diff --git "a/28823/metadata.json" "b/28823/metadata.json" new file mode 100644--- /dev/null +++ "b/28823/metadata.json" @@ -0,0 +1,11532 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "28823", + "quality_score": 0.9443, + "per_segment_quality_scores": [ + { + "start": 16.64, + "end": 20.72, + "probability": 0.5808 + }, + { + "start": 21.48, + "end": 26.26, + "probability": 0.9625 + }, + { + "start": 26.32, + "end": 27.5, + "probability": 0.9882 + }, + { + "start": 30.98, + "end": 33.28, + "probability": 0.8316 + }, + { + "start": 34.46, + "end": 36.24, + "probability": 0.8953 + }, + { + "start": 36.86, + "end": 40.94, + "probability": 0.9895 + }, + { + "start": 41.46, + "end": 47.1, + "probability": 0.82 + }, + { + "start": 47.5, + "end": 49.16, + "probability": 0.8271 + }, + { + "start": 49.82, + "end": 55.84, + "probability": 0.996 + }, + { + "start": 55.84, + "end": 60.32, + "probability": 0.9988 + }, + { + "start": 60.64, + "end": 60.86, + "probability": 0.6714 + }, + { + "start": 61.98, + "end": 63.34, + "probability": 0.5233 + }, + { + "start": 63.42, + "end": 64.24, + "probability": 0.7346 + }, + { + "start": 64.3, + "end": 68.24, + "probability": 0.9821 + }, + { + "start": 68.42, + "end": 73.62, + "probability": 0.9905 + }, + { + "start": 77.88, + "end": 81.88, + "probability": 0.9996 + }, + { + "start": 82.68, + "end": 85.82, + "probability": 0.9297 + }, + { + "start": 88.02, + "end": 90.42, + "probability": 0.9811 + }, + { + "start": 90.56, + "end": 92.02, + "probability": 0.9653 + }, + { + "start": 96.86, + "end": 100.34, + "probability": 0.7649 + }, + { + "start": 101.26, + "end": 107.58, + "probability": 0.9407 + }, + { + "start": 108.12, + "end": 115.1, + "probability": 0.9972 + }, + { + "start": 115.1, + "end": 123.38, + "probability": 0.9987 + }, + { + "start": 124.06, + "end": 125.76, + "probability": 0.9521 + }, + { + "start": 126.26, + "end": 130.7, + "probability": 0.9174 + }, + { + "start": 131.3, + "end": 132.1, + "probability": 0.9482 + }, + { + "start": 132.38, + "end": 134.8, + "probability": 0.9541 + }, + { + "start": 135.1, + "end": 136.02, + "probability": 0.8928 + }, + { + "start": 136.24, + "end": 140.48, + "probability": 0.9882 + }, + { + "start": 140.96, + "end": 143.84, + "probability": 0.7964 + }, + { + "start": 144.48, + "end": 145.22, + "probability": 0.9109 + }, + { + "start": 145.54, + "end": 149.76, + "probability": 0.9513 + }, + { + "start": 150.28, + "end": 150.84, + "probability": 0.6577 + }, + { + "start": 151.24, + "end": 151.52, + "probability": 0.2897 + }, + { + "start": 151.64, + "end": 156.62, + "probability": 0.7479 + }, + { + "start": 157.88, + "end": 159.16, + "probability": 0.8606 + }, + { + "start": 159.54, + "end": 162.44, + "probability": 0.9843 + }, + { + "start": 162.44, + "end": 167.66, + "probability": 0.9665 + }, + { + "start": 168.0, + "end": 168.78, + "probability": 0.8066 + }, + { + "start": 169.2, + "end": 174.28, + "probability": 0.9388 + }, + { + "start": 174.36, + "end": 176.04, + "probability": 0.7571 + }, + { + "start": 177.28, + "end": 179.74, + "probability": 0.9902 + }, + { + "start": 180.12, + "end": 183.16, + "probability": 0.9625 + }, + { + "start": 183.22, + "end": 183.52, + "probability": 0.7441 + }, + { + "start": 184.3, + "end": 186.34, + "probability": 0.7679 + }, + { + "start": 187.98, + "end": 189.7, + "probability": 0.492 + }, + { + "start": 189.7, + "end": 189.7, + "probability": 0.1095 + }, + { + "start": 189.7, + "end": 189.92, + "probability": 0.5087 + }, + { + "start": 197.36, + "end": 198.18, + "probability": 0.6133 + }, + { + "start": 198.34, + "end": 199.26, + "probability": 0.7397 + }, + { + "start": 199.32, + "end": 204.64, + "probability": 0.944 + }, + { + "start": 204.64, + "end": 211.84, + "probability": 0.9842 + }, + { + "start": 212.54, + "end": 216.24, + "probability": 0.72 + }, + { + "start": 217.34, + "end": 219.48, + "probability": 0.9424 + }, + { + "start": 220.58, + "end": 224.92, + "probability": 0.9692 + }, + { + "start": 224.92, + "end": 229.6, + "probability": 0.9741 + }, + { + "start": 229.6, + "end": 233.5, + "probability": 0.9491 + }, + { + "start": 233.58, + "end": 234.36, + "probability": 0.849 + }, + { + "start": 234.52, + "end": 235.48, + "probability": 0.9401 + }, + { + "start": 235.74, + "end": 237.26, + "probability": 0.981 + }, + { + "start": 237.44, + "end": 239.96, + "probability": 0.9443 + }, + { + "start": 239.96, + "end": 243.64, + "probability": 0.8235 + }, + { + "start": 243.98, + "end": 248.16, + "probability": 0.9919 + }, + { + "start": 248.46, + "end": 251.96, + "probability": 0.9933 + }, + { + "start": 252.24, + "end": 252.54, + "probability": 0.7395 + }, + { + "start": 252.9, + "end": 255.18, + "probability": 0.5668 + }, + { + "start": 255.56, + "end": 258.98, + "probability": 0.929 + }, + { + "start": 259.56, + "end": 260.76, + "probability": 0.9709 + }, + { + "start": 264.96, + "end": 264.96, + "probability": 0.197 + }, + { + "start": 264.96, + "end": 264.96, + "probability": 0.0925 + }, + { + "start": 264.96, + "end": 270.18, + "probability": 0.9548 + }, + { + "start": 271.14, + "end": 272.96, + "probability": 0.88 + }, + { + "start": 273.04, + "end": 274.28, + "probability": 0.9514 + }, + { + "start": 274.52, + "end": 277.44, + "probability": 0.1293 + }, + { + "start": 277.44, + "end": 277.44, + "probability": 0.1912 + }, + { + "start": 277.44, + "end": 280.22, + "probability": 0.9461 + }, + { + "start": 280.86, + "end": 283.52, + "probability": 0.9888 + }, + { + "start": 284.4, + "end": 284.9, + "probability": 0.6382 + }, + { + "start": 285.06, + "end": 285.88, + "probability": 0.4799 + }, + { + "start": 286.22, + "end": 289.48, + "probability": 0.9468 + }, + { + "start": 289.48, + "end": 293.04, + "probability": 0.9671 + }, + { + "start": 293.84, + "end": 296.26, + "probability": 0.5565 + }, + { + "start": 297.08, + "end": 300.78, + "probability": 0.9067 + }, + { + "start": 301.3, + "end": 302.14, + "probability": 0.6419 + }, + { + "start": 302.48, + "end": 303.44, + "probability": 0.7435 + }, + { + "start": 303.78, + "end": 306.26, + "probability": 0.9549 + }, + { + "start": 306.64, + "end": 310.62, + "probability": 0.9604 + }, + { + "start": 311.36, + "end": 312.06, + "probability": 0.8631 + }, + { + "start": 312.3, + "end": 313.38, + "probability": 0.4896 + }, + { + "start": 313.6, + "end": 317.64, + "probability": 0.9718 + }, + { + "start": 317.64, + "end": 319.5, + "probability": 0.5649 + }, + { + "start": 319.58, + "end": 320.5, + "probability": 0.4258 + }, + { + "start": 320.64, + "end": 321.86, + "probability": 0.7788 + }, + { + "start": 321.9, + "end": 323.04, + "probability": 0.8283 + }, + { + "start": 323.2, + "end": 323.76, + "probability": 0.8545 + }, + { + "start": 324.1, + "end": 326.44, + "probability": 0.9845 + }, + { + "start": 326.6, + "end": 327.45, + "probability": 0.9808 + }, + { + "start": 328.28, + "end": 330.52, + "probability": 0.9289 + }, + { + "start": 331.62, + "end": 333.82, + "probability": 0.9969 + }, + { + "start": 334.16, + "end": 336.08, + "probability": 0.9661 + }, + { + "start": 336.78, + "end": 339.54, + "probability": 0.9835 + }, + { + "start": 340.0, + "end": 340.44, + "probability": 0.5754 + }, + { + "start": 340.54, + "end": 342.3, + "probability": 0.9622 + }, + { + "start": 342.58, + "end": 343.9, + "probability": 0.7622 + }, + { + "start": 344.02, + "end": 345.92, + "probability": 0.9886 + }, + { + "start": 346.08, + "end": 348.44, + "probability": 0.9757 + }, + { + "start": 349.12, + "end": 353.5, + "probability": 0.9062 + }, + { + "start": 353.86, + "end": 359.1, + "probability": 0.9785 + }, + { + "start": 359.84, + "end": 365.04, + "probability": 0.9895 + }, + { + "start": 365.28, + "end": 369.14, + "probability": 0.9753 + }, + { + "start": 369.48, + "end": 369.72, + "probability": 0.6937 + }, + { + "start": 370.16, + "end": 371.64, + "probability": 0.7069 + }, + { + "start": 371.82, + "end": 373.26, + "probability": 0.8812 + }, + { + "start": 373.44, + "end": 374.0, + "probability": 0.521 + }, + { + "start": 374.0, + "end": 375.34, + "probability": 0.8855 + }, + { + "start": 383.58, + "end": 387.56, + "probability": 0.5851 + }, + { + "start": 387.76, + "end": 387.78, + "probability": 0.3495 + }, + { + "start": 387.78, + "end": 388.6, + "probability": 0.7509 + }, + { + "start": 388.86, + "end": 389.96, + "probability": 0.6991 + }, + { + "start": 391.1, + "end": 391.7, + "probability": 0.783 + }, + { + "start": 392.02, + "end": 392.54, + "probability": 0.8678 + }, + { + "start": 392.6, + "end": 395.62, + "probability": 0.9861 + }, + { + "start": 395.74, + "end": 402.52, + "probability": 0.9244 + }, + { + "start": 403.28, + "end": 405.38, + "probability": 0.9889 + }, + { + "start": 405.54, + "end": 412.3, + "probability": 0.986 + }, + { + "start": 412.92, + "end": 418.15, + "probability": 0.9846 + }, + { + "start": 418.42, + "end": 422.72, + "probability": 0.861 + }, + { + "start": 423.42, + "end": 427.82, + "probability": 0.9899 + }, + { + "start": 428.4, + "end": 428.76, + "probability": 0.6139 + }, + { + "start": 428.9, + "end": 429.62, + "probability": 0.6613 + }, + { + "start": 429.76, + "end": 430.92, + "probability": 0.619 + }, + { + "start": 431.42, + "end": 434.44, + "probability": 0.9845 + }, + { + "start": 434.54, + "end": 438.2, + "probability": 0.8207 + }, + { + "start": 438.36, + "end": 439.06, + "probability": 0.6577 + }, + { + "start": 439.4, + "end": 441.36, + "probability": 0.9736 + }, + { + "start": 442.24, + "end": 448.34, + "probability": 0.987 + }, + { + "start": 448.74, + "end": 450.9, + "probability": 0.9985 + }, + { + "start": 450.96, + "end": 454.74, + "probability": 0.8479 + }, + { + "start": 455.42, + "end": 460.76, + "probability": 0.8992 + }, + { + "start": 461.74, + "end": 464.4, + "probability": 0.8728 + }, + { + "start": 465.1, + "end": 465.46, + "probability": 0.7189 + }, + { + "start": 465.54, + "end": 466.14, + "probability": 0.6758 + }, + { + "start": 466.28, + "end": 468.74, + "probability": 0.991 + }, + { + "start": 469.26, + "end": 469.8, + "probability": 0.8996 + }, + { + "start": 470.4, + "end": 471.88, + "probability": 0.9917 + }, + { + "start": 472.18, + "end": 473.74, + "probability": 0.8535 + }, + { + "start": 473.82, + "end": 474.04, + "probability": 0.7242 + }, + { + "start": 474.6, + "end": 476.02, + "probability": 0.7276 + }, + { + "start": 476.16, + "end": 477.82, + "probability": 0.8916 + }, + { + "start": 477.84, + "end": 478.42, + "probability": 0.5966 + }, + { + "start": 478.42, + "end": 479.96, + "probability": 0.8763 + }, + { + "start": 485.64, + "end": 488.8, + "probability": 0.723 + }, + { + "start": 489.54, + "end": 491.28, + "probability": 0.8191 + }, + { + "start": 492.32, + "end": 496.26, + "probability": 0.9197 + }, + { + "start": 497.06, + "end": 499.78, + "probability": 0.9941 + }, + { + "start": 499.78, + "end": 502.66, + "probability": 0.9957 + }, + { + "start": 503.22, + "end": 507.32, + "probability": 0.9768 + }, + { + "start": 508.3, + "end": 509.58, + "probability": 0.7778 + }, + { + "start": 510.28, + "end": 511.5, + "probability": 0.6556 + }, + { + "start": 513.36, + "end": 515.48, + "probability": 0.8254 + }, + { + "start": 515.64, + "end": 520.2, + "probability": 0.9916 + }, + { + "start": 520.2, + "end": 524.8, + "probability": 0.9951 + }, + { + "start": 525.34, + "end": 527.44, + "probability": 0.8505 + }, + { + "start": 527.44, + "end": 530.1, + "probability": 0.9927 + }, + { + "start": 530.5, + "end": 531.56, + "probability": 0.8032 + }, + { + "start": 531.68, + "end": 534.04, + "probability": 0.9486 + }, + { + "start": 534.46, + "end": 536.8, + "probability": 0.8311 + }, + { + "start": 537.66, + "end": 541.54, + "probability": 0.9963 + }, + { + "start": 541.54, + "end": 545.9, + "probability": 0.9983 + }, + { + "start": 546.66, + "end": 547.6, + "probability": 0.8644 + }, + { + "start": 547.64, + "end": 551.8, + "probability": 0.9089 + }, + { + "start": 552.22, + "end": 554.7, + "probability": 0.991 + }, + { + "start": 555.24, + "end": 555.38, + "probability": 0.9036 + }, + { + "start": 555.44, + "end": 559.2, + "probability": 0.9382 + }, + { + "start": 559.28, + "end": 561.01, + "probability": 0.8647 + }, + { + "start": 561.18, + "end": 561.28, + "probability": 0.3479 + }, + { + "start": 561.38, + "end": 562.02, + "probability": 0.8554 + }, + { + "start": 562.36, + "end": 564.65, + "probability": 0.9854 + }, + { + "start": 565.12, + "end": 566.78, + "probability": 0.7083 + }, + { + "start": 566.78, + "end": 567.3, + "probability": 0.5036 + }, + { + "start": 567.46, + "end": 568.98, + "probability": 0.8726 + }, + { + "start": 569.68, + "end": 571.08, + "probability": 0.7364 + }, + { + "start": 571.94, + "end": 575.4, + "probability": 0.9242 + }, + { + "start": 576.2, + "end": 578.02, + "probability": 0.8496 + }, + { + "start": 578.3, + "end": 578.72, + "probability": 0.7895 + }, + { + "start": 579.42, + "end": 581.96, + "probability": 0.9224 + }, + { + "start": 582.99, + "end": 588.78, + "probability": 0.9709 + }, + { + "start": 588.94, + "end": 590.08, + "probability": 0.8779 + }, + { + "start": 590.72, + "end": 590.94, + "probability": 0.9607 + }, + { + "start": 591.86, + "end": 593.72, + "probability": 0.7411 + }, + { + "start": 593.84, + "end": 599.94, + "probability": 0.9561 + }, + { + "start": 599.98, + "end": 600.84, + "probability": 0.5938 + }, + { + "start": 602.08, + "end": 607.44, + "probability": 0.979 + }, + { + "start": 607.54, + "end": 608.52, + "probability": 0.7911 + }, + { + "start": 608.68, + "end": 609.5, + "probability": 0.5457 + }, + { + "start": 609.62, + "end": 611.92, + "probability": 0.5698 + }, + { + "start": 612.02, + "end": 613.32, + "probability": 0.8926 + }, + { + "start": 614.02, + "end": 615.88, + "probability": 0.8874 + }, + { + "start": 616.0, + "end": 617.25, + "probability": 0.8496 + }, + { + "start": 617.58, + "end": 619.42, + "probability": 0.6947 + }, + { + "start": 619.76, + "end": 624.28, + "probability": 0.6863 + }, + { + "start": 624.36, + "end": 625.26, + "probability": 0.8024 + }, + { + "start": 625.76, + "end": 629.78, + "probability": 0.9271 + }, + { + "start": 629.92, + "end": 633.68, + "probability": 0.9763 + }, + { + "start": 634.0, + "end": 636.74, + "probability": 0.9121 + }, + { + "start": 636.98, + "end": 639.3, + "probability": 0.9813 + }, + { + "start": 640.1, + "end": 640.48, + "probability": 0.4926 + }, + { + "start": 640.7, + "end": 642.16, + "probability": 0.7291 + }, + { + "start": 642.34, + "end": 643.42, + "probability": 0.6562 + }, + { + "start": 643.46, + "end": 645.6, + "probability": 0.9474 + }, + { + "start": 646.82, + "end": 647.18, + "probability": 0.227 + }, + { + "start": 647.18, + "end": 647.18, + "probability": 0.2421 + }, + { + "start": 647.18, + "end": 649.3, + "probability": 0.8938 + }, + { + "start": 649.52, + "end": 652.7, + "probability": 0.9967 + }, + { + "start": 653.68, + "end": 656.76, + "probability": 0.9979 + }, + { + "start": 656.76, + "end": 660.64, + "probability": 0.9975 + }, + { + "start": 661.4, + "end": 663.62, + "probability": 0.9479 + }, + { + "start": 663.7, + "end": 668.84, + "probability": 0.9996 + }, + { + "start": 669.84, + "end": 672.54, + "probability": 0.9976 + }, + { + "start": 672.54, + "end": 676.14, + "probability": 0.991 + }, + { + "start": 676.56, + "end": 678.48, + "probability": 0.9211 + }, + { + "start": 679.22, + "end": 682.84, + "probability": 0.9929 + }, + { + "start": 682.84, + "end": 685.4, + "probability": 0.9967 + }, + { + "start": 685.82, + "end": 688.82, + "probability": 0.9954 + }, + { + "start": 688.82, + "end": 692.32, + "probability": 0.9849 + }, + { + "start": 694.1, + "end": 695.0, + "probability": 0.9172 + }, + { + "start": 695.12, + "end": 697.16, + "probability": 0.9965 + }, + { + "start": 697.16, + "end": 700.7, + "probability": 0.9985 + }, + { + "start": 701.26, + "end": 704.66, + "probability": 0.9865 + }, + { + "start": 704.66, + "end": 708.32, + "probability": 0.994 + }, + { + "start": 709.28, + "end": 713.14, + "probability": 0.9893 + }, + { + "start": 713.14, + "end": 717.1, + "probability": 0.9963 + }, + { + "start": 717.42, + "end": 720.48, + "probability": 0.9267 + }, + { + "start": 721.24, + "end": 722.66, + "probability": 0.8376 + }, + { + "start": 722.84, + "end": 723.32, + "probability": 0.6577 + }, + { + "start": 723.34, + "end": 726.58, + "probability": 0.9229 + }, + { + "start": 727.48, + "end": 730.4, + "probability": 0.9909 + }, + { + "start": 730.78, + "end": 730.92, + "probability": 0.2859 + }, + { + "start": 731.3, + "end": 733.1, + "probability": 0.6527 + }, + { + "start": 733.3, + "end": 735.36, + "probability": 0.7434 + }, + { + "start": 735.76, + "end": 736.5, + "probability": 0.5673 + }, + { + "start": 736.8, + "end": 738.86, + "probability": 0.7817 + }, + { + "start": 741.42, + "end": 742.82, + "probability": 0.6841 + }, + { + "start": 743.1, + "end": 743.64, + "probability": 0.9117 + }, + { + "start": 743.98, + "end": 744.98, + "probability": 0.8428 + }, + { + "start": 745.16, + "end": 748.68, + "probability": 0.9912 + }, + { + "start": 749.84, + "end": 751.0, + "probability": 0.932 + }, + { + "start": 752.4, + "end": 754.46, + "probability": 0.8847 + }, + { + "start": 755.44, + "end": 756.8, + "probability": 0.9704 + }, + { + "start": 757.96, + "end": 761.78, + "probability": 0.9961 + }, + { + "start": 761.78, + "end": 766.18, + "probability": 0.9928 + }, + { + "start": 766.7, + "end": 769.54, + "probability": 0.8501 + }, + { + "start": 770.38, + "end": 776.1, + "probability": 0.9937 + }, + { + "start": 776.66, + "end": 778.3, + "probability": 0.8735 + }, + { + "start": 778.74, + "end": 781.56, + "probability": 0.9922 + }, + { + "start": 781.62, + "end": 782.73, + "probability": 0.8423 + }, + { + "start": 783.4, + "end": 785.44, + "probability": 0.9863 + }, + { + "start": 785.5, + "end": 787.92, + "probability": 0.9816 + }, + { + "start": 788.04, + "end": 794.96, + "probability": 0.9731 + }, + { + "start": 795.38, + "end": 800.1, + "probability": 0.9797 + }, + { + "start": 800.8, + "end": 804.18, + "probability": 0.9922 + }, + { + "start": 804.18, + "end": 807.42, + "probability": 0.9924 + }, + { + "start": 807.76, + "end": 807.88, + "probability": 0.7495 + }, + { + "start": 809.36, + "end": 811.2, + "probability": 0.9656 + }, + { + "start": 811.64, + "end": 813.6, + "probability": 0.7959 + }, + { + "start": 813.66, + "end": 814.04, + "probability": 0.4434 + }, + { + "start": 814.08, + "end": 815.52, + "probability": 0.9609 + }, + { + "start": 817.54, + "end": 820.72, + "probability": 0.6272 + }, + { + "start": 821.68, + "end": 825.38, + "probability": 0.9601 + }, + { + "start": 825.96, + "end": 833.96, + "probability": 0.9827 + }, + { + "start": 834.08, + "end": 836.38, + "probability": 0.7536 + }, + { + "start": 837.4, + "end": 841.0, + "probability": 0.7685 + }, + { + "start": 841.98, + "end": 847.16, + "probability": 0.9965 + }, + { + "start": 847.16, + "end": 853.62, + "probability": 0.985 + }, + { + "start": 853.62, + "end": 858.46, + "probability": 0.9927 + }, + { + "start": 859.12, + "end": 866.3, + "probability": 0.9926 + }, + { + "start": 867.2, + "end": 868.8, + "probability": 0.8311 + }, + { + "start": 869.52, + "end": 870.62, + "probability": 0.7033 + }, + { + "start": 870.68, + "end": 874.06, + "probability": 0.871 + }, + { + "start": 874.35, + "end": 878.9, + "probability": 0.9927 + }, + { + "start": 879.38, + "end": 880.58, + "probability": 0.7017 + }, + { + "start": 881.33, + "end": 883.42, + "probability": 0.9375 + }, + { + "start": 883.48, + "end": 885.87, + "probability": 0.9958 + }, + { + "start": 886.06, + "end": 886.06, + "probability": 0.0 + }, + { + "start": 886.64, + "end": 892.82, + "probability": 0.9874 + }, + { + "start": 892.82, + "end": 899.18, + "probability": 0.9987 + }, + { + "start": 899.5, + "end": 900.74, + "probability": 0.6622 + }, + { + "start": 900.92, + "end": 901.06, + "probability": 0.7026 + }, + { + "start": 902.04, + "end": 903.9, + "probability": 0.5607 + }, + { + "start": 904.06, + "end": 905.66, + "probability": 0.9276 + }, + { + "start": 905.7, + "end": 906.2, + "probability": 0.5671 + }, + { + "start": 906.42, + "end": 907.92, + "probability": 0.9536 + }, + { + "start": 909.68, + "end": 911.38, + "probability": 0.6616 + }, + { + "start": 912.16, + "end": 916.12, + "probability": 0.9795 + }, + { + "start": 916.12, + "end": 919.64, + "probability": 0.9906 + }, + { + "start": 919.7, + "end": 920.92, + "probability": 0.9866 + }, + { + "start": 921.46, + "end": 926.61, + "probability": 0.9944 + }, + { + "start": 926.96, + "end": 932.18, + "probability": 0.9871 + }, + { + "start": 932.26, + "end": 936.34, + "probability": 0.881 + }, + { + "start": 936.52, + "end": 941.25, + "probability": 0.9355 + }, + { + "start": 941.84, + "end": 944.84, + "probability": 0.6767 + }, + { + "start": 945.44, + "end": 946.06, + "probability": 0.5191 + }, + { + "start": 946.22, + "end": 948.44, + "probability": 0.9519 + }, + { + "start": 949.24, + "end": 951.5, + "probability": 0.8851 + }, + { + "start": 951.58, + "end": 953.11, + "probability": 0.9556 + }, + { + "start": 953.3, + "end": 954.14, + "probability": 0.8516 + }, + { + "start": 954.16, + "end": 956.06, + "probability": 0.8874 + }, + { + "start": 956.06, + "end": 959.12, + "probability": 0.4947 + }, + { + "start": 959.8, + "end": 962.04, + "probability": 0.9763 + }, + { + "start": 962.04, + "end": 964.64, + "probability": 0.9922 + }, + { + "start": 965.14, + "end": 969.12, + "probability": 0.9934 + }, + { + "start": 969.12, + "end": 974.38, + "probability": 0.9985 + }, + { + "start": 974.88, + "end": 976.78, + "probability": 0.9276 + }, + { + "start": 977.0, + "end": 978.76, + "probability": 0.9727 + }, + { + "start": 978.78, + "end": 982.1, + "probability": 0.9828 + }, + { + "start": 982.1, + "end": 985.46, + "probability": 0.9746 + }, + { + "start": 985.84, + "end": 987.32, + "probability": 0.9025 + }, + { + "start": 987.38, + "end": 992.1, + "probability": 0.9537 + }, + { + "start": 992.1, + "end": 996.78, + "probability": 0.9919 + }, + { + "start": 996.82, + "end": 997.02, + "probability": 0.6053 + }, + { + "start": 997.34, + "end": 999.46, + "probability": 0.9646 + }, + { + "start": 999.62, + "end": 1001.02, + "probability": 0.9136 + }, + { + "start": 1001.06, + "end": 1001.52, + "probability": 0.5223 + }, + { + "start": 1001.54, + "end": 1002.76, + "probability": 0.9626 + }, + { + "start": 1009.92, + "end": 1010.66, + "probability": 0.727 + }, + { + "start": 1010.8, + "end": 1011.76, + "probability": 0.7048 + }, + { + "start": 1012.1, + "end": 1017.1, + "probability": 0.8641 + }, + { + "start": 1017.34, + "end": 1023.1, + "probability": 0.9557 + }, + { + "start": 1023.24, + "end": 1023.98, + "probability": 0.5883 + }, + { + "start": 1024.6, + "end": 1025.46, + "probability": 0.825 + }, + { + "start": 1026.28, + "end": 1030.32, + "probability": 0.9482 + }, + { + "start": 1030.32, + "end": 1033.66, + "probability": 0.8898 + }, + { + "start": 1034.0, + "end": 1035.26, + "probability": 0.9793 + }, + { + "start": 1035.98, + "end": 1039.34, + "probability": 0.7755 + }, + { + "start": 1039.84, + "end": 1042.76, + "probability": 0.9895 + }, + { + "start": 1042.76, + "end": 1048.66, + "probability": 0.9404 + }, + { + "start": 1049.32, + "end": 1052.03, + "probability": 0.8831 + }, + { + "start": 1053.02, + "end": 1053.78, + "probability": 0.8376 + }, + { + "start": 1054.58, + "end": 1056.24, + "probability": 0.7721 + }, + { + "start": 1057.34, + "end": 1060.04, + "probability": 0.9792 + }, + { + "start": 1060.12, + "end": 1061.7, + "probability": 0.9959 + }, + { + "start": 1061.96, + "end": 1062.06, + "probability": 0.3773 + }, + { + "start": 1062.18, + "end": 1068.96, + "probability": 0.9452 + }, + { + "start": 1070.6, + "end": 1073.38, + "probability": 0.073 + }, + { + "start": 1073.48, + "end": 1074.12, + "probability": 0.5551 + }, + { + "start": 1074.72, + "end": 1076.62, + "probability": 0.7674 + }, + { + "start": 1076.72, + "end": 1078.86, + "probability": 0.7944 + }, + { + "start": 1079.52, + "end": 1081.16, + "probability": 0.9616 + }, + { + "start": 1081.62, + "end": 1084.41, + "probability": 0.7994 + }, + { + "start": 1085.48, + "end": 1087.76, + "probability": 0.9954 + }, + { + "start": 1087.76, + "end": 1092.26, + "probability": 0.9941 + }, + { + "start": 1092.94, + "end": 1098.17, + "probability": 0.9802 + }, + { + "start": 1098.48, + "end": 1100.42, + "probability": 0.9001 + }, + { + "start": 1101.18, + "end": 1101.44, + "probability": 0.493 + }, + { + "start": 1101.5, + "end": 1102.94, + "probability": 0.6634 + }, + { + "start": 1102.98, + "end": 1109.06, + "probability": 0.9852 + }, + { + "start": 1109.98, + "end": 1114.2, + "probability": 0.9903 + }, + { + "start": 1114.32, + "end": 1118.98, + "probability": 0.8955 + }, + { + "start": 1119.36, + "end": 1120.2, + "probability": 0.5885 + }, + { + "start": 1121.24, + "end": 1126.88, + "probability": 0.99 + }, + { + "start": 1127.84, + "end": 1131.6, + "probability": 0.9819 + }, + { + "start": 1133.12, + "end": 1134.6, + "probability": 0.9861 + }, + { + "start": 1135.68, + "end": 1136.46, + "probability": 0.515 + }, + { + "start": 1136.64, + "end": 1138.84, + "probability": 0.7152 + }, + { + "start": 1138.88, + "end": 1140.26, + "probability": 0.9678 + }, + { + "start": 1140.48, + "end": 1143.07, + "probability": 0.9948 + }, + { + "start": 1144.18, + "end": 1147.96, + "probability": 0.8439 + }, + { + "start": 1148.64, + "end": 1152.6, + "probability": 0.8618 + }, + { + "start": 1152.72, + "end": 1153.66, + "probability": 0.7817 + }, + { + "start": 1155.18, + "end": 1156.76, + "probability": 0.8413 + }, + { + "start": 1156.84, + "end": 1160.08, + "probability": 0.8883 + }, + { + "start": 1164.02, + "end": 1165.46, + "probability": 0.8017 + }, + { + "start": 1165.62, + "end": 1170.94, + "probability": 0.9788 + }, + { + "start": 1172.2, + "end": 1174.94, + "probability": 0.9219 + }, + { + "start": 1175.14, + "end": 1176.0, + "probability": 0.9618 + }, + { + "start": 1176.06, + "end": 1181.72, + "probability": 0.9169 + }, + { + "start": 1181.98, + "end": 1183.38, + "probability": 0.7338 + }, + { + "start": 1183.98, + "end": 1184.54, + "probability": 0.5167 + }, + { + "start": 1185.7, + "end": 1187.62, + "probability": 0.8841 + }, + { + "start": 1188.18, + "end": 1194.4, + "probability": 0.9531 + }, + { + "start": 1194.94, + "end": 1198.0, + "probability": 0.9995 + }, + { + "start": 1198.48, + "end": 1199.54, + "probability": 0.5593 + }, + { + "start": 1199.94, + "end": 1201.26, + "probability": 0.9528 + }, + { + "start": 1201.52, + "end": 1202.26, + "probability": 0.6063 + }, + { + "start": 1202.36, + "end": 1203.02, + "probability": 0.9186 + }, + { + "start": 1203.38, + "end": 1206.8, + "probability": 0.9572 + }, + { + "start": 1207.12, + "end": 1208.24, + "probability": 0.4087 + }, + { + "start": 1208.7, + "end": 1212.68, + "probability": 0.994 + }, + { + "start": 1213.22, + "end": 1217.14, + "probability": 0.5396 + }, + { + "start": 1218.38, + "end": 1222.24, + "probability": 0.962 + }, + { + "start": 1222.24, + "end": 1226.66, + "probability": 0.9891 + }, + { + "start": 1226.7, + "end": 1227.32, + "probability": 0.479 + }, + { + "start": 1228.48, + "end": 1229.32, + "probability": 0.9872 + }, + { + "start": 1229.36, + "end": 1229.71, + "probability": 0.9602 + }, + { + "start": 1230.56, + "end": 1233.94, + "probability": 0.9448 + }, + { + "start": 1234.02, + "end": 1234.73, + "probability": 0.9535 + }, + { + "start": 1234.84, + "end": 1238.08, + "probability": 0.7445 + }, + { + "start": 1239.04, + "end": 1240.98, + "probability": 0.7602 + }, + { + "start": 1241.38, + "end": 1246.16, + "probability": 0.9438 + }, + { + "start": 1246.72, + "end": 1249.62, + "probability": 0.961 + }, + { + "start": 1251.46, + "end": 1254.34, + "probability": 0.9413 + }, + { + "start": 1254.36, + "end": 1255.94, + "probability": 0.6188 + }, + { + "start": 1256.66, + "end": 1258.74, + "probability": 0.9786 + }, + { + "start": 1258.8, + "end": 1259.48, + "probability": 0.7387 + }, + { + "start": 1260.38, + "end": 1261.04, + "probability": 0.6789 + }, + { + "start": 1262.38, + "end": 1262.88, + "probability": 0.8227 + }, + { + "start": 1263.52, + "end": 1266.7, + "probability": 0.9139 + }, + { + "start": 1267.36, + "end": 1270.94, + "probability": 0.663 + }, + { + "start": 1276.02, + "end": 1276.08, + "probability": 0.2294 + }, + { + "start": 1276.86, + "end": 1277.93, + "probability": 0.069 + }, + { + "start": 1279.14, + "end": 1280.28, + "probability": 0.5077 + }, + { + "start": 1282.22, + "end": 1284.48, + "probability": 0.916 + }, + { + "start": 1285.18, + "end": 1285.98, + "probability": 0.5953 + }, + { + "start": 1286.02, + "end": 1287.14, + "probability": 0.7206 + }, + { + "start": 1287.22, + "end": 1288.14, + "probability": 0.9523 + }, + { + "start": 1288.36, + "end": 1289.46, + "probability": 0.7364 + }, + { + "start": 1290.4, + "end": 1291.46, + "probability": 0.741 + }, + { + "start": 1292.3, + "end": 1295.56, + "probability": 0.9468 + }, + { + "start": 1296.16, + "end": 1298.5, + "probability": 0.8744 + }, + { + "start": 1299.32, + "end": 1304.92, + "probability": 0.9664 + }, + { + "start": 1306.0, + "end": 1307.92, + "probability": 0.918 + }, + { + "start": 1309.12, + "end": 1310.86, + "probability": 0.9791 + }, + { + "start": 1311.02, + "end": 1311.48, + "probability": 0.918 + }, + { + "start": 1311.54, + "end": 1313.26, + "probability": 0.9847 + }, + { + "start": 1313.92, + "end": 1316.05, + "probability": 0.8943 + }, + { + "start": 1316.68, + "end": 1318.5, + "probability": 0.9779 + }, + { + "start": 1318.96, + "end": 1323.88, + "probability": 0.9955 + }, + { + "start": 1324.94, + "end": 1326.2, + "probability": 0.9518 + }, + { + "start": 1326.88, + "end": 1328.34, + "probability": 0.9471 + }, + { + "start": 1328.5, + "end": 1330.9, + "probability": 0.8566 + }, + { + "start": 1331.6, + "end": 1334.62, + "probability": 0.9948 + }, + { + "start": 1335.46, + "end": 1337.04, + "probability": 0.8879 + }, + { + "start": 1337.56, + "end": 1339.32, + "probability": 0.9759 + }, + { + "start": 1339.62, + "end": 1342.32, + "probability": 0.9948 + }, + { + "start": 1342.5, + "end": 1348.34, + "probability": 0.9946 + }, + { + "start": 1349.06, + "end": 1350.62, + "probability": 0.9979 + }, + { + "start": 1351.08, + "end": 1352.46, + "probability": 0.9639 + }, + { + "start": 1352.52, + "end": 1353.22, + "probability": 0.7363 + }, + { + "start": 1353.3, + "end": 1354.54, + "probability": 0.7931 + }, + { + "start": 1354.82, + "end": 1356.28, + "probability": 0.9207 + }, + { + "start": 1356.82, + "end": 1360.5, + "probability": 0.9951 + }, + { + "start": 1361.12, + "end": 1362.98, + "probability": 0.6584 + }, + { + "start": 1363.12, + "end": 1364.62, + "probability": 0.8044 + }, + { + "start": 1365.2, + "end": 1366.9, + "probability": 0.6708 + }, + { + "start": 1367.48, + "end": 1369.58, + "probability": 0.9875 + }, + { + "start": 1373.82, + "end": 1375.54, + "probability": 0.6631 + }, + { + "start": 1375.76, + "end": 1375.76, + "probability": 0.6141 + }, + { + "start": 1375.76, + "end": 1378.66, + "probability": 0.9577 + }, + { + "start": 1378.66, + "end": 1381.84, + "probability": 0.9891 + }, + { + "start": 1381.9, + "end": 1383.16, + "probability": 0.9415 + }, + { + "start": 1384.06, + "end": 1385.86, + "probability": 0.9688 + }, + { + "start": 1386.42, + "end": 1388.36, + "probability": 0.9199 + }, + { + "start": 1388.92, + "end": 1390.96, + "probability": 0.8649 + }, + { + "start": 1391.46, + "end": 1395.56, + "probability": 0.9934 + }, + { + "start": 1395.56, + "end": 1398.22, + "probability": 0.959 + }, + { + "start": 1399.38, + "end": 1402.22, + "probability": 0.995 + }, + { + "start": 1403.76, + "end": 1407.65, + "probability": 0.9608 + }, + { + "start": 1408.48, + "end": 1411.78, + "probability": 0.9997 + }, + { + "start": 1412.7, + "end": 1415.0, + "probability": 0.5555 + }, + { + "start": 1415.66, + "end": 1418.6, + "probability": 0.9292 + }, + { + "start": 1419.28, + "end": 1423.36, + "probability": 0.9824 + }, + { + "start": 1424.64, + "end": 1427.1, + "probability": 0.9624 + }, + { + "start": 1427.58, + "end": 1428.88, + "probability": 0.9559 + }, + { + "start": 1429.32, + "end": 1432.46, + "probability": 0.9442 + }, + { + "start": 1432.6, + "end": 1436.0, + "probability": 0.9972 + }, + { + "start": 1436.52, + "end": 1441.6, + "probability": 0.9784 + }, + { + "start": 1441.6, + "end": 1446.64, + "probability": 0.8841 + }, + { + "start": 1447.06, + "end": 1447.98, + "probability": 0.5366 + }, + { + "start": 1448.58, + "end": 1450.72, + "probability": 0.7406 + }, + { + "start": 1451.38, + "end": 1452.86, + "probability": 0.9177 + }, + { + "start": 1453.64, + "end": 1455.78, + "probability": 0.874 + }, + { + "start": 1456.62, + "end": 1458.1, + "probability": 0.9912 + }, + { + "start": 1458.32, + "end": 1458.76, + "probability": 0.7095 + }, + { + "start": 1458.94, + "end": 1460.1, + "probability": 0.7601 + }, + { + "start": 1460.26, + "end": 1462.42, + "probability": 0.5919 + }, + { + "start": 1462.6, + "end": 1464.08, + "probability": 0.8245 + }, + { + "start": 1468.5, + "end": 1469.68, + "probability": 0.7399 + }, + { + "start": 1470.36, + "end": 1473.36, + "probability": 0.9783 + }, + { + "start": 1473.5, + "end": 1475.88, + "probability": 0.7935 + }, + { + "start": 1475.9, + "end": 1478.5, + "probability": 0.9834 + }, + { + "start": 1479.36, + "end": 1483.58, + "probability": 0.9719 + }, + { + "start": 1484.88, + "end": 1486.18, + "probability": 0.9639 + }, + { + "start": 1486.26, + "end": 1487.68, + "probability": 0.9058 + }, + { + "start": 1488.26, + "end": 1490.4, + "probability": 0.9885 + }, + { + "start": 1490.48, + "end": 1496.98, + "probability": 0.9571 + }, + { + "start": 1497.02, + "end": 1498.14, + "probability": 0.9906 + }, + { + "start": 1498.2, + "end": 1499.46, + "probability": 0.9846 + }, + { + "start": 1499.82, + "end": 1501.16, + "probability": 0.9439 + }, + { + "start": 1501.56, + "end": 1502.78, + "probability": 0.8826 + }, + { + "start": 1503.14, + "end": 1505.8, + "probability": 0.7908 + }, + { + "start": 1506.34, + "end": 1508.0, + "probability": 0.9836 + }, + { + "start": 1509.04, + "end": 1511.64, + "probability": 0.9783 + }, + { + "start": 1511.92, + "end": 1515.24, + "probability": 0.9951 + }, + { + "start": 1515.78, + "end": 1516.84, + "probability": 0.7173 + }, + { + "start": 1517.18, + "end": 1521.58, + "probability": 0.9957 + }, + { + "start": 1522.02, + "end": 1523.08, + "probability": 0.7062 + }, + { + "start": 1523.52, + "end": 1527.38, + "probability": 0.986 + }, + { + "start": 1527.72, + "end": 1529.9, + "probability": 0.9924 + }, + { + "start": 1529.9, + "end": 1532.14, + "probability": 0.9966 + }, + { + "start": 1532.88, + "end": 1535.8, + "probability": 0.9921 + }, + { + "start": 1535.8, + "end": 1540.34, + "probability": 0.973 + }, + { + "start": 1540.76, + "end": 1542.0, + "probability": 0.9954 + }, + { + "start": 1542.14, + "end": 1542.91, + "probability": 0.9233 + }, + { + "start": 1543.1, + "end": 1544.06, + "probability": 0.6415 + }, + { + "start": 1544.38, + "end": 1547.66, + "probability": 0.9713 + }, + { + "start": 1548.14, + "end": 1548.34, + "probability": 0.5398 + }, + { + "start": 1548.64, + "end": 1550.16, + "probability": 0.752 + }, + { + "start": 1550.24, + "end": 1551.82, + "probability": 0.855 + }, + { + "start": 1551.9, + "end": 1552.6, + "probability": 0.7068 + }, + { + "start": 1552.64, + "end": 1554.1, + "probability": 0.979 + }, + { + "start": 1558.06, + "end": 1559.32, + "probability": 0.6924 + }, + { + "start": 1559.52, + "end": 1560.66, + "probability": 0.88 + }, + { + "start": 1561.1, + "end": 1563.76, + "probability": 0.9956 + }, + { + "start": 1563.76, + "end": 1568.16, + "probability": 0.9919 + }, + { + "start": 1568.8, + "end": 1570.88, + "probability": 0.9899 + }, + { + "start": 1571.28, + "end": 1573.08, + "probability": 0.7187 + }, + { + "start": 1573.12, + "end": 1574.4, + "probability": 0.9164 + }, + { + "start": 1574.86, + "end": 1575.82, + "probability": 0.9507 + }, + { + "start": 1575.96, + "end": 1576.92, + "probability": 0.9995 + }, + { + "start": 1577.74, + "end": 1578.46, + "probability": 0.9932 + }, + { + "start": 1578.6, + "end": 1579.46, + "probability": 0.9637 + }, + { + "start": 1579.56, + "end": 1583.68, + "probability": 0.9603 + }, + { + "start": 1584.3, + "end": 1587.56, + "probability": 0.8181 + }, + { + "start": 1588.46, + "end": 1589.94, + "probability": 0.9575 + }, + { + "start": 1590.0, + "end": 1593.95, + "probability": 0.868 + }, + { + "start": 1594.0, + "end": 1596.14, + "probability": 0.9399 + }, + { + "start": 1596.2, + "end": 1596.5, + "probability": 0.4893 + }, + { + "start": 1596.56, + "end": 1599.9, + "probability": 0.9897 + }, + { + "start": 1599.96, + "end": 1601.06, + "probability": 0.8305 + }, + { + "start": 1601.1, + "end": 1602.12, + "probability": 0.876 + }, + { + "start": 1602.72, + "end": 1604.06, + "probability": 0.9954 + }, + { + "start": 1604.28, + "end": 1606.52, + "probability": 0.9625 + }, + { + "start": 1606.54, + "end": 1611.85, + "probability": 0.991 + }, + { + "start": 1612.5, + "end": 1615.26, + "probability": 0.994 + }, + { + "start": 1615.26, + "end": 1617.56, + "probability": 0.9984 + }, + { + "start": 1618.08, + "end": 1620.6, + "probability": 0.9937 + }, + { + "start": 1621.08, + "end": 1626.84, + "probability": 0.8633 + }, + { + "start": 1626.86, + "end": 1627.16, + "probability": 0.4594 + }, + { + "start": 1627.26, + "end": 1629.46, + "probability": 0.9943 + }, + { + "start": 1629.5, + "end": 1630.96, + "probability": 0.9966 + }, + { + "start": 1631.02, + "end": 1632.24, + "probability": 0.9739 + }, + { + "start": 1632.54, + "end": 1634.78, + "probability": 0.9938 + }, + { + "start": 1635.12, + "end": 1639.22, + "probability": 0.9854 + }, + { + "start": 1639.6, + "end": 1640.62, + "probability": 0.9012 + }, + { + "start": 1640.74, + "end": 1644.34, + "probability": 0.9848 + }, + { + "start": 1644.38, + "end": 1644.78, + "probability": 0.7569 + }, + { + "start": 1645.08, + "end": 1647.28, + "probability": 0.8115 + }, + { + "start": 1647.58, + "end": 1649.92, + "probability": 0.9763 + }, + { + "start": 1650.26, + "end": 1650.82, + "probability": 0.5242 + }, + { + "start": 1650.96, + "end": 1652.12, + "probability": 0.9372 + }, + { + "start": 1654.4, + "end": 1655.56, + "probability": 0.7323 + }, + { + "start": 1655.68, + "end": 1655.8, + "probability": 0.5271 + }, + { + "start": 1655.8, + "end": 1660.9, + "probability": 0.7196 + }, + { + "start": 1661.02, + "end": 1666.8, + "probability": 0.9012 + }, + { + "start": 1666.84, + "end": 1671.08, + "probability": 0.8555 + }, + { + "start": 1671.34, + "end": 1675.1, + "probability": 0.9897 + }, + { + "start": 1675.84, + "end": 1676.26, + "probability": 0.885 + }, + { + "start": 1676.88, + "end": 1682.28, + "probability": 0.9575 + }, + { + "start": 1683.16, + "end": 1685.4, + "probability": 0.9114 + }, + { + "start": 1685.86, + "end": 1691.0, + "probability": 0.9869 + }, + { + "start": 1691.16, + "end": 1694.16, + "probability": 0.9944 + }, + { + "start": 1694.34, + "end": 1694.66, + "probability": 0.8826 + }, + { + "start": 1695.74, + "end": 1697.3, + "probability": 0.6183 + }, + { + "start": 1697.4, + "end": 1700.96, + "probability": 0.9813 + }, + { + "start": 1701.06, + "end": 1702.36, + "probability": 0.8133 + }, + { + "start": 1702.8, + "end": 1706.52, + "probability": 0.907 + }, + { + "start": 1706.6, + "end": 1711.06, + "probability": 0.9405 + }, + { + "start": 1711.28, + "end": 1714.64, + "probability": 0.9527 + }, + { + "start": 1716.22, + "end": 1716.56, + "probability": 0.6092 + }, + { + "start": 1716.78, + "end": 1717.88, + "probability": 0.6586 + }, + { + "start": 1718.02, + "end": 1718.3, + "probability": 0.412 + }, + { + "start": 1718.32, + "end": 1719.87, + "probability": 0.3797 + }, + { + "start": 1720.38, + "end": 1720.62, + "probability": 0.3367 + }, + { + "start": 1720.72, + "end": 1721.5, + "probability": 0.6455 + }, + { + "start": 1721.62, + "end": 1723.2, + "probability": 0.7934 + }, + { + "start": 1723.26, + "end": 1726.6, + "probability": 0.9564 + }, + { + "start": 1726.6, + "end": 1731.74, + "probability": 0.7803 + }, + { + "start": 1732.58, + "end": 1735.98, + "probability": 0.8905 + }, + { + "start": 1736.74, + "end": 1738.58, + "probability": 0.7287 + }, + { + "start": 1738.96, + "end": 1742.78, + "probability": 0.9946 + }, + { + "start": 1743.32, + "end": 1744.62, + "probability": 0.9514 + }, + { + "start": 1745.76, + "end": 1748.74, + "probability": 0.9617 + }, + { + "start": 1749.38, + "end": 1751.96, + "probability": 0.9935 + }, + { + "start": 1752.74, + "end": 1754.48, + "probability": 0.6923 + }, + { + "start": 1755.36, + "end": 1761.18, + "probability": 0.9762 + }, + { + "start": 1762.36, + "end": 1763.48, + "probability": 0.6295 + }, + { + "start": 1763.9, + "end": 1767.84, + "probability": 0.9658 + }, + { + "start": 1767.92, + "end": 1770.04, + "probability": 0.8799 + }, + { + "start": 1770.78, + "end": 1774.14, + "probability": 0.884 + }, + { + "start": 1774.14, + "end": 1777.46, + "probability": 0.9194 + }, + { + "start": 1778.0, + "end": 1779.11, + "probability": 0.9888 + }, + { + "start": 1779.94, + "end": 1780.98, + "probability": 0.9452 + }, + { + "start": 1781.52, + "end": 1785.98, + "probability": 0.9314 + }, + { + "start": 1786.1, + "end": 1788.16, + "probability": 0.9265 + }, + { + "start": 1789.66, + "end": 1792.46, + "probability": 0.9712 + }, + { + "start": 1793.04, + "end": 1794.34, + "probability": 0.9521 + }, + { + "start": 1794.38, + "end": 1799.3, + "probability": 0.9843 + }, + { + "start": 1799.98, + "end": 1800.14, + "probability": 0.7423 + }, + { + "start": 1800.22, + "end": 1801.88, + "probability": 0.8085 + }, + { + "start": 1802.0, + "end": 1803.9, + "probability": 0.5876 + }, + { + "start": 1804.0, + "end": 1804.82, + "probability": 0.6419 + }, + { + "start": 1805.06, + "end": 1806.68, + "probability": 0.9331 + }, + { + "start": 1806.82, + "end": 1807.14, + "probability": 0.1595 + }, + { + "start": 1807.14, + "end": 1807.14, + "probability": 0.2565 + }, + { + "start": 1807.14, + "end": 1807.4, + "probability": 0.8377 + }, + { + "start": 1807.5, + "end": 1808.5, + "probability": 0.7384 + }, + { + "start": 1808.64, + "end": 1809.36, + "probability": 0.5663 + }, + { + "start": 1809.5, + "end": 1811.29, + "probability": 0.6519 + }, + { + "start": 1812.14, + "end": 1812.74, + "probability": 0.4492 + }, + { + "start": 1812.82, + "end": 1814.38, + "probability": 0.8588 + }, + { + "start": 1814.6, + "end": 1816.0, + "probability": 0.9193 + }, + { + "start": 1816.78, + "end": 1822.08, + "probability": 0.9862 + }, + { + "start": 1822.08, + "end": 1826.94, + "probability": 0.9866 + }, + { + "start": 1827.5, + "end": 1828.19, + "probability": 0.9819 + }, + { + "start": 1828.88, + "end": 1831.06, + "probability": 0.9946 + }, + { + "start": 1831.84, + "end": 1833.86, + "probability": 0.5258 + }, + { + "start": 1834.32, + "end": 1836.34, + "probability": 0.9745 + }, + { + "start": 1836.66, + "end": 1838.74, + "probability": 0.9545 + }, + { + "start": 1839.26, + "end": 1842.32, + "probability": 0.9465 + }, + { + "start": 1842.84, + "end": 1844.92, + "probability": 0.9927 + }, + { + "start": 1845.24, + "end": 1846.46, + "probability": 0.9228 + }, + { + "start": 1846.72, + "end": 1848.02, + "probability": 0.575 + }, + { + "start": 1848.36, + "end": 1851.32, + "probability": 0.9899 + }, + { + "start": 1851.34, + "end": 1853.52, + "probability": 0.9938 + }, + { + "start": 1853.76, + "end": 1855.56, + "probability": 0.9578 + }, + { + "start": 1856.6, + "end": 1858.54, + "probability": 0.9724 + }, + { + "start": 1860.2, + "end": 1861.12, + "probability": 0.885 + }, + { + "start": 1861.6, + "end": 1864.72, + "probability": 0.9956 + }, + { + "start": 1864.94, + "end": 1866.16, + "probability": 0.8644 + }, + { + "start": 1866.32, + "end": 1867.46, + "probability": 0.7673 + }, + { + "start": 1868.4, + "end": 1869.5, + "probability": 0.9092 + }, + { + "start": 1870.08, + "end": 1871.82, + "probability": 0.9473 + }, + { + "start": 1871.92, + "end": 1873.76, + "probability": 0.9944 + }, + { + "start": 1873.82, + "end": 1874.2, + "probability": 0.6679 + }, + { + "start": 1875.2, + "end": 1877.6, + "probability": 0.6573 + }, + { + "start": 1877.72, + "end": 1883.62, + "probability": 0.9106 + }, + { + "start": 1884.32, + "end": 1888.74, + "probability": 0.2304 + }, + { + "start": 1889.74, + "end": 1889.84, + "probability": 0.144 + }, + { + "start": 1889.84, + "end": 1892.73, + "probability": 0.9624 + }, + { + "start": 1893.62, + "end": 1895.5, + "probability": 0.9906 + }, + { + "start": 1895.69, + "end": 1898.48, + "probability": 0.959 + }, + { + "start": 1899.02, + "end": 1903.02, + "probability": 0.8636 + }, + { + "start": 1904.18, + "end": 1906.84, + "probability": 0.8139 + }, + { + "start": 1907.38, + "end": 1912.46, + "probability": 0.7234 + }, + { + "start": 1912.46, + "end": 1916.62, + "probability": 0.9139 + }, + { + "start": 1917.52, + "end": 1918.66, + "probability": 0.716 + }, + { + "start": 1918.68, + "end": 1920.04, + "probability": 0.4518 + }, + { + "start": 1920.24, + "end": 1923.44, + "probability": 0.9622 + }, + { + "start": 1923.88, + "end": 1926.16, + "probability": 0.9432 + }, + { + "start": 1926.16, + "end": 1929.16, + "probability": 0.9775 + }, + { + "start": 1931.4, + "end": 1935.34, + "probability": 0.9801 + }, + { + "start": 1935.82, + "end": 1938.02, + "probability": 0.979 + }, + { + "start": 1938.32, + "end": 1942.46, + "probability": 0.9678 + }, + { + "start": 1942.56, + "end": 1943.62, + "probability": 0.9839 + }, + { + "start": 1944.56, + "end": 1945.46, + "probability": 0.938 + }, + { + "start": 1945.64, + "end": 1950.9, + "probability": 0.9198 + }, + { + "start": 1951.54, + "end": 1952.38, + "probability": 0.6548 + }, + { + "start": 1952.82, + "end": 1955.2, + "probability": 0.9964 + }, + { + "start": 1955.2, + "end": 1958.0, + "probability": 0.8776 + }, + { + "start": 1958.9, + "end": 1958.94, + "probability": 0.533 + }, + { + "start": 1959.06, + "end": 1960.0, + "probability": 0.9655 + }, + { + "start": 1960.18, + "end": 1964.84, + "probability": 0.9464 + }, + { + "start": 1964.84, + "end": 1970.7, + "probability": 0.9889 + }, + { + "start": 1971.14, + "end": 1971.68, + "probability": 0.4898 + }, + { + "start": 1971.84, + "end": 1974.68, + "probability": 0.9735 + }, + { + "start": 1975.14, + "end": 1977.92, + "probability": 0.9718 + }, + { + "start": 1977.92, + "end": 1980.74, + "probability": 0.9867 + }, + { + "start": 1981.98, + "end": 1983.84, + "probability": 0.9771 + }, + { + "start": 1983.98, + "end": 1987.04, + "probability": 0.8218 + }, + { + "start": 1987.74, + "end": 1990.24, + "probability": 0.886 + }, + { + "start": 1994.56, + "end": 1996.38, + "probability": 0.7235 + }, + { + "start": 1997.8, + "end": 1999.66, + "probability": 0.9546 + }, + { + "start": 2003.16, + "end": 2004.56, + "probability": 0.6782 + }, + { + "start": 2005.6, + "end": 2009.18, + "probability": 0.9271 + }, + { + "start": 2010.86, + "end": 2013.3, + "probability": 0.9878 + }, + { + "start": 2014.24, + "end": 2019.06, + "probability": 0.9802 + }, + { + "start": 2020.54, + "end": 2024.92, + "probability": 0.9867 + }, + { + "start": 2026.24, + "end": 2026.86, + "probability": 0.665 + }, + { + "start": 2029.09, + "end": 2032.7, + "probability": 0.7411 + }, + { + "start": 2032.78, + "end": 2034.46, + "probability": 0.5562 + }, + { + "start": 2034.6, + "end": 2038.9, + "probability": 0.9821 + }, + { + "start": 2039.32, + "end": 2042.29, + "probability": 0.8901 + }, + { + "start": 2043.1, + "end": 2043.78, + "probability": 0.8361 + }, + { + "start": 2043.84, + "end": 2047.84, + "probability": 0.9238 + }, + { + "start": 2048.16, + "end": 2050.68, + "probability": 0.8264 + }, + { + "start": 2052.48, + "end": 2056.36, + "probability": 0.7912 + }, + { + "start": 2056.44, + "end": 2061.52, + "probability": 0.8691 + }, + { + "start": 2062.9, + "end": 2064.74, + "probability": 0.9019 + }, + { + "start": 2065.3, + "end": 2066.24, + "probability": 0.8077 + }, + { + "start": 2067.38, + "end": 2074.02, + "probability": 0.7549 + }, + { + "start": 2074.54, + "end": 2075.8, + "probability": 0.7881 + }, + { + "start": 2077.1, + "end": 2083.78, + "probability": 0.9255 + }, + { + "start": 2085.22, + "end": 2087.86, + "probability": 0.7272 + }, + { + "start": 2087.96, + "end": 2093.1, + "probability": 0.9669 + }, + { + "start": 2093.1, + "end": 2100.46, + "probability": 0.9972 + }, + { + "start": 2100.96, + "end": 2105.14, + "probability": 0.9988 + }, + { + "start": 2105.14, + "end": 2109.24, + "probability": 0.876 + }, + { + "start": 2109.94, + "end": 2117.18, + "probability": 0.9984 + }, + { + "start": 2117.18, + "end": 2121.34, + "probability": 0.9946 + }, + { + "start": 2121.64, + "end": 2123.78, + "probability": 0.5517 + }, + { + "start": 2124.22, + "end": 2125.8, + "probability": 0.8957 + }, + { + "start": 2125.9, + "end": 2126.28, + "probability": 0.4054 + }, + { + "start": 2126.3, + "end": 2127.84, + "probability": 0.8702 + }, + { + "start": 2135.02, + "end": 2136.8, + "probability": 0.7667 + }, + { + "start": 2138.13, + "end": 2144.11, + "probability": 0.757 + }, + { + "start": 2145.1, + "end": 2147.52, + "probability": 0.8714 + }, + { + "start": 2147.96, + "end": 2149.36, + "probability": 0.9183 + }, + { + "start": 2150.26, + "end": 2155.64, + "probability": 0.6648 + }, + { + "start": 2156.16, + "end": 2157.9, + "probability": 0.8489 + }, + { + "start": 2158.46, + "end": 2160.46, + "probability": 0.9506 + }, + { + "start": 2160.6, + "end": 2161.26, + "probability": 0.4915 + }, + { + "start": 2161.54, + "end": 2164.82, + "probability": 0.9363 + }, + { + "start": 2165.26, + "end": 2168.04, + "probability": 0.9542 + }, + { + "start": 2169.22, + "end": 2170.16, + "probability": 0.4956 + }, + { + "start": 2170.48, + "end": 2172.16, + "probability": 0.6256 + }, + { + "start": 2172.24, + "end": 2174.86, + "probability": 0.8999 + }, + { + "start": 2175.36, + "end": 2180.82, + "probability": 0.9937 + }, + { + "start": 2180.96, + "end": 2182.44, + "probability": 0.878 + }, + { + "start": 2182.84, + "end": 2186.2, + "probability": 0.8413 + }, + { + "start": 2187.14, + "end": 2189.64, + "probability": 0.7495 + }, + { + "start": 2190.1, + "end": 2191.92, + "probability": 0.8979 + }, + { + "start": 2192.08, + "end": 2193.32, + "probability": 0.9551 + }, + { + "start": 2193.38, + "end": 2194.12, + "probability": 0.6771 + }, + { + "start": 2194.52, + "end": 2198.0, + "probability": 0.9775 + }, + { + "start": 2198.7, + "end": 2200.7, + "probability": 0.545 + }, + { + "start": 2201.32, + "end": 2203.34, + "probability": 0.9662 + }, + { + "start": 2203.82, + "end": 2205.96, + "probability": 0.8798 + }, + { + "start": 2206.04, + "end": 2207.28, + "probability": 0.9801 + }, + { + "start": 2207.56, + "end": 2208.52, + "probability": 0.9424 + }, + { + "start": 2208.64, + "end": 2210.38, + "probability": 0.9796 + }, + { + "start": 2210.58, + "end": 2210.76, + "probability": 0.7886 + }, + { + "start": 2211.26, + "end": 2214.74, + "probability": 0.6432 + }, + { + "start": 2214.74, + "end": 2215.68, + "probability": 0.6529 + }, + { + "start": 2216.38, + "end": 2218.8, + "probability": 0.4219 + }, + { + "start": 2219.22, + "end": 2219.76, + "probability": 0.8254 + }, + { + "start": 2220.26, + "end": 2222.66, + "probability": 0.7408 + }, + { + "start": 2223.76, + "end": 2227.76, + "probability": 0.9871 + }, + { + "start": 2228.76, + "end": 2231.28, + "probability": 0.8091 + }, + { + "start": 2232.34, + "end": 2237.54, + "probability": 0.9865 + }, + { + "start": 2238.44, + "end": 2240.16, + "probability": 0.8082 + }, + { + "start": 2240.88, + "end": 2242.74, + "probability": 0.9933 + }, + { + "start": 2242.8, + "end": 2243.86, + "probability": 0.9137 + }, + { + "start": 2244.14, + "end": 2246.16, + "probability": 0.9675 + }, + { + "start": 2246.52, + "end": 2248.86, + "probability": 0.9321 + }, + { + "start": 2249.04, + "end": 2252.44, + "probability": 0.7421 + }, + { + "start": 2253.36, + "end": 2254.82, + "probability": 0.6884 + }, + { + "start": 2255.82, + "end": 2257.28, + "probability": 0.9562 + }, + { + "start": 2258.56, + "end": 2262.04, + "probability": 0.9868 + }, + { + "start": 2263.16, + "end": 2265.82, + "probability": 0.9219 + }, + { + "start": 2266.26, + "end": 2268.76, + "probability": 0.9287 + }, + { + "start": 2269.58, + "end": 2275.64, + "probability": 0.8765 + }, + { + "start": 2276.6, + "end": 2281.1, + "probability": 0.9955 + }, + { + "start": 2281.94, + "end": 2285.0, + "probability": 0.9801 + }, + { + "start": 2286.22, + "end": 2291.06, + "probability": 0.8145 + }, + { + "start": 2292.32, + "end": 2294.3, + "probability": 0.92 + }, + { + "start": 2294.58, + "end": 2298.6, + "probability": 0.9108 + }, + { + "start": 2299.02, + "end": 2302.22, + "probability": 0.8667 + }, + { + "start": 2303.04, + "end": 2310.66, + "probability": 0.9928 + }, + { + "start": 2311.04, + "end": 2311.58, + "probability": 0.9134 + }, + { + "start": 2312.36, + "end": 2312.8, + "probability": 0.7292 + }, + { + "start": 2313.86, + "end": 2316.65, + "probability": 0.9222 + }, + { + "start": 2317.32, + "end": 2319.38, + "probability": 0.972 + }, + { + "start": 2320.26, + "end": 2321.84, + "probability": 0.963 + }, + { + "start": 2322.32, + "end": 2322.6, + "probability": 0.6401 + }, + { + "start": 2322.74, + "end": 2323.96, + "probability": 0.7732 + }, + { + "start": 2324.08, + "end": 2325.82, + "probability": 0.8435 + }, + { + "start": 2326.32, + "end": 2329.58, + "probability": 0.9347 + }, + { + "start": 2329.68, + "end": 2331.26, + "probability": 0.8962 + }, + { + "start": 2332.32, + "end": 2333.66, + "probability": 0.7313 + }, + { + "start": 2333.86, + "end": 2335.4, + "probability": 0.7405 + }, + { + "start": 2335.48, + "end": 2339.24, + "probability": 0.7197 + }, + { + "start": 2340.52, + "end": 2347.08, + "probability": 0.9688 + }, + { + "start": 2347.28, + "end": 2348.78, + "probability": 0.8771 + }, + { + "start": 2349.18, + "end": 2353.16, + "probability": 0.9915 + }, + { + "start": 2353.94, + "end": 2357.36, + "probability": 0.9967 + }, + { + "start": 2357.42, + "end": 2358.95, + "probability": 0.9912 + }, + { + "start": 2361.18, + "end": 2364.54, + "probability": 0.9828 + }, + { + "start": 2364.54, + "end": 2368.94, + "probability": 0.9977 + }, + { + "start": 2369.2, + "end": 2369.78, + "probability": 0.8731 + }, + { + "start": 2369.92, + "end": 2370.28, + "probability": 0.9217 + }, + { + "start": 2370.36, + "end": 2370.68, + "probability": 0.9801 + }, + { + "start": 2370.78, + "end": 2371.72, + "probability": 0.8685 + }, + { + "start": 2371.8, + "end": 2373.86, + "probability": 0.9882 + }, + { + "start": 2374.04, + "end": 2375.08, + "probability": 0.916 + }, + { + "start": 2375.52, + "end": 2376.98, + "probability": 0.9858 + }, + { + "start": 2377.0, + "end": 2379.36, + "probability": 0.9876 + }, + { + "start": 2379.68, + "end": 2381.34, + "probability": 0.9927 + }, + { + "start": 2381.4, + "end": 2382.34, + "probability": 0.8864 + }, + { + "start": 2383.22, + "end": 2385.04, + "probability": 0.8373 + }, + { + "start": 2385.8, + "end": 2391.0, + "probability": 0.9916 + }, + { + "start": 2391.1, + "end": 2393.68, + "probability": 0.9985 + }, + { + "start": 2394.1, + "end": 2395.64, + "probability": 0.7827 + }, + { + "start": 2395.98, + "end": 2397.06, + "probability": 0.9642 + }, + { + "start": 2397.2, + "end": 2398.58, + "probability": 0.9366 + }, + { + "start": 2399.24, + "end": 2402.86, + "probability": 0.724 + }, + { + "start": 2403.38, + "end": 2407.32, + "probability": 0.9932 + }, + { + "start": 2407.48, + "end": 2413.92, + "probability": 0.9814 + }, + { + "start": 2414.32, + "end": 2414.82, + "probability": 0.8679 + }, + { + "start": 2414.94, + "end": 2415.5, + "probability": 0.6495 + }, + { + "start": 2415.5, + "end": 2416.9, + "probability": 0.9834 + }, + { + "start": 2417.02, + "end": 2420.67, + "probability": 0.9381 + }, + { + "start": 2422.54, + "end": 2423.56, + "probability": 0.9031 + }, + { + "start": 2423.6, + "end": 2424.28, + "probability": 0.7426 + }, + { + "start": 2424.38, + "end": 2425.68, + "probability": 0.9615 + }, + { + "start": 2425.76, + "end": 2429.84, + "probability": 0.896 + }, + { + "start": 2429.92, + "end": 2432.74, + "probability": 0.9605 + }, + { + "start": 2432.98, + "end": 2433.48, + "probability": 0.7759 + }, + { + "start": 2433.9, + "end": 2436.21, + "probability": 0.7895 + }, + { + "start": 2436.92, + "end": 2439.02, + "probability": 0.8721 + }, + { + "start": 2439.88, + "end": 2441.58, + "probability": 0.9875 + }, + { + "start": 2441.72, + "end": 2443.34, + "probability": 0.9178 + }, + { + "start": 2443.44, + "end": 2445.64, + "probability": 0.9767 + }, + { + "start": 2448.0, + "end": 2449.18, + "probability": 0.6037 + }, + { + "start": 2450.42, + "end": 2451.42, + "probability": 0.9343 + }, + { + "start": 2452.58, + "end": 2460.26, + "probability": 0.9897 + }, + { + "start": 2460.9, + "end": 2462.08, + "probability": 0.9626 + }, + { + "start": 2462.6, + "end": 2465.34, + "probability": 0.9787 + }, + { + "start": 2466.14, + "end": 2471.56, + "probability": 0.9686 + }, + { + "start": 2472.66, + "end": 2478.34, + "probability": 0.9429 + }, + { + "start": 2479.22, + "end": 2481.4, + "probability": 0.9755 + }, + { + "start": 2482.92, + "end": 2484.36, + "probability": 0.8748 + }, + { + "start": 2484.76, + "end": 2485.92, + "probability": 0.7841 + }, + { + "start": 2486.38, + "end": 2489.94, + "probability": 0.9834 + }, + { + "start": 2491.6, + "end": 2493.7, + "probability": 0.8208 + }, + { + "start": 2494.98, + "end": 2497.66, + "probability": 0.9957 + }, + { + "start": 2498.8, + "end": 2503.58, + "probability": 0.9846 + }, + { + "start": 2503.92, + "end": 2513.66, + "probability": 0.9415 + }, + { + "start": 2514.4, + "end": 2516.14, + "probability": 0.8645 + }, + { + "start": 2517.06, + "end": 2517.9, + "probability": 0.5121 + }, + { + "start": 2518.96, + "end": 2520.18, + "probability": 0.8468 + }, + { + "start": 2522.06, + "end": 2525.48, + "probability": 0.8178 + }, + { + "start": 2526.12, + "end": 2527.18, + "probability": 0.9532 + }, + { + "start": 2527.28, + "end": 2529.74, + "probability": 0.9171 + }, + { + "start": 2530.06, + "end": 2536.14, + "probability": 0.9177 + }, + { + "start": 2536.94, + "end": 2537.38, + "probability": 0.8943 + }, + { + "start": 2537.48, + "end": 2537.82, + "probability": 0.535 + }, + { + "start": 2538.18, + "end": 2541.16, + "probability": 0.985 + }, + { + "start": 2541.48, + "end": 2543.52, + "probability": 0.9668 + }, + { + "start": 2543.9, + "end": 2553.83, + "probability": 0.987 + }, + { + "start": 2554.1, + "end": 2562.92, + "probability": 0.981 + }, + { + "start": 2563.12, + "end": 2567.38, + "probability": 0.9001 + }, + { + "start": 2568.54, + "end": 2569.94, + "probability": 0.8175 + }, + { + "start": 2570.54, + "end": 2571.76, + "probability": 0.9241 + }, + { + "start": 2572.38, + "end": 2573.12, + "probability": 0.8876 + }, + { + "start": 2573.34, + "end": 2578.88, + "probability": 0.9884 + }, + { + "start": 2579.18, + "end": 2582.5, + "probability": 0.9854 + }, + { + "start": 2583.28, + "end": 2587.7, + "probability": 0.9057 + }, + { + "start": 2589.11, + "end": 2596.16, + "probability": 0.8433 + }, + { + "start": 2600.58, + "end": 2603.24, + "probability": 0.959 + }, + { + "start": 2603.46, + "end": 2606.98, + "probability": 0.8867 + }, + { + "start": 2607.39, + "end": 2612.68, + "probability": 0.9858 + }, + { + "start": 2612.76, + "end": 2615.6, + "probability": 0.9902 + }, + { + "start": 2616.1, + "end": 2616.6, + "probability": 0.8104 + }, + { + "start": 2618.1, + "end": 2622.48, + "probability": 0.9473 + }, + { + "start": 2625.06, + "end": 2626.62, + "probability": 0.8173 + }, + { + "start": 2627.5, + "end": 2634.52, + "probability": 0.9928 + }, + { + "start": 2635.74, + "end": 2641.06, + "probability": 0.9989 + }, + { + "start": 2641.76, + "end": 2642.68, + "probability": 0.7133 + }, + { + "start": 2642.8, + "end": 2644.28, + "probability": 0.9595 + }, + { + "start": 2645.42, + "end": 2647.92, + "probability": 0.8979 + }, + { + "start": 2648.9, + "end": 2650.22, + "probability": 0.7871 + }, + { + "start": 2650.92, + "end": 2652.24, + "probability": 0.9878 + }, + { + "start": 2652.96, + "end": 2656.76, + "probability": 0.9863 + }, + { + "start": 2658.3, + "end": 2663.48, + "probability": 0.9148 + }, + { + "start": 2663.94, + "end": 2666.54, + "probability": 0.9736 + }, + { + "start": 2667.16, + "end": 2668.7, + "probability": 0.8386 + }, + { + "start": 2669.28, + "end": 2672.14, + "probability": 0.8623 + }, + { + "start": 2672.62, + "end": 2674.78, + "probability": 0.827 + }, + { + "start": 2675.2, + "end": 2677.56, + "probability": 0.9284 + }, + { + "start": 2678.18, + "end": 2681.8, + "probability": 0.9722 + }, + { + "start": 2682.48, + "end": 2685.78, + "probability": 0.9515 + }, + { + "start": 2686.32, + "end": 2692.64, + "probability": 0.9875 + }, + { + "start": 2693.14, + "end": 2698.01, + "probability": 0.9968 + }, + { + "start": 2699.06, + "end": 2700.78, + "probability": 0.7847 + }, + { + "start": 2701.2, + "end": 2702.66, + "probability": 0.9341 + }, + { + "start": 2702.86, + "end": 2708.16, + "probability": 0.8793 + }, + { + "start": 2708.5, + "end": 2710.8, + "probability": 0.9686 + }, + { + "start": 2711.44, + "end": 2713.44, + "probability": 0.9618 + }, + { + "start": 2713.9, + "end": 2715.86, + "probability": 0.5003 + }, + { + "start": 2715.94, + "end": 2716.92, + "probability": 0.8258 + }, + { + "start": 2717.24, + "end": 2719.88, + "probability": 0.966 + }, + { + "start": 2720.06, + "end": 2720.3, + "probability": 0.5237 + }, + { + "start": 2720.58, + "end": 2722.5, + "probability": 0.8674 + }, + { + "start": 2723.42, + "end": 2723.88, + "probability": 0.8143 + }, + { + "start": 2724.16, + "end": 2725.46, + "probability": 0.8136 + }, + { + "start": 2725.82, + "end": 2729.44, + "probability": 0.8814 + }, + { + "start": 2730.4, + "end": 2732.78, + "probability": 0.5758 + }, + { + "start": 2734.14, + "end": 2739.68, + "probability": 0.0381 + }, + { + "start": 2739.68, + "end": 2739.68, + "probability": 0.1333 + }, + { + "start": 2739.68, + "end": 2744.22, + "probability": 0.7391 + }, + { + "start": 2745.54, + "end": 2748.42, + "probability": 0.9246 + }, + { + "start": 2748.74, + "end": 2752.44, + "probability": 0.988 + }, + { + "start": 2753.02, + "end": 2755.06, + "probability": 0.9211 + }, + { + "start": 2756.74, + "end": 2758.98, + "probability": 0.9191 + }, + { + "start": 2759.7, + "end": 2763.36, + "probability": 0.9961 + }, + { + "start": 2763.78, + "end": 2765.06, + "probability": 0.9691 + }, + { + "start": 2765.26, + "end": 2766.26, + "probability": 0.9909 + }, + { + "start": 2767.6, + "end": 2770.78, + "probability": 0.9969 + }, + { + "start": 2771.9, + "end": 2775.36, + "probability": 0.9958 + }, + { + "start": 2775.36, + "end": 2778.7, + "probability": 0.9605 + }, + { + "start": 2779.58, + "end": 2785.1, + "probability": 0.9979 + }, + { + "start": 2786.3, + "end": 2790.96, + "probability": 0.9229 + }, + { + "start": 2790.96, + "end": 2795.26, + "probability": 0.9984 + }, + { + "start": 2796.38, + "end": 2800.92, + "probability": 0.9922 + }, + { + "start": 2800.92, + "end": 2804.62, + "probability": 0.9647 + }, + { + "start": 2805.18, + "end": 2809.14, + "probability": 0.9932 + }, + { + "start": 2810.08, + "end": 2814.9, + "probability": 0.9927 + }, + { + "start": 2814.9, + "end": 2819.3, + "probability": 0.9844 + }, + { + "start": 2819.76, + "end": 2821.88, + "probability": 0.9921 + }, + { + "start": 2822.62, + "end": 2828.82, + "probability": 0.9881 + }, + { + "start": 2828.82, + "end": 2835.14, + "probability": 0.9951 + }, + { + "start": 2836.36, + "end": 2837.46, + "probability": 0.6278 + }, + { + "start": 2837.66, + "end": 2838.34, + "probability": 0.4323 + }, + { + "start": 2838.38, + "end": 2838.82, + "probability": 0.9301 + }, + { + "start": 2838.88, + "end": 2842.28, + "probability": 0.9937 + }, + { + "start": 2842.74, + "end": 2846.64, + "probability": 0.9751 + }, + { + "start": 2847.38, + "end": 2852.54, + "probability": 0.9973 + }, + { + "start": 2853.08, + "end": 2855.02, + "probability": 0.9881 + }, + { + "start": 2855.84, + "end": 2856.94, + "probability": 0.9023 + }, + { + "start": 2857.12, + "end": 2858.62, + "probability": 0.9783 + }, + { + "start": 2858.72, + "end": 2860.6, + "probability": 0.994 + }, + { + "start": 2860.98, + "end": 2863.7, + "probability": 0.9799 + }, + { + "start": 2864.3, + "end": 2864.84, + "probability": 0.4248 + }, + { + "start": 2865.0, + "end": 2869.5, + "probability": 0.9731 + }, + { + "start": 2871.12, + "end": 2871.94, + "probability": 0.859 + }, + { + "start": 2873.58, + "end": 2876.24, + "probability": 0.834 + }, + { + "start": 2876.38, + "end": 2879.12, + "probability": 0.9609 + }, + { + "start": 2879.18, + "end": 2880.76, + "probability": 0.8902 + }, + { + "start": 2880.86, + "end": 2883.86, + "probability": 0.6552 + }, + { + "start": 2884.4, + "end": 2888.82, + "probability": 0.9878 + }, + { + "start": 2889.32, + "end": 2891.33, + "probability": 0.8411 + }, + { + "start": 2892.1, + "end": 2894.06, + "probability": 0.9482 + }, + { + "start": 2894.8, + "end": 2896.86, + "probability": 0.9204 + }, + { + "start": 2897.76, + "end": 2898.88, + "probability": 0.4087 + }, + { + "start": 2899.88, + "end": 2900.76, + "probability": 0.8266 + }, + { + "start": 2900.82, + "end": 2901.62, + "probability": 0.8374 + }, + { + "start": 2901.76, + "end": 2904.6, + "probability": 0.8115 + }, + { + "start": 2912.38, + "end": 2914.12, + "probability": 0.0553 + }, + { + "start": 2914.4, + "end": 2915.22, + "probability": 0.5059 + }, + { + "start": 2915.3, + "end": 2917.04, + "probability": 0.6323 + }, + { + "start": 2917.1, + "end": 2918.62, + "probability": 0.904 + }, + { + "start": 2918.8, + "end": 2919.26, + "probability": 0.3266 + }, + { + "start": 2919.44, + "end": 2920.47, + "probability": 0.0358 + }, + { + "start": 2921.24, + "end": 2924.44, + "probability": 0.5142 + }, + { + "start": 2924.88, + "end": 2926.9, + "probability": 0.5021 + }, + { + "start": 2929.52, + "end": 2929.94, + "probability": 0.4001 + }, + { + "start": 2929.94, + "end": 2929.94, + "probability": 0.2787 + }, + { + "start": 2929.94, + "end": 2931.8, + "probability": 0.7366 + }, + { + "start": 2931.9, + "end": 2933.22, + "probability": 0.6628 + }, + { + "start": 2934.04, + "end": 2935.32, + "probability": 0.8002 + }, + { + "start": 2935.36, + "end": 2936.4, + "probability": 0.8096 + }, + { + "start": 2936.46, + "end": 2939.5, + "probability": 0.9834 + }, + { + "start": 2939.5, + "end": 2943.06, + "probability": 0.9954 + }, + { + "start": 2943.8, + "end": 2945.08, + "probability": 0.9041 + }, + { + "start": 2945.9, + "end": 2948.4, + "probability": 0.7914 + }, + { + "start": 2948.46, + "end": 2950.44, + "probability": 0.8747 + }, + { + "start": 2950.92, + "end": 2955.18, + "probability": 0.9582 + }, + { + "start": 2955.38, + "end": 2959.3, + "probability": 0.9668 + }, + { + "start": 2959.56, + "end": 2962.1, + "probability": 0.9849 + }, + { + "start": 2962.72, + "end": 2965.5, + "probability": 0.9904 + }, + { + "start": 2965.54, + "end": 2969.78, + "probability": 0.9556 + }, + { + "start": 2969.86, + "end": 2971.2, + "probability": 0.8187 + }, + { + "start": 2971.58, + "end": 2973.58, + "probability": 0.9742 + }, + { + "start": 2974.42, + "end": 2976.06, + "probability": 0.8562 + }, + { + "start": 2976.18, + "end": 2978.44, + "probability": 0.953 + }, + { + "start": 2978.86, + "end": 2980.1, + "probability": 0.9785 + }, + { + "start": 2980.26, + "end": 2980.82, + "probability": 0.8663 + }, + { + "start": 2981.06, + "end": 2983.96, + "probability": 0.9938 + }, + { + "start": 2984.08, + "end": 2984.56, + "probability": 0.4848 + }, + { + "start": 2984.94, + "end": 2988.32, + "probability": 0.9851 + }, + { + "start": 2989.2, + "end": 2994.63, + "probability": 0.9783 + }, + { + "start": 2995.36, + "end": 2996.16, + "probability": 0.8425 + }, + { + "start": 2996.28, + "end": 2997.72, + "probability": 0.958 + }, + { + "start": 2997.88, + "end": 3004.9, + "probability": 0.959 + }, + { + "start": 3005.78, + "end": 3007.24, + "probability": 0.9163 + }, + { + "start": 3007.3, + "end": 3010.2, + "probability": 0.9631 + }, + { + "start": 3010.26, + "end": 3012.2, + "probability": 0.8159 + }, + { + "start": 3012.76, + "end": 3014.96, + "probability": 0.8237 + }, + { + "start": 3015.02, + "end": 3017.28, + "probability": 0.9785 + }, + { + "start": 3017.48, + "end": 3018.84, + "probability": 0.8512 + }, + { + "start": 3018.92, + "end": 3021.86, + "probability": 0.9984 + }, + { + "start": 3022.96, + "end": 3027.38, + "probability": 0.9706 + }, + { + "start": 3027.78, + "end": 3031.24, + "probability": 0.9812 + }, + { + "start": 3031.42, + "end": 3035.36, + "probability": 0.9779 + }, + { + "start": 3036.14, + "end": 3039.2, + "probability": 0.9429 + }, + { + "start": 3040.26, + "end": 3045.08, + "probability": 0.8696 + }, + { + "start": 3045.76, + "end": 3048.74, + "probability": 0.9937 + }, + { + "start": 3048.82, + "end": 3051.24, + "probability": 0.9269 + }, + { + "start": 3051.8, + "end": 3054.34, + "probability": 0.9924 + }, + { + "start": 3055.04, + "end": 3057.2, + "probability": 0.9893 + }, + { + "start": 3057.36, + "end": 3058.26, + "probability": 0.6521 + }, + { + "start": 3058.32, + "end": 3059.46, + "probability": 0.8886 + }, + { + "start": 3059.56, + "end": 3064.32, + "probability": 0.9421 + }, + { + "start": 3065.66, + "end": 3066.72, + "probability": 0.7273 + }, + { + "start": 3066.94, + "end": 3073.5, + "probability": 0.9912 + }, + { + "start": 3074.04, + "end": 3075.36, + "probability": 0.9873 + }, + { + "start": 3076.42, + "end": 3079.0, + "probability": 0.8784 + }, + { + "start": 3079.64, + "end": 3082.76, + "probability": 0.9831 + }, + { + "start": 3082.76, + "end": 3085.72, + "probability": 0.999 + }, + { + "start": 3086.12, + "end": 3087.59, + "probability": 0.9962 + }, + { + "start": 3087.94, + "end": 3089.4, + "probability": 0.9929 + }, + { + "start": 3089.94, + "end": 3091.38, + "probability": 0.9784 + }, + { + "start": 3091.88, + "end": 3096.54, + "probability": 0.9932 + }, + { + "start": 3097.82, + "end": 3103.9, + "probability": 0.9769 + }, + { + "start": 3103.94, + "end": 3109.04, + "probability": 0.9611 + }, + { + "start": 3109.52, + "end": 3111.28, + "probability": 0.9927 + }, + { + "start": 3111.44, + "end": 3112.2, + "probability": 0.5319 + }, + { + "start": 3112.32, + "end": 3113.42, + "probability": 0.8884 + }, + { + "start": 3113.48, + "end": 3114.1, + "probability": 0.5999 + }, + { + "start": 3114.16, + "end": 3115.5, + "probability": 0.9653 + }, + { + "start": 3115.52, + "end": 3116.86, + "probability": 0.7591 + }, + { + "start": 3117.32, + "end": 3119.38, + "probability": 0.9941 + }, + { + "start": 3119.54, + "end": 3120.42, + "probability": 0.029 + }, + { + "start": 3121.1, + "end": 3127.28, + "probability": 0.987 + }, + { + "start": 3127.28, + "end": 3131.82, + "probability": 0.9861 + }, + { + "start": 3131.88, + "end": 3132.16, + "probability": 0.4388 + }, + { + "start": 3132.26, + "end": 3132.98, + "probability": 0.8241 + }, + { + "start": 3133.0, + "end": 3134.38, + "probability": 0.8782 + }, + { + "start": 3134.94, + "end": 3138.14, + "probability": 0.9871 + }, + { + "start": 3138.28, + "end": 3139.3, + "probability": 0.8326 + }, + { + "start": 3140.62, + "end": 3144.3, + "probability": 0.8601 + }, + { + "start": 3144.38, + "end": 3145.36, + "probability": 0.6401 + }, + { + "start": 3146.48, + "end": 3149.76, + "probability": 0.8721 + }, + { + "start": 3150.38, + "end": 3154.64, + "probability": 0.9398 + }, + { + "start": 3154.72, + "end": 3155.5, + "probability": 0.7566 + }, + { + "start": 3156.0, + "end": 3157.26, + "probability": 0.9409 + }, + { + "start": 3157.48, + "end": 3161.72, + "probability": 0.9961 + }, + { + "start": 3161.76, + "end": 3166.32, + "probability": 0.9962 + }, + { + "start": 3166.58, + "end": 3168.36, + "probability": 0.7095 + }, + { + "start": 3168.44, + "end": 3170.21, + "probability": 0.9563 + }, + { + "start": 3171.04, + "end": 3172.68, + "probability": 0.7617 + }, + { + "start": 3172.72, + "end": 3173.58, + "probability": 0.6317 + }, + { + "start": 3173.86, + "end": 3177.5, + "probability": 0.9886 + }, + { + "start": 3177.5, + "end": 3181.84, + "probability": 0.9251 + }, + { + "start": 3182.36, + "end": 3184.37, + "probability": 0.7996 + }, + { + "start": 3184.46, + "end": 3185.4, + "probability": 0.8204 + }, + { + "start": 3185.52, + "end": 3189.64, + "probability": 0.9397 + }, + { + "start": 3189.64, + "end": 3194.3, + "probability": 0.9928 + }, + { + "start": 3194.68, + "end": 3197.66, + "probability": 0.9861 + }, + { + "start": 3198.28, + "end": 3200.76, + "probability": 0.9133 + }, + { + "start": 3200.84, + "end": 3202.13, + "probability": 0.9728 + }, + { + "start": 3202.72, + "end": 3204.48, + "probability": 0.9308 + }, + { + "start": 3205.22, + "end": 3209.44, + "probability": 0.9917 + }, + { + "start": 3210.06, + "end": 3212.48, + "probability": 0.984 + }, + { + "start": 3212.6, + "end": 3214.14, + "probability": 0.9347 + }, + { + "start": 3214.52, + "end": 3215.72, + "probability": 0.945 + }, + { + "start": 3215.88, + "end": 3217.44, + "probability": 0.8527 + }, + { + "start": 3217.6, + "end": 3218.0, + "probability": 0.6815 + }, + { + "start": 3218.04, + "end": 3218.48, + "probability": 0.8083 + }, + { + "start": 3218.54, + "end": 3219.26, + "probability": 0.9469 + }, + { + "start": 3220.2, + "end": 3224.5, + "probability": 0.9603 + }, + { + "start": 3225.12, + "end": 3227.46, + "probability": 0.991 + }, + { + "start": 3227.46, + "end": 3230.06, + "probability": 0.9985 + }, + { + "start": 3230.68, + "end": 3230.88, + "probability": 0.1405 + }, + { + "start": 3231.0, + "end": 3231.78, + "probability": 0.8421 + }, + { + "start": 3231.96, + "end": 3233.72, + "probability": 0.9789 + }, + { + "start": 3233.88, + "end": 3235.42, + "probability": 0.967 + }, + { + "start": 3235.6, + "end": 3237.6, + "probability": 0.8862 + }, + { + "start": 3237.96, + "end": 3242.16, + "probability": 0.9917 + }, + { + "start": 3242.6, + "end": 3245.3, + "probability": 0.9603 + }, + { + "start": 3245.3, + "end": 3248.2, + "probability": 0.9003 + }, + { + "start": 3248.34, + "end": 3250.7, + "probability": 0.8784 + }, + { + "start": 3250.96, + "end": 3252.88, + "probability": 0.7894 + }, + { + "start": 3253.24, + "end": 3254.94, + "probability": 0.9077 + }, + { + "start": 3255.12, + "end": 3256.34, + "probability": 0.8461 + }, + { + "start": 3257.24, + "end": 3260.96, + "probability": 0.9883 + }, + { + "start": 3260.96, + "end": 3265.8, + "probability": 0.9994 + }, + { + "start": 3266.54, + "end": 3271.06, + "probability": 0.7795 + }, + { + "start": 3271.06, + "end": 3275.68, + "probability": 0.9929 + }, + { + "start": 3276.38, + "end": 3281.06, + "probability": 0.9955 + }, + { + "start": 3281.48, + "end": 3283.12, + "probability": 0.9982 + }, + { + "start": 3283.22, + "end": 3284.62, + "probability": 0.999 + }, + { + "start": 3284.98, + "end": 3287.1, + "probability": 0.9783 + }, + { + "start": 3287.36, + "end": 3290.51, + "probability": 0.9937 + }, + { + "start": 3291.36, + "end": 3293.6, + "probability": 0.5763 + }, + { + "start": 3293.78, + "end": 3294.89, + "probability": 0.4739 + }, + { + "start": 3295.66, + "end": 3298.02, + "probability": 0.9883 + }, + { + "start": 3298.98, + "end": 3301.0, + "probability": 0.9109 + }, + { + "start": 3301.64, + "end": 3307.0, + "probability": 0.9646 + }, + { + "start": 3308.12, + "end": 3310.52, + "probability": 0.9683 + }, + { + "start": 3310.52, + "end": 3313.74, + "probability": 0.9468 + }, + { + "start": 3313.82, + "end": 3315.18, + "probability": 0.9116 + }, + { + "start": 3315.56, + "end": 3316.42, + "probability": 0.6628 + }, + { + "start": 3316.72, + "end": 3319.12, + "probability": 0.9167 + }, + { + "start": 3319.22, + "end": 3320.1, + "probability": 0.9785 + }, + { + "start": 3320.32, + "end": 3321.64, + "probability": 0.8039 + }, + { + "start": 3321.68, + "end": 3322.28, + "probability": 0.9024 + }, + { + "start": 3322.44, + "end": 3323.18, + "probability": 0.8465 + }, + { + "start": 3323.22, + "end": 3324.74, + "probability": 0.963 + }, + { + "start": 3325.36, + "end": 3326.72, + "probability": 0.8275 + }, + { + "start": 3327.0, + "end": 3329.82, + "probability": 0.9922 + }, + { + "start": 3330.36, + "end": 3331.58, + "probability": 0.7817 + }, + { + "start": 3331.72, + "end": 3335.8, + "probability": 0.9793 + }, + { + "start": 3335.8, + "end": 3339.08, + "probability": 0.9986 + }, + { + "start": 3340.16, + "end": 3341.02, + "probability": 0.7164 + }, + { + "start": 3341.38, + "end": 3343.28, + "probability": 0.6956 + }, + { + "start": 3343.48, + "end": 3344.0, + "probability": 0.553 + }, + { + "start": 3344.14, + "end": 3344.56, + "probability": 0.9488 + }, + { + "start": 3344.62, + "end": 3346.64, + "probability": 0.9016 + }, + { + "start": 3347.2, + "end": 3349.94, + "probability": 0.9946 + }, + { + "start": 3350.14, + "end": 3350.98, + "probability": 0.7189 + }, + { + "start": 3351.08, + "end": 3351.94, + "probability": 0.8557 + }, + { + "start": 3352.36, + "end": 3355.36, + "probability": 0.9409 + }, + { + "start": 3355.48, + "end": 3359.56, + "probability": 0.9917 + }, + { + "start": 3359.74, + "end": 3363.42, + "probability": 0.9319 + }, + { + "start": 3363.42, + "end": 3366.14, + "probability": 0.9837 + }, + { + "start": 3366.64, + "end": 3367.88, + "probability": 0.5826 + }, + { + "start": 3368.34, + "end": 3373.08, + "probability": 0.9492 + }, + { + "start": 3373.28, + "end": 3374.24, + "probability": 0.8126 + }, + { + "start": 3374.96, + "end": 3375.48, + "probability": 0.7471 + }, + { + "start": 3375.6, + "end": 3377.16, + "probability": 0.9815 + }, + { + "start": 3377.34, + "end": 3381.12, + "probability": 0.8044 + }, + { + "start": 3381.88, + "end": 3383.82, + "probability": 0.5872 + }, + { + "start": 3384.9, + "end": 3388.02, + "probability": 0.871 + }, + { + "start": 3388.62, + "end": 3389.44, + "probability": 0.5255 + }, + { + "start": 3389.56, + "end": 3392.08, + "probability": 0.8456 + }, + { + "start": 3392.2, + "end": 3394.3, + "probability": 0.6432 + }, + { + "start": 3394.86, + "end": 3396.92, + "probability": 0.6848 + }, + { + "start": 3397.52, + "end": 3400.68, + "probability": 0.9185 + }, + { + "start": 3402.32, + "end": 3406.92, + "probability": 0.9888 + }, + { + "start": 3407.42, + "end": 3408.72, + "probability": 0.3639 + }, + { + "start": 3409.02, + "end": 3411.36, + "probability": 0.6699 + }, + { + "start": 3412.06, + "end": 3413.88, + "probability": 0.569 + }, + { + "start": 3413.96, + "end": 3415.06, + "probability": 0.9027 + }, + { + "start": 3415.48, + "end": 3416.26, + "probability": 0.8675 + }, + { + "start": 3417.24, + "end": 3422.21, + "probability": 0.981 + }, + { + "start": 3422.56, + "end": 3424.24, + "probability": 0.968 + }, + { + "start": 3424.52, + "end": 3426.32, + "probability": 0.8297 + }, + { + "start": 3426.4, + "end": 3427.1, + "probability": 0.7432 + }, + { + "start": 3427.38, + "end": 3428.96, + "probability": 0.9953 + }, + { + "start": 3429.58, + "end": 3433.48, + "probability": 0.4065 + }, + { + "start": 3433.62, + "end": 3434.1, + "probability": 0.3376 + }, + { + "start": 3434.18, + "end": 3438.58, + "probability": 0.9698 + }, + { + "start": 3438.66, + "end": 3441.2, + "probability": 0.8938 + }, + { + "start": 3441.3, + "end": 3442.26, + "probability": 0.4836 + }, + { + "start": 3442.38, + "end": 3444.38, + "probability": 0.9495 + }, + { + "start": 3444.46, + "end": 3444.88, + "probability": 0.68 + }, + { + "start": 3444.94, + "end": 3446.46, + "probability": 0.9654 + }, + { + "start": 3446.98, + "end": 3449.72, + "probability": 0.9982 + }, + { + "start": 3449.78, + "end": 3450.93, + "probability": 0.9364 + }, + { + "start": 3451.24, + "end": 3453.18, + "probability": 0.9499 + }, + { + "start": 3454.28, + "end": 3456.76, + "probability": 0.2936 + }, + { + "start": 3457.12, + "end": 3458.04, + "probability": 0.7957 + }, + { + "start": 3458.48, + "end": 3459.56, + "probability": 0.9176 + }, + { + "start": 3459.64, + "end": 3461.04, + "probability": 0.8071 + }, + { + "start": 3461.4, + "end": 3462.94, + "probability": 0.7415 + }, + { + "start": 3463.06, + "end": 3463.98, + "probability": 0.9119 + }, + { + "start": 3464.42, + "end": 3464.78, + "probability": 0.9125 + }, + { + "start": 3465.3, + "end": 3466.4, + "probability": 0.8691 + }, + { + "start": 3466.48, + "end": 3467.68, + "probability": 0.8954 + }, + { + "start": 3467.86, + "end": 3470.58, + "probability": 0.9717 + }, + { + "start": 3471.42, + "end": 3473.08, + "probability": 0.813 + }, + { + "start": 3473.2, + "end": 3474.6, + "probability": 0.983 + }, + { + "start": 3474.76, + "end": 3476.46, + "probability": 0.772 + }, + { + "start": 3476.9, + "end": 3481.58, + "probability": 0.983 + }, + { + "start": 3481.58, + "end": 3487.42, + "probability": 0.9889 + }, + { + "start": 3487.5, + "end": 3488.36, + "probability": 0.8181 + }, + { + "start": 3488.46, + "end": 3488.82, + "probability": 0.9225 + }, + { + "start": 3489.16, + "end": 3489.66, + "probability": 0.9685 + }, + { + "start": 3489.9, + "end": 3491.16, + "probability": 0.7428 + }, + { + "start": 3493.5, + "end": 3497.46, + "probability": 0.9521 + }, + { + "start": 3498.02, + "end": 3499.2, + "probability": 0.8914 + }, + { + "start": 3499.32, + "end": 3501.84, + "probability": 0.9763 + }, + { + "start": 3501.94, + "end": 3503.62, + "probability": 0.8751 + }, + { + "start": 3503.68, + "end": 3506.48, + "probability": 0.9792 + }, + { + "start": 3507.42, + "end": 3508.94, + "probability": 0.7041 + }, + { + "start": 3508.96, + "end": 3514.36, + "probability": 0.9946 + }, + { + "start": 3514.5, + "end": 3515.68, + "probability": 0.7928 + }, + { + "start": 3516.06, + "end": 3519.46, + "probability": 0.9951 + }, + { + "start": 3519.64, + "end": 3520.54, + "probability": 0.9686 + }, + { + "start": 3521.3, + "end": 3522.94, + "probability": 0.9927 + }, + { + "start": 3522.98, + "end": 3525.2, + "probability": 0.875 + }, + { + "start": 3525.86, + "end": 3526.74, + "probability": 0.6328 + }, + { + "start": 3526.88, + "end": 3527.8, + "probability": 0.7733 + }, + { + "start": 3527.96, + "end": 3532.4, + "probability": 0.9946 + }, + { + "start": 3532.5, + "end": 3534.57, + "probability": 0.997 + }, + { + "start": 3535.12, + "end": 3537.38, + "probability": 0.9904 + }, + { + "start": 3538.36, + "end": 3539.62, + "probability": 0.9166 + }, + { + "start": 3540.08, + "end": 3541.48, + "probability": 0.8533 + }, + { + "start": 3541.6, + "end": 3542.37, + "probability": 0.8273 + }, + { + "start": 3542.64, + "end": 3545.58, + "probability": 0.9958 + }, + { + "start": 3545.84, + "end": 3548.14, + "probability": 0.7744 + }, + { + "start": 3548.2, + "end": 3548.94, + "probability": 0.7519 + }, + { + "start": 3549.08, + "end": 3549.48, + "probability": 0.4922 + }, + { + "start": 3549.5, + "end": 3551.7, + "probability": 0.6372 + }, + { + "start": 3551.86, + "end": 3552.76, + "probability": 0.8329 + }, + { + "start": 3553.66, + "end": 3556.86, + "probability": 0.8498 + }, + { + "start": 3557.94, + "end": 3562.8, + "probability": 0.9521 + }, + { + "start": 3563.42, + "end": 3569.04, + "probability": 0.9953 + }, + { + "start": 3570.08, + "end": 3572.5, + "probability": 0.6662 + }, + { + "start": 3573.42, + "end": 3576.74, + "probability": 0.8675 + }, + { + "start": 3577.44, + "end": 3579.7, + "probability": 0.9929 + }, + { + "start": 3580.17, + "end": 3582.6, + "probability": 0.9753 + }, + { + "start": 3582.66, + "end": 3583.26, + "probability": 0.4959 + }, + { + "start": 3583.34, + "end": 3585.66, + "probability": 0.8738 + }, + { + "start": 3585.88, + "end": 3587.22, + "probability": 0.8721 + }, + { + "start": 3587.3, + "end": 3588.04, + "probability": 0.8651 + }, + { + "start": 3588.2, + "end": 3589.78, + "probability": 0.9553 + }, + { + "start": 3590.1, + "end": 3594.04, + "probability": 0.9819 + }, + { + "start": 3595.94, + "end": 3596.68, + "probability": 0.1843 + }, + { + "start": 3596.78, + "end": 3596.88, + "probability": 0.115 + }, + { + "start": 3596.88, + "end": 3597.39, + "probability": 0.3943 + }, + { + "start": 3597.84, + "end": 3598.52, + "probability": 0.3732 + }, + { + "start": 3598.66, + "end": 3600.66, + "probability": 0.9457 + }, + { + "start": 3600.66, + "end": 3603.6, + "probability": 0.9946 + }, + { + "start": 3604.08, + "end": 3604.48, + "probability": 0.6801 + }, + { + "start": 3604.54, + "end": 3605.6, + "probability": 0.7552 + }, + { + "start": 3605.78, + "end": 3608.92, + "probability": 0.8877 + }, + { + "start": 3609.1, + "end": 3609.8, + "probability": 0.9689 + }, + { + "start": 3610.2, + "end": 3611.06, + "probability": 0.8893 + }, + { + "start": 3611.16, + "end": 3612.2, + "probability": 0.9563 + }, + { + "start": 3612.34, + "end": 3616.2, + "probability": 0.9241 + }, + { + "start": 3616.2, + "end": 3618.82, + "probability": 0.9642 + }, + { + "start": 3618.86, + "end": 3619.38, + "probability": 0.8298 + }, + { + "start": 3619.72, + "end": 3621.68, + "probability": 0.7649 + }, + { + "start": 3622.4, + "end": 3624.08, + "probability": 0.9456 + }, + { + "start": 3624.16, + "end": 3624.6, + "probability": 0.4068 + }, + { + "start": 3624.64, + "end": 3626.06, + "probability": 0.7662 + }, + { + "start": 3626.86, + "end": 3629.26, + "probability": 0.9324 + }, + { + "start": 3630.06, + "end": 3631.74, + "probability": 0.9056 + }, + { + "start": 3631.78, + "end": 3633.42, + "probability": 0.9889 + }, + { + "start": 3633.44, + "end": 3637.84, + "probability": 0.96 + }, + { + "start": 3638.04, + "end": 3641.52, + "probability": 0.7862 + }, + { + "start": 3642.16, + "end": 3644.78, + "probability": 0.9706 + }, + { + "start": 3645.08, + "end": 3646.16, + "probability": 0.9895 + }, + { + "start": 3646.88, + "end": 3647.2, + "probability": 0.0069 + }, + { + "start": 3647.3, + "end": 3649.98, + "probability": 0.0211 + }, + { + "start": 3649.98, + "end": 3653.62, + "probability": 0.846 + }, + { + "start": 3653.64, + "end": 3656.68, + "probability": 0.0463 + }, + { + "start": 3657.74, + "end": 3660.4, + "probability": 0.4096 + }, + { + "start": 3664.12, + "end": 3664.28, + "probability": 0.4339 + }, + { + "start": 3664.64, + "end": 3664.64, + "probability": 0.065 + }, + { + "start": 3664.74, + "end": 3665.26, + "probability": 0.3472 + }, + { + "start": 3667.4, + "end": 3670.26, + "probability": 0.7329 + }, + { + "start": 3672.48, + "end": 3676.3, + "probability": 0.9962 + }, + { + "start": 3677.06, + "end": 3681.92, + "probability": 0.7715 + }, + { + "start": 3683.06, + "end": 3683.22, + "probability": 0.5562 + }, + { + "start": 3684.02, + "end": 3684.72, + "probability": 0.8196 + }, + { + "start": 3684.92, + "end": 3685.24, + "probability": 0.7966 + }, + { + "start": 3685.32, + "end": 3685.54, + "probability": 0.6169 + }, + { + "start": 3685.62, + "end": 3686.36, + "probability": 0.6607 + }, + { + "start": 3686.48, + "end": 3688.32, + "probability": 0.9273 + }, + { + "start": 3689.04, + "end": 3691.8, + "probability": 0.6014 + }, + { + "start": 3692.62, + "end": 3695.26, + "probability": 0.9939 + }, + { + "start": 3695.52, + "end": 3697.68, + "probability": 0.8497 + }, + { + "start": 3698.82, + "end": 3701.08, + "probability": 0.985 + }, + { + "start": 3701.2, + "end": 3702.86, + "probability": 0.8955 + }, + { + "start": 3702.9, + "end": 3706.12, + "probability": 0.8709 + }, + { + "start": 3707.08, + "end": 3709.34, + "probability": 0.992 + }, + { + "start": 3710.78, + "end": 3716.18, + "probability": 0.9905 + }, + { + "start": 3716.36, + "end": 3720.08, + "probability": 0.7459 + }, + { + "start": 3720.22, + "end": 3720.76, + "probability": 0.4294 + }, + { + "start": 3720.76, + "end": 3720.76, + "probability": 0.5284 + }, + { + "start": 3720.84, + "end": 3724.36, + "probability": 0.3476 + }, + { + "start": 3724.48, + "end": 3724.84, + "probability": 0.0949 + }, + { + "start": 3724.84, + "end": 3725.76, + "probability": 0.7597 + }, + { + "start": 3725.94, + "end": 3726.4, + "probability": 0.8721 + }, + { + "start": 3726.52, + "end": 3729.68, + "probability": 0.9964 + }, + { + "start": 3729.82, + "end": 3734.08, + "probability": 0.7952 + }, + { + "start": 3734.2, + "end": 3734.2, + "probability": 0.1282 + }, + { + "start": 3734.2, + "end": 3736.14, + "probability": 0.3461 + }, + { + "start": 3736.14, + "end": 3742.26, + "probability": 0.8455 + }, + { + "start": 3742.26, + "end": 3742.26, + "probability": 0.163 + }, + { + "start": 3742.36, + "end": 3742.36, + "probability": 0.0599 + }, + { + "start": 3742.36, + "end": 3742.36, + "probability": 0.3362 + }, + { + "start": 3742.36, + "end": 3742.42, + "probability": 0.1746 + }, + { + "start": 3742.78, + "end": 3744.99, + "probability": 0.0817 + }, + { + "start": 3747.14, + "end": 3749.14, + "probability": 0.3086 + }, + { + "start": 3750.32, + "end": 3750.7, + "probability": 0.8638 + }, + { + "start": 3753.06, + "end": 3755.2, + "probability": 0.9207 + }, + { + "start": 3755.34, + "end": 3756.22, + "probability": 0.3721 + }, + { + "start": 3756.42, + "end": 3757.4, + "probability": 0.7098 + }, + { + "start": 3757.48, + "end": 3757.96, + "probability": 0.4488 + }, + { + "start": 3758.06, + "end": 3761.68, + "probability": 0.9972 + }, + { + "start": 3761.68, + "end": 3763.48, + "probability": 0.9979 + }, + { + "start": 3764.12, + "end": 3765.42, + "probability": 0.7134 + }, + { + "start": 3765.5, + "end": 3767.82, + "probability": 0.8445 + }, + { + "start": 3768.46, + "end": 3773.26, + "probability": 0.8569 + }, + { + "start": 3773.68, + "end": 3774.16, + "probability": 0.5767 + }, + { + "start": 3775.62, + "end": 3777.88, + "probability": 0.8994 + }, + { + "start": 3778.2, + "end": 3778.62, + "probability": 0.6675 + }, + { + "start": 3778.88, + "end": 3780.34, + "probability": 0.8783 + }, + { + "start": 3780.44, + "end": 3782.48, + "probability": 0.5252 + }, + { + "start": 3783.08, + "end": 3786.7, + "probability": 0.9984 + }, + { + "start": 3786.7, + "end": 3790.24, + "probability": 0.8016 + }, + { + "start": 3790.74, + "end": 3795.08, + "probability": 0.9282 + }, + { + "start": 3795.08, + "end": 3802.42, + "probability": 0.9576 + }, + { + "start": 3802.8, + "end": 3806.7, + "probability": 0.9883 + }, + { + "start": 3807.04, + "end": 3809.08, + "probability": 0.9569 + }, + { + "start": 3809.8, + "end": 3810.96, + "probability": 0.6917 + }, + { + "start": 3811.02, + "end": 3811.86, + "probability": 0.8786 + }, + { + "start": 3812.26, + "end": 3814.64, + "probability": 0.9689 + }, + { + "start": 3814.82, + "end": 3819.6, + "probability": 0.9463 + }, + { + "start": 3820.38, + "end": 3823.1, + "probability": 0.9886 + }, + { + "start": 3823.2, + "end": 3828.82, + "probability": 0.9279 + }, + { + "start": 3829.76, + "end": 3835.8, + "probability": 0.9554 + }, + { + "start": 3835.8, + "end": 3840.62, + "probability": 0.9479 + }, + { + "start": 3841.1, + "end": 3842.48, + "probability": 0.9182 + }, + { + "start": 3842.78, + "end": 3846.36, + "probability": 0.9099 + }, + { + "start": 3847.5, + "end": 3848.84, + "probability": 0.916 + }, + { + "start": 3849.38, + "end": 3850.08, + "probability": 0.8579 + }, + { + "start": 3850.12, + "end": 3851.04, + "probability": 0.7907 + }, + { + "start": 3851.32, + "end": 3854.88, + "probability": 0.9853 + }, + { + "start": 3855.86, + "end": 3856.84, + "probability": 0.9315 + }, + { + "start": 3856.94, + "end": 3858.49, + "probability": 0.9917 + }, + { + "start": 3859.16, + "end": 3861.44, + "probability": 0.953 + }, + { + "start": 3861.54, + "end": 3862.38, + "probability": 0.8856 + }, + { + "start": 3862.6, + "end": 3864.08, + "probability": 0.9927 + }, + { + "start": 3864.48, + "end": 3865.3, + "probability": 0.9775 + }, + { + "start": 3865.48, + "end": 3865.98, + "probability": 0.7244 + }, + { + "start": 3866.34, + "end": 3867.8, + "probability": 0.9319 + }, + { + "start": 3869.08, + "end": 3871.98, + "probability": 0.9924 + }, + { + "start": 3871.98, + "end": 3875.84, + "probability": 0.9948 + }, + { + "start": 3876.4, + "end": 3877.3, + "probability": 0.8168 + }, + { + "start": 3877.5, + "end": 3882.74, + "probability": 0.8517 + }, + { + "start": 3883.24, + "end": 3888.42, + "probability": 0.9928 + }, + { + "start": 3888.7, + "end": 3889.9, + "probability": 0.8434 + }, + { + "start": 3890.66, + "end": 3894.46, + "probability": 0.9367 + }, + { + "start": 3894.58, + "end": 3901.04, + "probability": 0.984 + }, + { + "start": 3901.04, + "end": 3904.06, + "probability": 0.944 + }, + { + "start": 3904.94, + "end": 3907.68, + "probability": 0.9621 + }, + { + "start": 3908.28, + "end": 3910.04, + "probability": 0.9429 + }, + { + "start": 3911.02, + "end": 3917.3, + "probability": 0.9945 + }, + { + "start": 3918.02, + "end": 3921.36, + "probability": 0.9875 + }, + { + "start": 3922.24, + "end": 3922.82, + "probability": 0.6542 + }, + { + "start": 3923.5, + "end": 3924.73, + "probability": 0.9875 + }, + { + "start": 3925.44, + "end": 3928.38, + "probability": 0.9711 + }, + { + "start": 3929.34, + "end": 3931.66, + "probability": 0.988 + }, + { + "start": 3931.72, + "end": 3933.98, + "probability": 0.9659 + }, + { + "start": 3934.34, + "end": 3936.62, + "probability": 0.9983 + }, + { + "start": 3937.04, + "end": 3943.82, + "probability": 0.9836 + }, + { + "start": 3944.02, + "end": 3947.3, + "probability": 0.917 + }, + { + "start": 3947.36, + "end": 3950.88, + "probability": 0.8793 + }, + { + "start": 3951.62, + "end": 3953.1, + "probability": 0.9956 + }, + { + "start": 3953.28, + "end": 3953.84, + "probability": 0.7546 + }, + { + "start": 3954.0, + "end": 3956.12, + "probability": 0.9917 + }, + { + "start": 3956.54, + "end": 3957.84, + "probability": 0.9158 + }, + { + "start": 3958.68, + "end": 3964.92, + "probability": 0.9864 + }, + { + "start": 3965.12, + "end": 3968.12, + "probability": 0.8661 + }, + { + "start": 3968.32, + "end": 3969.38, + "probability": 0.8685 + }, + { + "start": 3969.8, + "end": 3975.54, + "probability": 0.9972 + }, + { + "start": 3975.98, + "end": 3979.36, + "probability": 0.8893 + }, + { + "start": 3979.54, + "end": 3981.54, + "probability": 0.9458 + }, + { + "start": 3982.0, + "end": 3984.5, + "probability": 0.9104 + }, + { + "start": 3984.86, + "end": 3992.5, + "probability": 0.9976 + }, + { + "start": 3993.2, + "end": 3996.92, + "probability": 0.9964 + }, + { + "start": 3997.52, + "end": 4003.68, + "probability": 0.9951 + }, + { + "start": 4003.86, + "end": 4007.66, + "probability": 0.9522 + }, + { + "start": 4007.76, + "end": 4008.2, + "probability": 0.7442 + }, + { + "start": 4008.8, + "end": 4010.72, + "probability": 0.9801 + }, + { + "start": 4010.88, + "end": 4012.6, + "probability": 0.9619 + }, + { + "start": 4012.68, + "end": 4014.14, + "probability": 0.4265 + }, + { + "start": 4014.16, + "end": 4015.7, + "probability": 0.9308 + }, + { + "start": 4015.92, + "end": 4016.12, + "probability": 0.8086 + }, + { + "start": 4028.18, + "end": 4028.26, + "probability": 0.0162 + }, + { + "start": 4028.26, + "end": 4028.42, + "probability": 0.6207 + }, + { + "start": 4029.06, + "end": 4029.74, + "probability": 0.784 + }, + { + "start": 4030.0, + "end": 4031.48, + "probability": 0.8916 + }, + { + "start": 4031.52, + "end": 4033.02, + "probability": 0.9856 + }, + { + "start": 4033.1, + "end": 4036.18, + "probability": 0.957 + }, + { + "start": 4036.24, + "end": 4037.36, + "probability": 0.9705 + }, + { + "start": 4037.82, + "end": 4041.04, + "probability": 0.9541 + }, + { + "start": 4041.04, + "end": 4045.3, + "probability": 0.9874 + }, + { + "start": 4045.58, + "end": 4047.5, + "probability": 0.7672 + }, + { + "start": 4047.68, + "end": 4049.4, + "probability": 0.8135 + }, + { + "start": 4049.64, + "end": 4052.68, + "probability": 0.9929 + }, + { + "start": 4052.82, + "end": 4054.7, + "probability": 0.9192 + }, + { + "start": 4056.58, + "end": 4057.46, + "probability": 0.3412 + }, + { + "start": 4057.6, + "end": 4057.74, + "probability": 0.4262 + }, + { + "start": 4057.74, + "end": 4057.74, + "probability": 0.5339 + }, + { + "start": 4057.74, + "end": 4058.39, + "probability": 0.6488 + }, + { + "start": 4058.9, + "end": 4061.92, + "probability": 0.9182 + }, + { + "start": 4061.98, + "end": 4069.06, + "probability": 0.9727 + }, + { + "start": 4069.26, + "end": 4069.82, + "probability": 0.9383 + }, + { + "start": 4070.54, + "end": 4072.32, + "probability": 0.7598 + }, + { + "start": 4073.42, + "end": 4080.66, + "probability": 0.9519 + }, + { + "start": 4080.76, + "end": 4082.72, + "probability": 0.9736 + }, + { + "start": 4082.92, + "end": 4085.46, + "probability": 0.9468 + }, + { + "start": 4085.58, + "end": 4088.97, + "probability": 0.8815 + }, + { + "start": 4089.56, + "end": 4093.5, + "probability": 0.9818 + }, + { + "start": 4093.76, + "end": 4095.16, + "probability": 0.7616 + }, + { + "start": 4095.66, + "end": 4100.0, + "probability": 0.88 + }, + { + "start": 4100.0, + "end": 4102.98, + "probability": 0.9604 + }, + { + "start": 4103.12, + "end": 4107.68, + "probability": 0.9957 + }, + { + "start": 4108.2, + "end": 4114.0, + "probability": 0.9867 + }, + { + "start": 4115.24, + "end": 4116.44, + "probability": 0.6961 + }, + { + "start": 4116.96, + "end": 4119.7, + "probability": 0.9678 + }, + { + "start": 4120.08, + "end": 4122.09, + "probability": 0.9922 + }, + { + "start": 4122.94, + "end": 4124.84, + "probability": 0.7642 + }, + { + "start": 4125.08, + "end": 4126.74, + "probability": 0.9558 + }, + { + "start": 4126.88, + "end": 4128.96, + "probability": 0.9971 + }, + { + "start": 4129.4, + "end": 4131.9, + "probability": 0.9593 + }, + { + "start": 4132.38, + "end": 4137.34, + "probability": 0.9845 + }, + { + "start": 4137.8, + "end": 4139.12, + "probability": 0.7921 + }, + { + "start": 4139.44, + "end": 4142.98, + "probability": 0.9937 + }, + { + "start": 4143.5, + "end": 4144.29, + "probability": 0.9177 + }, + { + "start": 4144.92, + "end": 4147.82, + "probability": 0.9968 + }, + { + "start": 4147.82, + "end": 4152.48, + "probability": 0.9869 + }, + { + "start": 4152.96, + "end": 4155.6, + "probability": 0.9134 + }, + { + "start": 4156.3, + "end": 4159.42, + "probability": 0.9214 + }, + { + "start": 4160.02, + "end": 4163.26, + "probability": 0.9651 + }, + { + "start": 4163.46, + "end": 4164.62, + "probability": 0.9332 + }, + { + "start": 4164.86, + "end": 4166.48, + "probability": 0.9735 + }, + { + "start": 4166.72, + "end": 4168.44, + "probability": 0.939 + }, + { + "start": 4168.78, + "end": 4174.22, + "probability": 0.9692 + }, + { + "start": 4174.52, + "end": 4178.2, + "probability": 0.9398 + }, + { + "start": 4178.28, + "end": 4180.09, + "probability": 0.8795 + }, + { + "start": 4180.78, + "end": 4181.96, + "probability": 0.6613 + }, + { + "start": 4182.04, + "end": 4184.83, + "probability": 0.9589 + }, + { + "start": 4185.82, + "end": 4187.06, + "probability": 0.9926 + }, + { + "start": 4187.32, + "end": 4190.44, + "probability": 0.9173 + }, + { + "start": 4191.92, + "end": 4195.18, + "probability": 0.9707 + }, + { + "start": 4195.22, + "end": 4199.58, + "probability": 0.9968 + }, + { + "start": 4199.7, + "end": 4205.76, + "probability": 0.9336 + }, + { + "start": 4205.76, + "end": 4212.56, + "probability": 0.9875 + }, + { + "start": 4212.56, + "end": 4216.28, + "probability": 0.9985 + }, + { + "start": 4216.94, + "end": 4219.68, + "probability": 0.9061 + }, + { + "start": 4220.32, + "end": 4221.9, + "probability": 0.9181 + }, + { + "start": 4222.4, + "end": 4224.16, + "probability": 0.939 + }, + { + "start": 4224.72, + "end": 4225.54, + "probability": 0.9057 + }, + { + "start": 4225.62, + "end": 4226.52, + "probability": 0.959 + }, + { + "start": 4226.54, + "end": 4228.44, + "probability": 0.9785 + }, + { + "start": 4229.46, + "end": 4235.44, + "probability": 0.973 + }, + { + "start": 4236.2, + "end": 4241.18, + "probability": 0.8772 + }, + { + "start": 4241.62, + "end": 4242.12, + "probability": 0.3816 + }, + { + "start": 4242.32, + "end": 4245.32, + "probability": 0.8918 + }, + { + "start": 4245.68, + "end": 4247.22, + "probability": 0.9666 + }, + { + "start": 4247.42, + "end": 4253.92, + "probability": 0.99 + }, + { + "start": 4254.4, + "end": 4255.24, + "probability": 0.9297 + }, + { + "start": 4255.56, + "end": 4258.26, + "probability": 0.9679 + }, + { + "start": 4260.68, + "end": 4266.4, + "probability": 0.9899 + }, + { + "start": 4266.8, + "end": 4272.32, + "probability": 0.9837 + }, + { + "start": 4272.38, + "end": 4272.74, + "probability": 0.6932 + }, + { + "start": 4272.84, + "end": 4273.46, + "probability": 0.9175 + }, + { + "start": 4273.6, + "end": 4274.38, + "probability": 0.9391 + }, + { + "start": 4274.56, + "end": 4279.38, + "probability": 0.9622 + }, + { + "start": 4279.38, + "end": 4283.42, + "probability": 0.9933 + }, + { + "start": 4284.2, + "end": 4290.72, + "probability": 0.9792 + }, + { + "start": 4291.26, + "end": 4298.26, + "probability": 0.9929 + }, + { + "start": 4298.26, + "end": 4304.7, + "probability": 0.9984 + }, + { + "start": 4305.2, + "end": 4309.41, + "probability": 0.9873 + }, + { + "start": 4309.5, + "end": 4315.96, + "probability": 0.991 + }, + { + "start": 4316.08, + "end": 4317.38, + "probability": 0.7495 + }, + { + "start": 4317.64, + "end": 4320.22, + "probability": 0.8951 + }, + { + "start": 4320.8, + "end": 4323.88, + "probability": 0.9697 + }, + { + "start": 4324.0, + "end": 4324.36, + "probability": 0.9207 + }, + { + "start": 4324.66, + "end": 4327.92, + "probability": 0.9851 + }, + { + "start": 4328.04, + "end": 4330.94, + "probability": 0.9961 + }, + { + "start": 4330.94, + "end": 4334.44, + "probability": 0.9988 + }, + { + "start": 4334.54, + "end": 4335.7, + "probability": 0.5563 + }, + { + "start": 4336.48, + "end": 4341.56, + "probability": 0.7888 + }, + { + "start": 4342.14, + "end": 4343.06, + "probability": 0.8048 + }, + { + "start": 4343.2, + "end": 4347.04, + "probability": 0.9502 + }, + { + "start": 4347.82, + "end": 4354.36, + "probability": 0.9276 + }, + { + "start": 4355.08, + "end": 4357.32, + "probability": 0.9675 + }, + { + "start": 4357.48, + "end": 4358.84, + "probability": 0.8208 + }, + { + "start": 4358.9, + "end": 4364.12, + "probability": 0.985 + }, + { + "start": 4364.12, + "end": 4368.68, + "probability": 0.9963 + }, + { + "start": 4368.92, + "end": 4370.93, + "probability": 0.8999 + }, + { + "start": 4373.5, + "end": 4375.32, + "probability": 0.9427 + }, + { + "start": 4375.32, + "end": 4375.32, + "probability": 0.0814 + }, + { + "start": 4375.32, + "end": 4376.68, + "probability": 0.6051 + }, + { + "start": 4376.86, + "end": 4380.44, + "probability": 0.9044 + }, + { + "start": 4380.46, + "end": 4381.6, + "probability": 0.8617 + }, + { + "start": 4381.88, + "end": 4383.18, + "probability": 0.9692 + }, + { + "start": 4383.54, + "end": 4388.42, + "probability": 0.9907 + }, + { + "start": 4388.72, + "end": 4390.36, + "probability": 0.9858 + }, + { + "start": 4390.76, + "end": 4390.96, + "probability": 0.5233 + }, + { + "start": 4391.06, + "end": 4393.2, + "probability": 0.9823 + }, + { + "start": 4394.16, + "end": 4396.74, + "probability": 0.9979 + }, + { + "start": 4396.8, + "end": 4400.26, + "probability": 0.9978 + }, + { + "start": 4400.52, + "end": 4401.0, + "probability": 0.7627 + }, + { + "start": 4401.24, + "end": 4402.82, + "probability": 0.717 + }, + { + "start": 4403.14, + "end": 4404.56, + "probability": 0.7307 + }, + { + "start": 4404.76, + "end": 4405.68, + "probability": 0.7642 + }, + { + "start": 4405.8, + "end": 4406.82, + "probability": 0.9696 + }, + { + "start": 4406.92, + "end": 4407.26, + "probability": 0.7488 + }, + { + "start": 4407.4, + "end": 4407.72, + "probability": 0.7784 + }, + { + "start": 4408.98, + "end": 4411.04, + "probability": 0.9753 + }, + { + "start": 4411.32, + "end": 4412.1, + "probability": 0.4398 + }, + { + "start": 4412.22, + "end": 4413.54, + "probability": 0.913 + }, + { + "start": 4427.9, + "end": 4428.52, + "probability": 0.5226 + }, + { + "start": 4432.9, + "end": 4435.74, + "probability": 0.8333 + }, + { + "start": 4437.46, + "end": 4439.2, + "probability": 0.9955 + }, + { + "start": 4440.66, + "end": 4443.86, + "probability": 0.9827 + }, + { + "start": 4445.52, + "end": 4447.5, + "probability": 0.8665 + }, + { + "start": 4448.76, + "end": 4450.88, + "probability": 0.8683 + }, + { + "start": 4452.16, + "end": 4454.5, + "probability": 0.9573 + }, + { + "start": 4456.05, + "end": 4459.02, + "probability": 0.8855 + }, + { + "start": 4459.7, + "end": 4460.74, + "probability": 0.588 + }, + { + "start": 4460.86, + "end": 4464.5, + "probability": 0.9312 + }, + { + "start": 4464.56, + "end": 4466.52, + "probability": 0.798 + }, + { + "start": 4467.26, + "end": 4468.14, + "probability": 0.9888 + }, + { + "start": 4469.26, + "end": 4474.26, + "probability": 0.9647 + }, + { + "start": 4474.94, + "end": 4477.68, + "probability": 0.587 + }, + { + "start": 4477.92, + "end": 4479.1, + "probability": 0.488 + }, + { + "start": 4480.28, + "end": 4482.78, + "probability": 0.7301 + }, + { + "start": 4483.1, + "end": 4485.0, + "probability": 0.9894 + }, + { + "start": 4487.83, + "end": 4492.3, + "probability": 0.8326 + }, + { + "start": 4492.5, + "end": 4497.56, + "probability": 0.9727 + }, + { + "start": 4499.26, + "end": 4500.8, + "probability": 0.9544 + }, + { + "start": 4501.88, + "end": 4502.18, + "probability": 0.4028 + }, + { + "start": 4502.28, + "end": 4504.84, + "probability": 0.8836 + }, + { + "start": 4505.58, + "end": 4508.46, + "probability": 0.9653 + }, + { + "start": 4508.6, + "end": 4516.14, + "probability": 0.9181 + }, + { + "start": 4518.14, + "end": 4523.16, + "probability": 0.9578 + }, + { + "start": 4523.92, + "end": 4526.44, + "probability": 0.6514 + }, + { + "start": 4526.5, + "end": 4527.76, + "probability": 0.7191 + }, + { + "start": 4527.78, + "end": 4528.44, + "probability": 0.6707 + }, + { + "start": 4529.16, + "end": 4532.52, + "probability": 0.8943 + }, + { + "start": 4533.7, + "end": 4534.4, + "probability": 0.4909 + }, + { + "start": 4537.46, + "end": 4543.36, + "probability": 0.7737 + }, + { + "start": 4543.82, + "end": 4547.9, + "probability": 0.5565 + }, + { + "start": 4548.44, + "end": 4551.02, + "probability": 0.765 + }, + { + "start": 4551.12, + "end": 4552.92, + "probability": 0.9675 + }, + { + "start": 4553.0, + "end": 4554.28, + "probability": 0.8017 + }, + { + "start": 4554.68, + "end": 4557.46, + "probability": 0.9955 + }, + { + "start": 4557.46, + "end": 4562.72, + "probability": 0.8371 + }, + { + "start": 4563.64, + "end": 4565.68, + "probability": 0.7569 + }, + { + "start": 4566.4, + "end": 4568.89, + "probability": 0.7174 + }, + { + "start": 4569.5, + "end": 4571.5, + "probability": 0.9849 + }, + { + "start": 4571.58, + "end": 4572.8, + "probability": 0.9852 + }, + { + "start": 4572.86, + "end": 4574.44, + "probability": 0.9501 + }, + { + "start": 4574.74, + "end": 4576.1, + "probability": 0.9835 + }, + { + "start": 4576.2, + "end": 4578.2, + "probability": 0.9456 + }, + { + "start": 4579.08, + "end": 4581.78, + "probability": 0.7667 + }, + { + "start": 4581.88, + "end": 4586.29, + "probability": 0.9333 + }, + { + "start": 4587.5, + "end": 4589.86, + "probability": 0.8051 + }, + { + "start": 4590.02, + "end": 4590.82, + "probability": 0.4513 + }, + { + "start": 4591.8, + "end": 4593.82, + "probability": 0.7751 + }, + { + "start": 4594.8, + "end": 4600.86, + "probability": 0.9581 + }, + { + "start": 4600.86, + "end": 4608.64, + "probability": 0.9879 + }, + { + "start": 4609.44, + "end": 4612.18, + "probability": 0.9916 + }, + { + "start": 4612.18, + "end": 4615.08, + "probability": 0.8145 + }, + { + "start": 4615.58, + "end": 4617.42, + "probability": 0.848 + }, + { + "start": 4617.78, + "end": 4620.46, + "probability": 0.8912 + }, + { + "start": 4621.52, + "end": 4624.88, + "probability": 0.8377 + }, + { + "start": 4625.42, + "end": 4627.64, + "probability": 0.9077 + }, + { + "start": 4628.64, + "end": 4634.16, + "probability": 0.79 + }, + { + "start": 4634.84, + "end": 4637.52, + "probability": 0.8848 + }, + { + "start": 4638.02, + "end": 4641.04, + "probability": 0.9893 + }, + { + "start": 4641.12, + "end": 4641.52, + "probability": 0.3913 + }, + { + "start": 4641.58, + "end": 4642.38, + "probability": 0.8456 + }, + { + "start": 4642.8, + "end": 4645.14, + "probability": 0.9374 + }, + { + "start": 4645.16, + "end": 4650.28, + "probability": 0.9755 + }, + { + "start": 4650.48, + "end": 4655.3, + "probability": 0.8436 + }, + { + "start": 4655.38, + "end": 4657.72, + "probability": 0.8975 + }, + { + "start": 4658.68, + "end": 4663.84, + "probability": 0.9518 + }, + { + "start": 4664.28, + "end": 4665.52, + "probability": 0.8386 + }, + { + "start": 4666.0, + "end": 4666.94, + "probability": 0.959 + }, + { + "start": 4667.04, + "end": 4667.44, + "probability": 0.8005 + }, + { + "start": 4667.58, + "end": 4667.98, + "probability": 0.8606 + }, + { + "start": 4668.02, + "end": 4669.08, + "probability": 0.6123 + }, + { + "start": 4669.42, + "end": 4672.06, + "probability": 0.9979 + }, + { + "start": 4672.16, + "end": 4674.86, + "probability": 0.7751 + }, + { + "start": 4675.0, + "end": 4677.38, + "probability": 0.8301 + }, + { + "start": 4677.52, + "end": 4680.09, + "probability": 0.76 + }, + { + "start": 4681.17, + "end": 4683.08, + "probability": 0.7242 + }, + { + "start": 4684.66, + "end": 4688.38, + "probability": 0.9751 + }, + { + "start": 4688.46, + "end": 4691.92, + "probability": 0.8458 + }, + { + "start": 4692.68, + "end": 4693.9, + "probability": 0.6528 + }, + { + "start": 4694.82, + "end": 4695.72, + "probability": 0.9131 + }, + { + "start": 4695.8, + "end": 4696.72, + "probability": 0.6502 + }, + { + "start": 4696.9, + "end": 4698.04, + "probability": 0.8078 + }, + { + "start": 4698.7, + "end": 4699.43, + "probability": 0.9404 + }, + { + "start": 4700.04, + "end": 4705.24, + "probability": 0.8587 + }, + { + "start": 4705.3, + "end": 4707.28, + "probability": 0.4823 + }, + { + "start": 4707.32, + "end": 4707.8, + "probability": 0.5861 + }, + { + "start": 4708.44, + "end": 4708.6, + "probability": 0.2956 + }, + { + "start": 4708.62, + "end": 4710.9, + "probability": 0.9378 + }, + { + "start": 4711.02, + "end": 4713.64, + "probability": 0.7522 + }, + { + "start": 4715.02, + "end": 4716.96, + "probability": 0.5868 + }, + { + "start": 4717.18, + "end": 4720.6, + "probability": 0.9388 + }, + { + "start": 4720.6, + "end": 4723.76, + "probability": 0.9978 + }, + { + "start": 4724.04, + "end": 4726.18, + "probability": 0.9937 + }, + { + "start": 4726.34, + "end": 4731.54, + "probability": 0.9859 + }, + { + "start": 4731.62, + "end": 4732.76, + "probability": 0.6398 + }, + { + "start": 4733.48, + "end": 4736.04, + "probability": 0.9411 + }, + { + "start": 4737.24, + "end": 4741.68, + "probability": 0.9053 + }, + { + "start": 4741.74, + "end": 4746.22, + "probability": 0.9832 + }, + { + "start": 4747.0, + "end": 4748.48, + "probability": 0.9929 + }, + { + "start": 4748.62, + "end": 4753.52, + "probability": 0.8415 + }, + { + "start": 4753.64, + "end": 4756.36, + "probability": 0.7143 + }, + { + "start": 4756.52, + "end": 4757.56, + "probability": 0.9379 + }, + { + "start": 4757.62, + "end": 4759.02, + "probability": 0.9787 + }, + { + "start": 4759.54, + "end": 4763.16, + "probability": 0.9092 + }, + { + "start": 4763.88, + "end": 4767.2, + "probability": 0.9563 + }, + { + "start": 4767.26, + "end": 4768.94, + "probability": 0.9111 + }, + { + "start": 4769.46, + "end": 4770.7, + "probability": 0.8688 + }, + { + "start": 4770.88, + "end": 4772.64, + "probability": 0.9023 + }, + { + "start": 4773.14, + "end": 4774.02, + "probability": 0.836 + }, + { + "start": 4774.5, + "end": 4775.35, + "probability": 0.8717 + }, + { + "start": 4775.62, + "end": 4778.14, + "probability": 0.9053 + }, + { + "start": 4778.24, + "end": 4779.36, + "probability": 0.7982 + }, + { + "start": 4779.76, + "end": 4782.22, + "probability": 0.845 + }, + { + "start": 4783.2, + "end": 4784.0, + "probability": 0.5082 + }, + { + "start": 4784.12, + "end": 4785.94, + "probability": 0.968 + }, + { + "start": 4786.04, + "end": 4789.98, + "probability": 0.9812 + }, + { + "start": 4790.34, + "end": 4795.48, + "probability": 0.9441 + }, + { + "start": 4795.58, + "end": 4797.82, + "probability": 0.6819 + }, + { + "start": 4797.84, + "end": 4798.54, + "probability": 0.642 + }, + { + "start": 4798.94, + "end": 4800.36, + "probability": 0.7163 + }, + { + "start": 4800.48, + "end": 4801.74, + "probability": 0.6741 + }, + { + "start": 4802.04, + "end": 4802.86, + "probability": 0.8823 + }, + { + "start": 4803.48, + "end": 4804.38, + "probability": 0.961 + }, + { + "start": 4804.4, + "end": 4806.04, + "probability": 0.7213 + }, + { + "start": 4806.36, + "end": 4809.16, + "probability": 0.9863 + }, + { + "start": 4809.4, + "end": 4812.24, + "probability": 0.9976 + }, + { + "start": 4812.24, + "end": 4815.86, + "probability": 0.9951 + }, + { + "start": 4815.94, + "end": 4816.14, + "probability": 0.6958 + }, + { + "start": 4816.52, + "end": 4818.35, + "probability": 0.9917 + }, + { + "start": 4818.5, + "end": 4820.28, + "probability": 0.8145 + }, + { + "start": 4821.38, + "end": 4824.86, + "probability": 0.8788 + }, + { + "start": 4825.2, + "end": 4825.68, + "probability": 0.7136 + }, + { + "start": 4833.1, + "end": 4833.56, + "probability": 0.8788 + }, + { + "start": 4835.16, + "end": 4836.42, + "probability": 0.4814 + }, + { + "start": 4840.52, + "end": 4844.12, + "probability": 0.8845 + }, + { + "start": 4844.36, + "end": 4849.02, + "probability": 0.7531 + }, + { + "start": 4850.79, + "end": 4856.3, + "probability": 0.9435 + }, + { + "start": 4858.08, + "end": 4860.6, + "probability": 0.8431 + }, + { + "start": 4860.74, + "end": 4864.36, + "probability": 0.9041 + }, + { + "start": 4865.24, + "end": 4868.72, + "probability": 0.9577 + }, + { + "start": 4870.7, + "end": 4874.46, + "probability": 0.9969 + }, + { + "start": 4874.46, + "end": 4880.28, + "probability": 0.9906 + }, + { + "start": 4881.32, + "end": 4882.54, + "probability": 0.8655 + }, + { + "start": 4883.7, + "end": 4885.86, + "probability": 0.999 + }, + { + "start": 4886.1, + "end": 4888.92, + "probability": 0.9575 + }, + { + "start": 4889.28, + "end": 4893.16, + "probability": 0.994 + }, + { + "start": 4893.88, + "end": 4898.96, + "probability": 0.9794 + }, + { + "start": 4902.28, + "end": 4908.08, + "probability": 0.7642 + }, + { + "start": 4909.24, + "end": 4914.44, + "probability": 0.9886 + }, + { + "start": 4915.32, + "end": 4918.8, + "probability": 0.8194 + }, + { + "start": 4919.0, + "end": 4919.62, + "probability": 0.5432 + }, + { + "start": 4920.6, + "end": 4924.38, + "probability": 0.8505 + }, + { + "start": 4924.74, + "end": 4925.74, + "probability": 0.79 + }, + { + "start": 4925.88, + "end": 4930.06, + "probability": 0.9121 + }, + { + "start": 4932.17, + "end": 4935.1, + "probability": 0.9801 + }, + { + "start": 4936.24, + "end": 4939.18, + "probability": 0.3603 + }, + { + "start": 4944.9, + "end": 4950.98, + "probability": 0.7986 + }, + { + "start": 4952.3, + "end": 4956.2, + "probability": 0.9188 + }, + { + "start": 4957.24, + "end": 4959.76, + "probability": 0.9351 + }, + { + "start": 4962.0, + "end": 4962.78, + "probability": 0.9518 + }, + { + "start": 4963.8, + "end": 4964.02, + "probability": 0.5869 + }, + { + "start": 4965.0, + "end": 4968.02, + "probability": 0.9164 + }, + { + "start": 4968.02, + "end": 4972.18, + "probability": 0.9986 + }, + { + "start": 4974.48, + "end": 4980.9, + "probability": 0.9758 + }, + { + "start": 4981.66, + "end": 4985.16, + "probability": 0.9946 + }, + { + "start": 4985.72, + "end": 4987.16, + "probability": 0.9949 + }, + { + "start": 4990.68, + "end": 4993.22, + "probability": 0.9369 + }, + { + "start": 4993.88, + "end": 4998.18, + "probability": 0.9516 + }, + { + "start": 5000.64, + "end": 5003.08, + "probability": 0.9528 + }, + { + "start": 5004.08, + "end": 5005.42, + "probability": 0.9079 + }, + { + "start": 5007.32, + "end": 5007.84, + "probability": 0.369 + }, + { + "start": 5008.72, + "end": 5010.32, + "probability": 0.8107 + }, + { + "start": 5011.9, + "end": 5013.72, + "probability": 0.9644 + }, + { + "start": 5014.42, + "end": 5017.26, + "probability": 0.8037 + }, + { + "start": 5019.84, + "end": 5024.0, + "probability": 0.8131 + }, + { + "start": 5025.14, + "end": 5026.76, + "probability": 0.9929 + }, + { + "start": 5028.52, + "end": 5029.88, + "probability": 0.9052 + }, + { + "start": 5030.6, + "end": 5031.52, + "probability": 0.8774 + }, + { + "start": 5032.74, + "end": 5034.58, + "probability": 0.8135 + }, + { + "start": 5037.66, + "end": 5039.14, + "probability": 0.9033 + }, + { + "start": 5041.24, + "end": 5044.26, + "probability": 0.8542 + }, + { + "start": 5045.66, + "end": 5047.42, + "probability": 0.7772 + }, + { + "start": 5047.54, + "end": 5052.6, + "probability": 0.9667 + }, + { + "start": 5052.66, + "end": 5055.54, + "probability": 0.9768 + }, + { + "start": 5055.6, + "end": 5057.74, + "probability": 0.8647 + }, + { + "start": 5057.78, + "end": 5060.34, + "probability": 0.9558 + }, + { + "start": 5060.56, + "end": 5062.2, + "probability": 0.9214 + }, + { + "start": 5062.34, + "end": 5063.34, + "probability": 0.9409 + }, + { + "start": 5065.72, + "end": 5071.08, + "probability": 0.8402 + }, + { + "start": 5072.1, + "end": 5077.75, + "probability": 0.9744 + }, + { + "start": 5078.76, + "end": 5080.62, + "probability": 0.8053 + }, + { + "start": 5081.24, + "end": 5084.64, + "probability": 0.9897 + }, + { + "start": 5085.5, + "end": 5086.64, + "probability": 0.4592 + }, + { + "start": 5087.6, + "end": 5088.82, + "probability": 0.9425 + }, + { + "start": 5089.9, + "end": 5093.12, + "probability": 0.9871 + }, + { + "start": 5093.7, + "end": 5098.92, + "probability": 0.9771 + }, + { + "start": 5100.68, + "end": 5101.78, + "probability": 0.4755 + }, + { + "start": 5102.7, + "end": 5112.28, + "probability": 0.9575 + }, + { + "start": 5112.88, + "end": 5116.78, + "probability": 0.5768 + }, + { + "start": 5117.22, + "end": 5119.22, + "probability": 0.7355 + }, + { + "start": 5119.78, + "end": 5124.04, + "probability": 0.9302 + }, + { + "start": 5124.64, + "end": 5128.66, + "probability": 0.8661 + }, + { + "start": 5130.88, + "end": 5131.54, + "probability": 0.8182 + }, + { + "start": 5131.72, + "end": 5132.54, + "probability": 0.6121 + }, + { + "start": 5133.22, + "end": 5135.43, + "probability": 0.9917 + }, + { + "start": 5135.82, + "end": 5136.8, + "probability": 0.939 + }, + { + "start": 5137.54, + "end": 5138.72, + "probability": 0.6711 + }, + { + "start": 5139.0, + "end": 5143.62, + "probability": 0.9463 + }, + { + "start": 5144.61, + "end": 5149.18, + "probability": 0.9181 + }, + { + "start": 5150.14, + "end": 5156.34, + "probability": 0.8477 + }, + { + "start": 5157.28, + "end": 5158.78, + "probability": 0.8478 + }, + { + "start": 5159.48, + "end": 5160.66, + "probability": 0.6419 + }, + { + "start": 5161.78, + "end": 5165.44, + "probability": 0.9523 + }, + { + "start": 5166.76, + "end": 5169.8, + "probability": 0.8327 + }, + { + "start": 5170.08, + "end": 5177.8, + "probability": 0.9821 + }, + { + "start": 5177.98, + "end": 5179.2, + "probability": 0.8239 + }, + { + "start": 5179.46, + "end": 5181.38, + "probability": 0.4809 + }, + { + "start": 5181.42, + "end": 5182.26, + "probability": 0.9058 + }, + { + "start": 5183.08, + "end": 5185.94, + "probability": 0.7917 + }, + { + "start": 5186.4, + "end": 5192.36, + "probability": 0.9189 + }, + { + "start": 5192.94, + "end": 5195.42, + "probability": 0.9904 + }, + { + "start": 5195.42, + "end": 5200.6, + "probability": 0.9274 + }, + { + "start": 5201.28, + "end": 5205.84, + "probability": 0.9548 + }, + { + "start": 5206.38, + "end": 5208.84, + "probability": 0.6251 + }, + { + "start": 5209.2, + "end": 5211.18, + "probability": 0.9623 + }, + { + "start": 5211.52, + "end": 5216.24, + "probability": 0.8877 + }, + { + "start": 5216.82, + "end": 5221.72, + "probability": 0.8674 + }, + { + "start": 5222.08, + "end": 5226.82, + "probability": 0.9888 + }, + { + "start": 5226.82, + "end": 5231.52, + "probability": 0.9911 + }, + { + "start": 5232.56, + "end": 5235.02, + "probability": 0.3211 + }, + { + "start": 5235.28, + "end": 5237.88, + "probability": 0.6435 + }, + { + "start": 5237.96, + "end": 5240.29, + "probability": 0.7075 + }, + { + "start": 5240.5, + "end": 5241.76, + "probability": 0.7051 + }, + { + "start": 5241.78, + "end": 5241.94, + "probability": 0.0285 + }, + { + "start": 5242.28, + "end": 5243.5, + "probability": 0.7644 + }, + { + "start": 5243.72, + "end": 5244.38, + "probability": 0.6624 + }, + { + "start": 5244.94, + "end": 5247.74, + "probability": 0.9583 + }, + { + "start": 5248.44, + "end": 5249.98, + "probability": 0.965 + }, + { + "start": 5251.62, + "end": 5252.92, + "probability": 0.9702 + }, + { + "start": 5253.32, + "end": 5259.3, + "probability": 0.9497 + }, + { + "start": 5259.9, + "end": 5260.41, + "probability": 0.9392 + }, + { + "start": 5260.72, + "end": 5261.56, + "probability": 0.8431 + }, + { + "start": 5261.98, + "end": 5262.9, + "probability": 0.8722 + }, + { + "start": 5262.98, + "end": 5264.12, + "probability": 0.9336 + }, + { + "start": 5264.28, + "end": 5264.86, + "probability": 0.9546 + }, + { + "start": 5265.92, + "end": 5266.28, + "probability": 0.9759 + }, + { + "start": 5267.7, + "end": 5271.7, + "probability": 0.7048 + }, + { + "start": 5271.8, + "end": 5273.3, + "probability": 0.848 + }, + { + "start": 5274.72, + "end": 5278.12, + "probability": 0.897 + }, + { + "start": 5278.24, + "end": 5279.26, + "probability": 0.5109 + }, + { + "start": 5279.26, + "end": 5281.14, + "probability": 0.9619 + }, + { + "start": 5282.88, + "end": 5286.92, + "probability": 0.9982 + }, + { + "start": 5286.92, + "end": 5290.44, + "probability": 0.9928 + }, + { + "start": 5290.46, + "end": 5292.9, + "probability": 0.8888 + }, + { + "start": 5293.74, + "end": 5294.24, + "probability": 0.1166 + }, + { + "start": 5295.73, + "end": 5297.76, + "probability": 0.8688 + }, + { + "start": 5298.8, + "end": 5301.52, + "probability": 0.9613 + }, + { + "start": 5301.7, + "end": 5302.4, + "probability": 0.7693 + }, + { + "start": 5302.62, + "end": 5304.32, + "probability": 0.8809 + }, + { + "start": 5305.1, + "end": 5306.74, + "probability": 0.9326 + }, + { + "start": 5307.48, + "end": 5308.74, + "probability": 0.6027 + }, + { + "start": 5309.92, + "end": 5317.24, + "probability": 0.9191 + }, + { + "start": 5317.24, + "end": 5322.47, + "probability": 0.9979 + }, + { + "start": 5322.82, + "end": 5323.38, + "probability": 0.9067 + }, + { + "start": 5323.92, + "end": 5327.62, + "probability": 0.9927 + }, + { + "start": 5328.66, + "end": 5335.66, + "probability": 0.9692 + }, + { + "start": 5336.18, + "end": 5344.32, + "probability": 0.9893 + }, + { + "start": 5344.32, + "end": 5349.04, + "probability": 0.9985 + }, + { + "start": 5349.3, + "end": 5351.3, + "probability": 0.9091 + }, + { + "start": 5351.3, + "end": 5351.72, + "probability": 0.7251 + }, + { + "start": 5352.12, + "end": 5354.06, + "probability": 0.7312 + }, + { + "start": 5354.4, + "end": 5357.06, + "probability": 0.7891 + }, + { + "start": 5357.3, + "end": 5358.4, + "probability": 0.9144 + }, + { + "start": 5364.92, + "end": 5365.5, + "probability": 0.8167 + }, + { + "start": 5367.8, + "end": 5368.8, + "probability": 0.7659 + }, + { + "start": 5369.64, + "end": 5370.54, + "probability": 0.9024 + }, + { + "start": 5371.86, + "end": 5375.06, + "probability": 0.8854 + }, + { + "start": 5376.52, + "end": 5377.06, + "probability": 0.9584 + }, + { + "start": 5379.82, + "end": 5383.5, + "probability": 0.9048 + }, + { + "start": 5384.74, + "end": 5386.44, + "probability": 0.9373 + }, + { + "start": 5387.86, + "end": 5391.12, + "probability": 0.999 + }, + { + "start": 5392.16, + "end": 5398.9, + "probability": 0.9968 + }, + { + "start": 5398.9, + "end": 5403.4, + "probability": 0.9968 + }, + { + "start": 5403.94, + "end": 5405.44, + "probability": 0.9916 + }, + { + "start": 5405.96, + "end": 5408.1, + "probability": 0.9712 + }, + { + "start": 5409.22, + "end": 5412.8, + "probability": 0.9409 + }, + { + "start": 5412.8, + "end": 5419.34, + "probability": 0.9179 + }, + { + "start": 5420.12, + "end": 5428.9, + "probability": 0.9768 + }, + { + "start": 5429.56, + "end": 5430.96, + "probability": 0.6385 + }, + { + "start": 5431.1, + "end": 5438.24, + "probability": 0.9788 + }, + { + "start": 5438.24, + "end": 5442.22, + "probability": 0.9982 + }, + { + "start": 5443.1, + "end": 5446.24, + "probability": 0.9962 + }, + { + "start": 5446.88, + "end": 5449.14, + "probability": 0.9906 + }, + { + "start": 5449.32, + "end": 5450.6, + "probability": 0.8159 + }, + { + "start": 5450.8, + "end": 5451.68, + "probability": 0.6971 + }, + { + "start": 5453.16, + "end": 5457.12, + "probability": 0.9065 + }, + { + "start": 5457.16, + "end": 5461.2, + "probability": 0.8828 + }, + { + "start": 5461.82, + "end": 5466.36, + "probability": 0.9839 + }, + { + "start": 5466.44, + "end": 5467.58, + "probability": 0.7895 + }, + { + "start": 5468.02, + "end": 5472.04, + "probability": 0.9336 + }, + { + "start": 5474.1, + "end": 5477.36, + "probability": 0.9958 + }, + { + "start": 5478.62, + "end": 5479.94, + "probability": 0.7246 + }, + { + "start": 5481.14, + "end": 5486.42, + "probability": 0.9938 + }, + { + "start": 5487.56, + "end": 5489.46, + "probability": 0.8767 + }, + { + "start": 5490.64, + "end": 5492.44, + "probability": 0.9983 + }, + { + "start": 5493.06, + "end": 5495.04, + "probability": 0.9966 + }, + { + "start": 5495.82, + "end": 5496.47, + "probability": 0.9731 + }, + { + "start": 5497.84, + "end": 5500.92, + "probability": 0.9484 + }, + { + "start": 5501.6, + "end": 5505.96, + "probability": 0.9602 + }, + { + "start": 5506.38, + "end": 5507.08, + "probability": 0.5696 + }, + { + "start": 5507.72, + "end": 5508.93, + "probability": 0.968 + }, + { + "start": 5509.76, + "end": 5511.14, + "probability": 0.9231 + }, + { + "start": 5512.12, + "end": 5519.94, + "probability": 0.9216 + }, + { + "start": 5520.62, + "end": 5524.86, + "probability": 0.9205 + }, + { + "start": 5525.38, + "end": 5530.58, + "probability": 0.9904 + }, + { + "start": 5531.22, + "end": 5532.52, + "probability": 0.7339 + }, + { + "start": 5533.78, + "end": 5538.98, + "probability": 0.9958 + }, + { + "start": 5538.98, + "end": 5542.86, + "probability": 0.7911 + }, + { + "start": 5543.9, + "end": 5549.52, + "probability": 0.9963 + }, + { + "start": 5549.52, + "end": 5555.24, + "probability": 0.9993 + }, + { + "start": 5555.94, + "end": 5557.58, + "probability": 0.7811 + }, + { + "start": 5558.1, + "end": 5561.2, + "probability": 0.842 + }, + { + "start": 5561.88, + "end": 5563.92, + "probability": 0.9803 + }, + { + "start": 5564.54, + "end": 5565.44, + "probability": 0.7012 + }, + { + "start": 5566.18, + "end": 5566.98, + "probability": 0.9941 + }, + { + "start": 5568.1, + "end": 5571.1, + "probability": 0.9977 + }, + { + "start": 5571.82, + "end": 5576.64, + "probability": 0.9941 + }, + { + "start": 5576.64, + "end": 5581.12, + "probability": 0.9584 + }, + { + "start": 5581.6, + "end": 5582.38, + "probability": 0.98 + }, + { + "start": 5583.06, + "end": 5586.9, + "probability": 0.9798 + }, + { + "start": 5587.94, + "end": 5596.42, + "probability": 0.9924 + }, + { + "start": 5596.98, + "end": 5601.46, + "probability": 0.965 + }, + { + "start": 5601.94, + "end": 5607.15, + "probability": 0.979 + }, + { + "start": 5607.32, + "end": 5611.08, + "probability": 0.9962 + }, + { + "start": 5611.08, + "end": 5614.54, + "probability": 0.9974 + }, + { + "start": 5615.14, + "end": 5619.0, + "probability": 0.9811 + }, + { + "start": 5619.94, + "end": 5624.06, + "probability": 0.9712 + }, + { + "start": 5624.58, + "end": 5626.82, + "probability": 0.7724 + }, + { + "start": 5627.72, + "end": 5632.16, + "probability": 0.9616 + }, + { + "start": 5632.22, + "end": 5633.46, + "probability": 0.885 + }, + { + "start": 5634.28, + "end": 5637.26, + "probability": 0.9328 + }, + { + "start": 5638.24, + "end": 5639.12, + "probability": 0.5519 + }, + { + "start": 5640.24, + "end": 5645.06, + "probability": 0.8715 + }, + { + "start": 5645.6, + "end": 5647.24, + "probability": 0.7461 + }, + { + "start": 5648.22, + "end": 5651.1, + "probability": 0.9849 + }, + { + "start": 5651.1, + "end": 5654.68, + "probability": 0.9942 + }, + { + "start": 5655.3, + "end": 5656.04, + "probability": 0.7927 + }, + { + "start": 5656.56, + "end": 5659.02, + "probability": 0.916 + }, + { + "start": 5659.56, + "end": 5662.44, + "probability": 0.8906 + }, + { + "start": 5662.62, + "end": 5665.98, + "probability": 0.9947 + }, + { + "start": 5667.36, + "end": 5669.66, + "probability": 0.8343 + }, + { + "start": 5669.88, + "end": 5670.98, + "probability": 0.9905 + }, + { + "start": 5670.98, + "end": 5671.96, + "probability": 0.9602 + }, + { + "start": 5672.96, + "end": 5675.52, + "probability": 0.9961 + }, + { + "start": 5675.52, + "end": 5678.72, + "probability": 0.764 + }, + { + "start": 5678.8, + "end": 5680.98, + "probability": 0.6304 + }, + { + "start": 5682.76, + "end": 5683.7, + "probability": 0.9035 + }, + { + "start": 5684.88, + "end": 5688.1, + "probability": 0.9201 + }, + { + "start": 5688.94, + "end": 5689.86, + "probability": 0.7478 + }, + { + "start": 5691.18, + "end": 5694.08, + "probability": 0.9304 + }, + { + "start": 5694.76, + "end": 5697.62, + "probability": 0.8862 + }, + { + "start": 5698.48, + "end": 5699.3, + "probability": 0.5684 + }, + { + "start": 5700.2, + "end": 5701.9, + "probability": 0.7798 + }, + { + "start": 5703.22, + "end": 5706.5, + "probability": 0.9108 + }, + { + "start": 5707.5, + "end": 5710.24, + "probability": 0.9526 + }, + { + "start": 5711.26, + "end": 5714.32, + "probability": 0.9146 + }, + { + "start": 5715.14, + "end": 5716.82, + "probability": 0.974 + }, + { + "start": 5717.4, + "end": 5720.34, + "probability": 0.9556 + }, + { + "start": 5720.34, + "end": 5722.66, + "probability": 0.9976 + }, + { + "start": 5723.56, + "end": 5729.22, + "probability": 0.9549 + }, + { + "start": 5729.78, + "end": 5734.42, + "probability": 0.9819 + }, + { + "start": 5736.4, + "end": 5737.02, + "probability": 0.7537 + }, + { + "start": 5737.2, + "end": 5743.54, + "probability": 0.9539 + }, + { + "start": 5744.02, + "end": 5746.68, + "probability": 0.9683 + }, + { + "start": 5747.16, + "end": 5748.44, + "probability": 0.9537 + }, + { + "start": 5748.86, + "end": 5750.35, + "probability": 0.8328 + }, + { + "start": 5751.46, + "end": 5755.12, + "probability": 0.7496 + }, + { + "start": 5758.38, + "end": 5758.38, + "probability": 0.1184 + }, + { + "start": 5758.38, + "end": 5758.38, + "probability": 0.064 + }, + { + "start": 5758.38, + "end": 5759.12, + "probability": 0.0821 + }, + { + "start": 5761.04, + "end": 5761.04, + "probability": 0.0451 + }, + { + "start": 5761.18, + "end": 5762.2, + "probability": 0.0275 + }, + { + "start": 5762.3, + "end": 5764.1, + "probability": 0.3149 + }, + { + "start": 5764.46, + "end": 5765.8, + "probability": 0.177 + }, + { + "start": 5766.28, + "end": 5769.3, + "probability": 0.5898 + }, + { + "start": 5769.82, + "end": 5770.58, + "probability": 0.0074 + }, + { + "start": 5770.58, + "end": 5773.54, + "probability": 0.5694 + }, + { + "start": 5773.68, + "end": 5774.18, + "probability": 0.483 + }, + { + "start": 5774.18, + "end": 5778.5, + "probability": 0.6032 + }, + { + "start": 5778.5, + "end": 5782.08, + "probability": 0.6768 + }, + { + "start": 5782.26, + "end": 5784.26, + "probability": 0.7032 + }, + { + "start": 5784.46, + "end": 5785.42, + "probability": 0.8015 + }, + { + "start": 5785.52, + "end": 5788.51, + "probability": 0.7598 + }, + { + "start": 5789.28, + "end": 5793.12, + "probability": 0.9883 + }, + { + "start": 5793.12, + "end": 5795.76, + "probability": 0.9505 + }, + { + "start": 5795.76, + "end": 5796.86, + "probability": 0.4364 + }, + { + "start": 5797.0, + "end": 5797.64, + "probability": 0.0967 + }, + { + "start": 5797.64, + "end": 5798.34, + "probability": 0.4647 + }, + { + "start": 5799.0, + "end": 5800.02, + "probability": 0.4187 + }, + { + "start": 5800.64, + "end": 5807.1, + "probability": 0.9764 + }, + { + "start": 5807.92, + "end": 5811.77, + "probability": 0.9956 + }, + { + "start": 5812.1, + "end": 5815.0, + "probability": 0.9316 + }, + { + "start": 5815.66, + "end": 5819.1, + "probability": 0.9963 + }, + { + "start": 5819.1, + "end": 5823.81, + "probability": 0.9927 + }, + { + "start": 5824.8, + "end": 5825.06, + "probability": 0.4815 + }, + { + "start": 5825.24, + "end": 5826.26, + "probability": 0.9697 + }, + { + "start": 5826.8, + "end": 5828.26, + "probability": 0.6451 + }, + { + "start": 5828.66, + "end": 5830.78, + "probability": 0.8659 + }, + { + "start": 5831.66, + "end": 5834.1, + "probability": 0.9909 + }, + { + "start": 5834.72, + "end": 5839.94, + "probability": 0.9954 + }, + { + "start": 5840.5, + "end": 5844.02, + "probability": 0.9975 + }, + { + "start": 5844.02, + "end": 5848.2, + "probability": 0.8763 + }, + { + "start": 5848.76, + "end": 5849.62, + "probability": 0.5559 + }, + { + "start": 5851.04, + "end": 5854.03, + "probability": 0.9385 + }, + { + "start": 5854.6, + "end": 5861.14, + "probability": 0.9493 + }, + { + "start": 5861.26, + "end": 5865.9, + "probability": 0.9945 + }, + { + "start": 5866.34, + "end": 5870.04, + "probability": 0.9933 + }, + { + "start": 5871.06, + "end": 5874.04, + "probability": 0.0692 + }, + { + "start": 5875.4, + "end": 5875.6, + "probability": 0.1843 + }, + { + "start": 5875.6, + "end": 5879.48, + "probability": 0.6814 + }, + { + "start": 5880.38, + "end": 5882.06, + "probability": 0.7779 + }, + { + "start": 5882.74, + "end": 5884.91, + "probability": 0.7706 + }, + { + "start": 5885.82, + "end": 5886.88, + "probability": 0.9386 + }, + { + "start": 5887.32, + "end": 5890.34, + "probability": 0.8777 + }, + { + "start": 5891.06, + "end": 5891.76, + "probability": 0.888 + }, + { + "start": 5893.14, + "end": 5895.2, + "probability": 0.9945 + }, + { + "start": 5895.86, + "end": 5901.28, + "probability": 0.9822 + }, + { + "start": 5902.66, + "end": 5906.46, + "probability": 0.9968 + }, + { + "start": 5907.36, + "end": 5909.74, + "probability": 0.9546 + }, + { + "start": 5910.48, + "end": 5912.06, + "probability": 0.8791 + }, + { + "start": 5913.42, + "end": 5915.5, + "probability": 0.7206 + }, + { + "start": 5916.58, + "end": 5921.06, + "probability": 0.8039 + }, + { + "start": 5921.72, + "end": 5927.62, + "probability": 0.8623 + }, + { + "start": 5928.28, + "end": 5929.92, + "probability": 0.8838 + }, + { + "start": 5930.72, + "end": 5931.4, + "probability": 0.8193 + }, + { + "start": 5932.02, + "end": 5934.42, + "probability": 0.9907 + }, + { + "start": 5934.42, + "end": 5938.04, + "probability": 0.8958 + }, + { + "start": 5939.26, + "end": 5945.78, + "probability": 0.8614 + }, + { + "start": 5945.78, + "end": 5949.44, + "probability": 0.705 + }, + { + "start": 5950.64, + "end": 5953.1, + "probability": 0.8431 + }, + { + "start": 5954.0, + "end": 5955.06, + "probability": 0.4613 + }, + { + "start": 5955.22, + "end": 5957.76, + "probability": 0.6789 + }, + { + "start": 5958.18, + "end": 5958.42, + "probability": 0.0207 + }, + { + "start": 5958.58, + "end": 5958.94, + "probability": 0.8051 + }, + { + "start": 5959.08, + "end": 5959.5, + "probability": 0.661 + }, + { + "start": 5960.14, + "end": 5960.66, + "probability": 0.791 + }, + { + "start": 5961.14, + "end": 5961.98, + "probability": 0.6522 + }, + { + "start": 5962.7, + "end": 5962.86, + "probability": 0.5631 + }, + { + "start": 5963.26, + "end": 5967.22, + "probability": 0.8311 + }, + { + "start": 5968.68, + "end": 5971.16, + "probability": 0.8932 + }, + { + "start": 5971.24, + "end": 5972.62, + "probability": 0.9233 + }, + { + "start": 5973.36, + "end": 5979.48, + "probability": 0.9854 + }, + { + "start": 5979.66, + "end": 5982.14, + "probability": 0.9739 + }, + { + "start": 5983.28, + "end": 5987.4, + "probability": 0.9659 + }, + { + "start": 5987.54, + "end": 5989.02, + "probability": 0.428 + }, + { + "start": 5989.66, + "end": 5995.6, + "probability": 0.9612 + }, + { + "start": 5996.6, + "end": 5999.88, + "probability": 0.9979 + }, + { + "start": 6001.24, + "end": 6004.8, + "probability": 0.9749 + }, + { + "start": 6006.0, + "end": 6007.76, + "probability": 0.946 + }, + { + "start": 6008.74, + "end": 6014.76, + "probability": 0.9565 + }, + { + "start": 6015.76, + "end": 6021.38, + "probability": 0.9839 + }, + { + "start": 6021.38, + "end": 6027.54, + "probability": 0.9816 + }, + { + "start": 6029.48, + "end": 6031.72, + "probability": 0.6254 + }, + { + "start": 6031.88, + "end": 6033.5, + "probability": 0.845 + }, + { + "start": 6034.46, + "end": 6036.66, + "probability": 0.9832 + }, + { + "start": 6036.68, + "end": 6037.41, + "probability": 0.1554 + }, + { + "start": 6038.86, + "end": 6040.48, + "probability": 0.8086 + }, + { + "start": 6040.6, + "end": 6042.22, + "probability": 0.7905 + }, + { + "start": 6044.37, + "end": 6046.02, + "probability": 0.3784 + }, + { + "start": 6046.46, + "end": 6046.62, + "probability": 0.3956 + }, + { + "start": 6046.78, + "end": 6052.16, + "probability": 0.95 + }, + { + "start": 6052.22, + "end": 6055.5, + "probability": 0.9951 + }, + { + "start": 6055.5, + "end": 6057.66, + "probability": 0.9836 + }, + { + "start": 6058.9, + "end": 6062.62, + "probability": 0.979 + }, + { + "start": 6064.02, + "end": 6064.12, + "probability": 0.0029 + }, + { + "start": 6064.12, + "end": 6065.34, + "probability": 0.8531 + }, + { + "start": 6065.72, + "end": 6068.98, + "probability": 0.8396 + }, + { + "start": 6069.68, + "end": 6073.14, + "probability": 0.9865 + }, + { + "start": 6073.86, + "end": 6075.5, + "probability": 0.9276 + }, + { + "start": 6076.12, + "end": 6078.64, + "probability": 0.9229 + }, + { + "start": 6079.4, + "end": 6082.98, + "probability": 0.9516 + }, + { + "start": 6083.66, + "end": 6088.0, + "probability": 0.824 + }, + { + "start": 6088.96, + "end": 6093.46, + "probability": 0.987 + }, + { + "start": 6094.24, + "end": 6097.38, + "probability": 0.8885 + }, + { + "start": 6099.26, + "end": 6103.96, + "probability": 0.8641 + }, + { + "start": 6104.52, + "end": 6105.36, + "probability": 0.9152 + }, + { + "start": 6105.78, + "end": 6108.82, + "probability": 0.9909 + }, + { + "start": 6109.4, + "end": 6109.42, + "probability": 0.0002 + }, + { + "start": 6110.44, + "end": 6113.32, + "probability": 0.4831 + }, + { + "start": 6113.92, + "end": 6123.58, + "probability": 0.9147 + }, + { + "start": 6123.58, + "end": 6128.74, + "probability": 0.9896 + }, + { + "start": 6129.18, + "end": 6130.24, + "probability": 0.8657 + }, + { + "start": 6130.92, + "end": 6132.38, + "probability": 0.7505 + }, + { + "start": 6132.48, + "end": 6135.48, + "probability": 0.9867 + }, + { + "start": 6137.24, + "end": 6138.64, + "probability": 0.5668 + }, + { + "start": 6140.2, + "end": 6141.76, + "probability": 0.94 + }, + { + "start": 6144.39, + "end": 6147.22, + "probability": 0.9641 + }, + { + "start": 6147.93, + "end": 6149.72, + "probability": 0.8399 + }, + { + "start": 6150.78, + "end": 6155.66, + "probability": 0.9807 + }, + { + "start": 6156.54, + "end": 6159.62, + "probability": 0.4967 + }, + { + "start": 6160.92, + "end": 6163.72, + "probability": 0.9932 + }, + { + "start": 6165.74, + "end": 6168.02, + "probability": 0.7607 + }, + { + "start": 6168.12, + "end": 6172.22, + "probability": 0.9444 + }, + { + "start": 6173.78, + "end": 6179.92, + "probability": 0.9908 + }, + { + "start": 6181.04, + "end": 6185.0, + "probability": 0.9957 + }, + { + "start": 6185.0, + "end": 6188.42, + "probability": 0.9707 + }, + { + "start": 6189.3, + "end": 6193.34, + "probability": 0.9443 + }, + { + "start": 6195.38, + "end": 6199.94, + "probability": 0.9899 + }, + { + "start": 6201.3, + "end": 6202.82, + "probability": 0.6914 + }, + { + "start": 6204.42, + "end": 6205.96, + "probability": 0.7508 + }, + { + "start": 6206.48, + "end": 6209.16, + "probability": 0.8333 + }, + { + "start": 6209.98, + "end": 6215.18, + "probability": 0.9907 + }, + { + "start": 6216.5, + "end": 6217.81, + "probability": 0.8159 + }, + { + "start": 6218.66, + "end": 6220.76, + "probability": 0.895 + }, + { + "start": 6220.92, + "end": 6222.34, + "probability": 0.8379 + }, + { + "start": 6222.84, + "end": 6223.72, + "probability": 0.8972 + }, + { + "start": 6223.82, + "end": 6224.86, + "probability": 0.8085 + }, + { + "start": 6225.7, + "end": 6229.5, + "probability": 0.9659 + }, + { + "start": 6229.5, + "end": 6232.9, + "probability": 0.6743 + }, + { + "start": 6234.6, + "end": 6237.34, + "probability": 0.9904 + }, + { + "start": 6238.06, + "end": 6243.12, + "probability": 0.9849 + }, + { + "start": 6243.12, + "end": 6247.5, + "probability": 0.9956 + }, + { + "start": 6248.4, + "end": 6251.06, + "probability": 0.9929 + }, + { + "start": 6251.6, + "end": 6255.12, + "probability": 0.9882 + }, + { + "start": 6256.06, + "end": 6257.52, + "probability": 0.9437 + }, + { + "start": 6258.78, + "end": 6260.96, + "probability": 0.9761 + }, + { + "start": 6262.04, + "end": 6263.14, + "probability": 0.5461 + }, + { + "start": 6263.96, + "end": 6267.54, + "probability": 0.3489 + }, + { + "start": 6267.74, + "end": 6270.72, + "probability": 0.8677 + }, + { + "start": 6271.38, + "end": 6274.68, + "probability": 0.8347 + }, + { + "start": 6275.92, + "end": 6277.3, + "probability": 0.9946 + }, + { + "start": 6277.9, + "end": 6279.42, + "probability": 0.6661 + }, + { + "start": 6280.46, + "end": 6282.9, + "probability": 0.9844 + }, + { + "start": 6283.28, + "end": 6285.89, + "probability": 0.9883 + }, + { + "start": 6286.12, + "end": 6288.32, + "probability": 0.9225 + }, + { + "start": 6289.16, + "end": 6290.66, + "probability": 0.8596 + }, + { + "start": 6291.86, + "end": 6294.48, + "probability": 0.9212 + }, + { + "start": 6295.12, + "end": 6296.28, + "probability": 0.6892 + }, + { + "start": 6297.08, + "end": 6300.56, + "probability": 0.8712 + }, + { + "start": 6301.08, + "end": 6304.26, + "probability": 0.9498 + }, + { + "start": 6305.02, + "end": 6307.46, + "probability": 0.8918 + }, + { + "start": 6308.16, + "end": 6312.92, + "probability": 0.9944 + }, + { + "start": 6314.93, + "end": 6317.4, + "probability": 0.9932 + }, + { + "start": 6317.92, + "end": 6320.44, + "probability": 0.9923 + }, + { + "start": 6320.46, + "end": 6322.36, + "probability": 0.7539 + }, + { + "start": 6323.2, + "end": 6324.78, + "probability": 0.8745 + }, + { + "start": 6325.52, + "end": 6332.72, + "probability": 0.9941 + }, + { + "start": 6333.46, + "end": 6339.1, + "probability": 0.9447 + }, + { + "start": 6340.38, + "end": 6345.88, + "probability": 0.9967 + }, + { + "start": 6346.88, + "end": 6348.98, + "probability": 0.6875 + }, + { + "start": 6349.68, + "end": 6349.88, + "probability": 0.141 + }, + { + "start": 6350.32, + "end": 6353.42, + "probability": 0.8474 + }, + { + "start": 6354.08, + "end": 6362.0, + "probability": 0.9185 + }, + { + "start": 6362.74, + "end": 6367.08, + "probability": 0.9476 + }, + { + "start": 6367.82, + "end": 6368.94, + "probability": 0.8457 + }, + { + "start": 6369.68, + "end": 6373.12, + "probability": 0.989 + }, + { + "start": 6373.72, + "end": 6375.98, + "probability": 0.9492 + }, + { + "start": 6376.88, + "end": 6383.04, + "probability": 0.9925 + }, + { + "start": 6383.64, + "end": 6387.38, + "probability": 0.8859 + }, + { + "start": 6387.52, + "end": 6389.41, + "probability": 0.5008 + }, + { + "start": 6390.22, + "end": 6392.16, + "probability": 0.988 + }, + { + "start": 6393.0, + "end": 6398.08, + "probability": 0.9818 + }, + { + "start": 6398.08, + "end": 6401.76, + "probability": 0.9879 + }, + { + "start": 6402.64, + "end": 6403.7, + "probability": 0.6661 + }, + { + "start": 6404.16, + "end": 6405.76, + "probability": 0.9725 + }, + { + "start": 6406.1, + "end": 6409.12, + "probability": 0.9966 + }, + { + "start": 6409.52, + "end": 6410.96, + "probability": 0.8907 + }, + { + "start": 6411.06, + "end": 6412.0, + "probability": 0.8396 + }, + { + "start": 6412.46, + "end": 6413.32, + "probability": 0.8662 + }, + { + "start": 6414.18, + "end": 6417.28, + "probability": 0.9924 + }, + { + "start": 6418.12, + "end": 6425.02, + "probability": 0.9951 + }, + { + "start": 6425.74, + "end": 6427.32, + "probability": 0.8107 + }, + { + "start": 6428.14, + "end": 6429.3, + "probability": 0.7146 + }, + { + "start": 6429.94, + "end": 6436.18, + "probability": 0.9392 + }, + { + "start": 6437.34, + "end": 6439.34, + "probability": 0.7505 + }, + { + "start": 6439.94, + "end": 6440.9, + "probability": 0.9963 + }, + { + "start": 6441.66, + "end": 6444.04, + "probability": 0.767 + }, + { + "start": 6445.08, + "end": 6446.84, + "probability": 0.9933 + }, + { + "start": 6447.48, + "end": 6448.66, + "probability": 0.8816 + }, + { + "start": 6449.5, + "end": 6452.62, + "probability": 0.9904 + }, + { + "start": 6452.62, + "end": 6456.44, + "probability": 0.9978 + }, + { + "start": 6457.52, + "end": 6461.08, + "probability": 0.9971 + }, + { + "start": 6461.18, + "end": 6462.14, + "probability": 0.7811 + }, + { + "start": 6462.24, + "end": 6462.82, + "probability": 0.8738 + }, + { + "start": 6463.37, + "end": 6466.7, + "probability": 0.8928 + }, + { + "start": 6468.16, + "end": 6473.64, + "probability": 0.9789 + }, + { + "start": 6475.28, + "end": 6480.02, + "probability": 0.9861 + }, + { + "start": 6480.36, + "end": 6482.12, + "probability": 0.8486 + }, + { + "start": 6482.96, + "end": 6485.22, + "probability": 0.9868 + }, + { + "start": 6485.22, + "end": 6489.1, + "probability": 0.9297 + }, + { + "start": 6491.64, + "end": 6495.4, + "probability": 0.5156 + }, + { + "start": 6496.32, + "end": 6502.7, + "probability": 0.8399 + }, + { + "start": 6502.7, + "end": 6508.25, + "probability": 0.9386 + }, + { + "start": 6509.86, + "end": 6513.52, + "probability": 0.9989 + }, + { + "start": 6514.32, + "end": 6517.64, + "probability": 0.998 + }, + { + "start": 6518.44, + "end": 6520.56, + "probability": 0.9972 + }, + { + "start": 6520.56, + "end": 6524.68, + "probability": 0.8511 + }, + { + "start": 6525.7, + "end": 6527.34, + "probability": 0.7673 + }, + { + "start": 6527.78, + "end": 6530.94, + "probability": 0.8854 + }, + { + "start": 6531.6, + "end": 6533.12, + "probability": 0.9912 + }, + { + "start": 6533.84, + "end": 6535.07, + "probability": 0.9766 + }, + { + "start": 6540.14, + "end": 6543.6, + "probability": 0.8384 + }, + { + "start": 6544.72, + "end": 6547.58, + "probability": 0.666 + }, + { + "start": 6548.76, + "end": 6549.58, + "probability": 0.6487 + }, + { + "start": 6550.86, + "end": 6553.9, + "probability": 0.9883 + }, + { + "start": 6554.78, + "end": 6558.36, + "probability": 0.8266 + }, + { + "start": 6559.18, + "end": 6565.42, + "probability": 0.971 + }, + { + "start": 6565.48, + "end": 6566.6, + "probability": 0.975 + }, + { + "start": 6566.68, + "end": 6568.64, + "probability": 0.8232 + }, + { + "start": 6569.5, + "end": 6570.9, + "probability": 0.8866 + }, + { + "start": 6571.44, + "end": 6572.8, + "probability": 0.7823 + }, + { + "start": 6573.44, + "end": 6574.5, + "probability": 0.3597 + }, + { + "start": 6575.72, + "end": 6578.64, + "probability": 0.9204 + }, + { + "start": 6579.0, + "end": 6579.86, + "probability": 0.8521 + }, + { + "start": 6580.98, + "end": 6583.58, + "probability": 0.9956 + }, + { + "start": 6584.68, + "end": 6589.68, + "probability": 0.9932 + }, + { + "start": 6589.68, + "end": 6594.4, + "probability": 0.9893 + }, + { + "start": 6595.24, + "end": 6599.88, + "probability": 0.8603 + }, + { + "start": 6601.8, + "end": 6605.22, + "probability": 0.7637 + }, + { + "start": 6606.62, + "end": 6609.44, + "probability": 0.9982 + }, + { + "start": 6610.7, + "end": 6617.16, + "probability": 0.6802 + }, + { + "start": 6619.02, + "end": 6620.86, + "probability": 0.9306 + }, + { + "start": 6621.74, + "end": 6624.98, + "probability": 0.9637 + }, + { + "start": 6627.2, + "end": 6630.46, + "probability": 0.985 + }, + { + "start": 6631.04, + "end": 6632.24, + "probability": 0.8035 + }, + { + "start": 6633.14, + "end": 6638.78, + "probability": 0.9808 + }, + { + "start": 6639.2, + "end": 6640.02, + "probability": 0.8857 + }, + { + "start": 6640.46, + "end": 6641.3, + "probability": 0.9574 + }, + { + "start": 6641.82, + "end": 6642.68, + "probability": 0.3479 + }, + { + "start": 6643.44, + "end": 6645.06, + "probability": 0.954 + }, + { + "start": 6645.72, + "end": 6649.94, + "probability": 0.8426 + }, + { + "start": 6650.92, + "end": 6653.38, + "probability": 0.9337 + }, + { + "start": 6654.34, + "end": 6656.28, + "probability": 0.9775 + }, + { + "start": 6657.34, + "end": 6662.08, + "probability": 0.9174 + }, + { + "start": 6662.68, + "end": 6664.54, + "probability": 0.9667 + }, + { + "start": 6664.66, + "end": 6665.86, + "probability": 0.996 + }, + { + "start": 6666.34, + "end": 6668.14, + "probability": 0.992 + }, + { + "start": 6668.36, + "end": 6669.74, + "probability": 0.9946 + }, + { + "start": 6671.02, + "end": 6674.88, + "probability": 0.9521 + }, + { + "start": 6675.94, + "end": 6677.76, + "probability": 0.6807 + }, + { + "start": 6679.16, + "end": 6684.08, + "probability": 0.8694 + }, + { + "start": 6684.74, + "end": 6686.54, + "probability": 0.9932 + }, + { + "start": 6687.42, + "end": 6689.4, + "probability": 0.9887 + }, + { + "start": 6690.54, + "end": 6696.16, + "probability": 0.9631 + }, + { + "start": 6696.9, + "end": 6699.84, + "probability": 0.9944 + }, + { + "start": 6700.5, + "end": 6703.96, + "probability": 0.9962 + }, + { + "start": 6703.96, + "end": 6707.34, + "probability": 0.9951 + }, + { + "start": 6708.1, + "end": 6709.0, + "probability": 0.9478 + }, + { + "start": 6710.18, + "end": 6711.11, + "probability": 0.9482 + }, + { + "start": 6712.3, + "end": 6713.18, + "probability": 0.979 + }, + { + "start": 6714.44, + "end": 6718.7, + "probability": 0.9469 + }, + { + "start": 6720.2, + "end": 6721.42, + "probability": 0.9403 + }, + { + "start": 6722.18, + "end": 6723.1, + "probability": 0.8459 + }, + { + "start": 6724.96, + "end": 6726.0, + "probability": 0.9702 + }, + { + "start": 6727.16, + "end": 6727.76, + "probability": 0.7563 + }, + { + "start": 6728.36, + "end": 6729.58, + "probability": 0.9142 + }, + { + "start": 6731.78, + "end": 6733.08, + "probability": 0.9807 + }, + { + "start": 6734.4, + "end": 6738.68, + "probability": 0.9966 + }, + { + "start": 6738.68, + "end": 6742.88, + "probability": 0.9585 + }, + { + "start": 6744.18, + "end": 6748.42, + "probability": 0.9972 + }, + { + "start": 6748.74, + "end": 6749.2, + "probability": 0.7881 + }, + { + "start": 6749.56, + "end": 6753.52, + "probability": 0.8075 + }, + { + "start": 6753.84, + "end": 6759.28, + "probability": 0.8268 + }, + { + "start": 6759.82, + "end": 6761.12, + "probability": 0.7857 + }, + { + "start": 6761.36, + "end": 6765.86, + "probability": 0.9561 + }, + { + "start": 6766.3, + "end": 6767.56, + "probability": 0.6497 + }, + { + "start": 6767.64, + "end": 6769.57, + "probability": 0.9048 + }, + { + "start": 6770.26, + "end": 6771.26, + "probability": 0.8428 + }, + { + "start": 6771.58, + "end": 6772.14, + "probability": 0.8521 + }, + { + "start": 6772.18, + "end": 6774.22, + "probability": 0.846 + }, + { + "start": 6774.46, + "end": 6776.0, + "probability": 0.5126 + }, + { + "start": 6776.08, + "end": 6776.15, + "probability": 0.0255 + }, + { + "start": 6776.88, + "end": 6777.56, + "probability": 0.9188 + }, + { + "start": 6777.76, + "end": 6779.7, + "probability": 0.6826 + }, + { + "start": 6779.84, + "end": 6783.52, + "probability": 0.6893 + }, + { + "start": 6784.02, + "end": 6786.36, + "probability": 0.9377 + }, + { + "start": 6786.8, + "end": 6788.2, + "probability": 0.3156 + }, + { + "start": 6788.94, + "end": 6789.92, + "probability": 0.6414 + }, + { + "start": 6790.16, + "end": 6790.96, + "probability": 0.4095 + }, + { + "start": 6791.36, + "end": 6792.36, + "probability": 0.8076 + }, + { + "start": 6793.12, + "end": 6795.72, + "probability": 0.7556 + }, + { + "start": 6796.0, + "end": 6796.18, + "probability": 0.1215 + }, + { + "start": 6796.18, + "end": 6796.88, + "probability": 0.2482 + }, + { + "start": 6797.04, + "end": 6797.76, + "probability": 0.2407 + }, + { + "start": 6798.94, + "end": 6807.42, + "probability": 0.9812 + }, + { + "start": 6807.92, + "end": 6808.14, + "probability": 0.2773 + }, + { + "start": 6808.44, + "end": 6810.7, + "probability": 0.9448 + }, + { + "start": 6811.32, + "end": 6814.56, + "probability": 0.5945 + }, + { + "start": 6814.94, + "end": 6816.42, + "probability": 0.8638 + }, + { + "start": 6818.39, + "end": 6825.52, + "probability": 0.5412 + }, + { + "start": 6826.38, + "end": 6827.14, + "probability": 0.6614 + }, + { + "start": 6827.32, + "end": 6827.88, + "probability": 0.3458 + }, + { + "start": 6844.84, + "end": 6845.46, + "probability": 0.4937 + }, + { + "start": 6845.46, + "end": 6851.18, + "probability": 0.5125 + }, + { + "start": 6851.44, + "end": 6852.54, + "probability": 0.3483 + }, + { + "start": 6853.52, + "end": 6854.82, + "probability": 0.5847 + }, + { + "start": 6855.38, + "end": 6857.64, + "probability": 0.8748 + }, + { + "start": 6858.42, + "end": 6861.01, + "probability": 0.8425 + }, + { + "start": 6861.44, + "end": 6864.18, + "probability": 0.4328 + }, + { + "start": 6865.1, + "end": 6866.1, + "probability": 0.0258 + }, + { + "start": 6866.74, + "end": 6867.72, + "probability": 0.5055 + }, + { + "start": 6867.72, + "end": 6870.06, + "probability": 0.5754 + }, + { + "start": 6870.3, + "end": 6870.72, + "probability": 0.838 + }, + { + "start": 6875.64, + "end": 6876.32, + "probability": 0.5985 + }, + { + "start": 6876.48, + "end": 6876.58, + "probability": 0.2166 + }, + { + "start": 6876.58, + "end": 6881.02, + "probability": 0.8997 + }, + { + "start": 6881.02, + "end": 6884.6, + "probability": 0.9365 + }, + { + "start": 6885.72, + "end": 6890.06, + "probability": 0.9408 + }, + { + "start": 6890.5, + "end": 6891.96, + "probability": 0.4868 + }, + { + "start": 6892.18, + "end": 6895.98, + "probability": 0.9585 + }, + { + "start": 6896.12, + "end": 6898.62, + "probability": 0.9617 + }, + { + "start": 6899.34, + "end": 6905.86, + "probability": 0.9103 + }, + { + "start": 6905.96, + "end": 6906.58, + "probability": 0.6685 + }, + { + "start": 6907.6, + "end": 6912.0, + "probability": 0.9578 + }, + { + "start": 6912.12, + "end": 6912.74, + "probability": 0.9856 + }, + { + "start": 6913.48, + "end": 6918.78, + "probability": 0.7313 + }, + { + "start": 6919.38, + "end": 6921.0, + "probability": 0.6069 + }, + { + "start": 6921.14, + "end": 6922.4, + "probability": 0.8967 + }, + { + "start": 6922.46, + "end": 6926.12, + "probability": 0.7662 + }, + { + "start": 6926.12, + "end": 6930.02, + "probability": 0.9623 + }, + { + "start": 6930.12, + "end": 6930.68, + "probability": 0.7159 + }, + { + "start": 6931.58, + "end": 6933.56, + "probability": 0.9019 + }, + { + "start": 6934.06, + "end": 6938.72, + "probability": 0.7214 + }, + { + "start": 6939.88, + "end": 6941.1, + "probability": 0.8256 + }, + { + "start": 6946.76, + "end": 6950.16, + "probability": 0.114 + }, + { + "start": 6954.4, + "end": 6955.18, + "probability": 0.1487 + }, + { + "start": 6955.92, + "end": 6956.35, + "probability": 0.0177 + }, + { + "start": 6960.28, + "end": 6961.26, + "probability": 0.0092 + }, + { + "start": 6971.64, + "end": 6975.82, + "probability": 0.866 + }, + { + "start": 6976.46, + "end": 6979.0, + "probability": 0.9969 + }, + { + "start": 6979.0, + "end": 6982.38, + "probability": 0.9977 + }, + { + "start": 6982.5, + "end": 6984.42, + "probability": 0.9753 + }, + { + "start": 6985.0, + "end": 6989.68, + "probability": 0.9619 + }, + { + "start": 6990.42, + "end": 6995.3, + "probability": 0.9108 + }, + { + "start": 6995.66, + "end": 6998.66, + "probability": 0.8557 + }, + { + "start": 6998.66, + "end": 7001.02, + "probability": 0.9977 + }, + { + "start": 7001.16, + "end": 7003.98, + "probability": 0.9556 + }, + { + "start": 7004.52, + "end": 7004.62, + "probability": 0.0384 + }, + { + "start": 7004.62, + "end": 7005.32, + "probability": 0.4607 + }, + { + "start": 7005.42, + "end": 7006.68, + "probability": 0.9574 + }, + { + "start": 7006.8, + "end": 7007.99, + "probability": 0.8638 + }, + { + "start": 7009.2, + "end": 7011.7, + "probability": 0.9132 + }, + { + "start": 7012.22, + "end": 7013.46, + "probability": 0.7064 + }, + { + "start": 7013.64, + "end": 7017.28, + "probability": 0.9467 + }, + { + "start": 7017.54, + "end": 7018.78, + "probability": 0.8254 + }, + { + "start": 7019.38, + "end": 7021.44, + "probability": 0.8647 + }, + { + "start": 7023.09, + "end": 7025.88, + "probability": 0.9187 + }, + { + "start": 7026.26, + "end": 7029.02, + "probability": 0.9726 + }, + { + "start": 7029.02, + "end": 7033.16, + "probability": 0.9686 + }, + { + "start": 7033.48, + "end": 7035.7, + "probability": 0.9914 + }, + { + "start": 7035.94, + "end": 7039.72, + "probability": 0.9698 + }, + { + "start": 7040.48, + "end": 7041.74, + "probability": 0.9517 + }, + { + "start": 7041.84, + "end": 7045.12, + "probability": 0.8021 + }, + { + "start": 7046.08, + "end": 7046.94, + "probability": 0.7283 + }, + { + "start": 7048.69, + "end": 7051.23, + "probability": 0.8823 + }, + { + "start": 7051.98, + "end": 7055.5, + "probability": 0.9653 + }, + { + "start": 7056.06, + "end": 7059.2, + "probability": 0.8446 + }, + { + "start": 7059.24, + "end": 7059.42, + "probability": 0.6405 + }, + { + "start": 7059.96, + "end": 7061.56, + "probability": 0.7079 + }, + { + "start": 7062.14, + "end": 7063.28, + "probability": 0.8588 + }, + { + "start": 7063.94, + "end": 7067.92, + "probability": 0.7951 + }, + { + "start": 7068.96, + "end": 7071.66, + "probability": 0.8829 + }, + { + "start": 7072.04, + "end": 7074.56, + "probability": 0.7188 + }, + { + "start": 7074.72, + "end": 7077.94, + "probability": 0.905 + }, + { + "start": 7078.06, + "end": 7079.56, + "probability": 0.6464 + }, + { + "start": 7080.12, + "end": 7086.9, + "probability": 0.856 + }, + { + "start": 7087.68, + "end": 7090.24, + "probability": 0.8789 + }, + { + "start": 7090.68, + "end": 7091.48, + "probability": 0.8279 + }, + { + "start": 7091.9, + "end": 7096.56, + "probability": 0.8411 + }, + { + "start": 7096.56, + "end": 7102.52, + "probability": 0.8375 + }, + { + "start": 7103.22, + "end": 7107.94, + "probability": 0.8385 + }, + { + "start": 7108.04, + "end": 7109.08, + "probability": 0.9222 + }, + { + "start": 7109.56, + "end": 7110.96, + "probability": 0.8885 + }, + { + "start": 7111.64, + "end": 7114.22, + "probability": 0.9873 + }, + { + "start": 7114.4, + "end": 7119.2, + "probability": 0.9022 + }, + { + "start": 7119.2, + "end": 7122.86, + "probability": 0.7251 + }, + { + "start": 7123.22, + "end": 7123.5, + "probability": 0.3449 + }, + { + "start": 7123.62, + "end": 7126.3, + "probability": 0.9943 + }, + { + "start": 7126.3, + "end": 7128.96, + "probability": 0.966 + }, + { + "start": 7128.98, + "end": 7130.76, + "probability": 0.5599 + }, + { + "start": 7130.94, + "end": 7132.7, + "probability": 0.8939 + }, + { + "start": 7133.64, + "end": 7134.18, + "probability": 0.7321 + }, + { + "start": 7134.52, + "end": 7135.01, + "probability": 0.4855 + }, + { + "start": 7136.08, + "end": 7137.8, + "probability": 0.7377 + }, + { + "start": 7138.12, + "end": 7142.48, + "probability": 0.8425 + }, + { + "start": 7142.92, + "end": 7146.04, + "probability": 0.7695 + }, + { + "start": 7146.68, + "end": 7149.38, + "probability": 0.859 + }, + { + "start": 7149.38, + "end": 7153.44, + "probability": 0.9531 + }, + { + "start": 7153.84, + "end": 7155.8, + "probability": 0.9775 + }, + { + "start": 7155.88, + "end": 7157.0, + "probability": 0.4655 + }, + { + "start": 7157.16, + "end": 7159.02, + "probability": 0.9768 + }, + { + "start": 7159.12, + "end": 7160.42, + "probability": 0.5365 + }, + { + "start": 7160.54, + "end": 7162.94, + "probability": 0.9737 + }, + { + "start": 7163.54, + "end": 7166.04, + "probability": 0.7699 + }, + { + "start": 7166.04, + "end": 7166.28, + "probability": 0.4321 + }, + { + "start": 7166.46, + "end": 7167.44, + "probability": 0.8419 + }, + { + "start": 7167.46, + "end": 7169.11, + "probability": 0.9778 + }, + { + "start": 7169.16, + "end": 7170.16, + "probability": 0.4332 + }, + { + "start": 7170.36, + "end": 7172.04, + "probability": 0.9735 + }, + { + "start": 7172.92, + "end": 7175.5, + "probability": 0.4652 + }, + { + "start": 7176.04, + "end": 7179.68, + "probability": 0.9626 + }, + { + "start": 7181.68, + "end": 7183.34, + "probability": 0.8677 + }, + { + "start": 7183.5, + "end": 7184.54, + "probability": 0.9961 + }, + { + "start": 7185.26, + "end": 7190.02, + "probability": 0.7487 + }, + { + "start": 7191.32, + "end": 7192.32, + "probability": 0.6372 + }, + { + "start": 7192.38, + "end": 7192.82, + "probability": 0.6737 + }, + { + "start": 7211.96, + "end": 7213.92, + "probability": 0.2896 + }, + { + "start": 7214.96, + "end": 7217.28, + "probability": 0.4812 + }, + { + "start": 7218.02, + "end": 7218.18, + "probability": 0.0978 + }, + { + "start": 7218.18, + "end": 7218.18, + "probability": 0.1198 + }, + { + "start": 7218.18, + "end": 7219.24, + "probability": 0.4777 + }, + { + "start": 7220.76, + "end": 7225.84, + "probability": 0.044 + }, + { + "start": 7225.94, + "end": 7228.24, + "probability": 0.0238 + }, + { + "start": 7228.82, + "end": 7233.28, + "probability": 0.0107 + }, + { + "start": 7263.74, + "end": 7264.02, + "probability": 0.0552 + }, + { + "start": 7268.0, + "end": 7268.14, + "probability": 0.0864 + }, + { + "start": 7268.14, + "end": 7268.14, + "probability": 0.1212 + }, + { + "start": 7268.14, + "end": 7268.14, + "probability": 0.0731 + }, + { + "start": 7269.84, + "end": 7269.889, + "probability": 0.0 + }, + { + "start": 7269.889, + "end": 7269.889, + "probability": 0.0 + }, + { + "start": 7269.889, + "end": 7269.889, + "probability": 0.0 + } + ], + "segments_count": 2303, + "words_count": 12317, + "avg_words_per_segment": 5.3482, + "avg_segment_duration": 2.5209, + "avg_words_per_minute": 101.6556, + "plenum_id": "28823", + "duration": 7269.84, + "title": null, + "plenum_date": "2013-06-04" +} \ No newline at end of file