diff --git "a/123817/metadata.json" "b/123817/metadata.json" new file mode 100644--- /dev/null +++ "b/123817/metadata.json" @@ -0,0 +1,24667 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "123817", + "quality_score": 0.8438, + "per_segment_quality_scores": [ + { + "start": 36.24, + "end": 37.78, + "probability": 0.9478 + }, + { + "start": 39.6, + "end": 40.78, + "probability": 0.3495 + }, + { + "start": 40.9, + "end": 41.78, + "probability": 0.6979 + }, + { + "start": 41.86, + "end": 43.2, + "probability": 0.8859 + }, + { + "start": 43.38, + "end": 44.46, + "probability": 0.9063 + }, + { + "start": 44.56, + "end": 45.26, + "probability": 0.7194 + }, + { + "start": 48.71, + "end": 49.73, + "probability": 0.3433 + }, + { + "start": 53.27, + "end": 53.57, + "probability": 0.0116 + }, + { + "start": 54.73, + "end": 57.91, + "probability": 0.823 + }, + { + "start": 64.33, + "end": 68.57, + "probability": 0.0565 + }, + { + "start": 68.75, + "end": 69.31, + "probability": 0.2255 + }, + { + "start": 70.71, + "end": 72.85, + "probability": 0.0839 + }, + { + "start": 82.05, + "end": 83.97, + "probability": 0.018 + }, + { + "start": 84.03, + "end": 84.89, + "probability": 0.1294 + }, + { + "start": 85.01, + "end": 85.17, + "probability": 0.0616 + }, + { + "start": 85.17, + "end": 85.19, + "probability": 0.1519 + }, + { + "start": 85.19, + "end": 85.21, + "probability": 0.0351 + }, + { + "start": 85.55, + "end": 88.59, + "probability": 0.6801 + }, + { + "start": 89.49, + "end": 90.25, + "probability": 0.6781 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 163.74, + "end": 167.5, + "probability": 0.0965 + }, + { + "start": 168.38, + "end": 168.66, + "probability": 0.0424 + }, + { + "start": 168.66, + "end": 172.02, + "probability": 0.0339 + }, + { + "start": 178.56, + "end": 179.54, + "probability": 0.097 + }, + { + "start": 181.86, + "end": 181.96, + "probability": 0.2769 + }, + { + "start": 182.56, + "end": 183.66, + "probability": 0.0865 + }, + { + "start": 185.8, + "end": 186.22, + "probability": 0.036 + }, + { + "start": 188.88, + "end": 189.58, + "probability": 0.2311 + }, + { + "start": 192.92, + "end": 194.94, + "probability": 0.1815 + }, + { + "start": 201.82, + "end": 204.84, + "probability": 0.1981 + }, + { + "start": 205.02, + "end": 205.38, + "probability": 0.2143 + }, + { + "start": 205.42, + "end": 205.46, + "probability": 0.3422 + }, + { + "start": 205.52, + "end": 208.42, + "probability": 0.1891 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.0, + "end": 280.0, + "probability": 0.0 + }, + { + "start": 280.59, + "end": 284.16, + "probability": 0.9813 + }, + { + "start": 284.38, + "end": 287.12, + "probability": 0.9789 + }, + { + "start": 288.04, + "end": 290.36, + "probability": 0.9868 + }, + { + "start": 290.54, + "end": 291.04, + "probability": 0.5839 + }, + { + "start": 292.26, + "end": 295.44, + "probability": 0.9893 + }, + { + "start": 295.5, + "end": 300.24, + "probability": 0.8007 + }, + { + "start": 300.92, + "end": 308.32, + "probability": 0.7101 + }, + { + "start": 309.56, + "end": 309.66, + "probability": 0.4982 + }, + { + "start": 309.66, + "end": 310.52, + "probability": 0.9938 + }, + { + "start": 311.44, + "end": 315.08, + "probability": 0.9434 + }, + { + "start": 315.68, + "end": 316.38, + "probability": 0.9473 + }, + { + "start": 317.4, + "end": 318.22, + "probability": 0.9064 + }, + { + "start": 319.32, + "end": 320.84, + "probability": 0.9956 + }, + { + "start": 324.56, + "end": 326.28, + "probability": 0.5574 + }, + { + "start": 328.32, + "end": 332.88, + "probability": 0.8512 + }, + { + "start": 333.58, + "end": 337.64, + "probability": 0.941 + }, + { + "start": 337.66, + "end": 338.52, + "probability": 0.9631 + }, + { + "start": 339.48, + "end": 341.54, + "probability": 0.9886 + }, + { + "start": 342.3, + "end": 345.68, + "probability": 0.9814 + }, + { + "start": 346.26, + "end": 348.12, + "probability": 0.7926 + }, + { + "start": 349.96, + "end": 352.32, + "probability": 0.7219 + }, + { + "start": 353.84, + "end": 355.48, + "probability": 0.9848 + }, + { + "start": 355.9, + "end": 357.06, + "probability": 0.8409 + }, + { + "start": 357.56, + "end": 359.56, + "probability": 0.9902 + }, + { + "start": 360.82, + "end": 362.06, + "probability": 0.9065 + }, + { + "start": 363.56, + "end": 366.66, + "probability": 0.832 + }, + { + "start": 367.64, + "end": 371.06, + "probability": 0.6191 + }, + { + "start": 371.88, + "end": 376.28, + "probability": 0.9102 + }, + { + "start": 376.86, + "end": 377.44, + "probability": 0.8915 + }, + { + "start": 379.12, + "end": 383.46, + "probability": 0.9951 + }, + { + "start": 383.46, + "end": 386.5, + "probability": 0.77 + }, + { + "start": 387.28, + "end": 388.0, + "probability": 0.761 + }, + { + "start": 389.12, + "end": 390.46, + "probability": 0.9797 + }, + { + "start": 391.12, + "end": 392.18, + "probability": 0.9085 + }, + { + "start": 393.86, + "end": 396.12, + "probability": 0.9251 + }, + { + "start": 397.6, + "end": 398.52, + "probability": 0.8147 + }, + { + "start": 401.86, + "end": 405.8, + "probability": 0.8605 + }, + { + "start": 408.08, + "end": 410.74, + "probability": 0.8906 + }, + { + "start": 411.36, + "end": 415.1, + "probability": 0.9953 + }, + { + "start": 416.88, + "end": 418.96, + "probability": 0.8848 + }, + { + "start": 419.06, + "end": 419.96, + "probability": 0.8256 + }, + { + "start": 420.04, + "end": 421.02, + "probability": 0.7513 + }, + { + "start": 421.1, + "end": 422.04, + "probability": 0.6371 + }, + { + "start": 422.58, + "end": 423.92, + "probability": 0.7662 + }, + { + "start": 424.76, + "end": 427.46, + "probability": 0.978 + }, + { + "start": 429.24, + "end": 429.58, + "probability": 0.9581 + }, + { + "start": 430.3, + "end": 431.74, + "probability": 0.9445 + }, + { + "start": 432.08, + "end": 434.38, + "probability": 0.9816 + }, + { + "start": 434.88, + "end": 435.56, + "probability": 0.9883 + }, + { + "start": 435.74, + "end": 437.28, + "probability": 0.8631 + }, + { + "start": 438.06, + "end": 439.82, + "probability": 0.7921 + }, + { + "start": 440.14, + "end": 441.4, + "probability": 0.7889 + }, + { + "start": 441.88, + "end": 443.44, + "probability": 0.9671 + }, + { + "start": 447.82, + "end": 451.58, + "probability": 0.989 + }, + { + "start": 453.68, + "end": 457.9, + "probability": 0.9904 + }, + { + "start": 458.8, + "end": 459.56, + "probability": 0.9951 + }, + { + "start": 461.3, + "end": 464.46, + "probability": 0.9628 + }, + { + "start": 467.86, + "end": 468.28, + "probability": 0.7026 + }, + { + "start": 468.6, + "end": 468.96, + "probability": 0.7374 + }, + { + "start": 470.06, + "end": 472.34, + "probability": 0.9956 + }, + { + "start": 473.74, + "end": 474.68, + "probability": 0.7302 + }, + { + "start": 475.76, + "end": 478.08, + "probability": 0.9575 + }, + { + "start": 479.04, + "end": 480.3, + "probability": 0.947 + }, + { + "start": 481.16, + "end": 484.65, + "probability": 0.9206 + }, + { + "start": 486.26, + "end": 487.35, + "probability": 0.9956 + }, + { + "start": 488.66, + "end": 489.94, + "probability": 0.9956 + }, + { + "start": 490.78, + "end": 496.62, + "probability": 0.8422 + }, + { + "start": 496.74, + "end": 499.3, + "probability": 0.7922 + }, + { + "start": 502.06, + "end": 505.86, + "probability": 0.7518 + }, + { + "start": 507.76, + "end": 509.64, + "probability": 0.866 + }, + { + "start": 511.88, + "end": 513.16, + "probability": 0.9969 + }, + { + "start": 517.8, + "end": 520.44, + "probability": 0.8942 + }, + { + "start": 521.06, + "end": 522.0, + "probability": 0.8384 + }, + { + "start": 522.06, + "end": 528.48, + "probability": 0.8125 + }, + { + "start": 532.02, + "end": 534.74, + "probability": 0.697 + }, + { + "start": 535.46, + "end": 538.28, + "probability": 0.9858 + }, + { + "start": 538.86, + "end": 540.66, + "probability": 0.9883 + }, + { + "start": 543.66, + "end": 546.56, + "probability": 0.9984 + }, + { + "start": 546.82, + "end": 548.38, + "probability": 0.9214 + }, + { + "start": 549.94, + "end": 550.57, + "probability": 0.9385 + }, + { + "start": 550.74, + "end": 550.9, + "probability": 0.8911 + }, + { + "start": 551.1, + "end": 553.02, + "probability": 0.991 + }, + { + "start": 553.5, + "end": 556.9, + "probability": 0.9581 + }, + { + "start": 556.96, + "end": 557.76, + "probability": 0.9778 + }, + { + "start": 558.42, + "end": 560.38, + "probability": 0.9665 + }, + { + "start": 563.12, + "end": 565.06, + "probability": 0.9057 + }, + { + "start": 566.02, + "end": 568.56, + "probability": 0.9971 + }, + { + "start": 569.84, + "end": 574.34, + "probability": 0.8906 + }, + { + "start": 574.42, + "end": 575.7, + "probability": 0.9817 + }, + { + "start": 576.38, + "end": 577.6, + "probability": 0.9889 + }, + { + "start": 579.24, + "end": 580.5, + "probability": 0.8884 + }, + { + "start": 581.68, + "end": 583.38, + "probability": 0.946 + }, + { + "start": 583.74, + "end": 584.22, + "probability": 0.8485 + }, + { + "start": 584.3, + "end": 586.88, + "probability": 0.9968 + }, + { + "start": 587.38, + "end": 587.94, + "probability": 0.7867 + }, + { + "start": 588.02, + "end": 588.94, + "probability": 0.8632 + }, + { + "start": 590.2, + "end": 590.78, + "probability": 0.9711 + }, + { + "start": 592.02, + "end": 595.18, + "probability": 0.9634 + }, + { + "start": 596.14, + "end": 596.9, + "probability": 0.6967 + }, + { + "start": 597.06, + "end": 598.83, + "probability": 0.9966 + }, + { + "start": 599.98, + "end": 600.26, + "probability": 0.9731 + }, + { + "start": 601.08, + "end": 602.66, + "probability": 0.5366 + }, + { + "start": 603.24, + "end": 607.74, + "probability": 0.9277 + }, + { + "start": 609.12, + "end": 609.86, + "probability": 0.8127 + }, + { + "start": 610.96, + "end": 613.72, + "probability": 0.643 + }, + { + "start": 614.39, + "end": 616.68, + "probability": 0.9303 + }, + { + "start": 616.9, + "end": 619.98, + "probability": 0.9102 + }, + { + "start": 620.04, + "end": 620.56, + "probability": 0.0134 + }, + { + "start": 620.76, + "end": 620.9, + "probability": 0.0726 + }, + { + "start": 620.9, + "end": 620.9, + "probability": 0.144 + }, + { + "start": 620.9, + "end": 620.9, + "probability": 0.1015 + }, + { + "start": 620.9, + "end": 620.9, + "probability": 0.1189 + }, + { + "start": 620.9, + "end": 620.9, + "probability": 0.0165 + }, + { + "start": 620.9, + "end": 620.9, + "probability": 0.0282 + }, + { + "start": 620.9, + "end": 622.02, + "probability": 0.6096 + }, + { + "start": 622.5, + "end": 627.94, + "probability": 0.7422 + }, + { + "start": 628.64, + "end": 629.99, + "probability": 0.8689 + }, + { + "start": 631.12, + "end": 631.72, + "probability": 0.9695 + }, + { + "start": 632.02, + "end": 635.72, + "probability": 0.8898 + }, + { + "start": 636.28, + "end": 636.68, + "probability": 0.4053 + }, + { + "start": 636.68, + "end": 637.2, + "probability": 0.5176 + }, + { + "start": 637.44, + "end": 638.14, + "probability": 0.8099 + }, + { + "start": 638.36, + "end": 639.94, + "probability": 0.8458 + }, + { + "start": 639.94, + "end": 640.18, + "probability": 0.1541 + }, + { + "start": 641.2, + "end": 644.2, + "probability": 0.7429 + }, + { + "start": 644.32, + "end": 647.22, + "probability": 0.348 + }, + { + "start": 647.3, + "end": 647.56, + "probability": 0.1103 + }, + { + "start": 647.7, + "end": 648.1, + "probability": 0.8867 + }, + { + "start": 648.14, + "end": 648.75, + "probability": 0.7199 + }, + { + "start": 649.54, + "end": 651.06, + "probability": 0.7173 + }, + { + "start": 651.18, + "end": 652.08, + "probability": 0.5321 + }, + { + "start": 653.14, + "end": 653.88, + "probability": 0.3269 + }, + { + "start": 654.12, + "end": 657.0, + "probability": 0.7183 + }, + { + "start": 659.72, + "end": 661.86, + "probability": 0.5123 + }, + { + "start": 662.14, + "end": 662.14, + "probability": 0.1815 + }, + { + "start": 662.14, + "end": 663.14, + "probability": 0.1499 + }, + { + "start": 663.34, + "end": 663.58, + "probability": 0.3673 + }, + { + "start": 663.6, + "end": 663.76, + "probability": 0.3244 + }, + { + "start": 663.86, + "end": 664.3, + "probability": 0.1706 + }, + { + "start": 664.46, + "end": 664.96, + "probability": 0.1242 + }, + { + "start": 664.96, + "end": 666.04, + "probability": 0.5894 + }, + { + "start": 666.08, + "end": 669.46, + "probability": 0.8725 + }, + { + "start": 669.52, + "end": 669.78, + "probability": 0.6403 + }, + { + "start": 669.92, + "end": 674.4, + "probability": 0.7489 + }, + { + "start": 676.8, + "end": 677.5, + "probability": 0.8041 + }, + { + "start": 677.58, + "end": 678.42, + "probability": 0.8988 + }, + { + "start": 679.04, + "end": 679.76, + "probability": 0.9355 + }, + { + "start": 680.2, + "end": 682.0, + "probability": 0.9034 + }, + { + "start": 682.34, + "end": 683.16, + "probability": 0.8345 + }, + { + "start": 683.66, + "end": 684.33, + "probability": 0.459 + }, + { + "start": 684.68, + "end": 685.04, + "probability": 0.4364 + }, + { + "start": 685.16, + "end": 686.04, + "probability": 0.2625 + }, + { + "start": 686.1, + "end": 689.0, + "probability": 0.096 + }, + { + "start": 689.34, + "end": 691.34, + "probability": 0.8298 + }, + { + "start": 691.84, + "end": 698.42, + "probability": 0.6547 + }, + { + "start": 698.52, + "end": 703.64, + "probability": 0.9771 + }, + { + "start": 703.64, + "end": 703.86, + "probability": 0.2064 + }, + { + "start": 704.14, + "end": 707.7, + "probability": 0.9271 + }, + { + "start": 708.58, + "end": 712.42, + "probability": 0.6409 + }, + { + "start": 712.94, + "end": 714.96, + "probability": 0.7087 + }, + { + "start": 715.82, + "end": 720.96, + "probability": 0.6432 + }, + { + "start": 721.96, + "end": 724.56, + "probability": 0.9222 + }, + { + "start": 725.14, + "end": 727.7, + "probability": 0.9189 + }, + { + "start": 727.9, + "end": 728.96, + "probability": 0.8834 + }, + { + "start": 729.36, + "end": 730.0, + "probability": 0.8611 + }, + { + "start": 730.06, + "end": 731.79, + "probability": 0.9922 + }, + { + "start": 732.5, + "end": 733.52, + "probability": 0.7183 + }, + { + "start": 734.68, + "end": 735.78, + "probability": 0.9907 + }, + { + "start": 737.36, + "end": 737.96, + "probability": 0.78 + }, + { + "start": 738.44, + "end": 740.12, + "probability": 0.9925 + }, + { + "start": 740.94, + "end": 744.78, + "probability": 0.9653 + }, + { + "start": 747.76, + "end": 749.06, + "probability": 0.6943 + }, + { + "start": 750.24, + "end": 752.44, + "probability": 0.7793 + }, + { + "start": 752.58, + "end": 755.64, + "probability": 0.8244 + }, + { + "start": 756.74, + "end": 757.82, + "probability": 0.9143 + }, + { + "start": 759.5, + "end": 760.32, + "probability": 0.7568 + }, + { + "start": 761.88, + "end": 763.78, + "probability": 0.9933 + }, + { + "start": 764.3, + "end": 765.42, + "probability": 0.5459 + }, + { + "start": 765.64, + "end": 769.36, + "probability": 0.7769 + }, + { + "start": 769.66, + "end": 770.14, + "probability": 0.2304 + }, + { + "start": 771.62, + "end": 773.28, + "probability": 0.3839 + }, + { + "start": 774.48, + "end": 777.02, + "probability": 0.481 + }, + { + "start": 778.06, + "end": 778.06, + "probability": 0.0816 + }, + { + "start": 778.06, + "end": 779.02, + "probability": 0.3126 + }, + { + "start": 780.92, + "end": 784.3, + "probability": 0.1584 + }, + { + "start": 784.4, + "end": 787.16, + "probability": 0.3239 + }, + { + "start": 788.38, + "end": 789.42, + "probability": 0.3028 + }, + { + "start": 789.44, + "end": 789.92, + "probability": 0.1939 + }, + { + "start": 790.12, + "end": 790.84, + "probability": 0.0311 + }, + { + "start": 790.84, + "end": 792.32, + "probability": 0.3844 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.0, + "end": 884.0, + "probability": 0.0 + }, + { + "start": 884.16, + "end": 884.26, + "probability": 0.1796 + }, + { + "start": 884.26, + "end": 884.26, + "probability": 0.0567 + }, + { + "start": 884.26, + "end": 884.26, + "probability": 0.0647 + }, + { + "start": 884.26, + "end": 886.56, + "probability": 0.8073 + }, + { + "start": 887.54, + "end": 894.22, + "probability": 0.9429 + }, + { + "start": 894.66, + "end": 895.28, + "probability": 0.1234 + }, + { + "start": 895.52, + "end": 895.52, + "probability": 0.0514 + }, + { + "start": 895.56, + "end": 896.34, + "probability": 0.2888 + }, + { + "start": 896.66, + "end": 899.16, + "probability": 0.7968 + }, + { + "start": 899.24, + "end": 902.42, + "probability": 0.8782 + }, + { + "start": 902.6, + "end": 903.82, + "probability": 0.8857 + }, + { + "start": 903.92, + "end": 904.62, + "probability": 0.601 + }, + { + "start": 905.64, + "end": 906.3, + "probability": 0.6254 + }, + { + "start": 906.4, + "end": 907.34, + "probability": 0.8486 + }, + { + "start": 907.4, + "end": 912.58, + "probability": 0.9683 + }, + { + "start": 913.12, + "end": 916.16, + "probability": 0.8722 + }, + { + "start": 916.78, + "end": 918.84, + "probability": 0.7948 + }, + { + "start": 919.74, + "end": 920.35, + "probability": 0.9623 + }, + { + "start": 921.1, + "end": 922.26, + "probability": 0.8201 + }, + { + "start": 923.0, + "end": 925.8, + "probability": 0.9219 + }, + { + "start": 926.26, + "end": 927.2, + "probability": 0.9119 + }, + { + "start": 927.28, + "end": 930.22, + "probability": 0.8861 + }, + { + "start": 930.72, + "end": 932.22, + "probability": 0.8997 + }, + { + "start": 932.82, + "end": 933.16, + "probability": 0.0126 + }, + { + "start": 934.56, + "end": 935.7, + "probability": 0.0244 + }, + { + "start": 935.78, + "end": 935.78, + "probability": 0.1294 + }, + { + "start": 935.78, + "end": 935.78, + "probability": 0.0647 + }, + { + "start": 935.78, + "end": 936.48, + "probability": 0.1862 + }, + { + "start": 936.48, + "end": 936.48, + "probability": 0.494 + }, + { + "start": 936.62, + "end": 937.66, + "probability": 0.1284 + }, + { + "start": 937.74, + "end": 939.38, + "probability": 0.141 + }, + { + "start": 939.78, + "end": 947.38, + "probability": 0.7222 + }, + { + "start": 947.38, + "end": 951.0, + "probability": 0.8398 + }, + { + "start": 952.14, + "end": 956.5, + "probability": 0.9897 + }, + { + "start": 957.3, + "end": 958.32, + "probability": 0.9692 + }, + { + "start": 958.98, + "end": 961.18, + "probability": 0.983 + }, + { + "start": 961.8, + "end": 962.66, + "probability": 0.82 + }, + { + "start": 964.34, + "end": 966.5, + "probability": 0.9888 + }, + { + "start": 967.5, + "end": 969.2, + "probability": 0.9783 + }, + { + "start": 970.06, + "end": 970.72, + "probability": 0.8971 + }, + { + "start": 971.56, + "end": 973.24, + "probability": 0.983 + }, + { + "start": 973.24, + "end": 976.94, + "probability": 0.9847 + }, + { + "start": 978.06, + "end": 978.22, + "probability": 0.9761 + }, + { + "start": 978.38, + "end": 980.66, + "probability": 0.9966 + }, + { + "start": 980.7, + "end": 982.32, + "probability": 0.9866 + }, + { + "start": 982.88, + "end": 984.82, + "probability": 0.9189 + }, + { + "start": 985.78, + "end": 988.6, + "probability": 0.9922 + }, + { + "start": 988.86, + "end": 989.74, + "probability": 0.893 + }, + { + "start": 990.7, + "end": 993.02, + "probability": 0.9978 + }, + { + "start": 993.88, + "end": 995.66, + "probability": 0.9962 + }, + { + "start": 996.66, + "end": 999.64, + "probability": 0.9972 + }, + { + "start": 999.98, + "end": 1005.78, + "probability": 0.9849 + }, + { + "start": 1007.06, + "end": 1007.82, + "probability": 0.9272 + }, + { + "start": 1008.62, + "end": 1011.36, + "probability": 0.9965 + }, + { + "start": 1011.98, + "end": 1013.58, + "probability": 0.9424 + }, + { + "start": 1014.28, + "end": 1017.32, + "probability": 0.849 + }, + { + "start": 1017.86, + "end": 1019.14, + "probability": 0.9834 + }, + { + "start": 1019.82, + "end": 1020.23, + "probability": 0.9751 + }, + { + "start": 1021.48, + "end": 1024.48, + "probability": 0.9364 + }, + { + "start": 1025.64, + "end": 1026.62, + "probability": 0.6225 + }, + { + "start": 1027.26, + "end": 1029.7, + "probability": 0.8996 + }, + { + "start": 1030.68, + "end": 1032.36, + "probability": 0.9745 + }, + { + "start": 1032.82, + "end": 1034.18, + "probability": 0.7804 + }, + { + "start": 1035.14, + "end": 1036.76, + "probability": 0.8266 + }, + { + "start": 1037.7, + "end": 1038.36, + "probability": 0.477 + }, + { + "start": 1039.32, + "end": 1040.32, + "probability": 0.9076 + }, + { + "start": 1040.84, + "end": 1043.12, + "probability": 0.994 + }, + { + "start": 1043.74, + "end": 1048.1, + "probability": 0.9983 + }, + { + "start": 1048.56, + "end": 1049.62, + "probability": 0.9807 + }, + { + "start": 1050.06, + "end": 1051.22, + "probability": 0.8724 + }, + { + "start": 1051.26, + "end": 1051.94, + "probability": 0.9408 + }, + { + "start": 1052.92, + "end": 1055.16, + "probability": 0.9951 + }, + { + "start": 1055.98, + "end": 1059.06, + "probability": 0.9951 + }, + { + "start": 1060.1, + "end": 1061.58, + "probability": 0.9465 + }, + { + "start": 1062.24, + "end": 1065.84, + "probability": 0.95 + }, + { + "start": 1066.56, + "end": 1068.44, + "probability": 0.9854 + }, + { + "start": 1069.4, + "end": 1072.12, + "probability": 0.9923 + }, + { + "start": 1072.86, + "end": 1073.96, + "probability": 0.9871 + }, + { + "start": 1075.22, + "end": 1076.24, + "probability": 0.9254 + }, + { + "start": 1077.0, + "end": 1078.62, + "probability": 0.99 + }, + { + "start": 1079.28, + "end": 1080.28, + "probability": 0.9678 + }, + { + "start": 1081.12, + "end": 1082.32, + "probability": 0.9905 + }, + { + "start": 1083.38, + "end": 1085.7, + "probability": 0.9954 + }, + { + "start": 1086.38, + "end": 1088.34, + "probability": 0.6806 + }, + { + "start": 1089.12, + "end": 1091.86, + "probability": 0.9985 + }, + { + "start": 1092.3, + "end": 1093.46, + "probability": 0.9799 + }, + { + "start": 1093.92, + "end": 1095.48, + "probability": 0.97 + }, + { + "start": 1095.52, + "end": 1096.1, + "probability": 0.888 + }, + { + "start": 1096.4, + "end": 1097.56, + "probability": 0.7319 + }, + { + "start": 1098.4, + "end": 1100.12, + "probability": 0.8955 + }, + { + "start": 1101.02, + "end": 1101.5, + "probability": 0.3802 + }, + { + "start": 1102.12, + "end": 1103.0, + "probability": 0.7983 + }, + { + "start": 1104.06, + "end": 1105.4, + "probability": 0.9961 + }, + { + "start": 1105.7, + "end": 1106.7, + "probability": 0.9639 + }, + { + "start": 1108.14, + "end": 1112.48, + "probability": 0.8036 + }, + { + "start": 1113.16, + "end": 1114.88, + "probability": 0.9907 + }, + { + "start": 1115.5, + "end": 1116.04, + "probability": 0.9506 + }, + { + "start": 1117.06, + "end": 1119.4, + "probability": 0.9976 + }, + { + "start": 1119.48, + "end": 1119.92, + "probability": 0.4309 + }, + { + "start": 1120.06, + "end": 1120.58, + "probability": 0.9433 + }, + { + "start": 1120.64, + "end": 1121.36, + "probability": 0.7858 + }, + { + "start": 1121.86, + "end": 1122.64, + "probability": 0.8997 + }, + { + "start": 1123.38, + "end": 1124.08, + "probability": 0.5489 + }, + { + "start": 1125.02, + "end": 1125.46, + "probability": 0.8118 + }, + { + "start": 1126.04, + "end": 1126.54, + "probability": 0.739 + }, + { + "start": 1127.02, + "end": 1128.76, + "probability": 0.9614 + }, + { + "start": 1133.5, + "end": 1135.6, + "probability": 0.2973 + }, + { + "start": 1135.98, + "end": 1137.0, + "probability": 0.9095 + }, + { + "start": 1137.8, + "end": 1138.25, + "probability": 0.9155 + }, + { + "start": 1139.08, + "end": 1141.6, + "probability": 0.9775 + }, + { + "start": 1141.98, + "end": 1144.72, + "probability": 0.9795 + }, + { + "start": 1145.62, + "end": 1150.92, + "probability": 0.9735 + }, + { + "start": 1151.74, + "end": 1153.94, + "probability": 0.9812 + }, + { + "start": 1154.76, + "end": 1156.1, + "probability": 0.9875 + }, + { + "start": 1156.3, + "end": 1156.82, + "probability": 0.1517 + }, + { + "start": 1158.34, + "end": 1161.08, + "probability": 0.5318 + }, + { + "start": 1161.7, + "end": 1162.3, + "probability": 0.6284 + }, + { + "start": 1162.36, + "end": 1164.26, + "probability": 0.9175 + }, + { + "start": 1164.98, + "end": 1165.7, + "probability": 0.6524 + }, + { + "start": 1165.8, + "end": 1166.48, + "probability": 0.8979 + }, + { + "start": 1166.64, + "end": 1167.6, + "probability": 0.951 + }, + { + "start": 1167.74, + "end": 1168.02, + "probability": 0.7587 + }, + { + "start": 1168.42, + "end": 1171.42, + "probability": 0.881 + }, + { + "start": 1172.24, + "end": 1173.8, + "probability": 0.1953 + }, + { + "start": 1177.48, + "end": 1179.02, + "probability": 0.0378 + }, + { + "start": 1179.02, + "end": 1179.02, + "probability": 0.2195 + }, + { + "start": 1179.02, + "end": 1179.02, + "probability": 0.1121 + }, + { + "start": 1179.02, + "end": 1185.18, + "probability": 0.887 + }, + { + "start": 1185.6, + "end": 1186.9, + "probability": 0.256 + }, + { + "start": 1188.44, + "end": 1190.48, + "probability": 0.9034 + }, + { + "start": 1190.58, + "end": 1191.24, + "probability": 0.6205 + }, + { + "start": 1191.36, + "end": 1191.84, + "probability": 0.7069 + }, + { + "start": 1191.92, + "end": 1193.16, + "probability": 0.8633 + }, + { + "start": 1193.4, + "end": 1194.14, + "probability": 0.4457 + }, + { + "start": 1197.64, + "end": 1199.72, + "probability": 0.8423 + }, + { + "start": 1201.1, + "end": 1201.1, + "probability": 0.2094 + }, + { + "start": 1201.1, + "end": 1201.64, + "probability": 0.8235 + }, + { + "start": 1202.56, + "end": 1203.46, + "probability": 0.8711 + }, + { + "start": 1203.9, + "end": 1204.5, + "probability": 0.6987 + }, + { + "start": 1204.66, + "end": 1204.87, + "probability": 0.0135 + }, + { + "start": 1205.32, + "end": 1207.08, + "probability": 0.5784 + }, + { + "start": 1207.12, + "end": 1207.76, + "probability": 0.9315 + }, + { + "start": 1208.02, + "end": 1210.8, + "probability": 0.957 + }, + { + "start": 1210.86, + "end": 1211.76, + "probability": 0.5303 + }, + { + "start": 1211.82, + "end": 1212.92, + "probability": 0.7863 + }, + { + "start": 1213.08, + "end": 1214.72, + "probability": 0.8721 + }, + { + "start": 1214.8, + "end": 1216.38, + "probability": 0.8997 + }, + { + "start": 1216.42, + "end": 1217.36, + "probability": 0.9367 + }, + { + "start": 1219.2, + "end": 1221.28, + "probability": 0.9965 + }, + { + "start": 1222.04, + "end": 1223.78, + "probability": 0.9858 + }, + { + "start": 1223.88, + "end": 1224.6, + "probability": 0.696 + }, + { + "start": 1224.66, + "end": 1224.8, + "probability": 0.9215 + }, + { + "start": 1225.26, + "end": 1226.12, + "probability": 0.6645 + }, + { + "start": 1231.52, + "end": 1233.78, + "probability": 0.8735 + }, + { + "start": 1234.32, + "end": 1235.2, + "probability": 0.9443 + }, + { + "start": 1235.6, + "end": 1235.86, + "probability": 0.9084 + }, + { + "start": 1235.94, + "end": 1237.56, + "probability": 0.8934 + }, + { + "start": 1237.58, + "end": 1238.0, + "probability": 0.6689 + }, + { + "start": 1238.04, + "end": 1238.5, + "probability": 0.7903 + }, + { + "start": 1238.56, + "end": 1239.04, + "probability": 0.9693 + }, + { + "start": 1239.08, + "end": 1240.18, + "probability": 0.8839 + }, + { + "start": 1240.62, + "end": 1242.04, + "probability": 0.9751 + }, + { + "start": 1242.28, + "end": 1242.44, + "probability": 0.4285 + }, + { + "start": 1243.06, + "end": 1243.72, + "probability": 0.7948 + }, + { + "start": 1243.8, + "end": 1243.94, + "probability": 0.9259 + }, + { + "start": 1244.0, + "end": 1244.28, + "probability": 0.8537 + }, + { + "start": 1244.36, + "end": 1244.62, + "probability": 0.9631 + }, + { + "start": 1244.72, + "end": 1245.08, + "probability": 0.9473 + }, + { + "start": 1245.16, + "end": 1245.28, + "probability": 0.842 + }, + { + "start": 1245.4, + "end": 1246.1, + "probability": 0.561 + }, + { + "start": 1246.2, + "end": 1246.98, + "probability": 0.9608 + }, + { + "start": 1247.38, + "end": 1249.9, + "probability": 0.8999 + }, + { + "start": 1251.5, + "end": 1253.02, + "probability": 0.9858 + }, + { + "start": 1253.78, + "end": 1254.94, + "probability": 0.8072 + }, + { + "start": 1255.86, + "end": 1257.22, + "probability": 0.9836 + }, + { + "start": 1258.02, + "end": 1259.8, + "probability": 0.7711 + }, + { + "start": 1260.36, + "end": 1261.76, + "probability": 0.9463 + }, + { + "start": 1261.86, + "end": 1263.38, + "probability": 0.6067 + }, + { + "start": 1263.72, + "end": 1266.58, + "probability": 0.9881 + }, + { + "start": 1266.66, + "end": 1267.39, + "probability": 0.9609 + }, + { + "start": 1268.72, + "end": 1270.72, + "probability": 0.6932 + }, + { + "start": 1270.82, + "end": 1273.2, + "probability": 0.9883 + }, + { + "start": 1273.34, + "end": 1275.42, + "probability": 0.5029 + }, + { + "start": 1275.6, + "end": 1276.62, + "probability": 0.869 + }, + { + "start": 1277.04, + "end": 1278.08, + "probability": 0.7891 + }, + { + "start": 1278.16, + "end": 1278.18, + "probability": 0.021 + }, + { + "start": 1278.18, + "end": 1279.48, + "probability": 0.8087 + }, + { + "start": 1279.48, + "end": 1280.22, + "probability": 0.5005 + }, + { + "start": 1280.58, + "end": 1283.22, + "probability": 0.6328 + }, + { + "start": 1283.46, + "end": 1284.64, + "probability": 0.939 + }, + { + "start": 1284.84, + "end": 1286.24, + "probability": 0.7599 + }, + { + "start": 1286.36, + "end": 1287.12, + "probability": 0.0415 + }, + { + "start": 1287.12, + "end": 1287.68, + "probability": 0.2065 + }, + { + "start": 1288.22, + "end": 1289.92, + "probability": 0.5806 + }, + { + "start": 1289.98, + "end": 1290.46, + "probability": 0.356 + }, + { + "start": 1291.16, + "end": 1291.3, + "probability": 0.1081 + }, + { + "start": 1291.3, + "end": 1291.37, + "probability": 0.1859 + }, + { + "start": 1292.14, + "end": 1292.58, + "probability": 0.8796 + }, + { + "start": 1292.66, + "end": 1293.14, + "probability": 0.8345 + }, + { + "start": 1293.34, + "end": 1295.94, + "probability": 0.3592 + }, + { + "start": 1296.08, + "end": 1299.6, + "probability": 0.6996 + }, + { + "start": 1299.74, + "end": 1300.7, + "probability": 0.0072 + }, + { + "start": 1300.98, + "end": 1302.94, + "probability": 0.8669 + }, + { + "start": 1303.06, + "end": 1307.62, + "probability": 0.8804 + }, + { + "start": 1307.74, + "end": 1307.74, + "probability": 0.1999 + }, + { + "start": 1307.74, + "end": 1310.82, + "probability": 0.6902 + }, + { + "start": 1310.92, + "end": 1311.64, + "probability": 0.5858 + }, + { + "start": 1311.78, + "end": 1314.92, + "probability": 0.5885 + }, + { + "start": 1315.04, + "end": 1315.04, + "probability": 0.1407 + }, + { + "start": 1315.04, + "end": 1315.82, + "probability": 0.9033 + }, + { + "start": 1316.04, + "end": 1317.07, + "probability": 0.7355 + }, + { + "start": 1317.32, + "end": 1318.53, + "probability": 0.548 + }, + { + "start": 1318.78, + "end": 1321.24, + "probability": 0.3459 + }, + { + "start": 1321.3, + "end": 1321.92, + "probability": 0.126 + }, + { + "start": 1322.14, + "end": 1323.11, + "probability": 0.7463 + }, + { + "start": 1323.56, + "end": 1325.5, + "probability": 0.6935 + }, + { + "start": 1325.84, + "end": 1325.84, + "probability": 0.2176 + }, + { + "start": 1325.84, + "end": 1326.04, + "probability": 0.2367 + }, + { + "start": 1326.1, + "end": 1327.06, + "probability": 0.7462 + }, + { + "start": 1327.14, + "end": 1328.58, + "probability": 0.6251 + }, + { + "start": 1328.64, + "end": 1329.86, + "probability": 0.8389 + }, + { + "start": 1330.22, + "end": 1331.38, + "probability": 0.0746 + }, + { + "start": 1331.5, + "end": 1331.5, + "probability": 0.1254 + }, + { + "start": 1331.5, + "end": 1331.5, + "probability": 0.1801 + }, + { + "start": 1331.5, + "end": 1332.32, + "probability": 0.6588 + }, + { + "start": 1332.44, + "end": 1335.11, + "probability": 0.9413 + }, + { + "start": 1335.84, + "end": 1341.22, + "probability": 0.0306 + }, + { + "start": 1342.66, + "end": 1343.15, + "probability": 0.0066 + }, + { + "start": 1343.34, + "end": 1344.28, + "probability": 0.016 + }, + { + "start": 1345.31, + "end": 1350.44, + "probability": 0.0589 + }, + { + "start": 1350.44, + "end": 1350.44, + "probability": 0.0256 + }, + { + "start": 1350.44, + "end": 1352.44, + "probability": 0.0253 + }, + { + "start": 1354.38, + "end": 1357.78, + "probability": 0.2953 + }, + { + "start": 1357.78, + "end": 1360.54, + "probability": 0.5654 + }, + { + "start": 1360.82, + "end": 1361.5, + "probability": 0.2442 + }, + { + "start": 1361.62, + "end": 1362.9, + "probability": 0.0633 + }, + { + "start": 1363.48, + "end": 1365.3, + "probability": 0.1693 + }, + { + "start": 1365.48, + "end": 1368.47, + "probability": 0.0521 + }, + { + "start": 1369.46, + "end": 1369.46, + "probability": 0.0124 + }, + { + "start": 1370.14, + "end": 1370.36, + "probability": 0.0317 + }, + { + "start": 1370.57, + "end": 1371.96, + "probability": 0.0172 + }, + { + "start": 1371.98, + "end": 1372.14, + "probability": 0.0274 + }, + { + "start": 1372.16, + "end": 1372.58, + "probability": 0.1663 + }, + { + "start": 1372.58, + "end": 1373.03, + "probability": 0.2424 + }, + { + "start": 1373.7, + "end": 1373.7, + "probability": 0.5132 + }, + { + "start": 1373.7, + "end": 1374.24, + "probability": 0.1153 + }, + { + "start": 1374.24, + "end": 1374.56, + "probability": 0.1921 + }, + { + "start": 1374.8, + "end": 1375.94, + "probability": 0.0416 + }, + { + "start": 1376.84, + "end": 1376.88, + "probability": 0.0911 + }, + { + "start": 1383.0, + "end": 1383.0, + "probability": 0.0 + }, + { + "start": 1383.0, + "end": 1383.0, + "probability": 0.0 + }, + { + "start": 1383.0, + "end": 1383.0, + "probability": 0.0 + }, + { + "start": 1383.0, + "end": 1383.0, + "probability": 0.0 + }, + { + "start": 1383.0, + "end": 1383.0, + "probability": 0.0 + }, + { + "start": 1383.0, + "end": 1383.0, + "probability": 0.0 + }, + { + "start": 1383.0, + "end": 1383.0, + "probability": 0.0 + }, + { + "start": 1383.0, + "end": 1383.0, + "probability": 0.0 + }, + { + "start": 1383.14, + "end": 1383.16, + "probability": 0.029 + }, + { + "start": 1383.16, + "end": 1383.16, + "probability": 0.0514 + }, + { + "start": 1383.16, + "end": 1383.16, + "probability": 0.0662 + }, + { + "start": 1383.16, + "end": 1383.16, + "probability": 0.0539 + }, + { + "start": 1383.16, + "end": 1384.23, + "probability": 0.4619 + }, + { + "start": 1385.22, + "end": 1385.24, + "probability": 0.0495 + }, + { + "start": 1385.24, + "end": 1386.4, + "probability": 0.6639 + }, + { + "start": 1387.1, + "end": 1388.38, + "probability": 0.7559 + }, + { + "start": 1388.5, + "end": 1388.7, + "probability": 0.4714 + }, + { + "start": 1388.82, + "end": 1389.98, + "probability": 0.798 + }, + { + "start": 1390.2, + "end": 1391.22, + "probability": 0.8854 + }, + { + "start": 1391.28, + "end": 1392.3, + "probability": 0.9066 + }, + { + "start": 1392.5, + "end": 1392.94, + "probability": 0.8525 + }, + { + "start": 1392.98, + "end": 1393.46, + "probability": 0.7115 + }, + { + "start": 1393.54, + "end": 1396.88, + "probability": 0.8604 + }, + { + "start": 1396.9, + "end": 1400.58, + "probability": 0.9592 + }, + { + "start": 1400.86, + "end": 1405.06, + "probability": 0.7759 + }, + { + "start": 1405.1, + "end": 1406.5, + "probability": 0.9724 + }, + { + "start": 1406.5, + "end": 1408.45, + "probability": 0.7905 + }, + { + "start": 1408.74, + "end": 1409.1, + "probability": 0.6772 + }, + { + "start": 1409.28, + "end": 1409.56, + "probability": 0.467 + }, + { + "start": 1409.56, + "end": 1409.8, + "probability": 0.4437 + }, + { + "start": 1409.82, + "end": 1410.5, + "probability": 0.5179 + }, + { + "start": 1410.7, + "end": 1413.62, + "probability": 0.1499 + }, + { + "start": 1413.62, + "end": 1413.84, + "probability": 0.0873 + }, + { + "start": 1413.84, + "end": 1413.84, + "probability": 0.1192 + }, + { + "start": 1413.84, + "end": 1414.1, + "probability": 0.3947 + }, + { + "start": 1414.1, + "end": 1416.65, + "probability": 0.4985 + }, + { + "start": 1416.88, + "end": 1417.64, + "probability": 0.6467 + }, + { + "start": 1417.8, + "end": 1418.92, + "probability": 0.655 + }, + { + "start": 1419.26, + "end": 1421.3, + "probability": 0.4946 + }, + { + "start": 1424.02, + "end": 1424.82, + "probability": 0.0591 + }, + { + "start": 1424.82, + "end": 1426.64, + "probability": 0.0767 + }, + { + "start": 1427.16, + "end": 1427.22, + "probability": 0.0362 + }, + { + "start": 1427.22, + "end": 1429.58, + "probability": 0.0551 + }, + { + "start": 1429.76, + "end": 1431.04, + "probability": 0.1137 + }, + { + "start": 1431.92, + "end": 1433.7, + "probability": 0.1355 + }, + { + "start": 1433.7, + "end": 1436.1, + "probability": 0.0254 + }, + { + "start": 1440.08, + "end": 1442.2, + "probability": 0.0299 + }, + { + "start": 1442.2, + "end": 1442.28, + "probability": 0.0749 + }, + { + "start": 1442.68, + "end": 1444.98, + "probability": 0.0864 + }, + { + "start": 1445.08, + "end": 1445.78, + "probability": 0.04 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1503.0, + "end": 1503.0, + "probability": 0.0 + }, + { + "start": 1504.32, + "end": 1504.64, + "probability": 0.0162 + }, + { + "start": 1504.64, + "end": 1505.08, + "probability": 0.0151 + }, + { + "start": 1505.46, + "end": 1506.46, + "probability": 0.0911 + }, + { + "start": 1506.62, + "end": 1506.82, + "probability": 0.1518 + }, + { + "start": 1506.82, + "end": 1508.4, + "probability": 0.0458 + }, + { + "start": 1508.64, + "end": 1511.44, + "probability": 0.0672 + }, + { + "start": 1513.7, + "end": 1517.06, + "probability": 0.1063 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.0, + "end": 1628.0, + "probability": 0.0 + }, + { + "start": 1628.12, + "end": 1628.16, + "probability": 0.0273 + }, + { + "start": 1628.16, + "end": 1628.4, + "probability": 0.1001 + }, + { + "start": 1628.5, + "end": 1630.24, + "probability": 0.7419 + }, + { + "start": 1630.68, + "end": 1633.16, + "probability": 0.9875 + }, + { + "start": 1633.54, + "end": 1635.91, + "probability": 0.9568 + }, + { + "start": 1636.42, + "end": 1637.57, + "probability": 0.9468 + }, + { + "start": 1637.72, + "end": 1640.1, + "probability": 0.7037 + }, + { + "start": 1640.54, + "end": 1643.14, + "probability": 0.855 + }, + { + "start": 1643.7, + "end": 1644.34, + "probability": 0.5848 + }, + { + "start": 1644.4, + "end": 1647.54, + "probability": 0.8421 + }, + { + "start": 1647.78, + "end": 1653.82, + "probability": 0.8198 + }, + { + "start": 1653.92, + "end": 1655.24, + "probability": 0.8431 + }, + { + "start": 1655.34, + "end": 1655.52, + "probability": 0.6866 + }, + { + "start": 1655.54, + "end": 1657.88, + "probability": 0.5281 + }, + { + "start": 1658.32, + "end": 1660.08, + "probability": 0.8348 + }, + { + "start": 1660.62, + "end": 1662.12, + "probability": 0.7389 + }, + { + "start": 1662.22, + "end": 1666.54, + "probability": 0.8296 + }, + { + "start": 1667.14, + "end": 1669.7, + "probability": 0.9281 + }, + { + "start": 1671.72, + "end": 1674.88, + "probability": 0.6819 + }, + { + "start": 1674.88, + "end": 1675.08, + "probability": 0.0655 + }, + { + "start": 1675.16, + "end": 1677.2, + "probability": 0.559 + }, + { + "start": 1677.28, + "end": 1678.18, + "probability": 0.394 + }, + { + "start": 1678.42, + "end": 1680.02, + "probability": 0.9247 + }, + { + "start": 1680.26, + "end": 1680.62, + "probability": 0.8773 + }, + { + "start": 1680.7, + "end": 1681.32, + "probability": 0.8376 + }, + { + "start": 1681.44, + "end": 1683.26, + "probability": 0.86 + }, + { + "start": 1683.48, + "end": 1684.4, + "probability": 0.6375 + }, + { + "start": 1684.42, + "end": 1684.72, + "probability": 0.8179 + }, + { + "start": 1685.12, + "end": 1686.04, + "probability": 0.9519 + }, + { + "start": 1686.1, + "end": 1686.85, + "probability": 0.9565 + }, + { + "start": 1687.06, + "end": 1689.29, + "probability": 0.5904 + }, + { + "start": 1689.8, + "end": 1690.32, + "probability": 0.1483 + }, + { + "start": 1691.25, + "end": 1695.56, + "probability": 0.1011 + }, + { + "start": 1696.24, + "end": 1698.58, + "probability": 0.6758 + }, + { + "start": 1698.72, + "end": 1701.29, + "probability": 0.4707 + }, + { + "start": 1702.14, + "end": 1702.84, + "probability": 0.8169 + }, + { + "start": 1702.92, + "end": 1703.0, + "probability": 0.7545 + }, + { + "start": 1703.1, + "end": 1703.74, + "probability": 0.6057 + }, + { + "start": 1704.18, + "end": 1705.64, + "probability": 0.9908 + }, + { + "start": 1705.66, + "end": 1707.34, + "probability": 0.7648 + }, + { + "start": 1707.94, + "end": 1708.58, + "probability": 0.8286 + }, + { + "start": 1708.9, + "end": 1710.22, + "probability": 0.7593 + }, + { + "start": 1710.28, + "end": 1710.76, + "probability": 0.7694 + }, + { + "start": 1710.84, + "end": 1713.2, + "probability": 0.8621 + }, + { + "start": 1713.78, + "end": 1715.34, + "probability": 0.9037 + }, + { + "start": 1715.6, + "end": 1716.0, + "probability": 0.9822 + }, + { + "start": 1716.44, + "end": 1719.26, + "probability": 0.7866 + }, + { + "start": 1719.34, + "end": 1721.82, + "probability": 0.974 + }, + { + "start": 1722.22, + "end": 1723.24, + "probability": 0.9463 + }, + { + "start": 1723.34, + "end": 1725.88, + "probability": 0.7549 + }, + { + "start": 1725.88, + "end": 1726.32, + "probability": 0.418 + }, + { + "start": 1726.42, + "end": 1726.46, + "probability": 0.5276 + }, + { + "start": 1726.6, + "end": 1727.56, + "probability": 0.9219 + }, + { + "start": 1727.62, + "end": 1728.5, + "probability": 0.8506 + }, + { + "start": 1729.3, + "end": 1731.66, + "probability": 0.9075 + }, + { + "start": 1731.7, + "end": 1732.66, + "probability": 0.5395 + }, + { + "start": 1732.76, + "end": 1735.92, + "probability": 0.8844 + }, + { + "start": 1737.78, + "end": 1737.88, + "probability": 0.3405 + }, + { + "start": 1737.88, + "end": 1738.98, + "probability": 0.4973 + }, + { + "start": 1739.18, + "end": 1739.84, + "probability": 0.9185 + }, + { + "start": 1740.0, + "end": 1740.0, + "probability": 0.0674 + }, + { + "start": 1740.0, + "end": 1742.12, + "probability": 0.7865 + }, + { + "start": 1742.2, + "end": 1744.06, + "probability": 0.5791 + }, + { + "start": 1744.06, + "end": 1745.66, + "probability": 0.988 + }, + { + "start": 1745.72, + "end": 1746.28, + "probability": 0.8486 + }, + { + "start": 1746.6, + "end": 1748.28, + "probability": 0.9299 + }, + { + "start": 1748.28, + "end": 1748.52, + "probability": 0.5053 + }, + { + "start": 1748.56, + "end": 1748.6, + "probability": 0.5117 + }, + { + "start": 1748.66, + "end": 1749.4, + "probability": 0.4889 + }, + { + "start": 1749.46, + "end": 1749.92, + "probability": 0.7899 + }, + { + "start": 1750.38, + "end": 1751.58, + "probability": 0.7542 + }, + { + "start": 1751.64, + "end": 1752.32, + "probability": 0.8548 + }, + { + "start": 1752.38, + "end": 1752.88, + "probability": 0.8495 + }, + { + "start": 1752.98, + "end": 1755.78, + "probability": 0.8823 + }, + { + "start": 1756.14, + "end": 1759.34, + "probability": 0.9613 + }, + { + "start": 1759.84, + "end": 1761.76, + "probability": 0.9893 + }, + { + "start": 1761.82, + "end": 1762.38, + "probability": 0.7391 + }, + { + "start": 1762.42, + "end": 1762.88, + "probability": 0.9328 + }, + { + "start": 1764.2, + "end": 1764.92, + "probability": 0.8862 + }, + { + "start": 1765.02, + "end": 1765.88, + "probability": 0.6448 + }, + { + "start": 1765.96, + "end": 1766.56, + "probability": 0.9382 + }, + { + "start": 1766.64, + "end": 1767.8, + "probability": 0.9091 + }, + { + "start": 1767.88, + "end": 1768.68, + "probability": 0.934 + }, + { + "start": 1768.74, + "end": 1770.08, + "probability": 0.9915 + }, + { + "start": 1770.42, + "end": 1771.52, + "probability": 0.9704 + }, + { + "start": 1771.8, + "end": 1772.18, + "probability": 0.9064 + }, + { + "start": 1772.24, + "end": 1773.32, + "probability": 0.74 + }, + { + "start": 1773.4, + "end": 1773.58, + "probability": 0.4712 + }, + { + "start": 1774.68, + "end": 1774.8, + "probability": 0.9453 + }, + { + "start": 1774.86, + "end": 1777.5, + "probability": 0.9336 + }, + { + "start": 1777.92, + "end": 1779.02, + "probability": 0.6845 + }, + { + "start": 1779.12, + "end": 1779.24, + "probability": 0.925 + }, + { + "start": 1779.3, + "end": 1782.98, + "probability": 0.9333 + }, + { + "start": 1783.12, + "end": 1783.18, + "probability": 0.2932 + }, + { + "start": 1783.42, + "end": 1784.28, + "probability": 0.961 + }, + { + "start": 1784.72, + "end": 1786.24, + "probability": 0.6319 + }, + { + "start": 1786.24, + "end": 1788.0, + "probability": 0.6844 + }, + { + "start": 1788.3, + "end": 1789.6, + "probability": 0.6735 + }, + { + "start": 1789.66, + "end": 1790.55, + "probability": 0.967 + }, + { + "start": 1792.26, + "end": 1794.18, + "probability": 0.7415 + }, + { + "start": 1794.46, + "end": 1798.18, + "probability": 0.7812 + }, + { + "start": 1798.2, + "end": 1798.44, + "probability": 0.374 + }, + { + "start": 1798.52, + "end": 1798.96, + "probability": 0.7152 + }, + { + "start": 1799.26, + "end": 1799.96, + "probability": 0.618 + }, + { + "start": 1800.0, + "end": 1803.7, + "probability": 0.9144 + }, + { + "start": 1804.48, + "end": 1805.26, + "probability": 0.9185 + }, + { + "start": 1805.38, + "end": 1806.5, + "probability": 0.8071 + }, + { + "start": 1806.58, + "end": 1807.89, + "probability": 0.9824 + }, + { + "start": 1808.4, + "end": 1809.34, + "probability": 0.9913 + }, + { + "start": 1809.7, + "end": 1810.68, + "probability": 0.6782 + }, + { + "start": 1810.9, + "end": 1812.48, + "probability": 0.9597 + }, + { + "start": 1813.12, + "end": 1814.76, + "probability": 0.5729 + }, + { + "start": 1814.86, + "end": 1816.3, + "probability": 0.9968 + }, + { + "start": 1816.4, + "end": 1816.75, + "probability": 0.9047 + }, + { + "start": 1818.9, + "end": 1819.92, + "probability": 0.8997 + }, + { + "start": 1820.16, + "end": 1820.82, + "probability": 0.7063 + }, + { + "start": 1820.9, + "end": 1821.16, + "probability": 0.8584 + }, + { + "start": 1821.28, + "end": 1821.36, + "probability": 0.7302 + }, + { + "start": 1821.44, + "end": 1822.64, + "probability": 0.9826 + }, + { + "start": 1824.34, + "end": 1826.96, + "probability": 0.8385 + }, + { + "start": 1828.52, + "end": 1829.0, + "probability": 0.6164 + }, + { + "start": 1829.02, + "end": 1830.16, + "probability": 0.5913 + }, + { + "start": 1830.36, + "end": 1830.96, + "probability": 0.764 + }, + { + "start": 1830.98, + "end": 1831.66, + "probability": 0.8144 + }, + { + "start": 1831.8, + "end": 1834.12, + "probability": 0.6728 + }, + { + "start": 1834.2, + "end": 1835.4, + "probability": 0.8007 + }, + { + "start": 1836.44, + "end": 1837.02, + "probability": 0.2924 + }, + { + "start": 1837.6, + "end": 1838.22, + "probability": 0.7748 + }, + { + "start": 1839.36, + "end": 1842.36, + "probability": 0.8519 + }, + { + "start": 1842.5, + "end": 1844.26, + "probability": 0.9042 + }, + { + "start": 1844.32, + "end": 1844.66, + "probability": 0.6914 + }, + { + "start": 1844.94, + "end": 1846.38, + "probability": 0.8972 + }, + { + "start": 1846.46, + "end": 1847.04, + "probability": 0.9012 + }, + { + "start": 1847.16, + "end": 1848.52, + "probability": 0.9929 + }, + { + "start": 1848.57, + "end": 1851.16, + "probability": 0.9946 + }, + { + "start": 1851.48, + "end": 1853.59, + "probability": 0.8003 + }, + { + "start": 1854.12, + "end": 1854.12, + "probability": 0.3896 + }, + { + "start": 1854.34, + "end": 1855.78, + "probability": 0.659 + }, + { + "start": 1855.88, + "end": 1856.14, + "probability": 0.6856 + }, + { + "start": 1856.2, + "end": 1856.9, + "probability": 0.9226 + }, + { + "start": 1857.32, + "end": 1857.72, + "probability": 0.592 + }, + { + "start": 1858.34, + "end": 1859.1, + "probability": 0.9155 + }, + { + "start": 1861.96, + "end": 1864.38, + "probability": 0.8706 + }, + { + "start": 1864.46, + "end": 1864.96, + "probability": 0.8396 + }, + { + "start": 1865.02, + "end": 1865.44, + "probability": 0.927 + }, + { + "start": 1865.54, + "end": 1866.14, + "probability": 0.9012 + }, + { + "start": 1866.2, + "end": 1868.82, + "probability": 0.9922 + }, + { + "start": 1869.26, + "end": 1871.26, + "probability": 0.3413 + }, + { + "start": 1871.32, + "end": 1871.66, + "probability": 0.2984 + }, + { + "start": 1872.1, + "end": 1874.32, + "probability": 0.9875 + }, + { + "start": 1874.6, + "end": 1875.17, + "probability": 0.9315 + }, + { + "start": 1875.88, + "end": 1877.58, + "probability": 0.9705 + }, + { + "start": 1878.32, + "end": 1878.76, + "probability": 0.1591 + }, + { + "start": 1878.86, + "end": 1880.62, + "probability": 0.9941 + }, + { + "start": 1880.64, + "end": 1881.16, + "probability": 0.7784 + }, + { + "start": 1881.7, + "end": 1885.32, + "probability": 0.9646 + }, + { + "start": 1886.22, + "end": 1886.8, + "probability": 0.967 + }, + { + "start": 1887.1, + "end": 1887.89, + "probability": 0.9716 + }, + { + "start": 1888.02, + "end": 1888.72, + "probability": 0.9169 + }, + { + "start": 1888.84, + "end": 1889.0, + "probability": 0.7971 + }, + { + "start": 1889.1, + "end": 1889.24, + "probability": 0.5764 + }, + { + "start": 1889.26, + "end": 1891.6, + "probability": 0.9812 + }, + { + "start": 1892.36, + "end": 1893.96, + "probability": 0.7064 + }, + { + "start": 1895.5, + "end": 1898.36, + "probability": 0.9873 + }, + { + "start": 1898.48, + "end": 1899.88, + "probability": 0.7643 + }, + { + "start": 1900.64, + "end": 1902.06, + "probability": 0.9924 + }, + { + "start": 1902.8, + "end": 1905.56, + "probability": 0.9833 + }, + { + "start": 1906.48, + "end": 1908.28, + "probability": 0.8756 + }, + { + "start": 1908.78, + "end": 1909.62, + "probability": 0.8848 + }, + { + "start": 1911.18, + "end": 1913.0, + "probability": 0.9831 + }, + { + "start": 1913.06, + "end": 1913.24, + "probability": 0.0516 + }, + { + "start": 1913.36, + "end": 1913.94, + "probability": 0.3661 + }, + { + "start": 1914.08, + "end": 1914.62, + "probability": 0.6841 + }, + { + "start": 1915.16, + "end": 1915.44, + "probability": 0.8545 + }, + { + "start": 1915.44, + "end": 1915.51, + "probability": 0.4977 + }, + { + "start": 1916.12, + "end": 1916.51, + "probability": 0.4569 + }, + { + "start": 1917.3, + "end": 1918.47, + "probability": 0.8765 + }, + { + "start": 1918.64, + "end": 1920.68, + "probability": 0.8627 + }, + { + "start": 1920.76, + "end": 1921.6, + "probability": 0.8773 + }, + { + "start": 1922.38, + "end": 1923.06, + "probability": 0.9344 + }, + { + "start": 1923.24, + "end": 1925.33, + "probability": 0.7053 + }, + { + "start": 1925.52, + "end": 1926.97, + "probability": 0.9121 + }, + { + "start": 1927.34, + "end": 1928.84, + "probability": 0.9913 + }, + { + "start": 1928.9, + "end": 1929.39, + "probability": 0.8093 + }, + { + "start": 1929.74, + "end": 1931.37, + "probability": 0.6793 + }, + { + "start": 1931.5, + "end": 1932.2, + "probability": 0.9208 + }, + { + "start": 1932.26, + "end": 1933.3, + "probability": 0.7823 + }, + { + "start": 1933.34, + "end": 1936.26, + "probability": 0.9957 + }, + { + "start": 1936.58, + "end": 1937.14, + "probability": 0.7224 + }, + { + "start": 1938.9, + "end": 1941.88, + "probability": 0.9926 + }, + { + "start": 1941.9, + "end": 1942.42, + "probability": 0.5216 + }, + { + "start": 1942.42, + "end": 1942.74, + "probability": 0.6935 + }, + { + "start": 1943.94, + "end": 1944.34, + "probability": 0.797 + }, + { + "start": 1946.6, + "end": 1948.1, + "probability": 0.8878 + }, + { + "start": 1948.66, + "end": 1952.22, + "probability": 0.9753 + }, + { + "start": 1952.78, + "end": 1954.18, + "probability": 0.1047 + }, + { + "start": 1962.52, + "end": 1966.86, + "probability": 0.0178 + }, + { + "start": 1966.86, + "end": 1968.94, + "probability": 0.0752 + }, + { + "start": 1968.94, + "end": 1972.66, + "probability": 0.194 + }, + { + "start": 1973.44, + "end": 1974.82, + "probability": 0.13 + }, + { + "start": 1979.26, + "end": 1979.92, + "probability": 0.535 + }, + { + "start": 1987.36, + "end": 1989.12, + "probability": 0.0851 + }, + { + "start": 1990.44, + "end": 1992.86, + "probability": 0.0429 + }, + { + "start": 1995.92, + "end": 2004.48, + "probability": 0.1399 + }, + { + "start": 2004.48, + "end": 2005.3, + "probability": 0.1289 + }, + { + "start": 2009.2, + "end": 2010.3, + "probability": 0.0792 + }, + { + "start": 2011.71, + "end": 2013.01, + "probability": 0.0247 + }, + { + "start": 2013.12, + "end": 2013.14, + "probability": 0.1071 + }, + { + "start": 2014.1, + "end": 2014.4, + "probability": 0.3111 + }, + { + "start": 2015.44, + "end": 2018.18, + "probability": 0.1338 + }, + { + "start": 2018.92, + "end": 2019.98, + "probability": 0.016 + }, + { + "start": 2020.0, + "end": 2020.0, + "probability": 0.0 + }, + { + "start": 2020.0, + "end": 2020.0, + "probability": 0.0 + }, + { + "start": 2020.0, + "end": 2020.0, + "probability": 0.0 + }, + { + "start": 2020.0, + "end": 2020.0, + "probability": 0.0 + }, + { + "start": 2020.0, + "end": 2020.0, + "probability": 0.0 + }, + { + "start": 2020.0, + "end": 2020.0, + "probability": 0.0 + }, + { + "start": 2020.0, + "end": 2020.0, + "probability": 0.0 + }, + { + "start": 2020.0, + "end": 2020.0, + "probability": 0.0 + }, + { + "start": 2020.0, + "end": 2020.0, + "probability": 0.0 + }, + { + "start": 2020.26, + "end": 2021.28, + "probability": 0.0001 + }, + { + "start": 2024.98, + "end": 2029.66, + "probability": 0.9883 + }, + { + "start": 2029.78, + "end": 2031.3, + "probability": 0.8307 + }, + { + "start": 2031.38, + "end": 2032.19, + "probability": 0.8875 + }, + { + "start": 2033.08, + "end": 2035.8, + "probability": 0.9949 + }, + { + "start": 2037.08, + "end": 2038.52, + "probability": 0.9043 + }, + { + "start": 2042.98, + "end": 2044.1, + "probability": 0.6191 + }, + { + "start": 2045.38, + "end": 2047.88, + "probability": 0.7949 + }, + { + "start": 2048.42, + "end": 2049.06, + "probability": 0.9078 + }, + { + "start": 2049.64, + "end": 2050.32, + "probability": 0.9805 + }, + { + "start": 2051.3, + "end": 2055.28, + "probability": 0.9445 + }, + { + "start": 2055.36, + "end": 2058.68, + "probability": 0.9993 + }, + { + "start": 2059.58, + "end": 2062.24, + "probability": 0.8037 + }, + { + "start": 2062.32, + "end": 2064.06, + "probability": 0.8795 + }, + { + "start": 2064.86, + "end": 2067.1, + "probability": 0.9142 + }, + { + "start": 2067.76, + "end": 2072.48, + "probability": 0.9221 + }, + { + "start": 2073.94, + "end": 2075.02, + "probability": 0.9686 + }, + { + "start": 2075.54, + "end": 2076.28, + "probability": 0.9966 + }, + { + "start": 2077.36, + "end": 2079.12, + "probability": 0.726 + }, + { + "start": 2079.14, + "end": 2080.8, + "probability": 0.9282 + }, + { + "start": 2081.12, + "end": 2081.76, + "probability": 0.7392 + }, + { + "start": 2082.92, + "end": 2084.02, + "probability": 0.9946 + }, + { + "start": 2085.16, + "end": 2086.68, + "probability": 0.9837 + }, + { + "start": 2088.08, + "end": 2091.82, + "probability": 0.9764 + }, + { + "start": 2092.76, + "end": 2094.64, + "probability": 0.9445 + }, + { + "start": 2096.06, + "end": 2098.24, + "probability": 0.777 + }, + { + "start": 2101.3, + "end": 2105.36, + "probability": 0.9877 + }, + { + "start": 2106.04, + "end": 2106.9, + "probability": 0.714 + }, + { + "start": 2107.92, + "end": 2109.26, + "probability": 0.8673 + }, + { + "start": 2110.2, + "end": 2111.52, + "probability": 0.9581 + }, + { + "start": 2112.58, + "end": 2114.48, + "probability": 0.8169 + }, + { + "start": 2115.08, + "end": 2118.48, + "probability": 0.9456 + }, + { + "start": 2118.62, + "end": 2120.14, + "probability": 0.7126 + }, + { + "start": 2122.1, + "end": 2123.68, + "probability": 0.9468 + }, + { + "start": 2124.86, + "end": 2127.22, + "probability": 0.9968 + }, + { + "start": 2128.32, + "end": 2130.76, + "probability": 0.963 + }, + { + "start": 2131.66, + "end": 2138.04, + "probability": 0.9719 + }, + { + "start": 2139.54, + "end": 2142.08, + "probability": 0.9922 + }, + { + "start": 2142.7, + "end": 2143.92, + "probability": 0.9535 + }, + { + "start": 2144.92, + "end": 2146.08, + "probability": 0.9878 + }, + { + "start": 2146.58, + "end": 2147.32, + "probability": 0.6189 + }, + { + "start": 2148.22, + "end": 2149.38, + "probability": 0.6755 + }, + { + "start": 2153.26, + "end": 2154.92, + "probability": 0.9889 + }, + { + "start": 2155.04, + "end": 2160.46, + "probability": 0.7157 + }, + { + "start": 2161.86, + "end": 2165.4, + "probability": 0.9724 + }, + { + "start": 2166.72, + "end": 2167.48, + "probability": 0.9035 + }, + { + "start": 2169.32, + "end": 2170.94, + "probability": 0.9771 + }, + { + "start": 2173.5, + "end": 2174.32, + "probability": 0.0728 + }, + { + "start": 2174.32, + "end": 2174.32, + "probability": 0.1017 + }, + { + "start": 2174.32, + "end": 2174.66, + "probability": 0.2325 + }, + { + "start": 2174.66, + "end": 2175.44, + "probability": 0.2596 + }, + { + "start": 2176.18, + "end": 2177.48, + "probability": 0.5259 + }, + { + "start": 2177.52, + "end": 2182.44, + "probability": 0.0534 + }, + { + "start": 2182.88, + "end": 2183.44, + "probability": 0.5015 + }, + { + "start": 2183.44, + "end": 2183.44, + "probability": 0.1199 + }, + { + "start": 2183.44, + "end": 2183.82, + "probability": 0.632 + }, + { + "start": 2184.94, + "end": 2186.92, + "probability": 0.4592 + }, + { + "start": 2187.02, + "end": 2189.82, + "probability": 0.2694 + }, + { + "start": 2189.82, + "end": 2190.88, + "probability": 0.2081 + }, + { + "start": 2190.96, + "end": 2190.96, + "probability": 0.0273 + }, + { + "start": 2190.96, + "end": 2192.92, + "probability": 0.2261 + }, + { + "start": 2193.5, + "end": 2197.0, + "probability": 0.029 + }, + { + "start": 2197.24, + "end": 2199.84, + "probability": 0.2133 + }, + { + "start": 2199.92, + "end": 2201.42, + "probability": 0.1585 + }, + { + "start": 2201.42, + "end": 2202.06, + "probability": 0.0573 + }, + { + "start": 2202.62, + "end": 2204.1, + "probability": 0.3209 + }, + { + "start": 2204.52, + "end": 2207.28, + "probability": 0.2746 + }, + { + "start": 2207.42, + "end": 2208.92, + "probability": 0.3982 + }, + { + "start": 2210.9, + "end": 2211.52, + "probability": 0.0326 + }, + { + "start": 2211.72, + "end": 2212.24, + "probability": 0.0397 + }, + { + "start": 2212.24, + "end": 2213.1, + "probability": 0.128 + }, + { + "start": 2213.16, + "end": 2213.34, + "probability": 0.1775 + }, + { + "start": 2213.34, + "end": 2214.33, + "probability": 0.2132 + }, + { + "start": 2215.0, + "end": 2215.24, + "probability": 0.0976 + }, + { + "start": 2216.36, + "end": 2219.86, + "probability": 0.3615 + }, + { + "start": 2221.78, + "end": 2223.68, + "probability": 0.6581 + }, + { + "start": 2224.96, + "end": 2226.56, + "probability": 0.2972 + }, + { + "start": 2226.62, + "end": 2229.12, + "probability": 0.432 + }, + { + "start": 2229.34, + "end": 2231.5, + "probability": 0.491 + }, + { + "start": 2231.72, + "end": 2233.1, + "probability": 0.4906 + }, + { + "start": 2233.1, + "end": 2233.34, + "probability": 0.1852 + }, + { + "start": 2233.78, + "end": 2233.78, + "probability": 0.1762 + }, + { + "start": 2233.78, + "end": 2234.16, + "probability": 0.2025 + }, + { + "start": 2234.22, + "end": 2237.24, + "probability": 0.082 + }, + { + "start": 2237.44, + "end": 2238.86, + "probability": 0.2693 + }, + { + "start": 2239.16, + "end": 2239.98, + "probability": 0.602 + }, + { + "start": 2240.0, + "end": 2240.0, + "probability": 0.0 + }, + { + "start": 2240.0, + "end": 2240.0, + "probability": 0.0 + }, + { + "start": 2240.78, + "end": 2243.74, + "probability": 0.0942 + }, + { + "start": 2244.58, + "end": 2246.52, + "probability": 0.3624 + }, + { + "start": 2247.48, + "end": 2249.5, + "probability": 0.2333 + }, + { + "start": 2251.54, + "end": 2254.11, + "probability": 0.1918 + }, + { + "start": 2254.62, + "end": 2255.46, + "probability": 0.1865 + }, + { + "start": 2255.5, + "end": 2257.3, + "probability": 0.3299 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.0, + "end": 2410.0, + "probability": 0.0 + }, + { + "start": 2410.42, + "end": 2411.36, + "probability": 0.1235 + }, + { + "start": 2411.36, + "end": 2411.96, + "probability": 0.0684 + }, + { + "start": 2411.96, + "end": 2415.72, + "probability": 0.3723 + }, + { + "start": 2417.34, + "end": 2417.9, + "probability": 0.0451 + }, + { + "start": 2421.16, + "end": 2422.32, + "probability": 0.1377 + }, + { + "start": 2430.32, + "end": 2435.32, + "probability": 0.0404 + }, + { + "start": 2438.72, + "end": 2440.96, + "probability": 0.0254 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.0, + "end": 2530.0, + "probability": 0.0 + }, + { + "start": 2530.3, + "end": 2530.88, + "probability": 0.0446 + }, + { + "start": 2531.38, + "end": 2536.02, + "probability": 0.9823 + }, + { + "start": 2537.0, + "end": 2538.26, + "probability": 0.9076 + }, + { + "start": 2539.0, + "end": 2540.48, + "probability": 0.8845 + }, + { + "start": 2541.0, + "end": 2542.36, + "probability": 0.9738 + }, + { + "start": 2542.5, + "end": 2548.62, + "probability": 0.8394 + }, + { + "start": 2548.88, + "end": 2549.2, + "probability": 0.4713 + }, + { + "start": 2549.2, + "end": 2550.54, + "probability": 0.9586 + }, + { + "start": 2551.52, + "end": 2551.58, + "probability": 0.4287 + }, + { + "start": 2551.58, + "end": 2551.58, + "probability": 0.7457 + }, + { + "start": 2551.58, + "end": 2559.9, + "probability": 0.9927 + }, + { + "start": 2559.9, + "end": 2565.98, + "probability": 0.9987 + }, + { + "start": 2566.46, + "end": 2570.64, + "probability": 0.9994 + }, + { + "start": 2571.12, + "end": 2572.28, + "probability": 0.9283 + }, + { + "start": 2572.88, + "end": 2573.66, + "probability": 0.805 + }, + { + "start": 2574.96, + "end": 2576.04, + "probability": 0.615 + }, + { + "start": 2576.4, + "end": 2577.1, + "probability": 0.7365 + }, + { + "start": 2577.52, + "end": 2580.48, + "probability": 0.8937 + }, + { + "start": 2581.08, + "end": 2583.3, + "probability": 0.9407 + }, + { + "start": 2599.96, + "end": 2601.28, + "probability": 0.6473 + }, + { + "start": 2601.82, + "end": 2604.3, + "probability": 0.8872 + }, + { + "start": 2605.22, + "end": 2606.42, + "probability": 0.6947 + }, + { + "start": 2606.96, + "end": 2613.32, + "probability": 0.9963 + }, + { + "start": 2613.92, + "end": 2618.4, + "probability": 0.9966 + }, + { + "start": 2618.84, + "end": 2620.42, + "probability": 0.9692 + }, + { + "start": 2620.92, + "end": 2627.34, + "probability": 0.9663 + }, + { + "start": 2627.64, + "end": 2629.68, + "probability": 0.8212 + }, + { + "start": 2630.36, + "end": 2635.6, + "probability": 0.9471 + }, + { + "start": 2636.04, + "end": 2636.76, + "probability": 0.9916 + }, + { + "start": 2637.4, + "end": 2642.06, + "probability": 0.9529 + }, + { + "start": 2642.1, + "end": 2648.04, + "probability": 0.9971 + }, + { + "start": 2648.44, + "end": 2652.38, + "probability": 0.8778 + }, + { + "start": 2652.98, + "end": 2653.74, + "probability": 0.3584 + }, + { + "start": 2653.94, + "end": 2654.46, + "probability": 0.5417 + }, + { + "start": 2654.56, + "end": 2657.9, + "probability": 0.888 + }, + { + "start": 2658.32, + "end": 2663.06, + "probability": 0.7958 + }, + { + "start": 2663.78, + "end": 2664.18, + "probability": 0.9678 + }, + { + "start": 2664.38, + "end": 2665.92, + "probability": 0.9541 + }, + { + "start": 2666.38, + "end": 2671.98, + "probability": 0.9869 + }, + { + "start": 2671.98, + "end": 2676.22, + "probability": 0.9958 + }, + { + "start": 2677.66, + "end": 2678.08, + "probability": 0.7493 + }, + { + "start": 2678.92, + "end": 2680.92, + "probability": 0.9282 + }, + { + "start": 2681.72, + "end": 2684.18, + "probability": 0.9974 + }, + { + "start": 2685.06, + "end": 2688.06, + "probability": 0.8576 + }, + { + "start": 2688.82, + "end": 2690.28, + "probability": 0.3948 + }, + { + "start": 2690.28, + "end": 2692.86, + "probability": 0.9223 + }, + { + "start": 2692.86, + "end": 2692.92, + "probability": 0.5552 + }, + { + "start": 2693.86, + "end": 2696.3, + "probability": 0.4522 + }, + { + "start": 2697.22, + "end": 2698.66, + "probability": 0.714 + }, + { + "start": 2699.84, + "end": 2707.1, + "probability": 0.9963 + }, + { + "start": 2707.84, + "end": 2709.2, + "probability": 0.7305 + }, + { + "start": 2709.68, + "end": 2711.72, + "probability": 0.9961 + }, + { + "start": 2711.84, + "end": 2712.82, + "probability": 0.7617 + }, + { + "start": 2713.36, + "end": 2715.68, + "probability": 0.8392 + }, + { + "start": 2716.02, + "end": 2717.37, + "probability": 0.8618 + }, + { + "start": 2718.88, + "end": 2722.9, + "probability": 0.9733 + }, + { + "start": 2723.5, + "end": 2725.82, + "probability": 0.7446 + }, + { + "start": 2726.4, + "end": 2726.78, + "probability": 0.9707 + }, + { + "start": 2726.8, + "end": 2727.76, + "probability": 0.7431 + }, + { + "start": 2727.86, + "end": 2731.86, + "probability": 0.902 + }, + { + "start": 2732.14, + "end": 2735.39, + "probability": 0.3215 + }, + { + "start": 2735.62, + "end": 2735.62, + "probability": 0.2482 + }, + { + "start": 2735.62, + "end": 2735.66, + "probability": 0.1612 + }, + { + "start": 2736.18, + "end": 2744.16, + "probability": 0.7852 + }, + { + "start": 2744.6, + "end": 2747.62, + "probability": 0.9988 + }, + { + "start": 2747.74, + "end": 2748.58, + "probability": 0.6494 + }, + { + "start": 2748.88, + "end": 2752.12, + "probability": 0.7562 + }, + { + "start": 2752.12, + "end": 2755.52, + "probability": 0.9929 + }, + { + "start": 2755.9, + "end": 2757.08, + "probability": 0.7389 + }, + { + "start": 2757.44, + "end": 2760.38, + "probability": 0.9743 + }, + { + "start": 2760.74, + "end": 2762.18, + "probability": 0.6797 + }, + { + "start": 2762.7, + "end": 2765.64, + "probability": 0.9722 + }, + { + "start": 2765.82, + "end": 2770.18, + "probability": 0.8062 + }, + { + "start": 2770.74, + "end": 2771.62, + "probability": 0.7227 + }, + { + "start": 2773.46, + "end": 2775.92, + "probability": 0.6051 + }, + { + "start": 2775.92, + "end": 2775.92, + "probability": 0.0318 + }, + { + "start": 2775.92, + "end": 2780.62, + "probability": 0.7578 + }, + { + "start": 2781.06, + "end": 2782.8, + "probability": 0.7136 + }, + { + "start": 2783.46, + "end": 2785.84, + "probability": 0.5373 + }, + { + "start": 2785.84, + "end": 2786.85, + "probability": 0.4847 + }, + { + "start": 2787.56, + "end": 2789.12, + "probability": 0.7598 + }, + { + "start": 2789.12, + "end": 2793.02, + "probability": 0.6385 + }, + { + "start": 2793.26, + "end": 2793.4, + "probability": 0.5854 + }, + { + "start": 2793.72, + "end": 2794.92, + "probability": 0.295 + }, + { + "start": 2795.76, + "end": 2799.62, + "probability": 0.8176 + }, + { + "start": 2799.74, + "end": 2800.61, + "probability": 0.7721 + }, + { + "start": 2800.82, + "end": 2801.32, + "probability": 0.6472 + }, + { + "start": 2802.76, + "end": 2805.18, + "probability": 0.3255 + }, + { + "start": 2807.3, + "end": 2808.0, + "probability": 0.4954 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.3408 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.6028 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0572 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0231 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.1026 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0454 + }, + { + "start": 2808.0, + "end": 2813.34, + "probability": 0.6866 + }, + { + "start": 2813.88, + "end": 2816.62, + "probability": 0.7182 + }, + { + "start": 2817.58, + "end": 2819.6, + "probability": 0.9506 + }, + { + "start": 2820.22, + "end": 2820.54, + "probability": 0.0187 + }, + { + "start": 2821.42, + "end": 2824.6, + "probability": 0.0129 + }, + { + "start": 2826.98, + "end": 2828.74, + "probability": 0.0756 + }, + { + "start": 2831.64, + "end": 2835.6, + "probability": 0.6057 + }, + { + "start": 2836.26, + "end": 2839.26, + "probability": 0.591 + }, + { + "start": 2839.46, + "end": 2840.94, + "probability": 0.9597 + }, + { + "start": 2841.6, + "end": 2844.94, + "probability": 0.9604 + }, + { + "start": 2845.4, + "end": 2848.78, + "probability": 0.8271 + }, + { + "start": 2849.24, + "end": 2850.94, + "probability": 0.5698 + }, + { + "start": 2851.87, + "end": 2853.58, + "probability": 0.9956 + }, + { + "start": 2854.94, + "end": 2855.7, + "probability": 0.6918 + }, + { + "start": 2856.72, + "end": 2858.3, + "probability": 0.7817 + }, + { + "start": 2858.8, + "end": 2859.32, + "probability": 0.6184 + }, + { + "start": 2859.78, + "end": 2865.18, + "probability": 0.9475 + }, + { + "start": 2865.18, + "end": 2869.9, + "probability": 0.9508 + }, + { + "start": 2870.24, + "end": 2871.46, + "probability": 0.6052 + }, + { + "start": 2871.74, + "end": 2872.5, + "probability": 0.6903 + }, + { + "start": 2873.04, + "end": 2877.06, + "probability": 0.9636 + }, + { + "start": 2877.06, + "end": 2880.76, + "probability": 0.9517 + }, + { + "start": 2881.24, + "end": 2883.32, + "probability": 0.7026 + }, + { + "start": 2884.06, + "end": 2884.48, + "probability": 0.4673 + }, + { + "start": 2887.04, + "end": 2888.04, + "probability": 0.6718 + }, + { + "start": 2888.76, + "end": 2890.36, + "probability": 0.9324 + }, + { + "start": 2891.42, + "end": 2891.84, + "probability": 0.5984 + }, + { + "start": 2892.0, + "end": 2892.9, + "probability": 0.9013 + }, + { + "start": 2893.0, + "end": 2894.92, + "probability": 0.6456 + }, + { + "start": 2895.52, + "end": 2897.34, + "probability": 0.9949 + }, + { + "start": 2898.36, + "end": 2901.02, + "probability": 0.8616 + }, + { + "start": 2901.94, + "end": 2904.52, + "probability": 0.9973 + }, + { + "start": 2905.1, + "end": 2906.78, + "probability": 0.6746 + }, + { + "start": 2907.7, + "end": 2908.46, + "probability": 0.6828 + }, + { + "start": 2909.34, + "end": 2909.98, + "probability": 0.6681 + }, + { + "start": 2910.7, + "end": 2913.12, + "probability": 0.9668 + }, + { + "start": 2913.76, + "end": 2914.66, + "probability": 0.925 + }, + { + "start": 2915.84, + "end": 2916.76, + "probability": 0.9652 + }, + { + "start": 2916.84, + "end": 2918.08, + "probability": 0.663 + }, + { + "start": 2918.24, + "end": 2918.93, + "probability": 0.8682 + }, + { + "start": 2919.84, + "end": 2921.26, + "probability": 0.9802 + }, + { + "start": 2922.36, + "end": 2927.44, + "probability": 0.4803 + }, + { + "start": 2927.66, + "end": 2928.4, + "probability": 0.7804 + }, + { + "start": 2928.52, + "end": 2929.06, + "probability": 0.7185 + }, + { + "start": 2929.22, + "end": 2930.64, + "probability": 0.1503 + }, + { + "start": 2931.5, + "end": 2931.98, + "probability": 0.8852 + }, + { + "start": 2932.08, + "end": 2932.82, + "probability": 0.0991 + }, + { + "start": 2933.28, + "end": 2936.48, + "probability": 0.9434 + }, + { + "start": 2936.86, + "end": 2937.3, + "probability": 0.7927 + }, + { + "start": 2937.96, + "end": 2942.64, + "probability": 0.923 + }, + { + "start": 2943.06, + "end": 2943.78, + "probability": 0.7483 + }, + { + "start": 2944.36, + "end": 2945.16, + "probability": 0.2705 + }, + { + "start": 2945.68, + "end": 2947.64, + "probability": 0.9203 + }, + { + "start": 2948.12, + "end": 2948.79, + "probability": 0.6193 + }, + { + "start": 2949.54, + "end": 2951.92, + "probability": 0.9551 + }, + { + "start": 2952.42, + "end": 2956.5, + "probability": 0.8313 + }, + { + "start": 2956.54, + "end": 2957.24, + "probability": 0.7944 + }, + { + "start": 2957.66, + "end": 2959.2, + "probability": 0.8852 + }, + { + "start": 2959.94, + "end": 2961.54, + "probability": 0.6259 + }, + { + "start": 2961.68, + "end": 2968.9, + "probability": 0.6108 + }, + { + "start": 2969.22, + "end": 2970.72, + "probability": 0.282 + }, + { + "start": 2971.08, + "end": 2972.52, + "probability": 0.6545 + }, + { + "start": 2972.62, + "end": 2973.43, + "probability": 0.7206 + }, + { + "start": 2974.34, + "end": 2976.3, + "probability": 0.1509 + }, + { + "start": 2976.98, + "end": 2977.94, + "probability": 0.4762 + }, + { + "start": 2977.96, + "end": 2979.06, + "probability": 0.1299 + }, + { + "start": 2980.14, + "end": 2983.24, + "probability": 0.0436 + }, + { + "start": 2983.36, + "end": 2985.17, + "probability": 0.0408 + }, + { + "start": 2986.54, + "end": 2987.0, + "probability": 0.2934 + }, + { + "start": 2987.72, + "end": 2987.9, + "probability": 0.476 + }, + { + "start": 2987.9, + "end": 2988.42, + "probability": 0.2179 + }, + { + "start": 2988.42, + "end": 2990.56, + "probability": 0.5357 + }, + { + "start": 2991.28, + "end": 2993.82, + "probability": 0.2286 + }, + { + "start": 2993.84, + "end": 2997.56, + "probability": 0.0118 + }, + { + "start": 2997.8, + "end": 2999.04, + "probability": 0.0913 + }, + { + "start": 2999.78, + "end": 3000.25, + "probability": 0.0216 + }, + { + "start": 3000.88, + "end": 3001.54, + "probability": 0.0306 + }, + { + "start": 3001.7, + "end": 3004.74, + "probability": 0.1005 + }, + { + "start": 3005.2, + "end": 3008.32, + "probability": 0.1059 + }, + { + "start": 3008.6, + "end": 3012.6, + "probability": 0.0469 + }, + { + "start": 3013.8, + "end": 3014.38, + "probability": 0.0102 + }, + { + "start": 3014.86, + "end": 3016.82, + "probability": 0.2363 + }, + { + "start": 3016.82, + "end": 3017.62, + "probability": 0.0396 + }, + { + "start": 3017.62, + "end": 3017.94, + "probability": 0.0337 + }, + { + "start": 3018.14, + "end": 3018.22, + "probability": 0.3435 + }, + { + "start": 3018.5, + "end": 3018.82, + "probability": 0.2698 + }, + { + "start": 3019.12, + "end": 3019.12, + "probability": 0.3352 + }, + { + "start": 3019.26, + "end": 3021.42, + "probability": 0.0271 + }, + { + "start": 3022.38, + "end": 3022.9, + "probability": 0.0427 + }, + { + "start": 3022.9, + "end": 3025.5, + "probability": 0.346 + }, + { + "start": 3025.5, + "end": 3025.66, + "probability": 0.246 + }, + { + "start": 3025.66, + "end": 3025.68, + "probability": 0.3993 + }, + { + "start": 3025.68, + "end": 3025.68, + "probability": 0.0864 + }, + { + "start": 3025.68, + "end": 3025.98, + "probability": 0.0037 + }, + { + "start": 3026.0, + "end": 3026.0, + "probability": 0.0 + }, + { + "start": 3026.0, + "end": 3026.0, + "probability": 0.0 + }, + { + "start": 3026.0, + "end": 3026.0, + "probability": 0.0 + }, + { + "start": 3026.0, + "end": 3026.0, + "probability": 0.0 + }, + { + "start": 3026.0, + "end": 3026.0, + "probability": 0.0 + }, + { + "start": 3026.0, + "end": 3026.0, + "probability": 0.0 + }, + { + "start": 3026.0, + "end": 3026.0, + "probability": 0.0 + }, + { + "start": 3026.44, + "end": 3026.6, + "probability": 0.0182 + }, + { + "start": 3026.6, + "end": 3026.6, + "probability": 0.0545 + }, + { + "start": 3026.6, + "end": 3028.34, + "probability": 0.3943 + }, + { + "start": 3028.98, + "end": 3029.4, + "probability": 0.0035 + }, + { + "start": 3031.22, + "end": 3031.88, + "probability": 0.0701 + }, + { + "start": 3031.88, + "end": 3031.88, + "probability": 0.2329 + }, + { + "start": 3031.88, + "end": 3031.88, + "probability": 0.0575 + }, + { + "start": 3031.88, + "end": 3033.7, + "probability": 0.5408 + }, + { + "start": 3033.92, + "end": 3036.1, + "probability": 0.0367 + }, + { + "start": 3036.1, + "end": 3036.1, + "probability": 0.1198 + }, + { + "start": 3036.1, + "end": 3036.81, + "probability": 0.3557 + }, + { + "start": 3037.8, + "end": 3038.64, + "probability": 0.5853 + }, + { + "start": 3038.84, + "end": 3040.58, + "probability": 0.1311 + }, + { + "start": 3040.84, + "end": 3040.96, + "probability": 0.0063 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3147.0, + "end": 3147.0, + "probability": 0.0 + }, + { + "start": 3151.1, + "end": 3153.76, + "probability": 0.706 + }, + { + "start": 3154.02, + "end": 3154.96, + "probability": 0.915 + }, + { + "start": 3155.08, + "end": 3155.54, + "probability": 0.6308 + }, + { + "start": 3155.62, + "end": 3158.41, + "probability": 0.4903 + }, + { + "start": 3158.78, + "end": 3158.78, + "probability": 0.2048 + }, + { + "start": 3158.78, + "end": 3159.84, + "probability": 0.5643 + }, + { + "start": 3159.84, + "end": 3160.86, + "probability": 0.9535 + }, + { + "start": 3161.12, + "end": 3163.74, + "probability": 0.9762 + }, + { + "start": 3163.84, + "end": 3164.78, + "probability": 0.577 + }, + { + "start": 3164.78, + "end": 3165.34, + "probability": 0.7269 + }, + { + "start": 3165.48, + "end": 3166.94, + "probability": 0.224 + }, + { + "start": 3167.14, + "end": 3168.03, + "probability": 0.6616 + }, + { + "start": 3168.72, + "end": 3170.06, + "probability": 0.3043 + }, + { + "start": 3170.32, + "end": 3171.54, + "probability": 0.3873 + }, + { + "start": 3171.76, + "end": 3172.92, + "probability": 0.7481 + }, + { + "start": 3173.3, + "end": 3178.02, + "probability": 0.772 + }, + { + "start": 3178.68, + "end": 3180.28, + "probability": 0.8587 + }, + { + "start": 3180.28, + "end": 3180.42, + "probability": 0.7493 + }, + { + "start": 3181.52, + "end": 3182.8, + "probability": 0.2562 + }, + { + "start": 3182.8, + "end": 3183.32, + "probability": 0.3794 + }, + { + "start": 3183.32, + "end": 3183.46, + "probability": 0.4193 + }, + { + "start": 3183.46, + "end": 3184.46, + "probability": 0.4868 + }, + { + "start": 3184.9, + "end": 3185.28, + "probability": 0.1404 + }, + { + "start": 3185.32, + "end": 3186.08, + "probability": 0.4517 + }, + { + "start": 3186.5, + "end": 3188.05, + "probability": 0.1708 + }, + { + "start": 3190.5, + "end": 3190.86, + "probability": 0.0456 + }, + { + "start": 3192.3, + "end": 3192.82, + "probability": 0.0085 + }, + { + "start": 3194.02, + "end": 3194.84, + "probability": 0.0225 + }, + { + "start": 3195.38, + "end": 3195.8, + "probability": 0.1315 + }, + { + "start": 3196.58, + "end": 3196.84, + "probability": 0.09 + }, + { + "start": 3198.44, + "end": 3198.7, + "probability": 0.2463 + }, + { + "start": 3198.7, + "end": 3198.7, + "probability": 0.2646 + }, + { + "start": 3198.7, + "end": 3202.04, + "probability": 0.1372 + }, + { + "start": 3202.86, + "end": 3204.42, + "probability": 0.4155 + }, + { + "start": 3205.46, + "end": 3206.36, + "probability": 0.477 + }, + { + "start": 3207.3, + "end": 3209.53, + "probability": 0.0606 + }, + { + "start": 3211.78, + "end": 3212.84, + "probability": 0.0277 + }, + { + "start": 3213.18, + "end": 3216.22, + "probability": 0.0359 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.0, + "end": 3290.0, + "probability": 0.0 + }, + { + "start": 3290.92, + "end": 3291.68, + "probability": 0.0528 + }, + { + "start": 3291.68, + "end": 3291.68, + "probability": 0.3378 + }, + { + "start": 3291.68, + "end": 3291.68, + "probability": 0.238 + }, + { + "start": 3291.68, + "end": 3293.26, + "probability": 0.2352 + }, + { + "start": 3293.5, + "end": 3297.0, + "probability": 0.0563 + }, + { + "start": 3300.2, + "end": 3303.74, + "probability": 0.8479 + }, + { + "start": 3304.42, + "end": 3306.56, + "probability": 0.9134 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.0, + "end": 3411.0, + "probability": 0.0 + }, + { + "start": 3411.16, + "end": 3411.26, + "probability": 0.0001 + }, + { + "start": 3411.26, + "end": 3413.03, + "probability": 0.5868 + }, + { + "start": 3413.18, + "end": 3414.78, + "probability": 0.451 + }, + { + "start": 3414.82, + "end": 3415.26, + "probability": 0.5664 + }, + { + "start": 3415.26, + "end": 3415.8, + "probability": 0.6795 + }, + { + "start": 3415.82, + "end": 3415.98, + "probability": 0.7112 + }, + { + "start": 3416.02, + "end": 3416.74, + "probability": 0.9413 + }, + { + "start": 3417.9, + "end": 3418.88, + "probability": 0.9927 + }, + { + "start": 3419.74, + "end": 3422.4, + "probability": 0.9937 + }, + { + "start": 3422.64, + "end": 3424.78, + "probability": 0.9849 + }, + { + "start": 3425.22, + "end": 3427.72, + "probability": 0.9828 + }, + { + "start": 3427.76, + "end": 3430.7, + "probability": 0.9978 + }, + { + "start": 3430.92, + "end": 3432.28, + "probability": 0.9614 + }, + { + "start": 3432.9, + "end": 3435.13, + "probability": 0.8446 + }, + { + "start": 3435.78, + "end": 3437.28, + "probability": 0.9967 + }, + { + "start": 3437.76, + "end": 3438.87, + "probability": 0.998 + }, + { + "start": 3440.72, + "end": 3442.1, + "probability": 0.9819 + }, + { + "start": 3442.68, + "end": 3442.68, + "probability": 0.1187 + }, + { + "start": 3442.68, + "end": 3444.76, + "probability": 0.9969 + }, + { + "start": 3444.76, + "end": 3447.4, + "probability": 0.9961 + }, + { + "start": 3448.48, + "end": 3450.68, + "probability": 0.7778 + }, + { + "start": 3451.36, + "end": 3453.26, + "probability": 0.6036 + }, + { + "start": 3453.82, + "end": 3454.82, + "probability": 0.9875 + }, + { + "start": 3455.12, + "end": 3455.62, + "probability": 0.8637 + }, + { + "start": 3455.96, + "end": 3457.24, + "probability": 0.983 + }, + { + "start": 3457.52, + "end": 3464.14, + "probability": 0.6563 + }, + { + "start": 3464.86, + "end": 3465.49, + "probability": 0.6931 + }, + { + "start": 3465.58, + "end": 3466.14, + "probability": 0.69 + }, + { + "start": 3466.4, + "end": 3467.24, + "probability": 0.6891 + }, + { + "start": 3467.38, + "end": 3472.1, + "probability": 0.8589 + }, + { + "start": 3472.8, + "end": 3476.52, + "probability": 0.9968 + }, + { + "start": 3476.52, + "end": 3480.58, + "probability": 0.9683 + }, + { + "start": 3480.86, + "end": 3481.32, + "probability": 0.5056 + }, + { + "start": 3481.5, + "end": 3481.8, + "probability": 0.8451 + }, + { + "start": 3482.7, + "end": 3483.74, + "probability": 0.6652 + }, + { + "start": 3490.06, + "end": 3493.5, + "probability": 0.7261 + }, + { + "start": 3493.86, + "end": 3495.82, + "probability": 0.9459 + }, + { + "start": 3497.0, + "end": 3501.5, + "probability": 0.0517 + }, + { + "start": 3501.56, + "end": 3502.75, + "probability": 0.0838 + }, + { + "start": 3503.4, + "end": 3503.6, + "probability": 0.1705 + }, + { + "start": 3527.7, + "end": 3531.22, + "probability": 0.9966 + }, + { + "start": 3532.5, + "end": 3538.7, + "probability": 0.9934 + }, + { + "start": 3540.02, + "end": 3541.02, + "probability": 0.9795 + }, + { + "start": 3541.18, + "end": 3542.28, + "probability": 0.6583 + }, + { + "start": 3542.38, + "end": 3550.22, + "probability": 0.9967 + }, + { + "start": 3550.88, + "end": 3554.44, + "probability": 0.8914 + }, + { + "start": 3555.94, + "end": 3559.02, + "probability": 0.9028 + }, + { + "start": 3560.24, + "end": 3563.84, + "probability": 0.9803 + }, + { + "start": 3565.14, + "end": 3568.1, + "probability": 0.979 + }, + { + "start": 3568.74, + "end": 3570.0, + "probability": 0.6362 + }, + { + "start": 3571.9, + "end": 3573.72, + "probability": 0.9992 + }, + { + "start": 3574.58, + "end": 3575.76, + "probability": 0.5417 + }, + { + "start": 3576.62, + "end": 3581.0, + "probability": 0.9956 + }, + { + "start": 3582.32, + "end": 3582.86, + "probability": 0.7535 + }, + { + "start": 3583.84, + "end": 3586.62, + "probability": 0.9954 + }, + { + "start": 3588.12, + "end": 3594.36, + "probability": 0.9709 + }, + { + "start": 3595.56, + "end": 3599.7, + "probability": 0.9846 + }, + { + "start": 3601.04, + "end": 3602.18, + "probability": 0.4987 + }, + { + "start": 3602.36, + "end": 3606.91, + "probability": 0.9481 + }, + { + "start": 3610.4, + "end": 3611.95, + "probability": 0.9985 + }, + { + "start": 3613.1, + "end": 3616.58, + "probability": 0.9939 + }, + { + "start": 3617.52, + "end": 3620.64, + "probability": 0.9985 + }, + { + "start": 3621.28, + "end": 3622.92, + "probability": 0.814 + }, + { + "start": 3626.6, + "end": 3628.98, + "probability": 0.8892 + }, + { + "start": 3630.18, + "end": 3633.88, + "probability": 0.9939 + }, + { + "start": 3633.98, + "end": 3635.72, + "probability": 0.8432 + }, + { + "start": 3636.94, + "end": 3642.96, + "probability": 0.9919 + }, + { + "start": 3643.7, + "end": 3647.8, + "probability": 0.993 + }, + { + "start": 3648.14, + "end": 3650.34, + "probability": 0.9989 + }, + { + "start": 3650.92, + "end": 3652.32, + "probability": 0.9924 + }, + { + "start": 3652.4, + "end": 3659.3, + "probability": 0.9561 + }, + { + "start": 3660.24, + "end": 3666.54, + "probability": 0.98 + }, + { + "start": 3667.08, + "end": 3668.54, + "probability": 0.9408 + }, + { + "start": 3669.32, + "end": 3670.68, + "probability": 0.8964 + }, + { + "start": 3671.48, + "end": 3673.5, + "probability": 0.7555 + }, + { + "start": 3675.1, + "end": 3677.52, + "probability": 0.9621 + }, + { + "start": 3679.04, + "end": 3680.88, + "probability": 0.9832 + }, + { + "start": 3681.58, + "end": 3683.34, + "probability": 0.7501 + }, + { + "start": 3684.1, + "end": 3684.96, + "probability": 0.9517 + }, + { + "start": 3685.86, + "end": 3688.88, + "probability": 0.9836 + }, + { + "start": 3690.02, + "end": 3693.18, + "probability": 0.9917 + }, + { + "start": 3693.78, + "end": 3696.46, + "probability": 0.9869 + }, + { + "start": 3696.98, + "end": 3698.46, + "probability": 0.9476 + }, + { + "start": 3699.16, + "end": 3699.16, + "probability": 0.6708 + }, + { + "start": 3699.16, + "end": 3701.58, + "probability": 0.9208 + }, + { + "start": 3701.68, + "end": 3702.16, + "probability": 0.8392 + }, + { + "start": 3702.16, + "end": 3702.58, + "probability": 0.7363 + }, + { + "start": 3703.02, + "end": 3704.8, + "probability": 0.9898 + }, + { + "start": 3721.48, + "end": 3722.5, + "probability": 0.694 + }, + { + "start": 3723.24, + "end": 3725.16, + "probability": 0.8541 + }, + { + "start": 3728.5, + "end": 3734.66, + "probability": 0.9194 + }, + { + "start": 3735.42, + "end": 3737.82, + "probability": 0.5647 + }, + { + "start": 3737.96, + "end": 3739.38, + "probability": 0.9985 + }, + { + "start": 3741.3, + "end": 3743.38, + "probability": 0.9819 + }, + { + "start": 3746.54, + "end": 3747.18, + "probability": 0.4979 + }, + { + "start": 3747.8, + "end": 3748.42, + "probability": 0.7988 + }, + { + "start": 3749.9, + "end": 3750.8, + "probability": 0.862 + }, + { + "start": 3752.54, + "end": 3755.18, + "probability": 0.964 + }, + { + "start": 3756.14, + "end": 3758.8, + "probability": 0.9562 + }, + { + "start": 3759.66, + "end": 3762.84, + "probability": 0.9922 + }, + { + "start": 3762.98, + "end": 3766.22, + "probability": 0.9951 + }, + { + "start": 3766.36, + "end": 3768.52, + "probability": 0.9249 + }, + { + "start": 3768.6, + "end": 3770.32, + "probability": 0.998 + }, + { + "start": 3770.46, + "end": 3771.78, + "probability": 0.8924 + }, + { + "start": 3772.52, + "end": 3775.78, + "probability": 0.9856 + }, + { + "start": 3776.5, + "end": 3779.76, + "probability": 0.9956 + }, + { + "start": 3780.2, + "end": 3781.5, + "probability": 0.9686 + }, + { + "start": 3783.04, + "end": 3783.92, + "probability": 0.9321 + }, + { + "start": 3785.22, + "end": 3786.24, + "probability": 0.902 + }, + { + "start": 3788.38, + "end": 3791.04, + "probability": 0.8228 + }, + { + "start": 3792.64, + "end": 3796.18, + "probability": 0.9416 + }, + { + "start": 3796.4, + "end": 3797.24, + "probability": 0.8716 + }, + { + "start": 3797.64, + "end": 3799.6, + "probability": 0.7524 + }, + { + "start": 3799.6, + "end": 3800.68, + "probability": 0.9732 + }, + { + "start": 3801.66, + "end": 3803.68, + "probability": 0.8823 + }, + { + "start": 3804.6, + "end": 3810.98, + "probability": 0.9183 + }, + { + "start": 3812.02, + "end": 3813.82, + "probability": 0.9953 + }, + { + "start": 3814.76, + "end": 3818.52, + "probability": 0.9755 + }, + { + "start": 3818.94, + "end": 3820.06, + "probability": 0.989 + }, + { + "start": 3824.02, + "end": 3825.72, + "probability": 0.9242 + }, + { + "start": 3827.18, + "end": 3828.44, + "probability": 0.8836 + }, + { + "start": 3829.84, + "end": 3831.35, + "probability": 0.8464 + }, + { + "start": 3833.54, + "end": 3835.87, + "probability": 0.9927 + }, + { + "start": 3836.56, + "end": 3838.86, + "probability": 0.7867 + }, + { + "start": 3838.96, + "end": 3841.68, + "probability": 0.98 + }, + { + "start": 3841.76, + "end": 3843.22, + "probability": 0.7445 + }, + { + "start": 3843.32, + "end": 3845.6, + "probability": 0.6025 + }, + { + "start": 3846.91, + "end": 3848.2, + "probability": 0.7601 + }, + { + "start": 3849.84, + "end": 3851.86, + "probability": 0.9979 + }, + { + "start": 3855.26, + "end": 3856.12, + "probability": 0.9751 + }, + { + "start": 3856.24, + "end": 3856.98, + "probability": 0.9852 + }, + { + "start": 3858.76, + "end": 3863.82, + "probability": 0.9991 + }, + { + "start": 3865.68, + "end": 3867.94, + "probability": 0.989 + }, + { + "start": 3868.04, + "end": 3869.08, + "probability": 0.7872 + }, + { + "start": 3870.24, + "end": 3871.38, + "probability": 0.983 + }, + { + "start": 3872.82, + "end": 3874.5, + "probability": 0.9551 + }, + { + "start": 3877.22, + "end": 3878.18, + "probability": 0.9399 + }, + { + "start": 3879.92, + "end": 3881.62, + "probability": 0.8881 + }, + { + "start": 3883.16, + "end": 3884.76, + "probability": 0.9313 + }, + { + "start": 3886.14, + "end": 3887.84, + "probability": 0.8862 + }, + { + "start": 3888.22, + "end": 3890.94, + "probability": 0.9929 + }, + { + "start": 3891.0, + "end": 3892.08, + "probability": 0.7533 + }, + { + "start": 3894.24, + "end": 3896.62, + "probability": 0.9485 + }, + { + "start": 3898.44, + "end": 3900.04, + "probability": 0.5074 + }, + { + "start": 3903.08, + "end": 3906.8, + "probability": 0.9607 + }, + { + "start": 3910.12, + "end": 3910.12, + "probability": 0.6098 + }, + { + "start": 3910.12, + "end": 3911.28, + "probability": 0.9194 + }, + { + "start": 3911.4, + "end": 3915.52, + "probability": 0.9859 + }, + { + "start": 3915.52, + "end": 3916.1, + "probability": 0.5881 + }, + { + "start": 3916.9, + "end": 3918.02, + "probability": 0.4184 + }, + { + "start": 3918.38, + "end": 3919.42, + "probability": 0.1517 + }, + { + "start": 3920.46, + "end": 3922.72, + "probability": 0.8766 + }, + { + "start": 3922.76, + "end": 3923.28, + "probability": 0.7425 + }, + { + "start": 3923.8, + "end": 3925.38, + "probability": 0.9188 + }, + { + "start": 3927.68, + "end": 3929.22, + "probability": 0.6026 + }, + { + "start": 3929.86, + "end": 3932.3, + "probability": 0.6987 + }, + { + "start": 3932.38, + "end": 3933.34, + "probability": 0.5766 + }, + { + "start": 3933.44, + "end": 3934.68, + "probability": 0.9592 + }, + { + "start": 3934.76, + "end": 3935.72, + "probability": 0.7075 + }, + { + "start": 3935.76, + "end": 3936.82, + "probability": 0.8372 + }, + { + "start": 3937.5, + "end": 3940.65, + "probability": 0.9757 + }, + { + "start": 3940.84, + "end": 3943.32, + "probability": 0.4445 + }, + { + "start": 3943.78, + "end": 3944.44, + "probability": 0.8157 + }, + { + "start": 3944.92, + "end": 3946.62, + "probability": 0.8507 + }, + { + "start": 3959.52, + "end": 3964.22, + "probability": 0.7933 + }, + { + "start": 3965.82, + "end": 3969.18, + "probability": 0.985 + }, + { + "start": 3969.6, + "end": 3974.14, + "probability": 0.6563 + }, + { + "start": 3976.18, + "end": 3976.32, + "probability": 0.6155 + }, + { + "start": 3976.56, + "end": 3980.82, + "probability": 0.87 + }, + { + "start": 3981.26, + "end": 3982.68, + "probability": 0.9106 + }, + { + "start": 3983.86, + "end": 3988.96, + "probability": 0.9968 + }, + { + "start": 3989.46, + "end": 3994.08, + "probability": 0.9565 + }, + { + "start": 3994.6, + "end": 3996.8, + "probability": 0.9893 + }, + { + "start": 3997.4, + "end": 4001.2, + "probability": 0.8758 + }, + { + "start": 4001.8, + "end": 4004.38, + "probability": 0.8955 + }, + { + "start": 4004.96, + "end": 4010.02, + "probability": 0.97 + }, + { + "start": 4010.82, + "end": 4013.48, + "probability": 0.8242 + }, + { + "start": 4014.08, + "end": 4015.76, + "probability": 0.9971 + }, + { + "start": 4016.32, + "end": 4019.02, + "probability": 0.9596 + }, + { + "start": 4019.4, + "end": 4020.18, + "probability": 0.4546 + }, + { + "start": 4020.46, + "end": 4021.86, + "probability": 0.962 + }, + { + "start": 4022.36, + "end": 4024.38, + "probability": 0.9929 + }, + { + "start": 4024.76, + "end": 4025.8, + "probability": 0.8865 + }, + { + "start": 4025.94, + "end": 4026.88, + "probability": 0.97 + }, + { + "start": 4027.2, + "end": 4030.28, + "probability": 0.8649 + }, + { + "start": 4030.3, + "end": 4031.96, + "probability": 0.9927 + }, + { + "start": 4032.86, + "end": 4037.16, + "probability": 0.9915 + }, + { + "start": 4037.92, + "end": 4040.94, + "probability": 0.7992 + }, + { + "start": 4041.04, + "end": 4041.46, + "probability": 0.7645 + }, + { + "start": 4041.96, + "end": 4045.98, + "probability": 0.9493 + }, + { + "start": 4046.0, + "end": 4049.16, + "probability": 0.9793 + }, + { + "start": 4049.28, + "end": 4050.67, + "probability": 0.9961 + }, + { + "start": 4051.04, + "end": 4051.44, + "probability": 0.9476 + }, + { + "start": 4051.58, + "end": 4052.35, + "probability": 0.7238 + }, + { + "start": 4052.78, + "end": 4055.36, + "probability": 0.9983 + }, + { + "start": 4056.58, + "end": 4060.02, + "probability": 0.9816 + }, + { + "start": 4060.02, + "end": 4063.2, + "probability": 0.9983 + }, + { + "start": 4063.82, + "end": 4065.26, + "probability": 0.9604 + }, + { + "start": 4065.52, + "end": 4066.19, + "probability": 0.7616 + }, + { + "start": 4066.54, + "end": 4067.06, + "probability": 0.6356 + }, + { + "start": 4067.3, + "end": 4068.39, + "probability": 0.6884 + }, + { + "start": 4069.14, + "end": 4072.64, + "probability": 0.9575 + }, + { + "start": 4073.12, + "end": 4078.26, + "probability": 0.9739 + }, + { + "start": 4078.68, + "end": 4080.22, + "probability": 0.9727 + }, + { + "start": 4080.68, + "end": 4085.4, + "probability": 0.9837 + }, + { + "start": 4085.46, + "end": 4087.24, + "probability": 0.9803 + }, + { + "start": 4087.5, + "end": 4089.12, + "probability": 0.9879 + }, + { + "start": 4089.22, + "end": 4090.88, + "probability": 0.9985 + }, + { + "start": 4091.42, + "end": 4092.46, + "probability": 0.7448 + }, + { + "start": 4092.9, + "end": 4094.26, + "probability": 0.6594 + }, + { + "start": 4094.94, + "end": 4096.12, + "probability": 0.8546 + }, + { + "start": 4096.56, + "end": 4099.16, + "probability": 0.721 + }, + { + "start": 4099.8, + "end": 4101.68, + "probability": 0.6346 + }, + { + "start": 4102.02, + "end": 4104.42, + "probability": 0.5069 + }, + { + "start": 4104.96, + "end": 4105.6, + "probability": 0.8429 + }, + { + "start": 4105.7, + "end": 4108.06, + "probability": 0.995 + }, + { + "start": 4108.28, + "end": 4108.62, + "probability": 0.9604 + }, + { + "start": 4109.38, + "end": 4111.02, + "probability": 0.973 + }, + { + "start": 4111.48, + "end": 4111.6, + "probability": 0.4132 + }, + { + "start": 4111.82, + "end": 4114.64, + "probability": 0.9772 + }, + { + "start": 4114.66, + "end": 4115.68, + "probability": 0.606 + }, + { + "start": 4116.6, + "end": 4117.72, + "probability": 0.8273 + }, + { + "start": 4117.88, + "end": 4118.92, + "probability": 0.9324 + }, + { + "start": 4119.08, + "end": 4121.75, + "probability": 0.9224 + }, + { + "start": 4122.36, + "end": 4123.06, + "probability": 0.981 + }, + { + "start": 4123.96, + "end": 4125.38, + "probability": 0.7495 + }, + { + "start": 4125.44, + "end": 4127.3, + "probability": 0.9701 + }, + { + "start": 4127.4, + "end": 4128.8, + "probability": 0.9194 + }, + { + "start": 4129.1, + "end": 4130.3, + "probability": 0.9495 + }, + { + "start": 4130.42, + "end": 4132.28, + "probability": 0.9565 + }, + { + "start": 4132.44, + "end": 4133.7, + "probability": 0.9677 + }, + { + "start": 4133.84, + "end": 4134.64, + "probability": 0.8783 + }, + { + "start": 4135.38, + "end": 4137.74, + "probability": 0.9659 + }, + { + "start": 4138.82, + "end": 4138.84, + "probability": 0.1078 + }, + { + "start": 4139.24, + "end": 4140.82, + "probability": 0.9919 + }, + { + "start": 4140.92, + "end": 4141.86, + "probability": 0.8322 + }, + { + "start": 4141.94, + "end": 4143.08, + "probability": 0.5614 + }, + { + "start": 4143.14, + "end": 4144.08, + "probability": 0.9827 + }, + { + "start": 4144.76, + "end": 4145.74, + "probability": 0.9419 + }, + { + "start": 4146.28, + "end": 4148.54, + "probability": 0.9774 + }, + { + "start": 4149.02, + "end": 4150.78, + "probability": 0.9174 + }, + { + "start": 4150.86, + "end": 4151.32, + "probability": 0.8217 + }, + { + "start": 4151.46, + "end": 4151.56, + "probability": 0.5888 + }, + { + "start": 4152.14, + "end": 4156.02, + "probability": 0.941 + }, + { + "start": 4171.24, + "end": 4173.74, + "probability": 0.7414 + }, + { + "start": 4175.58, + "end": 4179.22, + "probability": 0.999 + }, + { + "start": 4179.92, + "end": 4183.64, + "probability": 0.9825 + }, + { + "start": 4184.76, + "end": 4189.74, + "probability": 0.9919 + }, + { + "start": 4190.6, + "end": 4191.42, + "probability": 0.7187 + }, + { + "start": 4192.56, + "end": 4194.94, + "probability": 0.7537 + }, + { + "start": 4195.8, + "end": 4197.52, + "probability": 0.8804 + }, + { + "start": 4198.4, + "end": 4205.28, + "probability": 0.9956 + }, + { + "start": 4207.62, + "end": 4211.36, + "probability": 0.9844 + }, + { + "start": 4211.72, + "end": 4212.12, + "probability": 0.6792 + }, + { + "start": 4213.04, + "end": 4218.12, + "probability": 0.92 + }, + { + "start": 4219.26, + "end": 4219.74, + "probability": 0.7585 + }, + { + "start": 4220.6, + "end": 4221.86, + "probability": 0.962 + }, + { + "start": 4223.28, + "end": 4225.6, + "probability": 0.9949 + }, + { + "start": 4226.06, + "end": 4228.66, + "probability": 0.998 + }, + { + "start": 4229.46, + "end": 4231.52, + "probability": 0.9981 + }, + { + "start": 4232.04, + "end": 4234.16, + "probability": 0.9507 + }, + { + "start": 4234.84, + "end": 4237.62, + "probability": 0.9745 + }, + { + "start": 4238.58, + "end": 4241.3, + "probability": 0.995 + }, + { + "start": 4243.62, + "end": 4248.94, + "probability": 0.9855 + }, + { + "start": 4248.94, + "end": 4251.46, + "probability": 0.9998 + }, + { + "start": 4252.08, + "end": 4252.94, + "probability": 0.8077 + }, + { + "start": 4254.38, + "end": 4255.1, + "probability": 0.6323 + }, + { + "start": 4255.52, + "end": 4260.12, + "probability": 0.9901 + }, + { + "start": 4260.6, + "end": 4261.92, + "probability": 0.7783 + }, + { + "start": 4262.6, + "end": 4264.68, + "probability": 0.9831 + }, + { + "start": 4266.04, + "end": 4268.56, + "probability": 0.9956 + }, + { + "start": 4268.68, + "end": 4271.24, + "probability": 0.8656 + }, + { + "start": 4272.28, + "end": 4276.96, + "probability": 0.9945 + }, + { + "start": 4277.52, + "end": 4278.32, + "probability": 0.8301 + }, + { + "start": 4279.44, + "end": 4280.7, + "probability": 0.9924 + }, + { + "start": 4281.82, + "end": 4285.04, + "probability": 0.9535 + }, + { + "start": 4285.7, + "end": 4287.25, + "probability": 0.7821 + }, + { + "start": 4287.66, + "end": 4289.92, + "probability": 0.9858 + }, + { + "start": 4290.56, + "end": 4294.16, + "probability": 0.9141 + }, + { + "start": 4295.5, + "end": 4297.28, + "probability": 0.9962 + }, + { + "start": 4297.8, + "end": 4300.0, + "probability": 0.9694 + }, + { + "start": 4301.96, + "end": 4306.64, + "probability": 0.9921 + }, + { + "start": 4307.26, + "end": 4307.98, + "probability": 0.5736 + }, + { + "start": 4308.58, + "end": 4313.1, + "probability": 0.9657 + }, + { + "start": 4313.88, + "end": 4319.6, + "probability": 0.9964 + }, + { + "start": 4319.78, + "end": 4323.66, + "probability": 0.9971 + }, + { + "start": 4324.22, + "end": 4329.88, + "probability": 0.9982 + }, + { + "start": 4330.46, + "end": 4331.02, + "probability": 0.7545 + }, + { + "start": 4331.18, + "end": 4331.86, + "probability": 0.8043 + }, + { + "start": 4332.36, + "end": 4334.82, + "probability": 0.5669 + }, + { + "start": 4335.26, + "end": 4336.6, + "probability": 0.9377 + }, + { + "start": 4351.22, + "end": 4352.72, + "probability": 0.9222 + }, + { + "start": 4353.1, + "end": 4353.22, + "probability": 0.5214 + }, + { + "start": 4353.46, + "end": 4354.56, + "probability": 0.9565 + }, + { + "start": 4354.6, + "end": 4354.72, + "probability": 0.2404 + }, + { + "start": 4355.34, + "end": 4360.2, + "probability": 0.9963 + }, + { + "start": 4361.12, + "end": 4362.36, + "probability": 0.6696 + }, + { + "start": 4364.58, + "end": 4366.32, + "probability": 0.7509 + }, + { + "start": 4366.58, + "end": 4368.34, + "probability": 0.7309 + }, + { + "start": 4368.52, + "end": 4369.54, + "probability": 0.5513 + }, + { + "start": 4369.7, + "end": 4378.5, + "probability": 0.9951 + }, + { + "start": 4379.36, + "end": 4380.32, + "probability": 0.9112 + }, + { + "start": 4380.6, + "end": 4385.26, + "probability": 0.9827 + }, + { + "start": 4386.34, + "end": 4390.02, + "probability": 0.9952 + }, + { + "start": 4391.16, + "end": 4395.88, + "probability": 0.9988 + }, + { + "start": 4397.26, + "end": 4398.14, + "probability": 0.8268 + }, + { + "start": 4399.08, + "end": 4402.26, + "probability": 0.96 + }, + { + "start": 4402.4, + "end": 4403.34, + "probability": 0.5076 + }, + { + "start": 4403.6, + "end": 4403.9, + "probability": 0.5561 + }, + { + "start": 4404.4, + "end": 4406.16, + "probability": 0.9776 + }, + { + "start": 4406.24, + "end": 4408.5, + "probability": 0.908 + }, + { + "start": 4409.22, + "end": 4411.34, + "probability": 0.997 + }, + { + "start": 4412.42, + "end": 4414.48, + "probability": 0.9997 + }, + { + "start": 4415.66, + "end": 4418.1, + "probability": 0.9998 + }, + { + "start": 4420.36, + "end": 4422.24, + "probability": 0.9661 + }, + { + "start": 4422.8, + "end": 4423.84, + "probability": 0.9976 + }, + { + "start": 4424.7, + "end": 4427.2, + "probability": 0.7622 + }, + { + "start": 4429.18, + "end": 4429.72, + "probability": 0.051 + }, + { + "start": 4430.36, + "end": 4437.44, + "probability": 0.9894 + }, + { + "start": 4437.84, + "end": 4439.76, + "probability": 0.9907 + }, + { + "start": 4440.26, + "end": 4441.28, + "probability": 0.9678 + }, + { + "start": 4443.21, + "end": 4443.68, + "probability": 0.0866 + }, + { + "start": 4443.68, + "end": 4444.78, + "probability": 0.7412 + }, + { + "start": 4445.2, + "end": 4446.98, + "probability": 0.9249 + }, + { + "start": 4448.38, + "end": 4449.14, + "probability": 0.6748 + }, + { + "start": 4450.68, + "end": 4453.44, + "probability": 0.993 + }, + { + "start": 4453.5, + "end": 4454.92, + "probability": 0.9886 + }, + { + "start": 4455.86, + "end": 4462.26, + "probability": 0.9594 + }, + { + "start": 4462.92, + "end": 4464.28, + "probability": 0.7069 + }, + { + "start": 4464.8, + "end": 4469.7, + "probability": 0.9556 + }, + { + "start": 4470.7, + "end": 4474.34, + "probability": 0.9938 + }, + { + "start": 4474.34, + "end": 4479.0, + "probability": 0.9966 + }, + { + "start": 4479.88, + "end": 4481.32, + "probability": 0.7517 + }, + { + "start": 4482.18, + "end": 4484.94, + "probability": 0.9979 + }, + { + "start": 4485.02, + "end": 4486.12, + "probability": 0.6235 + }, + { + "start": 4486.7, + "end": 4491.68, + "probability": 0.9806 + }, + { + "start": 4491.68, + "end": 4495.1, + "probability": 0.998 + }, + { + "start": 4495.72, + "end": 4498.86, + "probability": 0.9954 + }, + { + "start": 4499.36, + "end": 4501.56, + "probability": 0.7339 + }, + { + "start": 4502.4, + "end": 4505.26, + "probability": 0.7744 + }, + { + "start": 4505.44, + "end": 4505.78, + "probability": 0.7 + }, + { + "start": 4505.96, + "end": 4510.58, + "probability": 0.9714 + }, + { + "start": 4511.14, + "end": 4514.4, + "probability": 0.9836 + }, + { + "start": 4514.7, + "end": 4515.56, + "probability": 0.9238 + }, + { + "start": 4516.64, + "end": 4520.74, + "probability": 0.999 + }, + { + "start": 4521.62, + "end": 4524.24, + "probability": 0.8913 + }, + { + "start": 4525.62, + "end": 4528.26, + "probability": 0.9509 + }, + { + "start": 4528.78, + "end": 4534.1, + "probability": 0.9915 + }, + { + "start": 4534.8, + "end": 4537.24, + "probability": 0.96 + }, + { + "start": 4538.34, + "end": 4538.62, + "probability": 0.724 + }, + { + "start": 4539.08, + "end": 4542.52, + "probability": 0.9464 + }, + { + "start": 4542.74, + "end": 4547.78, + "probability": 0.9916 + }, + { + "start": 4548.56, + "end": 4551.66, + "probability": 0.9919 + }, + { + "start": 4552.5, + "end": 4555.12, + "probability": 0.8155 + }, + { + "start": 4555.62, + "end": 4556.88, + "probability": 0.9645 + }, + { + "start": 4557.04, + "end": 4558.09, + "probability": 0.8145 + }, + { + "start": 4559.1, + "end": 4560.28, + "probability": 0.9919 + }, + { + "start": 4560.42, + "end": 4564.58, + "probability": 0.9937 + }, + { + "start": 4565.04, + "end": 4569.96, + "probability": 0.9801 + }, + { + "start": 4570.16, + "end": 4572.94, + "probability": 0.9904 + }, + { + "start": 4573.18, + "end": 4574.5, + "probability": 0.9091 + }, + { + "start": 4574.88, + "end": 4577.28, + "probability": 0.9877 + }, + { + "start": 4577.28, + "end": 4580.92, + "probability": 0.8955 + }, + { + "start": 4581.24, + "end": 4582.42, + "probability": 0.6639 + }, + { + "start": 4582.44, + "end": 4583.46, + "probability": 0.9184 + }, + { + "start": 4583.76, + "end": 4585.14, + "probability": 0.8684 + }, + { + "start": 4585.3, + "end": 4587.02, + "probability": 0.9702 + }, + { + "start": 4587.58, + "end": 4590.42, + "probability": 0.9436 + }, + { + "start": 4590.5, + "end": 4592.06, + "probability": 0.4931 + }, + { + "start": 4592.84, + "end": 4593.5, + "probability": 0.6999 + }, + { + "start": 4594.1, + "end": 4594.42, + "probability": 0.4015 + }, + { + "start": 4594.42, + "end": 4594.96, + "probability": 0.5291 + }, + { + "start": 4595.44, + "end": 4597.48, + "probability": 0.9714 + }, + { + "start": 4598.24, + "end": 4599.26, + "probability": 0.5215 + }, + { + "start": 4599.9, + "end": 4602.96, + "probability": 0.9662 + }, + { + "start": 4603.18, + "end": 4604.06, + "probability": 0.9827 + }, + { + "start": 4604.06, + "end": 4604.66, + "probability": 0.7444 + }, + { + "start": 4605.36, + "end": 4609.68, + "probability": 0.9103 + }, + { + "start": 4613.38, + "end": 4613.68, + "probability": 0.5194 + }, + { + "start": 4615.62, + "end": 4615.84, + "probability": 0.6942 + }, + { + "start": 4630.8, + "end": 4634.18, + "probability": 0.9033 + }, + { + "start": 4635.12, + "end": 4635.82, + "probability": 0.9722 + }, + { + "start": 4636.7, + "end": 4637.82, + "probability": 0.8185 + }, + { + "start": 4639.78, + "end": 4641.46, + "probability": 0.9053 + }, + { + "start": 4642.14, + "end": 4644.32, + "probability": 0.8584 + }, + { + "start": 4645.04, + "end": 4646.18, + "probability": 0.0324 + }, + { + "start": 4647.46, + "end": 4649.78, + "probability": 0.7628 + }, + { + "start": 4651.28, + "end": 4652.26, + "probability": 0.9841 + }, + { + "start": 4654.66, + "end": 4658.24, + "probability": 0.8942 + }, + { + "start": 4660.8, + "end": 4666.54, + "probability": 0.984 + }, + { + "start": 4667.12, + "end": 4667.76, + "probability": 0.5685 + }, + { + "start": 4668.62, + "end": 4673.61, + "probability": 0.9971 + }, + { + "start": 4673.8, + "end": 4675.26, + "probability": 0.7474 + }, + { + "start": 4677.3, + "end": 4682.64, + "probability": 0.9009 + }, + { + "start": 4686.04, + "end": 4690.56, + "probability": 0.9814 + }, + { + "start": 4692.62, + "end": 4693.4, + "probability": 0.5146 + }, + { + "start": 4695.06, + "end": 4698.88, + "probability": 0.5997 + }, + { + "start": 4699.88, + "end": 4701.64, + "probability": 0.0117 + }, + { + "start": 4701.76, + "end": 4708.8, + "probability": 0.9419 + }, + { + "start": 4710.62, + "end": 4712.34, + "probability": 0.7733 + }, + { + "start": 4712.96, + "end": 4714.1, + "probability": 0.8019 + }, + { + "start": 4716.4, + "end": 4719.68, + "probability": 0.8451 + }, + { + "start": 4721.16, + "end": 4722.64, + "probability": 0.9023 + }, + { + "start": 4723.68, + "end": 4732.06, + "probability": 0.9744 + }, + { + "start": 4734.98, + "end": 4736.48, + "probability": 0.6669 + }, + { + "start": 4738.06, + "end": 4739.84, + "probability": 0.941 + }, + { + "start": 4741.96, + "end": 4746.22, + "probability": 0.8136 + }, + { + "start": 4747.78, + "end": 4750.84, + "probability": 0.9892 + }, + { + "start": 4753.16, + "end": 4758.18, + "probability": 0.9908 + }, + { + "start": 4759.1, + "end": 4761.68, + "probability": 0.6978 + }, + { + "start": 4762.74, + "end": 4763.72, + "probability": 0.9834 + }, + { + "start": 4765.24, + "end": 4767.32, + "probability": 0.9814 + }, + { + "start": 4768.46, + "end": 4773.46, + "probability": 0.9926 + }, + { + "start": 4774.96, + "end": 4778.54, + "probability": 0.9995 + }, + { + "start": 4779.18, + "end": 4781.34, + "probability": 0.9177 + }, + { + "start": 4782.12, + "end": 4782.94, + "probability": 0.759 + }, + { + "start": 4783.6, + "end": 4785.66, + "probability": 0.9203 + }, + { + "start": 4788.72, + "end": 4791.36, + "probability": 0.7941 + }, + { + "start": 4796.58, + "end": 4797.14, + "probability": 0.225 + }, + { + "start": 4797.14, + "end": 4797.2, + "probability": 0.1151 + }, + { + "start": 4797.2, + "end": 4798.92, + "probability": 0.2162 + }, + { + "start": 4799.92, + "end": 4802.88, + "probability": 0.7393 + }, + { + "start": 4803.32, + "end": 4804.32, + "probability": 0.8984 + }, + { + "start": 4804.32, + "end": 4806.0, + "probability": 0.9285 + }, + { + "start": 4806.5, + "end": 4807.46, + "probability": 0.8878 + }, + { + "start": 4808.54, + "end": 4810.08, + "probability": 0.9538 + }, + { + "start": 4810.62, + "end": 4816.18, + "probability": 0.9917 + }, + { + "start": 4816.8, + "end": 4818.38, + "probability": 0.9924 + }, + { + "start": 4818.76, + "end": 4822.86, + "probability": 0.9237 + }, + { + "start": 4823.16, + "end": 4826.42, + "probability": 0.9864 + }, + { + "start": 4827.04, + "end": 4827.82, + "probability": 0.6137 + }, + { + "start": 4828.66, + "end": 4832.12, + "probability": 0.9893 + }, + { + "start": 4832.84, + "end": 4834.64, + "probability": 0.998 + }, + { + "start": 4835.18, + "end": 4839.06, + "probability": 0.9867 + }, + { + "start": 4839.82, + "end": 4840.92, + "probability": 0.9957 + }, + { + "start": 4841.06, + "end": 4843.13, + "probability": 0.8654 + }, + { + "start": 4844.02, + "end": 4847.64, + "probability": 0.975 + }, + { + "start": 4848.18, + "end": 4852.12, + "probability": 0.9889 + }, + { + "start": 4853.26, + "end": 4856.02, + "probability": 0.9562 + }, + { + "start": 4856.32, + "end": 4856.84, + "probability": 0.5082 + }, + { + "start": 4857.22, + "end": 4858.64, + "probability": 0.9878 + }, + { + "start": 4859.56, + "end": 4860.9, + "probability": 0.8945 + }, + { + "start": 4861.1, + "end": 4863.15, + "probability": 0.9401 + }, + { + "start": 4864.3, + "end": 4866.19, + "probability": 0.9333 + }, + { + "start": 4868.58, + "end": 4869.36, + "probability": 0.4089 + }, + { + "start": 4870.0, + "end": 4874.78, + "probability": 0.8668 + }, + { + "start": 4875.4, + "end": 4876.88, + "probability": 0.5164 + }, + { + "start": 4877.76, + "end": 4878.08, + "probability": 0.277 + }, + { + "start": 4878.42, + "end": 4883.18, + "probability": 0.9957 + }, + { + "start": 4883.5, + "end": 4883.98, + "probability": 0.175 + }, + { + "start": 4884.26, + "end": 4886.12, + "probability": 0.7222 + }, + { + "start": 4886.74, + "end": 4888.22, + "probability": 0.9376 + }, + { + "start": 4889.16, + "end": 4890.06, + "probability": 0.9233 + }, + { + "start": 4890.22, + "end": 4892.78, + "probability": 0.9832 + }, + { + "start": 4892.92, + "end": 4894.36, + "probability": 0.998 + }, + { + "start": 4895.26, + "end": 4899.52, + "probability": 0.6128 + }, + { + "start": 4900.66, + "end": 4903.34, + "probability": 0.6985 + }, + { + "start": 4903.98, + "end": 4906.02, + "probability": 0.9125 + }, + { + "start": 4906.48, + "end": 4908.18, + "probability": 0.9763 + }, + { + "start": 4908.78, + "end": 4909.6, + "probability": 0.9666 + }, + { + "start": 4909.84, + "end": 4911.04, + "probability": 0.918 + }, + { + "start": 4911.6, + "end": 4914.96, + "probability": 0.9424 + }, + { + "start": 4915.5, + "end": 4918.44, + "probability": 0.9913 + }, + { + "start": 4918.82, + "end": 4918.94, + "probability": 0.8376 + }, + { + "start": 4919.02, + "end": 4922.32, + "probability": 0.9917 + }, + { + "start": 4922.74, + "end": 4924.54, + "probability": 0.9255 + }, + { + "start": 4925.0, + "end": 4930.52, + "probability": 0.9829 + }, + { + "start": 4931.0, + "end": 4935.34, + "probability": 0.9858 + }, + { + "start": 4935.42, + "end": 4936.98, + "probability": 0.7996 + }, + { + "start": 4937.76, + "end": 4939.3, + "probability": 0.7576 + }, + { + "start": 4940.5, + "end": 4942.14, + "probability": 0.8241 + }, + { + "start": 4942.42, + "end": 4942.96, + "probability": 0.7093 + }, + { + "start": 4943.1, + "end": 4943.71, + "probability": 0.9154 + }, + { + "start": 4944.22, + "end": 4946.2, + "probability": 0.9634 + }, + { + "start": 4946.52, + "end": 4948.02, + "probability": 0.9539 + }, + { + "start": 4948.1, + "end": 4948.52, + "probability": 0.5022 + }, + { + "start": 4948.62, + "end": 4951.26, + "probability": 0.9905 + }, + { + "start": 4951.66, + "end": 4955.08, + "probability": 0.8622 + }, + { + "start": 4955.58, + "end": 4957.5, + "probability": 0.9915 + }, + { + "start": 4958.0, + "end": 4959.38, + "probability": 0.9569 + }, + { + "start": 4959.86, + "end": 4962.11, + "probability": 0.9954 + }, + { + "start": 4962.56, + "end": 4963.36, + "probability": 0.9774 + }, + { + "start": 4963.6, + "end": 4964.48, + "probability": 0.9348 + }, + { + "start": 4965.12, + "end": 4968.68, + "probability": 0.8318 + }, + { + "start": 4969.42, + "end": 4973.38, + "probability": 0.93 + }, + { + "start": 4973.7, + "end": 4974.92, + "probability": 0.9143 + }, + { + "start": 4975.34, + "end": 4978.36, + "probability": 0.9929 + }, + { + "start": 4978.78, + "end": 4978.82, + "probability": 0.6188 + }, + { + "start": 4978.82, + "end": 4982.52, + "probability": 0.979 + }, + { + "start": 4982.52, + "end": 4982.76, + "probability": 0.5622 + }, + { + "start": 4983.78, + "end": 4984.48, + "probability": 0.0889 + }, + { + "start": 4984.6, + "end": 4984.6, + "probability": 0.0237 + }, + { + "start": 4984.6, + "end": 4986.32, + "probability": 0.0296 + }, + { + "start": 4986.9, + "end": 4989.82, + "probability": 0.4775 + }, + { + "start": 4992.4, + "end": 4993.86, + "probability": 0.0147 + }, + { + "start": 4998.76, + "end": 5001.32, + "probability": 0.5794 + }, + { + "start": 5001.44, + "end": 5004.94, + "probability": 0.5278 + }, + { + "start": 5005.02, + "end": 5006.96, + "probability": 0.6631 + }, + { + "start": 5007.26, + "end": 5010.7, + "probability": 0.8104 + }, + { + "start": 5011.66, + "end": 5011.86, + "probability": 0.0565 + }, + { + "start": 5011.92, + "end": 5012.36, + "probability": 0.432 + }, + { + "start": 5013.16, + "end": 5014.44, + "probability": 0.9937 + }, + { + "start": 5015.68, + "end": 5016.38, + "probability": 0.6306 + }, + { + "start": 5018.54, + "end": 5022.52, + "probability": 0.7455 + }, + { + "start": 5023.28, + "end": 5023.78, + "probability": 0.7789 + }, + { + "start": 5025.04, + "end": 5028.28, + "probability": 0.825 + }, + { + "start": 5028.34, + "end": 5031.68, + "probability": 0.9021 + }, + { + "start": 5032.4, + "end": 5034.3, + "probability": 0.9436 + }, + { + "start": 5036.22, + "end": 5036.34, + "probability": 0.256 + }, + { + "start": 5036.34, + "end": 5036.84, + "probability": 0.2087 + }, + { + "start": 5037.14, + "end": 5037.58, + "probability": 0.7852 + }, + { + "start": 5037.66, + "end": 5038.52, + "probability": 0.8374 + }, + { + "start": 5039.02, + "end": 5040.17, + "probability": 0.9459 + }, + { + "start": 5040.74, + "end": 5041.22, + "probability": 0.9686 + }, + { + "start": 5041.36, + "end": 5042.06, + "probability": 0.9859 + }, + { + "start": 5042.08, + "end": 5042.78, + "probability": 0.6191 + }, + { + "start": 5042.82, + "end": 5043.38, + "probability": 0.8764 + }, + { + "start": 5044.82, + "end": 5048.84, + "probability": 0.8433 + }, + { + "start": 5049.5, + "end": 5050.48, + "probability": 0.8 + }, + { + "start": 5050.72, + "end": 5051.36, + "probability": 0.8611 + }, + { + "start": 5052.12, + "end": 5052.84, + "probability": 0.752 + }, + { + "start": 5053.12, + "end": 5056.52, + "probability": 0.9924 + }, + { + "start": 5056.52, + "end": 5059.78, + "probability": 0.9436 + }, + { + "start": 5060.34, + "end": 5062.62, + "probability": 0.6389 + }, + { + "start": 5063.92, + "end": 5064.84, + "probability": 0.4471 + }, + { + "start": 5065.04, + "end": 5065.92, + "probability": 0.8421 + }, + { + "start": 5066.72, + "end": 5069.58, + "probability": 0.952 + }, + { + "start": 5069.66, + "end": 5070.7, + "probability": 0.9734 + }, + { + "start": 5071.72, + "end": 5072.9, + "probability": 0.9663 + }, + { + "start": 5073.74, + "end": 5077.02, + "probability": 0.8484 + }, + { + "start": 5077.5, + "end": 5079.23, + "probability": 0.9949 + }, + { + "start": 5079.5, + "end": 5080.34, + "probability": 0.8614 + }, + { + "start": 5080.38, + "end": 5081.04, + "probability": 0.943 + }, + { + "start": 5081.14, + "end": 5081.56, + "probability": 0.9095 + }, + { + "start": 5081.86, + "end": 5083.07, + "probability": 0.9824 + }, + { + "start": 5083.76, + "end": 5085.26, + "probability": 0.8203 + }, + { + "start": 5086.1, + "end": 5086.66, + "probability": 0.7398 + }, + { + "start": 5087.24, + "end": 5088.48, + "probability": 0.625 + }, + { + "start": 5089.32, + "end": 5090.4, + "probability": 0.9165 + }, + { + "start": 5091.44, + "end": 5093.1, + "probability": 0.9976 + }, + { + "start": 5094.5, + "end": 5096.86, + "probability": 0.7936 + }, + { + "start": 5098.7, + "end": 5102.14, + "probability": 0.9914 + }, + { + "start": 5103.45, + "end": 5104.9, + "probability": 0.8928 + }, + { + "start": 5106.02, + "end": 5110.0, + "probability": 0.9849 + }, + { + "start": 5110.48, + "end": 5114.64, + "probability": 0.9686 + }, + { + "start": 5114.7, + "end": 5115.34, + "probability": 0.8674 + }, + { + "start": 5115.52, + "end": 5116.04, + "probability": 0.4841 + }, + { + "start": 5116.14, + "end": 5117.86, + "probability": 0.8935 + }, + { + "start": 5117.96, + "end": 5118.84, + "probability": 0.961 + }, + { + "start": 5118.94, + "end": 5119.44, + "probability": 0.6248 + }, + { + "start": 5120.1, + "end": 5121.64, + "probability": 0.9114 + }, + { + "start": 5122.66, + "end": 5124.78, + "probability": 0.9465 + }, + { + "start": 5125.22, + "end": 5128.5, + "probability": 0.8843 + }, + { + "start": 5129.12, + "end": 5131.6, + "probability": 0.9321 + }, + { + "start": 5132.12, + "end": 5133.34, + "probability": 0.9149 + }, + { + "start": 5134.08, + "end": 5134.86, + "probability": 0.5695 + }, + { + "start": 5136.2, + "end": 5137.56, + "probability": 0.6115 + }, + { + "start": 5138.08, + "end": 5138.24, + "probability": 0.8969 + }, + { + "start": 5139.54, + "end": 5141.88, + "probability": 0.9382 + }, + { + "start": 5142.46, + "end": 5143.38, + "probability": 0.3269 + }, + { + "start": 5144.66, + "end": 5145.86, + "probability": 0.9845 + }, + { + "start": 5147.66, + "end": 5151.14, + "probability": 0.9972 + }, + { + "start": 5152.7, + "end": 5153.0, + "probability": 0.4315 + }, + { + "start": 5155.25, + "end": 5157.06, + "probability": 0.8112 + }, + { + "start": 5157.2, + "end": 5157.76, + "probability": 0.2749 + }, + { + "start": 5157.76, + "end": 5159.2, + "probability": 0.9941 + }, + { + "start": 5159.24, + "end": 5164.42, + "probability": 0.6849 + }, + { + "start": 5164.54, + "end": 5164.76, + "probability": 0.0347 + }, + { + "start": 5165.96, + "end": 5169.52, + "probability": 0.5643 + }, + { + "start": 5170.86, + "end": 5174.44, + "probability": 0.9795 + }, + { + "start": 5174.96, + "end": 5176.38, + "probability": 0.8892 + }, + { + "start": 5176.64, + "end": 5181.66, + "probability": 0.921 + }, + { + "start": 5181.66, + "end": 5182.04, + "probability": 0.2564 + }, + { + "start": 5182.14, + "end": 5183.18, + "probability": 0.6955 + }, + { + "start": 5183.36, + "end": 5185.02, + "probability": 0.2338 + }, + { + "start": 5185.34, + "end": 5187.3, + "probability": 0.8022 + }, + { + "start": 5188.4, + "end": 5189.84, + "probability": 0.8676 + }, + { + "start": 5189.9, + "end": 5193.2, + "probability": 0.5645 + }, + { + "start": 5193.58, + "end": 5194.98, + "probability": 0.0658 + }, + { + "start": 5194.98, + "end": 5194.98, + "probability": 0.0729 + }, + { + "start": 5194.98, + "end": 5196.14, + "probability": 0.1665 + }, + { + "start": 5196.62, + "end": 5197.1, + "probability": 0.8984 + }, + { + "start": 5197.7, + "end": 5200.02, + "probability": 0.9214 + }, + { + "start": 5201.12, + "end": 5203.94, + "probability": 0.7979 + }, + { + "start": 5204.36, + "end": 5206.76, + "probability": 0.8355 + }, + { + "start": 5207.32, + "end": 5207.92, + "probability": 0.814 + }, + { + "start": 5219.76, + "end": 5221.86, + "probability": 0.4189 + }, + { + "start": 5222.14, + "end": 5222.34, + "probability": 0.6701 + }, + { + "start": 5222.8, + "end": 5227.18, + "probability": 0.2231 + }, + { + "start": 5228.88, + "end": 5229.52, + "probability": 0.8369 + }, + { + "start": 5231.06, + "end": 5232.06, + "probability": 0.6067 + }, + { + "start": 5232.68, + "end": 5233.72, + "probability": 0.8876 + }, + { + "start": 5234.76, + "end": 5238.16, + "probability": 0.9824 + }, + { + "start": 5239.78, + "end": 5242.62, + "probability": 0.9258 + }, + { + "start": 5244.16, + "end": 5245.36, + "probability": 0.9465 + }, + { + "start": 5246.48, + "end": 5248.12, + "probability": 0.9698 + }, + { + "start": 5249.4, + "end": 5252.34, + "probability": 0.9753 + }, + { + "start": 5253.96, + "end": 5260.06, + "probability": 0.8051 + }, + { + "start": 5260.06, + "end": 5264.7, + "probability": 0.989 + }, + { + "start": 5266.0, + "end": 5268.82, + "probability": 0.9954 + }, + { + "start": 5269.68, + "end": 5272.6, + "probability": 0.8847 + }, + { + "start": 5273.6, + "end": 5282.22, + "probability": 0.941 + }, + { + "start": 5283.28, + "end": 5284.24, + "probability": 0.9907 + }, + { + "start": 5285.46, + "end": 5286.66, + "probability": 0.9956 + }, + { + "start": 5287.5, + "end": 5288.32, + "probability": 0.9965 + }, + { + "start": 5289.1, + "end": 5292.04, + "probability": 0.9948 + }, + { + "start": 5292.58, + "end": 5293.94, + "probability": 0.9974 + }, + { + "start": 5294.46, + "end": 5295.8, + "probability": 0.7115 + }, + { + "start": 5296.42, + "end": 5301.42, + "probability": 0.9707 + }, + { + "start": 5302.4, + "end": 5306.58, + "probability": 0.4886 + }, + { + "start": 5307.2, + "end": 5317.18, + "probability": 0.8984 + }, + { + "start": 5318.36, + "end": 5319.41, + "probability": 0.8396 + }, + { + "start": 5320.34, + "end": 5325.66, + "probability": 0.9315 + }, + { + "start": 5326.72, + "end": 5327.34, + "probability": 0.9624 + }, + { + "start": 5330.36, + "end": 5331.36, + "probability": 0.6179 + }, + { + "start": 5332.1, + "end": 5334.22, + "probability": 0.3236 + }, + { + "start": 5334.38, + "end": 5334.38, + "probability": 0.0984 + }, + { + "start": 5334.48, + "end": 5336.3, + "probability": 0.0802 + }, + { + "start": 5336.84, + "end": 5337.04, + "probability": 0.1079 + }, + { + "start": 5337.2, + "end": 5340.54, + "probability": 0.9488 + }, + { + "start": 5340.58, + "end": 5342.38, + "probability": 0.9767 + }, + { + "start": 5342.64, + "end": 5345.86, + "probability": 0.7818 + }, + { + "start": 5346.04, + "end": 5355.82, + "probability": 0.9674 + }, + { + "start": 5356.58, + "end": 5357.68, + "probability": 0.7378 + }, + { + "start": 5359.18, + "end": 5360.12, + "probability": 0.8312 + }, + { + "start": 5362.67, + "end": 5363.4, + "probability": 0.53 + }, + { + "start": 5364.1, + "end": 5367.3, + "probability": 0.7773 + }, + { + "start": 5368.32, + "end": 5369.26, + "probability": 0.7511 + }, + { + "start": 5370.4, + "end": 5373.18, + "probability": 0.9777 + }, + { + "start": 5374.22, + "end": 5375.16, + "probability": 0.894 + }, + { + "start": 5376.0, + "end": 5378.8, + "probability": 0.9721 + }, + { + "start": 5379.68, + "end": 5382.3, + "probability": 0.9712 + }, + { + "start": 5384.26, + "end": 5389.58, + "probability": 0.9897 + }, + { + "start": 5390.1, + "end": 5393.0, + "probability": 0.9819 + }, + { + "start": 5393.58, + "end": 5396.76, + "probability": 0.918 + }, + { + "start": 5397.46, + "end": 5403.58, + "probability": 0.6667 + }, + { + "start": 5403.9, + "end": 5405.52, + "probability": 0.866 + }, + { + "start": 5408.22, + "end": 5412.2, + "probability": 0.7731 + }, + { + "start": 5412.78, + "end": 5417.62, + "probability": 0.8271 + }, + { + "start": 5418.16, + "end": 5420.12, + "probability": 0.6826 + }, + { + "start": 5420.7, + "end": 5420.88, + "probability": 0.7237 + }, + { + "start": 5420.88, + "end": 5422.06, + "probability": 0.4079 + }, + { + "start": 5423.18, + "end": 5430.36, + "probability": 0.761 + }, + { + "start": 5430.72, + "end": 5435.72, + "probability": 0.9865 + }, + { + "start": 5437.14, + "end": 5445.88, + "probability": 0.9891 + }, + { + "start": 5446.44, + "end": 5448.26, + "probability": 0.5934 + }, + { + "start": 5448.26, + "end": 5448.94, + "probability": 0.2479 + }, + { + "start": 5448.94, + "end": 5451.14, + "probability": 0.6571 + }, + { + "start": 5452.1, + "end": 5453.38, + "probability": 0.5898 + }, + { + "start": 5453.46, + "end": 5456.08, + "probability": 0.9877 + }, + { + "start": 5456.62, + "end": 5458.18, + "probability": 0.9932 + }, + { + "start": 5458.76, + "end": 5461.18, + "probability": 0.6134 + }, + { + "start": 5461.62, + "end": 5464.92, + "probability": 0.5612 + }, + { + "start": 5465.52, + "end": 5470.28, + "probability": 0.6536 + }, + { + "start": 5470.82, + "end": 5471.46, + "probability": 0.7234 + }, + { + "start": 5471.84, + "end": 5472.7, + "probability": 0.6458 + }, + { + "start": 5472.78, + "end": 5475.16, + "probability": 0.5923 + }, + { + "start": 5475.62, + "end": 5476.2, + "probability": 0.5461 + }, + { + "start": 5476.22, + "end": 5477.44, + "probability": 0.8667 + }, + { + "start": 5477.96, + "end": 5478.76, + "probability": 0.7814 + }, + { + "start": 5479.44, + "end": 5481.24, + "probability": 0.7246 + }, + { + "start": 5483.6, + "end": 5485.06, + "probability": 0.9709 + }, + { + "start": 5494.4, + "end": 5496.44, + "probability": 0.7534 + }, + { + "start": 5497.58, + "end": 5498.5, + "probability": 0.6276 + }, + { + "start": 5498.62, + "end": 5504.98, + "probability": 0.9964 + }, + { + "start": 5505.84, + "end": 5506.22, + "probability": 0.9203 + }, + { + "start": 5506.24, + "end": 5507.46, + "probability": 0.9967 + }, + { + "start": 5507.58, + "end": 5509.06, + "probability": 0.5007 + }, + { + "start": 5509.16, + "end": 5513.34, + "probability": 0.9417 + }, + { + "start": 5513.48, + "end": 5515.88, + "probability": 0.9946 + }, + { + "start": 5517.2, + "end": 5520.14, + "probability": 0.9917 + }, + { + "start": 5520.54, + "end": 5521.76, + "probability": 0.7935 + }, + { + "start": 5523.22, + "end": 5525.38, + "probability": 0.9964 + }, + { + "start": 5526.47, + "end": 5528.78, + "probability": 0.8348 + }, + { + "start": 5529.46, + "end": 5530.88, + "probability": 0.9886 + }, + { + "start": 5531.38, + "end": 5532.9, + "probability": 0.8748 + }, + { + "start": 5534.14, + "end": 5538.12, + "probability": 0.9657 + }, + { + "start": 5538.22, + "end": 5539.25, + "probability": 0.9908 + }, + { + "start": 5539.84, + "end": 5545.82, + "probability": 0.9888 + }, + { + "start": 5546.34, + "end": 5549.64, + "probability": 0.9985 + }, + { + "start": 5551.4, + "end": 5555.6, + "probability": 0.9924 + }, + { + "start": 5555.78, + "end": 5558.66, + "probability": 0.9746 + }, + { + "start": 5559.58, + "end": 5562.66, + "probability": 0.9989 + }, + { + "start": 5563.18, + "end": 5565.62, + "probability": 0.9985 + }, + { + "start": 5566.42, + "end": 5571.56, + "probability": 0.9985 + }, + { + "start": 5571.98, + "end": 5574.56, + "probability": 0.9738 + }, + { + "start": 5574.74, + "end": 5577.24, + "probability": 0.8153 + }, + { + "start": 5578.24, + "end": 5579.95, + "probability": 0.9632 + }, + { + "start": 5580.9, + "end": 5585.72, + "probability": 0.9978 + }, + { + "start": 5586.58, + "end": 5587.98, + "probability": 0.9548 + }, + { + "start": 5590.02, + "end": 5591.86, + "probability": 0.9958 + }, + { + "start": 5591.94, + "end": 5592.46, + "probability": 0.9733 + }, + { + "start": 5592.56, + "end": 5593.6, + "probability": 0.8592 + }, + { + "start": 5593.68, + "end": 5598.1, + "probability": 0.9894 + }, + { + "start": 5598.58, + "end": 5598.84, + "probability": 0.8128 + }, + { + "start": 5598.94, + "end": 5600.22, + "probability": 0.5812 + }, + { + "start": 5600.34, + "end": 5602.86, + "probability": 0.9932 + }, + { + "start": 5602.86, + "end": 5605.56, + "probability": 0.9876 + }, + { + "start": 5605.72, + "end": 5607.04, + "probability": 0.7813 + }, + { + "start": 5607.22, + "end": 5607.5, + "probability": 0.641 + }, + { + "start": 5609.52, + "end": 5612.14, + "probability": 0.9727 + }, + { + "start": 5613.22, + "end": 5614.4, + "probability": 0.946 + }, + { + "start": 5615.98, + "end": 5620.26, + "probability": 0.9981 + }, + { + "start": 5622.1, + "end": 5623.16, + "probability": 0.8624 + }, + { + "start": 5623.7, + "end": 5625.2, + "probability": 0.8992 + }, + { + "start": 5625.36, + "end": 5625.78, + "probability": 0.7971 + }, + { + "start": 5625.86, + "end": 5626.56, + "probability": 0.8474 + }, + { + "start": 5627.06, + "end": 5627.32, + "probability": 0.8958 + }, + { + "start": 5627.46, + "end": 5627.64, + "probability": 0.4734 + }, + { + "start": 5627.7, + "end": 5628.92, + "probability": 0.9751 + }, + { + "start": 5629.02, + "end": 5631.24, + "probability": 0.8126 + }, + { + "start": 5631.9, + "end": 5637.04, + "probability": 0.9917 + }, + { + "start": 5637.56, + "end": 5641.32, + "probability": 0.9905 + }, + { + "start": 5641.32, + "end": 5644.02, + "probability": 0.9589 + }, + { + "start": 5644.48, + "end": 5647.34, + "probability": 0.9982 + }, + { + "start": 5648.1, + "end": 5648.68, + "probability": 0.9077 + }, + { + "start": 5649.2, + "end": 5650.94, + "probability": 0.8015 + }, + { + "start": 5650.96, + "end": 5655.68, + "probability": 0.9969 + }, + { + "start": 5655.68, + "end": 5659.44, + "probability": 0.9628 + }, + { + "start": 5659.88, + "end": 5660.66, + "probability": 0.6989 + }, + { + "start": 5661.22, + "end": 5663.74, + "probability": 0.9866 + }, + { + "start": 5664.54, + "end": 5664.8, + "probability": 0.553 + }, + { + "start": 5665.82, + "end": 5666.36, + "probability": 0.5906 + }, + { + "start": 5666.64, + "end": 5669.54, + "probability": 0.7943 + }, + { + "start": 5670.4, + "end": 5672.68, + "probability": 0.96 + }, + { + "start": 5684.16, + "end": 5685.96, + "probability": 0.5366 + }, + { + "start": 5687.18, + "end": 5688.26, + "probability": 0.8733 + }, + { + "start": 5689.7, + "end": 5695.82, + "probability": 0.9154 + }, + { + "start": 5695.82, + "end": 5698.36, + "probability": 0.8702 + }, + { + "start": 5700.39, + "end": 5703.02, + "probability": 0.9595 + }, + { + "start": 5704.62, + "end": 5706.1, + "probability": 0.9766 + }, + { + "start": 5707.04, + "end": 5708.72, + "probability": 0.8603 + }, + { + "start": 5710.36, + "end": 5711.5, + "probability": 0.9995 + }, + { + "start": 5713.04, + "end": 5715.88, + "probability": 0.9311 + }, + { + "start": 5716.62, + "end": 5717.56, + "probability": 0.9581 + }, + { + "start": 5718.86, + "end": 5719.94, + "probability": 0.9712 + }, + { + "start": 5721.32, + "end": 5727.74, + "probability": 0.8285 + }, + { + "start": 5729.46, + "end": 5730.2, + "probability": 0.9526 + }, + { + "start": 5732.0, + "end": 5733.58, + "probability": 0.9876 + }, + { + "start": 5733.66, + "end": 5736.28, + "probability": 0.9629 + }, + { + "start": 5738.02, + "end": 5739.38, + "probability": 0.9798 + }, + { + "start": 5740.44, + "end": 5743.2, + "probability": 0.9797 + }, + { + "start": 5744.84, + "end": 5745.88, + "probability": 0.9712 + }, + { + "start": 5747.14, + "end": 5748.66, + "probability": 0.6012 + }, + { + "start": 5748.96, + "end": 5751.4, + "probability": 0.9661 + }, + { + "start": 5752.58, + "end": 5753.3, + "probability": 0.9791 + }, + { + "start": 5755.5, + "end": 5756.9, + "probability": 0.9175 + }, + { + "start": 5757.78, + "end": 5758.26, + "probability": 0.5353 + }, + { + "start": 5758.38, + "end": 5759.64, + "probability": 0.9532 + }, + { + "start": 5760.76, + "end": 5762.32, + "probability": 0.9733 + }, + { + "start": 5763.16, + "end": 5764.6, + "probability": 0.7734 + }, + { + "start": 5766.42, + "end": 5768.14, + "probability": 0.9929 + }, + { + "start": 5770.74, + "end": 5772.02, + "probability": 0.7857 + }, + { + "start": 5773.58, + "end": 5776.54, + "probability": 0.938 + }, + { + "start": 5778.2, + "end": 5784.28, + "probability": 0.9446 + }, + { + "start": 5784.34, + "end": 5786.3, + "probability": 0.9707 + }, + { + "start": 5786.42, + "end": 5786.82, + "probability": 0.8341 + }, + { + "start": 5786.84, + "end": 5787.2, + "probability": 0.8842 + }, + { + "start": 5787.64, + "end": 5788.12, + "probability": 0.6781 + }, + { + "start": 5789.36, + "end": 5791.29, + "probability": 0.9424 + }, + { + "start": 5791.46, + "end": 5791.78, + "probability": 0.5357 + }, + { + "start": 5793.16, + "end": 5793.94, + "probability": 0.9932 + }, + { + "start": 5794.74, + "end": 5796.26, + "probability": 0.9971 + }, + { + "start": 5797.18, + "end": 5801.3, + "probability": 0.988 + }, + { + "start": 5802.22, + "end": 5803.02, + "probability": 0.9829 + }, + { + "start": 5804.3, + "end": 5808.52, + "probability": 0.9751 + }, + { + "start": 5809.76, + "end": 5810.34, + "probability": 0.2861 + }, + { + "start": 5812.8, + "end": 5813.86, + "probability": 0.9601 + }, + { + "start": 5814.5, + "end": 5815.86, + "probability": 0.9548 + }, + { + "start": 5816.7, + "end": 5817.18, + "probability": 0.8182 + }, + { + "start": 5818.12, + "end": 5822.56, + "probability": 0.9429 + }, + { + "start": 5823.0, + "end": 5826.06, + "probability": 0.8769 + }, + { + "start": 5828.52, + "end": 5834.24, + "probability": 0.7092 + }, + { + "start": 5835.34, + "end": 5837.7, + "probability": 0.937 + }, + { + "start": 5840.16, + "end": 5840.92, + "probability": 0.9639 + }, + { + "start": 5842.54, + "end": 5844.28, + "probability": 0.9984 + }, + { + "start": 5844.38, + "end": 5844.96, + "probability": 0.7571 + }, + { + "start": 5845.02, + "end": 5847.04, + "probability": 0.6253 + }, + { + "start": 5847.62, + "end": 5848.48, + "probability": 0.8889 + }, + { + "start": 5850.4, + "end": 5851.76, + "probability": 0.975 + }, + { + "start": 5853.14, + "end": 5858.4, + "probability": 0.9968 + }, + { + "start": 5858.48, + "end": 5859.24, + "probability": 0.9437 + }, + { + "start": 5861.8, + "end": 5862.54, + "probability": 0.6559 + }, + { + "start": 5862.92, + "end": 5864.52, + "probability": 0.9843 + }, + { + "start": 5868.42, + "end": 5869.62, + "probability": 0.4121 + }, + { + "start": 5891.1, + "end": 5892.08, + "probability": 0.6085 + }, + { + "start": 5892.16, + "end": 5893.64, + "probability": 0.5528 + }, + { + "start": 5894.82, + "end": 5900.86, + "probability": 0.9795 + }, + { + "start": 5901.92, + "end": 5904.74, + "probability": 0.9895 + }, + { + "start": 5905.72, + "end": 5908.44, + "probability": 0.9976 + }, + { + "start": 5909.08, + "end": 5913.82, + "probability": 0.993 + }, + { + "start": 5914.88, + "end": 5921.26, + "probability": 0.9146 + }, + { + "start": 5922.3, + "end": 5928.64, + "probability": 0.9633 + }, + { + "start": 5929.56, + "end": 5934.72, + "probability": 0.9992 + }, + { + "start": 5935.42, + "end": 5939.46, + "probability": 0.9851 + }, + { + "start": 5940.16, + "end": 5945.62, + "probability": 0.998 + }, + { + "start": 5946.48, + "end": 5949.84, + "probability": 0.9995 + }, + { + "start": 5950.28, + "end": 5954.6, + "probability": 0.9663 + }, + { + "start": 5956.14, + "end": 5959.72, + "probability": 0.9083 + }, + { + "start": 5960.24, + "end": 5961.1, + "probability": 0.8587 + }, + { + "start": 5961.52, + "end": 5966.16, + "probability": 0.9834 + }, + { + "start": 5966.7, + "end": 5971.48, + "probability": 0.9617 + }, + { + "start": 5972.46, + "end": 5975.46, + "probability": 0.9818 + }, + { + "start": 5976.3, + "end": 5979.82, + "probability": 0.9956 + }, + { + "start": 5980.36, + "end": 5987.24, + "probability": 0.9976 + }, + { + "start": 5988.16, + "end": 5994.2, + "probability": 0.9573 + }, + { + "start": 5994.78, + "end": 5996.64, + "probability": 0.9542 + }, + { + "start": 5997.26, + "end": 6002.58, + "probability": 0.9564 + }, + { + "start": 6004.14, + "end": 6007.38, + "probability": 0.9728 + }, + { + "start": 6008.12, + "end": 6010.62, + "probability": 0.9775 + }, + { + "start": 6011.5, + "end": 6013.91, + "probability": 0.9901 + }, + { + "start": 6015.22, + "end": 6015.78, + "probability": 0.891 + }, + { + "start": 6015.88, + "end": 6016.76, + "probability": 0.8806 + }, + { + "start": 6016.88, + "end": 6018.1, + "probability": 0.715 + }, + { + "start": 6018.26, + "end": 6019.14, + "probability": 0.9863 + }, + { + "start": 6020.18, + "end": 6021.51, + "probability": 0.9535 + }, + { + "start": 6022.92, + "end": 6028.7, + "probability": 0.972 + }, + { + "start": 6029.58, + "end": 6033.68, + "probability": 0.995 + }, + { + "start": 6034.36, + "end": 6037.52, + "probability": 0.9988 + }, + { + "start": 6038.48, + "end": 6039.06, + "probability": 0.8247 + }, + { + "start": 6039.64, + "end": 6041.08, + "probability": 0.9846 + }, + { + "start": 6042.36, + "end": 6044.58, + "probability": 0.9637 + }, + { + "start": 6045.12, + "end": 6048.26, + "probability": 0.9943 + }, + { + "start": 6048.9, + "end": 6055.1, + "probability": 0.9919 + }, + { + "start": 6055.64, + "end": 6057.46, + "probability": 0.5554 + }, + { + "start": 6058.22, + "end": 6059.58, + "probability": 0.7265 + }, + { + "start": 6060.16, + "end": 6061.82, + "probability": 0.9895 + }, + { + "start": 6062.5, + "end": 6064.66, + "probability": 0.8993 + }, + { + "start": 6065.9, + "end": 6066.02, + "probability": 0.4858 + }, + { + "start": 6066.62, + "end": 6067.34, + "probability": 0.7712 + }, + { + "start": 6068.4, + "end": 6071.76, + "probability": 0.9018 + }, + { + "start": 6072.28, + "end": 6075.96, + "probability": 0.9519 + }, + { + "start": 6094.04, + "end": 6095.7, + "probability": 0.3982 + }, + { + "start": 6096.94, + "end": 6104.18, + "probability": 0.9903 + }, + { + "start": 6105.78, + "end": 6110.3, + "probability": 0.9796 + }, + { + "start": 6111.9, + "end": 6112.06, + "probability": 0.4893 + }, + { + "start": 6112.18, + "end": 6117.4, + "probability": 0.9138 + }, + { + "start": 6118.6, + "end": 6120.32, + "probability": 0.7944 + }, + { + "start": 6121.1, + "end": 6123.78, + "probability": 0.9513 + }, + { + "start": 6124.32, + "end": 6126.18, + "probability": 0.8939 + }, + { + "start": 6126.62, + "end": 6127.92, + "probability": 0.9678 + }, + { + "start": 6129.84, + "end": 6133.94, + "probability": 0.9885 + }, + { + "start": 6135.16, + "end": 6138.8, + "probability": 0.9368 + }, + { + "start": 6139.74, + "end": 6142.44, + "probability": 0.9678 + }, + { + "start": 6142.44, + "end": 6145.14, + "probability": 0.9919 + }, + { + "start": 6146.44, + "end": 6148.96, + "probability": 0.9452 + }, + { + "start": 6150.26, + "end": 6151.08, + "probability": 0.9576 + }, + { + "start": 6152.02, + "end": 6154.9, + "probability": 0.9946 + }, + { + "start": 6155.02, + "end": 6157.38, + "probability": 0.952 + }, + { + "start": 6158.68, + "end": 6160.58, + "probability": 0.6838 + }, + { + "start": 6161.26, + "end": 6161.94, + "probability": 0.6843 + }, + { + "start": 6162.26, + "end": 6162.86, + "probability": 0.8891 + }, + { + "start": 6163.08, + "end": 6166.2, + "probability": 0.9922 + }, + { + "start": 6166.82, + "end": 6168.42, + "probability": 0.9403 + }, + { + "start": 6170.8, + "end": 6173.3, + "probability": 0.9705 + }, + { + "start": 6173.42, + "end": 6175.76, + "probability": 0.9292 + }, + { + "start": 6176.32, + "end": 6177.02, + "probability": 0.9593 + }, + { + "start": 6178.12, + "end": 6179.52, + "probability": 0.9084 + }, + { + "start": 6180.88, + "end": 6181.32, + "probability": 0.9169 + }, + { + "start": 6182.14, + "end": 6183.28, + "probability": 0.9888 + }, + { + "start": 6183.88, + "end": 6188.52, + "probability": 0.9509 + }, + { + "start": 6189.32, + "end": 6191.08, + "probability": 0.9942 + }, + { + "start": 6192.68, + "end": 6196.36, + "probability": 0.9321 + }, + { + "start": 6196.46, + "end": 6198.84, + "probability": 0.9909 + }, + { + "start": 6199.72, + "end": 6202.06, + "probability": 0.96 + }, + { + "start": 6202.8, + "end": 6204.1, + "probability": 0.969 + }, + { + "start": 6205.12, + "end": 6205.84, + "probability": 0.9031 + }, + { + "start": 6207.0, + "end": 6209.03, + "probability": 0.9881 + }, + { + "start": 6210.02, + "end": 6212.26, + "probability": 0.9839 + }, + { + "start": 6212.26, + "end": 6216.98, + "probability": 0.9914 + }, + { + "start": 6218.3, + "end": 6222.98, + "probability": 0.9771 + }, + { + "start": 6223.04, + "end": 6223.64, + "probability": 0.7439 + }, + { + "start": 6223.7, + "end": 6226.36, + "probability": 0.8189 + }, + { + "start": 6226.58, + "end": 6226.58, + "probability": 0.5392 + }, + { + "start": 6226.58, + "end": 6227.92, + "probability": 0.9528 + }, + { + "start": 6228.78, + "end": 6231.54, + "probability": 0.974 + }, + { + "start": 6231.62, + "end": 6231.94, + "probability": 0.7131 + }, + { + "start": 6231.96, + "end": 6232.62, + "probability": 0.8279 + }, + { + "start": 6233.18, + "end": 6234.88, + "probability": 0.9795 + }, + { + "start": 6235.72, + "end": 6238.24, + "probability": 0.7545 + }, + { + "start": 6239.36, + "end": 6240.7, + "probability": 0.9849 + }, + { + "start": 6240.84, + "end": 6242.52, + "probability": 0.8809 + }, + { + "start": 6243.1, + "end": 6243.78, + "probability": 0.6574 + }, + { + "start": 6243.86, + "end": 6245.42, + "probability": 0.9554 + }, + { + "start": 6245.46, + "end": 6247.4, + "probability": 0.6524 + }, + { + "start": 6247.56, + "end": 6248.2, + "probability": 0.6688 + }, + { + "start": 6249.26, + "end": 6249.96, + "probability": 0.8202 + }, + { + "start": 6250.14, + "end": 6251.76, + "probability": 0.769 + }, + { + "start": 6251.88, + "end": 6255.56, + "probability": 0.9951 + }, + { + "start": 6255.56, + "end": 6260.62, + "probability": 0.9938 + }, + { + "start": 6260.92, + "end": 6261.5, + "probability": 0.5766 + }, + { + "start": 6261.5, + "end": 6261.5, + "probability": 0.2598 + }, + { + "start": 6261.54, + "end": 6263.0, + "probability": 0.7241 + }, + { + "start": 6273.54, + "end": 6276.94, + "probability": 0.5861 + }, + { + "start": 6277.74, + "end": 6279.51, + "probability": 0.614 + }, + { + "start": 6279.84, + "end": 6284.1, + "probability": 0.9806 + }, + { + "start": 6284.58, + "end": 6285.96, + "probability": 0.8662 + }, + { + "start": 6286.74, + "end": 6291.98, + "probability": 0.8719 + }, + { + "start": 6292.7, + "end": 6294.26, + "probability": 0.7966 + }, + { + "start": 6294.98, + "end": 6298.08, + "probability": 0.9902 + }, + { + "start": 6299.28, + "end": 6302.44, + "probability": 0.9165 + }, + { + "start": 6303.3, + "end": 6305.18, + "probability": 0.9411 + }, + { + "start": 6306.56, + "end": 6310.94, + "probability": 0.8813 + }, + { + "start": 6312.0, + "end": 6315.7, + "probability": 0.9989 + }, + { + "start": 6316.5, + "end": 6318.78, + "probability": 0.6846 + }, + { + "start": 6319.32, + "end": 6321.3, + "probability": 0.7894 + }, + { + "start": 6323.46, + "end": 6326.46, + "probability": 0.9956 + }, + { + "start": 6327.52, + "end": 6329.12, + "probability": 0.9001 + }, + { + "start": 6330.88, + "end": 6333.61, + "probability": 0.9429 + }, + { + "start": 6335.0, + "end": 6336.58, + "probability": 0.7942 + }, + { + "start": 6338.16, + "end": 6342.4, + "probability": 0.8682 + }, + { + "start": 6343.7, + "end": 6346.1, + "probability": 0.6915 + }, + { + "start": 6346.74, + "end": 6349.72, + "probability": 0.9842 + }, + { + "start": 6350.12, + "end": 6351.18, + "probability": 0.9222 + }, + { + "start": 6351.4, + "end": 6352.4, + "probability": 0.9351 + }, + { + "start": 6353.78, + "end": 6356.84, + "probability": 0.7433 + }, + { + "start": 6357.84, + "end": 6364.82, + "probability": 0.9908 + }, + { + "start": 6366.08, + "end": 6367.92, + "probability": 0.9502 + }, + { + "start": 6370.06, + "end": 6374.64, + "probability": 0.9917 + }, + { + "start": 6375.28, + "end": 6379.88, + "probability": 0.9974 + }, + { + "start": 6381.6, + "end": 6383.68, + "probability": 0.3948 + }, + { + "start": 6384.2, + "end": 6384.82, + "probability": 0.6689 + }, + { + "start": 6385.28, + "end": 6388.84, + "probability": 0.9957 + }, + { + "start": 6389.6, + "end": 6390.68, + "probability": 0.984 + }, + { + "start": 6391.32, + "end": 6392.4, + "probability": 0.9312 + }, + { + "start": 6393.12, + "end": 6394.58, + "probability": 0.9921 + }, + { + "start": 6394.72, + "end": 6395.48, + "probability": 0.4398 + }, + { + "start": 6395.98, + "end": 6399.64, + "probability": 0.9756 + }, + { + "start": 6400.44, + "end": 6403.88, + "probability": 0.959 + }, + { + "start": 6406.56, + "end": 6409.76, + "probability": 0.9706 + }, + { + "start": 6410.28, + "end": 6410.84, + "probability": 0.9689 + }, + { + "start": 6411.84, + "end": 6413.74, + "probability": 0.9542 + }, + { + "start": 6414.74, + "end": 6416.06, + "probability": 0.9159 + }, + { + "start": 6416.7, + "end": 6418.1, + "probability": 0.9771 + }, + { + "start": 6419.3, + "end": 6420.32, + "probability": 0.6457 + }, + { + "start": 6421.22, + "end": 6422.86, + "probability": 0.9776 + }, + { + "start": 6423.5, + "end": 6425.52, + "probability": 0.8956 + }, + { + "start": 6426.38, + "end": 6429.28, + "probability": 0.9849 + }, + { + "start": 6430.0, + "end": 6431.8, + "probability": 0.9143 + }, + { + "start": 6432.58, + "end": 6435.54, + "probability": 0.9834 + }, + { + "start": 6436.44, + "end": 6439.92, + "probability": 0.7795 + }, + { + "start": 6440.7, + "end": 6441.48, + "probability": 0.4285 + }, + { + "start": 6442.24, + "end": 6443.4, + "probability": 0.7032 + }, + { + "start": 6444.04, + "end": 6448.28, + "probability": 0.9769 + }, + { + "start": 6449.0, + "end": 6451.86, + "probability": 0.9561 + }, + { + "start": 6452.48, + "end": 6454.42, + "probability": 0.9915 + }, + { + "start": 6454.94, + "end": 6460.58, + "probability": 0.993 + }, + { + "start": 6460.9, + "end": 6461.26, + "probability": 0.3459 + }, + { + "start": 6461.38, + "end": 6462.1, + "probability": 0.8745 + }, + { + "start": 6462.64, + "end": 6467.02, + "probability": 0.9021 + }, + { + "start": 6482.8, + "end": 6486.42, + "probability": 0.7566 + }, + { + "start": 6487.86, + "end": 6492.8, + "probability": 0.9886 + }, + { + "start": 6492.86, + "end": 6494.48, + "probability": 0.8547 + }, + { + "start": 6495.94, + "end": 6498.32, + "probability": 0.9844 + }, + { + "start": 6499.62, + "end": 6508.88, + "probability": 0.9429 + }, + { + "start": 6510.44, + "end": 6514.96, + "probability": 0.917 + }, + { + "start": 6515.78, + "end": 6522.74, + "probability": 0.9937 + }, + { + "start": 6523.5, + "end": 6527.86, + "probability": 0.996 + }, + { + "start": 6528.56, + "end": 6530.08, + "probability": 0.6333 + }, + { + "start": 6530.78, + "end": 6532.24, + "probability": 0.8182 + }, + { + "start": 6532.52, + "end": 6535.24, + "probability": 0.9748 + }, + { + "start": 6535.3, + "end": 6536.86, + "probability": 0.9961 + }, + { + "start": 6539.5, + "end": 6540.58, + "probability": 0.9897 + }, + { + "start": 6541.8, + "end": 6546.46, + "probability": 0.9851 + }, + { + "start": 6547.48, + "end": 6547.94, + "probability": 0.9365 + }, + { + "start": 6548.68, + "end": 6555.32, + "probability": 0.9949 + }, + { + "start": 6555.44, + "end": 6556.62, + "probability": 0.7219 + }, + { + "start": 6557.18, + "end": 6558.64, + "probability": 0.9873 + }, + { + "start": 6559.24, + "end": 6560.18, + "probability": 0.9385 + }, + { + "start": 6561.12, + "end": 6561.88, + "probability": 0.8289 + }, + { + "start": 6562.46, + "end": 6565.52, + "probability": 0.9717 + }, + { + "start": 6565.84, + "end": 6570.02, + "probability": 0.9642 + }, + { + "start": 6571.04, + "end": 6576.82, + "probability": 0.9949 + }, + { + "start": 6576.96, + "end": 6577.98, + "probability": 0.9929 + }, + { + "start": 6578.04, + "end": 6579.1, + "probability": 0.8265 + }, + { + "start": 6579.6, + "end": 6583.66, + "probability": 0.9507 + }, + { + "start": 6584.56, + "end": 6586.46, + "probability": 0.6812 + }, + { + "start": 6586.9, + "end": 6588.56, + "probability": 0.8953 + }, + { + "start": 6589.14, + "end": 6590.3, + "probability": 0.5788 + }, + { + "start": 6590.3, + "end": 6590.8, + "probability": 0.2652 + }, + { + "start": 6591.1, + "end": 6592.76, + "probability": 0.8358 + }, + { + "start": 6592.84, + "end": 6596.06, + "probability": 0.9227 + }, + { + "start": 6596.88, + "end": 6603.6, + "probability": 0.9598 + }, + { + "start": 6604.16, + "end": 6605.18, + "probability": 0.8264 + }, + { + "start": 6605.74, + "end": 6609.94, + "probability": 0.9947 + }, + { + "start": 6610.86, + "end": 6617.9, + "probability": 0.9736 + }, + { + "start": 6618.58, + "end": 6621.86, + "probability": 0.9951 + }, + { + "start": 6622.44, + "end": 6629.84, + "probability": 0.9538 + }, + { + "start": 6630.12, + "end": 6631.22, + "probability": 0.5213 + }, + { + "start": 6631.84, + "end": 6633.68, + "probability": 0.9705 + }, + { + "start": 6634.18, + "end": 6635.76, + "probability": 0.8464 + }, + { + "start": 6635.92, + "end": 6637.94, + "probability": 0.7344 + }, + { + "start": 6638.46, + "end": 6644.14, + "probability": 0.9736 + }, + { + "start": 6644.78, + "end": 6647.44, + "probability": 0.9875 + }, + { + "start": 6647.48, + "end": 6651.28, + "probability": 0.9201 + }, + { + "start": 6652.04, + "end": 6654.58, + "probability": 0.9365 + }, + { + "start": 6654.92, + "end": 6655.16, + "probability": 0.5132 + }, + { + "start": 6655.22, + "end": 6656.6, + "probability": 0.8027 + }, + { + "start": 6657.04, + "end": 6661.98, + "probability": 0.9824 + }, + { + "start": 6662.14, + "end": 6662.5, + "probability": 0.8008 + }, + { + "start": 6662.98, + "end": 6663.36, + "probability": 0.7394 + }, + { + "start": 6664.72, + "end": 6665.44, + "probability": 0.681 + }, + { + "start": 6666.04, + "end": 6668.94, + "probability": 0.9017 + }, + { + "start": 6669.28, + "end": 6670.96, + "probability": 0.924 + }, + { + "start": 6697.88, + "end": 6699.94, + "probability": 0.7207 + }, + { + "start": 6701.2, + "end": 6703.58, + "probability": 0.9894 + }, + { + "start": 6704.84, + "end": 6706.68, + "probability": 0.9971 + }, + { + "start": 6707.56, + "end": 6709.26, + "probability": 0.9976 + }, + { + "start": 6711.42, + "end": 6715.42, + "probability": 0.9526 + }, + { + "start": 6715.42, + "end": 6718.92, + "probability": 0.9886 + }, + { + "start": 6720.14, + "end": 6722.06, + "probability": 0.9876 + }, + { + "start": 6723.36, + "end": 6726.82, + "probability": 0.7427 + }, + { + "start": 6727.72, + "end": 6728.3, + "probability": 0.7756 + }, + { + "start": 6729.42, + "end": 6731.32, + "probability": 0.9956 + }, + { + "start": 6731.98, + "end": 6735.74, + "probability": 0.9207 + }, + { + "start": 6737.18, + "end": 6738.94, + "probability": 0.9985 + }, + { + "start": 6739.78, + "end": 6745.5, + "probability": 0.9991 + }, + { + "start": 6746.66, + "end": 6748.88, + "probability": 0.9922 + }, + { + "start": 6749.44, + "end": 6753.58, + "probability": 0.9906 + }, + { + "start": 6754.52, + "end": 6755.36, + "probability": 0.939 + }, + { + "start": 6756.08, + "end": 6757.48, + "probability": 0.9512 + }, + { + "start": 6758.0, + "end": 6760.96, + "probability": 0.9836 + }, + { + "start": 6761.44, + "end": 6763.24, + "probability": 0.9171 + }, + { + "start": 6763.84, + "end": 6765.7, + "probability": 0.9812 + }, + { + "start": 6766.34, + "end": 6769.99, + "probability": 0.9971 + }, + { + "start": 6770.6, + "end": 6774.2, + "probability": 0.9863 + }, + { + "start": 6775.12, + "end": 6782.78, + "probability": 0.9873 + }, + { + "start": 6783.36, + "end": 6785.08, + "probability": 0.9769 + }, + { + "start": 6785.86, + "end": 6786.84, + "probability": 0.9971 + }, + { + "start": 6787.66, + "end": 6791.14, + "probability": 0.9849 + }, + { + "start": 6791.14, + "end": 6795.08, + "probability": 0.9751 + }, + { + "start": 6795.76, + "end": 6796.2, + "probability": 0.6208 + }, + { + "start": 6797.22, + "end": 6802.4, + "probability": 0.9941 + }, + { + "start": 6802.94, + "end": 6803.4, + "probability": 0.4799 + }, + { + "start": 6804.26, + "end": 6810.28, + "probability": 0.9343 + }, + { + "start": 6810.78, + "end": 6811.48, + "probability": 0.8646 + }, + { + "start": 6812.12, + "end": 6816.8, + "probability": 0.998 + }, + { + "start": 6817.32, + "end": 6822.24, + "probability": 0.9933 + }, + { + "start": 6822.24, + "end": 6828.72, + "probability": 0.9832 + }, + { + "start": 6829.28, + "end": 6830.04, + "probability": 0.4792 + }, + { + "start": 6830.58, + "end": 6836.26, + "probability": 0.9956 + }, + { + "start": 6837.22, + "end": 6838.08, + "probability": 0.7999 + }, + { + "start": 6838.38, + "end": 6838.74, + "probability": 0.5943 + }, + { + "start": 6839.0, + "end": 6839.58, + "probability": 0.6344 + }, + { + "start": 6839.7, + "end": 6842.34, + "probability": 0.8465 + }, + { + "start": 6842.88, + "end": 6844.4, + "probability": 0.4172 + }, + { + "start": 6844.44, + "end": 6845.06, + "probability": 0.7343 + }, + { + "start": 6845.52, + "end": 6846.54, + "probability": 0.939 + }, + { + "start": 6846.54, + "end": 6847.16, + "probability": 0.6466 + }, + { + "start": 6847.58, + "end": 6850.42, + "probability": 0.9917 + }, + { + "start": 6863.14, + "end": 6865.28, + "probability": 0.6435 + }, + { + "start": 6866.44, + "end": 6867.22, + "probability": 0.9498 + }, + { + "start": 6868.88, + "end": 6869.97, + "probability": 0.7769 + }, + { + "start": 6870.04, + "end": 6871.28, + "probability": 0.9151 + }, + { + "start": 6871.48, + "end": 6872.38, + "probability": 0.6846 + }, + { + "start": 6873.36, + "end": 6874.98, + "probability": 0.7453 + }, + { + "start": 6875.64, + "end": 6879.42, + "probability": 0.8838 + }, + { + "start": 6880.18, + "end": 6881.66, + "probability": 0.8093 + }, + { + "start": 6882.0, + "end": 6882.94, + "probability": 0.8805 + }, + { + "start": 6883.16, + "end": 6884.22, + "probability": 0.6304 + }, + { + "start": 6884.6, + "end": 6885.62, + "probability": 0.8973 + }, + { + "start": 6886.56, + "end": 6888.6, + "probability": 0.724 + }, + { + "start": 6888.9, + "end": 6890.29, + "probability": 0.7671 + }, + { + "start": 6890.97, + "end": 6893.94, + "probability": 0.5746 + }, + { + "start": 6893.94, + "end": 6894.29, + "probability": 0.498 + }, + { + "start": 6895.98, + "end": 6898.98, + "probability": 0.4063 + }, + { + "start": 6899.04, + "end": 6899.8, + "probability": 0.5628 + }, + { + "start": 6899.86, + "end": 6905.2, + "probability": 0.7219 + }, + { + "start": 6905.34, + "end": 6907.16, + "probability": 0.9096 + }, + { + "start": 6907.22, + "end": 6910.34, + "probability": 0.8428 + }, + { + "start": 6910.72, + "end": 6911.04, + "probability": 0.8615 + }, + { + "start": 6913.44, + "end": 6919.82, + "probability": 0.728 + }, + { + "start": 6920.18, + "end": 6920.18, + "probability": 0.405 + }, + { + "start": 6921.28, + "end": 6925.66, + "probability": 0.9978 + }, + { + "start": 6926.24, + "end": 6928.82, + "probability": 0.9802 + }, + { + "start": 6928.82, + "end": 6932.4, + "probability": 0.9678 + }, + { + "start": 6932.5, + "end": 6933.34, + "probability": 0.9829 + }, + { + "start": 6935.28, + "end": 6937.64, + "probability": 0.8228 + }, + { + "start": 6937.74, + "end": 6939.64, + "probability": 0.8103 + }, + { + "start": 6940.26, + "end": 6941.1, + "probability": 0.8705 + }, + { + "start": 6941.16, + "end": 6942.64, + "probability": 0.9878 + }, + { + "start": 6943.28, + "end": 6944.62, + "probability": 0.9933 + }, + { + "start": 6945.74, + "end": 6948.64, + "probability": 0.999 + }, + { + "start": 6949.04, + "end": 6954.72, + "probability": 0.9871 + }, + { + "start": 6954.72, + "end": 6959.08, + "probability": 0.9868 + }, + { + "start": 6959.18, + "end": 6961.96, + "probability": 0.7581 + }, + { + "start": 6962.4, + "end": 6965.48, + "probability": 0.9916 + }, + { + "start": 6966.38, + "end": 6968.21, + "probability": 0.9604 + }, + { + "start": 6968.9, + "end": 6973.26, + "probability": 0.9456 + }, + { + "start": 6973.74, + "end": 6977.4, + "probability": 0.9498 + }, + { + "start": 6977.98, + "end": 6978.74, + "probability": 0.7904 + }, + { + "start": 6978.98, + "end": 6980.92, + "probability": 0.647 + }, + { + "start": 6981.8, + "end": 6982.7, + "probability": 0.8446 + }, + { + "start": 6982.92, + "end": 6986.12, + "probability": 0.9084 + }, + { + "start": 6986.54, + "end": 6987.96, + "probability": 0.9969 + }, + { + "start": 6988.08, + "end": 6989.36, + "probability": 0.976 + }, + { + "start": 6989.56, + "end": 6992.1, + "probability": 0.8171 + }, + { + "start": 6992.1, + "end": 6995.72, + "probability": 0.9972 + }, + { + "start": 6997.04, + "end": 6998.06, + "probability": 0.9502 + }, + { + "start": 6999.42, + "end": 6999.94, + "probability": 0.4118 + }, + { + "start": 7000.02, + "end": 7002.52, + "probability": 0.9974 + }, + { + "start": 7002.52, + "end": 7006.12, + "probability": 0.9981 + }, + { + "start": 7006.38, + "end": 7007.52, + "probability": 0.3677 + }, + { + "start": 7007.64, + "end": 7010.5, + "probability": 0.9312 + }, + { + "start": 7010.5, + "end": 7012.84, + "probability": 0.9826 + }, + { + "start": 7014.3, + "end": 7016.3, + "probability": 0.9889 + }, + { + "start": 7016.74, + "end": 7019.96, + "probability": 0.9901 + }, + { + "start": 7020.02, + "end": 7020.56, + "probability": 0.8631 + }, + { + "start": 7020.64, + "end": 7021.64, + "probability": 0.9855 + }, + { + "start": 7021.92, + "end": 7022.54, + "probability": 0.8445 + }, + { + "start": 7022.68, + "end": 7023.6, + "probability": 0.9749 + }, + { + "start": 7023.74, + "end": 7024.74, + "probability": 0.8501 + }, + { + "start": 7025.02, + "end": 7026.08, + "probability": 0.8624 + }, + { + "start": 7026.62, + "end": 7029.86, + "probability": 0.8583 + }, + { + "start": 7030.28, + "end": 7034.22, + "probability": 0.9108 + }, + { + "start": 7034.22, + "end": 7037.98, + "probability": 0.9731 + }, + { + "start": 7038.06, + "end": 7039.17, + "probability": 0.9746 + }, + { + "start": 7040.0, + "end": 7043.54, + "probability": 0.9121 + }, + { + "start": 7044.32, + "end": 7045.72, + "probability": 0.9265 + }, + { + "start": 7046.02, + "end": 7047.34, + "probability": 0.6044 + }, + { + "start": 7047.76, + "end": 7048.86, + "probability": 0.9883 + }, + { + "start": 7049.98, + "end": 7052.08, + "probability": 0.999 + }, + { + "start": 7052.52, + "end": 7053.08, + "probability": 0.5346 + }, + { + "start": 7053.66, + "end": 7054.94, + "probability": 0.7917 + }, + { + "start": 7055.54, + "end": 7057.5, + "probability": 0.8916 + }, + { + "start": 7058.28, + "end": 7061.58, + "probability": 0.9922 + }, + { + "start": 7062.36, + "end": 7066.16, + "probability": 0.9829 + }, + { + "start": 7066.64, + "end": 7066.84, + "probability": 0.7556 + }, + { + "start": 7067.62, + "end": 7069.76, + "probability": 0.8499 + }, + { + "start": 7069.86, + "end": 7072.1, + "probability": 0.8266 + }, + { + "start": 7072.24, + "end": 7072.9, + "probability": 0.9417 + }, + { + "start": 7073.3, + "end": 7074.82, + "probability": 0.8669 + }, + { + "start": 7074.98, + "end": 7076.36, + "probability": 0.9686 + }, + { + "start": 7076.92, + "end": 7078.42, + "probability": 0.9255 + }, + { + "start": 7078.48, + "end": 7079.24, + "probability": 0.617 + }, + { + "start": 7079.58, + "end": 7081.04, + "probability": 0.6416 + }, + { + "start": 7081.58, + "end": 7081.6, + "probability": 0.4043 + }, + { + "start": 7081.64, + "end": 7082.98, + "probability": 0.9922 + }, + { + "start": 7083.48, + "end": 7083.52, + "probability": 0.3833 + }, + { + "start": 7083.52, + "end": 7086.82, + "probability": 0.8989 + }, + { + "start": 7087.08, + "end": 7088.9, + "probability": 0.9441 + }, + { + "start": 7089.12, + "end": 7090.08, + "probability": 0.1997 + }, + { + "start": 7090.08, + "end": 7095.36, + "probability": 0.9763 + }, + { + "start": 7095.5, + "end": 7096.0, + "probability": 0.778 + }, + { + "start": 7096.14, + "end": 7098.18, + "probability": 0.9685 + }, + { + "start": 7098.22, + "end": 7098.78, + "probability": 0.8445 + }, + { + "start": 7098.88, + "end": 7100.2, + "probability": 0.9196 + }, + { + "start": 7100.2, + "end": 7101.18, + "probability": 0.6035 + }, + { + "start": 7102.17, + "end": 7105.06, + "probability": 0.034 + }, + { + "start": 7105.1, + "end": 7105.22, + "probability": 0.3494 + }, + { + "start": 7105.72, + "end": 7107.58, + "probability": 0.465 + }, + { + "start": 7107.88, + "end": 7108.36, + "probability": 0.6679 + }, + { + "start": 7108.38, + "end": 7108.92, + "probability": 0.3908 + }, + { + "start": 7110.43, + "end": 7114.94, + "probability": 0.8346 + }, + { + "start": 7115.21, + "end": 7118.12, + "probability": 0.7472 + }, + { + "start": 7118.2, + "end": 7118.98, + "probability": 0.6175 + }, + { + "start": 7119.26, + "end": 7120.16, + "probability": 0.188 + }, + { + "start": 7120.16, + "end": 7120.34, + "probability": 0.2499 + }, + { + "start": 7120.44, + "end": 7121.56, + "probability": 0.4544 + }, + { + "start": 7121.64, + "end": 7122.02, + "probability": 0.1994 + }, + { + "start": 7122.02, + "end": 7122.42, + "probability": 0.1268 + }, + { + "start": 7122.46, + "end": 7123.86, + "probability": 0.1129 + }, + { + "start": 7123.96, + "end": 7125.84, + "probability": 0.5589 + }, + { + "start": 7125.84, + "end": 7128.63, + "probability": 0.0471 + }, + { + "start": 7130.2, + "end": 7130.72, + "probability": 0.388 + }, + { + "start": 7132.04, + "end": 7134.02, + "probability": 0.3464 + }, + { + "start": 7135.38, + "end": 7135.88, + "probability": 0.0094 + }, + { + "start": 7136.54, + "end": 7138.9, + "probability": 0.1073 + }, + { + "start": 7138.9, + "end": 7138.9, + "probability": 0.2069 + }, + { + "start": 7140.0, + "end": 7140.0, + "probability": 0.1504 + }, + { + "start": 7140.0, + "end": 7140.0, + "probability": 0.2395 + }, + { + "start": 7140.0, + "end": 7140.0, + "probability": 0.0919 + }, + { + "start": 7140.0, + "end": 7140.0, + "probability": 0.0424 + }, + { + "start": 7140.0, + "end": 7140.0, + "probability": 0.207 + }, + { + "start": 7140.0, + "end": 7141.3, + "probability": 0.2979 + }, + { + "start": 7142.84, + "end": 7145.7, + "probability": 0.6606 + }, + { + "start": 7147.1, + "end": 7150.2, + "probability": 0.9932 + }, + { + "start": 7150.96, + "end": 7152.9, + "probability": 0.5755 + }, + { + "start": 7154.1, + "end": 7156.9, + "probability": 0.9983 + }, + { + "start": 7159.64, + "end": 7162.84, + "probability": 0.6644 + }, + { + "start": 7162.84, + "end": 7163.26, + "probability": 0.6618 + }, + { + "start": 7163.74, + "end": 7166.0, + "probability": 0.999 + }, + { + "start": 7167.72, + "end": 7169.0, + "probability": 0.9148 + }, + { + "start": 7170.02, + "end": 7172.68, + "probability": 0.9816 + }, + { + "start": 7173.74, + "end": 7176.8, + "probability": 0.9972 + }, + { + "start": 7179.02, + "end": 7180.64, + "probability": 0.8188 + }, + { + "start": 7181.5, + "end": 7184.18, + "probability": 0.9945 + }, + { + "start": 7185.34, + "end": 7190.78, + "probability": 0.9893 + }, + { + "start": 7191.82, + "end": 7196.1, + "probability": 0.9922 + }, + { + "start": 7196.1, + "end": 7199.78, + "probability": 0.9982 + }, + { + "start": 7199.84, + "end": 7200.74, + "probability": 0.8011 + }, + { + "start": 7201.6, + "end": 7204.84, + "probability": 0.9525 + }, + { + "start": 7206.46, + "end": 7209.73, + "probability": 0.9884 + }, + { + "start": 7210.72, + "end": 7215.76, + "probability": 0.9826 + }, + { + "start": 7216.34, + "end": 7217.76, + "probability": 0.9649 + }, + { + "start": 7218.6, + "end": 7222.0, + "probability": 0.9425 + }, + { + "start": 7222.96, + "end": 7224.42, + "probability": 0.9204 + }, + { + "start": 7224.98, + "end": 7227.18, + "probability": 0.8857 + }, + { + "start": 7227.56, + "end": 7230.72, + "probability": 0.9849 + }, + { + "start": 7232.04, + "end": 7234.08, + "probability": 0.9521 + }, + { + "start": 7235.82, + "end": 7237.38, + "probability": 0.9987 + }, + { + "start": 7238.84, + "end": 7239.58, + "probability": 0.9922 + }, + { + "start": 7240.46, + "end": 7241.66, + "probability": 0.8062 + }, + { + "start": 7242.72, + "end": 7243.52, + "probability": 0.9218 + }, + { + "start": 7244.04, + "end": 7246.86, + "probability": 0.9601 + }, + { + "start": 7247.82, + "end": 7249.82, + "probability": 0.9778 + }, + { + "start": 7250.44, + "end": 7252.28, + "probability": 0.9461 + }, + { + "start": 7253.56, + "end": 7254.28, + "probability": 0.8697 + }, + { + "start": 7254.54, + "end": 7255.28, + "probability": 0.8325 + }, + { + "start": 7255.46, + "end": 7257.84, + "probability": 0.8169 + }, + { + "start": 7258.36, + "end": 7260.88, + "probability": 0.9897 + }, + { + "start": 7261.44, + "end": 7263.98, + "probability": 0.9907 + }, + { + "start": 7264.9, + "end": 7269.32, + "probability": 0.9299 + }, + { + "start": 7270.04, + "end": 7271.34, + "probability": 0.9904 + }, + { + "start": 7272.22, + "end": 7275.0, + "probability": 0.9856 + }, + { + "start": 7275.52, + "end": 7276.46, + "probability": 0.9972 + }, + { + "start": 7278.1, + "end": 7281.56, + "probability": 0.9733 + }, + { + "start": 7282.52, + "end": 7284.36, + "probability": 0.983 + }, + { + "start": 7284.98, + "end": 7285.84, + "probability": 0.7307 + }, + { + "start": 7286.02, + "end": 7289.94, + "probability": 0.996 + }, + { + "start": 7291.16, + "end": 7292.04, + "probability": 0.8177 + }, + { + "start": 7293.12, + "end": 7296.12, + "probability": 0.8538 + }, + { + "start": 7296.58, + "end": 7300.54, + "probability": 0.9193 + }, + { + "start": 7300.98, + "end": 7301.88, + "probability": 0.8698 + }, + { + "start": 7302.56, + "end": 7303.58, + "probability": 0.9526 + }, + { + "start": 7304.08, + "end": 7305.36, + "probability": 0.9821 + }, + { + "start": 7307.78, + "end": 7309.02, + "probability": 0.9809 + }, + { + "start": 7309.62, + "end": 7311.12, + "probability": 0.9711 + }, + { + "start": 7312.16, + "end": 7312.98, + "probability": 0.6982 + }, + { + "start": 7314.22, + "end": 7315.96, + "probability": 0.9375 + }, + { + "start": 7316.74, + "end": 7317.77, + "probability": 0.9805 + }, + { + "start": 7319.18, + "end": 7320.22, + "probability": 0.6555 + }, + { + "start": 7320.26, + "end": 7322.14, + "probability": 0.9639 + }, + { + "start": 7322.72, + "end": 7326.04, + "probability": 0.9971 + }, + { + "start": 7326.36, + "end": 7326.74, + "probability": 0.9115 + }, + { + "start": 7331.74, + "end": 7333.62, + "probability": 0.5794 + }, + { + "start": 7333.72, + "end": 7335.4, + "probability": 0.9812 + }, + { + "start": 7338.98, + "end": 7340.02, + "probability": 0.6831 + }, + { + "start": 7340.1, + "end": 7341.0, + "probability": 0.0224 + }, + { + "start": 7341.38, + "end": 7342.3, + "probability": 0.7253 + }, + { + "start": 7342.6, + "end": 7343.88, + "probability": 0.9233 + }, + { + "start": 7344.26, + "end": 7345.34, + "probability": 0.8607 + }, + { + "start": 7354.2, + "end": 7354.63, + "probability": 0.5409 + }, + { + "start": 7355.06, + "end": 7356.34, + "probability": 0.5186 + }, + { + "start": 7356.66, + "end": 7357.5, + "probability": 0.7942 + }, + { + "start": 7357.54, + "end": 7357.68, + "probability": 0.1341 + }, + { + "start": 7357.68, + "end": 7358.36, + "probability": 0.227 + }, + { + "start": 7358.68, + "end": 7359.05, + "probability": 0.6179 + }, + { + "start": 7359.22, + "end": 7360.16, + "probability": 0.619 + }, + { + "start": 7360.16, + "end": 7361.3, + "probability": 0.6615 + }, + { + "start": 7363.76, + "end": 7365.8, + "probability": 0.8067 + }, + { + "start": 7365.8, + "end": 7366.38, + "probability": 0.9739 + }, + { + "start": 7366.6, + "end": 7366.98, + "probability": 0.2708 + }, + { + "start": 7367.02, + "end": 7368.48, + "probability": 0.7991 + }, + { + "start": 7369.88, + "end": 7372.82, + "probability": 0.7183 + }, + { + "start": 7373.12, + "end": 7373.6, + "probability": 0.7452 + }, + { + "start": 7375.3, + "end": 7380.14, + "probability": 0.9916 + }, + { + "start": 7381.82, + "end": 7386.06, + "probability": 0.9982 + }, + { + "start": 7386.06, + "end": 7388.3, + "probability": 0.9799 + }, + { + "start": 7390.68, + "end": 7398.62, + "probability": 0.9884 + }, + { + "start": 7399.22, + "end": 7401.3, + "probability": 0.6065 + }, + { + "start": 7402.6, + "end": 7404.88, + "probability": 0.9272 + }, + { + "start": 7406.18, + "end": 7410.64, + "probability": 0.9976 + }, + { + "start": 7411.62, + "end": 7419.51, + "probability": 0.9974 + }, + { + "start": 7420.62, + "end": 7421.42, + "probability": 0.5406 + }, + { + "start": 7421.52, + "end": 7424.56, + "probability": 0.9834 + }, + { + "start": 7424.64, + "end": 7425.78, + "probability": 0.8936 + }, + { + "start": 7425.88, + "end": 7426.98, + "probability": 0.6579 + }, + { + "start": 7427.84, + "end": 7433.64, + "probability": 0.9966 + }, + { + "start": 7433.64, + "end": 7437.02, + "probability": 0.9803 + }, + { + "start": 7438.4, + "end": 7441.64, + "probability": 0.998 + }, + { + "start": 7442.26, + "end": 7444.02, + "probability": 0.9555 + }, + { + "start": 7445.54, + "end": 7447.1, + "probability": 0.7896 + }, + { + "start": 7448.38, + "end": 7451.62, + "probability": 0.9979 + }, + { + "start": 7453.64, + "end": 7454.98, + "probability": 0.9979 + }, + { + "start": 7455.6, + "end": 7457.0, + "probability": 0.991 + }, + { + "start": 7457.8, + "end": 7461.18, + "probability": 0.9893 + }, + { + "start": 7461.84, + "end": 7463.3, + "probability": 0.9355 + }, + { + "start": 7463.94, + "end": 7469.6, + "probability": 0.9954 + }, + { + "start": 7469.6, + "end": 7474.8, + "probability": 0.9994 + }, + { + "start": 7475.3, + "end": 7478.06, + "probability": 0.9961 + }, + { + "start": 7478.06, + "end": 7481.0, + "probability": 0.9882 + }, + { + "start": 7481.58, + "end": 7482.48, + "probability": 0.9622 + }, + { + "start": 7484.08, + "end": 7486.78, + "probability": 0.9871 + }, + { + "start": 7486.92, + "end": 7488.22, + "probability": 0.6729 + }, + { + "start": 7489.72, + "end": 7491.7, + "probability": 0.9873 + }, + { + "start": 7493.78, + "end": 7498.0, + "probability": 0.9705 + }, + { + "start": 7498.74, + "end": 7501.29, + "probability": 0.998 + }, + { + "start": 7501.98, + "end": 7505.72, + "probability": 0.9935 + }, + { + "start": 7506.92, + "end": 7509.44, + "probability": 0.9465 + }, + { + "start": 7510.46, + "end": 7512.08, + "probability": 0.9927 + }, + { + "start": 7513.38, + "end": 7515.82, + "probability": 0.9912 + }, + { + "start": 7517.26, + "end": 7517.68, + "probability": 0.9754 + }, + { + "start": 7518.44, + "end": 7519.96, + "probability": 0.9971 + }, + { + "start": 7520.7, + "end": 7522.58, + "probability": 0.9881 + }, + { + "start": 7524.7, + "end": 7528.78, + "probability": 0.9982 + }, + { + "start": 7528.9, + "end": 7529.46, + "probability": 0.6674 + }, + { + "start": 7529.96, + "end": 7532.42, + "probability": 0.9793 + }, + { + "start": 7533.52, + "end": 7536.82, + "probability": 0.9935 + }, + { + "start": 7537.36, + "end": 7538.78, + "probability": 0.8211 + }, + { + "start": 7539.44, + "end": 7540.48, + "probability": 0.9995 + }, + { + "start": 7541.26, + "end": 7542.6, + "probability": 0.8194 + }, + { + "start": 7543.52, + "end": 7547.16, + "probability": 0.7904 + }, + { + "start": 7547.98, + "end": 7549.8, + "probability": 0.7974 + }, + { + "start": 7550.34, + "end": 7553.54, + "probability": 0.8027 + }, + { + "start": 7554.56, + "end": 7555.06, + "probability": 0.3544 + }, + { + "start": 7555.88, + "end": 7556.72, + "probability": 0.7657 + }, + { + "start": 7556.84, + "end": 7559.4, + "probability": 0.8008 + }, + { + "start": 7559.98, + "end": 7563.98, + "probability": 0.9551 + }, + { + "start": 7564.4, + "end": 7570.54, + "probability": 0.997 + }, + { + "start": 7571.72, + "end": 7572.94, + "probability": 0.9018 + }, + { + "start": 7573.04, + "end": 7575.38, + "probability": 0.9966 + }, + { + "start": 7575.98, + "end": 7577.3, + "probability": 0.9392 + }, + { + "start": 7577.78, + "end": 7578.74, + "probability": 0.8741 + }, + { + "start": 7585.82, + "end": 7587.58, + "probability": 0.6557 + }, + { + "start": 7587.64, + "end": 7589.02, + "probability": 0.9185 + }, + { + "start": 7591.58, + "end": 7592.52, + "probability": 0.876 + }, + { + "start": 7592.84, + "end": 7594.8, + "probability": 0.985 + }, + { + "start": 7607.74, + "end": 7608.3, + "probability": 0.7332 + }, + { + "start": 7609.24, + "end": 7611.42, + "probability": 0.902 + }, + { + "start": 7613.3, + "end": 7617.8, + "probability": 0.9905 + }, + { + "start": 7618.56, + "end": 7622.5, + "probability": 0.999 + }, + { + "start": 7622.5, + "end": 7626.7, + "probability": 0.9995 + }, + { + "start": 7627.54, + "end": 7633.2, + "probability": 0.9979 + }, + { + "start": 7634.4, + "end": 7638.88, + "probability": 0.9988 + }, + { + "start": 7638.88, + "end": 7643.06, + "probability": 0.9993 + }, + { + "start": 7643.44, + "end": 7644.77, + "probability": 0.9939 + }, + { + "start": 7646.12, + "end": 7648.98, + "probability": 0.951 + }, + { + "start": 7649.48, + "end": 7650.64, + "probability": 0.9608 + }, + { + "start": 7650.92, + "end": 7651.48, + "probability": 0.8796 + }, + { + "start": 7651.58, + "end": 7652.34, + "probability": 0.7962 + }, + { + "start": 7652.38, + "end": 7654.56, + "probability": 0.6005 + }, + { + "start": 7654.74, + "end": 7656.94, + "probability": 0.8612 + }, + { + "start": 7657.84, + "end": 7660.18, + "probability": 0.9806 + }, + { + "start": 7660.74, + "end": 7664.7, + "probability": 0.9964 + }, + { + "start": 7664.94, + "end": 7669.56, + "probability": 0.9827 + }, + { + "start": 7670.7, + "end": 7673.04, + "probability": 0.9961 + }, + { + "start": 7673.28, + "end": 7676.98, + "probability": 0.9993 + }, + { + "start": 7676.98, + "end": 7680.72, + "probability": 0.9832 + }, + { + "start": 7681.76, + "end": 7685.24, + "probability": 0.9982 + }, + { + "start": 7685.6, + "end": 7687.52, + "probability": 0.922 + }, + { + "start": 7688.08, + "end": 7692.3, + "probability": 0.9849 + }, + { + "start": 7692.72, + "end": 7697.32, + "probability": 0.9948 + }, + { + "start": 7697.32, + "end": 7702.74, + "probability": 0.9949 + }, + { + "start": 7703.78, + "end": 7707.12, + "probability": 0.9985 + }, + { + "start": 7707.42, + "end": 7710.72, + "probability": 0.9433 + }, + { + "start": 7712.32, + "end": 7715.82, + "probability": 0.9814 + }, + { + "start": 7716.94, + "end": 7719.95, + "probability": 0.9939 + }, + { + "start": 7720.6, + "end": 7721.96, + "probability": 0.9872 + }, + { + "start": 7722.1, + "end": 7723.9, + "probability": 0.9751 + }, + { + "start": 7724.42, + "end": 7726.12, + "probability": 0.9841 + }, + { + "start": 7726.46, + "end": 7729.24, + "probability": 0.995 + }, + { + "start": 7729.7, + "end": 7730.4, + "probability": 0.8377 + }, + { + "start": 7730.96, + "end": 7732.72, + "probability": 0.9717 + }, + { + "start": 7733.24, + "end": 7733.86, + "probability": 0.8688 + }, + { + "start": 7734.18, + "end": 7734.8, + "probability": 0.98 + }, + { + "start": 7735.18, + "end": 7735.42, + "probability": 0.9373 + }, + { + "start": 7737.12, + "end": 7739.68, + "probability": 0.8594 + }, + { + "start": 7741.16, + "end": 7743.64, + "probability": 0.9673 + }, + { + "start": 7746.46, + "end": 7747.34, + "probability": 0.4804 + }, + { + "start": 7748.8, + "end": 7750.4, + "probability": 0.38 + }, + { + "start": 7750.44, + "end": 7751.6, + "probability": 0.9918 + }, + { + "start": 7753.6, + "end": 7754.96, + "probability": 0.9364 + }, + { + "start": 7763.32, + "end": 7763.82, + "probability": 0.8108 + }, + { + "start": 7765.76, + "end": 7766.68, + "probability": 0.8308 + }, + { + "start": 7767.18, + "end": 7769.72, + "probability": 0.9948 + }, + { + "start": 7770.76, + "end": 7773.18, + "probability": 0.9786 + }, + { + "start": 7773.18, + "end": 7775.38, + "probability": 0.998 + }, + { + "start": 7775.5, + "end": 7776.3, + "probability": 0.8899 + }, + { + "start": 7777.04, + "end": 7781.34, + "probability": 0.9714 + }, + { + "start": 7781.74, + "end": 7782.54, + "probability": 0.9514 + }, + { + "start": 7783.08, + "end": 7783.94, + "probability": 0.9148 + }, + { + "start": 7784.1, + "end": 7786.94, + "probability": 0.9445 + }, + { + "start": 7787.0, + "end": 7787.56, + "probability": 0.8791 + }, + { + "start": 7787.76, + "end": 7791.16, + "probability": 0.9766 + }, + { + "start": 7792.1, + "end": 7795.24, + "probability": 0.9578 + }, + { + "start": 7795.76, + "end": 7797.56, + "probability": 0.9481 + }, + { + "start": 7797.64, + "end": 7799.82, + "probability": 0.9896 + }, + { + "start": 7800.56, + "end": 7802.28, + "probability": 0.9654 + }, + { + "start": 7802.94, + "end": 7804.86, + "probability": 0.8079 + }, + { + "start": 7805.54, + "end": 7807.04, + "probability": 0.9966 + }, + { + "start": 7807.5, + "end": 7807.96, + "probability": 0.9063 + }, + { + "start": 7808.04, + "end": 7809.84, + "probability": 0.9839 + }, + { + "start": 7809.92, + "end": 7811.08, + "probability": 0.8935 + }, + { + "start": 7812.86, + "end": 7813.12, + "probability": 0.5777 + }, + { + "start": 7813.28, + "end": 7814.22, + "probability": 0.8745 + }, + { + "start": 7814.52, + "end": 7814.98, + "probability": 0.7924 + }, + { + "start": 7815.1, + "end": 7815.3, + "probability": 0.6832 + }, + { + "start": 7815.4, + "end": 7816.64, + "probability": 0.9368 + }, + { + "start": 7816.8, + "end": 7818.64, + "probability": 0.8936 + }, + { + "start": 7819.22, + "end": 7821.62, + "probability": 0.9941 + }, + { + "start": 7822.38, + "end": 7825.66, + "probability": 0.9629 + }, + { + "start": 7826.36, + "end": 7826.73, + "probability": 0.7588 + }, + { + "start": 7826.96, + "end": 7827.54, + "probability": 0.8257 + }, + { + "start": 7827.66, + "end": 7828.4, + "probability": 0.9281 + }, + { + "start": 7829.14, + "end": 7831.02, + "probability": 0.989 + }, + { + "start": 7831.1, + "end": 7831.5, + "probability": 0.9807 + }, + { + "start": 7831.52, + "end": 7831.96, + "probability": 0.8852 + }, + { + "start": 7831.98, + "end": 7834.42, + "probability": 0.7374 + }, + { + "start": 7835.54, + "end": 7838.64, + "probability": 0.6237 + }, + { + "start": 7838.64, + "end": 7840.5, + "probability": 0.9605 + }, + { + "start": 7841.14, + "end": 7845.1, + "probability": 0.9641 + }, + { + "start": 7845.68, + "end": 7847.22, + "probability": 0.9073 + }, + { + "start": 7848.44, + "end": 7849.16, + "probability": 0.8457 + }, + { + "start": 7849.8, + "end": 7852.26, + "probability": 0.9638 + }, + { + "start": 7852.94, + "end": 7854.07, + "probability": 0.9341 + }, + { + "start": 7854.22, + "end": 7854.72, + "probability": 0.4693 + }, + { + "start": 7854.8, + "end": 7855.3, + "probability": 0.7365 + }, + { + "start": 7855.38, + "end": 7856.34, + "probability": 0.7885 + }, + { + "start": 7857.28, + "end": 7859.98, + "probability": 0.9732 + }, + { + "start": 7860.42, + "end": 7861.78, + "probability": 0.9802 + }, + { + "start": 7861.88, + "end": 7863.16, + "probability": 0.8376 + }, + { + "start": 7863.54, + "end": 7864.28, + "probability": 0.8282 + }, + { + "start": 7864.84, + "end": 7867.58, + "probability": 0.9792 + }, + { + "start": 7867.8, + "end": 7869.36, + "probability": 0.9978 + }, + { + "start": 7870.14, + "end": 7873.76, + "probability": 0.9883 + }, + { + "start": 7873.84, + "end": 7874.78, + "probability": 0.7864 + }, + { + "start": 7875.26, + "end": 7876.96, + "probability": 0.9885 + }, + { + "start": 7877.58, + "end": 7880.0, + "probability": 0.9932 + }, + { + "start": 7880.02, + "end": 7882.28, + "probability": 0.996 + }, + { + "start": 7883.22, + "end": 7884.34, + "probability": 0.6789 + }, + { + "start": 7884.82, + "end": 7886.55, + "probability": 0.9076 + }, + { + "start": 7887.4, + "end": 7890.74, + "probability": 0.9849 + }, + { + "start": 7890.74, + "end": 7893.9, + "probability": 0.9822 + }, + { + "start": 7894.4, + "end": 7895.22, + "probability": 0.6691 + }, + { + "start": 7895.76, + "end": 7897.2, + "probability": 0.9593 + }, + { + "start": 7898.3, + "end": 7900.0, + "probability": 0.7878 + }, + { + "start": 7900.22, + "end": 7900.68, + "probability": 0.706 + }, + { + "start": 7900.74, + "end": 7901.68, + "probability": 0.9513 + }, + { + "start": 7902.7, + "end": 7903.42, + "probability": 0.8944 + }, + { + "start": 7903.72, + "end": 7906.68, + "probability": 0.9474 + }, + { + "start": 7906.68, + "end": 7908.32, + "probability": 0.7426 + }, + { + "start": 7909.32, + "end": 7911.8, + "probability": 0.9565 + }, + { + "start": 7912.24, + "end": 7914.04, + "probability": 0.9849 + }, + { + "start": 7914.5, + "end": 7915.26, + "probability": 0.9067 + }, + { + "start": 7915.36, + "end": 7915.86, + "probability": 0.9408 + }, + { + "start": 7915.96, + "end": 7916.78, + "probability": 0.9504 + }, + { + "start": 7917.12, + "end": 7918.84, + "probability": 0.9765 + }, + { + "start": 7919.24, + "end": 7922.3, + "probability": 0.969 + }, + { + "start": 7922.88, + "end": 7925.02, + "probability": 0.994 + }, + { + "start": 7925.36, + "end": 7926.26, + "probability": 0.9182 + }, + { + "start": 7926.82, + "end": 7927.08, + "probability": 0.8685 + }, + { + "start": 7928.32, + "end": 7930.58, + "probability": 0.725 + }, + { + "start": 7930.58, + "end": 7932.62, + "probability": 0.4412 + }, + { + "start": 7951.16, + "end": 7951.9, + "probability": 0.5907 + }, + { + "start": 7952.42, + "end": 7954.14, + "probability": 0.6485 + }, + { + "start": 7955.7, + "end": 7956.06, + "probability": 0.7808 + }, + { + "start": 7956.18, + "end": 7958.08, + "probability": 0.7988 + }, + { + "start": 7958.12, + "end": 7959.54, + "probability": 0.968 + }, + { + "start": 7959.6, + "end": 7961.6, + "probability": 0.973 + }, + { + "start": 7961.84, + "end": 7966.3, + "probability": 0.8828 + }, + { + "start": 7966.3, + "end": 7969.5, + "probability": 0.9905 + }, + { + "start": 7970.04, + "end": 7972.56, + "probability": 0.764 + }, + { + "start": 7973.76, + "end": 7977.72, + "probability": 0.9816 + }, + { + "start": 7977.72, + "end": 7984.84, + "probability": 0.8378 + }, + { + "start": 7985.9, + "end": 7989.64, + "probability": 0.9947 + }, + { + "start": 7989.64, + "end": 7993.66, + "probability": 0.991 + }, + { + "start": 7994.82, + "end": 7999.58, + "probability": 0.9977 + }, + { + "start": 8000.44, + "end": 8003.36, + "probability": 0.9886 + }, + { + "start": 8004.52, + "end": 8005.1, + "probability": 0.129 + }, + { + "start": 8005.58, + "end": 8008.52, + "probability": 0.785 + }, + { + "start": 8008.66, + "end": 8010.74, + "probability": 0.7195 + }, + { + "start": 8011.3, + "end": 8012.28, + "probability": 0.8611 + }, + { + "start": 8012.36, + "end": 8014.8, + "probability": 0.9961 + }, + { + "start": 8014.9, + "end": 8017.62, + "probability": 0.9978 + }, + { + "start": 8017.82, + "end": 8019.26, + "probability": 0.9467 + }, + { + "start": 8020.7, + "end": 8024.81, + "probability": 0.9703 + }, + { + "start": 8026.56, + "end": 8028.88, + "probability": 0.9792 + }, + { + "start": 8029.14, + "end": 8033.12, + "probability": 0.9977 + }, + { + "start": 8033.9, + "end": 8036.5, + "probability": 0.9964 + }, + { + "start": 8036.58, + "end": 8038.15, + "probability": 0.9971 + }, + { + "start": 8038.5, + "end": 8042.02, + "probability": 0.9971 + }, + { + "start": 8042.5, + "end": 8042.98, + "probability": 0.8294 + }, + { + "start": 8043.94, + "end": 8045.12, + "probability": 0.9929 + }, + { + "start": 8045.44, + "end": 8051.6, + "probability": 0.9966 + }, + { + "start": 8052.06, + "end": 8056.48, + "probability": 0.9967 + }, + { + "start": 8056.48, + "end": 8061.42, + "probability": 0.9991 + }, + { + "start": 8061.78, + "end": 8065.94, + "probability": 0.9893 + }, + { + "start": 8066.1, + "end": 8068.18, + "probability": 0.8641 + }, + { + "start": 8068.22, + "end": 8071.66, + "probability": 0.6428 + }, + { + "start": 8072.44, + "end": 8076.06, + "probability": 0.9735 + }, + { + "start": 8076.4, + "end": 8077.28, + "probability": 0.9848 + }, + { + "start": 8077.56, + "end": 8078.96, + "probability": 0.9943 + }, + { + "start": 8079.26, + "end": 8080.7, + "probability": 0.9141 + }, + { + "start": 8080.98, + "end": 8081.92, + "probability": 0.8918 + }, + { + "start": 8082.32, + "end": 8083.36, + "probability": 0.3587 + }, + { + "start": 8083.9, + "end": 8088.8, + "probability": 0.9956 + }, + { + "start": 8089.22, + "end": 8095.4, + "probability": 0.9945 + }, + { + "start": 8097.0, + "end": 8102.6, + "probability": 0.9885 + }, + { + "start": 8103.66, + "end": 8104.82, + "probability": 0.8477 + }, + { + "start": 8105.76, + "end": 8108.14, + "probability": 0.9677 + }, + { + "start": 8108.52, + "end": 8109.6, + "probability": 0.8953 + }, + { + "start": 8109.68, + "end": 8110.62, + "probability": 0.874 + }, + { + "start": 8111.22, + "end": 8113.12, + "probability": 0.9819 + }, + { + "start": 8113.7, + "end": 8116.94, + "probability": 0.9958 + }, + { + "start": 8117.08, + "end": 8119.54, + "probability": 0.9599 + }, + { + "start": 8119.94, + "end": 8123.46, + "probability": 0.9038 + }, + { + "start": 8123.98, + "end": 8127.42, + "probability": 0.9191 + }, + { + "start": 8128.0, + "end": 8129.6, + "probability": 0.8506 + }, + { + "start": 8130.14, + "end": 8132.82, + "probability": 0.9336 + }, + { + "start": 8133.36, + "end": 8140.78, + "probability": 0.9844 + }, + { + "start": 8140.9, + "end": 8141.6, + "probability": 0.9219 + }, + { + "start": 8142.26, + "end": 8145.62, + "probability": 0.8678 + }, + { + "start": 8146.24, + "end": 8148.72, + "probability": 0.6957 + }, + { + "start": 8148.78, + "end": 8151.74, + "probability": 0.9832 + }, + { + "start": 8152.0, + "end": 8152.38, + "probability": 0.4521 + }, + { + "start": 8152.7, + "end": 8152.78, + "probability": 0.6064 + }, + { + "start": 8152.94, + "end": 8154.1, + "probability": 0.9591 + }, + { + "start": 8155.12, + "end": 8158.12, + "probability": 0.9636 + }, + { + "start": 8161.7, + "end": 8164.08, + "probability": 0.9728 + }, + { + "start": 8174.76, + "end": 8175.24, + "probability": 0.6552 + }, + { + "start": 8179.6, + "end": 8181.8, + "probability": 0.687 + }, + { + "start": 8182.6, + "end": 8183.42, + "probability": 0.6976 + }, + { + "start": 8184.1, + "end": 8187.02, + "probability": 0.9651 + }, + { + "start": 8188.4, + "end": 8190.92, + "probability": 0.9397 + }, + { + "start": 8191.5, + "end": 8193.48, + "probability": 0.9321 + }, + { + "start": 8194.36, + "end": 8197.63, + "probability": 0.9736 + }, + { + "start": 8197.72, + "end": 8201.96, + "probability": 0.9995 + }, + { + "start": 8202.76, + "end": 8203.9, + "probability": 0.8549 + }, + { + "start": 8204.42, + "end": 8208.04, + "probability": 0.9929 + }, + { + "start": 8208.06, + "end": 8211.1, + "probability": 0.9983 + }, + { + "start": 8212.98, + "end": 8216.74, + "probability": 0.8866 + }, + { + "start": 8217.68, + "end": 8219.32, + "probability": 0.7507 + }, + { + "start": 8220.46, + "end": 8221.34, + "probability": 0.9074 + }, + { + "start": 8221.42, + "end": 8222.68, + "probability": 0.9369 + }, + { + "start": 8222.96, + "end": 8224.26, + "probability": 0.9446 + }, + { + "start": 8225.04, + "end": 8226.1, + "probability": 0.981 + }, + { + "start": 8227.48, + "end": 8230.9, + "probability": 0.9927 + }, + { + "start": 8230.94, + "end": 8231.86, + "probability": 0.8007 + }, + { + "start": 8232.3, + "end": 8233.15, + "probability": 0.9824 + }, + { + "start": 8234.02, + "end": 8237.18, + "probability": 0.8562 + }, + { + "start": 8238.76, + "end": 8241.0, + "probability": 0.9486 + }, + { + "start": 8241.62, + "end": 8244.88, + "probability": 0.9691 + }, + { + "start": 8245.98, + "end": 8249.8, + "probability": 0.9877 + }, + { + "start": 8249.8, + "end": 8252.14, + "probability": 0.9922 + }, + { + "start": 8253.22, + "end": 8254.58, + "probability": 0.9969 + }, + { + "start": 8255.56, + "end": 8256.38, + "probability": 0.8757 + }, + { + "start": 8257.66, + "end": 8258.84, + "probability": 0.8327 + }, + { + "start": 8259.06, + "end": 8260.72, + "probability": 0.8677 + }, + { + "start": 8261.14, + "end": 8265.36, + "probability": 0.9797 + }, + { + "start": 8265.36, + "end": 8269.04, + "probability": 0.9993 + }, + { + "start": 8269.04, + "end": 8272.54, + "probability": 0.9976 + }, + { + "start": 8273.22, + "end": 8274.26, + "probability": 0.4729 + }, + { + "start": 8274.8, + "end": 8277.0, + "probability": 0.9197 + }, + { + "start": 8277.82, + "end": 8280.6, + "probability": 0.9925 + }, + { + "start": 8281.02, + "end": 8281.98, + "probability": 0.886 + }, + { + "start": 8282.42, + "end": 8283.54, + "probability": 0.9955 + }, + { + "start": 8284.46, + "end": 8287.86, + "probability": 0.9819 + }, + { + "start": 8287.94, + "end": 8289.38, + "probability": 0.8398 + }, + { + "start": 8289.9, + "end": 8290.64, + "probability": 0.6799 + }, + { + "start": 8291.32, + "end": 8293.12, + "probability": 0.9751 + }, + { + "start": 8293.7, + "end": 8294.46, + "probability": 0.971 + }, + { + "start": 8295.62, + "end": 8297.68, + "probability": 0.9948 + }, + { + "start": 8298.38, + "end": 8300.03, + "probability": 0.7363 + }, + { + "start": 8301.16, + "end": 8304.16, + "probability": 0.9986 + }, + { + "start": 8304.64, + "end": 8304.98, + "probability": 0.4113 + }, + { + "start": 8305.1, + "end": 8307.92, + "probability": 0.9799 + }, + { + "start": 8308.5, + "end": 8308.92, + "probability": 0.8864 + }, + { + "start": 8309.32, + "end": 8312.84, + "probability": 0.9683 + }, + { + "start": 8312.96, + "end": 8315.6, + "probability": 0.97 + }, + { + "start": 8316.12, + "end": 8317.48, + "probability": 0.7422 + }, + { + "start": 8318.08, + "end": 8321.88, + "probability": 0.9966 + }, + { + "start": 8321.88, + "end": 8323.88, + "probability": 0.9993 + }, + { + "start": 8324.42, + "end": 8328.16, + "probability": 0.9837 + }, + { + "start": 8328.72, + "end": 8329.96, + "probability": 0.95 + }, + { + "start": 8330.64, + "end": 8335.9, + "probability": 0.9916 + }, + { + "start": 8336.3, + "end": 8339.7, + "probability": 0.9678 + }, + { + "start": 8340.12, + "end": 8343.4, + "probability": 0.9185 + }, + { + "start": 8343.96, + "end": 8346.36, + "probability": 0.9792 + }, + { + "start": 8346.96, + "end": 8348.41, + "probability": 0.9526 + }, + { + "start": 8348.94, + "end": 8352.52, + "probability": 0.9426 + }, + { + "start": 8352.64, + "end": 8355.56, + "probability": 0.998 + }, + { + "start": 8355.94, + "end": 8356.52, + "probability": 0.8948 + }, + { + "start": 8357.54, + "end": 8359.88, + "probability": 0.9679 + }, + { + "start": 8360.72, + "end": 8362.08, + "probability": 0.9229 + }, + { + "start": 8362.56, + "end": 8363.58, + "probability": 0.5823 + }, + { + "start": 8363.62, + "end": 8369.8, + "probability": 0.9927 + }, + { + "start": 8369.84, + "end": 8369.84, + "probability": 0.5251 + }, + { + "start": 8369.84, + "end": 8370.0, + "probability": 0.4349 + }, + { + "start": 8370.0, + "end": 8371.93, + "probability": 0.5415 + }, + { + "start": 8372.56, + "end": 8374.26, + "probability": 0.7399 + }, + { + "start": 8374.98, + "end": 8377.32, + "probability": 0.6464 + }, + { + "start": 8377.7, + "end": 8379.36, + "probability": 0.8973 + }, + { + "start": 8381.04, + "end": 8385.14, + "probability": 0.0902 + }, + { + "start": 8412.95, + "end": 8415.92, + "probability": 0.9973 + }, + { + "start": 8416.35, + "end": 8417.89, + "probability": 0.8804 + }, + { + "start": 8418.69, + "end": 8421.91, + "probability": 0.9641 + }, + { + "start": 8421.95, + "end": 8422.99, + "probability": 0.8318 + }, + { + "start": 8422.99, + "end": 8425.17, + "probability": 0.9373 + }, + { + "start": 8425.67, + "end": 8426.75, + "probability": 0.9454 + }, + { + "start": 8427.31, + "end": 8430.44, + "probability": 0.9127 + }, + { + "start": 8431.21, + "end": 8432.18, + "probability": 0.7509 + }, + { + "start": 8433.54, + "end": 8435.56, + "probability": 0.9805 + }, + { + "start": 8437.76, + "end": 8439.93, + "probability": 0.9167 + }, + { + "start": 8440.51, + "end": 8442.37, + "probability": 0.9012 + }, + { + "start": 8442.37, + "end": 8443.87, + "probability": 0.0774 + }, + { + "start": 8448.45, + "end": 8448.61, + "probability": 0.1726 + }, + { + "start": 8448.61, + "end": 8448.61, + "probability": 0.0257 + }, + { + "start": 8448.61, + "end": 8448.61, + "probability": 0.0235 + }, + { + "start": 8448.61, + "end": 8449.09, + "probability": 0.2345 + }, + { + "start": 8449.84, + "end": 8451.69, + "probability": 0.8484 + }, + { + "start": 8451.73, + "end": 8451.97, + "probability": 0.8367 + }, + { + "start": 8452.11, + "end": 8456.89, + "probability": 0.9098 + }, + { + "start": 8457.31, + "end": 8458.01, + "probability": 0.9849 + }, + { + "start": 8458.09, + "end": 8459.37, + "probability": 0.795 + }, + { + "start": 8459.91, + "end": 8463.13, + "probability": 0.9912 + }, + { + "start": 8463.21, + "end": 8464.15, + "probability": 0.8145 + }, + { + "start": 8464.75, + "end": 8465.53, + "probability": 0.8337 + }, + { + "start": 8466.45, + "end": 8469.87, + "probability": 0.8885 + }, + { + "start": 8470.37, + "end": 8471.75, + "probability": 0.9706 + }, + { + "start": 8472.15, + "end": 8473.29, + "probability": 0.731 + }, + { + "start": 8473.37, + "end": 8476.47, + "probability": 0.9851 + }, + { + "start": 8476.61, + "end": 8476.85, + "probability": 0.7365 + }, + { + "start": 8479.13, + "end": 8479.33, + "probability": 0.6666 + }, + { + "start": 8480.97, + "end": 8484.03, + "probability": 0.733 + }, + { + "start": 8486.31, + "end": 8488.97, + "probability": 0.9365 + }, + { + "start": 8502.59, + "end": 8503.13, + "probability": 0.8701 + }, + { + "start": 8504.39, + "end": 8505.61, + "probability": 0.5915 + }, + { + "start": 8505.75, + "end": 8506.75, + "probability": 0.823 + }, + { + "start": 8506.93, + "end": 8511.09, + "probability": 0.9445 + }, + { + "start": 8511.85, + "end": 8512.15, + "probability": 0.7287 + }, + { + "start": 8513.33, + "end": 8518.15, + "probability": 0.9747 + }, + { + "start": 8518.89, + "end": 8522.41, + "probability": 0.9862 + }, + { + "start": 8523.15, + "end": 8524.41, + "probability": 0.8697 + }, + { + "start": 8524.49, + "end": 8524.97, + "probability": 0.8929 + }, + { + "start": 8525.03, + "end": 8527.75, + "probability": 0.8306 + }, + { + "start": 8528.71, + "end": 8529.24, + "probability": 0.957 + }, + { + "start": 8529.91, + "end": 8537.57, + "probability": 0.9932 + }, + { + "start": 8538.33, + "end": 8544.11, + "probability": 0.9847 + }, + { + "start": 8544.99, + "end": 8545.93, + "probability": 0.6658 + }, + { + "start": 8546.61, + "end": 8547.81, + "probability": 0.8198 + }, + { + "start": 8548.13, + "end": 8550.15, + "probability": 0.9107 + }, + { + "start": 8551.87, + "end": 8553.25, + "probability": 0.9526 + }, + { + "start": 8554.43, + "end": 8557.31, + "probability": 0.8256 + }, + { + "start": 8558.13, + "end": 8559.85, + "probability": 0.9539 + }, + { + "start": 8561.49, + "end": 8565.33, + "probability": 0.998 + }, + { + "start": 8565.47, + "end": 8566.67, + "probability": 0.7058 + }, + { + "start": 8567.21, + "end": 8568.47, + "probability": 0.9951 + }, + { + "start": 8569.51, + "end": 8573.13, + "probability": 0.9417 + }, + { + "start": 8573.13, + "end": 8577.43, + "probability": 0.9311 + }, + { + "start": 8577.61, + "end": 8578.81, + "probability": 0.9792 + }, + { + "start": 8580.61, + "end": 8582.37, + "probability": 0.9116 + }, + { + "start": 8583.67, + "end": 8587.11, + "probability": 0.9937 + }, + { + "start": 8587.11, + "end": 8591.73, + "probability": 0.9956 + }, + { + "start": 8592.37, + "end": 8599.05, + "probability": 0.9816 + }, + { + "start": 8600.09, + "end": 8605.55, + "probability": 0.9979 + }, + { + "start": 8606.09, + "end": 8606.83, + "probability": 0.9395 + }, + { + "start": 8608.19, + "end": 8611.57, + "probability": 0.9529 + }, + { + "start": 8612.19, + "end": 8618.23, + "probability": 0.9875 + }, + { + "start": 8618.63, + "end": 8621.41, + "probability": 0.8071 + }, + { + "start": 8622.15, + "end": 8623.19, + "probability": 0.8548 + }, + { + "start": 8625.01, + "end": 8629.09, + "probability": 0.9351 + }, + { + "start": 8629.23, + "end": 8629.91, + "probability": 0.9858 + }, + { + "start": 8631.79, + "end": 8635.77, + "probability": 0.9962 + }, + { + "start": 8636.75, + "end": 8638.99, + "probability": 0.98 + }, + { + "start": 8639.93, + "end": 8645.11, + "probability": 0.998 + }, + { + "start": 8645.67, + "end": 8648.05, + "probability": 0.9191 + }, + { + "start": 8650.07, + "end": 8651.77, + "probability": 0.965 + }, + { + "start": 8652.67, + "end": 8658.01, + "probability": 0.9797 + }, + { + "start": 8658.55, + "end": 8659.41, + "probability": 0.9799 + }, + { + "start": 8660.13, + "end": 8662.49, + "probability": 0.9745 + }, + { + "start": 8665.35, + "end": 8666.11, + "probability": 0.7011 + }, + { + "start": 8666.27, + "end": 8670.57, + "probability": 0.5981 + }, + { + "start": 8670.79, + "end": 8671.85, + "probability": 0.5081 + }, + { + "start": 8672.53, + "end": 8673.82, + "probability": 0.4953 + }, + { + "start": 8675.05, + "end": 8675.27, + "probability": 0.19 + }, + { + "start": 8677.37, + "end": 8678.27, + "probability": 0.0125 + }, + { + "start": 8695.05, + "end": 8695.91, + "probability": 0.0417 + }, + { + "start": 8697.37, + "end": 8700.39, + "probability": 0.7517 + }, + { + "start": 8701.25, + "end": 8702.29, + "probability": 0.7262 + }, + { + "start": 8702.81, + "end": 8705.73, + "probability": 0.7296 + }, + { + "start": 8706.97, + "end": 8707.23, + "probability": 0.8956 + }, + { + "start": 8707.45, + "end": 8710.25, + "probability": 0.5904 + }, + { + "start": 8710.51, + "end": 8711.55, + "probability": 0.775 + }, + { + "start": 8711.67, + "end": 8712.75, + "probability": 0.916 + }, + { + "start": 8714.15, + "end": 8717.47, + "probability": 0.9483 + }, + { + "start": 8718.11, + "end": 8722.05, + "probability": 0.9643 + }, + { + "start": 8722.9, + "end": 8724.85, + "probability": 0.5495 + }, + { + "start": 8725.57, + "end": 8727.27, + "probability": 0.8597 + }, + { + "start": 8728.77, + "end": 8730.53, + "probability": 0.9717 + }, + { + "start": 8730.73, + "end": 8731.37, + "probability": 0.7834 + }, + { + "start": 8731.43, + "end": 8732.88, + "probability": 0.9424 + }, + { + "start": 8735.31, + "end": 8735.85, + "probability": 0.9469 + }, + { + "start": 8735.99, + "end": 8737.81, + "probability": 0.5836 + }, + { + "start": 8737.93, + "end": 8738.95, + "probability": 0.6684 + }, + { + "start": 8739.05, + "end": 8741.65, + "probability": 0.7469 + }, + { + "start": 8742.13, + "end": 8743.87, + "probability": 0.9844 + }, + { + "start": 8745.07, + "end": 8745.93, + "probability": 0.8674 + }, + { + "start": 8746.05, + "end": 8746.99, + "probability": 0.8234 + }, + { + "start": 8747.05, + "end": 8748.13, + "probability": 0.9578 + }, + { + "start": 8748.23, + "end": 8751.41, + "probability": 0.9785 + }, + { + "start": 8753.49, + "end": 8756.19, + "probability": 0.9889 + }, + { + "start": 8757.17, + "end": 8759.01, + "probability": 0.9463 + }, + { + "start": 8759.09, + "end": 8759.83, + "probability": 0.4123 + }, + { + "start": 8759.93, + "end": 8760.83, + "probability": 0.9073 + }, + { + "start": 8761.03, + "end": 8762.89, + "probability": 0.8947 + }, + { + "start": 8763.73, + "end": 8768.47, + "probability": 0.9823 + }, + { + "start": 8768.51, + "end": 8771.45, + "probability": 0.9892 + }, + { + "start": 8771.45, + "end": 8775.63, + "probability": 0.998 + }, + { + "start": 8775.85, + "end": 8776.45, + "probability": 0.7138 + }, + { + "start": 8777.17, + "end": 8778.47, + "probability": 0.9113 + }, + { + "start": 8778.77, + "end": 8779.69, + "probability": 0.6592 + }, + { + "start": 8780.01, + "end": 8784.29, + "probability": 0.8426 + }, + { + "start": 8784.33, + "end": 8785.85, + "probability": 0.7896 + }, + { + "start": 8786.77, + "end": 8787.29, + "probability": 0.0111 + }, + { + "start": 8787.29, + "end": 8787.93, + "probability": 0.7542 + }, + { + "start": 8788.13, + "end": 8789.03, + "probability": 0.6832 + }, + { + "start": 8789.31, + "end": 8792.83, + "probability": 0.9613 + }, + { + "start": 8793.01, + "end": 8794.13, + "probability": 0.8379 + }, + { + "start": 8794.17, + "end": 8794.69, + "probability": 0.8741 + }, + { + "start": 8794.77, + "end": 8795.48, + "probability": 0.8591 + }, + { + "start": 8796.35, + "end": 8798.97, + "probability": 0.9006 + }, + { + "start": 8799.55, + "end": 8801.85, + "probability": 0.6986 + }, + { + "start": 8802.63, + "end": 8803.37, + "probability": 0.8932 + }, + { + "start": 8804.17, + "end": 8805.55, + "probability": 0.6763 + }, + { + "start": 8805.69, + "end": 8806.83, + "probability": 0.9608 + }, + { + "start": 8806.87, + "end": 8810.93, + "probability": 0.9567 + }, + { + "start": 8811.31, + "end": 8812.59, + "probability": 0.3312 + }, + { + "start": 8812.59, + "end": 8813.47, + "probability": 0.7965 + }, + { + "start": 8814.13, + "end": 8816.35, + "probability": 0.8693 + }, + { + "start": 8816.89, + "end": 8818.27, + "probability": 0.9963 + }, + { + "start": 8818.41, + "end": 8818.91, + "probability": 0.7024 + }, + { + "start": 8819.49, + "end": 8820.93, + "probability": 0.7791 + }, + { + "start": 8820.97, + "end": 8821.33, + "probability": 0.698 + }, + { + "start": 8821.45, + "end": 8824.37, + "probability": 0.8117 + }, + { + "start": 8825.0, + "end": 8826.15, + "probability": 0.462 + }, + { + "start": 8826.15, + "end": 8826.49, + "probability": 0.0244 + }, + { + "start": 8826.71, + "end": 8827.47, + "probability": 0.7378 + }, + { + "start": 8828.43, + "end": 8829.09, + "probability": 0.7326 + }, + { + "start": 8830.39, + "end": 8831.79, + "probability": 0.328 + }, + { + "start": 8832.17, + "end": 8832.21, + "probability": 0.3876 + }, + { + "start": 8832.21, + "end": 8832.21, + "probability": 0.1166 + }, + { + "start": 8832.21, + "end": 8833.91, + "probability": 0.8212 + }, + { + "start": 8834.23, + "end": 8837.07, + "probability": 0.9922 + }, + { + "start": 8837.73, + "end": 8840.41, + "probability": 0.9506 + }, + { + "start": 8840.55, + "end": 8842.59, + "probability": 0.9706 + }, + { + "start": 8843.11, + "end": 8843.87, + "probability": 0.4092 + }, + { + "start": 8844.77, + "end": 8847.43, + "probability": 0.9957 + }, + { + "start": 8847.51, + "end": 8848.95, + "probability": 0.9971 + }, + { + "start": 8849.53, + "end": 8852.17, + "probability": 0.9748 + }, + { + "start": 8852.61, + "end": 8853.65, + "probability": 0.8947 + }, + { + "start": 8853.75, + "end": 8853.97, + "probability": 0.9301 + }, + { + "start": 8854.13, + "end": 8858.21, + "probability": 0.7126 + }, + { + "start": 8859.65, + "end": 8862.45, + "probability": 0.9438 + }, + { + "start": 8862.51, + "end": 8863.93, + "probability": 0.9558 + }, + { + "start": 8866.07, + "end": 8869.51, + "probability": 0.627 + }, + { + "start": 8870.01, + "end": 8870.47, + "probability": 0.6116 + }, + { + "start": 8870.57, + "end": 8872.77, + "probability": 0.5312 + }, + { + "start": 8872.81, + "end": 8875.41, + "probability": 0.2449 + }, + { + "start": 8876.17, + "end": 8880.29, + "probability": 0.8895 + }, + { + "start": 8880.35, + "end": 8882.05, + "probability": 0.817 + }, + { + "start": 8882.05, + "end": 8883.27, + "probability": 0.282 + }, + { + "start": 8884.3, + "end": 8887.71, + "probability": 0.4564 + }, + { + "start": 8887.87, + "end": 8888.69, + "probability": 0.7806 + }, + { + "start": 8888.79, + "end": 8889.61, + "probability": 0.9683 + }, + { + "start": 8889.75, + "end": 8890.53, + "probability": 0.7117 + }, + { + "start": 8890.61, + "end": 8891.73, + "probability": 0.9545 + }, + { + "start": 8892.45, + "end": 8894.47, + "probability": 0.8271 + }, + { + "start": 8895.27, + "end": 8898.01, + "probability": 0.5325 + }, + { + "start": 8900.29, + "end": 8905.55, + "probability": 0.7565 + }, + { + "start": 8905.95, + "end": 8906.49, + "probability": 0.2612 + }, + { + "start": 8906.49, + "end": 8907.85, + "probability": 0.6755 + }, + { + "start": 8909.15, + "end": 8911.4, + "probability": 0.3226 + }, + { + "start": 8913.63, + "end": 8914.55, + "probability": 0.4559 + }, + { + "start": 8914.67, + "end": 8916.11, + "probability": 0.6236 + }, + { + "start": 8916.49, + "end": 8917.25, + "probability": 0.2105 + }, + { + "start": 8917.67, + "end": 8919.19, + "probability": 0.4598 + }, + { + "start": 8919.31, + "end": 8921.01, + "probability": 0.5491 + }, + { + "start": 8921.19, + "end": 8922.16, + "probability": 0.4095 + }, + { + "start": 8922.37, + "end": 8923.88, + "probability": 0.0959 + }, + { + "start": 8923.99, + "end": 8925.97, + "probability": 0.1226 + }, + { + "start": 8926.13, + "end": 8929.97, + "probability": 0.242 + }, + { + "start": 8929.97, + "end": 8930.73, + "probability": 0.0629 + }, + { + "start": 8930.73, + "end": 8935.61, + "probability": 0.133 + }, + { + "start": 8935.91, + "end": 8937.43, + "probability": 0.0404 + }, + { + "start": 8937.61, + "end": 8939.67, + "probability": 0.38 + }, + { + "start": 8940.19, + "end": 8942.07, + "probability": 0.6169 + }, + { + "start": 8942.37, + "end": 8943.98, + "probability": 0.3435 + }, + { + "start": 8944.45, + "end": 8945.61, + "probability": 0.665 + }, + { + "start": 8945.67, + "end": 8945.81, + "probability": 0.4439 + }, + { + "start": 8945.81, + "end": 8945.81, + "probability": 0.2379 + }, + { + "start": 8945.81, + "end": 8951.43, + "probability": 0.4899 + }, + { + "start": 8951.87, + "end": 8953.15, + "probability": 0.3049 + }, + { + "start": 8953.37, + "end": 8955.89, + "probability": 0.3629 + }, + { + "start": 8956.25, + "end": 8957.55, + "probability": 0.3651 + }, + { + "start": 8957.55, + "end": 8959.51, + "probability": 0.0235 + }, + { + "start": 8959.51, + "end": 8959.51, + "probability": 0.2149 + }, + { + "start": 8959.51, + "end": 8959.55, + "probability": 0.0296 + }, + { + "start": 8960.05, + "end": 8963.29, + "probability": 0.3466 + }, + { + "start": 8963.29, + "end": 8966.93, + "probability": 0.1429 + }, + { + "start": 8967.0, + "end": 8967.0, + "probability": 0.0 + }, + { + "start": 8967.0, + "end": 8967.0, + "probability": 0.0 + }, + { + "start": 8967.78, + "end": 8968.5, + "probability": 0.0938 + }, + { + "start": 8968.5, + "end": 8968.56, + "probability": 0.0462 + }, + { + "start": 8968.56, + "end": 8968.88, + "probability": 0.3714 + }, + { + "start": 8969.02, + "end": 8970.34, + "probability": 0.0613 + }, + { + "start": 8970.54, + "end": 8972.34, + "probability": 0.8423 + }, + { + "start": 8974.32, + "end": 8975.8, + "probability": 0.4923 + }, + { + "start": 8976.95, + "end": 8979.1, + "probability": 0.6753 + }, + { + "start": 8979.34, + "end": 8981.05, + "probability": 0.7071 + }, + { + "start": 8982.07, + "end": 8984.0, + "probability": 0.1718 + }, + { + "start": 8987.48, + "end": 8992.12, + "probability": 0.5318 + }, + { + "start": 8992.68, + "end": 8994.04, + "probability": 0.0167 + }, + { + "start": 8998.72, + "end": 9002.7, + "probability": 0.1117 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.0, + "end": 9113.0, + "probability": 0.0 + }, + { + "start": 9113.1, + "end": 9113.44, + "probability": 0.0024 + }, + { + "start": 9113.44, + "end": 9116.06, + "probability": 0.8604 + }, + { + "start": 9116.6, + "end": 9119.74, + "probability": 0.1312 + }, + { + "start": 9122.56, + "end": 9123.16, + "probability": 0.2408 + }, + { + "start": 9147.1, + "end": 9149.66, + "probability": 0.9934 + }, + { + "start": 9149.66, + "end": 9153.08, + "probability": 0.861 + }, + { + "start": 9154.34, + "end": 9160.12, + "probability": 0.9541 + }, + { + "start": 9160.7, + "end": 9161.87, + "probability": 0.7041 + }, + { + "start": 9162.1, + "end": 9165.32, + "probability": 0.9949 + }, + { + "start": 9166.1, + "end": 9170.34, + "probability": 0.9673 + }, + { + "start": 9170.48, + "end": 9171.0, + "probability": 0.5373 + }, + { + "start": 9171.06, + "end": 9171.74, + "probability": 0.5286 + }, + { + "start": 9172.02, + "end": 9177.12, + "probability": 0.7952 + }, + { + "start": 9177.56, + "end": 9179.22, + "probability": 0.9128 + }, + { + "start": 9179.68, + "end": 9186.66, + "probability": 0.9717 + }, + { + "start": 9188.2, + "end": 9189.38, + "probability": 0.5288 + }, + { + "start": 9189.6, + "end": 9190.86, + "probability": 0.9119 + }, + { + "start": 9191.02, + "end": 9191.44, + "probability": 0.9807 + }, + { + "start": 9191.56, + "end": 9193.34, + "probability": 0.9289 + }, + { + "start": 9193.48, + "end": 9195.08, + "probability": 0.9503 + }, + { + "start": 9196.22, + "end": 9197.42, + "probability": 0.923 + }, + { + "start": 9197.64, + "end": 9202.76, + "probability": 0.9855 + }, + { + "start": 9203.44, + "end": 9204.8, + "probability": 0.918 + }, + { + "start": 9205.62, + "end": 9207.4, + "probability": 0.9703 + }, + { + "start": 9207.48, + "end": 9209.38, + "probability": 0.779 + }, + { + "start": 9209.44, + "end": 9210.42, + "probability": 0.4909 + }, + { + "start": 9210.54, + "end": 9211.22, + "probability": 0.8936 + }, + { + "start": 9211.28, + "end": 9211.94, + "probability": 0.8917 + }, + { + "start": 9211.98, + "end": 9212.74, + "probability": 0.8128 + }, + { + "start": 9213.36, + "end": 9214.88, + "probability": 0.9304 + }, + { + "start": 9215.54, + "end": 9218.12, + "probability": 0.9829 + }, + { + "start": 9218.64, + "end": 9221.44, + "probability": 0.9178 + }, + { + "start": 9221.44, + "end": 9223.78, + "probability": 0.9982 + }, + { + "start": 9224.06, + "end": 9228.94, + "probability": 0.9973 + }, + { + "start": 9228.94, + "end": 9233.62, + "probability": 0.9249 + }, + { + "start": 9235.0, + "end": 9238.28, + "probability": 0.9543 + }, + { + "start": 9238.44, + "end": 9238.9, + "probability": 0.3551 + }, + { + "start": 9238.96, + "end": 9242.12, + "probability": 0.9873 + }, + { + "start": 9242.12, + "end": 9244.6, + "probability": 0.7432 + }, + { + "start": 9244.84, + "end": 9246.62, + "probability": 0.7871 + }, + { + "start": 9247.54, + "end": 9250.56, + "probability": 0.9954 + }, + { + "start": 9252.08, + "end": 9253.88, + "probability": 0.6906 + }, + { + "start": 9254.36, + "end": 9260.58, + "probability": 0.9739 + }, + { + "start": 9260.64, + "end": 9261.0, + "probability": 0.6138 + }, + { + "start": 9261.06, + "end": 9262.78, + "probability": 0.9688 + }, + { + "start": 9262.8, + "end": 9264.78, + "probability": 0.7895 + }, + { + "start": 9265.57, + "end": 9267.96, + "probability": 0.9882 + }, + { + "start": 9268.68, + "end": 9272.82, + "probability": 0.9727 + }, + { + "start": 9273.82, + "end": 9275.24, + "probability": 0.8269 + }, + { + "start": 9275.38, + "end": 9276.86, + "probability": 0.9246 + }, + { + "start": 9276.98, + "end": 9278.86, + "probability": 0.9611 + }, + { + "start": 9280.08, + "end": 9285.38, + "probability": 0.9153 + }, + { + "start": 9286.32, + "end": 9286.32, + "probability": 0.0512 + }, + { + "start": 9286.32, + "end": 9292.7, + "probability": 0.8051 + }, + { + "start": 9293.32, + "end": 9295.36, + "probability": 0.9789 + }, + { + "start": 9296.52, + "end": 9300.24, + "probability": 0.9935 + }, + { + "start": 9300.28, + "end": 9302.18, + "probability": 0.8796 + }, + { + "start": 9303.4, + "end": 9305.3, + "probability": 0.9957 + }, + { + "start": 9305.54, + "end": 9307.22, + "probability": 0.84 + }, + { + "start": 9307.9, + "end": 9312.16, + "probability": 0.9861 + }, + { + "start": 9312.54, + "end": 9315.4, + "probability": 0.9908 + }, + { + "start": 9316.7, + "end": 9319.86, + "probability": 0.9788 + }, + { + "start": 9319.86, + "end": 9322.78, + "probability": 0.9969 + }, + { + "start": 9323.38, + "end": 9326.16, + "probability": 0.822 + }, + { + "start": 9327.28, + "end": 9327.72, + "probability": 0.3584 + }, + { + "start": 9328.54, + "end": 9331.32, + "probability": 0.9856 + }, + { + "start": 9332.06, + "end": 9332.5, + "probability": 0.6807 + }, + { + "start": 9334.94, + "end": 9335.32, + "probability": 0.7534 + }, + { + "start": 9335.32, + "end": 9335.32, + "probability": 0.0658 + }, + { + "start": 9335.32, + "end": 9335.56, + "probability": 0.1035 + }, + { + "start": 9335.56, + "end": 9336.12, + "probability": 0.1813 + }, + { + "start": 9336.2, + "end": 9337.0, + "probability": 0.8762 + }, + { + "start": 9338.08, + "end": 9338.87, + "probability": 0.4129 + }, + { + "start": 9339.85, + "end": 9343.72, + "probability": 0.8489 + }, + { + "start": 9344.16, + "end": 9346.7, + "probability": 0.98 + }, + { + "start": 9347.52, + "end": 9349.14, + "probability": 0.4862 + }, + { + "start": 9349.22, + "end": 9351.54, + "probability": 0.1519 + }, + { + "start": 9351.54, + "end": 9352.1, + "probability": 0.767 + }, + { + "start": 9352.4, + "end": 9355.52, + "probability": 0.9565 + }, + { + "start": 9355.88, + "end": 9358.76, + "probability": 0.636 + }, + { + "start": 9358.76, + "end": 9362.48, + "probability": 0.9546 + }, + { + "start": 9363.9, + "end": 9367.64, + "probability": 0.666 + }, + { + "start": 9368.34, + "end": 9369.46, + "probability": 0.5981 + }, + { + "start": 9369.86, + "end": 9370.35, + "probability": 0.9413 + }, + { + "start": 9371.04, + "end": 9371.52, + "probability": 0.7244 + }, + { + "start": 9371.56, + "end": 9371.86, + "probability": 0.7389 + }, + { + "start": 9371.9, + "end": 9373.58, + "probability": 0.973 + }, + { + "start": 9373.64, + "end": 9377.02, + "probability": 0.9386 + }, + { + "start": 9377.22, + "end": 9379.94, + "probability": 0.9528 + }, + { + "start": 9380.02, + "end": 9382.02, + "probability": 0.8319 + }, + { + "start": 9382.6, + "end": 9385.44, + "probability": 0.7935 + }, + { + "start": 9386.06, + "end": 9390.78, + "probability": 0.9934 + }, + { + "start": 9391.76, + "end": 9393.74, + "probability": 0.9465 + }, + { + "start": 9394.6, + "end": 9397.98, + "probability": 0.9581 + }, + { + "start": 9398.54, + "end": 9400.86, + "probability": 0.9551 + }, + { + "start": 9401.5, + "end": 9402.96, + "probability": 0.8562 + }, + { + "start": 9403.64, + "end": 9406.82, + "probability": 0.9901 + }, + { + "start": 9406.9, + "end": 9407.5, + "probability": 0.9886 + }, + { + "start": 9407.5, + "end": 9408.34, + "probability": 0.7516 + }, + { + "start": 9408.84, + "end": 9412.42, + "probability": 0.96 + }, + { + "start": 9413.1, + "end": 9416.03, + "probability": 0.7873 + }, + { + "start": 9416.72, + "end": 9419.45, + "probability": 0.8405 + }, + { + "start": 9420.06, + "end": 9424.54, + "probability": 0.9935 + }, + { + "start": 9425.14, + "end": 9426.06, + "probability": 0.9922 + }, + { + "start": 9426.84, + "end": 9427.88, + "probability": 0.986 + }, + { + "start": 9427.96, + "end": 9429.68, + "probability": 0.6938 + }, + { + "start": 9429.74, + "end": 9430.84, + "probability": 0.9892 + }, + { + "start": 9431.18, + "end": 9432.43, + "probability": 0.9939 + }, + { + "start": 9432.86, + "end": 9433.3, + "probability": 0.7217 + }, + { + "start": 9433.58, + "end": 9436.62, + "probability": 0.9424 + }, + { + "start": 9437.26, + "end": 9441.54, + "probability": 0.9948 + }, + { + "start": 9442.02, + "end": 9443.86, + "probability": 0.9642 + }, + { + "start": 9444.14, + "end": 9448.86, + "probability": 0.9764 + }, + { + "start": 9449.14, + "end": 9454.37, + "probability": 0.9919 + }, + { + "start": 9455.46, + "end": 9456.64, + "probability": 0.9655 + }, + { + "start": 9457.6, + "end": 9461.98, + "probability": 0.971 + }, + { + "start": 9462.12, + "end": 9462.44, + "probability": 0.4788 + }, + { + "start": 9462.6, + "end": 9463.24, + "probability": 0.7676 + }, + { + "start": 9464.04, + "end": 9464.82, + "probability": 0.8737 + }, + { + "start": 9465.38, + "end": 9468.85, + "probability": 0.9849 + }, + { + "start": 9469.1, + "end": 9469.88, + "probability": 0.9753 + }, + { + "start": 9470.22, + "end": 9472.12, + "probability": 0.9912 + }, + { + "start": 9472.66, + "end": 9474.36, + "probability": 0.9609 + }, + { + "start": 9475.12, + "end": 9479.88, + "probability": 0.9763 + }, + { + "start": 9480.0, + "end": 9481.56, + "probability": 0.7777 + }, + { + "start": 9481.82, + "end": 9484.01, + "probability": 0.6638 + }, + { + "start": 9485.62, + "end": 9487.6, + "probability": 0.7816 + }, + { + "start": 9489.39, + "end": 9490.7, + "probability": 0.9718 + }, + { + "start": 9491.0, + "end": 9491.8, + "probability": 0.5716 + }, + { + "start": 9492.42, + "end": 9495.44, + "probability": 0.9963 + }, + { + "start": 9495.6, + "end": 9496.88, + "probability": 0.5265 + }, + { + "start": 9497.22, + "end": 9498.22, + "probability": 0.9609 + }, + { + "start": 9498.82, + "end": 9504.18, + "probability": 0.9789 + }, + { + "start": 9505.44, + "end": 9509.58, + "probability": 0.998 + }, + { + "start": 9509.68, + "end": 9510.8, + "probability": 0.944 + }, + { + "start": 9511.5, + "end": 9513.99, + "probability": 0.9502 + }, + { + "start": 9514.08, + "end": 9514.47, + "probability": 0.8862 + }, + { + "start": 9515.08, + "end": 9516.78, + "probability": 0.947 + }, + { + "start": 9517.56, + "end": 9518.93, + "probability": 0.984 + }, + { + "start": 9519.62, + "end": 9520.44, + "probability": 0.8969 + }, + { + "start": 9521.54, + "end": 9523.62, + "probability": 0.9861 + }, + { + "start": 9523.86, + "end": 9524.82, + "probability": 0.8053 + }, + { + "start": 9524.84, + "end": 9526.54, + "probability": 0.9422 + }, + { + "start": 9526.94, + "end": 9530.04, + "probability": 0.8894 + }, + { + "start": 9530.46, + "end": 9534.24, + "probability": 0.7496 + }, + { + "start": 9534.54, + "end": 9535.1, + "probability": 0.7292 + }, + { + "start": 9535.5, + "end": 9537.26, + "probability": 0.9951 + }, + { + "start": 9537.94, + "end": 9539.21, + "probability": 0.9827 + }, + { + "start": 9539.54, + "end": 9543.42, + "probability": 0.9713 + }, + { + "start": 9544.46, + "end": 9544.92, + "probability": 0.8008 + }, + { + "start": 9545.68, + "end": 9547.06, + "probability": 0.7571 + }, + { + "start": 9547.06, + "end": 9550.44, + "probability": 0.9389 + }, + { + "start": 9551.68, + "end": 9553.56, + "probability": 0.4966 + }, + { + "start": 9553.72, + "end": 9556.42, + "probability": 0.8914 + }, + { + "start": 9557.92, + "end": 9561.32, + "probability": 0.9421 + }, + { + "start": 9561.84, + "end": 9562.88, + "probability": 0.9761 + }, + { + "start": 9563.1, + "end": 9564.36, + "probability": 0.9621 + }, + { + "start": 9564.48, + "end": 9565.44, + "probability": 0.7648 + }, + { + "start": 9565.92, + "end": 9570.16, + "probability": 0.9159 + }, + { + "start": 9570.16, + "end": 9573.68, + "probability": 0.8094 + }, + { + "start": 9574.2, + "end": 9577.92, + "probability": 0.9956 + }, + { + "start": 9578.12, + "end": 9580.28, + "probability": 0.9943 + }, + { + "start": 9580.46, + "end": 9582.02, + "probability": 0.8389 + }, + { + "start": 9582.02, + "end": 9582.65, + "probability": 0.8603 + }, + { + "start": 9583.84, + "end": 9587.8, + "probability": 0.9809 + }, + { + "start": 9589.06, + "end": 9592.08, + "probability": 0.9312 + }, + { + "start": 9592.66, + "end": 9594.9, + "probability": 0.9603 + }, + { + "start": 9595.55, + "end": 9598.96, + "probability": 0.5144 + }, + { + "start": 9599.06, + "end": 9599.28, + "probability": 0.8615 + }, + { + "start": 9599.32, + "end": 9600.74, + "probability": 0.9752 + }, + { + "start": 9601.06, + "end": 9602.3, + "probability": 0.8918 + }, + { + "start": 9603.32, + "end": 9604.12, + "probability": 0.1968 + }, + { + "start": 9604.38, + "end": 9607.86, + "probability": 0.9691 + }, + { + "start": 9608.32, + "end": 9612.06, + "probability": 0.8903 + }, + { + "start": 9612.64, + "end": 9613.36, + "probability": 0.9499 + }, + { + "start": 9614.66, + "end": 9616.52, + "probability": 0.9348 + }, + { + "start": 9617.2, + "end": 9617.62, + "probability": 0.2484 + }, + { + "start": 9617.7, + "end": 9618.36, + "probability": 0.6693 + }, + { + "start": 9618.46, + "end": 9620.71, + "probability": 0.9824 + }, + { + "start": 9621.34, + "end": 9624.94, + "probability": 0.8555 + }, + { + "start": 9625.42, + "end": 9629.16, + "probability": 0.9487 + }, + { + "start": 9629.22, + "end": 9629.98, + "probability": 0.9821 + }, + { + "start": 9631.3, + "end": 9632.2, + "probability": 0.8147 + }, + { + "start": 9632.48, + "end": 9635.76, + "probability": 0.9451 + }, + { + "start": 9636.14, + "end": 9636.88, + "probability": 0.5966 + }, + { + "start": 9636.88, + "end": 9638.1, + "probability": 0.7968 + }, + { + "start": 9638.22, + "end": 9639.44, + "probability": 0.4416 + }, + { + "start": 9639.5, + "end": 9641.12, + "probability": 0.9696 + }, + { + "start": 9641.66, + "end": 9643.12, + "probability": 0.9735 + }, + { + "start": 9643.3, + "end": 9645.72, + "probability": 0.8409 + }, + { + "start": 9646.08, + "end": 9647.42, + "probability": 0.5995 + }, + { + "start": 9647.66, + "end": 9648.78, + "probability": 0.8122 + }, + { + "start": 9648.84, + "end": 9649.5, + "probability": 0.7529 + }, + { + "start": 9649.62, + "end": 9649.82, + "probability": 0.8657 + }, + { + "start": 9652.2, + "end": 9652.84, + "probability": 0.7259 + }, + { + "start": 9652.9, + "end": 9654.36, + "probability": 0.9851 + }, + { + "start": 9654.66, + "end": 9657.06, + "probability": 0.9508 + }, + { + "start": 9659.56, + "end": 9660.5, + "probability": 0.8649 + }, + { + "start": 9661.12, + "end": 9662.72, + "probability": 0.9976 + }, + { + "start": 9664.7, + "end": 9665.38, + "probability": 0.7428 + }, + { + "start": 9666.5, + "end": 9668.22, + "probability": 0.9612 + }, + { + "start": 9669.6, + "end": 9670.52, + "probability": 0.7104 + }, + { + "start": 9671.84, + "end": 9674.02, + "probability": 0.9869 + }, + { + "start": 9675.02, + "end": 9676.14, + "probability": 0.7322 + }, + { + "start": 9676.94, + "end": 9678.6, + "probability": 0.9752 + }, + { + "start": 9679.14, + "end": 9679.74, + "probability": 0.9561 + }, + { + "start": 9708.26, + "end": 9710.0, + "probability": 0.6614 + }, + { + "start": 9710.7, + "end": 9711.78, + "probability": 0.7117 + }, + { + "start": 9713.2, + "end": 9716.78, + "probability": 0.9616 + }, + { + "start": 9718.54, + "end": 9720.48, + "probability": 0.9895 + }, + { + "start": 9720.64, + "end": 9727.18, + "probability": 0.9784 + }, + { + "start": 9727.28, + "end": 9728.08, + "probability": 0.8077 + }, + { + "start": 9728.98, + "end": 9732.8, + "probability": 0.9798 + }, + { + "start": 9733.88, + "end": 9739.12, + "probability": 0.964 + }, + { + "start": 9740.06, + "end": 9742.04, + "probability": 0.8701 + }, + { + "start": 9742.58, + "end": 9743.94, + "probability": 0.7974 + }, + { + "start": 9745.04, + "end": 9746.8, + "probability": 0.745 + }, + { + "start": 9747.0, + "end": 9747.98, + "probability": 0.5985 + }, + { + "start": 9748.1, + "end": 9752.32, + "probability": 0.9467 + }, + { + "start": 9753.08, + "end": 9757.26, + "probability": 0.9807 + }, + { + "start": 9757.26, + "end": 9761.78, + "probability": 0.7039 + }, + { + "start": 9764.66, + "end": 9766.4, + "probability": 0.7932 + }, + { + "start": 9767.08, + "end": 9773.6, + "probability": 0.9863 + }, + { + "start": 9774.88, + "end": 9775.22, + "probability": 0.721 + }, + { + "start": 9776.26, + "end": 9776.72, + "probability": 0.6685 + }, + { + "start": 9777.36, + "end": 9781.6, + "probability": 0.8169 + }, + { + "start": 9782.6, + "end": 9785.66, + "probability": 0.9548 + }, + { + "start": 9786.34, + "end": 9787.74, + "probability": 0.9771 + }, + { + "start": 9788.1, + "end": 9791.84, + "probability": 0.9645 + }, + { + "start": 9792.56, + "end": 9794.98, + "probability": 0.8105 + }, + { + "start": 9795.56, + "end": 9797.64, + "probability": 0.9756 + }, + { + "start": 9799.0, + "end": 9802.32, + "probability": 0.8035 + }, + { + "start": 9806.24, + "end": 9808.18, + "probability": 0.7431 + }, + { + "start": 9808.92, + "end": 9813.36, + "probability": 0.9529 + }, + { + "start": 9814.02, + "end": 9814.86, + "probability": 0.8791 + }, + { + "start": 9815.84, + "end": 9818.3, + "probability": 0.9966 + }, + { + "start": 9819.1, + "end": 9820.96, + "probability": 0.7615 + }, + { + "start": 9822.68, + "end": 9823.84, + "probability": 0.6735 + }, + { + "start": 9823.86, + "end": 9825.3, + "probability": 0.9436 + }, + { + "start": 9825.4, + "end": 9826.44, + "probability": 0.5247 + }, + { + "start": 9827.22, + "end": 9829.32, + "probability": 0.635 + }, + { + "start": 9829.78, + "end": 9833.66, + "probability": 0.9817 + }, + { + "start": 9834.18, + "end": 9836.1, + "probability": 0.9138 + }, + { + "start": 9836.22, + "end": 9836.76, + "probability": 0.8895 + }, + { + "start": 9836.86, + "end": 9840.16, + "probability": 0.9709 + }, + { + "start": 9841.24, + "end": 9843.18, + "probability": 0.9554 + }, + { + "start": 9843.4, + "end": 9848.24, + "probability": 0.9245 + }, + { + "start": 9849.3, + "end": 9851.8, + "probability": 0.8761 + }, + { + "start": 9852.26, + "end": 9857.86, + "probability": 0.9723 + }, + { + "start": 9858.4, + "end": 9859.1, + "probability": 0.7874 + }, + { + "start": 9861.0, + "end": 9861.76, + "probability": 0.7093 + }, + { + "start": 9861.98, + "end": 9865.28, + "probability": 0.9851 + }, + { + "start": 9865.28, + "end": 9869.28, + "probability": 0.9995 + }, + { + "start": 9869.9, + "end": 9870.84, + "probability": 0.6282 + }, + { + "start": 9871.66, + "end": 9874.1, + "probability": 0.9351 + }, + { + "start": 9874.54, + "end": 9875.0, + "probability": 0.8224 + }, + { + "start": 9876.18, + "end": 9878.0, + "probability": 0.7625 + }, + { + "start": 9878.22, + "end": 9880.4, + "probability": 0.9073 + }, + { + "start": 9884.4, + "end": 9887.18, + "probability": 0.9887 + }, + { + "start": 9902.5, + "end": 9906.4, + "probability": 0.7654 + }, + { + "start": 9908.28, + "end": 9912.27, + "probability": 0.9539 + }, + { + "start": 9914.0, + "end": 9914.56, + "probability": 0.8477 + }, + { + "start": 9916.88, + "end": 9918.66, + "probability": 0.8638 + }, + { + "start": 9920.3, + "end": 9921.34, + "probability": 0.9358 + }, + { + "start": 9923.28, + "end": 9927.48, + "probability": 0.9062 + }, + { + "start": 9928.94, + "end": 9929.86, + "probability": 0.886 + }, + { + "start": 9932.18, + "end": 9933.5, + "probability": 0.5396 + }, + { + "start": 9934.9, + "end": 9935.34, + "probability": 0.8277 + }, + { + "start": 9937.24, + "end": 9938.58, + "probability": 0.9957 + }, + { + "start": 9939.96, + "end": 9940.94, + "probability": 0.9873 + }, + { + "start": 9942.72, + "end": 9946.2, + "probability": 0.9994 + }, + { + "start": 9947.64, + "end": 9952.16, + "probability": 0.9956 + }, + { + "start": 9953.66, + "end": 9956.54, + "probability": 0.9442 + }, + { + "start": 9958.24, + "end": 9959.7, + "probability": 0.6122 + }, + { + "start": 9960.52, + "end": 9964.06, + "probability": 0.6235 + }, + { + "start": 9964.98, + "end": 9970.94, + "probability": 0.9888 + }, + { + "start": 9971.26, + "end": 9972.28, + "probability": 0.8211 + }, + { + "start": 9973.8, + "end": 9974.53, + "probability": 0.9846 + }, + { + "start": 9975.78, + "end": 9980.82, + "probability": 0.8612 + }, + { + "start": 9982.44, + "end": 9985.04, + "probability": 0.9688 + }, + { + "start": 9985.86, + "end": 9989.62, + "probability": 0.9905 + }, + { + "start": 9990.32, + "end": 9991.44, + "probability": 0.8154 + }, + { + "start": 9992.6, + "end": 9994.0, + "probability": 0.81 + }, + { + "start": 9995.9, + "end": 9997.34, + "probability": 0.9615 + }, + { + "start": 9998.88, + "end": 10000.4, + "probability": 0.988 + }, + { + "start": 10001.0, + "end": 10004.24, + "probability": 0.9469 + }, + { + "start": 10004.88, + "end": 10007.92, + "probability": 0.9924 + }, + { + "start": 10008.52, + "end": 10011.7, + "probability": 0.9976 + }, + { + "start": 10012.82, + "end": 10014.1, + "probability": 0.9729 + }, + { + "start": 10015.16, + "end": 10018.52, + "probability": 0.9899 + }, + { + "start": 10018.52, + "end": 10018.93, + "probability": 0.7366 + }, + { + "start": 10019.84, + "end": 10021.32, + "probability": 0.9985 + }, + { + "start": 10022.56, + "end": 10025.12, + "probability": 0.9602 + }, + { + "start": 10026.14, + "end": 10030.58, + "probability": 0.9861 + }, + { + "start": 10031.28, + "end": 10034.38, + "probability": 0.9746 + }, + { + "start": 10036.92, + "end": 10038.18, + "probability": 0.6779 + }, + { + "start": 10040.18, + "end": 10041.88, + "probability": 0.8333 + }, + { + "start": 10043.52, + "end": 10044.78, + "probability": 0.835 + }, + { + "start": 10046.0, + "end": 10049.76, + "probability": 0.7081 + }, + { + "start": 10050.38, + "end": 10054.08, + "probability": 0.8851 + }, + { + "start": 10054.7, + "end": 10055.73, + "probability": 0.9453 + }, + { + "start": 10056.72, + "end": 10057.46, + "probability": 0.8803 + }, + { + "start": 10058.38, + "end": 10059.34, + "probability": 0.8786 + }, + { + "start": 10060.18, + "end": 10061.32, + "probability": 0.9525 + }, + { + "start": 10062.42, + "end": 10064.04, + "probability": 0.9904 + }, + { + "start": 10064.14, + "end": 10066.79, + "probability": 0.9701 + }, + { + "start": 10067.42, + "end": 10068.28, + "probability": 0.5163 + }, + { + "start": 10068.78, + "end": 10072.02, + "probability": 0.6597 + }, + { + "start": 10072.08, + "end": 10073.14, + "probability": 0.8519 + }, + { + "start": 10073.56, + "end": 10074.76, + "probability": 0.8826 + }, + { + "start": 10076.2, + "end": 10079.48, + "probability": 0.9354 + }, + { + "start": 10080.38, + "end": 10081.33, + "probability": 0.9785 + }, + { + "start": 10082.16, + "end": 10083.32, + "probability": 0.8092 + }, + { + "start": 10085.16, + "end": 10089.2, + "probability": 0.5732 + }, + { + "start": 10089.46, + "end": 10091.84, + "probability": 0.9778 + }, + { + "start": 10092.58, + "end": 10093.78, + "probability": 0.8723 + }, + { + "start": 10094.06, + "end": 10098.12, + "probability": 0.9951 + }, + { + "start": 10098.54, + "end": 10100.88, + "probability": 0.8897 + }, + { + "start": 10101.02, + "end": 10101.68, + "probability": 0.6296 + }, + { + "start": 10101.68, + "end": 10102.67, + "probability": 0.6482 + }, + { + "start": 10102.9, + "end": 10106.78, + "probability": 0.9076 + }, + { + "start": 10107.62, + "end": 10109.02, + "probability": 0.823 + }, + { + "start": 10110.66, + "end": 10111.44, + "probability": 0.9155 + }, + { + "start": 10111.96, + "end": 10112.68, + "probability": 0.4717 + }, + { + "start": 10112.94, + "end": 10114.46, + "probability": 0.41 + }, + { + "start": 10115.04, + "end": 10115.04, + "probability": 0.1955 + }, + { + "start": 10115.04, + "end": 10115.04, + "probability": 0.549 + }, + { + "start": 10115.04, + "end": 10117.56, + "probability": 0.3489 + }, + { + "start": 10118.72, + "end": 10119.64, + "probability": 0.4591 + }, + { + "start": 10119.92, + "end": 10122.6, + "probability": 0.6467 + }, + { + "start": 10128.96, + "end": 10133.52, + "probability": 0.7837 + }, + { + "start": 10134.68, + "end": 10137.22, + "probability": 0.8303 + }, + { + "start": 10137.9, + "end": 10138.68, + "probability": 0.9467 + }, + { + "start": 10140.36, + "end": 10141.98, + "probability": 0.6942 + }, + { + "start": 10144.42, + "end": 10148.56, + "probability": 0.8905 + }, + { + "start": 10149.96, + "end": 10156.72, + "probability": 0.9688 + }, + { + "start": 10156.86, + "end": 10158.28, + "probability": 0.6802 + }, + { + "start": 10158.32, + "end": 10159.66, + "probability": 0.9106 + }, + { + "start": 10159.84, + "end": 10160.32, + "probability": 0.5365 + }, + { + "start": 10161.5, + "end": 10163.42, + "probability": 0.9596 + }, + { + "start": 10164.18, + "end": 10170.36, + "probability": 0.9917 + }, + { + "start": 10171.96, + "end": 10177.04, + "probability": 0.9789 + }, + { + "start": 10178.7, + "end": 10179.78, + "probability": 0.9859 + }, + { + "start": 10180.64, + "end": 10189.24, + "probability": 0.8745 + }, + { + "start": 10189.4, + "end": 10190.36, + "probability": 0.5864 + }, + { + "start": 10191.32, + "end": 10192.18, + "probability": 0.9106 + }, + { + "start": 10193.24, + "end": 10200.7, + "probability": 0.9962 + }, + { + "start": 10202.5, + "end": 10207.7, + "probability": 0.9784 + }, + { + "start": 10209.42, + "end": 10209.78, + "probability": 0.2588 + }, + { + "start": 10209.78, + "end": 10216.78, + "probability": 0.8408 + }, + { + "start": 10217.74, + "end": 10220.24, + "probability": 0.6934 + }, + { + "start": 10220.88, + "end": 10223.38, + "probability": 0.9214 + }, + { + "start": 10224.24, + "end": 10229.22, + "probability": 0.8797 + }, + { + "start": 10229.74, + "end": 10236.52, + "probability": 0.9708 + }, + { + "start": 10237.22, + "end": 10239.38, + "probability": 0.8758 + }, + { + "start": 10240.38, + "end": 10241.6, + "probability": 0.9937 + }, + { + "start": 10241.74, + "end": 10247.28, + "probability": 0.9919 + }, + { + "start": 10248.14, + "end": 10249.86, + "probability": 0.9893 + }, + { + "start": 10250.82, + "end": 10251.56, + "probability": 0.6602 + }, + { + "start": 10252.12, + "end": 10254.0, + "probability": 0.7927 + }, + { + "start": 10255.0, + "end": 10257.08, + "probability": 0.4826 + }, + { + "start": 10257.8, + "end": 10260.34, + "probability": 0.7971 + }, + { + "start": 10261.3, + "end": 10263.94, + "probability": 0.7146 + }, + { + "start": 10265.04, + "end": 10269.62, + "probability": 0.9518 + }, + { + "start": 10270.58, + "end": 10275.34, + "probability": 0.916 + }, + { + "start": 10275.34, + "end": 10280.96, + "probability": 0.9977 + }, + { + "start": 10281.5, + "end": 10286.3, + "probability": 0.9941 + }, + { + "start": 10287.18, + "end": 10290.8, + "probability": 0.8644 + }, + { + "start": 10292.38, + "end": 10295.8, + "probability": 0.68 + }, + { + "start": 10296.5, + "end": 10300.04, + "probability": 0.9673 + }, + { + "start": 10301.18, + "end": 10303.0, + "probability": 0.8627 + }, + { + "start": 10303.16, + "end": 10306.46, + "probability": 0.9906 + }, + { + "start": 10306.56, + "end": 10307.3, + "probability": 0.995 + }, + { + "start": 10307.82, + "end": 10312.6, + "probability": 0.9509 + }, + { + "start": 10313.42, + "end": 10318.0, + "probability": 0.9611 + }, + { + "start": 10318.6, + "end": 10322.72, + "probability": 0.9786 + }, + { + "start": 10323.18, + "end": 10330.36, + "probability": 0.9556 + }, + { + "start": 10331.96, + "end": 10333.86, + "probability": 0.8248 + }, + { + "start": 10334.66, + "end": 10336.84, + "probability": 0.9278 + }, + { + "start": 10337.94, + "end": 10340.26, + "probability": 0.9657 + }, + { + "start": 10341.0, + "end": 10344.3, + "probability": 0.8216 + }, + { + "start": 10345.48, + "end": 10347.22, + "probability": 0.8786 + }, + { + "start": 10347.32, + "end": 10348.12, + "probability": 0.8908 + }, + { + "start": 10348.18, + "end": 10352.16, + "probability": 0.8072 + }, + { + "start": 10352.62, + "end": 10356.28, + "probability": 0.9865 + }, + { + "start": 10356.64, + "end": 10357.29, + "probability": 0.793 + }, + { + "start": 10358.24, + "end": 10364.92, + "probability": 0.7627 + }, + { + "start": 10365.16, + "end": 10368.66, + "probability": 0.9769 + }, + { + "start": 10369.58, + "end": 10372.08, + "probability": 0.734 + }, + { + "start": 10372.2, + "end": 10373.68, + "probability": 0.7893 + }, + { + "start": 10391.22, + "end": 10391.28, + "probability": 0.4617 + }, + { + "start": 10391.28, + "end": 10394.1, + "probability": 0.7998 + }, + { + "start": 10394.64, + "end": 10396.08, + "probability": 0.97 + }, + { + "start": 10396.66, + "end": 10398.96, + "probability": 0.7898 + }, + { + "start": 10399.06, + "end": 10401.84, + "probability": 0.9854 + }, + { + "start": 10402.42, + "end": 10408.0, + "probability": 0.9966 + }, + { + "start": 10408.4, + "end": 10410.26, + "probability": 0.9881 + }, + { + "start": 10410.4, + "end": 10410.84, + "probability": 0.6338 + }, + { + "start": 10411.38, + "end": 10411.78, + "probability": 0.8567 + }, + { + "start": 10412.22, + "end": 10416.42, + "probability": 0.9956 + }, + { + "start": 10417.24, + "end": 10418.18, + "probability": 0.9182 + }, + { + "start": 10418.7, + "end": 10420.94, + "probability": 0.9711 + }, + { + "start": 10421.56, + "end": 10423.26, + "probability": 0.926 + }, + { + "start": 10423.86, + "end": 10427.37, + "probability": 0.9014 + }, + { + "start": 10427.48, + "end": 10428.0, + "probability": 0.7432 + }, + { + "start": 10428.14, + "end": 10429.28, + "probability": 0.9891 + }, + { + "start": 10430.1, + "end": 10434.2, + "probability": 0.9961 + }, + { + "start": 10434.76, + "end": 10437.04, + "probability": 0.9944 + }, + { + "start": 10437.04, + "end": 10440.54, + "probability": 0.9896 + }, + { + "start": 10441.68, + "end": 10442.7, + "probability": 0.7886 + }, + { + "start": 10443.08, + "end": 10446.66, + "probability": 0.9915 + }, + { + "start": 10447.38, + "end": 10450.02, + "probability": 0.9806 + }, + { + "start": 10450.02, + "end": 10452.96, + "probability": 0.8909 + }, + { + "start": 10453.62, + "end": 10455.1, + "probability": 0.9988 + }, + { + "start": 10455.8, + "end": 10456.34, + "probability": 0.9715 + }, + { + "start": 10456.94, + "end": 10459.84, + "probability": 0.9585 + }, + { + "start": 10460.28, + "end": 10461.98, + "probability": 0.9953 + }, + { + "start": 10462.7, + "end": 10463.8, + "probability": 0.988 + }, + { + "start": 10463.86, + "end": 10464.6, + "probability": 0.7859 + }, + { + "start": 10464.92, + "end": 10466.9, + "probability": 0.5158 + }, + { + "start": 10467.2, + "end": 10471.18, + "probability": 0.8889 + }, + { + "start": 10471.58, + "end": 10472.35, + "probability": 0.6816 + }, + { + "start": 10473.1, + "end": 10477.34, + "probability": 0.969 + }, + { + "start": 10478.46, + "end": 10479.28, + "probability": 0.998 + }, + { + "start": 10482.4, + "end": 10482.84, + "probability": 0.7869 + }, + { + "start": 10483.4, + "end": 10485.54, + "probability": 0.9294 + }, + { + "start": 10486.24, + "end": 10488.16, + "probability": 0.9849 + }, + { + "start": 10488.56, + "end": 10490.12, + "probability": 0.9641 + }, + { + "start": 10490.12, + "end": 10490.76, + "probability": 0.7199 + }, + { + "start": 10490.92, + "end": 10493.38, + "probability": 0.9928 + }, + { + "start": 10493.52, + "end": 10496.12, + "probability": 0.9153 + }, + { + "start": 10496.78, + "end": 10498.24, + "probability": 0.9973 + }, + { + "start": 10498.26, + "end": 10503.06, + "probability": 0.9756 + }, + { + "start": 10503.8, + "end": 10505.08, + "probability": 0.9814 + }, + { + "start": 10505.46, + "end": 10508.7, + "probability": 0.9965 + }, + { + "start": 10508.7, + "end": 10510.28, + "probability": 0.8298 + }, + { + "start": 10511.34, + "end": 10513.9, + "probability": 0.9736 + }, + { + "start": 10514.0, + "end": 10515.92, + "probability": 0.9219 + }, + { + "start": 10516.48, + "end": 10520.1, + "probability": 0.9365 + }, + { + "start": 10520.16, + "end": 10521.04, + "probability": 0.9695 + }, + { + "start": 10521.1, + "end": 10524.7, + "probability": 0.8794 + }, + { + "start": 10524.7, + "end": 10528.92, + "probability": 0.9826 + }, + { + "start": 10529.24, + "end": 10530.26, + "probability": 0.8816 + }, + { + "start": 10531.1, + "end": 10532.42, + "probability": 0.8066 + }, + { + "start": 10532.98, + "end": 10536.38, + "probability": 0.9987 + }, + { + "start": 10537.14, + "end": 10538.7, + "probability": 0.9963 + }, + { + "start": 10539.62, + "end": 10541.9, + "probability": 0.9315 + }, + { + "start": 10542.44, + "end": 10543.46, + "probability": 0.7941 + }, + { + "start": 10543.94, + "end": 10545.32, + "probability": 0.9993 + }, + { + "start": 10545.42, + "end": 10547.74, + "probability": 0.9924 + }, + { + "start": 10547.84, + "end": 10549.84, + "probability": 0.9946 + }, + { + "start": 10550.52, + "end": 10552.42, + "probability": 0.8747 + }, + { + "start": 10553.1, + "end": 10556.86, + "probability": 0.9922 + }, + { + "start": 10556.94, + "end": 10560.54, + "probability": 0.9946 + }, + { + "start": 10561.72, + "end": 10564.2, + "probability": 0.9926 + }, + { + "start": 10564.58, + "end": 10565.72, + "probability": 0.9937 + }, + { + "start": 10565.96, + "end": 10567.46, + "probability": 0.9467 + }, + { + "start": 10567.76, + "end": 10569.12, + "probability": 0.7549 + }, + { + "start": 10569.48, + "end": 10572.56, + "probability": 0.9326 + }, + { + "start": 10572.68, + "end": 10573.42, + "probability": 0.4688 + }, + { + "start": 10573.54, + "end": 10573.98, + "probability": 0.6111 + }, + { + "start": 10574.78, + "end": 10577.28, + "probability": 0.9891 + }, + { + "start": 10577.54, + "end": 10580.54, + "probability": 0.9473 + }, + { + "start": 10581.0, + "end": 10582.74, + "probability": 0.9004 + }, + { + "start": 10583.22, + "end": 10583.74, + "probability": 0.7425 + }, + { + "start": 10583.82, + "end": 10585.42, + "probability": 0.9647 + }, + { + "start": 10585.74, + "end": 10586.24, + "probability": 0.8762 + }, + { + "start": 10586.32, + "end": 10587.74, + "probability": 0.5607 + }, + { + "start": 10587.76, + "end": 10589.98, + "probability": 0.8681 + }, + { + "start": 10590.14, + "end": 10591.62, + "probability": 0.9241 + }, + { + "start": 10592.12, + "end": 10593.12, + "probability": 0.901 + }, + { + "start": 10594.62, + "end": 10595.22, + "probability": 0.1135 + }, + { + "start": 10595.24, + "end": 10595.94, + "probability": 0.9671 + }, + { + "start": 10596.0, + "end": 10599.02, + "probability": 0.9951 + }, + { + "start": 10599.02, + "end": 10601.52, + "probability": 0.9925 + }, + { + "start": 10601.94, + "end": 10605.74, + "probability": 0.9643 + }, + { + "start": 10606.24, + "end": 10607.78, + "probability": 0.9906 + }, + { + "start": 10608.76, + "end": 10609.62, + "probability": 0.8795 + }, + { + "start": 10610.18, + "end": 10615.58, + "probability": 0.664 + }, + { + "start": 10615.9, + "end": 10617.18, + "probability": 0.9893 + }, + { + "start": 10617.66, + "end": 10618.46, + "probability": 0.936 + }, + { + "start": 10618.54, + "end": 10619.34, + "probability": 0.9417 + }, + { + "start": 10619.84, + "end": 10621.0, + "probability": 0.9844 + }, + { + "start": 10621.3, + "end": 10622.92, + "probability": 0.9167 + }, + { + "start": 10623.92, + "end": 10625.68, + "probability": 0.998 + }, + { + "start": 10625.68, + "end": 10628.14, + "probability": 0.9844 + }, + { + "start": 10628.6, + "end": 10630.37, + "probability": 0.9983 + }, + { + "start": 10630.76, + "end": 10632.4, + "probability": 0.9964 + }, + { + "start": 10632.6, + "end": 10633.86, + "probability": 0.8379 + }, + { + "start": 10634.38, + "end": 10639.68, + "probability": 0.9207 + }, + { + "start": 10639.92, + "end": 10641.92, + "probability": 0.9419 + }, + { + "start": 10642.24, + "end": 10642.72, + "probability": 0.4989 + }, + { + "start": 10642.8, + "end": 10645.54, + "probability": 0.9753 + }, + { + "start": 10645.68, + "end": 10646.42, + "probability": 0.8247 + }, + { + "start": 10646.48, + "end": 10648.2, + "probability": 0.9973 + }, + { + "start": 10648.52, + "end": 10649.54, + "probability": 0.8147 + }, + { + "start": 10649.84, + "end": 10651.16, + "probability": 0.9711 + }, + { + "start": 10651.64, + "end": 10652.56, + "probability": 0.9111 + }, + { + "start": 10652.88, + "end": 10654.74, + "probability": 0.999 + }, + { + "start": 10654.74, + "end": 10656.92, + "probability": 0.9947 + }, + { + "start": 10656.94, + "end": 10658.78, + "probability": 0.6796 + }, + { + "start": 10658.92, + "end": 10659.34, + "probability": 0.4731 + }, + { + "start": 10659.62, + "end": 10660.82, + "probability": 0.8397 + }, + { + "start": 10660.92, + "end": 10661.32, + "probability": 0.7705 + }, + { + "start": 10661.38, + "end": 10662.32, + "probability": 0.7653 + }, + { + "start": 10662.88, + "end": 10664.8, + "probability": 0.7285 + }, + { + "start": 10667.0, + "end": 10668.0, + "probability": 0.6517 + }, + { + "start": 10669.02, + "end": 10670.24, + "probability": 0.9868 + }, + { + "start": 10672.96, + "end": 10673.92, + "probability": 0.3716 + }, + { + "start": 10677.12, + "end": 10678.74, + "probability": 0.8274 + }, + { + "start": 10679.86, + "end": 10680.7, + "probability": 0.7223 + }, + { + "start": 10681.7, + "end": 10683.96, + "probability": 0.8308 + }, + { + "start": 10685.1, + "end": 10685.96, + "probability": 0.7491 + }, + { + "start": 10687.48, + "end": 10689.72, + "probability": 0.8972 + }, + { + "start": 10690.84, + "end": 10693.06, + "probability": 0.5166 + }, + { + "start": 10693.14, + "end": 10695.1, + "probability": 0.8574 + }, + { + "start": 10695.62, + "end": 10696.56, + "probability": 0.9022 + }, + { + "start": 10705.5, + "end": 10707.0, + "probability": 0.1968 + }, + { + "start": 10707.1, + "end": 10709.9, + "probability": 0.7365 + }, + { + "start": 10710.94, + "end": 10710.94, + "probability": 0.0028 + }, + { + "start": 10712.6, + "end": 10713.6, + "probability": 0.4426 + }, + { + "start": 10714.14, + "end": 10714.86, + "probability": 0.4248 + }, + { + "start": 10716.62, + "end": 10717.14, + "probability": 0.8046 + }, + { + "start": 10717.96, + "end": 10720.18, + "probability": 0.8585 + }, + { + "start": 10721.12, + "end": 10722.46, + "probability": 0.8054 + }, + { + "start": 10723.46, + "end": 10726.3, + "probability": 0.6415 + }, + { + "start": 10727.4, + "end": 10728.84, + "probability": 0.7997 + }, + { + "start": 10728.9, + "end": 10730.68, + "probability": 0.7197 + }, + { + "start": 10731.74, + "end": 10734.62, + "probability": 0.9147 + }, + { + "start": 10735.04, + "end": 10735.72, + "probability": 0.606 + }, + { + "start": 10735.92, + "end": 10738.78, + "probability": 0.6346 + }, + { + "start": 10738.9, + "end": 10740.88, + "probability": 0.5791 + }, + { + "start": 10741.78, + "end": 10743.94, + "probability": 0.9797 + }, + { + "start": 10744.22, + "end": 10746.82, + "probability": 0.8188 + }, + { + "start": 10746.98, + "end": 10747.28, + "probability": 0.1801 + }, + { + "start": 10747.36, + "end": 10748.92, + "probability": 0.5048 + }, + { + "start": 10749.06, + "end": 10751.96, + "probability": 0.8901 + }, + { + "start": 10752.04, + "end": 10753.4, + "probability": 0.6032 + }, + { + "start": 10754.1, + "end": 10754.7, + "probability": 0.6843 + }, + { + "start": 10754.88, + "end": 10758.24, + "probability": 0.9465 + }, + { + "start": 10759.84, + "end": 10762.8, + "probability": 0.9398 + }, + { + "start": 10762.86, + "end": 10763.66, + "probability": 0.881 + }, + { + "start": 10764.02, + "end": 10765.5, + "probability": 0.9204 + }, + { + "start": 10766.58, + "end": 10767.9, + "probability": 0.9325 + }, + { + "start": 10768.86, + "end": 10770.42, + "probability": 0.9929 + }, + { + "start": 10771.22, + "end": 10773.24, + "probability": 0.8526 + }, + { + "start": 10773.86, + "end": 10774.82, + "probability": 0.9741 + }, + { + "start": 10775.3, + "end": 10777.88, + "probability": 0.9854 + }, + { + "start": 10778.7, + "end": 10781.64, + "probability": 0.9909 + }, + { + "start": 10782.18, + "end": 10783.56, + "probability": 0.998 + }, + { + "start": 10785.22, + "end": 10786.8, + "probability": 0.9118 + }, + { + "start": 10788.96, + "end": 10791.34, + "probability": 0.9308 + }, + { + "start": 10792.32, + "end": 10793.46, + "probability": 0.9438 + }, + { + "start": 10794.66, + "end": 10796.32, + "probability": 0.9361 + }, + { + "start": 10796.94, + "end": 10797.94, + "probability": 0.6213 + }, + { + "start": 10798.34, + "end": 10799.88, + "probability": 0.9631 + }, + { + "start": 10800.66, + "end": 10804.14, + "probability": 0.5653 + }, + { + "start": 10805.1, + "end": 10806.6, + "probability": 0.7371 + }, + { + "start": 10807.72, + "end": 10809.08, + "probability": 0.9601 + }, + { + "start": 10810.24, + "end": 10811.44, + "probability": 0.9175 + }, + { + "start": 10814.26, + "end": 10815.2, + "probability": 0.7583 + }, + { + "start": 10815.66, + "end": 10816.64, + "probability": 0.5873 + }, + { + "start": 10816.92, + "end": 10817.76, + "probability": 0.8028 + }, + { + "start": 10818.02, + "end": 10819.04, + "probability": 0.3384 + }, + { + "start": 10821.74, + "end": 10825.04, + "probability": 0.0849 + }, + { + "start": 10825.52, + "end": 10828.26, + "probability": 0.04 + }, + { + "start": 10830.3, + "end": 10834.36, + "probability": 0.0829 + }, + { + "start": 10835.62, + "end": 10836.66, + "probability": 0.0509 + }, + { + "start": 10842.08, + "end": 10843.32, + "probability": 0.3448 + }, + { + "start": 10848.37, + "end": 10850.9, + "probability": 0.0875 + }, + { + "start": 10851.34, + "end": 10851.97, + "probability": 0.0014 + }, + { + "start": 10853.52, + "end": 10857.04, + "probability": 0.0674 + }, + { + "start": 10858.44, + "end": 10859.58, + "probability": 0.1419 + }, + { + "start": 10860.22, + "end": 10861.56, + "probability": 0.037 + }, + { + "start": 10862.42, + "end": 10863.98, + "probability": 0.072 + }, + { + "start": 10864.64, + "end": 10865.3, + "probability": 0.2069 + }, + { + "start": 10868.52, + "end": 10870.2, + "probability": 0.1355 + }, + { + "start": 10871.72, + "end": 10872.32, + "probability": 0.0342 + }, + { + "start": 10873.02, + "end": 10875.06, + "probability": 0.0509 + }, + { + "start": 10875.06, + "end": 10877.18, + "probability": 0.1241 + }, + { + "start": 10881.24, + "end": 10882.09, + "probability": 0.0066 + }, + { + "start": 10882.62, + "end": 10884.32, + "probability": 0.0958 + }, + { + "start": 10884.72, + "end": 10885.4, + "probability": 0.1428 + }, + { + "start": 10910.0, + "end": 10910.0, + "probability": 0.0 + }, + { + "start": 10910.0, + "end": 10910.0, + "probability": 0.0 + }, + { + "start": 10910.0, + "end": 10910.0, + "probability": 0.0 + }, + { + "start": 10910.0, + "end": 10910.0, + "probability": 0.0 + }, + { + "start": 10910.0, + "end": 10910.0, + "probability": 0.0 + }, + { + "start": 10910.0, + "end": 10910.0, + "probability": 0.0 + }, + { + "start": 10910.0, + "end": 10910.0, + "probability": 0.0 + }, + { + "start": 10910.0, + "end": 10910.0, + "probability": 0.0 + }, + { + "start": 10910.0, + "end": 10910.0, + "probability": 0.0 + }, + { + "start": 10910.0, + "end": 10910.0, + "probability": 0.0 + }, + { + "start": 10910.0, + "end": 10910.0, + "probability": 0.0 + }, + { + "start": 10910.0, + "end": 10910.0, + "probability": 0.0 + }, + { + "start": 10910.13, + "end": 10910.2, + "probability": 0.1662 + }, + { + "start": 10910.2, + "end": 10910.2, + "probability": 0.3224 + }, + { + "start": 10910.2, + "end": 10910.76, + "probability": 0.7931 + }, + { + "start": 10912.38, + "end": 10912.48, + "probability": 0.7887 + }, + { + "start": 10913.9, + "end": 10915.54, + "probability": 0.9527 + }, + { + "start": 10918.1, + "end": 10922.06, + "probability": 0.8998 + }, + { + "start": 10923.4, + "end": 10924.34, + "probability": 0.9528 + }, + { + "start": 10925.3, + "end": 10926.52, + "probability": 0.6707 + }, + { + "start": 10927.6, + "end": 10928.44, + "probability": 0.7882 + }, + { + "start": 10929.24, + "end": 10931.76, + "probability": 0.9874 + }, + { + "start": 10933.48, + "end": 10934.28, + "probability": 0.9806 + }, + { + "start": 10934.88, + "end": 10937.32, + "probability": 0.9953 + }, + { + "start": 10938.14, + "end": 10940.88, + "probability": 0.9912 + }, + { + "start": 10941.62, + "end": 10942.84, + "probability": 0.7155 + }, + { + "start": 10943.64, + "end": 10944.52, + "probability": 0.6313 + }, + { + "start": 10945.7, + "end": 10947.42, + "probability": 0.9738 + }, + { + "start": 10948.14, + "end": 10948.98, + "probability": 0.7198 + }, + { + "start": 10949.82, + "end": 10951.3, + "probability": 0.9799 + }, + { + "start": 10952.46, + "end": 10953.74, + "probability": 0.8461 + }, + { + "start": 10967.8, + "end": 10969.34, + "probability": 0.6542 + }, + { + "start": 10970.88, + "end": 10972.1, + "probability": 0.844 + }, + { + "start": 10973.66, + "end": 10974.44, + "probability": 0.9644 + }, + { + "start": 10975.72, + "end": 10979.02, + "probability": 0.9717 + }, + { + "start": 10980.86, + "end": 10982.52, + "probability": 0.9954 + }, + { + "start": 10984.34, + "end": 10992.04, + "probability": 0.9746 + }, + { + "start": 10993.96, + "end": 10999.6, + "probability": 0.9485 + }, + { + "start": 11001.98, + "end": 11004.72, + "probability": 0.9633 + }, + { + "start": 11006.44, + "end": 11008.24, + "probability": 0.854 + }, + { + "start": 11013.58, + "end": 11015.12, + "probability": 0.8758 + }, + { + "start": 11017.56, + "end": 11020.74, + "probability": 0.9897 + }, + { + "start": 11021.56, + "end": 11022.92, + "probability": 0.9648 + }, + { + "start": 11023.54, + "end": 11025.08, + "probability": 0.7235 + }, + { + "start": 11027.76, + "end": 11031.7, + "probability": 0.9175 + }, + { + "start": 11031.88, + "end": 11035.6, + "probability": 0.7374 + }, + { + "start": 11036.64, + "end": 11040.34, + "probability": 0.8581 + }, + { + "start": 11043.88, + "end": 11045.16, + "probability": 0.0543 + }, + { + "start": 11046.34, + "end": 11046.94, + "probability": 0.8178 + }, + { + "start": 11048.54, + "end": 11050.0, + "probability": 0.5847 + }, + { + "start": 11050.98, + "end": 11055.43, + "probability": 0.9316 + }, + { + "start": 11056.2, + "end": 11060.34, + "probability": 0.9971 + }, + { + "start": 11061.0, + "end": 11065.66, + "probability": 0.9211 + }, + { + "start": 11067.22, + "end": 11067.48, + "probability": 0.5344 + }, + { + "start": 11067.74, + "end": 11068.16, + "probability": 0.9044 + }, + { + "start": 11068.74, + "end": 11072.76, + "probability": 0.9946 + }, + { + "start": 11076.16, + "end": 11078.78, + "probability": 0.9912 + }, + { + "start": 11079.02, + "end": 11080.54, + "probability": 0.7166 + }, + { + "start": 11080.94, + "end": 11082.2, + "probability": 0.9722 + }, + { + "start": 11082.38, + "end": 11084.22, + "probability": 0.9972 + }, + { + "start": 11085.5, + "end": 11088.08, + "probability": 0.998 + }, + { + "start": 11088.72, + "end": 11090.96, + "probability": 0.9134 + }, + { + "start": 11091.04, + "end": 11092.7, + "probability": 0.6823 + }, + { + "start": 11093.74, + "end": 11094.28, + "probability": 0.4315 + }, + { + "start": 11096.0, + "end": 11099.6, + "probability": 0.9978 + }, + { + "start": 11105.88, + "end": 11108.46, + "probability": 0.6758 + }, + { + "start": 11109.42, + "end": 11110.46, + "probability": 0.8967 + }, + { + "start": 11111.52, + "end": 11114.72, + "probability": 0.958 + }, + { + "start": 11115.56, + "end": 11116.02, + "probability": 0.3467 + }, + { + "start": 11118.06, + "end": 11120.9, + "probability": 0.9929 + }, + { + "start": 11122.1, + "end": 11123.54, + "probability": 0.996 + }, + { + "start": 11125.0, + "end": 11127.02, + "probability": 0.9722 + }, + { + "start": 11128.06, + "end": 11129.02, + "probability": 0.8687 + }, + { + "start": 11130.18, + "end": 11132.28, + "probability": 0.9855 + }, + { + "start": 11133.04, + "end": 11136.98, + "probability": 0.9609 + }, + { + "start": 11137.82, + "end": 11143.88, + "probability": 0.9826 + }, + { + "start": 11144.66, + "end": 11147.02, + "probability": 0.9918 + }, + { + "start": 11147.82, + "end": 11149.68, + "probability": 0.8674 + }, + { + "start": 11151.68, + "end": 11153.02, + "probability": 0.8947 + }, + { + "start": 11154.56, + "end": 11155.3, + "probability": 0.8586 + }, + { + "start": 11155.9, + "end": 11156.6, + "probability": 0.961 + }, + { + "start": 11156.7, + "end": 11157.22, + "probability": 0.9774 + }, + { + "start": 11157.88, + "end": 11163.68, + "probability": 0.9735 + }, + { + "start": 11164.68, + "end": 11167.98, + "probability": 0.9736 + }, + { + "start": 11168.62, + "end": 11172.12, + "probability": 0.9717 + }, + { + "start": 11172.82, + "end": 11173.61, + "probability": 0.9129 + }, + { + "start": 11174.52, + "end": 11177.54, + "probability": 0.991 + }, + { + "start": 11178.04, + "end": 11179.76, + "probability": 0.8428 + }, + { + "start": 11180.28, + "end": 11181.86, + "probability": 0.8028 + }, + { + "start": 11182.26, + "end": 11188.3, + "probability": 0.9663 + }, + { + "start": 11188.38, + "end": 11188.38, + "probability": 0.5031 + }, + { + "start": 11188.38, + "end": 11188.96, + "probability": 0.7528 + }, + { + "start": 11189.76, + "end": 11191.56, + "probability": 0.8711 + }, + { + "start": 11193.48, + "end": 11196.32, + "probability": 0.9595 + }, + { + "start": 11198.18, + "end": 11199.1, + "probability": 0.7223 + }, + { + "start": 11199.78, + "end": 11202.88, + "probability": 0.9835 + }, + { + "start": 11203.74, + "end": 11205.46, + "probability": 0.9889 + }, + { + "start": 11206.94, + "end": 11207.76, + "probability": 0.9894 + }, + { + "start": 11208.3, + "end": 11211.5, + "probability": 0.9833 + }, + { + "start": 11212.18, + "end": 11215.04, + "probability": 0.8135 + }, + { + "start": 11216.28, + "end": 11218.28, + "probability": 0.9243 + }, + { + "start": 11219.36, + "end": 11220.72, + "probability": 0.7665 + }, + { + "start": 11221.98, + "end": 11224.92, + "probability": 0.9858 + }, + { + "start": 11225.78, + "end": 11228.84, + "probability": 0.9858 + }, + { + "start": 11229.62, + "end": 11232.02, + "probability": 0.8458 + }, + { + "start": 11233.42, + "end": 11234.9, + "probability": 0.8314 + }, + { + "start": 11240.26, + "end": 11242.4, + "probability": 0.914 + }, + { + "start": 11242.54, + "end": 11245.78, + "probability": 0.998 + }, + { + "start": 11245.9, + "end": 11246.84, + "probability": 0.5655 + }, + { + "start": 11248.08, + "end": 11249.9, + "probability": 0.8831 + }, + { + "start": 11250.64, + "end": 11251.8, + "probability": 0.9392 + }, + { + "start": 11251.9, + "end": 11253.09, + "probability": 0.6416 + }, + { + "start": 11253.88, + "end": 11257.44, + "probability": 0.9113 + }, + { + "start": 11258.02, + "end": 11263.04, + "probability": 0.9576 + }, + { + "start": 11263.6, + "end": 11265.96, + "probability": 0.868 + }, + { + "start": 11266.08, + "end": 11267.36, + "probability": 0.6508 + }, + { + "start": 11268.18, + "end": 11269.94, + "probability": 0.97 + }, + { + "start": 11271.72, + "end": 11272.32, + "probability": 0.6669 + }, + { + "start": 11273.2, + "end": 11274.8, + "probability": 0.1478 + }, + { + "start": 11279.18, + "end": 11282.02, + "probability": 0.0943 + }, + { + "start": 11282.87, + "end": 11284.5, + "probability": 0.0673 + }, + { + "start": 11287.08, + "end": 11287.08, + "probability": 0.1058 + }, + { + "start": 11287.08, + "end": 11291.14, + "probability": 0.5247 + }, + { + "start": 11296.42, + "end": 11301.1, + "probability": 0.9945 + }, + { + "start": 11302.58, + "end": 11302.8, + "probability": 0.2664 + }, + { + "start": 11302.94, + "end": 11306.4, + "probability": 0.9941 + }, + { + "start": 11306.4, + "end": 11310.74, + "probability": 0.7963 + }, + { + "start": 11311.22, + "end": 11312.74, + "probability": 0.5775 + }, + { + "start": 11313.06, + "end": 11316.86, + "probability": 0.9918 + }, + { + "start": 11316.86, + "end": 11321.32, + "probability": 0.9855 + }, + { + "start": 11322.1, + "end": 11322.86, + "probability": 0.7451 + }, + { + "start": 11324.52, + "end": 11326.42, + "probability": 0.1657 + }, + { + "start": 11348.04, + "end": 11353.28, + "probability": 0.6244 + }, + { + "start": 11353.46, + "end": 11354.24, + "probability": 0.6371 + }, + { + "start": 11354.34, + "end": 11355.48, + "probability": 0.7594 + }, + { + "start": 11355.82, + "end": 11356.44, + "probability": 0.9233 + }, + { + "start": 11357.08, + "end": 11359.38, + "probability": 0.8598 + }, + { + "start": 11360.26, + "end": 11362.84, + "probability": 0.9904 + }, + { + "start": 11363.12, + "end": 11364.08, + "probability": 0.863 + }, + { + "start": 11364.18, + "end": 11364.92, + "probability": 0.7914 + }, + { + "start": 11365.42, + "end": 11366.92, + "probability": 0.9688 + }, + { + "start": 11367.6, + "end": 11369.24, + "probability": 0.9685 + }, + { + "start": 11369.26, + "end": 11371.67, + "probability": 0.7457 + }, + { + "start": 11372.18, + "end": 11372.64, + "probability": 0.7279 + }, + { + "start": 11372.74, + "end": 11374.48, + "probability": 0.7173 + }, + { + "start": 11376.56, + "end": 11379.96, + "probability": 0.993 + }, + { + "start": 11379.96, + "end": 11383.18, + "probability": 0.8975 + }, + { + "start": 11383.42, + "end": 11384.0, + "probability": 0.5599 + }, + { + "start": 11384.08, + "end": 11384.7, + "probability": 0.6923 + }, + { + "start": 11384.76, + "end": 11389.7, + "probability": 0.6833 + }, + { + "start": 11390.06, + "end": 11391.24, + "probability": 0.8174 + }, + { + "start": 11391.84, + "end": 11395.58, + "probability": 0.8204 + }, + { + "start": 11396.16, + "end": 11397.36, + "probability": 0.9052 + }, + { + "start": 11398.02, + "end": 11399.16, + "probability": 0.9656 + }, + { + "start": 11400.28, + "end": 11403.24, + "probability": 0.9946 + }, + { + "start": 11403.42, + "end": 11405.64, + "probability": 0.9417 + }, + { + "start": 11405.94, + "end": 11408.96, + "probability": 0.9968 + }, + { + "start": 11409.74, + "end": 11411.7, + "probability": 0.9376 + }, + { + "start": 11412.14, + "end": 11413.96, + "probability": 0.2339 + }, + { + "start": 11414.0, + "end": 11417.38, + "probability": 0.9564 + }, + { + "start": 11417.38, + "end": 11420.6, + "probability": 0.9965 + }, + { + "start": 11421.26, + "end": 11427.28, + "probability": 0.9937 + }, + { + "start": 11427.76, + "end": 11428.54, + "probability": 0.8205 + }, + { + "start": 11428.98, + "end": 11433.38, + "probability": 0.998 + }, + { + "start": 11433.58, + "end": 11437.32, + "probability": 0.9901 + }, + { + "start": 11437.84, + "end": 11443.42, + "probability": 0.9949 + }, + { + "start": 11444.22, + "end": 11447.7, + "probability": 0.9878 + }, + { + "start": 11447.78, + "end": 11448.56, + "probability": 0.6797 + }, + { + "start": 11448.96, + "end": 11451.5, + "probability": 0.9497 + }, + { + "start": 11452.06, + "end": 11452.5, + "probability": 0.3485 + }, + { + "start": 11452.58, + "end": 11458.5, + "probability": 0.9805 + }, + { + "start": 11458.5, + "end": 11463.88, + "probability": 0.9698 + }, + { + "start": 11463.96, + "end": 11465.64, + "probability": 0.7258 + }, + { + "start": 11465.68, + "end": 11469.31, + "probability": 0.998 + }, + { + "start": 11469.34, + "end": 11473.67, + "probability": 0.9628 + }, + { + "start": 11474.51, + "end": 11478.92, + "probability": 0.9895 + }, + { + "start": 11479.08, + "end": 11480.1, + "probability": 0.6576 + }, + { + "start": 11480.28, + "end": 11485.64, + "probability": 0.8101 + }, + { + "start": 11485.64, + "end": 11489.14, + "probability": 0.9852 + }, + { + "start": 11489.26, + "end": 11494.24, + "probability": 0.9731 + }, + { + "start": 11494.24, + "end": 11498.22, + "probability": 0.9576 + }, + { + "start": 11499.24, + "end": 11503.7, + "probability": 0.9755 + }, + { + "start": 11504.24, + "end": 11504.76, + "probability": 0.6878 + }, + { + "start": 11505.18, + "end": 11509.47, + "probability": 0.8447 + }, + { + "start": 11509.71, + "end": 11513.24, + "probability": 0.9129 + }, + { + "start": 11513.74, + "end": 11514.78, + "probability": 0.8638 + }, + { + "start": 11515.4, + "end": 11518.8, + "probability": 0.9927 + }, + { + "start": 11519.16, + "end": 11523.12, + "probability": 0.9784 + }, + { + "start": 11523.24, + "end": 11523.38, + "probability": 0.2717 + }, + { + "start": 11523.48, + "end": 11525.96, + "probability": 0.961 + }, + { + "start": 11526.38, + "end": 11533.2, + "probability": 0.9884 + }, + { + "start": 11533.92, + "end": 11534.16, + "probability": 0.4239 + }, + { + "start": 11534.22, + "end": 11535.85, + "probability": 0.946 + }, + { + "start": 11536.3, + "end": 11537.48, + "probability": 0.9589 + }, + { + "start": 11537.92, + "end": 11538.7, + "probability": 0.9404 + }, + { + "start": 11538.78, + "end": 11539.86, + "probability": 0.9484 + }, + { + "start": 11540.26, + "end": 11543.32, + "probability": 0.9905 + }, + { + "start": 11543.68, + "end": 11544.96, + "probability": 0.9946 + }, + { + "start": 11545.04, + "end": 11549.12, + "probability": 0.9453 + }, + { + "start": 11549.2, + "end": 11551.52, + "probability": 0.9611 + }, + { + "start": 11551.52, + "end": 11555.18, + "probability": 0.9963 + }, + { + "start": 11555.18, + "end": 11558.06, + "probability": 0.9932 + }, + { + "start": 11558.52, + "end": 11558.6, + "probability": 0.2762 + }, + { + "start": 11558.7, + "end": 11561.96, + "probability": 0.9952 + }, + { + "start": 11562.48, + "end": 11564.38, + "probability": 0.9966 + }, + { + "start": 11564.82, + "end": 11566.3, + "probability": 0.9976 + }, + { + "start": 11566.72, + "end": 11569.2, + "probability": 0.9788 + }, + { + "start": 11569.64, + "end": 11575.14, + "probability": 0.9811 + }, + { + "start": 11575.6, + "end": 11578.34, + "probability": 0.9812 + }, + { + "start": 11578.34, + "end": 11581.06, + "probability": 0.9395 + }, + { + "start": 11581.48, + "end": 11582.8, + "probability": 0.9934 + }, + { + "start": 11582.94, + "end": 11587.52, + "probability": 0.989 + }, + { + "start": 11588.24, + "end": 11589.56, + "probability": 0.9146 + }, + { + "start": 11590.4, + "end": 11598.26, + "probability": 0.9473 + }, + { + "start": 11598.94, + "end": 11599.68, + "probability": 0.0626 + }, + { + "start": 11600.16, + "end": 11602.94, + "probability": 0.9873 + }, + { + "start": 11603.82, + "end": 11605.22, + "probability": 0.6612 + }, + { + "start": 11605.82, + "end": 11610.84, + "probability": 0.9946 + }, + { + "start": 11610.84, + "end": 11613.7, + "probability": 0.9935 + }, + { + "start": 11613.72, + "end": 11618.68, + "probability": 0.8607 + }, + { + "start": 11619.26, + "end": 11621.24, + "probability": 0.987 + }, + { + "start": 11621.24, + "end": 11623.3, + "probability": 0.9883 + }, + { + "start": 11623.82, + "end": 11625.18, + "probability": 0.7251 + }, + { + "start": 11625.7, + "end": 11629.94, + "probability": 0.9592 + }, + { + "start": 11630.08, + "end": 11633.96, + "probability": 0.9941 + }, + { + "start": 11633.96, + "end": 11638.78, + "probability": 0.9869 + }, + { + "start": 11639.28, + "end": 11643.52, + "probability": 0.9884 + }, + { + "start": 11644.12, + "end": 11647.82, + "probability": 0.9954 + }, + { + "start": 11647.83, + "end": 11651.82, + "probability": 0.9949 + }, + { + "start": 11652.72, + "end": 11658.54, + "probability": 0.991 + }, + { + "start": 11658.96, + "end": 11659.82, + "probability": 0.8545 + }, + { + "start": 11660.38, + "end": 11666.42, + "probability": 0.9968 + }, + { + "start": 11667.02, + "end": 11674.0, + "probability": 0.9945 + }, + { + "start": 11674.26, + "end": 11677.54, + "probability": 0.999 + }, + { + "start": 11678.62, + "end": 11682.7, + "probability": 0.7118 + }, + { + "start": 11682.72, + "end": 11682.92, + "probability": 0.5718 + }, + { + "start": 11682.94, + "end": 11684.28, + "probability": 0.9893 + }, + { + "start": 11684.68, + "end": 11688.94, + "probability": 0.9972 + }, + { + "start": 11688.94, + "end": 11691.58, + "probability": 0.9305 + }, + { + "start": 11691.62, + "end": 11692.6, + "probability": 0.8416 + }, + { + "start": 11693.44, + "end": 11694.25, + "probability": 0.5636 + }, + { + "start": 11694.98, + "end": 11697.88, + "probability": 0.9256 + }, + { + "start": 11699.68, + "end": 11703.16, + "probability": 0.829 + }, + { + "start": 11703.26, + "end": 11705.52, + "probability": 0.9417 + }, + { + "start": 11706.62, + "end": 11709.28, + "probability": 0.6091 + }, + { + "start": 11709.68, + "end": 11711.14, + "probability": 0.8971 + }, + { + "start": 11711.26, + "end": 11711.94, + "probability": 0.4644 + }, + { + "start": 11711.96, + "end": 11713.78, + "probability": 0.6647 + }, + { + "start": 11713.94, + "end": 11714.28, + "probability": 0.424 + }, + { + "start": 11715.7, + "end": 11716.36, + "probability": 0.697 + }, + { + "start": 11716.48, + "end": 11717.7, + "probability": 0.7947 + }, + { + "start": 11717.78, + "end": 11718.66, + "probability": 0.0693 + }, + { + "start": 11718.66, + "end": 11721.27, + "probability": 0.4978 + }, + { + "start": 11723.34, + "end": 11723.72, + "probability": 0.2073 + }, + { + "start": 11723.72, + "end": 11723.72, + "probability": 0.3049 + }, + { + "start": 11723.72, + "end": 11724.78, + "probability": 0.1895 + }, + { + "start": 11725.44, + "end": 11725.74, + "probability": 0.0129 + }, + { + "start": 11725.74, + "end": 11731.46, + "probability": 0.8276 + }, + { + "start": 11733.52, + "end": 11741.06, + "probability": 0.6627 + }, + { + "start": 11741.06, + "end": 11743.12, + "probability": 0.4569 + }, + { + "start": 11743.24, + "end": 11743.58, + "probability": 0.3223 + }, + { + "start": 11743.68, + "end": 11744.76, + "probability": 0.5648 + }, + { + "start": 11745.08, + "end": 11746.54, + "probability": 0.9665 + }, + { + "start": 11746.64, + "end": 11747.28, + "probability": 0.741 + }, + { + "start": 11747.36, + "end": 11748.08, + "probability": 0.7354 + }, + { + "start": 11748.26, + "end": 11748.8, + "probability": 0.6765 + }, + { + "start": 11749.38, + "end": 11752.36, + "probability": 0.9702 + }, + { + "start": 11752.98, + "end": 11754.18, + "probability": 0.9664 + }, + { + "start": 11754.3, + "end": 11755.2, + "probability": 0.9662 + }, + { + "start": 11755.24, + "end": 11756.78, + "probability": 0.9486 + }, + { + "start": 11756.8, + "end": 11757.86, + "probability": 0.8865 + }, + { + "start": 11758.08, + "end": 11758.94, + "probability": 0.9859 + }, + { + "start": 11759.04, + "end": 11760.38, + "probability": 0.8221 + }, + { + "start": 11760.64, + "end": 11761.84, + "probability": 0.8555 + }, + { + "start": 11762.24, + "end": 11763.0, + "probability": 0.9263 + }, + { + "start": 11763.04, + "end": 11764.42, + "probability": 0.9349 + }, + { + "start": 11764.76, + "end": 11766.4, + "probability": 0.895 + }, + { + "start": 11766.58, + "end": 11767.54, + "probability": 0.9806 + }, + { + "start": 11767.66, + "end": 11769.3, + "probability": 0.9814 + }, + { + "start": 11769.34, + "end": 11770.5, + "probability": 0.7452 + }, + { + "start": 11770.64, + "end": 11771.66, + "probability": 0.9732 + }, + { + "start": 11771.76, + "end": 11772.74, + "probability": 0.8639 + }, + { + "start": 11772.78, + "end": 11775.66, + "probability": 0.8845 + }, + { + "start": 11778.1, + "end": 11781.72, + "probability": 0.999 + }, + { + "start": 11781.98, + "end": 11784.16, + "probability": 0.8061 + }, + { + "start": 11784.66, + "end": 11785.98, + "probability": 0.7807 + }, + { + "start": 11787.3, + "end": 11787.88, + "probability": 0.1595 + }, + { + "start": 11788.4, + "end": 11791.26, + "probability": 0.4977 + }, + { + "start": 11791.8, + "end": 11792.98, + "probability": 0.6657 + }, + { + "start": 11793.04, + "end": 11793.3, + "probability": 0.723 + }, + { + "start": 11793.42, + "end": 11795.0, + "probability": 0.6141 + }, + { + "start": 11795.2, + "end": 11796.0, + "probability": 0.6341 + }, + { + "start": 11796.34, + "end": 11796.64, + "probability": 0.5322 + }, + { + "start": 11797.26, + "end": 11797.68, + "probability": 0.9209 + }, + { + "start": 11797.76, + "end": 11801.56, + "probability": 0.5213 + }, + { + "start": 11802.02, + "end": 11805.3, + "probability": 0.9832 + }, + { + "start": 11805.92, + "end": 11806.66, + "probability": 0.1878 + }, + { + "start": 11806.78, + "end": 11807.5, + "probability": 0.9577 + }, + { + "start": 11807.7, + "end": 11809.5, + "probability": 0.5925 + }, + { + "start": 11809.64, + "end": 11814.86, + "probability": 0.7902 + }, + { + "start": 11815.78, + "end": 11822.66, + "probability": 0.9966 + }, + { + "start": 11822.94, + "end": 11832.84, + "probability": 0.9943 + }, + { + "start": 11833.44, + "end": 11837.38, + "probability": 0.999 + }, + { + "start": 11837.44, + "end": 11841.24, + "probability": 0.9902 + }, + { + "start": 11843.32, + "end": 11850.44, + "probability": 0.9973 + }, + { + "start": 11851.62, + "end": 11858.22, + "probability": 0.9971 + }, + { + "start": 11859.1, + "end": 11862.44, + "probability": 0.9889 + }, + { + "start": 11863.02, + "end": 11863.74, + "probability": 0.8656 + }, + { + "start": 11864.32, + "end": 11865.76, + "probability": 0.9162 + }, + { + "start": 11866.38, + "end": 11871.74, + "probability": 0.976 + }, + { + "start": 11871.74, + "end": 11875.36, + "probability": 0.9813 + }, + { + "start": 11875.88, + "end": 11880.56, + "probability": 0.9827 + }, + { + "start": 11880.78, + "end": 11883.72, + "probability": 0.7997 + }, + { + "start": 11883.78, + "end": 11886.8, + "probability": 0.9976 + }, + { + "start": 11887.36, + "end": 11888.78, + "probability": 0.923 + }, + { + "start": 11890.08, + "end": 11896.76, + "probability": 0.9137 + }, + { + "start": 11897.28, + "end": 11898.32, + "probability": 0.9915 + }, + { + "start": 11898.94, + "end": 11900.38, + "probability": 0.8891 + }, + { + "start": 11900.46, + "end": 11905.48, + "probability": 0.9564 + }, + { + "start": 11905.48, + "end": 11909.32, + "probability": 0.9945 + }, + { + "start": 11910.34, + "end": 11915.2, + "probability": 0.9409 + }, + { + "start": 11915.76, + "end": 11918.5, + "probability": 0.9988 + }, + { + "start": 11919.24, + "end": 11925.42, + "probability": 0.8515 + }, + { + "start": 11925.42, + "end": 11930.0, + "probability": 0.9993 + }, + { + "start": 11930.72, + "end": 11936.36, + "probability": 0.996 + }, + { + "start": 11936.36, + "end": 11942.02, + "probability": 0.9943 + }, + { + "start": 11943.04, + "end": 11948.84, + "probability": 0.9634 + }, + { + "start": 11949.08, + "end": 11952.56, + "probability": 0.9973 + }, + { + "start": 11953.68, + "end": 11956.62, + "probability": 0.9996 + }, + { + "start": 11956.62, + "end": 11963.24, + "probability": 0.985 + }, + { + "start": 11963.9, + "end": 11967.46, + "probability": 0.9959 + }, + { + "start": 11967.46, + "end": 11971.0, + "probability": 0.9983 + }, + { + "start": 11972.06, + "end": 11973.58, + "probability": 0.907 + }, + { + "start": 11974.7, + "end": 11975.9, + "probability": 0.9917 + }, + { + "start": 11977.22, + "end": 11979.44, + "probability": 0.8375 + }, + { + "start": 11979.46, + "end": 11980.64, + "probability": 0.0233 + }, + { + "start": 11980.64, + "end": 11980.64, + "probability": 0.0153 + }, + { + "start": 11980.64, + "end": 11981.0, + "probability": 0.5429 + }, + { + "start": 11981.2, + "end": 11983.9, + "probability": 0.5293 + }, + { + "start": 11984.12, + "end": 11984.56, + "probability": 0.9039 + }, + { + "start": 11985.0, + "end": 11993.04, + "probability": 0.9796 + }, + { + "start": 11994.18, + "end": 11994.94, + "probability": 0.8139 + }, + { + "start": 11995.84, + "end": 12001.02, + "probability": 0.9475 + }, + { + "start": 12001.12, + "end": 12002.62, + "probability": 0.6143 + }, + { + "start": 12003.14, + "end": 12005.66, + "probability": 0.5106 + }, + { + "start": 12005.98, + "end": 12007.56, + "probability": 0.906 + }, + { + "start": 12007.7, + "end": 12007.94, + "probability": 0.8677 + }, + { + "start": 12008.0, + "end": 12010.66, + "probability": 0.8105 + }, + { + "start": 12010.74, + "end": 12011.58, + "probability": 0.8123 + }, + { + "start": 12012.3, + "end": 12014.28, + "probability": 0.9818 + }, + { + "start": 12015.28, + "end": 12016.76, + "probability": 0.9994 + }, + { + "start": 12018.58, + "end": 12020.42, + "probability": 0.9978 + }, + { + "start": 12020.48, + "end": 12023.72, + "probability": 0.9921 + }, + { + "start": 12024.24, + "end": 12026.94, + "probability": 0.9902 + }, + { + "start": 12027.04, + "end": 12033.04, + "probability": 0.9973 + }, + { + "start": 12033.74, + "end": 12037.68, + "probability": 0.9849 + }, + { + "start": 12038.64, + "end": 12044.63, + "probability": 0.9974 + }, + { + "start": 12045.7, + "end": 12047.38, + "probability": 0.9896 + }, + { + "start": 12047.46, + "end": 12048.18, + "probability": 0.9756 + }, + { + "start": 12048.98, + "end": 12050.57, + "probability": 0.6462 + }, + { + "start": 12051.86, + "end": 12054.1, + "probability": 0.9977 + }, + { + "start": 12055.02, + "end": 12055.52, + "probability": 0.9684 + }, + { + "start": 12055.88, + "end": 12057.22, + "probability": 0.8049 + }, + { + "start": 12058.08, + "end": 12061.68, + "probability": 0.9424 + }, + { + "start": 12062.0, + "end": 12064.84, + "probability": 0.8542 + }, + { + "start": 12066.3, + "end": 12067.22, + "probability": 0.5243 + }, + { + "start": 12067.88, + "end": 12069.84, + "probability": 0.998 + }, + { + "start": 12069.92, + "end": 12071.06, + "probability": 0.9654 + }, + { + "start": 12071.38, + "end": 12074.42, + "probability": 0.9767 + }, + { + "start": 12074.8, + "end": 12076.44, + "probability": 0.954 + }, + { + "start": 12076.72, + "end": 12078.28, + "probability": 0.9541 + }, + { + "start": 12078.82, + "end": 12081.96, + "probability": 0.9361 + }, + { + "start": 12082.96, + "end": 12084.07, + "probability": 0.6242 + }, + { + "start": 12085.14, + "end": 12086.54, + "probability": 0.8054 + }, + { + "start": 12087.54, + "end": 12089.4, + "probability": 0.9878 + }, + { + "start": 12089.74, + "end": 12093.9, + "probability": 0.9932 + }, + { + "start": 12094.54, + "end": 12096.16, + "probability": 0.8251 + }, + { + "start": 12096.24, + "end": 12096.66, + "probability": 0.7726 + }, + { + "start": 12096.82, + "end": 12099.42, + "probability": 0.6723 + }, + { + "start": 12099.94, + "end": 12102.22, + "probability": 0.4935 + }, + { + "start": 12104.22, + "end": 12109.04, + "probability": 0.9946 + }, + { + "start": 12109.86, + "end": 12112.2, + "probability": 0.9934 + }, + { + "start": 12113.98, + "end": 12115.42, + "probability": 0.9729 + }, + { + "start": 12117.64, + "end": 12120.28, + "probability": 0.7218 + }, + { + "start": 12120.6, + "end": 12123.54, + "probability": 0.8162 + }, + { + "start": 12124.42, + "end": 12127.92, + "probability": 0.9785 + }, + { + "start": 12128.72, + "end": 12129.16, + "probability": 0.049 + }, + { + "start": 12129.7, + "end": 12132.58, + "probability": 0.8408 + }, + { + "start": 12133.38, + "end": 12134.24, + "probability": 0.984 + }, + { + "start": 12136.24, + "end": 12139.44, + "probability": 0.7257 + }, + { + "start": 12139.6, + "end": 12140.04, + "probability": 0.2496 + }, + { + "start": 12140.04, + "end": 12140.26, + "probability": 0.6434 + }, + { + "start": 12140.38, + "end": 12142.18, + "probability": 0.988 + }, + { + "start": 12142.48, + "end": 12144.4, + "probability": 0.9966 + }, + { + "start": 12144.88, + "end": 12147.72, + "probability": 0.5025 + }, + { + "start": 12148.06, + "end": 12151.3, + "probability": 0.9951 + }, + { + "start": 12151.48, + "end": 12152.16, + "probability": 0.7014 + }, + { + "start": 12153.7, + "end": 12154.42, + "probability": 0.55 + }, + { + "start": 12154.48, + "end": 12158.32, + "probability": 0.8115 + }, + { + "start": 12158.48, + "end": 12161.24, + "probability": 0.7031 + }, + { + "start": 12166.48, + "end": 12168.5, + "probability": 0.9933 + }, + { + "start": 12169.42, + "end": 12173.06, + "probability": 0.903 + }, + { + "start": 12173.72, + "end": 12177.26, + "probability": 0.9508 + }, + { + "start": 12178.12, + "end": 12182.76, + "probability": 0.8037 + }, + { + "start": 12182.88, + "end": 12186.56, + "probability": 0.9808 + }, + { + "start": 12186.68, + "end": 12188.32, + "probability": 0.9309 + }, + { + "start": 12188.48, + "end": 12190.01, + "probability": 0.9795 + }, + { + "start": 12190.76, + "end": 12191.78, + "probability": 0.7183 + }, + { + "start": 12191.98, + "end": 12196.28, + "probability": 0.9175 + }, + { + "start": 12196.8, + "end": 12200.48, + "probability": 0.9806 + }, + { + "start": 12200.82, + "end": 12204.26, + "probability": 0.8832 + }, + { + "start": 12204.32, + "end": 12205.62, + "probability": 0.9863 + }, + { + "start": 12205.72, + "end": 12207.46, + "probability": 0.8772 + }, + { + "start": 12207.78, + "end": 12210.44, + "probability": 0.9795 + }, + { + "start": 12210.46, + "end": 12210.66, + "probability": 0.6176 + }, + { + "start": 12210.74, + "end": 12213.68, + "probability": 0.9922 + }, + { + "start": 12213.68, + "end": 12216.42, + "probability": 0.982 + }, + { + "start": 12216.48, + "end": 12216.74, + "probability": 0.7693 + }, + { + "start": 12217.32, + "end": 12218.12, + "probability": 0.6804 + }, + { + "start": 12218.44, + "end": 12222.58, + "probability": 0.8526 + }, + { + "start": 12222.74, + "end": 12223.36, + "probability": 0.9075 + }, + { + "start": 12238.84, + "end": 12241.42, + "probability": 0.397 + }, + { + "start": 12241.54, + "end": 12243.62, + "probability": 0.77 + }, + { + "start": 12243.66, + "end": 12244.72, + "probability": 0.5829 + }, + { + "start": 12244.74, + "end": 12246.66, + "probability": 0.7118 + }, + { + "start": 12246.92, + "end": 12249.48, + "probability": 0.8877 + }, + { + "start": 12250.68, + "end": 12253.06, + "probability": 0.9967 + }, + { + "start": 12253.32, + "end": 12254.76, + "probability": 0.287 + }, + { + "start": 12255.28, + "end": 12256.08, + "probability": 0.627 + }, + { + "start": 12256.6, + "end": 12260.04, + "probability": 0.6808 + }, + { + "start": 12261.28, + "end": 12263.82, + "probability": 0.8203 + }, + { + "start": 12264.02, + "end": 12265.62, + "probability": 0.9788 + }, + { + "start": 12265.66, + "end": 12267.78, + "probability": 0.664 + }, + { + "start": 12267.82, + "end": 12269.5, + "probability": 0.9875 + }, + { + "start": 12269.64, + "end": 12271.97, + "probability": 0.9622 + }, + { + "start": 12272.94, + "end": 12279.46, + "probability": 0.9914 + }, + { + "start": 12279.46, + "end": 12283.66, + "probability": 0.9204 + }, + { + "start": 12284.72, + "end": 12289.32, + "probability": 0.9034 + }, + { + "start": 12289.84, + "end": 12292.62, + "probability": 0.5116 + }, + { + "start": 12293.72, + "end": 12297.22, + "probability": 0.0993 + }, + { + "start": 12297.22, + "end": 12298.52, + "probability": 0.6177 + }, + { + "start": 12299.2, + "end": 12303.98, + "probability": 0.8681 + }, + { + "start": 12304.9, + "end": 12308.06, + "probability": 0.9913 + }, + { + "start": 12308.86, + "end": 12311.26, + "probability": 0.9655 + }, + { + "start": 12311.48, + "end": 12314.68, + "probability": 0.9302 + }, + { + "start": 12315.73, + "end": 12321.12, + "probability": 0.9652 + }, + { + "start": 12321.14, + "end": 12322.52, + "probability": 0.8624 + }, + { + "start": 12324.0, + "end": 12328.14, + "probability": 0.9954 + }, + { + "start": 12328.56, + "end": 12334.34, + "probability": 0.9947 + }, + { + "start": 12334.4, + "end": 12336.3, + "probability": 0.7223 + }, + { + "start": 12336.48, + "end": 12337.62, + "probability": 0.9578 + }, + { + "start": 12337.8, + "end": 12341.64, + "probability": 0.9497 + }, + { + "start": 12342.63, + "end": 12345.92, + "probability": 0.6412 + }, + { + "start": 12346.86, + "end": 12347.34, + "probability": 0.101 + }, + { + "start": 12347.34, + "end": 12347.4, + "probability": 0.0392 + }, + { + "start": 12347.4, + "end": 12348.58, + "probability": 0.8193 + }, + { + "start": 12348.7, + "end": 12349.26, + "probability": 0.2395 + }, + { + "start": 12349.44, + "end": 12352.24, + "probability": 0.3837 + }, + { + "start": 12355.04, + "end": 12356.68, + "probability": 0.2136 + }, + { + "start": 12356.88, + "end": 12356.88, + "probability": 0.0403 + }, + { + "start": 12356.88, + "end": 12361.6, + "probability": 0.9379 + }, + { + "start": 12363.48, + "end": 12366.64, + "probability": 0.8636 + }, + { + "start": 12367.46, + "end": 12372.08, + "probability": 0.9562 + }, + { + "start": 12372.28, + "end": 12374.38, + "probability": 0.9441 + }, + { + "start": 12375.02, + "end": 12378.76, + "probability": 0.9844 + }, + { + "start": 12380.38, + "end": 12381.1, + "probability": 0.4802 + }, + { + "start": 12381.22, + "end": 12381.4, + "probability": 0.9554 + }, + { + "start": 12381.52, + "end": 12386.16, + "probability": 0.992 + }, + { + "start": 12386.86, + "end": 12389.32, + "probability": 0.9717 + }, + { + "start": 12390.18, + "end": 12392.92, + "probability": 0.8524 + }, + { + "start": 12393.58, + "end": 12394.82, + "probability": 0.627 + }, + { + "start": 12395.2, + "end": 12397.76, + "probability": 0.9739 + }, + { + "start": 12397.94, + "end": 12399.02, + "probability": 0.9709 + }, + { + "start": 12400.3, + "end": 12403.22, + "probability": 0.9938 + }, + { + "start": 12403.34, + "end": 12407.46, + "probability": 0.9973 + }, + { + "start": 12407.88, + "end": 12408.76, + "probability": 0.7463 + }, + { + "start": 12409.08, + "end": 12409.36, + "probability": 0.7722 + }, + { + "start": 12409.92, + "end": 12410.44, + "probability": 0.9264 + }, + { + "start": 12411.6, + "end": 12413.03, + "probability": 0.9982 + }, + { + "start": 12413.46, + "end": 12414.7, + "probability": 0.9965 + }, + { + "start": 12414.86, + "end": 12415.48, + "probability": 0.7459 + }, + { + "start": 12415.64, + "end": 12416.02, + "probability": 0.5559 + }, + { + "start": 12416.02, + "end": 12416.84, + "probability": 0.6316 + }, + { + "start": 12417.06, + "end": 12420.32, + "probability": 0.9761 + }, + { + "start": 12420.5, + "end": 12422.88, + "probability": 0.6724 + }, + { + "start": 12422.88, + "end": 12426.66, + "probability": 0.9927 + }, + { + "start": 12426.9, + "end": 12428.84, + "probability": 0.7874 + }, + { + "start": 12429.68, + "end": 12435.0, + "probability": 0.8713 + }, + { + "start": 12435.8, + "end": 12436.98, + "probability": 0.913 + }, + { + "start": 12438.16, + "end": 12441.74, + "probability": 0.7467 + }, + { + "start": 12441.84, + "end": 12443.24, + "probability": 0.8302 + }, + { + "start": 12443.84, + "end": 12449.06, + "probability": 0.9952 + }, + { + "start": 12449.12, + "end": 12452.63, + "probability": 0.9111 + }, + { + "start": 12454.3, + "end": 12458.74, + "probability": 0.998 + }, + { + "start": 12458.94, + "end": 12461.49, + "probability": 0.9966 + }, + { + "start": 12462.22, + "end": 12465.86, + "probability": 0.9904 + }, + { + "start": 12466.54, + "end": 12469.04, + "probability": 0.9018 + }, + { + "start": 12469.16, + "end": 12469.36, + "probability": 0.9806 + }, + { + "start": 12469.4, + "end": 12472.17, + "probability": 0.9605 + }, + { + "start": 12472.44, + "end": 12474.18, + "probability": 0.9883 + }, + { + "start": 12475.96, + "end": 12479.06, + "probability": 0.9992 + }, + { + "start": 12480.1, + "end": 12484.54, + "probability": 0.9742 + }, + { + "start": 12484.56, + "end": 12485.68, + "probability": 0.9961 + }, + { + "start": 12485.8, + "end": 12490.12, + "probability": 0.994 + }, + { + "start": 12490.54, + "end": 12491.24, + "probability": 0.7905 + }, + { + "start": 12491.36, + "end": 12493.28, + "probability": 0.9966 + }, + { + "start": 12493.28, + "end": 12497.36, + "probability": 0.9985 + }, + { + "start": 12497.82, + "end": 12499.96, + "probability": 0.9806 + }, + { + "start": 12500.16, + "end": 12502.32, + "probability": 0.9621 + }, + { + "start": 12503.1, + "end": 12504.28, + "probability": 0.989 + }, + { + "start": 12505.14, + "end": 12510.2, + "probability": 0.993 + }, + { + "start": 12510.92, + "end": 12514.58, + "probability": 0.9487 + }, + { + "start": 12514.7, + "end": 12516.2, + "probability": 0.7205 + }, + { + "start": 12516.82, + "end": 12518.04, + "probability": 0.9284 + }, + { + "start": 12518.22, + "end": 12518.88, + "probability": 0.8013 + }, + { + "start": 12519.0, + "end": 12523.16, + "probability": 0.988 + }, + { + "start": 12524.52, + "end": 12529.88, + "probability": 0.9806 + }, + { + "start": 12530.1, + "end": 12534.42, + "probability": 0.7711 + }, + { + "start": 12536.52, + "end": 12544.62, + "probability": 0.955 + }, + { + "start": 12544.74, + "end": 12548.08, + "probability": 0.9199 + }, + { + "start": 12548.86, + "end": 12551.52, + "probability": 0.6209 + }, + { + "start": 12551.64, + "end": 12553.16, + "probability": 0.8445 + }, + { + "start": 12553.24, + "end": 12554.52, + "probability": 0.9897 + }, + { + "start": 12554.58, + "end": 12557.66, + "probability": 0.94 + }, + { + "start": 12557.66, + "end": 12560.72, + "probability": 0.9983 + }, + { + "start": 12561.96, + "end": 12566.84, + "probability": 0.8859 + }, + { + "start": 12567.6, + "end": 12570.08, + "probability": 0.9816 + }, + { + "start": 12570.18, + "end": 12570.82, + "probability": 0.875 + }, + { + "start": 12570.88, + "end": 12575.3, + "probability": 0.96 + }, + { + "start": 12576.52, + "end": 12581.16, + "probability": 0.9956 + }, + { + "start": 12581.26, + "end": 12583.5, + "probability": 0.9524 + }, + { + "start": 12583.57, + "end": 12586.68, + "probability": 0.9977 + }, + { + "start": 12586.84, + "end": 12589.16, + "probability": 0.9563 + }, + { + "start": 12589.3, + "end": 12594.34, + "probability": 0.9653 + }, + { + "start": 12595.04, + "end": 12598.24, + "probability": 0.9578 + }, + { + "start": 12598.38, + "end": 12599.76, + "probability": 0.9312 + }, + { + "start": 12599.88, + "end": 12600.62, + "probability": 0.7087 + }, + { + "start": 12600.8, + "end": 12605.08, + "probability": 0.9765 + }, + { + "start": 12605.66, + "end": 12607.96, + "probability": 0.956 + }, + { + "start": 12608.06, + "end": 12610.04, + "probability": 0.9801 + }, + { + "start": 12610.24, + "end": 12611.2, + "probability": 0.6839 + }, + { + "start": 12611.26, + "end": 12612.48, + "probability": 0.7874 + }, + { + "start": 12612.56, + "end": 12615.1, + "probability": 0.7393 + }, + { + "start": 12615.7, + "end": 12619.94, + "probability": 0.7309 + }, + { + "start": 12620.42, + "end": 12624.78, + "probability": 0.8337 + }, + { + "start": 12624.86, + "end": 12626.94, + "probability": 0.9739 + }, + { + "start": 12627.0, + "end": 12627.34, + "probability": 0.8001 + }, + { + "start": 12627.5, + "end": 12630.03, + "probability": 0.7577 + }, + { + "start": 12631.2, + "end": 12632.38, + "probability": 0.3939 + }, + { + "start": 12632.64, + "end": 12634.12, + "probability": 0.984 + }, + { + "start": 12634.32, + "end": 12638.12, + "probability": 0.9942 + }, + { + "start": 12638.12, + "end": 12641.78, + "probability": 0.993 + }, + { + "start": 12641.92, + "end": 12644.14, + "probability": 0.8777 + }, + { + "start": 12644.2, + "end": 12645.82, + "probability": 0.9309 + }, + { + "start": 12646.5, + "end": 12647.98, + "probability": 0.9843 + }, + { + "start": 12648.06, + "end": 12651.64, + "probability": 0.9121 + }, + { + "start": 12652.92, + "end": 12657.2, + "probability": 0.6752 + }, + { + "start": 12657.4, + "end": 12659.46, + "probability": 0.2242 + }, + { + "start": 12659.46, + "end": 12661.0, + "probability": 0.7737 + }, + { + "start": 12661.68, + "end": 12662.68, + "probability": 0.7852 + }, + { + "start": 12664.46, + "end": 12664.52, + "probability": 0.2309 + }, + { + "start": 12664.52, + "end": 12667.78, + "probability": 0.9674 + }, + { + "start": 12667.84, + "end": 12670.78, + "probability": 0.9814 + }, + { + "start": 12670.86, + "end": 12671.32, + "probability": 0.9434 + }, + { + "start": 12671.4, + "end": 12672.24, + "probability": 0.9956 + }, + { + "start": 12673.38, + "end": 12675.34, + "probability": 0.9964 + }, + { + "start": 12675.34, + "end": 12677.9, + "probability": 0.5728 + }, + { + "start": 12677.98, + "end": 12680.26, + "probability": 0.8243 + }, + { + "start": 12680.38, + "end": 12683.02, + "probability": 0.9111 + }, + { + "start": 12683.14, + "end": 12686.18, + "probability": 0.8334 + }, + { + "start": 12686.3, + "end": 12688.25, + "probability": 0.858 + }, + { + "start": 12689.22, + "end": 12692.58, + "probability": 0.8848 + }, + { + "start": 12693.24, + "end": 12694.58, + "probability": 0.473 + }, + { + "start": 12694.7, + "end": 12696.8, + "probability": 0.9895 + }, + { + "start": 12696.88, + "end": 12700.18, + "probability": 0.8857 + }, + { + "start": 12701.8, + "end": 12707.36, + "probability": 0.9931 + }, + { + "start": 12708.14, + "end": 12713.76, + "probability": 0.958 + }, + { + "start": 12714.52, + "end": 12720.5, + "probability": 0.6059 + }, + { + "start": 12720.68, + "end": 12722.0, + "probability": 0.4933 + }, + { + "start": 12722.1, + "end": 12723.74, + "probability": 0.8933 + }, + { + "start": 12723.9, + "end": 12724.58, + "probability": 0.4354 + }, + { + "start": 12725.36, + "end": 12728.68, + "probability": 0.9873 + }, + { + "start": 12729.38, + "end": 12732.64, + "probability": 0.7777 + }, + { + "start": 12733.04, + "end": 12734.32, + "probability": 0.7626 + }, + { + "start": 12734.46, + "end": 12738.4, + "probability": 0.812 + }, + { + "start": 12739.18, + "end": 12741.36, + "probability": 0.992 + }, + { + "start": 12741.36, + "end": 12744.22, + "probability": 0.9821 + }, + { + "start": 12744.34, + "end": 12744.62, + "probability": 0.7812 + }, + { + "start": 12746.02, + "end": 12747.42, + "probability": 0.7891 + }, + { + "start": 12747.98, + "end": 12751.08, + "probability": 0.9946 + }, + { + "start": 12752.83, + "end": 12757.36, + "probability": 0.9924 + }, + { + "start": 12758.26, + "end": 12758.78, + "probability": 0.099 + }, + { + "start": 12759.02, + "end": 12760.11, + "probability": 0.4321 + }, + { + "start": 12761.68, + "end": 12769.14, + "probability": 0.5633 + }, + { + "start": 12771.02, + "end": 12773.29, + "probability": 0.8101 + }, + { + "start": 12775.32, + "end": 12775.32, + "probability": 0.0001 + }, + { + "start": 12775.98, + "end": 12776.24, + "probability": 0.0586 + }, + { + "start": 12776.26, + "end": 12779.02, + "probability": 0.8601 + }, + { + "start": 12779.2, + "end": 12783.92, + "probability": 0.6787 + }, + { + "start": 12786.1, + "end": 12790.08, + "probability": 0.5664 + }, + { + "start": 12802.0, + "end": 12803.96, + "probability": 0.2319 + }, + { + "start": 12804.0, + "end": 12804.96, + "probability": 0.25 + }, + { + "start": 12810.68, + "end": 12812.94, + "probability": 0.7164 + }, + { + "start": 12813.82, + "end": 12817.82, + "probability": 0.9553 + }, + { + "start": 12819.22, + "end": 12820.06, + "probability": 0.9812 + }, + { + "start": 12820.68, + "end": 12824.34, + "probability": 0.8913 + }, + { + "start": 12824.34, + "end": 12827.88, + "probability": 0.996 + }, + { + "start": 12828.56, + "end": 12829.82, + "probability": 0.6684 + }, + { + "start": 12830.44, + "end": 12840.04, + "probability": 0.854 + }, + { + "start": 12844.86, + "end": 12846.0, + "probability": 0.7115 + }, + { + "start": 12858.22, + "end": 12858.36, + "probability": 0.561 + }, + { + "start": 12858.38, + "end": 12862.48, + "probability": 0.6441 + }, + { + "start": 12864.26, + "end": 12866.72, + "probability": 0.9719 + }, + { + "start": 12866.83, + "end": 12873.66, + "probability": 0.8424 + }, + { + "start": 12874.0, + "end": 12875.54, + "probability": 0.0296 + }, + { + "start": 12876.61, + "end": 12878.63, + "probability": 0.7329 + }, + { + "start": 12879.16, + "end": 12880.44, + "probability": 0.5954 + }, + { + "start": 12883.25, + "end": 12884.98, + "probability": 0.8649 + }, + { + "start": 12885.12, + "end": 12893.04, + "probability": 0.6387 + }, + { + "start": 12893.44, + "end": 12893.6, + "probability": 0.1538 + }, + { + "start": 12894.54, + "end": 12896.88, + "probability": 0.457 + }, + { + "start": 12898.22, + "end": 12899.3, + "probability": 0.95 + }, + { + "start": 12899.32, + "end": 12899.5, + "probability": 0.3974 + }, + { + "start": 12899.84, + "end": 12900.46, + "probability": 0.3732 + }, + { + "start": 12900.54, + "end": 12902.84, + "probability": 0.9911 + }, + { + "start": 12903.24, + "end": 12904.88, + "probability": 0.6898 + }, + { + "start": 12905.18, + "end": 12906.24, + "probability": 0.5574 + }, + { + "start": 12906.24, + "end": 12907.52, + "probability": 0.9144 + }, + { + "start": 12908.34, + "end": 12910.14, + "probability": 0.5136 + }, + { + "start": 12911.6, + "end": 12914.54, + "probability": 0.4091 + }, + { + "start": 12919.52, + "end": 12923.48, + "probability": 0.1522 + }, + { + "start": 12925.32, + "end": 12925.64, + "probability": 0.195 + }, + { + "start": 12926.3, + "end": 12929.17, + "probability": 0.7307 + }, + { + "start": 12929.82, + "end": 12934.32, + "probability": 0.8552 + }, + { + "start": 12934.88, + "end": 12935.78, + "probability": 0.7947 + }, + { + "start": 12937.29, + "end": 12940.74, + "probability": 0.0193 + }, + { + "start": 12941.42, + "end": 12944.58, + "probability": 0.8111 + }, + { + "start": 12944.6, + "end": 12947.22, + "probability": 0.9004 + }, + { + "start": 12966.2, + "end": 12968.4, + "probability": 0.2031 + }, + { + "start": 12968.46, + "end": 12968.52, + "probability": 0.3557 + }, + { + "start": 12968.52, + "end": 12969.64, + "probability": 0.531 + }, + { + "start": 12970.44, + "end": 12971.64, + "probability": 0.7699 + }, + { + "start": 12973.36, + "end": 12976.64, + "probability": 0.7504 + }, + { + "start": 12980.0, + "end": 12982.62, + "probability": 0.9524 + }, + { + "start": 12986.44, + "end": 12988.16, + "probability": 0.6861 + }, + { + "start": 13006.12, + "end": 13010.16, + "probability": 0.6383 + }, + { + "start": 13010.3, + "end": 13010.66, + "probability": 0.7107 + }, + { + "start": 13011.08, + "end": 13011.8, + "probability": 0.8536 + }, + { + "start": 13011.96, + "end": 13013.3, + "probability": 0.7305 + }, + { + "start": 13014.14, + "end": 13014.7, + "probability": 0.3718 + }, + { + "start": 13014.84, + "end": 13015.82, + "probability": 0.1507 + }, + { + "start": 13023.26, + "end": 13026.9, + "probability": 0.1127 + }, + { + "start": 13029.28, + "end": 13029.76, + "probability": 0.0119 + }, + { + "start": 13031.6, + "end": 13031.78, + "probability": 0.0393 + }, + { + "start": 13031.78, + "end": 13032.64, + "probability": 0.0429 + }, + { + "start": 13032.64, + "end": 13032.76, + "probability": 0.0173 + }, + { + "start": 13032.9, + "end": 13033.04, + "probability": 0.3843 + }, + { + "start": 13033.04, + "end": 13033.18, + "probability": 0.0584 + }, + { + "start": 13033.18, + "end": 13033.2, + "probability": 0.1437 + }, + { + "start": 13033.2, + "end": 13033.2, + "probability": 0.0828 + }, + { + "start": 13033.2, + "end": 13039.82, + "probability": 0.5079 + } + ], + "segments_count": 4930, + "words_count": 23147, + "avg_words_per_segment": 4.6951, + "avg_segment_duration": 1.7374, + "avg_words_per_minute": 105.7382, + "plenum_id": "123817", + "duration": 13134.51, + "title": null, + "plenum_date": "2024-02-05" +} \ No newline at end of file