diff --git "a/121958/metadata.json" "b/121958/metadata.json" new file mode 100644--- /dev/null +++ "b/121958/metadata.json" @@ -0,0 +1,22487 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "121958", + "quality_score": 0.8735, + "per_segment_quality_scores": [ + { + "start": 66.44, + "end": 71.34, + "probability": 0.8345 + }, + { + "start": 71.52, + "end": 72.1, + "probability": 0.6255 + }, + { + "start": 72.38, + "end": 73.06, + "probability": 0.8712 + }, + { + "start": 73.28, + "end": 76.3, + "probability": 0.5568 + }, + { + "start": 76.4, + "end": 79.46, + "probability": 0.9285 + }, + { + "start": 79.98, + "end": 82.4, + "probability": 0.7357 + }, + { + "start": 82.54, + "end": 84.68, + "probability": 0.3304 + }, + { + "start": 84.78, + "end": 85.96, + "probability": 0.9754 + }, + { + "start": 86.14, + "end": 86.82, + "probability": 0.5518 + }, + { + "start": 86.98, + "end": 87.46, + "probability": 0.9149 + }, + { + "start": 87.54, + "end": 90.08, + "probability": 0.951 + }, + { + "start": 91.31, + "end": 94.88, + "probability": 0.7007 + }, + { + "start": 94.88, + "end": 98.32, + "probability": 0.7595 + }, + { + "start": 98.86, + "end": 105.54, + "probability": 0.863 + }, + { + "start": 105.54, + "end": 109.92, + "probability": 0.9882 + }, + { + "start": 110.12, + "end": 112.6, + "probability": 0.6542 + }, + { + "start": 114.54, + "end": 116.28, + "probability": 0.6401 + }, + { + "start": 116.28, + "end": 119.92, + "probability": 0.8769 + }, + { + "start": 133.56, + "end": 133.58, + "probability": 0.0086 + }, + { + "start": 138.72, + "end": 139.14, + "probability": 0.0335 + }, + { + "start": 139.38, + "end": 141.74, + "probability": 0.1735 + }, + { + "start": 168.06, + "end": 169.12, + "probability": 0.1291 + }, + { + "start": 175.28, + "end": 179.44, + "probability": 0.4376 + }, + { + "start": 179.44, + "end": 180.18, + "probability": 0.0005 + }, + { + "start": 180.92, + "end": 183.26, + "probability": 0.0289 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.54, + "end": 259.3, + "probability": 0.8863 + }, + { + "start": 259.78, + "end": 264.44, + "probability": 0.7272 + }, + { + "start": 264.44, + "end": 267.26, + "probability": 0.8151 + }, + { + "start": 269.0, + "end": 269.8, + "probability": 0.8129 + }, + { + "start": 270.48, + "end": 272.02, + "probability": 0.7993 + }, + { + "start": 274.1, + "end": 275.48, + "probability": 0.8435 + }, + { + "start": 275.62, + "end": 281.0, + "probability": 0.9893 + }, + { + "start": 281.12, + "end": 287.68, + "probability": 0.7993 + }, + { + "start": 287.76, + "end": 290.62, + "probability": 0.8834 + }, + { + "start": 290.84, + "end": 293.08, + "probability": 0.8651 + }, + { + "start": 293.32, + "end": 294.62, + "probability": 0.5597 + }, + { + "start": 295.22, + "end": 298.16, + "probability": 0.9814 + }, + { + "start": 298.76, + "end": 303.4, + "probability": 0.9873 + }, + { + "start": 303.94, + "end": 305.64, + "probability": 0.9341 + }, + { + "start": 305.72, + "end": 310.84, + "probability": 0.986 + }, + { + "start": 310.92, + "end": 312.64, + "probability": 0.5487 + }, + { + "start": 312.7, + "end": 317.92, + "probability": 0.9985 + }, + { + "start": 318.04, + "end": 319.38, + "probability": 0.8888 + }, + { + "start": 319.46, + "end": 322.7, + "probability": 0.8189 + }, + { + "start": 323.18, + "end": 329.3, + "probability": 0.7994 + }, + { + "start": 329.48, + "end": 333.06, + "probability": 0.9948 + }, + { + "start": 333.54, + "end": 336.56, + "probability": 0.9229 + }, + { + "start": 337.48, + "end": 339.58, + "probability": 0.7697 + }, + { + "start": 340.28, + "end": 340.38, + "probability": 0.8071 + }, + { + "start": 341.3, + "end": 343.92, + "probability": 0.8227 + }, + { + "start": 344.66, + "end": 348.76, + "probability": 0.9323 + }, + { + "start": 348.92, + "end": 350.48, + "probability": 0.6998 + }, + { + "start": 350.62, + "end": 350.94, + "probability": 0.8817 + }, + { + "start": 351.02, + "end": 352.44, + "probability": 0.9053 + }, + { + "start": 352.46, + "end": 354.1, + "probability": 0.9372 + }, + { + "start": 354.58, + "end": 355.5, + "probability": 0.9453 + }, + { + "start": 355.64, + "end": 356.52, + "probability": 0.9939 + }, + { + "start": 356.74, + "end": 357.58, + "probability": 0.5227 + }, + { + "start": 358.24, + "end": 360.02, + "probability": 0.8179 + }, + { + "start": 360.14, + "end": 365.22, + "probability": 0.756 + }, + { + "start": 366.68, + "end": 370.28, + "probability": 0.8414 + }, + { + "start": 370.44, + "end": 373.32, + "probability": 0.59 + }, + { + "start": 373.42, + "end": 373.98, + "probability": 0.3744 + }, + { + "start": 374.28, + "end": 377.02, + "probability": 0.2311 + }, + { + "start": 377.04, + "end": 379.08, + "probability": 0.916 + }, + { + "start": 379.2, + "end": 382.89, + "probability": 0.9824 + }, + { + "start": 383.06, + "end": 383.48, + "probability": 0.6085 + }, + { + "start": 384.02, + "end": 385.26, + "probability": 0.576 + }, + { + "start": 385.78, + "end": 387.94, + "probability": 0.8437 + }, + { + "start": 388.02, + "end": 388.02, + "probability": 0.015 + }, + { + "start": 388.02, + "end": 393.92, + "probability": 0.9658 + }, + { + "start": 394.14, + "end": 394.7, + "probability": 0.5089 + }, + { + "start": 394.86, + "end": 399.36, + "probability": 0.9464 + }, + { + "start": 400.92, + "end": 401.8, + "probability": 0.73 + }, + { + "start": 402.32, + "end": 405.54, + "probability": 0.793 + }, + { + "start": 406.1, + "end": 410.22, + "probability": 0.9761 + }, + { + "start": 410.34, + "end": 414.24, + "probability": 0.9059 + }, + { + "start": 414.36, + "end": 415.16, + "probability": 0.6773 + }, + { + "start": 415.62, + "end": 418.72, + "probability": 0.7096 + }, + { + "start": 418.74, + "end": 420.32, + "probability": 0.0191 + }, + { + "start": 421.02, + "end": 424.32, + "probability": 0.75 + }, + { + "start": 425.26, + "end": 428.32, + "probability": 0.7682 + }, + { + "start": 428.4, + "end": 428.88, + "probability": 0.5349 + }, + { + "start": 429.1, + "end": 430.48, + "probability": 0.9375 + }, + { + "start": 430.56, + "end": 431.8, + "probability": 0.9578 + }, + { + "start": 431.8, + "end": 433.31, + "probability": 0.8793 + }, + { + "start": 435.26, + "end": 438.78, + "probability": 0.7492 + }, + { + "start": 439.88, + "end": 442.14, + "probability": 0.2364 + }, + { + "start": 442.14, + "end": 445.58, + "probability": 0.6658 + }, + { + "start": 446.46, + "end": 449.0, + "probability": 0.9155 + }, + { + "start": 449.08, + "end": 453.2, + "probability": 0.9868 + }, + { + "start": 453.2, + "end": 458.32, + "probability": 0.9222 + }, + { + "start": 458.36, + "end": 459.28, + "probability": 0.7139 + }, + { + "start": 459.96, + "end": 462.58, + "probability": 0.9968 + }, + { + "start": 463.99, + "end": 470.98, + "probability": 0.9059 + }, + { + "start": 471.04, + "end": 476.38, + "probability": 0.9395 + }, + { + "start": 477.28, + "end": 479.96, + "probability": 0.9541 + }, + { + "start": 479.96, + "end": 482.54, + "probability": 0.9528 + }, + { + "start": 482.84, + "end": 483.02, + "probability": 0.7083 + }, + { + "start": 483.22, + "end": 484.0, + "probability": 0.793 + }, + { + "start": 484.38, + "end": 485.74, + "probability": 0.6453 + }, + { + "start": 485.86, + "end": 489.26, + "probability": 0.9653 + }, + { + "start": 489.82, + "end": 492.2, + "probability": 0.9537 + }, + { + "start": 492.34, + "end": 494.22, + "probability": 0.796 + }, + { + "start": 495.06, + "end": 497.24, + "probability": 0.6995 + }, + { + "start": 497.58, + "end": 498.78, + "probability": 0.3686 + }, + { + "start": 499.12, + "end": 503.4, + "probability": 0.9694 + }, + { + "start": 503.54, + "end": 504.4, + "probability": 0.5653 + }, + { + "start": 504.66, + "end": 506.46, + "probability": 0.8415 + }, + { + "start": 506.54, + "end": 509.86, + "probability": 0.9889 + }, + { + "start": 510.0, + "end": 513.26, + "probability": 0.533 + }, + { + "start": 513.74, + "end": 516.92, + "probability": 0.5914 + }, + { + "start": 517.02, + "end": 520.98, + "probability": 0.8044 + }, + { + "start": 521.5, + "end": 526.12, + "probability": 0.9917 + }, + { + "start": 526.12, + "end": 530.58, + "probability": 0.9388 + }, + { + "start": 530.6, + "end": 535.43, + "probability": 0.9451 + }, + { + "start": 535.64, + "end": 538.58, + "probability": 0.6072 + }, + { + "start": 540.85, + "end": 544.04, + "probability": 0.6717 + }, + { + "start": 544.08, + "end": 545.42, + "probability": 0.9018 + }, + { + "start": 547.1, + "end": 550.02, + "probability": 0.9704 + }, + { + "start": 550.14, + "end": 554.06, + "probability": 0.8504 + }, + { + "start": 554.1, + "end": 558.52, + "probability": 0.9474 + }, + { + "start": 558.74, + "end": 564.34, + "probability": 0.9078 + }, + { + "start": 564.34, + "end": 569.48, + "probability": 0.9917 + }, + { + "start": 569.8, + "end": 572.4, + "probability": 0.9879 + }, + { + "start": 572.4, + "end": 578.12, + "probability": 0.9686 + }, + { + "start": 578.76, + "end": 581.32, + "probability": 0.7725 + }, + { + "start": 582.14, + "end": 586.35, + "probability": 0.9326 + }, + { + "start": 586.56, + "end": 590.52, + "probability": 0.9966 + }, + { + "start": 591.96, + "end": 595.36, + "probability": 0.5345 + }, + { + "start": 596.44, + "end": 597.64, + "probability": 0.4768 + }, + { + "start": 597.7, + "end": 598.44, + "probability": 0.7906 + }, + { + "start": 599.13, + "end": 602.94, + "probability": 0.917 + }, + { + "start": 603.46, + "end": 609.26, + "probability": 0.9566 + }, + { + "start": 609.42, + "end": 610.08, + "probability": 0.6443 + }, + { + "start": 610.53, + "end": 612.7, + "probability": 0.9789 + }, + { + "start": 612.86, + "end": 613.64, + "probability": 0.7079 + }, + { + "start": 613.7, + "end": 615.3, + "probability": 0.981 + }, + { + "start": 615.74, + "end": 616.28, + "probability": 0.6318 + }, + { + "start": 616.4, + "end": 619.54, + "probability": 0.7765 + }, + { + "start": 619.72, + "end": 623.86, + "probability": 0.628 + }, + { + "start": 624.1, + "end": 624.3, + "probability": 0.4248 + }, + { + "start": 624.52, + "end": 627.8, + "probability": 0.9355 + }, + { + "start": 629.73, + "end": 631.85, + "probability": 0.6378 + }, + { + "start": 632.04, + "end": 632.08, + "probability": 0.3406 + }, + { + "start": 632.08, + "end": 633.88, + "probability": 0.6497 + }, + { + "start": 633.96, + "end": 635.34, + "probability": 0.5656 + }, + { + "start": 635.5, + "end": 640.0, + "probability": 0.9493 + }, + { + "start": 640.08, + "end": 640.75, + "probability": 0.9788 + }, + { + "start": 641.14, + "end": 643.4, + "probability": 0.9595 + }, + { + "start": 643.68, + "end": 643.96, + "probability": 0.4832 + }, + { + "start": 644.36, + "end": 647.42, + "probability": 0.7114 + }, + { + "start": 647.52, + "end": 647.62, + "probability": 0.3467 + }, + { + "start": 647.62, + "end": 647.62, + "probability": 0.2804 + }, + { + "start": 647.62, + "end": 651.48, + "probability": 0.9925 + }, + { + "start": 651.54, + "end": 652.2, + "probability": 0.8953 + }, + { + "start": 652.32, + "end": 654.04, + "probability": 0.8171 + }, + { + "start": 654.68, + "end": 658.4, + "probability": 0.9844 + }, + { + "start": 659.1, + "end": 659.9, + "probability": 0.7859 + }, + { + "start": 659.92, + "end": 660.84, + "probability": 0.5762 + }, + { + "start": 661.0, + "end": 664.3, + "probability": 0.9777 + }, + { + "start": 664.72, + "end": 665.74, + "probability": 0.7618 + }, + { + "start": 665.82, + "end": 668.46, + "probability": 0.9067 + }, + { + "start": 668.92, + "end": 670.88, + "probability": 0.9707 + }, + { + "start": 671.14, + "end": 672.76, + "probability": 0.821 + }, + { + "start": 672.88, + "end": 678.8, + "probability": 0.986 + }, + { + "start": 679.76, + "end": 681.1, + "probability": 0.7727 + }, + { + "start": 681.24, + "end": 682.54, + "probability": 0.9822 + }, + { + "start": 682.78, + "end": 685.64, + "probability": 0.8726 + }, + { + "start": 685.74, + "end": 689.5, + "probability": 0.9331 + }, + { + "start": 690.32, + "end": 694.84, + "probability": 0.9416 + }, + { + "start": 695.0, + "end": 696.28, + "probability": 0.775 + }, + { + "start": 697.16, + "end": 698.92, + "probability": 0.7843 + }, + { + "start": 699.02, + "end": 700.0, + "probability": 0.496 + }, + { + "start": 700.48, + "end": 701.56, + "probability": 0.8786 + }, + { + "start": 701.68, + "end": 704.26, + "probability": 0.8626 + }, + { + "start": 704.96, + "end": 709.22, + "probability": 0.7734 + }, + { + "start": 709.7, + "end": 713.25, + "probability": 0.9042 + }, + { + "start": 713.98, + "end": 715.38, + "probability": 0.2251 + }, + { + "start": 715.38, + "end": 716.1, + "probability": 0.7437 + }, + { + "start": 716.34, + "end": 717.84, + "probability": 0.5715 + }, + { + "start": 717.94, + "end": 721.8, + "probability": 0.9933 + }, + { + "start": 721.8, + "end": 726.56, + "probability": 0.9938 + }, + { + "start": 726.62, + "end": 727.63, + "probability": 0.9519 + }, + { + "start": 727.8, + "end": 731.19, + "probability": 0.9863 + }, + { + "start": 731.38, + "end": 734.56, + "probability": 0.8617 + }, + { + "start": 734.56, + "end": 736.08, + "probability": 0.9398 + }, + { + "start": 736.7, + "end": 737.68, + "probability": 0.4656 + }, + { + "start": 737.84, + "end": 738.26, + "probability": 0.7233 + }, + { + "start": 738.34, + "end": 741.98, + "probability": 0.9825 + }, + { + "start": 742.2, + "end": 743.6, + "probability": 0.643 + }, + { + "start": 743.7, + "end": 744.4, + "probability": 0.1644 + }, + { + "start": 744.42, + "end": 745.42, + "probability": 0.6996 + }, + { + "start": 745.7, + "end": 746.74, + "probability": 0.5148 + }, + { + "start": 746.74, + "end": 746.8, + "probability": 0.4365 + }, + { + "start": 746.8, + "end": 748.0, + "probability": 0.9778 + }, + { + "start": 748.18, + "end": 749.88, + "probability": 0.9761 + }, + { + "start": 749.98, + "end": 755.44, + "probability": 0.9517 + }, + { + "start": 755.68, + "end": 757.22, + "probability": 0.964 + }, + { + "start": 757.4, + "end": 758.86, + "probability": 0.8473 + }, + { + "start": 759.0, + "end": 759.68, + "probability": 0.8975 + }, + { + "start": 759.78, + "end": 762.58, + "probability": 0.9863 + }, + { + "start": 762.58, + "end": 766.6, + "probability": 0.9907 + }, + { + "start": 766.72, + "end": 768.54, + "probability": 0.9982 + }, + { + "start": 769.28, + "end": 771.26, + "probability": 0.8002 + }, + { + "start": 771.4, + "end": 775.06, + "probability": 0.6007 + }, + { + "start": 775.24, + "end": 776.16, + "probability": 0.4944 + }, + { + "start": 776.2, + "end": 776.2, + "probability": 0.0608 + }, + { + "start": 776.2, + "end": 777.88, + "probability": 0.7318 + }, + { + "start": 778.34, + "end": 781.64, + "probability": 0.9787 + }, + { + "start": 781.64, + "end": 782.14, + "probability": 0.6577 + }, + { + "start": 782.52, + "end": 783.7, + "probability": 0.6546 + }, + { + "start": 783.84, + "end": 787.18, + "probability": 0.5716 + }, + { + "start": 787.2, + "end": 788.68, + "probability": 0.8963 + }, + { + "start": 788.84, + "end": 793.42, + "probability": 0.9927 + }, + { + "start": 793.44, + "end": 797.56, + "probability": 0.9126 + }, + { + "start": 798.42, + "end": 800.62, + "probability": 0.9773 + }, + { + "start": 800.68, + "end": 800.7, + "probability": 0.1282 + }, + { + "start": 800.8, + "end": 801.46, + "probability": 0.5455 + }, + { + "start": 802.98, + "end": 803.2, + "probability": 0.01 + }, + { + "start": 803.2, + "end": 803.24, + "probability": 0.5032 + }, + { + "start": 803.24, + "end": 805.12, + "probability": 0.4251 + }, + { + "start": 805.12, + "end": 805.12, + "probability": 0.1052 + }, + { + "start": 805.12, + "end": 805.12, + "probability": 0.4842 + }, + { + "start": 805.12, + "end": 807.3, + "probability": 0.9331 + }, + { + "start": 807.44, + "end": 808.07, + "probability": 0.9438 + }, + { + "start": 808.4, + "end": 808.82, + "probability": 0.8555 + }, + { + "start": 809.08, + "end": 809.3, + "probability": 0.4657 + }, + { + "start": 809.3, + "end": 810.42, + "probability": 0.8 + }, + { + "start": 810.88, + "end": 812.14, + "probability": 0.9863 + }, + { + "start": 812.42, + "end": 812.66, + "probability": 0.3531 + }, + { + "start": 812.84, + "end": 816.66, + "probability": 0.9899 + }, + { + "start": 816.72, + "end": 818.88, + "probability": 0.9929 + }, + { + "start": 819.06, + "end": 821.0, + "probability": 0.9841 + }, + { + "start": 821.2, + "end": 822.38, + "probability": 0.516 + }, + { + "start": 822.76, + "end": 826.92, + "probability": 0.6158 + }, + { + "start": 827.16, + "end": 827.16, + "probability": 0.0445 + }, + { + "start": 827.36, + "end": 828.5, + "probability": 0.6332 + }, + { + "start": 828.64, + "end": 828.7, + "probability": 0.5321 + }, + { + "start": 828.7, + "end": 829.92, + "probability": 0.6209 + }, + { + "start": 830.06, + "end": 832.16, + "probability": 0.9373 + }, + { + "start": 834.0, + "end": 837.24, + "probability": 0.7628 + }, + { + "start": 837.28, + "end": 838.41, + "probability": 0.8586 + }, + { + "start": 839.08, + "end": 840.48, + "probability": 0.8761 + }, + { + "start": 840.52, + "end": 842.68, + "probability": 0.2465 + }, + { + "start": 843.46, + "end": 844.82, + "probability": 0.4843 + }, + { + "start": 844.86, + "end": 845.02, + "probability": 0.0132 + }, + { + "start": 845.02, + "end": 845.02, + "probability": 0.0504 + }, + { + "start": 845.02, + "end": 846.3, + "probability": 0.8392 + }, + { + "start": 846.36, + "end": 848.16, + "probability": 0.3953 + }, + { + "start": 848.58, + "end": 849.98, + "probability": 0.7393 + }, + { + "start": 850.62, + "end": 851.3, + "probability": 0.7659 + }, + { + "start": 851.4, + "end": 853.82, + "probability": 0.5968 + }, + { + "start": 853.9, + "end": 856.24, + "probability": 0.5454 + }, + { + "start": 857.72, + "end": 859.98, + "probability": 0.0215 + }, + { + "start": 862.78, + "end": 862.9, + "probability": 0.0918 + }, + { + "start": 862.9, + "end": 862.9, + "probability": 0.0719 + }, + { + "start": 862.9, + "end": 862.9, + "probability": 0.0604 + }, + { + "start": 862.9, + "end": 864.89, + "probability": 0.2766 + }, + { + "start": 865.64, + "end": 868.54, + "probability": 0.954 + }, + { + "start": 869.1, + "end": 869.52, + "probability": 0.8321 + }, + { + "start": 870.02, + "end": 870.58, + "probability": 0.8022 + }, + { + "start": 870.68, + "end": 871.54, + "probability": 0.3053 + }, + { + "start": 871.64, + "end": 872.49, + "probability": 0.4323 + }, + { + "start": 873.06, + "end": 875.6, + "probability": 0.0321 + }, + { + "start": 876.86, + "end": 878.7, + "probability": 0.5363 + }, + { + "start": 878.86, + "end": 881.27, + "probability": 0.9658 + }, + { + "start": 882.12, + "end": 884.14, + "probability": 0.7492 + }, + { + "start": 884.76, + "end": 886.6, + "probability": 0.9438 + }, + { + "start": 886.6, + "end": 889.46, + "probability": 0.7843 + }, + { + "start": 889.52, + "end": 891.86, + "probability": 0.7669 + }, + { + "start": 892.32, + "end": 894.7, + "probability": 0.9057 + }, + { + "start": 894.8, + "end": 899.29, + "probability": 0.9796 + }, + { + "start": 900.24, + "end": 901.76, + "probability": 0.7577 + }, + { + "start": 907.94, + "end": 908.38, + "probability": 0.7694 + }, + { + "start": 910.54, + "end": 912.08, + "probability": 0.8258 + }, + { + "start": 912.24, + "end": 912.78, + "probability": 0.878 + }, + { + "start": 912.86, + "end": 915.18, + "probability": 0.8936 + }, + { + "start": 916.86, + "end": 921.14, + "probability": 0.971 + }, + { + "start": 922.7, + "end": 923.68, + "probability": 0.8833 + }, + { + "start": 923.84, + "end": 925.44, + "probability": 0.7816 + }, + { + "start": 926.62, + "end": 926.98, + "probability": 0.6211 + }, + { + "start": 927.18, + "end": 927.76, + "probability": 0.9065 + }, + { + "start": 928.14, + "end": 931.02, + "probability": 0.9326 + }, + { + "start": 931.86, + "end": 933.76, + "probability": 0.9284 + }, + { + "start": 934.0, + "end": 935.36, + "probability": 0.7629 + }, + { + "start": 935.86, + "end": 938.74, + "probability": 0.8457 + }, + { + "start": 938.74, + "end": 944.5, + "probability": 0.9649 + }, + { + "start": 945.2, + "end": 949.88, + "probability": 0.6833 + }, + { + "start": 950.72, + "end": 953.18, + "probability": 0.8403 + }, + { + "start": 954.22, + "end": 955.68, + "probability": 0.8422 + }, + { + "start": 956.86, + "end": 960.46, + "probability": 0.7996 + }, + { + "start": 960.82, + "end": 961.38, + "probability": 0.4612 + }, + { + "start": 961.38, + "end": 961.86, + "probability": 0.703 + }, + { + "start": 962.5, + "end": 963.54, + "probability": 0.7844 + }, + { + "start": 963.74, + "end": 964.84, + "probability": 0.8697 + }, + { + "start": 964.96, + "end": 965.82, + "probability": 0.8509 + }, + { + "start": 965.94, + "end": 966.46, + "probability": 0.7379 + }, + { + "start": 966.68, + "end": 969.96, + "probability": 0.9187 + }, + { + "start": 970.38, + "end": 971.61, + "probability": 0.8128 + }, + { + "start": 972.52, + "end": 977.06, + "probability": 0.9274 + }, + { + "start": 977.24, + "end": 978.74, + "probability": 0.9904 + }, + { + "start": 979.48, + "end": 980.48, + "probability": 0.7802 + }, + { + "start": 980.48, + "end": 980.98, + "probability": 0.4928 + }, + { + "start": 982.26, + "end": 984.38, + "probability": 0.7671 + }, + { + "start": 985.08, + "end": 991.06, + "probability": 0.9719 + }, + { + "start": 991.78, + "end": 993.0, + "probability": 0.9824 + }, + { + "start": 993.36, + "end": 996.18, + "probability": 0.954 + }, + { + "start": 996.96, + "end": 997.1, + "probability": 0.0587 + }, + { + "start": 997.12, + "end": 998.14, + "probability": 0.9721 + }, + { + "start": 998.78, + "end": 999.32, + "probability": 0.6459 + }, + { + "start": 1002.93, + "end": 1005.08, + "probability": 0.9028 + }, + { + "start": 1009.06, + "end": 1011.76, + "probability": 0.9121 + }, + { + "start": 1012.9, + "end": 1015.08, + "probability": 0.8503 + }, + { + "start": 1016.58, + "end": 1018.48, + "probability": 0.9474 + }, + { + "start": 1018.68, + "end": 1020.08, + "probability": 0.9261 + }, + { + "start": 1021.28, + "end": 1022.74, + "probability": 0.9871 + }, + { + "start": 1023.28, + "end": 1023.94, + "probability": 0.4733 + }, + { + "start": 1025.0, + "end": 1028.84, + "probability": 0.8266 + }, + { + "start": 1028.92, + "end": 1030.12, + "probability": 0.7935 + }, + { + "start": 1031.56, + "end": 1034.48, + "probability": 0.9902 + }, + { + "start": 1034.48, + "end": 1037.42, + "probability": 0.9851 + }, + { + "start": 1038.26, + "end": 1043.64, + "probability": 0.929 + }, + { + "start": 1043.64, + "end": 1045.56, + "probability": 0.5851 + }, + { + "start": 1047.16, + "end": 1048.02, + "probability": 0.7593 + }, + { + "start": 1048.62, + "end": 1049.92, + "probability": 0.7802 + }, + { + "start": 1051.16, + "end": 1051.66, + "probability": 0.87 + }, + { + "start": 1051.74, + "end": 1057.84, + "probability": 0.9447 + }, + { + "start": 1059.0, + "end": 1063.22, + "probability": 0.9974 + }, + { + "start": 1063.92, + "end": 1065.86, + "probability": 0.9916 + }, + { + "start": 1067.48, + "end": 1068.7, + "probability": 0.9928 + }, + { + "start": 1070.24, + "end": 1074.56, + "probability": 0.772 + }, + { + "start": 1075.66, + "end": 1077.94, + "probability": 0.9495 + }, + { + "start": 1078.06, + "end": 1082.52, + "probability": 0.6409 + }, + { + "start": 1083.16, + "end": 1085.46, + "probability": 0.9835 + }, + { + "start": 1085.46, + "end": 1093.36, + "probability": 0.974 + }, + { + "start": 1093.36, + "end": 1096.46, + "probability": 0.8502 + }, + { + "start": 1097.28, + "end": 1103.7, + "probability": 0.9711 + }, + { + "start": 1103.84, + "end": 1105.79, + "probability": 0.2913 + }, + { + "start": 1107.2, + "end": 1111.12, + "probability": 0.9868 + }, + { + "start": 1112.0, + "end": 1115.26, + "probability": 0.9873 + }, + { + "start": 1116.28, + "end": 1118.96, + "probability": 0.9937 + }, + { + "start": 1120.1, + "end": 1123.34, + "probability": 0.96 + }, + { + "start": 1124.3, + "end": 1127.89, + "probability": 0.9852 + }, + { + "start": 1128.6, + "end": 1128.8, + "probability": 0.96 + }, + { + "start": 1128.84, + "end": 1129.46, + "probability": 0.9137 + }, + { + "start": 1129.58, + "end": 1132.03, + "probability": 0.869 + }, + { + "start": 1132.88, + "end": 1134.62, + "probability": 0.9879 + }, + { + "start": 1135.84, + "end": 1137.78, + "probability": 0.8945 + }, + { + "start": 1138.46, + "end": 1140.42, + "probability": 0.9956 + }, + { + "start": 1141.02, + "end": 1143.04, + "probability": 0.5914 + }, + { + "start": 1144.54, + "end": 1148.94, + "probability": 0.83 + }, + { + "start": 1150.34, + "end": 1152.7, + "probability": 0.8914 + }, + { + "start": 1152.84, + "end": 1153.7, + "probability": 0.4255 + }, + { + "start": 1153.82, + "end": 1154.8, + "probability": 0.7313 + }, + { + "start": 1155.28, + "end": 1156.42, + "probability": 0.7691 + }, + { + "start": 1156.44, + "end": 1157.58, + "probability": 0.9175 + }, + { + "start": 1158.14, + "end": 1162.72, + "probability": 0.9792 + }, + { + "start": 1163.72, + "end": 1165.72, + "probability": 0.9038 + }, + { + "start": 1165.96, + "end": 1169.6, + "probability": 0.9058 + }, + { + "start": 1170.5, + "end": 1172.5, + "probability": 0.8267 + }, + { + "start": 1173.36, + "end": 1174.34, + "probability": 0.7367 + }, + { + "start": 1175.28, + "end": 1181.92, + "probability": 0.9461 + }, + { + "start": 1183.08, + "end": 1187.48, + "probability": 0.9963 + }, + { + "start": 1188.28, + "end": 1192.94, + "probability": 0.999 + }, + { + "start": 1193.5, + "end": 1195.88, + "probability": 0.943 + }, + { + "start": 1196.42, + "end": 1199.42, + "probability": 0.8955 + }, + { + "start": 1200.2, + "end": 1201.32, + "probability": 0.9643 + }, + { + "start": 1202.08, + "end": 1205.94, + "probability": 0.987 + }, + { + "start": 1206.62, + "end": 1209.02, + "probability": 0.9038 + }, + { + "start": 1209.6, + "end": 1214.38, + "probability": 0.985 + }, + { + "start": 1215.4, + "end": 1219.46, + "probability": 0.9562 + }, + { + "start": 1220.24, + "end": 1225.28, + "probability": 0.9863 + }, + { + "start": 1226.73, + "end": 1233.04, + "probability": 0.9798 + }, + { + "start": 1233.7, + "end": 1235.22, + "probability": 0.7602 + }, + { + "start": 1236.4, + "end": 1237.48, + "probability": 0.8828 + }, + { + "start": 1237.88, + "end": 1239.22, + "probability": 0.7238 + }, + { + "start": 1239.54, + "end": 1242.46, + "probability": 0.7778 + }, + { + "start": 1243.12, + "end": 1246.1, + "probability": 0.9956 + }, + { + "start": 1247.32, + "end": 1247.82, + "probability": 0.5763 + }, + { + "start": 1247.96, + "end": 1251.88, + "probability": 0.8309 + }, + { + "start": 1252.45, + "end": 1254.78, + "probability": 0.8877 + }, + { + "start": 1256.04, + "end": 1258.64, + "probability": 0.6684 + }, + { + "start": 1260.08, + "end": 1263.88, + "probability": 0.8112 + }, + { + "start": 1265.1, + "end": 1268.66, + "probability": 0.6452 + }, + { + "start": 1269.9, + "end": 1271.7, + "probability": 0.6283 + }, + { + "start": 1272.32, + "end": 1273.14, + "probability": 0.8349 + }, + { + "start": 1274.16, + "end": 1276.73, + "probability": 0.6952 + }, + { + "start": 1277.38, + "end": 1279.8, + "probability": 0.9143 + }, + { + "start": 1280.06, + "end": 1281.42, + "probability": 0.9741 + }, + { + "start": 1282.76, + "end": 1285.74, + "probability": 0.9391 + }, + { + "start": 1286.26, + "end": 1288.36, + "probability": 0.9265 + }, + { + "start": 1288.92, + "end": 1293.42, + "probability": 0.5063 + }, + { + "start": 1295.16, + "end": 1297.74, + "probability": 0.8744 + }, + { + "start": 1298.64, + "end": 1299.84, + "probability": 0.9904 + }, + { + "start": 1300.66, + "end": 1302.6, + "probability": 0.9915 + }, + { + "start": 1303.48, + "end": 1305.52, + "probability": 0.8179 + }, + { + "start": 1305.68, + "end": 1306.92, + "probability": 0.8528 + }, + { + "start": 1307.48, + "end": 1307.92, + "probability": 0.8857 + }, + { + "start": 1308.0, + "end": 1310.18, + "probability": 0.9869 + }, + { + "start": 1310.28, + "end": 1311.52, + "probability": 0.6925 + }, + { + "start": 1311.56, + "end": 1312.6, + "probability": 0.7283 + }, + { + "start": 1312.66, + "end": 1315.2, + "probability": 0.9421 + }, + { + "start": 1316.52, + "end": 1319.48, + "probability": 0.8831 + }, + { + "start": 1320.42, + "end": 1325.26, + "probability": 0.9512 + }, + { + "start": 1326.18, + "end": 1326.18, + "probability": 0.3045 + }, + { + "start": 1326.18, + "end": 1326.62, + "probability": 0.7331 + }, + { + "start": 1326.94, + "end": 1330.36, + "probability": 0.593 + }, + { + "start": 1336.62, + "end": 1338.12, + "probability": 0.8367 + }, + { + "start": 1339.32, + "end": 1343.24, + "probability": 0.9496 + }, + { + "start": 1343.82, + "end": 1345.74, + "probability": 0.4768 + }, + { + "start": 1345.88, + "end": 1348.7, + "probability": 0.6383 + }, + { + "start": 1348.8, + "end": 1350.16, + "probability": 0.8601 + }, + { + "start": 1350.22, + "end": 1350.38, + "probability": 0.7302 + }, + { + "start": 1351.62, + "end": 1355.62, + "probability": 0.7186 + }, + { + "start": 1356.44, + "end": 1357.3, + "probability": 0.714 + }, + { + "start": 1358.1, + "end": 1358.72, + "probability": 0.5871 + }, + { + "start": 1361.21, + "end": 1363.88, + "probability": 0.9077 + }, + { + "start": 1364.26, + "end": 1365.84, + "probability": 0.9914 + }, + { + "start": 1367.72, + "end": 1369.98, + "probability": 0.5516 + }, + { + "start": 1371.8, + "end": 1373.4, + "probability": 0.9619 + }, + { + "start": 1375.12, + "end": 1376.76, + "probability": 0.7495 + }, + { + "start": 1377.38, + "end": 1380.48, + "probability": 0.9949 + }, + { + "start": 1382.1, + "end": 1382.98, + "probability": 0.971 + }, + { + "start": 1383.58, + "end": 1387.22, + "probability": 0.9653 + }, + { + "start": 1388.02, + "end": 1389.5, + "probability": 0.8172 + }, + { + "start": 1389.66, + "end": 1393.44, + "probability": 0.7695 + }, + { + "start": 1394.42, + "end": 1396.24, + "probability": 0.7976 + }, + { + "start": 1396.34, + "end": 1397.84, + "probability": 0.822 + }, + { + "start": 1398.52, + "end": 1400.52, + "probability": 0.9836 + }, + { + "start": 1404.38, + "end": 1404.56, + "probability": 0.6819 + }, + { + "start": 1407.92, + "end": 1408.64, + "probability": 0.5705 + }, + { + "start": 1408.72, + "end": 1411.12, + "probability": 0.8345 + }, + { + "start": 1411.12, + "end": 1411.92, + "probability": 0.3896 + }, + { + "start": 1412.02, + "end": 1413.24, + "probability": 0.9944 + }, + { + "start": 1414.04, + "end": 1417.12, + "probability": 0.919 + }, + { + "start": 1417.3, + "end": 1421.44, + "probability": 0.7547 + }, + { + "start": 1423.83, + "end": 1426.03, + "probability": 0.7646 + }, + { + "start": 1426.42, + "end": 1430.3, + "probability": 0.9942 + }, + { + "start": 1431.04, + "end": 1433.08, + "probability": 0.8365 + }, + { + "start": 1433.72, + "end": 1439.08, + "probability": 0.9968 + }, + { + "start": 1439.46, + "end": 1439.64, + "probability": 0.6689 + }, + { + "start": 1439.88, + "end": 1440.34, + "probability": 0.5816 + }, + { + "start": 1440.42, + "end": 1441.56, + "probability": 0.7078 + }, + { + "start": 1441.8, + "end": 1443.42, + "probability": 0.913 + }, + { + "start": 1443.56, + "end": 1444.86, + "probability": 0.959 + }, + { + "start": 1447.36, + "end": 1447.86, + "probability": 0.9233 + }, + { + "start": 1448.04, + "end": 1450.34, + "probability": 0.9932 + }, + { + "start": 1450.4, + "end": 1451.66, + "probability": 0.9951 + }, + { + "start": 1452.1, + "end": 1453.66, + "probability": 0.9116 + }, + { + "start": 1454.18, + "end": 1458.01, + "probability": 0.9801 + }, + { + "start": 1459.08, + "end": 1463.54, + "probability": 0.8435 + }, + { + "start": 1464.38, + "end": 1469.5, + "probability": 0.998 + }, + { + "start": 1469.98, + "end": 1470.95, + "probability": 0.7593 + }, + { + "start": 1472.22, + "end": 1474.92, + "probability": 0.8186 + }, + { + "start": 1474.96, + "end": 1475.22, + "probability": 0.8253 + }, + { + "start": 1475.44, + "end": 1475.9, + "probability": 0.6851 + }, + { + "start": 1475.98, + "end": 1477.18, + "probability": 0.9286 + }, + { + "start": 1477.62, + "end": 1478.98, + "probability": 0.9796 + }, + { + "start": 1484.16, + "end": 1485.62, + "probability": 0.6082 + }, + { + "start": 1486.8, + "end": 1487.82, + "probability": 0.9136 + }, + { + "start": 1488.14, + "end": 1491.74, + "probability": 0.9393 + }, + { + "start": 1492.16, + "end": 1495.66, + "probability": 0.9811 + }, + { + "start": 1496.4, + "end": 1500.6, + "probability": 0.8171 + }, + { + "start": 1501.58, + "end": 1506.36, + "probability": 0.977 + }, + { + "start": 1507.0, + "end": 1511.24, + "probability": 0.9907 + }, + { + "start": 1511.32, + "end": 1516.62, + "probability": 0.9158 + }, + { + "start": 1516.98, + "end": 1517.28, + "probability": 0.7325 + }, + { + "start": 1517.56, + "end": 1518.5, + "probability": 0.9236 + }, + { + "start": 1518.64, + "end": 1518.98, + "probability": 0.7932 + }, + { + "start": 1519.76, + "end": 1522.94, + "probability": 0.6719 + }, + { + "start": 1523.98, + "end": 1530.68, + "probability": 0.9766 + }, + { + "start": 1531.42, + "end": 1533.22, + "probability": 0.999 + }, + { + "start": 1533.82, + "end": 1538.28, + "probability": 0.9901 + }, + { + "start": 1539.67, + "end": 1544.5, + "probability": 0.9354 + }, + { + "start": 1544.58, + "end": 1546.68, + "probability": 0.9921 + }, + { + "start": 1546.78, + "end": 1547.5, + "probability": 0.6174 + }, + { + "start": 1547.6, + "end": 1548.4, + "probability": 0.8466 + }, + { + "start": 1549.26, + "end": 1549.84, + "probability": 0.7858 + }, + { + "start": 1550.4, + "end": 1551.62, + "probability": 0.9728 + }, + { + "start": 1552.46, + "end": 1555.44, + "probability": 0.9748 + }, + { + "start": 1555.56, + "end": 1556.47, + "probability": 0.5208 + }, + { + "start": 1559.29, + "end": 1560.65, + "probability": 0.2657 + }, + { + "start": 1561.22, + "end": 1562.06, + "probability": 0.8341 + }, + { + "start": 1564.28, + "end": 1566.36, + "probability": 0.4564 + }, + { + "start": 1566.88, + "end": 1571.78, + "probability": 0.9619 + }, + { + "start": 1572.4, + "end": 1573.28, + "probability": 0.7014 + }, + { + "start": 1574.0, + "end": 1575.22, + "probability": 0.6684 + }, + { + "start": 1575.74, + "end": 1576.06, + "probability": 0.036 + }, + { + "start": 1576.06, + "end": 1576.06, + "probability": 0.0562 + }, + { + "start": 1576.2, + "end": 1576.2, + "probability": 0.4784 + }, + { + "start": 1576.5, + "end": 1576.6, + "probability": 0.4584 + }, + { + "start": 1576.68, + "end": 1577.42, + "probability": 0.5372 + }, + { + "start": 1577.52, + "end": 1579.26, + "probability": 0.6171 + }, + { + "start": 1580.04, + "end": 1582.0, + "probability": 0.8955 + }, + { + "start": 1582.86, + "end": 1583.84, + "probability": 0.9427 + }, + { + "start": 1584.66, + "end": 1585.9, + "probability": 0.9801 + }, + { + "start": 1587.1, + "end": 1589.8, + "probability": 0.7078 + }, + { + "start": 1589.94, + "end": 1590.72, + "probability": 0.9734 + }, + { + "start": 1590.94, + "end": 1593.22, + "probability": 0.7961 + }, + { + "start": 1594.02, + "end": 1598.9, + "probability": 0.9684 + }, + { + "start": 1599.0, + "end": 1600.32, + "probability": 0.9587 + }, + { + "start": 1601.0, + "end": 1604.26, + "probability": 0.975 + }, + { + "start": 1604.36, + "end": 1605.82, + "probability": 0.7008 + }, + { + "start": 1606.12, + "end": 1607.08, + "probability": 0.864 + }, + { + "start": 1607.7, + "end": 1608.56, + "probability": 0.6615 + }, + { + "start": 1609.38, + "end": 1611.74, + "probability": 0.9655 + }, + { + "start": 1612.84, + "end": 1617.78, + "probability": 0.7367 + }, + { + "start": 1618.84, + "end": 1621.72, + "probability": 0.9968 + }, + { + "start": 1622.54, + "end": 1627.06, + "probability": 0.9183 + }, + { + "start": 1627.06, + "end": 1630.42, + "probability": 0.7276 + }, + { + "start": 1630.56, + "end": 1631.9, + "probability": 0.9969 + }, + { + "start": 1632.58, + "end": 1633.76, + "probability": 0.857 + }, + { + "start": 1634.48, + "end": 1637.28, + "probability": 0.9971 + }, + { + "start": 1637.34, + "end": 1640.88, + "probability": 0.9991 + }, + { + "start": 1641.44, + "end": 1642.81, + "probability": 0.9946 + }, + { + "start": 1642.96, + "end": 1644.93, + "probability": 0.7781 + }, + { + "start": 1645.28, + "end": 1647.0, + "probability": 0.7057 + }, + { + "start": 1647.1, + "end": 1647.72, + "probability": 0.8185 + }, + { + "start": 1647.74, + "end": 1648.42, + "probability": 0.8091 + }, + { + "start": 1649.26, + "end": 1651.86, + "probability": 0.9917 + }, + { + "start": 1652.62, + "end": 1653.04, + "probability": 0.9081 + }, + { + "start": 1653.76, + "end": 1654.55, + "probability": 0.6949 + }, + { + "start": 1655.16, + "end": 1657.88, + "probability": 0.9932 + }, + { + "start": 1658.54, + "end": 1663.42, + "probability": 0.8919 + }, + { + "start": 1663.92, + "end": 1665.43, + "probability": 0.9272 + }, + { + "start": 1666.7, + "end": 1669.84, + "probability": 0.859 + }, + { + "start": 1670.6, + "end": 1671.82, + "probability": 0.9988 + }, + { + "start": 1671.88, + "end": 1674.54, + "probability": 0.9592 + }, + { + "start": 1675.08, + "end": 1677.48, + "probability": 0.783 + }, + { + "start": 1678.08, + "end": 1682.32, + "probability": 0.9146 + }, + { + "start": 1682.9, + "end": 1684.62, + "probability": 0.7033 + }, + { + "start": 1685.6, + "end": 1690.34, + "probability": 0.9704 + }, + { + "start": 1690.34, + "end": 1693.8, + "probability": 0.9506 + }, + { + "start": 1694.26, + "end": 1697.78, + "probability": 0.9875 + }, + { + "start": 1698.16, + "end": 1699.42, + "probability": 0.9927 + }, + { + "start": 1700.98, + "end": 1704.48, + "probability": 0.9631 + }, + { + "start": 1705.1, + "end": 1706.78, + "probability": 0.9945 + }, + { + "start": 1707.36, + "end": 1709.4, + "probability": 0.9762 + }, + { + "start": 1710.02, + "end": 1711.16, + "probability": 0.7294 + }, + { + "start": 1711.42, + "end": 1713.56, + "probability": 0.6567 + }, + { + "start": 1714.28, + "end": 1715.22, + "probability": 0.6627 + }, + { + "start": 1715.28, + "end": 1716.56, + "probability": 0.9343 + }, + { + "start": 1716.92, + "end": 1719.52, + "probability": 0.9425 + }, + { + "start": 1720.88, + "end": 1723.6, + "probability": 0.9902 + }, + { + "start": 1724.14, + "end": 1724.9, + "probability": 0.7453 + }, + { + "start": 1725.72, + "end": 1726.38, + "probability": 0.9164 + }, + { + "start": 1726.46, + "end": 1730.08, + "probability": 0.9122 + }, + { + "start": 1730.52, + "end": 1731.74, + "probability": 0.5547 + }, + { + "start": 1732.52, + "end": 1734.78, + "probability": 0.9699 + }, + { + "start": 1735.3, + "end": 1735.94, + "probability": 0.7861 + }, + { + "start": 1736.12, + "end": 1737.58, + "probability": 0.9709 + }, + { + "start": 1737.66, + "end": 1741.14, + "probability": 0.999 + }, + { + "start": 1741.54, + "end": 1742.6, + "probability": 0.9725 + }, + { + "start": 1745.74, + "end": 1745.74, + "probability": 0.1322 + }, + { + "start": 1745.74, + "end": 1749.48, + "probability": 0.2848 + }, + { + "start": 1749.62, + "end": 1753.39, + "probability": 0.7739 + }, + { + "start": 1754.22, + "end": 1755.84, + "probability": 0.8945 + }, + { + "start": 1756.7, + "end": 1757.32, + "probability": 0.5411 + }, + { + "start": 1757.94, + "end": 1760.0, + "probability": 0.9806 + }, + { + "start": 1761.24, + "end": 1763.5, + "probability": 0.9834 + }, + { + "start": 1764.08, + "end": 1768.96, + "probability": 0.8853 + }, + { + "start": 1769.32, + "end": 1770.6, + "probability": 0.9712 + }, + { + "start": 1771.61, + "end": 1773.34, + "probability": 0.6848 + }, + { + "start": 1773.42, + "end": 1776.6, + "probability": 0.957 + }, + { + "start": 1776.68, + "end": 1778.06, + "probability": 0.9864 + }, + { + "start": 1778.18, + "end": 1779.54, + "probability": 0.8659 + }, + { + "start": 1779.96, + "end": 1783.56, + "probability": 0.991 + }, + { + "start": 1784.08, + "end": 1785.56, + "probability": 0.9956 + }, + { + "start": 1785.74, + "end": 1785.94, + "probability": 0.8454 + }, + { + "start": 1786.64, + "end": 1787.62, + "probability": 0.7438 + }, + { + "start": 1787.76, + "end": 1787.96, + "probability": 0.666 + }, + { + "start": 1788.06, + "end": 1789.1, + "probability": 0.9583 + }, + { + "start": 1789.24, + "end": 1792.52, + "probability": 0.9583 + }, + { + "start": 1792.56, + "end": 1793.94, + "probability": 0.9542 + }, + { + "start": 1794.7, + "end": 1796.62, + "probability": 0.883 + }, + { + "start": 1797.54, + "end": 1797.54, + "probability": 0.0408 + }, + { + "start": 1797.54, + "end": 1802.22, + "probability": 0.9938 + }, + { + "start": 1802.88, + "end": 1804.44, + "probability": 0.999 + }, + { + "start": 1805.52, + "end": 1807.96, + "probability": 0.0312 + }, + { + "start": 1811.98, + "end": 1812.52, + "probability": 0.0332 + }, + { + "start": 1812.66, + "end": 1813.54, + "probability": 0.0684 + }, + { + "start": 1813.54, + "end": 1813.64, + "probability": 0.3003 + }, + { + "start": 1813.64, + "end": 1813.64, + "probability": 0.5146 + }, + { + "start": 1813.64, + "end": 1814.66, + "probability": 0.614 + }, + { + "start": 1814.74, + "end": 1818.64, + "probability": 0.0316 + }, + { + "start": 1819.02, + "end": 1820.88, + "probability": 0.1978 + }, + { + "start": 1821.42, + "end": 1821.48, + "probability": 0.0051 + }, + { + "start": 1821.48, + "end": 1829.56, + "probability": 0.0603 + }, + { + "start": 1834.14, + "end": 1834.4, + "probability": 0.1577 + }, + { + "start": 1834.56, + "end": 1835.8, + "probability": 0.5699 + }, + { + "start": 1835.8, + "end": 1835.96, + "probability": 0.051 + }, + { + "start": 1835.96, + "end": 1838.46, + "probability": 0.7671 + }, + { + "start": 1838.46, + "end": 1839.44, + "probability": 0.5105 + }, + { + "start": 1839.64, + "end": 1839.78, + "probability": 0.2175 + }, + { + "start": 1839.78, + "end": 1842.04, + "probability": 0.0394 + }, + { + "start": 1842.18, + "end": 1842.86, + "probability": 0.1759 + }, + { + "start": 1843.08, + "end": 1846.66, + "probability": 0.0482 + }, + { + "start": 1846.66, + "end": 1848.49, + "probability": 0.0893 + }, + { + "start": 1848.82, + "end": 1849.18, + "probability": 0.1056 + }, + { + "start": 1849.18, + "end": 1849.18, + "probability": 0.4028 + }, + { + "start": 1849.28, + "end": 1849.4, + "probability": 0.1218 + }, + { + "start": 1849.4, + "end": 1852.12, + "probability": 0.1009 + }, + { + "start": 1852.34, + "end": 1852.62, + "probability": 0.0002 + }, + { + "start": 1854.27, + "end": 1855.2, + "probability": 0.112 + }, + { + "start": 1855.36, + "end": 1856.64, + "probability": 0.1006 + }, + { + "start": 1857.66, + "end": 1858.16, + "probability": 0.0527 + }, + { + "start": 1858.62, + "end": 1859.1, + "probability": 0.1924 + }, + { + "start": 1859.1, + "end": 1859.87, + "probability": 0.0871 + }, + { + "start": 1860.8, + "end": 1861.06, + "probability": 0.2439 + }, + { + "start": 1897.0, + "end": 1897.0, + "probability": 0.0 + }, + { + "start": 1897.0, + "end": 1897.0, + "probability": 0.0 + }, + { + "start": 1897.0, + "end": 1897.0, + "probability": 0.0 + }, + { + "start": 1897.0, + "end": 1897.0, + "probability": 0.0 + }, + { + "start": 1897.0, + "end": 1897.0, + "probability": 0.0 + }, + { + "start": 1897.0, + "end": 1897.0, + "probability": 0.0 + }, + { + "start": 1897.0, + "end": 1897.0, + "probability": 0.0 + }, + { + "start": 1897.0, + "end": 1897.0, + "probability": 0.0 + }, + { + "start": 1897.0, + "end": 1897.0, + "probability": 0.0 + }, + { + "start": 1897.0, + "end": 1897.0, + "probability": 0.0 + }, + { + "start": 1897.0, + "end": 1897.0, + "probability": 0.0 + }, + { + "start": 1897.0, + "end": 1897.0, + "probability": 0.0 + }, + { + "start": 1897.0, + "end": 1897.0, + "probability": 0.0 + }, + { + "start": 1897.0, + "end": 1897.0, + "probability": 0.0 + }, + { + "start": 1897.0, + "end": 1897.0, + "probability": 0.0 + }, + { + "start": 1897.82, + "end": 1898.18, + "probability": 0.0104 + }, + { + "start": 1898.18, + "end": 1898.18, + "probability": 0.028 + }, + { + "start": 1898.18, + "end": 1898.18, + "probability": 0.0206 + }, + { + "start": 1898.18, + "end": 1898.48, + "probability": 0.1286 + }, + { + "start": 1899.66, + "end": 1904.42, + "probability": 0.5779 + }, + { + "start": 1905.32, + "end": 1907.72, + "probability": 0.4981 + }, + { + "start": 1908.72, + "end": 1909.26, + "probability": 0.6595 + }, + { + "start": 1910.06, + "end": 1915.64, + "probability": 0.9895 + }, + { + "start": 1915.7, + "end": 1916.74, + "probability": 0.9649 + }, + { + "start": 1917.48, + "end": 1918.98, + "probability": 0.9747 + }, + { + "start": 1919.76, + "end": 1923.36, + "probability": 0.988 + }, + { + "start": 1923.52, + "end": 1926.3, + "probability": 0.9901 + }, + { + "start": 1927.34, + "end": 1929.72, + "probability": 0.9214 + }, + { + "start": 1929.82, + "end": 1934.2, + "probability": 0.9946 + }, + { + "start": 1935.18, + "end": 1935.86, + "probability": 0.3167 + }, + { + "start": 1936.7, + "end": 1942.26, + "probability": 0.5742 + }, + { + "start": 1943.28, + "end": 1943.6, + "probability": 0.5213 + }, + { + "start": 1945.78, + "end": 1948.66, + "probability": 0.2355 + }, + { + "start": 1949.36, + "end": 1951.52, + "probability": 0.0272 + }, + { + "start": 1951.92, + "end": 1952.98, + "probability": 0.0208 + }, + { + "start": 1953.58, + "end": 1954.38, + "probability": 0.0457 + }, + { + "start": 1955.26, + "end": 1955.36, + "probability": 0.0088 + }, + { + "start": 1955.36, + "end": 1955.36, + "probability": 0.1403 + }, + { + "start": 1955.36, + "end": 1955.36, + "probability": 0.051 + }, + { + "start": 1955.36, + "end": 1955.36, + "probability": 0.157 + }, + { + "start": 1955.36, + "end": 1955.36, + "probability": 0.0667 + }, + { + "start": 1955.36, + "end": 1957.78, + "probability": 0.3796 + }, + { + "start": 1958.52, + "end": 1958.94, + "probability": 0.8276 + }, + { + "start": 1959.18, + "end": 1963.2, + "probability": 0.9064 + }, + { + "start": 1963.3, + "end": 1964.14, + "probability": 0.6603 + }, + { + "start": 1964.6, + "end": 1965.5, + "probability": 0.9692 + }, + { + "start": 1965.68, + "end": 1967.96, + "probability": 0.8124 + }, + { + "start": 1968.1, + "end": 1968.86, + "probability": 0.9255 + }, + { + "start": 1969.08, + "end": 1971.34, + "probability": 0.7546 + }, + { + "start": 1971.98, + "end": 1972.94, + "probability": 0.0335 + }, + { + "start": 1974.91, + "end": 1975.36, + "probability": 0.2295 + }, + { + "start": 1975.36, + "end": 1975.36, + "probability": 0.2078 + }, + { + "start": 1975.36, + "end": 1975.36, + "probability": 0.0211 + }, + { + "start": 1975.36, + "end": 1976.08, + "probability": 0.8057 + }, + { + "start": 1976.44, + "end": 1976.82, + "probability": 0.2676 + }, + { + "start": 1977.48, + "end": 1980.9, + "probability": 0.9495 + }, + { + "start": 1981.54, + "end": 1983.42, + "probability": 0.9788 + }, + { + "start": 1983.88, + "end": 1984.72, + "probability": 0.9016 + }, + { + "start": 1984.96, + "end": 1987.97, + "probability": 0.9884 + }, + { + "start": 1988.56, + "end": 1990.86, + "probability": 0.9026 + }, + { + "start": 1991.42, + "end": 1997.04, + "probability": 0.9844 + }, + { + "start": 1997.32, + "end": 1998.02, + "probability": 0.2553 + }, + { + "start": 1998.1, + "end": 1998.4, + "probability": 0.719 + }, + { + "start": 1998.52, + "end": 2000.61, + "probability": 0.9968 + }, + { + "start": 2001.76, + "end": 2004.78, + "probability": 0.9209 + }, + { + "start": 2005.84, + "end": 2005.98, + "probability": 0.2878 + }, + { + "start": 2006.78, + "end": 2011.16, + "probability": 0.9707 + }, + { + "start": 2011.7, + "end": 2013.68, + "probability": 0.9937 + }, + { + "start": 2014.82, + "end": 2018.12, + "probability": 0.9906 + }, + { + "start": 2019.04, + "end": 2021.5, + "probability": 0.9941 + }, + { + "start": 2021.64, + "end": 2023.44, + "probability": 0.6705 + }, + { + "start": 2023.48, + "end": 2025.74, + "probability": 0.9928 + }, + { + "start": 2026.56, + "end": 2027.9, + "probability": 0.9907 + }, + { + "start": 2029.04, + "end": 2032.76, + "probability": 0.8428 + }, + { + "start": 2033.08, + "end": 2034.98, + "probability": 0.8013 + }, + { + "start": 2035.44, + "end": 2036.86, + "probability": 0.9865 + }, + { + "start": 2037.56, + "end": 2039.0, + "probability": 0.9194 + }, + { + "start": 2039.1, + "end": 2040.06, + "probability": 0.8245 + }, + { + "start": 2040.62, + "end": 2042.32, + "probability": 0.93 + }, + { + "start": 2043.2, + "end": 2044.52, + "probability": 0.3793 + }, + { + "start": 2044.6, + "end": 2045.54, + "probability": 0.2922 + }, + { + "start": 2045.58, + "end": 2046.3, + "probability": 0.6083 + }, + { + "start": 2046.44, + "end": 2047.68, + "probability": 0.8717 + }, + { + "start": 2047.8, + "end": 2048.66, + "probability": 0.746 + }, + { + "start": 2049.26, + "end": 2051.1, + "probability": 0.8783 + }, + { + "start": 2051.18, + "end": 2051.74, + "probability": 0.6016 + }, + { + "start": 2052.52, + "end": 2055.64, + "probability": 0.829 + }, + { + "start": 2056.2, + "end": 2057.02, + "probability": 0.651 + }, + { + "start": 2057.14, + "end": 2057.64, + "probability": 0.8065 + }, + { + "start": 2057.68, + "end": 2058.22, + "probability": 0.5981 + }, + { + "start": 2058.28, + "end": 2063.72, + "probability": 0.829 + }, + { + "start": 2064.46, + "end": 2066.66, + "probability": 0.8983 + }, + { + "start": 2066.8, + "end": 2068.38, + "probability": 0.8466 + }, + { + "start": 2068.98, + "end": 2072.44, + "probability": 0.9122 + }, + { + "start": 2073.46, + "end": 2077.06, + "probability": 0.9228 + }, + { + "start": 2077.94, + "end": 2078.24, + "probability": 0.5087 + }, + { + "start": 2078.34, + "end": 2080.56, + "probability": 0.9888 + }, + { + "start": 2081.56, + "end": 2082.25, + "probability": 0.7736 + }, + { + "start": 2083.42, + "end": 2085.54, + "probability": 0.818 + }, + { + "start": 2086.28, + "end": 2089.52, + "probability": 0.9839 + }, + { + "start": 2090.1, + "end": 2092.28, + "probability": 0.5588 + }, + { + "start": 2092.92, + "end": 2097.12, + "probability": 0.6247 + }, + { + "start": 2097.54, + "end": 2102.7, + "probability": 0.996 + }, + { + "start": 2103.36, + "end": 2105.28, + "probability": 0.8304 + }, + { + "start": 2106.12, + "end": 2108.66, + "probability": 0.9504 + }, + { + "start": 2108.72, + "end": 2109.04, + "probability": 0.7455 + }, + { + "start": 2109.12, + "end": 2112.16, + "probability": 0.7135 + }, + { + "start": 2112.38, + "end": 2112.56, + "probability": 0.32 + }, + { + "start": 2113.72, + "end": 2114.47, + "probability": 0.7297 + }, + { + "start": 2114.76, + "end": 2115.84, + "probability": 0.9658 + }, + { + "start": 2116.32, + "end": 2117.01, + "probability": 0.0452 + }, + { + "start": 2117.86, + "end": 2118.04, + "probability": 0.6207 + }, + { + "start": 2118.18, + "end": 2119.4, + "probability": 0.9045 + }, + { + "start": 2121.06, + "end": 2123.24, + "probability": 0.9863 + }, + { + "start": 2123.34, + "end": 2125.02, + "probability": 0.9948 + }, + { + "start": 2125.84, + "end": 2127.14, + "probability": 0.9927 + }, + { + "start": 2127.18, + "end": 2131.84, + "probability": 0.9697 + }, + { + "start": 2132.3, + "end": 2133.6, + "probability": 0.9843 + }, + { + "start": 2134.3, + "end": 2137.02, + "probability": 0.9892 + }, + { + "start": 2137.82, + "end": 2139.98, + "probability": 0.9936 + }, + { + "start": 2140.7, + "end": 2142.72, + "probability": 0.9917 + }, + { + "start": 2142.82, + "end": 2143.42, + "probability": 0.0984 + }, + { + "start": 2143.72, + "end": 2145.78, + "probability": 0.9352 + }, + { + "start": 2146.46, + "end": 2146.64, + "probability": 0.0545 + }, + { + "start": 2147.02, + "end": 2149.66, + "probability": 0.8737 + }, + { + "start": 2150.16, + "end": 2150.98, + "probability": 0.6479 + }, + { + "start": 2151.0, + "end": 2151.85, + "probability": 0.808 + }, + { + "start": 2151.96, + "end": 2152.52, + "probability": 0.5792 + }, + { + "start": 2152.78, + "end": 2154.1, + "probability": 0.6738 + }, + { + "start": 2156.98, + "end": 2159.98, + "probability": 0.7967 + }, + { + "start": 2161.06, + "end": 2163.44, + "probability": 0.8978 + }, + { + "start": 2164.38, + "end": 2164.48, + "probability": 0.0625 + }, + { + "start": 2164.48, + "end": 2164.48, + "probability": 0.0794 + }, + { + "start": 2164.48, + "end": 2164.48, + "probability": 0.3151 + }, + { + "start": 2164.48, + "end": 2164.48, + "probability": 0.0689 + }, + { + "start": 2165.46, + "end": 2165.56, + "probability": 0.0076 + }, + { + "start": 2165.56, + "end": 2167.04, + "probability": 0.7369 + }, + { + "start": 2167.42, + "end": 2167.49, + "probability": 0.0961 + }, + { + "start": 2168.02, + "end": 2168.18, + "probability": 0.8608 + }, + { + "start": 2168.76, + "end": 2169.42, + "probability": 0.3213 + }, + { + "start": 2169.42, + "end": 2169.42, + "probability": 0.1193 + }, + { + "start": 2169.42, + "end": 2169.42, + "probability": 0.1456 + }, + { + "start": 2169.42, + "end": 2174.58, + "probability": 0.6951 + }, + { + "start": 2174.64, + "end": 2175.38, + "probability": 0.1415 + }, + { + "start": 2175.38, + "end": 2177.36, + "probability": 0.6822 + }, + { + "start": 2177.66, + "end": 2181.1, + "probability": 0.9951 + }, + { + "start": 2181.42, + "end": 2182.12, + "probability": 0.2425 + }, + { + "start": 2182.18, + "end": 2183.69, + "probability": 0.091 + }, + { + "start": 2184.08, + "end": 2188.72, + "probability": 0.0188 + }, + { + "start": 2188.76, + "end": 2188.86, + "probability": 0.0691 + }, + { + "start": 2188.86, + "end": 2188.86, + "probability": 0.0414 + }, + { + "start": 2188.86, + "end": 2189.52, + "probability": 0.4966 + }, + { + "start": 2189.66, + "end": 2190.0, + "probability": 0.6292 + }, + { + "start": 2190.42, + "end": 2191.4, + "probability": 0.6946 + }, + { + "start": 2191.9, + "end": 2195.48, + "probability": 0.8415 + }, + { + "start": 2195.7, + "end": 2195.7, + "probability": 0.1185 + }, + { + "start": 2195.7, + "end": 2195.7, + "probability": 0.0393 + }, + { + "start": 2195.7, + "end": 2196.82, + "probability": 0.4142 + }, + { + "start": 2196.88, + "end": 2198.71, + "probability": 0.4986 + }, + { + "start": 2198.98, + "end": 2199.52, + "probability": 0.8778 + }, + { + "start": 2200.58, + "end": 2202.8, + "probability": 0.2654 + }, + { + "start": 2203.9, + "end": 2204.18, + "probability": 0.3419 + }, + { + "start": 2204.18, + "end": 2204.18, + "probability": 0.2693 + }, + { + "start": 2204.18, + "end": 2204.18, + "probability": 0.0268 + }, + { + "start": 2204.18, + "end": 2204.78, + "probability": 0.5268 + }, + { + "start": 2205.06, + "end": 2208.82, + "probability": 0.9878 + }, + { + "start": 2209.18, + "end": 2211.2, + "probability": 0.6407 + }, + { + "start": 2211.92, + "end": 2217.72, + "probability": 0.7447 + }, + { + "start": 2218.22, + "end": 2218.24, + "probability": 0.0154 + }, + { + "start": 2218.24, + "end": 2219.84, + "probability": 0.0441 + }, + { + "start": 2219.84, + "end": 2220.3, + "probability": 0.6797 + }, + { + "start": 2220.3, + "end": 2221.3, + "probability": 0.7637 + }, + { + "start": 2221.3, + "end": 2222.24, + "probability": 0.5292 + }, + { + "start": 2222.26, + "end": 2224.0, + "probability": 0.4165 + }, + { + "start": 2224.04, + "end": 2224.74, + "probability": 0.6154 + }, + { + "start": 2224.82, + "end": 2225.18, + "probability": 0.7557 + }, + { + "start": 2225.3, + "end": 2227.9, + "probability": 0.9927 + }, + { + "start": 2227.98, + "end": 2229.46, + "probability": 0.8513 + }, + { + "start": 2229.68, + "end": 2229.98, + "probability": 0.0945 + }, + { + "start": 2230.32, + "end": 2230.94, + "probability": 0.4904 + }, + { + "start": 2230.96, + "end": 2231.52, + "probability": 0.7636 + }, + { + "start": 2231.6, + "end": 2231.84, + "probability": 0.6305 + }, + { + "start": 2231.9, + "end": 2233.14, + "probability": 0.7343 + }, + { + "start": 2233.18, + "end": 2234.82, + "probability": 0.9265 + }, + { + "start": 2234.98, + "end": 2236.48, + "probability": 0.9361 + }, + { + "start": 2236.58, + "end": 2237.04, + "probability": 0.9034 + }, + { + "start": 2237.1, + "end": 2239.42, + "probability": 0.9781 + }, + { + "start": 2240.5, + "end": 2241.14, + "probability": 0.4071 + }, + { + "start": 2241.58, + "end": 2242.94, + "probability": 0.9202 + }, + { + "start": 2243.31, + "end": 2243.72, + "probability": 0.033 + }, + { + "start": 2243.76, + "end": 2244.46, + "probability": 0.5236 + }, + { + "start": 2244.5, + "end": 2244.6, + "probability": 0.5439 + }, + { + "start": 2245.04, + "end": 2245.42, + "probability": 0.5069 + }, + { + "start": 2245.56, + "end": 2246.5, + "probability": 0.6776 + }, + { + "start": 2246.78, + "end": 2246.88, + "probability": 0.1656 + }, + { + "start": 2246.88, + "end": 2246.88, + "probability": 0.1645 + }, + { + "start": 2246.88, + "end": 2253.32, + "probability": 0.9274 + }, + { + "start": 2253.42, + "end": 2260.06, + "probability": 0.9875 + }, + { + "start": 2260.5, + "end": 2262.26, + "probability": 0.7075 + }, + { + "start": 2262.74, + "end": 2264.08, + "probability": 0.8727 + }, + { + "start": 2264.12, + "end": 2264.64, + "probability": 0.5107 + }, + { + "start": 2264.8, + "end": 2266.18, + "probability": 0.8182 + }, + { + "start": 2266.28, + "end": 2267.1, + "probability": 0.9961 + }, + { + "start": 2267.22, + "end": 2271.0, + "probability": 0.9819 + }, + { + "start": 2271.72, + "end": 2273.54, + "probability": 0.8803 + }, + { + "start": 2274.08, + "end": 2275.96, + "probability": 0.9958 + }, + { + "start": 2276.6, + "end": 2280.36, + "probability": 0.9703 + }, + { + "start": 2281.02, + "end": 2282.68, + "probability": 0.9335 + }, + { + "start": 2282.7, + "end": 2287.1, + "probability": 0.9932 + }, + { + "start": 2287.92, + "end": 2289.6, + "probability": 0.834 + }, + { + "start": 2289.8, + "end": 2290.48, + "probability": 0.5384 + }, + { + "start": 2290.56, + "end": 2292.48, + "probability": 0.9893 + }, + { + "start": 2292.84, + "end": 2294.48, + "probability": 0.7488 + }, + { + "start": 2294.98, + "end": 2296.18, + "probability": 0.6228 + }, + { + "start": 2296.96, + "end": 2299.38, + "probability": 0.9917 + }, + { + "start": 2300.71, + "end": 2302.68, + "probability": 0.6541 + }, + { + "start": 2302.96, + "end": 2303.3, + "probability": 0.1756 + }, + { + "start": 2303.48, + "end": 2303.54, + "probability": 0.0953 + }, + { + "start": 2303.54, + "end": 2309.12, + "probability": 0.5677 + }, + { + "start": 2309.31, + "end": 2309.4, + "probability": 0.162 + }, + { + "start": 2309.64, + "end": 2313.72, + "probability": 0.8925 + }, + { + "start": 2313.78, + "end": 2315.18, + "probability": 0.9484 + }, + { + "start": 2315.3, + "end": 2318.12, + "probability": 0.9491 + }, + { + "start": 2318.18, + "end": 2318.42, + "probability": 0.4454 + }, + { + "start": 2318.42, + "end": 2318.77, + "probability": 0.067 + }, + { + "start": 2318.92, + "end": 2320.94, + "probability": 0.2894 + }, + { + "start": 2321.06, + "end": 2321.76, + "probability": 0.0391 + }, + { + "start": 2322.24, + "end": 2322.54, + "probability": 0.082 + }, + { + "start": 2323.04, + "end": 2324.24, + "probability": 0.4104 + }, + { + "start": 2324.26, + "end": 2324.68, + "probability": 0.6938 + }, + { + "start": 2324.86, + "end": 2327.5, + "probability": 0.9906 + }, + { + "start": 2327.81, + "end": 2328.12, + "probability": 0.1685 + }, + { + "start": 2328.24, + "end": 2329.98, + "probability": 0.9673 + }, + { + "start": 2330.3, + "end": 2330.32, + "probability": 0.064 + }, + { + "start": 2330.32, + "end": 2332.28, + "probability": 0.6893 + }, + { + "start": 2332.38, + "end": 2333.82, + "probability": 0.9159 + }, + { + "start": 2333.88, + "end": 2336.56, + "probability": 0.9557 + }, + { + "start": 2336.88, + "end": 2337.14, + "probability": 0.1181 + }, + { + "start": 2337.14, + "end": 2340.58, + "probability": 0.5457 + }, + { + "start": 2341.22, + "end": 2341.42, + "probability": 0.2294 + }, + { + "start": 2341.48, + "end": 2342.06, + "probability": 0.4855 + }, + { + "start": 2342.18, + "end": 2343.72, + "probability": 0.9317 + }, + { + "start": 2343.92, + "end": 2344.68, + "probability": 0.7053 + }, + { + "start": 2344.68, + "end": 2346.04, + "probability": 0.9647 + }, + { + "start": 2346.26, + "end": 2347.74, + "probability": 0.9944 + }, + { + "start": 2347.78, + "end": 2349.28, + "probability": 0.8309 + }, + { + "start": 2349.46, + "end": 2352.62, + "probability": 0.9508 + }, + { + "start": 2353.0, + "end": 2354.16, + "probability": 0.0391 + }, + { + "start": 2354.16, + "end": 2355.56, + "probability": 0.5485 + }, + { + "start": 2355.56, + "end": 2356.36, + "probability": 0.7654 + }, + { + "start": 2356.56, + "end": 2357.44, + "probability": 0.5636 + }, + { + "start": 2357.44, + "end": 2358.54, + "probability": 0.3217 + }, + { + "start": 2358.54, + "end": 2358.54, + "probability": 0.1019 + }, + { + "start": 2358.54, + "end": 2358.54, + "probability": 0.251 + }, + { + "start": 2358.54, + "end": 2359.42, + "probability": 0.1661 + }, + { + "start": 2359.42, + "end": 2359.42, + "probability": 0.1021 + }, + { + "start": 2359.42, + "end": 2362.04, + "probability": 0.899 + }, + { + "start": 2362.28, + "end": 2363.86, + "probability": 0.9868 + }, + { + "start": 2364.34, + "end": 2365.66, + "probability": 0.2547 + }, + { + "start": 2366.86, + "end": 2366.86, + "probability": 0.0107 + }, + { + "start": 2366.86, + "end": 2366.86, + "probability": 0.0431 + }, + { + "start": 2366.86, + "end": 2368.06, + "probability": 0.8648 + }, + { + "start": 2368.48, + "end": 2369.84, + "probability": 0.5894 + }, + { + "start": 2370.1, + "end": 2372.02, + "probability": 0.9873 + }, + { + "start": 2372.48, + "end": 2374.94, + "probability": 0.9971 + }, + { + "start": 2375.8, + "end": 2377.54, + "probability": 0.9983 + }, + { + "start": 2378.16, + "end": 2378.94, + "probability": 0.9486 + }, + { + "start": 2379.54, + "end": 2380.2, + "probability": 0.4982 + }, + { + "start": 2381.88, + "end": 2383.42, + "probability": 0.3398 + }, + { + "start": 2383.42, + "end": 2384.09, + "probability": 0.658 + }, + { + "start": 2385.38, + "end": 2387.64, + "probability": 0.8426 + }, + { + "start": 2388.0, + "end": 2389.68, + "probability": 0.8897 + }, + { + "start": 2390.68, + "end": 2391.88, + "probability": 0.5715 + }, + { + "start": 2391.88, + "end": 2392.76, + "probability": 0.1051 + }, + { + "start": 2392.94, + "end": 2392.94, + "probability": 0.0379 + }, + { + "start": 2392.94, + "end": 2393.06, + "probability": 0.2168 + }, + { + "start": 2393.06, + "end": 2395.2, + "probability": 0.4267 + }, + { + "start": 2396.16, + "end": 2397.22, + "probability": 0.2363 + }, + { + "start": 2397.22, + "end": 2398.36, + "probability": 0.7159 + }, + { + "start": 2398.4, + "end": 2399.08, + "probability": 0.209 + }, + { + "start": 2399.08, + "end": 2399.47, + "probability": 0.0104 + }, + { + "start": 2399.64, + "end": 2402.38, + "probability": 0.8145 + }, + { + "start": 2403.18, + "end": 2406.28, + "probability": 0.6517 + }, + { + "start": 2406.34, + "end": 2407.4, + "probability": 0.8914 + }, + { + "start": 2407.86, + "end": 2408.7, + "probability": 0.8997 + }, + { + "start": 2408.76, + "end": 2411.92, + "probability": 0.9702 + }, + { + "start": 2412.02, + "end": 2412.12, + "probability": 0.0468 + }, + { + "start": 2412.12, + "end": 2414.48, + "probability": 0.9961 + }, + { + "start": 2415.14, + "end": 2415.66, + "probability": 0.9531 + }, + { + "start": 2416.62, + "end": 2419.99, + "probability": 0.6389 + }, + { + "start": 2420.14, + "end": 2420.63, + "probability": 0.2674 + }, + { + "start": 2421.2, + "end": 2421.38, + "probability": 0.4209 + }, + { + "start": 2421.38, + "end": 2421.94, + "probability": 0.2048 + }, + { + "start": 2422.2, + "end": 2422.64, + "probability": 0.3025 + }, + { + "start": 2422.64, + "end": 2424.22, + "probability": 0.4721 + }, + { + "start": 2424.3, + "end": 2426.52, + "probability": 0.289 + }, + { + "start": 2427.06, + "end": 2427.62, + "probability": 0.0323 + }, + { + "start": 2427.62, + "end": 2427.62, + "probability": 0.1225 + }, + { + "start": 2427.62, + "end": 2428.36, + "probability": 0.2931 + }, + { + "start": 2428.46, + "end": 2429.7, + "probability": 0.5561 + }, + { + "start": 2430.02, + "end": 2430.34, + "probability": 0.0759 + }, + { + "start": 2430.34, + "end": 2431.54, + "probability": 0.3156 + }, + { + "start": 2431.64, + "end": 2431.64, + "probability": 0.2463 + }, + { + "start": 2431.66, + "end": 2432.14, + "probability": 0.364 + }, + { + "start": 2432.14, + "end": 2435.21, + "probability": 0.6603 + }, + { + "start": 2435.98, + "end": 2436.06, + "probability": 0.273 + }, + { + "start": 2436.06, + "end": 2437.31, + "probability": 0.2436 + }, + { + "start": 2438.3, + "end": 2441.93, + "probability": 0.9193 + }, + { + "start": 2442.21, + "end": 2443.25, + "probability": 0.649 + }, + { + "start": 2443.47, + "end": 2446.89, + "probability": 0.9921 + }, + { + "start": 2446.89, + "end": 2450.23, + "probability": 0.998 + }, + { + "start": 2450.99, + "end": 2452.05, + "probability": 0.7865 + }, + { + "start": 2452.13, + "end": 2455.29, + "probability": 0.8047 + }, + { + "start": 2455.65, + "end": 2457.91, + "probability": 0.9948 + }, + { + "start": 2457.91, + "end": 2460.11, + "probability": 0.8684 + }, + { + "start": 2460.93, + "end": 2461.23, + "probability": 0.4321 + }, + { + "start": 2461.87, + "end": 2462.99, + "probability": 0.5214 + }, + { + "start": 2463.07, + "end": 2463.83, + "probability": 0.9834 + }, + { + "start": 2464.97, + "end": 2466.71, + "probability": 0.9969 + }, + { + "start": 2466.75, + "end": 2469.33, + "probability": 0.906 + }, + { + "start": 2469.81, + "end": 2471.01, + "probability": 0.9979 + }, + { + "start": 2472.17, + "end": 2474.57, + "probability": 0.4995 + }, + { + "start": 2474.57, + "end": 2475.69, + "probability": 0.7656 + }, + { + "start": 2476.49, + "end": 2479.11, + "probability": 0.9363 + }, + { + "start": 2480.21, + "end": 2484.68, + "probability": 0.9375 + }, + { + "start": 2487.09, + "end": 2489.49, + "probability": 0.97 + }, + { + "start": 2490.13, + "end": 2492.99, + "probability": 0.3847 + }, + { + "start": 2492.99, + "end": 2492.99, + "probability": 0.034 + }, + { + "start": 2492.99, + "end": 2493.41, + "probability": 0.1238 + }, + { + "start": 2493.99, + "end": 2493.99, + "probability": 0.1629 + }, + { + "start": 2493.99, + "end": 2494.85, + "probability": 0.7738 + }, + { + "start": 2495.65, + "end": 2496.61, + "probability": 0.7722 + }, + { + "start": 2497.19, + "end": 2497.91, + "probability": 0.7099 + }, + { + "start": 2498.05, + "end": 2498.17, + "probability": 0.4396 + }, + { + "start": 2498.23, + "end": 2498.39, + "probability": 0.8322 + }, + { + "start": 2498.47, + "end": 2499.35, + "probability": 0.9379 + }, + { + "start": 2499.47, + "end": 2500.55, + "probability": 0.8691 + }, + { + "start": 2500.71, + "end": 2502.11, + "probability": 0.5731 + }, + { + "start": 2503.03, + "end": 2503.65, + "probability": 0.0773 + }, + { + "start": 2506.17, + "end": 2509.99, + "probability": 0.0722 + }, + { + "start": 2510.45, + "end": 2515.59, + "probability": 0.0321 + }, + { + "start": 2515.59, + "end": 2516.63, + "probability": 0.2276 + }, + { + "start": 2516.83, + "end": 2517.42, + "probability": 0.332 + }, + { + "start": 2518.67, + "end": 2520.11, + "probability": 0.3461 + }, + { + "start": 2522.69, + "end": 2524.15, + "probability": 0.3204 + }, + { + "start": 2524.71, + "end": 2526.61, + "probability": 0.0135 + }, + { + "start": 2526.85, + "end": 2527.03, + "probability": 0.1289 + }, + { + "start": 2528.72, + "end": 2529.47, + "probability": 0.0292 + }, + { + "start": 2529.47, + "end": 2530.59, + "probability": 0.0478 + }, + { + "start": 2530.59, + "end": 2532.37, + "probability": 0.0276 + }, + { + "start": 2532.37, + "end": 2532.44, + "probability": 0.0322 + }, + { + "start": 2537.09, + "end": 2537.51, + "probability": 0.0091 + }, + { + "start": 2537.93, + "end": 2538.09, + "probability": 0.008 + }, + { + "start": 2539.05, + "end": 2539.21, + "probability": 0.148 + }, + { + "start": 2539.31, + "end": 2540.39, + "probability": 0.2142 + }, + { + "start": 2540.39, + "end": 2541.19, + "probability": 0.0981 + }, + { + "start": 2541.33, + "end": 2541.87, + "probability": 0.1814 + }, + { + "start": 2541.87, + "end": 2542.15, + "probability": 0.1383 + }, + { + "start": 2542.15, + "end": 2542.27, + "probability": 0.1607 + }, + { + "start": 2543.87, + "end": 2544.37, + "probability": 0.028 + }, + { + "start": 2544.97, + "end": 2545.51, + "probability": 0.0584 + }, + { + "start": 2545.51, + "end": 2546.27, + "probability": 0.0387 + }, + { + "start": 2546.35, + "end": 2546.81, + "probability": 0.1998 + }, + { + "start": 2546.89, + "end": 2549.23, + "probability": 0.0433 + }, + { + "start": 2549.23, + "end": 2551.55, + "probability": 0.0178 + }, + { + "start": 2552.13, + "end": 2552.13, + "probability": 0.0238 + }, + { + "start": 2552.13, + "end": 2554.49, + "probability": 0.0713 + }, + { + "start": 2554.49, + "end": 2555.65, + "probability": 0.2 + }, + { + "start": 2558.93, + "end": 2561.17, + "probability": 0.0801 + }, + { + "start": 2562.0, + "end": 2562.0, + "probability": 0.0 + }, + { + "start": 2562.0, + "end": 2562.0, + "probability": 0.0 + }, + { + "start": 2562.0, + "end": 2562.0, + "probability": 0.0 + }, + { + "start": 2562.0, + "end": 2562.0, + "probability": 0.0 + }, + { + "start": 2562.0, + "end": 2562.0, + "probability": 0.0 + }, + { + "start": 2562.0, + "end": 2562.0, + "probability": 0.0 + }, + { + "start": 2562.0, + "end": 2562.0, + "probability": 0.0 + }, + { + "start": 2562.0, + "end": 2562.0, + "probability": 0.0 + }, + { + "start": 2562.0, + "end": 2562.0, + "probability": 0.0 + }, + { + "start": 2562.0, + "end": 2562.0, + "probability": 0.0 + }, + { + "start": 2562.16, + "end": 2563.58, + "probability": 0.0687 + }, + { + "start": 2563.58, + "end": 2564.14, + "probability": 0.0869 + }, + { + "start": 2564.22, + "end": 2565.2, + "probability": 0.0432 + }, + { + "start": 2566.88, + "end": 2570.48, + "probability": 0.0799 + }, + { + "start": 2582.72, + "end": 2584.42, + "probability": 0.0781 + }, + { + "start": 2587.06, + "end": 2587.24, + "probability": 0.4109 + }, + { + "start": 2588.94, + "end": 2589.62, + "probability": 0.0878 + }, + { + "start": 2589.66, + "end": 2592.4, + "probability": 0.1263 + }, + { + "start": 2595.5, + "end": 2597.96, + "probability": 0.0121 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.0, + "end": 2685.0, + "probability": 0.0 + }, + { + "start": 2685.56, + "end": 2688.94, + "probability": 0.7168 + }, + { + "start": 2689.18, + "end": 2695.84, + "probability": 0.8872 + }, + { + "start": 2695.84, + "end": 2704.52, + "probability": 0.9966 + }, + { + "start": 2704.9, + "end": 2707.06, + "probability": 0.9101 + }, + { + "start": 2707.82, + "end": 2711.5, + "probability": 0.1978 + }, + { + "start": 2711.5, + "end": 2711.5, + "probability": 0.2536 + }, + { + "start": 2711.5, + "end": 2712.04, + "probability": 0.3875 + }, + { + "start": 2712.14, + "end": 2713.08, + "probability": 0.5157 + }, + { + "start": 2713.18, + "end": 2715.28, + "probability": 0.3291 + }, + { + "start": 2715.36, + "end": 2715.44, + "probability": 0.274 + }, + { + "start": 2715.44, + "end": 2715.54, + "probability": 0.0487 + }, + { + "start": 2715.54, + "end": 2718.76, + "probability": 0.864 + }, + { + "start": 2719.28, + "end": 2719.88, + "probability": 0.8115 + }, + { + "start": 2720.1, + "end": 2720.44, + "probability": 0.6241 + }, + { + "start": 2720.54, + "end": 2722.66, + "probability": 0.8681 + }, + { + "start": 2722.8, + "end": 2723.68, + "probability": 0.8505 + }, + { + "start": 2723.8, + "end": 2724.8, + "probability": 0.8322 + }, + { + "start": 2724.84, + "end": 2725.66, + "probability": 0.9258 + }, + { + "start": 2725.88, + "end": 2726.3, + "probability": 0.1075 + }, + { + "start": 2726.38, + "end": 2727.99, + "probability": 0.998 + }, + { + "start": 2728.72, + "end": 2729.95, + "probability": 0.9971 + }, + { + "start": 2730.94, + "end": 2731.16, + "probability": 0.2398 + }, + { + "start": 2731.28, + "end": 2734.44, + "probability": 0.7329 + }, + { + "start": 2734.44, + "end": 2735.94, + "probability": 0.8213 + }, + { + "start": 2736.98, + "end": 2739.44, + "probability": 0.8101 + }, + { + "start": 2740.18, + "end": 2744.2, + "probability": 0.762 + }, + { + "start": 2744.2, + "end": 2749.02, + "probability": 0.9912 + }, + { + "start": 2749.22, + "end": 2749.86, + "probability": 0.8045 + }, + { + "start": 2749.98, + "end": 2750.58, + "probability": 0.7613 + }, + { + "start": 2750.72, + "end": 2752.92, + "probability": 0.7432 + }, + { + "start": 2753.06, + "end": 2756.4, + "probability": 0.9679 + }, + { + "start": 2756.4, + "end": 2756.94, + "probability": 0.25 + }, + { + "start": 2757.12, + "end": 2760.38, + "probability": 0.9204 + }, + { + "start": 2760.42, + "end": 2761.7, + "probability": 0.8728 + }, + { + "start": 2762.16, + "end": 2762.58, + "probability": 0.8334 + }, + { + "start": 2763.34, + "end": 2764.04, + "probability": 0.0733 + }, + { + "start": 2764.04, + "end": 2765.26, + "probability": 0.7118 + }, + { + "start": 2765.94, + "end": 2766.4, + "probability": 0.1502 + }, + { + "start": 2766.56, + "end": 2766.6, + "probability": 0.0246 + }, + { + "start": 2766.6, + "end": 2769.18, + "probability": 0.6651 + }, + { + "start": 2769.18, + "end": 2770.5, + "probability": 0.2786 + }, + { + "start": 2771.02, + "end": 2773.58, + "probability": 0.7617 + }, + { + "start": 2773.76, + "end": 2776.04, + "probability": 0.537 + }, + { + "start": 2776.18, + "end": 2779.08, + "probability": 0.8462 + }, + { + "start": 2779.08, + "end": 2780.04, + "probability": 0.8928 + }, + { + "start": 2780.2, + "end": 2780.84, + "probability": 0.5098 + }, + { + "start": 2780.88, + "end": 2781.2, + "probability": 0.3037 + }, + { + "start": 2781.26, + "end": 2783.04, + "probability": 0.8104 + }, + { + "start": 2783.2, + "end": 2784.25, + "probability": 0.1816 + }, + { + "start": 2784.74, + "end": 2788.6, + "probability": 0.9869 + }, + { + "start": 2789.16, + "end": 2789.2, + "probability": 0.1174 + }, + { + "start": 2789.2, + "end": 2789.2, + "probability": 0.0587 + }, + { + "start": 2789.2, + "end": 2791.78, + "probability": 0.6022 + }, + { + "start": 2791.96, + "end": 2792.9, + "probability": 0.7809 + }, + { + "start": 2792.98, + "end": 2793.74, + "probability": 0.9329 + }, + { + "start": 2794.08, + "end": 2795.46, + "probability": 0.8244 + }, + { + "start": 2795.94, + "end": 2800.86, + "probability": 0.9379 + }, + { + "start": 2801.2, + "end": 2802.18, + "probability": 0.7796 + }, + { + "start": 2802.66, + "end": 2807.7, + "probability": 0.9691 + }, + { + "start": 2808.08, + "end": 2810.86, + "probability": 0.9053 + }, + { + "start": 2811.4, + "end": 2812.98, + "probability": 0.9744 + }, + { + "start": 2813.06, + "end": 2814.24, + "probability": 0.8785 + }, + { + "start": 2814.54, + "end": 2815.68, + "probability": 0.9099 + }, + { + "start": 2815.78, + "end": 2817.36, + "probability": 0.7914 + }, + { + "start": 2817.92, + "end": 2820.7, + "probability": 0.8744 + }, + { + "start": 2820.8, + "end": 2822.2, + "probability": 0.7462 + }, + { + "start": 2822.64, + "end": 2823.3, + "probability": 0.8869 + }, + { + "start": 2823.44, + "end": 2824.26, + "probability": 0.7359 + }, + { + "start": 2824.38, + "end": 2825.86, + "probability": 0.998 + }, + { + "start": 2826.34, + "end": 2828.88, + "probability": 0.6136 + }, + { + "start": 2829.14, + "end": 2829.82, + "probability": 0.6917 + }, + { + "start": 2830.26, + "end": 2832.1, + "probability": 0.7415 + }, + { + "start": 2832.58, + "end": 2834.18, + "probability": 0.9453 + }, + { + "start": 2834.52, + "end": 2836.3, + "probability": 0.8632 + }, + { + "start": 2836.34, + "end": 2839.08, + "probability": 0.6796 + }, + { + "start": 2839.76, + "end": 2839.86, + "probability": 0.0216 + }, + { + "start": 2839.86, + "end": 2839.86, + "probability": 0.4905 + }, + { + "start": 2839.86, + "end": 2840.04, + "probability": 0.0086 + }, + { + "start": 2840.24, + "end": 2843.39, + "probability": 0.2422 + }, + { + "start": 2843.52, + "end": 2845.42, + "probability": 0.4606 + }, + { + "start": 2845.8, + "end": 2846.74, + "probability": 0.031 + }, + { + "start": 2846.84, + "end": 2847.56, + "probability": 0.5254 + }, + { + "start": 2847.58, + "end": 2849.08, + "probability": 0.9007 + }, + { + "start": 2849.76, + "end": 2850.68, + "probability": 0.6868 + }, + { + "start": 2851.36, + "end": 2852.92, + "probability": 0.0493 + }, + { + "start": 2853.08, + "end": 2854.18, + "probability": 0.6482 + }, + { + "start": 2857.74, + "end": 2859.56, + "probability": 0.2142 + }, + { + "start": 2862.1, + "end": 2864.93, + "probability": 0.1794 + }, + { + "start": 2865.02, + "end": 2865.06, + "probability": 0.1289 + }, + { + "start": 2865.1, + "end": 2865.73, + "probability": 0.2999 + }, + { + "start": 2866.4, + "end": 2866.54, + "probability": 0.0093 + }, + { + "start": 2876.22, + "end": 2877.58, + "probability": 0.0293 + }, + { + "start": 2893.5, + "end": 2894.04, + "probability": 0.3325 + }, + { + "start": 2894.87, + "end": 2895.74, + "probability": 0.0282 + }, + { + "start": 2896.02, + "end": 2901.42, + "probability": 0.0329 + }, + { + "start": 2902.94, + "end": 2906.28, + "probability": 0.5122 + }, + { + "start": 2907.9, + "end": 2911.1, + "probability": 0.0155 + }, + { + "start": 2911.1, + "end": 2912.26, + "probability": 0.0482 + }, + { + "start": 2912.26, + "end": 2912.74, + "probability": 0.1139 + }, + { + "start": 2913.46, + "end": 2913.98, + "probability": 0.0314 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.0, + "end": 2914.0, + "probability": 0.0 + }, + { + "start": 2914.04, + "end": 2914.3, + "probability": 0.66 + }, + { + "start": 2916.84, + "end": 2917.56, + "probability": 0.7258 + }, + { + "start": 2917.64, + "end": 2917.82, + "probability": 0.6285 + }, + { + "start": 2917.9, + "end": 2919.21, + "probability": 0.8953 + }, + { + "start": 2919.5, + "end": 2921.32, + "probability": 0.623 + }, + { + "start": 2921.64, + "end": 2923.88, + "probability": 0.9083 + }, + { + "start": 2923.88, + "end": 2926.1, + "probability": 0.8242 + }, + { + "start": 2927.08, + "end": 2928.82, + "probability": 0.7171 + }, + { + "start": 2929.52, + "end": 2935.72, + "probability": 0.9714 + }, + { + "start": 2936.16, + "end": 2936.84, + "probability": 0.7023 + }, + { + "start": 2936.94, + "end": 2938.06, + "probability": 0.9878 + }, + { + "start": 2938.18, + "end": 2939.5, + "probability": 0.9053 + }, + { + "start": 2939.7, + "end": 2941.86, + "probability": 0.9409 + }, + { + "start": 2942.1, + "end": 2943.52, + "probability": 0.9491 + }, + { + "start": 2943.58, + "end": 2945.9, + "probability": 0.7163 + }, + { + "start": 2946.2, + "end": 2948.0, + "probability": 0.9952 + }, + { + "start": 2948.06, + "end": 2948.62, + "probability": 0.5358 + }, + { + "start": 2948.7, + "end": 2949.42, + "probability": 0.8035 + }, + { + "start": 2949.42, + "end": 2952.06, + "probability": 0.9545 + }, + { + "start": 2952.12, + "end": 2953.0, + "probability": 0.4048 + }, + { + "start": 2953.14, + "end": 2956.4, + "probability": 0.8732 + }, + { + "start": 2956.6, + "end": 2959.17, + "probability": 0.9574 + }, + { + "start": 2959.64, + "end": 2962.14, + "probability": 0.9749 + }, + { + "start": 2962.14, + "end": 2962.92, + "probability": 0.3297 + }, + { + "start": 2962.92, + "end": 2964.36, + "probability": 0.9409 + }, + { + "start": 2964.78, + "end": 2966.88, + "probability": 0.9747 + }, + { + "start": 2966.88, + "end": 2967.23, + "probability": 0.195 + }, + { + "start": 2967.74, + "end": 2968.44, + "probability": 0.7485 + }, + { + "start": 2968.84, + "end": 2968.84, + "probability": 0.0766 + }, + { + "start": 2969.8, + "end": 2969.96, + "probability": 0.0198 + }, + { + "start": 2969.96, + "end": 2972.54, + "probability": 0.7473 + }, + { + "start": 2972.64, + "end": 2973.06, + "probability": 0.7589 + }, + { + "start": 2973.64, + "end": 2974.68, + "probability": 0.987 + }, + { + "start": 2975.14, + "end": 2977.64, + "probability": 0.9383 + }, + { + "start": 2977.96, + "end": 2979.16, + "probability": 0.8285 + }, + { + "start": 2979.26, + "end": 2980.22, + "probability": 0.9501 + }, + { + "start": 2980.5, + "end": 2982.22, + "probability": 0.9917 + }, + { + "start": 2982.5, + "end": 2986.02, + "probability": 0.9862 + }, + { + "start": 2986.14, + "end": 2986.14, + "probability": 0.2608 + }, + { + "start": 2986.14, + "end": 2988.0, + "probability": 0.5992 + }, + { + "start": 2988.0, + "end": 2989.02, + "probability": 0.7417 + }, + { + "start": 2990.16, + "end": 2991.62, + "probability": 0.032 + }, + { + "start": 2991.62, + "end": 2993.4, + "probability": 0.0684 + }, + { + "start": 2993.58, + "end": 2993.6, + "probability": 0.0395 + }, + { + "start": 2993.62, + "end": 2993.62, + "probability": 0.051 + }, + { + "start": 2993.88, + "end": 2994.5, + "probability": 0.0461 + }, + { + "start": 2994.5, + "end": 2994.74, + "probability": 0.426 + }, + { + "start": 2994.74, + "end": 2994.74, + "probability": 0.021 + }, + { + "start": 2994.74, + "end": 2994.74, + "probability": 0.0936 + }, + { + "start": 2994.74, + "end": 2996.96, + "probability": 0.7105 + }, + { + "start": 2997.14, + "end": 3000.04, + "probability": 0.9641 + }, + { + "start": 3000.32, + "end": 3002.16, + "probability": 0.9783 + }, + { + "start": 3002.8, + "end": 3003.44, + "probability": 0.4485 + }, + { + "start": 3003.46, + "end": 3004.46, + "probability": 0.4416 + }, + { + "start": 3004.54, + "end": 3004.72, + "probability": 0.0322 + }, + { + "start": 3004.72, + "end": 3004.72, + "probability": 0.2614 + }, + { + "start": 3004.84, + "end": 3006.44, + "probability": 0.7892 + }, + { + "start": 3006.46, + "end": 3007.98, + "probability": 0.9627 + }, + { + "start": 3008.56, + "end": 3010.6, + "probability": 0.8897 + }, + { + "start": 3011.2, + "end": 3013.04, + "probability": 0.9866 + }, + { + "start": 3013.58, + "end": 3014.88, + "probability": 0.9154 + }, + { + "start": 3015.4, + "end": 3017.68, + "probability": 0.8219 + }, + { + "start": 3018.1, + "end": 3019.16, + "probability": 0.9653 + }, + { + "start": 3019.34, + "end": 3021.04, + "probability": 0.6573 + }, + { + "start": 3021.46, + "end": 3022.84, + "probability": 0.939 + }, + { + "start": 3023.46, + "end": 3024.14, + "probability": 0.8998 + }, + { + "start": 3024.22, + "end": 3025.07, + "probability": 0.8533 + }, + { + "start": 3025.52, + "end": 3027.78, + "probability": 0.8046 + }, + { + "start": 3028.0, + "end": 3029.68, + "probability": 0.9242 + }, + { + "start": 3030.68, + "end": 3034.52, + "probability": 0.9671 + }, + { + "start": 3035.64, + "end": 3037.38, + "probability": 0.9907 + }, + { + "start": 3037.46, + "end": 3038.72, + "probability": 0.568 + }, + { + "start": 3039.14, + "end": 3040.33, + "probability": 0.9172 + }, + { + "start": 3042.04, + "end": 3044.1, + "probability": 0.713 + }, + { + "start": 3045.26, + "end": 3045.8, + "probability": 0.9827 + }, + { + "start": 3048.38, + "end": 3049.46, + "probability": 0.7373 + }, + { + "start": 3050.5, + "end": 3051.61, + "probability": 0.5512 + }, + { + "start": 3053.88, + "end": 3055.04, + "probability": 0.5899 + }, + { + "start": 3056.38, + "end": 3061.48, + "probability": 0.9946 + }, + { + "start": 3062.26, + "end": 3064.82, + "probability": 0.8133 + }, + { + "start": 3065.56, + "end": 3066.88, + "probability": 0.9961 + }, + { + "start": 3067.8, + "end": 3071.3, + "probability": 0.9549 + }, + { + "start": 3071.42, + "end": 3076.7, + "probability": 0.8989 + }, + { + "start": 3076.84, + "end": 3077.88, + "probability": 0.3082 + }, + { + "start": 3078.44, + "end": 3079.24, + "probability": 0.9504 + }, + { + "start": 3079.58, + "end": 3080.64, + "probability": 0.9708 + }, + { + "start": 3080.86, + "end": 3081.56, + "probability": 0.4093 + }, + { + "start": 3081.66, + "end": 3082.58, + "probability": 0.5493 + }, + { + "start": 3083.52, + "end": 3085.94, + "probability": 0.7358 + }, + { + "start": 3086.82, + "end": 3091.74, + "probability": 0.9986 + }, + { + "start": 3092.38, + "end": 3093.5, + "probability": 0.6077 + }, + { + "start": 3094.42, + "end": 3096.46, + "probability": 0.9671 + }, + { + "start": 3096.56, + "end": 3099.28, + "probability": 0.9653 + }, + { + "start": 3100.12, + "end": 3100.28, + "probability": 0.2489 + }, + { + "start": 3100.28, + "end": 3102.3, + "probability": 0.107 + }, + { + "start": 3102.66, + "end": 3103.08, + "probability": 0.7316 + }, + { + "start": 3103.2, + "end": 3106.04, + "probability": 0.979 + }, + { + "start": 3106.96, + "end": 3111.24, + "probability": 0.9914 + }, + { + "start": 3111.34, + "end": 3111.94, + "probability": 0.9582 + }, + { + "start": 3111.96, + "end": 3116.98, + "probability": 0.7328 + }, + { + "start": 3117.92, + "end": 3119.14, + "probability": 0.6617 + }, + { + "start": 3119.76, + "end": 3120.68, + "probability": 0.758 + }, + { + "start": 3120.9, + "end": 3125.07, + "probability": 0.9036 + }, + { + "start": 3126.22, + "end": 3126.44, + "probability": 0.5692 + }, + { + "start": 3126.48, + "end": 3131.12, + "probability": 0.948 + }, + { + "start": 3131.46, + "end": 3135.04, + "probability": 0.6708 + }, + { + "start": 3135.4, + "end": 3136.1, + "probability": 0.6647 + }, + { + "start": 3136.22, + "end": 3138.94, + "probability": 0.9253 + }, + { + "start": 3139.56, + "end": 3141.91, + "probability": 0.7241 + }, + { + "start": 3142.7, + "end": 3143.75, + "probability": 0.9624 + }, + { + "start": 3144.24, + "end": 3146.36, + "probability": 0.8505 + }, + { + "start": 3146.5, + "end": 3146.66, + "probability": 0.5589 + }, + { + "start": 3146.76, + "end": 3148.22, + "probability": 0.9385 + }, + { + "start": 3148.92, + "end": 3150.5, + "probability": 0.9252 + }, + { + "start": 3150.8, + "end": 3152.44, + "probability": 0.9112 + }, + { + "start": 3152.58, + "end": 3153.58, + "probability": 0.4262 + }, + { + "start": 3153.82, + "end": 3153.82, + "probability": 0.4583 + }, + { + "start": 3153.82, + "end": 3155.19, + "probability": 0.9469 + }, + { + "start": 3155.81, + "end": 3157.47, + "probability": 0.9513 + }, + { + "start": 3158.07, + "end": 3160.35, + "probability": 0.9609 + }, + { + "start": 3161.37, + "end": 3165.47, + "probability": 0.9671 + }, + { + "start": 3166.23, + "end": 3167.45, + "probability": 0.8835 + }, + { + "start": 3167.67, + "end": 3169.41, + "probability": 0.7644 + }, + { + "start": 3170.19, + "end": 3173.81, + "probability": 0.7599 + }, + { + "start": 3173.91, + "end": 3174.59, + "probability": 0.9189 + }, + { + "start": 3174.67, + "end": 3175.44, + "probability": 0.8201 + }, + { + "start": 3175.79, + "end": 3177.91, + "probability": 0.6759 + }, + { + "start": 3177.97, + "end": 3180.21, + "probability": 0.9932 + }, + { + "start": 3180.77, + "end": 3184.03, + "probability": 0.9966 + }, + { + "start": 3184.15, + "end": 3186.11, + "probability": 0.9922 + }, + { + "start": 3186.17, + "end": 3187.35, + "probability": 0.9724 + }, + { + "start": 3187.45, + "end": 3188.31, + "probability": 0.5042 + }, + { + "start": 3188.75, + "end": 3189.99, + "probability": 0.9206 + }, + { + "start": 3190.23, + "end": 3192.43, + "probability": 0.9911 + }, + { + "start": 3192.51, + "end": 3193.25, + "probability": 0.7869 + }, + { + "start": 3193.85, + "end": 3194.43, + "probability": 0.8027 + }, + { + "start": 3194.47, + "end": 3199.47, + "probability": 0.9814 + }, + { + "start": 3200.85, + "end": 3204.41, + "probability": 0.9711 + }, + { + "start": 3204.45, + "end": 3205.99, + "probability": 0.9418 + }, + { + "start": 3206.13, + "end": 3207.6, + "probability": 0.8616 + }, + { + "start": 3207.81, + "end": 3209.57, + "probability": 0.833 + }, + { + "start": 3209.57, + "end": 3212.05, + "probability": 0.9502 + }, + { + "start": 3212.17, + "end": 3214.55, + "probability": 0.9534 + }, + { + "start": 3215.7, + "end": 3217.01, + "probability": 0.5125 + }, + { + "start": 3218.59, + "end": 3220.95, + "probability": 0.1335 + }, + { + "start": 3222.15, + "end": 3223.19, + "probability": 0.0907 + }, + { + "start": 3223.85, + "end": 3224.64, + "probability": 0.5215 + }, + { + "start": 3224.75, + "end": 3225.29, + "probability": 0.5446 + }, + { + "start": 3225.29, + "end": 3226.33, + "probability": 0.8565 + }, + { + "start": 3226.37, + "end": 3226.69, + "probability": 0.3197 + }, + { + "start": 3226.69, + "end": 3227.27, + "probability": 0.5122 + }, + { + "start": 3227.35, + "end": 3228.25, + "probability": 0.6339 + }, + { + "start": 3228.37, + "end": 3229.14, + "probability": 0.5301 + }, + { + "start": 3229.63, + "end": 3231.85, + "probability": 0.8777 + }, + { + "start": 3234.11, + "end": 3234.79, + "probability": 0.0324 + }, + { + "start": 3234.85, + "end": 3237.17, + "probability": 0.3712 + }, + { + "start": 3237.49, + "end": 3239.03, + "probability": 0.5975 + }, + { + "start": 3239.03, + "end": 3240.13, + "probability": 0.3783 + }, + { + "start": 3240.13, + "end": 3240.71, + "probability": 0.0305 + }, + { + "start": 3240.71, + "end": 3240.93, + "probability": 0.0726 + }, + { + "start": 3240.93, + "end": 3241.05, + "probability": 0.3045 + }, + { + "start": 3241.35, + "end": 3242.67, + "probability": 0.2796 + }, + { + "start": 3243.25, + "end": 3243.91, + "probability": 0.5535 + }, + { + "start": 3244.07, + "end": 3244.13, + "probability": 0.4455 + }, + { + "start": 3244.15, + "end": 3244.43, + "probability": 0.0862 + }, + { + "start": 3244.43, + "end": 3247.29, + "probability": 0.8937 + }, + { + "start": 3247.39, + "end": 3248.89, + "probability": 0.269 + }, + { + "start": 3249.57, + "end": 3250.59, + "probability": 0.3025 + }, + { + "start": 3250.97, + "end": 3251.57, + "probability": 0.0845 + }, + { + "start": 3251.71, + "end": 3253.57, + "probability": 0.1559 + }, + { + "start": 3253.89, + "end": 3256.46, + "probability": 0.93 + }, + { + "start": 3257.09, + "end": 3258.57, + "probability": 0.0383 + }, + { + "start": 3258.57, + "end": 3259.35, + "probability": 0.1095 + }, + { + "start": 3259.45, + "end": 3262.09, + "probability": 0.4851 + }, + { + "start": 3262.25, + "end": 3263.93, + "probability": 0.4867 + }, + { + "start": 3264.05, + "end": 3265.29, + "probability": 0.788 + }, + { + "start": 3265.51, + "end": 3268.13, + "probability": 0.8832 + }, + { + "start": 3268.19, + "end": 3269.95, + "probability": 0.4542 + }, + { + "start": 3269.95, + "end": 3270.39, + "probability": 0.1474 + }, + { + "start": 3270.39, + "end": 3277.89, + "probability": 0.3111 + }, + { + "start": 3278.67, + "end": 3282.07, + "probability": 0.436 + }, + { + "start": 3282.13, + "end": 3282.45, + "probability": 0.4621 + }, + { + "start": 3282.51, + "end": 3282.83, + "probability": 0.2032 + }, + { + "start": 3282.91, + "end": 3283.73, + "probability": 0.7809 + }, + { + "start": 3284.71, + "end": 3285.45, + "probability": 0.0831 + }, + { + "start": 3285.45, + "end": 3286.29, + "probability": 0.0994 + }, + { + "start": 3286.29, + "end": 3286.57, + "probability": 0.0637 + }, + { + "start": 3287.05, + "end": 3288.09, + "probability": 0.026 + }, + { + "start": 3289.11, + "end": 3289.51, + "probability": 0.3379 + }, + { + "start": 3295.89, + "end": 3299.67, + "probability": 0.0942 + }, + { + "start": 3310.05, + "end": 3313.15, + "probability": 0.065 + }, + { + "start": 3314.23, + "end": 3315.33, + "probability": 0.1958 + }, + { + "start": 3316.31, + "end": 3317.57, + "probability": 0.0668 + }, + { + "start": 3318.53, + "end": 3318.83, + "probability": 0.0185 + }, + { + "start": 3318.83, + "end": 3318.93, + "probability": 0.0206 + }, + { + "start": 3319.0, + "end": 3319.0, + "probability": 0.0 + }, + { + "start": 3319.0, + "end": 3319.0, + "probability": 0.0 + }, + { + "start": 3319.0, + "end": 3319.0, + "probability": 0.0 + }, + { + "start": 3319.0, + "end": 3319.0, + "probability": 0.0 + }, + { + "start": 3319.0, + "end": 3319.0, + "probability": 0.0 + }, + { + "start": 3319.0, + "end": 3319.0, + "probability": 0.0 + }, + { + "start": 3319.0, + "end": 3319.0, + "probability": 0.0 + }, + { + "start": 3319.0, + "end": 3319.0, + "probability": 0.0 + }, + { + "start": 3319.0, + "end": 3319.0, + "probability": 0.0 + }, + { + "start": 3319.0, + "end": 3319.0, + "probability": 0.0 + }, + { + "start": 3319.0, + "end": 3319.0, + "probability": 0.0 + }, + { + "start": 3319.0, + "end": 3319.0, + "probability": 0.0 + }, + { + "start": 3319.0, + "end": 3319.0, + "probability": 0.0 + }, + { + "start": 3319.0, + "end": 3319.0, + "probability": 0.0 + }, + { + "start": 3319.08, + "end": 3319.26, + "probability": 0.0876 + }, + { + "start": 3319.26, + "end": 3320.12, + "probability": 0.0885 + }, + { + "start": 3320.92, + "end": 3323.02, + "probability": 0.8677 + }, + { + "start": 3324.0, + "end": 3326.16, + "probability": 0.5521 + }, + { + "start": 3327.52, + "end": 3330.18, + "probability": 0.9582 + }, + { + "start": 3331.74, + "end": 3332.56, + "probability": 0.9574 + }, + { + "start": 3333.14, + "end": 3334.62, + "probability": 0.9884 + }, + { + "start": 3334.76, + "end": 3335.82, + "probability": 0.9698 + }, + { + "start": 3335.9, + "end": 3336.84, + "probability": 0.817 + }, + { + "start": 3337.94, + "end": 3339.12, + "probability": 0.9533 + }, + { + "start": 3340.04, + "end": 3341.24, + "probability": 0.9052 + }, + { + "start": 3341.94, + "end": 3342.8, + "probability": 0.9471 + }, + { + "start": 3344.82, + "end": 3346.96, + "probability": 0.9572 + }, + { + "start": 3347.0, + "end": 3348.36, + "probability": 0.9399 + }, + { + "start": 3349.04, + "end": 3351.12, + "probability": 0.9968 + }, + { + "start": 3351.8, + "end": 3354.6, + "probability": 0.874 + }, + { + "start": 3355.32, + "end": 3356.12, + "probability": 0.7391 + }, + { + "start": 3356.84, + "end": 3359.32, + "probability": 0.936 + }, + { + "start": 3360.18, + "end": 3361.0, + "probability": 0.9743 + }, + { + "start": 3361.64, + "end": 3363.6, + "probability": 0.9653 + }, + { + "start": 3364.22, + "end": 3367.74, + "probability": 0.9925 + }, + { + "start": 3368.72, + "end": 3371.88, + "probability": 0.9758 + }, + { + "start": 3372.72, + "end": 3373.9, + "probability": 0.8384 + }, + { + "start": 3374.46, + "end": 3375.42, + "probability": 0.9501 + }, + { + "start": 3375.5, + "end": 3376.56, + "probability": 0.7538 + }, + { + "start": 3376.68, + "end": 3378.76, + "probability": 0.9961 + }, + { + "start": 3380.16, + "end": 3382.7, + "probability": 0.9311 + }, + { + "start": 3383.3, + "end": 3386.88, + "probability": 0.9863 + }, + { + "start": 3387.06, + "end": 3388.94, + "probability": 0.8219 + }, + { + "start": 3389.0, + "end": 3390.42, + "probability": 0.7554 + }, + { + "start": 3391.44, + "end": 3392.3, + "probability": 0.9391 + }, + { + "start": 3393.08, + "end": 3394.18, + "probability": 0.8804 + }, + { + "start": 3394.92, + "end": 3397.08, + "probability": 0.9374 + }, + { + "start": 3400.06, + "end": 3400.5, + "probability": 0.9861 + }, + { + "start": 3401.22, + "end": 3405.36, + "probability": 0.9937 + }, + { + "start": 3405.9, + "end": 3406.16, + "probability": 0.6608 + }, + { + "start": 3406.66, + "end": 3407.6, + "probability": 0.5499 + }, + { + "start": 3407.76, + "end": 3409.84, + "probability": 0.984 + }, + { + "start": 3409.96, + "end": 3414.4, + "probability": 0.6834 + }, + { + "start": 3415.0, + "end": 3417.04, + "probability": 0.9946 + }, + { + "start": 3417.2, + "end": 3417.86, + "probability": 0.9338 + }, + { + "start": 3417.94, + "end": 3419.72, + "probability": 0.9088 + }, + { + "start": 3420.28, + "end": 3423.9, + "probability": 0.9447 + }, + { + "start": 3437.62, + "end": 3439.44, + "probability": 0.9669 + }, + { + "start": 3441.7, + "end": 3443.46, + "probability": 0.7898 + }, + { + "start": 3443.6, + "end": 3445.74, + "probability": 0.8435 + }, + { + "start": 3446.56, + "end": 3447.8, + "probability": 0.9582 + }, + { + "start": 3448.68, + "end": 3450.26, + "probability": 0.4191 + }, + { + "start": 3450.36, + "end": 3451.68, + "probability": 0.9889 + }, + { + "start": 3451.8, + "end": 3454.56, + "probability": 0.8361 + }, + { + "start": 3455.22, + "end": 3456.96, + "probability": 0.9922 + }, + { + "start": 3457.6, + "end": 3459.68, + "probability": 0.9697 + }, + { + "start": 3460.26, + "end": 3461.36, + "probability": 0.9621 + }, + { + "start": 3461.48, + "end": 3462.04, + "probability": 0.8849 + }, + { + "start": 3462.18, + "end": 3468.14, + "probability": 0.8289 + }, + { + "start": 3468.62, + "end": 3469.74, + "probability": 0.9758 + }, + { + "start": 3471.46, + "end": 3477.06, + "probability": 0.9307 + }, + { + "start": 3477.62, + "end": 3482.03, + "probability": 0.9759 + }, + { + "start": 3483.44, + "end": 3487.94, + "probability": 0.9678 + }, + { + "start": 3487.94, + "end": 3490.08, + "probability": 0.9982 + }, + { + "start": 3491.28, + "end": 3492.26, + "probability": 0.7921 + }, + { + "start": 3493.24, + "end": 3495.26, + "probability": 0.9989 + }, + { + "start": 3495.28, + "end": 3498.0, + "probability": 0.9961 + }, + { + "start": 3498.78, + "end": 3503.04, + "probability": 0.8646 + }, + { + "start": 3503.74, + "end": 3509.24, + "probability": 0.9808 + }, + { + "start": 3510.26, + "end": 3511.96, + "probability": 0.7443 + }, + { + "start": 3512.36, + "end": 3512.86, + "probability": 0.6599 + }, + { + "start": 3513.54, + "end": 3516.12, + "probability": 0.7988 + }, + { + "start": 3516.64, + "end": 3520.4, + "probability": 0.938 + }, + { + "start": 3521.4, + "end": 3525.12, + "probability": 0.9894 + }, + { + "start": 3525.84, + "end": 3530.42, + "probability": 0.9521 + }, + { + "start": 3531.94, + "end": 3535.02, + "probability": 0.8509 + }, + { + "start": 3536.0, + "end": 3537.89, + "probability": 0.9969 + }, + { + "start": 3538.42, + "end": 3540.51, + "probability": 0.9819 + }, + { + "start": 3541.8, + "end": 3542.62, + "probability": 0.753 + }, + { + "start": 3543.42, + "end": 3544.82, + "probability": 0.937 + }, + { + "start": 3545.82, + "end": 3546.44, + "probability": 0.7824 + }, + { + "start": 3547.76, + "end": 3548.74, + "probability": 0.9976 + }, + { + "start": 3548.78, + "end": 3549.66, + "probability": 0.6423 + }, + { + "start": 3550.06, + "end": 3553.35, + "probability": 0.9585 + }, + { + "start": 3554.92, + "end": 3557.64, + "probability": 0.9961 + }, + { + "start": 3558.54, + "end": 3559.64, + "probability": 0.5607 + }, + { + "start": 3559.84, + "end": 3563.9, + "probability": 0.7062 + }, + { + "start": 3564.46, + "end": 3567.34, + "probability": 0.9991 + }, + { + "start": 3568.26, + "end": 3572.5, + "probability": 0.9971 + }, + { + "start": 3573.84, + "end": 3574.9, + "probability": 0.9527 + }, + { + "start": 3575.58, + "end": 3576.5, + "probability": 0.8376 + }, + { + "start": 3577.24, + "end": 3577.9, + "probability": 0.6266 + }, + { + "start": 3578.84, + "end": 3583.56, + "probability": 0.9977 + }, + { + "start": 3585.34, + "end": 3591.5, + "probability": 0.9899 + }, + { + "start": 3592.26, + "end": 3593.1, + "probability": 0.993 + }, + { + "start": 3594.1, + "end": 3595.22, + "probability": 0.9651 + }, + { + "start": 3595.86, + "end": 3598.36, + "probability": 0.9772 + }, + { + "start": 3598.56, + "end": 3599.54, + "probability": 0.6183 + }, + { + "start": 3599.62, + "end": 3600.58, + "probability": 0.944 + }, + { + "start": 3601.18, + "end": 3602.3, + "probability": 0.9888 + }, + { + "start": 3605.62, + "end": 3606.26, + "probability": 0.8827 + }, + { + "start": 3607.1, + "end": 3608.1, + "probability": 0.5751 + }, + { + "start": 3608.6, + "end": 3610.64, + "probability": 0.9963 + }, + { + "start": 3611.28, + "end": 3613.02, + "probability": 0.9088 + }, + { + "start": 3614.06, + "end": 3617.8, + "probability": 0.9965 + }, + { + "start": 3618.8, + "end": 3619.28, + "probability": 0.9886 + }, + { + "start": 3620.02, + "end": 3620.68, + "probability": 0.8966 + }, + { + "start": 3621.2, + "end": 3621.92, + "probability": 0.9237 + }, + { + "start": 3621.98, + "end": 3623.68, + "probability": 0.9951 + }, + { + "start": 3624.68, + "end": 3625.94, + "probability": 0.9299 + }, + { + "start": 3626.3, + "end": 3627.98, + "probability": 0.9895 + }, + { + "start": 3628.06, + "end": 3628.78, + "probability": 0.8089 + }, + { + "start": 3629.28, + "end": 3633.0, + "probability": 0.9321 + }, + { + "start": 3633.06, + "end": 3634.12, + "probability": 0.6692 + }, + { + "start": 3634.86, + "end": 3636.64, + "probability": 0.0597 + }, + { + "start": 3637.0, + "end": 3637.62, + "probability": 0.126 + }, + { + "start": 3637.64, + "end": 3638.71, + "probability": 0.9131 + }, + { + "start": 3640.1, + "end": 3644.04, + "probability": 0.947 + }, + { + "start": 3644.54, + "end": 3645.06, + "probability": 0.4443 + }, + { + "start": 3645.7, + "end": 3650.9, + "probability": 0.658 + }, + { + "start": 3651.97, + "end": 3655.1, + "probability": 0.8762 + }, + { + "start": 3655.14, + "end": 3658.44, + "probability": 0.7253 + }, + { + "start": 3658.82, + "end": 3661.38, + "probability": 0.9113 + }, + { + "start": 3662.12, + "end": 3664.74, + "probability": 0.9932 + }, + { + "start": 3665.58, + "end": 3668.1, + "probability": 0.9787 + }, + { + "start": 3668.1, + "end": 3668.82, + "probability": 0.3318 + }, + { + "start": 3669.16, + "end": 3669.82, + "probability": 0.8373 + }, + { + "start": 3670.84, + "end": 3673.46, + "probability": 0.9983 + }, + { + "start": 3698.42, + "end": 3699.24, + "probability": 0.7602 + }, + { + "start": 3700.74, + "end": 3701.9, + "probability": 0.5092 + }, + { + "start": 3702.96, + "end": 3705.52, + "probability": 0.8838 + }, + { + "start": 3706.54, + "end": 3710.86, + "probability": 0.9487 + }, + { + "start": 3711.2, + "end": 3716.6, + "probability": 0.9922 + }, + { + "start": 3717.38, + "end": 3718.74, + "probability": 0.9749 + }, + { + "start": 3720.66, + "end": 3722.98, + "probability": 0.9167 + }, + { + "start": 3723.28, + "end": 3724.24, + "probability": 0.9885 + }, + { + "start": 3725.46, + "end": 3726.9, + "probability": 0.9801 + }, + { + "start": 3728.5, + "end": 3730.1, + "probability": 0.9406 + }, + { + "start": 3730.34, + "end": 3731.12, + "probability": 0.9602 + }, + { + "start": 3731.56, + "end": 3732.38, + "probability": 0.8546 + }, + { + "start": 3734.8, + "end": 3736.96, + "probability": 0.9902 + }, + { + "start": 3737.32, + "end": 3738.02, + "probability": 0.4991 + }, + { + "start": 3739.94, + "end": 3742.36, + "probability": 0.6339 + }, + { + "start": 3743.02, + "end": 3743.66, + "probability": 0.5241 + }, + { + "start": 3746.38, + "end": 3747.86, + "probability": 0.7408 + }, + { + "start": 3748.04, + "end": 3748.86, + "probability": 0.9231 + }, + { + "start": 3750.34, + "end": 3751.26, + "probability": 0.9187 + }, + { + "start": 3752.48, + "end": 3753.74, + "probability": 0.9513 + }, + { + "start": 3754.1, + "end": 3754.84, + "probability": 0.5442 + }, + { + "start": 3755.2, + "end": 3759.68, + "probability": 0.9574 + }, + { + "start": 3759.96, + "end": 3761.58, + "probability": 0.8894 + }, + { + "start": 3762.32, + "end": 3763.58, + "probability": 0.8843 + }, + { + "start": 3764.58, + "end": 3765.28, + "probability": 0.9779 + }, + { + "start": 3765.6, + "end": 3769.08, + "probability": 0.9308 + }, + { + "start": 3769.32, + "end": 3770.5, + "probability": 0.9773 + }, + { + "start": 3770.68, + "end": 3771.4, + "probability": 0.6589 + }, + { + "start": 3771.54, + "end": 3772.3, + "probability": 0.9829 + }, + { + "start": 3772.4, + "end": 3773.34, + "probability": 0.9933 + }, + { + "start": 3774.02, + "end": 3776.1, + "probability": 0.6113 + }, + { + "start": 3776.22, + "end": 3777.06, + "probability": 0.8247 + }, + { + "start": 3777.52, + "end": 3780.6, + "probability": 0.9508 + }, + { + "start": 3781.12, + "end": 3785.3, + "probability": 0.9943 + }, + { + "start": 3785.44, + "end": 3787.22, + "probability": 0.8243 + }, + { + "start": 3787.94, + "end": 3791.22, + "probability": 0.9939 + }, + { + "start": 3792.38, + "end": 3794.58, + "probability": 0.9824 + }, + { + "start": 3794.6, + "end": 3799.0, + "probability": 0.9862 + }, + { + "start": 3799.52, + "end": 3801.58, + "probability": 0.9932 + }, + { + "start": 3802.48, + "end": 3804.8, + "probability": 0.9705 + }, + { + "start": 3805.38, + "end": 3805.76, + "probability": 0.796 + }, + { + "start": 3805.84, + "end": 3806.86, + "probability": 0.8854 + }, + { + "start": 3806.9, + "end": 3809.68, + "probability": 0.9983 + }, + { + "start": 3809.88, + "end": 3813.18, + "probability": 0.9822 + }, + { + "start": 3813.18, + "end": 3818.16, + "probability": 0.9962 + }, + { + "start": 3818.84, + "end": 3820.28, + "probability": 0.8514 + }, + { + "start": 3821.12, + "end": 3823.96, + "probability": 0.7456 + }, + { + "start": 3825.18, + "end": 3828.62, + "probability": 0.9407 + }, + { + "start": 3829.42, + "end": 3833.92, + "probability": 0.989 + }, + { + "start": 3834.58, + "end": 3836.9, + "probability": 0.9941 + }, + { + "start": 3837.2, + "end": 3840.31, + "probability": 0.4285 + }, + { + "start": 3842.08, + "end": 3845.02, + "probability": 0.9358 + }, + { + "start": 3845.2, + "end": 3848.96, + "probability": 0.8374 + }, + { + "start": 3849.66, + "end": 3853.76, + "probability": 0.7676 + }, + { + "start": 3854.26, + "end": 3857.18, + "probability": 0.9873 + }, + { + "start": 3857.28, + "end": 3857.68, + "probability": 0.8184 + }, + { + "start": 3859.88, + "end": 3860.88, + "probability": 0.7885 + }, + { + "start": 3861.96, + "end": 3864.6, + "probability": 0.9658 + }, + { + "start": 3866.34, + "end": 3867.98, + "probability": 0.8948 + }, + { + "start": 3878.32, + "end": 3880.06, + "probability": 0.6554 + }, + { + "start": 3880.48, + "end": 3882.22, + "probability": 0.6591 + }, + { + "start": 3883.26, + "end": 3887.76, + "probability": 0.99 + }, + { + "start": 3888.3, + "end": 3891.74, + "probability": 0.9789 + }, + { + "start": 3892.6, + "end": 3895.76, + "probability": 0.4542 + }, + { + "start": 3896.92, + "end": 3899.88, + "probability": 0.8794 + }, + { + "start": 3900.4, + "end": 3906.34, + "probability": 0.925 + }, + { + "start": 3907.14, + "end": 3907.78, + "probability": 0.7845 + }, + { + "start": 3908.6, + "end": 3912.16, + "probability": 0.9888 + }, + { + "start": 3913.24, + "end": 3916.86, + "probability": 0.9294 + }, + { + "start": 3917.42, + "end": 3920.16, + "probability": 0.7059 + }, + { + "start": 3921.32, + "end": 3926.34, + "probability": 0.9754 + }, + { + "start": 3927.16, + "end": 3928.28, + "probability": 0.894 + }, + { + "start": 3929.16, + "end": 3933.28, + "probability": 0.9985 + }, + { + "start": 3934.2, + "end": 3935.16, + "probability": 0.7441 + }, + { + "start": 3936.26, + "end": 3941.1, + "probability": 0.996 + }, + { + "start": 3941.8, + "end": 3942.72, + "probability": 0.9985 + }, + { + "start": 3944.26, + "end": 3946.38, + "probability": 0.9997 + }, + { + "start": 3947.96, + "end": 3953.52, + "probability": 0.9014 + }, + { + "start": 3953.52, + "end": 3957.08, + "probability": 0.9912 + }, + { + "start": 3957.6, + "end": 3960.36, + "probability": 0.9458 + }, + { + "start": 3961.02, + "end": 3962.68, + "probability": 0.9346 + }, + { + "start": 3964.06, + "end": 3966.84, + "probability": 0.9119 + }, + { + "start": 3969.16, + "end": 3970.86, + "probability": 0.9146 + }, + { + "start": 3970.86, + "end": 3974.8, + "probability": 0.6244 + }, + { + "start": 3976.08, + "end": 3976.86, + "probability": 0.9954 + }, + { + "start": 3978.18, + "end": 3979.14, + "probability": 0.802 + }, + { + "start": 3980.22, + "end": 3986.9, + "probability": 0.9479 + }, + { + "start": 3986.9, + "end": 3992.68, + "probability": 0.9882 + }, + { + "start": 3995.58, + "end": 3997.96, + "probability": 0.8531 + }, + { + "start": 3998.92, + "end": 4000.26, + "probability": 0.899 + }, + { + "start": 4001.72, + "end": 4007.24, + "probability": 0.9786 + }, + { + "start": 4007.44, + "end": 4013.52, + "probability": 0.9895 + }, + { + "start": 4013.8, + "end": 4016.04, + "probability": 0.9812 + }, + { + "start": 4016.96, + "end": 4018.02, + "probability": 0.9512 + }, + { + "start": 4018.06, + "end": 4018.44, + "probability": 0.7537 + }, + { + "start": 4019.0, + "end": 4019.9, + "probability": 0.7971 + }, + { + "start": 4020.52, + "end": 4022.08, + "probability": 0.9884 + }, + { + "start": 4022.98, + "end": 4023.54, + "probability": 0.9554 + }, + { + "start": 4028.24, + "end": 4029.16, + "probability": 0.5014 + }, + { + "start": 4039.3, + "end": 4042.2, + "probability": 0.2756 + }, + { + "start": 4042.96, + "end": 4045.48, + "probability": 0.7542 + }, + { + "start": 4047.98, + "end": 4048.84, + "probability": 0.8349 + }, + { + "start": 4049.62, + "end": 4050.22, + "probability": 0.8793 + }, + { + "start": 4051.44, + "end": 4057.72, + "probability": 0.9988 + }, + { + "start": 4057.72, + "end": 4066.06, + "probability": 0.9991 + }, + { + "start": 4067.2, + "end": 4070.42, + "probability": 0.958 + }, + { + "start": 4071.2, + "end": 4071.82, + "probability": 0.8457 + }, + { + "start": 4072.88, + "end": 4075.14, + "probability": 0.9678 + }, + { + "start": 4076.12, + "end": 4076.82, + "probability": 0.9256 + }, + { + "start": 4077.78, + "end": 4081.82, + "probability": 0.9949 + }, + { + "start": 4082.66, + "end": 4083.64, + "probability": 0.9356 + }, + { + "start": 4084.38, + "end": 4086.2, + "probability": 0.9927 + }, + { + "start": 4087.14, + "end": 4088.36, + "probability": 0.9033 + }, + { + "start": 4089.12, + "end": 4091.3, + "probability": 0.9951 + }, + { + "start": 4091.38, + "end": 4094.68, + "probability": 0.7483 + }, + { + "start": 4094.68, + "end": 4097.24, + "probability": 0.9978 + }, + { + "start": 4098.44, + "end": 4102.1, + "probability": 0.9964 + }, + { + "start": 4102.68, + "end": 4108.4, + "probability": 0.9958 + }, + { + "start": 4109.12, + "end": 4113.74, + "probability": 0.8424 + }, + { + "start": 4114.3, + "end": 4114.78, + "probability": 0.7676 + }, + { + "start": 4114.94, + "end": 4115.74, + "probability": 0.8055 + }, + { + "start": 4115.8, + "end": 4125.34, + "probability": 0.98 + }, + { + "start": 4126.24, + "end": 4127.86, + "probability": 0.9888 + }, + { + "start": 4128.9, + "end": 4135.38, + "probability": 0.9911 + }, + { + "start": 4135.38, + "end": 4140.3, + "probability": 0.9977 + }, + { + "start": 4141.02, + "end": 4145.06, + "probability": 0.7397 + }, + { + "start": 4145.58, + "end": 4149.16, + "probability": 0.781 + }, + { + "start": 4149.74, + "end": 4155.68, + "probability": 0.9917 + }, + { + "start": 4156.84, + "end": 4161.4, + "probability": 0.987 + }, + { + "start": 4161.54, + "end": 4162.86, + "probability": 0.9525 + }, + { + "start": 4163.1, + "end": 4164.74, + "probability": 0.7313 + }, + { + "start": 4165.38, + "end": 4170.0, + "probability": 0.9416 + }, + { + "start": 4170.58, + "end": 4171.98, + "probability": 0.995 + }, + { + "start": 4172.5, + "end": 4174.64, + "probability": 0.9315 + }, + { + "start": 4175.4, + "end": 4178.31, + "probability": 0.9976 + }, + { + "start": 4178.98, + "end": 4180.48, + "probability": 0.9882 + }, + { + "start": 4181.1, + "end": 4184.66, + "probability": 0.9914 + }, + { + "start": 4185.16, + "end": 4185.74, + "probability": 0.7415 + }, + { + "start": 4186.0, + "end": 4190.38, + "probability": 0.9937 + }, + { + "start": 4190.38, + "end": 4193.28, + "probability": 0.9937 + }, + { + "start": 4194.84, + "end": 4195.36, + "probability": 0.7614 + }, + { + "start": 4195.38, + "end": 4195.98, + "probability": 0.9016 + }, + { + "start": 4196.06, + "end": 4199.64, + "probability": 0.8397 + }, + { + "start": 4200.14, + "end": 4201.96, + "probability": 0.8389 + }, + { + "start": 4202.46, + "end": 4205.42, + "probability": 0.723 + }, + { + "start": 4206.12, + "end": 4207.08, + "probability": 0.9821 + }, + { + "start": 4207.68, + "end": 4211.16, + "probability": 0.9962 + }, + { + "start": 4211.28, + "end": 4212.1, + "probability": 0.9093 + }, + { + "start": 4212.48, + "end": 4214.04, + "probability": 0.9832 + }, + { + "start": 4214.66, + "end": 4217.44, + "probability": 0.9858 + }, + { + "start": 4217.56, + "end": 4217.98, + "probability": 0.8815 + }, + { + "start": 4218.78, + "end": 4219.72, + "probability": 0.8322 + }, + { + "start": 4220.6, + "end": 4224.52, + "probability": 0.6788 + }, + { + "start": 4225.36, + "end": 4225.36, + "probability": 0.5333 + }, + { + "start": 4225.36, + "end": 4233.8, + "probability": 0.6601 + }, + { + "start": 4256.76, + "end": 4258.58, + "probability": 0.2228 + }, + { + "start": 4259.36, + "end": 4260.54, + "probability": 0.7061 + }, + { + "start": 4262.08, + "end": 4263.46, + "probability": 0.4276 + }, + { + "start": 4263.72, + "end": 4266.72, + "probability": 0.9703 + }, + { + "start": 4267.22, + "end": 4269.32, + "probability": 0.8271 + }, + { + "start": 4269.32, + "end": 4274.24, + "probability": 0.7642 + }, + { + "start": 4274.86, + "end": 4279.9, + "probability": 0.7612 + }, + { + "start": 4280.62, + "end": 4283.12, + "probability": 0.991 + }, + { + "start": 4283.26, + "end": 4287.24, + "probability": 0.9826 + }, + { + "start": 4287.5, + "end": 4291.66, + "probability": 0.6499 + }, + { + "start": 4294.84, + "end": 4296.22, + "probability": 0.7004 + }, + { + "start": 4296.38, + "end": 4298.12, + "probability": 0.8696 + }, + { + "start": 4298.38, + "end": 4301.74, + "probability": 0.8505 + }, + { + "start": 4302.3, + "end": 4304.24, + "probability": 0.9762 + }, + { + "start": 4305.1, + "end": 4308.86, + "probability": 0.9808 + }, + { + "start": 4310.26, + "end": 4311.14, + "probability": 0.9432 + }, + { + "start": 4311.56, + "end": 4314.6, + "probability": 0.7748 + }, + { + "start": 4314.9, + "end": 4321.34, + "probability": 0.9897 + }, + { + "start": 4322.26, + "end": 4323.36, + "probability": 0.8691 + }, + { + "start": 4323.54, + "end": 4324.0, + "probability": 0.8246 + }, + { + "start": 4324.16, + "end": 4329.72, + "probability": 0.7939 + }, + { + "start": 4330.88, + "end": 4332.0, + "probability": 0.9372 + }, + { + "start": 4333.1, + "end": 4337.44, + "probability": 0.7546 + }, + { + "start": 4337.88, + "end": 4339.72, + "probability": 0.9041 + }, + { + "start": 4339.72, + "end": 4342.1, + "probability": 0.9933 + }, + { + "start": 4342.72, + "end": 4344.8, + "probability": 0.9946 + }, + { + "start": 4346.58, + "end": 4350.64, + "probability": 0.9899 + }, + { + "start": 4350.64, + "end": 4353.26, + "probability": 0.9485 + }, + { + "start": 4353.42, + "end": 4358.4, + "probability": 0.9353 + }, + { + "start": 4358.66, + "end": 4361.04, + "probability": 0.9791 + }, + { + "start": 4361.56, + "end": 4363.36, + "probability": 0.8296 + }, + { + "start": 4365.04, + "end": 4366.3, + "probability": 0.8606 + }, + { + "start": 4366.46, + "end": 4369.82, + "probability": 0.9902 + }, + { + "start": 4369.82, + "end": 4373.62, + "probability": 0.9236 + }, + { + "start": 4375.3, + "end": 4379.38, + "probability": 0.8705 + }, + { + "start": 4380.38, + "end": 4384.08, + "probability": 0.9418 + }, + { + "start": 4384.8, + "end": 4387.76, + "probability": 0.9425 + }, + { + "start": 4387.8, + "end": 4391.96, + "probability": 0.9426 + }, + { + "start": 4392.36, + "end": 4395.26, + "probability": 0.8684 + }, + { + "start": 4395.34, + "end": 4396.8, + "probability": 0.9182 + }, + { + "start": 4397.38, + "end": 4401.0, + "probability": 0.9552 + }, + { + "start": 4401.52, + "end": 4404.64, + "probability": 0.9297 + }, + { + "start": 4405.08, + "end": 4405.44, + "probability": 0.3525 + }, + { + "start": 4405.46, + "end": 4407.18, + "probability": 0.8036 + }, + { + "start": 4407.3, + "end": 4407.48, + "probability": 0.7553 + }, + { + "start": 4407.68, + "end": 4408.26, + "probability": 0.9381 + }, + { + "start": 4409.18, + "end": 4409.7, + "probability": 0.9594 + }, + { + "start": 4410.22, + "end": 4412.1, + "probability": 0.8201 + }, + { + "start": 4412.14, + "end": 4415.26, + "probability": 0.8459 + }, + { + "start": 4415.7, + "end": 4416.92, + "probability": 0.6684 + }, + { + "start": 4417.58, + "end": 4420.88, + "probability": 0.9966 + }, + { + "start": 4421.26, + "end": 4423.16, + "probability": 0.8757 + }, + { + "start": 4424.46, + "end": 4428.62, + "probability": 0.9761 + }, + { + "start": 4428.62, + "end": 4432.4, + "probability": 0.9336 + }, + { + "start": 4432.62, + "end": 4435.46, + "probability": 0.9781 + }, + { + "start": 4436.72, + "end": 4438.8, + "probability": 0.7934 + }, + { + "start": 4438.8, + "end": 4442.32, + "probability": 0.9097 + }, + { + "start": 4442.36, + "end": 4446.88, + "probability": 0.9969 + }, + { + "start": 4448.58, + "end": 4452.14, + "probability": 0.9978 + }, + { + "start": 4452.28, + "end": 4457.36, + "probability": 0.9927 + }, + { + "start": 4458.66, + "end": 4460.53, + "probability": 0.1194 + }, + { + "start": 4460.6, + "end": 4461.56, + "probability": 0.2995 + }, + { + "start": 4461.56, + "end": 4462.28, + "probability": 0.2873 + }, + { + "start": 4463.26, + "end": 4464.6, + "probability": 0.2571 + }, + { + "start": 4464.8, + "end": 4468.78, + "probability": 0.7543 + }, + { + "start": 4469.22, + "end": 4472.72, + "probability": 0.8374 + }, + { + "start": 4473.24, + "end": 4476.96, + "probability": 0.9198 + }, + { + "start": 4477.62, + "end": 4479.1, + "probability": 0.9885 + }, + { + "start": 4480.1, + "end": 4483.36, + "probability": 0.9958 + }, + { + "start": 4483.98, + "end": 4486.16, + "probability": 0.9867 + }, + { + "start": 4486.68, + "end": 4487.84, + "probability": 0.9432 + }, + { + "start": 4488.34, + "end": 4492.66, + "probability": 0.9678 + }, + { + "start": 4493.02, + "end": 4494.36, + "probability": 0.9313 + }, + { + "start": 4494.78, + "end": 4497.88, + "probability": 0.3684 + }, + { + "start": 4498.02, + "end": 4498.98, + "probability": 0.3489 + }, + { + "start": 4499.56, + "end": 4504.02, + "probability": 0.3085 + }, + { + "start": 4509.73, + "end": 4511.32, + "probability": 0.6683 + }, + { + "start": 4511.48, + "end": 4512.57, + "probability": 0.5117 + }, + { + "start": 4515.14, + "end": 4517.36, + "probability": 0.38 + }, + { + "start": 4518.08, + "end": 4522.72, + "probability": 0.9776 + }, + { + "start": 4523.12, + "end": 4527.0, + "probability": 0.9963 + }, + { + "start": 4527.18, + "end": 4529.82, + "probability": 0.7313 + }, + { + "start": 4530.88, + "end": 4533.94, + "probability": 0.9542 + }, + { + "start": 4534.52, + "end": 4536.98, + "probability": 0.9114 + }, + { + "start": 4538.08, + "end": 4540.22, + "probability": 0.9602 + }, + { + "start": 4540.22, + "end": 4544.34, + "probability": 0.7286 + }, + { + "start": 4544.44, + "end": 4546.07, + "probability": 0.9731 + }, + { + "start": 4546.36, + "end": 4548.6, + "probability": 0.616 + }, + { + "start": 4548.74, + "end": 4548.76, + "probability": 0.4718 + }, + { + "start": 4548.76, + "end": 4552.66, + "probability": 0.6288 + }, + { + "start": 4552.66, + "end": 4556.3, + "probability": 0.981 + }, + { + "start": 4556.3, + "end": 4562.08, + "probability": 0.9947 + }, + { + "start": 4562.36, + "end": 4563.34, + "probability": 0.8999 + }, + { + "start": 4563.62, + "end": 4567.76, + "probability": 0.9695 + }, + { + "start": 4568.2, + "end": 4573.36, + "probability": 0.6969 + }, + { + "start": 4573.46, + "end": 4576.26, + "probability": 0.9942 + }, + { + "start": 4576.26, + "end": 4579.34, + "probability": 0.9963 + }, + { + "start": 4579.78, + "end": 4581.64, + "probability": 0.9659 + }, + { + "start": 4581.9, + "end": 4587.18, + "probability": 0.9922 + }, + { + "start": 4588.1, + "end": 4591.16, + "probability": 0.9708 + }, + { + "start": 4591.66, + "end": 4594.7, + "probability": 0.9049 + }, + { + "start": 4594.7, + "end": 4598.6, + "probability": 0.9737 + }, + { + "start": 4598.64, + "end": 4599.12, + "probability": 0.3125 + }, + { + "start": 4599.64, + "end": 4602.66, + "probability": 0.992 + }, + { + "start": 4602.66, + "end": 4606.64, + "probability": 0.9703 + }, + { + "start": 4607.26, + "end": 4610.64, + "probability": 0.7939 + }, + { + "start": 4610.64, + "end": 4613.72, + "probability": 0.8521 + }, + { + "start": 4614.22, + "end": 4617.24, + "probability": 0.9946 + }, + { + "start": 4618.2, + "end": 4619.16, + "probability": 0.9314 + }, + { + "start": 4619.5, + "end": 4620.1, + "probability": 0.8983 + }, + { + "start": 4620.46, + "end": 4625.66, + "probability": 0.9935 + }, + { + "start": 4626.18, + "end": 4627.12, + "probability": 0.8486 + }, + { + "start": 4629.61, + "end": 4633.7, + "probability": 0.5542 + }, + { + "start": 4633.7, + "end": 4634.7, + "probability": 0.7437 + }, + { + "start": 4634.84, + "end": 4638.3, + "probability": 0.8022 + }, + { + "start": 4638.82, + "end": 4639.46, + "probability": 0.8629 + }, + { + "start": 4640.32, + "end": 4642.8, + "probability": 0.7979 + }, + { + "start": 4643.28, + "end": 4645.32, + "probability": 0.9309 + }, + { + "start": 4645.7, + "end": 4646.5, + "probability": 0.7776 + }, + { + "start": 4646.74, + "end": 4649.68, + "probability": 0.9832 + }, + { + "start": 4649.8, + "end": 4650.54, + "probability": 0.5957 + }, + { + "start": 4651.14, + "end": 4653.14, + "probability": 0.7395 + }, + { + "start": 4653.8, + "end": 4656.42, + "probability": 0.9305 + }, + { + "start": 4656.86, + "end": 4659.48, + "probability": 0.9966 + }, + { + "start": 4660.08, + "end": 4663.84, + "probability": 0.8542 + }, + { + "start": 4663.94, + "end": 4665.61, + "probability": 0.357 + }, + { + "start": 4665.8, + "end": 4672.86, + "probability": 0.9644 + }, + { + "start": 4672.88, + "end": 4673.96, + "probability": 0.6234 + }, + { + "start": 4673.98, + "end": 4675.2, + "probability": 0.9897 + }, + { + "start": 4675.26, + "end": 4675.86, + "probability": 0.4982 + }, + { + "start": 4675.88, + "end": 4678.69, + "probability": 0.5514 + }, + { + "start": 4679.66, + "end": 4680.76, + "probability": 0.8911 + }, + { + "start": 4681.06, + "end": 4684.2, + "probability": 0.9926 + }, + { + "start": 4685.82, + "end": 4685.82, + "probability": 0.15 + }, + { + "start": 4685.82, + "end": 4689.08, + "probability": 0.8132 + }, + { + "start": 4689.26, + "end": 4690.54, + "probability": 0.9419 + }, + { + "start": 4692.16, + "end": 4695.12, + "probability": 0.9551 + }, + { + "start": 4695.2, + "end": 4696.96, + "probability": 0.991 + }, + { + "start": 4697.78, + "end": 4701.54, + "probability": 0.866 + }, + { + "start": 4701.68, + "end": 4703.06, + "probability": 0.9419 + }, + { + "start": 4703.4, + "end": 4703.5, + "probability": 0.2805 + }, + { + "start": 4703.62, + "end": 4704.92, + "probability": 0.9565 + }, + { + "start": 4705.32, + "end": 4706.2, + "probability": 0.8016 + }, + { + "start": 4706.76, + "end": 4708.94, + "probability": 0.9879 + }, + { + "start": 4709.0, + "end": 4709.74, + "probability": 0.6899 + }, + { + "start": 4710.3, + "end": 4712.6, + "probability": 0.9761 + }, + { + "start": 4713.84, + "end": 4715.36, + "probability": 0.777 + }, + { + "start": 4715.86, + "end": 4716.96, + "probability": 0.9561 + }, + { + "start": 4717.48, + "end": 4721.92, + "probability": 0.8722 + }, + { + "start": 4722.06, + "end": 4723.08, + "probability": 0.9922 + }, + { + "start": 4723.5, + "end": 4725.14, + "probability": 0.9628 + }, + { + "start": 4725.14, + "end": 4726.86, + "probability": 0.5335 + }, + { + "start": 4726.88, + "end": 4727.74, + "probability": 0.7943 + }, + { + "start": 4728.04, + "end": 4729.16, + "probability": 0.8607 + }, + { + "start": 4729.22, + "end": 4730.36, + "probability": 0.8708 + }, + { + "start": 4730.74, + "end": 4731.76, + "probability": 0.9524 + }, + { + "start": 4732.06, + "end": 4734.72, + "probability": 0.9386 + }, + { + "start": 4736.49, + "end": 4737.88, + "probability": 0.8975 + }, + { + "start": 4738.2, + "end": 4740.04, + "probability": 0.6451 + }, + { + "start": 4740.5, + "end": 4743.38, + "probability": 0.9368 + }, + { + "start": 4743.54, + "end": 4745.5, + "probability": 0.5111 + }, + { + "start": 4746.04, + "end": 4747.86, + "probability": 0.9581 + }, + { + "start": 4748.14, + "end": 4749.98, + "probability": 0.9875 + }, + { + "start": 4750.36, + "end": 4751.78, + "probability": 0.9678 + }, + { + "start": 4752.0, + "end": 4752.8, + "probability": 0.5742 + }, + { + "start": 4753.32, + "end": 4757.0, + "probability": 0.9941 + }, + { + "start": 4757.22, + "end": 4759.9, + "probability": 0.9708 + }, + { + "start": 4760.3, + "end": 4761.5, + "probability": 0.6295 + }, + { + "start": 4761.62, + "end": 4763.88, + "probability": 0.7593 + }, + { + "start": 4764.5, + "end": 4768.38, + "probability": 0.9954 + }, + { + "start": 4768.72, + "end": 4769.68, + "probability": 0.6376 + }, + { + "start": 4769.7, + "end": 4771.82, + "probability": 0.9803 + }, + { + "start": 4772.22, + "end": 4774.52, + "probability": 0.7324 + }, + { + "start": 4774.64, + "end": 4775.52, + "probability": 0.9715 + }, + { + "start": 4776.04, + "end": 4777.72, + "probability": 0.6031 + }, + { + "start": 4778.14, + "end": 4778.9, + "probability": 0.9849 + }, + { + "start": 4779.0, + "end": 4782.9, + "probability": 0.7078 + }, + { + "start": 4783.32, + "end": 4784.42, + "probability": 0.9521 + }, + { + "start": 4785.1, + "end": 4786.56, + "probability": 0.9789 + }, + { + "start": 4786.72, + "end": 4787.2, + "probability": 0.5998 + }, + { + "start": 4787.24, + "end": 4788.5, + "probability": 0.6788 + }, + { + "start": 4789.68, + "end": 4790.82, + "probability": 0.795 + }, + { + "start": 4790.98, + "end": 4794.29, + "probability": 0.9845 + }, + { + "start": 4794.62, + "end": 4795.66, + "probability": 0.9087 + }, + { + "start": 4799.56, + "end": 4800.06, + "probability": 0.6819 + }, + { + "start": 4800.52, + "end": 4806.24, + "probability": 0.8495 + }, + { + "start": 4806.38, + "end": 4808.64, + "probability": 0.9771 + }, + { + "start": 4808.68, + "end": 4809.34, + "probability": 0.8033 + }, + { + "start": 4809.38, + "end": 4811.96, + "probability": 0.7505 + }, + { + "start": 4811.96, + "end": 4815.7, + "probability": 0.9917 + }, + { + "start": 4816.32, + "end": 4826.2, + "probability": 0.9708 + }, + { + "start": 4826.28, + "end": 4827.94, + "probability": 0.8408 + }, + { + "start": 4828.9, + "end": 4830.48, + "probability": 0.8155 + }, + { + "start": 4831.38, + "end": 4832.68, + "probability": 0.6913 + }, + { + "start": 4833.24, + "end": 4835.78, + "probability": 0.9232 + }, + { + "start": 4836.54, + "end": 4841.1, + "probability": 0.9775 + }, + { + "start": 4841.4, + "end": 4842.1, + "probability": 0.6929 + }, + { + "start": 4842.64, + "end": 4844.08, + "probability": 0.9758 + }, + { + "start": 4844.3, + "end": 4848.62, + "probability": 0.9776 + }, + { + "start": 4848.9, + "end": 4849.06, + "probability": 0.4291 + }, + { + "start": 4849.56, + "end": 4852.14, + "probability": 0.9858 + }, + { + "start": 4852.62, + "end": 4857.02, + "probability": 0.9985 + }, + { + "start": 4857.78, + "end": 4861.04, + "probability": 0.9929 + }, + { + "start": 4861.92, + "end": 4863.36, + "probability": 0.7086 + }, + { + "start": 4863.8, + "end": 4864.8, + "probability": 0.9209 + }, + { + "start": 4864.98, + "end": 4865.24, + "probability": 0.7896 + }, + { + "start": 4865.3, + "end": 4866.0, + "probability": 0.5095 + }, + { + "start": 4866.32, + "end": 4869.84, + "probability": 0.9185 + }, + { + "start": 4870.38, + "end": 4872.64, + "probability": 0.9518 + }, + { + "start": 4872.94, + "end": 4875.28, + "probability": 0.9959 + }, + { + "start": 4875.72, + "end": 4879.44, + "probability": 0.9811 + }, + { + "start": 4879.98, + "end": 4882.58, + "probability": 0.9329 + }, + { + "start": 4883.4, + "end": 4886.92, + "probability": 0.9794 + }, + { + "start": 4887.26, + "end": 4891.12, + "probability": 0.9946 + }, + { + "start": 4891.24, + "end": 4894.36, + "probability": 0.9985 + }, + { + "start": 4894.78, + "end": 4895.0, + "probability": 0.2821 + }, + { + "start": 4895.14, + "end": 4895.82, + "probability": 0.6643 + }, + { + "start": 4895.94, + "end": 4898.06, + "probability": 0.6968 + }, + { + "start": 4898.12, + "end": 4900.28, + "probability": 0.8616 + }, + { + "start": 4900.4, + "end": 4900.6, + "probability": 0.6974 + }, + { + "start": 4902.88, + "end": 4903.82, + "probability": 0.7181 + }, + { + "start": 4904.22, + "end": 4911.98, + "probability": 0.883 + }, + { + "start": 4912.64, + "end": 4913.28, + "probability": 0.6872 + }, + { + "start": 4914.64, + "end": 4917.96, + "probability": 0.7849 + }, + { + "start": 4918.96, + "end": 4919.94, + "probability": 0.6808 + }, + { + "start": 4920.22, + "end": 4920.24, + "probability": 0.7463 + }, + { + "start": 4920.76, + "end": 4921.92, + "probability": 0.9813 + }, + { + "start": 4923.76, + "end": 4924.4, + "probability": 0.6196 + }, + { + "start": 4940.08, + "end": 4940.6, + "probability": 0.3913 + }, + { + "start": 4940.6, + "end": 4941.32, + "probability": 0.5334 + }, + { + "start": 4941.32, + "end": 4945.68, + "probability": 0.7491 + }, + { + "start": 4946.38, + "end": 4949.86, + "probability": 0.9448 + }, + { + "start": 4950.68, + "end": 4951.22, + "probability": 0.6807 + }, + { + "start": 4952.8, + "end": 4953.7, + "probability": 0.6751 + }, + { + "start": 4953.88, + "end": 4958.56, + "probability": 0.9719 + }, + { + "start": 4958.56, + "end": 4964.28, + "probability": 0.8736 + }, + { + "start": 4964.52, + "end": 4965.64, + "probability": 0.7902 + }, + { + "start": 4966.04, + "end": 4971.06, + "probability": 0.8879 + }, + { + "start": 4971.06, + "end": 4974.8, + "probability": 0.9972 + }, + { + "start": 4976.42, + "end": 4978.08, + "probability": 0.0576 + }, + { + "start": 4980.62, + "end": 4982.6, + "probability": 0.2233 + }, + { + "start": 4982.8, + "end": 4988.94, + "probability": 0.0318 + }, + { + "start": 4998.04, + "end": 5000.6, + "probability": 0.0358 + }, + { + "start": 5016.42, + "end": 5018.52, + "probability": 0.0978 + }, + { + "start": 5020.28, + "end": 5021.46, + "probability": 0.2768 + }, + { + "start": 5021.46, + "end": 5024.54, + "probability": 0.1535 + }, + { + "start": 5024.74, + "end": 5027.56, + "probability": 0.1156 + }, + { + "start": 5027.56, + "end": 5027.56, + "probability": 0.0499 + }, + { + "start": 5028.14, + "end": 5028.78, + "probability": 0.0633 + }, + { + "start": 5042.82, + "end": 5047.1, + "probability": 0.7755 + }, + { + "start": 5047.1, + "end": 5051.86, + "probability": 0.9578 + }, + { + "start": 5051.86, + "end": 5056.4, + "probability": 0.9915 + }, + { + "start": 5056.5, + "end": 5057.96, + "probability": 0.8441 + }, + { + "start": 5058.8, + "end": 5062.76, + "probability": 0.991 + }, + { + "start": 5064.36, + "end": 5066.72, + "probability": 0.5576 + }, + { + "start": 5066.98, + "end": 5073.06, + "probability": 0.8432 + }, + { + "start": 5073.06, + "end": 5074.43, + "probability": 0.826 + }, + { + "start": 5075.72, + "end": 5078.62, + "probability": 0.8204 + }, + { + "start": 5078.7, + "end": 5079.76, + "probability": 0.9438 + }, + { + "start": 5079.84, + "end": 5081.34, + "probability": 0.7632 + }, + { + "start": 5081.88, + "end": 5084.32, + "probability": 0.9771 + }, + { + "start": 5085.08, + "end": 5087.68, + "probability": 0.4205 + }, + { + "start": 5088.62, + "end": 5093.32, + "probability": 0.6638 + }, + { + "start": 5094.12, + "end": 5095.44, + "probability": 0.6605 + }, + { + "start": 5096.48, + "end": 5100.24, + "probability": 0.8823 + }, + { + "start": 5100.36, + "end": 5100.96, + "probability": 0.9126 + }, + { + "start": 5101.56, + "end": 5105.14, + "probability": 0.9753 + }, + { + "start": 5105.98, + "end": 5106.22, + "probability": 0.9467 + }, + { + "start": 5106.28, + "end": 5108.52, + "probability": 0.8914 + }, + { + "start": 5108.66, + "end": 5109.46, + "probability": 0.2583 + }, + { + "start": 5110.12, + "end": 5111.26, + "probability": 0.648 + }, + { + "start": 5111.36, + "end": 5116.98, + "probability": 0.8148 + }, + { + "start": 5119.24, + "end": 5121.44, + "probability": 0.8219 + }, + { + "start": 5121.52, + "end": 5124.26, + "probability": 0.9417 + }, + { + "start": 5125.06, + "end": 5127.98, + "probability": 0.8778 + }, + { + "start": 5129.12, + "end": 5132.82, + "probability": 0.9796 + }, + { + "start": 5132.82, + "end": 5136.6, + "probability": 0.8998 + }, + { + "start": 5136.76, + "end": 5140.52, + "probability": 0.8389 + }, + { + "start": 5140.64, + "end": 5144.58, + "probability": 0.9852 + }, + { + "start": 5144.64, + "end": 5148.42, + "probability": 0.8539 + }, + { + "start": 5148.94, + "end": 5149.1, + "probability": 0.1783 + }, + { + "start": 5149.1, + "end": 5150.48, + "probability": 0.5005 + }, + { + "start": 5151.14, + "end": 5152.3, + "probability": 0.7022 + }, + { + "start": 5152.46, + "end": 5153.3, + "probability": 0.9187 + }, + { + "start": 5153.3, + "end": 5154.02, + "probability": 0.7622 + }, + { + "start": 5154.66, + "end": 5157.3, + "probability": 0.9951 + }, + { + "start": 5157.34, + "end": 5157.76, + "probability": 0.7722 + }, + { + "start": 5163.52, + "end": 5164.46, + "probability": 0.6089 + }, + { + "start": 5164.7, + "end": 5166.46, + "probability": 0.9368 + }, + { + "start": 5171.88, + "end": 5175.72, + "probability": 0.7654 + }, + { + "start": 5177.66, + "end": 5178.46, + "probability": 0.7627 + }, + { + "start": 5179.76, + "end": 5181.22, + "probability": 0.8873 + }, + { + "start": 5181.92, + "end": 5182.8, + "probability": 0.2338 + }, + { + "start": 5183.54, + "end": 5187.4, + "probability": 0.9822 + }, + { + "start": 5211.68, + "end": 5212.1, + "probability": 0.4432 + }, + { + "start": 5212.7, + "end": 5215.34, + "probability": 0.5254 + }, + { + "start": 5219.04, + "end": 5229.5, + "probability": 0.9229 + }, + { + "start": 5232.48, + "end": 5235.74, + "probability": 0.9702 + }, + { + "start": 5237.3, + "end": 5240.96, + "probability": 0.926 + }, + { + "start": 5242.76, + "end": 5244.48, + "probability": 0.9915 + }, + { + "start": 5245.82, + "end": 5247.32, + "probability": 0.8658 + }, + { + "start": 5248.58, + "end": 5252.2, + "probability": 0.9751 + }, + { + "start": 5253.88, + "end": 5260.9, + "probability": 0.9683 + }, + { + "start": 5262.64, + "end": 5263.72, + "probability": 0.5694 + }, + { + "start": 5265.36, + "end": 5266.31, + "probability": 0.5193 + }, + { + "start": 5267.42, + "end": 5268.42, + "probability": 0.4798 + }, + { + "start": 5269.52, + "end": 5270.56, + "probability": 0.5953 + }, + { + "start": 5271.58, + "end": 5272.58, + "probability": 0.8763 + }, + { + "start": 5273.46, + "end": 5274.6, + "probability": 0.9272 + }, + { + "start": 5275.62, + "end": 5276.8, + "probability": 0.5901 + }, + { + "start": 5278.12, + "end": 5279.28, + "probability": 0.8773 + }, + { + "start": 5280.36, + "end": 5283.28, + "probability": 0.9742 + }, + { + "start": 5284.14, + "end": 5289.76, + "probability": 0.9537 + }, + { + "start": 5293.0, + "end": 5294.22, + "probability": 0.6896 + }, + { + "start": 5296.84, + "end": 5301.72, + "probability": 0.9271 + }, + { + "start": 5302.54, + "end": 5303.56, + "probability": 0.5404 + }, + { + "start": 5304.54, + "end": 5305.14, + "probability": 0.957 + }, + { + "start": 5305.86, + "end": 5313.34, + "probability": 0.9871 + }, + { + "start": 5314.04, + "end": 5319.08, + "probability": 0.9008 + }, + { + "start": 5320.0, + "end": 5321.32, + "probability": 0.7244 + }, + { + "start": 5321.88, + "end": 5329.2, + "probability": 0.9933 + }, + { + "start": 5330.56, + "end": 5332.22, + "probability": 0.6275 + }, + { + "start": 5333.78, + "end": 5340.46, + "probability": 0.9311 + }, + { + "start": 5341.32, + "end": 5343.1, + "probability": 0.8197 + }, + { + "start": 5344.46, + "end": 5345.46, + "probability": 0.7847 + }, + { + "start": 5346.32, + "end": 5347.0, + "probability": 0.792 + }, + { + "start": 5348.32, + "end": 5352.68, + "probability": 0.5186 + }, + { + "start": 5354.0, + "end": 5356.72, + "probability": 0.9968 + }, + { + "start": 5358.28, + "end": 5362.4, + "probability": 0.8555 + }, + { + "start": 5363.34, + "end": 5367.18, + "probability": 0.9984 + }, + { + "start": 5368.44, + "end": 5372.6, + "probability": 0.9977 + }, + { + "start": 5373.18, + "end": 5373.94, + "probability": 0.9893 + }, + { + "start": 5374.66, + "end": 5379.98, + "probability": 0.6834 + }, + { + "start": 5380.5, + "end": 5382.7, + "probability": 0.5955 + }, + { + "start": 5383.46, + "end": 5389.74, + "probability": 0.6514 + }, + { + "start": 5389.94, + "end": 5391.18, + "probability": 0.9225 + }, + { + "start": 5391.78, + "end": 5393.42, + "probability": 0.9968 + }, + { + "start": 5394.02, + "end": 5397.76, + "probability": 0.7721 + }, + { + "start": 5398.86, + "end": 5408.2, + "probability": 0.7613 + }, + { + "start": 5408.98, + "end": 5411.84, + "probability": 0.8827 + }, + { + "start": 5412.22, + "end": 5413.52, + "probability": 0.715 + }, + { + "start": 5413.76, + "end": 5417.36, + "probability": 0.9875 + }, + { + "start": 5417.64, + "end": 5418.6, + "probability": 0.7951 + }, + { + "start": 5418.9, + "end": 5419.16, + "probability": 0.7717 + }, + { + "start": 5421.48, + "end": 5423.94, + "probability": 0.6516 + }, + { + "start": 5424.42, + "end": 5425.98, + "probability": 0.9702 + }, + { + "start": 5432.82, + "end": 5434.34, + "probability": 0.4558 + }, + { + "start": 5434.5, + "end": 5436.14, + "probability": 0.6852 + }, + { + "start": 5436.18, + "end": 5440.68, + "probability": 0.9031 + }, + { + "start": 5440.8, + "end": 5445.62, + "probability": 0.9869 + }, + { + "start": 5445.72, + "end": 5446.9, + "probability": 0.9907 + }, + { + "start": 5447.14, + "end": 5450.0, + "probability": 0.9829 + }, + { + "start": 5450.32, + "end": 5454.72, + "probability": 0.981 + }, + { + "start": 5455.34, + "end": 5456.8, + "probability": 0.9058 + }, + { + "start": 5456.94, + "end": 5457.1, + "probability": 0.2938 + }, + { + "start": 5457.12, + "end": 5457.59, + "probability": 0.6971 + }, + { + "start": 5458.02, + "end": 5459.34, + "probability": 0.8831 + }, + { + "start": 5459.4, + "end": 5460.14, + "probability": 0.5841 + }, + { + "start": 5460.32, + "end": 5462.14, + "probability": 0.9908 + }, + { + "start": 5462.62, + "end": 5466.62, + "probability": 0.9321 + }, + { + "start": 5467.08, + "end": 5469.04, + "probability": 0.9371 + }, + { + "start": 5469.7, + "end": 5472.38, + "probability": 0.8719 + }, + { + "start": 5472.42, + "end": 5473.66, + "probability": 0.9349 + }, + { + "start": 5474.06, + "end": 5474.51, + "probability": 0.8889 + }, + { + "start": 5475.14, + "end": 5476.4, + "probability": 0.8578 + }, + { + "start": 5476.88, + "end": 5478.0, + "probability": 0.9899 + }, + { + "start": 5478.24, + "end": 5479.64, + "probability": 0.9668 + }, + { + "start": 5480.9, + "end": 5482.68, + "probability": 0.714 + }, + { + "start": 5482.92, + "end": 5484.56, + "probability": 0.9777 + }, + { + "start": 5485.4, + "end": 5486.24, + "probability": 0.9351 + }, + { + "start": 5487.12, + "end": 5492.66, + "probability": 0.9927 + }, + { + "start": 5493.64, + "end": 5494.49, + "probability": 0.5778 + }, + { + "start": 5495.34, + "end": 5495.83, + "probability": 0.8858 + }, + { + "start": 5496.88, + "end": 5499.5, + "probability": 0.9453 + }, + { + "start": 5500.3, + "end": 5502.76, + "probability": 0.6989 + }, + { + "start": 5503.02, + "end": 5504.3, + "probability": 0.9752 + }, + { + "start": 5504.9, + "end": 5507.09, + "probability": 0.8488 + }, + { + "start": 5507.66, + "end": 5509.66, + "probability": 0.2827 + }, + { + "start": 5510.18, + "end": 5513.78, + "probability": 0.6045 + }, + { + "start": 5514.0, + "end": 5514.53, + "probability": 0.8462 + }, + { + "start": 5515.88, + "end": 5518.54, + "probability": 0.9 + }, + { + "start": 5519.38, + "end": 5520.14, + "probability": 0.2948 + }, + { + "start": 5520.26, + "end": 5521.51, + "probability": 0.9852 + }, + { + "start": 5522.02, + "end": 5524.6, + "probability": 0.9746 + }, + { + "start": 5525.66, + "end": 5526.94, + "probability": 0.9653 + }, + { + "start": 5527.04, + "end": 5528.07, + "probability": 0.9923 + }, + { + "start": 5529.52, + "end": 5530.82, + "probability": 0.985 + }, + { + "start": 5530.96, + "end": 5532.66, + "probability": 0.9792 + }, + { + "start": 5533.36, + "end": 5537.72, + "probability": 0.9932 + }, + { + "start": 5538.64, + "end": 5539.2, + "probability": 0.5134 + }, + { + "start": 5541.16, + "end": 5542.26, + "probability": 0.9487 + }, + { + "start": 5543.74, + "end": 5545.28, + "probability": 0.9697 + }, + { + "start": 5545.3, + "end": 5546.36, + "probability": 0.844 + }, + { + "start": 5546.52, + "end": 5548.9, + "probability": 0.7547 + }, + { + "start": 5549.04, + "end": 5550.56, + "probability": 0.9358 + }, + { + "start": 5551.16, + "end": 5554.66, + "probability": 0.9746 + }, + { + "start": 5555.02, + "end": 5556.04, + "probability": 0.51 + }, + { + "start": 5556.18, + "end": 5557.34, + "probability": 0.7462 + }, + { + "start": 5558.4, + "end": 5559.32, + "probability": 0.8567 + }, + { + "start": 5560.8, + "end": 5562.09, + "probability": 0.8192 + }, + { + "start": 5562.28, + "end": 5564.16, + "probability": 0.916 + }, + { + "start": 5564.78, + "end": 5567.2, + "probability": 0.9607 + }, + { + "start": 5568.28, + "end": 5570.08, + "probability": 0.8742 + }, + { + "start": 5570.1, + "end": 5572.64, + "probability": 0.9114 + }, + { + "start": 5573.0, + "end": 5574.55, + "probability": 0.9806 + }, + { + "start": 5575.08, + "end": 5576.44, + "probability": 0.9274 + }, + { + "start": 5577.9, + "end": 5578.66, + "probability": 0.7426 + }, + { + "start": 5579.02, + "end": 5579.06, + "probability": 0.3966 + }, + { + "start": 5579.12, + "end": 5581.4, + "probability": 0.9978 + }, + { + "start": 5581.48, + "end": 5583.68, + "probability": 0.9974 + }, + { + "start": 5584.24, + "end": 5587.52, + "probability": 0.9826 + }, + { + "start": 5587.68, + "end": 5588.04, + "probability": 0.6009 + }, + { + "start": 5588.5, + "end": 5588.94, + "probability": 0.5171 + }, + { + "start": 5589.18, + "end": 5590.68, + "probability": 0.5834 + }, + { + "start": 5591.2, + "end": 5594.38, + "probability": 0.3996 + }, + { + "start": 5594.38, + "end": 5594.64, + "probability": 0.5423 + }, + { + "start": 5594.8, + "end": 5596.14, + "probability": 0.6391 + }, + { + "start": 5596.14, + "end": 5596.73, + "probability": 0.7563 + }, + { + "start": 5598.98, + "end": 5599.3, + "probability": 0.0411 + }, + { + "start": 5599.3, + "end": 5599.3, + "probability": 0.1285 + }, + { + "start": 5599.3, + "end": 5602.14, + "probability": 0.9042 + }, + { + "start": 5602.22, + "end": 5603.36, + "probability": 0.8781 + }, + { + "start": 5603.82, + "end": 5607.06, + "probability": 0.8771 + }, + { + "start": 5607.06, + "end": 5607.08, + "probability": 0.1696 + }, + { + "start": 5607.08, + "end": 5610.36, + "probability": 0.932 + }, + { + "start": 5610.82, + "end": 5612.02, + "probability": 0.8831 + }, + { + "start": 5612.5, + "end": 5613.56, + "probability": 0.7007 + }, + { + "start": 5613.86, + "end": 5614.98, + "probability": 0.5087 + }, + { + "start": 5615.7, + "end": 5616.98, + "probability": 0.7116 + }, + { + "start": 5617.64, + "end": 5620.08, + "probability": 0.8228 + }, + { + "start": 5621.22, + "end": 5624.06, + "probability": 0.8499 + }, + { + "start": 5624.6, + "end": 5625.98, + "probability": 0.7083 + }, + { + "start": 5626.61, + "end": 5629.06, + "probability": 0.8716 + }, + { + "start": 5629.28, + "end": 5631.82, + "probability": 0.4519 + }, + { + "start": 5632.36, + "end": 5633.94, + "probability": 0.8675 + }, + { + "start": 5634.4, + "end": 5634.66, + "probability": 0.1084 + }, + { + "start": 5635.02, + "end": 5635.12, + "probability": 0.3988 + }, + { + "start": 5635.54, + "end": 5638.98, + "probability": 0.9492 + }, + { + "start": 5639.74, + "end": 5644.18, + "probability": 0.5662 + }, + { + "start": 5644.32, + "end": 5645.42, + "probability": 0.9028 + }, + { + "start": 5645.82, + "end": 5647.8, + "probability": 0.9984 + }, + { + "start": 5648.48, + "end": 5652.14, + "probability": 0.8838 + }, + { + "start": 5652.3, + "end": 5653.18, + "probability": 0.9727 + }, + { + "start": 5653.84, + "end": 5658.1, + "probability": 0.979 + }, + { + "start": 5658.24, + "end": 5659.24, + "probability": 0.7893 + }, + { + "start": 5659.74, + "end": 5660.88, + "probability": 0.7524 + }, + { + "start": 5661.54, + "end": 5664.12, + "probability": 0.8245 + }, + { + "start": 5664.88, + "end": 5665.04, + "probability": 0.4193 + }, + { + "start": 5665.1, + "end": 5665.48, + "probability": 0.7424 + }, + { + "start": 5665.62, + "end": 5666.38, + "probability": 0.9409 + }, + { + "start": 5666.8, + "end": 5667.82, + "probability": 0.8902 + }, + { + "start": 5668.26, + "end": 5668.62, + "probability": 0.5544 + }, + { + "start": 5668.7, + "end": 5669.26, + "probability": 0.7783 + }, + { + "start": 5669.66, + "end": 5670.54, + "probability": 0.4782 + }, + { + "start": 5670.88, + "end": 5671.82, + "probability": 0.9514 + }, + { + "start": 5671.82, + "end": 5673.08, + "probability": 0.6746 + }, + { + "start": 5674.76, + "end": 5677.1, + "probability": 0.9472 + }, + { + "start": 5677.82, + "end": 5679.78, + "probability": 0.9863 + }, + { + "start": 5681.22, + "end": 5682.14, + "probability": 0.3195 + }, + { + "start": 5683.08, + "end": 5684.14, + "probability": 0.7775 + }, + { + "start": 5684.36, + "end": 5685.89, + "probability": 0.7322 + }, + { + "start": 5686.81, + "end": 5689.2, + "probability": 0.8739 + }, + { + "start": 5689.3, + "end": 5690.56, + "probability": 0.7033 + }, + { + "start": 5690.7, + "end": 5691.52, + "probability": 0.3478 + }, + { + "start": 5691.64, + "end": 5691.82, + "probability": 0.0401 + }, + { + "start": 5691.9, + "end": 5692.38, + "probability": 0.4613 + }, + { + "start": 5692.54, + "end": 5699.42, + "probability": 0.155 + }, + { + "start": 5702.26, + "end": 5702.44, + "probability": 0.0933 + }, + { + "start": 5702.52, + "end": 5702.64, + "probability": 0.1439 + }, + { + "start": 5703.57, + "end": 5704.4, + "probability": 0.1449 + }, + { + "start": 5704.42, + "end": 5706.38, + "probability": 0.0361 + }, + { + "start": 5706.46, + "end": 5709.76, + "probability": 0.0552 + }, + { + "start": 5718.16, + "end": 5721.0, + "probability": 0.0474 + }, + { + "start": 5721.34, + "end": 5722.62, + "probability": 0.034 + }, + { + "start": 5725.0, + "end": 5727.98, + "probability": 0.0613 + }, + { + "start": 5728.8, + "end": 5728.82, + "probability": 0.0133 + }, + { + "start": 5741.34, + "end": 5741.6, + "probability": 0.0466 + }, + { + "start": 5741.6, + "end": 5743.15, + "probability": 0.08 + }, + { + "start": 5745.28, + "end": 5747.6, + "probability": 0.2865 + }, + { + "start": 5748.28, + "end": 5748.66, + "probability": 0.091 + }, + { + "start": 5750.0, + "end": 5750.26, + "probability": 0.0916 + }, + { + "start": 5750.52, + "end": 5751.5, + "probability": 0.0438 + }, + { + "start": 5751.5, + "end": 5751.78, + "probability": 0.105 + }, + { + "start": 5753.2, + "end": 5754.52, + "probability": 0.2668 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.0, + "end": 5773.0, + "probability": 0.0 + }, + { + "start": 5773.36, + "end": 5774.3, + "probability": 0.3466 + }, + { + "start": 5774.3, + "end": 5775.36, + "probability": 0.3101 + }, + { + "start": 5775.86, + "end": 5777.24, + "probability": 0.815 + }, + { + "start": 5778.84, + "end": 5779.5, + "probability": 0.8856 + }, + { + "start": 5779.92, + "end": 5780.76, + "probability": 0.9311 + }, + { + "start": 5780.86, + "end": 5783.76, + "probability": 0.9931 + }, + { + "start": 5784.5, + "end": 5784.96, + "probability": 0.5651 + }, + { + "start": 5785.76, + "end": 5787.58, + "probability": 0.9555 + }, + { + "start": 5788.58, + "end": 5790.92, + "probability": 0.8055 + }, + { + "start": 5791.56, + "end": 5793.88, + "probability": 0.7636 + }, + { + "start": 5794.6, + "end": 5796.1, + "probability": 0.9927 + }, + { + "start": 5796.92, + "end": 5800.0, + "probability": 0.9951 + }, + { + "start": 5800.34, + "end": 5800.96, + "probability": 0.9064 + }, + { + "start": 5801.32, + "end": 5801.96, + "probability": 0.9808 + }, + { + "start": 5802.22, + "end": 5802.9, + "probability": 0.9863 + }, + { + "start": 5803.0, + "end": 5803.7, + "probability": 0.9863 + }, + { + "start": 5803.86, + "end": 5805.4, + "probability": 0.5546 + }, + { + "start": 5805.94, + "end": 5809.4, + "probability": 0.8657 + }, + { + "start": 5810.4, + "end": 5811.42, + "probability": 0.6909 + }, + { + "start": 5812.64, + "end": 5813.98, + "probability": 0.9557 + }, + { + "start": 5814.1, + "end": 5816.48, + "probability": 0.9706 + }, + { + "start": 5817.8, + "end": 5822.14, + "probability": 0.9711 + }, + { + "start": 5822.22, + "end": 5824.02, + "probability": 0.9741 + }, + { + "start": 5824.46, + "end": 5825.76, + "probability": 0.7638 + }, + { + "start": 5825.82, + "end": 5826.8, + "probability": 0.8168 + }, + { + "start": 5827.24, + "end": 5828.56, + "probability": 0.8453 + }, + { + "start": 5829.08, + "end": 5831.36, + "probability": 0.9501 + }, + { + "start": 5831.44, + "end": 5833.28, + "probability": 0.9937 + }, + { + "start": 5834.26, + "end": 5835.2, + "probability": 0.9935 + }, + { + "start": 5835.82, + "end": 5836.88, + "probability": 0.84 + }, + { + "start": 5837.06, + "end": 5840.42, + "probability": 0.9864 + }, + { + "start": 5840.92, + "end": 5841.28, + "probability": 0.9163 + }, + { + "start": 5841.6, + "end": 5844.8, + "probability": 0.9887 + }, + { + "start": 5844.8, + "end": 5847.86, + "probability": 0.9926 + }, + { + "start": 5848.16, + "end": 5849.1, + "probability": 0.745 + }, + { + "start": 5849.7, + "end": 5854.8, + "probability": 0.9596 + }, + { + "start": 5855.1, + "end": 5855.76, + "probability": 0.8651 + }, + { + "start": 5856.42, + "end": 5857.84, + "probability": 0.9967 + }, + { + "start": 5858.04, + "end": 5863.58, + "probability": 0.9819 + }, + { + "start": 5864.34, + "end": 5866.32, + "probability": 0.9553 + }, + { + "start": 5867.26, + "end": 5868.8, + "probability": 0.6667 + }, + { + "start": 5869.22, + "end": 5869.7, + "probability": 0.5287 + }, + { + "start": 5869.78, + "end": 5871.44, + "probability": 0.7593 + }, + { + "start": 5871.96, + "end": 5874.8, + "probability": 0.9314 + }, + { + "start": 5875.08, + "end": 5876.46, + "probability": 0.9888 + }, + { + "start": 5877.4, + "end": 5877.92, + "probability": 0.4807 + }, + { + "start": 5878.4, + "end": 5883.16, + "probability": 0.9877 + }, + { + "start": 5883.16, + "end": 5884.78, + "probability": 0.8236 + }, + { + "start": 5886.7, + "end": 5887.7, + "probability": 0.9489 + }, + { + "start": 5887.8, + "end": 5891.82, + "probability": 0.9787 + }, + { + "start": 5892.02, + "end": 5892.22, + "probability": 0.532 + }, + { + "start": 5892.52, + "end": 5892.8, + "probability": 0.7052 + }, + { + "start": 5893.08, + "end": 5893.2, + "probability": 0.2821 + }, + { + "start": 5893.2, + "end": 5894.86, + "probability": 0.504 + }, + { + "start": 5895.42, + "end": 5899.2, + "probability": 0.9551 + }, + { + "start": 5899.72, + "end": 5901.52, + "probability": 0.9985 + }, + { + "start": 5902.08, + "end": 5903.8, + "probability": 0.9915 + }, + { + "start": 5904.54, + "end": 5909.22, + "probability": 0.9951 + }, + { + "start": 5909.68, + "end": 5910.38, + "probability": 0.6488 + }, + { + "start": 5910.92, + "end": 5914.89, + "probability": 0.9854 + }, + { + "start": 5915.24, + "end": 5917.02, + "probability": 0.9501 + }, + { + "start": 5917.54, + "end": 5919.02, + "probability": 0.9337 + }, + { + "start": 5919.18, + "end": 5920.5, + "probability": 0.9893 + }, + { + "start": 5920.9, + "end": 5922.98, + "probability": 0.8214 + }, + { + "start": 5923.22, + "end": 5924.04, + "probability": 0.8544 + }, + { + "start": 5924.6, + "end": 5927.26, + "probability": 0.668 + }, + { + "start": 5928.44, + "end": 5932.08, + "probability": 0.9702 + }, + { + "start": 5933.18, + "end": 5933.88, + "probability": 0.7343 + }, + { + "start": 5934.38, + "end": 5936.2, + "probability": 0.9932 + }, + { + "start": 5936.4, + "end": 5938.1, + "probability": 0.7451 + }, + { + "start": 5938.76, + "end": 5939.88, + "probability": 0.2873 + }, + { + "start": 5939.96, + "end": 5940.83, + "probability": 0.9004 + }, + { + "start": 5941.48, + "end": 5945.98, + "probability": 0.9952 + }, + { + "start": 5946.6, + "end": 5948.68, + "probability": 0.8593 + }, + { + "start": 5948.8, + "end": 5949.92, + "probability": 0.5157 + }, + { + "start": 5950.36, + "end": 5952.26, + "probability": 0.9756 + }, + { + "start": 5952.34, + "end": 5956.9, + "probability": 0.997 + }, + { + "start": 5956.9, + "end": 5959.84, + "probability": 0.9833 + }, + { + "start": 5959.94, + "end": 5961.9, + "probability": 0.8478 + }, + { + "start": 5962.14, + "end": 5966.74, + "probability": 0.7199 + }, + { + "start": 5967.28, + "end": 5971.36, + "probability": 0.8568 + }, + { + "start": 5972.12, + "end": 5976.86, + "probability": 0.9871 + }, + { + "start": 5977.14, + "end": 5980.48, + "probability": 0.972 + }, + { + "start": 5980.78, + "end": 5982.04, + "probability": 0.829 + }, + { + "start": 5982.5, + "end": 5983.38, + "probability": 0.8371 + }, + { + "start": 5984.24, + "end": 5985.96, + "probability": 0.9953 + }, + { + "start": 5986.06, + "end": 5989.12, + "probability": 0.7905 + }, + { + "start": 5989.12, + "end": 5989.12, + "probability": 0.6224 + }, + { + "start": 5989.26, + "end": 5989.5, + "probability": 0.2546 + }, + { + "start": 5989.52, + "end": 5994.42, + "probability": 0.8376 + }, + { + "start": 5994.72, + "end": 5997.46, + "probability": 0.8634 + }, + { + "start": 5997.56, + "end": 5997.7, + "probability": 0.3258 + }, + { + "start": 5997.8, + "end": 5999.76, + "probability": 0.8302 + }, + { + "start": 6000.26, + "end": 6002.78, + "probability": 0.7655 + }, + { + "start": 6003.32, + "end": 6007.22, + "probability": 0.8278 + }, + { + "start": 6007.76, + "end": 6010.94, + "probability": 0.9567 + }, + { + "start": 6011.2, + "end": 6012.66, + "probability": 0.852 + }, + { + "start": 6012.8, + "end": 6014.32, + "probability": 0.7838 + }, + { + "start": 6014.62, + "end": 6017.64, + "probability": 0.918 + }, + { + "start": 6018.1, + "end": 6020.02, + "probability": 0.5345 + }, + { + "start": 6020.46, + "end": 6021.58, + "probability": 0.9033 + }, + { + "start": 6022.4, + "end": 6024.54, + "probability": 0.965 + }, + { + "start": 6024.56, + "end": 6026.12, + "probability": 0.6838 + }, + { + "start": 6026.12, + "end": 6026.64, + "probability": 0.7079 + }, + { + "start": 6026.74, + "end": 6027.54, + "probability": 0.6453 + }, + { + "start": 6027.88, + "end": 6030.32, + "probability": 0.5436 + }, + { + "start": 6030.72, + "end": 6031.7, + "probability": 0.592 + }, + { + "start": 6031.74, + "end": 6031.9, + "probability": 0.056 + }, + { + "start": 6032.0, + "end": 6032.78, + "probability": 0.2524 + }, + { + "start": 6033.38, + "end": 6034.28, + "probability": 0.1288 + }, + { + "start": 6035.32, + "end": 6036.93, + "probability": 0.2764 + }, + { + "start": 6037.58, + "end": 6039.04, + "probability": 0.7611 + }, + { + "start": 6040.15, + "end": 6044.62, + "probability": 0.7441 + }, + { + "start": 6044.88, + "end": 6045.9, + "probability": 0.287 + }, + { + "start": 6047.33, + "end": 6048.34, + "probability": 0.6694 + }, + { + "start": 6048.98, + "end": 6049.96, + "probability": 0.7654 + }, + { + "start": 6050.26, + "end": 6052.62, + "probability": 0.813 + }, + { + "start": 6054.94, + "end": 6055.68, + "probability": 0.7801 + }, + { + "start": 6056.5, + "end": 6060.75, + "probability": 0.8272 + }, + { + "start": 6060.9, + "end": 6066.48, + "probability": 0.9717 + }, + { + "start": 6067.54, + "end": 6068.88, + "probability": 0.403 + }, + { + "start": 6070.14, + "end": 6073.32, + "probability": 0.973 + }, + { + "start": 6073.92, + "end": 6079.04, + "probability": 0.9523 + }, + { + "start": 6079.04, + "end": 6082.02, + "probability": 0.9936 + }, + { + "start": 6082.58, + "end": 6083.4, + "probability": 0.9736 + }, + { + "start": 6083.54, + "end": 6086.9, + "probability": 0.9625 + }, + { + "start": 6091.06, + "end": 6093.0, + "probability": 0.7484 + }, + { + "start": 6094.22, + "end": 6096.58, + "probability": 0.7041 + }, + { + "start": 6096.92, + "end": 6097.48, + "probability": 0.383 + }, + { + "start": 6097.48, + "end": 6097.76, + "probability": 0.3852 + }, + { + "start": 6097.82, + "end": 6100.05, + "probability": 0.4969 + }, + { + "start": 6100.92, + "end": 6106.4, + "probability": 0.9069 + }, + { + "start": 6108.08, + "end": 6113.18, + "probability": 0.669 + }, + { + "start": 6113.28, + "end": 6114.19, + "probability": 0.969 + }, + { + "start": 6114.78, + "end": 6117.36, + "probability": 0.9661 + }, + { + "start": 6118.58, + "end": 6120.7, + "probability": 0.8408 + }, + { + "start": 6121.66, + "end": 6125.36, + "probability": 0.9666 + }, + { + "start": 6126.42, + "end": 6129.36, + "probability": 0.9909 + }, + { + "start": 6132.02, + "end": 6137.96, + "probability": 0.9857 + }, + { + "start": 6138.54, + "end": 6142.36, + "probability": 0.9946 + }, + { + "start": 6143.06, + "end": 6147.48, + "probability": 0.9756 + }, + { + "start": 6148.38, + "end": 6151.2, + "probability": 0.9817 + }, + { + "start": 6151.24, + "end": 6156.42, + "probability": 0.9979 + }, + { + "start": 6156.9, + "end": 6158.98, + "probability": 0.9816 + }, + { + "start": 6159.3, + "end": 6161.98, + "probability": 0.9746 + }, + { + "start": 6162.52, + "end": 6164.64, + "probability": 0.6278 + }, + { + "start": 6165.32, + "end": 6168.66, + "probability": 0.8817 + }, + { + "start": 6169.28, + "end": 6170.08, + "probability": 0.8914 + }, + { + "start": 6170.84, + "end": 6171.52, + "probability": 0.7694 + }, + { + "start": 6172.2, + "end": 6173.0, + "probability": 0.98 + }, + { + "start": 6174.48, + "end": 6179.38, + "probability": 0.8952 + }, + { + "start": 6179.38, + "end": 6186.24, + "probability": 0.9817 + }, + { + "start": 6186.66, + "end": 6189.78, + "probability": 0.9593 + }, + { + "start": 6191.44, + "end": 6193.28, + "probability": 0.9923 + }, + { + "start": 6194.0, + "end": 6195.16, + "probability": 0.9949 + }, + { + "start": 6196.12, + "end": 6199.18, + "probability": 0.9681 + }, + { + "start": 6199.22, + "end": 6200.8, + "probability": 0.9873 + }, + { + "start": 6201.78, + "end": 6203.56, + "probability": 0.905 + }, + { + "start": 6204.1, + "end": 6205.4, + "probability": 0.8551 + }, + { + "start": 6207.12, + "end": 6210.52, + "probability": 0.9969 + }, + { + "start": 6210.62, + "end": 6214.08, + "probability": 0.9571 + }, + { + "start": 6215.2, + "end": 6216.08, + "probability": 0.6498 + }, + { + "start": 6216.34, + "end": 6218.1, + "probability": 0.8146 + }, + { + "start": 6218.46, + "end": 6220.16, + "probability": 0.9956 + }, + { + "start": 6237.1, + "end": 6237.76, + "probability": 0.3617 + }, + { + "start": 6242.9, + "end": 6245.24, + "probability": 0.6552 + }, + { + "start": 6246.74, + "end": 6247.75, + "probability": 0.7794 + }, + { + "start": 6248.74, + "end": 6250.92, + "probability": 0.9615 + }, + { + "start": 6251.72, + "end": 6254.64, + "probability": 0.9922 + }, + { + "start": 6255.32, + "end": 6256.72, + "probability": 0.8792 + }, + { + "start": 6258.04, + "end": 6258.22, + "probability": 0.7515 + }, + { + "start": 6258.3, + "end": 6259.28, + "probability": 0.8676 + }, + { + "start": 6259.38, + "end": 6260.12, + "probability": 0.801 + }, + { + "start": 6260.18, + "end": 6262.78, + "probability": 0.9673 + }, + { + "start": 6263.82, + "end": 6264.6, + "probability": 0.8174 + }, + { + "start": 6265.52, + "end": 6267.36, + "probability": 0.9806 + }, + { + "start": 6268.58, + "end": 6269.52, + "probability": 0.9458 + }, + { + "start": 6269.58, + "end": 6271.46, + "probability": 0.746 + }, + { + "start": 6271.58, + "end": 6271.98, + "probability": 0.6774 + }, + { + "start": 6272.1, + "end": 6275.2, + "probability": 0.9961 + }, + { + "start": 6275.2, + "end": 6276.28, + "probability": 0.9908 + }, + { + "start": 6278.08, + "end": 6283.64, + "probability": 0.636 + }, + { + "start": 6285.08, + "end": 6285.32, + "probability": 0.9398 + }, + { + "start": 6285.42, + "end": 6289.36, + "probability": 0.9503 + }, + { + "start": 6289.44, + "end": 6290.44, + "probability": 0.7653 + }, + { + "start": 6290.88, + "end": 6292.04, + "probability": 0.6464 + }, + { + "start": 6293.52, + "end": 6298.4, + "probability": 0.9182 + }, + { + "start": 6299.72, + "end": 6301.34, + "probability": 0.7524 + }, + { + "start": 6302.26, + "end": 6303.04, + "probability": 0.6014 + }, + { + "start": 6303.74, + "end": 6307.74, + "probability": 0.9619 + }, + { + "start": 6308.26, + "end": 6310.3, + "probability": 0.9829 + }, + { + "start": 6312.22, + "end": 6312.22, + "probability": 0.1213 + }, + { + "start": 6312.22, + "end": 6314.69, + "probability": 0.7768 + }, + { + "start": 6316.3, + "end": 6317.44, + "probability": 0.9844 + }, + { + "start": 6318.6, + "end": 6320.4, + "probability": 0.9596 + }, + { + "start": 6321.38, + "end": 6322.92, + "probability": 0.8105 + }, + { + "start": 6323.24, + "end": 6325.9, + "probability": 0.9733 + }, + { + "start": 6326.4, + "end": 6329.24, + "probability": 0.822 + }, + { + "start": 6329.82, + "end": 6330.44, + "probability": 0.5715 + }, + { + "start": 6331.08, + "end": 6333.62, + "probability": 0.9465 + }, + { + "start": 6334.88, + "end": 6339.92, + "probability": 0.9794 + }, + { + "start": 6341.16, + "end": 6342.38, + "probability": 0.9169 + }, + { + "start": 6342.5, + "end": 6343.02, + "probability": 0.7058 + }, + { + "start": 6343.48, + "end": 6344.96, + "probability": 0.9652 + }, + { + "start": 6345.14, + "end": 6346.14, + "probability": 0.4711 + }, + { + "start": 6346.71, + "end": 6348.77, + "probability": 0.9934 + }, + { + "start": 6349.92, + "end": 6352.66, + "probability": 0.5866 + }, + { + "start": 6353.26, + "end": 6356.24, + "probability": 0.8473 + }, + { + "start": 6356.84, + "end": 6358.64, + "probability": 0.8579 + }, + { + "start": 6359.38, + "end": 6361.96, + "probability": 0.9621 + }, + { + "start": 6362.72, + "end": 6367.54, + "probability": 0.9548 + }, + { + "start": 6369.14, + "end": 6373.26, + "probability": 0.979 + }, + { + "start": 6374.12, + "end": 6379.02, + "probability": 0.9027 + }, + { + "start": 6379.46, + "end": 6382.38, + "probability": 0.9985 + }, + { + "start": 6383.42, + "end": 6384.4, + "probability": 0.8481 + }, + { + "start": 6384.4, + "end": 6388.9, + "probability": 0.8346 + }, + { + "start": 6389.4, + "end": 6391.76, + "probability": 0.9302 + }, + { + "start": 6392.24, + "end": 6392.72, + "probability": 0.9417 + }, + { + "start": 6392.82, + "end": 6392.92, + "probability": 0.4304 + }, + { + "start": 6393.04, + "end": 6394.2, + "probability": 0.7268 + }, + { + "start": 6394.44, + "end": 6395.18, + "probability": 0.8974 + }, + { + "start": 6395.46, + "end": 6395.9, + "probability": 0.9712 + }, + { + "start": 6396.22, + "end": 6398.96, + "probability": 0.9954 + }, + { + "start": 6399.32, + "end": 6400.38, + "probability": 0.8826 + }, + { + "start": 6400.5, + "end": 6400.62, + "probability": 0.3231 + }, + { + "start": 6400.66, + "end": 6401.44, + "probability": 0.7415 + }, + { + "start": 6401.74, + "end": 6402.28, + "probability": 0.8111 + }, + { + "start": 6402.38, + "end": 6402.81, + "probability": 0.9773 + }, + { + "start": 6404.2, + "end": 6404.78, + "probability": 0.6581 + }, + { + "start": 6405.52, + "end": 6406.36, + "probability": 0.9669 + }, + { + "start": 6407.46, + "end": 6411.96, + "probability": 0.9871 + }, + { + "start": 6412.86, + "end": 6417.7, + "probability": 0.7876 + }, + { + "start": 6417.76, + "end": 6417.76, + "probability": 0.6338 + }, + { + "start": 6417.82, + "end": 6418.86, + "probability": 0.7636 + }, + { + "start": 6419.14, + "end": 6421.26, + "probability": 0.9637 + }, + { + "start": 6421.46, + "end": 6423.0, + "probability": 0.9341 + }, + { + "start": 6423.22, + "end": 6424.94, + "probability": 0.5767 + }, + { + "start": 6425.4, + "end": 6426.54, + "probability": 0.9731 + }, + { + "start": 6426.88, + "end": 6427.54, + "probability": 0.4972 + }, + { + "start": 6427.92, + "end": 6431.24, + "probability": 0.9661 + }, + { + "start": 6431.98, + "end": 6435.42, + "probability": 0.7966 + }, + { + "start": 6435.76, + "end": 6439.92, + "probability": 0.8846 + }, + { + "start": 6440.08, + "end": 6441.34, + "probability": 0.8525 + }, + { + "start": 6442.1, + "end": 6442.34, + "probability": 0.4662 + }, + { + "start": 6442.34, + "end": 6445.82, + "probability": 0.9933 + }, + { + "start": 6445.94, + "end": 6446.68, + "probability": 0.8738 + }, + { + "start": 6446.84, + "end": 6447.04, + "probability": 0.7745 + }, + { + "start": 6447.26, + "end": 6447.62, + "probability": 0.3713 + }, + { + "start": 6448.14, + "end": 6450.16, + "probability": 0.783 + }, + { + "start": 6450.84, + "end": 6453.26, + "probability": 0.8034 + }, + { + "start": 6454.34, + "end": 6454.94, + "probability": 0.6752 + }, + { + "start": 6455.66, + "end": 6456.09, + "probability": 0.7698 + }, + { + "start": 6458.11, + "end": 6460.52, + "probability": 0.9354 + }, + { + "start": 6461.72, + "end": 6463.88, + "probability": 0.6208 + }, + { + "start": 6464.52, + "end": 6465.57, + "probability": 0.9928 + }, + { + "start": 6466.98, + "end": 6468.96, + "probability": 0.545 + }, + { + "start": 6476.7, + "end": 6477.04, + "probability": 0.4406 + }, + { + "start": 6477.26, + "end": 6480.12, + "probability": 0.5268 + }, + { + "start": 6480.4, + "end": 6482.5, + "probability": 0.9941 + }, + { + "start": 6485.32, + "end": 6486.0, + "probability": 0.4145 + }, + { + "start": 6486.24, + "end": 6488.94, + "probability": 0.7348 + }, + { + "start": 6489.04, + "end": 6491.9, + "probability": 0.9219 + }, + { + "start": 6492.44, + "end": 6495.14, + "probability": 0.8627 + }, + { + "start": 6495.48, + "end": 6499.06, + "probability": 0.9502 + }, + { + "start": 6499.16, + "end": 6502.78, + "probability": 0.9985 + }, + { + "start": 6502.92, + "end": 6504.74, + "probability": 0.5869 + }, + { + "start": 6504.94, + "end": 6507.2, + "probability": 0.9707 + }, + { + "start": 6508.58, + "end": 6509.64, + "probability": 0.0088 + }, + { + "start": 6509.88, + "end": 6510.06, + "probability": 0.4131 + }, + { + "start": 6511.26, + "end": 6513.0, + "probability": 0.8459 + }, + { + "start": 6513.5, + "end": 6515.02, + "probability": 0.7925 + }, + { + "start": 6515.2, + "end": 6517.78, + "probability": 0.523 + }, + { + "start": 6518.04, + "end": 6518.92, + "probability": 0.9154 + }, + { + "start": 6519.0, + "end": 6520.12, + "probability": 0.9167 + }, + { + "start": 6520.14, + "end": 6522.74, + "probability": 0.9636 + }, + { + "start": 6522.78, + "end": 6524.59, + "probability": 0.9094 + }, + { + "start": 6524.92, + "end": 6525.86, + "probability": 0.441 + }, + { + "start": 6525.94, + "end": 6527.16, + "probability": 0.9087 + }, + { + "start": 6527.24, + "end": 6528.4, + "probability": 0.9626 + }, + { + "start": 6528.82, + "end": 6530.5, + "probability": 0.8371 + }, + { + "start": 6531.36, + "end": 6534.3, + "probability": 0.9784 + }, + { + "start": 6534.62, + "end": 6541.0, + "probability": 0.9855 + }, + { + "start": 6541.14, + "end": 6542.46, + "probability": 0.9736 + }, + { + "start": 6543.2, + "end": 6545.79, + "probability": 0.9691 + }, + { + "start": 6546.76, + "end": 6548.84, + "probability": 0.9327 + }, + { + "start": 6549.36, + "end": 6553.56, + "probability": 0.9977 + }, + { + "start": 6553.9, + "end": 6555.34, + "probability": 0.9066 + }, + { + "start": 6556.1, + "end": 6557.26, + "probability": 0.8574 + }, + { + "start": 6557.88, + "end": 6559.4, + "probability": 0.9254 + }, + { + "start": 6560.04, + "end": 6563.82, + "probability": 0.968 + }, + { + "start": 6564.28, + "end": 6571.64, + "probability": 0.9785 + }, + { + "start": 6571.88, + "end": 6573.58, + "probability": 0.9937 + }, + { + "start": 6573.64, + "end": 6574.92, + "probability": 0.9368 + }, + { + "start": 6575.0, + "end": 6575.56, + "probability": 0.7753 + }, + { + "start": 6576.64, + "end": 6580.28, + "probability": 0.9967 + }, + { + "start": 6581.13, + "end": 6584.24, + "probability": 0.9286 + }, + { + "start": 6584.76, + "end": 6585.69, + "probability": 0.8194 + }, + { + "start": 6587.28, + "end": 6589.16, + "probability": 0.9868 + }, + { + "start": 6590.54, + "end": 6594.26, + "probability": 0.8538 + }, + { + "start": 6594.98, + "end": 6596.48, + "probability": 0.7741 + }, + { + "start": 6597.08, + "end": 6598.42, + "probability": 0.9946 + }, + { + "start": 6598.58, + "end": 6601.08, + "probability": 0.9926 + }, + { + "start": 6601.24, + "end": 6603.56, + "probability": 0.9877 + }, + { + "start": 6603.86, + "end": 6608.5, + "probability": 0.7314 + }, + { + "start": 6609.96, + "end": 6610.94, + "probability": 0.9346 + }, + { + "start": 6611.08, + "end": 6613.12, + "probability": 0.9755 + }, + { + "start": 6613.24, + "end": 6613.9, + "probability": 0.7819 + }, + { + "start": 6614.02, + "end": 6615.18, + "probability": 0.6411 + }, + { + "start": 6615.8, + "end": 6618.96, + "probability": 0.9651 + }, + { + "start": 6619.94, + "end": 6623.04, + "probability": 0.7473 + }, + { + "start": 6623.4, + "end": 6624.66, + "probability": 0.9871 + }, + { + "start": 6626.46, + "end": 6627.86, + "probability": 0.8699 + }, + { + "start": 6628.64, + "end": 6630.28, + "probability": 0.9545 + }, + { + "start": 6630.62, + "end": 6631.19, + "probability": 0.8431 + }, + { + "start": 6631.42, + "end": 6631.98, + "probability": 0.9418 + }, + { + "start": 6632.1, + "end": 6632.46, + "probability": 0.9891 + }, + { + "start": 6633.62, + "end": 6639.56, + "probability": 0.9616 + }, + { + "start": 6641.2, + "end": 6646.04, + "probability": 0.9754 + }, + { + "start": 6646.04, + "end": 6649.45, + "probability": 0.998 + }, + { + "start": 6649.98, + "end": 6652.58, + "probability": 0.8066 + }, + { + "start": 6653.72, + "end": 6654.72, + "probability": 0.4096 + }, + { + "start": 6654.76, + "end": 6658.36, + "probability": 0.898 + }, + { + "start": 6658.8, + "end": 6658.8, + "probability": 0.5181 + }, + { + "start": 6658.98, + "end": 6662.04, + "probability": 0.9979 + }, + { + "start": 6662.04, + "end": 6666.32, + "probability": 0.9982 + }, + { + "start": 6666.64, + "end": 6667.92, + "probability": 0.9335 + }, + { + "start": 6667.92, + "end": 6668.28, + "probability": 0.7017 + }, + { + "start": 6669.98, + "end": 6673.43, + "probability": 0.9691 + }, + { + "start": 6676.08, + "end": 6677.62, + "probability": 0.7584 + }, + { + "start": 6679.86, + "end": 6683.96, + "probability": 0.8985 + }, + { + "start": 6684.34, + "end": 6685.08, + "probability": 0.6931 + }, + { + "start": 6685.94, + "end": 6686.46, + "probability": 0.294 + }, + { + "start": 6690.8, + "end": 6693.04, + "probability": 0.9606 + }, + { + "start": 6696.56, + "end": 6698.82, + "probability": 0.9693 + }, + { + "start": 6698.96, + "end": 6699.46, + "probability": 0.3921 + }, + { + "start": 6699.54, + "end": 6700.72, + "probability": 0.6282 + }, + { + "start": 6701.38, + "end": 6705.41, + "probability": 0.9814 + }, + { + "start": 6706.28, + "end": 6709.62, + "probability": 0.9153 + }, + { + "start": 6709.8, + "end": 6710.38, + "probability": 0.8953 + }, + { + "start": 6711.08, + "end": 6715.26, + "probability": 0.7928 + }, + { + "start": 6716.2, + "end": 6720.28, + "probability": 0.9972 + }, + { + "start": 6720.84, + "end": 6721.78, + "probability": 0.7524 + }, + { + "start": 6722.74, + "end": 6723.62, + "probability": 0.7146 + }, + { + "start": 6723.72, + "end": 6726.72, + "probability": 0.9789 + }, + { + "start": 6727.74, + "end": 6729.43, + "probability": 0.9707 + }, + { + "start": 6730.28, + "end": 6731.88, + "probability": 0.9782 + }, + { + "start": 6732.76, + "end": 6734.7, + "probability": 0.995 + }, + { + "start": 6735.84, + "end": 6741.68, + "probability": 0.9487 + }, + { + "start": 6742.28, + "end": 6744.74, + "probability": 0.7333 + }, + { + "start": 6745.64, + "end": 6748.24, + "probability": 0.9978 + }, + { + "start": 6748.24, + "end": 6751.04, + "probability": 0.9956 + }, + { + "start": 6752.66, + "end": 6753.82, + "probability": 0.7388 + }, + { + "start": 6754.68, + "end": 6756.86, + "probability": 0.6887 + }, + { + "start": 6758.48, + "end": 6758.82, + "probability": 0.9886 + }, + { + "start": 6760.5, + "end": 6763.44, + "probability": 0.8407 + }, + { + "start": 6763.44, + "end": 6767.12, + "probability": 0.9974 + }, + { + "start": 6768.56, + "end": 6770.06, + "probability": 0.9271 + }, + { + "start": 6771.08, + "end": 6773.58, + "probability": 0.9282 + }, + { + "start": 6775.58, + "end": 6779.06, + "probability": 0.9912 + }, + { + "start": 6779.46, + "end": 6780.8, + "probability": 0.9095 + }, + { + "start": 6782.72, + "end": 6788.0, + "probability": 0.9904 + }, + { + "start": 6788.12, + "end": 6790.96, + "probability": 0.995 + }, + { + "start": 6791.92, + "end": 6794.0, + "probability": 0.9674 + }, + { + "start": 6794.76, + "end": 6796.5, + "probability": 0.938 + }, + { + "start": 6797.7, + "end": 6799.22, + "probability": 0.9782 + }, + { + "start": 6799.96, + "end": 6801.82, + "probability": 0.9984 + }, + { + "start": 6802.22, + "end": 6806.16, + "probability": 0.9543 + }, + { + "start": 6807.34, + "end": 6809.5, + "probability": 0.9987 + }, + { + "start": 6809.58, + "end": 6811.22, + "probability": 0.999 + }, + { + "start": 6813.0, + "end": 6815.94, + "probability": 0.9908 + }, + { + "start": 6815.94, + "end": 6820.36, + "probability": 0.9792 + }, + { + "start": 6821.1, + "end": 6823.62, + "probability": 0.9985 + }, + { + "start": 6824.32, + "end": 6825.58, + "probability": 0.9544 + }, + { + "start": 6827.02, + "end": 6828.26, + "probability": 0.8013 + }, + { + "start": 6829.2, + "end": 6831.24, + "probability": 0.9978 + }, + { + "start": 6831.86, + "end": 6832.28, + "probability": 0.5679 + }, + { + "start": 6832.5, + "end": 6836.8, + "probability": 0.9948 + }, + { + "start": 6837.98, + "end": 6839.86, + "probability": 0.9738 + }, + { + "start": 6840.44, + "end": 6843.82, + "probability": 0.9961 + }, + { + "start": 6844.86, + "end": 6848.34, + "probability": 0.9895 + }, + { + "start": 6849.82, + "end": 6851.34, + "probability": 0.993 + }, + { + "start": 6852.7, + "end": 6855.52, + "probability": 0.9923 + }, + { + "start": 6855.62, + "end": 6856.58, + "probability": 0.9993 + }, + { + "start": 6857.32, + "end": 6858.26, + "probability": 0.8365 + }, + { + "start": 6858.78, + "end": 6859.38, + "probability": 0.8661 + }, + { + "start": 6860.32, + "end": 6863.9, + "probability": 0.973 + }, + { + "start": 6863.98, + "end": 6865.2, + "probability": 0.8154 + }, + { + "start": 6866.48, + "end": 6867.92, + "probability": 0.9523 + }, + { + "start": 6868.54, + "end": 6869.28, + "probability": 0.6783 + }, + { + "start": 6870.8, + "end": 6872.2, + "probability": 0.9958 + }, + { + "start": 6872.9, + "end": 6875.2, + "probability": 0.899 + }, + { + "start": 6876.12, + "end": 6877.34, + "probability": 0.7244 + }, + { + "start": 6877.84, + "end": 6880.72, + "probability": 0.9556 + }, + { + "start": 6880.8, + "end": 6882.78, + "probability": 0.9377 + }, + { + "start": 6883.3, + "end": 6885.34, + "probability": 0.9568 + }, + { + "start": 6885.98, + "end": 6889.84, + "probability": 0.8549 + }, + { + "start": 6890.74, + "end": 6892.38, + "probability": 0.8903 + }, + { + "start": 6892.62, + "end": 6894.44, + "probability": 0.7927 + }, + { + "start": 6895.3, + "end": 6895.88, + "probability": 0.4765 + }, + { + "start": 6896.48, + "end": 6899.76, + "probability": 0.9905 + }, + { + "start": 6899.84, + "end": 6901.97, + "probability": 0.999 + }, + { + "start": 6902.18, + "end": 6904.42, + "probability": 0.9404 + }, + { + "start": 6904.84, + "end": 6906.06, + "probability": 0.9762 + }, + { + "start": 6906.06, + "end": 6906.44, + "probability": 0.5376 + }, + { + "start": 6906.62, + "end": 6908.06, + "probability": 0.9813 + }, + { + "start": 6908.1, + "end": 6910.81, + "probability": 0.9813 + }, + { + "start": 6911.14, + "end": 6912.18, + "probability": 0.9971 + }, + { + "start": 6912.82, + "end": 6913.86, + "probability": 0.799 + }, + { + "start": 6913.98, + "end": 6916.02, + "probability": 0.7362 + }, + { + "start": 6917.06, + "end": 6917.9, + "probability": 0.7751 + }, + { + "start": 6918.16, + "end": 6920.8, + "probability": 0.9188 + }, + { + "start": 6922.12, + "end": 6923.2, + "probability": 0.0315 + }, + { + "start": 6923.46, + "end": 6923.9, + "probability": 0.1236 + }, + { + "start": 6923.9, + "end": 6924.42, + "probability": 0.5402 + }, + { + "start": 6924.5, + "end": 6925.2, + "probability": 0.3832 + }, + { + "start": 6925.42, + "end": 6927.0, + "probability": 0.3289 + }, + { + "start": 6927.4, + "end": 6928.89, + "probability": 0.0315 + }, + { + "start": 6929.52, + "end": 6933.0, + "probability": 0.2281 + }, + { + "start": 6933.24, + "end": 6933.79, + "probability": 0.3829 + }, + { + "start": 6934.36, + "end": 6934.48, + "probability": 0.5757 + }, + { + "start": 6934.56, + "end": 6934.94, + "probability": 0.3315 + }, + { + "start": 6935.04, + "end": 6936.2, + "probability": 0.1235 + }, + { + "start": 6936.2, + "end": 6937.44, + "probability": 0.3826 + }, + { + "start": 6937.68, + "end": 6939.32, + "probability": 0.1958 + }, + { + "start": 6939.38, + "end": 6942.52, + "probability": 0.8169 + }, + { + "start": 6942.66, + "end": 6942.78, + "probability": 0.0339 + }, + { + "start": 6942.88, + "end": 6943.34, + "probability": 0.78 + }, + { + "start": 6943.36, + "end": 6943.62, + "probability": 0.4132 + }, + { + "start": 6944.34, + "end": 6944.38, + "probability": 0.3147 + }, + { + "start": 6944.38, + "end": 6947.34, + "probability": 0.755 + }, + { + "start": 6947.52, + "end": 6948.58, + "probability": 0.4867 + }, + { + "start": 6949.42, + "end": 6950.72, + "probability": 0.4491 + }, + { + "start": 6951.06, + "end": 6954.38, + "probability": 0.689 + }, + { + "start": 6956.02, + "end": 6958.44, + "probability": 0.5016 + }, + { + "start": 6958.48, + "end": 6960.7, + "probability": 0.9868 + }, + { + "start": 6961.28, + "end": 6963.4, + "probability": 0.9142 + }, + { + "start": 6963.46, + "end": 6965.19, + "probability": 0.8618 + }, + { + "start": 6966.94, + "end": 6969.58, + "probability": 0.9719 + }, + { + "start": 6970.98, + "end": 6973.12, + "probability": 0.9554 + }, + { + "start": 6974.08, + "end": 6975.52, + "probability": 0.8092 + }, + { + "start": 6976.26, + "end": 6977.8, + "probability": 0.9792 + }, + { + "start": 6978.2, + "end": 6980.22, + "probability": 0.9861 + }, + { + "start": 6980.72, + "end": 6982.56, + "probability": 0.9589 + }, + { + "start": 6983.14, + "end": 6985.06, + "probability": 0.9478 + }, + { + "start": 6985.9, + "end": 6989.49, + "probability": 0.8003 + }, + { + "start": 6990.26, + "end": 6991.22, + "probability": 0.9569 + }, + { + "start": 6991.56, + "end": 6992.6, + "probability": 0.9026 + }, + { + "start": 6993.08, + "end": 6996.18, + "probability": 0.9409 + }, + { + "start": 6996.86, + "end": 7000.24, + "probability": 0.8564 + }, + { + "start": 7000.44, + "end": 7000.88, + "probability": 0.3341 + }, + { + "start": 7001.08, + "end": 7001.52, + "probability": 0.3643 + }, + { + "start": 7001.56, + "end": 7002.34, + "probability": 0.9692 + }, + { + "start": 7002.74, + "end": 7004.6, + "probability": 0.7073 + }, + { + "start": 7005.92, + "end": 7007.76, + "probability": 0.9484 + }, + { + "start": 7008.72, + "end": 7012.21, + "probability": 0.9846 + }, + { + "start": 7013.76, + "end": 7016.08, + "probability": 0.6729 + }, + { + "start": 7016.42, + "end": 7018.8, + "probability": 0.567 + }, + { + "start": 7019.68, + "end": 7022.64, + "probability": 0.9042 + }, + { + "start": 7023.36, + "end": 7024.76, + "probability": 0.897 + }, + { + "start": 7025.3, + "end": 7030.12, + "probability": 0.9043 + }, + { + "start": 7030.72, + "end": 7032.44, + "probability": 0.9601 + }, + { + "start": 7033.58, + "end": 7037.66, + "probability": 0.978 + }, + { + "start": 7038.42, + "end": 7041.94, + "probability": 0.5786 + }, + { + "start": 7042.04, + "end": 7043.92, + "probability": 0.5947 + }, + { + "start": 7044.06, + "end": 7044.38, + "probability": 0.655 + }, + { + "start": 7044.48, + "end": 7045.0, + "probability": 0.9209 + }, + { + "start": 7045.7, + "end": 7047.52, + "probability": 0.8182 + }, + { + "start": 7047.78, + "end": 7049.94, + "probability": 0.9092 + }, + { + "start": 7050.24, + "end": 7052.82, + "probability": 0.9372 + }, + { + "start": 7052.94, + "end": 7054.32, + "probability": 0.663 + }, + { + "start": 7054.58, + "end": 7056.34, + "probability": 0.7527 + }, + { + "start": 7057.88, + "end": 7058.98, + "probability": 0.092 + }, + { + "start": 7060.08, + "end": 7062.06, + "probability": 0.917 + }, + { + "start": 7062.76, + "end": 7064.92, + "probability": 0.6568 + }, + { + "start": 7065.28, + "end": 7066.64, + "probability": 0.644 + }, + { + "start": 7067.7, + "end": 7070.78, + "probability": 0.8015 + }, + { + "start": 7071.5, + "end": 7073.96, + "probability": 0.8688 + }, + { + "start": 7075.76, + "end": 7077.2, + "probability": 0.7383 + }, + { + "start": 7078.4, + "end": 7080.1, + "probability": 0.9585 + }, + { + "start": 7080.54, + "end": 7082.78, + "probability": 0.9852 + }, + { + "start": 7083.34, + "end": 7083.9, + "probability": 0.7346 + }, + { + "start": 7084.76, + "end": 7087.36, + "probability": 0.9868 + }, + { + "start": 7087.64, + "end": 7089.1, + "probability": 0.8046 + }, + { + "start": 7089.7, + "end": 7093.94, + "probability": 0.9211 + }, + { + "start": 7096.36, + "end": 7100.48, + "probability": 0.9072 + }, + { + "start": 7101.36, + "end": 7103.02, + "probability": 0.845 + }, + { + "start": 7103.5, + "end": 7105.7, + "probability": 0.9658 + }, + { + "start": 7106.32, + "end": 7111.84, + "probability": 0.8042 + }, + { + "start": 7112.26, + "end": 7116.18, + "probability": 0.9385 + }, + { + "start": 7116.74, + "end": 7118.06, + "probability": 0.4609 + }, + { + "start": 7118.58, + "end": 7120.28, + "probability": 0.9178 + }, + { + "start": 7120.7, + "end": 7122.82, + "probability": 0.502 + }, + { + "start": 7123.36, + "end": 7125.72, + "probability": 0.9576 + }, + { + "start": 7126.74, + "end": 7127.26, + "probability": 0.5475 + }, + { + "start": 7129.1, + "end": 7132.18, + "probability": 0.8146 + }, + { + "start": 7132.88, + "end": 7134.66, + "probability": 0.8541 + }, + { + "start": 7135.0, + "end": 7136.36, + "probability": 0.8721 + }, + { + "start": 7137.06, + "end": 7138.88, + "probability": 0.7812 + }, + { + "start": 7139.06, + "end": 7140.12, + "probability": 0.9741 + }, + { + "start": 7140.8, + "end": 7141.56, + "probability": 0.8485 + }, + { + "start": 7142.18, + "end": 7142.86, + "probability": 0.8087 + }, + { + "start": 7143.54, + "end": 7145.12, + "probability": 0.8989 + }, + { + "start": 7145.72, + "end": 7147.92, + "probability": 0.9398 + }, + { + "start": 7148.26, + "end": 7149.62, + "probability": 0.927 + }, + { + "start": 7149.98, + "end": 7151.1, + "probability": 0.6587 + }, + { + "start": 7151.38, + "end": 7152.5, + "probability": 0.6843 + }, + { + "start": 7152.8, + "end": 7153.68, + "probability": 0.9718 + }, + { + "start": 7153.76, + "end": 7154.76, + "probability": 0.9341 + }, + { + "start": 7154.86, + "end": 7155.48, + "probability": 0.5624 + }, + { + "start": 7155.74, + "end": 7157.7, + "probability": 0.4372 + }, + { + "start": 7157.7, + "end": 7158.36, + "probability": 0.6812 + }, + { + "start": 7158.5, + "end": 7159.2, + "probability": 0.8853 + }, + { + "start": 7159.86, + "end": 7160.84, + "probability": 0.9764 + }, + { + "start": 7161.42, + "end": 7165.26, + "probability": 0.9543 + }, + { + "start": 7165.32, + "end": 7167.06, + "probability": 0.8176 + }, + { + "start": 7167.36, + "end": 7169.73, + "probability": 0.8215 + }, + { + "start": 7169.94, + "end": 7171.72, + "probability": 0.992 + }, + { + "start": 7173.92, + "end": 7174.98, + "probability": 0.6667 + }, + { + "start": 7175.72, + "end": 7177.44, + "probability": 0.8063 + }, + { + "start": 7179.5, + "end": 7180.92, + "probability": 0.8093 + }, + { + "start": 7189.94, + "end": 7191.14, + "probability": 0.4575 + }, + { + "start": 7191.38, + "end": 7192.76, + "probability": 0.857 + }, + { + "start": 7193.6, + "end": 7194.28, + "probability": 0.91 + }, + { + "start": 7195.04, + "end": 7195.49, + "probability": 0.5045 + }, + { + "start": 7197.0, + "end": 7199.16, + "probability": 0.9577 + }, + { + "start": 7200.0, + "end": 7203.56, + "probability": 0.9925 + }, + { + "start": 7204.28, + "end": 7209.76, + "probability": 0.8276 + }, + { + "start": 7211.42, + "end": 7214.56, + "probability": 0.9983 + }, + { + "start": 7215.28, + "end": 7217.08, + "probability": 0.9218 + }, + { + "start": 7218.14, + "end": 7218.86, + "probability": 0.6343 + }, + { + "start": 7220.1, + "end": 7222.16, + "probability": 0.9111 + }, + { + "start": 7222.72, + "end": 7224.86, + "probability": 0.8988 + }, + { + "start": 7225.64, + "end": 7228.3, + "probability": 0.9883 + }, + { + "start": 7229.18, + "end": 7232.92, + "probability": 0.9102 + }, + { + "start": 7233.02, + "end": 7233.54, + "probability": 0.8062 + }, + { + "start": 7234.16, + "end": 7234.82, + "probability": 0.6924 + }, + { + "start": 7235.82, + "end": 7239.38, + "probability": 0.8236 + }, + { + "start": 7240.32, + "end": 7243.32, + "probability": 0.9842 + }, + { + "start": 7243.98, + "end": 7246.66, + "probability": 0.9931 + }, + { + "start": 7248.16, + "end": 7249.12, + "probability": 0.9701 + }, + { + "start": 7250.44, + "end": 7251.14, + "probability": 0.9285 + }, + { + "start": 7251.5, + "end": 7253.26, + "probability": 0.8868 + }, + { + "start": 7253.48, + "end": 7259.54, + "probability": 0.9632 + }, + { + "start": 7260.8, + "end": 7264.72, + "probability": 0.9426 + }, + { + "start": 7265.24, + "end": 7267.14, + "probability": 0.9909 + }, + { + "start": 7268.62, + "end": 7270.5, + "probability": 0.8661 + }, + { + "start": 7271.68, + "end": 7272.34, + "probability": 0.9322 + }, + { + "start": 7272.94, + "end": 7273.46, + "probability": 0.8276 + }, + { + "start": 7274.06, + "end": 7274.6, + "probability": 0.8015 + }, + { + "start": 7276.66, + "end": 7278.14, + "probability": 0.8281 + }, + { + "start": 7279.16, + "end": 7282.4, + "probability": 0.9852 + }, + { + "start": 7283.42, + "end": 7284.8, + "probability": 0.9604 + }, + { + "start": 7285.34, + "end": 7288.56, + "probability": 0.7031 + }, + { + "start": 7289.88, + "end": 7292.14, + "probability": 0.658 + }, + { + "start": 7293.04, + "end": 7296.76, + "probability": 0.9335 + }, + { + "start": 7297.72, + "end": 7302.98, + "probability": 0.8159 + }, + { + "start": 7305.08, + "end": 7308.32, + "probability": 0.9192 + }, + { + "start": 7309.1, + "end": 7310.76, + "probability": 0.6698 + }, + { + "start": 7310.82, + "end": 7314.24, + "probability": 0.9175 + }, + { + "start": 7314.74, + "end": 7315.52, + "probability": 0.838 + }, + { + "start": 7316.94, + "end": 7320.6, + "probability": 0.9077 + }, + { + "start": 7320.96, + "end": 7322.88, + "probability": 0.8514 + }, + { + "start": 7324.42, + "end": 7327.5, + "probability": 0.9716 + }, + { + "start": 7328.38, + "end": 7330.64, + "probability": 0.7996 + }, + { + "start": 7331.26, + "end": 7333.48, + "probability": 0.6876 + }, + { + "start": 7334.44, + "end": 7338.3, + "probability": 0.9907 + }, + { + "start": 7339.5, + "end": 7342.84, + "probability": 0.978 + }, + { + "start": 7343.66, + "end": 7348.5, + "probability": 0.9945 + }, + { + "start": 7349.46, + "end": 7354.74, + "probability": 0.9952 + }, + { + "start": 7356.0, + "end": 7356.62, + "probability": 0.8047 + }, + { + "start": 7357.14, + "end": 7359.02, + "probability": 0.8923 + }, + { + "start": 7359.16, + "end": 7362.64, + "probability": 0.943 + }, + { + "start": 7363.5, + "end": 7364.58, + "probability": 0.9984 + }, + { + "start": 7365.34, + "end": 7367.46, + "probability": 0.9084 + }, + { + "start": 7367.98, + "end": 7369.3, + "probability": 0.9825 + }, + { + "start": 7370.16, + "end": 7372.84, + "probability": 0.9922 + }, + { + "start": 7373.26, + "end": 7375.76, + "probability": 0.9876 + }, + { + "start": 7376.54, + "end": 7378.52, + "probability": 0.9901 + }, + { + "start": 7379.3, + "end": 7382.88, + "probability": 0.8965 + }, + { + "start": 7383.48, + "end": 7383.58, + "probability": 0.5994 + }, + { + "start": 7383.58, + "end": 7387.52, + "probability": 0.8997 + }, + { + "start": 7388.66, + "end": 7391.4, + "probability": 0.98 + }, + { + "start": 7391.54, + "end": 7392.0, + "probability": 0.8845 + }, + { + "start": 7392.2, + "end": 7392.94, + "probability": 0.7619 + }, + { + "start": 7393.34, + "end": 7395.38, + "probability": 0.9691 + }, + { + "start": 7416.54, + "end": 7419.08, + "probability": 0.7353 + }, + { + "start": 7419.78, + "end": 7421.3, + "probability": 0.9585 + }, + { + "start": 7421.46, + "end": 7423.68, + "probability": 0.7271 + }, + { + "start": 7423.88, + "end": 7424.48, + "probability": 0.7772 + }, + { + "start": 7424.98, + "end": 7425.6, + "probability": 0.9903 + }, + { + "start": 7426.44, + "end": 7431.26, + "probability": 0.9767 + }, + { + "start": 7432.06, + "end": 7435.5, + "probability": 0.683 + }, + { + "start": 7435.58, + "end": 7436.24, + "probability": 0.894 + }, + { + "start": 7436.38, + "end": 7437.16, + "probability": 0.9597 + }, + { + "start": 7438.38, + "end": 7440.68, + "probability": 0.9867 + }, + { + "start": 7441.9, + "end": 7446.38, + "probability": 0.9972 + }, + { + "start": 7446.64, + "end": 7447.44, + "probability": 0.844 + }, + { + "start": 7448.0, + "end": 7449.94, + "probability": 0.7919 + }, + { + "start": 7451.63, + "end": 7454.44, + "probability": 0.6828 + }, + { + "start": 7454.62, + "end": 7455.96, + "probability": 0.9171 + }, + { + "start": 7456.4, + "end": 7459.12, + "probability": 0.9923 + }, + { + "start": 7459.8, + "end": 7462.98, + "probability": 0.9946 + }, + { + "start": 7463.72, + "end": 7465.72, + "probability": 0.909 + }, + { + "start": 7467.78, + "end": 7468.7, + "probability": 0.7515 + }, + { + "start": 7468.78, + "end": 7470.98, + "probability": 0.9757 + }, + { + "start": 7471.46, + "end": 7476.54, + "probability": 0.9765 + }, + { + "start": 7477.04, + "end": 7479.56, + "probability": 0.9819 + }, + { + "start": 7480.04, + "end": 7484.52, + "probability": 0.9961 + }, + { + "start": 7485.1, + "end": 7488.02, + "probability": 0.9973 + }, + { + "start": 7488.74, + "end": 7491.26, + "probability": 0.9937 + }, + { + "start": 7492.26, + "end": 7495.52, + "probability": 0.9801 + }, + { + "start": 7496.04, + "end": 7501.34, + "probability": 0.9774 + }, + { + "start": 7502.0, + "end": 7504.44, + "probability": 0.9907 + }, + { + "start": 7505.16, + "end": 7508.98, + "probability": 0.9961 + }, + { + "start": 7509.6, + "end": 7512.02, + "probability": 0.9758 + }, + { + "start": 7512.02, + "end": 7515.08, + "probability": 0.9964 + }, + { + "start": 7515.98, + "end": 7519.2, + "probability": 0.9956 + }, + { + "start": 7519.2, + "end": 7524.04, + "probability": 0.9937 + }, + { + "start": 7524.88, + "end": 7527.78, + "probability": 0.9956 + }, + { + "start": 7527.9, + "end": 7531.44, + "probability": 0.9973 + }, + { + "start": 7532.08, + "end": 7535.32, + "probability": 0.9956 + }, + { + "start": 7535.48, + "end": 7536.14, + "probability": 0.9229 + }, + { + "start": 7536.56, + "end": 7537.2, + "probability": 0.9952 + }, + { + "start": 7537.26, + "end": 7538.14, + "probability": 0.7245 + }, + { + "start": 7538.74, + "end": 7540.84, + "probability": 0.6799 + }, + { + "start": 7541.6, + "end": 7544.4, + "probability": 0.9604 + }, + { + "start": 7544.4, + "end": 7548.28, + "probability": 0.9984 + }, + { + "start": 7548.78, + "end": 7554.72, + "probability": 0.9964 + }, + { + "start": 7555.48, + "end": 7559.96, + "probability": 0.9967 + }, + { + "start": 7560.52, + "end": 7564.46, + "probability": 0.9945 + }, + { + "start": 7564.96, + "end": 7569.98, + "probability": 0.9961 + }, + { + "start": 7570.14, + "end": 7572.36, + "probability": 0.9905 + }, + { + "start": 7572.8, + "end": 7574.95, + "probability": 0.9718 + }, + { + "start": 7575.86, + "end": 7577.97, + "probability": 0.7832 + }, + { + "start": 7578.38, + "end": 7578.78, + "probability": 0.974 + }, + { + "start": 7578.88, + "end": 7579.68, + "probability": 0.9925 + }, + { + "start": 7579.72, + "end": 7580.9, + "probability": 0.8691 + }, + { + "start": 7581.36, + "end": 7585.44, + "probability": 0.9548 + }, + { + "start": 7585.92, + "end": 7589.3, + "probability": 0.998 + }, + { + "start": 7589.3, + "end": 7593.5, + "probability": 0.9995 + }, + { + "start": 7594.26, + "end": 7597.5, + "probability": 0.9293 + }, + { + "start": 7598.0, + "end": 7599.98, + "probability": 0.6545 + }, + { + "start": 7600.8, + "end": 7604.52, + "probability": 0.7838 + }, + { + "start": 7604.66, + "end": 7604.66, + "probability": 0.4345 + }, + { + "start": 7604.66, + "end": 7605.84, + "probability": 0.879 + }, + { + "start": 7606.14, + "end": 7609.66, + "probability": 0.9927 + }, + { + "start": 7610.22, + "end": 7612.06, + "probability": 0.9986 + }, + { + "start": 7612.96, + "end": 7613.74, + "probability": 0.7057 + }, + { + "start": 7614.78, + "end": 7614.78, + "probability": 0.1265 + }, + { + "start": 7614.8, + "end": 7616.8, + "probability": 0.9917 + }, + { + "start": 7616.8, + "end": 7620.96, + "probability": 0.9924 + }, + { + "start": 7621.62, + "end": 7622.4, + "probability": 0.7767 + }, + { + "start": 7623.32, + "end": 7623.86, + "probability": 0.9617 + }, + { + "start": 7624.68, + "end": 7626.28, + "probability": 0.8909 + }, + { + "start": 7626.34, + "end": 7630.9, + "probability": 0.9984 + }, + { + "start": 7630.9, + "end": 7636.62, + "probability": 0.907 + }, + { + "start": 7637.38, + "end": 7643.08, + "probability": 0.82 + }, + { + "start": 7643.76, + "end": 7644.82, + "probability": 0.7242 + }, + { + "start": 7645.44, + "end": 7648.32, + "probability": 0.3138 + }, + { + "start": 7660.0, + "end": 7660.74, + "probability": 0.1678 + }, + { + "start": 7663.9, + "end": 7669.28, + "probability": 0.4263 + }, + { + "start": 7669.34, + "end": 7670.18, + "probability": 0.7533 + }, + { + "start": 7670.22, + "end": 7670.72, + "probability": 0.1293 + }, + { + "start": 7670.72, + "end": 7670.86, + "probability": 0.5455 + }, + { + "start": 7671.5, + "end": 7674.9, + "probability": 0.8271 + }, + { + "start": 7685.23, + "end": 7689.47, + "probability": 0.1465 + }, + { + "start": 7695.66, + "end": 7701.13, + "probability": 0.0162 + }, + { + "start": 7701.13, + "end": 7703.25, + "probability": 0.0179 + }, + { + "start": 7703.25, + "end": 7703.31, + "probability": 0.0071 + }, + { + "start": 7703.37, + "end": 7703.39, + "probability": 0.5713 + }, + { + "start": 7703.39, + "end": 7703.39, + "probability": 0.0696 + }, + { + "start": 7703.39, + "end": 7703.61, + "probability": 0.2541 + }, + { + "start": 7707.75, + "end": 7709.47, + "probability": 0.0101 + }, + { + "start": 7709.59, + "end": 7709.59, + "probability": 0.0923 + }, + { + "start": 7725.75, + "end": 7726.63, + "probability": 0.1302 + }, + { + "start": 7726.63, + "end": 7729.25, + "probability": 0.0795 + }, + { + "start": 7729.53, + "end": 7730.07, + "probability": 0.2784 + }, + { + "start": 7730.21, + "end": 7731.37, + "probability": 0.2629 + }, + { + "start": 7732.81, + "end": 7733.17, + "probability": 0.0368 + }, + { + "start": 7733.17, + "end": 7733.24, + "probability": 0.1964 + }, + { + "start": 7733.31, + "end": 7734.19, + "probability": 0.1116 + }, + { + "start": 7734.88, + "end": 7736.06, + "probability": 0.0362 + }, + { + "start": 7736.09, + "end": 7736.29, + "probability": 0.0274 + }, + { + "start": 7736.29, + "end": 7736.31, + "probability": 0.0656 + }, + { + "start": 7736.51, + "end": 7736.97, + "probability": 0.121 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.14, + "end": 7738.23, + "probability": 0.3771 + }, + { + "start": 7739.93, + "end": 7743.34, + "probability": 0.9719 + }, + { + "start": 7743.46, + "end": 7746.48, + "probability": 0.7201 + }, + { + "start": 7749.02, + "end": 7752.68, + "probability": 0.9761 + }, + { + "start": 7752.68, + "end": 7754.86, + "probability": 0.4211 + }, + { + "start": 7755.26, + "end": 7763.7, + "probability": 0.594 + }, + { + "start": 7763.82, + "end": 7765.12, + "probability": 0.4322 + }, + { + "start": 7765.5, + "end": 7768.26, + "probability": 0.9693 + }, + { + "start": 7768.26, + "end": 7772.8, + "probability": 0.8273 + }, + { + "start": 7772.8, + "end": 7776.78, + "probability": 0.9814 + }, + { + "start": 7777.44, + "end": 7778.46, + "probability": 0.3917 + }, + { + "start": 7778.94, + "end": 7782.92, + "probability": 0.8254 + }, + { + "start": 7783.02, + "end": 7786.06, + "probability": 0.9748 + }, + { + "start": 7786.06, + "end": 7790.88, + "probability": 0.993 + }, + { + "start": 7791.52, + "end": 7795.44, + "probability": 0.9886 + }, + { + "start": 7796.06, + "end": 7799.26, + "probability": 0.4031 + }, + { + "start": 7801.3, + "end": 7802.46, + "probability": 0.8673 + }, + { + "start": 7802.5, + "end": 7807.64, + "probability": 0.9951 + }, + { + "start": 7808.98, + "end": 7809.52, + "probability": 0.3829 + }, + { + "start": 7809.68, + "end": 7813.48, + "probability": 0.6584 + }, + { + "start": 7813.48, + "end": 7817.4, + "probability": 0.8393 + }, + { + "start": 7817.58, + "end": 7818.66, + "probability": 0.9394 + }, + { + "start": 7818.76, + "end": 7823.0, + "probability": 0.9967 + }, + { + "start": 7823.0, + "end": 7825.54, + "probability": 0.9995 + }, + { + "start": 7826.76, + "end": 7831.66, + "probability": 0.897 + }, + { + "start": 7831.66, + "end": 7835.28, + "probability": 0.9925 + }, + { + "start": 7835.48, + "end": 7839.88, + "probability": 0.9984 + }, + { + "start": 7839.88, + "end": 7844.38, + "probability": 0.9866 + }, + { + "start": 7844.58, + "end": 7848.52, + "probability": 0.9483 + }, + { + "start": 7848.52, + "end": 7852.9, + "probability": 0.9757 + }, + { + "start": 7852.94, + "end": 7855.98, + "probability": 0.9854 + }, + { + "start": 7856.44, + "end": 7856.7, + "probability": 0.7701 + }, + { + "start": 7858.06, + "end": 7859.62, + "probability": 0.8416 + }, + { + "start": 7859.8, + "end": 7861.26, + "probability": 0.9343 + }, + { + "start": 7862.0, + "end": 7865.28, + "probability": 0.9437 + }, + { + "start": 7866.52, + "end": 7867.44, + "probability": 0.8127 + }, + { + "start": 7868.82, + "end": 7870.54, + "probability": 0.8337 + }, + { + "start": 7874.2, + "end": 7874.74, + "probability": 0.8069 + }, + { + "start": 7883.82, + "end": 7884.36, + "probability": 0.8654 + }, + { + "start": 7884.44, + "end": 7887.92, + "probability": 0.9893 + }, + { + "start": 7888.32, + "end": 7889.36, + "probability": 0.9445 + }, + { + "start": 7889.88, + "end": 7891.8, + "probability": 0.9929 + }, + { + "start": 7892.7, + "end": 7895.04, + "probability": 0.9687 + }, + { + "start": 7896.1, + "end": 7897.0, + "probability": 0.8802 + }, + { + "start": 7897.82, + "end": 7900.06, + "probability": 0.9936 + }, + { + "start": 7900.68, + "end": 7902.88, + "probability": 0.9221 + }, + { + "start": 7903.78, + "end": 7905.74, + "probability": 0.6712 + }, + { + "start": 7906.56, + "end": 7909.42, + "probability": 0.9778 + }, + { + "start": 7910.1, + "end": 7911.38, + "probability": 0.9429 + }, + { + "start": 7912.12, + "end": 7912.82, + "probability": 0.7668 + }, + { + "start": 7913.04, + "end": 7913.98, + "probability": 0.6815 + }, + { + "start": 7914.16, + "end": 7914.54, + "probability": 0.3418 + }, + { + "start": 7914.7, + "end": 7914.82, + "probability": 0.3883 + }, + { + "start": 7914.98, + "end": 7915.66, + "probability": 0.8351 + }, + { + "start": 7916.26, + "end": 7917.24, + "probability": 0.8568 + }, + { + "start": 7918.34, + "end": 7921.74, + "probability": 0.958 + }, + { + "start": 7922.44, + "end": 7928.08, + "probability": 0.9065 + }, + { + "start": 7928.82, + "end": 7931.02, + "probability": 0.8308 + }, + { + "start": 7931.88, + "end": 7934.62, + "probability": 0.7499 + }, + { + "start": 7935.14, + "end": 7938.34, + "probability": 0.9984 + }, + { + "start": 7938.74, + "end": 7940.26, + "probability": 0.9905 + }, + { + "start": 7941.42, + "end": 7943.96, + "probability": 0.6835 + }, + { + "start": 7944.64, + "end": 7950.0, + "probability": 0.8154 + }, + { + "start": 7950.66, + "end": 7956.24, + "probability": 0.9953 + }, + { + "start": 7956.64, + "end": 7958.34, + "probability": 0.9441 + }, + { + "start": 7958.96, + "end": 7961.74, + "probability": 0.8381 + }, + { + "start": 7961.76, + "end": 7961.88, + "probability": 0.782 + }, + { + "start": 7962.08, + "end": 7962.66, + "probability": 0.8657 + }, + { + "start": 7962.74, + "end": 7963.56, + "probability": 0.8992 + }, + { + "start": 7964.22, + "end": 7967.76, + "probability": 0.7225 + }, + { + "start": 7967.82, + "end": 7969.08, + "probability": 0.9026 + }, + { + "start": 7969.18, + "end": 7972.2, + "probability": 0.9945 + }, + { + "start": 7972.8, + "end": 7973.58, + "probability": 0.9255 + }, + { + "start": 7973.74, + "end": 7977.6, + "probability": 0.9141 + }, + { + "start": 7978.84, + "end": 7980.7, + "probability": 0.509 + }, + { + "start": 7980.96, + "end": 7982.06, + "probability": 0.7387 + }, + { + "start": 7983.7, + "end": 7986.04, + "probability": 0.826 + }, + { + "start": 7986.52, + "end": 7987.46, + "probability": 0.6377 + }, + { + "start": 7987.56, + "end": 7989.08, + "probability": 0.9842 + }, + { + "start": 7989.1, + "end": 7990.58, + "probability": 0.7943 + }, + { + "start": 7991.26, + "end": 7993.06, + "probability": 0.8806 + }, + { + "start": 7993.8, + "end": 7994.96, + "probability": 0.9765 + }, + { + "start": 7995.24, + "end": 7997.82, + "probability": 0.9548 + }, + { + "start": 7998.22, + "end": 7999.28, + "probability": 0.8882 + }, + { + "start": 7999.98, + "end": 8002.07, + "probability": 0.9712 + }, + { + "start": 8002.76, + "end": 8004.18, + "probability": 0.9724 + }, + { + "start": 8005.74, + "end": 8007.22, + "probability": 0.7622 + }, + { + "start": 8007.3, + "end": 8010.42, + "probability": 0.8699 + }, + { + "start": 8010.66, + "end": 8011.48, + "probability": 0.6423 + }, + { + "start": 8011.68, + "end": 8013.92, + "probability": 0.8241 + }, + { + "start": 8014.36, + "end": 8015.98, + "probability": 0.8197 + }, + { + "start": 8016.54, + "end": 8021.52, + "probability": 0.8171 + }, + { + "start": 8022.06, + "end": 8024.18, + "probability": 0.7806 + }, + { + "start": 8024.78, + "end": 8025.2, + "probability": 0.7087 + }, + { + "start": 8025.3, + "end": 8025.56, + "probability": 0.3753 + }, + { + "start": 8025.74, + "end": 8026.94, + "probability": 0.9451 + }, + { + "start": 8027.0, + "end": 8028.34, + "probability": 0.9061 + }, + { + "start": 8028.94, + "end": 8030.46, + "probability": 0.9561 + }, + { + "start": 8030.54, + "end": 8031.32, + "probability": 0.941 + }, + { + "start": 8031.7, + "end": 8032.18, + "probability": 0.6877 + }, + { + "start": 8032.82, + "end": 8036.86, + "probability": 0.8542 + }, + { + "start": 8037.54, + "end": 8038.6, + "probability": 0.991 + }, + { + "start": 8038.7, + "end": 8041.4, + "probability": 0.9875 + }, + { + "start": 8041.88, + "end": 8044.02, + "probability": 0.9893 + }, + { + "start": 8044.72, + "end": 8045.72, + "probability": 0.999 + }, + { + "start": 8046.82, + "end": 8047.84, + "probability": 0.4971 + }, + { + "start": 8048.96, + "end": 8050.5, + "probability": 0.6598 + }, + { + "start": 8051.14, + "end": 8052.42, + "probability": 0.8667 + }, + { + "start": 8052.54, + "end": 8054.02, + "probability": 0.8784 + }, + { + "start": 8054.08, + "end": 8057.56, + "probability": 0.8845 + }, + { + "start": 8058.38, + "end": 8059.78, + "probability": 0.7649 + }, + { + "start": 8060.4, + "end": 8061.5, + "probability": 0.9609 + }, + { + "start": 8061.86, + "end": 8064.0, + "probability": 0.8315 + }, + { + "start": 8064.72, + "end": 8068.86, + "probability": 0.9548 + }, + { + "start": 8068.98, + "end": 8071.28, + "probability": 0.7507 + }, + { + "start": 8071.4, + "end": 8072.3, + "probability": 0.7685 + }, + { + "start": 8072.52, + "end": 8076.7, + "probability": 0.9505 + }, + { + "start": 8076.7, + "end": 8079.76, + "probability": 0.998 + }, + { + "start": 8080.42, + "end": 8080.92, + "probability": 0.5229 + }, + { + "start": 8081.5, + "end": 8083.44, + "probability": 0.6038 + }, + { + "start": 8083.9, + "end": 8086.06, + "probability": 0.9085 + }, + { + "start": 8086.92, + "end": 8087.84, + "probability": 0.6707 + }, + { + "start": 8088.54, + "end": 8090.78, + "probability": 0.9919 + }, + { + "start": 8092.72, + "end": 8093.68, + "probability": 0.7456 + }, + { + "start": 8094.22, + "end": 8095.78, + "probability": 0.9963 + }, + { + "start": 8099.42, + "end": 8101.34, + "probability": 0.7549 + }, + { + "start": 8110.1, + "end": 8111.34, + "probability": 0.6057 + }, + { + "start": 8112.7, + "end": 8120.54, + "probability": 0.9962 + }, + { + "start": 8121.24, + "end": 8123.82, + "probability": 0.9956 + }, + { + "start": 8124.64, + "end": 8126.9, + "probability": 0.9894 + }, + { + "start": 8127.48, + "end": 8129.66, + "probability": 0.5923 + }, + { + "start": 8130.76, + "end": 8130.84, + "probability": 0.8394 + }, + { + "start": 8132.02, + "end": 8133.36, + "probability": 0.8892 + }, + { + "start": 8134.44, + "end": 8136.86, + "probability": 0.9261 + }, + { + "start": 8136.86, + "end": 8143.36, + "probability": 0.9894 + }, + { + "start": 8144.5, + "end": 8145.94, + "probability": 0.9995 + }, + { + "start": 8147.32, + "end": 8149.67, + "probability": 0.6713 + }, + { + "start": 8150.82, + "end": 8152.92, + "probability": 0.9537 + }, + { + "start": 8155.1, + "end": 8157.24, + "probability": 0.8068 + }, + { + "start": 8158.14, + "end": 8160.08, + "probability": 0.9702 + }, + { + "start": 8161.32, + "end": 8162.51, + "probability": 0.9262 + }, + { + "start": 8163.64, + "end": 8164.36, + "probability": 0.8639 + }, + { + "start": 8165.24, + "end": 8167.56, + "probability": 0.7746 + }, + { + "start": 8168.2, + "end": 8170.18, + "probability": 0.9245 + }, + { + "start": 8170.56, + "end": 8172.22, + "probability": 0.9907 + }, + { + "start": 8172.32, + "end": 8173.6, + "probability": 0.9499 + }, + { + "start": 8173.68, + "end": 8175.78, + "probability": 0.9868 + }, + { + "start": 8177.24, + "end": 8177.86, + "probability": 0.5016 + }, + { + "start": 8177.94, + "end": 8178.88, + "probability": 0.6563 + }, + { + "start": 8179.96, + "end": 8183.24, + "probability": 0.7834 + }, + { + "start": 8183.3, + "end": 8184.78, + "probability": 0.8949 + }, + { + "start": 8184.92, + "end": 8186.42, + "probability": 0.9402 + }, + { + "start": 8187.02, + "end": 8187.8, + "probability": 0.8192 + }, + { + "start": 8188.74, + "end": 8195.48, + "probability": 0.9643 + }, + { + "start": 8196.94, + "end": 8199.86, + "probability": 0.7799 + }, + { + "start": 8201.24, + "end": 8204.26, + "probability": 0.9162 + }, + { + "start": 8206.2, + "end": 8211.1, + "probability": 0.9896 + }, + { + "start": 8211.24, + "end": 8213.92, + "probability": 0.9046 + }, + { + "start": 8215.34, + "end": 8216.84, + "probability": 0.7261 + }, + { + "start": 8217.84, + "end": 8222.46, + "probability": 0.9946 + }, + { + "start": 8223.58, + "end": 8226.02, + "probability": 0.8722 + }, + { + "start": 8226.94, + "end": 8229.4, + "probability": 0.7415 + }, + { + "start": 8230.22, + "end": 8231.16, + "probability": 0.7574 + }, + { + "start": 8232.3, + "end": 8239.22, + "probability": 0.986 + }, + { + "start": 8240.12, + "end": 8242.94, + "probability": 0.9785 + }, + { + "start": 8243.12, + "end": 8243.3, + "probability": 0.7458 + }, + { + "start": 8244.58, + "end": 8246.74, + "probability": 0.7124 + }, + { + "start": 8246.84, + "end": 8248.58, + "probability": 0.9667 + }, + { + "start": 8249.86, + "end": 8250.92, + "probability": 0.8922 + }, + { + "start": 8251.4, + "end": 8253.84, + "probability": 0.8946 + }, + { + "start": 8255.46, + "end": 8256.34, + "probability": 0.6055 + }, + { + "start": 8256.8, + "end": 8257.0, + "probability": 0.1412 + }, + { + "start": 8257.42, + "end": 8257.42, + "probability": 0.0008 + }, + { + "start": 8259.62, + "end": 8260.86, + "probability": 0.0428 + }, + { + "start": 8261.78, + "end": 8263.5, + "probability": 0.9367 + }, + { + "start": 8268.08, + "end": 8269.78, + "probability": 0.4165 + }, + { + "start": 8271.02, + "end": 8272.86, + "probability": 0.8813 + }, + { + "start": 8285.66, + "end": 8286.18, + "probability": 0.5304 + }, + { + "start": 8286.28, + "end": 8289.86, + "probability": 0.6237 + }, + { + "start": 8291.04, + "end": 8292.04, + "probability": 0.8965 + }, + { + "start": 8292.56, + "end": 8298.44, + "probability": 0.9558 + }, + { + "start": 8300.02, + "end": 8305.6, + "probability": 0.9835 + }, + { + "start": 8307.38, + "end": 8308.54, + "probability": 0.9888 + }, + { + "start": 8309.86, + "end": 8312.5, + "probability": 0.8425 + }, + { + "start": 8313.56, + "end": 8315.76, + "probability": 0.9904 + }, + { + "start": 8316.84, + "end": 8321.18, + "probability": 0.9891 + }, + { + "start": 8323.04, + "end": 8328.1, + "probability": 0.9949 + }, + { + "start": 8329.72, + "end": 8334.14, + "probability": 0.9982 + }, + { + "start": 8334.46, + "end": 8338.4, + "probability": 0.9248 + }, + { + "start": 8339.44, + "end": 8345.02, + "probability": 0.9941 + }, + { + "start": 8345.02, + "end": 8351.56, + "probability": 0.9991 + }, + { + "start": 8352.62, + "end": 8353.74, + "probability": 0.8442 + }, + { + "start": 8354.16, + "end": 8359.04, + "probability": 0.9053 + }, + { + "start": 8360.86, + "end": 8361.88, + "probability": 0.6748 + }, + { + "start": 8363.42, + "end": 8366.98, + "probability": 0.886 + }, + { + "start": 8368.02, + "end": 8369.32, + "probability": 0.9932 + }, + { + "start": 8370.72, + "end": 8373.3, + "probability": 0.989 + }, + { + "start": 8374.12, + "end": 8376.62, + "probability": 0.8431 + }, + { + "start": 8377.84, + "end": 8383.62, + "probability": 0.916 + }, + { + "start": 8384.42, + "end": 8392.6, + "probability": 0.9849 + }, + { + "start": 8393.18, + "end": 8394.6, + "probability": 0.6097 + }, + { + "start": 8395.46, + "end": 8403.22, + "probability": 0.9541 + }, + { + "start": 8404.48, + "end": 8406.94, + "probability": 0.7036 + }, + { + "start": 8407.78, + "end": 8412.58, + "probability": 0.9912 + }, + { + "start": 8413.0, + "end": 8413.46, + "probability": 0.4577 + }, + { + "start": 8413.48, + "end": 8413.98, + "probability": 0.8386 + }, + { + "start": 8414.08, + "end": 8416.86, + "probability": 0.9834 + }, + { + "start": 8418.2, + "end": 8423.66, + "probability": 0.976 + }, + { + "start": 8423.66, + "end": 8429.74, + "probability": 0.9771 + }, + { + "start": 8430.34, + "end": 8432.68, + "probability": 0.6888 + }, + { + "start": 8433.62, + "end": 8434.68, + "probability": 0.998 + }, + { + "start": 8435.26, + "end": 8440.58, + "probability": 0.9463 + }, + { + "start": 8441.28, + "end": 8445.74, + "probability": 0.9941 + }, + { + "start": 8446.42, + "end": 8449.64, + "probability": 0.926 + }, + { + "start": 8449.74, + "end": 8450.28, + "probability": 0.9196 + }, + { + "start": 8450.98, + "end": 8452.62, + "probability": 0.8057 + }, + { + "start": 8452.8, + "end": 8454.14, + "probability": 0.5639 + }, + { + "start": 8470.48, + "end": 8471.04, + "probability": 0.8218 + }, + { + "start": 8472.8, + "end": 8476.72, + "probability": 0.687 + }, + { + "start": 8477.92, + "end": 8480.92, + "probability": 0.7251 + }, + { + "start": 8482.26, + "end": 8483.48, + "probability": 0.6143 + }, + { + "start": 8484.28, + "end": 8486.88, + "probability": 0.9688 + }, + { + "start": 8488.44, + "end": 8492.0, + "probability": 0.9923 + }, + { + "start": 8492.92, + "end": 8493.98, + "probability": 0.9678 + }, + { + "start": 8494.78, + "end": 8497.74, + "probability": 0.9228 + }, + { + "start": 8498.5, + "end": 8502.04, + "probability": 0.9956 + }, + { + "start": 8503.76, + "end": 8506.28, + "probability": 0.9556 + }, + { + "start": 8507.3, + "end": 8511.84, + "probability": 0.9072 + }, + { + "start": 8513.38, + "end": 8515.24, + "probability": 0.9979 + }, + { + "start": 8516.14, + "end": 8522.58, + "probability": 0.8634 + }, + { + "start": 8523.64, + "end": 8524.86, + "probability": 0.7526 + }, + { + "start": 8525.44, + "end": 8531.0, + "probability": 0.9928 + }, + { + "start": 8531.58, + "end": 8532.78, + "probability": 0.7708 + }, + { + "start": 8533.46, + "end": 8537.3, + "probability": 0.5941 + }, + { + "start": 8538.46, + "end": 8541.56, + "probability": 0.8165 + }, + { + "start": 8542.66, + "end": 8544.54, + "probability": 0.995 + }, + { + "start": 8545.1, + "end": 8547.98, + "probability": 0.9555 + }, + { + "start": 8549.14, + "end": 8552.52, + "probability": 0.9905 + }, + { + "start": 8552.62, + "end": 8553.34, + "probability": 0.7505 + }, + { + "start": 8554.02, + "end": 8557.26, + "probability": 0.7857 + }, + { + "start": 8558.22, + "end": 8558.5, + "probability": 0.0377 + }, + { + "start": 8559.7, + "end": 8561.56, + "probability": 0.3412 + }, + { + "start": 8561.56, + "end": 8562.18, + "probability": 0.399 + }, + { + "start": 8562.28, + "end": 8563.94, + "probability": 0.1917 + }, + { + "start": 8564.46, + "end": 8565.12, + "probability": 0.0387 + }, + { + "start": 8565.12, + "end": 8566.14, + "probability": 0.5098 + }, + { + "start": 8566.84, + "end": 8570.98, + "probability": 0.8521 + }, + { + "start": 8571.74, + "end": 8574.66, + "probability": 0.8191 + }, + { + "start": 8575.5, + "end": 8576.1, + "probability": 0.9403 + }, + { + "start": 8576.62, + "end": 8579.32, + "probability": 0.971 + }, + { + "start": 8579.98, + "end": 8582.12, + "probability": 0.9269 + }, + { + "start": 8582.8, + "end": 8585.5, + "probability": 0.5414 + }, + { + "start": 8586.24, + "end": 8587.72, + "probability": 0.1353 + }, + { + "start": 8587.72, + "end": 8589.34, + "probability": 0.2303 + }, + { + "start": 8589.92, + "end": 8590.86, + "probability": 0.2846 + }, + { + "start": 8590.86, + "end": 8593.04, + "probability": 0.6287 + }, + { + "start": 8593.76, + "end": 8597.3, + "probability": 0.7294 + }, + { + "start": 8597.96, + "end": 8598.14, + "probability": 0.2308 + }, + { + "start": 8598.14, + "end": 8598.14, + "probability": 0.416 + }, + { + "start": 8598.14, + "end": 8600.56, + "probability": 0.4816 + }, + { + "start": 8600.68, + "end": 8610.98, + "probability": 0.9538 + }, + { + "start": 8611.24, + "end": 8614.1, + "probability": 0.6879 + }, + { + "start": 8614.48, + "end": 8616.08, + "probability": 0.5002 + }, + { + "start": 8616.46, + "end": 8622.54, + "probability": 0.5858 + }, + { + "start": 8622.76, + "end": 8624.44, + "probability": 0.0079 + }, + { + "start": 8625.76, + "end": 8627.92, + "probability": 0.0351 + }, + { + "start": 8627.94, + "end": 8630.18, + "probability": 0.2046 + }, + { + "start": 8630.18, + "end": 8631.62, + "probability": 0.1408 + }, + { + "start": 8632.34, + "end": 8634.46, + "probability": 0.2639 + }, + { + "start": 8635.44, + "end": 8635.44, + "probability": 0.0124 + }, + { + "start": 8635.44, + "end": 8635.44, + "probability": 0.0606 + }, + { + "start": 8635.44, + "end": 8635.44, + "probability": 0.2407 + }, + { + "start": 8635.44, + "end": 8635.44, + "probability": 0.0317 + }, + { + "start": 8635.44, + "end": 8638.02, + "probability": 0.8157 + }, + { + "start": 8638.6, + "end": 8644.54, + "probability": 0.6587 + }, + { + "start": 8644.92, + "end": 8645.56, + "probability": 0.6897 + }, + { + "start": 8645.56, + "end": 8647.48, + "probability": 0.8577 + }, + { + "start": 8649.14, + "end": 8650.54, + "probability": 0.8516 + }, + { + "start": 8650.68, + "end": 8652.28, + "probability": 0.9483 + }, + { + "start": 8653.2, + "end": 8654.3, + "probability": 0.7383 + }, + { + "start": 8655.0, + "end": 8656.86, + "probability": 0.9738 + }, + { + "start": 8657.68, + "end": 8658.5, + "probability": 0.9757 + }, + { + "start": 8659.3, + "end": 8660.78, + "probability": 0.9951 + }, + { + "start": 8662.18, + "end": 8663.06, + "probability": 0.5397 + }, + { + "start": 8663.98, + "end": 8666.02, + "probability": 0.8947 + }, + { + "start": 8667.0, + "end": 8668.04, + "probability": 0.9537 + }, + { + "start": 8669.04, + "end": 8670.72, + "probability": 0.9962 + }, + { + "start": 8670.86, + "end": 8671.86, + "probability": 0.8099 + }, + { + "start": 8672.36, + "end": 8675.32, + "probability": 0.9875 + }, + { + "start": 8675.9, + "end": 8676.86, + "probability": 0.6656 + }, + { + "start": 8677.6, + "end": 8678.68, + "probability": 0.988 + }, + { + "start": 8680.64, + "end": 8681.36, + "probability": 0.9705 + }, + { + "start": 8691.88, + "end": 8694.1, + "probability": 0.6942 + }, + { + "start": 8694.2, + "end": 8694.78, + "probability": 0.7332 + }, + { + "start": 8694.9, + "end": 8696.1, + "probability": 0.9635 + }, + { + "start": 8696.2, + "end": 8697.1, + "probability": 0.784 + }, + { + "start": 8697.98, + "end": 8699.22, + "probability": 0.9677 + }, + { + "start": 8699.7, + "end": 8700.48, + "probability": 0.7597 + }, + { + "start": 8700.52, + "end": 8704.06, + "probability": 0.9915 + }, + { + "start": 8704.12, + "end": 8708.88, + "probability": 0.9832 + }, + { + "start": 8709.76, + "end": 8717.4, + "probability": 0.8993 + }, + { + "start": 8717.96, + "end": 8719.82, + "probability": 0.7525 + }, + { + "start": 8720.58, + "end": 8726.94, + "probability": 0.835 + }, + { + "start": 8727.44, + "end": 8730.7, + "probability": 0.9683 + }, + { + "start": 8731.2, + "end": 8734.44, + "probability": 0.9176 + }, + { + "start": 8735.42, + "end": 8741.38, + "probability": 0.9647 + }, + { + "start": 8741.54, + "end": 8742.2, + "probability": 0.6655 + }, + { + "start": 8745.52, + "end": 8748.68, + "probability": 0.7073 + }, + { + "start": 8750.76, + "end": 8752.36, + "probability": 0.4537 + }, + { + "start": 8753.5, + "end": 8753.98, + "probability": 0.1305 + }, + { + "start": 8754.01, + "end": 8757.36, + "probability": 0.6859 + }, + { + "start": 8757.86, + "end": 8758.96, + "probability": 0.683 + }, + { + "start": 8759.08, + "end": 8764.0, + "probability": 0.9974 + }, + { + "start": 8764.88, + "end": 8769.98, + "probability": 0.9939 + }, + { + "start": 8770.7, + "end": 8773.1, + "probability": 0.8105 + }, + { + "start": 8773.82, + "end": 8774.92, + "probability": 0.7567 + }, + { + "start": 8775.78, + "end": 8779.42, + "probability": 0.9453 + }, + { + "start": 8779.84, + "end": 8782.08, + "probability": 0.9711 + }, + { + "start": 8782.24, + "end": 8785.8, + "probability": 0.9751 + }, + { + "start": 8786.0, + "end": 8787.24, + "probability": 0.877 + }, + { + "start": 8788.1, + "end": 8789.2, + "probability": 0.9237 + }, + { + "start": 8790.16, + "end": 8797.42, + "probability": 0.9713 + }, + { + "start": 8797.48, + "end": 8798.86, + "probability": 0.943 + }, + { + "start": 8799.8, + "end": 8802.4, + "probability": 0.9945 + }, + { + "start": 8802.46, + "end": 8804.3, + "probability": 0.9857 + }, + { + "start": 8804.64, + "end": 8807.9, + "probability": 0.9985 + }, + { + "start": 8808.32, + "end": 8812.98, + "probability": 0.992 + }, + { + "start": 8813.9, + "end": 8816.64, + "probability": 0.9499 + }, + { + "start": 8817.02, + "end": 8818.1, + "probability": 0.9409 + }, + { + "start": 8818.46, + "end": 8820.44, + "probability": 0.8981 + }, + { + "start": 8820.52, + "end": 8822.02, + "probability": 0.9465 + }, + { + "start": 8822.92, + "end": 8828.4, + "probability": 0.9983 + }, + { + "start": 8828.78, + "end": 8834.04, + "probability": 0.982 + }, + { + "start": 8834.36, + "end": 8838.64, + "probability": 0.9966 + }, + { + "start": 8838.64, + "end": 8842.52, + "probability": 0.9995 + }, + { + "start": 8842.6, + "end": 8844.84, + "probability": 0.8755 + }, + { + "start": 8845.9, + "end": 8848.96, + "probability": 0.9941 + }, + { + "start": 8848.96, + "end": 8851.84, + "probability": 0.997 + }, + { + "start": 8852.36, + "end": 8853.16, + "probability": 0.8764 + }, + { + "start": 8853.18, + "end": 8853.36, + "probability": 0.5747 + }, + { + "start": 8853.5, + "end": 8855.86, + "probability": 0.9626 + }, + { + "start": 8855.86, + "end": 8859.16, + "probability": 0.9312 + }, + { + "start": 8859.8, + "end": 8860.98, + "probability": 0.4282 + }, + { + "start": 8862.26, + "end": 8863.95, + "probability": 0.9976 + }, + { + "start": 8864.64, + "end": 8867.64, + "probability": 0.9931 + }, + { + "start": 8868.56, + "end": 8871.46, + "probability": 0.9937 + }, + { + "start": 8872.18, + "end": 8874.0, + "probability": 0.2864 + }, + { + "start": 8874.14, + "end": 8878.3, + "probability": 0.9888 + }, + { + "start": 8878.9, + "end": 8882.98, + "probability": 0.9904 + }, + { + "start": 8884.36, + "end": 8886.64, + "probability": 0.9966 + }, + { + "start": 8887.04, + "end": 8887.64, + "probability": 0.5756 + }, + { + "start": 8887.72, + "end": 8889.72, + "probability": 0.3506 + }, + { + "start": 8889.96, + "end": 8892.06, + "probability": 0.9816 + }, + { + "start": 8892.1, + "end": 8892.74, + "probability": 0.9186 + }, + { + "start": 8892.76, + "end": 8895.57, + "probability": 0.9907 + }, + { + "start": 8896.14, + "end": 8898.38, + "probability": 0.5625 + }, + { + "start": 8899.14, + "end": 8902.62, + "probability": 0.9883 + }, + { + "start": 8902.62, + "end": 8907.04, + "probability": 0.999 + }, + { + "start": 8907.12, + "end": 8910.12, + "probability": 0.1176 + }, + { + "start": 8910.8, + "end": 8913.32, + "probability": 0.0413 + }, + { + "start": 8913.51, + "end": 8915.36, + "probability": 0.6967 + }, + { + "start": 8916.0, + "end": 8918.64, + "probability": 0.9861 + }, + { + "start": 8919.24, + "end": 8920.01, + "probability": 0.9496 + }, + { + "start": 8920.88, + "end": 8924.96, + "probability": 0.9952 + }, + { + "start": 8925.66, + "end": 8929.8, + "probability": 0.9981 + }, + { + "start": 8930.7, + "end": 8938.84, + "probability": 0.9792 + }, + { + "start": 8939.08, + "end": 8939.08, + "probability": 0.6526 + }, + { + "start": 8939.08, + "end": 8939.76, + "probability": 0.4469 + }, + { + "start": 8939.82, + "end": 8944.66, + "probability": 0.9532 + }, + { + "start": 8944.78, + "end": 8948.88, + "probability": 0.9855 + }, + { + "start": 8949.54, + "end": 8950.5, + "probability": 0.8257 + }, + { + "start": 8951.28, + "end": 8953.14, + "probability": 0.7962 + }, + { + "start": 8953.14, + "end": 8955.4, + "probability": 0.9893 + }, + { + "start": 8955.42, + "end": 8956.12, + "probability": 0.7245 + }, + { + "start": 8956.12, + "end": 8958.64, + "probability": 0.9647 + }, + { + "start": 8959.46, + "end": 8962.82, + "probability": 0.7993 + }, + { + "start": 8966.12, + "end": 8967.02, + "probability": 0.9035 + }, + { + "start": 8968.38, + "end": 8968.62, + "probability": 0.3634 + }, + { + "start": 8968.72, + "end": 8973.1, + "probability": 0.9777 + }, + { + "start": 8973.32, + "end": 8974.64, + "probability": 0.1057 + }, + { + "start": 8975.58, + "end": 8978.46, + "probability": 0.9406 + }, + { + "start": 8979.08, + "end": 8979.44, + "probability": 0.5509 + }, + { + "start": 8979.48, + "end": 8980.22, + "probability": 0.914 + }, + { + "start": 8980.4, + "end": 8983.0, + "probability": 0.9849 + }, + { + "start": 8983.0, + "end": 8986.74, + "probability": 0.5027 + }, + { + "start": 8986.9, + "end": 8988.56, + "probability": 0.7762 + }, + { + "start": 8988.92, + "end": 8990.6, + "probability": 0.8372 + }, + { + "start": 8991.1, + "end": 8993.34, + "probability": 0.9156 + }, + { + "start": 8998.3, + "end": 8998.8, + "probability": 0.7278 + }, + { + "start": 9021.2, + "end": 9022.96, + "probability": 0.2582 + }, + { + "start": 9022.96, + "end": 9026.2, + "probability": 0.417 + }, + { + "start": 9026.78, + "end": 9028.72, + "probability": 0.6605 + }, + { + "start": 9031.56, + "end": 9035.74, + "probability": 0.478 + }, + { + "start": 9039.92, + "end": 9040.92, + "probability": 0.1422 + }, + { + "start": 9041.66, + "end": 9042.54, + "probability": 0.1113 + }, + { + "start": 9043.18, + "end": 9043.74, + "probability": 0.0752 + }, + { + "start": 9044.78, + "end": 9046.88, + "probability": 0.1371 + }, + { + "start": 9047.44, + "end": 9047.66, + "probability": 0.9897 + }, + { + "start": 9052.03, + "end": 9054.42, + "probability": 0.1152 + }, + { + "start": 9055.2, + "end": 9056.58, + "probability": 0.0333 + }, + { + "start": 9057.24, + "end": 9059.5, + "probability": 0.3988 + }, + { + "start": 9073.46, + "end": 9074.42, + "probability": 0.3983 + }, + { + "start": 9077.46, + "end": 9078.4, + "probability": 0.0747 + }, + { + "start": 9083.7, + "end": 9088.78, + "probability": 0.169 + }, + { + "start": 9089.28, + "end": 9090.12, + "probability": 0.3062 + }, + { + "start": 9090.66, + "end": 9092.1, + "probability": 0.2465 + }, + { + "start": 9093.24, + "end": 9094.42, + "probability": 0.0328 + }, + { + "start": 9095.2, + "end": 9099.32, + "probability": 0.0969 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.64, + "end": 9130.86, + "probability": 0.6481 + }, + { + "start": 9131.0, + "end": 9133.2, + "probability": 0.9961 + }, + { + "start": 9133.6, + "end": 9134.72, + "probability": 0.8569 + }, + { + "start": 9134.8, + "end": 9137.22, + "probability": 0.7981 + }, + { + "start": 9138.14, + "end": 9141.94, + "probability": 0.9756 + }, + { + "start": 9142.04, + "end": 9143.36, + "probability": 0.0793 + }, + { + "start": 9155.64, + "end": 9156.98, + "probability": 0.0729 + }, + { + "start": 9156.98, + "end": 9156.98, + "probability": 0.0905 + }, + { + "start": 9156.98, + "end": 9156.98, + "probability": 0.0654 + }, + { + "start": 9156.98, + "end": 9156.98, + "probability": 0.0918 + }, + { + "start": 9156.98, + "end": 9158.76, + "probability": 0.7461 + }, + { + "start": 9159.48, + "end": 9160.82, + "probability": 0.2634 + }, + { + "start": 9161.08, + "end": 9166.74, + "probability": 0.9819 + }, + { + "start": 9166.74, + "end": 9171.86, + "probability": 0.9899 + }, + { + "start": 9173.38, + "end": 9176.8, + "probability": 0.7608 + }, + { + "start": 9177.02, + "end": 9178.36, + "probability": 0.7835 + }, + { + "start": 9180.08, + "end": 9184.22, + "probability": 0.9976 + }, + { + "start": 9184.56, + "end": 9185.16, + "probability": 0.6581 + }, + { + "start": 9185.28, + "end": 9188.38, + "probability": 0.9979 + }, + { + "start": 9188.5, + "end": 9191.94, + "probability": 0.987 + }, + { + "start": 9192.42, + "end": 9193.82, + "probability": 0.8112 + }, + { + "start": 9194.48, + "end": 9196.14, + "probability": 0.9907 + }, + { + "start": 9197.76, + "end": 9200.32, + "probability": 0.8901 + }, + { + "start": 9200.86, + "end": 9202.82, + "probability": 0.9807 + }, + { + "start": 9204.02, + "end": 9206.1, + "probability": 0.775 + }, + { + "start": 9206.34, + "end": 9209.78, + "probability": 0.9906 + }, + { + "start": 9210.16, + "end": 9213.04, + "probability": 0.9484 + }, + { + "start": 9214.1, + "end": 9216.44, + "probability": 0.9973 + }, + { + "start": 9216.5, + "end": 9220.78, + "probability": 0.8983 + }, + { + "start": 9221.28, + "end": 9223.22, + "probability": 0.9982 + }, + { + "start": 9223.36, + "end": 9224.5, + "probability": 0.9165 + }, + { + "start": 9224.56, + "end": 9229.04, + "probability": 0.9628 + }, + { + "start": 9229.12, + "end": 9229.58, + "probability": 0.7895 + }, + { + "start": 9229.82, + "end": 9230.8, + "probability": 0.8885 + }, + { + "start": 9231.16, + "end": 9232.12, + "probability": 0.586 + }, + { + "start": 9232.44, + "end": 9234.18, + "probability": 0.985 + }, + { + "start": 9235.46, + "end": 9240.04, + "probability": 0.9727 + }, + { + "start": 9240.38, + "end": 9242.32, + "probability": 0.8298 + }, + { + "start": 9242.84, + "end": 9245.7, + "probability": 0.959 + }, + { + "start": 9247.38, + "end": 9249.26, + "probability": 0.6427 + }, + { + "start": 9249.34, + "end": 9250.28, + "probability": 0.8337 + }, + { + "start": 9250.42, + "end": 9250.88, + "probability": 0.9398 + }, + { + "start": 9251.8, + "end": 9253.96, + "probability": 0.8862 + }, + { + "start": 9254.1, + "end": 9257.58, + "probability": 0.9945 + }, + { + "start": 9258.42, + "end": 9260.44, + "probability": 0.9992 + }, + { + "start": 9260.74, + "end": 9265.16, + "probability": 0.894 + }, + { + "start": 9265.16, + "end": 9270.2, + "probability": 0.9336 + }, + { + "start": 9270.62, + "end": 9276.96, + "probability": 0.9915 + }, + { + "start": 9277.36, + "end": 9280.26, + "probability": 0.7686 + }, + { + "start": 9280.34, + "end": 9284.8, + "probability": 0.9946 + }, + { + "start": 9285.36, + "end": 9287.02, + "probability": 0.7653 + }, + { + "start": 9287.58, + "end": 9289.84, + "probability": 0.9693 + }, + { + "start": 9290.36, + "end": 9291.66, + "probability": 0.9238 + }, + { + "start": 9291.96, + "end": 9294.12, + "probability": 0.9928 + }, + { + "start": 9295.24, + "end": 9295.34, + "probability": 0.2558 + }, + { + "start": 9295.44, + "end": 9297.2, + "probability": 0.9788 + }, + { + "start": 9297.24, + "end": 9298.46, + "probability": 0.8991 + }, + { + "start": 9298.76, + "end": 9301.28, + "probability": 0.8843 + }, + { + "start": 9301.96, + "end": 9302.92, + "probability": 0.4789 + }, + { + "start": 9303.16, + "end": 9307.96, + "probability": 0.8418 + }, + { + "start": 9309.72, + "end": 9311.16, + "probability": 0.7345 + }, + { + "start": 9311.66, + "end": 9315.4, + "probability": 0.8419 + }, + { + "start": 9315.4, + "end": 9319.02, + "probability": 0.9517 + }, + { + "start": 9319.2, + "end": 9320.0, + "probability": 0.4565 + }, + { + "start": 9320.8, + "end": 9323.28, + "probability": 0.9926 + }, + { + "start": 9324.46, + "end": 9325.26, + "probability": 0.8972 + }, + { + "start": 9325.98, + "end": 9326.76, + "probability": 0.9274 + }, + { + "start": 9326.9, + "end": 9327.6, + "probability": 0.6292 + }, + { + "start": 9327.68, + "end": 9331.46, + "probability": 0.9175 + }, + { + "start": 9332.0, + "end": 9334.78, + "probability": 0.9433 + }, + { + "start": 9335.52, + "end": 9336.2, + "probability": 0.7532 + }, + { + "start": 9336.92, + "end": 9343.08, + "probability": 0.8906 + }, + { + "start": 9344.14, + "end": 9345.44, + "probability": 0.8326 + }, + { + "start": 9346.22, + "end": 9348.3, + "probability": 0.8609 + }, + { + "start": 9348.44, + "end": 9348.58, + "probability": 0.8076 + }, + { + "start": 9348.58, + "end": 9350.96, + "probability": 0.7508 + }, + { + "start": 9351.36, + "end": 9352.16, + "probability": 0.943 + }, + { + "start": 9353.98, + "end": 9359.94, + "probability": 0.9863 + }, + { + "start": 9361.48, + "end": 9363.2, + "probability": 0.9975 + }, + { + "start": 9364.06, + "end": 9364.82, + "probability": 0.9561 + }, + { + "start": 9365.1, + "end": 9366.78, + "probability": 0.9158 + }, + { + "start": 9366.94, + "end": 9369.42, + "probability": 0.7524 + }, + { + "start": 9369.5, + "end": 9370.5, + "probability": 0.5011 + }, + { + "start": 9370.94, + "end": 9371.92, + "probability": 0.7202 + }, + { + "start": 9373.48, + "end": 9374.9, + "probability": 0.9124 + }, + { + "start": 9375.02, + "end": 9375.54, + "probability": 0.8833 + }, + { + "start": 9375.58, + "end": 9377.64, + "probability": 0.9941 + }, + { + "start": 9378.22, + "end": 9379.14, + "probability": 0.6581 + }, + { + "start": 9379.66, + "end": 9382.34, + "probability": 0.9941 + }, + { + "start": 9382.44, + "end": 9385.08, + "probability": 0.9215 + }, + { + "start": 9385.16, + "end": 9386.06, + "probability": 0.9923 + }, + { + "start": 9386.12, + "end": 9386.48, + "probability": 0.5309 + }, + { + "start": 9386.5, + "end": 9387.58, + "probability": 0.9858 + }, + { + "start": 9388.88, + "end": 9390.82, + "probability": 0.9692 + }, + { + "start": 9392.42, + "end": 9394.4, + "probability": 0.6796 + }, + { + "start": 9395.12, + "end": 9396.68, + "probability": 0.9075 + }, + { + "start": 9397.24, + "end": 9398.26, + "probability": 0.6197 + }, + { + "start": 9399.58, + "end": 9400.44, + "probability": 0.9334 + }, + { + "start": 9400.52, + "end": 9400.8, + "probability": 0.8807 + }, + { + "start": 9400.96, + "end": 9404.72, + "probability": 0.9747 + }, + { + "start": 9405.92, + "end": 9408.76, + "probability": 0.7733 + }, + { + "start": 9408.98, + "end": 9410.76, + "probability": 0.9669 + }, + { + "start": 9411.9, + "end": 9415.78, + "probability": 0.938 + }, + { + "start": 9416.34, + "end": 9417.68, + "probability": 0.9188 + }, + { + "start": 9418.26, + "end": 9419.81, + "probability": 0.9665 + }, + { + "start": 9420.58, + "end": 9423.88, + "probability": 0.7197 + }, + { + "start": 9424.56, + "end": 9427.92, + "probability": 0.7699 + }, + { + "start": 9429.1, + "end": 9429.64, + "probability": 0.9243 + }, + { + "start": 9429.66, + "end": 9430.58, + "probability": 0.7842 + }, + { + "start": 9430.72, + "end": 9434.42, + "probability": 0.8079 + }, + { + "start": 9434.62, + "end": 9435.16, + "probability": 0.5724 + }, + { + "start": 9435.2, + "end": 9437.14, + "probability": 0.164 + }, + { + "start": 9437.14, + "end": 9439.28, + "probability": 0.889 + }, + { + "start": 9439.66, + "end": 9440.54, + "probability": 0.9156 + }, + { + "start": 9441.4, + "end": 9443.23, + "probability": 0.7405 + }, + { + "start": 9443.7, + "end": 9444.4, + "probability": 0.7847 + }, + { + "start": 9445.08, + "end": 9446.24, + "probability": 0.9787 + }, + { + "start": 9447.12, + "end": 9448.1, + "probability": 0.6612 + }, + { + "start": 9448.14, + "end": 9450.04, + "probability": 0.6332 + }, + { + "start": 9450.14, + "end": 9452.34, + "probability": 0.6316 + }, + { + "start": 9452.38, + "end": 9456.1, + "probability": 0.9812 + }, + { + "start": 9457.16, + "end": 9458.26, + "probability": 0.9951 + }, + { + "start": 9458.46, + "end": 9460.04, + "probability": 0.956 + }, + { + "start": 9461.58, + "end": 9464.06, + "probability": 0.9871 + }, + { + "start": 9464.98, + "end": 9465.08, + "probability": 0.9987 + }, + { + "start": 9465.88, + "end": 9467.57, + "probability": 0.9465 + }, + { + "start": 9468.4, + "end": 9471.12, + "probability": 0.9356 + }, + { + "start": 9471.44, + "end": 9473.32, + "probability": 0.6676 + }, + { + "start": 9473.4, + "end": 9474.67, + "probability": 0.739 + }, + { + "start": 9475.22, + "end": 9476.52, + "probability": 0.957 + }, + { + "start": 9476.78, + "end": 9478.46, + "probability": 0.988 + }, + { + "start": 9480.04, + "end": 9482.18, + "probability": 0.5346 + }, + { + "start": 9482.26, + "end": 9482.3, + "probability": 0.3178 + }, + { + "start": 9482.3, + "end": 9485.98, + "probability": 0.7532 + }, + { + "start": 9485.98, + "end": 9489.12, + "probability": 0.9014 + }, + { + "start": 9489.72, + "end": 9493.28, + "probability": 0.1482 + }, + { + "start": 9493.54, + "end": 9493.54, + "probability": 0.0038 + }, + { + "start": 9493.54, + "end": 9493.54, + "probability": 0.0502 + }, + { + "start": 9493.54, + "end": 9494.58, + "probability": 0.7436 + }, + { + "start": 9495.96, + "end": 9497.54, + "probability": 0.9018 + }, + { + "start": 9498.08, + "end": 9499.75, + "probability": 0.7899 + }, + { + "start": 9500.1, + "end": 9502.9, + "probability": 0.7459 + }, + { + "start": 9503.36, + "end": 9503.97, + "probability": 0.6356 + }, + { + "start": 9504.86, + "end": 9505.78, + "probability": 0.8535 + }, + { + "start": 9506.22, + "end": 9508.9, + "probability": 0.9844 + }, + { + "start": 9509.76, + "end": 9514.42, + "probability": 0.9922 + }, + { + "start": 9514.66, + "end": 9517.14, + "probability": 0.9976 + }, + { + "start": 9517.78, + "end": 9518.98, + "probability": 0.8787 + }, + { + "start": 9519.4, + "end": 9521.84, + "probability": 0.9759 + }, + { + "start": 9522.6, + "end": 9524.5, + "probability": 0.9985 + }, + { + "start": 9524.62, + "end": 9526.38, + "probability": 0.6185 + }, + { + "start": 9526.4, + "end": 9527.0, + "probability": 0.7672 + }, + { + "start": 9527.84, + "end": 9529.36, + "probability": 0.9429 + }, + { + "start": 9529.5, + "end": 9529.9, + "probability": 0.6162 + }, + { + "start": 9530.66, + "end": 9534.08, + "probability": 0.9349 + }, + { + "start": 9534.32, + "end": 9537.52, + "probability": 0.9988 + }, + { + "start": 9538.16, + "end": 9542.18, + "probability": 0.8901 + }, + { + "start": 9542.7, + "end": 9544.78, + "probability": 0.9544 + }, + { + "start": 9545.28, + "end": 9545.28, + "probability": 0.327 + }, + { + "start": 9545.3, + "end": 9546.02, + "probability": 0.6113 + }, + { + "start": 9546.56, + "end": 9548.42, + "probability": 0.8473 + }, + { + "start": 9549.08, + "end": 9550.68, + "probability": 0.6197 + }, + { + "start": 9550.68, + "end": 9551.82, + "probability": 0.7622 + }, + { + "start": 9551.92, + "end": 9552.44, + "probability": 0.9371 + }, + { + "start": 9552.48, + "end": 9553.8, + "probability": 0.8043 + }, + { + "start": 9554.48, + "end": 9556.3, + "probability": 0.7898 + }, + { + "start": 9557.42, + "end": 9558.36, + "probability": 0.9611 + }, + { + "start": 9558.4, + "end": 9559.91, + "probability": 0.9902 + }, + { + "start": 9561.18, + "end": 9565.32, + "probability": 0.9754 + }, + { + "start": 9565.5, + "end": 9567.5, + "probability": 0.9913 + }, + { + "start": 9567.96, + "end": 9569.85, + "probability": 0.8621 + }, + { + "start": 9570.44, + "end": 9571.56, + "probability": 0.9102 + }, + { + "start": 9571.66, + "end": 9573.52, + "probability": 0.8913 + }, + { + "start": 9573.74, + "end": 9578.26, + "probability": 0.8022 + }, + { + "start": 9578.7, + "end": 9579.5, + "probability": 0.7584 + }, + { + "start": 9579.58, + "end": 9582.61, + "probability": 0.4571 + }, + { + "start": 9582.7, + "end": 9583.12, + "probability": 0.7297 + }, + { + "start": 9583.26, + "end": 9583.94, + "probability": 0.7133 + }, + { + "start": 9584.1, + "end": 9585.88, + "probability": 0.693 + }, + { + "start": 9586.18, + "end": 9592.28, + "probability": 0.9894 + }, + { + "start": 9592.42, + "end": 9593.57, + "probability": 0.8722 + }, + { + "start": 9593.64, + "end": 9594.76, + "probability": 0.7985 + }, + { + "start": 9595.34, + "end": 9596.78, + "probability": 0.9076 + }, + { + "start": 9597.44, + "end": 9599.7, + "probability": 0.9888 + }, + { + "start": 9601.1, + "end": 9602.38, + "probability": 0.7522 + }, + { + "start": 9603.0, + "end": 9605.96, + "probability": 0.9299 + }, + { + "start": 9606.5, + "end": 9607.1, + "probability": 0.8276 + }, + { + "start": 9608.04, + "end": 9609.48, + "probability": 0.9118 + }, + { + "start": 9610.8, + "end": 9612.0, + "probability": 0.2838 + }, + { + "start": 9612.0, + "end": 9612.9, + "probability": 0.5759 + }, + { + "start": 9613.24, + "end": 9615.38, + "probability": 0.9896 + }, + { + "start": 9617.38, + "end": 9617.94, + "probability": 0.9062 + }, + { + "start": 9621.94, + "end": 9624.4, + "probability": 0.8189 + }, + { + "start": 9625.38, + "end": 9625.38, + "probability": 0.0943 + }, + { + "start": 9625.38, + "end": 9625.74, + "probability": 0.1479 + }, + { + "start": 9627.32, + "end": 9627.42, + "probability": 0.088 + }, + { + "start": 9628.52, + "end": 9628.68, + "probability": 0.0419 + }, + { + "start": 9628.68, + "end": 9628.68, + "probability": 0.072 + }, + { + "start": 9628.68, + "end": 9629.61, + "probability": 0.0817 + }, + { + "start": 9638.82, + "end": 9640.61, + "probability": 0.0067 + }, + { + "start": 9642.46, + "end": 9642.96, + "probability": 0.0545 + }, + { + "start": 9643.94, + "end": 9645.2, + "probability": 0.0113 + }, + { + "start": 9647.2, + "end": 9648.74, + "probability": 0.0319 + }, + { + "start": 9649.82, + "end": 9650.62, + "probability": 0.0468 + }, + { + "start": 9650.62, + "end": 9650.62, + "probability": 0.0634 + }, + { + "start": 9651.58, + "end": 9656.06, + "probability": 0.1572 + }, + { + "start": 9656.1, + "end": 9658.68, + "probability": 0.0059 + }, + { + "start": 9672.68, + "end": 9674.56, + "probability": 0.0086 + }, + { + "start": 9677.54, + "end": 9677.54, + "probability": 0.3831 + }, + { + "start": 9680.46, + "end": 9680.94, + "probability": 0.3155 + }, + { + "start": 9685.28, + "end": 9689.44, + "probability": 0.5908 + }, + { + "start": 9690.72, + "end": 9693.74, + "probability": 0.9948 + }, + { + "start": 9695.4, + "end": 9700.98, + "probability": 0.5378 + }, + { + "start": 9701.62, + "end": 9703.54, + "probability": 0.9017 + }, + { + "start": 9703.58, + "end": 9705.2, + "probability": 0.8952 + }, + { + "start": 9705.34, + "end": 9706.16, + "probability": 0.8387 + }, + { + "start": 9706.48, + "end": 9707.44, + "probability": 0.8833 + }, + { + "start": 9708.52, + "end": 9712.82, + "probability": 0.7822 + }, + { + "start": 9712.86, + "end": 9713.54, + "probability": 0.8323 + }, + { + "start": 9713.64, + "end": 9716.72, + "probability": 0.7092 + }, + { + "start": 9716.98, + "end": 9718.08, + "probability": 0.9729 + }, + { + "start": 9719.46, + "end": 9722.93, + "probability": 0.5586 + }, + { + "start": 9724.5, + "end": 9726.12, + "probability": 0.4947 + }, + { + "start": 9726.82, + "end": 9731.54, + "probability": 0.9019 + }, + { + "start": 9733.42, + "end": 9734.26, + "probability": 0.9006 + }, + { + "start": 9735.26, + "end": 9736.4, + "probability": 0.9712 + }, + { + "start": 9736.64, + "end": 9738.48, + "probability": 0.8732 + }, + { + "start": 9738.92, + "end": 9740.62, + "probability": 0.7196 + }, + { + "start": 9741.86, + "end": 9743.34, + "probability": 0.9037 + }, + { + "start": 9744.7, + "end": 9749.5, + "probability": 0.9976 + }, + { + "start": 9750.8, + "end": 9754.26, + "probability": 0.7836 + }, + { + "start": 9754.8, + "end": 9760.44, + "probability": 0.8536 + }, + { + "start": 9760.96, + "end": 9765.22, + "probability": 0.9528 + }, + { + "start": 9767.64, + "end": 9768.52, + "probability": 0.7549 + }, + { + "start": 9768.62, + "end": 9769.94, + "probability": 0.9438 + }, + { + "start": 9772.08, + "end": 9773.58, + "probability": 0.9771 + }, + { + "start": 9774.48, + "end": 9776.88, + "probability": 0.8831 + }, + { + "start": 9777.62, + "end": 9778.62, + "probability": 0.8492 + }, + { + "start": 9779.1, + "end": 9783.82, + "probability": 0.7418 + }, + { + "start": 9783.9, + "end": 9784.85, + "probability": 0.8828 + }, + { + "start": 9785.06, + "end": 9786.54, + "probability": 0.9777 + }, + { + "start": 9786.62, + "end": 9788.4, + "probability": 0.9558 + }, + { + "start": 9789.56, + "end": 9792.22, + "probability": 0.6527 + }, + { + "start": 9792.92, + "end": 9794.52, + "probability": 0.9313 + }, + { + "start": 9795.04, + "end": 9798.12, + "probability": 0.8925 + }, + { + "start": 9798.96, + "end": 9800.98, + "probability": 0.8752 + }, + { + "start": 9803.44, + "end": 9803.96, + "probability": 0.9664 + }, + { + "start": 9804.0, + "end": 9806.2, + "probability": 0.9109 + }, + { + "start": 9806.36, + "end": 9807.64, + "probability": 0.4379 + }, + { + "start": 9808.64, + "end": 9810.88, + "probability": 0.9981 + }, + { + "start": 9811.98, + "end": 9813.98, + "probability": 0.998 + }, + { + "start": 9814.9, + "end": 9817.5, + "probability": 0.9745 + }, + { + "start": 9818.36, + "end": 9818.64, + "probability": 0.9513 + }, + { + "start": 9819.46, + "end": 9820.88, + "probability": 0.8677 + }, + { + "start": 9821.04, + "end": 9822.14, + "probability": 0.792 + }, + { + "start": 9822.2, + "end": 9823.46, + "probability": 0.9606 + }, + { + "start": 9824.28, + "end": 9826.84, + "probability": 0.795 + }, + { + "start": 9827.38, + "end": 9830.36, + "probability": 0.6471 + }, + { + "start": 9830.94, + "end": 9832.56, + "probability": 0.973 + }, + { + "start": 9833.68, + "end": 9837.0, + "probability": 0.9765 + }, + { + "start": 9838.18, + "end": 9840.4, + "probability": 0.8692 + }, + { + "start": 9841.54, + "end": 9842.88, + "probability": 0.7833 + }, + { + "start": 9843.3, + "end": 9844.64, + "probability": 0.9888 + }, + { + "start": 9845.42, + "end": 9846.94, + "probability": 0.6097 + }, + { + "start": 9847.5, + "end": 9852.46, + "probability": 0.9627 + }, + { + "start": 9853.66, + "end": 9854.46, + "probability": 0.4981 + }, + { + "start": 9854.82, + "end": 9856.02, + "probability": 0.809 + }, + { + "start": 9856.68, + "end": 9860.3, + "probability": 0.9116 + }, + { + "start": 9861.64, + "end": 9862.62, + "probability": 0.8288 + }, + { + "start": 9862.8, + "end": 9865.3, + "probability": 0.5716 + }, + { + "start": 9866.02, + "end": 9869.7, + "probability": 0.7844 + }, + { + "start": 9870.46, + "end": 9872.14, + "probability": 0.859 + }, + { + "start": 9872.36, + "end": 9875.22, + "probability": 0.4441 + }, + { + "start": 9875.54, + "end": 9878.96, + "probability": 0.7402 + }, + { + "start": 9879.2, + "end": 9882.48, + "probability": 0.8839 + }, + { + "start": 9882.5, + "end": 9882.52, + "probability": 0.556 + }, + { + "start": 9882.58, + "end": 9883.94, + "probability": 0.986 + }, + { + "start": 9899.34, + "end": 9900.14, + "probability": 0.3545 + }, + { + "start": 9900.96, + "end": 9903.68, + "probability": 0.6737 + }, + { + "start": 9905.72, + "end": 9916.0, + "probability": 0.9373 + }, + { + "start": 9916.0, + "end": 9924.56, + "probability": 0.9824 + }, + { + "start": 9925.44, + "end": 9929.84, + "probability": 0.9993 + }, + { + "start": 9931.26, + "end": 9935.42, + "probability": 0.9629 + }, + { + "start": 9937.1, + "end": 9940.34, + "probability": 0.9995 + }, + { + "start": 9941.0, + "end": 9941.96, + "probability": 0.6771 + }, + { + "start": 9942.92, + "end": 9950.96, + "probability": 0.9456 + }, + { + "start": 9951.8, + "end": 9952.94, + "probability": 0.9814 + }, + { + "start": 9953.56, + "end": 9955.66, + "probability": 0.7525 + }, + { + "start": 9956.48, + "end": 9957.12, + "probability": 0.758 + }, + { + "start": 9957.66, + "end": 9958.3, + "probability": 0.9375 + }, + { + "start": 9961.06, + "end": 9964.66, + "probability": 0.9116 + }, + { + "start": 9967.96, + "end": 9969.0, + "probability": 0.4861 + }, + { + "start": 9969.7, + "end": 9975.68, + "probability": 0.7201 + }, + { + "start": 9976.48, + "end": 9977.56, + "probability": 0.7854 + }, + { + "start": 9978.26, + "end": 9980.92, + "probability": 0.7086 + }, + { + "start": 9982.04, + "end": 9983.28, + "probability": 0.6526 + }, + { + "start": 9983.86, + "end": 9985.46, + "probability": 0.7527 + }, + { + "start": 9986.06, + "end": 9988.64, + "probability": 0.886 + }, + { + "start": 9989.42, + "end": 9989.86, + "probability": 0.7118 + }, + { + "start": 9990.7, + "end": 9991.2, + "probability": 0.9891 + }, + { + "start": 9991.9, + "end": 10003.36, + "probability": 0.9183 + }, + { + "start": 10004.24, + "end": 10005.32, + "probability": 0.7793 + }, + { + "start": 10006.6, + "end": 10013.18, + "probability": 0.943 + }, + { + "start": 10014.56, + "end": 10015.56, + "probability": 0.2923 + }, + { + "start": 10016.22, + "end": 10024.24, + "probability": 0.999 + }, + { + "start": 10024.96, + "end": 10027.2, + "probability": 0.9956 + }, + { + "start": 10027.88, + "end": 10030.8, + "probability": 0.9629 + }, + { + "start": 10031.88, + "end": 10033.4, + "probability": 0.9805 + }, + { + "start": 10034.22, + "end": 10037.42, + "probability": 0.5252 + }, + { + "start": 10038.76, + "end": 10040.44, + "probability": 0.7921 + }, + { + "start": 10041.56, + "end": 10042.52, + "probability": 0.8067 + }, + { + "start": 10043.14, + "end": 10046.9, + "probability": 0.8974 + }, + { + "start": 10047.36, + "end": 10055.08, + "probability": 0.9558 + }, + { + "start": 10055.52, + "end": 10056.64, + "probability": 0.8661 + }, + { + "start": 10057.38, + "end": 10061.06, + "probability": 0.9808 + }, + { + "start": 10062.1, + "end": 10065.74, + "probability": 0.7606 + }, + { + "start": 10066.36, + "end": 10069.03, + "probability": 0.9487 + }, + { + "start": 10069.36, + "end": 10072.32, + "probability": 0.9922 + }, + { + "start": 10073.62, + "end": 10079.14, + "probability": 0.9216 + }, + { + "start": 10079.7, + "end": 10080.86, + "probability": 0.7841 + }, + { + "start": 10081.26, + "end": 10087.64, + "probability": 0.634 + }, + { + "start": 10087.64, + "end": 10093.14, + "probability": 0.2916 + }, + { + "start": 10093.44, + "end": 10096.6, + "probability": 0.7945 + }, + { + "start": 10096.88, + "end": 10097.32, + "probability": 0.5048 + }, + { + "start": 10097.5, + "end": 10100.17, + "probability": 0.8347 + }, + { + "start": 10119.14, + "end": 10123.64, + "probability": 0.9868 + }, + { + "start": 10123.8, + "end": 10126.14, + "probability": 0.9543 + }, + { + "start": 10126.62, + "end": 10127.14, + "probability": 0.7742 + }, + { + "start": 10128.08, + "end": 10134.02, + "probability": 0.952 + }, + { + "start": 10134.02, + "end": 10138.4, + "probability": 0.8181 + }, + { + "start": 10139.64, + "end": 10144.3, + "probability": 0.867 + }, + { + "start": 10144.4, + "end": 10146.28, + "probability": 0.9133 + }, + { + "start": 10146.36, + "end": 10147.2, + "probability": 0.9833 + }, + { + "start": 10148.36, + "end": 10152.62, + "probability": 0.9731 + }, + { + "start": 10154.36, + "end": 10158.5, + "probability": 0.915 + }, + { + "start": 10159.38, + "end": 10159.98, + "probability": 0.9541 + }, + { + "start": 10162.44, + "end": 10164.38, + "probability": 0.5397 + }, + { + "start": 10165.38, + "end": 10167.2, + "probability": 0.7505 + }, + { + "start": 10168.12, + "end": 10170.14, + "probability": 0.7597 + }, + { + "start": 10170.5, + "end": 10176.88, + "probability": 0.7532 + }, + { + "start": 10177.52, + "end": 10180.12, + "probability": 0.8401 + }, + { + "start": 10180.34, + "end": 10184.32, + "probability": 0.9473 + }, + { + "start": 10185.2, + "end": 10186.84, + "probability": 0.9944 + }, + { + "start": 10188.06, + "end": 10190.72, + "probability": 0.9061 + }, + { + "start": 10191.32, + "end": 10192.76, + "probability": 0.8494 + }, + { + "start": 10192.86, + "end": 10195.82, + "probability": 0.7654 + }, + { + "start": 10195.82, + "end": 10196.38, + "probability": 0.7047 + }, + { + "start": 10197.99, + "end": 10199.82, + "probability": 0.876 + }, + { + "start": 10200.48, + "end": 10201.62, + "probability": 0.9499 + }, + { + "start": 10202.76, + "end": 10205.0, + "probability": 0.9731 + }, + { + "start": 10207.42, + "end": 10207.94, + "probability": 0.4397 + }, + { + "start": 10209.48, + "end": 10212.74, + "probability": 0.6912 + }, + { + "start": 10212.94, + "end": 10213.86, + "probability": 0.9001 + }, + { + "start": 10214.16, + "end": 10216.08, + "probability": 0.9783 + }, + { + "start": 10219.12, + "end": 10223.68, + "probability": 0.5938 + }, + { + "start": 10224.6, + "end": 10226.66, + "probability": 0.9836 + }, + { + "start": 10226.92, + "end": 10227.9, + "probability": 0.9982 + }, + { + "start": 10228.54, + "end": 10231.2, + "probability": 0.7436 + }, + { + "start": 10233.42, + "end": 10238.38, + "probability": 0.9801 + }, + { + "start": 10240.54, + "end": 10243.78, + "probability": 0.9927 + }, + { + "start": 10244.82, + "end": 10246.16, + "probability": 0.7099 + }, + { + "start": 10250.02, + "end": 10254.22, + "probability": 0.9985 + }, + { + "start": 10254.9, + "end": 10262.6, + "probability": 0.8523 + }, + { + "start": 10263.18, + "end": 10266.86, + "probability": 0.7416 + }, + { + "start": 10266.98, + "end": 10267.44, + "probability": 0.6719 + }, + { + "start": 10267.98, + "end": 10270.06, + "probability": 0.6625 + }, + { + "start": 10270.18, + "end": 10271.88, + "probability": 0.8166 + }, + { + "start": 10272.84, + "end": 10273.8, + "probability": 0.8593 + }, + { + "start": 10273.98, + "end": 10277.7, + "probability": 0.7585 + }, + { + "start": 10285.48, + "end": 10286.06, + "probability": 0.7071 + }, + { + "start": 10288.16, + "end": 10291.1, + "probability": 0.4729 + }, + { + "start": 10293.38, + "end": 10297.12, + "probability": 0.8931 + }, + { + "start": 10298.58, + "end": 10302.74, + "probability": 0.9874 + }, + { + "start": 10303.64, + "end": 10304.76, + "probability": 0.7784 + }, + { + "start": 10306.38, + "end": 10309.22, + "probability": 0.8039 + }, + { + "start": 10309.72, + "end": 10312.68, + "probability": 0.9416 + }, + { + "start": 10314.84, + "end": 10317.5, + "probability": 0.9642 + }, + { + "start": 10318.78, + "end": 10323.14, + "probability": 0.8397 + }, + { + "start": 10324.54, + "end": 10328.98, + "probability": 0.9978 + }, + { + "start": 10330.72, + "end": 10332.28, + "probability": 0.8031 + }, + { + "start": 10333.4, + "end": 10337.66, + "probability": 0.8321 + }, + { + "start": 10338.5, + "end": 10342.06, + "probability": 0.9969 + }, + { + "start": 10343.04, + "end": 10347.28, + "probability": 0.9697 + }, + { + "start": 10348.8, + "end": 10350.2, + "probability": 0.6241 + }, + { + "start": 10350.84, + "end": 10351.7, + "probability": 0.8199 + }, + { + "start": 10352.22, + "end": 10357.08, + "probability": 0.8202 + }, + { + "start": 10357.48, + "end": 10358.28, + "probability": 0.904 + }, + { + "start": 10358.74, + "end": 10359.52, + "probability": 0.6664 + }, + { + "start": 10362.08, + "end": 10362.58, + "probability": 0.0125 + }, + { + "start": 10363.6, + "end": 10364.34, + "probability": 0.0965 + }, + { + "start": 10365.42, + "end": 10365.88, + "probability": 0.0034 + }, + { + "start": 10365.88, + "end": 10371.82, + "probability": 0.1939 + }, + { + "start": 10372.34, + "end": 10373.2, + "probability": 0.2312 + }, + { + "start": 10374.2, + "end": 10379.92, + "probability": 0.1615 + }, + { + "start": 10380.02, + "end": 10382.14, + "probability": 0.2446 + }, + { + "start": 10382.84, + "end": 10383.98, + "probability": 0.3277 + }, + { + "start": 10384.72, + "end": 10385.58, + "probability": 0.2083 + }, + { + "start": 10387.18, + "end": 10391.21, + "probability": 0.5213 + }, + { + "start": 10391.4, + "end": 10391.72, + "probability": 0.3307 + }, + { + "start": 10391.82, + "end": 10392.3, + "probability": 0.5358 + }, + { + "start": 10392.82, + "end": 10396.0, + "probability": 0.6178 + }, + { + "start": 10397.0, + "end": 10400.65, + "probability": 0.2014 + }, + { + "start": 10401.48, + "end": 10402.62, + "probability": 0.1989 + }, + { + "start": 10404.52, + "end": 10409.65, + "probability": 0.184 + }, + { + "start": 10410.4, + "end": 10414.92, + "probability": 0.1009 + }, + { + "start": 10417.04, + "end": 10417.58, + "probability": 0.2428 + }, + { + "start": 10418.1, + "end": 10419.11, + "probability": 0.2252 + }, + { + "start": 10421.8, + "end": 10422.5, + "probability": 0.0753 + }, + { + "start": 10423.54, + "end": 10427.08, + "probability": 0.056 + }, + { + "start": 10427.78, + "end": 10431.18, + "probability": 0.2663 + }, + { + "start": 10431.88, + "end": 10435.06, + "probability": 0.1851 + }, + { + "start": 10438.0, + "end": 10438.0, + "probability": 0.0 + }, + { + "start": 10438.0, + "end": 10438.0, + "probability": 0.0 + }, + { + "start": 10438.0, + "end": 10438.0, + "probability": 0.0 + }, + { + "start": 10438.0, + "end": 10438.0, + "probability": 0.0 + }, + { + "start": 10438.0, + "end": 10438.0, + "probability": 0.0 + }, + { + "start": 10438.0, + "end": 10438.0, + "probability": 0.0 + }, + { + "start": 10438.0, + "end": 10438.0, + "probability": 0.0 + }, + { + "start": 10455.12, + "end": 10455.94, + "probability": 0.6369 + }, + { + "start": 10456.16, + "end": 10457.52, + "probability": 0.819 + }, + { + "start": 10458.04, + "end": 10459.08, + "probability": 0.7286 + }, + { + "start": 10459.58, + "end": 10461.44, + "probability": 0.9702 + }, + { + "start": 10464.24, + "end": 10465.1, + "probability": 0.0266 + }, + { + "start": 10488.22, + "end": 10493.7, + "probability": 0.5708 + }, + { + "start": 10494.58, + "end": 10499.32, + "probability": 0.821 + }, + { + "start": 10500.46, + "end": 10503.66, + "probability": 0.8719 + }, + { + "start": 10503.66, + "end": 10509.78, + "probability": 0.9551 + }, + { + "start": 10509.92, + "end": 10511.2, + "probability": 0.5241 + }, + { + "start": 10512.72, + "end": 10519.08, + "probability": 0.998 + }, + { + "start": 10520.76, + "end": 10520.84, + "probability": 0.354 + }, + { + "start": 10521.04, + "end": 10521.18, + "probability": 0.4338 + }, + { + "start": 10521.18, + "end": 10524.58, + "probability": 0.975 + }, + { + "start": 10524.58, + "end": 10532.6, + "probability": 0.9703 + }, + { + "start": 10533.72, + "end": 10535.28, + "probability": 0.7002 + }, + { + "start": 10536.36, + "end": 10542.9, + "probability": 0.9598 + }, + { + "start": 10543.46, + "end": 10546.84, + "probability": 0.9227 + }, + { + "start": 10548.54, + "end": 10551.58, + "probability": 0.998 + }, + { + "start": 10552.72, + "end": 10555.4, + "probability": 0.9971 + }, + { + "start": 10556.16, + "end": 10558.16, + "probability": 0.9854 + }, + { + "start": 10558.74, + "end": 10559.0, + "probability": 0.8552 + }, + { + "start": 10559.9, + "end": 10563.82, + "probability": 0.9966 + }, + { + "start": 10565.2, + "end": 10568.12, + "probability": 0.9546 + }, + { + "start": 10568.7, + "end": 10570.61, + "probability": 0.9805 + }, + { + "start": 10571.86, + "end": 10573.84, + "probability": 0.9368 + }, + { + "start": 10575.46, + "end": 10581.38, + "probability": 0.98 + }, + { + "start": 10583.04, + "end": 10583.36, + "probability": 0.6501 + }, + { + "start": 10584.94, + "end": 10586.96, + "probability": 0.9722 + }, + { + "start": 10587.94, + "end": 10588.8, + "probability": 0.9597 + }, + { + "start": 10589.5, + "end": 10592.32, + "probability": 0.8496 + }, + { + "start": 10593.08, + "end": 10593.86, + "probability": 0.7383 + }, + { + "start": 10595.38, + "end": 10599.02, + "probability": 0.96 + }, + { + "start": 10601.32, + "end": 10604.04, + "probability": 0.9843 + }, + { + "start": 10605.88, + "end": 10608.22, + "probability": 0.9984 + }, + { + "start": 10610.24, + "end": 10617.42, + "probability": 0.9879 + }, + { + "start": 10618.5, + "end": 10623.3, + "probability": 0.8577 + }, + { + "start": 10623.42, + "end": 10625.4, + "probability": 0.8466 + }, + { + "start": 10626.2, + "end": 10627.74, + "probability": 0.9914 + }, + { + "start": 10628.54, + "end": 10630.2, + "probability": 0.9533 + }, + { + "start": 10631.54, + "end": 10632.82, + "probability": 0.824 + }, + { + "start": 10634.26, + "end": 10636.52, + "probability": 0.9884 + }, + { + "start": 10637.02, + "end": 10638.55, + "probability": 0.957 + }, + { + "start": 10638.72, + "end": 10644.82, + "probability": 0.9946 + }, + { + "start": 10646.62, + "end": 10647.66, + "probability": 0.8064 + }, + { + "start": 10647.84, + "end": 10653.98, + "probability": 0.9842 + }, + { + "start": 10655.08, + "end": 10657.66, + "probability": 0.9966 + }, + { + "start": 10658.9, + "end": 10659.8, + "probability": 0.7953 + }, + { + "start": 10661.18, + "end": 10664.22, + "probability": 0.9951 + }, + { + "start": 10664.84, + "end": 10667.3, + "probability": 0.702 + }, + { + "start": 10667.56, + "end": 10669.32, + "probability": 0.9853 + }, + { + "start": 10670.02, + "end": 10672.94, + "probability": 0.9913 + }, + { + "start": 10673.72, + "end": 10676.12, + "probability": 0.9931 + }, + { + "start": 10677.02, + "end": 10679.24, + "probability": 0.999 + }, + { + "start": 10680.8, + "end": 10683.62, + "probability": 0.7737 + }, + { + "start": 10683.68, + "end": 10685.32, + "probability": 0.9923 + }, + { + "start": 10686.68, + "end": 10690.76, + "probability": 0.9885 + }, + { + "start": 10690.9, + "end": 10691.26, + "probability": 0.6651 + }, + { + "start": 10691.26, + "end": 10691.6, + "probability": 0.4956 + }, + { + "start": 10691.6, + "end": 10693.9, + "probability": 0.917 + }, + { + "start": 10694.38, + "end": 10696.52, + "probability": 0.7256 + }, + { + "start": 10696.76, + "end": 10697.74, + "probability": 0.8049 + }, + { + "start": 10698.0, + "end": 10699.32, + "probability": 0.2606 + }, + { + "start": 10699.54, + "end": 10699.86, + "probability": 0.7042 + }, + { + "start": 10700.08, + "end": 10701.92, + "probability": 0.8694 + }, + { + "start": 10702.78, + "end": 10703.36, + "probability": 0.7388 + }, + { + "start": 10703.48, + "end": 10706.82, + "probability": 0.8019 + }, + { + "start": 10707.36, + "end": 10708.06, + "probability": 0.8307 + }, + { + "start": 10719.08, + "end": 10721.0, + "probability": 0.5249 + }, + { + "start": 10721.14, + "end": 10721.7, + "probability": 0.6042 + }, + { + "start": 10721.76, + "end": 10722.76, + "probability": 0.6139 + }, + { + "start": 10723.42, + "end": 10729.02, + "probability": 0.9938 + }, + { + "start": 10729.16, + "end": 10730.6, + "probability": 0.8207 + }, + { + "start": 10731.58, + "end": 10736.06, + "probability": 0.9971 + }, + { + "start": 10736.68, + "end": 10738.33, + "probability": 0.9604 + }, + { + "start": 10739.2, + "end": 10743.5, + "probability": 0.9745 + }, + { + "start": 10743.5, + "end": 10746.62, + "probability": 0.9377 + }, + { + "start": 10747.82, + "end": 10750.32, + "probability": 0.6047 + }, + { + "start": 10750.98, + "end": 10754.06, + "probability": 0.9414 + }, + { + "start": 10754.5, + "end": 10755.12, + "probability": 0.6825 + }, + { + "start": 10755.18, + "end": 10758.98, + "probability": 0.9404 + }, + { + "start": 10760.02, + "end": 10763.44, + "probability": 0.9155 + }, + { + "start": 10764.1, + "end": 10766.85, + "probability": 0.9519 + }, + { + "start": 10767.06, + "end": 10768.14, + "probability": 0.9616 + }, + { + "start": 10769.04, + "end": 10772.08, + "probability": 0.9626 + }, + { + "start": 10772.08, + "end": 10775.1, + "probability": 0.7574 + }, + { + "start": 10775.1, + "end": 10778.1, + "probability": 0.9062 + }, + { + "start": 10779.02, + "end": 10781.5, + "probability": 0.7939 + }, + { + "start": 10782.2, + "end": 10784.34, + "probability": 0.9561 + }, + { + "start": 10785.55, + "end": 10794.56, + "probability": 0.9595 + }, + { + "start": 10796.31, + "end": 10798.52, + "probability": 0.8228 + }, + { + "start": 10799.18, + "end": 10801.58, + "probability": 0.9901 + }, + { + "start": 10801.58, + "end": 10805.4, + "probability": 0.8014 + }, + { + "start": 10806.46, + "end": 10807.34, + "probability": 0.9146 + }, + { + "start": 10807.44, + "end": 10811.62, + "probability": 0.9601 + }, + { + "start": 10811.74, + "end": 10813.06, + "probability": 0.9667 + }, + { + "start": 10814.48, + "end": 10817.9, + "probability": 0.9456 + }, + { + "start": 10818.34, + "end": 10820.88, + "probability": 0.9912 + }, + { + "start": 10821.24, + "end": 10824.14, + "probability": 0.9636 + }, + { + "start": 10824.52, + "end": 10826.68, + "probability": 0.8986 + }, + { + "start": 10828.18, + "end": 10835.7, + "probability": 0.9958 + }, + { + "start": 10837.0, + "end": 10838.67, + "probability": 0.9897 + }, + { + "start": 10839.44, + "end": 10840.12, + "probability": 0.9479 + }, + { + "start": 10841.98, + "end": 10846.24, + "probability": 0.961 + }, + { + "start": 10847.48, + "end": 10850.34, + "probability": 0.7851 + }, + { + "start": 10850.78, + "end": 10852.13, + "probability": 0.9084 + }, + { + "start": 10853.12, + "end": 10854.18, + "probability": 0.9894 + }, + { + "start": 10854.64, + "end": 10856.46, + "probability": 0.9904 + }, + { + "start": 10857.3, + "end": 10858.02, + "probability": 0.7111 + }, + { + "start": 10858.7, + "end": 10859.3, + "probability": 0.6347 + }, + { + "start": 10861.12, + "end": 10863.18, + "probability": 0.7784 + }, + { + "start": 10863.38, + "end": 10864.56, + "probability": 0.6973 + }, + { + "start": 10865.66, + "end": 10866.89, + "probability": 0.8533 + }, + { + "start": 10867.36, + "end": 10868.23, + "probability": 0.9775 + }, + { + "start": 10868.9, + "end": 10872.96, + "probability": 0.9939 + }, + { + "start": 10872.96, + "end": 10877.32, + "probability": 0.9969 + }, + { + "start": 10878.4, + "end": 10881.32, + "probability": 0.9851 + }, + { + "start": 10881.84, + "end": 10885.78, + "probability": 0.989 + }, + { + "start": 10885.88, + "end": 10888.32, + "probability": 0.9078 + }, + { + "start": 10889.1, + "end": 10891.16, + "probability": 0.998 + }, + { + "start": 10891.98, + "end": 10895.72, + "probability": 0.9633 + }, + { + "start": 10896.6, + "end": 10901.14, + "probability": 0.9982 + }, + { + "start": 10901.24, + "end": 10901.54, + "probability": 0.7503 + }, + { + "start": 10901.62, + "end": 10901.84, + "probability": 0.8519 + }, + { + "start": 10901.92, + "end": 10902.24, + "probability": 0.5295 + }, + { + "start": 10902.24, + "end": 10903.4, + "probability": 0.4631 + }, + { + "start": 10903.52, + "end": 10905.96, + "probability": 0.6886 + }, + { + "start": 10906.56, + "end": 10910.76, + "probability": 0.9968 + }, + { + "start": 10910.76, + "end": 10915.76, + "probability": 0.9507 + }, + { + "start": 10915.88, + "end": 10918.02, + "probability": 0.9887 + }, + { + "start": 10918.14, + "end": 10920.04, + "probability": 0.9982 + }, + { + "start": 10920.7, + "end": 10925.5, + "probability": 0.9746 + }, + { + "start": 10925.5, + "end": 10931.08, + "probability": 0.9912 + }, + { + "start": 10931.5, + "end": 10932.8, + "probability": 0.7777 + }, + { + "start": 10934.08, + "end": 10935.38, + "probability": 0.998 + }, + { + "start": 10935.52, + "end": 10936.91, + "probability": 0.9927 + }, + { + "start": 10937.56, + "end": 10939.52, + "probability": 0.9955 + }, + { + "start": 10940.34, + "end": 10940.82, + "probability": 0.0481 + }, + { + "start": 10942.34, + "end": 10945.0, + "probability": 0.6173 + }, + { + "start": 10945.88, + "end": 10948.0, + "probability": 0.9945 + }, + { + "start": 10948.08, + "end": 10949.7, + "probability": 0.9605 + }, + { + "start": 10950.06, + "end": 10957.78, + "probability": 0.982 + }, + { + "start": 10957.86, + "end": 10958.02, + "probability": 0.6696 + }, + { + "start": 10958.04, + "end": 10958.62, + "probability": 0.755 + }, + { + "start": 10959.54, + "end": 10961.55, + "probability": 0.6936 + }, + { + "start": 10964.22, + "end": 10966.54, + "probability": 0.9851 + }, + { + "start": 10967.24, + "end": 10970.24, + "probability": 0.9657 + }, + { + "start": 10972.24, + "end": 10977.2, + "probability": 0.952 + }, + { + "start": 10978.1, + "end": 10978.82, + "probability": 0.9652 + }, + { + "start": 10979.42, + "end": 10980.5, + "probability": 0.9895 + }, + { + "start": 10981.38, + "end": 10981.9, + "probability": 0.5012 + }, + { + "start": 10982.4, + "end": 10983.82, + "probability": 0.8042 + }, + { + "start": 11002.72, + "end": 11002.72, + "probability": 0.3875 + }, + { + "start": 11002.72, + "end": 11004.06, + "probability": 0.7731 + }, + { + "start": 11005.06, + "end": 11007.92, + "probability": 0.8661 + }, + { + "start": 11008.72, + "end": 11013.52, + "probability": 0.8992 + }, + { + "start": 11013.6, + "end": 11014.02, + "probability": 0.9323 + }, + { + "start": 11014.04, + "end": 11014.9, + "probability": 0.8418 + }, + { + "start": 11015.78, + "end": 11017.6, + "probability": 0.9291 + }, + { + "start": 11018.7, + "end": 11023.1, + "probability": 0.9961 + }, + { + "start": 11023.1, + "end": 11028.4, + "probability": 0.9985 + }, + { + "start": 11028.86, + "end": 11030.2, + "probability": 0.979 + }, + { + "start": 11031.8, + "end": 11032.78, + "probability": 0.7854 + }, + { + "start": 11033.34, + "end": 11034.78, + "probability": 0.8765 + }, + { + "start": 11035.42, + "end": 11037.76, + "probability": 0.9439 + }, + { + "start": 11038.52, + "end": 11043.32, + "probability": 0.9115 + }, + { + "start": 11043.4, + "end": 11044.82, + "probability": 0.9228 + }, + { + "start": 11045.02, + "end": 11046.42, + "probability": 0.9963 + }, + { + "start": 11048.34, + "end": 11049.1, + "probability": 0.8918 + }, + { + "start": 11050.14, + "end": 11056.48, + "probability": 0.878 + }, + { + "start": 11057.36, + "end": 11060.88, + "probability": 0.9968 + }, + { + "start": 11060.92, + "end": 11062.62, + "probability": 0.8878 + }, + { + "start": 11064.38, + "end": 11067.34, + "probability": 0.8517 + }, + { + "start": 11068.32, + "end": 11068.86, + "probability": 0.4326 + }, + { + "start": 11068.92, + "end": 11071.3, + "probability": 0.9825 + }, + { + "start": 11072.18, + "end": 11073.08, + "probability": 0.878 + }, + { + "start": 11073.56, + "end": 11075.44, + "probability": 0.9714 + }, + { + "start": 11076.38, + "end": 11077.96, + "probability": 0.9337 + }, + { + "start": 11078.02, + "end": 11078.91, + "probability": 0.9916 + }, + { + "start": 11079.86, + "end": 11081.8, + "probability": 0.9957 + }, + { + "start": 11082.78, + "end": 11086.68, + "probability": 0.9134 + }, + { + "start": 11086.68, + "end": 11092.5, + "probability": 0.9927 + }, + { + "start": 11093.24, + "end": 11094.1, + "probability": 0.7785 + }, + { + "start": 11095.32, + "end": 11097.16, + "probability": 0.9883 + }, + { + "start": 11097.84, + "end": 11098.66, + "probability": 0.438 + }, + { + "start": 11099.68, + "end": 11102.48, + "probability": 0.8922 + }, + { + "start": 11103.36, + "end": 11107.36, + "probability": 0.9188 + }, + { + "start": 11107.94, + "end": 11109.26, + "probability": 0.957 + }, + { + "start": 11109.46, + "end": 11110.4, + "probability": 0.8624 + }, + { + "start": 11110.58, + "end": 11111.2, + "probability": 0.9628 + }, + { + "start": 11111.84, + "end": 11112.52, + "probability": 0.8352 + }, + { + "start": 11112.58, + "end": 11115.38, + "probability": 0.9925 + }, + { + "start": 11117.44, + "end": 11121.02, + "probability": 0.9973 + }, + { + "start": 11122.88, + "end": 11124.44, + "probability": 0.7251 + }, + { + "start": 11125.56, + "end": 11127.29, + "probability": 0.9829 + }, + { + "start": 11128.0, + "end": 11131.0, + "probability": 0.9508 + }, + { + "start": 11131.0, + "end": 11134.04, + "probability": 0.9995 + }, + { + "start": 11134.96, + "end": 11137.22, + "probability": 0.9976 + }, + { + "start": 11137.98, + "end": 11140.36, + "probability": 0.9218 + }, + { + "start": 11140.54, + "end": 11141.94, + "probability": 0.9987 + }, + { + "start": 11142.78, + "end": 11145.04, + "probability": 0.7278 + }, + { + "start": 11146.66, + "end": 11149.16, + "probability": 0.9866 + }, + { + "start": 11151.2, + "end": 11153.62, + "probability": 0.9989 + }, + { + "start": 11154.74, + "end": 11157.31, + "probability": 0.7598 + }, + { + "start": 11159.12, + "end": 11162.62, + "probability": 0.9819 + }, + { + "start": 11163.16, + "end": 11165.88, + "probability": 0.9847 + }, + { + "start": 11166.96, + "end": 11168.16, + "probability": 0.9766 + }, + { + "start": 11168.84, + "end": 11172.18, + "probability": 0.9482 + }, + { + "start": 11172.56, + "end": 11173.78, + "probability": 0.6195 + }, + { + "start": 11174.32, + "end": 11177.84, + "probability": 0.9933 + }, + { + "start": 11179.2, + "end": 11179.98, + "probability": 0.8206 + }, + { + "start": 11182.2, + "end": 11186.24, + "probability": 0.8062 + }, + { + "start": 11200.16, + "end": 11201.78, + "probability": 0.6717 + }, + { + "start": 11202.8, + "end": 11203.88, + "probability": 0.7935 + }, + { + "start": 11204.4, + "end": 11206.38, + "probability": 0.7578 + }, + { + "start": 11206.76, + "end": 11207.88, + "probability": 0.9272 + }, + { + "start": 11207.98, + "end": 11208.8, + "probability": 0.8392 + }, + { + "start": 11208.86, + "end": 11209.56, + "probability": 0.9467 + }, + { + "start": 11210.8, + "end": 11211.86, + "probability": 0.4361 + }, + { + "start": 11212.48, + "end": 11217.9, + "probability": 0.916 + }, + { + "start": 11218.56, + "end": 11222.52, + "probability": 0.9854 + }, + { + "start": 11222.88, + "end": 11225.94, + "probability": 0.8039 + }, + { + "start": 11226.56, + "end": 11228.66, + "probability": 0.9841 + }, + { + "start": 11228.98, + "end": 11229.22, + "probability": 0.5813 + }, + { + "start": 11229.22, + "end": 11232.32, + "probability": 0.8568 + }, + { + "start": 11232.5, + "end": 11233.8, + "probability": 0.7581 + }, + { + "start": 11233.94, + "end": 11235.32, + "probability": 0.9432 + }, + { + "start": 11235.48, + "end": 11236.94, + "probability": 0.9217 + }, + { + "start": 11237.54, + "end": 11239.26, + "probability": 0.9551 + }, + { + "start": 11240.5, + "end": 11245.24, + "probability": 0.7491 + }, + { + "start": 11245.3, + "end": 11247.4, + "probability": 0.9905 + }, + { + "start": 11248.61, + "end": 11250.42, + "probability": 0.929 + }, + { + "start": 11250.54, + "end": 11251.46, + "probability": 0.6623 + }, + { + "start": 11251.5, + "end": 11252.82, + "probability": 0.9907 + }, + { + "start": 11253.56, + "end": 11255.4, + "probability": 0.9405 + }, + { + "start": 11255.9, + "end": 11256.08, + "probability": 0.5929 + }, + { + "start": 11256.12, + "end": 11257.0, + "probability": 0.8165 + }, + { + "start": 11257.14, + "end": 11257.98, + "probability": 0.9596 + }, + { + "start": 11258.38, + "end": 11260.42, + "probability": 0.9442 + }, + { + "start": 11261.26, + "end": 11261.78, + "probability": 0.6368 + }, + { + "start": 11261.84, + "end": 11266.67, + "probability": 0.9852 + }, + { + "start": 11267.28, + "end": 11270.04, + "probability": 0.9345 + }, + { + "start": 11270.58, + "end": 11271.12, + "probability": 0.9848 + }, + { + "start": 11271.64, + "end": 11272.96, + "probability": 0.9871 + }, + { + "start": 11273.48, + "end": 11274.8, + "probability": 0.8945 + }, + { + "start": 11275.52, + "end": 11279.48, + "probability": 0.9904 + }, + { + "start": 11279.5, + "end": 11280.2, + "probability": 0.8156 + }, + { + "start": 11280.42, + "end": 11280.54, + "probability": 0.6251 + }, + { + "start": 11280.62, + "end": 11282.42, + "probability": 0.9645 + }, + { + "start": 11283.32, + "end": 11284.42, + "probability": 0.8554 + }, + { + "start": 11285.02, + "end": 11285.2, + "probability": 0.7532 + }, + { + "start": 11285.26, + "end": 11286.42, + "probability": 0.8621 + }, + { + "start": 11286.52, + "end": 11288.05, + "probability": 0.9941 + }, + { + "start": 11288.12, + "end": 11289.4, + "probability": 0.9067 + }, + { + "start": 11289.52, + "end": 11291.12, + "probability": 0.99 + }, + { + "start": 11291.98, + "end": 11293.78, + "probability": 0.9372 + }, + { + "start": 11293.9, + "end": 11294.72, + "probability": 0.9781 + }, + { + "start": 11295.58, + "end": 11297.28, + "probability": 0.9521 + }, + { + "start": 11297.8, + "end": 11301.7, + "probability": 0.9708 + }, + { + "start": 11301.9, + "end": 11303.32, + "probability": 0.8328 + }, + { + "start": 11303.96, + "end": 11305.08, + "probability": 0.9006 + }, + { + "start": 11305.16, + "end": 11307.73, + "probability": 0.9736 + }, + { + "start": 11307.88, + "end": 11308.04, + "probability": 0.6588 + }, + { + "start": 11308.12, + "end": 11309.14, + "probability": 0.9829 + }, + { + "start": 11309.28, + "end": 11310.54, + "probability": 0.9215 + }, + { + "start": 11311.56, + "end": 11314.9, + "probability": 0.9373 + }, + { + "start": 11315.6, + "end": 11316.98, + "probability": 0.9477 + }, + { + "start": 11317.06, + "end": 11319.56, + "probability": 0.8908 + }, + { + "start": 11320.1, + "end": 11321.28, + "probability": 0.962 + }, + { + "start": 11321.36, + "end": 11321.95, + "probability": 0.6295 + }, + { + "start": 11322.24, + "end": 11324.7, + "probability": 0.9868 + }, + { + "start": 11324.94, + "end": 11329.88, + "probability": 0.8378 + }, + { + "start": 11329.98, + "end": 11332.08, + "probability": 0.7398 + }, + { + "start": 11332.4, + "end": 11332.64, + "probability": 0.2268 + }, + { + "start": 11332.78, + "end": 11333.5, + "probability": 0.662 + }, + { + "start": 11334.12, + "end": 11335.44, + "probability": 0.8508 + }, + { + "start": 11335.9, + "end": 11336.76, + "probability": 0.9587 + }, + { + "start": 11336.86, + "end": 11337.44, + "probability": 0.5079 + }, + { + "start": 11337.48, + "end": 11338.26, + "probability": 0.0004 + }, + { + "start": 11340.16, + "end": 11341.54, + "probability": 0.8645 + }, + { + "start": 11341.84, + "end": 11342.98, + "probability": 0.9795 + }, + { + "start": 11343.06, + "end": 11344.06, + "probability": 0.9723 + }, + { + "start": 11344.26, + "end": 11345.22, + "probability": 0.9165 + }, + { + "start": 11345.4, + "end": 11346.24, + "probability": 0.9231 + }, + { + "start": 11346.3, + "end": 11347.14, + "probability": 0.8472 + }, + { + "start": 11348.04, + "end": 11348.24, + "probability": 0.0855 + }, + { + "start": 11349.0, + "end": 11349.92, + "probability": 0.9661 + }, + { + "start": 11349.98, + "end": 11350.61, + "probability": 0.9878 + }, + { + "start": 11350.92, + "end": 11351.53, + "probability": 0.9927 + }, + { + "start": 11352.04, + "end": 11355.08, + "probability": 0.9942 + }, + { + "start": 11356.04, + "end": 11356.5, + "probability": 0.3863 + }, + { + "start": 11356.52, + "end": 11357.02, + "probability": 0.854 + }, + { + "start": 11357.24, + "end": 11360.2, + "probability": 0.9567 + }, + { + "start": 11360.22, + "end": 11364.44, + "probability": 0.9853 + }, + { + "start": 11364.64, + "end": 11369.6, + "probability": 0.9752 + }, + { + "start": 11370.4, + "end": 11374.34, + "probability": 0.9983 + }, + { + "start": 11374.6, + "end": 11377.84, + "probability": 0.9851 + }, + { + "start": 11377.9, + "end": 11382.94, + "probability": 0.9891 + }, + { + "start": 11383.06, + "end": 11384.87, + "probability": 0.8561 + }, + { + "start": 11385.16, + "end": 11388.74, + "probability": 0.8767 + }, + { + "start": 11389.42, + "end": 11391.07, + "probability": 0.759 + }, + { + "start": 11391.56, + "end": 11392.66, + "probability": 0.9775 + }, + { + "start": 11392.8, + "end": 11393.54, + "probability": 0.6413 + }, + { + "start": 11393.6, + "end": 11395.04, + "probability": 0.9949 + }, + { + "start": 11395.16, + "end": 11395.36, + "probability": 0.7948 + }, + { + "start": 11395.46, + "end": 11395.92, + "probability": 0.9578 + }, + { + "start": 11396.3, + "end": 11398.28, + "probability": 0.9552 + }, + { + "start": 11398.42, + "end": 11398.84, + "probability": 0.4499 + }, + { + "start": 11398.84, + "end": 11400.2, + "probability": 0.927 + }, + { + "start": 11400.26, + "end": 11400.9, + "probability": 0.8419 + }, + { + "start": 11400.94, + "end": 11401.66, + "probability": 0.9612 + }, + { + "start": 11402.12, + "end": 11403.76, + "probability": 0.9971 + }, + { + "start": 11404.22, + "end": 11406.3, + "probability": 0.6174 + }, + { + "start": 11406.86, + "end": 11407.22, + "probability": 0.5239 + }, + { + "start": 11407.28, + "end": 11409.02, + "probability": 0.9644 + }, + { + "start": 11409.2, + "end": 11410.16, + "probability": 0.6753 + }, + { + "start": 11410.2, + "end": 11411.88, + "probability": 0.9819 + }, + { + "start": 11411.96, + "end": 11413.4, + "probability": 0.9518 + }, + { + "start": 11413.9, + "end": 11415.9, + "probability": 0.9569 + }, + { + "start": 11416.0, + "end": 11416.22, + "probability": 0.4034 + }, + { + "start": 11416.46, + "end": 11417.32, + "probability": 0.8655 + }, + { + "start": 11418.16, + "end": 11420.66, + "probability": 0.5111 + }, + { + "start": 11420.8, + "end": 11422.24, + "probability": 0.3286 + }, + { + "start": 11423.8, + "end": 11424.78, + "probability": 0.3836 + }, + { + "start": 11425.36, + "end": 11426.04, + "probability": 0.8585 + }, + { + "start": 11426.08, + "end": 11428.64, + "probability": 0.9297 + }, + { + "start": 11429.54, + "end": 11430.98, + "probability": 0.5042 + }, + { + "start": 11431.72, + "end": 11432.02, + "probability": 0.3588 + }, + { + "start": 11432.04, + "end": 11432.74, + "probability": 0.4576 + }, + { + "start": 11433.16, + "end": 11433.94, + "probability": 0.6694 + }, + { + "start": 11434.22, + "end": 11436.62, + "probability": 0.3849 + }, + { + "start": 11436.64, + "end": 11437.7, + "probability": 0.63 + }, + { + "start": 11445.68, + "end": 11445.94, + "probability": 0.7384 + }, + { + "start": 11461.48, + "end": 11471.12, + "probability": 0.2 + }, + { + "start": 11472.16, + "end": 11475.48, + "probability": 0.3101 + }, + { + "start": 11476.82, + "end": 11477.84, + "probability": 0.0268 + }, + { + "start": 11477.84, + "end": 11478.44, + "probability": 0.0576 + }, + { + "start": 11478.44, + "end": 11481.29, + "probability": 0.0411 + }, + { + "start": 11484.18, + "end": 11484.34, + "probability": 0.0174 + }, + { + "start": 11485.42, + "end": 11485.9, + "probability": 0.0003 + }, + { + "start": 11488.67, + "end": 11491.4, + "probability": 0.0108 + }, + { + "start": 11492.02, + "end": 11492.4, + "probability": 0.0085 + }, + { + "start": 11492.4, + "end": 11493.88, + "probability": 0.1458 + }, + { + "start": 11494.08, + "end": 11494.46, + "probability": 0.1935 + }, + { + "start": 11494.46, + "end": 11494.46, + "probability": 0.1117 + }, + { + "start": 11494.46, + "end": 11495.26, + "probability": 0.2216 + }, + { + "start": 11500.98, + "end": 11502.08, + "probability": 0.4379 + }, + { + "start": 11503.45, + "end": 11505.06, + "probability": 0.1961 + }, + { + "start": 11509.31, + "end": 11509.72, + "probability": 0.0159 + }, + { + "start": 11538.0, + "end": 11538.0, + "probability": 0.0 + }, + { + "start": 11538.0, + "end": 11538.0, + "probability": 0.0 + }, + { + "start": 11538.0, + "end": 11538.0, + "probability": 0.0 + }, + { + "start": 11538.0, + "end": 11538.0, + "probability": 0.0 + }, + { + "start": 11538.58, + "end": 11539.28, + "probability": 0.7848 + }, + { + "start": 11544.18, + "end": 11546.14, + "probability": 0.6602 + }, + { + "start": 11547.16, + "end": 11550.78, + "probability": 0.9878 + }, + { + "start": 11551.58, + "end": 11555.59, + "probability": 0.7259 + }, + { + "start": 11555.78, + "end": 11562.22, + "probability": 0.821 + }, + { + "start": 11563.1, + "end": 11565.9, + "probability": 0.9224 + }, + { + "start": 11566.64, + "end": 11569.96, + "probability": 0.9222 + }, + { + "start": 11570.68, + "end": 11572.12, + "probability": 0.9141 + }, + { + "start": 11572.82, + "end": 11574.34, + "probability": 0.5419 + }, + { + "start": 11574.92, + "end": 11576.96, + "probability": 0.988 + }, + { + "start": 11580.78, + "end": 11582.06, + "probability": 0.6793 + }, + { + "start": 11583.03, + "end": 11588.32, + "probability": 0.9255 + }, + { + "start": 11588.34, + "end": 11590.92, + "probability": 0.9917 + }, + { + "start": 11591.86, + "end": 11594.74, + "probability": 0.9955 + }, + { + "start": 11595.46, + "end": 11597.96, + "probability": 0.7885 + }, + { + "start": 11598.82, + "end": 11600.38, + "probability": 0.4644 + }, + { + "start": 11601.02, + "end": 11602.48, + "probability": 0.8987 + }, + { + "start": 11602.6, + "end": 11604.06, + "probability": 0.9214 + }, + { + "start": 11604.14, + "end": 11605.3, + "probability": 0.9878 + }, + { + "start": 11606.24, + "end": 11609.0, + "probability": 0.9671 + }, + { + "start": 11609.78, + "end": 11611.8, + "probability": 0.9907 + }, + { + "start": 11612.96, + "end": 11615.82, + "probability": 0.1849 + }, + { + "start": 11617.08, + "end": 11618.1, + "probability": 0.7929 + }, + { + "start": 11618.82, + "end": 11623.7, + "probability": 0.9869 + }, + { + "start": 11624.4, + "end": 11628.14, + "probability": 0.9915 + }, + { + "start": 11629.1, + "end": 11629.74, + "probability": 0.5132 + }, + { + "start": 11629.9, + "end": 11634.08, + "probability": 0.8634 + }, + { + "start": 11634.88, + "end": 11638.16, + "probability": 0.9963 + }, + { + "start": 11638.74, + "end": 11640.28, + "probability": 0.9454 + }, + { + "start": 11641.02, + "end": 11642.91, + "probability": 0.604 + }, + { + "start": 11643.7, + "end": 11646.9, + "probability": 0.9888 + }, + { + "start": 11647.42, + "end": 11649.44, + "probability": 0.9971 + }, + { + "start": 11650.02, + "end": 11653.08, + "probability": 0.9494 + }, + { + "start": 11653.72, + "end": 11659.72, + "probability": 0.9807 + }, + { + "start": 11659.96, + "end": 11661.52, + "probability": 0.9824 + }, + { + "start": 11661.58, + "end": 11663.0, + "probability": 0.6146 + }, + { + "start": 11663.76, + "end": 11664.94, + "probability": 0.9558 + }, + { + "start": 11665.46, + "end": 11665.98, + "probability": 0.6712 + }, + { + "start": 11666.6, + "end": 11668.52, + "probability": 0.9254 + }, + { + "start": 11669.36, + "end": 11672.16, + "probability": 0.6345 + }, + { + "start": 11672.88, + "end": 11676.64, + "probability": 0.9807 + }, + { + "start": 11677.34, + "end": 11678.08, + "probability": 0.967 + }, + { + "start": 11678.16, + "end": 11678.7, + "probability": 0.493 + }, + { + "start": 11678.84, + "end": 11679.94, + "probability": 0.9393 + }, + { + "start": 11680.42, + "end": 11681.46, + "probability": 0.5369 + }, + { + "start": 11681.5, + "end": 11683.24, + "probability": 0.9742 + }, + { + "start": 11683.82, + "end": 11685.65, + "probability": 0.8419 + }, + { + "start": 11686.82, + "end": 11688.0, + "probability": 0.9824 + }, + { + "start": 11688.16, + "end": 11691.02, + "probability": 0.8695 + }, + { + "start": 11691.22, + "end": 11693.9, + "probability": 0.7219 + }, + { + "start": 11694.26, + "end": 11694.42, + "probability": 0.7639 + }, + { + "start": 11694.46, + "end": 11697.0, + "probability": 0.9919 + }, + { + "start": 11697.16, + "end": 11700.38, + "probability": 0.6931 + }, + { + "start": 11701.54, + "end": 11703.86, + "probability": 0.9771 + }, + { + "start": 11704.9, + "end": 11709.49, + "probability": 0.9838 + }, + { + "start": 11710.38, + "end": 11715.14, + "probability": 0.9062 + }, + { + "start": 11716.44, + "end": 11719.92, + "probability": 0.9927 + }, + { + "start": 11720.1, + "end": 11720.56, + "probability": 0.7106 + }, + { + "start": 11721.14, + "end": 11723.34, + "probability": 0.8342 + }, + { + "start": 11724.18, + "end": 11726.46, + "probability": 0.8463 + }, + { + "start": 11726.68, + "end": 11727.06, + "probability": 0.4449 + }, + { + "start": 11727.1, + "end": 11727.8, + "probability": 0.8835 + }, + { + "start": 11728.72, + "end": 11730.52, + "probability": 0.9102 + }, + { + "start": 11731.12, + "end": 11732.5, + "probability": 0.9346 + }, + { + "start": 11732.62, + "end": 11737.56, + "probability": 0.9936 + }, + { + "start": 11737.56, + "end": 11741.64, + "probability": 0.9957 + }, + { + "start": 11743.48, + "end": 11744.48, + "probability": 0.5831 + }, + { + "start": 11745.32, + "end": 11746.98, + "probability": 0.9056 + }, + { + "start": 11747.04, + "end": 11749.06, + "probability": 0.9069 + }, + { + "start": 11749.92, + "end": 11752.92, + "probability": 0.993 + }, + { + "start": 11753.02, + "end": 11754.4, + "probability": 0.8257 + }, + { + "start": 11755.0, + "end": 11759.18, + "probability": 0.9744 + }, + { + "start": 11759.68, + "end": 11763.02, + "probability": 0.9391 + }, + { + "start": 11763.02, + "end": 11765.2, + "probability": 0.9568 + }, + { + "start": 11765.84, + "end": 11767.5, + "probability": 0.6718 + }, + { + "start": 11768.48, + "end": 11770.32, + "probability": 0.7556 + }, + { + "start": 11770.88, + "end": 11772.28, + "probability": 0.9621 + }, + { + "start": 11772.88, + "end": 11775.64, + "probability": 0.7308 + }, + { + "start": 11776.8, + "end": 11781.08, + "probability": 0.7636 + }, + { + "start": 11781.89, + "end": 11786.81, + "probability": 0.7535 + }, + { + "start": 11787.9, + "end": 11793.8, + "probability": 0.9795 + }, + { + "start": 11794.96, + "end": 11797.2, + "probability": 0.6721 + }, + { + "start": 11797.92, + "end": 11798.88, + "probability": 0.9402 + }, + { + "start": 11799.0, + "end": 11802.6, + "probability": 0.9954 + }, + { + "start": 11803.04, + "end": 11809.88, + "probability": 0.9782 + }, + { + "start": 11810.4, + "end": 11811.74, + "probability": 0.9043 + }, + { + "start": 11813.54, + "end": 11815.26, + "probability": 0.8346 + }, + { + "start": 11818.48, + "end": 11821.08, + "probability": 0.9578 + }, + { + "start": 11821.1, + "end": 11824.22, + "probability": 0.9965 + }, + { + "start": 11824.86, + "end": 11826.58, + "probability": 0.9839 + }, + { + "start": 11826.86, + "end": 11827.64, + "probability": 0.9771 + }, + { + "start": 11828.32, + "end": 11832.0, + "probability": 0.8677 + }, + { + "start": 11832.0, + "end": 11834.62, + "probability": 0.9925 + }, + { + "start": 11835.32, + "end": 11837.32, + "probability": 0.9784 + }, + { + "start": 11837.86, + "end": 11839.82, + "probability": 0.6292 + }, + { + "start": 11840.4, + "end": 11841.78, + "probability": 0.8411 + }, + { + "start": 11841.92, + "end": 11847.14, + "probability": 0.8109 + }, + { + "start": 11847.22, + "end": 11848.88, + "probability": 0.9475 + }, + { + "start": 11849.77, + "end": 11853.52, + "probability": 0.9688 + }, + { + "start": 11853.52, + "end": 11857.78, + "probability": 0.996 + }, + { + "start": 11857.9, + "end": 11859.97, + "probability": 0.9961 + }, + { + "start": 11860.28, + "end": 11861.04, + "probability": 0.569 + }, + { + "start": 11861.18, + "end": 11862.42, + "probability": 0.9393 + }, + { + "start": 11862.52, + "end": 11863.58, + "probability": 0.9984 + }, + { + "start": 11864.56, + "end": 11868.3, + "probability": 0.9961 + }, + { + "start": 11868.48, + "end": 11869.24, + "probability": 0.7325 + }, + { + "start": 11869.74, + "end": 11873.02, + "probability": 0.9929 + }, + { + "start": 11873.06, + "end": 11875.09, + "probability": 0.87 + }, + { + "start": 11876.76, + "end": 11877.14, + "probability": 0.4997 + }, + { + "start": 11878.02, + "end": 11880.56, + "probability": 0.9756 + }, + { + "start": 11880.56, + "end": 11883.34, + "probability": 0.9368 + }, + { + "start": 11883.84, + "end": 11888.14, + "probability": 0.9925 + }, + { + "start": 11888.9, + "end": 11893.28, + "probability": 0.9325 + }, + { + "start": 11893.88, + "end": 11895.92, + "probability": 0.7998 + }, + { + "start": 11896.48, + "end": 11902.08, + "probability": 0.963 + }, + { + "start": 11902.18, + "end": 11902.52, + "probability": 0.906 + }, + { + "start": 11903.1, + "end": 11907.06, + "probability": 0.8016 + }, + { + "start": 11907.7, + "end": 11914.2, + "probability": 0.9012 + }, + { + "start": 11915.6, + "end": 11915.9, + "probability": 0.3183 + }, + { + "start": 11916.02, + "end": 11919.08, + "probability": 0.9924 + }, + { + "start": 11920.14, + "end": 11923.38, + "probability": 0.9551 + }, + { + "start": 11924.08, + "end": 11926.73, + "probability": 0.8506 + }, + { + "start": 11928.18, + "end": 11930.58, + "probability": 0.9785 + }, + { + "start": 11931.12, + "end": 11934.76, + "probability": 0.9198 + }, + { + "start": 11934.94, + "end": 11937.56, + "probability": 0.8272 + }, + { + "start": 11938.5, + "end": 11938.94, + "probability": 0.922 + }, + { + "start": 11942.26, + "end": 11944.36, + "probability": 0.878 + }, + { + "start": 11945.62, + "end": 11946.36, + "probability": 0.4814 + }, + { + "start": 11946.94, + "end": 11949.9, + "probability": 0.9976 + }, + { + "start": 11950.6, + "end": 11953.48, + "probability": 0.9973 + }, + { + "start": 11954.16, + "end": 11958.42, + "probability": 0.9878 + }, + { + "start": 11958.84, + "end": 11959.42, + "probability": 0.4743 + }, + { + "start": 11960.08, + "end": 11962.36, + "probability": 0.5085 + }, + { + "start": 11962.86, + "end": 11964.72, + "probability": 0.9302 + }, + { + "start": 11964.78, + "end": 11966.34, + "probability": 0.9603 + }, + { + "start": 11967.0, + "end": 11968.38, + "probability": 0.8861 + }, + { + "start": 11968.52, + "end": 11969.54, + "probability": 0.9728 + }, + { + "start": 11970.22, + "end": 11974.96, + "probability": 0.9937 + }, + { + "start": 11974.96, + "end": 11981.48, + "probability": 0.9556 + }, + { + "start": 11981.96, + "end": 11984.9, + "probability": 0.9888 + }, + { + "start": 11988.48, + "end": 11991.6, + "probability": 0.9861 + }, + { + "start": 11992.32, + "end": 11993.46, + "probability": 0.9045 + }, + { + "start": 11993.6, + "end": 11997.66, + "probability": 0.8452 + }, + { + "start": 11997.8, + "end": 12000.52, + "probability": 0.8317 + }, + { + "start": 12000.52, + "end": 12002.9, + "probability": 0.9913 + }, + { + "start": 12003.46, + "end": 12005.7, + "probability": 0.9391 + }, + { + "start": 12006.2, + "end": 12011.81, + "probability": 0.852 + }, + { + "start": 12014.02, + "end": 12017.06, + "probability": 0.9946 + }, + { + "start": 12017.78, + "end": 12021.56, + "probability": 0.9951 + }, + { + "start": 12022.5, + "end": 12026.52, + "probability": 0.9551 + }, + { + "start": 12027.58, + "end": 12029.38, + "probability": 0.7998 + }, + { + "start": 12029.82, + "end": 12032.14, + "probability": 0.7747 + }, + { + "start": 12033.1, + "end": 12035.54, + "probability": 0.8832 + }, + { + "start": 12035.54, + "end": 12039.6, + "probability": 0.9849 + }, + { + "start": 12039.7, + "end": 12043.94, + "probability": 0.9772 + }, + { + "start": 12044.56, + "end": 12047.5, + "probability": 0.9629 + }, + { + "start": 12047.5, + "end": 12052.52, + "probability": 0.9879 + }, + { + "start": 12052.52, + "end": 12056.08, + "probability": 0.9849 + }, + { + "start": 12056.78, + "end": 12058.28, + "probability": 0.902 + }, + { + "start": 12058.44, + "end": 12060.26, + "probability": 0.9932 + }, + { + "start": 12061.2, + "end": 12062.2, + "probability": 0.58 + }, + { + "start": 12062.38, + "end": 12065.12, + "probability": 0.993 + }, + { + "start": 12065.12, + "end": 12068.02, + "probability": 0.9154 + }, + { + "start": 12068.62, + "end": 12070.46, + "probability": 0.8715 + }, + { + "start": 12071.02, + "end": 12072.12, + "probability": 0.9175 + }, + { + "start": 12072.7, + "end": 12076.26, + "probability": 0.9963 + }, + { + "start": 12076.26, + "end": 12080.42, + "probability": 0.8423 + }, + { + "start": 12081.24, + "end": 12083.08, + "probability": 0.5021 + }, + { + "start": 12083.8, + "end": 12085.6, + "probability": 0.8982 + }, + { + "start": 12086.12, + "end": 12087.44, + "probability": 0.7758 + }, + { + "start": 12087.56, + "end": 12088.76, + "probability": 0.9694 + }, + { + "start": 12088.82, + "end": 12091.16, + "probability": 0.9512 + }, + { + "start": 12091.76, + "end": 12093.12, + "probability": 0.6955 + }, + { + "start": 12093.94, + "end": 12097.19, + "probability": 0.9986 + }, + { + "start": 12098.38, + "end": 12100.22, + "probability": 0.731 + }, + { + "start": 12100.26, + "end": 12105.64, + "probability": 0.9421 + }, + { + "start": 12106.12, + "end": 12108.62, + "probability": 0.8341 + }, + { + "start": 12110.06, + "end": 12114.02, + "probability": 0.8506 + }, + { + "start": 12114.02, + "end": 12117.72, + "probability": 0.9645 + }, + { + "start": 12118.28, + "end": 12122.68, + "probability": 0.8714 + }, + { + "start": 12122.68, + "end": 12126.86, + "probability": 0.9942 + }, + { + "start": 12127.54, + "end": 12132.44, + "probability": 0.9918 + }, + { + "start": 12132.44, + "end": 12137.52, + "probability": 0.9855 + }, + { + "start": 12138.06, + "end": 12142.98, + "probability": 0.99 + }, + { + "start": 12143.02, + "end": 12148.18, + "probability": 0.9847 + }, + { + "start": 12148.66, + "end": 12153.1, + "probability": 0.9525 + }, + { + "start": 12153.62, + "end": 12154.66, + "probability": 0.5927 + }, + { + "start": 12155.08, + "end": 12155.84, + "probability": 0.8728 + }, + { + "start": 12155.92, + "end": 12156.96, + "probability": 0.6125 + }, + { + "start": 12157.44, + "end": 12158.66, + "probability": 0.9588 + }, + { + "start": 12159.2, + "end": 12162.78, + "probability": 0.9067 + }, + { + "start": 12162.92, + "end": 12164.42, + "probability": 0.7806 + }, + { + "start": 12165.26, + "end": 12167.54, + "probability": 0.9954 + }, + { + "start": 12168.08, + "end": 12170.56, + "probability": 0.9783 + }, + { + "start": 12170.56, + "end": 12173.4, + "probability": 0.999 + }, + { + "start": 12173.98, + "end": 12176.38, + "probability": 0.9744 + }, + { + "start": 12177.46, + "end": 12181.12, + "probability": 0.7001 + }, + { + "start": 12181.54, + "end": 12184.98, + "probability": 0.934 + }, + { + "start": 12185.42, + "end": 12186.83, + "probability": 0.9871 + }, + { + "start": 12187.44, + "end": 12188.7, + "probability": 0.8123 + }, + { + "start": 12189.1, + "end": 12194.01, + "probability": 0.9577 + }, + { + "start": 12195.52, + "end": 12199.2, + "probability": 0.9775 + }, + { + "start": 12199.72, + "end": 12200.62, + "probability": 0.7206 + }, + { + "start": 12200.98, + "end": 12206.34, + "probability": 0.6773 + }, + { + "start": 12206.8, + "end": 12207.32, + "probability": 0.593 + }, + { + "start": 12207.5, + "end": 12209.66, + "probability": 0.9749 + }, + { + "start": 12210.18, + "end": 12213.7, + "probability": 0.5703 + }, + { + "start": 12213.78, + "end": 12216.54, + "probability": 0.779 + }, + { + "start": 12216.84, + "end": 12217.34, + "probability": 0.4969 + }, + { + "start": 12217.34, + "end": 12217.82, + "probability": 0.7546 + }, + { + "start": 12218.86, + "end": 12222.9, + "probability": 0.9692 + }, + { + "start": 12222.9, + "end": 12227.0, + "probability": 0.9437 + }, + { + "start": 12227.26, + "end": 12228.88, + "probability": 0.9545 + }, + { + "start": 12229.46, + "end": 12230.52, + "probability": 0.8167 + }, + { + "start": 12231.44, + "end": 12232.26, + "probability": 0.7548 + }, + { + "start": 12233.8, + "end": 12237.96, + "probability": 0.9972 + }, + { + "start": 12237.96, + "end": 12241.76, + "probability": 0.9812 + }, + { + "start": 12241.76, + "end": 12246.06, + "probability": 0.9786 + }, + { + "start": 12246.78, + "end": 12248.18, + "probability": 0.7492 + }, + { + "start": 12251.42, + "end": 12252.42, + "probability": 0.8468 + }, + { + "start": 12253.28, + "end": 12257.68, + "probability": 0.7261 + }, + { + "start": 12258.2, + "end": 12261.64, + "probability": 0.8492 + }, + { + "start": 12261.64, + "end": 12263.6, + "probability": 0.767 + }, + { + "start": 12264.78, + "end": 12268.2, + "probability": 0.8033 + }, + { + "start": 12269.12, + "end": 12270.32, + "probability": 0.9995 + }, + { + "start": 12271.8, + "end": 12274.64, + "probability": 0.8699 + }, + { + "start": 12275.28, + "end": 12276.19, + "probability": 0.7948 + }, + { + "start": 12276.76, + "end": 12283.44, + "probability": 0.8773 + }, + { + "start": 12284.11, + "end": 12288.78, + "probability": 0.5257 + }, + { + "start": 12288.78, + "end": 12292.22, + "probability": 0.7534 + }, + { + "start": 12292.38, + "end": 12292.72, + "probability": 0.2774 + }, + { + "start": 12292.8, + "end": 12296.36, + "probability": 0.5035 + }, + { + "start": 12296.94, + "end": 12301.86, + "probability": 0.9723 + }, + { + "start": 12301.88, + "end": 12304.1, + "probability": 0.993 + }, + { + "start": 12304.94, + "end": 12307.76, + "probability": 0.8182 + }, + { + "start": 12308.34, + "end": 12310.6, + "probability": 0.9273 + }, + { + "start": 12312.35, + "end": 12316.72, + "probability": 0.9317 + }, + { + "start": 12317.36, + "end": 12321.12, + "probability": 0.9913 + }, + { + "start": 12321.12, + "end": 12324.88, + "probability": 0.9221 + }, + { + "start": 12325.02, + "end": 12326.42, + "probability": 0.7733 + }, + { + "start": 12327.54, + "end": 12329.82, + "probability": 0.5962 + }, + { + "start": 12330.58, + "end": 12332.68, + "probability": 0.9018 + }, + { + "start": 12333.54, + "end": 12335.92, + "probability": 0.9524 + }, + { + "start": 12336.48, + "end": 12340.22, + "probability": 0.9958 + }, + { + "start": 12340.32, + "end": 12341.28, + "probability": 0.6555 + }, + { + "start": 12341.9, + "end": 12343.6, + "probability": 0.8815 + }, + { + "start": 12344.39, + "end": 12349.02, + "probability": 0.994 + }, + { + "start": 12349.56, + "end": 12355.88, + "probability": 0.9932 + }, + { + "start": 12355.96, + "end": 12359.64, + "probability": 0.9961 + }, + { + "start": 12359.64, + "end": 12364.6, + "probability": 0.9883 + }, + { + "start": 12364.8, + "end": 12368.38, + "probability": 0.9246 + }, + { + "start": 12368.82, + "end": 12370.92, + "probability": 0.9989 + }, + { + "start": 12370.92, + "end": 12371.72, + "probability": 0.9231 + }, + { + "start": 12372.74, + "end": 12375.12, + "probability": 0.8303 + }, + { + "start": 12375.88, + "end": 12378.7, + "probability": 0.9787 + }, + { + "start": 12379.42, + "end": 12383.58, + "probability": 0.9692 + }, + { + "start": 12384.2, + "end": 12388.18, + "probability": 0.9785 + }, + { + "start": 12388.18, + "end": 12392.62, + "probability": 0.9658 + }, + { + "start": 12392.84, + "end": 12396.48, + "probability": 0.5946 + }, + { + "start": 12397.2, + "end": 12397.72, + "probability": 0.8368 + }, + { + "start": 12397.9, + "end": 12403.18, + "probability": 0.9878 + }, + { + "start": 12403.18, + "end": 12405.98, + "probability": 0.9461 + }, + { + "start": 12406.08, + "end": 12406.96, + "probability": 0.9964 + }, + { + "start": 12407.94, + "end": 12411.34, + "probability": 0.95 + }, + { + "start": 12411.76, + "end": 12412.1, + "probability": 0.6526 + }, + { + "start": 12412.45, + "end": 12416.56, + "probability": 0.9541 + }, + { + "start": 12416.56, + "end": 12419.4, + "probability": 0.7604 + }, + { + "start": 12420.16, + "end": 12424.3, + "probability": 0.9219 + }, + { + "start": 12424.96, + "end": 12429.28, + "probability": 0.9946 + }, + { + "start": 12430.06, + "end": 12433.78, + "probability": 0.9808 + }, + { + "start": 12434.52, + "end": 12438.26, + "probability": 0.9948 + }, + { + "start": 12440.06, + "end": 12441.88, + "probability": 0.9022 + }, + { + "start": 12441.98, + "end": 12447.84, + "probability": 0.9702 + }, + { + "start": 12448.14, + "end": 12451.38, + "probability": 0.9689 + }, + { + "start": 12452.1, + "end": 12455.46, + "probability": 0.9447 + }, + { + "start": 12455.46, + "end": 12458.44, + "probability": 0.9121 + }, + { + "start": 12459.08, + "end": 12461.12, + "probability": 0.9849 + }, + { + "start": 12461.18, + "end": 12462.9, + "probability": 0.8687 + }, + { + "start": 12463.76, + "end": 12465.36, + "probability": 0.9581 + }, + { + "start": 12465.88, + "end": 12467.86, + "probability": 0.9849 + }, + { + "start": 12468.4, + "end": 12471.08, + "probability": 0.938 + }, + { + "start": 12472.74, + "end": 12474.27, + "probability": 0.5599 + }, + { + "start": 12474.92, + "end": 12480.92, + "probability": 0.8298 + }, + { + "start": 12481.36, + "end": 12487.34, + "probability": 0.9014 + }, + { + "start": 12487.34, + "end": 12491.52, + "probability": 0.9633 + }, + { + "start": 12491.98, + "end": 12494.28, + "probability": 0.8749 + }, + { + "start": 12494.44, + "end": 12494.9, + "probability": 0.6101 + }, + { + "start": 12495.88, + "end": 12498.82, + "probability": 0.9481 + }, + { + "start": 12499.36, + "end": 12500.5, + "probability": 0.8724 + }, + { + "start": 12501.0, + "end": 12502.26, + "probability": 0.9869 + }, + { + "start": 12502.34, + "end": 12503.28, + "probability": 0.7535 + }, + { + "start": 12504.2, + "end": 12509.36, + "probability": 0.6645 + }, + { + "start": 12510.62, + "end": 12513.68, + "probability": 0.9917 + }, + { + "start": 12514.34, + "end": 12517.36, + "probability": 0.6994 + }, + { + "start": 12517.42, + "end": 12517.96, + "probability": 0.4861 + }, + { + "start": 12518.56, + "end": 12520.28, + "probability": 0.7524 + }, + { + "start": 12521.02, + "end": 12527.14, + "probability": 0.9679 + }, + { + "start": 12527.56, + "end": 12528.88, + "probability": 0.847 + }, + { + "start": 12528.96, + "end": 12529.46, + "probability": 0.7667 + }, + { + "start": 12530.06, + "end": 12531.52, + "probability": 0.3755 + }, + { + "start": 12531.52, + "end": 12532.88, + "probability": 0.9242 + }, + { + "start": 12533.02, + "end": 12534.54, + "probability": 0.6045 + }, + { + "start": 12536.14, + "end": 12541.64, + "probability": 0.5729 + }, + { + "start": 12542.95, + "end": 12550.96, + "probability": 0.9268 + }, + { + "start": 12551.46, + "end": 12555.1, + "probability": 0.8234 + }, + { + "start": 12555.66, + "end": 12560.92, + "probability": 0.8347 + }, + { + "start": 12562.18, + "end": 12564.52, + "probability": 0.9884 + }, + { + "start": 12564.98, + "end": 12566.66, + "probability": 0.9616 + }, + { + "start": 12567.38, + "end": 12569.2, + "probability": 0.9983 + }, + { + "start": 12569.64, + "end": 12573.22, + "probability": 0.9707 + }, + { + "start": 12573.64, + "end": 12574.06, + "probability": 0.6354 + }, + { + "start": 12575.52, + "end": 12576.24, + "probability": 0.7198 + }, + { + "start": 12576.76, + "end": 12579.02, + "probability": 0.95 + }, + { + "start": 12579.56, + "end": 12581.19, + "probability": 0.5723 + }, + { + "start": 12581.4, + "end": 12584.37, + "probability": 0.7915 + }, + { + "start": 12585.96, + "end": 12588.18, + "probability": 0.5355 + }, + { + "start": 12588.78, + "end": 12591.06, + "probability": 0.8482 + }, + { + "start": 12591.78, + "end": 12595.38, + "probability": 0.9135 + }, + { + "start": 12596.74, + "end": 12598.14, + "probability": 0.9247 + }, + { + "start": 12598.98, + "end": 12599.54, + "probability": 0.9626 + }, + { + "start": 12600.08, + "end": 12601.62, + "probability": 0.9591 + }, + { + "start": 12603.42, + "end": 12608.88, + "probability": 0.8308 + }, + { + "start": 12609.96, + "end": 12612.76, + "probability": 0.8351 + }, + { + "start": 12614.44, + "end": 12615.02, + "probability": 0.7366 + }, + { + "start": 12615.58, + "end": 12617.02, + "probability": 0.9294 + }, + { + "start": 12618.0, + "end": 12618.68, + "probability": 0.8488 + }, + { + "start": 12619.34, + "end": 12620.76, + "probability": 0.9918 + }, + { + "start": 12621.4, + "end": 12621.92, + "probability": 0.7771 + }, + { + "start": 12622.66, + "end": 12623.16, + "probability": 0.7678 + }, + { + "start": 12623.7, + "end": 12626.92, + "probability": 0.7056 + }, + { + "start": 12627.56, + "end": 12629.5, + "probability": 0.4949 + }, + { + "start": 12630.02, + "end": 12632.4, + "probability": 0.8079 + }, + { + "start": 12633.3, + "end": 12633.76, + "probability": 0.9469 + }, + { + "start": 12636.24, + "end": 12636.88, + "probability": 0.8575 + }, + { + "start": 12636.96, + "end": 12639.94, + "probability": 0.9414 + }, + { + "start": 12639.94, + "end": 12643.18, + "probability": 0.6088 + }, + { + "start": 12643.5, + "end": 12645.3, + "probability": 0.2592 + }, + { + "start": 12645.62, + "end": 12647.64, + "probability": 0.7655 + }, + { + "start": 12648.3, + "end": 12651.08, + "probability": 0.8037 + }, + { + "start": 12656.5, + "end": 12657.18, + "probability": 0.6527 + }, + { + "start": 12659.5, + "end": 12661.18, + "probability": 0.0028 + }, + { + "start": 12677.1, + "end": 12680.96, + "probability": 0.7516 + }, + { + "start": 12681.16, + "end": 12683.36, + "probability": 0.7067 + }, + { + "start": 12683.88, + "end": 12684.58, + "probability": 0.7575 + }, + { + "start": 12684.62, + "end": 12686.94, + "probability": 0.9668 + }, + { + "start": 12686.98, + "end": 12690.62, + "probability": 0.5204 + }, + { + "start": 12690.64, + "end": 12696.24, + "probability": 0.2131 + }, + { + "start": 12700.58, + "end": 12703.18, + "probability": 0.2945 + }, + { + "start": 12704.96, + "end": 12705.18, + "probability": 0.386 + }, + { + "start": 12707.02, + "end": 12709.08, + "probability": 0.2153 + }, + { + "start": 12711.3, + "end": 12712.98, + "probability": 0.3249 + }, + { + "start": 12713.78, + "end": 12715.42, + "probability": 0.69 + }, + { + "start": 12715.62, + "end": 12719.64, + "probability": 0.7449 + }, + { + "start": 12720.28, + "end": 12724.22, + "probability": 0.8577 + }, + { + "start": 12724.98, + "end": 12727.38, + "probability": 0.9862 + }, + { + "start": 12728.26, + "end": 12728.38, + "probability": 0.0078 + } + ], + "segments_count": 4494, + "words_count": 22274, + "avg_words_per_segment": 4.9564, + "avg_segment_duration": 2.0306, + "avg_words_per_minute": 104.5738, + "plenum_id": "121958", + "duration": 12779.88, + "title": null, + "plenum_date": "2023-11-29" +} \ No newline at end of file