diff --git "a/118228/metadata.json" "b/118228/metadata.json" new file mode 100644--- /dev/null +++ "b/118228/metadata.json" @@ -0,0 +1,16837 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "118228", + "quality_score": 0.928, + "per_segment_quality_scores": [ + { + "start": 86.18, + "end": 86.36, + "probability": 0.045 + }, + { + "start": 86.36, + "end": 86.36, + "probability": 0.2425 + }, + { + "start": 86.36, + "end": 87.14, + "probability": 0.6673 + }, + { + "start": 87.92, + "end": 88.9, + "probability": 0.7401 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 139.44, + "end": 140.3, + "probability": 0.164 + }, + { + "start": 140.3, + "end": 141.7, + "probability": 0.227 + }, + { + "start": 142.66, + "end": 143.54, + "probability": 0.201 + }, + { + "start": 145.88, + "end": 146.7, + "probability": 0.0725 + }, + { + "start": 151.46, + "end": 155.6, + "probability": 0.0519 + }, + { + "start": 157.16, + "end": 157.3, + "probability": 0.0622 + }, + { + "start": 157.3, + "end": 158.36, + "probability": 0.1209 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 258.0, + "end": 258.0, + "probability": 0.0 + }, + { + "start": 270.88, + "end": 271.58, + "probability": 0.2021 + }, + { + "start": 273.0, + "end": 280.66, + "probability": 0.0436 + }, + { + "start": 281.18, + "end": 281.96, + "probability": 0.1349 + }, + { + "start": 289.12, + "end": 290.78, + "probability": 0.0558 + }, + { + "start": 292.82, + "end": 293.04, + "probability": 0.1025 + }, + { + "start": 293.56, + "end": 297.06, + "probability": 0.0252 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.08, + "end": 380.38, + "probability": 0.9819 + }, + { + "start": 381.02, + "end": 381.88, + "probability": 0.5027 + }, + { + "start": 382.84, + "end": 386.72, + "probability": 0.9984 + }, + { + "start": 386.72, + "end": 390.08, + "probability": 0.9932 + }, + { + "start": 390.12, + "end": 391.18, + "probability": 0.5151 + }, + { + "start": 391.78, + "end": 392.76, + "probability": 0.9978 + }, + { + "start": 393.34, + "end": 395.84, + "probability": 0.9936 + }, + { + "start": 397.06, + "end": 400.08, + "probability": 0.8822 + }, + { + "start": 400.38, + "end": 402.12, + "probability": 0.9961 + }, + { + "start": 403.0, + "end": 406.94, + "probability": 0.8933 + }, + { + "start": 407.52, + "end": 407.68, + "probability": 0.3853 + }, + { + "start": 407.72, + "end": 408.2, + "probability": 0.7628 + }, + { + "start": 408.52, + "end": 411.56, + "probability": 0.9613 + }, + { + "start": 411.76, + "end": 412.49, + "probability": 0.6783 + }, + { + "start": 414.12, + "end": 414.7, + "probability": 0.8103 + }, + { + "start": 415.36, + "end": 418.4, + "probability": 0.9931 + }, + { + "start": 418.4, + "end": 421.98, + "probability": 0.9972 + }, + { + "start": 422.62, + "end": 423.98, + "probability": 0.9974 + }, + { + "start": 424.44, + "end": 425.22, + "probability": 0.8618 + }, + { + "start": 425.68, + "end": 426.54, + "probability": 0.9909 + }, + { + "start": 426.6, + "end": 433.06, + "probability": 0.96 + }, + { + "start": 433.36, + "end": 433.66, + "probability": 0.7324 + }, + { + "start": 434.24, + "end": 435.52, + "probability": 0.7611 + }, + { + "start": 435.6, + "end": 437.86, + "probability": 0.9787 + }, + { + "start": 438.08, + "end": 440.08, + "probability": 0.4959 + }, + { + "start": 440.24, + "end": 441.28, + "probability": 0.9097 + }, + { + "start": 442.98, + "end": 445.88, + "probability": 0.6955 + }, + { + "start": 446.6, + "end": 447.5, + "probability": 0.8938 + }, + { + "start": 447.74, + "end": 449.06, + "probability": 0.9554 + }, + { + "start": 449.12, + "end": 450.0, + "probability": 0.9535 + }, + { + "start": 451.22, + "end": 453.94, + "probability": 0.8822 + }, + { + "start": 455.54, + "end": 457.64, + "probability": 0.608 + }, + { + "start": 457.64, + "end": 460.56, + "probability": 0.9225 + }, + { + "start": 461.72, + "end": 463.64, + "probability": 0.9901 + }, + { + "start": 464.12, + "end": 465.96, + "probability": 0.9501 + }, + { + "start": 466.52, + "end": 469.98, + "probability": 0.9015 + }, + { + "start": 470.1, + "end": 473.44, + "probability": 0.9881 + }, + { + "start": 473.44, + "end": 476.38, + "probability": 0.9812 + }, + { + "start": 476.9, + "end": 479.4, + "probability": 0.9956 + }, + { + "start": 480.08, + "end": 484.6, + "probability": 0.9008 + }, + { + "start": 485.02, + "end": 485.18, + "probability": 0.6453 + }, + { + "start": 485.26, + "end": 486.96, + "probability": 0.6785 + }, + { + "start": 487.48, + "end": 488.36, + "probability": 0.8254 + }, + { + "start": 489.08, + "end": 491.44, + "probability": 0.9253 + }, + { + "start": 491.94, + "end": 494.84, + "probability": 0.9152 + }, + { + "start": 494.92, + "end": 499.28, + "probability": 0.9256 + }, + { + "start": 500.0, + "end": 503.14, + "probability": 0.9717 + }, + { + "start": 503.14, + "end": 507.5, + "probability": 0.9419 + }, + { + "start": 508.82, + "end": 513.56, + "probability": 0.9782 + }, + { + "start": 514.14, + "end": 515.28, + "probability": 0.8185 + }, + { + "start": 516.0, + "end": 517.22, + "probability": 0.34 + }, + { + "start": 517.94, + "end": 520.4, + "probability": 0.9572 + }, + { + "start": 521.26, + "end": 523.68, + "probability": 0.9009 + }, + { + "start": 523.68, + "end": 528.32, + "probability": 0.9338 + }, + { + "start": 528.72, + "end": 533.72, + "probability": 0.9857 + }, + { + "start": 534.12, + "end": 536.98, + "probability": 0.6967 + }, + { + "start": 537.44, + "end": 538.16, + "probability": 0.578 + }, + { + "start": 538.2, + "end": 539.34, + "probability": 0.8048 + }, + { + "start": 539.98, + "end": 543.96, + "probability": 0.9117 + }, + { + "start": 544.7, + "end": 546.32, + "probability": 0.9716 + }, + { + "start": 546.78, + "end": 548.3, + "probability": 0.9884 + }, + { + "start": 548.38, + "end": 549.36, + "probability": 0.9731 + }, + { + "start": 549.78, + "end": 550.02, + "probability": 0.4545 + }, + { + "start": 550.8, + "end": 554.54, + "probability": 0.9662 + }, + { + "start": 554.9, + "end": 556.76, + "probability": 0.9479 + }, + { + "start": 556.78, + "end": 557.44, + "probability": 0.5541 + }, + { + "start": 557.86, + "end": 559.62, + "probability": 0.861 + }, + { + "start": 562.42, + "end": 564.94, + "probability": 0.4052 + }, + { + "start": 566.56, + "end": 566.58, + "probability": 0.054 + }, + { + "start": 566.58, + "end": 566.58, + "probability": 0.0163 + }, + { + "start": 566.58, + "end": 568.4, + "probability": 0.9532 + }, + { + "start": 569.42, + "end": 573.0, + "probability": 0.7964 + }, + { + "start": 574.3, + "end": 575.2, + "probability": 0.806 + }, + { + "start": 575.32, + "end": 580.24, + "probability": 0.8989 + }, + { + "start": 580.86, + "end": 583.46, + "probability": 0.6493 + }, + { + "start": 584.62, + "end": 590.0, + "probability": 0.9753 + }, + { + "start": 590.9, + "end": 592.98, + "probability": 0.9534 + }, + { + "start": 593.36, + "end": 596.6, + "probability": 0.9953 + }, + { + "start": 597.5, + "end": 602.1, + "probability": 0.9949 + }, + { + "start": 602.94, + "end": 605.27, + "probability": 0.9863 + }, + { + "start": 605.86, + "end": 608.66, + "probability": 0.9897 + }, + { + "start": 609.42, + "end": 611.52, + "probability": 0.9766 + }, + { + "start": 612.22, + "end": 613.56, + "probability": 0.8921 + }, + { + "start": 614.16, + "end": 617.36, + "probability": 0.9974 + }, + { + "start": 617.36, + "end": 620.34, + "probability": 0.9928 + }, + { + "start": 621.18, + "end": 621.94, + "probability": 0.8875 + }, + { + "start": 622.5, + "end": 625.32, + "probability": 0.981 + }, + { + "start": 625.9, + "end": 628.14, + "probability": 0.9951 + }, + { + "start": 628.78, + "end": 633.18, + "probability": 0.9817 + }, + { + "start": 633.94, + "end": 639.14, + "probability": 0.9758 + }, + { + "start": 639.44, + "end": 639.7, + "probability": 0.7102 + }, + { + "start": 640.22, + "end": 641.4, + "probability": 0.7213 + }, + { + "start": 641.48, + "end": 644.0, + "probability": 0.863 + }, + { + "start": 644.1, + "end": 644.62, + "probability": 0.5516 + }, + { + "start": 644.66, + "end": 645.72, + "probability": 0.9022 + }, + { + "start": 649.38, + "end": 651.72, + "probability": 0.8563 + }, + { + "start": 652.24, + "end": 658.14, + "probability": 0.9746 + }, + { + "start": 658.14, + "end": 662.56, + "probability": 0.9981 + }, + { + "start": 663.34, + "end": 666.64, + "probability": 0.9823 + }, + { + "start": 666.8, + "end": 669.84, + "probability": 0.9979 + }, + { + "start": 669.96, + "end": 672.32, + "probability": 0.9919 + }, + { + "start": 673.24, + "end": 676.74, + "probability": 0.9992 + }, + { + "start": 677.22, + "end": 678.82, + "probability": 0.9 + }, + { + "start": 678.94, + "end": 681.64, + "probability": 0.974 + }, + { + "start": 682.16, + "end": 684.36, + "probability": 0.7917 + }, + { + "start": 684.36, + "end": 686.96, + "probability": 0.9971 + }, + { + "start": 687.5, + "end": 689.3, + "probability": 0.9645 + }, + { + "start": 689.94, + "end": 692.52, + "probability": 0.9218 + }, + { + "start": 693.2, + "end": 695.22, + "probability": 0.989 + }, + { + "start": 695.76, + "end": 697.5, + "probability": 0.9541 + }, + { + "start": 697.62, + "end": 700.4, + "probability": 0.9971 + }, + { + "start": 700.4, + "end": 702.8, + "probability": 0.9957 + }, + { + "start": 703.65, + "end": 704.88, + "probability": 0.7164 + }, + { + "start": 705.02, + "end": 705.94, + "probability": 0.7473 + }, + { + "start": 706.08, + "end": 709.3, + "probability": 0.9919 + }, + { + "start": 709.84, + "end": 710.38, + "probability": 0.9048 + }, + { + "start": 710.46, + "end": 711.54, + "probability": 0.9801 + }, + { + "start": 711.74, + "end": 713.54, + "probability": 0.9844 + }, + { + "start": 714.24, + "end": 717.42, + "probability": 0.9866 + }, + { + "start": 717.9, + "end": 719.16, + "probability": 0.7251 + }, + { + "start": 719.2, + "end": 720.5, + "probability": 0.9194 + }, + { + "start": 720.56, + "end": 721.06, + "probability": 0.8776 + }, + { + "start": 721.44, + "end": 724.84, + "probability": 0.975 + }, + { + "start": 724.84, + "end": 727.5, + "probability": 0.9958 + }, + { + "start": 727.94, + "end": 732.16, + "probability": 0.9787 + }, + { + "start": 732.96, + "end": 734.26, + "probability": 0.8681 + }, + { + "start": 734.34, + "end": 736.42, + "probability": 0.9494 + }, + { + "start": 737.06, + "end": 741.24, + "probability": 0.9956 + }, + { + "start": 741.76, + "end": 746.52, + "probability": 0.9952 + }, + { + "start": 746.82, + "end": 749.92, + "probability": 0.9912 + }, + { + "start": 750.04, + "end": 750.6, + "probability": 0.4434 + }, + { + "start": 750.68, + "end": 752.06, + "probability": 0.793 + }, + { + "start": 752.84, + "end": 755.64, + "probability": 0.9963 + }, + { + "start": 755.64, + "end": 759.14, + "probability": 0.996 + }, + { + "start": 759.64, + "end": 762.02, + "probability": 0.991 + }, + { + "start": 762.24, + "end": 763.72, + "probability": 0.9133 + }, + { + "start": 763.82, + "end": 765.96, + "probability": 0.959 + }, + { + "start": 766.36, + "end": 768.76, + "probability": 0.9916 + }, + { + "start": 769.2, + "end": 770.86, + "probability": 0.9059 + }, + { + "start": 770.94, + "end": 775.3, + "probability": 0.9922 + }, + { + "start": 775.3, + "end": 780.78, + "probability": 0.9907 + }, + { + "start": 781.4, + "end": 781.74, + "probability": 0.6089 + }, + { + "start": 782.1, + "end": 783.44, + "probability": 0.9882 + }, + { + "start": 783.84, + "end": 787.1, + "probability": 0.9822 + }, + { + "start": 787.18, + "end": 787.76, + "probability": 0.8885 + }, + { + "start": 787.98, + "end": 788.66, + "probability": 0.5366 + }, + { + "start": 788.88, + "end": 791.22, + "probability": 0.7428 + }, + { + "start": 791.52, + "end": 792.24, + "probability": 0.5917 + }, + { + "start": 792.26, + "end": 794.42, + "probability": 0.8789 + }, + { + "start": 798.04, + "end": 801.3, + "probability": 0.6175 + }, + { + "start": 803.82, + "end": 810.18, + "probability": 0.9832 + }, + { + "start": 810.62, + "end": 811.86, + "probability": 0.9408 + }, + { + "start": 812.78, + "end": 818.68, + "probability": 0.9899 + }, + { + "start": 819.6, + "end": 819.9, + "probability": 0.979 + }, + { + "start": 820.98, + "end": 827.12, + "probability": 0.9922 + }, + { + "start": 827.96, + "end": 828.68, + "probability": 0.9246 + }, + { + "start": 830.0, + "end": 835.92, + "probability": 0.9967 + }, + { + "start": 836.68, + "end": 842.46, + "probability": 0.8348 + }, + { + "start": 843.74, + "end": 846.38, + "probability": 0.986 + }, + { + "start": 847.1, + "end": 848.76, + "probability": 0.7086 + }, + { + "start": 849.44, + "end": 850.66, + "probability": 0.6333 + }, + { + "start": 850.76, + "end": 857.38, + "probability": 0.9713 + }, + { + "start": 857.86, + "end": 864.26, + "probability": 0.8823 + }, + { + "start": 864.6, + "end": 871.82, + "probability": 0.9523 + }, + { + "start": 872.2, + "end": 873.5, + "probability": 0.8136 + }, + { + "start": 873.88, + "end": 874.74, + "probability": 0.9301 + }, + { + "start": 875.02, + "end": 878.08, + "probability": 0.9775 + }, + { + "start": 878.42, + "end": 880.58, + "probability": 0.9973 + }, + { + "start": 881.14, + "end": 888.44, + "probability": 0.9772 + }, + { + "start": 888.44, + "end": 893.18, + "probability": 0.9972 + }, + { + "start": 893.6, + "end": 900.14, + "probability": 0.9929 + }, + { + "start": 901.22, + "end": 904.32, + "probability": 0.9956 + }, + { + "start": 904.48, + "end": 904.74, + "probability": 0.7381 + }, + { + "start": 905.02, + "end": 906.58, + "probability": 0.6806 + }, + { + "start": 906.8, + "end": 909.72, + "probability": 0.769 + }, + { + "start": 909.82, + "end": 910.6, + "probability": 0.519 + }, + { + "start": 910.76, + "end": 912.4, + "probability": 0.9526 + }, + { + "start": 913.22, + "end": 915.14, + "probability": 0.644 + }, + { + "start": 915.8, + "end": 916.91, + "probability": 0.5648 + }, + { + "start": 917.64, + "end": 921.06, + "probability": 0.8008 + }, + { + "start": 921.56, + "end": 924.62, + "probability": 0.9428 + }, + { + "start": 924.88, + "end": 928.16, + "probability": 0.9538 + }, + { + "start": 928.9, + "end": 930.54, + "probability": 0.8698 + }, + { + "start": 931.12, + "end": 935.08, + "probability": 0.9659 + }, + { + "start": 935.54, + "end": 936.8, + "probability": 0.9688 + }, + { + "start": 938.26, + "end": 942.64, + "probability": 0.9426 + }, + { + "start": 943.16, + "end": 944.62, + "probability": 0.993 + }, + { + "start": 944.74, + "end": 946.02, + "probability": 0.9921 + }, + { + "start": 946.38, + "end": 947.14, + "probability": 0.9854 + }, + { + "start": 948.04, + "end": 949.12, + "probability": 0.8093 + }, + { + "start": 950.02, + "end": 955.39, + "probability": 0.9884 + }, + { + "start": 955.48, + "end": 956.22, + "probability": 0.8739 + }, + { + "start": 956.34, + "end": 957.0, + "probability": 0.4907 + }, + { + "start": 957.7, + "end": 958.72, + "probability": 0.678 + }, + { + "start": 959.24, + "end": 962.08, + "probability": 0.9402 + }, + { + "start": 962.72, + "end": 964.72, + "probability": 0.9862 + }, + { + "start": 965.36, + "end": 968.42, + "probability": 0.9591 + }, + { + "start": 968.88, + "end": 970.48, + "probability": 0.9582 + }, + { + "start": 970.78, + "end": 971.24, + "probability": 0.9328 + }, + { + "start": 971.9, + "end": 972.62, + "probability": 0.5357 + }, + { + "start": 972.82, + "end": 975.3, + "probability": 0.8213 + }, + { + "start": 976.2, + "end": 978.1, + "probability": 0.9214 + }, + { + "start": 984.72, + "end": 986.38, + "probability": 0.6309 + }, + { + "start": 986.64, + "end": 987.22, + "probability": 0.6586 + }, + { + "start": 988.3, + "end": 991.22, + "probability": 0.9741 + }, + { + "start": 991.22, + "end": 994.36, + "probability": 0.9958 + }, + { + "start": 995.34, + "end": 998.06, + "probability": 0.9899 + }, + { + "start": 998.06, + "end": 1000.7, + "probability": 0.9995 + }, + { + "start": 1000.86, + "end": 1003.46, + "probability": 0.8503 + }, + { + "start": 1003.58, + "end": 1004.94, + "probability": 0.9933 + }, + { + "start": 1005.64, + "end": 1006.18, + "probability": 0.97 + }, + { + "start": 1006.36, + "end": 1009.48, + "probability": 0.9943 + }, + { + "start": 1009.6, + "end": 1014.84, + "probability": 0.9893 + }, + { + "start": 1014.92, + "end": 1015.22, + "probability": 0.7372 + }, + { + "start": 1015.58, + "end": 1019.34, + "probability": 0.9663 + }, + { + "start": 1019.88, + "end": 1023.02, + "probability": 0.9899 + }, + { + "start": 1023.5, + "end": 1028.12, + "probability": 0.9941 + }, + { + "start": 1028.28, + "end": 1030.3, + "probability": 0.874 + }, + { + "start": 1030.82, + "end": 1033.78, + "probability": 0.9961 + }, + { + "start": 1034.52, + "end": 1036.54, + "probability": 0.9724 + }, + { + "start": 1036.96, + "end": 1038.0, + "probability": 0.9555 + }, + { + "start": 1038.42, + "end": 1039.2, + "probability": 0.9914 + }, + { + "start": 1039.26, + "end": 1039.96, + "probability": 0.9767 + }, + { + "start": 1040.14, + "end": 1043.6, + "probability": 0.9973 + }, + { + "start": 1043.6, + "end": 1047.16, + "probability": 0.9983 + }, + { + "start": 1047.72, + "end": 1051.86, + "probability": 0.9949 + }, + { + "start": 1052.68, + "end": 1054.12, + "probability": 0.7873 + }, + { + "start": 1054.74, + "end": 1055.67, + "probability": 0.9224 + }, + { + "start": 1056.96, + "end": 1058.94, + "probability": 0.9614 + }, + { + "start": 1060.1, + "end": 1061.06, + "probability": 0.6764 + }, + { + "start": 1061.28, + "end": 1061.74, + "probability": 0.8715 + }, + { + "start": 1061.8, + "end": 1062.12, + "probability": 0.924 + }, + { + "start": 1062.14, + "end": 1066.72, + "probability": 0.9639 + }, + { + "start": 1067.48, + "end": 1071.16, + "probability": 0.9932 + }, + { + "start": 1071.78, + "end": 1072.54, + "probability": 0.7806 + }, + { + "start": 1095.4, + "end": 1099.44, + "probability": 0.9083 + }, + { + "start": 1100.48, + "end": 1102.76, + "probability": 0.8905 + }, + { + "start": 1104.24, + "end": 1109.2, + "probability": 0.9292 + }, + { + "start": 1110.08, + "end": 1110.6, + "probability": 0.9259 + }, + { + "start": 1111.26, + "end": 1113.53, + "probability": 0.741 + }, + { + "start": 1114.2, + "end": 1120.52, + "probability": 0.9851 + }, + { + "start": 1120.52, + "end": 1123.88, + "probability": 0.626 + }, + { + "start": 1124.0, + "end": 1128.08, + "probability": 0.8107 + }, + { + "start": 1130.0, + "end": 1133.84, + "probability": 0.75 + }, + { + "start": 1134.58, + "end": 1135.6, + "probability": 0.8184 + }, + { + "start": 1136.74, + "end": 1140.08, + "probability": 0.8846 + }, + { + "start": 1140.82, + "end": 1142.56, + "probability": 0.804 + }, + { + "start": 1142.68, + "end": 1146.04, + "probability": 0.9953 + }, + { + "start": 1147.04, + "end": 1147.82, + "probability": 0.8442 + }, + { + "start": 1149.02, + "end": 1150.36, + "probability": 0.8039 + }, + { + "start": 1150.9, + "end": 1151.14, + "probability": 0.762 + }, + { + "start": 1151.96, + "end": 1154.42, + "probability": 0.6235 + }, + { + "start": 1156.52, + "end": 1157.58, + "probability": 0.5908 + }, + { + "start": 1159.04, + "end": 1161.58, + "probability": 0.9307 + }, + { + "start": 1163.46, + "end": 1163.84, + "probability": 0.8686 + }, + { + "start": 1164.64, + "end": 1165.12, + "probability": 0.473 + }, + { + "start": 1165.6, + "end": 1170.7, + "probability": 0.9849 + }, + { + "start": 1172.28, + "end": 1175.06, + "probability": 0.897 + }, + { + "start": 1175.58, + "end": 1176.82, + "probability": 0.8293 + }, + { + "start": 1177.92, + "end": 1178.78, + "probability": 0.836 + }, + { + "start": 1179.42, + "end": 1180.78, + "probability": 0.9908 + }, + { + "start": 1181.64, + "end": 1183.6, + "probability": 0.9059 + }, + { + "start": 1183.78, + "end": 1186.14, + "probability": 0.8911 + }, + { + "start": 1187.26, + "end": 1189.12, + "probability": 0.7962 + }, + { + "start": 1190.26, + "end": 1192.04, + "probability": 0.9697 + }, + { + "start": 1192.92, + "end": 1195.92, + "probability": 0.9949 + }, + { + "start": 1196.48, + "end": 1200.18, + "probability": 0.979 + }, + { + "start": 1200.18, + "end": 1204.0, + "probability": 0.9862 + }, + { + "start": 1204.82, + "end": 1208.74, + "probability": 0.7605 + }, + { + "start": 1210.86, + "end": 1215.56, + "probability": 0.992 + }, + { + "start": 1216.58, + "end": 1219.28, + "probability": 0.8948 + }, + { + "start": 1219.44, + "end": 1220.34, + "probability": 0.3654 + }, + { + "start": 1220.34, + "end": 1222.12, + "probability": 0.9041 + }, + { + "start": 1223.24, + "end": 1224.62, + "probability": 0.9075 + }, + { + "start": 1225.92, + "end": 1226.52, + "probability": 0.9993 + }, + { + "start": 1227.98, + "end": 1229.24, + "probability": 0.9973 + }, + { + "start": 1230.36, + "end": 1232.88, + "probability": 0.8149 + }, + { + "start": 1233.5, + "end": 1235.72, + "probability": 0.6537 + }, + { + "start": 1237.0, + "end": 1239.96, + "probability": 0.999 + }, + { + "start": 1241.66, + "end": 1244.4, + "probability": 0.9958 + }, + { + "start": 1244.5, + "end": 1245.9, + "probability": 0.9951 + }, + { + "start": 1245.98, + "end": 1247.42, + "probability": 0.8577 + }, + { + "start": 1247.6, + "end": 1249.38, + "probability": 0.9264 + }, + { + "start": 1249.96, + "end": 1250.78, + "probability": 0.8874 + }, + { + "start": 1251.08, + "end": 1253.0, + "probability": 0.8394 + }, + { + "start": 1253.7, + "end": 1255.06, + "probability": 0.958 + }, + { + "start": 1256.78, + "end": 1258.12, + "probability": 0.7833 + }, + { + "start": 1258.7, + "end": 1261.22, + "probability": 0.9797 + }, + { + "start": 1262.16, + "end": 1266.9, + "probability": 0.9862 + }, + { + "start": 1266.9, + "end": 1270.8, + "probability": 0.999 + }, + { + "start": 1271.42, + "end": 1272.34, + "probability": 0.9416 + }, + { + "start": 1273.52, + "end": 1275.7, + "probability": 0.9464 + }, + { + "start": 1276.4, + "end": 1279.24, + "probability": 0.998 + }, + { + "start": 1279.52, + "end": 1279.74, + "probability": 0.8064 + }, + { + "start": 1280.74, + "end": 1282.54, + "probability": 0.8872 + }, + { + "start": 1282.6, + "end": 1283.3, + "probability": 0.9618 + }, + { + "start": 1283.94, + "end": 1284.42, + "probability": 0.8951 + }, + { + "start": 1285.18, + "end": 1287.14, + "probability": 0.9598 + }, + { + "start": 1287.88, + "end": 1287.88, + "probability": 0.2252 + }, + { + "start": 1288.58, + "end": 1291.26, + "probability": 0.9964 + }, + { + "start": 1292.04, + "end": 1293.62, + "probability": 0.9955 + }, + { + "start": 1294.22, + "end": 1295.42, + "probability": 0.9932 + }, + { + "start": 1295.62, + "end": 1299.02, + "probability": 0.9878 + }, + { + "start": 1301.16, + "end": 1302.74, + "probability": 0.9914 + }, + { + "start": 1303.24, + "end": 1305.72, + "probability": 0.9472 + }, + { + "start": 1305.88, + "end": 1307.78, + "probability": 0.8774 + }, + { + "start": 1308.96, + "end": 1310.78, + "probability": 0.9893 + }, + { + "start": 1311.02, + "end": 1314.88, + "probability": 0.9692 + }, + { + "start": 1314.98, + "end": 1315.78, + "probability": 0.8438 + }, + { + "start": 1316.94, + "end": 1317.54, + "probability": 0.9057 + }, + { + "start": 1318.56, + "end": 1319.96, + "probability": 0.6171 + }, + { + "start": 1320.38, + "end": 1320.54, + "probability": 0.781 + }, + { + "start": 1321.3, + "end": 1323.18, + "probability": 0.8774 + }, + { + "start": 1324.1, + "end": 1326.32, + "probability": 0.9983 + }, + { + "start": 1326.9, + "end": 1328.0, + "probability": 0.9163 + }, + { + "start": 1328.52, + "end": 1332.94, + "probability": 0.9778 + }, + { + "start": 1333.54, + "end": 1335.18, + "probability": 0.9922 + }, + { + "start": 1335.36, + "end": 1336.0, + "probability": 0.6873 + }, + { + "start": 1336.26, + "end": 1337.38, + "probability": 0.959 + }, + { + "start": 1337.42, + "end": 1338.6, + "probability": 0.8325 + }, + { + "start": 1339.54, + "end": 1341.82, + "probability": 0.6917 + }, + { + "start": 1342.22, + "end": 1345.96, + "probability": 0.9974 + }, + { + "start": 1346.46, + "end": 1348.44, + "probability": 0.9987 + }, + { + "start": 1349.22, + "end": 1352.52, + "probability": 0.8393 + }, + { + "start": 1353.62, + "end": 1354.24, + "probability": 0.9751 + }, + { + "start": 1354.34, + "end": 1360.5, + "probability": 0.9871 + }, + { + "start": 1361.52, + "end": 1364.62, + "probability": 0.9532 + }, + { + "start": 1365.38, + "end": 1366.38, + "probability": 0.985 + }, + { + "start": 1367.52, + "end": 1371.72, + "probability": 0.9897 + }, + { + "start": 1371.78, + "end": 1373.1, + "probability": 0.9743 + }, + { + "start": 1374.04, + "end": 1375.2, + "probability": 0.9648 + }, + { + "start": 1375.56, + "end": 1377.58, + "probability": 0.9954 + }, + { + "start": 1378.64, + "end": 1381.08, + "probability": 0.9946 + }, + { + "start": 1381.36, + "end": 1382.16, + "probability": 0.8611 + }, + { + "start": 1382.86, + "end": 1384.08, + "probability": 0.9772 + }, + { + "start": 1384.16, + "end": 1388.88, + "probability": 0.9983 + }, + { + "start": 1389.62, + "end": 1390.92, + "probability": 0.9984 + }, + { + "start": 1391.0, + "end": 1391.38, + "probability": 0.7477 + }, + { + "start": 1391.82, + "end": 1393.3, + "probability": 0.8353 + }, + { + "start": 1393.32, + "end": 1396.52, + "probability": 0.9655 + }, + { + "start": 1420.92, + "end": 1423.54, + "probability": 0.888 + }, + { + "start": 1425.64, + "end": 1429.02, + "probability": 0.8945 + }, + { + "start": 1430.26, + "end": 1432.28, + "probability": 0.978 + }, + { + "start": 1432.38, + "end": 1433.36, + "probability": 0.9839 + }, + { + "start": 1434.26, + "end": 1437.24, + "probability": 0.5463 + }, + { + "start": 1438.4, + "end": 1442.1, + "probability": 0.988 + }, + { + "start": 1442.96, + "end": 1443.98, + "probability": 0.7987 + }, + { + "start": 1444.56, + "end": 1445.6, + "probability": 0.9349 + }, + { + "start": 1446.48, + "end": 1447.9, + "probability": 0.9268 + }, + { + "start": 1449.02, + "end": 1451.76, + "probability": 0.9756 + }, + { + "start": 1453.94, + "end": 1456.8, + "probability": 0.9755 + }, + { + "start": 1457.67, + "end": 1460.82, + "probability": 0.9919 + }, + { + "start": 1461.9, + "end": 1465.04, + "probability": 0.9039 + }, + { + "start": 1465.98, + "end": 1469.26, + "probability": 0.9132 + }, + { + "start": 1470.56, + "end": 1472.52, + "probability": 0.951 + }, + { + "start": 1474.56, + "end": 1477.62, + "probability": 0.8774 + }, + { + "start": 1479.12, + "end": 1486.0, + "probability": 0.9978 + }, + { + "start": 1487.98, + "end": 1491.92, + "probability": 0.9975 + }, + { + "start": 1492.8, + "end": 1493.82, + "probability": 0.998 + }, + { + "start": 1494.86, + "end": 1499.36, + "probability": 0.9316 + }, + { + "start": 1502.48, + "end": 1503.92, + "probability": 0.6228 + }, + { + "start": 1504.56, + "end": 1512.74, + "probability": 0.821 + }, + { + "start": 1512.74, + "end": 1515.42, + "probability": 0.9851 + }, + { + "start": 1516.18, + "end": 1516.85, + "probability": 0.9945 + }, + { + "start": 1517.14, + "end": 1518.18, + "probability": 0.894 + }, + { + "start": 1518.26, + "end": 1519.42, + "probability": 0.9757 + }, + { + "start": 1520.4, + "end": 1522.44, + "probability": 0.9765 + }, + { + "start": 1525.36, + "end": 1527.75, + "probability": 0.9731 + }, + { + "start": 1529.38, + "end": 1530.86, + "probability": 0.7167 + }, + { + "start": 1531.56, + "end": 1532.63, + "probability": 0.9857 + }, + { + "start": 1532.98, + "end": 1535.26, + "probability": 0.818 + }, + { + "start": 1536.44, + "end": 1539.78, + "probability": 0.986 + }, + { + "start": 1541.1, + "end": 1542.44, + "probability": 0.7628 + }, + { + "start": 1543.24, + "end": 1544.12, + "probability": 0.7477 + }, + { + "start": 1544.34, + "end": 1545.08, + "probability": 0.8329 + }, + { + "start": 1545.5, + "end": 1549.34, + "probability": 0.977 + }, + { + "start": 1550.08, + "end": 1554.52, + "probability": 0.9144 + }, + { + "start": 1554.52, + "end": 1557.9, + "probability": 0.9969 + }, + { + "start": 1558.96, + "end": 1561.76, + "probability": 0.9865 + }, + { + "start": 1564.34, + "end": 1566.92, + "probability": 0.9592 + }, + { + "start": 1568.02, + "end": 1569.86, + "probability": 0.8263 + }, + { + "start": 1570.7, + "end": 1573.06, + "probability": 0.9321 + }, + { + "start": 1573.56, + "end": 1575.18, + "probability": 0.8418 + }, + { + "start": 1575.22, + "end": 1576.22, + "probability": 0.8103 + }, + { + "start": 1576.92, + "end": 1578.38, + "probability": 0.9611 + }, + { + "start": 1579.52, + "end": 1582.3, + "probability": 0.9874 + }, + { + "start": 1582.52, + "end": 1585.84, + "probability": 0.9941 + }, + { + "start": 1587.62, + "end": 1590.9, + "probability": 0.9904 + }, + { + "start": 1594.84, + "end": 1595.64, + "probability": 0.8368 + }, + { + "start": 1597.63, + "end": 1602.06, + "probability": 0.9958 + }, + { + "start": 1602.38, + "end": 1604.78, + "probability": 0.9438 + }, + { + "start": 1605.56, + "end": 1606.82, + "probability": 0.8348 + }, + { + "start": 1608.34, + "end": 1609.56, + "probability": 0.5145 + }, + { + "start": 1610.48, + "end": 1615.38, + "probability": 0.9871 + }, + { + "start": 1615.38, + "end": 1621.58, + "probability": 0.8957 + }, + { + "start": 1623.38, + "end": 1624.08, + "probability": 0.7211 + }, + { + "start": 1624.12, + "end": 1627.1, + "probability": 0.8881 + }, + { + "start": 1627.66, + "end": 1630.44, + "probability": 0.7463 + }, + { + "start": 1631.14, + "end": 1632.08, + "probability": 0.7816 + }, + { + "start": 1633.1, + "end": 1636.98, + "probability": 0.9377 + }, + { + "start": 1638.78, + "end": 1639.92, + "probability": 0.9516 + }, + { + "start": 1640.52, + "end": 1641.9, + "probability": 0.7571 + }, + { + "start": 1642.42, + "end": 1643.22, + "probability": 0.9946 + }, + { + "start": 1643.44, + "end": 1644.24, + "probability": 0.9262 + }, + { + "start": 1645.54, + "end": 1648.46, + "probability": 0.9289 + }, + { + "start": 1649.12, + "end": 1652.14, + "probability": 0.9274 + }, + { + "start": 1665.2, + "end": 1667.48, + "probability": 0.7758 + }, + { + "start": 1668.76, + "end": 1670.14, + "probability": 0.6027 + }, + { + "start": 1670.28, + "end": 1672.66, + "probability": 0.7645 + }, + { + "start": 1673.7, + "end": 1679.28, + "probability": 0.9953 + }, + { + "start": 1679.44, + "end": 1682.35, + "probability": 0.9973 + }, + { + "start": 1683.58, + "end": 1685.38, + "probability": 0.9583 + }, + { + "start": 1686.06, + "end": 1688.54, + "probability": 0.9139 + }, + { + "start": 1690.66, + "end": 1691.86, + "probability": 0.9897 + }, + { + "start": 1691.92, + "end": 1692.84, + "probability": 0.8805 + }, + { + "start": 1692.94, + "end": 1694.72, + "probability": 0.9312 + }, + { + "start": 1695.68, + "end": 1698.7, + "probability": 0.9679 + }, + { + "start": 1699.42, + "end": 1702.06, + "probability": 0.9895 + }, + { + "start": 1702.9, + "end": 1704.22, + "probability": 0.9817 + }, + { + "start": 1705.4, + "end": 1706.58, + "probability": 0.9508 + }, + { + "start": 1707.32, + "end": 1709.22, + "probability": 0.9812 + }, + { + "start": 1709.26, + "end": 1711.06, + "probability": 0.9816 + }, + { + "start": 1711.72, + "end": 1712.54, + "probability": 0.9486 + }, + { + "start": 1713.74, + "end": 1716.5, + "probability": 0.9753 + }, + { + "start": 1717.28, + "end": 1720.06, + "probability": 0.9053 + }, + { + "start": 1720.78, + "end": 1722.18, + "probability": 0.8827 + }, + { + "start": 1723.14, + "end": 1726.42, + "probability": 0.9436 + }, + { + "start": 1727.16, + "end": 1730.8, + "probability": 0.9111 + }, + { + "start": 1731.68, + "end": 1734.94, + "probability": 0.9929 + }, + { + "start": 1734.94, + "end": 1738.5, + "probability": 0.95 + }, + { + "start": 1739.28, + "end": 1741.64, + "probability": 0.8761 + }, + { + "start": 1742.22, + "end": 1746.88, + "probability": 0.8161 + }, + { + "start": 1747.4, + "end": 1748.9, + "probability": 0.9489 + }, + { + "start": 1750.56, + "end": 1752.9, + "probability": 0.9701 + }, + { + "start": 1753.08, + "end": 1754.44, + "probability": 0.9617 + }, + { + "start": 1755.14, + "end": 1759.04, + "probability": 0.9904 + }, + { + "start": 1759.8, + "end": 1764.16, + "probability": 0.9961 + }, + { + "start": 1764.96, + "end": 1765.76, + "probability": 0.8034 + }, + { + "start": 1767.5, + "end": 1770.48, + "probability": 0.9945 + }, + { + "start": 1771.18, + "end": 1773.74, + "probability": 0.9407 + }, + { + "start": 1774.44, + "end": 1776.42, + "probability": 0.9423 + }, + { + "start": 1777.22, + "end": 1782.14, + "probability": 0.9748 + }, + { + "start": 1783.24, + "end": 1786.02, + "probability": 0.9988 + }, + { + "start": 1786.72, + "end": 1791.12, + "probability": 0.9987 + }, + { + "start": 1791.12, + "end": 1797.16, + "probability": 0.9725 + }, + { + "start": 1797.34, + "end": 1799.46, + "probability": 0.9813 + }, + { + "start": 1800.04, + "end": 1800.36, + "probability": 0.5605 + }, + { + "start": 1800.52, + "end": 1801.1, + "probability": 0.7865 + }, + { + "start": 1801.66, + "end": 1802.1, + "probability": 0.9866 + }, + { + "start": 1802.68, + "end": 1807.18, + "probability": 0.9739 + }, + { + "start": 1807.18, + "end": 1813.32, + "probability": 0.9827 + }, + { + "start": 1814.3, + "end": 1816.34, + "probability": 0.9953 + }, + { + "start": 1817.16, + "end": 1821.24, + "probability": 0.8884 + }, + { + "start": 1821.92, + "end": 1824.7, + "probability": 0.9902 + }, + { + "start": 1825.18, + "end": 1827.8, + "probability": 0.9902 + }, + { + "start": 1828.72, + "end": 1830.32, + "probability": 0.9742 + }, + { + "start": 1830.44, + "end": 1834.06, + "probability": 0.9963 + }, + { + "start": 1834.06, + "end": 1837.28, + "probability": 0.9919 + }, + { + "start": 1838.26, + "end": 1840.12, + "probability": 0.993 + }, + { + "start": 1840.9, + "end": 1841.5, + "probability": 0.8546 + }, + { + "start": 1841.82, + "end": 1846.02, + "probability": 0.9937 + }, + { + "start": 1846.02, + "end": 1850.78, + "probability": 0.9946 + }, + { + "start": 1851.4, + "end": 1855.22, + "probability": 0.9957 + }, + { + "start": 1855.22, + "end": 1858.54, + "probability": 0.9946 + }, + { + "start": 1859.38, + "end": 1859.74, + "probability": 0.5547 + }, + { + "start": 1860.58, + "end": 1863.14, + "probability": 0.981 + }, + { + "start": 1863.88, + "end": 1869.24, + "probability": 0.8856 + }, + { + "start": 1870.0, + "end": 1873.7, + "probability": 0.9823 + }, + { + "start": 1873.7, + "end": 1876.92, + "probability": 0.9946 + }, + { + "start": 1877.46, + "end": 1879.22, + "probability": 0.6513 + }, + { + "start": 1879.96, + "end": 1883.6, + "probability": 0.9966 + }, + { + "start": 1883.6, + "end": 1887.74, + "probability": 0.9995 + }, + { + "start": 1888.6, + "end": 1891.14, + "probability": 0.9865 + }, + { + "start": 1891.66, + "end": 1893.02, + "probability": 0.9976 + }, + { + "start": 1893.66, + "end": 1898.06, + "probability": 0.9985 + }, + { + "start": 1898.64, + "end": 1900.02, + "probability": 0.9071 + }, + { + "start": 1906.9, + "end": 1907.94, + "probability": 0.0295 + }, + { + "start": 1922.96, + "end": 1924.24, + "probability": 0.1185 + }, + { + "start": 1939.4, + "end": 1941.96, + "probability": 0.3797 + }, + { + "start": 1942.36, + "end": 1942.8, + "probability": 0.0271 + }, + { + "start": 1942.8, + "end": 1943.08, + "probability": 0.1775 + }, + { + "start": 1946.92, + "end": 1948.0, + "probability": 0.3088 + }, + { + "start": 1948.08, + "end": 1949.12, + "probability": 0.6111 + }, + { + "start": 1949.4, + "end": 1951.5, + "probability": 0.0763 + }, + { + "start": 1969.6, + "end": 1970.16, + "probability": 0.3066 + }, + { + "start": 1971.64, + "end": 1973.44, + "probability": 0.1039 + }, + { + "start": 1973.44, + "end": 1973.44, + "probability": 0.1239 + }, + { + "start": 1989.54, + "end": 1990.42, + "probability": 0.2055 + }, + { + "start": 1991.58, + "end": 1994.16, + "probability": 0.927 + }, + { + "start": 1994.86, + "end": 1996.22, + "probability": 0.6587 + }, + { + "start": 1997.06, + "end": 1997.58, + "probability": 0.852 + }, + { + "start": 1997.64, + "end": 1998.32, + "probability": 0.9806 + }, + { + "start": 1998.54, + "end": 2000.58, + "probability": 0.978 + }, + { + "start": 2000.82, + "end": 2002.28, + "probability": 0.946 + }, + { + "start": 2003.36, + "end": 2004.82, + "probability": 0.8962 + }, + { + "start": 2006.0, + "end": 2007.6, + "probability": 0.5763 + }, + { + "start": 2009.08, + "end": 2011.08, + "probability": 0.6946 + }, + { + "start": 2011.08, + "end": 2012.78, + "probability": 0.8743 + }, + { + "start": 2014.42, + "end": 2015.78, + "probability": 0.9949 + }, + { + "start": 2017.2, + "end": 2021.42, + "probability": 0.832 + }, + { + "start": 2022.6, + "end": 2023.52, + "probability": 0.969 + }, + { + "start": 2024.62, + "end": 2026.04, + "probability": 0.9674 + }, + { + "start": 2028.42, + "end": 2031.42, + "probability": 0.9113 + }, + { + "start": 2032.3, + "end": 2033.26, + "probability": 0.7273 + }, + { + "start": 2033.8, + "end": 2034.98, + "probability": 0.9722 + }, + { + "start": 2035.94, + "end": 2036.38, + "probability": 0.5886 + }, + { + "start": 2036.6, + "end": 2038.88, + "probability": 0.585 + }, + { + "start": 2038.94, + "end": 2041.5, + "probability": 0.7125 + }, + { + "start": 2041.52, + "end": 2044.66, + "probability": 0.9814 + }, + { + "start": 2046.68, + "end": 2050.4, + "probability": 0.9946 + }, + { + "start": 2051.52, + "end": 2055.12, + "probability": 0.9966 + }, + { + "start": 2055.28, + "end": 2055.86, + "probability": 0.6649 + }, + { + "start": 2057.02, + "end": 2060.22, + "probability": 0.9733 + }, + { + "start": 2061.06, + "end": 2061.48, + "probability": 0.9955 + }, + { + "start": 2063.32, + "end": 2064.84, + "probability": 0.2778 + }, + { + "start": 2065.04, + "end": 2067.68, + "probability": 0.5311 + }, + { + "start": 2068.38, + "end": 2069.46, + "probability": 0.7551 + }, + { + "start": 2069.58, + "end": 2070.86, + "probability": 0.8802 + }, + { + "start": 2071.96, + "end": 2072.7, + "probability": 0.8828 + }, + { + "start": 2074.12, + "end": 2076.36, + "probability": 0.4571 + }, + { + "start": 2076.6, + "end": 2077.44, + "probability": 0.8721 + }, + { + "start": 2078.38, + "end": 2079.26, + "probability": 0.9705 + }, + { + "start": 2080.1, + "end": 2083.02, + "probability": 0.8855 + }, + { + "start": 2083.94, + "end": 2086.18, + "probability": 0.9893 + }, + { + "start": 2087.38, + "end": 2089.8, + "probability": 0.9758 + }, + { + "start": 2090.88, + "end": 2092.14, + "probability": 0.9531 + }, + { + "start": 2093.26, + "end": 2096.64, + "probability": 0.9972 + }, + { + "start": 2096.64, + "end": 2098.5, + "probability": 0.8016 + }, + { + "start": 2099.82, + "end": 2101.62, + "probability": 0.9875 + }, + { + "start": 2102.08, + "end": 2106.94, + "probability": 0.9836 + }, + { + "start": 2108.18, + "end": 2112.3, + "probability": 0.9891 + }, + { + "start": 2113.26, + "end": 2119.93, + "probability": 0.9593 + }, + { + "start": 2120.4, + "end": 2122.38, + "probability": 0.6435 + }, + { + "start": 2123.28, + "end": 2127.38, + "probability": 0.92 + }, + { + "start": 2128.02, + "end": 2131.08, + "probability": 0.9329 + }, + { + "start": 2131.16, + "end": 2131.38, + "probability": 0.6537 + }, + { + "start": 2131.96, + "end": 2133.49, + "probability": 0.6632 + }, + { + "start": 2133.8, + "end": 2136.84, + "probability": 0.5967 + }, + { + "start": 2137.48, + "end": 2140.18, + "probability": 0.9513 + }, + { + "start": 2155.2, + "end": 2157.26, + "probability": 0.8368 + }, + { + "start": 2157.62, + "end": 2158.02, + "probability": 0.8199 + }, + { + "start": 2159.76, + "end": 2160.8, + "probability": 0.8233 + }, + { + "start": 2161.44, + "end": 2163.36, + "probability": 0.7945 + }, + { + "start": 2164.9, + "end": 2169.8, + "probability": 0.9387 + }, + { + "start": 2171.44, + "end": 2177.58, + "probability": 0.9645 + }, + { + "start": 2179.32, + "end": 2183.1, + "probability": 0.8648 + }, + { + "start": 2183.96, + "end": 2189.08, + "probability": 0.8662 + }, + { + "start": 2189.08, + "end": 2192.76, + "probability": 0.9868 + }, + { + "start": 2193.32, + "end": 2195.44, + "probability": 0.9983 + }, + { + "start": 2198.4, + "end": 2202.42, + "probability": 0.4826 + }, + { + "start": 2203.1, + "end": 2205.02, + "probability": 0.7787 + }, + { + "start": 2206.94, + "end": 2209.46, + "probability": 0.9929 + }, + { + "start": 2210.32, + "end": 2212.94, + "probability": 0.7052 + }, + { + "start": 2213.98, + "end": 2216.76, + "probability": 0.8605 + }, + { + "start": 2217.28, + "end": 2219.48, + "probability": 0.8239 + }, + { + "start": 2220.36, + "end": 2220.64, + "probability": 0.6195 + }, + { + "start": 2222.36, + "end": 2227.3, + "probability": 0.686 + }, + { + "start": 2228.82, + "end": 2231.46, + "probability": 0.7033 + }, + { + "start": 2232.02, + "end": 2232.84, + "probability": 0.7741 + }, + { + "start": 2233.52, + "end": 2234.06, + "probability": 0.4691 + }, + { + "start": 2234.6, + "end": 2236.64, + "probability": 0.8659 + }, + { + "start": 2237.3, + "end": 2238.5, + "probability": 0.8342 + }, + { + "start": 2239.34, + "end": 2242.04, + "probability": 0.8842 + }, + { + "start": 2242.96, + "end": 2245.1, + "probability": 0.4991 + }, + { + "start": 2246.12, + "end": 2247.0, + "probability": 0.9212 + }, + { + "start": 2248.4, + "end": 2249.1, + "probability": 0.9001 + }, + { + "start": 2249.46, + "end": 2250.24, + "probability": 0.8058 + }, + { + "start": 2250.62, + "end": 2251.04, + "probability": 0.8371 + }, + { + "start": 2251.18, + "end": 2251.94, + "probability": 0.9336 + }, + { + "start": 2253.12, + "end": 2255.78, + "probability": 0.9939 + }, + { + "start": 2256.72, + "end": 2258.02, + "probability": 0.9847 + }, + { + "start": 2259.94, + "end": 2262.28, + "probability": 0.9417 + }, + { + "start": 2263.18, + "end": 2266.32, + "probability": 0.7514 + }, + { + "start": 2267.28, + "end": 2268.04, + "probability": 0.4352 + }, + { + "start": 2268.94, + "end": 2273.58, + "probability": 0.4 + }, + { + "start": 2274.36, + "end": 2277.38, + "probability": 0.6155 + }, + { + "start": 2279.1, + "end": 2280.16, + "probability": 0.792 + }, + { + "start": 2281.0, + "end": 2284.8, + "probability": 0.7263 + }, + { + "start": 2285.66, + "end": 2288.18, + "probability": 0.6679 + }, + { + "start": 2288.96, + "end": 2291.66, + "probability": 0.6315 + }, + { + "start": 2292.64, + "end": 2294.36, + "probability": 0.9815 + }, + { + "start": 2295.82, + "end": 2298.2, + "probability": 0.8366 + }, + { + "start": 2298.7, + "end": 2299.8, + "probability": 0.8003 + }, + { + "start": 2300.56, + "end": 2300.94, + "probability": 0.7316 + }, + { + "start": 2300.98, + "end": 2301.88, + "probability": 0.9235 + }, + { + "start": 2301.94, + "end": 2304.74, + "probability": 0.807 + }, + { + "start": 2305.44, + "end": 2305.48, + "probability": 0.0306 + }, + { + "start": 2306.14, + "end": 2309.46, + "probability": 0.8926 + }, + { + "start": 2310.06, + "end": 2311.34, + "probability": 0.8448 + }, + { + "start": 2311.88, + "end": 2315.28, + "probability": 0.8364 + }, + { + "start": 2316.54, + "end": 2317.8, + "probability": 0.9417 + }, + { + "start": 2318.44, + "end": 2321.46, + "probability": 0.9473 + }, + { + "start": 2322.26, + "end": 2326.54, + "probability": 0.8255 + }, + { + "start": 2327.78, + "end": 2331.24, + "probability": 0.7664 + }, + { + "start": 2332.2, + "end": 2334.63, + "probability": 0.9044 + }, + { + "start": 2335.32, + "end": 2338.96, + "probability": 0.7738 + }, + { + "start": 2339.66, + "end": 2343.7, + "probability": 0.8644 + }, + { + "start": 2344.56, + "end": 2346.36, + "probability": 0.7397 + }, + { + "start": 2347.14, + "end": 2349.26, + "probability": 0.9022 + }, + { + "start": 2350.96, + "end": 2352.54, + "probability": 0.9846 + }, + { + "start": 2353.18, + "end": 2354.32, + "probability": 0.9575 + }, + { + "start": 2355.1, + "end": 2358.36, + "probability": 0.9507 + }, + { + "start": 2359.06, + "end": 2362.44, + "probability": 0.9944 + }, + { + "start": 2363.24, + "end": 2363.28, + "probability": 0.6508 + }, + { + "start": 2363.28, + "end": 2365.14, + "probability": 0.5396 + }, + { + "start": 2365.74, + "end": 2366.78, + "probability": 0.623 + }, + { + "start": 2367.06, + "end": 2368.67, + "probability": 0.9282 + }, + { + "start": 2369.54, + "end": 2372.42, + "probability": 0.9292 + }, + { + "start": 2373.24, + "end": 2376.86, + "probability": 0.9863 + }, + { + "start": 2377.6, + "end": 2378.76, + "probability": 0.7473 + }, + { + "start": 2379.22, + "end": 2380.72, + "probability": 0.9378 + }, + { + "start": 2381.3, + "end": 2384.7, + "probability": 0.9653 + }, + { + "start": 2386.28, + "end": 2389.06, + "probability": 0.4568 + }, + { + "start": 2389.76, + "end": 2390.6, + "probability": 0.7976 + }, + { + "start": 2391.26, + "end": 2393.64, + "probability": 0.9653 + }, + { + "start": 2394.26, + "end": 2396.22, + "probability": 0.9891 + }, + { + "start": 2396.66, + "end": 2398.48, + "probability": 0.8982 + }, + { + "start": 2399.74, + "end": 2401.64, + "probability": 0.9829 + }, + { + "start": 2402.42, + "end": 2405.2, + "probability": 0.5467 + }, + { + "start": 2405.4, + "end": 2406.38, + "probability": 0.9324 + }, + { + "start": 2406.44, + "end": 2409.08, + "probability": 0.9326 + }, + { + "start": 2409.94, + "end": 2414.1, + "probability": 0.0715 + }, + { + "start": 2415.68, + "end": 2416.16, + "probability": 0.1533 + }, + { + "start": 2416.16, + "end": 2419.1, + "probability": 0.5677 + }, + { + "start": 2421.04, + "end": 2423.12, + "probability": 0.85 + }, + { + "start": 2423.46, + "end": 2424.72, + "probability": 0.6348 + }, + { + "start": 2425.08, + "end": 2427.42, + "probability": 0.7323 + }, + { + "start": 2427.56, + "end": 2433.34, + "probability": 0.9174 + }, + { + "start": 2448.78, + "end": 2449.68, + "probability": 0.7949 + }, + { + "start": 2450.88, + "end": 2452.56, + "probability": 0.5798 + }, + { + "start": 2453.82, + "end": 2454.86, + "probability": 0.9426 + }, + { + "start": 2454.9, + "end": 2455.56, + "probability": 0.9377 + }, + { + "start": 2455.62, + "end": 2460.0, + "probability": 0.989 + }, + { + "start": 2460.06, + "end": 2460.82, + "probability": 0.8601 + }, + { + "start": 2461.76, + "end": 2468.26, + "probability": 0.7388 + }, + { + "start": 2469.52, + "end": 2472.68, + "probability": 0.9847 + }, + { + "start": 2473.78, + "end": 2484.04, + "probability": 0.9787 + }, + { + "start": 2484.26, + "end": 2484.98, + "probability": 0.8438 + }, + { + "start": 2487.06, + "end": 2487.8, + "probability": 0.6167 + }, + { + "start": 2489.22, + "end": 2491.96, + "probability": 0.7339 + }, + { + "start": 2513.8, + "end": 2517.1, + "probability": 0.6329 + }, + { + "start": 2517.78, + "end": 2520.4, + "probability": 0.4451 + }, + { + "start": 2521.06, + "end": 2523.14, + "probability": 0.642 + }, + { + "start": 2523.88, + "end": 2525.82, + "probability": 0.8716 + }, + { + "start": 2526.44, + "end": 2528.33, + "probability": 0.5395 + }, + { + "start": 2528.98, + "end": 2531.24, + "probability": 0.8147 + }, + { + "start": 2531.26, + "end": 2533.66, + "probability": 0.9407 + }, + { + "start": 2534.14, + "end": 2537.64, + "probability": 0.7175 + }, + { + "start": 2538.84, + "end": 2541.9, + "probability": 0.9706 + }, + { + "start": 2542.9, + "end": 2544.36, + "probability": 0.7167 + }, + { + "start": 2544.42, + "end": 2546.34, + "probability": 0.542 + }, + { + "start": 2546.42, + "end": 2549.44, + "probability": 0.9771 + }, + { + "start": 2550.64, + "end": 2552.48, + "probability": 0.9966 + }, + { + "start": 2552.74, + "end": 2553.6, + "probability": 0.5276 + }, + { + "start": 2553.66, + "end": 2554.92, + "probability": 0.9921 + }, + { + "start": 2556.16, + "end": 2557.4, + "probability": 0.9931 + }, + { + "start": 2558.1, + "end": 2561.62, + "probability": 0.9943 + }, + { + "start": 2562.2, + "end": 2563.18, + "probability": 0.8191 + }, + { + "start": 2564.12, + "end": 2568.8, + "probability": 0.8887 + }, + { + "start": 2568.92, + "end": 2570.22, + "probability": 0.7498 + }, + { + "start": 2570.4, + "end": 2573.26, + "probability": 0.8847 + }, + { + "start": 2573.4, + "end": 2575.72, + "probability": 0.9817 + }, + { + "start": 2576.86, + "end": 2579.92, + "probability": 0.9978 + }, + { + "start": 2580.46, + "end": 2583.44, + "probability": 0.9048 + }, + { + "start": 2584.02, + "end": 2586.64, + "probability": 0.9941 + }, + { + "start": 2586.96, + "end": 2590.75, + "probability": 0.9783 + }, + { + "start": 2591.18, + "end": 2595.64, + "probability": 0.9946 + }, + { + "start": 2596.12, + "end": 2599.38, + "probability": 0.9971 + }, + { + "start": 2599.46, + "end": 2602.78, + "probability": 0.9937 + }, + { + "start": 2602.84, + "end": 2608.52, + "probability": 0.9873 + }, + { + "start": 2608.96, + "end": 2609.86, + "probability": 0.9922 + }, + { + "start": 2610.43, + "end": 2613.96, + "probability": 0.9932 + }, + { + "start": 2614.56, + "end": 2616.52, + "probability": 0.582 + }, + { + "start": 2617.56, + "end": 2619.7, + "probability": 0.9906 + }, + { + "start": 2619.8, + "end": 2621.64, + "probability": 0.9797 + }, + { + "start": 2622.36, + "end": 2624.52, + "probability": 0.9924 + }, + { + "start": 2625.04, + "end": 2626.68, + "probability": 0.9516 + }, + { + "start": 2627.04, + "end": 2628.63, + "probability": 0.8791 + }, + { + "start": 2628.72, + "end": 2630.56, + "probability": 0.7797 + }, + { + "start": 2630.66, + "end": 2631.72, + "probability": 0.5708 + }, + { + "start": 2631.8, + "end": 2634.66, + "probability": 0.98 + }, + { + "start": 2634.98, + "end": 2636.5, + "probability": 0.8836 + }, + { + "start": 2636.9, + "end": 2639.54, + "probability": 0.9926 + }, + { + "start": 2639.62, + "end": 2640.42, + "probability": 0.974 + }, + { + "start": 2640.6, + "end": 2641.26, + "probability": 0.6046 + }, + { + "start": 2641.9, + "end": 2643.36, + "probability": 0.8892 + }, + { + "start": 2643.44, + "end": 2644.0, + "probability": 0.954 + }, + { + "start": 2644.08, + "end": 2646.52, + "probability": 0.6845 + }, + { + "start": 2646.52, + "end": 2650.5, + "probability": 0.8933 + }, + { + "start": 2651.26, + "end": 2655.56, + "probability": 0.9902 + }, + { + "start": 2656.3, + "end": 2657.02, + "probability": 0.8473 + }, + { + "start": 2675.92, + "end": 2678.16, + "probability": 0.9021 + }, + { + "start": 2678.18, + "end": 2678.46, + "probability": 0.907 + }, + { + "start": 2679.0, + "end": 2679.84, + "probability": 0.8017 + }, + { + "start": 2681.32, + "end": 2683.02, + "probability": 0.9893 + }, + { + "start": 2683.7, + "end": 2684.48, + "probability": 0.6551 + }, + { + "start": 2685.18, + "end": 2686.22, + "probability": 0.7661 + }, + { + "start": 2687.42, + "end": 2689.68, + "probability": 0.9492 + }, + { + "start": 2690.9, + "end": 2691.76, + "probability": 0.9902 + }, + { + "start": 2692.86, + "end": 2695.7, + "probability": 0.8743 + }, + { + "start": 2696.58, + "end": 2697.36, + "probability": 0.7153 + }, + { + "start": 2698.54, + "end": 2700.44, + "probability": 0.7523 + }, + { + "start": 2702.22, + "end": 2705.6, + "probability": 0.9933 + }, + { + "start": 2706.96, + "end": 2710.16, + "probability": 0.8999 + }, + { + "start": 2712.3, + "end": 2714.78, + "probability": 0.2391 + }, + { + "start": 2714.78, + "end": 2715.34, + "probability": 0.7426 + }, + { + "start": 2716.02, + "end": 2718.76, + "probability": 0.6347 + }, + { + "start": 2719.34, + "end": 2720.6, + "probability": 0.9956 + }, + { + "start": 2721.46, + "end": 2723.86, + "probability": 0.9294 + }, + { + "start": 2723.86, + "end": 2728.6, + "probability": 0.903 + }, + { + "start": 2730.28, + "end": 2732.28, + "probability": 0.887 + }, + { + "start": 2733.68, + "end": 2736.14, + "probability": 0.7823 + }, + { + "start": 2739.1, + "end": 2742.62, + "probability": 0.9864 + }, + { + "start": 2743.48, + "end": 2745.06, + "probability": 0.8795 + }, + { + "start": 2745.94, + "end": 2748.14, + "probability": 0.9975 + }, + { + "start": 2748.94, + "end": 2750.86, + "probability": 0.8965 + }, + { + "start": 2751.82, + "end": 2754.66, + "probability": 0.9796 + }, + { + "start": 2755.64, + "end": 2757.2, + "probability": 0.9448 + }, + { + "start": 2758.44, + "end": 2761.0, + "probability": 0.9263 + }, + { + "start": 2761.62, + "end": 2763.4, + "probability": 0.935 + }, + { + "start": 2764.28, + "end": 2766.0, + "probability": 0.9333 + }, + { + "start": 2766.84, + "end": 2770.82, + "probability": 0.9167 + }, + { + "start": 2771.94, + "end": 2773.18, + "probability": 0.98 + }, + { + "start": 2773.86, + "end": 2778.51, + "probability": 0.9745 + }, + { + "start": 2779.2, + "end": 2779.84, + "probability": 0.9592 + }, + { + "start": 2780.42, + "end": 2780.86, + "probability": 0.9601 + }, + { + "start": 2782.24, + "end": 2783.4, + "probability": 0.927 + }, + { + "start": 2784.02, + "end": 2788.24, + "probability": 0.9767 + }, + { + "start": 2788.9, + "end": 2789.4, + "probability": 0.8996 + }, + { + "start": 2789.98, + "end": 2791.82, + "probability": 0.9672 + }, + { + "start": 2792.54, + "end": 2795.0, + "probability": 0.5138 + }, + { + "start": 2795.9, + "end": 2800.26, + "probability": 0.9775 + }, + { + "start": 2801.36, + "end": 2804.58, + "probability": 0.9553 + }, + { + "start": 2806.4, + "end": 2808.52, + "probability": 0.9126 + }, + { + "start": 2809.2, + "end": 2813.04, + "probability": 0.9484 + }, + { + "start": 2813.92, + "end": 2815.16, + "probability": 0.832 + }, + { + "start": 2815.58, + "end": 2819.84, + "probability": 0.9459 + }, + { + "start": 2820.44, + "end": 2823.46, + "probability": 0.8918 + }, + { + "start": 2824.78, + "end": 2828.08, + "probability": 0.5627 + }, + { + "start": 2828.08, + "end": 2832.64, + "probability": 0.8945 + }, + { + "start": 2833.42, + "end": 2836.86, + "probability": 0.9053 + }, + { + "start": 2837.66, + "end": 2839.4, + "probability": 0.9411 + }, + { + "start": 2839.94, + "end": 2840.84, + "probability": 0.7734 + }, + { + "start": 2841.84, + "end": 2845.76, + "probability": 0.9814 + }, + { + "start": 2846.64, + "end": 2848.96, + "probability": 0.9031 + }, + { + "start": 2849.5, + "end": 2851.88, + "probability": 0.9943 + }, + { + "start": 2853.4, + "end": 2857.6, + "probability": 0.9816 + }, + { + "start": 2858.46, + "end": 2861.5, + "probability": 0.9767 + }, + { + "start": 2862.5, + "end": 2863.74, + "probability": 0.9829 + }, + { + "start": 2865.24, + "end": 2866.12, + "probability": 0.8843 + }, + { + "start": 2866.8, + "end": 2869.18, + "probability": 0.924 + }, + { + "start": 2870.98, + "end": 2872.36, + "probability": 0.9939 + }, + { + "start": 2874.0, + "end": 2876.82, + "probability": 0.9003 + }, + { + "start": 2877.12, + "end": 2878.74, + "probability": 0.9421 + }, + { + "start": 2879.9, + "end": 2881.66, + "probability": 0.9632 + }, + { + "start": 2882.2, + "end": 2884.12, + "probability": 0.8527 + }, + { + "start": 2884.98, + "end": 2885.78, + "probability": 0.6517 + }, + { + "start": 2886.3, + "end": 2889.24, + "probability": 0.9746 + }, + { + "start": 2890.56, + "end": 2894.54, + "probability": 0.9746 + }, + { + "start": 2895.52, + "end": 2898.72, + "probability": 0.9686 + }, + { + "start": 2899.8, + "end": 2902.32, + "probability": 0.7126 + }, + { + "start": 2903.3, + "end": 2904.84, + "probability": 0.8661 + }, + { + "start": 2905.38, + "end": 2906.3, + "probability": 0.7365 + }, + { + "start": 2908.16, + "end": 2908.7, + "probability": 0.9548 + }, + { + "start": 2908.82, + "end": 2909.62, + "probability": 0.7997 + }, + { + "start": 2910.12, + "end": 2914.24, + "probability": 0.9621 + }, + { + "start": 2915.2, + "end": 2919.76, + "probability": 0.9668 + }, + { + "start": 2920.26, + "end": 2922.07, + "probability": 0.6598 + }, + { + "start": 2923.22, + "end": 2928.32, + "probability": 0.988 + }, + { + "start": 2928.96, + "end": 2929.64, + "probability": 0.9937 + }, + { + "start": 2930.7, + "end": 2932.16, + "probability": 0.7534 + }, + { + "start": 2932.86, + "end": 2934.16, + "probability": 0.9178 + }, + { + "start": 2934.84, + "end": 2936.26, + "probability": 0.9883 + }, + { + "start": 2937.02, + "end": 2938.58, + "probability": 0.9903 + }, + { + "start": 2939.26, + "end": 2941.56, + "probability": 0.9973 + }, + { + "start": 2943.46, + "end": 2945.26, + "probability": 0.8993 + }, + { + "start": 2945.7, + "end": 2946.9, + "probability": 0.8716 + }, + { + "start": 2946.92, + "end": 2947.64, + "probability": 0.8222 + }, + { + "start": 2947.68, + "end": 2950.56, + "probability": 0.985 + }, + { + "start": 2951.24, + "end": 2955.1, + "probability": 0.8355 + }, + { + "start": 2955.48, + "end": 2955.88, + "probability": 0.6249 + }, + { + "start": 2956.06, + "end": 2956.64, + "probability": 0.5682 + }, + { + "start": 2956.76, + "end": 2960.12, + "probability": 0.8063 + }, + { + "start": 2960.58, + "end": 2963.1, + "probability": 0.9822 + }, + { + "start": 2964.1, + "end": 2964.7, + "probability": 0.7154 + }, + { + "start": 2965.5, + "end": 2966.64, + "probability": 0.9895 + }, + { + "start": 2967.32, + "end": 2967.88, + "probability": 0.9208 + }, + { + "start": 2968.48, + "end": 2970.52, + "probability": 0.9565 + }, + { + "start": 2971.06, + "end": 2972.42, + "probability": 0.8826 + }, + { + "start": 2973.24, + "end": 2975.08, + "probability": 0.9659 + }, + { + "start": 2976.18, + "end": 2978.68, + "probability": 0.7188 + }, + { + "start": 2979.46, + "end": 2986.82, + "probability": 0.9798 + }, + { + "start": 2987.2, + "end": 2988.74, + "probability": 0.9326 + }, + { + "start": 2990.8, + "end": 2993.72, + "probability": 0.9794 + }, + { + "start": 2994.28, + "end": 2996.9, + "probability": 0.9976 + }, + { + "start": 2996.9, + "end": 3000.3, + "probability": 0.999 + }, + { + "start": 3001.14, + "end": 3004.92, + "probability": 0.9638 + }, + { + "start": 3006.02, + "end": 3009.79, + "probability": 0.9795 + }, + { + "start": 3011.4, + "end": 3013.62, + "probability": 0.5299 + }, + { + "start": 3014.06, + "end": 3018.32, + "probability": 0.9329 + }, + { + "start": 3018.92, + "end": 3019.8, + "probability": 0.8174 + }, + { + "start": 3020.3, + "end": 3021.14, + "probability": 0.8764 + }, + { + "start": 3021.62, + "end": 3023.0, + "probability": 0.8169 + }, + { + "start": 3023.4, + "end": 3024.04, + "probability": 0.9737 + }, + { + "start": 3025.8, + "end": 3029.04, + "probability": 0.9798 + }, + { + "start": 3029.74, + "end": 3030.68, + "probability": 0.6262 + }, + { + "start": 3031.08, + "end": 3033.86, + "probability": 0.9819 + }, + { + "start": 3033.86, + "end": 3037.94, + "probability": 0.9958 + }, + { + "start": 3038.48, + "end": 3040.94, + "probability": 0.8138 + }, + { + "start": 3042.08, + "end": 3046.92, + "probability": 0.8562 + }, + { + "start": 3047.4, + "end": 3048.82, + "probability": 0.753 + }, + { + "start": 3049.62, + "end": 3053.4, + "probability": 0.9492 + }, + { + "start": 3053.98, + "end": 3058.1, + "probability": 0.9937 + }, + { + "start": 3058.92, + "end": 3061.72, + "probability": 0.9704 + }, + { + "start": 3062.02, + "end": 3064.0, + "probability": 0.6662 + }, + { + "start": 3064.58, + "end": 3065.54, + "probability": 0.9359 + }, + { + "start": 3066.0, + "end": 3069.28, + "probability": 0.9924 + }, + { + "start": 3069.28, + "end": 3072.52, + "probability": 0.9741 + }, + { + "start": 3073.24, + "end": 3074.7, + "probability": 0.7502 + }, + { + "start": 3075.58, + "end": 3078.04, + "probability": 0.7351 + }, + { + "start": 3078.7, + "end": 3080.74, + "probability": 0.5524 + }, + { + "start": 3081.18, + "end": 3081.4, + "probability": 0.8632 + }, + { + "start": 3081.68, + "end": 3082.92, + "probability": 0.8063 + }, + { + "start": 3082.94, + "end": 3086.32, + "probability": 0.8657 + }, + { + "start": 3086.92, + "end": 3089.42, + "probability": 0.6802 + }, + { + "start": 3099.8, + "end": 3101.56, + "probability": 0.8638 + }, + { + "start": 3103.4, + "end": 3103.92, + "probability": 0.9136 + }, + { + "start": 3109.88, + "end": 3113.8, + "probability": 0.7676 + }, + { + "start": 3115.58, + "end": 3115.92, + "probability": 0.7436 + }, + { + "start": 3116.7, + "end": 3122.34, + "probability": 0.9778 + }, + { + "start": 3124.0, + "end": 3126.16, + "probability": 0.7717 + }, + { + "start": 3128.32, + "end": 3129.32, + "probability": 0.9424 + }, + { + "start": 3130.14, + "end": 3132.56, + "probability": 0.99 + }, + { + "start": 3135.36, + "end": 3139.52, + "probability": 0.7269 + }, + { + "start": 3141.04, + "end": 3141.62, + "probability": 0.5177 + }, + { + "start": 3142.62, + "end": 3144.58, + "probability": 0.9246 + }, + { + "start": 3145.82, + "end": 3149.36, + "probability": 0.9827 + }, + { + "start": 3151.1, + "end": 3156.38, + "probability": 0.9702 + }, + { + "start": 3157.06, + "end": 3157.78, + "probability": 0.9396 + }, + { + "start": 3158.48, + "end": 3159.76, + "probability": 0.9242 + }, + { + "start": 3160.6, + "end": 3161.22, + "probability": 0.8013 + }, + { + "start": 3163.54, + "end": 3164.62, + "probability": 0.9253 + }, + { + "start": 3164.9, + "end": 3165.34, + "probability": 0.8639 + }, + { + "start": 3165.42, + "end": 3165.68, + "probability": 0.8379 + }, + { + "start": 3166.1, + "end": 3170.56, + "probability": 0.8983 + }, + { + "start": 3170.72, + "end": 3171.66, + "probability": 0.8874 + }, + { + "start": 3172.22, + "end": 3173.18, + "probability": 0.9866 + }, + { + "start": 3174.76, + "end": 3175.44, + "probability": 0.8204 + }, + { + "start": 3176.94, + "end": 3181.82, + "probability": 0.9922 + }, + { + "start": 3182.46, + "end": 3183.2, + "probability": 0.7422 + }, + { + "start": 3184.48, + "end": 3186.7, + "probability": 0.9966 + }, + { + "start": 3187.12, + "end": 3188.4, + "probability": 0.9344 + }, + { + "start": 3189.04, + "end": 3190.3, + "probability": 0.9942 + }, + { + "start": 3191.38, + "end": 3192.8, + "probability": 0.9977 + }, + { + "start": 3194.08, + "end": 3196.4, + "probability": 0.8766 + }, + { + "start": 3197.06, + "end": 3198.2, + "probability": 0.988 + }, + { + "start": 3199.02, + "end": 3200.4, + "probability": 0.9857 + }, + { + "start": 3202.42, + "end": 3204.38, + "probability": 0.9423 + }, + { + "start": 3205.06, + "end": 3206.24, + "probability": 0.9897 + }, + { + "start": 3207.22, + "end": 3208.38, + "probability": 0.9983 + }, + { + "start": 3209.56, + "end": 3210.54, + "probability": 0.9969 + }, + { + "start": 3211.08, + "end": 3212.08, + "probability": 0.9075 + }, + { + "start": 3212.72, + "end": 3214.6, + "probability": 0.792 + }, + { + "start": 3215.4, + "end": 3218.18, + "probability": 0.9907 + }, + { + "start": 3219.2, + "end": 3221.46, + "probability": 0.9753 + }, + { + "start": 3222.94, + "end": 3224.46, + "probability": 0.9961 + }, + { + "start": 3225.38, + "end": 3227.34, + "probability": 0.9902 + }, + { + "start": 3228.92, + "end": 3229.74, + "probability": 0.9533 + }, + { + "start": 3230.5, + "end": 3233.72, + "probability": 0.9937 + }, + { + "start": 3234.9, + "end": 3237.22, + "probability": 0.978 + }, + { + "start": 3238.0, + "end": 3239.38, + "probability": 0.9282 + }, + { + "start": 3240.14, + "end": 3242.76, + "probability": 0.9822 + }, + { + "start": 3244.18, + "end": 3245.88, + "probability": 0.8595 + }, + { + "start": 3246.78, + "end": 3249.3, + "probability": 0.9976 + }, + { + "start": 3249.4, + "end": 3249.98, + "probability": 0.7944 + }, + { + "start": 3251.4, + "end": 3252.44, + "probability": 0.6292 + }, + { + "start": 3253.3, + "end": 3255.6, + "probability": 0.9971 + }, + { + "start": 3256.5, + "end": 3258.56, + "probability": 0.9103 + }, + { + "start": 3259.34, + "end": 3261.12, + "probability": 0.9941 + }, + { + "start": 3262.62, + "end": 3263.2, + "probability": 0.9043 + }, + { + "start": 3263.74, + "end": 3265.78, + "probability": 0.9644 + }, + { + "start": 3266.26, + "end": 3268.0, + "probability": 0.9621 + }, + { + "start": 3268.18, + "end": 3271.04, + "probability": 0.9675 + }, + { + "start": 3272.36, + "end": 3275.2, + "probability": 0.969 + }, + { + "start": 3276.08, + "end": 3277.36, + "probability": 0.7961 + }, + { + "start": 3278.22, + "end": 3279.44, + "probability": 0.9666 + }, + { + "start": 3280.04, + "end": 3280.66, + "probability": 0.9704 + }, + { + "start": 3282.26, + "end": 3283.5, + "probability": 0.8637 + }, + { + "start": 3284.28, + "end": 3286.04, + "probability": 0.9944 + }, + { + "start": 3287.06, + "end": 3289.42, + "probability": 0.9884 + }, + { + "start": 3290.08, + "end": 3290.64, + "probability": 0.9709 + }, + { + "start": 3292.92, + "end": 3296.26, + "probability": 0.9865 + }, + { + "start": 3297.12, + "end": 3298.4, + "probability": 0.9678 + }, + { + "start": 3299.18, + "end": 3303.92, + "probability": 0.9979 + }, + { + "start": 3305.2, + "end": 3308.26, + "probability": 0.9937 + }, + { + "start": 3310.5, + "end": 3313.06, + "probability": 0.9897 + }, + { + "start": 3314.3, + "end": 3316.48, + "probability": 0.9972 + }, + { + "start": 3316.48, + "end": 3318.46, + "probability": 0.9994 + }, + { + "start": 3319.2, + "end": 3321.42, + "probability": 0.9564 + }, + { + "start": 3322.02, + "end": 3325.72, + "probability": 0.9921 + }, + { + "start": 3327.14, + "end": 3329.66, + "probability": 0.9948 + }, + { + "start": 3330.88, + "end": 3331.1, + "probability": 0.3359 + }, + { + "start": 3331.18, + "end": 3334.22, + "probability": 0.9826 + }, + { + "start": 3334.46, + "end": 3336.9, + "probability": 0.9597 + }, + { + "start": 3337.84, + "end": 3338.1, + "probability": 0.9464 + }, + { + "start": 3338.16, + "end": 3339.34, + "probability": 0.9851 + }, + { + "start": 3339.5, + "end": 3342.94, + "probability": 0.9929 + }, + { + "start": 3343.36, + "end": 3347.86, + "probability": 0.998 + }, + { + "start": 3348.6, + "end": 3351.68, + "probability": 0.8917 + }, + { + "start": 3352.64, + "end": 3354.52, + "probability": 0.9849 + }, + { + "start": 3355.04, + "end": 3357.18, + "probability": 0.9779 + }, + { + "start": 3357.84, + "end": 3358.86, + "probability": 0.8485 + }, + { + "start": 3359.66, + "end": 3362.12, + "probability": 0.9789 + }, + { + "start": 3363.48, + "end": 3364.68, + "probability": 0.9401 + }, + { + "start": 3365.8, + "end": 3370.42, + "probability": 0.8389 + }, + { + "start": 3371.24, + "end": 3375.54, + "probability": 0.9967 + }, + { + "start": 3376.42, + "end": 3380.24, + "probability": 0.9971 + }, + { + "start": 3381.66, + "end": 3385.8, + "probability": 0.9969 + }, + { + "start": 3386.74, + "end": 3390.1, + "probability": 0.9749 + }, + { + "start": 3391.08, + "end": 3394.02, + "probability": 0.9985 + }, + { + "start": 3394.58, + "end": 3395.74, + "probability": 0.9907 + }, + { + "start": 3397.08, + "end": 3398.1, + "probability": 0.9836 + }, + { + "start": 3398.78, + "end": 3399.62, + "probability": 0.6362 + }, + { + "start": 3400.08, + "end": 3405.34, + "probability": 0.9982 + }, + { + "start": 3405.98, + "end": 3407.6, + "probability": 0.9888 + }, + { + "start": 3408.0, + "end": 3408.6, + "probability": 0.9802 + }, + { + "start": 3409.12, + "end": 3409.44, + "probability": 0.7561 + }, + { + "start": 3410.52, + "end": 3412.76, + "probability": 0.9752 + }, + { + "start": 3412.8, + "end": 3415.1, + "probability": 0.9124 + }, + { + "start": 3415.28, + "end": 3418.36, + "probability": 0.989 + }, + { + "start": 3418.88, + "end": 3420.86, + "probability": 0.8503 + }, + { + "start": 3421.44, + "end": 3425.24, + "probability": 0.8726 + }, + { + "start": 3425.86, + "end": 3429.02, + "probability": 0.9374 + }, + { + "start": 3430.0, + "end": 3432.88, + "probability": 0.9607 + }, + { + "start": 3432.88, + "end": 3437.32, + "probability": 0.9595 + }, + { + "start": 3437.84, + "end": 3441.52, + "probability": 0.1971 + }, + { + "start": 3442.0, + "end": 3443.34, + "probability": 0.634 + }, + { + "start": 3444.52, + "end": 3446.7, + "probability": 0.9917 + }, + { + "start": 3446.78, + "end": 3449.18, + "probability": 0.8628 + }, + { + "start": 3449.9, + "end": 3454.04, + "probability": 0.939 + }, + { + "start": 3454.64, + "end": 3458.92, + "probability": 0.7163 + }, + { + "start": 3459.64, + "end": 3464.18, + "probability": 0.9133 + }, + { + "start": 3465.02, + "end": 3470.0, + "probability": 0.8613 + }, + { + "start": 3470.68, + "end": 3472.46, + "probability": 0.7783 + }, + { + "start": 3473.16, + "end": 3473.68, + "probability": 0.9585 + }, + { + "start": 3475.82, + "end": 3477.04, + "probability": 0.2607 + }, + { + "start": 3484.42, + "end": 3488.66, + "probability": 0.8431 + }, + { + "start": 3498.7, + "end": 3503.88, + "probability": 0.7514 + }, + { + "start": 3505.62, + "end": 3511.18, + "probability": 0.4511 + }, + { + "start": 3511.68, + "end": 3514.32, + "probability": 0.739 + }, + { + "start": 3515.14, + "end": 3520.12, + "probability": 0.844 + }, + { + "start": 3520.12, + "end": 3523.26, + "probability": 0.6421 + }, + { + "start": 3523.42, + "end": 3524.03, + "probability": 0.8457 + }, + { + "start": 3525.1, + "end": 3530.46, + "probability": 0.9406 + }, + { + "start": 3531.0, + "end": 3531.76, + "probability": 0.7796 + }, + { + "start": 3531.84, + "end": 3532.64, + "probability": 0.8217 + }, + { + "start": 3532.74, + "end": 3533.58, + "probability": 0.9645 + }, + { + "start": 3533.66, + "end": 3534.9, + "probability": 0.9485 + }, + { + "start": 3536.29, + "end": 3540.2, + "probability": 0.9978 + }, + { + "start": 3540.92, + "end": 3543.0, + "probability": 0.9521 + }, + { + "start": 3544.06, + "end": 3544.78, + "probability": 0.9968 + }, + { + "start": 3545.4, + "end": 3547.06, + "probability": 0.909 + }, + { + "start": 3548.88, + "end": 3551.22, + "probability": 0.9087 + }, + { + "start": 3552.32, + "end": 3557.08, + "probability": 0.9604 + }, + { + "start": 3557.3, + "end": 3558.76, + "probability": 0.9915 + }, + { + "start": 3559.92, + "end": 3563.68, + "probability": 0.8229 + }, + { + "start": 3564.42, + "end": 3565.12, + "probability": 0.6558 + }, + { + "start": 3566.26, + "end": 3569.6, + "probability": 0.9832 + }, + { + "start": 3570.18, + "end": 3571.48, + "probability": 0.3611 + }, + { + "start": 3572.26, + "end": 3582.8, + "probability": 0.7453 + }, + { + "start": 3583.18, + "end": 3585.2, + "probability": 0.8639 + }, + { + "start": 3585.88, + "end": 3590.08, + "probability": 0.9966 + }, + { + "start": 3591.78, + "end": 3595.42, + "probability": 0.499 + }, + { + "start": 3595.76, + "end": 3598.8, + "probability": 0.9248 + }, + { + "start": 3599.66, + "end": 3605.2, + "probability": 0.8879 + }, + { + "start": 3606.36, + "end": 3609.9, + "probability": 0.931 + }, + { + "start": 3610.32, + "end": 3611.16, + "probability": 0.8969 + }, + { + "start": 3611.54, + "end": 3612.38, + "probability": 0.7314 + }, + { + "start": 3612.48, + "end": 3616.52, + "probability": 0.9907 + }, + { + "start": 3616.52, + "end": 3619.64, + "probability": 0.959 + }, + { + "start": 3619.74, + "end": 3621.14, + "probability": 0.6447 + }, + { + "start": 3621.8, + "end": 3622.76, + "probability": 0.6718 + }, + { + "start": 3622.8, + "end": 3626.41, + "probability": 0.9868 + }, + { + "start": 3627.22, + "end": 3633.56, + "probability": 0.9932 + }, + { + "start": 3635.14, + "end": 3637.64, + "probability": 0.6712 + }, + { + "start": 3638.16, + "end": 3639.88, + "probability": 0.7732 + }, + { + "start": 3640.52, + "end": 3643.18, + "probability": 0.9961 + }, + { + "start": 3644.32, + "end": 3648.12, + "probability": 0.9091 + }, + { + "start": 3648.12, + "end": 3655.76, + "probability": 0.9977 + }, + { + "start": 3655.84, + "end": 3657.84, + "probability": 0.9487 + }, + { + "start": 3658.3, + "end": 3662.7, + "probability": 0.9987 + }, + { + "start": 3662.88, + "end": 3663.32, + "probability": 0.7586 + }, + { + "start": 3663.38, + "end": 3664.98, + "probability": 0.9707 + }, + { + "start": 3665.54, + "end": 3667.68, + "probability": 0.9325 + }, + { + "start": 3667.8, + "end": 3670.23, + "probability": 0.9611 + }, + { + "start": 3670.38, + "end": 3671.14, + "probability": 0.7063 + }, + { + "start": 3671.2, + "end": 3673.11, + "probability": 0.9651 + }, + { + "start": 3673.4, + "end": 3675.42, + "probability": 0.9763 + }, + { + "start": 3675.96, + "end": 3679.74, + "probability": 0.9543 + }, + { + "start": 3680.88, + "end": 3683.82, + "probability": 0.9518 + }, + { + "start": 3684.54, + "end": 3686.9, + "probability": 0.8727 + }, + { + "start": 3687.04, + "end": 3687.44, + "probability": 0.6502 + }, + { + "start": 3687.64, + "end": 3688.52, + "probability": 0.9204 + }, + { + "start": 3688.56, + "end": 3689.26, + "probability": 0.7435 + }, + { + "start": 3689.66, + "end": 3690.7, + "probability": 0.725 + }, + { + "start": 3691.3, + "end": 3695.82, + "probability": 0.8805 + }, + { + "start": 3695.96, + "end": 3697.46, + "probability": 0.982 + }, + { + "start": 3697.9, + "end": 3698.8, + "probability": 0.9689 + }, + { + "start": 3698.86, + "end": 3701.34, + "probability": 0.9635 + }, + { + "start": 3701.46, + "end": 3702.1, + "probability": 0.9393 + }, + { + "start": 3702.56, + "end": 3704.08, + "probability": 0.9812 + }, + { + "start": 3704.2, + "end": 3704.58, + "probability": 0.8344 + }, + { + "start": 3704.7, + "end": 3705.2, + "probability": 0.953 + }, + { + "start": 3705.76, + "end": 3707.0, + "probability": 0.9434 + }, + { + "start": 3707.92, + "end": 3708.6, + "probability": 0.9675 + }, + { + "start": 3709.64, + "end": 3712.54, + "probability": 0.9904 + }, + { + "start": 3713.16, + "end": 3718.18, + "probability": 0.9634 + }, + { + "start": 3718.9, + "end": 3721.38, + "probability": 0.9408 + }, + { + "start": 3721.4, + "end": 3721.68, + "probability": 0.8253 + }, + { + "start": 3721.76, + "end": 3723.58, + "probability": 0.9874 + }, + { + "start": 3723.68, + "end": 3725.02, + "probability": 0.7791 + }, + { + "start": 3725.18, + "end": 3730.59, + "probability": 0.9688 + }, + { + "start": 3731.64, + "end": 3734.98, + "probability": 0.6237 + }, + { + "start": 3735.6, + "end": 3736.24, + "probability": 0.5741 + }, + { + "start": 3736.8, + "end": 3738.46, + "probability": 0.964 + }, + { + "start": 3738.88, + "end": 3744.3, + "probability": 0.8693 + }, + { + "start": 3744.88, + "end": 3745.92, + "probability": 0.9639 + }, + { + "start": 3746.1, + "end": 3749.62, + "probability": 0.9195 + }, + { + "start": 3750.14, + "end": 3752.41, + "probability": 0.968 + }, + { + "start": 3753.52, + "end": 3753.54, + "probability": 0.4363 + }, + { + "start": 3753.84, + "end": 3756.66, + "probability": 0.9531 + }, + { + "start": 3757.08, + "end": 3762.1, + "probability": 0.9272 + }, + { + "start": 3762.18, + "end": 3765.22, + "probability": 0.9879 + }, + { + "start": 3765.9, + "end": 3770.36, + "probability": 0.9052 + }, + { + "start": 3770.38, + "end": 3771.3, + "probability": 0.9471 + }, + { + "start": 3771.62, + "end": 3774.4, + "probability": 0.9929 + }, + { + "start": 3774.52, + "end": 3775.0, + "probability": 0.9887 + }, + { + "start": 3775.16, + "end": 3775.5, + "probability": 0.7247 + }, + { + "start": 3776.02, + "end": 3776.84, + "probability": 0.5351 + }, + { + "start": 3776.98, + "end": 3779.36, + "probability": 0.8077 + }, + { + "start": 3780.36, + "end": 3781.64, + "probability": 0.8698 + }, + { + "start": 3781.96, + "end": 3785.44, + "probability": 0.9365 + }, + { + "start": 3785.46, + "end": 3789.44, + "probability": 0.9798 + }, + { + "start": 3789.66, + "end": 3790.28, + "probability": 0.5057 + }, + { + "start": 3791.46, + "end": 3793.14, + "probability": 0.7981 + }, + { + "start": 3794.08, + "end": 3795.16, + "probability": 0.5249 + }, + { + "start": 3795.26, + "end": 3797.3, + "probability": 0.9094 + }, + { + "start": 3798.36, + "end": 3799.82, + "probability": 0.9574 + }, + { + "start": 3806.19, + "end": 3809.78, + "probability": 0.8451 + }, + { + "start": 3810.64, + "end": 3813.56, + "probability": 0.9282 + }, + { + "start": 3814.2, + "end": 3814.96, + "probability": 0.9128 + }, + { + "start": 3816.08, + "end": 3819.02, + "probability": 0.9939 + }, + { + "start": 3819.96, + "end": 3823.36, + "probability": 0.9834 + }, + { + "start": 3824.66, + "end": 3825.54, + "probability": 0.5103 + }, + { + "start": 3826.86, + "end": 3828.76, + "probability": 0.947 + }, + { + "start": 3830.14, + "end": 3831.12, + "probability": 0.8621 + }, + { + "start": 3832.54, + "end": 3835.2, + "probability": 0.9696 + }, + { + "start": 3835.76, + "end": 3836.44, + "probability": 0.6265 + }, + { + "start": 3836.64, + "end": 3839.46, + "probability": 0.9875 + }, + { + "start": 3839.58, + "end": 3841.04, + "probability": 0.8872 + }, + { + "start": 3841.1, + "end": 3843.2, + "probability": 0.9832 + }, + { + "start": 3843.62, + "end": 3846.52, + "probability": 0.9023 + }, + { + "start": 3846.92, + "end": 3849.02, + "probability": 0.9668 + }, + { + "start": 3850.96, + "end": 3855.96, + "probability": 0.9972 + }, + { + "start": 3857.12, + "end": 3860.0, + "probability": 0.9916 + }, + { + "start": 3861.16, + "end": 3864.98, + "probability": 0.9873 + }, + { + "start": 3865.94, + "end": 3867.28, + "probability": 0.9993 + }, + { + "start": 3868.32, + "end": 3872.5, + "probability": 0.999 + }, + { + "start": 3872.5, + "end": 3877.76, + "probability": 0.9699 + }, + { + "start": 3879.1, + "end": 3879.82, + "probability": 0.8434 + }, + { + "start": 3880.34, + "end": 3882.2, + "probability": 0.7743 + }, + { + "start": 3882.72, + "end": 3883.88, + "probability": 0.9844 + }, + { + "start": 3885.76, + "end": 3887.52, + "probability": 0.9645 + }, + { + "start": 3888.18, + "end": 3893.16, + "probability": 0.9839 + }, + { + "start": 3893.74, + "end": 3894.44, + "probability": 0.9907 + }, + { + "start": 3895.6, + "end": 3899.42, + "probability": 0.8922 + }, + { + "start": 3900.12, + "end": 3901.24, + "probability": 0.7578 + }, + { + "start": 3901.86, + "end": 3902.84, + "probability": 0.9782 + }, + { + "start": 3904.64, + "end": 3905.46, + "probability": 0.8972 + }, + { + "start": 3906.3, + "end": 3909.08, + "probability": 0.9895 + }, + { + "start": 3909.3, + "end": 3910.38, + "probability": 0.9839 + }, + { + "start": 3910.88, + "end": 3915.78, + "probability": 0.9937 + }, + { + "start": 3916.3, + "end": 3919.36, + "probability": 0.9792 + }, + { + "start": 3920.86, + "end": 3922.08, + "probability": 0.8055 + }, + { + "start": 3922.16, + "end": 3924.9, + "probability": 0.9873 + }, + { + "start": 3925.88, + "end": 3931.46, + "probability": 0.9899 + }, + { + "start": 3932.34, + "end": 3935.5, + "probability": 0.9955 + }, + { + "start": 3935.56, + "end": 3936.24, + "probability": 0.8662 + }, + { + "start": 3936.9, + "end": 3941.46, + "probability": 0.9654 + }, + { + "start": 3942.3, + "end": 3943.28, + "probability": 0.9259 + }, + { + "start": 3945.06, + "end": 3949.86, + "probability": 0.9829 + }, + { + "start": 3951.7, + "end": 3959.13, + "probability": 0.9507 + }, + { + "start": 3960.78, + "end": 3964.24, + "probability": 0.8646 + }, + { + "start": 3964.52, + "end": 3968.74, + "probability": 0.9477 + }, + { + "start": 3968.78, + "end": 3972.08, + "probability": 0.8182 + }, + { + "start": 3972.36, + "end": 3973.52, + "probability": 0.8816 + }, + { + "start": 3973.82, + "end": 3974.38, + "probability": 0.4694 + }, + { + "start": 3975.32, + "end": 3975.5, + "probability": 0.3992 + }, + { + "start": 3976.38, + "end": 3977.4, + "probability": 0.9652 + }, + { + "start": 3977.98, + "end": 3982.8, + "probability": 0.8741 + }, + { + "start": 3983.54, + "end": 3988.48, + "probability": 0.9688 + }, + { + "start": 3988.68, + "end": 3989.4, + "probability": 0.8244 + }, + { + "start": 3989.86, + "end": 3991.04, + "probability": 0.9928 + }, + { + "start": 3992.44, + "end": 3992.92, + "probability": 0.766 + }, + { + "start": 3994.46, + "end": 3997.2, + "probability": 0.8931 + }, + { + "start": 3998.16, + "end": 4005.32, + "probability": 0.9722 + }, + { + "start": 4005.54, + "end": 4009.54, + "probability": 0.998 + }, + { + "start": 4010.12, + "end": 4013.86, + "probability": 0.9875 + }, + { + "start": 4014.88, + "end": 4017.42, + "probability": 0.7576 + }, + { + "start": 4018.04, + "end": 4021.9, + "probability": 0.9702 + }, + { + "start": 4022.46, + "end": 4023.8, + "probability": 0.9875 + }, + { + "start": 4024.02, + "end": 4025.76, + "probability": 0.9905 + }, + { + "start": 4025.86, + "end": 4026.82, + "probability": 0.9583 + }, + { + "start": 4027.24, + "end": 4028.14, + "probability": 0.7695 + }, + { + "start": 4028.22, + "end": 4029.96, + "probability": 0.9512 + }, + { + "start": 4030.68, + "end": 4031.19, + "probability": 0.9751 + }, + { + "start": 4031.42, + "end": 4033.2, + "probability": 0.9633 + }, + { + "start": 4033.62, + "end": 4034.54, + "probability": 0.8514 + }, + { + "start": 4034.94, + "end": 4037.66, + "probability": 0.9892 + }, + { + "start": 4038.08, + "end": 4038.54, + "probability": 0.0063 + }, + { + "start": 4039.3, + "end": 4039.84, + "probability": 0.672 + }, + { + "start": 4041.28, + "end": 4043.26, + "probability": 0.835 + }, + { + "start": 4043.62, + "end": 4044.16, + "probability": 0.4808 + }, + { + "start": 4044.34, + "end": 4048.6, + "probability": 0.9637 + }, + { + "start": 4048.72, + "end": 4049.28, + "probability": 0.9492 + }, + { + "start": 4049.8, + "end": 4053.48, + "probability": 0.9308 + }, + { + "start": 4054.12, + "end": 4062.52, + "probability": 0.7469 + }, + { + "start": 4065.42, + "end": 4067.52, + "probability": 0.9321 + }, + { + "start": 4068.6, + "end": 4072.06, + "probability": 0.9905 + }, + { + "start": 4072.66, + "end": 4073.64, + "probability": 0.9376 + }, + { + "start": 4074.52, + "end": 4077.24, + "probability": 0.9817 + }, + { + "start": 4078.28, + "end": 4082.66, + "probability": 0.9991 + }, + { + "start": 4083.82, + "end": 4084.68, + "probability": 0.5107 + }, + { + "start": 4086.48, + "end": 4088.36, + "probability": 0.8386 + }, + { + "start": 4089.28, + "end": 4089.58, + "probability": 0.2796 + }, + { + "start": 4089.72, + "end": 4091.12, + "probability": 0.9744 + }, + { + "start": 4091.72, + "end": 4093.96, + "probability": 0.9121 + }, + { + "start": 4094.62, + "end": 4095.82, + "probability": 0.9946 + }, + { + "start": 4095.92, + "end": 4096.98, + "probability": 0.9674 + }, + { + "start": 4097.46, + "end": 4099.52, + "probability": 0.9911 + }, + { + "start": 4100.68, + "end": 4101.34, + "probability": 0.9331 + }, + { + "start": 4101.82, + "end": 4102.6, + "probability": 0.6611 + }, + { + "start": 4102.7, + "end": 4103.38, + "probability": 0.7416 + }, + { + "start": 4103.68, + "end": 4105.62, + "probability": 0.8452 + }, + { + "start": 4106.26, + "end": 4108.58, + "probability": 0.9901 + }, + { + "start": 4108.96, + "end": 4110.0, + "probability": 0.8757 + }, + { + "start": 4110.36, + "end": 4112.12, + "probability": 0.8598 + }, + { + "start": 4112.78, + "end": 4114.9, + "probability": 0.7682 + }, + { + "start": 4116.78, + "end": 4122.24, + "probability": 0.9947 + }, + { + "start": 4124.29, + "end": 4129.82, + "probability": 0.9719 + }, + { + "start": 4129.96, + "end": 4130.42, + "probability": 0.7106 + }, + { + "start": 4130.5, + "end": 4131.12, + "probability": 0.7683 + }, + { + "start": 4131.56, + "end": 4135.06, + "probability": 0.8602 + }, + { + "start": 4135.42, + "end": 4137.32, + "probability": 0.8589 + }, + { + "start": 4137.36, + "end": 4138.54, + "probability": 0.6946 + }, + { + "start": 4139.34, + "end": 4140.54, + "probability": 0.8843 + }, + { + "start": 4140.86, + "end": 4143.18, + "probability": 0.6741 + }, + { + "start": 4143.74, + "end": 4146.18, + "probability": 0.9135 + }, + { + "start": 4146.74, + "end": 4148.62, + "probability": 0.7512 + }, + { + "start": 4149.18, + "end": 4150.94, + "probability": 0.9525 + }, + { + "start": 4151.42, + "end": 4153.2, + "probability": 0.9931 + }, + { + "start": 4153.28, + "end": 4154.11, + "probability": 0.9326 + }, + { + "start": 4154.58, + "end": 4155.7, + "probability": 0.993 + }, + { + "start": 4156.12, + "end": 4159.92, + "probability": 0.9894 + }, + { + "start": 4160.1, + "end": 4160.82, + "probability": 0.6821 + }, + { + "start": 4161.34, + "end": 4164.8, + "probability": 0.9234 + }, + { + "start": 4165.26, + "end": 4167.7, + "probability": 0.9773 + }, + { + "start": 4168.6, + "end": 4170.62, + "probability": 0.9624 + }, + { + "start": 4171.63, + "end": 4173.7, + "probability": 0.937 + }, + { + "start": 4174.2, + "end": 4175.78, + "probability": 0.921 + }, + { + "start": 4175.84, + "end": 4176.28, + "probability": 0.7312 + }, + { + "start": 4176.42, + "end": 4176.9, + "probability": 0.8776 + }, + { + "start": 4176.96, + "end": 4181.76, + "probability": 0.9614 + }, + { + "start": 4182.76, + "end": 4183.92, + "probability": 0.9866 + }, + { + "start": 4184.06, + "end": 4184.5, + "probability": 0.6586 + }, + { + "start": 4185.18, + "end": 4188.32, + "probability": 0.9731 + }, + { + "start": 4189.62, + "end": 4192.88, + "probability": 0.8701 + }, + { + "start": 4218.08, + "end": 4220.34, + "probability": 0.5663 + }, + { + "start": 4220.88, + "end": 4231.48, + "probability": 0.8394 + }, + { + "start": 4240.56, + "end": 4245.87, + "probability": 0.9382 + }, + { + "start": 4247.98, + "end": 4250.44, + "probability": 0.859 + }, + { + "start": 4253.1, + "end": 4254.8, + "probability": 0.6483 + }, + { + "start": 4255.68, + "end": 4262.04, + "probability": 0.865 + }, + { + "start": 4263.66, + "end": 4263.8, + "probability": 0.2045 + }, + { + "start": 4268.64, + "end": 4272.69, + "probability": 0.9626 + }, + { + "start": 4276.78, + "end": 4277.02, + "probability": 0.2678 + }, + { + "start": 4278.38, + "end": 4279.58, + "probability": 0.7566 + }, + { + "start": 4281.92, + "end": 4284.08, + "probability": 0.9185 + }, + { + "start": 4287.36, + "end": 4289.52, + "probability": 0.9614 + }, + { + "start": 4291.2, + "end": 4292.06, + "probability": 0.0051 + }, + { + "start": 4303.88, + "end": 4305.18, + "probability": 0.5324 + }, + { + "start": 4306.16, + "end": 4312.04, + "probability": 0.8714 + }, + { + "start": 4313.66, + "end": 4315.2, + "probability": 0.8773 + }, + { + "start": 4315.9, + "end": 4322.12, + "probability": 0.99 + }, + { + "start": 4330.39, + "end": 4331.96, + "probability": 0.0089 + }, + { + "start": 4333.67, + "end": 4337.44, + "probability": 0.4996 + }, + { + "start": 4337.56, + "end": 4342.86, + "probability": 0.9321 + }, + { + "start": 4344.24, + "end": 4346.92, + "probability": 0.886 + }, + { + "start": 4347.46, + "end": 4350.98, + "probability": 0.9674 + }, + { + "start": 4351.8, + "end": 4358.32, + "probability": 0.9985 + }, + { + "start": 4359.0, + "end": 4360.0, + "probability": 0.1586 + }, + { + "start": 4361.12, + "end": 4363.72, + "probability": 0.9902 + }, + { + "start": 4364.48, + "end": 4367.3, + "probability": 0.9649 + }, + { + "start": 4368.32, + "end": 4370.66, + "probability": 0.9966 + }, + { + "start": 4371.26, + "end": 4373.54, + "probability": 0.9995 + }, + { + "start": 4373.84, + "end": 4376.32, + "probability": 0.9172 + }, + { + "start": 4377.06, + "end": 4378.54, + "probability": 0.9388 + }, + { + "start": 4379.2, + "end": 4383.26, + "probability": 0.9551 + }, + { + "start": 4383.8, + "end": 4386.88, + "probability": 0.9966 + }, + { + "start": 4387.56, + "end": 4390.44, + "probability": 0.9833 + }, + { + "start": 4391.18, + "end": 4394.26, + "probability": 0.9782 + }, + { + "start": 4395.36, + "end": 4398.22, + "probability": 0.9066 + }, + { + "start": 4398.22, + "end": 4402.04, + "probability": 0.9952 + }, + { + "start": 4402.16, + "end": 4402.68, + "probability": 0.9234 + }, + { + "start": 4402.82, + "end": 4403.3, + "probability": 0.8063 + }, + { + "start": 4403.9, + "end": 4410.3, + "probability": 0.9923 + }, + { + "start": 4411.4, + "end": 4414.42, + "probability": 0.9878 + }, + { + "start": 4415.52, + "end": 4420.32, + "probability": 0.9808 + }, + { + "start": 4421.08, + "end": 4422.58, + "probability": 0.9883 + }, + { + "start": 4422.76, + "end": 4427.72, + "probability": 0.9174 + }, + { + "start": 4428.52, + "end": 4432.36, + "probability": 0.9953 + }, + { + "start": 4432.52, + "end": 4433.08, + "probability": 0.8362 + }, + { + "start": 4433.22, + "end": 4433.54, + "probability": 0.7314 + }, + { + "start": 4434.1, + "end": 4437.64, + "probability": 0.9966 + }, + { + "start": 4438.54, + "end": 4443.12, + "probability": 0.9844 + }, + { + "start": 4443.26, + "end": 4445.2, + "probability": 0.9282 + }, + { + "start": 4445.86, + "end": 4447.66, + "probability": 0.9915 + }, + { + "start": 4448.18, + "end": 4449.88, + "probability": 0.9927 + }, + { + "start": 4450.54, + "end": 4451.92, + "probability": 0.9961 + }, + { + "start": 4452.48, + "end": 4458.0, + "probability": 0.987 + }, + { + "start": 4459.3, + "end": 4464.66, + "probability": 0.991 + }, + { + "start": 4464.66, + "end": 4470.46, + "probability": 0.9991 + }, + { + "start": 4471.12, + "end": 4473.8, + "probability": 0.93 + }, + { + "start": 4473.82, + "end": 4475.28, + "probability": 0.9802 + }, + { + "start": 4475.5, + "end": 4475.8, + "probability": 0.8315 + }, + { + "start": 4475.96, + "end": 4476.48, + "probability": 0.9906 + }, + { + "start": 4476.58, + "end": 4477.0, + "probability": 0.9928 + }, + { + "start": 4477.12, + "end": 4478.28, + "probability": 0.9688 + }, + { + "start": 4478.92, + "end": 4481.3, + "probability": 0.9886 + }, + { + "start": 4481.48, + "end": 4482.58, + "probability": 0.9447 + }, + { + "start": 4483.24, + "end": 4487.4, + "probability": 0.9604 + }, + { + "start": 4487.4, + "end": 4491.62, + "probability": 0.9844 + }, + { + "start": 4493.46, + "end": 4500.58, + "probability": 0.9969 + }, + { + "start": 4500.76, + "end": 4501.72, + "probability": 0.9463 + }, + { + "start": 4501.9, + "end": 4503.18, + "probability": 0.9297 + }, + { + "start": 4503.7, + "end": 4509.46, + "probability": 0.998 + }, + { + "start": 4510.4, + "end": 4512.16, + "probability": 0.9869 + }, + { + "start": 4512.68, + "end": 4513.98, + "probability": 0.9086 + }, + { + "start": 4514.14, + "end": 4515.58, + "probability": 0.6414 + }, + { + "start": 4515.64, + "end": 4518.96, + "probability": 0.9676 + }, + { + "start": 4523.12, + "end": 4523.93, + "probability": 0.8772 + }, + { + "start": 4524.22, + "end": 4530.46, + "probability": 0.9855 + }, + { + "start": 4530.68, + "end": 4531.04, + "probability": 0.4494 + }, + { + "start": 4531.1, + "end": 4531.7, + "probability": 0.9288 + }, + { + "start": 4532.32, + "end": 4534.44, + "probability": 0.9978 + }, + { + "start": 4535.16, + "end": 4537.18, + "probability": 0.6859 + }, + { + "start": 4537.36, + "end": 4538.16, + "probability": 0.8491 + }, + { + "start": 4538.28, + "end": 4540.68, + "probability": 0.9907 + }, + { + "start": 4541.3, + "end": 4543.98, + "probability": 0.9358 + }, + { + "start": 4544.08, + "end": 4546.38, + "probability": 0.9728 + }, + { + "start": 4546.48, + "end": 4547.8, + "probability": 0.7954 + }, + { + "start": 4548.72, + "end": 4550.22, + "probability": 0.6379 + }, + { + "start": 4550.92, + "end": 4554.66, + "probability": 0.888 + }, + { + "start": 4554.93, + "end": 4559.36, + "probability": 0.7761 + }, + { + "start": 4561.4, + "end": 4563.42, + "probability": 0.6627 + }, + { + "start": 4564.24, + "end": 4568.32, + "probability": 0.946 + }, + { + "start": 4568.94, + "end": 4572.56, + "probability": 0.9952 + }, + { + "start": 4573.08, + "end": 4577.62, + "probability": 0.8169 + }, + { + "start": 4577.84, + "end": 4578.32, + "probability": 0.7775 + }, + { + "start": 4580.06, + "end": 4583.32, + "probability": 0.7499 + }, + { + "start": 4583.32, + "end": 4586.18, + "probability": 0.7391 + }, + { + "start": 4587.58, + "end": 4589.62, + "probability": 0.6274 + }, + { + "start": 4590.48, + "end": 4591.52, + "probability": 0.666 + }, + { + "start": 4592.84, + "end": 4593.44, + "probability": 0.6144 + }, + { + "start": 4595.74, + "end": 4598.66, + "probability": 0.9932 + }, + { + "start": 4599.76, + "end": 4601.4, + "probability": 0.8861 + }, + { + "start": 4602.76, + "end": 4604.38, + "probability": 0.9988 + }, + { + "start": 4604.84, + "end": 4605.32, + "probability": 0.7 + }, + { + "start": 4605.46, + "end": 4605.66, + "probability": 0.9086 + }, + { + "start": 4629.74, + "end": 4633.22, + "probability": 0.7114 + }, + { + "start": 4639.48, + "end": 4643.74, + "probability": 0.8608 + }, + { + "start": 4645.54, + "end": 4650.4, + "probability": 0.9909 + }, + { + "start": 4650.52, + "end": 4651.34, + "probability": 0.6058 + }, + { + "start": 4652.38, + "end": 4655.78, + "probability": 0.8068 + }, + { + "start": 4658.14, + "end": 4660.9, + "probability": 0.8999 + }, + { + "start": 4661.84, + "end": 4662.64, + "probability": 0.5868 + }, + { + "start": 4665.54, + "end": 4670.42, + "probability": 0.9928 + }, + { + "start": 4670.42, + "end": 4675.38, + "probability": 0.9985 + }, + { + "start": 4675.46, + "end": 4676.38, + "probability": 0.7408 + }, + { + "start": 4679.08, + "end": 4680.3, + "probability": 0.8898 + }, + { + "start": 4680.44, + "end": 4684.04, + "probability": 0.9973 + }, + { + "start": 4685.48, + "end": 4686.64, + "probability": 0.9819 + }, + { + "start": 4688.56, + "end": 4689.15, + "probability": 0.9521 + }, + { + "start": 4690.22, + "end": 4690.76, + "probability": 0.9884 + }, + { + "start": 4692.04, + "end": 4692.48, + "probability": 0.9573 + }, + { + "start": 4694.28, + "end": 4695.86, + "probability": 0.9595 + }, + { + "start": 4696.82, + "end": 4697.45, + "probability": 0.9277 + }, + { + "start": 4700.3, + "end": 4703.6, + "probability": 0.9956 + }, + { + "start": 4706.5, + "end": 4708.32, + "probability": 0.8887 + }, + { + "start": 4709.1, + "end": 4711.14, + "probability": 0.9299 + }, + { + "start": 4711.74, + "end": 4712.58, + "probability": 0.7921 + }, + { + "start": 4713.64, + "end": 4714.01, + "probability": 0.7956 + }, + { + "start": 4715.96, + "end": 4721.62, + "probability": 0.9917 + }, + { + "start": 4721.62, + "end": 4725.8, + "probability": 0.9717 + }, + { + "start": 4727.56, + "end": 4728.65, + "probability": 0.747 + }, + { + "start": 4729.72, + "end": 4731.94, + "probability": 0.9 + }, + { + "start": 4732.62, + "end": 4733.34, + "probability": 0.7307 + }, + { + "start": 4735.54, + "end": 4736.06, + "probability": 0.9695 + }, + { + "start": 4738.04, + "end": 4740.66, + "probability": 0.3278 + }, + { + "start": 4740.9, + "end": 4744.36, + "probability": 0.8428 + }, + { + "start": 4745.52, + "end": 4746.06, + "probability": 0.8957 + }, + { + "start": 4747.74, + "end": 4748.42, + "probability": 0.8334 + }, + { + "start": 4749.56, + "end": 4750.36, + "probability": 0.9315 + }, + { + "start": 4751.24, + "end": 4752.06, + "probability": 0.9688 + }, + { + "start": 4752.78, + "end": 4757.66, + "probability": 0.9903 + }, + { + "start": 4758.21, + "end": 4761.14, + "probability": 0.9913 + }, + { + "start": 4762.28, + "end": 4763.78, + "probability": 0.9428 + }, + { + "start": 4765.82, + "end": 4769.0, + "probability": 0.911 + }, + { + "start": 4769.26, + "end": 4770.32, + "probability": 0.9522 + }, + { + "start": 4770.38, + "end": 4771.78, + "probability": 0.9468 + }, + { + "start": 4772.44, + "end": 4773.66, + "probability": 0.9338 + }, + { + "start": 4774.52, + "end": 4775.18, + "probability": 0.5342 + }, + { + "start": 4775.24, + "end": 4775.66, + "probability": 0.9556 + }, + { + "start": 4776.8, + "end": 4777.43, + "probability": 0.8247 + }, + { + "start": 4781.98, + "end": 4783.74, + "probability": 0.9995 + }, + { + "start": 4786.6, + "end": 4789.0, + "probability": 0.9961 + }, + { + "start": 4789.02, + "end": 4793.86, + "probability": 0.9979 + }, + { + "start": 4794.48, + "end": 4795.53, + "probability": 0.8622 + }, + { + "start": 4800.5, + "end": 4801.44, + "probability": 0.9404 + }, + { + "start": 4803.6, + "end": 4807.68, + "probability": 0.9436 + }, + { + "start": 4808.34, + "end": 4811.59, + "probability": 0.9322 + }, + { + "start": 4813.72, + "end": 4815.4, + "probability": 0.966 + }, + { + "start": 4815.7, + "end": 4818.16, + "probability": 0.9443 + }, + { + "start": 4818.18, + "end": 4823.82, + "probability": 0.9994 + }, + { + "start": 4823.82, + "end": 4827.64, + "probability": 0.9525 + }, + { + "start": 4830.24, + "end": 4832.54, + "probability": 0.9097 + }, + { + "start": 4832.96, + "end": 4833.68, + "probability": 0.8391 + }, + { + "start": 4840.4, + "end": 4842.94, + "probability": 0.9922 + }, + { + "start": 4843.34, + "end": 4846.03, + "probability": 0.9874 + }, + { + "start": 4847.62, + "end": 4850.82, + "probability": 0.9932 + }, + { + "start": 4855.0, + "end": 4859.44, + "probability": 0.7471 + }, + { + "start": 4862.47, + "end": 4865.38, + "probability": 0.9365 + }, + { + "start": 4866.08, + "end": 4873.02, + "probability": 0.935 + }, + { + "start": 4874.02, + "end": 4877.74, + "probability": 0.974 + }, + { + "start": 4879.34, + "end": 4880.38, + "probability": 0.6572 + }, + { + "start": 4881.86, + "end": 4883.5, + "probability": 0.9854 + }, + { + "start": 4884.94, + "end": 4886.0, + "probability": 0.7555 + }, + { + "start": 4891.56, + "end": 4892.74, + "probability": 0.8396 + }, + { + "start": 4893.1, + "end": 4898.5, + "probability": 0.9425 + }, + { + "start": 4900.52, + "end": 4902.94, + "probability": 0.8369 + }, + { + "start": 4903.86, + "end": 4905.34, + "probability": 0.5135 + }, + { + "start": 4906.78, + "end": 4909.34, + "probability": 0.9255 + }, + { + "start": 4911.12, + "end": 4915.86, + "probability": 0.9961 + }, + { + "start": 4915.92, + "end": 4917.9, + "probability": 0.9862 + }, + { + "start": 4918.5, + "end": 4921.69, + "probability": 0.9971 + }, + { + "start": 4922.06, + "end": 4925.32, + "probability": 0.998 + }, + { + "start": 4926.08, + "end": 4929.78, + "probability": 0.9971 + }, + { + "start": 4931.08, + "end": 4936.84, + "probability": 0.9893 + }, + { + "start": 4937.56, + "end": 4940.82, + "probability": 0.9947 + }, + { + "start": 4941.04, + "end": 4943.48, + "probability": 0.9983 + }, + { + "start": 4944.32, + "end": 4948.08, + "probability": 0.9974 + }, + { + "start": 4948.08, + "end": 4952.38, + "probability": 0.968 + }, + { + "start": 4952.68, + "end": 4953.8, + "probability": 0.9061 + }, + { + "start": 4954.48, + "end": 4958.05, + "probability": 0.9717 + }, + { + "start": 4959.28, + "end": 4965.1, + "probability": 0.9595 + }, + { + "start": 4965.9, + "end": 4968.62, + "probability": 0.9655 + }, + { + "start": 4969.32, + "end": 4971.34, + "probability": 0.8721 + }, + { + "start": 4973.04, + "end": 4975.92, + "probability": 0.9986 + }, + { + "start": 4976.92, + "end": 4983.08, + "probability": 0.9979 + }, + { + "start": 4983.74, + "end": 4985.96, + "probability": 0.9659 + }, + { + "start": 4988.0, + "end": 4990.42, + "probability": 0.9938 + }, + { + "start": 4991.2, + "end": 4992.98, + "probability": 0.9862 + }, + { + "start": 4993.74, + "end": 4998.2, + "probability": 0.998 + }, + { + "start": 4998.62, + "end": 5001.8, + "probability": 0.9919 + }, + { + "start": 5001.96, + "end": 5005.72, + "probability": 0.994 + }, + { + "start": 5006.6, + "end": 5009.56, + "probability": 0.9956 + }, + { + "start": 5009.7, + "end": 5011.82, + "probability": 0.9891 + }, + { + "start": 5012.32, + "end": 5013.24, + "probability": 0.9862 + }, + { + "start": 5013.3, + "end": 5014.28, + "probability": 0.9755 + }, + { + "start": 5015.56, + "end": 5019.46, + "probability": 0.8941 + }, + { + "start": 5020.04, + "end": 5023.06, + "probability": 0.9333 + }, + { + "start": 5023.14, + "end": 5023.5, + "probability": 0.5874 + }, + { + "start": 5024.2, + "end": 5026.04, + "probability": 0.9937 + }, + { + "start": 5026.66, + "end": 5030.9, + "probability": 0.9511 + }, + { + "start": 5031.06, + "end": 5032.1, + "probability": 0.8148 + }, + { + "start": 5032.44, + "end": 5032.78, + "probability": 0.8366 + }, + { + "start": 5032.88, + "end": 5034.4, + "probability": 0.693 + }, + { + "start": 5034.9, + "end": 5036.72, + "probability": 0.8679 + }, + { + "start": 5037.74, + "end": 5042.94, + "probability": 0.9961 + }, + { + "start": 5043.58, + "end": 5044.46, + "probability": 0.4926 + }, + { + "start": 5045.04, + "end": 5050.72, + "probability": 0.9791 + }, + { + "start": 5051.5, + "end": 5054.62, + "probability": 0.9911 + }, + { + "start": 5055.68, + "end": 5058.32, + "probability": 0.9238 + }, + { + "start": 5059.02, + "end": 5060.2, + "probability": 0.8918 + }, + { + "start": 5060.78, + "end": 5062.66, + "probability": 0.9785 + }, + { + "start": 5062.86, + "end": 5064.54, + "probability": 0.9695 + }, + { + "start": 5064.74, + "end": 5067.84, + "probability": 0.8545 + }, + { + "start": 5068.44, + "end": 5069.62, + "probability": 0.9948 + }, + { + "start": 5070.08, + "end": 5071.18, + "probability": 0.9237 + }, + { + "start": 5071.28, + "end": 5072.58, + "probability": 0.9502 + }, + { + "start": 5072.66, + "end": 5073.56, + "probability": 0.7764 + }, + { + "start": 5075.14, + "end": 5077.18, + "probability": 0.9641 + }, + { + "start": 5077.3, + "end": 5079.02, + "probability": 0.9015 + }, + { + "start": 5079.12, + "end": 5083.62, + "probability": 0.9697 + }, + { + "start": 5085.8, + "end": 5087.22, + "probability": 0.8225 + }, + { + "start": 5088.5, + "end": 5092.28, + "probability": 0.8425 + }, + { + "start": 5093.72, + "end": 5099.06, + "probability": 0.6711 + }, + { + "start": 5099.56, + "end": 5099.92, + "probability": 0.9251 + }, + { + "start": 5100.72, + "end": 5105.9, + "probability": 0.994 + }, + { + "start": 5107.5, + "end": 5110.86, + "probability": 0.9965 + }, + { + "start": 5111.66, + "end": 5114.98, + "probability": 0.9935 + }, + { + "start": 5116.28, + "end": 5118.16, + "probability": 0.9657 + }, + { + "start": 5118.8, + "end": 5121.56, + "probability": 0.9792 + }, + { + "start": 5121.66, + "end": 5126.06, + "probability": 0.9474 + }, + { + "start": 5126.26, + "end": 5128.06, + "probability": 0.7977 + }, + { + "start": 5128.68, + "end": 5131.82, + "probability": 0.9685 + }, + { + "start": 5132.38, + "end": 5135.4, + "probability": 0.9943 + }, + { + "start": 5135.9, + "end": 5139.78, + "probability": 0.993 + }, + { + "start": 5140.0, + "end": 5140.98, + "probability": 0.8962 + }, + { + "start": 5141.3, + "end": 5143.02, + "probability": 0.9902 + }, + { + "start": 5143.14, + "end": 5143.72, + "probability": 0.8876 + }, + { + "start": 5145.42, + "end": 5146.28, + "probability": 0.8151 + }, + { + "start": 5146.64, + "end": 5148.72, + "probability": 0.9116 + }, + { + "start": 5149.1, + "end": 5150.86, + "probability": 0.9411 + }, + { + "start": 5152.6, + "end": 5154.88, + "probability": 0.7036 + }, + { + "start": 5155.58, + "end": 5157.1, + "probability": 0.8439 + }, + { + "start": 5158.02, + "end": 5159.92, + "probability": 0.978 + }, + { + "start": 5160.66, + "end": 5161.98, + "probability": 0.9624 + }, + { + "start": 5162.56, + "end": 5164.46, + "probability": 0.8227 + }, + { + "start": 5165.6, + "end": 5168.76, + "probability": 0.9666 + }, + { + "start": 5169.18, + "end": 5171.76, + "probability": 0.9767 + }, + { + "start": 5185.78, + "end": 5188.4, + "probability": 0.7164 + }, + { + "start": 5189.6, + "end": 5190.8, + "probability": 0.9022 + }, + { + "start": 5192.5, + "end": 5198.58, + "probability": 0.9848 + }, + { + "start": 5201.1, + "end": 5203.32, + "probability": 0.9898 + }, + { + "start": 5205.18, + "end": 5207.6, + "probability": 0.8024 + }, + { + "start": 5208.26, + "end": 5209.3, + "probability": 0.996 + }, + { + "start": 5210.88, + "end": 5211.78, + "probability": 0.9948 + }, + { + "start": 5212.92, + "end": 5214.62, + "probability": 0.9632 + }, + { + "start": 5214.72, + "end": 5215.5, + "probability": 0.7787 + }, + { + "start": 5215.56, + "end": 5220.2, + "probability": 0.9945 + }, + { + "start": 5221.3, + "end": 5223.06, + "probability": 0.9995 + }, + { + "start": 5224.14, + "end": 5226.08, + "probability": 0.9094 + }, + { + "start": 5227.08, + "end": 5229.0, + "probability": 0.9781 + }, + { + "start": 5231.36, + "end": 5235.76, + "probability": 0.9995 + }, + { + "start": 5237.58, + "end": 5240.84, + "probability": 0.9968 + }, + { + "start": 5243.02, + "end": 5246.08, + "probability": 0.9955 + }, + { + "start": 5246.36, + "end": 5249.68, + "probability": 0.974 + }, + { + "start": 5250.46, + "end": 5252.85, + "probability": 0.6668 + }, + { + "start": 5254.58, + "end": 5257.4, + "probability": 0.9759 + }, + { + "start": 5258.76, + "end": 5259.94, + "probability": 0.9058 + }, + { + "start": 5260.52, + "end": 5261.72, + "probability": 0.7573 + }, + { + "start": 5262.16, + "end": 5264.32, + "probability": 0.9503 + }, + { + "start": 5265.36, + "end": 5268.16, + "probability": 0.9928 + }, + { + "start": 5268.9, + "end": 5269.76, + "probability": 0.4779 + }, + { + "start": 5270.9, + "end": 5273.01, + "probability": 0.9851 + }, + { + "start": 5274.34, + "end": 5279.56, + "probability": 0.9934 + }, + { + "start": 5280.34, + "end": 5281.1, + "probability": 0.5843 + }, + { + "start": 5281.26, + "end": 5282.04, + "probability": 0.9118 + }, + { + "start": 5282.52, + "end": 5283.8, + "probability": 0.9081 + }, + { + "start": 5284.22, + "end": 5287.92, + "probability": 0.9472 + }, + { + "start": 5288.96, + "end": 5292.38, + "probability": 0.7802 + }, + { + "start": 5294.02, + "end": 5296.34, + "probability": 0.8161 + }, + { + "start": 5296.96, + "end": 5298.12, + "probability": 0.9959 + }, + { + "start": 5299.1, + "end": 5301.86, + "probability": 0.7222 + }, + { + "start": 5302.8, + "end": 5304.0, + "probability": 0.4546 + }, + { + "start": 5305.1, + "end": 5306.52, + "probability": 0.6703 + }, + { + "start": 5307.22, + "end": 5311.54, + "probability": 0.9827 + }, + { + "start": 5312.08, + "end": 5315.56, + "probability": 0.9549 + }, + { + "start": 5316.12, + "end": 5316.86, + "probability": 0.8901 + }, + { + "start": 5317.86, + "end": 5320.12, + "probability": 0.742 + }, + { + "start": 5320.86, + "end": 5323.08, + "probability": 0.7654 + }, + { + "start": 5325.68, + "end": 5327.66, + "probability": 0.9722 + }, + { + "start": 5327.82, + "end": 5328.98, + "probability": 0.935 + }, + { + "start": 5329.02, + "end": 5330.66, + "probability": 0.9947 + }, + { + "start": 5332.9, + "end": 5334.58, + "probability": 0.9924 + }, + { + "start": 5336.6, + "end": 5338.72, + "probability": 0.9778 + }, + { + "start": 5339.54, + "end": 5341.5, + "probability": 0.9963 + }, + { + "start": 5343.5, + "end": 5346.56, + "probability": 0.9318 + }, + { + "start": 5347.92, + "end": 5351.86, + "probability": 0.9896 + }, + { + "start": 5353.0, + "end": 5354.64, + "probability": 0.9901 + }, + { + "start": 5355.54, + "end": 5356.16, + "probability": 0.9877 + }, + { + "start": 5356.82, + "end": 5357.5, + "probability": 0.9307 + }, + { + "start": 5357.98, + "end": 5362.24, + "probability": 0.9946 + }, + { + "start": 5362.32, + "end": 5363.02, + "probability": 0.8205 + }, + { + "start": 5363.1, + "end": 5364.96, + "probability": 0.8698 + }, + { + "start": 5365.72, + "end": 5367.46, + "probability": 0.8093 + }, + { + "start": 5368.68, + "end": 5372.0, + "probability": 0.9904 + }, + { + "start": 5372.04, + "end": 5375.82, + "probability": 0.9795 + }, + { + "start": 5375.9, + "end": 5376.39, + "probability": 0.6426 + }, + { + "start": 5377.72, + "end": 5382.24, + "probability": 0.9946 + }, + { + "start": 5382.98, + "end": 5385.58, + "probability": 0.9832 + }, + { + "start": 5387.08, + "end": 5389.22, + "probability": 0.726 + }, + { + "start": 5390.1, + "end": 5394.26, + "probability": 0.9924 + }, + { + "start": 5394.26, + "end": 5398.02, + "probability": 0.9974 + }, + { + "start": 5399.48, + "end": 5403.58, + "probability": 0.9953 + }, + { + "start": 5404.82, + "end": 5408.58, + "probability": 0.7657 + }, + { + "start": 5409.1, + "end": 5411.54, + "probability": 0.9939 + }, + { + "start": 5412.48, + "end": 5414.72, + "probability": 0.9895 + }, + { + "start": 5415.44, + "end": 5419.06, + "probability": 0.9961 + }, + { + "start": 5420.78, + "end": 5421.5, + "probability": 0.9103 + }, + { + "start": 5422.72, + "end": 5428.42, + "probability": 0.9634 + }, + { + "start": 5428.42, + "end": 5432.52, + "probability": 0.999 + }, + { + "start": 5435.26, + "end": 5436.76, + "probability": 0.7708 + }, + { + "start": 5437.36, + "end": 5441.44, + "probability": 0.9854 + }, + { + "start": 5441.92, + "end": 5443.8, + "probability": 0.998 + }, + { + "start": 5444.68, + "end": 5446.38, + "probability": 0.702 + }, + { + "start": 5447.7, + "end": 5448.78, + "probability": 0.9918 + }, + { + "start": 5450.44, + "end": 5452.28, + "probability": 0.9976 + }, + { + "start": 5453.1, + "end": 5455.68, + "probability": 0.9971 + }, + { + "start": 5457.04, + "end": 5461.66, + "probability": 0.9986 + }, + { + "start": 5462.56, + "end": 5463.02, + "probability": 0.7408 + }, + { + "start": 5463.6, + "end": 5465.96, + "probability": 0.6682 + }, + { + "start": 5466.66, + "end": 5468.46, + "probability": 0.976 + }, + { + "start": 5469.3, + "end": 5472.36, + "probability": 0.9978 + }, + { + "start": 5473.42, + "end": 5479.98, + "probability": 0.9927 + }, + { + "start": 5481.48, + "end": 5484.22, + "probability": 0.9813 + }, + { + "start": 5484.8, + "end": 5487.94, + "probability": 0.7465 + }, + { + "start": 5488.96, + "end": 5489.5, + "probability": 0.947 + }, + { + "start": 5490.18, + "end": 5490.84, + "probability": 0.8271 + }, + { + "start": 5491.02, + "end": 5491.9, + "probability": 0.7606 + }, + { + "start": 5492.02, + "end": 5492.86, + "probability": 0.7047 + }, + { + "start": 5492.96, + "end": 5494.16, + "probability": 0.8216 + }, + { + "start": 5495.36, + "end": 5495.74, + "probability": 0.8448 + }, + { + "start": 5497.16, + "end": 5497.68, + "probability": 0.5367 + }, + { + "start": 5498.34, + "end": 5499.36, + "probability": 0.9875 + }, + { + "start": 5500.0, + "end": 5502.06, + "probability": 0.9586 + }, + { + "start": 5502.72, + "end": 5503.64, + "probability": 0.93 + }, + { + "start": 5504.3, + "end": 5507.62, + "probability": 0.9909 + }, + { + "start": 5509.12, + "end": 5509.6, + "probability": 0.8523 + }, + { + "start": 5510.9, + "end": 5513.62, + "probability": 0.915 + }, + { + "start": 5513.68, + "end": 5515.72, + "probability": 0.7845 + }, + { + "start": 5515.84, + "end": 5517.56, + "probability": 0.9093 + }, + { + "start": 5518.46, + "end": 5519.34, + "probability": 0.8918 + }, + { + "start": 5520.46, + "end": 5523.24, + "probability": 0.7782 + }, + { + "start": 5524.32, + "end": 5526.68, + "probability": 0.8246 + }, + { + "start": 5527.24, + "end": 5529.9, + "probability": 0.5679 + }, + { + "start": 5530.34, + "end": 5536.82, + "probability": 0.7895 + }, + { + "start": 5536.96, + "end": 5537.42, + "probability": 0.1095 + }, + { + "start": 5538.92, + "end": 5539.36, + "probability": 0.6506 + }, + { + "start": 5539.42, + "end": 5539.7, + "probability": 0.2835 + }, + { + "start": 5539.72, + "end": 5540.74, + "probability": 0.9664 + }, + { + "start": 5541.1, + "end": 5541.46, + "probability": 0.7748 + }, + { + "start": 5541.48, + "end": 5542.2, + "probability": 0.9583 + }, + { + "start": 5542.54, + "end": 5542.86, + "probability": 0.4854 + }, + { + "start": 5542.86, + "end": 5543.56, + "probability": 0.8358 + }, + { + "start": 5543.86, + "end": 5545.6, + "probability": 0.4853 + }, + { + "start": 5545.96, + "end": 5546.72, + "probability": 0.7002 + }, + { + "start": 5546.82, + "end": 5549.92, + "probability": 0.819 + }, + { + "start": 5550.7, + "end": 5551.92, + "probability": 0.2396 + }, + { + "start": 5552.72, + "end": 5553.18, + "probability": 0.955 + }, + { + "start": 5554.64, + "end": 5555.94, + "probability": 0.7893 + }, + { + "start": 5557.02, + "end": 5558.0, + "probability": 0.7342 + }, + { + "start": 5558.48, + "end": 5559.98, + "probability": 0.3175 + }, + { + "start": 5560.02, + "end": 5560.44, + "probability": 0.9746 + }, + { + "start": 5583.44, + "end": 5584.94, + "probability": 0.7024 + }, + { + "start": 5586.3, + "end": 5589.84, + "probability": 0.9611 + }, + { + "start": 5591.1, + "end": 5593.68, + "probability": 0.8679 + }, + { + "start": 5595.14, + "end": 5598.62, + "probability": 0.9883 + }, + { + "start": 5599.26, + "end": 5603.74, + "probability": 0.9735 + }, + { + "start": 5604.3, + "end": 5606.62, + "probability": 0.9928 + }, + { + "start": 5607.76, + "end": 5609.26, + "probability": 0.9946 + }, + { + "start": 5612.78, + "end": 5613.5, + "probability": 0.8411 + }, + { + "start": 5614.84, + "end": 5617.3, + "probability": 0.8225 + }, + { + "start": 5617.74, + "end": 5618.48, + "probability": 0.9014 + }, + { + "start": 5618.76, + "end": 5621.12, + "probability": 0.9243 + }, + { + "start": 5621.36, + "end": 5622.98, + "probability": 0.6251 + }, + { + "start": 5624.38, + "end": 5630.18, + "probability": 0.6652 + }, + { + "start": 5630.6, + "end": 5632.3, + "probability": 0.9155 + }, + { + "start": 5632.38, + "end": 5632.8, + "probability": 0.888 + }, + { + "start": 5632.88, + "end": 5633.14, + "probability": 0.6429 + }, + { + "start": 5633.2, + "end": 5635.0, + "probability": 0.6989 + }, + { + "start": 5635.64, + "end": 5636.06, + "probability": 0.8022 + }, + { + "start": 5636.2, + "end": 5636.9, + "probability": 0.5966 + }, + { + "start": 5636.96, + "end": 5637.58, + "probability": 0.8698 + }, + { + "start": 5637.66, + "end": 5638.76, + "probability": 0.7823 + }, + { + "start": 5640.53, + "end": 5642.38, + "probability": 0.9182 + }, + { + "start": 5642.92, + "end": 5645.44, + "probability": 0.9813 + }, + { + "start": 5645.74, + "end": 5646.6, + "probability": 0.5805 + }, + { + "start": 5646.62, + "end": 5647.26, + "probability": 0.9712 + }, + { + "start": 5647.36, + "end": 5648.32, + "probability": 0.9814 + }, + { + "start": 5648.4, + "end": 5649.87, + "probability": 0.9766 + }, + { + "start": 5650.72, + "end": 5654.02, + "probability": 0.8811 + }, + { + "start": 5654.88, + "end": 5656.12, + "probability": 0.902 + }, + { + "start": 5656.24, + "end": 5656.38, + "probability": 0.7388 + }, + { + "start": 5656.46, + "end": 5657.56, + "probability": 0.8776 + }, + { + "start": 5657.66, + "end": 5658.3, + "probability": 0.795 + }, + { + "start": 5658.36, + "end": 5658.74, + "probability": 0.9271 + }, + { + "start": 5658.82, + "end": 5660.16, + "probability": 0.7017 + }, + { + "start": 5661.22, + "end": 5662.44, + "probability": 0.9092 + }, + { + "start": 5662.54, + "end": 5662.72, + "probability": 0.983 + }, + { + "start": 5662.82, + "end": 5663.93, + "probability": 0.7996 + }, + { + "start": 5664.2, + "end": 5666.53, + "probability": 0.725 + }, + { + "start": 5666.8, + "end": 5667.64, + "probability": 0.865 + }, + { + "start": 5668.04, + "end": 5669.14, + "probability": 0.8954 + }, + { + "start": 5669.44, + "end": 5669.96, + "probability": 0.9607 + }, + { + "start": 5670.48, + "end": 5671.12, + "probability": 0.8258 + }, + { + "start": 5671.3, + "end": 5672.64, + "probability": 0.8364 + }, + { + "start": 5672.68, + "end": 5674.8, + "probability": 0.7891 + }, + { + "start": 5675.86, + "end": 5676.96, + "probability": 0.7675 + }, + { + "start": 5677.82, + "end": 5682.76, + "probability": 0.9993 + }, + { + "start": 5683.4, + "end": 5685.26, + "probability": 0.9918 + }, + { + "start": 5685.42, + "end": 5686.2, + "probability": 0.9937 + }, + { + "start": 5686.34, + "end": 5687.12, + "probability": 0.9907 + }, + { + "start": 5687.92, + "end": 5688.88, + "probability": 0.9534 + }, + { + "start": 5688.94, + "end": 5694.4, + "probability": 0.9016 + }, + { + "start": 5695.26, + "end": 5699.82, + "probability": 0.9632 + }, + { + "start": 5700.64, + "end": 5703.38, + "probability": 0.6044 + }, + { + "start": 5705.4, + "end": 5707.86, + "probability": 0.8596 + }, + { + "start": 5708.26, + "end": 5709.4, + "probability": 0.4929 + }, + { + "start": 5709.52, + "end": 5710.56, + "probability": 0.5981 + }, + { + "start": 5710.78, + "end": 5712.28, + "probability": 0.9979 + }, + { + "start": 5712.96, + "end": 5714.12, + "probability": 0.9658 + }, + { + "start": 5714.18, + "end": 5714.38, + "probability": 0.9044 + }, + { + "start": 5714.52, + "end": 5718.1, + "probability": 0.9907 + }, + { + "start": 5718.82, + "end": 5719.64, + "probability": 0.976 + }, + { + "start": 5719.76, + "end": 5722.76, + "probability": 0.7176 + }, + { + "start": 5723.38, + "end": 5725.26, + "probability": 0.8617 + }, + { + "start": 5725.56, + "end": 5726.24, + "probability": 0.5858 + }, + { + "start": 5726.32, + "end": 5726.84, + "probability": 0.8284 + }, + { + "start": 5726.9, + "end": 5728.04, + "probability": 0.9106 + }, + { + "start": 5728.48, + "end": 5731.37, + "probability": 0.9312 + }, + { + "start": 5732.3, + "end": 5734.8, + "probability": 0.8956 + }, + { + "start": 5736.1, + "end": 5737.64, + "probability": 0.9863 + }, + { + "start": 5739.16, + "end": 5740.76, + "probability": 0.9302 + }, + { + "start": 5740.82, + "end": 5743.16, + "probability": 0.9737 + }, + { + "start": 5743.24, + "end": 5747.18, + "probability": 0.9525 + }, + { + "start": 5747.9, + "end": 5750.2, + "probability": 0.994 + }, + { + "start": 5751.1, + "end": 5752.24, + "probability": 0.7621 + }, + { + "start": 5752.34, + "end": 5753.62, + "probability": 0.9822 + }, + { + "start": 5753.68, + "end": 5754.66, + "probability": 0.9414 + }, + { + "start": 5754.7, + "end": 5757.0, + "probability": 0.9503 + }, + { + "start": 5757.62, + "end": 5759.16, + "probability": 0.7598 + }, + { + "start": 5760.04, + "end": 5761.7, + "probability": 0.9741 + }, + { + "start": 5762.14, + "end": 5765.04, + "probability": 0.8086 + }, + { + "start": 5765.2, + "end": 5766.28, + "probability": 0.6755 + }, + { + "start": 5766.9, + "end": 5767.56, + "probability": 0.9117 + }, + { + "start": 5768.63, + "end": 5772.54, + "probability": 0.9686 + }, + { + "start": 5772.96, + "end": 5779.44, + "probability": 0.9778 + }, + { + "start": 5780.84, + "end": 5782.82, + "probability": 0.939 + }, + { + "start": 5782.9, + "end": 5787.9, + "probability": 0.9878 + }, + { + "start": 5788.38, + "end": 5790.1, + "probability": 0.9369 + }, + { + "start": 5790.86, + "end": 5791.32, + "probability": 0.8264 + }, + { + "start": 5793.0, + "end": 5794.36, + "probability": 0.7968 + }, + { + "start": 5794.42, + "end": 5797.02, + "probability": 0.8681 + }, + { + "start": 5799.3, + "end": 5799.54, + "probability": 0.4783 + }, + { + "start": 5815.1, + "end": 5816.44, + "probability": 0.6051 + }, + { + "start": 5816.77, + "end": 5819.72, + "probability": 0.6516 + }, + { + "start": 5819.84, + "end": 5821.4, + "probability": 0.672 + }, + { + "start": 5821.82, + "end": 5822.14, + "probability": 0.6171 + }, + { + "start": 5822.2, + "end": 5829.66, + "probability": 0.9896 + }, + { + "start": 5830.12, + "end": 5831.52, + "probability": 0.9553 + }, + { + "start": 5832.68, + "end": 5833.6, + "probability": 0.9934 + }, + { + "start": 5833.7, + "end": 5834.64, + "probability": 0.8558 + }, + { + "start": 5834.94, + "end": 5837.4, + "probability": 0.988 + }, + { + "start": 5837.4, + "end": 5840.28, + "probability": 0.9966 + }, + { + "start": 5841.06, + "end": 5844.8, + "probability": 0.9724 + }, + { + "start": 5846.46, + "end": 5849.66, + "probability": 0.9948 + }, + { + "start": 5849.66, + "end": 5852.68, + "probability": 0.9948 + }, + { + "start": 5853.38, + "end": 5855.46, + "probability": 0.8904 + }, + { + "start": 5856.3, + "end": 5860.3, + "probability": 0.9362 + }, + { + "start": 5860.3, + "end": 5864.16, + "probability": 0.9886 + }, + { + "start": 5864.28, + "end": 5864.78, + "probability": 0.3754 + }, + { + "start": 5865.84, + "end": 5867.82, + "probability": 0.9495 + }, + { + "start": 5868.0, + "end": 5870.78, + "probability": 0.9909 + }, + { + "start": 5871.36, + "end": 5874.58, + "probability": 0.7906 + }, + { + "start": 5875.36, + "end": 5878.58, + "probability": 0.9902 + }, + { + "start": 5879.2, + "end": 5882.2, + "probability": 0.5145 + }, + { + "start": 5882.2, + "end": 5884.42, + "probability": 0.8201 + }, + { + "start": 5885.0, + "end": 5886.32, + "probability": 0.959 + }, + { + "start": 5888.18, + "end": 5890.1, + "probability": 0.9858 + }, + { + "start": 5890.12, + "end": 5893.07, + "probability": 0.9726 + }, + { + "start": 5894.12, + "end": 5895.86, + "probability": 0.9894 + }, + { + "start": 5895.96, + "end": 5899.54, + "probability": 0.885 + }, + { + "start": 5899.94, + "end": 5903.08, + "probability": 0.9954 + }, + { + "start": 5903.76, + "end": 5906.38, + "probability": 0.9984 + }, + { + "start": 5906.38, + "end": 5909.28, + "probability": 0.999 + }, + { + "start": 5910.0, + "end": 5910.38, + "probability": 0.7714 + }, + { + "start": 5910.48, + "end": 5912.42, + "probability": 0.9869 + }, + { + "start": 5912.58, + "end": 5914.12, + "probability": 0.9113 + }, + { + "start": 5914.16, + "end": 5916.24, + "probability": 0.9894 + }, + { + "start": 5918.4, + "end": 5920.02, + "probability": 0.979 + }, + { + "start": 5920.48, + "end": 5923.92, + "probability": 0.992 + }, + { + "start": 5924.04, + "end": 5924.48, + "probability": 0.599 + }, + { + "start": 5924.58, + "end": 5927.5, + "probability": 0.9924 + }, + { + "start": 5928.4, + "end": 5931.28, + "probability": 0.9939 + }, + { + "start": 5932.06, + "end": 5935.24, + "probability": 0.8863 + }, + { + "start": 5936.7, + "end": 5937.26, + "probability": 0.709 + }, + { + "start": 5937.36, + "end": 5940.2, + "probability": 0.8968 + }, + { + "start": 5940.36, + "end": 5940.58, + "probability": 0.65 + }, + { + "start": 5940.64, + "end": 5942.3, + "probability": 0.9078 + }, + { + "start": 5943.36, + "end": 5946.38, + "probability": 0.9256 + }, + { + "start": 5947.06, + "end": 5949.76, + "probability": 0.9976 + }, + { + "start": 5950.38, + "end": 5951.88, + "probability": 0.9986 + }, + { + "start": 5952.86, + "end": 5955.78, + "probability": 0.8988 + }, + { + "start": 5956.5, + "end": 5956.8, + "probability": 0.4889 + }, + { + "start": 5957.16, + "end": 5961.76, + "probability": 0.9925 + }, + { + "start": 5962.52, + "end": 5966.3, + "probability": 0.9917 + }, + { + "start": 5967.18, + "end": 5969.74, + "probability": 0.9915 + }, + { + "start": 5969.74, + "end": 5972.6, + "probability": 0.9915 + }, + { + "start": 5973.24, + "end": 5976.42, + "probability": 0.9958 + }, + { + "start": 5976.42, + "end": 5979.8, + "probability": 0.9971 + }, + { + "start": 5980.9, + "end": 5981.86, + "probability": 0.8418 + }, + { + "start": 5981.96, + "end": 5987.2, + "probability": 0.9874 + }, + { + "start": 5987.84, + "end": 5992.62, + "probability": 0.995 + }, + { + "start": 5992.8, + "end": 5993.14, + "probability": 0.9574 + }, + { + "start": 5994.02, + "end": 5994.9, + "probability": 0.7822 + }, + { + "start": 5994.96, + "end": 5995.94, + "probability": 0.668 + }, + { + "start": 5996.0, + "end": 6001.2, + "probability": 0.9492 + }, + { + "start": 6001.3, + "end": 6002.62, + "probability": 0.9977 + }, + { + "start": 6002.68, + "end": 6003.54, + "probability": 0.6802 + }, + { + "start": 6004.26, + "end": 6010.16, + "probability": 0.9263 + }, + { + "start": 6010.94, + "end": 6013.36, + "probability": 0.9981 + }, + { + "start": 6013.92, + "end": 6017.52, + "probability": 0.9427 + }, + { + "start": 6018.22, + "end": 6019.98, + "probability": 0.9346 + }, + { + "start": 6020.44, + "end": 6025.06, + "probability": 0.95 + }, + { + "start": 6025.82, + "end": 6027.12, + "probability": 0.7989 + }, + { + "start": 6027.68, + "end": 6029.72, + "probability": 0.8801 + }, + { + "start": 6029.84, + "end": 6031.16, + "probability": 0.927 + }, + { + "start": 6031.68, + "end": 6035.36, + "probability": 0.9814 + }, + { + "start": 6035.86, + "end": 6040.34, + "probability": 0.9909 + }, + { + "start": 6041.54, + "end": 6043.14, + "probability": 0.9858 + }, + { + "start": 6043.58, + "end": 6045.98, + "probability": 0.9935 + }, + { + "start": 6046.88, + "end": 6050.9, + "probability": 0.9976 + }, + { + "start": 6051.52, + "end": 6053.86, + "probability": 0.9247 + }, + { + "start": 6053.86, + "end": 6058.02, + "probability": 0.9992 + }, + { + "start": 6058.72, + "end": 6060.74, + "probability": 0.9961 + }, + { + "start": 6062.46, + "end": 6065.86, + "probability": 0.9613 + }, + { + "start": 6066.76, + "end": 6067.76, + "probability": 0.9086 + }, + { + "start": 6067.9, + "end": 6070.26, + "probability": 0.8806 + }, + { + "start": 6070.34, + "end": 6073.64, + "probability": 0.9945 + }, + { + "start": 6074.6, + "end": 6075.58, + "probability": 0.8227 + }, + { + "start": 6076.16, + "end": 6077.44, + "probability": 0.9244 + }, + { + "start": 6077.92, + "end": 6078.38, + "probability": 0.91 + }, + { + "start": 6079.0, + "end": 6081.2, + "probability": 0.7617 + }, + { + "start": 6081.86, + "end": 6083.58, + "probability": 0.5171 + }, + { + "start": 6083.6, + "end": 6084.16, + "probability": 0.8611 + }, + { + "start": 6094.88, + "end": 6097.52, + "probability": 0.7261 + }, + { + "start": 6099.46, + "end": 6100.5, + "probability": 0.7966 + }, + { + "start": 6101.68, + "end": 6104.6, + "probability": 0.8955 + }, + { + "start": 6105.54, + "end": 6111.2, + "probability": 0.9007 + }, + { + "start": 6111.86, + "end": 6112.28, + "probability": 0.6857 + }, + { + "start": 6113.78, + "end": 6118.94, + "probability": 0.9937 + }, + { + "start": 6119.2, + "end": 6120.16, + "probability": 0.9871 + }, + { + "start": 6120.98, + "end": 6121.7, + "probability": 0.7981 + }, + { + "start": 6122.96, + "end": 6126.12, + "probability": 0.8109 + }, + { + "start": 6127.78, + "end": 6130.74, + "probability": 0.951 + }, + { + "start": 6132.0, + "end": 6136.22, + "probability": 0.9966 + }, + { + "start": 6136.22, + "end": 6143.34, + "probability": 0.9734 + }, + { + "start": 6143.42, + "end": 6151.25, + "probability": 0.9972 + }, + { + "start": 6151.36, + "end": 6151.92, + "probability": 0.7889 + }, + { + "start": 6153.34, + "end": 6163.16, + "probability": 0.9863 + }, + { + "start": 6164.68, + "end": 6167.6, + "probability": 0.9247 + }, + { + "start": 6169.4, + "end": 6174.34, + "probability": 0.9798 + }, + { + "start": 6174.84, + "end": 6179.14, + "probability": 0.9959 + }, + { + "start": 6180.16, + "end": 6183.32, + "probability": 0.914 + }, + { + "start": 6184.5, + "end": 6187.51, + "probability": 0.9559 + }, + { + "start": 6188.34, + "end": 6189.4, + "probability": 0.9718 + }, + { + "start": 6189.84, + "end": 6192.56, + "probability": 0.982 + }, + { + "start": 6193.58, + "end": 6195.04, + "probability": 0.968 + }, + { + "start": 6196.24, + "end": 6199.0, + "probability": 0.8707 + }, + { + "start": 6199.08, + "end": 6203.65, + "probability": 0.9785 + }, + { + "start": 6205.76, + "end": 6208.05, + "probability": 0.7562 + }, + { + "start": 6209.04, + "end": 6211.2, + "probability": 0.993 + }, + { + "start": 6211.92, + "end": 6220.08, + "probability": 0.9635 + }, + { + "start": 6220.3, + "end": 6224.92, + "probability": 0.9764 + }, + { + "start": 6225.48, + "end": 6226.44, + "probability": 0.8984 + }, + { + "start": 6227.38, + "end": 6229.2, + "probability": 0.929 + }, + { + "start": 6230.28, + "end": 6231.72, + "probability": 0.8136 + }, + { + "start": 6232.48, + "end": 6233.66, + "probability": 0.6514 + }, + { + "start": 6234.6, + "end": 6236.32, + "probability": 0.7594 + }, + { + "start": 6237.76, + "end": 6244.36, + "probability": 0.8428 + }, + { + "start": 6244.88, + "end": 6248.1, + "probability": 0.949 + }, + { + "start": 6248.82, + "end": 6249.56, + "probability": 0.6081 + }, + { + "start": 6250.48, + "end": 6260.04, + "probability": 0.9951 + }, + { + "start": 6261.1, + "end": 6262.42, + "probability": 0.9459 + }, + { + "start": 6263.48, + "end": 6267.56, + "probability": 0.9915 + }, + { + "start": 6268.24, + "end": 6271.44, + "probability": 0.9752 + }, + { + "start": 6272.18, + "end": 6273.23, + "probability": 0.9099 + }, + { + "start": 6275.04, + "end": 6277.65, + "probability": 0.9921 + }, + { + "start": 6278.42, + "end": 6281.3, + "probability": 0.9977 + }, + { + "start": 6281.94, + "end": 6285.6, + "probability": 0.8989 + }, + { + "start": 6286.42, + "end": 6292.42, + "probability": 0.9962 + }, + { + "start": 6293.06, + "end": 6294.38, + "probability": 0.9002 + }, + { + "start": 6295.44, + "end": 6296.72, + "probability": 0.9629 + }, + { + "start": 6297.52, + "end": 6301.39, + "probability": 0.894 + }, + { + "start": 6302.14, + "end": 6305.82, + "probability": 0.98 + }, + { + "start": 6306.48, + "end": 6313.6, + "probability": 0.9742 + }, + { + "start": 6315.88, + "end": 6316.44, + "probability": 0.4171 + }, + { + "start": 6317.44, + "end": 6320.46, + "probability": 0.6355 + }, + { + "start": 6320.62, + "end": 6323.94, + "probability": 0.8437 + }, + { + "start": 6324.02, + "end": 6326.38, + "probability": 0.9963 + }, + { + "start": 6326.78, + "end": 6332.08, + "probability": 0.9883 + }, + { + "start": 6332.92, + "end": 6336.38, + "probability": 0.9094 + }, + { + "start": 6336.78, + "end": 6338.19, + "probability": 0.9974 + }, + { + "start": 6338.94, + "end": 6340.58, + "probability": 0.8524 + }, + { + "start": 6340.78, + "end": 6340.86, + "probability": 0.3519 + }, + { + "start": 6340.92, + "end": 6341.66, + "probability": 0.7632 + }, + { + "start": 6341.78, + "end": 6342.92, + "probability": 0.9684 + }, + { + "start": 6343.54, + "end": 6346.72, + "probability": 0.9928 + }, + { + "start": 6347.0, + "end": 6351.92, + "probability": 0.9709 + }, + { + "start": 6354.59, + "end": 6357.26, + "probability": 0.9474 + }, + { + "start": 6358.46, + "end": 6360.98, + "probability": 0.9505 + }, + { + "start": 6361.6, + "end": 6363.76, + "probability": 0.9875 + }, + { + "start": 6364.62, + "end": 6365.14, + "probability": 0.9112 + }, + { + "start": 6365.72, + "end": 6366.22, + "probability": 0.8625 + }, + { + "start": 6366.68, + "end": 6368.84, + "probability": 0.9595 + }, + { + "start": 6369.34, + "end": 6371.04, + "probability": 0.9266 + }, + { + "start": 6371.46, + "end": 6374.9, + "probability": 0.9956 + }, + { + "start": 6375.64, + "end": 6379.5, + "probability": 0.7738 + }, + { + "start": 6380.04, + "end": 6383.44, + "probability": 0.6355 + }, + { + "start": 6384.06, + "end": 6388.94, + "probability": 0.8935 + }, + { + "start": 6389.66, + "end": 6392.52, + "probability": 0.9876 + }, + { + "start": 6393.14, + "end": 6395.12, + "probability": 0.9861 + }, + { + "start": 6395.18, + "end": 6400.01, + "probability": 0.9976 + }, + { + "start": 6400.6, + "end": 6405.12, + "probability": 0.9703 + }, + { + "start": 6405.28, + "end": 6405.72, + "probability": 0.7441 + }, + { + "start": 6406.22, + "end": 6407.7, + "probability": 0.5283 + }, + { + "start": 6407.78, + "end": 6410.14, + "probability": 0.7714 + }, + { + "start": 6411.06, + "end": 6412.88, + "probability": 0.6565 + }, + { + "start": 6413.0, + "end": 6413.42, + "probability": 0.9479 + }, + { + "start": 6426.68, + "end": 6431.1, + "probability": 0.849 + }, + { + "start": 6431.74, + "end": 6433.04, + "probability": 0.8139 + }, + { + "start": 6434.92, + "end": 6436.64, + "probability": 0.946 + }, + { + "start": 6438.18, + "end": 6441.59, + "probability": 0.9775 + }, + { + "start": 6444.52, + "end": 6447.08, + "probability": 0.9111 + }, + { + "start": 6447.14, + "end": 6447.74, + "probability": 0.898 + }, + { + "start": 6449.28, + "end": 6450.98, + "probability": 0.9918 + }, + { + "start": 6451.88, + "end": 6454.7, + "probability": 0.7282 + }, + { + "start": 6456.26, + "end": 6457.22, + "probability": 0.8753 + }, + { + "start": 6458.04, + "end": 6459.36, + "probability": 0.9963 + }, + { + "start": 6460.26, + "end": 6463.04, + "probability": 0.7229 + }, + { + "start": 6463.5, + "end": 6464.12, + "probability": 0.7819 + }, + { + "start": 6464.22, + "end": 6465.04, + "probability": 0.9868 + }, + { + "start": 6467.84, + "end": 6469.78, + "probability": 0.9731 + }, + { + "start": 6469.96, + "end": 6473.22, + "probability": 0.9556 + }, + { + "start": 6475.56, + "end": 6479.04, + "probability": 0.9946 + }, + { + "start": 6480.54, + "end": 6481.22, + "probability": 0.9088 + }, + { + "start": 6483.02, + "end": 6485.97, + "probability": 0.9815 + }, + { + "start": 6488.02, + "end": 6492.88, + "probability": 0.9972 + }, + { + "start": 6494.0, + "end": 6495.04, + "probability": 0.7908 + }, + { + "start": 6496.94, + "end": 6500.0, + "probability": 0.9737 + }, + { + "start": 6500.64, + "end": 6501.46, + "probability": 0.4907 + }, + { + "start": 6503.0, + "end": 6504.9, + "probability": 0.7786 + }, + { + "start": 6505.04, + "end": 6505.4, + "probability": 0.5956 + }, + { + "start": 6507.66, + "end": 6509.76, + "probability": 0.9932 + }, + { + "start": 6510.36, + "end": 6514.52, + "probability": 0.9863 + }, + { + "start": 6515.3, + "end": 6515.92, + "probability": 0.588 + }, + { + "start": 6518.56, + "end": 6521.32, + "probability": 0.869 + }, + { + "start": 6523.92, + "end": 6524.44, + "probability": 0.6992 + }, + { + "start": 6524.52, + "end": 6531.5, + "probability": 0.9968 + }, + { + "start": 6533.08, + "end": 6535.58, + "probability": 0.9293 + }, + { + "start": 6537.08, + "end": 6538.1, + "probability": 0.9971 + }, + { + "start": 6539.18, + "end": 6542.1, + "probability": 0.9055 + }, + { + "start": 6542.94, + "end": 6544.96, + "probability": 0.8115 + }, + { + "start": 6548.92, + "end": 6549.64, + "probability": 0.9556 + }, + { + "start": 6549.66, + "end": 6550.06, + "probability": 0.8588 + }, + { + "start": 6550.16, + "end": 6555.2, + "probability": 0.9872 + }, + { + "start": 6556.52, + "end": 6557.84, + "probability": 0.989 + }, + { + "start": 6558.56, + "end": 6559.62, + "probability": 0.9934 + }, + { + "start": 6560.14, + "end": 6561.52, + "probability": 0.7981 + }, + { + "start": 6562.66, + "end": 6563.17, + "probability": 0.9208 + }, + { + "start": 6564.88, + "end": 6568.08, + "probability": 0.938 + }, + { + "start": 6570.46, + "end": 6572.64, + "probability": 0.9941 + }, + { + "start": 6573.56, + "end": 6574.3, + "probability": 0.9513 + }, + { + "start": 6577.6, + "end": 6580.8, + "probability": 0.989 + }, + { + "start": 6581.92, + "end": 6589.46, + "probability": 0.916 + }, + { + "start": 6590.26, + "end": 6590.88, + "probability": 0.7761 + }, + { + "start": 6592.06, + "end": 6595.52, + "probability": 0.9958 + }, + { + "start": 6597.4, + "end": 6600.44, + "probability": 0.8473 + }, + { + "start": 6602.1, + "end": 6602.76, + "probability": 0.5795 + }, + { + "start": 6603.94, + "end": 6605.09, + "probability": 0.6583 + }, + { + "start": 6607.46, + "end": 6608.12, + "probability": 0.8776 + }, + { + "start": 6608.76, + "end": 6611.62, + "probability": 0.6484 + }, + { + "start": 6611.78, + "end": 6614.24, + "probability": 0.9514 + }, + { + "start": 6616.36, + "end": 6619.04, + "probability": 0.9748 + }, + { + "start": 6621.42, + "end": 6623.77, + "probability": 0.8633 + }, + { + "start": 6625.54, + "end": 6629.54, + "probability": 0.968 + }, + { + "start": 6631.46, + "end": 6633.13, + "probability": 0.6474 + }, + { + "start": 6633.8, + "end": 6634.22, + "probability": 0.499 + }, + { + "start": 6636.04, + "end": 6640.18, + "probability": 0.9962 + }, + { + "start": 6640.22, + "end": 6641.56, + "probability": 0.4952 + }, + { + "start": 6643.38, + "end": 6647.92, + "probability": 0.8471 + }, + { + "start": 6648.64, + "end": 6650.3, + "probability": 0.9307 + }, + { + "start": 6650.84, + "end": 6655.76, + "probability": 0.9696 + }, + { + "start": 6657.14, + "end": 6659.76, + "probability": 0.9961 + }, + { + "start": 6661.0, + "end": 6663.86, + "probability": 0.868 + }, + { + "start": 6665.32, + "end": 6667.04, + "probability": 0.8063 + }, + { + "start": 6667.78, + "end": 6669.0, + "probability": 0.9239 + }, + { + "start": 6670.06, + "end": 6672.62, + "probability": 0.8686 + }, + { + "start": 6673.36, + "end": 6676.48, + "probability": 0.6167 + }, + { + "start": 6680.0, + "end": 6683.14, + "probability": 0.9902 + }, + { + "start": 6683.88, + "end": 6687.58, + "probability": 0.955 + }, + { + "start": 6688.22, + "end": 6688.8, + "probability": 0.6495 + }, + { + "start": 6688.86, + "end": 6691.56, + "probability": 0.7862 + }, + { + "start": 6691.6, + "end": 6692.88, + "probability": 0.8519 + }, + { + "start": 6693.74, + "end": 6694.7, + "probability": 0.6678 + }, + { + "start": 6695.84, + "end": 6698.18, + "probability": 0.9621 + }, + { + "start": 6698.24, + "end": 6699.02, + "probability": 0.7395 + }, + { + "start": 6699.82, + "end": 6700.88, + "probability": 0.9314 + }, + { + "start": 6701.98, + "end": 6702.63, + "probability": 0.9277 + }, + { + "start": 6702.86, + "end": 6703.9, + "probability": 0.9813 + }, + { + "start": 6704.54, + "end": 6705.12, + "probability": 0.7657 + }, + { + "start": 6706.88, + "end": 6708.44, + "probability": 0.9977 + }, + { + "start": 6710.0, + "end": 6712.72, + "probability": 0.6578 + }, + { + "start": 6712.9, + "end": 6713.88, + "probability": 0.9956 + }, + { + "start": 6713.98, + "end": 6714.86, + "probability": 0.5374 + }, + { + "start": 6715.7, + "end": 6718.0, + "probability": 0.9897 + }, + { + "start": 6718.88, + "end": 6722.78, + "probability": 0.9687 + }, + { + "start": 6723.36, + "end": 6724.6, + "probability": 0.9746 + }, + { + "start": 6725.9, + "end": 6727.22, + "probability": 0.9679 + }, + { + "start": 6728.62, + "end": 6730.04, + "probability": 0.9849 + }, + { + "start": 6730.7, + "end": 6733.44, + "probability": 0.9883 + }, + { + "start": 6734.36, + "end": 6739.26, + "probability": 0.8287 + }, + { + "start": 6740.04, + "end": 6741.91, + "probability": 0.998 + }, + { + "start": 6743.1, + "end": 6745.42, + "probability": 0.9945 + }, + { + "start": 6746.2, + "end": 6748.68, + "probability": 0.9883 + }, + { + "start": 6748.8, + "end": 6749.62, + "probability": 0.9644 + }, + { + "start": 6750.88, + "end": 6752.16, + "probability": 0.9924 + }, + { + "start": 6753.1, + "end": 6754.38, + "probability": 0.8843 + }, + { + "start": 6755.5, + "end": 6757.36, + "probability": 0.9805 + }, + { + "start": 6758.96, + "end": 6760.7, + "probability": 0.9892 + }, + { + "start": 6761.62, + "end": 6764.4, + "probability": 0.8864 + }, + { + "start": 6765.04, + "end": 6766.28, + "probability": 0.9229 + }, + { + "start": 6767.08, + "end": 6768.08, + "probability": 0.9968 + }, + { + "start": 6768.68, + "end": 6770.22, + "probability": 0.8042 + }, + { + "start": 6771.22, + "end": 6772.84, + "probability": 0.776 + }, + { + "start": 6773.76, + "end": 6775.58, + "probability": 0.9971 + }, + { + "start": 6775.72, + "end": 6776.86, + "probability": 0.6602 + }, + { + "start": 6778.36, + "end": 6779.32, + "probability": 0.7437 + }, + { + "start": 6780.22, + "end": 6781.58, + "probability": 0.9242 + }, + { + "start": 6782.3, + "end": 6783.08, + "probability": 0.9296 + }, + { + "start": 6784.14, + "end": 6787.72, + "probability": 0.9297 + }, + { + "start": 6788.58, + "end": 6791.36, + "probability": 0.8604 + }, + { + "start": 6791.44, + "end": 6792.53, + "probability": 0.9897 + }, + { + "start": 6793.2, + "end": 6794.64, + "probability": 0.8731 + }, + { + "start": 6795.26, + "end": 6797.2, + "probability": 0.9989 + }, + { + "start": 6798.18, + "end": 6798.84, + "probability": 0.8583 + }, + { + "start": 6799.38, + "end": 6801.12, + "probability": 0.9918 + }, + { + "start": 6801.2, + "end": 6803.58, + "probability": 0.8235 + }, + { + "start": 6804.08, + "end": 6804.86, + "probability": 0.8698 + }, + { + "start": 6805.56, + "end": 6806.6, + "probability": 0.9575 + }, + { + "start": 6806.92, + "end": 6808.68, + "probability": 0.8694 + }, + { + "start": 6808.86, + "end": 6809.54, + "probability": 0.87 + }, + { + "start": 6809.96, + "end": 6813.62, + "probability": 0.9053 + }, + { + "start": 6813.66, + "end": 6814.34, + "probability": 0.831 + }, + { + "start": 6815.0, + "end": 6816.62, + "probability": 0.8223 + }, + { + "start": 6817.38, + "end": 6819.16, + "probability": 0.8755 + }, + { + "start": 6819.68, + "end": 6822.64, + "probability": 0.6282 + }, + { + "start": 6822.66, + "end": 6824.7, + "probability": 0.6615 + }, + { + "start": 6825.58, + "end": 6827.3, + "probability": 0.9605 + }, + { + "start": 6827.44, + "end": 6828.62, + "probability": 0.9763 + }, + { + "start": 6829.06, + "end": 6831.36, + "probability": 0.994 + }, + { + "start": 6831.9, + "end": 6833.68, + "probability": 0.9701 + }, + { + "start": 6834.12, + "end": 6835.08, + "probability": 0.76 + }, + { + "start": 6835.5, + "end": 6839.24, + "probability": 0.9902 + }, + { + "start": 6839.38, + "end": 6840.44, + "probability": 0.8195 + }, + { + "start": 6840.76, + "end": 6841.84, + "probability": 0.9927 + }, + { + "start": 6842.38, + "end": 6845.72, + "probability": 0.8646 + }, + { + "start": 6845.72, + "end": 6845.96, + "probability": 0.915 + }, + { + "start": 6846.84, + "end": 6849.0, + "probability": 0.7776 + }, + { + "start": 6849.52, + "end": 6850.42, + "probability": 0.851 + }, + { + "start": 6851.82, + "end": 6853.98, + "probability": 0.9607 + }, + { + "start": 6855.4, + "end": 6856.38, + "probability": 0.835 + }, + { + "start": 6857.48, + "end": 6859.88, + "probability": 0.9464 + }, + { + "start": 6860.46, + "end": 6862.66, + "probability": 0.8561 + }, + { + "start": 6863.48, + "end": 6864.32, + "probability": 0.9577 + }, + { + "start": 6865.0, + "end": 6866.48, + "probability": 0.9315 + }, + { + "start": 6866.82, + "end": 6867.86, + "probability": 0.8394 + }, + { + "start": 6869.32, + "end": 6872.56, + "probability": 0.9761 + }, + { + "start": 6873.44, + "end": 6876.46, + "probability": 0.9255 + }, + { + "start": 6877.42, + "end": 6879.24, + "probability": 0.6283 + }, + { + "start": 6879.8, + "end": 6880.28, + "probability": 0.7988 + }, + { + "start": 6898.52, + "end": 6899.48, + "probability": 0.701 + }, + { + "start": 6900.22, + "end": 6901.92, + "probability": 0.9941 + }, + { + "start": 6903.3, + "end": 6904.7, + "probability": 0.558 + }, + { + "start": 6909.22, + "end": 6911.1, + "probability": 0.5086 + }, + { + "start": 6911.56, + "end": 6911.84, + "probability": 0.8691 + }, + { + "start": 6912.16, + "end": 6915.52, + "probability": 0.8906 + }, + { + "start": 6917.74, + "end": 6919.64, + "probability": 0.6665 + }, + { + "start": 6921.86, + "end": 6922.7, + "probability": 0.1978 + }, + { + "start": 6924.96, + "end": 6928.88, + "probability": 0.6498 + }, + { + "start": 6929.16, + "end": 6930.9, + "probability": 0.711 + }, + { + "start": 6931.16, + "end": 6931.48, + "probability": 0.8549 + }, + { + "start": 6933.24, + "end": 6934.22, + "probability": 0.5295 + }, + { + "start": 6935.88, + "end": 6936.8, + "probability": 0.8052 + }, + { + "start": 6939.06, + "end": 6939.5, + "probability": 0.8258 + }, + { + "start": 6939.62, + "end": 6942.66, + "probability": 0.9968 + }, + { + "start": 6942.66, + "end": 6945.48, + "probability": 0.9959 + }, + { + "start": 6946.68, + "end": 6950.26, + "probability": 0.9982 + }, + { + "start": 6951.42, + "end": 6959.62, + "probability": 0.9918 + }, + { + "start": 6960.18, + "end": 6960.64, + "probability": 0.5915 + }, + { + "start": 6963.3, + "end": 6966.46, + "probability": 0.9187 + }, + { + "start": 6966.46, + "end": 6969.5, + "probability": 0.7584 + }, + { + "start": 6969.72, + "end": 6971.34, + "probability": 0.9351 + }, + { + "start": 6973.0, + "end": 6976.26, + "probability": 0.9844 + }, + { + "start": 6977.18, + "end": 6981.5, + "probability": 0.9827 + }, + { + "start": 6981.5, + "end": 6984.0, + "probability": 0.995 + }, + { + "start": 6984.7, + "end": 6985.46, + "probability": 0.9597 + }, + { + "start": 6987.2, + "end": 6990.88, + "probability": 0.926 + }, + { + "start": 6992.14, + "end": 6996.54, + "probability": 0.981 + }, + { + "start": 6998.66, + "end": 7000.66, + "probability": 0.9429 + }, + { + "start": 7001.1, + "end": 7003.16, + "probability": 0.8313 + }, + { + "start": 7003.92, + "end": 7004.88, + "probability": 0.6064 + }, + { + "start": 7006.08, + "end": 7006.64, + "probability": 0.9231 + }, + { + "start": 7007.26, + "end": 7008.18, + "probability": 0.9628 + }, + { + "start": 7008.88, + "end": 7014.12, + "probability": 0.9892 + }, + { + "start": 7014.78, + "end": 7016.24, + "probability": 0.9688 + }, + { + "start": 7017.42, + "end": 7023.82, + "probability": 0.991 + }, + { + "start": 7025.12, + "end": 7025.12, + "probability": 0.7505 + }, + { + "start": 7025.78, + "end": 7027.78, + "probability": 0.9978 + }, + { + "start": 7027.98, + "end": 7029.54, + "probability": 0.9464 + }, + { + "start": 7031.7, + "end": 7036.86, + "probability": 0.9827 + }, + { + "start": 7037.76, + "end": 7042.5, + "probability": 0.9912 + }, + { + "start": 7043.2, + "end": 7046.22, + "probability": 0.8231 + }, + { + "start": 7047.18, + "end": 7049.48, + "probability": 0.9845 + }, + { + "start": 7052.04, + "end": 7057.6, + "probability": 0.9919 + }, + { + "start": 7058.52, + "end": 7059.24, + "probability": 0.7946 + }, + { + "start": 7060.78, + "end": 7063.34, + "probability": 0.9553 + }, + { + "start": 7064.52, + "end": 7066.64, + "probability": 0.8604 + }, + { + "start": 7067.34, + "end": 7068.84, + "probability": 0.8728 + }, + { + "start": 7070.86, + "end": 7073.66, + "probability": 0.9919 + }, + { + "start": 7074.86, + "end": 7075.34, + "probability": 0.6782 + }, + { + "start": 7075.84, + "end": 7079.3, + "probability": 0.9478 + }, + { + "start": 7079.94, + "end": 7081.46, + "probability": 0.7396 + }, + { + "start": 7082.22, + "end": 7083.22, + "probability": 0.9399 + }, + { + "start": 7084.64, + "end": 7088.08, + "probability": 0.9671 + }, + { + "start": 7088.86, + "end": 7090.14, + "probability": 0.9911 + }, + { + "start": 7091.32, + "end": 7092.26, + "probability": 0.999 + }, + { + "start": 7093.24, + "end": 7095.86, + "probability": 0.9973 + }, + { + "start": 7096.5, + "end": 7097.43, + "probability": 0.6427 + }, + { + "start": 7098.52, + "end": 7099.52, + "probability": 0.9744 + }, + { + "start": 7100.04, + "end": 7102.36, + "probability": 0.8854 + }, + { + "start": 7103.1, + "end": 7104.06, + "probability": 0.6807 + }, + { + "start": 7104.8, + "end": 7106.34, + "probability": 0.9945 + }, + { + "start": 7107.34, + "end": 7109.17, + "probability": 0.9925 + }, + { + "start": 7111.08, + "end": 7114.18, + "probability": 0.9766 + }, + { + "start": 7115.38, + "end": 7118.08, + "probability": 0.9502 + }, + { + "start": 7119.66, + "end": 7122.8, + "probability": 0.8911 + }, + { + "start": 7123.44, + "end": 7124.94, + "probability": 0.9866 + }, + { + "start": 7125.92, + "end": 7127.7, + "probability": 0.9736 + }, + { + "start": 7128.46, + "end": 7131.56, + "probability": 0.8984 + }, + { + "start": 7132.62, + "end": 7134.3, + "probability": 0.9802 + }, + { + "start": 7134.6, + "end": 7137.04, + "probability": 0.9097 + }, + { + "start": 7137.4, + "end": 7138.36, + "probability": 0.9828 + }, + { + "start": 7138.98, + "end": 7140.32, + "probability": 0.9886 + }, + { + "start": 7140.98, + "end": 7141.62, + "probability": 0.9742 + }, + { + "start": 7142.82, + "end": 7145.16, + "probability": 0.8746 + }, + { + "start": 7146.42, + "end": 7148.54, + "probability": 0.9953 + }, + { + "start": 7148.72, + "end": 7149.62, + "probability": 0.9584 + }, + { + "start": 7150.82, + "end": 7154.44, + "probability": 0.9873 + }, + { + "start": 7156.54, + "end": 7158.46, + "probability": 0.7774 + }, + { + "start": 7158.6, + "end": 7161.42, + "probability": 0.4888 + }, + { + "start": 7161.42, + "end": 7164.1, + "probability": 0.7406 + }, + { + "start": 7164.7, + "end": 7165.6, + "probability": 0.9121 + }, + { + "start": 7166.16, + "end": 7169.52, + "probability": 0.809 + }, + { + "start": 7169.8, + "end": 7172.62, + "probability": 0.6682 + }, + { + "start": 7172.62, + "end": 7173.46, + "probability": 0.8677 + }, + { + "start": 7173.58, + "end": 7175.72, + "probability": 0.9961 + }, + { + "start": 7175.94, + "end": 7180.02, + "probability": 0.6809 + }, + { + "start": 7180.24, + "end": 7180.68, + "probability": 0.9034 + }, + { + "start": 7198.86, + "end": 7199.62, + "probability": 0.5037 + }, + { + "start": 7201.36, + "end": 7202.44, + "probability": 0.8463 + }, + { + "start": 7203.56, + "end": 7206.68, + "probability": 0.9705 + }, + { + "start": 7207.76, + "end": 7211.06, + "probability": 0.9706 + }, + { + "start": 7212.72, + "end": 7215.36, + "probability": 0.9719 + }, + { + "start": 7216.7, + "end": 7218.12, + "probability": 0.9887 + }, + { + "start": 7219.42, + "end": 7219.74, + "probability": 0.973 + }, + { + "start": 7220.34, + "end": 7221.96, + "probability": 0.8086 + }, + { + "start": 7224.74, + "end": 7228.74, + "probability": 0.9943 + }, + { + "start": 7229.72, + "end": 7231.16, + "probability": 0.6868 + }, + { + "start": 7232.14, + "end": 7234.86, + "probability": 0.8818 + }, + { + "start": 7235.5, + "end": 7237.78, + "probability": 0.9705 + }, + { + "start": 7238.86, + "end": 7239.5, + "probability": 0.9746 + }, + { + "start": 7240.04, + "end": 7241.98, + "probability": 0.9978 + }, + { + "start": 7243.12, + "end": 7244.28, + "probability": 0.756 + }, + { + "start": 7245.06, + "end": 7247.54, + "probability": 0.9798 + }, + { + "start": 7248.12, + "end": 7249.74, + "probability": 0.9849 + }, + { + "start": 7250.4, + "end": 7252.94, + "probability": 0.9469 + }, + { + "start": 7255.08, + "end": 7257.08, + "probability": 0.9938 + }, + { + "start": 7259.22, + "end": 7262.74, + "probability": 0.6723 + }, + { + "start": 7262.9, + "end": 7266.44, + "probability": 0.7471 + }, + { + "start": 7267.48, + "end": 7267.92, + "probability": 0.7957 + }, + { + "start": 7268.7, + "end": 7269.72, + "probability": 0.6934 + }, + { + "start": 7270.54, + "end": 7272.95, + "probability": 0.9916 + }, + { + "start": 7273.82, + "end": 7276.6, + "probability": 0.6783 + }, + { + "start": 7277.44, + "end": 7280.92, + "probability": 0.9625 + }, + { + "start": 7282.28, + "end": 7283.98, + "probability": 0.9335 + }, + { + "start": 7284.78, + "end": 7287.24, + "probability": 0.9755 + }, + { + "start": 7288.16, + "end": 7290.14, + "probability": 0.9189 + }, + { + "start": 7290.64, + "end": 7293.09, + "probability": 0.9912 + }, + { + "start": 7297.88, + "end": 7299.1, + "probability": 0.9977 + }, + { + "start": 7300.3, + "end": 7303.08, + "probability": 0.5422 + }, + { + "start": 7303.74, + "end": 7304.7, + "probability": 0.9845 + }, + { + "start": 7305.48, + "end": 7307.8, + "probability": 0.8535 + }, + { + "start": 7308.68, + "end": 7309.64, + "probability": 0.8092 + }, + { + "start": 7310.28, + "end": 7312.76, + "probability": 0.8385 + }, + { + "start": 7313.5, + "end": 7316.36, + "probability": 0.7727 + }, + { + "start": 7317.3, + "end": 7319.7, + "probability": 0.9979 + }, + { + "start": 7320.22, + "end": 7322.16, + "probability": 0.9686 + }, + { + "start": 7322.56, + "end": 7327.56, + "probability": 0.9641 + }, + { + "start": 7328.42, + "end": 7329.92, + "probability": 0.6978 + }, + { + "start": 7330.56, + "end": 7332.44, + "probability": 0.977 + }, + { + "start": 7333.0, + "end": 7333.76, + "probability": 0.5839 + }, + { + "start": 7334.3, + "end": 7338.43, + "probability": 0.9864 + }, + { + "start": 7339.8, + "end": 7340.04, + "probability": 0.5637 + }, + { + "start": 7340.22, + "end": 7342.34, + "probability": 0.8834 + }, + { + "start": 7342.34, + "end": 7345.26, + "probability": 0.8414 + }, + { + "start": 7345.86, + "end": 7347.66, + "probability": 0.981 + }, + { + "start": 7348.84, + "end": 7351.0, + "probability": 0.9878 + }, + { + "start": 7352.18, + "end": 7352.98, + "probability": 0.9358 + }, + { + "start": 7353.06, + "end": 7353.66, + "probability": 0.7061 + }, + { + "start": 7353.78, + "end": 7356.08, + "probability": 0.9907 + }, + { + "start": 7357.2, + "end": 7358.54, + "probability": 0.8055 + }, + { + "start": 7358.68, + "end": 7363.5, + "probability": 0.7316 + }, + { + "start": 7365.94, + "end": 7368.9, + "probability": 0.9033 + }, + { + "start": 7372.9, + "end": 7375.18, + "probability": 0.9277 + }, + { + "start": 7375.76, + "end": 7377.4, + "probability": 0.7926 + }, + { + "start": 7378.64, + "end": 7384.76, + "probability": 0.9761 + }, + { + "start": 7385.7, + "end": 7386.14, + "probability": 0.8109 + }, + { + "start": 7386.3, + "end": 7388.1, + "probability": 0.9766 + }, + { + "start": 7388.26, + "end": 7389.56, + "probability": 0.5767 + }, + { + "start": 7389.58, + "end": 7391.6, + "probability": 0.9904 + }, + { + "start": 7393.04, + "end": 7395.28, + "probability": 0.9983 + }, + { + "start": 7395.66, + "end": 7397.08, + "probability": 0.9701 + }, + { + "start": 7397.64, + "end": 7402.62, + "probability": 0.9868 + }, + { + "start": 7403.38, + "end": 7410.0, + "probability": 0.9966 + }, + { + "start": 7412.66, + "end": 7414.46, + "probability": 0.8086 + }, + { + "start": 7415.92, + "end": 7420.62, + "probability": 0.8928 + }, + { + "start": 7420.62, + "end": 7421.38, + "probability": 0.6219 + }, + { + "start": 7421.84, + "end": 7426.26, + "probability": 0.839 + }, + { + "start": 7427.18, + "end": 7429.36, + "probability": 0.8557 + }, + { + "start": 7429.9, + "end": 7431.5, + "probability": 0.9849 + }, + { + "start": 7432.1, + "end": 7433.78, + "probability": 0.9897 + }, + { + "start": 7433.84, + "end": 7434.38, + "probability": 0.808 + }, + { + "start": 7435.48, + "end": 7438.2, + "probability": 0.7892 + }, + { + "start": 7439.0, + "end": 7439.08, + "probability": 0.0514 + }, + { + "start": 7439.08, + "end": 7439.95, + "probability": 0.6329 + }, + { + "start": 7440.06, + "end": 7441.78, + "probability": 0.9765 + }, + { + "start": 7443.5, + "end": 7446.8, + "probability": 0.749 + }, + { + "start": 7447.1, + "end": 7450.96, + "probability": 0.7537 + }, + { + "start": 7451.1, + "end": 7452.28, + "probability": 0.5697 + }, + { + "start": 7452.48, + "end": 7453.06, + "probability": 0.6996 + }, + { + "start": 7453.56, + "end": 7455.68, + "probability": 0.8041 + }, + { + "start": 7455.78, + "end": 7457.72, + "probability": 0.6926 + }, + { + "start": 7458.48, + "end": 7459.02, + "probability": 0.5258 + }, + { + "start": 7459.89, + "end": 7460.48, + "probability": 0.9885 + }, + { + "start": 7467.48, + "end": 7467.64, + "probability": 0.1249 + }, + { + "start": 7470.0, + "end": 7472.54, + "probability": 0.4607 + }, + { + "start": 7473.1, + "end": 7475.18, + "probability": 0.5757 + }, + { + "start": 7475.8, + "end": 7477.36, + "probability": 0.8024 + }, + { + "start": 7477.42, + "end": 7478.38, + "probability": 0.5854 + }, + { + "start": 7478.5, + "end": 7479.26, + "probability": 0.0412 + }, + { + "start": 7480.62, + "end": 7483.04, + "probability": 0.5296 + }, + { + "start": 7483.66, + "end": 7484.28, + "probability": 0.3969 + }, + { + "start": 7485.58, + "end": 7488.38, + "probability": 0.2792 + }, + { + "start": 7489.42, + "end": 7489.82, + "probability": 0.6774 + }, + { + "start": 7500.86, + "end": 7501.14, + "probability": 0.3773 + }, + { + "start": 7501.22, + "end": 7502.74, + "probability": 0.6904 + }, + { + "start": 7503.86, + "end": 7508.58, + "probability": 0.9828 + }, + { + "start": 7508.68, + "end": 7509.86, + "probability": 0.9811 + }, + { + "start": 7510.92, + "end": 7518.92, + "probability": 0.9931 + }, + { + "start": 7520.8, + "end": 7522.58, + "probability": 0.7122 + }, + { + "start": 7523.02, + "end": 7527.8, + "probability": 0.8243 + }, + { + "start": 7528.64, + "end": 7529.84, + "probability": 0.6107 + }, + { + "start": 7530.52, + "end": 7531.96, + "probability": 0.368 + }, + { + "start": 7534.16, + "end": 7536.44, + "probability": 0.9046 + }, + { + "start": 7538.66, + "end": 7540.14, + "probability": 0.9768 + }, + { + "start": 7541.26, + "end": 7545.92, + "probability": 0.9984 + }, + { + "start": 7546.6, + "end": 7551.36, + "probability": 0.9801 + }, + { + "start": 7552.48, + "end": 7561.52, + "probability": 0.9843 + }, + { + "start": 7562.74, + "end": 7567.72, + "probability": 0.8966 + }, + { + "start": 7568.66, + "end": 7575.7, + "probability": 0.9403 + }, + { + "start": 7575.8, + "end": 7580.2, + "probability": 0.8557 + }, + { + "start": 7580.4, + "end": 7584.36, + "probability": 0.772 + }, + { + "start": 7588.42, + "end": 7592.2, + "probability": 0.5917 + }, + { + "start": 7592.64, + "end": 7596.36, + "probability": 0.7552 + }, + { + "start": 7597.26, + "end": 7599.6, + "probability": 0.5549 + }, + { + "start": 7599.6, + "end": 7601.78, + "probability": 0.9769 + }, + { + "start": 7602.8, + "end": 7605.48, + "probability": 0.8894 + }, + { + "start": 7605.52, + "end": 7608.12, + "probability": 0.8125 + }, + { + "start": 7609.12, + "end": 7613.88, + "probability": 0.7728 + }, + { + "start": 7614.9, + "end": 7617.5, + "probability": 0.9978 + }, + { + "start": 7618.78, + "end": 7621.06, + "probability": 0.5651 + }, + { + "start": 7621.2, + "end": 7623.84, + "probability": 0.9738 + }, + { + "start": 7624.38, + "end": 7624.84, + "probability": 0.4677 + }, + { + "start": 7625.42, + "end": 7629.66, + "probability": 0.8224 + }, + { + "start": 7631.08, + "end": 7632.72, + "probability": 0.866 + }, + { + "start": 7633.86, + "end": 7634.6, + "probability": 0.5158 + }, + { + "start": 7635.68, + "end": 7637.08, + "probability": 0.9027 + }, + { + "start": 7637.18, + "end": 7637.56, + "probability": 0.3383 + }, + { + "start": 7637.6, + "end": 7639.02, + "probability": 0.1373 + }, + { + "start": 7640.18, + "end": 7641.12, + "probability": 0.8803 + }, + { + "start": 7642.1, + "end": 7643.1, + "probability": 0.9806 + }, + { + "start": 7644.24, + "end": 7650.46, + "probability": 0.9504 + }, + { + "start": 7651.0, + "end": 7654.84, + "probability": 0.838 + }, + { + "start": 7655.96, + "end": 7658.76, + "probability": 0.9746 + }, + { + "start": 7660.24, + "end": 7661.6, + "probability": 0.7994 + }, + { + "start": 7662.9, + "end": 7664.34, + "probability": 0.7964 + }, + { + "start": 7664.84, + "end": 7670.82, + "probability": 0.9375 + }, + { + "start": 7671.54, + "end": 7673.16, + "probability": 0.9053 + }, + { + "start": 7673.36, + "end": 7673.78, + "probability": 0.9 + }, + { + "start": 7673.84, + "end": 7675.76, + "probability": 0.9042 + }, + { + "start": 7675.86, + "end": 7677.4, + "probability": 0.9664 + }, + { + "start": 7677.4, + "end": 7680.2, + "probability": 0.7748 + }, + { + "start": 7681.04, + "end": 7683.9, + "probability": 0.7482 + }, + { + "start": 7684.1, + "end": 7684.36, + "probability": 0.2782 + }, + { + "start": 7684.62, + "end": 7686.4, + "probability": 0.5502 + }, + { + "start": 7687.82, + "end": 7688.5, + "probability": 0.7326 + }, + { + "start": 7689.02, + "end": 7691.86, + "probability": 0.8463 + }, + { + "start": 7692.8, + "end": 7693.82, + "probability": 0.8428 + }, + { + "start": 7694.38, + "end": 7696.36, + "probability": 0.9659 + }, + { + "start": 7696.62, + "end": 7698.2, + "probability": 0.9506 + }, + { + "start": 7698.66, + "end": 7699.28, + "probability": 0.7993 + }, + { + "start": 7699.32, + "end": 7700.22, + "probability": 0.8456 + }, + { + "start": 7700.28, + "end": 7701.4, + "probability": 0.9863 + }, + { + "start": 7701.52, + "end": 7705.88, + "probability": 0.8597 + }, + { + "start": 7706.44, + "end": 7709.42, + "probability": 0.9229 + }, + { + "start": 7709.8, + "end": 7711.5, + "probability": 0.9716 + }, + { + "start": 7712.97, + "end": 7716.2, + "probability": 0.9956 + }, + { + "start": 7716.28, + "end": 7718.08, + "probability": 0.9771 + }, + { + "start": 7718.58, + "end": 7721.0, + "probability": 0.9807 + }, + { + "start": 7721.0, + "end": 7725.06, + "probability": 0.758 + }, + { + "start": 7725.36, + "end": 7727.96, + "probability": 0.5452 + }, + { + "start": 7728.02, + "end": 7728.14, + "probability": 0.6021 + }, + { + "start": 7728.22, + "end": 7728.68, + "probability": 0.8937 + }, + { + "start": 7729.16, + "end": 7731.24, + "probability": 0.9543 + }, + { + "start": 7731.8, + "end": 7734.7, + "probability": 0.6213 + }, + { + "start": 7735.04, + "end": 7738.3, + "probability": 0.9708 + }, + { + "start": 7738.96, + "end": 7743.64, + "probability": 0.8999 + }, + { + "start": 7743.66, + "end": 7746.62, + "probability": 0.9852 + }, + { + "start": 7746.62, + "end": 7750.12, + "probability": 0.9801 + }, + { + "start": 7751.24, + "end": 7754.0, + "probability": 0.6854 + }, + { + "start": 7754.26, + "end": 7754.69, + "probability": 0.4831 + }, + { + "start": 7755.16, + "end": 7756.42, + "probability": 0.5005 + }, + { + "start": 7756.9, + "end": 7758.62, + "probability": 0.9137 + }, + { + "start": 7759.22, + "end": 7761.02, + "probability": 0.9728 + }, + { + "start": 7761.84, + "end": 7766.34, + "probability": 0.6894 + }, + { + "start": 7766.4, + "end": 7767.5, + "probability": 0.7629 + }, + { + "start": 7767.86, + "end": 7772.64, + "probability": 0.9789 + }, + { + "start": 7773.3, + "end": 7774.38, + "probability": 0.9783 + }, + { + "start": 7774.56, + "end": 7777.82, + "probability": 0.6292 + }, + { + "start": 7777.86, + "end": 7778.6, + "probability": 0.3609 + }, + { + "start": 7779.14, + "end": 7781.08, + "probability": 0.817 + }, + { + "start": 7781.18, + "end": 7781.66, + "probability": 0.8234 + }, + { + "start": 7781.72, + "end": 7782.04, + "probability": 0.9602 + }, + { + "start": 7782.06, + "end": 7782.46, + "probability": 0.9511 + }, + { + "start": 7782.48, + "end": 7785.5, + "probability": 0.9658 + }, + { + "start": 7785.95, + "end": 7788.82, + "probability": 0.6396 + }, + { + "start": 7788.82, + "end": 7790.8, + "probability": 0.5392 + }, + { + "start": 7791.58, + "end": 7792.88, + "probability": 0.6018 + }, + { + "start": 7793.18, + "end": 7794.38, + "probability": 0.9365 + }, + { + "start": 7795.66, + "end": 7796.14, + "probability": 0.5286 + }, + { + "start": 7798.76, + "end": 7802.54, + "probability": 0.7216 + }, + { + "start": 7802.74, + "end": 7803.46, + "probability": 0.6812 + }, + { + "start": 7803.96, + "end": 7805.32, + "probability": 0.6469 + }, + { + "start": 7805.44, + "end": 7806.16, + "probability": 0.9067 + }, + { + "start": 7806.9, + "end": 7808.5, + "probability": 0.8762 + }, + { + "start": 7809.1, + "end": 7809.78, + "probability": 0.8611 + }, + { + "start": 7810.32, + "end": 7811.76, + "probability": 0.9766 + }, + { + "start": 7811.82, + "end": 7812.76, + "probability": 0.829 + }, + { + "start": 7813.2, + "end": 7814.96, + "probability": 0.0934 + }, + { + "start": 7815.68, + "end": 7816.47, + "probability": 0.7855 + }, + { + "start": 7818.28, + "end": 7819.98, + "probability": 0.8227 + }, + { + "start": 7820.04, + "end": 7823.32, + "probability": 0.7495 + }, + { + "start": 7823.76, + "end": 7825.16, + "probability": 0.8781 + }, + { + "start": 7825.7, + "end": 7826.52, + "probability": 0.9271 + }, + { + "start": 7827.24, + "end": 7827.48, + "probability": 0.5748 + }, + { + "start": 7827.94, + "end": 7829.62, + "probability": 0.6836 + }, + { + "start": 7830.38, + "end": 7834.48, + "probability": 0.8916 + }, + { + "start": 7837.54, + "end": 7841.02, + "probability": 0.9556 + }, + { + "start": 7842.22, + "end": 7846.0, + "probability": 0.7234 + }, + { + "start": 7846.68, + "end": 7849.96, + "probability": 0.9276 + }, + { + "start": 7850.66, + "end": 7852.06, + "probability": 0.9216 + }, + { + "start": 7852.2, + "end": 7855.3, + "probability": 0.9275 + }, + { + "start": 7855.96, + "end": 7856.92, + "probability": 0.9287 + }, + { + "start": 7860.32, + "end": 7862.6, + "probability": 0.9473 + }, + { + "start": 7863.58, + "end": 7870.14, + "probability": 0.9747 + }, + { + "start": 7870.18, + "end": 7870.18, + "probability": 0.5894 + }, + { + "start": 7870.22, + "end": 7875.72, + "probability": 0.8462 + }, + { + "start": 7876.52, + "end": 7879.8, + "probability": 0.9833 + }, + { + "start": 7880.24, + "end": 7885.22, + "probability": 0.994 + }, + { + "start": 7886.12, + "end": 7887.5, + "probability": 0.9587 + }, + { + "start": 7887.56, + "end": 7889.16, + "probability": 0.8497 + }, + { + "start": 7889.46, + "end": 7892.24, + "probability": 0.947 + }, + { + "start": 7892.36, + "end": 7893.32, + "probability": 0.7916 + }, + { + "start": 7893.38, + "end": 7895.62, + "probability": 0.0055 + }, + { + "start": 7896.28, + "end": 7898.06, + "probability": 0.7925 + }, + { + "start": 7900.98, + "end": 7907.06, + "probability": 0.8352 + }, + { + "start": 7907.86, + "end": 7909.84, + "probability": 0.8725 + }, + { + "start": 7910.46, + "end": 7911.38, + "probability": 0.9615 + }, + { + "start": 7911.76, + "end": 7912.76, + "probability": 0.939 + }, + { + "start": 7913.32, + "end": 7918.45, + "probability": 0.903 + }, + { + "start": 7921.86, + "end": 7932.08, + "probability": 0.9545 + }, + { + "start": 7933.48, + "end": 7940.22, + "probability": 0.9864 + }, + { + "start": 7941.28, + "end": 7942.92, + "probability": 0.64 + }, + { + "start": 7943.66, + "end": 7945.82, + "probability": 0.5237 + }, + { + "start": 7947.2, + "end": 7951.2, + "probability": 0.884 + }, + { + "start": 7952.22, + "end": 7952.84, + "probability": 0.6256 + }, + { + "start": 7952.96, + "end": 7956.26, + "probability": 0.7523 + }, + { + "start": 7956.4, + "end": 7957.24, + "probability": 0.8857 + }, + { + "start": 7957.56, + "end": 7959.32, + "probability": 0.9431 + }, + { + "start": 7960.74, + "end": 7961.1, + "probability": 0.9265 + }, + { + "start": 7961.14, + "end": 7965.74, + "probability": 0.9018 + }, + { + "start": 7965.74, + "end": 7970.3, + "probability": 0.9818 + }, + { + "start": 7970.5, + "end": 7974.71, + "probability": 0.868 + }, + { + "start": 7975.74, + "end": 7976.58, + "probability": 0.705 + }, + { + "start": 7976.6, + "end": 7983.92, + "probability": 0.9299 + }, + { + "start": 7984.04, + "end": 7988.5, + "probability": 0.9062 + }, + { + "start": 7988.88, + "end": 7989.4, + "probability": 0.8281 + }, + { + "start": 7990.1, + "end": 7993.1, + "probability": 0.8608 + }, + { + "start": 7994.22, + "end": 7998.82, + "probability": 0.9237 + }, + { + "start": 7999.12, + "end": 8003.14, + "probability": 0.9072 + }, + { + "start": 8003.74, + "end": 8005.04, + "probability": 0.9688 + }, + { + "start": 8006.48, + "end": 8009.56, + "probability": 0.9492 + }, + { + "start": 8009.56, + "end": 8014.34, + "probability": 0.9968 + }, + { + "start": 8015.04, + "end": 8016.48, + "probability": 0.6138 + }, + { + "start": 8017.22, + "end": 8021.38, + "probability": 0.9407 + }, + { + "start": 8021.6, + "end": 8023.78, + "probability": 0.4488 + }, + { + "start": 8023.94, + "end": 8024.62, + "probability": 0.8675 + }, + { + "start": 8025.74, + "end": 8026.56, + "probability": 0.9639 + }, + { + "start": 8027.22, + "end": 8032.78, + "probability": 0.9086 + }, + { + "start": 8033.78, + "end": 8039.62, + "probability": 0.4419 + }, + { + "start": 8041.04, + "end": 8041.8, + "probability": 0.6897 + }, + { + "start": 8043.36, + "end": 8047.72, + "probability": 0.9759 + }, + { + "start": 8050.28, + "end": 8057.12, + "probability": 0.9504 + }, + { + "start": 8057.12, + "end": 8064.46, + "probability": 0.9233 + }, + { + "start": 8064.74, + "end": 8065.58, + "probability": 0.8084 + }, + { + "start": 8068.0, + "end": 8073.02, + "probability": 0.9166 + }, + { + "start": 8074.4, + "end": 8079.48, + "probability": 0.9966 + }, + { + "start": 8080.42, + "end": 8082.9, + "probability": 0.9941 + }, + { + "start": 8084.18, + "end": 8086.88, + "probability": 0.8313 + }, + { + "start": 8087.02, + "end": 8087.42, + "probability": 0.9099 + }, + { + "start": 8087.48, + "end": 8088.0, + "probability": 0.9519 + }, + { + "start": 8088.06, + "end": 8088.64, + "probability": 0.9702 + }, + { + "start": 8088.78, + "end": 8089.36, + "probability": 0.9323 + }, + { + "start": 8089.96, + "end": 8092.52, + "probability": 0.8767 + }, + { + "start": 8093.06, + "end": 8099.14, + "probability": 0.9886 + }, + { + "start": 8099.14, + "end": 8104.54, + "probability": 0.9919 + }, + { + "start": 8107.12, + "end": 8109.36, + "probability": 0.9351 + }, + { + "start": 8110.18, + "end": 8112.91, + "probability": 0.6694 + }, + { + "start": 8114.08, + "end": 8115.12, + "probability": 0.9749 + }, + { + "start": 8115.24, + "end": 8120.46, + "probability": 0.9854 + }, + { + "start": 8120.54, + "end": 8120.92, + "probability": 0.6237 + }, + { + "start": 8121.1, + "end": 8123.72, + "probability": 0.9795 + }, + { + "start": 8124.58, + "end": 8127.42, + "probability": 0.9854 + }, + { + "start": 8127.98, + "end": 8130.56, + "probability": 0.95 + }, + { + "start": 8130.9, + "end": 8136.0, + "probability": 0.9762 + }, + { + "start": 8136.18, + "end": 8136.62, + "probability": 0.8681 + }, + { + "start": 8137.3, + "end": 8139.31, + "probability": 0.7888 + }, + { + "start": 8139.7, + "end": 8144.28, + "probability": 0.9496 + }, + { + "start": 8146.14, + "end": 8149.84, + "probability": 0.7069 + }, + { + "start": 8149.84, + "end": 8150.0, + "probability": 0.2415 + }, + { + "start": 8150.48, + "end": 8151.28, + "probability": 0.7133 + }, + { + "start": 8153.1, + "end": 8155.04, + "probability": 0.9279 + }, + { + "start": 8156.12, + "end": 8157.88, + "probability": 0.6192 + }, + { + "start": 8158.0, + "end": 8164.98, + "probability": 0.968 + }, + { + "start": 8166.04, + "end": 8166.72, + "probability": 0.9492 + }, + { + "start": 8166.94, + "end": 8167.06, + "probability": 0.3546 + }, + { + "start": 8167.5, + "end": 8168.32, + "probability": 0.7544 + }, + { + "start": 8168.42, + "end": 8169.66, + "probability": 0.8471 + }, + { + "start": 8170.82, + "end": 8173.08, + "probability": 0.9864 + }, + { + "start": 8173.3, + "end": 8174.84, + "probability": 0.9417 + }, + { + "start": 8175.38, + "end": 8176.44, + "probability": 0.9282 + }, + { + "start": 8177.45, + "end": 8181.86, + "probability": 0.9819 + }, + { + "start": 8181.86, + "end": 8186.52, + "probability": 0.9426 + }, + { + "start": 8187.06, + "end": 8189.82, + "probability": 0.7572 + }, + { + "start": 8190.62, + "end": 8192.8, + "probability": 0.8602 + }, + { + "start": 8193.32, + "end": 8197.64, + "probability": 0.984 + }, + { + "start": 8198.38, + "end": 8200.04, + "probability": 0.9916 + }, + { + "start": 8201.52, + "end": 8202.3, + "probability": 0.8881 + }, + { + "start": 8203.74, + "end": 8205.02, + "probability": 0.9408 + }, + { + "start": 8205.18, + "end": 8208.88, + "probability": 0.9679 + }, + { + "start": 8210.22, + "end": 8215.78, + "probability": 0.8117 + }, + { + "start": 8216.7, + "end": 8220.38, + "probability": 0.9412 + }, + { + "start": 8221.36, + "end": 8226.48, + "probability": 0.953 + }, + { + "start": 8226.74, + "end": 8236.44, + "probability": 0.9912 + }, + { + "start": 8236.48, + "end": 8237.06, + "probability": 0.7842 + }, + { + "start": 8237.76, + "end": 8243.04, + "probability": 0.9884 + }, + { + "start": 8243.12, + "end": 8245.58, + "probability": 0.9717 + }, + { + "start": 8246.22, + "end": 8252.18, + "probability": 0.9768 + }, + { + "start": 8252.18, + "end": 8257.62, + "probability": 0.9033 + }, + { + "start": 8258.88, + "end": 8259.4, + "probability": 0.0932 + }, + { + "start": 8260.04, + "end": 8263.84, + "probability": 0.0071 + }, + { + "start": 8271.7, + "end": 8274.86, + "probability": 0.7443 + }, + { + "start": 8275.44, + "end": 8278.88, + "probability": 0.8911 + }, + { + "start": 8279.18, + "end": 8280.62, + "probability": 0.9372 + }, + { + "start": 8280.64, + "end": 8282.02, + "probability": 0.8923 + }, + { + "start": 8282.1, + "end": 8285.7, + "probability": 0.952 + }, + { + "start": 8286.1, + "end": 8291.56, + "probability": 0.976 + }, + { + "start": 8292.0, + "end": 8292.5, + "probability": 0.6196 + }, + { + "start": 8292.62, + "end": 8293.86, + "probability": 0.6915 + }, + { + "start": 8293.92, + "end": 8299.56, + "probability": 0.9077 + }, + { + "start": 8299.7, + "end": 8304.72, + "probability": 0.9874 + }, + { + "start": 8305.28, + "end": 8306.58, + "probability": 0.8471 + }, + { + "start": 8307.1, + "end": 8313.74, + "probability": 0.9961 + }, + { + "start": 8314.88, + "end": 8318.94, + "probability": 0.965 + }, + { + "start": 8319.7, + "end": 8321.4, + "probability": 0.9864 + }, + { + "start": 8321.7, + "end": 8325.0, + "probability": 0.9985 + }, + { + "start": 8325.82, + "end": 8327.1, + "probability": 0.9644 + }, + { + "start": 8327.58, + "end": 8327.96, + "probability": 0.3346 + }, + { + "start": 8328.02, + "end": 8331.82, + "probability": 0.9284 + }, + { + "start": 8332.42, + "end": 8336.6, + "probability": 0.8302 + }, + { + "start": 8337.28, + "end": 8340.42, + "probability": 0.9953 + }, + { + "start": 8341.24, + "end": 8341.56, + "probability": 0.942 + }, + { + "start": 8342.44, + "end": 8345.9, + "probability": 0.9072 + }, + { + "start": 8347.32, + "end": 8353.1, + "probability": 0.7269 + }, + { + "start": 8353.26, + "end": 8358.04, + "probability": 0.9757 + }, + { + "start": 8358.46, + "end": 8362.75, + "probability": 0.9525 + }, + { + "start": 8363.6, + "end": 8364.1, + "probability": 0.8665 + }, + { + "start": 8364.52, + "end": 8366.86, + "probability": 0.3933 + }, + { + "start": 8369.25, + "end": 8375.15, + "probability": 0.9924 + }, + { + "start": 8376.61, + "end": 8382.17, + "probability": 0.9988 + }, + { + "start": 8382.27, + "end": 8387.81, + "probability": 0.9862 + }, + { + "start": 8387.91, + "end": 8388.19, + "probability": 0.9327 + }, + { + "start": 8388.69, + "end": 8389.07, + "probability": 0.9272 + }, + { + "start": 8389.15, + "end": 8393.63, + "probability": 0.9775 + }, + { + "start": 8393.83, + "end": 8394.27, + "probability": 0.9702 + }, + { + "start": 8395.03, + "end": 8397.35, + "probability": 0.9666 + }, + { + "start": 8397.55, + "end": 8397.81, + "probability": 0.967 + }, + { + "start": 8398.35, + "end": 8402.21, + "probability": 0.992 + }, + { + "start": 8404.29, + "end": 8407.99, + "probability": 0.7836 + }, + { + "start": 8409.13, + "end": 8415.41, + "probability": 0.9784 + }, + { + "start": 8416.75, + "end": 8422.01, + "probability": 0.832 + }, + { + "start": 8422.65, + "end": 8423.19, + "probability": 0.5074 + }, + { + "start": 8429.65, + "end": 8433.57, + "probability": 0.0199 + }, + { + "start": 8435.45, + "end": 8437.63, + "probability": 0.0351 + }, + { + "start": 8437.63, + "end": 8438.18, + "probability": 0.0194 + }, + { + "start": 8439.01, + "end": 8443.78, + "probability": 0.1378 + }, + { + "start": 8445.45, + "end": 8447.37, + "probability": 0.0486 + }, + { + "start": 8448.91, + "end": 8458.89, + "probability": 0.0605 + }, + { + "start": 8458.95, + "end": 8461.45, + "probability": 0.0489 + }, + { + "start": 8512.0, + "end": 8512.0, + "probability": 0.0 + }, + { + "start": 8512.0, + "end": 8512.0, + "probability": 0.0 + }, + { + "start": 8512.0, + "end": 8512.0, + "probability": 0.0 + }, + { + "start": 8512.0, + "end": 8512.0, + "probability": 0.0 + }, + { + "start": 8512.0, + "end": 8512.0, + "probability": 0.0 + }, + { + "start": 8512.0, + "end": 8512.0, + "probability": 0.0 + }, + { + "start": 8512.0, + "end": 8512.0, + "probability": 0.0 + }, + { + "start": 8512.0, + "end": 8512.0, + "probability": 0.0 + }, + { + "start": 8512.0, + "end": 8512.0, + "probability": 0.0 + }, + { + "start": 8512.0, + "end": 8512.0, + "probability": 0.0 + }, + { + "start": 8512.0, + "end": 8512.0, + "probability": 0.0 + }, + { + "start": 8513.54, + "end": 8515.26, + "probability": 0.1407 + }, + { + "start": 8515.64, + "end": 8516.6, + "probability": 0.0364 + }, + { + "start": 8516.6, + "end": 8517.06, + "probability": 0.164 + }, + { + "start": 8517.06, + "end": 8517.82, + "probability": 0.2016 + }, + { + "start": 8517.9, + "end": 8518.58, + "probability": 0.3531 + }, + { + "start": 8519.6, + "end": 8521.08, + "probability": 0.2141 + }, + { + "start": 8531.52, + "end": 8535.54, + "probability": 0.1727 + }, + { + "start": 8535.58, + "end": 8539.14, + "probability": 0.0486 + }, + { + "start": 8540.44, + "end": 8541.54, + "probability": 0.0709 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.0, + "end": 8634.0, + "probability": 0.0 + }, + { + "start": 8634.4, + "end": 8640.9, + "probability": 0.8667 + }, + { + "start": 8641.1, + "end": 8641.86, + "probability": 0.5514 + }, + { + "start": 8642.04, + "end": 8643.38, + "probability": 0.8746 + }, + { + "start": 8643.48, + "end": 8646.54, + "probability": 0.9694 + }, + { + "start": 8647.18, + "end": 8652.46, + "probability": 0.8916 + }, + { + "start": 8652.46, + "end": 8656.32, + "probability": 0.8822 + }, + { + "start": 8656.4, + "end": 8660.82, + "probability": 0.9988 + }, + { + "start": 8661.46, + "end": 8664.96, + "probability": 0.9907 + }, + { + "start": 8665.16, + "end": 8666.82, + "probability": 0.5182 + }, + { + "start": 8667.06, + "end": 8670.5, + "probability": 0.8342 + }, + { + "start": 8670.5, + "end": 8677.62, + "probability": 0.9208 + }, + { + "start": 8678.12, + "end": 8680.74, + "probability": 0.9011 + }, + { + "start": 8681.3, + "end": 8689.26, + "probability": 0.9602 + }, + { + "start": 8690.62, + "end": 8695.2, + "probability": 0.9918 + }, + { + "start": 8695.84, + "end": 8700.79, + "probability": 0.9922 + }, + { + "start": 8701.44, + "end": 8702.7, + "probability": 0.8192 + }, + { + "start": 8703.14, + "end": 8709.8, + "probability": 0.9927 + }, + { + "start": 8710.08, + "end": 8710.72, + "probability": 0.6885 + }, + { + "start": 8711.28, + "end": 8713.38, + "probability": 0.9518 + }, + { + "start": 8713.52, + "end": 8716.32, + "probability": 0.9212 + }, + { + "start": 8717.48, + "end": 8721.56, + "probability": 0.934 + }, + { + "start": 8722.3, + "end": 8723.88, + "probability": 0.7635 + }, + { + "start": 8724.52, + "end": 8727.62, + "probability": 0.8833 + }, + { + "start": 8728.0, + "end": 8733.42, + "probability": 0.9834 + }, + { + "start": 8733.42, + "end": 8737.62, + "probability": 0.7749 + }, + { + "start": 8738.34, + "end": 8745.52, + "probability": 0.9624 + }, + { + "start": 8746.18, + "end": 8752.52, + "probability": 0.9893 + }, + { + "start": 8753.36, + "end": 8756.8, + "probability": 0.9058 + }, + { + "start": 8756.8, + "end": 8760.86, + "probability": 0.9294 + }, + { + "start": 8760.86, + "end": 8762.12, + "probability": 0.8836 + }, + { + "start": 8762.86, + "end": 8766.34, + "probability": 0.8735 + }, + { + "start": 8767.28, + "end": 8771.02, + "probability": 0.9854 + }, + { + "start": 8771.64, + "end": 8775.76, + "probability": 0.9959 + }, + { + "start": 8775.76, + "end": 8780.38, + "probability": 0.9736 + }, + { + "start": 8780.46, + "end": 8782.9, + "probability": 0.9507 + }, + { + "start": 8783.64, + "end": 8787.74, + "probability": 0.8861 + }, + { + "start": 8788.92, + "end": 8791.34, + "probability": 0.9662 + }, + { + "start": 8792.6, + "end": 8793.26, + "probability": 0.6557 + }, + { + "start": 8794.18, + "end": 8794.44, + "probability": 0.7885 + }, + { + "start": 8794.5, + "end": 8795.27, + "probability": 0.7246 + }, + { + "start": 8795.7, + "end": 8799.44, + "probability": 0.8607 + }, + { + "start": 8801.78, + "end": 8803.68, + "probability": 0.9138 + }, + { + "start": 8805.38, + "end": 8805.86, + "probability": 0.0361 + }, + { + "start": 8805.94, + "end": 8807.4, + "probability": 0.6234 + }, + { + "start": 8808.1, + "end": 8809.56, + "probability": 0.7623 + }, + { + "start": 8810.18, + "end": 8813.16, + "probability": 0.8044 + }, + { + "start": 8814.14, + "end": 8817.18, + "probability": 0.3627 + }, + { + "start": 8817.18, + "end": 8817.65, + "probability": 0.3861 + }, + { + "start": 8818.42, + "end": 8819.56, + "probability": 0.5913 + }, + { + "start": 8825.6, + "end": 8826.76, + "probability": 0.6944 + }, + { + "start": 8827.64, + "end": 8828.88, + "probability": 0.9404 + }, + { + "start": 8832.62, + "end": 8835.58, + "probability": 0.6033 + }, + { + "start": 8836.76, + "end": 8839.44, + "probability": 0.8622 + }, + { + "start": 8839.56, + "end": 8840.42, + "probability": 0.3006 + }, + { + "start": 8842.72, + "end": 8844.96, + "probability": 0.9973 + }, + { + "start": 8845.62, + "end": 8847.22, + "probability": 0.846 + }, + { + "start": 8847.42, + "end": 8847.76, + "probability": 0.7751 + }, + { + "start": 8863.48, + "end": 8867.84, + "probability": 0.2501 + }, + { + "start": 8867.84, + "end": 8872.26, + "probability": 0.9361 + }, + { + "start": 8872.82, + "end": 8874.22, + "probability": 0.6007 + }, + { + "start": 8875.5, + "end": 8879.18, + "probability": 0.7479 + }, + { + "start": 8886.58, + "end": 8887.68, + "probability": 0.0239 + }, + { + "start": 8887.68, + "end": 8889.02, + "probability": 0.0506 + }, + { + "start": 8889.84, + "end": 8890.0, + "probability": 0.1304 + }, + { + "start": 8890.0, + "end": 8891.96, + "probability": 0.0643 + }, + { + "start": 8895.6, + "end": 8902.1, + "probability": 0.0212 + }, + { + "start": 8903.9, + "end": 8905.62, + "probability": 0.0459 + }, + { + "start": 8905.62, + "end": 8905.86, + "probability": 0.1029 + }, + { + "start": 8906.23, + "end": 8907.88, + "probability": 0.1928 + }, + { + "start": 8907.88, + "end": 8908.56, + "probability": 0.0328 + }, + { + "start": 8909.44, + "end": 8911.91, + "probability": 0.0664 + }, + { + "start": 8912.0, + "end": 8912.0, + "probability": 0.0 + }, + { + "start": 8912.0, + "end": 8912.0, + "probability": 0.0 + }, + { + "start": 8912.0, + "end": 8912.0, + "probability": 0.0 + }, + { + "start": 8912.0, + "end": 8912.0, + "probability": 0.0 + }, + { + "start": 8912.0, + "end": 8912.0, + "probability": 0.0 + }, + { + "start": 8912.0, + "end": 8912.0, + "probability": 0.0 + }, + { + "start": 8912.0, + "end": 8912.0, + "probability": 0.0 + }, + { + "start": 8912.0, + "end": 8912.0, + "probability": 0.0 + }, + { + "start": 8912.0, + "end": 8912.0, + "probability": 0.0 + }, + { + "start": 8912.0, + "end": 8912.0, + "probability": 0.0 + }, + { + "start": 8912.0, + "end": 8912.0, + "probability": 0.0 + }, + { + "start": 8912.0, + "end": 8912.0, + "probability": 0.0 + }, + { + "start": 8912.0, + "end": 8912.0, + "probability": 0.0 + }, + { + "start": 8912.0, + "end": 8912.0, + "probability": 0.0 + }, + { + "start": 8912.0, + "end": 8912.0, + "probability": 0.0 + }, + { + "start": 8915.84, + "end": 8921.88, + "probability": 0.7594 + }, + { + "start": 8921.88, + "end": 8925.48, + "probability": 0.8715 + }, + { + "start": 8926.12, + "end": 8930.42, + "probability": 0.6775 + }, + { + "start": 8930.78, + "end": 8935.0, + "probability": 0.849 + }, + { + "start": 8935.62, + "end": 8936.66, + "probability": 0.4261 + }, + { + "start": 8937.48, + "end": 8938.48, + "probability": 0.5917 + }, + { + "start": 8938.48, + "end": 8940.28, + "probability": 0.994 + }, + { + "start": 8940.82, + "end": 8943.7, + "probability": 0.9711 + }, + { + "start": 8943.74, + "end": 8944.48, + "probability": 0.4116 + }, + { + "start": 8944.86, + "end": 8945.24, + "probability": 0.8564 + }, + { + "start": 8954.24, + "end": 8956.1, + "probability": 0.5967 + }, + { + "start": 8968.66, + "end": 8972.04, + "probability": 0.7144 + }, + { + "start": 8974.1, + "end": 8977.04, + "probability": 0.9966 + }, + { + "start": 8978.34, + "end": 8979.58, + "probability": 0.7107 + }, + { + "start": 8980.64, + "end": 8982.92, + "probability": 0.8091 + }, + { + "start": 8983.08, + "end": 8989.54, + "probability": 0.9572 + }, + { + "start": 8989.7, + "end": 8992.72, + "probability": 0.8614 + }, + { + "start": 8994.14, + "end": 8996.34, + "probability": 0.8755 + }, + { + "start": 8997.12, + "end": 8999.02, + "probability": 0.9398 + }, + { + "start": 8999.6, + "end": 9002.3, + "probability": 0.9742 + }, + { + "start": 9003.14, + "end": 9004.58, + "probability": 0.9259 + }, + { + "start": 9005.64, + "end": 9009.66, + "probability": 0.988 + }, + { + "start": 9010.84, + "end": 9011.78, + "probability": 0.7944 + }, + { + "start": 9012.38, + "end": 9013.0, + "probability": 0.9679 + }, + { + "start": 9014.12, + "end": 9015.02, + "probability": 0.5989 + }, + { + "start": 9015.82, + "end": 9019.78, + "probability": 0.9846 + }, + { + "start": 9020.82, + "end": 9022.48, + "probability": 0.9185 + }, + { + "start": 9023.74, + "end": 9026.08, + "probability": 0.7758 + }, + { + "start": 9027.38, + "end": 9029.98, + "probability": 0.7881 + }, + { + "start": 9030.62, + "end": 9032.22, + "probability": 0.9644 + }, + { + "start": 9032.92, + "end": 9034.76, + "probability": 0.993 + }, + { + "start": 9037.71, + "end": 9042.54, + "probability": 0.9974 + }, + { + "start": 9043.96, + "end": 9049.18, + "probability": 0.9699 + }, + { + "start": 9050.28, + "end": 9050.7, + "probability": 0.9146 + }, + { + "start": 9051.58, + "end": 9052.8, + "probability": 0.9794 + }, + { + "start": 9053.72, + "end": 9054.3, + "probability": 0.7052 + }, + { + "start": 9054.44, + "end": 9058.4, + "probability": 0.9675 + }, + { + "start": 9059.7, + "end": 9064.26, + "probability": 0.9949 + }, + { + "start": 9064.88, + "end": 9068.01, + "probability": 0.9276 + }, + { + "start": 9069.1, + "end": 9070.12, + "probability": 0.9509 + }, + { + "start": 9070.86, + "end": 9071.46, + "probability": 0.6505 + }, + { + "start": 9072.44, + "end": 9075.48, + "probability": 0.9803 + }, + { + "start": 9076.4, + "end": 9078.72, + "probability": 0.8716 + }, + { + "start": 9078.96, + "end": 9083.34, + "probability": 0.984 + }, + { + "start": 9083.42, + "end": 9084.92, + "probability": 0.9939 + }, + { + "start": 9085.54, + "end": 9090.56, + "probability": 0.9827 + }, + { + "start": 9090.56, + "end": 9096.46, + "probability": 0.9945 + }, + { + "start": 9097.24, + "end": 9098.34, + "probability": 0.8467 + }, + { + "start": 9099.88, + "end": 9105.32, + "probability": 0.9735 + }, + { + "start": 9106.04, + "end": 9106.46, + "probability": 0.5203 + }, + { + "start": 9106.56, + "end": 9111.14, + "probability": 0.9919 + }, + { + "start": 9112.22, + "end": 9114.58, + "probability": 0.9889 + }, + { + "start": 9115.04, + "end": 9120.38, + "probability": 0.9775 + }, + { + "start": 9121.36, + "end": 9123.8, + "probability": 0.9987 + }, + { + "start": 9124.32, + "end": 9125.22, + "probability": 0.9922 + }, + { + "start": 9125.66, + "end": 9126.45, + "probability": 0.9917 + }, + { + "start": 9126.96, + "end": 9127.75, + "probability": 0.9919 + }, + { + "start": 9127.94, + "end": 9129.04, + "probability": 0.9906 + }, + { + "start": 9129.14, + "end": 9131.96, + "probability": 0.7987 + }, + { + "start": 9132.48, + "end": 9133.74, + "probability": 0.9906 + }, + { + "start": 9133.82, + "end": 9137.08, + "probability": 0.9982 + }, + { + "start": 9137.66, + "end": 9139.28, + "probability": 0.9713 + }, + { + "start": 9139.76, + "end": 9142.5, + "probability": 0.948 + }, + { + "start": 9144.98, + "end": 9148.26, + "probability": 0.9512 + }, + { + "start": 9149.76, + "end": 9152.78, + "probability": 0.9341 + }, + { + "start": 9153.7, + "end": 9155.08, + "probability": 0.9752 + }, + { + "start": 9155.82, + "end": 9161.86, + "probability": 0.9836 + }, + { + "start": 9163.06, + "end": 9164.5, + "probability": 0.7731 + }, + { + "start": 9166.06, + "end": 9170.18, + "probability": 0.6676 + }, + { + "start": 9171.46, + "end": 9171.94, + "probability": 0.6702 + }, + { + "start": 9172.64, + "end": 9174.7, + "probability": 0.9932 + }, + { + "start": 9176.68, + "end": 9177.2, + "probability": 0.9261 + }, + { + "start": 9177.96, + "end": 9180.12, + "probability": 0.6647 + }, + { + "start": 9180.74, + "end": 9184.14, + "probability": 0.9856 + }, + { + "start": 9184.7, + "end": 9186.12, + "probability": 0.9959 + }, + { + "start": 9186.68, + "end": 9190.36, + "probability": 0.9915 + }, + { + "start": 9191.14, + "end": 9193.62, + "probability": 0.9816 + }, + { + "start": 9194.42, + "end": 9196.32, + "probability": 0.9985 + }, + { + "start": 9197.38, + "end": 9198.42, + "probability": 0.9819 + }, + { + "start": 9199.4, + "end": 9201.96, + "probability": 0.9897 + }, + { + "start": 9202.62, + "end": 9207.84, + "probability": 0.896 + }, + { + "start": 9208.36, + "end": 9210.28, + "probability": 0.8258 + }, + { + "start": 9211.28, + "end": 9216.92, + "probability": 0.9862 + }, + { + "start": 9217.54, + "end": 9220.08, + "probability": 0.9636 + }, + { + "start": 9220.78, + "end": 9223.86, + "probability": 0.9884 + }, + { + "start": 9223.86, + "end": 9228.16, + "probability": 0.9574 + }, + { + "start": 9228.88, + "end": 9229.74, + "probability": 0.9359 + }, + { + "start": 9230.38, + "end": 9231.98, + "probability": 0.9879 + }, + { + "start": 9232.86, + "end": 9234.16, + "probability": 0.7484 + }, + { + "start": 9235.3, + "end": 9237.18, + "probability": 0.9762 + }, + { + "start": 9237.18, + "end": 9240.86, + "probability": 0.7808 + }, + { + "start": 9242.14, + "end": 9244.82, + "probability": 0.7818 + }, + { + "start": 9245.66, + "end": 9249.76, + "probability": 0.998 + }, + { + "start": 9252.74, + "end": 9254.68, + "probability": 0.9727 + }, + { + "start": 9256.66, + "end": 9261.78, + "probability": 0.6455 + }, + { + "start": 9262.84, + "end": 9262.96, + "probability": 0.2613 + }, + { + "start": 9262.96, + "end": 9262.96, + "probability": 0.1827 + }, + { + "start": 9263.5, + "end": 9264.7, + "probability": 0.738 + }, + { + "start": 9265.24, + "end": 9270.52, + "probability": 0.9637 + }, + { + "start": 9271.16, + "end": 9276.8, + "probability": 0.8698 + }, + { + "start": 9277.02, + "end": 9279.74, + "probability": 0.9033 + }, + { + "start": 9280.32, + "end": 9283.2, + "probability": 0.9778 + }, + { + "start": 9285.72, + "end": 9286.04, + "probability": 0.5871 + }, + { + "start": 9286.22, + "end": 9290.98, + "probability": 0.9885 + }, + { + "start": 9290.98, + "end": 9297.1, + "probability": 0.9943 + }, + { + "start": 9297.24, + "end": 9298.78, + "probability": 0.998 + }, + { + "start": 9299.42, + "end": 9302.34, + "probability": 0.9902 + }, + { + "start": 9302.48, + "end": 9303.3, + "probability": 0.8921 + }, + { + "start": 9303.76, + "end": 9306.34, + "probability": 0.853 + }, + { + "start": 9306.46, + "end": 9309.36, + "probability": 0.8796 + }, + { + "start": 9310.04, + "end": 9310.84, + "probability": 0.7846 + }, + { + "start": 9311.0, + "end": 9311.9, + "probability": 0.7197 + }, + { + "start": 9312.34, + "end": 9314.28, + "probability": 0.9972 + }, + { + "start": 9314.82, + "end": 9317.34, + "probability": 0.9971 + }, + { + "start": 9318.1, + "end": 9320.48, + "probability": 0.8862 + }, + { + "start": 9321.08, + "end": 9324.9, + "probability": 0.9667 + }, + { + "start": 9326.12, + "end": 9327.64, + "probability": 0.8363 + }, + { + "start": 9327.74, + "end": 9328.26, + "probability": 0.8667 + }, + { + "start": 9328.72, + "end": 9330.46, + "probability": 0.9604 + }, + { + "start": 9330.46, + "end": 9331.08, + "probability": 0.6999 + }, + { + "start": 9331.28, + "end": 9332.76, + "probability": 0.7063 + }, + { + "start": 9333.12, + "end": 9333.86, + "probability": 0.8614 + }, + { + "start": 9334.46, + "end": 9336.24, + "probability": 0.9651 + }, + { + "start": 9336.42, + "end": 9337.24, + "probability": 0.9604 + }, + { + "start": 9337.72, + "end": 9338.76, + "probability": 0.9374 + }, + { + "start": 9338.88, + "end": 9339.34, + "probability": 0.8897 + }, + { + "start": 9339.4, + "end": 9340.5, + "probability": 0.5015 + }, + { + "start": 9342.16, + "end": 9342.88, + "probability": 0.5116 + }, + { + "start": 9343.74, + "end": 9344.86, + "probability": 0.6169 + }, + { + "start": 9344.96, + "end": 9345.44, + "probability": 0.3308 + }, + { + "start": 9345.46, + "end": 9346.58, + "probability": 0.7246 + }, + { + "start": 9347.26, + "end": 9347.78, + "probability": 0.4852 + }, + { + "start": 9347.86, + "end": 9349.34, + "probability": 0.6403 + }, + { + "start": 9373.48, + "end": 9374.92, + "probability": 0.538 + }, + { + "start": 9381.38, + "end": 9385.68, + "probability": 0.5194 + }, + { + "start": 9387.36, + "end": 9394.0, + "probability": 0.9875 + }, + { + "start": 9394.0, + "end": 9400.28, + "probability": 0.9966 + }, + { + "start": 9401.44, + "end": 9403.66, + "probability": 0.9418 + }, + { + "start": 9403.82, + "end": 9405.86, + "probability": 0.919 + }, + { + "start": 9406.32, + "end": 9408.46, + "probability": 0.791 + }, + { + "start": 9408.88, + "end": 9409.52, + "probability": 0.6755 + }, + { + "start": 9410.08, + "end": 9410.98, + "probability": 0.7844 + }, + { + "start": 9411.98, + "end": 9414.32, + "probability": 0.9929 + }, + { + "start": 9417.12, + "end": 9420.1, + "probability": 0.9966 + }, + { + "start": 9421.16, + "end": 9424.42, + "probability": 0.9116 + }, + { + "start": 9425.12, + "end": 9429.14, + "probability": 0.9852 + }, + { + "start": 9429.7, + "end": 9431.82, + "probability": 0.7566 + }, + { + "start": 9432.64, + "end": 9437.8, + "probability": 0.9543 + }, + { + "start": 9438.02, + "end": 9440.4, + "probability": 0.7594 + }, + { + "start": 9441.02, + "end": 9441.38, + "probability": 0.2714 + }, + { + "start": 9443.02, + "end": 9444.04, + "probability": 0.9789 + }, + { + "start": 9444.76, + "end": 9453.76, + "probability": 0.9737 + }, + { + "start": 9453.8, + "end": 9455.14, + "probability": 0.9854 + }, + { + "start": 9456.56, + "end": 9458.4, + "probability": 0.9261 + }, + { + "start": 9460.04, + "end": 9465.4, + "probability": 0.9636 + }, + { + "start": 9466.02, + "end": 9466.38, + "probability": 0.5683 + }, + { + "start": 9466.5, + "end": 9468.2, + "probability": 0.7743 + }, + { + "start": 9468.48, + "end": 9470.84, + "probability": 0.9965 + }, + { + "start": 9471.8, + "end": 9474.3, + "probability": 0.8425 + }, + { + "start": 9475.48, + "end": 9476.06, + "probability": 0.7093 + }, + { + "start": 9477.72, + "end": 9479.72, + "probability": 0.9963 + }, + { + "start": 9480.3, + "end": 9485.22, + "probability": 0.9622 + }, + { + "start": 9486.62, + "end": 9491.38, + "probability": 0.9941 + }, + { + "start": 9492.22, + "end": 9495.56, + "probability": 0.8455 + }, + { + "start": 9496.02, + "end": 9501.02, + "probability": 0.7909 + }, + { + "start": 9501.54, + "end": 9503.82, + "probability": 0.9219 + }, + { + "start": 9504.4, + "end": 9505.82, + "probability": 0.8257 + }, + { + "start": 9506.18, + "end": 9510.32, + "probability": 0.6257 + }, + { + "start": 9510.82, + "end": 9511.82, + "probability": 0.4094 + }, + { + "start": 9511.96, + "end": 9512.34, + "probability": 0.7743 + }, + { + "start": 9512.52, + "end": 9514.16, + "probability": 0.9959 + }, + { + "start": 9514.78, + "end": 9518.36, + "probability": 0.8893 + }, + { + "start": 9519.18, + "end": 9523.82, + "probability": 0.9795 + }, + { + "start": 9524.22, + "end": 9529.26, + "probability": 0.9178 + }, + { + "start": 9529.86, + "end": 9531.44, + "probability": 0.998 + }, + { + "start": 9532.04, + "end": 9534.1, + "probability": 0.9131 + }, + { + "start": 9534.84, + "end": 9537.6, + "probability": 0.945 + }, + { + "start": 9538.34, + "end": 9538.62, + "probability": 0.0596 + }, + { + "start": 9538.68, + "end": 9538.68, + "probability": 0.0768 + }, + { + "start": 9538.68, + "end": 9542.72, + "probability": 0.8427 + }, + { + "start": 9543.04, + "end": 9543.74, + "probability": 0.6531 + }, + { + "start": 9544.56, + "end": 9544.56, + "probability": 0.0962 + }, + { + "start": 9544.56, + "end": 9544.56, + "probability": 0.4423 + }, + { + "start": 9544.56, + "end": 9545.62, + "probability": 0.5972 + }, + { + "start": 9546.38, + "end": 9549.26, + "probability": 0.9321 + }, + { + "start": 9550.1, + "end": 9552.32, + "probability": 0.1738 + }, + { + "start": 9556.38, + "end": 9557.68, + "probability": 0.0242 + }, + { + "start": 9558.6, + "end": 9560.76, + "probability": 0.0153 + }, + { + "start": 9562.88, + "end": 9564.0, + "probability": 0.2133 + }, + { + "start": 9566.24, + "end": 9567.52, + "probability": 0.1773 + }, + { + "start": 9567.6, + "end": 9567.6, + "probability": 0.0028 + }, + { + "start": 9568.32, + "end": 9577.38, + "probability": 0.1341 + }, + { + "start": 9580.58, + "end": 9586.12, + "probability": 0.0585 + }, + { + "start": 9586.12, + "end": 9586.12, + "probability": 0.0594 + }, + { + "start": 9586.12, + "end": 9586.26, + "probability": 0.0377 + }, + { + "start": 9586.26, + "end": 9586.26, + "probability": 0.2228 + }, + { + "start": 9586.26, + "end": 9586.34, + "probability": 0.1051 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.0, + "end": 9657.0, + "probability": 0.0 + }, + { + "start": 9657.98, + "end": 9657.98, + "probability": 0.1641 + }, + { + "start": 9657.98, + "end": 9657.98, + "probability": 0.042 + }, + { + "start": 9657.98, + "end": 9658.36, + "probability": 0.1228 + }, + { + "start": 9658.36, + "end": 9658.36, + "probability": 0.0708 + }, + { + "start": 9658.36, + "end": 9662.22, + "probability": 0.6289 + }, + { + "start": 9662.9, + "end": 9663.96, + "probability": 0.8564 + }, + { + "start": 9666.12, + "end": 9668.98, + "probability": 0.9707 + }, + { + "start": 9670.72, + "end": 9675.04, + "probability": 0.6084 + }, + { + "start": 9675.7, + "end": 9677.78, + "probability": 0.9938 + }, + { + "start": 9679.14, + "end": 9679.86, + "probability": 0.9326 + }, + { + "start": 9680.72, + "end": 9682.72, + "probability": 0.9297 + }, + { + "start": 9683.46, + "end": 9685.18, + "probability": 0.8823 + }, + { + "start": 9685.32, + "end": 9686.4, + "probability": 0.9188 + }, + { + "start": 9687.04, + "end": 9688.42, + "probability": 0.486 + }, + { + "start": 9689.6, + "end": 9696.12, + "probability": 0.9812 + }, + { + "start": 9696.54, + "end": 9697.9, + "probability": 0.7785 + }, + { + "start": 9699.02, + "end": 9705.24, + "probability": 0.9941 + }, + { + "start": 9705.68, + "end": 9706.58, + "probability": 0.9618 + }, + { + "start": 9707.26, + "end": 9710.46, + "probability": 0.9926 + }, + { + "start": 9711.12, + "end": 9713.02, + "probability": 0.7886 + }, + { + "start": 9713.62, + "end": 9716.56, + "probability": 0.6921 + }, + { + "start": 9716.58, + "end": 9718.68, + "probability": 0.9297 + }, + { + "start": 9719.1, + "end": 9723.5, + "probability": 0.9438 + }, + { + "start": 9724.52, + "end": 9728.9, + "probability": 0.9836 + }, + { + "start": 9729.1, + "end": 9729.5, + "probability": 0.5352 + }, + { + "start": 9729.96, + "end": 9730.5, + "probability": 0.7947 + }, + { + "start": 9731.96, + "end": 9734.54, + "probability": 0.9486 + }, + { + "start": 9735.68, + "end": 9737.68, + "probability": 0.9077 + }, + { + "start": 9738.34, + "end": 9742.48, + "probability": 0.1859 + }, + { + "start": 9743.86, + "end": 9745.0, + "probability": 0.3271 + }, + { + "start": 9762.64, + "end": 9763.74, + "probability": 0.674 + }, + { + "start": 9765.64, + "end": 9771.28, + "probability": 0.9957 + }, + { + "start": 9771.9, + "end": 9772.28, + "probability": 0.7409 + }, + { + "start": 9772.44, + "end": 9773.76, + "probability": 0.3806 + }, + { + "start": 9773.9, + "end": 9776.0, + "probability": 0.9972 + }, + { + "start": 9776.68, + "end": 9779.82, + "probability": 0.9116 + }, + { + "start": 9780.5, + "end": 9781.98, + "probability": 0.8052 + }, + { + "start": 9782.06, + "end": 9784.62, + "probability": 0.9725 + }, + { + "start": 9785.5, + "end": 9788.76, + "probability": 0.9375 + }, + { + "start": 9790.22, + "end": 9791.92, + "probability": 0.9523 + }, + { + "start": 9792.54, + "end": 9794.86, + "probability": 0.8293 + }, + { + "start": 9794.86, + "end": 9795.48, + "probability": 0.6681 + }, + { + "start": 9796.54, + "end": 9800.78, + "probability": 0.9399 + }, + { + "start": 9800.92, + "end": 9802.0, + "probability": 0.9756 + }, + { + "start": 9802.92, + "end": 9804.32, + "probability": 0.9172 + }, + { + "start": 9805.58, + "end": 9807.68, + "probability": 0.9927 + }, + { + "start": 9808.48, + "end": 9812.94, + "probability": 0.988 + }, + { + "start": 9814.16, + "end": 9814.9, + "probability": 0.9683 + }, + { + "start": 9815.98, + "end": 9816.92, + "probability": 0.8047 + }, + { + "start": 9818.68, + "end": 9822.18, + "probability": 0.9792 + }, + { + "start": 9822.86, + "end": 9825.48, + "probability": 0.9943 + }, + { + "start": 9826.06, + "end": 9827.58, + "probability": 0.9871 + }, + { + "start": 9828.14, + "end": 9829.54, + "probability": 0.8922 + }, + { + "start": 9829.54, + "end": 9833.06, + "probability": 0.1343 + }, + { + "start": 9833.98, + "end": 9835.24, + "probability": 0.4911 + }, + { + "start": 9835.46, + "end": 9837.22, + "probability": 0.7715 + }, + { + "start": 9837.62, + "end": 9839.99, + "probability": 0.9971 + }, + { + "start": 9840.44, + "end": 9843.38, + "probability": 0.9984 + }, + { + "start": 9844.24, + "end": 9848.76, + "probability": 0.9851 + }, + { + "start": 9848.76, + "end": 9853.48, + "probability": 0.9831 + }, + { + "start": 9854.26, + "end": 9854.88, + "probability": 0.9269 + }, + { + "start": 9855.82, + "end": 9858.54, + "probability": 0.989 + }, + { + "start": 9859.6, + "end": 9860.98, + "probability": 0.9328 + }, + { + "start": 9861.14, + "end": 9862.34, + "probability": 0.8407 + }, + { + "start": 9862.44, + "end": 9863.54, + "probability": 0.9583 + }, + { + "start": 9864.64, + "end": 9866.04, + "probability": 0.762 + }, + { + "start": 9866.24, + "end": 9867.8, + "probability": 0.7965 + }, + { + "start": 9867.92, + "end": 9868.26, + "probability": 0.8276 + }, + { + "start": 9868.34, + "end": 9872.48, + "probability": 0.8694 + }, + { + "start": 9872.62, + "end": 9874.22, + "probability": 0.8403 + }, + { + "start": 9875.08, + "end": 9877.74, + "probability": 0.9966 + }, + { + "start": 9878.12, + "end": 9881.34, + "probability": 0.9602 + }, + { + "start": 9881.86, + "end": 9882.9, + "probability": 0.9594 + }, + { + "start": 9883.2, + "end": 9885.22, + "probability": 0.9843 + }, + { + "start": 9885.22, + "end": 9889.14, + "probability": 0.9833 + }, + { + "start": 9889.88, + "end": 9890.84, + "probability": 0.79 + }, + { + "start": 9891.32, + "end": 9892.68, + "probability": 0.9944 + }, + { + "start": 9893.12, + "end": 9894.58, + "probability": 0.9794 + }, + { + "start": 9895.02, + "end": 9895.36, + "probability": 0.7219 + }, + { + "start": 9895.42, + "end": 9895.96, + "probability": 0.8988 + }, + { + "start": 9896.08, + "end": 9899.82, + "probability": 0.9647 + }, + { + "start": 9899.88, + "end": 9901.3, + "probability": 0.9814 + }, + { + "start": 9901.36, + "end": 9902.1, + "probability": 0.5858 + }, + { + "start": 9902.18, + "end": 9903.6, + "probability": 0.9629 + }, + { + "start": 9904.48, + "end": 9905.31, + "probability": 0.8613 + }, + { + "start": 9906.08, + "end": 9906.62, + "probability": 0.7438 + }, + { + "start": 9907.22, + "end": 9908.4, + "probability": 0.7991 + }, + { + "start": 9908.92, + "end": 9910.08, + "probability": 0.9595 + }, + { + "start": 9910.2, + "end": 9912.72, + "probability": 0.9376 + }, + { + "start": 9913.9, + "end": 9916.2, + "probability": 0.7932 + }, + { + "start": 9916.26, + "end": 9916.84, + "probability": 0.9506 + }, + { + "start": 9916.92, + "end": 9917.54, + "probability": 0.9304 + }, + { + "start": 9917.64, + "end": 9918.1, + "probability": 0.9661 + }, + { + "start": 9918.1, + "end": 9918.64, + "probability": 0.9829 + }, + { + "start": 9918.68, + "end": 9919.32, + "probability": 0.9758 + }, + { + "start": 9919.4, + "end": 9919.78, + "probability": 0.9203 + }, + { + "start": 9919.82, + "end": 9920.3, + "probability": 0.8781 + }, + { + "start": 9921.16, + "end": 9924.8, + "probability": 0.9867 + }, + { + "start": 9925.22, + "end": 9927.94, + "probability": 0.9913 + }, + { + "start": 9928.32, + "end": 9928.86, + "probability": 0.7781 + }, + { + "start": 9928.96, + "end": 9929.7, + "probability": 0.6823 + }, + { + "start": 9929.76, + "end": 9935.36, + "probability": 0.8896 + }, + { + "start": 9936.3, + "end": 9937.7, + "probability": 0.9834 + }, + { + "start": 9937.76, + "end": 9938.11, + "probability": 0.8606 + }, + { + "start": 9938.56, + "end": 9940.08, + "probability": 0.9606 + }, + { + "start": 9940.16, + "end": 9941.61, + "probability": 0.9102 + }, + { + "start": 9942.22, + "end": 9944.14, + "probability": 0.9589 + }, + { + "start": 9944.3, + "end": 9946.04, + "probability": 0.9704 + }, + { + "start": 9946.68, + "end": 9947.96, + "probability": 0.8244 + }, + { + "start": 9948.46, + "end": 9951.7, + "probability": 0.8501 + }, + { + "start": 9952.96, + "end": 9952.96, + "probability": 0.1248 + }, + { + "start": 9952.96, + "end": 9956.7, + "probability": 0.5302 + }, + { + "start": 9956.84, + "end": 9957.96, + "probability": 0.6765 + }, + { + "start": 9958.38, + "end": 9962.68, + "probability": 0.963 + }, + { + "start": 9963.36, + "end": 9966.8, + "probability": 0.8867 + }, + { + "start": 9967.42, + "end": 9968.08, + "probability": 0.9688 + }, + { + "start": 9968.92, + "end": 9969.22, + "probability": 0.2693 + }, + { + "start": 9969.22, + "end": 9973.44, + "probability": 0.5321 + }, + { + "start": 9973.56, + "end": 9975.71, + "probability": 0.9734 + }, + { + "start": 9977.72, + "end": 9982.34, + "probability": 0.8211 + }, + { + "start": 9982.44, + "end": 9984.22, + "probability": 0.9059 + }, + { + "start": 9984.22, + "end": 9987.78, + "probability": 0.6649 + }, + { + "start": 9987.96, + "end": 9991.17, + "probability": 0.7268 + }, + { + "start": 9993.42, + "end": 9995.92, + "probability": 0.7124 + }, + { + "start": 9996.54, + "end": 9997.68, + "probability": 0.9418 + }, + { + "start": 9997.82, + "end": 9999.16, + "probability": 0.8588 + }, + { + "start": 9999.3, + "end": 9999.88, + "probability": 0.5121 + }, + { + "start": 9999.96, + "end": 10000.9, + "probability": 0.9404 + }, + { + "start": 10000.92, + "end": 10001.52, + "probability": 0.7257 + }, + { + "start": 10001.72, + "end": 10003.02, + "probability": 0.9831 + }, + { + "start": 10003.24, + "end": 10004.56, + "probability": 0.9715 + }, + { + "start": 10005.92, + "end": 10006.78, + "probability": 0.6665 + }, + { + "start": 10007.3, + "end": 10008.6, + "probability": 0.2607 + }, + { + "start": 10009.6, + "end": 10010.14, + "probability": 0.9586 + }, + { + "start": 10010.2, + "end": 10012.96, + "probability": 0.9874 + }, + { + "start": 10013.42, + "end": 10016.16, + "probability": 0.9771 + }, + { + "start": 10016.98, + "end": 10017.39, + "probability": 0.8995 + }, + { + "start": 10018.36, + "end": 10020.24, + "probability": 0.9969 + }, + { + "start": 10020.8, + "end": 10023.68, + "probability": 0.9453 + }, + { + "start": 10024.32, + "end": 10025.64, + "probability": 0.8148 + }, + { + "start": 10025.76, + "end": 10026.75, + "probability": 0.8751 + }, + { + "start": 10027.98, + "end": 10028.61, + "probability": 0.9976 + }, + { + "start": 10030.3, + "end": 10033.2, + "probability": 0.9678 + }, + { + "start": 10033.32, + "end": 10034.22, + "probability": 0.9468 + }, + { + "start": 10034.36, + "end": 10038.0, + "probability": 0.9738 + }, + { + "start": 10038.76, + "end": 10039.36, + "probability": 0.9487 + }, + { + "start": 10040.32, + "end": 10041.24, + "probability": 0.8062 + }, + { + "start": 10041.32, + "end": 10041.68, + "probability": 0.6231 + }, + { + "start": 10042.14, + "end": 10042.56, + "probability": 0.8105 + }, + { + "start": 10042.58, + "end": 10043.04, + "probability": 0.7896 + }, + { + "start": 10043.12, + "end": 10044.38, + "probability": 0.8481 + }, + { + "start": 10044.96, + "end": 10045.44, + "probability": 0.8273 + }, + { + "start": 10045.5, + "end": 10049.26, + "probability": 0.9181 + }, + { + "start": 10049.38, + "end": 10049.92, + "probability": 0.4898 + }, + { + "start": 10050.02, + "end": 10053.7, + "probability": 0.9966 + }, + { + "start": 10054.54, + "end": 10058.5, + "probability": 0.7755 + }, + { + "start": 10058.72, + "end": 10062.46, + "probability": 0.9968 + }, + { + "start": 10063.1, + "end": 10064.84, + "probability": 0.992 + }, + { + "start": 10065.2, + "end": 10066.68, + "probability": 0.7542 + }, + { + "start": 10067.04, + "end": 10068.74, + "probability": 0.7882 + }, + { + "start": 10068.82, + "end": 10069.78, + "probability": 0.8008 + }, + { + "start": 10070.02, + "end": 10071.04, + "probability": 0.8403 + }, + { + "start": 10071.54, + "end": 10073.7, + "probability": 0.6135 + }, + { + "start": 10074.18, + "end": 10076.59, + "probability": 0.868 + }, + { + "start": 10077.12, + "end": 10079.14, + "probability": 0.7089 + }, + { + "start": 10079.26, + "end": 10081.18, + "probability": 0.7835 + }, + { + "start": 10081.18, + "end": 10082.96, + "probability": 0.8998 + }, + { + "start": 10083.32, + "end": 10085.5, + "probability": 0.8889 + }, + { + "start": 10085.76, + "end": 10086.2, + "probability": 0.7613 + }, + { + "start": 10087.56, + "end": 10089.26, + "probability": 0.6905 + }, + { + "start": 10091.77, + "end": 10095.78, + "probability": 0.9771 + }, + { + "start": 10095.98, + "end": 10097.83, + "probability": 0.9769 + }, + { + "start": 10099.79, + "end": 10100.59, + "probability": 0.7756 + }, + { + "start": 10101.9, + "end": 10102.9, + "probability": 0.601 + }, + { + "start": 10104.62, + "end": 10106.38, + "probability": 0.6081 + }, + { + "start": 10109.3, + "end": 10111.96, + "probability": 0.9032 + }, + { + "start": 10112.64, + "end": 10113.44, + "probability": 0.9176 + }, + { + "start": 10114.14, + "end": 10117.74, + "probability": 0.9429 + }, + { + "start": 10118.32, + "end": 10121.46, + "probability": 0.6917 + }, + { + "start": 10121.88, + "end": 10123.08, + "probability": 0.5927 + }, + { + "start": 10123.52, + "end": 10124.84, + "probability": 0.8516 + }, + { + "start": 10125.16, + "end": 10125.56, + "probability": 0.7851 + }, + { + "start": 10126.28, + "end": 10127.46, + "probability": 0.0521 + }, + { + "start": 10134.96, + "end": 10136.16, + "probability": 0.0575 + }, + { + "start": 10142.44, + "end": 10142.9, + "probability": 0.0001 + }, + { + "start": 10152.32, + "end": 10155.2, + "probability": 0.6679 + }, + { + "start": 10156.14, + "end": 10161.68, + "probability": 0.5693 + }, + { + "start": 10163.48, + "end": 10166.16, + "probability": 0.0392 + }, + { + "start": 10166.88, + "end": 10168.3, + "probability": 0.0193 + }, + { + "start": 10171.72, + "end": 10173.92, + "probability": 0.0405 + }, + { + "start": 10174.58, + "end": 10174.58, + "probability": 0.0275 + }, + { + "start": 10175.94, + "end": 10176.78, + "probability": 0.1076 + }, + { + "start": 10177.76, + "end": 10179.72, + "probability": 0.0107 + }, + { + "start": 10180.4, + "end": 10180.52, + "probability": 0.0176 + }, + { + "start": 10181.84, + "end": 10182.68, + "probability": 0.0157 + }, + { + "start": 10185.26, + "end": 10187.56, + "probability": 0.071 + }, + { + "start": 10188.72, + "end": 10189.38, + "probability": 0.0321 + }, + { + "start": 10189.38, + "end": 10189.9, + "probability": 0.0857 + }, + { + "start": 10189.9, + "end": 10190.06, + "probability": 0.056 + }, + { + "start": 10190.16, + "end": 10192.86, + "probability": 0.0935 + }, + { + "start": 10192.86, + "end": 10194.2, + "probability": 0.2712 + }, + { + "start": 10194.51, + "end": 10198.04, + "probability": 0.1404 + }, + { + "start": 10198.06, + "end": 10200.0, + "probability": 0.0313 + }, + { + "start": 10200.56, + "end": 10200.68, + "probability": 0.0021 + }, + { + "start": 10202.9, + "end": 10204.8, + "probability": 0.0894 + }, + { + "start": 10205.0, + "end": 10205.0, + "probability": 0.0 + }, + { + "start": 10205.0, + "end": 10205.0, + "probability": 0.0 + }, + { + "start": 10205.0, + "end": 10205.0, + "probability": 0.0 + }, + { + "start": 10205.0, + "end": 10205.0, + "probability": 0.0 + }, + { + "start": 10205.0, + "end": 10205.0, + "probability": 0.0 + }, + { + "start": 10205.0, + "end": 10205.0, + "probability": 0.0 + }, + { + "start": 10205.0, + "end": 10205.0, + "probability": 0.0 + }, + { + "start": 10205.0, + "end": 10205.0, + "probability": 0.0 + }, + { + "start": 10205.0, + "end": 10205.0, + "probability": 0.0 + }, + { + "start": 10205.0, + "end": 10205.0, + "probability": 0.0 + }, + { + "start": 10205.0, + "end": 10205.0, + "probability": 0.0 + }, + { + "start": 10205.0, + "end": 10205.0, + "probability": 0.0 + }, + { + "start": 10205.0, + "end": 10205.0, + "probability": 0.0 + }, + { + "start": 10205.0, + "end": 10205.0, + "probability": 0.0 + }, + { + "start": 10205.0, + "end": 10205.0, + "probability": 0.0 + }, + { + "start": 10205.0, + "end": 10205.0, + "probability": 0.0 + }, + { + "start": 10205.0, + "end": 10205.0, + "probability": 0.0 + }, + { + "start": 10205.38, + "end": 10206.51, + "probability": 0.217 + }, + { + "start": 10207.26, + "end": 10209.34, + "probability": 0.7173 + }, + { + "start": 10229.55, + "end": 10232.66, + "probability": 0.6341 + }, + { + "start": 10233.48, + "end": 10237.74, + "probability": 0.9814 + }, + { + "start": 10238.54, + "end": 10240.86, + "probability": 0.2579 + }, + { + "start": 10241.5, + "end": 10242.86, + "probability": 0.9832 + }, + { + "start": 10243.76, + "end": 10246.5, + "probability": 0.9979 + }, + { + "start": 10247.1, + "end": 10248.28, + "probability": 0.9045 + }, + { + "start": 10248.4, + "end": 10251.56, + "probability": 0.761 + }, + { + "start": 10252.2, + "end": 10254.98, + "probability": 0.3476 + }, + { + "start": 10255.68, + "end": 10258.42, + "probability": 0.9576 + }, + { + "start": 10258.42, + "end": 10260.56, + "probability": 0.9757 + }, + { + "start": 10261.24, + "end": 10265.08, + "probability": 0.9739 + }, + { + "start": 10265.82, + "end": 10269.24, + "probability": 0.997 + }, + { + "start": 10269.78, + "end": 10272.38, + "probability": 0.9908 + }, + { + "start": 10273.0, + "end": 10276.32, + "probability": 0.8945 + }, + { + "start": 10276.84, + "end": 10280.28, + "probability": 0.9978 + }, + { + "start": 10280.98, + "end": 10281.94, + "probability": 0.8683 + }, + { + "start": 10282.92, + "end": 10286.56, + "probability": 0.898 + }, + { + "start": 10287.22, + "end": 10290.2, + "probability": 0.7334 + }, + { + "start": 10290.4, + "end": 10292.04, + "probability": 0.9697 + }, + { + "start": 10292.58, + "end": 10296.98, + "probability": 0.9884 + }, + { + "start": 10297.22, + "end": 10300.66, + "probability": 0.8742 + }, + { + "start": 10301.52, + "end": 10304.5, + "probability": 0.8391 + }, + { + "start": 10304.5, + "end": 10308.9, + "probability": 0.8897 + }, + { + "start": 10309.04, + "end": 10311.72, + "probability": 0.9766 + }, + { + "start": 10311.72, + "end": 10314.14, + "probability": 0.9517 + }, + { + "start": 10314.9, + "end": 10316.68, + "probability": 0.8301 + }, + { + "start": 10316.88, + "end": 10319.58, + "probability": 0.9905 + }, + { + "start": 10319.58, + "end": 10321.86, + "probability": 0.8875 + }, + { + "start": 10322.4, + "end": 10326.64, + "probability": 0.9341 + }, + { + "start": 10327.62, + "end": 10329.06, + "probability": 0.9055 + }, + { + "start": 10329.12, + "end": 10331.54, + "probability": 0.675 + }, + { + "start": 10331.62, + "end": 10333.02, + "probability": 0.8599 + }, + { + "start": 10333.58, + "end": 10334.98, + "probability": 0.7253 + }, + { + "start": 10335.84, + "end": 10338.02, + "probability": 0.923 + }, + { + "start": 10339.04, + "end": 10342.92, + "probability": 0.7712 + }, + { + "start": 10343.56, + "end": 10349.1, + "probability": 0.8115 + }, + { + "start": 10349.72, + "end": 10350.04, + "probability": 0.6065 + }, + { + "start": 10350.8, + "end": 10354.88, + "probability": 0.9748 + }, + { + "start": 10355.3, + "end": 10359.66, + "probability": 0.9919 + }, + { + "start": 10359.84, + "end": 10364.24, + "probability": 0.9772 + }, + { + "start": 10364.94, + "end": 10368.18, + "probability": 0.8932 + }, + { + "start": 10368.8, + "end": 10371.44, + "probability": 0.9813 + }, + { + "start": 10371.44, + "end": 10376.44, + "probability": 0.6797 + }, + { + "start": 10376.6, + "end": 10381.18, + "probability": 0.9912 + }, + { + "start": 10381.64, + "end": 10384.38, + "probability": 0.9968 + }, + { + "start": 10384.38, + "end": 10389.7, + "probability": 0.7478 + }, + { + "start": 10389.8, + "end": 10393.86, + "probability": 0.9922 + }, + { + "start": 10393.86, + "end": 10400.52, + "probability": 0.998 + }, + { + "start": 10400.92, + "end": 10404.24, + "probability": 0.9764 + }, + { + "start": 10404.9, + "end": 10407.8, + "probability": 0.9838 + }, + { + "start": 10408.32, + "end": 10409.02, + "probability": 0.7182 + }, + { + "start": 10409.76, + "end": 10411.96, + "probability": 0.9775 + }, + { + "start": 10412.54, + "end": 10415.38, + "probability": 0.9901 + }, + { + "start": 10416.16, + "end": 10417.04, + "probability": 0.8119 + }, + { + "start": 10417.42, + "end": 10420.28, + "probability": 0.9465 + }, + { + "start": 10420.28, + "end": 10423.46, + "probability": 0.6315 + }, + { + "start": 10423.52, + "end": 10425.04, + "probability": 0.9733 + }, + { + "start": 10426.2, + "end": 10429.56, + "probability": 0.7455 + }, + { + "start": 10429.62, + "end": 10432.9, + "probability": 0.8628 + }, + { + "start": 10433.48, + "end": 10434.24, + "probability": 0.9811 + }, + { + "start": 10434.92, + "end": 10435.22, + "probability": 0.2368 + }, + { + "start": 10435.72, + "end": 10438.62, + "probability": 0.7717 + }, + { + "start": 10439.16, + "end": 10440.56, + "probability": 0.8584 + }, + { + "start": 10441.24, + "end": 10443.5, + "probability": 0.9927 + }, + { + "start": 10444.04, + "end": 10447.54, + "probability": 0.9797 + }, + { + "start": 10448.24, + "end": 10451.02, + "probability": 0.9556 + }, + { + "start": 10451.64, + "end": 10455.1, + "probability": 0.9754 + }, + { + "start": 10455.2, + "end": 10457.46, + "probability": 0.9081 + }, + { + "start": 10457.48, + "end": 10460.24, + "probability": 0.9861 + }, + { + "start": 10460.24, + "end": 10463.34, + "probability": 0.704 + }, + { + "start": 10463.46, + "end": 10464.42, + "probability": 0.8176 + }, + { + "start": 10464.98, + "end": 10469.06, + "probability": 0.8435 + }, + { + "start": 10469.12, + "end": 10470.56, + "probability": 0.9787 + }, + { + "start": 10471.36, + "end": 10474.1, + "probability": 0.8872 + }, + { + "start": 10474.1, + "end": 10478.2, + "probability": 0.7584 + }, + { + "start": 10478.26, + "end": 10480.16, + "probability": 0.989 + }, + { + "start": 10480.22, + "end": 10483.44, + "probability": 0.9564 + }, + { + "start": 10483.62, + "end": 10486.2, + "probability": 0.9948 + }, + { + "start": 10486.88, + "end": 10489.94, + "probability": 0.9775 + }, + { + "start": 10489.94, + "end": 10492.2, + "probability": 0.7317 + }, + { + "start": 10492.28, + "end": 10495.32, + "probability": 0.952 + }, + { + "start": 10495.9, + "end": 10496.3, + "probability": 0.2539 + }, + { + "start": 10496.5, + "end": 10499.68, + "probability": 0.9648 + }, + { + "start": 10500.18, + "end": 10504.88, + "probability": 0.9817 + }, + { + "start": 10504.88, + "end": 10509.46, + "probability": 0.9883 + }, + { + "start": 10510.1, + "end": 10513.18, + "probability": 0.8597 + }, + { + "start": 10513.18, + "end": 10515.92, + "probability": 0.9829 + }, + { + "start": 10516.26, + "end": 10519.18, + "probability": 0.9672 + }, + { + "start": 10519.38, + "end": 10519.78, + "probability": 0.5624 + }, + { + "start": 10519.88, + "end": 10523.94, + "probability": 0.7527 + }, + { + "start": 10524.3, + "end": 10526.28, + "probability": 0.9906 + }, + { + "start": 10526.8, + "end": 10528.92, + "probability": 0.9447 + }, + { + "start": 10529.56, + "end": 10531.88, + "probability": 0.9835 + }, + { + "start": 10532.48, + "end": 10537.26, + "probability": 0.9935 + }, + { + "start": 10537.9, + "end": 10541.18, + "probability": 0.8966 + }, + { + "start": 10541.18, + "end": 10543.66, + "probability": 0.9961 + }, + { + "start": 10544.5, + "end": 10546.4, + "probability": 0.8182 + }, + { + "start": 10546.4, + "end": 10549.22, + "probability": 0.9977 + }, + { + "start": 10549.26, + "end": 10552.4, + "probability": 0.9709 + }, + { + "start": 10552.82, + "end": 10557.0, + "probability": 0.859 + }, + { + "start": 10557.0, + "end": 10560.24, + "probability": 0.9802 + }, + { + "start": 10560.78, + "end": 10563.92, + "probability": 0.9711 + }, + { + "start": 10565.0, + "end": 10567.01, + "probability": 0.976 + }, + { + "start": 10567.66, + "end": 10569.12, + "probability": 0.6671 + }, + { + "start": 10569.64, + "end": 10570.91, + "probability": 0.9761 + }, + { + "start": 10571.08, + "end": 10575.1, + "probability": 0.9974 + }, + { + "start": 10575.94, + "end": 10578.92, + "probability": 0.9209 + }, + { + "start": 10578.92, + "end": 10582.16, + "probability": 0.9264 + }, + { + "start": 10582.68, + "end": 10586.18, + "probability": 0.9038 + }, + { + "start": 10586.22, + "end": 10590.62, + "probability": 0.9809 + }, + { + "start": 10591.18, + "end": 10594.32, + "probability": 0.71 + }, + { + "start": 10594.92, + "end": 10598.16, + "probability": 0.6558 + }, + { + "start": 10598.16, + "end": 10600.48, + "probability": 0.9104 + }, + { + "start": 10600.96, + "end": 10605.34, + "probability": 0.946 + }, + { + "start": 10605.74, + "end": 10606.82, + "probability": 0.5371 + }, + { + "start": 10607.86, + "end": 10613.32, + "probability": 0.9873 + }, + { + "start": 10613.94, + "end": 10614.92, + "probability": 0.3998 + }, + { + "start": 10615.12, + "end": 10617.78, + "probability": 0.9345 + }, + { + "start": 10617.78, + "end": 10622.08, + "probability": 0.9713 + }, + { + "start": 10623.18, + "end": 10627.1, + "probability": 0.9885 + }, + { + "start": 10627.1, + "end": 10631.66, + "probability": 0.9877 + }, + { + "start": 10632.06, + "end": 10632.84, + "probability": 0.7183 + }, + { + "start": 10633.14, + "end": 10633.48, + "probability": 0.6641 + }, + { + "start": 10634.16, + "end": 10638.14, + "probability": 0.9775 + }, + { + "start": 10638.32, + "end": 10638.76, + "probability": 0.7566 + }, + { + "start": 10639.08, + "end": 10639.68, + "probability": 0.7088 + }, + { + "start": 10640.5, + "end": 10642.56, + "probability": 0.8204 + }, + { + "start": 10647.12, + "end": 10650.46, + "probability": 0.9362 + }, + { + "start": 10651.16, + "end": 10653.08, + "probability": 0.7622 + }, + { + "start": 10654.04, + "end": 10656.16, + "probability": 0.7219 + }, + { + "start": 10657.36, + "end": 10660.94, + "probability": 0.8558 + }, + { + "start": 10661.66, + "end": 10663.84, + "probability": 0.9099 + }, + { + "start": 10663.94, + "end": 10664.68, + "probability": 0.8405 + }, + { + "start": 10665.12, + "end": 10665.18, + "probability": 0.4725 + }, + { + "start": 10665.34, + "end": 10668.06, + "probability": 0.9626 + }, + { + "start": 10668.46, + "end": 10670.08, + "probability": 0.72 + }, + { + "start": 10670.18, + "end": 10670.48, + "probability": 0.3841 + }, + { + "start": 10670.64, + "end": 10671.08, + "probability": 0.6156 + }, + { + "start": 10671.08, + "end": 10672.14, + "probability": 0.5773 + }, + { + "start": 10672.74, + "end": 10674.06, + "probability": 0.6609 + }, + { + "start": 10675.66, + "end": 10677.6, + "probability": 0.9612 + }, + { + "start": 10678.48, + "end": 10679.24, + "probability": 0.5419 + }, + { + "start": 10679.32, + "end": 10679.94, + "probability": 0.3828 + }, + { + "start": 10679.98, + "end": 10680.52, + "probability": 0.8892 + }, + { + "start": 10680.72, + "end": 10681.94, + "probability": 0.8506 + }, + { + "start": 10682.02, + "end": 10683.56, + "probability": 0.3283 + }, + { + "start": 10683.68, + "end": 10684.36, + "probability": 0.8316 + }, + { + "start": 10688.42, + "end": 10689.04, + "probability": 0.6557 + }, + { + "start": 10689.16, + "end": 10689.7, + "probability": 0.3845 + }, + { + "start": 10689.8, + "end": 10690.1, + "probability": 0.6139 + }, + { + "start": 10690.18, + "end": 10690.72, + "probability": 0.6068 + }, + { + "start": 10690.76, + "end": 10691.26, + "probability": 0.6575 + }, + { + "start": 10691.68, + "end": 10692.38, + "probability": 0.9059 + }, + { + "start": 10692.84, + "end": 10693.22, + "probability": 0.7919 + }, + { + "start": 10693.28, + "end": 10693.86, + "probability": 0.9474 + }, + { + "start": 10694.52, + "end": 10694.82, + "probability": 0.8544 + }, + { + "start": 10695.06, + "end": 10695.54, + "probability": 0.4703 + }, + { + "start": 10695.72, + "end": 10697.66, + "probability": 0.1027 + }, + { + "start": 10697.68, + "end": 10697.68, + "probability": 0.0256 + }, + { + "start": 10697.68, + "end": 10697.68, + "probability": 0.0511 + }, + { + "start": 10697.68, + "end": 10697.75, + "probability": 0.0527 + }, + { + "start": 10698.1, + "end": 10699.0, + "probability": 0.4153 + }, + { + "start": 10699.08, + "end": 10699.34, + "probability": 0.192 + }, + { + "start": 10699.58, + "end": 10700.4, + "probability": 0.5063 + }, + { + "start": 10700.46, + "end": 10701.1, + "probability": 0.7875 + }, + { + "start": 10701.24, + "end": 10701.8, + "probability": 0.7232 + }, + { + "start": 10701.8, + "end": 10702.14, + "probability": 0.8542 + }, + { + "start": 10702.26, + "end": 10702.74, + "probability": 0.4892 + }, + { + "start": 10704.08, + "end": 10704.86, + "probability": 0.4929 + }, + { + "start": 10704.9, + "end": 10706.62, + "probability": 0.6075 + }, + { + "start": 10706.66, + "end": 10707.42, + "probability": 0.6537 + }, + { + "start": 10707.48, + "end": 10708.38, + "probability": 0.6303 + }, + { + "start": 10708.44, + "end": 10709.02, + "probability": 0.371 + }, + { + "start": 10709.02, + "end": 10709.34, + "probability": 0.1109 + }, + { + "start": 10709.46, + "end": 10709.88, + "probability": 0.3439 + }, + { + "start": 10709.9, + "end": 10710.56, + "probability": 0.4626 + }, + { + "start": 10710.66, + "end": 10711.2, + "probability": 0.7866 + }, + { + "start": 10711.26, + "end": 10711.72, + "probability": 0.6037 + }, + { + "start": 10711.74, + "end": 10712.84, + "probability": 0.8276 + }, + { + "start": 10713.32, + "end": 10713.76, + "probability": 0.8374 + }, + { + "start": 10713.8, + "end": 10714.62, + "probability": 0.8187 + }, + { + "start": 10714.68, + "end": 10715.83, + "probability": 0.3744 + }, + { + "start": 10717.0, + "end": 10717.92, + "probability": 0.6274 + }, + { + "start": 10718.12, + "end": 10719.02, + "probability": 0.9202 + }, + { + "start": 10719.12, + "end": 10719.46, + "probability": 0.3946 + }, + { + "start": 10719.94, + "end": 10720.64, + "probability": 0.3365 + }, + { + "start": 10720.72, + "end": 10722.02, + "probability": 0.3979 + }, + { + "start": 10722.48, + "end": 10723.16, + "probability": 0.7767 + }, + { + "start": 10723.58, + "end": 10724.58, + "probability": 0.7112 + }, + { + "start": 10724.7, + "end": 10725.2, + "probability": 0.6001 + }, + { + "start": 10725.28, + "end": 10726.42, + "probability": 0.3577 + }, + { + "start": 10727.0, + "end": 10730.2, + "probability": 0.9879 + }, + { + "start": 10730.46, + "end": 10732.86, + "probability": 0.9722 + }, + { + "start": 10733.32, + "end": 10734.58, + "probability": 0.6642 + }, + { + "start": 10735.14, + "end": 10735.6, + "probability": 0.9521 + }, + { + "start": 10736.4, + "end": 10741.66, + "probability": 0.9918 + }, + { + "start": 10743.18, + "end": 10751.42, + "probability": 0.8593 + }, + { + "start": 10754.34, + "end": 10756.28, + "probability": 0.0171 + }, + { + "start": 10756.28, + "end": 10756.79, + "probability": 0.1106 + }, + { + "start": 10758.96, + "end": 10761.4, + "probability": 0.1628 + }, + { + "start": 10762.0, + "end": 10762.68, + "probability": 0.124 + }, + { + "start": 10769.6, + "end": 10772.92, + "probability": 0.5055 + }, + { + "start": 10773.0, + "end": 10774.28, + "probability": 0.8434 + }, + { + "start": 10774.74, + "end": 10777.34, + "probability": 0.7554 + }, + { + "start": 10777.94, + "end": 10779.44, + "probability": 0.762 + }, + { + "start": 10800.22, + "end": 10802.89, + "probability": 0.0643 + }, + { + "start": 10804.16, + "end": 10804.64, + "probability": 0.2342 + }, + { + "start": 10812.16, + "end": 10815.62, + "probability": 0.6343 + }, + { + "start": 10816.4, + "end": 10821.12, + "probability": 0.0827 + }, + { + "start": 10821.12, + "end": 10821.94, + "probability": 0.1248 + }, + { + "start": 10822.52, + "end": 10825.49, + "probability": 0.0095 + }, + { + "start": 10830.73, + "end": 10832.86, + "probability": 0.0742 + }, + { + "start": 10841.819, + "end": 10841.819, + "probability": 0.0 + }, + { + "start": 10841.819, + "end": 10841.819, + "probability": 0.0 + }, + { + "start": 10841.819, + "end": 10841.819, + "probability": 0.0 + }, + { + "start": 10841.819, + "end": 10841.819, + "probability": 0.0 + }, + { + "start": 10841.819, + "end": 10841.819, + "probability": 0.0 + }, + { + "start": 10841.819, + "end": 10841.819, + "probability": 0.0 + }, + { + "start": 10841.819, + "end": 10841.819, + "probability": 0.0 + } + ], + "segments_count": 3364, + "words_count": 17185, + "avg_words_per_segment": 5.1085, + "avg_segment_duration": 2.1775, + "avg_words_per_minute": 95.104, + "plenum_id": "118228", + "duration": 10841.81, + "title": null, + "plenum_date": "2023-06-20" +} \ No newline at end of file