diff --git "a/37789/metadata.json" "b/37789/metadata.json" new file mode 100644--- /dev/null +++ "b/37789/metadata.json" @@ -0,0 +1,5827 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "37789", + "quality_score": 0.8257, + "per_segment_quality_scores": [ + { + "start": 114.56, + "end": 116.64, + "probability": 0.9809 + }, + { + "start": 117.64, + "end": 119.72, + "probability": 0.9966 + }, + { + "start": 121.4, + "end": 124.32, + "probability": 0.6267 + }, + { + "start": 125.18, + "end": 128.44, + "probability": 0.9593 + }, + { + "start": 128.44, + "end": 132.88, + "probability": 0.9951 + }, + { + "start": 134.78, + "end": 136.8, + "probability": 0.9781 + }, + { + "start": 137.44, + "end": 142.76, + "probability": 0.9912 + }, + { + "start": 143.88, + "end": 144.48, + "probability": 0.6408 + }, + { + "start": 146.1, + "end": 146.98, + "probability": 0.9005 + }, + { + "start": 148.94, + "end": 151.14, + "probability": 0.9843 + }, + { + "start": 151.72, + "end": 153.8, + "probability": 0.9935 + }, + { + "start": 154.84, + "end": 157.62, + "probability": 0.9953 + }, + { + "start": 158.18, + "end": 163.4, + "probability": 0.9662 + }, + { + "start": 163.94, + "end": 166.12, + "probability": 0.8772 + }, + { + "start": 166.64, + "end": 167.74, + "probability": 0.998 + }, + { + "start": 168.28, + "end": 170.64, + "probability": 0.9783 + }, + { + "start": 172.06, + "end": 175.06, + "probability": 0.7578 + }, + { + "start": 176.0, + "end": 179.46, + "probability": 0.9551 + }, + { + "start": 180.06, + "end": 183.8, + "probability": 0.9884 + }, + { + "start": 185.4, + "end": 188.78, + "probability": 0.8667 + }, + { + "start": 189.06, + "end": 191.3, + "probability": 0.9255 + }, + { + "start": 191.88, + "end": 195.45, + "probability": 0.9852 + }, + { + "start": 195.64, + "end": 198.28, + "probability": 0.8468 + }, + { + "start": 198.92, + "end": 202.22, + "probability": 0.9097 + }, + { + "start": 202.66, + "end": 203.7, + "probability": 0.709 + }, + { + "start": 204.72, + "end": 205.68, + "probability": 0.9001 + }, + { + "start": 206.83, + "end": 212.8, + "probability": 0.8003 + }, + { + "start": 213.0, + "end": 215.06, + "probability": 0.9233 + }, + { + "start": 215.74, + "end": 219.0, + "probability": 0.6632 + }, + { + "start": 219.7, + "end": 219.96, + "probability": 0.22 + }, + { + "start": 221.22, + "end": 223.1, + "probability": 0.8187 + }, + { + "start": 223.44, + "end": 224.74, + "probability": 0.9716 + }, + { + "start": 224.8, + "end": 225.5, + "probability": 0.8643 + }, + { + "start": 225.54, + "end": 226.2, + "probability": 0.8169 + }, + { + "start": 226.44, + "end": 229.06, + "probability": 0.6079 + }, + { + "start": 230.08, + "end": 231.0, + "probability": 0.5887 + }, + { + "start": 231.1, + "end": 231.52, + "probability": 0.6359 + }, + { + "start": 231.56, + "end": 235.18, + "probability": 0.9057 + }, + { + "start": 235.18, + "end": 238.76, + "probability": 0.9957 + }, + { + "start": 238.84, + "end": 239.46, + "probability": 0.8148 + }, + { + "start": 239.64, + "end": 240.26, + "probability": 0.8231 + }, + { + "start": 240.92, + "end": 244.06, + "probability": 0.9824 + }, + { + "start": 245.96, + "end": 249.0, + "probability": 0.7662 + }, + { + "start": 249.0, + "end": 251.94, + "probability": 0.9967 + }, + { + "start": 252.46, + "end": 253.12, + "probability": 0.0957 + }, + { + "start": 253.7, + "end": 255.42, + "probability": 0.759 + }, + { + "start": 261.78, + "end": 265.88, + "probability": 0.7895 + }, + { + "start": 275.26, + "end": 276.78, + "probability": 0.6844 + }, + { + "start": 277.52, + "end": 281.8, + "probability": 0.7111 + }, + { + "start": 281.96, + "end": 283.48, + "probability": 0.6183 + }, + { + "start": 284.14, + "end": 285.64, + "probability": 0.6876 + }, + { + "start": 287.0, + "end": 288.1, + "probability": 0.403 + }, + { + "start": 288.12, + "end": 291.18, + "probability": 0.9785 + }, + { + "start": 291.18, + "end": 296.42, + "probability": 0.6724 + }, + { + "start": 296.68, + "end": 298.02, + "probability": 0.4345 + }, + { + "start": 298.64, + "end": 300.38, + "probability": 0.6192 + }, + { + "start": 300.66, + "end": 304.04, + "probability": 0.5908 + }, + { + "start": 305.28, + "end": 306.42, + "probability": 0.6705 + }, + { + "start": 313.9, + "end": 316.48, + "probability": 0.8773 + }, + { + "start": 317.4, + "end": 318.68, + "probability": 0.7472 + }, + { + "start": 318.74, + "end": 320.38, + "probability": 0.8252 + }, + { + "start": 320.76, + "end": 322.3, + "probability": 0.9688 + }, + { + "start": 322.58, + "end": 324.42, + "probability": 0.9897 + }, + { + "start": 325.14, + "end": 328.54, + "probability": 0.9925 + }, + { + "start": 329.2, + "end": 334.14, + "probability": 0.901 + }, + { + "start": 334.7, + "end": 335.5, + "probability": 0.7606 + }, + { + "start": 335.54, + "end": 339.96, + "probability": 0.7276 + }, + { + "start": 340.08, + "end": 341.2, + "probability": 0.677 + }, + { + "start": 342.26, + "end": 345.18, + "probability": 0.5495 + }, + { + "start": 345.7, + "end": 349.38, + "probability": 0.8256 + }, + { + "start": 349.94, + "end": 351.36, + "probability": 0.536 + }, + { + "start": 351.98, + "end": 356.28, + "probability": 0.7904 + }, + { + "start": 356.44, + "end": 359.14, + "probability": 0.7416 + }, + { + "start": 359.28, + "end": 360.18, + "probability": 0.7205 + }, + { + "start": 360.74, + "end": 365.24, + "probability": 0.9282 + }, + { + "start": 365.64, + "end": 368.76, + "probability": 0.8979 + }, + { + "start": 369.24, + "end": 370.18, + "probability": 0.5327 + }, + { + "start": 370.72, + "end": 372.36, + "probability": 0.9235 + }, + { + "start": 372.74, + "end": 376.06, + "probability": 0.9927 + }, + { + "start": 376.84, + "end": 380.84, + "probability": 0.9967 + }, + { + "start": 381.28, + "end": 383.98, + "probability": 0.7122 + }, + { + "start": 384.42, + "end": 385.58, + "probability": 0.5922 + }, + { + "start": 385.9, + "end": 387.6, + "probability": 0.9678 + }, + { + "start": 388.08, + "end": 392.32, + "probability": 0.5188 + }, + { + "start": 394.42, + "end": 395.56, + "probability": 0.7128 + }, + { + "start": 396.1, + "end": 397.22, + "probability": 0.9565 + }, + { + "start": 399.0, + "end": 402.4, + "probability": 0.5786 + }, + { + "start": 402.4, + "end": 403.72, + "probability": 0.1201 + }, + { + "start": 405.22, + "end": 405.84, + "probability": 0.0165 + }, + { + "start": 406.2, + "end": 408.04, + "probability": 0.1888 + }, + { + "start": 408.64, + "end": 410.88, + "probability": 0.1676 + }, + { + "start": 418.92, + "end": 422.02, + "probability": 0.2346 + }, + { + "start": 422.06, + "end": 424.54, + "probability": 0.0391 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.0, + "end": 497.0, + "probability": 0.0 + }, + { + "start": 497.16, + "end": 502.8, + "probability": 0.1203 + }, + { + "start": 503.74, + "end": 508.8, + "probability": 0.1764 + }, + { + "start": 509.56, + "end": 509.74, + "probability": 0.0219 + }, + { + "start": 509.76, + "end": 509.82, + "probability": 0.0406 + }, + { + "start": 509.82, + "end": 509.82, + "probability": 0.153 + }, + { + "start": 509.84, + "end": 510.2, + "probability": 0.1611 + }, + { + "start": 510.2, + "end": 510.2, + "probability": 0.1057 + }, + { + "start": 510.32, + "end": 510.9, + "probability": 0.1723 + }, + { + "start": 511.5, + "end": 512.34, + "probability": 0.0299 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.0, + "end": 621.0, + "probability": 0.0 + }, + { + "start": 621.27, + "end": 622.12, + "probability": 0.8644 + }, + { + "start": 622.88, + "end": 626.4, + "probability": 0.8211 + }, + { + "start": 627.04, + "end": 632.58, + "probability": 0.9937 + }, + { + "start": 633.36, + "end": 640.02, + "probability": 0.959 + }, + { + "start": 641.2, + "end": 643.3, + "probability": 0.9855 + }, + { + "start": 644.34, + "end": 645.34, + "probability": 0.6685 + }, + { + "start": 646.38, + "end": 648.06, + "probability": 0.738 + }, + { + "start": 648.7, + "end": 652.02, + "probability": 0.8735 + }, + { + "start": 652.54, + "end": 657.0, + "probability": 0.9807 + }, + { + "start": 657.7, + "end": 661.86, + "probability": 0.9799 + }, + { + "start": 661.94, + "end": 664.96, + "probability": 0.9741 + }, + { + "start": 665.74, + "end": 672.18, + "probability": 0.9728 + }, + { + "start": 672.28, + "end": 674.56, + "probability": 0.9111 + }, + { + "start": 675.28, + "end": 679.22, + "probability": 0.9088 + }, + { + "start": 679.22, + "end": 680.52, + "probability": 0.7525 + }, + { + "start": 680.68, + "end": 684.64, + "probability": 0.7873 + }, + { + "start": 685.42, + "end": 689.86, + "probability": 0.9867 + }, + { + "start": 690.82, + "end": 696.57, + "probability": 0.974 + }, + { + "start": 699.3, + "end": 701.9, + "probability": 0.6119 + }, + { + "start": 702.7, + "end": 704.53, + "probability": 0.9842 + }, + { + "start": 705.12, + "end": 705.86, + "probability": 0.9528 + }, + { + "start": 705.98, + "end": 711.32, + "probability": 0.9738 + }, + { + "start": 712.06, + "end": 716.94, + "probability": 0.9956 + }, + { + "start": 718.14, + "end": 722.1, + "probability": 0.9915 + }, + { + "start": 722.26, + "end": 724.26, + "probability": 0.9598 + }, + { + "start": 724.96, + "end": 727.42, + "probability": 0.8684 + }, + { + "start": 727.96, + "end": 735.56, + "probability": 0.9113 + }, + { + "start": 735.9, + "end": 738.58, + "probability": 0.9335 + }, + { + "start": 739.34, + "end": 740.58, + "probability": 0.7831 + }, + { + "start": 741.12, + "end": 742.7, + "probability": 0.9706 + }, + { + "start": 742.84, + "end": 746.5, + "probability": 0.9661 + }, + { + "start": 746.64, + "end": 747.08, + "probability": 0.4024 + }, + { + "start": 747.72, + "end": 749.12, + "probability": 0.8689 + }, + { + "start": 749.94, + "end": 750.32, + "probability": 0.2549 + }, + { + "start": 750.38, + "end": 752.52, + "probability": 0.9797 + }, + { + "start": 752.52, + "end": 754.62, + "probability": 0.9336 + }, + { + "start": 755.32, + "end": 756.28, + "probability": 0.894 + }, + { + "start": 760.64, + "end": 763.5, + "probability": 0.8176 + }, + { + "start": 763.66, + "end": 765.6, + "probability": 0.9187 + }, + { + "start": 766.34, + "end": 766.98, + "probability": 0.8374 + }, + { + "start": 768.62, + "end": 775.82, + "probability": 0.9937 + }, + { + "start": 775.88, + "end": 776.64, + "probability": 0.9575 + }, + { + "start": 780.9, + "end": 783.52, + "probability": 0.9519 + }, + { + "start": 783.72, + "end": 784.84, + "probability": 0.9847 + }, + { + "start": 785.08, + "end": 786.06, + "probability": 0.9103 + }, + { + "start": 787.02, + "end": 789.06, + "probability": 0.9504 + }, + { + "start": 789.66, + "end": 790.49, + "probability": 0.8913 + }, + { + "start": 791.52, + "end": 796.74, + "probability": 0.9678 + }, + { + "start": 797.3, + "end": 799.3, + "probability": 0.9648 + }, + { + "start": 799.4, + "end": 803.66, + "probability": 0.9956 + }, + { + "start": 804.12, + "end": 808.12, + "probability": 0.9963 + }, + { + "start": 808.3, + "end": 811.08, + "probability": 0.9891 + }, + { + "start": 811.88, + "end": 814.72, + "probability": 0.99 + }, + { + "start": 814.92, + "end": 815.66, + "probability": 0.8057 + }, + { + "start": 816.22, + "end": 819.74, + "probability": 0.9818 + }, + { + "start": 820.42, + "end": 824.14, + "probability": 0.7152 + }, + { + "start": 824.6, + "end": 830.5, + "probability": 0.9887 + }, + { + "start": 830.5, + "end": 833.96, + "probability": 0.9708 + }, + { + "start": 834.48, + "end": 837.68, + "probability": 0.9817 + }, + { + "start": 837.82, + "end": 838.58, + "probability": 0.9073 + }, + { + "start": 838.64, + "end": 839.86, + "probability": 0.8848 + }, + { + "start": 839.92, + "end": 841.2, + "probability": 0.489 + }, + { + "start": 841.42, + "end": 842.38, + "probability": 0.8367 + }, + { + "start": 842.98, + "end": 845.64, + "probability": 0.8351 + }, + { + "start": 846.76, + "end": 848.8, + "probability": 0.9932 + }, + { + "start": 848.8, + "end": 855.42, + "probability": 0.9662 + }, + { + "start": 856.1, + "end": 856.82, + "probability": 0.9647 + }, + { + "start": 856.9, + "end": 859.08, + "probability": 0.7885 + }, + { + "start": 859.28, + "end": 860.54, + "probability": 0.8494 + }, + { + "start": 860.58, + "end": 865.5, + "probability": 0.9927 + }, + { + "start": 866.06, + "end": 868.96, + "probability": 0.9897 + }, + { + "start": 870.42, + "end": 871.57, + "probability": 0.9814 + }, + { + "start": 871.96, + "end": 873.32, + "probability": 0.9226 + }, + { + "start": 873.8, + "end": 876.4, + "probability": 0.9865 + }, + { + "start": 876.56, + "end": 880.16, + "probability": 0.873 + }, + { + "start": 881.0, + "end": 881.36, + "probability": 0.3329 + }, + { + "start": 881.64, + "end": 885.66, + "probability": 0.8288 + }, + { + "start": 885.98, + "end": 886.8, + "probability": 0.8978 + }, + { + "start": 887.06, + "end": 888.76, + "probability": 0.5387 + }, + { + "start": 889.78, + "end": 891.76, + "probability": 0.5484 + }, + { + "start": 892.32, + "end": 893.86, + "probability": 0.9661 + }, + { + "start": 894.04, + "end": 894.82, + "probability": 0.9674 + }, + { + "start": 894.9, + "end": 896.0, + "probability": 0.9837 + }, + { + "start": 896.06, + "end": 897.76, + "probability": 0.9152 + }, + { + "start": 897.92, + "end": 898.56, + "probability": 0.7266 + }, + { + "start": 898.66, + "end": 899.82, + "probability": 0.612 + }, + { + "start": 899.9, + "end": 902.92, + "probability": 0.9858 + }, + { + "start": 903.06, + "end": 903.26, + "probability": 0.7485 + }, + { + "start": 904.04, + "end": 905.86, + "probability": 0.8725 + }, + { + "start": 905.94, + "end": 907.44, + "probability": 0.8941 + }, + { + "start": 907.44, + "end": 909.06, + "probability": 0.9963 + }, + { + "start": 909.16, + "end": 912.3, + "probability": 0.9523 + }, + { + "start": 913.2, + "end": 914.1, + "probability": 0.6245 + }, + { + "start": 914.28, + "end": 916.34, + "probability": 0.9526 + }, + { + "start": 917.02, + "end": 921.42, + "probability": 0.8428 + }, + { + "start": 927.82, + "end": 929.64, + "probability": 0.976 + }, + { + "start": 934.52, + "end": 938.22, + "probability": 0.6987 + }, + { + "start": 938.8, + "end": 940.12, + "probability": 0.9558 + }, + { + "start": 941.14, + "end": 941.16, + "probability": 0.0219 + }, + { + "start": 941.32, + "end": 941.68, + "probability": 0.8005 + }, + { + "start": 941.76, + "end": 946.14, + "probability": 0.9629 + }, + { + "start": 947.16, + "end": 950.78, + "probability": 0.9769 + }, + { + "start": 951.44, + "end": 954.66, + "probability": 0.8741 + }, + { + "start": 955.34, + "end": 961.4, + "probability": 0.9832 + }, + { + "start": 962.08, + "end": 963.9, + "probability": 0.9989 + }, + { + "start": 965.24, + "end": 968.04, + "probability": 0.3843 + }, + { + "start": 969.47, + "end": 971.24, + "probability": 0.0788 + }, + { + "start": 971.54, + "end": 973.72, + "probability": 0.6235 + }, + { + "start": 974.17, + "end": 977.12, + "probability": 0.9359 + }, + { + "start": 977.34, + "end": 979.6, + "probability": 0.3244 + }, + { + "start": 979.64, + "end": 981.62, + "probability": 0.8597 + }, + { + "start": 981.98, + "end": 986.14, + "probability": 0.845 + }, + { + "start": 986.84, + "end": 990.85, + "probability": 0.9815 + }, + { + "start": 991.0, + "end": 991.7, + "probability": 0.8039 + }, + { + "start": 992.1, + "end": 996.04, + "probability": 0.9047 + }, + { + "start": 996.04, + "end": 999.74, + "probability": 0.9979 + }, + { + "start": 1000.78, + "end": 1005.16, + "probability": 0.94 + }, + { + "start": 1006.16, + "end": 1007.32, + "probability": 0.7795 + }, + { + "start": 1007.32, + "end": 1009.24, + "probability": 0.9713 + }, + { + "start": 1009.26, + "end": 1009.72, + "probability": 0.7021 + }, + { + "start": 1009.8, + "end": 1014.23, + "probability": 0.8213 + }, + { + "start": 1014.6, + "end": 1016.14, + "probability": 0.7649 + }, + { + "start": 1016.2, + "end": 1017.06, + "probability": 0.9006 + }, + { + "start": 1017.34, + "end": 1019.24, + "probability": 0.9692 + }, + { + "start": 1019.34, + "end": 1022.02, + "probability": 0.9707 + }, + { + "start": 1022.62, + "end": 1026.69, + "probability": 0.8085 + }, + { + "start": 1028.54, + "end": 1029.58, + "probability": 0.6988 + }, + { + "start": 1029.8, + "end": 1030.96, + "probability": 0.5477 + }, + { + "start": 1031.14, + "end": 1034.52, + "probability": 0.8383 + }, + { + "start": 1035.38, + "end": 1038.52, + "probability": 0.9866 + }, + { + "start": 1038.52, + "end": 1040.92, + "probability": 0.9744 + }, + { + "start": 1042.3, + "end": 1047.16, + "probability": 0.9668 + }, + { + "start": 1047.36, + "end": 1047.98, + "probability": 0.7498 + }, + { + "start": 1048.46, + "end": 1053.49, + "probability": 0.8267 + }, + { + "start": 1053.94, + "end": 1056.0, + "probability": 0.9496 + }, + { + "start": 1056.04, + "end": 1059.48, + "probability": 0.7549 + }, + { + "start": 1059.6, + "end": 1063.02, + "probability": 0.7871 + }, + { + "start": 1064.76, + "end": 1065.32, + "probability": 0.287 + }, + { + "start": 1066.04, + "end": 1067.58, + "probability": 0.753 + }, + { + "start": 1068.34, + "end": 1073.28, + "probability": 0.6763 + }, + { + "start": 1073.28, + "end": 1074.9, + "probability": 0.8605 + }, + { + "start": 1074.96, + "end": 1076.18, + "probability": 0.9237 + }, + { + "start": 1076.66, + "end": 1080.0, + "probability": 0.7508 + }, + { + "start": 1080.56, + "end": 1082.3, + "probability": 0.9952 + }, + { + "start": 1083.08, + "end": 1086.34, + "probability": 0.9785 + }, + { + "start": 1086.34, + "end": 1089.14, + "probability": 0.999 + }, + { + "start": 1089.8, + "end": 1094.22, + "probability": 0.7493 + }, + { + "start": 1094.84, + "end": 1096.26, + "probability": 0.9961 + }, + { + "start": 1097.36, + "end": 1098.92, + "probability": 0.782 + }, + { + "start": 1099.46, + "end": 1102.5, + "probability": 0.9973 + }, + { + "start": 1102.5, + "end": 1107.96, + "probability": 0.9894 + }, + { + "start": 1109.24, + "end": 1114.46, + "probability": 0.9976 + }, + { + "start": 1114.96, + "end": 1116.22, + "probability": 0.9784 + }, + { + "start": 1117.7, + "end": 1120.36, + "probability": 0.9512 + }, + { + "start": 1120.46, + "end": 1122.39, + "probability": 0.9832 + }, + { + "start": 1123.22, + "end": 1125.16, + "probability": 0.9981 + }, + { + "start": 1126.28, + "end": 1129.64, + "probability": 0.9788 + }, + { + "start": 1130.48, + "end": 1132.86, + "probability": 0.9984 + }, + { + "start": 1132.94, + "end": 1134.46, + "probability": 0.7543 + }, + { + "start": 1135.5, + "end": 1139.68, + "probability": 0.9724 + }, + { + "start": 1139.68, + "end": 1144.94, + "probability": 0.9821 + }, + { + "start": 1145.08, + "end": 1147.0, + "probability": 0.8405 + }, + { + "start": 1147.12, + "end": 1148.04, + "probability": 0.7912 + }, + { + "start": 1148.58, + "end": 1152.34, + "probability": 0.9939 + }, + { + "start": 1152.4, + "end": 1153.54, + "probability": 0.7669 + }, + { + "start": 1154.36, + "end": 1159.56, + "probability": 0.9371 + }, + { + "start": 1159.74, + "end": 1161.42, + "probability": 0.6623 + }, + { + "start": 1161.7, + "end": 1162.48, + "probability": 0.7466 + }, + { + "start": 1163.24, + "end": 1165.2, + "probability": 0.7149 + }, + { + "start": 1165.48, + "end": 1168.26, + "probability": 0.7122 + }, + { + "start": 1169.08, + "end": 1171.2, + "probability": 0.9038 + }, + { + "start": 1172.08, + "end": 1176.74, + "probability": 0.9899 + }, + { + "start": 1179.84, + "end": 1181.44, + "probability": 0.998 + }, + { + "start": 1183.14, + "end": 1185.64, + "probability": 0.9918 + }, + { + "start": 1186.8, + "end": 1189.28, + "probability": 0.7787 + }, + { + "start": 1190.22, + "end": 1191.82, + "probability": 0.9946 + }, + { + "start": 1192.44, + "end": 1197.86, + "probability": 0.9928 + }, + { + "start": 1198.32, + "end": 1200.77, + "probability": 0.924 + }, + { + "start": 1201.7, + "end": 1202.96, + "probability": 0.9401 + }, + { + "start": 1203.74, + "end": 1210.66, + "probability": 0.9966 + }, + { + "start": 1211.44, + "end": 1217.58, + "probability": 0.9966 + }, + { + "start": 1218.92, + "end": 1220.04, + "probability": 0.9995 + }, + { + "start": 1221.44, + "end": 1229.88, + "probability": 0.9943 + }, + { + "start": 1230.66, + "end": 1231.9, + "probability": 0.9274 + }, + { + "start": 1233.3, + "end": 1237.68, + "probability": 0.9979 + }, + { + "start": 1238.58, + "end": 1241.6, + "probability": 0.9985 + }, + { + "start": 1242.54, + "end": 1246.24, + "probability": 0.9969 + }, + { + "start": 1246.9, + "end": 1247.86, + "probability": 0.7487 + }, + { + "start": 1248.2, + "end": 1248.68, + "probability": 0.7574 + }, + { + "start": 1248.8, + "end": 1252.08, + "probability": 0.9937 + }, + { + "start": 1253.5, + "end": 1257.1, + "probability": 0.7891 + }, + { + "start": 1257.74, + "end": 1263.72, + "probability": 0.9769 + }, + { + "start": 1264.7, + "end": 1267.34, + "probability": 0.996 + }, + { + "start": 1267.58, + "end": 1268.88, + "probability": 0.9238 + }, + { + "start": 1269.32, + "end": 1271.68, + "probability": 0.3132 + }, + { + "start": 1272.26, + "end": 1272.8, + "probability": 0.9091 + }, + { + "start": 1273.64, + "end": 1274.56, + "probability": 0.9595 + }, + { + "start": 1274.72, + "end": 1276.58, + "probability": 0.8366 + }, + { + "start": 1277.28, + "end": 1279.0, + "probability": 0.9634 + }, + { + "start": 1279.9, + "end": 1281.6, + "probability": 0.9934 + }, + { + "start": 1282.98, + "end": 1286.41, + "probability": 0.9828 + }, + { + "start": 1288.8, + "end": 1290.8, + "probability": 0.4907 + }, + { + "start": 1290.8, + "end": 1293.34, + "probability": 0.0125 + }, + { + "start": 1299.4, + "end": 1299.4, + "probability": 0.0777 + }, + { + "start": 1299.4, + "end": 1303.77, + "probability": 0.9924 + }, + { + "start": 1304.18, + "end": 1308.72, + "probability": 0.9921 + }, + { + "start": 1309.64, + "end": 1311.68, + "probability": 0.8149 + }, + { + "start": 1313.18, + "end": 1316.02, + "probability": 0.999 + }, + { + "start": 1316.78, + "end": 1323.74, + "probability": 0.9681 + }, + { + "start": 1324.9, + "end": 1325.34, + "probability": 0.7746 + }, + { + "start": 1326.06, + "end": 1328.02, + "probability": 0.9937 + }, + { + "start": 1328.26, + "end": 1330.3, + "probability": 0.9989 + }, + { + "start": 1330.42, + "end": 1330.84, + "probability": 0.6304 + }, + { + "start": 1330.84, + "end": 1331.28, + "probability": 0.7933 + }, + { + "start": 1331.74, + "end": 1332.32, + "probability": 0.5302 + }, + { + "start": 1332.38, + "end": 1334.44, + "probability": 0.978 + }, + { + "start": 1352.02, + "end": 1353.4, + "probability": 0.6014 + }, + { + "start": 1354.64, + "end": 1356.6, + "probability": 0.9076 + }, + { + "start": 1357.54, + "end": 1360.86, + "probability": 0.9864 + }, + { + "start": 1360.86, + "end": 1367.3, + "probability": 0.9227 + }, + { + "start": 1367.66, + "end": 1367.7, + "probability": 0.5171 + }, + { + "start": 1367.82, + "end": 1368.76, + "probability": 0.9564 + }, + { + "start": 1369.2, + "end": 1375.76, + "probability": 0.9666 + }, + { + "start": 1376.06, + "end": 1379.35, + "probability": 0.9779 + }, + { + "start": 1379.9, + "end": 1384.52, + "probability": 0.9854 + }, + { + "start": 1385.06, + "end": 1387.09, + "probability": 0.9931 + }, + { + "start": 1387.54, + "end": 1388.9, + "probability": 0.4926 + }, + { + "start": 1389.1, + "end": 1390.44, + "probability": 0.8462 + }, + { + "start": 1390.82, + "end": 1394.3, + "probability": 0.9845 + }, + { + "start": 1396.14, + "end": 1402.52, + "probability": 0.9546 + }, + { + "start": 1403.06, + "end": 1405.3, + "probability": 0.6534 + }, + { + "start": 1405.44, + "end": 1406.72, + "probability": 0.6556 + }, + { + "start": 1407.86, + "end": 1408.36, + "probability": 0.8467 + }, + { + "start": 1408.52, + "end": 1410.14, + "probability": 0.6584 + }, + { + "start": 1410.2, + "end": 1411.68, + "probability": 0.8858 + }, + { + "start": 1412.16, + "end": 1417.54, + "probability": 0.9923 + }, + { + "start": 1417.6, + "end": 1418.64, + "probability": 0.7835 + }, + { + "start": 1418.68, + "end": 1422.62, + "probability": 0.9958 + }, + { + "start": 1423.04, + "end": 1425.1, + "probability": 0.9976 + }, + { + "start": 1425.56, + "end": 1426.68, + "probability": 0.9559 + }, + { + "start": 1427.94, + "end": 1433.22, + "probability": 0.9685 + }, + { + "start": 1433.88, + "end": 1436.24, + "probability": 0.9272 + }, + { + "start": 1436.46, + "end": 1437.8, + "probability": 0.8687 + }, + { + "start": 1438.3, + "end": 1441.28, + "probability": 0.9919 + }, + { + "start": 1441.64, + "end": 1443.22, + "probability": 0.9751 + }, + { + "start": 1443.68, + "end": 1444.62, + "probability": 0.9835 + }, + { + "start": 1444.76, + "end": 1445.84, + "probability": 0.6224 + }, + { + "start": 1446.34, + "end": 1451.38, + "probability": 0.7521 + }, + { + "start": 1451.8, + "end": 1453.5, + "probability": 0.9075 + }, + { + "start": 1453.6, + "end": 1454.99, + "probability": 0.9038 + }, + { + "start": 1455.54, + "end": 1457.05, + "probability": 0.9683 + }, + { + "start": 1457.78, + "end": 1459.56, + "probability": 0.8235 + }, + { + "start": 1459.82, + "end": 1464.86, + "probability": 0.9644 + }, + { + "start": 1465.1, + "end": 1467.32, + "probability": 0.8826 + }, + { + "start": 1467.76, + "end": 1473.08, + "probability": 0.8667 + }, + { + "start": 1473.12, + "end": 1476.58, + "probability": 0.8986 + }, + { + "start": 1476.64, + "end": 1477.06, + "probability": 0.8587 + }, + { + "start": 1477.54, + "end": 1479.66, + "probability": 0.7451 + }, + { + "start": 1479.8, + "end": 1481.56, + "probability": 0.7357 + }, + { + "start": 1482.1, + "end": 1484.6, + "probability": 0.9547 + }, + { + "start": 1494.62, + "end": 1495.38, + "probability": 0.7437 + }, + { + "start": 1495.62, + "end": 1496.8, + "probability": 0.9922 + }, + { + "start": 1496.9, + "end": 1497.72, + "probability": 0.8438 + }, + { + "start": 1497.88, + "end": 1498.38, + "probability": 0.8387 + }, + { + "start": 1499.52, + "end": 1501.64, + "probability": 0.8235 + }, + { + "start": 1503.5, + "end": 1506.26, + "probability": 0.9857 + }, + { + "start": 1506.58, + "end": 1507.5, + "probability": 0.7422 + }, + { + "start": 1507.5, + "end": 1508.9, + "probability": 0.6696 + }, + { + "start": 1509.4, + "end": 1510.99, + "probability": 0.8968 + }, + { + "start": 1511.44, + "end": 1512.42, + "probability": 0.9502 + }, + { + "start": 1512.92, + "end": 1513.94, + "probability": 0.9321 + }, + { + "start": 1514.02, + "end": 1514.98, + "probability": 0.9435 + }, + { + "start": 1516.22, + "end": 1518.96, + "probability": 0.9224 + }, + { + "start": 1519.08, + "end": 1519.92, + "probability": 0.9279 + }, + { + "start": 1521.28, + "end": 1521.98, + "probability": 0.9462 + }, + { + "start": 1522.4, + "end": 1526.04, + "probability": 0.9701 + }, + { + "start": 1526.22, + "end": 1528.2, + "probability": 0.9973 + }, + { + "start": 1529.74, + "end": 1531.22, + "probability": 0.6679 + }, + { + "start": 1531.36, + "end": 1532.86, + "probability": 0.9166 + }, + { + "start": 1532.92, + "end": 1534.94, + "probability": 0.9795 + }, + { + "start": 1535.36, + "end": 1537.6, + "probability": 0.9419 + }, + { + "start": 1538.66, + "end": 1540.74, + "probability": 0.8967 + }, + { + "start": 1540.84, + "end": 1541.52, + "probability": 0.5703 + }, + { + "start": 1541.66, + "end": 1543.7, + "probability": 0.8611 + }, + { + "start": 1543.8, + "end": 1545.54, + "probability": 0.8687 + }, + { + "start": 1546.52, + "end": 1548.94, + "probability": 0.9473 + }, + { + "start": 1550.68, + "end": 1551.7, + "probability": 0.9761 + }, + { + "start": 1552.08, + "end": 1553.0, + "probability": 0.8083 + }, + { + "start": 1553.5, + "end": 1554.44, + "probability": 0.9573 + }, + { + "start": 1554.62, + "end": 1555.52, + "probability": 0.988 + }, + { + "start": 1555.7, + "end": 1556.08, + "probability": 0.8739 + }, + { + "start": 1556.38, + "end": 1556.86, + "probability": 0.7581 + }, + { + "start": 1556.96, + "end": 1558.62, + "probability": 0.9548 + }, + { + "start": 1558.64, + "end": 1559.26, + "probability": 0.7853 + }, + { + "start": 1559.96, + "end": 1561.6, + "probability": 0.9292 + }, + { + "start": 1561.78, + "end": 1563.56, + "probability": 0.988 + }, + { + "start": 1564.36, + "end": 1565.88, + "probability": 0.6763 + }, + { + "start": 1566.34, + "end": 1568.85, + "probability": 0.8757 + }, + { + "start": 1569.38, + "end": 1571.86, + "probability": 0.9227 + }, + { + "start": 1572.74, + "end": 1577.98, + "probability": 0.9944 + }, + { + "start": 1578.74, + "end": 1579.96, + "probability": 0.9109 + }, + { + "start": 1580.4, + "end": 1581.44, + "probability": 0.6907 + }, + { + "start": 1581.54, + "end": 1582.02, + "probability": 0.8271 + }, + { + "start": 1582.64, + "end": 1583.56, + "probability": 0.7454 + }, + { + "start": 1584.86, + "end": 1587.88, + "probability": 0.9354 + }, + { + "start": 1589.72, + "end": 1590.74, + "probability": 0.947 + }, + { + "start": 1591.6, + "end": 1593.56, + "probability": 0.9514 + }, + { + "start": 1595.5, + "end": 1600.3, + "probability": 0.9735 + }, + { + "start": 1600.3, + "end": 1605.06, + "probability": 0.9337 + }, + { + "start": 1605.58, + "end": 1608.96, + "probability": 0.9985 + }, + { + "start": 1609.54, + "end": 1610.5, + "probability": 0.8875 + }, + { + "start": 1610.72, + "end": 1610.9, + "probability": 0.508 + }, + { + "start": 1611.9, + "end": 1613.94, + "probability": 0.8999 + }, + { + "start": 1614.18, + "end": 1616.58, + "probability": 0.9951 + }, + { + "start": 1616.98, + "end": 1619.1, + "probability": 0.9854 + }, + { + "start": 1639.38, + "end": 1640.46, + "probability": 0.5786 + }, + { + "start": 1641.08, + "end": 1641.8, + "probability": 0.8595 + }, + { + "start": 1642.88, + "end": 1643.56, + "probability": 0.879 + }, + { + "start": 1643.66, + "end": 1644.66, + "probability": 0.9727 + }, + { + "start": 1644.96, + "end": 1646.54, + "probability": 0.9971 + }, + { + "start": 1646.72, + "end": 1649.35, + "probability": 0.9309 + }, + { + "start": 1649.7, + "end": 1650.82, + "probability": 0.9943 + }, + { + "start": 1652.14, + "end": 1654.74, + "probability": 0.946 + }, + { + "start": 1654.74, + "end": 1657.26, + "probability": 0.9795 + }, + { + "start": 1658.76, + "end": 1660.7, + "probability": 0.5356 + }, + { + "start": 1661.06, + "end": 1663.6, + "probability": 0.8853 + }, + { + "start": 1664.06, + "end": 1664.26, + "probability": 0.7325 + }, + { + "start": 1664.62, + "end": 1666.5, + "probability": 0.9378 + }, + { + "start": 1666.58, + "end": 1668.38, + "probability": 0.9482 + }, + { + "start": 1668.62, + "end": 1671.3, + "probability": 0.9919 + }, + { + "start": 1671.82, + "end": 1672.82, + "probability": 0.8179 + }, + { + "start": 1673.34, + "end": 1678.2, + "probability": 0.9676 + }, + { + "start": 1678.65, + "end": 1683.2, + "probability": 0.9025 + }, + { + "start": 1683.28, + "end": 1685.96, + "probability": 0.9552 + }, + { + "start": 1686.74, + "end": 1688.82, + "probability": 0.9712 + }, + { + "start": 1688.86, + "end": 1696.1, + "probability": 0.9041 + }, + { + "start": 1697.08, + "end": 1699.98, + "probability": 0.9909 + }, + { + "start": 1699.98, + "end": 1705.02, + "probability": 0.8967 + }, + { + "start": 1705.92, + "end": 1706.98, + "probability": 0.9732 + }, + { + "start": 1707.5, + "end": 1710.96, + "probability": 0.98 + }, + { + "start": 1711.44, + "end": 1712.8, + "probability": 0.5638 + }, + { + "start": 1713.42, + "end": 1716.36, + "probability": 0.986 + }, + { + "start": 1716.45, + "end": 1719.38, + "probability": 0.9977 + }, + { + "start": 1719.44, + "end": 1722.46, + "probability": 0.9845 + }, + { + "start": 1723.58, + "end": 1727.8, + "probability": 0.7942 + }, + { + "start": 1727.8, + "end": 1730.9, + "probability": 0.9283 + }, + { + "start": 1731.7, + "end": 1732.56, + "probability": 0.8037 + }, + { + "start": 1732.98, + "end": 1736.78, + "probability": 0.9043 + }, + { + "start": 1736.78, + "end": 1742.52, + "probability": 0.9946 + }, + { + "start": 1742.58, + "end": 1742.58, + "probability": 0.0109 + }, + { + "start": 1742.58, + "end": 1744.4, + "probability": 0.7102 + }, + { + "start": 1744.5, + "end": 1745.1, + "probability": 0.9131 + }, + { + "start": 1745.18, + "end": 1745.64, + "probability": 0.8615 + }, + { + "start": 1745.76, + "end": 1746.16, + "probability": 0.9518 + }, + { + "start": 1746.2, + "end": 1747.56, + "probability": 0.9537 + }, + { + "start": 1748.3, + "end": 1752.16, + "probability": 0.8877 + }, + { + "start": 1752.54, + "end": 1755.24, + "probability": 0.8973 + }, + { + "start": 1755.88, + "end": 1756.74, + "probability": 0.9627 + }, + { + "start": 1757.28, + "end": 1757.8, + "probability": 0.4895 + }, + { + "start": 1757.82, + "end": 1758.26, + "probability": 0.4653 + }, + { + "start": 1758.64, + "end": 1760.6, + "probability": 0.9608 + }, + { + "start": 1761.02, + "end": 1761.68, + "probability": 0.6555 + }, + { + "start": 1761.76, + "end": 1762.21, + "probability": 0.1365 + }, + { + "start": 1762.4, + "end": 1763.16, + "probability": 0.5349 + }, + { + "start": 1763.62, + "end": 1764.44, + "probability": 0.5637 + }, + { + "start": 1764.66, + "end": 1768.76, + "probability": 0.8281 + }, + { + "start": 1769.12, + "end": 1769.94, + "probability": 0.9224 + }, + { + "start": 1770.56, + "end": 1770.98, + "probability": 0.5406 + }, + { + "start": 1771.16, + "end": 1771.6, + "probability": 0.3105 + }, + { + "start": 1772.24, + "end": 1773.38, + "probability": 0.764 + }, + { + "start": 1773.48, + "end": 1774.46, + "probability": 0.8726 + }, + { + "start": 1774.92, + "end": 1775.8, + "probability": 0.792 + }, + { + "start": 1776.28, + "end": 1777.15, + "probability": 0.762 + }, + { + "start": 1777.42, + "end": 1778.72, + "probability": 0.7244 + }, + { + "start": 1778.74, + "end": 1779.48, + "probability": 0.7252 + }, + { + "start": 1780.0, + "end": 1784.22, + "probability": 0.9821 + }, + { + "start": 1785.3, + "end": 1788.88, + "probability": 0.9995 + }, + { + "start": 1789.04, + "end": 1793.0, + "probability": 0.9966 + }, + { + "start": 1793.0, + "end": 1796.9, + "probability": 0.9143 + }, + { + "start": 1797.24, + "end": 1800.02, + "probability": 0.9673 + }, + { + "start": 1800.36, + "end": 1801.4, + "probability": 0.9675 + }, + { + "start": 1801.46, + "end": 1804.1, + "probability": 0.9648 + }, + { + "start": 1804.24, + "end": 1804.88, + "probability": 0.707 + }, + { + "start": 1805.22, + "end": 1806.34, + "probability": 0.9864 + }, + { + "start": 1806.44, + "end": 1807.65, + "probability": 0.9311 + }, + { + "start": 1808.0, + "end": 1809.18, + "probability": 0.9558 + }, + { + "start": 1809.28, + "end": 1810.27, + "probability": 0.858 + }, + { + "start": 1811.9, + "end": 1813.04, + "probability": 0.7254 + }, + { + "start": 1814.14, + "end": 1815.52, + "probability": 0.6552 + }, + { + "start": 1817.8, + "end": 1818.93, + "probability": 0.8087 + }, + { + "start": 1818.96, + "end": 1820.6, + "probability": 0.7936 + }, + { + "start": 1821.1, + "end": 1822.46, + "probability": 0.886 + }, + { + "start": 1822.66, + "end": 1827.84, + "probability": 0.7681 + }, + { + "start": 1828.34, + "end": 1831.04, + "probability": 0.9188 + }, + { + "start": 1831.62, + "end": 1836.1, + "probability": 0.7576 + }, + { + "start": 1836.5, + "end": 1843.4, + "probability": 0.8223 + }, + { + "start": 1843.76, + "end": 1847.74, + "probability": 0.9931 + }, + { + "start": 1847.84, + "end": 1852.2, + "probability": 0.5684 + }, + { + "start": 1852.4, + "end": 1854.4, + "probability": 0.9717 + }, + { + "start": 1854.5, + "end": 1856.76, + "probability": 0.9276 + }, + { + "start": 1856.92, + "end": 1857.7, + "probability": 0.7847 + }, + { + "start": 1857.74, + "end": 1857.92, + "probability": 0.6172 + }, + { + "start": 1858.66, + "end": 1860.56, + "probability": 0.9573 + }, + { + "start": 1860.78, + "end": 1863.2, + "probability": 0.8427 + }, + { + "start": 1863.72, + "end": 1865.6, + "probability": 0.9059 + }, + { + "start": 1867.44, + "end": 1869.04, + "probability": 0.9834 + }, + { + "start": 1874.36, + "end": 1874.84, + "probability": 0.3788 + }, + { + "start": 1882.4, + "end": 1884.34, + "probability": 0.6548 + }, + { + "start": 1886.82, + "end": 1887.86, + "probability": 0.9814 + }, + { + "start": 1888.18, + "end": 1893.36, + "probability": 0.9961 + }, + { + "start": 1893.62, + "end": 1895.36, + "probability": 0.9978 + }, + { + "start": 1896.58, + "end": 1902.16, + "probability": 0.9824 + }, + { + "start": 1903.68, + "end": 1906.82, + "probability": 0.9804 + }, + { + "start": 1908.7, + "end": 1910.72, + "probability": 0.9919 + }, + { + "start": 1911.26, + "end": 1914.24, + "probability": 0.9069 + }, + { + "start": 1916.94, + "end": 1917.92, + "probability": 0.9972 + }, + { + "start": 1919.26, + "end": 1920.56, + "probability": 0.9385 + }, + { + "start": 1921.46, + "end": 1923.56, + "probability": 0.9874 + }, + { + "start": 1923.7, + "end": 1928.46, + "probability": 0.9974 + }, + { + "start": 1928.84, + "end": 1929.78, + "probability": 0.8332 + }, + { + "start": 1930.46, + "end": 1934.2, + "probability": 0.9971 + }, + { + "start": 1935.42, + "end": 1936.54, + "probability": 0.9775 + }, + { + "start": 1937.54, + "end": 1939.76, + "probability": 0.8813 + }, + { + "start": 1940.54, + "end": 1943.06, + "probability": 0.8726 + }, + { + "start": 1943.72, + "end": 1946.28, + "probability": 0.9944 + }, + { + "start": 1947.88, + "end": 1950.16, + "probability": 0.8741 + }, + { + "start": 1950.78, + "end": 1951.8, + "probability": 0.7514 + }, + { + "start": 1953.18, + "end": 1955.1, + "probability": 0.9573 + }, + { + "start": 1955.84, + "end": 1957.38, + "probability": 0.9365 + }, + { + "start": 1958.14, + "end": 1959.06, + "probability": 0.9709 + }, + { + "start": 1959.18, + "end": 1962.26, + "probability": 0.0646 + }, + { + "start": 1962.26, + "end": 1962.84, + "probability": 0.536 + }, + { + "start": 1964.04, + "end": 1965.6, + "probability": 0.4298 + }, + { + "start": 1966.52, + "end": 1968.28, + "probability": 0.9264 + }, + { + "start": 1970.28, + "end": 1971.02, + "probability": 0.796 + }, + { + "start": 1971.08, + "end": 1974.88, + "probability": 0.9869 + }, + { + "start": 1975.22, + "end": 1977.28, + "probability": 0.772 + }, + { + "start": 1977.48, + "end": 1978.54, + "probability": 0.9823 + }, + { + "start": 1978.68, + "end": 1979.5, + "probability": 0.9697 + }, + { + "start": 1979.56, + "end": 1980.84, + "probability": 0.9912 + }, + { + "start": 1981.62, + "end": 1982.72, + "probability": 0.5799 + }, + { + "start": 1985.04, + "end": 1986.12, + "probability": 0.8315 + }, + { + "start": 1987.46, + "end": 1991.14, + "probability": 0.9755 + }, + { + "start": 1993.22, + "end": 1996.1, + "probability": 0.9849 + }, + { + "start": 1997.56, + "end": 1999.04, + "probability": 0.9915 + }, + { + "start": 2001.52, + "end": 2005.2, + "probability": 0.995 + }, + { + "start": 2006.36, + "end": 2012.2, + "probability": 0.7305 + }, + { + "start": 2012.24, + "end": 2013.12, + "probability": 0.5181 + }, + { + "start": 2015.28, + "end": 2019.1, + "probability": 0.8552 + }, + { + "start": 2019.64, + "end": 2025.28, + "probability": 0.9899 + }, + { + "start": 2025.94, + "end": 2028.76, + "probability": 0.9959 + }, + { + "start": 2029.9, + "end": 2032.58, + "probability": 0.7842 + }, + { + "start": 2033.56, + "end": 2038.08, + "probability": 0.7568 + }, + { + "start": 2040.34, + "end": 2043.5, + "probability": 0.9529 + }, + { + "start": 2044.52, + "end": 2046.38, + "probability": 0.9743 + }, + { + "start": 2048.0, + "end": 2050.3, + "probability": 0.9849 + }, + { + "start": 2051.14, + "end": 2054.08, + "probability": 0.9803 + }, + { + "start": 2055.24, + "end": 2058.88, + "probability": 0.6762 + }, + { + "start": 2059.46, + "end": 2063.16, + "probability": 0.7715 + }, + { + "start": 2063.16, + "end": 2064.12, + "probability": 0.2136 + }, + { + "start": 2064.92, + "end": 2067.18, + "probability": 0.9211 + }, + { + "start": 2067.24, + "end": 2070.09, + "probability": 0.583 + }, + { + "start": 2070.6, + "end": 2073.58, + "probability": 0.8677 + }, + { + "start": 2074.46, + "end": 2076.38, + "probability": 0.8976 + }, + { + "start": 2092.76, + "end": 2095.24, + "probability": 0.8462 + }, + { + "start": 2097.16, + "end": 2098.56, + "probability": 0.5604 + }, + { + "start": 2098.7, + "end": 2098.74, + "probability": 0.6885 + }, + { + "start": 2098.74, + "end": 2099.46, + "probability": 0.7265 + }, + { + "start": 2099.58, + "end": 2100.64, + "probability": 0.8307 + }, + { + "start": 2101.52, + "end": 2102.28, + "probability": 0.8267 + }, + { + "start": 2102.46, + "end": 2103.6, + "probability": 0.9667 + }, + { + "start": 2103.88, + "end": 2106.54, + "probability": 0.9834 + }, + { + "start": 2107.3, + "end": 2110.04, + "probability": 0.6364 + }, + { + "start": 2111.18, + "end": 2116.02, + "probability": 0.994 + }, + { + "start": 2116.28, + "end": 2117.86, + "probability": 0.8732 + }, + { + "start": 2118.72, + "end": 2122.06, + "probability": 0.9717 + }, + { + "start": 2122.58, + "end": 2126.56, + "probability": 0.6409 + }, + { + "start": 2127.4, + "end": 2128.06, + "probability": 0.187 + }, + { + "start": 2128.34, + "end": 2130.22, + "probability": 0.8154 + }, + { + "start": 2130.32, + "end": 2133.54, + "probability": 0.9265 + }, + { + "start": 2133.96, + "end": 2135.92, + "probability": 0.7326 + }, + { + "start": 2136.52, + "end": 2138.82, + "probability": 0.7795 + }, + { + "start": 2139.0, + "end": 2141.36, + "probability": 0.9011 + }, + { + "start": 2141.52, + "end": 2142.72, + "probability": 0.7769 + }, + { + "start": 2143.2, + "end": 2143.92, + "probability": 0.5454 + }, + { + "start": 2144.38, + "end": 2145.35, + "probability": 0.8924 + }, + { + "start": 2146.22, + "end": 2148.3, + "probability": 0.7938 + }, + { + "start": 2148.44, + "end": 2149.84, + "probability": 0.9789 + }, + { + "start": 2150.0, + "end": 2152.38, + "probability": 0.9834 + }, + { + "start": 2152.46, + "end": 2154.3, + "probability": 0.8679 + }, + { + "start": 2155.56, + "end": 2159.38, + "probability": 0.9783 + }, + { + "start": 2159.48, + "end": 2160.26, + "probability": 0.6891 + }, + { + "start": 2160.78, + "end": 2161.1, + "probability": 0.8158 + }, + { + "start": 2161.96, + "end": 2163.1, + "probability": 0.9247 + }, + { + "start": 2163.46, + "end": 2164.48, + "probability": 0.7247 + }, + { + "start": 2164.88, + "end": 2170.66, + "probability": 0.9756 + }, + { + "start": 2170.72, + "end": 2172.74, + "probability": 0.992 + }, + { + "start": 2173.44, + "end": 2174.48, + "probability": 0.8153 + }, + { + "start": 2174.54, + "end": 2176.0, + "probability": 0.9368 + }, + { + "start": 2176.44, + "end": 2177.14, + "probability": 0.7935 + }, + { + "start": 2177.26, + "end": 2178.62, + "probability": 0.6689 + }, + { + "start": 2178.7, + "end": 2179.55, + "probability": 0.8791 + }, + { + "start": 2179.7, + "end": 2180.54, + "probability": 0.6674 + }, + { + "start": 2180.56, + "end": 2183.96, + "probability": 0.7518 + }, + { + "start": 2184.26, + "end": 2186.3, + "probability": 0.5392 + }, + { + "start": 2186.32, + "end": 2187.72, + "probability": 0.9841 + }, + { + "start": 2187.98, + "end": 2192.64, + "probability": 0.7333 + }, + { + "start": 2193.14, + "end": 2198.74, + "probability": 0.9839 + }, + { + "start": 2199.24, + "end": 2202.46, + "probability": 0.7371 + }, + { + "start": 2202.56, + "end": 2204.02, + "probability": 0.9941 + }, + { + "start": 2204.8, + "end": 2206.88, + "probability": 0.4771 + }, + { + "start": 2207.06, + "end": 2209.24, + "probability": 0.8347 + }, + { + "start": 2209.42, + "end": 2210.98, + "probability": 0.895 + }, + { + "start": 2211.02, + "end": 2211.92, + "probability": 0.8845 + }, + { + "start": 2212.36, + "end": 2213.1, + "probability": 0.682 + }, + { + "start": 2213.16, + "end": 2213.68, + "probability": 0.6478 + }, + { + "start": 2214.43, + "end": 2218.86, + "probability": 0.9861 + }, + { + "start": 2218.94, + "end": 2220.1, + "probability": 0.9772 + }, + { + "start": 2220.12, + "end": 2221.38, + "probability": 0.8538 + }, + { + "start": 2221.94, + "end": 2222.14, + "probability": 0.4492 + }, + { + "start": 2222.2, + "end": 2222.74, + "probability": 0.8885 + }, + { + "start": 2223.04, + "end": 2224.56, + "probability": 0.9431 + }, + { + "start": 2224.9, + "end": 2226.18, + "probability": 0.9107 + }, + { + "start": 2226.2, + "end": 2227.38, + "probability": 0.6642 + }, + { + "start": 2227.38, + "end": 2228.4, + "probability": 0.9049 + }, + { + "start": 2228.46, + "end": 2229.1, + "probability": 0.7277 + }, + { + "start": 2229.46, + "end": 2231.24, + "probability": 0.9393 + }, + { + "start": 2231.66, + "end": 2233.56, + "probability": 0.7423 + }, + { + "start": 2233.6, + "end": 2235.64, + "probability": 0.9162 + }, + { + "start": 2235.88, + "end": 2236.7, + "probability": 0.912 + }, + { + "start": 2236.78, + "end": 2240.64, + "probability": 0.7914 + }, + { + "start": 2240.78, + "end": 2241.38, + "probability": 0.5453 + }, + { + "start": 2241.44, + "end": 2241.9, + "probability": 0.8641 + }, + { + "start": 2242.02, + "end": 2245.6, + "probability": 0.9502 + }, + { + "start": 2245.68, + "end": 2247.3, + "probability": 0.6927 + }, + { + "start": 2248.18, + "end": 2250.16, + "probability": 0.9297 + }, + { + "start": 2250.38, + "end": 2253.56, + "probability": 0.6986 + }, + { + "start": 2253.9, + "end": 2254.74, + "probability": 0.477 + }, + { + "start": 2255.84, + "end": 2256.28, + "probability": 0.0745 + }, + { + "start": 2256.58, + "end": 2258.22, + "probability": 0.5028 + }, + { + "start": 2258.3, + "end": 2259.46, + "probability": 0.8169 + }, + { + "start": 2259.54, + "end": 2260.5, + "probability": 0.6595 + }, + { + "start": 2261.18, + "end": 2265.4, + "probability": 0.8504 + }, + { + "start": 2265.4, + "end": 2269.58, + "probability": 0.9607 + }, + { + "start": 2269.76, + "end": 2269.88, + "probability": 0.458 + }, + { + "start": 2269.92, + "end": 2270.46, + "probability": 0.7276 + }, + { + "start": 2270.5, + "end": 2271.37, + "probability": 0.834 + }, + { + "start": 2271.9, + "end": 2273.52, + "probability": 0.6974 + }, + { + "start": 2274.79, + "end": 2277.22, + "probability": 0.5307 + }, + { + "start": 2277.36, + "end": 2278.68, + "probability": 0.7153 + }, + { + "start": 2278.94, + "end": 2280.94, + "probability": 0.2138 + }, + { + "start": 2281.26, + "end": 2285.26, + "probability": 0.6746 + }, + { + "start": 2285.36, + "end": 2286.3, + "probability": 0.4404 + }, + { + "start": 2287.14, + "end": 2288.44, + "probability": 0.7908 + }, + { + "start": 2289.0, + "end": 2291.3, + "probability": 0.8822 + }, + { + "start": 2291.3, + "end": 2293.0, + "probability": 0.8966 + }, + { + "start": 2293.12, + "end": 2295.32, + "probability": 0.5062 + }, + { + "start": 2296.08, + "end": 2296.84, + "probability": 0.7394 + }, + { + "start": 2297.5, + "end": 2303.16, + "probability": 0.7621 + }, + { + "start": 2303.22, + "end": 2303.6, + "probability": 0.796 + }, + { + "start": 2303.62, + "end": 2304.72, + "probability": 0.7547 + }, + { + "start": 2304.84, + "end": 2308.46, + "probability": 0.896 + }, + { + "start": 2308.72, + "end": 2310.5, + "probability": 0.8369 + }, + { + "start": 2310.6, + "end": 2310.88, + "probability": 0.7697 + }, + { + "start": 2310.92, + "end": 2312.24, + "probability": 0.9106 + }, + { + "start": 2312.62, + "end": 2313.8, + "probability": 0.9479 + }, + { + "start": 2314.22, + "end": 2316.02, + "probability": 0.9022 + }, + { + "start": 2316.18, + "end": 2319.24, + "probability": 0.669 + }, + { + "start": 2319.3, + "end": 2320.48, + "probability": 0.4845 + }, + { + "start": 2320.54, + "end": 2321.1, + "probability": 0.6704 + }, + { + "start": 2321.46, + "end": 2323.5, + "probability": 0.9697 + }, + { + "start": 2323.6, + "end": 2324.76, + "probability": 0.7339 + }, + { + "start": 2325.24, + "end": 2326.62, + "probability": 0.962 + }, + { + "start": 2326.96, + "end": 2328.1, + "probability": 0.7144 + }, + { + "start": 2328.2, + "end": 2331.54, + "probability": 0.9175 + }, + { + "start": 2331.54, + "end": 2334.22, + "probability": 0.9448 + }, + { + "start": 2334.3, + "end": 2336.16, + "probability": 0.9619 + }, + { + "start": 2336.38, + "end": 2338.6, + "probability": 0.9926 + }, + { + "start": 2338.68, + "end": 2339.22, + "probability": 0.7659 + }, + { + "start": 2339.94, + "end": 2341.86, + "probability": 0.7924 + }, + { + "start": 2342.24, + "end": 2343.52, + "probability": 0.8794 + }, + { + "start": 2343.68, + "end": 2344.04, + "probability": 0.7907 + }, + { + "start": 2344.12, + "end": 2344.38, + "probability": 0.6427 + }, + { + "start": 2344.46, + "end": 2345.02, + "probability": 0.8137 + }, + { + "start": 2345.24, + "end": 2347.24, + "probability": 0.9731 + }, + { + "start": 2364.86, + "end": 2366.88, + "probability": 0.5723 + }, + { + "start": 2368.36, + "end": 2370.6, + "probability": 0.9159 + }, + { + "start": 2371.62, + "end": 2374.82, + "probability": 0.9792 + }, + { + "start": 2376.02, + "end": 2378.04, + "probability": 0.9932 + }, + { + "start": 2379.32, + "end": 2381.66, + "probability": 0.8361 + }, + { + "start": 2383.2, + "end": 2385.52, + "probability": 0.9868 + }, + { + "start": 2388.52, + "end": 2391.04, + "probability": 0.9876 + }, + { + "start": 2392.16, + "end": 2397.14, + "probability": 0.9364 + }, + { + "start": 2397.34, + "end": 2398.64, + "probability": 0.8943 + }, + { + "start": 2399.84, + "end": 2400.54, + "probability": 0.7255 + }, + { + "start": 2400.7, + "end": 2405.88, + "probability": 0.9927 + }, + { + "start": 2406.64, + "end": 2409.52, + "probability": 0.8676 + }, + { + "start": 2411.18, + "end": 2416.76, + "probability": 0.9773 + }, + { + "start": 2417.23, + "end": 2417.98, + "probability": 0.0709 + }, + { + "start": 2418.52, + "end": 2418.78, + "probability": 0.5557 + }, + { + "start": 2419.54, + "end": 2422.48, + "probability": 0.8969 + }, + { + "start": 2423.3, + "end": 2425.6, + "probability": 0.9919 + }, + { + "start": 2426.68, + "end": 2428.0, + "probability": 0.8393 + }, + { + "start": 2430.02, + "end": 2431.46, + "probability": 0.4952 + }, + { + "start": 2431.46, + "end": 2435.16, + "probability": 0.8478 + }, + { + "start": 2435.88, + "end": 2441.9, + "probability": 0.798 + }, + { + "start": 2442.4, + "end": 2449.22, + "probability": 0.9937 + }, + { + "start": 2449.6, + "end": 2451.16, + "probability": 0.8704 + }, + { + "start": 2452.1, + "end": 2455.88, + "probability": 0.7225 + }, + { + "start": 2456.8, + "end": 2457.68, + "probability": 0.9353 + }, + { + "start": 2458.52, + "end": 2462.14, + "probability": 0.9551 + }, + { + "start": 2463.16, + "end": 2466.57, + "probability": 0.981 + }, + { + "start": 2466.82, + "end": 2468.52, + "probability": 0.9501 + }, + { + "start": 2469.4, + "end": 2471.64, + "probability": 0.9702 + }, + { + "start": 2473.16, + "end": 2474.69, + "probability": 0.5059 + }, + { + "start": 2474.88, + "end": 2477.82, + "probability": 0.8921 + }, + { + "start": 2478.28, + "end": 2483.04, + "probability": 0.9431 + }, + { + "start": 2483.92, + "end": 2486.06, + "probability": 0.9863 + }, + { + "start": 2486.76, + "end": 2488.5, + "probability": 0.9543 + }, + { + "start": 2489.92, + "end": 2492.37, + "probability": 0.9902 + }, + { + "start": 2493.2, + "end": 2493.9, + "probability": 0.877 + }, + { + "start": 2494.54, + "end": 2500.88, + "probability": 0.9962 + }, + { + "start": 2501.68, + "end": 2502.21, + "probability": 0.9395 + }, + { + "start": 2502.58, + "end": 2502.81, + "probability": 0.8983 + }, + { + "start": 2504.02, + "end": 2507.66, + "probability": 0.9026 + }, + { + "start": 2507.98, + "end": 2508.76, + "probability": 0.9973 + }, + { + "start": 2510.58, + "end": 2512.38, + "probability": 0.7226 + }, + { + "start": 2512.9, + "end": 2517.32, + "probability": 0.8938 + }, + { + "start": 2517.34, + "end": 2517.76, + "probability": 0.6387 + }, + { + "start": 2518.06, + "end": 2518.3, + "probability": 0.1551 + }, + { + "start": 2518.92, + "end": 2520.5, + "probability": 0.6666 + }, + { + "start": 2521.48, + "end": 2526.04, + "probability": 0.9242 + }, + { + "start": 2526.7, + "end": 2527.74, + "probability": 0.9866 + }, + { + "start": 2527.96, + "end": 2529.22, + "probability": 0.9623 + }, + { + "start": 2538.34, + "end": 2538.78, + "probability": 0.3841 + }, + { + "start": 2538.82, + "end": 2539.56, + "probability": 0.6572 + }, + { + "start": 2539.66, + "end": 2542.38, + "probability": 0.9123 + }, + { + "start": 2543.28, + "end": 2546.6, + "probability": 0.9954 + }, + { + "start": 2547.6, + "end": 2548.9, + "probability": 0.945 + }, + { + "start": 2549.44, + "end": 2549.88, + "probability": 0.9221 + }, + { + "start": 2550.0, + "end": 2553.34, + "probability": 0.7183 + }, + { + "start": 2553.46, + "end": 2553.96, + "probability": 0.8908 + }, + { + "start": 2554.08, + "end": 2556.64, + "probability": 0.9615 + }, + { + "start": 2557.54, + "end": 2557.92, + "probability": 0.4713 + }, + { + "start": 2558.02, + "end": 2558.26, + "probability": 0.8905 + }, + { + "start": 2558.34, + "end": 2560.48, + "probability": 0.9141 + }, + { + "start": 2561.12, + "end": 2561.98, + "probability": 0.9167 + }, + { + "start": 2562.94, + "end": 2567.37, + "probability": 0.5073 + }, + { + "start": 2569.24, + "end": 2569.96, + "probability": 0.37 + }, + { + "start": 2570.28, + "end": 2570.7, + "probability": 0.9202 + }, + { + "start": 2570.78, + "end": 2571.04, + "probability": 0.394 + }, + { + "start": 2571.06, + "end": 2573.34, + "probability": 0.8399 + }, + { + "start": 2574.62, + "end": 2577.28, + "probability": 0.8648 + }, + { + "start": 2577.98, + "end": 2581.92, + "probability": 0.691 + }, + { + "start": 2581.98, + "end": 2582.77, + "probability": 0.8887 + }, + { + "start": 2582.9, + "end": 2583.78, + "probability": 0.9211 + }, + { + "start": 2584.4, + "end": 2587.34, + "probability": 0.9308 + }, + { + "start": 2587.34, + "end": 2589.2, + "probability": 0.9116 + }, + { + "start": 2590.58, + "end": 2590.9, + "probability": 0.1816 + }, + { + "start": 2590.94, + "end": 2591.56, + "probability": 0.7046 + }, + { + "start": 2591.58, + "end": 2594.5, + "probability": 0.5156 + }, + { + "start": 2594.6, + "end": 2595.06, + "probability": 0.923 + }, + { + "start": 2596.28, + "end": 2598.52, + "probability": 0.7438 + }, + { + "start": 2598.64, + "end": 2601.64, + "probability": 0.4961 + }, + { + "start": 2602.72, + "end": 2602.78, + "probability": 0.1043 + }, + { + "start": 2603.08, + "end": 2604.9, + "probability": 0.9917 + }, + { + "start": 2606.34, + "end": 2609.7, + "probability": 0.7104 + }, + { + "start": 2609.82, + "end": 2611.64, + "probability": 0.6007 + }, + { + "start": 2612.7, + "end": 2615.52, + "probability": 0.8857 + }, + { + "start": 2616.62, + "end": 2621.54, + "probability": 0.9437 + }, + { + "start": 2623.32, + "end": 2626.32, + "probability": 0.6347 + }, + { + "start": 2627.02, + "end": 2629.94, + "probability": 0.913 + }, + { + "start": 2630.7, + "end": 2634.1, + "probability": 0.98 + }, + { + "start": 2634.5, + "end": 2636.66, + "probability": 0.8135 + }, + { + "start": 2637.28, + "end": 2638.3, + "probability": 0.9985 + }, + { + "start": 2638.94, + "end": 2639.9, + "probability": 0.9189 + }, + { + "start": 2640.44, + "end": 2642.64, + "probability": 0.9966 + }, + { + "start": 2643.54, + "end": 2643.96, + "probability": 0.8406 + }, + { + "start": 2644.22, + "end": 2647.2, + "probability": 0.9922 + }, + { + "start": 2648.5, + "end": 2649.14, + "probability": 0.6833 + }, + { + "start": 2649.46, + "end": 2651.22, + "probability": 0.8538 + }, + { + "start": 2651.74, + "end": 2652.44, + "probability": 0.9213 + }, + { + "start": 2652.84, + "end": 2654.16, + "probability": 0.9335 + }, + { + "start": 2654.24, + "end": 2656.86, + "probability": 0.8348 + }, + { + "start": 2657.4, + "end": 2660.2, + "probability": 0.9473 + }, + { + "start": 2660.7, + "end": 2660.88, + "probability": 0.8269 + }, + { + "start": 2662.34, + "end": 2664.2, + "probability": 0.832 + }, + { + "start": 2665.7, + "end": 2669.68, + "probability": 0.8379 + }, + { + "start": 2671.12, + "end": 2679.42, + "probability": 0.9297 + }, + { + "start": 2680.04, + "end": 2684.82, + "probability": 0.8171 + }, + { + "start": 2685.6, + "end": 2686.74, + "probability": 0.6788 + }, + { + "start": 2687.76, + "end": 2688.56, + "probability": 0.6107 + }, + { + "start": 2688.84, + "end": 2689.54, + "probability": 0.689 + }, + { + "start": 2689.92, + "end": 2690.74, + "probability": 0.7274 + }, + { + "start": 2693.52, + "end": 2696.4, + "probability": 0.091 + }, + { + "start": 2703.26, + "end": 2704.68, + "probability": 0.0949 + }, + { + "start": 2707.76, + "end": 2709.54, + "probability": 0.0925 + }, + { + "start": 2709.64, + "end": 2710.78, + "probability": 0.0308 + }, + { + "start": 2710.78, + "end": 2713.48, + "probability": 0.1777 + }, + { + "start": 2713.48, + "end": 2713.58, + "probability": 0.4246 + }, + { + "start": 2713.96, + "end": 2714.94, + "probability": 0.5121 + }, + { + "start": 2714.94, + "end": 2716.22, + "probability": 0.2436 + }, + { + "start": 2717.3, + "end": 2717.8, + "probability": 0.0383 + }, + { + "start": 2717.8, + "end": 2719.12, + "probability": 0.1109 + }, + { + "start": 2719.8, + "end": 2721.08, + "probability": 0.1487 + }, + { + "start": 2721.42, + "end": 2725.32, + "probability": 0.0328 + }, + { + "start": 2725.32, + "end": 2725.32, + "probability": 0.1306 + }, + { + "start": 2725.32, + "end": 2728.93, + "probability": 0.2062 + }, + { + "start": 2734.34, + "end": 2741.9, + "probability": 0.0466 + }, + { + "start": 2743.28, + "end": 2744.26, + "probability": 0.0389 + }, + { + "start": 2746.74, + "end": 2752.66, + "probability": 0.018 + }, + { + "start": 2753.38, + "end": 2755.8, + "probability": 0.1373 + }, + { + "start": 2771.0, + "end": 2771.0, + "probability": 0.0 + }, + { + "start": 2771.0, + "end": 2771.0, + "probability": 0.0 + }, + { + "start": 2771.0, + "end": 2771.0, + "probability": 0.0 + }, + { + "start": 2771.0, + "end": 2771.0, + "probability": 0.0 + }, + { + "start": 2771.0, + "end": 2771.0, + "probability": 0.0 + }, + { + "start": 2771.0, + "end": 2771.0, + "probability": 0.0 + }, + { + "start": 2771.0, + "end": 2771.0, + "probability": 0.0 + }, + { + "start": 2771.0, + "end": 2771.0, + "probability": 0.0 + }, + { + "start": 2771.0, + "end": 2771.0, + "probability": 0.0 + }, + { + "start": 2771.0, + "end": 2771.0, + "probability": 0.0 + }, + { + "start": 2771.5, + "end": 2772.12, + "probability": 0.039 + }, + { + "start": 2772.12, + "end": 2772.12, + "probability": 0.0935 + }, + { + "start": 2772.12, + "end": 2772.12, + "probability": 0.1565 + }, + { + "start": 2772.12, + "end": 2772.12, + "probability": 0.0646 + }, + { + "start": 2772.12, + "end": 2773.7, + "probability": 0.2782 + }, + { + "start": 2773.76, + "end": 2774.37, + "probability": 0.2695 + }, + { + "start": 2775.08, + "end": 2777.32, + "probability": 0.9824 + }, + { + "start": 2777.6, + "end": 2779.42, + "probability": 0.9419 + }, + { + "start": 2779.88, + "end": 2780.32, + "probability": 0.313 + }, + { + "start": 2780.78, + "end": 2782.78, + "probability": 0.8996 + }, + { + "start": 2782.94, + "end": 2784.98, + "probability": 0.7737 + }, + { + "start": 2784.98, + "end": 2786.13, + "probability": 0.9188 + }, + { + "start": 2790.2, + "end": 2791.32, + "probability": 0.6605 + }, + { + "start": 2791.42, + "end": 2793.68, + "probability": 0.9964 + }, + { + "start": 2793.8, + "end": 2798.14, + "probability": 0.9315 + }, + { + "start": 2798.64, + "end": 2800.26, + "probability": 0.9796 + }, + { + "start": 2800.36, + "end": 2801.38, + "probability": 0.742 + }, + { + "start": 2802.1, + "end": 2805.34, + "probability": 0.9719 + }, + { + "start": 2805.48, + "end": 2809.3, + "probability": 0.7971 + }, + { + "start": 2810.04, + "end": 2814.08, + "probability": 0.9773 + }, + { + "start": 2814.78, + "end": 2818.8, + "probability": 0.9956 + }, + { + "start": 2818.9, + "end": 2819.7, + "probability": 0.7536 + }, + { + "start": 2819.9, + "end": 2820.7, + "probability": 0.947 + }, + { + "start": 2822.66, + "end": 2823.84, + "probability": 0.9155 + }, + { + "start": 2825.36, + "end": 2825.98, + "probability": 0.8877 + }, + { + "start": 2827.54, + "end": 2829.12, + "probability": 0.9697 + }, + { + "start": 2830.14, + "end": 2832.46, + "probability": 0.9119 + }, + { + "start": 2832.58, + "end": 2834.22, + "probability": 0.9174 + }, + { + "start": 2834.26, + "end": 2837.52, + "probability": 0.6097 + }, + { + "start": 2838.28, + "end": 2840.98, + "probability": 0.9551 + }, + { + "start": 2841.48, + "end": 2845.22, + "probability": 0.8574 + }, + { + "start": 2846.66, + "end": 2852.54, + "probability": 0.8057 + }, + { + "start": 2853.08, + "end": 2855.66, + "probability": 0.9802 + }, + { + "start": 2856.52, + "end": 2861.08, + "probability": 0.8984 + }, + { + "start": 2861.62, + "end": 2865.46, + "probability": 0.8232 + }, + { + "start": 2865.52, + "end": 2866.12, + "probability": 0.777 + }, + { + "start": 2884.6, + "end": 2887.14, + "probability": 0.8792 + }, + { + "start": 2887.3, + "end": 2890.3, + "probability": 0.988 + }, + { + "start": 2890.7, + "end": 2892.48, + "probability": 0.8687 + }, + { + "start": 2892.94, + "end": 2894.32, + "probability": 0.599 + }, + { + "start": 2895.52, + "end": 2896.76, + "probability": 0.3539 + }, + { + "start": 2896.76, + "end": 2897.84, + "probability": 0.9272 + }, + { + "start": 2898.84, + "end": 2904.74, + "probability": 0.9951 + }, + { + "start": 2906.36, + "end": 2906.98, + "probability": 0.5393 + }, + { + "start": 2908.14, + "end": 2908.58, + "probability": 0.8828 + }, + { + "start": 2912.32, + "end": 2913.1, + "probability": 0.713 + }, + { + "start": 2913.14, + "end": 2913.14, + "probability": 0.7122 + }, + { + "start": 2913.14, + "end": 2915.42, + "probability": 0.6226 + }, + { + "start": 2915.6, + "end": 2916.68, + "probability": 0.7083 + }, + { + "start": 2916.7, + "end": 2918.74, + "probability": 0.9302 + }, + { + "start": 2921.9, + "end": 2922.58, + "probability": 0.3815 + }, + { + "start": 2922.6, + "end": 2925.94, + "probability": 0.9069 + }, + { + "start": 2926.24, + "end": 2928.9, + "probability": 0.364 + }, + { + "start": 2928.9, + "end": 2930.46, + "probability": 0.8212 + }, + { + "start": 2930.72, + "end": 2931.68, + "probability": 0.9464 + }, + { + "start": 2933.22, + "end": 2934.14, + "probability": 0.6706 + }, + { + "start": 2934.72, + "end": 2935.52, + "probability": 0.9025 + }, + { + "start": 2936.28, + "end": 2937.36, + "probability": 0.9219 + }, + { + "start": 2939.0, + "end": 2941.0, + "probability": 0.9951 + }, + { + "start": 2941.12, + "end": 2942.12, + "probability": 0.6465 + }, + { + "start": 2943.36, + "end": 2945.58, + "probability": 0.8117 + }, + { + "start": 2945.62, + "end": 2945.62, + "probability": 0.8341 + }, + { + "start": 2945.88, + "end": 2946.16, + "probability": 0.6816 + }, + { + "start": 2946.28, + "end": 2949.18, + "probability": 0.6777 + }, + { + "start": 2949.46, + "end": 2950.68, + "probability": 0.9424 + }, + { + "start": 2950.84, + "end": 2952.96, + "probability": 0.8805 + }, + { + "start": 2953.9, + "end": 2959.14, + "probability": 0.9199 + }, + { + "start": 2959.42, + "end": 2960.52, + "probability": 0.9229 + }, + { + "start": 2961.1, + "end": 2961.82, + "probability": 0.7561 + }, + { + "start": 2962.36, + "end": 2964.74, + "probability": 0.9854 + }, + { + "start": 2964.8, + "end": 2968.15, + "probability": 0.9207 + }, + { + "start": 2968.9, + "end": 2970.74, + "probability": 0.4358 + }, + { + "start": 2971.82, + "end": 2976.66, + "probability": 0.9389 + }, + { + "start": 2977.3, + "end": 2977.92, + "probability": 0.9706 + }, + { + "start": 2978.22, + "end": 2982.88, + "probability": 0.9489 + }, + { + "start": 2983.78, + "end": 2985.64, + "probability": 0.9844 + }, + { + "start": 2985.66, + "end": 2986.02, + "probability": 0.7778 + }, + { + "start": 2986.86, + "end": 2991.86, + "probability": 0.9258 + }, + { + "start": 2992.04, + "end": 2992.5, + "probability": 0.8757 + }, + { + "start": 2993.22, + "end": 2994.08, + "probability": 0.9777 + }, + { + "start": 2994.2, + "end": 2995.12, + "probability": 0.9563 + }, + { + "start": 2995.2, + "end": 2997.34, + "probability": 0.9411 + }, + { + "start": 2997.62, + "end": 3000.84, + "probability": 0.937 + }, + { + "start": 3001.02, + "end": 3002.74, + "probability": 0.9326 + }, + { + "start": 3003.72, + "end": 3006.08, + "probability": 0.4406 + }, + { + "start": 3006.14, + "end": 3007.18, + "probability": 0.8859 + }, + { + "start": 3007.28, + "end": 3013.0, + "probability": 0.9033 + }, + { + "start": 3013.6, + "end": 3014.66, + "probability": 0.3138 + }, + { + "start": 3014.74, + "end": 3016.86, + "probability": 0.9248 + }, + { + "start": 3016.92, + "end": 3017.72, + "probability": 0.914 + }, + { + "start": 3018.18, + "end": 3020.48, + "probability": 0.5768 + }, + { + "start": 3020.78, + "end": 3022.6, + "probability": 0.4632 + }, + { + "start": 3023.32, + "end": 3027.4, + "probability": 0.9281 + }, + { + "start": 3028.12, + "end": 3028.22, + "probability": 0.2101 + } + ], + "segments_count": 1162, + "words_count": 5490, + "avg_words_per_segment": 4.7246, + "avg_segment_duration": 1.7379, + "avg_words_per_minute": 106.9727, + "plenum_id": "37789", + "duration": 3079.29, + "title": null, + "plenum_date": "2014-06-16" +} \ No newline at end of file