability": 0.9949 + }, + { + "start": 1004.18, + "end": 1010.08, + "probability": 0.9699 + }, + { + "start": 1010.08, + "end": 1016.5, + "probability": 0.9907 + }, + { + "start": 1017.08, + "end": 1020.38, + "probability": 0.9531 + }, + { + "start": 1020.98, + "end": 1024.34, + "probability": 0.9225 + }, + { + "start": 1024.34, + "end": 1027.56, + "probability": 0.8992 + }, + { + "start": 1028.16, + "end": 1031.52, + "probability": 0.9971 + }, + { + "start": 1031.52, + "end": 1035.8, + "probability": 0.9739 + }, + { + "start": 1037.62, + "end": 1043.96, + "probability": 0.998 + }, + { + "start": 1044.7, + "end": 1050.34, + "probability": 0.995 + }, + { + "start": 1051.04, + "end": 1051.8, + "probability": 0.3506 + }, + { + "start": 1052.42, + "end": 1057.16, + "probability": 0.9881 + }, + { + "start": 1057.64, + "end": 1061.04, + "probability": 0.9001 + }, + { + "start": 1061.82, + "end": 1067.52, + "probability": 0.9687 + }, + { + "start": 1068.06, + "end": 1072.46, + "probability": 0.9874 + }, + { + "start": 1072.46, + "end": 1077.38, + "probability": 0.9498 + }, + { + "start": 1077.56, + "end": 1081.82, + "probability": 0.9958 + }, + { + "start": 1082.3, + "end": 1085.33, + "probability": 0.868 + }, + { + "start": 1086.12, + "end": 1093.12, + "probability": 0.9777 + }, + { + "start": 1097.32, + "end": 1099.54, + "probability": 0.7817 + }, + { + "start": 1099.68, + "end": 1103.56, + "probability": 0.9685 + }, + { + "start": 1104.4, + "end": 1105.72, + "probability": 0.812 + }, + { + "start": 1106.26, + "end": 1109.14, + "probability": 0.9959 + }, + { + "start": 1109.64, + "end": 1110.8, + "probability": 0.9748 + }, + { + "start": 1111.7, + "end": 1117.44, + "probability": 0.9938 + }, + { + "start": 1117.44, + "end": 1124.86, + "probability": 0.9971 + }, + { + "start": 1125.86, + "end": 1132.14, + "probability": 0.9915 + }, + { + "start": 1132.9, + "end": 1139.82, + "probability": 0.9993 + }, + { + "start": 1140.82, + "end": 1144.74, + "probability": 0.991 + }, + { + "start": 1145.02, + "end": 1147.66, + "probability": 0.8643 + }, + { + "start": 1148.24, + "end": 1151.86, + "probability": 0.9942 + }, + { + "start": 1151.86, + "end": 1154.8, + "probability": 0.8055 + }, + { + "start": 1155.88, + "end": 1156.26, + "probability": 0.395 + }, + { + "start": 1156.38, + "end": 1158.92, + "probability": 0.8966 + }, + { + "start": 1159.42, + "end": 1163.84, + "probability": 0.9974 + }, + { + "start": 1163.84, + "end": 1169.76, + "probability": 0.9956 + }, + { + "start": 1170.2, + "end": 1174.98, + "probability": 0.9889 + }, + { + "start": 1174.98, + "end": 1180.28, + "probability": 0.9988 + }, + { + "start": 1181.34, + "end": 1187.2, + "probability": 0.9338 + }, + { + "start": 1187.36, + "end": 1188.1, + "probability": 0.7153 + }, + { + "start": 1188.6, + "end": 1190.96, + "probability": 0.686 + }, + { + "start": 1191.5, + "end": 1197.96, + "probability": 0.9631 + }, + { + "start": 1198.68, + "end": 1201.68, + "probability": 0.9762 + }, + { + "start": 1202.36, + "end": 1206.84, + "probability": 0.8064 + }, + { + "start": 1207.36, + "end": 1209.04, + "probability": 0.9653 + }, + { + "start": 1209.74, + "end": 1209.96, + "probability": 0.7202 + }, + { + "start": 1210.02, + "end": 1210.66, + "probability": 0.8779 + }, + { + "start": 1211.16, + "end": 1216.6, + "probability": 0.9954 + }, + { + "start": 1216.6, + "end": 1222.2, + "probability": 0.9634 + }, + { + "start": 1223.02, + "end": 1224.16, + "probability": 0.1966 + }, + { + "start": 1224.16, + "end": 1228.8, + "probability": 0.9893 + }, + { + "start": 1229.28, + "end": 1235.46, + "probability": 0.9812 + }, + { + "start": 1235.64, + "end": 1236.82, + "probability": 0.6815 + }, + { + "start": 1237.26, + "end": 1241.28, + "probability": 0.97 + }, + { + "start": 1241.28, + "end": 1245.36, + "probability": 0.9902 + }, + { + "start": 1246.46, + "end": 1253.8, + "probability": 0.7883 + }, + { + "start": 1253.8, + "end": 1260.94, + "probability": 0.9955 + }, + { + "start": 1261.5, + "end": 1265.64, + "probability": 0.8927 + }, + { + "start": 1266.16, + "end": 1268.26, + "probability": 0.9845 + }, + { + "start": 1269.16, + "end": 1271.98, + "probability": 0.9984 + }, + { + "start": 1271.98, + "end": 1276.06, + "probability": 0.9991 + }, + { + "start": 1276.88, + "end": 1281.22, + "probability": 0.9917 + }, + { + "start": 1281.22, + "end": 1285.8, + "probability": 0.9668 + }, + { + "start": 1286.64, + "end": 1288.1, + "probability": 0.9846 + }, + { + "start": 1289.12, + "end": 1292.88, + "probability": 0.9889 + }, + { + "start": 1294.24, + "end": 1296.1, + "probability": 0.8757 + }, + { + "start": 1296.2, + "end": 1299.76, + "probability": 0.8594 + }, + { + "start": 1300.36, + "end": 1302.44, + "probability": 0.9664 + }, + { + "start": 1303.0, + "end": 1309.24, + "probability": 0.9941 + }, + { + "start": 1310.0, + "end": 1316.2, + "probability": 0.9839 + }, + { + "start": 1316.72, + "end": 1319.94, + "probability": 0.9935 + }, + { + "start": 1320.42, + "end": 1321.96, + "probability": 0.9914 + }, + { + "start": 1322.38, + "end": 1326.2, + "probability": 0.8765 + }, + { + "start": 1326.98, + "end": 1332.16, + "probability": 0.9974 + }, + { + "start": 1332.78, + "end": 1336.96, + "probability": 0.9967 + }, + { + "start": 1337.76, + "end": 1341.74, + "probability": 0.9971 + }, + { + "start": 1342.78, + "end": 1344.44, + "probability": 0.9581 + }, + { + "start": 1346.1, + "end": 1348.72, + "probability": 0.985 + }, + { + "start": 1349.56, + "end": 1354.74, + "probability": 0.9913 + }, + { + "start": 1355.44, + "end": 1360.06, + "probability": 0.9896 + }, + { + "start": 1360.58, + "end": 1363.66, + "probability": 0.9515 + }, + { + "start": 1364.44, + "end": 1366.4, + "probability": 0.8727 + }, + { + "start": 1366.94, + "end": 1371.44, + "probability": 0.9862 + }, + { + "start": 1372.32, + "end": 1376.18, + "probability": 0.9902 + }, + { + "start": 1376.9, + "end": 1380.82, + "probability": 0.9719 + }, + { + "start": 1380.9, + "end": 1385.0, + "probability": 0.9958 + }, + { + "start": 1386.56, + "end": 1389.86, + "probability": 0.9791 + }, + { + "start": 1390.64, + "end": 1395.5, + "probability": 0.9982 + }, + { + "start": 1396.24, + "end": 1403.26, + "probability": 0.9933 + }, + { + "start": 1403.26, + "end": 1408.36, + "probability": 0.9373 + }, + { + "start": 1409.02, + "end": 1413.42, + "probability": 0.9983 + }, + { + "start": 1414.18, + "end": 1420.56, + "probability": 0.9904 + }, + { + "start": 1421.12, + "end": 1423.06, + "probability": 0.9771 + }, + { + "start": 1423.62, + "end": 1425.44, + "probability": 0.8638 + }, + { + "start": 1426.08, + "end": 1427.14, + "probability": 0.9794 + }, + { + "start": 1427.72, + "end": 1433.3, + "probability": 0.9984 + }, + { + "start": 1433.3, + "end": 1437.66, + "probability": 0.9975 + }, + { + "start": 1438.84, + "end": 1445.24, + "probability": 0.9909 + }, + { + "start": 1445.52, + "end": 1447.78, + "probability": 0.9706 + }, + { + "start": 1448.56, + "end": 1449.44, + "probability": 0.8455 + }, + { + "start": 1449.86, + "end": 1454.42, + "probability": 0.9923 + }, + { + "start": 1454.98, + "end": 1459.42, + "probability": 0.9965 + }, + { + "start": 1459.42, + "end": 1466.02, + "probability": 0.9881 + }, + { + "start": 1466.22, + "end": 1468.74, + "probability": 0.9735 + }, + { + "start": 1469.04, + "end": 1469.64, + "probability": 0.906 + }, + { + "start": 1469.78, + "end": 1470.5, + "probability": 0.8458 + }, + { + "start": 1470.94, + "end": 1472.46, + "probability": 0.9373 + }, + { + "start": 1473.34, + "end": 1479.52, + "probability": 0.989 + }, + { + "start": 1481.2, + "end": 1486.68, + "probability": 0.9911 + }, + { + "start": 1487.54, + "end": 1490.8, + "probability": 0.9814 + }, + { + "start": 1490.8, + "end": 1496.94, + "probability": 0.9967 + }, + { + "start": 1497.64, + "end": 1501.74, + "probability": 0.9836 + }, + { + "start": 1502.38, + "end": 1508.21, + "probability": 0.9956 + }, + { + "start": 1510.16, + "end": 1514.94, + "probability": 0.986 + }, + { + "start": 1515.48, + "end": 1519.92, + "probability": 0.9966 + }, + { + "start": 1520.76, + "end": 1522.12, + "probability": 0.5172 + }, + { + "start": 1522.32, + "end": 1525.84, + "probability": 0.9895 + }, + { + "start": 1526.4, + "end": 1529.94, + "probability": 0.9917 + }, + { + "start": 1530.44, + "end": 1531.8, + "probability": 0.3723 + }, + { + "start": 1532.34, + "end": 1538.22, + "probability": 0.996 + }, + { + "start": 1538.84, + "end": 1545.18, + "probability": 0.9835 + }, + { + "start": 1545.98, + "end": 1548.02, + "probability": 0.7959 + }, + { + "start": 1548.1, + "end": 1555.0, + "probability": 0.9842 + }, + { + "start": 1555.82, + "end": 1556.94, + "probability": 0.7935 + }, + { + "start": 1557.7, + "end": 1565.7, + "probability": 0.9877 + }, + { + "start": 1566.78, + "end": 1571.88, + "probability": 0.6063 + }, + { + "start": 1572.28, + "end": 1575.52, + "probability": 0.9961 + }, + { + "start": 1576.68, + "end": 1577.54, + "probability": 0.6852 + }, + { + "start": 1578.36, + "end": 1580.74, + "probability": 0.9963 + }, + { + "start": 1583.06, + "end": 1585.34, + "probability": 0.9675 + }, + { + "start": 1585.44, + "end": 1586.52, + "probability": 0.7824 + }, + { + "start": 1587.1, + "end": 1593.96, + "probability": 0.9559 + }, + { + "start": 1595.72, + "end": 1598.78, + "probability": 0.6938 + }, + { + "start": 1599.36, + "end": 1601.86, + "probability": 0.8563 + }, + { + "start": 1602.38, + "end": 1605.36, + "probability": 0.907 + }, + { + "start": 1606.12, + "end": 1608.42, + "probability": 0.9958 + }, + { + "start": 1608.94, + "end": 1610.26, + "probability": 0.5876 + }, + { + "start": 1610.78, + "end": 1613.28, + "probability": 0.9894 + }, + { + "start": 1614.44, + "end": 1620.56, + "probability": 0.9982 + }, + { + "start": 1621.48, + "end": 1622.58, + "probability": 0.9715 + }, + { + "start": 1623.3, + "end": 1625.48, + "probability": 0.9745 + }, + { + "start": 1626.1, + "end": 1629.28, + "probability": 0.9707 + }, + { + "start": 1630.16, + "end": 1631.52, + "probability": 0.9272 + }, + { + "start": 1632.54, + "end": 1634.78, + "probability": 0.9588 + }, + { + "start": 1635.62, + "end": 1638.38, + "probability": 0.9937 + }, + { + "start": 1639.1, + "end": 1644.16, + "probability": 0.9793 + }, + { + "start": 1644.76, + "end": 1646.78, + "probability": 0.9471 + }, + { + "start": 1647.5, + "end": 1651.3, + "probability": 0.9802 + }, + { + "start": 1652.0, + "end": 1654.44, + "probability": 0.8555 + }, + { + "start": 1655.2, + "end": 1657.02, + "probability": 0.9099 + }, + { + "start": 1658.04, + "end": 1659.44, + "probability": 0.9807 + }, + { + "start": 1660.14, + "end": 1662.4, + "probability": 0.9969 + }, + { + "start": 1662.88, + "end": 1663.6, + "probability": 0.9788 + }, + { + "start": 1664.04, + "end": 1666.52, + "probability": 0.8538 + }, + { + "start": 1667.26, + "end": 1669.06, + "probability": 0.902 + }, + { + "start": 1669.72, + "end": 1677.94, + "probability": 0.9899 + }, + { + "start": 1678.64, + "end": 1679.96, + "probability": 0.977 + }, + { + "start": 1680.24, + "end": 1683.96, + "probability": 0.7551 + }, + { + "start": 1684.8, + "end": 1688.28, + "probability": 0.9697 + }, + { + "start": 1689.74, + "end": 1691.28, + "probability": 0.9383 + }, + { + "start": 1692.16, + "end": 1694.44, + "probability": 0.9638 + }, + { + "start": 1695.32, + "end": 1697.72, + "probability": 0.9082 + }, + { + "start": 1698.74, + "end": 1701.54, + "probability": 0.9756 + }, + { + "start": 1702.16, + "end": 1705.28, + "probability": 0.9996 + }, + { + "start": 1706.2, + "end": 1707.74, + "probability": 0.7779 + }, + { + "start": 1708.3, + "end": 1712.22, + "probability": 0.9751 + }, + { + "start": 1712.22, + "end": 1715.92, + "probability": 0.9973 + }, + { + "start": 1716.54, + "end": 1721.88, + "probability": 0.9985 + }, + { + "start": 1722.16, + "end": 1723.06, + "probability": 0.878 + }, + { + "start": 1723.8, + "end": 1724.92, + "probability": 0.9963 + }, + { + "start": 1725.88, + "end": 1728.26, + "probability": 0.9722 + }, + { + "start": 1729.64, + "end": 1732.02, + "probability": 0.9362 + }, + { + "start": 1732.56, + "end": 1733.62, + "probability": 0.98 + }, + { + "start": 1734.76, + "end": 1736.72, + "probability": 0.931 + }, + { + "start": 1737.68, + "end": 1739.1, + "probability": 0.9974 + }, + { + "start": 1740.02, + "end": 1745.16, + "probability": 0.9957 + }, + { + "start": 1745.44, + "end": 1746.3, + "probability": 0.9286 + }, + { + "start": 1747.3, + "end": 1747.3, + "probability": 0.2416 + }, + { + "start": 1747.3, + "end": 1752.7, + "probability": 0.996 + }, + { + "start": 1753.34, + "end": 1758.26, + "probability": 0.9849 + }, + { + "start": 1758.82, + "end": 1762.6, + "probability": 0.9343 + }, + { + "start": 1763.22, + "end": 1765.76, + "probability": 0.9969 + }, + { + "start": 1766.92, + "end": 1770.18, + "probability": 0.9834 + }, + { + "start": 1771.64, + "end": 1772.34, + "probability": 0.7984 + }, + { + "start": 1772.72, + "end": 1772.78, + "probability": 0.5555 + }, + { + "start": 1772.78, + "end": 1773.78, + "probability": 0.7894 + }, + { + "start": 1774.8, + "end": 1774.9, + "probability": 0.2932 + }, + { + "start": 1774.9, + "end": 1778.22, + "probability": 0.7448 + }, + { + "start": 1781.36, + "end": 1782.56, + "probability": 0.7924 + }, + { + "start": 1786.78, + "end": 1788.3, + "probability": 0.6999 + }, + { + "start": 1788.52, + "end": 1788.54, + "probability": 0.665 + }, + { + "start": 1788.54, + "end": 1789.24, + "probability": 0.7914 + }, + { + "start": 1789.54, + "end": 1790.58, + "probability": 0.8802 + }, + { + "start": 1790.92, + "end": 1794.08, + "probability": 0.9922 + }, + { + "start": 1794.86, + "end": 1798.94, + "probability": 0.754 + }, + { + "start": 1799.46, + "end": 1803.24, + "probability": 0.9944 + }, + { + "start": 1803.62, + "end": 1807.5, + "probability": 0.9725 + }, + { + "start": 1808.2, + "end": 1810.26, + "probability": 0.991 + }, + { + "start": 1810.26, + "end": 1814.1, + "probability": 0.999 + }, + { + "start": 1814.3, + "end": 1819.08, + "probability": 0.9881 + }, + { + "start": 1819.18, + "end": 1820.2, + "probability": 0.975 + }, + { + "start": 1821.2, + "end": 1822.66, + "probability": 0.95 + }, + { + "start": 1822.8, + "end": 1823.3, + "probability": 0.5444 + }, + { + "start": 1823.36, + "end": 1824.42, + "probability": 0.9893 + }, + { + "start": 1826.4, + "end": 1829.64, + "probability": 0.9886 + }, + { + "start": 1830.38, + "end": 1835.08, + "probability": 0.9976 + }, + { + "start": 1836.46, + "end": 1839.22, + "probability": 0.9797 + }, + { + "start": 1840.06, + "end": 1846.94, + "probability": 0.988 + }, + { + "start": 1847.34, + "end": 1854.46, + "probability": 0.9834 + }, + { + "start": 1854.62, + "end": 1856.86, + "probability": 0.95 + }, + { + "start": 1857.28, + "end": 1860.0, + "probability": 0.9989 + }, + { + "start": 1860.6, + "end": 1864.14, + "probability": 0.9473 + }, + { + "start": 1864.22, + "end": 1868.7, + "probability": 0.9912 + }, + { + "start": 1869.58, + "end": 1873.22, + "probability": 0.9974 + }, + { + "start": 1873.42, + "end": 1874.02, + "probability": 0.751 + }, + { + "start": 1874.18, + "end": 1878.74, + "probability": 0.9965 + }, + { + "start": 1879.42, + "end": 1884.68, + "probability": 0.6667 + }, + { + "start": 1885.32, + "end": 1890.18, + "probability": 0.9933 + }, + { + "start": 1891.62, + "end": 1892.14, + "probability": 0.6632 + }, + { + "start": 1892.26, + "end": 1895.16, + "probability": 0.9965 + }, + { + "start": 1895.3, + "end": 1899.18, + "probability": 0.9893 + }, + { + "start": 1899.18, + "end": 1903.96, + "probability": 0.9963 + }, + { + "start": 1904.32, + "end": 1905.92, + "probability": 0.9436 + }, + { + "start": 1906.04, + "end": 1906.48, + "probability": 0.7822 + }, + { + "start": 1907.44, + "end": 1909.02, + "probability": 0.8655 + }, + { + "start": 1909.1, + "end": 1910.66, + "probability": 0.9767 + }, + { + "start": 1911.3, + "end": 1912.86, + "probability": 0.6878 + }, + { + "start": 1914.04, + "end": 1917.44, + "probability": 0.9711 + }, + { + "start": 1918.54, + "end": 1924.06, + "probability": 0.8024 + }, + { + "start": 1924.62, + "end": 1925.62, + "probability": 0.929 + }, + { + "start": 1926.5, + "end": 1931.84, + "probability": 0.8623 + }, + { + "start": 1931.98, + "end": 1936.86, + "probability": 0.9985 + }, + { + "start": 1937.78, + "end": 1938.8, + "probability": 0.8988 + }, + { + "start": 1939.18, + "end": 1946.66, + "probability": 0.9581 + }, + { + "start": 1947.32, + "end": 1952.98, + "probability": 0.6132 + }, + { + "start": 1953.84, + "end": 1956.4, + "probability": 0.9557 + }, + { + "start": 1957.2, + "end": 1958.16, + "probability": 0.5424 + }, + { + "start": 1958.88, + "end": 1962.24, + "probability": 0.997 + }, + { + "start": 1962.36, + "end": 1963.99, + "probability": 0.8022 + }, + { + "start": 1964.84, + "end": 1968.4, + "probability": 0.9909 + }, + { + "start": 1968.94, + "end": 1969.72, + "probability": 0.6443 + }, + { + "start": 1970.18, + "end": 1975.18, + "probability": 0.9904 + }, + { + "start": 1975.18, + "end": 1980.74, + "probability": 0.991 + }, + { + "start": 1980.78, + "end": 1981.8, + "probability": 0.7582 + }, + { + "start": 1981.98, + "end": 1984.72, + "probability": 0.5239 + }, + { + "start": 1984.86, + "end": 1985.72, + "probability": 0.9397 + }, + { + "start": 1986.36, + "end": 1990.94, + "probability": 0.9835 + }, + { + "start": 1993.34, + "end": 1995.8, + "probability": 0.9045 + }, + { + "start": 1998.62, + "end": 1999.68, + "probability": 0.2482 + }, + { + "start": 2005.17, + "end": 2007.82, + "probability": 0.8717 + }, + { + "start": 2007.86, + "end": 2008.47, + "probability": 0.7153 + }, + { + "start": 2009.94, + "end": 2010.86, + "probability": 0.3311 + }, + { + "start": 2012.84, + "end": 2012.94, + "probability": 0.1964 + }, + { + "start": 2013.14, + "end": 2017.92, + "probability": 0.7573 + }, + { + "start": 2018.18, + "end": 2022.64, + "probability": 0.7153 + }, + { + "start": 2023.82, + "end": 2025.18, + "probability": 0.6745 + }, + { + "start": 2026.48, + "end": 2030.0, + "probability": 0.9873 + }, + { + "start": 2031.14, + "end": 2033.02, + "probability": 0.8987 + }, + { + "start": 2033.98, + "end": 2036.31, + "probability": 0.974 + }, + { + "start": 2038.32, + "end": 2043.96, + "probability": 0.7468 + }, + { + "start": 2044.24, + "end": 2044.38, + "probability": 0.175 + }, + { + "start": 2044.48, + "end": 2050.46, + "probability": 0.9792 + }, + { + "start": 2051.0, + "end": 2054.72, + "probability": 0.9972 + }, + { + "start": 2056.5, + "end": 2057.84, + "probability": 0.7546 + }, + { + "start": 2057.96, + "end": 2060.18, + "probability": 0.9466 + }, + { + "start": 2060.28, + "end": 2061.1, + "probability": 0.9724 + }, + { + "start": 2061.2, + "end": 2063.16, + "probability": 0.9433 + }, + { + "start": 2064.52, + "end": 2070.08, + "probability": 0.9873 + }, + { + "start": 2071.42, + "end": 2074.64, + "probability": 0.9967 + }, + { + "start": 2074.64, + "end": 2078.14, + "probability": 0.9971 + }, + { + "start": 2078.2, + "end": 2079.18, + "probability": 0.8496 + }, + { + "start": 2079.62, + "end": 2082.04, + "probability": 0.9906 + }, + { + "start": 2082.1, + "end": 2082.38, + "probability": 0.7293 + }, + { + "start": 2083.86, + "end": 2084.42, + "probability": 0.6265 + }, + { + "start": 2084.56, + "end": 2086.78, + "probability": 0.9806 + }, + { + "start": 2086.78, + "end": 2089.1, + "probability": 0.9774 + }, + { + "start": 2090.46, + "end": 2093.06, + "probability": 0.9888 + }, + { + "start": 2093.11, + "end": 2096.5, + "probability": 0.9961 + }, + { + "start": 2097.14, + "end": 2100.57, + "probability": 0.9985 + }, + { + "start": 2101.18, + "end": 2102.88, + "probability": 0.9077 + }, + { + "start": 2102.94, + "end": 2103.88, + "probability": 0.9729 + }, + { + "start": 2104.74, + "end": 2108.18, + "probability": 0.8972 + }, + { + "start": 2109.0, + "end": 2111.32, + "probability": 0.9934 + }, + { + "start": 2112.0, + "end": 2115.74, + "probability": 0.9937 + }, + { + "start": 2116.64, + "end": 2123.4, + "probability": 0.9593 + }, + { + "start": 2124.26, + "end": 2126.62, + "probability": 0.9775 + }, + { + "start": 2126.76, + "end": 2130.36, + "probability": 0.9813 + }, + { + "start": 2130.78, + "end": 2131.64, + "probability": 0.5529 + }, + { + "start": 2132.3, + "end": 2136.56, + "probability": 0.9117 + }, + { + "start": 2136.58, + "end": 2140.02, + "probability": 0.9967 + }, + { + "start": 2143.34, + "end": 2146.84, + "probability": 0.9871 + }, + { + "start": 2147.72, + "end": 2149.51, + "probability": 0.7878 + }, + { + "start": 2150.38, + "end": 2150.8, + "probability": 0.0101 + }, + { + "start": 2150.84, + "end": 2155.62, + "probability": 0.873 + }, + { + "start": 2155.7, + "end": 2160.24, + "probability": 0.9722 + }, + { + "start": 2160.84, + "end": 2162.96, + "probability": 0.9996 + }, + { + "start": 2163.04, + "end": 2164.6, + "probability": 0.9396 + }, + { + "start": 2165.0, + "end": 2166.48, + "probability": 0.8147 + }, + { + "start": 2166.58, + "end": 2167.3, + "probability": 0.8771 + }, + { + "start": 2167.84, + "end": 2174.04, + "probability": 0.8045 + }, + { + "start": 2174.62, + "end": 2178.68, + "probability": 0.7353 + }, + { + "start": 2179.14, + "end": 2180.12, + "probability": 0.9456 + }, + { + "start": 2180.22, + "end": 2185.92, + "probability": 0.8868 + }, + { + "start": 2186.56, + "end": 2188.3, + "probability": 0.9819 + }, + { + "start": 2188.94, + "end": 2193.2, + "probability": 0.9121 + }, + { + "start": 2193.2, + "end": 2201.24, + "probability": 0.9956 + }, + { + "start": 2201.86, + "end": 2205.58, + "probability": 0.8906 + }, + { + "start": 2206.12, + "end": 2207.56, + "probability": 0.9897 + }, + { + "start": 2208.4, + "end": 2210.59, + "probability": 0.8787 + }, + { + "start": 2210.74, + "end": 2212.04, + "probability": 0.8411 + }, + { + "start": 2212.58, + "end": 2216.62, + "probability": 0.9875 + }, + { + "start": 2217.18, + "end": 2219.64, + "probability": 0.9783 + }, + { + "start": 2219.64, + "end": 2225.38, + "probability": 0.965 + }, + { + "start": 2225.48, + "end": 2226.52, + "probability": 0.9989 + }, + { + "start": 2229.32, + "end": 2231.9, + "probability": 0.7154 + }, + { + "start": 2232.8, + "end": 2233.92, + "probability": 0.5273 + }, + { + "start": 2234.16, + "end": 2238.06, + "probability": 0.7996 + }, + { + "start": 2238.86, + "end": 2245.0, + "probability": 0.8753 + }, + { + "start": 2246.84, + "end": 2249.34, + "probability": 0.9106 + }, + { + "start": 2250.74, + "end": 2252.5, + "probability": 0.5004 + }, + { + "start": 2253.84, + "end": 2256.36, + "probability": 0.9915 + }, + { + "start": 2256.36, + "end": 2258.22, + "probability": 0.9991 + }, + { + "start": 2260.24, + "end": 2261.12, + "probability": 0.8391 + }, + { + "start": 2262.06, + "end": 2265.5, + "probability": 0.8305 + }, + { + "start": 2265.74, + "end": 2267.72, + "probability": 0.8223 + }, + { + "start": 2268.16, + "end": 2270.3, + "probability": 0.8591 + }, + { + "start": 2271.0, + "end": 2272.96, + "probability": 0.8709 + }, + { + "start": 2273.66, + "end": 2275.12, + "probability": 0.8735 + }, + { + "start": 2275.22, + "end": 2277.52, + "probability": 0.933 + }, + { + "start": 2278.06, + "end": 2281.1, + "probability": 0.9752 + }, + { + "start": 2282.93, + "end": 2286.7, + "probability": 0.9902 + }, + { + "start": 2287.54, + "end": 2290.04, + "probability": 0.9451 + }, + { + "start": 2290.12, + "end": 2291.22, + "probability": 0.9734 + }, + { + "start": 2291.38, + "end": 2295.07, + "probability": 0.9631 + }, + { + "start": 2296.3, + "end": 2298.49, + "probability": 0.9868 + }, + { + "start": 2298.94, + "end": 2306.96, + "probability": 0.9927 + }, + { + "start": 2306.96, + "end": 2312.27, + "probability": 0.9356 + }, + { + "start": 2312.84, + "end": 2313.72, + "probability": 0.5522 + }, + { + "start": 2313.78, + "end": 2314.84, + "probability": 0.5276 + }, + { + "start": 2315.38, + "end": 2318.12, + "probability": 0.9928 + }, + { + "start": 2318.9, + "end": 2320.66, + "probability": 0.7347 + }, + { + "start": 2320.72, + "end": 2323.54, + "probability": 0.9835 + }, + { + "start": 2324.2, + "end": 2326.76, + "probability": 0.8743 + }, + { + "start": 2326.9, + "end": 2329.5, + "probability": 0.902 + }, + { + "start": 2329.6, + "end": 2329.72, + "probability": 0.7899 + }, + { + "start": 2329.88, + "end": 2331.82, + "probability": 0.8087 + }, + { + "start": 2331.96, + "end": 2333.34, + "probability": 0.9922 + }, + { + "start": 2333.78, + "end": 2334.22, + "probability": 0.9156 + }, + { + "start": 2335.32, + "end": 2336.16, + "probability": 0.8795 + }, + { + "start": 2336.72, + "end": 2339.65, + "probability": 0.7034 + }, + { + "start": 2341.74, + "end": 2344.18, + "probability": 0.9963 + }, + { + "start": 2344.18, + "end": 2348.88, + "probability": 0.9986 + }, + { + "start": 2349.28, + "end": 2349.75, + "probability": 0.7129 + }, + { + "start": 2351.2, + "end": 2351.98, + "probability": 0.8806 + }, + { + "start": 2352.1, + "end": 2355.44, + "probability": 0.902 + }, + { + "start": 2355.7, + "end": 2361.36, + "probability": 0.9846 + }, + { + "start": 2362.12, + "end": 2364.9, + "probability": 0.8704 + }, + { + "start": 2367.78, + "end": 2370.8, + "probability": 0.9995 + }, + { + "start": 2371.62, + "end": 2373.36, + "probability": 0.9964 + }, + { + "start": 2374.04, + "end": 2380.3, + "probability": 0.9744 + }, + { + "start": 2381.78, + "end": 2382.84, + "probability": 0.9824 + }, + { + "start": 2382.94, + "end": 2385.7, + "probability": 0.8038 + }, + { + "start": 2385.9, + "end": 2389.74, + "probability": 0.9879 + }, + { + "start": 2390.32, + "end": 2391.36, + "probability": 0.5055 + }, + { + "start": 2391.36, + "end": 2393.68, + "probability": 0.9943 + }, + { + "start": 2394.5, + "end": 2395.86, + "probability": 0.7827 + }, + { + "start": 2395.98, + "end": 2397.3, + "probability": 0.8848 + }, + { + "start": 2398.01, + "end": 2400.57, + "probability": 0.9812 + }, + { + "start": 2402.72, + "end": 2408.92, + "probability": 0.9874 + }, + { + "start": 2409.56, + "end": 2411.06, + "probability": 0.9669 + }, + { + "start": 2411.64, + "end": 2413.64, + "probability": 0.9915 + }, + { + "start": 2414.3, + "end": 2415.72, + "probability": 0.7212 + }, + { + "start": 2415.84, + "end": 2418.64, + "probability": 0.9649 + }, + { + "start": 2418.72, + "end": 2419.96, + "probability": 0.5872 + }, + { + "start": 2420.42, + "end": 2422.76, + "probability": 0.8523 + }, + { + "start": 2423.28, + "end": 2427.06, + "probability": 0.7533 + }, + { + "start": 2427.8, + "end": 2430.86, + "probability": 0.9917 + }, + { + "start": 2434.62, + "end": 2435.46, + "probability": 0.856 + }, + { + "start": 2435.54, + "end": 2440.62, + "probability": 0.9543 + }, + { + "start": 2441.14, + "end": 2442.0, + "probability": 0.7736 + }, + { + "start": 2442.94, + "end": 2443.14, + "probability": 0.6873 + }, + { + "start": 2444.1, + "end": 2446.98, + "probability": 0.9895 + }, + { + "start": 2448.58, + "end": 2449.26, + "probability": 0.9747 + }, + { + "start": 2449.48, + "end": 2452.16, + "probability": 0.9993 + }, + { + "start": 2453.12, + "end": 2456.8, + "probability": 0.9583 + }, + { + "start": 2499.3, + "end": 2504.14, + "probability": 0.9891 + }, + { + "start": 2510.68, + "end": 2513.36, + "probability": 0.6358 + }, + { + "start": 2513.68, + "end": 2516.96, + "probability": 0.5408 + }, + { + "start": 2518.46, + "end": 2522.0, + "probability": 0.986 + }, + { + "start": 2522.0, + "end": 2526.08, + "probability": 0.9263 + }, + { + "start": 2526.66, + "end": 2530.0, + "probability": 0.9319 + }, + { + "start": 2530.68, + "end": 2533.36, + "probability": 0.9265 + }, + { + "start": 2535.68, + "end": 2538.94, + "probability": 0.7593 + }, + { + "start": 2540.26, + "end": 2541.68, + "probability": 0.8672 + }, + { + "start": 2542.48, + "end": 2543.36, + "probability": 0.6266 + }, + { + "start": 2543.78, + "end": 2545.98, + "probability": 0.0694 + }, + { + "start": 2545.98, + "end": 2548.46, + "probability": 0.0393 + }, + { + "start": 2567.76, + "end": 2570.42, + "probability": 0.035 + }, + { + "start": 2570.48, + "end": 2572.56, + "probability": 0.0002 + }, + { + "start": 2575.14, + "end": 2576.26, + "probability": 0.4326 + }, + { + "start": 2578.66, + "end": 2581.16, + "probability": 0.8804 + }, + { + "start": 2582.36, + "end": 2588.02, + "probability": 0.8286 + }, + { + "start": 2594.04, + "end": 2602.02, + "probability": 0.9697 + }, + { + "start": 2603.24, + "end": 2605.06, + "probability": 0.9741 + }, + { + "start": 2605.72, + "end": 2609.98, + "probability": 0.7711 + }, + { + "start": 2610.84, + "end": 2615.08, + "probability": 0.9946 + }, + { + "start": 2615.3, + "end": 2615.86, + "probability": 0.931 + }, + { + "start": 2615.92, + "end": 2617.16, + "probability": 0.7721 + }, + { + "start": 2617.86, + "end": 2619.98, + "probability": 0.7162 + }, + { + "start": 2621.92, + "end": 2625.52, + "probability": 0.9951 + }, + { + "start": 2625.76, + "end": 2630.12, + "probability": 0.9976 + }, + { + "start": 2630.34, + "end": 2632.32, + "probability": 0.9912 + }, + { + "start": 2632.86, + "end": 2634.86, + "probability": 0.8342 + }, + { + "start": 2635.44, + "end": 2638.1, + "probability": 0.9271 + }, + { + "start": 2639.34, + "end": 2642.5, + "probability": 0.9963 + }, + { + "start": 2643.64, + "end": 2645.26, + "probability": 0.8972 + }, + { + "start": 2646.24, + "end": 2650.74, + "probability": 0.998 + }, + { + "start": 2650.74, + "end": 2653.3, + "probability": 0.998 + }, + { + "start": 2654.8, + "end": 2655.8, + "probability": 0.7642 + }, + { + "start": 2655.96, + "end": 2657.32, + "probability": 0.9822 + }, + { + "start": 2657.5, + "end": 2659.34, + "probability": 0.8396 + }, + { + "start": 2660.0, + "end": 2661.36, + "probability": 0.9941 + }, + { + "start": 2662.22, + "end": 2664.44, + "probability": 0.9868 + }, + { + "start": 2665.38, + "end": 2667.8, + "probability": 0.981 + }, + { + "start": 2669.1, + "end": 2672.86, + "probability": 0.9807 + }, + { + "start": 2673.4, + "end": 2676.72, + "probability": 0.9932 + }, + { + "start": 2677.54, + "end": 2680.02, + "probability": 0.999 + }, + { + "start": 2681.48, + "end": 2684.62, + "probability": 0.9896 + }, + { + "start": 2685.6, + "end": 2688.48, + "probability": 0.9912 + }, + { + "start": 2688.76, + "end": 2690.1, + "probability": 0.9609 + }, + { + "start": 2691.08, + "end": 2693.52, + "probability": 0.9539 + }, + { + "start": 2694.44, + "end": 2696.8, + "probability": 0.9254 + }, + { + "start": 2697.44, + "end": 2700.82, + "probability": 0.978 + }, + { + "start": 2701.4, + "end": 2702.86, + "probability": 0.9303 + }, + { + "start": 2702.86, + "end": 2704.18, + "probability": 0.7893 + }, + { + "start": 2704.24, + "end": 2705.84, + "probability": 0.7647 + }, + { + "start": 2706.72, + "end": 2712.28, + "probability": 0.9641 + }, + { + "start": 2712.36, + "end": 2714.5, + "probability": 0.9341 + }, + { + "start": 2715.22, + "end": 2720.52, + "probability": 0.9927 + }, + { + "start": 2721.98, + "end": 2724.62, + "probability": 0.9765 + }, + { + "start": 2725.36, + "end": 2728.24, + "probability": 0.9958 + }, + { + "start": 2729.2, + "end": 2731.2, + "probability": 0.9934 + }, + { + "start": 2732.38, + "end": 2738.42, + "probability": 0.9982 + }, + { + "start": 2739.7, + "end": 2745.3, + "probability": 0.9884 + }, + { + "start": 2746.72, + "end": 2748.02, + "probability": 0.967 + }, + { + "start": 2748.9, + "end": 2751.74, + "probability": 0.9256 + }, + { + "start": 2752.32, + "end": 2756.76, + "probability": 0.9665 + }, + { + "start": 2757.8, + "end": 2760.74, + "probability": 0.9858 + }, + { + "start": 2761.08, + "end": 2765.2, + "probability": 0.9889 + }, + { + "start": 2766.08, + "end": 2769.16, + "probability": 0.9775 + }, + { + "start": 2770.26, + "end": 2774.66, + "probability": 0.9972 + }, + { + "start": 2775.16, + "end": 2782.6, + "probability": 0.9897 + }, + { + "start": 2782.92, + "end": 2788.04, + "probability": 0.9957 + }, + { + "start": 2789.58, + "end": 2792.54, + "probability": 0.9989 + }, + { + "start": 2793.28, + "end": 2794.94, + "probability": 0.9946 + }, + { + "start": 2796.08, + "end": 2801.12, + "probability": 0.999 + }, + { + "start": 2801.26, + "end": 2802.14, + "probability": 0.8338 + }, + { + "start": 2803.02, + "end": 2808.38, + "probability": 0.9857 + }, + { + "start": 2809.16, + "end": 2811.02, + "probability": 0.9989 + }, + { + "start": 2811.98, + "end": 2813.12, + "probability": 0.985 + }, + { + "start": 2814.16, + "end": 2816.98, + "probability": 0.9979 + }, + { + "start": 2817.08, + "end": 2818.7, + "probability": 0.9619 + }, + { + "start": 2819.22, + "end": 2819.92, + "probability": 0.9956 + }, + { + "start": 2820.82, + "end": 2822.02, + "probability": 0.9868 + }, + { + "start": 2822.68, + "end": 2824.8, + "probability": 0.9971 + }, + { + "start": 2825.5, + "end": 2826.52, + "probability": 0.9766 + }, + { + "start": 2827.66, + "end": 2830.4, + "probability": 0.9518 + }, + { + "start": 2831.2, + "end": 2833.04, + "probability": 0.8931 + }, + { + "start": 2833.12, + "end": 2835.56, + "probability": 0.9441 + }, + { + "start": 2836.08, + "end": 2838.58, + "probability": 0.9053 + }, + { + "start": 2839.32, + "end": 2841.84, + "probability": 0.9952 + }, + { + "start": 2841.9, + "end": 2847.0, + "probability": 0.9904 + }, + { + "start": 2848.06, + "end": 2850.74, + "probability": 0.9896 + }, + { + "start": 2850.94, + "end": 2852.86, + "probability": 0.9991 + }, + { + "start": 2854.02, + "end": 2857.18, + "probability": 0.9976 + }, + { + "start": 2857.92, + "end": 2860.14, + "probability": 0.9988 + }, + { + "start": 2861.44, + "end": 2865.02, + "probability": 0.9916 + }, + { + "start": 2865.2, + "end": 2868.7, + "probability": 0.905 + }, + { + "start": 2869.76, + "end": 2873.06, + "probability": 0.9772 + }, + { + "start": 2874.92, + "end": 2877.94, + "probability": 0.955 + }, + { + "start": 2879.28, + "end": 2879.73, + "probability": 0.9136 + }, + { + "start": 2881.72, + "end": 2883.12, + "probability": 0.9737 + }, + { + "start": 2884.34, + "end": 2887.14, + "probability": 0.991 + }, + { + "start": 2888.8, + "end": 2889.66, + "probability": 0.9331 + }, + { + "start": 2890.76, + "end": 2893.32, + "probability": 0.9559 + }, + { + "start": 2894.12, + "end": 2899.44, + "probability": 0.9772 + }, + { + "start": 2900.1, + "end": 2905.06, + "probability": 0.9941 + }, + { + "start": 2906.42, + "end": 2911.44, + "probability": 0.9869 + }, + { + "start": 2912.34, + "end": 2916.64, + "probability": 0.997 + }, + { + "start": 2916.78, + "end": 2917.72, + "probability": 0.9725 + }, + { + "start": 2918.48, + "end": 2919.58, + "probability": 0.9386 + }, + { + "start": 2920.44, + "end": 2922.7, + "probability": 0.9925 + }, + { + "start": 2923.0, + "end": 2924.84, + "probability": 0.9783 + }, + { + "start": 2925.52, + "end": 2930.14, + "probability": 0.9849 + }, + { + "start": 2930.14, + "end": 2933.94, + "probability": 0.9495 + }, + { + "start": 2934.56, + "end": 2940.38, + "probability": 0.9979 + }, + { + "start": 2941.12, + "end": 2944.72, + "probability": 0.8809 + }, + { + "start": 2945.26, + "end": 2946.16, + "probability": 0.9011 + }, + { + "start": 2946.7, + "end": 2948.24, + "probability": 0.994 + }, + { + "start": 2949.08, + "end": 2952.86, + "probability": 0.9767 + }, + { + "start": 2953.7, + "end": 2957.52, + "probability": 0.9766 + }, + { + "start": 2958.56, + "end": 2961.78, + "probability": 0.9893 + }, + { + "start": 2961.86, + "end": 2962.54, + "probability": 0.986 + }, + { + "start": 2963.42, + "end": 2966.28, + "probability": 0.9454 + }, + { + "start": 2967.34, + "end": 2971.3, + "probability": 0.9959 + }, + { + "start": 2972.02, + "end": 2978.96, + "probability": 0.9971 + }, + { + "start": 2979.84, + "end": 2980.88, + "probability": 0.6702 + }, + { + "start": 2981.88, + "end": 2985.28, + "probability": 0.9557 + }, + { + "start": 2985.32, + "end": 2988.56, + "probability": 0.9985 + }, + { + "start": 2989.6, + "end": 2992.12, + "probability": 0.999 + }, + { + "start": 2993.3, + "end": 2994.14, + "probability": 0.9933 + }, + { + "start": 2995.2, + "end": 2998.76, + "probability": 0.9987 + }, + { + "start": 2998.76, + "end": 3003.02, + "probability": 0.9989 + }, + { + "start": 3003.9, + "end": 3006.4, + "probability": 0.994 + }, + { + "start": 3007.3, + "end": 3013.36, + "probability": 0.9939 + }, + { + "start": 3013.98, + "end": 3016.6, + "probability": 0.9912 + }, + { + "start": 3017.12, + "end": 3019.86, + "probability": 0.9829 + }, + { + "start": 3019.86, + "end": 3023.76, + "probability": 0.9819 + }, + { + "start": 3025.18, + "end": 3026.82, + "probability": 0.982 + }, + { + "start": 3027.76, + "end": 3032.12, + "probability": 0.9905 + }, + { + "start": 3032.28, + "end": 3035.06, + "probability": 0.9744 + }, + { + "start": 3035.96, + "end": 3039.12, + "probability": 0.9543 + }, + { + "start": 3040.26, + "end": 3041.6, + "probability": 0.9923 + }, + { + "start": 3042.2, + "end": 3044.74, + "probability": 0.9985 + }, + { + "start": 3045.92, + "end": 3048.92, + "probability": 0.9657 + }, + { + "start": 3049.62, + "end": 3051.8, + "probability": 0.9821 + }, + { + "start": 3052.54, + "end": 3057.6, + "probability": 0.9961 + }, + { + "start": 3058.12, + "end": 3060.72, + "probability": 0.9935 + }, + { + "start": 3061.76, + "end": 3063.26, + "probability": 0.9956 + }, + { + "start": 3063.78, + "end": 3064.74, + "probability": 0.903 + }, + { + "start": 3065.6, + "end": 3068.88, + "probability": 0.9199 + }, + { + "start": 3070.12, + "end": 3071.95, + "probability": 0.7572 + }, + { + "start": 3072.88, + "end": 3074.94, + "probability": 0.9917 + }, + { + "start": 3075.64, + "end": 3078.24, + "probability": 0.9841 + }, + { + "start": 3078.94, + "end": 3080.44, + "probability": 0.9934 + }, + { + "start": 3081.24, + "end": 3085.42, + "probability": 0.9657 + }, + { + "start": 3086.46, + "end": 3087.5, + "probability": 0.8138 + }, + { + "start": 3089.04, + "end": 3089.88, + "probability": 0.6606 + }, + { + "start": 3090.08, + "end": 3092.76, + "probability": 0.9973 + }, + { + "start": 3092.86, + "end": 3097.6, + "probability": 0.9793 + }, + { + "start": 3098.36, + "end": 3099.52, + "probability": 0.9982 + }, + { + "start": 3100.54, + "end": 3102.56, + "probability": 0.9897 + }, + { + "start": 3113.96, + "end": 3114.48, + "probability": 0.2414 + }, + { + "start": 3114.48, + "end": 3116.22, + "probability": 0.9313 + }, + { + "start": 3116.82, + "end": 3120.1, + "probability": 0.9833 + }, + { + "start": 3121.2, + "end": 3124.1, + "probability": 0.9944 + }, + { + "start": 3124.1, + "end": 3128.12, + "probability": 0.9933 + }, + { + "start": 3128.88, + "end": 3133.12, + "probability": 0.9976 + }, + { + "start": 3133.16, + "end": 3134.74, + "probability": 0.7505 + }, + { + "start": 3135.1, + "end": 3136.56, + "probability": 0.8676 + }, + { + "start": 3137.36, + "end": 3139.38, + "probability": 0.9912 + }, + { + "start": 3140.28, + "end": 3141.52, + "probability": 0.9387 + }, + { + "start": 3142.52, + "end": 3146.1, + "probability": 0.998 + }, + { + "start": 3146.86, + "end": 3148.76, + "probability": 0.99 + }, + { + "start": 3149.66, + "end": 3150.24, + "probability": 0.9887 + }, + { + "start": 3152.08, + "end": 3153.26, + "probability": 0.8926 + }, + { + "start": 3154.58, + "end": 3155.66, + "probability": 0.7965 + }, + { + "start": 3156.5, + "end": 3157.58, + "probability": 0.9653 + }, + { + "start": 3158.38, + "end": 3163.58, + "probability": 0.9966 + }, + { + "start": 3164.4, + "end": 3166.06, + "probability": 0.9993 + }, + { + "start": 3167.16, + "end": 3171.96, + "probability": 0.9966 + }, + { + "start": 3172.02, + "end": 3173.2, + "probability": 0.9602 + }, + { + "start": 3174.28, + "end": 3177.34, + "probability": 0.9976 + }, + { + "start": 3177.34, + "end": 3181.54, + "probability": 0.999 + }, + { + "start": 3182.3, + "end": 3186.18, + "probability": 0.9865 + }, + { + "start": 3186.62, + "end": 3186.88, + "probability": 0.7428 + }, + { + "start": 3188.1, + "end": 3190.2, + "probability": 0.9541 + }, + { + "start": 3195.12, + "end": 3199.64, + "probability": 0.9933 + }, + { + "start": 3200.46, + "end": 3203.32, + "probability": 0.998 + }, + { + "start": 3203.86, + "end": 3204.52, + "probability": 0.9841 + }, + { + "start": 3223.58, + "end": 3225.38, + "probability": 0.1471 + }, + { + "start": 3226.3, + "end": 3228.11, + "probability": 0.691 + }, + { + "start": 3229.74, + "end": 3231.56, + "probability": 0.3441 + }, + { + "start": 3232.26, + "end": 3232.48, + "probability": 0.2695 + }, + { + "start": 3245.42, + "end": 3246.4, + "probability": 0.2207 + }, + { + "start": 3249.24, + "end": 3249.7, + "probability": 0.0709 + }, + { + "start": 3250.34, + "end": 3253.14, + "probability": 0.12 + }, + { + "start": 3253.74, + "end": 3253.74, + "probability": 0.1982 + }, + { + "start": 3253.74, + "end": 3253.84, + "probability": 0.0336 + }, + { + "start": 3253.84, + "end": 3256.5, + "probability": 0.0917 + }, + { + "start": 3256.62, + "end": 3258.24, + "probability": 0.0378 + }, + { + "start": 3304.68, + "end": 3306.36, + "probability": 0.8478 + }, + { + "start": 3308.96, + "end": 3311.86, + "probability": 0.919 + }, + { + "start": 3312.96, + "end": 3318.24, + "probability": 0.9238 + }, + { + "start": 3318.6, + "end": 3320.26, + "probability": 0.48 + }, + { + "start": 3322.32, + "end": 3326.68, + "probability": 0.7225 + }, + { + "start": 3327.68, + "end": 3328.36, + "probability": 0.7547 + }, + { + "start": 3329.2, + "end": 3329.6, + "probability": 0.4891 + }, + { + "start": 3329.68, + "end": 3331.7, + "probability": 0.8198 + }, + { + "start": 3332.0, + "end": 3333.12, + "probability": 0.4669 + }, + { + "start": 3333.22, + "end": 3334.44, + "probability": 0.5734 + }, + { + "start": 3335.28, + "end": 3340.88, + "probability": 0.9016 + }, + { + "start": 3340.98, + "end": 3342.75, + "probability": 0.9192 + }, + { + "start": 3343.14, + "end": 3346.4, + "probability": 0.8145 + }, + { + "start": 3346.4, + "end": 3349.38, + "probability": 0.9494 + }, + { + "start": 3355.2, + "end": 3357.28, + "probability": 0.1095 + }, + { + "start": 3357.52, + "end": 3357.58, + "probability": 0.2026 + }, + { + "start": 3357.58, + "end": 3358.62, + "probability": 0.7629 + }, + { + "start": 3363.32, + "end": 3368.3, + "probability": 0.3733 + }, + { + "start": 3368.44, + "end": 3370.0, + "probability": 0.6417 + }, + { + "start": 3371.24, + "end": 3373.76, + "probability": 0.4765 + }, + { + "start": 3374.12, + "end": 3375.92, + "probability": 0.8892 + }, + { + "start": 3375.98, + "end": 3377.8, + "probability": 0.1981 + }, + { + "start": 3378.34, + "end": 3380.04, + "probability": 0.9621 + }, + { + "start": 3380.56, + "end": 3382.62, + "probability": 0.8818 + }, + { + "start": 3383.26, + "end": 3384.62, + "probability": 0.351 + }, + { + "start": 3384.96, + "end": 3385.39, + "probability": 0.95 + }, + { + "start": 3386.64, + "end": 3391.18, + "probability": 0.8567 + }, + { + "start": 3391.7, + "end": 3393.28, + "probability": 0.9693 + }, + { + "start": 3393.36, + "end": 3397.02, + "probability": 0.8676 + }, + { + "start": 3397.68, + "end": 3398.88, + "probability": 0.8746 + }, + { + "start": 3399.72, + "end": 3401.28, + "probability": 0.652 + }, + { + "start": 3402.8, + "end": 3406.66, + "probability": 0.8167 + }, + { + "start": 3407.04, + "end": 3408.04, + "probability": 0.856 + }, + { + "start": 3408.76, + "end": 3410.64, + "probability": 0.6999 + }, + { + "start": 3411.66, + "end": 3412.95, + "probability": 0.7148 + }, + { + "start": 3414.32, + "end": 3416.04, + "probability": 0.6927 + }, + { + "start": 3416.62, + "end": 3418.74, + "probability": 0.8317 + }, + { + "start": 3420.62, + "end": 3425.52, + "probability": 0.9031 + }, + { + "start": 3426.38, + "end": 3428.66, + "probability": 0.841 + }, + { + "start": 3429.7, + "end": 3433.12, + "probability": 0.9495 + }, + { + "start": 3433.74, + "end": 3435.18, + "probability": 0.8088 + }, + { + "start": 3435.24, + "end": 3435.78, + "probability": 0.7668 + }, + { + "start": 3436.24, + "end": 3436.62, + "probability": 0.4502 + }, + { + "start": 3436.66, + "end": 3438.12, + "probability": 0.9559 + }, + { + "start": 3442.82, + "end": 3443.08, + "probability": 0.6886 + }, + { + "start": 3443.32, + "end": 3446.78, + "probability": 0.9889 + }, + { + "start": 3448.58, + "end": 3450.36, + "probability": 0.9728 + }, + { + "start": 3452.12, + "end": 3453.06, + "probability": 0.9563 + }, + { + "start": 3453.72, + "end": 3456.4, + "probability": 0.8423 + }, + { + "start": 3457.4, + "end": 3458.56, + "probability": 0.9429 + }, + { + "start": 3459.02, + "end": 3460.68, + "probability": 0.7859 + }, + { + "start": 3463.18, + "end": 3467.94, + "probability": 0.9626 + }, + { + "start": 3469.1, + "end": 3470.22, + "probability": 0.6916 + }, + { + "start": 3472.02, + "end": 3476.43, + "probability": 0.9556 + }, + { + "start": 3479.1, + "end": 3479.9, + "probability": 0.9193 + }, + { + "start": 3480.2, + "end": 3484.58, + "probability": 0.786 + }, + { + "start": 3486.02, + "end": 3487.4, + "probability": 0.8412 + }, + { + "start": 3489.84, + "end": 3496.46, + "probability": 0.929 + }, + { + "start": 3498.04, + "end": 3503.14, + "probability": 0.9268 + }, + { + "start": 3503.74, + "end": 3505.44, + "probability": 0.9417 + }, + { + "start": 3505.62, + "end": 3506.6, + "probability": 0.0395 + }, + { + "start": 3507.72, + "end": 3510.64, + "probability": 0.0723 + }, + { + "start": 3510.95, + "end": 3511.02, + "probability": 0.1347 + }, + { + "start": 3511.02, + "end": 3511.02, + "probability": 0.2195 + }, + { + "start": 3511.02, + "end": 3511.02, + "probability": 0.0213 + }, + { + "start": 3511.02, + "end": 3513.18, + "probability": 0.5037 + }, + { + "start": 3513.3, + "end": 3514.29, + "probability": 0.2527 + }, + { + "start": 3515.72, + "end": 3518.82, + "probability": 0.8501 + }, + { + "start": 3518.82, + "end": 3521.73, + "probability": 0.7408 + }, + { + "start": 3522.72, + "end": 3524.9, + "probability": 0.9938 + }, + { + "start": 3525.88, + "end": 3527.92, + "probability": 0.7923 + }, + { + "start": 3528.96, + "end": 3530.92, + "probability": 0.6266 + }, + { + "start": 3531.06, + "end": 3531.46, + "probability": 0.6716 + }, + { + "start": 3531.54, + "end": 3531.94, + "probability": 0.8085 + }, + { + "start": 3531.96, + "end": 3533.12, + "probability": 0.8141 + }, + { + "start": 3533.24, + "end": 3535.12, + "probability": 0.9816 + }, + { + "start": 3536.94, + "end": 3541.98, + "probability": 0.8439 + }, + { + "start": 3544.32, + "end": 3547.28, + "probability": 0.901 + }, + { + "start": 3548.24, + "end": 3550.4, + "probability": 0.7571 + }, + { + "start": 3550.58, + "end": 3552.64, + "probability": 0.6672 + }, + { + "start": 3552.64, + "end": 3555.96, + "probability": 0.8841 + }, + { + "start": 3556.5, + "end": 3562.74, + "probability": 0.9065 + }, + { + "start": 3563.08, + "end": 3563.18, + "probability": 0.3492 + }, + { + "start": 3563.84, + "end": 3566.08, + "probability": 0.7876 + }, + { + "start": 3567.04, + "end": 3568.88, + "probability": 0.6694 + }, + { + "start": 3568.88, + "end": 3572.44, + "probability": 0.9312 + }, + { + "start": 3572.88, + "end": 3573.88, + "probability": 0.6946 + }, + { + "start": 3574.82, + "end": 3575.94, + "probability": 0.8325 + }, + { + "start": 3576.38, + "end": 3577.54, + "probability": 0.9078 + }, + { + "start": 3577.78, + "end": 3578.86, + "probability": 0.9648 + }, + { + "start": 3579.1, + "end": 3580.52, + "probability": 0.6023 + }, + { + "start": 3580.86, + "end": 3581.8, + "probability": 0.4984 + }, + { + "start": 3582.58, + "end": 3584.08, + "probability": 0.9824 + }, + { + "start": 3585.64, + "end": 3588.84, + "probability": 0.6303 + }, + { + "start": 3589.56, + "end": 3590.56, + "probability": 0.7174 + }, + { + "start": 3591.52, + "end": 3592.76, + "probability": 0.6053 + }, + { + "start": 3592.82, + "end": 3593.52, + "probability": 0.6257 + }, + { + "start": 3593.56, + "end": 3594.66, + "probability": 0.7137 + }, + { + "start": 3595.04, + "end": 3597.58, + "probability": 0.9599 + }, + { + "start": 3597.68, + "end": 3598.4, + "probability": 0.7517 + }, + { + "start": 3600.06, + "end": 3603.0, + "probability": 0.7507 + }, + { + "start": 3603.78, + "end": 3606.14, + "probability": 0.8789 + }, + { + "start": 3606.9, + "end": 3611.08, + "probability": 0.9908 + }, + { + "start": 3614.66, + "end": 3616.44, + "probability": 0.8202 + }, + { + "start": 3616.64, + "end": 3618.46, + "probability": 0.5288 + }, + { + "start": 3618.46, + "end": 3620.84, + "probability": 0.9017 + }, + { + "start": 3622.7, + "end": 3623.92, + "probability": 0.7688 + }, + { + "start": 3623.94, + "end": 3624.42, + "probability": 0.4542 + }, + { + "start": 3624.56, + "end": 3626.72, + "probability": 0.8901 + }, + { + "start": 3627.78, + "end": 3631.36, + "probability": 0.9847 + }, + { + "start": 3632.32, + "end": 3635.42, + "probability": 0.9917 + }, + { + "start": 3636.58, + "end": 3637.68, + "probability": 0.7113 + }, + { + "start": 3638.52, + "end": 3640.6, + "probability": 0.6868 + }, + { + "start": 3640.64, + "end": 3641.48, + "probability": 0.7585 + }, + { + "start": 3641.68, + "end": 3642.72, + "probability": 0.6902 + }, + { + "start": 3644.26, + "end": 3645.98, + "probability": 0.1617 + }, + { + "start": 3647.12, + "end": 3654.42, + "probability": 0.7369 + }, + { + "start": 3655.52, + "end": 3656.86, + "probability": 0.9227 + }, + { + "start": 3656.94, + "end": 3659.04, + "probability": 0.9797 + }, + { + "start": 3659.92, + "end": 3662.84, + "probability": 0.9703 + }, + { + "start": 3663.36, + "end": 3664.48, + "probability": 0.8277 + }, + { + "start": 3665.22, + "end": 3666.5, + "probability": 0.7724 + }, + { + "start": 3667.54, + "end": 3671.38, + "probability": 0.9131 + }, + { + "start": 3672.66, + "end": 3674.7, + "probability": 0.9869 + }, + { + "start": 3674.96, + "end": 3676.24, + "probability": 0.8517 + }, + { + "start": 3676.48, + "end": 3676.84, + "probability": 0.5664 + }, + { + "start": 3676.86, + "end": 3677.44, + "probability": 0.561 + }, + { + "start": 3677.82, + "end": 3681.22, + "probability": 0.9778 + }, + { + "start": 3682.1, + "end": 3683.18, + "probability": 0.8495 + }, + { + "start": 3683.92, + "end": 3686.28, + "probability": 0.628 + }, + { + "start": 3686.32, + "end": 3686.86, + "probability": 0.4682 + }, + { + "start": 3686.86, + "end": 3687.74, + "probability": 0.6484 + }, + { + "start": 3687.82, + "end": 3691.96, + "probability": 0.9545 + }, + { + "start": 3691.96, + "end": 3696.12, + "probability": 0.9803 + }, + { + "start": 3696.12, + "end": 3696.66, + "probability": 0.6866 + }, + { + "start": 3697.28, + "end": 3702.16, + "probability": 0.9005 + }, + { + "start": 3703.24, + "end": 3706.82, + "probability": 0.9941 + }, + { + "start": 3707.5, + "end": 3708.13, + "probability": 0.6616 + }, + { + "start": 3708.2, + "end": 3708.74, + "probability": 0.5622 + }, + { + "start": 3708.84, + "end": 3709.26, + "probability": 0.9194 + }, + { + "start": 3709.44, + "end": 3710.86, + "probability": 0.9902 + }, + { + "start": 3712.1, + "end": 3715.9, + "probability": 0.8395 + }, + { + "start": 3720.68, + "end": 3725.5, + "probability": 0.7335 + }, + { + "start": 3726.36, + "end": 3727.07, + "probability": 0.8552 + }, + { + "start": 3728.18, + "end": 3728.74, + "probability": 0.8677 + }, + { + "start": 3729.32, + "end": 3734.36, + "probability": 0.9902 + }, + { + "start": 3735.5, + "end": 3736.82, + "probability": 0.949 + }, + { + "start": 3737.84, + "end": 3743.42, + "probability": 0.9377 + }, + { + "start": 3743.56, + "end": 3745.36, + "probability": 0.5909 + }, + { + "start": 3746.5, + "end": 3749.28, + "probability": 0.7502 + }, + { + "start": 3749.84, + "end": 3751.44, + "probability": 0.7884 + }, + { + "start": 3753.04, + "end": 3754.66, + "probability": 0.5958 + }, + { + "start": 3756.52, + "end": 3757.8, + "probability": 0.4071 + }, + { + "start": 3758.48, + "end": 3759.58, + "probability": 0.6849 + }, + { + "start": 3760.24, + "end": 3762.92, + "probability": 0.9863 + }, + { + "start": 3763.06, + "end": 3767.66, + "probability": 0.5528 + }, + { + "start": 3768.6, + "end": 3771.22, + "probability": 0.9943 + }, + { + "start": 3772.54, + "end": 3774.68, + "probability": 0.9888 + }, + { + "start": 3775.78, + "end": 3781.1, + "probability": 0.823 + }, + { + "start": 3781.66, + "end": 3787.22, + "probability": 0.9692 + }, + { + "start": 3787.8, + "end": 3792.0, + "probability": 0.8912 + }, + { + "start": 3792.64, + "end": 3794.48, + "probability": 0.4951 + }, + { + "start": 3795.08, + "end": 3795.74, + "probability": 0.0079 + }, + { + "start": 3796.34, + "end": 3797.79, + "probability": 0.0508 + }, + { + "start": 3802.56, + "end": 3804.26, + "probability": 0.6729 + }, + { + "start": 3804.46, + "end": 3807.96, + "probability": 0.6422 + }, + { + "start": 3807.96, + "end": 3810.38, + "probability": 0.6643 + }, + { + "start": 3810.54, + "end": 3813.56, + "probability": 0.9434 + }, + { + "start": 3816.04, + "end": 3817.84, + "probability": 0.8813 + }, + { + "start": 3818.02, + "end": 3821.0, + "probability": 0.864 + }, + { + "start": 3822.26, + "end": 3825.44, + "probability": 0.9489 + }, + { + "start": 3825.98, + "end": 3826.32, + "probability": 0.8853 + }, + { + "start": 3827.36, + "end": 3828.32, + "probability": 0.918 + }, + { + "start": 3828.36, + "end": 3832.82, + "probability": 0.9222 + }, + { + "start": 3833.32, + "end": 3834.24, + "probability": 0.8322 + }, + { + "start": 3835.58, + "end": 3835.94, + "probability": 0.4621 + }, + { + "start": 3836.0, + "end": 3844.44, + "probability": 0.9255 + }, + { + "start": 3845.58, + "end": 3848.64, + "probability": 0.9965 + }, + { + "start": 3849.24, + "end": 3850.08, + "probability": 0.9109 + }, + { + "start": 3853.42, + "end": 3857.28, + "probability": 0.9546 + }, + { + "start": 3857.9, + "end": 3863.3, + "probability": 0.9744 + }, + { + "start": 3864.7, + "end": 3865.42, + "probability": 0.8706 + }, + { + "start": 3869.36, + "end": 3871.68, + "probability": 0.9641 + }, + { + "start": 3871.74, + "end": 3873.74, + "probability": 0.8169 + }, + { + "start": 3874.78, + "end": 3875.62, + "probability": 0.6808 + }, + { + "start": 3875.62, + "end": 3879.4, + "probability": 0.8623 + }, + { + "start": 3879.78, + "end": 3882.1, + "probability": 0.99 + }, + { + "start": 3886.86, + "end": 3889.78, + "probability": 0.8733 + }, + { + "start": 3891.4, + "end": 3897.26, + "probability": 0.6951 + }, + { + "start": 3897.86, + "end": 3900.24, + "probability": 0.758 + }, + { + "start": 3900.9, + "end": 3906.2, + "probability": 0.6989 + }, + { + "start": 3906.86, + "end": 3910.18, + "probability": 0.7875 + }, + { + "start": 3911.24, + "end": 3912.8, + "probability": 0.8261 + }, + { + "start": 3912.98, + "end": 3915.23, + "probability": 0.7952 + }, + { + "start": 3916.36, + "end": 3921.88, + "probability": 0.9213 + }, + { + "start": 3922.98, + "end": 3926.7, + "probability": 0.8606 + }, + { + "start": 3926.72, + "end": 3929.04, + "probability": 0.9603 + }, + { + "start": 3929.74, + "end": 3931.5, + "probability": 0.9216 + }, + { + "start": 3932.04, + "end": 3932.36, + "probability": 0.8004 + }, + { + "start": 3932.58, + "end": 3932.9, + "probability": 0.9116 + }, + { + "start": 3934.28, + "end": 3935.16, + "probability": 0.8782 + }, + { + "start": 3935.92, + "end": 3937.94, + "probability": 0.2155 + }, + { + "start": 3941.12, + "end": 3941.68, + "probability": 0.6416 + }, + { + "start": 3942.24, + "end": 3943.4, + "probability": 0.6675 + }, + { + "start": 3945.46, + "end": 3950.26, + "probability": 0.8422 + }, + { + "start": 3951.08, + "end": 3952.56, + "probability": 0.6602 + }, + { + "start": 3954.22, + "end": 3959.07, + "probability": 0.9946 + }, + { + "start": 3981.1, + "end": 3982.2, + "probability": 0.7216 + }, + { + "start": 3983.94, + "end": 3985.68, + "probability": 0.7752 + }, + { + "start": 3989.0, + "end": 3990.08, + "probability": 0.8972 + }, + { + "start": 3992.28, + "end": 3998.32, + "probability": 0.9294 + }, + { + "start": 4000.09, + "end": 4002.24, + "probability": 0.9176 + }, + { + "start": 4004.54, + "end": 4007.62, + "probability": 0.0988 + }, + { + "start": 4013.2, + "end": 4013.82, + "probability": 0.5681 + }, + { + "start": 4015.68, + "end": 4017.62, + "probability": 0.6986 + }, + { + "start": 4021.34, + "end": 4022.28, + "probability": 0.9922 + }, + { + "start": 4026.32, + "end": 4027.44, + "probability": 0.8712 + }, + { + "start": 4029.78, + "end": 4030.87, + "probability": 0.9494 + }, + { + "start": 4035.46, + "end": 4037.34, + "probability": 0.862 + }, + { + "start": 4040.68, + "end": 4041.62, + "probability": 0.8593 + }, + { + "start": 4043.4, + "end": 4046.08, + "probability": 0.9765 + }, + { + "start": 4048.6, + "end": 4050.36, + "probability": 0.9725 + }, + { + "start": 4052.28, + "end": 4057.82, + "probability": 0.9957 + }, + { + "start": 4058.56, + "end": 4060.0, + "probability": 0.8328 + }, + { + "start": 4062.02, + "end": 4066.38, + "probability": 0.9613 + }, + { + "start": 4071.78, + "end": 4074.6, + "probability": 0.9836 + }, + { + "start": 4077.62, + "end": 4079.18, + "probability": 0.8559 + }, + { + "start": 4079.38, + "end": 4080.72, + "probability": 0.7421 + }, + { + "start": 4084.44, + "end": 4086.04, + "probability": 0.9515 + }, + { + "start": 4088.06, + "end": 4090.44, + "probability": 0.9937 + }, + { + "start": 4094.7, + "end": 4098.64, + "probability": 0.9985 + }, + { + "start": 4102.44, + "end": 4103.7, + "probability": 0.582 + }, + { + "start": 4107.16, + "end": 4107.88, + "probability": 0.9013 + }, + { + "start": 4109.28, + "end": 4111.76, + "probability": 0.996 + }, + { + "start": 4113.62, + "end": 4114.6, + "probability": 0.8291 + }, + { + "start": 4116.82, + "end": 4119.52, + "probability": 0.9255 + }, + { + "start": 4121.18, + "end": 4124.74, + "probability": 0.8323 + }, + { + "start": 4126.94, + "end": 4127.7, + "probability": 0.8971 + }, + { + "start": 4127.9, + "end": 4129.48, + "probability": 0.8549 + }, + { + "start": 4129.64, + "end": 4130.74, + "probability": 0.7888 + }, + { + "start": 4132.74, + "end": 4136.78, + "probability": 0.8713 + }, + { + "start": 4138.32, + "end": 4141.18, + "probability": 0.9911 + }, + { + "start": 4142.04, + "end": 4143.06, + "probability": 0.9607 + }, + { + "start": 4144.72, + "end": 4145.7, + "probability": 0.999 + }, + { + "start": 4147.46, + "end": 4150.0, + "probability": 0.615 + }, + { + "start": 4152.34, + "end": 4154.42, + "probability": 0.6378 + }, + { + "start": 4155.52, + "end": 4160.96, + "probability": 0.9443 + }, + { + "start": 4163.82, + "end": 4165.66, + "probability": 0.8383 + }, + { + "start": 4167.12, + "end": 4170.12, + "probability": 0.6715 + }, + { + "start": 4171.38, + "end": 4173.1, + "probability": 0.7704 + }, + { + "start": 4174.1, + "end": 4176.9, + "probability": 0.9889 + }, + { + "start": 4179.42, + "end": 4183.58, + "probability": 0.9682 + }, + { + "start": 4183.58, + "end": 4189.5, + "probability": 0.9979 + }, + { + "start": 4191.08, + "end": 4192.16, + "probability": 0.8218 + }, + { + "start": 4193.14, + "end": 4197.86, + "probability": 0.9979 + }, + { + "start": 4199.82, + "end": 4201.06, + "probability": 0.4835 + }, + { + "start": 4202.46, + "end": 4206.14, + "probability": 0.9759 + }, + { + "start": 4206.34, + "end": 4207.36, + "probability": 0.7224 + }, + { + "start": 4208.94, + "end": 4210.38, + "probability": 0.9443 + }, + { + "start": 4210.62, + "end": 4211.3, + "probability": 0.4273 + }, + { + "start": 4211.99, + "end": 4214.72, + "probability": 0.8229 + }, + { + "start": 4215.64, + "end": 4217.14, + "probability": 0.732 + }, + { + "start": 4218.38, + "end": 4222.64, + "probability": 0.9365 + }, + { + "start": 4223.52, + "end": 4226.96, + "probability": 0.9446 + }, + { + "start": 4228.3, + "end": 4232.54, + "probability": 0.9564 + }, + { + "start": 4233.84, + "end": 4235.64, + "probability": 0.9953 + }, + { + "start": 4235.68, + "end": 4236.24, + "probability": 0.526 + }, + { + "start": 4236.34, + "end": 4246.58, + "probability": 0.9858 + }, + { + "start": 4247.72, + "end": 4250.28, + "probability": 0.988 + }, + { + "start": 4250.98, + "end": 4251.32, + "probability": 0.5615 + }, + { + "start": 4251.36, + "end": 4254.74, + "probability": 0.9673 + }, + { + "start": 4254.74, + "end": 4258.3, + "probability": 0.9893 + }, + { + "start": 4259.06, + "end": 4260.54, + "probability": 0.9879 + }, + { + "start": 4263.58, + "end": 4264.16, + "probability": 0.8201 + }, + { + "start": 4268.3, + "end": 4269.82, + "probability": 0.8632 + }, + { + "start": 4270.56, + "end": 4272.04, + "probability": 0.6355 + }, + { + "start": 4273.52, + "end": 4275.9, + "probability": 0.998 + }, + { + "start": 4278.46, + "end": 4282.66, + "probability": 0.998 + }, + { + "start": 4283.2, + "end": 4285.0, + "probability": 0.5653 + }, + { + "start": 4286.04, + "end": 4287.3, + "probability": 0.7164 + }, + { + "start": 4288.4, + "end": 4289.12, + "probability": 0.5315 + }, + { + "start": 4289.2, + "end": 4293.92, + "probability": 0.9833 + }, + { + "start": 4296.54, + "end": 4305.22, + "probability": 0.9926 + }, + { + "start": 4305.56, + "end": 4308.3, + "probability": 0.8166 + }, + { + "start": 4309.68, + "end": 4310.62, + "probability": 0.7839 + }, + { + "start": 4312.06, + "end": 4313.28, + "probability": 0.957 + }, + { + "start": 4313.88, + "end": 4315.72, + "probability": 0.5532 + }, + { + "start": 4317.9, + "end": 4318.96, + "probability": 0.767 + }, + { + "start": 4319.02, + "end": 4319.53, + "probability": 0.8825 + }, + { + "start": 4319.66, + "end": 4320.46, + "probability": 0.9453 + }, + { + "start": 4320.6, + "end": 4322.96, + "probability": 0.9702 + }, + { + "start": 4323.56, + "end": 4324.14, + "probability": 0.4987 + }, + { + "start": 4325.24, + "end": 4325.86, + "probability": 0.9554 + }, + { + "start": 4327.06, + "end": 4327.68, + "probability": 0.9669 + }, + { + "start": 4328.46, + "end": 4329.36, + "probability": 0.9861 + }, + { + "start": 4330.86, + "end": 4333.0, + "probability": 0.9812 + }, + { + "start": 4334.4, + "end": 4337.34, + "probability": 0.9042 + }, + { + "start": 4339.68, + "end": 4341.12, + "probability": 0.9816 + }, + { + "start": 4342.42, + "end": 4346.0, + "probability": 0.837 + }, + { + "start": 4346.32, + "end": 4348.24, + "probability": 0.999 + }, + { + "start": 4349.0, + "end": 4351.96, + "probability": 0.9694 + }, + { + "start": 4352.34, + "end": 4353.68, + "probability": 0.8736 + }, + { + "start": 4355.98, + "end": 4356.82, + "probability": 0.4929 + }, + { + "start": 4356.84, + "end": 4358.76, + "probability": 0.8599 + }, + { + "start": 4359.04, + "end": 4361.06, + "probability": 0.8179 + }, + { + "start": 4361.42, + "end": 4362.52, + "probability": 0.9547 + }, + { + "start": 4363.2, + "end": 4366.36, + "probability": 0.7386 + }, + { + "start": 4369.1, + "end": 4372.76, + "probability": 0.9404 + }, + { + "start": 4374.02, + "end": 4374.92, + "probability": 0.9653 + }, + { + "start": 4375.02, + "end": 4376.2, + "probability": 0.8286 + }, + { + "start": 4376.52, + "end": 4377.78, + "probability": 0.9565 + }, + { + "start": 4378.74, + "end": 4380.49, + "probability": 0.7527 + }, + { + "start": 4381.3, + "end": 4384.01, + "probability": 0.671 + }, + { + "start": 4384.14, + "end": 4386.26, + "probability": 0.8824 + }, + { + "start": 4389.18, + "end": 4392.76, + "probability": 0.9622 + }, + { + "start": 4394.06, + "end": 4396.18, + "probability": 0.981 + }, + { + "start": 4396.3, + "end": 4397.88, + "probability": 0.7411 + }, + { + "start": 4398.74, + "end": 4399.68, + "probability": 0.7511 + }, + { + "start": 4400.76, + "end": 4401.84, + "probability": 0.9344 + }, + { + "start": 4403.24, + "end": 4404.82, + "probability": 0.9546 + }, + { + "start": 4406.26, + "end": 4407.06, + "probability": 0.9673 + }, + { + "start": 4410.56, + "end": 4411.62, + "probability": 0.7955 + }, + { + "start": 4413.5, + "end": 4414.28, + "probability": 0.9545 + }, + { + "start": 4414.88, + "end": 4419.28, + "probability": 0.9577 + }, + { + "start": 4422.52, + "end": 4424.96, + "probability": 0.8457 + }, + { + "start": 4426.54, + "end": 4429.68, + "probability": 0.9927 + }, + { + "start": 4430.28, + "end": 4431.84, + "probability": 0.9942 + }, + { + "start": 4433.84, + "end": 4436.67, + "probability": 0.9676 + }, + { + "start": 4441.8, + "end": 4442.3, + "probability": 0.0572 + }, + { + "start": 4442.3, + "end": 4442.3, + "probability": 0.0755 + }, + { + "start": 4442.3, + "end": 4442.3, + "probability": 0.1202 + }, + { + "start": 4442.3, + "end": 4442.3, + "probability": 0.2006 + }, + { + "start": 4444.32, + "end": 4446.06, + "probability": 0.7062 + }, + { + "start": 4446.12, + "end": 4446.8, + "probability": 0.7443 + }, + { + "start": 4446.94, + "end": 4448.64, + "probability": 0.9838 + }, + { + "start": 4448.7, + "end": 4449.14, + "probability": 0.6316 + }, + { + "start": 4449.86, + "end": 4451.36, + "probability": 0.6336 + }, + { + "start": 4459.24, + "end": 4459.26, + "probability": 0.0137 + }, + { + "start": 4459.26, + "end": 4460.84, + "probability": 0.7835 + }, + { + "start": 4464.54, + "end": 4465.64, + "probability": 0.9064 + }, + { + "start": 4466.32, + "end": 4467.52, + "probability": 0.785 + }, + { + "start": 4468.96, + "end": 4474.62, + "probability": 0.9912 + }, + { + "start": 4477.32, + "end": 4480.0, + "probability": 0.9691 + }, + { + "start": 4480.72, + "end": 4482.08, + "probability": 0.8385 + }, + { + "start": 4483.36, + "end": 4484.58, + "probability": 0.7949 + }, + { + "start": 4484.66, + "end": 4489.0, + "probability": 0.95 + }, + { + "start": 4490.18, + "end": 4492.0, + "probability": 0.9549 + }, + { + "start": 4493.14, + "end": 4495.2, + "probability": 0.8666 + }, + { + "start": 4496.44, + "end": 4499.18, + "probability": 0.9956 + }, + { + "start": 4499.34, + "end": 4499.68, + "probability": 0.6666 + }, + { + "start": 4500.66, + "end": 4501.96, + "probability": 0.7664 + }, + { + "start": 4503.7, + "end": 4506.32, + "probability": 0.9612 + }, + { + "start": 4506.82, + "end": 4508.78, + "probability": 0.8522 + }, + { + "start": 4510.22, + "end": 4513.06, + "probability": 0.9907 + }, + { + "start": 4513.5, + "end": 4515.74, + "probability": 0.9596 + }, + { + "start": 4515.82, + "end": 4519.0, + "probability": 0.9803 + }, + { + "start": 4521.16, + "end": 4521.62, + "probability": 0.8308 + }, + { + "start": 4524.14, + "end": 4525.88, + "probability": 0.6175 + }, + { + "start": 4528.2, + "end": 4529.42, + "probability": 0.9578 + }, + { + "start": 4530.14, + "end": 4531.9, + "probability": 0.6626 + }, + { + "start": 4532.84, + "end": 4535.1, + "probability": 0.991 + }, + { + "start": 4537.14, + "end": 4540.44, + "probability": 0.9377 + }, + { + "start": 4542.8, + "end": 4545.3, + "probability": 0.8547 + }, + { + "start": 4545.86, + "end": 4547.22, + "probability": 0.9008 + }, + { + "start": 4547.44, + "end": 4547.54, + "probability": 0.7922 + }, + { + "start": 4547.64, + "end": 4552.96, + "probability": 0.9758 + }, + { + "start": 4555.0, + "end": 4557.22, + "probability": 0.9922 + }, + { + "start": 4558.9, + "end": 4560.94, + "probability": 0.7716 + }, + { + "start": 4561.34, + "end": 4562.76, + "probability": 0.9983 + }, + { + "start": 4563.94, + "end": 4564.94, + "probability": 0.6982 + }, + { + "start": 4566.8, + "end": 4570.74, + "probability": 0.9209 + }, + { + "start": 4570.84, + "end": 4571.78, + "probability": 0.9888 + }, + { + "start": 4572.36, + "end": 4573.48, + "probability": 0.828 + }, + { + "start": 4575.62, + "end": 4576.78, + "probability": 0.7914 + }, + { + "start": 4576.96, + "end": 4577.48, + "probability": 0.9286 + }, + { + "start": 4577.56, + "end": 4578.92, + "probability": 0.9696 + }, + { + "start": 4580.02, + "end": 4580.92, + "probability": 0.9722 + }, + { + "start": 4583.06, + "end": 4585.02, + "probability": 0.9909 + }, + { + "start": 4587.42, + "end": 4588.4, + "probability": 0.9507 + }, + { + "start": 4588.56, + "end": 4589.36, + "probability": 0.7075 + }, + { + "start": 4589.9, + "end": 4594.48, + "probability": 0.8432 + }, + { + "start": 4594.76, + "end": 4597.16, + "probability": 0.9669 + }, + { + "start": 4597.36, + "end": 4598.56, + "probability": 0.8962 + }, + { + "start": 4601.14, + "end": 4603.21, + "probability": 0.9348 + }, + { + "start": 4604.24, + "end": 4607.06, + "probability": 0.9769 + }, + { + "start": 4609.74, + "end": 4610.68, + "probability": 0.8863 + }, + { + "start": 4611.8, + "end": 4614.08, + "probability": 0.9778 + }, + { + "start": 4615.08, + "end": 4616.32, + "probability": 0.5058 + }, + { + "start": 4617.1, + "end": 4620.16, + "probability": 0.9863 + }, + { + "start": 4623.4, + "end": 4625.34, + "probability": 0.9621 + }, + { + "start": 4626.1, + "end": 4628.88, + "probability": 0.9197 + }, + { + "start": 4630.74, + "end": 4633.36, + "probability": 0.8792 + }, + { + "start": 4633.98, + "end": 4636.08, + "probability": 0.9722 + }, + { + "start": 4636.16, + "end": 4636.5, + "probability": 0.9269 + }, + { + "start": 4636.54, + "end": 4636.76, + "probability": 0.8562 + }, + { + "start": 4636.8, + "end": 4637.26, + "probability": 0.9826 + }, + { + "start": 4637.52, + "end": 4637.94, + "probability": 0.9836 + }, + { + "start": 4638.04, + "end": 4638.5, + "probability": 0.9485 + }, + { + "start": 4639.18, + "end": 4640.22, + "probability": 0.7866 + }, + { + "start": 4640.28, + "end": 4640.92, + "probability": 0.8713 + }, + { + "start": 4641.92, + "end": 4643.3, + "probability": 0.5812 + }, + { + "start": 4643.92, + "end": 4644.88, + "probability": 0.9535 + }, + { + "start": 4645.72, + "end": 4651.7, + "probability": 0.9867 + }, + { + "start": 4652.12, + "end": 4657.74, + "probability": 0.9424 + }, + { + "start": 4658.36, + "end": 4659.1, + "probability": 0.8341 + }, + { + "start": 4659.68, + "end": 4660.82, + "probability": 0.8821 + }, + { + "start": 4662.44, + "end": 4663.6, + "probability": 0.9984 + }, + { + "start": 4665.0, + "end": 4666.52, + "probability": 0.9971 + }, + { + "start": 4670.54, + "end": 4672.84, + "probability": 0.9629 + }, + { + "start": 4675.14, + "end": 4675.14, + "probability": 0.9253 + }, + { + "start": 4677.92, + "end": 4680.02, + "probability": 0.9311 + }, + { + "start": 4680.76, + "end": 4681.52, + "probability": 0.8555 + }, + { + "start": 4683.7, + "end": 4684.82, + "probability": 0.9652 + }, + { + "start": 4685.96, + "end": 4688.91, + "probability": 0.7356 + }, + { + "start": 4689.64, + "end": 4691.4, + "probability": 0.909 + }, + { + "start": 4692.02, + "end": 4693.16, + "probability": 0.9482 + }, + { + "start": 4693.26, + "end": 4693.66, + "probability": 0.6452 + }, + { + "start": 4695.0, + "end": 4695.62, + "probability": 0.9597 + }, + { + "start": 4697.56, + "end": 4700.06, + "probability": 0.9907 + }, + { + "start": 4701.46, + "end": 4703.66, + "probability": 0.5855 + }, + { + "start": 4705.34, + "end": 4705.9, + "probability": 0.8558 + }, + { + "start": 4707.34, + "end": 4708.38, + "probability": 0.8903 + }, + { + "start": 4710.3, + "end": 4712.02, + "probability": 0.9753 + }, + { + "start": 4714.12, + "end": 4714.96, + "probability": 0.7926 + }, + { + "start": 4716.6, + "end": 4720.68, + "probability": 0.7752 + }, + { + "start": 4722.48, + "end": 4724.68, + "probability": 0.9165 + }, + { + "start": 4725.68, + "end": 4726.5, + "probability": 0.9718 + }, + { + "start": 4727.18, + "end": 4728.5, + "probability": 0.9824 + }, + { + "start": 4730.24, + "end": 4732.88, + "probability": 0.7051 + }, + { + "start": 4735.78, + "end": 4736.18, + "probability": 0.953 + }, + { + "start": 4736.52, + "end": 4736.96, + "probability": 0.9777 + }, + { + "start": 4737.12, + "end": 4737.62, + "probability": 0.9843 + }, + { + "start": 4737.7, + "end": 4739.94, + "probability": 0.9541 + }, + { + "start": 4739.94, + "end": 4742.12, + "probability": 0.9919 + }, + { + "start": 4743.14, + "end": 4745.45, + "probability": 0.9773 + }, + { + "start": 4746.62, + "end": 4749.62, + "probability": 0.8007 + }, + { + "start": 4750.4, + "end": 4752.88, + "probability": 0.9952 + }, + { + "start": 4754.06, + "end": 4757.7, + "probability": 0.987 + }, + { + "start": 4759.3, + "end": 4762.62, + "probability": 0.6839 + }, + { + "start": 4762.7, + "end": 4762.84, + "probability": 0.8376 + }, + { + "start": 4763.08, + "end": 4766.92, + "probability": 0.9939 + }, + { + "start": 4766.92, + "end": 4772.58, + "probability": 0.9783 + }, + { + "start": 4773.14, + "end": 4775.74, + "probability": 0.9995 + }, + { + "start": 4777.98, + "end": 4779.26, + "probability": 0.9961 + }, + { + "start": 4780.7, + "end": 4781.1, + "probability": 0.6753 + }, + { + "start": 4782.14, + "end": 4783.42, + "probability": 0.9995 + }, + { + "start": 4784.26, + "end": 4785.3, + "probability": 0.9915 + }, + { + "start": 4786.42, + "end": 4787.36, + "probability": 0.785 + }, + { + "start": 4788.48, + "end": 4789.82, + "probability": 0.9715 + }, + { + "start": 4790.06, + "end": 4791.36, + "probability": 0.8308 + }, + { + "start": 4791.94, + "end": 4793.02, + "probability": 0.9183 + }, + { + "start": 4793.9, + "end": 4795.62, + "probability": 0.8888 + }, + { + "start": 4796.4, + "end": 4797.2, + "probability": 0.7659 + }, + { + "start": 4799.32, + "end": 4801.6, + "probability": 0.9858 + }, + { + "start": 4802.1, + "end": 4802.52, + "probability": 0.4613 + }, + { + "start": 4803.72, + "end": 4807.5, + "probability": 0.8861 + }, + { + "start": 4808.72, + "end": 4810.0, + "probability": 0.9528 + }, + { + "start": 4810.36, + "end": 4815.24, + "probability": 0.9564 + }, + { + "start": 4820.44, + "end": 4821.0, + "probability": 0.4955 + }, + { + "start": 4821.98, + "end": 4824.92, + "probability": 0.9883 + }, + { + "start": 4826.32, + "end": 4827.8, + "probability": 0.8877 + }, + { + "start": 4829.98, + "end": 4832.32, + "probability": 0.6402 + }, + { + "start": 4832.9, + "end": 4833.82, + "probability": 0.9075 + }, + { + "start": 4835.82, + "end": 4837.48, + "probability": 0.9976 + }, + { + "start": 4837.72, + "end": 4838.62, + "probability": 0.9627 + }, + { + "start": 4839.72, + "end": 4842.44, + "probability": 0.8052 + }, + { + "start": 4843.82, + "end": 4844.55, + "probability": 0.8638 + }, + { + "start": 4844.96, + "end": 4847.92, + "probability": 0.9405 + }, + { + "start": 4848.64, + "end": 4851.28, + "probability": 0.9463 + }, + { + "start": 4852.98, + "end": 4854.7, + "probability": 0.8923 + }, + { + "start": 4856.0, + "end": 4857.08, + "probability": 0.9531 + }, + { + "start": 4858.44, + "end": 4859.8, + "probability": 0.6935 + }, + { + "start": 4861.24, + "end": 4865.9, + "probability": 0.9847 + }, + { + "start": 4867.76, + "end": 4873.12, + "probability": 0.8369 + }, + { + "start": 4874.44, + "end": 4874.66, + "probability": 0.8748 + }, + { + "start": 4875.48, + "end": 4876.44, + "probability": 0.9621 + }, + { + "start": 4878.28, + "end": 4881.32, + "probability": 0.8242 + }, + { + "start": 4882.12, + "end": 4887.42, + "probability": 0.9895 + }, + { + "start": 4887.5, + "end": 4888.12, + "probability": 0.7532 + }, + { + "start": 4888.56, + "end": 4889.78, + "probability": 0.898 + }, + { + "start": 4891.06, + "end": 4893.98, + "probability": 0.8635 + }, + { + "start": 4895.04, + "end": 4897.9, + "probability": 0.8306 + }, + { + "start": 4898.4, + "end": 4899.58, + "probability": 0.7845 + }, + { + "start": 4901.82, + "end": 4902.4, + "probability": 0.6406 + }, + { + "start": 4903.12, + "end": 4905.46, + "probability": 0.8255 + }, + { + "start": 4906.5, + "end": 4909.22, + "probability": 0.9922 + }, + { + "start": 4909.22, + "end": 4912.76, + "probability": 0.9271 + }, + { + "start": 4912.92, + "end": 4915.0, + "probability": 0.7899 + }, + { + "start": 4915.98, + "end": 4918.48, + "probability": 0.933 + }, + { + "start": 4919.04, + "end": 4919.7, + "probability": 0.2738 + }, + { + "start": 4920.62, + "end": 4922.83, + "probability": 0.7706 + }, + { + "start": 4924.62, + "end": 4924.76, + "probability": 0.2869 + }, + { + "start": 4927.7, + "end": 4930.76, + "probability": 0.9707 + }, + { + "start": 4930.84, + "end": 4931.85, + "probability": 0.7649 + }, + { + "start": 4932.54, + "end": 4934.24, + "probability": 0.855 + }, + { + "start": 4934.86, + "end": 4942.12, + "probability": 0.9877 + }, + { + "start": 4942.28, + "end": 4943.36, + "probability": 0.7687 + }, + { + "start": 4944.28, + "end": 4945.4, + "probability": 0.7561 + }, + { + "start": 4945.98, + "end": 4949.8, + "probability": 0.9329 + }, + { + "start": 4950.54, + "end": 4951.98, + "probability": 0.6882 + }, + { + "start": 4952.88, + "end": 4957.5, + "probability": 0.823 + }, + { + "start": 4958.24, + "end": 4962.0, + "probability": 0.9655 + }, + { + "start": 4962.16, + "end": 4966.94, + "probability": 0.8988 + }, + { + "start": 4967.6, + "end": 4968.68, + "probability": 0.9021 + }, + { + "start": 4970.66, + "end": 4971.64, + "probability": 0.916 + }, + { + "start": 4973.66, + "end": 4975.76, + "probability": 0.9951 + }, + { + "start": 4976.44, + "end": 4978.96, + "probability": 0.9681 + }, + { + "start": 4979.38, + "end": 4980.4, + "probability": 0.9829 + }, + { + "start": 4981.82, + "end": 4989.32, + "probability": 0.981 + }, + { + "start": 4989.4, + "end": 4991.92, + "probability": 0.9349 + }, + { + "start": 4993.4, + "end": 4996.6, + "probability": 0.8148 + }, + { + "start": 4998.04, + "end": 5000.74, + "probability": 0.9478 + }, + { + "start": 5003.48, + "end": 5008.48, + "probability": 0.9173 + }, + { + "start": 5008.6, + "end": 5009.54, + "probability": 0.7113 + }, + { + "start": 5009.94, + "end": 5013.68, + "probability": 0.9779 + }, + { + "start": 5015.08, + "end": 5016.16, + "probability": 0.8387 + }, + { + "start": 5017.96, + "end": 5020.02, + "probability": 0.8168 + }, + { + "start": 5020.66, + "end": 5021.04, + "probability": 0.7355 + }, + { + "start": 5021.66, + "end": 5023.96, + "probability": 0.9528 + }, + { + "start": 5024.9, + "end": 5028.32, + "probability": 0.9241 + }, + { + "start": 5028.44, + "end": 5031.28, + "probability": 0.9823 + }, + { + "start": 5031.34, + "end": 5031.52, + "probability": 0.7682 + }, + { + "start": 5031.54, + "end": 5035.1, + "probability": 0.9189 + }, + { + "start": 5035.12, + "end": 5038.26, + "probability": 0.9343 + }, + { + "start": 5039.4, + "end": 5042.98, + "probability": 0.9869 + }, + { + "start": 5043.06, + "end": 5044.18, + "probability": 0.6341 + }, + { + "start": 5044.68, + "end": 5045.58, + "probability": 0.9027 + }, + { + "start": 5045.62, + "end": 5046.74, + "probability": 0.882 + }, + { + "start": 5046.82, + "end": 5047.5, + "probability": 0.6547 + }, + { + "start": 5048.48, + "end": 5052.48, + "probability": 0.9917 + }, + { + "start": 5052.48, + "end": 5054.62, + "probability": 0.9648 + }, + { + "start": 5056.94, + "end": 5059.98, + "probability": 0.992 + }, + { + "start": 5059.98, + "end": 5062.66, + "probability": 0.9989 + }, + { + "start": 5064.54, + "end": 5067.74, + "probability": 0.8314 + }, + { + "start": 5067.86, + "end": 5072.88, + "probability": 0.9892 + }, + { + "start": 5074.46, + "end": 5076.5, + "probability": 0.9963 + }, + { + "start": 5076.68, + "end": 5078.36, + "probability": 0.9557 + }, + { + "start": 5078.94, + "end": 5080.16, + "probability": 0.6217 + }, + { + "start": 5081.68, + "end": 5082.8, + "probability": 0.8662 + }, + { + "start": 5083.8, + "end": 5084.32, + "probability": 0.9976 + }, + { + "start": 5087.26, + "end": 5091.24, + "probability": 0.977 + }, + { + "start": 5092.3, + "end": 5095.76, + "probability": 0.8786 + }, + { + "start": 5096.92, + "end": 5098.94, + "probability": 0.9889 + }, + { + "start": 5099.24, + "end": 5100.72, + "probability": 0.9679 + }, + { + "start": 5101.42, + "end": 5104.86, + "probability": 0.9739 + }, + { + "start": 5107.22, + "end": 5110.92, + "probability": 0.9902 + }, + { + "start": 5110.96, + "end": 5112.62, + "probability": 0.8045 + }, + { + "start": 5113.32, + "end": 5117.08, + "probability": 0.9038 + }, + { + "start": 5117.54, + "end": 5119.12, + "probability": 0.8276 + }, + { + "start": 5119.44, + "end": 5120.04, + "probability": 0.6379 + }, + { + "start": 5120.24, + "end": 5120.74, + "probability": 0.9151 + }, + { + "start": 5120.84, + "end": 5121.32, + "probability": 0.3318 + }, + { + "start": 5121.4, + "end": 5122.04, + "probability": 0.6037 + }, + { + "start": 5122.46, + "end": 5123.36, + "probability": 0.7596 + }, + { + "start": 5123.82, + "end": 5125.1, + "probability": 0.7765 + }, + { + "start": 5126.22, + "end": 5129.8, + "probability": 0.7607 + }, + { + "start": 5130.46, + "end": 5132.46, + "probability": 0.9352 + }, + { + "start": 5132.96, + "end": 5135.98, + "probability": 0.8194 + }, + { + "start": 5136.02, + "end": 5137.96, + "probability": 0.9772 + }, + { + "start": 5138.46, + "end": 5141.22, + "probability": 0.9421 + }, + { + "start": 5141.58, + "end": 5142.76, + "probability": 0.9006 + }, + { + "start": 5144.95, + "end": 5146.82, + "probability": 0.9737 + }, + { + "start": 5148.16, + "end": 5152.52, + "probability": 0.9447 + }, + { + "start": 5153.8, + "end": 5156.9, + "probability": 0.8735 + }, + { + "start": 5158.02, + "end": 5159.28, + "probability": 0.9544 + }, + { + "start": 5160.46, + "end": 5161.64, + "probability": 0.8538 + }, + { + "start": 5161.74, + "end": 5162.66, + "probability": 0.7595 + }, + { + "start": 5163.12, + "end": 5164.62, + "probability": 0.9279 + }, + { + "start": 5165.58, + "end": 5170.16, + "probability": 0.9674 + }, + { + "start": 5170.22, + "end": 5173.28, + "probability": 0.7746 + }, + { + "start": 5173.88, + "end": 5176.92, + "probability": 0.85 + }, + { + "start": 5177.96, + "end": 5179.04, + "probability": 0.6457 + }, + { + "start": 5181.08, + "end": 5182.24, + "probability": 0.7486 + }, + { + "start": 5183.4, + "end": 5184.0, + "probability": 0.9568 + }, + { + "start": 5186.32, + "end": 5186.84, + "probability": 0.7478 + }, + { + "start": 5187.92, + "end": 5188.32, + "probability": 0.6677 + }, + { + "start": 5190.0, + "end": 5191.24, + "probability": 0.9697 + }, + { + "start": 5191.98, + "end": 5192.84, + "probability": 0.992 + }, + { + "start": 5193.54, + "end": 5194.82, + "probability": 0.9291 + }, + { + "start": 5196.4, + "end": 5199.8, + "probability": 0.9925 + }, + { + "start": 5199.8, + "end": 5202.96, + "probability": 0.9978 + }, + { + "start": 5203.22, + "end": 5204.02, + "probability": 0.809 + }, + { + "start": 5206.18, + "end": 5209.1, + "probability": 0.9792 + }, + { + "start": 5210.12, + "end": 5213.32, + "probability": 0.9801 + }, + { + "start": 5214.16, + "end": 5217.56, + "probability": 0.9807 + }, + { + "start": 5217.56, + "end": 5219.8, + "probability": 0.9628 + }, + { + "start": 5220.6, + "end": 5222.98, + "probability": 0.948 + }, + { + "start": 5223.18, + "end": 5224.24, + "probability": 0.8639 + }, + { + "start": 5224.76, + "end": 5227.84, + "probability": 0.8539 + }, + { + "start": 5228.54, + "end": 5230.98, + "probability": 0.9642 + }, + { + "start": 5231.76, + "end": 5234.02, + "probability": 0.8558 + }, + { + "start": 5234.96, + "end": 5237.38, + "probability": 0.987 + }, + { + "start": 5238.02, + "end": 5239.58, + "probability": 0.861 + }, + { + "start": 5239.6, + "end": 5240.64, + "probability": 0.9985 + }, + { + "start": 5242.7, + "end": 5245.64, + "probability": 0.959 + }, + { + "start": 5246.6, + "end": 5247.54, + "probability": 0.996 + }, + { + "start": 5248.32, + "end": 5250.56, + "probability": 0.9448 + }, + { + "start": 5251.46, + "end": 5256.02, + "probability": 0.8476 + }, + { + "start": 5256.9, + "end": 5258.24, + "probability": 0.9814 + }, + { + "start": 5258.78, + "end": 5259.41, + "probability": 0.958 + }, + { + "start": 5260.02, + "end": 5261.96, + "probability": 0.8765 + }, + { + "start": 5262.68, + "end": 5269.0, + "probability": 0.9986 + }, + { + "start": 5269.84, + "end": 5272.28, + "probability": 0.9998 + }, + { + "start": 5272.82, + "end": 5274.94, + "probability": 0.9922 + }, + { + "start": 5276.28, + "end": 5282.18, + "probability": 0.9949 + }, + { + "start": 5282.96, + "end": 5285.22, + "probability": 0.8244 + }, + { + "start": 5286.26, + "end": 5293.24, + "probability": 0.9565 + }, + { + "start": 5294.32, + "end": 5296.67, + "probability": 0.8501 + }, + { + "start": 5298.4, + "end": 5303.62, + "probability": 0.9424 + }, + { + "start": 5304.5, + "end": 5307.6, + "probability": 0.9832 + }, + { + "start": 5307.7, + "end": 5309.04, + "probability": 0.9285 + }, + { + "start": 5309.78, + "end": 5312.7, + "probability": 0.9853 + }, + { + "start": 5313.24, + "end": 5316.08, + "probability": 0.9919 + }, + { + "start": 5317.16, + "end": 5317.88, + "probability": 0.5497 + }, + { + "start": 5318.4, + "end": 5323.16, + "probability": 0.7907 + }, + { + "start": 5323.16, + "end": 5327.08, + "probability": 0.5936 + }, + { + "start": 5328.98, + "end": 5331.12, + "probability": 0.7443 + }, + { + "start": 5332.08, + "end": 5333.02, + "probability": 0.9692 + }, + { + "start": 5334.22, + "end": 5335.11, + "probability": 0.9296 + }, + { + "start": 5335.52, + "end": 5335.78, + "probability": 0.5058 + }, + { + "start": 5336.97, + "end": 5338.6, + "probability": 0.5683 + }, + { + "start": 5338.68, + "end": 5340.8, + "probability": 0.7888 + }, + { + "start": 5340.8, + "end": 5343.72, + "probability": 0.9391 + }, + { + "start": 5345.02, + "end": 5346.38, + "probability": 0.7945 + }, + { + "start": 5347.42, + "end": 5350.46, + "probability": 0.9165 + }, + { + "start": 5350.6, + "end": 5352.58, + "probability": 0.8931 + }, + { + "start": 5353.38, + "end": 5354.55, + "probability": 0.9861 + }, + { + "start": 5356.7, + "end": 5358.18, + "probability": 0.9518 + }, + { + "start": 5359.24, + "end": 5362.14, + "probability": 0.997 + }, + { + "start": 5362.78, + "end": 5364.98, + "probability": 0.9288 + }, + { + "start": 5365.14, + "end": 5366.89, + "probability": 0.9352 + }, + { + "start": 5368.18, + "end": 5370.3, + "probability": 0.9938 + }, + { + "start": 5370.36, + "end": 5371.94, + "probability": 0.9788 + }, + { + "start": 5372.98, + "end": 5376.26, + "probability": 0.9766 + }, + { + "start": 5377.64, + "end": 5379.66, + "probability": 0.9191 + }, + { + "start": 5380.16, + "end": 5381.6, + "probability": 0.7727 + }, + { + "start": 5382.16, + "end": 5383.78, + "probability": 0.6142 + }, + { + "start": 5384.92, + "end": 5387.1, + "probability": 0.5527 + }, + { + "start": 5387.96, + "end": 5394.0, + "probability": 0.6442 + }, + { + "start": 5395.28, + "end": 5395.96, + "probability": 0.817 + }, + { + "start": 5395.96, + "end": 5399.66, + "probability": 0.9659 + }, + { + "start": 5400.28, + "end": 5404.64, + "probability": 0.914 + }, + { + "start": 5405.0, + "end": 5406.18, + "probability": 0.9436 + }, + { + "start": 5407.14, + "end": 5412.12, + "probability": 0.9801 + }, + { + "start": 5414.38, + "end": 5417.24, + "probability": 0.9556 + }, + { + "start": 5417.38, + "end": 5419.84, + "probability": 0.7784 + }, + { + "start": 5420.62, + "end": 5421.44, + "probability": 0.4958 + }, + { + "start": 5422.66, + "end": 5429.84, + "probability": 0.86 + }, + { + "start": 5429.94, + "end": 5431.28, + "probability": 0.9495 + }, + { + "start": 5431.92, + "end": 5432.72, + "probability": 0.8734 + }, + { + "start": 5433.74, + "end": 5439.6, + "probability": 0.8657 + }, + { + "start": 5440.1, + "end": 5443.5, + "probability": 0.997 + }, + { + "start": 5443.98, + "end": 5445.12, + "probability": 0.8205 + }, + { + "start": 5445.6, + "end": 5448.4, + "probability": 0.9501 + }, + { + "start": 5450.96, + "end": 5453.72, + "probability": 0.9977 + }, + { + "start": 5454.44, + "end": 5457.16, + "probability": 0.9808 + }, + { + "start": 5457.34, + "end": 5461.06, + "probability": 0.7982 + }, + { + "start": 5462.56, + "end": 5463.97, + "probability": 0.6605 + }, + { + "start": 5465.06, + "end": 5466.12, + "probability": 0.5066 + }, + { + "start": 5466.92, + "end": 5471.08, + "probability": 0.9659 + }, + { + "start": 5471.2, + "end": 5471.82, + "probability": 0.5767 + }, + { + "start": 5473.06, + "end": 5474.96, + "probability": 0.6523 + }, + { + "start": 5475.08, + "end": 5481.82, + "probability": 0.9129 + }, + { + "start": 5482.02, + "end": 5485.48, + "probability": 0.7108 + }, + { + "start": 5486.24, + "end": 5491.22, + "probability": 0.6041 + }, + { + "start": 5492.26, + "end": 5493.9, + "probability": 0.9265 + }, + { + "start": 5494.9, + "end": 5496.04, + "probability": 0.7826 + }, + { + "start": 5497.06, + "end": 5497.64, + "probability": 0.3596 + }, + { + "start": 5498.1, + "end": 5498.44, + "probability": 0.7477 + }, + { + "start": 5498.5, + "end": 5501.0, + "probability": 0.8998 + }, + { + "start": 5501.04, + "end": 5501.44, + "probability": 0.9829 + }, + { + "start": 5502.1, + "end": 5502.86, + "probability": 0.9369 + }, + { + "start": 5503.88, + "end": 5506.73, + "probability": 0.9833 + }, + { + "start": 5508.52, + "end": 5513.46, + "probability": 0.9301 + }, + { + "start": 5513.46, + "end": 5518.22, + "probability": 0.9904 + }, + { + "start": 5519.56, + "end": 5520.87, + "probability": 0.9434 + }, + { + "start": 5522.54, + "end": 5523.12, + "probability": 0.6717 + }, + { + "start": 5523.82, + "end": 5525.48, + "probability": 0.9224 + }, + { + "start": 5526.36, + "end": 5528.34, + "probability": 0.9785 + }, + { + "start": 5530.06, + "end": 5533.6, + "probability": 0.958 + }, + { + "start": 5534.46, + "end": 5535.96, + "probability": 0.9786 + }, + { + "start": 5536.68, + "end": 5537.32, + "probability": 0.9651 + }, + { + "start": 5538.72, + "end": 5539.54, + "probability": 0.9847 + }, + { + "start": 5539.62, + "end": 5540.26, + "probability": 0.9888 + }, + { + "start": 5540.36, + "end": 5540.9, + "probability": 0.9464 + }, + { + "start": 5540.92, + "end": 5541.52, + "probability": 0.9408 + }, + { + "start": 5542.16, + "end": 5544.83, + "probability": 0.9705 + }, + { + "start": 5547.58, + "end": 5549.2, + "probability": 0.8637 + }, + { + "start": 5549.26, + "end": 5550.94, + "probability": 0.8742 + }, + { + "start": 5551.7, + "end": 5553.2, + "probability": 0.9956 + }, + { + "start": 5553.34, + "end": 5554.24, + "probability": 0.9762 + }, + { + "start": 5555.74, + "end": 5556.55, + "probability": 0.9894 + }, + { + "start": 5556.94, + "end": 5558.16, + "probability": 0.9304 + }, + { + "start": 5559.52, + "end": 5563.06, + "probability": 0.8843 + }, + { + "start": 5564.62, + "end": 5565.06, + "probability": 0.4189 + }, + { + "start": 5565.12, + "end": 5565.48, + "probability": 0.7652 + }, + { + "start": 5567.88, + "end": 5572.58, + "probability": 0.9637 + }, + { + "start": 5574.66, + "end": 5575.84, + "probability": 0.9126 + }, + { + "start": 5577.0, + "end": 5578.72, + "probability": 0.9987 + }, + { + "start": 5579.68, + "end": 5580.26, + "probability": 0.6891 + }, + { + "start": 5581.84, + "end": 5585.34, + "probability": 0.8901 + }, + { + "start": 5588.32, + "end": 5589.28, + "probability": 0.9536 + }, + { + "start": 5591.06, + "end": 5592.42, + "probability": 0.8694 + }, + { + "start": 5593.96, + "end": 5594.46, + "probability": 0.7657 + }, + { + "start": 5595.7, + "end": 5599.22, + "probability": 0.9963 + }, + { + "start": 5602.62, + "end": 5604.16, + "probability": 0.9749 + }, + { + "start": 5605.18, + "end": 5609.34, + "probability": 0.9788 + }, + { + "start": 5609.52, + "end": 5610.2, + "probability": 0.8304 + }, + { + "start": 5610.64, + "end": 5611.06, + "probability": 0.6063 + }, + { + "start": 5611.76, + "end": 5615.04, + "probability": 0.8284 + }, + { + "start": 5615.42, + "end": 5616.24, + "probability": 0.9225 + }, + { + "start": 5618.06, + "end": 5619.96, + "probability": 0.8643 + }, + { + "start": 5620.54, + "end": 5622.52, + "probability": 0.9951 + }, + { + "start": 5623.88, + "end": 5624.98, + "probability": 0.9493 + }, + { + "start": 5625.98, + "end": 5626.92, + "probability": 0.9264 + }, + { + "start": 5627.94, + "end": 5629.15, + "probability": 0.8777 + }, + { + "start": 5629.52, + "end": 5630.16, + "probability": 0.9143 + }, + { + "start": 5631.36, + "end": 5632.28, + "probability": 0.7365 + }, + { + "start": 5633.26, + "end": 5635.64, + "probability": 0.9639 + }, + { + "start": 5636.72, + "end": 5639.76, + "probability": 0.9761 + }, + { + "start": 5640.38, + "end": 5640.98, + "probability": 0.9335 + }, + { + "start": 5641.5, + "end": 5642.32, + "probability": 0.5507 + }, + { + "start": 5643.2, + "end": 5644.3, + "probability": 0.9088 + }, + { + "start": 5645.12, + "end": 5646.12, + "probability": 0.9648 + }, + { + "start": 5647.22, + "end": 5647.64, + "probability": 0.9447 + }, + { + "start": 5648.44, + "end": 5648.9, + "probability": 0.9788 + }, + { + "start": 5650.26, + "end": 5650.74, + "probability": 0.8806 + }, + { + "start": 5652.16, + "end": 5653.84, + "probability": 0.6961 + }, + { + "start": 5654.86, + "end": 5657.32, + "probability": 0.9995 + }, + { + "start": 5658.68, + "end": 5660.24, + "probability": 0.7519 + }, + { + "start": 5661.82, + "end": 5666.42, + "probability": 0.994 + }, + { + "start": 5667.12, + "end": 5667.36, + "probability": 0.9539 + }, + { + "start": 5668.06, + "end": 5668.48, + "probability": 0.6534 + }, + { + "start": 5669.12, + "end": 5670.25, + "probability": 0.6469 + }, + { + "start": 5671.14, + "end": 5672.04, + "probability": 0.9901 + }, + { + "start": 5673.0, + "end": 5676.26, + "probability": 0.7873 + }, + { + "start": 5677.68, + "end": 5679.5, + "probability": 0.7778 + }, + { + "start": 5680.0, + "end": 5681.88, + "probability": 0.6968 + }, + { + "start": 5682.76, + "end": 5683.78, + "probability": 0.2009 + }, + { + "start": 5684.52, + "end": 5686.4, + "probability": 0.9662 + }, + { + "start": 5688.56, + "end": 5689.58, + "probability": 0.9958 + }, + { + "start": 5690.75, + "end": 5693.3, + "probability": 0.8364 + }, + { + "start": 5694.86, + "end": 5697.92, + "probability": 0.9068 + }, + { + "start": 5699.4, + "end": 5700.5, + "probability": 0.9168 + }, + { + "start": 5701.04, + "end": 5701.8, + "probability": 0.5214 + }, + { + "start": 5703.98, + "end": 5707.5, + "probability": 0.808 + }, + { + "start": 5708.3, + "end": 5708.76, + "probability": 0.1605 + }, + { + "start": 5710.66, + "end": 5711.4, + "probability": 0.8857 + }, + { + "start": 5711.96, + "end": 5714.18, + "probability": 0.9782 + }, + { + "start": 5715.32, + "end": 5717.08, + "probability": 0.9106 + }, + { + "start": 5717.96, + "end": 5718.49, + "probability": 0.986 + }, + { + "start": 5719.7, + "end": 5722.8, + "probability": 0.9655 + }, + { + "start": 5723.5, + "end": 5724.04, + "probability": 0.8234 + }, + { + "start": 5724.58, + "end": 5725.1, + "probability": 0.9804 + }, + { + "start": 5725.72, + "end": 5726.24, + "probability": 0.9495 + }, + { + "start": 5726.9, + "end": 5727.16, + "probability": 0.915 + }, + { + "start": 5727.94, + "end": 5729.32, + "probability": 0.9982 + }, + { + "start": 5729.86, + "end": 5730.1, + "probability": 0.9739 + }, + { + "start": 5730.66, + "end": 5730.9, + "probability": 0.7702 + }, + { + "start": 5734.32, + "end": 5735.37, + "probability": 0.8286 + }, + { + "start": 5736.58, + "end": 5740.26, + "probability": 0.8142 + }, + { + "start": 5747.24, + "end": 5751.38, + "probability": 0.9038 + }, + { + "start": 5752.54, + "end": 5753.41, + "probability": 0.65 + }, + { + "start": 5754.28, + "end": 5755.02, + "probability": 0.9749 + }, + { + "start": 5755.16, + "end": 5757.48, + "probability": 0.9956 + }, + { + "start": 5758.1, + "end": 5759.28, + "probability": 0.9628 + }, + { + "start": 5760.8, + "end": 5764.08, + "probability": 0.74 + }, + { + "start": 5764.94, + "end": 5767.26, + "probability": 0.7178 + }, + { + "start": 5767.82, + "end": 5771.48, + "probability": 0.9366 + }, + { + "start": 5772.54, + "end": 5776.34, + "probability": 0.9587 + }, + { + "start": 5777.14, + "end": 5780.2, + "probability": 0.9395 + }, + { + "start": 5780.76, + "end": 5782.24, + "probability": 0.6775 + }, + { + "start": 5782.88, + "end": 5784.34, + "probability": 0.6105 + }, + { + "start": 5785.36, + "end": 5787.8, + "probability": 0.9187 + }, + { + "start": 5788.28, + "end": 5788.58, + "probability": 0.6565 + }, + { + "start": 5788.64, + "end": 5792.16, + "probability": 0.8894 + }, + { + "start": 5792.22, + "end": 5793.32, + "probability": 0.9493 + }, + { + "start": 5795.14, + "end": 5795.62, + "probability": 0.7078 + }, + { + "start": 5795.86, + "end": 5796.18, + "probability": 0.6559 + }, + { + "start": 5796.26, + "end": 5796.6, + "probability": 0.401 + }, + { + "start": 5796.66, + "end": 5797.32, + "probability": 0.671 + }, + { + "start": 5797.46, + "end": 5797.62, + "probability": 0.8719 + }, + { + "start": 5797.64, + "end": 5798.14, + "probability": 0.6862 + }, + { + "start": 5798.88, + "end": 5805.52, + "probability": 0.7615 + }, + { + "start": 5805.64, + "end": 5806.54, + "probability": 0.9048 + }, + { + "start": 5807.52, + "end": 5811.68, + "probability": 0.9011 + }, + { + "start": 5812.46, + "end": 5815.72, + "probability": 0.7396 + }, + { + "start": 5817.43, + "end": 5821.38, + "probability": 0.8992 + }, + { + "start": 5822.0, + "end": 5824.8, + "probability": 0.7818 + }, + { + "start": 5825.36, + "end": 5828.58, + "probability": 0.9651 + }, + { + "start": 5828.9, + "end": 5829.88, + "probability": 0.7336 + }, + { + "start": 5830.18, + "end": 5830.88, + "probability": 0.4454 + }, + { + "start": 5830.96, + "end": 5832.42, + "probability": 0.6236 + }, + { + "start": 5832.42, + "end": 5833.18, + "probability": 0.6578 + }, + { + "start": 5847.8, + "end": 5848.24, + "probability": 0.0814 + }, + { + "start": 5848.24, + "end": 5848.24, + "probability": 0.0139 + }, + { + "start": 5848.24, + "end": 5850.94, + "probability": 0.9286 + }, + { + "start": 5851.34, + "end": 5851.78, + "probability": 0.3797 + }, + { + "start": 5852.36, + "end": 5853.78, + "probability": 0.5795 + }, + { + "start": 5854.77, + "end": 5857.34, + "probability": 0.7694 + }, + { + "start": 5859.66, + "end": 5861.28, + "probability": 0.997 + }, + { + "start": 5862.66, + "end": 5865.38, + "probability": 0.99 + }, + { + "start": 5865.56, + "end": 5866.08, + "probability": 0.945 + }, + { + "start": 5866.46, + "end": 5868.02, + "probability": 0.752 + }, + { + "start": 5868.94, + "end": 5869.66, + "probability": 0.4596 + }, + { + "start": 5870.68, + "end": 5875.84, + "probability": 0.9687 + }, + { + "start": 5877.86, + "end": 5879.64, + "probability": 0.5433 + }, + { + "start": 5880.42, + "end": 5882.3, + "probability": 0.9932 + }, + { + "start": 5882.82, + "end": 5884.0, + "probability": 0.9972 + }, + { + "start": 5885.62, + "end": 5892.24, + "probability": 0.9162 + }, + { + "start": 5892.34, + "end": 5894.26, + "probability": 0.9761 + }, + { + "start": 5894.74, + "end": 5895.62, + "probability": 0.9973 + }, + { + "start": 5896.18, + "end": 5898.86, + "probability": 0.9912 + }, + { + "start": 5899.54, + "end": 5902.74, + "probability": 0.8858 + }, + { + "start": 5903.28, + "end": 5907.04, + "probability": 0.9445 + }, + { + "start": 5907.3, + "end": 5910.69, + "probability": 0.7887 + }, + { + "start": 5911.38, + "end": 5915.22, + "probability": 0.9971 + }, + { + "start": 5915.22, + "end": 5918.22, + "probability": 0.9641 + }, + { + "start": 5918.88, + "end": 5920.74, + "probability": 0.8037 + }, + { + "start": 5921.48, + "end": 5923.8, + "probability": 0.8876 + }, + { + "start": 5924.64, + "end": 5929.62, + "probability": 0.9888 + }, + { + "start": 5930.2, + "end": 5931.02, + "probability": 0.6899 + }, + { + "start": 5931.04, + "end": 5932.06, + "probability": 0.8423 + }, + { + "start": 5932.26, + "end": 5934.12, + "probability": 0.8913 + }, + { + "start": 5934.92, + "end": 5940.62, + "probability": 0.947 + }, + { + "start": 5941.28, + "end": 5942.06, + "probability": 0.5402 + }, + { + "start": 5942.6, + "end": 5946.82, + "probability": 0.8298 + }, + { + "start": 5947.3, + "end": 5949.42, + "probability": 0.9824 + }, + { + "start": 5949.42, + "end": 5953.64, + "probability": 0.9935 + }, + { + "start": 5955.65, + "end": 5961.04, + "probability": 0.566 + }, + { + "start": 5961.72, + "end": 5967.0, + "probability": 0.9907 + }, + { + "start": 5967.86, + "end": 5968.6, + "probability": 0.851 + }, + { + "start": 5969.92, + "end": 5972.96, + "probability": 0.8783 + }, + { + "start": 5973.56, + "end": 5975.12, + "probability": 0.5088 + }, + { + "start": 5976.04, + "end": 5977.96, + "probability": 0.9919 + }, + { + "start": 5978.98, + "end": 5979.78, + "probability": 0.6409 + }, + { + "start": 5980.84, + "end": 5984.52, + "probability": 0.7004 + }, + { + "start": 5984.76, + "end": 5988.9, + "probability": 0.7224 + }, + { + "start": 5989.32, + "end": 5990.28, + "probability": 0.9011 + }, + { + "start": 5991.04, + "end": 5993.24, + "probability": 0.7251 + }, + { + "start": 5993.66, + "end": 5996.77, + "probability": 0.9823 + }, + { + "start": 5997.24, + "end": 5998.12, + "probability": 0.8445 + }, + { + "start": 5998.3, + "end": 6000.02, + "probability": 0.7977 + }, + { + "start": 6000.42, + "end": 6001.1, + "probability": 0.6104 + }, + { + "start": 6002.52, + "end": 6007.14, + "probability": 0.8651 + }, + { + "start": 6007.66, + "end": 6009.24, + "probability": 0.9255 + }, + { + "start": 6010.32, + "end": 6013.4, + "probability": 0.9519 + }, + { + "start": 6014.1, + "end": 6016.3, + "probability": 0.741 + }, + { + "start": 6017.04, + "end": 6022.12, + "probability": 0.8235 + }, + { + "start": 6022.86, + "end": 6023.6, + "probability": 0.7065 + }, + { + "start": 6024.64, + "end": 6028.52, + "probability": 0.9536 + }, + { + "start": 6028.7, + "end": 6030.82, + "probability": 0.8531 + }, + { + "start": 6030.94, + "end": 6031.14, + "probability": 0.9393 + }, + { + "start": 6032.26, + "end": 6033.38, + "probability": 0.8558 + }, + { + "start": 6033.96, + "end": 6034.96, + "probability": 0.6707 + }, + { + "start": 6036.02, + "end": 6036.54, + "probability": 0.9091 + }, + { + "start": 6037.24, + "end": 6038.74, + "probability": 0.6939 + }, + { + "start": 6038.92, + "end": 6043.44, + "probability": 0.9415 + }, + { + "start": 6043.68, + "end": 6043.92, + "probability": 0.7927 + }, + { + "start": 6044.54, + "end": 6046.16, + "probability": 0.777 + }, + { + "start": 6047.26, + "end": 6051.84, + "probability": 0.9717 + }, + { + "start": 6052.76, + "end": 6054.06, + "probability": 0.1821 + }, + { + "start": 6055.04, + "end": 6057.5, + "probability": 0.9961 + }, + { + "start": 6057.5, + "end": 6057.9, + "probability": 0.571 + }, + { + "start": 6058.78, + "end": 6060.4, + "probability": 0.9875 + }, + { + "start": 6061.8, + "end": 6064.04, + "probability": 0.9878 + }, + { + "start": 6064.2, + "end": 6066.3, + "probability": 0.9315 + }, + { + "start": 6068.3, + "end": 6070.36, + "probability": 0.9932 + }, + { + "start": 6070.68, + "end": 6071.7, + "probability": 0.8022 + }, + { + "start": 6072.96, + "end": 6074.7, + "probability": 0.882 + }, + { + "start": 6074.74, + "end": 6076.64, + "probability": 0.9815 + }, + { + "start": 6077.38, + "end": 6079.84, + "probability": 0.9118 + }, + { + "start": 6080.22, + "end": 6083.25, + "probability": 0.9613 + }, + { + "start": 6083.76, + "end": 6085.8, + "probability": 0.9852 + }, + { + "start": 6086.36, + "end": 6088.0, + "probability": 0.8089 + }, + { + "start": 6089.0, + "end": 6090.98, + "probability": 0.5165 + }, + { + "start": 6091.71, + "end": 6093.18, + "probability": 0.9387 + }, + { + "start": 6093.24, + "end": 6095.42, + "probability": 0.9924 + }, + { + "start": 6096.04, + "end": 6097.42, + "probability": 0.7374 + }, + { + "start": 6097.5, + "end": 6098.38, + "probability": 0.967 + }, + { + "start": 6098.88, + "end": 6100.26, + "probability": 0.9592 + }, + { + "start": 6100.7, + "end": 6103.36, + "probability": 0.9133 + }, + { + "start": 6104.1, + "end": 6107.42, + "probability": 0.7298 + }, + { + "start": 6108.8, + "end": 6109.48, + "probability": 0.8931 + }, + { + "start": 6110.54, + "end": 6116.9, + "probability": 0.9952 + }, + { + "start": 6117.5, + "end": 6120.0, + "probability": 0.9915 + }, + { + "start": 6120.04, + "end": 6124.14, + "probability": 0.9527 + }, + { + "start": 6124.66, + "end": 6126.36, + "probability": 0.8143 + }, + { + "start": 6126.5, + "end": 6128.5, + "probability": 0.9619 + }, + { + "start": 6128.68, + "end": 6133.68, + "probability": 0.9005 + }, + { + "start": 6134.26, + "end": 6134.96, + "probability": 0.9546 + }, + { + "start": 6135.54, + "end": 6137.74, + "probability": 0.8184 + }, + { + "start": 6138.46, + "end": 6139.2, + "probability": 0.566 + }, + { + "start": 6139.98, + "end": 6143.98, + "probability": 0.9941 + }, + { + "start": 6145.76, + "end": 6147.16, + "probability": 0.6226 + }, + { + "start": 6153.72, + "end": 6155.4, + "probability": 0.5536 + }, + { + "start": 6156.42, + "end": 6158.2, + "probability": 0.9088 + }, + { + "start": 6158.9, + "end": 6163.58, + "probability": 0.9543 + }, + { + "start": 6164.36, + "end": 6167.62, + "probability": 0.9413 + }, + { + "start": 6168.18, + "end": 6175.42, + "probability": 0.9932 + }, + { + "start": 6176.84, + "end": 6184.38, + "probability": 0.9835 + }, + { + "start": 6185.9, + "end": 6189.92, + "probability": 0.9978 + }, + { + "start": 6190.46, + "end": 6191.96, + "probability": 0.9632 + }, + { + "start": 6193.18, + "end": 6195.72, + "probability": 0.9399 + }, + { + "start": 6196.72, + "end": 6200.98, + "probability": 0.995 + }, + { + "start": 6201.4, + "end": 6203.88, + "probability": 0.9797 + }, + { + "start": 6204.94, + "end": 6208.68, + "probability": 0.9966 + }, + { + "start": 6209.64, + "end": 6211.58, + "probability": 0.7206 + }, + { + "start": 6212.8, + "end": 6215.5, + "probability": 0.542 + }, + { + "start": 6216.46, + "end": 6221.31, + "probability": 0.9699 + }, + { + "start": 6223.38, + "end": 6225.88, + "probability": 0.9819 + }, + { + "start": 6227.88, + "end": 6234.44, + "probability": 0.9969 + }, + { + "start": 6235.28, + "end": 6239.16, + "probability": 0.994 + }, + { + "start": 6240.64, + "end": 6242.92, + "probability": 0.9788 + }, + { + "start": 6243.04, + "end": 6245.62, + "probability": 0.9156 + }, + { + "start": 6246.6, + "end": 6249.88, + "probability": 0.827 + }, + { + "start": 6250.4, + "end": 6253.7, + "probability": 0.9886 + }, + { + "start": 6255.02, + "end": 6256.06, + "probability": 0.964 + }, + { + "start": 6256.68, + "end": 6258.56, + "probability": 0.9885 + }, + { + "start": 6259.6, + "end": 6263.96, + "probability": 0.9707 + }, + { + "start": 6264.48, + "end": 6265.2, + "probability": 0.8393 + }, + { + "start": 6265.92, + "end": 6269.64, + "probability": 0.7809 + }, + { + "start": 6270.44, + "end": 6274.66, + "probability": 0.9109 + }, + { + "start": 6275.88, + "end": 6278.84, + "probability": 0.989 + }, + { + "start": 6279.46, + "end": 6279.68, + "probability": 0.7064 + }, + { + "start": 6281.22, + "end": 6284.04, + "probability": 0.756 + }, + { + "start": 6284.04, + "end": 6288.76, + "probability": 0.9734 + }, + { + "start": 6293.08, + "end": 6296.24, + "probability": 0.8562 + }, + { + "start": 6296.38, + "end": 6297.86, + "probability": 0.7607 + }, + { + "start": 6297.96, + "end": 6298.46, + "probability": 0.5327 + }, + { + "start": 6299.26, + "end": 6302.06, + "probability": 0.9842 + }, + { + "start": 6302.18, + "end": 6306.06, + "probability": 0.8454 + }, + { + "start": 6307.06, + "end": 6311.64, + "probability": 0.9977 + }, + { + "start": 6315.22, + "end": 6316.42, + "probability": 0.665 + }, + { + "start": 6317.5, + "end": 6322.72, + "probability": 0.7427 + }, + { + "start": 6323.34, + "end": 6326.18, + "probability": 0.9858 + }, + { + "start": 6328.86, + "end": 6331.66, + "probability": 0.9143 + }, + { + "start": 6332.56, + "end": 6333.82, + "probability": 0.6898 + }, + { + "start": 6334.84, + "end": 6337.16, + "probability": 0.9497 + }, + { + "start": 6338.7, + "end": 6340.46, + "probability": 0.6741 + }, + { + "start": 6342.62, + "end": 6349.24, + "probability": 0.896 + }, + { + "start": 6349.28, + "end": 6350.76, + "probability": 0.6159 + }, + { + "start": 6351.1, + "end": 6356.44, + "probability": 0.909 + }, + { + "start": 6358.18, + "end": 6361.0, + "probability": 0.9766 + }, + { + "start": 6362.44, + "end": 6364.98, + "probability": 0.9784 + }, + { + "start": 6365.12, + "end": 6367.56, + "probability": 0.9966 + }, + { + "start": 6368.3, + "end": 6369.42, + "probability": 0.884 + }, + { + "start": 6370.08, + "end": 6374.18, + "probability": 0.9395 + }, + { + "start": 6374.42, + "end": 6375.94, + "probability": 0.6576 + }, + { + "start": 6376.1, + "end": 6376.4, + "probability": 0.8227 + }, + { + "start": 6377.62, + "end": 6382.78, + "probability": 0.98 + }, + { + "start": 6383.38, + "end": 6388.02, + "probability": 0.9005 + }, + { + "start": 6388.58, + "end": 6391.34, + "probability": 0.9893 + }, + { + "start": 6391.86, + "end": 6394.78, + "probability": 0.9829 + }, + { + "start": 6395.4, + "end": 6396.62, + "probability": 0.9928 + }, + { + "start": 6398.38, + "end": 6399.44, + "probability": 0.9976 + }, + { + "start": 6400.8, + "end": 6401.96, + "probability": 0.998 + }, + { + "start": 6402.82, + "end": 6403.72, + "probability": 0.866 + }, + { + "start": 6403.82, + "end": 6407.04, + "probability": 0.9426 + }, + { + "start": 6408.16, + "end": 6413.42, + "probability": 0.994 + }, + { + "start": 6413.72, + "end": 6414.08, + "probability": 0.5277 + }, + { + "start": 6414.46, + "end": 6417.64, + "probability": 0.9971 + }, + { + "start": 6417.82, + "end": 6420.54, + "probability": 0.9495 + }, + { + "start": 6421.1, + "end": 6422.1, + "probability": 0.9884 + }, + { + "start": 6424.34, + "end": 6424.58, + "probability": 0.5088 + }, + { + "start": 6425.58, + "end": 6426.94, + "probability": 0.8307 + }, + { + "start": 6436.92, + "end": 6438.62, + "probability": 0.789 + }, + { + "start": 6439.28, + "end": 6441.72, + "probability": 0.9683 + }, + { + "start": 6443.81, + "end": 6446.8, + "probability": 0.9668 + }, + { + "start": 6447.58, + "end": 6448.22, + "probability": 0.7392 + }, + { + "start": 6448.76, + "end": 6451.53, + "probability": 0.9509 + }, + { + "start": 6452.54, + "end": 6452.88, + "probability": 0.3344 + }, + { + "start": 6452.96, + "end": 6457.1, + "probability": 0.7763 + }, + { + "start": 6457.5, + "end": 6459.8, + "probability": 0.9888 + }, + { + "start": 6459.98, + "end": 6461.36, + "probability": 0.8547 + }, + { + "start": 6461.48, + "end": 6462.22, + "probability": 0.873 + }, + { + "start": 6463.16, + "end": 6468.16, + "probability": 0.9987 + }, + { + "start": 6469.2, + "end": 6472.3, + "probability": 0.986 + }, + { + "start": 6473.54, + "end": 6475.42, + "probability": 0.8687 + }, + { + "start": 6475.52, + "end": 6475.84, + "probability": 0.4521 + }, + { + "start": 6475.86, + "end": 6476.64, + "probability": 0.9214 + }, + { + "start": 6478.0, + "end": 6479.61, + "probability": 0.7727 + }, + { + "start": 6479.82, + "end": 6482.37, + "probability": 0.8577 + }, + { + "start": 6482.98, + "end": 6486.32, + "probability": 0.7798 + }, + { + "start": 6486.88, + "end": 6494.04, + "probability": 0.9933 + }, + { + "start": 6494.24, + "end": 6495.56, + "probability": 0.8276 + }, + { + "start": 6496.28, + "end": 6498.1, + "probability": 0.6605 + }, + { + "start": 6498.88, + "end": 6501.8, + "probability": 0.9255 + }, + { + "start": 6501.8, + "end": 6504.26, + "probability": 0.999 + }, + { + "start": 6504.78, + "end": 6505.7, + "probability": 0.8126 + }, + { + "start": 6506.6, + "end": 6511.96, + "probability": 0.9827 + }, + { + "start": 6512.74, + "end": 6513.86, + "probability": 0.6896 + }, + { + "start": 6514.2, + "end": 6520.3, + "probability": 0.989 + }, + { + "start": 6521.14, + "end": 6524.54, + "probability": 0.9504 + }, + { + "start": 6525.28, + "end": 6526.42, + "probability": 0.9019 + }, + { + "start": 6529.0, + "end": 6529.02, + "probability": 0.6314 + }, + { + "start": 6529.02, + "end": 6532.3, + "probability": 0.9751 + }, + { + "start": 6533.59, + "end": 6537.2, + "probability": 0.9618 + }, + { + "start": 6538.08, + "end": 6539.22, + "probability": 0.9085 + }, + { + "start": 6539.68, + "end": 6542.5, + "probability": 0.9822 + }, + { + "start": 6542.58, + "end": 6544.92, + "probability": 0.9007 + }, + { + "start": 6545.62, + "end": 6545.62, + "probability": 0.1117 + }, + { + "start": 6546.68, + "end": 6547.68, + "probability": 0.683 + }, + { + "start": 6548.48, + "end": 6549.68, + "probability": 0.9371 + }, + { + "start": 6550.6, + "end": 6552.21, + "probability": 0.9621 + }, + { + "start": 6552.32, + "end": 6552.72, + "probability": 0.9931 + }, + { + "start": 6554.89, + "end": 6558.1, + "probability": 0.9893 + }, + { + "start": 6558.54, + "end": 6559.62, + "probability": 0.7887 + }, + { + "start": 6559.72, + "end": 6562.72, + "probability": 0.7674 + }, + { + "start": 6563.76, + "end": 6566.9, + "probability": 0.9759 + }, + { + "start": 6566.9, + "end": 6569.82, + "probability": 0.9956 + }, + { + "start": 6571.46, + "end": 6573.16, + "probability": 0.9465 + }, + { + "start": 6574.86, + "end": 6581.08, + "probability": 0.9915 + }, + { + "start": 6581.28, + "end": 6582.86, + "probability": 0.745 + }, + { + "start": 6583.48, + "end": 6585.68, + "probability": 0.9102 + }, + { + "start": 6586.8, + "end": 6587.74, + "probability": 0.8688 + }, + { + "start": 6588.04, + "end": 6594.28, + "probability": 0.9741 + }, + { + "start": 6594.5, + "end": 6597.84, + "probability": 0.8901 + }, + { + "start": 6597.92, + "end": 6599.12, + "probability": 0.7709 + }, + { + "start": 6599.76, + "end": 6600.2, + "probability": 0.1632 + }, + { + "start": 6600.24, + "end": 6602.22, + "probability": 0.9661 + }, + { + "start": 6602.72, + "end": 6605.64, + "probability": 0.8542 + }, + { + "start": 6607.12, + "end": 6611.06, + "probability": 0.9716 + }, + { + "start": 6612.26, + "end": 6614.14, + "probability": 0.884 + }, + { + "start": 6614.56, + "end": 6616.52, + "probability": 0.7935 + }, + { + "start": 6616.56, + "end": 6617.74, + "probability": 0.9215 + }, + { + "start": 6618.32, + "end": 6620.72, + "probability": 0.9803 + }, + { + "start": 6621.56, + "end": 6623.14, + "probability": 0.8794 + }, + { + "start": 6624.18, + "end": 6625.88, + "probability": 0.9731 + }, + { + "start": 6628.2, + "end": 6629.68, + "probability": 0.8559 + }, + { + "start": 6638.06, + "end": 6639.92, + "probability": 0.851 + }, + { + "start": 6641.58, + "end": 6645.62, + "probability": 0.9883 + }, + { + "start": 6647.12, + "end": 6648.94, + "probability": 0.7472 + }, + { + "start": 6650.48, + "end": 6653.3, + "probability": 0.8222 + }, + { + "start": 6654.32, + "end": 6656.82, + "probability": 0.7377 + }, + { + "start": 6656.96, + "end": 6661.84, + "probability": 0.7401 + }, + { + "start": 6662.96, + "end": 6664.46, + "probability": 0.8689 + }, + { + "start": 6665.5, + "end": 6667.18, + "probability": 0.9605 + }, + { + "start": 6668.42, + "end": 6670.8, + "probability": 0.6247 + }, + { + "start": 6671.74, + "end": 6672.5, + "probability": 0.4712 + }, + { + "start": 6672.52, + "end": 6673.04, + "probability": 0.5893 + }, + { + "start": 6673.1, + "end": 6679.28, + "probability": 0.8649 + }, + { + "start": 6680.34, + "end": 6680.36, + "probability": 0.1016 + }, + { + "start": 6680.48, + "end": 6682.3, + "probability": 0.6486 + }, + { + "start": 6682.4, + "end": 6682.68, + "probability": 0.5977 + }, + { + "start": 6683.0, + "end": 6684.84, + "probability": 0.956 + }, + { + "start": 6684.94, + "end": 6686.74, + "probability": 0.9209 + }, + { + "start": 6686.76, + "end": 6687.16, + "probability": 0.9073 + }, + { + "start": 6688.48, + "end": 6690.4, + "probability": 0.7146 + }, + { + "start": 6690.42, + "end": 6690.72, + "probability": 0.6347 + }, + { + "start": 6690.82, + "end": 6690.96, + "probability": 0.9514 + }, + { + "start": 6691.04, + "end": 6694.18, + "probability": 0.978 + }, + { + "start": 6695.74, + "end": 6698.36, + "probability": 0.767 + }, + { + "start": 6699.5, + "end": 6701.14, + "probability": 0.9927 + }, + { + "start": 6702.08, + "end": 6703.14, + "probability": 0.64 + }, + { + "start": 6703.7, + "end": 6709.06, + "probability": 0.8958 + }, + { + "start": 6709.2, + "end": 6709.76, + "probability": 0.8825 + }, + { + "start": 6709.84, + "end": 6713.74, + "probability": 0.9831 + }, + { + "start": 6713.78, + "end": 6716.9, + "probability": 0.9975 + }, + { + "start": 6717.52, + "end": 6719.18, + "probability": 0.842 + }, + { + "start": 6719.32, + "end": 6720.98, + "probability": 0.7891 + }, + { + "start": 6721.02, + "end": 6723.18, + "probability": 0.9762 + }, + { + "start": 6724.7, + "end": 6726.26, + "probability": 0.849 + }, + { + "start": 6732.24, + "end": 6732.96, + "probability": 0.8488 + }, + { + "start": 6733.1, + "end": 6733.72, + "probability": 0.8106 + }, + { + "start": 6734.28, + "end": 6735.96, + "probability": 0.9797 + }, + { + "start": 6736.1, + "end": 6738.58, + "probability": 0.7805 + }, + { + "start": 6739.34, + "end": 6741.24, + "probability": 0.9302 + }, + { + "start": 6742.0, + "end": 6744.26, + "probability": 0.9783 + }, + { + "start": 6745.12, + "end": 6746.16, + "probability": 0.9915 + }, + { + "start": 6747.2, + "end": 6749.16, + "probability": 0.9965 + }, + { + "start": 6749.16, + "end": 6752.12, + "probability": 0.9868 + }, + { + "start": 6753.02, + "end": 6756.06, + "probability": 0.8656 + }, + { + "start": 6756.74, + "end": 6757.48, + "probability": 0.9784 + }, + { + "start": 6758.3, + "end": 6760.44, + "probability": 0.8926 + }, + { + "start": 6761.04, + "end": 6763.58, + "probability": 0.9979 + }, + { + "start": 6765.24, + "end": 6769.02, + "probability": 0.9925 + }, + { + "start": 6770.14, + "end": 6771.44, + "probability": 0.5973 + }, + { + "start": 6772.18, + "end": 6774.38, + "probability": 0.9579 + }, + { + "start": 6775.2, + "end": 6777.66, + "probability": 0.9891 + }, + { + "start": 6777.74, + "end": 6778.54, + "probability": 0.9917 + }, + { + "start": 6778.62, + "end": 6779.02, + "probability": 0.8456 + }, + { + "start": 6779.06, + "end": 6781.25, + "probability": 0.9661 + }, + { + "start": 6781.78, + "end": 6784.28, + "probability": 0.8074 + }, + { + "start": 6784.96, + "end": 6785.7, + "probability": 0.6152 + }, + { + "start": 6785.78, + "end": 6788.38, + "probability": 0.8473 + }, + { + "start": 6788.58, + "end": 6790.18, + "probability": 0.9932 + }, + { + "start": 6790.3, + "end": 6790.48, + "probability": 0.7186 + }, + { + "start": 6791.2, + "end": 6791.36, + "probability": 0.4665 + }, + { + "start": 6793.96, + "end": 6794.82, + "probability": 0.8742 + }, + { + "start": 6796.28, + "end": 6798.66, + "probability": 0.9641 + }, + { + "start": 6800.1, + "end": 6801.96, + "probability": 0.9289 + }, + { + "start": 6803.08, + "end": 6805.8, + "probability": 0.8903 + }, + { + "start": 6807.5, + "end": 6811.92, + "probability": 0.5972 + }, + { + "start": 6813.26, + "end": 6817.88, + "probability": 0.9113 + }, + { + "start": 6819.0, + "end": 6821.3, + "probability": 0.7324 + }, + { + "start": 6821.94, + "end": 6825.78, + "probability": 0.6767 + }, + { + "start": 6826.74, + "end": 6832.04, + "probability": 0.9679 + }, + { + "start": 6832.8, + "end": 6835.92, + "probability": 0.9545 + }, + { + "start": 6837.38, + "end": 6840.6, + "probability": 0.9404 + }, + { + "start": 6841.3, + "end": 6843.38, + "probability": 0.923 + }, + { + "start": 6843.54, + "end": 6848.24, + "probability": 0.9695 + }, + { + "start": 6848.8, + "end": 6849.72, + "probability": 0.7225 + }, + { + "start": 6849.96, + "end": 6850.68, + "probability": 0.5719 + }, + { + "start": 6850.68, + "end": 6851.28, + "probability": 0.3002 + }, + { + "start": 6853.78, + "end": 6854.1, + "probability": 0.0014 + }, + { + "start": 6953.22, + "end": 6953.44, + "probability": 0.2139 + }, + { + "start": 6953.44, + "end": 6956.08, + "probability": 0.9028 + }, + { + "start": 6958.14, + "end": 6958.96, + "probability": 0.9479 + }, + { + "start": 6959.72, + "end": 6961.36, + "probability": 0.8414 + }, + { + "start": 6962.24, + "end": 6963.7, + "probability": 0.9406 + }, + { + "start": 6982.18, + "end": 6983.02, + "probability": 0.6264 + }, + { + "start": 6984.06, + "end": 6984.94, + "probability": 0.8171 + }, + { + "start": 6986.1, + "end": 6986.72, + "probability": 0.8247 + }, + { + "start": 6988.88, + "end": 6992.74, + "probability": 0.9941 + }, + { + "start": 6992.74, + "end": 6997.02, + "probability": 0.9614 + }, + { + "start": 6998.0, + "end": 7000.06, + "probability": 0.9697 + }, + { + "start": 7001.54, + "end": 7004.34, + "probability": 0.9368 + }, + { + "start": 7005.08, + "end": 7006.12, + "probability": 0.8321 + }, + { + "start": 7006.84, + "end": 7009.78, + "probability": 0.8118 + }, + { + "start": 7010.3, + "end": 7013.7, + "probability": 0.9768 + }, + { + "start": 7014.88, + "end": 7016.54, + "probability": 0.98 + }, + { + "start": 7017.2, + "end": 7020.4, + "probability": 0.7766 + }, + { + "start": 7021.72, + "end": 7023.74, + "probability": 0.8878 + }, + { + "start": 7024.8, + "end": 7026.94, + "probability": 0.8532 + }, + { + "start": 7027.94, + "end": 7030.3, + "probability": 0.9647 + }, + { + "start": 7031.38, + "end": 7034.5, + "probability": 0.8989 + }, + { + "start": 7036.6, + "end": 7038.12, + "probability": 0.7191 + }, + { + "start": 7038.86, + "end": 7040.58, + "probability": 0.9276 + }, + { + "start": 7042.48, + "end": 7047.2, + "probability": 0.9487 + }, + { + "start": 7047.9, + "end": 7050.14, + "probability": 0.8412 + }, + { + "start": 7051.8, + "end": 7054.62, + "probability": 0.8027 + }, + { + "start": 7055.14, + "end": 7056.42, + "probability": 0.7235 + }, + { + "start": 7056.96, + "end": 7058.08, + "probability": 0.9738 + }, + { + "start": 7059.54, + "end": 7062.58, + "probability": 0.8674 + }, + { + "start": 7062.58, + "end": 7065.88, + "probability": 0.985 + }, + { + "start": 7066.76, + "end": 7069.34, + "probability": 0.9553 + }, + { + "start": 7069.48, + "end": 7070.38, + "probability": 0.8574 + }, + { + "start": 7071.8, + "end": 7074.5, + "probability": 0.9489 + }, + { + "start": 7075.24, + "end": 7079.42, + "probability": 0.6272 + }, + { + "start": 7079.96, + "end": 7080.96, + "probability": 0.7841 + }, + { + "start": 7081.98, + "end": 7084.54, + "probability": 0.7889 + }, + { + "start": 7085.24, + "end": 7086.5, + "probability": 0.954 + }, + { + "start": 7088.48, + "end": 7093.84, + "probability": 0.9978 + }, + { + "start": 7094.9, + "end": 7097.6, + "probability": 0.9961 + }, + { + "start": 7098.1, + "end": 7101.6, + "probability": 0.9758 + }, + { + "start": 7102.62, + "end": 7103.78, + "probability": 0.9938 + }, + { + "start": 7105.8, + "end": 7107.26, + "probability": 0.9214 + }, + { + "start": 7107.96, + "end": 7111.44, + "probability": 0.9974 + }, + { + "start": 7112.28, + "end": 7114.64, + "probability": 0.9847 + }, + { + "start": 7115.9, + "end": 7117.86, + "probability": 0.9937 + }, + { + "start": 7118.62, + "end": 7120.3, + "probability": 0.9157 + }, + { + "start": 7120.36, + "end": 7121.42, + "probability": 0.8517 + }, + { + "start": 7121.84, + "end": 7123.46, + "probability": 0.9763 + }, + { + "start": 7124.22, + "end": 7128.84, + "probability": 0.8066 + }, + { + "start": 7129.92, + "end": 7133.88, + "probability": 0.9934 + }, + { + "start": 7134.3, + "end": 7135.14, + "probability": 0.8958 + }, + { + "start": 7135.18, + "end": 7136.26, + "probability": 0.981 + }, + { + "start": 7137.36, + "end": 7140.12, + "probability": 0.9849 + }, + { + "start": 7140.18, + "end": 7140.78, + "probability": 0.8063 + }, + { + "start": 7142.04, + "end": 7145.62, + "probability": 0.9976 + }, + { + "start": 7145.82, + "end": 7146.94, + "probability": 0.4716 + }, + { + "start": 7148.38, + "end": 7150.54, + "probability": 0.8735 + }, + { + "start": 7151.48, + "end": 7153.78, + "probability": 0.925 + }, + { + "start": 7153.96, + "end": 7155.6, + "probability": 0.9818 + }, + { + "start": 7156.56, + "end": 7160.36, + "probability": 0.9014 + }, + { + "start": 7161.42, + "end": 7165.14, + "probability": 0.7981 + }, + { + "start": 7166.76, + "end": 7169.7, + "probability": 0.9155 + }, + { + "start": 7170.22, + "end": 7171.3, + "probability": 0.8476 + }, + { + "start": 7172.08, + "end": 7176.14, + "probability": 0.9963 + }, + { + "start": 7176.14, + "end": 7180.1, + "probability": 0.999 + }, + { + "start": 7181.88, + "end": 7184.22, + "probability": 0.8519 + }, + { + "start": 7185.0, + "end": 7188.34, + "probability": 0.9942 + }, + { + "start": 7192.52, + "end": 7194.86, + "probability": 0.9642 + }, + { + "start": 7195.68, + "end": 7196.54, + "probability": 0.7509 + }, + { + "start": 7197.44, + "end": 7199.5, + "probability": 0.9941 + }, + { + "start": 7200.36, + "end": 7203.16, + "probability": 0.9369 + }, + { + "start": 7203.88, + "end": 7204.98, + "probability": 0.8455 + }, + { + "start": 7205.94, + "end": 7208.76, + "probability": 0.9955 + }, + { + "start": 7209.44, + "end": 7211.42, + "probability": 0.9878 + }, + { + "start": 7212.76, + "end": 7214.86, + "probability": 0.9971 + }, + { + "start": 7215.04, + "end": 7216.5, + "probability": 0.3558 + }, + { + "start": 7216.92, + "end": 7220.06, + "probability": 0.894 + }, + { + "start": 7221.04, + "end": 7223.42, + "probability": 0.9924 + }, + { + "start": 7223.42, + "end": 7226.58, + "probability": 0.9909 + }, + { + "start": 7227.78, + "end": 7233.78, + "probability": 0.9852 + }, + { + "start": 7235.4, + "end": 7239.1, + "probability": 0.9971 + }, + { + "start": 7239.1, + "end": 7244.2, + "probability": 0.9106 + }, + { + "start": 7245.5, + "end": 7246.22, + "probability": 0.8143 + }, + { + "start": 7246.68, + "end": 7250.2, + "probability": 0.9969 + }, + { + "start": 7250.2, + "end": 7257.28, + "probability": 0.9688 + }, + { + "start": 7258.46, + "end": 7258.58, + "probability": 0.2994 + }, + { + "start": 7258.74, + "end": 7264.4, + "probability": 0.975 + }, + { + "start": 7264.4, + "end": 7268.58, + "probability": 0.9952 + }, + { + "start": 7269.96, + "end": 7272.8, + "probability": 0.9945 + }, + { + "start": 7272.94, + "end": 7276.88, + "probability": 0.9682 + }, + { + "start": 7277.62, + "end": 7279.96, + "probability": 0.9517 + }, + { + "start": 7281.74, + "end": 7284.42, + "probability": 0.99 + }, + { + "start": 7284.42, + "end": 7287.56, + "probability": 0.9917 + }, + { + "start": 7288.34, + "end": 7291.62, + "probability": 0.986 + }, + { + "start": 7292.44, + "end": 7295.16, + "probability": 0.9989 + }, + { + "start": 7295.72, + "end": 7299.72, + "probability": 0.9963 + }, + { + "start": 7300.82, + "end": 7305.66, + "probability": 0.9852 + }, + { + "start": 7305.66, + "end": 7309.92, + "probability": 0.998 + }, + { + "start": 7309.92, + "end": 7314.66, + "probability": 0.9904 + }, + { + "start": 7315.94, + "end": 7318.7, + "probability": 0.9862 + }, + { + "start": 7319.02, + "end": 7319.94, + "probability": 0.654 + }, + { + "start": 7320.38, + "end": 7322.32, + "probability": 0.9714 + }, + { + "start": 7323.4, + "end": 7326.58, + "probability": 0.9838 + }, + { + "start": 7327.02, + "end": 7332.16, + "probability": 0.8838 + }, + { + "start": 7332.76, + "end": 7336.56, + "probability": 0.99 + }, + { + "start": 7338.54, + "end": 7344.18, + "probability": 0.9974 + }, + { + "start": 7344.36, + "end": 7347.38, + "probability": 0.9962 + }, + { + "start": 7350.32, + "end": 7351.9, + "probability": 0.771 + }, + { + "start": 7352.96, + "end": 7356.44, + "probability": 0.9962 + }, + { + "start": 7357.4, + "end": 7359.22, + "probability": 0.8886 + }, + { + "start": 7360.94, + "end": 7361.9, + "probability": 0.8409 + }, + { + "start": 7363.12, + "end": 7367.4, + "probability": 0.9776 + }, + { + "start": 7367.84, + "end": 7370.96, + "probability": 0.9967 + }, + { + "start": 7371.56, + "end": 7373.48, + "probability": 0.9822 + }, + { + "start": 7374.5, + "end": 7379.3, + "probability": 0.9604 + }, + { + "start": 7380.28, + "end": 7381.64, + "probability": 0.7188 + }, + { + "start": 7382.52, + "end": 7385.06, + "probability": 0.9323 + }, + { + "start": 7385.76, + "end": 7388.28, + "probability": 0.9608 + }, + { + "start": 7388.9, + "end": 7389.56, + "probability": 0.643 + }, + { + "start": 7390.18, + "end": 7391.46, + "probability": 0.9698 + }, + { + "start": 7393.2, + "end": 7400.24, + "probability": 0.9189 + }, + { + "start": 7400.24, + "end": 7407.04, + "probability": 0.9985 + }, + { + "start": 7407.58, + "end": 7408.56, + "probability": 0.7377 + }, + { + "start": 7409.72, + "end": 7413.9, + "probability": 0.9863 + }, + { + "start": 7414.4, + "end": 7416.56, + "probability": 0.9861 + }, + { + "start": 7417.68, + "end": 7420.4, + "probability": 0.9705 + }, + { + "start": 7421.74, + "end": 7424.72, + "probability": 0.8646 + }, + { + "start": 7425.38, + "end": 7429.06, + "probability": 0.9869 + }, + { + "start": 7429.72, + "end": 7434.32, + "probability": 0.8945 + }, + { + "start": 7435.04, + "end": 7439.44, + "probability": 0.98 + }, + { + "start": 7439.98, + "end": 7442.34, + "probability": 0.9737 + }, + { + "start": 7443.28, + "end": 7448.62, + "probability": 0.9954 + }, + { + "start": 7449.18, + "end": 7451.26, + "probability": 0.7665 + }, + { + "start": 7451.78, + "end": 7452.8, + "probability": 0.9989 + }, + { + "start": 7457.84, + "end": 7459.46, + "probability": 0.9099 + }, + { + "start": 7460.6, + "end": 7465.32, + "probability": 0.8597 + }, + { + "start": 7466.18, + "end": 7469.64, + "probability": 0.9674 + }, + { + "start": 7470.5, + "end": 7473.9, + "probability": 0.8538 + }, + { + "start": 7474.14, + "end": 7475.64, + "probability": 0.681 + }, + { + "start": 7476.54, + "end": 7478.56, + "probability": 0.6764 + }, + { + "start": 7479.08, + "end": 7480.14, + "probability": 0.8645 + }, + { + "start": 7480.92, + "end": 7483.2, + "probability": 0.9685 + }, + { + "start": 7484.28, + "end": 7487.96, + "probability": 0.9858 + }, + { + "start": 7487.96, + "end": 7491.56, + "probability": 0.8066 + }, + { + "start": 7492.86, + "end": 7494.6, + "probability": 0.92 + }, + { + "start": 7494.88, + "end": 7495.84, + "probability": 0.9518 + }, + { + "start": 7496.34, + "end": 7498.42, + "probability": 0.9567 + }, + { + "start": 7499.0, + "end": 7501.26, + "probability": 0.8062 + }, + { + "start": 7502.1, + "end": 7503.32, + "probability": 0.9932 + }, + { + "start": 7503.92, + "end": 7504.64, + "probability": 0.9555 + }, + { + "start": 7507.74, + "end": 7508.68, + "probability": 0.6733 + }, + { + "start": 7509.72, + "end": 7515.56, + "probability": 0.9951 + }, + { + "start": 7516.72, + "end": 7518.5, + "probability": 0.9711 + }, + { + "start": 7519.02, + "end": 7521.34, + "probability": 0.9132 + }, + { + "start": 7521.58, + "end": 7522.16, + "probability": 0.9303 + }, + { + "start": 7522.48, + "end": 7525.46, + "probability": 0.9524 + }, + { + "start": 7526.4, + "end": 7530.48, + "probability": 0.9507 + }, + { + "start": 7530.48, + "end": 7536.06, + "probability": 0.9883 + }, + { + "start": 7536.78, + "end": 7540.7, + "probability": 0.9948 + }, + { + "start": 7541.16, + "end": 7546.18, + "probability": 0.9985 + }, + { + "start": 7547.06, + "end": 7549.5, + "probability": 0.889 + }, + { + "start": 7550.06, + "end": 7551.66, + "probability": 0.8369 + }, + { + "start": 7553.36, + "end": 7557.08, + "probability": 0.8599 + }, + { + "start": 7557.58, + "end": 7559.74, + "probability": 0.9401 + }, + { + "start": 7560.4, + "end": 7563.82, + "probability": 0.9978 + }, + { + "start": 7564.8, + "end": 7566.5, + "probability": 0.9972 + }, + { + "start": 7567.58, + "end": 7570.46, + "probability": 0.7981 + }, + { + "start": 7570.46, + "end": 7574.48, + "probability": 0.9843 + }, + { + "start": 7575.56, + "end": 7575.62, + "probability": 0.1123 + }, + { + "start": 7575.7, + "end": 7576.22, + "probability": 0.5239 + }, + { + "start": 7576.32, + "end": 7579.72, + "probability": 0.8716 + }, + { + "start": 7579.72, + "end": 7582.48, + "probability": 0.9757 + }, + { + "start": 7585.44, + "end": 7588.16, + "probability": 0.9648 + }, + { + "start": 7588.66, + "end": 7590.82, + "probability": 0.9663 + }, + { + "start": 7592.14, + "end": 7593.74, + "probability": 0.628 + }, + { + "start": 7594.38, + "end": 7599.78, + "probability": 0.8818 + }, + { + "start": 7600.2, + "end": 7601.36, + "probability": 0.9512 + }, + { + "start": 7602.3, + "end": 7605.5, + "probability": 0.9501 + }, + { + "start": 7606.34, + "end": 7607.09, + "probability": 0.9897 + }, + { + "start": 7608.5, + "end": 7609.78, + "probability": 0.639 + }, + { + "start": 7611.56, + "end": 7612.8, + "probability": 0.6403 + }, + { + "start": 7613.98, + "end": 7614.3, + "probability": 0.6808 + }, + { + "start": 7614.38, + "end": 7618.76, + "probability": 0.9883 + }, + { + "start": 7619.88, + "end": 7620.34, + "probability": 0.9697 + }, + { + "start": 7620.5, + "end": 7623.62, + "probability": 0.9902 + }, + { + "start": 7623.62, + "end": 7626.1, + "probability": 0.9995 + }, + { + "start": 7627.02, + "end": 7628.08, + "probability": 0.8952 + }, + { + "start": 7629.06, + "end": 7632.3, + "probability": 0.9849 + }, + { + "start": 7632.3, + "end": 7635.08, + "probability": 0.9991 + }, + { + "start": 7635.88, + "end": 7637.88, + "probability": 0.851 + }, + { + "start": 7638.72, + "end": 7642.0, + "probability": 0.7805 + }, + { + "start": 7642.0, + "end": 7645.36, + "probability": 0.9938 + }, + { + "start": 7645.92, + "end": 7647.84, + "probability": 0.995 + }, + { + "start": 7648.72, + "end": 7651.04, + "probability": 0.882 + }, + { + "start": 7651.24, + "end": 7655.1, + "probability": 0.9897 + }, + { + "start": 7656.82, + "end": 7659.4, + "probability": 0.988 + }, + { + "start": 7659.42, + "end": 7662.88, + "probability": 0.9492 + }, + { + "start": 7663.54, + "end": 7664.88, + "probability": 0.9909 + }, + { + "start": 7665.32, + "end": 7669.38, + "probability": 0.9968 + }, + { + "start": 7670.12, + "end": 7672.5, + "probability": 0.8413 + }, + { + "start": 7673.44, + "end": 7673.94, + "probability": 0.8504 + }, + { + "start": 7674.14, + "end": 7674.64, + "probability": 0.9272 + }, + { + "start": 7674.76, + "end": 7677.58, + "probability": 0.7643 + }, + { + "start": 7677.66, + "end": 7678.78, + "probability": 0.9443 + }, + { + "start": 7679.24, + "end": 7682.16, + "probability": 0.9383 + }, + { + "start": 7683.26, + "end": 7684.56, + "probability": 0.9639 + }, + { + "start": 7685.84, + "end": 7686.36, + "probability": 0.4017 + }, + { + "start": 7687.9, + "end": 7688.18, + "probability": 0.3376 + }, + { + "start": 7691.06, + "end": 7693.44, + "probability": 0.8327 + }, + { + "start": 7695.46, + "end": 7698.5, + "probability": 0.9597 + }, + { + "start": 7699.32, + "end": 7700.24, + "probability": 0.7791 + }, + { + "start": 7703.24, + "end": 7706.76, + "probability": 0.9313 + }, + { + "start": 7708.14, + "end": 7713.5, + "probability": 0.9351 + }, + { + "start": 7715.5, + "end": 7721.44, + "probability": 0.611 + }, + { + "start": 7722.2, + "end": 7725.82, + "probability": 0.9308 + }, + { + "start": 7727.66, + "end": 7730.5, + "probability": 0.9395 + }, + { + "start": 7731.48, + "end": 7733.34, + "probability": 0.8811 + }, + { + "start": 7733.9, + "end": 7735.32, + "probability": 0.8683 + }, + { + "start": 7736.02, + "end": 7744.44, + "probability": 0.9752 + }, + { + "start": 7746.04, + "end": 7751.64, + "probability": 0.5327 + }, + { + "start": 7751.64, + "end": 7757.6, + "probability": 0.8223 + }, + { + "start": 7758.18, + "end": 7759.54, + "probability": 0.7342 + }, + { + "start": 7760.54, + "end": 7766.92, + "probability": 0.8439 + }, + { + "start": 7767.84, + "end": 7772.34, + "probability": 0.9183 + }, + { + "start": 7773.5, + "end": 7776.56, + "probability": 0.7515 + }, + { + "start": 7777.54, + "end": 7781.62, + "probability": 0.7945 + }, + { + "start": 7781.86, + "end": 7782.76, + "probability": 0.7591 + }, + { + "start": 7783.52, + "end": 7787.56, + "probability": 0.9648 + }, + { + "start": 7788.76, + "end": 7790.06, + "probability": 0.9457 + }, + { + "start": 7790.22, + "end": 7791.96, + "probability": 0.8706 + }, + { + "start": 7792.44, + "end": 7796.88, + "probability": 0.9541 + }, + { + "start": 7798.04, + "end": 7802.22, + "probability": 0.9705 + }, + { + "start": 7802.56, + "end": 7804.24, + "probability": 0.7933 + }, + { + "start": 7804.96, + "end": 7810.34, + "probability": 0.9678 + }, + { + "start": 7811.04, + "end": 7811.58, + "probability": 0.8246 + }, + { + "start": 7812.0, + "end": 7816.3, + "probability": 0.8598 + }, + { + "start": 7817.24, + "end": 7820.64, + "probability": 0.9775 + }, + { + "start": 7821.36, + "end": 7825.36, + "probability": 0.9589 + }, + { + "start": 7825.36, + "end": 7830.52, + "probability": 0.9873 + }, + { + "start": 7831.08, + "end": 7833.1, + "probability": 0.9562 + }, + { + "start": 7833.98, + "end": 7838.3, + "probability": 0.9854 + }, + { + "start": 7838.8, + "end": 7842.72, + "probability": 0.9566 + }, + { + "start": 7843.58, + "end": 7846.96, + "probability": 0.9955 + }, + { + "start": 7848.08, + "end": 7854.44, + "probability": 0.9876 + }, + { + "start": 7855.24, + "end": 7857.02, + "probability": 0.5845 + }, + { + "start": 7858.1, + "end": 7864.82, + "probability": 0.9897 + }, + { + "start": 7865.06, + "end": 7869.06, + "probability": 0.9976 + }, + { + "start": 7869.7, + "end": 7874.88, + "probability": 0.9922 + }, + { + "start": 7875.64, + "end": 7878.66, + "probability": 0.9471 + }, + { + "start": 7880.06, + "end": 7883.9, + "probability": 0.8538 + }, + { + "start": 7884.58, + "end": 7886.3, + "probability": 0.6822 + }, + { + "start": 7886.94, + "end": 7890.76, + "probability": 0.9388 + }, + { + "start": 7891.48, + "end": 7892.68, + "probability": 0.3631 + }, + { + "start": 7893.58, + "end": 7895.94, + "probability": 0.7139 + }, + { + "start": 7896.36, + "end": 7899.96, + "probability": 0.9795 + }, + { + "start": 7900.72, + "end": 7903.12, + "probability": 0.6732 + }, + { + "start": 7903.8, + "end": 7905.52, + "probability": 0.591 + }, + { + "start": 7905.54, + "end": 7911.1, + "probability": 0.998 + }, + { + "start": 7911.84, + "end": 7921.54, + "probability": 0.9129 + }, + { + "start": 7921.7, + "end": 7922.52, + "probability": 0.7889 + }, + { + "start": 7923.04, + "end": 7924.58, + "probability": 0.8023 + }, + { + "start": 7925.34, + "end": 7925.48, + "probability": 0.006 + }, + { + "start": 8034.08, + "end": 8034.56, + "probability": 0.131 + }, + { + "start": 8034.56, + "end": 8035.16, + "probability": 0.3121 + }, + { + "start": 8036.2, + "end": 8038.98, + "probability": 0.9521 + }, + { + "start": 8039.88, + "end": 8040.6, + "probability": 0.7607 + }, + { + "start": 8052.24, + "end": 8052.8, + "probability": 0.5345 + }, + { + "start": 8054.32, + "end": 8056.0, + "probability": 0.5485 + }, + { + "start": 8056.98, + "end": 8059.64, + "probability": 0.9752 + }, + { + "start": 8060.3, + "end": 8061.1, + "probability": 0.8464 + }, + { + "start": 8062.76, + "end": 8065.9, + "probability": 0.9801 + }, + { + "start": 8066.86, + "end": 8070.88, + "probability": 0.981 + }, + { + "start": 8070.98, + "end": 8071.8, + "probability": 0.7224 + }, + { + "start": 8071.94, + "end": 8074.2, + "probability": 0.9868 + }, + { + "start": 8074.96, + "end": 8079.14, + "probability": 0.9778 + }, + { + "start": 8079.14, + "end": 8083.72, + "probability": 0.9945 + }, + { + "start": 8085.4, + "end": 8087.18, + "probability": 0.9958 + }, + { + "start": 8087.18, + "end": 8090.58, + "probability": 0.9944 + }, + { + "start": 8091.38, + "end": 8092.84, + "probability": 0.8405 + }, + { + "start": 8092.92, + "end": 8095.64, + "probability": 0.9957 + }, + { + "start": 8095.64, + "end": 8098.52, + "probability": 0.9537 + }, + { + "start": 8099.94, + "end": 8101.8, + "probability": 0.9778 + }, + { + "start": 8101.8, + "end": 8104.82, + "probability": 0.9807 + }, + { + "start": 8106.2, + "end": 8106.86, + "probability": 0.8519 + }, + { + "start": 8107.14, + "end": 8110.2, + "probability": 0.9917 + }, + { + "start": 8110.2, + "end": 8114.3, + "probability": 0.9989 + }, + { + "start": 8114.88, + "end": 8117.32, + "probability": 0.5695 + }, + { + "start": 8118.78, + "end": 8120.72, + "probability": 0.8972 + }, + { + "start": 8121.8, + "end": 8124.74, + "probability": 0.938 + }, + { + "start": 8126.0, + "end": 8127.68, + "probability": 0.9743 + }, + { + "start": 8127.86, + "end": 8128.88, + "probability": 0.8809 + }, + { + "start": 8129.06, + "end": 8130.06, + "probability": 0.9922 + }, + { + "start": 8130.62, + "end": 8132.42, + "probability": 0.9574 + }, + { + "start": 8133.5, + "end": 8135.44, + "probability": 0.9979 + }, + { + "start": 8136.24, + "end": 8138.42, + "probability": 0.9728 + }, + { + "start": 8139.34, + "end": 8142.04, + "probability": 0.934 + }, + { + "start": 8143.54, + "end": 8145.7, + "probability": 0.9974 + }, + { + "start": 8146.2, + "end": 8151.0, + "probability": 0.9813 + }, + { + "start": 8151.82, + "end": 8155.46, + "probability": 0.9855 + }, + { + "start": 8157.72, + "end": 8159.66, + "probability": 0.9921 + }, + { + "start": 8160.3, + "end": 8162.82, + "probability": 0.9966 + }, + { + "start": 8163.66, + "end": 8165.3, + "probability": 0.9252 + }, + { + "start": 8166.42, + "end": 8167.76, + "probability": 0.7767 + }, + { + "start": 8168.24, + "end": 8171.78, + "probability": 0.8624 + }, + { + "start": 8171.88, + "end": 8176.72, + "probability": 0.9881 + }, + { + "start": 8177.18, + "end": 8179.66, + "probability": 0.9813 + }, + { + "start": 8181.14, + "end": 8184.22, + "probability": 0.999 + }, + { + "start": 8184.38, + "end": 8185.7, + "probability": 0.9766 + }, + { + "start": 8186.1, + "end": 8187.46, + "probability": 0.927 + }, + { + "start": 8187.5, + "end": 8189.28, + "probability": 0.6522 + }, + { + "start": 8190.28, + "end": 8192.96, + "probability": 0.9541 + }, + { + "start": 8193.92, + "end": 8194.08, + "probability": 0.1794 + }, + { + "start": 8194.08, + "end": 8195.0, + "probability": 0.9714 + }, + { + "start": 8195.2, + "end": 8196.44, + "probability": 0.7407 + }, + { + "start": 8196.52, + "end": 8198.92, + "probability": 0.9864 + }, + { + "start": 8198.92, + "end": 8201.74, + "probability": 0.9895 + }, + { + "start": 8201.9, + "end": 8204.62, + "probability": 0.9429 + }, + { + "start": 8204.74, + "end": 8205.66, + "probability": 0.6333 + }, + { + "start": 8206.06, + "end": 8207.1, + "probability": 0.9042 + }, + { + "start": 8207.76, + "end": 8208.54, + "probability": 0.7576 + }, + { + "start": 8209.6, + "end": 8212.52, + "probability": 0.9122 + }, + { + "start": 8213.1, + "end": 8214.18, + "probability": 0.6742 + }, + { + "start": 8214.62, + "end": 8218.26, + "probability": 0.8578 + }, + { + "start": 8220.94, + "end": 8226.34, + "probability": 0.9352 + }, + { + "start": 8226.34, + "end": 8231.76, + "probability": 0.9113 + }, + { + "start": 8231.9, + "end": 8233.98, + "probability": 0.6821 + }, + { + "start": 8234.6, + "end": 8235.11, + "probability": 0.0272 + }, + { + "start": 8235.72, + "end": 8238.78, + "probability": 0.9885 + }, + { + "start": 8239.26, + "end": 8240.74, + "probability": 0.9844 + }, + { + "start": 8241.24, + "end": 8243.94, + "probability": 0.9451 + }, + { + "start": 8243.94, + "end": 8247.68, + "probability": 0.9381 + }, + { + "start": 8248.54, + "end": 8252.3, + "probability": 0.9869 + }, + { + "start": 8253.52, + "end": 8256.36, + "probability": 0.955 + }, + { + "start": 8256.5, + "end": 8257.14, + "probability": 0.9285 + }, + { + "start": 8257.24, + "end": 8258.24, + "probability": 0.9757 + }, + { + "start": 8258.78, + "end": 8260.22, + "probability": 0.6158 + }, + { + "start": 8260.88, + "end": 8263.22, + "probability": 0.9763 + }, + { + "start": 8264.14, + "end": 8268.02, + "probability": 0.9099 + }, + { + "start": 8268.72, + "end": 8271.34, + "probability": 0.8344 + }, + { + "start": 8271.44, + "end": 8272.52, + "probability": 0.54 + }, + { + "start": 8273.54, + "end": 8277.16, + "probability": 0.9847 + }, + { + "start": 8278.16, + "end": 8280.96, + "probability": 0.9487 + }, + { + "start": 8281.22, + "end": 8286.12, + "probability": 0.9812 + }, + { + "start": 8286.92, + "end": 8287.5, + "probability": 0.686 + }, + { + "start": 8287.62, + "end": 8290.76, + "probability": 0.9763 + }, + { + "start": 8291.2, + "end": 8295.81, + "probability": 0.8903 + }, + { + "start": 8296.6, + "end": 8297.96, + "probability": 0.4294 + }, + { + "start": 8298.88, + "end": 8299.8, + "probability": 0.9359 + }, + { + "start": 8300.92, + "end": 8305.48, + "probability": 0.9941 + }, + { + "start": 8305.94, + "end": 8311.7, + "probability": 0.9741 + }, + { + "start": 8312.56, + "end": 8314.4, + "probability": 0.9526 + }, + { + "start": 8315.2, + "end": 8319.56, + "probability": 0.9881 + }, + { + "start": 8320.24, + "end": 8323.6, + "probability": 0.9967 + }, + { + "start": 8324.04, + "end": 8327.5, + "probability": 0.9538 + }, + { + "start": 8327.64, + "end": 8329.22, + "probability": 0.9194 + }, + { + "start": 8335.34, + "end": 8339.12, + "probability": 0.9794 + }, + { + "start": 8339.2, + "end": 8342.46, + "probability": 0.9763 + }, + { + "start": 8342.94, + "end": 8344.48, + "probability": 0.9789 + }, + { + "start": 8345.38, + "end": 8349.36, + "probability": 0.9771 + }, + { + "start": 8349.94, + "end": 8352.68, + "probability": 0.8973 + }, + { + "start": 8353.92, + "end": 8355.96, + "probability": 0.9927 + }, + { + "start": 8356.38, + "end": 8358.38, + "probability": 0.9605 + }, + { + "start": 8359.2, + "end": 8363.88, + "probability": 0.7872 + }, + { + "start": 8363.88, + "end": 8367.08, + "probability": 0.9901 + }, + { + "start": 8368.08, + "end": 8371.58, + "probability": 0.9928 + }, + { + "start": 8371.58, + "end": 8376.2, + "probability": 0.9862 + }, + { + "start": 8377.14, + "end": 8380.88, + "probability": 0.9931 + }, + { + "start": 8383.14, + "end": 8385.76, + "probability": 0.9971 + }, + { + "start": 8385.94, + "end": 8387.24, + "probability": 0.8621 + }, + { + "start": 8387.42, + "end": 8388.94, + "probability": 0.8859 + }, + { + "start": 8389.58, + "end": 8391.86, + "probability": 0.7176 + }, + { + "start": 8392.66, + "end": 8394.66, + "probability": 0.9076 + }, + { + "start": 8394.94, + "end": 8397.0, + "probability": 0.9557 + }, + { + "start": 8400.2, + "end": 8400.86, + "probability": 0.7515 + }, + { + "start": 8401.0, + "end": 8401.46, + "probability": 0.6254 + }, + { + "start": 8401.84, + "end": 8402.98, + "probability": 0.6854 + }, + { + "start": 8403.14, + "end": 8406.0, + "probability": 0.9786 + }, + { + "start": 8406.22, + "end": 8407.4, + "probability": 0.9968 + }, + { + "start": 8408.58, + "end": 8410.18, + "probability": 0.9762 + }, + { + "start": 8411.48, + "end": 8414.08, + "probability": 0.6979 + }, + { + "start": 8414.18, + "end": 8416.1, + "probability": 0.9526 + }, + { + "start": 8416.76, + "end": 8419.0, + "probability": 0.9809 + }, + { + "start": 8419.8, + "end": 8421.46, + "probability": 0.9205 + }, + { + "start": 8421.52, + "end": 8422.9, + "probability": 0.9071 + }, + { + "start": 8423.38, + "end": 8425.96, + "probability": 0.9623 + }, + { + "start": 8426.26, + "end": 8429.04, + "probability": 0.9983 + }, + { + "start": 8430.56, + "end": 8432.84, + "probability": 0.9867 + }, + { + "start": 8432.84, + "end": 8435.5, + "probability": 0.9828 + }, + { + "start": 8436.3, + "end": 8439.38, + "probability": 0.9238 + }, + { + "start": 8439.38, + "end": 8443.24, + "probability": 0.9932 + }, + { + "start": 8444.1, + "end": 8448.8, + "probability": 0.9781 + }, + { + "start": 8449.5, + "end": 8453.0, + "probability": 0.9683 + }, + { + "start": 8453.0, + "end": 8456.08, + "probability": 0.994 + }, + { + "start": 8457.56, + "end": 8460.52, + "probability": 0.7937 + }, + { + "start": 8461.26, + "end": 8462.86, + "probability": 0.8026 + }, + { + "start": 8463.58, + "end": 8467.44, + "probability": 0.9919 + }, + { + "start": 8467.88, + "end": 8470.98, + "probability": 0.8869 + }, + { + "start": 8470.98, + "end": 8473.76, + "probability": 0.9924 + }, + { + "start": 8475.34, + "end": 8478.76, + "probability": 0.9827 + }, + { + "start": 8479.3, + "end": 8481.0, + "probability": 0.9983 + }, + { + "start": 8481.58, + "end": 8481.94, + "probability": 0.4477 + }, + { + "start": 8481.96, + "end": 8484.46, + "probability": 0.8585 + }, + { + "start": 8484.46, + "end": 8487.38, + "probability": 0.8031 + }, + { + "start": 8488.4, + "end": 8491.26, + "probability": 0.9917 + }, + { + "start": 8491.72, + "end": 8494.24, + "probability": 0.9985 + }, + { + "start": 8494.74, + "end": 8497.58, + "probability": 0.98 + }, + { + "start": 8497.78, + "end": 8502.86, + "probability": 0.9774 + }, + { + "start": 8502.9, + "end": 8505.44, + "probability": 0.947 + }, + { + "start": 8505.82, + "end": 8510.88, + "probability": 0.9946 + }, + { + "start": 8510.88, + "end": 8515.22, + "probability": 0.9846 + }, + { + "start": 8515.22, + "end": 8518.04, + "probability": 0.9873 + }, + { + "start": 8518.76, + "end": 8519.24, + "probability": 0.8143 + }, + { + "start": 8520.56, + "end": 8520.94, + "probability": 0.6152 + }, + { + "start": 8521.02, + "end": 8521.58, + "probability": 0.6571 + }, + { + "start": 8521.6, + "end": 8524.1, + "probability": 0.9629 + }, + { + "start": 8524.2, + "end": 8526.3, + "probability": 0.7248 + }, + { + "start": 8526.42, + "end": 8529.48, + "probability": 0.9923 + }, + { + "start": 8530.04, + "end": 8532.6, + "probability": 0.9165 + }, + { + "start": 8533.18, + "end": 8535.5, + "probability": 0.9911 + }, + { + "start": 8536.38, + "end": 8539.7, + "probability": 0.7702 + }, + { + "start": 8541.26, + "end": 8543.62, + "probability": 0.9679 + }, + { + "start": 8543.74, + "end": 8545.84, + "probability": 0.5235 + }, + { + "start": 8545.88, + "end": 8546.46, + "probability": 0.9449 + }, + { + "start": 8547.2, + "end": 8548.72, + "probability": 0.9761 + }, + { + "start": 8549.4, + "end": 8551.22, + "probability": 0.939 + }, + { + "start": 8551.72, + "end": 8553.7, + "probability": 0.9905 + }, + { + "start": 8553.7, + "end": 8556.42, + "probability": 0.846 + }, + { + "start": 8557.8, + "end": 8559.0, + "probability": 0.9543 + }, + { + "start": 8559.1, + "end": 8562.6, + "probability": 0.9165 + }, + { + "start": 8565.28, + "end": 8568.46, + "probability": 0.8414 + }, + { + "start": 8569.3, + "end": 8571.22, + "probability": 0.9113 + }, + { + "start": 8571.32, + "end": 8573.1, + "probability": 0.9247 + }, + { + "start": 8573.84, + "end": 8578.16, + "probability": 0.8965 + }, + { + "start": 8578.16, + "end": 8582.86, + "probability": 0.8729 + }, + { + "start": 8583.46, + "end": 8586.26, + "probability": 0.9747 + }, + { + "start": 8586.68, + "end": 8587.48, + "probability": 0.9948 + }, + { + "start": 8588.12, + "end": 8591.34, + "probability": 0.8178 + }, + { + "start": 8591.82, + "end": 8592.42, + "probability": 0.8672 + }, + { + "start": 8592.52, + "end": 8593.02, + "probability": 0.9198 + }, + { + "start": 8593.16, + "end": 8593.82, + "probability": 0.7006 + }, + { + "start": 8595.84, + "end": 8596.04, + "probability": 0.4348 + }, + { + "start": 8596.08, + "end": 8599.06, + "probability": 0.8604 + }, + { + "start": 8599.22, + "end": 8601.6, + "probability": 0.9856 + }, + { + "start": 8602.3, + "end": 8604.48, + "probability": 0.9019 + }, + { + "start": 8604.48, + "end": 8607.06, + "probability": 0.8101 + }, + { + "start": 8612.96, + "end": 8613.72, + "probability": 0.3021 + }, + { + "start": 8613.94, + "end": 8617.52, + "probability": 0.991 + }, + { + "start": 8617.52, + "end": 8621.64, + "probability": 0.9185 + }, + { + "start": 8622.22, + "end": 8623.72, + "probability": 0.8775 + }, + { + "start": 8624.14, + "end": 8626.5, + "probability": 0.9203 + }, + { + "start": 8627.44, + "end": 8628.7, + "probability": 0.9568 + }, + { + "start": 8629.86, + "end": 8634.04, + "probability": 0.9482 + }, + { + "start": 8635.36, + "end": 8637.72, + "probability": 0.9745 + }, + { + "start": 8637.86, + "end": 8639.68, + "probability": 0.9901 + }, + { + "start": 8639.74, + "end": 8640.42, + "probability": 0.8563 + }, + { + "start": 8640.76, + "end": 8642.94, + "probability": 0.7166 + }, + { + "start": 8643.06, + "end": 8643.5, + "probability": 0.9076 + }, + { + "start": 8644.36, + "end": 8646.88, + "probability": 0.8416 + }, + { + "start": 8647.46, + "end": 8651.86, + "probability": 0.9953 + }, + { + "start": 8653.11, + "end": 8654.84, + "probability": 0.9436 + }, + { + "start": 8655.1, + "end": 8657.73, + "probability": 0.5175 + }, + { + "start": 8658.48, + "end": 8661.02, + "probability": 0.7212 + }, + { + "start": 8661.84, + "end": 8666.14, + "probability": 0.9884 + }, + { + "start": 8667.28, + "end": 8671.44, + "probability": 0.9208 + }, + { + "start": 8671.56, + "end": 8675.14, + "probability": 0.9813 + }, + { + "start": 8675.82, + "end": 8676.52, + "probability": 0.9451 + }, + { + "start": 8678.94, + "end": 8679.86, + "probability": 0.4086 + }, + { + "start": 8681.0, + "end": 8682.04, + "probability": 0.9542 + }, + { + "start": 8685.14, + "end": 8686.8, + "probability": 0.9861 + }, + { + "start": 8688.12, + "end": 8690.82, + "probability": 0.6581 + }, + { + "start": 8735.8, + "end": 8736.96, + "probability": 0.5951 + }, + { + "start": 8736.96, + "end": 8737.88, + "probability": 0.6551 + }, + { + "start": 8738.04, + "end": 8741.98, + "probability": 0.9962 + }, + { + "start": 8742.06, + "end": 8743.67, + "probability": 0.9613 + }, + { + "start": 8743.94, + "end": 8748.98, + "probability": 0.9897 + }, + { + "start": 8749.64, + "end": 8753.16, + "probability": 0.9898 + }, + { + "start": 8754.64, + "end": 8756.51, + "probability": 0.9917 + }, + { + "start": 8757.0, + "end": 8759.14, + "probability": 0.9357 + }, + { + "start": 8759.3, + "end": 8764.16, + "probability": 0.9583 + }, + { + "start": 8765.12, + "end": 8767.98, + "probability": 0.9965 + }, + { + "start": 8768.16, + "end": 8769.06, + "probability": 0.8871 + }, + { + "start": 8770.02, + "end": 8775.98, + "probability": 0.9917 + }, + { + "start": 8776.78, + "end": 8779.88, + "probability": 0.9973 + }, + { + "start": 8780.44, + "end": 8782.62, + "probability": 0.9141 + }, + { + "start": 8783.34, + "end": 8788.2, + "probability": 0.9898 + }, + { + "start": 8789.68, + "end": 8793.18, + "probability": 0.9978 + }, + { + "start": 8793.48, + "end": 8794.31, + "probability": 0.783 + }, + { + "start": 8794.82, + "end": 8796.76, + "probability": 0.9907 + }, + { + "start": 8796.84, + "end": 8797.54, + "probability": 0.5185 + }, + { + "start": 8797.64, + "end": 8798.9, + "probability": 0.9678 + }, + { + "start": 8798.96, + "end": 8800.12, + "probability": 0.8127 + }, + { + "start": 8800.97, + "end": 8803.44, + "probability": 0.9256 + }, + { + "start": 8803.54, + "end": 8805.32, + "probability": 0.992 + }, + { + "start": 8805.44, + "end": 8807.16, + "probability": 0.8582 + }, + { + "start": 8807.42, + "end": 8810.42, + "probability": 0.936 + }, + { + "start": 8810.84, + "end": 8812.36, + "probability": 0.8745 + }, + { + "start": 8812.46, + "end": 8813.58, + "probability": 0.7068 + }, + { + "start": 8814.96, + "end": 8816.0, + "probability": 0.5034 + }, + { + "start": 8816.1, + "end": 8816.18, + "probability": 0.7106 + }, + { + "start": 8816.32, + "end": 8817.46, + "probability": 0.9575 + }, + { + "start": 8817.94, + "end": 8820.4, + "probability": 0.9707 + }, + { + "start": 8820.54, + "end": 8823.6, + "probability": 0.9641 + }, + { + "start": 8823.62, + "end": 8825.88, + "probability": 0.9258 + }, + { + "start": 8826.66, + "end": 8827.46, + "probability": 0.9902 + }, + { + "start": 8827.58, + "end": 8830.24, + "probability": 0.9392 + }, + { + "start": 8830.24, + "end": 8833.96, + "probability": 0.9948 + }, + { + "start": 8834.82, + "end": 8836.94, + "probability": 0.9982 + }, + { + "start": 8837.12, + "end": 8840.6, + "probability": 0.9943 + }, + { + "start": 8840.76, + "end": 8842.7, + "probability": 0.9924 + }, + { + "start": 8843.52, + "end": 8846.34, + "probability": 0.9868 + }, + { + "start": 8847.1, + "end": 8850.08, + "probability": 0.9936 + }, + { + "start": 8850.26, + "end": 8851.95, + "probability": 0.951 + }, + { + "start": 8852.08, + "end": 8855.84, + "probability": 0.8132 + }, + { + "start": 8855.84, + "end": 8858.0, + "probability": 0.9222 + }, + { + "start": 8858.22, + "end": 8860.54, + "probability": 0.89 + }, + { + "start": 8860.7, + "end": 8861.56, + "probability": 0.9038 + }, + { + "start": 8862.8, + "end": 8864.86, + "probability": 0.9966 + }, + { + "start": 8865.28, + "end": 8866.3, + "probability": 0.6691 + }, + { + "start": 8866.34, + "end": 8867.28, + "probability": 0.748 + }, + { + "start": 8867.64, + "end": 8869.94, + "probability": 0.9049 + }, + { + "start": 8870.78, + "end": 8876.12, + "probability": 0.9625 + }, + { + "start": 8876.42, + "end": 8878.98, + "probability": 0.9995 + }, + { + "start": 8879.4, + "end": 8881.28, + "probability": 0.7262 + }, + { + "start": 8881.8, + "end": 8885.1, + "probability": 0.9911 + }, + { + "start": 8885.4, + "end": 8885.5, + "probability": 0.7638 + }, + { + "start": 8890.2, + "end": 8890.42, + "probability": 0.623 + }, + { + "start": 8892.26, + "end": 8900.26, + "probability": 0.8456 + }, + { + "start": 8923.48, + "end": 8924.28, + "probability": 0.6566 + }, + { + "start": 8925.82, + "end": 8929.86, + "probability": 0.9214 + }, + { + "start": 8931.32, + "end": 8932.78, + "probability": 0.889 + }, + { + "start": 8933.4, + "end": 8933.96, + "probability": 0.9357 + }, + { + "start": 8935.18, + "end": 8939.16, + "probability": 0.9664 + }, + { + "start": 8940.52, + "end": 8943.92, + "probability": 0.9761 + }, + { + "start": 8944.66, + "end": 8945.78, + "probability": 0.9844 + }, + { + "start": 8947.8, + "end": 8950.26, + "probability": 0.9097 + }, + { + "start": 8951.04, + "end": 8955.46, + "probability": 0.9743 + }, + { + "start": 8956.32, + "end": 8958.0, + "probability": 0.7671 + }, + { + "start": 8958.66, + "end": 8963.54, + "probability": 0.9717 + }, + { + "start": 8965.92, + "end": 8969.06, + "probability": 0.9991 + }, + { + "start": 8969.78, + "end": 8971.34, + "probability": 0.999 + }, + { + "start": 8972.28, + "end": 8973.36, + "probability": 0.5056 + }, + { + "start": 8974.22, + "end": 8976.62, + "probability": 0.9853 + }, + { + "start": 8977.82, + "end": 8981.12, + "probability": 0.9587 + }, + { + "start": 8981.78, + "end": 8983.0, + "probability": 0.7449 + }, + { + "start": 8983.62, + "end": 8986.54, + "probability": 0.9841 + }, + { + "start": 8988.32, + "end": 8990.48, + "probability": 0.8616 + }, + { + "start": 8991.94, + "end": 8995.06, + "probability": 0.8738 + }, + { + "start": 8995.6, + "end": 8998.8, + "probability": 0.9798 + }, + { + "start": 8999.38, + "end": 9001.86, + "probability": 0.9344 + }, + { + "start": 9002.4, + "end": 9005.08, + "probability": 0.9966 + }, + { + "start": 9006.76, + "end": 9009.34, + "probability": 0.7418 + }, + { + "start": 9009.5, + "end": 9011.44, + "probability": 0.9861 + }, + { + "start": 9011.84, + "end": 9015.14, + "probability": 0.9967 + }, + { + "start": 9016.56, + "end": 9022.3, + "probability": 0.999 + }, + { + "start": 9023.26, + "end": 9026.3, + "probability": 0.9872 + }, + { + "start": 9026.3, + "end": 9029.82, + "probability": 0.9827 + }, + { + "start": 9031.24, + "end": 9034.36, + "probability": 0.9684 + }, + { + "start": 9034.78, + "end": 9035.96, + "probability": 0.9084 + }, + { + "start": 9036.22, + "end": 9036.86, + "probability": 0.9306 + }, + { + "start": 9037.0, + "end": 9039.96, + "probability": 0.9872 + }, + { + "start": 9041.22, + "end": 9044.22, + "probability": 0.9641 + }, + { + "start": 9044.88, + "end": 9047.22, + "probability": 0.9747 + }, + { + "start": 9048.3, + "end": 9051.1, + "probability": 0.9753 + }, + { + "start": 9051.44, + "end": 9054.52, + "probability": 0.9232 + }, + { + "start": 9055.02, + "end": 9058.52, + "probability": 0.9932 + }, + { + "start": 9060.12, + "end": 9065.02, + "probability": 0.9915 + }, + { + "start": 9065.62, + "end": 9068.72, + "probability": 0.9954 + }, + { + "start": 9069.44, + "end": 9072.14, + "probability": 0.9573 + }, + { + "start": 9072.6, + "end": 9076.5, + "probability": 0.9852 + }, + { + "start": 9078.54, + "end": 9080.88, + "probability": 0.8657 + }, + { + "start": 9081.54, + "end": 9082.44, + "probability": 0.7377 + }, + { + "start": 9083.4, + "end": 9087.48, + "probability": 0.9835 + }, + { + "start": 9088.64, + "end": 9090.07, + "probability": 0.9985 + }, + { + "start": 9091.7, + "end": 9093.28, + "probability": 0.9897 + }, + { + "start": 9094.12, + "end": 9096.2, + "probability": 0.9096 + }, + { + "start": 9096.66, + "end": 9098.62, + "probability": 0.9938 + }, + { + "start": 9098.86, + "end": 9100.12, + "probability": 0.9035 + }, + { + "start": 9100.86, + "end": 9105.26, + "probability": 0.9156 + }, + { + "start": 9105.56, + "end": 9106.16, + "probability": 0.9741 + }, + { + "start": 9108.44, + "end": 9111.68, + "probability": 0.9435 + }, + { + "start": 9112.14, + "end": 9114.6, + "probability": 0.975 + }, + { + "start": 9115.52, + "end": 9118.42, + "probability": 0.9939 + }, + { + "start": 9118.42, + "end": 9122.76, + "probability": 0.9951 + }, + { + "start": 9123.68, + "end": 9125.14, + "probability": 0.7075 + }, + { + "start": 9125.62, + "end": 9127.54, + "probability": 0.9749 + }, + { + "start": 9128.24, + "end": 9133.3, + "probability": 0.973 + }, + { + "start": 9133.58, + "end": 9136.5, + "probability": 0.9973 + }, + { + "start": 9138.62, + "end": 9141.38, + "probability": 0.985 + }, + { + "start": 9141.8, + "end": 9142.3, + "probability": 0.8947 + }, + { + "start": 9143.42, + "end": 9144.58, + "probability": 0.9767 + }, + { + "start": 9145.1, + "end": 9146.62, + "probability": 0.9924 + }, + { + "start": 9147.54, + "end": 9152.26, + "probability": 0.9967 + }, + { + "start": 9153.1, + "end": 9156.9, + "probability": 0.9933 + }, + { + "start": 9157.2, + "end": 9160.8, + "probability": 0.985 + }, + { + "start": 9160.8, + "end": 9164.1, + "probability": 0.9992 + }, + { + "start": 9166.14, + "end": 9169.82, + "probability": 0.9794 + }, + { + "start": 9171.02, + "end": 9174.2, + "probability": 0.9937 + }, + { + "start": 9174.72, + "end": 9177.82, + "probability": 0.972 + }, + { + "start": 9178.68, + "end": 9180.76, + "probability": 0.9912 + }, + { + "start": 9180.9, + "end": 9181.58, + "probability": 0.963 + }, + { + "start": 9181.7, + "end": 9182.18, + "probability": 0.9692 + }, + { + "start": 9182.28, + "end": 9183.56, + "probability": 0.4843 + }, + { + "start": 9184.24, + "end": 9186.92, + "probability": 0.9844 + }, + { + "start": 9187.22, + "end": 9189.06, + "probability": 0.8505 + }, + { + "start": 9190.28, + "end": 9193.06, + "probability": 0.9519 + }, + { + "start": 9193.64, + "end": 9196.66, + "probability": 0.9771 + }, + { + "start": 9197.02, + "end": 9198.72, + "probability": 0.9254 + }, + { + "start": 9198.98, + "end": 9202.36, + "probability": 0.8336 + }, + { + "start": 9202.92, + "end": 9205.1, + "probability": 0.8612 + }, + { + "start": 9205.22, + "end": 9208.34, + "probability": 0.9287 + }, + { + "start": 9208.98, + "end": 9210.66, + "probability": 0.971 + }, + { + "start": 9212.18, + "end": 9216.76, + "probability": 0.9854 + }, + { + "start": 9217.42, + "end": 9220.66, + "probability": 0.9292 + }, + { + "start": 9220.66, + "end": 9223.58, + "probability": 0.9928 + }, + { + "start": 9224.04, + "end": 9228.9, + "probability": 0.9977 + }, + { + "start": 9229.94, + "end": 9230.26, + "probability": 0.502 + }, + { + "start": 9231.42, + "end": 9234.67, + "probability": 0.9869 + }, + { + "start": 9235.52, + "end": 9238.9, + "probability": 0.9927 + }, + { + "start": 9239.48, + "end": 9242.26, + "probability": 0.8494 + }, + { + "start": 9243.94, + "end": 9247.42, + "probability": 0.9299 + }, + { + "start": 9248.04, + "end": 9252.3, + "probability": 0.9344 + }, + { + "start": 9252.4, + "end": 9253.74, + "probability": 0.7644 + }, + { + "start": 9254.06, + "end": 9256.94, + "probability": 0.8877 + }, + { + "start": 9259.66, + "end": 9263.6, + "probability": 0.9858 + }, + { + "start": 9264.14, + "end": 9265.7, + "probability": 0.9683 + }, + { + "start": 9266.44, + "end": 9270.94, + "probability": 0.9884 + }, + { + "start": 9271.5, + "end": 9274.98, + "probability": 0.9752 + }, + { + "start": 9275.64, + "end": 9279.86, + "probability": 0.9857 + }, + { + "start": 9280.32, + "end": 9284.16, + "probability": 0.9487 + }, + { + "start": 9285.22, + "end": 9290.06, + "probability": 0.9917 + }, + { + "start": 9290.8, + "end": 9291.56, + "probability": 0.9536 + }, + { + "start": 9292.48, + "end": 9294.48, + "probability": 0.9147 + }, + { + "start": 9294.92, + "end": 9296.12, + "probability": 0.9708 + }, + { + "start": 9296.44, + "end": 9298.12, + "probability": 0.9479 + }, + { + "start": 9298.94, + "end": 9301.3, + "probability": 0.9921 + }, + { + "start": 9302.02, + "end": 9304.8, + "probability": 0.9877 + }, + { + "start": 9306.12, + "end": 9309.42, + "probability": 0.9982 + }, + { + "start": 9309.68, + "end": 9314.38, + "probability": 0.9745 + }, + { + "start": 9315.12, + "end": 9319.68, + "probability": 0.8707 + }, + { + "start": 9321.68, + "end": 9323.88, + "probability": 0.9805 + }, + { + "start": 9324.58, + "end": 9327.74, + "probability": 0.9907 + }, + { + "start": 9327.74, + "end": 9331.06, + "probability": 0.98 + }, + { + "start": 9332.02, + "end": 9335.24, + "probability": 0.8518 + }, + { + "start": 9335.24, + "end": 9337.56, + "probability": 0.999 + }, + { + "start": 9338.82, + "end": 9341.28, + "probability": 0.9309 + }, + { + "start": 9342.22, + "end": 9345.04, + "probability": 0.9387 + }, + { + "start": 9346.06, + "end": 9351.69, + "probability": 0.9938 + }, + { + "start": 9352.2, + "end": 9353.92, + "probability": 0.7794 + }, + { + "start": 9353.94, + "end": 9355.96, + "probability": 0.9767 + }, + { + "start": 9357.1, + "end": 9361.56, + "probability": 0.9562 + }, + { + "start": 9362.48, + "end": 9365.18, + "probability": 0.9648 + }, + { + "start": 9365.74, + "end": 9367.42, + "probability": 0.9515 + }, + { + "start": 9367.76, + "end": 9369.64, + "probability": 0.9525 + }, + { + "start": 9369.78, + "end": 9373.4, + "probability": 0.7242 + }, + { + "start": 9374.54, + "end": 9377.52, + "probability": 0.9118 + }, + { + "start": 9378.08, + "end": 9382.52, + "probability": 0.9902 + }, + { + "start": 9383.64, + "end": 9386.96, + "probability": 0.9965 + }, + { + "start": 9387.6, + "end": 9391.12, + "probability": 0.9897 + }, + { + "start": 9391.64, + "end": 9394.94, + "probability": 0.9714 + }, + { + "start": 9395.36, + "end": 9399.1, + "probability": 0.9814 + }, + { + "start": 9401.06, + "end": 9404.24, + "probability": 0.9972 + }, + { + "start": 9404.24, + "end": 9407.58, + "probability": 0.9977 + }, + { + "start": 9408.34, + "end": 9413.2, + "probability": 0.8063 + }, + { + "start": 9414.1, + "end": 9419.04, + "probability": 0.9978 + }, + { + "start": 9419.52, + "end": 9421.86, + "probability": 0.9984 + }, + { + "start": 9421.86, + "end": 9425.38, + "probability": 0.9974 + }, + { + "start": 9426.62, + "end": 9427.18, + "probability": 0.8167 + }, + { + "start": 9427.74, + "end": 9430.94, + "probability": 0.9352 + }, + { + "start": 9431.54, + "end": 9434.78, + "probability": 0.9158 + }, + { + "start": 9435.4, + "end": 9438.46, + "probability": 0.9946 + }, + { + "start": 9438.46, + "end": 9442.06, + "probability": 0.9889 + }, + { + "start": 9443.1, + "end": 9445.02, + "probability": 0.9816 + }, + { + "start": 9445.38, + "end": 9448.5, + "probability": 0.9492 + }, + { + "start": 9448.82, + "end": 9451.7, + "probability": 0.8861 + }, + { + "start": 9451.7, + "end": 9454.52, + "probability": 0.9505 + }, + { + "start": 9455.38, + "end": 9458.64, + "probability": 0.978 + }, + { + "start": 9460.28, + "end": 9461.96, + "probability": 0.7814 + }, + { + "start": 9462.62, + "end": 9464.06, + "probability": 0.8505 + }, + { + "start": 9464.82, + "end": 9466.48, + "probability": 0.9432 + }, + { + "start": 9467.56, + "end": 9470.56, + "probability": 0.9559 + }, + { + "start": 9471.48, + "end": 9474.06, + "probability": 0.9983 + }, + { + "start": 9474.6, + "end": 9479.1, + "probability": 0.991 + }, + { + "start": 9479.58, + "end": 9480.28, + "probability": 0.874 + }, + { + "start": 9481.14, + "end": 9485.8, + "probability": 0.9292 + }, + { + "start": 9486.72, + "end": 9487.34, + "probability": 0.2749 + }, + { + "start": 9488.18, + "end": 9491.34, + "probability": 0.9718 + }, + { + "start": 9492.02, + "end": 9494.72, + "probability": 0.9977 + }, + { + "start": 9494.82, + "end": 9495.54, + "probability": 0.9622 + }, + { + "start": 9495.78, + "end": 9496.66, + "probability": 0.8152 + }, + { + "start": 9496.96, + "end": 9498.36, + "probability": 0.9854 + }, + { + "start": 9499.64, + "end": 9500.54, + "probability": 0.9868 + }, + { + "start": 9501.3, + "end": 9503.06, + "probability": 0.8864 + }, + { + "start": 9503.1, + "end": 9505.02, + "probability": 0.9873 + }, + { + "start": 9505.64, + "end": 9506.64, + "probability": 0.9687 + }, + { + "start": 9507.76, + "end": 9509.26, + "probability": 0.7811 + }, + { + "start": 9509.6, + "end": 9511.88, + "probability": 0.7872 + }, + { + "start": 9512.62, + "end": 9513.4, + "probability": 0.9246 + }, + { + "start": 9513.86, + "end": 9514.68, + "probability": 0.8844 + }, + { + "start": 9515.12, + "end": 9516.96, + "probability": 0.7729 + }, + { + "start": 9517.44, + "end": 9522.82, + "probability": 0.979 + }, + { + "start": 9523.48, + "end": 9525.36, + "probability": 0.9946 + }, + { + "start": 9526.06, + "end": 9526.83, + "probability": 0.9739 + }, + { + "start": 9527.86, + "end": 9528.08, + "probability": 0.8366 + }, + { + "start": 9532.02, + "end": 9532.58, + "probability": 0.9615 + }, + { + "start": 9534.5, + "end": 9537.18, + "probability": 0.9818 + }, + { + "start": 9537.8, + "end": 9538.44, + "probability": 0.3014 + }, + { + "start": 9549.9, + "end": 9551.78, + "probability": 0.1438 + }, + { + "start": 9553.1, + "end": 9558.82, + "probability": 0.0088 + }, + { + "start": 9564.76, + "end": 9566.04, + "probability": 0.0923 + }, + { + "start": 9576.18, + "end": 9578.1, + "probability": 0.1226 + }, + { + "start": 9581.46, + "end": 9582.41, + "probability": 0.1121 + }, + { + "start": 9583.3, + "end": 9584.7, + "probability": 0.2938 + }, + { + "start": 9590.9, + "end": 9591.96, + "probability": 0.0081 + }, + { + "start": 9595.02, + "end": 9595.38, + "probability": 0.0023 + }, + { + "start": 9623.68, + "end": 9625.42, + "probability": 0.2347 + }, + { + "start": 9627.2, + "end": 9627.2, + "probability": 0.0132 + }, + { + "start": 9627.52, + "end": 9630.88, + "probability": 0.8738 + }, + { + "start": 9632.88, + "end": 9635.64, + "probability": 0.9969 + }, + { + "start": 9635.86, + "end": 9638.76, + "probability": 0.9888 + }, + { + "start": 9639.64, + "end": 9641.7, + "probability": 0.9819 + }, + { + "start": 9642.86, + "end": 9648.98, + "probability": 0.8215 + }, + { + "start": 9648.98, + "end": 9651.28, + "probability": 0.9497 + }, + { + "start": 9651.62, + "end": 9652.86, + "probability": 0.4061 + }, + { + "start": 9654.16, + "end": 9658.16, + "probability": 0.9528 + }, + { + "start": 9658.22, + "end": 9661.74, + "probability": 0.9188 + }, + { + "start": 9662.78, + "end": 9667.44, + "probability": 0.9347 + }, + { + "start": 9667.52, + "end": 9668.44, + "probability": 0.8576 + }, + { + "start": 9669.36, + "end": 9670.98, + "probability": 0.9227 + }, + { + "start": 9671.98, + "end": 9674.76, + "probability": 0.9762 + }, + { + "start": 9676.06, + "end": 9681.48, + "probability": 0.9963 + }, + { + "start": 9681.48, + "end": 9685.92, + "probability": 0.9993 + }, + { + "start": 9687.24, + "end": 9688.18, + "probability": 0.9976 + }, + { + "start": 9690.08, + "end": 9692.56, + "probability": 0.9514 + }, + { + "start": 9693.56, + "end": 9700.52, + "probability": 0.8715 + }, + { + "start": 9700.68, + "end": 9701.96, + "probability": 0.9877 + }, + { + "start": 9702.68, + "end": 9705.92, + "probability": 0.9124 + }, + { + "start": 9706.1, + "end": 9707.07, + "probability": 0.9941 + }, + { + "start": 9708.06, + "end": 9709.66, + "probability": 0.7807 + }, + { + "start": 9710.88, + "end": 9711.76, + "probability": 0.8447 + }, + { + "start": 9712.78, + "end": 9713.56, + "probability": 0.8361 + }, + { + "start": 9714.82, + "end": 9715.5, + "probability": 0.7099 + }, + { + "start": 9716.1, + "end": 9716.84, + "probability": 0.9488 + }, + { + "start": 9717.54, + "end": 9718.34, + "probability": 0.7641 + }, + { + "start": 9719.86, + "end": 9720.12, + "probability": 0.4195 + }, + { + "start": 9720.12, + "end": 9720.76, + "probability": 0.4977 + }, + { + "start": 9720.78, + "end": 9722.25, + "probability": 0.8942 + }, + { + "start": 9722.44, + "end": 9722.72, + "probability": 0.8105 + }, + { + "start": 9723.66, + "end": 9724.28, + "probability": 0.9814 + }, + { + "start": 9724.96, + "end": 9725.46, + "probability": 0.9143 + }, + { + "start": 9726.2, + "end": 9729.58, + "probability": 0.8719 + }, + { + "start": 9731.06, + "end": 9733.64, + "probability": 0.8979 + }, + { + "start": 9734.52, + "end": 9735.04, + "probability": 0.7248 + }, + { + "start": 9735.16, + "end": 9736.34, + "probability": 0.7581 + }, + { + "start": 9736.46, + "end": 9740.16, + "probability": 0.8874 + }, + { + "start": 9740.28, + "end": 9741.06, + "probability": 0.9374 + }, + { + "start": 9741.68, + "end": 9742.64, + "probability": 0.8459 + }, + { + "start": 9742.7, + "end": 9743.0, + "probability": 0.8049 + }, + { + "start": 9743.14, + "end": 9743.52, + "probability": 0.3282 + }, + { + "start": 9743.64, + "end": 9747.4, + "probability": 0.9668 + }, + { + "start": 9747.56, + "end": 9749.56, + "probability": 0.9078 + }, + { + "start": 9749.88, + "end": 9750.18, + "probability": 0.3311 + }, + { + "start": 9750.24, + "end": 9750.82, + "probability": 0.8508 + }, + { + "start": 9750.98, + "end": 9754.14, + "probability": 0.9575 + }, + { + "start": 9755.44, + "end": 9757.35, + "probability": 0.9963 + }, + { + "start": 9757.72, + "end": 9759.06, + "probability": 0.9727 + }, + { + "start": 9759.06, + "end": 9759.16, + "probability": 0.3625 + }, + { + "start": 9760.74, + "end": 9763.14, + "probability": 0.9459 + }, + { + "start": 9764.04, + "end": 9764.92, + "probability": 0.8069 + }, + { + "start": 9764.96, + "end": 9766.34, + "probability": 0.8733 + }, + { + "start": 9766.46, + "end": 9767.96, + "probability": 0.8917 + }, + { + "start": 9780.78, + "end": 9781.58, + "probability": 0.0158 + }, + { + "start": 9781.58, + "end": 9781.66, + "probability": 0.0346 + }, + { + "start": 9781.66, + "end": 9781.66, + "probability": 0.0676 + }, + { + "start": 9781.66, + "end": 9781.98, + "probability": 0.061 + }, + { + "start": 9781.98, + "end": 9782.59, + "probability": 0.1297 + }, + { + "start": 9784.04, + "end": 9784.44, + "probability": 0.6617 + }, + { + "start": 9784.56, + "end": 9784.84, + "probability": 0.4984 + }, + { + "start": 9784.92, + "end": 9785.6, + "probability": 0.5485 + }, + { + "start": 9785.66, + "end": 9788.3, + "probability": 0.9875 + }, + { + "start": 9789.14, + "end": 9791.46, + "probability": 0.769 + }, + { + "start": 9792.16, + "end": 9794.88, + "probability": 0.9863 + }, + { + "start": 9795.0, + "end": 9796.72, + "probability": 0.923 + }, + { + "start": 9797.38, + "end": 9800.18, + "probability": 0.9518 + }, + { + "start": 9801.46, + "end": 9801.88, + "probability": 0.6143 + }, + { + "start": 9802.04, + "end": 9803.77, + "probability": 0.9683 + }, + { + "start": 9804.0, + "end": 9807.24, + "probability": 0.9883 + }, + { + "start": 9807.32, + "end": 9810.22, + "probability": 0.9323 + }, + { + "start": 9810.64, + "end": 9812.14, + "probability": 0.9819 + }, + { + "start": 9813.5, + "end": 9815.02, + "probability": 0.5032 + }, + { + "start": 9815.08, + "end": 9818.02, + "probability": 0.7996 + }, + { + "start": 9818.06, + "end": 9818.7, + "probability": 0.5361 + }, + { + "start": 9818.72, + "end": 9820.66, + "probability": 0.8421 + }, + { + "start": 9820.7, + "end": 9823.82, + "probability": 0.9734 + }, + { + "start": 9824.4, + "end": 9826.06, + "probability": 0.9238 + }, + { + "start": 9826.14, + "end": 9827.54, + "probability": 0.7304 + }, + { + "start": 9827.64, + "end": 9830.48, + "probability": 0.9801 + }, + { + "start": 9831.42, + "end": 9832.4, + "probability": 0.6493 + }, + { + "start": 9833.04, + "end": 9833.9, + "probability": 0.8638 + }, + { + "start": 9834.14, + "end": 9837.1, + "probability": 0.9113 + }, + { + "start": 9837.2, + "end": 9838.26, + "probability": 0.9248 + }, + { + "start": 9838.3, + "end": 9840.82, + "probability": 0.978 + }, + { + "start": 9841.58, + "end": 9846.08, + "probability": 0.9819 + }, + { + "start": 9846.16, + "end": 9851.42, + "probability": 0.9813 + }, + { + "start": 9851.58, + "end": 9851.62, + "probability": 0.1549 + }, + { + "start": 9851.82, + "end": 9852.78, + "probability": 0.6872 + }, + { + "start": 9852.82, + "end": 9857.36, + "probability": 0.9389 + }, + { + "start": 9857.42, + "end": 9860.06, + "probability": 0.8972 + }, + { + "start": 9860.44, + "end": 9863.2, + "probability": 0.7607 + }, + { + "start": 9864.32, + "end": 9865.26, + "probability": 0.6808 + }, + { + "start": 9866.14, + "end": 9869.04, + "probability": 0.981 + }, + { + "start": 9869.08, + "end": 9870.92, + "probability": 0.8898 + }, + { + "start": 9871.56, + "end": 9874.26, + "probability": 0.9603 + }, + { + "start": 9875.14, + "end": 9876.62, + "probability": 0.9618 + }, + { + "start": 9876.92, + "end": 9879.78, + "probability": 0.9371 + }, + { + "start": 9879.96, + "end": 9882.88, + "probability": 0.9705 + }, + { + "start": 9884.06, + "end": 9885.48, + "probability": 0.7556 + }, + { + "start": 9885.66, + "end": 9887.78, + "probability": 0.9851 + }, + { + "start": 9887.78, + "end": 9891.44, + "probability": 0.9831 + }, + { + "start": 9891.54, + "end": 9892.12, + "probability": 0.9654 + }, + { + "start": 9892.26, + "end": 9892.96, + "probability": 0.7767 + }, + { + "start": 9894.16, + "end": 9896.64, + "probability": 0.8127 + }, + { + "start": 9897.4, + "end": 9899.18, + "probability": 0.9219 + }, + { + "start": 9899.86, + "end": 9905.14, + "probability": 0.9968 + }, + { + "start": 9905.2, + "end": 9911.16, + "probability": 0.9927 + }, + { + "start": 9912.28, + "end": 9915.16, + "probability": 0.6877 + }, + { + "start": 9915.76, + "end": 9916.37, + "probability": 0.9851 + }, + { + "start": 9917.66, + "end": 9922.42, + "probability": 0.9625 + }, + { + "start": 9922.8, + "end": 9923.48, + "probability": 0.8496 + }, + { + "start": 9923.88, + "end": 9925.91, + "probability": 0.9702 + }, + { + "start": 9927.08, + "end": 9930.44, + "probability": 0.9009 + }, + { + "start": 9931.44, + "end": 9934.18, + "probability": 0.9818 + }, + { + "start": 9934.18, + "end": 9936.22, + "probability": 0.7668 + }, + { + "start": 9936.24, + "end": 9936.58, + "probability": 0.4636 + }, + { + "start": 9937.76, + "end": 9939.78, + "probability": 0.7686 + }, + { + "start": 9953.6, + "end": 9956.62, + "probability": 0.7561 + }, + { + "start": 9957.94, + "end": 9962.36, + "probability": 0.9692 + }, + { + "start": 9962.62, + "end": 9964.0, + "probability": 0.9272 + }, + { + "start": 9965.14, + "end": 9969.4, + "probability": 0.9511 + }, + { + "start": 9970.2, + "end": 9972.5, + "probability": 0.957 + }, + { + "start": 9973.5, + "end": 9976.08, + "probability": 0.9862 + }, + { + "start": 9976.88, + "end": 9983.1, + "probability": 0.9817 + }, + { + "start": 9983.6, + "end": 9987.84, + "probability": 0.9904 + }, + { + "start": 9988.42, + "end": 9991.48, + "probability": 0.9503 + }, + { + "start": 9992.56, + "end": 9995.52, + "probability": 0.9939 + }, + { + "start": 9996.18, + "end": 10000.82, + "probability": 0.9828 + }, + { + "start": 10001.48, + "end": 10004.96, + "probability": 0.9556 + }, + { + "start": 10005.84, + "end": 10007.26, + "probability": 0.9941 + }, + { + "start": 10008.32, + "end": 10012.16, + "probability": 0.9609 + }, + { + "start": 10013.1, + "end": 10014.3, + "probability": 0.7919 + }, + { + "start": 10014.92, + "end": 10017.68, + "probability": 0.9234 + }, + { + "start": 10018.38, + "end": 10022.64, + "probability": 0.9672 + }, + { + "start": 10022.64, + "end": 10028.8, + "probability": 0.9861 + }, + { + "start": 10029.86, + "end": 10035.58, + "probability": 0.9884 + }, + { + "start": 10035.94, + "end": 10038.22, + "probability": 0.9805 + }, + { + "start": 10038.9, + "end": 10041.28, + "probability": 0.9943 + }, + { + "start": 10041.92, + "end": 10043.52, + "probability": 0.5262 + }, + { + "start": 10044.18, + "end": 10044.28, + "probability": 0.5674 + }, + { + "start": 10044.88, + "end": 10046.68, + "probability": 0.7524 + }, + { + "start": 10047.42, + "end": 10050.84, + "probability": 0.9047 + }, + { + "start": 10051.6, + "end": 10054.5, + "probability": 0.9963 + }, + { + "start": 10055.58, + "end": 10057.88, + "probability": 0.9536 + }, + { + "start": 10058.56, + "end": 10061.7, + "probability": 0.9448 + }, + { + "start": 10061.9, + "end": 10063.82, + "probability": 0.9458 + }, + { + "start": 10064.62, + "end": 10068.3, + "probability": 0.9761 + }, + { + "start": 10068.98, + "end": 10069.84, + "probability": 0.7815 + }, + { + "start": 10070.36, + "end": 10071.94, + "probability": 0.9172 + }, + { + "start": 10072.5, + "end": 10072.9, + "probability": 0.55 + }, + { + "start": 10073.82, + "end": 10080.88, + "probability": 0.9757 + }, + { + "start": 10082.64, + "end": 10088.0, + "probability": 0.9639 + }, + { + "start": 10088.2, + "end": 10093.04, + "probability": 0.959 + }, + { + "start": 10094.3, + "end": 10096.18, + "probability": 0.9886 + }, + { + "start": 10097.04, + "end": 10098.28, + "probability": 0.9686 + }, + { + "start": 10098.98, + "end": 10099.9, + "probability": 0.8623 + }, + { + "start": 10100.96, + "end": 10107.58, + "probability": 0.9731 + }, + { + "start": 10108.66, + "end": 10114.04, + "probability": 0.9788 + }, + { + "start": 10114.98, + "end": 10116.0, + "probability": 0.794 + }, + { + "start": 10116.84, + "end": 10121.22, + "probability": 0.9954 + }, + { + "start": 10122.62, + "end": 10126.9, + "probability": 0.995 + }, + { + "start": 10126.9, + "end": 10132.32, + "probability": 0.963 + }, + { + "start": 10133.48, + "end": 10135.5, + "probability": 0.9943 + }, + { + "start": 10136.44, + "end": 10140.82, + "probability": 0.9941 + }, + { + "start": 10141.0, + "end": 10143.82, + "probability": 0.9476 + }, + { + "start": 10144.2, + "end": 10145.12, + "probability": 0.8059 + }, + { + "start": 10145.68, + "end": 10146.44, + "probability": 0.9866 + }, + { + "start": 10147.32, + "end": 10153.04, + "probability": 0.9871 + }, + { + "start": 10153.24, + "end": 10153.96, + "probability": 0.8229 + }, + { + "start": 10154.18, + "end": 10154.78, + "probability": 0.9892 + }, + { + "start": 10155.0, + "end": 10155.7, + "probability": 0.9882 + }, + { + "start": 10156.08, + "end": 10156.96, + "probability": 0.9805 + }, + { + "start": 10157.16, + "end": 10158.2, + "probability": 0.9791 + }, + { + "start": 10158.48, + "end": 10158.64, + "probability": 0.873 + }, + { + "start": 10159.3, + "end": 10161.18, + "probability": 0.9941 + }, + { + "start": 10161.92, + "end": 10166.12, + "probability": 0.9126 + }, + { + "start": 10166.72, + "end": 10170.46, + "probability": 0.9761 + }, + { + "start": 10171.04, + "end": 10176.96, + "probability": 0.985 + }, + { + "start": 10178.08, + "end": 10181.82, + "probability": 0.9886 + }, + { + "start": 10182.26, + "end": 10182.92, + "probability": 0.9833 + }, + { + "start": 10182.96, + "end": 10185.5, + "probability": 0.9295 + }, + { + "start": 10186.02, + "end": 10187.66, + "probability": 0.5819 + }, + { + "start": 10188.2, + "end": 10193.48, + "probability": 0.9885 + }, + { + "start": 10194.32, + "end": 10200.58, + "probability": 0.9933 + }, + { + "start": 10201.52, + "end": 10205.42, + "probability": 0.9899 + }, + { + "start": 10206.52, + "end": 10212.44, + "probability": 0.9871 + }, + { + "start": 10212.54, + "end": 10218.44, + "probability": 0.9995 + }, + { + "start": 10219.14, + "end": 10222.68, + "probability": 0.9644 + }, + { + "start": 10223.72, + "end": 10226.76, + "probability": 0.9333 + }, + { + "start": 10226.76, + "end": 10230.72, + "probability": 0.9905 + }, + { + "start": 10231.22, + "end": 10232.32, + "probability": 0.5073 + }, + { + "start": 10232.34, + "end": 10233.82, + "probability": 0.6626 + }, + { + "start": 10234.5, + "end": 10239.88, + "probability": 0.9754 + }, + { + "start": 10240.3, + "end": 10245.06, + "probability": 0.9972 + }, + { + "start": 10245.88, + "end": 10247.24, + "probability": 0.9664 + }, + { + "start": 10247.9, + "end": 10249.88, + "probability": 0.999 + }, + { + "start": 10251.28, + "end": 10252.42, + "probability": 0.8279 + }, + { + "start": 10253.28, + "end": 10259.94, + "probability": 0.9845 + }, + { + "start": 10260.62, + "end": 10261.78, + "probability": 0.8603 + }, + { + "start": 10262.3, + "end": 10262.82, + "probability": 0.6687 + }, + { + "start": 10262.98, + "end": 10264.82, + "probability": 0.7581 + }, + { + "start": 10265.24, + "end": 10267.76, + "probability": 0.9916 + }, + { + "start": 10268.1, + "end": 10273.08, + "probability": 0.9902 + }, + { + "start": 10273.9, + "end": 10276.94, + "probability": 0.9954 + }, + { + "start": 10276.94, + "end": 10282.22, + "probability": 0.9609 + }, + { + "start": 10282.76, + "end": 10286.12, + "probability": 0.9995 + }, + { + "start": 10286.12, + "end": 10291.0, + "probability": 0.999 + }, + { + "start": 10291.9, + "end": 10296.78, + "probability": 0.9966 + }, + { + "start": 10298.46, + "end": 10303.68, + "probability": 0.9297 + }, + { + "start": 10304.52, + "end": 10309.76, + "probability": 0.9794 + }, + { + "start": 10310.6, + "end": 10313.1, + "probability": 0.9903 + }, + { + "start": 10314.9, + "end": 10315.86, + "probability": 0.7611 + }, + { + "start": 10316.4, + "end": 10323.1, + "probability": 0.9993 + }, + { + "start": 10323.76, + "end": 10329.0, + "probability": 0.9958 + }, + { + "start": 10331.06, + "end": 10332.72, + "probability": 0.9992 + }, + { + "start": 10333.58, + "end": 10336.76, + "probability": 0.9973 + }, + { + "start": 10337.46, + "end": 10342.98, + "probability": 0.9983 + }, + { + "start": 10343.68, + "end": 10345.8, + "probability": 0.7128 + }, + { + "start": 10346.72, + "end": 10348.28, + "probability": 0.9988 + }, + { + "start": 10348.88, + "end": 10352.5, + "probability": 0.9969 + }, + { + "start": 10353.18, + "end": 10353.88, + "probability": 0.9725 + }, + { + "start": 10354.94, + "end": 10363.02, + "probability": 0.9941 + }, + { + "start": 10364.82, + "end": 10366.88, + "probability": 0.996 + }, + { + "start": 10368.42, + "end": 10370.78, + "probability": 0.965 + }, + { + "start": 10371.46, + "end": 10376.78, + "probability": 0.9106 + }, + { + "start": 10377.82, + "end": 10378.82, + "probability": 0.908 + }, + { + "start": 10379.6, + "end": 10381.06, + "probability": 0.8813 + }, + { + "start": 10382.08, + "end": 10386.76, + "probability": 0.9927 + }, + { + "start": 10387.76, + "end": 10389.3, + "probability": 0.8236 + }, + { + "start": 10390.14, + "end": 10390.82, + "probability": 0.865 + }, + { + "start": 10391.52, + "end": 10391.72, + "probability": 0.627 + }, + { + "start": 10392.42, + "end": 10393.56, + "probability": 0.9304 + }, + { + "start": 10394.1, + "end": 10396.0, + "probability": 0.9612 + }, + { + "start": 10396.36, + "end": 10397.87, + "probability": 0.9916 + }, + { + "start": 10398.62, + "end": 10401.84, + "probability": 0.995 + }, + { + "start": 10402.48, + "end": 10403.88, + "probability": 0.9944 + }, + { + "start": 10404.4, + "end": 10407.76, + "probability": 0.9436 + }, + { + "start": 10408.6, + "end": 10413.26, + "probability": 0.9917 + }, + { + "start": 10414.18, + "end": 10417.16, + "probability": 0.9924 + }, + { + "start": 10419.6, + "end": 10423.76, + "probability": 0.9955 + }, + { + "start": 10424.9, + "end": 10426.2, + "probability": 0.8491 + }, + { + "start": 10426.78, + "end": 10428.38, + "probability": 0.9845 + }, + { + "start": 10429.16, + "end": 10433.84, + "probability": 0.9667 + }, + { + "start": 10434.48, + "end": 10437.54, + "probability": 0.9948 + }, + { + "start": 10438.5, + "end": 10443.62, + "probability": 0.984 + }, + { + "start": 10445.72, + "end": 10446.36, + "probability": 0.5474 + }, + { + "start": 10447.02, + "end": 10450.66, + "probability": 0.9172 + }, + { + "start": 10451.24, + "end": 10456.84, + "probability": 0.9921 + }, + { + "start": 10457.42, + "end": 10458.74, + "probability": 0.9743 + }, + { + "start": 10459.14, + "end": 10464.88, + "probability": 0.9729 + }, + { + "start": 10465.68, + "end": 10468.12, + "probability": 0.9901 + }, + { + "start": 10469.44, + "end": 10474.8, + "probability": 0.9395 + }, + { + "start": 10475.36, + "end": 10476.36, + "probability": 0.7981 + }, + { + "start": 10477.22, + "end": 10480.14, + "probability": 0.9771 + }, + { + "start": 10480.9, + "end": 10483.76, + "probability": 0.899 + }, + { + "start": 10484.58, + "end": 10491.06, + "probability": 0.9738 + }, + { + "start": 10492.1, + "end": 10492.98, + "probability": 0.7136 + }, + { + "start": 10494.06, + "end": 10494.84, + "probability": 0.9045 + }, + { + "start": 10497.34, + "end": 10499.84, + "probability": 0.9993 + }, + { + "start": 10504.78, + "end": 10505.94, + "probability": 0.6606 + }, + { + "start": 10525.06, + "end": 10526.5, + "probability": 0.0409 + }, + { + "start": 10537.64, + "end": 10539.26, + "probability": 0.0193 + }, + { + "start": 10542.6, + "end": 10546.3, + "probability": 0.1246 + }, + { + "start": 10552.04, + "end": 10553.5, + "probability": 0.3991 + }, + { + "start": 10554.46, + "end": 10555.02, + "probability": 0.0159 + }, + { + "start": 10630.24, + "end": 10633.34, + "probability": 0.9178 + }, + { + "start": 10634.34, + "end": 10636.24, + "probability": 0.9954 + }, + { + "start": 10643.76, + "end": 10645.4, + "probability": 0.6719 + }, + { + "start": 10645.62, + "end": 10647.08, + "probability": 0.6776 + }, + { + "start": 10647.5, + "end": 10650.98, + "probability": 0.9912 + }, + { + "start": 10651.8, + "end": 10653.22, + "probability": 0.6838 + }, + { + "start": 10653.5, + "end": 10659.0, + "probability": 0.9961 + }, + { + "start": 10659.68, + "end": 10662.18, + "probability": 0.9192 + }, + { + "start": 10663.06, + "end": 10663.96, + "probability": 0.7499 + }, + { + "start": 10664.68, + "end": 10665.88, + "probability": 0.7019 + }, + { + "start": 10666.42, + "end": 10668.08, + "probability": 0.9794 + }, + { + "start": 10668.64, + "end": 10673.16, + "probability": 0.9886 + }, + { + "start": 10673.24, + "end": 10673.82, + "probability": 0.5626 + }, + { + "start": 10674.24, + "end": 10678.0, + "probability": 0.6813 + }, + { + "start": 10678.06, + "end": 10679.08, + "probability": 0.6431 + }, + { + "start": 10679.74, + "end": 10680.96, + "probability": 0.8831 + }, + { + "start": 10681.08, + "end": 10683.5, + "probability": 0.9762 + }, + { + "start": 10683.84, + "end": 10690.18, + "probability": 0.9949 + }, + { + "start": 10690.38, + "end": 10690.98, + "probability": 0.483 + }, + { + "start": 10691.88, + "end": 10693.32, + "probability": 0.9755 + }, + { + "start": 10694.08, + "end": 10699.92, + "probability": 0.9678 + }, + { + "start": 10700.22, + "end": 10701.88, + "probability": 0.8799 + }, + { + "start": 10702.48, + "end": 10703.2, + "probability": 0.7022 + }, + { + "start": 10703.94, + "end": 10704.24, + "probability": 0.2447 + }, + { + "start": 10704.4, + "end": 10708.05, + "probability": 0.8016 + }, + { + "start": 10709.0, + "end": 10710.0, + "probability": 0.8823 + }, + { + "start": 10710.42, + "end": 10711.78, + "probability": 0.8844 + }, + { + "start": 10713.04, + "end": 10715.78, + "probability": 0.7767 + }, + { + "start": 10716.62, + "end": 10717.44, + "probability": 0.7668 + }, + { + "start": 10717.6, + "end": 10718.08, + "probability": 0.9313 + }, + { + "start": 10718.18, + "end": 10719.94, + "probability": 0.9605 + }, + { + "start": 10720.22, + "end": 10720.4, + "probability": 0.7214 + }, + { + "start": 10720.7, + "end": 10720.94, + "probability": 0.6073 + }, + { + "start": 10721.64, + "end": 10722.28, + "probability": 0.929 + }, + { + "start": 10722.34, + "end": 10726.28, + "probability": 0.9082 + }, + { + "start": 10726.9, + "end": 10729.04, + "probability": 0.9929 + }, + { + "start": 10729.52, + "end": 10731.16, + "probability": 0.9185 + }, + { + "start": 10731.82, + "end": 10735.96, + "probability": 0.9788 + }, + { + "start": 10736.96, + "end": 10738.39, + "probability": 0.9796 + }, + { + "start": 10738.8, + "end": 10743.18, + "probability": 0.9914 + }, + { + "start": 10743.18, + "end": 10746.4, + "probability": 0.9502 + }, + { + "start": 10746.98, + "end": 10747.28, + "probability": 0.5158 + }, + { + "start": 10747.5, + "end": 10748.7, + "probability": 0.7214 + }, + { + "start": 10748.74, + "end": 10754.03, + "probability": 0.9785 + }, + { + "start": 10754.18, + "end": 10756.02, + "probability": 0.882 + }, + { + "start": 10756.02, + "end": 10756.48, + "probability": 0.8687 + }, + { + "start": 10757.3, + "end": 10760.2, + "probability": 0.9859 + }, + { + "start": 10760.42, + "end": 10768.3, + "probability": 0.8337 + }, + { + "start": 10768.88, + "end": 10772.7, + "probability": 0.9255 + }, + { + "start": 10773.56, + "end": 10775.64, + "probability": 0.8875 + }, + { + "start": 10776.2, + "end": 10781.22, + "probability": 0.9924 + }, + { + "start": 10781.64, + "end": 10783.5, + "probability": 0.8046 + }, + { + "start": 10784.14, + "end": 10785.84, + "probability": 0.9185 + }, + { + "start": 10786.18, + "end": 10786.96, + "probability": 0.8916 + }, + { + "start": 10787.12, + "end": 10788.04, + "probability": 0.7412 + }, + { + "start": 10788.08, + "end": 10788.64, + "probability": 0.8257 + }, + { + "start": 10789.2, + "end": 10791.98, + "probability": 0.9895 + }, + { + "start": 10792.08, + "end": 10794.16, + "probability": 0.9939 + }, + { + "start": 10794.86, + "end": 10796.94, + "probability": 0.9414 + }, + { + "start": 10797.48, + "end": 10799.46, + "probability": 0.8317 + }, + { + "start": 10799.56, + "end": 10801.1, + "probability": 0.9878 + }, + { + "start": 10801.24, + "end": 10802.4, + "probability": 0.9277 + }, + { + "start": 10802.5, + "end": 10806.96, + "probability": 0.9253 + }, + { + "start": 10807.56, + "end": 10811.31, + "probability": 0.993 + }, + { + "start": 10811.98, + "end": 10813.9, + "probability": 0.8083 + }, + { + "start": 10814.74, + "end": 10815.3, + "probability": 0.8666 + }, + { + "start": 10815.32, + "end": 10818.18, + "probability": 0.9607 + }, + { + "start": 10818.28, + "end": 10821.24, + "probability": 0.8812 + }, + { + "start": 10822.1, + "end": 10823.1, + "probability": 0.7494 + }, + { + "start": 10823.3, + "end": 10824.12, + "probability": 0.9497 + }, + { + "start": 10824.32, + "end": 10828.14, + "probability": 0.9752 + }, + { + "start": 10828.46, + "end": 10828.94, + "probability": 0.4225 + }, + { + "start": 10830.22, + "end": 10831.88, + "probability": 0.7194 + }, + { + "start": 10832.86, + "end": 10837.56, + "probability": 0.9661 + }, + { + "start": 10838.58, + "end": 10838.7, + "probability": 0.8427 + }, + { + "start": 10841.04, + "end": 10843.6, + "probability": 0.8209 + }, + { + "start": 10844.62, + "end": 10845.84, + "probability": 0.9243 + }, + { + "start": 10846.52, + "end": 10852.78, + "probability": 0.9865 + }, + { + "start": 10853.6, + "end": 10857.96, + "probability": 0.9993 + }, + { + "start": 10858.06, + "end": 10860.26, + "probability": 0.9729 + }, + { + "start": 10861.62, + "end": 10865.74, + "probability": 0.9951 + }, + { + "start": 10866.66, + "end": 10871.1, + "probability": 0.9918 + }, + { + "start": 10872.16, + "end": 10875.18, + "probability": 0.9921 + }, + { + "start": 10875.52, + "end": 10877.64, + "probability": 0.6094 + }, + { + "start": 10877.64, + "end": 10878.78, + "probability": 0.9185 + }, + { + "start": 10878.9, + "end": 10879.16, + "probability": 0.4323 + }, + { + "start": 10879.18, + "end": 10880.12, + "probability": 0.7697 + }, + { + "start": 10880.28, + "end": 10881.1, + "probability": 0.8982 + }, + { + "start": 10881.22, + "end": 10882.36, + "probability": 0.7997 + }, + { + "start": 10882.46, + "end": 10882.8, + "probability": 0.7387 + }, + { + "start": 10883.42, + "end": 10885.66, + "probability": 0.735 + }, + { + "start": 10887.3, + "end": 10893.86, + "probability": 0.8598 + }, + { + "start": 10894.12, + "end": 10894.62, + "probability": 0.9673 + }, + { + "start": 10898.5, + "end": 10904.18, + "probability": 0.2598 + }, + { + "start": 10904.18, + "end": 10905.12, + "probability": 0.0522 + }, + { + "start": 10911.12, + "end": 10916.92, + "probability": 0.247 + }, + { + "start": 10917.5, + "end": 10919.0, + "probability": 0.818 + }, + { + "start": 10920.44, + "end": 10921.38, + "probability": 0.5219 + }, + { + "start": 10922.36, + "end": 10923.34, + "probability": 0.6748 + }, + { + "start": 10923.46, + "end": 10927.02, + "probability": 0.9716 + }, + { + "start": 10927.88, + "end": 10930.98, + "probability": 0.8741 + }, + { + "start": 10931.64, + "end": 10932.68, + "probability": 0.5091 + }, + { + "start": 10933.46, + "end": 10935.18, + "probability": 0.9893 + }, + { + "start": 10936.86, + "end": 10938.66, + "probability": 0.8276 + }, + { + "start": 10940.84, + "end": 10943.56, + "probability": 0.9327 + }, + { + "start": 10944.06, + "end": 10945.12, + "probability": 0.96 + }, + { + "start": 10945.26, + "end": 10950.32, + "probability": 0.9666 + }, + { + "start": 10950.58, + "end": 10951.2, + "probability": 0.7721 + }, + { + "start": 10952.52, + "end": 10954.27, + "probability": 0.9614 + }, + { + "start": 10955.1, + "end": 10956.3, + "probability": 0.9937 + }, + { + "start": 10957.96, + "end": 10961.28, + "probability": 0.9961 + }, + { + "start": 10962.44, + "end": 10966.34, + "probability": 0.9854 + }, + { + "start": 10967.6, + "end": 10968.58, + "probability": 0.8071 + }, + { + "start": 10968.98, + "end": 10972.04, + "probability": 0.9062 + }, + { + "start": 10972.04, + "end": 10974.62, + "probability": 0.98 + }, + { + "start": 10976.02, + "end": 10978.38, + "probability": 0.98 + }, + { + "start": 10978.4, + "end": 10980.94, + "probability": 0.7349 + }, + { + "start": 10982.08, + "end": 10986.84, + "probability": 0.9958 + }, + { + "start": 10988.3, + "end": 10991.36, + "probability": 0.9867 + }, + { + "start": 10991.36, + "end": 10995.08, + "probability": 0.9838 + }, + { + "start": 10996.56, + "end": 11002.54, + "probability": 0.9167 + }, + { + "start": 11003.16, + "end": 11005.68, + "probability": 0.9882 + }, + { + "start": 11007.74, + "end": 11009.9, + "probability": 0.9966 + }, + { + "start": 11010.94, + "end": 11012.76, + "probability": 0.9257 + }, + { + "start": 11013.68, + "end": 11016.42, + "probability": 0.9707 + }, + { + "start": 11017.3, + "end": 11021.84, + "probability": 0.9873 + }, + { + "start": 11022.88, + "end": 11025.68, + "probability": 0.9219 + }, + { + "start": 11027.16, + "end": 11028.8, + "probability": 0.9893 + }, + { + "start": 11029.48, + "end": 11032.5, + "probability": 0.8783 + }, + { + "start": 11033.74, + "end": 11037.64, + "probability": 0.9917 + }, + { + "start": 11038.66, + "end": 11042.92, + "probability": 0.9028 + }, + { + "start": 11043.76, + "end": 11046.36, + "probability": 0.9683 + }, + { + "start": 11048.32, + "end": 11051.58, + "probability": 0.7822 + }, + { + "start": 11052.34, + "end": 11053.6, + "probability": 0.8212 + }, + { + "start": 11053.74, + "end": 11057.0, + "probability": 0.932 + }, + { + "start": 11057.7, + "end": 11059.92, + "probability": 0.9113 + }, + { + "start": 11061.3, + "end": 11064.78, + "probability": 0.9348 + }, + { + "start": 11065.76, + "end": 11067.06, + "probability": 0.8361 + }, + { + "start": 11067.22, + "end": 11069.52, + "probability": 0.9409 + }, + { + "start": 11070.54, + "end": 11072.46, + "probability": 0.948 + }, + { + "start": 11072.64, + "end": 11075.06, + "probability": 0.9733 + }, + { + "start": 11076.3, + "end": 11078.38, + "probability": 0.8692 + }, + { + "start": 11078.48, + "end": 11080.62, + "probability": 0.7869 + }, + { + "start": 11081.6, + "end": 11082.4, + "probability": 0.6314 + }, + { + "start": 11083.32, + "end": 11086.1, + "probability": 0.9602 + }, + { + "start": 11087.66, + "end": 11092.58, + "probability": 0.9924 + }, + { + "start": 11092.8, + "end": 11096.1, + "probability": 0.9905 + }, + { + "start": 11097.36, + "end": 11099.72, + "probability": 0.9967 + }, + { + "start": 11099.72, + "end": 11104.1, + "probability": 0.9236 + }, + { + "start": 11104.52, + "end": 11108.62, + "probability": 0.8939 + }, + { + "start": 11108.94, + "end": 11110.94, + "probability": 0.9827 + }, + { + "start": 11112.1, + "end": 11115.76, + "probability": 0.9923 + }, + { + "start": 11116.52, + "end": 11120.96, + "probability": 0.9844 + }, + { + "start": 11121.94, + "end": 11125.12, + "probability": 0.8439 + }, + { + "start": 11125.18, + "end": 11128.26, + "probability": 0.9933 + }, + { + "start": 11129.92, + "end": 11134.48, + "probability": 0.9527 + }, + { + "start": 11135.38, + "end": 11137.86, + "probability": 0.9113 + }, + { + "start": 11138.32, + "end": 11141.54, + "probability": 0.9246 + }, + { + "start": 11142.2, + "end": 11144.16, + "probability": 0.604 + }, + { + "start": 11145.04, + "end": 11149.72, + "probability": 0.9515 + }, + { + "start": 11150.26, + "end": 11151.5, + "probability": 0.6324 + }, + { + "start": 11152.28, + "end": 11155.14, + "probability": 0.9659 + }, + { + "start": 11156.32, + "end": 11157.02, + "probability": 0.7093 + }, + { + "start": 11157.22, + "end": 11160.16, + "probability": 0.9731 + }, + { + "start": 11160.24, + "end": 11161.42, + "probability": 0.9867 + }, + { + "start": 11162.58, + "end": 11166.8, + "probability": 0.9545 + }, + { + "start": 11166.98, + "end": 11170.16, + "probability": 0.7765 + }, + { + "start": 11170.7, + "end": 11172.08, + "probability": 0.9893 + }, + { + "start": 11173.02, + "end": 11174.34, + "probability": 0.984 + }, + { + "start": 11174.62, + "end": 11175.46, + "probability": 0.9495 + }, + { + "start": 11175.58, + "end": 11179.1, + "probability": 0.9619 + }, + { + "start": 11179.24, + "end": 11181.76, + "probability": 0.9939 + }, + { + "start": 11182.84, + "end": 11183.4, + "probability": 0.6672 + }, + { + "start": 11183.44, + "end": 11188.6, + "probability": 0.7592 + }, + { + "start": 11188.8, + "end": 11189.86, + "probability": 0.9903 + }, + { + "start": 11191.96, + "end": 11192.28, + "probability": 0.5735 + }, + { + "start": 11192.32, + "end": 11192.82, + "probability": 0.9604 + }, + { + "start": 11192.9, + "end": 11194.12, + "probability": 0.8313 + }, + { + "start": 11194.58, + "end": 11195.72, + "probability": 0.9461 + }, + { + "start": 11195.88, + "end": 11197.78, + "probability": 0.9748 + }, + { + "start": 11198.44, + "end": 11202.24, + "probability": 0.9939 + }, + { + "start": 11202.72, + "end": 11203.7, + "probability": 0.9916 + }, + { + "start": 11205.36, + "end": 11208.88, + "probability": 0.9955 + }, + { + "start": 11209.72, + "end": 11212.22, + "probability": 0.9497 + }, + { + "start": 11213.12, + "end": 11217.62, + "probability": 0.9295 + }, + { + "start": 11218.64, + "end": 11220.42, + "probability": 0.8265 + }, + { + "start": 11221.12, + "end": 11222.66, + "probability": 0.9268 + }, + { + "start": 11223.5, + "end": 11227.88, + "probability": 0.9788 + }, + { + "start": 11228.14, + "end": 11229.32, + "probability": 0.9625 + }, + { + "start": 11229.8, + "end": 11233.12, + "probability": 0.9272 + }, + { + "start": 11233.96, + "end": 11237.62, + "probability": 0.9973 + }, + { + "start": 11237.62, + "end": 11241.74, + "probability": 0.9914 + }, + { + "start": 11242.42, + "end": 11248.2, + "probability": 0.9942 + }, + { + "start": 11249.02, + "end": 11251.1, + "probability": 0.9939 + }, + { + "start": 11252.18, + "end": 11255.14, + "probability": 0.9821 + }, + { + "start": 11255.14, + "end": 11258.62, + "probability": 0.916 + }, + { + "start": 11259.46, + "end": 11260.9, + "probability": 0.9754 + }, + { + "start": 11261.84, + "end": 11265.04, + "probability": 0.9976 + }, + { + "start": 11265.76, + "end": 11269.84, + "probability": 0.9445 + }, + { + "start": 11270.66, + "end": 11272.32, + "probability": 0.9971 + }, + { + "start": 11273.28, + "end": 11277.34, + "probability": 0.9912 + }, + { + "start": 11278.26, + "end": 11280.12, + "probability": 0.9198 + }, + { + "start": 11281.64, + "end": 11283.12, + "probability": 0.9718 + }, + { + "start": 11283.38, + "end": 11286.94, + "probability": 0.9448 + }, + { + "start": 11287.78, + "end": 11293.06, + "probability": 0.9919 + }, + { + "start": 11293.46, + "end": 11297.88, + "probability": 0.9867 + }, + { + "start": 11298.8, + "end": 11301.06, + "probability": 0.9458 + }, + { + "start": 11301.22, + "end": 11302.28, + "probability": 0.7057 + }, + { + "start": 11303.42, + "end": 11307.14, + "probability": 0.9086 + }, + { + "start": 11307.6, + "end": 11309.8, + "probability": 0.9503 + }, + { + "start": 11309.98, + "end": 11310.66, + "probability": 0.4463 + }, + { + "start": 11311.58, + "end": 11313.26, + "probability": 0.8633 + }, + { + "start": 11314.46, + "end": 11317.88, + "probability": 0.9868 + }, + { + "start": 11318.72, + "end": 11320.52, + "probability": 0.9846 + }, + { + "start": 11320.7, + "end": 11322.36, + "probability": 0.9581 + }, + { + "start": 11322.44, + "end": 11324.46, + "probability": 0.916 + }, + { + "start": 11324.86, + "end": 11328.08, + "probability": 0.9484 + }, + { + "start": 11331.06, + "end": 11332.3, + "probability": 0.9561 + }, + { + "start": 11333.84, + "end": 11335.16, + "probability": 0.9153 + }, + { + "start": 11335.88, + "end": 11341.3, + "probability": 0.9861 + }, + { + "start": 11343.34, + "end": 11346.76, + "probability": 0.9639 + }, + { + "start": 11347.9, + "end": 11349.8, + "probability": 0.9222 + }, + { + "start": 11349.8, + "end": 11352.93, + "probability": 0.8507 + }, + { + "start": 11353.82, + "end": 11356.94, + "probability": 0.9853 + }, + { + "start": 11357.72, + "end": 11360.98, + "probability": 0.9917 + }, + { + "start": 11361.7, + "end": 11365.64, + "probability": 0.9907 + }, + { + "start": 11365.68, + "end": 11369.84, + "probability": 0.9326 + }, + { + "start": 11370.4, + "end": 11371.92, + "probability": 0.9169 + }, + { + "start": 11373.12, + "end": 11376.48, + "probability": 0.9263 + }, + { + "start": 11378.18, + "end": 11380.32, + "probability": 0.999 + }, + { + "start": 11380.32, + "end": 11383.84, + "probability": 0.9946 + }, + { + "start": 11384.32, + "end": 11386.64, + "probability": 0.9772 + }, + { + "start": 11387.48, + "end": 11390.04, + "probability": 0.9543 + }, + { + "start": 11391.2, + "end": 11393.74, + "probability": 0.9969 + }, + { + "start": 11393.94, + "end": 11395.94, + "probability": 0.9978 + }, + { + "start": 11396.54, + "end": 11398.0, + "probability": 0.9893 + }, + { + "start": 11398.52, + "end": 11400.55, + "probability": 0.9971 + }, + { + "start": 11401.36, + "end": 11404.72, + "probability": 0.8686 + }, + { + "start": 11405.68, + "end": 11407.16, + "probability": 0.9891 + }, + { + "start": 11407.72, + "end": 11410.0, + "probability": 0.9817 + }, + { + "start": 11411.04, + "end": 11414.84, + "probability": 0.9729 + }, + { + "start": 11415.72, + "end": 11418.68, + "probability": 0.9441 + }, + { + "start": 11419.56, + "end": 11422.78, + "probability": 0.9944 + }, + { + "start": 11423.08, + "end": 11424.84, + "probability": 0.7976 + }, + { + "start": 11426.32, + "end": 11428.92, + "probability": 0.998 + }, + { + "start": 11428.92, + "end": 11431.32, + "probability": 0.9334 + }, + { + "start": 11433.24, + "end": 11436.2, + "probability": 0.9572 + }, + { + "start": 11436.42, + "end": 11438.9, + "probability": 0.7875 + }, + { + "start": 11439.16, + "end": 11441.72, + "probability": 0.9899 + }, + { + "start": 11442.6, + "end": 11447.88, + "probability": 0.984 + }, + { + "start": 11448.76, + "end": 11453.0, + "probability": 0.9984 + }, + { + "start": 11453.96, + "end": 11457.1, + "probability": 0.9995 + }, + { + "start": 11457.1, + "end": 11460.18, + "probability": 0.9821 + }, + { + "start": 11461.24, + "end": 11465.48, + "probability": 0.9971 + }, + { + "start": 11466.5, + "end": 11471.0, + "probability": 0.9863 + }, + { + "start": 11472.7, + "end": 11474.99, + "probability": 0.9937 + }, + { + "start": 11476.88, + "end": 11480.4, + "probability": 0.6829 + }, + { + "start": 11480.5, + "end": 11481.76, + "probability": 0.9722 + }, + { + "start": 11481.96, + "end": 11485.62, + "probability": 0.981 + }, + { + "start": 11486.2, + "end": 11488.4, + "probability": 0.981 + }, + { + "start": 11488.54, + "end": 11490.12, + "probability": 0.9948 + }, + { + "start": 11491.0, + "end": 11494.26, + "probability": 0.9761 + }, + { + "start": 11494.68, + "end": 11495.66, + "probability": 0.7639 + }, + { + "start": 11496.16, + "end": 11500.32, + "probability": 0.9918 + }, + { + "start": 11501.18, + "end": 11504.18, + "probability": 0.9928 + }, + { + "start": 11504.18, + "end": 11507.44, + "probability": 0.8963 + }, + { + "start": 11507.48, + "end": 11508.59, + "probability": 0.9727 + }, + { + "start": 11509.7, + "end": 11513.98, + "probability": 0.9857 + }, + { + "start": 11515.06, + "end": 11518.84, + "probability": 0.9791 + }, + { + "start": 11519.66, + "end": 11524.54, + "probability": 0.9691 + }, + { + "start": 11525.04, + "end": 11527.68, + "probability": 0.9899 + }, + { + "start": 11528.34, + "end": 11530.22, + "probability": 0.763 + }, + { + "start": 11532.12, + "end": 11532.82, + "probability": 0.8218 + }, + { + "start": 11532.98, + "end": 11536.14, + "probability": 0.9897 + }, + { + "start": 11536.3, + "end": 11538.68, + "probability": 0.8671 + }, + { + "start": 11538.72, + "end": 11542.62, + "probability": 0.9886 + }, + { + "start": 11542.74, + "end": 11545.48, + "probability": 0.951 + }, + { + "start": 11546.0, + "end": 11547.5, + "probability": 0.9932 + }, + { + "start": 11548.4, + "end": 11548.62, + "probability": 0.5038 + }, + { + "start": 11548.78, + "end": 11550.94, + "probability": 0.7968 + }, + { + "start": 11551.04, + "end": 11553.08, + "probability": 0.9271 + }, + { + "start": 11553.32, + "end": 11554.4, + "probability": 0.8268 + }, + { + "start": 11555.64, + "end": 11559.88, + "probability": 0.7992 + }, + { + "start": 11560.56, + "end": 11562.26, + "probability": 0.7477 + }, + { + "start": 11563.62, + "end": 11566.22, + "probability": 0.5694 + }, + { + "start": 11567.3, + "end": 11571.48, + "probability": 0.9538 + }, + { + "start": 11571.7, + "end": 11574.16, + "probability": 0.9299 + }, + { + "start": 11575.12, + "end": 11576.24, + "probability": 0.5753 + }, + { + "start": 11576.32, + "end": 11579.18, + "probability": 0.9659 + }, + { + "start": 11579.42, + "end": 11581.06, + "probability": 0.9141 + }, + { + "start": 11582.1, + "end": 11584.42, + "probability": 0.9525 + }, + { + "start": 11584.42, + "end": 11587.82, + "probability": 0.9001 + }, + { + "start": 11588.72, + "end": 11589.7, + "probability": 0.9176 + }, + { + "start": 11590.7, + "end": 11593.46, + "probability": 0.9983 + }, + { + "start": 11593.46, + "end": 11597.34, + "probability": 0.9971 + }, + { + "start": 11598.34, + "end": 11602.8, + "probability": 0.9849 + }, + { + "start": 11603.3, + "end": 11605.94, + "probability": 0.9518 + }, + { + "start": 11606.42, + "end": 11608.28, + "probability": 0.8995 + }, + { + "start": 11609.4, + "end": 11613.44, + "probability": 0.9463 + }, + { + "start": 11614.32, + "end": 11617.92, + "probability": 0.8425 + }, + { + "start": 11618.06, + "end": 11620.5, + "probability": 0.9564 + }, + { + "start": 11622.0, + "end": 11625.14, + "probability": 0.9595 + }, + { + "start": 11625.62, + "end": 11629.66, + "probability": 0.9634 + }, + { + "start": 11631.88, + "end": 11633.48, + "probability": 0.9946 + }, + { + "start": 11634.9, + "end": 11637.34, + "probability": 0.9783 + }, + { + "start": 11638.1, + "end": 11640.3, + "probability": 0.9857 + }, + { + "start": 11640.3, + "end": 11643.0, + "probability": 0.9883 + }, + { + "start": 11643.96, + "end": 11644.9, + "probability": 0.9355 + }, + { + "start": 11645.64, + "end": 11648.7, + "probability": 0.9965 + }, + { + "start": 11648.86, + "end": 11650.32, + "probability": 0.991 + }, + { + "start": 11650.86, + "end": 11651.6, + "probability": 0.9836 + }, + { + "start": 11652.7, + "end": 11655.72, + "probability": 0.998 + }, + { + "start": 11655.96, + "end": 11657.34, + "probability": 0.8975 + }, + { + "start": 11658.22, + "end": 11662.26, + "probability": 0.7886 + }, + { + "start": 11663.3, + "end": 11666.68, + "probability": 0.941 + }, + { + "start": 11667.72, + "end": 11668.98, + "probability": 0.7543 + }, + { + "start": 11669.14, + "end": 11669.78, + "probability": 0.9514 + }, + { + "start": 11670.14, + "end": 11673.7, + "probability": 0.9888 + }, + { + "start": 11675.96, + "end": 11677.0, + "probability": 0.8284 + }, + { + "start": 11677.54, + "end": 11679.84, + "probability": 0.9365 + }, + { + "start": 11680.12, + "end": 11680.72, + "probability": 0.7021 + }, + { + "start": 11680.92, + "end": 11681.76, + "probability": 0.9175 + }, + { + "start": 11681.86, + "end": 11685.14, + "probability": 0.9914 + }, + { + "start": 11686.18, + "end": 11687.48, + "probability": 0.8464 + }, + { + "start": 11688.74, + "end": 11691.54, + "probability": 0.7746 + }, + { + "start": 11691.72, + "end": 11692.72, + "probability": 0.8225 + }, + { + "start": 11692.94, + "end": 11696.0, + "probability": 0.8507 + }, + { + "start": 11696.64, + "end": 11698.32, + "probability": 0.9698 + }, + { + "start": 11698.86, + "end": 11699.3, + "probability": 0.4701 + }, + { + "start": 11699.4, + "end": 11699.5, + "probability": 0.7672 + }, + { + "start": 11700.8, + "end": 11702.6, + "probability": 0.6264 + }, + { + "start": 11702.6, + "end": 11703.52, + "probability": 0.593 + }, + { + "start": 11707.14, + "end": 11709.46, + "probability": 0.9198 + }, + { + "start": 11709.46, + "end": 11715.2, + "probability": 0.8886 + }, + { + "start": 11725.2, + "end": 11725.2, + "probability": 0.0797 + }, + { + "start": 11727.26, + "end": 11730.0, + "probability": 0.0617 + }, + { + "start": 11730.18, + "end": 11731.3, + "probability": 0.0808 + }, + { + "start": 11731.3, + "end": 11731.5, + "probability": 0.2031 + }, + { + "start": 11734.3, + "end": 11734.9, + "probability": 0.1876 + }, + { + "start": 11760.46, + "end": 11760.56, + "probability": 0.1392 + }, + { + "start": 11761.94, + "end": 11765.38, + "probability": 0.8419 + }, + { + "start": 11775.66, + "end": 11777.08, + "probability": 0.68 + }, + { + "start": 11779.74, + "end": 11783.96, + "probability": 0.9778 + }, + { + "start": 11784.1, + "end": 11786.02, + "probability": 0.9908 + }, + { + "start": 11786.92, + "end": 11788.84, + "probability": 0.9906 + }, + { + "start": 11788.92, + "end": 11790.88, + "probability": 0.9478 + }, + { + "start": 11792.26, + "end": 11795.2, + "probability": 0.9985 + }, + { + "start": 11795.82, + "end": 11800.66, + "probability": 0.9967 + }, + { + "start": 11800.82, + "end": 11801.44, + "probability": 0.6017 + }, + { + "start": 11802.1, + "end": 11803.26, + "probability": 0.9781 + }, + { + "start": 11803.48, + "end": 11805.36, + "probability": 0.9937 + }, + { + "start": 11805.46, + "end": 11806.7, + "probability": 0.848 + }, + { + "start": 11806.76, + "end": 11807.1, + "probability": 0.5603 + }, + { + "start": 11807.22, + "end": 11807.46, + "probability": 0.4683 + }, + { + "start": 11807.58, + "end": 11812.1, + "probability": 0.9932 + }, + { + "start": 11813.22, + "end": 11814.14, + "probability": 0.8133 + }, + { + "start": 11814.4, + "end": 11816.96, + "probability": 0.9932 + }, + { + "start": 11817.24, + "end": 11818.52, + "probability": 0.9531 + }, + { + "start": 11819.72, + "end": 11821.28, + "probability": 0.97 + }, + { + "start": 11821.5, + "end": 11823.64, + "probability": 0.9884 + }, + { + "start": 11823.86, + "end": 11826.76, + "probability": 0.9593 + }, + { + "start": 11827.08, + "end": 11827.76, + "probability": 0.7787 + }, + { + "start": 11828.22, + "end": 11828.82, + "probability": 0.6499 + }, + { + "start": 11828.92, + "end": 11830.5, + "probability": 0.7378 + }, + { + "start": 11831.08, + "end": 11834.64, + "probability": 0.9917 + }, + { + "start": 11835.5, + "end": 11839.62, + "probability": 0.9806 + }, + { + "start": 11839.62, + "end": 11844.64, + "probability": 0.9995 + }, + { + "start": 11844.64, + "end": 11848.48, + "probability": 0.9979 + }, + { + "start": 11849.06, + "end": 11851.76, + "probability": 0.9987 + }, + { + "start": 11851.98, + "end": 11853.24, + "probability": 0.5911 + }, + { + "start": 11853.6, + "end": 11857.96, + "probability": 0.9908 + }, + { + "start": 11857.96, + "end": 11861.36, + "probability": 0.9936 + }, + { + "start": 11862.44, + "end": 11865.78, + "probability": 0.9941 + }, + { + "start": 11865.88, + "end": 11866.38, + "probability": 0.4636 + }, + { + "start": 11866.44, + "end": 11870.08, + "probability": 0.9438 + }, + { + "start": 11870.24, + "end": 11870.8, + "probability": 0.8213 + }, + { + "start": 11871.84, + "end": 11874.06, + "probability": 0.4851 + }, + { + "start": 11874.18, + "end": 11875.08, + "probability": 0.8267 + }, + { + "start": 11875.18, + "end": 11878.0, + "probability": 0.95 + }, + { + "start": 11879.14, + "end": 11882.02, + "probability": 0.9809 + }, + { + "start": 11882.18, + "end": 11883.3, + "probability": 0.6534 + }, + { + "start": 11884.74, + "end": 11885.92, + "probability": 0.7443 + }, + { + "start": 11886.06, + "end": 11890.38, + "probability": 0.9695 + }, + { + "start": 11890.54, + "end": 11891.66, + "probability": 0.6129 + }, + { + "start": 11891.74, + "end": 11892.44, + "probability": 0.9766 + }, + { + "start": 11892.52, + "end": 11893.78, + "probability": 0.9414 + }, + { + "start": 11894.44, + "end": 11897.62, + "probability": 0.9877 + }, + { + "start": 11897.68, + "end": 11900.14, + "probability": 0.9845 + }, + { + "start": 11901.38, + "end": 11901.94, + "probability": 0.6536 + }, + { + "start": 11902.1, + "end": 11903.8, + "probability": 0.9976 + }, + { + "start": 11903.94, + "end": 11905.38, + "probability": 0.8011 + }, + { + "start": 11905.6, + "end": 11906.12, + "probability": 0.6475 + }, + { + "start": 11906.16, + "end": 11909.18, + "probability": 0.9038 + }, + { + "start": 11910.24, + "end": 11912.94, + "probability": 0.9052 + }, + { + "start": 11913.84, + "end": 11914.8, + "probability": 0.832 + }, + { + "start": 11914.96, + "end": 11917.62, + "probability": 0.9946 + }, + { + "start": 11917.62, + "end": 11920.64, + "probability": 0.9737 + }, + { + "start": 11921.48, + "end": 11925.94, + "probability": 0.9921 + }, + { + "start": 11926.5, + "end": 11930.44, + "probability": 0.9378 + }, + { + "start": 11930.52, + "end": 11931.8, + "probability": 0.8947 + }, + { + "start": 11932.76, + "end": 11935.24, + "probability": 0.9392 + }, + { + "start": 11936.28, + "end": 11938.38, + "probability": 0.8753 + }, + { + "start": 11938.5, + "end": 11939.14, + "probability": 0.6549 + }, + { + "start": 11939.2, + "end": 11940.02, + "probability": 0.7592 + }, + { + "start": 11940.12, + "end": 11942.36, + "probability": 0.8507 + }, + { + "start": 11942.46, + "end": 11944.72, + "probability": 0.9312 + }, + { + "start": 11945.16, + "end": 11946.78, + "probability": 0.9746 + }, + { + "start": 11946.84, + "end": 11947.5, + "probability": 0.9905 + }, + { + "start": 11947.52, + "end": 11948.56, + "probability": 0.9205 + }, + { + "start": 11948.58, + "end": 11949.74, + "probability": 0.9948 + }, + { + "start": 11950.42, + "end": 11954.84, + "probability": 0.9915 + }, + { + "start": 11955.24, + "end": 11957.64, + "probability": 0.9857 + }, + { + "start": 11958.3, + "end": 11960.58, + "probability": 0.9543 + }, + { + "start": 11961.14, + "end": 11962.36, + "probability": 0.813 + }, + { + "start": 11962.66, + "end": 11963.68, + "probability": 0.9382 + }, + { + "start": 11964.04, + "end": 11965.28, + "probability": 0.938 + }, + { + "start": 11965.96, + "end": 11966.18, + "probability": 0.3108 + }, + { + "start": 11966.2, + "end": 11966.6, + "probability": 0.5588 + }, + { + "start": 11966.8, + "end": 11967.24, + "probability": 0.3592 + }, + { + "start": 11967.24, + "end": 11968.26, + "probability": 0.5988 + }, + { + "start": 11968.34, + "end": 11969.02, + "probability": 0.4022 + }, + { + "start": 11969.34, + "end": 11969.98, + "probability": 0.8693 + }, + { + "start": 11970.14, + "end": 11971.5, + "probability": 0.9323 + }, + { + "start": 11972.16, + "end": 11976.04, + "probability": 0.9455 + }, + { + "start": 11976.62, + "end": 11977.44, + "probability": 0.9424 + }, + { + "start": 11977.76, + "end": 11982.18, + "probability": 0.9798 + }, + { + "start": 11982.42, + "end": 11985.06, + "probability": 0.9935 + }, + { + "start": 11985.28, + "end": 11987.48, + "probability": 0.8187 + }, + { + "start": 11987.52, + "end": 11992.94, + "probability": 0.9979 + }, + { + "start": 11993.28, + "end": 11993.78, + "probability": 0.934 + }, + { + "start": 11993.88, + "end": 11994.38, + "probability": 0.6474 + }, + { + "start": 11996.92, + "end": 11996.92, + "probability": 0.2106 + }, + { + "start": 11996.92, + "end": 11997.02, + "probability": 0.511 + }, + { + "start": 11997.96, + "end": 12004.66, + "probability": 0.9585 + }, + { + "start": 12022.48, + "end": 12023.56, + "probability": 0.7353 + }, + { + "start": 12024.32, + "end": 12025.72, + "probability": 0.7951 + }, + { + "start": 12027.16, + "end": 12033.06, + "probability": 0.9932 + }, + { + "start": 12034.62, + "end": 12036.54, + "probability": 0.7854 + }, + { + "start": 12037.66, + "end": 12043.0, + "probability": 0.9852 + }, + { + "start": 12044.16, + "end": 12046.12, + "probability": 0.9722 + }, + { + "start": 12047.34, + "end": 12051.42, + "probability": 0.9904 + }, + { + "start": 12051.42, + "end": 12056.32, + "probability": 0.991 + }, + { + "start": 12057.76, + "end": 12061.14, + "probability": 0.9961 + }, + { + "start": 12061.7, + "end": 12065.48, + "probability": 0.9928 + }, + { + "start": 12066.76, + "end": 12071.72, + "probability": 0.7971 + }, + { + "start": 12072.62, + "end": 12074.4, + "probability": 0.9946 + }, + { + "start": 12075.04, + "end": 12075.92, + "probability": 0.9659 + }, + { + "start": 12076.46, + "end": 12077.66, + "probability": 0.9829 + }, + { + "start": 12079.12, + "end": 12080.82, + "probability": 0.9006 + }, + { + "start": 12081.92, + "end": 12086.3, + "probability": 0.8302 + }, + { + "start": 12087.24, + "end": 12088.4, + "probability": 0.995 + }, + { + "start": 12089.36, + "end": 12094.5, + "probability": 0.9967 + }, + { + "start": 12094.5, + "end": 12099.48, + "probability": 0.9972 + }, + { + "start": 12100.84, + "end": 12103.14, + "probability": 0.7971 + }, + { + "start": 12104.06, + "end": 12107.18, + "probability": 0.9107 + }, + { + "start": 12108.44, + "end": 12110.66, + "probability": 0.9854 + }, + { + "start": 12111.6, + "end": 12113.8, + "probability": 0.6912 + }, + { + "start": 12115.02, + "end": 12116.9, + "probability": 0.8379 + }, + { + "start": 12117.7, + "end": 12122.2, + "probability": 0.9896 + }, + { + "start": 12122.82, + "end": 12125.48, + "probability": 0.9018 + }, + { + "start": 12126.52, + "end": 12128.36, + "probability": 0.9787 + }, + { + "start": 12129.74, + "end": 12134.38, + "probability": 0.9308 + }, + { + "start": 12135.24, + "end": 12136.34, + "probability": 0.8846 + }, + { + "start": 12137.2, + "end": 12142.92, + "probability": 0.8786 + }, + { + "start": 12145.9, + "end": 12147.84, + "probability": 0.7991 + }, + { + "start": 12148.8, + "end": 12154.24, + "probability": 0.9857 + }, + { + "start": 12154.3, + "end": 12155.72, + "probability": 0.9565 + }, + { + "start": 12156.0, + "end": 12157.6, + "probability": 0.5527 + }, + { + "start": 12158.82, + "end": 12164.88, + "probability": 0.8429 + }, + { + "start": 12165.82, + "end": 12170.34, + "probability": 0.9986 + }, + { + "start": 12170.34, + "end": 12174.1, + "probability": 0.9989 + }, + { + "start": 12175.44, + "end": 12179.54, + "probability": 0.9734 + }, + { + "start": 12180.42, + "end": 12182.6, + "probability": 0.9091 + }, + { + "start": 12183.28, + "end": 12185.56, + "probability": 0.8561 + }, + { + "start": 12186.14, + "end": 12190.3, + "probability": 0.9917 + }, + { + "start": 12191.7, + "end": 12193.04, + "probability": 0.9976 + }, + { + "start": 12194.6, + "end": 12199.34, + "probability": 0.9932 + }, + { + "start": 12199.34, + "end": 12204.68, + "probability": 0.9937 + }, + { + "start": 12205.86, + "end": 12209.44, + "probability": 0.751 + }, + { + "start": 12210.42, + "end": 12212.28, + "probability": 0.81 + }, + { + "start": 12213.08, + "end": 12214.22, + "probability": 0.8981 + }, + { + "start": 12214.92, + "end": 12218.0, + "probability": 0.9574 + }, + { + "start": 12219.36, + "end": 12225.54, + "probability": 0.9932 + }, + { + "start": 12226.66, + "end": 12233.0, + "probability": 0.9585 + }, + { + "start": 12234.12, + "end": 12234.66, + "probability": 0.958 + }, + { + "start": 12236.04, + "end": 12240.52, + "probability": 0.9684 + }, + { + "start": 12241.1, + "end": 12243.52, + "probability": 0.9246 + }, + { + "start": 12244.54, + "end": 12246.88, + "probability": 0.9874 + }, + { + "start": 12248.28, + "end": 12250.08, + "probability": 0.9981 + }, + { + "start": 12250.82, + "end": 12253.22, + "probability": 0.8157 + }, + { + "start": 12253.78, + "end": 12258.28, + "probability": 0.9948 + }, + { + "start": 12258.66, + "end": 12260.28, + "probability": 0.9789 + }, + { + "start": 12261.34, + "end": 12263.58, + "probability": 0.9919 + }, + { + "start": 12264.42, + "end": 12265.56, + "probability": 0.98 + }, + { + "start": 12266.2, + "end": 12268.58, + "probability": 0.9805 + }, + { + "start": 12269.72, + "end": 12271.34, + "probability": 0.9937 + }, + { + "start": 12271.98, + "end": 12273.78, + "probability": 0.9985 + }, + { + "start": 12274.56, + "end": 12278.5, + "probability": 0.9988 + }, + { + "start": 12279.42, + "end": 12284.1, + "probability": 0.8435 + }, + { + "start": 12284.86, + "end": 12288.96, + "probability": 0.9832 + }, + { + "start": 12290.08, + "end": 12293.92, + "probability": 0.9932 + }, + { + "start": 12295.58, + "end": 12296.74, + "probability": 0.6309 + }, + { + "start": 12297.48, + "end": 12301.2, + "probability": 0.9834 + }, + { + "start": 12302.38, + "end": 12307.94, + "probability": 0.9958 + }, + { + "start": 12309.22, + "end": 12310.74, + "probability": 0.9722 + }, + { + "start": 12311.36, + "end": 12312.98, + "probability": 0.9595 + }, + { + "start": 12313.68, + "end": 12315.9, + "probability": 0.9976 + }, + { + "start": 12316.68, + "end": 12318.16, + "probability": 0.9907 + }, + { + "start": 12318.72, + "end": 12319.02, + "probability": 0.5809 + }, + { + "start": 12319.8, + "end": 12323.26, + "probability": 0.996 + }, + { + "start": 12324.46, + "end": 12329.28, + "probability": 0.978 + }, + { + "start": 12330.58, + "end": 12333.52, + "probability": 0.896 + }, + { + "start": 12335.38, + "end": 12338.6, + "probability": 0.9198 + }, + { + "start": 12339.22, + "end": 12344.6, + "probability": 0.9849 + }, + { + "start": 12345.82, + "end": 12349.74, + "probability": 0.9761 + }, + { + "start": 12350.88, + "end": 12353.38, + "probability": 0.9116 + }, + { + "start": 12354.06, + "end": 12354.78, + "probability": 0.9069 + }, + { + "start": 12355.56, + "end": 12358.84, + "probability": 0.994 + }, + { + "start": 12360.48, + "end": 12363.2, + "probability": 0.9856 + }, + { + "start": 12364.04, + "end": 12368.32, + "probability": 0.9919 + }, + { + "start": 12369.86, + "end": 12371.6, + "probability": 0.503 + }, + { + "start": 12372.64, + "end": 12373.98, + "probability": 0.9975 + }, + { + "start": 12374.56, + "end": 12376.26, + "probability": 0.9908 + }, + { + "start": 12377.44, + "end": 12378.76, + "probability": 0.9514 + }, + { + "start": 12379.76, + "end": 12385.94, + "probability": 0.9596 + }, + { + "start": 12386.76, + "end": 12388.98, + "probability": 0.8108 + }, + { + "start": 12389.88, + "end": 12394.6, + "probability": 0.92 + }, + { + "start": 12396.02, + "end": 12401.12, + "probability": 0.9928 + }, + { + "start": 12401.74, + "end": 12406.08, + "probability": 0.9968 + }, + { + "start": 12406.08, + "end": 12410.26, + "probability": 0.8765 + }, + { + "start": 12412.74, + "end": 12416.9, + "probability": 0.9509 + }, + { + "start": 12417.68, + "end": 12421.98, + "probability": 0.9585 + }, + { + "start": 12423.16, + "end": 12424.7, + "probability": 0.8864 + }, + { + "start": 12425.56, + "end": 12427.1, + "probability": 0.8889 + }, + { + "start": 12427.94, + "end": 12428.58, + "probability": 0.7207 + }, + { + "start": 12428.76, + "end": 12432.22, + "probability": 0.9789 + }, + { + "start": 12433.34, + "end": 12435.82, + "probability": 0.9887 + }, + { + "start": 12436.98, + "end": 12440.54, + "probability": 0.9172 + }, + { + "start": 12441.6, + "end": 12443.45, + "probability": 0.9946 + }, + { + "start": 12443.98, + "end": 12444.66, + "probability": 0.9891 + }, + { + "start": 12445.4, + "end": 12448.48, + "probability": 0.9993 + }, + { + "start": 12449.26, + "end": 12451.68, + "probability": 0.9983 + }, + { + "start": 12454.08, + "end": 12456.4, + "probability": 0.9961 + }, + { + "start": 12468.28, + "end": 12469.76, + "probability": 0.9976 + }, + { + "start": 12470.64, + "end": 12472.96, + "probability": 0.8818 + }, + { + "start": 12473.98, + "end": 12475.26, + "probability": 0.8687 + }, + { + "start": 12476.56, + "end": 12476.78, + "probability": 0.7822 + }, + { + "start": 12477.76, + "end": 12479.02, + "probability": 0.9615 + }, + { + "start": 12479.94, + "end": 12480.98, + "probability": 0.8131 + }, + { + "start": 12481.8, + "end": 12486.32, + "probability": 0.9966 + }, + { + "start": 12487.74, + "end": 12489.26, + "probability": 0.9379 + }, + { + "start": 12489.86, + "end": 12492.88, + "probability": 0.9977 + }, + { + "start": 12494.78, + "end": 12497.76, + "probability": 0.7119 + }, + { + "start": 12498.5, + "end": 12501.14, + "probability": 0.9753 + }, + { + "start": 12501.88, + "end": 12504.08, + "probability": 0.8638 + }, + { + "start": 12504.94, + "end": 12506.64, + "probability": 0.8121 + }, + { + "start": 12507.7, + "end": 12508.58, + "probability": 0.796 + }, + { + "start": 12509.22, + "end": 12511.22, + "probability": 0.9878 + }, + { + "start": 12511.78, + "end": 12515.04, + "probability": 0.9979 + }, + { + "start": 12516.44, + "end": 12520.64, + "probability": 0.9968 + }, + { + "start": 12521.52, + "end": 12522.12, + "probability": 0.6615 + }, + { + "start": 12522.9, + "end": 12528.86, + "probability": 0.9991 + }, + { + "start": 12528.98, + "end": 12529.82, + "probability": 0.6711 + }, + { + "start": 12530.56, + "end": 12535.36, + "probability": 0.996 + }, + { + "start": 12535.98, + "end": 12538.06, + "probability": 0.995 + }, + { + "start": 12538.66, + "end": 12540.62, + "probability": 0.9926 + }, + { + "start": 12541.2, + "end": 12543.08, + "probability": 0.9875 + }, + { + "start": 12544.06, + "end": 12545.48, + "probability": 0.8545 + }, + { + "start": 12547.62, + "end": 12549.4, + "probability": 0.7636 + }, + { + "start": 12550.08, + "end": 12553.56, + "probability": 0.9928 + }, + { + "start": 12553.56, + "end": 12559.46, + "probability": 0.9984 + }, + { + "start": 12560.12, + "end": 12563.02, + "probability": 0.9832 + }, + { + "start": 12564.18, + "end": 12566.3, + "probability": 0.9894 + }, + { + "start": 12567.16, + "end": 12570.42, + "probability": 0.9834 + }, + { + "start": 12571.08, + "end": 12576.18, + "probability": 0.9943 + }, + { + "start": 12576.76, + "end": 12578.68, + "probability": 0.8296 + }, + { + "start": 12579.96, + "end": 12581.3, + "probability": 0.9332 + }, + { + "start": 12582.6, + "end": 12586.78, + "probability": 0.9369 + }, + { + "start": 12587.64, + "end": 12589.08, + "probability": 0.6638 + }, + { + "start": 12589.88, + "end": 12590.68, + "probability": 0.8137 + }, + { + "start": 12591.32, + "end": 12597.54, + "probability": 0.9464 + }, + { + "start": 12598.58, + "end": 12599.34, + "probability": 0.9847 + }, + { + "start": 12600.52, + "end": 12602.12, + "probability": 0.9466 + }, + { + "start": 12615.04, + "end": 12618.34, + "probability": 0.9587 + }, + { + "start": 12619.36, + "end": 12626.72, + "probability": 0.9705 + }, + { + "start": 12641.18, + "end": 12644.08, + "probability": 0.248 + }, + { + "start": 12645.42, + "end": 12646.24, + "probability": 0.0428 + }, + { + "start": 12674.78, + "end": 12676.62, + "probability": 0.0032 + }, + { + "start": 12678.3, + "end": 12678.3, + "probability": 0.2753 + }, + { + "start": 12705.74, + "end": 12708.64, + "probability": 0.6077 + }, + { + "start": 12709.84, + "end": 12711.32, + "probability": 0.8359 + }, + { + "start": 12712.24, + "end": 12717.2, + "probability": 0.8955 + }, + { + "start": 12718.26, + "end": 12719.86, + "probability": 0.7646 + }, + { + "start": 12721.67, + "end": 12724.98, + "probability": 0.8707 + }, + { + "start": 12725.74, + "end": 12726.8, + "probability": 0.9754 + }, + { + "start": 12726.94, + "end": 12727.42, + "probability": 0.5971 + }, + { + "start": 12728.12, + "end": 12729.71, + "probability": 0.6664 + }, + { + "start": 12730.02, + "end": 12732.4, + "probability": 0.8233 + }, + { + "start": 12732.56, + "end": 12733.16, + "probability": 0.7567 + }, + { + "start": 12733.22, + "end": 12733.48, + "probability": 0.7482 + }, + { + "start": 12733.56, + "end": 12736.3, + "probability": 0.915 + }, + { + "start": 12736.7, + "end": 12738.58, + "probability": 0.8242 + }, + { + "start": 12739.46, + "end": 12740.2, + "probability": 0.4599 + }, + { + "start": 12740.78, + "end": 12741.74, + "probability": 0.4324 + }, + { + "start": 12743.52, + "end": 12745.6, + "probability": 0.8214 + }, + { + "start": 12747.38, + "end": 12749.88, + "probability": 0.9792 + }, + { + "start": 12750.02, + "end": 12753.76, + "probability": 0.9204 + }, + { + "start": 12754.44, + "end": 12757.72, + "probability": 0.9712 + }, + { + "start": 12759.86, + "end": 12760.4, + "probability": 0.7799 + }, + { + "start": 12760.5, + "end": 12761.35, + "probability": 0.6146 + }, + { + "start": 12761.92, + "end": 12764.14, + "probability": 0.9259 + }, + { + "start": 12764.98, + "end": 12766.74, + "probability": 0.8794 + }, + { + "start": 12767.66, + "end": 12769.34, + "probability": 0.9167 + }, + { + "start": 12770.12, + "end": 12772.24, + "probability": 0.9863 + }, + { + "start": 12772.98, + "end": 12774.54, + "probability": 0.9666 + }, + { + "start": 12775.7, + "end": 12778.7, + "probability": 0.833 + }, + { + "start": 12779.52, + "end": 12781.27, + "probability": 0.9683 + }, + { + "start": 12781.62, + "end": 12783.54, + "probability": 0.9927 + }, + { + "start": 12784.54, + "end": 12786.28, + "probability": 0.9356 + }, + { + "start": 12786.94, + "end": 12789.28, + "probability": 0.8921 + }, + { + "start": 12789.78, + "end": 12794.56, + "probability": 0.9825 + }, + { + "start": 12796.04, + "end": 12799.78, + "probability": 0.8538 + }, + { + "start": 12800.74, + "end": 12804.82, + "probability": 0.9697 + }, + { + "start": 12804.82, + "end": 12809.54, + "probability": 0.9976 + }, + { + "start": 12810.5, + "end": 12814.38, + "probability": 0.994 + }, + { + "start": 12814.38, + "end": 12819.02, + "probability": 0.9923 + }, + { + "start": 12819.12, + "end": 12819.72, + "probability": 0.7014 + }, + { + "start": 12821.46, + "end": 12823.56, + "probability": 0.9845 + }, + { + "start": 12824.5, + "end": 12826.48, + "probability": 0.8298 + }, + { + "start": 12827.4, + "end": 12834.94, + "probability": 0.9429 + }, + { + "start": 12834.94, + "end": 12840.24, + "probability": 0.9572 + }, + { + "start": 12841.0, + "end": 12844.16, + "probability": 0.8989 + }, + { + "start": 12845.1, + "end": 12846.86, + "probability": 0.9914 + }, + { + "start": 12846.86, + "end": 12851.34, + "probability": 0.964 + }, + { + "start": 12852.2, + "end": 12853.36, + "probability": 0.7069 + }, + { + "start": 12853.82, + "end": 12859.34, + "probability": 0.7111 + }, + { + "start": 12859.34, + "end": 12864.66, + "probability": 0.9499 + }, + { + "start": 12865.56, + "end": 12866.56, + "probability": 0.7466 + }, + { + "start": 12867.24, + "end": 12868.34, + "probability": 0.9025 + }, + { + "start": 12869.02, + "end": 12871.4, + "probability": 0.7026 + }, + { + "start": 12871.96, + "end": 12872.9, + "probability": 0.8799 + }, + { + "start": 12873.84, + "end": 12874.84, + "probability": 0.9019 + }, + { + "start": 12874.96, + "end": 12876.08, + "probability": 0.9896 + }, + { + "start": 12876.5, + "end": 12878.12, + "probability": 0.8044 + }, + { + "start": 12879.65, + "end": 12881.76, + "probability": 0.8573 + }, + { + "start": 12883.7, + "end": 12884.44, + "probability": 0.6328 + }, + { + "start": 12884.9, + "end": 12891.4, + "probability": 0.8789 + }, + { + "start": 12892.44, + "end": 12896.46, + "probability": 0.9926 + }, + { + "start": 12896.46, + "end": 12902.58, + "probability": 0.8496 + }, + { + "start": 12902.66, + "end": 12903.28, + "probability": 0.879 + }, + { + "start": 12906.28, + "end": 12906.8, + "probability": 0.7538 + }, + { + "start": 12907.1, + "end": 12910.34, + "probability": 0.8674 + }, + { + "start": 12912.38, + "end": 12915.5, + "probability": 0.9984 + }, + { + "start": 12915.5, + "end": 12919.98, + "probability": 0.9845 + }, + { + "start": 12921.1, + "end": 12924.06, + "probability": 0.9954 + }, + { + "start": 12924.88, + "end": 12928.26, + "probability": 0.9703 + }, + { + "start": 12928.94, + "end": 12930.34, + "probability": 0.6777 + }, + { + "start": 12931.08, + "end": 12931.88, + "probability": 0.7433 + }, + { + "start": 12932.58, + "end": 12934.2, + "probability": 0.4403 + }, + { + "start": 12934.84, + "end": 12936.34, + "probability": 0.9807 + }, + { + "start": 12938.68, + "end": 12940.86, + "probability": 0.8835 + }, + { + "start": 12940.9, + "end": 12942.42, + "probability": 0.9822 + }, + { + "start": 12942.98, + "end": 12943.86, + "probability": 0.9854 + }, + { + "start": 12944.56, + "end": 12945.6, + "probability": 0.9327 + }, + { + "start": 12946.24, + "end": 12947.6, + "probability": 0.6725 + }, + { + "start": 12948.14, + "end": 12950.74, + "probability": 0.8058 + }, + { + "start": 12951.26, + "end": 12953.14, + "probability": 0.6187 + }, + { + "start": 12954.12, + "end": 12960.4, + "probability": 0.9661 + }, + { + "start": 12960.44, + "end": 12961.26, + "probability": 0.7647 + }, + { + "start": 12961.68, + "end": 12965.14, + "probability": 0.8667 + }, + { + "start": 12965.96, + "end": 12967.32, + "probability": 0.9823 + }, + { + "start": 12968.1, + "end": 12971.86, + "probability": 0.497 + }, + { + "start": 12971.86, + "end": 12976.48, + "probability": 0.7972 + }, + { + "start": 12978.32, + "end": 12980.38, + "probability": 0.9581 + }, + { + "start": 12982.54, + "end": 12987.36, + "probability": 0.8818 + }, + { + "start": 12987.4, + "end": 12988.52, + "probability": 0.7576 + }, + { + "start": 12989.08, + "end": 12990.64, + "probability": 0.9223 + }, + { + "start": 12991.92, + "end": 12994.86, + "probability": 0.8341 + }, + { + "start": 12996.94, + "end": 12998.26, + "probability": 0.6684 + }, + { + "start": 12998.4, + "end": 12999.0, + "probability": 0.7612 + }, + { + "start": 12999.16, + "end": 13001.9, + "probability": 0.5737 + }, + { + "start": 13002.66, + "end": 13005.72, + "probability": 0.8354 + }, + { + "start": 13006.16, + "end": 13009.64, + "probability": 0.9647 + }, + { + "start": 13010.32, + "end": 13015.28, + "probability": 0.9573 + }, + { + "start": 13015.78, + "end": 13018.08, + "probability": 0.8446 + }, + { + "start": 13018.68, + "end": 13021.62, + "probability": 0.9963 + }, + { + "start": 13022.5, + "end": 13024.26, + "probability": 0.894 + }, + { + "start": 13025.26, + "end": 13027.76, + "probability": 0.9622 + }, + { + "start": 13028.66, + "end": 13030.24, + "probability": 0.9362 + }, + { + "start": 13030.76, + "end": 13034.4, + "probability": 0.9963 + }, + { + "start": 13035.24, + "end": 13038.28, + "probability": 0.9908 + }, + { + "start": 13039.12, + "end": 13042.88, + "probability": 0.9774 + }, + { + "start": 13043.8, + "end": 13047.26, + "probability": 0.9934 + }, + { + "start": 13047.72, + "end": 13049.26, + "probability": 0.8113 + }, + { + "start": 13050.26, + "end": 13055.1, + "probability": 0.9897 + }, + { + "start": 13055.96, + "end": 13058.08, + "probability": 0.869 + }, + { + "start": 13058.88, + "end": 13060.72, + "probability": 0.913 + }, + { + "start": 13062.16, + "end": 13063.8, + "probability": 0.9729 + }, + { + "start": 13064.4, + "end": 13066.12, + "probability": 0.7133 + }, + { + "start": 13066.66, + "end": 13069.66, + "probability": 0.8845 + }, + { + "start": 13070.58, + "end": 13072.38, + "probability": 0.8379 + }, + { + "start": 13073.42, + "end": 13079.58, + "probability": 0.967 + }, + { + "start": 13080.18, + "end": 13083.18, + "probability": 0.9443 + }, + { + "start": 13083.74, + "end": 13087.54, + "probability": 0.6958 + }, + { + "start": 13088.4, + "end": 13089.7, + "probability": 0.664 + }, + { + "start": 13090.06, + "end": 13093.82, + "probability": 0.9705 + }, + { + "start": 13094.54, + "end": 13095.9, + "probability": 0.9043 + }, + { + "start": 13096.02, + "end": 13098.36, + "probability": 0.7984 + }, + { + "start": 13098.84, + "end": 13102.28, + "probability": 0.9829 + }, + { + "start": 13102.28, + "end": 13106.46, + "probability": 0.9884 + }, + { + "start": 13107.06, + "end": 13109.28, + "probability": 0.7618 + }, + { + "start": 13110.18, + "end": 13112.7, + "probability": 0.9601 + }, + { + "start": 13112.8, + "end": 13116.78, + "probability": 0.7695 + }, + { + "start": 13117.34, + "end": 13118.08, + "probability": 0.8047 + }, + { + "start": 13119.24, + "end": 13120.96, + "probability": 0.995 + }, + { + "start": 13121.68, + "end": 13124.34, + "probability": 0.9846 + }, + { + "start": 13124.98, + "end": 13127.76, + "probability": 0.7488 + }, + { + "start": 13128.46, + "end": 13131.66, + "probability": 0.9966 + }, + { + "start": 13132.28, + "end": 13134.04, + "probability": 0.9922 + }, + { + "start": 13134.86, + "end": 13136.22, + "probability": 0.6025 + }, + { + "start": 13136.9, + "end": 13140.1, + "probability": 0.8706 + }, + { + "start": 13140.76, + "end": 13142.4, + "probability": 0.9601 + }, + { + "start": 13142.84, + "end": 13144.25, + "probability": 0.9561 + }, + { + "start": 13145.3, + "end": 13146.64, + "probability": 0.9399 + }, + { + "start": 13147.14, + "end": 13149.8, + "probability": 0.997 + }, + { + "start": 13149.8, + "end": 13152.74, + "probability": 0.9774 + }, + { + "start": 13153.1, + "end": 13154.48, + "probability": 0.7947 + }, + { + "start": 13155.52, + "end": 13158.66, + "probability": 0.9866 + }, + { + "start": 13158.66, + "end": 13161.5, + "probability": 0.9448 + }, + { + "start": 13162.16, + "end": 13166.16, + "probability": 0.8988 + }, + { + "start": 13166.16, + "end": 13170.86, + "probability": 0.9967 + }, + { + "start": 13171.42, + "end": 13172.04, + "probability": 0.8044 + }, + { + "start": 13173.36, + "end": 13173.92, + "probability": 0.7111 + }, + { + "start": 13174.04, + "end": 13177.22, + "probability": 0.8572 + }, + { + "start": 13177.56, + "end": 13178.5, + "probability": 0.5659 + }, + { + "start": 13179.1, + "end": 13183.12, + "probability": 0.9207 + }, + { + "start": 13183.12, + "end": 13187.54, + "probability": 0.9521 + }, + { + "start": 13188.36, + "end": 13189.8, + "probability": 0.8612 + }, + { + "start": 13190.42, + "end": 13191.78, + "probability": 0.9432 + }, + { + "start": 13192.36, + "end": 13195.78, + "probability": 0.985 + }, + { + "start": 13196.94, + "end": 13197.68, + "probability": 0.8253 + }, + { + "start": 13197.74, + "end": 13201.68, + "probability": 0.7461 + }, + { + "start": 13201.8, + "end": 13205.44, + "probability": 0.9806 + }, + { + "start": 13205.96, + "end": 13206.6, + "probability": 0.6858 + }, + { + "start": 13207.48, + "end": 13210.28, + "probability": 0.8163 + }, + { + "start": 13211.2, + "end": 13215.76, + "probability": 0.9924 + }, + { + "start": 13217.44, + "end": 13218.02, + "probability": 0.8494 + }, + { + "start": 13218.32, + "end": 13220.56, + "probability": 0.9916 + }, + { + "start": 13220.94, + "end": 13223.68, + "probability": 0.9886 + }, + { + "start": 13224.0, + "end": 13225.22, + "probability": 0.8405 + }, + { + "start": 13225.38, + "end": 13226.1, + "probability": 0.8182 + }, + { + "start": 13226.48, + "end": 13227.28, + "probability": 0.9204 + }, + { + "start": 13227.36, + "end": 13228.68, + "probability": 0.8285 + }, + { + "start": 13229.16, + "end": 13229.86, + "probability": 0.4663 + }, + { + "start": 13230.16, + "end": 13231.64, + "probability": 0.8226 + }, + { + "start": 13232.54, + "end": 13235.12, + "probability": 0.715 + }, + { + "start": 13235.54, + "end": 13238.94, + "probability": 0.9677 + }, + { + "start": 13239.38, + "end": 13240.96, + "probability": 0.7804 + }, + { + "start": 13241.72, + "end": 13244.3, + "probability": 0.9386 + }, + { + "start": 13244.44, + "end": 13249.32, + "probability": 0.9871 + }, + { + "start": 13251.36, + "end": 13254.92, + "probability": 0.9823 + }, + { + "start": 13255.44, + "end": 13257.88, + "probability": 0.9976 + }, + { + "start": 13258.52, + "end": 13264.56, + "probability": 0.9735 + }, + { + "start": 13264.8, + "end": 13266.24, + "probability": 0.5283 + }, + { + "start": 13266.46, + "end": 13267.42, + "probability": 0.9856 + }, + { + "start": 13267.76, + "end": 13274.16, + "probability": 0.968 + }, + { + "start": 13275.38, + "end": 13280.88, + "probability": 0.8675 + }, + { + "start": 13281.94, + "end": 13283.92, + "probability": 0.5212 + }, + { + "start": 13284.44, + "end": 13285.14, + "probability": 0.4223 + }, + { + "start": 13285.44, + "end": 13288.24, + "probability": 0.9616 + }, + { + "start": 13288.38, + "end": 13290.02, + "probability": 0.8788 + }, + { + "start": 13291.26, + "end": 13295.98, + "probability": 0.9754 + }, + { + "start": 13296.46, + "end": 13298.6, + "probability": 0.9076 + }, + { + "start": 13299.34, + "end": 13302.1, + "probability": 0.9517 + }, + { + "start": 13302.64, + "end": 13306.7, + "probability": 0.8544 + }, + { + "start": 13307.78, + "end": 13310.9, + "probability": 0.9543 + }, + { + "start": 13311.9, + "end": 13317.7, + "probability": 0.9604 + }, + { + "start": 13318.48, + "end": 13319.04, + "probability": 0.7991 + }, + { + "start": 13319.5, + "end": 13324.88, + "probability": 0.9507 + }, + { + "start": 13326.28, + "end": 13331.38, + "probability": 0.9941 + }, + { + "start": 13331.8, + "end": 13333.48, + "probability": 0.9624 + }, + { + "start": 13333.9, + "end": 13335.22, + "probability": 0.9357 + }, + { + "start": 13335.82, + "end": 13336.02, + "probability": 0.7733 + }, + { + "start": 13336.74, + "end": 13337.7, + "probability": 0.9282 + }, + { + "start": 13338.48, + "end": 13339.38, + "probability": 0.5495 + }, + { + "start": 13349.08, + "end": 13353.64, + "probability": 0.99 + }, + { + "start": 13354.36, + "end": 13361.0, + "probability": 0.9891 + }, + { + "start": 13361.24, + "end": 13363.78, + "probability": 0.0407 + }, + { + "start": 13363.78, + "end": 13365.98, + "probability": 0.5752 + }, + { + "start": 13375.56, + "end": 13377.48, + "probability": 0.1768 + }, + { + "start": 13379.4, + "end": 13380.8, + "probability": 0.0489 + }, + { + "start": 13383.52, + "end": 13385.26, + "probability": 0.1458 + }, + { + "start": 13402.44, + "end": 13404.0, + "probability": 0.5043 + }, + { + "start": 13404.76, + "end": 13406.6, + "probability": 0.0019 + }, + { + "start": 13407.54, + "end": 13408.4, + "probability": 0.1592 + }, + { + "start": 13408.6, + "end": 13410.22, + "probability": 0.1029 + }, + { + "start": 13410.22, + "end": 13413.02, + "probability": 0.1612 + }, + { + "start": 13414.16, + "end": 13415.32, + "probability": 0.0287 + }, + { + "start": 13433.24, + "end": 13434.76, + "probability": 0.2265 + }, + { + "start": 13435.4, + "end": 13435.98, + "probability": 0.474 + }, + { + "start": 13436.08, + "end": 13436.98, + "probability": 0.695 + }, + { + "start": 13437.46, + "end": 13439.6, + "probability": 0.9155 + }, + { + "start": 13439.86, + "end": 13442.4, + "probability": 0.6935 + }, + { + "start": 13442.4, + "end": 13443.22, + "probability": 0.863 + }, + { + "start": 13443.56, + "end": 13444.68, + "probability": 0.8977 + }, + { + "start": 13446.02, + "end": 13451.6, + "probability": 0.972 + }, + { + "start": 13453.74, + "end": 13457.38, + "probability": 0.7744 + }, + { + "start": 13459.0, + "end": 13463.5, + "probability": 0.8824 + }, + { + "start": 13464.6, + "end": 13468.34, + "probability": 0.9701 + }, + { + "start": 13468.42, + "end": 13471.34, + "probability": 0.9764 + }, + { + "start": 13472.4, + "end": 13473.12, + "probability": 0.0877 + }, + { + "start": 13473.24, + "end": 13475.52, + "probability": 0.7325 + }, + { + "start": 13475.56, + "end": 13477.27, + "probability": 0.683 + }, + { + "start": 13478.58, + "end": 13479.4, + "probability": 0.6788 + }, + { + "start": 13479.7, + "end": 13484.06, + "probability": 0.9881 + }, + { + "start": 13484.06, + "end": 13488.52, + "probability": 0.9709 + }, + { + "start": 13490.32, + "end": 13494.06, + "probability": 0.8343 + }, + { + "start": 13494.92, + "end": 13496.26, + "probability": 0.9343 + }, + { + "start": 13497.72, + "end": 13499.65, + "probability": 0.8295 + }, + { + "start": 13500.7, + "end": 13501.44, + "probability": 0.3917 + }, + { + "start": 13501.48, + "end": 13502.38, + "probability": 0.6434 + }, + { + "start": 13502.8, + "end": 13503.88, + "probability": 0.9965 + }, + { + "start": 13504.74, + "end": 13505.26, + "probability": 0.8075 + }, + { + "start": 13506.22, + "end": 13506.82, + "probability": 0.9009 + }, + { + "start": 13507.64, + "end": 13508.62, + "probability": 0.9995 + }, + { + "start": 13509.42, + "end": 13512.64, + "probability": 0.9402 + }, + { + "start": 13513.5, + "end": 13514.2, + "probability": 0.6001 + }, + { + "start": 13514.28, + "end": 13523.06, + "probability": 0.9446 + }, + { + "start": 13523.26, + "end": 13526.64, + "probability": 0.7979 + }, + { + "start": 13527.5, + "end": 13530.06, + "probability": 0.8159 + }, + { + "start": 13531.46, + "end": 13533.86, + "probability": 0.8625 + }, + { + "start": 13533.92, + "end": 13534.76, + "probability": 0.6885 + }, + { + "start": 13534.88, + "end": 13535.5, + "probability": 0.8776 + }, + { + "start": 13536.62, + "end": 13540.64, + "probability": 0.8883 + }, + { + "start": 13541.24, + "end": 13541.76, + "probability": 0.4136 + }, + { + "start": 13541.96, + "end": 13542.74, + "probability": 0.8855 + }, + { + "start": 13542.86, + "end": 13546.5, + "probability": 0.9878 + }, + { + "start": 13547.72, + "end": 13551.38, + "probability": 0.9712 + }, + { + "start": 13552.5, + "end": 13554.16, + "probability": 0.9663 + }, + { + "start": 13555.7, + "end": 13557.5, + "probability": 0.9773 + }, + { + "start": 13557.62, + "end": 13560.26, + "probability": 0.9512 + }, + { + "start": 13560.3, + "end": 13561.3, + "probability": 0.844 + }, + { + "start": 13564.16, + "end": 13567.58, + "probability": 0.9968 + }, + { + "start": 13568.2, + "end": 13573.48, + "probability": 0.9916 + }, + { + "start": 13574.66, + "end": 13577.28, + "probability": 0.9917 + }, + { + "start": 13577.96, + "end": 13582.2, + "probability": 0.9126 + }, + { + "start": 13583.82, + "end": 13589.12, + "probability": 0.9937 + }, + { + "start": 13589.12, + "end": 13592.18, + "probability": 0.9675 + }, + { + "start": 13593.88, + "end": 13600.34, + "probability": 0.9932 + }, + { + "start": 13600.4, + "end": 13602.0, + "probability": 0.9882 + }, + { + "start": 13602.56, + "end": 13603.82, + "probability": 0.6255 + }, + { + "start": 13605.18, + "end": 13609.44, + "probability": 0.9954 + }, + { + "start": 13609.9, + "end": 13611.56, + "probability": 0.9899 + }, + { + "start": 13611.56, + "end": 13613.18, + "probability": 0.9554 + }, + { + "start": 13614.68, + "end": 13615.75, + "probability": 0.9819 + }, + { + "start": 13616.64, + "end": 13619.62, + "probability": 0.9757 + }, + { + "start": 13619.68, + "end": 13620.86, + "probability": 0.9904 + }, + { + "start": 13621.48, + "end": 13622.06, + "probability": 0.8442 + }, + { + "start": 13622.14, + "end": 13624.92, + "probability": 0.9951 + }, + { + "start": 13625.4, + "end": 13626.28, + "probability": 0.7982 + }, + { + "start": 13626.34, + "end": 13627.18, + "probability": 0.8857 + }, + { + "start": 13627.76, + "end": 13628.74, + "probability": 0.9519 + }, + { + "start": 13628.88, + "end": 13630.0, + "probability": 0.8537 + }, + { + "start": 13630.1, + "end": 13630.68, + "probability": 0.4799 + }, + { + "start": 13630.8, + "end": 13633.67, + "probability": 0.9867 + }, + { + "start": 13633.98, + "end": 13635.7, + "probability": 0.9386 + }, + { + "start": 13636.76, + "end": 13639.66, + "probability": 0.9904 + }, + { + "start": 13641.2, + "end": 13643.08, + "probability": 0.9948 + }, + { + "start": 13644.4, + "end": 13645.9, + "probability": 0.788 + }, + { + "start": 13646.72, + "end": 13647.46, + "probability": 0.7128 + }, + { + "start": 13647.58, + "end": 13650.54, + "probability": 0.9788 + }, + { + "start": 13652.06, + "end": 13652.4, + "probability": 0.6614 + }, + { + "start": 13652.96, + "end": 13656.12, + "probability": 0.9367 + }, + { + "start": 13656.64, + "end": 13659.52, + "probability": 0.7996 + }, + { + "start": 13659.94, + "end": 13660.82, + "probability": 0.9856 + }, + { + "start": 13661.62, + "end": 13663.37, + "probability": 0.8643 + }, + { + "start": 13664.46, + "end": 13666.96, + "probability": 0.8903 + }, + { + "start": 13667.56, + "end": 13670.2, + "probability": 0.9916 + }, + { + "start": 13670.2, + "end": 13675.2, + "probability": 0.9884 + }, + { + "start": 13675.56, + "end": 13677.34, + "probability": 0.7797 + }, + { + "start": 13677.48, + "end": 13679.54, + "probability": 0.9255 + }, + { + "start": 13680.3, + "end": 13681.22, + "probability": 0.988 + }, + { + "start": 13681.86, + "end": 13683.28, + "probability": 0.8694 + }, + { + "start": 13684.08, + "end": 13685.42, + "probability": 0.8955 + }, + { + "start": 13686.24, + "end": 13688.24, + "probability": 0.9586 + }, + { + "start": 13689.08, + "end": 13694.32, + "probability": 0.9512 + }, + { + "start": 13694.5, + "end": 13695.7, + "probability": 0.6812 + }, + { + "start": 13695.9, + "end": 13697.26, + "probability": 0.7956 + }, + { + "start": 13697.98, + "end": 13698.56, + "probability": 0.6068 + }, + { + "start": 13699.34, + "end": 13701.08, + "probability": 0.6695 + }, + { + "start": 13701.82, + "end": 13702.88, + "probability": 0.7282 + }, + { + "start": 13704.3, + "end": 13707.22, + "probability": 0.9904 + }, + { + "start": 13707.68, + "end": 13707.68, + "probability": 0.877 + }, + { + "start": 13708.24, + "end": 13709.5, + "probability": 0.9851 + }, + { + "start": 13709.72, + "end": 13715.04, + "probability": 0.9889 + }, + { + "start": 13715.5, + "end": 13718.46, + "probability": 0.834 + }, + { + "start": 13718.48, + "end": 13721.46, + "probability": 0.9105 + }, + { + "start": 13722.06, + "end": 13723.34, + "probability": 0.9857 + }, + { + "start": 13723.8, + "end": 13730.08, + "probability": 0.9879 + }, + { + "start": 13730.2, + "end": 13731.44, + "probability": 0.8093 + }, + { + "start": 13731.78, + "end": 13732.3, + "probability": 0.6589 + }, + { + "start": 13732.44, + "end": 13733.32, + "probability": 0.9635 + }, + { + "start": 13733.34, + "end": 13735.02, + "probability": 0.801 + }, + { + "start": 13735.42, + "end": 13735.62, + "probability": 0.7465 + }, + { + "start": 13736.32, + "end": 13737.36, + "probability": 0.5756 + }, + { + "start": 13738.12, + "end": 13739.96, + "probability": 0.6023 + }, + { + "start": 13740.06, + "end": 13741.84, + "probability": 0.8254 + }, + { + "start": 13743.88, + "end": 13746.3, + "probability": 0.0116 + }, + { + "start": 13750.44, + "end": 13750.9, + "probability": 0.0333 + } + ], + "segments_count": 3800, + "words_count": 20773, + "avg_words_per_segment": 5.4666, + "avg_segment_duration": 2.5298, + "avg_words_per_minute": 90.5182, + "plenum_id": "26489", + "duration": 13769.39, + "title": null, + "plenum_date": "2013-02-11" +} \ No newline at end of file