diff --git "a/110593/metadata.json" "b/110593/metadata.json" new file mode 100644--- /dev/null +++ "b/110593/metadata.json" @@ -0,0 +1,8787 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "110593", + "quality_score": 0.9489, + "per_segment_quality_scores": [ + { + "start": 53.58, + "end": 57.64, + "probability": 0.998 + }, + { + "start": 58.22, + "end": 58.32, + "probability": 0.7342 + }, + { + "start": 59.92, + "end": 61.62, + "probability": 0.7453 + }, + { + "start": 61.86, + "end": 64.36, + "probability": 0.8893 + }, + { + "start": 64.46, + "end": 65.96, + "probability": 0.9734 + }, + { + "start": 66.58, + "end": 67.76, + "probability": 0.9486 + }, + { + "start": 103.26, + "end": 103.26, + "probability": 0.7274 + }, + { + "start": 103.26, + "end": 105.04, + "probability": 0.862 + }, + { + "start": 106.28, + "end": 110.48, + "probability": 0.6576 + }, + { + "start": 115.54, + "end": 118.88, + "probability": 0.8961 + }, + { + "start": 118.98, + "end": 119.62, + "probability": 0.9421 + }, + { + "start": 120.06, + "end": 121.14, + "probability": 0.8602 + }, + { + "start": 121.2, + "end": 124.22, + "probability": 0.8144 + }, + { + "start": 125.0, + "end": 126.42, + "probability": 0.939 + }, + { + "start": 126.7, + "end": 129.16, + "probability": 0.7354 + }, + { + "start": 129.64, + "end": 133.02, + "probability": 0.9714 + }, + { + "start": 133.28, + "end": 138.0, + "probability": 0.9863 + }, + { + "start": 138.46, + "end": 142.08, + "probability": 0.9955 + }, + { + "start": 142.34, + "end": 144.7, + "probability": 0.8513 + }, + { + "start": 145.3, + "end": 145.76, + "probability": 0.7262 + }, + { + "start": 145.86, + "end": 146.3, + "probability": 0.5419 + }, + { + "start": 146.42, + "end": 151.8, + "probability": 0.8868 + }, + { + "start": 152.18, + "end": 155.74, + "probability": 0.9971 + }, + { + "start": 156.34, + "end": 156.58, + "probability": 0.597 + }, + { + "start": 156.76, + "end": 157.54, + "probability": 0.6774 + }, + { + "start": 157.92, + "end": 159.8, + "probability": 0.9526 + }, + { + "start": 160.24, + "end": 160.9, + "probability": 0.722 + }, + { + "start": 161.06, + "end": 161.56, + "probability": 0.7842 + }, + { + "start": 161.56, + "end": 161.84, + "probability": 0.7552 + }, + { + "start": 162.0, + "end": 163.3, + "probability": 0.8921 + }, + { + "start": 163.34, + "end": 163.98, + "probability": 0.8594 + }, + { + "start": 164.3, + "end": 169.3, + "probability": 0.994 + }, + { + "start": 169.3, + "end": 173.54, + "probability": 0.9788 + }, + { + "start": 173.9, + "end": 175.12, + "probability": 0.9883 + }, + { + "start": 175.4, + "end": 176.42, + "probability": 0.7944 + }, + { + "start": 176.96, + "end": 178.66, + "probability": 0.6285 + }, + { + "start": 179.06, + "end": 180.98, + "probability": 0.482 + }, + { + "start": 181.04, + "end": 181.63, + "probability": 0.9479 + }, + { + "start": 181.9, + "end": 183.24, + "probability": 0.996 + }, + { + "start": 184.18, + "end": 184.9, + "probability": 0.9743 + }, + { + "start": 185.28, + "end": 188.66, + "probability": 0.9631 + }, + { + "start": 188.7, + "end": 189.32, + "probability": 0.4422 + }, + { + "start": 189.76, + "end": 190.5, + "probability": 0.7887 + }, + { + "start": 190.64, + "end": 193.02, + "probability": 0.9814 + }, + { + "start": 193.38, + "end": 194.01, + "probability": 0.8242 + }, + { + "start": 194.64, + "end": 196.2, + "probability": 0.9668 + }, + { + "start": 196.46, + "end": 198.72, + "probability": 0.8864 + }, + { + "start": 198.72, + "end": 201.22, + "probability": 0.9686 + }, + { + "start": 202.4, + "end": 203.22, + "probability": 0.6631 + }, + { + "start": 203.76, + "end": 205.68, + "probability": 0.9083 + }, + { + "start": 214.66, + "end": 218.72, + "probability": 0.9754 + }, + { + "start": 219.38, + "end": 222.12, + "probability": 0.9948 + }, + { + "start": 222.7, + "end": 225.92, + "probability": 0.9946 + }, + { + "start": 227.04, + "end": 230.1, + "probability": 0.9944 + }, + { + "start": 231.14, + "end": 233.02, + "probability": 0.9763 + }, + { + "start": 233.58, + "end": 236.22, + "probability": 0.9785 + }, + { + "start": 237.18, + "end": 241.24, + "probability": 0.9902 + }, + { + "start": 241.98, + "end": 244.2, + "probability": 0.9993 + }, + { + "start": 245.08, + "end": 248.44, + "probability": 0.9863 + }, + { + "start": 249.2, + "end": 251.42, + "probability": 0.9169 + }, + { + "start": 251.84, + "end": 256.0, + "probability": 0.9896 + }, + { + "start": 256.44, + "end": 258.2, + "probability": 0.9889 + }, + { + "start": 258.78, + "end": 259.04, + "probability": 0.5013 + }, + { + "start": 259.52, + "end": 260.22, + "probability": 0.5857 + }, + { + "start": 260.3, + "end": 263.32, + "probability": 0.8842 + }, + { + "start": 270.98, + "end": 273.36, + "probability": 0.6739 + }, + { + "start": 274.46, + "end": 276.84, + "probability": 0.3202 + }, + { + "start": 277.92, + "end": 280.46, + "probability": 0.9744 + }, + { + "start": 281.74, + "end": 284.56, + "probability": 0.9764 + }, + { + "start": 284.56, + "end": 287.54, + "probability": 0.8593 + }, + { + "start": 288.4, + "end": 293.5, + "probability": 0.9035 + }, + { + "start": 294.3, + "end": 296.68, + "probability": 0.9459 + }, + { + "start": 296.86, + "end": 299.4, + "probability": 0.9785 + }, + { + "start": 300.12, + "end": 304.24, + "probability": 0.9723 + }, + { + "start": 305.56, + "end": 310.26, + "probability": 0.9565 + }, + { + "start": 310.26, + "end": 314.09, + "probability": 0.9972 + }, + { + "start": 314.38, + "end": 319.86, + "probability": 0.9937 + }, + { + "start": 320.54, + "end": 324.96, + "probability": 0.9263 + }, + { + "start": 326.36, + "end": 328.66, + "probability": 0.9858 + }, + { + "start": 328.66, + "end": 331.78, + "probability": 0.9963 + }, + { + "start": 332.46, + "end": 334.38, + "probability": 0.9619 + }, + { + "start": 334.48, + "end": 335.9, + "probability": 0.7473 + }, + { + "start": 335.96, + "end": 338.5, + "probability": 0.9381 + }, + { + "start": 339.02, + "end": 340.94, + "probability": 0.9387 + }, + { + "start": 341.32, + "end": 344.22, + "probability": 0.9821 + }, + { + "start": 345.1, + "end": 350.64, + "probability": 0.9944 + }, + { + "start": 350.64, + "end": 356.56, + "probability": 0.9438 + }, + { + "start": 358.22, + "end": 362.9, + "probability": 0.9458 + }, + { + "start": 364.16, + "end": 368.4, + "probability": 0.9831 + }, + { + "start": 368.94, + "end": 369.74, + "probability": 0.8503 + }, + { + "start": 370.86, + "end": 374.08, + "probability": 0.8988 + }, + { + "start": 375.6, + "end": 376.26, + "probability": 0.7996 + }, + { + "start": 378.42, + "end": 380.94, + "probability": 0.7596 + }, + { + "start": 381.56, + "end": 383.1, + "probability": 0.7949 + }, + { + "start": 383.7, + "end": 386.37, + "probability": 0.9236 + }, + { + "start": 387.58, + "end": 390.6, + "probability": 0.8519 + }, + { + "start": 416.18, + "end": 418.42, + "probability": 0.5836 + }, + { + "start": 418.98, + "end": 419.68, + "probability": 0.7802 + }, + { + "start": 421.04, + "end": 421.78, + "probability": 0.4092 + }, + { + "start": 422.0, + "end": 423.06, + "probability": 0.7804 + }, + { + "start": 423.14, + "end": 424.08, + "probability": 0.6896 + }, + { + "start": 425.06, + "end": 427.9, + "probability": 0.9964 + }, + { + "start": 427.9, + "end": 430.88, + "probability": 0.9934 + }, + { + "start": 432.24, + "end": 435.02, + "probability": 0.9963 + }, + { + "start": 435.24, + "end": 436.38, + "probability": 0.9917 + }, + { + "start": 437.5, + "end": 440.62, + "probability": 0.9984 + }, + { + "start": 441.46, + "end": 444.98, + "probability": 0.7896 + }, + { + "start": 446.04, + "end": 447.52, + "probability": 0.9722 + }, + { + "start": 449.06, + "end": 450.52, + "probability": 0.9967 + }, + { + "start": 451.94, + "end": 457.03, + "probability": 0.9833 + }, + { + "start": 457.88, + "end": 458.62, + "probability": 0.9727 + }, + { + "start": 459.14, + "end": 459.92, + "probability": 0.8873 + }, + { + "start": 460.58, + "end": 462.1, + "probability": 0.7515 + }, + { + "start": 462.72, + "end": 464.52, + "probability": 0.8987 + }, + { + "start": 465.28, + "end": 466.14, + "probability": 0.9097 + }, + { + "start": 467.02, + "end": 469.78, + "probability": 0.9411 + }, + { + "start": 469.84, + "end": 470.85, + "probability": 0.9436 + }, + { + "start": 472.1, + "end": 474.24, + "probability": 0.9956 + }, + { + "start": 474.36, + "end": 477.82, + "probability": 0.9877 + }, + { + "start": 478.78, + "end": 481.46, + "probability": 0.8376 + }, + { + "start": 481.52, + "end": 485.28, + "probability": 0.8779 + }, + { + "start": 485.72, + "end": 486.92, + "probability": 0.9797 + }, + { + "start": 487.7, + "end": 488.58, + "probability": 0.9674 + }, + { + "start": 489.36, + "end": 490.58, + "probability": 0.9569 + }, + { + "start": 491.2, + "end": 492.46, + "probability": 0.9988 + }, + { + "start": 493.34, + "end": 497.38, + "probability": 0.9974 + }, + { + "start": 498.72, + "end": 504.8, + "probability": 0.9929 + }, + { + "start": 505.46, + "end": 511.86, + "probability": 0.9901 + }, + { + "start": 513.16, + "end": 516.86, + "probability": 0.9358 + }, + { + "start": 517.04, + "end": 519.04, + "probability": 0.99 + }, + { + "start": 519.06, + "end": 520.32, + "probability": 0.7393 + }, + { + "start": 521.66, + "end": 525.08, + "probability": 0.9909 + }, + { + "start": 525.66, + "end": 529.04, + "probability": 0.8746 + }, + { + "start": 529.98, + "end": 532.7, + "probability": 0.7177 + }, + { + "start": 533.38, + "end": 537.4, + "probability": 0.8877 + }, + { + "start": 537.98, + "end": 540.98, + "probability": 0.9224 + }, + { + "start": 541.02, + "end": 545.76, + "probability": 0.9736 + }, + { + "start": 547.14, + "end": 549.96, + "probability": 0.5271 + }, + { + "start": 550.44, + "end": 554.18, + "probability": 0.7679 + }, + { + "start": 554.44, + "end": 556.18, + "probability": 0.9905 + }, + { + "start": 556.46, + "end": 557.7, + "probability": 0.8885 + }, + { + "start": 558.22, + "end": 559.3, + "probability": 0.8072 + }, + { + "start": 559.98, + "end": 564.92, + "probability": 0.9901 + }, + { + "start": 565.52, + "end": 568.22, + "probability": 0.9991 + }, + { + "start": 569.78, + "end": 570.26, + "probability": 0.782 + }, + { + "start": 570.38, + "end": 571.28, + "probability": 0.614 + }, + { + "start": 571.5, + "end": 573.44, + "probability": 0.9912 + }, + { + "start": 573.5, + "end": 573.6, + "probability": 0.8055 + }, + { + "start": 573.84, + "end": 574.48, + "probability": 0.9971 + }, + { + "start": 575.84, + "end": 578.26, + "probability": 0.9116 + }, + { + "start": 579.04, + "end": 580.44, + "probability": 0.9697 + }, + { + "start": 580.84, + "end": 585.62, + "probability": 0.9977 + }, + { + "start": 586.42, + "end": 589.72, + "probability": 0.9023 + }, + { + "start": 590.1, + "end": 593.9, + "probability": 0.9717 + }, + { + "start": 594.44, + "end": 595.14, + "probability": 0.8975 + }, + { + "start": 595.88, + "end": 597.7, + "probability": 0.9136 + }, + { + "start": 598.14, + "end": 602.18, + "probability": 0.9895 + }, + { + "start": 603.92, + "end": 606.28, + "probability": 0.9607 + }, + { + "start": 607.18, + "end": 607.96, + "probability": 0.9259 + }, + { + "start": 608.7, + "end": 609.84, + "probability": 0.8101 + }, + { + "start": 610.66, + "end": 613.76, + "probability": 0.7955 + }, + { + "start": 614.26, + "end": 617.46, + "probability": 0.9901 + }, + { + "start": 618.84, + "end": 621.52, + "probability": 0.9929 + }, + { + "start": 622.3, + "end": 628.0, + "probability": 0.9833 + }, + { + "start": 629.24, + "end": 629.6, + "probability": 0.9219 + }, + { + "start": 630.4, + "end": 634.26, + "probability": 0.998 + }, + { + "start": 636.02, + "end": 638.88, + "probability": 0.953 + }, + { + "start": 639.7, + "end": 641.52, + "probability": 0.9663 + }, + { + "start": 642.58, + "end": 643.28, + "probability": 0.9607 + }, + { + "start": 643.86, + "end": 644.5, + "probability": 0.9738 + }, + { + "start": 644.7, + "end": 649.82, + "probability": 0.9866 + }, + { + "start": 651.24, + "end": 651.82, + "probability": 0.8512 + }, + { + "start": 652.74, + "end": 653.16, + "probability": 0.9542 + }, + { + "start": 654.76, + "end": 656.66, + "probability": 0.8014 + }, + { + "start": 657.96, + "end": 659.38, + "probability": 0.7771 + }, + { + "start": 660.2, + "end": 664.36, + "probability": 0.9691 + }, + { + "start": 665.08, + "end": 667.06, + "probability": 0.9574 + }, + { + "start": 667.78, + "end": 670.74, + "probability": 0.9777 + }, + { + "start": 671.56, + "end": 673.82, + "probability": 0.9691 + }, + { + "start": 675.1, + "end": 675.96, + "probability": 0.7846 + }, + { + "start": 676.74, + "end": 679.84, + "probability": 0.9941 + }, + { + "start": 680.58, + "end": 682.88, + "probability": 0.9668 + }, + { + "start": 684.22, + "end": 687.92, + "probability": 0.8984 + }, + { + "start": 687.92, + "end": 691.34, + "probability": 0.8192 + }, + { + "start": 691.9, + "end": 694.68, + "probability": 0.9955 + }, + { + "start": 695.68, + "end": 697.68, + "probability": 0.9814 + }, + { + "start": 698.42, + "end": 700.08, + "probability": 0.9692 + }, + { + "start": 701.4, + "end": 702.28, + "probability": 0.9905 + }, + { + "start": 703.36, + "end": 704.92, + "probability": 0.8896 + }, + { + "start": 705.56, + "end": 708.28, + "probability": 0.9697 + }, + { + "start": 709.38, + "end": 710.4, + "probability": 0.8745 + }, + { + "start": 711.06, + "end": 712.9, + "probability": 0.9712 + }, + { + "start": 713.98, + "end": 714.38, + "probability": 0.485 + }, + { + "start": 714.5, + "end": 714.91, + "probability": 0.6641 + }, + { + "start": 715.38, + "end": 715.84, + "probability": 0.7737 + }, + { + "start": 715.88, + "end": 716.46, + "probability": 0.7988 + }, + { + "start": 716.84, + "end": 717.72, + "probability": 0.8636 + }, + { + "start": 718.38, + "end": 719.1, + "probability": 0.7963 + }, + { + "start": 719.54, + "end": 722.26, + "probability": 0.9634 + }, + { + "start": 723.38, + "end": 724.38, + "probability": 0.9842 + }, + { + "start": 724.98, + "end": 728.14, + "probability": 0.9819 + }, + { + "start": 730.46, + "end": 730.9, + "probability": 0.74 + }, + { + "start": 731.02, + "end": 735.6, + "probability": 0.9932 + }, + { + "start": 736.56, + "end": 737.88, + "probability": 0.9905 + }, + { + "start": 738.72, + "end": 743.9, + "probability": 0.9892 + }, + { + "start": 744.44, + "end": 746.74, + "probability": 0.8881 + }, + { + "start": 747.82, + "end": 748.22, + "probability": 0.7672 + }, + { + "start": 748.26, + "end": 748.88, + "probability": 0.9448 + }, + { + "start": 748.98, + "end": 750.5, + "probability": 0.951 + }, + { + "start": 750.5, + "end": 751.54, + "probability": 0.9708 + }, + { + "start": 752.44, + "end": 754.62, + "probability": 0.9204 + }, + { + "start": 755.18, + "end": 755.6, + "probability": 0.711 + }, + { + "start": 756.78, + "end": 760.1, + "probability": 0.0209 + }, + { + "start": 760.36, + "end": 761.0, + "probability": 0.4869 + }, + { + "start": 761.7, + "end": 764.88, + "probability": 0.8918 + }, + { + "start": 765.46, + "end": 765.46, + "probability": 0.1254 + }, + { + "start": 765.46, + "end": 766.48, + "probability": 0.0161 + }, + { + "start": 766.48, + "end": 768.72, + "probability": 0.1045 + }, + { + "start": 768.92, + "end": 769.86, + "probability": 0.1909 + }, + { + "start": 769.9, + "end": 770.38, + "probability": 0.4349 + }, + { + "start": 770.38, + "end": 772.2, + "probability": 0.7296 + }, + { + "start": 772.7, + "end": 773.08, + "probability": 0.6628 + }, + { + "start": 777.06, + "end": 777.48, + "probability": 0.2406 + }, + { + "start": 777.78, + "end": 780.42, + "probability": 0.4054 + }, + { + "start": 781.84, + "end": 782.98, + "probability": 0.1989 + }, + { + "start": 783.18, + "end": 785.78, + "probability": 0.8481 + }, + { + "start": 785.88, + "end": 786.67, + "probability": 0.8655 + }, + { + "start": 786.96, + "end": 789.0, + "probability": 0.9766 + }, + { + "start": 790.2, + "end": 793.38, + "probability": 0.6668 + }, + { + "start": 793.58, + "end": 794.14, + "probability": 0.1905 + }, + { + "start": 794.84, + "end": 799.13, + "probability": 0.5157 + }, + { + "start": 805.64, + "end": 807.94, + "probability": 0.7565 + }, + { + "start": 808.6, + "end": 811.48, + "probability": 0.6165 + }, + { + "start": 812.58, + "end": 815.54, + "probability": 0.8187 + }, + { + "start": 816.34, + "end": 817.56, + "probability": 0.9292 + }, + { + "start": 817.98, + "end": 820.48, + "probability": 0.6068 + }, + { + "start": 820.72, + "end": 822.34, + "probability": 0.4512 + }, + { + "start": 822.34, + "end": 824.18, + "probability": 0.3359 + }, + { + "start": 824.5, + "end": 824.5, + "probability": 0.2715 + }, + { + "start": 824.5, + "end": 826.04, + "probability": 0.1276 + }, + { + "start": 826.12, + "end": 828.42, + "probability": 0.9037 + }, + { + "start": 828.54, + "end": 829.6, + "probability": 0.0814 + }, + { + "start": 829.6, + "end": 831.46, + "probability": 0.826 + }, + { + "start": 831.54, + "end": 833.14, + "probability": 0.8567 + }, + { + "start": 833.16, + "end": 833.84, + "probability": 0.829 + }, + { + "start": 833.98, + "end": 834.86, + "probability": 0.8936 + }, + { + "start": 835.32, + "end": 836.44, + "probability": 0.1683 + }, + { + "start": 837.32, + "end": 837.32, + "probability": 0.0878 + }, + { + "start": 837.32, + "end": 839.34, + "probability": 0.8583 + }, + { + "start": 839.74, + "end": 840.89, + "probability": 0.0876 + }, + { + "start": 843.85, + "end": 846.22, + "probability": 0.9509 + }, + { + "start": 846.28, + "end": 846.34, + "probability": 0.3072 + }, + { + "start": 846.34, + "end": 847.48, + "probability": 0.9813 + }, + { + "start": 847.94, + "end": 849.56, + "probability": 0.8387 + }, + { + "start": 849.9, + "end": 852.6, + "probability": 0.731 + }, + { + "start": 853.46, + "end": 854.16, + "probability": 0.0423 + }, + { + "start": 854.76, + "end": 856.38, + "probability": 0.4429 + }, + { + "start": 856.5, + "end": 861.44, + "probability": 0.9633 + }, + { + "start": 861.92, + "end": 864.54, + "probability": 0.9445 + }, + { + "start": 865.04, + "end": 869.36, + "probability": 0.9438 + }, + { + "start": 869.8, + "end": 871.02, + "probability": 0.7876 + }, + { + "start": 871.12, + "end": 872.52, + "probability": 0.8163 + }, + { + "start": 872.94, + "end": 873.5, + "probability": 0.3804 + }, + { + "start": 873.5, + "end": 873.82, + "probability": 0.5724 + }, + { + "start": 873.9, + "end": 874.0, + "probability": 0.7382 + }, + { + "start": 875.2, + "end": 878.58, + "probability": 0.1602 + }, + { + "start": 879.18, + "end": 880.08, + "probability": 0.1764 + }, + { + "start": 881.82, + "end": 884.38, + "probability": 0.2955 + }, + { + "start": 884.78, + "end": 886.24, + "probability": 0.3365 + }, + { + "start": 886.34, + "end": 886.76, + "probability": 0.7906 + }, + { + "start": 886.78, + "end": 890.82, + "probability": 0.7949 + }, + { + "start": 890.92, + "end": 892.76, + "probability": 0.7298 + }, + { + "start": 892.86, + "end": 892.88, + "probability": 0.565 + }, + { + "start": 892.88, + "end": 893.7, + "probability": 0.7409 + }, + { + "start": 893.78, + "end": 896.58, + "probability": 0.9978 + }, + { + "start": 896.68, + "end": 898.36, + "probability": 0.9014 + }, + { + "start": 898.84, + "end": 899.38, + "probability": 0.7554 + }, + { + "start": 899.46, + "end": 900.56, + "probability": 0.5521 + }, + { + "start": 901.48, + "end": 902.52, + "probability": 0.751 + }, + { + "start": 902.78, + "end": 905.34, + "probability": 0.9603 + }, + { + "start": 905.48, + "end": 906.24, + "probability": 0.7866 + }, + { + "start": 906.34, + "end": 906.84, + "probability": 0.9462 + }, + { + "start": 907.08, + "end": 909.9, + "probability": 0.9941 + }, + { + "start": 909.9, + "end": 913.92, + "probability": 0.9932 + }, + { + "start": 914.68, + "end": 916.86, + "probability": 0.0147 + }, + { + "start": 916.86, + "end": 917.94, + "probability": 0.8942 + }, + { + "start": 918.3, + "end": 919.31, + "probability": 0.9681 + }, + { + "start": 919.62, + "end": 920.48, + "probability": 0.761 + }, + { + "start": 920.54, + "end": 920.9, + "probability": 0.8406 + }, + { + "start": 921.08, + "end": 921.38, + "probability": 0.8827 + }, + { + "start": 921.64, + "end": 922.84, + "probability": 0.6976 + }, + { + "start": 923.26, + "end": 923.63, + "probability": 0.9486 + }, + { + "start": 924.2, + "end": 925.1, + "probability": 0.7476 + }, + { + "start": 925.52, + "end": 926.62, + "probability": 0.8896 + }, + { + "start": 927.08, + "end": 927.38, + "probability": 0.4266 + }, + { + "start": 927.76, + "end": 928.9, + "probability": 0.9026 + }, + { + "start": 929.0, + "end": 930.2, + "probability": 0.9251 + }, + { + "start": 930.72, + "end": 931.86, + "probability": 0.9272 + }, + { + "start": 931.98, + "end": 933.38, + "probability": 0.9904 + }, + { + "start": 933.9, + "end": 934.66, + "probability": 0.4761 + }, + { + "start": 934.88, + "end": 935.42, + "probability": 0.69 + }, + { + "start": 935.52, + "end": 936.52, + "probability": 0.407 + }, + { + "start": 936.58, + "end": 939.14, + "probability": 0.8716 + }, + { + "start": 940.16, + "end": 942.08, + "probability": 0.981 + }, + { + "start": 943.18, + "end": 945.9, + "probability": 0.9606 + }, + { + "start": 946.18, + "end": 949.06, + "probability": 0.979 + }, + { + "start": 949.58, + "end": 951.38, + "probability": 0.953 + }, + { + "start": 951.92, + "end": 952.48, + "probability": 0.5488 + }, + { + "start": 952.78, + "end": 954.28, + "probability": 0.9747 + }, + { + "start": 954.48, + "end": 955.44, + "probability": 0.8911 + }, + { + "start": 956.24, + "end": 957.55, + "probability": 0.9956 + }, + { + "start": 957.86, + "end": 959.32, + "probability": 0.9406 + }, + { + "start": 959.98, + "end": 963.3, + "probability": 0.9839 + }, + { + "start": 963.52, + "end": 964.64, + "probability": 0.5156 + }, + { + "start": 964.74, + "end": 965.14, + "probability": 0.462 + }, + { + "start": 965.24, + "end": 966.88, + "probability": 0.8528 + }, + { + "start": 967.28, + "end": 969.86, + "probability": 0.995 + }, + { + "start": 969.94, + "end": 972.81, + "probability": 0.9448 + }, + { + "start": 973.42, + "end": 976.16, + "probability": 0.9889 + }, + { + "start": 976.16, + "end": 978.76, + "probability": 0.9836 + }, + { + "start": 979.36, + "end": 981.02, + "probability": 0.9727 + }, + { + "start": 981.48, + "end": 986.92, + "probability": 0.9727 + }, + { + "start": 987.22, + "end": 989.66, + "probability": 0.8137 + }, + { + "start": 991.62, + "end": 995.12, + "probability": 0.5319 + }, + { + "start": 995.96, + "end": 999.7, + "probability": 0.8151 + }, + { + "start": 1000.08, + "end": 1003.8, + "probability": 0.9701 + }, + { + "start": 1004.12, + "end": 1007.18, + "probability": 0.8848 + }, + { + "start": 1007.7, + "end": 1010.22, + "probability": 0.9955 + }, + { + "start": 1010.68, + "end": 1015.06, + "probability": 0.9751 + }, + { + "start": 1015.38, + "end": 1018.58, + "probability": 0.898 + }, + { + "start": 1018.62, + "end": 1019.12, + "probability": 0.8302 + }, + { + "start": 1019.18, + "end": 1021.78, + "probability": 0.9846 + }, + { + "start": 1021.78, + "end": 1026.18, + "probability": 0.9824 + }, + { + "start": 1026.64, + "end": 1027.7, + "probability": 0.7568 + }, + { + "start": 1027.86, + "end": 1028.35, + "probability": 0.7007 + }, + { + "start": 1028.64, + "end": 1029.9, + "probability": 0.991 + }, + { + "start": 1030.28, + "end": 1031.92, + "probability": 0.9584 + }, + { + "start": 1032.9, + "end": 1033.48, + "probability": 0.7343 + }, + { + "start": 1033.6, + "end": 1034.78, + "probability": 0.9924 + }, + { + "start": 1034.84, + "end": 1035.28, + "probability": 0.985 + }, + { + "start": 1035.32, + "end": 1036.18, + "probability": 0.9749 + }, + { + "start": 1036.3, + "end": 1038.26, + "probability": 0.8545 + }, + { + "start": 1038.82, + "end": 1041.44, + "probability": 0.9407 + }, + { + "start": 1041.7, + "end": 1045.04, + "probability": 0.9244 + }, + { + "start": 1045.16, + "end": 1045.58, + "probability": 0.7606 + }, + { + "start": 1045.86, + "end": 1046.42, + "probability": 0.954 + }, + { + "start": 1046.66, + "end": 1047.36, + "probability": 0.8134 + }, + { + "start": 1047.68, + "end": 1050.9, + "probability": 0.8692 + }, + { + "start": 1051.32, + "end": 1053.3, + "probability": 0.7975 + }, + { + "start": 1053.54, + "end": 1054.46, + "probability": 0.9115 + }, + { + "start": 1054.74, + "end": 1056.38, + "probability": 0.9522 + }, + { + "start": 1056.64, + "end": 1061.92, + "probability": 0.9833 + }, + { + "start": 1062.24, + "end": 1063.66, + "probability": 0.9958 + }, + { + "start": 1063.94, + "end": 1067.48, + "probability": 0.9896 + }, + { + "start": 1068.5, + "end": 1069.62, + "probability": 0.5536 + }, + { + "start": 1069.66, + "end": 1070.24, + "probability": 0.9219 + }, + { + "start": 1070.32, + "end": 1070.88, + "probability": 0.601 + }, + { + "start": 1071.24, + "end": 1073.94, + "probability": 0.937 + }, + { + "start": 1074.18, + "end": 1078.14, + "probability": 0.9978 + }, + { + "start": 1078.3, + "end": 1079.68, + "probability": 0.9731 + }, + { + "start": 1080.16, + "end": 1081.44, + "probability": 0.8298 + }, + { + "start": 1081.74, + "end": 1082.52, + "probability": 0.7283 + }, + { + "start": 1083.14, + "end": 1085.08, + "probability": 0.9529 + }, + { + "start": 1108.12, + "end": 1108.58, + "probability": 0.4653 + }, + { + "start": 1108.66, + "end": 1111.98, + "probability": 0.7435 + }, + { + "start": 1114.1, + "end": 1116.76, + "probability": 0.9496 + }, + { + "start": 1118.32, + "end": 1121.04, + "probability": 0.7628 + }, + { + "start": 1121.16, + "end": 1122.68, + "probability": 0.9144 + }, + { + "start": 1124.28, + "end": 1125.28, + "probability": 0.9897 + }, + { + "start": 1126.22, + "end": 1127.9, + "probability": 0.9943 + }, + { + "start": 1128.58, + "end": 1129.86, + "probability": 0.9971 + }, + { + "start": 1131.38, + "end": 1133.66, + "probability": 0.938 + }, + { + "start": 1135.72, + "end": 1136.28, + "probability": 0.5042 + }, + { + "start": 1136.44, + "end": 1137.64, + "probability": 0.8459 + }, + { + "start": 1137.76, + "end": 1138.27, + "probability": 0.9771 + }, + { + "start": 1138.54, + "end": 1139.96, + "probability": 0.9886 + }, + { + "start": 1140.06, + "end": 1141.52, + "probability": 0.8132 + }, + { + "start": 1142.26, + "end": 1144.78, + "probability": 0.962 + }, + { + "start": 1146.56, + "end": 1149.28, + "probability": 0.916 + }, + { + "start": 1149.82, + "end": 1152.95, + "probability": 0.9818 + }, + { + "start": 1153.84, + "end": 1154.52, + "probability": 0.8477 + }, + { + "start": 1154.6, + "end": 1155.56, + "probability": 0.683 + }, + { + "start": 1155.6, + "end": 1157.2, + "probability": 0.7849 + }, + { + "start": 1157.62, + "end": 1158.56, + "probability": 0.7583 + }, + { + "start": 1159.94, + "end": 1162.64, + "probability": 0.9189 + }, + { + "start": 1163.9, + "end": 1166.2, + "probability": 0.8499 + }, + { + "start": 1167.04, + "end": 1168.1, + "probability": 0.6886 + }, + { + "start": 1169.72, + "end": 1173.86, + "probability": 0.9431 + }, + { + "start": 1175.14, + "end": 1178.28, + "probability": 0.9038 + }, + { + "start": 1178.44, + "end": 1181.18, + "probability": 0.8624 + }, + { + "start": 1181.9, + "end": 1185.94, + "probability": 0.8037 + }, + { + "start": 1186.74, + "end": 1189.84, + "probability": 0.9849 + }, + { + "start": 1190.78, + "end": 1194.06, + "probability": 0.97 + }, + { + "start": 1196.06, + "end": 1196.72, + "probability": 0.5723 + }, + { + "start": 1197.8, + "end": 1199.92, + "probability": 0.8745 + }, + { + "start": 1200.98, + "end": 1205.22, + "probability": 0.9873 + }, + { + "start": 1206.32, + "end": 1208.28, + "probability": 0.8911 + }, + { + "start": 1208.36, + "end": 1209.78, + "probability": 0.9518 + }, + { + "start": 1210.58, + "end": 1212.16, + "probability": 0.9604 + }, + { + "start": 1212.52, + "end": 1214.4, + "probability": 0.9971 + }, + { + "start": 1215.08, + "end": 1216.06, + "probability": 0.751 + }, + { + "start": 1216.76, + "end": 1219.52, + "probability": 0.4205 + }, + { + "start": 1220.56, + "end": 1222.6, + "probability": 0.9515 + }, + { + "start": 1223.08, + "end": 1226.58, + "probability": 0.9112 + }, + { + "start": 1227.92, + "end": 1230.72, + "probability": 0.9804 + }, + { + "start": 1231.68, + "end": 1233.06, + "probability": 0.7877 + }, + { + "start": 1233.58, + "end": 1235.1, + "probability": 0.9827 + }, + { + "start": 1235.74, + "end": 1239.9, + "probability": 0.9921 + }, + { + "start": 1241.22, + "end": 1243.66, + "probability": 0.9722 + }, + { + "start": 1244.32, + "end": 1244.9, + "probability": 0.9602 + }, + { + "start": 1246.0, + "end": 1248.94, + "probability": 0.9924 + }, + { + "start": 1249.06, + "end": 1251.84, + "probability": 0.9964 + }, + { + "start": 1251.84, + "end": 1255.99, + "probability": 0.7367 + }, + { + "start": 1256.46, + "end": 1257.96, + "probability": 0.7655 + }, + { + "start": 1258.02, + "end": 1260.06, + "probability": 0.9381 + }, + { + "start": 1261.7, + "end": 1262.54, + "probability": 0.5667 + }, + { + "start": 1262.84, + "end": 1266.16, + "probability": 0.9569 + }, + { + "start": 1266.84, + "end": 1267.7, + "probability": 0.5167 + }, + { + "start": 1268.62, + "end": 1269.3, + "probability": 0.824 + }, + { + "start": 1269.66, + "end": 1273.66, + "probability": 0.918 + }, + { + "start": 1274.22, + "end": 1277.12, + "probability": 0.9443 + }, + { + "start": 1278.24, + "end": 1281.66, + "probability": 0.8042 + }, + { + "start": 1282.6, + "end": 1285.3, + "probability": 0.5763 + }, + { + "start": 1286.34, + "end": 1287.98, + "probability": 0.9688 + }, + { + "start": 1288.12, + "end": 1288.62, + "probability": 0.7417 + }, + { + "start": 1288.7, + "end": 1289.5, + "probability": 0.846 + }, + { + "start": 1289.54, + "end": 1290.08, + "probability": 0.6123 + }, + { + "start": 1290.64, + "end": 1291.66, + "probability": 0.9698 + }, + { + "start": 1292.62, + "end": 1294.18, + "probability": 0.9932 + }, + { + "start": 1294.76, + "end": 1297.38, + "probability": 0.6217 + }, + { + "start": 1298.06, + "end": 1298.42, + "probability": 0.3574 + }, + { + "start": 1298.56, + "end": 1299.72, + "probability": 0.8761 + }, + { + "start": 1300.08, + "end": 1301.74, + "probability": 0.7521 + }, + { + "start": 1301.88, + "end": 1305.48, + "probability": 0.9807 + }, + { + "start": 1306.24, + "end": 1306.92, + "probability": 0.9537 + }, + { + "start": 1307.8, + "end": 1310.54, + "probability": 0.7551 + }, + { + "start": 1311.14, + "end": 1313.98, + "probability": 0.9929 + }, + { + "start": 1314.54, + "end": 1315.16, + "probability": 0.8378 + }, + { + "start": 1315.92, + "end": 1318.02, + "probability": 0.9446 + }, + { + "start": 1318.72, + "end": 1319.7, + "probability": 0.9606 + }, + { + "start": 1319.9, + "end": 1320.94, + "probability": 0.968 + }, + { + "start": 1321.04, + "end": 1324.5, + "probability": 0.9442 + }, + { + "start": 1324.54, + "end": 1325.76, + "probability": 0.7573 + }, + { + "start": 1326.9, + "end": 1328.1, + "probability": 0.6971 + }, + { + "start": 1328.76, + "end": 1328.94, + "probability": 0.6521 + }, + { + "start": 1329.86, + "end": 1332.22, + "probability": 0.7221 + }, + { + "start": 1332.82, + "end": 1333.86, + "probability": 0.9323 + }, + { + "start": 1334.82, + "end": 1341.56, + "probability": 0.9077 + }, + { + "start": 1342.5, + "end": 1342.88, + "probability": 0.8132 + }, + { + "start": 1342.96, + "end": 1343.16, + "probability": 0.4982 + }, + { + "start": 1343.26, + "end": 1344.34, + "probability": 0.8169 + }, + { + "start": 1344.5, + "end": 1347.22, + "probability": 0.6576 + }, + { + "start": 1347.28, + "end": 1348.66, + "probability": 0.7225 + }, + { + "start": 1349.58, + "end": 1351.54, + "probability": 0.9905 + }, + { + "start": 1351.62, + "end": 1354.2, + "probability": 0.9089 + }, + { + "start": 1354.2, + "end": 1356.6, + "probability": 0.9944 + }, + { + "start": 1357.14, + "end": 1358.88, + "probability": 0.6672 + }, + { + "start": 1359.9, + "end": 1364.98, + "probability": 0.7442 + }, + { + "start": 1366.12, + "end": 1367.24, + "probability": 0.9283 + }, + { + "start": 1368.28, + "end": 1369.96, + "probability": 0.9463 + }, + { + "start": 1370.12, + "end": 1371.71, + "probability": 0.9666 + }, + { + "start": 1372.12, + "end": 1374.16, + "probability": 0.8413 + }, + { + "start": 1374.16, + "end": 1376.56, + "probability": 0.9302 + }, + { + "start": 1376.74, + "end": 1378.27, + "probability": 0.9912 + }, + { + "start": 1380.3, + "end": 1381.44, + "probability": 0.7151 + }, + { + "start": 1382.9, + "end": 1384.78, + "probability": 0.9271 + }, + { + "start": 1386.72, + "end": 1388.7, + "probability": 0.8608 + }, + { + "start": 1388.78, + "end": 1390.16, + "probability": 0.9755 + }, + { + "start": 1390.48, + "end": 1392.98, + "probability": 0.927 + }, + { + "start": 1394.56, + "end": 1397.32, + "probability": 0.9988 + }, + { + "start": 1398.14, + "end": 1399.04, + "probability": 0.8286 + }, + { + "start": 1399.58, + "end": 1402.9, + "probability": 0.9902 + }, + { + "start": 1404.32, + "end": 1405.32, + "probability": 0.9685 + }, + { + "start": 1407.68, + "end": 1408.7, + "probability": 0.998 + }, + { + "start": 1411.3, + "end": 1412.16, + "probability": 0.9276 + }, + { + "start": 1413.28, + "end": 1415.0, + "probability": 0.9512 + }, + { + "start": 1415.6, + "end": 1417.08, + "probability": 0.9602 + }, + { + "start": 1418.3, + "end": 1421.4, + "probability": 0.9693 + }, + { + "start": 1422.44, + "end": 1424.14, + "probability": 0.9893 + }, + { + "start": 1424.78, + "end": 1426.14, + "probability": 0.9419 + }, + { + "start": 1427.18, + "end": 1428.91, + "probability": 0.9976 + }, + { + "start": 1429.74, + "end": 1432.14, + "probability": 0.9954 + }, + { + "start": 1432.96, + "end": 1434.82, + "probability": 0.9871 + }, + { + "start": 1435.42, + "end": 1437.04, + "probability": 0.9974 + }, + { + "start": 1438.14, + "end": 1440.84, + "probability": 0.9934 + }, + { + "start": 1441.56, + "end": 1442.96, + "probability": 0.8765 + }, + { + "start": 1443.6, + "end": 1446.14, + "probability": 0.9951 + }, + { + "start": 1446.32, + "end": 1447.56, + "probability": 0.9932 + }, + { + "start": 1448.58, + "end": 1450.56, + "probability": 0.854 + }, + { + "start": 1451.34, + "end": 1453.78, + "probability": 0.8888 + }, + { + "start": 1454.04, + "end": 1455.22, + "probability": 0.972 + }, + { + "start": 1456.9, + "end": 1459.64, + "probability": 0.7404 + }, + { + "start": 1460.94, + "end": 1462.48, + "probability": 0.6915 + }, + { + "start": 1462.58, + "end": 1464.32, + "probability": 0.9575 + }, + { + "start": 1465.5, + "end": 1467.34, + "probability": 0.6041 + }, + { + "start": 1467.42, + "end": 1467.82, + "probability": 0.5162 + }, + { + "start": 1468.64, + "end": 1469.44, + "probability": 0.9226 + }, + { + "start": 1470.36, + "end": 1472.46, + "probability": 0.8901 + }, + { + "start": 1472.9, + "end": 1474.56, + "probability": 0.9876 + }, + { + "start": 1474.6, + "end": 1475.08, + "probability": 0.5704 + }, + { + "start": 1476.02, + "end": 1479.52, + "probability": 0.9601 + }, + { + "start": 1479.98, + "end": 1480.6, + "probability": 0.7428 + }, + { + "start": 1480.6, + "end": 1482.62, + "probability": 0.9905 + }, + { + "start": 1482.7, + "end": 1483.52, + "probability": 0.9578 + }, + { + "start": 1483.7, + "end": 1484.9, + "probability": 0.9277 + }, + { + "start": 1486.02, + "end": 1488.76, + "probability": 0.9918 + }, + { + "start": 1488.86, + "end": 1492.0, + "probability": 0.8838 + }, + { + "start": 1492.06, + "end": 1493.0, + "probability": 0.9567 + }, + { + "start": 1493.2, + "end": 1493.92, + "probability": 0.7507 + }, + { + "start": 1494.96, + "end": 1496.58, + "probability": 0.898 + }, + { + "start": 1497.86, + "end": 1500.58, + "probability": 0.9697 + }, + { + "start": 1500.58, + "end": 1503.22, + "probability": 0.9927 + }, + { + "start": 1503.68, + "end": 1504.12, + "probability": 0.7131 + }, + { + "start": 1504.92, + "end": 1505.38, + "probability": 0.8227 + }, + { + "start": 1507.28, + "end": 1507.96, + "probability": 0.9387 + }, + { + "start": 1508.78, + "end": 1511.24, + "probability": 0.4933 + }, + { + "start": 1511.34, + "end": 1512.64, + "probability": 0.9795 + }, + { + "start": 1512.94, + "end": 1513.78, + "probability": 0.7233 + }, + { + "start": 1514.14, + "end": 1517.24, + "probability": 0.9669 + }, + { + "start": 1517.28, + "end": 1518.12, + "probability": 0.9915 + }, + { + "start": 1519.52, + "end": 1520.7, + "probability": 0.8967 + }, + { + "start": 1521.8, + "end": 1524.34, + "probability": 0.939 + }, + { + "start": 1525.16, + "end": 1527.44, + "probability": 0.8652 + }, + { + "start": 1527.66, + "end": 1528.4, + "probability": 0.9927 + }, + { + "start": 1528.76, + "end": 1529.37, + "probability": 0.7561 + }, + { + "start": 1530.56, + "end": 1530.98, + "probability": 0.7252 + }, + { + "start": 1531.5, + "end": 1534.88, + "probability": 0.6559 + }, + { + "start": 1535.4, + "end": 1537.98, + "probability": 0.989 + }, + { + "start": 1538.74, + "end": 1540.92, + "probability": 0.9291 + }, + { + "start": 1541.54, + "end": 1546.82, + "probability": 0.9824 + }, + { + "start": 1547.36, + "end": 1548.96, + "probability": 0.9902 + }, + { + "start": 1549.4, + "end": 1551.02, + "probability": 0.989 + }, + { + "start": 1552.58, + "end": 1554.5, + "probability": 0.9494 + }, + { + "start": 1555.64, + "end": 1559.66, + "probability": 0.9678 + }, + { + "start": 1560.44, + "end": 1562.02, + "probability": 0.8071 + }, + { + "start": 1562.96, + "end": 1564.88, + "probability": 0.994 + }, + { + "start": 1566.86, + "end": 1568.04, + "probability": 0.9724 + }, + { + "start": 1569.08, + "end": 1571.9, + "probability": 0.9753 + }, + { + "start": 1572.6, + "end": 1574.42, + "probability": 0.9792 + }, + { + "start": 1574.56, + "end": 1575.88, + "probability": 0.5207 + }, + { + "start": 1576.76, + "end": 1577.6, + "probability": 0.9601 + }, + { + "start": 1578.66, + "end": 1584.32, + "probability": 0.9946 + }, + { + "start": 1584.52, + "end": 1587.8, + "probability": 0.8904 + }, + { + "start": 1587.94, + "end": 1589.71, + "probability": 0.9957 + }, + { + "start": 1590.78, + "end": 1593.62, + "probability": 0.9359 + }, + { + "start": 1594.14, + "end": 1595.08, + "probability": 0.8346 + }, + { + "start": 1595.14, + "end": 1595.48, + "probability": 0.7346 + }, + { + "start": 1596.3, + "end": 1598.74, + "probability": 0.7851 + }, + { + "start": 1599.08, + "end": 1601.26, + "probability": 0.8632 + }, + { + "start": 1601.38, + "end": 1602.6, + "probability": 0.6667 + }, + { + "start": 1603.46, + "end": 1603.46, + "probability": 0.7485 + }, + { + "start": 1603.48, + "end": 1607.28, + "probability": 0.9397 + }, + { + "start": 1607.82, + "end": 1608.58, + "probability": 0.9927 + }, + { + "start": 1608.7, + "end": 1609.4, + "probability": 0.9468 + }, + { + "start": 1610.78, + "end": 1611.48, + "probability": 0.3568 + }, + { + "start": 1612.7, + "end": 1615.3, + "probability": 0.8304 + }, + { + "start": 1616.42, + "end": 1616.68, + "probability": 0.0729 + }, + { + "start": 1616.68, + "end": 1617.2, + "probability": 0.9233 + }, + { + "start": 1619.9, + "end": 1621.04, + "probability": 0.9866 + }, + { + "start": 1640.28, + "end": 1640.28, + "probability": 0.3012 + }, + { + "start": 1640.28, + "end": 1640.93, + "probability": 0.4861 + }, + { + "start": 1642.8, + "end": 1643.52, + "probability": 0.6619 + }, + { + "start": 1645.38, + "end": 1647.63, + "probability": 0.937 + }, + { + "start": 1649.46, + "end": 1652.7, + "probability": 0.9852 + }, + { + "start": 1653.42, + "end": 1659.04, + "probability": 0.9976 + }, + { + "start": 1660.02, + "end": 1661.22, + "probability": 0.9263 + }, + { + "start": 1661.78, + "end": 1663.24, + "probability": 0.9934 + }, + { + "start": 1664.4, + "end": 1667.28, + "probability": 0.9766 + }, + { + "start": 1668.5, + "end": 1671.24, + "probability": 0.9434 + }, + { + "start": 1672.32, + "end": 1674.08, + "probability": 0.9479 + }, + { + "start": 1675.5, + "end": 1680.36, + "probability": 0.9787 + }, + { + "start": 1681.52, + "end": 1681.72, + "probability": 0.6192 + }, + { + "start": 1682.32, + "end": 1683.23, + "probability": 0.6023 + }, + { + "start": 1685.32, + "end": 1688.22, + "probability": 0.9958 + }, + { + "start": 1689.34, + "end": 1690.82, + "probability": 0.9927 + }, + { + "start": 1691.54, + "end": 1692.22, + "probability": 0.8723 + }, + { + "start": 1693.38, + "end": 1697.66, + "probability": 0.9744 + }, + { + "start": 1697.88, + "end": 1703.12, + "probability": 0.9388 + }, + { + "start": 1704.68, + "end": 1705.22, + "probability": 0.8305 + }, + { + "start": 1706.12, + "end": 1706.94, + "probability": 0.8505 + }, + { + "start": 1707.76, + "end": 1709.32, + "probability": 0.9871 + }, + { + "start": 1710.44, + "end": 1717.54, + "probability": 0.9575 + }, + { + "start": 1718.24, + "end": 1719.9, + "probability": 0.8151 + }, + { + "start": 1721.3, + "end": 1723.62, + "probability": 0.9646 + }, + { + "start": 1724.84, + "end": 1728.44, + "probability": 0.8955 + }, + { + "start": 1729.62, + "end": 1733.34, + "probability": 0.9896 + }, + { + "start": 1735.32, + "end": 1740.48, + "probability": 0.9728 + }, + { + "start": 1741.66, + "end": 1744.26, + "probability": 0.9775 + }, + { + "start": 1744.52, + "end": 1747.12, + "probability": 0.9717 + }, + { + "start": 1749.4, + "end": 1754.56, + "probability": 0.8605 + }, + { + "start": 1755.6, + "end": 1761.12, + "probability": 0.988 + }, + { + "start": 1762.9, + "end": 1766.44, + "probability": 0.8893 + }, + { + "start": 1766.56, + "end": 1770.94, + "probability": 0.9901 + }, + { + "start": 1770.94, + "end": 1776.12, + "probability": 0.9944 + }, + { + "start": 1776.96, + "end": 1777.26, + "probability": 0.8698 + }, + { + "start": 1778.88, + "end": 1782.12, + "probability": 0.8247 + }, + { + "start": 1783.24, + "end": 1786.54, + "probability": 0.8797 + }, + { + "start": 1787.32, + "end": 1788.6, + "probability": 0.9804 + }, + { + "start": 1790.4, + "end": 1797.48, + "probability": 0.8438 + }, + { + "start": 1799.4, + "end": 1802.12, + "probability": 0.7994 + }, + { + "start": 1802.26, + "end": 1804.12, + "probability": 0.7993 + }, + { + "start": 1805.18, + "end": 1806.76, + "probability": 0.9604 + }, + { + "start": 1808.24, + "end": 1809.02, + "probability": 0.9753 + }, + { + "start": 1811.08, + "end": 1815.22, + "probability": 0.9971 + }, + { + "start": 1816.28, + "end": 1816.66, + "probability": 0.9408 + }, + { + "start": 1817.42, + "end": 1821.82, + "probability": 0.9721 + }, + { + "start": 1822.0, + "end": 1823.12, + "probability": 0.8963 + }, + { + "start": 1824.16, + "end": 1824.92, + "probability": 0.9567 + }, + { + "start": 1828.34, + "end": 1830.3, + "probability": 0.7579 + }, + { + "start": 1832.0, + "end": 1838.22, + "probability": 0.9844 + }, + { + "start": 1838.36, + "end": 1841.92, + "probability": 0.9803 + }, + { + "start": 1842.68, + "end": 1843.7, + "probability": 0.9692 + }, + { + "start": 1845.66, + "end": 1847.22, + "probability": 0.9891 + }, + { + "start": 1848.48, + "end": 1850.64, + "probability": 0.6572 + }, + { + "start": 1852.24, + "end": 1852.8, + "probability": 0.8326 + }, + { + "start": 1853.54, + "end": 1853.66, + "probability": 0.4691 + }, + { + "start": 1853.68, + "end": 1853.88, + "probability": 0.4912 + }, + { + "start": 1854.04, + "end": 1854.76, + "probability": 0.758 + }, + { + "start": 1854.84, + "end": 1855.74, + "probability": 0.9252 + }, + { + "start": 1856.18, + "end": 1859.16, + "probability": 0.6584 + }, + { + "start": 1860.14, + "end": 1860.7, + "probability": 0.8923 + }, + { + "start": 1861.24, + "end": 1863.2, + "probability": 0.977 + }, + { + "start": 1864.08, + "end": 1865.38, + "probability": 0.981 + }, + { + "start": 1865.66, + "end": 1866.98, + "probability": 0.9958 + }, + { + "start": 1867.06, + "end": 1868.14, + "probability": 0.9932 + }, + { + "start": 1868.66, + "end": 1870.68, + "probability": 0.9744 + }, + { + "start": 1871.98, + "end": 1876.58, + "probability": 0.9841 + }, + { + "start": 1877.58, + "end": 1879.34, + "probability": 0.9462 + }, + { + "start": 1880.68, + "end": 1882.05, + "probability": 0.9879 + }, + { + "start": 1882.22, + "end": 1883.64, + "probability": 0.8537 + }, + { + "start": 1885.1, + "end": 1888.96, + "probability": 0.9803 + }, + { + "start": 1888.96, + "end": 1891.78, + "probability": 0.9751 + }, + { + "start": 1892.76, + "end": 1893.32, + "probability": 0.9795 + }, + { + "start": 1894.84, + "end": 1900.48, + "probability": 0.9688 + }, + { + "start": 1901.34, + "end": 1902.1, + "probability": 0.8391 + }, + { + "start": 1902.96, + "end": 1904.48, + "probability": 0.882 + }, + { + "start": 1905.9, + "end": 1907.08, + "probability": 0.8992 + }, + { + "start": 1908.9, + "end": 1909.74, + "probability": 0.9294 + }, + { + "start": 1910.52, + "end": 1911.16, + "probability": 0.9188 + }, + { + "start": 1912.18, + "end": 1915.18, + "probability": 0.8497 + }, + { + "start": 1916.14, + "end": 1919.62, + "probability": 0.9891 + }, + { + "start": 1921.34, + "end": 1923.16, + "probability": 0.9497 + }, + { + "start": 1923.84, + "end": 1924.32, + "probability": 0.6477 + }, + { + "start": 1924.86, + "end": 1925.96, + "probability": 0.814 + }, + { + "start": 1926.98, + "end": 1927.94, + "probability": 0.8747 + }, + { + "start": 1928.04, + "end": 1929.74, + "probability": 0.7998 + }, + { + "start": 1929.92, + "end": 1931.7, + "probability": 0.9508 + }, + { + "start": 1932.52, + "end": 1933.32, + "probability": 0.8447 + }, + { + "start": 1934.1, + "end": 1936.14, + "probability": 0.9726 + }, + { + "start": 1936.74, + "end": 1938.88, + "probability": 0.989 + }, + { + "start": 1939.5, + "end": 1940.7, + "probability": 0.9548 + }, + { + "start": 1941.5, + "end": 1942.34, + "probability": 0.873 + }, + { + "start": 1943.0, + "end": 1946.88, + "probability": 0.9494 + }, + { + "start": 1947.58, + "end": 1948.6, + "probability": 0.9759 + }, + { + "start": 1949.24, + "end": 1949.92, + "probability": 0.9788 + }, + { + "start": 1951.52, + "end": 1955.54, + "probability": 0.9962 + }, + { + "start": 1956.46, + "end": 1957.94, + "probability": 0.7733 + }, + { + "start": 1958.6, + "end": 1959.98, + "probability": 0.9967 + }, + { + "start": 1960.84, + "end": 1963.1, + "probability": 0.919 + }, + { + "start": 1964.42, + "end": 1966.12, + "probability": 0.9038 + }, + { + "start": 1966.72, + "end": 1971.52, + "probability": 0.9674 + }, + { + "start": 1971.96, + "end": 1972.96, + "probability": 0.9657 + }, + { + "start": 1973.68, + "end": 1974.98, + "probability": 0.9286 + }, + { + "start": 1975.86, + "end": 1977.0, + "probability": 0.6563 + }, + { + "start": 1977.36, + "end": 1977.64, + "probability": 0.8117 + }, + { + "start": 1980.44, + "end": 1981.24, + "probability": 0.768 + }, + { + "start": 1982.0, + "end": 1983.4, + "probability": 0.9437 + }, + { + "start": 1993.26, + "end": 1993.28, + "probability": 0.1539 + }, + { + "start": 1993.28, + "end": 1993.28, + "probability": 0.0503 + }, + { + "start": 1993.28, + "end": 1993.28, + "probability": 0.1565 + }, + { + "start": 1993.28, + "end": 1993.32, + "probability": 0.1219 + }, + { + "start": 1993.32, + "end": 1993.32, + "probability": 0.2755 + }, + { + "start": 2021.18, + "end": 2021.92, + "probability": 0.4374 + }, + { + "start": 2022.94, + "end": 2026.24, + "probability": 0.8469 + }, + { + "start": 2027.14, + "end": 2028.76, + "probability": 0.7715 + }, + { + "start": 2029.58, + "end": 2030.07, + "probability": 0.8103 + }, + { + "start": 2033.73, + "end": 2037.48, + "probability": 0.9949 + }, + { + "start": 2037.54, + "end": 2038.72, + "probability": 0.8447 + }, + { + "start": 2040.04, + "end": 2043.44, + "probability": 0.4264 + }, + { + "start": 2043.44, + "end": 2045.64, + "probability": 0.981 + }, + { + "start": 2047.3, + "end": 2048.96, + "probability": 0.6491 + }, + { + "start": 2049.54, + "end": 2050.58, + "probability": 0.9495 + }, + { + "start": 2050.68, + "end": 2051.3, + "probability": 0.507 + }, + { + "start": 2051.4, + "end": 2054.68, + "probability": 0.9701 + }, + { + "start": 2054.78, + "end": 2056.0, + "probability": 0.7939 + }, + { + "start": 2057.1, + "end": 2061.4, + "probability": 0.9801 + }, + { + "start": 2061.46, + "end": 2062.96, + "probability": 0.9673 + }, + { + "start": 2063.06, + "end": 2063.66, + "probability": 0.8552 + }, + { + "start": 2064.82, + "end": 2065.36, + "probability": 0.1988 + }, + { + "start": 2065.36, + "end": 2067.96, + "probability": 0.8501 + }, + { + "start": 2067.98, + "end": 2073.36, + "probability": 0.9815 + }, + { + "start": 2073.5, + "end": 2074.08, + "probability": 0.8691 + }, + { + "start": 2074.88, + "end": 2075.86, + "probability": 0.7868 + }, + { + "start": 2076.38, + "end": 2080.34, + "probability": 0.9846 + }, + { + "start": 2080.52, + "end": 2082.9, + "probability": 0.915 + }, + { + "start": 2083.6, + "end": 2084.92, + "probability": 0.9121 + }, + { + "start": 2086.12, + "end": 2088.34, + "probability": 0.9009 + }, + { + "start": 2089.7, + "end": 2092.46, + "probability": 0.7744 + }, + { + "start": 2094.86, + "end": 2095.52, + "probability": 0.9666 + }, + { + "start": 2098.76, + "end": 2106.02, + "probability": 0.9941 + }, + { + "start": 2106.02, + "end": 2113.08, + "probability": 0.986 + }, + { + "start": 2115.24, + "end": 2118.04, + "probability": 0.7903 + }, + { + "start": 2118.66, + "end": 2121.2, + "probability": 0.7613 + }, + { + "start": 2121.24, + "end": 2126.5, + "probability": 0.6636 + }, + { + "start": 2127.98, + "end": 2133.24, + "probability": 0.9761 + }, + { + "start": 2133.98, + "end": 2138.14, + "probability": 0.9577 + }, + { + "start": 2139.24, + "end": 2142.88, + "probability": 0.9941 + }, + { + "start": 2143.94, + "end": 2146.86, + "probability": 0.9752 + }, + { + "start": 2147.7, + "end": 2148.62, + "probability": 0.9877 + }, + { + "start": 2149.82, + "end": 2151.8, + "probability": 0.9644 + }, + { + "start": 2152.86, + "end": 2159.82, + "probability": 0.9764 + }, + { + "start": 2160.48, + "end": 2162.22, + "probability": 0.6847 + }, + { + "start": 2163.1, + "end": 2166.36, + "probability": 0.9773 + }, + { + "start": 2166.9, + "end": 2168.12, + "probability": 0.5831 + }, + { + "start": 2169.2, + "end": 2170.49, + "probability": 0.9932 + }, + { + "start": 2171.46, + "end": 2172.54, + "probability": 0.9935 + }, + { + "start": 2173.58, + "end": 2175.09, + "probability": 0.991 + }, + { + "start": 2176.92, + "end": 2178.72, + "probability": 0.9935 + }, + { + "start": 2179.44, + "end": 2184.78, + "probability": 0.9976 + }, + { + "start": 2185.96, + "end": 2187.42, + "probability": 0.7621 + }, + { + "start": 2187.74, + "end": 2189.08, + "probability": 0.9784 + }, + { + "start": 2190.28, + "end": 2194.6, + "probability": 0.9775 + }, + { + "start": 2195.82, + "end": 2197.58, + "probability": 0.9792 + }, + { + "start": 2200.08, + "end": 2201.46, + "probability": 0.9895 + }, + { + "start": 2201.98, + "end": 2203.92, + "probability": 0.9253 + }, + { + "start": 2205.02, + "end": 2208.4, + "probability": 0.9631 + }, + { + "start": 2209.38, + "end": 2213.24, + "probability": 0.8896 + }, + { + "start": 2213.76, + "end": 2217.6, + "probability": 0.7678 + }, + { + "start": 2219.26, + "end": 2221.92, + "probability": 0.7895 + }, + { + "start": 2222.72, + "end": 2223.68, + "probability": 0.9209 + }, + { + "start": 2223.88, + "end": 2225.4, + "probability": 0.7413 + }, + { + "start": 2225.44, + "end": 2231.0, + "probability": 0.9677 + }, + { + "start": 2231.28, + "end": 2231.98, + "probability": 0.9609 + }, + { + "start": 2234.04, + "end": 2234.9, + "probability": 0.1607 + }, + { + "start": 2234.9, + "end": 2235.46, + "probability": 0.3629 + }, + { + "start": 2237.14, + "end": 2239.34, + "probability": 0.9528 + }, + { + "start": 2239.68, + "end": 2240.08, + "probability": 0.6881 + }, + { + "start": 2241.22, + "end": 2243.82, + "probability": 0.8499 + }, + { + "start": 2247.36, + "end": 2247.9, + "probability": 0.618 + }, + { + "start": 2248.96, + "end": 2250.66, + "probability": 0.9917 + }, + { + "start": 2250.94, + "end": 2256.2, + "probability": 0.9423 + }, + { + "start": 2257.92, + "end": 2260.86, + "probability": 0.8555 + }, + { + "start": 2261.06, + "end": 2261.86, + "probability": 0.765 + }, + { + "start": 2262.9, + "end": 2263.66, + "probability": 0.9499 + }, + { + "start": 2264.5, + "end": 2266.2, + "probability": 0.9937 + }, + { + "start": 2266.96, + "end": 2268.42, + "probability": 0.9966 + }, + { + "start": 2269.02, + "end": 2269.52, + "probability": 0.843 + }, + { + "start": 2269.76, + "end": 2270.24, + "probability": 0.959 + }, + { + "start": 2270.48, + "end": 2273.16, + "probability": 0.7225 + }, + { + "start": 2274.3, + "end": 2277.89, + "probability": 0.9847 + }, + { + "start": 2278.84, + "end": 2280.16, + "probability": 0.8748 + }, + { + "start": 2281.12, + "end": 2283.48, + "probability": 0.753 + }, + { + "start": 2283.98, + "end": 2285.58, + "probability": 0.8994 + }, + { + "start": 2286.38, + "end": 2289.54, + "probability": 0.9917 + }, + { + "start": 2289.54, + "end": 2293.84, + "probability": 0.9951 + }, + { + "start": 2294.86, + "end": 2298.4, + "probability": 0.9888 + }, + { + "start": 2298.64, + "end": 2299.72, + "probability": 0.9831 + }, + { + "start": 2301.08, + "end": 2301.84, + "probability": 0.9023 + }, + { + "start": 2303.22, + "end": 2304.1, + "probability": 0.8424 + }, + { + "start": 2305.48, + "end": 2309.54, + "probability": 0.9526 + }, + { + "start": 2310.66, + "end": 2312.84, + "probability": 0.9023 + }, + { + "start": 2313.54, + "end": 2315.44, + "probability": 0.9946 + }, + { + "start": 2316.88, + "end": 2320.26, + "probability": 0.9951 + }, + { + "start": 2321.46, + "end": 2325.56, + "probability": 0.9913 + }, + { + "start": 2325.56, + "end": 2328.32, + "probability": 0.8328 + }, + { + "start": 2328.44, + "end": 2329.72, + "probability": 0.7383 + }, + { + "start": 2329.82, + "end": 2331.78, + "probability": 0.9879 + }, + { + "start": 2335.1, + "end": 2335.42, + "probability": 0.1412 + }, + { + "start": 2335.42, + "end": 2336.94, + "probability": 0.7202 + }, + { + "start": 2337.36, + "end": 2338.38, + "probability": 0.786 + }, + { + "start": 2339.6, + "end": 2343.14, + "probability": 0.9524 + }, + { + "start": 2346.22, + "end": 2347.9, + "probability": 0.7734 + }, + { + "start": 2349.8, + "end": 2351.12, + "probability": 0.8468 + }, + { + "start": 2353.28, + "end": 2354.38, + "probability": 0.7668 + }, + { + "start": 2354.44, + "end": 2356.28, + "probability": 0.8845 + }, + { + "start": 2359.02, + "end": 2360.92, + "probability": 0.9814 + }, + { + "start": 2362.44, + "end": 2363.86, + "probability": 0.7082 + }, + { + "start": 2364.82, + "end": 2366.76, + "probability": 0.9982 + }, + { + "start": 2367.78, + "end": 2371.9, + "probability": 0.7922 + }, + { + "start": 2373.58, + "end": 2375.46, + "probability": 0.6714 + }, + { + "start": 2375.8, + "end": 2379.04, + "probability": 0.9604 + }, + { + "start": 2380.18, + "end": 2380.48, + "probability": 0.8342 + }, + { + "start": 2385.1, + "end": 2386.26, + "probability": 0.7111 + }, + { + "start": 2387.22, + "end": 2388.84, + "probability": 0.8608 + }, + { + "start": 2390.58, + "end": 2393.3, + "probability": 0.9963 + }, + { + "start": 2395.5, + "end": 2396.46, + "probability": 0.9416 + }, + { + "start": 2397.58, + "end": 2401.28, + "probability": 0.9935 + }, + { + "start": 2401.28, + "end": 2404.2, + "probability": 0.9974 + }, + { + "start": 2405.82, + "end": 2406.18, + "probability": 0.3412 + }, + { + "start": 2406.28, + "end": 2409.14, + "probability": 0.9858 + }, + { + "start": 2409.98, + "end": 2412.32, + "probability": 0.9331 + }, + { + "start": 2413.64, + "end": 2415.48, + "probability": 0.8474 + }, + { + "start": 2416.32, + "end": 2418.86, + "probability": 0.9793 + }, + { + "start": 2419.84, + "end": 2424.74, + "probability": 0.9963 + }, + { + "start": 2425.6, + "end": 2429.18, + "probability": 0.9136 + }, + { + "start": 2429.88, + "end": 2435.86, + "probability": 0.9884 + }, + { + "start": 2437.16, + "end": 2437.74, + "probability": 0.682 + }, + { + "start": 2437.92, + "end": 2438.9, + "probability": 0.8265 + }, + { + "start": 2439.02, + "end": 2440.64, + "probability": 0.9945 + }, + { + "start": 2442.72, + "end": 2447.86, + "probability": 0.9931 + }, + { + "start": 2449.16, + "end": 2451.56, + "probability": 0.9965 + }, + { + "start": 2452.46, + "end": 2458.06, + "probability": 0.7822 + }, + { + "start": 2459.26, + "end": 2465.34, + "probability": 0.9959 + }, + { + "start": 2466.08, + "end": 2468.98, + "probability": 0.9953 + }, + { + "start": 2469.92, + "end": 2471.84, + "probability": 0.9854 + }, + { + "start": 2472.62, + "end": 2474.74, + "probability": 0.7101 + }, + { + "start": 2475.4, + "end": 2479.52, + "probability": 0.9695 + }, + { + "start": 2480.16, + "end": 2484.75, + "probability": 0.991 + }, + { + "start": 2484.96, + "end": 2489.68, + "probability": 0.9805 + }, + { + "start": 2491.46, + "end": 2492.38, + "probability": 0.5542 + }, + { + "start": 2493.54, + "end": 2495.34, + "probability": 0.9966 + }, + { + "start": 2496.62, + "end": 2499.28, + "probability": 0.8727 + }, + { + "start": 2499.94, + "end": 2501.16, + "probability": 0.9417 + }, + { + "start": 2502.2, + "end": 2505.08, + "probability": 0.9822 + }, + { + "start": 2506.26, + "end": 2509.88, + "probability": 0.9877 + }, + { + "start": 2510.48, + "end": 2511.44, + "probability": 0.9937 + }, + { + "start": 2512.4, + "end": 2513.46, + "probability": 0.6626 + }, + { + "start": 2514.7, + "end": 2515.67, + "probability": 0.9924 + }, + { + "start": 2516.5, + "end": 2519.0, + "probability": 0.8844 + }, + { + "start": 2520.56, + "end": 2523.28, + "probability": 0.7383 + }, + { + "start": 2524.06, + "end": 2525.79, + "probability": 0.8737 + }, + { + "start": 2526.46, + "end": 2527.82, + "probability": 0.9811 + }, + { + "start": 2528.48, + "end": 2529.3, + "probability": 0.7952 + }, + { + "start": 2530.16, + "end": 2532.78, + "probability": 0.8939 + }, + { + "start": 2533.4, + "end": 2533.88, + "probability": 0.9052 + }, + { + "start": 2533.94, + "end": 2539.1, + "probability": 0.9655 + }, + { + "start": 2540.9, + "end": 2542.88, + "probability": 0.9714 + }, + { + "start": 2543.52, + "end": 2545.74, + "probability": 0.9333 + }, + { + "start": 2547.28, + "end": 2548.4, + "probability": 0.9267 + }, + { + "start": 2548.56, + "end": 2549.0, + "probability": 0.4108 + }, + { + "start": 2549.44, + "end": 2553.34, + "probability": 0.9784 + }, + { + "start": 2554.1, + "end": 2556.08, + "probability": 0.9986 + }, + { + "start": 2556.68, + "end": 2557.32, + "probability": 0.8333 + }, + { + "start": 2558.4, + "end": 2560.7, + "probability": 0.9561 + }, + { + "start": 2560.7, + "end": 2564.26, + "probability": 0.9883 + }, + { + "start": 2565.42, + "end": 2568.1, + "probability": 0.9948 + }, + { + "start": 2568.68, + "end": 2572.68, + "probability": 0.9847 + }, + { + "start": 2574.22, + "end": 2575.02, + "probability": 0.8256 + }, + { + "start": 2575.9, + "end": 2580.36, + "probability": 0.9767 + }, + { + "start": 2580.74, + "end": 2581.88, + "probability": 0.7295 + }, + { + "start": 2583.0, + "end": 2583.34, + "probability": 0.7264 + }, + { + "start": 2584.94, + "end": 2587.54, + "probability": 0.9719 + }, + { + "start": 2587.8, + "end": 2589.14, + "probability": 0.8113 + }, + { + "start": 2590.1, + "end": 2591.06, + "probability": 0.9493 + }, + { + "start": 2591.74, + "end": 2592.69, + "probability": 0.9777 + }, + { + "start": 2593.06, + "end": 2593.96, + "probability": 0.892 + }, + { + "start": 2594.18, + "end": 2595.02, + "probability": 0.8411 + }, + { + "start": 2595.14, + "end": 2596.04, + "probability": 0.8708 + }, + { + "start": 2596.24, + "end": 2597.5, + "probability": 0.6685 + }, + { + "start": 2598.62, + "end": 2599.06, + "probability": 0.1927 + }, + { + "start": 2599.34, + "end": 2603.18, + "probability": 0.9747 + }, + { + "start": 2604.72, + "end": 2605.92, + "probability": 0.9166 + }, + { + "start": 2606.08, + "end": 2610.56, + "probability": 0.9983 + }, + { + "start": 2611.14, + "end": 2616.1, + "probability": 0.9988 + }, + { + "start": 2616.86, + "end": 2619.78, + "probability": 0.9682 + }, + { + "start": 2620.56, + "end": 2621.62, + "probability": 0.9688 + }, + { + "start": 2622.28, + "end": 2623.46, + "probability": 0.9679 + }, + { + "start": 2623.62, + "end": 2625.4, + "probability": 0.948 + }, + { + "start": 2625.48, + "end": 2628.3, + "probability": 0.8998 + }, + { + "start": 2629.16, + "end": 2632.8, + "probability": 0.9978 + }, + { + "start": 2632.8, + "end": 2637.46, + "probability": 0.7824 + }, + { + "start": 2638.62, + "end": 2639.64, + "probability": 0.8639 + }, + { + "start": 2641.38, + "end": 2641.84, + "probability": 0.918 + }, + { + "start": 2642.0, + "end": 2646.2, + "probability": 0.9394 + }, + { + "start": 2646.2, + "end": 2649.96, + "probability": 0.9872 + }, + { + "start": 2651.24, + "end": 2652.16, + "probability": 0.32 + }, + { + "start": 2653.24, + "end": 2656.66, + "probability": 0.9329 + }, + { + "start": 2657.8, + "end": 2660.18, + "probability": 0.6309 + }, + { + "start": 2661.2, + "end": 2666.66, + "probability": 0.9827 + }, + { + "start": 2667.64, + "end": 2669.96, + "probability": 0.9116 + }, + { + "start": 2670.84, + "end": 2671.68, + "probability": 0.8058 + }, + { + "start": 2672.62, + "end": 2673.62, + "probability": 0.442 + }, + { + "start": 2674.24, + "end": 2676.94, + "probability": 0.832 + }, + { + "start": 2677.48, + "end": 2677.72, + "probability": 0.7454 + }, + { + "start": 2680.16, + "end": 2681.02, + "probability": 0.5358 + }, + { + "start": 2681.06, + "end": 2684.16, + "probability": 0.8516 + }, + { + "start": 2684.18, + "end": 2685.82, + "probability": 0.7574 + }, + { + "start": 2686.76, + "end": 2688.6, + "probability": 0.8606 + }, + { + "start": 2688.66, + "end": 2689.02, + "probability": 0.8409 + }, + { + "start": 2705.92, + "end": 2707.06, + "probability": 0.6456 + }, + { + "start": 2707.94, + "end": 2708.76, + "probability": 0.7558 + }, + { + "start": 2711.1, + "end": 2713.28, + "probability": 0.9733 + }, + { + "start": 2713.42, + "end": 2713.94, + "probability": 0.3987 + }, + { + "start": 2714.08, + "end": 2715.46, + "probability": 0.9841 + }, + { + "start": 2718.3, + "end": 2723.06, + "probability": 0.9912 + }, + { + "start": 2724.4, + "end": 2729.4, + "probability": 0.9839 + }, + { + "start": 2731.18, + "end": 2731.92, + "probability": 0.7775 + }, + { + "start": 2732.48, + "end": 2734.24, + "probability": 0.936 + }, + { + "start": 2735.3, + "end": 2736.12, + "probability": 0.5853 + }, + { + "start": 2736.84, + "end": 2739.08, + "probability": 0.7381 + }, + { + "start": 2740.9, + "end": 2742.28, + "probability": 0.9865 + }, + { + "start": 2743.54, + "end": 2746.04, + "probability": 0.9753 + }, + { + "start": 2748.4, + "end": 2750.59, + "probability": 0.9976 + }, + { + "start": 2751.92, + "end": 2754.04, + "probability": 0.9555 + }, + { + "start": 2756.24, + "end": 2756.98, + "probability": 0.8499 + }, + { + "start": 2758.4, + "end": 2759.58, + "probability": 0.7308 + }, + { + "start": 2760.2, + "end": 2762.7, + "probability": 0.993 + }, + { + "start": 2763.82, + "end": 2768.54, + "probability": 0.9771 + }, + { + "start": 2768.72, + "end": 2769.18, + "probability": 0.7363 + }, + { + "start": 2770.86, + "end": 2778.46, + "probability": 0.9896 + }, + { + "start": 2780.1, + "end": 2780.76, + "probability": 0.4418 + }, + { + "start": 2781.7, + "end": 2782.62, + "probability": 0.8892 + }, + { + "start": 2783.26, + "end": 2785.44, + "probability": 0.9346 + }, + { + "start": 2787.52, + "end": 2789.68, + "probability": 0.9692 + }, + { + "start": 2791.94, + "end": 2793.06, + "probability": 0.862 + }, + { + "start": 2794.04, + "end": 2797.68, + "probability": 0.9893 + }, + { + "start": 2797.68, + "end": 2799.44, + "probability": 0.7705 + }, + { + "start": 2801.0, + "end": 2805.18, + "probability": 0.9695 + }, + { + "start": 2806.58, + "end": 2808.1, + "probability": 0.9591 + }, + { + "start": 2809.48, + "end": 2813.4, + "probability": 0.9988 + }, + { + "start": 2815.12, + "end": 2817.26, + "probability": 0.999 + }, + { + "start": 2818.16, + "end": 2820.0, + "probability": 0.9983 + }, + { + "start": 2821.2, + "end": 2824.06, + "probability": 0.8895 + }, + { + "start": 2824.72, + "end": 2825.72, + "probability": 0.7437 + }, + { + "start": 2826.04, + "end": 2829.38, + "probability": 0.9641 + }, + { + "start": 2831.36, + "end": 2836.54, + "probability": 0.9911 + }, + { + "start": 2838.16, + "end": 2838.5, + "probability": 0.511 + }, + { + "start": 2838.62, + "end": 2842.14, + "probability": 0.9637 + }, + { + "start": 2842.86, + "end": 2845.76, + "probability": 0.8849 + }, + { + "start": 2846.5, + "end": 2849.62, + "probability": 0.9992 + }, + { + "start": 2849.68, + "end": 2850.94, + "probability": 0.9985 + }, + { + "start": 2851.76, + "end": 2853.14, + "probability": 0.772 + }, + { + "start": 2854.46, + "end": 2858.02, + "probability": 0.9989 + }, + { + "start": 2858.7, + "end": 2861.24, + "probability": 0.6106 + }, + { + "start": 2862.86, + "end": 2865.5, + "probability": 0.2652 + }, + { + "start": 2865.5, + "end": 2866.02, + "probability": 0.0692 + }, + { + "start": 2866.3, + "end": 2866.3, + "probability": 0.4653 + }, + { + "start": 2866.3, + "end": 2867.26, + "probability": 0.5337 + }, + { + "start": 2867.38, + "end": 2867.4, + "probability": 0.3984 + }, + { + "start": 2867.4, + "end": 2869.0, + "probability": 0.2089 + }, + { + "start": 2869.68, + "end": 2871.86, + "probability": 0.5206 + }, + { + "start": 2872.76, + "end": 2875.26, + "probability": 0.4883 + }, + { + "start": 2875.4, + "end": 2875.68, + "probability": 0.0624 + }, + { + "start": 2875.72, + "end": 2877.32, + "probability": 0.7305 + }, + { + "start": 2877.36, + "end": 2879.2, + "probability": 0.7398 + }, + { + "start": 2879.2, + "end": 2881.42, + "probability": 0.013 + }, + { + "start": 2881.42, + "end": 2882.08, + "probability": 0.3457 + }, + { + "start": 2882.08, + "end": 2885.36, + "probability": 0.507 + }, + { + "start": 2885.56, + "end": 2886.55, + "probability": 0.7739 + }, + { + "start": 2886.72, + "end": 2888.08, + "probability": 0.8081 + }, + { + "start": 2888.24, + "end": 2890.41, + "probability": 0.8286 + }, + { + "start": 2890.76, + "end": 2891.1, + "probability": 0.8624 + }, + { + "start": 2892.02, + "end": 2892.98, + "probability": 0.8052 + }, + { + "start": 2893.52, + "end": 2897.54, + "probability": 0.9575 + }, + { + "start": 2898.22, + "end": 2901.62, + "probability": 0.9756 + }, + { + "start": 2902.6, + "end": 2904.22, + "probability": 0.9906 + }, + { + "start": 2904.4, + "end": 2905.5, + "probability": 0.9796 + }, + { + "start": 2906.18, + "end": 2911.18, + "probability": 0.9882 + }, + { + "start": 2911.3, + "end": 2913.98, + "probability": 0.9875 + }, + { + "start": 2914.32, + "end": 2915.9, + "probability": 0.9453 + }, + { + "start": 2916.78, + "end": 2917.08, + "probability": 0.8604 + }, + { + "start": 2918.12, + "end": 2922.5, + "probability": 0.6502 + }, + { + "start": 2923.24, + "end": 2927.04, + "probability": 0.9946 + }, + { + "start": 2927.28, + "end": 2929.7, + "probability": 0.9971 + }, + { + "start": 2930.68, + "end": 2931.74, + "probability": 0.9957 + }, + { + "start": 2933.04, + "end": 2934.48, + "probability": 0.6769 + }, + { + "start": 2935.0, + "end": 2936.84, + "probability": 0.9972 + }, + { + "start": 2938.08, + "end": 2938.86, + "probability": 0.972 + }, + { + "start": 2939.94, + "end": 2945.14, + "probability": 0.9595 + }, + { + "start": 2946.72, + "end": 2950.88, + "probability": 0.9901 + }, + { + "start": 2951.86, + "end": 2952.5, + "probability": 0.794 + }, + { + "start": 2953.02, + "end": 2957.56, + "probability": 0.9822 + }, + { + "start": 2958.42, + "end": 2960.96, + "probability": 0.9962 + }, + { + "start": 2960.96, + "end": 2963.94, + "probability": 0.978 + }, + { + "start": 2964.14, + "end": 2966.02, + "probability": 0.9884 + }, + { + "start": 2967.3, + "end": 2971.6, + "probability": 0.9973 + }, + { + "start": 2971.72, + "end": 2973.08, + "probability": 0.9711 + }, + { + "start": 2973.96, + "end": 2976.28, + "probability": 0.9976 + }, + { + "start": 2976.84, + "end": 2979.14, + "probability": 0.9871 + }, + { + "start": 2979.94, + "end": 2983.94, + "probability": 0.9936 + }, + { + "start": 2985.54, + "end": 2986.76, + "probability": 0.8909 + }, + { + "start": 2987.78, + "end": 2990.56, + "probability": 0.9736 + }, + { + "start": 2992.24, + "end": 2992.98, + "probability": 0.9377 + }, + { + "start": 2993.08, + "end": 2993.9, + "probability": 0.9626 + }, + { + "start": 2994.02, + "end": 2998.62, + "probability": 0.9937 + }, + { + "start": 2999.82, + "end": 3003.86, + "probability": 0.9359 + }, + { + "start": 3003.86, + "end": 3007.96, + "probability": 0.9932 + }, + { + "start": 3008.94, + "end": 3010.92, + "probability": 0.9872 + }, + { + "start": 3011.62, + "end": 3014.18, + "probability": 0.9971 + }, + { + "start": 3015.28, + "end": 3017.26, + "probability": 0.9967 + }, + { + "start": 3017.76, + "end": 3020.16, + "probability": 0.9965 + }, + { + "start": 3022.34, + "end": 3024.02, + "probability": 0.7372 + }, + { + "start": 3024.38, + "end": 3027.88, + "probability": 0.7387 + }, + { + "start": 3029.52, + "end": 3031.02, + "probability": 0.8085 + }, + { + "start": 3031.56, + "end": 3033.86, + "probability": 0.9518 + }, + { + "start": 3034.0, + "end": 3035.12, + "probability": 0.8541 + }, + { + "start": 3035.58, + "end": 3036.52, + "probability": 0.7519 + }, + { + "start": 3037.26, + "end": 3037.78, + "probability": 0.6615 + }, + { + "start": 3038.38, + "end": 3039.1, + "probability": 0.9633 + }, + { + "start": 3040.46, + "end": 3041.4, + "probability": 0.0788 + }, + { + "start": 3041.74, + "end": 3042.23, + "probability": 0.2632 + }, + { + "start": 3044.72, + "end": 3048.52, + "probability": 0.9772 + }, + { + "start": 3048.52, + "end": 3052.46, + "probability": 0.9948 + }, + { + "start": 3053.42, + "end": 3056.54, + "probability": 0.9945 + }, + { + "start": 3057.32, + "end": 3059.8, + "probability": 0.9805 + }, + { + "start": 3060.6, + "end": 3061.68, + "probability": 0.9122 + }, + { + "start": 3062.74, + "end": 3065.78, + "probability": 0.9828 + }, + { + "start": 3065.78, + "end": 3069.76, + "probability": 0.9968 + }, + { + "start": 3070.4, + "end": 3070.9, + "probability": 0.8924 + }, + { + "start": 3071.9, + "end": 3075.62, + "probability": 0.9806 + }, + { + "start": 3076.38, + "end": 3076.98, + "probability": 0.6177 + }, + { + "start": 3077.58, + "end": 3077.9, + "probability": 0.9243 + }, + { + "start": 3078.92, + "end": 3080.08, + "probability": 0.9546 + }, + { + "start": 3081.28, + "end": 3085.62, + "probability": 0.722 + }, + { + "start": 3086.92, + "end": 3089.46, + "probability": 0.9951 + }, + { + "start": 3090.1, + "end": 3091.16, + "probability": 0.9998 + }, + { + "start": 3092.0, + "end": 3096.52, + "probability": 0.9933 + }, + { + "start": 3097.46, + "end": 3101.52, + "probability": 0.6948 + }, + { + "start": 3103.0, + "end": 3104.04, + "probability": 0.7522 + }, + { + "start": 3105.34, + "end": 3107.76, + "probability": 0.7995 + }, + { + "start": 3108.16, + "end": 3108.56, + "probability": 0.6972 + }, + { + "start": 3108.58, + "end": 3110.44, + "probability": 0.7542 + }, + { + "start": 3111.14, + "end": 3113.94, + "probability": 0.9872 + }, + { + "start": 3114.92, + "end": 3116.5, + "probability": 0.9352 + }, + { + "start": 3117.28, + "end": 3117.64, + "probability": 0.6685 + }, + { + "start": 3118.22, + "end": 3120.06, + "probability": 0.5944 + }, + { + "start": 3123.64, + "end": 3126.28, + "probability": 0.5868 + }, + { + "start": 3126.36, + "end": 3129.54, + "probability": 0.8263 + }, + { + "start": 3131.0, + "end": 3132.14, + "probability": 0.922 + }, + { + "start": 3132.26, + "end": 3139.5, + "probability": 0.9648 + }, + { + "start": 3140.88, + "end": 3143.04, + "probability": 0.8786 + }, + { + "start": 3143.98, + "end": 3144.54, + "probability": 0.5704 + }, + { + "start": 3146.02, + "end": 3151.8, + "probability": 0.9975 + }, + { + "start": 3153.14, + "end": 3155.96, + "probability": 0.9788 + }, + { + "start": 3156.32, + "end": 3160.3, + "probability": 0.9964 + }, + { + "start": 3160.96, + "end": 3161.76, + "probability": 0.9736 + }, + { + "start": 3162.14, + "end": 3165.3, + "probability": 0.9714 + }, + { + "start": 3165.5, + "end": 3165.62, + "probability": 0.1321 + }, + { + "start": 3165.62, + "end": 3165.62, + "probability": 0.3284 + }, + { + "start": 3165.62, + "end": 3169.18, + "probability": 0.7987 + }, + { + "start": 3169.18, + "end": 3173.42, + "probability": 0.9978 + }, + { + "start": 3174.18, + "end": 3174.62, + "probability": 0.2578 + }, + { + "start": 3175.86, + "end": 3181.33, + "probability": 0.0757 + }, + { + "start": 3182.6, + "end": 3184.14, + "probability": 0.0549 + }, + { + "start": 3184.32, + "end": 3184.42, + "probability": 0.01 + }, + { + "start": 3184.48, + "end": 3185.3, + "probability": 0.5575 + }, + { + "start": 3185.36, + "end": 3186.06, + "probability": 0.5279 + }, + { + "start": 3186.06, + "end": 3186.48, + "probability": 0.5709 + }, + { + "start": 3186.48, + "end": 3187.42, + "probability": 0.4135 + }, + { + "start": 3187.42, + "end": 3187.86, + "probability": 0.8042 + }, + { + "start": 3187.92, + "end": 3189.8, + "probability": 0.5575 + }, + { + "start": 3190.14, + "end": 3192.06, + "probability": 0.6198 + }, + { + "start": 3192.3, + "end": 3193.5, + "probability": 0.8142 + }, + { + "start": 3193.52, + "end": 3194.06, + "probability": 0.9146 + }, + { + "start": 3194.06, + "end": 3195.54, + "probability": 0.8964 + }, + { + "start": 3196.46, + "end": 3197.24, + "probability": 0.8436 + }, + { + "start": 3197.74, + "end": 3198.6, + "probability": 0.963 + }, + { + "start": 3198.86, + "end": 3200.84, + "probability": 0.9778 + }, + { + "start": 3201.96, + "end": 3202.68, + "probability": 0.9229 + }, + { + "start": 3203.68, + "end": 3206.04, + "probability": 0.9913 + }, + { + "start": 3207.0, + "end": 3208.36, + "probability": 0.7579 + }, + { + "start": 3208.4, + "end": 3210.8, + "probability": 0.9927 + }, + { + "start": 3211.48, + "end": 3212.04, + "probability": 0.935 + }, + { + "start": 3213.8, + "end": 3215.98, + "probability": 0.9746 + }, + { + "start": 3216.72, + "end": 3218.22, + "probability": 0.7722 + }, + { + "start": 3219.12, + "end": 3220.26, + "probability": 0.9194 + }, + { + "start": 3221.96, + "end": 3223.54, + "probability": 0.4247 + }, + { + "start": 3224.58, + "end": 3224.66, + "probability": 0.9639 + }, + { + "start": 3226.7, + "end": 3227.58, + "probability": 0.3456 + }, + { + "start": 3228.68, + "end": 3229.32, + "probability": 0.9855 + }, + { + "start": 3229.94, + "end": 3230.8, + "probability": 0.734 + }, + { + "start": 3231.76, + "end": 3234.2, + "probability": 0.8301 + }, + { + "start": 3235.16, + "end": 3238.1, + "probability": 0.9634 + }, + { + "start": 3238.28, + "end": 3239.76, + "probability": 0.9468 + }, + { + "start": 3241.0, + "end": 3242.94, + "probability": 0.99 + }, + { + "start": 3243.52, + "end": 3244.28, + "probability": 0.9346 + }, + { + "start": 3246.06, + "end": 3246.24, + "probability": 0.9651 + }, + { + "start": 3246.82, + "end": 3248.54, + "probability": 0.5392 + }, + { + "start": 3249.06, + "end": 3253.08, + "probability": 0.9966 + }, + { + "start": 3253.08, + "end": 3259.26, + "probability": 0.991 + }, + { + "start": 3259.44, + "end": 3259.96, + "probability": 0.8543 + }, + { + "start": 3260.12, + "end": 3260.92, + "probability": 0.9759 + }, + { + "start": 3261.0, + "end": 3261.84, + "probability": 0.5217 + }, + { + "start": 3262.08, + "end": 3265.19, + "probability": 0.9761 + }, + { + "start": 3265.52, + "end": 3266.58, + "probability": 0.8648 + }, + { + "start": 3267.34, + "end": 3268.26, + "probability": 0.7432 + }, + { + "start": 3268.84, + "end": 3271.0, + "probability": 0.9458 + }, + { + "start": 3271.12, + "end": 3271.68, + "probability": 0.9153 + }, + { + "start": 3271.88, + "end": 3272.28, + "probability": 0.7721 + }, + { + "start": 3272.32, + "end": 3272.9, + "probability": 0.9482 + }, + { + "start": 3273.6, + "end": 3274.16, + "probability": 0.8878 + }, + { + "start": 3274.46, + "end": 3275.91, + "probability": 0.2871 + }, + { + "start": 3276.72, + "end": 3277.52, + "probability": 0.7304 + }, + { + "start": 3277.66, + "end": 3279.22, + "probability": 0.9606 + }, + { + "start": 3279.46, + "end": 3279.9, + "probability": 0.721 + }, + { + "start": 3280.08, + "end": 3284.41, + "probability": 0.4529 + }, + { + "start": 3285.76, + "end": 3287.02, + "probability": 0.9207 + }, + { + "start": 3287.48, + "end": 3291.96, + "probability": 0.9756 + }, + { + "start": 3292.52, + "end": 3294.06, + "probability": 0.9944 + }, + { + "start": 3294.74, + "end": 3296.3, + "probability": 0.9692 + }, + { + "start": 3296.8, + "end": 3299.14, + "probability": 0.9618 + }, + { + "start": 3299.72, + "end": 3300.26, + "probability": 0.7221 + }, + { + "start": 3301.56, + "end": 3301.7, + "probability": 0.2218 + }, + { + "start": 3303.34, + "end": 3303.34, + "probability": 0.08 + }, + { + "start": 3305.12, + "end": 3307.81, + "probability": 0.0524 + }, + { + "start": 3308.66, + "end": 3309.98, + "probability": 0.7441 + }, + { + "start": 3310.02, + "end": 3314.34, + "probability": 0.9505 + }, + { + "start": 3314.44, + "end": 3314.62, + "probability": 0.7313 + }, + { + "start": 3319.92, + "end": 3321.4, + "probability": 0.3952 + }, + { + "start": 3324.72, + "end": 3332.0, + "probability": 0.934 + }, + { + "start": 3332.02, + "end": 3334.78, + "probability": 0.9712 + }, + { + "start": 3334.96, + "end": 3335.44, + "probability": 0.6016 + }, + { + "start": 3335.68, + "end": 3338.02, + "probability": 0.6708 + }, + { + "start": 3340.6, + "end": 3340.94, + "probability": 0.6299 + }, + { + "start": 3341.0, + "end": 3346.96, + "probability": 0.6651 + }, + { + "start": 3348.16, + "end": 3350.86, + "probability": 0.9342 + }, + { + "start": 3352.2, + "end": 3359.34, + "probability": 0.9786 + }, + { + "start": 3360.62, + "end": 3361.88, + "probability": 0.958 + }, + { + "start": 3362.66, + "end": 3367.14, + "probability": 0.9613 + }, + { + "start": 3368.66, + "end": 3369.54, + "probability": 0.6057 + }, + { + "start": 3369.74, + "end": 3371.22, + "probability": 0.8597 + }, + { + "start": 3371.42, + "end": 3373.62, + "probability": 0.9811 + }, + { + "start": 3373.78, + "end": 3374.2, + "probability": 0.5085 + }, + { + "start": 3374.34, + "end": 3378.8, + "probability": 0.9849 + }, + { + "start": 3378.88, + "end": 3381.26, + "probability": 0.9934 + }, + { + "start": 3382.38, + "end": 3384.98, + "probability": 0.9824 + }, + { + "start": 3385.18, + "end": 3390.7, + "probability": 0.9989 + }, + { + "start": 3391.18, + "end": 3391.76, + "probability": 0.6527 + }, + { + "start": 3391.98, + "end": 3392.8, + "probability": 0.9605 + }, + { + "start": 3392.88, + "end": 3393.96, + "probability": 0.9053 + }, + { + "start": 3394.66, + "end": 3400.54, + "probability": 0.9974 + }, + { + "start": 3401.72, + "end": 3402.36, + "probability": 0.8301 + }, + { + "start": 3402.44, + "end": 3406.76, + "probability": 0.982 + }, + { + "start": 3407.24, + "end": 3411.52, + "probability": 0.9909 + }, + { + "start": 3411.52, + "end": 3417.4, + "probability": 0.9993 + }, + { + "start": 3417.42, + "end": 3422.96, + "probability": 0.9642 + }, + { + "start": 3423.72, + "end": 3429.22, + "probability": 0.9985 + }, + { + "start": 3429.22, + "end": 3434.52, + "probability": 0.991 + }, + { + "start": 3434.52, + "end": 3439.56, + "probability": 0.994 + }, + { + "start": 3440.86, + "end": 3442.4, + "probability": 0.853 + }, + { + "start": 3442.98, + "end": 3443.92, + "probability": 0.4472 + }, + { + "start": 3444.8, + "end": 3445.6, + "probability": 0.0016 + }, + { + "start": 3445.66, + "end": 3447.68, + "probability": 0.9092 + }, + { + "start": 3447.8, + "end": 3448.34, + "probability": 0.2833 + }, + { + "start": 3448.54, + "end": 3448.66, + "probability": 0.5554 + }, + { + "start": 3449.0, + "end": 3451.72, + "probability": 0.7338 + }, + { + "start": 3452.51, + "end": 3452.58, + "probability": 0.5374 + }, + { + "start": 3452.58, + "end": 3454.66, + "probability": 0.9756 + }, + { + "start": 3455.02, + "end": 3455.44, + "probability": 0.7172 + }, + { + "start": 3455.5, + "end": 3456.46, + "probability": 0.9262 + }, + { + "start": 3456.58, + "end": 3462.68, + "probability": 0.9921 + }, + { + "start": 3463.16, + "end": 3465.58, + "probability": 0.8067 + }, + { + "start": 3465.78, + "end": 3468.5, + "probability": 0.977 + }, + { + "start": 3468.5, + "end": 3471.3, + "probability": 0.9991 + }, + { + "start": 3472.72, + "end": 3474.76, + "probability": 0.8406 + }, + { + "start": 3474.94, + "end": 3478.32, + "probability": 0.9958 + }, + { + "start": 3478.86, + "end": 3480.7, + "probability": 0.9924 + }, + { + "start": 3481.32, + "end": 3486.2, + "probability": 0.9975 + }, + { + "start": 3486.96, + "end": 3488.42, + "probability": 0.9402 + }, + { + "start": 3489.12, + "end": 3490.62, + "probability": 0.4127 + }, + { + "start": 3491.58, + "end": 3495.92, + "probability": 0.9678 + }, + { + "start": 3496.46, + "end": 3501.18, + "probability": 0.9951 + }, + { + "start": 3501.18, + "end": 3506.02, + "probability": 0.995 + }, + { + "start": 3506.02, + "end": 3512.78, + "probability": 0.9985 + }, + { + "start": 3512.78, + "end": 3517.24, + "probability": 0.9995 + }, + { + "start": 3517.64, + "end": 3519.68, + "probability": 0.9937 + }, + { + "start": 3520.12, + "end": 3525.46, + "probability": 0.9976 + }, + { + "start": 3525.62, + "end": 3529.84, + "probability": 0.9977 + }, + { + "start": 3530.6, + "end": 3535.46, + "probability": 0.9931 + }, + { + "start": 3536.22, + "end": 3541.3, + "probability": 0.9978 + }, + { + "start": 3541.74, + "end": 3542.74, + "probability": 0.9138 + }, + { + "start": 3542.86, + "end": 3544.56, + "probability": 0.9228 + }, + { + "start": 3545.24, + "end": 3548.04, + "probability": 0.9929 + }, + { + "start": 3549.14, + "end": 3555.28, + "probability": 0.9852 + }, + { + "start": 3556.04, + "end": 3560.22, + "probability": 0.9984 + }, + { + "start": 3560.74, + "end": 3565.82, + "probability": 0.9634 + }, + { + "start": 3566.52, + "end": 3569.34, + "probability": 0.8811 + }, + { + "start": 3569.84, + "end": 3574.26, + "probability": 0.9949 + }, + { + "start": 3574.7, + "end": 3577.6, + "probability": 0.9844 + }, + { + "start": 3577.68, + "end": 3578.4, + "probability": 0.875 + }, + { + "start": 3578.54, + "end": 3579.7, + "probability": 0.6996 + }, + { + "start": 3580.24, + "end": 3584.38, + "probability": 0.9868 + }, + { + "start": 3585.14, + "end": 3585.64, + "probability": 0.885 + }, + { + "start": 3585.72, + "end": 3586.7, + "probability": 0.7103 + }, + { + "start": 3587.16, + "end": 3592.36, + "probability": 0.9941 + }, + { + "start": 3592.4, + "end": 3597.26, + "probability": 0.9977 + }, + { + "start": 3597.98, + "end": 3599.16, + "probability": 0.8078 + }, + { + "start": 3599.86, + "end": 3604.26, + "probability": 0.9961 + }, + { + "start": 3604.8, + "end": 3610.44, + "probability": 0.9966 + }, + { + "start": 3610.44, + "end": 3615.4, + "probability": 0.9992 + }, + { + "start": 3616.16, + "end": 3621.6, + "probability": 0.9979 + }, + { + "start": 3622.3, + "end": 3627.96, + "probability": 0.996 + }, + { + "start": 3628.38, + "end": 3632.64, + "probability": 0.9992 + }, + { + "start": 3633.5, + "end": 3635.6, + "probability": 0.9243 + }, + { + "start": 3636.3, + "end": 3640.24, + "probability": 0.9385 + }, + { + "start": 3640.68, + "end": 3645.18, + "probability": 0.9939 + }, + { + "start": 3646.2, + "end": 3651.96, + "probability": 0.9849 + }, + { + "start": 3651.96, + "end": 3656.02, + "probability": 0.9729 + }, + { + "start": 3657.16, + "end": 3660.64, + "probability": 0.9657 + }, + { + "start": 3661.06, + "end": 3662.68, + "probability": 0.9237 + }, + { + "start": 3663.24, + "end": 3666.0, + "probability": 0.9476 + }, + { + "start": 3666.0, + "end": 3669.52, + "probability": 0.9988 + }, + { + "start": 3670.14, + "end": 3672.3, + "probability": 0.6996 + }, + { + "start": 3673.04, + "end": 3675.32, + "probability": 0.9438 + }, + { + "start": 3675.94, + "end": 3678.06, + "probability": 0.9921 + }, + { + "start": 3678.86, + "end": 3682.24, + "probability": 0.9591 + }, + { + "start": 3682.26, + "end": 3686.04, + "probability": 0.9636 + }, + { + "start": 3686.6, + "end": 3687.26, + "probability": 0.6955 + }, + { + "start": 3687.68, + "end": 3691.44, + "probability": 0.9971 + }, + { + "start": 3691.44, + "end": 3694.84, + "probability": 0.9849 + }, + { + "start": 3695.2, + "end": 3699.16, + "probability": 0.9977 + }, + { + "start": 3699.16, + "end": 3702.14, + "probability": 0.991 + }, + { + "start": 3702.9, + "end": 3705.92, + "probability": 0.9818 + }, + { + "start": 3705.92, + "end": 3709.0, + "probability": 0.9978 + }, + { + "start": 3709.58, + "end": 3713.18, + "probability": 0.9906 + }, + { + "start": 3713.78, + "end": 3717.96, + "probability": 0.9958 + }, + { + "start": 3717.96, + "end": 3722.7, + "probability": 0.9929 + }, + { + "start": 3723.1, + "end": 3726.28, + "probability": 0.965 + }, + { + "start": 3726.9, + "end": 3732.9, + "probability": 0.9952 + }, + { + "start": 3733.28, + "end": 3734.54, + "probability": 0.967 + }, + { + "start": 3734.84, + "end": 3736.0, + "probability": 0.7077 + }, + { + "start": 3736.6, + "end": 3741.58, + "probability": 0.9912 + }, + { + "start": 3741.64, + "end": 3745.34, + "probability": 0.8223 + }, + { + "start": 3745.34, + "end": 3749.16, + "probability": 0.9604 + }, + { + "start": 3749.82, + "end": 3753.38, + "probability": 0.9823 + }, + { + "start": 3753.86, + "end": 3756.36, + "probability": 0.9934 + }, + { + "start": 3757.04, + "end": 3761.6, + "probability": 0.9923 + }, + { + "start": 3761.6, + "end": 3766.96, + "probability": 0.9952 + }, + { + "start": 3767.58, + "end": 3770.4, + "probability": 0.9822 + }, + { + "start": 3770.4, + "end": 3773.16, + "probability": 0.9355 + }, + { + "start": 3773.64, + "end": 3778.26, + "probability": 0.9946 + }, + { + "start": 3778.88, + "end": 3779.18, + "probability": 0.722 + }, + { + "start": 3780.34, + "end": 3781.8, + "probability": 0.7723 + }, + { + "start": 3782.64, + "end": 3783.76, + "probability": 0.7727 + }, + { + "start": 3784.0, + "end": 3785.88, + "probability": 0.8223 + }, + { + "start": 3786.34, + "end": 3787.36, + "probability": 0.9205 + }, + { + "start": 3788.14, + "end": 3788.14, + "probability": 0.0003 + }, + { + "start": 3801.9, + "end": 3802.02, + "probability": 0.0003 + }, + { + "start": 3802.82, + "end": 3803.38, + "probability": 0.0714 + }, + { + "start": 3803.76, + "end": 3803.76, + "probability": 0.0478 + }, + { + "start": 3803.76, + "end": 3803.76, + "probability": 0.1109 + }, + { + "start": 3803.76, + "end": 3804.32, + "probability": 0.0183 + }, + { + "start": 3817.3, + "end": 3818.34, + "probability": 0.1413 + }, + { + "start": 3818.86, + "end": 3821.92, + "probability": 0.6751 + }, + { + "start": 3822.0, + "end": 3824.1, + "probability": 0.97 + }, + { + "start": 3824.72, + "end": 3826.22, + "probability": 0.9962 + }, + { + "start": 3826.58, + "end": 3827.26, + "probability": 0.9423 + }, + { + "start": 3828.3, + "end": 3828.84, + "probability": 0.8795 + }, + { + "start": 3829.1, + "end": 3830.56, + "probability": 0.9576 + }, + { + "start": 3830.66, + "end": 3831.92, + "probability": 0.9119 + }, + { + "start": 3832.42, + "end": 3833.62, + "probability": 0.8864 + }, + { + "start": 3834.16, + "end": 3835.46, + "probability": 0.9817 + }, + { + "start": 3835.84, + "end": 3838.06, + "probability": 0.9544 + }, + { + "start": 3838.06, + "end": 3840.26, + "probability": 0.9964 + }, + { + "start": 3840.38, + "end": 3841.18, + "probability": 0.9478 + }, + { + "start": 3841.74, + "end": 3843.92, + "probability": 0.8254 + }, + { + "start": 3844.04, + "end": 3844.92, + "probability": 0.8306 + }, + { + "start": 3845.24, + "end": 3846.74, + "probability": 0.936 + }, + { + "start": 3846.84, + "end": 3846.94, + "probability": 0.6091 + }, + { + "start": 3847.18, + "end": 3848.88, + "probability": 0.9944 + }, + { + "start": 3849.04, + "end": 3851.26, + "probability": 0.922 + }, + { + "start": 3851.7, + "end": 3854.16, + "probability": 0.9883 + }, + { + "start": 3854.4, + "end": 3856.44, + "probability": 0.991 + }, + { + "start": 3856.44, + "end": 3858.84, + "probability": 0.9938 + }, + { + "start": 3859.36, + "end": 3859.56, + "probability": 0.7231 + }, + { + "start": 3860.44, + "end": 3862.28, + "probability": 0.9159 + }, + { + "start": 3862.6, + "end": 3867.68, + "probability": 0.9966 + }, + { + "start": 3867.76, + "end": 3871.4, + "probability": 0.9531 + }, + { + "start": 3871.68, + "end": 3873.42, + "probability": 0.9279 + }, + { + "start": 3873.46, + "end": 3873.88, + "probability": 0.8901 + }, + { + "start": 3874.46, + "end": 3875.32, + "probability": 0.5928 + }, + { + "start": 3875.4, + "end": 3875.86, + "probability": 0.5874 + }, + { + "start": 3876.06, + "end": 3876.48, + "probability": 0.5122 + }, + { + "start": 3876.58, + "end": 3876.72, + "probability": 0.743 + }, + { + "start": 3877.02, + "end": 3878.88, + "probability": 0.9907 + }, + { + "start": 3879.18, + "end": 3879.92, + "probability": 0.9825 + }, + { + "start": 3880.58, + "end": 3883.22, + "probability": 0.902 + }, + { + "start": 3883.7, + "end": 3884.14, + "probability": 0.8204 + }, + { + "start": 3884.44, + "end": 3884.74, + "probability": 0.6495 + }, + { + "start": 3884.8, + "end": 3885.3, + "probability": 0.7578 + }, + { + "start": 3887.62, + "end": 3888.88, + "probability": 0.7903 + }, + { + "start": 3889.14, + "end": 3892.82, + "probability": 0.4658 + }, + { + "start": 3892.82, + "end": 3894.52, + "probability": 0.754 + }, + { + "start": 3894.72, + "end": 3895.24, + "probability": 0.6118 + }, + { + "start": 3895.32, + "end": 3897.16, + "probability": 0.6159 + }, + { + "start": 3897.3, + "end": 3897.5, + "probability": 0.5015 + }, + { + "start": 3898.16, + "end": 3903.92, + "probability": 0.6156 + }, + { + "start": 3905.42, + "end": 3905.74, + "probability": 0.4225 + }, + { + "start": 3905.78, + "end": 3906.22, + "probability": 0.5807 + }, + { + "start": 3906.3, + "end": 3907.2, + "probability": 0.7876 + }, + { + "start": 3907.44, + "end": 3908.12, + "probability": 0.8646 + }, + { + "start": 3908.46, + "end": 3909.32, + "probability": 0.63 + }, + { + "start": 3909.52, + "end": 3909.74, + "probability": 0.5992 + }, + { + "start": 3909.82, + "end": 3910.06, + "probability": 0.1943 + }, + { + "start": 3910.32, + "end": 3911.6, + "probability": 0.897 + }, + { + "start": 3912.32, + "end": 3914.0, + "probability": 0.2432 + }, + { + "start": 3915.8, + "end": 3917.36, + "probability": 0.032 + }, + { + "start": 3917.46, + "end": 3917.88, + "probability": 0.0385 + }, + { + "start": 3917.88, + "end": 3917.88, + "probability": 0.0179 + }, + { + "start": 3917.88, + "end": 3919.16, + "probability": 0.3908 + }, + { + "start": 3919.58, + "end": 3923.18, + "probability": 0.1776 + }, + { + "start": 3925.36, + "end": 3926.3, + "probability": 0.0131 + }, + { + "start": 3926.3, + "end": 3926.3, + "probability": 0.0282 + }, + { + "start": 3926.3, + "end": 3926.92, + "probability": 0.2332 + }, + { + "start": 3927.0, + "end": 3928.01, + "probability": 0.3546 + }, + { + "start": 3928.04, + "end": 3928.88, + "probability": 0.5784 + }, + { + "start": 3928.88, + "end": 3930.56, + "probability": 0.6181 + }, + { + "start": 3931.0, + "end": 3935.8, + "probability": 0.9801 + }, + { + "start": 3935.8, + "end": 3937.98, + "probability": 0.9954 + }, + { + "start": 3938.75, + "end": 3940.43, + "probability": 0.9077 + }, + { + "start": 3941.42, + "end": 3945.14, + "probability": 0.9989 + }, + { + "start": 3945.14, + "end": 3950.42, + "probability": 0.9977 + }, + { + "start": 3951.16, + "end": 3953.76, + "probability": 0.9808 + }, + { + "start": 3954.2, + "end": 3958.98, + "probability": 0.9987 + }, + { + "start": 3959.4, + "end": 3961.84, + "probability": 0.9808 + }, + { + "start": 3961.84, + "end": 3964.52, + "probability": 0.9933 + }, + { + "start": 3964.62, + "end": 3967.36, + "probability": 0.9961 + }, + { + "start": 3967.48, + "end": 3969.92, + "probability": 0.8702 + }, + { + "start": 3970.08, + "end": 3971.48, + "probability": 0.7895 + }, + { + "start": 3972.51, + "end": 3973.56, + "probability": 0.5393 + }, + { + "start": 3973.56, + "end": 3974.56, + "probability": 0.964 + }, + { + "start": 3975.04, + "end": 3977.68, + "probability": 0.5696 + }, + { + "start": 3978.06, + "end": 3978.84, + "probability": 0.7529 + }, + { + "start": 3979.2, + "end": 3981.5, + "probability": 0.806 + }, + { + "start": 3982.1, + "end": 3983.1, + "probability": 0.7222 + }, + { + "start": 3983.44, + "end": 3984.38, + "probability": 0.8993 + }, + { + "start": 3984.48, + "end": 3987.4, + "probability": 0.967 + }, + { + "start": 3987.96, + "end": 3988.38, + "probability": 0.7769 + }, + { + "start": 3991.63, + "end": 3995.14, + "probability": 0.8395 + }, + { + "start": 3995.68, + "end": 3998.3, + "probability": 0.972 + }, + { + "start": 3998.84, + "end": 4000.4, + "probability": 0.7983 + }, + { + "start": 4000.72, + "end": 4004.22, + "probability": 0.8917 + }, + { + "start": 4004.5, + "end": 4005.86, + "probability": 0.9233 + }, + { + "start": 4006.26, + "end": 4007.96, + "probability": 0.8244 + }, + { + "start": 4008.08, + "end": 4010.42, + "probability": 0.9834 + }, + { + "start": 4010.54, + "end": 4011.82, + "probability": 0.9827 + }, + { + "start": 4012.34, + "end": 4013.02, + "probability": 0.9063 + }, + { + "start": 4013.34, + "end": 4014.8, + "probability": 0.7602 + }, + { + "start": 4015.32, + "end": 4019.9, + "probability": 0.9811 + }, + { + "start": 4019.9, + "end": 4020.56, + "probability": 0.6818 + }, + { + "start": 4020.64, + "end": 4021.7, + "probability": 0.9481 + }, + { + "start": 4035.58, + "end": 4036.58, + "probability": 0.6553 + }, + { + "start": 4037.54, + "end": 4039.14, + "probability": 0.8315 + }, + { + "start": 4040.62, + "end": 4044.8, + "probability": 0.95 + }, + { + "start": 4045.34, + "end": 4046.64, + "probability": 0.8966 + }, + { + "start": 4047.32, + "end": 4050.26, + "probability": 0.8958 + }, + { + "start": 4051.76, + "end": 4054.08, + "probability": 0.9963 + }, + { + "start": 4054.26, + "end": 4055.58, + "probability": 0.9455 + }, + { + "start": 4055.7, + "end": 4056.74, + "probability": 0.6411 + }, + { + "start": 4057.26, + "end": 4058.24, + "probability": 0.7587 + }, + { + "start": 4058.78, + "end": 4059.28, + "probability": 0.8981 + }, + { + "start": 4059.38, + "end": 4060.28, + "probability": 0.9803 + }, + { + "start": 4060.36, + "end": 4062.2, + "probability": 0.9359 + }, + { + "start": 4062.86, + "end": 4065.16, + "probability": 0.9106 + }, + { + "start": 4065.68, + "end": 4070.24, + "probability": 0.9992 + }, + { + "start": 4070.76, + "end": 4075.3, + "probability": 0.9819 + }, + { + "start": 4076.56, + "end": 4077.5, + "probability": 0.5961 + }, + { + "start": 4077.56, + "end": 4078.98, + "probability": 0.7886 + }, + { + "start": 4079.12, + "end": 4082.84, + "probability": 0.9906 + }, + { + "start": 4082.9, + "end": 4085.68, + "probability": 0.9916 + }, + { + "start": 4086.82, + "end": 4087.16, + "probability": 0.7057 + }, + { + "start": 4087.26, + "end": 4089.29, + "probability": 0.93 + }, + { + "start": 4089.9, + "end": 4093.28, + "probability": 0.8934 + }, + { + "start": 4093.68, + "end": 4097.32, + "probability": 0.9197 + }, + { + "start": 4097.96, + "end": 4103.54, + "probability": 0.9439 + }, + { + "start": 4104.12, + "end": 4111.02, + "probability": 0.8711 + }, + { + "start": 4111.14, + "end": 4112.22, + "probability": 0.0074 + }, + { + "start": 4112.36, + "end": 4114.14, + "probability": 0.4375 + }, + { + "start": 4115.08, + "end": 4116.4, + "probability": 0.0755 + }, + { + "start": 4118.26, + "end": 4119.5, + "probability": 0.3415 + }, + { + "start": 4119.52, + "end": 4119.52, + "probability": 0.2302 + }, + { + "start": 4119.52, + "end": 4121.3, + "probability": 0.8016 + }, + { + "start": 4121.86, + "end": 4123.37, + "probability": 0.8558 + }, + { + "start": 4124.04, + "end": 4127.96, + "probability": 0.9956 + }, + { + "start": 4128.52, + "end": 4132.72, + "probability": 0.8699 + }, + { + "start": 4133.1, + "end": 4134.0, + "probability": 0.9307 + }, + { + "start": 4134.46, + "end": 4136.34, + "probability": 0.9448 + }, + { + "start": 4136.72, + "end": 4138.98, + "probability": 0.9968 + }, + { + "start": 4139.36, + "end": 4140.74, + "probability": 0.9702 + }, + { + "start": 4140.78, + "end": 4141.28, + "probability": 0.5371 + }, + { + "start": 4141.3, + "end": 4145.16, + "probability": 0.8363 + }, + { + "start": 4145.64, + "end": 4148.46, + "probability": 0.995 + }, + { + "start": 4149.02, + "end": 4150.9, + "probability": 0.9167 + }, + { + "start": 4151.44, + "end": 4153.2, + "probability": 0.4748 + }, + { + "start": 4153.56, + "end": 4153.56, + "probability": 0.0009 + }, + { + "start": 4153.56, + "end": 4159.46, + "probability": 0.9683 + }, + { + "start": 4160.7, + "end": 4161.94, + "probability": 0.9766 + }, + { + "start": 4163.84, + "end": 4167.54, + "probability": 0.4875 + }, + { + "start": 4168.0, + "end": 4168.61, + "probability": 0.9388 + }, + { + "start": 4169.24, + "end": 4169.92, + "probability": 0.8792 + }, + { + "start": 4170.66, + "end": 4173.82, + "probability": 0.9856 + }, + { + "start": 4174.4, + "end": 4176.38, + "probability": 0.9828 + }, + { + "start": 4176.8, + "end": 4177.88, + "probability": 0.8888 + }, + { + "start": 4178.26, + "end": 4180.6, + "probability": 0.803 + }, + { + "start": 4184.98, + "end": 4186.27, + "probability": 0.4945 + }, + { + "start": 4187.3, + "end": 4193.14, + "probability": 0.9443 + }, + { + "start": 4193.48, + "end": 4195.92, + "probability": 0.8248 + }, + { + "start": 4196.22, + "end": 4196.92, + "probability": 0.8833 + }, + { + "start": 4197.56, + "end": 4201.32, + "probability": 0.9681 + }, + { + "start": 4201.32, + "end": 4207.24, + "probability": 0.9851 + }, + { + "start": 4207.9, + "end": 4209.0, + "probability": 0.8928 + }, + { + "start": 4209.52, + "end": 4212.44, + "probability": 0.9399 + }, + { + "start": 4213.16, + "end": 4213.72, + "probability": 0.2283 + }, + { + "start": 4214.32, + "end": 4215.7, + "probability": 0.8984 + }, + { + "start": 4217.74, + "end": 4219.08, + "probability": 0.9826 + }, + { + "start": 4220.1, + "end": 4220.34, + "probability": 0.046 + }, + { + "start": 4220.34, + "end": 4220.7, + "probability": 0.0925 + }, + { + "start": 4220.78, + "end": 4221.88, + "probability": 0.366 + }, + { + "start": 4221.92, + "end": 4222.64, + "probability": 0.6227 + }, + { + "start": 4223.96, + "end": 4227.28, + "probability": 0.8551 + }, + { + "start": 4228.28, + "end": 4229.74, + "probability": 0.8012 + }, + { + "start": 4230.16, + "end": 4232.66, + "probability": 0.5624 + }, + { + "start": 4233.3, + "end": 4233.96, + "probability": 0.8094 + }, + { + "start": 4233.98, + "end": 4237.26, + "probability": 0.8302 + }, + { + "start": 4237.88, + "end": 4239.56, + "probability": 0.9789 + }, + { + "start": 4240.04, + "end": 4241.32, + "probability": 0.9985 + }, + { + "start": 4242.04, + "end": 4246.8, + "probability": 0.9807 + }, + { + "start": 4247.38, + "end": 4249.3, + "probability": 0.9137 + }, + { + "start": 4249.6, + "end": 4251.82, + "probability": 0.7354 + }, + { + "start": 4252.42, + "end": 4255.0, + "probability": 0.9941 + }, + { + "start": 4255.66, + "end": 4257.76, + "probability": 0.9774 + }, + { + "start": 4258.42, + "end": 4261.8, + "probability": 0.9987 + }, + { + "start": 4262.46, + "end": 4264.62, + "probability": 0.9933 + }, + { + "start": 4264.66, + "end": 4267.96, + "probability": 0.8305 + }, + { + "start": 4268.2, + "end": 4268.62, + "probability": 0.8332 + }, + { + "start": 4268.8, + "end": 4273.84, + "probability": 0.8783 + }, + { + "start": 4274.18, + "end": 4276.64, + "probability": 0.9778 + }, + { + "start": 4277.2, + "end": 4280.9, + "probability": 0.9744 + }, + { + "start": 4281.66, + "end": 4285.54, + "probability": 0.8511 + }, + { + "start": 4285.54, + "end": 4288.4, + "probability": 0.9914 + }, + { + "start": 4289.17, + "end": 4294.32, + "probability": 0.9985 + }, + { + "start": 4294.78, + "end": 4297.2, + "probability": 0.8234 + }, + { + "start": 4297.58, + "end": 4303.46, + "probability": 0.9729 + }, + { + "start": 4304.88, + "end": 4307.4, + "probability": 0.9329 + }, + { + "start": 4308.66, + "end": 4312.38, + "probability": 0.9951 + }, + { + "start": 4313.46, + "end": 4315.1, + "probability": 0.9666 + }, + { + "start": 4315.68, + "end": 4318.48, + "probability": 0.9874 + }, + { + "start": 4318.66, + "end": 4321.86, + "probability": 0.9842 + }, + { + "start": 4322.58, + "end": 4326.42, + "probability": 0.9164 + }, + { + "start": 4327.04, + "end": 4329.44, + "probability": 0.6668 + }, + { + "start": 4329.52, + "end": 4330.28, + "probability": 0.8379 + }, + { + "start": 4330.92, + "end": 4331.86, + "probability": 0.8937 + }, + { + "start": 4332.72, + "end": 4339.08, + "probability": 0.9257 + }, + { + "start": 4340.04, + "end": 4343.48, + "probability": 0.6619 + }, + { + "start": 4344.16, + "end": 4345.9, + "probability": 0.9832 + }, + { + "start": 4346.58, + "end": 4348.66, + "probability": 0.8683 + }, + { + "start": 4348.72, + "end": 4350.38, + "probability": 0.9372 + }, + { + "start": 4350.56, + "end": 4351.19, + "probability": 0.9524 + }, + { + "start": 4351.8, + "end": 4353.72, + "probability": 0.8951 + }, + { + "start": 4354.26, + "end": 4356.08, + "probability": 0.9753 + }, + { + "start": 4356.18, + "end": 4357.52, + "probability": 0.8304 + }, + { + "start": 4357.8, + "end": 4359.34, + "probability": 0.6883 + }, + { + "start": 4360.02, + "end": 4360.86, + "probability": 0.8214 + }, + { + "start": 4361.5, + "end": 4361.94, + "probability": 0.437 + }, + { + "start": 4362.74, + "end": 4364.42, + "probability": 0.1991 + }, + { + "start": 4364.66, + "end": 4364.98, + "probability": 0.8047 + }, + { + "start": 4366.52, + "end": 4369.06, + "probability": 0.9878 + }, + { + "start": 4369.64, + "end": 4371.2, + "probability": 0.9958 + }, + { + "start": 4371.74, + "end": 4372.76, + "probability": 0.833 + }, + { + "start": 4372.88, + "end": 4375.82, + "probability": 0.8145 + }, + { + "start": 4376.4, + "end": 4377.06, + "probability": 0.5404 + }, + { + "start": 4377.64, + "end": 4379.68, + "probability": 0.9907 + }, + { + "start": 4380.02, + "end": 4382.8, + "probability": 0.9865 + }, + { + "start": 4382.84, + "end": 4383.2, + "probability": 0.99 + }, + { + "start": 4383.34, + "end": 4383.96, + "probability": 0.9847 + }, + { + "start": 4384.42, + "end": 4385.34, + "probability": 0.9252 + }, + { + "start": 4385.84, + "end": 4388.4, + "probability": 0.9841 + }, + { + "start": 4388.4, + "end": 4390.94, + "probability": 0.9927 + }, + { + "start": 4390.98, + "end": 4392.2, + "probability": 0.7532 + }, + { + "start": 4392.86, + "end": 4395.6, + "probability": 0.976 + }, + { + "start": 4395.72, + "end": 4397.58, + "probability": 0.9591 + }, + { + "start": 4398.16, + "end": 4402.42, + "probability": 0.9731 + }, + { + "start": 4402.94, + "end": 4406.5, + "probability": 0.9924 + }, + { + "start": 4407.04, + "end": 4407.72, + "probability": 0.9501 + }, + { + "start": 4408.4, + "end": 4410.34, + "probability": 0.9541 + }, + { + "start": 4410.72, + "end": 4413.44, + "probability": 0.9956 + }, + { + "start": 4413.88, + "end": 4415.92, + "probability": 0.939 + }, + { + "start": 4415.92, + "end": 4418.56, + "probability": 0.9711 + }, + { + "start": 4418.74, + "end": 4419.1, + "probability": 0.8841 + }, + { + "start": 4419.14, + "end": 4419.62, + "probability": 0.7256 + }, + { + "start": 4420.1, + "end": 4422.86, + "probability": 0.9844 + }, + { + "start": 4423.3, + "end": 4426.5, + "probability": 0.9862 + }, + { + "start": 4426.68, + "end": 4427.66, + "probability": 0.8307 + }, + { + "start": 4428.22, + "end": 4428.94, + "probability": 0.8382 + }, + { + "start": 4429.06, + "end": 4431.24, + "probability": 0.9294 + }, + { + "start": 4431.74, + "end": 4434.88, + "probability": 0.9922 + }, + { + "start": 4435.2, + "end": 4440.02, + "probability": 0.9948 + }, + { + "start": 4440.1, + "end": 4442.18, + "probability": 0.8414 + }, + { + "start": 4442.34, + "end": 4444.8, + "probability": 0.8248 + }, + { + "start": 4445.32, + "end": 4447.28, + "probability": 0.9946 + }, + { + "start": 4447.72, + "end": 4449.1, + "probability": 0.9814 + }, + { + "start": 4449.7, + "end": 4451.22, + "probability": 0.9758 + }, + { + "start": 4451.78, + "end": 4453.76, + "probability": 0.8324 + }, + { + "start": 4454.98, + "end": 4456.92, + "probability": 0.8345 + }, + { + "start": 4457.06, + "end": 4457.84, + "probability": 0.6762 + }, + { + "start": 4458.22, + "end": 4459.54, + "probability": 0.9727 + }, + { + "start": 4459.7, + "end": 4462.42, + "probability": 0.9106 + }, + { + "start": 4463.0, + "end": 4465.18, + "probability": 0.8171 + }, + { + "start": 4465.3, + "end": 4468.72, + "probability": 0.7673 + }, + { + "start": 4469.08, + "end": 4472.72, + "probability": 0.9528 + }, + { + "start": 4473.14, + "end": 4475.16, + "probability": 0.9582 + }, + { + "start": 4476.16, + "end": 4477.06, + "probability": 0.9331 + }, + { + "start": 4477.12, + "end": 4478.5, + "probability": 0.9955 + }, + { + "start": 4478.84, + "end": 4481.63, + "probability": 0.99 + }, + { + "start": 4482.98, + "end": 4485.12, + "probability": 0.9684 + }, + { + "start": 4485.46, + "end": 4486.04, + "probability": 0.3521 + }, + { + "start": 4486.1, + "end": 4490.84, + "probability": 0.9906 + }, + { + "start": 4491.34, + "end": 4493.64, + "probability": 0.9799 + }, + { + "start": 4494.0, + "end": 4494.4, + "probability": 0.9277 + }, + { + "start": 4494.5, + "end": 4495.02, + "probability": 0.7012 + }, + { + "start": 4495.04, + "end": 4495.52, + "probability": 0.4151 + }, + { + "start": 4495.94, + "end": 4497.54, + "probability": 0.9899 + }, + { + "start": 4497.98, + "end": 4499.0, + "probability": 0.9913 + }, + { + "start": 4499.44, + "end": 4501.86, + "probability": 0.9929 + }, + { + "start": 4502.32, + "end": 4502.4, + "probability": 0.3621 + }, + { + "start": 4502.46, + "end": 4502.74, + "probability": 0.3573 + }, + { + "start": 4502.84, + "end": 4504.19, + "probability": 0.4112 + }, + { + "start": 4504.44, + "end": 4507.5, + "probability": 0.9531 + }, + { + "start": 4509.24, + "end": 4509.28, + "probability": 0.0596 + }, + { + "start": 4509.28, + "end": 4513.28, + "probability": 0.6824 + }, + { + "start": 4513.7, + "end": 4515.28, + "probability": 0.8536 + }, + { + "start": 4515.44, + "end": 4517.11, + "probability": 0.8892 + }, + { + "start": 4517.62, + "end": 4517.94, + "probability": 0.7029 + }, + { + "start": 4518.18, + "end": 4521.6, + "probability": 0.9927 + }, + { + "start": 4522.14, + "end": 4526.02, + "probability": 0.9754 + }, + { + "start": 4526.34, + "end": 4527.06, + "probability": 0.9782 + }, + { + "start": 4528.28, + "end": 4530.75, + "probability": 0.9938 + }, + { + "start": 4531.3, + "end": 4536.68, + "probability": 0.9463 + }, + { + "start": 4537.34, + "end": 4538.88, + "probability": 0.9584 + }, + { + "start": 4538.96, + "end": 4541.0, + "probability": 0.9856 + }, + { + "start": 4543.6, + "end": 4545.1, + "probability": 0.9963 + }, + { + "start": 4545.9, + "end": 4548.02, + "probability": 0.9684 + }, + { + "start": 4548.72, + "end": 4552.26, + "probability": 0.9909 + }, + { + "start": 4552.94, + "end": 4554.08, + "probability": 0.4539 + }, + { + "start": 4554.82, + "end": 4555.56, + "probability": 0.7425 + }, + { + "start": 4555.9, + "end": 4558.16, + "probability": 0.8769 + }, + { + "start": 4558.36, + "end": 4559.22, + "probability": 0.9724 + }, + { + "start": 4560.06, + "end": 4562.28, + "probability": 0.9659 + }, + { + "start": 4563.04, + "end": 4565.34, + "probability": 0.8463 + }, + { + "start": 4565.94, + "end": 4568.8, + "probability": 0.9329 + }, + { + "start": 4569.34, + "end": 4577.2, + "probability": 0.9717 + }, + { + "start": 4577.8, + "end": 4579.16, + "probability": 0.9509 + }, + { + "start": 4579.8, + "end": 4581.59, + "probability": 0.9967 + }, + { + "start": 4582.26, + "end": 4584.54, + "probability": 0.7392 + }, + { + "start": 4585.36, + "end": 4587.4, + "probability": 0.9622 + }, + { + "start": 4588.2, + "end": 4589.3, + "probability": 0.9815 + }, + { + "start": 4589.88, + "end": 4592.86, + "probability": 0.9958 + }, + { + "start": 4593.08, + "end": 4594.08, + "probability": 0.9922 + }, + { + "start": 4594.7, + "end": 4598.78, + "probability": 0.9575 + }, + { + "start": 4599.9, + "end": 4602.88, + "probability": 0.7243 + }, + { + "start": 4603.44, + "end": 4605.02, + "probability": 0.875 + }, + { + "start": 4605.5, + "end": 4610.42, + "probability": 0.9925 + }, + { + "start": 4610.96, + "end": 4612.28, + "probability": 0.6677 + }, + { + "start": 4612.86, + "end": 4614.38, + "probability": 0.994 + }, + { + "start": 4615.86, + "end": 4620.58, + "probability": 0.9984 + }, + { + "start": 4620.7, + "end": 4622.12, + "probability": 0.9851 + }, + { + "start": 4622.9, + "end": 4629.78, + "probability": 0.9906 + }, + { + "start": 4630.28, + "end": 4632.32, + "probability": 0.9959 + }, + { + "start": 4632.88, + "end": 4636.02, + "probability": 0.9779 + }, + { + "start": 4636.62, + "end": 4638.82, + "probability": 0.9878 + }, + { + "start": 4639.48, + "end": 4641.54, + "probability": 0.9887 + }, + { + "start": 4642.66, + "end": 4645.46, + "probability": 0.9964 + }, + { + "start": 4645.62, + "end": 4648.62, + "probability": 0.8919 + }, + { + "start": 4649.5, + "end": 4650.2, + "probability": 0.6474 + }, + { + "start": 4650.4, + "end": 4654.94, + "probability": 0.9849 + }, + { + "start": 4655.22, + "end": 4656.34, + "probability": 0.9039 + }, + { + "start": 4657.12, + "end": 4660.2, + "probability": 0.9902 + }, + { + "start": 4660.3, + "end": 4662.24, + "probability": 0.6962 + }, + { + "start": 4663.08, + "end": 4664.4, + "probability": 0.9606 + }, + { + "start": 4664.86, + "end": 4668.02, + "probability": 0.7593 + }, + { + "start": 4669.52, + "end": 4672.48, + "probability": 0.8057 + }, + { + "start": 4672.8, + "end": 4674.02, + "probability": 0.9574 + }, + { + "start": 4674.98, + "end": 4677.26, + "probability": 0.9891 + }, + { + "start": 4677.7, + "end": 4683.38, + "probability": 0.8843 + }, + { + "start": 4684.6, + "end": 4687.64, + "probability": 0.8656 + }, + { + "start": 4689.02, + "end": 4694.47, + "probability": 0.9824 + }, + { + "start": 4695.5, + "end": 4695.98, + "probability": 0.9365 + }, + { + "start": 4700.02, + "end": 4700.48, + "probability": 0.4538 + }, + { + "start": 4701.12, + "end": 4706.3, + "probability": 0.545 + }, + { + "start": 4706.3, + "end": 4707.07, + "probability": 0.793 + }, + { + "start": 4707.78, + "end": 4708.79, + "probability": 0.6844 + }, + { + "start": 4709.12, + "end": 4710.9, + "probability": 0.8766 + }, + { + "start": 4711.78, + "end": 4712.78, + "probability": 0.7989 + }, + { + "start": 4713.32, + "end": 4715.62, + "probability": 0.8909 + }, + { + "start": 4715.68, + "end": 4718.78, + "probability": 0.9491 + }, + { + "start": 4719.42, + "end": 4720.18, + "probability": 0.5651 + }, + { + "start": 4720.34, + "end": 4725.8, + "probability": 0.9776 + }, + { + "start": 4726.42, + "end": 4727.46, + "probability": 0.7261 + }, + { + "start": 4728.2, + "end": 4732.76, + "probability": 0.9365 + }, + { + "start": 4733.06, + "end": 4734.24, + "probability": 0.8588 + }, + { + "start": 4734.86, + "end": 4735.42, + "probability": 0.8004 + }, + { + "start": 4736.54, + "end": 4738.76, + "probability": 0.9737 + }, + { + "start": 4739.58, + "end": 4741.22, + "probability": 0.7261 + }, + { + "start": 4742.22, + "end": 4742.76, + "probability": 0.8043 + }, + { + "start": 4743.54, + "end": 4744.52, + "probability": 0.7943 + }, + { + "start": 4745.44, + "end": 4749.78, + "probability": 0.9619 + }, + { + "start": 4750.4, + "end": 4752.6, + "probability": 0.9946 + }, + { + "start": 4752.6, + "end": 4755.26, + "probability": 0.9825 + }, + { + "start": 4755.32, + "end": 4756.18, + "probability": 0.8721 + }, + { + "start": 4756.3, + "end": 4757.52, + "probability": 0.9616 + }, + { + "start": 4757.62, + "end": 4762.0, + "probability": 0.7817 + }, + { + "start": 4763.08, + "end": 4764.54, + "probability": 0.7567 + }, + { + "start": 4765.08, + "end": 4765.86, + "probability": 0.6761 + }, + { + "start": 4766.76, + "end": 4770.92, + "probability": 0.9902 + }, + { + "start": 4771.38, + "end": 4771.54, + "probability": 0.0354 + }, + { + "start": 4771.92, + "end": 4773.02, + "probability": 0.5473 + }, + { + "start": 4773.76, + "end": 4777.56, + "probability": 0.9325 + }, + { + "start": 4778.08, + "end": 4779.02, + "probability": 0.9485 + }, + { + "start": 4779.2, + "end": 4782.52, + "probability": 0.9113 + }, + { + "start": 4783.28, + "end": 4787.06, + "probability": 0.6322 + }, + { + "start": 4789.2, + "end": 4790.28, + "probability": 0.8809 + }, + { + "start": 4791.34, + "end": 4794.94, + "probability": 0.9465 + }, + { + "start": 4795.38, + "end": 4796.34, + "probability": 0.9521 + }, + { + "start": 4796.48, + "end": 4797.06, + "probability": 0.8705 + }, + { + "start": 4799.54, + "end": 4800.34, + "probability": 0.4844 + }, + { + "start": 4800.34, + "end": 4802.46, + "probability": 0.8703 + }, + { + "start": 4802.86, + "end": 4805.64, + "probability": 0.9435 + }, + { + "start": 4806.92, + "end": 4810.36, + "probability": 0.8518 + }, + { + "start": 4811.5, + "end": 4815.36, + "probability": 0.9445 + }, + { + "start": 4816.28, + "end": 4818.56, + "probability": 0.6073 + }, + { + "start": 4819.24, + "end": 4820.27, + "probability": 0.9731 + }, + { + "start": 4821.36, + "end": 4823.62, + "probability": 0.9912 + }, + { + "start": 4826.0, + "end": 4828.58, + "probability": 0.9958 + }, + { + "start": 4829.14, + "end": 4830.34, + "probability": 0.9548 + }, + { + "start": 4830.82, + "end": 4836.98, + "probability": 0.9399 + }, + { + "start": 4837.64, + "end": 4839.84, + "probability": 0.7686 + }, + { + "start": 4840.44, + "end": 4841.44, + "probability": 0.0345 + }, + { + "start": 4842.14, + "end": 4843.94, + "probability": 0.9932 + }, + { + "start": 4844.22, + "end": 4846.22, + "probability": 0.999 + }, + { + "start": 4846.92, + "end": 4848.32, + "probability": 0.2829 + }, + { + "start": 4848.62, + "end": 4849.16, + "probability": 0.003 + }, + { + "start": 4850.49, + "end": 4852.52, + "probability": 0.0766 + }, + { + "start": 4852.72, + "end": 4852.72, + "probability": 0.1236 + }, + { + "start": 4853.5, + "end": 4857.38, + "probability": 0.9621 + }, + { + "start": 4857.4, + "end": 4860.9, + "probability": 0.9902 + }, + { + "start": 4861.04, + "end": 4863.94, + "probability": 0.929 + }, + { + "start": 4864.5, + "end": 4867.02, + "probability": 0.154 + }, + { + "start": 4867.26, + "end": 4868.26, + "probability": 0.0461 + }, + { + "start": 4868.42, + "end": 4869.12, + "probability": 0.8834 + }, + { + "start": 4869.64, + "end": 4873.68, + "probability": 0.9526 + }, + { + "start": 4874.06, + "end": 4874.44, + "probability": 0.6412 + }, + { + "start": 4874.5, + "end": 4874.8, + "probability": 0.7534 + }, + { + "start": 4874.88, + "end": 4876.36, + "probability": 0.6521 + }, + { + "start": 4877.16, + "end": 4878.3, + "probability": 0.8862 + }, + { + "start": 4879.36, + "end": 4880.12, + "probability": 0.7954 + }, + { + "start": 4880.22, + "end": 4880.6, + "probability": 0.5328 + }, + { + "start": 4880.68, + "end": 4881.48, + "probability": 0.8429 + }, + { + "start": 4881.62, + "end": 4882.48, + "probability": 0.7909 + }, + { + "start": 4883.04, + "end": 4886.78, + "probability": 0.8952 + }, + { + "start": 4887.68, + "end": 4889.82, + "probability": 0.8547 + }, + { + "start": 4890.4, + "end": 4891.98, + "probability": 0.5123 + }, + { + "start": 4892.24, + "end": 4894.38, + "probability": 0.9513 + }, + { + "start": 4894.38, + "end": 4895.79, + "probability": 0.9703 + }, + { + "start": 4896.08, + "end": 4897.39, + "probability": 0.9921 + }, + { + "start": 4897.66, + "end": 4898.26, + "probability": 0.7943 + }, + { + "start": 4898.84, + "end": 4902.14, + "probability": 0.9917 + }, + { + "start": 4902.64, + "end": 4903.92, + "probability": 0.9944 + }, + { + "start": 4904.14, + "end": 4906.78, + "probability": 0.9925 + }, + { + "start": 4907.42, + "end": 4911.24, + "probability": 0.9913 + }, + { + "start": 4911.24, + "end": 4915.48, + "probability": 0.9985 + }, + { + "start": 4916.42, + "end": 4919.24, + "probability": 0.9833 + }, + { + "start": 4919.8, + "end": 4921.28, + "probability": 0.984 + }, + { + "start": 4921.72, + "end": 4924.28, + "probability": 0.9606 + }, + { + "start": 4925.26, + "end": 4928.0, + "probability": 0.8868 + }, + { + "start": 4928.72, + "end": 4929.94, + "probability": 0.9634 + }, + { + "start": 4930.02, + "end": 4930.76, + "probability": 0.9791 + }, + { + "start": 4931.08, + "end": 4935.42, + "probability": 0.9943 + }, + { + "start": 4935.48, + "end": 4939.78, + "probability": 0.9927 + }, + { + "start": 4940.02, + "end": 4941.0, + "probability": 0.6904 + }, + { + "start": 4941.64, + "end": 4944.22, + "probability": 0.9625 + }, + { + "start": 4945.42, + "end": 4948.98, + "probability": 0.993 + }, + { + "start": 4949.24, + "end": 4950.32, + "probability": 0.9978 + }, + { + "start": 4951.32, + "end": 4952.13, + "probability": 0.6715 + }, + { + "start": 4952.78, + "end": 4956.44, + "probability": 0.9398 + }, + { + "start": 4956.88, + "end": 4958.5, + "probability": 0.8671 + }, + { + "start": 4959.26, + "end": 4963.74, + "probability": 0.9771 + }, + { + "start": 4964.38, + "end": 4967.98, + "probability": 0.957 + }, + { + "start": 4967.98, + "end": 4972.64, + "probability": 0.9956 + }, + { + "start": 4973.54, + "end": 4974.76, + "probability": 0.5909 + }, + { + "start": 4975.48, + "end": 4980.44, + "probability": 0.9883 + }, + { + "start": 4980.82, + "end": 4982.04, + "probability": 0.913 + }, + { + "start": 4982.42, + "end": 4985.16, + "probability": 0.2373 + }, + { + "start": 4985.76, + "end": 4985.76, + "probability": 0.0382 + }, + { + "start": 4985.76, + "end": 4986.06, + "probability": 0.0662 + }, + { + "start": 4986.4, + "end": 4986.88, + "probability": 0.7097 + }, + { + "start": 4987.26, + "end": 4988.24, + "probability": 0.77 + }, + { + "start": 4988.32, + "end": 4990.36, + "probability": 0.9025 + }, + { + "start": 4990.84, + "end": 4996.18, + "probability": 0.8418 + }, + { + "start": 4997.58, + "end": 4998.14, + "probability": 0.0413 + }, + { + "start": 4998.14, + "end": 4998.14, + "probability": 0.0583 + }, + { + "start": 4998.14, + "end": 4998.26, + "probability": 0.1671 + }, + { + "start": 4998.66, + "end": 5004.3, + "probability": 0.9548 + }, + { + "start": 5004.86, + "end": 5005.74, + "probability": 0.7161 + }, + { + "start": 5006.28, + "end": 5007.2, + "probability": 0.8385 + }, + { + "start": 5007.72, + "end": 5012.66, + "probability": 0.0309 + }, + { + "start": 5012.66, + "end": 5012.66, + "probability": 0.1066 + }, + { + "start": 5012.66, + "end": 5012.76, + "probability": 0.1134 + }, + { + "start": 5013.2, + "end": 5017.62, + "probability": 0.8443 + }, + { + "start": 5018.42, + "end": 5018.42, + "probability": 0.1662 + }, + { + "start": 5018.42, + "end": 5021.18, + "probability": 0.5969 + }, + { + "start": 5021.18, + "end": 5024.5, + "probability": 0.9875 + }, + { + "start": 5024.72, + "end": 5027.02, + "probability": 0.9927 + }, + { + "start": 5027.38, + "end": 5030.7, + "probability": 0.9995 + }, + { + "start": 5031.58, + "end": 5032.46, + "probability": 0.9097 + }, + { + "start": 5032.7, + "end": 5034.04, + "probability": 0.7315 + }, + { + "start": 5034.06, + "end": 5036.72, + "probability": 0.9321 + }, + { + "start": 5037.46, + "end": 5040.66, + "probability": 0.9943 + }, + { + "start": 5040.76, + "end": 5041.28, + "probability": 0.6264 + }, + { + "start": 5041.32, + "end": 5042.6, + "probability": 0.6661 + }, + { + "start": 5043.08, + "end": 5045.64, + "probability": 0.8721 + }, + { + "start": 5045.72, + "end": 5046.56, + "probability": 0.9192 + }, + { + "start": 5046.64, + "end": 5051.52, + "probability": 0.9508 + }, + { + "start": 5051.52, + "end": 5053.47, + "probability": 0.9161 + }, + { + "start": 5054.46, + "end": 5058.2, + "probability": 0.805 + }, + { + "start": 5058.3, + "end": 5060.54, + "probability": 0.9548 + }, + { + "start": 5061.16, + "end": 5065.9, + "probability": 0.9976 + }, + { + "start": 5066.64, + "end": 5069.4, + "probability": 0.9507 + }, + { + "start": 5069.92, + "end": 5072.76, + "probability": 0.9553 + }, + { + "start": 5073.16, + "end": 5076.18, + "probability": 0.97 + }, + { + "start": 5076.64, + "end": 5077.1, + "probability": 0.6595 + }, + { + "start": 5077.36, + "end": 5077.94, + "probability": 0.8501 + }, + { + "start": 5078.26, + "end": 5079.82, + "probability": 0.9929 + }, + { + "start": 5080.7, + "end": 5084.44, + "probability": 0.9056 + }, + { + "start": 5085.04, + "end": 5086.36, + "probability": 0.3682 + }, + { + "start": 5087.9, + "end": 5089.02, + "probability": 0.8193 + }, + { + "start": 5089.26, + "end": 5092.3, + "probability": 0.9935 + }, + { + "start": 5092.82, + "end": 5096.42, + "probability": 0.8102 + }, + { + "start": 5096.98, + "end": 5098.9, + "probability": 0.9572 + }, + { + "start": 5099.36, + "end": 5100.98, + "probability": 0.9816 + }, + { + "start": 5101.06, + "end": 5101.92, + "probability": 0.9713 + }, + { + "start": 5101.98, + "end": 5103.0, + "probability": 0.8893 + }, + { + "start": 5103.08, + "end": 5105.52, + "probability": 0.954 + }, + { + "start": 5105.94, + "end": 5107.84, + "probability": 0.9942 + }, + { + "start": 5107.96, + "end": 5108.46, + "probability": 0.9808 + }, + { + "start": 5108.52, + "end": 5109.6, + "probability": 0.984 + }, + { + "start": 5109.78, + "end": 5110.48, + "probability": 0.8782 + }, + { + "start": 5111.52, + "end": 5113.74, + "probability": 0.643 + }, + { + "start": 5114.66, + "end": 5118.84, + "probability": 0.8182 + }, + { + "start": 5119.0, + "end": 5119.5, + "probability": 0.7479 + }, + { + "start": 5119.58, + "end": 5120.78, + "probability": 0.8831 + }, + { + "start": 5121.18, + "end": 5124.44, + "probability": 0.8971 + }, + { + "start": 5124.54, + "end": 5126.0, + "probability": 0.8075 + }, + { + "start": 5126.62, + "end": 5131.4, + "probability": 0.9553 + }, + { + "start": 5131.9, + "end": 5135.62, + "probability": 0.7831 + }, + { + "start": 5135.94, + "end": 5139.72, + "probability": 0.9757 + }, + { + "start": 5140.14, + "end": 5146.72, + "probability": 0.9899 + }, + { + "start": 5147.76, + "end": 5152.56, + "probability": 0.8494 + }, + { + "start": 5153.68, + "end": 5157.32, + "probability": 0.9103 + }, + { + "start": 5157.42, + "end": 5158.68, + "probability": 0.6392 + }, + { + "start": 5159.22, + "end": 5161.36, + "probability": 0.8606 + }, + { + "start": 5161.88, + "end": 5162.48, + "probability": 0.8339 + }, + { + "start": 5163.16, + "end": 5164.76, + "probability": 0.9523 + }, + { + "start": 5165.06, + "end": 5166.84, + "probability": 0.8782 + }, + { + "start": 5167.42, + "end": 5169.06, + "probability": 0.9776 + }, + { + "start": 5169.16, + "end": 5170.44, + "probability": 0.5492 + }, + { + "start": 5170.94, + "end": 5172.32, + "probability": 0.8738 + }, + { + "start": 5172.9, + "end": 5179.68, + "probability": 0.9791 + }, + { + "start": 5180.5, + "end": 5181.98, + "probability": 0.6757 + }, + { + "start": 5182.12, + "end": 5183.42, + "probability": 0.8616 + }, + { + "start": 5184.68, + "end": 5185.58, + "probability": 0.5701 + }, + { + "start": 5185.64, + "end": 5188.44, + "probability": 0.9724 + }, + { + "start": 5188.96, + "end": 5191.54, + "probability": 0.4576 + }, + { + "start": 5192.24, + "end": 5193.5, + "probability": 0.5318 + }, + { + "start": 5194.42, + "end": 5194.44, + "probability": 0.0014 + } + ], + "segments_count": 1754, + "words_count": 9019, + "avg_words_per_segment": 5.142, + "avg_segment_duration": 2.1506, + "avg_words_per_minute": 103.9349, + "plenum_id": "110593", + "duration": 5206.53, + "title": null, + "plenum_date": "2022-12-06" +} \ No newline at end of file