diff --git "a/16173/metadata.json" "b/16173/metadata.json" new file mode 100644--- /dev/null +++ "b/16173/metadata.json" @@ -0,0 +1,14852 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "16173", + "quality_score": 0.9153, + "per_segment_quality_scores": [ + { + "start": 19.7, + "end": 19.9, + "probability": 0.0954 + }, + { + "start": 19.9, + "end": 19.9, + "probability": 0.0453 + }, + { + "start": 19.9, + "end": 19.98, + "probability": 0.0253 + }, + { + "start": 19.98, + "end": 19.98, + "probability": 0.0005 + }, + { + "start": 41.0, + "end": 43.36, + "probability": 0.4397 + }, + { + "start": 44.18, + "end": 47.58, + "probability": 0.9367 + }, + { + "start": 48.3, + "end": 50.38, + "probability": 0.8005 + }, + { + "start": 51.66, + "end": 53.72, + "probability": 0.6753 + }, + { + "start": 53.8, + "end": 54.08, + "probability": 0.8521 + }, + { + "start": 56.44, + "end": 57.66, + "probability": 0.8801 + }, + { + "start": 57.8, + "end": 58.98, + "probability": 0.8395 + }, + { + "start": 59.04, + "end": 60.63, + "probability": 0.9304 + }, + { + "start": 60.78, + "end": 62.92, + "probability": 0.6525 + }, + { + "start": 62.94, + "end": 65.58, + "probability": 0.725 + }, + { + "start": 65.58, + "end": 68.8, + "probability": 0.5189 + }, + { + "start": 69.32, + "end": 70.9, + "probability": 0.3569 + }, + { + "start": 71.18, + "end": 74.18, + "probability": 0.876 + }, + { + "start": 75.08, + "end": 77.12, + "probability": 0.9954 + }, + { + "start": 77.76, + "end": 77.98, + "probability": 0.2088 + }, + { + "start": 78.54, + "end": 78.72, + "probability": 0.0429 + }, + { + "start": 79.86, + "end": 84.04, + "probability": 0.5496 + }, + { + "start": 84.72, + "end": 88.12, + "probability": 0.9422 + }, + { + "start": 88.84, + "end": 90.46, + "probability": 0.1297 + }, + { + "start": 90.58, + "end": 93.7, + "probability": 0.9142 + }, + { + "start": 93.7, + "end": 96.26, + "probability": 0.9976 + }, + { + "start": 96.94, + "end": 100.52, + "probability": 0.9655 + }, + { + "start": 100.52, + "end": 104.74, + "probability": 0.9641 + }, + { + "start": 106.61, + "end": 110.5, + "probability": 0.8522 + }, + { + "start": 111.06, + "end": 113.64, + "probability": 0.9841 + }, + { + "start": 114.1, + "end": 118.0, + "probability": 0.5903 + }, + { + "start": 118.38, + "end": 120.26, + "probability": 0.2935 + }, + { + "start": 120.86, + "end": 122.52, + "probability": 0.829 + }, + { + "start": 123.04, + "end": 126.74, + "probability": 0.9852 + }, + { + "start": 127.26, + "end": 128.26, + "probability": 0.868 + }, + { + "start": 128.38, + "end": 129.16, + "probability": 0.6617 + }, + { + "start": 129.6, + "end": 132.8, + "probability": 0.9095 + }, + { + "start": 132.84, + "end": 137.42, + "probability": 0.8887 + }, + { + "start": 137.98, + "end": 139.16, + "probability": 0.677 + }, + { + "start": 140.02, + "end": 141.5, + "probability": 0.0849 + }, + { + "start": 149.62, + "end": 150.8, + "probability": 0.5319 + }, + { + "start": 150.94, + "end": 151.04, + "probability": 0.3907 + }, + { + "start": 152.32, + "end": 152.86, + "probability": 0.1241 + }, + { + "start": 154.38, + "end": 154.48, + "probability": 0.1137 + }, + { + "start": 154.48, + "end": 155.34, + "probability": 0.19 + }, + { + "start": 158.38, + "end": 160.56, + "probability": 0.3212 + }, + { + "start": 163.3, + "end": 167.36, + "probability": 0.0707 + }, + { + "start": 168.14, + "end": 168.4, + "probability": 0.1837 + }, + { + "start": 168.4, + "end": 169.34, + "probability": 0.0403 + }, + { + "start": 169.34, + "end": 171.1, + "probability": 0.1399 + }, + { + "start": 172.0, + "end": 172.64, + "probability": 0.0195 + }, + { + "start": 172.64, + "end": 172.64, + "probability": 0.0206 + }, + { + "start": 172.64, + "end": 172.64, + "probability": 0.1348 + }, + { + "start": 172.64, + "end": 172.64, + "probability": 0.4729 + }, + { + "start": 172.64, + "end": 173.34, + "probability": 0.9873 + }, + { + "start": 175.54, + "end": 175.54, + "probability": 0.0654 + }, + { + "start": 175.54, + "end": 175.54, + "probability": 0.0394 + }, + { + "start": 175.54, + "end": 175.54, + "probability": 0.2086 + }, + { + "start": 175.54, + "end": 175.54, + "probability": 0.1287 + }, + { + "start": 175.54, + "end": 176.8, + "probability": 0.3837 + }, + { + "start": 178.08, + "end": 183.46, + "probability": 0.6803 + }, + { + "start": 184.18, + "end": 188.04, + "probability": 0.74 + }, + { + "start": 189.16, + "end": 193.3, + "probability": 0.9535 + }, + { + "start": 193.46, + "end": 198.03, + "probability": 0.6665 + }, + { + "start": 198.16, + "end": 200.0, + "probability": 0.9465 + }, + { + "start": 200.66, + "end": 201.0, + "probability": 0.7751 + }, + { + "start": 201.64, + "end": 202.96, + "probability": 0.9289 + }, + { + "start": 203.72, + "end": 205.1, + "probability": 0.973 + }, + { + "start": 205.32, + "end": 207.72, + "probability": 0.9466 + }, + { + "start": 208.32, + "end": 210.04, + "probability": 0.4743 + }, + { + "start": 210.4, + "end": 212.83, + "probability": 0.8223 + }, + { + "start": 213.24, + "end": 213.92, + "probability": 0.3546 + }, + { + "start": 214.68, + "end": 219.32, + "probability": 0.8629 + }, + { + "start": 219.92, + "end": 221.66, + "probability": 0.9873 + }, + { + "start": 222.02, + "end": 223.14, + "probability": 0.9615 + }, + { + "start": 223.26, + "end": 224.06, + "probability": 0.9749 + }, + { + "start": 224.46, + "end": 225.7, + "probability": 0.9783 + }, + { + "start": 226.22, + "end": 227.82, + "probability": 0.7598 + }, + { + "start": 227.94, + "end": 229.04, + "probability": 0.6873 + }, + { + "start": 229.7, + "end": 235.06, + "probability": 0.995 + }, + { + "start": 235.5, + "end": 240.06, + "probability": 0.9061 + }, + { + "start": 240.4, + "end": 243.58, + "probability": 0.89 + }, + { + "start": 244.18, + "end": 245.18, + "probability": 0.9727 + }, + { + "start": 245.42, + "end": 249.0, + "probability": 0.988 + }, + { + "start": 249.54, + "end": 249.7, + "probability": 0.4082 + }, + { + "start": 249.78, + "end": 250.58, + "probability": 0.6896 + }, + { + "start": 250.72, + "end": 254.58, + "probability": 0.7258 + }, + { + "start": 254.88, + "end": 256.51, + "probability": 0.7005 + }, + { + "start": 257.26, + "end": 258.36, + "probability": 0.5371 + }, + { + "start": 258.66, + "end": 260.2, + "probability": 0.6977 + }, + { + "start": 260.92, + "end": 261.96, + "probability": 0.8466 + }, + { + "start": 262.14, + "end": 262.8, + "probability": 0.8702 + }, + { + "start": 262.86, + "end": 263.14, + "probability": 0.627 + }, + { + "start": 263.2, + "end": 268.48, + "probability": 0.9315 + }, + { + "start": 268.6, + "end": 273.0, + "probability": 0.9734 + }, + { + "start": 273.0, + "end": 276.28, + "probability": 0.9962 + }, + { + "start": 276.44, + "end": 276.78, + "probability": 0.747 + }, + { + "start": 277.46, + "end": 279.48, + "probability": 0.9976 + }, + { + "start": 279.5, + "end": 281.98, + "probability": 0.9751 + }, + { + "start": 282.6, + "end": 283.0, + "probability": 0.7362 + }, + { + "start": 283.96, + "end": 284.44, + "probability": 0.814 + }, + { + "start": 285.14, + "end": 289.6, + "probability": 0.9985 + }, + { + "start": 290.38, + "end": 292.52, + "probability": 0.995 + }, + { + "start": 292.52, + "end": 294.72, + "probability": 0.999 + }, + { + "start": 295.1, + "end": 296.96, + "probability": 0.9565 + }, + { + "start": 297.22, + "end": 299.36, + "probability": 0.8588 + }, + { + "start": 299.54, + "end": 300.12, + "probability": 0.5029 + }, + { + "start": 300.14, + "end": 300.26, + "probability": 0.5782 + }, + { + "start": 300.4, + "end": 302.06, + "probability": 0.9473 + }, + { + "start": 302.42, + "end": 304.26, + "probability": 0.9668 + }, + { + "start": 304.92, + "end": 306.72, + "probability": 0.5835 + }, + { + "start": 306.98, + "end": 309.82, + "probability": 0.5162 + }, + { + "start": 311.22, + "end": 314.78, + "probability": 0.9436 + }, + { + "start": 315.44, + "end": 317.52, + "probability": 0.5867 + }, + { + "start": 317.52, + "end": 318.32, + "probability": 0.7437 + }, + { + "start": 318.94, + "end": 322.18, + "probability": 0.769 + }, + { + "start": 322.76, + "end": 327.12, + "probability": 0.9831 + }, + { + "start": 327.16, + "end": 330.28, + "probability": 0.8386 + }, + { + "start": 330.46, + "end": 332.08, + "probability": 0.9946 + }, + { + "start": 332.58, + "end": 335.1, + "probability": 0.998 + }, + { + "start": 335.66, + "end": 338.96, + "probability": 0.6645 + }, + { + "start": 339.54, + "end": 344.24, + "probability": 0.9702 + }, + { + "start": 344.24, + "end": 346.92, + "probability": 0.9877 + }, + { + "start": 347.28, + "end": 351.18, + "probability": 0.9269 + }, + { + "start": 351.62, + "end": 356.47, + "probability": 0.8521 + }, + { + "start": 357.74, + "end": 360.34, + "probability": 0.9937 + }, + { + "start": 360.42, + "end": 363.48, + "probability": 0.8258 + }, + { + "start": 364.0, + "end": 364.8, + "probability": 0.8342 + }, + { + "start": 365.24, + "end": 365.92, + "probability": 0.8944 + }, + { + "start": 365.98, + "end": 366.95, + "probability": 0.8385 + }, + { + "start": 367.32, + "end": 368.08, + "probability": 0.9698 + }, + { + "start": 368.6, + "end": 369.24, + "probability": 0.507 + }, + { + "start": 369.52, + "end": 371.62, + "probability": 0.9633 + }, + { + "start": 372.1, + "end": 374.2, + "probability": 0.667 + }, + { + "start": 374.3, + "end": 377.22, + "probability": 0.9704 + }, + { + "start": 378.56, + "end": 380.86, + "probability": 0.9856 + }, + { + "start": 380.98, + "end": 381.86, + "probability": 0.9083 + }, + { + "start": 382.16, + "end": 383.72, + "probability": 0.8391 + }, + { + "start": 383.78, + "end": 386.82, + "probability": 0.9412 + }, + { + "start": 387.18, + "end": 392.64, + "probability": 0.9736 + }, + { + "start": 393.62, + "end": 394.6, + "probability": 0.7991 + }, + { + "start": 395.24, + "end": 399.66, + "probability": 0.8906 + }, + { + "start": 399.66, + "end": 402.96, + "probability": 0.9917 + }, + { + "start": 403.58, + "end": 404.64, + "probability": 0.6472 + }, + { + "start": 404.92, + "end": 406.32, + "probability": 0.7072 + }, + { + "start": 406.44, + "end": 406.86, + "probability": 0.8687 + }, + { + "start": 407.4, + "end": 409.23, + "probability": 0.9946 + }, + { + "start": 410.24, + "end": 415.64, + "probability": 0.9988 + }, + { + "start": 415.68, + "end": 418.54, + "probability": 0.9904 + }, + { + "start": 418.74, + "end": 420.58, + "probability": 0.7314 + }, + { + "start": 420.82, + "end": 421.92, + "probability": 0.9629 + }, + { + "start": 422.28, + "end": 422.44, + "probability": 0.7328 + }, + { + "start": 422.7, + "end": 423.14, + "probability": 0.6537 + }, + { + "start": 423.2, + "end": 424.48, + "probability": 0.8896 + }, + { + "start": 425.38, + "end": 426.96, + "probability": 0.7074 + }, + { + "start": 427.98, + "end": 430.18, + "probability": 0.5146 + }, + { + "start": 431.14, + "end": 431.54, + "probability": 0.66 + }, + { + "start": 435.36, + "end": 437.24, + "probability": 0.757 + }, + { + "start": 438.56, + "end": 443.1, + "probability": 0.967 + }, + { + "start": 443.7, + "end": 450.82, + "probability": 0.9865 + }, + { + "start": 450.86, + "end": 451.86, + "probability": 0.8542 + }, + { + "start": 452.5, + "end": 454.18, + "probability": 0.6207 + }, + { + "start": 454.86, + "end": 457.74, + "probability": 0.9424 + }, + { + "start": 458.62, + "end": 461.06, + "probability": 0.9255 + }, + { + "start": 461.62, + "end": 463.04, + "probability": 0.7686 + }, + { + "start": 463.78, + "end": 468.2, + "probability": 0.9104 + }, + { + "start": 469.78, + "end": 473.7, + "probability": 0.6946 + }, + { + "start": 474.4, + "end": 477.64, + "probability": 0.9753 + }, + { + "start": 478.22, + "end": 480.2, + "probability": 0.8945 + }, + { + "start": 480.78, + "end": 481.56, + "probability": 0.8265 + }, + { + "start": 482.1, + "end": 483.4, + "probability": 0.9465 + }, + { + "start": 484.7, + "end": 486.34, + "probability": 0.7912 + }, + { + "start": 487.2, + "end": 492.62, + "probability": 0.7482 + }, + { + "start": 493.44, + "end": 497.58, + "probability": 0.9641 + }, + { + "start": 497.58, + "end": 500.38, + "probability": 0.9626 + }, + { + "start": 501.04, + "end": 501.57, + "probability": 0.8384 + }, + { + "start": 502.52, + "end": 503.68, + "probability": 0.8979 + }, + { + "start": 504.92, + "end": 506.12, + "probability": 0.7192 + }, + { + "start": 507.18, + "end": 507.26, + "probability": 0.813 + }, + { + "start": 508.14, + "end": 512.98, + "probability": 0.9944 + }, + { + "start": 513.1, + "end": 513.66, + "probability": 0.6461 + }, + { + "start": 514.1, + "end": 517.79, + "probability": 0.8606 + }, + { + "start": 518.3, + "end": 522.38, + "probability": 0.8807 + }, + { + "start": 524.06, + "end": 524.86, + "probability": 0.1963 + }, + { + "start": 524.86, + "end": 526.32, + "probability": 0.5835 + }, + { + "start": 527.02, + "end": 533.1, + "probability": 0.9776 + }, + { + "start": 533.66, + "end": 537.4, + "probability": 0.9502 + }, + { + "start": 538.6, + "end": 539.72, + "probability": 0.5598 + }, + { + "start": 540.3, + "end": 540.34, + "probability": 0.6283 + }, + { + "start": 540.34, + "end": 542.08, + "probability": 0.9736 + }, + { + "start": 542.1, + "end": 545.14, + "probability": 0.8449 + }, + { + "start": 545.34, + "end": 548.74, + "probability": 0.9585 + }, + { + "start": 549.32, + "end": 551.02, + "probability": 0.5518 + }, + { + "start": 554.18, + "end": 555.56, + "probability": 0.5155 + }, + { + "start": 555.68, + "end": 556.0, + "probability": 0.6495 + }, + { + "start": 557.14, + "end": 559.88, + "probability": 0.7629 + }, + { + "start": 568.1, + "end": 568.8, + "probability": 0.7437 + }, + { + "start": 569.02, + "end": 569.86, + "probability": 0.8595 + }, + { + "start": 570.2, + "end": 572.08, + "probability": 0.986 + }, + { + "start": 572.64, + "end": 574.12, + "probability": 0.9945 + }, + { + "start": 574.66, + "end": 576.92, + "probability": 0.9928 + }, + { + "start": 577.22, + "end": 580.64, + "probability": 0.8772 + }, + { + "start": 581.22, + "end": 585.1, + "probability": 0.9959 + }, + { + "start": 585.86, + "end": 589.12, + "probability": 0.9268 + }, + { + "start": 590.6, + "end": 594.2, + "probability": 0.9979 + }, + { + "start": 594.98, + "end": 601.48, + "probability": 0.9961 + }, + { + "start": 601.48, + "end": 606.74, + "probability": 0.9917 + }, + { + "start": 606.88, + "end": 610.26, + "probability": 0.9937 + }, + { + "start": 610.76, + "end": 613.48, + "probability": 0.9613 + }, + { + "start": 613.78, + "end": 614.02, + "probability": 0.723 + }, + { + "start": 614.04, + "end": 614.48, + "probability": 0.5044 + }, + { + "start": 614.94, + "end": 617.32, + "probability": 0.9822 + }, + { + "start": 617.94, + "end": 622.73, + "probability": 0.963 + }, + { + "start": 622.86, + "end": 624.98, + "probability": 0.823 + }, + { + "start": 625.7, + "end": 626.64, + "probability": 0.9796 + }, + { + "start": 627.0, + "end": 632.02, + "probability": 0.9394 + }, + { + "start": 633.88, + "end": 636.3, + "probability": 0.7815 + }, + { + "start": 637.5, + "end": 641.16, + "probability": 0.9961 + }, + { + "start": 641.2, + "end": 641.78, + "probability": 0.6352 + }, + { + "start": 642.04, + "end": 643.2, + "probability": 0.9785 + }, + { + "start": 644.24, + "end": 649.9, + "probability": 0.9894 + }, + { + "start": 650.88, + "end": 657.7, + "probability": 0.9694 + }, + { + "start": 658.46, + "end": 663.26, + "probability": 0.9229 + }, + { + "start": 664.8, + "end": 671.04, + "probability": 0.6305 + }, + { + "start": 671.86, + "end": 675.46, + "probability": 0.9983 + }, + { + "start": 676.12, + "end": 680.62, + "probability": 0.9896 + }, + { + "start": 681.86, + "end": 685.35, + "probability": 0.9756 + }, + { + "start": 685.56, + "end": 688.62, + "probability": 0.9724 + }, + { + "start": 689.48, + "end": 690.6, + "probability": 0.8288 + }, + { + "start": 690.78, + "end": 694.57, + "probability": 0.9357 + }, + { + "start": 694.68, + "end": 695.36, + "probability": 0.9028 + }, + { + "start": 696.02, + "end": 700.2, + "probability": 0.9314 + }, + { + "start": 700.34, + "end": 701.46, + "probability": 0.9852 + }, + { + "start": 701.82, + "end": 705.26, + "probability": 0.9791 + }, + { + "start": 705.38, + "end": 713.16, + "probability": 0.9849 + }, + { + "start": 713.38, + "end": 715.8, + "probability": 0.8034 + }, + { + "start": 716.44, + "end": 718.3, + "probability": 0.9808 + }, + { + "start": 718.58, + "end": 723.86, + "probability": 0.9136 + }, + { + "start": 723.96, + "end": 724.32, + "probability": 0.3604 + }, + { + "start": 724.86, + "end": 725.98, + "probability": 0.6968 + }, + { + "start": 726.66, + "end": 727.98, + "probability": 0.9569 + }, + { + "start": 728.6, + "end": 730.28, + "probability": 0.7357 + }, + { + "start": 730.86, + "end": 734.54, + "probability": 0.9891 + }, + { + "start": 735.06, + "end": 736.16, + "probability": 0.9298 + }, + { + "start": 736.86, + "end": 737.34, + "probability": 0.5094 + }, + { + "start": 737.64, + "end": 738.48, + "probability": 0.9271 + }, + { + "start": 739.0, + "end": 740.96, + "probability": 0.9722 + }, + { + "start": 741.24, + "end": 741.7, + "probability": 0.6506 + }, + { + "start": 741.7, + "end": 742.24, + "probability": 0.9185 + }, + { + "start": 742.36, + "end": 743.08, + "probability": 0.451 + }, + { + "start": 743.34, + "end": 744.62, + "probability": 0.9798 + }, + { + "start": 745.1, + "end": 747.74, + "probability": 0.9265 + }, + { + "start": 748.82, + "end": 752.18, + "probability": 0.8154 + }, + { + "start": 752.76, + "end": 755.26, + "probability": 0.8189 + }, + { + "start": 755.44, + "end": 758.3, + "probability": 0.9858 + }, + { + "start": 758.8, + "end": 759.46, + "probability": 0.6627 + }, + { + "start": 760.22, + "end": 765.5, + "probability": 0.9833 + }, + { + "start": 766.36, + "end": 769.12, + "probability": 0.9965 + }, + { + "start": 769.58, + "end": 773.78, + "probability": 0.9644 + }, + { + "start": 774.34, + "end": 774.6, + "probability": 0.5035 + }, + { + "start": 774.8, + "end": 781.9, + "probability": 0.8761 + }, + { + "start": 782.08, + "end": 783.56, + "probability": 0.9957 + }, + { + "start": 784.14, + "end": 785.22, + "probability": 0.8034 + }, + { + "start": 786.76, + "end": 786.98, + "probability": 0.1495 + }, + { + "start": 786.98, + "end": 788.38, + "probability": 0.7254 + }, + { + "start": 788.64, + "end": 790.2, + "probability": 0.5358 + }, + { + "start": 790.28, + "end": 793.46, + "probability": 0.832 + }, + { + "start": 793.94, + "end": 795.44, + "probability": 0.803 + }, + { + "start": 795.62, + "end": 797.32, + "probability": 0.8135 + }, + { + "start": 797.32, + "end": 800.98, + "probability": 0.9847 + }, + { + "start": 801.36, + "end": 801.94, + "probability": 0.7213 + }, + { + "start": 802.44, + "end": 803.4, + "probability": 0.8467 + }, + { + "start": 803.56, + "end": 810.22, + "probability": 0.9725 + }, + { + "start": 811.28, + "end": 816.04, + "probability": 0.9854 + }, + { + "start": 816.68, + "end": 818.16, + "probability": 0.8809 + }, + { + "start": 818.24, + "end": 819.06, + "probability": 0.8057 + }, + { + "start": 819.08, + "end": 819.6, + "probability": 0.7401 + }, + { + "start": 819.9, + "end": 820.42, + "probability": 0.4835 + }, + { + "start": 820.44, + "end": 821.42, + "probability": 0.8551 + }, + { + "start": 822.8, + "end": 824.82, + "probability": 0.6187 + }, + { + "start": 827.9, + "end": 828.78, + "probability": 0.504 + }, + { + "start": 828.86, + "end": 829.72, + "probability": 0.9315 + }, + { + "start": 829.92, + "end": 832.0, + "probability": 0.9849 + }, + { + "start": 832.16, + "end": 832.6, + "probability": 0.7511 + }, + { + "start": 833.64, + "end": 836.08, + "probability": 0.9983 + }, + { + "start": 836.78, + "end": 843.5, + "probability": 0.9911 + }, + { + "start": 843.62, + "end": 844.6, + "probability": 0.4996 + }, + { + "start": 844.82, + "end": 845.12, + "probability": 0.273 + }, + { + "start": 845.24, + "end": 845.66, + "probability": 0.6614 + }, + { + "start": 846.22, + "end": 847.88, + "probability": 0.8803 + }, + { + "start": 848.5, + "end": 848.96, + "probability": 0.9265 + }, + { + "start": 849.96, + "end": 854.28, + "probability": 0.9424 + }, + { + "start": 854.28, + "end": 858.7, + "probability": 0.9961 + }, + { + "start": 858.84, + "end": 859.48, + "probability": 0.631 + }, + { + "start": 859.62, + "end": 860.06, + "probability": 0.6161 + }, + { + "start": 860.46, + "end": 862.42, + "probability": 0.9657 + }, + { + "start": 862.82, + "end": 863.54, + "probability": 0.954 + }, + { + "start": 864.1, + "end": 864.88, + "probability": 0.7469 + }, + { + "start": 864.98, + "end": 865.38, + "probability": 0.449 + }, + { + "start": 865.42, + "end": 869.03, + "probability": 0.9416 + }, + { + "start": 869.58, + "end": 872.22, + "probability": 0.9918 + }, + { + "start": 872.28, + "end": 875.18, + "probability": 0.8773 + }, + { + "start": 875.6, + "end": 878.52, + "probability": 0.9902 + }, + { + "start": 878.7, + "end": 879.08, + "probability": 0.8252 + }, + { + "start": 879.2, + "end": 879.72, + "probability": 0.7965 + }, + { + "start": 879.84, + "end": 880.5, + "probability": 0.6455 + }, + { + "start": 881.1, + "end": 884.46, + "probability": 0.9227 + }, + { + "start": 884.82, + "end": 886.4, + "probability": 0.9902 + }, + { + "start": 887.12, + "end": 889.04, + "probability": 0.9842 + }, + { + "start": 889.4, + "end": 890.8, + "probability": 0.9794 + }, + { + "start": 891.62, + "end": 892.56, + "probability": 0.9694 + }, + { + "start": 892.92, + "end": 894.62, + "probability": 0.9764 + }, + { + "start": 894.76, + "end": 895.5, + "probability": 0.7601 + }, + { + "start": 895.88, + "end": 898.8, + "probability": 0.9978 + }, + { + "start": 899.22, + "end": 900.04, + "probability": 0.7475 + }, + { + "start": 900.48, + "end": 903.08, + "probability": 0.9976 + }, + { + "start": 903.08, + "end": 905.75, + "probability": 0.9983 + }, + { + "start": 906.22, + "end": 909.96, + "probability": 0.9961 + }, + { + "start": 910.1, + "end": 910.84, + "probability": 0.6799 + }, + { + "start": 911.42, + "end": 913.26, + "probability": 0.9882 + }, + { + "start": 913.72, + "end": 916.54, + "probability": 0.993 + }, + { + "start": 916.66, + "end": 917.5, + "probability": 0.6905 + }, + { + "start": 917.82, + "end": 918.38, + "probability": 0.6282 + }, + { + "start": 918.44, + "end": 918.94, + "probability": 0.9265 + }, + { + "start": 919.02, + "end": 919.72, + "probability": 0.93 + }, + { + "start": 919.92, + "end": 921.72, + "probability": 0.9201 + }, + { + "start": 922.22, + "end": 923.08, + "probability": 0.4456 + }, + { + "start": 923.36, + "end": 923.38, + "probability": 0.9619 + }, + { + "start": 923.9, + "end": 924.72, + "probability": 0.9751 + }, + { + "start": 926.44, + "end": 927.9, + "probability": 0.9013 + }, + { + "start": 928.56, + "end": 929.8, + "probability": 0.9266 + }, + { + "start": 930.48, + "end": 933.28, + "probability": 0.9163 + }, + { + "start": 934.06, + "end": 934.84, + "probability": 0.9088 + }, + { + "start": 934.94, + "end": 938.32, + "probability": 0.9731 + }, + { + "start": 938.94, + "end": 940.98, + "probability": 0.9806 + }, + { + "start": 940.98, + "end": 943.56, + "probability": 0.9993 + }, + { + "start": 944.54, + "end": 945.82, + "probability": 0.5876 + }, + { + "start": 946.78, + "end": 952.18, + "probability": 0.9738 + }, + { + "start": 952.26, + "end": 953.88, + "probability": 0.9466 + }, + { + "start": 954.44, + "end": 958.32, + "probability": 0.9838 + }, + { + "start": 959.12, + "end": 961.56, + "probability": 0.729 + }, + { + "start": 962.22, + "end": 964.1, + "probability": 0.7089 + }, + { + "start": 964.72, + "end": 969.52, + "probability": 0.7771 + }, + { + "start": 970.68, + "end": 972.84, + "probability": 0.3116 + }, + { + "start": 974.3, + "end": 975.36, + "probability": 0.9038 + }, + { + "start": 976.58, + "end": 979.2, + "probability": 0.8321 + }, + { + "start": 979.42, + "end": 979.64, + "probability": 0.8031 + }, + { + "start": 979.72, + "end": 981.1, + "probability": 0.9976 + }, + { + "start": 982.54, + "end": 986.58, + "probability": 0.9875 + }, + { + "start": 986.7, + "end": 990.04, + "probability": 0.8342 + }, + { + "start": 990.98, + "end": 992.24, + "probability": 0.5774 + }, + { + "start": 992.94, + "end": 996.64, + "probability": 0.9 + }, + { + "start": 997.64, + "end": 998.46, + "probability": 0.9618 + }, + { + "start": 998.72, + "end": 999.06, + "probability": 0.5855 + }, + { + "start": 999.1, + "end": 1002.52, + "probability": 0.9927 + }, + { + "start": 1002.64, + "end": 1003.5, + "probability": 0.9141 + }, + { + "start": 1003.56, + "end": 1004.92, + "probability": 0.9819 + }, + { + "start": 1006.32, + "end": 1008.32, + "probability": 0.6763 + }, + { + "start": 1008.32, + "end": 1009.76, + "probability": 0.5475 + }, + { + "start": 1010.14, + "end": 1011.64, + "probability": 0.945 + }, + { + "start": 1012.2, + "end": 1012.96, + "probability": 0.4089 + }, + { + "start": 1016.52, + "end": 1017.86, + "probability": 0.7469 + }, + { + "start": 1018.86, + "end": 1019.06, + "probability": 0.8897 + }, + { + "start": 1019.98, + "end": 1023.28, + "probability": 0.9511 + }, + { + "start": 1023.82, + "end": 1025.82, + "probability": 0.8955 + }, + { + "start": 1026.86, + "end": 1029.9, + "probability": 0.9883 + }, + { + "start": 1030.94, + "end": 1034.18, + "probability": 0.9756 + }, + { + "start": 1035.3, + "end": 1035.94, + "probability": 0.6749 + }, + { + "start": 1037.28, + "end": 1040.9, + "probability": 0.7875 + }, + { + "start": 1041.5, + "end": 1044.82, + "probability": 0.551 + }, + { + "start": 1045.16, + "end": 1048.34, + "probability": 0.7444 + }, + { + "start": 1048.42, + "end": 1051.82, + "probability": 0.7562 + }, + { + "start": 1052.28, + "end": 1054.0, + "probability": 0.9761 + }, + { + "start": 1054.38, + "end": 1055.38, + "probability": 0.9427 + }, + { + "start": 1055.44, + "end": 1057.4, + "probability": 0.7132 + }, + { + "start": 1058.68, + "end": 1064.88, + "probability": 0.7479 + }, + { + "start": 1065.06, + "end": 1066.08, + "probability": 0.5809 + }, + { + "start": 1067.26, + "end": 1070.24, + "probability": 0.9641 + }, + { + "start": 1070.84, + "end": 1073.17, + "probability": 0.531 + }, + { + "start": 1073.94, + "end": 1074.56, + "probability": 0.3296 + }, + { + "start": 1074.96, + "end": 1076.7, + "probability": 0.9868 + }, + { + "start": 1076.82, + "end": 1078.0, + "probability": 0.752 + }, + { + "start": 1078.58, + "end": 1082.9, + "probability": 0.7339 + }, + { + "start": 1083.6, + "end": 1084.78, + "probability": 0.8851 + }, + { + "start": 1086.22, + "end": 1089.32, + "probability": 0.7591 + }, + { + "start": 1090.2, + "end": 1091.52, + "probability": 0.7071 + }, + { + "start": 1091.84, + "end": 1092.08, + "probability": 0.8903 + }, + { + "start": 1092.7, + "end": 1094.8, + "probability": 0.9421 + }, + { + "start": 1095.28, + "end": 1098.16, + "probability": 0.9965 + }, + { + "start": 1098.68, + "end": 1101.7, + "probability": 0.7822 + }, + { + "start": 1102.16, + "end": 1106.58, + "probability": 0.9765 + }, + { + "start": 1107.84, + "end": 1113.16, + "probability": 0.7892 + }, + { + "start": 1113.24, + "end": 1116.2, + "probability": 0.9511 + }, + { + "start": 1116.24, + "end": 1123.06, + "probability": 0.8628 + }, + { + "start": 1123.46, + "end": 1124.5, + "probability": 0.6595 + }, + { + "start": 1124.64, + "end": 1125.88, + "probability": 0.7452 + }, + { + "start": 1126.6, + "end": 1128.54, + "probability": 0.8682 + }, + { + "start": 1129.26, + "end": 1134.12, + "probability": 0.6072 + }, + { + "start": 1136.42, + "end": 1137.1, + "probability": 0.1268 + }, + { + "start": 1139.39, + "end": 1143.08, + "probability": 0.5488 + }, + { + "start": 1143.48, + "end": 1144.64, + "probability": 0.6136 + }, + { + "start": 1145.28, + "end": 1146.16, + "probability": 0.5999 + }, + { + "start": 1147.8, + "end": 1148.92, + "probability": 0.6988 + }, + { + "start": 1149.96, + "end": 1154.48, + "probability": 0.6118 + }, + { + "start": 1155.18, + "end": 1157.26, + "probability": 0.7536 + }, + { + "start": 1157.94, + "end": 1163.36, + "probability": 0.8939 + }, + { + "start": 1164.64, + "end": 1168.08, + "probability": 0.9546 + }, + { + "start": 1169.0, + "end": 1170.38, + "probability": 0.9811 + }, + { + "start": 1171.12, + "end": 1177.68, + "probability": 0.9911 + }, + { + "start": 1177.68, + "end": 1183.66, + "probability": 0.9546 + }, + { + "start": 1184.56, + "end": 1191.24, + "probability": 0.7305 + }, + { + "start": 1193.36, + "end": 1194.8, + "probability": 0.7959 + }, + { + "start": 1195.66, + "end": 1199.62, + "probability": 0.9924 + }, + { + "start": 1200.42, + "end": 1201.36, + "probability": 0.7749 + }, + { + "start": 1201.5, + "end": 1203.97, + "probability": 0.9844 + }, + { + "start": 1204.82, + "end": 1205.78, + "probability": 0.7812 + }, + { + "start": 1206.02, + "end": 1206.58, + "probability": 0.5358 + }, + { + "start": 1206.82, + "end": 1207.58, + "probability": 0.7716 + }, + { + "start": 1207.8, + "end": 1208.88, + "probability": 0.6257 + }, + { + "start": 1209.88, + "end": 1213.02, + "probability": 0.9578 + }, + { + "start": 1213.46, + "end": 1213.54, + "probability": 0.0054 + }, + { + "start": 1214.02, + "end": 1214.72, + "probability": 0.0527 + }, + { + "start": 1214.96, + "end": 1215.32, + "probability": 0.5409 + }, + { + "start": 1215.76, + "end": 1218.48, + "probability": 0.9275 + }, + { + "start": 1218.62, + "end": 1219.82, + "probability": 0.5617 + }, + { + "start": 1219.94, + "end": 1222.78, + "probability": 0.834 + }, + { + "start": 1222.78, + "end": 1223.6, + "probability": 0.6302 + }, + { + "start": 1223.6, + "end": 1224.5, + "probability": 0.7894 + }, + { + "start": 1224.58, + "end": 1225.88, + "probability": 0.9556 + }, + { + "start": 1226.14, + "end": 1229.18, + "probability": 0.8428 + }, + { + "start": 1229.24, + "end": 1230.44, + "probability": 0.5495 + }, + { + "start": 1230.48, + "end": 1232.42, + "probability": 0.9721 + }, + { + "start": 1233.43, + "end": 1234.92, + "probability": 0.7804 + }, + { + "start": 1235.14, + "end": 1236.12, + "probability": 0.891 + }, + { + "start": 1236.58, + "end": 1237.98, + "probability": 0.8442 + }, + { + "start": 1238.44, + "end": 1240.38, + "probability": 0.7869 + }, + { + "start": 1241.18, + "end": 1241.72, + "probability": 0.6764 + }, + { + "start": 1242.28, + "end": 1244.0, + "probability": 0.4215 + }, + { + "start": 1244.02, + "end": 1244.88, + "probability": 0.9823 + }, + { + "start": 1245.28, + "end": 1246.66, + "probability": 0.9888 + }, + { + "start": 1246.86, + "end": 1247.8, + "probability": 0.8729 + }, + { + "start": 1248.26, + "end": 1251.0, + "probability": 0.9335 + }, + { + "start": 1251.1, + "end": 1252.22, + "probability": 0.4888 + }, + { + "start": 1252.38, + "end": 1253.36, + "probability": 0.7935 + }, + { + "start": 1253.64, + "end": 1253.78, + "probability": 0.6358 + }, + { + "start": 1254.62, + "end": 1255.06, + "probability": 0.6932 + }, + { + "start": 1255.82, + "end": 1258.58, + "probability": 0.8227 + }, + { + "start": 1259.88, + "end": 1262.9, + "probability": 0.9675 + }, + { + "start": 1263.5, + "end": 1264.66, + "probability": 0.9922 + }, + { + "start": 1265.62, + "end": 1270.7, + "probability": 0.1101 + }, + { + "start": 1270.7, + "end": 1270.7, + "probability": 0.0336 + }, + { + "start": 1270.7, + "end": 1273.44, + "probability": 0.2401 + }, + { + "start": 1273.44, + "end": 1274.52, + "probability": 0.6899 + }, + { + "start": 1274.82, + "end": 1275.24, + "probability": 0.3263 + }, + { + "start": 1275.42, + "end": 1276.68, + "probability": 0.681 + }, + { + "start": 1277.18, + "end": 1278.4, + "probability": 0.9291 + }, + { + "start": 1279.76, + "end": 1281.68, + "probability": 0.7841 + }, + { + "start": 1282.66, + "end": 1284.5, + "probability": 0.9093 + }, + { + "start": 1285.22, + "end": 1288.34, + "probability": 0.9946 + }, + { + "start": 1289.36, + "end": 1290.64, + "probability": 0.9548 + }, + { + "start": 1291.68, + "end": 1296.3, + "probability": 0.9402 + }, + { + "start": 1297.46, + "end": 1298.38, + "probability": 0.8653 + }, + { + "start": 1298.94, + "end": 1300.16, + "probability": 0.9435 + }, + { + "start": 1300.26, + "end": 1302.08, + "probability": 0.9713 + }, + { + "start": 1302.2, + "end": 1302.9, + "probability": 0.5851 + }, + { + "start": 1302.96, + "end": 1304.46, + "probability": 0.9047 + }, + { + "start": 1305.24, + "end": 1308.62, + "probability": 0.9979 + }, + { + "start": 1309.48, + "end": 1309.98, + "probability": 0.9184 + }, + { + "start": 1310.64, + "end": 1312.3, + "probability": 0.908 + }, + { + "start": 1313.24, + "end": 1314.36, + "probability": 0.9443 + }, + { + "start": 1314.92, + "end": 1318.08, + "probability": 0.9724 + }, + { + "start": 1319.06, + "end": 1322.82, + "probability": 0.9348 + }, + { + "start": 1323.06, + "end": 1325.76, + "probability": 0.9919 + }, + { + "start": 1327.0, + "end": 1332.9, + "probability": 0.9935 + }, + { + "start": 1333.38, + "end": 1338.04, + "probability": 0.9727 + }, + { + "start": 1338.36, + "end": 1339.46, + "probability": 0.8622 + }, + { + "start": 1339.84, + "end": 1342.9, + "probability": 0.9782 + }, + { + "start": 1343.22, + "end": 1344.08, + "probability": 0.9176 + }, + { + "start": 1344.18, + "end": 1345.98, + "probability": 0.9635 + }, + { + "start": 1346.58, + "end": 1351.56, + "probability": 0.9982 + }, + { + "start": 1352.24, + "end": 1352.72, + "probability": 0.5288 + }, + { + "start": 1353.02, + "end": 1355.27, + "probability": 0.9971 + }, + { + "start": 1355.88, + "end": 1356.3, + "probability": 0.6857 + }, + { + "start": 1356.58, + "end": 1357.66, + "probability": 0.7994 + }, + { + "start": 1358.12, + "end": 1358.62, + "probability": 0.1308 + }, + { + "start": 1358.64, + "end": 1359.8, + "probability": 0.6437 + }, + { + "start": 1360.24, + "end": 1361.72, + "probability": 0.948 + }, + { + "start": 1363.04, + "end": 1364.92, + "probability": 0.7899 + }, + { + "start": 1365.22, + "end": 1365.5, + "probability": 0.9091 + }, + { + "start": 1366.18, + "end": 1366.66, + "probability": 0.6328 + }, + { + "start": 1366.86, + "end": 1367.66, + "probability": 0.7648 + }, + { + "start": 1368.58, + "end": 1369.5, + "probability": 0.6657 + }, + { + "start": 1369.66, + "end": 1372.82, + "probability": 0.8259 + }, + { + "start": 1372.82, + "end": 1375.84, + "probability": 0.9197 + }, + { + "start": 1376.44, + "end": 1379.24, + "probability": 0.7862 + }, + { + "start": 1379.76, + "end": 1386.2, + "probability": 0.9718 + }, + { + "start": 1387.14, + "end": 1392.12, + "probability": 0.909 + }, + { + "start": 1392.52, + "end": 1395.3, + "probability": 0.8666 + }, + { + "start": 1395.94, + "end": 1396.66, + "probability": 0.9614 + }, + { + "start": 1397.26, + "end": 1398.78, + "probability": 0.8137 + }, + { + "start": 1398.92, + "end": 1400.3, + "probability": 0.8779 + }, + { + "start": 1400.42, + "end": 1401.52, + "probability": 0.9614 + }, + { + "start": 1401.88, + "end": 1404.12, + "probability": 0.9872 + }, + { + "start": 1404.94, + "end": 1408.04, + "probability": 0.9247 + }, + { + "start": 1408.86, + "end": 1412.56, + "probability": 0.9288 + }, + { + "start": 1413.6, + "end": 1415.94, + "probability": 0.9943 + }, + { + "start": 1416.36, + "end": 1419.56, + "probability": 0.9894 + }, + { + "start": 1419.88, + "end": 1422.22, + "probability": 0.9858 + }, + { + "start": 1423.98, + "end": 1426.22, + "probability": 0.7651 + }, + { + "start": 1426.84, + "end": 1427.5, + "probability": 0.5831 + }, + { + "start": 1427.64, + "end": 1431.8, + "probability": 0.9813 + }, + { + "start": 1431.8, + "end": 1435.64, + "probability": 0.9989 + }, + { + "start": 1436.24, + "end": 1438.34, + "probability": 0.9857 + }, + { + "start": 1439.02, + "end": 1441.5, + "probability": 0.4324 + }, + { + "start": 1441.72, + "end": 1441.98, + "probability": 0.7543 + }, + { + "start": 1443.14, + "end": 1444.72, + "probability": 0.8993 + }, + { + "start": 1445.7, + "end": 1446.54, + "probability": 0.8651 + }, + { + "start": 1447.64, + "end": 1449.52, + "probability": 0.8054 + }, + { + "start": 1450.34, + "end": 1450.64, + "probability": 0.6432 + }, + { + "start": 1450.8, + "end": 1451.96, + "probability": 0.9534 + }, + { + "start": 1452.24, + "end": 1452.6, + "probability": 0.8057 + }, + { + "start": 1452.64, + "end": 1452.9, + "probability": 0.5711 + }, + { + "start": 1452.94, + "end": 1454.18, + "probability": 0.9919 + }, + { + "start": 1454.36, + "end": 1454.72, + "probability": 0.5198 + }, + { + "start": 1454.8, + "end": 1457.16, + "probability": 0.4848 + }, + { + "start": 1457.22, + "end": 1457.62, + "probability": 0.8854 + }, + { + "start": 1457.66, + "end": 1460.06, + "probability": 0.8669 + }, + { + "start": 1460.12, + "end": 1463.94, + "probability": 0.8591 + }, + { + "start": 1464.36, + "end": 1467.0, + "probability": 0.9819 + }, + { + "start": 1467.4, + "end": 1470.32, + "probability": 0.8674 + }, + { + "start": 1470.82, + "end": 1474.84, + "probability": 0.8556 + }, + { + "start": 1475.06, + "end": 1476.6, + "probability": 0.3607 + }, + { + "start": 1479.0, + "end": 1479.0, + "probability": 0.0113 + }, + { + "start": 1479.0, + "end": 1481.18, + "probability": 0.9966 + }, + { + "start": 1481.32, + "end": 1482.04, + "probability": 0.4925 + }, + { + "start": 1482.12, + "end": 1487.4, + "probability": 0.6916 + }, + { + "start": 1487.64, + "end": 1488.58, + "probability": 0.411 + }, + { + "start": 1489.58, + "end": 1493.68, + "probability": 0.7696 + }, + { + "start": 1494.28, + "end": 1497.7, + "probability": 0.7541 + }, + { + "start": 1498.32, + "end": 1498.94, + "probability": 0.6273 + }, + { + "start": 1499.06, + "end": 1501.3, + "probability": 0.8723 + }, + { + "start": 1501.3, + "end": 1504.74, + "probability": 0.9487 + }, + { + "start": 1505.22, + "end": 1507.44, + "probability": 0.9595 + }, + { + "start": 1507.84, + "end": 1508.78, + "probability": 0.9624 + }, + { + "start": 1509.06, + "end": 1513.38, + "probability": 0.7515 + }, + { + "start": 1514.44, + "end": 1517.06, + "probability": 0.7317 + }, + { + "start": 1517.52, + "end": 1520.26, + "probability": 0.79 + }, + { + "start": 1520.38, + "end": 1520.7, + "probability": 0.8785 + }, + { + "start": 1521.18, + "end": 1522.56, + "probability": 0.9675 + }, + { + "start": 1523.06, + "end": 1524.42, + "probability": 0.9167 + }, + { + "start": 1524.7, + "end": 1525.8, + "probability": 0.9944 + }, + { + "start": 1526.14, + "end": 1527.22, + "probability": 0.9973 + }, + { + "start": 1527.5, + "end": 1528.02, + "probability": 0.4934 + }, + { + "start": 1528.28, + "end": 1529.42, + "probability": 0.4516 + }, + { + "start": 1529.92, + "end": 1531.92, + "probability": 0.7996 + }, + { + "start": 1532.18, + "end": 1532.42, + "probability": 0.4718 + }, + { + "start": 1533.22, + "end": 1535.54, + "probability": 0.7986 + }, + { + "start": 1535.82, + "end": 1536.22, + "probability": 0.9292 + }, + { + "start": 1538.34, + "end": 1538.6, + "probability": 0.079 + }, + { + "start": 1538.6, + "end": 1538.62, + "probability": 0.2136 + }, + { + "start": 1539.08, + "end": 1540.8, + "probability": 0.5443 + }, + { + "start": 1540.88, + "end": 1542.9, + "probability": 0.7775 + }, + { + "start": 1543.92, + "end": 1544.18, + "probability": 0.6328 + }, + { + "start": 1544.36, + "end": 1546.23, + "probability": 0.9638 + }, + { + "start": 1546.68, + "end": 1547.9, + "probability": 0.9129 + }, + { + "start": 1548.0, + "end": 1549.22, + "probability": 0.1628 + }, + { + "start": 1551.4, + "end": 1553.92, + "probability": 0.0563 + }, + { + "start": 1554.54, + "end": 1554.64, + "probability": 0.0857 + }, + { + "start": 1554.64, + "end": 1554.64, + "probability": 0.041 + }, + { + "start": 1554.64, + "end": 1555.64, + "probability": 0.0316 + }, + { + "start": 1555.7, + "end": 1555.8, + "probability": 0.5055 + }, + { + "start": 1556.34, + "end": 1558.72, + "probability": 0.5642 + }, + { + "start": 1559.36, + "end": 1560.4, + "probability": 0.4577 + }, + { + "start": 1560.5, + "end": 1561.19, + "probability": 0.4735 + }, + { + "start": 1561.62, + "end": 1568.14, + "probability": 0.7305 + }, + { + "start": 1568.82, + "end": 1571.66, + "probability": 0.796 + }, + { + "start": 1571.76, + "end": 1576.54, + "probability": 0.9677 + }, + { + "start": 1577.62, + "end": 1582.38, + "probability": 0.8945 + }, + { + "start": 1582.56, + "end": 1586.34, + "probability": 0.8008 + }, + { + "start": 1586.98, + "end": 1588.53, + "probability": 0.9806 + }, + { + "start": 1589.32, + "end": 1592.22, + "probability": 0.9097 + }, + { + "start": 1593.04, + "end": 1593.9, + "probability": 0.9348 + }, + { + "start": 1594.5, + "end": 1599.24, + "probability": 0.9793 + }, + { + "start": 1599.82, + "end": 1600.76, + "probability": 0.7631 + }, + { + "start": 1601.86, + "end": 1607.92, + "probability": 0.991 + }, + { + "start": 1609.04, + "end": 1609.94, + "probability": 0.6864 + }, + { + "start": 1610.18, + "end": 1614.72, + "probability": 0.8529 + }, + { + "start": 1615.36, + "end": 1618.96, + "probability": 0.8873 + }, + { + "start": 1618.96, + "end": 1625.54, + "probability": 0.9404 + }, + { + "start": 1626.58, + "end": 1633.58, + "probability": 0.9904 + }, + { + "start": 1634.34, + "end": 1639.32, + "probability": 0.9935 + }, + { + "start": 1639.76, + "end": 1644.82, + "probability": 0.9622 + }, + { + "start": 1645.12, + "end": 1645.52, + "probability": 0.7518 + }, + { + "start": 1645.66, + "end": 1646.12, + "probability": 0.5642 + }, + { + "start": 1646.42, + "end": 1649.94, + "probability": 0.8647 + }, + { + "start": 1652.98, + "end": 1654.12, + "probability": 0.8402 + }, + { + "start": 1655.72, + "end": 1660.18, + "probability": 0.9542 + }, + { + "start": 1660.28, + "end": 1660.74, + "probability": 0.9064 + }, + { + "start": 1661.52, + "end": 1666.52, + "probability": 0.9715 + }, + { + "start": 1667.12, + "end": 1669.54, + "probability": 0.8903 + }, + { + "start": 1671.09, + "end": 1673.78, + "probability": 0.9251 + }, + { + "start": 1674.74, + "end": 1675.92, + "probability": 0.9761 + }, + { + "start": 1676.94, + "end": 1681.46, + "probability": 0.989 + }, + { + "start": 1682.36, + "end": 1683.56, + "probability": 0.8497 + }, + { + "start": 1684.12, + "end": 1685.96, + "probability": 0.9132 + }, + { + "start": 1686.56, + "end": 1687.7, + "probability": 0.5885 + }, + { + "start": 1689.74, + "end": 1692.46, + "probability": 0.9396 + }, + { + "start": 1693.06, + "end": 1697.64, + "probability": 0.8699 + }, + { + "start": 1698.28, + "end": 1700.34, + "probability": 0.8943 + }, + { + "start": 1701.14, + "end": 1707.94, + "probability": 0.9268 + }, + { + "start": 1707.98, + "end": 1714.64, + "probability": 0.9829 + }, + { + "start": 1714.76, + "end": 1715.94, + "probability": 0.8871 + }, + { + "start": 1716.48, + "end": 1719.72, + "probability": 0.9901 + }, + { + "start": 1720.66, + "end": 1722.24, + "probability": 0.8741 + }, + { + "start": 1722.52, + "end": 1724.18, + "probability": 0.8613 + }, + { + "start": 1724.52, + "end": 1726.1, + "probability": 0.5421 + }, + { + "start": 1733.72, + "end": 1735.16, + "probability": 0.5657 + }, + { + "start": 1735.32, + "end": 1736.68, + "probability": 0.6961 + }, + { + "start": 1737.04, + "end": 1738.86, + "probability": 0.8674 + }, + { + "start": 1739.44, + "end": 1741.94, + "probability": 0.9591 + }, + { + "start": 1742.82, + "end": 1746.9, + "probability": 0.9836 + }, + { + "start": 1747.2, + "end": 1748.48, + "probability": 0.896 + }, + { + "start": 1749.0, + "end": 1751.68, + "probability": 0.8708 + }, + { + "start": 1752.1, + "end": 1754.3, + "probability": 0.9312 + }, + { + "start": 1754.88, + "end": 1755.86, + "probability": 0.926 + }, + { + "start": 1755.96, + "end": 1757.58, + "probability": 0.9581 + }, + { + "start": 1757.68, + "end": 1758.82, + "probability": 0.9443 + }, + { + "start": 1759.38, + "end": 1761.52, + "probability": 0.9349 + }, + { + "start": 1761.68, + "end": 1763.66, + "probability": 0.9926 + }, + { + "start": 1764.58, + "end": 1768.62, + "probability": 0.5746 + }, + { + "start": 1768.78, + "end": 1770.94, + "probability": 0.5963 + }, + { + "start": 1772.46, + "end": 1773.36, + "probability": 0.7638 + }, + { + "start": 1773.46, + "end": 1775.98, + "probability": 0.9413 + }, + { + "start": 1776.6, + "end": 1778.74, + "probability": 0.8737 + }, + { + "start": 1779.16, + "end": 1781.44, + "probability": 0.9302 + }, + { + "start": 1782.66, + "end": 1785.14, + "probability": 0.9968 + }, + { + "start": 1785.14, + "end": 1788.16, + "probability": 0.9513 + }, + { + "start": 1788.48, + "end": 1789.5, + "probability": 0.7457 + }, + { + "start": 1791.52, + "end": 1795.26, + "probability": 0.9971 + }, + { + "start": 1795.9, + "end": 1800.2, + "probability": 0.9557 + }, + { + "start": 1800.32, + "end": 1802.5, + "probability": 0.9605 + }, + { + "start": 1803.6, + "end": 1805.94, + "probability": 0.9986 + }, + { + "start": 1805.94, + "end": 1809.04, + "probability": 0.9992 + }, + { + "start": 1809.72, + "end": 1811.02, + "probability": 0.8444 + }, + { + "start": 1811.64, + "end": 1812.64, + "probability": 0.833 + }, + { + "start": 1812.7, + "end": 1815.76, + "probability": 0.9154 + }, + { + "start": 1815.86, + "end": 1816.68, + "probability": 0.8491 + }, + { + "start": 1817.52, + "end": 1820.88, + "probability": 0.9793 + }, + { + "start": 1821.76, + "end": 1825.66, + "probability": 0.8718 + }, + { + "start": 1826.42, + "end": 1828.18, + "probability": 0.9417 + }, + { + "start": 1828.66, + "end": 1831.04, + "probability": 0.9976 + }, + { + "start": 1831.04, + "end": 1833.84, + "probability": 0.9617 + }, + { + "start": 1833.96, + "end": 1834.72, + "probability": 0.514 + }, + { + "start": 1834.94, + "end": 1835.52, + "probability": 0.7179 + }, + { + "start": 1835.84, + "end": 1836.04, + "probability": 0.4843 + }, + { + "start": 1836.08, + "end": 1837.94, + "probability": 0.5393 + }, + { + "start": 1838.56, + "end": 1840.84, + "probability": 0.7467 + }, + { + "start": 1842.28, + "end": 1843.34, + "probability": 0.5192 + }, + { + "start": 1843.5, + "end": 1843.52, + "probability": 0.4474 + }, + { + "start": 1843.52, + "end": 1846.4, + "probability": 0.9547 + }, + { + "start": 1847.08, + "end": 1850.14, + "probability": 0.9171 + }, + { + "start": 1851.26, + "end": 1855.34, + "probability": 0.9221 + }, + { + "start": 1855.56, + "end": 1858.7, + "probability": 0.8198 + }, + { + "start": 1859.48, + "end": 1861.6, + "probability": 0.5241 + }, + { + "start": 1862.72, + "end": 1869.7, + "probability": 0.9696 + }, + { + "start": 1870.36, + "end": 1874.26, + "probability": 0.9006 + }, + { + "start": 1874.3, + "end": 1875.48, + "probability": 0.7307 + }, + { + "start": 1876.06, + "end": 1879.2, + "probability": 0.9491 + }, + { + "start": 1879.44, + "end": 1883.1, + "probability": 0.8087 + }, + { + "start": 1883.4, + "end": 1888.02, + "probability": 0.8018 + }, + { + "start": 1888.6, + "end": 1892.74, + "probability": 0.9819 + }, + { + "start": 1892.74, + "end": 1896.18, + "probability": 0.9702 + }, + { + "start": 1896.7, + "end": 1900.12, + "probability": 0.991 + }, + { + "start": 1900.5, + "end": 1902.14, + "probability": 0.8049 + }, + { + "start": 1902.26, + "end": 1902.6, + "probability": 0.6671 + }, + { + "start": 1903.12, + "end": 1904.54, + "probability": 0.3026 + }, + { + "start": 1904.6, + "end": 1909.76, + "probability": 0.9474 + }, + { + "start": 1909.92, + "end": 1910.24, + "probability": 0.6304 + }, + { + "start": 1910.38, + "end": 1911.31, + "probability": 0.9766 + }, + { + "start": 1912.08, + "end": 1913.14, + "probability": 0.7555 + }, + { + "start": 1913.26, + "end": 1914.24, + "probability": 0.7064 + }, + { + "start": 1914.34, + "end": 1915.44, + "probability": 0.7777 + }, + { + "start": 1915.5, + "end": 1916.18, + "probability": 0.7813 + }, + { + "start": 1917.4, + "end": 1923.26, + "probability": 0.9956 + }, + { + "start": 1923.48, + "end": 1923.7, + "probability": 0.5354 + }, + { + "start": 1923.8, + "end": 1924.34, + "probability": 0.6604 + }, + { + "start": 1924.62, + "end": 1926.56, + "probability": 0.626 + }, + { + "start": 1926.58, + "end": 1927.18, + "probability": 0.6494 + }, + { + "start": 1927.34, + "end": 1928.32, + "probability": 0.7643 + }, + { + "start": 1930.88, + "end": 1932.6, + "probability": 0.6754 + }, + { + "start": 1932.86, + "end": 1932.94, + "probability": 0.6014 + }, + { + "start": 1932.94, + "end": 1937.6, + "probability": 0.989 + }, + { + "start": 1937.72, + "end": 1941.32, + "probability": 0.9976 + }, + { + "start": 1941.8, + "end": 1949.14, + "probability": 0.9857 + }, + { + "start": 1950.24, + "end": 1951.9, + "probability": 0.7545 + }, + { + "start": 1953.16, + "end": 1957.46, + "probability": 0.5697 + }, + { + "start": 1959.78, + "end": 1961.26, + "probability": 0.5414 + }, + { + "start": 1961.62, + "end": 1968.14, + "probability": 0.9425 + }, + { + "start": 1968.86, + "end": 1973.06, + "probability": 0.9897 + }, + { + "start": 1973.64, + "end": 1977.32, + "probability": 0.9465 + }, + { + "start": 1977.82, + "end": 1981.44, + "probability": 0.9214 + }, + { + "start": 1982.04, + "end": 1985.44, + "probability": 0.6657 + }, + { + "start": 1986.04, + "end": 1990.16, + "probability": 0.9917 + }, + { + "start": 1990.94, + "end": 1991.5, + "probability": 0.5864 + }, + { + "start": 1991.98, + "end": 1994.84, + "probability": 0.7814 + }, + { + "start": 1999.4, + "end": 2000.5, + "probability": 0.8554 + }, + { + "start": 2001.46, + "end": 2002.84, + "probability": 0.7548 + }, + { + "start": 2005.26, + "end": 2008.9, + "probability": 0.9471 + }, + { + "start": 2010.52, + "end": 2013.28, + "probability": 0.8473 + }, + { + "start": 2014.64, + "end": 2016.22, + "probability": 0.8713 + }, + { + "start": 2017.4, + "end": 2018.6, + "probability": 0.9564 + }, + { + "start": 2019.0, + "end": 2024.5, + "probability": 0.9754 + }, + { + "start": 2024.8, + "end": 2027.14, + "probability": 0.9684 + }, + { + "start": 2027.74, + "end": 2029.86, + "probability": 0.8942 + }, + { + "start": 2031.46, + "end": 2032.28, + "probability": 0.5846 + }, + { + "start": 2032.8, + "end": 2035.82, + "probability": 0.7931 + }, + { + "start": 2037.16, + "end": 2038.88, + "probability": 0.7143 + }, + { + "start": 2039.6, + "end": 2042.7, + "probability": 0.8391 + }, + { + "start": 2044.04, + "end": 2045.48, + "probability": 0.8269 + }, + { + "start": 2045.66, + "end": 2045.88, + "probability": 0.3316 + }, + { + "start": 2045.88, + "end": 2046.34, + "probability": 0.9482 + }, + { + "start": 2046.5, + "end": 2047.52, + "probability": 0.9515 + }, + { + "start": 2047.8, + "end": 2048.2, + "probability": 0.8189 + }, + { + "start": 2048.42, + "end": 2049.12, + "probability": 0.9475 + }, + { + "start": 2049.62, + "end": 2050.1, + "probability": 0.9774 + }, + { + "start": 2050.4, + "end": 2051.0, + "probability": 0.4872 + }, + { + "start": 2052.42, + "end": 2054.27, + "probability": 0.9854 + }, + { + "start": 2055.98, + "end": 2060.02, + "probability": 0.9731 + }, + { + "start": 2061.24, + "end": 2064.9, + "probability": 0.9434 + }, + { + "start": 2066.03, + "end": 2066.87, + "probability": 0.6647 + }, + { + "start": 2068.12, + "end": 2070.06, + "probability": 0.6572 + }, + { + "start": 2071.4, + "end": 2075.88, + "probability": 0.584 + }, + { + "start": 2076.88, + "end": 2080.44, + "probability": 0.7166 + }, + { + "start": 2080.96, + "end": 2081.78, + "probability": 0.709 + }, + { + "start": 2082.32, + "end": 2082.94, + "probability": 0.6826 + }, + { + "start": 2083.9, + "end": 2086.8, + "probability": 0.6528 + }, + { + "start": 2087.38, + "end": 2088.7, + "probability": 0.5858 + }, + { + "start": 2089.48, + "end": 2090.48, + "probability": 0.7273 + }, + { + "start": 2096.26, + "end": 2097.02, + "probability": 0.7495 + }, + { + "start": 2097.24, + "end": 2100.37, + "probability": 0.9143 + }, + { + "start": 2102.06, + "end": 2102.8, + "probability": 0.8787 + }, + { + "start": 2103.42, + "end": 2105.54, + "probability": 0.7704 + }, + { + "start": 2106.58, + "end": 2108.14, + "probability": 0.9792 + }, + { + "start": 2108.56, + "end": 2113.16, + "probability": 0.9047 + }, + { + "start": 2113.88, + "end": 2115.04, + "probability": 0.8724 + }, + { + "start": 2115.74, + "end": 2118.02, + "probability": 0.9949 + }, + { + "start": 2118.56, + "end": 2122.66, + "probability": 0.9443 + }, + { + "start": 2123.26, + "end": 2128.02, + "probability": 0.9845 + }, + { + "start": 2128.78, + "end": 2134.46, + "probability": 0.9825 + }, + { + "start": 2134.84, + "end": 2140.08, + "probability": 0.9951 + }, + { + "start": 2141.22, + "end": 2142.08, + "probability": 0.7841 + }, + { + "start": 2143.06, + "end": 2144.1, + "probability": 0.8359 + }, + { + "start": 2144.7, + "end": 2145.38, + "probability": 0.7844 + }, + { + "start": 2146.0, + "end": 2151.04, + "probability": 0.9854 + }, + { + "start": 2152.5, + "end": 2156.26, + "probability": 0.9377 + }, + { + "start": 2157.16, + "end": 2158.68, + "probability": 0.6899 + }, + { + "start": 2159.32, + "end": 2163.48, + "probability": 0.9446 + }, + { + "start": 2164.76, + "end": 2165.3, + "probability": 0.5882 + }, + { + "start": 2165.42, + "end": 2168.12, + "probability": 0.8924 + }, + { + "start": 2168.92, + "end": 2170.54, + "probability": 0.9657 + }, + { + "start": 2171.34, + "end": 2174.22, + "probability": 0.8702 + }, + { + "start": 2176.96, + "end": 2177.82, + "probability": 0.442 + }, + { + "start": 2183.12, + "end": 2183.98, + "probability": 0.6136 + }, + { + "start": 2184.08, + "end": 2184.52, + "probability": 0.6948 + }, + { + "start": 2184.6, + "end": 2185.52, + "probability": 0.8239 + }, + { + "start": 2185.78, + "end": 2186.0, + "probability": 0.613 + }, + { + "start": 2186.16, + "end": 2186.52, + "probability": 0.3728 + }, + { + "start": 2188.4, + "end": 2189.84, + "probability": 0.916 + }, + { + "start": 2190.56, + "end": 2191.46, + "probability": 0.5609 + }, + { + "start": 2203.98, + "end": 2205.28, + "probability": 0.353 + }, + { + "start": 2205.62, + "end": 2214.12, + "probability": 0.8165 + }, + { + "start": 2214.4, + "end": 2216.15, + "probability": 0.8425 + }, + { + "start": 2217.12, + "end": 2219.38, + "probability": 0.8892 + }, + { + "start": 2220.26, + "end": 2221.3, + "probability": 0.8245 + }, + { + "start": 2221.34, + "end": 2225.54, + "probability": 0.7791 + }, + { + "start": 2225.64, + "end": 2227.99, + "probability": 0.9878 + }, + { + "start": 2228.8, + "end": 2234.54, + "probability": 0.996 + }, + { + "start": 2234.54, + "end": 2240.26, + "probability": 0.9792 + }, + { + "start": 2240.8, + "end": 2242.72, + "probability": 0.923 + }, + { + "start": 2243.88, + "end": 2248.36, + "probability": 0.999 + }, + { + "start": 2249.36, + "end": 2251.05, + "probability": 0.7899 + }, + { + "start": 2252.0, + "end": 2253.2, + "probability": 0.902 + }, + { + "start": 2253.68, + "end": 2256.78, + "probability": 0.9116 + }, + { + "start": 2257.68, + "end": 2260.0, + "probability": 0.9916 + }, + { + "start": 2261.24, + "end": 2265.74, + "probability": 0.9939 + }, + { + "start": 2265.74, + "end": 2270.02, + "probability": 0.9526 + }, + { + "start": 2271.1, + "end": 2278.04, + "probability": 0.9707 + }, + { + "start": 2278.7, + "end": 2282.42, + "probability": 0.5973 + }, + { + "start": 2283.08, + "end": 2285.18, + "probability": 0.7531 + }, + { + "start": 2286.02, + "end": 2289.74, + "probability": 0.9775 + }, + { + "start": 2290.6, + "end": 2291.1, + "probability": 0.5703 + }, + { + "start": 2292.39, + "end": 2294.56, + "probability": 0.7107 + }, + { + "start": 2295.28, + "end": 2297.8, + "probability": 0.5618 + }, + { + "start": 2298.38, + "end": 2299.38, + "probability": 0.8487 + }, + { + "start": 2302.52, + "end": 2303.14, + "probability": 0.7732 + }, + { + "start": 2303.28, + "end": 2308.82, + "probability": 0.978 + }, + { + "start": 2309.2, + "end": 2310.66, + "probability": 0.9655 + }, + { + "start": 2311.28, + "end": 2313.18, + "probability": 0.9977 + }, + { + "start": 2313.34, + "end": 2315.65, + "probability": 0.9931 + }, + { + "start": 2316.46, + "end": 2316.74, + "probability": 0.8988 + }, + { + "start": 2316.9, + "end": 2321.52, + "probability": 0.9941 + }, + { + "start": 2322.14, + "end": 2325.88, + "probability": 0.9966 + }, + { + "start": 2325.88, + "end": 2327.86, + "probability": 0.9952 + }, + { + "start": 2329.14, + "end": 2330.72, + "probability": 0.8636 + }, + { + "start": 2331.52, + "end": 2334.54, + "probability": 0.9358 + }, + { + "start": 2334.62, + "end": 2336.3, + "probability": 0.8027 + }, + { + "start": 2337.1, + "end": 2340.0, + "probability": 0.8561 + }, + { + "start": 2340.46, + "end": 2341.97, + "probability": 0.9863 + }, + { + "start": 2342.36, + "end": 2345.6, + "probability": 0.9718 + }, + { + "start": 2346.3, + "end": 2347.94, + "probability": 0.5917 + }, + { + "start": 2348.66, + "end": 2349.18, + "probability": 0.716 + }, + { + "start": 2349.18, + "end": 2350.88, + "probability": 0.9673 + }, + { + "start": 2351.06, + "end": 2352.72, + "probability": 0.8084 + }, + { + "start": 2353.3, + "end": 2358.3, + "probability": 0.9937 + }, + { + "start": 2359.18, + "end": 2359.84, + "probability": 0.4833 + }, + { + "start": 2359.84, + "end": 2361.0, + "probability": 0.6305 + }, + { + "start": 2361.06, + "end": 2364.62, + "probability": 0.8831 + }, + { + "start": 2364.62, + "end": 2368.06, + "probability": 0.9791 + }, + { + "start": 2369.36, + "end": 2371.76, + "probability": 0.8674 + }, + { + "start": 2372.42, + "end": 2374.84, + "probability": 0.9219 + }, + { + "start": 2374.84, + "end": 2377.78, + "probability": 0.9556 + }, + { + "start": 2378.48, + "end": 2380.68, + "probability": 0.9992 + }, + { + "start": 2382.04, + "end": 2384.98, + "probability": 0.985 + }, + { + "start": 2384.98, + "end": 2388.64, + "probability": 0.9985 + }, + { + "start": 2389.28, + "end": 2392.98, + "probability": 0.993 + }, + { + "start": 2393.42, + "end": 2393.8, + "probability": 0.7699 + }, + { + "start": 2394.08, + "end": 2394.54, + "probability": 0.5881 + }, + { + "start": 2394.58, + "end": 2395.76, + "probability": 0.8817 + }, + { + "start": 2396.76, + "end": 2399.38, + "probability": 0.9575 + }, + { + "start": 2399.46, + "end": 2404.22, + "probability": 0.998 + }, + { + "start": 2404.46, + "end": 2405.36, + "probability": 0.4607 + }, + { + "start": 2405.64, + "end": 2406.46, + "probability": 0.6724 + }, + { + "start": 2406.52, + "end": 2407.0, + "probability": 0.5701 + }, + { + "start": 2407.1, + "end": 2408.06, + "probability": 0.3929 + }, + { + "start": 2408.73, + "end": 2412.92, + "probability": 0.4919 + }, + { + "start": 2412.92, + "end": 2413.54, + "probability": 0.6642 + }, + { + "start": 2413.62, + "end": 2415.4, + "probability": 0.9448 + }, + { + "start": 2415.78, + "end": 2417.2, + "probability": 0.7525 + }, + { + "start": 2417.26, + "end": 2422.94, + "probability": 0.9629 + }, + { + "start": 2423.12, + "end": 2424.44, + "probability": 0.9161 + }, + { + "start": 2424.58, + "end": 2425.48, + "probability": 0.546 + }, + { + "start": 2425.56, + "end": 2428.66, + "probability": 0.6928 + }, + { + "start": 2428.88, + "end": 2429.08, + "probability": 0.5377 + }, + { + "start": 2429.18, + "end": 2430.9, + "probability": 0.9702 + }, + { + "start": 2431.0, + "end": 2431.42, + "probability": 0.6062 + }, + { + "start": 2431.72, + "end": 2433.66, + "probability": 0.6881 + }, + { + "start": 2433.66, + "end": 2435.28, + "probability": 0.9701 + }, + { + "start": 2435.4, + "end": 2437.42, + "probability": 0.8988 + }, + { + "start": 2437.96, + "end": 2440.52, + "probability": 0.8312 + }, + { + "start": 2440.6, + "end": 2445.34, + "probability": 0.7166 + }, + { + "start": 2445.74, + "end": 2449.6, + "probability": 0.9174 + }, + { + "start": 2449.88, + "end": 2452.46, + "probability": 0.9441 + }, + { + "start": 2452.83, + "end": 2456.66, + "probability": 0.9937 + }, + { + "start": 2457.18, + "end": 2458.76, + "probability": 0.6345 + }, + { + "start": 2458.94, + "end": 2461.52, + "probability": 0.9976 + }, + { + "start": 2461.52, + "end": 2464.82, + "probability": 0.9731 + }, + { + "start": 2465.16, + "end": 2467.72, + "probability": 0.8148 + }, + { + "start": 2468.18, + "end": 2469.02, + "probability": 0.8334 + }, + { + "start": 2469.2, + "end": 2471.56, + "probability": 0.9611 + }, + { + "start": 2471.96, + "end": 2474.96, + "probability": 0.9254 + }, + { + "start": 2475.04, + "end": 2478.04, + "probability": 0.7791 + }, + { + "start": 2478.48, + "end": 2479.4, + "probability": 0.9792 + }, + { + "start": 2482.22, + "end": 2484.34, + "probability": 0.7933 + }, + { + "start": 2484.46, + "end": 2486.22, + "probability": 0.9971 + }, + { + "start": 2486.4, + "end": 2488.02, + "probability": 0.853 + }, + { + "start": 2488.12, + "end": 2489.46, + "probability": 0.7932 + }, + { + "start": 2489.68, + "end": 2489.9, + "probability": 0.3528 + }, + { + "start": 2490.16, + "end": 2491.34, + "probability": 0.9835 + }, + { + "start": 2491.4, + "end": 2494.36, + "probability": 0.9951 + }, + { + "start": 2494.42, + "end": 2495.58, + "probability": 0.7354 + }, + { + "start": 2495.94, + "end": 2496.9, + "probability": 0.9122 + }, + { + "start": 2497.28, + "end": 2498.74, + "probability": 0.9469 + }, + { + "start": 2498.8, + "end": 2499.02, + "probability": 0.6378 + }, + { + "start": 2499.18, + "end": 2500.32, + "probability": 0.9704 + }, + { + "start": 2501.12, + "end": 2501.6, + "probability": 0.4864 + }, + { + "start": 2501.62, + "end": 2502.98, + "probability": 0.8494 + }, + { + "start": 2503.18, + "end": 2504.68, + "probability": 0.8754 + }, + { + "start": 2505.28, + "end": 2508.38, + "probability": 0.836 + }, + { + "start": 2508.48, + "end": 2509.83, + "probability": 0.9927 + }, + { + "start": 2511.86, + "end": 2512.32, + "probability": 0.7855 + }, + { + "start": 2512.86, + "end": 2513.98, + "probability": 0.8236 + }, + { + "start": 2514.1, + "end": 2515.38, + "probability": 0.831 + }, + { + "start": 2515.4, + "end": 2518.09, + "probability": 0.9075 + }, + { + "start": 2518.9, + "end": 2520.11, + "probability": 0.9199 + }, + { + "start": 2522.66, + "end": 2524.36, + "probability": 0.1396 + }, + { + "start": 2524.4, + "end": 2527.16, + "probability": 0.7453 + }, + { + "start": 2528.02, + "end": 2532.06, + "probability": 0.9609 + }, + { + "start": 2532.16, + "end": 2535.36, + "probability": 0.9462 + }, + { + "start": 2536.82, + "end": 2540.22, + "probability": 0.6816 + }, + { + "start": 2540.52, + "end": 2543.4, + "probability": 0.8618 + }, + { + "start": 2543.52, + "end": 2543.96, + "probability": 0.5152 + }, + { + "start": 2544.22, + "end": 2547.1, + "probability": 0.9848 + }, + { + "start": 2547.18, + "end": 2550.26, + "probability": 0.8427 + }, + { + "start": 2550.36, + "end": 2553.26, + "probability": 0.549 + }, + { + "start": 2553.3, + "end": 2555.0, + "probability": 0.9123 + }, + { + "start": 2555.04, + "end": 2555.42, + "probability": 0.7439 + }, + { + "start": 2555.5, + "end": 2556.26, + "probability": 0.9017 + }, + { + "start": 2556.38, + "end": 2556.98, + "probability": 0.7016 + }, + { + "start": 2557.06, + "end": 2558.3, + "probability": 0.6642 + }, + { + "start": 2558.58, + "end": 2561.08, + "probability": 0.975 + }, + { + "start": 2561.2, + "end": 2563.06, + "probability": 0.9055 + }, + { + "start": 2564.64, + "end": 2568.18, + "probability": 0.9971 + }, + { + "start": 2568.72, + "end": 2569.7, + "probability": 0.998 + }, + { + "start": 2570.9, + "end": 2572.18, + "probability": 0.898 + }, + { + "start": 2572.38, + "end": 2574.64, + "probability": 0.9979 + }, + { + "start": 2575.06, + "end": 2578.92, + "probability": 0.8235 + }, + { + "start": 2579.68, + "end": 2582.28, + "probability": 0.9864 + }, + { + "start": 2582.28, + "end": 2585.24, + "probability": 0.924 + }, + { + "start": 2585.72, + "end": 2586.74, + "probability": 0.7078 + }, + { + "start": 2586.98, + "end": 2587.14, + "probability": 0.5416 + }, + { + "start": 2587.22, + "end": 2590.84, + "probability": 0.9452 + }, + { + "start": 2591.1, + "end": 2595.32, + "probability": 0.8683 + }, + { + "start": 2595.7, + "end": 2597.62, + "probability": 0.9762 + }, + { + "start": 2599.9, + "end": 2602.42, + "probability": 0.9126 + }, + { + "start": 2603.18, + "end": 2604.8, + "probability": 0.5946 + }, + { + "start": 2604.88, + "end": 2605.56, + "probability": 0.8074 + }, + { + "start": 2605.86, + "end": 2609.74, + "probability": 0.998 + }, + { + "start": 2609.9, + "end": 2610.32, + "probability": 0.7842 + }, + { + "start": 2610.66, + "end": 2612.4, + "probability": 0.8123 + }, + { + "start": 2612.4, + "end": 2616.14, + "probability": 0.9889 + }, + { + "start": 2617.3, + "end": 2619.54, + "probability": 0.7195 + }, + { + "start": 2619.64, + "end": 2621.28, + "probability": 0.9956 + }, + { + "start": 2623.08, + "end": 2624.28, + "probability": 0.6302 + }, + { + "start": 2624.68, + "end": 2626.36, + "probability": 0.9289 + }, + { + "start": 2626.84, + "end": 2626.96, + "probability": 0.1608 + }, + { + "start": 2627.62, + "end": 2629.08, + "probability": 0.5849 + }, + { + "start": 2630.16, + "end": 2630.93, + "probability": 0.3044 + }, + { + "start": 2631.94, + "end": 2633.3, + "probability": 0.4409 + }, + { + "start": 2633.82, + "end": 2637.26, + "probability": 0.9829 + }, + { + "start": 2638.5, + "end": 2641.86, + "probability": 0.9808 + }, + { + "start": 2642.7, + "end": 2644.35, + "probability": 0.9972 + }, + { + "start": 2645.1, + "end": 2650.92, + "probability": 0.918 + }, + { + "start": 2651.6, + "end": 2657.06, + "probability": 0.9811 + }, + { + "start": 2657.68, + "end": 2660.98, + "probability": 0.8632 + }, + { + "start": 2662.18, + "end": 2664.94, + "probability": 0.9945 + }, + { + "start": 2666.22, + "end": 2670.68, + "probability": 0.8447 + }, + { + "start": 2671.56, + "end": 2671.9, + "probability": 0.99 + }, + { + "start": 2672.48, + "end": 2673.38, + "probability": 0.5655 + }, + { + "start": 2673.96, + "end": 2675.32, + "probability": 0.5793 + }, + { + "start": 2676.32, + "end": 2677.54, + "probability": 0.9727 + }, + { + "start": 2678.28, + "end": 2680.68, + "probability": 0.9866 + }, + { + "start": 2681.5, + "end": 2687.1, + "probability": 0.9907 + }, + { + "start": 2688.14, + "end": 2688.63, + "probability": 0.9199 + }, + { + "start": 2689.74, + "end": 2691.98, + "probability": 0.9932 + }, + { + "start": 2694.04, + "end": 2697.6, + "probability": 0.5202 + }, + { + "start": 2698.28, + "end": 2699.94, + "probability": 0.9904 + }, + { + "start": 2700.84, + "end": 2702.4, + "probability": 0.4968 + }, + { + "start": 2702.96, + "end": 2709.06, + "probability": 0.9895 + }, + { + "start": 2710.38, + "end": 2711.28, + "probability": 0.2933 + }, + { + "start": 2711.28, + "end": 2711.88, + "probability": 0.3565 + }, + { + "start": 2712.3, + "end": 2712.96, + "probability": 0.9618 + }, + { + "start": 2713.64, + "end": 2718.9, + "probability": 0.8583 + }, + { + "start": 2719.34, + "end": 2720.84, + "probability": 0.751 + }, + { + "start": 2721.26, + "end": 2726.68, + "probability": 0.9521 + }, + { + "start": 2726.86, + "end": 2729.28, + "probability": 0.8993 + }, + { + "start": 2730.2, + "end": 2731.18, + "probability": 0.495 + }, + { + "start": 2731.34, + "end": 2732.4, + "probability": 0.7509 + }, + { + "start": 2732.4, + "end": 2733.19, + "probability": 0.1524 + }, + { + "start": 2733.26, + "end": 2733.26, + "probability": 0.3615 + }, + { + "start": 2733.26, + "end": 2734.34, + "probability": 0.8434 + }, + { + "start": 2735.64, + "end": 2736.42, + "probability": 0.9343 + }, + { + "start": 2737.22, + "end": 2739.12, + "probability": 0.8977 + }, + { + "start": 2739.64, + "end": 2744.04, + "probability": 0.9333 + }, + { + "start": 2747.22, + "end": 2751.3, + "probability": 0.7536 + }, + { + "start": 2752.12, + "end": 2757.54, + "probability": 0.9979 + }, + { + "start": 2758.12, + "end": 2764.6, + "probability": 0.9318 + }, + { + "start": 2765.5, + "end": 2766.94, + "probability": 0.7616 + }, + { + "start": 2767.88, + "end": 2769.82, + "probability": 0.8026 + }, + { + "start": 2770.02, + "end": 2772.38, + "probability": 0.7502 + }, + { + "start": 2783.34, + "end": 2784.48, + "probability": 0.9414 + }, + { + "start": 2785.04, + "end": 2785.54, + "probability": 0.7369 + }, + { + "start": 2786.12, + "end": 2786.66, + "probability": 0.7905 + }, + { + "start": 2786.78, + "end": 2788.88, + "probability": 0.989 + }, + { + "start": 2788.96, + "end": 2789.72, + "probability": 0.7815 + }, + { + "start": 2789.74, + "end": 2790.98, + "probability": 0.9912 + }, + { + "start": 2791.76, + "end": 2794.72, + "probability": 0.9563 + }, + { + "start": 2796.66, + "end": 2797.44, + "probability": 0.8959 + }, + { + "start": 2798.46, + "end": 2799.14, + "probability": 0.8162 + }, + { + "start": 2799.2, + "end": 2801.94, + "probability": 0.9922 + }, + { + "start": 2802.04, + "end": 2804.64, + "probability": 0.9949 + }, + { + "start": 2805.8, + "end": 2808.84, + "probability": 0.9739 + }, + { + "start": 2809.38, + "end": 2810.56, + "probability": 0.8142 + }, + { + "start": 2811.38, + "end": 2812.72, + "probability": 0.7873 + }, + { + "start": 2813.42, + "end": 2814.2, + "probability": 0.8332 + }, + { + "start": 2814.8, + "end": 2816.06, + "probability": 0.8603 + }, + { + "start": 2816.72, + "end": 2817.84, + "probability": 0.9681 + }, + { + "start": 2817.92, + "end": 2820.86, + "probability": 0.9525 + }, + { + "start": 2821.1, + "end": 2821.86, + "probability": 0.7212 + }, + { + "start": 2822.54, + "end": 2824.66, + "probability": 0.9736 + }, + { + "start": 2825.42, + "end": 2826.2, + "probability": 0.9803 + }, + { + "start": 2826.64, + "end": 2830.96, + "probability": 0.9974 + }, + { + "start": 2831.1, + "end": 2831.48, + "probability": 0.7432 + }, + { + "start": 2832.42, + "end": 2834.18, + "probability": 0.9036 + }, + { + "start": 2834.24, + "end": 2836.38, + "probability": 0.9685 + }, + { + "start": 2837.28, + "end": 2840.94, + "probability": 0.9299 + }, + { + "start": 2841.62, + "end": 2845.08, + "probability": 0.5103 + }, + { + "start": 2846.08, + "end": 2848.5, + "probability": 0.62 + }, + { + "start": 2848.88, + "end": 2850.03, + "probability": 0.8392 + }, + { + "start": 2851.68, + "end": 2855.24, + "probability": 0.7297 + }, + { + "start": 2855.64, + "end": 2855.8, + "probability": 0.0653 + }, + { + "start": 2856.32, + "end": 2857.62, + "probability": 0.6827 + }, + { + "start": 2858.38, + "end": 2859.38, + "probability": 0.3299 + }, + { + "start": 2865.96, + "end": 2868.62, + "probability": 0.7247 + }, + { + "start": 2868.7, + "end": 2869.2, + "probability": 0.5971 + }, + { + "start": 2869.22, + "end": 2870.2, + "probability": 0.7303 + }, + { + "start": 2870.36, + "end": 2870.56, + "probability": 0.7582 + }, + { + "start": 2870.68, + "end": 2871.14, + "probability": 0.9085 + }, + { + "start": 2871.26, + "end": 2871.92, + "probability": 0.8203 + }, + { + "start": 2872.0, + "end": 2875.08, + "probability": 0.995 + }, + { + "start": 2876.58, + "end": 2878.54, + "probability": 0.9864 + }, + { + "start": 2878.64, + "end": 2879.14, + "probability": 0.9199 + }, + { + "start": 2880.22, + "end": 2881.56, + "probability": 0.724 + }, + { + "start": 2881.68, + "end": 2882.54, + "probability": 0.6691 + }, + { + "start": 2883.16, + "end": 2885.76, + "probability": 0.9732 + }, + { + "start": 2886.16, + "end": 2891.86, + "probability": 0.7999 + }, + { + "start": 2891.94, + "end": 2891.94, + "probability": 0.8281 + }, + { + "start": 2892.34, + "end": 2893.04, + "probability": 0.3768 + }, + { + "start": 2893.18, + "end": 2894.1, + "probability": 0.7796 + }, + { + "start": 2894.28, + "end": 2899.42, + "probability": 0.9929 + }, + { + "start": 2899.8, + "end": 2904.28, + "probability": 0.9963 + }, + { + "start": 2904.94, + "end": 2906.08, + "probability": 0.9498 + }, + { + "start": 2906.18, + "end": 2909.12, + "probability": 0.9769 + }, + { + "start": 2909.6, + "end": 2911.76, + "probability": 0.9326 + }, + { + "start": 2911.94, + "end": 2913.52, + "probability": 0.7468 + }, + { + "start": 2913.98, + "end": 2917.2, + "probability": 0.9379 + }, + { + "start": 2917.26, + "end": 2921.36, + "probability": 0.999 + }, + { + "start": 2922.18, + "end": 2928.44, + "probability": 0.9906 + }, + { + "start": 2928.58, + "end": 2933.1, + "probability": 0.9943 + }, + { + "start": 2933.3, + "end": 2936.9, + "probability": 0.9904 + }, + { + "start": 2936.9, + "end": 2940.36, + "probability": 0.9983 + }, + { + "start": 2942.12, + "end": 2946.56, + "probability": 0.9811 + }, + { + "start": 2946.56, + "end": 2949.82, + "probability": 0.9916 + }, + { + "start": 2950.4, + "end": 2952.6, + "probability": 0.9097 + }, + { + "start": 2952.94, + "end": 2956.82, + "probability": 0.8676 + }, + { + "start": 2957.52, + "end": 2961.86, + "probability": 0.9963 + }, + { + "start": 2962.34, + "end": 2966.32, + "probability": 0.9983 + }, + { + "start": 2966.32, + "end": 2972.7, + "probability": 0.9985 + }, + { + "start": 2972.7, + "end": 2977.66, + "probability": 0.9956 + }, + { + "start": 2978.2, + "end": 2982.32, + "probability": 0.9889 + }, + { + "start": 2982.92, + "end": 2983.86, + "probability": 0.8331 + }, + { + "start": 2984.94, + "end": 2988.88, + "probability": 0.9131 + }, + { + "start": 2989.04, + "end": 2991.74, + "probability": 0.9692 + }, + { + "start": 2992.34, + "end": 2992.6, + "probability": 0.7247 + }, + { + "start": 2992.72, + "end": 2993.88, + "probability": 0.8665 + }, + { + "start": 2993.92, + "end": 2994.51, + "probability": 0.9614 + }, + { + "start": 2994.62, + "end": 2996.24, + "probability": 0.834 + }, + { + "start": 2997.14, + "end": 3002.96, + "probability": 0.9587 + }, + { + "start": 3003.14, + "end": 3005.42, + "probability": 0.9573 + }, + { + "start": 3006.06, + "end": 3007.34, + "probability": 0.8815 + }, + { + "start": 3007.72, + "end": 3008.98, + "probability": 0.9836 + }, + { + "start": 3009.06, + "end": 3012.26, + "probability": 0.9881 + }, + { + "start": 3012.26, + "end": 3015.94, + "probability": 0.9945 + }, + { + "start": 3016.52, + "end": 3020.76, + "probability": 0.8315 + }, + { + "start": 3021.92, + "end": 3024.96, + "probability": 0.9816 + }, + { + "start": 3024.96, + "end": 3028.86, + "probability": 0.9939 + }, + { + "start": 3029.34, + "end": 3030.18, + "probability": 0.7889 + }, + { + "start": 3030.3, + "end": 3033.44, + "probability": 0.993 + }, + { + "start": 3034.54, + "end": 3034.94, + "probability": 0.5612 + }, + { + "start": 3034.96, + "end": 3035.54, + "probability": 0.9158 + }, + { + "start": 3035.76, + "end": 3037.46, + "probability": 0.8371 + }, + { + "start": 3037.54, + "end": 3038.84, + "probability": 0.9626 + }, + { + "start": 3039.1, + "end": 3043.18, + "probability": 0.9297 + }, + { + "start": 3043.62, + "end": 3043.8, + "probability": 0.3287 + }, + { + "start": 3043.88, + "end": 3047.28, + "probability": 0.9802 + }, + { + "start": 3047.8, + "end": 3051.06, + "probability": 0.9456 + }, + { + "start": 3051.74, + "end": 3053.92, + "probability": 0.9917 + }, + { + "start": 3054.14, + "end": 3060.26, + "probability": 0.999 + }, + { + "start": 3061.28, + "end": 3064.54, + "probability": 0.9989 + }, + { + "start": 3064.54, + "end": 3067.94, + "probability": 0.9972 + }, + { + "start": 3068.08, + "end": 3070.84, + "probability": 0.9982 + }, + { + "start": 3071.98, + "end": 3075.72, + "probability": 0.999 + }, + { + "start": 3076.58, + "end": 3079.11, + "probability": 0.9895 + }, + { + "start": 3079.3, + "end": 3080.82, + "probability": 0.8332 + }, + { + "start": 3082.28, + "end": 3084.54, + "probability": 0.9888 + }, + { + "start": 3084.64, + "end": 3084.96, + "probability": 0.7209 + }, + { + "start": 3085.0, + "end": 3085.36, + "probability": 0.4178 + }, + { + "start": 3085.4, + "end": 3085.84, + "probability": 0.9421 + }, + { + "start": 3085.88, + "end": 3087.1, + "probability": 0.9728 + }, + { + "start": 3087.66, + "end": 3089.46, + "probability": 0.9956 + }, + { + "start": 3089.98, + "end": 3093.4, + "probability": 0.9203 + }, + { + "start": 3093.5, + "end": 3096.4, + "probability": 0.9945 + }, + { + "start": 3096.86, + "end": 3100.54, + "probability": 0.9682 + }, + { + "start": 3101.02, + "end": 3105.76, + "probability": 0.9208 + }, + { + "start": 3106.22, + "end": 3111.32, + "probability": 0.9166 + }, + { + "start": 3111.94, + "end": 3116.48, + "probability": 0.8885 + }, + { + "start": 3116.98, + "end": 3117.54, + "probability": 0.7025 + }, + { + "start": 3117.78, + "end": 3117.98, + "probability": 0.8821 + }, + { + "start": 3118.44, + "end": 3118.88, + "probability": 0.2009 + }, + { + "start": 3119.12, + "end": 3120.42, + "probability": 0.8233 + }, + { + "start": 3120.54, + "end": 3126.72, + "probability": 0.9703 + }, + { + "start": 3127.66, + "end": 3128.3, + "probability": 0.812 + }, + { + "start": 3128.36, + "end": 3131.58, + "probability": 0.9983 + }, + { + "start": 3132.18, + "end": 3135.0, + "probability": 0.9722 + }, + { + "start": 3136.14, + "end": 3137.38, + "probability": 0.8706 + }, + { + "start": 3138.21, + "end": 3142.02, + "probability": 0.758 + }, + { + "start": 3142.14, + "end": 3146.82, + "probability": 0.9622 + }, + { + "start": 3147.18, + "end": 3153.44, + "probability": 0.9744 + }, + { + "start": 3153.56, + "end": 3154.38, + "probability": 0.5326 + }, + { + "start": 3154.56, + "end": 3155.24, + "probability": 0.881 + }, + { + "start": 3155.38, + "end": 3160.56, + "probability": 0.9917 + }, + { + "start": 3161.62, + "end": 3164.66, + "probability": 0.9233 + }, + { + "start": 3165.26, + "end": 3168.1, + "probability": 0.708 + }, + { + "start": 3169.63, + "end": 3172.96, + "probability": 0.908 + }, + { + "start": 3173.34, + "end": 3174.88, + "probability": 0.6816 + }, + { + "start": 3175.58, + "end": 3183.32, + "probability": 0.9889 + }, + { + "start": 3183.94, + "end": 3186.22, + "probability": 0.6931 + }, + { + "start": 3186.8, + "end": 3189.44, + "probability": 0.8345 + }, + { + "start": 3190.84, + "end": 3192.42, + "probability": 0.6934 + }, + { + "start": 3192.54, + "end": 3193.1, + "probability": 0.8101 + }, + { + "start": 3194.86, + "end": 3196.42, + "probability": 0.5693 + }, + { + "start": 3196.5, + "end": 3197.16, + "probability": 0.9084 + }, + { + "start": 3197.8, + "end": 3199.11, + "probability": 0.5101 + }, + { + "start": 3201.3, + "end": 3201.56, + "probability": 0.1436 + }, + { + "start": 3201.56, + "end": 3205.66, + "probability": 0.9773 + }, + { + "start": 3206.08, + "end": 3207.5, + "probability": 0.773 + }, + { + "start": 3212.22, + "end": 3213.84, + "probability": 0.7254 + }, + { + "start": 3233.74, + "end": 3233.74, + "probability": 0.0509 + }, + { + "start": 3233.74, + "end": 3236.06, + "probability": 0.6072 + }, + { + "start": 3236.06, + "end": 3237.06, + "probability": 0.7131 + }, + { + "start": 3237.16, + "end": 3240.06, + "probability": 0.6437 + }, + { + "start": 3240.14, + "end": 3241.02, + "probability": 0.4246 + }, + { + "start": 3241.1, + "end": 3241.3, + "probability": 0.4243 + }, + { + "start": 3241.54, + "end": 3242.04, + "probability": 0.4166 + }, + { + "start": 3242.1, + "end": 3242.2, + "probability": 0.6374 + }, + { + "start": 3242.38, + "end": 3244.2, + "probability": 0.927 + }, + { + "start": 3244.72, + "end": 3247.18, + "probability": 0.8446 + }, + { + "start": 3247.24, + "end": 3248.24, + "probability": 0.8343 + }, + { + "start": 3250.22, + "end": 3251.24, + "probability": 0.9753 + }, + { + "start": 3252.12, + "end": 3256.06, + "probability": 0.7229 + }, + { + "start": 3256.62, + "end": 3256.62, + "probability": 0.0024 + }, + { + "start": 3256.62, + "end": 3256.62, + "probability": 0.1843 + }, + { + "start": 3256.62, + "end": 3256.62, + "probability": 0.0489 + }, + { + "start": 3256.62, + "end": 3258.21, + "probability": 0.2957 + }, + { + "start": 3259.18, + "end": 3261.82, + "probability": 0.7405 + }, + { + "start": 3261.88, + "end": 3263.29, + "probability": 0.4697 + }, + { + "start": 3264.12, + "end": 3265.04, + "probability": 0.0558 + }, + { + "start": 3265.4, + "end": 3268.84, + "probability": 0.9847 + }, + { + "start": 3268.98, + "end": 3272.74, + "probability": 0.7514 + }, + { + "start": 3273.34, + "end": 3275.9, + "probability": 0.6025 + }, + { + "start": 3276.04, + "end": 3278.84, + "probability": 0.7558 + }, + { + "start": 3278.96, + "end": 3280.46, + "probability": 0.9922 + }, + { + "start": 3280.46, + "end": 3282.32, + "probability": 0.9635 + }, + { + "start": 3282.44, + "end": 3285.42, + "probability": 0.9438 + }, + { + "start": 3285.5, + "end": 3290.4, + "probability": 0.9589 + }, + { + "start": 3291.02, + "end": 3293.88, + "probability": 0.9677 + }, + { + "start": 3293.88, + "end": 3297.68, + "probability": 0.9822 + }, + { + "start": 3298.22, + "end": 3299.36, + "probability": 0.5969 + }, + { + "start": 3300.96, + "end": 3302.42, + "probability": 0.9891 + }, + { + "start": 3302.56, + "end": 3303.66, + "probability": 0.2363 + }, + { + "start": 3303.82, + "end": 3305.76, + "probability": 0.2024 + }, + { + "start": 3306.24, + "end": 3310.54, + "probability": 0.7452 + }, + { + "start": 3310.7, + "end": 3312.1, + "probability": 0.6292 + }, + { + "start": 3312.18, + "end": 3313.26, + "probability": 0.5672 + }, + { + "start": 3313.32, + "end": 3314.02, + "probability": 0.929 + }, + { + "start": 3315.1, + "end": 3315.9, + "probability": 0.4447 + }, + { + "start": 3316.0, + "end": 3319.22, + "probability": 0.9595 + }, + { + "start": 3319.28, + "end": 3321.94, + "probability": 0.9622 + }, + { + "start": 3321.94, + "end": 3325.84, + "probability": 0.9961 + }, + { + "start": 3326.44, + "end": 3329.76, + "probability": 0.9963 + }, + { + "start": 3329.76, + "end": 3333.5, + "probability": 0.9585 + }, + { + "start": 3333.58, + "end": 3334.62, + "probability": 0.7499 + }, + { + "start": 3334.72, + "end": 3337.78, + "probability": 0.9772 + }, + { + "start": 3337.9, + "end": 3338.12, + "probability": 0.7969 + }, + { + "start": 3339.76, + "end": 3340.24, + "probability": 0.5395 + }, + { + "start": 3340.64, + "end": 3343.09, + "probability": 0.9622 + }, + { + "start": 3343.48, + "end": 3347.46, + "probability": 0.9526 + }, + { + "start": 3348.14, + "end": 3349.08, + "probability": 0.9536 + }, + { + "start": 3349.12, + "end": 3354.34, + "probability": 0.9775 + }, + { + "start": 3355.08, + "end": 3356.04, + "probability": 0.7221 + }, + { + "start": 3356.08, + "end": 3356.68, + "probability": 0.6846 + }, + { + "start": 3373.5, + "end": 3376.59, + "probability": 0.1983 + }, + { + "start": 3389.2, + "end": 3391.14, + "probability": 0.036 + }, + { + "start": 3393.3, + "end": 3395.46, + "probability": 0.1604 + }, + { + "start": 3399.57, + "end": 3402.25, + "probability": 0.1923 + }, + { + "start": 3405.1, + "end": 3405.2, + "probability": 0.1547 + }, + { + "start": 3408.76, + "end": 3410.26, + "probability": 0.0823 + }, + { + "start": 3413.63, + "end": 3415.96, + "probability": 0.1119 + }, + { + "start": 3419.34, + "end": 3421.02, + "probability": 0.1336 + }, + { + "start": 3422.2, + "end": 3424.26, + "probability": 0.0975 + }, + { + "start": 3425.8, + "end": 3428.58, + "probability": 0.0187 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.44, + "end": 3450.82, + "probability": 0.2241 + }, + { + "start": 3451.82, + "end": 3454.84, + "probability": 0.7866 + }, + { + "start": 3454.84, + "end": 3457.44, + "probability": 0.7545 + }, + { + "start": 3458.6, + "end": 3459.9, + "probability": 0.0015 + }, + { + "start": 3460.42, + "end": 3463.94, + "probability": 0.0543 + }, + { + "start": 3466.74, + "end": 3467.22, + "probability": 0.0461 + }, + { + "start": 3467.22, + "end": 3467.22, + "probability": 0.3341 + }, + { + "start": 3467.22, + "end": 3467.24, + "probability": 0.4259 + }, + { + "start": 3467.24, + "end": 3467.24, + "probability": 0.2043 + }, + { + "start": 3467.24, + "end": 3467.82, + "probability": 0.0585 + }, + { + "start": 3467.82, + "end": 3473.12, + "probability": 0.1699 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.0, + "end": 3572.0, + "probability": 0.0 + }, + { + "start": 3572.62, + "end": 3572.62, + "probability": 0.0139 + }, + { + "start": 3572.62, + "end": 3572.62, + "probability": 0.0122 + }, + { + "start": 3572.62, + "end": 3572.62, + "probability": 0.0286 + }, + { + "start": 3572.62, + "end": 3573.54, + "probability": 0.0762 + }, + { + "start": 3574.92, + "end": 3578.5, + "probability": 0.9722 + }, + { + "start": 3579.96, + "end": 3584.08, + "probability": 0.9944 + }, + { + "start": 3586.68, + "end": 3589.54, + "probability": 0.8711 + }, + { + "start": 3590.14, + "end": 3591.9, + "probability": 0.9804 + }, + { + "start": 3592.84, + "end": 3595.96, + "probability": 0.9131 + }, + { + "start": 3596.48, + "end": 3597.32, + "probability": 0.7973 + }, + { + "start": 3598.22, + "end": 3603.48, + "probability": 0.9881 + }, + { + "start": 3605.2, + "end": 3606.52, + "probability": 0.9966 + }, + { + "start": 3607.54, + "end": 3610.0, + "probability": 0.9679 + }, + { + "start": 3610.86, + "end": 3611.8, + "probability": 0.8921 + }, + { + "start": 3614.6, + "end": 3616.4, + "probability": 0.9559 + }, + { + "start": 3617.9, + "end": 3620.3, + "probability": 0.8658 + }, + { + "start": 3622.5, + "end": 3625.62, + "probability": 0.9917 + }, + { + "start": 3627.82, + "end": 3629.83, + "probability": 0.9805 + }, + { + "start": 3630.64, + "end": 3631.92, + "probability": 0.9858 + }, + { + "start": 3633.34, + "end": 3636.48, + "probability": 0.9974 + }, + { + "start": 3637.62, + "end": 3640.04, + "probability": 0.9966 + }, + { + "start": 3641.18, + "end": 3642.36, + "probability": 0.9914 + }, + { + "start": 3643.26, + "end": 3645.14, + "probability": 0.9662 + }, + { + "start": 3646.22, + "end": 3650.68, + "probability": 0.9902 + }, + { + "start": 3651.2, + "end": 3653.14, + "probability": 0.982 + }, + { + "start": 3653.54, + "end": 3655.32, + "probability": 0.9888 + }, + { + "start": 3656.9, + "end": 3660.22, + "probability": 0.9988 + }, + { + "start": 3661.12, + "end": 3666.08, + "probability": 0.991 + }, + { + "start": 3667.04, + "end": 3667.16, + "probability": 0.4758 + }, + { + "start": 3667.24, + "end": 3668.06, + "probability": 0.7537 + }, + { + "start": 3668.66, + "end": 3672.18, + "probability": 0.9554 + }, + { + "start": 3672.96, + "end": 3674.4, + "probability": 0.9776 + }, + { + "start": 3674.52, + "end": 3677.96, + "probability": 0.9841 + }, + { + "start": 3678.32, + "end": 3682.65, + "probability": 0.9773 + }, + { + "start": 3682.72, + "end": 3686.72, + "probability": 0.9984 + }, + { + "start": 3687.26, + "end": 3691.44, + "probability": 0.988 + }, + { + "start": 3692.1, + "end": 3696.62, + "probability": 0.9541 + }, + { + "start": 3696.84, + "end": 3697.52, + "probability": 0.6847 + }, + { + "start": 3697.68, + "end": 3698.9, + "probability": 0.869 + }, + { + "start": 3699.3, + "end": 3703.42, + "probability": 0.9917 + }, + { + "start": 3704.18, + "end": 3706.96, + "probability": 0.9906 + }, + { + "start": 3707.86, + "end": 3708.92, + "probability": 0.9924 + }, + { + "start": 3709.82, + "end": 3710.72, + "probability": 0.8521 + }, + { + "start": 3711.56, + "end": 3713.74, + "probability": 0.9956 + }, + { + "start": 3714.08, + "end": 3716.74, + "probability": 0.9968 + }, + { + "start": 3717.34, + "end": 3721.12, + "probability": 0.9816 + }, + { + "start": 3722.0, + "end": 3722.56, + "probability": 0.3986 + }, + { + "start": 3722.8, + "end": 3724.4, + "probability": 0.6931 + }, + { + "start": 3724.76, + "end": 3726.16, + "probability": 0.6262 + }, + { + "start": 3726.18, + "end": 3726.8, + "probability": 0.9399 + }, + { + "start": 3727.26, + "end": 3728.68, + "probability": 0.5775 + }, + { + "start": 3729.7, + "end": 3732.34, + "probability": 0.9755 + }, + { + "start": 3732.98, + "end": 3735.32, + "probability": 0.9855 + }, + { + "start": 3736.16, + "end": 3738.18, + "probability": 0.9696 + }, + { + "start": 3738.42, + "end": 3741.1, + "probability": 0.9648 + }, + { + "start": 3741.48, + "end": 3743.36, + "probability": 0.9993 + }, + { + "start": 3744.26, + "end": 3746.22, + "probability": 0.9831 + }, + { + "start": 3746.82, + "end": 3749.02, + "probability": 0.9714 + }, + { + "start": 3749.54, + "end": 3751.4, + "probability": 0.8623 + }, + { + "start": 3752.18, + "end": 3754.58, + "probability": 0.903 + }, + { + "start": 3755.26, + "end": 3758.56, + "probability": 0.9967 + }, + { + "start": 3758.68, + "end": 3759.38, + "probability": 0.556 + }, + { + "start": 3759.66, + "end": 3762.24, + "probability": 0.8791 + }, + { + "start": 3763.0, + "end": 3763.66, + "probability": 0.4107 + }, + { + "start": 3764.82, + "end": 3767.86, + "probability": 0.7817 + }, + { + "start": 3768.52, + "end": 3768.98, + "probability": 0.7631 + }, + { + "start": 3770.48, + "end": 3772.48, + "probability": 0.827 + }, + { + "start": 3776.52, + "end": 3776.82, + "probability": 0.3198 + }, + { + "start": 3776.86, + "end": 3778.64, + "probability": 0.7022 + }, + { + "start": 3780.16, + "end": 3782.76, + "probability": 0.7984 + }, + { + "start": 3783.52, + "end": 3785.02, + "probability": 0.8982 + }, + { + "start": 3785.5, + "end": 3787.86, + "probability": 0.9893 + }, + { + "start": 3788.88, + "end": 3790.9, + "probability": 0.9927 + }, + { + "start": 3791.96, + "end": 3792.56, + "probability": 0.8013 + }, + { + "start": 3793.6, + "end": 3796.03, + "probability": 0.6299 + }, + { + "start": 3796.82, + "end": 3798.34, + "probability": 0.8203 + }, + { + "start": 3798.8, + "end": 3802.98, + "probability": 0.9285 + }, + { + "start": 3803.28, + "end": 3803.82, + "probability": 0.8696 + }, + { + "start": 3805.14, + "end": 3805.74, + "probability": 0.9818 + }, + { + "start": 3807.02, + "end": 3807.28, + "probability": 0.9219 + }, + { + "start": 3807.9, + "end": 3809.76, + "probability": 0.9668 + }, + { + "start": 3810.74, + "end": 3812.78, + "probability": 0.9764 + }, + { + "start": 3812.84, + "end": 3813.08, + "probability": 0.9041 + }, + { + "start": 3813.16, + "end": 3815.9, + "probability": 0.8802 + }, + { + "start": 3817.6, + "end": 3819.77, + "probability": 0.9434 + }, + { + "start": 3820.78, + "end": 3824.01, + "probability": 0.9645 + }, + { + "start": 3824.82, + "end": 3828.12, + "probability": 0.9613 + }, + { + "start": 3828.24, + "end": 3828.96, + "probability": 0.8181 + }, + { + "start": 3829.32, + "end": 3829.67, + "probability": 0.8993 + }, + { + "start": 3831.38, + "end": 3833.02, + "probability": 0.9586 + }, + { + "start": 3833.74, + "end": 3834.63, + "probability": 0.8755 + }, + { + "start": 3835.62, + "end": 3839.06, + "probability": 0.9961 + }, + { + "start": 3839.82, + "end": 3841.28, + "probability": 0.6793 + }, + { + "start": 3842.36, + "end": 3845.0, + "probability": 0.9969 + }, + { + "start": 3845.18, + "end": 3846.98, + "probability": 0.71 + }, + { + "start": 3847.36, + "end": 3849.22, + "probability": 0.7531 + }, + { + "start": 3849.6, + "end": 3850.12, + "probability": 0.6419 + }, + { + "start": 3850.82, + "end": 3851.9, + "probability": 0.5626 + }, + { + "start": 3852.64, + "end": 3853.42, + "probability": 0.7065 + }, + { + "start": 3853.68, + "end": 3858.0, + "probability": 0.9822 + }, + { + "start": 3859.34, + "end": 3860.62, + "probability": 0.5776 + }, + { + "start": 3861.76, + "end": 3862.42, + "probability": 0.7116 + }, + { + "start": 3863.78, + "end": 3864.06, + "probability": 0.0038 + }, + { + "start": 3864.68, + "end": 3867.98, + "probability": 0.672 + }, + { + "start": 3868.38, + "end": 3868.54, + "probability": 0.819 + }, + { + "start": 3868.72, + "end": 3869.54, + "probability": 0.7994 + }, + { + "start": 3869.7, + "end": 3869.8, + "probability": 0.871 + }, + { + "start": 3869.98, + "end": 3871.84, + "probability": 0.9974 + }, + { + "start": 3872.48, + "end": 3875.17, + "probability": 0.9794 + }, + { + "start": 3875.94, + "end": 3877.64, + "probability": 0.7856 + }, + { + "start": 3877.98, + "end": 3879.42, + "probability": 0.8489 + }, + { + "start": 3879.9, + "end": 3880.12, + "probability": 0.9286 + }, + { + "start": 3880.9, + "end": 3881.11, + "probability": 0.6702 + }, + { + "start": 3882.3, + "end": 3883.74, + "probability": 0.9819 + }, + { + "start": 3883.94, + "end": 3886.42, + "probability": 0.9466 + }, + { + "start": 3887.28, + "end": 3887.78, + "probability": 0.4281 + }, + { + "start": 3888.94, + "end": 3892.68, + "probability": 0.9621 + }, + { + "start": 3893.84, + "end": 3894.68, + "probability": 0.8789 + }, + { + "start": 3895.84, + "end": 3898.02, + "probability": 0.9869 + }, + { + "start": 3898.62, + "end": 3901.12, + "probability": 0.9718 + }, + { + "start": 3901.92, + "end": 3904.2, + "probability": 0.9957 + }, + { + "start": 3904.52, + "end": 3906.34, + "probability": 0.7754 + }, + { + "start": 3906.5, + "end": 3906.9, + "probability": 0.645 + }, + { + "start": 3906.94, + "end": 3909.48, + "probability": 0.9882 + }, + { + "start": 3910.0, + "end": 3915.66, + "probability": 0.9598 + }, + { + "start": 3917.12, + "end": 3917.72, + "probability": 0.9526 + }, + { + "start": 3917.94, + "end": 3918.96, + "probability": 0.6384 + }, + { + "start": 3919.08, + "end": 3919.99, + "probability": 0.8345 + }, + { + "start": 3921.02, + "end": 3923.0, + "probability": 0.9887 + }, + { + "start": 3923.06, + "end": 3925.42, + "probability": 0.9037 + }, + { + "start": 3925.86, + "end": 3926.73, + "probability": 0.998 + }, + { + "start": 3928.24, + "end": 3929.24, + "probability": 0.9915 + }, + { + "start": 3929.28, + "end": 3930.38, + "probability": 0.9154 + }, + { + "start": 3930.76, + "end": 3931.02, + "probability": 0.7157 + }, + { + "start": 3931.18, + "end": 3931.54, + "probability": 0.5949 + }, + { + "start": 3931.86, + "end": 3933.5, + "probability": 0.5291 + }, + { + "start": 3934.54, + "end": 3936.78, + "probability": 0.9727 + }, + { + "start": 3937.0, + "end": 3937.66, + "probability": 0.903 + }, + { + "start": 3938.62, + "end": 3941.98, + "probability": 0.9886 + }, + { + "start": 3942.0, + "end": 3946.06, + "probability": 0.9099 + }, + { + "start": 3946.18, + "end": 3946.8, + "probability": 0.5139 + }, + { + "start": 3947.58, + "end": 3948.94, + "probability": 0.9976 + }, + { + "start": 3949.62, + "end": 3950.92, + "probability": 0.9949 + }, + { + "start": 3952.2, + "end": 3953.31, + "probability": 0.9985 + }, + { + "start": 3954.26, + "end": 3955.52, + "probability": 0.5053 + }, + { + "start": 3956.64, + "end": 3957.18, + "probability": 0.7847 + }, + { + "start": 3958.02, + "end": 3959.35, + "probability": 0.9583 + }, + { + "start": 3959.58, + "end": 3961.82, + "probability": 0.4664 + }, + { + "start": 3962.22, + "end": 3964.48, + "probability": 0.8821 + }, + { + "start": 3964.48, + "end": 3964.7, + "probability": 0.6483 + }, + { + "start": 3965.64, + "end": 3966.36, + "probability": 0.378 + }, + { + "start": 3966.5, + "end": 3967.06, + "probability": 0.7961 + }, + { + "start": 3967.38, + "end": 3971.02, + "probability": 0.9843 + }, + { + "start": 3971.02, + "end": 3975.22, + "probability": 0.9941 + }, + { + "start": 3976.48, + "end": 3977.5, + "probability": 0.928 + }, + { + "start": 3978.16, + "end": 3981.4, + "probability": 0.9938 + }, + { + "start": 3982.22, + "end": 3983.19, + "probability": 0.9314 + }, + { + "start": 3983.3, + "end": 3983.86, + "probability": 0.6867 + }, + { + "start": 3984.2, + "end": 3985.21, + "probability": 0.959 + }, + { + "start": 3986.1, + "end": 3989.22, + "probability": 0.9851 + }, + { + "start": 3990.38, + "end": 3993.98, + "probability": 0.9375 + }, + { + "start": 3994.66, + "end": 3996.04, + "probability": 0.7906 + }, + { + "start": 3997.24, + "end": 3999.06, + "probability": 0.9739 + }, + { + "start": 3999.08, + "end": 4000.28, + "probability": 0.9672 + }, + { + "start": 4000.72, + "end": 4001.6, + "probability": 0.9331 + }, + { + "start": 4001.7, + "end": 4003.12, + "probability": 0.9956 + }, + { + "start": 4003.3, + "end": 4005.38, + "probability": 0.998 + }, + { + "start": 4006.3, + "end": 4009.74, + "probability": 0.9119 + }, + { + "start": 4009.94, + "end": 4012.0, + "probability": 0.2449 + }, + { + "start": 4012.34, + "end": 4013.64, + "probability": 0.7855 + }, + { + "start": 4014.04, + "end": 4016.68, + "probability": 0.1447 + }, + { + "start": 4016.96, + "end": 4017.72, + "probability": 0.0251 + }, + { + "start": 4017.9, + "end": 4017.9, + "probability": 0.1119 + }, + { + "start": 4017.94, + "end": 4019.12, + "probability": 0.6502 + }, + { + "start": 4019.46, + "end": 4020.34, + "probability": 0.8102 + }, + { + "start": 4020.76, + "end": 4021.58, + "probability": 0.9499 + }, + { + "start": 4021.7, + "end": 4024.7, + "probability": 0.9585 + }, + { + "start": 4024.98, + "end": 4025.8, + "probability": 0.9532 + }, + { + "start": 4025.8, + "end": 4026.22, + "probability": 0.7116 + }, + { + "start": 4026.72, + "end": 4029.2, + "probability": 0.9321 + }, + { + "start": 4029.78, + "end": 4030.72, + "probability": 0.1822 + }, + { + "start": 4030.74, + "end": 4032.26, + "probability": 0.7235 + }, + { + "start": 4032.34, + "end": 4033.0, + "probability": 0.9115 + }, + { + "start": 4033.26, + "end": 4033.76, + "probability": 0.5864 + }, + { + "start": 4033.84, + "end": 4034.1, + "probability": 0.5804 + }, + { + "start": 4034.18, + "end": 4034.6, + "probability": 0.7133 + }, + { + "start": 4035.02, + "end": 4036.82, + "probability": 0.9499 + }, + { + "start": 4037.46, + "end": 4040.5, + "probability": 0.9821 + }, + { + "start": 4043.44, + "end": 4046.14, + "probability": 0.5786 + }, + { + "start": 4046.76, + "end": 4048.6, + "probability": 0.986 + }, + { + "start": 4049.02, + "end": 4050.72, + "probability": 0.9823 + }, + { + "start": 4051.1, + "end": 4052.74, + "probability": 0.998 + }, + { + "start": 4053.06, + "end": 4053.84, + "probability": 0.9543 + }, + { + "start": 4054.04, + "end": 4055.3, + "probability": 0.7858 + }, + { + "start": 4055.7, + "end": 4057.4, + "probability": 0.8899 + }, + { + "start": 4057.76, + "end": 4059.72, + "probability": 0.9948 + }, + { + "start": 4060.4, + "end": 4060.68, + "probability": 0.4147 + }, + { + "start": 4061.38, + "end": 4064.04, + "probability": 0.5991 + }, + { + "start": 4065.38, + "end": 4066.92, + "probability": 0.9282 + }, + { + "start": 4068.1, + "end": 4070.04, + "probability": 0.7918 + }, + { + "start": 4074.18, + "end": 4076.34, + "probability": 0.4058 + }, + { + "start": 4076.46, + "end": 4076.88, + "probability": 0.5795 + }, + { + "start": 4076.94, + "end": 4078.48, + "probability": 0.92 + }, + { + "start": 4078.54, + "end": 4080.34, + "probability": 0.9335 + }, + { + "start": 4080.62, + "end": 4080.72, + "probability": 0.6676 + }, + { + "start": 4083.6, + "end": 4085.52, + "probability": 0.6578 + }, + { + "start": 4086.38, + "end": 4090.84, + "probability": 0.6546 + }, + { + "start": 4095.06, + "end": 4099.47, + "probability": 0.6684 + }, + { + "start": 4100.72, + "end": 4102.1, + "probability": 0.9552 + }, + { + "start": 4103.32, + "end": 4105.68, + "probability": 0.6234 + }, + { + "start": 4107.44, + "end": 4108.44, + "probability": 0.9351 + }, + { + "start": 4109.94, + "end": 4112.2, + "probability": 0.8759 + }, + { + "start": 4113.12, + "end": 4116.23, + "probability": 0.7312 + }, + { + "start": 4117.92, + "end": 4119.0, + "probability": 0.6691 + }, + { + "start": 4119.94, + "end": 4124.06, + "probability": 0.9648 + }, + { + "start": 4124.78, + "end": 4125.9, + "probability": 0.7167 + }, + { + "start": 4127.14, + "end": 4128.48, + "probability": 0.9893 + }, + { + "start": 4130.0, + "end": 4130.94, + "probability": 0.7944 + }, + { + "start": 4131.68, + "end": 4132.92, + "probability": 0.9811 + }, + { + "start": 4133.48, + "end": 4133.94, + "probability": 0.485 + }, + { + "start": 4134.66, + "end": 4135.16, + "probability": 0.9618 + }, + { + "start": 4135.88, + "end": 4136.26, + "probability": 0.7352 + }, + { + "start": 4136.8, + "end": 4140.78, + "probability": 0.7771 + }, + { + "start": 4141.06, + "end": 4141.2, + "probability": 0.2507 + }, + { + "start": 4141.32, + "end": 4143.06, + "probability": 0.9938 + }, + { + "start": 4143.52, + "end": 4144.74, + "probability": 0.2554 + }, + { + "start": 4146.7, + "end": 4146.7, + "probability": 0.3702 + }, + { + "start": 4146.7, + "end": 4148.3, + "probability": 0.6014 + }, + { + "start": 4148.52, + "end": 4150.76, + "probability": 0.7756 + }, + { + "start": 4150.94, + "end": 4150.94, + "probability": 0.4358 + }, + { + "start": 4150.94, + "end": 4150.94, + "probability": 0.5594 + }, + { + "start": 4150.94, + "end": 4151.32, + "probability": 0.6102 + }, + { + "start": 4152.24, + "end": 4153.46, + "probability": 0.9407 + }, + { + "start": 4156.56, + "end": 4156.56, + "probability": 0.0433 + }, + { + "start": 4156.56, + "end": 4156.94, + "probability": 0.174 + }, + { + "start": 4158.1, + "end": 4160.78, + "probability": 0.8079 + }, + { + "start": 4161.92, + "end": 4165.36, + "probability": 0.9834 + }, + { + "start": 4166.26, + "end": 4167.64, + "probability": 0.9321 + }, + { + "start": 4167.86, + "end": 4168.6, + "probability": 0.7365 + }, + { + "start": 4169.44, + "end": 4170.3, + "probability": 0.9751 + }, + { + "start": 4171.28, + "end": 4175.38, + "probability": 0.9595 + }, + { + "start": 4176.22, + "end": 4179.36, + "probability": 0.8491 + }, + { + "start": 4180.2, + "end": 4184.74, + "probability": 0.9104 + }, + { + "start": 4185.52, + "end": 4187.23, + "probability": 0.6453 + }, + { + "start": 4189.66, + "end": 4191.26, + "probability": 0.9919 + }, + { + "start": 4191.94, + "end": 4193.38, + "probability": 0.9789 + }, + { + "start": 4194.66, + "end": 4196.6, + "probability": 0.9731 + }, + { + "start": 4197.38, + "end": 4198.51, + "probability": 0.7089 + }, + { + "start": 4199.96, + "end": 4202.76, + "probability": 0.6349 + }, + { + "start": 4203.06, + "end": 4204.92, + "probability": 0.9373 + }, + { + "start": 4205.2, + "end": 4207.16, + "probability": 0.9646 + }, + { + "start": 4207.56, + "end": 4210.74, + "probability": 0.9314 + }, + { + "start": 4211.32, + "end": 4213.14, + "probability": 0.7432 + }, + { + "start": 4213.34, + "end": 4216.78, + "probability": 0.6863 + }, + { + "start": 4217.32, + "end": 4218.28, + "probability": 0.4564 + }, + { + "start": 4221.24, + "end": 4223.8, + "probability": 0.8726 + }, + { + "start": 4225.06, + "end": 4227.96, + "probability": 0.9683 + }, + { + "start": 4228.18, + "end": 4229.14, + "probability": 0.5797 + }, + { + "start": 4230.52, + "end": 4232.46, + "probability": 0.9665 + }, + { + "start": 4233.2, + "end": 4234.36, + "probability": 0.8751 + }, + { + "start": 4234.84, + "end": 4236.3, + "probability": 0.6948 + }, + { + "start": 4236.96, + "end": 4243.34, + "probability": 0.9152 + }, + { + "start": 4243.9, + "end": 4245.08, + "probability": 0.7337 + }, + { + "start": 4245.58, + "end": 4246.98, + "probability": 0.9107 + }, + { + "start": 4247.04, + "end": 4253.64, + "probability": 0.7633 + }, + { + "start": 4254.64, + "end": 4256.56, + "probability": 0.9053 + }, + { + "start": 4257.32, + "end": 4261.92, + "probability": 0.887 + }, + { + "start": 4262.96, + "end": 4267.76, + "probability": 0.9039 + }, + { + "start": 4268.3, + "end": 4271.06, + "probability": 0.8069 + }, + { + "start": 4271.58, + "end": 4272.67, + "probability": 0.9028 + }, + { + "start": 4273.59, + "end": 4273.71, + "probability": 0.053 + }, + { + "start": 4274.82, + "end": 4275.12, + "probability": 0.4732 + }, + { + "start": 4275.36, + "end": 4279.48, + "probability": 0.9883 + }, + { + "start": 4279.9, + "end": 4283.64, + "probability": 0.9435 + }, + { + "start": 4284.22, + "end": 4288.06, + "probability": 0.994 + }, + { + "start": 4288.44, + "end": 4289.36, + "probability": 0.7335 + }, + { + "start": 4289.8, + "end": 4290.55, + "probability": 0.9291 + }, + { + "start": 4291.24, + "end": 4292.38, + "probability": 0.7088 + }, + { + "start": 4293.48, + "end": 4298.04, + "probability": 0.8966 + }, + { + "start": 4298.12, + "end": 4298.61, + "probability": 0.6056 + }, + { + "start": 4298.86, + "end": 4300.5, + "probability": 0.9352 + }, + { + "start": 4302.04, + "end": 4304.1, + "probability": 0.7475 + }, + { + "start": 4329.52, + "end": 4330.32, + "probability": 0.6688 + }, + { + "start": 4330.88, + "end": 4332.34, + "probability": 0.78 + }, + { + "start": 4333.66, + "end": 4338.04, + "probability": 0.6639 + }, + { + "start": 4339.52, + "end": 4340.46, + "probability": 0.897 + }, + { + "start": 4341.1, + "end": 4344.04, + "probability": 0.9915 + }, + { + "start": 4344.12, + "end": 4344.94, + "probability": 0.6337 + }, + { + "start": 4345.74, + "end": 4351.18, + "probability": 0.9546 + }, + { + "start": 4352.04, + "end": 4355.14, + "probability": 0.998 + }, + { + "start": 4356.0, + "end": 4358.54, + "probability": 0.7724 + }, + { + "start": 4359.4, + "end": 4364.42, + "probability": 0.9937 + }, + { + "start": 4365.78, + "end": 4369.78, + "probability": 0.9971 + }, + { + "start": 4370.56, + "end": 4373.4, + "probability": 0.8792 + }, + { + "start": 4373.96, + "end": 4375.08, + "probability": 0.9948 + }, + { + "start": 4377.2, + "end": 4379.42, + "probability": 0.6592 + }, + { + "start": 4380.52, + "end": 4381.96, + "probability": 0.8986 + }, + { + "start": 4382.68, + "end": 4384.66, + "probability": 0.6295 + }, + { + "start": 4385.74, + "end": 4389.78, + "probability": 0.9493 + }, + { + "start": 4390.62, + "end": 4393.16, + "probability": 0.7471 + }, + { + "start": 4394.2, + "end": 4396.1, + "probability": 0.897 + }, + { + "start": 4396.76, + "end": 4397.48, + "probability": 0.8159 + }, + { + "start": 4397.64, + "end": 4397.94, + "probability": 0.7199 + }, + { + "start": 4398.0, + "end": 4399.21, + "probability": 0.9779 + }, + { + "start": 4399.82, + "end": 4401.74, + "probability": 0.9501 + }, + { + "start": 4401.9, + "end": 4406.42, + "probability": 0.9414 + }, + { + "start": 4407.54, + "end": 4408.49, + "probability": 0.9973 + }, + { + "start": 4409.42, + "end": 4410.15, + "probability": 0.9263 + }, + { + "start": 4410.86, + "end": 4411.8, + "probability": 0.7625 + }, + { + "start": 4413.04, + "end": 4413.92, + "probability": 0.9034 + }, + { + "start": 4414.0, + "end": 4418.34, + "probability": 0.9812 + }, + { + "start": 4418.34, + "end": 4421.72, + "probability": 0.9897 + }, + { + "start": 4422.86, + "end": 4427.26, + "probability": 0.9907 + }, + { + "start": 4427.62, + "end": 4430.86, + "probability": 0.6728 + }, + { + "start": 4431.2, + "end": 4431.72, + "probability": 0.6489 + }, + { + "start": 4431.76, + "end": 4432.88, + "probability": 0.9764 + }, + { + "start": 4433.5, + "end": 4434.6, + "probability": 0.7959 + }, + { + "start": 4434.76, + "end": 4437.06, + "probability": 0.831 + }, + { + "start": 4437.1, + "end": 4439.48, + "probability": 0.9277 + }, + { + "start": 4440.76, + "end": 4445.16, + "probability": 0.8988 + }, + { + "start": 4445.38, + "end": 4448.88, + "probability": 0.98 + }, + { + "start": 4448.9, + "end": 4453.48, + "probability": 0.9899 + }, + { + "start": 4453.64, + "end": 4454.08, + "probability": 0.8344 + }, + { + "start": 4454.58, + "end": 4457.14, + "probability": 0.923 + }, + { + "start": 4457.28, + "end": 4458.74, + "probability": 0.996 + }, + { + "start": 4459.08, + "end": 4461.84, + "probability": 0.9888 + }, + { + "start": 4461.92, + "end": 4464.22, + "probability": 0.7907 + }, + { + "start": 4464.8, + "end": 4468.6, + "probability": 0.9197 + }, + { + "start": 4469.42, + "end": 4470.72, + "probability": 0.8801 + }, + { + "start": 4470.8, + "end": 4473.16, + "probability": 0.9624 + }, + { + "start": 4473.66, + "end": 4475.3, + "probability": 0.7443 + }, + { + "start": 4475.88, + "end": 4480.36, + "probability": 0.9925 + }, + { + "start": 4480.36, + "end": 4484.1, + "probability": 0.9851 + }, + { + "start": 4485.48, + "end": 4486.4, + "probability": 0.4884 + }, + { + "start": 4486.44, + "end": 4494.02, + "probability": 0.9578 + }, + { + "start": 4494.12, + "end": 4495.22, + "probability": 0.868 + }, + { + "start": 4495.36, + "end": 4496.04, + "probability": 0.6901 + }, + { + "start": 4496.96, + "end": 4497.76, + "probability": 0.7932 + }, + { + "start": 4498.46, + "end": 4501.22, + "probability": 0.7598 + }, + { + "start": 4501.22, + "end": 4503.78, + "probability": 0.9544 + }, + { + "start": 4504.38, + "end": 4509.28, + "probability": 0.6008 + }, + { + "start": 4510.36, + "end": 4512.32, + "probability": 0.8267 + }, + { + "start": 4513.02, + "end": 4517.6, + "probability": 0.9666 + }, + { + "start": 4518.12, + "end": 4521.96, + "probability": 0.8101 + }, + { + "start": 4522.34, + "end": 4523.8, + "probability": 0.7891 + }, + { + "start": 4524.38, + "end": 4526.68, + "probability": 0.8196 + }, + { + "start": 4526.78, + "end": 4527.88, + "probability": 0.7438 + }, + { + "start": 4527.94, + "end": 4528.5, + "probability": 0.575 + }, + { + "start": 4528.58, + "end": 4530.54, + "probability": 0.8592 + }, + { + "start": 4531.36, + "end": 4532.92, + "probability": 0.8629 + }, + { + "start": 4532.98, + "end": 4535.68, + "probability": 0.8419 + }, + { + "start": 4536.16, + "end": 4540.9, + "probability": 0.9816 + }, + { + "start": 4540.96, + "end": 4541.69, + "probability": 0.1576 + }, + { + "start": 4542.7, + "end": 4542.76, + "probability": 0.0181 + }, + { + "start": 4542.96, + "end": 4544.62, + "probability": 0.6386 + }, + { + "start": 4544.94, + "end": 4545.12, + "probability": 0.6119 + }, + { + "start": 4545.2, + "end": 4548.72, + "probability": 0.9785 + }, + { + "start": 4549.56, + "end": 4552.16, + "probability": 0.7817 + }, + { + "start": 4552.8, + "end": 4553.36, + "probability": 0.6951 + }, + { + "start": 4553.66, + "end": 4557.64, + "probability": 0.9907 + }, + { + "start": 4558.36, + "end": 4562.02, + "probability": 0.9975 + }, + { + "start": 4562.12, + "end": 4564.06, + "probability": 0.9841 + }, + { + "start": 4564.5, + "end": 4567.76, + "probability": 0.9982 + }, + { + "start": 4568.12, + "end": 4569.56, + "probability": 0.8859 + }, + { + "start": 4570.14, + "end": 4572.9, + "probability": 0.9731 + }, + { + "start": 4573.52, + "end": 4574.78, + "probability": 0.9844 + }, + { + "start": 4574.84, + "end": 4577.86, + "probability": 0.9775 + }, + { + "start": 4577.86, + "end": 4580.7, + "probability": 0.8121 + }, + { + "start": 4581.32, + "end": 4581.88, + "probability": 0.442 + }, + { + "start": 4582.04, + "end": 4583.44, + "probability": 0.7016 + }, + { + "start": 4583.9, + "end": 4585.34, + "probability": 0.9357 + }, + { + "start": 4585.52, + "end": 4588.92, + "probability": 0.969 + }, + { + "start": 4588.96, + "end": 4591.44, + "probability": 0.9963 + }, + { + "start": 4591.48, + "end": 4592.22, + "probability": 0.968 + }, + { + "start": 4592.46, + "end": 4592.94, + "probability": 0.9298 + }, + { + "start": 4593.2, + "end": 4593.46, + "probability": 0.8098 + }, + { + "start": 4597.12, + "end": 4601.72, + "probability": 0.9958 + }, + { + "start": 4601.86, + "end": 4605.64, + "probability": 0.7171 + }, + { + "start": 4606.0, + "end": 4606.92, + "probability": 0.8979 + }, + { + "start": 4607.24, + "end": 4607.88, + "probability": 0.8369 + }, + { + "start": 4628.42, + "end": 4628.77, + "probability": 0.4149 + }, + { + "start": 4628.98, + "end": 4630.62, + "probability": 0.6988 + }, + { + "start": 4634.84, + "end": 4636.76, + "probability": 0.8792 + }, + { + "start": 4637.94, + "end": 4642.04, + "probability": 0.9154 + }, + { + "start": 4643.46, + "end": 4645.36, + "probability": 0.9884 + }, + { + "start": 4646.4, + "end": 4648.32, + "probability": 0.8552 + }, + { + "start": 4649.04, + "end": 4650.94, + "probability": 0.9912 + }, + { + "start": 4651.58, + "end": 4655.22, + "probability": 0.9738 + }, + { + "start": 4656.0, + "end": 4656.6, + "probability": 0.1489 + }, + { + "start": 4657.36, + "end": 4660.1, + "probability": 0.9705 + }, + { + "start": 4660.82, + "end": 4662.6, + "probability": 0.9711 + }, + { + "start": 4663.54, + "end": 4665.94, + "probability": 0.9814 + }, + { + "start": 4667.12, + "end": 4668.52, + "probability": 0.9978 + }, + { + "start": 4668.76, + "end": 4671.74, + "probability": 0.8347 + }, + { + "start": 4671.82, + "end": 4673.96, + "probability": 0.5037 + }, + { + "start": 4674.76, + "end": 4676.02, + "probability": 0.3981 + }, + { + "start": 4676.06, + "end": 4676.98, + "probability": 0.8032 + }, + { + "start": 4677.02, + "end": 4677.84, + "probability": 0.8969 + }, + { + "start": 4677.92, + "end": 4678.2, + "probability": 0.9368 + }, + { + "start": 4679.14, + "end": 4681.5, + "probability": 0.9219 + }, + { + "start": 4681.86, + "end": 4685.16, + "probability": 0.9956 + }, + { + "start": 4685.96, + "end": 4685.98, + "probability": 0.0067 + }, + { + "start": 4686.02, + "end": 4686.98, + "probability": 0.9067 + }, + { + "start": 4687.1, + "end": 4694.26, + "probability": 0.9785 + }, + { + "start": 4694.3, + "end": 4694.82, + "probability": 0.4194 + }, + { + "start": 4694.92, + "end": 4695.34, + "probability": 0.6859 + }, + { + "start": 4696.0, + "end": 4696.92, + "probability": 0.9165 + }, + { + "start": 4698.34, + "end": 4700.82, + "probability": 0.9875 + }, + { + "start": 4702.4, + "end": 4705.58, + "probability": 0.9058 + }, + { + "start": 4706.18, + "end": 4708.58, + "probability": 0.9881 + }, + { + "start": 4709.0, + "end": 4712.5, + "probability": 0.794 + }, + { + "start": 4713.0, + "end": 4717.78, + "probability": 0.7924 + }, + { + "start": 4719.64, + "end": 4720.44, + "probability": 0.9922 + }, + { + "start": 4721.76, + "end": 4725.22, + "probability": 0.841 + }, + { + "start": 4725.3, + "end": 4726.1, + "probability": 0.9065 + }, + { + "start": 4726.3, + "end": 4727.92, + "probability": 0.9577 + }, + { + "start": 4728.82, + "end": 4729.96, + "probability": 0.7546 + }, + { + "start": 4730.18, + "end": 4732.43, + "probability": 0.859 + }, + { + "start": 4733.18, + "end": 4734.06, + "probability": 0.9808 + }, + { + "start": 4734.26, + "end": 4734.72, + "probability": 0.9273 + }, + { + "start": 4734.78, + "end": 4735.42, + "probability": 0.8904 + }, + { + "start": 4735.46, + "end": 4736.48, + "probability": 0.99 + }, + { + "start": 4736.96, + "end": 4742.96, + "probability": 0.885 + }, + { + "start": 4743.12, + "end": 4745.46, + "probability": 0.9187 + }, + { + "start": 4745.46, + "end": 4746.66, + "probability": 0.6957 + }, + { + "start": 4747.76, + "end": 4748.48, + "probability": 0.8154 + }, + { + "start": 4748.94, + "end": 4748.94, + "probability": 0.6631 + }, + { + "start": 4748.94, + "end": 4749.06, + "probability": 0.4691 + }, + { + "start": 4749.06, + "end": 4749.69, + "probability": 0.957 + }, + { + "start": 4749.86, + "end": 4749.86, + "probability": 0.1689 + }, + { + "start": 4749.94, + "end": 4750.16, + "probability": 0.9257 + }, + { + "start": 4750.22, + "end": 4756.64, + "probability": 0.9764 + }, + { + "start": 4756.72, + "end": 4756.74, + "probability": 0.0036 + }, + { + "start": 4756.82, + "end": 4761.86, + "probability": 0.9434 + }, + { + "start": 4762.04, + "end": 4764.48, + "probability": 0.8145 + }, + { + "start": 4764.54, + "end": 4765.26, + "probability": 0.6632 + }, + { + "start": 4765.65, + "end": 4769.4, + "probability": 0.681 + }, + { + "start": 4769.74, + "end": 4771.66, + "probability": 0.9208 + }, + { + "start": 4771.74, + "end": 4772.34, + "probability": 0.4985 + }, + { + "start": 4772.44, + "end": 4774.4, + "probability": 0.9194 + }, + { + "start": 4774.5, + "end": 4776.94, + "probability": 0.8885 + }, + { + "start": 4777.62, + "end": 4779.09, + "probability": 0.69 + }, + { + "start": 4779.82, + "end": 4780.4, + "probability": 0.8332 + }, + { + "start": 4781.14, + "end": 4781.6, + "probability": 0.3395 + }, + { + "start": 4781.68, + "end": 4782.66, + "probability": 0.6699 + }, + { + "start": 4782.66, + "end": 4783.52, + "probability": 0.7244 + }, + { + "start": 4783.52, + "end": 4784.8, + "probability": 0.9465 + }, + { + "start": 4784.84, + "end": 4786.96, + "probability": 0.9505 + }, + { + "start": 4787.04, + "end": 4788.44, + "probability": 0.527 + }, + { + "start": 4788.92, + "end": 4791.44, + "probability": 0.8924 + }, + { + "start": 4791.44, + "end": 4792.88, + "probability": 0.5514 + }, + { + "start": 4792.88, + "end": 4793.28, + "probability": 0.6594 + }, + { + "start": 4793.34, + "end": 4796.21, + "probability": 0.8782 + }, + { + "start": 4796.84, + "end": 4800.16, + "probability": 0.9788 + }, + { + "start": 4800.32, + "end": 4801.26, + "probability": 0.9838 + }, + { + "start": 4801.48, + "end": 4802.98, + "probability": 0.9734 + }, + { + "start": 4803.44, + "end": 4804.46, + "probability": 0.7572 + }, + { + "start": 4804.58, + "end": 4805.58, + "probability": 0.7832 + }, + { + "start": 4805.92, + "end": 4807.72, + "probability": 0.9563 + }, + { + "start": 4807.86, + "end": 4809.34, + "probability": 0.8051 + }, + { + "start": 4809.98, + "end": 4810.64, + "probability": 0.9692 + }, + { + "start": 4811.16, + "end": 4812.12, + "probability": 0.9478 + }, + { + "start": 4812.5, + "end": 4813.16, + "probability": 0.6807 + }, + { + "start": 4813.4, + "end": 4814.18, + "probability": 0.7666 + }, + { + "start": 4814.34, + "end": 4816.58, + "probability": 0.9185 + }, + { + "start": 4817.28, + "end": 4819.68, + "probability": 0.6754 + }, + { + "start": 4820.14, + "end": 4820.36, + "probability": 0.8514 + }, + { + "start": 4820.76, + "end": 4821.1, + "probability": 0.6968 + }, + { + "start": 4821.22, + "end": 4822.22, + "probability": 0.8843 + }, + { + "start": 4822.32, + "end": 4823.22, + "probability": 0.8843 + }, + { + "start": 4823.52, + "end": 4824.28, + "probability": 0.8852 + }, + { + "start": 4824.5, + "end": 4825.12, + "probability": 0.8726 + }, + { + "start": 4825.46, + "end": 4827.96, + "probability": 0.9102 + }, + { + "start": 4828.32, + "end": 4830.62, + "probability": 0.7623 + }, + { + "start": 4831.06, + "end": 4833.64, + "probability": 0.8953 + }, + { + "start": 4833.76, + "end": 4834.96, + "probability": 0.9828 + }, + { + "start": 4835.02, + "end": 4839.22, + "probability": 0.9698 + }, + { + "start": 4839.22, + "end": 4840.96, + "probability": 0.9985 + }, + { + "start": 4841.52, + "end": 4841.98, + "probability": 0.6974 + }, + { + "start": 4842.56, + "end": 4843.5, + "probability": 0.7534 + }, + { + "start": 4843.58, + "end": 4845.06, + "probability": 0.8907 + }, + { + "start": 4845.52, + "end": 4846.04, + "probability": 0.9001 + }, + { + "start": 4846.72, + "end": 4847.38, + "probability": 0.9814 + }, + { + "start": 4847.96, + "end": 4849.86, + "probability": 0.9038 + }, + { + "start": 4850.54, + "end": 4851.7, + "probability": 0.6066 + }, + { + "start": 4851.7, + "end": 4852.63, + "probability": 0.3133 + }, + { + "start": 4852.72, + "end": 4853.26, + "probability": 0.4127 + }, + { + "start": 4853.28, + "end": 4856.42, + "probability": 0.9877 + }, + { + "start": 4856.64, + "end": 4858.62, + "probability": 0.7473 + }, + { + "start": 4859.02, + "end": 4861.24, + "probability": 0.9692 + }, + { + "start": 4861.54, + "end": 4863.72, + "probability": 0.9037 + }, + { + "start": 4863.76, + "end": 4863.9, + "probability": 0.7801 + }, + { + "start": 4864.4, + "end": 4865.84, + "probability": 0.0555 + }, + { + "start": 4865.84, + "end": 4865.84, + "probability": 0.112 + }, + { + "start": 4865.84, + "end": 4865.84, + "probability": 0.4454 + }, + { + "start": 4865.84, + "end": 4866.78, + "probability": 0.6353 + }, + { + "start": 4867.04, + "end": 4870.9, + "probability": 0.8319 + }, + { + "start": 4871.26, + "end": 4873.38, + "probability": 0.9741 + }, + { + "start": 4873.66, + "end": 4874.74, + "probability": 0.9758 + }, + { + "start": 4874.8, + "end": 4875.16, + "probability": 0.7642 + }, + { + "start": 4875.22, + "end": 4875.84, + "probability": 0.8267 + }, + { + "start": 4875.84, + "end": 4876.28, + "probability": 0.7695 + }, + { + "start": 4876.34, + "end": 4877.36, + "probability": 0.8438 + }, + { + "start": 4877.72, + "end": 4878.42, + "probability": 0.5311 + }, + { + "start": 4878.44, + "end": 4879.82, + "probability": 0.777 + }, + { + "start": 4880.38, + "end": 4880.72, + "probability": 0.0991 + }, + { + "start": 4880.72, + "end": 4880.72, + "probability": 0.5429 + }, + { + "start": 4880.72, + "end": 4880.82, + "probability": 0.1021 + }, + { + "start": 4881.2, + "end": 4881.78, + "probability": 0.6644 + }, + { + "start": 4886.84, + "end": 4888.6, + "probability": 0.9135 + }, + { + "start": 4889.84, + "end": 4891.42, + "probability": 0.9272 + }, + { + "start": 4906.38, + "end": 4909.64, + "probability": 0.6258 + }, + { + "start": 4911.08, + "end": 4913.92, + "probability": 0.8475 + }, + { + "start": 4914.66, + "end": 4917.56, + "probability": 0.9724 + }, + { + "start": 4918.18, + "end": 4925.38, + "probability": 0.9542 + }, + { + "start": 4926.26, + "end": 4929.66, + "probability": 0.8408 + }, + { + "start": 4930.98, + "end": 4931.66, + "probability": 0.9876 + }, + { + "start": 4932.46, + "end": 4933.1, + "probability": 0.8947 + }, + { + "start": 4933.9, + "end": 4936.1, + "probability": 0.8818 + }, + { + "start": 4936.12, + "end": 4937.51, + "probability": 0.9902 + }, + { + "start": 4938.62, + "end": 4940.42, + "probability": 0.9613 + }, + { + "start": 4941.24, + "end": 4941.78, + "probability": 0.5232 + }, + { + "start": 4941.96, + "end": 4945.04, + "probability": 0.9907 + }, + { + "start": 4945.06, + "end": 4947.62, + "probability": 0.9856 + }, + { + "start": 4948.24, + "end": 4949.46, + "probability": 0.8521 + }, + { + "start": 4949.52, + "end": 4950.64, + "probability": 0.8801 + }, + { + "start": 4950.88, + "end": 4953.88, + "probability": 0.9824 + }, + { + "start": 4954.36, + "end": 4956.58, + "probability": 0.9845 + }, + { + "start": 4957.34, + "end": 4962.26, + "probability": 0.9813 + }, + { + "start": 4962.26, + "end": 4969.68, + "probability": 0.9863 + }, + { + "start": 4970.04, + "end": 4975.36, + "probability": 0.8384 + }, + { + "start": 4975.6, + "end": 4978.42, + "probability": 0.9766 + }, + { + "start": 4979.22, + "end": 4982.04, + "probability": 0.9377 + }, + { + "start": 4982.42, + "end": 4987.02, + "probability": 0.7329 + }, + { + "start": 4987.36, + "end": 4991.6, + "probability": 0.8405 + }, + { + "start": 4992.38, + "end": 4994.28, + "probability": 0.904 + }, + { + "start": 4994.38, + "end": 4994.96, + "probability": 0.9841 + }, + { + "start": 4995.18, + "end": 5002.82, + "probability": 0.959 + }, + { + "start": 5003.39, + "end": 5009.91, + "probability": 0.9446 + }, + { + "start": 5010.54, + "end": 5015.46, + "probability": 0.9927 + }, + { + "start": 5016.0, + "end": 5020.1, + "probability": 0.9906 + }, + { + "start": 5020.7, + "end": 5022.51, + "probability": 0.0819 + }, + { + "start": 5022.9, + "end": 5023.38, + "probability": 0.4779 + }, + { + "start": 5023.66, + "end": 5024.34, + "probability": 0.6868 + }, + { + "start": 5024.42, + "end": 5024.98, + "probability": 0.4734 + }, + { + "start": 5025.08, + "end": 5027.66, + "probability": 0.0936 + }, + { + "start": 5027.7, + "end": 5027.7, + "probability": 0.0249 + }, + { + "start": 5027.94, + "end": 5029.24, + "probability": 0.3243 + }, + { + "start": 5029.26, + "end": 5031.02, + "probability": 0.4228 + }, + { + "start": 5031.16, + "end": 5034.12, + "probability": 0.9741 + }, + { + "start": 5034.98, + "end": 5036.6, + "probability": 0.3993 + }, + { + "start": 5036.6, + "end": 5038.9, + "probability": 0.9057 + }, + { + "start": 5039.0, + "end": 5042.12, + "probability": 0.9567 + }, + { + "start": 5042.22, + "end": 5045.6, + "probability": 0.9753 + }, + { + "start": 5046.22, + "end": 5048.48, + "probability": 0.9474 + }, + { + "start": 5049.12, + "end": 5051.38, + "probability": 0.7267 + }, + { + "start": 5051.9, + "end": 5052.38, + "probability": 0.9846 + }, + { + "start": 5053.14, + "end": 5055.64, + "probability": 0.9767 + }, + { + "start": 5056.18, + "end": 5057.28, + "probability": 0.946 + }, + { + "start": 5058.14, + "end": 5061.04, + "probability": 0.8536 + }, + { + "start": 5061.66, + "end": 5064.98, + "probability": 0.8777 + }, + { + "start": 5064.98, + "end": 5068.62, + "probability": 0.9983 + }, + { + "start": 5068.62, + "end": 5072.38, + "probability": 0.9562 + }, + { + "start": 5073.04, + "end": 5075.09, + "probability": 0.9502 + }, + { + "start": 5075.76, + "end": 5078.18, + "probability": 0.7556 + }, + { + "start": 5079.02, + "end": 5079.9, + "probability": 0.8186 + }, + { + "start": 5080.06, + "end": 5080.76, + "probability": 0.7196 + }, + { + "start": 5081.2, + "end": 5087.4, + "probability": 0.978 + }, + { + "start": 5087.54, + "end": 5090.38, + "probability": 0.996 + }, + { + "start": 5090.38, + "end": 5095.16, + "probability": 0.9727 + }, + { + "start": 5095.22, + "end": 5097.78, + "probability": 0.9848 + }, + { + "start": 5098.04, + "end": 5100.82, + "probability": 0.8535 + }, + { + "start": 5101.48, + "end": 5104.14, + "probability": 0.9387 + }, + { + "start": 5104.34, + "end": 5105.64, + "probability": 0.9878 + }, + { + "start": 5105.78, + "end": 5107.04, + "probability": 0.8733 + }, + { + "start": 5107.44, + "end": 5110.94, + "probability": 0.9729 + }, + { + "start": 5111.36, + "end": 5112.44, + "probability": 0.7526 + }, + { + "start": 5112.5, + "end": 5114.22, + "probability": 0.9145 + }, + { + "start": 5115.26, + "end": 5116.12, + "probability": 0.7329 + }, + { + "start": 5116.58, + "end": 5116.72, + "probability": 0.6891 + }, + { + "start": 5116.96, + "end": 5120.18, + "probability": 0.9821 + }, + { + "start": 5120.18, + "end": 5122.94, + "probability": 0.999 + }, + { + "start": 5123.44, + "end": 5125.16, + "probability": 0.9058 + }, + { + "start": 5125.22, + "end": 5126.3, + "probability": 0.79 + }, + { + "start": 5126.34, + "end": 5126.92, + "probability": 0.846 + }, + { + "start": 5127.7, + "end": 5128.44, + "probability": 0.6689 + }, + { + "start": 5128.66, + "end": 5129.63, + "probability": 0.9888 + }, + { + "start": 5129.94, + "end": 5130.46, + "probability": 0.7934 + }, + { + "start": 5130.78, + "end": 5132.28, + "probability": 0.9782 + }, + { + "start": 5132.4, + "end": 5132.74, + "probability": 0.6556 + }, + { + "start": 5133.18, + "end": 5136.22, + "probability": 0.977 + }, + { + "start": 5136.66, + "end": 5136.94, + "probability": 0.7311 + }, + { + "start": 5138.02, + "end": 5141.43, + "probability": 0.9354 + }, + { + "start": 5141.58, + "end": 5143.24, + "probability": 0.979 + }, + { + "start": 5143.44, + "end": 5144.43, + "probability": 0.9755 + }, + { + "start": 5144.94, + "end": 5147.5, + "probability": 0.8968 + }, + { + "start": 5147.92, + "end": 5151.14, + "probability": 0.3974 + }, + { + "start": 5154.06, + "end": 5154.4, + "probability": 0.4177 + }, + { + "start": 5154.48, + "end": 5155.58, + "probability": 0.7388 + }, + { + "start": 5155.98, + "end": 5158.86, + "probability": 0.9941 + }, + { + "start": 5159.4, + "end": 5161.69, + "probability": 0.6403 + }, + { + "start": 5162.68, + "end": 5164.9, + "probability": 0.886 + }, + { + "start": 5164.98, + "end": 5166.26, + "probability": 0.8227 + }, + { + "start": 5166.7, + "end": 5167.88, + "probability": 0.625 + }, + { + "start": 5168.1, + "end": 5168.38, + "probability": 0.1086 + }, + { + "start": 5168.56, + "end": 5173.24, + "probability": 0.9816 + }, + { + "start": 5173.24, + "end": 5177.8, + "probability": 0.9917 + }, + { + "start": 5178.62, + "end": 5181.8, + "probability": 0.999 + }, + { + "start": 5181.96, + "end": 5184.28, + "probability": 0.9976 + }, + { + "start": 5184.88, + "end": 5191.62, + "probability": 0.9845 + }, + { + "start": 5192.98, + "end": 5193.46, + "probability": 0.9234 + }, + { + "start": 5193.54, + "end": 5198.86, + "probability": 0.9949 + }, + { + "start": 5199.22, + "end": 5202.52, + "probability": 0.9934 + }, + { + "start": 5203.84, + "end": 5209.58, + "probability": 0.9893 + }, + { + "start": 5209.58, + "end": 5213.16, + "probability": 0.9966 + }, + { + "start": 5213.74, + "end": 5215.8, + "probability": 0.9822 + }, + { + "start": 5217.1, + "end": 5220.24, + "probability": 0.999 + }, + { + "start": 5220.24, + "end": 5224.52, + "probability": 0.9163 + }, + { + "start": 5224.58, + "end": 5229.64, + "probability": 0.9924 + }, + { + "start": 5230.22, + "end": 5234.46, + "probability": 0.9952 + }, + { + "start": 5235.32, + "end": 5238.14, + "probability": 0.8875 + }, + { + "start": 5239.08, + "end": 5245.68, + "probability": 0.8983 + }, + { + "start": 5245.68, + "end": 5252.14, + "probability": 0.9604 + }, + { + "start": 5252.88, + "end": 5255.3, + "probability": 0.9578 + }, + { + "start": 5256.2, + "end": 5261.56, + "probability": 0.9831 + }, + { + "start": 5261.68, + "end": 5266.94, + "probability": 0.9238 + }, + { + "start": 5267.94, + "end": 5275.9, + "probability": 0.9889 + }, + { + "start": 5276.36, + "end": 5284.7, + "probability": 0.8862 + }, + { + "start": 5286.1, + "end": 5287.56, + "probability": 0.7465 + }, + { + "start": 5288.16, + "end": 5289.94, + "probability": 0.6269 + }, + { + "start": 5290.68, + "end": 5295.28, + "probability": 0.9829 + }, + { + "start": 5295.28, + "end": 5301.4, + "probability": 0.9958 + }, + { + "start": 5302.16, + "end": 5306.4, + "probability": 0.8232 + }, + { + "start": 5306.4, + "end": 5310.12, + "probability": 0.9096 + }, + { + "start": 5310.26, + "end": 5317.86, + "probability": 0.8706 + }, + { + "start": 5319.08, + "end": 5321.6, + "probability": 0.7901 + }, + { + "start": 5322.1, + "end": 5325.1, + "probability": 0.9883 + }, + { + "start": 5325.28, + "end": 5326.94, + "probability": 0.9139 + }, + { + "start": 5327.3, + "end": 5328.2, + "probability": 0.8288 + }, + { + "start": 5328.66, + "end": 5329.28, + "probability": 0.7979 + }, + { + "start": 5329.46, + "end": 5332.68, + "probability": 0.9949 + }, + { + "start": 5333.5, + "end": 5337.28, + "probability": 0.9787 + }, + { + "start": 5337.88, + "end": 5345.16, + "probability": 0.8551 + }, + { + "start": 5345.54, + "end": 5347.38, + "probability": 0.7315 + }, + { + "start": 5347.6, + "end": 5348.32, + "probability": 0.693 + }, + { + "start": 5348.38, + "end": 5352.12, + "probability": 0.9926 + }, + { + "start": 5352.27, + "end": 5358.51, + "probability": 0.9941 + }, + { + "start": 5358.66, + "end": 5362.68, + "probability": 0.7163 + }, + { + "start": 5362.9, + "end": 5363.56, + "probability": 0.7237 + }, + { + "start": 5364.22, + "end": 5365.94, + "probability": 0.6734 + }, + { + "start": 5366.2, + "end": 5366.6, + "probability": 0.7295 + }, + { + "start": 5366.68, + "end": 5368.98, + "probability": 0.8737 + }, + { + "start": 5369.94, + "end": 5370.54, + "probability": 0.7198 + }, + { + "start": 5370.66, + "end": 5372.2, + "probability": 0.9692 + }, + { + "start": 5372.38, + "end": 5378.94, + "probability": 0.9767 + }, + { + "start": 5379.16, + "end": 5381.02, + "probability": 0.9028 + }, + { + "start": 5382.04, + "end": 5385.38, + "probability": 0.8607 + }, + { + "start": 5385.68, + "end": 5387.56, + "probability": 0.8262 + }, + { + "start": 5388.32, + "end": 5391.1, + "probability": 0.8417 + }, + { + "start": 5392.84, + "end": 5393.74, + "probability": 0.9888 + }, + { + "start": 5394.18, + "end": 5395.18, + "probability": 0.914 + }, + { + "start": 5395.9, + "end": 5397.2, + "probability": 0.8041 + }, + { + "start": 5398.5, + "end": 5400.84, + "probability": 0.645 + }, + { + "start": 5400.94, + "end": 5407.12, + "probability": 0.8122 + }, + { + "start": 5407.26, + "end": 5410.96, + "probability": 0.9282 + }, + { + "start": 5411.56, + "end": 5416.64, + "probability": 0.9961 + }, + { + "start": 5416.72, + "end": 5418.55, + "probability": 0.9955 + }, + { + "start": 5420.16, + "end": 5422.34, + "probability": 0.8257 + }, + { + "start": 5423.04, + "end": 5427.2, + "probability": 0.9832 + }, + { + "start": 5427.56, + "end": 5432.02, + "probability": 0.8625 + }, + { + "start": 5432.18, + "end": 5433.1, + "probability": 0.8573 + }, + { + "start": 5433.24, + "end": 5438.34, + "probability": 0.989 + }, + { + "start": 5438.34, + "end": 5443.44, + "probability": 0.9992 + }, + { + "start": 5443.44, + "end": 5448.74, + "probability": 0.986 + }, + { + "start": 5449.16, + "end": 5453.52, + "probability": 0.9912 + }, + { + "start": 5454.12, + "end": 5454.34, + "probability": 0.1636 + }, + { + "start": 5454.34, + "end": 5460.99, + "probability": 0.9902 + }, + { + "start": 5462.36, + "end": 5465.14, + "probability": 0.9506 + }, + { + "start": 5465.86, + "end": 5471.5, + "probability": 0.9606 + }, + { + "start": 5471.5, + "end": 5477.21, + "probability": 0.9964 + }, + { + "start": 5477.5, + "end": 5482.96, + "probability": 0.9468 + }, + { + "start": 5483.72, + "end": 5485.62, + "probability": 0.9241 + }, + { + "start": 5485.96, + "end": 5489.26, + "probability": 0.9167 + }, + { + "start": 5489.84, + "end": 5497.36, + "probability": 0.9722 + }, + { + "start": 5497.64, + "end": 5499.1, + "probability": 0.9027 + }, + { + "start": 5499.2, + "end": 5502.38, + "probability": 0.8663 + }, + { + "start": 5502.72, + "end": 5507.82, + "probability": 0.998 + }, + { + "start": 5507.82, + "end": 5513.82, + "probability": 0.9935 + }, + { + "start": 5514.84, + "end": 5517.86, + "probability": 0.9509 + }, + { + "start": 5519.59, + "end": 5524.1, + "probability": 0.709 + }, + { + "start": 5524.36, + "end": 5525.02, + "probability": 0.6961 + }, + { + "start": 5525.54, + "end": 5530.62, + "probability": 0.9948 + }, + { + "start": 5530.84, + "end": 5531.77, + "probability": 0.9562 + }, + { + "start": 5532.72, + "end": 5533.54, + "probability": 0.9144 + }, + { + "start": 5533.84, + "end": 5537.14, + "probability": 0.9944 + }, + { + "start": 5537.14, + "end": 5541.12, + "probability": 0.9919 + }, + { + "start": 5541.64, + "end": 5545.16, + "probability": 0.9974 + }, + { + "start": 5545.72, + "end": 5545.9, + "probability": 0.3266 + }, + { + "start": 5546.14, + "end": 5547.24, + "probability": 0.398 + }, + { + "start": 5547.58, + "end": 5548.62, + "probability": 0.3911 + }, + { + "start": 5549.04, + "end": 5551.0, + "probability": 0.2108 + }, + { + "start": 5551.12, + "end": 5551.88, + "probability": 0.5964 + }, + { + "start": 5553.3, + "end": 5559.08, + "probability": 0.9884 + }, + { + "start": 5559.2, + "end": 5565.72, + "probability": 0.9953 + }, + { + "start": 5565.92, + "end": 5570.9, + "probability": 0.8391 + }, + { + "start": 5570.9, + "end": 5572.2, + "probability": 0.4901 + }, + { + "start": 5572.2, + "end": 5572.38, + "probability": 0.1676 + }, + { + "start": 5572.56, + "end": 5573.68, + "probability": 0.8298 + }, + { + "start": 5573.76, + "end": 5574.42, + "probability": 0.8795 + }, + { + "start": 5574.42, + "end": 5579.72, + "probability": 0.9923 + }, + { + "start": 5579.76, + "end": 5580.0, + "probability": 0.6665 + }, + { + "start": 5580.12, + "end": 5583.14, + "probability": 0.9867 + }, + { + "start": 5583.32, + "end": 5587.08, + "probability": 0.7928 + }, + { + "start": 5587.36, + "end": 5587.36, + "probability": 0.0121 + }, + { + "start": 5587.36, + "end": 5587.84, + "probability": 0.7129 + }, + { + "start": 5587.96, + "end": 5592.58, + "probability": 0.9867 + }, + { + "start": 5592.88, + "end": 5596.7, + "probability": 0.997 + }, + { + "start": 5596.7, + "end": 5599.56, + "probability": 0.8935 + }, + { + "start": 5600.28, + "end": 5604.6, + "probability": 0.5965 + }, + { + "start": 5604.66, + "end": 5605.76, + "probability": 0.1339 + }, + { + "start": 5606.3, + "end": 5607.56, + "probability": 0.0297 + }, + { + "start": 5607.56, + "end": 5607.91, + "probability": 0.6846 + }, + { + "start": 5608.3, + "end": 5608.54, + "probability": 0.5551 + }, + { + "start": 5608.54, + "end": 5609.28, + "probability": 0.5581 + }, + { + "start": 5609.68, + "end": 5611.49, + "probability": 0.7837 + }, + { + "start": 5612.84, + "end": 5613.62, + "probability": 0.1553 + }, + { + "start": 5613.62, + "end": 5616.06, + "probability": 0.2496 + }, + { + "start": 5616.3, + "end": 5620.62, + "probability": 0.0553 + }, + { + "start": 5620.98, + "end": 5625.62, + "probability": 0.7142 + }, + { + "start": 5625.74, + "end": 5626.66, + "probability": 0.9252 + }, + { + "start": 5627.04, + "end": 5631.64, + "probability": 0.5687 + }, + { + "start": 5633.26, + "end": 5636.42, + "probability": 0.2244 + }, + { + "start": 5636.56, + "end": 5638.2, + "probability": 0.8028 + }, + { + "start": 5638.38, + "end": 5640.2, + "probability": 0.7611 + }, + { + "start": 5640.9, + "end": 5643.58, + "probability": 0.8601 + }, + { + "start": 5643.7, + "end": 5643.7, + "probability": 0.0637 + }, + { + "start": 5643.7, + "end": 5643.7, + "probability": 0.3186 + }, + { + "start": 5643.7, + "end": 5645.18, + "probability": 0.4726 + }, + { + "start": 5645.82, + "end": 5648.98, + "probability": 0.8451 + }, + { + "start": 5649.0, + "end": 5652.5, + "probability": 0.7105 + }, + { + "start": 5652.78, + "end": 5652.88, + "probability": 0.1514 + }, + { + "start": 5652.88, + "end": 5654.58, + "probability": 0.5094 + }, + { + "start": 5654.94, + "end": 5656.36, + "probability": 0.7074 + }, + { + "start": 5656.52, + "end": 5656.66, + "probability": 0.1162 + }, + { + "start": 5656.66, + "end": 5656.66, + "probability": 0.1126 + }, + { + "start": 5656.66, + "end": 5658.34, + "probability": 0.5187 + }, + { + "start": 5658.58, + "end": 5660.56, + "probability": 0.431 + }, + { + "start": 5660.9, + "end": 5662.78, + "probability": 0.6302 + }, + { + "start": 5663.79, + "end": 5671.42, + "probability": 0.9689 + }, + { + "start": 5671.72, + "end": 5677.66, + "probability": 0.9516 + }, + { + "start": 5677.76, + "end": 5678.6, + "probability": 0.9329 + }, + { + "start": 5678.78, + "end": 5682.86, + "probability": 0.9067 + }, + { + "start": 5683.58, + "end": 5684.52, + "probability": 0.0126 + }, + { + "start": 5684.52, + "end": 5684.52, + "probability": 0.0957 + }, + { + "start": 5684.52, + "end": 5687.4, + "probability": 0.9932 + }, + { + "start": 5687.5, + "end": 5691.54, + "probability": 0.9456 + }, + { + "start": 5692.18, + "end": 5697.16, + "probability": 0.0544 + }, + { + "start": 5697.16, + "end": 5701.0, + "probability": 0.7408 + }, + { + "start": 5701.08, + "end": 5701.28, + "probability": 0.7855 + }, + { + "start": 5701.4, + "end": 5705.56, + "probability": 0.9814 + }, + { + "start": 5705.82, + "end": 5709.88, + "probability": 0.5715 + }, + { + "start": 5709.92, + "end": 5710.24, + "probability": 0.8519 + }, + { + "start": 5710.3, + "end": 5711.56, + "probability": 0.8582 + }, + { + "start": 5711.92, + "end": 5714.84, + "probability": 0.9858 + }, + { + "start": 5714.84, + "end": 5718.46, + "probability": 0.9546 + }, + { + "start": 5718.68, + "end": 5719.0, + "probability": 0.6119 + }, + { + "start": 5719.04, + "end": 5719.42, + "probability": 0.8465 + }, + { + "start": 5719.5, + "end": 5721.32, + "probability": 0.9634 + }, + { + "start": 5722.34, + "end": 5722.34, + "probability": 0.1861 + }, + { + "start": 5722.34, + "end": 5723.0, + "probability": 0.5935 + }, + { + "start": 5723.26, + "end": 5725.44, + "probability": 0.989 + }, + { + "start": 5725.54, + "end": 5731.02, + "probability": 0.9833 + }, + { + "start": 5731.4, + "end": 5736.02, + "probability": 0.9632 + }, + { + "start": 5736.02, + "end": 5740.2, + "probability": 0.7934 + }, + { + "start": 5740.58, + "end": 5744.94, + "probability": 0.9723 + }, + { + "start": 5745.02, + "end": 5745.02, + "probability": 0.0506 + }, + { + "start": 5745.02, + "end": 5747.7, + "probability": 0.8484 + }, + { + "start": 5747.9, + "end": 5749.69, + "probability": 0.4189 + }, + { + "start": 5750.04, + "end": 5752.54, + "probability": 0.9968 + }, + { + "start": 5752.98, + "end": 5755.18, + "probability": 0.9932 + }, + { + "start": 5755.62, + "end": 5757.68, + "probability": 0.1364 + }, + { + "start": 5757.8, + "end": 5758.32, + "probability": 0.1537 + }, + { + "start": 5758.88, + "end": 5759.08, + "probability": 0.0236 + }, + { + "start": 5759.08, + "end": 5759.08, + "probability": 0.2052 + }, + { + "start": 5759.08, + "end": 5759.08, + "probability": 0.2066 + }, + { + "start": 5759.08, + "end": 5761.18, + "probability": 0.194 + }, + { + "start": 5761.36, + "end": 5762.62, + "probability": 0.5544 + }, + { + "start": 5764.28, + "end": 5765.7, + "probability": 0.6925 + }, + { + "start": 5773.14, + "end": 5773.96, + "probability": 0.177 + }, + { + "start": 5778.38, + "end": 5782.6, + "probability": 0.7393 + }, + { + "start": 5782.96, + "end": 5785.38, + "probability": 0.6838 + }, + { + "start": 5785.42, + "end": 5786.08, + "probability": 0.6339 + }, + { + "start": 5787.1, + "end": 5788.22, + "probability": 0.9825 + }, + { + "start": 5790.06, + "end": 5790.72, + "probability": 0.6949 + }, + { + "start": 5791.08, + "end": 5791.78, + "probability": 0.6212 + }, + { + "start": 5792.14, + "end": 5794.26, + "probability": 0.9795 + }, + { + "start": 5795.4, + "end": 5797.48, + "probability": 0.8193 + }, + { + "start": 5797.72, + "end": 5800.08, + "probability": 0.8917 + }, + { + "start": 5800.12, + "end": 5800.66, + "probability": 0.644 + }, + { + "start": 5801.22, + "end": 5803.3, + "probability": 0.9303 + }, + { + "start": 5804.0, + "end": 5806.12, + "probability": 0.984 + }, + { + "start": 5807.06, + "end": 5810.0, + "probability": 0.5369 + }, + { + "start": 5810.4, + "end": 5812.9, + "probability": 0.6036 + }, + { + "start": 5813.36, + "end": 5814.7, + "probability": 0.937 + }, + { + "start": 5815.3, + "end": 5816.62, + "probability": 0.902 + }, + { + "start": 5816.94, + "end": 5818.22, + "probability": 0.7786 + }, + { + "start": 5818.76, + "end": 5821.9, + "probability": 0.9141 + }, + { + "start": 5822.44, + "end": 5823.08, + "probability": 0.5404 + }, + { + "start": 5823.52, + "end": 5827.52, + "probability": 0.9896 + }, + { + "start": 5827.88, + "end": 5829.1, + "probability": 0.9019 + }, + { + "start": 5829.48, + "end": 5830.52, + "probability": 0.6156 + }, + { + "start": 5830.61, + "end": 5830.68, + "probability": 0.064 + }, + { + "start": 5830.84, + "end": 5832.92, + "probability": 0.6414 + }, + { + "start": 5833.04, + "end": 5833.82, + "probability": 0.4944 + }, + { + "start": 5833.88, + "end": 5837.66, + "probability": 0.9893 + }, + { + "start": 5837.74, + "end": 5838.48, + "probability": 0.757 + }, + { + "start": 5839.2, + "end": 5839.72, + "probability": 0.3369 + }, + { + "start": 5839.99, + "end": 5841.87, + "probability": 0.9175 + }, + { + "start": 5842.0, + "end": 5844.02, + "probability": 0.6802 + }, + { + "start": 5844.08, + "end": 5844.38, + "probability": 0.6924 + }, + { + "start": 5845.7, + "end": 5846.02, + "probability": 0.8943 + }, + { + "start": 5847.8, + "end": 5848.0, + "probability": 0.3905 + }, + { + "start": 5848.06, + "end": 5848.92, + "probability": 0.8444 + }, + { + "start": 5855.42, + "end": 5856.06, + "probability": 0.5272 + }, + { + "start": 5857.52, + "end": 5857.52, + "probability": 0.2949 + }, + { + "start": 5857.52, + "end": 5858.5, + "probability": 0.3513 + }, + { + "start": 5858.82, + "end": 5859.2, + "probability": 0.8482 + }, + { + "start": 5859.86, + "end": 5860.42, + "probability": 0.9398 + }, + { + "start": 5861.24, + "end": 5861.32, + "probability": 0.57 + }, + { + "start": 5861.32, + "end": 5861.76, + "probability": 0.6693 + }, + { + "start": 5864.24, + "end": 5866.36, + "probability": 0.5166 + }, + { + "start": 5866.82, + "end": 5867.82, + "probability": 0.2133 + }, + { + "start": 5869.42, + "end": 5872.56, + "probability": 0.9053 + }, + { + "start": 5873.08, + "end": 5874.66, + "probability": 0.9805 + }, + { + "start": 5875.0, + "end": 5878.88, + "probability": 0.6479 + }, + { + "start": 5879.06, + "end": 5880.78, + "probability": 0.9277 + }, + { + "start": 5881.04, + "end": 5883.06, + "probability": 0.921 + }, + { + "start": 5883.34, + "end": 5883.52, + "probability": 0.8171 + }, + { + "start": 5884.58, + "end": 5885.16, + "probability": 0.3254 + }, + { + "start": 5885.18, + "end": 5889.46, + "probability": 0.9581 + }, + { + "start": 5890.54, + "end": 5890.82, + "probability": 0.1503 + }, + { + "start": 5891.66, + "end": 5894.66, + "probability": 0.6072 + }, + { + "start": 5895.48, + "end": 5896.94, + "probability": 0.032 + }, + { + "start": 5906.14, + "end": 5908.32, + "probability": 0.7316 + }, + { + "start": 5908.96, + "end": 5912.44, + "probability": 0.7066 + }, + { + "start": 5913.22, + "end": 5913.38, + "probability": 0.6001 + }, + { + "start": 5914.32, + "end": 5916.72, + "probability": 0.8358 + }, + { + "start": 5916.84, + "end": 5920.44, + "probability": 0.8001 + }, + { + "start": 5921.32, + "end": 5922.8, + "probability": 0.6043 + }, + { + "start": 5923.62, + "end": 5923.64, + "probability": 0.8781 + }, + { + "start": 5923.64, + "end": 5928.28, + "probability": 0.6777 + }, + { + "start": 5928.66, + "end": 5932.66, + "probability": 0.9114 + }, + { + "start": 5934.82, + "end": 5934.82, + "probability": 0.0449 + }, + { + "start": 5934.82, + "end": 5934.82, + "probability": 0.02 + }, + { + "start": 5934.82, + "end": 5934.82, + "probability": 0.2448 + }, + { + "start": 5934.82, + "end": 5934.82, + "probability": 0.0679 + }, + { + "start": 5934.82, + "end": 5937.8, + "probability": 0.4468 + }, + { + "start": 5938.5, + "end": 5940.06, + "probability": 0.5047 + }, + { + "start": 5941.36, + "end": 5942.28, + "probability": 0.529 + }, + { + "start": 5952.9, + "end": 5953.86, + "probability": 0.5479 + }, + { + "start": 5954.06, + "end": 5955.4, + "probability": 0.8433 + }, + { + "start": 5955.54, + "end": 5956.24, + "probability": 0.771 + }, + { + "start": 5956.44, + "end": 5958.18, + "probability": 0.9642 + }, + { + "start": 5959.14, + "end": 5963.18, + "probability": 0.8751 + }, + { + "start": 5964.32, + "end": 5965.54, + "probability": 0.7336 + }, + { + "start": 5965.84, + "end": 5969.52, + "probability": 0.9949 + }, + { + "start": 5970.02, + "end": 5974.14, + "probability": 0.9258 + }, + { + "start": 5974.4, + "end": 5975.32, + "probability": 0.7331 + }, + { + "start": 5976.04, + "end": 5979.54, + "probability": 0.873 + }, + { + "start": 5980.22, + "end": 5982.4, + "probability": 0.9878 + }, + { + "start": 5982.48, + "end": 5985.0, + "probability": 0.9245 + }, + { + "start": 5985.26, + "end": 5986.42, + "probability": 0.9645 + }, + { + "start": 5986.64, + "end": 5987.34, + "probability": 0.9227 + }, + { + "start": 5987.44, + "end": 5988.8, + "probability": 0.9632 + }, + { + "start": 5989.26, + "end": 5992.14, + "probability": 0.9399 + }, + { + "start": 5992.26, + "end": 5993.08, + "probability": 0.4896 + }, + { + "start": 5993.08, + "end": 5994.88, + "probability": 0.8834 + }, + { + "start": 5995.0, + "end": 5996.72, + "probability": 0.9307 + }, + { + "start": 5996.76, + "end": 6003.5, + "probability": 0.9055 + }, + { + "start": 6003.7, + "end": 6005.5, + "probability": 0.8118 + }, + { + "start": 6006.1, + "end": 6008.64, + "probability": 0.9893 + }, + { + "start": 6008.76, + "end": 6012.42, + "probability": 0.8743 + }, + { + "start": 6012.58, + "end": 6013.38, + "probability": 0.7636 + }, + { + "start": 6013.54, + "end": 6015.66, + "probability": 0.9121 + }, + { + "start": 6016.32, + "end": 6020.08, + "probability": 0.9835 + }, + { + "start": 6020.68, + "end": 6022.86, + "probability": 0.9962 + }, + { + "start": 6023.46, + "end": 6029.22, + "probability": 0.9727 + }, + { + "start": 6029.64, + "end": 6030.88, + "probability": 0.8608 + }, + { + "start": 6031.68, + "end": 6033.7, + "probability": 0.9583 + }, + { + "start": 6034.46, + "end": 6036.2, + "probability": 0.7614 + }, + { + "start": 6036.94, + "end": 6042.1, + "probability": 0.969 + }, + { + "start": 6042.56, + "end": 6048.06, + "probability": 0.9896 + }, + { + "start": 6048.3, + "end": 6048.58, + "probability": 0.1279 + }, + { + "start": 6048.62, + "end": 6050.42, + "probability": 0.1267 + }, + { + "start": 6050.42, + "end": 6050.42, + "probability": 0.082 + }, + { + "start": 6050.42, + "end": 6050.42, + "probability": 0.5083 + }, + { + "start": 6050.42, + "end": 6051.68, + "probability": 0.0979 + }, + { + "start": 6051.78, + "end": 6055.04, + "probability": 0.5283 + }, + { + "start": 6057.22, + "end": 6057.66, + "probability": 0.3597 + }, + { + "start": 6057.66, + "end": 6061.92, + "probability": 0.9889 + }, + { + "start": 6062.06, + "end": 6062.56, + "probability": 0.4535 + }, + { + "start": 6062.66, + "end": 6063.9, + "probability": 0.596 + }, + { + "start": 6064.14, + "end": 6066.32, + "probability": 0.9867 + }, + { + "start": 6066.52, + "end": 6073.0, + "probability": 0.8313 + }, + { + "start": 6073.3, + "end": 6078.34, + "probability": 0.9915 + }, + { + "start": 6078.44, + "end": 6081.08, + "probability": 0.9517 + }, + { + "start": 6081.58, + "end": 6085.94, + "probability": 0.9861 + }, + { + "start": 6085.94, + "end": 6092.86, + "probability": 0.9641 + }, + { + "start": 6093.82, + "end": 6098.06, + "probability": 0.9486 + }, + { + "start": 6098.16, + "end": 6103.24, + "probability": 0.9653 + }, + { + "start": 6103.84, + "end": 6108.52, + "probability": 0.9683 + }, + { + "start": 6108.52, + "end": 6112.48, + "probability": 0.9918 + }, + { + "start": 6112.84, + "end": 6115.44, + "probability": 0.8828 + }, + { + "start": 6115.66, + "end": 6118.46, + "probability": 0.9919 + }, + { + "start": 6118.46, + "end": 6121.4, + "probability": 0.9946 + }, + { + "start": 6121.9, + "end": 6124.26, + "probability": 0.9912 + }, + { + "start": 6124.68, + "end": 6127.86, + "probability": 0.8967 + }, + { + "start": 6127.92, + "end": 6129.72, + "probability": 0.9598 + }, + { + "start": 6129.88, + "end": 6130.86, + "probability": 0.7417 + }, + { + "start": 6131.44, + "end": 6132.54, + "probability": 0.8907 + }, + { + "start": 6132.62, + "end": 6133.48, + "probability": 0.7715 + }, + { + "start": 6133.86, + "end": 6136.56, + "probability": 0.9597 + }, + { + "start": 6137.24, + "end": 6143.06, + "probability": 0.9886 + }, + { + "start": 6143.88, + "end": 6147.96, + "probability": 0.9659 + }, + { + "start": 6147.96, + "end": 6153.78, + "probability": 0.9883 + }, + { + "start": 6154.56, + "end": 6159.04, + "probability": 0.8197 + }, + { + "start": 6159.1, + "end": 6161.76, + "probability": 0.976 + }, + { + "start": 6162.16, + "end": 6164.56, + "probability": 0.7919 + }, + { + "start": 6164.6, + "end": 6167.3, + "probability": 0.9338 + }, + { + "start": 6167.3, + "end": 6171.22, + "probability": 0.9176 + }, + { + "start": 6171.82, + "end": 6173.02, + "probability": 0.9548 + }, + { + "start": 6173.08, + "end": 6175.08, + "probability": 0.5797 + }, + { + "start": 6175.24, + "end": 6178.18, + "probability": 0.9572 + }, + { + "start": 6178.62, + "end": 6178.92, + "probability": 0.8826 + }, + { + "start": 6178.98, + "end": 6179.84, + "probability": 0.9702 + }, + { + "start": 6180.12, + "end": 6181.16, + "probability": 0.922 + }, + { + "start": 6181.48, + "end": 6184.6, + "probability": 0.9954 + }, + { + "start": 6184.88, + "end": 6185.6, + "probability": 0.9873 + }, + { + "start": 6186.32, + "end": 6190.04, + "probability": 0.9943 + }, + { + "start": 6190.06, + "end": 6191.02, + "probability": 0.9722 + }, + { + "start": 6191.36, + "end": 6195.06, + "probability": 0.9712 + }, + { + "start": 6195.42, + "end": 6196.28, + "probability": 0.7821 + }, + { + "start": 6197.2, + "end": 6199.76, + "probability": 0.9299 + }, + { + "start": 6199.88, + "end": 6201.56, + "probability": 0.889 + }, + { + "start": 6201.9, + "end": 6204.46, + "probability": 0.8025 + }, + { + "start": 6204.7, + "end": 6205.16, + "probability": 0.8661 + }, + { + "start": 6205.3, + "end": 6206.22, + "probability": 0.5984 + }, + { + "start": 6206.42, + "end": 6208.38, + "probability": 0.9352 + }, + { + "start": 6208.42, + "end": 6209.22, + "probability": 0.8079 + }, + { + "start": 6209.76, + "end": 6210.76, + "probability": 0.7695 + }, + { + "start": 6218.2, + "end": 6220.18, + "probability": 0.6085 + }, + { + "start": 6222.28, + "end": 6225.98, + "probability": 0.9268 + }, + { + "start": 6226.78, + "end": 6228.62, + "probability": 0.9594 + }, + { + "start": 6228.62, + "end": 6230.8, + "probability": 0.8624 + }, + { + "start": 6231.5, + "end": 6233.42, + "probability": 0.8323 + }, + { + "start": 6233.5, + "end": 6237.44, + "probability": 0.9085 + }, + { + "start": 6238.76, + "end": 6239.54, + "probability": 0.8016 + }, + { + "start": 6240.46, + "end": 6245.08, + "probability": 0.7976 + }, + { + "start": 6245.66, + "end": 6251.24, + "probability": 0.9797 + }, + { + "start": 6252.14, + "end": 6256.72, + "probability": 0.9731 + }, + { + "start": 6256.72, + "end": 6262.64, + "probability": 0.9981 + }, + { + "start": 6263.5, + "end": 6265.52, + "probability": 0.9854 + }, + { + "start": 6266.66, + "end": 6270.36, + "probability": 0.9947 + }, + { + "start": 6271.14, + "end": 6273.94, + "probability": 0.9941 + }, + { + "start": 6273.94, + "end": 6276.42, + "probability": 0.998 + }, + { + "start": 6277.16, + "end": 6282.22, + "probability": 0.9341 + }, + { + "start": 6283.16, + "end": 6287.1, + "probability": 0.9707 + }, + { + "start": 6287.58, + "end": 6290.78, + "probability": 0.9205 + }, + { + "start": 6292.04, + "end": 6294.94, + "probability": 0.7485 + }, + { + "start": 6295.58, + "end": 6300.82, + "probability": 0.973 + }, + { + "start": 6301.38, + "end": 6306.78, + "probability": 0.978 + }, + { + "start": 6307.04, + "end": 6307.92, + "probability": 0.7901 + }, + { + "start": 6308.18, + "end": 6311.54, + "probability": 0.963 + }, + { + "start": 6312.98, + "end": 6315.1, + "probability": 0.9729 + }, + { + "start": 6315.84, + "end": 6317.26, + "probability": 0.8495 + }, + { + "start": 6317.76, + "end": 6319.56, + "probability": 0.9958 + }, + { + "start": 6320.06, + "end": 6321.28, + "probability": 0.9136 + }, + { + "start": 6321.48, + "end": 6328.36, + "probability": 0.9714 + }, + { + "start": 6328.98, + "end": 6332.3, + "probability": 0.896 + }, + { + "start": 6333.66, + "end": 6337.56, + "probability": 0.9963 + }, + { + "start": 6337.56, + "end": 6341.98, + "probability": 0.9966 + }, + { + "start": 6342.46, + "end": 6345.72, + "probability": 0.9953 + }, + { + "start": 6345.92, + "end": 6348.7, + "probability": 0.9775 + }, + { + "start": 6348.86, + "end": 6350.12, + "probability": 0.9415 + }, + { + "start": 6350.3, + "end": 6352.46, + "probability": 0.9941 + }, + { + "start": 6353.24, + "end": 6355.12, + "probability": 0.9871 + }, + { + "start": 6356.02, + "end": 6359.26, + "probability": 0.9954 + }, + { + "start": 6359.62, + "end": 6362.6, + "probability": 0.9937 + }, + { + "start": 6363.34, + "end": 6365.2, + "probability": 0.993 + }, + { + "start": 6365.98, + "end": 6367.38, + "probability": 0.791 + }, + { + "start": 6367.7, + "end": 6369.14, + "probability": 0.946 + }, + { + "start": 6369.6, + "end": 6372.58, + "probability": 0.9984 + }, + { + "start": 6372.76, + "end": 6375.94, + "probability": 0.9998 + }, + { + "start": 6376.18, + "end": 6377.72, + "probability": 0.6853 + }, + { + "start": 6377.8, + "end": 6379.42, + "probability": 0.791 + }, + { + "start": 6379.94, + "end": 6383.94, + "probability": 0.9867 + }, + { + "start": 6384.12, + "end": 6386.34, + "probability": 0.9699 + }, + { + "start": 6386.92, + "end": 6389.68, + "probability": 0.991 + }, + { + "start": 6390.76, + "end": 6395.2, + "probability": 0.9966 + }, + { + "start": 6395.94, + "end": 6399.24, + "probability": 0.9964 + }, + { + "start": 6399.44, + "end": 6403.61, + "probability": 0.9409 + }, + { + "start": 6405.36, + "end": 6407.98, + "probability": 0.9147 + }, + { + "start": 6408.8, + "end": 6413.28, + "probability": 0.9475 + }, + { + "start": 6413.28, + "end": 6417.2, + "probability": 0.9866 + }, + { + "start": 6417.46, + "end": 6417.88, + "probability": 0.833 + }, + { + "start": 6417.98, + "end": 6418.62, + "probability": 0.9318 + }, + { + "start": 6418.76, + "end": 6421.48, + "probability": 0.6236 + }, + { + "start": 6421.92, + "end": 6423.98, + "probability": 0.9307 + }, + { + "start": 6424.22, + "end": 6426.2, + "probability": 0.8376 + }, + { + "start": 6426.28, + "end": 6428.76, + "probability": 0.9927 + }, + { + "start": 6429.52, + "end": 6431.06, + "probability": 0.3615 + }, + { + "start": 6431.24, + "end": 6432.78, + "probability": 0.9302 + }, + { + "start": 6433.02, + "end": 6433.7, + "probability": 0.8726 + }, + { + "start": 6433.84, + "end": 6434.92, + "probability": 0.6656 + }, + { + "start": 6435.62, + "end": 6437.92, + "probability": 0.7519 + }, + { + "start": 6456.44, + "end": 6457.84, + "probability": 0.7651 + }, + { + "start": 6459.54, + "end": 6463.12, + "probability": 0.741 + }, + { + "start": 6471.24, + "end": 6472.7, + "probability": 0.6926 + }, + { + "start": 6474.3, + "end": 6476.5, + "probability": 0.8221 + }, + { + "start": 6478.0, + "end": 6480.16, + "probability": 0.9817 + }, + { + "start": 6480.8, + "end": 6480.9, + "probability": 0.9987 + }, + { + "start": 6483.0, + "end": 6489.1, + "probability": 0.9924 + }, + { + "start": 6492.46, + "end": 6493.22, + "probability": 0.955 + }, + { + "start": 6497.84, + "end": 6500.76, + "probability": 0.8872 + }, + { + "start": 6501.84, + "end": 6504.92, + "probability": 0.8895 + }, + { + "start": 6506.98, + "end": 6508.28, + "probability": 0.7745 + }, + { + "start": 6509.62, + "end": 6516.3, + "probability": 0.972 + }, + { + "start": 6518.38, + "end": 6521.62, + "probability": 0.8986 + }, + { + "start": 6523.04, + "end": 6523.76, + "probability": 0.7257 + }, + { + "start": 6525.08, + "end": 6526.9, + "probability": 0.8235 + }, + { + "start": 6528.56, + "end": 6529.35, + "probability": 0.9922 + }, + { + "start": 6530.48, + "end": 6533.74, + "probability": 0.9885 + }, + { + "start": 6535.68, + "end": 6539.22, + "probability": 0.8878 + }, + { + "start": 6541.28, + "end": 6545.68, + "probability": 0.9824 + }, + { + "start": 6552.38, + "end": 6553.24, + "probability": 0.9938 + }, + { + "start": 6554.42, + "end": 6555.04, + "probability": 0.9824 + }, + { + "start": 6557.04, + "end": 6558.86, + "probability": 0.999 + }, + { + "start": 6558.98, + "end": 6560.34, + "probability": 0.6946 + }, + { + "start": 6561.0, + "end": 6563.84, + "probability": 0.9677 + }, + { + "start": 6565.74, + "end": 6568.86, + "probability": 0.9802 + }, + { + "start": 6570.82, + "end": 6572.02, + "probability": 0.9259 + }, + { + "start": 6573.36, + "end": 6576.56, + "probability": 0.8772 + }, + { + "start": 6577.6, + "end": 6582.02, + "probability": 0.6355 + }, + { + "start": 6584.72, + "end": 6590.3, + "probability": 0.9469 + }, + { + "start": 6592.6, + "end": 6594.0, + "probability": 0.9409 + }, + { + "start": 6594.86, + "end": 6596.2, + "probability": 0.7488 + }, + { + "start": 6597.16, + "end": 6600.74, + "probability": 0.8383 + }, + { + "start": 6601.62, + "end": 6604.82, + "probability": 0.9421 + }, + { + "start": 6604.82, + "end": 6607.62, + "probability": 0.9458 + }, + { + "start": 6607.72, + "end": 6608.18, + "probability": 0.693 + }, + { + "start": 6609.28, + "end": 6613.42, + "probability": 0.9744 + }, + { + "start": 6613.56, + "end": 6614.6, + "probability": 0.9944 + }, + { + "start": 6616.6, + "end": 6617.38, + "probability": 0.811 + }, + { + "start": 6619.38, + "end": 6619.38, + "probability": 0.9609 + }, + { + "start": 6620.14, + "end": 6620.56, + "probability": 0.8483 + }, + { + "start": 6621.74, + "end": 6624.2, + "probability": 0.9639 + }, + { + "start": 6624.96, + "end": 6626.34, + "probability": 0.7356 + }, + { + "start": 6626.64, + "end": 6628.1, + "probability": 0.9939 + }, + { + "start": 6628.56, + "end": 6629.84, + "probability": 0.7891 + }, + { + "start": 6630.2, + "end": 6630.99, + "probability": 0.8907 + }, + { + "start": 6632.12, + "end": 6633.16, + "probability": 0.1338 + }, + { + "start": 6633.18, + "end": 6634.29, + "probability": 0.0714 + }, + { + "start": 6635.62, + "end": 6636.26, + "probability": 0.6249 + }, + { + "start": 6636.32, + "end": 6637.32, + "probability": 0.691 + }, + { + "start": 6637.72, + "end": 6639.5, + "probability": 0.9814 + }, + { + "start": 6639.64, + "end": 6640.84, + "probability": 0.7733 + }, + { + "start": 6641.78, + "end": 6642.96, + "probability": 0.9116 + }, + { + "start": 6643.8, + "end": 6643.84, + "probability": 0.2228 + }, + { + "start": 6643.84, + "end": 6645.58, + "probability": 0.9501 + }, + { + "start": 6645.92, + "end": 6648.98, + "probability": 0.8337 + }, + { + "start": 6649.52, + "end": 6651.3, + "probability": 0.4957 + }, + { + "start": 6652.14, + "end": 6654.02, + "probability": 0.3091 + }, + { + "start": 6654.16, + "end": 6654.16, + "probability": 0.3338 + }, + { + "start": 6654.16, + "end": 6656.4, + "probability": 0.4864 + }, + { + "start": 6656.74, + "end": 6656.74, + "probability": 0.0035 + }, + { + "start": 6656.74, + "end": 6659.78, + "probability": 0.7939 + }, + { + "start": 6660.08, + "end": 6662.26, + "probability": 0.3941 + }, + { + "start": 6662.36, + "end": 6666.54, + "probability": 0.9847 + }, + { + "start": 6667.92, + "end": 6671.76, + "probability": 0.9535 + }, + { + "start": 6672.38, + "end": 6672.7, + "probability": 0.8285 + }, + { + "start": 6672.96, + "end": 6675.22, + "probability": 0.6689 + }, + { + "start": 6675.98, + "end": 6678.8, + "probability": 0.7868 + }, + { + "start": 6679.64, + "end": 6681.46, + "probability": 0.7728 + }, + { + "start": 6695.7, + "end": 6699.06, + "probability": 0.6927 + }, + { + "start": 6700.02, + "end": 6705.3, + "probability": 0.9746 + }, + { + "start": 6705.48, + "end": 6706.0, + "probability": 0.6758 + }, + { + "start": 6706.0, + "end": 6711.16, + "probability": 0.9791 + }, + { + "start": 6711.36, + "end": 6712.26, + "probability": 0.6322 + }, + { + "start": 6712.88, + "end": 6714.96, + "probability": 0.8693 + }, + { + "start": 6715.54, + "end": 6718.63, + "probability": 0.894 + }, + { + "start": 6719.34, + "end": 6720.5, + "probability": 0.8751 + }, + { + "start": 6721.04, + "end": 6722.09, + "probability": 0.8011 + }, + { + "start": 6722.62, + "end": 6725.86, + "probability": 0.8936 + }, + { + "start": 6726.2, + "end": 6726.88, + "probability": 0.305 + }, + { + "start": 6727.28, + "end": 6729.64, + "probability": 0.8175 + }, + { + "start": 6729.7, + "end": 6731.16, + "probability": 0.9485 + }, + { + "start": 6731.36, + "end": 6732.62, + "probability": 0.9346 + }, + { + "start": 6732.74, + "end": 6738.46, + "probability": 0.9808 + }, + { + "start": 6739.2, + "end": 6741.2, + "probability": 0.7601 + }, + { + "start": 6741.44, + "end": 6741.44, + "probability": 0.0405 + }, + { + "start": 6741.44, + "end": 6744.38, + "probability": 0.9119 + }, + { + "start": 6744.46, + "end": 6745.66, + "probability": 0.8059 + }, + { + "start": 6745.7, + "end": 6749.4, + "probability": 0.9524 + }, + { + "start": 6749.54, + "end": 6751.48, + "probability": 0.9014 + }, + { + "start": 6752.46, + "end": 6754.14, + "probability": 0.9634 + }, + { + "start": 6755.12, + "end": 6759.04, + "probability": 0.7585 + }, + { + "start": 6759.74, + "end": 6760.4, + "probability": 0.6883 + }, + { + "start": 6760.52, + "end": 6762.2, + "probability": 0.9896 + }, + { + "start": 6762.6, + "end": 6765.78, + "probability": 0.9819 + }, + { + "start": 6765.78, + "end": 6769.1, + "probability": 0.1851 + }, + { + "start": 6769.1, + "end": 6769.7, + "probability": 0.4578 + }, + { + "start": 6770.2, + "end": 6770.62, + "probability": 0.5854 + }, + { + "start": 6770.64, + "end": 6773.16, + "probability": 0.9958 + }, + { + "start": 6773.16, + "end": 6775.92, + "probability": 0.9211 + }, + { + "start": 6776.02, + "end": 6776.36, + "probability": 0.6746 + }, + { + "start": 6776.52, + "end": 6777.76, + "probability": 0.6964 + }, + { + "start": 6777.94, + "end": 6779.64, + "probability": 0.9653 + }, + { + "start": 6780.06, + "end": 6780.9, + "probability": 0.8622 + }, + { + "start": 6781.04, + "end": 6782.84, + "probability": 0.9681 + }, + { + "start": 6783.28, + "end": 6784.66, + "probability": 0.8747 + }, + { + "start": 6784.92, + "end": 6786.82, + "probability": 0.9733 + }, + { + "start": 6787.14, + "end": 6788.18, + "probability": 0.8592 + }, + { + "start": 6788.22, + "end": 6789.56, + "probability": 0.8049 + }, + { + "start": 6790.92, + "end": 6791.66, + "probability": 0.8831 + }, + { + "start": 6791.66, + "end": 6791.66, + "probability": 0.0151 + }, + { + "start": 6791.66, + "end": 6792.28, + "probability": 0.6932 + }, + { + "start": 6792.58, + "end": 6795.28, + "probability": 0.9856 + }, + { + "start": 6796.14, + "end": 6796.14, + "probability": 0.1768 + }, + { + "start": 6796.18, + "end": 6796.18, + "probability": 0.1356 + }, + { + "start": 6796.18, + "end": 6799.96, + "probability": 0.9189 + }, + { + "start": 6800.06, + "end": 6802.42, + "probability": 0.5392 + }, + { + "start": 6802.5, + "end": 6803.22, + "probability": 0.5952 + }, + { + "start": 6803.48, + "end": 6805.02, + "probability": 0.979 + }, + { + "start": 6805.16, + "end": 6806.42, + "probability": 0.9806 + }, + { + "start": 6807.08, + "end": 6807.18, + "probability": 0.0423 + }, + { + "start": 6807.18, + "end": 6810.78, + "probability": 0.9861 + }, + { + "start": 6811.96, + "end": 6813.6, + "probability": 0.8341 + }, + { + "start": 6814.04, + "end": 6819.32, + "probability": 0.9976 + }, + { + "start": 6819.72, + "end": 6821.16, + "probability": 0.9966 + }, + { + "start": 6821.24, + "end": 6823.62, + "probability": 0.985 + }, + { + "start": 6823.76, + "end": 6825.38, + "probability": 0.7995 + }, + { + "start": 6825.74, + "end": 6826.11, + "probability": 0.677 + }, + { + "start": 6826.68, + "end": 6831.88, + "probability": 0.9908 + }, + { + "start": 6832.24, + "end": 6836.0, + "probability": 0.8452 + }, + { + "start": 6836.1, + "end": 6836.64, + "probability": 0.7118 + }, + { + "start": 6837.1, + "end": 6839.76, + "probability": 0.9648 + }, + { + "start": 6839.8, + "end": 6840.92, + "probability": 0.67 + }, + { + "start": 6840.98, + "end": 6842.28, + "probability": 0.6798 + }, + { + "start": 6842.9, + "end": 6845.6, + "probability": 0.9404 + }, + { + "start": 6846.02, + "end": 6846.72, + "probability": 0.8984 + }, + { + "start": 6847.14, + "end": 6847.86, + "probability": 0.9049 + }, + { + "start": 6848.18, + "end": 6848.8, + "probability": 0.9618 + }, + { + "start": 6848.9, + "end": 6850.44, + "probability": 0.9616 + }, + { + "start": 6850.6, + "end": 6854.46, + "probability": 0.9782 + }, + { + "start": 6855.26, + "end": 6856.38, + "probability": 0.6626 + }, + { + "start": 6856.9, + "end": 6857.22, + "probability": 0.5504 + }, + { + "start": 6857.36, + "end": 6859.74, + "probability": 0.9854 + }, + { + "start": 6860.24, + "end": 6862.98, + "probability": 0.9406 + }, + { + "start": 6862.98, + "end": 6865.54, + "probability": 0.6039 + }, + { + "start": 6865.94, + "end": 6868.0, + "probability": 0.9971 + }, + { + "start": 6868.44, + "end": 6872.38, + "probability": 0.6844 + }, + { + "start": 6872.7, + "end": 6875.6, + "probability": 0.9727 + }, + { + "start": 6875.6, + "end": 6877.54, + "probability": 0.8639 + }, + { + "start": 6877.62, + "end": 6883.84, + "probability": 0.9882 + }, + { + "start": 6884.18, + "end": 6887.08, + "probability": 0.9775 + }, + { + "start": 6887.14, + "end": 6887.82, + "probability": 0.8386 + }, + { + "start": 6887.86, + "end": 6888.42, + "probability": 0.4047 + }, + { + "start": 6888.66, + "end": 6890.6, + "probability": 0.9663 + }, + { + "start": 6890.6, + "end": 6892.5, + "probability": 0.7024 + }, + { + "start": 6892.8, + "end": 6893.32, + "probability": 0.6269 + }, + { + "start": 6893.94, + "end": 6893.98, + "probability": 0.3651 + }, + { + "start": 6893.98, + "end": 6898.14, + "probability": 0.9961 + }, + { + "start": 6898.22, + "end": 6900.64, + "probability": 0.9661 + }, + { + "start": 6900.94, + "end": 6904.14, + "probability": 0.994 + }, + { + "start": 6904.54, + "end": 6908.22, + "probability": 0.9913 + }, + { + "start": 6908.34, + "end": 6909.16, + "probability": 0.8828 + }, + { + "start": 6909.34, + "end": 6910.06, + "probability": 0.5806 + }, + { + "start": 6910.26, + "end": 6910.42, + "probability": 0.7183 + }, + { + "start": 6911.62, + "end": 6917.18, + "probability": 0.7365 + }, + { + "start": 6917.3, + "end": 6918.14, + "probability": 0.9731 + }, + { + "start": 6920.16, + "end": 6921.56, + "probability": 0.9142 + }, + { + "start": 6922.0, + "end": 6923.14, + "probability": 0.8636 + }, + { + "start": 6931.54, + "end": 6932.6, + "probability": 0.5671 + }, + { + "start": 6932.64, + "end": 6933.16, + "probability": 0.2838 + }, + { + "start": 6933.16, + "end": 6935.76, + "probability": 0.9497 + }, + { + "start": 6935.86, + "end": 6938.24, + "probability": 0.9777 + }, + { + "start": 6939.28, + "end": 6944.8, + "probability": 0.9595 + }, + { + "start": 6945.2, + "end": 6947.58, + "probability": 0.9563 + }, + { + "start": 6948.0, + "end": 6954.4, + "probability": 0.9884 + }, + { + "start": 6955.26, + "end": 6958.28, + "probability": 0.9848 + }, + { + "start": 6958.82, + "end": 6967.8, + "probability": 0.9954 + }, + { + "start": 6967.9, + "end": 6969.02, + "probability": 0.771 + }, + { + "start": 6969.4, + "end": 6970.68, + "probability": 0.7663 + }, + { + "start": 6971.66, + "end": 6978.74, + "probability": 0.99 + }, + { + "start": 6979.78, + "end": 6980.38, + "probability": 0.7081 + }, + { + "start": 6980.62, + "end": 6985.2, + "probability": 0.9885 + }, + { + "start": 6985.88, + "end": 6989.72, + "probability": 0.7559 + }, + { + "start": 6990.38, + "end": 6991.44, + "probability": 0.6938 + }, + { + "start": 6991.52, + "end": 6993.92, + "probability": 0.9812 + }, + { + "start": 6994.06, + "end": 7002.41, + "probability": 0.9849 + }, + { + "start": 7002.56, + "end": 7003.58, + "probability": 0.8901 + }, + { + "start": 7003.78, + "end": 7005.0, + "probability": 0.8917 + }, + { + "start": 7005.52, + "end": 7011.88, + "probability": 0.922 + }, + { + "start": 7012.68, + "end": 7014.12, + "probability": 0.9268 + }, + { + "start": 7014.16, + "end": 7018.47, + "probability": 0.9834 + }, + { + "start": 7018.8, + "end": 7024.16, + "probability": 0.9165 + }, + { + "start": 7024.74, + "end": 7026.46, + "probability": 0.8401 + }, + { + "start": 7027.28, + "end": 7028.44, + "probability": 0.6035 + }, + { + "start": 7028.58, + "end": 7031.06, + "probability": 0.9778 + }, + { + "start": 7031.2, + "end": 7031.94, + "probability": 0.9473 + }, + { + "start": 7032.28, + "end": 7035.0, + "probability": 0.9038 + }, + { + "start": 7035.74, + "end": 7037.14, + "probability": 0.9578 + }, + { + "start": 7037.26, + "end": 7043.66, + "probability": 0.9493 + }, + { + "start": 7043.88, + "end": 7048.5, + "probability": 0.9973 + }, + { + "start": 7048.5, + "end": 7055.38, + "probability": 0.9993 + }, + { + "start": 7056.02, + "end": 7058.04, + "probability": 0.2461 + }, + { + "start": 7058.2, + "end": 7059.98, + "probability": 0.977 + }, + { + "start": 7060.52, + "end": 7061.66, + "probability": 0.3743 + }, + { + "start": 7061.98, + "end": 7062.9, + "probability": 0.6399 + }, + { + "start": 7063.24, + "end": 7063.74, + "probability": 0.854 + }, + { + "start": 7064.48, + "end": 7065.48, + "probability": 0.8998 + }, + { + "start": 7066.84, + "end": 7067.86, + "probability": 0.9883 + }, + { + "start": 7068.3, + "end": 7071.28, + "probability": 0.9811 + }, + { + "start": 7071.96, + "end": 7074.9, + "probability": 0.9832 + }, + { + "start": 7075.46, + "end": 7075.48, + "probability": 0.0091 + }, + { + "start": 7075.48, + "end": 7078.2, + "probability": 0.9081 + }, + { + "start": 7078.82, + "end": 7079.0, + "probability": 0.4379 + }, + { + "start": 7079.0, + "end": 7079.5, + "probability": 0.6846 + }, + { + "start": 7079.78, + "end": 7082.84, + "probability": 0.9533 + }, + { + "start": 7083.32, + "end": 7085.4, + "probability": 0.9976 + }, + { + "start": 7085.52, + "end": 7086.7, + "probability": 0.8259 + }, + { + "start": 7087.38, + "end": 7090.24, + "probability": 0.8163 + }, + { + "start": 7090.32, + "end": 7093.68, + "probability": 0.9752 + }, + { + "start": 7094.12, + "end": 7094.92, + "probability": 0.3008 + }, + { + "start": 7095.04, + "end": 7096.72, + "probability": 0.5309 + }, + { + "start": 7096.94, + "end": 7098.81, + "probability": 0.5102 + }, + { + "start": 7099.4, + "end": 7104.18, + "probability": 0.908 + }, + { + "start": 7104.52, + "end": 7104.52, + "probability": 0.0452 + }, + { + "start": 7104.52, + "end": 7106.84, + "probability": 0.485 + }, + { + "start": 7107.5, + "end": 7108.5, + "probability": 0.4648 + }, + { + "start": 7109.42, + "end": 7111.02, + "probability": 0.3929 + }, + { + "start": 7111.02, + "end": 7111.08, + "probability": 0.5414 + }, + { + "start": 7111.08, + "end": 7114.92, + "probability": 0.7544 + }, + { + "start": 7115.2, + "end": 7117.48, + "probability": 0.9873 + }, + { + "start": 7117.6, + "end": 7118.1, + "probability": 0.8346 + }, + { + "start": 7118.22, + "end": 7118.64, + "probability": 0.8698 + }, + { + "start": 7118.86, + "end": 7121.06, + "probability": 0.9525 + }, + { + "start": 7121.54, + "end": 7125.26, + "probability": 0.9953 + }, + { + "start": 7125.86, + "end": 7129.48, + "probability": 0.9981 + }, + { + "start": 7129.48, + "end": 7133.04, + "probability": 0.9922 + }, + { + "start": 7133.56, + "end": 7134.8, + "probability": 0.5831 + }, + { + "start": 7134.92, + "end": 7135.16, + "probability": 0.4362 + }, + { + "start": 7135.28, + "end": 7136.06, + "probability": 0.632 + }, + { + "start": 7136.22, + "end": 7139.0, + "probability": 0.9906 + }, + { + "start": 7139.0, + "end": 7141.58, + "probability": 0.9976 + }, + { + "start": 7142.18, + "end": 7145.04, + "probability": 0.9833 + }, + { + "start": 7145.04, + "end": 7147.56, + "probability": 0.9744 + }, + { + "start": 7147.98, + "end": 7149.68, + "probability": 0.999 + }, + { + "start": 7150.04, + "end": 7155.56, + "probability": 0.9365 + }, + { + "start": 7155.56, + "end": 7163.94, + "probability": 0.949 + }, + { + "start": 7164.38, + "end": 7169.07, + "probability": 0.9868 + }, + { + "start": 7169.48, + "end": 7171.86, + "probability": 0.9148 + }, + { + "start": 7172.2, + "end": 7173.48, + "probability": 0.9436 + }, + { + "start": 7173.82, + "end": 7174.28, + "probability": 0.8669 + }, + { + "start": 7174.44, + "end": 7174.84, + "probability": 0.6605 + }, + { + "start": 7174.96, + "end": 7176.7, + "probability": 0.9113 + }, + { + "start": 7177.04, + "end": 7178.56, + "probability": 0.9851 + }, + { + "start": 7179.02, + "end": 7179.88, + "probability": 0.9395 + }, + { + "start": 7180.34, + "end": 7184.7, + "probability": 0.9916 + }, + { + "start": 7186.17, + "end": 7188.99, + "probability": 0.616 + }, + { + "start": 7189.46, + "end": 7189.92, + "probability": 0.7612 + }, + { + "start": 7189.94, + "end": 7190.42, + "probability": 0.9593 + }, + { + "start": 7190.58, + "end": 7192.86, + "probability": 0.9188 + }, + { + "start": 7193.42, + "end": 7194.05, + "probability": 0.9438 + }, + { + "start": 7194.62, + "end": 7195.7, + "probability": 0.9575 + }, + { + "start": 7196.24, + "end": 7197.28, + "probability": 0.8864 + }, + { + "start": 7197.34, + "end": 7198.9, + "probability": 0.8152 + }, + { + "start": 7199.28, + "end": 7202.46, + "probability": 0.9964 + }, + { + "start": 7202.6, + "end": 7202.92, + "probability": 0.853 + }, + { + "start": 7203.36, + "end": 7204.4, + "probability": 0.7527 + }, + { + "start": 7206.1, + "end": 7207.58, + "probability": 0.8733 + }, + { + "start": 7208.22, + "end": 7210.9, + "probability": 0.8356 + }, + { + "start": 7211.48, + "end": 7213.48, + "probability": 0.7022 + }, + { + "start": 7213.82, + "end": 7214.54, + "probability": 0.1561 + }, + { + "start": 7219.48, + "end": 7220.58, + "probability": 0.5318 + }, + { + "start": 7222.98, + "end": 7225.86, + "probability": 0.9558 + }, + { + "start": 7226.08, + "end": 7228.88, + "probability": 0.7448 + }, + { + "start": 7229.32, + "end": 7232.36, + "probability": 0.9394 + }, + { + "start": 7233.12, + "end": 7235.72, + "probability": 0.8674 + }, + { + "start": 7236.28, + "end": 7237.6, + "probability": 0.8561 + }, + { + "start": 7238.2, + "end": 7239.16, + "probability": 0.9172 + }, + { + "start": 7239.7, + "end": 7242.94, + "probability": 0.9902 + }, + { + "start": 7243.02, + "end": 7244.34, + "probability": 0.9873 + }, + { + "start": 7244.82, + "end": 7248.08, + "probability": 0.991 + }, + { + "start": 7249.06, + "end": 7251.76, + "probability": 0.7296 + }, + { + "start": 7251.84, + "end": 7255.34, + "probability": 0.9679 + }, + { + "start": 7255.34, + "end": 7258.8, + "probability": 0.91 + }, + { + "start": 7259.5, + "end": 7261.14, + "probability": 0.9771 + }, + { + "start": 7261.68, + "end": 7261.92, + "probability": 0.7946 + }, + { + "start": 7263.0, + "end": 7267.04, + "probability": 0.8154 + }, + { + "start": 7267.34, + "end": 7269.22, + "probability": 0.9968 + }, + { + "start": 7269.58, + "end": 7270.6, + "probability": 0.7794 + }, + { + "start": 7270.66, + "end": 7274.36, + "probability": 0.8046 + }, + { + "start": 7274.5, + "end": 7275.02, + "probability": 0.7063 + }, + { + "start": 7275.5, + "end": 7277.78, + "probability": 0.9607 + }, + { + "start": 7278.12, + "end": 7279.6, + "probability": 0.9527 + }, + { + "start": 7279.7, + "end": 7281.86, + "probability": 0.993 + }, + { + "start": 7281.94, + "end": 7282.5, + "probability": 0.6729 + }, + { + "start": 7282.62, + "end": 7283.06, + "probability": 0.9549 + }, + { + "start": 7283.86, + "end": 7284.23, + "probability": 0.9243 + }, + { + "start": 7284.4, + "end": 7284.82, + "probability": 0.9165 + }, + { + "start": 7285.42, + "end": 7286.88, + "probability": 0.958 + }, + { + "start": 7287.0, + "end": 7288.78, + "probability": 0.9976 + }, + { + "start": 7289.4, + "end": 7290.48, + "probability": 0.7323 + }, + { + "start": 7291.2, + "end": 7292.46, + "probability": 0.7949 + }, + { + "start": 7292.94, + "end": 7294.04, + "probability": 0.939 + }, + { + "start": 7294.58, + "end": 7296.54, + "probability": 0.7959 + }, + { + "start": 7296.56, + "end": 7297.1, + "probability": 0.8765 + }, + { + "start": 7297.68, + "end": 7299.88, + "probability": 0.6873 + }, + { + "start": 7299.92, + "end": 7300.84, + "probability": 0.9976 + }, + { + "start": 7301.36, + "end": 7301.54, + "probability": 0.6358 + }, + { + "start": 7301.58, + "end": 7302.64, + "probability": 0.4745 + }, + { + "start": 7302.72, + "end": 7303.46, + "probability": 0.9866 + }, + { + "start": 7304.02, + "end": 7304.7, + "probability": 0.6539 + }, + { + "start": 7305.02, + "end": 7305.62, + "probability": 0.8556 + }, + { + "start": 7305.66, + "end": 7305.66, + "probability": 0.4213 + }, + { + "start": 7305.66, + "end": 7310.85, + "probability": 0.7463 + }, + { + "start": 7311.46, + "end": 7313.48, + "probability": 0.9958 + }, + { + "start": 7313.88, + "end": 7315.48, + "probability": 0.9985 + }, + { + "start": 7315.88, + "end": 7318.14, + "probability": 0.5068 + }, + { + "start": 7318.22, + "end": 7319.3, + "probability": 0.762 + }, + { + "start": 7319.5, + "end": 7320.66, + "probability": 0.1546 + }, + { + "start": 7320.66, + "end": 7321.3, + "probability": 0.3115 + }, + { + "start": 7321.34, + "end": 7322.42, + "probability": 0.6503 + }, + { + "start": 7322.46, + "end": 7323.82, + "probability": 0.5623 + }, + { + "start": 7323.94, + "end": 7325.7, + "probability": 0.9084 + }, + { + "start": 7330.62, + "end": 7332.92, + "probability": 0.9719 + }, + { + "start": 7334.2, + "end": 7335.5, + "probability": 0.7631 + }, + { + "start": 7336.06, + "end": 7336.74, + "probability": 0.664 + }, + { + "start": 7337.46, + "end": 7341.34, + "probability": 0.9655 + }, + { + "start": 7342.12, + "end": 7343.98, + "probability": 0.7273 + }, + { + "start": 7344.16, + "end": 7350.16, + "probability": 0.9797 + }, + { + "start": 7350.56, + "end": 7355.16, + "probability": 0.9189 + }, + { + "start": 7355.6, + "end": 7356.02, + "probability": 0.8391 + }, + { + "start": 7356.6, + "end": 7360.72, + "probability": 0.8421 + }, + { + "start": 7361.4, + "end": 7361.76, + "probability": 0.8276 + }, + { + "start": 7362.74, + "end": 7364.24, + "probability": 0.885 + }, + { + "start": 7365.27, + "end": 7370.68, + "probability": 0.6829 + }, + { + "start": 7371.46, + "end": 7374.76, + "probability": 0.7613 + }, + { + "start": 7375.52, + "end": 7377.06, + "probability": 0.1861 + }, + { + "start": 7380.04, + "end": 7383.7, + "probability": 0.6253 + }, + { + "start": 7383.9, + "end": 7385.42, + "probability": 0.4764 + }, + { + "start": 7385.6, + "end": 7387.28, + "probability": 0.4184 + }, + { + "start": 7387.74, + "end": 7388.69, + "probability": 0.7181 + }, + { + "start": 7390.34, + "end": 7390.68, + "probability": 0.7505 + }, + { + "start": 7390.88, + "end": 7392.06, + "probability": 0.7734 + }, + { + "start": 7392.18, + "end": 7393.3, + "probability": 0.8393 + }, + { + "start": 7393.34, + "end": 7394.7, + "probability": 0.9653 + }, + { + "start": 7395.38, + "end": 7395.38, + "probability": 0.4011 + }, + { + "start": 7395.48, + "end": 7397.1, + "probability": 0.5067 + }, + { + "start": 7397.56, + "end": 7397.91, + "probability": 0.0164 + }, + { + "start": 7399.48, + "end": 7401.76, + "probability": 0.4402 + }, + { + "start": 7401.76, + "end": 7402.82, + "probability": 0.4323 + }, + { + "start": 7402.88, + "end": 7405.28, + "probability": 0.6127 + }, + { + "start": 7405.46, + "end": 7406.98, + "probability": 0.5513 + }, + { + "start": 7407.96, + "end": 7409.18, + "probability": 0.8726 + }, + { + "start": 7409.28, + "end": 7410.3, + "probability": 0.7946 + }, + { + "start": 7410.3, + "end": 7410.94, + "probability": 0.4661 + }, + { + "start": 7411.5, + "end": 7412.84, + "probability": 0.3286 + }, + { + "start": 7412.92, + "end": 7413.64, + "probability": 0.6597 + }, + { + "start": 7414.4, + "end": 7416.92, + "probability": 0.9944 + }, + { + "start": 7419.62, + "end": 7420.34, + "probability": 0.3482 + }, + { + "start": 7420.62, + "end": 7420.62, + "probability": 0.43 + }, + { + "start": 7420.94, + "end": 7422.2, + "probability": 0.9968 + }, + { + "start": 7423.18, + "end": 7423.54, + "probability": 0.8921 + }, + { + "start": 7423.54, + "end": 7423.74, + "probability": 0.8605 + }, + { + "start": 7423.98, + "end": 7428.06, + "probability": 0.7124 + }, + { + "start": 7429.1, + "end": 7432.64, + "probability": 0.6596 + }, + { + "start": 7433.4, + "end": 7434.55, + "probability": 0.686 + }, + { + "start": 7435.72, + "end": 7436.92, + "probability": 0.836 + }, + { + "start": 7438.56, + "end": 7438.76, + "probability": 0.5844 + }, + { + "start": 7439.28, + "end": 7439.72, + "probability": 0.8012 + }, + { + "start": 7450.0, + "end": 7450.1, + "probability": 0.4142 + }, + { + "start": 7451.07, + "end": 7453.26, + "probability": 0.9886 + }, + { + "start": 7454.3, + "end": 7458.9, + "probability": 0.8891 + }, + { + "start": 7459.52, + "end": 7460.62, + "probability": 0.8254 + }, + { + "start": 7462.77, + "end": 7467.24, + "probability": 0.9188 + }, + { + "start": 7467.76, + "end": 7468.46, + "probability": 0.8921 + }, + { + "start": 7469.38, + "end": 7471.16, + "probability": 0.9883 + }, + { + "start": 7472.26, + "end": 7474.02, + "probability": 0.6749 + }, + { + "start": 7475.38, + "end": 7476.14, + "probability": 0.5803 + }, + { + "start": 7476.22, + "end": 7477.72, + "probability": 0.7085 + }, + { + "start": 7477.78, + "end": 7482.36, + "probability": 0.0803 + }, + { + "start": 7482.36, + "end": 7486.78, + "probability": 0.9312 + }, + { + "start": 7488.26, + "end": 7489.3, + "probability": 0.8157 + }, + { + "start": 7489.76, + "end": 7491.98, + "probability": 0.1879 + }, + { + "start": 7492.72, + "end": 7495.22, + "probability": 0.1063 + }, + { + "start": 7495.96, + "end": 7497.64, + "probability": 0.101 + }, + { + "start": 7500.14, + "end": 7501.1, + "probability": 0.1502 + }, + { + "start": 7505.9, + "end": 7511.58, + "probability": 0.9815 + }, + { + "start": 7511.8, + "end": 7513.76, + "probability": 0.863 + }, + { + "start": 7515.16, + "end": 7517.62, + "probability": 0.4899 + }, + { + "start": 7519.16, + "end": 7521.06, + "probability": 0.9753 + }, + { + "start": 7522.46, + "end": 7524.8, + "probability": 0.3711 + }, + { + "start": 7527.12, + "end": 7528.06, + "probability": 0.2759 + }, + { + "start": 7528.76, + "end": 7530.14, + "probability": 0.6733 + }, + { + "start": 7532.56, + "end": 7534.05, + "probability": 0.4312 + }, + { + "start": 7535.5, + "end": 7538.94, + "probability": 0.6301 + }, + { + "start": 7539.02, + "end": 7540.16, + "probability": 0.958 + }, + { + "start": 7541.1, + "end": 7541.88, + "probability": 0.4165 + }, + { + "start": 7542.3, + "end": 7546.56, + "probability": 0.5181 + }, + { + "start": 7546.9, + "end": 7547.04, + "probability": 0.7891 + }, + { + "start": 7547.12, + "end": 7548.1, + "probability": 0.7611 + }, + { + "start": 7548.1, + "end": 7550.84, + "probability": 0.9238 + }, + { + "start": 7551.16, + "end": 7551.98, + "probability": 0.5149 + }, + { + "start": 7552.26, + "end": 7555.72, + "probability": 0.4615 + }, + { + "start": 7555.96, + "end": 7557.92, + "probability": 0.8696 + }, + { + "start": 7558.64, + "end": 7560.06, + "probability": 0.6327 + }, + { + "start": 7561.26, + "end": 7565.4, + "probability": 0.8693 + }, + { + "start": 7568.67, + "end": 7568.74, + "probability": 0.0077 + }, + { + "start": 7568.74, + "end": 7569.2, + "probability": 0.1708 + }, + { + "start": 7569.2, + "end": 7569.91, + "probability": 0.4117 + }, + { + "start": 7571.22, + "end": 7571.92, + "probability": 0.4917 + }, + { + "start": 7573.68, + "end": 7575.52, + "probability": 0.487 + }, + { + "start": 7584.02, + "end": 7585.82, + "probability": 0.7392 + }, + { + "start": 7586.52, + "end": 7588.12, + "probability": 0.9756 + }, + { + "start": 7588.18, + "end": 7589.74, + "probability": 0.8483 + }, + { + "start": 7590.68, + "end": 7594.96, + "probability": 0.9921 + }, + { + "start": 7595.42, + "end": 7599.5, + "probability": 0.9339 + }, + { + "start": 7600.2, + "end": 7602.8, + "probability": 0.9397 + }, + { + "start": 7603.84, + "end": 7605.98, + "probability": 0.9907 + }, + { + "start": 7606.24, + "end": 7609.56, + "probability": 0.833 + }, + { + "start": 7610.12, + "end": 7614.92, + "probability": 0.978 + }, + { + "start": 7616.22, + "end": 7619.9, + "probability": 0.9844 + }, + { + "start": 7619.98, + "end": 7621.63, + "probability": 0.8749 + }, + { + "start": 7622.08, + "end": 7624.5, + "probability": 0.7473 + }, + { + "start": 7626.06, + "end": 7626.96, + "probability": 0.8755 + }, + { + "start": 7627.08, + "end": 7628.0, + "probability": 0.9646 + }, + { + "start": 7628.2, + "end": 7629.5, + "probability": 0.9486 + }, + { + "start": 7630.86, + "end": 7635.1, + "probability": 0.9963 + }, + { + "start": 7635.16, + "end": 7637.34, + "probability": 0.9263 + }, + { + "start": 7638.58, + "end": 7643.46, + "probability": 0.8597 + }, + { + "start": 7644.1, + "end": 7645.88, + "probability": 0.9606 + }, + { + "start": 7646.84, + "end": 7649.36, + "probability": 0.9995 + }, + { + "start": 7649.6, + "end": 7651.4, + "probability": 0.9243 + }, + { + "start": 7651.42, + "end": 7654.44, + "probability": 0.9856 + }, + { + "start": 7655.66, + "end": 7658.24, + "probability": 0.9842 + }, + { + "start": 7659.7, + "end": 7662.38, + "probability": 0.7696 + }, + { + "start": 7662.38, + "end": 7665.02, + "probability": 0.9935 + }, + { + "start": 7665.14, + "end": 7665.84, + "probability": 0.6697 + }, + { + "start": 7665.92, + "end": 7669.08, + "probability": 0.9912 + }, + { + "start": 7669.96, + "end": 7672.02, + "probability": 0.9949 + }, + { + "start": 7672.02, + "end": 7675.1, + "probability": 0.9692 + }, + { + "start": 7675.92, + "end": 7679.2, + "probability": 0.9834 + }, + { + "start": 7679.32, + "end": 7681.08, + "probability": 0.9603 + }, + { + "start": 7681.82, + "end": 7685.08, + "probability": 0.7696 + }, + { + "start": 7687.16, + "end": 7690.6, + "probability": 0.9749 + }, + { + "start": 7691.5, + "end": 7695.96, + "probability": 0.9986 + }, + { + "start": 7696.96, + "end": 7699.74, + "probability": 0.9756 + }, + { + "start": 7700.7, + "end": 7705.2, + "probability": 0.9857 + }, + { + "start": 7706.28, + "end": 7711.78, + "probability": 0.9067 + }, + { + "start": 7712.84, + "end": 7714.52, + "probability": 0.9329 + }, + { + "start": 7715.0, + "end": 7716.04, + "probability": 0.8201 + }, + { + "start": 7716.14, + "end": 7719.22, + "probability": 0.9958 + }, + { + "start": 7719.22, + "end": 7722.3, + "probability": 0.9948 + }, + { + "start": 7722.46, + "end": 7725.08, + "probability": 0.9574 + }, + { + "start": 7725.76, + "end": 7729.36, + "probability": 0.8261 + }, + { + "start": 7729.48, + "end": 7731.92, + "probability": 0.798 + }, + { + "start": 7732.36, + "end": 7734.64, + "probability": 0.9758 + }, + { + "start": 7735.38, + "end": 7737.7, + "probability": 0.9684 + }, + { + "start": 7738.02, + "end": 7740.24, + "probability": 0.8074 + }, + { + "start": 7741.1, + "end": 7743.06, + "probability": 0.9763 + }, + { + "start": 7743.3, + "end": 7747.52, + "probability": 0.9403 + }, + { + "start": 7747.68, + "end": 7748.76, + "probability": 0.9741 + }, + { + "start": 7749.2, + "end": 7749.66, + "probability": 0.9685 + }, + { + "start": 7749.7, + "end": 7755.18, + "probability": 0.9929 + }, + { + "start": 7755.32, + "end": 7756.61, + "probability": 0.9922 + }, + { + "start": 7757.12, + "end": 7758.47, + "probability": 0.9849 + }, + { + "start": 7758.98, + "end": 7761.3, + "probability": 0.9839 + }, + { + "start": 7761.76, + "end": 7767.06, + "probability": 0.9758 + }, + { + "start": 7767.1, + "end": 7768.37, + "probability": 0.9944 + }, + { + "start": 7768.9, + "end": 7770.08, + "probability": 0.6908 + }, + { + "start": 7770.08, + "end": 7772.96, + "probability": 0.9787 + }, + { + "start": 7773.46, + "end": 7776.26, + "probability": 0.8823 + }, + { + "start": 7776.36, + "end": 7780.68, + "probability": 0.946 + }, + { + "start": 7781.32, + "end": 7783.76, + "probability": 0.9855 + }, + { + "start": 7783.88, + "end": 7785.92, + "probability": 0.9944 + }, + { + "start": 7785.92, + "end": 7788.96, + "probability": 0.9975 + }, + { + "start": 7789.12, + "end": 7793.06, + "probability": 0.9846 + }, + { + "start": 7793.52, + "end": 7794.69, + "probability": 0.9487 + }, + { + "start": 7794.96, + "end": 7797.18, + "probability": 0.9956 + }, + { + "start": 7797.18, + "end": 7801.46, + "probability": 0.8993 + }, + { + "start": 7801.48, + "end": 7801.76, + "probability": 0.5252 + }, + { + "start": 7802.0, + "end": 7803.58, + "probability": 0.9877 + }, + { + "start": 7804.1, + "end": 7806.68, + "probability": 0.9849 + }, + { + "start": 7807.0, + "end": 7809.48, + "probability": 0.9312 + }, + { + "start": 7809.82, + "end": 7811.16, + "probability": 0.9512 + }, + { + "start": 7811.32, + "end": 7813.2, + "probability": 0.9978 + }, + { + "start": 7813.9, + "end": 7815.44, + "probability": 0.9563 + }, + { + "start": 7816.38, + "end": 7817.44, + "probability": 0.7228 + }, + { + "start": 7817.56, + "end": 7820.72, + "probability": 0.9781 + }, + { + "start": 7820.72, + "end": 7824.7, + "probability": 0.9973 + }, + { + "start": 7825.68, + "end": 7826.16, + "probability": 0.3038 + }, + { + "start": 7826.5, + "end": 7828.2, + "probability": 0.8589 + }, + { + "start": 7832.21, + "end": 7833.66, + "probability": 0.9774 + }, + { + "start": 7834.52, + "end": 7836.21, + "probability": 0.3171 + }, + { + "start": 7837.16, + "end": 7837.76, + "probability": 0.2636 + }, + { + "start": 7838.28, + "end": 7843.0, + "probability": 0.8945 + }, + { + "start": 7844.76, + "end": 7844.96, + "probability": 0.2409 + }, + { + "start": 7845.94, + "end": 7848.66, + "probability": 0.6781 + }, + { + "start": 7850.14, + "end": 7851.24, + "probability": 0.8643 + }, + { + "start": 7852.54, + "end": 7853.12, + "probability": 0.6834 + }, + { + "start": 7854.94, + "end": 7857.88, + "probability": 0.3121 + }, + { + "start": 7858.56, + "end": 7861.46, + "probability": 0.7444 + }, + { + "start": 7862.7, + "end": 7868.72, + "probability": 0.9679 + }, + { + "start": 7869.34, + "end": 7871.46, + "probability": 0.9018 + }, + { + "start": 7872.52, + "end": 7874.67, + "probability": 0.9933 + }, + { + "start": 7875.68, + "end": 7876.14, + "probability": 0.635 + }, + { + "start": 7877.18, + "end": 7877.92, + "probability": 0.8906 + }, + { + "start": 7879.38, + "end": 7882.74, + "probability": 0.964 + }, + { + "start": 7884.1, + "end": 7884.88, + "probability": 0.7598 + }, + { + "start": 7886.34, + "end": 7886.94, + "probability": 0.8887 + }, + { + "start": 7887.84, + "end": 7889.78, + "probability": 0.9085 + }, + { + "start": 7890.82, + "end": 7891.66, + "probability": 0.8296 + }, + { + "start": 7892.92, + "end": 7893.6, + "probability": 0.6816 + }, + { + "start": 7895.34, + "end": 7896.0, + "probability": 0.7495 + }, + { + "start": 7896.46, + "end": 7900.92, + "probability": 0.9897 + }, + { + "start": 7902.3, + "end": 7907.08, + "probability": 0.9869 + }, + { + "start": 7908.26, + "end": 7911.36, + "probability": 0.7869 + }, + { + "start": 7911.88, + "end": 7914.36, + "probability": 0.9158 + }, + { + "start": 7915.12, + "end": 7917.32, + "probability": 0.9301 + }, + { + "start": 7918.4, + "end": 7925.28, + "probability": 0.9677 + }, + { + "start": 7925.72, + "end": 7928.31, + "probability": 0.9961 + }, + { + "start": 7928.8, + "end": 7932.62, + "probability": 0.7131 + }, + { + "start": 7932.62, + "end": 7937.9, + "probability": 0.9835 + }, + { + "start": 7938.42, + "end": 7943.86, + "probability": 0.9493 + }, + { + "start": 7945.32, + "end": 7948.62, + "probability": 0.7202 + }, + { + "start": 7949.34, + "end": 7952.96, + "probability": 0.9933 + }, + { + "start": 7953.24, + "end": 7955.4, + "probability": 0.9126 + }, + { + "start": 7956.28, + "end": 7959.02, + "probability": 0.9962 + }, + { + "start": 7959.76, + "end": 7963.66, + "probability": 0.978 + }, + { + "start": 7963.68, + "end": 7966.46, + "probability": 0.9231 + }, + { + "start": 7966.6, + "end": 7968.48, + "probability": 0.8356 + }, + { + "start": 7968.72, + "end": 7971.74, + "probability": 0.8132 + }, + { + "start": 7971.74, + "end": 7974.92, + "probability": 0.9886 + }, + { + "start": 7974.94, + "end": 7979.66, + "probability": 0.9085 + }, + { + "start": 7980.1, + "end": 7984.12, + "probability": 0.999 + }, + { + "start": 7984.12, + "end": 7989.0, + "probability": 0.9753 + }, + { + "start": 7989.4, + "end": 7990.88, + "probability": 0.8722 + }, + { + "start": 7991.1, + "end": 7994.96, + "probability": 0.997 + }, + { + "start": 7995.52, + "end": 7997.26, + "probability": 0.978 + }, + { + "start": 7998.1, + "end": 7998.78, + "probability": 0.7196 + }, + { + "start": 7998.98, + "end": 7999.56, + "probability": 0.7659 + }, + { + "start": 7999.92, + "end": 8002.26, + "probability": 0.9642 + }, + { + "start": 8002.56, + "end": 8004.8, + "probability": 0.9705 + }, + { + "start": 8005.78, + "end": 8011.96, + "probability": 0.9713 + }, + { + "start": 8012.54, + "end": 8016.1, + "probability": 0.9035 + }, + { + "start": 8016.92, + "end": 8019.58, + "probability": 0.7008 + }, + { + "start": 8020.94, + "end": 8024.7, + "probability": 0.9904 + }, + { + "start": 8025.46, + "end": 8030.06, + "probability": 0.9951 + }, + { + "start": 8031.08, + "end": 8035.94, + "probability": 0.9926 + }, + { + "start": 8035.94, + "end": 8040.1, + "probability": 0.999 + }, + { + "start": 8040.72, + "end": 8042.54, + "probability": 0.8394 + }, + { + "start": 8043.0, + "end": 8043.42, + "probability": 0.7626 + }, + { + "start": 8043.9, + "end": 8044.52, + "probability": 0.4863 + }, + { + "start": 8044.92, + "end": 8048.28, + "probability": 0.9895 + }, + { + "start": 8048.4, + "end": 8049.16, + "probability": 0.7953 + }, + { + "start": 8062.84, + "end": 8063.82, + "probability": 0.6025 + }, + { + "start": 8064.88, + "end": 8069.88, + "probability": 0.9978 + }, + { + "start": 8069.88, + "end": 8073.4, + "probability": 0.9768 + }, + { + "start": 8074.86, + "end": 8078.4, + "probability": 0.9175 + }, + { + "start": 8079.44, + "end": 8084.02, + "probability": 0.9503 + }, + { + "start": 8084.64, + "end": 8090.88, + "probability": 0.9927 + }, + { + "start": 8092.0, + "end": 8098.0, + "probability": 0.9923 + }, + { + "start": 8098.52, + "end": 8101.48, + "probability": 0.8809 + }, + { + "start": 8102.2, + "end": 8107.84, + "probability": 0.9665 + }, + { + "start": 8108.44, + "end": 8113.28, + "probability": 0.9741 + }, + { + "start": 8113.44, + "end": 8118.02, + "probability": 0.9739 + }, + { + "start": 8119.02, + "end": 8119.78, + "probability": 0.8594 + }, + { + "start": 8120.48, + "end": 8131.08, + "probability": 0.9455 + }, + { + "start": 8131.88, + "end": 8135.59, + "probability": 0.988 + }, + { + "start": 8136.48, + "end": 8140.92, + "probability": 0.9229 + }, + { + "start": 8142.02, + "end": 8146.92, + "probability": 0.9654 + }, + { + "start": 8147.3, + "end": 8147.91, + "probability": 0.8843 + }, + { + "start": 8148.44, + "end": 8149.78, + "probability": 0.6562 + }, + { + "start": 8149.86, + "end": 8151.36, + "probability": 0.5671 + }, + { + "start": 8151.78, + "end": 8157.36, + "probability": 0.9358 + }, + { + "start": 8157.54, + "end": 8161.12, + "probability": 0.9513 + }, + { + "start": 8161.64, + "end": 8167.9, + "probability": 0.9215 + }, + { + "start": 8168.54, + "end": 8171.02, + "probability": 0.9149 + }, + { + "start": 8172.22, + "end": 8179.36, + "probability": 0.9958 + }, + { + "start": 8179.36, + "end": 8187.6, + "probability": 0.999 + }, + { + "start": 8187.94, + "end": 8191.14, + "probability": 0.7748 + }, + { + "start": 8192.18, + "end": 8196.5, + "probability": 0.9354 + }, + { + "start": 8197.5, + "end": 8206.18, + "probability": 0.9833 + }, + { + "start": 8206.5, + "end": 8208.66, + "probability": 0.8636 + }, + { + "start": 8209.2, + "end": 8213.14, + "probability": 0.9568 + }, + { + "start": 8213.9, + "end": 8218.4, + "probability": 0.8695 + }, + { + "start": 8218.9, + "end": 8219.38, + "probability": 0.5668 + }, + { + "start": 8220.12, + "end": 8222.19, + "probability": 0.9915 + }, + { + "start": 8222.5, + "end": 8224.42, + "probability": 0.993 + }, + { + "start": 8225.12, + "end": 8226.48, + "probability": 0.8959 + }, + { + "start": 8227.2, + "end": 8232.86, + "probability": 0.6672 + }, + { + "start": 8236.62, + "end": 8239.54, + "probability": 0.722 + }, + { + "start": 8239.66, + "end": 8240.82, + "probability": 0.9739 + }, + { + "start": 8241.28, + "end": 8243.26, + "probability": 0.9871 + }, + { + "start": 8244.26, + "end": 8249.06, + "probability": 0.9875 + }, + { + "start": 8250.36, + "end": 8255.96, + "probability": 0.9966 + }, + { + "start": 8257.24, + "end": 8261.78, + "probability": 0.9775 + }, + { + "start": 8262.38, + "end": 8263.94, + "probability": 0.9935 + }, + { + "start": 8265.64, + "end": 8266.54, + "probability": 0.6325 + }, + { + "start": 8267.9, + "end": 8269.88, + "probability": 0.9336 + }, + { + "start": 8270.22, + "end": 8272.92, + "probability": 0.6699 + }, + { + "start": 8272.92, + "end": 8275.84, + "probability": 0.7287 + }, + { + "start": 8276.46, + "end": 8277.02, + "probability": 0.7432 + }, + { + "start": 8277.54, + "end": 8280.7, + "probability": 0.9735 + }, + { + "start": 8281.34, + "end": 8284.43, + "probability": 0.9447 + }, + { + "start": 8285.04, + "end": 8286.96, + "probability": 0.7402 + }, + { + "start": 8287.5, + "end": 8288.44, + "probability": 0.8833 + }, + { + "start": 8289.02, + "end": 8290.94, + "probability": 0.9839 + }, + { + "start": 8291.44, + "end": 8293.64, + "probability": 0.9966 + }, + { + "start": 8294.18, + "end": 8299.38, + "probability": 0.9521 + }, + { + "start": 8299.92, + "end": 8303.94, + "probability": 0.9869 + }, + { + "start": 8304.02, + "end": 8305.26, + "probability": 0.9449 + }, + { + "start": 8306.02, + "end": 8307.84, + "probability": 0.7967 + }, + { + "start": 8308.4, + "end": 8311.32, + "probability": 0.7873 + }, + { + "start": 8311.86, + "end": 8316.12, + "probability": 0.9801 + }, + { + "start": 8316.12, + "end": 8323.1, + "probability": 0.9614 + }, + { + "start": 8323.94, + "end": 8328.1, + "probability": 0.9341 + }, + { + "start": 8329.24, + "end": 8331.76, + "probability": 0.8687 + }, + { + "start": 8332.46, + "end": 8334.12, + "probability": 0.9658 + }, + { + "start": 8334.86, + "end": 8337.22, + "probability": 0.9893 + }, + { + "start": 8337.4, + "end": 8343.4, + "probability": 0.9741 + }, + { + "start": 8344.0, + "end": 8345.12, + "probability": 0.9915 + }, + { + "start": 8351.48, + "end": 8358.24, + "probability": 0.6687 + }, + { + "start": 8359.52, + "end": 8363.48, + "probability": 0.945 + }, + { + "start": 8364.76, + "end": 8368.62, + "probability": 0.7735 + }, + { + "start": 8369.52, + "end": 8372.28, + "probability": 0.7572 + }, + { + "start": 8373.38, + "end": 8379.06, + "probability": 0.9147 + }, + { + "start": 8379.18, + "end": 8380.44, + "probability": 0.9966 + }, + { + "start": 8381.04, + "end": 8387.02, + "probability": 0.9745 + }, + { + "start": 8387.46, + "end": 8389.72, + "probability": 0.9946 + }, + { + "start": 8389.82, + "end": 8390.78, + "probability": 0.9639 + }, + { + "start": 8390.88, + "end": 8392.16, + "probability": 0.9481 + }, + { + "start": 8392.72, + "end": 8395.7, + "probability": 0.7436 + }, + { + "start": 8395.78, + "end": 8400.3, + "probability": 0.9831 + }, + { + "start": 8401.04, + "end": 8401.57, + "probability": 0.5132 + }, + { + "start": 8401.78, + "end": 8403.6, + "probability": 0.7048 + }, + { + "start": 8403.68, + "end": 8405.64, + "probability": 0.964 + }, + { + "start": 8405.74, + "end": 8409.96, + "probability": 0.9324 + }, + { + "start": 8411.46, + "end": 8414.74, + "probability": 0.9527 + }, + { + "start": 8414.98, + "end": 8420.74, + "probability": 0.9944 + }, + { + "start": 8421.06, + "end": 8421.88, + "probability": 0.7419 + }, + { + "start": 8422.6, + "end": 8424.58, + "probability": 0.9139 + }, + { + "start": 8425.76, + "end": 8431.8, + "probability": 0.9937 + }, + { + "start": 8431.88, + "end": 8433.28, + "probability": 0.9977 + }, + { + "start": 8434.24, + "end": 8436.24, + "probability": 0.9827 + }, + { + "start": 8437.28, + "end": 8439.24, + "probability": 0.6625 + }, + { + "start": 8439.36, + "end": 8440.74, + "probability": 0.9946 + }, + { + "start": 8440.78, + "end": 8443.28, + "probability": 0.9932 + }, + { + "start": 8444.8, + "end": 8446.48, + "probability": 0.7277 + }, + { + "start": 8448.04, + "end": 8450.12, + "probability": 0.9816 + }, + { + "start": 8450.7, + "end": 8454.28, + "probability": 0.9996 + }, + { + "start": 8454.64, + "end": 8455.38, + "probability": 0.8 + }, + { + "start": 8455.42, + "end": 8455.98, + "probability": 0.8447 + }, + { + "start": 8456.08, + "end": 8456.8, + "probability": 0.8732 + }, + { + "start": 8457.02, + "end": 8458.53, + "probability": 0.8982 + }, + { + "start": 8459.24, + "end": 8463.9, + "probability": 0.9971 + }, + { + "start": 8463.9, + "end": 8468.36, + "probability": 0.9953 + }, + { + "start": 8468.9, + "end": 8473.96, + "probability": 0.9985 + }, + { + "start": 8475.85, + "end": 8478.32, + "probability": 0.8785 + }, + { + "start": 8479.48, + "end": 8480.3, + "probability": 0.931 + }, + { + "start": 8480.58, + "end": 8482.32, + "probability": 0.6891 + }, + { + "start": 8482.54, + "end": 8483.2, + "probability": 0.0135 + }, + { + "start": 8483.4, + "end": 8484.64, + "probability": 0.4599 + }, + { + "start": 8485.9, + "end": 8487.25, + "probability": 0.5559 + }, + { + "start": 8488.16, + "end": 8488.98, + "probability": 0.5937 + }, + { + "start": 8489.62, + "end": 8492.78, + "probability": 0.9726 + }, + { + "start": 8493.46, + "end": 8496.64, + "probability": 0.9862 + }, + { + "start": 8497.48, + "end": 8498.48, + "probability": 0.5726 + }, + { + "start": 8498.86, + "end": 8500.04, + "probability": 0.8166 + }, + { + "start": 8500.18, + "end": 8500.86, + "probability": 0.9497 + }, + { + "start": 8501.0, + "end": 8503.08, + "probability": 0.9575 + }, + { + "start": 8507.32, + "end": 8509.76, + "probability": 0.6492 + }, + { + "start": 8510.0, + "end": 8516.2, + "probability": 0.9896 + }, + { + "start": 8516.9, + "end": 8517.84, + "probability": 0.6282 + }, + { + "start": 8518.74, + "end": 8521.36, + "probability": 0.9574 + }, + { + "start": 8522.36, + "end": 8523.34, + "probability": 0.9021 + }, + { + "start": 8524.16, + "end": 8524.7, + "probability": 0.7675 + }, + { + "start": 8525.7, + "end": 8528.44, + "probability": 0.9771 + }, + { + "start": 8529.16, + "end": 8531.74, + "probability": 0.9421 + }, + { + "start": 8532.3, + "end": 8535.94, + "probability": 0.9624 + }, + { + "start": 8536.6, + "end": 8538.72, + "probability": 0.9774 + }, + { + "start": 8539.16, + "end": 8544.86, + "probability": 0.9925 + }, + { + "start": 8545.4, + "end": 8548.44, + "probability": 0.699 + }, + { + "start": 8548.98, + "end": 8551.12, + "probability": 0.8382 + }, + { + "start": 8551.88, + "end": 8553.6, + "probability": 0.6861 + }, + { + "start": 8554.56, + "end": 8559.64, + "probability": 0.9806 + }, + { + "start": 8559.8, + "end": 8563.02, + "probability": 0.9954 + }, + { + "start": 8564.12, + "end": 8568.08, + "probability": 0.998 + }, + { + "start": 8568.08, + "end": 8571.36, + "probability": 0.9929 + }, + { + "start": 8571.96, + "end": 8574.96, + "probability": 0.9925 + }, + { + "start": 8575.02, + "end": 8575.44, + "probability": 0.8224 + }, + { + "start": 8576.7, + "end": 8577.28, + "probability": 0.2464 + }, + { + "start": 8577.66, + "end": 8578.54, + "probability": 0.7312 + }, + { + "start": 8579.38, + "end": 8581.14, + "probability": 0.8575 + }, + { + "start": 8581.26, + "end": 8582.6, + "probability": 0.5621 + }, + { + "start": 8583.82, + "end": 8585.05, + "probability": 0.8745 + }, + { + "start": 8586.16, + "end": 8586.44, + "probability": 0.4744 + }, + { + "start": 8586.46, + "end": 8587.2, + "probability": 0.8443 + }, + { + "start": 8587.26, + "end": 8587.66, + "probability": 0.4506 + }, + { + "start": 8587.68, + "end": 8589.7, + "probability": 0.9465 + }, + { + "start": 8609.02, + "end": 8609.08, + "probability": 0.2887 + }, + { + "start": 8609.08, + "end": 8610.98, + "probability": 0.7856 + }, + { + "start": 8611.0, + "end": 8612.52, + "probability": 0.7043 + }, + { + "start": 8612.7, + "end": 8616.96, + "probability": 0.8815 + }, + { + "start": 8617.88, + "end": 8620.48, + "probability": 0.6563 + }, + { + "start": 8620.5, + "end": 8622.1, + "probability": 0.9155 + }, + { + "start": 8622.18, + "end": 8623.56, + "probability": 0.717 + }, + { + "start": 8623.74, + "end": 8625.44, + "probability": 0.3804 + }, + { + "start": 8626.42, + "end": 8626.82, + "probability": 0.3504 + } + ], + "segments_count": 2967, + "words_count": 14969, + "avg_words_per_segment": 5.0452, + "avg_segment_duration": 2.1898, + "avg_words_per_minute": 103.9682, + "plenum_id": "16173", + "duration": 8638.6, + "title": null, + "plenum_date": "2011-11-01" +} \ No newline at end of file