diff --git "a/100335/metadata.json" "b/100335/metadata.json" new file mode 100644--- /dev/null +++ "b/100335/metadata.json" @@ -0,0 +1,67412 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "100335", + "quality_score": 0.8635, + "per_segment_quality_scores": [ + { + "start": 64.22, + "end": 67.28, + "probability": 0.3902 + }, + { + "start": 68.24, + "end": 72.72, + "probability": 0.0666 + }, + { + "start": 73.42, + "end": 75.16, + "probability": 0.0976 + }, + { + "start": 76.0, + "end": 77.02, + "probability": 0.557 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 171.34, + "end": 171.42, + "probability": 0.0826 + }, + { + "start": 171.42, + "end": 171.42, + "probability": 0.3599 + }, + { + "start": 171.42, + "end": 171.82, + "probability": 0.4028 + }, + { + "start": 171.86, + "end": 173.2, + "probability": 0.8094 + }, + { + "start": 174.3, + "end": 175.08, + "probability": 0.5167 + }, + { + "start": 176.22, + "end": 178.32, + "probability": 0.8681 + }, + { + "start": 180.46, + "end": 181.6, + "probability": 0.8877 + }, + { + "start": 181.76, + "end": 185.23, + "probability": 0.9402 + }, + { + "start": 188.52, + "end": 188.82, + "probability": 0.7031 + }, + { + "start": 189.46, + "end": 192.16, + "probability": 0.9866 + }, + { + "start": 192.32, + "end": 193.28, + "probability": 0.8474 + }, + { + "start": 195.2, + "end": 195.74, + "probability": 0.9176 + }, + { + "start": 195.86, + "end": 196.94, + "probability": 0.8905 + }, + { + "start": 197.24, + "end": 198.5, + "probability": 0.8843 + }, + { + "start": 198.96, + "end": 201.06, + "probability": 0.9155 + }, + { + "start": 201.54, + "end": 202.18, + "probability": 0.7966 + }, + { + "start": 202.26, + "end": 203.42, + "probability": 0.7522 + }, + { + "start": 203.48, + "end": 204.8, + "probability": 0.9561 + }, + { + "start": 204.98, + "end": 205.66, + "probability": 0.7297 + }, + { + "start": 206.46, + "end": 208.5, + "probability": 0.9902 + }, + { + "start": 210.34, + "end": 214.0, + "probability": 0.7323 + }, + { + "start": 215.24, + "end": 217.6, + "probability": 0.9924 + }, + { + "start": 219.6, + "end": 222.02, + "probability": 0.998 + }, + { + "start": 222.62, + "end": 229.68, + "probability": 0.986 + }, + { + "start": 231.96, + "end": 236.8, + "probability": 0.9857 + }, + { + "start": 237.86, + "end": 239.7, + "probability": 0.6724 + }, + { + "start": 240.38, + "end": 243.18, + "probability": 0.9339 + }, + { + "start": 245.36, + "end": 248.82, + "probability": 0.9917 + }, + { + "start": 249.72, + "end": 253.82, + "probability": 0.9978 + }, + { + "start": 254.6, + "end": 258.26, + "probability": 0.9972 + }, + { + "start": 258.88, + "end": 261.42, + "probability": 0.8978 + }, + { + "start": 263.4, + "end": 265.36, + "probability": 0.8309 + }, + { + "start": 266.44, + "end": 269.7, + "probability": 0.9827 + }, + { + "start": 269.74, + "end": 270.52, + "probability": 0.502 + }, + { + "start": 270.76, + "end": 271.08, + "probability": 0.8617 + }, + { + "start": 271.18, + "end": 273.04, + "probability": 0.7534 + }, + { + "start": 273.24, + "end": 274.48, + "probability": 0.443 + }, + { + "start": 275.14, + "end": 276.04, + "probability": 0.6345 + }, + { + "start": 277.18, + "end": 280.56, + "probability": 0.96 + }, + { + "start": 281.04, + "end": 284.18, + "probability": 0.9807 + }, + { + "start": 285.92, + "end": 286.98, + "probability": 0.9541 + }, + { + "start": 290.12, + "end": 293.52, + "probability": 0.9828 + }, + { + "start": 295.64, + "end": 298.34, + "probability": 0.9906 + }, + { + "start": 298.7, + "end": 300.3, + "probability": 0.5931 + }, + { + "start": 300.5, + "end": 304.86, + "probability": 0.9966 + }, + { + "start": 305.44, + "end": 307.26, + "probability": 0.9878 + }, + { + "start": 307.82, + "end": 309.0, + "probability": 0.939 + }, + { + "start": 309.66, + "end": 312.86, + "probability": 0.9979 + }, + { + "start": 312.86, + "end": 316.76, + "probability": 0.998 + }, + { + "start": 317.5, + "end": 318.02, + "probability": 0.7026 + }, + { + "start": 319.0, + "end": 320.28, + "probability": 0.6439 + }, + { + "start": 321.1, + "end": 321.68, + "probability": 0.8415 + }, + { + "start": 322.08, + "end": 323.06, + "probability": 0.892 + }, + { + "start": 323.56, + "end": 325.22, + "probability": 0.9554 + }, + { + "start": 326.8, + "end": 327.98, + "probability": 0.9497 + }, + { + "start": 328.0, + "end": 328.64, + "probability": 0.514 + }, + { + "start": 328.66, + "end": 329.9, + "probability": 0.8888 + }, + { + "start": 330.5, + "end": 330.68, + "probability": 0.5182 + }, + { + "start": 331.38, + "end": 332.23, + "probability": 0.9512 + }, + { + "start": 333.02, + "end": 335.82, + "probability": 0.9741 + }, + { + "start": 336.72, + "end": 341.23, + "probability": 0.9287 + }, + { + "start": 342.9, + "end": 345.34, + "probability": 0.8923 + }, + { + "start": 347.1, + "end": 348.06, + "probability": 0.8832 + }, + { + "start": 348.58, + "end": 349.8, + "probability": 0.9736 + }, + { + "start": 351.62, + "end": 352.06, + "probability": 0.9656 + }, + { + "start": 353.9, + "end": 358.24, + "probability": 0.9938 + }, + { + "start": 359.28, + "end": 362.48, + "probability": 0.9667 + }, + { + "start": 362.68, + "end": 366.72, + "probability": 0.9979 + }, + { + "start": 370.5, + "end": 370.52, + "probability": 0.3835 + }, + { + "start": 372.42, + "end": 372.82, + "probability": 0.8499 + }, + { + "start": 373.82, + "end": 374.64, + "probability": 0.9692 + }, + { + "start": 375.7, + "end": 381.2, + "probability": 0.9928 + }, + { + "start": 381.9, + "end": 383.44, + "probability": 0.9878 + }, + { + "start": 384.5, + "end": 385.02, + "probability": 0.6854 + }, + { + "start": 385.04, + "end": 385.22, + "probability": 0.0566 + }, + { + "start": 385.9, + "end": 387.8, + "probability": 0.971 + }, + { + "start": 389.2, + "end": 390.3, + "probability": 0.7895 + }, + { + "start": 393.62, + "end": 394.46, + "probability": 0.8359 + }, + { + "start": 395.06, + "end": 396.94, + "probability": 0.9938 + }, + { + "start": 397.68, + "end": 398.92, + "probability": 0.9877 + }, + { + "start": 399.46, + "end": 400.6, + "probability": 0.9221 + }, + { + "start": 401.34, + "end": 403.16, + "probability": 0.9974 + }, + { + "start": 404.2, + "end": 405.42, + "probability": 0.9844 + }, + { + "start": 406.5, + "end": 408.08, + "probability": 0.6533 + }, + { + "start": 408.88, + "end": 414.48, + "probability": 0.9958 + }, + { + "start": 415.3, + "end": 418.42, + "probability": 0.9961 + }, + { + "start": 419.24, + "end": 420.8, + "probability": 0.9985 + }, + { + "start": 421.68, + "end": 422.78, + "probability": 0.724 + }, + { + "start": 423.3, + "end": 423.76, + "probability": 0.7808 + }, + { + "start": 425.04, + "end": 427.76, + "probability": 0.9925 + }, + { + "start": 428.92, + "end": 430.38, + "probability": 0.9963 + }, + { + "start": 431.1, + "end": 433.68, + "probability": 0.9922 + }, + { + "start": 433.68, + "end": 438.56, + "probability": 0.8155 + }, + { + "start": 438.72, + "end": 439.92, + "probability": 0.9321 + }, + { + "start": 440.52, + "end": 440.88, + "probability": 0.8558 + }, + { + "start": 440.94, + "end": 441.7, + "probability": 0.9579 + }, + { + "start": 441.84, + "end": 444.62, + "probability": 0.9858 + }, + { + "start": 445.24, + "end": 449.76, + "probability": 0.9912 + }, + { + "start": 450.52, + "end": 452.1, + "probability": 0.8606 + }, + { + "start": 454.48, + "end": 455.2, + "probability": 0.9966 + }, + { + "start": 457.24, + "end": 467.84, + "probability": 0.9885 + }, + { + "start": 469.46, + "end": 470.0, + "probability": 0.7441 + }, + { + "start": 471.36, + "end": 475.98, + "probability": 0.996 + }, + { + "start": 476.52, + "end": 477.66, + "probability": 0.918 + }, + { + "start": 477.92, + "end": 482.32, + "probability": 0.79 + }, + { + "start": 482.92, + "end": 484.66, + "probability": 0.9937 + }, + { + "start": 485.36, + "end": 488.06, + "probability": 0.9584 + }, + { + "start": 489.44, + "end": 489.7, + "probability": 0.458 + }, + { + "start": 490.36, + "end": 490.98, + "probability": 0.88 + }, + { + "start": 491.64, + "end": 492.54, + "probability": 0.8737 + }, + { + "start": 493.64, + "end": 496.02, + "probability": 0.9516 + }, + { + "start": 497.68, + "end": 501.1, + "probability": 0.74 + }, + { + "start": 502.42, + "end": 504.74, + "probability": 0.9902 + }, + { + "start": 506.36, + "end": 508.3, + "probability": 0.9704 + }, + { + "start": 509.9, + "end": 511.48, + "probability": 0.9543 + }, + { + "start": 512.8, + "end": 518.84, + "probability": 0.9941 + }, + { + "start": 520.4, + "end": 522.86, + "probability": 0.8578 + }, + { + "start": 524.14, + "end": 527.66, + "probability": 0.9796 + }, + { + "start": 528.36, + "end": 532.28, + "probability": 0.9421 + }, + { + "start": 532.38, + "end": 532.84, + "probability": 0.8474 + }, + { + "start": 533.86, + "end": 537.14, + "probability": 0.948 + }, + { + "start": 538.16, + "end": 539.0, + "probability": 0.7737 + }, + { + "start": 539.82, + "end": 542.08, + "probability": 0.9391 + }, + { + "start": 543.6, + "end": 548.0, + "probability": 0.9846 + }, + { + "start": 548.0, + "end": 551.06, + "probability": 0.9937 + }, + { + "start": 552.36, + "end": 554.84, + "probability": 0.9973 + }, + { + "start": 556.02, + "end": 559.14, + "probability": 0.9972 + }, + { + "start": 560.3, + "end": 561.14, + "probability": 0.9705 + }, + { + "start": 562.38, + "end": 563.28, + "probability": 0.5547 + }, + { + "start": 564.06, + "end": 567.3, + "probability": 0.9654 + }, + { + "start": 568.32, + "end": 570.48, + "probability": 0.986 + }, + { + "start": 571.44, + "end": 573.08, + "probability": 0.9503 + }, + { + "start": 573.18, + "end": 573.96, + "probability": 0.5108 + }, + { + "start": 574.36, + "end": 574.92, + "probability": 0.8489 + }, + { + "start": 575.0, + "end": 575.92, + "probability": 0.9318 + }, + { + "start": 575.96, + "end": 576.52, + "probability": 0.761 + }, + { + "start": 577.12, + "end": 578.78, + "probability": 0.9934 + }, + { + "start": 579.22, + "end": 579.74, + "probability": 0.358 + }, + { + "start": 580.12, + "end": 581.22, + "probability": 0.94 + }, + { + "start": 581.9, + "end": 583.7, + "probability": 0.9368 + }, + { + "start": 584.44, + "end": 587.39, + "probability": 0.9899 + }, + { + "start": 588.17, + "end": 589.04, + "probability": 0.9878 + }, + { + "start": 590.44, + "end": 593.34, + "probability": 0.7832 + }, + { + "start": 593.4, + "end": 597.02, + "probability": 0.9701 + }, + { + "start": 598.8, + "end": 600.46, + "probability": 0.9742 + }, + { + "start": 601.22, + "end": 604.24, + "probability": 0.8828 + }, + { + "start": 604.96, + "end": 606.28, + "probability": 0.9361 + }, + { + "start": 607.48, + "end": 611.36, + "probability": 0.9082 + }, + { + "start": 612.24, + "end": 612.94, + "probability": 0.5163 + }, + { + "start": 613.96, + "end": 617.12, + "probability": 0.9924 + }, + { + "start": 618.48, + "end": 620.6, + "probability": 0.699 + }, + { + "start": 620.68, + "end": 620.94, + "probability": 0.3527 + }, + { + "start": 621.16, + "end": 621.97, + "probability": 0.2083 + }, + { + "start": 622.18, + "end": 623.26, + "probability": 0.207 + }, + { + "start": 623.26, + "end": 624.39, + "probability": 0.6643 + }, + { + "start": 624.68, + "end": 624.68, + "probability": 0.0688 + }, + { + "start": 624.68, + "end": 626.04, + "probability": 0.6939 + }, + { + "start": 626.32, + "end": 627.64, + "probability": 0.3452 + }, + { + "start": 627.88, + "end": 627.88, + "probability": 0.7078 + }, + { + "start": 627.88, + "end": 629.4, + "probability": 0.449 + }, + { + "start": 630.84, + "end": 631.4, + "probability": 0.4549 + }, + { + "start": 633.3, + "end": 634.66, + "probability": 0.83 + }, + { + "start": 635.2, + "end": 635.74, + "probability": 0.027 + }, + { + "start": 636.54, + "end": 636.86, + "probability": 0.1281 + }, + { + "start": 636.86, + "end": 636.98, + "probability": 0.0134 + }, + { + "start": 637.1, + "end": 637.54, + "probability": 0.5886 + }, + { + "start": 638.34, + "end": 639.4, + "probability": 0.7875 + }, + { + "start": 640.18, + "end": 641.0, + "probability": 0.33 + }, + { + "start": 641.16, + "end": 641.58, + "probability": 0.7264 + }, + { + "start": 641.78, + "end": 644.18, + "probability": 0.9315 + }, + { + "start": 645.14, + "end": 646.18, + "probability": 0.9823 + }, + { + "start": 647.46, + "end": 648.98, + "probability": 0.7867 + }, + { + "start": 649.22, + "end": 652.44, + "probability": 0.6456 + }, + { + "start": 652.44, + "end": 652.98, + "probability": 0.4802 + }, + { + "start": 653.16, + "end": 653.64, + "probability": 0.6363 + }, + { + "start": 654.02, + "end": 655.32, + "probability": 0.2029 + }, + { + "start": 655.34, + "end": 657.56, + "probability": 0.9867 + }, + { + "start": 657.58, + "end": 658.72, + "probability": 0.9935 + }, + { + "start": 658.72, + "end": 660.22, + "probability": 0.9153 + }, + { + "start": 660.24, + "end": 661.9, + "probability": 0.9475 + }, + { + "start": 663.02, + "end": 664.72, + "probability": 0.957 + }, + { + "start": 665.98, + "end": 667.28, + "probability": 0.9292 + }, + { + "start": 667.88, + "end": 670.56, + "probability": 0.9834 + }, + { + "start": 671.5, + "end": 675.94, + "probability": 0.9785 + }, + { + "start": 676.6, + "end": 679.34, + "probability": 0.9986 + }, + { + "start": 679.34, + "end": 682.52, + "probability": 0.9546 + }, + { + "start": 683.32, + "end": 687.92, + "probability": 0.998 + }, + { + "start": 688.44, + "end": 692.4, + "probability": 0.9441 + }, + { + "start": 693.38, + "end": 695.78, + "probability": 0.9944 + }, + { + "start": 696.5, + "end": 698.3, + "probability": 0.986 + }, + { + "start": 699.02, + "end": 700.36, + "probability": 0.7123 + }, + { + "start": 700.88, + "end": 703.06, + "probability": 0.9918 + }, + { + "start": 703.5, + "end": 706.84, + "probability": 0.9779 + }, + { + "start": 707.2, + "end": 707.54, + "probability": 0.4983 + }, + { + "start": 708.22, + "end": 710.92, + "probability": 0.968 + }, + { + "start": 712.06, + "end": 715.04, + "probability": 0.7365 + }, + { + "start": 715.4, + "end": 716.32, + "probability": 0.8845 + }, + { + "start": 729.92, + "end": 731.16, + "probability": 0.6697 + }, + { + "start": 731.34, + "end": 733.02, + "probability": 0.8592 + }, + { + "start": 733.18, + "end": 734.9, + "probability": 0.7878 + }, + { + "start": 735.9, + "end": 736.66, + "probability": 0.6688 + }, + { + "start": 737.22, + "end": 739.16, + "probability": 0.7419 + }, + { + "start": 739.5, + "end": 744.88, + "probability": 0.9641 + }, + { + "start": 745.7, + "end": 749.84, + "probability": 0.9969 + }, + { + "start": 749.84, + "end": 753.46, + "probability": 0.9967 + }, + { + "start": 753.84, + "end": 754.7, + "probability": 0.6248 + }, + { + "start": 755.08, + "end": 755.62, + "probability": 0.7931 + }, + { + "start": 756.02, + "end": 756.89, + "probability": 0.9819 + }, + { + "start": 758.34, + "end": 760.0, + "probability": 0.9603 + }, + { + "start": 760.26, + "end": 762.9, + "probability": 0.9944 + }, + { + "start": 763.52, + "end": 766.86, + "probability": 0.9944 + }, + { + "start": 767.5, + "end": 770.74, + "probability": 0.9995 + }, + { + "start": 770.74, + "end": 775.18, + "probability": 0.9954 + }, + { + "start": 776.46, + "end": 777.66, + "probability": 0.9973 + }, + { + "start": 780.24, + "end": 781.26, + "probability": 0.8731 + }, + { + "start": 782.06, + "end": 782.61, + "probability": 0.6689 + }, + { + "start": 783.98, + "end": 785.54, + "probability": 0.0643 + }, + { + "start": 785.54, + "end": 785.54, + "probability": 0.0217 + }, + { + "start": 785.54, + "end": 788.62, + "probability": 0.9891 + }, + { + "start": 789.06, + "end": 791.66, + "probability": 0.9989 + }, + { + "start": 792.9, + "end": 795.06, + "probability": 0.9825 + }, + { + "start": 795.74, + "end": 798.88, + "probability": 0.9939 + }, + { + "start": 799.7, + "end": 803.96, + "probability": 0.9687 + }, + { + "start": 803.96, + "end": 808.92, + "probability": 0.979 + }, + { + "start": 809.58, + "end": 811.92, + "probability": 0.9883 + }, + { + "start": 812.34, + "end": 816.86, + "probability": 0.9925 + }, + { + "start": 816.86, + "end": 821.98, + "probability": 0.9973 + }, + { + "start": 822.94, + "end": 823.28, + "probability": 0.8302 + }, + { + "start": 824.44, + "end": 828.82, + "probability": 0.9873 + }, + { + "start": 829.54, + "end": 833.98, + "probability": 0.9652 + }, + { + "start": 835.06, + "end": 839.9, + "probability": 0.9987 + }, + { + "start": 840.32, + "end": 840.84, + "probability": 0.5217 + }, + { + "start": 840.96, + "end": 841.16, + "probability": 0.8744 + }, + { + "start": 841.24, + "end": 841.8, + "probability": 0.9748 + }, + { + "start": 842.36, + "end": 843.98, + "probability": 0.9917 + }, + { + "start": 844.74, + "end": 845.1, + "probability": 0.8418 + }, + { + "start": 845.72, + "end": 848.76, + "probability": 0.6377 + }, + { + "start": 849.56, + "end": 850.3, + "probability": 0.8557 + }, + { + "start": 850.46, + "end": 852.44, + "probability": 0.9255 + }, + { + "start": 852.9, + "end": 853.54, + "probability": 0.7654 + }, + { + "start": 853.84, + "end": 855.38, + "probability": 0.9969 + }, + { + "start": 856.12, + "end": 857.18, + "probability": 0.9862 + }, + { + "start": 857.48, + "end": 859.16, + "probability": 0.9247 + }, + { + "start": 859.32, + "end": 863.54, + "probability": 0.9971 + }, + { + "start": 863.9, + "end": 866.5, + "probability": 0.9838 + }, + { + "start": 868.04, + "end": 871.52, + "probability": 0.9863 + }, + { + "start": 871.96, + "end": 873.62, + "probability": 0.9392 + }, + { + "start": 874.22, + "end": 875.94, + "probability": 0.9687 + }, + { + "start": 876.5, + "end": 880.64, + "probability": 0.978 + }, + { + "start": 880.64, + "end": 886.04, + "probability": 0.9971 + }, + { + "start": 886.7, + "end": 889.5, + "probability": 0.9711 + }, + { + "start": 889.92, + "end": 893.32, + "probability": 0.9966 + }, + { + "start": 893.64, + "end": 897.4, + "probability": 0.9728 + }, + { + "start": 897.78, + "end": 899.12, + "probability": 0.9702 + }, + { + "start": 900.22, + "end": 903.74, + "probability": 0.9696 + }, + { + "start": 904.38, + "end": 905.18, + "probability": 0.8198 + }, + { + "start": 906.06, + "end": 906.78, + "probability": 0.8097 + }, + { + "start": 907.1, + "end": 907.92, + "probability": 0.7604 + }, + { + "start": 908.3, + "end": 908.8, + "probability": 0.9191 + }, + { + "start": 909.2, + "end": 911.42, + "probability": 0.9292 + }, + { + "start": 911.98, + "end": 913.14, + "probability": 0.9843 + }, + { + "start": 913.54, + "end": 914.62, + "probability": 0.9137 + }, + { + "start": 914.9, + "end": 918.48, + "probability": 0.9835 + }, + { + "start": 918.98, + "end": 920.52, + "probability": 0.9425 + }, + { + "start": 920.96, + "end": 921.54, + "probability": 0.724 + }, + { + "start": 921.58, + "end": 925.96, + "probability": 0.9927 + }, + { + "start": 926.28, + "end": 927.86, + "probability": 0.9797 + }, + { + "start": 928.12, + "end": 928.4, + "probability": 0.3719 + }, + { + "start": 929.8, + "end": 931.26, + "probability": 0.8159 + }, + { + "start": 931.54, + "end": 932.62, + "probability": 0.722 + }, + { + "start": 933.38, + "end": 937.38, + "probability": 0.7785 + }, + { + "start": 937.46, + "end": 938.01, + "probability": 0.5258 + }, + { + "start": 939.12, + "end": 942.86, + "probability": 0.9655 + }, + { + "start": 962.0, + "end": 962.02, + "probability": 0.2528 + }, + { + "start": 962.02, + "end": 962.04, + "probability": 0.1222 + }, + { + "start": 962.04, + "end": 962.04, + "probability": 0.1232 + }, + { + "start": 962.04, + "end": 962.04, + "probability": 0.2907 + }, + { + "start": 962.04, + "end": 962.14, + "probability": 0.1702 + }, + { + "start": 987.54, + "end": 988.18, + "probability": 0.5205 + }, + { + "start": 989.26, + "end": 990.22, + "probability": 0.9278 + }, + { + "start": 991.12, + "end": 994.7, + "probability": 0.9587 + }, + { + "start": 994.82, + "end": 1000.1, + "probability": 0.8127 + }, + { + "start": 1000.2, + "end": 1001.56, + "probability": 0.7491 + }, + { + "start": 1001.7, + "end": 1002.82, + "probability": 0.8469 + }, + { + "start": 1003.02, + "end": 1004.08, + "probability": 0.7494 + }, + { + "start": 1006.28, + "end": 1009.36, + "probability": 0.9725 + }, + { + "start": 1010.62, + "end": 1012.48, + "probability": 0.8123 + }, + { + "start": 1013.1, + "end": 1014.56, + "probability": 0.9262 + }, + { + "start": 1015.36, + "end": 1015.74, + "probability": 0.4616 + }, + { + "start": 1016.52, + "end": 1018.16, + "probability": 0.9847 + }, + { + "start": 1018.68, + "end": 1020.7, + "probability": 0.7568 + }, + { + "start": 1022.54, + "end": 1024.34, + "probability": 0.9277 + }, + { + "start": 1025.38, + "end": 1026.22, + "probability": 0.9171 + }, + { + "start": 1027.34, + "end": 1029.2, + "probability": 0.7729 + }, + { + "start": 1029.2, + "end": 1029.84, + "probability": 0.8526 + }, + { + "start": 1029.94, + "end": 1031.1, + "probability": 0.9287 + }, + { + "start": 1031.22, + "end": 1032.38, + "probability": 0.9275 + }, + { + "start": 1033.3, + "end": 1035.1, + "probability": 0.9897 + }, + { + "start": 1035.2, + "end": 1038.26, + "probability": 0.0692 + }, + { + "start": 1038.26, + "end": 1039.48, + "probability": 0.4857 + }, + { + "start": 1040.34, + "end": 1041.28, + "probability": 0.6897 + }, + { + "start": 1041.68, + "end": 1042.94, + "probability": 0.8091 + }, + { + "start": 1042.98, + "end": 1045.86, + "probability": 0.8394 + }, + { + "start": 1046.08, + "end": 1048.46, + "probability": 0.8163 + }, + { + "start": 1048.64, + "end": 1052.82, + "probability": 0.7657 + }, + { + "start": 1052.88, + "end": 1057.14, + "probability": 0.8953 + }, + { + "start": 1057.22, + "end": 1057.64, + "probability": 0.6575 + }, + { + "start": 1057.74, + "end": 1059.92, + "probability": 0.6279 + }, + { + "start": 1060.48, + "end": 1061.32, + "probability": 0.7832 + }, + { + "start": 1062.25, + "end": 1063.64, + "probability": 0.9281 + }, + { + "start": 1063.76, + "end": 1065.34, + "probability": 0.8826 + }, + { + "start": 1065.54, + "end": 1066.44, + "probability": 0.5977 + }, + { + "start": 1067.16, + "end": 1067.58, + "probability": 0.8653 + }, + { + "start": 1067.66, + "end": 1069.2, + "probability": 0.9951 + }, + { + "start": 1069.34, + "end": 1070.42, + "probability": 0.9678 + }, + { + "start": 1070.82, + "end": 1073.4, + "probability": 0.957 + }, + { + "start": 1073.78, + "end": 1075.34, + "probability": 0.6794 + }, + { + "start": 1075.34, + "end": 1076.4, + "probability": 0.0672 + }, + { + "start": 1077.4, + "end": 1077.98, + "probability": 0.0245 + }, + { + "start": 1077.98, + "end": 1077.98, + "probability": 0.0655 + }, + { + "start": 1077.98, + "end": 1078.47, + "probability": 0.0681 + }, + { + "start": 1079.2, + "end": 1081.36, + "probability": 0.7411 + }, + { + "start": 1081.5, + "end": 1082.92, + "probability": 0.7024 + }, + { + "start": 1083.22, + "end": 1084.98, + "probability": 0.9395 + }, + { + "start": 1085.34, + "end": 1085.36, + "probability": 0.2025 + }, + { + "start": 1086.38, + "end": 1086.62, + "probability": 0.0136 + }, + { + "start": 1086.62, + "end": 1090.6, + "probability": 0.648 + }, + { + "start": 1090.72, + "end": 1091.0, + "probability": 0.1854 + }, + { + "start": 1091.38, + "end": 1092.36, + "probability": 0.0772 + }, + { + "start": 1092.52, + "end": 1092.54, + "probability": 0.1976 + }, + { + "start": 1092.54, + "end": 1093.98, + "probability": 0.1645 + }, + { + "start": 1094.6, + "end": 1095.66, + "probability": 0.4552 + }, + { + "start": 1096.26, + "end": 1096.76, + "probability": 0.1572 + }, + { + "start": 1097.34, + "end": 1097.52, + "probability": 0.3508 + }, + { + "start": 1097.52, + "end": 1097.52, + "probability": 0.0486 + }, + { + "start": 1097.52, + "end": 1099.62, + "probability": 0.3788 + }, + { + "start": 1099.94, + "end": 1101.5, + "probability": 0.9819 + }, + { + "start": 1101.9, + "end": 1104.1, + "probability": 0.9419 + }, + { + "start": 1104.54, + "end": 1105.74, + "probability": 0.7944 + }, + { + "start": 1106.3, + "end": 1107.34, + "probability": 0.8987 + }, + { + "start": 1107.46, + "end": 1107.98, + "probability": 0.7568 + }, + { + "start": 1108.0, + "end": 1110.24, + "probability": 0.8877 + }, + { + "start": 1110.8, + "end": 1113.42, + "probability": 0.9868 + }, + { + "start": 1113.78, + "end": 1115.3, + "probability": 0.7284 + }, + { + "start": 1115.96, + "end": 1117.2, + "probability": 0.735 + }, + { + "start": 1117.9, + "end": 1118.6, + "probability": 0.3471 + }, + { + "start": 1119.04, + "end": 1119.72, + "probability": 0.9218 + }, + { + "start": 1120.26, + "end": 1121.14, + "probability": 0.9206 + }, + { + "start": 1121.66, + "end": 1124.7, + "probability": 0.6386 + }, + { + "start": 1125.2, + "end": 1126.84, + "probability": 0.9627 + }, + { + "start": 1127.26, + "end": 1128.26, + "probability": 0.9684 + }, + { + "start": 1128.38, + "end": 1128.72, + "probability": 0.9728 + }, + { + "start": 1129.34, + "end": 1133.34, + "probability": 0.8469 + }, + { + "start": 1133.9, + "end": 1137.56, + "probability": 0.9742 + }, + { + "start": 1138.28, + "end": 1138.8, + "probability": 0.7776 + }, + { + "start": 1140.42, + "end": 1145.68, + "probability": 0.7747 + }, + { + "start": 1145.88, + "end": 1148.22, + "probability": 0.8269 + }, + { + "start": 1148.36, + "end": 1149.08, + "probability": 0.7646 + }, + { + "start": 1149.12, + "end": 1149.28, + "probability": 0.7211 + }, + { + "start": 1149.86, + "end": 1150.42, + "probability": 0.1072 + }, + { + "start": 1150.88, + "end": 1152.34, + "probability": 0.269 + }, + { + "start": 1152.56, + "end": 1152.62, + "probability": 0.374 + }, + { + "start": 1152.62, + "end": 1154.78, + "probability": 0.4983 + }, + { + "start": 1154.78, + "end": 1156.8, + "probability": 0.3438 + }, + { + "start": 1157.8, + "end": 1159.38, + "probability": 0.1654 + }, + { + "start": 1159.9, + "end": 1161.0, + "probability": 0.121 + }, + { + "start": 1161.48, + "end": 1163.12, + "probability": 0.1707 + }, + { + "start": 1163.94, + "end": 1164.52, + "probability": 0.4118 + }, + { + "start": 1164.52, + "end": 1165.12, + "probability": 0.2403 + }, + { + "start": 1165.14, + "end": 1165.18, + "probability": 0.0078 + }, + { + "start": 1165.76, + "end": 1165.76, + "probability": 0.0544 + }, + { + "start": 1165.76, + "end": 1165.76, + "probability": 0.0582 + }, + { + "start": 1165.76, + "end": 1166.74, + "probability": 0.5354 + }, + { + "start": 1167.12, + "end": 1167.4, + "probability": 0.8905 + }, + { + "start": 1167.5, + "end": 1168.96, + "probability": 0.7803 + }, + { + "start": 1169.78, + "end": 1174.5, + "probability": 0.8815 + }, + { + "start": 1174.54, + "end": 1175.22, + "probability": 0.9203 + }, + { + "start": 1175.44, + "end": 1176.22, + "probability": 0.2235 + }, + { + "start": 1176.34, + "end": 1178.94, + "probability": 0.9891 + }, + { + "start": 1179.02, + "end": 1183.44, + "probability": 0.8793 + }, + { + "start": 1183.94, + "end": 1184.88, + "probability": 0.9739 + }, + { + "start": 1184.96, + "end": 1186.0, + "probability": 0.9945 + }, + { + "start": 1186.32, + "end": 1186.66, + "probability": 0.4548 + }, + { + "start": 1187.0, + "end": 1188.16, + "probability": 0.5526 + }, + { + "start": 1188.66, + "end": 1189.68, + "probability": 0.5729 + }, + { + "start": 1190.16, + "end": 1192.46, + "probability": 0.9521 + }, + { + "start": 1193.2, + "end": 1193.44, + "probability": 0.0195 + }, + { + "start": 1193.44, + "end": 1194.16, + "probability": 0.4365 + }, + { + "start": 1194.3, + "end": 1195.29, + "probability": 0.9706 + }, + { + "start": 1195.58, + "end": 1196.24, + "probability": 0.7066 + }, + { + "start": 1196.82, + "end": 1198.26, + "probability": 0.0714 + }, + { + "start": 1198.34, + "end": 1198.48, + "probability": 0.0305 + }, + { + "start": 1198.62, + "end": 1200.68, + "probability": 0.4815 + }, + { + "start": 1200.68, + "end": 1201.16, + "probability": 0.0367 + }, + { + "start": 1201.62, + "end": 1202.78, + "probability": 0.2175 + }, + { + "start": 1202.8, + "end": 1203.7, + "probability": 0.555 + }, + { + "start": 1204.08, + "end": 1204.2, + "probability": 0.8296 + }, + { + "start": 1204.6, + "end": 1205.3, + "probability": 0.7101 + }, + { + "start": 1205.36, + "end": 1205.98, + "probability": 0.7305 + }, + { + "start": 1206.08, + "end": 1207.28, + "probability": 0.9447 + }, + { + "start": 1207.56, + "end": 1208.74, + "probability": 0.7679 + }, + { + "start": 1209.2, + "end": 1212.82, + "probability": 0.9291 + }, + { + "start": 1213.24, + "end": 1213.94, + "probability": 0.6824 + }, + { + "start": 1214.7, + "end": 1217.48, + "probability": 0.7973 + }, + { + "start": 1218.12, + "end": 1219.04, + "probability": 0.4623 + }, + { + "start": 1219.8, + "end": 1221.24, + "probability": 0.9449 + }, + { + "start": 1221.36, + "end": 1222.26, + "probability": 0.6818 + }, + { + "start": 1222.38, + "end": 1222.8, + "probability": 0.8718 + }, + { + "start": 1223.04, + "end": 1223.8, + "probability": 0.6136 + }, + { + "start": 1224.12, + "end": 1226.68, + "probability": 0.8445 + }, + { + "start": 1227.04, + "end": 1228.86, + "probability": 0.9497 + }, + { + "start": 1229.5, + "end": 1231.24, + "probability": 0.5962 + }, + { + "start": 1231.78, + "end": 1232.78, + "probability": 0.7788 + }, + { + "start": 1232.9, + "end": 1233.9, + "probability": 0.8453 + }, + { + "start": 1234.04, + "end": 1234.84, + "probability": 0.6105 + }, + { + "start": 1235.26, + "end": 1237.18, + "probability": 0.866 + }, + { + "start": 1237.44, + "end": 1238.54, + "probability": 0.9219 + }, + { + "start": 1239.04, + "end": 1240.5, + "probability": 0.9331 + }, + { + "start": 1240.98, + "end": 1242.98, + "probability": 0.3576 + }, + { + "start": 1243.24, + "end": 1244.24, + "probability": 0.7632 + }, + { + "start": 1244.7, + "end": 1245.54, + "probability": 0.5018 + }, + { + "start": 1245.62, + "end": 1246.62, + "probability": 0.7962 + }, + { + "start": 1246.8, + "end": 1248.74, + "probability": 0.8375 + }, + { + "start": 1249.34, + "end": 1251.92, + "probability": 0.7915 + }, + { + "start": 1253.02, + "end": 1253.66, + "probability": 0.8934 + }, + { + "start": 1255.72, + "end": 1256.78, + "probability": 0.3266 + }, + { + "start": 1256.9, + "end": 1259.58, + "probability": 0.8159 + }, + { + "start": 1259.76, + "end": 1261.06, + "probability": 0.7995 + }, + { + "start": 1261.2, + "end": 1263.84, + "probability": 0.9623 + }, + { + "start": 1263.94, + "end": 1264.58, + "probability": 0.6049 + }, + { + "start": 1264.6, + "end": 1267.0, + "probability": 0.7451 + }, + { + "start": 1267.4, + "end": 1268.18, + "probability": 0.4275 + }, + { + "start": 1268.7, + "end": 1270.22, + "probability": 0.3596 + }, + { + "start": 1270.7, + "end": 1271.62, + "probability": 0.5171 + }, + { + "start": 1271.7, + "end": 1273.4, + "probability": 0.7402 + }, + { + "start": 1273.64, + "end": 1276.88, + "probability": 0.8664 + }, + { + "start": 1277.46, + "end": 1278.02, + "probability": 0.5544 + }, + { + "start": 1278.92, + "end": 1280.62, + "probability": 0.3945 + }, + { + "start": 1281.18, + "end": 1282.38, + "probability": 0.668 + }, + { + "start": 1282.84, + "end": 1284.16, + "probability": 0.7501 + }, + { + "start": 1284.4, + "end": 1286.78, + "probability": 0.8936 + }, + { + "start": 1286.86, + "end": 1288.32, + "probability": 0.7466 + }, + { + "start": 1288.32, + "end": 1293.44, + "probability": 0.7487 + }, + { + "start": 1293.54, + "end": 1295.32, + "probability": 0.516 + }, + { + "start": 1295.92, + "end": 1299.06, + "probability": 0.8019 + }, + { + "start": 1299.36, + "end": 1300.82, + "probability": 0.6534 + }, + { + "start": 1301.22, + "end": 1301.94, + "probability": 0.8361 + }, + { + "start": 1302.06, + "end": 1302.96, + "probability": 0.8459 + }, + { + "start": 1303.1, + "end": 1304.34, + "probability": 0.7461 + }, + { + "start": 1304.84, + "end": 1305.92, + "probability": 0.9647 + }, + { + "start": 1306.04, + "end": 1306.32, + "probability": 0.3598 + }, + { + "start": 1306.78, + "end": 1307.16, + "probability": 0.4718 + }, + { + "start": 1307.62, + "end": 1308.58, + "probability": 0.8452 + }, + { + "start": 1310.05, + "end": 1312.22, + "probability": 0.8877 + }, + { + "start": 1312.46, + "end": 1316.44, + "probability": 0.8157 + }, + { + "start": 1317.02, + "end": 1317.56, + "probability": 0.5914 + }, + { + "start": 1317.6, + "end": 1320.36, + "probability": 0.8279 + }, + { + "start": 1320.74, + "end": 1323.52, + "probability": 0.8413 + }, + { + "start": 1323.58, + "end": 1325.22, + "probability": 0.9213 + }, + { + "start": 1325.98, + "end": 1327.64, + "probability": 0.8214 + }, + { + "start": 1328.12, + "end": 1329.48, + "probability": 0.5792 + }, + { + "start": 1329.8, + "end": 1331.66, + "probability": 0.9172 + }, + { + "start": 1331.72, + "end": 1333.04, + "probability": 0.8806 + }, + { + "start": 1333.08, + "end": 1335.18, + "probability": 0.6875 + }, + { + "start": 1335.24, + "end": 1337.12, + "probability": 0.8899 + }, + { + "start": 1337.14, + "end": 1337.74, + "probability": 0.76 + }, + { + "start": 1337.98, + "end": 1338.53, + "probability": 0.5071 + }, + { + "start": 1338.66, + "end": 1339.3, + "probability": 0.6866 + }, + { + "start": 1339.38, + "end": 1340.46, + "probability": 0.918 + }, + { + "start": 1341.16, + "end": 1342.88, + "probability": 0.7617 + }, + { + "start": 1343.48, + "end": 1344.36, + "probability": 0.603 + }, + { + "start": 1344.88, + "end": 1346.16, + "probability": 0.9213 + }, + { + "start": 1347.22, + "end": 1348.24, + "probability": 0.9036 + }, + { + "start": 1348.32, + "end": 1349.32, + "probability": 0.522 + }, + { + "start": 1349.72, + "end": 1350.44, + "probability": 0.7604 + }, + { + "start": 1350.48, + "end": 1351.4, + "probability": 0.9757 + }, + { + "start": 1351.48, + "end": 1352.86, + "probability": 0.6252 + }, + { + "start": 1353.12, + "end": 1355.26, + "probability": 0.5019 + }, + { + "start": 1355.88, + "end": 1356.36, + "probability": 0.7319 + }, + { + "start": 1357.0, + "end": 1359.06, + "probability": 0.6911 + }, + { + "start": 1359.48, + "end": 1361.68, + "probability": 0.7568 + }, + { + "start": 1362.22, + "end": 1363.22, + "probability": 0.8971 + }, + { + "start": 1364.04, + "end": 1364.84, + "probability": 0.9607 + }, + { + "start": 1365.32, + "end": 1370.32, + "probability": 0.9528 + }, + { + "start": 1371.2, + "end": 1372.58, + "probability": 0.9747 + }, + { + "start": 1372.7, + "end": 1374.14, + "probability": 0.7388 + }, + { + "start": 1374.62, + "end": 1377.7, + "probability": 0.8933 + }, + { + "start": 1377.78, + "end": 1378.24, + "probability": 0.7676 + }, + { + "start": 1378.42, + "end": 1379.18, + "probability": 0.9513 + }, + { + "start": 1379.34, + "end": 1382.32, + "probability": 0.953 + }, + { + "start": 1382.32, + "end": 1384.54, + "probability": 0.8366 + }, + { + "start": 1384.7, + "end": 1387.04, + "probability": 0.8718 + }, + { + "start": 1387.14, + "end": 1387.8, + "probability": 0.9582 + }, + { + "start": 1388.16, + "end": 1391.36, + "probability": 0.7694 + }, + { + "start": 1391.7, + "end": 1395.16, + "probability": 0.7948 + }, + { + "start": 1395.68, + "end": 1396.44, + "probability": 0.9314 + }, + { + "start": 1396.9, + "end": 1398.9, + "probability": 0.8958 + }, + { + "start": 1399.32, + "end": 1400.09, + "probability": 0.7563 + }, + { + "start": 1400.38, + "end": 1401.4, + "probability": 0.7758 + }, + { + "start": 1403.5, + "end": 1404.96, + "probability": 0.633 + }, + { + "start": 1405.24, + "end": 1406.58, + "probability": 0.8214 + }, + { + "start": 1406.6, + "end": 1409.82, + "probability": 0.8807 + }, + { + "start": 1411.02, + "end": 1411.65, + "probability": 0.5367 + }, + { + "start": 1412.12, + "end": 1413.28, + "probability": 0.7394 + }, + { + "start": 1413.38, + "end": 1413.62, + "probability": 0.6658 + }, + { + "start": 1414.0, + "end": 1415.14, + "probability": 0.7164 + }, + { + "start": 1415.36, + "end": 1416.1, + "probability": 0.878 + }, + { + "start": 1417.08, + "end": 1419.96, + "probability": 0.9554 + }, + { + "start": 1419.96, + "end": 1420.9, + "probability": 0.7679 + }, + { + "start": 1421.18, + "end": 1421.9, + "probability": 0.5599 + }, + { + "start": 1421.98, + "end": 1423.22, + "probability": 0.7061 + }, + { + "start": 1423.9, + "end": 1424.18, + "probability": 0.8772 + }, + { + "start": 1425.08, + "end": 1426.74, + "probability": 0.926 + }, + { + "start": 1427.32, + "end": 1427.82, + "probability": 0.8774 + }, + { + "start": 1427.82, + "end": 1428.62, + "probability": 0.9624 + }, + { + "start": 1428.88, + "end": 1429.44, + "probability": 0.8958 + }, + { + "start": 1430.82, + "end": 1431.64, + "probability": 0.8257 + }, + { + "start": 1431.64, + "end": 1432.12, + "probability": 0.0825 + }, + { + "start": 1432.16, + "end": 1434.3, + "probability": 0.9354 + }, + { + "start": 1434.98, + "end": 1435.78, + "probability": 0.8911 + }, + { + "start": 1436.72, + "end": 1437.52, + "probability": 0.5833 + }, + { + "start": 1438.14, + "end": 1438.44, + "probability": 0.6177 + }, + { + "start": 1438.82, + "end": 1440.02, + "probability": 0.5627 + }, + { + "start": 1440.06, + "end": 1440.68, + "probability": 0.6346 + }, + { + "start": 1441.0, + "end": 1441.94, + "probability": 0.9554 + }, + { + "start": 1442.72, + "end": 1446.14, + "probability": 0.6727 + }, + { + "start": 1446.52, + "end": 1447.3, + "probability": 0.9731 + }, + { + "start": 1447.78, + "end": 1448.28, + "probability": 0.9798 + }, + { + "start": 1448.42, + "end": 1450.3, + "probability": 0.8689 + }, + { + "start": 1450.36, + "end": 1451.04, + "probability": 0.9924 + }, + { + "start": 1451.14, + "end": 1453.24, + "probability": 0.7209 + }, + { + "start": 1453.32, + "end": 1454.7, + "probability": 0.8294 + }, + { + "start": 1454.9, + "end": 1456.56, + "probability": 0.9412 + }, + { + "start": 1456.96, + "end": 1457.7, + "probability": 0.7669 + }, + { + "start": 1458.12, + "end": 1458.62, + "probability": 0.8196 + }, + { + "start": 1459.18, + "end": 1460.38, + "probability": 0.9447 + }, + { + "start": 1461.06, + "end": 1462.2, + "probability": 0.9849 + }, + { + "start": 1463.18, + "end": 1466.92, + "probability": 0.8526 + }, + { + "start": 1467.24, + "end": 1470.17, + "probability": 0.7783 + }, + { + "start": 1471.36, + "end": 1473.98, + "probability": 0.9336 + }, + { + "start": 1474.12, + "end": 1476.32, + "probability": 0.9408 + }, + { + "start": 1476.78, + "end": 1478.76, + "probability": 0.8938 + }, + { + "start": 1479.44, + "end": 1480.96, + "probability": 0.9622 + }, + { + "start": 1481.24, + "end": 1482.56, + "probability": 0.8947 + }, + { + "start": 1483.16, + "end": 1485.32, + "probability": 0.8551 + }, + { + "start": 1485.54, + "end": 1486.2, + "probability": 0.5616 + }, + { + "start": 1486.78, + "end": 1487.26, + "probability": 0.6909 + }, + { + "start": 1487.57, + "end": 1488.94, + "probability": 0.5303 + }, + { + "start": 1488.98, + "end": 1490.52, + "probability": 0.702 + }, + { + "start": 1490.66, + "end": 1491.74, + "probability": 0.9824 + }, + { + "start": 1491.8, + "end": 1496.02, + "probability": 0.9939 + }, + { + "start": 1496.14, + "end": 1497.76, + "probability": 0.8006 + }, + { + "start": 1498.16, + "end": 1498.84, + "probability": 0.9583 + }, + { + "start": 1499.52, + "end": 1500.44, + "probability": 0.9778 + }, + { + "start": 1500.56, + "end": 1501.52, + "probability": 0.9761 + }, + { + "start": 1501.72, + "end": 1502.43, + "probability": 0.8971 + }, + { + "start": 1502.58, + "end": 1505.64, + "probability": 0.9238 + }, + { + "start": 1506.06, + "end": 1507.06, + "probability": 0.9401 + }, + { + "start": 1507.58, + "end": 1510.04, + "probability": 0.9783 + }, + { + "start": 1510.66, + "end": 1511.16, + "probability": 0.5588 + }, + { + "start": 1511.42, + "end": 1512.42, + "probability": 0.9529 + }, + { + "start": 1512.5, + "end": 1515.22, + "probability": 0.9413 + }, + { + "start": 1515.4, + "end": 1518.1, + "probability": 0.8037 + }, + { + "start": 1518.84, + "end": 1521.22, + "probability": 0.801 + }, + { + "start": 1521.86, + "end": 1522.32, + "probability": 0.8672 + }, + { + "start": 1522.52, + "end": 1523.4, + "probability": 0.7608 + }, + { + "start": 1523.76, + "end": 1524.4, + "probability": 0.7652 + }, + { + "start": 1524.4, + "end": 1525.18, + "probability": 0.6397 + }, + { + "start": 1525.28, + "end": 1527.18, + "probability": 0.8178 + }, + { + "start": 1527.24, + "end": 1528.56, + "probability": 0.9058 + }, + { + "start": 1528.68, + "end": 1531.48, + "probability": 0.9606 + }, + { + "start": 1532.56, + "end": 1535.74, + "probability": 0.9734 + }, + { + "start": 1536.32, + "end": 1536.6, + "probability": 0.7058 + }, + { + "start": 1537.84, + "end": 1539.78, + "probability": 0.9296 + }, + { + "start": 1540.3, + "end": 1544.9, + "probability": 0.844 + }, + { + "start": 1545.48, + "end": 1546.19, + "probability": 0.5093 + }, + { + "start": 1546.44, + "end": 1549.02, + "probability": 0.93 + }, + { + "start": 1549.54, + "end": 1551.4, + "probability": 0.7553 + }, + { + "start": 1552.08, + "end": 1554.62, + "probability": 0.6949 + }, + { + "start": 1555.28, + "end": 1556.54, + "probability": 0.6262 + }, + { + "start": 1556.7, + "end": 1557.24, + "probability": 0.7599 + }, + { + "start": 1557.28, + "end": 1557.84, + "probability": 0.9547 + }, + { + "start": 1558.04, + "end": 1558.64, + "probability": 0.9155 + }, + { + "start": 1559.12, + "end": 1559.86, + "probability": 0.8342 + }, + { + "start": 1559.96, + "end": 1560.98, + "probability": 0.9615 + }, + { + "start": 1561.06, + "end": 1563.68, + "probability": 0.9172 + }, + { + "start": 1563.82, + "end": 1564.54, + "probability": 0.3786 + }, + { + "start": 1564.6, + "end": 1565.52, + "probability": 0.7271 + }, + { + "start": 1566.3, + "end": 1568.68, + "probability": 0.8613 + }, + { + "start": 1569.24, + "end": 1570.56, + "probability": 0.9678 + }, + { + "start": 1571.1, + "end": 1572.55, + "probability": 0.731 + }, + { + "start": 1572.96, + "end": 1575.56, + "probability": 0.9148 + }, + { + "start": 1575.66, + "end": 1577.4, + "probability": 0.8418 + }, + { + "start": 1577.94, + "end": 1580.32, + "probability": 0.6496 + }, + { + "start": 1580.44, + "end": 1581.36, + "probability": 0.746 + }, + { + "start": 1581.7, + "end": 1584.34, + "probability": 0.6724 + }, + { + "start": 1586.11, + "end": 1590.25, + "probability": 0.826 + }, + { + "start": 1590.78, + "end": 1593.54, + "probability": 0.9937 + }, + { + "start": 1593.62, + "end": 1594.58, + "probability": 0.689 + }, + { + "start": 1595.08, + "end": 1597.42, + "probability": 0.8047 + }, + { + "start": 1597.9, + "end": 1601.74, + "probability": 0.6194 + }, + { + "start": 1601.8, + "end": 1604.26, + "probability": 0.8927 + }, + { + "start": 1607.12, + "end": 1607.7, + "probability": 0.4948 + }, + { + "start": 1607.7, + "end": 1608.62, + "probability": 0.2114 + }, + { + "start": 1608.9, + "end": 1610.44, + "probability": 0.5768 + }, + { + "start": 1610.56, + "end": 1612.4, + "probability": 0.9939 + }, + { + "start": 1612.54, + "end": 1613.52, + "probability": 0.0699 + }, + { + "start": 1613.86, + "end": 1615.6, + "probability": 0.5285 + }, + { + "start": 1615.72, + "end": 1621.02, + "probability": 0.8186 + }, + { + "start": 1621.04, + "end": 1621.24, + "probability": 0.4841 + }, + { + "start": 1621.32, + "end": 1622.1, + "probability": 0.7419 + }, + { + "start": 1622.18, + "end": 1622.98, + "probability": 0.8862 + }, + { + "start": 1623.2, + "end": 1626.7, + "probability": 0.7633 + }, + { + "start": 1627.12, + "end": 1627.96, + "probability": 0.9663 + }, + { + "start": 1628.48, + "end": 1632.1, + "probability": 0.9863 + }, + { + "start": 1632.82, + "end": 1635.46, + "probability": 0.8538 + }, + { + "start": 1636.16, + "end": 1639.1, + "probability": 0.9823 + }, + { + "start": 1639.38, + "end": 1640.68, + "probability": 0.9711 + }, + { + "start": 1640.76, + "end": 1642.72, + "probability": 0.532 + }, + { + "start": 1642.88, + "end": 1644.34, + "probability": 0.9348 + }, + { + "start": 1644.4, + "end": 1645.82, + "probability": 0.957 + }, + { + "start": 1645.94, + "end": 1648.42, + "probability": 0.8989 + }, + { + "start": 1648.9, + "end": 1651.14, + "probability": 0.7695 + }, + { + "start": 1652.52, + "end": 1653.24, + "probability": 0.9756 + }, + { + "start": 1653.34, + "end": 1654.8, + "probability": 0.9873 + }, + { + "start": 1655.1, + "end": 1655.36, + "probability": 0.4259 + }, + { + "start": 1655.4, + "end": 1656.48, + "probability": 0.7486 + }, + { + "start": 1656.58, + "end": 1657.8, + "probability": 0.9817 + }, + { + "start": 1658.18, + "end": 1659.61, + "probability": 0.9854 + }, + { + "start": 1660.74, + "end": 1661.12, + "probability": 0.5613 + }, + { + "start": 1661.8, + "end": 1665.08, + "probability": 0.996 + }, + { + "start": 1665.64, + "end": 1667.56, + "probability": 0.8649 + }, + { + "start": 1667.56, + "end": 1667.8, + "probability": 0.5172 + }, + { + "start": 1667.82, + "end": 1668.96, + "probability": 0.9932 + }, + { + "start": 1668.98, + "end": 1669.93, + "probability": 0.9854 + }, + { + "start": 1670.18, + "end": 1672.82, + "probability": 0.9951 + }, + { + "start": 1673.48, + "end": 1674.16, + "probability": 0.6899 + }, + { + "start": 1674.36, + "end": 1675.12, + "probability": 0.7076 + }, + { + "start": 1675.62, + "end": 1676.42, + "probability": 0.7458 + }, + { + "start": 1676.8, + "end": 1679.0, + "probability": 0.1789 + }, + { + "start": 1679.4, + "end": 1679.75, + "probability": 0.6368 + }, + { + "start": 1679.96, + "end": 1682.04, + "probability": 0.9387 + }, + { + "start": 1682.84, + "end": 1684.84, + "probability": 0.5901 + }, + { + "start": 1685.08, + "end": 1687.6, + "probability": 0.8315 + }, + { + "start": 1701.46, + "end": 1702.42, + "probability": 0.7394 + }, + { + "start": 1703.6, + "end": 1705.12, + "probability": 0.7522 + }, + { + "start": 1706.7, + "end": 1707.52, + "probability": 0.9737 + }, + { + "start": 1709.44, + "end": 1712.44, + "probability": 0.9948 + }, + { + "start": 1712.44, + "end": 1717.82, + "probability": 0.9286 + }, + { + "start": 1718.72, + "end": 1719.82, + "probability": 0.8778 + }, + { + "start": 1720.92, + "end": 1723.36, + "probability": 0.994 + }, + { + "start": 1724.0, + "end": 1729.6, + "probability": 0.9967 + }, + { + "start": 1730.18, + "end": 1734.32, + "probability": 0.9884 + }, + { + "start": 1737.1, + "end": 1738.8, + "probability": 0.9976 + }, + { + "start": 1740.02, + "end": 1741.16, + "probability": 0.9739 + }, + { + "start": 1744.96, + "end": 1745.8, + "probability": 0.155 + }, + { + "start": 1746.9, + "end": 1749.06, + "probability": 0.8281 + }, + { + "start": 1749.74, + "end": 1751.2, + "probability": 0.9587 + }, + { + "start": 1752.32, + "end": 1756.32, + "probability": 0.8337 + }, + { + "start": 1757.32, + "end": 1760.14, + "probability": 0.8717 + }, + { + "start": 1761.02, + "end": 1761.9, + "probability": 0.9558 + }, + { + "start": 1762.6, + "end": 1765.1, + "probability": 0.9882 + }, + { + "start": 1766.34, + "end": 1767.82, + "probability": 0.7407 + }, + { + "start": 1768.34, + "end": 1768.72, + "probability": 0.0611 + }, + { + "start": 1768.72, + "end": 1773.7, + "probability": 0.8578 + }, + { + "start": 1773.7, + "end": 1778.4, + "probability": 0.997 + }, + { + "start": 1779.1, + "end": 1786.24, + "probability": 0.9919 + }, + { + "start": 1787.02, + "end": 1793.27, + "probability": 0.6891 + }, + { + "start": 1793.94, + "end": 1798.5, + "probability": 0.9763 + }, + { + "start": 1798.94, + "end": 1802.36, + "probability": 0.4747 + }, + { + "start": 1802.48, + "end": 1802.6, + "probability": 0.6597 + }, + { + "start": 1802.6, + "end": 1803.32, + "probability": 0.6169 + }, + { + "start": 1803.92, + "end": 1806.58, + "probability": 0.9967 + }, + { + "start": 1807.28, + "end": 1807.64, + "probability": 0.8899 + }, + { + "start": 1809.68, + "end": 1813.44, + "probability": 0.9741 + }, + { + "start": 1814.3, + "end": 1815.72, + "probability": 0.894 + }, + { + "start": 1816.38, + "end": 1819.72, + "probability": 0.9951 + }, + { + "start": 1820.52, + "end": 1822.17, + "probability": 0.9684 + }, + { + "start": 1823.84, + "end": 1826.44, + "probability": 0.9673 + }, + { + "start": 1827.08, + "end": 1831.88, + "probability": 0.9955 + }, + { + "start": 1833.64, + "end": 1834.69, + "probability": 0.9795 + }, + { + "start": 1835.64, + "end": 1835.94, + "probability": 0.9937 + }, + { + "start": 1837.52, + "end": 1838.74, + "probability": 0.5034 + }, + { + "start": 1839.4, + "end": 1845.42, + "probability": 0.9703 + }, + { + "start": 1846.9, + "end": 1852.88, + "probability": 0.9647 + }, + { + "start": 1853.78, + "end": 1857.36, + "probability": 0.9963 + }, + { + "start": 1858.22, + "end": 1860.04, + "probability": 0.9969 + }, + { + "start": 1860.92, + "end": 1864.14, + "probability": 0.9694 + }, + { + "start": 1865.22, + "end": 1866.28, + "probability": 0.834 + }, + { + "start": 1867.04, + "end": 1867.9, + "probability": 0.867 + }, + { + "start": 1868.92, + "end": 1872.3, + "probability": 0.9082 + }, + { + "start": 1872.48, + "end": 1874.44, + "probability": 0.7957 + }, + { + "start": 1874.98, + "end": 1879.66, + "probability": 0.9965 + }, + { + "start": 1882.6, + "end": 1885.5, + "probability": 0.9714 + }, + { + "start": 1886.04, + "end": 1889.78, + "probability": 0.8256 + }, + { + "start": 1890.6, + "end": 1892.1, + "probability": 0.9431 + }, + { + "start": 1893.52, + "end": 1895.96, + "probability": 0.9823 + }, + { + "start": 1896.62, + "end": 1897.7, + "probability": 0.9896 + }, + { + "start": 1898.44, + "end": 1900.2, + "probability": 0.9742 + }, + { + "start": 1900.98, + "end": 1902.28, + "probability": 0.921 + }, + { + "start": 1902.96, + "end": 1904.02, + "probability": 0.8032 + }, + { + "start": 1904.68, + "end": 1907.2, + "probability": 0.8787 + }, + { + "start": 1908.08, + "end": 1908.96, + "probability": 0.5996 + }, + { + "start": 1909.48, + "end": 1912.84, + "probability": 0.9934 + }, + { + "start": 1913.52, + "end": 1914.92, + "probability": 0.9048 + }, + { + "start": 1915.44, + "end": 1916.12, + "probability": 0.9858 + }, + { + "start": 1916.76, + "end": 1919.8, + "probability": 0.9153 + }, + { + "start": 1920.64, + "end": 1921.94, + "probability": 0.9963 + }, + { + "start": 1923.06, + "end": 1928.92, + "probability": 0.9608 + }, + { + "start": 1929.28, + "end": 1929.94, + "probability": 0.6705 + }, + { + "start": 1930.2, + "end": 1932.12, + "probability": 0.9966 + }, + { + "start": 1932.28, + "end": 1933.34, + "probability": 0.5858 + }, + { + "start": 1936.1, + "end": 1939.8, + "probability": 0.4814 + }, + { + "start": 1940.06, + "end": 1942.54, + "probability": 0.7432 + }, + { + "start": 1942.64, + "end": 1948.18, + "probability": 0.6777 + }, + { + "start": 1949.42, + "end": 1952.7, + "probability": 0.998 + }, + { + "start": 1953.12, + "end": 1956.36, + "probability": 0.9885 + }, + { + "start": 1956.9, + "end": 1957.31, + "probability": 0.9782 + }, + { + "start": 1958.36, + "end": 1960.66, + "probability": 0.8942 + }, + { + "start": 1960.96, + "end": 1961.84, + "probability": 0.5978 + }, + { + "start": 1962.44, + "end": 1965.86, + "probability": 0.8196 + }, + { + "start": 1965.94, + "end": 1969.78, + "probability": 0.9957 + }, + { + "start": 1970.5, + "end": 1972.68, + "probability": 0.9087 + }, + { + "start": 1972.98, + "end": 1973.46, + "probability": 0.907 + }, + { + "start": 1975.84, + "end": 1977.42, + "probability": 0.6475 + }, + { + "start": 1978.02, + "end": 1978.96, + "probability": 0.6954 + }, + { + "start": 1979.64, + "end": 1983.96, + "probability": 0.943 + }, + { + "start": 1985.74, + "end": 1986.28, + "probability": 0.8854 + }, + { + "start": 1988.6, + "end": 1991.78, + "probability": 0.9673 + }, + { + "start": 1993.28, + "end": 1994.88, + "probability": 0.9595 + }, + { + "start": 1997.14, + "end": 2002.42, + "probability": 0.9967 + }, + { + "start": 2004.92, + "end": 2006.34, + "probability": 0.6815 + }, + { + "start": 2007.84, + "end": 2012.06, + "probability": 0.9517 + }, + { + "start": 2012.68, + "end": 2013.18, + "probability": 0.9603 + }, + { + "start": 2016.08, + "end": 2019.46, + "probability": 0.9761 + }, + { + "start": 2019.46, + "end": 2023.7, + "probability": 0.9418 + }, + { + "start": 2024.84, + "end": 2028.24, + "probability": 0.9952 + }, + { + "start": 2029.42, + "end": 2030.72, + "probability": 0.9302 + }, + { + "start": 2030.78, + "end": 2032.22, + "probability": 0.8691 + }, + { + "start": 2032.3, + "end": 2034.4, + "probability": 0.9811 + }, + { + "start": 2035.74, + "end": 2036.98, + "probability": 0.7027 + }, + { + "start": 2039.1, + "end": 2045.02, + "probability": 0.9956 + }, + { + "start": 2045.1, + "end": 2045.66, + "probability": 0.8212 + }, + { + "start": 2046.74, + "end": 2049.78, + "probability": 0.9925 + }, + { + "start": 2049.88, + "end": 2052.7, + "probability": 0.9977 + }, + { + "start": 2052.9, + "end": 2053.08, + "probability": 0.6185 + }, + { + "start": 2053.18, + "end": 2053.72, + "probability": 0.3819 + }, + { + "start": 2053.98, + "end": 2055.92, + "probability": 0.8521 + }, + { + "start": 2056.82, + "end": 2059.82, + "probability": 0.9915 + }, + { + "start": 2062.36, + "end": 2066.4, + "probability": 0.8561 + }, + { + "start": 2068.02, + "end": 2073.72, + "probability": 0.9933 + }, + { + "start": 2075.34, + "end": 2080.76, + "probability": 0.9922 + }, + { + "start": 2082.26, + "end": 2083.96, + "probability": 0.8749 + }, + { + "start": 2085.12, + "end": 2087.6, + "probability": 0.992 + }, + { + "start": 2088.38, + "end": 2088.76, + "probability": 0.8711 + }, + { + "start": 2090.02, + "end": 2093.12, + "probability": 0.9951 + }, + { + "start": 2094.72, + "end": 2096.58, + "probability": 0.9167 + }, + { + "start": 2098.48, + "end": 2101.58, + "probability": 0.7384 + }, + { + "start": 2104.48, + "end": 2109.88, + "probability": 0.9781 + }, + { + "start": 2111.24, + "end": 2113.0, + "probability": 0.9905 + }, + { + "start": 2115.56, + "end": 2116.32, + "probability": 0.8509 + }, + { + "start": 2117.64, + "end": 2120.86, + "probability": 0.9819 + }, + { + "start": 2121.06, + "end": 2122.68, + "probability": 0.9971 + }, + { + "start": 2124.38, + "end": 2125.1, + "probability": 0.9208 + }, + { + "start": 2125.96, + "end": 2127.68, + "probability": 0.9917 + }, + { + "start": 2127.82, + "end": 2130.0, + "probability": 0.9702 + }, + { + "start": 2130.86, + "end": 2132.26, + "probability": 0.9386 + }, + { + "start": 2133.86, + "end": 2135.58, + "probability": 0.9984 + }, + { + "start": 2137.08, + "end": 2138.46, + "probability": 0.9391 + }, + { + "start": 2139.04, + "end": 2141.4, + "probability": 0.9909 + }, + { + "start": 2141.5, + "end": 2144.46, + "probability": 0.8519 + }, + { + "start": 2146.3, + "end": 2148.71, + "probability": 0.8936 + }, + { + "start": 2150.48, + "end": 2152.32, + "probability": 0.9624 + }, + { + "start": 2152.44, + "end": 2154.02, + "probability": 0.8401 + }, + { + "start": 2154.12, + "end": 2157.3, + "probability": 0.9562 + }, + { + "start": 2157.3, + "end": 2160.28, + "probability": 0.9823 + }, + { + "start": 2161.38, + "end": 2161.96, + "probability": 0.5947 + }, + { + "start": 2162.14, + "end": 2162.56, + "probability": 0.9662 + }, + { + "start": 2162.66, + "end": 2163.48, + "probability": 0.5494 + }, + { + "start": 2163.54, + "end": 2165.68, + "probability": 0.9516 + }, + { + "start": 2167.38, + "end": 2168.96, + "probability": 0.8135 + }, + { + "start": 2171.52, + "end": 2174.44, + "probability": 0.9775 + }, + { + "start": 2176.92, + "end": 2181.4, + "probability": 0.9404 + }, + { + "start": 2182.08, + "end": 2184.66, + "probability": 0.8036 + }, + { + "start": 2186.52, + "end": 2188.14, + "probability": 0.8679 + }, + { + "start": 2189.64, + "end": 2192.1, + "probability": 0.983 + }, + { + "start": 2192.74, + "end": 2193.3, + "probability": 0.9705 + }, + { + "start": 2193.68, + "end": 2195.36, + "probability": 0.9827 + }, + { + "start": 2195.36, + "end": 2199.34, + "probability": 0.9863 + }, + { + "start": 2199.38, + "end": 2202.92, + "probability": 0.9963 + }, + { + "start": 2203.06, + "end": 2204.77, + "probability": 0.5 + }, + { + "start": 2206.3, + "end": 2210.02, + "probability": 0.9973 + }, + { + "start": 2210.04, + "end": 2212.26, + "probability": 0.9718 + }, + { + "start": 2212.34, + "end": 2214.78, + "probability": 0.8278 + }, + { + "start": 2214.78, + "end": 2216.96, + "probability": 0.9745 + }, + { + "start": 2218.74, + "end": 2221.86, + "probability": 0.9939 + }, + { + "start": 2223.08, + "end": 2223.18, + "probability": 0.7202 + }, + { + "start": 2223.36, + "end": 2227.33, + "probability": 0.9751 + }, + { + "start": 2228.84, + "end": 2230.88, + "probability": 0.6602 + }, + { + "start": 2232.34, + "end": 2236.02, + "probability": 0.9762 + }, + { + "start": 2237.34, + "end": 2242.1, + "probability": 0.989 + }, + { + "start": 2242.2, + "end": 2244.42, + "probability": 0.9918 + }, + { + "start": 2244.68, + "end": 2247.72, + "probability": 0.9944 + }, + { + "start": 2248.64, + "end": 2249.54, + "probability": 0.7469 + }, + { + "start": 2250.26, + "end": 2253.08, + "probability": 0.9292 + }, + { + "start": 2256.02, + "end": 2257.16, + "probability": 0.8378 + }, + { + "start": 2257.66, + "end": 2262.84, + "probability": 0.8945 + }, + { + "start": 2263.14, + "end": 2263.76, + "probability": 0.7395 + }, + { + "start": 2264.56, + "end": 2265.98, + "probability": 0.8625 + }, + { + "start": 2266.14, + "end": 2268.08, + "probability": 0.9253 + }, + { + "start": 2268.66, + "end": 2269.86, + "probability": 0.9958 + }, + { + "start": 2270.5, + "end": 2274.36, + "probability": 0.9136 + }, + { + "start": 2274.48, + "end": 2274.92, + "probability": 0.4109 + }, + { + "start": 2276.88, + "end": 2281.16, + "probability": 0.9722 + }, + { + "start": 2282.44, + "end": 2283.84, + "probability": 0.9758 + }, + { + "start": 2285.28, + "end": 2286.0, + "probability": 0.8242 + }, + { + "start": 2286.02, + "end": 2287.1, + "probability": 0.9736 + }, + { + "start": 2287.2, + "end": 2288.66, + "probability": 0.6921 + }, + { + "start": 2289.52, + "end": 2290.4, + "probability": 0.891 + }, + { + "start": 2291.0, + "end": 2292.9, + "probability": 0.9082 + }, + { + "start": 2292.96, + "end": 2295.08, + "probability": 0.9676 + }, + { + "start": 2295.08, + "end": 2296.52, + "probability": 0.9365 + }, + { + "start": 2298.94, + "end": 2299.58, + "probability": 0.5197 + }, + { + "start": 2301.82, + "end": 2305.0, + "probability": 0.995 + }, + { + "start": 2305.16, + "end": 2309.32, + "probability": 0.9943 + }, + { + "start": 2311.14, + "end": 2312.84, + "probability": 0.9141 + }, + { + "start": 2313.22, + "end": 2314.94, + "probability": 0.9372 + }, + { + "start": 2315.02, + "end": 2315.2, + "probability": 0.9619 + }, + { + "start": 2315.66, + "end": 2316.01, + "probability": 0.9544 + }, + { + "start": 2316.22, + "end": 2318.38, + "probability": 0.8081 + }, + { + "start": 2320.7, + "end": 2323.44, + "probability": 0.9938 + }, + { + "start": 2324.96, + "end": 2327.64, + "probability": 0.9927 + }, + { + "start": 2327.64, + "end": 2329.96, + "probability": 0.8925 + }, + { + "start": 2330.26, + "end": 2330.6, + "probability": 0.3336 + }, + { + "start": 2330.68, + "end": 2330.92, + "probability": 0.8688 + }, + { + "start": 2330.96, + "end": 2331.94, + "probability": 0.8035 + }, + { + "start": 2331.96, + "end": 2334.12, + "probability": 0.8707 + }, + { + "start": 2334.36, + "end": 2335.98, + "probability": 0.7884 + }, + { + "start": 2338.78, + "end": 2340.84, + "probability": 0.9984 + }, + { + "start": 2340.84, + "end": 2343.66, + "probability": 0.9948 + }, + { + "start": 2345.34, + "end": 2350.48, + "probability": 0.9136 + }, + { + "start": 2350.48, + "end": 2354.44, + "probability": 0.9985 + }, + { + "start": 2355.72, + "end": 2358.14, + "probability": 0.9392 + }, + { + "start": 2358.24, + "end": 2359.96, + "probability": 0.9771 + }, + { + "start": 2362.94, + "end": 2363.55, + "probability": 0.9416 + }, + { + "start": 2364.3, + "end": 2368.66, + "probability": 0.99 + }, + { + "start": 2368.66, + "end": 2371.72, + "probability": 0.936 + }, + { + "start": 2371.88, + "end": 2373.54, + "probability": 0.9731 + }, + { + "start": 2373.54, + "end": 2377.06, + "probability": 0.9285 + }, + { + "start": 2378.06, + "end": 2381.04, + "probability": 0.9958 + }, + { + "start": 2383.12, + "end": 2384.11, + "probability": 0.966 + }, + { + "start": 2384.42, + "end": 2386.84, + "probability": 0.6909 + }, + { + "start": 2386.84, + "end": 2388.76, + "probability": 0.9814 + }, + { + "start": 2391.94, + "end": 2393.76, + "probability": 0.952 + }, + { + "start": 2393.8, + "end": 2396.74, + "probability": 0.9892 + }, + { + "start": 2396.8, + "end": 2397.14, + "probability": 0.3846 + }, + { + "start": 2397.16, + "end": 2397.5, + "probability": 0.9313 + }, + { + "start": 2397.54, + "end": 2399.4, + "probability": 0.9716 + }, + { + "start": 2399.42, + "end": 2400.54, + "probability": 0.9423 + }, + { + "start": 2400.68, + "end": 2401.11, + "probability": 0.9071 + }, + { + "start": 2403.8, + "end": 2407.54, + "probability": 0.993 + }, + { + "start": 2407.76, + "end": 2407.88, + "probability": 0.3843 + }, + { + "start": 2407.96, + "end": 2409.44, + "probability": 0.7673 + }, + { + "start": 2409.72, + "end": 2410.38, + "probability": 0.8883 + }, + { + "start": 2410.46, + "end": 2413.2, + "probability": 0.9896 + }, + { + "start": 2413.62, + "end": 2418.48, + "probability": 0.9821 + }, + { + "start": 2420.9, + "end": 2424.34, + "probability": 0.3993 + }, + { + "start": 2424.48, + "end": 2425.21, + "probability": 0.4684 + }, + { + "start": 2425.26, + "end": 2427.94, + "probability": 0.9115 + }, + { + "start": 2429.06, + "end": 2433.22, + "probability": 0.9894 + }, + { + "start": 2433.28, + "end": 2435.82, + "probability": 0.9827 + }, + { + "start": 2435.84, + "end": 2436.8, + "probability": 0.9658 + }, + { + "start": 2439.42, + "end": 2440.28, + "probability": 0.907 + }, + { + "start": 2441.38, + "end": 2442.36, + "probability": 0.851 + }, + { + "start": 2443.46, + "end": 2444.64, + "probability": 0.965 + }, + { + "start": 2445.24, + "end": 2446.46, + "probability": 0.7604 + }, + { + "start": 2447.13, + "end": 2450.44, + "probability": 0.9186 + }, + { + "start": 2451.46, + "end": 2451.56, + "probability": 0.5793 + }, + { + "start": 2451.6, + "end": 2451.72, + "probability": 0.9336 + }, + { + "start": 2453.44, + "end": 2454.08, + "probability": 0.3712 + }, + { + "start": 2454.12, + "end": 2456.02, + "probability": 0.9877 + }, + { + "start": 2456.08, + "end": 2459.0, + "probability": 0.9883 + }, + { + "start": 2460.44, + "end": 2464.19, + "probability": 0.9621 + }, + { + "start": 2464.98, + "end": 2467.36, + "probability": 0.8205 + }, + { + "start": 2467.46, + "end": 2468.92, + "probability": 0.623 + }, + { + "start": 2469.02, + "end": 2470.22, + "probability": 0.7451 + }, + { + "start": 2470.28, + "end": 2472.78, + "probability": 0.8952 + }, + { + "start": 2475.46, + "end": 2475.96, + "probability": 0.5859 + }, + { + "start": 2476.26, + "end": 2478.76, + "probability": 0.9325 + }, + { + "start": 2479.88, + "end": 2481.86, + "probability": 0.817 + }, + { + "start": 2482.02, + "end": 2483.37, + "probability": 0.9841 + }, + { + "start": 2484.6, + "end": 2489.68, + "probability": 0.944 + }, + { + "start": 2492.04, + "end": 2493.3, + "probability": 0.6808 + }, + { + "start": 2494.44, + "end": 2496.0, + "probability": 0.9713 + }, + { + "start": 2496.7, + "end": 2499.08, + "probability": 0.9625 + }, + { + "start": 2499.4, + "end": 2501.12, + "probability": 0.6324 + }, + { + "start": 2501.6, + "end": 2503.86, + "probability": 0.9807 + }, + { + "start": 2503.94, + "end": 2504.78, + "probability": 0.9606 + }, + { + "start": 2505.24, + "end": 2505.98, + "probability": 0.9767 + }, + { + "start": 2506.0, + "end": 2506.8, + "probability": 0.9908 + }, + { + "start": 2506.86, + "end": 2507.54, + "probability": 0.9578 + }, + { + "start": 2508.44, + "end": 2508.94, + "probability": 0.653 + }, + { + "start": 2509.26, + "end": 2511.98, + "probability": 0.9398 + }, + { + "start": 2513.3, + "end": 2515.34, + "probability": 0.9127 + }, + { + "start": 2516.02, + "end": 2517.04, + "probability": 0.9277 + }, + { + "start": 2517.82, + "end": 2519.98, + "probability": 0.6306 + }, + { + "start": 2520.82, + "end": 2521.0, + "probability": 0.7107 + }, + { + "start": 2521.06, + "end": 2522.04, + "probability": 0.437 + }, + { + "start": 2522.1, + "end": 2526.22, + "probability": 0.9891 + }, + { + "start": 2528.26, + "end": 2530.56, + "probability": 0.9932 + }, + { + "start": 2530.64, + "end": 2531.98, + "probability": 0.9524 + }, + { + "start": 2532.4, + "end": 2535.9, + "probability": 0.847 + }, + { + "start": 2536.54, + "end": 2537.64, + "probability": 0.6357 + }, + { + "start": 2537.72, + "end": 2538.6, + "probability": 0.9839 + }, + { + "start": 2539.5, + "end": 2543.16, + "probability": 0.986 + }, + { + "start": 2543.16, + "end": 2544.96, + "probability": 0.9384 + }, + { + "start": 2545.0, + "end": 2547.02, + "probability": 0.5746 + }, + { + "start": 2547.46, + "end": 2548.14, + "probability": 0.761 + }, + { + "start": 2549.08, + "end": 2550.96, + "probability": 0.9777 + }, + { + "start": 2551.44, + "end": 2553.32, + "probability": 0.9072 + }, + { + "start": 2553.72, + "end": 2555.68, + "probability": 0.9976 + }, + { + "start": 2555.88, + "end": 2556.68, + "probability": 0.6647 + }, + { + "start": 2556.8, + "end": 2557.88, + "probability": 0.9797 + }, + { + "start": 2558.04, + "end": 2559.04, + "probability": 0.3528 + }, + { + "start": 2559.14, + "end": 2559.72, + "probability": 0.3921 + }, + { + "start": 2559.82, + "end": 2560.72, + "probability": 0.6108 + }, + { + "start": 2561.28, + "end": 2565.56, + "probability": 0.6071 + }, + { + "start": 2565.7, + "end": 2569.16, + "probability": 0.5034 + }, + { + "start": 2569.32, + "end": 2571.84, + "probability": 0.8889 + }, + { + "start": 2573.41, + "end": 2578.3, + "probability": 0.8573 + }, + { + "start": 2579.32, + "end": 2581.72, + "probability": 0.8257 + }, + { + "start": 2581.78, + "end": 2584.56, + "probability": 0.9716 + }, + { + "start": 2585.22, + "end": 2587.6, + "probability": 0.8695 + }, + { + "start": 2587.7, + "end": 2589.02, + "probability": 0.7887 + }, + { + "start": 2589.06, + "end": 2589.96, + "probability": 0.9824 + }, + { + "start": 2590.02, + "end": 2591.1, + "probability": 0.8683 + }, + { + "start": 2591.36, + "end": 2592.4, + "probability": 0.8858 + }, + { + "start": 2592.48, + "end": 2593.58, + "probability": 0.9883 + }, + { + "start": 2593.68, + "end": 2595.3, + "probability": 0.829 + }, + { + "start": 2597.68, + "end": 2603.18, + "probability": 0.9826 + }, + { + "start": 2603.3, + "end": 2603.86, + "probability": 0.8879 + }, + { + "start": 2604.04, + "end": 2605.3, + "probability": 0.9874 + }, + { + "start": 2607.58, + "end": 2608.64, + "probability": 0.7925 + }, + { + "start": 2608.64, + "end": 2613.62, + "probability": 0.9126 + }, + { + "start": 2613.78, + "end": 2616.46, + "probability": 0.4903 + }, + { + "start": 2616.6, + "end": 2618.42, + "probability": 0.8933 + }, + { + "start": 2618.54, + "end": 2620.48, + "probability": 0.912 + }, + { + "start": 2623.04, + "end": 2627.24, + "probability": 0.9828 + }, + { + "start": 2627.24, + "end": 2628.42, + "probability": 0.6844 + }, + { + "start": 2629.0, + "end": 2631.1, + "probability": 0.7679 + }, + { + "start": 2631.98, + "end": 2632.08, + "probability": 0.0339 + }, + { + "start": 2632.08, + "end": 2633.66, + "probability": 0.6903 + }, + { + "start": 2635.62, + "end": 2637.2, + "probability": 0.9898 + }, + { + "start": 2637.44, + "end": 2639.2, + "probability": 0.9754 + }, + { + "start": 2639.38, + "end": 2642.16, + "probability": 0.9946 + }, + { + "start": 2642.56, + "end": 2644.08, + "probability": 0.7653 + }, + { + "start": 2645.38, + "end": 2647.82, + "probability": 0.7152 + }, + { + "start": 2647.92, + "end": 2650.5, + "probability": 0.9333 + }, + { + "start": 2652.86, + "end": 2653.88, + "probability": 0.0061 + }, + { + "start": 2653.88, + "end": 2654.08, + "probability": 0.0282 + }, + { + "start": 2654.08, + "end": 2654.7, + "probability": 0.125 + }, + { + "start": 2654.98, + "end": 2655.22, + "probability": 0.0628 + }, + { + "start": 2655.28, + "end": 2657.3, + "probability": 0.7242 + }, + { + "start": 2657.3, + "end": 2659.6, + "probability": 0.485 + }, + { + "start": 2660.16, + "end": 2662.98, + "probability": 0.8433 + }, + { + "start": 2663.66, + "end": 2666.42, + "probability": 0.9678 + }, + { + "start": 2666.76, + "end": 2668.38, + "probability": 0.9501 + }, + { + "start": 2668.66, + "end": 2672.38, + "probability": 0.9562 + }, + { + "start": 2674.44, + "end": 2674.46, + "probability": 0.4128 + }, + { + "start": 2674.46, + "end": 2677.54, + "probability": 0.9075 + }, + { + "start": 2701.1, + "end": 2701.72, + "probability": 0.5611 + }, + { + "start": 2701.8, + "end": 2702.56, + "probability": 0.7368 + }, + { + "start": 2703.04, + "end": 2705.76, + "probability": 0.9949 + }, + { + "start": 2707.22, + "end": 2712.42, + "probability": 0.7947 + }, + { + "start": 2713.8, + "end": 2717.2, + "probability": 0.8688 + }, + { + "start": 2717.2, + "end": 2720.56, + "probability": 0.9873 + }, + { + "start": 2721.4, + "end": 2727.82, + "probability": 0.9716 + }, + { + "start": 2728.3, + "end": 2730.84, + "probability": 0.978 + }, + { + "start": 2731.7, + "end": 2735.58, + "probability": 0.9965 + }, + { + "start": 2735.58, + "end": 2738.68, + "probability": 0.9997 + }, + { + "start": 2739.9, + "end": 2741.92, + "probability": 0.988 + }, + { + "start": 2742.04, + "end": 2744.1, + "probability": 0.9962 + }, + { + "start": 2744.42, + "end": 2749.16, + "probability": 0.9951 + }, + { + "start": 2749.6, + "end": 2751.22, + "probability": 0.9974 + }, + { + "start": 2752.0, + "end": 2754.74, + "probability": 0.8957 + }, + { + "start": 2755.46, + "end": 2758.12, + "probability": 0.975 + }, + { + "start": 2758.12, + "end": 2761.36, + "probability": 0.9976 + }, + { + "start": 2762.18, + "end": 2762.88, + "probability": 0.7608 + }, + { + "start": 2763.72, + "end": 2767.26, + "probability": 0.9884 + }, + { + "start": 2767.26, + "end": 2771.26, + "probability": 0.9986 + }, + { + "start": 2772.2, + "end": 2772.58, + "probability": 0.5421 + }, + { + "start": 2773.5, + "end": 2777.24, + "probability": 0.9963 + }, + { + "start": 2777.4, + "end": 2777.54, + "probability": 0.2981 + }, + { + "start": 2779.3, + "end": 2782.38, + "probability": 0.8561 + }, + { + "start": 2783.2, + "end": 2784.5, + "probability": 0.8743 + }, + { + "start": 2785.02, + "end": 2786.58, + "probability": 0.9834 + }, + { + "start": 2787.21, + "end": 2789.24, + "probability": 0.8925 + }, + { + "start": 2798.24, + "end": 2799.84, + "probability": 0.1631 + }, + { + "start": 2801.2, + "end": 2801.3, + "probability": 0.0274 + }, + { + "start": 2820.96, + "end": 2830.82, + "probability": 0.9748 + }, + { + "start": 2831.36, + "end": 2832.2, + "probability": 0.9961 + }, + { + "start": 2834.24, + "end": 2836.28, + "probability": 0.9253 + }, + { + "start": 2837.9, + "end": 2840.88, + "probability": 0.9937 + }, + { + "start": 2840.98, + "end": 2841.7, + "probability": 0.9805 + }, + { + "start": 2842.96, + "end": 2843.82, + "probability": 0.7141 + }, + { + "start": 2845.39, + "end": 2846.4, + "probability": 0.9661 + }, + { + "start": 2846.86, + "end": 2847.6, + "probability": 0.6256 + }, + { + "start": 2847.72, + "end": 2849.1, + "probability": 0.9703 + }, + { + "start": 2849.74, + "end": 2850.52, + "probability": 0.8651 + }, + { + "start": 2851.0, + "end": 2853.14, + "probability": 0.905 + }, + { + "start": 2853.92, + "end": 2854.9, + "probability": 0.9891 + }, + { + "start": 2855.48, + "end": 2856.3, + "probability": 0.9871 + }, + { + "start": 2858.04, + "end": 2858.68, + "probability": 0.9714 + }, + { + "start": 2858.78, + "end": 2860.4, + "probability": 0.5721 + }, + { + "start": 2860.94, + "end": 2861.04, + "probability": 0.4978 + }, + { + "start": 2861.6, + "end": 2861.78, + "probability": 0.0076 + }, + { + "start": 2862.64, + "end": 2863.92, + "probability": 0.9793 + }, + { + "start": 2864.02, + "end": 2864.67, + "probability": 0.8665 + }, + { + "start": 2865.6, + "end": 2866.44, + "probability": 0.9478 + }, + { + "start": 2867.78, + "end": 2870.9, + "probability": 0.9909 + }, + { + "start": 2871.6, + "end": 2874.03, + "probability": 0.8753 + }, + { + "start": 2875.4, + "end": 2876.54, + "probability": 0.9941 + }, + { + "start": 2877.38, + "end": 2879.98, + "probability": 0.9863 + }, + { + "start": 2880.8, + "end": 2883.4, + "probability": 0.9987 + }, + { + "start": 2884.1, + "end": 2886.08, + "probability": 0.8853 + }, + { + "start": 2887.14, + "end": 2888.84, + "probability": 0.9888 + }, + { + "start": 2888.84, + "end": 2892.76, + "probability": 0.995 + }, + { + "start": 2894.02, + "end": 2894.7, + "probability": 0.8337 + }, + { + "start": 2895.46, + "end": 2898.06, + "probability": 0.9971 + }, + { + "start": 2899.02, + "end": 2899.9, + "probability": 0.9989 + }, + { + "start": 2900.9, + "end": 2902.38, + "probability": 0.985 + }, + { + "start": 2902.66, + "end": 2906.66, + "probability": 0.7379 + }, + { + "start": 2907.62, + "end": 2909.0, + "probability": 0.9922 + }, + { + "start": 2909.9, + "end": 2911.38, + "probability": 0.9793 + }, + { + "start": 2912.26, + "end": 2915.48, + "probability": 0.988 + }, + { + "start": 2915.48, + "end": 2918.4, + "probability": 0.9515 + }, + { + "start": 2919.1, + "end": 2921.23, + "probability": 0.9956 + }, + { + "start": 2922.62, + "end": 2925.0, + "probability": 0.997 + }, + { + "start": 2925.72, + "end": 2933.24, + "probability": 0.9952 + }, + { + "start": 2933.64, + "end": 2934.48, + "probability": 0.5018 + }, + { + "start": 2935.06, + "end": 2935.46, + "probability": 0.8469 + }, + { + "start": 2935.52, + "end": 2939.16, + "probability": 0.8551 + }, + { + "start": 2939.22, + "end": 2939.72, + "probability": 0.9399 + }, + { + "start": 2941.04, + "end": 2942.94, + "probability": 0.998 + }, + { + "start": 2943.88, + "end": 2945.2, + "probability": 0.9789 + }, + { + "start": 2945.98, + "end": 2947.92, + "probability": 0.7955 + }, + { + "start": 2948.02, + "end": 2950.77, + "probability": 0.9641 + }, + { + "start": 2951.54, + "end": 2954.62, + "probability": 0.9715 + }, + { + "start": 2956.24, + "end": 2958.24, + "probability": 0.9974 + }, + { + "start": 2959.02, + "end": 2960.08, + "probability": 0.9569 + }, + { + "start": 2960.26, + "end": 2960.74, + "probability": 0.8223 + }, + { + "start": 2960.82, + "end": 2962.54, + "probability": 0.8765 + }, + { + "start": 2962.66, + "end": 2965.7, + "probability": 0.9772 + }, + { + "start": 2966.38, + "end": 2968.48, + "probability": 0.8555 + }, + { + "start": 2968.84, + "end": 2969.99, + "probability": 0.9902 + }, + { + "start": 2971.02, + "end": 2971.74, + "probability": 0.9941 + }, + { + "start": 2972.38, + "end": 2973.56, + "probability": 0.8416 + }, + { + "start": 2974.24, + "end": 2976.82, + "probability": 0.9982 + }, + { + "start": 2977.5, + "end": 2978.1, + "probability": 0.9643 + }, + { + "start": 2978.72, + "end": 2979.34, + "probability": 0.9238 + }, + { + "start": 2979.9, + "end": 2984.78, + "probability": 0.995 + }, + { + "start": 2985.7, + "end": 2988.7, + "probability": 0.9782 + }, + { + "start": 2989.26, + "end": 2989.6, + "probability": 0.585 + }, + { + "start": 2990.22, + "end": 2993.66, + "probability": 0.8392 + }, + { + "start": 2994.18, + "end": 2995.6, + "probability": 0.9643 + }, + { + "start": 2996.26, + "end": 2998.58, + "probability": 0.714 + }, + { + "start": 2999.02, + "end": 3000.99, + "probability": 0.7731 + }, + { + "start": 3001.22, + "end": 3002.16, + "probability": 0.7064 + }, + { + "start": 3003.32, + "end": 3006.54, + "probability": 0.8867 + }, + { + "start": 3035.64, + "end": 3038.5, + "probability": 0.7862 + }, + { + "start": 3039.48, + "end": 3044.12, + "probability": 0.89 + }, + { + "start": 3045.04, + "end": 3048.68, + "probability": 0.968 + }, + { + "start": 3049.88, + "end": 3052.8, + "probability": 0.9907 + }, + { + "start": 3054.2, + "end": 3059.54, + "probability": 0.9961 + }, + { + "start": 3060.12, + "end": 3064.24, + "probability": 0.6641 + }, + { + "start": 3065.06, + "end": 3067.56, + "probability": 0.9894 + }, + { + "start": 3068.18, + "end": 3071.02, + "probability": 0.6388 + }, + { + "start": 3071.74, + "end": 3075.98, + "probability": 0.9889 + }, + { + "start": 3077.1, + "end": 3078.68, + "probability": 0.5255 + }, + { + "start": 3078.82, + "end": 3083.26, + "probability": 0.9385 + }, + { + "start": 3084.16, + "end": 3086.3, + "probability": 0.9806 + }, + { + "start": 3086.9, + "end": 3090.08, + "probability": 0.9258 + }, + { + "start": 3090.86, + "end": 3095.3, + "probability": 0.9824 + }, + { + "start": 3096.1, + "end": 3098.04, + "probability": 0.959 + }, + { + "start": 3098.88, + "end": 3100.48, + "probability": 0.9997 + }, + { + "start": 3101.02, + "end": 3102.52, + "probability": 0.9912 + }, + { + "start": 3103.08, + "end": 3104.48, + "probability": 0.8542 + }, + { + "start": 3105.24, + "end": 3110.06, + "probability": 0.8993 + }, + { + "start": 3110.16, + "end": 3111.56, + "probability": 0.8235 + }, + { + "start": 3112.08, + "end": 3116.06, + "probability": 0.9811 + }, + { + "start": 3116.76, + "end": 3118.76, + "probability": 0.7623 + }, + { + "start": 3119.48, + "end": 3121.6, + "probability": 0.9194 + }, + { + "start": 3122.5, + "end": 3123.38, + "probability": 0.9897 + }, + { + "start": 3124.38, + "end": 3129.14, + "probability": 0.9526 + }, + { + "start": 3129.74, + "end": 3131.84, + "probability": 0.9745 + }, + { + "start": 3132.62, + "end": 3133.38, + "probability": 0.8487 + }, + { + "start": 3133.4, + "end": 3134.0, + "probability": 0.6799 + }, + { + "start": 3134.1, + "end": 3138.78, + "probability": 0.6964 + }, + { + "start": 3139.94, + "end": 3141.4, + "probability": 0.7233 + }, + { + "start": 3141.4, + "end": 3143.42, + "probability": 0.9894 + }, + { + "start": 3143.54, + "end": 3144.72, + "probability": 0.9414 + }, + { + "start": 3145.28, + "end": 3148.47, + "probability": 0.9473 + }, + { + "start": 3150.0, + "end": 3152.53, + "probability": 0.8431 + }, + { + "start": 3153.12, + "end": 3158.64, + "probability": 0.9642 + }, + { + "start": 3159.06, + "end": 3160.46, + "probability": 0.6036 + }, + { + "start": 3161.44, + "end": 3162.78, + "probability": 0.8735 + }, + { + "start": 3163.4, + "end": 3167.32, + "probability": 0.9964 + }, + { + "start": 3167.76, + "end": 3169.12, + "probability": 0.9642 + }, + { + "start": 3169.54, + "end": 3170.12, + "probability": 0.7279 + }, + { + "start": 3170.28, + "end": 3172.02, + "probability": 0.8406 + }, + { + "start": 3172.52, + "end": 3174.18, + "probability": 0.9102 + }, + { + "start": 3174.7, + "end": 3175.98, + "probability": 0.9086 + }, + { + "start": 3176.78, + "end": 3178.98, + "probability": 0.9625 + }, + { + "start": 3180.14, + "end": 3183.1, + "probability": 0.9265 + }, + { + "start": 3183.3, + "end": 3184.54, + "probability": 0.811 + }, + { + "start": 3185.14, + "end": 3185.8, + "probability": 0.7183 + }, + { + "start": 3186.54, + "end": 3190.26, + "probability": 0.9125 + }, + { + "start": 3190.98, + "end": 3192.84, + "probability": 0.982 + }, + { + "start": 3192.86, + "end": 3193.84, + "probability": 0.8575 + }, + { + "start": 3194.36, + "end": 3199.74, + "probability": 0.9852 + }, + { + "start": 3199.96, + "end": 3201.41, + "probability": 0.9822 + }, + { + "start": 3201.58, + "end": 3204.96, + "probability": 0.9914 + }, + { + "start": 3205.84, + "end": 3208.46, + "probability": 0.9664 + }, + { + "start": 3208.96, + "end": 3213.16, + "probability": 0.9876 + }, + { + "start": 3213.26, + "end": 3214.24, + "probability": 0.5981 + }, + { + "start": 3214.58, + "end": 3216.2, + "probability": 0.844 + }, + { + "start": 3217.0, + "end": 3220.56, + "probability": 0.7898 + }, + { + "start": 3221.22, + "end": 3222.44, + "probability": 0.7585 + }, + { + "start": 3222.5, + "end": 3224.74, + "probability": 0.7517 + }, + { + "start": 3224.88, + "end": 3224.88, + "probability": 0.6014 + }, + { + "start": 3225.3, + "end": 3228.43, + "probability": 0.9287 + }, + { + "start": 3229.22, + "end": 3231.96, + "probability": 0.9619 + }, + { + "start": 3232.64, + "end": 3236.44, + "probability": 0.8425 + }, + { + "start": 3236.92, + "end": 3237.48, + "probability": 0.8132 + }, + { + "start": 3237.52, + "end": 3242.2, + "probability": 0.9368 + }, + { + "start": 3242.2, + "end": 3247.88, + "probability": 0.9951 + }, + { + "start": 3248.32, + "end": 3251.68, + "probability": 0.9946 + }, + { + "start": 3252.26, + "end": 3254.72, + "probability": 0.6106 + }, + { + "start": 3255.06, + "end": 3257.24, + "probability": 0.9941 + }, + { + "start": 3257.72, + "end": 3260.72, + "probability": 0.9733 + }, + { + "start": 3261.1, + "end": 3263.18, + "probability": 0.8038 + }, + { + "start": 3263.8, + "end": 3266.14, + "probability": 0.8452 + }, + { + "start": 3266.46, + "end": 3267.06, + "probability": 0.7305 + }, + { + "start": 3267.72, + "end": 3267.72, + "probability": 0.6551 + }, + { + "start": 3268.78, + "end": 3270.26, + "probability": 0.9372 + }, + { + "start": 3285.0, + "end": 3285.07, + "probability": 0.1335 + }, + { + "start": 3285.08, + "end": 3285.14, + "probability": 0.2649 + }, + { + "start": 3285.14, + "end": 3285.14, + "probability": 0.3444 + }, + { + "start": 3285.14, + "end": 3285.74, + "probability": 0.0294 + }, + { + "start": 3285.96, + "end": 3286.6, + "probability": 0.0536 + }, + { + "start": 3315.48, + "end": 3320.38, + "probability": 0.9919 + }, + { + "start": 3320.38, + "end": 3322.78, + "probability": 0.9886 + }, + { + "start": 3323.38, + "end": 3323.87, + "probability": 0.8866 + }, + { + "start": 3325.22, + "end": 3328.0, + "probability": 0.9958 + }, + { + "start": 3328.0, + "end": 3332.04, + "probability": 0.9827 + }, + { + "start": 3332.44, + "end": 3334.56, + "probability": 0.9915 + }, + { + "start": 3335.08, + "end": 3338.78, + "probability": 0.9915 + }, + { + "start": 3339.46, + "end": 3340.09, + "probability": 0.946 + }, + { + "start": 3341.1, + "end": 3342.14, + "probability": 0.895 + }, + { + "start": 3343.24, + "end": 3345.8, + "probability": 0.99 + }, + { + "start": 3346.5, + "end": 3348.28, + "probability": 0.9316 + }, + { + "start": 3349.32, + "end": 3352.62, + "probability": 0.8833 + }, + { + "start": 3353.18, + "end": 3354.54, + "probability": 0.9985 + }, + { + "start": 3355.44, + "end": 3357.68, + "probability": 0.9578 + }, + { + "start": 3358.82, + "end": 3359.28, + "probability": 0.9165 + }, + { + "start": 3359.44, + "end": 3363.2, + "probability": 0.9456 + }, + { + "start": 3364.02, + "end": 3367.58, + "probability": 0.99 + }, + { + "start": 3367.76, + "end": 3369.2, + "probability": 0.9116 + }, + { + "start": 3369.34, + "end": 3369.74, + "probability": 0.8216 + }, + { + "start": 3370.4, + "end": 3372.44, + "probability": 0.9136 + }, + { + "start": 3373.06, + "end": 3374.7, + "probability": 0.9691 + }, + { + "start": 3375.52, + "end": 3378.44, + "probability": 0.9726 + }, + { + "start": 3378.56, + "end": 3379.7, + "probability": 0.6956 + }, + { + "start": 3381.0, + "end": 3384.88, + "probability": 0.9812 + }, + { + "start": 3384.88, + "end": 3388.76, + "probability": 0.9937 + }, + { + "start": 3389.02, + "end": 3390.28, + "probability": 0.9858 + }, + { + "start": 3390.88, + "end": 3391.76, + "probability": 0.7274 + }, + { + "start": 3391.88, + "end": 3393.04, + "probability": 0.9849 + }, + { + "start": 3394.04, + "end": 3395.06, + "probability": 0.8276 + }, + { + "start": 3396.26, + "end": 3401.1, + "probability": 0.8817 + }, + { + "start": 3401.68, + "end": 3403.18, + "probability": 0.7726 + }, + { + "start": 3404.02, + "end": 3407.8, + "probability": 0.9073 + }, + { + "start": 3409.18, + "end": 3413.18, + "probability": 0.7326 + }, + { + "start": 3413.92, + "end": 3415.38, + "probability": 0.7523 + }, + { + "start": 3416.08, + "end": 3417.44, + "probability": 0.8472 + }, + { + "start": 3417.68, + "end": 3419.72, + "probability": 0.7575 + }, + { + "start": 3419.76, + "end": 3420.76, + "probability": 0.9436 + }, + { + "start": 3421.7, + "end": 3422.86, + "probability": 0.9236 + }, + { + "start": 3423.54, + "end": 3428.52, + "probability": 0.7593 + }, + { + "start": 3428.76, + "end": 3430.54, + "probability": 0.9005 + }, + { + "start": 3431.16, + "end": 3431.81, + "probability": 0.9453 + }, + { + "start": 3432.36, + "end": 3432.56, + "probability": 0.907 + }, + { + "start": 3432.76, + "end": 3435.28, + "probability": 0.9538 + }, + { + "start": 3436.28, + "end": 3436.97, + "probability": 0.7588 + }, + { + "start": 3437.86, + "end": 3442.22, + "probability": 0.8463 + }, + { + "start": 3443.02, + "end": 3445.96, + "probability": 0.9548 + }, + { + "start": 3446.98, + "end": 3454.26, + "probability": 0.9905 + }, + { + "start": 3454.58, + "end": 3455.98, + "probability": 0.8092 + }, + { + "start": 3456.42, + "end": 3457.81, + "probability": 0.9837 + }, + { + "start": 3458.46, + "end": 3462.16, + "probability": 0.9467 + }, + { + "start": 3462.58, + "end": 3469.18, + "probability": 0.9587 + }, + { + "start": 3470.5, + "end": 3473.14, + "probability": 0.631 + }, + { + "start": 3473.14, + "end": 3475.34, + "probability": 0.8242 + }, + { + "start": 3475.9, + "end": 3477.8, + "probability": 0.8479 + }, + { + "start": 3478.78, + "end": 3480.06, + "probability": 0.9437 + }, + { + "start": 3480.82, + "end": 3482.62, + "probability": 0.9866 + }, + { + "start": 3483.8, + "end": 3485.92, + "probability": 0.8249 + }, + { + "start": 3486.3, + "end": 3490.58, + "probability": 0.9505 + }, + { + "start": 3492.14, + "end": 3494.94, + "probability": 0.9036 + }, + { + "start": 3495.94, + "end": 3498.8, + "probability": 0.9595 + }, + { + "start": 3500.32, + "end": 3506.24, + "probability": 0.9917 + }, + { + "start": 3506.26, + "end": 3509.32, + "probability": 0.9995 + }, + { + "start": 3509.76, + "end": 3514.86, + "probability": 0.9803 + }, + { + "start": 3514.86, + "end": 3518.16, + "probability": 0.9466 + }, + { + "start": 3518.88, + "end": 3520.96, + "probability": 0.9924 + }, + { + "start": 3522.38, + "end": 3522.96, + "probability": 0.9884 + }, + { + "start": 3523.5, + "end": 3524.63, + "probability": 0.8695 + }, + { + "start": 3524.86, + "end": 3528.24, + "probability": 0.7524 + }, + { + "start": 3530.24, + "end": 3530.4, + "probability": 0.4351 + }, + { + "start": 3530.48, + "end": 3531.0, + "probability": 0.6708 + }, + { + "start": 3531.08, + "end": 3535.7, + "probability": 0.9973 + }, + { + "start": 3536.32, + "end": 3538.62, + "probability": 0.9186 + }, + { + "start": 3538.96, + "end": 3541.46, + "probability": 0.9584 + }, + { + "start": 3542.02, + "end": 3544.16, + "probability": 0.9866 + }, + { + "start": 3544.26, + "end": 3545.08, + "probability": 0.7727 + }, + { + "start": 3545.8, + "end": 3549.84, + "probability": 0.9347 + }, + { + "start": 3550.24, + "end": 3552.1, + "probability": 0.945 + }, + { + "start": 3552.2, + "end": 3552.79, + "probability": 0.985 + }, + { + "start": 3553.16, + "end": 3554.46, + "probability": 0.4134 + }, + { + "start": 3554.78, + "end": 3556.3, + "probability": 0.7264 + }, + { + "start": 3556.96, + "end": 3558.88, + "probability": 0.8641 + }, + { + "start": 3559.86, + "end": 3564.12, + "probability": 0.9877 + }, + { + "start": 3565.08, + "end": 3567.12, + "probability": 0.6562 + }, + { + "start": 3567.34, + "end": 3570.67, + "probability": 0.9782 + }, + { + "start": 3571.08, + "end": 3573.54, + "probability": 0.7344 + }, + { + "start": 3573.84, + "end": 3574.94, + "probability": 0.7943 + }, + { + "start": 3575.94, + "end": 3579.32, + "probability": 0.9923 + }, + { + "start": 3579.36, + "end": 3583.82, + "probability": 0.7063 + }, + { + "start": 3584.66, + "end": 3586.16, + "probability": 0.9932 + }, + { + "start": 3587.08, + "end": 3587.48, + "probability": 0.6114 + }, + { + "start": 3588.14, + "end": 3589.34, + "probability": 0.6489 + }, + { + "start": 3590.04, + "end": 3595.32, + "probability": 0.9641 + }, + { + "start": 3595.4, + "end": 3596.22, + "probability": 0.9092 + }, + { + "start": 3596.88, + "end": 3599.06, + "probability": 0.8639 + }, + { + "start": 3599.3, + "end": 3599.92, + "probability": 0.6309 + }, + { + "start": 3600.18, + "end": 3600.86, + "probability": 0.7793 + }, + { + "start": 3601.34, + "end": 3603.18, + "probability": 0.6356 + }, + { + "start": 3603.64, + "end": 3605.28, + "probability": 0.8881 + }, + { + "start": 3605.86, + "end": 3606.72, + "probability": 0.9525 + }, + { + "start": 3607.32, + "end": 3610.68, + "probability": 0.9961 + }, + { + "start": 3611.16, + "end": 3613.9, + "probability": 0.9777 + }, + { + "start": 3614.96, + "end": 3615.78, + "probability": 0.9077 + }, + { + "start": 3615.9, + "end": 3616.3, + "probability": 0.8628 + }, + { + "start": 3616.4, + "end": 3618.18, + "probability": 0.9817 + }, + { + "start": 3618.66, + "end": 3620.66, + "probability": 0.9844 + }, + { + "start": 3621.26, + "end": 3623.58, + "probability": 0.9946 + }, + { + "start": 3624.16, + "end": 3626.0, + "probability": 0.9443 + }, + { + "start": 3626.72, + "end": 3629.54, + "probability": 0.9821 + }, + { + "start": 3629.56, + "end": 3630.8, + "probability": 0.9712 + }, + { + "start": 3631.38, + "end": 3633.26, + "probability": 0.7177 + }, + { + "start": 3634.08, + "end": 3634.7, + "probability": 0.5662 + }, + { + "start": 3635.48, + "end": 3636.21, + "probability": 0.9817 + }, + { + "start": 3637.32, + "end": 3638.5, + "probability": 0.7867 + }, + { + "start": 3639.48, + "end": 3640.52, + "probability": 0.9746 + }, + { + "start": 3642.14, + "end": 3642.9, + "probability": 0.6844 + }, + { + "start": 3643.78, + "end": 3645.58, + "probability": 0.7402 + }, + { + "start": 3645.88, + "end": 3648.02, + "probability": 0.9565 + }, + { + "start": 3655.17, + "end": 3656.78, + "probability": 0.1517 + }, + { + "start": 3677.66, + "end": 3680.62, + "probability": 0.876 + }, + { + "start": 3681.6, + "end": 3684.5, + "probability": 0.8683 + }, + { + "start": 3686.08, + "end": 3692.24, + "probability": 0.9893 + }, + { + "start": 3692.28, + "end": 3693.16, + "probability": 0.5979 + }, + { + "start": 3694.04, + "end": 3696.62, + "probability": 0.9194 + }, + { + "start": 3697.58, + "end": 3698.06, + "probability": 0.9017 + }, + { + "start": 3698.82, + "end": 3701.52, + "probability": 0.9976 + }, + { + "start": 3702.24, + "end": 3703.64, + "probability": 0.9387 + }, + { + "start": 3703.72, + "end": 3705.42, + "probability": 0.8918 + }, + { + "start": 3705.46, + "end": 3706.1, + "probability": 0.5311 + }, + { + "start": 3707.06, + "end": 3710.97, + "probability": 0.9946 + }, + { + "start": 3711.36, + "end": 3712.6, + "probability": 0.6812 + }, + { + "start": 3713.32, + "end": 3715.43, + "probability": 0.9955 + }, + { + "start": 3715.6, + "end": 3721.04, + "probability": 0.9709 + }, + { + "start": 3721.78, + "end": 3723.68, + "probability": 0.9848 + }, + { + "start": 3724.32, + "end": 3725.12, + "probability": 0.8624 + }, + { + "start": 3726.1, + "end": 3727.94, + "probability": 0.9957 + }, + { + "start": 3729.96, + "end": 3731.0, + "probability": 0.485 + }, + { + "start": 3731.96, + "end": 3735.48, + "probability": 0.8296 + }, + { + "start": 3736.36, + "end": 3738.84, + "probability": 0.9517 + }, + { + "start": 3739.48, + "end": 3744.14, + "probability": 0.981 + }, + { + "start": 3744.88, + "end": 3748.45, + "probability": 0.9949 + }, + { + "start": 3748.92, + "end": 3754.22, + "probability": 0.9946 + }, + { + "start": 3754.56, + "end": 3756.48, + "probability": 0.78 + }, + { + "start": 3757.2, + "end": 3758.9, + "probability": 0.9217 + }, + { + "start": 3759.42, + "end": 3760.3, + "probability": 0.9036 + }, + { + "start": 3760.74, + "end": 3762.94, + "probability": 0.6665 + }, + { + "start": 3763.22, + "end": 3764.36, + "probability": 0.9357 + }, + { + "start": 3764.94, + "end": 3766.88, + "probability": 0.9962 + }, + { + "start": 3769.1, + "end": 3770.12, + "probability": 0.8151 + }, + { + "start": 3771.28, + "end": 3773.34, + "probability": 0.7924 + }, + { + "start": 3773.9, + "end": 3775.34, + "probability": 0.9932 + }, + { + "start": 3776.56, + "end": 3779.86, + "probability": 0.9946 + }, + { + "start": 3780.4, + "end": 3784.2, + "probability": 0.9872 + }, + { + "start": 3784.64, + "end": 3790.3, + "probability": 0.969 + }, + { + "start": 3790.74, + "end": 3791.94, + "probability": 0.8266 + }, + { + "start": 3792.84, + "end": 3793.88, + "probability": 0.7999 + }, + { + "start": 3794.98, + "end": 3798.32, + "probability": 0.9849 + }, + { + "start": 3798.66, + "end": 3799.73, + "probability": 0.9578 + }, + { + "start": 3801.16, + "end": 3805.16, + "probability": 0.994 + }, + { + "start": 3806.56, + "end": 3810.36, + "probability": 0.9479 + }, + { + "start": 3810.36, + "end": 3814.52, + "probability": 0.9864 + }, + { + "start": 3816.16, + "end": 3818.04, + "probability": 0.9985 + }, + { + "start": 3818.6, + "end": 3822.16, + "probability": 0.9744 + }, + { + "start": 3822.44, + "end": 3824.9, + "probability": 0.9961 + }, + { + "start": 3825.3, + "end": 3825.94, + "probability": 0.7435 + }, + { + "start": 3827.04, + "end": 3832.62, + "probability": 0.9738 + }, + { + "start": 3832.82, + "end": 3838.76, + "probability": 0.9946 + }, + { + "start": 3839.56, + "end": 3841.86, + "probability": 0.9954 + }, + { + "start": 3842.6, + "end": 3845.1, + "probability": 0.9781 + }, + { + "start": 3845.8, + "end": 3847.4, + "probability": 0.9946 + }, + { + "start": 3848.66, + "end": 3850.44, + "probability": 0.992 + }, + { + "start": 3851.24, + "end": 3853.06, + "probability": 0.973 + }, + { + "start": 3853.22, + "end": 3856.51, + "probability": 0.9786 + }, + { + "start": 3856.6, + "end": 3862.24, + "probability": 0.9872 + }, + { + "start": 3862.98, + "end": 3863.36, + "probability": 0.3333 + }, + { + "start": 3863.36, + "end": 3863.58, + "probability": 0.7399 + }, + { + "start": 3865.12, + "end": 3866.92, + "probability": 0.8576 + }, + { + "start": 3878.95, + "end": 3879.16, + "probability": 0.0908 + }, + { + "start": 3898.8, + "end": 3901.34, + "probability": 0.9983 + }, + { + "start": 3901.34, + "end": 3904.36, + "probability": 0.9983 + }, + { + "start": 3905.42, + "end": 3909.76, + "probability": 0.9878 + }, + { + "start": 3910.76, + "end": 3916.26, + "probability": 0.9891 + }, + { + "start": 3916.98, + "end": 3919.38, + "probability": 0.9464 + }, + { + "start": 3920.14, + "end": 3922.24, + "probability": 0.9397 + }, + { + "start": 3922.88, + "end": 3925.88, + "probability": 0.9741 + }, + { + "start": 3926.5, + "end": 3929.24, + "probability": 0.0683 + }, + { + "start": 3929.86, + "end": 3933.08, + "probability": 0.1588 + }, + { + "start": 3933.76, + "end": 3935.04, + "probability": 0.3365 + }, + { + "start": 3935.04, + "end": 3935.48, + "probability": 0.2787 + }, + { + "start": 3935.5, + "end": 3935.7, + "probability": 0.0381 + }, + { + "start": 3935.7, + "end": 3939.32, + "probability": 0.0714 + }, + { + "start": 3940.4, + "end": 3941.04, + "probability": 0.0198 + }, + { + "start": 3941.08, + "end": 3941.76, + "probability": 0.0632 + }, + { + "start": 3942.38, + "end": 3944.68, + "probability": 0.0336 + }, + { + "start": 3944.78, + "end": 3947.06, + "probability": 0.5366 + }, + { + "start": 3949.24, + "end": 3950.74, + "probability": 0.8162 + }, + { + "start": 3951.32, + "end": 3951.34, + "probability": 0.411 + }, + { + "start": 3951.56, + "end": 3954.06, + "probability": 0.6183 + }, + { + "start": 3956.42, + "end": 3956.66, + "probability": 0.0108 + }, + { + "start": 3956.66, + "end": 3957.7, + "probability": 0.0332 + }, + { + "start": 3958.96, + "end": 3961.2, + "probability": 0.0347 + }, + { + "start": 3961.8, + "end": 3964.46, + "probability": 0.5209 + }, + { + "start": 3964.56, + "end": 3964.56, + "probability": 0.0783 + }, + { + "start": 3964.7, + "end": 3966.54, + "probability": 0.3715 + }, + { + "start": 3966.54, + "end": 3971.26, + "probability": 0.1452 + }, + { + "start": 3972.14, + "end": 3972.74, + "probability": 0.0078 + }, + { + "start": 3972.86, + "end": 3974.56, + "probability": 0.0887 + }, + { + "start": 3974.56, + "end": 3975.82, + "probability": 0.0085 + }, + { + "start": 3976.08, + "end": 3976.5, + "probability": 0.1675 + }, + { + "start": 3976.5, + "end": 3978.56, + "probability": 0.1202 + }, + { + "start": 3978.56, + "end": 3979.46, + "probability": 0.2179 + }, + { + "start": 3979.46, + "end": 3979.62, + "probability": 0.1155 + }, + { + "start": 3979.62, + "end": 3980.78, + "probability": 0.0976 + }, + { + "start": 3981.0, + "end": 3981.0, + "probability": 0.0 + }, + { + "start": 3981.0, + "end": 3981.0, + "probability": 0.0 + }, + { + "start": 3981.0, + "end": 3981.0, + "probability": 0.0 + }, + { + "start": 3981.0, + "end": 3981.0, + "probability": 0.0 + }, + { + "start": 3982.2, + "end": 3985.57, + "probability": 0.0614 + }, + { + "start": 3985.6, + "end": 3988.52, + "probability": 0.041 + }, + { + "start": 4029.98, + "end": 4031.78, + "probability": 0.3335 + }, + { + "start": 4032.58, + "end": 4034.22, + "probability": 0.2186 + }, + { + "start": 4078.44, + "end": 4081.84, + "probability": 0.0647 + }, + { + "start": 4081.84, + "end": 4082.28, + "probability": 0.0507 + }, + { + "start": 4083.2, + "end": 4087.06, + "probability": 0.0335 + }, + { + "start": 4087.68, + "end": 4087.68, + "probability": 0.0227 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.0, + "end": 4105.0, + "probability": 0.0 + }, + { + "start": 4105.74, + "end": 4105.78, + "probability": 0.0383 + }, + { + "start": 4105.78, + "end": 4110.52, + "probability": 0.7322 + }, + { + "start": 4110.52, + "end": 4115.96, + "probability": 0.9631 + }, + { + "start": 4116.76, + "end": 4118.64, + "probability": 0.6265 + }, + { + "start": 4119.62, + "end": 4120.8, + "probability": 0.9532 + }, + { + "start": 4121.32, + "end": 4122.4, + "probability": 0.9872 + }, + { + "start": 4122.96, + "end": 4126.78, + "probability": 0.9897 + }, + { + "start": 4127.86, + "end": 4130.14, + "probability": 0.9612 + }, + { + "start": 4131.12, + "end": 4137.32, + "probability": 0.9875 + }, + { + "start": 4137.5, + "end": 4138.64, + "probability": 0.8652 + }, + { + "start": 4138.72, + "end": 4141.74, + "probability": 0.9914 + }, + { + "start": 4142.48, + "end": 4144.62, + "probability": 0.7196 + }, + { + "start": 4144.98, + "end": 4149.78, + "probability": 0.9846 + }, + { + "start": 4150.4, + "end": 4151.32, + "probability": 0.8391 + }, + { + "start": 4151.94, + "end": 4153.18, + "probability": 0.8157 + }, + { + "start": 4153.24, + "end": 4153.42, + "probability": 0.3918 + }, + { + "start": 4153.6, + "end": 4154.66, + "probability": 0.7148 + }, + { + "start": 4154.74, + "end": 4155.22, + "probability": 0.6371 + }, + { + "start": 4155.48, + "end": 4156.6, + "probability": 0.7936 + }, + { + "start": 4157.18, + "end": 4157.32, + "probability": 0.4655 + }, + { + "start": 4157.32, + "end": 4158.46, + "probability": 0.9958 + }, + { + "start": 4158.82, + "end": 4158.84, + "probability": 0.2331 + }, + { + "start": 4158.84, + "end": 4159.54, + "probability": 0.708 + }, + { + "start": 4159.64, + "end": 4160.54, + "probability": 0.7721 + }, + { + "start": 4160.82, + "end": 4164.74, + "probability": 0.9836 + }, + { + "start": 4165.3, + "end": 4168.44, + "probability": 0.9458 + }, + { + "start": 4168.92, + "end": 4169.82, + "probability": 0.972 + }, + { + "start": 4170.38, + "end": 4171.12, + "probability": 0.9162 + }, + { + "start": 4171.84, + "end": 4172.72, + "probability": 0.6332 + }, + { + "start": 4173.3, + "end": 4176.3, + "probability": 0.9653 + }, + { + "start": 4176.68, + "end": 4178.7, + "probability": 0.8678 + }, + { + "start": 4179.42, + "end": 4181.88, + "probability": 0.9646 + }, + { + "start": 4182.36, + "end": 4185.64, + "probability": 0.9927 + }, + { + "start": 4185.84, + "end": 4186.48, + "probability": 0.51 + }, + { + "start": 4186.48, + "end": 4189.66, + "probability": 0.9865 + }, + { + "start": 4190.36, + "end": 4191.82, + "probability": 0.877 + }, + { + "start": 4192.56, + "end": 4193.14, + "probability": 0.815 + }, + { + "start": 4193.56, + "end": 4196.44, + "probability": 0.6895 + }, + { + "start": 4198.5, + "end": 4200.63, + "probability": 0.8889 + }, + { + "start": 4222.32, + "end": 4228.5, + "probability": 0.8509 + }, + { + "start": 4230.16, + "end": 4234.72, + "probability": 0.9802 + }, + { + "start": 4234.72, + "end": 4238.5, + "probability": 0.9963 + }, + { + "start": 4239.7, + "end": 4244.06, + "probability": 0.8846 + }, + { + "start": 4245.7, + "end": 4248.12, + "probability": 0.7796 + }, + { + "start": 4249.74, + "end": 4252.86, + "probability": 0.9728 + }, + { + "start": 4254.62, + "end": 4258.09, + "probability": 0.9857 + }, + { + "start": 4258.48, + "end": 4261.0, + "probability": 0.9935 + }, + { + "start": 4262.34, + "end": 4263.48, + "probability": 0.9498 + }, + { + "start": 4264.14, + "end": 4265.22, + "probability": 0.9969 + }, + { + "start": 4265.88, + "end": 4267.14, + "probability": 0.8519 + }, + { + "start": 4268.32, + "end": 4272.76, + "probability": 0.9972 + }, + { + "start": 4273.98, + "end": 4277.28, + "probability": 0.9885 + }, + { + "start": 4277.46, + "end": 4277.82, + "probability": 0.4081 + }, + { + "start": 4277.98, + "end": 4278.7, + "probability": 0.9127 + }, + { + "start": 4278.94, + "end": 4280.24, + "probability": 0.9948 + }, + { + "start": 4281.22, + "end": 4284.7, + "probability": 0.97 + }, + { + "start": 4287.06, + "end": 4289.92, + "probability": 0.9181 + }, + { + "start": 4290.76, + "end": 4291.02, + "probability": 0.0124 + }, + { + "start": 4291.02, + "end": 4294.52, + "probability": 0.8298 + }, + { + "start": 4295.16, + "end": 4295.64, + "probability": 0.3046 + }, + { + "start": 4295.64, + "end": 4297.27, + "probability": 0.853 + }, + { + "start": 4297.98, + "end": 4299.58, + "probability": 0.9978 + }, + { + "start": 4300.98, + "end": 4301.94, + "probability": 0.2879 + }, + { + "start": 4302.64, + "end": 4306.78, + "probability": 0.9552 + }, + { + "start": 4307.76, + "end": 4311.78, + "probability": 0.9792 + }, + { + "start": 4312.58, + "end": 4313.6, + "probability": 0.759 + }, + { + "start": 4314.38, + "end": 4321.18, + "probability": 0.9969 + }, + { + "start": 4322.14, + "end": 4323.46, + "probability": 0.9375 + }, + { + "start": 4323.5, + "end": 4325.72, + "probability": 0.9703 + }, + { + "start": 4326.9, + "end": 4329.66, + "probability": 0.8863 + }, + { + "start": 4330.34, + "end": 4332.78, + "probability": 0.9985 + }, + { + "start": 4332.94, + "end": 4336.92, + "probability": 0.9551 + }, + { + "start": 4336.98, + "end": 4342.2, + "probability": 0.9712 + }, + { + "start": 4342.42, + "end": 4343.1, + "probability": 0.8055 + }, + { + "start": 4343.3, + "end": 4343.3, + "probability": 0.008 + }, + { + "start": 4343.3, + "end": 4344.88, + "probability": 0.9958 + }, + { + "start": 4345.92, + "end": 4346.04, + "probability": 0.0421 + }, + { + "start": 4346.04, + "end": 4350.1, + "probability": 0.994 + }, + { + "start": 4350.66, + "end": 4353.68, + "probability": 0.1912 + }, + { + "start": 4353.68, + "end": 4355.14, + "probability": 0.1922 + }, + { + "start": 4355.68, + "end": 4359.0, + "probability": 0.4 + }, + { + "start": 4359.26, + "end": 4364.58, + "probability": 0.2681 + }, + { + "start": 4365.72, + "end": 4368.72, + "probability": 0.5715 + }, + { + "start": 4369.38, + "end": 4371.72, + "probability": 0.3675 + }, + { + "start": 4372.42, + "end": 4373.62, + "probability": 0.0176 + }, + { + "start": 4373.62, + "end": 4373.62, + "probability": 0.1335 + }, + { + "start": 4373.62, + "end": 4373.97, + "probability": 0.4303 + }, + { + "start": 4374.46, + "end": 4374.62, + "probability": 0.4262 + }, + { + "start": 4375.0, + "end": 4378.94, + "probability": 0.075 + }, + { + "start": 4379.69, + "end": 4382.04, + "probability": 0.2361 + }, + { + "start": 4383.3, + "end": 4384.52, + "probability": 0.1546 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.0, + "end": 4458.0, + "probability": 0.0 + }, + { + "start": 4458.12, + "end": 4458.22, + "probability": 0.0095 + }, + { + "start": 4458.22, + "end": 4459.06, + "probability": 0.2934 + }, + { + "start": 4459.9, + "end": 4463.36, + "probability": 0.8935 + }, + { + "start": 4464.04, + "end": 4466.78, + "probability": 0.9565 + }, + { + "start": 4466.96, + "end": 4467.62, + "probability": 0.3023 + }, + { + "start": 4467.68, + "end": 4469.04, + "probability": 0.813 + }, + { + "start": 4470.54, + "end": 4471.94, + "probability": 0.2849 + }, + { + "start": 4471.98, + "end": 4472.96, + "probability": 0.5428 + }, + { + "start": 4473.18, + "end": 4475.28, + "probability": 0.7625 + }, + { + "start": 4475.44, + "end": 4475.92, + "probability": 0.3327 + }, + { + "start": 4477.56, + "end": 4479.08, + "probability": 0.295 + }, + { + "start": 4481.0, + "end": 4481.8, + "probability": 0.3008 + }, + { + "start": 4483.26, + "end": 4484.2, + "probability": 0.2023 + }, + { + "start": 4484.26, + "end": 4485.1, + "probability": 0.3447 + }, + { + "start": 4485.1, + "end": 4486.28, + "probability": 0.695 + }, + { + "start": 4487.16, + "end": 4487.78, + "probability": 0.163 + }, + { + "start": 4488.42, + "end": 4490.04, + "probability": 0.2202 + }, + { + "start": 4490.18, + "end": 4491.59, + "probability": 0.6134 + }, + { + "start": 4492.16, + "end": 4492.68, + "probability": 0.3321 + }, + { + "start": 4493.44, + "end": 4493.68, + "probability": 0.0641 + }, + { + "start": 4494.35, + "end": 4496.12, + "probability": 0.9735 + }, + { + "start": 4496.32, + "end": 4497.33, + "probability": 0.9302 + }, + { + "start": 4497.9, + "end": 4498.44, + "probability": 0.8764 + }, + { + "start": 4500.34, + "end": 4501.22, + "probability": 0.5573 + }, + { + "start": 4504.56, + "end": 4506.92, + "probability": 0.8312 + }, + { + "start": 4508.48, + "end": 4512.8, + "probability": 0.989 + }, + { + "start": 4513.16, + "end": 4513.16, + "probability": 0.0572 + }, + { + "start": 4513.16, + "end": 4513.98, + "probability": 0.6933 + }, + { + "start": 4514.84, + "end": 4515.92, + "probability": 0.9132 + }, + { + "start": 4517.1, + "end": 4518.28, + "probability": 0.7546 + }, + { + "start": 4520.56, + "end": 4523.4, + "probability": 0.9813 + }, + { + "start": 4524.92, + "end": 4530.08, + "probability": 0.9954 + }, + { + "start": 4530.64, + "end": 4531.36, + "probability": 0.9479 + }, + { + "start": 4533.46, + "end": 4539.68, + "probability": 0.9899 + }, + { + "start": 4540.86, + "end": 4544.88, + "probability": 0.9587 + }, + { + "start": 4546.3, + "end": 4546.56, + "probability": 0.9269 + }, + { + "start": 4547.38, + "end": 4550.72, + "probability": 0.9762 + }, + { + "start": 4551.36, + "end": 4553.64, + "probability": 0.995 + }, + { + "start": 4555.4, + "end": 4556.2, + "probability": 0.9128 + }, + { + "start": 4556.84, + "end": 4557.8, + "probability": 0.7991 + }, + { + "start": 4558.86, + "end": 4563.4, + "probability": 0.9916 + }, + { + "start": 4564.34, + "end": 4565.12, + "probability": 0.9645 + }, + { + "start": 4565.82, + "end": 4568.56, + "probability": 0.9783 + }, + { + "start": 4569.26, + "end": 4570.46, + "probability": 0.7535 + }, + { + "start": 4571.72, + "end": 4575.14, + "probability": 0.9908 + }, + { + "start": 4576.56, + "end": 4581.74, + "probability": 0.8871 + }, + { + "start": 4582.5, + "end": 4585.52, + "probability": 0.9932 + }, + { + "start": 4587.42, + "end": 4591.28, + "probability": 0.9824 + }, + { + "start": 4591.28, + "end": 4596.96, + "probability": 0.9924 + }, + { + "start": 4597.66, + "end": 4598.46, + "probability": 0.8845 + }, + { + "start": 4600.7, + "end": 4605.98, + "probability": 0.9916 + }, + { + "start": 4607.16, + "end": 4608.64, + "probability": 0.7652 + }, + { + "start": 4609.36, + "end": 4612.34, + "probability": 0.9838 + }, + { + "start": 4613.04, + "end": 4613.56, + "probability": 0.271 + }, + { + "start": 4614.1, + "end": 4614.1, + "probability": 0.5015 + }, + { + "start": 4614.1, + "end": 4616.82, + "probability": 0.9367 + }, + { + "start": 4618.06, + "end": 4619.28, + "probability": 0.9957 + }, + { + "start": 4619.96, + "end": 4621.12, + "probability": 0.9968 + }, + { + "start": 4622.14, + "end": 4623.4, + "probability": 0.7477 + }, + { + "start": 4624.36, + "end": 4628.94, + "probability": 0.903 + }, + { + "start": 4630.52, + "end": 4633.0, + "probability": 0.7556 + }, + { + "start": 4634.3, + "end": 4637.3, + "probability": 0.6063 + }, + { + "start": 4637.32, + "end": 4637.86, + "probability": 0.9237 + }, + { + "start": 4638.24, + "end": 4639.28, + "probability": 0.9164 + }, + { + "start": 4640.24, + "end": 4641.12, + "probability": 0.8022 + }, + { + "start": 4642.4, + "end": 4643.62, + "probability": 0.999 + }, + { + "start": 4644.3, + "end": 4647.0, + "probability": 0.9562 + }, + { + "start": 4648.26, + "end": 4648.56, + "probability": 0.7711 + }, + { + "start": 4648.62, + "end": 4652.18, + "probability": 0.9951 + }, + { + "start": 4652.78, + "end": 4653.96, + "probability": 0.8843 + }, + { + "start": 4654.82, + "end": 4657.94, + "probability": 0.9791 + }, + { + "start": 4658.8, + "end": 4659.64, + "probability": 0.7233 + }, + { + "start": 4660.58, + "end": 4664.38, + "probability": 0.9895 + }, + { + "start": 4665.0, + "end": 4665.88, + "probability": 0.9799 + }, + { + "start": 4666.54, + "end": 4668.9, + "probability": 0.8032 + }, + { + "start": 4669.66, + "end": 4670.0, + "probability": 0.03 + }, + { + "start": 4670.0, + "end": 4671.22, + "probability": 0.9281 + }, + { + "start": 4672.01, + "end": 4672.5, + "probability": 0.0349 + }, + { + "start": 4672.5, + "end": 4672.58, + "probability": 0.6191 + }, + { + "start": 4672.58, + "end": 4672.98, + "probability": 0.4598 + }, + { + "start": 4672.98, + "end": 4674.03, + "probability": 0.3754 + }, + { + "start": 4675.02, + "end": 4678.06, + "probability": 0.9645 + }, + { + "start": 4678.44, + "end": 4678.88, + "probability": 0.2248 + }, + { + "start": 4679.16, + "end": 4680.66, + "probability": 0.7434 + }, + { + "start": 4681.74, + "end": 4683.3, + "probability": 0.9854 + }, + { + "start": 4683.98, + "end": 4684.88, + "probability": 0.7783 + }, + { + "start": 4685.64, + "end": 4686.72, + "probability": 0.9578 + }, + { + "start": 4687.5, + "end": 4688.16, + "probability": 0.8968 + }, + { + "start": 4689.22, + "end": 4691.36, + "probability": 0.9648 + }, + { + "start": 4691.92, + "end": 4695.0, + "probability": 0.9979 + }, + { + "start": 4696.02, + "end": 4697.4, + "probability": 0.8243 + }, + { + "start": 4698.44, + "end": 4700.06, + "probability": 0.1359 + }, + { + "start": 4702.22, + "end": 4702.74, + "probability": 0.168 + }, + { + "start": 4702.74, + "end": 4702.74, + "probability": 0.0476 + }, + { + "start": 4702.74, + "end": 4702.94, + "probability": 0.1933 + }, + { + "start": 4703.04, + "end": 4703.76, + "probability": 0.6784 + }, + { + "start": 4703.76, + "end": 4704.24, + "probability": 0.6598 + }, + { + "start": 4704.64, + "end": 4705.2, + "probability": 0.3287 + }, + { + "start": 4705.82, + "end": 4706.38, + "probability": 0.7575 + }, + { + "start": 4706.5, + "end": 4706.98, + "probability": 0.6026 + }, + { + "start": 4707.26, + "end": 4709.42, + "probability": 0.4999 + }, + { + "start": 4709.42, + "end": 4709.52, + "probability": 0.0442 + }, + { + "start": 4710.02, + "end": 4711.1, + "probability": 0.7367 + }, + { + "start": 4712.2, + "end": 4712.8, + "probability": 0.6668 + }, + { + "start": 4713.14, + "end": 4714.98, + "probability": 0.7089 + }, + { + "start": 4715.46, + "end": 4716.92, + "probability": 0.897 + }, + { + "start": 4717.16, + "end": 4718.7, + "probability": 0.9946 + }, + { + "start": 4718.74, + "end": 4719.46, + "probability": 0.248 + }, + { + "start": 4719.48, + "end": 4720.14, + "probability": 0.2878 + }, + { + "start": 4720.18, + "end": 4720.34, + "probability": 0.052 + }, + { + "start": 4720.38, + "end": 4721.44, + "probability": 0.3638 + }, + { + "start": 4721.93, + "end": 4722.76, + "probability": 0.6886 + }, + { + "start": 4722.78, + "end": 4724.0, + "probability": 0.9353 + }, + { + "start": 4724.14, + "end": 4725.56, + "probability": 0.7796 + }, + { + "start": 4725.56, + "end": 4726.74, + "probability": 0.5094 + }, + { + "start": 4726.88, + "end": 4730.08, + "probability": 0.7396 + }, + { + "start": 4730.08, + "end": 4732.04, + "probability": 0.0963 + }, + { + "start": 4732.58, + "end": 4735.7, + "probability": 0.5289 + }, + { + "start": 4735.82, + "end": 4736.68, + "probability": 0.9613 + }, + { + "start": 4737.0, + "end": 4742.48, + "probability": 0.5164 + }, + { + "start": 4742.64, + "end": 4742.88, + "probability": 0.31 + }, + { + "start": 4742.92, + "end": 4745.02, + "probability": 0.6287 + }, + { + "start": 4745.02, + "end": 4745.75, + "probability": 0.6239 + }, + { + "start": 4746.62, + "end": 4749.56, + "probability": 0.7546 + }, + { + "start": 4749.66, + "end": 4750.1, + "probability": 0.6956 + }, + { + "start": 4750.76, + "end": 4752.34, + "probability": 0.995 + }, + { + "start": 4752.56, + "end": 4754.46, + "probability": 0.9944 + }, + { + "start": 4755.66, + "end": 4756.76, + "probability": 0.5967 + }, + { + "start": 4756.82, + "end": 4757.18, + "probability": 0.0672 + }, + { + "start": 4765.92, + "end": 4768.58, + "probability": 0.1421 + }, + { + "start": 4768.84, + "end": 4769.64, + "probability": 0.2481 + }, + { + "start": 4770.22, + "end": 4771.32, + "probability": 0.4793 + }, + { + "start": 4771.56, + "end": 4773.96, + "probability": 0.6729 + }, + { + "start": 4774.38, + "end": 4775.02, + "probability": 0.1059 + }, + { + "start": 4775.9, + "end": 4777.56, + "probability": 0.2764 + }, + { + "start": 4781.38, + "end": 4781.38, + "probability": 0.0764 + }, + { + "start": 4781.38, + "end": 4781.94, + "probability": 0.1566 + }, + { + "start": 4782.22, + "end": 4784.32, + "probability": 0.7067 + }, + { + "start": 4785.1, + "end": 4789.52, + "probability": 0.03 + }, + { + "start": 4790.62, + "end": 4791.11, + "probability": 0.0572 + }, + { + "start": 4792.02, + "end": 4792.02, + "probability": 0.1172 + }, + { + "start": 4792.02, + "end": 4795.12, + "probability": 0.502 + }, + { + "start": 4795.53, + "end": 4804.36, + "probability": 0.1555 + }, + { + "start": 4804.96, + "end": 4806.02, + "probability": 0.088 + }, + { + "start": 4806.2, + "end": 4806.8, + "probability": 0.716 + }, + { + "start": 4810.34, + "end": 4811.48, + "probability": 0.0033 + }, + { + "start": 4811.48, + "end": 4813.98, + "probability": 0.5899 + }, + { + "start": 4814.06, + "end": 4815.92, + "probability": 0.9585 + }, + { + "start": 4819.2, + "end": 4821.84, + "probability": 0.6888 + }, + { + "start": 4826.8, + "end": 4830.06, + "probability": 0.7635 + }, + { + "start": 4836.94, + "end": 4839.7, + "probability": 0.9015 + }, + { + "start": 4843.18, + "end": 4846.84, + "probability": 0.9883 + }, + { + "start": 4848.32, + "end": 4849.66, + "probability": 0.8967 + }, + { + "start": 4851.46, + "end": 4855.98, + "probability": 0.9984 + }, + { + "start": 4857.28, + "end": 4865.1, + "probability": 0.9883 + }, + { + "start": 4866.02, + "end": 4867.02, + "probability": 0.7153 + }, + { + "start": 4868.1, + "end": 4870.14, + "probability": 0.9126 + }, + { + "start": 4870.98, + "end": 4876.92, + "probability": 0.5842 + }, + { + "start": 4877.02, + "end": 4877.4, + "probability": 0.4869 + }, + { + "start": 4877.54, + "end": 4879.04, + "probability": 0.7225 + }, + { + "start": 4879.14, + "end": 4879.52, + "probability": 0.5573 + }, + { + "start": 4879.54, + "end": 4881.14, + "probability": 0.8213 + }, + { + "start": 4881.28, + "end": 4882.26, + "probability": 0.6881 + }, + { + "start": 4882.44, + "end": 4885.66, + "probability": 0.8247 + }, + { + "start": 4885.74, + "end": 4887.42, + "probability": 0.9612 + }, + { + "start": 4887.6, + "end": 4888.72, + "probability": 0.8962 + }, + { + "start": 4888.74, + "end": 4890.34, + "probability": 0.508 + }, + { + "start": 4891.02, + "end": 4891.3, + "probability": 0.5198 + }, + { + "start": 4891.3, + "end": 4892.72, + "probability": 0.9633 + }, + { + "start": 4892.74, + "end": 4894.9, + "probability": 0.9866 + }, + { + "start": 4894.9, + "end": 4895.74, + "probability": 0.851 + }, + { + "start": 4895.84, + "end": 4897.1, + "probability": 0.5989 + }, + { + "start": 4897.12, + "end": 4901.16, + "probability": 0.4385 + }, + { + "start": 4901.46, + "end": 4903.16, + "probability": 0.2321 + }, + { + "start": 4903.22, + "end": 4904.42, + "probability": 0.9336 + }, + { + "start": 4904.58, + "end": 4907.52, + "probability": 0.8279 + }, + { + "start": 4907.78, + "end": 4908.64, + "probability": 0.2171 + }, + { + "start": 4908.64, + "end": 4909.1, + "probability": 0.0573 + }, + { + "start": 4909.1, + "end": 4909.89, + "probability": 0.187 + }, + { + "start": 4911.27, + "end": 4914.48, + "probability": 0.8361 + }, + { + "start": 4914.56, + "end": 4915.06, + "probability": 0.9013 + }, + { + "start": 4915.08, + "end": 4916.21, + "probability": 0.6138 + }, + { + "start": 4916.34, + "end": 4917.28, + "probability": 0.2865 + }, + { + "start": 4917.42, + "end": 4918.48, + "probability": 0.9973 + }, + { + "start": 4918.78, + "end": 4921.34, + "probability": 0.6573 + }, + { + "start": 4921.7, + "end": 4922.2, + "probability": 0.7766 + }, + { + "start": 4922.2, + "end": 4922.76, + "probability": 0.6421 + }, + { + "start": 4922.92, + "end": 4924.34, + "probability": 0.7618 + }, + { + "start": 4924.36, + "end": 4925.84, + "probability": 0.9122 + }, + { + "start": 4925.96, + "end": 4927.82, + "probability": 0.9644 + }, + { + "start": 4928.38, + "end": 4930.14, + "probability": 0.1433 + }, + { + "start": 4930.18, + "end": 4930.22, + "probability": 0.1832 + }, + { + "start": 4930.22, + "end": 4930.96, + "probability": 0.337 + }, + { + "start": 4931.22, + "end": 4931.26, + "probability": 0.3637 + }, + { + "start": 4931.26, + "end": 4931.68, + "probability": 0.8308 + }, + { + "start": 4931.74, + "end": 4936.7, + "probability": 0.774 + }, + { + "start": 4937.36, + "end": 4938.24, + "probability": 0.7857 + }, + { + "start": 4939.06, + "end": 4940.86, + "probability": 0.1031 + }, + { + "start": 4941.38, + "end": 4942.64, + "probability": 0.6076 + }, + { + "start": 4942.72, + "end": 4943.72, + "probability": 0.4424 + }, + { + "start": 4944.12, + "end": 4945.94, + "probability": 0.6141 + }, + { + "start": 4945.94, + "end": 4947.62, + "probability": 0.4888 + }, + { + "start": 4947.74, + "end": 4951.02, + "probability": 0.6141 + }, + { + "start": 4951.46, + "end": 4953.76, + "probability": 0.2526 + }, + { + "start": 4954.14, + "end": 4954.68, + "probability": 0.0108 + }, + { + "start": 4954.68, + "end": 4954.68, + "probability": 0.049 + }, + { + "start": 4954.68, + "end": 4955.68, + "probability": 0.0273 + }, + { + "start": 4955.68, + "end": 4958.42, + "probability": 0.2702 + }, + { + "start": 4958.74, + "end": 4960.86, + "probability": 0.6148 + }, + { + "start": 4961.64, + "end": 4963.78, + "probability": 0.0791 + }, + { + "start": 4963.96, + "end": 4964.68, + "probability": 0.1964 + }, + { + "start": 4964.8, + "end": 4964.92, + "probability": 0.1617 + }, + { + "start": 4964.92, + "end": 4964.92, + "probability": 0.0972 + }, + { + "start": 4964.92, + "end": 4967.92, + "probability": 0.7993 + }, + { + "start": 4967.96, + "end": 4968.46, + "probability": 0.1868 + }, + { + "start": 4968.54, + "end": 4971.88, + "probability": 0.2251 + }, + { + "start": 4971.94, + "end": 4973.92, + "probability": 0.5216 + }, + { + "start": 4974.04, + "end": 4975.28, + "probability": 0.0054 + }, + { + "start": 4975.28, + "end": 4975.28, + "probability": 0.3294 + }, + { + "start": 4975.4, + "end": 4975.86, + "probability": 0.9028 + }, + { + "start": 4975.88, + "end": 4976.42, + "probability": 0.9143 + }, + { + "start": 4976.44, + "end": 4977.1, + "probability": 0.5867 + }, + { + "start": 4977.32, + "end": 4979.18, + "probability": 0.9677 + }, + { + "start": 4979.54, + "end": 4980.7, + "probability": 0.9603 + }, + { + "start": 4981.16, + "end": 4982.19, + "probability": 0.844 + }, + { + "start": 4982.86, + "end": 4984.98, + "probability": 0.6324 + }, + { + "start": 4985.28, + "end": 4985.3, + "probability": 0.4704 + }, + { + "start": 4985.3, + "end": 4990.06, + "probability": 0.7754 + }, + { + "start": 4990.12, + "end": 4991.66, + "probability": 0.7156 + }, + { + "start": 4991.8, + "end": 4993.86, + "probability": 0.96 + }, + { + "start": 4994.04, + "end": 4995.96, + "probability": 0.8968 + }, + { + "start": 4996.1, + "end": 4997.38, + "probability": 0.8809 + }, + { + "start": 4997.4, + "end": 4997.76, + "probability": 0.1609 + }, + { + "start": 4998.14, + "end": 5000.12, + "probability": 0.7095 + }, + { + "start": 5000.48, + "end": 5000.72, + "probability": 0.3961 + }, + { + "start": 5000.82, + "end": 5001.78, + "probability": 0.6815 + }, + { + "start": 5001.78, + "end": 5003.5, + "probability": 0.5661 + }, + { + "start": 5003.7, + "end": 5006.04, + "probability": 0.4914 + }, + { + "start": 5006.1, + "end": 5006.72, + "probability": 0.8697 + }, + { + "start": 5006.86, + "end": 5008.2, + "probability": 0.8696 + }, + { + "start": 5008.26, + "end": 5009.5, + "probability": 0.6753 + }, + { + "start": 5009.5, + "end": 5009.92, + "probability": 0.8049 + }, + { + "start": 5010.46, + "end": 5014.52, + "probability": 0.9642 + }, + { + "start": 5014.54, + "end": 5016.52, + "probability": 0.3961 + }, + { + "start": 5016.52, + "end": 5016.84, + "probability": 0.3904 + }, + { + "start": 5017.14, + "end": 5021.56, + "probability": 0.7806 + }, + { + "start": 5021.56, + "end": 5022.02, + "probability": 0.8422 + }, + { + "start": 5022.22, + "end": 5025.1, + "probability": 0.2679 + }, + { + "start": 5025.1, + "end": 5031.22, + "probability": 0.9788 + }, + { + "start": 5031.22, + "end": 5034.66, + "probability": 0.7766 + }, + { + "start": 5034.76, + "end": 5036.54, + "probability": 0.5483 + }, + { + "start": 5036.68, + "end": 5037.04, + "probability": 0.6082 + }, + { + "start": 5037.18, + "end": 5037.86, + "probability": 0.1949 + }, + { + "start": 5037.86, + "end": 5038.18, + "probability": 0.5586 + }, + { + "start": 5038.3, + "end": 5039.34, + "probability": 0.4158 + }, + { + "start": 5039.64, + "end": 5039.64, + "probability": 0.3323 + }, + { + "start": 5039.64, + "end": 5039.64, + "probability": 0.1703 + }, + { + "start": 5039.64, + "end": 5041.81, + "probability": 0.6593 + }, + { + "start": 5044.54, + "end": 5049.56, + "probability": 0.7593 + }, + { + "start": 5049.56, + "end": 5049.62, + "probability": 0.0327 + }, + { + "start": 5049.62, + "end": 5050.6, + "probability": 0.303 + }, + { + "start": 5051.82, + "end": 5052.4, + "probability": 0.3017 + }, + { + "start": 5052.58, + "end": 5052.96, + "probability": 0.2542 + }, + { + "start": 5055.6, + "end": 5055.86, + "probability": 0.004 + }, + { + "start": 5056.18, + "end": 5057.22, + "probability": 0.3548 + }, + { + "start": 5057.22, + "end": 5058.4, + "probability": 0.6432 + }, + { + "start": 5058.54, + "end": 5062.98, + "probability": 0.5725 + }, + { + "start": 5062.98, + "end": 5065.08, + "probability": 0.7898 + }, + { + "start": 5065.46, + "end": 5068.05, + "probability": 0.7676 + }, + { + "start": 5068.6, + "end": 5069.02, + "probability": 0.4319 + }, + { + "start": 5069.02, + "end": 5069.82, + "probability": 0.468 + }, + { + "start": 5070.4, + "end": 5072.67, + "probability": 0.9977 + }, + { + "start": 5073.16, + "end": 5074.98, + "probability": 0.6954 + }, + { + "start": 5075.62, + "end": 5076.68, + "probability": 0.8311 + }, + { + "start": 5079.0, + "end": 5081.88, + "probability": 0.8389 + }, + { + "start": 5082.28, + "end": 5086.62, + "probability": 0.9875 + }, + { + "start": 5087.12, + "end": 5088.12, + "probability": 0.9269 + }, + { + "start": 5089.74, + "end": 5090.36, + "probability": 0.0212 + }, + { + "start": 5090.36, + "end": 5095.58, + "probability": 0.7065 + }, + { + "start": 5095.92, + "end": 5099.62, + "probability": 0.6131 + }, + { + "start": 5099.64, + "end": 5099.64, + "probability": 0.6236 + }, + { + "start": 5100.04, + "end": 5103.86, + "probability": 0.9651 + }, + { + "start": 5104.1, + "end": 5105.16, + "probability": 0.8906 + }, + { + "start": 5105.72, + "end": 5106.14, + "probability": 0.3028 + }, + { + "start": 5106.76, + "end": 5107.04, + "probability": 0.6287 + }, + { + "start": 5107.1, + "end": 5108.12, + "probability": 0.7489 + }, + { + "start": 5108.14, + "end": 5108.67, + "probability": 0.6866 + }, + { + "start": 5110.07, + "end": 5114.02, + "probability": 0.8969 + }, + { + "start": 5114.74, + "end": 5116.35, + "probability": 0.7754 + }, + { + "start": 5118.62, + "end": 5118.74, + "probability": 0.3629 + }, + { + "start": 5119.74, + "end": 5119.94, + "probability": 0.5971 + }, + { + "start": 5119.94, + "end": 5119.94, + "probability": 0.4333 + }, + { + "start": 5119.94, + "end": 5120.54, + "probability": 0.3309 + }, + { + "start": 5123.58, + "end": 5125.28, + "probability": 0.5334 + }, + { + "start": 5126.16, + "end": 5127.0, + "probability": 0.3437 + }, + { + "start": 5127.06, + "end": 5133.27, + "probability": 0.7463 + }, + { + "start": 5134.6, + "end": 5134.82, + "probability": 0.0695 + }, + { + "start": 5134.82, + "end": 5134.82, + "probability": 0.567 + }, + { + "start": 5134.82, + "end": 5135.38, + "probability": 0.5361 + }, + { + "start": 5136.2, + "end": 5137.28, + "probability": 0.9106 + }, + { + "start": 5137.4, + "end": 5137.58, + "probability": 0.5353 + }, + { + "start": 5137.7, + "end": 5139.22, + "probability": 0.8795 + }, + { + "start": 5139.42, + "end": 5142.82, + "probability": 0.3165 + }, + { + "start": 5142.82, + "end": 5148.1, + "probability": 0.9634 + }, + { + "start": 5148.2, + "end": 5149.62, + "probability": 0.7356 + }, + { + "start": 5149.62, + "end": 5149.69, + "probability": 0.0418 + }, + { + "start": 5150.42, + "end": 5153.1, + "probability": 0.9224 + }, + { + "start": 5153.2, + "end": 5154.38, + "probability": 0.4607 + }, + { + "start": 5154.48, + "end": 5156.46, + "probability": 0.7343 + }, + { + "start": 5157.9, + "end": 5160.56, + "probability": 0.9959 + }, + { + "start": 5161.16, + "end": 5162.34, + "probability": 0.9334 + }, + { + "start": 5163.12, + "end": 5167.74, + "probability": 0.8867 + }, + { + "start": 5168.12, + "end": 5169.02, + "probability": 0.9792 + }, + { + "start": 5169.68, + "end": 5170.68, + "probability": 0.9377 + }, + { + "start": 5171.84, + "end": 5173.08, + "probability": 0.7915 + }, + { + "start": 5173.7, + "end": 5176.82, + "probability": 0.9221 + }, + { + "start": 5177.4, + "end": 5180.12, + "probability": 0.8401 + }, + { + "start": 5180.16, + "end": 5182.38, + "probability": 0.6259 + }, + { + "start": 5183.12, + "end": 5187.12, + "probability": 0.8616 + }, + { + "start": 5187.46, + "end": 5191.06, + "probability": 0.5863 + }, + { + "start": 5191.06, + "end": 5191.68, + "probability": 0.812 + }, + { + "start": 5191.76, + "end": 5193.06, + "probability": 0.1832 + }, + { + "start": 5193.26, + "end": 5193.62, + "probability": 0.1715 + }, + { + "start": 5193.62, + "end": 5195.28, + "probability": 0.198 + }, + { + "start": 5195.38, + "end": 5199.06, + "probability": 0.8324 + }, + { + "start": 5199.12, + "end": 5199.74, + "probability": 0.704 + }, + { + "start": 5199.82, + "end": 5200.2, + "probability": 0.3244 + }, + { + "start": 5200.2, + "end": 5203.26, + "probability": 0.7674 + }, + { + "start": 5203.32, + "end": 5203.68, + "probability": 0.6957 + }, + { + "start": 5204.18, + "end": 5206.92, + "probability": 0.993 + }, + { + "start": 5207.16, + "end": 5209.18, + "probability": 0.9858 + }, + { + "start": 5209.64, + "end": 5214.54, + "probability": 0.9941 + }, + { + "start": 5215.07, + "end": 5217.6, + "probability": 0.9995 + }, + { + "start": 5217.64, + "end": 5219.1, + "probability": 0.952 + }, + { + "start": 5219.22, + "end": 5220.4, + "probability": 0.7978 + }, + { + "start": 5220.44, + "end": 5220.58, + "probability": 0.0295 + }, + { + "start": 5220.58, + "end": 5220.98, + "probability": 0.0578 + }, + { + "start": 5221.28, + "end": 5224.66, + "probability": 0.9684 + }, + { + "start": 5225.08, + "end": 5226.78, + "probability": 0.9688 + }, + { + "start": 5226.8, + "end": 5226.8, + "probability": 0.1209 + }, + { + "start": 5226.8, + "end": 5228.28, + "probability": 0.3686 + }, + { + "start": 5228.36, + "end": 5231.3, + "probability": 0.8289 + }, + { + "start": 5231.52, + "end": 5232.25, + "probability": 0.9263 + }, + { + "start": 5232.7, + "end": 5233.18, + "probability": 0.902 + }, + { + "start": 5234.36, + "end": 5234.68, + "probability": 0.9363 + }, + { + "start": 5235.9, + "end": 5236.36, + "probability": 0.4966 + }, + { + "start": 5237.6, + "end": 5238.53, + "probability": 0.2418 + }, + { + "start": 5238.9, + "end": 5240.04, + "probability": 0.5023 + }, + { + "start": 5240.18, + "end": 5243.38, + "probability": 0.5746 + }, + { + "start": 5243.54, + "end": 5244.9, + "probability": 0.4515 + }, + { + "start": 5244.9, + "end": 5245.86, + "probability": 0.268 + }, + { + "start": 5246.12, + "end": 5246.32, + "probability": 0.1989 + }, + { + "start": 5246.32, + "end": 5246.32, + "probability": 0.2059 + }, + { + "start": 5246.32, + "end": 5246.32, + "probability": 0.1905 + }, + { + "start": 5246.32, + "end": 5250.54, + "probability": 0.8065 + }, + { + "start": 5250.54, + "end": 5252.14, + "probability": 0.8234 + }, + { + "start": 5253.38, + "end": 5253.8, + "probability": 0.3149 + }, + { + "start": 5253.8, + "end": 5254.29, + "probability": 0.7667 + }, + { + "start": 5254.76, + "end": 5256.04, + "probability": 0.4953 + }, + { + "start": 5256.04, + "end": 5256.84, + "probability": 0.7705 + }, + { + "start": 5257.48, + "end": 5257.6, + "probability": 0.2102 + }, + { + "start": 5257.6, + "end": 5257.6, + "probability": 0.1965 + }, + { + "start": 5257.6, + "end": 5258.82, + "probability": 0.8587 + }, + { + "start": 5258.94, + "end": 5260.5, + "probability": 0.4351 + }, + { + "start": 5260.68, + "end": 5265.44, + "probability": 0.7551 + }, + { + "start": 5265.58, + "end": 5266.02, + "probability": 0.5682 + }, + { + "start": 5266.54, + "end": 5268.05, + "probability": 0.0405 + }, + { + "start": 5269.44, + "end": 5270.06, + "probability": 0.6764 + }, + { + "start": 5271.46, + "end": 5271.46, + "probability": 0.2194 + }, + { + "start": 5271.46, + "end": 5271.46, + "probability": 0.0449 + }, + { + "start": 5271.46, + "end": 5271.58, + "probability": 0.0357 + }, + { + "start": 5271.58, + "end": 5272.01, + "probability": 0.8165 + }, + { + "start": 5272.22, + "end": 5272.22, + "probability": 0.2282 + }, + { + "start": 5272.22, + "end": 5275.36, + "probability": 0.7788 + }, + { + "start": 5275.36, + "end": 5276.3, + "probability": 0.7483 + }, + { + "start": 5276.3, + "end": 5277.19, + "probability": 0.5061 + }, + { + "start": 5278.0, + "end": 5279.68, + "probability": 0.6192 + }, + { + "start": 5280.32, + "end": 5281.62, + "probability": 0.6765 + }, + { + "start": 5281.64, + "end": 5281.78, + "probability": 0.0167 + }, + { + "start": 5281.78, + "end": 5285.58, + "probability": 0.87 + }, + { + "start": 5286.64, + "end": 5288.92, + "probability": 0.8383 + }, + { + "start": 5288.92, + "end": 5289.98, + "probability": 0.7083 + }, + { + "start": 5290.36, + "end": 5291.46, + "probability": 0.8657 + }, + { + "start": 5292.36, + "end": 5293.94, + "probability": 0.8433 + }, + { + "start": 5296.06, + "end": 5299.48, + "probability": 0.9722 + }, + { + "start": 5300.0, + "end": 5302.74, + "probability": 0.9958 + }, + { + "start": 5303.28, + "end": 5304.16, + "probability": 0.9088 + }, + { + "start": 5305.14, + "end": 5306.24, + "probability": 0.9401 + }, + { + "start": 5306.84, + "end": 5308.54, + "probability": 0.9976 + }, + { + "start": 5315.18, + "end": 5316.2, + "probability": 0.7364 + }, + { + "start": 5317.56, + "end": 5324.34, + "probability": 0.9783 + }, + { + "start": 5324.8, + "end": 5327.42, + "probability": 0.9971 + }, + { + "start": 5328.2, + "end": 5330.88, + "probability": 0.9422 + }, + { + "start": 5331.4, + "end": 5336.62, + "probability": 0.9932 + }, + { + "start": 5336.88, + "end": 5338.02, + "probability": 0.9688 + }, + { + "start": 5338.52, + "end": 5340.2, + "probability": 0.9948 + }, + { + "start": 5341.04, + "end": 5343.64, + "probability": 0.8593 + }, + { + "start": 5343.9, + "end": 5345.54, + "probability": 0.9946 + }, + { + "start": 5345.9, + "end": 5348.02, + "probability": 0.99 + }, + { + "start": 5348.3, + "end": 5351.2, + "probability": 0.9394 + }, + { + "start": 5351.76, + "end": 5356.28, + "probability": 0.9757 + }, + { + "start": 5356.88, + "end": 5359.62, + "probability": 0.9526 + }, + { + "start": 5360.42, + "end": 5362.54, + "probability": 0.978 + }, + { + "start": 5363.3, + "end": 5364.26, + "probability": 0.7322 + }, + { + "start": 5364.84, + "end": 5366.86, + "probability": 0.9988 + }, + { + "start": 5368.22, + "end": 5368.92, + "probability": 0.9605 + }, + { + "start": 5369.18, + "end": 5369.22, + "probability": 0.1154 + }, + { + "start": 5369.22, + "end": 5372.0, + "probability": 0.8886 + }, + { + "start": 5372.3, + "end": 5375.26, + "probability": 0.0691 + }, + { + "start": 5375.26, + "end": 5375.26, + "probability": 0.1631 + }, + { + "start": 5375.26, + "end": 5375.56, + "probability": 0.0335 + }, + { + "start": 5375.68, + "end": 5375.68, + "probability": 0.3338 + }, + { + "start": 5375.7, + "end": 5377.92, + "probability": 0.6883 + }, + { + "start": 5378.34, + "end": 5378.36, + "probability": 0.6138 + }, + { + "start": 5378.36, + "end": 5379.64, + "probability": 0.964 + }, + { + "start": 5379.76, + "end": 5380.69, + "probability": 0.5352 + }, + { + "start": 5381.18, + "end": 5382.06, + "probability": 0.6951 + }, + { + "start": 5382.72, + "end": 5384.72, + "probability": 0.7874 + }, + { + "start": 5386.76, + "end": 5387.14, + "probability": 0.0099 + }, + { + "start": 5387.2, + "end": 5387.27, + "probability": 0.0927 + }, + { + "start": 5388.02, + "end": 5389.0, + "probability": 0.4008 + }, + { + "start": 5389.94, + "end": 5390.3, + "probability": 0.3782 + }, + { + "start": 5390.4, + "end": 5393.8, + "probability": 0.9835 + }, + { + "start": 5393.96, + "end": 5394.5, + "probability": 0.301 + }, + { + "start": 5394.68, + "end": 5396.34, + "probability": 0.9282 + }, + { + "start": 5396.36, + "end": 5396.79, + "probability": 0.5013 + }, + { + "start": 5397.08, + "end": 5397.88, + "probability": 0.8755 + }, + { + "start": 5397.98, + "end": 5398.96, + "probability": 0.7924 + }, + { + "start": 5398.96, + "end": 5402.76, + "probability": 0.668 + }, + { + "start": 5403.24, + "end": 5404.12, + "probability": 0.994 + }, + { + "start": 5404.8, + "end": 5406.08, + "probability": 0.9253 + }, + { + "start": 5407.81, + "end": 5409.6, + "probability": 0.4389 + }, + { + "start": 5410.04, + "end": 5413.36, + "probability": 0.8566 + }, + { + "start": 5413.66, + "end": 5416.32, + "probability": 0.7959 + }, + { + "start": 5416.8, + "end": 5417.66, + "probability": 0.8942 + }, + { + "start": 5418.28, + "end": 5419.66, + "probability": 0.7512 + }, + { + "start": 5420.2, + "end": 5421.84, + "probability": 0.0504 + }, + { + "start": 5422.08, + "end": 5423.5, + "probability": 0.4326 + }, + { + "start": 5424.2, + "end": 5424.85, + "probability": 0.6756 + }, + { + "start": 5425.0, + "end": 5427.6, + "probability": 0.7656 + }, + { + "start": 5427.64, + "end": 5428.94, + "probability": 0.0137 + }, + { + "start": 5429.0, + "end": 5433.02, + "probability": 0.1725 + }, + { + "start": 5433.02, + "end": 5436.18, + "probability": 0.6846 + }, + { + "start": 5436.36, + "end": 5438.92, + "probability": 0.0532 + }, + { + "start": 5439.22, + "end": 5443.28, + "probability": 0.939 + }, + { + "start": 5443.64, + "end": 5444.4, + "probability": 0.962 + }, + { + "start": 5444.42, + "end": 5447.78, + "probability": 0.9767 + }, + { + "start": 5448.28, + "end": 5448.84, + "probability": 0.9312 + }, + { + "start": 5449.48, + "end": 5454.74, + "probability": 0.9609 + }, + { + "start": 5455.18, + "end": 5456.34, + "probability": 0.8268 + }, + { + "start": 5456.9, + "end": 5459.42, + "probability": 0.9502 + }, + { + "start": 5459.56, + "end": 5461.5, + "probability": 0.0285 + }, + { + "start": 5461.58, + "end": 5468.06, + "probability": 0.8433 + }, + { + "start": 5468.06, + "end": 5474.66, + "probability": 0.9352 + }, + { + "start": 5476.14, + "end": 5480.2, + "probability": 0.7842 + }, + { + "start": 5480.9, + "end": 5483.74, + "probability": 0.8613 + }, + { + "start": 5484.34, + "end": 5488.84, + "probability": 0.9969 + }, + { + "start": 5489.28, + "end": 5491.0, + "probability": 0.9959 + }, + { + "start": 5491.66, + "end": 5496.72, + "probability": 0.996 + }, + { + "start": 5497.36, + "end": 5498.4, + "probability": 0.9984 + }, + { + "start": 5499.32, + "end": 5505.12, + "probability": 0.9957 + }, + { + "start": 5505.76, + "end": 5508.58, + "probability": 0.9313 + }, + { + "start": 5509.8, + "end": 5513.68, + "probability": 0.9899 + }, + { + "start": 5514.44, + "end": 5520.44, + "probability": 0.9581 + }, + { + "start": 5521.2, + "end": 5523.9, + "probability": 0.91 + }, + { + "start": 5524.84, + "end": 5530.39, + "probability": 0.9917 + }, + { + "start": 5531.08, + "end": 5537.1, + "probability": 0.9983 + }, + { + "start": 5537.6, + "end": 5542.26, + "probability": 0.9951 + }, + { + "start": 5542.26, + "end": 5545.92, + "probability": 0.9768 + }, + { + "start": 5546.84, + "end": 5553.3, + "probability": 0.948 + }, + { + "start": 5553.3, + "end": 5558.22, + "probability": 0.9962 + }, + { + "start": 5559.82, + "end": 5560.96, + "probability": 0.8072 + }, + { + "start": 5561.74, + "end": 5562.7, + "probability": 0.8305 + }, + { + "start": 5563.28, + "end": 5565.62, + "probability": 0.9362 + }, + { + "start": 5566.72, + "end": 5567.24, + "probability": 0.373 + }, + { + "start": 5567.86, + "end": 5570.14, + "probability": 0.9116 + }, + { + "start": 5570.66, + "end": 5576.96, + "probability": 0.999 + }, + { + "start": 5577.12, + "end": 5579.78, + "probability": 0.952 + }, + { + "start": 5580.68, + "end": 5587.78, + "probability": 0.9985 + }, + { + "start": 5587.85, + "end": 5593.8, + "probability": 0.9989 + }, + { + "start": 5594.66, + "end": 5598.36, + "probability": 0.999 + }, + { + "start": 5598.36, + "end": 5604.78, + "probability": 0.9871 + }, + { + "start": 5605.2, + "end": 5608.94, + "probability": 0.988 + }, + { + "start": 5609.58, + "end": 5615.32, + "probability": 0.9948 + }, + { + "start": 5616.14, + "end": 5617.94, + "probability": 0.8116 + }, + { + "start": 5619.32, + "end": 5623.1, + "probability": 0.9653 + }, + { + "start": 5623.86, + "end": 5623.95, + "probability": 0.437 + }, + { + "start": 5625.44, + "end": 5626.16, + "probability": 0.7101 + }, + { + "start": 5627.22, + "end": 5628.92, + "probability": 0.9614 + }, + { + "start": 5629.56, + "end": 5630.46, + "probability": 0.9385 + }, + { + "start": 5631.36, + "end": 5633.76, + "probability": 0.9199 + }, + { + "start": 5635.42, + "end": 5639.98, + "probability": 0.9645 + }, + { + "start": 5640.8, + "end": 5643.58, + "probability": 0.9974 + }, + { + "start": 5644.74, + "end": 5645.23, + "probability": 0.9872 + }, + { + "start": 5647.14, + "end": 5650.48, + "probability": 0.9226 + }, + { + "start": 5651.56, + "end": 5653.66, + "probability": 0.991 + }, + { + "start": 5653.66, + "end": 5656.42, + "probability": 0.9986 + }, + { + "start": 5657.74, + "end": 5659.08, + "probability": 0.9644 + }, + { + "start": 5660.48, + "end": 5665.22, + "probability": 0.9152 + }, + { + "start": 5665.94, + "end": 5668.7, + "probability": 0.9961 + }, + { + "start": 5669.38, + "end": 5670.39, + "probability": 0.0169 + }, + { + "start": 5671.62, + "end": 5676.96, + "probability": 0.7412 + }, + { + "start": 5677.66, + "end": 5677.96, + "probability": 0.2622 + }, + { + "start": 5677.96, + "end": 5680.87, + "probability": 0.9443 + }, + { + "start": 5681.44, + "end": 5684.48, + "probability": 0.9858 + }, + { + "start": 5684.5, + "end": 5685.4, + "probability": 0.0432 + }, + { + "start": 5685.94, + "end": 5689.82, + "probability": 0.9343 + }, + { + "start": 5690.95, + "end": 5694.88, + "probability": 0.9941 + }, + { + "start": 5696.42, + "end": 5697.82, + "probability": 0.9426 + }, + { + "start": 5698.8, + "end": 5700.66, + "probability": 0.743 + }, + { + "start": 5701.62, + "end": 5702.48, + "probability": 0.5904 + }, + { + "start": 5702.52, + "end": 5705.78, + "probability": 0.97 + }, + { + "start": 5705.78, + "end": 5710.16, + "probability": 0.6468 + }, + { + "start": 5710.56, + "end": 5711.98, + "probability": 0.58 + }, + { + "start": 5714.22, + "end": 5715.3, + "probability": 0.7148 + }, + { + "start": 5716.52, + "end": 5720.86, + "probability": 0.9893 + }, + { + "start": 5721.56, + "end": 5722.74, + "probability": 0.9712 + }, + { + "start": 5722.98, + "end": 5723.7, + "probability": 0.9573 + }, + { + "start": 5723.82, + "end": 5724.58, + "probability": 0.9737 + }, + { + "start": 5725.6, + "end": 5728.02, + "probability": 0.657 + }, + { + "start": 5729.0, + "end": 5733.84, + "probability": 0.9931 + }, + { + "start": 5734.94, + "end": 5736.66, + "probability": 0.9224 + }, + { + "start": 5737.96, + "end": 5741.54, + "probability": 0.9881 + }, + { + "start": 5742.52, + "end": 5744.18, + "probability": 0.9479 + }, + { + "start": 5744.78, + "end": 5745.99, + "probability": 0.9935 + }, + { + "start": 5750.06, + "end": 5751.51, + "probability": 0.9915 + }, + { + "start": 5755.61, + "end": 5759.58, + "probability": 0.8994 + }, + { + "start": 5760.12, + "end": 5763.72, + "probability": 0.9972 + }, + { + "start": 5763.98, + "end": 5768.84, + "probability": 0.9775 + }, + { + "start": 5769.1, + "end": 5771.0, + "probability": 0.9912 + }, + { + "start": 5773.22, + "end": 5775.52, + "probability": 0.9953 + }, + { + "start": 5776.36, + "end": 5777.54, + "probability": 0.9995 + }, + { + "start": 5778.84, + "end": 5779.72, + "probability": 0.8146 + }, + { + "start": 5779.84, + "end": 5780.64, + "probability": 0.8578 + }, + { + "start": 5780.72, + "end": 5783.02, + "probability": 0.7883 + }, + { + "start": 5783.24, + "end": 5785.64, + "probability": 0.9761 + }, + { + "start": 5786.66, + "end": 5791.38, + "probability": 0.9133 + }, + { + "start": 5792.22, + "end": 5795.1, + "probability": 0.9757 + }, + { + "start": 5795.88, + "end": 5797.28, + "probability": 0.9914 + }, + { + "start": 5797.78, + "end": 5799.42, + "probability": 0.9973 + }, + { + "start": 5801.76, + "end": 5805.02, + "probability": 0.9706 + }, + { + "start": 5805.32, + "end": 5806.6, + "probability": 0.9881 + }, + { + "start": 5815.58, + "end": 5817.66, + "probability": 0.7759 + }, + { + "start": 5819.42, + "end": 5820.86, + "probability": 0.8993 + }, + { + "start": 5821.66, + "end": 5828.22, + "probability": 0.9021 + }, + { + "start": 5829.66, + "end": 5830.7, + "probability": 0.9244 + }, + { + "start": 5831.3, + "end": 5832.72, + "probability": 0.9946 + }, + { + "start": 5833.96, + "end": 5836.2, + "probability": 0.9864 + }, + { + "start": 5837.2, + "end": 5839.3, + "probability": 0.9438 + }, + { + "start": 5841.12, + "end": 5843.46, + "probability": 0.9756 + }, + { + "start": 5844.78, + "end": 5846.1, + "probability": 0.5886 + }, + { + "start": 5846.78, + "end": 5848.94, + "probability": 0.9135 + }, + { + "start": 5849.64, + "end": 5851.04, + "probability": 0.7402 + }, + { + "start": 5852.0, + "end": 5856.38, + "probability": 0.9822 + }, + { + "start": 5856.38, + "end": 5860.48, + "probability": 0.9993 + }, + { + "start": 5862.4, + "end": 5863.42, + "probability": 0.9993 + }, + { + "start": 5865.32, + "end": 5867.46, + "probability": 0.9986 + }, + { + "start": 5868.14, + "end": 5868.98, + "probability": 0.4062 + }, + { + "start": 5870.34, + "end": 5873.58, + "probability": 0.9714 + }, + { + "start": 5875.12, + "end": 5877.14, + "probability": 0.9993 + }, + { + "start": 5886.88, + "end": 5887.76, + "probability": 0.2161 + }, + { + "start": 5888.44, + "end": 5894.76, + "probability": 0.9688 + }, + { + "start": 5896.16, + "end": 5900.46, + "probability": 0.9973 + }, + { + "start": 5900.48, + "end": 5902.18, + "probability": 0.9628 + }, + { + "start": 5903.16, + "end": 5904.54, + "probability": 0.6088 + }, + { + "start": 5905.84, + "end": 5909.36, + "probability": 0.9901 + }, + { + "start": 5910.1, + "end": 5915.36, + "probability": 0.8161 + }, + { + "start": 5917.08, + "end": 5918.84, + "probability": 0.9425 + }, + { + "start": 5930.44, + "end": 5931.86, + "probability": 0.9878 + }, + { + "start": 5933.9, + "end": 5938.26, + "probability": 0.9859 + }, + { + "start": 5940.06, + "end": 5941.43, + "probability": 0.9961 + }, + { + "start": 5942.84, + "end": 5944.8, + "probability": 0.8306 + }, + { + "start": 5946.04, + "end": 5947.16, + "probability": 0.9282 + }, + { + "start": 5948.8, + "end": 5952.28, + "probability": 0.9929 + }, + { + "start": 5962.88, + "end": 5963.96, + "probability": 0.6864 + }, + { + "start": 5965.8, + "end": 5966.82, + "probability": 0.8639 + }, + { + "start": 5967.9, + "end": 5970.3, + "probability": 0.9905 + }, + { + "start": 5971.44, + "end": 5972.36, + "probability": 0.9331 + }, + { + "start": 5974.12, + "end": 5976.42, + "probability": 0.9711 + }, + { + "start": 5977.52, + "end": 5978.46, + "probability": 0.9904 + }, + { + "start": 5981.3, + "end": 5985.78, + "probability": 0.9917 + }, + { + "start": 5987.02, + "end": 5987.92, + "probability": 0.5493 + }, + { + "start": 5988.74, + "end": 5992.64, + "probability": 0.9778 + }, + { + "start": 5993.78, + "end": 5995.76, + "probability": 0.9801 + }, + { + "start": 5996.66, + "end": 6000.34, + "probability": 0.9851 + }, + { + "start": 6001.14, + "end": 6003.76, + "probability": 0.9757 + }, + { + "start": 6004.54, + "end": 6008.88, + "probability": 0.9995 + }, + { + "start": 6011.36, + "end": 6012.96, + "probability": 0.5231 + }, + { + "start": 6014.34, + "end": 6015.04, + "probability": 0.7867 + }, + { + "start": 6015.24, + "end": 6020.74, + "probability": 0.8409 + }, + { + "start": 6021.94, + "end": 6023.96, + "probability": 0.7889 + }, + { + "start": 6024.32, + "end": 6025.0, + "probability": 0.3296 + }, + { + "start": 6025.28, + "end": 6028.85, + "probability": 0.9014 + }, + { + "start": 6029.28, + "end": 6030.24, + "probability": 0.4097 + }, + { + "start": 6030.38, + "end": 6035.08, + "probability": 0.9441 + }, + { + "start": 6045.94, + "end": 6046.46, + "probability": 0.7752 + }, + { + "start": 6047.48, + "end": 6049.26, + "probability": 0.8965 + }, + { + "start": 6050.38, + "end": 6052.4, + "probability": 0.9985 + }, + { + "start": 6053.3, + "end": 6056.42, + "probability": 0.9951 + }, + { + "start": 6057.6, + "end": 6061.64, + "probability": 0.9993 + }, + { + "start": 6063.12, + "end": 6067.24, + "probability": 0.9965 + }, + { + "start": 6067.96, + "end": 6071.36, + "probability": 0.9968 + }, + { + "start": 6072.42, + "end": 6075.54, + "probability": 0.9911 + }, + { + "start": 6076.2, + "end": 6078.86, + "probability": 0.8243 + }, + { + "start": 6079.94, + "end": 6084.58, + "probability": 0.9949 + }, + { + "start": 6086.24, + "end": 6089.38, + "probability": 0.9711 + }, + { + "start": 6091.1, + "end": 6091.94, + "probability": 0.8498 + }, + { + "start": 6092.56, + "end": 6093.72, + "probability": 0.9713 + }, + { + "start": 6094.5, + "end": 6097.54, + "probability": 0.9929 + }, + { + "start": 6099.06, + "end": 6100.42, + "probability": 0.8965 + }, + { + "start": 6101.5, + "end": 6102.13, + "probability": 0.9185 + }, + { + "start": 6103.06, + "end": 6104.86, + "probability": 0.9929 + }, + { + "start": 6107.46, + "end": 6108.54, + "probability": 0.8779 + }, + { + "start": 6109.28, + "end": 6115.22, + "probability": 0.9404 + }, + { + "start": 6116.34, + "end": 6117.45, + "probability": 0.9893 + }, + { + "start": 6117.76, + "end": 6119.24, + "probability": 0.9875 + }, + { + "start": 6119.6, + "end": 6121.78, + "probability": 0.9934 + }, + { + "start": 6122.9, + "end": 6127.38, + "probability": 0.8965 + }, + { + "start": 6128.94, + "end": 6129.91, + "probability": 0.2109 + }, + { + "start": 6130.7, + "end": 6131.58, + "probability": 0.188 + }, + { + "start": 6131.58, + "end": 6134.12, + "probability": 0.9604 + }, + { + "start": 6134.42, + "end": 6135.14, + "probability": 0.274 + }, + { + "start": 6135.22, + "end": 6136.43, + "probability": 0.9575 + }, + { + "start": 6137.36, + "end": 6138.36, + "probability": 0.0704 + }, + { + "start": 6138.36, + "end": 6140.38, + "probability": 0.1361 + }, + { + "start": 6140.44, + "end": 6142.56, + "probability": 0.9292 + }, + { + "start": 6142.78, + "end": 6143.56, + "probability": 0.9229 + }, + { + "start": 6144.18, + "end": 6144.28, + "probability": 0.985 + }, + { + "start": 6144.86, + "end": 6149.26, + "probability": 0.8408 + }, + { + "start": 6149.94, + "end": 6151.3, + "probability": 0.9922 + }, + { + "start": 6152.3, + "end": 6154.48, + "probability": 0.8757 + }, + { + "start": 6155.48, + "end": 6158.04, + "probability": 0.9484 + }, + { + "start": 6158.92, + "end": 6160.0, + "probability": 0.685 + }, + { + "start": 6160.52, + "end": 6165.82, + "probability": 0.8786 + }, + { + "start": 6166.6, + "end": 6167.14, + "probability": 0.497 + }, + { + "start": 6167.16, + "end": 6167.36, + "probability": 0.3447 + }, + { + "start": 6167.36, + "end": 6168.92, + "probability": 0.4994 + }, + { + "start": 6169.3, + "end": 6172.6, + "probability": 0.4707 + }, + { + "start": 6172.8, + "end": 6173.22, + "probability": 0.634 + }, + { + "start": 6173.44, + "end": 6181.0, + "probability": 0.9567 + }, + { + "start": 6181.04, + "end": 6182.32, + "probability": 0.625 + }, + { + "start": 6182.44, + "end": 6184.34, + "probability": 0.7205 + }, + { + "start": 6184.38, + "end": 6185.14, + "probability": 0.9767 + }, + { + "start": 6185.44, + "end": 6186.32, + "probability": 0.9435 + }, + { + "start": 6186.36, + "end": 6187.1, + "probability": 0.6618 + }, + { + "start": 6188.28, + "end": 6190.61, + "probability": 0.9984 + }, + { + "start": 6191.36, + "end": 6194.32, + "probability": 0.9238 + }, + { + "start": 6194.69, + "end": 6200.86, + "probability": 0.9958 + }, + { + "start": 6202.84, + "end": 6211.22, + "probability": 0.9894 + }, + { + "start": 6212.42, + "end": 6214.24, + "probability": 0.6689 + }, + { + "start": 6215.32, + "end": 6217.68, + "probability": 0.9955 + }, + { + "start": 6218.24, + "end": 6220.1, + "probability": 0.9379 + }, + { + "start": 6221.38, + "end": 6224.86, + "probability": 0.9899 + }, + { + "start": 6225.46, + "end": 6226.72, + "probability": 0.9146 + }, + { + "start": 6228.38, + "end": 6229.32, + "probability": 0.9902 + }, + { + "start": 6230.0, + "end": 6230.58, + "probability": 0.973 + }, + { + "start": 6231.9, + "end": 6233.64, + "probability": 0.6951 + }, + { + "start": 6234.34, + "end": 6236.8, + "probability": 0.9876 + }, + { + "start": 6237.76, + "end": 6239.84, + "probability": 0.9891 + }, + { + "start": 6240.96, + "end": 6245.24, + "probability": 0.9943 + }, + { + "start": 6246.44, + "end": 6249.6, + "probability": 0.9989 + }, + { + "start": 6251.08, + "end": 6252.23, + "probability": 0.7966 + }, + { + "start": 6253.96, + "end": 6254.55, + "probability": 0.8306 + }, + { + "start": 6255.64, + "end": 6257.5, + "probability": 0.98 + }, + { + "start": 6258.7, + "end": 6263.02, + "probability": 0.9941 + }, + { + "start": 6266.1, + "end": 6266.48, + "probability": 0.9744 + }, + { + "start": 6269.14, + "end": 6271.22, + "probability": 0.9963 + }, + { + "start": 6272.88, + "end": 6276.56, + "probability": 0.9395 + }, + { + "start": 6277.6, + "end": 6280.14, + "probability": 0.787 + }, + { + "start": 6281.46, + "end": 6286.38, + "probability": 0.9819 + }, + { + "start": 6288.18, + "end": 6289.15, + "probability": 0.75 + }, + { + "start": 6290.74, + "end": 6294.84, + "probability": 0.9771 + }, + { + "start": 6296.8, + "end": 6298.1, + "probability": 0.9708 + }, + { + "start": 6298.98, + "end": 6300.46, + "probability": 0.9863 + }, + { + "start": 6301.82, + "end": 6302.8, + "probability": 0.8634 + }, + { + "start": 6304.06, + "end": 6305.74, + "probability": 0.9777 + }, + { + "start": 6307.78, + "end": 6310.32, + "probability": 0.9705 + }, + { + "start": 6313.2, + "end": 6313.2, + "probability": 0.0852 + }, + { + "start": 6313.2, + "end": 6313.2, + "probability": 0.5428 + }, + { + "start": 6313.2, + "end": 6314.16, + "probability": 0.8294 + }, + { + "start": 6314.3, + "end": 6315.96, + "probability": 0.7712 + }, + { + "start": 6316.72, + "end": 6318.27, + "probability": 0.9966 + }, + { + "start": 6318.78, + "end": 6322.34, + "probability": 0.9985 + }, + { + "start": 6322.38, + "end": 6328.34, + "probability": 0.998 + }, + { + "start": 6329.68, + "end": 6333.66, + "probability": 0.9608 + }, + { + "start": 6334.2, + "end": 6335.1, + "probability": 0.9118 + }, + { + "start": 6335.92, + "end": 6336.92, + "probability": 0.9529 + }, + { + "start": 6338.1, + "end": 6338.76, + "probability": 0.9156 + }, + { + "start": 6339.74, + "end": 6341.7, + "probability": 0.8593 + }, + { + "start": 6343.16, + "end": 6347.28, + "probability": 0.9976 + }, + { + "start": 6348.69, + "end": 6354.96, + "probability": 0.9934 + }, + { + "start": 6355.92, + "end": 6357.12, + "probability": 0.9474 + }, + { + "start": 6358.45, + "end": 6366.3, + "probability": 0.9827 + }, + { + "start": 6367.78, + "end": 6368.8, + "probability": 0.998 + }, + { + "start": 6369.5, + "end": 6373.52, + "probability": 0.999 + }, + { + "start": 6374.98, + "end": 6377.68, + "probability": 0.9896 + }, + { + "start": 6379.06, + "end": 6382.52, + "probability": 0.9963 + }, + { + "start": 6383.88, + "end": 6387.54, + "probability": 0.9781 + }, + { + "start": 6388.74, + "end": 6389.18, + "probability": 0.8394 + }, + { + "start": 6390.0, + "end": 6390.4, + "probability": 0.7378 + }, + { + "start": 6391.62, + "end": 6394.52, + "probability": 0.7453 + }, + { + "start": 6395.86, + "end": 6401.06, + "probability": 0.9985 + }, + { + "start": 6402.34, + "end": 6405.02, + "probability": 0.9969 + }, + { + "start": 6405.86, + "end": 6407.2, + "probability": 0.9557 + }, + { + "start": 6408.06, + "end": 6410.14, + "probability": 0.9426 + }, + { + "start": 6411.04, + "end": 6416.5, + "probability": 0.9927 + }, + { + "start": 6417.9, + "end": 6424.88, + "probability": 0.9939 + }, + { + "start": 6424.88, + "end": 6425.96, + "probability": 0.2758 + }, + { + "start": 6425.96, + "end": 6427.98, + "probability": 0.9989 + }, + { + "start": 6428.24, + "end": 6429.54, + "probability": 0.7404 + }, + { + "start": 6431.14, + "end": 6431.64, + "probability": 0.6676 + }, + { + "start": 6433.0, + "end": 6436.46, + "probability": 0.905 + }, + { + "start": 6436.58, + "end": 6437.88, + "probability": 0.7314 + }, + { + "start": 6439.14, + "end": 6443.62, + "probability": 0.9784 + }, + { + "start": 6445.18, + "end": 6447.46, + "probability": 0.9941 + }, + { + "start": 6448.2, + "end": 6452.6, + "probability": 0.9956 + }, + { + "start": 6453.58, + "end": 6455.76, + "probability": 0.9458 + }, + { + "start": 6456.96, + "end": 6458.48, + "probability": 0.9291 + }, + { + "start": 6459.36, + "end": 6465.14, + "probability": 0.9922 + }, + { + "start": 6465.9, + "end": 6467.44, + "probability": 0.9971 + }, + { + "start": 6469.62, + "end": 6474.98, + "probability": 0.9961 + }, + { + "start": 6477.12, + "end": 6478.4, + "probability": 0.9822 + }, + { + "start": 6479.14, + "end": 6483.34, + "probability": 0.9936 + }, + { + "start": 6484.86, + "end": 6491.78, + "probability": 0.979 + }, + { + "start": 6494.14, + "end": 6497.86, + "probability": 0.9991 + }, + { + "start": 6498.74, + "end": 6501.78, + "probability": 0.9423 + }, + { + "start": 6502.78, + "end": 6506.26, + "probability": 0.9938 + }, + { + "start": 6506.7, + "end": 6510.52, + "probability": 0.9996 + }, + { + "start": 6511.8, + "end": 6515.62, + "probability": 0.9997 + }, + { + "start": 6516.8, + "end": 6518.58, + "probability": 0.9995 + }, + { + "start": 6519.54, + "end": 6522.9, + "probability": 0.9956 + }, + { + "start": 6524.28, + "end": 6527.74, + "probability": 0.9952 + }, + { + "start": 6528.82, + "end": 6530.6, + "probability": 0.9604 + }, + { + "start": 6531.22, + "end": 6531.56, + "probability": 0.9629 + }, + { + "start": 6533.22, + "end": 6535.74, + "probability": 0.9912 + }, + { + "start": 6536.72, + "end": 6538.18, + "probability": 0.9932 + }, + { + "start": 6540.06, + "end": 6543.26, + "probability": 0.9958 + }, + { + "start": 6544.02, + "end": 6546.12, + "probability": 0.9966 + }, + { + "start": 6546.66, + "end": 6552.7, + "probability": 0.9943 + }, + { + "start": 6552.7, + "end": 6558.94, + "probability": 0.9958 + }, + { + "start": 6560.1, + "end": 6562.3, + "probability": 0.9985 + }, + { + "start": 6563.38, + "end": 6567.06, + "probability": 0.9858 + }, + { + "start": 6567.06, + "end": 6570.66, + "probability": 0.983 + }, + { + "start": 6572.14, + "end": 6574.48, + "probability": 0.4999 + }, + { + "start": 6574.56, + "end": 6575.94, + "probability": 0.5653 + }, + { + "start": 6576.22, + "end": 6576.96, + "probability": 0.0315 + }, + { + "start": 6577.67, + "end": 6582.4, + "probability": 0.9756 + }, + { + "start": 6582.4, + "end": 6587.4, + "probability": 0.8434 + }, + { + "start": 6587.52, + "end": 6590.34, + "probability": 0.6326 + }, + { + "start": 6590.8, + "end": 6592.04, + "probability": 0.3361 + }, + { + "start": 6592.16, + "end": 6592.66, + "probability": 0.4378 + }, + { + "start": 6593.24, + "end": 6596.46, + "probability": 0.5189 + }, + { + "start": 6597.18, + "end": 6597.99, + "probability": 0.6268 + }, + { + "start": 6598.26, + "end": 6600.02, + "probability": 0.649 + }, + { + "start": 6600.02, + "end": 6601.56, + "probability": 0.374 + }, + { + "start": 6601.76, + "end": 6602.38, + "probability": 0.2766 + }, + { + "start": 6602.5, + "end": 6602.5, + "probability": 0.0644 + }, + { + "start": 6602.5, + "end": 6605.17, + "probability": 0.7273 + }, + { + "start": 6605.56, + "end": 6606.3, + "probability": 0.3668 + }, + { + "start": 6607.1, + "end": 6607.88, + "probability": 0.9705 + }, + { + "start": 6608.96, + "end": 6611.25, + "probability": 0.3396 + }, + { + "start": 6613.3, + "end": 6614.49, + "probability": 0.4966 + }, + { + "start": 6615.86, + "end": 6618.46, + "probability": 0.5187 + }, + { + "start": 6618.46, + "end": 6620.0, + "probability": 0.0348 + }, + { + "start": 6622.2, + "end": 6623.86, + "probability": 0.7084 + }, + { + "start": 6624.12, + "end": 6626.98, + "probability": 0.7332 + }, + { + "start": 6627.42, + "end": 6629.0, + "probability": 0.099 + }, + { + "start": 6629.28, + "end": 6630.68, + "probability": 0.4653 + }, + { + "start": 6632.1, + "end": 6633.14, + "probability": 0.0873 + }, + { + "start": 6633.44, + "end": 6637.0, + "probability": 0.6499 + }, + { + "start": 6637.02, + "end": 6640.42, + "probability": 0.9497 + }, + { + "start": 6640.5, + "end": 6642.1, + "probability": 0.513 + }, + { + "start": 6645.56, + "end": 6648.2, + "probability": 0.9932 + }, + { + "start": 6649.1, + "end": 6656.78, + "probability": 0.0662 + }, + { + "start": 6657.04, + "end": 6658.18, + "probability": 0.4638 + }, + { + "start": 6658.18, + "end": 6660.02, + "probability": 0.6352 + }, + { + "start": 6660.3, + "end": 6662.32, + "probability": 0.9219 + }, + { + "start": 6662.36, + "end": 6662.58, + "probability": 0.9027 + }, + { + "start": 6662.64, + "end": 6666.8, + "probability": 0.9722 + }, + { + "start": 6670.02, + "end": 6673.18, + "probability": 0.7836 + }, + { + "start": 6673.18, + "end": 6674.49, + "probability": 0.2689 + }, + { + "start": 6676.88, + "end": 6678.7, + "probability": 0.5647 + }, + { + "start": 6679.0, + "end": 6680.7, + "probability": 0.3085 + }, + { + "start": 6682.88, + "end": 6685.44, + "probability": 0.4773 + }, + { + "start": 6685.5, + "end": 6686.16, + "probability": 0.7123 + }, + { + "start": 6686.18, + "end": 6687.32, + "probability": 0.5331 + }, + { + "start": 6688.16, + "end": 6691.44, + "probability": 0.7388 + }, + { + "start": 6693.78, + "end": 6695.06, + "probability": 0.7759 + }, + { + "start": 6696.82, + "end": 6699.39, + "probability": 0.9877 + }, + { + "start": 6700.68, + "end": 6701.96, + "probability": 0.6521 + }, + { + "start": 6702.94, + "end": 6703.94, + "probability": 0.9836 + }, + { + "start": 6705.06, + "end": 6707.0, + "probability": 0.9805 + }, + { + "start": 6707.68, + "end": 6710.38, + "probability": 0.9951 + }, + { + "start": 6710.88, + "end": 6712.56, + "probability": 0.997 + }, + { + "start": 6712.72, + "end": 6713.14, + "probability": 0.7407 + }, + { + "start": 6715.94, + "end": 6716.98, + "probability": 0.157 + }, + { + "start": 6718.2, + "end": 6718.38, + "probability": 0.0379 + }, + { + "start": 6724.46, + "end": 6725.22, + "probability": 0.1317 + }, + { + "start": 6729.8, + "end": 6730.06, + "probability": 0.2361 + }, + { + "start": 6731.52, + "end": 6734.32, + "probability": 0.4522 + }, + { + "start": 6735.24, + "end": 6737.93, + "probability": 0.0783 + }, + { + "start": 6738.22, + "end": 6738.32, + "probability": 0.5201 + }, + { + "start": 6750.92, + "end": 6751.86, + "probability": 0.3905 + }, + { + "start": 6753.01, + "end": 6754.77, + "probability": 0.1247 + }, + { + "start": 6756.46, + "end": 6757.32, + "probability": 0.3521 + }, + { + "start": 6758.32, + "end": 6759.72, + "probability": 0.0105 + }, + { + "start": 6768.88, + "end": 6769.7, + "probability": 0.4405 + }, + { + "start": 6770.46, + "end": 6772.14, + "probability": 0.6602 + }, + { + "start": 6772.7, + "end": 6774.64, + "probability": 0.0689 + }, + { + "start": 6775.26, + "end": 6775.54, + "probability": 0.0095 + }, + { + "start": 6795.01, + "end": 6795.56, + "probability": 0.1487 + }, + { + "start": 6795.56, + "end": 6795.68, + "probability": 0.0525 + }, + { + "start": 6805.22, + "end": 6806.22, + "probability": 0.1855 + }, + { + "start": 6822.64, + "end": 6827.58, + "probability": 0.9464 + }, + { + "start": 6828.54, + "end": 6832.44, + "probability": 0.9639 + }, + { + "start": 6833.0, + "end": 6838.62, + "probability": 0.8942 + }, + { + "start": 6839.2, + "end": 6841.96, + "probability": 0.9414 + }, + { + "start": 6842.5, + "end": 6845.94, + "probability": 0.5762 + }, + { + "start": 6846.8, + "end": 6851.74, + "probability": 0.9949 + }, + { + "start": 6852.44, + "end": 6862.42, + "probability": 0.8398 + }, + { + "start": 6886.68, + "end": 6887.14, + "probability": 0.7627 + }, + { + "start": 6892.28, + "end": 6893.56, + "probability": 0.7423 + }, + { + "start": 6894.58, + "end": 6896.8, + "probability": 0.9834 + }, + { + "start": 6897.72, + "end": 6902.28, + "probability": 0.9722 + }, + { + "start": 6902.9, + "end": 6905.14, + "probability": 0.884 + }, + { + "start": 6905.82, + "end": 6910.96, + "probability": 0.9875 + }, + { + "start": 6913.1, + "end": 6915.84, + "probability": 0.7878 + }, + { + "start": 6918.1, + "end": 6923.76, + "probability": 0.97 + }, + { + "start": 6924.72, + "end": 6928.14, + "probability": 0.9914 + }, + { + "start": 6928.74, + "end": 6931.5, + "probability": 0.8725 + }, + { + "start": 6932.56, + "end": 6934.2, + "probability": 0.8184 + }, + { + "start": 6935.14, + "end": 6938.16, + "probability": 0.9902 + }, + { + "start": 6938.78, + "end": 6941.72, + "probability": 0.8734 + }, + { + "start": 6942.66, + "end": 6945.4, + "probability": 0.993 + }, + { + "start": 6945.4, + "end": 6949.86, + "probability": 0.9907 + }, + { + "start": 6950.8, + "end": 6957.68, + "probability": 0.9681 + }, + { + "start": 6959.36, + "end": 6960.12, + "probability": 0.3413 + }, + { + "start": 6960.96, + "end": 6965.44, + "probability": 0.9954 + }, + { + "start": 6966.4, + "end": 6973.34, + "probability": 0.9645 + }, + { + "start": 6973.44, + "end": 6976.32, + "probability": 0.8857 + }, + { + "start": 6977.04, + "end": 6980.54, + "probability": 0.7067 + }, + { + "start": 6981.3, + "end": 6985.54, + "probability": 0.4724 + }, + { + "start": 6986.28, + "end": 6991.78, + "probability": 0.9443 + }, + { + "start": 6993.82, + "end": 6995.82, + "probability": 0.9512 + }, + { + "start": 6996.52, + "end": 7001.54, + "probability": 0.9952 + }, + { + "start": 7002.14, + "end": 7003.32, + "probability": 0.6797 + }, + { + "start": 7003.82, + "end": 7007.96, + "probability": 0.9959 + }, + { + "start": 7009.14, + "end": 7017.74, + "probability": 0.9395 + }, + { + "start": 7018.24, + "end": 7028.18, + "probability": 0.9844 + }, + { + "start": 7028.74, + "end": 7031.16, + "probability": 0.8543 + }, + { + "start": 7032.7, + "end": 7036.12, + "probability": 0.9718 + }, + { + "start": 7037.14, + "end": 7044.98, + "probability": 0.871 + }, + { + "start": 7045.94, + "end": 7048.62, + "probability": 0.9988 + }, + { + "start": 7049.48, + "end": 7053.72, + "probability": 0.9696 + }, + { + "start": 7054.74, + "end": 7058.42, + "probability": 0.9458 + }, + { + "start": 7059.02, + "end": 7061.14, + "probability": 0.6993 + }, + { + "start": 7062.44, + "end": 7066.56, + "probability": 0.9248 + }, + { + "start": 7067.84, + "end": 7071.74, + "probability": 0.9883 + }, + { + "start": 7071.74, + "end": 7077.12, + "probability": 0.9802 + }, + { + "start": 7078.26, + "end": 7083.44, + "probability": 0.8669 + }, + { + "start": 7084.2, + "end": 7087.38, + "probability": 0.9955 + }, + { + "start": 7087.96, + "end": 7090.54, + "probability": 0.8604 + }, + { + "start": 7091.2, + "end": 7098.1, + "probability": 0.9894 + }, + { + "start": 7099.48, + "end": 7104.44, + "probability": 0.994 + }, + { + "start": 7104.44, + "end": 7108.86, + "probability": 0.999 + }, + { + "start": 7109.78, + "end": 7116.46, + "probability": 0.9029 + }, + { + "start": 7117.44, + "end": 7121.7, + "probability": 0.7369 + }, + { + "start": 7123.32, + "end": 7126.62, + "probability": 0.8687 + }, + { + "start": 7128.52, + "end": 7132.08, + "probability": 0.8938 + }, + { + "start": 7132.08, + "end": 7135.22, + "probability": 0.9979 + }, + { + "start": 7136.36, + "end": 7139.08, + "probability": 0.9424 + }, + { + "start": 7140.16, + "end": 7144.7, + "probability": 0.9762 + }, + { + "start": 7145.62, + "end": 7147.7, + "probability": 0.9893 + }, + { + "start": 7148.3, + "end": 7150.58, + "probability": 0.8387 + }, + { + "start": 7151.62, + "end": 7154.2, + "probability": 0.9514 + }, + { + "start": 7154.54, + "end": 7156.52, + "probability": 0.4698 + }, + { + "start": 7156.68, + "end": 7157.38, + "probability": 0.9026 + }, + { + "start": 7158.32, + "end": 7161.84, + "probability": 0.5905 + }, + { + "start": 7161.96, + "end": 7162.3, + "probability": 0.921 + }, + { + "start": 7164.66, + "end": 7167.5, + "probability": 0.94 + }, + { + "start": 7168.6, + "end": 7171.54, + "probability": 0.9904 + }, + { + "start": 7171.54, + "end": 7175.68, + "probability": 0.8829 + }, + { + "start": 7176.82, + "end": 7181.18, + "probability": 0.8279 + }, + { + "start": 7181.84, + "end": 7184.14, + "probability": 0.6826 + }, + { + "start": 7185.16, + "end": 7192.98, + "probability": 0.9763 + }, + { + "start": 7193.4, + "end": 7194.9, + "probability": 0.8966 + }, + { + "start": 7195.34, + "end": 7196.76, + "probability": 0.7642 + }, + { + "start": 7198.14, + "end": 7202.78, + "probability": 0.9892 + }, + { + "start": 7203.64, + "end": 7206.44, + "probability": 0.9531 + }, + { + "start": 7207.58, + "end": 7211.66, + "probability": 0.8558 + }, + { + "start": 7212.84, + "end": 7215.32, + "probability": 0.9961 + }, + { + "start": 7216.0, + "end": 7217.04, + "probability": 0.9703 + }, + { + "start": 7217.68, + "end": 7219.72, + "probability": 0.9365 + }, + { + "start": 7220.58, + "end": 7223.6, + "probability": 0.8623 + }, + { + "start": 7224.14, + "end": 7228.48, + "probability": 0.8205 + }, + { + "start": 7230.2, + "end": 7234.66, + "probability": 0.1136 + }, + { + "start": 7236.02, + "end": 7236.58, + "probability": 0.1996 + }, + { + "start": 7239.18, + "end": 7241.7, + "probability": 0.0948 + }, + { + "start": 7242.26, + "end": 7245.66, + "probability": 0.1891 + }, + { + "start": 7247.56, + "end": 7248.4, + "probability": 0.7292 + }, + { + "start": 7248.68, + "end": 7252.22, + "probability": 0.8609 + }, + { + "start": 7262.96, + "end": 7265.2, + "probability": 0.1574 + }, + { + "start": 7279.78, + "end": 7281.3, + "probability": 0.7252 + }, + { + "start": 7282.98, + "end": 7286.76, + "probability": 0.9668 + }, + { + "start": 7287.62, + "end": 7288.7, + "probability": 0.9385 + }, + { + "start": 7289.6, + "end": 7290.24, + "probability": 0.9439 + }, + { + "start": 7291.44, + "end": 7291.98, + "probability": 0.8612 + }, + { + "start": 7292.74, + "end": 7294.7, + "probability": 0.6512 + }, + { + "start": 7296.22, + "end": 7298.02, + "probability": 0.8997 + }, + { + "start": 7299.18, + "end": 7304.64, + "probability": 0.9771 + }, + { + "start": 7305.68, + "end": 7309.98, + "probability": 0.9663 + }, + { + "start": 7310.96, + "end": 7312.52, + "probability": 0.9579 + }, + { + "start": 7313.56, + "end": 7315.2, + "probability": 0.9212 + }, + { + "start": 7315.9, + "end": 7322.28, + "probability": 0.9793 + }, + { + "start": 7323.16, + "end": 7327.64, + "probability": 0.9936 + }, + { + "start": 7328.28, + "end": 7332.06, + "probability": 0.9117 + }, + { + "start": 7333.08, + "end": 7335.43, + "probability": 0.8555 + }, + { + "start": 7336.52, + "end": 7337.96, + "probability": 0.5976 + }, + { + "start": 7338.92, + "end": 7342.03, + "probability": 0.9197 + }, + { + "start": 7342.94, + "end": 7344.96, + "probability": 0.9636 + }, + { + "start": 7346.28, + "end": 7346.84, + "probability": 0.4602 + }, + { + "start": 7347.06, + "end": 7348.76, + "probability": 0.4827 + }, + { + "start": 7348.84, + "end": 7349.84, + "probability": 0.7191 + }, + { + "start": 7349.92, + "end": 7350.66, + "probability": 0.967 + }, + { + "start": 7350.86, + "end": 7352.63, + "probability": 0.8096 + }, + { + "start": 7354.08, + "end": 7360.8, + "probability": 0.8757 + }, + { + "start": 7361.04, + "end": 7362.76, + "probability": 0.8951 + }, + { + "start": 7375.62, + "end": 7384.02, + "probability": 0.7374 + }, + { + "start": 7386.34, + "end": 7386.8, + "probability": 0.786 + }, + { + "start": 7387.9, + "end": 7388.04, + "probability": 0.0066 + }, + { + "start": 7388.64, + "end": 7389.52, + "probability": 0.6875 + }, + { + "start": 7390.34, + "end": 7390.74, + "probability": 0.938 + }, + { + "start": 7391.56, + "end": 7392.76, + "probability": 0.8368 + }, + { + "start": 7394.0, + "end": 7394.54, + "probability": 0.9753 + }, + { + "start": 7395.44, + "end": 7396.66, + "probability": 0.6619 + }, + { + "start": 7397.34, + "end": 7397.76, + "probability": 0.9749 + }, + { + "start": 7398.58, + "end": 7399.48, + "probability": 0.8799 + }, + { + "start": 7400.36, + "end": 7400.64, + "probability": 0.5674 + }, + { + "start": 7401.38, + "end": 7402.28, + "probability": 0.7514 + }, + { + "start": 7403.36, + "end": 7403.82, + "probability": 0.9368 + }, + { + "start": 7404.94, + "end": 7405.82, + "probability": 0.6488 + }, + { + "start": 7406.74, + "end": 7409.48, + "probability": 0.965 + }, + { + "start": 7410.32, + "end": 7412.62, + "probability": 0.9377 + }, + { + "start": 7413.42, + "end": 7415.54, + "probability": 0.9902 + }, + { + "start": 7416.1, + "end": 7416.6, + "probability": 0.9956 + }, + { + "start": 7417.36, + "end": 7418.26, + "probability": 0.9871 + }, + { + "start": 7419.18, + "end": 7421.34, + "probability": 0.9945 + }, + { + "start": 7422.16, + "end": 7424.62, + "probability": 0.9932 + }, + { + "start": 7425.98, + "end": 7426.42, + "probability": 0.6947 + }, + { + "start": 7427.5, + "end": 7428.58, + "probability": 0.7144 + }, + { + "start": 7429.48, + "end": 7429.78, + "probability": 0.9172 + }, + { + "start": 7430.72, + "end": 7431.28, + "probability": 0.9412 + }, + { + "start": 7432.68, + "end": 7433.16, + "probability": 0.9743 + }, + { + "start": 7433.94, + "end": 7434.88, + "probability": 0.9794 + }, + { + "start": 7435.82, + "end": 7436.26, + "probability": 0.9783 + }, + { + "start": 7437.1, + "end": 7438.02, + "probability": 0.9399 + }, + { + "start": 7438.58, + "end": 7440.66, + "probability": 0.9688 + }, + { + "start": 7444.4, + "end": 7444.82, + "probability": 0.6658 + }, + { + "start": 7447.08, + "end": 7448.1, + "probability": 0.8778 + }, + { + "start": 7449.34, + "end": 7449.78, + "probability": 0.953 + }, + { + "start": 7451.32, + "end": 7452.16, + "probability": 0.9592 + }, + { + "start": 7453.12, + "end": 7453.52, + "probability": 0.992 + }, + { + "start": 7454.32, + "end": 7455.02, + "probability": 0.3967 + }, + { + "start": 7456.08, + "end": 7456.42, + "probability": 0.7058 + }, + { + "start": 7457.42, + "end": 7458.96, + "probability": 0.9879 + }, + { + "start": 7460.16, + "end": 7460.58, + "probability": 0.6849 + }, + { + "start": 7461.64, + "end": 7462.58, + "probability": 0.9661 + }, + { + "start": 7463.85, + "end": 7466.02, + "probability": 0.9751 + }, + { + "start": 7468.18, + "end": 7468.62, + "probability": 0.9787 + }, + { + "start": 7469.98, + "end": 7471.36, + "probability": 0.7822 + }, + { + "start": 7473.04, + "end": 7473.44, + "probability": 0.9751 + }, + { + "start": 7476.26, + "end": 7477.0, + "probability": 0.5999 + }, + { + "start": 7479.22, + "end": 7479.66, + "probability": 0.8491 + }, + { + "start": 7480.84, + "end": 7481.62, + "probability": 0.8314 + }, + { + "start": 7482.58, + "end": 7484.62, + "probability": 0.9616 + }, + { + "start": 7486.82, + "end": 7488.14, + "probability": 0.9149 + }, + { + "start": 7488.78, + "end": 7491.95, + "probability": 0.9819 + }, + { + "start": 7492.84, + "end": 7493.9, + "probability": 0.937 + }, + { + "start": 7495.24, + "end": 7495.74, + "probability": 0.9735 + }, + { + "start": 7496.46, + "end": 7497.5, + "probability": 0.9393 + }, + { + "start": 7498.54, + "end": 7499.02, + "probability": 0.9814 + }, + { + "start": 7500.0, + "end": 7500.86, + "probability": 0.9522 + }, + { + "start": 7502.46, + "end": 7502.7, + "probability": 0.0017 + }, + { + "start": 7505.84, + "end": 7506.92, + "probability": 0.5095 + }, + { + "start": 7507.52, + "end": 7508.6, + "probability": 0.5209 + }, + { + "start": 7509.66, + "end": 7510.28, + "probability": 0.8007 + }, + { + "start": 7511.28, + "end": 7512.18, + "probability": 0.9111 + }, + { + "start": 7515.1, + "end": 7517.06, + "probability": 0.8521 + }, + { + "start": 7518.56, + "end": 7518.98, + "probability": 0.9568 + }, + { + "start": 7520.16, + "end": 7521.16, + "probability": 0.9322 + }, + { + "start": 7522.02, + "end": 7522.52, + "probability": 0.9692 + }, + { + "start": 7523.44, + "end": 7524.16, + "probability": 0.9733 + }, + { + "start": 7524.96, + "end": 7525.36, + "probability": 0.9778 + }, + { + "start": 7526.32, + "end": 7527.64, + "probability": 0.946 + }, + { + "start": 7528.54, + "end": 7528.92, + "probability": 0.991 + }, + { + "start": 7529.68, + "end": 7530.9, + "probability": 0.9791 + }, + { + "start": 7531.54, + "end": 7534.36, + "probability": 0.4087 + }, + { + "start": 7535.28, + "end": 7535.8, + "probability": 0.7296 + }, + { + "start": 7536.7, + "end": 7537.66, + "probability": 0.6703 + }, + { + "start": 7538.88, + "end": 7539.4, + "probability": 0.8179 + }, + { + "start": 7540.24, + "end": 7541.16, + "probability": 0.5053 + }, + { + "start": 7542.68, + "end": 7543.24, + "probability": 0.9878 + }, + { + "start": 7544.12, + "end": 7544.66, + "probability": 0.889 + }, + { + "start": 7549.74, + "end": 7550.76, + "probability": 0.9621 + }, + { + "start": 7552.12, + "end": 7553.6, + "probability": 0.9391 + }, + { + "start": 7554.58, + "end": 7555.12, + "probability": 0.9919 + }, + { + "start": 7556.0, + "end": 7557.24, + "probability": 0.9413 + }, + { + "start": 7562.26, + "end": 7562.72, + "probability": 0.7452 + }, + { + "start": 7564.08, + "end": 7565.3, + "probability": 0.5156 + }, + { + "start": 7572.48, + "end": 7572.98, + "probability": 0.7874 + }, + { + "start": 7573.74, + "end": 7576.62, + "probability": 0.337 + }, + { + "start": 7577.54, + "end": 7580.02, + "probability": 0.7896 + }, + { + "start": 7585.76, + "end": 7586.38, + "probability": 0.8383 + }, + { + "start": 7589.68, + "end": 7590.5, + "probability": 0.5343 + }, + { + "start": 7592.28, + "end": 7592.76, + "probability": 0.8944 + }, + { + "start": 7594.34, + "end": 7595.42, + "probability": 0.9062 + }, + { + "start": 7596.41, + "end": 7598.7, + "probability": 0.9727 + }, + { + "start": 7600.24, + "end": 7602.8, + "probability": 0.728 + }, + { + "start": 7603.58, + "end": 7604.0, + "probability": 0.9116 + }, + { + "start": 7604.92, + "end": 7606.2, + "probability": 0.9848 + }, + { + "start": 7606.86, + "end": 7607.34, + "probability": 0.9521 + }, + { + "start": 7608.26, + "end": 7608.84, + "probability": 0.9871 + }, + { + "start": 7609.6, + "end": 7610.02, + "probability": 0.8484 + }, + { + "start": 7610.9, + "end": 7611.8, + "probability": 0.9974 + }, + { + "start": 7613.2, + "end": 7614.42, + "probability": 0.9499 + }, + { + "start": 7615.34, + "end": 7616.72, + "probability": 0.9446 + }, + { + "start": 7617.84, + "end": 7618.18, + "probability": 0.7393 + }, + { + "start": 7618.94, + "end": 7619.86, + "probability": 0.7413 + }, + { + "start": 7621.92, + "end": 7622.9, + "probability": 0.8895 + }, + { + "start": 7623.66, + "end": 7624.58, + "probability": 0.8697 + }, + { + "start": 7625.36, + "end": 7625.8, + "probability": 0.6414 + }, + { + "start": 7626.74, + "end": 7627.42, + "probability": 0.9566 + }, + { + "start": 7630.68, + "end": 7633.4, + "probability": 0.9722 + }, + { + "start": 7634.54, + "end": 7635.34, + "probability": 0.9589 + }, + { + "start": 7636.33, + "end": 7638.34, + "probability": 0.9753 + }, + { + "start": 7639.18, + "end": 7639.64, + "probability": 0.9832 + }, + { + "start": 7641.16, + "end": 7642.6, + "probability": 0.6048 + }, + { + "start": 7643.36, + "end": 7643.8, + "probability": 0.9893 + }, + { + "start": 7644.62, + "end": 7645.64, + "probability": 0.8875 + }, + { + "start": 7646.42, + "end": 7646.7, + "probability": 0.7 + }, + { + "start": 7647.64, + "end": 7648.3, + "probability": 0.8356 + }, + { + "start": 7651.1, + "end": 7652.2, + "probability": 0.416 + }, + { + "start": 7653.54, + "end": 7653.94, + "probability": 0.5565 + }, + { + "start": 7655.22, + "end": 7656.1, + "probability": 0.7751 + }, + { + "start": 7660.4, + "end": 7660.64, + "probability": 0.547 + }, + { + "start": 7661.78, + "end": 7663.32, + "probability": 0.5444 + }, + { + "start": 7665.66, + "end": 7666.06, + "probability": 0.7858 + }, + { + "start": 7667.14, + "end": 7668.2, + "probability": 0.8729 + }, + { + "start": 7669.14, + "end": 7671.28, + "probability": 0.9434 + }, + { + "start": 7672.48, + "end": 7673.36, + "probability": 0.9074 + }, + { + "start": 7673.98, + "end": 7674.8, + "probability": 0.9812 + }, + { + "start": 7676.06, + "end": 7678.6, + "probability": 0.9321 + }, + { + "start": 7679.44, + "end": 7680.0, + "probability": 0.9233 + }, + { + "start": 7680.64, + "end": 7681.94, + "probability": 0.9567 + }, + { + "start": 7684.08, + "end": 7685.28, + "probability": 0.3389 + }, + { + "start": 7688.7, + "end": 7690.12, + "probability": 0.0851 + }, + { + "start": 7691.32, + "end": 7691.76, + "probability": 0.516 + }, + { + "start": 7692.9, + "end": 7694.2, + "probability": 0.8896 + }, + { + "start": 7694.9, + "end": 7695.28, + "probability": 0.8809 + }, + { + "start": 7695.84, + "end": 7697.02, + "probability": 0.7406 + }, + { + "start": 7698.98, + "end": 7704.96, + "probability": 0.9587 + }, + { + "start": 7706.68, + "end": 7707.1, + "probability": 0.9915 + }, + { + "start": 7708.04, + "end": 7708.84, + "probability": 0.9801 + }, + { + "start": 7709.9, + "end": 7712.4, + "probability": 0.9756 + }, + { + "start": 7714.54, + "end": 7714.92, + "probability": 0.9854 + }, + { + "start": 7716.34, + "end": 7717.72, + "probability": 0.5407 + }, + { + "start": 7718.54, + "end": 7718.84, + "probability": 0.7363 + }, + { + "start": 7719.74, + "end": 7720.88, + "probability": 0.8756 + }, + { + "start": 7721.88, + "end": 7722.24, + "probability": 0.6138 + }, + { + "start": 7723.2, + "end": 7724.22, + "probability": 0.9321 + }, + { + "start": 7726.36, + "end": 7726.86, + "probability": 0.9618 + }, + { + "start": 7728.54, + "end": 7729.94, + "probability": 0.9925 + }, + { + "start": 7730.86, + "end": 7731.28, + "probability": 0.9658 + }, + { + "start": 7732.24, + "end": 7732.68, + "probability": 0.7823 + }, + { + "start": 7734.02, + "end": 7734.54, + "probability": 0.988 + }, + { + "start": 7735.24, + "end": 7736.5, + "probability": 0.9659 + }, + { + "start": 7737.6, + "end": 7738.12, + "probability": 0.994 + }, + { + "start": 7738.92, + "end": 7739.84, + "probability": 0.9635 + }, + { + "start": 7740.86, + "end": 7741.24, + "probability": 0.9858 + }, + { + "start": 7742.24, + "end": 7743.1, + "probability": 0.5236 + }, + { + "start": 7746.0, + "end": 7748.28, + "probability": 0.3887 + }, + { + "start": 7750.2, + "end": 7750.7, + "probability": 0.5967 + }, + { + "start": 7754.92, + "end": 7755.32, + "probability": 0.514 + }, + { + "start": 7758.54, + "end": 7759.04, + "probability": 0.964 + }, + { + "start": 7760.8, + "end": 7761.86, + "probability": 0.4823 + }, + { + "start": 7763.22, + "end": 7763.78, + "probability": 0.9806 + }, + { + "start": 7764.66, + "end": 7766.08, + "probability": 0.8384 + }, + { + "start": 7767.08, + "end": 7767.54, + "probability": 0.7759 + }, + { + "start": 7768.52, + "end": 7769.9, + "probability": 0.8482 + }, + { + "start": 7772.28, + "end": 7772.7, + "probability": 0.9979 + }, + { + "start": 7774.78, + "end": 7775.88, + "probability": 0.9892 + }, + { + "start": 7777.24, + "end": 7777.72, + "probability": 0.9948 + }, + { + "start": 7778.64, + "end": 7779.64, + "probability": 0.9709 + }, + { + "start": 7781.58, + "end": 7782.08, + "probability": 0.9984 + }, + { + "start": 7783.26, + "end": 7784.42, + "probability": 0.3598 + }, + { + "start": 7785.14, + "end": 7785.58, + "probability": 0.7007 + }, + { + "start": 7788.34, + "end": 7789.54, + "probability": 0.6702 + }, + { + "start": 7792.0, + "end": 7792.42, + "probability": 0.7864 + }, + { + "start": 7794.15, + "end": 7796.2, + "probability": 0.9004 + }, + { + "start": 7797.28, + "end": 7797.72, + "probability": 0.9442 + }, + { + "start": 7798.78, + "end": 7799.9, + "probability": 0.777 + }, + { + "start": 7801.44, + "end": 7801.86, + "probability": 0.979 + }, + { + "start": 7802.78, + "end": 7803.86, + "probability": 0.9233 + }, + { + "start": 7805.18, + "end": 7805.64, + "probability": 0.9937 + }, + { + "start": 7806.78, + "end": 7811.58, + "probability": 0.9671 + }, + { + "start": 7812.94, + "end": 7814.14, + "probability": 0.8424 + }, + { + "start": 7815.6, + "end": 7816.08, + "probability": 0.7099 + }, + { + "start": 7817.32, + "end": 7818.4, + "probability": 0.7404 + }, + { + "start": 7822.8, + "end": 7823.24, + "probability": 0.6499 + }, + { + "start": 7824.5, + "end": 7825.46, + "probability": 0.9195 + }, + { + "start": 7826.58, + "end": 7827.1, + "probability": 0.9235 + }, + { + "start": 7827.96, + "end": 7829.32, + "probability": 0.9571 + }, + { + "start": 7830.12, + "end": 7830.62, + "probability": 0.9944 + }, + { + "start": 7831.38, + "end": 7832.22, + "probability": 0.9661 + }, + { + "start": 7833.48, + "end": 7833.96, + "probability": 0.9946 + }, + { + "start": 7834.72, + "end": 7835.9, + "probability": 0.9469 + }, + { + "start": 7837.78, + "end": 7838.34, + "probability": 0.9946 + }, + { + "start": 7839.72, + "end": 7841.12, + "probability": 0.9221 + }, + { + "start": 7843.4, + "end": 7844.04, + "probability": 0.0158 + }, + { + "start": 7855.3, + "end": 7856.6, + "probability": 0.451 + }, + { + "start": 7857.74, + "end": 7858.08, + "probability": 0.7468 + }, + { + "start": 7859.58, + "end": 7860.36, + "probability": 0.8225 + }, + { + "start": 7861.92, + "end": 7865.1, + "probability": 0.865 + }, + { + "start": 7867.84, + "end": 7871.08, + "probability": 0.9611 + }, + { + "start": 7871.88, + "end": 7873.36, + "probability": 0.8199 + }, + { + "start": 7874.34, + "end": 7874.66, + "probability": 0.6893 + }, + { + "start": 7876.9, + "end": 7878.24, + "probability": 0.8143 + }, + { + "start": 7879.22, + "end": 7879.62, + "probability": 0.9189 + }, + { + "start": 7880.42, + "end": 7880.92, + "probability": 0.9297 + }, + { + "start": 7882.76, + "end": 7884.44, + "probability": 0.9788 + }, + { + "start": 7885.02, + "end": 7886.3, + "probability": 0.8633 + }, + { + "start": 7887.46, + "end": 7891.82, + "probability": 0.5862 + }, + { + "start": 7894.28, + "end": 7896.32, + "probability": 0.4471 + }, + { + "start": 7897.58, + "end": 7898.56, + "probability": 0.7403 + }, + { + "start": 7899.38, + "end": 7899.7, + "probability": 0.9095 + }, + { + "start": 7900.5, + "end": 7901.86, + "probability": 0.7017 + }, + { + "start": 7906.94, + "end": 7907.58, + "probability": 0.9871 + }, + { + "start": 7908.9, + "end": 7910.1, + "probability": 0.8523 + }, + { + "start": 7912.38, + "end": 7914.92, + "probability": 0.9303 + }, + { + "start": 7915.5, + "end": 7916.8, + "probability": 0.8521 + }, + { + "start": 7917.8, + "end": 7918.32, + "probability": 0.9362 + }, + { + "start": 7919.2, + "end": 7920.36, + "probability": 0.8906 + }, + { + "start": 7921.32, + "end": 7921.8, + "probability": 0.9889 + }, + { + "start": 7923.16, + "end": 7923.94, + "probability": 0.4978 + }, + { + "start": 7925.18, + "end": 7925.74, + "probability": 0.9582 + }, + { + "start": 7926.48, + "end": 7927.7, + "probability": 0.653 + }, + { + "start": 7930.1, + "end": 7931.52, + "probability": 0.986 + }, + { + "start": 7935.68, + "end": 7937.94, + "probability": 0.5544 + }, + { + "start": 7938.06, + "end": 7941.44, + "probability": 0.9335 + }, + { + "start": 7944.02, + "end": 7945.84, + "probability": 0.3728 + }, + { + "start": 7947.32, + "end": 7949.42, + "probability": 0.9298 + }, + { + "start": 7950.18, + "end": 7951.18, + "probability": 0.7672 + }, + { + "start": 7952.22, + "end": 7952.92, + "probability": 0.9639 + }, + { + "start": 7953.82, + "end": 7955.4, + "probability": 0.8046 + }, + { + "start": 7956.72, + "end": 7957.72, + "probability": 0.9923 + }, + { + "start": 7958.62, + "end": 7959.96, + "probability": 0.9117 + }, + { + "start": 7961.42, + "end": 7962.28, + "probability": 0.9932 + }, + { + "start": 7968.1, + "end": 7969.36, + "probability": 0.6262 + }, + { + "start": 7971.0, + "end": 7973.64, + "probability": 0.8028 + }, + { + "start": 7974.68, + "end": 7976.22, + "probability": 0.9422 + }, + { + "start": 7977.14, + "end": 7978.28, + "probability": 0.9887 + }, + { + "start": 7979.36, + "end": 7980.42, + "probability": 0.9698 + }, + { + "start": 7981.58, + "end": 7982.34, + "probability": 0.9715 + }, + { + "start": 7983.79, + "end": 7990.1, + "probability": 0.9756 + }, + { + "start": 7991.26, + "end": 7991.62, + "probability": 0.5839 + }, + { + "start": 7991.74, + "end": 7992.94, + "probability": 0.5286 + }, + { + "start": 7992.96, + "end": 7994.22, + "probability": 0.8185 + }, + { + "start": 7995.18, + "end": 7997.55, + "probability": 0.1279 + }, + { + "start": 8020.86, + "end": 8022.32, + "probability": 0.1118 + }, + { + "start": 8059.22, + "end": 8060.16, + "probability": 0.073 + }, + { + "start": 8119.6, + "end": 8125.6, + "probability": 0.6301 + }, + { + "start": 8125.8, + "end": 8127.86, + "probability": 0.8189 + }, + { + "start": 8128.42, + "end": 8129.86, + "probability": 0.7958 + }, + { + "start": 8130.16, + "end": 8132.88, + "probability": 0.7983 + }, + { + "start": 8136.02, + "end": 8139.44, + "probability": 0.7115 + }, + { + "start": 8139.54, + "end": 8139.76, + "probability": 0.7429 + }, + { + "start": 8152.76, + "end": 8153.25, + "probability": 0.7974 + }, + { + "start": 8154.32, + "end": 8157.42, + "probability": 0.9901 + }, + { + "start": 8157.54, + "end": 8158.58, + "probability": 0.9917 + }, + { + "start": 8159.7, + "end": 8160.3, + "probability": 0.8248 + }, + { + "start": 8160.72, + "end": 8162.12, + "probability": 0.9859 + }, + { + "start": 8162.64, + "end": 8163.04, + "probability": 0.2368 + }, + { + "start": 8165.42, + "end": 8165.8, + "probability": 0.8909 + }, + { + "start": 8167.4, + "end": 8167.96, + "probability": 0.6559 + }, + { + "start": 8170.16, + "end": 8170.56, + "probability": 0.652 + }, + { + "start": 8171.18, + "end": 8173.18, + "probability": 0.4696 + }, + { + "start": 8174.32, + "end": 8176.38, + "probability": 0.9591 + }, + { + "start": 8177.2, + "end": 8177.86, + "probability": 0.9592 + }, + { + "start": 8178.84, + "end": 8179.62, + "probability": 0.9378 + }, + { + "start": 8180.56, + "end": 8181.14, + "probability": 0.9536 + }, + { + "start": 8181.76, + "end": 8182.74, + "probability": 0.6935 + }, + { + "start": 8183.74, + "end": 8186.08, + "probability": 0.9614 + }, + { + "start": 8186.68, + "end": 8188.82, + "probability": 0.9619 + }, + { + "start": 8193.2, + "end": 8194.0, + "probability": 0.8851 + }, + { + "start": 8195.44, + "end": 8196.3, + "probability": 0.8467 + }, + { + "start": 8197.24, + "end": 8197.7, + "probability": 0.6503 + }, + { + "start": 8198.64, + "end": 8199.6, + "probability": 0.9224 + }, + { + "start": 8201.44, + "end": 8203.32, + "probability": 0.9834 + }, + { + "start": 8204.26, + "end": 8206.92, + "probability": 0.9868 + }, + { + "start": 8208.06, + "end": 8208.5, + "probability": 0.9455 + }, + { + "start": 8209.2, + "end": 8210.18, + "probability": 0.989 + }, + { + "start": 8210.84, + "end": 8212.72, + "probability": 0.9933 + }, + { + "start": 8213.52, + "end": 8214.0, + "probability": 0.9727 + }, + { + "start": 8214.7, + "end": 8215.48, + "probability": 0.9957 + }, + { + "start": 8216.64, + "end": 8217.04, + "probability": 0.9976 + }, + { + "start": 8218.24, + "end": 8219.2, + "probability": 0.3859 + }, + { + "start": 8220.06, + "end": 8220.38, + "probability": 0.7207 + }, + { + "start": 8221.94, + "end": 8222.8, + "probability": 0.6462 + }, + { + "start": 8225.8, + "end": 8226.2, + "probability": 0.6381 + }, + { + "start": 8227.42, + "end": 8228.38, + "probability": 0.8804 + }, + { + "start": 8229.38, + "end": 8231.18, + "probability": 0.9432 + }, + { + "start": 8232.52, + "end": 8233.04, + "probability": 0.9723 + }, + { + "start": 8233.6, + "end": 8234.26, + "probability": 0.99 + }, + { + "start": 8234.96, + "end": 8235.34, + "probability": 0.9152 + }, + { + "start": 8236.02, + "end": 8237.08, + "probability": 0.9932 + }, + { + "start": 8238.1, + "end": 8238.48, + "probability": 0.9702 + }, + { + "start": 8239.22, + "end": 8240.04, + "probability": 0.9753 + }, + { + "start": 8241.32, + "end": 8241.7, + "probability": 0.9846 + }, + { + "start": 8242.4, + "end": 8243.34, + "probability": 0.9858 + }, + { + "start": 8244.78, + "end": 8245.16, + "probability": 0.9626 + }, + { + "start": 8246.1, + "end": 8247.76, + "probability": 0.7947 + }, + { + "start": 8248.98, + "end": 8249.46, + "probability": 0.9598 + }, + { + "start": 8250.32, + "end": 8251.04, + "probability": 0.6024 + }, + { + "start": 8252.6, + "end": 8254.76, + "probability": 0.6006 + }, + { + "start": 8255.66, + "end": 8256.48, + "probability": 0.8642 + }, + { + "start": 8260.16, + "end": 8262.06, + "probability": 0.943 + }, + { + "start": 8263.32, + "end": 8263.78, + "probability": 0.9818 + }, + { + "start": 8264.38, + "end": 8265.1, + "probability": 0.8348 + }, + { + "start": 8266.21, + "end": 8268.86, + "probability": 0.9897 + }, + { + "start": 8272.37, + "end": 8274.82, + "probability": 0.3255 + }, + { + "start": 8288.06, + "end": 8289.14, + "probability": 0.3179 + }, + { + "start": 8290.3, + "end": 8292.24, + "probability": 0.6833 + }, + { + "start": 8293.74, + "end": 8294.18, + "probability": 0.824 + }, + { + "start": 8295.58, + "end": 8296.46, + "probability": 0.9023 + }, + { + "start": 8297.5, + "end": 8298.42, + "probability": 0.8378 + }, + { + "start": 8299.42, + "end": 8300.36, + "probability": 0.9148 + }, + { + "start": 8302.38, + "end": 8304.2, + "probability": 0.665 + }, + { + "start": 8304.8, + "end": 8304.92, + "probability": 0.051 + }, + { + "start": 8306.12, + "end": 8308.38, + "probability": 0.4983 + }, + { + "start": 8309.3, + "end": 8310.78, + "probability": 0.4706 + }, + { + "start": 8311.82, + "end": 8313.6, + "probability": 0.9452 + }, + { + "start": 8315.12, + "end": 8317.0, + "probability": 0.9722 + }, + { + "start": 8317.94, + "end": 8318.38, + "probability": 0.909 + }, + { + "start": 8319.36, + "end": 8320.36, + "probability": 0.7949 + }, + { + "start": 8321.77, + "end": 8323.72, + "probability": 0.664 + }, + { + "start": 8324.4, + "end": 8324.88, + "probability": 0.9661 + }, + { + "start": 8325.48, + "end": 8329.22, + "probability": 0.8704 + }, + { + "start": 8330.04, + "end": 8331.32, + "probability": 0.9448 + }, + { + "start": 8332.82, + "end": 8333.3, + "probability": 0.9925 + }, + { + "start": 8334.52, + "end": 8335.72, + "probability": 0.7662 + }, + { + "start": 8337.0, + "end": 8337.72, + "probability": 0.5827 + }, + { + "start": 8339.7, + "end": 8341.06, + "probability": 0.7756 + }, + { + "start": 8342.68, + "end": 8343.06, + "probability": 0.9663 + }, + { + "start": 8344.8, + "end": 8345.74, + "probability": 0.5722 + }, + { + "start": 8346.66, + "end": 8347.1, + "probability": 0.8768 + }, + { + "start": 8347.64, + "end": 8348.78, + "probability": 0.8569 + }, + { + "start": 8350.28, + "end": 8351.08, + "probability": 0.9477 + }, + { + "start": 8351.72, + "end": 8352.74, + "probability": 0.745 + }, + { + "start": 8353.74, + "end": 8354.28, + "probability": 0.9865 + }, + { + "start": 8355.08, + "end": 8355.6, + "probability": 0.9849 + }, + { + "start": 8357.82, + "end": 8358.24, + "probability": 0.9839 + }, + { + "start": 8360.12, + "end": 8360.92, + "probability": 0.9636 + }, + { + "start": 8362.0, + "end": 8362.54, + "probability": 0.9961 + }, + { + "start": 8363.64, + "end": 8365.98, + "probability": 0.194 + }, + { + "start": 8366.7, + "end": 8367.48, + "probability": 0.9688 + }, + { + "start": 8368.8, + "end": 8369.18, + "probability": 0.8249 + }, + { + "start": 8369.82, + "end": 8370.54, + "probability": 0.8781 + }, + { + "start": 8372.74, + "end": 8376.22, + "probability": 0.8975 + }, + { + "start": 8376.8, + "end": 8377.26, + "probability": 0.9095 + }, + { + "start": 8378.04, + "end": 8379.28, + "probability": 0.9446 + }, + { + "start": 8380.3, + "end": 8380.84, + "probability": 0.9844 + }, + { + "start": 8381.9, + "end": 8382.74, + "probability": 0.9713 + }, + { + "start": 8383.72, + "end": 8384.12, + "probability": 0.9839 + }, + { + "start": 8384.9, + "end": 8385.66, + "probability": 0.9841 + }, + { + "start": 8386.44, + "end": 8388.32, + "probability": 0.9929 + }, + { + "start": 8390.1, + "end": 8390.42, + "probability": 0.991 + }, + { + "start": 8391.22, + "end": 8392.04, + "probability": 0.975 + }, + { + "start": 8392.98, + "end": 8393.08, + "probability": 0.9548 + }, + { + "start": 8398.9, + "end": 8399.26, + "probability": 0.7001 + }, + { + "start": 8400.42, + "end": 8400.74, + "probability": 0.8389 + }, + { + "start": 8403.58, + "end": 8404.72, + "probability": 0.5167 + }, + { + "start": 8405.98, + "end": 8407.62, + "probability": 0.8307 + }, + { + "start": 8408.68, + "end": 8409.16, + "probability": 0.9676 + }, + { + "start": 8409.94, + "end": 8411.26, + "probability": 0.8307 + }, + { + "start": 8415.54, + "end": 8417.56, + "probability": 0.8736 + }, + { + "start": 8420.46, + "end": 8420.82, + "probability": 0.6582 + }, + { + "start": 8422.36, + "end": 8423.16, + "probability": 0.8343 + }, + { + "start": 8424.52, + "end": 8424.96, + "probability": 0.9855 + }, + { + "start": 8425.48, + "end": 8426.36, + "probability": 0.9775 + }, + { + "start": 8427.2, + "end": 8427.64, + "probability": 0.9792 + }, + { + "start": 8428.36, + "end": 8429.22, + "probability": 0.9402 + }, + { + "start": 8431.74, + "end": 8432.28, + "probability": 0.7742 + }, + { + "start": 8433.38, + "end": 8434.16, + "probability": 0.7849 + }, + { + "start": 8435.24, + "end": 8435.62, + "probability": 0.9193 + }, + { + "start": 8436.2, + "end": 8437.4, + "probability": 0.9457 + }, + { + "start": 8446.44, + "end": 8447.68, + "probability": 0.6799 + }, + { + "start": 8448.42, + "end": 8449.58, + "probability": 0.6838 + }, + { + "start": 8450.68, + "end": 8451.1, + "probability": 0.9632 + }, + { + "start": 8451.98, + "end": 8453.06, + "probability": 0.8392 + }, + { + "start": 8455.32, + "end": 8455.72, + "probability": 0.8728 + }, + { + "start": 8457.04, + "end": 8457.96, + "probability": 0.9052 + }, + { + "start": 8459.32, + "end": 8459.8, + "probability": 0.9694 + }, + { + "start": 8460.82, + "end": 8461.96, + "probability": 0.6528 + }, + { + "start": 8466.5, + "end": 8466.88, + "probability": 0.9162 + }, + { + "start": 8470.52, + "end": 8471.7, + "probability": 0.7345 + }, + { + "start": 8472.52, + "end": 8472.86, + "probability": 0.9814 + }, + { + "start": 8473.58, + "end": 8474.78, + "probability": 0.8328 + }, + { + "start": 8475.54, + "end": 8475.9, + "probability": 0.8445 + }, + { + "start": 8477.02, + "end": 8477.82, + "probability": 0.9564 + }, + { + "start": 8479.14, + "end": 8481.14, + "probability": 0.9906 + }, + { + "start": 8482.14, + "end": 8484.64, + "probability": 0.8203 + }, + { + "start": 8485.32, + "end": 8485.8, + "probability": 0.9694 + }, + { + "start": 8486.96, + "end": 8488.22, + "probability": 0.9856 + }, + { + "start": 8489.4, + "end": 8489.78, + "probability": 0.9912 + }, + { + "start": 8490.52, + "end": 8491.62, + "probability": 0.8814 + }, + { + "start": 8492.88, + "end": 8495.76, + "probability": 0.9064 + }, + { + "start": 8498.16, + "end": 8499.1, + "probability": 0.6838 + }, + { + "start": 8500.38, + "end": 8500.62, + "probability": 0.8601 + }, + { + "start": 8502.08, + "end": 8502.46, + "probability": 0.7852 + }, + { + "start": 8503.92, + "end": 8504.46, + "probability": 0.9899 + }, + { + "start": 8505.78, + "end": 8506.7, + "probability": 0.8124 + }, + { + "start": 8507.54, + "end": 8509.56, + "probability": 0.9767 + }, + { + "start": 8513.16, + "end": 8514.34, + "probability": 0.6589 + }, + { + "start": 8515.04, + "end": 8515.8, + "probability": 0.6685 + }, + { + "start": 8517.22, + "end": 8519.48, + "probability": 0.9403 + }, + { + "start": 8521.62, + "end": 8522.16, + "probability": 0.8695 + }, + { + "start": 8523.22, + "end": 8524.42, + "probability": 0.7356 + }, + { + "start": 8525.52, + "end": 8525.96, + "probability": 0.8174 + }, + { + "start": 8526.78, + "end": 8528.04, + "probability": 0.8208 + }, + { + "start": 8529.04, + "end": 8529.54, + "probability": 0.9514 + }, + { + "start": 8530.22, + "end": 8531.6, + "probability": 0.8264 + }, + { + "start": 8533.34, + "end": 8535.3, + "probability": 0.9568 + }, + { + "start": 8537.88, + "end": 8538.36, + "probability": 0.9575 + }, + { + "start": 8539.66, + "end": 8540.4, + "probability": 0.5577 + }, + { + "start": 8541.54, + "end": 8541.8, + "probability": 0.5717 + }, + { + "start": 8542.92, + "end": 8543.44, + "probability": 0.4603 + }, + { + "start": 8546.16, + "end": 8547.2, + "probability": 0.9548 + }, + { + "start": 8549.32, + "end": 8549.96, + "probability": 0.9305 + }, + { + "start": 8551.92, + "end": 8552.2, + "probability": 0.8579 + }, + { + "start": 8553.32, + "end": 8554.64, + "probability": 0.911 + }, + { + "start": 8556.02, + "end": 8556.6, + "probability": 0.9834 + }, + { + "start": 8557.46, + "end": 8558.52, + "probability": 0.7162 + }, + { + "start": 8559.24, + "end": 8560.06, + "probability": 0.9546 + }, + { + "start": 8560.98, + "end": 8562.04, + "probability": 0.9518 + }, + { + "start": 8563.14, + "end": 8563.58, + "probability": 0.9725 + }, + { + "start": 8564.16, + "end": 8565.08, + "probability": 0.9176 + }, + { + "start": 8565.96, + "end": 8566.4, + "probability": 0.9945 + }, + { + "start": 8567.22, + "end": 8568.34, + "probability": 0.7631 + }, + { + "start": 8570.64, + "end": 8571.62, + "probability": 0.8027 + }, + { + "start": 8574.6, + "end": 8575.02, + "probability": 0.5941 + }, + { + "start": 8576.1, + "end": 8577.02, + "probability": 0.9365 + }, + { + "start": 8578.48, + "end": 8579.0, + "probability": 0.9548 + }, + { + "start": 8579.78, + "end": 8580.8, + "probability": 0.9661 + }, + { + "start": 8581.8, + "end": 8582.4, + "probability": 0.9868 + }, + { + "start": 8583.52, + "end": 8584.34, + "probability": 0.9887 + }, + { + "start": 8585.72, + "end": 8586.2, + "probability": 0.9944 + }, + { + "start": 8587.12, + "end": 8588.12, + "probability": 0.9609 + }, + { + "start": 8589.64, + "end": 8590.14, + "probability": 0.9925 + }, + { + "start": 8591.16, + "end": 8592.18, + "probability": 0.7723 + }, + { + "start": 8595.06, + "end": 8596.48, + "probability": 0.8826 + }, + { + "start": 8597.54, + "end": 8598.96, + "probability": 0.758 + }, + { + "start": 8600.28, + "end": 8600.64, + "probability": 0.8069 + }, + { + "start": 8601.48, + "end": 8602.82, + "probability": 0.9279 + }, + { + "start": 8603.84, + "end": 8604.38, + "probability": 0.9751 + }, + { + "start": 8604.94, + "end": 8605.72, + "probability": 0.9034 + }, + { + "start": 8606.64, + "end": 8607.18, + "probability": 0.9924 + }, + { + "start": 8607.7, + "end": 8609.0, + "probability": 0.9263 + }, + { + "start": 8610.22, + "end": 8611.2, + "probability": 0.9646 + }, + { + "start": 8611.86, + "end": 8613.4, + "probability": 0.8029 + }, + { + "start": 8615.16, + "end": 8615.68, + "probability": 0.998 + }, + { + "start": 8616.54, + "end": 8617.78, + "probability": 0.8916 + }, + { + "start": 8618.56, + "end": 8619.08, + "probability": 0.9932 + }, + { + "start": 8619.78, + "end": 8620.86, + "probability": 0.9572 + }, + { + "start": 8622.3, + "end": 8622.68, + "probability": 0.6898 + }, + { + "start": 8623.8, + "end": 8624.92, + "probability": 0.6084 + }, + { + "start": 8626.26, + "end": 8626.6, + "probability": 0.75 + }, + { + "start": 8627.66, + "end": 8628.52, + "probability": 0.7168 + }, + { + "start": 8629.44, + "end": 8631.7, + "probability": 0.969 + }, + { + "start": 8636.22, + "end": 8637.08, + "probability": 0.8984 + }, + { + "start": 8638.96, + "end": 8640.16, + "probability": 0.6242 + }, + { + "start": 8641.2, + "end": 8641.76, + "probability": 0.9891 + }, + { + "start": 8643.6, + "end": 8644.84, + "probability": 0.887 + }, + { + "start": 8648.26, + "end": 8649.04, + "probability": 0.8373 + }, + { + "start": 8650.08, + "end": 8651.46, + "probability": 0.8743 + }, + { + "start": 8652.08, + "end": 8656.1, + "probability": 0.7322 + }, + { + "start": 8657.36, + "end": 8659.2, + "probability": 0.8301 + }, + { + "start": 8668.04, + "end": 8668.5, + "probability": 0.6503 + }, + { + "start": 8670.78, + "end": 8672.02, + "probability": 0.4662 + }, + { + "start": 8679.88, + "end": 8680.8, + "probability": 0.5007 + }, + { + "start": 8680.82, + "end": 8684.82, + "probability": 0.9601 + }, + { + "start": 8686.46, + "end": 8687.78, + "probability": 0.368 + }, + { + "start": 8689.48, + "end": 8691.72, + "probability": 0.8684 + }, + { + "start": 8695.22, + "end": 8695.92, + "probability": 0.5885 + }, + { + "start": 8696.84, + "end": 8698.16, + "probability": 0.5765 + }, + { + "start": 8698.96, + "end": 8699.8, + "probability": 0.7841 + }, + { + "start": 8702.24, + "end": 8703.14, + "probability": 0.8217 + }, + { + "start": 8703.76, + "end": 8704.66, + "probability": 0.8853 + }, + { + "start": 8706.2, + "end": 8707.0, + "probability": 0.9815 + }, + { + "start": 8708.28, + "end": 8709.72, + "probability": 0.9444 + }, + { + "start": 8711.12, + "end": 8712.16, + "probability": 0.9722 + }, + { + "start": 8712.68, + "end": 8713.94, + "probability": 0.6916 + }, + { + "start": 8714.92, + "end": 8715.76, + "probability": 0.9915 + }, + { + "start": 8717.28, + "end": 8718.62, + "probability": 0.925 + }, + { + "start": 8719.24, + "end": 8721.44, + "probability": 0.8735 + }, + { + "start": 8724.38, + "end": 8725.8, + "probability": 0.7597 + }, + { + "start": 8727.08, + "end": 8728.92, + "probability": 0.7547 + }, + { + "start": 8729.96, + "end": 8731.08, + "probability": 0.9297 + }, + { + "start": 8731.8, + "end": 8733.98, + "probability": 0.9223 + }, + { + "start": 8736.2, + "end": 8736.78, + "probability": 0.828 + }, + { + "start": 8737.56, + "end": 8738.64, + "probability": 0.9526 + }, + { + "start": 8739.68, + "end": 8740.48, + "probability": 0.9935 + }, + { + "start": 8741.02, + "end": 8747.7, + "probability": 0.9507 + }, + { + "start": 8748.46, + "end": 8748.64, + "probability": 0.0475 + }, + { + "start": 8749.92, + "end": 8752.12, + "probability": 0.5091 + }, + { + "start": 8753.12, + "end": 8756.54, + "probability": 0.2777 + }, + { + "start": 8756.62, + "end": 8760.12, + "probability": 0.5844 + }, + { + "start": 8760.2, + "end": 8760.44, + "probability": 0.5658 + }, + { + "start": 8760.5, + "end": 8762.38, + "probability": 0.8651 + }, + { + "start": 8762.5, + "end": 8763.22, + "probability": 0.6488 + }, + { + "start": 8763.22, + "end": 8764.74, + "probability": 0.9055 + }, + { + "start": 8766.98, + "end": 8767.34, + "probability": 0.0025 + }, + { + "start": 8767.86, + "end": 8769.22, + "probability": 0.0373 + }, + { + "start": 8770.7, + "end": 8772.66, + "probability": 0.1313 + }, + { + "start": 8773.54, + "end": 8774.78, + "probability": 0.0256 + }, + { + "start": 8775.74, + "end": 8776.16, + "probability": 0.0111 + }, + { + "start": 8777.93, + "end": 8778.0, + "probability": 0.1094 + }, + { + "start": 8778.82, + "end": 8780.82, + "probability": 0.1862 + }, + { + "start": 8781.8, + "end": 8783.88, + "probability": 0.1707 + }, + { + "start": 8787.74, + "end": 8790.78, + "probability": 0.2564 + }, + { + "start": 8790.78, + "end": 8791.64, + "probability": 0.0968 + }, + { + "start": 8793.5, + "end": 8794.52, + "probability": 0.2653 + }, + { + "start": 8794.52, + "end": 8795.0, + "probability": 0.3879 + }, + { + "start": 8804.76, + "end": 8806.54, + "probability": 0.2479 + }, + { + "start": 8814.74, + "end": 8816.0, + "probability": 0.0124 + }, + { + "start": 8817.92, + "end": 8818.38, + "probability": 0.2136 + }, + { + "start": 8818.38, + "end": 8819.68, + "probability": 0.0211 + }, + { + "start": 8821.42, + "end": 8825.9, + "probability": 0.0664 + }, + { + "start": 8825.9, + "end": 8826.42, + "probability": 0.0169 + }, + { + "start": 8842.46, + "end": 8842.52, + "probability": 0.1067 + }, + { + "start": 8843.54, + "end": 8843.7, + "probability": 0.1025 + }, + { + "start": 8844.56, + "end": 8845.18, + "probability": 0.2201 + }, + { + "start": 8845.3, + "end": 8845.3, + "probability": 0.2274 + }, + { + "start": 8919.0, + "end": 8919.0, + "probability": 0.0 + }, + { + "start": 8919.0, + "end": 8919.0, + "probability": 0.0 + }, + { + "start": 8922.96, + "end": 8925.56, + "probability": 0.9957 + }, + { + "start": 8927.08, + "end": 8927.56, + "probability": 0.2698 + }, + { + "start": 8939.6, + "end": 8943.6, + "probability": 0.1134 + }, + { + "start": 8943.6, + "end": 8944.66, + "probability": 0.0936 + }, + { + "start": 8944.78, + "end": 8950.2, + "probability": 0.018 + }, + { + "start": 8950.24, + "end": 8951.12, + "probability": 0.302 + }, + { + "start": 9043.0, + "end": 9043.0, + "probability": 0.0 + }, + { + "start": 9043.0, + "end": 9043.0, + "probability": 0.0 + }, + { + "start": 9043.0, + "end": 9043.0, + "probability": 0.0 + }, + { + "start": 9043.0, + "end": 9043.0, + "probability": 0.0 + }, + { + "start": 9043.0, + "end": 9043.0, + "probability": 0.0 + }, + { + "start": 9044.3, + "end": 9045.62, + "probability": 0.8473 + }, + { + "start": 9046.16, + "end": 9047.7, + "probability": 0.84 + }, + { + "start": 9048.76, + "end": 9052.12, + "probability": 0.971 + }, + { + "start": 9052.82, + "end": 9054.34, + "probability": 0.7684 + }, + { + "start": 9055.96, + "end": 9057.06, + "probability": 0.986 + }, + { + "start": 9057.78, + "end": 9063.26, + "probability": 0.9945 + }, + { + "start": 9063.84, + "end": 9065.68, + "probability": 0.9846 + }, + { + "start": 9066.32, + "end": 9069.9, + "probability": 0.9823 + }, + { + "start": 9070.9, + "end": 9074.32, + "probability": 0.9204 + }, + { + "start": 9074.82, + "end": 9076.52, + "probability": 0.9733 + }, + { + "start": 9077.7, + "end": 9082.96, + "probability": 0.9824 + }, + { + "start": 9084.66, + "end": 9085.4, + "probability": 0.744 + }, + { + "start": 9086.14, + "end": 9089.52, + "probability": 0.9958 + }, + { + "start": 9090.56, + "end": 9092.82, + "probability": 0.7779 + }, + { + "start": 9093.24, + "end": 9095.56, + "probability": 0.9304 + }, + { + "start": 9096.86, + "end": 9101.08, + "probability": 0.9668 + }, + { + "start": 9101.08, + "end": 9103.3, + "probability": 0.9932 + }, + { + "start": 9104.26, + "end": 9106.4, + "probability": 0.5928 + }, + { + "start": 9107.0, + "end": 9107.66, + "probability": 0.8302 + }, + { + "start": 9108.2, + "end": 9111.29, + "probability": 0.9036 + }, + { + "start": 9112.54, + "end": 9112.64, + "probability": 0.4288 + }, + { + "start": 9113.06, + "end": 9114.9, + "probability": 0.9288 + }, + { + "start": 9115.8, + "end": 9117.9, + "probability": 0.9932 + }, + { + "start": 9118.46, + "end": 9119.34, + "probability": 0.9463 + }, + { + "start": 9120.08, + "end": 9121.84, + "probability": 0.8936 + }, + { + "start": 9122.52, + "end": 9125.2, + "probability": 0.9878 + }, + { + "start": 9125.2, + "end": 9128.7, + "probability": 0.9983 + }, + { + "start": 9129.68, + "end": 9133.18, + "probability": 0.9234 + }, + { + "start": 9134.2, + "end": 9138.2, + "probability": 0.9692 + }, + { + "start": 9138.22, + "end": 9142.84, + "probability": 0.9984 + }, + { + "start": 9143.78, + "end": 9146.06, + "probability": 0.847 + }, + { + "start": 9147.24, + "end": 9153.72, + "probability": 0.992 + }, + { + "start": 9154.14, + "end": 9156.28, + "probability": 0.9688 + }, + { + "start": 9157.54, + "end": 9158.6, + "probability": 0.7878 + }, + { + "start": 9159.38, + "end": 9161.76, + "probability": 0.9972 + }, + { + "start": 9162.2, + "end": 9164.82, + "probability": 0.9869 + }, + { + "start": 9165.3, + "end": 9168.76, + "probability": 0.8224 + }, + { + "start": 9168.76, + "end": 9173.08, + "probability": 0.9783 + }, + { + "start": 9173.8, + "end": 9174.6, + "probability": 0.6733 + }, + { + "start": 9175.04, + "end": 9177.34, + "probability": 0.8708 + }, + { + "start": 9177.34, + "end": 9181.62, + "probability": 0.9602 + }, + { + "start": 9182.26, + "end": 9183.74, + "probability": 0.9767 + }, + { + "start": 9184.3, + "end": 9186.98, + "probability": 0.9715 + }, + { + "start": 9187.0, + "end": 9190.86, + "probability": 0.9899 + }, + { + "start": 9191.48, + "end": 9196.04, + "probability": 0.9973 + }, + { + "start": 9196.78, + "end": 9200.04, + "probability": 0.9434 + }, + { + "start": 9202.2, + "end": 9205.04, + "probability": 0.9781 + }, + { + "start": 9205.52, + "end": 9209.06, + "probability": 0.9905 + }, + { + "start": 9209.58, + "end": 9209.92, + "probability": 0.6567 + }, + { + "start": 9210.0, + "end": 9211.56, + "probability": 0.9772 + }, + { + "start": 9211.98, + "end": 9215.04, + "probability": 0.9338 + }, + { + "start": 9215.04, + "end": 9219.0, + "probability": 0.9958 + }, + { + "start": 9220.26, + "end": 9224.5, + "probability": 0.9579 + }, + { + "start": 9225.5, + "end": 9225.96, + "probability": 0.722 + }, + { + "start": 9226.3, + "end": 9228.02, + "probability": 0.9264 + }, + { + "start": 9228.32, + "end": 9233.7, + "probability": 0.9731 + }, + { + "start": 9233.7, + "end": 9239.72, + "probability": 0.9319 + }, + { + "start": 9240.74, + "end": 9242.98, + "probability": 0.9987 + }, + { + "start": 9242.98, + "end": 9247.02, + "probability": 0.9939 + }, + { + "start": 9247.78, + "end": 9249.88, + "probability": 0.9907 + }, + { + "start": 9250.32, + "end": 9254.04, + "probability": 0.9562 + }, + { + "start": 9254.38, + "end": 9257.62, + "probability": 0.9521 + }, + { + "start": 9258.44, + "end": 9263.3, + "probability": 0.9513 + }, + { + "start": 9263.3, + "end": 9267.38, + "probability": 0.9976 + }, + { + "start": 9267.86, + "end": 9270.92, + "probability": 0.9902 + }, + { + "start": 9271.8, + "end": 9272.54, + "probability": 0.7801 + }, + { + "start": 9273.34, + "end": 9279.42, + "probability": 0.9893 + }, + { + "start": 9280.24, + "end": 9280.96, + "probability": 0.8121 + }, + { + "start": 9281.5, + "end": 9284.68, + "probability": 0.7696 + }, + { + "start": 9285.32, + "end": 9287.08, + "probability": 0.8607 + }, + { + "start": 9287.64, + "end": 9290.12, + "probability": 0.4268 + }, + { + "start": 9290.18, + "end": 9291.6, + "probability": 0.7467 + }, + { + "start": 9291.64, + "end": 9292.56, + "probability": 0.916 + }, + { + "start": 9293.12, + "end": 9295.84, + "probability": 0.9814 + }, + { + "start": 9297.16, + "end": 9300.02, + "probability": 0.7581 + }, + { + "start": 9300.06, + "end": 9302.22, + "probability": 0.7338 + }, + { + "start": 9302.86, + "end": 9306.22, + "probability": 0.9491 + }, + { + "start": 9306.22, + "end": 9309.04, + "probability": 0.877 + }, + { + "start": 9309.86, + "end": 9316.56, + "probability": 0.9939 + }, + { + "start": 9317.34, + "end": 9317.72, + "probability": 0.7194 + }, + { + "start": 9318.84, + "end": 9321.6, + "probability": 0.9452 + }, + { + "start": 9321.9, + "end": 9323.38, + "probability": 0.6378 + }, + { + "start": 9323.62, + "end": 9327.34, + "probability": 0.9922 + }, + { + "start": 9327.94, + "end": 9332.56, + "probability": 0.9326 + }, + { + "start": 9333.42, + "end": 9338.04, + "probability": 0.981 + }, + { + "start": 9338.38, + "end": 9340.46, + "probability": 0.9436 + }, + { + "start": 9342.82, + "end": 9343.68, + "probability": 0.92 + }, + { + "start": 9344.56, + "end": 9344.56, + "probability": 0.0977 + }, + { + "start": 9344.56, + "end": 9348.0, + "probability": 0.412 + }, + { + "start": 9348.34, + "end": 9350.08, + "probability": 0.9762 + }, + { + "start": 9350.44, + "end": 9351.02, + "probability": 0.8198 + }, + { + "start": 9351.34, + "end": 9354.92, + "probability": 0.9873 + }, + { + "start": 9355.46, + "end": 9358.42, + "probability": 0.9879 + }, + { + "start": 9358.88, + "end": 9360.34, + "probability": 0.9682 + }, + { + "start": 9360.76, + "end": 9361.9, + "probability": 0.8124 + }, + { + "start": 9362.28, + "end": 9366.06, + "probability": 0.9945 + }, + { + "start": 9366.06, + "end": 9369.1, + "probability": 0.9931 + }, + { + "start": 9370.58, + "end": 9370.6, + "probability": 0.8452 + }, + { + "start": 9371.84, + "end": 9373.46, + "probability": 0.9942 + }, + { + "start": 9374.44, + "end": 9376.88, + "probability": 0.9158 + }, + { + "start": 9377.28, + "end": 9378.78, + "probability": 0.939 + }, + { + "start": 9379.56, + "end": 9385.32, + "probability": 0.9904 + }, + { + "start": 9386.2, + "end": 9391.68, + "probability": 0.9839 + }, + { + "start": 9392.62, + "end": 9397.16, + "probability": 0.9858 + }, + { + "start": 9397.84, + "end": 9399.6, + "probability": 0.9928 + }, + { + "start": 9400.1, + "end": 9403.82, + "probability": 0.9809 + }, + { + "start": 9403.96, + "end": 9406.06, + "probability": 0.7496 + }, + { + "start": 9407.16, + "end": 9410.7, + "probability": 0.968 + }, + { + "start": 9411.16, + "end": 9411.94, + "probability": 0.7125 + }, + { + "start": 9412.42, + "end": 9415.52, + "probability": 0.9858 + }, + { + "start": 9416.58, + "end": 9416.96, + "probability": 0.931 + }, + { + "start": 9417.38, + "end": 9419.18, + "probability": 0.3837 + }, + { + "start": 9421.1, + "end": 9421.96, + "probability": 0.5146 + }, + { + "start": 9422.73, + "end": 9429.2, + "probability": 0.976 + }, + { + "start": 9430.04, + "end": 9434.8, + "probability": 0.9946 + }, + { + "start": 9437.08, + "end": 9441.66, + "probability": 0.6055 + }, + { + "start": 9442.48, + "end": 9443.28, + "probability": 0.8672 + }, + { + "start": 9444.16, + "end": 9445.02, + "probability": 0.9664 + }, + { + "start": 9446.06, + "end": 9450.82, + "probability": 0.9323 + }, + { + "start": 9452.28, + "end": 9455.94, + "probability": 0.9448 + }, + { + "start": 9456.52, + "end": 9457.7, + "probability": 0.9275 + }, + { + "start": 9458.28, + "end": 9460.98, + "probability": 0.9392 + }, + { + "start": 9461.53, + "end": 9464.6, + "probability": 0.7925 + }, + { + "start": 9464.6, + "end": 9468.04, + "probability": 0.004 + }, + { + "start": 9469.28, + "end": 9472.3, + "probability": 0.9527 + }, + { + "start": 9472.7, + "end": 9475.42, + "probability": 0.9824 + }, + { + "start": 9476.52, + "end": 9477.04, + "probability": 0.6971 + }, + { + "start": 9477.44, + "end": 9479.1, + "probability": 0.9308 + }, + { + "start": 9479.5, + "end": 9480.72, + "probability": 0.8132 + }, + { + "start": 9481.3, + "end": 9482.88, + "probability": 0.9946 + }, + { + "start": 9483.54, + "end": 9484.8, + "probability": 0.8828 + }, + { + "start": 9485.42, + "end": 9490.86, + "probability": 0.9865 + }, + { + "start": 9491.0, + "end": 9491.84, + "probability": 0.6823 + }, + { + "start": 9492.42, + "end": 9493.84, + "probability": 0.6284 + }, + { + "start": 9494.76, + "end": 9496.62, + "probability": 0.8557 + }, + { + "start": 9497.2, + "end": 9500.26, + "probability": 0.9888 + }, + { + "start": 9501.28, + "end": 9504.24, + "probability": 0.9777 + }, + { + "start": 9504.24, + "end": 9506.76, + "probability": 0.9993 + }, + { + "start": 9507.34, + "end": 9510.16, + "probability": 0.9813 + }, + { + "start": 9511.44, + "end": 9516.5, + "probability": 0.9469 + }, + { + "start": 9516.78, + "end": 9522.5, + "probability": 0.9706 + }, + { + "start": 9523.42, + "end": 9527.36, + "probability": 0.9845 + }, + { + "start": 9527.5, + "end": 9528.6, + "probability": 0.8635 + }, + { + "start": 9529.16, + "end": 9531.63, + "probability": 0.9407 + }, + { + "start": 9532.44, + "end": 9535.12, + "probability": 0.5016 + }, + { + "start": 9536.22, + "end": 9541.2, + "probability": 0.9556 + }, + { + "start": 9541.96, + "end": 9544.6, + "probability": 0.8182 + }, + { + "start": 9545.04, + "end": 9548.08, + "probability": 0.9902 + }, + { + "start": 9548.7, + "end": 9551.08, + "probability": 0.9978 + }, + { + "start": 9551.56, + "end": 9557.18, + "probability": 0.9927 + }, + { + "start": 9558.1, + "end": 9559.56, + "probability": 0.8174 + }, + { + "start": 9560.16, + "end": 9561.98, + "probability": 0.8264 + }, + { + "start": 9562.34, + "end": 9564.51, + "probability": 0.9393 + }, + { + "start": 9565.12, + "end": 9568.58, + "probability": 0.9944 + }, + { + "start": 9569.26, + "end": 9572.88, + "probability": 0.7531 + }, + { + "start": 9573.54, + "end": 9574.96, + "probability": 0.9972 + }, + { + "start": 9575.56, + "end": 9576.72, + "probability": 0.9387 + }, + { + "start": 9577.56, + "end": 9578.28, + "probability": 0.8255 + }, + { + "start": 9579.1, + "end": 9581.26, + "probability": 0.9188 + }, + { + "start": 9582.5, + "end": 9585.76, + "probability": 0.8471 + }, + { + "start": 9586.32, + "end": 9587.08, + "probability": 0.8783 + }, + { + "start": 9587.42, + "end": 9588.0, + "probability": 0.8748 + }, + { + "start": 9588.42, + "end": 9590.86, + "probability": 0.9556 + }, + { + "start": 9592.24, + "end": 9592.76, + "probability": 0.7886 + }, + { + "start": 9593.28, + "end": 9598.2, + "probability": 0.9951 + }, + { + "start": 9598.74, + "end": 9600.44, + "probability": 0.7913 + }, + { + "start": 9601.2, + "end": 9604.38, + "probability": 0.9151 + }, + { + "start": 9604.46, + "end": 9605.19, + "probability": 0.566 + }, + { + "start": 9605.44, + "end": 9606.02, + "probability": 0.7806 + }, + { + "start": 9606.9, + "end": 9608.42, + "probability": 0.9067 + }, + { + "start": 9609.08, + "end": 9612.56, + "probability": 0.9238 + }, + { + "start": 9613.1, + "end": 9614.4, + "probability": 0.8305 + }, + { + "start": 9614.94, + "end": 9615.74, + "probability": 0.9562 + }, + { + "start": 9616.28, + "end": 9618.96, + "probability": 0.9858 + }, + { + "start": 9619.54, + "end": 9621.66, + "probability": 0.9932 + }, + { + "start": 9622.06, + "end": 9623.8, + "probability": 0.9771 + }, + { + "start": 9624.36, + "end": 9625.36, + "probability": 0.9941 + }, + { + "start": 9626.24, + "end": 9627.02, + "probability": 0.7694 + }, + { + "start": 9627.42, + "end": 9627.92, + "probability": 0.9183 + }, + { + "start": 9628.34, + "end": 9630.24, + "probability": 0.9704 + }, + { + "start": 9630.36, + "end": 9630.92, + "probability": 0.6869 + }, + { + "start": 9631.64, + "end": 9632.4, + "probability": 0.8209 + }, + { + "start": 9633.26, + "end": 9633.7, + "probability": 0.9609 + }, + { + "start": 9635.26, + "end": 9639.12, + "probability": 0.9517 + }, + { + "start": 9640.2, + "end": 9642.7, + "probability": 0.8965 + }, + { + "start": 9643.24, + "end": 9644.32, + "probability": 0.9832 + }, + { + "start": 9645.02, + "end": 9646.04, + "probability": 0.834 + }, + { + "start": 9646.56, + "end": 9651.18, + "probability": 0.9395 + }, + { + "start": 9652.38, + "end": 9653.38, + "probability": 0.9966 + }, + { + "start": 9654.02, + "end": 9654.9, + "probability": 0.8533 + }, + { + "start": 9655.66, + "end": 9656.16, + "probability": 0.8349 + }, + { + "start": 9656.78, + "end": 9659.16, + "probability": 0.9343 + }, + { + "start": 9660.12, + "end": 9662.3, + "probability": 0.9707 + }, + { + "start": 9663.04, + "end": 9665.44, + "probability": 0.9092 + }, + { + "start": 9666.04, + "end": 9667.21, + "probability": 0.8213 + }, + { + "start": 9668.06, + "end": 9673.14, + "probability": 0.9867 + }, + { + "start": 9673.14, + "end": 9678.74, + "probability": 0.9966 + }, + { + "start": 9678.94, + "end": 9679.46, + "probability": 0.7997 + }, + { + "start": 9680.28, + "end": 9682.0, + "probability": 0.9529 + }, + { + "start": 9682.64, + "end": 9687.14, + "probability": 0.9967 + }, + { + "start": 9689.98, + "end": 9691.72, + "probability": 0.998 + }, + { + "start": 9692.28, + "end": 9693.62, + "probability": 0.9297 + }, + { + "start": 9694.18, + "end": 9697.32, + "probability": 0.979 + }, + { + "start": 9698.06, + "end": 9702.28, + "probability": 0.8115 + }, + { + "start": 9703.06, + "end": 9704.04, + "probability": 0.9929 + }, + { + "start": 9704.56, + "end": 9705.16, + "probability": 0.9808 + }, + { + "start": 9706.26, + "end": 9707.1, + "probability": 0.9683 + }, + { + "start": 9707.96, + "end": 9710.12, + "probability": 0.8452 + }, + { + "start": 9710.9, + "end": 9718.44, + "probability": 0.984 + }, + { + "start": 9718.8, + "end": 9719.68, + "probability": 0.8717 + }, + { + "start": 9720.28, + "end": 9723.94, + "probability": 0.995 + }, + { + "start": 9724.84, + "end": 9727.9, + "probability": 0.9938 + }, + { + "start": 9727.9, + "end": 9731.56, + "probability": 0.9975 + }, + { + "start": 9732.16, + "end": 9733.76, + "probability": 0.8553 + }, + { + "start": 9734.2, + "end": 9735.28, + "probability": 0.9843 + }, + { + "start": 9735.72, + "end": 9737.82, + "probability": 0.9406 + }, + { + "start": 9738.54, + "end": 9741.8, + "probability": 0.9912 + }, + { + "start": 9742.22, + "end": 9743.62, + "probability": 0.8232 + }, + { + "start": 9743.98, + "end": 9745.38, + "probability": 0.9202 + }, + { + "start": 9746.26, + "end": 9748.98, + "probability": 0.9689 + }, + { + "start": 9750.26, + "end": 9754.32, + "probability": 0.9607 + }, + { + "start": 9755.04, + "end": 9756.84, + "probability": 0.8938 + }, + { + "start": 9757.34, + "end": 9761.42, + "probability": 0.9842 + }, + { + "start": 9762.04, + "end": 9765.04, + "probability": 0.9203 + }, + { + "start": 9765.78, + "end": 9767.8, + "probability": 0.9917 + }, + { + "start": 9769.02, + "end": 9772.78, + "probability": 0.9888 + }, + { + "start": 9773.3, + "end": 9774.12, + "probability": 0.7094 + }, + { + "start": 9774.84, + "end": 9776.9, + "probability": 0.9893 + }, + { + "start": 9777.6, + "end": 9780.02, + "probability": 0.9778 + }, + { + "start": 9780.68, + "end": 9782.36, + "probability": 0.978 + }, + { + "start": 9782.56, + "end": 9784.96, + "probability": 0.9673 + }, + { + "start": 9785.54, + "end": 9789.02, + "probability": 0.9988 + }, + { + "start": 9789.56, + "end": 9791.96, + "probability": 0.9533 + }, + { + "start": 9792.8, + "end": 9795.7, + "probability": 0.9878 + }, + { + "start": 9796.28, + "end": 9799.38, + "probability": 0.9756 + }, + { + "start": 9801.04, + "end": 9801.72, + "probability": 0.5221 + }, + { + "start": 9802.68, + "end": 9805.24, + "probability": 0.8755 + }, + { + "start": 9806.24, + "end": 9807.72, + "probability": 0.9951 + }, + { + "start": 9808.62, + "end": 9810.54, + "probability": 0.999 + }, + { + "start": 9810.92, + "end": 9812.76, + "probability": 0.9225 + }, + { + "start": 9813.3, + "end": 9818.22, + "probability": 0.995 + }, + { + "start": 9818.96, + "end": 9821.3, + "probability": 0.9945 + }, + { + "start": 9821.98, + "end": 9822.54, + "probability": 0.8209 + }, + { + "start": 9823.14, + "end": 9823.96, + "probability": 0.86 + }, + { + "start": 9824.46, + "end": 9827.44, + "probability": 0.8085 + }, + { + "start": 9828.22, + "end": 9830.58, + "probability": 0.9819 + }, + { + "start": 9831.18, + "end": 9834.08, + "probability": 0.9922 + }, + { + "start": 9834.92, + "end": 9836.62, + "probability": 0.8907 + }, + { + "start": 9837.04, + "end": 9838.1, + "probability": 0.9388 + }, + { + "start": 9838.46, + "end": 9839.62, + "probability": 0.9283 + }, + { + "start": 9840.04, + "end": 9841.56, + "probability": 0.98 + }, + { + "start": 9842.14, + "end": 9842.84, + "probability": 0.6484 + }, + { + "start": 9843.54, + "end": 9845.24, + "probability": 0.8215 + }, + { + "start": 9845.72, + "end": 9847.26, + "probability": 0.9968 + }, + { + "start": 9847.26, + "end": 9850.62, + "probability": 0.8611 + }, + { + "start": 9851.66, + "end": 9853.46, + "probability": 0.9653 + }, + { + "start": 9854.06, + "end": 9856.24, + "probability": 0.9733 + }, + { + "start": 9857.26, + "end": 9858.44, + "probability": 0.9976 + }, + { + "start": 9859.34, + "end": 9860.22, + "probability": 0.9985 + }, + { + "start": 9861.2, + "end": 9861.68, + "probability": 0.9861 + }, + { + "start": 9862.44, + "end": 9863.44, + "probability": 0.9387 + }, + { + "start": 9865.58, + "end": 9867.72, + "probability": 0.7049 + }, + { + "start": 9868.0, + "end": 9869.36, + "probability": 0.8842 + }, + { + "start": 9869.54, + "end": 9870.26, + "probability": 0.7157 + }, + { + "start": 9871.12, + "end": 9872.24, + "probability": 0.7517 + }, + { + "start": 9874.32, + "end": 9874.94, + "probability": 0.8438 + }, + { + "start": 9875.52, + "end": 9875.84, + "probability": 0.7668 + }, + { + "start": 9876.68, + "end": 9877.7, + "probability": 0.9888 + }, + { + "start": 9878.36, + "end": 9882.54, + "probability": 0.8802 + }, + { + "start": 9883.18, + "end": 9883.48, + "probability": 0.4995 + }, + { + "start": 9884.16, + "end": 9885.44, + "probability": 0.9297 + }, + { + "start": 9887.02, + "end": 9889.8, + "probability": 0.9714 + }, + { + "start": 9889.8, + "end": 9891.7, + "probability": 0.9984 + }, + { + "start": 9892.24, + "end": 9895.32, + "probability": 0.7372 + }, + { + "start": 9895.6, + "end": 9899.38, + "probability": 0.8996 + }, + { + "start": 9900.36, + "end": 9905.74, + "probability": 0.9041 + }, + { + "start": 9906.3, + "end": 9907.1, + "probability": 0.8325 + }, + { + "start": 9907.68, + "end": 9908.98, + "probability": 0.8318 + }, + { + "start": 9909.54, + "end": 9912.32, + "probability": 0.9809 + }, + { + "start": 9912.8, + "end": 9913.14, + "probability": 0.6521 + }, + { + "start": 9913.28, + "end": 9914.02, + "probability": 0.6205 + }, + { + "start": 9914.06, + "end": 9916.56, + "probability": 0.9927 + }, + { + "start": 9917.46, + "end": 9919.66, + "probability": 0.9814 + }, + { + "start": 9919.94, + "end": 9923.04, + "probability": 0.9844 + }, + { + "start": 9923.9, + "end": 9927.38, + "probability": 0.9919 + }, + { + "start": 9928.98, + "end": 9929.82, + "probability": 0.6803 + }, + { + "start": 9930.06, + "end": 9934.1, + "probability": 0.9804 + }, + { + "start": 9934.1, + "end": 9939.16, + "probability": 0.9161 + }, + { + "start": 9940.08, + "end": 9944.08, + "probability": 0.9661 + }, + { + "start": 9945.08, + "end": 9949.22, + "probability": 0.9938 + }, + { + "start": 9949.54, + "end": 9950.54, + "probability": 0.6953 + }, + { + "start": 9950.9, + "end": 9956.22, + "probability": 0.5869 + }, + { + "start": 9956.22, + "end": 9961.9, + "probability": 0.989 + }, + { + "start": 9962.52, + "end": 9962.94, + "probability": 0.7495 + }, + { + "start": 9963.44, + "end": 9965.72, + "probability": 0.4877 + }, + { + "start": 9965.94, + "end": 9968.44, + "probability": 0.2902 + }, + { + "start": 9971.3, + "end": 9975.02, + "probability": 0.099 + }, + { + "start": 9982.28, + "end": 9983.28, + "probability": 0.3063 + }, + { + "start": 9984.12, + "end": 9984.44, + "probability": 0.1551 + }, + { + "start": 10001.86, + "end": 10001.96, + "probability": 0.2797 + }, + { + "start": 10004.54, + "end": 10004.92, + "probability": 0.1777 + }, + { + "start": 10006.78, + "end": 10007.08, + "probability": 0.0092 + }, + { + "start": 10100.08, + "end": 10100.42, + "probability": 0.1433 + }, + { + "start": 10100.42, + "end": 10101.92, + "probability": 0.2092 + }, + { + "start": 10106.78, + "end": 10107.96, + "probability": 0.7003 + }, + { + "start": 10109.86, + "end": 10110.96, + "probability": 0.8503 + }, + { + "start": 10112.14, + "end": 10113.92, + "probability": 0.9883 + }, + { + "start": 10115.12, + "end": 10115.58, + "probability": 0.9446 + }, + { + "start": 10116.58, + "end": 10121.2, + "probability": 0.9941 + }, + { + "start": 10122.32, + "end": 10124.03, + "probability": 0.9697 + }, + { + "start": 10128.0, + "end": 10128.7, + "probability": 0.5605 + }, + { + "start": 10131.12, + "end": 10132.72, + "probability": 0.9227 + }, + { + "start": 10133.98, + "end": 10139.04, + "probability": 0.994 + }, + { + "start": 10140.14, + "end": 10141.92, + "probability": 0.8055 + }, + { + "start": 10141.96, + "end": 10143.22, + "probability": 0.9185 + }, + { + "start": 10143.48, + "end": 10144.76, + "probability": 0.8204 + }, + { + "start": 10146.16, + "end": 10148.34, + "probability": 0.7622 + }, + { + "start": 10149.06, + "end": 10150.8, + "probability": 0.9345 + }, + { + "start": 10151.34, + "end": 10153.12, + "probability": 0.9848 + }, + { + "start": 10154.28, + "end": 10157.84, + "probability": 0.9915 + }, + { + "start": 10158.64, + "end": 10163.5, + "probability": 0.9878 + }, + { + "start": 10165.24, + "end": 10168.58, + "probability": 0.9742 + }, + { + "start": 10169.32, + "end": 10171.62, + "probability": 0.9688 + }, + { + "start": 10172.14, + "end": 10173.68, + "probability": 0.8444 + }, + { + "start": 10174.7, + "end": 10176.94, + "probability": 0.9242 + }, + { + "start": 10177.82, + "end": 10179.68, + "probability": 0.991 + }, + { + "start": 10180.86, + "end": 10182.8, + "probability": 0.9763 + }, + { + "start": 10183.08, + "end": 10187.02, + "probability": 0.9922 + }, + { + "start": 10187.9, + "end": 10192.84, + "probability": 0.9945 + }, + { + "start": 10193.8, + "end": 10195.88, + "probability": 0.7848 + }, + { + "start": 10196.56, + "end": 10199.32, + "probability": 0.9717 + }, + { + "start": 10199.86, + "end": 10202.1, + "probability": 0.9199 + }, + { + "start": 10202.92, + "end": 10206.05, + "probability": 0.9859 + }, + { + "start": 10206.74, + "end": 10210.34, + "probability": 0.9951 + }, + { + "start": 10211.24, + "end": 10213.02, + "probability": 0.9106 + }, + { + "start": 10213.96, + "end": 10216.88, + "probability": 0.9808 + }, + { + "start": 10218.9, + "end": 10222.14, + "probability": 0.97 + }, + { + "start": 10222.72, + "end": 10225.76, + "probability": 0.9988 + }, + { + "start": 10225.76, + "end": 10228.66, + "probability": 0.9996 + }, + { + "start": 10228.78, + "end": 10229.52, + "probability": 0.7745 + }, + { + "start": 10230.74, + "end": 10231.08, + "probability": 0.3786 + }, + { + "start": 10232.34, + "end": 10237.54, + "probability": 0.9755 + }, + { + "start": 10239.44, + "end": 10240.3, + "probability": 0.9486 + }, + { + "start": 10241.96, + "end": 10245.46, + "probability": 0.9695 + }, + { + "start": 10246.64, + "end": 10249.38, + "probability": 0.8702 + }, + { + "start": 10250.06, + "end": 10252.4, + "probability": 0.9957 + }, + { + "start": 10252.94, + "end": 10256.48, + "probability": 0.9797 + }, + { + "start": 10257.82, + "end": 10259.78, + "probability": 0.9698 + }, + { + "start": 10260.32, + "end": 10264.72, + "probability": 0.9929 + }, + { + "start": 10265.04, + "end": 10266.72, + "probability": 0.7949 + }, + { + "start": 10266.74, + "end": 10270.54, + "probability": 0.9716 + }, + { + "start": 10272.0, + "end": 10274.56, + "probability": 0.9883 + }, + { + "start": 10274.62, + "end": 10279.96, + "probability": 0.9749 + }, + { + "start": 10280.46, + "end": 10281.46, + "probability": 0.9724 + }, + { + "start": 10281.9, + "end": 10283.62, + "probability": 0.9747 + }, + { + "start": 10284.12, + "end": 10286.06, + "probability": 0.8698 + }, + { + "start": 10286.84, + "end": 10289.28, + "probability": 0.9398 + }, + { + "start": 10290.26, + "end": 10294.46, + "probability": 0.981 + }, + { + "start": 10294.52, + "end": 10297.16, + "probability": 0.9333 + }, + { + "start": 10298.38, + "end": 10299.58, + "probability": 0.89 + }, + { + "start": 10300.24, + "end": 10301.62, + "probability": 0.9688 + }, + { + "start": 10302.28, + "end": 10304.42, + "probability": 0.9783 + }, + { + "start": 10305.08, + "end": 10308.28, + "probability": 0.9804 + }, + { + "start": 10308.96, + "end": 10313.32, + "probability": 0.9937 + }, + { + "start": 10315.18, + "end": 10320.28, + "probability": 0.9964 + }, + { + "start": 10321.24, + "end": 10322.8, + "probability": 0.9995 + }, + { + "start": 10323.58, + "end": 10325.26, + "probability": 0.999 + }, + { + "start": 10326.62, + "end": 10327.28, + "probability": 0.9182 + }, + { + "start": 10328.08, + "end": 10329.78, + "probability": 0.9486 + }, + { + "start": 10330.58, + "end": 10332.12, + "probability": 0.8414 + }, + { + "start": 10333.44, + "end": 10334.04, + "probability": 0.2253 + }, + { + "start": 10336.4, + "end": 10339.84, + "probability": 0.9024 + }, + { + "start": 10340.16, + "end": 10341.18, + "probability": 0.6139 + }, + { + "start": 10343.24, + "end": 10344.44, + "probability": 0.5757 + }, + { + "start": 10345.02, + "end": 10348.26, + "probability": 0.8584 + }, + { + "start": 10348.28, + "end": 10353.96, + "probability": 0.5001 + }, + { + "start": 10354.2, + "end": 10360.78, + "probability": 0.9822 + }, + { + "start": 10361.8, + "end": 10363.44, + "probability": 0.7459 + }, + { + "start": 10364.36, + "end": 10366.34, + "probability": 0.5339 + }, + { + "start": 10367.44, + "end": 10370.84, + "probability": 0.7219 + }, + { + "start": 10372.48, + "end": 10372.58, + "probability": 0.0384 + }, + { + "start": 10372.58, + "end": 10375.1, + "probability": 0.9523 + }, + { + "start": 10375.1, + "end": 10378.88, + "probability": 0.9953 + }, + { + "start": 10380.04, + "end": 10381.02, + "probability": 0.2977 + }, + { + "start": 10381.78, + "end": 10387.24, + "probability": 0.2582 + }, + { + "start": 10388.11, + "end": 10390.29, + "probability": 0.9395 + }, + { + "start": 10390.64, + "end": 10391.98, + "probability": 0.8897 + }, + { + "start": 10392.16, + "end": 10395.4, + "probability": 0.9255 + }, + { + "start": 10395.4, + "end": 10399.68, + "probability": 0.9821 + }, + { + "start": 10400.22, + "end": 10401.14, + "probability": 0.4941 + }, + { + "start": 10401.74, + "end": 10407.97, + "probability": 0.5289 + }, + { + "start": 10417.44, + "end": 10418.46, + "probability": 0.3945 + }, + { + "start": 10419.56, + "end": 10420.4, + "probability": 0.5872 + }, + { + "start": 10420.48, + "end": 10421.22, + "probability": 0.7127 + }, + { + "start": 10421.26, + "end": 10422.02, + "probability": 0.7216 + }, + { + "start": 10428.78, + "end": 10431.28, + "probability": 0.2762 + }, + { + "start": 10445.7, + "end": 10448.22, + "probability": 0.4653 + }, + { + "start": 10448.22, + "end": 10449.46, + "probability": 0.0257 + }, + { + "start": 10449.46, + "end": 10450.22, + "probability": 0.3198 + }, + { + "start": 10450.84, + "end": 10451.82, + "probability": 0.1811 + }, + { + "start": 10452.98, + "end": 10453.04, + "probability": 0.0543 + }, + { + "start": 10453.04, + "end": 10453.32, + "probability": 0.1654 + }, + { + "start": 10454.47, + "end": 10455.64, + "probability": 0.0805 + }, + { + "start": 10455.64, + "end": 10455.64, + "probability": 0.044 + }, + { + "start": 10455.64, + "end": 10455.64, + "probability": 0.0939 + }, + { + "start": 10455.64, + "end": 10460.44, + "probability": 0.7653 + }, + { + "start": 10460.62, + "end": 10461.78, + "probability": 0.4272 + }, + { + "start": 10462.44, + "end": 10463.46, + "probability": 0.759 + }, + { + "start": 10474.66, + "end": 10475.1, + "probability": 0.5721 + }, + { + "start": 10475.26, + "end": 10479.88, + "probability": 0.9186 + }, + { + "start": 10479.88, + "end": 10484.92, + "probability": 0.7498 + }, + { + "start": 10486.16, + "end": 10491.52, + "probability": 0.3991 + }, + { + "start": 10494.12, + "end": 10496.6, + "probability": 0.5821 + }, + { + "start": 10496.68, + "end": 10497.06, + "probability": 0.5193 + }, + { + "start": 10513.68, + "end": 10513.86, + "probability": 0.3624 + }, + { + "start": 10513.92, + "end": 10516.27, + "probability": 0.6542 + }, + { + "start": 10517.26, + "end": 10518.9, + "probability": 0.9571 + }, + { + "start": 10519.82, + "end": 10522.12, + "probability": 0.8428 + }, + { + "start": 10522.64, + "end": 10525.3, + "probability": 0.9598 + }, + { + "start": 10526.1, + "end": 10529.54, + "probability": 0.9679 + }, + { + "start": 10530.38, + "end": 10534.32, + "probability": 0.9971 + }, + { + "start": 10534.68, + "end": 10535.86, + "probability": 0.7569 + }, + { + "start": 10536.65, + "end": 10541.56, + "probability": 0.9927 + }, + { + "start": 10541.62, + "end": 10545.98, + "probability": 0.9891 + }, + { + "start": 10546.94, + "end": 10550.2, + "probability": 0.9991 + }, + { + "start": 10550.92, + "end": 10552.7, + "probability": 0.7793 + }, + { + "start": 10554.08, + "end": 10556.08, + "probability": 0.0379 + }, + { + "start": 10557.74, + "end": 10560.44, + "probability": 0.8521 + }, + { + "start": 10560.88, + "end": 10562.1, + "probability": 0.603 + }, + { + "start": 10562.7, + "end": 10565.28, + "probability": 0.0495 + }, + { + "start": 10565.72, + "end": 10566.38, + "probability": 0.6904 + }, + { + "start": 10567.1, + "end": 10567.8, + "probability": 0.8497 + }, + { + "start": 10568.0, + "end": 10568.32, + "probability": 0.2114 + }, + { + "start": 10568.32, + "end": 10569.44, + "probability": 0.1529 + }, + { + "start": 10569.5, + "end": 10570.22, + "probability": 0.7804 + }, + { + "start": 10570.38, + "end": 10570.92, + "probability": 0.7156 + }, + { + "start": 10570.94, + "end": 10572.4, + "probability": 0.2528 + }, + { + "start": 10572.64, + "end": 10573.68, + "probability": 0.2569 + }, + { + "start": 10575.48, + "end": 10577.08, + "probability": 0.3108 + }, + { + "start": 10577.16, + "end": 10578.88, + "probability": 0.5977 + }, + { + "start": 10579.12, + "end": 10579.94, + "probability": 0.1276 + }, + { + "start": 10580.84, + "end": 10584.84, + "probability": 0.2653 + }, + { + "start": 10584.96, + "end": 10585.98, + "probability": 0.4469 + }, + { + "start": 10586.16, + "end": 10587.21, + "probability": 0.1197 + }, + { + "start": 10587.54, + "end": 10587.92, + "probability": 0.2285 + }, + { + "start": 10588.14, + "end": 10588.9, + "probability": 0.3449 + }, + { + "start": 10588.94, + "end": 10590.56, + "probability": 0.1105 + }, + { + "start": 10590.7, + "end": 10592.62, + "probability": 0.8643 + }, + { + "start": 10593.48, + "end": 10596.72, + "probability": 0.4528 + }, + { + "start": 10596.94, + "end": 10599.64, + "probability": 0.3118 + }, + { + "start": 10600.52, + "end": 10603.12, + "probability": 0.3619 + }, + { + "start": 10603.32, + "end": 10604.92, + "probability": 0.5353 + }, + { + "start": 10604.92, + "end": 10609.72, + "probability": 0.3552 + }, + { + "start": 10609.72, + "end": 10611.24, + "probability": 0.0151 + }, + { + "start": 10611.6, + "end": 10612.78, + "probability": 0.1572 + }, + { + "start": 10612.82, + "end": 10613.9, + "probability": 0.24 + }, + { + "start": 10615.1, + "end": 10615.92, + "probability": 0.4616 + }, + { + "start": 10616.3, + "end": 10616.86, + "probability": 0.8549 + }, + { + "start": 10617.2, + "end": 10618.66, + "probability": 0.7278 + }, + { + "start": 10619.26, + "end": 10620.66, + "probability": 0.4108 + }, + { + "start": 10620.84, + "end": 10623.4, + "probability": 0.7682 + }, + { + "start": 10623.62, + "end": 10624.84, + "probability": 0.8423 + }, + { + "start": 10624.86, + "end": 10626.16, + "probability": 0.2578 + }, + { + "start": 10626.26, + "end": 10631.09, + "probability": 0.2477 + }, + { + "start": 10657.0, + "end": 10657.0, + "probability": 0.0 + }, + { + "start": 10657.0, + "end": 10657.0, + "probability": 0.0 + }, + { + "start": 10657.0, + "end": 10657.0, + "probability": 0.0 + }, + { + "start": 10657.0, + "end": 10657.0, + "probability": 0.0 + }, + { + "start": 10657.0, + "end": 10657.0, + "probability": 0.0 + }, + { + "start": 10657.0, + "end": 10657.0, + "probability": 0.0 + }, + { + "start": 10657.0, + "end": 10657.0, + "probability": 0.0 + }, + { + "start": 10657.0, + "end": 10657.0, + "probability": 0.0 + }, + { + "start": 10657.0, + "end": 10657.0, + "probability": 0.0 + }, + { + "start": 10657.0, + "end": 10657.0, + "probability": 0.0 + }, + { + "start": 10657.0, + "end": 10657.0, + "probability": 0.0 + }, + { + "start": 10657.0, + "end": 10657.0, + "probability": 0.0 + }, + { + "start": 10657.0, + "end": 10657.0, + "probability": 0.0 + }, + { + "start": 10657.0, + "end": 10657.0, + "probability": 0.0 + }, + { + "start": 10657.0, + "end": 10657.0, + "probability": 0.0 + }, + { + "start": 10657.0, + "end": 10657.0, + "probability": 0.0 + }, + { + "start": 10657.0, + "end": 10657.0, + "probability": 0.0 + }, + { + "start": 10657.1, + "end": 10657.14, + "probability": 0.2101 + }, + { + "start": 10657.14, + "end": 10658.24, + "probability": 0.9712 + }, + { + "start": 10658.44, + "end": 10660.26, + "probability": 0.3283 + }, + { + "start": 10660.26, + "end": 10665.72, + "probability": 0.9091 + }, + { + "start": 10665.78, + "end": 10666.64, + "probability": 0.3008 + }, + { + "start": 10666.72, + "end": 10669.44, + "probability": 0.1239 + }, + { + "start": 10669.44, + "end": 10670.79, + "probability": 0.7584 + }, + { + "start": 10671.46, + "end": 10674.72, + "probability": 0.4234 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.0, + "end": 10779.0, + "probability": 0.0 + }, + { + "start": 10779.9, + "end": 10780.14, + "probability": 0.2118 + }, + { + "start": 10780.14, + "end": 10780.14, + "probability": 0.1214 + }, + { + "start": 10780.14, + "end": 10780.14, + "probability": 0.1263 + }, + { + "start": 10780.14, + "end": 10781.06, + "probability": 0.3411 + }, + { + "start": 10781.06, + "end": 10783.17, + "probability": 0.5814 + }, + { + "start": 10783.32, + "end": 10783.7, + "probability": 0.057 + }, + { + "start": 10783.76, + "end": 10788.74, + "probability": 0.0681 + }, + { + "start": 10789.02, + "end": 10789.36, + "probability": 0.1031 + }, + { + "start": 10789.38, + "end": 10791.84, + "probability": 0.328 + }, + { + "start": 10792.08, + "end": 10792.88, + "probability": 0.0627 + }, + { + "start": 10793.64, + "end": 10794.16, + "probability": 0.4262 + }, + { + "start": 10794.5, + "end": 10797.32, + "probability": 0.3071 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10902.0, + "end": 10902.0, + "probability": 0.0 + }, + { + "start": 10925.64, + "end": 10927.44, + "probability": 0.1506 + }, + { + "start": 10927.84, + "end": 10931.0, + "probability": 0.0581 + }, + { + "start": 10931.08, + "end": 10932.02, + "probability": 0.0323 + }, + { + "start": 10934.92, + "end": 10936.54, + "probability": 0.0127 + }, + { + "start": 10936.68, + "end": 10938.56, + "probability": 0.1725 + }, + { + "start": 10939.54, + "end": 10940.64, + "probability": 0.1112 + }, + { + "start": 10940.72, + "end": 10940.8, + "probability": 0.2029 + }, + { + "start": 10940.8, + "end": 10940.8, + "probability": 0.1877 + }, + { + "start": 10940.8, + "end": 10944.98, + "probability": 0.3379 + }, + { + "start": 10945.08, + "end": 10945.24, + "probability": 0.0025 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.0, + "end": 11022.0, + "probability": 0.0 + }, + { + "start": 11022.14, + "end": 11023.18, + "probability": 0.1047 + }, + { + "start": 11023.3, + "end": 11026.76, + "probability": 0.922 + }, + { + "start": 11027.04, + "end": 11029.01, + "probability": 0.6651 + }, + { + "start": 11029.86, + "end": 11031.14, + "probability": 0.8907 + }, + { + "start": 11031.74, + "end": 11033.16, + "probability": 0.7104 + }, + { + "start": 11033.92, + "end": 11036.06, + "probability": 0.9967 + }, + { + "start": 11037.08, + "end": 11039.44, + "probability": 0.9324 + }, + { + "start": 11040.5, + "end": 11041.16, + "probability": 0.4239 + }, + { + "start": 11041.26, + "end": 11041.56, + "probability": 0.9233 + }, + { + "start": 11042.3, + "end": 11043.92, + "probability": 0.8652 + }, + { + "start": 11044.5, + "end": 11046.98, + "probability": 0.6943 + }, + { + "start": 11046.98, + "end": 11049.04, + "probability": 0.6059 + }, + { + "start": 11062.44, + "end": 11062.56, + "probability": 0.8623 + }, + { + "start": 11064.16, + "end": 11065.34, + "probability": 0.066 + }, + { + "start": 11065.58, + "end": 11066.04, + "probability": 0.1326 + }, + { + "start": 11066.04, + "end": 11072.3, + "probability": 0.0265 + }, + { + "start": 11072.3, + "end": 11072.48, + "probability": 0.0406 + }, + { + "start": 11075.98, + "end": 11077.07, + "probability": 0.1554 + }, + { + "start": 11077.78, + "end": 11078.58, + "probability": 0.3961 + }, + { + "start": 11080.68, + "end": 11084.24, + "probability": 0.0418 + }, + { + "start": 11084.84, + "end": 11086.12, + "probability": 0.0709 + }, + { + "start": 11094.36, + "end": 11096.06, + "probability": 0.046 + }, + { + "start": 11096.06, + "end": 11096.06, + "probability": 0.0192 + }, + { + "start": 11096.06, + "end": 11096.92, + "probability": 0.0548 + }, + { + "start": 11097.66, + "end": 11098.28, + "probability": 0.0422 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.0, + "end": 11143.0, + "probability": 0.0 + }, + { + "start": 11143.24, + "end": 11143.38, + "probability": 0.036 + }, + { + "start": 11143.38, + "end": 11143.38, + "probability": 0.0514 + }, + { + "start": 11143.38, + "end": 11143.88, + "probability": 0.6258 + }, + { + "start": 11144.1, + "end": 11144.26, + "probability": 0.5713 + }, + { + "start": 11144.62, + "end": 11145.52, + "probability": 0.7246 + }, + { + "start": 11146.18, + "end": 11146.58, + "probability": 0.9126 + }, + { + "start": 11147.18, + "end": 11149.31, + "probability": 0.9052 + }, + { + "start": 11149.74, + "end": 11151.74, + "probability": 0.7879 + }, + { + "start": 11152.8, + "end": 11154.08, + "probability": 0.9656 + }, + { + "start": 11156.14, + "end": 11158.68, + "probability": 0.9639 + }, + { + "start": 11158.72, + "end": 11161.92, + "probability": 0.9575 + }, + { + "start": 11162.94, + "end": 11163.84, + "probability": 0.9395 + }, + { + "start": 11164.36, + "end": 11166.16, + "probability": 0.7401 + }, + { + "start": 11166.6, + "end": 11168.0, + "probability": 0.9449 + }, + { + "start": 11168.42, + "end": 11175.14, + "probability": 0.9463 + }, + { + "start": 11176.42, + "end": 11178.66, + "probability": 0.8485 + }, + { + "start": 11179.46, + "end": 11180.26, + "probability": 0.7708 + }, + { + "start": 11182.36, + "end": 11183.58, + "probability": 0.7375 + }, + { + "start": 11184.2, + "end": 11186.46, + "probability": 0.9854 + }, + { + "start": 11187.9, + "end": 11190.18, + "probability": 0.9952 + }, + { + "start": 11190.96, + "end": 11193.98, + "probability": 0.965 + }, + { + "start": 11194.74, + "end": 11195.6, + "probability": 0.7151 + }, + { + "start": 11196.16, + "end": 11199.83, + "probability": 0.8762 + }, + { + "start": 11201.86, + "end": 11202.8, + "probability": 0.9919 + }, + { + "start": 11204.08, + "end": 11205.72, + "probability": 0.6544 + }, + { + "start": 11205.82, + "end": 11207.86, + "probability": 0.5485 + }, + { + "start": 11209.24, + "end": 11210.98, + "probability": 0.8611 + }, + { + "start": 11211.14, + "end": 11212.45, + "probability": 0.9119 + }, + { + "start": 11213.06, + "end": 11214.62, + "probability": 0.968 + }, + { + "start": 11215.0, + "end": 11215.72, + "probability": 0.8911 + }, + { + "start": 11216.36, + "end": 11217.06, + "probability": 0.9729 + }, + { + "start": 11217.14, + "end": 11218.75, + "probability": 0.9976 + }, + { + "start": 11219.62, + "end": 11220.31, + "probability": 0.98 + }, + { + "start": 11221.28, + "end": 11223.74, + "probability": 0.9586 + }, + { + "start": 11224.36, + "end": 11225.08, + "probability": 0.9653 + }, + { + "start": 11225.14, + "end": 11230.7, + "probability": 0.7906 + }, + { + "start": 11230.74, + "end": 11233.24, + "probability": 0.7758 + }, + { + "start": 11233.68, + "end": 11234.12, + "probability": 0.7556 + }, + { + "start": 11234.7, + "end": 11235.7, + "probability": 0.6744 + }, + { + "start": 11243.2, + "end": 11243.62, + "probability": 0.4937 + }, + { + "start": 11243.62, + "end": 11243.66, + "probability": 0.1287 + }, + { + "start": 11250.42, + "end": 11250.42, + "probability": 0.1366 + }, + { + "start": 11250.42, + "end": 11250.42, + "probability": 0.1449 + }, + { + "start": 11250.42, + "end": 11250.42, + "probability": 0.3709 + }, + { + "start": 11250.42, + "end": 11250.42, + "probability": 0.0915 + }, + { + "start": 11250.66, + "end": 11250.76, + "probability": 0.1095 + }, + { + "start": 11250.76, + "end": 11250.76, + "probability": 0.0878 + }, + { + "start": 11250.76, + "end": 11250.98, + "probability": 0.0187 + }, + { + "start": 11264.94, + "end": 11265.36, + "probability": 0.31 + }, + { + "start": 11265.36, + "end": 11265.42, + "probability": 0.0972 + }, + { + "start": 11265.86, + "end": 11266.0, + "probability": 0.0721 + }, + { + "start": 11266.0, + "end": 11266.34, + "probability": 0.006 + }, + { + "start": 11273.42, + "end": 11274.5, + "probability": 0.6511 + }, + { + "start": 11299.1, + "end": 11301.1, + "probability": 0.8081 + }, + { + "start": 11302.54, + "end": 11303.66, + "probability": 0.7446 + }, + { + "start": 11304.32, + "end": 11305.26, + "probability": 0.7915 + }, + { + "start": 11305.84, + "end": 11306.86, + "probability": 0.6486 + }, + { + "start": 11307.36, + "end": 11307.94, + "probability": 0.7646 + }, + { + "start": 11308.02, + "end": 11308.3, + "probability": 0.9072 + }, + { + "start": 11308.36, + "end": 11311.54, + "probability": 0.8925 + }, + { + "start": 11311.7, + "end": 11314.88, + "probability": 0.8866 + }, + { + "start": 11315.16, + "end": 11316.58, + "probability": 0.8857 + }, + { + "start": 11317.8, + "end": 11320.26, + "probability": 0.9797 + }, + { + "start": 11321.0, + "end": 11322.78, + "probability": 0.9882 + }, + { + "start": 11324.1, + "end": 11325.94, + "probability": 0.9213 + }, + { + "start": 11326.12, + "end": 11327.36, + "probability": 0.9387 + }, + { + "start": 11327.48, + "end": 11328.14, + "probability": 0.9391 + }, + { + "start": 11328.62, + "end": 11329.57, + "probability": 0.9881 + }, + { + "start": 11329.8, + "end": 11330.04, + "probability": 0.5666 + }, + { + "start": 11330.26, + "end": 11332.1, + "probability": 0.9819 + }, + { + "start": 11332.48, + "end": 11333.34, + "probability": 0.5884 + }, + { + "start": 11334.72, + "end": 11335.28, + "probability": 0.8594 + }, + { + "start": 11337.06, + "end": 11338.78, + "probability": 0.6307 + }, + { + "start": 11340.76, + "end": 11342.4, + "probability": 0.6707 + }, + { + "start": 11343.86, + "end": 11345.5, + "probability": 0.9958 + }, + { + "start": 11346.66, + "end": 11351.14, + "probability": 0.9958 + }, + { + "start": 11351.88, + "end": 11357.06, + "probability": 0.9965 + }, + { + "start": 11358.6, + "end": 11361.48, + "probability": 0.9571 + }, + { + "start": 11361.56, + "end": 11363.22, + "probability": 0.9441 + }, + { + "start": 11365.34, + "end": 11367.46, + "probability": 0.9392 + }, + { + "start": 11367.58, + "end": 11368.98, + "probability": 0.7607 + }, + { + "start": 11370.46, + "end": 11370.82, + "probability": 0.4109 + }, + { + "start": 11371.9, + "end": 11376.22, + "probability": 0.555 + }, + { + "start": 11378.04, + "end": 11380.24, + "probability": 0.7217 + }, + { + "start": 11380.74, + "end": 11382.56, + "probability": 0.9958 + }, + { + "start": 11384.4, + "end": 11387.54, + "probability": 0.1555 + }, + { + "start": 11388.48, + "end": 11388.62, + "probability": 0.032 + }, + { + "start": 11388.62, + "end": 11388.64, + "probability": 0.1619 + }, + { + "start": 11388.64, + "end": 11388.64, + "probability": 0.0602 + }, + { + "start": 11388.64, + "end": 11388.66, + "probability": 0.0426 + }, + { + "start": 11388.66, + "end": 11388.66, + "probability": 0.0207 + }, + { + "start": 11388.66, + "end": 11388.88, + "probability": 0.1812 + }, + { + "start": 11388.88, + "end": 11389.68, + "probability": 0.6166 + }, + { + "start": 11390.48, + "end": 11391.98, + "probability": 0.5834 + }, + { + "start": 11392.32, + "end": 11395.6, + "probability": 0.4779 + }, + { + "start": 11396.92, + "end": 11396.98, + "probability": 0.1421 + }, + { + "start": 11396.98, + "end": 11398.06, + "probability": 0.8504 + }, + { + "start": 11398.2, + "end": 11401.18, + "probability": 0.9965 + }, + { + "start": 11402.22, + "end": 11404.62, + "probability": 0.9941 + }, + { + "start": 11407.38, + "end": 11409.0, + "probability": 0.7056 + }, + { + "start": 11409.8, + "end": 11410.74, + "probability": 0.496 + }, + { + "start": 11411.66, + "end": 11412.66, + "probability": 0.585 + }, + { + "start": 11412.8, + "end": 11414.48, + "probability": 0.9782 + }, + { + "start": 11414.68, + "end": 11415.46, + "probability": 0.762 + }, + { + "start": 11416.24, + "end": 11417.47, + "probability": 0.9933 + }, + { + "start": 11418.38, + "end": 11419.56, + "probability": 0.7974 + }, + { + "start": 11419.8, + "end": 11421.83, + "probability": 0.4827 + }, + { + "start": 11423.46, + "end": 11424.2, + "probability": 0.8129 + }, + { + "start": 11425.16, + "end": 11430.1, + "probability": 0.9469 + }, + { + "start": 11431.42, + "end": 11431.64, + "probability": 0.0033 + }, + { + "start": 11434.26, + "end": 11438.54, + "probability": 0.8943 + }, + { + "start": 11440.34, + "end": 11442.0, + "probability": 0.9961 + }, + { + "start": 11443.16, + "end": 11444.28, + "probability": 0.9441 + }, + { + "start": 11445.48, + "end": 11448.62, + "probability": 0.9737 + }, + { + "start": 11449.78, + "end": 11451.26, + "probability": 0.8424 + }, + { + "start": 11452.8, + "end": 11455.93, + "probability": 0.9961 + }, + { + "start": 11456.38, + "end": 11457.32, + "probability": 0.9507 + }, + { + "start": 11457.54, + "end": 11458.42, + "probability": 0.677 + }, + { + "start": 11458.56, + "end": 11459.18, + "probability": 0.5821 + }, + { + "start": 11459.28, + "end": 11459.98, + "probability": 0.2222 + }, + { + "start": 11460.12, + "end": 11462.6, + "probability": 0.9484 + }, + { + "start": 11462.64, + "end": 11465.06, + "probability": 0.9963 + }, + { + "start": 11466.16, + "end": 11466.96, + "probability": 0.5693 + }, + { + "start": 11467.1, + "end": 11468.78, + "probability": 0.9136 + }, + { + "start": 11468.98, + "end": 11469.64, + "probability": 0.8235 + }, + { + "start": 11470.1, + "end": 11471.82, + "probability": 0.9507 + }, + { + "start": 11472.46, + "end": 11474.02, + "probability": 0.7695 + }, + { + "start": 11474.56, + "end": 11474.88, + "probability": 0.6316 + }, + { + "start": 11474.88, + "end": 11479.86, + "probability": 0.9562 + }, + { + "start": 11480.41, + "end": 11483.32, + "probability": 0.5574 + }, + { + "start": 11483.82, + "end": 11485.82, + "probability": 0.8874 + }, + { + "start": 11486.26, + "end": 11486.54, + "probability": 0.6533 + }, + { + "start": 11487.32, + "end": 11487.88, + "probability": 0.36 + }, + { + "start": 11487.88, + "end": 11488.6, + "probability": 0.5702 + }, + { + "start": 11489.12, + "end": 11493.0, + "probability": 0.8033 + }, + { + "start": 11493.0, + "end": 11494.48, + "probability": 0.637 + }, + { + "start": 11495.12, + "end": 11496.76, + "probability": 0.5757 + }, + { + "start": 11497.99, + "end": 11500.44, + "probability": 0.4351 + }, + { + "start": 11501.41, + "end": 11503.74, + "probability": 0.0109 + }, + { + "start": 11503.74, + "end": 11503.74, + "probability": 0.3773 + }, + { + "start": 11503.74, + "end": 11506.34, + "probability": 0.3061 + }, + { + "start": 11507.68, + "end": 11508.16, + "probability": 0.341 + }, + { + "start": 11508.16, + "end": 11508.16, + "probability": 0.455 + }, + { + "start": 11508.16, + "end": 11509.98, + "probability": 0.6876 + }, + { + "start": 11510.34, + "end": 11510.76, + "probability": 0.4853 + }, + { + "start": 11511.38, + "end": 11512.04, + "probability": 0.9296 + }, + { + "start": 11513.12, + "end": 11513.7, + "probability": 0.8228 + }, + { + "start": 11514.32, + "end": 11515.04, + "probability": 0.6338 + }, + { + "start": 11515.14, + "end": 11516.26, + "probability": 0.8108 + }, + { + "start": 11517.16, + "end": 11519.68, + "probability": 0.9653 + }, + { + "start": 11520.56, + "end": 11522.14, + "probability": 0.9665 + }, + { + "start": 11522.94, + "end": 11523.58, + "probability": 0.5651 + }, + { + "start": 11523.68, + "end": 11525.24, + "probability": 0.9871 + }, + { + "start": 11553.22, + "end": 11554.94, + "probability": 0.8602 + }, + { + "start": 11555.5, + "end": 11557.34, + "probability": 0.7845 + }, + { + "start": 11558.72, + "end": 11562.68, + "probability": 0.9974 + }, + { + "start": 11564.22, + "end": 11565.44, + "probability": 0.9289 + }, + { + "start": 11566.58, + "end": 11571.06, + "probability": 0.9945 + }, + { + "start": 11572.36, + "end": 11577.66, + "probability": 0.9987 + }, + { + "start": 11578.62, + "end": 11581.2, + "probability": 0.7705 + }, + { + "start": 11583.22, + "end": 11588.3, + "probability": 0.9893 + }, + { + "start": 11589.82, + "end": 11591.74, + "probability": 0.8374 + }, + { + "start": 11592.84, + "end": 11595.02, + "probability": 0.7648 + }, + { + "start": 11595.96, + "end": 11598.26, + "probability": 0.996 + }, + { + "start": 11599.32, + "end": 11601.92, + "probability": 0.9528 + }, + { + "start": 11602.72, + "end": 11603.3, + "probability": 0.8011 + }, + { + "start": 11603.36, + "end": 11605.64, + "probability": 0.9891 + }, + { + "start": 11606.12, + "end": 11609.0, + "probability": 0.9235 + }, + { + "start": 11609.2, + "end": 11613.34, + "probability": 0.9926 + }, + { + "start": 11613.34, + "end": 11617.98, + "probability": 0.9968 + }, + { + "start": 11618.62, + "end": 11621.4, + "probability": 0.9892 + }, + { + "start": 11621.48, + "end": 11622.48, + "probability": 0.6496 + }, + { + "start": 11623.3, + "end": 11625.22, + "probability": 0.8916 + }, + { + "start": 11625.92, + "end": 11627.7, + "probability": 0.9946 + }, + { + "start": 11628.68, + "end": 11631.66, + "probability": 0.9803 + }, + { + "start": 11632.76, + "end": 11635.04, + "probability": 0.993 + }, + { + "start": 11635.04, + "end": 11638.4, + "probability": 0.9794 + }, + { + "start": 11639.4, + "end": 11643.32, + "probability": 0.9162 + }, + { + "start": 11643.96, + "end": 11646.22, + "probability": 0.8462 + }, + { + "start": 11647.08, + "end": 11650.7, + "probability": 0.9965 + }, + { + "start": 11651.72, + "end": 11655.32, + "probability": 0.9951 + }, + { + "start": 11655.32, + "end": 11657.9, + "probability": 0.9967 + }, + { + "start": 11658.98, + "end": 11660.02, + "probability": 0.8718 + }, + { + "start": 11661.44, + "end": 11665.14, + "probability": 0.9904 + }, + { + "start": 11665.82, + "end": 11668.26, + "probability": 0.9987 + }, + { + "start": 11668.8, + "end": 11670.48, + "probability": 0.9987 + }, + { + "start": 11671.18, + "end": 11673.2, + "probability": 0.9876 + }, + { + "start": 11673.76, + "end": 11675.5, + "probability": 0.9838 + }, + { + "start": 11676.3, + "end": 11681.02, + "probability": 0.993 + }, + { + "start": 11682.1, + "end": 11683.18, + "probability": 0.7585 + }, + { + "start": 11683.48, + "end": 11686.88, + "probability": 0.9976 + }, + { + "start": 11687.98, + "end": 11691.16, + "probability": 0.988 + }, + { + "start": 11692.26, + "end": 11695.74, + "probability": 0.9374 + }, + { + "start": 11696.72, + "end": 11697.22, + "probability": 0.985 + }, + { + "start": 11697.88, + "end": 11699.08, + "probability": 0.8324 + }, + { + "start": 11700.12, + "end": 11702.58, + "probability": 0.9019 + }, + { + "start": 11705.58, + "end": 11706.26, + "probability": 0.5703 + }, + { + "start": 11706.92, + "end": 11710.44, + "probability": 0.9799 + }, + { + "start": 11711.4, + "end": 11713.54, + "probability": 0.9697 + }, + { + "start": 11714.28, + "end": 11714.97, + "probability": 0.9785 + }, + { + "start": 11716.0, + "end": 11717.84, + "probability": 0.9935 + }, + { + "start": 11718.4, + "end": 11722.26, + "probability": 0.9916 + }, + { + "start": 11722.26, + "end": 11727.26, + "probability": 0.9904 + }, + { + "start": 11728.06, + "end": 11730.34, + "probability": 0.991 + }, + { + "start": 11730.54, + "end": 11730.98, + "probability": 0.7724 + }, + { + "start": 11732.16, + "end": 11732.92, + "probability": 0.6837 + }, + { + "start": 11735.48, + "end": 11736.9, + "probability": 0.9247 + }, + { + "start": 11738.24, + "end": 11738.94, + "probability": 0.7351 + }, + { + "start": 11739.14, + "end": 11740.88, + "probability": 0.9921 + }, + { + "start": 11742.0, + "end": 11742.54, + "probability": 0.5738 + }, + { + "start": 11767.7, + "end": 11767.7, + "probability": 0.3474 + }, + { + "start": 11767.8, + "end": 11768.38, + "probability": 0.4671 + }, + { + "start": 11768.48, + "end": 11770.56, + "probability": 0.6224 + }, + { + "start": 11772.14, + "end": 11774.56, + "probability": 0.7823 + }, + { + "start": 11776.12, + "end": 11777.58, + "probability": 0.887 + }, + { + "start": 11779.0, + "end": 11782.86, + "probability": 0.7797 + }, + { + "start": 11783.68, + "end": 11787.78, + "probability": 0.6612 + }, + { + "start": 11788.48, + "end": 11790.74, + "probability": 0.6726 + }, + { + "start": 11790.82, + "end": 11793.2, + "probability": 0.8884 + }, + { + "start": 11796.02, + "end": 11796.94, + "probability": 0.8318 + }, + { + "start": 11799.38, + "end": 11800.12, + "probability": 0.9644 + }, + { + "start": 11801.72, + "end": 11802.58, + "probability": 0.1017 + }, + { + "start": 11802.58, + "end": 11803.21, + "probability": 0.1562 + }, + { + "start": 11803.3, + "end": 11803.8, + "probability": 0.285 + }, + { + "start": 11804.24, + "end": 11805.66, + "probability": 0.3114 + }, + { + "start": 11805.96, + "end": 11808.44, + "probability": 0.9354 + }, + { + "start": 11809.52, + "end": 11811.49, + "probability": 0.9248 + }, + { + "start": 11813.36, + "end": 11816.66, + "probability": 0.9951 + }, + { + "start": 11817.46, + "end": 11817.76, + "probability": 0.5648 + }, + { + "start": 11818.92, + "end": 11819.98, + "probability": 0.9026 + }, + { + "start": 11820.72, + "end": 11821.04, + "probability": 0.6657 + }, + { + "start": 11821.68, + "end": 11823.82, + "probability": 0.9717 + }, + { + "start": 11824.12, + "end": 11824.84, + "probability": 0.7587 + }, + { + "start": 11825.58, + "end": 11826.66, + "probability": 0.7958 + }, + { + "start": 11827.36, + "end": 11829.54, + "probability": 0.9867 + }, + { + "start": 11830.16, + "end": 11832.2, + "probability": 0.998 + }, + { + "start": 11832.7, + "end": 11834.44, + "probability": 0.9854 + }, + { + "start": 11835.92, + "end": 11837.6, + "probability": 0.896 + }, + { + "start": 11837.78, + "end": 11841.0, + "probability": 0.9279 + }, + { + "start": 11841.96, + "end": 11842.28, + "probability": 0.8044 + }, + { + "start": 11842.5, + "end": 11843.2, + "probability": 0.8389 + }, + { + "start": 11843.84, + "end": 11845.1, + "probability": 0.9946 + }, + { + "start": 11846.38, + "end": 11847.3, + "probability": 0.9941 + }, + { + "start": 11847.9, + "end": 11849.72, + "probability": 0.9724 + }, + { + "start": 11850.58, + "end": 11853.22, + "probability": 0.8742 + }, + { + "start": 11853.96, + "end": 11855.66, + "probability": 0.9974 + }, + { + "start": 11856.6, + "end": 11858.44, + "probability": 0.9062 + }, + { + "start": 11860.68, + "end": 11861.46, + "probability": 0.9755 + }, + { + "start": 11862.8, + "end": 11863.64, + "probability": 0.9484 + }, + { + "start": 11864.86, + "end": 11866.6, + "probability": 0.9875 + }, + { + "start": 11866.86, + "end": 11869.96, + "probability": 0.7838 + }, + { + "start": 11871.18, + "end": 11873.26, + "probability": 0.9579 + }, + { + "start": 11873.34, + "end": 11874.28, + "probability": 0.9574 + }, + { + "start": 11874.58, + "end": 11879.72, + "probability": 0.9834 + }, + { + "start": 11879.78, + "end": 11880.86, + "probability": 0.8404 + }, + { + "start": 11881.72, + "end": 11883.32, + "probability": 0.925 + }, + { + "start": 11884.18, + "end": 11889.08, + "probability": 0.9947 + }, + { + "start": 11889.72, + "end": 11890.64, + "probability": 0.9173 + }, + { + "start": 11891.48, + "end": 11892.76, + "probability": 0.7435 + }, + { + "start": 11893.5, + "end": 11895.14, + "probability": 0.9496 + }, + { + "start": 11897.26, + "end": 11899.42, + "probability": 0.9426 + }, + { + "start": 11900.02, + "end": 11903.56, + "probability": 0.899 + }, + { + "start": 11903.8, + "end": 11904.54, + "probability": 0.6093 + }, + { + "start": 11905.22, + "end": 11906.67, + "probability": 0.9304 + }, + { + "start": 11908.48, + "end": 11909.94, + "probability": 0.9807 + }, + { + "start": 11910.96, + "end": 11916.26, + "probability": 0.9768 + }, + { + "start": 11917.52, + "end": 11920.1, + "probability": 0.8124 + }, + { + "start": 11921.34, + "end": 11923.52, + "probability": 0.9841 + }, + { + "start": 11924.2, + "end": 11925.84, + "probability": 0.9961 + }, + { + "start": 11926.42, + "end": 11928.58, + "probability": 0.9897 + }, + { + "start": 11928.6, + "end": 11928.82, + "probability": 0.6802 + }, + { + "start": 11929.96, + "end": 11931.51, + "probability": 0.9365 + }, + { + "start": 11932.06, + "end": 11933.78, + "probability": 0.9963 + }, + { + "start": 11934.7, + "end": 11937.66, + "probability": 0.9376 + }, + { + "start": 11937.66, + "end": 11941.36, + "probability": 0.9942 + }, + { + "start": 11942.22, + "end": 11942.81, + "probability": 0.9868 + }, + { + "start": 11944.18, + "end": 11946.78, + "probability": 0.9492 + }, + { + "start": 11947.64, + "end": 11948.64, + "probability": 0.9734 + }, + { + "start": 11949.58, + "end": 11953.84, + "probability": 0.9485 + }, + { + "start": 11954.02, + "end": 11954.52, + "probability": 0.2597 + }, + { + "start": 11954.52, + "end": 11956.1, + "probability": 0.8745 + }, + { + "start": 11957.06, + "end": 11958.68, + "probability": 0.657 + }, + { + "start": 11960.58, + "end": 11962.2, + "probability": 0.8352 + }, + { + "start": 11962.26, + "end": 11962.86, + "probability": 0.8499 + }, + { + "start": 11963.26, + "end": 11964.3, + "probability": 0.7409 + }, + { + "start": 11965.14, + "end": 11966.86, + "probability": 0.8197 + }, + { + "start": 11967.24, + "end": 11968.14, + "probability": 0.8118 + }, + { + "start": 11969.4, + "end": 11970.1, + "probability": 0.6475 + }, + { + "start": 11970.32, + "end": 11971.71, + "probability": 0.9096 + }, + { + "start": 11972.54, + "end": 11973.74, + "probability": 0.7263 + }, + { + "start": 11986.82, + "end": 11989.4, + "probability": 0.6714 + }, + { + "start": 11990.32, + "end": 11992.06, + "probability": 0.9888 + }, + { + "start": 11993.24, + "end": 12000.5, + "probability": 0.7705 + }, + { + "start": 12001.44, + "end": 12002.76, + "probability": 0.7145 + }, + { + "start": 12003.28, + "end": 12004.85, + "probability": 0.9913 + }, + { + "start": 12005.48, + "end": 12008.09, + "probability": 0.6716 + }, + { + "start": 12009.68, + "end": 12009.76, + "probability": 0.2196 + }, + { + "start": 12009.84, + "end": 12010.04, + "probability": 0.5178 + }, + { + "start": 12011.04, + "end": 12014.52, + "probability": 0.9643 + }, + { + "start": 12015.08, + "end": 12016.32, + "probability": 0.9294 + }, + { + "start": 12016.66, + "end": 12017.88, + "probability": 0.931 + }, + { + "start": 12018.16, + "end": 12018.96, + "probability": 0.7394 + }, + { + "start": 12019.58, + "end": 12022.44, + "probability": 0.9729 + }, + { + "start": 12023.76, + "end": 12024.12, + "probability": 0.3039 + }, + { + "start": 12024.78, + "end": 12028.2, + "probability": 0.8542 + }, + { + "start": 12028.96, + "end": 12032.34, + "probability": 0.9914 + }, + { + "start": 12033.26, + "end": 12033.94, + "probability": 0.9268 + }, + { + "start": 12034.08, + "end": 12035.74, + "probability": 0.4822 + }, + { + "start": 12036.02, + "end": 12037.24, + "probability": 0.9971 + }, + { + "start": 12038.14, + "end": 12039.86, + "probability": 0.7628 + }, + { + "start": 12040.14, + "end": 12045.78, + "probability": 0.8071 + }, + { + "start": 12046.3, + "end": 12048.98, + "probability": 0.845 + }, + { + "start": 12049.81, + "end": 12051.36, + "probability": 0.5132 + }, + { + "start": 12052.36, + "end": 12055.04, + "probability": 0.9885 + }, + { + "start": 12056.12, + "end": 12057.68, + "probability": 0.978 + }, + { + "start": 12058.24, + "end": 12059.94, + "probability": 0.9972 + }, + { + "start": 12060.5, + "end": 12061.9, + "probability": 0.9443 + }, + { + "start": 12062.44, + "end": 12063.57, + "probability": 0.9101 + }, + { + "start": 12065.4, + "end": 12069.0, + "probability": 0.8745 + }, + { + "start": 12069.32, + "end": 12073.22, + "probability": 0.9927 + }, + { + "start": 12075.2, + "end": 12076.32, + "probability": 0.4917 + }, + { + "start": 12076.4, + "end": 12078.7, + "probability": 0.9982 + }, + { + "start": 12079.32, + "end": 12080.39, + "probability": 0.9961 + }, + { + "start": 12082.08, + "end": 12085.5, + "probability": 0.9962 + }, + { + "start": 12085.5, + "end": 12089.32, + "probability": 0.9985 + }, + { + "start": 12089.76, + "end": 12090.48, + "probability": 0.9132 + }, + { + "start": 12091.92, + "end": 12092.56, + "probability": 0.5811 + }, + { + "start": 12092.8, + "end": 12094.92, + "probability": 0.8423 + }, + { + "start": 12095.7, + "end": 12097.72, + "probability": 0.9832 + }, + { + "start": 12098.22, + "end": 12101.64, + "probability": 0.9302 + }, + { + "start": 12102.4, + "end": 12107.54, + "probability": 0.9772 + }, + { + "start": 12107.82, + "end": 12109.52, + "probability": 0.8692 + }, + { + "start": 12109.82, + "end": 12112.58, + "probability": 0.9985 + }, + { + "start": 12113.58, + "end": 12117.14, + "probability": 0.9786 + }, + { + "start": 12117.56, + "end": 12118.84, + "probability": 0.9977 + }, + { + "start": 12119.82, + "end": 12120.54, + "probability": 0.814 + }, + { + "start": 12121.14, + "end": 12122.36, + "probability": 0.9257 + }, + { + "start": 12123.22, + "end": 12126.96, + "probability": 0.9137 + }, + { + "start": 12126.96, + "end": 12130.72, + "probability": 0.9374 + }, + { + "start": 12131.9, + "end": 12133.82, + "probability": 0.8217 + }, + { + "start": 12134.88, + "end": 12135.7, + "probability": 0.6222 + }, + { + "start": 12136.02, + "end": 12136.98, + "probability": 0.8843 + }, + { + "start": 12137.58, + "end": 12139.3, + "probability": 0.723 + }, + { + "start": 12139.54, + "end": 12141.36, + "probability": 0.9188 + }, + { + "start": 12141.68, + "end": 12148.1, + "probability": 0.9641 + }, + { + "start": 12148.74, + "end": 12154.62, + "probability": 0.9688 + }, + { + "start": 12155.48, + "end": 12156.42, + "probability": 0.7565 + }, + { + "start": 12156.42, + "end": 12157.34, + "probability": 0.9408 + }, + { + "start": 12157.92, + "end": 12160.42, + "probability": 0.9404 + }, + { + "start": 12161.64, + "end": 12165.68, + "probability": 0.9541 + }, + { + "start": 12166.78, + "end": 12169.18, + "probability": 0.9402 + }, + { + "start": 12169.84, + "end": 12173.84, + "probability": 0.9323 + }, + { + "start": 12174.04, + "end": 12175.04, + "probability": 0.8755 + }, + { + "start": 12175.06, + "end": 12175.52, + "probability": 0.9368 + }, + { + "start": 12175.74, + "end": 12176.08, + "probability": 0.8121 + }, + { + "start": 12176.14, + "end": 12176.66, + "probability": 0.6687 + }, + { + "start": 12177.36, + "end": 12181.02, + "probability": 0.9774 + }, + { + "start": 12181.4, + "end": 12184.6, + "probability": 0.8072 + }, + { + "start": 12184.66, + "end": 12187.04, + "probability": 0.8206 + }, + { + "start": 12187.04, + "end": 12188.14, + "probability": 0.9883 + }, + { + "start": 12188.46, + "end": 12188.46, + "probability": 0.3232 + }, + { + "start": 12188.46, + "end": 12189.02, + "probability": 0.6801 + }, + { + "start": 12189.42, + "end": 12190.36, + "probability": 0.9427 + }, + { + "start": 12190.4, + "end": 12190.66, + "probability": 0.6264 + }, + { + "start": 12191.0, + "end": 12191.56, + "probability": 0.3983 + }, + { + "start": 12192.5, + "end": 12194.24, + "probability": 0.7181 + }, + { + "start": 12194.3, + "end": 12195.74, + "probability": 0.8098 + }, + { + "start": 12196.14, + "end": 12198.62, + "probability": 0.9843 + }, + { + "start": 12198.62, + "end": 12202.48, + "probability": 0.9836 + }, + { + "start": 12202.8, + "end": 12204.74, + "probability": 0.9379 + }, + { + "start": 12205.1, + "end": 12206.38, + "probability": 0.959 + }, + { + "start": 12206.64, + "end": 12206.86, + "probability": 0.6466 + }, + { + "start": 12207.38, + "end": 12208.4, + "probability": 0.5678 + }, + { + "start": 12208.84, + "end": 12210.96, + "probability": 0.7772 + }, + { + "start": 12211.04, + "end": 12213.3, + "probability": 0.9384 + }, + { + "start": 12213.38, + "end": 12215.16, + "probability": 0.9953 + }, + { + "start": 12216.73, + "end": 12217.93, + "probability": 0.1949 + }, + { + "start": 12218.26, + "end": 12220.4, + "probability": 0.9918 + }, + { + "start": 12220.56, + "end": 12221.46, + "probability": 0.4247 + }, + { + "start": 12221.5, + "end": 12221.84, + "probability": 0.8831 + }, + { + "start": 12222.76, + "end": 12224.06, + "probability": 0.8724 + }, + { + "start": 12224.36, + "end": 12224.96, + "probability": 0.7939 + }, + { + "start": 12225.08, + "end": 12226.16, + "probability": 0.659 + }, + { + "start": 12226.72, + "end": 12227.42, + "probability": 0.7847 + }, + { + "start": 12227.68, + "end": 12229.36, + "probability": 0.512 + }, + { + "start": 12229.38, + "end": 12230.24, + "probability": 0.8029 + }, + { + "start": 12237.78, + "end": 12238.7, + "probability": 0.7373 + }, + { + "start": 12241.24, + "end": 12242.05, + "probability": 0.9463 + }, + { + "start": 12243.66, + "end": 12244.2, + "probability": 0.8031 + }, + { + "start": 12245.56, + "end": 12247.44, + "probability": 0.1283 + }, + { + "start": 12248.9, + "end": 12249.35, + "probability": 0.5336 + }, + { + "start": 12249.7, + "end": 12251.33, + "probability": 0.936 + }, + { + "start": 12254.44, + "end": 12256.28, + "probability": 0.998 + }, + { + "start": 12256.38, + "end": 12258.32, + "probability": 0.9937 + }, + { + "start": 12260.43, + "end": 12261.86, + "probability": 0.5074 + }, + { + "start": 12263.26, + "end": 12263.26, + "probability": 0.2067 + }, + { + "start": 12263.26, + "end": 12263.52, + "probability": 0.3943 + }, + { + "start": 12264.54, + "end": 12265.18, + "probability": 0.8721 + }, + { + "start": 12266.46, + "end": 12269.88, + "probability": 0.8954 + }, + { + "start": 12270.86, + "end": 12273.12, + "probability": 0.995 + }, + { + "start": 12274.08, + "end": 12275.48, + "probability": 0.9841 + }, + { + "start": 12276.0, + "end": 12279.92, + "probability": 0.779 + }, + { + "start": 12280.7, + "end": 12283.0, + "probability": 0.9214 + }, + { + "start": 12283.94, + "end": 12287.08, + "probability": 0.8281 + }, + { + "start": 12287.94, + "end": 12290.0, + "probability": 0.9932 + }, + { + "start": 12290.02, + "end": 12293.74, + "probability": 0.9473 + }, + { + "start": 12294.7, + "end": 12297.52, + "probability": 0.6955 + }, + { + "start": 12298.26, + "end": 12300.4, + "probability": 0.9066 + }, + { + "start": 12301.04, + "end": 12305.0, + "probability": 0.988 + }, + { + "start": 12305.74, + "end": 12311.96, + "probability": 0.9607 + }, + { + "start": 12313.0, + "end": 12314.14, + "probability": 0.7313 + }, + { + "start": 12314.88, + "end": 12320.76, + "probability": 0.9846 + }, + { + "start": 12322.08, + "end": 12323.3, + "probability": 0.9023 + }, + { + "start": 12324.64, + "end": 12326.18, + "probability": 0.919 + }, + { + "start": 12326.9, + "end": 12329.24, + "probability": 0.9517 + }, + { + "start": 12330.28, + "end": 12332.72, + "probability": 0.3279 + }, + { + "start": 12333.42, + "end": 12335.82, + "probability": 0.98 + }, + { + "start": 12336.42, + "end": 12339.88, + "probability": 0.9779 + }, + { + "start": 12340.82, + "end": 12342.42, + "probability": 0.9976 + }, + { + "start": 12342.98, + "end": 12346.5, + "probability": 0.9963 + }, + { + "start": 12347.0, + "end": 12347.42, + "probability": 0.5631 + }, + { + "start": 12348.68, + "end": 12351.58, + "probability": 0.9832 + }, + { + "start": 12352.42, + "end": 12356.1, + "probability": 0.972 + }, + { + "start": 12357.08, + "end": 12359.04, + "probability": 0.9647 + }, + { + "start": 12360.06, + "end": 12360.34, + "probability": 0.4989 + }, + { + "start": 12361.16, + "end": 12365.26, + "probability": 0.9279 + }, + { + "start": 12366.06, + "end": 12366.72, + "probability": 0.5579 + }, + { + "start": 12367.62, + "end": 12368.3, + "probability": 0.5941 + }, + { + "start": 12369.7, + "end": 12370.13, + "probability": 0.948 + }, + { + "start": 12371.52, + "end": 12373.52, + "probability": 0.9757 + }, + { + "start": 12374.1, + "end": 12377.38, + "probability": 0.8924 + }, + { + "start": 12378.0, + "end": 12379.18, + "probability": 0.916 + }, + { + "start": 12379.84, + "end": 12381.92, + "probability": 0.8906 + }, + { + "start": 12393.86, + "end": 12394.2, + "probability": 0.0354 + }, + { + "start": 12394.2, + "end": 12394.2, + "probability": 0.0683 + }, + { + "start": 12394.2, + "end": 12394.2, + "probability": 0.0263 + }, + { + "start": 12394.2, + "end": 12398.44, + "probability": 0.1709 + }, + { + "start": 12400.0, + "end": 12401.14, + "probability": 0.5779 + }, + { + "start": 12401.82, + "end": 12403.28, + "probability": 0.8867 + }, + { + "start": 12404.16, + "end": 12404.78, + "probability": 0.7241 + }, + { + "start": 12405.5, + "end": 12406.26, + "probability": 0.9479 + }, + { + "start": 12408.0, + "end": 12411.66, + "probability": 0.9558 + }, + { + "start": 12412.54, + "end": 12416.44, + "probability": 0.9934 + }, + { + "start": 12417.0, + "end": 12418.46, + "probability": 0.9754 + }, + { + "start": 12419.72, + "end": 12420.38, + "probability": 0.6459 + }, + { + "start": 12421.2, + "end": 12425.02, + "probability": 0.7788 + }, + { + "start": 12425.7, + "end": 12426.7, + "probability": 0.8187 + }, + { + "start": 12426.82, + "end": 12429.52, + "probability": 0.9385 + }, + { + "start": 12430.54, + "end": 12432.24, + "probability": 0.9515 + }, + { + "start": 12432.92, + "end": 12434.6, + "probability": 0.7902 + }, + { + "start": 12435.44, + "end": 12436.0, + "probability": 0.6659 + }, + { + "start": 12436.82, + "end": 12439.82, + "probability": 0.9966 + }, + { + "start": 12440.36, + "end": 12442.24, + "probability": 0.9417 + }, + { + "start": 12442.38, + "end": 12442.78, + "probability": 0.345 + }, + { + "start": 12442.98, + "end": 12443.7, + "probability": 0.8279 + }, + { + "start": 12444.16, + "end": 12446.9, + "probability": 0.992 + }, + { + "start": 12447.48, + "end": 12450.64, + "probability": 0.9919 + }, + { + "start": 12451.18, + "end": 12453.34, + "probability": 0.8975 + }, + { + "start": 12453.74, + "end": 12454.64, + "probability": 0.9153 + }, + { + "start": 12455.1, + "end": 12456.36, + "probability": 0.9978 + }, + { + "start": 12457.04, + "end": 12458.48, + "probability": 0.8946 + }, + { + "start": 12458.94, + "end": 12461.14, + "probability": 0.9431 + }, + { + "start": 12461.54, + "end": 12466.2, + "probability": 0.9868 + }, + { + "start": 12466.74, + "end": 12467.32, + "probability": 0.8147 + }, + { + "start": 12471.46, + "end": 12472.24, + "probability": 0.5286 + }, + { + "start": 12473.02, + "end": 12473.68, + "probability": 0.6506 + }, + { + "start": 12474.36, + "end": 12474.56, + "probability": 0.9153 + }, + { + "start": 12493.76, + "end": 12496.04, + "probability": 0.6897 + }, + { + "start": 12498.64, + "end": 12503.02, + "probability": 0.9099 + }, + { + "start": 12505.3, + "end": 12506.16, + "probability": 0.9923 + }, + { + "start": 12507.56, + "end": 12509.44, + "probability": 0.7359 + }, + { + "start": 12510.3, + "end": 12511.06, + "probability": 0.9462 + }, + { + "start": 12511.88, + "end": 12512.62, + "probability": 0.991 + }, + { + "start": 12513.8, + "end": 12516.56, + "probability": 0.9887 + }, + { + "start": 12518.62, + "end": 12521.94, + "probability": 0.8921 + }, + { + "start": 12523.88, + "end": 12526.7, + "probability": 0.9971 + }, + { + "start": 12527.66, + "end": 12529.9, + "probability": 0.8264 + }, + { + "start": 12530.94, + "end": 12533.12, + "probability": 0.9893 + }, + { + "start": 12533.84, + "end": 12536.36, + "probability": 0.9852 + }, + { + "start": 12540.26, + "end": 12542.56, + "probability": 0.9126 + }, + { + "start": 12542.78, + "end": 12544.36, + "probability": 0.9982 + }, + { + "start": 12544.42, + "end": 12544.82, + "probability": 0.9046 + }, + { + "start": 12545.84, + "end": 12546.56, + "probability": 0.5739 + }, + { + "start": 12547.22, + "end": 12548.7, + "probability": 0.6753 + }, + { + "start": 12550.4, + "end": 12551.04, + "probability": 0.7709 + }, + { + "start": 12552.7, + "end": 12555.42, + "probability": 0.7947 + }, + { + "start": 12555.56, + "end": 12557.78, + "probability": 0.9769 + }, + { + "start": 12558.6, + "end": 12561.32, + "probability": 0.9709 + }, + { + "start": 12562.24, + "end": 12564.56, + "probability": 0.8643 + }, + { + "start": 12564.56, + "end": 12564.86, + "probability": 0.0541 + }, + { + "start": 12565.16, + "end": 12566.32, + "probability": 0.7312 + }, + { + "start": 12566.54, + "end": 12566.64, + "probability": 0.4471 + }, + { + "start": 12566.64, + "end": 12570.05, + "probability": 0.5173 + }, + { + "start": 12570.36, + "end": 12572.39, + "probability": 0.1136 + }, + { + "start": 12572.44, + "end": 12572.79, + "probability": 0.3612 + }, + { + "start": 12573.24, + "end": 12578.62, + "probability": 0.7782 + }, + { + "start": 12579.18, + "end": 12581.36, + "probability": 0.9134 + }, + { + "start": 12582.24, + "end": 12584.78, + "probability": 0.9191 + }, + { + "start": 12584.98, + "end": 12585.64, + "probability": 0.9196 + }, + { + "start": 12586.22, + "end": 12587.47, + "probability": 0.9849 + }, + { + "start": 12587.92, + "end": 12588.33, + "probability": 0.333 + }, + { + "start": 12591.18, + "end": 12593.98, + "probability": 0.9692 + }, + { + "start": 12594.64, + "end": 12595.74, + "probability": 0.9898 + }, + { + "start": 12596.28, + "end": 12597.44, + "probability": 0.6886 + }, + { + "start": 12598.62, + "end": 12599.58, + "probability": 0.5981 + }, + { + "start": 12600.1, + "end": 12601.86, + "probability": 0.9979 + }, + { + "start": 12602.02, + "end": 12606.02, + "probability": 0.9263 + }, + { + "start": 12606.06, + "end": 12610.42, + "probability": 0.966 + }, + { + "start": 12611.44, + "end": 12612.28, + "probability": 0.9958 + }, + { + "start": 12612.84, + "end": 12615.14, + "probability": 0.734 + }, + { + "start": 12615.98, + "end": 12618.32, + "probability": 0.9797 + }, + { + "start": 12618.46, + "end": 12621.28, + "probability": 0.9463 + }, + { + "start": 12621.88, + "end": 12627.84, + "probability": 0.9966 + }, + { + "start": 12628.44, + "end": 12630.68, + "probability": 0.9629 + }, + { + "start": 12631.4, + "end": 12637.72, + "probability": 0.9965 + }, + { + "start": 12638.38, + "end": 12639.0, + "probability": 0.9885 + }, + { + "start": 12639.72, + "end": 12644.66, + "probability": 0.8401 + }, + { + "start": 12645.4, + "end": 12648.66, + "probability": 0.7857 + }, + { + "start": 12648.74, + "end": 12649.2, + "probability": 0.7459 + }, + { + "start": 12650.1, + "end": 12652.04, + "probability": 0.8642 + }, + { + "start": 12652.1, + "end": 12654.12, + "probability": 0.8968 + }, + { + "start": 12678.84, + "end": 12679.62, + "probability": 0.6812 + }, + { + "start": 12680.06, + "end": 12682.7, + "probability": 0.9774 + }, + { + "start": 12683.82, + "end": 12684.98, + "probability": 0.8921 + }, + { + "start": 12686.06, + "end": 12689.08, + "probability": 0.9294 + }, + { + "start": 12690.46, + "end": 12692.7, + "probability": 0.9183 + }, + { + "start": 12694.4, + "end": 12696.44, + "probability": 0.8328 + }, + { + "start": 12697.2, + "end": 12699.81, + "probability": 0.9937 + }, + { + "start": 12700.16, + "end": 12700.85, + "probability": 0.9484 + }, + { + "start": 12701.7, + "end": 12702.88, + "probability": 0.934 + }, + { + "start": 12702.9, + "end": 12704.0, + "probability": 0.5925 + }, + { + "start": 12704.42, + "end": 12707.86, + "probability": 0.9736 + }, + { + "start": 12708.26, + "end": 12710.2, + "probability": 0.9238 + }, + { + "start": 12711.58, + "end": 12715.0, + "probability": 0.9463 + }, + { + "start": 12716.02, + "end": 12719.58, + "probability": 0.9911 + }, + { + "start": 12720.32, + "end": 12721.72, + "probability": 0.6127 + }, + { + "start": 12721.9, + "end": 12722.28, + "probability": 0.6711 + }, + { + "start": 12722.42, + "end": 12722.92, + "probability": 0.7978 + }, + { + "start": 12723.06, + "end": 12723.82, + "probability": 0.4917 + }, + { + "start": 12723.88, + "end": 12725.36, + "probability": 0.7483 + }, + { + "start": 12726.44, + "end": 12730.92, + "probability": 0.9692 + }, + { + "start": 12731.44, + "end": 12734.36, + "probability": 0.9881 + }, + { + "start": 12734.84, + "end": 12737.96, + "probability": 0.9933 + }, + { + "start": 12738.86, + "end": 12742.76, + "probability": 0.9781 + }, + { + "start": 12742.76, + "end": 12747.44, + "probability": 0.9545 + }, + { + "start": 12749.12, + "end": 12752.64, + "probability": 0.9956 + }, + { + "start": 12752.82, + "end": 12753.5, + "probability": 0.9746 + }, + { + "start": 12754.58, + "end": 12757.04, + "probability": 0.9092 + }, + { + "start": 12757.52, + "end": 12763.62, + "probability": 0.9695 + }, + { + "start": 12764.5, + "end": 12765.46, + "probability": 0.978 + }, + { + "start": 12766.34, + "end": 12767.4, + "probability": 0.9546 + }, + { + "start": 12767.64, + "end": 12770.36, + "probability": 0.9452 + }, + { + "start": 12770.4, + "end": 12771.62, + "probability": 0.9351 + }, + { + "start": 12771.72, + "end": 12772.36, + "probability": 0.6755 + }, + { + "start": 12772.76, + "end": 12775.16, + "probability": 0.9763 + }, + { + "start": 12775.84, + "end": 12778.08, + "probability": 0.9021 + }, + { + "start": 12778.16, + "end": 12780.52, + "probability": 0.9594 + }, + { + "start": 12781.22, + "end": 12783.61, + "probability": 0.9819 + }, + { + "start": 12784.36, + "end": 12789.86, + "probability": 0.9976 + }, + { + "start": 12790.66, + "end": 12791.66, + "probability": 0.9146 + }, + { + "start": 12793.2, + "end": 12793.88, + "probability": 0.6736 + }, + { + "start": 12793.92, + "end": 12795.3, + "probability": 0.6129 + }, + { + "start": 12795.4, + "end": 12796.46, + "probability": 0.8884 + }, + { + "start": 12798.68, + "end": 12799.54, + "probability": 0.287 + }, + { + "start": 12799.54, + "end": 12799.82, + "probability": 0.2539 + }, + { + "start": 12800.78, + "end": 12804.0, + "probability": 0.8994 + }, + { + "start": 12804.0, + "end": 12806.3, + "probability": 0.866 + }, + { + "start": 12806.6, + "end": 12807.02, + "probability": 0.7306 + }, + { + "start": 12808.22, + "end": 12813.32, + "probability": 0.9698 + }, + { + "start": 12813.32, + "end": 12817.06, + "probability": 0.8751 + }, + { + "start": 12817.88, + "end": 12819.86, + "probability": 0.9731 + }, + { + "start": 12819.86, + "end": 12823.42, + "probability": 0.9655 + }, + { + "start": 12823.94, + "end": 12825.5, + "probability": 0.9267 + }, + { + "start": 12826.62, + "end": 12829.2, + "probability": 0.7436 + }, + { + "start": 12829.88, + "end": 12833.0, + "probability": 0.9824 + }, + { + "start": 12833.0, + "end": 12836.12, + "probability": 0.9681 + }, + { + "start": 12836.6, + "end": 12838.76, + "probability": 0.8984 + }, + { + "start": 12839.38, + "end": 12843.76, + "probability": 0.9221 + }, + { + "start": 12843.76, + "end": 12846.0, + "probability": 0.9841 + }, + { + "start": 12846.88, + "end": 12849.84, + "probability": 0.9617 + }, + { + "start": 12851.08, + "end": 12853.42, + "probability": 0.854 + }, + { + "start": 12853.94, + "end": 12855.32, + "probability": 0.9555 + }, + { + "start": 12855.7, + "end": 12857.44, + "probability": 0.9624 + }, + { + "start": 12858.26, + "end": 12859.72, + "probability": 0.9077 + }, + { + "start": 12860.4, + "end": 12863.14, + "probability": 0.7218 + }, + { + "start": 12863.98, + "end": 12867.32, + "probability": 0.9893 + }, + { + "start": 12867.68, + "end": 12872.8, + "probability": 0.894 + }, + { + "start": 12873.46, + "end": 12877.76, + "probability": 0.9839 + }, + { + "start": 12878.66, + "end": 12883.12, + "probability": 0.9746 + }, + { + "start": 12884.02, + "end": 12888.72, + "probability": 0.9813 + }, + { + "start": 12888.82, + "end": 12890.49, + "probability": 0.9941 + }, + { + "start": 12890.6, + "end": 12892.86, + "probability": 0.9892 + }, + { + "start": 12893.44, + "end": 12894.24, + "probability": 0.4515 + }, + { + "start": 12894.24, + "end": 12894.36, + "probability": 0.2638 + }, + { + "start": 12894.52, + "end": 12895.16, + "probability": 0.7662 + }, + { + "start": 12895.28, + "end": 12898.82, + "probability": 0.9267 + }, + { + "start": 12899.22, + "end": 12902.22, + "probability": 0.9384 + }, + { + "start": 12902.42, + "end": 12904.98, + "probability": 0.9951 + }, + { + "start": 12905.28, + "end": 12905.44, + "probability": 0.6024 + }, + { + "start": 12906.8, + "end": 12907.18, + "probability": 0.3939 + }, + { + "start": 12907.88, + "end": 12909.3, + "probability": 0.6448 + }, + { + "start": 12927.54, + "end": 12927.86, + "probability": 0.4979 + }, + { + "start": 12928.08, + "end": 12928.22, + "probability": 0.2483 + }, + { + "start": 12930.54, + "end": 12931.34, + "probability": 0.0179 + }, + { + "start": 12932.54, + "end": 12933.36, + "probability": 0.0134 + }, + { + "start": 12943.76, + "end": 12946.54, + "probability": 0.9703 + }, + { + "start": 12947.26, + "end": 12950.96, + "probability": 0.9899 + }, + { + "start": 12952.02, + "end": 12953.14, + "probability": 0.9337 + }, + { + "start": 12954.02, + "end": 12957.12, + "probability": 0.9944 + }, + { + "start": 12957.78, + "end": 12961.34, + "probability": 0.9913 + }, + { + "start": 12961.34, + "end": 12966.04, + "probability": 0.9993 + }, + { + "start": 12966.04, + "end": 12970.48, + "probability": 0.9974 + }, + { + "start": 12970.96, + "end": 12972.2, + "probability": 0.8481 + }, + { + "start": 12973.02, + "end": 12976.96, + "probability": 0.9414 + }, + { + "start": 12978.32, + "end": 12981.9, + "probability": 0.8314 + }, + { + "start": 12982.8, + "end": 12985.94, + "probability": 0.9966 + }, + { + "start": 12986.6, + "end": 12991.42, + "probability": 0.9917 + }, + { + "start": 12992.06, + "end": 12993.42, + "probability": 0.6749 + }, + { + "start": 12994.12, + "end": 12996.3, + "probability": 0.9359 + }, + { + "start": 12996.84, + "end": 12997.4, + "probability": 0.8548 + }, + { + "start": 12997.92, + "end": 12999.74, + "probability": 0.9844 + }, + { + "start": 13000.38, + "end": 13003.02, + "probability": 0.9518 + }, + { + "start": 13003.58, + "end": 13007.5, + "probability": 0.9717 + }, + { + "start": 13008.0, + "end": 13010.92, + "probability": 0.9893 + }, + { + "start": 13010.92, + "end": 13014.22, + "probability": 0.9988 + }, + { + "start": 13014.8, + "end": 13017.22, + "probability": 0.9718 + }, + { + "start": 13018.36, + "end": 13019.52, + "probability": 0.9578 + }, + { + "start": 13020.42, + "end": 13022.42, + "probability": 0.938 + }, + { + "start": 13022.88, + "end": 13023.64, + "probability": 0.8614 + }, + { + "start": 13023.94, + "end": 13024.92, + "probability": 0.9561 + }, + { + "start": 13025.44, + "end": 13030.48, + "probability": 0.9632 + }, + { + "start": 13031.06, + "end": 13032.94, + "probability": 0.9943 + }, + { + "start": 13033.38, + "end": 13039.98, + "probability": 0.9891 + }, + { + "start": 13040.66, + "end": 13041.58, + "probability": 0.8754 + }, + { + "start": 13042.26, + "end": 13044.46, + "probability": 0.9532 + }, + { + "start": 13044.92, + "end": 13048.9, + "probability": 0.9673 + }, + { + "start": 13049.44, + "end": 13052.4, + "probability": 0.9296 + }, + { + "start": 13052.9, + "end": 13055.5, + "probability": 0.945 + }, + { + "start": 13056.52, + "end": 13058.1, + "probability": 0.9974 + }, + { + "start": 13059.34, + "end": 13063.0, + "probability": 0.9374 + }, + { + "start": 13063.6, + "end": 13066.54, + "probability": 0.9238 + }, + { + "start": 13067.06, + "end": 13069.52, + "probability": 0.9971 + }, + { + "start": 13070.16, + "end": 13073.28, + "probability": 0.9868 + }, + { + "start": 13073.82, + "end": 13075.7, + "probability": 0.9934 + }, + { + "start": 13076.18, + "end": 13079.02, + "probability": 0.9961 + }, + { + "start": 13079.54, + "end": 13083.14, + "probability": 0.9945 + }, + { + "start": 13083.6, + "end": 13084.72, + "probability": 0.7864 + }, + { + "start": 13084.86, + "end": 13086.74, + "probability": 0.9078 + }, + { + "start": 13087.12, + "end": 13088.04, + "probability": 0.9686 + }, + { + "start": 13088.58, + "end": 13093.74, + "probability": 0.9914 + }, + { + "start": 13094.42, + "end": 13097.5, + "probability": 0.9712 + }, + { + "start": 13098.0, + "end": 13098.86, + "probability": 0.9158 + }, + { + "start": 13099.42, + "end": 13102.8, + "probability": 0.9923 + }, + { + "start": 13103.36, + "end": 13107.22, + "probability": 0.9863 + }, + { + "start": 13107.92, + "end": 13111.74, + "probability": 0.9621 + }, + { + "start": 13112.26, + "end": 13115.54, + "probability": 0.9681 + }, + { + "start": 13116.76, + "end": 13118.68, + "probability": 0.808 + }, + { + "start": 13118.7, + "end": 13121.58, + "probability": 0.9629 + }, + { + "start": 13122.02, + "end": 13122.94, + "probability": 0.6288 + }, + { + "start": 13124.74, + "end": 13126.24, + "probability": 0.7538 + }, + { + "start": 13144.22, + "end": 13146.78, + "probability": 0.7482 + }, + { + "start": 13148.28, + "end": 13156.81, + "probability": 0.8411 + }, + { + "start": 13157.98, + "end": 13162.12, + "probability": 0.8547 + }, + { + "start": 13163.56, + "end": 13164.02, + "probability": 0.8754 + }, + { + "start": 13165.58, + "end": 13166.29, + "probability": 0.9953 + }, + { + "start": 13167.56, + "end": 13171.1, + "probability": 0.9832 + }, + { + "start": 13172.06, + "end": 13173.04, + "probability": 0.8463 + }, + { + "start": 13173.64, + "end": 13175.28, + "probability": 0.8113 + }, + { + "start": 13176.7, + "end": 13177.14, + "probability": 0.9812 + }, + { + "start": 13177.86, + "end": 13181.92, + "probability": 0.9905 + }, + { + "start": 13184.18, + "end": 13184.5, + "probability": 0.7356 + }, + { + "start": 13184.56, + "end": 13184.94, + "probability": 0.9766 + }, + { + "start": 13185.04, + "end": 13193.68, + "probability": 0.978 + }, + { + "start": 13194.18, + "end": 13202.04, + "probability": 0.9985 + }, + { + "start": 13204.06, + "end": 13207.98, + "probability": 0.9946 + }, + { + "start": 13208.5, + "end": 13213.06, + "probability": 0.921 + }, + { + "start": 13215.98, + "end": 13218.18, + "probability": 0.9583 + }, + { + "start": 13219.6, + "end": 13225.7, + "probability": 0.9725 + }, + { + "start": 13225.92, + "end": 13227.94, + "probability": 0.8249 + }, + { + "start": 13228.24, + "end": 13229.55, + "probability": 0.8428 + }, + { + "start": 13230.12, + "end": 13234.6, + "probability": 0.9938 + }, + { + "start": 13237.28, + "end": 13237.9, + "probability": 0.8185 + }, + { + "start": 13239.04, + "end": 13240.26, + "probability": 0.8772 + }, + { + "start": 13241.34, + "end": 13242.86, + "probability": 0.7084 + }, + { + "start": 13244.04, + "end": 13245.84, + "probability": 0.7019 + }, + { + "start": 13247.2, + "end": 13252.0, + "probability": 0.7671 + }, + { + "start": 13253.7, + "end": 13256.43, + "probability": 0.8913 + }, + { + "start": 13257.2, + "end": 13264.98, + "probability": 0.9319 + }, + { + "start": 13265.96, + "end": 13273.5, + "probability": 0.9953 + }, + { + "start": 13274.24, + "end": 13275.44, + "probability": 0.8333 + }, + { + "start": 13275.76, + "end": 13279.04, + "probability": 0.972 + }, + { + "start": 13279.08, + "end": 13283.5, + "probability": 0.9932 + }, + { + "start": 13284.18, + "end": 13286.1, + "probability": 0.959 + }, + { + "start": 13287.7, + "end": 13289.96, + "probability": 0.993 + }, + { + "start": 13290.04, + "end": 13290.34, + "probability": 0.9094 + }, + { + "start": 13291.06, + "end": 13296.46, + "probability": 0.9684 + }, + { + "start": 13297.5, + "end": 13302.38, + "probability": 0.8859 + }, + { + "start": 13302.46, + "end": 13303.56, + "probability": 0.8127 + }, + { + "start": 13304.36, + "end": 13307.37, + "probability": 0.6617 + }, + { + "start": 13307.98, + "end": 13310.57, + "probability": 0.9708 + }, + { + "start": 13310.9, + "end": 13313.16, + "probability": 0.9719 + }, + { + "start": 13313.58, + "end": 13314.64, + "probability": 0.8846 + }, + { + "start": 13314.86, + "end": 13316.0, + "probability": 0.8301 + }, + { + "start": 13316.62, + "end": 13317.6, + "probability": 0.8581 + }, + { + "start": 13318.8, + "end": 13320.46, + "probability": 0.8369 + }, + { + "start": 13321.54, + "end": 13325.0, + "probability": 0.986 + }, + { + "start": 13325.54, + "end": 13329.36, + "probability": 0.9379 + }, + { + "start": 13329.74, + "end": 13330.58, + "probability": 0.6547 + }, + { + "start": 13330.6, + "end": 13334.78, + "probability": 0.9932 + }, + { + "start": 13334.78, + "end": 13340.4, + "probability": 0.9613 + }, + { + "start": 13340.94, + "end": 13341.22, + "probability": 0.6694 + }, + { + "start": 13342.1, + "end": 13343.8, + "probability": 0.8203 + }, + { + "start": 13344.6, + "end": 13346.4, + "probability": 0.6898 + }, + { + "start": 13347.68, + "end": 13347.84, + "probability": 0.3424 + }, + { + "start": 13348.5, + "end": 13350.18, + "probability": 0.6951 + }, + { + "start": 13350.86, + "end": 13351.46, + "probability": 0.5668 + }, + { + "start": 13351.7, + "end": 13353.99, + "probability": 0.879 + }, + { + "start": 13359.7, + "end": 13360.0, + "probability": 0.218 + }, + { + "start": 13361.42, + "end": 13364.06, + "probability": 0.2241 + }, + { + "start": 13376.5, + "end": 13377.52, + "probability": 0.429 + }, + { + "start": 13380.28, + "end": 13383.38, + "probability": 0.9635 + }, + { + "start": 13384.42, + "end": 13385.22, + "probability": 0.9357 + }, + { + "start": 13385.34, + "end": 13385.97, + "probability": 0.6475 + }, + { + "start": 13386.24, + "end": 13387.22, + "probability": 0.9746 + }, + { + "start": 13388.78, + "end": 13391.48, + "probability": 0.8189 + }, + { + "start": 13393.0, + "end": 13393.98, + "probability": 0.8905 + }, + { + "start": 13396.72, + "end": 13400.4, + "probability": 0.9971 + }, + { + "start": 13401.54, + "end": 13402.5, + "probability": 0.7842 + }, + { + "start": 13404.06, + "end": 13407.44, + "probability": 0.9635 + }, + { + "start": 13408.0, + "end": 13409.38, + "probability": 0.9396 + }, + { + "start": 13410.72, + "end": 13414.56, + "probability": 0.996 + }, + { + "start": 13416.18, + "end": 13418.62, + "probability": 0.9979 + }, + { + "start": 13419.88, + "end": 13420.84, + "probability": 0.741 + }, + { + "start": 13420.9, + "end": 13423.7, + "probability": 0.9961 + }, + { + "start": 13423.76, + "end": 13426.1, + "probability": 0.9885 + }, + { + "start": 13427.78, + "end": 13430.14, + "probability": 0.9145 + }, + { + "start": 13431.32, + "end": 13432.94, + "probability": 0.9697 + }, + { + "start": 13433.26, + "end": 13433.82, + "probability": 0.9242 + }, + { + "start": 13433.94, + "end": 13436.88, + "probability": 0.931 + }, + { + "start": 13436.92, + "end": 13439.4, + "probability": 0.9909 + }, + { + "start": 13440.42, + "end": 13441.12, + "probability": 0.9557 + }, + { + "start": 13442.6, + "end": 13444.38, + "probability": 0.9861 + }, + { + "start": 13445.28, + "end": 13447.08, + "probability": 0.9286 + }, + { + "start": 13447.7, + "end": 13448.0, + "probability": 0.8294 + }, + { + "start": 13448.24, + "end": 13451.76, + "probability": 0.9907 + }, + { + "start": 13452.0, + "end": 13452.46, + "probability": 0.8808 + }, + { + "start": 13453.36, + "end": 13454.14, + "probability": 0.7937 + }, + { + "start": 13454.48, + "end": 13457.18, + "probability": 0.9692 + }, + { + "start": 13457.62, + "end": 13458.96, + "probability": 0.9993 + }, + { + "start": 13459.98, + "end": 13462.34, + "probability": 0.9946 + }, + { + "start": 13462.96, + "end": 13464.14, + "probability": 0.6488 + }, + { + "start": 13464.92, + "end": 13465.58, + "probability": 0.6795 + }, + { + "start": 13466.3, + "end": 13469.68, + "probability": 0.8844 + }, + { + "start": 13469.93, + "end": 13471.21, + "probability": 0.8303 + }, + { + "start": 13471.42, + "end": 13473.23, + "probability": 0.6358 + }, + { + "start": 13473.5, + "end": 13474.0, + "probability": 0.7343 + }, + { + "start": 13475.5, + "end": 13476.9, + "probability": 0.869 + }, + { + "start": 13476.98, + "end": 13479.34, + "probability": 0.9391 + }, + { + "start": 13479.86, + "end": 13480.9, + "probability": 0.8242 + }, + { + "start": 13481.94, + "end": 13485.92, + "probability": 0.9779 + }, + { + "start": 13486.12, + "end": 13488.0, + "probability": 0.9927 + }, + { + "start": 13488.16, + "end": 13489.76, + "probability": 0.9707 + }, + { + "start": 13490.02, + "end": 13492.22, + "probability": 0.5346 + }, + { + "start": 13492.88, + "end": 13493.2, + "probability": 0.7332 + }, + { + "start": 13494.96, + "end": 13497.7, + "probability": 0.905 + }, + { + "start": 13498.32, + "end": 13500.32, + "probability": 0.9881 + }, + { + "start": 13501.08, + "end": 13503.5, + "probability": 0.9817 + }, + { + "start": 13503.5, + "end": 13506.04, + "probability": 0.8929 + }, + { + "start": 13506.22, + "end": 13509.06, + "probability": 0.9839 + }, + { + "start": 13510.22, + "end": 13510.88, + "probability": 0.9474 + }, + { + "start": 13511.74, + "end": 13512.96, + "probability": 0.9598 + }, + { + "start": 13513.26, + "end": 13515.8, + "probability": 0.6664 + }, + { + "start": 13516.34, + "end": 13518.26, + "probability": 0.8679 + }, + { + "start": 13519.02, + "end": 13521.3, + "probability": 0.8967 + }, + { + "start": 13523.24, + "end": 13527.88, + "probability": 0.9901 + }, + { + "start": 13527.98, + "end": 13530.6, + "probability": 0.807 + }, + { + "start": 13530.6, + "end": 13532.68, + "probability": 0.9815 + }, + { + "start": 13534.16, + "end": 13535.4, + "probability": 0.9979 + }, + { + "start": 13536.9, + "end": 13538.34, + "probability": 0.8499 + }, + { + "start": 13538.56, + "end": 13540.8, + "probability": 0.9939 + }, + { + "start": 13541.44, + "end": 13542.54, + "probability": 0.9839 + }, + { + "start": 13543.06, + "end": 13544.5, + "probability": 0.8251 + }, + { + "start": 13545.3, + "end": 13546.62, + "probability": 0.932 + }, + { + "start": 13547.22, + "end": 13548.12, + "probability": 0.8605 + }, + { + "start": 13549.2, + "end": 13549.92, + "probability": 0.7381 + }, + { + "start": 13550.4, + "end": 13553.9, + "probability": 0.9915 + }, + { + "start": 13554.14, + "end": 13554.7, + "probability": 0.6021 + }, + { + "start": 13555.3, + "end": 13555.9, + "probability": 0.6093 + }, + { + "start": 13556.02, + "end": 13556.6, + "probability": 0.5709 + }, + { + "start": 13556.64, + "end": 13559.72, + "probability": 0.9814 + }, + { + "start": 13560.12, + "end": 13562.32, + "probability": 0.9905 + }, + { + "start": 13563.06, + "end": 13564.6, + "probability": 0.8651 + }, + { + "start": 13565.78, + "end": 13566.36, + "probability": 0.8315 + }, + { + "start": 13567.12, + "end": 13568.66, + "probability": 0.9796 + }, + { + "start": 13569.76, + "end": 13571.32, + "probability": 0.9368 + }, + { + "start": 13572.12, + "end": 13576.16, + "probability": 0.9213 + }, + { + "start": 13577.06, + "end": 13577.6, + "probability": 0.4575 + }, + { + "start": 13577.62, + "end": 13580.08, + "probability": 0.9373 + }, + { + "start": 13580.12, + "end": 13580.12, + "probability": 0.3565 + }, + { + "start": 13580.14, + "end": 13581.86, + "probability": 0.5088 + }, + { + "start": 13581.9, + "end": 13585.56, + "probability": 0.9746 + }, + { + "start": 13586.26, + "end": 13586.6, + "probability": 0.527 + }, + { + "start": 13586.6, + "end": 13589.48, + "probability": 0.9962 + }, + { + "start": 13589.48, + "end": 13592.28, + "probability": 0.7571 + }, + { + "start": 13593.24, + "end": 13594.8, + "probability": 0.7252 + }, + { + "start": 13595.32, + "end": 13596.54, + "probability": 0.6403 + }, + { + "start": 13596.66, + "end": 13599.74, + "probability": 0.9895 + }, + { + "start": 13600.48, + "end": 13602.38, + "probability": 0.9887 + }, + { + "start": 13602.44, + "end": 13603.76, + "probability": 0.9934 + }, + { + "start": 13603.86, + "end": 13604.42, + "probability": 0.7037 + }, + { + "start": 13604.46, + "end": 13605.11, + "probability": 0.98 + }, + { + "start": 13605.3, + "end": 13605.5, + "probability": 0.4478 + }, + { + "start": 13606.62, + "end": 13607.21, + "probability": 0.98 + }, + { + "start": 13608.2, + "end": 13609.02, + "probability": 0.7539 + }, + { + "start": 13609.64, + "end": 13610.42, + "probability": 0.7317 + }, + { + "start": 13611.56, + "end": 13614.36, + "probability": 0.9912 + }, + { + "start": 13615.58, + "end": 13617.62, + "probability": 0.618 + }, + { + "start": 13617.88, + "end": 13621.18, + "probability": 0.5808 + }, + { + "start": 13641.62, + "end": 13643.14, + "probability": 0.6477 + }, + { + "start": 13643.44, + "end": 13643.48, + "probability": 0.2882 + }, + { + "start": 13643.6, + "end": 13646.1, + "probability": 0.6795 + }, + { + "start": 13646.88, + "end": 13652.02, + "probability": 0.9502 + }, + { + "start": 13652.56, + "end": 13653.72, + "probability": 0.5277 + }, + { + "start": 13654.34, + "end": 13656.35, + "probability": 0.9618 + }, + { + "start": 13656.6, + "end": 13660.02, + "probability": 0.9928 + }, + { + "start": 13660.62, + "end": 13662.54, + "probability": 0.9839 + }, + { + "start": 13663.12, + "end": 13663.61, + "probability": 0.8525 + }, + { + "start": 13663.86, + "end": 13665.66, + "probability": 0.8582 + }, + { + "start": 13665.66, + "end": 13668.28, + "probability": 0.981 + }, + { + "start": 13668.84, + "end": 13671.76, + "probability": 0.9478 + }, + { + "start": 13672.66, + "end": 13674.32, + "probability": 0.5782 + }, + { + "start": 13675.16, + "end": 13678.94, + "probability": 0.9009 + }, + { + "start": 13679.04, + "end": 13680.56, + "probability": 0.9273 + }, + { + "start": 13680.58, + "end": 13684.06, + "probability": 0.989 + }, + { + "start": 13684.46, + "end": 13686.14, + "probability": 0.6501 + }, + { + "start": 13686.66, + "end": 13689.7, + "probability": 0.8995 + }, + { + "start": 13690.4, + "end": 13694.54, + "probability": 0.9819 + }, + { + "start": 13694.54, + "end": 13699.58, + "probability": 0.9989 + }, + { + "start": 13700.18, + "end": 13702.3, + "probability": 0.991 + }, + { + "start": 13702.52, + "end": 13702.76, + "probability": 0.7456 + }, + { + "start": 13702.86, + "end": 13705.02, + "probability": 0.7652 + }, + { + "start": 13705.1, + "end": 13705.62, + "probability": 0.7185 + }, + { + "start": 13705.72, + "end": 13706.14, + "probability": 0.9124 + }, + { + "start": 13706.4, + "end": 13707.9, + "probability": 0.9635 + }, + { + "start": 13708.32, + "end": 13709.84, + "probability": 0.9406 + }, + { + "start": 13710.02, + "end": 13714.12, + "probability": 0.9395 + }, + { + "start": 13714.12, + "end": 13717.9, + "probability": 0.986 + }, + { + "start": 13718.42, + "end": 13722.66, + "probability": 0.9948 + }, + { + "start": 13723.22, + "end": 13726.6, + "probability": 0.998 + }, + { + "start": 13726.6, + "end": 13730.6, + "probability": 0.9983 + }, + { + "start": 13731.22, + "end": 13735.08, + "probability": 0.9833 + }, + { + "start": 13735.08, + "end": 13738.32, + "probability": 0.9988 + }, + { + "start": 13738.78, + "end": 13743.72, + "probability": 0.9941 + }, + { + "start": 13743.72, + "end": 13749.26, + "probability": 0.9977 + }, + { + "start": 13749.34, + "end": 13750.4, + "probability": 0.828 + }, + { + "start": 13750.46, + "end": 13752.46, + "probability": 0.8482 + }, + { + "start": 13752.9, + "end": 13755.74, + "probability": 0.9974 + }, + { + "start": 13756.18, + "end": 13757.98, + "probability": 0.9568 + }, + { + "start": 13758.2, + "end": 13763.02, + "probability": 0.9873 + }, + { + "start": 13763.22, + "end": 13767.06, + "probability": 0.9992 + }, + { + "start": 13767.06, + "end": 13771.3, + "probability": 0.9997 + }, + { + "start": 13771.72, + "end": 13775.68, + "probability": 0.9946 + }, + { + "start": 13775.7, + "end": 13780.48, + "probability": 0.9927 + }, + { + "start": 13781.32, + "end": 13784.7, + "probability": 0.9954 + }, + { + "start": 13784.7, + "end": 13787.6, + "probability": 0.9617 + }, + { + "start": 13788.04, + "end": 13792.92, + "probability": 0.9958 + }, + { + "start": 13793.08, + "end": 13795.92, + "probability": 0.9131 + }, + { + "start": 13796.32, + "end": 13797.76, + "probability": 0.8481 + }, + { + "start": 13798.0, + "end": 13800.06, + "probability": 0.9696 + }, + { + "start": 13800.48, + "end": 13804.12, + "probability": 0.9836 + }, + { + "start": 13804.4, + "end": 13804.68, + "probability": 0.9823 + }, + { + "start": 13805.46, + "end": 13808.08, + "probability": 0.8597 + }, + { + "start": 13808.08, + "end": 13811.44, + "probability": 0.998 + }, + { + "start": 13811.56, + "end": 13813.68, + "probability": 0.8323 + }, + { + "start": 13814.02, + "end": 13816.9, + "probability": 0.9928 + }, + { + "start": 13816.9, + "end": 13819.9, + "probability": 0.761 + }, + { + "start": 13820.24, + "end": 13822.32, + "probability": 0.9562 + }, + { + "start": 13822.44, + "end": 13826.2, + "probability": 0.9917 + }, + { + "start": 13826.6, + "end": 13831.12, + "probability": 0.9962 + }, + { + "start": 13831.92, + "end": 13832.28, + "probability": 0.602 + }, + { + "start": 13832.58, + "end": 13835.44, + "probability": 0.8719 + }, + { + "start": 13835.68, + "end": 13838.36, + "probability": 0.5024 + }, + { + "start": 13838.36, + "end": 13839.08, + "probability": 0.2777 + }, + { + "start": 13839.46, + "end": 13842.36, + "probability": 0.9882 + }, + { + "start": 13842.36, + "end": 13846.08, + "probability": 0.9915 + }, + { + "start": 13846.58, + "end": 13850.16, + "probability": 0.9502 + }, + { + "start": 13850.16, + "end": 13852.14, + "probability": 0.6731 + }, + { + "start": 13852.26, + "end": 13852.38, + "probability": 0.6882 + }, + { + "start": 13852.66, + "end": 13854.86, + "probability": 0.8389 + }, + { + "start": 13855.06, + "end": 13856.98, + "probability": 0.6666 + }, + { + "start": 13857.42, + "end": 13859.5, + "probability": 0.9849 + }, + { + "start": 13859.82, + "end": 13863.94, + "probability": 0.963 + }, + { + "start": 13864.42, + "end": 13866.38, + "probability": 0.8004 + }, + { + "start": 13867.18, + "end": 13867.72, + "probability": 0.7285 + }, + { + "start": 13868.16, + "end": 13872.92, + "probability": 0.9105 + }, + { + "start": 13873.52, + "end": 13875.78, + "probability": 0.639 + }, + { + "start": 13875.86, + "end": 13876.3, + "probability": 0.7548 + }, + { + "start": 13876.4, + "end": 13877.9, + "probability": 0.8423 + }, + { + "start": 13877.96, + "end": 13879.6, + "probability": 0.8777 + }, + { + "start": 13897.96, + "end": 13899.12, + "probability": 0.7095 + }, + { + "start": 13899.2, + "end": 13899.68, + "probability": 0.6935 + }, + { + "start": 13901.86, + "end": 13903.56, + "probability": 0.8659 + }, + { + "start": 13904.66, + "end": 13907.08, + "probability": 0.9532 + }, + { + "start": 13907.98, + "end": 13908.58, + "probability": 0.9506 + }, + { + "start": 13908.62, + "end": 13909.54, + "probability": 0.892 + }, + { + "start": 13909.64, + "end": 13910.14, + "probability": 0.769 + }, + { + "start": 13910.28, + "end": 13911.88, + "probability": 0.7669 + }, + { + "start": 13912.54, + "end": 13920.18, + "probability": 0.9049 + }, + { + "start": 13920.94, + "end": 13923.74, + "probability": 0.9949 + }, + { + "start": 13924.4, + "end": 13925.4, + "probability": 0.8586 + }, + { + "start": 13926.22, + "end": 13932.6, + "probability": 0.9836 + }, + { + "start": 13933.2, + "end": 13934.32, + "probability": 0.9626 + }, + { + "start": 13935.38, + "end": 13935.82, + "probability": 0.7715 + }, + { + "start": 13936.02, + "end": 13937.72, + "probability": 0.9263 + }, + { + "start": 13937.72, + "end": 13939.8, + "probability": 0.9946 + }, + { + "start": 13941.08, + "end": 13942.86, + "probability": 0.7126 + }, + { + "start": 13943.0, + "end": 13945.72, + "probability": 0.9596 + }, + { + "start": 13946.62, + "end": 13949.26, + "probability": 0.9141 + }, + { + "start": 13950.1, + "end": 13951.38, + "probability": 0.9189 + }, + { + "start": 13951.52, + "end": 13954.78, + "probability": 0.9913 + }, + { + "start": 13955.3, + "end": 13956.46, + "probability": 0.92 + }, + { + "start": 13957.22, + "end": 13959.6, + "probability": 0.9526 + }, + { + "start": 13960.36, + "end": 13961.92, + "probability": 0.6574 + }, + { + "start": 13963.0, + "end": 13964.74, + "probability": 0.9204 + }, + { + "start": 13964.84, + "end": 13967.32, + "probability": 0.973 + }, + { + "start": 13967.98, + "end": 13970.76, + "probability": 0.982 + }, + { + "start": 13971.66, + "end": 13972.8, + "probability": 0.6119 + }, + { + "start": 13973.46, + "end": 13974.14, + "probability": 0.5527 + }, + { + "start": 13974.5, + "end": 13977.72, + "probability": 0.846 + }, + { + "start": 13979.44, + "end": 13980.96, + "probability": 0.7763 + }, + { + "start": 13981.72, + "end": 13984.3, + "probability": 0.9551 + }, + { + "start": 13985.42, + "end": 13988.92, + "probability": 0.9963 + }, + { + "start": 13988.92, + "end": 13993.82, + "probability": 0.9531 + }, + { + "start": 13995.16, + "end": 13998.92, + "probability": 0.8865 + }, + { + "start": 13999.58, + "end": 14001.84, + "probability": 0.9033 + }, + { + "start": 14002.82, + "end": 14005.28, + "probability": 0.9937 + }, + { + "start": 14006.02, + "end": 14009.0, + "probability": 0.8901 + }, + { + "start": 14009.6, + "end": 14014.64, + "probability": 0.9985 + }, + { + "start": 14014.96, + "end": 14015.74, + "probability": 0.6399 + }, + { + "start": 14016.66, + "end": 14017.44, + "probability": 0.8583 + }, + { + "start": 14017.56, + "end": 14017.76, + "probability": 0.7626 + }, + { + "start": 14018.66, + "end": 14021.84, + "probability": 0.9144 + }, + { + "start": 14022.44, + "end": 14025.14, + "probability": 0.9842 + }, + { + "start": 14025.92, + "end": 14026.8, + "probability": 0.8562 + }, + { + "start": 14028.47, + "end": 14034.72, + "probability": 0.9503 + }, + { + "start": 14036.66, + "end": 14037.6, + "probability": 0.9593 + }, + { + "start": 14038.36, + "end": 14038.86, + "probability": 0.7413 + }, + { + "start": 14039.26, + "end": 14041.0, + "probability": 0.3196 + }, + { + "start": 14043.06, + "end": 14043.34, + "probability": 0.2021 + }, + { + "start": 14043.34, + "end": 14043.34, + "probability": 0.0302 + }, + { + "start": 14043.34, + "end": 14043.76, + "probability": 0.4084 + }, + { + "start": 14045.28, + "end": 14046.22, + "probability": 0.5512 + }, + { + "start": 14046.52, + "end": 14047.82, + "probability": 0.8454 + }, + { + "start": 14049.14, + "end": 14049.52, + "probability": 0.601 + }, + { + "start": 14064.5, + "end": 14064.5, + "probability": 0.3016 + }, + { + "start": 14064.5, + "end": 14064.74, + "probability": 0.2507 + }, + { + "start": 14064.76, + "end": 14067.86, + "probability": 0.678 + }, + { + "start": 14069.34, + "end": 14074.84, + "probability": 0.943 + }, + { + "start": 14076.92, + "end": 14077.84, + "probability": 0.992 + }, + { + "start": 14083.55, + "end": 14083.96, + "probability": 0.2127 + }, + { + "start": 14083.96, + "end": 14084.0, + "probability": 0.0215 + }, + { + "start": 14084.0, + "end": 14084.0, + "probability": 0.2773 + }, + { + "start": 14084.0, + "end": 14084.12, + "probability": 0.5319 + }, + { + "start": 14084.24, + "end": 14085.98, + "probability": 0.5472 + }, + { + "start": 14086.5, + "end": 14087.48, + "probability": 0.2771 + }, + { + "start": 14092.32, + "end": 14093.12, + "probability": 0.1066 + }, + { + "start": 14093.12, + "end": 14093.12, + "probability": 0.1403 + }, + { + "start": 14093.56, + "end": 14098.2, + "probability": 0.9468 + }, + { + "start": 14099.92, + "end": 14100.28, + "probability": 0.6193 + }, + { + "start": 14100.44, + "end": 14101.16, + "probability": 0.6987 + }, + { + "start": 14101.26, + "end": 14101.9, + "probability": 0.9172 + }, + { + "start": 14102.04, + "end": 14102.68, + "probability": 0.9603 + }, + { + "start": 14103.38, + "end": 14104.38, + "probability": 0.9954 + }, + { + "start": 14105.06, + "end": 14106.42, + "probability": 0.9403 + }, + { + "start": 14106.48, + "end": 14107.42, + "probability": 0.9008 + }, + { + "start": 14107.5, + "end": 14112.86, + "probability": 0.9807 + }, + { + "start": 14113.76, + "end": 14116.56, + "probability": 0.9512 + }, + { + "start": 14117.94, + "end": 14119.26, + "probability": 0.9979 + }, + { + "start": 14119.8, + "end": 14120.06, + "probability": 0.8988 + }, + { + "start": 14120.82, + "end": 14123.24, + "probability": 0.9893 + }, + { + "start": 14124.5, + "end": 14126.22, + "probability": 0.6986 + }, + { + "start": 14127.02, + "end": 14129.72, + "probability": 0.9772 + }, + { + "start": 14130.58, + "end": 14130.86, + "probability": 0.967 + }, + { + "start": 14130.94, + "end": 14131.92, + "probability": 0.9878 + }, + { + "start": 14132.02, + "end": 14133.12, + "probability": 0.9688 + }, + { + "start": 14133.24, + "end": 14134.08, + "probability": 0.9103 + }, + { + "start": 14134.52, + "end": 14136.22, + "probability": 0.9985 + }, + { + "start": 14137.06, + "end": 14138.78, + "probability": 0.7791 + }, + { + "start": 14138.92, + "end": 14139.56, + "probability": 0.89 + }, + { + "start": 14139.64, + "end": 14141.26, + "probability": 0.9061 + }, + { + "start": 14142.06, + "end": 14142.5, + "probability": 0.5085 + }, + { + "start": 14143.24, + "end": 14144.5, + "probability": 0.9755 + }, + { + "start": 14146.3, + "end": 14147.58, + "probability": 0.3096 + }, + { + "start": 14147.76, + "end": 14150.8, + "probability": 0.019 + }, + { + "start": 14150.8, + "end": 14151.72, + "probability": 0.5451 + }, + { + "start": 14151.74, + "end": 14153.64, + "probability": 0.3445 + }, + { + "start": 14153.84, + "end": 14154.18, + "probability": 0.9109 + }, + { + "start": 14154.78, + "end": 14154.96, + "probability": 0.6106 + }, + { + "start": 14155.04, + "end": 14155.2, + "probability": 0.8553 + }, + { + "start": 14155.34, + "end": 14155.64, + "probability": 0.7512 + }, + { + "start": 14156.02, + "end": 14156.54, + "probability": 0.7428 + }, + { + "start": 14156.68, + "end": 14157.02, + "probability": 0.9075 + }, + { + "start": 14157.1, + "end": 14157.5, + "probability": 0.7472 + }, + { + "start": 14157.5, + "end": 14158.14, + "probability": 0.2646 + }, + { + "start": 14158.36, + "end": 14158.84, + "probability": 0.455 + }, + { + "start": 14161.28, + "end": 14161.48, + "probability": 0.1137 + }, + { + "start": 14161.48, + "end": 14161.48, + "probability": 0.1136 + }, + { + "start": 14161.48, + "end": 14161.48, + "probability": 0.1711 + }, + { + "start": 14161.48, + "end": 14162.34, + "probability": 0.5424 + }, + { + "start": 14162.44, + "end": 14163.37, + "probability": 0.7239 + }, + { + "start": 14163.52, + "end": 14163.77, + "probability": 0.2174 + }, + { + "start": 14165.18, + "end": 14166.5, + "probability": 0.3228 + }, + { + "start": 14166.54, + "end": 14169.0, + "probability": 0.5659 + }, + { + "start": 14169.14, + "end": 14169.72, + "probability": 0.3753 + }, + { + "start": 14170.49, + "end": 14171.18, + "probability": 0.1108 + }, + { + "start": 14172.0, + "end": 14172.76, + "probability": 0.4697 + }, + { + "start": 14172.98, + "end": 14173.66, + "probability": 0.0932 + }, + { + "start": 14174.36, + "end": 14174.76, + "probability": 0.7012 + }, + { + "start": 14174.9, + "end": 14175.4, + "probability": 0.701 + }, + { + "start": 14175.82, + "end": 14176.8, + "probability": 0.9634 + }, + { + "start": 14177.0, + "end": 14177.56, + "probability": 0.7012 + }, + { + "start": 14177.64, + "end": 14178.38, + "probability": 0.9508 + }, + { + "start": 14178.44, + "end": 14181.72, + "probability": 0.9834 + }, + { + "start": 14183.12, + "end": 14183.42, + "probability": 0.3494 + }, + { + "start": 14183.58, + "end": 14184.28, + "probability": 0.7423 + }, + { + "start": 14184.34, + "end": 14188.64, + "probability": 0.9637 + }, + { + "start": 14188.74, + "end": 14189.5, + "probability": 0.8503 + }, + { + "start": 14189.98, + "end": 14191.96, + "probability": 0.9412 + }, + { + "start": 14192.42, + "end": 14194.68, + "probability": 0.9851 + }, + { + "start": 14195.46, + "end": 14196.28, + "probability": 0.6104 + }, + { + "start": 14196.94, + "end": 14200.12, + "probability": 0.8564 + }, + { + "start": 14200.88, + "end": 14202.24, + "probability": 0.5377 + }, + { + "start": 14203.0, + "end": 14204.62, + "probability": 0.9863 + }, + { + "start": 14205.48, + "end": 14208.96, + "probability": 0.9177 + }, + { + "start": 14209.72, + "end": 14211.2, + "probability": 0.8196 + }, + { + "start": 14211.28, + "end": 14211.84, + "probability": 0.8929 + }, + { + "start": 14211.96, + "end": 14212.64, + "probability": 0.7359 + }, + { + "start": 14213.04, + "end": 14214.22, + "probability": 0.9737 + }, + { + "start": 14214.7, + "end": 14219.72, + "probability": 0.9539 + }, + { + "start": 14221.66, + "end": 14222.44, + "probability": 0.8993 + }, + { + "start": 14222.64, + "end": 14224.14, + "probability": 0.5904 + }, + { + "start": 14224.26, + "end": 14225.28, + "probability": 0.6788 + }, + { + "start": 14225.96, + "end": 14231.7, + "probability": 0.9082 + }, + { + "start": 14232.28, + "end": 14233.4, + "probability": 0.7129 + }, + { + "start": 14233.46, + "end": 14233.72, + "probability": 0.1471 + }, + { + "start": 14233.72, + "end": 14233.92, + "probability": 0.2926 + }, + { + "start": 14233.92, + "end": 14235.22, + "probability": 0.0482 + }, + { + "start": 14236.66, + "end": 14238.04, + "probability": 0.3689 + }, + { + "start": 14239.34, + "end": 14239.72, + "probability": 0.3867 + }, + { + "start": 14239.88, + "end": 14241.04, + "probability": 0.4643 + }, + { + "start": 14241.04, + "end": 14242.04, + "probability": 0.6377 + }, + { + "start": 14242.48, + "end": 14242.78, + "probability": 0.6807 + }, + { + "start": 14243.14, + "end": 14243.42, + "probability": 0.2967 + }, + { + "start": 14243.42, + "end": 14243.42, + "probability": 0.0681 + }, + { + "start": 14243.42, + "end": 14244.96, + "probability": 0.7985 + }, + { + "start": 14245.06, + "end": 14247.5, + "probability": 0.742 + }, + { + "start": 14247.6, + "end": 14248.78, + "probability": 0.877 + }, + { + "start": 14248.96, + "end": 14249.8, + "probability": 0.4683 + }, + { + "start": 14249.8, + "end": 14250.9, + "probability": 0.711 + }, + { + "start": 14251.4, + "end": 14253.42, + "probability": 0.7651 + }, + { + "start": 14253.72, + "end": 14254.44, + "probability": 0.9373 + }, + { + "start": 14255.94, + "end": 14258.34, + "probability": 0.8633 + }, + { + "start": 14258.4, + "end": 14259.34, + "probability": 0.9197 + }, + { + "start": 14259.78, + "end": 14260.78, + "probability": 0.5604 + }, + { + "start": 14261.36, + "end": 14262.26, + "probability": 0.6884 + }, + { + "start": 14264.14, + "end": 14266.14, + "probability": 0.7714 + }, + { + "start": 14266.34, + "end": 14266.88, + "probability": 0.9502 + }, + { + "start": 14267.74, + "end": 14268.94, + "probability": 0.9004 + }, + { + "start": 14269.68, + "end": 14271.68, + "probability": 0.9712 + }, + { + "start": 14272.28, + "end": 14272.58, + "probability": 0.7764 + }, + { + "start": 14272.64, + "end": 14276.8, + "probability": 0.995 + }, + { + "start": 14276.92, + "end": 14277.38, + "probability": 0.6337 + }, + { + "start": 14277.48, + "end": 14277.94, + "probability": 0.448 + }, + { + "start": 14279.24, + "end": 14281.54, + "probability": 0.7947 + }, + { + "start": 14282.48, + "end": 14283.18, + "probability": 0.7682 + }, + { + "start": 14284.34, + "end": 14284.58, + "probability": 0.5897 + }, + { + "start": 14285.92, + "end": 14286.64, + "probability": 0.7913 + }, + { + "start": 14289.36, + "end": 14290.42, + "probability": 0.2327 + }, + { + "start": 14295.96, + "end": 14296.8, + "probability": 0.3067 + }, + { + "start": 14298.32, + "end": 14299.32, + "probability": 0.4097 + }, + { + "start": 14299.42, + "end": 14303.82, + "probability": 0.9117 + }, + { + "start": 14305.52, + "end": 14307.32, + "probability": 0.9448 + }, + { + "start": 14307.92, + "end": 14308.34, + "probability": 0.7205 + }, + { + "start": 14309.34, + "end": 14311.66, + "probability": 0.9397 + }, + { + "start": 14312.0, + "end": 14314.16, + "probability": 0.0447 + }, + { + "start": 14314.44, + "end": 14317.9, + "probability": 0.9109 + }, + { + "start": 14318.5, + "end": 14319.32, + "probability": 0.5959 + }, + { + "start": 14319.36, + "end": 14319.88, + "probability": 0.8697 + }, + { + "start": 14325.75, + "end": 14328.5, + "probability": 0.6022 + }, + { + "start": 14330.78, + "end": 14332.18, + "probability": 0.3163 + }, + { + "start": 14332.18, + "end": 14333.16, + "probability": 0.243 + }, + { + "start": 14333.46, + "end": 14333.74, + "probability": 0.5543 + }, + { + "start": 14334.36, + "end": 14334.8, + "probability": 0.8178 + }, + { + "start": 14335.26, + "end": 14337.88, + "probability": 0.8112 + }, + { + "start": 14339.06, + "end": 14340.3, + "probability": 0.5973 + }, + { + "start": 14341.5, + "end": 14342.16, + "probability": 0.1434 + }, + { + "start": 14342.86, + "end": 14343.44, + "probability": 0.929 + }, + { + "start": 14343.86, + "end": 14344.2, + "probability": 0.0249 + }, + { + "start": 14344.2, + "end": 14345.07, + "probability": 0.6982 + }, + { + "start": 14345.28, + "end": 14346.34, + "probability": 0.4161 + }, + { + "start": 14346.42, + "end": 14347.07, + "probability": 0.9398 + }, + { + "start": 14347.84, + "end": 14348.48, + "probability": 0.6427 + }, + { + "start": 14348.56, + "end": 14350.03, + "probability": 0.3677 + }, + { + "start": 14350.64, + "end": 14351.38, + "probability": 0.2773 + }, + { + "start": 14354.22, + "end": 14355.75, + "probability": 0.7163 + }, + { + "start": 14356.02, + "end": 14356.98, + "probability": 0.7969 + }, + { + "start": 14357.64, + "end": 14358.23, + "probability": 0.4586 + }, + { + "start": 14358.78, + "end": 14360.42, + "probability": 0.5132 + }, + { + "start": 14361.04, + "end": 14363.18, + "probability": 0.1125 + }, + { + "start": 14363.4, + "end": 14363.44, + "probability": 0.2658 + }, + { + "start": 14363.5, + "end": 14364.46, + "probability": 0.6359 + }, + { + "start": 14364.8, + "end": 14365.43, + "probability": 0.6664 + }, + { + "start": 14366.56, + "end": 14367.14, + "probability": 0.7135 + }, + { + "start": 14367.24, + "end": 14367.82, + "probability": 0.8469 + }, + { + "start": 14367.98, + "end": 14368.08, + "probability": 0.8066 + }, + { + "start": 14369.08, + "end": 14370.22, + "probability": 0.4463 + }, + { + "start": 14370.54, + "end": 14370.78, + "probability": 0.9274 + }, + { + "start": 14371.08, + "end": 14372.16, + "probability": 0.4063 + }, + { + "start": 14372.46, + "end": 14373.44, + "probability": 0.9457 + }, + { + "start": 14374.02, + "end": 14375.82, + "probability": 0.8239 + }, + { + "start": 14376.02, + "end": 14377.16, + "probability": 0.8299 + }, + { + "start": 14377.38, + "end": 14384.4, + "probability": 0.9728 + }, + { + "start": 14385.32, + "end": 14387.24, + "probability": 0.9864 + }, + { + "start": 14387.84, + "end": 14392.24, + "probability": 0.9974 + }, + { + "start": 14393.36, + "end": 14394.3, + "probability": 0.9053 + }, + { + "start": 14394.92, + "end": 14397.82, + "probability": 0.9941 + }, + { + "start": 14398.58, + "end": 14400.4, + "probability": 0.9883 + }, + { + "start": 14401.08, + "end": 14403.74, + "probability": 0.9954 + }, + { + "start": 14404.48, + "end": 14406.51, + "probability": 0.9937 + }, + { + "start": 14407.26, + "end": 14408.66, + "probability": 0.9882 + }, + { + "start": 14409.7, + "end": 14410.74, + "probability": 0.8446 + }, + { + "start": 14411.78, + "end": 14413.02, + "probability": 0.9978 + }, + { + "start": 14413.82, + "end": 14416.92, + "probability": 0.9662 + }, + { + "start": 14417.72, + "end": 14419.1, + "probability": 0.9529 + }, + { + "start": 14419.5, + "end": 14420.48, + "probability": 0.6969 + }, + { + "start": 14421.22, + "end": 14423.68, + "probability": 0.9533 + }, + { + "start": 14424.62, + "end": 14428.38, + "probability": 0.8293 + }, + { + "start": 14429.12, + "end": 14432.88, + "probability": 0.9781 + }, + { + "start": 14433.7, + "end": 14437.64, + "probability": 0.8931 + }, + { + "start": 14438.34, + "end": 14440.1, + "probability": 0.9654 + }, + { + "start": 14440.8, + "end": 14442.44, + "probability": 0.8538 + }, + { + "start": 14442.9, + "end": 14444.94, + "probability": 0.9423 + }, + { + "start": 14445.68, + "end": 14447.88, + "probability": 0.946 + }, + { + "start": 14448.66, + "end": 14450.09, + "probability": 0.998 + }, + { + "start": 14450.96, + "end": 14452.02, + "probability": 0.936 + }, + { + "start": 14452.2, + "end": 14454.42, + "probability": 0.9846 + }, + { + "start": 14455.36, + "end": 14458.82, + "probability": 0.9854 + }, + { + "start": 14459.44, + "end": 14460.34, + "probability": 0.8158 + }, + { + "start": 14460.92, + "end": 14461.9, + "probability": 0.8156 + }, + { + "start": 14462.58, + "end": 14463.54, + "probability": 0.7318 + }, + { + "start": 14464.16, + "end": 14464.88, + "probability": 0.9453 + }, + { + "start": 14465.4, + "end": 14467.08, + "probability": 0.9904 + }, + { + "start": 14468.5, + "end": 14469.02, + "probability": 0.9631 + }, + { + "start": 14469.72, + "end": 14471.09, + "probability": 0.9141 + }, + { + "start": 14472.14, + "end": 14474.34, + "probability": 0.7824 + }, + { + "start": 14475.04, + "end": 14477.32, + "probability": 0.9706 + }, + { + "start": 14478.12, + "end": 14480.4, + "probability": 0.9963 + }, + { + "start": 14480.56, + "end": 14482.44, + "probability": 0.94 + }, + { + "start": 14483.34, + "end": 14486.16, + "probability": 0.9976 + }, + { + "start": 14486.16, + "end": 14489.32, + "probability": 0.9982 + }, + { + "start": 14490.12, + "end": 14490.64, + "probability": 0.9592 + }, + { + "start": 14491.78, + "end": 14493.03, + "probability": 0.9949 + }, + { + "start": 14493.28, + "end": 14494.82, + "probability": 0.8324 + }, + { + "start": 14496.06, + "end": 14499.14, + "probability": 0.9699 + }, + { + "start": 14499.8, + "end": 14500.48, + "probability": 0.95 + }, + { + "start": 14501.74, + "end": 14505.06, + "probability": 0.8923 + }, + { + "start": 14505.62, + "end": 14507.16, + "probability": 0.8556 + }, + { + "start": 14507.8, + "end": 14512.34, + "probability": 0.9683 + }, + { + "start": 14513.28, + "end": 14514.6, + "probability": 0.9807 + }, + { + "start": 14515.34, + "end": 14519.52, + "probability": 0.9928 + }, + { + "start": 14520.16, + "end": 14522.86, + "probability": 0.9676 + }, + { + "start": 14523.74, + "end": 14524.6, + "probability": 0.8683 + }, + { + "start": 14525.48, + "end": 14526.24, + "probability": 0.8089 + }, + { + "start": 14526.8, + "end": 14530.06, + "probability": 0.895 + }, + { + "start": 14531.14, + "end": 14533.0, + "probability": 0.998 + }, + { + "start": 14534.18, + "end": 14535.2, + "probability": 0.4241 + }, + { + "start": 14536.08, + "end": 14539.22, + "probability": 0.9748 + }, + { + "start": 14539.82, + "end": 14541.02, + "probability": 0.7323 + }, + { + "start": 14541.88, + "end": 14543.24, + "probability": 0.9652 + }, + { + "start": 14544.14, + "end": 14545.7, + "probability": 0.8036 + }, + { + "start": 14546.54, + "end": 14550.72, + "probability": 0.9961 + }, + { + "start": 14551.22, + "end": 14551.42, + "probability": 0.9732 + }, + { + "start": 14551.48, + "end": 14554.8, + "probability": 0.996 + }, + { + "start": 14554.8, + "end": 14558.38, + "probability": 0.9626 + }, + { + "start": 14559.18, + "end": 14561.42, + "probability": 0.9878 + }, + { + "start": 14562.4, + "end": 14566.34, + "probability": 0.9886 + }, + { + "start": 14566.82, + "end": 14568.38, + "probability": 0.9907 + }, + { + "start": 14568.82, + "end": 14570.78, + "probability": 0.9736 + }, + { + "start": 14571.6, + "end": 14572.02, + "probability": 0.9512 + }, + { + "start": 14572.56, + "end": 14573.88, + "probability": 0.9946 + }, + { + "start": 14575.02, + "end": 14575.12, + "probability": 0.7835 + }, + { + "start": 14575.24, + "end": 14580.18, + "probability": 0.9932 + }, + { + "start": 14580.22, + "end": 14582.2, + "probability": 0.8706 + }, + { + "start": 14582.26, + "end": 14582.72, + "probability": 0.9342 + }, + { + "start": 14583.84, + "end": 14586.02, + "probability": 0.9957 + }, + { + "start": 14586.72, + "end": 14588.0, + "probability": 0.9424 + }, + { + "start": 14589.5, + "end": 14590.4, + "probability": 0.4159 + }, + { + "start": 14591.2, + "end": 14594.44, + "probability": 0.9792 + }, + { + "start": 14594.96, + "end": 14599.0, + "probability": 0.9944 + }, + { + "start": 14599.52, + "end": 14600.68, + "probability": 0.9502 + }, + { + "start": 14601.98, + "end": 14602.62, + "probability": 0.9771 + }, + { + "start": 14603.54, + "end": 14608.62, + "probability": 0.9974 + }, + { + "start": 14609.76, + "end": 14610.78, + "probability": 0.8497 + }, + { + "start": 14611.52, + "end": 14613.38, + "probability": 0.7389 + }, + { + "start": 14614.58, + "end": 14616.44, + "probability": 0.7497 + }, + { + "start": 14617.5, + "end": 14619.64, + "probability": 0.9795 + }, + { + "start": 14620.64, + "end": 14622.34, + "probability": 0.9744 + }, + { + "start": 14623.54, + "end": 14625.98, + "probability": 0.9727 + }, + { + "start": 14626.34, + "end": 14631.24, + "probability": 0.9975 + }, + { + "start": 14631.9, + "end": 14635.14, + "probability": 0.9775 + }, + { + "start": 14635.92, + "end": 14636.16, + "probability": 0.9058 + }, + { + "start": 14636.5, + "end": 14637.22, + "probability": 0.424 + }, + { + "start": 14637.44, + "end": 14639.44, + "probability": 0.155 + }, + { + "start": 14640.08, + "end": 14640.24, + "probability": 0.0754 + }, + { + "start": 14640.24, + "end": 14640.44, + "probability": 0.0315 + }, + { + "start": 14662.9, + "end": 14663.8, + "probability": 0.1327 + }, + { + "start": 14669.16, + "end": 14671.06, + "probability": 0.7882 + }, + { + "start": 14671.72, + "end": 14673.28, + "probability": 0.7374 + }, + { + "start": 14675.38, + "end": 14678.22, + "probability": 0.917 + }, + { + "start": 14679.06, + "end": 14679.94, + "probability": 0.9933 + }, + { + "start": 14680.6, + "end": 14681.74, + "probability": 0.5979 + }, + { + "start": 14683.56, + "end": 14686.98, + "probability": 0.9182 + }, + { + "start": 14687.52, + "end": 14688.32, + "probability": 0.8121 + }, + { + "start": 14689.32, + "end": 14692.42, + "probability": 0.9817 + }, + { + "start": 14692.82, + "end": 14695.02, + "probability": 0.9745 + }, + { + "start": 14695.74, + "end": 14696.28, + "probability": 0.8394 + }, + { + "start": 14697.28, + "end": 14700.5, + "probability": 0.9764 + }, + { + "start": 14701.02, + "end": 14701.88, + "probability": 0.8398 + }, + { + "start": 14702.68, + "end": 14703.27, + "probability": 0.9282 + }, + { + "start": 14704.64, + "end": 14705.42, + "probability": 0.9248 + }, + { + "start": 14706.0, + "end": 14706.72, + "probability": 0.9888 + }, + { + "start": 14707.58, + "end": 14708.84, + "probability": 0.9986 + }, + { + "start": 14709.54, + "end": 14711.2, + "probability": 0.5642 + }, + { + "start": 14711.74, + "end": 14713.02, + "probability": 0.4045 + }, + { + "start": 14713.68, + "end": 14716.04, + "probability": 0.9973 + }, + { + "start": 14716.88, + "end": 14717.48, + "probability": 0.9407 + }, + { + "start": 14718.56, + "end": 14722.2, + "probability": 0.9976 + }, + { + "start": 14722.96, + "end": 14724.12, + "probability": 0.9087 + }, + { + "start": 14724.18, + "end": 14725.96, + "probability": 0.99 + }, + { + "start": 14726.0, + "end": 14727.16, + "probability": 0.9506 + }, + { + "start": 14727.96, + "end": 14729.64, + "probability": 0.9762 + }, + { + "start": 14730.16, + "end": 14731.34, + "probability": 0.9494 + }, + { + "start": 14732.12, + "end": 14732.28, + "probability": 0.8625 + }, + { + "start": 14732.36, + "end": 14734.32, + "probability": 0.9922 + }, + { + "start": 14734.4, + "end": 14734.96, + "probability": 0.7482 + }, + { + "start": 14736.06, + "end": 14736.64, + "probability": 0.7656 + }, + { + "start": 14737.44, + "end": 14737.82, + "probability": 0.987 + }, + { + "start": 14738.44, + "end": 14740.12, + "probability": 0.9982 + }, + { + "start": 14740.82, + "end": 14743.92, + "probability": 0.8561 + }, + { + "start": 14743.98, + "end": 14744.56, + "probability": 0.8283 + }, + { + "start": 14745.6, + "end": 14747.24, + "probability": 0.994 + }, + { + "start": 14747.94, + "end": 14749.44, + "probability": 0.9974 + }, + { + "start": 14750.4, + "end": 14752.78, + "probability": 0.924 + }, + { + "start": 14753.78, + "end": 14757.66, + "probability": 0.995 + }, + { + "start": 14758.2, + "end": 14760.72, + "probability": 0.9988 + }, + { + "start": 14760.72, + "end": 14763.44, + "probability": 0.7922 + }, + { + "start": 14763.58, + "end": 14765.78, + "probability": 0.9762 + }, + { + "start": 14767.06, + "end": 14769.84, + "probability": 0.98 + }, + { + "start": 14770.72, + "end": 14772.3, + "probability": 0.998 + }, + { + "start": 14772.64, + "end": 14773.78, + "probability": 0.9985 + }, + { + "start": 14774.3, + "end": 14777.64, + "probability": 0.98 + }, + { + "start": 14778.6, + "end": 14779.36, + "probability": 0.9084 + }, + { + "start": 14780.02, + "end": 14780.96, + "probability": 0.7598 + }, + { + "start": 14781.48, + "end": 14783.94, + "probability": 0.9878 + }, + { + "start": 14784.06, + "end": 14785.4, + "probability": 0.9744 + }, + { + "start": 14785.98, + "end": 14790.4, + "probability": 0.9124 + }, + { + "start": 14790.44, + "end": 14793.0, + "probability": 0.9961 + }, + { + "start": 14793.54, + "end": 14797.64, + "probability": 0.9974 + }, + { + "start": 14798.24, + "end": 14800.24, + "probability": 0.583 + }, + { + "start": 14801.6, + "end": 14804.06, + "probability": 0.9781 + }, + { + "start": 14804.8, + "end": 14808.9, + "probability": 0.9684 + }, + { + "start": 14810.52, + "end": 14811.64, + "probability": 0.9894 + }, + { + "start": 14812.18, + "end": 14813.1, + "probability": 0.7595 + }, + { + "start": 14813.44, + "end": 14816.3, + "probability": 0.9615 + }, + { + "start": 14817.1, + "end": 14817.78, + "probability": 0.9946 + }, + { + "start": 14818.1, + "end": 14818.26, + "probability": 0.5377 + }, + { + "start": 14818.32, + "end": 14819.34, + "probability": 0.9333 + }, + { + "start": 14819.46, + "end": 14819.81, + "probability": 0.8945 + }, + { + "start": 14820.86, + "end": 14822.3, + "probability": 0.692 + }, + { + "start": 14822.34, + "end": 14824.82, + "probability": 0.9922 + }, + { + "start": 14825.02, + "end": 14825.38, + "probability": 0.4345 + }, + { + "start": 14825.66, + "end": 14826.38, + "probability": 0.9453 + }, + { + "start": 14826.98, + "end": 14828.34, + "probability": 0.9966 + }, + { + "start": 14828.84, + "end": 14829.44, + "probability": 0.9183 + }, + { + "start": 14829.84, + "end": 14831.26, + "probability": 0.7925 + }, + { + "start": 14833.42, + "end": 14835.38, + "probability": 0.0097 + }, + { + "start": 14836.08, + "end": 14836.46, + "probability": 0.1225 + }, + { + "start": 14836.46, + "end": 14836.46, + "probability": 0.4785 + }, + { + "start": 14836.46, + "end": 14836.96, + "probability": 0.1773 + }, + { + "start": 14837.68, + "end": 14838.1, + "probability": 0.4415 + }, + { + "start": 14838.62, + "end": 14839.92, + "probability": 0.9873 + }, + { + "start": 14840.24, + "end": 14841.0, + "probability": 0.184 + }, + { + "start": 14841.46, + "end": 14843.14, + "probability": 0.1373 + }, + { + "start": 14845.2, + "end": 14845.32, + "probability": 0.0418 + }, + { + "start": 14845.32, + "end": 14847.62, + "probability": 0.9717 + }, + { + "start": 14848.68, + "end": 14851.28, + "probability": 0.9972 + }, + { + "start": 14851.34, + "end": 14852.22, + "probability": 0.9211 + }, + { + "start": 14852.3, + "end": 14852.58, + "probability": 0.8562 + }, + { + "start": 14853.1, + "end": 14856.0, + "probability": 0.7834 + }, + { + "start": 14856.14, + "end": 14858.04, + "probability": 0.8183 + }, + { + "start": 14858.04, + "end": 14858.36, + "probability": 0.3926 + }, + { + "start": 14858.44, + "end": 14859.26, + "probability": 0.3937 + }, + { + "start": 14859.7, + "end": 14860.64, + "probability": 0.712 + }, + { + "start": 14860.82, + "end": 14861.88, + "probability": 0.8313 + }, + { + "start": 14861.94, + "end": 14862.8, + "probability": 0.9615 + }, + { + "start": 14863.02, + "end": 14864.22, + "probability": 0.8582 + }, + { + "start": 14864.22, + "end": 14864.3, + "probability": 0.2708 + }, + { + "start": 14864.3, + "end": 14864.51, + "probability": 0.028 + }, + { + "start": 14866.02, + "end": 14866.02, + "probability": 0.1729 + }, + { + "start": 14866.46, + "end": 14870.58, + "probability": 0.9947 + }, + { + "start": 14871.24, + "end": 14872.0, + "probability": 0.7676 + }, + { + "start": 14872.48, + "end": 14875.59, + "probability": 0.9927 + }, + { + "start": 14876.0, + "end": 14877.92, + "probability": 0.925 + }, + { + "start": 14878.32, + "end": 14880.9, + "probability": 0.9684 + }, + { + "start": 14881.62, + "end": 14882.76, + "probability": 0.9971 + }, + { + "start": 14883.68, + "end": 14887.86, + "probability": 0.9309 + }, + { + "start": 14888.92, + "end": 14890.8, + "probability": 0.9989 + }, + { + "start": 14891.56, + "end": 14894.4, + "probability": 0.9923 + }, + { + "start": 14894.96, + "end": 14898.76, + "probability": 0.998 + }, + { + "start": 14899.22, + "end": 14902.44, + "probability": 0.8629 + }, + { + "start": 14903.08, + "end": 14905.08, + "probability": 0.9692 + }, + { + "start": 14905.2, + "end": 14906.34, + "probability": 0.8547 + }, + { + "start": 14906.78, + "end": 14909.42, + "probability": 0.9905 + }, + { + "start": 14909.8, + "end": 14911.9, + "probability": 0.9972 + }, + { + "start": 14913.18, + "end": 14913.56, + "probability": 0.1072 + }, + { + "start": 14913.56, + "end": 14913.94, + "probability": 0.527 + }, + { + "start": 14914.08, + "end": 14914.36, + "probability": 0.5393 + }, + { + "start": 14914.68, + "end": 14915.16, + "probability": 0.647 + }, + { + "start": 14915.22, + "end": 14915.84, + "probability": 0.5987 + }, + { + "start": 14915.9, + "end": 14917.08, + "probability": 0.9869 + }, + { + "start": 14918.42, + "end": 14918.7, + "probability": 0.5383 + }, + { + "start": 14920.9, + "end": 14921.78, + "probability": 0.033 + }, + { + "start": 14921.78, + "end": 14921.93, + "probability": 0.2817 + }, + { + "start": 14922.32, + "end": 14922.76, + "probability": 0.072 + }, + { + "start": 14922.94, + "end": 14924.7, + "probability": 0.8577 + }, + { + "start": 14925.06, + "end": 14925.74, + "probability": 0.5013 + }, + { + "start": 14925.82, + "end": 14926.76, + "probability": 0.9418 + }, + { + "start": 14926.8, + "end": 14927.58, + "probability": 0.5605 + }, + { + "start": 14927.58, + "end": 14932.5, + "probability": 0.8706 + }, + { + "start": 14932.86, + "end": 14935.82, + "probability": 0.7143 + }, + { + "start": 14936.82, + "end": 14939.02, + "probability": 0.969 + }, + { + "start": 14939.24, + "end": 14939.94, + "probability": 0.8154 + }, + { + "start": 14940.08, + "end": 14940.62, + "probability": 0.9769 + }, + { + "start": 14940.8, + "end": 14941.38, + "probability": 0.9896 + }, + { + "start": 14941.5, + "end": 14942.04, + "probability": 0.7615 + }, + { + "start": 14942.42, + "end": 14943.34, + "probability": 0.983 + }, + { + "start": 14943.88, + "end": 14945.74, + "probability": 0.8746 + }, + { + "start": 14945.96, + "end": 14947.86, + "probability": 0.9214 + }, + { + "start": 14948.2, + "end": 14949.48, + "probability": 0.8347 + }, + { + "start": 14949.64, + "end": 14951.26, + "probability": 0.986 + }, + { + "start": 14951.64, + "end": 14952.46, + "probability": 0.333 + }, + { + "start": 14953.22, + "end": 14955.26, + "probability": 0.6017 + }, + { + "start": 14955.32, + "end": 14956.56, + "probability": 0.6657 + }, + { + "start": 14956.68, + "end": 14956.84, + "probability": 0.0601 + }, + { + "start": 14956.84, + "end": 14957.62, + "probability": 0.39 + }, + { + "start": 14958.36, + "end": 14960.66, + "probability": 0.8074 + }, + { + "start": 14960.76, + "end": 14961.48, + "probability": 0.5617 + }, + { + "start": 14961.8, + "end": 14965.18, + "probability": 0.3425 + }, + { + "start": 14966.1, + "end": 14968.38, + "probability": 0.4857 + }, + { + "start": 14968.38, + "end": 14969.46, + "probability": 0.8612 + }, + { + "start": 14969.46, + "end": 14969.56, + "probability": 0.2078 + }, + { + "start": 14969.72, + "end": 14971.1, + "probability": 0.0958 + }, + { + "start": 14971.24, + "end": 14971.64, + "probability": 0.3645 + }, + { + "start": 14971.64, + "end": 14973.06, + "probability": 0.0663 + }, + { + "start": 14973.4, + "end": 14973.4, + "probability": 0.11 + }, + { + "start": 14973.4, + "end": 14974.7, + "probability": 0.3563 + }, + { + "start": 14975.5, + "end": 14979.98, + "probability": 0.3398 + }, + { + "start": 14980.08, + "end": 14983.02, + "probability": 0.3711 + }, + { + "start": 14983.1, + "end": 14986.78, + "probability": 0.5097 + }, + { + "start": 14986.92, + "end": 14987.12, + "probability": 0.5576 + }, + { + "start": 14987.12, + "end": 14987.74, + "probability": 0.5615 + }, + { + "start": 14988.48, + "end": 14993.82, + "probability": 0.6801 + }, + { + "start": 14993.82, + "end": 14997.36, + "probability": 0.871 + }, + { + "start": 14997.48, + "end": 15000.58, + "probability": 0.9364 + }, + { + "start": 15000.58, + "end": 15003.56, + "probability": 0.9958 + }, + { + "start": 15004.78, + "end": 15005.24, + "probability": 0.5025 + }, + { + "start": 15006.36, + "end": 15009.84, + "probability": 0.7112 + }, + { + "start": 15016.24, + "end": 15018.1, + "probability": 0.0385 + }, + { + "start": 15032.08, + "end": 15032.28, + "probability": 0.5616 + }, + { + "start": 15032.56, + "end": 15034.18, + "probability": 0.4847 + }, + { + "start": 15034.18, + "end": 15034.84, + "probability": 0.8789 + }, + { + "start": 15035.9, + "end": 15037.96, + "probability": 0.9696 + }, + { + "start": 15038.0, + "end": 15038.84, + "probability": 0.9826 + }, + { + "start": 15039.54, + "end": 15040.62, + "probability": 0.4824 + }, + { + "start": 15040.9, + "end": 15041.64, + "probability": 0.6653 + }, + { + "start": 15042.2, + "end": 15042.94, + "probability": 0.9756 + }, + { + "start": 15043.06, + "end": 15046.18, + "probability": 0.9727 + }, + { + "start": 15047.18, + "end": 15048.06, + "probability": 0.4331 + }, + { + "start": 15049.94, + "end": 15052.68, + "probability": 0.32 + }, + { + "start": 15052.86, + "end": 15053.62, + "probability": 0.9961 + }, + { + "start": 15054.02, + "end": 15055.0, + "probability": 0.494 + }, + { + "start": 15055.16, + "end": 15056.32, + "probability": 0.8252 + }, + { + "start": 15056.46, + "end": 15057.25, + "probability": 0.5293 + }, + { + "start": 15057.66, + "end": 15060.3, + "probability": 0.322 + }, + { + "start": 15061.0, + "end": 15061.0, + "probability": 0.4428 + }, + { + "start": 15061.0, + "end": 15062.3, + "probability": 0.6736 + }, + { + "start": 15062.62, + "end": 15062.76, + "probability": 0.002 + }, + { + "start": 15068.34, + "end": 15069.72, + "probability": 0.3533 + }, + { + "start": 15069.98, + "end": 15071.78, + "probability": 0.9382 + }, + { + "start": 15071.9, + "end": 15073.58, + "probability": 0.8896 + }, + { + "start": 15074.6, + "end": 15080.5, + "probability": 0.697 + }, + { + "start": 15080.72, + "end": 15081.42, + "probability": 0.874 + }, + { + "start": 15082.16, + "end": 15082.78, + "probability": 0.8006 + }, + { + "start": 15083.22, + "end": 15087.86, + "probability": 0.991 + }, + { + "start": 15087.92, + "end": 15088.94, + "probability": 0.6218 + }, + { + "start": 15089.78, + "end": 15093.18, + "probability": 0.9946 + }, + { + "start": 15093.18, + "end": 15096.3, + "probability": 0.9264 + }, + { + "start": 15096.94, + "end": 15098.9, + "probability": 0.7708 + }, + { + "start": 15099.4, + "end": 15103.38, + "probability": 0.9329 + }, + { + "start": 15104.12, + "end": 15107.9, + "probability": 0.9841 + }, + { + "start": 15108.7, + "end": 15109.5, + "probability": 0.9594 + }, + { + "start": 15110.42, + "end": 15113.88, + "probability": 0.9532 + }, + { + "start": 15113.88, + "end": 15117.1, + "probability": 0.998 + }, + { + "start": 15117.28, + "end": 15120.38, + "probability": 0.9523 + }, + { + "start": 15120.38, + "end": 15122.6, + "probability": 0.981 + }, + { + "start": 15123.02, + "end": 15123.38, + "probability": 0.4046 + }, + { + "start": 15123.9, + "end": 15125.58, + "probability": 0.9478 + }, + { + "start": 15126.0, + "end": 15127.12, + "probability": 0.499 + }, + { + "start": 15127.56, + "end": 15128.92, + "probability": 0.9963 + }, + { + "start": 15129.52, + "end": 15131.4, + "probability": 0.9782 + }, + { + "start": 15131.46, + "end": 15133.24, + "probability": 0.8143 + }, + { + "start": 15133.74, + "end": 15134.16, + "probability": 0.9945 + }, + { + "start": 15134.76, + "end": 15135.9, + "probability": 0.9839 + }, + { + "start": 15137.7, + "end": 15139.28, + "probability": 0.9123 + }, + { + "start": 15139.4, + "end": 15141.76, + "probability": 0.9626 + }, + { + "start": 15142.32, + "end": 15143.1, + "probability": 0.9368 + }, + { + "start": 15143.24, + "end": 15144.1, + "probability": 0.9594 + }, + { + "start": 15144.56, + "end": 15147.78, + "probability": 0.9725 + }, + { + "start": 15148.58, + "end": 15150.46, + "probability": 0.9648 + }, + { + "start": 15150.6, + "end": 15151.18, + "probability": 0.9875 + }, + { + "start": 15151.38, + "end": 15152.08, + "probability": 0.086 + }, + { + "start": 15152.18, + "end": 15156.1, + "probability": 0.9414 + }, + { + "start": 15156.98, + "end": 15158.3, + "probability": 0.9671 + }, + { + "start": 15158.98, + "end": 15162.54, + "probability": 0.948 + }, + { + "start": 15163.2, + "end": 15165.98, + "probability": 0.9703 + }, + { + "start": 15166.32, + "end": 15167.68, + "probability": 0.9956 + }, + { + "start": 15168.2, + "end": 15170.14, + "probability": 0.9031 + }, + { + "start": 15170.56, + "end": 15171.87, + "probability": 0.9579 + }, + { + "start": 15172.42, + "end": 15176.96, + "probability": 0.9945 + }, + { + "start": 15176.96, + "end": 15180.92, + "probability": 0.985 + }, + { + "start": 15180.98, + "end": 15183.24, + "probability": 0.7705 + }, + { + "start": 15183.82, + "end": 15185.0, + "probability": 0.595 + }, + { + "start": 15185.12, + "end": 15185.56, + "probability": 0.582 + }, + { + "start": 15185.58, + "end": 15186.24, + "probability": 0.7652 + }, + { + "start": 15186.32, + "end": 15186.7, + "probability": 0.9288 + }, + { + "start": 15186.76, + "end": 15187.48, + "probability": 0.8406 + }, + { + "start": 15187.58, + "end": 15188.45, + "probability": 0.9956 + }, + { + "start": 15188.94, + "end": 15189.58, + "probability": 0.8364 + }, + { + "start": 15189.82, + "end": 15190.06, + "probability": 0.7294 + }, + { + "start": 15190.38, + "end": 15192.34, + "probability": 0.9926 + }, + { + "start": 15192.8, + "end": 15193.77, + "probability": 0.9035 + }, + { + "start": 15194.34, + "end": 15195.9, + "probability": 0.9931 + }, + { + "start": 15196.4, + "end": 15199.82, + "probability": 0.8778 + }, + { + "start": 15199.99, + "end": 15203.92, + "probability": 0.6907 + }, + { + "start": 15204.04, + "end": 15207.96, + "probability": 0.9852 + }, + { + "start": 15208.54, + "end": 15210.26, + "probability": 0.9579 + }, + { + "start": 15210.66, + "end": 15213.5, + "probability": 0.9935 + }, + { + "start": 15213.9, + "end": 15215.18, + "probability": 0.8193 + }, + { + "start": 15215.66, + "end": 15218.82, + "probability": 0.9607 + }, + { + "start": 15219.46, + "end": 15221.12, + "probability": 0.9763 + }, + { + "start": 15222.12, + "end": 15224.5, + "probability": 0.9792 + }, + { + "start": 15224.62, + "end": 15228.54, + "probability": 0.7818 + }, + { + "start": 15228.68, + "end": 15229.18, + "probability": 0.9031 + }, + { + "start": 15229.68, + "end": 15230.22, + "probability": 0.8398 + }, + { + "start": 15230.4, + "end": 15235.1, + "probability": 0.8822 + }, + { + "start": 15235.76, + "end": 15237.6, + "probability": 0.8186 + }, + { + "start": 15237.6, + "end": 15237.84, + "probability": 0.9017 + }, + { + "start": 15237.92, + "end": 15239.52, + "probability": 0.7973 + }, + { + "start": 15239.62, + "end": 15240.46, + "probability": 0.5176 + }, + { + "start": 15241.4, + "end": 15243.56, + "probability": 0.8011 + }, + { + "start": 15243.6, + "end": 15243.96, + "probability": 0.7604 + }, + { + "start": 15244.02, + "end": 15245.16, + "probability": 0.9568 + }, + { + "start": 15245.7, + "end": 15249.05, + "probability": 0.9041 + }, + { + "start": 15249.9, + "end": 15251.1, + "probability": 0.5908 + }, + { + "start": 15251.56, + "end": 15252.19, + "probability": 0.7701 + }, + { + "start": 15252.5, + "end": 15256.06, + "probability": 0.8174 + }, + { + "start": 15256.42, + "end": 15257.76, + "probability": 0.8797 + }, + { + "start": 15257.88, + "end": 15258.96, + "probability": 0.8884 + }, + { + "start": 15259.08, + "end": 15261.24, + "probability": 0.9777 + }, + { + "start": 15261.6, + "end": 15263.06, + "probability": 0.8596 + }, + { + "start": 15263.4, + "end": 15263.94, + "probability": 0.7962 + }, + { + "start": 15264.2, + "end": 15264.42, + "probability": 0.8917 + }, + { + "start": 15265.88, + "end": 15267.48, + "probability": 0.8714 + }, + { + "start": 15267.48, + "end": 15269.58, + "probability": 0.7458 + }, + { + "start": 15269.94, + "end": 15271.08, + "probability": 0.9349 + }, + { + "start": 15272.26, + "end": 15272.54, + "probability": 0.7408 + }, + { + "start": 15273.48, + "end": 15274.44, + "probability": 0.6898 + }, + { + "start": 15275.64, + "end": 15276.6, + "probability": 0.9736 + }, + { + "start": 15276.86, + "end": 15277.58, + "probability": 0.282 + }, + { + "start": 15281.16, + "end": 15282.5, + "probability": 0.9326 + }, + { + "start": 15284.46, + "end": 15284.46, + "probability": 0.23 + }, + { + "start": 15286.48, + "end": 15287.02, + "probability": 0.3199 + }, + { + "start": 15295.52, + "end": 15297.5, + "probability": 0.1168 + }, + { + "start": 15297.5, + "end": 15301.48, + "probability": 0.6904 + }, + { + "start": 15305.68, + "end": 15307.84, + "probability": 0.7771 + }, + { + "start": 15308.88, + "end": 15311.76, + "probability": 0.9983 + }, + { + "start": 15312.68, + "end": 15313.9, + "probability": 0.9963 + }, + { + "start": 15314.12, + "end": 15318.06, + "probability": 0.9689 + }, + { + "start": 15318.7, + "end": 15320.7, + "probability": 0.9501 + }, + { + "start": 15322.3, + "end": 15324.71, + "probability": 0.9771 + }, + { + "start": 15325.42, + "end": 15326.32, + "probability": 0.8901 + }, + { + "start": 15327.0, + "end": 15330.98, + "probability": 0.9946 + }, + { + "start": 15331.78, + "end": 15333.9, + "probability": 0.9611 + }, + { + "start": 15334.35, + "end": 15338.34, + "probability": 0.8921 + }, + { + "start": 15338.44, + "end": 15339.68, + "probability": 0.8471 + }, + { + "start": 15339.78, + "end": 15341.6, + "probability": 0.8658 + }, + { + "start": 15342.34, + "end": 15343.82, + "probability": 0.9873 + }, + { + "start": 15344.66, + "end": 15346.64, + "probability": 0.9966 + }, + { + "start": 15346.96, + "end": 15347.26, + "probability": 0.908 + }, + { + "start": 15347.32, + "end": 15350.16, + "probability": 0.8662 + }, + { + "start": 15350.22, + "end": 15350.56, + "probability": 0.8024 + }, + { + "start": 15350.62, + "end": 15353.06, + "probability": 0.9449 + }, + { + "start": 15353.42, + "end": 15356.9, + "probability": 0.9636 + }, + { + "start": 15357.04, + "end": 15358.14, + "probability": 0.6193 + }, + { + "start": 15358.72, + "end": 15359.68, + "probability": 0.39 + }, + { + "start": 15360.54, + "end": 15361.08, + "probability": 0.4508 + }, + { + "start": 15361.92, + "end": 15363.9, + "probability": 0.6062 + }, + { + "start": 15363.96, + "end": 15365.02, + "probability": 0.0174 + }, + { + "start": 15365.2, + "end": 15365.24, + "probability": 0.0233 + }, + { + "start": 15365.24, + "end": 15366.72, + "probability": 0.6047 + }, + { + "start": 15367.2, + "end": 15370.7, + "probability": 0.368 + }, + { + "start": 15370.7, + "end": 15371.56, + "probability": 0.3906 + }, + { + "start": 15372.4, + "end": 15372.78, + "probability": 0.1236 + }, + { + "start": 15372.78, + "end": 15373.68, + "probability": 0.4947 + }, + { + "start": 15374.99, + "end": 15375.76, + "probability": 0.2743 + }, + { + "start": 15375.76, + "end": 15377.95, + "probability": 0.5684 + }, + { + "start": 15378.42, + "end": 15380.0, + "probability": 0.4119 + }, + { + "start": 15380.0, + "end": 15381.38, + "probability": 0.8174 + }, + { + "start": 15381.38, + "end": 15381.94, + "probability": 0.4647 + }, + { + "start": 15382.06, + "end": 15382.84, + "probability": 0.4529 + }, + { + "start": 15382.94, + "end": 15383.1, + "probability": 0.0019 + }, + { + "start": 15385.08, + "end": 15385.34, + "probability": 0.0621 + }, + { + "start": 15385.34, + "end": 15386.84, + "probability": 0.8794 + }, + { + "start": 15386.92, + "end": 15390.12, + "probability": 0.9985 + }, + { + "start": 15390.12, + "end": 15390.18, + "probability": 0.4313 + }, + { + "start": 15390.24, + "end": 15390.72, + "probability": 0.7956 + }, + { + "start": 15390.86, + "end": 15391.22, + "probability": 0.3045 + }, + { + "start": 15391.3, + "end": 15394.47, + "probability": 0.9768 + }, + { + "start": 15394.64, + "end": 15398.22, + "probability": 0.9606 + }, + { + "start": 15398.4, + "end": 15401.12, + "probability": 0.996 + }, + { + "start": 15402.02, + "end": 15403.74, + "probability": 0.6629 + }, + { + "start": 15404.1, + "end": 15406.36, + "probability": 0.809 + }, + { + "start": 15406.78, + "end": 15407.77, + "probability": 0.9878 + }, + { + "start": 15408.66, + "end": 15410.0, + "probability": 0.9233 + }, + { + "start": 15411.32, + "end": 15413.0, + "probability": 0.9097 + }, + { + "start": 15413.34, + "end": 15416.7, + "probability": 0.9771 + }, + { + "start": 15416.7, + "end": 15420.2, + "probability": 0.9063 + }, + { + "start": 15420.78, + "end": 15424.9, + "probability": 0.9959 + }, + { + "start": 15425.82, + "end": 15427.48, + "probability": 0.9158 + }, + { + "start": 15427.86, + "end": 15430.96, + "probability": 0.7473 + }, + { + "start": 15431.16, + "end": 15433.7, + "probability": 0.9451 + }, + { + "start": 15434.12, + "end": 15435.98, + "probability": 0.9917 + }, + { + "start": 15436.62, + "end": 15437.72, + "probability": 0.6396 + }, + { + "start": 15437.72, + "end": 15439.3, + "probability": 0.9626 + }, + { + "start": 15439.3, + "end": 15439.96, + "probability": 0.6778 + }, + { + "start": 15441.06, + "end": 15441.48, + "probability": 0.1666 + }, + { + "start": 15441.64, + "end": 15443.44, + "probability": 0.5237 + }, + { + "start": 15443.58, + "end": 15444.76, + "probability": 0.6317 + }, + { + "start": 15446.56, + "end": 15448.8, + "probability": 0.8337 + }, + { + "start": 15449.59, + "end": 15451.6, + "probability": 0.6022 + }, + { + "start": 15451.64, + "end": 15454.18, + "probability": 0.9386 + }, + { + "start": 15454.46, + "end": 15455.26, + "probability": 0.981 + }, + { + "start": 15455.96, + "end": 15457.04, + "probability": 0.8199 + }, + { + "start": 15458.1, + "end": 15460.66, + "probability": 0.9814 + }, + { + "start": 15461.4, + "end": 15466.48, + "probability": 0.9767 + }, + { + "start": 15467.62, + "end": 15469.0, + "probability": 0.9614 + }, + { + "start": 15470.36, + "end": 15471.18, + "probability": 0.7846 + }, + { + "start": 15471.46, + "end": 15474.04, + "probability": 0.9502 + }, + { + "start": 15475.12, + "end": 15476.08, + "probability": 0.0766 + }, + { + "start": 15476.18, + "end": 15479.31, + "probability": 0.8469 + }, + { + "start": 15479.56, + "end": 15481.0, + "probability": 0.6456 + }, + { + "start": 15481.18, + "end": 15482.1, + "probability": 0.2484 + }, + { + "start": 15482.28, + "end": 15483.52, + "probability": 0.8572 + }, + { + "start": 15483.88, + "end": 15484.04, + "probability": 0.641 + }, + { + "start": 15484.04, + "end": 15484.7, + "probability": 0.3767 + }, + { + "start": 15484.76, + "end": 15487.02, + "probability": 0.1305 + }, + { + "start": 15487.16, + "end": 15488.34, + "probability": 0.9512 + }, + { + "start": 15488.66, + "end": 15489.5, + "probability": 0.3377 + }, + { + "start": 15489.5, + "end": 15490.72, + "probability": 0.1535 + }, + { + "start": 15491.9, + "end": 15494.34, + "probability": 0.7333 + }, + { + "start": 15494.68, + "end": 15495.36, + "probability": 0.7852 + }, + { + "start": 15495.62, + "end": 15497.2, + "probability": 0.873 + }, + { + "start": 15497.56, + "end": 15499.56, + "probability": 0.9323 + }, + { + "start": 15499.78, + "end": 15502.82, + "probability": 0.7075 + }, + { + "start": 15503.26, + "end": 15505.32, + "probability": 0.6808 + }, + { + "start": 15507.52, + "end": 15508.52, + "probability": 0.9454 + }, + { + "start": 15508.82, + "end": 15509.44, + "probability": 0.1154 + }, + { + "start": 15509.44, + "end": 15510.9, + "probability": 0.7269 + }, + { + "start": 15511.06, + "end": 15512.38, + "probability": 0.9434 + }, + { + "start": 15513.16, + "end": 15514.72, + "probability": 0.9903 + }, + { + "start": 15515.5, + "end": 15517.04, + "probability": 0.9445 + }, + { + "start": 15517.64, + "end": 15520.94, + "probability": 0.9686 + }, + { + "start": 15520.98, + "end": 15523.52, + "probability": 0.8711 + }, + { + "start": 15524.46, + "end": 15527.54, + "probability": 0.8755 + }, + { + "start": 15528.32, + "end": 15529.56, + "probability": 0.9977 + }, + { + "start": 15529.94, + "end": 15531.34, + "probability": 0.9753 + }, + { + "start": 15531.86, + "end": 15533.22, + "probability": 0.9857 + }, + { + "start": 15533.52, + "end": 15534.27, + "probability": 0.9683 + }, + { + "start": 15534.52, + "end": 15535.75, + "probability": 0.9679 + }, + { + "start": 15536.78, + "end": 15539.24, + "probability": 0.6732 + }, + { + "start": 15540.88, + "end": 15542.82, + "probability": 0.8563 + }, + { + "start": 15542.96, + "end": 15544.18, + "probability": 0.7294 + }, + { + "start": 15544.2, + "end": 15545.62, + "probability": 0.969 + }, + { + "start": 15546.04, + "end": 15550.02, + "probability": 0.8523 + }, + { + "start": 15550.7, + "end": 15553.86, + "probability": 0.8453 + }, + { + "start": 15553.94, + "end": 15554.34, + "probability": 0.5734 + }, + { + "start": 15554.38, + "end": 15555.86, + "probability": 0.9746 + }, + { + "start": 15555.86, + "end": 15556.84, + "probability": 0.4192 + }, + { + "start": 15557.34, + "end": 15561.26, + "probability": 0.9878 + }, + { + "start": 15561.26, + "end": 15562.4, + "probability": 0.7282 + }, + { + "start": 15563.82, + "end": 15565.9, + "probability": 0.0203 + }, + { + "start": 15568.2, + "end": 15570.48, + "probability": 0.9436 + }, + { + "start": 15570.84, + "end": 15572.3, + "probability": 0.9348 + }, + { + "start": 15572.84, + "end": 15576.66, + "probability": 0.9976 + }, + { + "start": 15576.66, + "end": 15578.1, + "probability": 0.0547 + }, + { + "start": 15578.12, + "end": 15579.58, + "probability": 0.9858 + }, + { + "start": 15580.23, + "end": 15584.38, + "probability": 0.9035 + }, + { + "start": 15584.42, + "end": 15586.04, + "probability": 0.7492 + }, + { + "start": 15586.06, + "end": 15588.28, + "probability": 0.4781 + }, + { + "start": 15588.6, + "end": 15589.44, + "probability": 0.9672 + }, + { + "start": 15590.46, + "end": 15591.74, + "probability": 0.3296 + }, + { + "start": 15593.02, + "end": 15594.16, + "probability": 0.5346 + }, + { + "start": 15595.26, + "end": 15598.28, + "probability": 0.0244 + }, + { + "start": 15600.36, + "end": 15600.76, + "probability": 0.0927 + }, + { + "start": 15600.76, + "end": 15601.22, + "probability": 0.4698 + }, + { + "start": 15602.2, + "end": 15602.92, + "probability": 0.3273 + }, + { + "start": 15618.88, + "end": 15619.74, + "probability": 0.1252 + }, + { + "start": 15625.38, + "end": 15628.16, + "probability": 0.4913 + }, + { + "start": 15628.52, + "end": 15629.21, + "probability": 0.8145 + }, + { + "start": 15629.8, + "end": 15630.78, + "probability": 0.7344 + }, + { + "start": 15630.98, + "end": 15632.18, + "probability": 0.1185 + }, + { + "start": 15634.38, + "end": 15636.7, + "probability": 0.6927 + }, + { + "start": 15636.84, + "end": 15638.26, + "probability": 0.8788 + }, + { + "start": 15638.6, + "end": 15641.82, + "probability": 0.7886 + }, + { + "start": 15642.18, + "end": 15649.36, + "probability": 0.1896 + }, + { + "start": 15649.48, + "end": 15652.0, + "probability": 0.6443 + }, + { + "start": 15652.04, + "end": 15658.62, + "probability": 0.9242 + }, + { + "start": 15658.8, + "end": 15659.43, + "probability": 0.6157 + }, + { + "start": 15660.26, + "end": 15661.72, + "probability": 0.8516 + }, + { + "start": 15662.62, + "end": 15663.28, + "probability": 0.6042 + }, + { + "start": 15663.6, + "end": 15667.1, + "probability": 0.4904 + }, + { + "start": 15667.18, + "end": 15668.06, + "probability": 0.2209 + }, + { + "start": 15668.06, + "end": 15669.22, + "probability": 0.6055 + }, + { + "start": 15670.7, + "end": 15674.56, + "probability": 0.7476 + }, + { + "start": 15676.46, + "end": 15680.78, + "probability": 0.071 + }, + { + "start": 15680.96, + "end": 15681.68, + "probability": 0.6663 + }, + { + "start": 15686.66, + "end": 15687.28, + "probability": 0.0246 + }, + { + "start": 15689.44, + "end": 15691.36, + "probability": 0.7036 + }, + { + "start": 15691.54, + "end": 15692.38, + "probability": 0.7333 + }, + { + "start": 15692.48, + "end": 15693.56, + "probability": 0.8395 + }, + { + "start": 15693.8, + "end": 15693.88, + "probability": 0.6157 + }, + { + "start": 15694.4, + "end": 15699.38, + "probability": 0.989 + }, + { + "start": 15699.64, + "end": 15701.66, + "probability": 0.9944 + }, + { + "start": 15702.36, + "end": 15704.16, + "probability": 0.9968 + }, + { + "start": 15704.24, + "end": 15708.4, + "probability": 0.9912 + }, + { + "start": 15708.4, + "end": 15715.98, + "probability": 0.9961 + }, + { + "start": 15716.62, + "end": 15719.04, + "probability": 0.7827 + }, + { + "start": 15719.64, + "end": 15724.72, + "probability": 0.991 + }, + { + "start": 15725.72, + "end": 15727.44, + "probability": 0.9368 + }, + { + "start": 15728.28, + "end": 15731.98, + "probability": 0.9947 + }, + { + "start": 15732.84, + "end": 15733.86, + "probability": 0.8744 + }, + { + "start": 15734.06, + "end": 15735.8, + "probability": 0.9594 + }, + { + "start": 15735.98, + "end": 15738.6, + "probability": 0.9779 + }, + { + "start": 15739.18, + "end": 15746.66, + "probability": 0.9621 + }, + { + "start": 15746.9, + "end": 15748.16, + "probability": 0.9689 + }, + { + "start": 15749.24, + "end": 15750.62, + "probability": 0.5238 + }, + { + "start": 15751.44, + "end": 15756.06, + "probability": 0.9487 + }, + { + "start": 15756.16, + "end": 15757.7, + "probability": 0.9968 + }, + { + "start": 15758.68, + "end": 15764.1, + "probability": 0.9729 + }, + { + "start": 15764.78, + "end": 15768.24, + "probability": 0.9834 + }, + { + "start": 15768.34, + "end": 15769.08, + "probability": 0.9541 + }, + { + "start": 15769.24, + "end": 15774.7, + "probability": 0.995 + }, + { + "start": 15775.9, + "end": 15779.44, + "probability": 0.9934 + }, + { + "start": 15779.48, + "end": 15781.03, + "probability": 0.6678 + }, + { + "start": 15781.98, + "end": 15783.74, + "probability": 0.9775 + }, + { + "start": 15784.0, + "end": 15787.58, + "probability": 0.9281 + }, + { + "start": 15788.08, + "end": 15791.06, + "probability": 0.9132 + }, + { + "start": 15792.54, + "end": 15792.96, + "probability": 0.3831 + }, + { + "start": 15793.04, + "end": 15797.33, + "probability": 0.9924 + }, + { + "start": 15797.72, + "end": 15799.46, + "probability": 0.9077 + }, + { + "start": 15800.0, + "end": 15801.58, + "probability": 0.9388 + }, + { + "start": 15802.86, + "end": 15803.32, + "probability": 0.7753 + }, + { + "start": 15803.54, + "end": 15806.1, + "probability": 0.9614 + }, + { + "start": 15806.1, + "end": 15809.02, + "probability": 0.9862 + }, + { + "start": 15809.66, + "end": 15813.12, + "probability": 0.9653 + }, + { + "start": 15813.46, + "end": 15818.24, + "probability": 0.9757 + }, + { + "start": 15819.44, + "end": 15823.08, + "probability": 0.9854 + }, + { + "start": 15823.2, + "end": 15824.06, + "probability": 0.9048 + }, + { + "start": 15824.1, + "end": 15826.78, + "probability": 0.9712 + }, + { + "start": 15827.28, + "end": 15828.52, + "probability": 0.7065 + }, + { + "start": 15829.22, + "end": 15830.18, + "probability": 0.8899 + }, + { + "start": 15830.26, + "end": 15833.1, + "probability": 0.9613 + }, + { + "start": 15833.2, + "end": 15834.17, + "probability": 0.9877 + }, + { + "start": 15835.78, + "end": 15837.76, + "probability": 0.9969 + }, + { + "start": 15837.84, + "end": 15840.49, + "probability": 0.9678 + }, + { + "start": 15845.18, + "end": 15845.18, + "probability": 0.0533 + }, + { + "start": 15845.18, + "end": 15847.76, + "probability": 0.6766 + }, + { + "start": 15847.76, + "end": 15850.6, + "probability": 0.9492 + }, + { + "start": 15850.88, + "end": 15854.48, + "probability": 0.9978 + }, + { + "start": 15855.02, + "end": 15856.68, + "probability": 0.7588 + }, + { + "start": 15856.7, + "end": 15861.2, + "probability": 0.9261 + }, + { + "start": 15861.76, + "end": 15866.3, + "probability": 0.8859 + }, + { + "start": 15867.56, + "end": 15868.52, + "probability": 0.8831 + }, + { + "start": 15868.62, + "end": 15869.9, + "probability": 0.9563 + }, + { + "start": 15870.02, + "end": 15871.84, + "probability": 0.7721 + }, + { + "start": 15872.08, + "end": 15877.48, + "probability": 0.8971 + }, + { + "start": 15878.34, + "end": 15880.44, + "probability": 0.9945 + }, + { + "start": 15881.34, + "end": 15883.86, + "probability": 0.9907 + }, + { + "start": 15883.86, + "end": 15887.06, + "probability": 0.9982 + }, + { + "start": 15887.3, + "end": 15888.8, + "probability": 0.972 + }, + { + "start": 15888.84, + "end": 15890.36, + "probability": 0.8625 + }, + { + "start": 15891.6, + "end": 15895.26, + "probability": 0.9799 + }, + { + "start": 15895.8, + "end": 15896.74, + "probability": 0.7227 + }, + { + "start": 15896.94, + "end": 15902.74, + "probability": 0.9818 + }, + { + "start": 15902.9, + "end": 15907.6, + "probability": 0.9981 + }, + { + "start": 15908.12, + "end": 15913.22, + "probability": 0.9763 + }, + { + "start": 15913.76, + "end": 15916.3, + "probability": 0.9218 + }, + { + "start": 15916.92, + "end": 15920.78, + "probability": 0.9266 + }, + { + "start": 15921.26, + "end": 15922.24, + "probability": 0.8764 + }, + { + "start": 15923.3, + "end": 15927.12, + "probability": 0.9824 + }, + { + "start": 15927.12, + "end": 15929.48, + "probability": 0.9884 + }, + { + "start": 15929.74, + "end": 15932.46, + "probability": 0.8642 + }, + { + "start": 15932.7, + "end": 15935.6, + "probability": 0.9584 + }, + { + "start": 15935.84, + "end": 15942.84, + "probability": 0.7729 + }, + { + "start": 15943.02, + "end": 15944.4, + "probability": 0.9597 + }, + { + "start": 15945.08, + "end": 15950.58, + "probability": 0.9915 + }, + { + "start": 15951.04, + "end": 15952.98, + "probability": 0.9739 + }, + { + "start": 15953.1, + "end": 15955.56, + "probability": 0.9923 + }, + { + "start": 15955.56, + "end": 15957.74, + "probability": 0.9822 + }, + { + "start": 15958.22, + "end": 15959.12, + "probability": 0.7155 + }, + { + "start": 15959.54, + "end": 15961.12, + "probability": 0.938 + }, + { + "start": 15961.3, + "end": 15963.24, + "probability": 0.9017 + }, + { + "start": 15964.48, + "end": 15965.46, + "probability": 0.0455 + }, + { + "start": 15965.46, + "end": 15965.46, + "probability": 0.258 + }, + { + "start": 15965.46, + "end": 15965.96, + "probability": 0.0552 + }, + { + "start": 15967.46, + "end": 15970.6, + "probability": 0.8455 + }, + { + "start": 15971.16, + "end": 15971.68, + "probability": 0.3761 + }, + { + "start": 15971.86, + "end": 15972.68, + "probability": 0.7776 + }, + { + "start": 15975.79, + "end": 15980.0, + "probability": 0.8817 + }, + { + "start": 15981.37, + "end": 15984.46, + "probability": 0.7866 + }, + { + "start": 15984.48, + "end": 15985.06, + "probability": 0.8435 + }, + { + "start": 15985.5, + "end": 15986.06, + "probability": 0.5955 + }, + { + "start": 15986.18, + "end": 15986.58, + "probability": 0.9088 + }, + { + "start": 15986.58, + "end": 15988.3, + "probability": 0.9771 + }, + { + "start": 15988.46, + "end": 15991.56, + "probability": 0.9899 + }, + { + "start": 15992.26, + "end": 15993.42, + "probability": 0.8558 + }, + { + "start": 15993.54, + "end": 15993.84, + "probability": 0.8928 + }, + { + "start": 15993.88, + "end": 15997.4, + "probability": 0.9933 + }, + { + "start": 15997.52, + "end": 16000.1, + "probability": 0.877 + }, + { + "start": 16000.8, + "end": 16001.1, + "probability": 0.0608 + }, + { + "start": 16001.1, + "end": 16001.76, + "probability": 0.3181 + }, + { + "start": 16002.08, + "end": 16003.03, + "probability": 0.164 + }, + { + "start": 16003.88, + "end": 16005.2, + "probability": 0.8556 + }, + { + "start": 16005.9, + "end": 16009.82, + "probability": 0.5178 + }, + { + "start": 16010.52, + "end": 16011.16, + "probability": 0.8737 + }, + { + "start": 16011.78, + "end": 16013.36, + "probability": 0.3628 + }, + { + "start": 16013.76, + "end": 16021.18, + "probability": 0.9966 + }, + { + "start": 16021.26, + "end": 16025.5, + "probability": 0.9852 + }, + { + "start": 16025.56, + "end": 16028.82, + "probability": 0.8256 + }, + { + "start": 16029.64, + "end": 16031.18, + "probability": 0.9993 + }, + { + "start": 16031.62, + "end": 16032.2, + "probability": 0.7381 + }, + { + "start": 16032.48, + "end": 16035.92, + "probability": 0.9964 + }, + { + "start": 16036.7, + "end": 16040.16, + "probability": 0.9455 + }, + { + "start": 16040.4, + "end": 16042.82, + "probability": 0.9814 + }, + { + "start": 16042.98, + "end": 16043.44, + "probability": 0.5233 + }, + { + "start": 16044.12, + "end": 16046.36, + "probability": 0.991 + }, + { + "start": 16046.52, + "end": 16051.32, + "probability": 0.9559 + }, + { + "start": 16052.08, + "end": 16053.9, + "probability": 0.9918 + }, + { + "start": 16054.42, + "end": 16056.3, + "probability": 0.7813 + }, + { + "start": 16057.08, + "end": 16060.28, + "probability": 0.9631 + }, + { + "start": 16060.34, + "end": 16060.7, + "probability": 0.3457 + }, + { + "start": 16061.48, + "end": 16062.36, + "probability": 0.276 + }, + { + "start": 16063.6, + "end": 16064.66, + "probability": 0.5569 + }, + { + "start": 16066.88, + "end": 16068.42, + "probability": 0.5394 + }, + { + "start": 16071.56, + "end": 16071.84, + "probability": 0.1886 + }, + { + "start": 16073.92, + "end": 16074.66, + "probability": 0.1416 + }, + { + "start": 16074.94, + "end": 16075.44, + "probability": 0.105 + }, + { + "start": 16075.88, + "end": 16076.62, + "probability": 0.0135 + }, + { + "start": 16080.04, + "end": 16083.9, + "probability": 0.0375 + }, + { + "start": 16085.8, + "end": 16087.5, + "probability": 0.0506 + }, + { + "start": 16090.65, + "end": 16091.0, + "probability": 0.0711 + }, + { + "start": 16093.8, + "end": 16096.26, + "probability": 0.0519 + }, + { + "start": 16097.2, + "end": 16098.66, + "probability": 0.0146 + }, + { + "start": 16111.16, + "end": 16112.26, + "probability": 0.0498 + }, + { + "start": 16122.46, + "end": 16122.82, + "probability": 0.3434 + }, + { + "start": 16135.4, + "end": 16135.88, + "probability": 0.8749 + }, + { + "start": 16136.6, + "end": 16137.64, + "probability": 0.8729 + }, + { + "start": 16137.76, + "end": 16141.28, + "probability": 0.8605 + }, + { + "start": 16142.4, + "end": 16145.84, + "probability": 0.9953 + }, + { + "start": 16145.84, + "end": 16151.66, + "probability": 0.9995 + }, + { + "start": 16152.48, + "end": 16154.52, + "probability": 0.8848 + }, + { + "start": 16155.74, + "end": 16159.22, + "probability": 0.9941 + }, + { + "start": 16159.9, + "end": 16160.62, + "probability": 0.9904 + }, + { + "start": 16161.82, + "end": 16162.48, + "probability": 0.9992 + }, + { + "start": 16163.42, + "end": 16164.34, + "probability": 0.988 + }, + { + "start": 16164.5, + "end": 16167.32, + "probability": 0.9481 + }, + { + "start": 16167.4, + "end": 16170.76, + "probability": 0.9848 + }, + { + "start": 16171.5, + "end": 16172.0, + "probability": 0.9906 + }, + { + "start": 16172.8, + "end": 16175.6, + "probability": 0.9525 + }, + { + "start": 16175.7, + "end": 16177.18, + "probability": 0.5363 + }, + { + "start": 16178.16, + "end": 16179.84, + "probability": 0.9882 + }, + { + "start": 16180.0, + "end": 16183.56, + "probability": 0.9875 + }, + { + "start": 16183.68, + "end": 16186.5, + "probability": 0.9963 + }, + { + "start": 16187.72, + "end": 16190.04, + "probability": 0.6996 + }, + { + "start": 16190.1, + "end": 16190.98, + "probability": 0.8206 + }, + { + "start": 16192.1, + "end": 16193.13, + "probability": 0.9797 + }, + { + "start": 16196.54, + "end": 16198.4, + "probability": 0.9925 + }, + { + "start": 16200.54, + "end": 16209.38, + "probability": 0.9541 + }, + { + "start": 16210.78, + "end": 16211.94, + "probability": 0.9901 + }, + { + "start": 16213.06, + "end": 16214.48, + "probability": 0.8756 + }, + { + "start": 16215.24, + "end": 16216.5, + "probability": 0.995 + }, + { + "start": 16217.72, + "end": 16220.66, + "probability": 0.9756 + }, + { + "start": 16221.78, + "end": 16224.88, + "probability": 0.9719 + }, + { + "start": 16225.9, + "end": 16227.06, + "probability": 0.917 + }, + { + "start": 16228.24, + "end": 16229.71, + "probability": 0.9985 + }, + { + "start": 16230.54, + "end": 16235.74, + "probability": 0.9559 + }, + { + "start": 16236.16, + "end": 16239.04, + "probability": 0.0224 + }, + { + "start": 16239.36, + "end": 16239.78, + "probability": 0.0284 + }, + { + "start": 16239.78, + "end": 16241.24, + "probability": 0.0853 + }, + { + "start": 16241.58, + "end": 16241.78, + "probability": 0.1708 + }, + { + "start": 16241.78, + "end": 16244.42, + "probability": 0.3988 + }, + { + "start": 16244.98, + "end": 16244.98, + "probability": 0.0259 + }, + { + "start": 16244.98, + "end": 16244.98, + "probability": 0.6201 + }, + { + "start": 16244.98, + "end": 16244.98, + "probability": 0.4514 + }, + { + "start": 16244.98, + "end": 16244.98, + "probability": 0.5092 + }, + { + "start": 16244.98, + "end": 16250.48, + "probability": 0.7784 + }, + { + "start": 16250.56, + "end": 16252.46, + "probability": 0.9808 + }, + { + "start": 16252.66, + "end": 16254.58, + "probability": 0.8932 + }, + { + "start": 16254.64, + "end": 16256.62, + "probability": 0.0634 + }, + { + "start": 16257.72, + "end": 16258.06, + "probability": 0.0736 + }, + { + "start": 16258.06, + "end": 16258.54, + "probability": 0.354 + }, + { + "start": 16258.62, + "end": 16264.92, + "probability": 0.5751 + }, + { + "start": 16265.22, + "end": 16267.04, + "probability": 0.7235 + }, + { + "start": 16267.3, + "end": 16272.9, + "probability": 0.0294 + }, + { + "start": 16272.9, + "end": 16273.14, + "probability": 0.0242 + }, + { + "start": 16275.02, + "end": 16275.24, + "probability": 0.107 + }, + { + "start": 16275.24, + "end": 16275.24, + "probability": 0.0831 + }, + { + "start": 16275.24, + "end": 16275.24, + "probability": 0.0872 + }, + { + "start": 16275.24, + "end": 16275.24, + "probability": 0.0351 + }, + { + "start": 16275.24, + "end": 16275.85, + "probability": 0.3759 + }, + { + "start": 16277.42, + "end": 16280.8, + "probability": 0.7354 + }, + { + "start": 16281.16, + "end": 16281.16, + "probability": 0.018 + }, + { + "start": 16281.16, + "end": 16281.16, + "probability": 0.1522 + }, + { + "start": 16281.16, + "end": 16281.16, + "probability": 0.3937 + }, + { + "start": 16281.16, + "end": 16283.4, + "probability": 0.7525 + }, + { + "start": 16284.0, + "end": 16286.1, + "probability": 0.6391 + }, + { + "start": 16286.1, + "end": 16286.16, + "probability": 0.2153 + }, + { + "start": 16286.16, + "end": 16290.26, + "probability": 0.8855 + }, + { + "start": 16290.38, + "end": 16290.45, + "probability": 0.5157 + }, + { + "start": 16291.34, + "end": 16293.7, + "probability": 0.3943 + }, + { + "start": 16294.2, + "end": 16294.7, + "probability": 0.2122 + }, + { + "start": 16295.36, + "end": 16295.64, + "probability": 0.5227 + }, + { + "start": 16295.82, + "end": 16296.64, + "probability": 0.0464 + }, + { + "start": 16296.64, + "end": 16298.96, + "probability": 0.605 + }, + { + "start": 16299.94, + "end": 16300.68, + "probability": 0.1295 + }, + { + "start": 16300.76, + "end": 16300.8, + "probability": 0.0853 + }, + { + "start": 16300.84, + "end": 16301.1, + "probability": 0.2069 + }, + { + "start": 16301.12, + "end": 16301.19, + "probability": 0.3728 + }, + { + "start": 16301.7, + "end": 16305.59, + "probability": 0.3837 + }, + { + "start": 16308.08, + "end": 16310.24, + "probability": 0.0184 + }, + { + "start": 16311.86, + "end": 16312.14, + "probability": 0.4542 + }, + { + "start": 16312.54, + "end": 16312.54, + "probability": 0.0323 + }, + { + "start": 16312.54, + "end": 16312.54, + "probability": 0.0248 + }, + { + "start": 16312.54, + "end": 16313.64, + "probability": 0.0425 + }, + { + "start": 16314.28, + "end": 16316.06, + "probability": 0.4223 + }, + { + "start": 16318.55, + "end": 16322.52, + "probability": 0.7611 + }, + { + "start": 16323.02, + "end": 16324.28, + "probability": 0.8011 + }, + { + "start": 16325.62, + "end": 16327.34, + "probability": 0.1779 + }, + { + "start": 16332.24, + "end": 16333.0, + "probability": 0.5349 + }, + { + "start": 16334.5, + "end": 16335.58, + "probability": 0.461 + }, + { + "start": 16336.74, + "end": 16339.1, + "probability": 0.8704 + }, + { + "start": 16340.42, + "end": 16341.94, + "probability": 0.8007 + }, + { + "start": 16342.9, + "end": 16343.74, + "probability": 0.9603 + }, + { + "start": 16344.5, + "end": 16345.16, + "probability": 0.8615 + }, + { + "start": 16346.1, + "end": 16349.94, + "probability": 0.9049 + }, + { + "start": 16350.88, + "end": 16351.64, + "probability": 0.9805 + }, + { + "start": 16352.3, + "end": 16353.28, + "probability": 0.902 + }, + { + "start": 16353.8, + "end": 16354.54, + "probability": 0.7827 + }, + { + "start": 16355.14, + "end": 16356.1, + "probability": 0.9166 + }, + { + "start": 16357.4, + "end": 16357.8, + "probability": 0.9702 + }, + { + "start": 16358.96, + "end": 16359.78, + "probability": 0.9334 + }, + { + "start": 16362.04, + "end": 16362.96, + "probability": 0.7943 + }, + { + "start": 16364.04, + "end": 16364.72, + "probability": 0.5515 + }, + { + "start": 16367.0, + "end": 16368.72, + "probability": 0.8405 + }, + { + "start": 16370.14, + "end": 16372.78, + "probability": 0.9303 + }, + { + "start": 16374.78, + "end": 16376.28, + "probability": 0.9617 + }, + { + "start": 16380.76, + "end": 16381.02, + "probability": 0.0556 + }, + { + "start": 16383.7, + "end": 16387.28, + "probability": 0.5519 + }, + { + "start": 16389.22, + "end": 16389.94, + "probability": 0.8821 + }, + { + "start": 16390.58, + "end": 16391.34, + "probability": 0.9091 + }, + { + "start": 16392.2, + "end": 16393.1, + "probability": 0.8621 + }, + { + "start": 16393.88, + "end": 16394.58, + "probability": 0.9652 + }, + { + "start": 16395.2, + "end": 16396.82, + "probability": 0.8337 + }, + { + "start": 16397.4, + "end": 16399.02, + "probability": 0.5976 + }, + { + "start": 16399.74, + "end": 16400.64, + "probability": 0.845 + }, + { + "start": 16401.32, + "end": 16401.68, + "probability": 0.9097 + }, + { + "start": 16402.32, + "end": 16403.06, + "probability": 0.9383 + }, + { + "start": 16404.34, + "end": 16406.38, + "probability": 0.6204 + }, + { + "start": 16407.4, + "end": 16409.32, + "probability": 0.986 + }, + { + "start": 16410.12, + "end": 16411.72, + "probability": 0.915 + }, + { + "start": 16413.5, + "end": 16414.32, + "probability": 0.9565 + }, + { + "start": 16414.84, + "end": 16418.58, + "probability": 0.896 + }, + { + "start": 16419.54, + "end": 16419.94, + "probability": 0.8916 + }, + { + "start": 16421.26, + "end": 16421.96, + "probability": 0.9242 + }, + { + "start": 16422.82, + "end": 16425.0, + "probability": 0.9436 + }, + { + "start": 16426.42, + "end": 16428.06, + "probability": 0.9838 + }, + { + "start": 16429.42, + "end": 16431.0, + "probability": 0.4991 + }, + { + "start": 16432.28, + "end": 16433.22, + "probability": 0.9843 + }, + { + "start": 16434.08, + "end": 16434.94, + "probability": 0.8094 + }, + { + "start": 16437.02, + "end": 16438.76, + "probability": 0.984 + }, + { + "start": 16439.78, + "end": 16441.34, + "probability": 0.9471 + }, + { + "start": 16441.94, + "end": 16442.76, + "probability": 0.9466 + }, + { + "start": 16443.36, + "end": 16444.36, + "probability": 0.8346 + }, + { + "start": 16445.04, + "end": 16445.4, + "probability": 0.9253 + }, + { + "start": 16447.1, + "end": 16447.8, + "probability": 0.8703 + }, + { + "start": 16447.86, + "end": 16450.04, + "probability": 0.948 + }, + { + "start": 16450.38, + "end": 16452.54, + "probability": 0.58 + }, + { + "start": 16453.26, + "end": 16453.58, + "probability": 0.7485 + }, + { + "start": 16454.78, + "end": 16455.64, + "probability": 0.8422 + }, + { + "start": 16457.0, + "end": 16457.86, + "probability": 0.9265 + }, + { + "start": 16458.72, + "end": 16460.02, + "probability": 0.793 + }, + { + "start": 16460.56, + "end": 16462.98, + "probability": 0.97 + }, + { + "start": 16463.52, + "end": 16464.2, + "probability": 0.9586 + }, + { + "start": 16464.74, + "end": 16465.54, + "probability": 0.9795 + }, + { + "start": 16466.3, + "end": 16466.78, + "probability": 0.9836 + }, + { + "start": 16467.74, + "end": 16468.68, + "probability": 0.9346 + }, + { + "start": 16470.06, + "end": 16471.74, + "probability": 0.6252 + }, + { + "start": 16473.02, + "end": 16473.44, + "probability": 0.6052 + }, + { + "start": 16474.82, + "end": 16475.86, + "probability": 0.7793 + }, + { + "start": 16476.5, + "end": 16478.36, + "probability": 0.5186 + }, + { + "start": 16479.42, + "end": 16479.82, + "probability": 0.9653 + }, + { + "start": 16481.06, + "end": 16482.28, + "probability": 0.9408 + }, + { + "start": 16483.68, + "end": 16485.94, + "probability": 0.8088 + }, + { + "start": 16486.9, + "end": 16488.7, + "probability": 0.6648 + }, + { + "start": 16490.7, + "end": 16491.62, + "probability": 0.946 + }, + { + "start": 16492.2, + "end": 16493.3, + "probability": 0.6273 + }, + { + "start": 16495.1, + "end": 16496.84, + "probability": 0.6406 + }, + { + "start": 16497.98, + "end": 16498.38, + "probability": 0.821 + }, + { + "start": 16500.22, + "end": 16500.98, + "probability": 0.9267 + }, + { + "start": 16501.84, + "end": 16503.6, + "probability": 0.983 + }, + { + "start": 16504.38, + "end": 16506.94, + "probability": 0.8561 + }, + { + "start": 16507.68, + "end": 16511.66, + "probability": 0.9695 + }, + { + "start": 16512.18, + "end": 16513.5, + "probability": 0.9797 + }, + { + "start": 16514.76, + "end": 16515.58, + "probability": 0.9847 + }, + { + "start": 16516.24, + "end": 16517.18, + "probability": 0.9869 + }, + { + "start": 16518.8, + "end": 16519.18, + "probability": 0.9822 + }, + { + "start": 16520.6, + "end": 16522.04, + "probability": 0.6585 + }, + { + "start": 16522.58, + "end": 16523.0, + "probability": 0.6089 + }, + { + "start": 16524.24, + "end": 16524.98, + "probability": 0.7646 + }, + { + "start": 16525.76, + "end": 16526.44, + "probability": 0.8517 + }, + { + "start": 16527.14, + "end": 16528.0, + "probability": 0.8878 + }, + { + "start": 16529.16, + "end": 16529.98, + "probability": 0.8939 + }, + { + "start": 16530.76, + "end": 16531.42, + "probability": 0.9866 + }, + { + "start": 16531.98, + "end": 16533.7, + "probability": 0.9233 + }, + { + "start": 16537.5, + "end": 16537.88, + "probability": 0.8811 + }, + { + "start": 16538.4, + "end": 16539.88, + "probability": 0.7315 + }, + { + "start": 16540.56, + "end": 16543.54, + "probability": 0.8456 + }, + { + "start": 16545.5, + "end": 16545.96, + "probability": 0.9617 + }, + { + "start": 16547.16, + "end": 16547.96, + "probability": 0.9348 + }, + { + "start": 16549.54, + "end": 16550.36, + "probability": 0.9932 + }, + { + "start": 16550.9, + "end": 16551.97, + "probability": 0.6668 + }, + { + "start": 16553.38, + "end": 16554.84, + "probability": 0.751 + }, + { + "start": 16556.24, + "end": 16556.66, + "probability": 0.9023 + }, + { + "start": 16557.46, + "end": 16558.4, + "probability": 0.8505 + }, + { + "start": 16559.56, + "end": 16560.02, + "probability": 0.9644 + }, + { + "start": 16560.78, + "end": 16561.68, + "probability": 0.9693 + }, + { + "start": 16562.3, + "end": 16564.04, + "probability": 0.9187 + }, + { + "start": 16565.12, + "end": 16566.16, + "probability": 0.9779 + }, + { + "start": 16566.68, + "end": 16567.46, + "probability": 0.9715 + }, + { + "start": 16569.28, + "end": 16571.0, + "probability": 0.8875 + }, + { + "start": 16571.52, + "end": 16572.0, + "probability": 0.9797 + }, + { + "start": 16573.08, + "end": 16574.0, + "probability": 0.3104 + }, + { + "start": 16575.2, + "end": 16575.56, + "probability": 0.5588 + }, + { + "start": 16576.5, + "end": 16577.28, + "probability": 0.645 + }, + { + "start": 16578.34, + "end": 16583.24, + "probability": 0.9062 + }, + { + "start": 16584.1, + "end": 16585.1, + "probability": 0.9043 + }, + { + "start": 16585.68, + "end": 16586.82, + "probability": 0.9338 + }, + { + "start": 16588.5, + "end": 16591.98, + "probability": 0.9266 + }, + { + "start": 16592.88, + "end": 16596.68, + "probability": 0.2696 + }, + { + "start": 16600.56, + "end": 16603.42, + "probability": 0.7206 + }, + { + "start": 16607.9, + "end": 16608.5, + "probability": 0.6534 + }, + { + "start": 16609.22, + "end": 16611.02, + "probability": 0.7595 + }, + { + "start": 16611.64, + "end": 16612.06, + "probability": 0.5637 + }, + { + "start": 16613.1, + "end": 16614.28, + "probability": 0.9266 + }, + { + "start": 16615.6, + "end": 16617.4, + "probability": 0.825 + }, + { + "start": 16619.18, + "end": 16622.02, + "probability": 0.95 + }, + { + "start": 16623.32, + "end": 16624.16, + "probability": 0.9658 + }, + { + "start": 16625.02, + "end": 16625.84, + "probability": 0.9965 + }, + { + "start": 16627.24, + "end": 16630.16, + "probability": 0.7834 + }, + { + "start": 16632.1, + "end": 16635.24, + "probability": 0.5335 + }, + { + "start": 16635.86, + "end": 16636.42, + "probability": 0.9617 + }, + { + "start": 16637.3, + "end": 16638.44, + "probability": 0.7639 + }, + { + "start": 16639.78, + "end": 16641.58, + "probability": 0.8083 + }, + { + "start": 16642.42, + "end": 16643.74, + "probability": 0.9398 + }, + { + "start": 16645.02, + "end": 16645.48, + "probability": 0.9546 + }, + { + "start": 16647.1, + "end": 16647.9, + "probability": 0.9243 + }, + { + "start": 16648.42, + "end": 16649.16, + "probability": 0.9932 + }, + { + "start": 16649.9, + "end": 16650.56, + "probability": 0.4904 + }, + { + "start": 16652.12, + "end": 16653.08, + "probability": 0.9835 + }, + { + "start": 16654.56, + "end": 16654.98, + "probability": 0.8282 + }, + { + "start": 16656.54, + "end": 16658.92, + "probability": 0.8582 + }, + { + "start": 16659.54, + "end": 16660.4, + "probability": 0.9824 + }, + { + "start": 16661.28, + "end": 16663.78, + "probability": 0.7358 + }, + { + "start": 16664.42, + "end": 16667.02, + "probability": 0.4492 + }, + { + "start": 16670.34, + "end": 16671.24, + "probability": 0.965 + }, + { + "start": 16673.18, + "end": 16674.04, + "probability": 0.5448 + }, + { + "start": 16676.42, + "end": 16676.92, + "probability": 0.6946 + }, + { + "start": 16677.82, + "end": 16678.76, + "probability": 0.8139 + }, + { + "start": 16680.16, + "end": 16681.48, + "probability": 0.8747 + }, + { + "start": 16686.88, + "end": 16690.7, + "probability": 0.8791 + }, + { + "start": 16692.58, + "end": 16694.1, + "probability": 0.7353 + }, + { + "start": 16695.52, + "end": 16697.3, + "probability": 0.8181 + }, + { + "start": 16698.4, + "end": 16700.28, + "probability": 0.7366 + }, + { + "start": 16703.08, + "end": 16703.42, + "probability": 0.7173 + }, + { + "start": 16704.84, + "end": 16705.86, + "probability": 0.8816 + }, + { + "start": 16709.04, + "end": 16711.3, + "probability": 0.9097 + }, + { + "start": 16712.2, + "end": 16713.3, + "probability": 0.9793 + }, + { + "start": 16714.14, + "end": 16714.56, + "probability": 0.968 + }, + { + "start": 16715.52, + "end": 16716.3, + "probability": 0.9432 + }, + { + "start": 16718.34, + "end": 16720.82, + "probability": 0.9551 + }, + { + "start": 16721.28, + "end": 16723.68, + "probability": 0.796 + }, + { + "start": 16724.04, + "end": 16724.48, + "probability": 0.5339 + }, + { + "start": 16725.2, + "end": 16726.36, + "probability": 0.837 + }, + { + "start": 16728.02, + "end": 16730.36, + "probability": 0.8777 + }, + { + "start": 16732.3, + "end": 16733.5, + "probability": 0.8862 + }, + { + "start": 16735.04, + "end": 16735.88, + "probability": 0.8714 + }, + { + "start": 16739.6, + "end": 16742.1, + "probability": 0.7027 + }, + { + "start": 16743.32, + "end": 16747.06, + "probability": 0.9653 + }, + { + "start": 16747.94, + "end": 16748.78, + "probability": 0.7876 + }, + { + "start": 16751.22, + "end": 16752.82, + "probability": 0.7604 + }, + { + "start": 16754.0, + "end": 16757.78, + "probability": 0.7686 + }, + { + "start": 16758.74, + "end": 16760.74, + "probability": 0.8656 + }, + { + "start": 16764.8, + "end": 16765.26, + "probability": 0.6261 + }, + { + "start": 16766.36, + "end": 16767.0, + "probability": 0.5032 + }, + { + "start": 16769.78, + "end": 16772.74, + "probability": 0.8857 + }, + { + "start": 16773.5, + "end": 16774.12, + "probability": 0.5513 + }, + { + "start": 16776.23, + "end": 16777.75, + "probability": 0.3929 + }, + { + "start": 16778.62, + "end": 16780.54, + "probability": 0.8606 + }, + { + "start": 16781.66, + "end": 16783.78, + "probability": 0.746 + }, + { + "start": 16785.72, + "end": 16787.58, + "probability": 0.6572 + }, + { + "start": 16789.9, + "end": 16792.76, + "probability": 0.9023 + }, + { + "start": 16794.06, + "end": 16796.6, + "probability": 0.8947 + }, + { + "start": 16798.98, + "end": 16800.56, + "probability": 0.9698 + }, + { + "start": 16802.46, + "end": 16804.4, + "probability": 0.9763 + }, + { + "start": 16805.48, + "end": 16806.3, + "probability": 0.8623 + }, + { + "start": 16806.86, + "end": 16808.1, + "probability": 0.9767 + }, + { + "start": 16810.27, + "end": 16810.62, + "probability": 0.4604 + }, + { + "start": 16812.12, + "end": 16812.98, + "probability": 0.789 + }, + { + "start": 16813.9, + "end": 16816.02, + "probability": 0.6677 + }, + { + "start": 16816.7, + "end": 16817.56, + "probability": 0.9778 + }, + { + "start": 16818.4, + "end": 16820.34, + "probability": 0.9796 + }, + { + "start": 16821.44, + "end": 16822.32, + "probability": 0.9765 + }, + { + "start": 16823.16, + "end": 16824.77, + "probability": 0.9897 + }, + { + "start": 16826.32, + "end": 16827.34, + "probability": 0.9556 + }, + { + "start": 16829.04, + "end": 16830.06, + "probability": 0.9749 + }, + { + "start": 16831.2, + "end": 16834.32, + "probability": 0.7637 + }, + { + "start": 16835.06, + "end": 16838.92, + "probability": 0.5678 + }, + { + "start": 16840.02, + "end": 16840.76, + "probability": 0.9583 + }, + { + "start": 16841.42, + "end": 16842.28, + "probability": 0.9341 + }, + { + "start": 16844.54, + "end": 16846.18, + "probability": 0.9047 + }, + { + "start": 16847.38, + "end": 16848.4, + "probability": 0.9781 + }, + { + "start": 16849.08, + "end": 16850.94, + "probability": 0.9258 + }, + { + "start": 16852.46, + "end": 16853.4, + "probability": 0.9521 + }, + { + "start": 16855.22, + "end": 16856.82, + "probability": 0.9822 + }, + { + "start": 16858.22, + "end": 16861.44, + "probability": 0.8599 + }, + { + "start": 16862.74, + "end": 16863.2, + "probability": 0.5395 + }, + { + "start": 16864.24, + "end": 16866.76, + "probability": 0.7743 + }, + { + "start": 16869.08, + "end": 16871.4, + "probability": 0.7212 + }, + { + "start": 16872.16, + "end": 16872.58, + "probability": 0.9456 + }, + { + "start": 16874.56, + "end": 16875.76, + "probability": 0.9373 + }, + { + "start": 16878.38, + "end": 16879.3, + "probability": 0.9145 + }, + { + "start": 16882.38, + "end": 16883.28, + "probability": 0.5728 + }, + { + "start": 16884.82, + "end": 16886.62, + "probability": 0.8235 + }, + { + "start": 16887.54, + "end": 16889.54, + "probability": 0.9491 + }, + { + "start": 16891.4, + "end": 16893.0, + "probability": 0.6889 + }, + { + "start": 16893.9, + "end": 16894.2, + "probability": 0.9167 + }, + { + "start": 16895.5, + "end": 16896.6, + "probability": 0.6511 + }, + { + "start": 16898.42, + "end": 16900.12, + "probability": 0.9847 + }, + { + "start": 16901.26, + "end": 16903.36, + "probability": 0.865 + }, + { + "start": 16904.48, + "end": 16906.02, + "probability": 0.7098 + }, + { + "start": 16908.04, + "end": 16909.42, + "probability": 0.9401 + }, + { + "start": 16910.68, + "end": 16912.08, + "probability": 0.9753 + }, + { + "start": 16914.66, + "end": 16915.44, + "probability": 0.8183 + }, + { + "start": 16916.22, + "end": 16917.96, + "probability": 0.949 + }, + { + "start": 16920.16, + "end": 16920.94, + "probability": 0.9231 + }, + { + "start": 16923.04, + "end": 16926.12, + "probability": 0.9805 + }, + { + "start": 16926.9, + "end": 16930.14, + "probability": 0.7819 + }, + { + "start": 16931.86, + "end": 16933.58, + "probability": 0.9011 + }, + { + "start": 16935.54, + "end": 16937.42, + "probability": 0.9046 + }, + { + "start": 16938.72, + "end": 16941.52, + "probability": 0.8401 + }, + { + "start": 16942.06, + "end": 16943.16, + "probability": 0.7272 + }, + { + "start": 16943.7, + "end": 16947.86, + "probability": 0.8684 + }, + { + "start": 16948.7, + "end": 16950.08, + "probability": 0.9022 + }, + { + "start": 16950.98, + "end": 16952.48, + "probability": 0.9497 + }, + { + "start": 16953.64, + "end": 16955.64, + "probability": 0.9777 + }, + { + "start": 16956.52, + "end": 16958.1, + "probability": 0.9896 + }, + { + "start": 16959.52, + "end": 16961.34, + "probability": 0.8359 + }, + { + "start": 16962.98, + "end": 16965.14, + "probability": 0.9932 + }, + { + "start": 16966.76, + "end": 16968.04, + "probability": 0.6759 + }, + { + "start": 16969.22, + "end": 16970.1, + "probability": 0.8188 + }, + { + "start": 16970.64, + "end": 16972.28, + "probability": 0.6154 + }, + { + "start": 16973.52, + "end": 16975.76, + "probability": 0.7346 + }, + { + "start": 16976.3, + "end": 16978.33, + "probability": 0.915 + }, + { + "start": 16980.52, + "end": 16981.32, + "probability": 0.9792 + }, + { + "start": 16983.62, + "end": 16986.22, + "probability": 0.0176 + }, + { + "start": 16986.22, + "end": 16987.13, + "probability": 0.6753 + }, + { + "start": 16991.14, + "end": 16992.36, + "probability": 0.495 + }, + { + "start": 16993.92, + "end": 16994.68, + "probability": 0.5611 + }, + { + "start": 16998.32, + "end": 16999.36, + "probability": 0.4983 + }, + { + "start": 17000.66, + "end": 17001.62, + "probability": 0.474 + }, + { + "start": 17005.74, + "end": 17008.86, + "probability": 0.8296 + }, + { + "start": 17009.6, + "end": 17010.54, + "probability": 0.9245 + }, + { + "start": 17012.68, + "end": 17014.04, + "probability": 0.9174 + }, + { + "start": 17016.2, + "end": 17019.22, + "probability": 0.9756 + }, + { + "start": 17020.46, + "end": 17021.72, + "probability": 0.8698 + }, + { + "start": 17022.26, + "end": 17024.16, + "probability": 0.9606 + }, + { + "start": 17025.98, + "end": 17026.88, + "probability": 0.9004 + }, + { + "start": 17027.54, + "end": 17028.34, + "probability": 0.3745 + }, + { + "start": 17030.74, + "end": 17033.28, + "probability": 0.8068 + }, + { + "start": 17033.9, + "end": 17035.74, + "probability": 0.8464 + }, + { + "start": 17036.54, + "end": 17037.22, + "probability": 0.6344 + }, + { + "start": 17038.92, + "end": 17041.32, + "probability": 0.8903 + }, + { + "start": 17041.96, + "end": 17044.26, + "probability": 0.9636 + }, + { + "start": 17046.02, + "end": 17048.8, + "probability": 0.9237 + }, + { + "start": 17050.82, + "end": 17051.06, + "probability": 0.3627 + }, + { + "start": 17051.12, + "end": 17052.06, + "probability": 0.8552 + }, + { + "start": 17053.12, + "end": 17053.72, + "probability": 0.9273 + }, + { + "start": 17061.32, + "end": 17062.64, + "probability": 0.4769 + }, + { + "start": 17062.72, + "end": 17063.24, + "probability": 0.8608 + }, + { + "start": 17064.16, + "end": 17067.46, + "probability": 0.8358 + }, + { + "start": 17077.42, + "end": 17077.42, + "probability": 0.0609 + }, + { + "start": 17080.62, + "end": 17081.18, + "probability": 0.1736 + }, + { + "start": 17104.72, + "end": 17106.24, + "probability": 0.6463 + }, + { + "start": 17106.78, + "end": 17109.42, + "probability": 0.8057 + }, + { + "start": 17111.42, + "end": 17112.34, + "probability": 0.587 + }, + { + "start": 17116.26, + "end": 17118.92, + "probability": 0.9324 + }, + { + "start": 17119.72, + "end": 17121.84, + "probability": 0.894 + }, + { + "start": 17121.84, + "end": 17125.08, + "probability": 0.8345 + }, + { + "start": 17125.6, + "end": 17130.6, + "probability": 0.5176 + }, + { + "start": 17131.9, + "end": 17133.06, + "probability": 0.757 + }, + { + "start": 17135.16, + "end": 17135.8, + "probability": 0.6925 + }, + { + "start": 17136.8, + "end": 17139.14, + "probability": 0.842 + }, + { + "start": 17139.14, + "end": 17142.24, + "probability": 0.9714 + }, + { + "start": 17142.76, + "end": 17144.8, + "probability": 0.7543 + }, + { + "start": 17145.32, + "end": 17148.22, + "probability": 0.8267 + }, + { + "start": 17151.6, + "end": 17153.42, + "probability": 0.703 + }, + { + "start": 17154.9, + "end": 17156.1, + "probability": 0.5699 + }, + { + "start": 17157.9, + "end": 17159.88, + "probability": 0.28 + }, + { + "start": 17160.6, + "end": 17162.3, + "probability": 0.9534 + }, + { + "start": 17167.36, + "end": 17169.44, + "probability": 0.7018 + }, + { + "start": 17170.1, + "end": 17172.1, + "probability": 0.9901 + }, + { + "start": 17172.68, + "end": 17174.4, + "probability": 0.9357 + }, + { + "start": 17175.02, + "end": 17175.98, + "probability": 0.8943 + }, + { + "start": 17177.2, + "end": 17178.3, + "probability": 0.4849 + }, + { + "start": 17179.82, + "end": 17183.16, + "probability": 0.9844 + }, + { + "start": 17183.16, + "end": 17183.4, + "probability": 0.1514 + }, + { + "start": 17183.44, + "end": 17187.92, + "probability": 0.9202 + }, + { + "start": 17187.96, + "end": 17188.7, + "probability": 0.7463 + }, + { + "start": 17189.3, + "end": 17189.86, + "probability": 0.6693 + }, + { + "start": 17190.14, + "end": 17194.56, + "probability": 0.9581 + }, + { + "start": 17195.18, + "end": 17200.82, + "probability": 0.9944 + }, + { + "start": 17200.88, + "end": 17202.12, + "probability": 0.7172 + }, + { + "start": 17202.5, + "end": 17202.86, + "probability": 0.7716 + }, + { + "start": 17203.94, + "end": 17204.18, + "probability": 0.731 + }, + { + "start": 17204.46, + "end": 17205.2, + "probability": 0.5761 + }, + { + "start": 17207.2, + "end": 17208.76, + "probability": 0.6899 + }, + { + "start": 17212.82, + "end": 17212.94, + "probability": 0.3905 + }, + { + "start": 17214.22, + "end": 17215.44, + "probability": 0.8724 + }, + { + "start": 17216.94, + "end": 17218.02, + "probability": 0.8403 + }, + { + "start": 17218.3, + "end": 17219.56, + "probability": 0.0056 + }, + { + "start": 17219.72, + "end": 17220.34, + "probability": 0.4399 + }, + { + "start": 17221.18, + "end": 17222.04, + "probability": 0.9897 + }, + { + "start": 17223.02, + "end": 17225.76, + "probability": 0.7068 + }, + { + "start": 17225.86, + "end": 17226.26, + "probability": 0.745 + }, + { + "start": 17227.44, + "end": 17228.2, + "probability": 0.96 + }, + { + "start": 17229.16, + "end": 17229.8, + "probability": 0.3055 + }, + { + "start": 17234.48, + "end": 17234.74, + "probability": 0.2333 + }, + { + "start": 17235.72, + "end": 17237.32, + "probability": 0.7148 + }, + { + "start": 17237.36, + "end": 17238.22, + "probability": 0.812 + }, + { + "start": 17238.94, + "end": 17239.28, + "probability": 0.4983 + }, + { + "start": 17241.2, + "end": 17243.04, + "probability": 0.7739 + }, + { + "start": 17243.34, + "end": 17244.54, + "probability": 0.7858 + }, + { + "start": 17245.0, + "end": 17245.34, + "probability": 0.5274 + }, + { + "start": 17245.64, + "end": 17248.44, + "probability": 0.5247 + }, + { + "start": 17249.84, + "end": 17250.86, + "probability": 0.3486 + }, + { + "start": 17250.86, + "end": 17250.86, + "probability": 0.67 + }, + { + "start": 17251.22, + "end": 17251.66, + "probability": 0.497 + }, + { + "start": 17251.82, + "end": 17254.54, + "probability": 0.7108 + }, + { + "start": 17256.28, + "end": 17259.5, + "probability": 0.9857 + }, + { + "start": 17260.28, + "end": 17261.88, + "probability": 0.1996 + }, + { + "start": 17262.78, + "end": 17264.5, + "probability": 0.9539 + }, + { + "start": 17264.86, + "end": 17266.38, + "probability": 0.4432 + }, + { + "start": 17266.64, + "end": 17266.74, + "probability": 0.3337 + }, + { + "start": 17266.96, + "end": 17270.74, + "probability": 0.9775 + }, + { + "start": 17272.06, + "end": 17275.92, + "probability": 0.5522 + }, + { + "start": 17277.32, + "end": 17281.1, + "probability": 0.998 + }, + { + "start": 17281.88, + "end": 17283.36, + "probability": 0.8844 + }, + { + "start": 17284.54, + "end": 17285.8, + "probability": 0.699 + }, + { + "start": 17286.6, + "end": 17292.85, + "probability": 0.9897 + }, + { + "start": 17294.42, + "end": 17295.75, + "probability": 0.8441 + }, + { + "start": 17296.52, + "end": 17297.44, + "probability": 0.9209 + }, + { + "start": 17299.28, + "end": 17303.26, + "probability": 0.9132 + }, + { + "start": 17304.22, + "end": 17306.46, + "probability": 0.9172 + }, + { + "start": 17307.14, + "end": 17307.76, + "probability": 0.7508 + }, + { + "start": 17308.7, + "end": 17314.34, + "probability": 0.9828 + }, + { + "start": 17314.46, + "end": 17317.65, + "probability": 0.9398 + }, + { + "start": 17319.42, + "end": 17321.12, + "probability": 0.9543 + }, + { + "start": 17322.48, + "end": 17324.18, + "probability": 0.9247 + }, + { + "start": 17324.48, + "end": 17326.28, + "probability": 0.7796 + }, + { + "start": 17326.84, + "end": 17327.94, + "probability": 0.8773 + }, + { + "start": 17328.52, + "end": 17332.98, + "probability": 0.8748 + }, + { + "start": 17333.1, + "end": 17334.43, + "probability": 0.511 + }, + { + "start": 17334.94, + "end": 17337.34, + "probability": 0.631 + }, + { + "start": 17338.2, + "end": 17339.46, + "probability": 0.9883 + }, + { + "start": 17340.18, + "end": 17341.19, + "probability": 0.9351 + }, + { + "start": 17342.62, + "end": 17344.36, + "probability": 0.9686 + }, + { + "start": 17345.04, + "end": 17347.54, + "probability": 0.8945 + }, + { + "start": 17348.14, + "end": 17350.76, + "probability": 0.857 + }, + { + "start": 17351.48, + "end": 17352.88, + "probability": 0.8147 + }, + { + "start": 17353.6, + "end": 17354.22, + "probability": 0.6686 + }, + { + "start": 17355.16, + "end": 17356.6, + "probability": 0.9917 + }, + { + "start": 17357.48, + "end": 17360.0, + "probability": 0.9963 + }, + { + "start": 17361.24, + "end": 17363.74, + "probability": 0.9246 + }, + { + "start": 17364.66, + "end": 17367.48, + "probability": 0.9941 + }, + { + "start": 17368.32, + "end": 17373.36, + "probability": 0.9796 + }, + { + "start": 17374.34, + "end": 17375.8, + "probability": 0.9672 + }, + { + "start": 17376.58, + "end": 17379.36, + "probability": 0.9764 + }, + { + "start": 17380.5, + "end": 17381.46, + "probability": 0.8798 + }, + { + "start": 17382.18, + "end": 17384.34, + "probability": 0.9083 + }, + { + "start": 17385.2, + "end": 17387.3, + "probability": 0.9985 + }, + { + "start": 17388.06, + "end": 17392.8, + "probability": 0.8528 + }, + { + "start": 17393.46, + "end": 17395.7, + "probability": 0.9047 + }, + { + "start": 17396.48, + "end": 17399.34, + "probability": 0.7949 + }, + { + "start": 17400.66, + "end": 17402.04, + "probability": 0.7542 + }, + { + "start": 17402.68, + "end": 17404.43, + "probability": 0.9929 + }, + { + "start": 17405.58, + "end": 17408.86, + "probability": 0.9638 + }, + { + "start": 17408.96, + "end": 17410.68, + "probability": 0.7891 + }, + { + "start": 17410.82, + "end": 17414.48, + "probability": 0.9795 + }, + { + "start": 17415.5, + "end": 17418.6, + "probability": 0.9888 + }, + { + "start": 17419.4, + "end": 17420.58, + "probability": 0.889 + }, + { + "start": 17421.22, + "end": 17422.62, + "probability": 0.9473 + }, + { + "start": 17423.64, + "end": 17426.64, + "probability": 0.8048 + }, + { + "start": 17427.88, + "end": 17429.5, + "probability": 0.9941 + }, + { + "start": 17430.26, + "end": 17433.12, + "probability": 0.9458 + }, + { + "start": 17433.9, + "end": 17435.3, + "probability": 0.917 + }, + { + "start": 17435.86, + "end": 17437.97, + "probability": 0.9793 + }, + { + "start": 17438.82, + "end": 17441.04, + "probability": 0.9927 + }, + { + "start": 17441.66, + "end": 17444.76, + "probability": 0.9948 + }, + { + "start": 17445.76, + "end": 17446.81, + "probability": 0.9145 + }, + { + "start": 17447.7, + "end": 17454.88, + "probability": 0.9556 + }, + { + "start": 17455.42, + "end": 17456.23, + "probability": 0.8618 + }, + { + "start": 17456.86, + "end": 17458.36, + "probability": 0.8565 + }, + { + "start": 17459.6, + "end": 17461.66, + "probability": 0.8848 + }, + { + "start": 17462.42, + "end": 17463.9, + "probability": 0.9015 + }, + { + "start": 17464.9, + "end": 17466.64, + "probability": 0.8359 + }, + { + "start": 17467.44, + "end": 17469.18, + "probability": 0.9881 + }, + { + "start": 17470.02, + "end": 17473.06, + "probability": 0.9967 + }, + { + "start": 17473.84, + "end": 17476.1, + "probability": 0.8221 + }, + { + "start": 17476.76, + "end": 17479.48, + "probability": 0.925 + }, + { + "start": 17480.18, + "end": 17485.66, + "probability": 0.992 + }, + { + "start": 17486.32, + "end": 17486.62, + "probability": 0.8647 + }, + { + "start": 17487.2, + "end": 17488.4, + "probability": 0.5645 + }, + { + "start": 17488.88, + "end": 17489.86, + "probability": 0.4572 + }, + { + "start": 17491.7, + "end": 17492.98, + "probability": 0.7345 + }, + { + "start": 17493.18, + "end": 17493.18, + "probability": 0.0033 + }, + { + "start": 17499.38, + "end": 17500.4, + "probability": 0.4859 + }, + { + "start": 17521.32, + "end": 17522.1, + "probability": 0.5756 + }, + { + "start": 17522.1, + "end": 17522.88, + "probability": 0.7865 + }, + { + "start": 17523.02, + "end": 17525.26, + "probability": 0.9619 + }, + { + "start": 17528.07, + "end": 17529.54, + "probability": 0.642 + }, + { + "start": 17530.66, + "end": 17532.72, + "probability": 0.4733 + }, + { + "start": 17532.84, + "end": 17534.46, + "probability": 0.9834 + }, + { + "start": 17534.72, + "end": 17534.94, + "probability": 0.9296 + }, + { + "start": 17535.2, + "end": 17535.5, + "probability": 0.8341 + }, + { + "start": 17537.76, + "end": 17539.58, + "probability": 0.7979 + }, + { + "start": 17540.92, + "end": 17542.48, + "probability": 0.9973 + }, + { + "start": 17542.56, + "end": 17546.72, + "probability": 0.7392 + }, + { + "start": 17547.88, + "end": 17549.0, + "probability": 0.8413 + }, + { + "start": 17549.83, + "end": 17554.26, + "probability": 0.9512 + }, + { + "start": 17554.26, + "end": 17556.02, + "probability": 0.7876 + }, + { + "start": 17556.36, + "end": 17556.86, + "probability": 0.5977 + }, + { + "start": 17556.88, + "end": 17558.96, + "probability": 0.9968 + }, + { + "start": 17559.8, + "end": 17561.64, + "probability": 0.9631 + }, + { + "start": 17562.2, + "end": 17563.64, + "probability": 0.8403 + }, + { + "start": 17564.16, + "end": 17567.6, + "probability": 0.9463 + }, + { + "start": 17567.82, + "end": 17568.02, + "probability": 0.3745 + }, + { + "start": 17568.04, + "end": 17568.6, + "probability": 0.6314 + }, + { + "start": 17568.62, + "end": 17568.9, + "probability": 0.9702 + }, + { + "start": 17569.8, + "end": 17574.4, + "probability": 0.8854 + }, + { + "start": 17575.32, + "end": 17576.62, + "probability": 0.8804 + }, + { + "start": 17577.58, + "end": 17578.44, + "probability": 0.8959 + }, + { + "start": 17578.92, + "end": 17579.56, + "probability": 0.7109 + }, + { + "start": 17579.64, + "end": 17580.24, + "probability": 0.8986 + }, + { + "start": 17580.32, + "end": 17581.22, + "probability": 0.5735 + }, + { + "start": 17582.08, + "end": 17585.24, + "probability": 0.7603 + }, + { + "start": 17585.36, + "end": 17587.54, + "probability": 0.5979 + }, + { + "start": 17588.24, + "end": 17589.66, + "probability": 0.9563 + }, + { + "start": 17590.06, + "end": 17591.56, + "probability": 0.8735 + }, + { + "start": 17592.22, + "end": 17596.62, + "probability": 0.9425 + }, + { + "start": 17596.74, + "end": 17597.69, + "probability": 0.476 + }, + { + "start": 17597.86, + "end": 17598.76, + "probability": 0.6521 + }, + { + "start": 17599.42, + "end": 17601.94, + "probability": 0.981 + }, + { + "start": 17602.08, + "end": 17606.02, + "probability": 0.8922 + }, + { + "start": 17606.52, + "end": 17607.08, + "probability": 0.7828 + }, + { + "start": 17607.24, + "end": 17607.5, + "probability": 0.9174 + }, + { + "start": 17607.58, + "end": 17608.22, + "probability": 0.8966 + }, + { + "start": 17608.34, + "end": 17609.24, + "probability": 0.752 + }, + { + "start": 17610.28, + "end": 17611.9, + "probability": 0.9492 + }, + { + "start": 17613.36, + "end": 17615.68, + "probability": 0.9219 + }, + { + "start": 17616.12, + "end": 17617.3, + "probability": 0.8448 + }, + { + "start": 17619.0, + "end": 17620.61, + "probability": 0.9877 + }, + { + "start": 17621.1, + "end": 17624.26, + "probability": 0.993 + }, + { + "start": 17624.7, + "end": 17625.06, + "probability": 0.9077 + }, + { + "start": 17625.84, + "end": 17626.98, + "probability": 0.9458 + }, + { + "start": 17627.84, + "end": 17630.92, + "probability": 0.1182 + }, + { + "start": 17630.92, + "end": 17631.34, + "probability": 0.0956 + }, + { + "start": 17632.46, + "end": 17632.96, + "probability": 0.418 + }, + { + "start": 17633.8, + "end": 17634.5, + "probability": 0.5969 + }, + { + "start": 17634.82, + "end": 17637.48, + "probability": 0.9489 + }, + { + "start": 17637.58, + "end": 17638.26, + "probability": 0.7766 + }, + { + "start": 17638.72, + "end": 17640.0, + "probability": 0.8161 + }, + { + "start": 17640.0, + "end": 17642.82, + "probability": 0.8192 + }, + { + "start": 17643.36, + "end": 17646.82, + "probability": 0.9761 + }, + { + "start": 17647.22, + "end": 17648.72, + "probability": 0.8713 + }, + { + "start": 17648.82, + "end": 17649.76, + "probability": 0.7395 + }, + { + "start": 17651.08, + "end": 17654.02, + "probability": 0.707 + }, + { + "start": 17654.32, + "end": 17654.73, + "probability": 0.9868 + }, + { + "start": 17656.64, + "end": 17658.72, + "probability": 0.8013 + }, + { + "start": 17659.6, + "end": 17662.58, + "probability": 0.9429 + }, + { + "start": 17663.04, + "end": 17663.88, + "probability": 0.7568 + }, + { + "start": 17664.62, + "end": 17665.99, + "probability": 0.5776 + }, + { + "start": 17666.3, + "end": 17667.72, + "probability": 0.8678 + }, + { + "start": 17672.16, + "end": 17673.2, + "probability": 0.5188 + }, + { + "start": 17673.2, + "end": 17673.84, + "probability": 0.0353 + }, + { + "start": 17674.46, + "end": 17675.6, + "probability": 0.9212 + }, + { + "start": 17675.94, + "end": 17679.5, + "probability": 0.9722 + }, + { + "start": 17680.14, + "end": 17680.84, + "probability": 0.8397 + }, + { + "start": 17681.66, + "end": 17683.48, + "probability": 0.783 + }, + { + "start": 17683.58, + "end": 17684.64, + "probability": 0.8037 + }, + { + "start": 17684.8, + "end": 17686.4, + "probability": 0.7266 + }, + { + "start": 17686.82, + "end": 17687.66, + "probability": 0.7018 + }, + { + "start": 17688.18, + "end": 17689.98, + "probability": 0.8458 + }, + { + "start": 17690.44, + "end": 17692.2, + "probability": 0.9927 + }, + { + "start": 17693.26, + "end": 17697.08, + "probability": 0.99 + }, + { + "start": 17698.1, + "end": 17702.36, + "probability": 0.9935 + }, + { + "start": 17704.46, + "end": 17704.76, + "probability": 0.8927 + }, + { + "start": 17704.82, + "end": 17706.34, + "probability": 0.829 + }, + { + "start": 17706.4, + "end": 17707.28, + "probability": 0.977 + }, + { + "start": 17708.06, + "end": 17708.72, + "probability": 0.8151 + }, + { + "start": 17709.46, + "end": 17710.91, + "probability": 0.9906 + }, + { + "start": 17711.48, + "end": 17714.26, + "probability": 0.8056 + }, + { + "start": 17714.36, + "end": 17717.14, + "probability": 0.9292 + }, + { + "start": 17717.74, + "end": 17721.19, + "probability": 0.9929 + }, + { + "start": 17722.24, + "end": 17723.26, + "probability": 0.9868 + }, + { + "start": 17723.32, + "end": 17724.38, + "probability": 0.8348 + }, + { + "start": 17725.66, + "end": 17726.56, + "probability": 0.5147 + }, + { + "start": 17726.56, + "end": 17732.24, + "probability": 0.7889 + }, + { + "start": 17732.42, + "end": 17734.26, + "probability": 0.6756 + }, + { + "start": 17734.32, + "end": 17737.96, + "probability": 0.8687 + }, + { + "start": 17738.34, + "end": 17739.61, + "probability": 0.9841 + }, + { + "start": 17740.64, + "end": 17741.86, + "probability": 0.948 + }, + { + "start": 17742.24, + "end": 17742.77, + "probability": 0.7743 + }, + { + "start": 17743.52, + "end": 17744.78, + "probability": 0.9775 + }, + { + "start": 17744.98, + "end": 17745.14, + "probability": 0.6626 + }, + { + "start": 17745.22, + "end": 17745.92, + "probability": 0.7407 + }, + { + "start": 17746.34, + "end": 17748.4, + "probability": 0.6155 + }, + { + "start": 17749.54, + "end": 17754.94, + "probability": 0.597 + }, + { + "start": 17755.86, + "end": 17756.02, + "probability": 0.1202 + }, + { + "start": 17756.02, + "end": 17756.02, + "probability": 0.4775 + }, + { + "start": 17756.02, + "end": 17756.02, + "probability": 0.1569 + }, + { + "start": 17756.02, + "end": 17757.3, + "probability": 0.5371 + }, + { + "start": 17757.58, + "end": 17758.73, + "probability": 0.8121 + }, + { + "start": 17759.7, + "end": 17760.9, + "probability": 0.63 + }, + { + "start": 17761.44, + "end": 17764.14, + "probability": 0.8079 + }, + { + "start": 17764.6, + "end": 17766.04, + "probability": 0.024 + }, + { + "start": 17766.14, + "end": 17767.68, + "probability": 0.9609 + }, + { + "start": 17768.42, + "end": 17770.27, + "probability": 0.664 + }, + { + "start": 17770.84, + "end": 17772.46, + "probability": 0.9165 + }, + { + "start": 17773.62, + "end": 17774.54, + "probability": 0.5001 + }, + { + "start": 17776.08, + "end": 17778.16, + "probability": 0.7724 + }, + { + "start": 17778.42, + "end": 17779.82, + "probability": 0.8511 + }, + { + "start": 17779.88, + "end": 17780.82, + "probability": 0.8383 + }, + { + "start": 17780.96, + "end": 17783.64, + "probability": 0.9565 + }, + { + "start": 17785.44, + "end": 17786.18, + "probability": 0.5812 + }, + { + "start": 17786.2, + "end": 17788.64, + "probability": 0.8838 + }, + { + "start": 17788.82, + "end": 17789.68, + "probability": 0.8345 + }, + { + "start": 17789.72, + "end": 17792.58, + "probability": 0.969 + }, + { + "start": 17792.64, + "end": 17793.4, + "probability": 0.8989 + }, + { + "start": 17793.7, + "end": 17794.36, + "probability": 0.8743 + }, + { + "start": 17794.66, + "end": 17795.1, + "probability": 0.6665 + }, + { + "start": 17795.22, + "end": 17797.92, + "probability": 0.8162 + }, + { + "start": 17798.28, + "end": 17799.26, + "probability": 0.7471 + }, + { + "start": 17800.4, + "end": 17803.4, + "probability": 0.8359 + }, + { + "start": 17803.42, + "end": 17803.7, + "probability": 0.7973 + }, + { + "start": 17803.8, + "end": 17805.36, + "probability": 0.9884 + }, + { + "start": 17805.84, + "end": 17806.64, + "probability": 0.9828 + }, + { + "start": 17806.72, + "end": 17808.36, + "probability": 0.9519 + }, + { + "start": 17809.26, + "end": 17811.02, + "probability": 0.7518 + }, + { + "start": 17811.2, + "end": 17812.26, + "probability": 0.9932 + }, + { + "start": 17812.36, + "end": 17812.84, + "probability": 0.3159 + }, + { + "start": 17813.46, + "end": 17814.36, + "probability": 0.8416 + }, + { + "start": 17814.42, + "end": 17816.12, + "probability": 0.9893 + }, + { + "start": 17816.64, + "end": 17817.72, + "probability": 0.5524 + }, + { + "start": 17819.34, + "end": 17821.52, + "probability": 0.9214 + }, + { + "start": 17822.3, + "end": 17824.8, + "probability": 0.9313 + }, + { + "start": 17824.98, + "end": 17826.47, + "probability": 0.7554 + }, + { + "start": 17826.88, + "end": 17828.38, + "probability": 0.9681 + }, + { + "start": 17828.56, + "end": 17831.3, + "probability": 0.9538 + }, + { + "start": 17832.12, + "end": 17832.71, + "probability": 0.9666 + }, + { + "start": 17834.18, + "end": 17836.32, + "probability": 0.9609 + }, + { + "start": 17836.44, + "end": 17838.06, + "probability": 0.9984 + }, + { + "start": 17839.22, + "end": 17839.32, + "probability": 0.0742 + }, + { + "start": 17839.32, + "end": 17840.3, + "probability": 0.6723 + }, + { + "start": 17840.56, + "end": 17844.22, + "probability": 0.92 + }, + { + "start": 17844.66, + "end": 17846.5, + "probability": 0.1589 + }, + { + "start": 17847.06, + "end": 17850.79, + "probability": 0.608 + }, + { + "start": 17850.9, + "end": 17852.26, + "probability": 0.7893 + }, + { + "start": 17852.42, + "end": 17855.68, + "probability": 0.1077 + }, + { + "start": 17855.68, + "end": 17855.68, + "probability": 0.1402 + }, + { + "start": 17855.68, + "end": 17855.78, + "probability": 0.3888 + }, + { + "start": 17856.22, + "end": 17856.8, + "probability": 0.0819 + }, + { + "start": 17858.04, + "end": 17861.16, + "probability": 0.6277 + }, + { + "start": 17861.16, + "end": 17863.18, + "probability": 0.8475 + }, + { + "start": 17864.62, + "end": 17868.54, + "probability": 0.4863 + }, + { + "start": 17868.64, + "end": 17871.56, + "probability": 0.9596 + }, + { + "start": 17871.9, + "end": 17872.2, + "probability": 0.6051 + }, + { + "start": 17872.2, + "end": 17873.54, + "probability": 0.4754 + }, + { + "start": 17874.61, + "end": 17877.1, + "probability": 0.7161 + }, + { + "start": 17877.62, + "end": 17879.1, + "probability": 0.4037 + }, + { + "start": 17879.16, + "end": 17879.56, + "probability": 0.2385 + }, + { + "start": 17880.02, + "end": 17881.14, + "probability": 0.1908 + }, + { + "start": 17881.34, + "end": 17881.7, + "probability": 0.153 + }, + { + "start": 17881.7, + "end": 17887.0, + "probability": 0.5271 + }, + { + "start": 17887.06, + "end": 17887.6, + "probability": 0.2377 + }, + { + "start": 17887.78, + "end": 17889.34, + "probability": 0.0195 + }, + { + "start": 17891.58, + "end": 17896.46, + "probability": 0.4669 + }, + { + "start": 17896.56, + "end": 17897.22, + "probability": 0.0409 + }, + { + "start": 17897.94, + "end": 17899.38, + "probability": 0.4496 + }, + { + "start": 17900.02, + "end": 17900.62, + "probability": 0.0025 + }, + { + "start": 17900.62, + "end": 17900.62, + "probability": 0.3863 + }, + { + "start": 17900.62, + "end": 17900.7, + "probability": 0.0344 + }, + { + "start": 17901.34, + "end": 17902.4, + "probability": 0.4452 + }, + { + "start": 17903.14, + "end": 17905.7, + "probability": 0.7781 + }, + { + "start": 17905.86, + "end": 17906.12, + "probability": 0.0803 + }, + { + "start": 17906.98, + "end": 17908.14, + "probability": 0.2349 + }, + { + "start": 17908.14, + "end": 17909.82, + "probability": 0.7356 + }, + { + "start": 17910.04, + "end": 17910.86, + "probability": 0.5321 + }, + { + "start": 17911.2, + "end": 17913.26, + "probability": 0.2547 + }, + { + "start": 17913.42, + "end": 17914.08, + "probability": 0.4414 + }, + { + "start": 17914.96, + "end": 17916.2, + "probability": 0.6983 + }, + { + "start": 17917.32, + "end": 17918.6, + "probability": 0.7065 + }, + { + "start": 17919.28, + "end": 17922.06, + "probability": 0.6926 + }, + { + "start": 17923.58, + "end": 17923.76, + "probability": 0.0037 + }, + { + "start": 17960.06, + "end": 17963.92, + "probability": 0.4805 + }, + { + "start": 17965.4, + "end": 17966.44, + "probability": 0.2286 + }, + { + "start": 17967.25, + "end": 17970.1, + "probability": 0.5942 + }, + { + "start": 17970.18, + "end": 17971.6, + "probability": 0.113 + }, + { + "start": 17971.6, + "end": 17972.06, + "probability": 0.5918 + }, + { + "start": 17972.16, + "end": 17972.7, + "probability": 0.9378 + }, + { + "start": 17974.12, + "end": 17975.4, + "probability": 0.321 + }, + { + "start": 17975.52, + "end": 17975.92, + "probability": 0.4165 + }, + { + "start": 17976.02, + "end": 17976.98, + "probability": 0.7157 + }, + { + "start": 17976.98, + "end": 17980.0, + "probability": 0.523 + }, + { + "start": 17980.22, + "end": 17980.45, + "probability": 0.0914 + }, + { + "start": 17980.8, + "end": 17981.14, + "probability": 0.4481 + }, + { + "start": 17981.56, + "end": 17982.86, + "probability": 0.8689 + }, + { + "start": 17983.08, + "end": 17983.82, + "probability": 0.9929 + }, + { + "start": 17984.1, + "end": 17984.42, + "probability": 0.6488 + }, + { + "start": 17984.52, + "end": 17985.72, + "probability": 0.6207 + }, + { + "start": 17986.08, + "end": 17987.2, + "probability": 0.8291 + }, + { + "start": 17990.06, + "end": 17990.16, + "probability": 0.7197 + }, + { + "start": 17995.5, + "end": 17998.38, + "probability": 0.7726 + }, + { + "start": 17999.0, + "end": 17999.42, + "probability": 0.4943 + }, + { + "start": 17999.42, + "end": 18002.3, + "probability": 0.9263 + }, + { + "start": 18002.7, + "end": 18005.56, + "probability": 0.0814 + }, + { + "start": 18005.56, + "end": 18007.22, + "probability": 0.2972 + }, + { + "start": 18008.12, + "end": 18008.4, + "probability": 0.0596 + }, + { + "start": 18009.0, + "end": 18010.82, + "probability": 0.2727 + }, + { + "start": 18011.64, + "end": 18011.64, + "probability": 0.1611 + }, + { + "start": 18011.64, + "end": 18011.64, + "probability": 0.0952 + }, + { + "start": 18011.64, + "end": 18013.86, + "probability": 0.2768 + }, + { + "start": 18013.86, + "end": 18015.34, + "probability": 0.9053 + }, + { + "start": 18017.56, + "end": 18020.43, + "probability": 0.6957 + }, + { + "start": 18020.72, + "end": 18022.42, + "probability": 0.6464 + }, + { + "start": 18023.18, + "end": 18023.18, + "probability": 0.0532 + }, + { + "start": 18023.18, + "end": 18025.14, + "probability": 0.5587 + }, + { + "start": 18025.14, + "end": 18026.58, + "probability": 0.5191 + }, + { + "start": 18026.66, + "end": 18027.3, + "probability": 0.6375 + }, + { + "start": 18028.62, + "end": 18029.06, + "probability": 0.2401 + }, + { + "start": 18029.06, + "end": 18030.32, + "probability": 0.3096 + }, + { + "start": 18031.42, + "end": 18031.58, + "probability": 0.0245 + }, + { + "start": 18031.58, + "end": 18032.36, + "probability": 0.0017 + }, + { + "start": 18032.7, + "end": 18032.7, + "probability": 0.1316 + }, + { + "start": 18032.7, + "end": 18032.7, + "probability": 0.1838 + }, + { + "start": 18032.76, + "end": 18036.28, + "probability": 0.922 + }, + { + "start": 18037.46, + "end": 18042.2, + "probability": 0.9892 + }, + { + "start": 18043.3, + "end": 18048.38, + "probability": 0.9936 + }, + { + "start": 18049.48, + "end": 18054.08, + "probability": 0.944 + }, + { + "start": 18054.74, + "end": 18057.66, + "probability": 0.7017 + }, + { + "start": 18059.22, + "end": 18065.08, + "probability": 0.7709 + }, + { + "start": 18067.0, + "end": 18070.64, + "probability": 0.912 + }, + { + "start": 18071.9, + "end": 18073.4, + "probability": 0.9733 + }, + { + "start": 18074.2, + "end": 18077.84, + "probability": 0.9759 + }, + { + "start": 18078.9, + "end": 18079.98, + "probability": 0.9641 + }, + { + "start": 18080.1, + "end": 18083.5, + "probability": 0.9425 + }, + { + "start": 18083.56, + "end": 18086.12, + "probability": 0.9961 + }, + { + "start": 18087.82, + "end": 18089.5, + "probability": 0.6891 + }, + { + "start": 18089.84, + "end": 18095.44, + "probability": 0.9253 + }, + { + "start": 18095.78, + "end": 18096.9, + "probability": 0.894 + }, + { + "start": 18097.48, + "end": 18098.74, + "probability": 0.9871 + }, + { + "start": 18099.32, + "end": 18099.62, + "probability": 0.9607 + }, + { + "start": 18101.0, + "end": 18102.24, + "probability": 0.965 + }, + { + "start": 18102.74, + "end": 18103.58, + "probability": 0.5215 + }, + { + "start": 18104.04, + "end": 18106.4, + "probability": 0.9972 + }, + { + "start": 18107.12, + "end": 18110.02, + "probability": 0.998 + }, + { + "start": 18110.1, + "end": 18111.16, + "probability": 0.9557 + }, + { + "start": 18111.8, + "end": 18114.2, + "probability": 0.9899 + }, + { + "start": 18115.02, + "end": 18116.58, + "probability": 0.9939 + }, + { + "start": 18117.56, + "end": 18121.2, + "probability": 0.977 + }, + { + "start": 18122.38, + "end": 18123.52, + "probability": 0.9932 + }, + { + "start": 18124.14, + "end": 18124.76, + "probability": 0.7036 + }, + { + "start": 18126.18, + "end": 18127.8, + "probability": 0.9739 + }, + { + "start": 18128.26, + "end": 18131.1, + "probability": 0.8935 + }, + { + "start": 18131.74, + "end": 18135.88, + "probability": 0.9941 + }, + { + "start": 18136.46, + "end": 18138.54, + "probability": 0.989 + }, + { + "start": 18140.22, + "end": 18143.56, + "probability": 0.9937 + }, + { + "start": 18145.12, + "end": 18146.34, + "probability": 0.948 + }, + { + "start": 18147.48, + "end": 18148.82, + "probability": 0.9774 + }, + { + "start": 18152.2, + "end": 18153.4, + "probability": 0.8598 + }, + { + "start": 18153.6, + "end": 18155.02, + "probability": 0.9966 + }, + { + "start": 18155.96, + "end": 18157.58, + "probability": 0.9977 + }, + { + "start": 18158.38, + "end": 18159.32, + "probability": 0.8105 + }, + { + "start": 18160.0, + "end": 18160.0, + "probability": 0.2249 + }, + { + "start": 18160.0, + "end": 18160.16, + "probability": 0.2118 + }, + { + "start": 18160.8, + "end": 18162.54, + "probability": 0.7547 + }, + { + "start": 18162.94, + "end": 18164.34, + "probability": 0.2703 + }, + { + "start": 18165.55, + "end": 18170.58, + "probability": 0.5185 + }, + { + "start": 18170.72, + "end": 18173.46, + "probability": 0.7212 + }, + { + "start": 18173.46, + "end": 18173.88, + "probability": 0.0983 + }, + { + "start": 18173.98, + "end": 18174.12, + "probability": 0.3579 + }, + { + "start": 18174.22, + "end": 18175.12, + "probability": 0.5662 + }, + { + "start": 18175.16, + "end": 18175.84, + "probability": 0.9821 + }, + { + "start": 18175.86, + "end": 18176.63, + "probability": 0.5488 + }, + { + "start": 18177.08, + "end": 18177.48, + "probability": 0.5452 + }, + { + "start": 18178.84, + "end": 18179.76, + "probability": 0.4187 + }, + { + "start": 18180.44, + "end": 18184.16, + "probability": 0.8298 + }, + { + "start": 18184.76, + "end": 18188.66, + "probability": 0.9057 + }, + { + "start": 18189.58, + "end": 18194.58, + "probability": 0.9678 + }, + { + "start": 18194.58, + "end": 18198.33, + "probability": 0.9944 + }, + { + "start": 18199.6, + "end": 18200.54, + "probability": 0.2105 + }, + { + "start": 18201.02, + "end": 18203.02, + "probability": 0.8435 + }, + { + "start": 18203.12, + "end": 18206.18, + "probability": 0.8855 + }, + { + "start": 18206.74, + "end": 18209.98, + "probability": 0.8965 + }, + { + "start": 18210.02, + "end": 18210.18, + "probability": 0.0962 + }, + { + "start": 18210.33, + "end": 18216.86, + "probability": 0.9229 + }, + { + "start": 18217.46, + "end": 18219.16, + "probability": 0.9315 + }, + { + "start": 18219.28, + "end": 18224.36, + "probability": 0.9614 + }, + { + "start": 18224.9, + "end": 18225.94, + "probability": 0.9559 + }, + { + "start": 18226.8, + "end": 18227.96, + "probability": 0.907 + }, + { + "start": 18228.74, + "end": 18231.72, + "probability": 0.9899 + }, + { + "start": 18232.44, + "end": 18233.48, + "probability": 0.6932 + }, + { + "start": 18233.56, + "end": 18236.08, + "probability": 0.9883 + }, + { + "start": 18236.64, + "end": 18238.94, + "probability": 0.9467 + }, + { + "start": 18239.54, + "end": 18241.32, + "probability": 0.9967 + }, + { + "start": 18241.94, + "end": 18246.34, + "probability": 0.9088 + }, + { + "start": 18247.68, + "end": 18249.28, + "probability": 0.9966 + }, + { + "start": 18249.36, + "end": 18252.8, + "probability": 0.9606 + }, + { + "start": 18253.44, + "end": 18257.88, + "probability": 0.8632 + }, + { + "start": 18258.84, + "end": 18258.84, + "probability": 0.0789 + }, + { + "start": 18258.84, + "end": 18259.9, + "probability": 0.7871 + }, + { + "start": 18260.5, + "end": 18263.22, + "probability": 0.9819 + }, + { + "start": 18263.22, + "end": 18263.74, + "probability": 0.4982 + }, + { + "start": 18264.2, + "end": 18267.56, + "probability": 0.8516 + }, + { + "start": 18268.08, + "end": 18270.16, + "probability": 0.9867 + }, + { + "start": 18270.92, + "end": 18271.58, + "probability": 0.6559 + }, + { + "start": 18272.18, + "end": 18272.56, + "probability": 0.6953 + }, + { + "start": 18273.14, + "end": 18274.44, + "probability": 0.506 + }, + { + "start": 18278.04, + "end": 18279.02, + "probability": 0.1558 + }, + { + "start": 18281.56, + "end": 18282.82, + "probability": 0.2391 + }, + { + "start": 18282.96, + "end": 18283.34, + "probability": 0.3088 + }, + { + "start": 18283.78, + "end": 18286.46, + "probability": 0.0533 + }, + { + "start": 18286.46, + "end": 18288.36, + "probability": 0.0113 + }, + { + "start": 18289.88, + "end": 18289.94, + "probability": 0.0074 + }, + { + "start": 18308.16, + "end": 18308.26, + "probability": 0.0001 + }, + { + "start": 18322.12, + "end": 18323.72, + "probability": 0.4071 + }, + { + "start": 18323.84, + "end": 18325.0, + "probability": 0.5687 + }, + { + "start": 18325.14, + "end": 18326.44, + "probability": 0.6819 + }, + { + "start": 18326.62, + "end": 18332.18, + "probability": 0.827 + }, + { + "start": 18332.9, + "end": 18335.22, + "probability": 0.9543 + }, + { + "start": 18336.04, + "end": 18339.16, + "probability": 0.9568 + }, + { + "start": 18339.68, + "end": 18341.42, + "probability": 0.9435 + }, + { + "start": 18341.96, + "end": 18345.92, + "probability": 0.9038 + }, + { + "start": 18346.7, + "end": 18349.06, + "probability": 0.8276 + }, + { + "start": 18349.84, + "end": 18353.14, + "probability": 0.933 + }, + { + "start": 18353.74, + "end": 18355.08, + "probability": 0.9946 + }, + { + "start": 18355.86, + "end": 18358.84, + "probability": 0.9937 + }, + { + "start": 18359.5, + "end": 18360.88, + "probability": 0.9998 + }, + { + "start": 18361.56, + "end": 18365.94, + "probability": 0.9984 + }, + { + "start": 18366.12, + "end": 18368.68, + "probability": 0.6746 + }, + { + "start": 18368.8, + "end": 18370.14, + "probability": 0.9057 + }, + { + "start": 18370.58, + "end": 18372.61, + "probability": 0.9858 + }, + { + "start": 18373.26, + "end": 18377.62, + "probability": 0.991 + }, + { + "start": 18378.22, + "end": 18380.76, + "probability": 0.2615 + }, + { + "start": 18380.94, + "end": 18381.08, + "probability": 0.2451 + }, + { + "start": 18381.12, + "end": 18381.7, + "probability": 0.7001 + }, + { + "start": 18381.8, + "end": 18383.36, + "probability": 0.9893 + }, + { + "start": 18383.5, + "end": 18385.4, + "probability": 0.8446 + }, + { + "start": 18386.44, + "end": 18391.94, + "probability": 0.9638 + }, + { + "start": 18392.7, + "end": 18400.96, + "probability": 0.9949 + }, + { + "start": 18403.7, + "end": 18406.86, + "probability": 0.773 + }, + { + "start": 18408.36, + "end": 18411.56, + "probability": 0.9978 + }, + { + "start": 18412.08, + "end": 18413.64, + "probability": 0.99 + }, + { + "start": 18413.82, + "end": 18416.92, + "probability": 0.9034 + }, + { + "start": 18417.08, + "end": 18417.66, + "probability": 0.9739 + }, + { + "start": 18418.88, + "end": 18424.04, + "probability": 0.9987 + }, + { + "start": 18424.84, + "end": 18427.1, + "probability": 0.9417 + }, + { + "start": 18427.18, + "end": 18428.64, + "probability": 0.981 + }, + { + "start": 18429.74, + "end": 18431.76, + "probability": 0.8427 + }, + { + "start": 18432.34, + "end": 18435.26, + "probability": 0.9611 + }, + { + "start": 18436.28, + "end": 18437.4, + "probability": 0.8416 + }, + { + "start": 18437.44, + "end": 18440.52, + "probability": 0.9943 + }, + { + "start": 18441.86, + "end": 18442.88, + "probability": 0.44 + }, + { + "start": 18443.78, + "end": 18444.62, + "probability": 0.4777 + }, + { + "start": 18445.4, + "end": 18447.8, + "probability": 0.9645 + }, + { + "start": 18448.62, + "end": 18450.86, + "probability": 0.8222 + }, + { + "start": 18451.96, + "end": 18452.64, + "probability": 0.9696 + }, + { + "start": 18452.98, + "end": 18456.28, + "probability": 0.939 + }, + { + "start": 18458.14, + "end": 18462.22, + "probability": 0.9496 + }, + { + "start": 18462.36, + "end": 18463.66, + "probability": 0.9321 + }, + { + "start": 18465.06, + "end": 18466.3, + "probability": 0.8247 + }, + { + "start": 18467.02, + "end": 18467.54, + "probability": 0.487 + }, + { + "start": 18467.86, + "end": 18468.46, + "probability": 0.1284 + }, + { + "start": 18468.62, + "end": 18469.96, + "probability": 0.8313 + }, + { + "start": 18470.14, + "end": 18473.24, + "probability": 0.9834 + }, + { + "start": 18473.6, + "end": 18475.06, + "probability": 0.95 + }, + { + "start": 18475.36, + "end": 18476.72, + "probability": 0.6433 + }, + { + "start": 18477.22, + "end": 18478.61, + "probability": 0.9445 + }, + { + "start": 18479.48, + "end": 18480.2, + "probability": 0.7355 + }, + { + "start": 18480.3, + "end": 18484.48, + "probability": 0.9976 + }, + { + "start": 18485.32, + "end": 18486.06, + "probability": 0.5609 + }, + { + "start": 18486.12, + "end": 18486.3, + "probability": 0.9414 + }, + { + "start": 18486.36, + "end": 18489.95, + "probability": 0.9854 + }, + { + "start": 18490.06, + "end": 18490.65, + "probability": 0.9045 + }, + { + "start": 18491.94, + "end": 18492.34, + "probability": 0.9266 + }, + { + "start": 18492.96, + "end": 18494.82, + "probability": 0.8634 + }, + { + "start": 18495.66, + "end": 18497.5, + "probability": 0.9366 + }, + { + "start": 18498.52, + "end": 18501.64, + "probability": 0.9834 + }, + { + "start": 18502.46, + "end": 18503.26, + "probability": 0.7369 + }, + { + "start": 18503.38, + "end": 18504.16, + "probability": 0.7856 + }, + { + "start": 18504.54, + "end": 18505.18, + "probability": 0.2924 + }, + { + "start": 18505.36, + "end": 18505.86, + "probability": 0.4033 + }, + { + "start": 18506.02, + "end": 18506.5, + "probability": 0.8017 + }, + { + "start": 18506.7, + "end": 18507.0, + "probability": 0.1371 + }, + { + "start": 18507.0, + "end": 18508.22, + "probability": 0.4536 + }, + { + "start": 18508.32, + "end": 18509.14, + "probability": 0.7548 + }, + { + "start": 18509.38, + "end": 18509.74, + "probability": 0.5597 + }, + { + "start": 18509.78, + "end": 18511.0, + "probability": 0.9454 + }, + { + "start": 18511.04, + "end": 18512.46, + "probability": 0.9188 + }, + { + "start": 18512.52, + "end": 18513.5, + "probability": 0.5843 + }, + { + "start": 18513.5, + "end": 18514.82, + "probability": 0.9581 + }, + { + "start": 18517.2, + "end": 18518.22, + "probability": 0.2473 + }, + { + "start": 18520.44, + "end": 18520.98, + "probability": 0.0058 + }, + { + "start": 18520.98, + "end": 18521.74, + "probability": 0.4123 + }, + { + "start": 18521.9, + "end": 18522.02, + "probability": 0.0988 + }, + { + "start": 18522.02, + "end": 18522.02, + "probability": 0.1555 + }, + { + "start": 18522.02, + "end": 18522.02, + "probability": 0.1053 + }, + { + "start": 18522.02, + "end": 18522.02, + "probability": 0.0525 + }, + { + "start": 18522.02, + "end": 18522.02, + "probability": 0.6997 + }, + { + "start": 18522.02, + "end": 18523.02, + "probability": 0.4349 + }, + { + "start": 18523.02, + "end": 18523.68, + "probability": 0.9482 + }, + { + "start": 18523.76, + "end": 18524.2, + "probability": 0.2635 + }, + { + "start": 18524.42, + "end": 18525.59, + "probability": 0.0865 + }, + { + "start": 18527.42, + "end": 18528.32, + "probability": 0.0702 + }, + { + "start": 18528.76, + "end": 18528.76, + "probability": 0.1285 + }, + { + "start": 18528.76, + "end": 18531.36, + "probability": 0.6092 + }, + { + "start": 18531.42, + "end": 18531.42, + "probability": 0.0232 + }, + { + "start": 18531.42, + "end": 18532.38, + "probability": 0.0766 + }, + { + "start": 18532.38, + "end": 18533.15, + "probability": 0.501 + }, + { + "start": 18533.28, + "end": 18534.74, + "probability": 0.0243 + }, + { + "start": 18534.86, + "end": 18535.64, + "probability": 0.3505 + }, + { + "start": 18536.92, + "end": 18539.6, + "probability": 0.718 + }, + { + "start": 18539.78, + "end": 18541.74, + "probability": 0.6657 + }, + { + "start": 18542.08, + "end": 18544.42, + "probability": 0.5673 + }, + { + "start": 18544.88, + "end": 18545.78, + "probability": 0.5866 + }, + { + "start": 18546.78, + "end": 18547.36, + "probability": 0.8675 + }, + { + "start": 18551.7, + "end": 18554.58, + "probability": 0.8694 + }, + { + "start": 18555.32, + "end": 18559.22, + "probability": 0.9839 + }, + { + "start": 18560.0, + "end": 18561.54, + "probability": 0.7991 + }, + { + "start": 18562.1, + "end": 18563.16, + "probability": 0.9805 + }, + { + "start": 18563.5, + "end": 18564.4, + "probability": 0.0991 + }, + { + "start": 18564.46, + "end": 18565.85, + "probability": 0.9807 + }, + { + "start": 18568.16, + "end": 18569.88, + "probability": 0.1239 + }, + { + "start": 18570.14, + "end": 18571.9, + "probability": 0.2337 + }, + { + "start": 18571.9, + "end": 18571.9, + "probability": 0.4594 + }, + { + "start": 18571.9, + "end": 18577.18, + "probability": 0.9834 + }, + { + "start": 18577.48, + "end": 18581.8, + "probability": 0.5921 + }, + { + "start": 18582.0, + "end": 18585.64, + "probability": 0.7041 + }, + { + "start": 18586.18, + "end": 18587.94, + "probability": 0.9895 + }, + { + "start": 18588.46, + "end": 18590.32, + "probability": 0.7942 + }, + { + "start": 18591.0, + "end": 18597.4, + "probability": 0.9858 + }, + { + "start": 18597.88, + "end": 18601.7, + "probability": 0.9277 + }, + { + "start": 18601.78, + "end": 18603.28, + "probability": 0.9862 + }, + { + "start": 18604.1, + "end": 18608.2, + "probability": 0.9974 + }, + { + "start": 18608.32, + "end": 18608.56, + "probability": 0.2733 + }, + { + "start": 18608.6, + "end": 18609.42, + "probability": 0.3594 + }, + { + "start": 18609.42, + "end": 18610.06, + "probability": 0.3588 + }, + { + "start": 18610.5, + "end": 18613.76, + "probability": 0.9985 + }, + { + "start": 18614.3, + "end": 18615.78, + "probability": 0.9189 + }, + { + "start": 18616.0, + "end": 18617.52, + "probability": 0.911 + }, + { + "start": 18617.58, + "end": 18621.84, + "probability": 0.9683 + }, + { + "start": 18622.58, + "end": 18623.56, + "probability": 0.5434 + }, + { + "start": 18623.74, + "end": 18626.24, + "probability": 0.0616 + }, + { + "start": 18626.78, + "end": 18627.72, + "probability": 0.1276 + }, + { + "start": 18627.72, + "end": 18627.72, + "probability": 0.0731 + }, + { + "start": 18627.72, + "end": 18628.14, + "probability": 0.0965 + }, + { + "start": 18629.78, + "end": 18630.34, + "probability": 0.1007 + }, + { + "start": 18630.34, + "end": 18630.69, + "probability": 0.1096 + }, + { + "start": 18631.08, + "end": 18631.78, + "probability": 0.2505 + }, + { + "start": 18633.54, + "end": 18634.66, + "probability": 0.1091 + }, + { + "start": 18643.72, + "end": 18644.66, + "probability": 0.3439 + }, + { + "start": 18646.22, + "end": 18646.94, + "probability": 0.0215 + }, + { + "start": 18647.04, + "end": 18648.4, + "probability": 0.173 + }, + { + "start": 18648.4, + "end": 18648.64, + "probability": 0.4463 + }, + { + "start": 18648.64, + "end": 18648.82, + "probability": 0.4956 + }, + { + "start": 18651.88, + "end": 18652.44, + "probability": 0.5358 + }, + { + "start": 18652.44, + "end": 18652.44, + "probability": 0.0424 + }, + { + "start": 18652.44, + "end": 18653.4, + "probability": 0.048 + }, + { + "start": 18653.92, + "end": 18654.2, + "probability": 0.0445 + }, + { + "start": 18654.64, + "end": 18656.1, + "probability": 0.0785 + }, + { + "start": 18657.46, + "end": 18659.78, + "probability": 0.4415 + }, + { + "start": 18660.46, + "end": 18663.46, + "probability": 0.7247 + }, + { + "start": 18664.0, + "end": 18666.16, + "probability": 0.3185 + }, + { + "start": 18666.82, + "end": 18669.34, + "probability": 0.4656 + }, + { + "start": 18670.12, + "end": 18672.84, + "probability": 0.8007 + }, + { + "start": 18672.92, + "end": 18673.0, + "probability": 0.1362 + }, + { + "start": 18673.2, + "end": 18673.72, + "probability": 0.3888 + }, + { + "start": 18674.04, + "end": 18676.04, + "probability": 0.5737 + }, + { + "start": 18676.88, + "end": 18677.92, + "probability": 0.0415 + }, + { + "start": 18678.12, + "end": 18679.64, + "probability": 0.262 + }, + { + "start": 18680.22, + "end": 18681.14, + "probability": 0.0811 + }, + { + "start": 18683.15, + "end": 18685.7, + "probability": 0.3721 + }, + { + "start": 18685.72, + "end": 18686.42, + "probability": 0.3416 + }, + { + "start": 18688.22, + "end": 18688.64, + "probability": 0.829 + }, + { + "start": 18689.04, + "end": 18689.5, + "probability": 0.2025 + }, + { + "start": 18690.34, + "end": 18694.98, + "probability": 0.0529 + }, + { + "start": 18695.08, + "end": 18695.08, + "probability": 0.0908 + }, + { + "start": 18695.08, + "end": 18695.08, + "probability": 0.1952 + }, + { + "start": 18695.08, + "end": 18695.08, + "probability": 0.0588 + }, + { + "start": 18695.08, + "end": 18695.44, + "probability": 0.1251 + }, + { + "start": 18695.78, + "end": 18696.22, + "probability": 0.4974 + }, + { + "start": 18697.78, + "end": 18702.82, + "probability": 0.8295 + }, + { + "start": 18703.54, + "end": 18705.26, + "probability": 0.7094 + }, + { + "start": 18707.04, + "end": 18709.78, + "probability": 0.8842 + }, + { + "start": 18710.56, + "end": 18712.34, + "probability": 0.8375 + }, + { + "start": 18713.92, + "end": 18714.98, + "probability": 0.9015 + }, + { + "start": 18715.54, + "end": 18718.11, + "probability": 0.9518 + }, + { + "start": 18720.06, + "end": 18720.06, + "probability": 0.1923 + }, + { + "start": 18720.06, + "end": 18724.42, + "probability": 0.9766 + }, + { + "start": 18725.44, + "end": 18726.22, + "probability": 0.4991 + }, + { + "start": 18727.38, + "end": 18728.9, + "probability": 0.8596 + }, + { + "start": 18730.7, + "end": 18731.4, + "probability": 0.4761 + }, + { + "start": 18733.14, + "end": 18737.28, + "probability": 0.9486 + }, + { + "start": 18738.38, + "end": 18740.02, + "probability": 0.7511 + }, + { + "start": 18741.04, + "end": 18743.6, + "probability": 0.7049 + }, + { + "start": 18745.18, + "end": 18746.74, + "probability": 0.7301 + }, + { + "start": 18747.14, + "end": 18747.92, + "probability": 0.6802 + }, + { + "start": 18747.92, + "end": 18750.0, + "probability": 0.8519 + }, + { + "start": 18750.28, + "end": 18750.7, + "probability": 0.3584 + }, + { + "start": 18750.9, + "end": 18751.25, + "probability": 0.9536 + }, + { + "start": 18751.68, + "end": 18752.72, + "probability": 0.9525 + }, + { + "start": 18753.3, + "end": 18753.58, + "probability": 0.3051 + }, + { + "start": 18753.76, + "end": 18755.86, + "probability": 0.6356 + }, + { + "start": 18755.98, + "end": 18756.88, + "probability": 0.7606 + }, + { + "start": 18756.96, + "end": 18757.46, + "probability": 0.7688 + }, + { + "start": 18757.56, + "end": 18758.2, + "probability": 0.7207 + }, + { + "start": 18758.36, + "end": 18758.92, + "probability": 0.9203 + }, + { + "start": 18760.92, + "end": 18761.66, + "probability": 0.7081 + }, + { + "start": 18762.18, + "end": 18763.0, + "probability": 0.4018 + }, + { + "start": 18763.44, + "end": 18765.14, + "probability": 0.8281 + }, + { + "start": 18765.2, + "end": 18766.3, + "probability": 0.8164 + }, + { + "start": 18766.82, + "end": 18767.96, + "probability": 0.775 + }, + { + "start": 18769.62, + "end": 18770.74, + "probability": 0.5089 + }, + { + "start": 18771.52, + "end": 18773.34, + "probability": 0.7534 + }, + { + "start": 18774.16, + "end": 18777.72, + "probability": 0.9092 + }, + { + "start": 18779.32, + "end": 18779.72, + "probability": 0.6327 + }, + { + "start": 18780.68, + "end": 18782.26, + "probability": 0.7692 + }, + { + "start": 18783.84, + "end": 18788.26, + "probability": 0.8919 + }, + { + "start": 18788.4, + "end": 18788.79, + "probability": 0.9886 + }, + { + "start": 18789.22, + "end": 18789.78, + "probability": 0.8428 + }, + { + "start": 18790.54, + "end": 18791.36, + "probability": 0.9747 + }, + { + "start": 18793.04, + "end": 18794.3, + "probability": 0.9479 + }, + { + "start": 18795.5, + "end": 18797.02, + "probability": 0.6166 + }, + { + "start": 18798.34, + "end": 18800.88, + "probability": 0.9924 + }, + { + "start": 18801.6, + "end": 18803.96, + "probability": 0.9902 + }, + { + "start": 18804.06, + "end": 18806.9, + "probability": 0.756 + }, + { + "start": 18808.6, + "end": 18815.24, + "probability": 0.9924 + }, + { + "start": 18815.96, + "end": 18818.84, + "probability": 0.746 + }, + { + "start": 18819.78, + "end": 18823.12, + "probability": 0.885 + }, + { + "start": 18825.16, + "end": 18828.68, + "probability": 0.9683 + }, + { + "start": 18829.26, + "end": 18830.64, + "probability": 0.9732 + }, + { + "start": 18830.72, + "end": 18835.08, + "probability": 0.9739 + }, + { + "start": 18835.16, + "end": 18837.14, + "probability": 0.3444 + }, + { + "start": 18837.76, + "end": 18838.7, + "probability": 0.8367 + }, + { + "start": 18839.62, + "end": 18843.24, + "probability": 0.9854 + }, + { + "start": 18843.24, + "end": 18847.02, + "probability": 0.7279 + }, + { + "start": 18848.48, + "end": 18849.76, + "probability": 0.9751 + }, + { + "start": 18850.62, + "end": 18856.48, + "probability": 0.9873 + }, + { + "start": 18859.26, + "end": 18859.94, + "probability": 0.5313 + }, + { + "start": 18860.12, + "end": 18861.5, + "probability": 0.9492 + }, + { + "start": 18862.14, + "end": 18867.9, + "probability": 0.98 + }, + { + "start": 18870.14, + "end": 18871.42, + "probability": 0.6585 + }, + { + "start": 18872.14, + "end": 18875.0, + "probability": 0.59 + }, + { + "start": 18875.88, + "end": 18878.22, + "probability": 0.9814 + }, + { + "start": 18879.46, + "end": 18881.88, + "probability": 0.6627 + }, + { + "start": 18882.78, + "end": 18886.34, + "probability": 0.8722 + }, + { + "start": 18887.58, + "end": 18889.18, + "probability": 0.8473 + }, + { + "start": 18889.5, + "end": 18890.26, + "probability": 0.9343 + }, + { + "start": 18891.66, + "end": 18895.5, + "probability": 0.9797 + }, + { + "start": 18895.5, + "end": 18898.16, + "probability": 0.9875 + }, + { + "start": 18898.6, + "end": 18899.82, + "probability": 0.7977 + }, + { + "start": 18899.96, + "end": 18900.76, + "probability": 0.7005 + }, + { + "start": 18901.06, + "end": 18901.3, + "probability": 0.6207 + }, + { + "start": 18902.02, + "end": 18902.48, + "probability": 0.7004 + }, + { + "start": 18902.9, + "end": 18903.42, + "probability": 0.7163 + }, + { + "start": 18903.94, + "end": 18905.04, + "probability": 0.7483 + }, + { + "start": 18905.1, + "end": 18906.4, + "probability": 0.9084 + }, + { + "start": 18906.56, + "end": 18906.7, + "probability": 0.4239 + }, + { + "start": 18908.74, + "end": 18908.76, + "probability": 0.0515 + }, + { + "start": 18908.76, + "end": 18909.34, + "probability": 0.1912 + }, + { + "start": 18910.48, + "end": 18913.08, + "probability": 0.73 + }, + { + "start": 18913.74, + "end": 18914.86, + "probability": 0.9202 + }, + { + "start": 18915.12, + "end": 18917.66, + "probability": 0.5978 + }, + { + "start": 18918.02, + "end": 18918.56, + "probability": 0.4331 + }, + { + "start": 18918.64, + "end": 18919.12, + "probability": 0.3654 + }, + { + "start": 18919.92, + "end": 18921.52, + "probability": 0.5896 + }, + { + "start": 18922.62, + "end": 18926.69, + "probability": 0.9703 + }, + { + "start": 18926.88, + "end": 18927.4, + "probability": 0.2731 + }, + { + "start": 18927.54, + "end": 18928.46, + "probability": 0.4657 + }, + { + "start": 18928.78, + "end": 18929.16, + "probability": 0.1154 + }, + { + "start": 18929.16, + "end": 18929.98, + "probability": 0.6532 + }, + { + "start": 18930.0, + "end": 18932.5, + "probability": 0.504 + }, + { + "start": 18933.56, + "end": 18934.7, + "probability": 0.4147 + }, + { + "start": 18935.3, + "end": 18935.46, + "probability": 0.6772 + }, + { + "start": 18936.66, + "end": 18938.06, + "probability": 0.7741 + }, + { + "start": 18938.28, + "end": 18939.88, + "probability": 0.496 + }, + { + "start": 18944.24, + "end": 18947.62, + "probability": 0.7259 + }, + { + "start": 18948.3, + "end": 18948.76, + "probability": 0.853 + }, + { + "start": 18950.0, + "end": 18951.54, + "probability": 0.8776 + }, + { + "start": 18951.74, + "end": 18952.54, + "probability": 0.9338 + }, + { + "start": 18954.72, + "end": 18955.12, + "probability": 0.251 + }, + { + "start": 18956.1, + "end": 18956.38, + "probability": 0.746 + }, + { + "start": 18957.1, + "end": 18957.44, + "probability": 0.0464 + }, + { + "start": 18958.16, + "end": 18958.68, + "probability": 0.525 + }, + { + "start": 18959.6, + "end": 18962.28, + "probability": 0.2971 + }, + { + "start": 18962.5, + "end": 18964.14, + "probability": 0.1363 + }, + { + "start": 18964.5, + "end": 18965.44, + "probability": 0.6364 + }, + { + "start": 18966.14, + "end": 18966.98, + "probability": 0.6611 + }, + { + "start": 18967.32, + "end": 18968.66, + "probability": 0.6735 + }, + { + "start": 18969.2, + "end": 18970.97, + "probability": 0.7878 + }, + { + "start": 18971.44, + "end": 18972.56, + "probability": 0.2279 + }, + { + "start": 18972.56, + "end": 18973.16, + "probability": 0.1093 + }, + { + "start": 18973.28, + "end": 18974.82, + "probability": 0.4412 + }, + { + "start": 18975.1, + "end": 18975.92, + "probability": 0.4613 + }, + { + "start": 18976.48, + "end": 18978.52, + "probability": 0.3578 + }, + { + "start": 18978.62, + "end": 18979.56, + "probability": 0.048 + }, + { + "start": 18979.8, + "end": 18980.0, + "probability": 0.1932 + }, + { + "start": 18980.0, + "end": 18981.3, + "probability": 0.3425 + }, + { + "start": 18981.46, + "end": 18981.9, + "probability": 0.5085 + }, + { + "start": 18981.9, + "end": 18982.75, + "probability": 0.8268 + }, + { + "start": 18983.16, + "end": 18983.66, + "probability": 0.8808 + }, + { + "start": 18984.44, + "end": 18986.22, + "probability": 0.2229 + }, + { + "start": 18986.44, + "end": 18987.0, + "probability": 0.4599 + }, + { + "start": 18987.12, + "end": 18989.06, + "probability": 0.3899 + }, + { + "start": 18989.12, + "end": 18990.84, + "probability": 0.9949 + }, + { + "start": 18990.84, + "end": 18991.54, + "probability": 0.5992 + }, + { + "start": 18991.92, + "end": 18991.92, + "probability": 0.694 + }, + { + "start": 18991.92, + "end": 18996.06, + "probability": 0.6807 + }, + { + "start": 18996.64, + "end": 18998.0, + "probability": 0.6416 + }, + { + "start": 18998.52, + "end": 18999.7, + "probability": 0.2679 + }, + { + "start": 18999.84, + "end": 19000.3, + "probability": 0.9647 + }, + { + "start": 19000.76, + "end": 19001.92, + "probability": 0.7253 + }, + { + "start": 19004.54, + "end": 19006.54, + "probability": 0.8171 + }, + { + "start": 19007.36, + "end": 19008.44, + "probability": 0.9799 + }, + { + "start": 19009.48, + "end": 19010.02, + "probability": 0.7624 + }, + { + "start": 19010.94, + "end": 19011.98, + "probability": 0.8717 + }, + { + "start": 19012.14, + "end": 19012.44, + "probability": 0.4737 + }, + { + "start": 19012.62, + "end": 19014.27, + "probability": 0.8002 + }, + { + "start": 19014.56, + "end": 19018.42, + "probability": 0.3166 + }, + { + "start": 19018.46, + "end": 19019.08, + "probability": 0.5869 + }, + { + "start": 19019.26, + "end": 19019.66, + "probability": 0.9557 + }, + { + "start": 19020.48, + "end": 19023.3, + "probability": 0.6733 + }, + { + "start": 19024.66, + "end": 19026.9, + "probability": 0.6764 + }, + { + "start": 19027.4, + "end": 19028.7, + "probability": 0.9653 + }, + { + "start": 19029.42, + "end": 19030.64, + "probability": 0.9568 + }, + { + "start": 19030.68, + "end": 19031.38, + "probability": 0.9105 + }, + { + "start": 19031.46, + "end": 19034.12, + "probability": 0.9031 + }, + { + "start": 19034.18, + "end": 19035.3, + "probability": 0.5747 + }, + { + "start": 19035.32, + "end": 19035.71, + "probability": 0.8184 + }, + { + "start": 19036.45, + "end": 19038.05, + "probability": 0.8583 + }, + { + "start": 19038.1, + "end": 19041.84, + "probability": 0.9615 + }, + { + "start": 19042.2, + "end": 19043.05, + "probability": 0.9753 + }, + { + "start": 19043.44, + "end": 19044.94, + "probability": 0.9208 + }, + { + "start": 19045.34, + "end": 19046.62, + "probability": 0.7825 + }, + { + "start": 19047.52, + "end": 19048.88, + "probability": 0.9844 + }, + { + "start": 19050.36, + "end": 19051.46, + "probability": 0.9962 + }, + { + "start": 19054.34, + "end": 19059.76, + "probability": 0.9961 + }, + { + "start": 19062.74, + "end": 19068.7, + "probability": 0.8409 + }, + { + "start": 19070.18, + "end": 19072.88, + "probability": 0.8718 + }, + { + "start": 19074.82, + "end": 19075.92, + "probability": 0.8914 + }, + { + "start": 19076.62, + "end": 19077.56, + "probability": 0.9639 + }, + { + "start": 19079.04, + "end": 19080.22, + "probability": 0.6938 + }, + { + "start": 19081.62, + "end": 19082.72, + "probability": 0.838 + }, + { + "start": 19082.82, + "end": 19083.32, + "probability": 0.4837 + }, + { + "start": 19083.32, + "end": 19084.42, + "probability": 0.2539 + }, + { + "start": 19084.64, + "end": 19086.79, + "probability": 0.8592 + }, + { + "start": 19088.58, + "end": 19091.66, + "probability": 0.7709 + }, + { + "start": 19092.22, + "end": 19092.94, + "probability": 0.7486 + }, + { + "start": 19093.8, + "end": 19100.96, + "probability": 0.7513 + }, + { + "start": 19101.5, + "end": 19106.2, + "probability": 0.8169 + }, + { + "start": 19106.92, + "end": 19107.98, + "probability": 0.9449 + }, + { + "start": 19108.98, + "end": 19110.0, + "probability": 0.7625 + }, + { + "start": 19110.26, + "end": 19112.22, + "probability": 0.6097 + }, + { + "start": 19112.28, + "end": 19113.62, + "probability": 0.7158 + }, + { + "start": 19113.78, + "end": 19114.8, + "probability": 0.2329 + }, + { + "start": 19114.8, + "end": 19116.42, + "probability": 0.5209 + }, + { + "start": 19117.98, + "end": 19119.05, + "probability": 0.7038 + }, + { + "start": 19119.42, + "end": 19122.04, + "probability": 0.6599 + }, + { + "start": 19122.18, + "end": 19124.06, + "probability": 0.9956 + }, + { + "start": 19124.1, + "end": 19124.34, + "probability": 0.1815 + }, + { + "start": 19125.02, + "end": 19125.14, + "probability": 0.0306 + }, + { + "start": 19125.4, + "end": 19129.06, + "probability": 0.9703 + }, + { + "start": 19130.96, + "end": 19135.26, + "probability": 0.9683 + }, + { + "start": 19138.16, + "end": 19140.58, + "probability": 0.4055 + }, + { + "start": 19140.76, + "end": 19141.46, + "probability": 0.7083 + }, + { + "start": 19141.58, + "end": 19145.98, + "probability": 0.9504 + }, + { + "start": 19147.46, + "end": 19153.02, + "probability": 0.9355 + }, + { + "start": 19153.56, + "end": 19154.8, + "probability": 0.3347 + }, + { + "start": 19154.84, + "end": 19157.02, + "probability": 0.4827 + }, + { + "start": 19157.14, + "end": 19158.44, + "probability": 0.8523 + }, + { + "start": 19159.2, + "end": 19159.78, + "probability": 0.2238 + }, + { + "start": 19160.44, + "end": 19160.93, + "probability": 0.9281 + }, + { + "start": 19161.32, + "end": 19167.78, + "probability": 0.9829 + }, + { + "start": 19168.66, + "end": 19174.37, + "probability": 0.9133 + }, + { + "start": 19175.24, + "end": 19179.12, + "probability": 0.8926 + }, + { + "start": 19180.12, + "end": 19184.1, + "probability": 0.9672 + }, + { + "start": 19186.4, + "end": 19189.48, + "probability": 0.9893 + }, + { + "start": 19189.56, + "end": 19190.34, + "probability": 0.7476 + }, + { + "start": 19190.74, + "end": 19192.0, + "probability": 0.9947 + }, + { + "start": 19192.94, + "end": 19195.08, + "probability": 0.9814 + }, + { + "start": 19195.74, + "end": 19197.24, + "probability": 0.993 + }, + { + "start": 19198.04, + "end": 19199.44, + "probability": 0.5484 + }, + { + "start": 19200.68, + "end": 19202.3, + "probability": 0.6741 + }, + { + "start": 19203.16, + "end": 19204.06, + "probability": 0.9176 + }, + { + "start": 19204.46, + "end": 19206.74, + "probability": 0.9901 + }, + { + "start": 19207.44, + "end": 19208.78, + "probability": 0.979 + }, + { + "start": 19210.18, + "end": 19213.12, + "probability": 0.8498 + }, + { + "start": 19213.58, + "end": 19217.9, + "probability": 0.9615 + }, + { + "start": 19217.96, + "end": 19219.2, + "probability": 0.8178 + }, + { + "start": 19219.88, + "end": 19221.6, + "probability": 0.4588 + }, + { + "start": 19222.1, + "end": 19222.74, + "probability": 0.6863 + }, + { + "start": 19223.26, + "end": 19226.1, + "probability": 0.9858 + }, + { + "start": 19226.62, + "end": 19226.9, + "probability": 0.7378 + }, + { + "start": 19227.14, + "end": 19228.18, + "probability": 0.7842 + }, + { + "start": 19229.74, + "end": 19230.32, + "probability": 0.1033 + }, + { + "start": 19232.46, + "end": 19233.94, + "probability": 0.5128 + }, + { + "start": 19257.78, + "end": 19259.62, + "probability": 0.527 + }, + { + "start": 19261.42, + "end": 19265.02, + "probability": 0.8531 + }, + { + "start": 19265.02, + "end": 19268.84, + "probability": 0.9451 + }, + { + "start": 19269.48, + "end": 19275.02, + "probability": 0.9367 + }, + { + "start": 19276.3, + "end": 19277.38, + "probability": 0.8861 + }, + { + "start": 19278.04, + "end": 19278.76, + "probability": 0.9105 + }, + { + "start": 19279.52, + "end": 19280.62, + "probability": 0.9329 + }, + { + "start": 19280.74, + "end": 19283.52, + "probability": 0.6481 + }, + { + "start": 19284.68, + "end": 19289.62, + "probability": 0.9617 + }, + { + "start": 19290.08, + "end": 19292.52, + "probability": 0.8159 + }, + { + "start": 19293.14, + "end": 19294.74, + "probability": 0.4464 + }, + { + "start": 19296.26, + "end": 19296.94, + "probability": 0.306 + }, + { + "start": 19297.66, + "end": 19299.18, + "probability": 0.8562 + }, + { + "start": 19300.84, + "end": 19303.36, + "probability": 0.7826 + }, + { + "start": 19303.9, + "end": 19305.3, + "probability": 0.8489 + }, + { + "start": 19307.76, + "end": 19311.8, + "probability": 0.9517 + }, + { + "start": 19311.86, + "end": 19312.84, + "probability": 0.9325 + }, + { + "start": 19313.26, + "end": 19313.52, + "probability": 0.7246 + }, + { + "start": 19313.6, + "end": 19315.52, + "probability": 0.7911 + }, + { + "start": 19316.12, + "end": 19318.82, + "probability": 0.9949 + }, + { + "start": 19318.82, + "end": 19322.12, + "probability": 0.9709 + }, + { + "start": 19322.42, + "end": 19322.96, + "probability": 0.7143 + }, + { + "start": 19323.3, + "end": 19325.44, + "probability": 0.8547 + }, + { + "start": 19325.86, + "end": 19326.64, + "probability": 0.4472 + }, + { + "start": 19326.9, + "end": 19327.5, + "probability": 0.4197 + }, + { + "start": 19327.62, + "end": 19328.28, + "probability": 0.4232 + }, + { + "start": 19328.4, + "end": 19328.74, + "probability": 0.6675 + }, + { + "start": 19330.38, + "end": 19335.74, + "probability": 0.939 + }, + { + "start": 19335.74, + "end": 19340.0, + "probability": 0.8652 + }, + { + "start": 19340.08, + "end": 19340.72, + "probability": 0.6691 + }, + { + "start": 19340.78, + "end": 19341.52, + "probability": 0.9365 + }, + { + "start": 19341.56, + "end": 19342.08, + "probability": 0.7577 + }, + { + "start": 19342.4, + "end": 19345.36, + "probability": 0.6718 + }, + { + "start": 19345.62, + "end": 19346.66, + "probability": 0.9845 + }, + { + "start": 19346.78, + "end": 19347.9, + "probability": 0.9827 + }, + { + "start": 19348.34, + "end": 19352.7, + "probability": 0.9907 + }, + { + "start": 19353.02, + "end": 19353.6, + "probability": 0.7108 + }, + { + "start": 19353.88, + "end": 19355.76, + "probability": 0.9623 + }, + { + "start": 19356.32, + "end": 19357.78, + "probability": 0.8989 + }, + { + "start": 19359.98, + "end": 19361.56, + "probability": 0.9242 + }, + { + "start": 19362.74, + "end": 19364.32, + "probability": 0.8257 + }, + { + "start": 19365.06, + "end": 19366.28, + "probability": 0.9937 + }, + { + "start": 19366.42, + "end": 19368.34, + "probability": 0.9015 + }, + { + "start": 19368.74, + "end": 19369.55, + "probability": 0.939 + }, + { + "start": 19371.46, + "end": 19371.8, + "probability": 0.7408 + }, + { + "start": 19372.22, + "end": 19373.38, + "probability": 0.9823 + }, + { + "start": 19373.62, + "end": 19378.68, + "probability": 0.9798 + }, + { + "start": 19378.9, + "end": 19381.9, + "probability": 0.994 + }, + { + "start": 19381.9, + "end": 19384.94, + "probability": 0.9995 + }, + { + "start": 19385.4, + "end": 19386.52, + "probability": 0.985 + }, + { + "start": 19387.08, + "end": 19388.48, + "probability": 0.7701 + }, + { + "start": 19389.3, + "end": 19391.36, + "probability": 0.8521 + }, + { + "start": 19391.84, + "end": 19397.06, + "probability": 0.922 + }, + { + "start": 19398.6, + "end": 19399.3, + "probability": 0.8666 + }, + { + "start": 19400.04, + "end": 19400.86, + "probability": 0.9031 + }, + { + "start": 19401.58, + "end": 19405.48, + "probability": 0.9542 + }, + { + "start": 19406.22, + "end": 19411.58, + "probability": 0.871 + }, + { + "start": 19412.24, + "end": 19415.96, + "probability": 0.8843 + }, + { + "start": 19416.98, + "end": 19420.8, + "probability": 0.8843 + }, + { + "start": 19421.52, + "end": 19422.36, + "probability": 0.709 + }, + { + "start": 19423.42, + "end": 19423.99, + "probability": 0.8875 + }, + { + "start": 19424.9, + "end": 19431.38, + "probability": 0.9597 + }, + { + "start": 19431.46, + "end": 19436.08, + "probability": 0.9917 + }, + { + "start": 19436.54, + "end": 19437.2, + "probability": 0.8952 + }, + { + "start": 19437.7, + "end": 19438.7, + "probability": 0.4774 + }, + { + "start": 19439.48, + "end": 19440.06, + "probability": 0.3996 + }, + { + "start": 19440.32, + "end": 19444.3, + "probability": 0.9957 + }, + { + "start": 19444.68, + "end": 19445.76, + "probability": 0.9104 + }, + { + "start": 19446.34, + "end": 19448.52, + "probability": 0.8623 + }, + { + "start": 19449.02, + "end": 19451.04, + "probability": 0.8379 + }, + { + "start": 19451.18, + "end": 19452.68, + "probability": 0.9901 + }, + { + "start": 19453.28, + "end": 19456.52, + "probability": 0.8302 + }, + { + "start": 19457.26, + "end": 19461.92, + "probability": 0.9948 + }, + { + "start": 19462.28, + "end": 19466.64, + "probability": 0.9976 + }, + { + "start": 19467.04, + "end": 19467.42, + "probability": 0.7104 + }, + { + "start": 19468.0, + "end": 19468.32, + "probability": 0.8166 + }, + { + "start": 19469.7, + "end": 19471.08, + "probability": 0.7018 + }, + { + "start": 19472.86, + "end": 19473.14, + "probability": 0.4244 + }, + { + "start": 19474.38, + "end": 19475.86, + "probability": 0.9061 + }, + { + "start": 19501.8, + "end": 19503.2, + "probability": 0.7827 + }, + { + "start": 19504.52, + "end": 19505.78, + "probability": 0.7323 + }, + { + "start": 19506.96, + "end": 19510.2, + "probability": 0.9963 + }, + { + "start": 19510.92, + "end": 19511.38, + "probability": 0.4187 + }, + { + "start": 19511.48, + "end": 19511.86, + "probability": 0.6098 + }, + { + "start": 19512.36, + "end": 19513.76, + "probability": 0.754 + }, + { + "start": 19513.82, + "end": 19516.14, + "probability": 0.7175 + }, + { + "start": 19516.14, + "end": 19517.98, + "probability": 0.0251 + }, + { + "start": 19518.62, + "end": 19518.86, + "probability": 0.2086 + }, + { + "start": 19518.86, + "end": 19518.86, + "probability": 0.0213 + }, + { + "start": 19518.86, + "end": 19518.86, + "probability": 0.1778 + }, + { + "start": 19518.86, + "end": 19519.86, + "probability": 0.3701 + }, + { + "start": 19520.58, + "end": 19520.58, + "probability": 0.045 + }, + { + "start": 19520.58, + "end": 19522.46, + "probability": 0.7312 + }, + { + "start": 19523.61, + "end": 19526.32, + "probability": 0.9976 + }, + { + "start": 19526.54, + "end": 19530.3, + "probability": 0.9872 + }, + { + "start": 19530.98, + "end": 19532.86, + "probability": 0.9389 + }, + { + "start": 19533.0, + "end": 19535.9, + "probability": 0.9826 + }, + { + "start": 19536.64, + "end": 19537.12, + "probability": 0.8482 + }, + { + "start": 19538.5, + "end": 19542.36, + "probability": 0.9261 + }, + { + "start": 19543.54, + "end": 19546.54, + "probability": 0.8472 + }, + { + "start": 19547.24, + "end": 19549.22, + "probability": 0.7765 + }, + { + "start": 19549.74, + "end": 19551.17, + "probability": 0.2508 + }, + { + "start": 19552.36, + "end": 19553.26, + "probability": 0.6527 + }, + { + "start": 19553.32, + "end": 19553.72, + "probability": 0.0519 + }, + { + "start": 19554.28, + "end": 19554.64, + "probability": 0.0414 + }, + { + "start": 19554.64, + "end": 19556.4, + "probability": 0.6793 + }, + { + "start": 19557.52, + "end": 19560.56, + "probability": 0.814 + }, + { + "start": 19561.04, + "end": 19563.22, + "probability": 0.7697 + }, + { + "start": 19564.04, + "end": 19565.14, + "probability": 0.1907 + }, + { + "start": 19565.14, + "end": 19565.78, + "probability": 0.0639 + }, + { + "start": 19566.3, + "end": 19568.22, + "probability": 0.9482 + }, + { + "start": 19568.94, + "end": 19573.38, + "probability": 0.9106 + }, + { + "start": 19574.22, + "end": 19576.14, + "probability": 0.748 + }, + { + "start": 19576.84, + "end": 19580.38, + "probability": 0.7388 + }, + { + "start": 19580.48, + "end": 19581.4, + "probability": 0.9303 + }, + { + "start": 19582.2, + "end": 19583.06, + "probability": 0.9609 + }, + { + "start": 19583.68, + "end": 19587.6, + "probability": 0.6396 + }, + { + "start": 19588.32, + "end": 19588.32, + "probability": 0.0119 + }, + { + "start": 19588.32, + "end": 19588.32, + "probability": 0.1317 + }, + { + "start": 19588.32, + "end": 19589.64, + "probability": 0.8993 + }, + { + "start": 19590.0, + "end": 19590.56, + "probability": 0.5026 + }, + { + "start": 19590.94, + "end": 19591.6, + "probability": 0.8704 + }, + { + "start": 19591.78, + "end": 19593.12, + "probability": 0.8748 + }, + { + "start": 19594.28, + "end": 19595.0, + "probability": 0.8024 + }, + { + "start": 19596.02, + "end": 19597.36, + "probability": 0.9992 + }, + { + "start": 19597.86, + "end": 19604.54, + "probability": 0.976 + }, + { + "start": 19605.34, + "end": 19606.12, + "probability": 0.5544 + }, + { + "start": 19606.66, + "end": 19608.1, + "probability": 0.9993 + }, + { + "start": 19609.28, + "end": 19612.44, + "probability": 0.9907 + }, + { + "start": 19613.3, + "end": 19617.6, + "probability": 0.8602 + }, + { + "start": 19617.74, + "end": 19620.08, + "probability": 0.9149 + }, + { + "start": 19620.48, + "end": 19623.0, + "probability": 0.9111 + }, + { + "start": 19623.0, + "end": 19624.6, + "probability": 0.9172 + }, + { + "start": 19624.72, + "end": 19625.94, + "probability": 0.7752 + }, + { + "start": 19626.4, + "end": 19627.12, + "probability": 0.4841 + }, + { + "start": 19627.52, + "end": 19629.32, + "probability": 0.5172 + }, + { + "start": 19629.94, + "end": 19630.7, + "probability": 0.708 + }, + { + "start": 19630.74, + "end": 19631.26, + "probability": 0.2214 + }, + { + "start": 19631.44, + "end": 19635.06, + "probability": 0.7989 + }, + { + "start": 19635.18, + "end": 19639.32, + "probability": 0.9455 + }, + { + "start": 19639.32, + "end": 19639.54, + "probability": 0.0124 + }, + { + "start": 19639.76, + "end": 19640.5, + "probability": 0.3512 + }, + { + "start": 19640.5, + "end": 19641.4, + "probability": 0.3889 + }, + { + "start": 19641.5, + "end": 19642.46, + "probability": 0.7872 + }, + { + "start": 19642.54, + "end": 19644.12, + "probability": 0.1938 + }, + { + "start": 19644.34, + "end": 19648.04, + "probability": 0.6639 + }, + { + "start": 19648.6, + "end": 19651.18, + "probability": 0.2032 + }, + { + "start": 19651.18, + "end": 19651.18, + "probability": 0.0672 + }, + { + "start": 19651.18, + "end": 19654.68, + "probability": 0.6758 + }, + { + "start": 19655.3, + "end": 19656.38, + "probability": 0.7376 + }, + { + "start": 19657.12, + "end": 19659.02, + "probability": 0.9678 + }, + { + "start": 19659.36, + "end": 19662.54, + "probability": 0.9775 + }, + { + "start": 19662.92, + "end": 19666.84, + "probability": 0.9385 + }, + { + "start": 19667.26, + "end": 19670.52, + "probability": 0.95 + }, + { + "start": 19671.0, + "end": 19674.06, + "probability": 0.9985 + }, + { + "start": 19674.52, + "end": 19675.16, + "probability": 0.3646 + }, + { + "start": 19675.94, + "end": 19676.92, + "probability": 0.7433 + }, + { + "start": 19677.74, + "end": 19681.66, + "probability": 0.9152 + }, + { + "start": 19682.08, + "end": 19682.74, + "probability": 0.5428 + }, + { + "start": 19683.02, + "end": 19684.68, + "probability": 0.8145 + }, + { + "start": 19684.8, + "end": 19686.8, + "probability": 0.6155 + }, + { + "start": 19686.98, + "end": 19689.08, + "probability": 0.123 + }, + { + "start": 19689.1, + "end": 19689.84, + "probability": 0.148 + }, + { + "start": 19690.56, + "end": 19691.22, + "probability": 0.4029 + }, + { + "start": 19691.22, + "end": 19694.33, + "probability": 0.9911 + }, + { + "start": 19694.88, + "end": 19695.92, + "probability": 0.4572 + }, + { + "start": 19696.18, + "end": 19697.16, + "probability": 0.6077 + }, + { + "start": 19697.4, + "end": 19699.45, + "probability": 0.8083 + }, + { + "start": 19699.66, + "end": 19701.52, + "probability": 0.7949 + }, + { + "start": 19701.52, + "end": 19702.22, + "probability": 0.316 + }, + { + "start": 19702.34, + "end": 19703.02, + "probability": 0.8584 + }, + { + "start": 19703.22, + "end": 19703.94, + "probability": 0.332 + }, + { + "start": 19704.1, + "end": 19706.41, + "probability": 0.8717 + }, + { + "start": 19706.42, + "end": 19706.44, + "probability": 0.0712 + }, + { + "start": 19707.52, + "end": 19708.04, + "probability": 0.0806 + }, + { + "start": 19708.04, + "end": 19710.3, + "probability": 0.7248 + }, + { + "start": 19711.0, + "end": 19713.2, + "probability": 0.9505 + }, + { + "start": 19713.2, + "end": 19714.05, + "probability": 0.4638 + }, + { + "start": 19714.6, + "end": 19718.78, + "probability": 0.8795 + }, + { + "start": 19719.1, + "end": 19720.61, + "probability": 0.865 + }, + { + "start": 19721.34, + "end": 19723.76, + "probability": 0.7881 + }, + { + "start": 19724.06, + "end": 19726.12, + "probability": 0.9367 + }, + { + "start": 19726.38, + "end": 19727.86, + "probability": 0.6809 + }, + { + "start": 19728.02, + "end": 19728.2, + "probability": 0.1363 + }, + { + "start": 19728.2, + "end": 19729.18, + "probability": 0.4122 + }, + { + "start": 19729.28, + "end": 19730.64, + "probability": 0.4659 + }, + { + "start": 19730.98, + "end": 19730.98, + "probability": 0.2564 + }, + { + "start": 19731.02, + "end": 19731.84, + "probability": 0.6727 + }, + { + "start": 19731.98, + "end": 19733.98, + "probability": 0.4828 + }, + { + "start": 19733.98, + "end": 19735.13, + "probability": 0.4751 + }, + { + "start": 19735.32, + "end": 19735.32, + "probability": 0.3932 + }, + { + "start": 19735.32, + "end": 19735.74, + "probability": 0.8615 + }, + { + "start": 19736.3, + "end": 19743.9, + "probability": 0.8133 + }, + { + "start": 19743.9, + "end": 19748.98, + "probability": 0.992 + }, + { + "start": 19749.18, + "end": 19749.78, + "probability": 0.3663 + }, + { + "start": 19749.8, + "end": 19751.36, + "probability": 0.2886 + }, + { + "start": 19751.48, + "end": 19754.68, + "probability": 0.9834 + }, + { + "start": 19755.3, + "end": 19761.32, + "probability": 0.9868 + }, + { + "start": 19761.5, + "end": 19763.82, + "probability": 0.9113 + }, + { + "start": 19764.1, + "end": 19764.96, + "probability": 0.9535 + }, + { + "start": 19765.34, + "end": 19766.54, + "probability": 0.414 + }, + { + "start": 19766.7, + "end": 19767.18, + "probability": 0.7809 + }, + { + "start": 19767.7, + "end": 19771.7, + "probability": 0.9182 + }, + { + "start": 19771.7, + "end": 19775.96, + "probability": 0.9957 + }, + { + "start": 19776.42, + "end": 19777.48, + "probability": 0.748 + }, + { + "start": 19777.58, + "end": 19778.26, + "probability": 0.9489 + }, + { + "start": 19778.5, + "end": 19779.7, + "probability": 0.8096 + }, + { + "start": 19779.78, + "end": 19781.16, + "probability": 0.9309 + }, + { + "start": 19781.82, + "end": 19787.74, + "probability": 0.8121 + }, + { + "start": 19788.38, + "end": 19791.74, + "probability": 0.9794 + }, + { + "start": 19792.28, + "end": 19792.96, + "probability": 0.6069 + }, + { + "start": 19793.4, + "end": 19794.3, + "probability": 0.8595 + }, + { + "start": 19794.84, + "end": 19795.78, + "probability": 0.7577 + }, + { + "start": 19796.5, + "end": 19800.28, + "probability": 0.545 + }, + { + "start": 19800.32, + "end": 19802.44, + "probability": 0.4897 + }, + { + "start": 19803.22, + "end": 19806.35, + "probability": 0.6357 + }, + { + "start": 19808.58, + "end": 19808.58, + "probability": 0.2262 + }, + { + "start": 19808.68, + "end": 19810.18, + "probability": 0.0194 + }, + { + "start": 19810.54, + "end": 19810.86, + "probability": 0.0383 + }, + { + "start": 19810.86, + "end": 19811.18, + "probability": 0.1592 + }, + { + "start": 19811.18, + "end": 19811.18, + "probability": 0.0852 + }, + { + "start": 19811.18, + "end": 19811.18, + "probability": 0.5181 + }, + { + "start": 19811.54, + "end": 19813.6, + "probability": 0.8862 + }, + { + "start": 19816.22, + "end": 19818.74, + "probability": 0.4474 + }, + { + "start": 19818.78, + "end": 19819.2, + "probability": 0.7427 + }, + { + "start": 19820.46, + "end": 19821.9, + "probability": 0.5866 + }, + { + "start": 19821.96, + "end": 19823.02, + "probability": 0.3182 + }, + { + "start": 19823.42, + "end": 19826.08, + "probability": 0.7057 + }, + { + "start": 19827.04, + "end": 19827.52, + "probability": 0.8293 + }, + { + "start": 19828.24, + "end": 19831.32, + "probability": 0.5289 + }, + { + "start": 19832.9, + "end": 19834.16, + "probability": 0.3117 + }, + { + "start": 19834.94, + "end": 19836.04, + "probability": 0.1654 + }, + { + "start": 19836.42, + "end": 19837.48, + "probability": 0.3882 + }, + { + "start": 19837.5, + "end": 19839.47, + "probability": 0.7353 + }, + { + "start": 19840.34, + "end": 19841.8, + "probability": 0.9302 + }, + { + "start": 19842.06, + "end": 19843.6, + "probability": 0.7268 + }, + { + "start": 19843.82, + "end": 19846.58, + "probability": 0.2785 + }, + { + "start": 19849.18, + "end": 19851.35, + "probability": 0.7021 + }, + { + "start": 19853.72, + "end": 19855.56, + "probability": 0.394 + }, + { + "start": 19857.03, + "end": 19860.08, + "probability": 0.6196 + }, + { + "start": 19860.14, + "end": 19863.6, + "probability": 0.7104 + }, + { + "start": 19864.8, + "end": 19868.5, + "probability": 0.4388 + }, + { + "start": 19868.62, + "end": 19873.36, + "probability": 0.4386 + }, + { + "start": 19874.56, + "end": 19875.88, + "probability": 0.4821 + }, + { + "start": 19876.68, + "end": 19876.96, + "probability": 0.1465 + }, + { + "start": 19877.34, + "end": 19878.88, + "probability": 0.5491 + }, + { + "start": 19879.22, + "end": 19879.82, + "probability": 0.4235 + }, + { + "start": 19880.4, + "end": 19881.54, + "probability": 0.088 + }, + { + "start": 19881.54, + "end": 19884.58, + "probability": 0.7957 + }, + { + "start": 19884.7, + "end": 19884.88, + "probability": 0.487 + }, + { + "start": 19885.0, + "end": 19885.24, + "probability": 0.3756 + }, + { + "start": 19890.08, + "end": 19890.58, + "probability": 0.2753 + }, + { + "start": 19892.8, + "end": 19898.14, + "probability": 0.893 + }, + { + "start": 19898.36, + "end": 19901.28, + "probability": 0.2516 + }, + { + "start": 19901.32, + "end": 19902.36, + "probability": 0.658 + }, + { + "start": 19902.64, + "end": 19903.34, + "probability": 0.4819 + }, + { + "start": 19903.34, + "end": 19904.2, + "probability": 0.5864 + }, + { + "start": 19904.3, + "end": 19905.28, + "probability": 0.8273 + }, + { + "start": 19906.26, + "end": 19908.78, + "probability": 0.1741 + }, + { + "start": 19908.78, + "end": 19909.04, + "probability": 0.1399 + }, + { + "start": 19909.06, + "end": 19909.18, + "probability": 0.3667 + }, + { + "start": 19909.18, + "end": 19909.18, + "probability": 0.0842 + }, + { + "start": 19909.18, + "end": 19911.8, + "probability": 0.8258 + }, + { + "start": 19912.28, + "end": 19912.4, + "probability": 0.5497 + }, + { + "start": 19912.44, + "end": 19912.74, + "probability": 0.8409 + }, + { + "start": 19912.8, + "end": 19913.7, + "probability": 0.9397 + }, + { + "start": 19914.14, + "end": 19915.19, + "probability": 0.8504 + }, + { + "start": 19916.2, + "end": 19917.54, + "probability": 0.9807 + }, + { + "start": 19918.22, + "end": 19920.52, + "probability": 0.9937 + }, + { + "start": 19921.5, + "end": 19922.76, + "probability": 0.9938 + }, + { + "start": 19923.48, + "end": 19924.44, + "probability": 0.5218 + }, + { + "start": 19925.34, + "end": 19930.3, + "probability": 0.9729 + }, + { + "start": 19931.08, + "end": 19936.5, + "probability": 0.9963 + }, + { + "start": 19937.34, + "end": 19938.29, + "probability": 0.9988 + }, + { + "start": 19939.18, + "end": 19941.72, + "probability": 0.9926 + }, + { + "start": 19942.24, + "end": 19943.1, + "probability": 0.7866 + }, + { + "start": 19943.72, + "end": 19944.26, + "probability": 0.9877 + }, + { + "start": 19945.22, + "end": 19947.9, + "probability": 0.9966 + }, + { + "start": 19947.9, + "end": 19951.56, + "probability": 0.9929 + }, + { + "start": 19952.74, + "end": 19954.68, + "probability": 0.6109 + }, + { + "start": 19956.42, + "end": 19957.86, + "probability": 0.7687 + }, + { + "start": 19959.44, + "end": 19960.04, + "probability": 0.7678 + }, + { + "start": 19960.6, + "end": 19962.66, + "probability": 0.5214 + }, + { + "start": 19963.64, + "end": 19964.96, + "probability": 0.9007 + }, + { + "start": 19965.14, + "end": 19965.38, + "probability": 0.5851 + }, + { + "start": 19966.22, + "end": 19968.7, + "probability": 0.9281 + }, + { + "start": 19968.9, + "end": 19969.84, + "probability": 0.5887 + }, + { + "start": 19970.24, + "end": 19970.48, + "probability": 0.8219 + }, + { + "start": 19970.6, + "end": 19970.62, + "probability": 0.0012 + }, + { + "start": 19972.82, + "end": 19973.3, + "probability": 0.2186 + }, + { + "start": 19974.14, + "end": 19977.28, + "probability": 0.9114 + }, + { + "start": 19977.54, + "end": 19979.76, + "probability": 0.6989 + }, + { + "start": 19981.72, + "end": 19985.1, + "probability": 0.4684 + }, + { + "start": 19989.14, + "end": 19990.04, + "probability": 0.8388 + }, + { + "start": 19990.64, + "end": 19998.9, + "probability": 0.9948 + }, + { + "start": 19999.54, + "end": 20003.58, + "probability": 0.9895 + }, + { + "start": 20004.48, + "end": 20007.12, + "probability": 0.6718 + }, + { + "start": 20007.62, + "end": 20009.32, + "probability": 0.959 + }, + { + "start": 20010.26, + "end": 20010.8, + "probability": 0.8131 + }, + { + "start": 20011.82, + "end": 20013.84, + "probability": 0.9502 + }, + { + "start": 20014.36, + "end": 20015.84, + "probability": 0.5008 + }, + { + "start": 20016.84, + "end": 20017.62, + "probability": 0.9117 + }, + { + "start": 20017.72, + "end": 20018.7, + "probability": 0.6709 + }, + { + "start": 20018.8, + "end": 20019.1, + "probability": 0.4918 + }, + { + "start": 20019.2, + "end": 20019.62, + "probability": 0.0192 + }, + { + "start": 20021.38, + "end": 20022.84, + "probability": 0.9587 + }, + { + "start": 20027.4, + "end": 20028.82, + "probability": 0.2176 + }, + { + "start": 20028.9, + "end": 20029.52, + "probability": 0.4788 + }, + { + "start": 20029.82, + "end": 20030.26, + "probability": 0.3914 + }, + { + "start": 20030.38, + "end": 20030.5, + "probability": 0.0703 + }, + { + "start": 20030.5, + "end": 20032.84, + "probability": 0.9521 + }, + { + "start": 20032.84, + "end": 20035.72, + "probability": 0.5951 + }, + { + "start": 20035.72, + "end": 20036.18, + "probability": 0.8129 + }, + { + "start": 20036.88, + "end": 20039.54, + "probability": 0.6876 + }, + { + "start": 20043.92, + "end": 20047.26, + "probability": 0.999 + }, + { + "start": 20047.64, + "end": 20050.42, + "probability": 0.9985 + }, + { + "start": 20051.06, + "end": 20054.58, + "probability": 0.9424 + }, + { + "start": 20055.16, + "end": 20055.56, + "probability": 0.5809 + }, + { + "start": 20055.7, + "end": 20059.24, + "probability": 0.9962 + }, + { + "start": 20059.4, + "end": 20063.26, + "probability": 0.9945 + }, + { + "start": 20063.44, + "end": 20063.86, + "probability": 0.3483 + }, + { + "start": 20064.72, + "end": 20065.32, + "probability": 0.6456 + }, + { + "start": 20066.16, + "end": 20068.73, + "probability": 0.8853 + }, + { + "start": 20069.74, + "end": 20070.6, + "probability": 0.9075 + }, + { + "start": 20071.38, + "end": 20077.2, + "probability": 0.8003 + }, + { + "start": 20078.64, + "end": 20079.54, + "probability": 0.9685 + }, + { + "start": 20079.74, + "end": 20082.08, + "probability": 0.9934 + }, + { + "start": 20082.78, + "end": 20084.62, + "probability": 0.9888 + }, + { + "start": 20085.44, + "end": 20089.1, + "probability": 0.9704 + }, + { + "start": 20093.2, + "end": 20093.26, + "probability": 0.2066 + }, + { + "start": 20093.26, + "end": 20094.64, + "probability": 0.5066 + }, + { + "start": 20094.7, + "end": 20096.64, + "probability": 0.9733 + }, + { + "start": 20097.52, + "end": 20098.82, + "probability": 0.6542 + }, + { + "start": 20099.62, + "end": 20100.7, + "probability": 0.5623 + }, + { + "start": 20101.16, + "end": 20101.48, + "probability": 0.712 + }, + { + "start": 20102.26, + "end": 20103.24, + "probability": 0.5432 + }, + { + "start": 20104.04, + "end": 20104.56, + "probability": 0.983 + }, + { + "start": 20105.58, + "end": 20105.88, + "probability": 0.5555 + }, + { + "start": 20105.88, + "end": 20108.46, + "probability": 0.9996 + }, + { + "start": 20109.2, + "end": 20113.44, + "probability": 0.9883 + }, + { + "start": 20114.06, + "end": 20114.76, + "probability": 0.8122 + }, + { + "start": 20115.56, + "end": 20119.16, + "probability": 0.993 + }, + { + "start": 20119.92, + "end": 20125.62, + "probability": 0.9934 + }, + { + "start": 20126.22, + "end": 20130.4, + "probability": 0.8034 + }, + { + "start": 20130.4, + "end": 20133.86, + "probability": 0.7484 + }, + { + "start": 20134.4, + "end": 20137.18, + "probability": 0.9927 + }, + { + "start": 20138.06, + "end": 20138.76, + "probability": 0.5463 + }, + { + "start": 20139.62, + "end": 20141.56, + "probability": 0.5504 + }, + { + "start": 20142.1, + "end": 20144.8, + "probability": 0.269 + }, + { + "start": 20158.42, + "end": 20159.52, + "probability": 0.5096 + }, + { + "start": 20160.6, + "end": 20161.7, + "probability": 0.6648 + }, + { + "start": 20163.96, + "end": 20164.36, + "probability": 0.5801 + }, + { + "start": 20164.36, + "end": 20168.34, + "probability": 0.9512 + }, + { + "start": 20168.6, + "end": 20170.8, + "probability": 0.9579 + }, + { + "start": 20171.8, + "end": 20174.42, + "probability": 0.6632 + }, + { + "start": 20175.5, + "end": 20176.62, + "probability": 0.6007 + }, + { + "start": 20176.64, + "end": 20178.56, + "probability": 0.8517 + }, + { + "start": 20179.84, + "end": 20182.48, + "probability": 0.7067 + }, + { + "start": 20183.3, + "end": 20185.08, + "probability": 0.9915 + }, + { + "start": 20185.74, + "end": 20186.66, + "probability": 0.9187 + }, + { + "start": 20187.6, + "end": 20189.44, + "probability": 0.722 + }, + { + "start": 20190.38, + "end": 20192.9, + "probability": 0.9084 + }, + { + "start": 20193.66, + "end": 20196.15, + "probability": 0.8948 + }, + { + "start": 20196.98, + "end": 20198.26, + "probability": 0.6724 + }, + { + "start": 20199.16, + "end": 20199.94, + "probability": 0.3678 + }, + { + "start": 20200.02, + "end": 20201.34, + "probability": 0.959 + }, + { + "start": 20202.14, + "end": 20202.72, + "probability": 0.9326 + }, + { + "start": 20203.76, + "end": 20205.06, + "probability": 0.8999 + }, + { + "start": 20206.28, + "end": 20209.04, + "probability": 0.96 + }, + { + "start": 20210.08, + "end": 20210.96, + "probability": 0.6963 + }, + { + "start": 20212.12, + "end": 20215.7, + "probability": 0.888 + }, + { + "start": 20215.98, + "end": 20217.04, + "probability": 0.8769 + }, + { + "start": 20217.56, + "end": 20221.16, + "probability": 0.9918 + }, + { + "start": 20222.96, + "end": 20223.38, + "probability": 0.0974 + }, + { + "start": 20223.38, + "end": 20223.76, + "probability": 0.459 + }, + { + "start": 20223.78, + "end": 20229.52, + "probability": 0.9158 + }, + { + "start": 20230.04, + "end": 20231.81, + "probability": 0.9421 + }, + { + "start": 20232.46, + "end": 20233.46, + "probability": 0.8816 + }, + { + "start": 20233.58, + "end": 20234.38, + "probability": 0.7456 + }, + { + "start": 20234.44, + "end": 20237.5, + "probability": 0.8852 + }, + { + "start": 20237.56, + "end": 20238.38, + "probability": 0.7755 + }, + { + "start": 20238.4, + "end": 20238.98, + "probability": 0.0487 + }, + { + "start": 20239.08, + "end": 20240.94, + "probability": 0.1242 + }, + { + "start": 20240.94, + "end": 20244.0, + "probability": 0.2919 + }, + { + "start": 20244.08, + "end": 20244.18, + "probability": 0.2853 + }, + { + "start": 20244.18, + "end": 20244.18, + "probability": 0.3675 + }, + { + "start": 20244.18, + "end": 20244.18, + "probability": 0.0755 + }, + { + "start": 20244.18, + "end": 20244.18, + "probability": 0.1755 + }, + { + "start": 20244.18, + "end": 20245.2, + "probability": 0.4001 + }, + { + "start": 20245.36, + "end": 20248.34, + "probability": 0.8165 + }, + { + "start": 20250.14, + "end": 20251.1, + "probability": 0.9714 + }, + { + "start": 20251.24, + "end": 20251.86, + "probability": 0.88 + }, + { + "start": 20252.06, + "end": 20253.34, + "probability": 0.9382 + }, + { + "start": 20254.26, + "end": 20259.86, + "probability": 0.7305 + }, + { + "start": 20260.44, + "end": 20261.8, + "probability": 0.8193 + }, + { + "start": 20269.06, + "end": 20269.34, + "probability": 0.0368 + }, + { + "start": 20275.56, + "end": 20275.64, + "probability": 0.0569 + }, + { + "start": 20275.64, + "end": 20277.45, + "probability": 0.5718 + }, + { + "start": 20277.66, + "end": 20278.1, + "probability": 0.8239 + }, + { + "start": 20279.18, + "end": 20280.26, + "probability": 0.9368 + }, + { + "start": 20280.56, + "end": 20281.78, + "probability": 0.7422 + }, + { + "start": 20282.8, + "end": 20283.2, + "probability": 0.0747 + }, + { + "start": 20284.92, + "end": 20286.52, + "probability": 0.7441 + }, + { + "start": 20300.6, + "end": 20300.98, + "probability": 0.6609 + }, + { + "start": 20301.5, + "end": 20303.32, + "probability": 0.8115 + }, + { + "start": 20303.52, + "end": 20305.48, + "probability": 0.8289 + }, + { + "start": 20305.54, + "end": 20306.9, + "probability": 0.4782 + }, + { + "start": 20306.94, + "end": 20307.74, + "probability": 0.9444 + }, + { + "start": 20307.82, + "end": 20308.68, + "probability": 0.9424 + }, + { + "start": 20308.9, + "end": 20309.88, + "probability": 0.3136 + }, + { + "start": 20310.86, + "end": 20311.72, + "probability": 0.5896 + }, + { + "start": 20317.58, + "end": 20320.06, + "probability": 0.9325 + }, + { + "start": 20320.54, + "end": 20325.08, + "probability": 0.9902 + }, + { + "start": 20325.08, + "end": 20329.24, + "probability": 0.6241 + }, + { + "start": 20329.6, + "end": 20331.72, + "probability": 0.8113 + }, + { + "start": 20331.92, + "end": 20332.82, + "probability": 0.9573 + }, + { + "start": 20333.38, + "end": 20334.86, + "probability": 0.0224 + }, + { + "start": 20335.86, + "end": 20337.68, + "probability": 0.9811 + }, + { + "start": 20337.86, + "end": 20338.72, + "probability": 0.6504 + }, + { + "start": 20338.78, + "end": 20340.04, + "probability": 0.2776 + }, + { + "start": 20340.04, + "end": 20341.32, + "probability": 0.959 + }, + { + "start": 20342.2, + "end": 20343.86, + "probability": 0.9846 + }, + { + "start": 20345.2, + "end": 20347.99, + "probability": 0.9864 + }, + { + "start": 20348.1, + "end": 20349.48, + "probability": 0.6077 + }, + { + "start": 20350.16, + "end": 20353.42, + "probability": 0.982 + }, + { + "start": 20354.1, + "end": 20355.68, + "probability": 0.9739 + }, + { + "start": 20357.45, + "end": 20359.22, + "probability": 0.8328 + }, + { + "start": 20359.6, + "end": 20362.3, + "probability": 0.9561 + }, + { + "start": 20362.9, + "end": 20367.72, + "probability": 0.9844 + }, + { + "start": 20367.72, + "end": 20371.72, + "probability": 0.8921 + }, + { + "start": 20371.76, + "end": 20372.22, + "probability": 0.8221 + }, + { + "start": 20373.04, + "end": 20373.4, + "probability": 0.5138 + }, + { + "start": 20374.39, + "end": 20374.74, + "probability": 0.1593 + }, + { + "start": 20375.66, + "end": 20376.44, + "probability": 0.2425 + }, + { + "start": 20377.3, + "end": 20378.27, + "probability": 0.9033 + }, + { + "start": 20379.4, + "end": 20384.38, + "probability": 0.087 + }, + { + "start": 20385.64, + "end": 20390.22, + "probability": 0.6384 + }, + { + "start": 20391.41, + "end": 20393.16, + "probability": 0.3618 + }, + { + "start": 20393.18, + "end": 20394.92, + "probability": 0.6603 + }, + { + "start": 20399.98, + "end": 20403.6, + "probability": 0.2082 + }, + { + "start": 20404.46, + "end": 20404.92, + "probability": 0.2388 + }, + { + "start": 20405.57, + "end": 20405.64, + "probability": 0.0927 + }, + { + "start": 20419.96, + "end": 20420.5, + "probability": 0.3351 + }, + { + "start": 20433.28, + "end": 20435.26, + "probability": 0.7105 + }, + { + "start": 20435.7, + "end": 20438.47, + "probability": 0.9836 + }, + { + "start": 20439.74, + "end": 20440.84, + "probability": 0.7621 + }, + { + "start": 20442.08, + "end": 20450.34, + "probability": 0.9711 + }, + { + "start": 20452.06, + "end": 20455.36, + "probability": 0.8904 + }, + { + "start": 20456.48, + "end": 20458.92, + "probability": 0.9661 + }, + { + "start": 20460.34, + "end": 20464.78, + "probability": 0.9895 + }, + { + "start": 20466.28, + "end": 20468.46, + "probability": 0.9624 + }, + { + "start": 20471.44, + "end": 20473.62, + "probability": 0.9956 + }, + { + "start": 20474.28, + "end": 20476.2, + "probability": 0.9939 + }, + { + "start": 20476.4, + "end": 20479.96, + "probability": 0.8532 + }, + { + "start": 20480.56, + "end": 20482.14, + "probability": 0.8852 + }, + { + "start": 20483.0, + "end": 20484.24, + "probability": 0.881 + }, + { + "start": 20484.34, + "end": 20484.62, + "probability": 0.7801 + }, + { + "start": 20484.7, + "end": 20485.2, + "probability": 0.395 + }, + { + "start": 20485.28, + "end": 20486.04, + "probability": 0.799 + }, + { + "start": 20486.1, + "end": 20487.24, + "probability": 0.9106 + }, + { + "start": 20488.08, + "end": 20489.66, + "probability": 0.9647 + }, + { + "start": 20490.08, + "end": 20491.6, + "probability": 0.9956 + }, + { + "start": 20491.7, + "end": 20494.06, + "probability": 0.9352 + }, + { + "start": 20494.1, + "end": 20494.34, + "probability": 0.7067 + }, + { + "start": 20494.38, + "end": 20497.4, + "probability": 0.9397 + }, + { + "start": 20497.86, + "end": 20500.04, + "probability": 0.9829 + }, + { + "start": 20500.78, + "end": 20504.6, + "probability": 0.9457 + }, + { + "start": 20505.2, + "end": 20506.56, + "probability": 0.9511 + }, + { + "start": 20508.02, + "end": 20511.54, + "probability": 0.9364 + }, + { + "start": 20512.58, + "end": 20512.58, + "probability": 0.9087 + }, + { + "start": 20513.24, + "end": 20517.26, + "probability": 0.9923 + }, + { + "start": 20517.64, + "end": 20518.2, + "probability": 0.9631 + }, + { + "start": 20519.0, + "end": 20523.82, + "probability": 0.9974 + }, + { + "start": 20524.6, + "end": 20528.1, + "probability": 0.9913 + }, + { + "start": 20529.46, + "end": 20531.54, + "probability": 0.8397 + }, + { + "start": 20531.76, + "end": 20531.88, + "probability": 0.8353 + }, + { + "start": 20532.08, + "end": 20535.06, + "probability": 0.9963 + }, + { + "start": 20535.6, + "end": 20543.06, + "probability": 0.9493 + }, + { + "start": 20543.82, + "end": 20547.76, + "probability": 0.9839 + }, + { + "start": 20548.02, + "end": 20552.22, + "probability": 0.9846 + }, + { + "start": 20553.28, + "end": 20556.2, + "probability": 0.9907 + }, + { + "start": 20556.3, + "end": 20557.74, + "probability": 0.9976 + }, + { + "start": 20558.42, + "end": 20564.16, + "probability": 0.9863 + }, + { + "start": 20565.04, + "end": 20566.68, + "probability": 0.9074 + }, + { + "start": 20567.22, + "end": 20568.2, + "probability": 0.7541 + }, + { + "start": 20568.32, + "end": 20569.8, + "probability": 0.9567 + }, + { + "start": 20569.9, + "end": 20570.12, + "probability": 0.7812 + }, + { + "start": 20570.22, + "end": 20571.2, + "probability": 0.995 + }, + { + "start": 20571.32, + "end": 20572.74, + "probability": 0.8981 + }, + { + "start": 20572.92, + "end": 20576.86, + "probability": 0.9655 + }, + { + "start": 20577.14, + "end": 20577.48, + "probability": 0.5109 + }, + { + "start": 20578.44, + "end": 20580.32, + "probability": 0.7535 + }, + { + "start": 20580.9, + "end": 20586.84, + "probability": 0.9976 + }, + { + "start": 20587.52, + "end": 20589.34, + "probability": 0.9285 + }, + { + "start": 20590.1, + "end": 20596.54, + "probability": 0.9937 + }, + { + "start": 20596.64, + "end": 20598.06, + "probability": 0.9735 + }, + { + "start": 20598.38, + "end": 20599.88, + "probability": 0.9383 + }, + { + "start": 20600.34, + "end": 20605.47, + "probability": 0.9717 + }, + { + "start": 20606.88, + "end": 20608.02, + "probability": 0.5161 + }, + { + "start": 20608.1, + "end": 20608.64, + "probability": 0.5074 + }, + { + "start": 20608.64, + "end": 20611.32, + "probability": 0.357 + }, + { + "start": 20611.32, + "end": 20613.18, + "probability": 0.302 + }, + { + "start": 20613.26, + "end": 20614.68, + "probability": 0.8075 + }, + { + "start": 20614.8, + "end": 20616.14, + "probability": 0.915 + }, + { + "start": 20616.28, + "end": 20617.62, + "probability": 0.9783 + }, + { + "start": 20617.62, + "end": 20618.68, + "probability": 0.9783 + }, + { + "start": 20619.3, + "end": 20621.98, + "probability": 0.9951 + }, + { + "start": 20621.98, + "end": 20626.04, + "probability": 0.9962 + }, + { + "start": 20626.8, + "end": 20629.19, + "probability": 0.8981 + }, + { + "start": 20629.9, + "end": 20630.67, + "probability": 0.6163 + }, + { + "start": 20631.76, + "end": 20635.58, + "probability": 0.9846 + }, + { + "start": 20635.6, + "end": 20638.08, + "probability": 0.9992 + }, + { + "start": 20638.64, + "end": 20642.24, + "probability": 0.9707 + }, + { + "start": 20642.46, + "end": 20643.02, + "probability": 0.7267 + }, + { + "start": 20644.02, + "end": 20645.1, + "probability": 0.7814 + }, + { + "start": 20650.42, + "end": 20652.24, + "probability": 0.4798 + }, + { + "start": 20661.26, + "end": 20662.18, + "probability": 0.7211 + }, + { + "start": 20662.28, + "end": 20663.12, + "probability": 0.8592 + }, + { + "start": 20663.38, + "end": 20664.68, + "probability": 0.8036 + }, + { + "start": 20666.04, + "end": 20670.08, + "probability": 0.9839 + }, + { + "start": 20670.79, + "end": 20674.88, + "probability": 0.9606 + }, + { + "start": 20675.44, + "end": 20677.92, + "probability": 0.8519 + }, + { + "start": 20679.3, + "end": 20680.52, + "probability": 0.9266 + }, + { + "start": 20680.62, + "end": 20683.12, + "probability": 0.9224 + }, + { + "start": 20683.98, + "end": 20684.96, + "probability": 0.9544 + }, + { + "start": 20685.72, + "end": 20686.8, + "probability": 0.9595 + }, + { + "start": 20687.78, + "end": 20691.6, + "probability": 0.9906 + }, + { + "start": 20692.24, + "end": 20693.38, + "probability": 0.9912 + }, + { + "start": 20693.46, + "end": 20694.32, + "probability": 0.6758 + }, + { + "start": 20694.32, + "end": 20698.94, + "probability": 0.9791 + }, + { + "start": 20699.06, + "end": 20702.38, + "probability": 0.983 + }, + { + "start": 20704.48, + "end": 20710.58, + "probability": 0.9788 + }, + { + "start": 20711.44, + "end": 20715.64, + "probability": 0.9624 + }, + { + "start": 20716.86, + "end": 20720.48, + "probability": 0.9761 + }, + { + "start": 20722.16, + "end": 20724.1, + "probability": 0.6866 + }, + { + "start": 20724.66, + "end": 20725.74, + "probability": 0.5372 + }, + { + "start": 20725.84, + "end": 20727.12, + "probability": 0.9692 + }, + { + "start": 20727.52, + "end": 20728.58, + "probability": 0.944 + }, + { + "start": 20729.22, + "end": 20731.0, + "probability": 0.3795 + }, + { + "start": 20731.52, + "end": 20732.4, + "probability": 0.7428 + }, + { + "start": 20732.98, + "end": 20733.26, + "probability": 0.9491 + }, + { + "start": 20734.88, + "end": 20736.8, + "probability": 0.907 + }, + { + "start": 20737.68, + "end": 20739.82, + "probability": 0.9096 + }, + { + "start": 20740.9, + "end": 20742.5, + "probability": 0.9838 + }, + { + "start": 20743.44, + "end": 20744.44, + "probability": 0.8486 + }, + { + "start": 20744.96, + "end": 20747.26, + "probability": 0.6805 + }, + { + "start": 20747.92, + "end": 20749.3, + "probability": 0.8923 + }, + { + "start": 20749.78, + "end": 20751.46, + "probability": 0.9767 + }, + { + "start": 20752.22, + "end": 20755.38, + "probability": 0.8931 + }, + { + "start": 20756.06, + "end": 20757.52, + "probability": 0.9936 + }, + { + "start": 20757.58, + "end": 20762.72, + "probability": 0.9154 + }, + { + "start": 20764.16, + "end": 20768.64, + "probability": 0.9682 + }, + { + "start": 20769.12, + "end": 20770.0, + "probability": 0.7957 + }, + { + "start": 20771.62, + "end": 20772.38, + "probability": 0.9783 + }, + { + "start": 20772.98, + "end": 20773.8, + "probability": 0.9162 + }, + { + "start": 20775.22, + "end": 20776.04, + "probability": 0.9836 + }, + { + "start": 20776.7, + "end": 20779.86, + "probability": 0.946 + }, + { + "start": 20780.94, + "end": 20782.56, + "probability": 0.7353 + }, + { + "start": 20784.5, + "end": 20785.94, + "probability": 0.96 + }, + { + "start": 20787.98, + "end": 20790.66, + "probability": 0.9904 + }, + { + "start": 20790.68, + "end": 20792.49, + "probability": 0.9479 + }, + { + "start": 20794.3, + "end": 20794.3, + "probability": 0.2435 + }, + { + "start": 20794.3, + "end": 20797.56, + "probability": 0.943 + }, + { + "start": 20798.6, + "end": 20799.5, + "probability": 0.9319 + }, + { + "start": 20800.84, + "end": 20804.3, + "probability": 0.9846 + }, + { + "start": 20805.02, + "end": 20807.56, + "probability": 0.9851 + }, + { + "start": 20809.02, + "end": 20810.76, + "probability": 0.9979 + }, + { + "start": 20810.98, + "end": 20812.62, + "probability": 0.9973 + }, + { + "start": 20813.72, + "end": 20815.3, + "probability": 0.9693 + }, + { + "start": 20816.18, + "end": 20819.82, + "probability": 0.9979 + }, + { + "start": 20820.38, + "end": 20824.78, + "probability": 0.9749 + }, + { + "start": 20825.16, + "end": 20826.6, + "probability": 0.5598 + }, + { + "start": 20827.78, + "end": 20828.6, + "probability": 0.856 + }, + { + "start": 20829.12, + "end": 20831.63, + "probability": 0.9067 + }, + { + "start": 20832.2, + "end": 20833.45, + "probability": 0.9854 + }, + { + "start": 20834.28, + "end": 20837.02, + "probability": 0.9481 + }, + { + "start": 20837.9, + "end": 20840.76, + "probability": 0.951 + }, + { + "start": 20841.22, + "end": 20841.92, + "probability": 0.8455 + }, + { + "start": 20842.32, + "end": 20843.34, + "probability": 0.4028 + }, + { + "start": 20843.98, + "end": 20844.76, + "probability": 0.8443 + }, + { + "start": 20846.12, + "end": 20849.88, + "probability": 0.9756 + }, + { + "start": 20850.3, + "end": 20851.5, + "probability": 0.9041 + }, + { + "start": 20851.58, + "end": 20853.66, + "probability": 0.8737 + }, + { + "start": 20853.72, + "end": 20856.2, + "probability": 0.9551 + }, + { + "start": 20856.8, + "end": 20858.82, + "probability": 0.7708 + }, + { + "start": 20859.62, + "end": 20860.78, + "probability": 0.9141 + }, + { + "start": 20861.24, + "end": 20862.72, + "probability": 0.9644 + }, + { + "start": 20863.22, + "end": 20864.8, + "probability": 0.9891 + }, + { + "start": 20865.23, + "end": 20868.19, + "probability": 0.964 + }, + { + "start": 20869.24, + "end": 20872.42, + "probability": 0.8556 + }, + { + "start": 20872.48, + "end": 20874.3, + "probability": 0.977 + }, + { + "start": 20874.3, + "end": 20876.1, + "probability": 0.9489 + }, + { + "start": 20876.92, + "end": 20881.68, + "probability": 0.9387 + }, + { + "start": 20881.86, + "end": 20882.28, + "probability": 0.7838 + }, + { + "start": 20883.26, + "end": 20885.24, + "probability": 0.5544 + }, + { + "start": 20886.22, + "end": 20886.52, + "probability": 0.5939 + }, + { + "start": 20887.48, + "end": 20888.22, + "probability": 0.802 + }, + { + "start": 20903.86, + "end": 20905.1, + "probability": 0.4569 + }, + { + "start": 20906.14, + "end": 20908.56, + "probability": 0.9494 + }, + { + "start": 20910.1, + "end": 20915.34, + "probability": 0.9799 + }, + { + "start": 20916.16, + "end": 20917.16, + "probability": 0.8735 + }, + { + "start": 20918.2, + "end": 20920.82, + "probability": 0.877 + }, + { + "start": 20920.94, + "end": 20921.4, + "probability": 0.8214 + }, + { + "start": 20922.24, + "end": 20922.4, + "probability": 0.7468 + }, + { + "start": 20923.5, + "end": 20926.7, + "probability": 0.8611 + }, + { + "start": 20927.88, + "end": 20931.05, + "probability": 0.9041 + }, + { + "start": 20931.28, + "end": 20934.68, + "probability": 0.9609 + }, + { + "start": 20934.82, + "end": 20935.36, + "probability": 0.6796 + }, + { + "start": 20935.42, + "end": 20936.3, + "probability": 0.5302 + }, + { + "start": 20936.48, + "end": 20936.74, + "probability": 0.5871 + }, + { + "start": 20936.8, + "end": 20937.78, + "probability": 0.6424 + }, + { + "start": 20938.0, + "end": 20938.34, + "probability": 0.7644 + }, + { + "start": 20938.64, + "end": 20939.06, + "probability": 0.5688 + }, + { + "start": 20940.28, + "end": 20942.68, + "probability": 0.5768 + }, + { + "start": 20942.72, + "end": 20944.38, + "probability": 0.9722 + }, + { + "start": 20944.44, + "end": 20945.72, + "probability": 0.998 + }, + { + "start": 20945.88, + "end": 20946.28, + "probability": 0.2392 + }, + { + "start": 20947.06, + "end": 20947.1, + "probability": 0.2038 + }, + { + "start": 20947.1, + "end": 20947.1, + "probability": 0.1145 + }, + { + "start": 20947.1, + "end": 20949.24, + "probability": 0.0986 + }, + { + "start": 20949.7, + "end": 20950.46, + "probability": 0.0714 + }, + { + "start": 20950.82, + "end": 20951.3, + "probability": 0.8003 + }, + { + "start": 20952.92, + "end": 20954.32, + "probability": 0.5131 + }, + { + "start": 20954.36, + "end": 20957.44, + "probability": 0.9731 + }, + { + "start": 20957.88, + "end": 20958.78, + "probability": 0.7861 + }, + { + "start": 20958.94, + "end": 20962.86, + "probability": 0.9764 + }, + { + "start": 20962.9, + "end": 20963.15, + "probability": 0.745 + }, + { + "start": 20963.52, + "end": 20965.86, + "probability": 0.6299 + }, + { + "start": 20966.9, + "end": 20967.6, + "probability": 0.9205 + }, + { + "start": 20970.2, + "end": 20972.39, + "probability": 0.9686 + }, + { + "start": 20973.66, + "end": 20974.92, + "probability": 0.7034 + }, + { + "start": 20976.54, + "end": 20980.0, + "probability": 0.8739 + }, + { + "start": 20981.82, + "end": 20985.86, + "probability": 0.9032 + }, + { + "start": 20988.38, + "end": 20990.85, + "probability": 0.9985 + }, + { + "start": 20992.58, + "end": 20993.78, + "probability": 0.8878 + }, + { + "start": 20994.52, + "end": 21000.04, + "probability": 0.9937 + }, + { + "start": 21002.38, + "end": 21004.99, + "probability": 0.9214 + }, + { + "start": 21007.8, + "end": 21012.62, + "probability": 0.991 + }, + { + "start": 21012.62, + "end": 21016.92, + "probability": 0.9862 + }, + { + "start": 21018.94, + "end": 21020.44, + "probability": 0.9971 + }, + { + "start": 21021.16, + "end": 21023.48, + "probability": 0.799 + }, + { + "start": 21026.06, + "end": 21028.66, + "probability": 0.8319 + }, + { + "start": 21029.94, + "end": 21031.76, + "probability": 0.6924 + }, + { + "start": 21033.64, + "end": 21040.68, + "probability": 0.9945 + }, + { + "start": 21042.4, + "end": 21045.34, + "probability": 0.9977 + }, + { + "start": 21046.82, + "end": 21048.08, + "probability": 0.9976 + }, + { + "start": 21050.4, + "end": 21053.86, + "probability": 0.9275 + }, + { + "start": 21054.8, + "end": 21056.64, + "probability": 0.9957 + }, + { + "start": 21058.58, + "end": 21058.8, + "probability": 0.8608 + }, + { + "start": 21058.86, + "end": 21066.04, + "probability": 0.9795 + }, + { + "start": 21066.62, + "end": 21070.57, + "probability": 0.9966 + }, + { + "start": 21070.84, + "end": 21072.66, + "probability": 0.8896 + }, + { + "start": 21074.94, + "end": 21077.66, + "probability": 0.881 + }, + { + "start": 21077.7, + "end": 21079.68, + "probability": 0.7499 + }, + { + "start": 21081.22, + "end": 21083.0, + "probability": 0.9942 + }, + { + "start": 21086.1, + "end": 21087.96, + "probability": 0.8274 + }, + { + "start": 21088.08, + "end": 21089.7, + "probability": 0.7522 + }, + { + "start": 21089.8, + "end": 21091.56, + "probability": 0.9438 + }, + { + "start": 21091.6, + "end": 21092.08, + "probability": 0.77 + }, + { + "start": 21092.14, + "end": 21095.72, + "probability": 0.9913 + }, + { + "start": 21095.9, + "end": 21098.22, + "probability": 0.9915 + }, + { + "start": 21098.38, + "end": 21100.86, + "probability": 0.8688 + }, + { + "start": 21101.08, + "end": 21102.3, + "probability": 0.6016 + }, + { + "start": 21104.16, + "end": 21108.1, + "probability": 0.9776 + }, + { + "start": 21108.62, + "end": 21110.26, + "probability": 0.9301 + }, + { + "start": 21111.2, + "end": 21113.44, + "probability": 0.9737 + }, + { + "start": 21113.56, + "end": 21114.12, + "probability": 0.8513 + }, + { + "start": 21114.22, + "end": 21114.66, + "probability": 0.7177 + }, + { + "start": 21114.7, + "end": 21116.82, + "probability": 0.6662 + }, + { + "start": 21116.94, + "end": 21117.36, + "probability": 0.6891 + }, + { + "start": 21117.42, + "end": 21118.22, + "probability": 0.8281 + }, + { + "start": 21118.28, + "end": 21118.98, + "probability": 0.7225 + }, + { + "start": 21119.08, + "end": 21119.48, + "probability": 0.7885 + }, + { + "start": 21119.56, + "end": 21120.0, + "probability": 0.7439 + }, + { + "start": 21120.48, + "end": 21121.8, + "probability": 0.8407 + }, + { + "start": 21122.14, + "end": 21123.16, + "probability": 0.9622 + }, + { + "start": 21123.32, + "end": 21123.86, + "probability": 0.6564 + }, + { + "start": 21125.7, + "end": 21129.52, + "probability": 0.9967 + }, + { + "start": 21129.62, + "end": 21130.18, + "probability": 0.8056 + }, + { + "start": 21130.72, + "end": 21132.72, + "probability": 0.9626 + }, + { + "start": 21134.18, + "end": 21138.38, + "probability": 0.9979 + }, + { + "start": 21138.38, + "end": 21142.68, + "probability": 0.999 + }, + { + "start": 21145.68, + "end": 21148.94, + "probability": 0.999 + }, + { + "start": 21149.38, + "end": 21152.38, + "probability": 0.9503 + }, + { + "start": 21152.66, + "end": 21154.14, + "probability": 0.7725 + }, + { + "start": 21155.96, + "end": 21158.32, + "probability": 0.7613 + }, + { + "start": 21159.7, + "end": 21160.18, + "probability": 0.5197 + }, + { + "start": 21161.36, + "end": 21161.96, + "probability": 0.808 + }, + { + "start": 21162.48, + "end": 21163.54, + "probability": 0.6741 + }, + { + "start": 21163.66, + "end": 21164.98, + "probability": 0.9871 + }, + { + "start": 21165.58, + "end": 21166.56, + "probability": 0.9724 + }, + { + "start": 21166.66, + "end": 21169.58, + "probability": 0.9795 + }, + { + "start": 21170.56, + "end": 21170.9, + "probability": 0.9946 + }, + { + "start": 21171.02, + "end": 21171.96, + "probability": 0.9987 + }, + { + "start": 21172.08, + "end": 21173.2, + "probability": 0.9531 + }, + { + "start": 21173.68, + "end": 21177.16, + "probability": 0.9127 + }, + { + "start": 21177.78, + "end": 21184.12, + "probability": 0.9875 + }, + { + "start": 21185.34, + "end": 21187.36, + "probability": 0.9932 + }, + { + "start": 21188.48, + "end": 21189.52, + "probability": 0.5771 + }, + { + "start": 21190.18, + "end": 21193.3, + "probability": 0.983 + }, + { + "start": 21195.36, + "end": 21195.98, + "probability": 0.951 + }, + { + "start": 21196.08, + "end": 21198.22, + "probability": 0.8752 + }, + { + "start": 21198.28, + "end": 21199.46, + "probability": 0.9148 + }, + { + "start": 21199.52, + "end": 21200.6, + "probability": 0.6482 + }, + { + "start": 21200.68, + "end": 21201.22, + "probability": 0.8565 + }, + { + "start": 21201.28, + "end": 21203.56, + "probability": 0.9878 + }, + { + "start": 21204.34, + "end": 21206.36, + "probability": 0.8846 + }, + { + "start": 21206.72, + "end": 21209.12, + "probability": 0.882 + }, + { + "start": 21209.9, + "end": 21209.96, + "probability": 0.1179 + }, + { + "start": 21209.96, + "end": 21210.55, + "probability": 0.9922 + }, + { + "start": 21211.16, + "end": 21213.33, + "probability": 0.9036 + }, + { + "start": 21213.66, + "end": 21214.0, + "probability": 0.1846 + }, + { + "start": 21214.74, + "end": 21214.74, + "probability": 0.0477 + }, + { + "start": 21214.74, + "end": 21215.79, + "probability": 0.9187 + }, + { + "start": 21216.04, + "end": 21216.22, + "probability": 0.2827 + }, + { + "start": 21216.3, + "end": 21217.18, + "probability": 0.9299 + }, + { + "start": 21217.32, + "end": 21219.22, + "probability": 0.8044 + }, + { + "start": 21219.22, + "end": 21222.1, + "probability": 0.8683 + }, + { + "start": 21223.42, + "end": 21223.74, + "probability": 0.4858 + }, + { + "start": 21224.32, + "end": 21224.32, + "probability": 0.1537 + }, + { + "start": 21224.32, + "end": 21226.26, + "probability": 0.4692 + }, + { + "start": 21226.28, + "end": 21229.04, + "probability": 0.6201 + }, + { + "start": 21229.18, + "end": 21230.24, + "probability": 0.8044 + }, + { + "start": 21230.32, + "end": 21231.22, + "probability": 0.9477 + }, + { + "start": 21231.36, + "end": 21233.64, + "probability": 0.9494 + }, + { + "start": 21234.36, + "end": 21235.2, + "probability": 0.5782 + }, + { + "start": 21235.28, + "end": 21235.58, + "probability": 0.7489 + }, + { + "start": 21235.68, + "end": 21237.18, + "probability": 0.6781 + }, + { + "start": 21237.22, + "end": 21238.5, + "probability": 0.9624 + }, + { + "start": 21238.58, + "end": 21239.22, + "probability": 0.9148 + }, + { + "start": 21239.24, + "end": 21240.9, + "probability": 0.9643 + }, + { + "start": 21241.72, + "end": 21243.84, + "probability": 0.9251 + }, + { + "start": 21243.98, + "end": 21244.22, + "probability": 0.8823 + }, + { + "start": 21244.6, + "end": 21244.86, + "probability": 0.7499 + }, + { + "start": 21245.74, + "end": 21246.92, + "probability": 0.5978 + }, + { + "start": 21258.18, + "end": 21258.97, + "probability": 0.2992 + }, + { + "start": 21259.32, + "end": 21260.42, + "probability": 0.5542 + }, + { + "start": 21260.92, + "end": 21261.48, + "probability": 0.8738 + }, + { + "start": 21261.8, + "end": 21263.96, + "probability": 0.2696 + }, + { + "start": 21264.66, + "end": 21265.34, + "probability": 0.4731 + }, + { + "start": 21266.38, + "end": 21268.51, + "probability": 0.4194 + }, + { + "start": 21268.96, + "end": 21271.06, + "probability": 0.7219 + }, + { + "start": 21271.06, + "end": 21271.68, + "probability": 0.2879 + }, + { + "start": 21272.36, + "end": 21273.32, + "probability": 0.7529 + }, + { + "start": 21273.42, + "end": 21275.4, + "probability": 0.9076 + }, + { + "start": 21275.96, + "end": 21277.06, + "probability": 0.7778 + }, + { + "start": 21277.38, + "end": 21279.0, + "probability": 0.9934 + }, + { + "start": 21279.42, + "end": 21285.16, + "probability": 0.9695 + }, + { + "start": 21285.32, + "end": 21285.91, + "probability": 0.7793 + }, + { + "start": 21287.02, + "end": 21289.18, + "probability": 0.984 + }, + { + "start": 21290.0, + "end": 21291.66, + "probability": 0.7515 + }, + { + "start": 21292.18, + "end": 21294.02, + "probability": 0.9282 + }, + { + "start": 21294.68, + "end": 21298.68, + "probability": 0.9473 + }, + { + "start": 21299.44, + "end": 21302.6, + "probability": 0.9649 + }, + { + "start": 21303.7, + "end": 21308.58, + "probability": 0.9688 + }, + { + "start": 21309.12, + "end": 21312.38, + "probability": 0.9941 + }, + { + "start": 21312.84, + "end": 21314.48, + "probability": 0.9803 + }, + { + "start": 21314.66, + "end": 21318.44, + "probability": 0.9646 + }, + { + "start": 21318.92, + "end": 21320.88, + "probability": 0.7602 + }, + { + "start": 21320.94, + "end": 21323.02, + "probability": 0.9285 + }, + { + "start": 21323.2, + "end": 21324.68, + "probability": 0.9856 + }, + { + "start": 21325.28, + "end": 21326.24, + "probability": 0.9398 + }, + { + "start": 21327.02, + "end": 21329.38, + "probability": 0.9666 + }, + { + "start": 21330.24, + "end": 21332.56, + "probability": 0.9159 + }, + { + "start": 21333.54, + "end": 21338.0, + "probability": 0.9562 + }, + { + "start": 21338.68, + "end": 21339.22, + "probability": 0.5228 + }, + { + "start": 21339.44, + "end": 21340.48, + "probability": 0.9055 + }, + { + "start": 21340.58, + "end": 21343.26, + "probability": 0.9507 + }, + { + "start": 21344.06, + "end": 21345.34, + "probability": 0.9595 + }, + { + "start": 21345.84, + "end": 21347.18, + "probability": 0.9593 + }, + { + "start": 21347.4, + "end": 21348.02, + "probability": 0.7724 + }, + { + "start": 21348.52, + "end": 21350.38, + "probability": 0.8794 + }, + { + "start": 21351.06, + "end": 21352.8, + "probability": 0.9312 + }, + { + "start": 21353.22, + "end": 21353.86, + "probability": 0.7849 + }, + { + "start": 21353.98, + "end": 21354.86, + "probability": 0.8857 + }, + { + "start": 21355.24, + "end": 21358.7, + "probability": 0.902 + }, + { + "start": 21359.22, + "end": 21361.74, + "probability": 0.9442 + }, + { + "start": 21362.42, + "end": 21363.48, + "probability": 0.544 + }, + { + "start": 21364.06, + "end": 21368.98, + "probability": 0.987 + }, + { + "start": 21369.56, + "end": 21373.46, + "probability": 0.9382 + }, + { + "start": 21373.72, + "end": 21376.12, + "probability": 0.8994 + }, + { + "start": 21376.66, + "end": 21381.94, + "probability": 0.9887 + }, + { + "start": 21382.5, + "end": 21385.1, + "probability": 0.9771 + }, + { + "start": 21385.18, + "end": 21385.98, + "probability": 0.9713 + }, + { + "start": 21386.58, + "end": 21387.94, + "probability": 0.965 + }, + { + "start": 21388.52, + "end": 21391.54, + "probability": 0.9873 + }, + { + "start": 21392.08, + "end": 21392.74, + "probability": 0.9894 + }, + { + "start": 21392.92, + "end": 21393.36, + "probability": 0.6893 + }, + { + "start": 21393.56, + "end": 21395.88, + "probability": 0.9226 + }, + { + "start": 21396.2, + "end": 21399.68, + "probability": 0.9115 + }, + { + "start": 21400.3, + "end": 21402.32, + "probability": 0.9592 + }, + { + "start": 21402.76, + "end": 21403.68, + "probability": 0.8916 + }, + { + "start": 21403.7, + "end": 21404.86, + "probability": 0.9294 + }, + { + "start": 21405.3, + "end": 21405.82, + "probability": 0.9048 + }, + { + "start": 21405.82, + "end": 21406.62, + "probability": 0.7692 + }, + { + "start": 21407.28, + "end": 21410.02, + "probability": 0.9153 + }, + { + "start": 21410.14, + "end": 21410.64, + "probability": 0.86 + }, + { + "start": 21410.98, + "end": 21412.02, + "probability": 0.9581 + }, + { + "start": 21412.5, + "end": 21417.42, + "probability": 0.9878 + }, + { + "start": 21418.1, + "end": 21422.8, + "probability": 0.896 + }, + { + "start": 21423.92, + "end": 21424.8, + "probability": 0.666 + }, + { + "start": 21424.86, + "end": 21425.93, + "probability": 0.8333 + }, + { + "start": 21426.72, + "end": 21429.38, + "probability": 0.8959 + }, + { + "start": 21429.78, + "end": 21433.12, + "probability": 0.7025 + }, + { + "start": 21433.6, + "end": 21433.98, + "probability": 0.5337 + }, + { + "start": 21434.38, + "end": 21434.94, + "probability": 0.8826 + }, + { + "start": 21435.08, + "end": 21435.6, + "probability": 0.7911 + }, + { + "start": 21435.68, + "end": 21436.04, + "probability": 0.8818 + }, + { + "start": 21437.2, + "end": 21440.14, + "probability": 0.8553 + }, + { + "start": 21440.2, + "end": 21440.92, + "probability": 0.7759 + }, + { + "start": 21440.98, + "end": 21441.56, + "probability": 0.7756 + }, + { + "start": 21442.12, + "end": 21443.52, + "probability": 0.6552 + }, + { + "start": 21444.34, + "end": 21447.02, + "probability": 0.9246 + }, + { + "start": 21447.32, + "end": 21448.08, + "probability": 0.7172 + }, + { + "start": 21449.42, + "end": 21449.7, + "probability": 0.5907 + }, + { + "start": 21449.72, + "end": 21450.84, + "probability": 0.7175 + }, + { + "start": 21451.38, + "end": 21451.74, + "probability": 0.5139 + }, + { + "start": 21452.84, + "end": 21453.42, + "probability": 0.0299 + }, + { + "start": 21453.6, + "end": 21456.5, + "probability": 0.3242 + }, + { + "start": 21456.58, + "end": 21458.41, + "probability": 0.6427 + }, + { + "start": 21458.48, + "end": 21458.8, + "probability": 0.4929 + }, + { + "start": 21459.08, + "end": 21460.6, + "probability": 0.8648 + }, + { + "start": 21461.04, + "end": 21461.84, + "probability": 0.8841 + }, + { + "start": 21461.9, + "end": 21462.66, + "probability": 0.7296 + }, + { + "start": 21463.1, + "end": 21465.42, + "probability": 0.9689 + }, + { + "start": 21465.56, + "end": 21465.92, + "probability": 0.8148 + }, + { + "start": 21466.24, + "end": 21466.63, + "probability": 0.9193 + }, + { + "start": 21466.76, + "end": 21468.0, + "probability": 0.9902 + }, + { + "start": 21468.48, + "end": 21471.4, + "probability": 0.9748 + }, + { + "start": 21472.06, + "end": 21472.62, + "probability": 0.8029 + }, + { + "start": 21472.74, + "end": 21473.38, + "probability": 0.5837 + }, + { + "start": 21473.64, + "end": 21474.88, + "probability": 0.9069 + }, + { + "start": 21475.02, + "end": 21475.64, + "probability": 0.8677 + }, + { + "start": 21476.2, + "end": 21478.6, + "probability": 0.8822 + }, + { + "start": 21479.08, + "end": 21481.0, + "probability": 0.998 + }, + { + "start": 21481.4, + "end": 21482.04, + "probability": 0.9223 + }, + { + "start": 21482.36, + "end": 21482.96, + "probability": 0.9246 + }, + { + "start": 21483.28, + "end": 21484.16, + "probability": 0.9561 + }, + { + "start": 21484.26, + "end": 21484.7, + "probability": 0.665 + }, + { + "start": 21484.74, + "end": 21485.09, + "probability": 0.499 + }, + { + "start": 21485.34, + "end": 21486.44, + "probability": 0.7388 + }, + { + "start": 21486.46, + "end": 21486.92, + "probability": 0.2727 + }, + { + "start": 21487.24, + "end": 21488.08, + "probability": 0.7705 + }, + { + "start": 21488.18, + "end": 21489.5, + "probability": 0.089 + }, + { + "start": 21491.9, + "end": 21492.68, + "probability": 0.0086 + }, + { + "start": 21492.86, + "end": 21493.02, + "probability": 0.0196 + }, + { + "start": 21493.2, + "end": 21493.72, + "probability": 0.1145 + }, + { + "start": 21493.72, + "end": 21494.06, + "probability": 0.1716 + }, + { + "start": 21494.46, + "end": 21494.9, + "probability": 0.1024 + }, + { + "start": 21495.04, + "end": 21495.5, + "probability": 0.0109 + }, + { + "start": 21495.84, + "end": 21497.48, + "probability": 0.0289 + }, + { + "start": 21498.14, + "end": 21499.5, + "probability": 0.093 + }, + { + "start": 21499.7, + "end": 21499.84, + "probability": 0.0958 + }, + { + "start": 21499.84, + "end": 21499.84, + "probability": 0.0666 + }, + { + "start": 21499.84, + "end": 21500.96, + "probability": 0.5011 + }, + { + "start": 21501.18, + "end": 21501.64, + "probability": 0.4566 + }, + { + "start": 21501.7, + "end": 21502.36, + "probability": 0.6511 + }, + { + "start": 21502.96, + "end": 21503.86, + "probability": 0.5137 + }, + { + "start": 21504.44, + "end": 21506.15, + "probability": 0.583 + }, + { + "start": 21507.0, + "end": 21508.29, + "probability": 0.5061 + }, + { + "start": 21508.68, + "end": 21510.26, + "probability": 0.0247 + }, + { + "start": 21510.26, + "end": 21510.62, + "probability": 0.1554 + }, + { + "start": 21510.62, + "end": 21512.16, + "probability": 0.3165 + }, + { + "start": 21512.28, + "end": 21514.98, + "probability": 0.3307 + }, + { + "start": 21514.98, + "end": 21515.78, + "probability": 0.5456 + }, + { + "start": 21515.94, + "end": 21516.84, + "probability": 0.1999 + }, + { + "start": 21517.52, + "end": 21519.14, + "probability": 0.7259 + }, + { + "start": 21519.32, + "end": 21519.94, + "probability": 0.4066 + }, + { + "start": 21520.04, + "end": 21520.46, + "probability": 0.8551 + }, + { + "start": 21520.58, + "end": 21521.42, + "probability": 0.6852 + }, + { + "start": 21521.52, + "end": 21523.84, + "probability": 0.8969 + }, + { + "start": 21524.22, + "end": 21525.44, + "probability": 0.8128 + }, + { + "start": 21526.02, + "end": 21527.48, + "probability": 0.507 + }, + { + "start": 21527.9, + "end": 21528.95, + "probability": 0.045 + }, + { + "start": 21535.36, + "end": 21535.8, + "probability": 0.0007 + }, + { + "start": 21536.42, + "end": 21537.62, + "probability": 0.6077 + }, + { + "start": 21537.62, + "end": 21539.22, + "probability": 0.9299 + }, + { + "start": 21539.48, + "end": 21541.05, + "probability": 0.8555 + }, + { + "start": 21541.66, + "end": 21543.7, + "probability": 0.4685 + }, + { + "start": 21543.76, + "end": 21543.98, + "probability": 0.5255 + }, + { + "start": 21544.02, + "end": 21550.84, + "probability": 0.9709 + }, + { + "start": 21550.9, + "end": 21555.48, + "probability": 0.9082 + }, + { + "start": 21555.72, + "end": 21558.02, + "probability": 0.8055 + }, + { + "start": 21558.32, + "end": 21561.76, + "probability": 0.9431 + }, + { + "start": 21563.42, + "end": 21569.2, + "probability": 0.9221 + }, + { + "start": 21569.2, + "end": 21576.24, + "probability": 0.9284 + }, + { + "start": 21577.06, + "end": 21577.92, + "probability": 0.5486 + }, + { + "start": 21578.0, + "end": 21581.63, + "probability": 0.8312 + }, + { + "start": 21582.88, + "end": 21583.58, + "probability": 0.922 + }, + { + "start": 21583.66, + "end": 21584.84, + "probability": 0.7798 + }, + { + "start": 21585.18, + "end": 21586.4, + "probability": 0.7639 + }, + { + "start": 21586.88, + "end": 21587.4, + "probability": 0.6811 + }, + { + "start": 21587.6, + "end": 21589.37, + "probability": 0.9355 + }, + { + "start": 21589.58, + "end": 21591.28, + "probability": 0.8541 + }, + { + "start": 21591.9, + "end": 21593.7, + "probability": 0.99 + }, + { + "start": 21593.78, + "end": 21596.58, + "probability": 0.9993 + }, + { + "start": 21597.2, + "end": 21600.88, + "probability": 0.8665 + }, + { + "start": 21601.46, + "end": 21604.02, + "probability": 0.9946 + }, + { + "start": 21604.12, + "end": 21605.1, + "probability": 0.9078 + }, + { + "start": 21605.26, + "end": 21606.03, + "probability": 0.9213 + }, + { + "start": 21606.72, + "end": 21610.54, + "probability": 0.9806 + }, + { + "start": 21610.74, + "end": 21613.88, + "probability": 0.9806 + }, + { + "start": 21614.9, + "end": 21615.49, + "probability": 0.5237 + }, + { + "start": 21615.7, + "end": 21616.79, + "probability": 0.9692 + }, + { + "start": 21617.6, + "end": 21618.0, + "probability": 0.8057 + }, + { + "start": 21618.2, + "end": 21623.94, + "probability": 0.839 + }, + { + "start": 21624.12, + "end": 21625.04, + "probability": 0.9565 + }, + { + "start": 21625.22, + "end": 21626.06, + "probability": 0.8775 + }, + { + "start": 21626.24, + "end": 21627.26, + "probability": 0.9839 + }, + { + "start": 21627.5, + "end": 21629.68, + "probability": 0.9679 + }, + { + "start": 21630.92, + "end": 21632.92, + "probability": 0.9389 + }, + { + "start": 21632.98, + "end": 21636.24, + "probability": 0.9908 + }, + { + "start": 21636.66, + "end": 21638.22, + "probability": 0.9783 + }, + { + "start": 21638.32, + "end": 21640.78, + "probability": 0.7252 + }, + { + "start": 21641.08, + "end": 21642.94, + "probability": 0.9624 + }, + { + "start": 21643.4, + "end": 21646.24, + "probability": 0.9961 + }, + { + "start": 21646.24, + "end": 21649.56, + "probability": 0.9976 + }, + { + "start": 21650.64, + "end": 21653.62, + "probability": 0.984 + }, + { + "start": 21654.2, + "end": 21657.24, + "probability": 0.9832 + }, + { + "start": 21658.36, + "end": 21659.32, + "probability": 0.9688 + }, + { + "start": 21660.0, + "end": 21663.72, + "probability": 0.9407 + }, + { + "start": 21664.34, + "end": 21669.1, + "probability": 0.9771 + }, + { + "start": 21669.1, + "end": 21674.32, + "probability": 0.998 + }, + { + "start": 21674.8, + "end": 21676.2, + "probability": 0.7756 + }, + { + "start": 21676.6, + "end": 21679.24, + "probability": 0.8447 + }, + { + "start": 21679.6, + "end": 21684.62, + "probability": 0.9922 + }, + { + "start": 21684.66, + "end": 21689.72, + "probability": 0.9939 + }, + { + "start": 21690.0, + "end": 21691.32, + "probability": 0.8507 + }, + { + "start": 21691.82, + "end": 21695.06, + "probability": 0.991 + }, + { + "start": 21695.06, + "end": 21697.92, + "probability": 0.9995 + }, + { + "start": 21698.38, + "end": 21699.84, + "probability": 0.9228 + }, + { + "start": 21700.04, + "end": 21703.94, + "probability": 0.9023 + }, + { + "start": 21703.98, + "end": 21705.14, + "probability": 0.7975 + }, + { + "start": 21705.22, + "end": 21706.34, + "probability": 0.838 + }, + { + "start": 21706.8, + "end": 21712.14, + "probability": 0.92 + }, + { + "start": 21712.28, + "end": 21715.0, + "probability": 0.9919 + }, + { + "start": 21715.0, + "end": 21719.56, + "probability": 0.8349 + }, + { + "start": 21720.06, + "end": 21722.92, + "probability": 0.9185 + }, + { + "start": 21723.78, + "end": 21725.68, + "probability": 0.8409 + }, + { + "start": 21725.8, + "end": 21727.26, + "probability": 0.7788 + }, + { + "start": 21727.28, + "end": 21729.2, + "probability": 0.7858 + }, + { + "start": 21729.76, + "end": 21732.24, + "probability": 0.7493 + }, + { + "start": 21732.5, + "end": 21735.06, + "probability": 0.9678 + }, + { + "start": 21735.12, + "end": 21737.18, + "probability": 0.9325 + }, + { + "start": 21737.26, + "end": 21737.72, + "probability": 0.5623 + }, + { + "start": 21738.26, + "end": 21738.68, + "probability": 0.877 + }, + { + "start": 21738.82, + "end": 21740.22, + "probability": 0.9885 + }, + { + "start": 21740.64, + "end": 21743.52, + "probability": 0.8621 + }, + { + "start": 21744.14, + "end": 21749.2, + "probability": 0.7195 + }, + { + "start": 21749.2, + "end": 21752.22, + "probability": 0.7887 + }, + { + "start": 21752.7, + "end": 21754.42, + "probability": 0.8501 + }, + { + "start": 21755.0, + "end": 21757.42, + "probability": 0.9884 + }, + { + "start": 21757.42, + "end": 21760.86, + "probability": 0.9531 + }, + { + "start": 21761.22, + "end": 21761.46, + "probability": 0.5529 + }, + { + "start": 21761.54, + "end": 21762.52, + "probability": 0.8543 + }, + { + "start": 21762.56, + "end": 21763.22, + "probability": 0.8829 + }, + { + "start": 21763.68, + "end": 21766.84, + "probability": 0.6827 + }, + { + "start": 21767.46, + "end": 21768.16, + "probability": 0.6031 + }, + { + "start": 21768.56, + "end": 21770.5, + "probability": 0.7271 + }, + { + "start": 21771.2, + "end": 21774.2, + "probability": 0.7713 + }, + { + "start": 21774.66, + "end": 21777.76, + "probability": 0.9845 + }, + { + "start": 21778.52, + "end": 21781.02, + "probability": 0.3786 + }, + { + "start": 21781.3, + "end": 21782.64, + "probability": 0.9497 + }, + { + "start": 21782.94, + "end": 21784.4, + "probability": 0.9056 + }, + { + "start": 21784.82, + "end": 21786.34, + "probability": 0.6616 + }, + { + "start": 21786.82, + "end": 21788.08, + "probability": 0.7701 + }, + { + "start": 21788.26, + "end": 21790.98, + "probability": 0.9769 + }, + { + "start": 21791.38, + "end": 21792.02, + "probability": 0.8253 + }, + { + "start": 21792.34, + "end": 21792.76, + "probability": 0.8218 + }, + { + "start": 21793.76, + "end": 21795.24, + "probability": 0.6271 + }, + { + "start": 21795.9, + "end": 21796.84, + "probability": 0.7272 + }, + { + "start": 21797.7, + "end": 21797.92, + "probability": 0.4393 + }, + { + "start": 21798.86, + "end": 21801.42, + "probability": 0.7553 + }, + { + "start": 21802.52, + "end": 21803.96, + "probability": 0.8525 + }, + { + "start": 21818.48, + "end": 21819.38, + "probability": 0.5205 + }, + { + "start": 21821.5, + "end": 21821.96, + "probability": 0.6097 + }, + { + "start": 21824.25, + "end": 21827.58, + "probability": 0.822 + }, + { + "start": 21827.8, + "end": 21828.74, + "probability": 0.9658 + }, + { + "start": 21829.86, + "end": 21832.92, + "probability": 0.9976 + }, + { + "start": 21833.86, + "end": 21834.96, + "probability": 0.9795 + }, + { + "start": 21836.68, + "end": 21840.96, + "probability": 0.8395 + }, + { + "start": 21842.3, + "end": 21844.46, + "probability": 0.7223 + }, + { + "start": 21845.34, + "end": 21850.62, + "probability": 0.9797 + }, + { + "start": 21852.16, + "end": 21853.04, + "probability": 0.9595 + }, + { + "start": 21854.0, + "end": 21857.22, + "probability": 0.9947 + }, + { + "start": 21859.62, + "end": 21864.32, + "probability": 0.6621 + }, + { + "start": 21865.68, + "end": 21868.98, + "probability": 0.9798 + }, + { + "start": 21869.9, + "end": 21870.68, + "probability": 0.9656 + }, + { + "start": 21872.02, + "end": 21874.68, + "probability": 0.7574 + }, + { + "start": 21875.3, + "end": 21877.13, + "probability": 0.9943 + }, + { + "start": 21877.7, + "end": 21883.36, + "probability": 0.9839 + }, + { + "start": 21884.02, + "end": 21884.78, + "probability": 0.2238 + }, + { + "start": 21885.78, + "end": 21886.86, + "probability": 0.9893 + }, + { + "start": 21888.2, + "end": 21890.04, + "probability": 0.9231 + }, + { + "start": 21890.68, + "end": 21894.56, + "probability": 0.931 + }, + { + "start": 21894.72, + "end": 21898.58, + "probability": 0.9888 + }, + { + "start": 21899.6, + "end": 21901.12, + "probability": 0.7394 + }, + { + "start": 21902.06, + "end": 21903.91, + "probability": 0.7922 + }, + { + "start": 21904.82, + "end": 21906.98, + "probability": 0.6993 + }, + { + "start": 21907.62, + "end": 21909.42, + "probability": 0.8834 + }, + { + "start": 21910.66, + "end": 21911.56, + "probability": 0.9822 + }, + { + "start": 21911.62, + "end": 21912.26, + "probability": 0.668 + }, + { + "start": 21912.54, + "end": 21917.72, + "probability": 0.9722 + }, + { + "start": 21918.94, + "end": 21921.6, + "probability": 0.705 + }, + { + "start": 21922.54, + "end": 21926.18, + "probability": 0.9655 + }, + { + "start": 21926.38, + "end": 21927.58, + "probability": 0.4351 + }, + { + "start": 21927.76, + "end": 21929.64, + "probability": 0.9411 + }, + { + "start": 21930.12, + "end": 21934.52, + "probability": 0.988 + }, + { + "start": 21934.52, + "end": 21936.8, + "probability": 0.3921 + }, + { + "start": 21937.16, + "end": 21937.16, + "probability": 0.2323 + }, + { + "start": 21937.16, + "end": 21937.16, + "probability": 0.2567 + }, + { + "start": 21937.16, + "end": 21937.16, + "probability": 0.3357 + }, + { + "start": 21937.16, + "end": 21937.94, + "probability": 0.288 + }, + { + "start": 21939.14, + "end": 21939.14, + "probability": 0.1327 + }, + { + "start": 21939.14, + "end": 21942.46, + "probability": 0.7617 + }, + { + "start": 21942.9, + "end": 21943.46, + "probability": 0.7259 + }, + { + "start": 21944.56, + "end": 21945.06, + "probability": 0.369 + }, + { + "start": 21945.2, + "end": 21947.12, + "probability": 0.8568 + }, + { + "start": 21947.14, + "end": 21948.4, + "probability": 0.8484 + }, + { + "start": 21948.84, + "end": 21950.1, + "probability": 0.912 + }, + { + "start": 21950.22, + "end": 21950.84, + "probability": 0.4629 + }, + { + "start": 21951.5, + "end": 21954.44, + "probability": 0.8953 + }, + { + "start": 21954.44, + "end": 21954.93, + "probability": 0.8011 + }, + { + "start": 21956.58, + "end": 21958.9, + "probability": 0.682 + }, + { + "start": 21959.1, + "end": 21962.5, + "probability": 0.8768 + }, + { + "start": 21962.54, + "end": 21965.2, + "probability": 0.6562 + }, + { + "start": 21966.06, + "end": 21970.18, + "probability": 0.8786 + }, + { + "start": 21971.36, + "end": 21974.18, + "probability": 0.9966 + }, + { + "start": 21974.76, + "end": 21976.32, + "probability": 0.839 + }, + { + "start": 21976.98, + "end": 21978.66, + "probability": 0.7404 + }, + { + "start": 21979.5, + "end": 21980.52, + "probability": 0.7945 + }, + { + "start": 21981.5, + "end": 21985.92, + "probability": 0.8859 + }, + { + "start": 21986.42, + "end": 21987.64, + "probability": 0.5972 + }, + { + "start": 21987.64, + "end": 21990.4, + "probability": 0.0749 + }, + { + "start": 21990.66, + "end": 21994.24, + "probability": 0.122 + }, + { + "start": 22000.2, + "end": 22000.58, + "probability": 0.0461 + }, + { + "start": 22000.58, + "end": 22000.58, + "probability": 0.0853 + }, + { + "start": 22000.58, + "end": 22000.58, + "probability": 0.1072 + }, + { + "start": 22000.58, + "end": 22002.2, + "probability": 0.2265 + }, + { + "start": 22003.12, + "end": 22006.74, + "probability": 0.6003 + }, + { + "start": 22007.6, + "end": 22009.84, + "probability": 0.7615 + }, + { + "start": 22010.26, + "end": 22012.4, + "probability": 0.9945 + }, + { + "start": 22012.8, + "end": 22013.64, + "probability": 0.9441 + }, + { + "start": 22014.58, + "end": 22014.96, + "probability": 0.7469 + }, + { + "start": 22015.84, + "end": 22017.4, + "probability": 0.5097 + }, + { + "start": 22018.6, + "end": 22019.72, + "probability": 0.8352 + }, + { + "start": 22029.14, + "end": 22031.04, + "probability": 0.2539 + }, + { + "start": 22032.8, + "end": 22032.8, + "probability": 0.1788 + }, + { + "start": 22032.82, + "end": 22032.96, + "probability": 0.0863 + }, + { + "start": 22033.0, + "end": 22033.1, + "probability": 0.146 + }, + { + "start": 22033.1, + "end": 22033.16, + "probability": 0.0502 + }, + { + "start": 22033.16, + "end": 22033.74, + "probability": 0.1547 + }, + { + "start": 22066.26, + "end": 22068.56, + "probability": 0.9797 + }, + { + "start": 22069.14, + "end": 22071.38, + "probability": 0.9878 + }, + { + "start": 22072.06, + "end": 22072.32, + "probability": 0.6882 + }, + { + "start": 22072.48, + "end": 22073.48, + "probability": 0.8703 + }, + { + "start": 22073.8, + "end": 22075.94, + "probability": 0.8501 + }, + { + "start": 22076.38, + "end": 22078.12, + "probability": 0.8358 + }, + { + "start": 22078.72, + "end": 22080.86, + "probability": 0.9795 + }, + { + "start": 22081.22, + "end": 22082.72, + "probability": 0.9963 + }, + { + "start": 22083.88, + "end": 22085.86, + "probability": 0.9569 + }, + { + "start": 22085.88, + "end": 22087.1, + "probability": 0.9205 + }, + { + "start": 22087.6, + "end": 22088.28, + "probability": 0.7732 + }, + { + "start": 22088.62, + "end": 22092.16, + "probability": 0.8997 + }, + { + "start": 22092.5, + "end": 22092.7, + "probability": 0.2861 + }, + { + "start": 22093.44, + "end": 22099.12, + "probability": 0.9831 + }, + { + "start": 22099.12, + "end": 22103.48, + "probability": 0.9959 + }, + { + "start": 22104.36, + "end": 22105.3, + "probability": 0.9727 + }, + { + "start": 22105.86, + "end": 22106.78, + "probability": 0.7851 + }, + { + "start": 22106.92, + "end": 22108.1, + "probability": 0.973 + }, + { + "start": 22108.52, + "end": 22110.3, + "probability": 0.998 + }, + { + "start": 22111.26, + "end": 22114.24, + "probability": 0.9385 + }, + { + "start": 22114.66, + "end": 22118.38, + "probability": 0.8042 + }, + { + "start": 22118.44, + "end": 22120.6, + "probability": 0.778 + }, + { + "start": 22120.8, + "end": 22124.6, + "probability": 0.9937 + }, + { + "start": 22124.78, + "end": 22126.39, + "probability": 0.9663 + }, + { + "start": 22126.88, + "end": 22129.08, + "probability": 0.9976 + }, + { + "start": 22129.98, + "end": 22130.72, + "probability": 0.7723 + }, + { + "start": 22132.12, + "end": 22135.92, + "probability": 0.9775 + }, + { + "start": 22136.78, + "end": 22141.46, + "probability": 0.9089 + }, + { + "start": 22141.96, + "end": 22146.4, + "probability": 0.9982 + }, + { + "start": 22146.4, + "end": 22150.88, + "probability": 0.9963 + }, + { + "start": 22151.48, + "end": 22152.32, + "probability": 0.6206 + }, + { + "start": 22152.4, + "end": 22155.94, + "probability": 0.9287 + }, + { + "start": 22155.94, + "end": 22159.4, + "probability": 0.9945 + }, + { + "start": 22160.02, + "end": 22165.56, + "probability": 0.995 + }, + { + "start": 22165.56, + "end": 22169.82, + "probability": 0.8035 + }, + { + "start": 22170.32, + "end": 22171.5, + "probability": 0.8976 + }, + { + "start": 22171.86, + "end": 22172.8, + "probability": 0.5139 + }, + { + "start": 22172.92, + "end": 22175.36, + "probability": 0.7838 + }, + { + "start": 22175.92, + "end": 22177.16, + "probability": 0.9393 + }, + { + "start": 22177.44, + "end": 22179.16, + "probability": 0.9467 + }, + { + "start": 22179.62, + "end": 22182.98, + "probability": 0.8826 + }, + { + "start": 22183.42, + "end": 22184.16, + "probability": 0.6008 + }, + { + "start": 22184.66, + "end": 22185.96, + "probability": 0.9609 + }, + { + "start": 22186.32, + "end": 22188.84, + "probability": 0.868 + }, + { + "start": 22189.32, + "end": 22190.56, + "probability": 0.8885 + }, + { + "start": 22190.92, + "end": 22193.7, + "probability": 0.9103 + }, + { + "start": 22194.34, + "end": 22195.04, + "probability": 0.9727 + }, + { + "start": 22195.94, + "end": 22196.7, + "probability": 0.751 + }, + { + "start": 22197.68, + "end": 22198.24, + "probability": 0.8108 + }, + { + "start": 22198.32, + "end": 22200.2, + "probability": 0.8467 + }, + { + "start": 22200.68, + "end": 22203.78, + "probability": 0.8599 + }, + { + "start": 22204.18, + "end": 22208.36, + "probability": 0.973 + }, + { + "start": 22208.82, + "end": 22211.7, + "probability": 0.9608 + }, + { + "start": 22212.1, + "end": 22215.76, + "probability": 0.9982 + }, + { + "start": 22216.37, + "end": 22219.74, + "probability": 0.9954 + }, + { + "start": 22219.74, + "end": 22223.32, + "probability": 0.9651 + }, + { + "start": 22223.72, + "end": 22224.98, + "probability": 0.8385 + }, + { + "start": 22225.56, + "end": 22227.88, + "probability": 0.4978 + }, + { + "start": 22228.0, + "end": 22228.62, + "probability": 0.6329 + }, + { + "start": 22228.64, + "end": 22229.61, + "probability": 0.8704 + }, + { + "start": 22230.72, + "end": 22231.32, + "probability": 0.679 + }, + { + "start": 22231.7, + "end": 22232.18, + "probability": 0.7365 + }, + { + "start": 22232.26, + "end": 22232.8, + "probability": 0.8434 + }, + { + "start": 22233.22, + "end": 22235.24, + "probability": 0.9316 + }, + { + "start": 22235.5, + "end": 22236.22, + "probability": 0.6137 + }, + { + "start": 22236.62, + "end": 22239.92, + "probability": 0.938 + }, + { + "start": 22240.04, + "end": 22244.18, + "probability": 0.9609 + }, + { + "start": 22244.24, + "end": 22245.02, + "probability": 0.748 + }, + { + "start": 22245.64, + "end": 22250.58, + "probability": 0.9391 + }, + { + "start": 22250.98, + "end": 22252.12, + "probability": 0.9591 + }, + { + "start": 22252.6, + "end": 22258.2, + "probability": 0.9854 + }, + { + "start": 22258.7, + "end": 22259.02, + "probability": 0.7932 + }, + { + "start": 22259.12, + "end": 22261.44, + "probability": 0.8699 + }, + { + "start": 22261.62, + "end": 22263.18, + "probability": 0.9709 + }, + { + "start": 22263.38, + "end": 22264.26, + "probability": 0.9907 + }, + { + "start": 22264.98, + "end": 22269.28, + "probability": 0.9861 + }, + { + "start": 22269.58, + "end": 22272.72, + "probability": 0.9746 + }, + { + "start": 22273.06, + "end": 22275.46, + "probability": 0.8365 + }, + { + "start": 22275.58, + "end": 22277.92, + "probability": 0.7069 + }, + { + "start": 22278.0, + "end": 22278.82, + "probability": 0.7811 + }, + { + "start": 22279.26, + "end": 22281.6, + "probability": 0.9877 + }, + { + "start": 22282.12, + "end": 22283.14, + "probability": 0.8024 + }, + { + "start": 22283.72, + "end": 22284.36, + "probability": 0.8629 + }, + { + "start": 22284.44, + "end": 22284.7, + "probability": 0.8694 + }, + { + "start": 22284.82, + "end": 22288.22, + "probability": 0.9992 + }, + { + "start": 22288.36, + "end": 22289.36, + "probability": 0.8809 + }, + { + "start": 22289.44, + "end": 22292.6, + "probability": 0.9934 + }, + { + "start": 22292.6, + "end": 22296.36, + "probability": 0.9985 + }, + { + "start": 22296.42, + "end": 22297.12, + "probability": 0.7002 + }, + { + "start": 22298.14, + "end": 22299.68, + "probability": 0.8867 + }, + { + "start": 22299.86, + "end": 22301.0, + "probability": 0.9466 + }, + { + "start": 22301.16, + "end": 22301.54, + "probability": 0.5265 + }, + { + "start": 22301.6, + "end": 22302.16, + "probability": 0.8015 + }, + { + "start": 22302.38, + "end": 22303.36, + "probability": 0.8136 + }, + { + "start": 22303.9, + "end": 22306.74, + "probability": 0.9626 + }, + { + "start": 22306.74, + "end": 22310.36, + "probability": 0.9927 + }, + { + "start": 22310.52, + "end": 22310.98, + "probability": 0.3841 + }, + { + "start": 22311.18, + "end": 22311.94, + "probability": 0.8487 + }, + { + "start": 22311.98, + "end": 22313.27, + "probability": 0.9402 + }, + { + "start": 22313.54, + "end": 22313.76, + "probability": 0.7839 + }, + { + "start": 22314.34, + "end": 22314.8, + "probability": 0.8011 + }, + { + "start": 22314.94, + "end": 22318.84, + "probability": 0.9756 + }, + { + "start": 22318.84, + "end": 22321.64, + "probability": 0.9976 + }, + { + "start": 22321.82, + "end": 22322.96, + "probability": 0.5977 + }, + { + "start": 22322.96, + "end": 22325.06, + "probability": 0.5558 + }, + { + "start": 22325.8, + "end": 22326.8, + "probability": 0.515 + }, + { + "start": 22326.86, + "end": 22331.02, + "probability": 0.9952 + }, + { + "start": 22331.18, + "end": 22333.3, + "probability": 0.717 + }, + { + "start": 22333.38, + "end": 22339.26, + "probability": 0.9754 + }, + { + "start": 22340.22, + "end": 22343.44, + "probability": 0.9413 + }, + { + "start": 22344.12, + "end": 22346.62, + "probability": 0.9435 + }, + { + "start": 22347.02, + "end": 22350.78, + "probability": 0.9961 + }, + { + "start": 22351.28, + "end": 22356.22, + "probability": 0.9956 + }, + { + "start": 22356.4, + "end": 22357.56, + "probability": 0.6896 + }, + { + "start": 22357.6, + "end": 22361.82, + "probability": 0.7599 + }, + { + "start": 22362.02, + "end": 22364.84, + "probability": 0.9172 + }, + { + "start": 22364.92, + "end": 22365.54, + "probability": 0.8756 + }, + { + "start": 22365.78, + "end": 22366.14, + "probability": 0.8334 + }, + { + "start": 22367.06, + "end": 22368.38, + "probability": 0.6117 + }, + { + "start": 22369.62, + "end": 22371.08, + "probability": 0.6244 + }, + { + "start": 22372.84, + "end": 22373.18, + "probability": 0.4046 + }, + { + "start": 22373.86, + "end": 22374.26, + "probability": 0.4901 + }, + { + "start": 22380.16, + "end": 22381.04, + "probability": 0.5814 + }, + { + "start": 22381.18, + "end": 22381.42, + "probability": 0.3096 + }, + { + "start": 22381.52, + "end": 22382.48, + "probability": 0.8124 + }, + { + "start": 22382.6, + "end": 22383.28, + "probability": 0.593 + }, + { + "start": 22383.84, + "end": 22387.32, + "probability": 0.1825 + }, + { + "start": 22387.44, + "end": 22388.35, + "probability": 0.4217 + }, + { + "start": 22389.0, + "end": 22389.16, + "probability": 0.0567 + }, + { + "start": 22389.16, + "end": 22389.7, + "probability": 0.0997 + }, + { + "start": 22389.8, + "end": 22391.96, + "probability": 0.3192 + }, + { + "start": 22392.96, + "end": 22393.9, + "probability": 0.8446 + }, + { + "start": 22393.94, + "end": 22394.06, + "probability": 0.6263 + }, + { + "start": 22394.28, + "end": 22394.67, + "probability": 0.4459 + }, + { + "start": 22395.0, + "end": 22395.4, + "probability": 0.034 + }, + { + "start": 22395.46, + "end": 22397.14, + "probability": 0.5542 + }, + { + "start": 22397.3, + "end": 22397.44, + "probability": 0.7191 + }, + { + "start": 22398.6, + "end": 22400.22, + "probability": 0.6731 + }, + { + "start": 22400.38, + "end": 22401.78, + "probability": 0.9332 + }, + { + "start": 22406.6, + "end": 22412.6, + "probability": 0.59 + }, + { + "start": 22413.66, + "end": 22416.56, + "probability": 0.5468 + }, + { + "start": 22417.82, + "end": 22419.78, + "probability": 0.928 + }, + { + "start": 22421.16, + "end": 22421.98, + "probability": 0.8993 + }, + { + "start": 22422.29, + "end": 22426.86, + "probability": 0.9834 + }, + { + "start": 22427.02, + "end": 22427.96, + "probability": 0.268 + }, + { + "start": 22428.24, + "end": 22429.56, + "probability": 0.5998 + }, + { + "start": 22430.0, + "end": 22433.2, + "probability": 0.8491 + }, + { + "start": 22433.94, + "end": 22434.14, + "probability": 0.3509 + }, + { + "start": 22434.18, + "end": 22437.81, + "probability": 0.9791 + }, + { + "start": 22439.48, + "end": 22440.91, + "probability": 0.9942 + }, + { + "start": 22441.72, + "end": 22444.28, + "probability": 0.999 + }, + { + "start": 22444.44, + "end": 22445.46, + "probability": 0.9836 + }, + { + "start": 22446.22, + "end": 22449.44, + "probability": 0.9929 + }, + { + "start": 22449.64, + "end": 22451.3, + "probability": 0.476 + }, + { + "start": 22451.3, + "end": 22453.45, + "probability": 0.9597 + }, + { + "start": 22453.76, + "end": 22454.1, + "probability": 0.7013 + }, + { + "start": 22455.9, + "end": 22457.56, + "probability": 0.9541 + }, + { + "start": 22459.32, + "end": 22461.36, + "probability": 0.9604 + }, + { + "start": 22462.0, + "end": 22463.44, + "probability": 0.8081 + }, + { + "start": 22464.3, + "end": 22466.34, + "probability": 0.994 + }, + { + "start": 22467.0, + "end": 22474.32, + "probability": 0.996 + }, + { + "start": 22475.2, + "end": 22478.52, + "probability": 0.9899 + }, + { + "start": 22478.52, + "end": 22482.14, + "probability": 0.9985 + }, + { + "start": 22483.04, + "end": 22485.84, + "probability": 0.9785 + }, + { + "start": 22486.68, + "end": 22489.26, + "probability": 0.9994 + }, + { + "start": 22489.4, + "end": 22489.7, + "probability": 0.6255 + }, + { + "start": 22489.84, + "end": 22493.22, + "probability": 0.9515 + }, + { + "start": 22493.36, + "end": 22494.84, + "probability": 0.9539 + }, + { + "start": 22495.36, + "end": 22496.32, + "probability": 0.694 + }, + { + "start": 22496.44, + "end": 22497.34, + "probability": 0.9526 + }, + { + "start": 22497.52, + "end": 22500.56, + "probability": 0.9614 + }, + { + "start": 22500.64, + "end": 22503.32, + "probability": 0.9518 + }, + { + "start": 22504.2, + "end": 22505.26, + "probability": 0.6276 + }, + { + "start": 22505.46, + "end": 22511.78, + "probability": 0.9093 + }, + { + "start": 22512.24, + "end": 22517.96, + "probability": 0.9549 + }, + { + "start": 22518.74, + "end": 22519.82, + "probability": 0.9854 + }, + { + "start": 22523.64, + "end": 22524.98, + "probability": 0.8029 + }, + { + "start": 22525.58, + "end": 22529.94, + "probability": 0.9758 + }, + { + "start": 22530.92, + "end": 22531.22, + "probability": 0.1676 + }, + { + "start": 22531.22, + "end": 22535.48, + "probability": 0.979 + }, + { + "start": 22535.52, + "end": 22536.46, + "probability": 0.6943 + }, + { + "start": 22537.14, + "end": 22537.44, + "probability": 0.0185 + }, + { + "start": 22537.96, + "end": 22547.46, + "probability": 0.9399 + }, + { + "start": 22547.7, + "end": 22549.5, + "probability": 0.9819 + }, + { + "start": 22550.28, + "end": 22554.2, + "probability": 0.9753 + }, + { + "start": 22554.44, + "end": 22555.88, + "probability": 0.5769 + }, + { + "start": 22556.52, + "end": 22559.88, + "probability": 0.8536 + }, + { + "start": 22560.02, + "end": 22562.02, + "probability": 0.6997 + }, + { + "start": 22562.02, + "end": 22564.68, + "probability": 0.9331 + }, + { + "start": 22565.0, + "end": 22568.54, + "probability": 0.9706 + }, + { + "start": 22569.02, + "end": 22572.22, + "probability": 0.9922 + }, + { + "start": 22572.34, + "end": 22576.28, + "probability": 0.9839 + }, + { + "start": 22576.36, + "end": 22577.24, + "probability": 0.6187 + }, + { + "start": 22577.36, + "end": 22578.94, + "probability": 0.4754 + }, + { + "start": 22579.0, + "end": 22580.76, + "probability": 0.9026 + }, + { + "start": 22580.94, + "end": 22582.46, + "probability": 0.9287 + }, + { + "start": 22582.98, + "end": 22584.6, + "probability": 0.6383 + }, + { + "start": 22585.82, + "end": 22587.94, + "probability": 0.7555 + }, + { + "start": 22589.98, + "end": 22593.5, + "probability": 0.9962 + }, + { + "start": 22593.5, + "end": 22597.12, + "probability": 0.9946 + }, + { + "start": 22597.3, + "end": 22601.52, + "probability": 0.9773 + }, + { + "start": 22602.12, + "end": 22605.68, + "probability": 0.9939 + }, + { + "start": 22605.68, + "end": 22610.14, + "probability": 0.9825 + }, + { + "start": 22610.18, + "end": 22612.62, + "probability": 0.9867 + }, + { + "start": 22613.14, + "end": 22615.41, + "probability": 0.6544 + }, + { + "start": 22615.52, + "end": 22619.12, + "probability": 0.9837 + }, + { + "start": 22619.22, + "end": 22621.24, + "probability": 0.9073 + }, + { + "start": 22621.38, + "end": 22622.56, + "probability": 0.8989 + }, + { + "start": 22624.12, + "end": 22628.32, + "probability": 0.9957 + }, + { + "start": 22629.28, + "end": 22630.1, + "probability": 0.7583 + }, + { + "start": 22630.18, + "end": 22631.08, + "probability": 0.701 + }, + { + "start": 22631.22, + "end": 22632.34, + "probability": 0.8264 + }, + { + "start": 22632.36, + "end": 22634.06, + "probability": 0.8383 + }, + { + "start": 22634.22, + "end": 22634.54, + "probability": 0.5635 + }, + { + "start": 22636.64, + "end": 22638.04, + "probability": 0.9406 + }, + { + "start": 22639.28, + "end": 22639.46, + "probability": 0.2926 + }, + { + "start": 22639.9, + "end": 22646.68, + "probability": 0.9608 + }, + { + "start": 22647.16, + "end": 22651.6, + "probability": 0.9916 + }, + { + "start": 22651.6, + "end": 22655.6, + "probability": 0.9992 + }, + { + "start": 22656.04, + "end": 22662.16, + "probability": 0.9048 + }, + { + "start": 22662.22, + "end": 22664.08, + "probability": 0.8363 + }, + { + "start": 22664.9, + "end": 22669.38, + "probability": 0.9882 + }, + { + "start": 22669.38, + "end": 22674.76, + "probability": 0.984 + }, + { + "start": 22676.6, + "end": 22677.46, + "probability": 0.7756 + }, + { + "start": 22677.74, + "end": 22678.34, + "probability": 0.8156 + }, + { + "start": 22679.12, + "end": 22679.94, + "probability": 0.9613 + }, + { + "start": 22680.88, + "end": 22682.52, + "probability": 0.7717 + }, + { + "start": 22683.22, + "end": 22684.26, + "probability": 0.9168 + }, + { + "start": 22685.48, + "end": 22686.36, + "probability": 0.9667 + }, + { + "start": 22686.5, + "end": 22687.72, + "probability": 0.9577 + }, + { + "start": 22689.2, + "end": 22689.73, + "probability": 0.7112 + }, + { + "start": 22690.58, + "end": 22692.96, + "probability": 0.7615 + }, + { + "start": 22693.0, + "end": 22693.88, + "probability": 0.7633 + }, + { + "start": 22695.02, + "end": 22696.24, + "probability": 0.1583 + }, + { + "start": 22696.3, + "end": 22699.28, + "probability": 0.9694 + }, + { + "start": 22699.92, + "end": 22701.32, + "probability": 0.9794 + }, + { + "start": 22701.6, + "end": 22703.12, + "probability": 0.9257 + }, + { + "start": 22703.28, + "end": 22704.44, + "probability": 0.9012 + }, + { + "start": 22704.52, + "end": 22706.01, + "probability": 0.8548 + }, + { + "start": 22707.04, + "end": 22708.76, + "probability": 0.7623 + }, + { + "start": 22709.58, + "end": 22711.38, + "probability": 0.6421 + }, + { + "start": 22712.76, + "end": 22715.32, + "probability": 0.9691 + }, + { + "start": 22715.38, + "end": 22717.58, + "probability": 0.9978 + }, + { + "start": 22719.58, + "end": 22721.3, + "probability": 0.953 + }, + { + "start": 22722.12, + "end": 22724.22, + "probability": 0.9409 + }, + { + "start": 22724.34, + "end": 22724.38, + "probability": 0.1168 + }, + { + "start": 22724.42, + "end": 22727.42, + "probability": 0.7866 + }, + { + "start": 22727.56, + "end": 22728.28, + "probability": 0.071 + }, + { + "start": 22728.36, + "end": 22729.36, + "probability": 0.5742 + }, + { + "start": 22730.08, + "end": 22733.2, + "probability": 0.9775 + }, + { + "start": 22733.78, + "end": 22735.94, + "probability": 0.997 + }, + { + "start": 22736.56, + "end": 22738.38, + "probability": 0.9604 + }, + { + "start": 22739.36, + "end": 22743.02, + "probability": 0.981 + }, + { + "start": 22743.02, + "end": 22745.98, + "probability": 0.9979 + }, + { + "start": 22746.32, + "end": 22746.64, + "probability": 0.7169 + }, + { + "start": 22748.36, + "end": 22748.48, + "probability": 0.2729 + }, + { + "start": 22748.48, + "end": 22748.58, + "probability": 0.0841 + }, + { + "start": 22750.74, + "end": 22751.74, + "probability": 0.5943 + }, + { + "start": 22753.12, + "end": 22754.44, + "probability": 0.6402 + }, + { + "start": 22759.94, + "end": 22760.92, + "probability": 0.671 + }, + { + "start": 22761.96, + "end": 22763.02, + "probability": 0.515 + }, + { + "start": 22770.38, + "end": 22771.78, + "probability": 0.7 + }, + { + "start": 22772.68, + "end": 22774.2, + "probability": 0.6035 + }, + { + "start": 22775.5, + "end": 22778.02, + "probability": 0.9066 + }, + { + "start": 22778.02, + "end": 22778.02, + "probability": 0.0841 + }, + { + "start": 22778.02, + "end": 22778.02, + "probability": 0.2486 + }, + { + "start": 22778.02, + "end": 22779.55, + "probability": 0.3187 + }, + { + "start": 22780.14, + "end": 22782.26, + "probability": 0.6694 + }, + { + "start": 22783.12, + "end": 22787.68, + "probability": 0.9978 + }, + { + "start": 22788.18, + "end": 22792.34, + "probability": 0.9961 + }, + { + "start": 22792.6, + "end": 22796.02, + "probability": 0.993 + }, + { + "start": 22796.06, + "end": 22796.88, + "probability": 0.5609 + }, + { + "start": 22797.04, + "end": 22799.38, + "probability": 0.7823 + }, + { + "start": 22800.7, + "end": 22803.8, + "probability": 0.9973 + }, + { + "start": 22804.58, + "end": 22806.32, + "probability": 0.8114 + }, + { + "start": 22807.94, + "end": 22808.8, + "probability": 0.1218 + }, + { + "start": 22809.36, + "end": 22814.4, + "probability": 0.9922 + }, + { + "start": 22814.96, + "end": 22817.78, + "probability": 0.9947 + }, + { + "start": 22817.78, + "end": 22820.76, + "probability": 0.9832 + }, + { + "start": 22821.36, + "end": 22824.46, + "probability": 0.9694 + }, + { + "start": 22824.94, + "end": 22827.52, + "probability": 0.9974 + }, + { + "start": 22827.52, + "end": 22830.78, + "probability": 0.9913 + }, + { + "start": 22831.32, + "end": 22833.39, + "probability": 0.9866 + }, + { + "start": 22834.06, + "end": 22835.21, + "probability": 0.9886 + }, + { + "start": 22835.78, + "end": 22836.22, + "probability": 0.9939 + }, + { + "start": 22836.8, + "end": 22837.8, + "probability": 0.8163 + }, + { + "start": 22838.5, + "end": 22842.32, + "probability": 0.995 + }, + { + "start": 22842.56, + "end": 22843.72, + "probability": 0.9944 + }, + { + "start": 22844.44, + "end": 22847.9, + "probability": 0.9741 + }, + { + "start": 22848.72, + "end": 22849.28, + "probability": 0.9146 + }, + { + "start": 22849.58, + "end": 22851.16, + "probability": 0.9924 + }, + { + "start": 22851.18, + "end": 22851.88, + "probability": 0.743 + }, + { + "start": 22851.96, + "end": 22852.64, + "probability": 0.7411 + }, + { + "start": 22852.68, + "end": 22853.08, + "probability": 0.4434 + }, + { + "start": 22854.0, + "end": 22856.44, + "probability": 0.8711 + }, + { + "start": 22856.64, + "end": 22858.03, + "probability": 0.934 + }, + { + "start": 22858.62, + "end": 22861.34, + "probability": 0.9887 + }, + { + "start": 22861.46, + "end": 22862.12, + "probability": 0.8583 + }, + { + "start": 22862.66, + "end": 22864.02, + "probability": 0.8264 + }, + { + "start": 22864.1, + "end": 22866.46, + "probability": 0.9705 + }, + { + "start": 22866.8, + "end": 22867.04, + "probability": 0.5724 + }, + { + "start": 22867.28, + "end": 22868.9, + "probability": 0.9886 + }, + { + "start": 22869.04, + "end": 22872.92, + "probability": 0.8588 + }, + { + "start": 22873.08, + "end": 22874.62, + "probability": 0.9597 + }, + { + "start": 22875.28, + "end": 22876.68, + "probability": 0.7092 + }, + { + "start": 22876.82, + "end": 22876.82, + "probability": 0.1556 + }, + { + "start": 22876.82, + "end": 22879.34, + "probability": 0.9128 + }, + { + "start": 22879.4, + "end": 22882.78, + "probability": 0.5475 + }, + { + "start": 22883.32, + "end": 22886.7, + "probability": 0.9753 + }, + { + "start": 22887.52, + "end": 22889.1, + "probability": 0.974 + }, + { + "start": 22892.7, + "end": 22892.98, + "probability": 0.0361 + }, + { + "start": 22892.98, + "end": 22892.98, + "probability": 0.2474 + }, + { + "start": 22892.98, + "end": 22894.1, + "probability": 0.3595 + }, + { + "start": 22894.72, + "end": 22895.9, + "probability": 0.4634 + }, + { + "start": 22896.8, + "end": 22899.4, + "probability": 0.9355 + }, + { + "start": 22900.56, + "end": 22901.04, + "probability": 0.221 + }, + { + "start": 22901.92, + "end": 22902.36, + "probability": 0.0969 + }, + { + "start": 22902.6, + "end": 22902.64, + "probability": 0.1026 + }, + { + "start": 22902.64, + "end": 22902.96, + "probability": 0.0874 + }, + { + "start": 22903.46, + "end": 22905.7, + "probability": 0.3584 + }, + { + "start": 22906.5, + "end": 22909.3, + "probability": 0.5295 + }, + { + "start": 22909.92, + "end": 22912.3, + "probability": 0.6376 + }, + { + "start": 22912.96, + "end": 22913.2, + "probability": 0.2904 + }, + { + "start": 22913.34, + "end": 22913.58, + "probability": 0.6883 + }, + { + "start": 22914.38, + "end": 22915.48, + "probability": 0.7689 + }, + { + "start": 22915.54, + "end": 22916.66, + "probability": 0.8321 + }, + { + "start": 22917.16, + "end": 22919.62, + "probability": 0.9932 + }, + { + "start": 22920.58, + "end": 22921.52, + "probability": 0.9463 + }, + { + "start": 22922.16, + "end": 22923.57, + "probability": 0.9739 + }, + { + "start": 22925.42, + "end": 22926.02, + "probability": 0.129 + }, + { + "start": 22926.02, + "end": 22926.02, + "probability": 0.359 + }, + { + "start": 22926.02, + "end": 22926.58, + "probability": 0.9434 + }, + { + "start": 22927.4, + "end": 22929.34, + "probability": 0.1854 + }, + { + "start": 22929.54, + "end": 22930.86, + "probability": 0.7465 + }, + { + "start": 22930.94, + "end": 22935.34, + "probability": 0.9451 + }, + { + "start": 22935.62, + "end": 22937.44, + "probability": 0.98 + }, + { + "start": 22937.46, + "end": 22938.34, + "probability": 0.1151 + }, + { + "start": 22938.44, + "end": 22942.06, + "probability": 0.9821 + }, + { + "start": 22942.26, + "end": 22944.34, + "probability": 0.9721 + }, + { + "start": 22944.76, + "end": 22947.2, + "probability": 0.9915 + }, + { + "start": 22947.26, + "end": 22948.5, + "probability": 0.9746 + }, + { + "start": 22948.76, + "end": 22952.33, + "probability": 0.2937 + }, + { + "start": 22952.78, + "end": 22952.78, + "probability": 0.1215 + }, + { + "start": 22952.78, + "end": 22952.78, + "probability": 0.0242 + }, + { + "start": 22952.78, + "end": 22952.78, + "probability": 0.1542 + }, + { + "start": 22952.78, + "end": 22953.06, + "probability": 0.5066 + }, + { + "start": 22953.18, + "end": 22955.92, + "probability": 0.9971 + }, + { + "start": 22956.74, + "end": 22959.12, + "probability": 0.9272 + }, + { + "start": 22959.3, + "end": 22960.14, + "probability": 0.7126 + }, + { + "start": 22961.32, + "end": 22964.12, + "probability": 0.9512 + }, + { + "start": 22964.22, + "end": 22968.28, + "probability": 0.9798 + }, + { + "start": 22968.92, + "end": 22969.84, + "probability": 0.6174 + }, + { + "start": 22970.4, + "end": 22974.82, + "probability": 0.8962 + }, + { + "start": 22975.48, + "end": 22978.8, + "probability": 0.4553 + }, + { + "start": 22978.8, + "end": 22979.31, + "probability": 0.1794 + }, + { + "start": 22979.9, + "end": 22980.64, + "probability": 0.7871 + }, + { + "start": 22981.4, + "end": 22983.56, + "probability": 0.9651 + }, + { + "start": 22984.06, + "end": 22987.42, + "probability": 0.9753 + }, + { + "start": 22988.0, + "end": 22990.04, + "probability": 0.9221 + }, + { + "start": 22990.64, + "end": 22994.28, + "probability": 0.8804 + }, + { + "start": 22994.34, + "end": 22994.56, + "probability": 0.0452 + }, + { + "start": 22994.56, + "end": 22994.56, + "probability": 0.7778 + }, + { + "start": 22994.56, + "end": 22995.3, + "probability": 0.3647 + }, + { + "start": 22995.74, + "end": 22996.6, + "probability": 0.977 + }, + { + "start": 22996.6, + "end": 22997.58, + "probability": 0.5765 + }, + { + "start": 22997.94, + "end": 22998.66, + "probability": 0.9248 + }, + { + "start": 22998.66, + "end": 22999.64, + "probability": 0.7799 + }, + { + "start": 23000.06, + "end": 23000.9, + "probability": 0.8261 + }, + { + "start": 23001.88, + "end": 23003.12, + "probability": 0.8702 + }, + { + "start": 23003.72, + "end": 23005.42, + "probability": 0.9459 + }, + { + "start": 23005.94, + "end": 23008.24, + "probability": 0.4941 + }, + { + "start": 23008.26, + "end": 23009.16, + "probability": 0.9424 + }, + { + "start": 23009.7, + "end": 23017.08, + "probability": 0.9886 + }, + { + "start": 23017.94, + "end": 23020.08, + "probability": 0.9255 + }, + { + "start": 23020.72, + "end": 23020.88, + "probability": 0.6821 + }, + { + "start": 23020.96, + "end": 23021.26, + "probability": 0.9433 + }, + { + "start": 23021.32, + "end": 23022.9, + "probability": 0.9384 + }, + { + "start": 23023.14, + "end": 23023.8, + "probability": 0.2942 + }, + { + "start": 23023.92, + "end": 23025.04, + "probability": 0.5883 + }, + { + "start": 23026.0, + "end": 23028.64, + "probability": 0.9305 + }, + { + "start": 23029.06, + "end": 23031.9, + "probability": 0.8943 + }, + { + "start": 23032.56, + "end": 23034.46, + "probability": 0.9578 + }, + { + "start": 23035.0, + "end": 23037.58, + "probability": 0.9978 + }, + { + "start": 23038.04, + "end": 23038.9, + "probability": 0.6951 + }, + { + "start": 23039.0, + "end": 23039.82, + "probability": 0.9556 + }, + { + "start": 23040.34, + "end": 23040.6, + "probability": 0.7385 + }, + { + "start": 23041.02, + "end": 23042.9, + "probability": 0.8456 + }, + { + "start": 23046.94, + "end": 23047.52, + "probability": 0.2866 + }, + { + "start": 23047.6, + "end": 23048.02, + "probability": 0.2351 + }, + { + "start": 23053.38, + "end": 23054.98, + "probability": 0.595 + }, + { + "start": 23055.08, + "end": 23055.28, + "probability": 0.6863 + }, + { + "start": 23056.56, + "end": 23057.84, + "probability": 0.7261 + }, + { + "start": 23058.38, + "end": 23061.7, + "probability": 0.6884 + }, + { + "start": 23064.12, + "end": 23064.68, + "probability": 0.0106 + }, + { + "start": 23065.7, + "end": 23066.24, + "probability": 0.4258 + }, + { + "start": 23072.78, + "end": 23073.86, + "probability": 0.8132 + }, + { + "start": 23074.22, + "end": 23074.86, + "probability": 0.0652 + }, + { + "start": 23075.66, + "end": 23076.08, + "probability": 0.3126 + }, + { + "start": 23076.08, + "end": 23077.0, + "probability": 0.4109 + }, + { + "start": 23078.34, + "end": 23080.96, + "probability": 0.818 + }, + { + "start": 23081.38, + "end": 23082.89, + "probability": 0.3655 + }, + { + "start": 23084.04, + "end": 23084.84, + "probability": 0.8004 + }, + { + "start": 23088.9, + "end": 23089.62, + "probability": 0.9787 + }, + { + "start": 23090.36, + "end": 23091.2, + "probability": 0.3161 + }, + { + "start": 23091.76, + "end": 23093.25, + "probability": 0.542 + }, + { + "start": 23093.44, + "end": 23093.92, + "probability": 0.6404 + }, + { + "start": 23093.92, + "end": 23093.99, + "probability": 0.3438 + }, + { + "start": 23094.52, + "end": 23094.86, + "probability": 0.5127 + }, + { + "start": 23096.1, + "end": 23099.12, + "probability": 0.7602 + }, + { + "start": 23099.42, + "end": 23099.88, + "probability": 0.7798 + }, + { + "start": 23100.14, + "end": 23100.5, + "probability": 0.6876 + }, + { + "start": 23101.5, + "end": 23102.48, + "probability": 0.5814 + }, + { + "start": 23102.48, + "end": 23103.1, + "probability": 0.8605 + }, + { + "start": 23103.54, + "end": 23104.4, + "probability": 0.8416 + }, + { + "start": 23104.82, + "end": 23106.42, + "probability": 0.7742 + }, + { + "start": 23106.5, + "end": 23109.28, + "probability": 0.9653 + }, + { + "start": 23109.44, + "end": 23112.78, + "probability": 0.8941 + }, + { + "start": 23113.52, + "end": 23118.06, + "probability": 0.9751 + }, + { + "start": 23118.2, + "end": 23120.32, + "probability": 0.8479 + }, + { + "start": 23122.66, + "end": 23122.98, + "probability": 0.7021 + }, + { + "start": 23123.8, + "end": 23125.04, + "probability": 0.999 + }, + { + "start": 23126.56, + "end": 23131.76, + "probability": 0.9992 + }, + { + "start": 23133.5, + "end": 23134.94, + "probability": 0.9275 + }, + { + "start": 23136.7, + "end": 23140.34, + "probability": 0.9944 + }, + { + "start": 23140.46, + "end": 23146.42, + "probability": 0.9976 + }, + { + "start": 23147.52, + "end": 23148.78, + "probability": 0.5854 + }, + { + "start": 23149.7, + "end": 23153.16, + "probability": 0.9172 + }, + { + "start": 23154.08, + "end": 23159.72, + "probability": 0.9535 + }, + { + "start": 23159.72, + "end": 23165.8, + "probability": 0.9403 + }, + { + "start": 23166.6, + "end": 23167.02, + "probability": 0.9092 + }, + { + "start": 23167.66, + "end": 23168.1, + "probability": 0.728 + }, + { + "start": 23168.22, + "end": 23171.62, + "probability": 0.8202 + }, + { + "start": 23173.24, + "end": 23174.14, + "probability": 0.696 + }, + { + "start": 23175.34, + "end": 23180.06, + "probability": 0.9924 + }, + { + "start": 23181.4, + "end": 23183.36, + "probability": 0.9792 + }, + { + "start": 23184.12, + "end": 23186.01, + "probability": 0.9822 + }, + { + "start": 23186.52, + "end": 23189.76, + "probability": 0.9867 + }, + { + "start": 23190.4, + "end": 23193.55, + "probability": 0.9789 + }, + { + "start": 23194.56, + "end": 23195.77, + "probability": 0.6743 + }, + { + "start": 23197.26, + "end": 23201.04, + "probability": 0.9644 + }, + { + "start": 23201.22, + "end": 23202.66, + "probability": 0.9456 + }, + { + "start": 23202.8, + "end": 23204.16, + "probability": 0.9314 + }, + { + "start": 23204.66, + "end": 23207.42, + "probability": 0.8879 + }, + { + "start": 23208.64, + "end": 23212.16, + "probability": 0.9876 + }, + { + "start": 23213.0, + "end": 23215.08, + "probability": 0.8072 + }, + { + "start": 23215.08, + "end": 23215.52, + "probability": 0.9583 + }, + { + "start": 23216.02, + "end": 23217.06, + "probability": 0.9449 + }, + { + "start": 23218.06, + "end": 23219.05, + "probability": 0.9966 + }, + { + "start": 23219.46, + "end": 23220.6, + "probability": 0.1142 + }, + { + "start": 23221.12, + "end": 23221.7, + "probability": 0.1707 + }, + { + "start": 23222.68, + "end": 23226.62, + "probability": 0.9818 + }, + { + "start": 23227.91, + "end": 23228.5, + "probability": 0.0304 + }, + { + "start": 23228.74, + "end": 23230.0, + "probability": 0.8293 + }, + { + "start": 23231.28, + "end": 23233.43, + "probability": 0.8145 + }, + { + "start": 23234.42, + "end": 23238.46, + "probability": 0.9423 + }, + { + "start": 23238.98, + "end": 23239.98, + "probability": 0.7297 + }, + { + "start": 23240.0, + "end": 23240.8, + "probability": 0.9814 + }, + { + "start": 23243.18, + "end": 23243.76, + "probability": 0.0812 + }, + { + "start": 23243.86, + "end": 23246.02, + "probability": 0.7518 + }, + { + "start": 23246.7, + "end": 23247.94, + "probability": 0.9583 + }, + { + "start": 23248.0, + "end": 23250.44, + "probability": 0.9972 + }, + { + "start": 23250.46, + "end": 23251.86, + "probability": 0.7245 + }, + { + "start": 23251.98, + "end": 23254.54, + "probability": 0.06 + }, + { + "start": 23254.66, + "end": 23257.72, + "probability": 0.9752 + }, + { + "start": 23257.86, + "end": 23259.28, + "probability": 0.9509 + }, + { + "start": 23260.2, + "end": 23263.4, + "probability": 0.9503 + }, + { + "start": 23264.14, + "end": 23265.88, + "probability": 0.9541 + }, + { + "start": 23266.04, + "end": 23267.18, + "probability": 0.765 + }, + { + "start": 23268.1, + "end": 23268.86, + "probability": 0.0938 + }, + { + "start": 23268.86, + "end": 23270.54, + "probability": 0.6536 + }, + { + "start": 23270.54, + "end": 23272.06, + "probability": 0.4224 + }, + { + "start": 23272.78, + "end": 23273.0, + "probability": 0.02 + }, + { + "start": 23273.0, + "end": 23273.45, + "probability": 0.3258 + }, + { + "start": 23274.14, + "end": 23274.66, + "probability": 0.3516 + }, + { + "start": 23274.82, + "end": 23276.38, + "probability": 0.6461 + }, + { + "start": 23277.18, + "end": 23277.58, + "probability": 0.5063 + }, + { + "start": 23277.73, + "end": 23278.42, + "probability": 0.0889 + }, + { + "start": 23278.5, + "end": 23281.96, + "probability": 0.9771 + }, + { + "start": 23283.6, + "end": 23284.96, + "probability": 0.1535 + }, + { + "start": 23285.14, + "end": 23290.68, + "probability": 0.4996 + }, + { + "start": 23292.42, + "end": 23295.04, + "probability": 0.8787 + }, + { + "start": 23296.02, + "end": 23296.8, + "probability": 0.7382 + }, + { + "start": 23297.4, + "end": 23300.96, + "probability": 0.8789 + }, + { + "start": 23301.08, + "end": 23303.0, + "probability": 0.6626 + }, + { + "start": 23303.68, + "end": 23305.88, + "probability": 0.421 + }, + { + "start": 23305.92, + "end": 23307.2, + "probability": 0.8564 + }, + { + "start": 23307.78, + "end": 23308.9, + "probability": 0.8819 + }, + { + "start": 23309.86, + "end": 23311.58, + "probability": 0.9914 + }, + { + "start": 23312.18, + "end": 23314.72, + "probability": 0.8499 + }, + { + "start": 23315.34, + "end": 23319.94, + "probability": 0.9591 + }, + { + "start": 23320.48, + "end": 23322.9, + "probability": 0.9602 + }, + { + "start": 23323.18, + "end": 23325.16, + "probability": 0.9974 + }, + { + "start": 23325.74, + "end": 23326.62, + "probability": 0.9866 + }, + { + "start": 23327.18, + "end": 23331.36, + "probability": 0.9959 + }, + { + "start": 23331.8, + "end": 23332.4, + "probability": 0.6581 + }, + { + "start": 23332.46, + "end": 23333.0, + "probability": 0.9373 + }, + { + "start": 23333.6, + "end": 23333.96, + "probability": 0.5541 + }, + { + "start": 23334.18, + "end": 23335.42, + "probability": 0.6986 + }, + { + "start": 23338.38, + "end": 23338.88, + "probability": 0.6794 + }, + { + "start": 23358.06, + "end": 23359.45, + "probability": 0.7356 + }, + { + "start": 23359.88, + "end": 23361.16, + "probability": 0.7328 + }, + { + "start": 23363.1, + "end": 23365.82, + "probability": 0.9583 + }, + { + "start": 23365.94, + "end": 23367.1, + "probability": 0.8345 + }, + { + "start": 23367.88, + "end": 23368.93, + "probability": 0.9977 + }, + { + "start": 23369.96, + "end": 23371.3, + "probability": 0.9412 + }, + { + "start": 23371.84, + "end": 23377.12, + "probability": 0.9836 + }, + { + "start": 23377.62, + "end": 23378.62, + "probability": 0.7957 + }, + { + "start": 23379.64, + "end": 23382.54, + "probability": 0.9929 + }, + { + "start": 23382.54, + "end": 23384.58, + "probability": 0.9989 + }, + { + "start": 23385.38, + "end": 23387.84, + "probability": 0.9915 + }, + { + "start": 23388.06, + "end": 23388.96, + "probability": 0.8895 + }, + { + "start": 23389.82, + "end": 23392.22, + "probability": 0.9206 + }, + { + "start": 23392.5, + "end": 23393.74, + "probability": 0.7636 + }, + { + "start": 23394.78, + "end": 23395.89, + "probability": 0.9714 + }, + { + "start": 23395.98, + "end": 23396.52, + "probability": 0.9061 + }, + { + "start": 23396.72, + "end": 23399.78, + "probability": 0.9635 + }, + { + "start": 23399.78, + "end": 23401.94, + "probability": 0.9907 + }, + { + "start": 23402.84, + "end": 23404.48, + "probability": 0.845 + }, + { + "start": 23406.38, + "end": 23407.24, + "probability": 0.8375 + }, + { + "start": 23409.08, + "end": 23410.0, + "probability": 0.932 + }, + { + "start": 23410.1, + "end": 23411.76, + "probability": 0.5454 + }, + { + "start": 23411.78, + "end": 23417.32, + "probability": 0.936 + }, + { + "start": 23418.08, + "end": 23425.32, + "probability": 0.9937 + }, + { + "start": 23426.04, + "end": 23427.96, + "probability": 0.9321 + }, + { + "start": 23428.06, + "end": 23428.42, + "probability": 0.372 + }, + { + "start": 23428.5, + "end": 23429.08, + "probability": 0.8306 + }, + { + "start": 23429.2, + "end": 23434.36, + "probability": 0.96 + }, + { + "start": 23434.98, + "end": 23436.0, + "probability": 0.9158 + }, + { + "start": 23436.12, + "end": 23436.32, + "probability": 0.6844 + }, + { + "start": 23436.38, + "end": 23436.7, + "probability": 0.796 + }, + { + "start": 23436.84, + "end": 23440.4, + "probability": 0.972 + }, + { + "start": 23441.02, + "end": 23444.16, + "probability": 0.8396 + }, + { + "start": 23444.68, + "end": 23448.0, + "probability": 0.9741 + }, + { + "start": 23448.44, + "end": 23451.0, + "probability": 0.8123 + }, + { + "start": 23451.42, + "end": 23454.46, + "probability": 0.9951 + }, + { + "start": 23455.5, + "end": 23458.98, + "probability": 0.9673 + }, + { + "start": 23459.76, + "end": 23465.3, + "probability": 0.9756 + }, + { + "start": 23465.32, + "end": 23467.34, + "probability": 0.7817 + }, + { + "start": 23467.92, + "end": 23468.34, + "probability": 0.9934 + }, + { + "start": 23468.96, + "end": 23470.38, + "probability": 0.9819 + }, + { + "start": 23471.28, + "end": 23472.12, + "probability": 0.8886 + }, + { + "start": 23473.6, + "end": 23475.16, + "probability": 0.7891 + }, + { + "start": 23476.44, + "end": 23477.76, + "probability": 0.9961 + }, + { + "start": 23477.84, + "end": 23479.54, + "probability": 0.999 + }, + { + "start": 23480.68, + "end": 23482.9, + "probability": 0.9707 + }, + { + "start": 23483.58, + "end": 23484.76, + "probability": 0.9815 + }, + { + "start": 23484.92, + "end": 23489.16, + "probability": 0.8076 + }, + { + "start": 23490.24, + "end": 23491.16, + "probability": 0.7826 + }, + { + "start": 23492.76, + "end": 23494.44, + "probability": 0.9333 + }, + { + "start": 23495.04, + "end": 23499.12, + "probability": 0.65 + }, + { + "start": 23500.04, + "end": 23501.06, + "probability": 0.9388 + }, + { + "start": 23501.72, + "end": 23502.59, + "probability": 0.988 + }, + { + "start": 23503.96, + "end": 23506.82, + "probability": 0.9982 + }, + { + "start": 23506.82, + "end": 23509.9, + "probability": 0.9976 + }, + { + "start": 23510.4, + "end": 23512.76, + "probability": 0.9608 + }, + { + "start": 23512.78, + "end": 23514.38, + "probability": 0.596 + }, + { + "start": 23514.7, + "end": 23517.58, + "probability": 0.995 + }, + { + "start": 23518.34, + "end": 23519.37, + "probability": 0.8206 + }, + { + "start": 23520.3, + "end": 23521.28, + "probability": 0.6248 + }, + { + "start": 23522.2, + "end": 23523.9, + "probability": 0.9717 + }, + { + "start": 23524.32, + "end": 23525.39, + "probability": 0.8101 + }, + { + "start": 23526.38, + "end": 23529.52, + "probability": 0.9956 + }, + { + "start": 23530.16, + "end": 23532.26, + "probability": 0.9772 + }, + { + "start": 23533.1, + "end": 23534.53, + "probability": 0.8801 + }, + { + "start": 23535.18, + "end": 23537.5, + "probability": 0.8504 + }, + { + "start": 23537.58, + "end": 23542.4, + "probability": 0.9172 + }, + { + "start": 23544.46, + "end": 23544.88, + "probability": 0.8563 + }, + { + "start": 23545.7, + "end": 23550.42, + "probability": 0.6479 + }, + { + "start": 23551.08, + "end": 23553.14, + "probability": 0.9905 + }, + { + "start": 23553.72, + "end": 23557.64, + "probability": 0.9012 + }, + { + "start": 23557.72, + "end": 23558.6, + "probability": 0.6688 + }, + { + "start": 23558.68, + "end": 23561.08, + "probability": 0.9724 + }, + { + "start": 23562.14, + "end": 23565.32, + "probability": 0.9817 + }, + { + "start": 23565.88, + "end": 23568.28, + "probability": 0.8798 + }, + { + "start": 23568.96, + "end": 23570.06, + "probability": 0.9375 + }, + { + "start": 23570.66, + "end": 23573.34, + "probability": 0.9086 + }, + { + "start": 23574.86, + "end": 23575.64, + "probability": 0.8474 + }, + { + "start": 23577.32, + "end": 23582.2, + "probability": 0.9487 + }, + { + "start": 23582.94, + "end": 23588.4, + "probability": 0.9574 + }, + { + "start": 23590.44, + "end": 23590.62, + "probability": 0.3777 + }, + { + "start": 23591.98, + "end": 23593.22, + "probability": 0.6691 + }, + { + "start": 23594.0, + "end": 23596.04, + "probability": 0.9746 + }, + { + "start": 23596.2, + "end": 23596.74, + "probability": 0.8534 + }, + { + "start": 23596.76, + "end": 23598.48, + "probability": 0.9953 + }, + { + "start": 23599.84, + "end": 23601.52, + "probability": 0.8696 + }, + { + "start": 23603.46, + "end": 23605.36, + "probability": 0.9839 + }, + { + "start": 23605.52, + "end": 23609.18, + "probability": 0.9964 + }, + { + "start": 23609.9, + "end": 23610.16, + "probability": 0.3444 + }, + { + "start": 23610.22, + "end": 23612.12, + "probability": 0.8434 + }, + { + "start": 23612.2, + "end": 23613.62, + "probability": 0.9927 + }, + { + "start": 23614.94, + "end": 23618.94, + "probability": 0.9924 + }, + { + "start": 23619.36, + "end": 23621.72, + "probability": 0.7441 + }, + { + "start": 23621.98, + "end": 23622.34, + "probability": 0.2519 + }, + { + "start": 23622.36, + "end": 23629.08, + "probability": 0.9907 + }, + { + "start": 23629.64, + "end": 23631.54, + "probability": 0.9009 + }, + { + "start": 23631.72, + "end": 23632.34, + "probability": 0.9131 + }, + { + "start": 23632.94, + "end": 23634.06, + "probability": 0.9688 + }, + { + "start": 23634.24, + "end": 23637.88, + "probability": 0.9743 + }, + { + "start": 23638.36, + "end": 23639.16, + "probability": 0.9205 + }, + { + "start": 23639.26, + "end": 23640.35, + "probability": 0.8574 + }, + { + "start": 23640.94, + "end": 23643.22, + "probability": 0.9738 + }, + { + "start": 23643.64, + "end": 23647.04, + "probability": 0.7542 + }, + { + "start": 23647.5, + "end": 23650.24, + "probability": 0.9954 + }, + { + "start": 23650.6, + "end": 23653.58, + "probability": 0.9941 + }, + { + "start": 23653.98, + "end": 23655.27, + "probability": 0.9259 + }, + { + "start": 23656.3, + "end": 23659.2, + "probability": 0.8033 + }, + { + "start": 23659.28, + "end": 23662.2, + "probability": 0.9758 + }, + { + "start": 23662.38, + "end": 23663.66, + "probability": 0.6845 + }, + { + "start": 23664.3, + "end": 23667.04, + "probability": 0.7517 + }, + { + "start": 23667.04, + "end": 23670.94, + "probability": 0.9956 + }, + { + "start": 23671.62, + "end": 23674.36, + "probability": 0.8922 + }, + { + "start": 23674.4, + "end": 23675.68, + "probability": 0.9657 + }, + { + "start": 23676.34, + "end": 23678.5, + "probability": 0.8396 + }, + { + "start": 23678.92, + "end": 23680.34, + "probability": 0.7631 + }, + { + "start": 23680.46, + "end": 23681.56, + "probability": 0.7305 + }, + { + "start": 23681.82, + "end": 23681.94, + "probability": 0.337 + }, + { + "start": 23682.1, + "end": 23686.06, + "probability": 0.9933 + }, + { + "start": 23686.58, + "end": 23691.18, + "probability": 0.9894 + }, + { + "start": 23691.3, + "end": 23692.86, + "probability": 0.937 + }, + { + "start": 23692.88, + "end": 23695.98, + "probability": 0.8444 + }, + { + "start": 23695.98, + "end": 23696.4, + "probability": 0.3497 + }, + { + "start": 23696.46, + "end": 23697.52, + "probability": 0.9506 + }, + { + "start": 23697.84, + "end": 23698.98, + "probability": 0.396 + }, + { + "start": 23699.05, + "end": 23701.66, + "probability": 0.6247 + }, + { + "start": 23701.66, + "end": 23704.12, + "probability": 0.9795 + }, + { + "start": 23704.76, + "end": 23705.8, + "probability": 0.9484 + }, + { + "start": 23706.82, + "end": 23706.92, + "probability": 0.5255 + }, + { + "start": 23708.38, + "end": 23709.52, + "probability": 0.6795 + }, + { + "start": 23709.6, + "end": 23710.48, + "probability": 0.8694 + }, + { + "start": 23710.74, + "end": 23711.64, + "probability": 0.7178 + }, + { + "start": 23711.8, + "end": 23712.04, + "probability": 0.7672 + }, + { + "start": 23713.91, + "end": 23716.26, + "probability": 0.7622 + }, + { + "start": 23716.32, + "end": 23717.52, + "probability": 0.6497 + }, + { + "start": 23717.64, + "end": 23718.04, + "probability": 0.6722 + }, + { + "start": 23718.2, + "end": 23718.5, + "probability": 0.6981 + }, + { + "start": 23721.46, + "end": 23722.0, + "probability": 0.2527 + }, + { + "start": 23727.22, + "end": 23728.19, + "probability": 0.122 + }, + { + "start": 23728.44, + "end": 23731.52, + "probability": 0.8572 + }, + { + "start": 23732.14, + "end": 23733.56, + "probability": 0.8311 + }, + { + "start": 23734.1, + "end": 23736.26, + "probability": 0.5761 + }, + { + "start": 23736.98, + "end": 23738.52, + "probability": 0.474 + }, + { + "start": 23740.24, + "end": 23741.48, + "probability": 0.5889 + }, + { + "start": 23742.52, + "end": 23745.2, + "probability": 0.5011 + }, + { + "start": 23745.42, + "end": 23746.62, + "probability": 0.4061 + }, + { + "start": 23747.58, + "end": 23748.98, + "probability": 0.9313 + }, + { + "start": 23749.08, + "end": 23750.5, + "probability": 0.42 + }, + { + "start": 23750.5, + "end": 23751.53, + "probability": 0.7531 + }, + { + "start": 23752.28, + "end": 23756.84, + "probability": 0.0889 + }, + { + "start": 23758.28, + "end": 23758.28, + "probability": 0.12 + }, + { + "start": 23758.28, + "end": 23758.46, + "probability": 0.208 + }, + { + "start": 23758.46, + "end": 23758.46, + "probability": 0.3234 + }, + { + "start": 23758.46, + "end": 23758.46, + "probability": 0.196 + }, + { + "start": 23758.46, + "end": 23758.56, + "probability": 0.2131 + }, + { + "start": 23759.72, + "end": 23760.6, + "probability": 0.5281 + }, + { + "start": 23760.7, + "end": 23763.02, + "probability": 0.2508 + }, + { + "start": 23763.18, + "end": 23765.56, + "probability": 0.5173 + }, + { + "start": 23767.06, + "end": 23769.22, + "probability": 0.9136 + }, + { + "start": 23769.22, + "end": 23771.84, + "probability": 0.4529 + }, + { + "start": 23772.34, + "end": 23772.8, + "probability": 0.6499 + }, + { + "start": 23772.9, + "end": 23774.78, + "probability": 0.7888 + }, + { + "start": 23774.82, + "end": 23774.88, + "probability": 0.0649 + }, + { + "start": 23775.0, + "end": 23775.5, + "probability": 0.4831 + }, + { + "start": 23775.5, + "end": 23775.96, + "probability": 0.4823 + }, + { + "start": 23776.16, + "end": 23776.88, + "probability": 0.7257 + }, + { + "start": 23777.18, + "end": 23777.52, + "probability": 0.6195 + }, + { + "start": 23777.6, + "end": 23778.08, + "probability": 0.3925 + }, + { + "start": 23778.08, + "end": 23778.62, + "probability": 0.0137 + }, + { + "start": 23779.64, + "end": 23782.14, + "probability": 0.1818 + }, + { + "start": 23782.6, + "end": 23783.16, + "probability": 0.0522 + }, + { + "start": 23783.16, + "end": 23784.46, + "probability": 0.6534 + }, + { + "start": 23784.66, + "end": 23785.1, + "probability": 0.679 + }, + { + "start": 23785.28, + "end": 23788.24, + "probability": 0.5482 + }, + { + "start": 23788.74, + "end": 23790.76, + "probability": 0.0197 + }, + { + "start": 23792.08, + "end": 23792.54, + "probability": 0.0928 + }, + { + "start": 23792.92, + "end": 23793.14, + "probability": 0.5231 + }, + { + "start": 23793.38, + "end": 23794.36, + "probability": 0.108 + }, + { + "start": 23794.58, + "end": 23795.28, + "probability": 0.4934 + }, + { + "start": 23795.44, + "end": 23796.26, + "probability": 0.6821 + }, + { + "start": 23796.78, + "end": 23798.24, + "probability": 0.8325 + }, + { + "start": 23798.66, + "end": 23799.46, + "probability": 0.4519 + }, + { + "start": 23800.16, + "end": 23801.12, + "probability": 0.8414 + }, + { + "start": 23801.78, + "end": 23803.04, + "probability": 0.747 + }, + { + "start": 23804.6, + "end": 23810.7, + "probability": 0.8711 + }, + { + "start": 23810.78, + "end": 23813.92, + "probability": 0.9891 + }, + { + "start": 23814.8, + "end": 23815.5, + "probability": 0.9335 + }, + { + "start": 23815.96, + "end": 23816.2, + "probability": 0.6071 + }, + { + "start": 23816.44, + "end": 23817.62, + "probability": 0.6233 + }, + { + "start": 23817.82, + "end": 23818.12, + "probability": 0.5872 + }, + { + "start": 23818.68, + "end": 23819.78, + "probability": 0.9754 + }, + { + "start": 23819.88, + "end": 23820.26, + "probability": 0.633 + }, + { + "start": 23821.12, + "end": 23822.8, + "probability": 0.981 + }, + { + "start": 23823.54, + "end": 23823.54, + "probability": 0.2418 + }, + { + "start": 23823.72, + "end": 23829.94, + "probability": 0.9818 + }, + { + "start": 23834.0, + "end": 23836.48, + "probability": 0.9935 + }, + { + "start": 23837.02, + "end": 23838.51, + "probability": 0.9934 + }, + { + "start": 23839.08, + "end": 23839.72, + "probability": 0.8939 + }, + { + "start": 23839.92, + "end": 23840.14, + "probability": 0.8425 + }, + { + "start": 23840.52, + "end": 23840.74, + "probability": 0.5174 + }, + { + "start": 23841.6, + "end": 23843.98, + "probability": 0.9757 + }, + { + "start": 23845.22, + "end": 23846.0, + "probability": 0.7592 + }, + { + "start": 23846.52, + "end": 23846.94, + "probability": 0.8674 + }, + { + "start": 23847.06, + "end": 23847.48, + "probability": 0.8225 + }, + { + "start": 23847.56, + "end": 23848.66, + "probability": 0.7924 + }, + { + "start": 23850.3, + "end": 23850.84, + "probability": 0.9622 + }, + { + "start": 23852.02, + "end": 23852.6, + "probability": 0.9309 + }, + { + "start": 23853.48, + "end": 23855.52, + "probability": 0.9956 + }, + { + "start": 23858.16, + "end": 23858.74, + "probability": 0.7117 + }, + { + "start": 23860.36, + "end": 23861.48, + "probability": 0.966 + }, + { + "start": 23863.4, + "end": 23865.6, + "probability": 0.5455 + }, + { + "start": 23867.0, + "end": 23867.7, + "probability": 0.7178 + }, + { + "start": 23868.78, + "end": 23869.68, + "probability": 0.8496 + }, + { + "start": 23870.76, + "end": 23873.8, + "probability": 0.9136 + }, + { + "start": 23874.52, + "end": 23876.9, + "probability": 0.999 + }, + { + "start": 23877.56, + "end": 23879.1, + "probability": 0.8353 + }, + { + "start": 23879.54, + "end": 23883.12, + "probability": 0.9858 + }, + { + "start": 23883.2, + "end": 23883.66, + "probability": 0.9618 + }, + { + "start": 23883.68, + "end": 23884.42, + "probability": 0.9772 + }, + { + "start": 23886.58, + "end": 23888.04, + "probability": 0.9982 + }, + { + "start": 23889.48, + "end": 23891.6, + "probability": 0.987 + }, + { + "start": 23892.4, + "end": 23893.68, + "probability": 0.6947 + }, + { + "start": 23894.94, + "end": 23895.94, + "probability": 0.9951 + }, + { + "start": 23897.56, + "end": 23900.58, + "probability": 0.983 + }, + { + "start": 23902.04, + "end": 23905.02, + "probability": 0.9886 + }, + { + "start": 23906.24, + "end": 23907.67, + "probability": 0.9988 + }, + { + "start": 23907.88, + "end": 23909.49, + "probability": 0.0192 + }, + { + "start": 23909.61, + "end": 23912.33, + "probability": 0.9482 + }, + { + "start": 23913.01, + "end": 23913.25, + "probability": 0.2891 + }, + { + "start": 23913.25, + "end": 23913.37, + "probability": 0.0197 + }, + { + "start": 23913.37, + "end": 23914.8, + "probability": 0.978 + }, + { + "start": 23915.97, + "end": 23916.47, + "probability": 0.3259 + }, + { + "start": 23916.47, + "end": 23919.33, + "probability": 0.9845 + }, + { + "start": 23919.65, + "end": 23919.91, + "probability": 0.2111 + }, + { + "start": 23919.97, + "end": 23920.03, + "probability": 0.0206 + }, + { + "start": 23920.03, + "end": 23921.23, + "probability": 0.9013 + }, + { + "start": 23921.31, + "end": 23922.27, + "probability": 0.9067 + }, + { + "start": 23922.27, + "end": 23922.55, + "probability": 0.2597 + }, + { + "start": 23922.77, + "end": 23922.89, + "probability": 0.4621 + }, + { + "start": 23922.97, + "end": 23924.19, + "probability": 0.8678 + }, + { + "start": 23924.25, + "end": 23924.69, + "probability": 0.3038 + }, + { + "start": 23924.77, + "end": 23924.91, + "probability": 0.1125 + }, + { + "start": 23924.91, + "end": 23926.05, + "probability": 0.3957 + }, + { + "start": 23928.13, + "end": 23929.41, + "probability": 0.0516 + }, + { + "start": 23929.95, + "end": 23930.29, + "probability": 0.0175 + }, + { + "start": 23930.31, + "end": 23930.31, + "probability": 0.0634 + }, + { + "start": 23930.31, + "end": 23930.77, + "probability": 0.1857 + }, + { + "start": 23930.87, + "end": 23933.83, + "probability": 0.7883 + }, + { + "start": 23934.13, + "end": 23934.97, + "probability": 0.4376 + }, + { + "start": 23937.61, + "end": 23939.39, + "probability": 0.2765 + }, + { + "start": 23940.43, + "end": 23940.49, + "probability": 0.0761 + }, + { + "start": 23940.49, + "end": 23940.49, + "probability": 0.028 + }, + { + "start": 23940.49, + "end": 23940.99, + "probability": 0.7303 + }, + { + "start": 23941.05, + "end": 23941.43, + "probability": 0.024 + }, + { + "start": 23941.71, + "end": 23942.53, + "probability": 0.5036 + }, + { + "start": 23943.17, + "end": 23944.85, + "probability": 0.0694 + }, + { + "start": 23944.85, + "end": 23945.87, + "probability": 0.5752 + }, + { + "start": 23947.19, + "end": 23949.1, + "probability": 0.9749 + }, + { + "start": 23951.13, + "end": 23951.35, + "probability": 0.2043 + }, + { + "start": 23951.35, + "end": 23958.95, + "probability": 0.9892 + }, + { + "start": 23959.81, + "end": 23961.29, + "probability": 0.9668 + }, + { + "start": 23961.29, + "end": 23961.55, + "probability": 0.5333 + }, + { + "start": 23961.73, + "end": 23962.47, + "probability": 0.7752 + }, + { + "start": 23962.65, + "end": 23962.87, + "probability": 0.1485 + }, + { + "start": 23962.87, + "end": 23965.47, + "probability": 0.9155 + }, + { + "start": 23965.47, + "end": 23965.61, + "probability": 0.0089 + }, + { + "start": 23965.61, + "end": 23966.53, + "probability": 0.5342 + }, + { + "start": 23968.17, + "end": 23968.87, + "probability": 0.5832 + }, + { + "start": 23968.87, + "end": 23973.35, + "probability": 0.8773 + }, + { + "start": 23973.35, + "end": 23973.79, + "probability": 0.6307 + }, + { + "start": 23974.01, + "end": 23974.39, + "probability": 0.5931 + }, + { + "start": 23974.47, + "end": 23975.49, + "probability": 0.5566 + }, + { + "start": 23976.55, + "end": 23978.13, + "probability": 0.3484 + }, + { + "start": 23979.04, + "end": 23980.36, + "probability": 0.0385 + }, + { + "start": 23981.23, + "end": 23982.69, + "probability": 0.9478 + }, + { + "start": 23982.91, + "end": 23984.19, + "probability": 0.9547 + }, + { + "start": 23984.55, + "end": 23985.07, + "probability": 0.0107 + }, + { + "start": 23986.49, + "end": 23986.73, + "probability": 0.0205 + }, + { + "start": 23986.73, + "end": 23987.85, + "probability": 0.1435 + }, + { + "start": 23987.97, + "end": 23988.55, + "probability": 0.3171 + }, + { + "start": 23988.85, + "end": 23992.04, + "probability": 0.0271 + }, + { + "start": 23995.57, + "end": 23997.83, + "probability": 0.004 + }, + { + "start": 23998.07, + "end": 23998.33, + "probability": 0.0556 + }, + { + "start": 23998.33, + "end": 23998.33, + "probability": 0.2463 + }, + { + "start": 23998.33, + "end": 23998.33, + "probability": 0.2937 + }, + { + "start": 23998.33, + "end": 24000.03, + "probability": 0.142 + }, + { + "start": 24000.07, + "end": 24000.07, + "probability": 0.007 + }, + { + "start": 24001.01, + "end": 24003.21, + "probability": 0.0234 + }, + { + "start": 24003.21, + "end": 24004.13, + "probability": 0.0559 + }, + { + "start": 24004.33, + "end": 24004.37, + "probability": 0.0529 + }, + { + "start": 24004.84, + "end": 24006.99, + "probability": 0.0367 + }, + { + "start": 24008.37, + "end": 24016.71, + "probability": 0.2438 + }, + { + "start": 24017.23, + "end": 24020.17, + "probability": 0.0309 + }, + { + "start": 24020.17, + "end": 24020.31, + "probability": 0.0278 + }, + { + "start": 24035.0, + "end": 24035.0, + "probability": 0.0 + }, + { + "start": 24035.0, + "end": 24035.0, + "probability": 0.0 + }, + { + "start": 24035.0, + "end": 24035.0, + "probability": 0.0 + }, + { + "start": 24035.0, + "end": 24035.0, + "probability": 0.0 + }, + { + "start": 24035.0, + "end": 24035.0, + "probability": 0.0 + }, + { + "start": 24035.0, + "end": 24035.0, + "probability": 0.0 + }, + { + "start": 24035.0, + "end": 24035.0, + "probability": 0.0 + }, + { + "start": 24035.0, + "end": 24035.0, + "probability": 0.0 + }, + { + "start": 24035.0, + "end": 24035.0, + "probability": 0.0 + }, + { + "start": 24035.0, + "end": 24035.0, + "probability": 0.0 + }, + { + "start": 24035.0, + "end": 24035.0, + "probability": 0.0 + }, + { + "start": 24035.0, + "end": 24035.0, + "probability": 0.0 + }, + { + "start": 24035.0, + "end": 24035.0, + "probability": 0.0 + }, + { + "start": 24035.0, + "end": 24035.0, + "probability": 0.0 + }, + { + "start": 24035.0, + "end": 24035.0, + "probability": 0.0 + }, + { + "start": 24035.0, + "end": 24035.0, + "probability": 0.0 + }, + { + "start": 24035.0, + "end": 24035.0, + "probability": 0.0 + }, + { + "start": 24035.0, + "end": 24035.0, + "probability": 0.0 + }, + { + "start": 24035.0, + "end": 24035.0, + "probability": 0.0 + }, + { + "start": 24035.0, + "end": 24035.0, + "probability": 0.0 + }, + { + "start": 24035.0, + "end": 24035.0, + "probability": 0.0 + }, + { + "start": 24035.48, + "end": 24035.92, + "probability": 0.188 + }, + { + "start": 24035.92, + "end": 24036.13, + "probability": 0.0163 + }, + { + "start": 24036.94, + "end": 24037.78, + "probability": 0.257 + }, + { + "start": 24037.78, + "end": 24038.13, + "probability": 0.2064 + }, + { + "start": 24038.66, + "end": 24040.82, + "probability": 0.1244 + }, + { + "start": 24041.5, + "end": 24043.65, + "probability": 0.2434 + }, + { + "start": 24043.78, + "end": 24044.24, + "probability": 0.0607 + }, + { + "start": 24044.24, + "end": 24044.24, + "probability": 0.2659 + }, + { + "start": 24044.24, + "end": 24045.32, + "probability": 0.2779 + }, + { + "start": 24046.04, + "end": 24048.78, + "probability": 0.7081 + }, + { + "start": 24049.76, + "end": 24051.34, + "probability": 0.2033 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.0, + "end": 24161.0, + "probability": 0.0 + }, + { + "start": 24161.08, + "end": 24161.18, + "probability": 0.0067 + }, + { + "start": 24161.18, + "end": 24161.98, + "probability": 0.3175 + }, + { + "start": 24161.98, + "end": 24162.34, + "probability": 0.6946 + }, + { + "start": 24162.92, + "end": 24163.88, + "probability": 0.5956 + }, + { + "start": 24163.9, + "end": 24165.32, + "probability": 0.8333 + }, + { + "start": 24165.68, + "end": 24165.68, + "probability": 0.1977 + }, + { + "start": 24165.8, + "end": 24166.18, + "probability": 0.0835 + }, + { + "start": 24166.24, + "end": 24167.28, + "probability": 0.7164 + }, + { + "start": 24167.36, + "end": 24168.5, + "probability": 0.2621 + }, + { + "start": 24168.52, + "end": 24169.56, + "probability": 0.1228 + }, + { + "start": 24169.73, + "end": 24170.88, + "probability": 0.6145 + }, + { + "start": 24171.48, + "end": 24173.42, + "probability": 0.1023 + }, + { + "start": 24186.2, + "end": 24186.2, + "probability": 0.4785 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24283.0, + "end": 24283.0, + "probability": 0.0 + }, + { + "start": 24284.9, + "end": 24287.6, + "probability": 0.6651 + }, + { + "start": 24288.36, + "end": 24292.1, + "probability": 0.9263 + }, + { + "start": 24292.72, + "end": 24294.8, + "probability": 0.9011 + }, + { + "start": 24295.38, + "end": 24298.38, + "probability": 0.9882 + }, + { + "start": 24300.14, + "end": 24301.94, + "probability": 0.9691 + }, + { + "start": 24302.8, + "end": 24303.4, + "probability": 0.9982 + }, + { + "start": 24304.08, + "end": 24305.14, + "probability": 0.0624 + }, + { + "start": 24305.14, + "end": 24306.02, + "probability": 0.6428 + }, + { + "start": 24306.96, + "end": 24308.96, + "probability": 0.9927 + }, + { + "start": 24310.44, + "end": 24311.0, + "probability": 0.79 + }, + { + "start": 24312.28, + "end": 24317.8, + "probability": 0.8613 + }, + { + "start": 24318.78, + "end": 24320.06, + "probability": 0.9588 + }, + { + "start": 24321.98, + "end": 24322.64, + "probability": 0.9906 + }, + { + "start": 24324.26, + "end": 24325.44, + "probability": 0.749 + }, + { + "start": 24327.18, + "end": 24328.38, + "probability": 0.9925 + }, + { + "start": 24329.18, + "end": 24330.12, + "probability": 0.8856 + }, + { + "start": 24330.5, + "end": 24330.94, + "probability": 0.7212 + }, + { + "start": 24332.28, + "end": 24332.78, + "probability": 0.9712 + }, + { + "start": 24333.74, + "end": 24334.08, + "probability": 0.8687 + }, + { + "start": 24334.92, + "end": 24335.38, + "probability": 0.8368 + }, + { + "start": 24336.34, + "end": 24337.5, + "probability": 0.9883 + }, + { + "start": 24338.34, + "end": 24340.43, + "probability": 0.7764 + }, + { + "start": 24341.98, + "end": 24344.48, + "probability": 0.9646 + }, + { + "start": 24344.48, + "end": 24346.52, + "probability": 0.7618 + }, + { + "start": 24347.26, + "end": 24348.28, + "probability": 0.6957 + }, + { + "start": 24348.98, + "end": 24351.9, + "probability": 0.9713 + }, + { + "start": 24352.46, + "end": 24354.44, + "probability": 0.9974 + }, + { + "start": 24355.02, + "end": 24357.58, + "probability": 0.854 + }, + { + "start": 24358.32, + "end": 24359.32, + "probability": 0.9995 + }, + { + "start": 24360.02, + "end": 24360.68, + "probability": 0.9819 + }, + { + "start": 24361.72, + "end": 24362.6, + "probability": 0.9487 + }, + { + "start": 24362.72, + "end": 24363.64, + "probability": 0.968 + }, + { + "start": 24364.36, + "end": 24365.96, + "probability": 0.9817 + }, + { + "start": 24366.08, + "end": 24367.9, + "probability": 0.9112 + }, + { + "start": 24368.54, + "end": 24369.08, + "probability": 0.9758 + }, + { + "start": 24369.74, + "end": 24372.32, + "probability": 0.9479 + }, + { + "start": 24373.08, + "end": 24374.46, + "probability": 0.8759 + }, + { + "start": 24375.24, + "end": 24375.9, + "probability": 0.438 + }, + { + "start": 24376.86, + "end": 24378.34, + "probability": 0.8271 + }, + { + "start": 24378.42, + "end": 24378.78, + "probability": 0.7903 + }, + { + "start": 24378.88, + "end": 24381.38, + "probability": 0.808 + }, + { + "start": 24381.8, + "end": 24382.44, + "probability": 0.8403 + }, + { + "start": 24382.46, + "end": 24383.34, + "probability": 0.5021 + }, + { + "start": 24383.64, + "end": 24386.32, + "probability": 0.9155 + }, + { + "start": 24386.56, + "end": 24386.66, + "probability": 0.7909 + }, + { + "start": 24387.14, + "end": 24392.38, + "probability": 0.7765 + }, + { + "start": 24392.38, + "end": 24393.18, + "probability": 0.5734 + }, + { + "start": 24393.48, + "end": 24395.6, + "probability": 0.856 + }, + { + "start": 24395.62, + "end": 24395.7, + "probability": 0.332 + }, + { + "start": 24395.7, + "end": 24396.86, + "probability": 0.6267 + }, + { + "start": 24397.96, + "end": 24401.36, + "probability": 0.4497 + }, + { + "start": 24401.36, + "end": 24401.36, + "probability": 0.1791 + }, + { + "start": 24401.36, + "end": 24401.36, + "probability": 0.0297 + }, + { + "start": 24401.36, + "end": 24402.54, + "probability": 0.3515 + }, + { + "start": 24402.94, + "end": 24403.42, + "probability": 0.4159 + }, + { + "start": 24403.7, + "end": 24405.22, + "probability": 0.6318 + }, + { + "start": 24405.26, + "end": 24406.78, + "probability": 0.7887 + }, + { + "start": 24407.2, + "end": 24407.2, + "probability": 0.1001 + }, + { + "start": 24407.2, + "end": 24408.18, + "probability": 0.5923 + }, + { + "start": 24408.78, + "end": 24411.16, + "probability": 0.9731 + }, + { + "start": 24412.04, + "end": 24412.36, + "probability": 0.641 + }, + { + "start": 24412.94, + "end": 24413.18, + "probability": 0.9622 + }, + { + "start": 24413.9, + "end": 24415.66, + "probability": 0.947 + }, + { + "start": 24417.57, + "end": 24419.8, + "probability": 0.982 + }, + { + "start": 24420.54, + "end": 24423.4, + "probability": 0.8311 + }, + { + "start": 24423.62, + "end": 24424.1, + "probability": 0.5003 + }, + { + "start": 24425.6, + "end": 24427.54, + "probability": 0.9987 + }, + { + "start": 24428.1, + "end": 24429.32, + "probability": 0.993 + }, + { + "start": 24430.5, + "end": 24433.36, + "probability": 0.6833 + }, + { + "start": 24436.38, + "end": 24441.66, + "probability": 0.9862 + }, + { + "start": 24442.54, + "end": 24443.16, + "probability": 0.6276 + }, + { + "start": 24443.84, + "end": 24444.72, + "probability": 0.9866 + }, + { + "start": 24445.62, + "end": 24446.48, + "probability": 0.8518 + }, + { + "start": 24447.84, + "end": 24448.64, + "probability": 0.666 + }, + { + "start": 24448.64, + "end": 24449.44, + "probability": 0.3334 + }, + { + "start": 24449.44, + "end": 24449.6, + "probability": 0.008 + }, + { + "start": 24449.62, + "end": 24451.58, + "probability": 0.8566 + }, + { + "start": 24452.76, + "end": 24454.17, + "probability": 0.0223 + }, + { + "start": 24454.32, + "end": 24455.84, + "probability": 0.196 + }, + { + "start": 24456.06, + "end": 24456.1, + "probability": 0.238 + }, + { + "start": 24456.1, + "end": 24456.1, + "probability": 0.288 + }, + { + "start": 24456.1, + "end": 24456.42, + "probability": 0.4352 + }, + { + "start": 24456.56, + "end": 24458.28, + "probability": 0.9458 + }, + { + "start": 24458.28, + "end": 24458.44, + "probability": 0.0983 + }, + { + "start": 24458.92, + "end": 24459.44, + "probability": 0.0212 + }, + { + "start": 24459.52, + "end": 24461.28, + "probability": 0.1186 + }, + { + "start": 24461.42, + "end": 24462.86, + "probability": 0.9447 + }, + { + "start": 24463.4, + "end": 24467.2, + "probability": 0.8844 + }, + { + "start": 24467.2, + "end": 24467.9, + "probability": 0.0963 + }, + { + "start": 24468.12, + "end": 24468.42, + "probability": 0.5966 + }, + { + "start": 24468.42, + "end": 24472.96, + "probability": 0.954 + }, + { + "start": 24473.08, + "end": 24475.1, + "probability": 0.456 + }, + { + "start": 24475.5, + "end": 24477.1, + "probability": 0.9834 + }, + { + "start": 24477.48, + "end": 24477.58, + "probability": 0.1664 + }, + { + "start": 24478.06, + "end": 24479.62, + "probability": 0.2255 + }, + { + "start": 24480.22, + "end": 24480.26, + "probability": 0.0031 + }, + { + "start": 24480.3, + "end": 24480.96, + "probability": 0.2364 + }, + { + "start": 24480.96, + "end": 24481.02, + "probability": 0.4637 + }, + { + "start": 24481.02, + "end": 24481.02, + "probability": 0.0619 + }, + { + "start": 24481.02, + "end": 24481.02, + "probability": 0.4591 + }, + { + "start": 24481.02, + "end": 24481.02, + "probability": 0.0787 + }, + { + "start": 24481.02, + "end": 24481.02, + "probability": 0.3837 + }, + { + "start": 24481.02, + "end": 24482.86, + "probability": 0.8054 + }, + { + "start": 24483.08, + "end": 24486.2, + "probability": 0.1118 + }, + { + "start": 24486.32, + "end": 24488.28, + "probability": 0.5082 + }, + { + "start": 24497.64, + "end": 24499.24, + "probability": 0.003 + }, + { + "start": 24499.24, + "end": 24501.08, + "probability": 0.2551 + }, + { + "start": 24501.2, + "end": 24501.28, + "probability": 0.0085 + }, + { + "start": 24501.74, + "end": 24502.56, + "probability": 0.1146 + }, + { + "start": 24502.56, + "end": 24502.56, + "probability": 0.3408 + }, + { + "start": 24502.56, + "end": 24503.28, + "probability": 0.0777 + }, + { + "start": 24504.04, + "end": 24505.32, + "probability": 0.0212 + }, + { + "start": 24505.45, + "end": 24507.01, + "probability": 0.0803 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24563.0, + "end": 24563.0, + "probability": 0.0 + }, + { + "start": 24565.9, + "end": 24566.18, + "probability": 0.6661 + }, + { + "start": 24566.2, + "end": 24569.86, + "probability": 0.4459 + }, + { + "start": 24569.88, + "end": 24570.48, + "probability": 0.0355 + }, + { + "start": 24570.62, + "end": 24571.64, + "probability": 0.8369 + }, + { + "start": 24572.44, + "end": 24574.17, + "probability": 0.3601 + }, + { + "start": 24575.2, + "end": 24576.74, + "probability": 0.4817 + }, + { + "start": 24577.78, + "end": 24578.79, + "probability": 0.8035 + }, + { + "start": 24581.06, + "end": 24582.96, + "probability": 0.0397 + }, + { + "start": 24582.96, + "end": 24583.3, + "probability": 0.0231 + }, + { + "start": 24583.3, + "end": 24583.3, + "probability": 0.0658 + }, + { + "start": 24583.3, + "end": 24583.86, + "probability": 0.0714 + }, + { + "start": 24583.86, + "end": 24584.81, + "probability": 0.6508 + }, + { + "start": 24585.48, + "end": 24586.4, + "probability": 0.908 + }, + { + "start": 24586.58, + "end": 24590.36, + "probability": 0.1394 + }, + { + "start": 24590.36, + "end": 24590.98, + "probability": 0.0297 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24699.0, + "end": 24699.0, + "probability": 0.0 + }, + { + "start": 24706.14, + "end": 24709.9, + "probability": 0.8963 + }, + { + "start": 24710.88, + "end": 24713.3, + "probability": 0.8796 + }, + { + "start": 24713.72, + "end": 24713.8, + "probability": 0.2334 + }, + { + "start": 24713.8, + "end": 24714.48, + "probability": 0.6477 + }, + { + "start": 24714.68, + "end": 24717.54, + "probability": 0.9636 + }, + { + "start": 24717.64, + "end": 24719.06, + "probability": 0.2431 + }, + { + "start": 24719.78, + "end": 24722.38, + "probability": 0.9121 + }, + { + "start": 24722.62, + "end": 24724.1, + "probability": 0.3502 + }, + { + "start": 24724.22, + "end": 24724.38, + "probability": 0.2342 + }, + { + "start": 24724.38, + "end": 24725.66, + "probability": 0.3735 + }, + { + "start": 24726.78, + "end": 24727.52, + "probability": 0.0592 + }, + { + "start": 24728.06, + "end": 24730.22, + "probability": 0.5441 + }, + { + "start": 24732.44, + "end": 24732.44, + "probability": 0.4998 + }, + { + "start": 24732.44, + "end": 24732.44, + "probability": 0.3777 + }, + { + "start": 24732.44, + "end": 24732.44, + "probability": 0.0476 + }, + { + "start": 24732.44, + "end": 24733.3, + "probability": 0.1707 + }, + { + "start": 24733.82, + "end": 24734.0, + "probability": 0.6929 + }, + { + "start": 24735.2, + "end": 24735.5, + "probability": 0.4846 + }, + { + "start": 24735.7, + "end": 24737.28, + "probability": 0.9749 + }, + { + "start": 24738.92, + "end": 24739.4, + "probability": 0.9922 + }, + { + "start": 24740.14, + "end": 24741.58, + "probability": 0.6426 + }, + { + "start": 24743.17, + "end": 24745.06, + "probability": 0.9274 + }, + { + "start": 24746.66, + "end": 24751.1, + "probability": 0.9917 + }, + { + "start": 24751.72, + "end": 24752.48, + "probability": 0.814 + }, + { + "start": 24754.12, + "end": 24757.96, + "probability": 0.9464 + }, + { + "start": 24758.94, + "end": 24759.7, + "probability": 0.9003 + }, + { + "start": 24761.6, + "end": 24762.86, + "probability": 0.9694 + }, + { + "start": 24762.86, + "end": 24763.36, + "probability": 0.7246 + }, + { + "start": 24763.86, + "end": 24764.9, + "probability": 0.9961 + }, + { + "start": 24766.5, + "end": 24769.58, + "probability": 0.9615 + }, + { + "start": 24769.62, + "end": 24769.82, + "probability": 0.7141 + }, + { + "start": 24769.94, + "end": 24774.72, + "probability": 0.9974 + }, + { + "start": 24775.42, + "end": 24776.44, + "probability": 0.8777 + }, + { + "start": 24778.38, + "end": 24778.9, + "probability": 0.8387 + }, + { + "start": 24779.02, + "end": 24781.96, + "probability": 0.9724 + }, + { + "start": 24782.86, + "end": 24784.3, + "probability": 0.9943 + }, + { + "start": 24784.46, + "end": 24785.68, + "probability": 0.5004 + }, + { + "start": 24786.76, + "end": 24790.64, + "probability": 0.9718 + }, + { + "start": 24792.16, + "end": 24794.17, + "probability": 0.9583 + }, + { + "start": 24796.44, + "end": 24798.8, + "probability": 0.9915 + }, + { + "start": 24799.68, + "end": 24801.58, + "probability": 0.9971 + }, + { + "start": 24802.64, + "end": 24803.88, + "probability": 0.7715 + }, + { + "start": 24804.54, + "end": 24806.66, + "probability": 0.6241 + }, + { + "start": 24807.26, + "end": 24808.68, + "probability": 0.9471 + }, + { + "start": 24810.37, + "end": 24813.38, + "probability": 0.8465 + }, + { + "start": 24814.94, + "end": 24817.62, + "probability": 0.828 + }, + { + "start": 24818.32, + "end": 24820.36, + "probability": 0.8242 + }, + { + "start": 24821.42, + "end": 24823.22, + "probability": 0.9895 + }, + { + "start": 24823.48, + "end": 24826.22, + "probability": 0.9762 + }, + { + "start": 24827.2, + "end": 24829.85, + "probability": 0.9543 + }, + { + "start": 24830.3, + "end": 24830.86, + "probability": 0.6542 + }, + { + "start": 24831.46, + "end": 24832.94, + "probability": 0.9302 + }, + { + "start": 24833.7, + "end": 24836.53, + "probability": 0.8165 + }, + { + "start": 24837.16, + "end": 24837.48, + "probability": 0.8657 + }, + { + "start": 24838.44, + "end": 24840.1, + "probability": 0.9529 + }, + { + "start": 24840.12, + "end": 24840.88, + "probability": 0.045 + }, + { + "start": 24841.72, + "end": 24842.54, + "probability": 0.9714 + }, + { + "start": 24842.6, + "end": 24843.9, + "probability": 0.938 + }, + { + "start": 24844.02, + "end": 24844.98, + "probability": 0.7456 + }, + { + "start": 24846.1, + "end": 24846.66, + "probability": 0.944 + }, + { + "start": 24846.82, + "end": 24848.16, + "probability": 0.9944 + }, + { + "start": 24848.68, + "end": 24850.14, + "probability": 0.9116 + }, + { + "start": 24851.02, + "end": 24851.32, + "probability": 0.6667 + }, + { + "start": 24852.0, + "end": 24852.94, + "probability": 0.9982 + }, + { + "start": 24853.5, + "end": 24856.4, + "probability": 0.9913 + }, + { + "start": 24857.6, + "end": 24860.82, + "probability": 0.9897 + }, + { + "start": 24861.48, + "end": 24863.44, + "probability": 0.8862 + }, + { + "start": 24864.26, + "end": 24865.16, + "probability": 0.9461 + }, + { + "start": 24866.06, + "end": 24869.32, + "probability": 0.9909 + }, + { + "start": 24870.18, + "end": 24871.82, + "probability": 0.9159 + }, + { + "start": 24873.28, + "end": 24876.62, + "probability": 0.9355 + }, + { + "start": 24876.62, + "end": 24879.82, + "probability": 0.9018 + }, + { + "start": 24880.56, + "end": 24881.88, + "probability": 0.848 + }, + { + "start": 24883.8, + "end": 24884.96, + "probability": 0.993 + }, + { + "start": 24886.74, + "end": 24889.74, + "probability": 0.8118 + }, + { + "start": 24890.26, + "end": 24893.58, + "probability": 0.8195 + }, + { + "start": 24894.28, + "end": 24900.02, + "probability": 0.9871 + }, + { + "start": 24900.46, + "end": 24900.84, + "probability": 0.3289 + }, + { + "start": 24901.42, + "end": 24903.32, + "probability": 0.7917 + }, + { + "start": 24904.68, + "end": 24907.2, + "probability": 0.9225 + }, + { + "start": 24907.8, + "end": 24909.0, + "probability": 0.8777 + }, + { + "start": 24909.4, + "end": 24911.08, + "probability": 0.6508 + }, + { + "start": 24911.5, + "end": 24912.48, + "probability": 0.6941 + }, + { + "start": 24912.48, + "end": 24913.98, + "probability": 0.4035 + }, + { + "start": 24914.1, + "end": 24914.12, + "probability": 0.424 + }, + { + "start": 24914.26, + "end": 24914.54, + "probability": 0.3487 + }, + { + "start": 24914.54, + "end": 24914.54, + "probability": 0.248 + }, + { + "start": 24914.58, + "end": 24914.72, + "probability": 0.0743 + }, + { + "start": 24914.72, + "end": 24915.44, + "probability": 0.8387 + }, + { + "start": 24915.52, + "end": 24917.14, + "probability": 0.6621 + }, + { + "start": 24917.36, + "end": 24917.64, + "probability": 0.0668 + }, + { + "start": 24917.66, + "end": 24920.08, + "probability": 0.6396 + }, + { + "start": 24920.08, + "end": 24920.08, + "probability": 0.3916 + }, + { + "start": 24920.12, + "end": 24923.26, + "probability": 0.8827 + }, + { + "start": 24923.3, + "end": 24923.7, + "probability": 0.678 + }, + { + "start": 24923.7, + "end": 24923.7, + "probability": 0.5818 + }, + { + "start": 24923.7, + "end": 24923.78, + "probability": 0.0574 + }, + { + "start": 24924.44, + "end": 24925.04, + "probability": 0.0597 + }, + { + "start": 24925.68, + "end": 24927.6, + "probability": 0.2812 + }, + { + "start": 24927.72, + "end": 24928.44, + "probability": 0.611 + }, + { + "start": 24928.46, + "end": 24929.56, + "probability": 0.8301 + }, + { + "start": 24929.66, + "end": 24930.38, + "probability": 0.799 + }, + { + "start": 24930.74, + "end": 24933.06, + "probability": 0.9684 + }, + { + "start": 24933.74, + "end": 24935.82, + "probability": 0.8616 + }, + { + "start": 24936.74, + "end": 24939.3, + "probability": 0.8446 + }, + { + "start": 24939.58, + "end": 24939.58, + "probability": 0.1865 + }, + { + "start": 24939.6, + "end": 24939.74, + "probability": 0.0144 + }, + { + "start": 24939.74, + "end": 24941.5, + "probability": 0.5455 + }, + { + "start": 24941.72, + "end": 24942.56, + "probability": 0.2982 + }, + { + "start": 24944.88, + "end": 24945.52, + "probability": 0.1471 + }, + { + "start": 24945.52, + "end": 24945.66, + "probability": 0.0619 + }, + { + "start": 24946.16, + "end": 24946.48, + "probability": 0.4189 + }, + { + "start": 24946.48, + "end": 24946.48, + "probability": 0.2746 + }, + { + "start": 24946.48, + "end": 24946.64, + "probability": 0.3255 + }, + { + "start": 24947.5, + "end": 24947.6, + "probability": 0.0869 + }, + { + "start": 24949.0, + "end": 24949.18, + "probability": 0.0031 + }, + { + "start": 24949.18, + "end": 24950.1, + "probability": 0.2363 + }, + { + "start": 24950.1, + "end": 24950.1, + "probability": 0.0495 + }, + { + "start": 24950.1, + "end": 24950.28, + "probability": 0.3067 + }, + { + "start": 24950.86, + "end": 24951.2, + "probability": 0.5746 + }, + { + "start": 24951.4, + "end": 24951.64, + "probability": 0.87 + }, + { + "start": 24952.36, + "end": 24952.78, + "probability": 0.7974 + }, + { + "start": 24953.2, + "end": 24954.64, + "probability": 0.7009 + }, + { + "start": 24955.34, + "end": 24955.5, + "probability": 0.251 + }, + { + "start": 24955.5, + "end": 24956.26, + "probability": 0.7606 + }, + { + "start": 24957.12, + "end": 24959.4, + "probability": 0.9299 + }, + { + "start": 24960.54, + "end": 24960.98, + "probability": 0.5276 + }, + { + "start": 24961.66, + "end": 24962.08, + "probability": 0.5134 + }, + { + "start": 24964.14, + "end": 24965.32, + "probability": 0.7965 + }, + { + "start": 24965.38, + "end": 24966.9, + "probability": 0.9927 + }, + { + "start": 24966.9, + "end": 24966.94, + "probability": 0.1923 + }, + { + "start": 24967.04, + "end": 24967.39, + "probability": 0.0837 + }, + { + "start": 24967.56, + "end": 24968.34, + "probability": 0.8187 + }, + { + "start": 24968.96, + "end": 24970.86, + "probability": 0.9897 + }, + { + "start": 24972.46, + "end": 24972.52, + "probability": 0.119 + }, + { + "start": 24972.52, + "end": 24972.52, + "probability": 0.0729 + }, + { + "start": 24972.52, + "end": 24973.22, + "probability": 0.1881 + }, + { + "start": 24973.24, + "end": 24974.48, + "probability": 0.442 + }, + { + "start": 24974.48, + "end": 24977.28, + "probability": 0.5394 + }, + { + "start": 24977.28, + "end": 24977.74, + "probability": 0.1005 + }, + { + "start": 24977.74, + "end": 24978.22, + "probability": 0.6411 + }, + { + "start": 24978.3, + "end": 24979.68, + "probability": 0.7803 + }, + { + "start": 24980.16, + "end": 24982.44, + "probability": 0.9324 + }, + { + "start": 24982.7, + "end": 24983.82, + "probability": 0.6223 + }, + { + "start": 24983.94, + "end": 24985.12, + "probability": 0.9082 + }, + { + "start": 24985.2, + "end": 24985.41, + "probability": 0.4199 + }, + { + "start": 24985.96, + "end": 24986.44, + "probability": 0.4596 + }, + { + "start": 24986.86, + "end": 24987.3, + "probability": 0.1925 + }, + { + "start": 24987.52, + "end": 24987.52, + "probability": 0.6917 + }, + { + "start": 24987.52, + "end": 24988.26, + "probability": 0.7639 + }, + { + "start": 24989.36, + "end": 24989.38, + "probability": 0.8589 + }, + { + "start": 24989.98, + "end": 24991.48, + "probability": 0.8943 + }, + { + "start": 24993.38, + "end": 24994.4, + "probability": 0.2901 + }, + { + "start": 24996.22, + "end": 24997.76, + "probability": 0.9119 + }, + { + "start": 24998.7, + "end": 25002.92, + "probability": 0.981 + }, + { + "start": 25003.92, + "end": 25004.6, + "probability": 0.9064 + }, + { + "start": 25005.6, + "end": 25009.43, + "probability": 0.5301 + }, + { + "start": 25010.0, + "end": 25011.26, + "probability": 0.9796 + }, + { + "start": 25012.98, + "end": 25017.16, + "probability": 0.9257 + }, + { + "start": 25018.54, + "end": 25020.02, + "probability": 0.7798 + }, + { + "start": 25020.1, + "end": 25023.4, + "probability": 0.8348 + }, + { + "start": 25024.16, + "end": 25027.33, + "probability": 0.9713 + }, + { + "start": 25027.8, + "end": 25028.26, + "probability": 0.9435 + }, + { + "start": 25028.38, + "end": 25029.28, + "probability": 0.8842 + }, + { + "start": 25029.9, + "end": 25032.2, + "probability": 0.715 + }, + { + "start": 25032.8, + "end": 25034.14, + "probability": 0.8074 + }, + { + "start": 25034.2, + "end": 25034.32, + "probability": 0.3345 + }, + { + "start": 25039.94, + "end": 25041.48, + "probability": 0.7518 + }, + { + "start": 25041.56, + "end": 25042.56, + "probability": 0.8689 + }, + { + "start": 25042.82, + "end": 25043.44, + "probability": 0.7929 + }, + { + "start": 25044.92, + "end": 25046.38, + "probability": 0.9701 + }, + { + "start": 25047.12, + "end": 25048.24, + "probability": 0.7129 + }, + { + "start": 25049.14, + "end": 25051.82, + "probability": 0.9819 + }, + { + "start": 25055.74, + "end": 25057.76, + "probability": 0.9029 + }, + { + "start": 25058.72, + "end": 25060.62, + "probability": 0.9486 + }, + { + "start": 25061.16, + "end": 25061.88, + "probability": 0.9275 + }, + { + "start": 25063.02, + "end": 25063.78, + "probability": 0.9224 + }, + { + "start": 25063.88, + "end": 25065.74, + "probability": 0.9927 + }, + { + "start": 25066.82, + "end": 25068.96, + "probability": 0.9612 + }, + { + "start": 25070.38, + "end": 25075.72, + "probability": 0.959 + }, + { + "start": 25076.94, + "end": 25078.68, + "probability": 0.9809 + }, + { + "start": 25080.26, + "end": 25081.52, + "probability": 0.8296 + }, + { + "start": 25081.68, + "end": 25082.18, + "probability": 0.6119 + }, + { + "start": 25082.28, + "end": 25082.86, + "probability": 0.6113 + }, + { + "start": 25083.4, + "end": 25085.38, + "probability": 0.4508 + }, + { + "start": 25086.2, + "end": 25087.8, + "probability": 0.9956 + }, + { + "start": 25088.8, + "end": 25090.06, + "probability": 0.9326 + }, + { + "start": 25091.06, + "end": 25094.24, + "probability": 0.9172 + }, + { + "start": 25096.06, + "end": 25096.84, + "probability": 0.5287 + }, + { + "start": 25097.62, + "end": 25100.92, + "probability": 0.6039 + }, + { + "start": 25101.82, + "end": 25103.6, + "probability": 0.857 + }, + { + "start": 25103.78, + "end": 25105.5, + "probability": 0.6263 + }, + { + "start": 25106.48, + "end": 25108.98, + "probability": 0.7262 + }, + { + "start": 25109.98, + "end": 25111.4, + "probability": 0.9967 + }, + { + "start": 25111.5, + "end": 25112.32, + "probability": 0.9065 + }, + { + "start": 25112.84, + "end": 25119.26, + "probability": 0.9678 + }, + { + "start": 25119.9, + "end": 25120.7, + "probability": 0.7551 + }, + { + "start": 25120.78, + "end": 25125.3, + "probability": 0.9971 + }, + { + "start": 25126.0, + "end": 25129.98, + "probability": 0.9956 + }, + { + "start": 25130.86, + "end": 25136.54, + "probability": 0.9784 + }, + { + "start": 25137.6, + "end": 25139.36, + "probability": 0.9583 + }, + { + "start": 25139.8, + "end": 25143.24, + "probability": 0.9627 + }, + { + "start": 25143.6, + "end": 25146.22, + "probability": 0.9655 + }, + { + "start": 25146.42, + "end": 25147.52, + "probability": 0.4438 + }, + { + "start": 25148.79, + "end": 25153.18, + "probability": 0.8055 + }, + { + "start": 25153.9, + "end": 25154.02, + "probability": 0.6089 + }, + { + "start": 25154.78, + "end": 25156.7, + "probability": 0.6502 + }, + { + "start": 25156.94, + "end": 25159.1, + "probability": 0.9461 + }, + { + "start": 25160.56, + "end": 25163.3, + "probability": 0.8117 + }, + { + "start": 25163.84, + "end": 25164.26, + "probability": 0.5115 + }, + { + "start": 25165.56, + "end": 25166.02, + "probability": 0.7596 + }, + { + "start": 25166.7, + "end": 25167.32, + "probability": 0.3239 + }, + { + "start": 25188.84, + "end": 25190.68, + "probability": 0.8499 + }, + { + "start": 25191.76, + "end": 25193.44, + "probability": 0.9985 + }, + { + "start": 25193.54, + "end": 25195.02, + "probability": 0.9757 + }, + { + "start": 25196.48, + "end": 25198.86, + "probability": 0.7073 + }, + { + "start": 25200.58, + "end": 25201.44, + "probability": 0.9478 + }, + { + "start": 25203.74, + "end": 25206.28, + "probability": 0.7117 + }, + { + "start": 25206.9, + "end": 25207.54, + "probability": 0.732 + }, + { + "start": 25208.06, + "end": 25210.4, + "probability": 0.8944 + }, + { + "start": 25210.58, + "end": 25212.74, + "probability": 0.2145 + }, + { + "start": 25213.86, + "end": 25217.12, + "probability": 0.865 + }, + { + "start": 25217.72, + "end": 25222.78, + "probability": 0.8997 + }, + { + "start": 25223.46, + "end": 25223.48, + "probability": 0.074 + }, + { + "start": 25229.66, + "end": 25230.16, + "probability": 0.2309 + }, + { + "start": 25230.92, + "end": 25231.14, + "probability": 0.6175 + }, + { + "start": 25232.42, + "end": 25233.46, + "probability": 0.7256 + }, + { + "start": 25234.48, + "end": 25235.2, + "probability": 0.9185 + }, + { + "start": 25236.16, + "end": 25237.16, + "probability": 0.8049 + }, + { + "start": 25237.72, + "end": 25238.6, + "probability": 0.8087 + }, + { + "start": 25239.48, + "end": 25240.4, + "probability": 0.8906 + }, + { + "start": 25241.34, + "end": 25241.74, + "probability": 0.9692 + }, + { + "start": 25243.04, + "end": 25245.02, + "probability": 0.9709 + }, + { + "start": 25245.6, + "end": 25246.54, + "probability": 0.9354 + }, + { + "start": 25247.36, + "end": 25248.94, + "probability": 0.9796 + }, + { + "start": 25249.68, + "end": 25251.6, + "probability": 0.8623 + }, + { + "start": 25252.62, + "end": 25254.32, + "probability": 0.838 + }, + { + "start": 25255.76, + "end": 25259.36, + "probability": 0.5812 + }, + { + "start": 25262.14, + "end": 25264.28, + "probability": 0.5307 + }, + { + "start": 25265.08, + "end": 25265.32, + "probability": 0.5351 + }, + { + "start": 25266.32, + "end": 25267.18, + "probability": 0.7949 + }, + { + "start": 25268.26, + "end": 25270.64, + "probability": 0.7522 + }, + { + "start": 25271.16, + "end": 25272.0, + "probability": 0.9135 + }, + { + "start": 25273.2, + "end": 25273.64, + "probability": 0.9663 + }, + { + "start": 25274.64, + "end": 25275.6, + "probability": 0.895 + }, + { + "start": 25277.8, + "end": 25279.48, + "probability": 0.9473 + }, + { + "start": 25280.68, + "end": 25281.64, + "probability": 0.9512 + }, + { + "start": 25282.38, + "end": 25286.62, + "probability": 0.834 + }, + { + "start": 25288.05, + "end": 25289.6, + "probability": 0.9387 + }, + { + "start": 25290.46, + "end": 25292.08, + "probability": 0.8747 + }, + { + "start": 25292.76, + "end": 25295.1, + "probability": 0.751 + }, + { + "start": 25295.68, + "end": 25298.24, + "probability": 0.7952 + }, + { + "start": 25299.62, + "end": 25302.74, + "probability": 0.8928 + }, + { + "start": 25303.38, + "end": 25305.78, + "probability": 0.8121 + }, + { + "start": 25307.12, + "end": 25308.14, + "probability": 0.7669 + }, + { + "start": 25308.88, + "end": 25309.66, + "probability": 0.8988 + }, + { + "start": 25310.36, + "end": 25311.24, + "probability": 0.8844 + }, + { + "start": 25312.02, + "end": 25312.46, + "probability": 0.8186 + }, + { + "start": 25313.5, + "end": 25315.36, + "probability": 0.9772 + }, + { + "start": 25315.92, + "end": 25316.82, + "probability": 0.7736 + }, + { + "start": 25317.46, + "end": 25318.2, + "probability": 0.9551 + }, + { + "start": 25318.82, + "end": 25320.42, + "probability": 0.9915 + }, + { + "start": 25320.98, + "end": 25323.84, + "probability": 0.9244 + }, + { + "start": 25325.22, + "end": 25326.86, + "probability": 0.7895 + }, + { + "start": 25327.56, + "end": 25327.9, + "probability": 0.8486 + }, + { + "start": 25329.22, + "end": 25330.36, + "probability": 0.6955 + }, + { + "start": 25330.7, + "end": 25333.04, + "probability": 0.9269 + }, + { + "start": 25333.14, + "end": 25334.9, + "probability": 0.9698 + }, + { + "start": 25335.5, + "end": 25337.94, + "probability": 0.9458 + }, + { + "start": 25338.52, + "end": 25340.16, + "probability": 0.741 + }, + { + "start": 25341.76, + "end": 25343.6, + "probability": 0.7743 + }, + { + "start": 25345.66, + "end": 25347.76, + "probability": 0.8966 + }, + { + "start": 25350.1, + "end": 25351.0, + "probability": 0.9862 + }, + { + "start": 25351.52, + "end": 25355.0, + "probability": 0.7873 + }, + { + "start": 25356.2, + "end": 25356.46, + "probability": 0.8699 + }, + { + "start": 25357.64, + "end": 25358.06, + "probability": 0.4108 + }, + { + "start": 25359.02, + "end": 25359.82, + "probability": 0.9716 + }, + { + "start": 25360.4, + "end": 25361.56, + "probability": 0.8217 + }, + { + "start": 25366.86, + "end": 25367.58, + "probability": 0.7793 + }, + { + "start": 25368.46, + "end": 25369.42, + "probability": 0.5328 + }, + { + "start": 25370.96, + "end": 25371.9, + "probability": 0.9848 + }, + { + "start": 25372.98, + "end": 25375.96, + "probability": 0.9252 + }, + { + "start": 25377.64, + "end": 25382.58, + "probability": 0.6289 + }, + { + "start": 25386.76, + "end": 25388.16, + "probability": 0.514 + }, + { + "start": 25391.5, + "end": 25394.66, + "probability": 0.551 + }, + { + "start": 25397.0, + "end": 25398.96, + "probability": 0.7877 + }, + { + "start": 25400.42, + "end": 25405.86, + "probability": 0.8747 + }, + { + "start": 25406.4, + "end": 25408.43, + "probability": 0.9146 + }, + { + "start": 25408.84, + "end": 25410.6, + "probability": 0.9836 + }, + { + "start": 25410.72, + "end": 25413.62, + "probability": 0.9773 + }, + { + "start": 25413.72, + "end": 25414.96, + "probability": 0.8008 + }, + { + "start": 25417.52, + "end": 25420.52, + "probability": 0.6389 + }, + { + "start": 25421.66, + "end": 25423.34, + "probability": 0.8768 + }, + { + "start": 25424.34, + "end": 25426.92, + "probability": 0.8844 + }, + { + "start": 25427.88, + "end": 25429.92, + "probability": 0.9133 + }, + { + "start": 25431.18, + "end": 25436.82, + "probability": 0.8547 + }, + { + "start": 25437.44, + "end": 25443.22, + "probability": 0.9608 + }, + { + "start": 25444.02, + "end": 25444.96, + "probability": 0.6679 + }, + { + "start": 25451.02, + "end": 25456.84, + "probability": 0.6223 + }, + { + "start": 25457.74, + "end": 25460.2, + "probability": 0.7814 + }, + { + "start": 25461.1, + "end": 25464.92, + "probability": 0.7877 + }, + { + "start": 25465.78, + "end": 25466.84, + "probability": 0.9473 + }, + { + "start": 25467.64, + "end": 25468.6, + "probability": 0.7544 + }, + { + "start": 25468.84, + "end": 25470.58, + "probability": 0.8802 + }, + { + "start": 25470.68, + "end": 25473.36, + "probability": 0.9575 + }, + { + "start": 25475.78, + "end": 25477.48, + "probability": 0.8286 + }, + { + "start": 25478.82, + "end": 25480.56, + "probability": 0.9153 + }, + { + "start": 25481.14, + "end": 25483.32, + "probability": 0.8272 + }, + { + "start": 25484.16, + "end": 25484.58, + "probability": 0.8599 + }, + { + "start": 25485.64, + "end": 25486.56, + "probability": 0.9265 + }, + { + "start": 25488.66, + "end": 25490.54, + "probability": 0.9456 + }, + { + "start": 25491.94, + "end": 25492.46, + "probability": 0.9106 + }, + { + "start": 25493.68, + "end": 25495.58, + "probability": 0.9355 + }, + { + "start": 25496.56, + "end": 25498.14, + "probability": 0.7479 + }, + { + "start": 25498.68, + "end": 25499.66, + "probability": 0.6574 + }, + { + "start": 25502.14, + "end": 25503.94, + "probability": 0.9159 + }, + { + "start": 25510.34, + "end": 25512.32, + "probability": 0.6023 + }, + { + "start": 25514.1, + "end": 25515.08, + "probability": 0.9457 + }, + { + "start": 25516.06, + "end": 25516.86, + "probability": 0.891 + }, + { + "start": 25518.06, + "end": 25521.16, + "probability": 0.6395 + }, + { + "start": 25523.02, + "end": 25527.76, + "probability": 0.7647 + }, + { + "start": 25527.78, + "end": 25529.64, + "probability": 0.869 + }, + { + "start": 25533.42, + "end": 25533.82, + "probability": 0.9756 + }, + { + "start": 25535.06, + "end": 25535.6, + "probability": 0.6231 + }, + { + "start": 25535.7, + "end": 25538.06, + "probability": 0.4889 + }, + { + "start": 25538.26, + "end": 25541.26, + "probability": 0.9829 + }, + { + "start": 25541.52, + "end": 25544.16, + "probability": 0.9092 + }, + { + "start": 25544.9, + "end": 25546.72, + "probability": 0.9437 + }, + { + "start": 25550.78, + "end": 25552.9, + "probability": 0.8467 + }, + { + "start": 25553.52, + "end": 25554.86, + "probability": 0.8341 + }, + { + "start": 25556.86, + "end": 25558.38, + "probability": 0.6655 + }, + { + "start": 25562.14, + "end": 25562.84, + "probability": 0.5164 + }, + { + "start": 25564.8, + "end": 25565.58, + "probability": 0.7817 + }, + { + "start": 25567.98, + "end": 25568.7, + "probability": 0.6871 + }, + { + "start": 25569.52, + "end": 25571.4, + "probability": 0.7308 + }, + { + "start": 25571.98, + "end": 25574.74, + "probability": 0.7861 + }, + { + "start": 25576.44, + "end": 25578.9, + "probability": 0.9461 + }, + { + "start": 25579.64, + "end": 25581.48, + "probability": 0.9155 + }, + { + "start": 25582.64, + "end": 25583.54, + "probability": 0.8949 + }, + { + "start": 25584.12, + "end": 25586.14, + "probability": 0.9734 + }, + { + "start": 25587.34, + "end": 25588.02, + "probability": 0.9837 + }, + { + "start": 25589.14, + "end": 25590.03, + "probability": 0.7559 + }, + { + "start": 25591.1, + "end": 25596.28, + "probability": 0.8492 + }, + { + "start": 25597.68, + "end": 25599.34, + "probability": 0.8057 + }, + { + "start": 25599.38, + "end": 25601.86, + "probability": 0.8618 + }, + { + "start": 25603.64, + "end": 25605.68, + "probability": 0.9571 + }, + { + "start": 25606.44, + "end": 25608.1, + "probability": 0.8971 + }, + { + "start": 25609.64, + "end": 25611.26, + "probability": 0.8077 + }, + { + "start": 25613.3, + "end": 25614.78, + "probability": 0.7573 + }, + { + "start": 25614.92, + "end": 25616.48, + "probability": 0.8938 + }, + { + "start": 25618.04, + "end": 25619.64, + "probability": 0.915 + }, + { + "start": 25620.42, + "end": 25621.94, + "probability": 0.9164 + }, + { + "start": 25622.06, + "end": 25623.98, + "probability": 0.7864 + }, + { + "start": 25624.08, + "end": 25625.56, + "probability": 0.434 + }, + { + "start": 25627.74, + "end": 25629.12, + "probability": 0.8175 + }, + { + "start": 25630.44, + "end": 25633.08, + "probability": 0.9602 + }, + { + "start": 25637.08, + "end": 25641.62, + "probability": 0.9816 + }, + { + "start": 25642.14, + "end": 25643.34, + "probability": 0.4762 + }, + { + "start": 25643.44, + "end": 25645.4, + "probability": 0.7087 + }, + { + "start": 25645.52, + "end": 25646.1, + "probability": 0.8559 + }, + { + "start": 25646.66, + "end": 25647.64, + "probability": 0.414 + }, + { + "start": 25648.24, + "end": 25649.58, + "probability": 0.8018 + }, + { + "start": 25650.6, + "end": 25652.44, + "probability": 0.9404 + }, + { + "start": 25653.58, + "end": 25655.24, + "probability": 0.9328 + }, + { + "start": 25655.98, + "end": 25657.5, + "probability": 0.9385 + }, + { + "start": 25658.42, + "end": 25660.06, + "probability": 0.9787 + }, + { + "start": 25661.18, + "end": 25665.28, + "probability": 0.9294 + }, + { + "start": 25666.1, + "end": 25668.06, + "probability": 0.7517 + }, + { + "start": 25669.88, + "end": 25671.42, + "probability": 0.9282 + }, + { + "start": 25671.94, + "end": 25674.56, + "probability": 0.9271 + }, + { + "start": 25675.74, + "end": 25677.6, + "probability": 0.9564 + }, + { + "start": 25677.7, + "end": 25679.22, + "probability": 0.9884 + }, + { + "start": 25679.3, + "end": 25682.06, + "probability": 0.9847 + }, + { + "start": 25682.52, + "end": 25683.98, + "probability": 0.6315 + }, + { + "start": 25684.68, + "end": 25686.98, + "probability": 0.9274 + }, + { + "start": 25687.6, + "end": 25687.98, + "probability": 0.8308 + }, + { + "start": 25690.16, + "end": 25691.1, + "probability": 0.9259 + }, + { + "start": 25692.42, + "end": 25693.36, + "probability": 0.9901 + }, + { + "start": 25693.94, + "end": 25694.8, + "probability": 0.9705 + }, + { + "start": 25695.76, + "end": 25697.36, + "probability": 0.9624 + }, + { + "start": 25698.28, + "end": 25699.36, + "probability": 0.9956 + }, + { + "start": 25700.1, + "end": 25701.1, + "probability": 0.9464 + }, + { + "start": 25701.8, + "end": 25702.62, + "probability": 0.9849 + }, + { + "start": 25703.54, + "end": 25704.24, + "probability": 0.7801 + }, + { + "start": 25704.36, + "end": 25705.88, + "probability": 0.8846 + }, + { + "start": 25706.3, + "end": 25708.78, + "probability": 0.7672 + }, + { + "start": 25709.86, + "end": 25712.28, + "probability": 0.9424 + }, + { + "start": 25713.86, + "end": 25717.14, + "probability": 0.9736 + }, + { + "start": 25717.86, + "end": 25721.28, + "probability": 0.9316 + }, + { + "start": 25722.46, + "end": 25724.08, + "probability": 0.6821 + }, + { + "start": 25724.28, + "end": 25726.62, + "probability": 0.5915 + }, + { + "start": 25734.92, + "end": 25738.46, + "probability": 0.7965 + }, + { + "start": 25739.24, + "end": 25744.82, + "probability": 0.6998 + }, + { + "start": 25745.62, + "end": 25748.02, + "probability": 0.7955 + }, + { + "start": 25750.34, + "end": 25751.32, + "probability": 0.9464 + }, + { + "start": 25752.04, + "end": 25755.3, + "probability": 0.8655 + }, + { + "start": 25756.26, + "end": 25757.36, + "probability": 0.6577 + }, + { + "start": 25757.48, + "end": 25760.1, + "probability": 0.9055 + }, + { + "start": 25760.52, + "end": 25761.88, + "probability": 0.9462 + }, + { + "start": 25762.72, + "end": 25766.74, + "probability": 0.9488 + }, + { + "start": 25767.62, + "end": 25769.48, + "probability": 0.942 + }, + { + "start": 25771.82, + "end": 25774.06, + "probability": 0.7053 + }, + { + "start": 25774.16, + "end": 25775.18, + "probability": 0.5421 + }, + { + "start": 25775.18, + "end": 25775.67, + "probability": 0.7384 + }, + { + "start": 25776.96, + "end": 25777.38, + "probability": 0.9148 + }, + { + "start": 25779.04, + "end": 25780.06, + "probability": 0.9782 + }, + { + "start": 25781.24, + "end": 25785.26, + "probability": 0.7809 + }, + { + "start": 25787.37, + "end": 25794.4, + "probability": 0.6267 + }, + { + "start": 25794.98, + "end": 25798.04, + "probability": 0.7319 + }, + { + "start": 25798.64, + "end": 25799.52, + "probability": 0.8388 + }, + { + "start": 25800.1, + "end": 25801.58, + "probability": 0.9425 + }, + { + "start": 25802.44, + "end": 25804.32, + "probability": 0.9082 + }, + { + "start": 25812.98, + "end": 25813.98, + "probability": 0.5009 + }, + { + "start": 25816.24, + "end": 25816.54, + "probability": 0.6706 + }, + { + "start": 25819.22, + "end": 25819.92, + "probability": 0.2339 + }, + { + "start": 25821.54, + "end": 25822.28, + "probability": 0.8314 + }, + { + "start": 25823.82, + "end": 25824.54, + "probability": 0.8124 + }, + { + "start": 25825.42, + "end": 25826.54, + "probability": 0.6908 + }, + { + "start": 25829.6, + "end": 25830.24, + "probability": 0.5385 + }, + { + "start": 25830.32, + "end": 25832.46, + "probability": 0.864 + }, + { + "start": 25832.62, + "end": 25834.04, + "probability": 0.8339 + }, + { + "start": 25834.64, + "end": 25836.9, + "probability": 0.9553 + }, + { + "start": 25837.72, + "end": 25839.46, + "probability": 0.8566 + }, + { + "start": 25840.98, + "end": 25842.08, + "probability": 0.9918 + }, + { + "start": 25842.66, + "end": 25844.76, + "probability": 0.5027 + }, + { + "start": 25845.78, + "end": 25846.12, + "probability": 0.8223 + }, + { + "start": 25848.42, + "end": 25851.72, + "probability": 0.7467 + }, + { + "start": 25852.26, + "end": 25853.74, + "probability": 0.6753 + }, + { + "start": 25854.88, + "end": 25857.26, + "probability": 0.9685 + }, + { + "start": 25857.9, + "end": 25858.78, + "probability": 0.8186 + }, + { + "start": 25859.5, + "end": 25861.92, + "probability": 0.6241 + }, + { + "start": 25863.26, + "end": 25864.42, + "probability": 0.8928 + }, + { + "start": 25866.42, + "end": 25867.32, + "probability": 0.9671 + }, + { + "start": 25867.94, + "end": 25868.78, + "probability": 0.8869 + }, + { + "start": 25870.2, + "end": 25872.03, + "probability": 0.947 + }, + { + "start": 25872.78, + "end": 25875.4, + "probability": 0.7075 + }, + { + "start": 25876.5, + "end": 25879.62, + "probability": 0.8644 + }, + { + "start": 25880.38, + "end": 25881.08, + "probability": 0.9445 + }, + { + "start": 25881.84, + "end": 25883.64, + "probability": 0.9702 + }, + { + "start": 25884.38, + "end": 25885.36, + "probability": 0.6973 + }, + { + "start": 25885.38, + "end": 25886.92, + "probability": 0.7569 + }, + { + "start": 25887.0, + "end": 25888.44, + "probability": 0.8994 + }, + { + "start": 25889.28, + "end": 25891.24, + "probability": 0.9041 + }, + { + "start": 25892.84, + "end": 25894.34, + "probability": 0.8849 + }, + { + "start": 25894.44, + "end": 25896.04, + "probability": 0.9634 + }, + { + "start": 25897.24, + "end": 25898.76, + "probability": 0.8881 + }, + { + "start": 25898.88, + "end": 25900.6, + "probability": 0.8779 + }, + { + "start": 25900.72, + "end": 25901.24, + "probability": 0.7321 + }, + { + "start": 25902.0, + "end": 25902.97, + "probability": 0.684 + }, + { + "start": 25903.68, + "end": 25905.22, + "probability": 0.7897 + }, + { + "start": 25906.7, + "end": 25909.16, + "probability": 0.9689 + }, + { + "start": 25909.84, + "end": 25911.29, + "probability": 0.5251 + }, + { + "start": 25912.28, + "end": 25915.42, + "probability": 0.8816 + }, + { + "start": 25916.0, + "end": 25918.06, + "probability": 0.8231 + }, + { + "start": 25919.63, + "end": 25920.08, + "probability": 0.2997 + }, + { + "start": 25920.09, + "end": 25923.86, + "probability": 0.8501 + }, + { + "start": 25924.94, + "end": 25926.12, + "probability": 0.6088 + }, + { + "start": 25926.42, + "end": 25927.18, + "probability": 0.9067 + }, + { + "start": 25928.98, + "end": 25930.84, + "probability": 0.7074 + }, + { + "start": 25930.9, + "end": 25932.18, + "probability": 0.6634 + }, + { + "start": 25965.02, + "end": 25968.34, + "probability": 0.0253 + }, + { + "start": 25991.98, + "end": 25993.24, + "probability": 0.0123 + }, + { + "start": 25993.24, + "end": 25993.86, + "probability": 0.033 + }, + { + "start": 26046.0, + "end": 26046.0, + "probability": 0.0 + }, + { + "start": 26046.0, + "end": 26046.0, + "probability": 0.0 + }, + { + "start": 26046.0, + "end": 26046.0, + "probability": 0.0 + }, + { + "start": 26046.8, + "end": 26050.14, + "probability": 0.8359 + }, + { + "start": 26053.56, + "end": 26054.28, + "probability": 0.3005 + }, + { + "start": 26076.38, + "end": 26076.48, + "probability": 0.0077 + }, + { + "start": 26082.34, + "end": 26084.56, + "probability": 0.7182 + }, + { + "start": 26085.38, + "end": 26086.26, + "probability": 0.7898 + }, + { + "start": 26086.44, + "end": 26087.74, + "probability": 0.8492 + }, + { + "start": 26088.24, + "end": 26090.78, + "probability": 0.9075 + }, + { + "start": 26090.8, + "end": 26091.03, + "probability": 0.7515 + }, + { + "start": 26092.16, + "end": 26093.32, + "probability": 0.6565 + }, + { + "start": 26093.46, + "end": 26094.2, + "probability": 0.3151 + }, + { + "start": 26094.54, + "end": 26094.74, + "probability": 0.7927 + }, + { + "start": 26097.12, + "end": 26099.36, + "probability": 0.0302 + }, + { + "start": 26099.74, + "end": 26100.66, + "probability": 0.5308 + }, + { + "start": 26102.04, + "end": 26104.02, + "probability": 0.7498 + }, + { + "start": 26104.68, + "end": 26109.5, + "probability": 0.9328 + }, + { + "start": 26110.42, + "end": 26113.28, + "probability": 0.9686 + }, + { + "start": 26114.04, + "end": 26117.92, + "probability": 0.9585 + }, + { + "start": 26118.34, + "end": 26119.2, + "probability": 0.4449 + }, + { + "start": 26119.52, + "end": 26124.28, + "probability": 0.9616 + }, + { + "start": 26126.08, + "end": 26128.24, + "probability": 0.9767 + }, + { + "start": 26129.12, + "end": 26130.12, + "probability": 0.0863 + }, + { + "start": 26130.12, + "end": 26131.3, + "probability": 0.1628 + }, + { + "start": 26132.18, + "end": 26134.16, + "probability": 0.9478 + }, + { + "start": 26134.16, + "end": 26136.48, + "probability": 0.9032 + }, + { + "start": 26137.36, + "end": 26139.0, + "probability": 0.8436 + }, + { + "start": 26139.6, + "end": 26143.56, + "probability": 0.9635 + }, + { + "start": 26144.52, + "end": 26147.16, + "probability": 0.8564 + }, + { + "start": 26147.22, + "end": 26147.7, + "probability": 0.832 + }, + { + "start": 26149.53, + "end": 26154.0, + "probability": 0.5831 + }, + { + "start": 26154.52, + "end": 26155.42, + "probability": 0.1045 + }, + { + "start": 26156.04, + "end": 26158.08, + "probability": 0.6056 + }, + { + "start": 26182.4, + "end": 26183.12, + "probability": 0.609 + }, + { + "start": 26183.12, + "end": 26183.88, + "probability": 0.7944 + }, + { + "start": 26183.88, + "end": 26184.84, + "probability": 0.7049 + }, + { + "start": 26184.88, + "end": 26187.38, + "probability": 0.9585 + }, + { + "start": 26188.52, + "end": 26190.68, + "probability": 0.7969 + }, + { + "start": 26191.08, + "end": 26192.92, + "probability": 0.6251 + }, + { + "start": 26193.88, + "end": 26196.58, + "probability": 0.9692 + }, + { + "start": 26197.32, + "end": 26198.9, + "probability": 0.9441 + }, + { + "start": 26198.92, + "end": 26199.2, + "probability": 0.7165 + }, + { + "start": 26199.26, + "end": 26202.38, + "probability": 0.8995 + }, + { + "start": 26203.22, + "end": 26204.38, + "probability": 0.9325 + }, + { + "start": 26204.5, + "end": 26205.52, + "probability": 0.5279 + }, + { + "start": 26205.88, + "end": 26207.08, + "probability": 0.8698 + }, + { + "start": 26207.34, + "end": 26209.14, + "probability": 0.9214 + }, + { + "start": 26209.72, + "end": 26211.68, + "probability": 0.6951 + }, + { + "start": 26212.14, + "end": 26214.2, + "probability": 0.996 + }, + { + "start": 26215.4, + "end": 26218.56, + "probability": 0.9447 + }, + { + "start": 26219.4, + "end": 26221.38, + "probability": 0.876 + }, + { + "start": 26222.6, + "end": 26223.53, + "probability": 0.7979 + }, + { + "start": 26224.48, + "end": 26226.68, + "probability": 0.9832 + }, + { + "start": 26227.66, + "end": 26230.92, + "probability": 0.8513 + }, + { + "start": 26231.04, + "end": 26231.92, + "probability": 0.7696 + }, + { + "start": 26232.38, + "end": 26234.78, + "probability": 0.9551 + }, + { + "start": 26234.98, + "end": 26239.62, + "probability": 0.9082 + }, + { + "start": 26240.6, + "end": 26242.52, + "probability": 0.651 + }, + { + "start": 26242.7, + "end": 26243.84, + "probability": 0.8813 + }, + { + "start": 26243.98, + "end": 26245.0, + "probability": 0.97 + }, + { + "start": 26245.44, + "end": 26248.22, + "probability": 0.757 + }, + { + "start": 26249.54, + "end": 26250.98, + "probability": 0.9783 + }, + { + "start": 26251.04, + "end": 26251.32, + "probability": 0.5285 + }, + { + "start": 26251.44, + "end": 26251.68, + "probability": 0.5764 + }, + { + "start": 26252.08, + "end": 26257.5, + "probability": 0.9663 + }, + { + "start": 26259.9, + "end": 26261.68, + "probability": 0.6343 + }, + { + "start": 26262.48, + "end": 26264.52, + "probability": 0.9988 + }, + { + "start": 26265.12, + "end": 26265.39, + "probability": 0.5122 + }, + { + "start": 26266.9, + "end": 26268.34, + "probability": 0.9915 + }, + { + "start": 26268.64, + "end": 26270.62, + "probability": 0.9357 + }, + { + "start": 26271.2, + "end": 26272.86, + "probability": 0.9211 + }, + { + "start": 26273.42, + "end": 26277.44, + "probability": 0.9538 + }, + { + "start": 26277.86, + "end": 26278.44, + "probability": 0.86 + }, + { + "start": 26278.74, + "end": 26279.62, + "probability": 0.6717 + }, + { + "start": 26281.34, + "end": 26283.88, + "probability": 0.8032 + }, + { + "start": 26284.06, + "end": 26286.14, + "probability": 0.7007 + }, + { + "start": 26286.28, + "end": 26288.26, + "probability": 0.993 + }, + { + "start": 26289.98, + "end": 26292.0, + "probability": 0.9948 + }, + { + "start": 26292.84, + "end": 26293.34, + "probability": 0.5009 + }, + { + "start": 26294.04, + "end": 26297.58, + "probability": 0.7808 + }, + { + "start": 26298.28, + "end": 26299.26, + "probability": 0.767 + }, + { + "start": 26301.0, + "end": 26302.36, + "probability": 0.9907 + }, + { + "start": 26302.38, + "end": 26302.88, + "probability": 0.9915 + }, + { + "start": 26303.82, + "end": 26305.48, + "probability": 0.766 + }, + { + "start": 26306.3, + "end": 26307.88, + "probability": 0.9695 + }, + { + "start": 26308.44, + "end": 26314.5, + "probability": 0.9453 + }, + { + "start": 26316.22, + "end": 26318.08, + "probability": 0.7823 + }, + { + "start": 26319.92, + "end": 26319.94, + "probability": 0.4998 + }, + { + "start": 26319.94, + "end": 26322.98, + "probability": 0.9277 + }, + { + "start": 26323.92, + "end": 26327.89, + "probability": 0.829 + }, + { + "start": 26330.59, + "end": 26331.1, + "probability": 0.2734 + }, + { + "start": 26331.1, + "end": 26332.6, + "probability": 0.2198 + }, + { + "start": 26332.6, + "end": 26332.94, + "probability": 0.2281 + }, + { + "start": 26333.08, + "end": 26333.68, + "probability": 0.8095 + }, + { + "start": 26334.08, + "end": 26336.0, + "probability": 0.7205 + }, + { + "start": 26337.2, + "end": 26338.9, + "probability": 0.7531 + }, + { + "start": 26339.04, + "end": 26340.4, + "probability": 0.7838 + }, + { + "start": 26341.96, + "end": 26343.54, + "probability": 0.998 + }, + { + "start": 26343.66, + "end": 26345.42, + "probability": 0.9911 + }, + { + "start": 26345.7, + "end": 26347.04, + "probability": 0.9987 + }, + { + "start": 26347.9, + "end": 26349.04, + "probability": 0.9144 + }, + { + "start": 26350.02, + "end": 26351.68, + "probability": 0.9728 + }, + { + "start": 26351.76, + "end": 26352.76, + "probability": 0.8536 + }, + { + "start": 26352.92, + "end": 26353.74, + "probability": 0.9729 + }, + { + "start": 26353.9, + "end": 26355.26, + "probability": 0.9646 + }, + { + "start": 26356.2, + "end": 26356.64, + "probability": 0.9601 + }, + { + "start": 26356.72, + "end": 26358.64, + "probability": 0.9986 + }, + { + "start": 26360.22, + "end": 26362.18, + "probability": 0.9385 + }, + { + "start": 26362.4, + "end": 26363.92, + "probability": 0.9839 + }, + { + "start": 26365.78, + "end": 26367.58, + "probability": 0.972 + }, + { + "start": 26367.66, + "end": 26370.0, + "probability": 0.8618 + }, + { + "start": 26371.92, + "end": 26374.68, + "probability": 0.9995 + }, + { + "start": 26375.44, + "end": 26378.5, + "probability": 0.967 + }, + { + "start": 26378.84, + "end": 26381.6, + "probability": 0.6772 + }, + { + "start": 26382.66, + "end": 26384.78, + "probability": 0.9396 + }, + { + "start": 26385.64, + "end": 26387.22, + "probability": 0.8809 + }, + { + "start": 26387.78, + "end": 26390.06, + "probability": 0.9907 + }, + { + "start": 26392.34, + "end": 26393.52, + "probability": 0.4182 + }, + { + "start": 26394.66, + "end": 26396.26, + "probability": 0.5769 + }, + { + "start": 26398.18, + "end": 26398.86, + "probability": 0.3983 + }, + { + "start": 26398.92, + "end": 26400.94, + "probability": 0.9177 + }, + { + "start": 26401.76, + "end": 26403.36, + "probability": 0.7379 + }, + { + "start": 26403.52, + "end": 26404.44, + "probability": 0.9213 + }, + { + "start": 26404.46, + "end": 26405.04, + "probability": 0.221 + }, + { + "start": 26405.06, + "end": 26405.92, + "probability": 0.3152 + }, + { + "start": 26407.6, + "end": 26408.88, + "probability": 0.6207 + }, + { + "start": 26411.14, + "end": 26412.22, + "probability": 0.7629 + }, + { + "start": 26412.36, + "end": 26412.98, + "probability": 0.8605 + }, + { + "start": 26413.56, + "end": 26415.98, + "probability": 0.9438 + }, + { + "start": 26416.94, + "end": 26418.64, + "probability": 0.9744 + }, + { + "start": 26419.32, + "end": 26420.58, + "probability": 0.917 + }, + { + "start": 26421.26, + "end": 26422.95, + "probability": 0.9301 + }, + { + "start": 26423.4, + "end": 26424.65, + "probability": 0.9966 + }, + { + "start": 26424.74, + "end": 26426.86, + "probability": 0.9661 + }, + { + "start": 26426.92, + "end": 26427.68, + "probability": 0.9357 + }, + { + "start": 26427.94, + "end": 26428.94, + "probability": 0.943 + }, + { + "start": 26429.36, + "end": 26431.3, + "probability": 0.8711 + }, + { + "start": 26432.0, + "end": 26432.94, + "probability": 0.9767 + }, + { + "start": 26433.42, + "end": 26434.76, + "probability": 0.9753 + }, + { + "start": 26435.24, + "end": 26436.82, + "probability": 0.6233 + }, + { + "start": 26437.28, + "end": 26439.14, + "probability": 0.9019 + }, + { + "start": 26439.66, + "end": 26440.8, + "probability": 0.8469 + }, + { + "start": 26441.0, + "end": 26443.5, + "probability": 0.9576 + }, + { + "start": 26444.1, + "end": 26444.94, + "probability": 0.9391 + }, + { + "start": 26446.16, + "end": 26447.42, + "probability": 0.8381 + }, + { + "start": 26448.26, + "end": 26449.38, + "probability": 0.6447 + }, + { + "start": 26450.94, + "end": 26452.38, + "probability": 0.7559 + }, + { + "start": 26452.58, + "end": 26453.7, + "probability": 0.8737 + }, + { + "start": 26454.16, + "end": 26456.88, + "probability": 0.9613 + }, + { + "start": 26457.46, + "end": 26459.43, + "probability": 0.78 + }, + { + "start": 26460.64, + "end": 26462.18, + "probability": 0.9502 + }, + { + "start": 26462.68, + "end": 26464.94, + "probability": 0.9637 + }, + { + "start": 26466.06, + "end": 26467.68, + "probability": 0.9462 + }, + { + "start": 26467.74, + "end": 26471.86, + "probability": 0.7677 + }, + { + "start": 26472.34, + "end": 26474.31, + "probability": 0.9961 + }, + { + "start": 26474.92, + "end": 26476.5, + "probability": 0.9602 + }, + { + "start": 26477.7, + "end": 26480.6, + "probability": 0.9697 + }, + { + "start": 26482.6, + "end": 26486.88, + "probability": 0.7377 + }, + { + "start": 26487.3, + "end": 26488.44, + "probability": 0.6613 + }, + { + "start": 26488.76, + "end": 26489.46, + "probability": 0.6141 + }, + { + "start": 26489.78, + "end": 26490.36, + "probability": 0.8494 + }, + { + "start": 26490.42, + "end": 26491.42, + "probability": 0.4181 + }, + { + "start": 26492.14, + "end": 26493.06, + "probability": 0.5927 + }, + { + "start": 26493.22, + "end": 26493.4, + "probability": 0.509 + }, + { + "start": 26493.44, + "end": 26493.96, + "probability": 0.7386 + }, + { + "start": 26493.96, + "end": 26494.78, + "probability": 0.8918 + }, + { + "start": 26495.28, + "end": 26496.7, + "probability": 0.8957 + }, + { + "start": 26497.72, + "end": 26498.4, + "probability": 0.7889 + }, + { + "start": 26498.78, + "end": 26502.84, + "probability": 0.8514 + }, + { + "start": 26503.76, + "end": 26505.66, + "probability": 0.9754 + }, + { + "start": 26506.16, + "end": 26508.44, + "probability": 0.9827 + }, + { + "start": 26509.02, + "end": 26510.52, + "probability": 0.9042 + }, + { + "start": 26510.84, + "end": 26512.58, + "probability": 0.7564 + }, + { + "start": 26512.68, + "end": 26513.8, + "probability": 0.6843 + }, + { + "start": 26515.2, + "end": 26517.44, + "probability": 0.8877 + }, + { + "start": 26517.96, + "end": 26519.62, + "probability": 0.7421 + }, + { + "start": 26520.2, + "end": 26523.22, + "probability": 0.8342 + }, + { + "start": 26523.62, + "end": 26525.26, + "probability": 0.9738 + }, + { + "start": 26525.32, + "end": 26526.19, + "probability": 0.7042 + }, + { + "start": 26526.76, + "end": 26530.76, + "probability": 0.9789 + }, + { + "start": 26531.46, + "end": 26533.42, + "probability": 0.6022 + }, + { + "start": 26533.92, + "end": 26534.32, + "probability": 0.5195 + }, + { + "start": 26534.42, + "end": 26535.08, + "probability": 0.664 + }, + { + "start": 26536.11, + "end": 26538.32, + "probability": 0.7788 + }, + { + "start": 26538.7, + "end": 26539.98, + "probability": 0.9035 + }, + { + "start": 26540.88, + "end": 26542.84, + "probability": 0.9701 + }, + { + "start": 26543.46, + "end": 26545.16, + "probability": 0.8853 + }, + { + "start": 26545.52, + "end": 26546.18, + "probability": 0.2439 + }, + { + "start": 26547.32, + "end": 26548.3, + "probability": 0.5648 + }, + { + "start": 26548.4, + "end": 26550.14, + "probability": 0.9956 + }, + { + "start": 26550.26, + "end": 26551.2, + "probability": 0.7201 + }, + { + "start": 26552.34, + "end": 26559.14, + "probability": 0.0856 + }, + { + "start": 26559.14, + "end": 26561.94, + "probability": 0.1097 + }, + { + "start": 26561.94, + "end": 26561.94, + "probability": 0.2338 + }, + { + "start": 26561.94, + "end": 26561.94, + "probability": 0.0914 + }, + { + "start": 26561.94, + "end": 26561.94, + "probability": 0.11 + }, + { + "start": 26561.94, + "end": 26561.94, + "probability": 0.049 + }, + { + "start": 26561.94, + "end": 26562.2, + "probability": 0.298 + }, + { + "start": 26562.28, + "end": 26562.62, + "probability": 0.5797 + }, + { + "start": 26563.66, + "end": 26563.66, + "probability": 0.0423 + }, + { + "start": 26564.88, + "end": 26567.38, + "probability": 0.2306 + }, + { + "start": 26571.7, + "end": 26573.56, + "probability": 0.8538 + }, + { + "start": 26573.9, + "end": 26575.3, + "probability": 0.9599 + }, + { + "start": 26575.34, + "end": 26576.64, + "probability": 0.7556 + }, + { + "start": 26577.5, + "end": 26578.28, + "probability": 0.9081 + }, + { + "start": 26579.38, + "end": 26582.2, + "probability": 0.5124 + }, + { + "start": 26582.3, + "end": 26583.3, + "probability": 0.8644 + }, + { + "start": 26584.56, + "end": 26584.56, + "probability": 0.0908 + }, + { + "start": 26584.56, + "end": 26588.14, + "probability": 0.2371 + }, + { + "start": 26588.14, + "end": 26588.14, + "probability": 0.0506 + }, + { + "start": 26588.14, + "end": 26588.14, + "probability": 0.0746 + }, + { + "start": 26588.14, + "end": 26588.14, + "probability": 0.2275 + }, + { + "start": 26588.48, + "end": 26593.74, + "probability": 0.5937 + }, + { + "start": 26594.66, + "end": 26597.7, + "probability": 0.2074 + }, + { + "start": 26598.28, + "end": 26600.36, + "probability": 0.8701 + }, + { + "start": 26600.54, + "end": 26601.9, + "probability": 0.9891 + }, + { + "start": 26602.5, + "end": 26604.22, + "probability": 0.674 + }, + { + "start": 26604.62, + "end": 26605.34, + "probability": 0.9177 + }, + { + "start": 26624.32, + "end": 26624.86, + "probability": 0.5567 + }, + { + "start": 26626.4, + "end": 26628.38, + "probability": 0.667 + }, + { + "start": 26629.84, + "end": 26630.98, + "probability": 0.9933 + }, + { + "start": 26634.04, + "end": 26634.48, + "probability": 0.0295 + }, + { + "start": 26641.24, + "end": 26642.82, + "probability": 0.999 + }, + { + "start": 26642.96, + "end": 26645.02, + "probability": 0.7129 + }, + { + "start": 26646.06, + "end": 26650.42, + "probability": 0.9111 + }, + { + "start": 26651.58, + "end": 26652.22, + "probability": 0.9512 + }, + { + "start": 26652.88, + "end": 26652.98, + "probability": 0.8136 + }, + { + "start": 26653.9, + "end": 26654.36, + "probability": 0.9862 + }, + { + "start": 26654.98, + "end": 26656.3, + "probability": 0.985 + }, + { + "start": 26657.1, + "end": 26658.18, + "probability": 0.9967 + }, + { + "start": 26659.04, + "end": 26659.64, + "probability": 0.8779 + }, + { + "start": 26660.08, + "end": 26663.8, + "probability": 0.9982 + }, + { + "start": 26664.8, + "end": 26665.32, + "probability": 0.5152 + }, + { + "start": 26666.7, + "end": 26667.8, + "probability": 0.9968 + }, + { + "start": 26669.04, + "end": 26670.1, + "probability": 0.5369 + }, + { + "start": 26671.08, + "end": 26673.56, + "probability": 0.9953 + }, + { + "start": 26673.68, + "end": 26674.2, + "probability": 0.967 + }, + { + "start": 26675.5, + "end": 26676.86, + "probability": 0.8901 + }, + { + "start": 26678.14, + "end": 26679.38, + "probability": 0.9941 + }, + { + "start": 26680.4, + "end": 26681.06, + "probability": 0.9819 + }, + { + "start": 26682.16, + "end": 26682.76, + "probability": 0.6625 + }, + { + "start": 26683.74, + "end": 26685.84, + "probability": 0.9501 + }, + { + "start": 26686.94, + "end": 26688.94, + "probability": 0.8078 + }, + { + "start": 26690.32, + "end": 26693.12, + "probability": 0.9708 + }, + { + "start": 26694.72, + "end": 26696.56, + "probability": 0.9915 + }, + { + "start": 26698.36, + "end": 26699.32, + "probability": 0.9725 + }, + { + "start": 26700.2, + "end": 26701.92, + "probability": 0.9126 + }, + { + "start": 26703.14, + "end": 26706.2, + "probability": 0.8203 + }, + { + "start": 26707.12, + "end": 26708.28, + "probability": 0.9324 + }, + { + "start": 26709.82, + "end": 26712.32, + "probability": 0.9878 + }, + { + "start": 26713.32, + "end": 26714.48, + "probability": 0.9788 + }, + { + "start": 26715.08, + "end": 26718.88, + "probability": 0.9956 + }, + { + "start": 26719.46, + "end": 26721.86, + "probability": 0.9683 + }, + { + "start": 26723.26, + "end": 26725.34, + "probability": 0.996 + }, + { + "start": 26727.1, + "end": 26727.28, + "probability": 0.3008 + }, + { + "start": 26728.74, + "end": 26729.34, + "probability": 0.6337 + }, + { + "start": 26730.38, + "end": 26730.54, + "probability": 0.2024 + }, + { + "start": 26732.48, + "end": 26733.46, + "probability": 0.9945 + }, + { + "start": 26734.76, + "end": 26735.92, + "probability": 0.7648 + }, + { + "start": 26736.86, + "end": 26737.7, + "probability": 0.8757 + }, + { + "start": 26737.74, + "end": 26738.18, + "probability": 0.9411 + }, + { + "start": 26738.24, + "end": 26738.4, + "probability": 0.6395 + }, + { + "start": 26738.52, + "end": 26739.88, + "probability": 0.9111 + }, + { + "start": 26740.56, + "end": 26742.44, + "probability": 0.996 + }, + { + "start": 26744.02, + "end": 26745.06, + "probability": 0.9849 + }, + { + "start": 26747.0, + "end": 26748.0, + "probability": 0.9966 + }, + { + "start": 26748.66, + "end": 26750.6, + "probability": 0.9889 + }, + { + "start": 26751.8, + "end": 26752.52, + "probability": 0.637 + }, + { + "start": 26753.56, + "end": 26754.92, + "probability": 0.9389 + }, + { + "start": 26755.6, + "end": 26756.06, + "probability": 0.5435 + }, + { + "start": 26757.0, + "end": 26757.58, + "probability": 0.9043 + }, + { + "start": 26758.14, + "end": 26758.98, + "probability": 0.9722 + }, + { + "start": 26760.2, + "end": 26761.78, + "probability": 0.9836 + }, + { + "start": 26761.8, + "end": 26763.62, + "probability": 0.899 + }, + { + "start": 26765.0, + "end": 26767.54, + "probability": 0.9625 + }, + { + "start": 26768.64, + "end": 26772.16, + "probability": 0.9828 + }, + { + "start": 26774.04, + "end": 26774.36, + "probability": 0.8969 + }, + { + "start": 26775.7, + "end": 26778.66, + "probability": 0.9858 + }, + { + "start": 26779.12, + "end": 26783.54, + "probability": 0.9961 + }, + { + "start": 26784.24, + "end": 26784.92, + "probability": 0.9672 + }, + { + "start": 26785.5, + "end": 26788.1, + "probability": 0.9644 + }, + { + "start": 26788.64, + "end": 26789.5, + "probability": 0.9936 + }, + { + "start": 26789.6, + "end": 26790.36, + "probability": 0.8753 + }, + { + "start": 26790.44, + "end": 26791.22, + "probability": 0.7484 + }, + { + "start": 26792.26, + "end": 26793.44, + "probability": 0.9189 + }, + { + "start": 26794.56, + "end": 26795.82, + "probability": 0.9951 + }, + { + "start": 26797.22, + "end": 26798.4, + "probability": 0.847 + }, + { + "start": 26798.82, + "end": 26802.46, + "probability": 0.9926 + }, + { + "start": 26802.46, + "end": 26802.94, + "probability": 0.9741 + }, + { + "start": 26804.14, + "end": 26805.22, + "probability": 0.9526 + }, + { + "start": 26805.82, + "end": 26806.96, + "probability": 0.9965 + }, + { + "start": 26807.94, + "end": 26812.0, + "probability": 0.9912 + }, + { + "start": 26812.28, + "end": 26815.9, + "probability": 0.9831 + }, + { + "start": 26816.02, + "end": 26817.02, + "probability": 0.6117 + }, + { + "start": 26818.38, + "end": 26820.18, + "probability": 0.8838 + }, + { + "start": 26820.7, + "end": 26824.92, + "probability": 0.8503 + }, + { + "start": 26826.2, + "end": 26826.9, + "probability": 0.9416 + }, + { + "start": 26828.06, + "end": 26828.67, + "probability": 0.6556 + }, + { + "start": 26829.42, + "end": 26830.36, + "probability": 0.8586 + }, + { + "start": 26830.54, + "end": 26832.64, + "probability": 0.9655 + }, + { + "start": 26833.94, + "end": 26836.06, + "probability": 0.9334 + }, + { + "start": 26836.62, + "end": 26838.72, + "probability": 0.9729 + }, + { + "start": 26839.4, + "end": 26840.18, + "probability": 0.7431 + }, + { + "start": 26840.26, + "end": 26846.16, + "probability": 0.9492 + }, + { + "start": 26847.2, + "end": 26851.26, + "probability": 0.9723 + }, + { + "start": 26852.14, + "end": 26854.7, + "probability": 0.9949 + }, + { + "start": 26855.24, + "end": 26858.8, + "probability": 0.983 + }, + { + "start": 26859.96, + "end": 26862.38, + "probability": 0.9561 + }, + { + "start": 26863.14, + "end": 26864.44, + "probability": 0.9962 + }, + { + "start": 26864.96, + "end": 26869.9, + "probability": 0.9937 + }, + { + "start": 26870.24, + "end": 26871.32, + "probability": 0.7196 + }, + { + "start": 26871.62, + "end": 26874.5, + "probability": 0.9556 + }, + { + "start": 26875.3, + "end": 26877.44, + "probability": 0.8035 + }, + { + "start": 26878.14, + "end": 26879.28, + "probability": 0.788 + }, + { + "start": 26879.7, + "end": 26881.1, + "probability": 0.9946 + }, + { + "start": 26881.94, + "end": 26882.54, + "probability": 0.9428 + }, + { + "start": 26883.58, + "end": 26883.74, + "probability": 0.0239 + }, + { + "start": 26883.88, + "end": 26886.06, + "probability": 0.9766 + }, + { + "start": 26886.18, + "end": 26887.27, + "probability": 0.9134 + }, + { + "start": 26887.78, + "end": 26889.28, + "probability": 0.0891 + }, + { + "start": 26889.4, + "end": 26890.64, + "probability": 0.1617 + }, + { + "start": 26891.48, + "end": 26897.33, + "probability": 0.7654 + }, + { + "start": 26898.44, + "end": 26901.84, + "probability": 0.7776 + }, + { + "start": 26902.0, + "end": 26904.22, + "probability": 0.8185 + }, + { + "start": 26904.5, + "end": 26904.71, + "probability": 0.0677 + }, + { + "start": 26905.48, + "end": 26905.78, + "probability": 0.1894 + }, + { + "start": 26906.42, + "end": 26907.2, + "probability": 0.4426 + }, + { + "start": 26907.4, + "end": 26908.0, + "probability": 0.8157 + }, + { + "start": 26908.12, + "end": 26909.5, + "probability": 0.7962 + }, + { + "start": 26909.98, + "end": 26909.98, + "probability": 0.1265 + }, + { + "start": 26909.98, + "end": 26910.38, + "probability": 0.409 + }, + { + "start": 26910.52, + "end": 26911.12, + "probability": 0.7272 + }, + { + "start": 26911.2, + "end": 26912.02, + "probability": 0.629 + }, + { + "start": 26912.46, + "end": 26913.16, + "probability": 0.9065 + }, + { + "start": 26913.3, + "end": 26913.76, + "probability": 0.854 + }, + { + "start": 26913.84, + "end": 26914.52, + "probability": 0.808 + }, + { + "start": 26914.56, + "end": 26915.54, + "probability": 0.9306 + }, + { + "start": 26915.98, + "end": 26916.88, + "probability": 0.9575 + }, + { + "start": 26916.94, + "end": 26917.94, + "probability": 0.9687 + }, + { + "start": 26918.28, + "end": 26919.14, + "probability": 0.8767 + }, + { + "start": 26919.68, + "end": 26921.3, + "probability": 0.9632 + }, + { + "start": 26921.94, + "end": 26922.82, + "probability": 0.3333 + }, + { + "start": 26923.4, + "end": 26924.12, + "probability": 0.9586 + }, + { + "start": 26924.24, + "end": 26925.12, + "probability": 0.9793 + }, + { + "start": 26925.32, + "end": 26926.0, + "probability": 0.9908 + }, + { + "start": 26926.14, + "end": 26926.8, + "probability": 0.8407 + }, + { + "start": 26926.88, + "end": 26927.94, + "probability": 0.9015 + }, + { + "start": 26928.04, + "end": 26928.78, + "probability": 0.9727 + }, + { + "start": 26929.4, + "end": 26933.22, + "probability": 0.9088 + }, + { + "start": 26934.08, + "end": 26934.86, + "probability": 0.3942 + }, + { + "start": 26934.94, + "end": 26937.04, + "probability": 0.8766 + }, + { + "start": 26937.16, + "end": 26937.96, + "probability": 0.9498 + }, + { + "start": 26938.44, + "end": 26939.44, + "probability": 0.9733 + }, + { + "start": 26939.64, + "end": 26940.66, + "probability": 0.9533 + }, + { + "start": 26940.74, + "end": 26941.6, + "probability": 0.9873 + }, + { + "start": 26941.98, + "end": 26942.64, + "probability": 0.7363 + }, + { + "start": 26942.82, + "end": 26943.6, + "probability": 0.8776 + }, + { + "start": 26943.76, + "end": 26945.94, + "probability": 0.5688 + }, + { + "start": 26946.88, + "end": 26947.5, + "probability": 0.5552 + }, + { + "start": 26947.62, + "end": 26949.4, + "probability": 0.5792 + }, + { + "start": 26949.42, + "end": 26950.02, + "probability": 0.294 + }, + { + "start": 26950.18, + "end": 26950.6, + "probability": 0.3451 + }, + { + "start": 26951.66, + "end": 26952.3, + "probability": 0.31 + }, + { + "start": 26953.26, + "end": 26954.9, + "probability": 0.4131 + }, + { + "start": 26955.0, + "end": 26956.32, + "probability": 0.8446 + }, + { + "start": 26956.4, + "end": 26957.92, + "probability": 0.7871 + }, + { + "start": 26958.7, + "end": 26961.98, + "probability": 0.9652 + }, + { + "start": 26962.66, + "end": 26966.76, + "probability": 0.5817 + }, + { + "start": 26969.92, + "end": 26973.36, + "probability": 0.9722 + }, + { + "start": 26975.02, + "end": 26983.32, + "probability": 0.9736 + }, + { + "start": 26983.92, + "end": 26985.36, + "probability": 0.7838 + }, + { + "start": 26985.58, + "end": 26986.16, + "probability": 0.6562 + }, + { + "start": 26986.3, + "end": 26987.64, + "probability": 0.9893 + }, + { + "start": 26988.06, + "end": 26988.66, + "probability": 0.8263 + }, + { + "start": 26988.88, + "end": 26989.8, + "probability": 0.9937 + }, + { + "start": 26989.88, + "end": 26990.5, + "probability": 0.7721 + }, + { + "start": 26991.2, + "end": 26993.8, + "probability": 0.7203 + }, + { + "start": 26994.34, + "end": 26996.36, + "probability": 0.8868 + }, + { + "start": 27013.5, + "end": 27015.46, + "probability": 0.6221 + }, + { + "start": 27015.6, + "end": 27016.4, + "probability": 0.8526 + }, + { + "start": 27017.28, + "end": 27018.52, + "probability": 0.9518 + }, + { + "start": 27018.66, + "end": 27020.62, + "probability": 0.9336 + }, + { + "start": 27020.72, + "end": 27022.64, + "probability": 0.9939 + }, + { + "start": 27023.38, + "end": 27024.6, + "probability": 0.9205 + }, + { + "start": 27025.6, + "end": 27027.96, + "probability": 0.999 + }, + { + "start": 27029.14, + "end": 27033.46, + "probability": 0.9965 + }, + { + "start": 27033.68, + "end": 27036.26, + "probability": 0.9965 + }, + { + "start": 27037.34, + "end": 27038.78, + "probability": 0.8013 + }, + { + "start": 27038.94, + "end": 27043.32, + "probability": 0.9284 + }, + { + "start": 27044.76, + "end": 27047.96, + "probability": 0.8394 + }, + { + "start": 27048.88, + "end": 27053.36, + "probability": 0.9988 + }, + { + "start": 27054.38, + "end": 27057.64, + "probability": 0.9989 + }, + { + "start": 27058.42, + "end": 27065.37, + "probability": 0.8848 + }, + { + "start": 27065.56, + "end": 27068.14, + "probability": 0.99 + }, + { + "start": 27069.0, + "end": 27070.76, + "probability": 0.8385 + }, + { + "start": 27071.84, + "end": 27072.92, + "probability": 0.5641 + }, + { + "start": 27077.68, + "end": 27079.54, + "probability": 0.9987 + }, + { + "start": 27079.9, + "end": 27081.96, + "probability": 0.9915 + }, + { + "start": 27083.08, + "end": 27088.34, + "probability": 0.9717 + }, + { + "start": 27088.36, + "end": 27091.64, + "probability": 0.9963 + }, + { + "start": 27092.38, + "end": 27096.28, + "probability": 0.9958 + }, + { + "start": 27097.14, + "end": 27099.84, + "probability": 0.9497 + }, + { + "start": 27100.62, + "end": 27101.82, + "probability": 0.9702 + }, + { + "start": 27103.14, + "end": 27106.0, + "probability": 0.9712 + }, + { + "start": 27106.38, + "end": 27106.38, + "probability": 0.0648 + }, + { + "start": 27106.38, + "end": 27107.78, + "probability": 0.5206 + }, + { + "start": 27108.34, + "end": 27111.2, + "probability": 0.9923 + }, + { + "start": 27112.0, + "end": 27115.3, + "probability": 0.7486 + }, + { + "start": 27116.06, + "end": 27121.7, + "probability": 0.9502 + }, + { + "start": 27121.7, + "end": 27126.12, + "probability": 0.9983 + }, + { + "start": 27127.04, + "end": 27127.38, + "probability": 0.6646 + }, + { + "start": 27128.11, + "end": 27130.6, + "probability": 0.5774 + }, + { + "start": 27130.64, + "end": 27130.78, + "probability": 0.3692 + }, + { + "start": 27130.86, + "end": 27131.94, + "probability": 0.515 + }, + { + "start": 27132.08, + "end": 27135.86, + "probability": 0.9889 + }, + { + "start": 27136.4, + "end": 27139.46, + "probability": 0.9813 + }, + { + "start": 27140.0, + "end": 27143.34, + "probability": 0.965 + }, + { + "start": 27144.52, + "end": 27147.0, + "probability": 0.9498 + }, + { + "start": 27147.16, + "end": 27150.46, + "probability": 0.9994 + }, + { + "start": 27150.46, + "end": 27154.12, + "probability": 0.9933 + }, + { + "start": 27154.12, + "end": 27159.44, + "probability": 0.9991 + }, + { + "start": 27159.84, + "end": 27162.49, + "probability": 0.9942 + }, + { + "start": 27162.5, + "end": 27166.52, + "probability": 0.9989 + }, + { + "start": 27167.7, + "end": 27171.32, + "probability": 0.9951 + }, + { + "start": 27171.4, + "end": 27174.5, + "probability": 0.9941 + }, + { + "start": 27175.12, + "end": 27178.86, + "probability": 0.9966 + }, + { + "start": 27178.86, + "end": 27183.16, + "probability": 0.9976 + }, + { + "start": 27183.24, + "end": 27184.14, + "probability": 0.8015 + }, + { + "start": 27184.24, + "end": 27185.06, + "probability": 0.8835 + }, + { + "start": 27185.54, + "end": 27189.24, + "probability": 0.998 + }, + { + "start": 27189.4, + "end": 27195.04, + "probability": 0.9938 + }, + { + "start": 27196.32, + "end": 27199.52, + "probability": 0.9985 + }, + { + "start": 27200.2, + "end": 27201.04, + "probability": 0.8683 + }, + { + "start": 27201.12, + "end": 27201.8, + "probability": 0.927 + }, + { + "start": 27201.88, + "end": 27205.38, + "probability": 0.9744 + }, + { + "start": 27205.46, + "end": 27206.24, + "probability": 0.7975 + }, + { + "start": 27206.76, + "end": 27208.69, + "probability": 0.978 + }, + { + "start": 27209.06, + "end": 27211.24, + "probability": 0.996 + }, + { + "start": 27211.32, + "end": 27212.88, + "probability": 0.801 + }, + { + "start": 27213.38, + "end": 27213.38, + "probability": 0.0098 + }, + { + "start": 27213.38, + "end": 27214.02, + "probability": 0.5194 + }, + { + "start": 27214.42, + "end": 27216.28, + "probability": 0.9511 + }, + { + "start": 27216.8, + "end": 27221.4, + "probability": 0.9726 + }, + { + "start": 27222.02, + "end": 27228.62, + "probability": 0.9837 + }, + { + "start": 27228.7, + "end": 27230.98, + "probability": 0.6293 + }, + { + "start": 27231.76, + "end": 27232.54, + "probability": 0.7041 + }, + { + "start": 27232.68, + "end": 27232.78, + "probability": 0.8992 + }, + { + "start": 27233.14, + "end": 27236.26, + "probability": 0.8503 + }, + { + "start": 27237.0, + "end": 27238.24, + "probability": 0.673 + }, + { + "start": 27238.44, + "end": 27244.36, + "probability": 0.9877 + }, + { + "start": 27244.44, + "end": 27246.14, + "probability": 0.7619 + }, + { + "start": 27246.46, + "end": 27248.96, + "probability": 0.9742 + }, + { + "start": 27249.06, + "end": 27253.94, + "probability": 0.9927 + }, + { + "start": 27254.04, + "end": 27257.46, + "probability": 0.9609 + }, + { + "start": 27257.58, + "end": 27260.02, + "probability": 0.9979 + }, + { + "start": 27260.18, + "end": 27260.36, + "probability": 0.8112 + }, + { + "start": 27260.48, + "end": 27260.7, + "probability": 0.6729 + }, + { + "start": 27260.76, + "end": 27262.38, + "probability": 0.7698 + }, + { + "start": 27262.46, + "end": 27265.96, + "probability": 0.7783 + }, + { + "start": 27266.38, + "end": 27267.92, + "probability": 0.9893 + }, + { + "start": 27268.04, + "end": 27268.48, + "probability": 0.8098 + }, + { + "start": 27269.18, + "end": 27270.44, + "probability": 0.91 + }, + { + "start": 27272.08, + "end": 27274.52, + "probability": 0.8512 + }, + { + "start": 27275.08, + "end": 27276.08, + "probability": 0.7598 + }, + { + "start": 27276.88, + "end": 27278.58, + "probability": 0.9778 + }, + { + "start": 27279.16, + "end": 27279.92, + "probability": 0.9724 + }, + { + "start": 27280.92, + "end": 27282.96, + "probability": 0.9104 + }, + { + "start": 27283.16, + "end": 27285.88, + "probability": 0.9912 + }, + { + "start": 27286.02, + "end": 27287.9, + "probability": 0.9932 + }, + { + "start": 27288.74, + "end": 27290.32, + "probability": 0.8233 + }, + { + "start": 27290.9, + "end": 27294.98, + "probability": 0.9974 + }, + { + "start": 27295.66, + "end": 27300.76, + "probability": 0.9943 + }, + { + "start": 27301.56, + "end": 27303.36, + "probability": 0.8442 + }, + { + "start": 27303.44, + "end": 27304.82, + "probability": 0.6937 + }, + { + "start": 27305.64, + "end": 27308.84, + "probability": 0.9697 + }, + { + "start": 27308.96, + "end": 27311.06, + "probability": 0.9814 + }, + { + "start": 27311.26, + "end": 27311.44, + "probability": 0.3983 + }, + { + "start": 27311.58, + "end": 27312.5, + "probability": 0.8455 + }, + { + "start": 27312.62, + "end": 27314.4, + "probability": 0.9869 + }, + { + "start": 27315.88, + "end": 27317.38, + "probability": 0.5579 + }, + { + "start": 27317.38, + "end": 27317.4, + "probability": 0.3404 + }, + { + "start": 27317.4, + "end": 27320.86, + "probability": 0.7788 + }, + { + "start": 27321.52, + "end": 27321.84, + "probability": 0.0141 + }, + { + "start": 27321.84, + "end": 27324.8, + "probability": 0.7212 + }, + { + "start": 27325.48, + "end": 27326.78, + "probability": 0.8352 + }, + { + "start": 27326.88, + "end": 27328.88, + "probability": 0.8072 + }, + { + "start": 27329.6, + "end": 27330.94, + "probability": 0.8018 + }, + { + "start": 27331.28, + "end": 27333.92, + "probability": 0.9966 + }, + { + "start": 27333.92, + "end": 27337.06, + "probability": 0.9136 + }, + { + "start": 27337.8, + "end": 27339.16, + "probability": 0.8521 + }, + { + "start": 27339.68, + "end": 27344.68, + "probability": 0.8084 + }, + { + "start": 27345.64, + "end": 27346.04, + "probability": 0.0414 + }, + { + "start": 27346.04, + "end": 27348.64, + "probability": 0.8425 + }, + { + "start": 27350.02, + "end": 27351.82, + "probability": 0.6061 + }, + { + "start": 27352.22, + "end": 27353.66, + "probability": 0.7445 + }, + { + "start": 27353.66, + "end": 27354.58, + "probability": 0.8137 + }, + { + "start": 27354.76, + "end": 27356.49, + "probability": 0.7627 + }, + { + "start": 27356.6, + "end": 27357.96, + "probability": 0.7881 + }, + { + "start": 27358.34, + "end": 27360.42, + "probability": 0.9138 + }, + { + "start": 27360.6, + "end": 27361.64, + "probability": 0.8989 + }, + { + "start": 27361.94, + "end": 27364.26, + "probability": 0.9756 + }, + { + "start": 27364.26, + "end": 27368.76, + "probability": 0.9814 + }, + { + "start": 27370.92, + "end": 27371.92, + "probability": 0.824 + }, + { + "start": 27372.06, + "end": 27377.8, + "probability": 0.7725 + }, + { + "start": 27377.8, + "end": 27382.34, + "probability": 0.9842 + }, + { + "start": 27383.02, + "end": 27384.0, + "probability": 0.0818 + }, + { + "start": 27384.58, + "end": 27387.64, + "probability": 0.118 + }, + { + "start": 27387.76, + "end": 27387.76, + "probability": 0.1057 + }, + { + "start": 27387.76, + "end": 27387.76, + "probability": 0.0538 + }, + { + "start": 27387.76, + "end": 27387.76, + "probability": 0.1884 + }, + { + "start": 27387.76, + "end": 27387.76, + "probability": 0.1093 + }, + { + "start": 27387.76, + "end": 27393.34, + "probability": 0.7514 + }, + { + "start": 27393.58, + "end": 27398.62, + "probability": 0.9707 + }, + { + "start": 27398.94, + "end": 27404.26, + "probability": 0.9019 + }, + { + "start": 27404.34, + "end": 27406.7, + "probability": 0.994 + }, + { + "start": 27406.86, + "end": 27409.12, + "probability": 0.7966 + }, + { + "start": 27409.54, + "end": 27412.84, + "probability": 0.9912 + }, + { + "start": 27413.2, + "end": 27416.54, + "probability": 0.939 + }, + { + "start": 27416.88, + "end": 27418.27, + "probability": 0.9761 + }, + { + "start": 27419.28, + "end": 27421.14, + "probability": 0.264 + }, + { + "start": 27421.14, + "end": 27421.14, + "probability": 0.0777 + }, + { + "start": 27421.14, + "end": 27424.14, + "probability": 0.7633 + }, + { + "start": 27424.26, + "end": 27424.76, + "probability": 0.3174 + }, + { + "start": 27424.8, + "end": 27425.36, + "probability": 0.6802 + }, + { + "start": 27425.84, + "end": 27427.0, + "probability": 0.9333 + }, + { + "start": 27427.14, + "end": 27428.9, + "probability": 0.843 + }, + { + "start": 27429.36, + "end": 27430.62, + "probability": 0.9683 + }, + { + "start": 27430.64, + "end": 27432.36, + "probability": 0.6234 + }, + { + "start": 27432.44, + "end": 27432.78, + "probability": 0.6638 + }, + { + "start": 27432.78, + "end": 27433.54, + "probability": 0.0978 + }, + { + "start": 27433.78, + "end": 27436.22, + "probability": 0.0099 + }, + { + "start": 27436.46, + "end": 27438.88, + "probability": 0.6638 + }, + { + "start": 27439.18, + "end": 27442.48, + "probability": 0.1798 + }, + { + "start": 27445.5, + "end": 27446.06, + "probability": 0.2125 + }, + { + "start": 27446.06, + "end": 27446.58, + "probability": 0.0078 + }, + { + "start": 27446.58, + "end": 27447.22, + "probability": 0.0203 + }, + { + "start": 27447.26, + "end": 27447.48, + "probability": 0.1408 + }, + { + "start": 27447.48, + "end": 27448.08, + "probability": 0.4844 + }, + { + "start": 27449.34, + "end": 27449.92, + "probability": 0.4778 + }, + { + "start": 27450.14, + "end": 27450.78, + "probability": 0.0376 + }, + { + "start": 27450.98, + "end": 27453.16, + "probability": 0.0489 + }, + { + "start": 27454.43, + "end": 27456.28, + "probability": 0.0666 + }, + { + "start": 27456.7, + "end": 27456.74, + "probability": 0.072 + }, + { + "start": 27457.4, + "end": 27458.08, + "probability": 0.2047 + }, + { + "start": 27458.34, + "end": 27458.36, + "probability": 0.5302 + }, + { + "start": 27458.36, + "end": 27459.13, + "probability": 0.2124 + }, + { + "start": 27462.24, + "end": 27464.16, + "probability": 0.4328 + }, + { + "start": 27464.16, + "end": 27464.44, + "probability": 0.5348 + }, + { + "start": 27465.54, + "end": 27465.54, + "probability": 0.2191 + }, + { + "start": 27465.54, + "end": 27465.54, + "probability": 0.0186 + }, + { + "start": 27465.54, + "end": 27467.0, + "probability": 0.0523 + }, + { + "start": 27467.7, + "end": 27469.64, + "probability": 0.0205 + }, + { + "start": 27472.74, + "end": 27473.18, + "probability": 0.0313 + }, + { + "start": 27474.68, + "end": 27475.3, + "probability": 0.0865 + }, + { + "start": 27482.96, + "end": 27484.4, + "probability": 0.0241 + }, + { + "start": 27484.4, + "end": 27485.48, + "probability": 0.2477 + }, + { + "start": 27485.48, + "end": 27485.48, + "probability": 0.3302 + }, + { + "start": 27485.48, + "end": 27486.44, + "probability": 0.1755 + }, + { + "start": 27486.56, + "end": 27487.46, + "probability": 0.0563 + }, + { + "start": 27488.46, + "end": 27490.9, + "probability": 0.115 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27525.0, + "end": 27525.0, + "probability": 0.0 + }, + { + "start": 27526.16, + "end": 27530.3, + "probability": 0.8849 + }, + { + "start": 27530.36, + "end": 27530.86, + "probability": 0.7646 + }, + { + "start": 27530.92, + "end": 27532.64, + "probability": 0.8079 + }, + { + "start": 27532.9, + "end": 27534.04, + "probability": 0.9836 + }, + { + "start": 27534.08, + "end": 27534.98, + "probability": 0.9214 + }, + { + "start": 27535.86, + "end": 27537.22, + "probability": 0.8373 + }, + { + "start": 27537.88, + "end": 27542.78, + "probability": 0.947 + }, + { + "start": 27542.86, + "end": 27544.56, + "probability": 0.7557 + }, + { + "start": 27545.02, + "end": 27547.78, + "probability": 0.995 + }, + { + "start": 27548.62, + "end": 27552.34, + "probability": 0.9276 + }, + { + "start": 27553.36, + "end": 27555.3, + "probability": 0.9307 + }, + { + "start": 27556.04, + "end": 27561.52, + "probability": 0.9723 + }, + { + "start": 27561.52, + "end": 27564.9, + "probability": 0.9214 + }, + { + "start": 27565.14, + "end": 27567.14, + "probability": 0.9874 + }, + { + "start": 27567.36, + "end": 27571.18, + "probability": 0.5546 + }, + { + "start": 27571.7, + "end": 27574.52, + "probability": 0.9296 + }, + { + "start": 27575.22, + "end": 27577.68, + "probability": 0.9033 + }, + { + "start": 27578.82, + "end": 27581.34, + "probability": 0.9576 + }, + { + "start": 27581.86, + "end": 27583.64, + "probability": 0.9875 + }, + { + "start": 27584.12, + "end": 27586.1, + "probability": 0.9961 + }, + { + "start": 27586.24, + "end": 27586.87, + "probability": 0.9479 + }, + { + "start": 27587.58, + "end": 27589.62, + "probability": 0.9924 + }, + { + "start": 27589.66, + "end": 27591.52, + "probability": 0.9973 + }, + { + "start": 27592.34, + "end": 27594.0, + "probability": 0.8336 + }, + { + "start": 27594.34, + "end": 27597.38, + "probability": 0.9897 + }, + { + "start": 27597.5, + "end": 27601.1, + "probability": 0.9787 + }, + { + "start": 27601.62, + "end": 27602.54, + "probability": 0.7643 + }, + { + "start": 27603.2, + "end": 27606.66, + "probability": 0.9931 + }, + { + "start": 27607.24, + "end": 27609.1, + "probability": 0.9972 + }, + { + "start": 27609.64, + "end": 27612.84, + "probability": 0.8271 + }, + { + "start": 27613.36, + "end": 27614.68, + "probability": 0.9046 + }, + { + "start": 27614.76, + "end": 27615.28, + "probability": 0.8425 + }, + { + "start": 27615.78, + "end": 27616.6, + "probability": 0.8475 + }, + { + "start": 27616.68, + "end": 27618.08, + "probability": 0.5285 + }, + { + "start": 27618.12, + "end": 27618.48, + "probability": 0.0643 + }, + { + "start": 27618.56, + "end": 27622.98, + "probability": 0.3973 + }, + { + "start": 27623.08, + "end": 27627.92, + "probability": 0.8284 + }, + { + "start": 27628.35, + "end": 27629.64, + "probability": 0.9751 + }, + { + "start": 27630.14, + "end": 27633.67, + "probability": 0.9753 + }, + { + "start": 27633.78, + "end": 27633.78, + "probability": 0.0729 + }, + { + "start": 27633.78, + "end": 27633.78, + "probability": 0.2255 + }, + { + "start": 27633.88, + "end": 27634.78, + "probability": 0.0756 + }, + { + "start": 27634.78, + "end": 27634.84, + "probability": 0.0075 + }, + { + "start": 27634.84, + "end": 27634.92, + "probability": 0.5756 + }, + { + "start": 27634.92, + "end": 27636.48, + "probability": 0.3175 + }, + { + "start": 27636.54, + "end": 27637.0, + "probability": 0.2778 + }, + { + "start": 27637.24, + "end": 27638.58, + "probability": 0.5667 + }, + { + "start": 27638.66, + "end": 27639.57, + "probability": 0.5083 + }, + { + "start": 27640.28, + "end": 27641.48, + "probability": 0.2881 + }, + { + "start": 27641.5, + "end": 27641.5, + "probability": 0.2212 + }, + { + "start": 27641.5, + "end": 27642.08, + "probability": 0.1756 + }, + { + "start": 27642.16, + "end": 27644.64, + "probability": 0.7205 + }, + { + "start": 27644.88, + "end": 27647.64, + "probability": 0.3439 + }, + { + "start": 27648.26, + "end": 27649.62, + "probability": 0.4249 + }, + { + "start": 27649.64, + "end": 27651.36, + "probability": 0.6077 + }, + { + "start": 27651.58, + "end": 27652.62, + "probability": 0.0573 + }, + { + "start": 27652.74, + "end": 27653.68, + "probability": 0.7495 + }, + { + "start": 27654.64, + "end": 27655.96, + "probability": 0.7478 + }, + { + "start": 27656.34, + "end": 27658.64, + "probability": 0.8284 + }, + { + "start": 27659.04, + "end": 27659.9, + "probability": 0.9702 + }, + { + "start": 27660.48, + "end": 27661.72, + "probability": 0.7806 + }, + { + "start": 27662.08, + "end": 27663.18, + "probability": 0.5432 + }, + { + "start": 27663.26, + "end": 27664.1, + "probability": 0.6133 + }, + { + "start": 27665.12, + "end": 27665.28, + "probability": 0.1873 + }, + { + "start": 27665.34, + "end": 27665.82, + "probability": 0.7682 + }, + { + "start": 27665.94, + "end": 27667.5, + "probability": 0.9226 + }, + { + "start": 27667.84, + "end": 27671.28, + "probability": 0.6274 + }, + { + "start": 27671.4, + "end": 27671.4, + "probability": 0.1953 + }, + { + "start": 27671.4, + "end": 27671.64, + "probability": 0.4338 + }, + { + "start": 27672.0, + "end": 27672.26, + "probability": 0.5845 + }, + { + "start": 27672.32, + "end": 27673.15, + "probability": 0.5385 + }, + { + "start": 27673.3, + "end": 27674.36, + "probability": 0.4871 + }, + { + "start": 27674.38, + "end": 27676.3, + "probability": 0.8587 + }, + { + "start": 27676.96, + "end": 27677.38, + "probability": 0.8647 + }, + { + "start": 27679.18, + "end": 27682.12, + "probability": 0.1325 + }, + { + "start": 27682.12, + "end": 27686.2, + "probability": 0.2771 + }, + { + "start": 27686.2, + "end": 27687.18, + "probability": 0.1293 + }, + { + "start": 27687.18, + "end": 27687.88, + "probability": 0.0587 + }, + { + "start": 27687.88, + "end": 27688.56, + "probability": 0.1204 + }, + { + "start": 27688.82, + "end": 27690.26, + "probability": 0.4593 + }, + { + "start": 27702.48, + "end": 27703.76, + "probability": 0.4989 + }, + { + "start": 27708.84, + "end": 27710.14, + "probability": 0.0968 + }, + { + "start": 27710.46, + "end": 27710.46, + "probability": 0.0463 + }, + { + "start": 27711.02, + "end": 27711.12, + "probability": 0.3727 + }, + { + "start": 27711.12, + "end": 27711.36, + "probability": 0.1843 + }, + { + "start": 27712.16, + "end": 27712.16, + "probability": 0.0665 + }, + { + "start": 27712.16, + "end": 27715.98, + "probability": 0.0854 + }, + { + "start": 27716.3, + "end": 27718.04, + "probability": 0.5094 + }, + { + "start": 27721.64, + "end": 27721.84, + "probability": 0.0854 + }, + { + "start": 27722.42, + "end": 27722.54, + "probability": 0.1708 + }, + { + "start": 27722.54, + "end": 27722.54, + "probability": 0.4224 + }, + { + "start": 27722.54, + "end": 27722.54, + "probability": 0.5418 + }, + { + "start": 27722.74, + "end": 27725.04, + "probability": 0.3372 + }, + { + "start": 27726.22, + "end": 27728.34, + "probability": 0.0857 + }, + { + "start": 27728.34, + "end": 27728.34, + "probability": 0.0136 + }, + { + "start": 27728.34, + "end": 27729.72, + "probability": 0.1262 + }, + { + "start": 27729.72, + "end": 27730.32, + "probability": 0.17 + }, + { + "start": 27730.32, + "end": 27730.36, + "probability": 0.0421 + }, + { + "start": 27748.0, + "end": 27748.0, + "probability": 0.0 + }, + { + "start": 27748.0, + "end": 27748.0, + "probability": 0.0 + }, + { + "start": 27748.0, + "end": 27748.0, + "probability": 0.0 + }, + { + "start": 27748.0, + "end": 27748.0, + "probability": 0.0 + }, + { + "start": 27748.0, + "end": 27748.0, + "probability": 0.0 + }, + { + "start": 27748.0, + "end": 27748.0, + "probability": 0.0 + }, + { + "start": 27748.0, + "end": 27748.0, + "probability": 0.0 + }, + { + "start": 27748.0, + "end": 27748.0, + "probability": 0.0 + }, + { + "start": 27748.0, + "end": 27748.0, + "probability": 0.0 + }, + { + "start": 27748.0, + "end": 27748.0, + "probability": 0.0 + }, + { + "start": 27748.0, + "end": 27748.0, + "probability": 0.0 + }, + { + "start": 27748.0, + "end": 27748.0, + "probability": 0.0 + }, + { + "start": 27748.0, + "end": 27748.0, + "probability": 0.0 + }, + { + "start": 27748.0, + "end": 27748.0, + "probability": 0.0 + }, + { + "start": 27748.0, + "end": 27748.0, + "probability": 0.0 + }, + { + "start": 27748.0, + "end": 27748.0, + "probability": 0.0 + }, + { + "start": 27748.0, + "end": 27748.0, + "probability": 0.0 + }, + { + "start": 27748.0, + "end": 27748.0, + "probability": 0.0 + }, + { + "start": 27748.0, + "end": 27748.0, + "probability": 0.0 + }, + { + "start": 27748.0, + "end": 27748.0, + "probability": 0.0 + }, + { + "start": 27748.0, + "end": 27748.0, + "probability": 0.0 + }, + { + "start": 27748.0, + "end": 27748.0, + "probability": 0.0 + }, + { + "start": 27748.0, + "end": 27748.0, + "probability": 0.0 + }, + { + "start": 27748.0, + "end": 27748.0, + "probability": 0.0 + }, + { + "start": 27767.84, + "end": 27768.5, + "probability": 0.0449 + }, + { + "start": 27769.64, + "end": 27769.78, + "probability": 0.0662 + }, + { + "start": 27769.78, + "end": 27769.78, + "probability": 0.0495 + }, + { + "start": 27769.78, + "end": 27769.78, + "probability": 0.23 + }, + { + "start": 27769.78, + "end": 27770.82, + "probability": 0.1047 + }, + { + "start": 27771.76, + "end": 27772.96, + "probability": 0.0183 + }, + { + "start": 27774.2, + "end": 27775.62, + "probability": 0.0597 + }, + { + "start": 27775.62, + "end": 27776.5, + "probability": 0.1721 + }, + { + "start": 27778.1, + "end": 27786.32, + "probability": 0.0464 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.0, + "end": 27869.0, + "probability": 0.0 + }, + { + "start": 27869.14, + "end": 27869.76, + "probability": 0.1552 + }, + { + "start": 27869.82, + "end": 27872.16, + "probability": 0.9219 + }, + { + "start": 27873.4, + "end": 27874.88, + "probability": 0.9976 + }, + { + "start": 27875.52, + "end": 27877.55, + "probability": 0.9833 + }, + { + "start": 27877.64, + "end": 27878.86, + "probability": 0.9862 + }, + { + "start": 27879.84, + "end": 27881.42, + "probability": 0.9904 + }, + { + "start": 27882.38, + "end": 27883.26, + "probability": 0.9521 + }, + { + "start": 27883.94, + "end": 27886.34, + "probability": 0.991 + }, + { + "start": 27886.42, + "end": 27887.1, + "probability": 0.8068 + }, + { + "start": 27887.16, + "end": 27887.8, + "probability": 0.9686 + }, + { + "start": 27888.22, + "end": 27888.84, + "probability": 0.989 + }, + { + "start": 27889.54, + "end": 27891.22, + "probability": 0.8015 + }, + { + "start": 27891.98, + "end": 27893.28, + "probability": 0.9573 + }, + { + "start": 27894.16, + "end": 27896.46, + "probability": 0.9609 + }, + { + "start": 27897.98, + "end": 27899.34, + "probability": 0.7631 + }, + { + "start": 27900.04, + "end": 27901.98, + "probability": 0.981 + }, + { + "start": 27902.4, + "end": 27903.18, + "probability": 0.9553 + }, + { + "start": 27903.2, + "end": 27904.02, + "probability": 0.9832 + }, + { + "start": 27904.08, + "end": 27904.88, + "probability": 0.9208 + }, + { + "start": 27905.8, + "end": 27907.38, + "probability": 0.9878 + }, + { + "start": 27907.48, + "end": 27909.24, + "probability": 0.7701 + }, + { + "start": 27909.88, + "end": 27912.42, + "probability": 0.961 + }, + { + "start": 27913.06, + "end": 27919.48, + "probability": 0.8555 + }, + { + "start": 27920.78, + "end": 27922.44, + "probability": 0.9907 + }, + { + "start": 27923.06, + "end": 27923.98, + "probability": 0.8269 + }, + { + "start": 27924.6, + "end": 27925.86, + "probability": 0.9473 + }, + { + "start": 27926.48, + "end": 27929.08, + "probability": 0.9005 + }, + { + "start": 27929.66, + "end": 27934.32, + "probability": 0.9216 + }, + { + "start": 27934.76, + "end": 27935.82, + "probability": 0.0574 + }, + { + "start": 27937.06, + "end": 27937.06, + "probability": 0.068 + }, + { + "start": 27937.06, + "end": 27939.98, + "probability": 0.9817 + }, + { + "start": 27940.1, + "end": 27941.7, + "probability": 0.9259 + }, + { + "start": 27942.22, + "end": 27944.1, + "probability": 0.8506 + }, + { + "start": 27944.52, + "end": 27945.42, + "probability": 0.8398 + }, + { + "start": 27946.02, + "end": 27947.08, + "probability": 0.9253 + }, + { + "start": 27947.58, + "end": 27949.2, + "probability": 0.9941 + }, + { + "start": 27949.78, + "end": 27955.42, + "probability": 0.9949 + }, + { + "start": 27955.48, + "end": 27955.9, + "probability": 0.7456 + }, + { + "start": 27959.78, + "end": 27960.46, + "probability": 0.6077 + }, + { + "start": 27960.56, + "end": 27961.8, + "probability": 0.8728 + }, + { + "start": 27962.38, + "end": 27964.76, + "probability": 0.4039 + }, + { + "start": 27964.78, + "end": 27967.18, + "probability": 0.9616 + }, + { + "start": 27974.78, + "end": 27976.3, + "probability": 0.163 + }, + { + "start": 27976.42, + "end": 27976.42, + "probability": 0.0515 + }, + { + "start": 27976.88, + "end": 27977.3, + "probability": 0.1258 + }, + { + "start": 27977.61, + "end": 27977.98, + "probability": 0.0609 + }, + { + "start": 27977.98, + "end": 27978.06, + "probability": 0.0223 + }, + { + "start": 27978.06, + "end": 27978.06, + "probability": 0.0709 + }, + { + "start": 28005.44, + "end": 28008.84, + "probability": 0.7019 + }, + { + "start": 28008.84, + "end": 28015.72, + "probability": 0.9682 + }, + { + "start": 28015.72, + "end": 28016.66, + "probability": 0.1043 + }, + { + "start": 28023.0, + "end": 28025.9, + "probability": 0.41 + }, + { + "start": 28026.92, + "end": 28027.1, + "probability": 0.065 + }, + { + "start": 28028.16, + "end": 28029.3, + "probability": 0.5337 + }, + { + "start": 28029.3, + "end": 28029.66, + "probability": 0.6624 + }, + { + "start": 28030.6, + "end": 28035.02, + "probability": 0.6361 + }, + { + "start": 28035.92, + "end": 28037.6, + "probability": 0.8583 + }, + { + "start": 28039.0, + "end": 28043.52, + "probability": 0.9546 + }, + { + "start": 28044.4, + "end": 28045.56, + "probability": 0.9097 + }, + { + "start": 28046.32, + "end": 28047.9, + "probability": 0.9208 + }, + { + "start": 28049.7, + "end": 28051.84, + "probability": 0.7419 + }, + { + "start": 28052.72, + "end": 28057.5, + "probability": 0.8599 + }, + { + "start": 28058.38, + "end": 28060.1, + "probability": 0.9248 + }, + { + "start": 28061.1, + "end": 28063.36, + "probability": 0.6448 + }, + { + "start": 28064.1, + "end": 28070.06, + "probability": 0.9152 + }, + { + "start": 28071.84, + "end": 28077.1, + "probability": 0.9523 + }, + { + "start": 28079.06, + "end": 28082.02, + "probability": 0.6646 + }, + { + "start": 28082.58, + "end": 28084.54, + "probability": 0.9621 + }, + { + "start": 28085.12, + "end": 28086.28, + "probability": 0.741 + }, + { + "start": 28088.94, + "end": 28093.02, + "probability": 0.9115 + }, + { + "start": 28094.64, + "end": 28095.97, + "probability": 0.7571 + }, + { + "start": 28096.72, + "end": 28098.32, + "probability": 0.9092 + }, + { + "start": 28099.14, + "end": 28101.2, + "probability": 0.7244 + }, + { + "start": 28101.88, + "end": 28103.24, + "probability": 0.9674 + }, + { + "start": 28104.24, + "end": 28107.1, + "probability": 0.9266 + }, + { + "start": 28108.1, + "end": 28109.04, + "probability": 0.2588 + }, + { + "start": 28109.78, + "end": 28113.48, + "probability": 0.6247 + }, + { + "start": 28114.36, + "end": 28117.9, + "probability": 0.7568 + }, + { + "start": 28119.92, + "end": 28125.34, + "probability": 0.9952 + }, + { + "start": 28126.62, + "end": 28127.8, + "probability": 0.7223 + }, + { + "start": 28128.58, + "end": 28130.36, + "probability": 0.9363 + }, + { + "start": 28131.84, + "end": 28133.18, + "probability": 0.8634 + }, + { + "start": 28135.1, + "end": 28137.7, + "probability": 0.6624 + }, + { + "start": 28139.34, + "end": 28142.88, + "probability": 0.9112 + }, + { + "start": 28144.16, + "end": 28146.04, + "probability": 0.9146 + }, + { + "start": 28146.92, + "end": 28149.0, + "probability": 0.8796 + }, + { + "start": 28151.16, + "end": 28151.9, + "probability": 0.7836 + }, + { + "start": 28152.58, + "end": 28155.9, + "probability": 0.9724 + }, + { + "start": 28157.02, + "end": 28157.34, + "probability": 0.7386 + }, + { + "start": 28157.44, + "end": 28159.88, + "probability": 0.6943 + }, + { + "start": 28160.6, + "end": 28163.6, + "probability": 0.871 + }, + { + "start": 28164.88, + "end": 28166.14, + "probability": 0.9974 + }, + { + "start": 28166.74, + "end": 28169.3, + "probability": 0.4909 + }, + { + "start": 28172.86, + "end": 28175.12, + "probability": 0.6592 + }, + { + "start": 28175.9, + "end": 28176.96, + "probability": 0.9668 + }, + { + "start": 28178.58, + "end": 28180.96, + "probability": 0.9839 + }, + { + "start": 28180.96, + "end": 28189.12, + "probability": 0.9688 + }, + { + "start": 28190.5, + "end": 28193.78, + "probability": 0.6421 + }, + { + "start": 28195.74, + "end": 28199.14, + "probability": 0.8422 + }, + { + "start": 28200.6, + "end": 28201.96, + "probability": 0.932 + }, + { + "start": 28202.82, + "end": 28203.7, + "probability": 0.4612 + }, + { + "start": 28203.78, + "end": 28203.9, + "probability": 0.5006 + }, + { + "start": 28203.98, + "end": 28204.3, + "probability": 0.8453 + }, + { + "start": 28204.36, + "end": 28208.02, + "probability": 0.9658 + }, + { + "start": 28209.64, + "end": 28210.4, + "probability": 0.7284 + }, + { + "start": 28210.42, + "end": 28211.18, + "probability": 0.6725 + }, + { + "start": 28211.42, + "end": 28215.34, + "probability": 0.8753 + }, + { + "start": 28216.12, + "end": 28219.86, + "probability": 0.7173 + }, + { + "start": 28220.28, + "end": 28221.82, + "probability": 0.7327 + }, + { + "start": 28221.94, + "end": 28223.2, + "probability": 0.9452 + }, + { + "start": 28223.76, + "end": 28224.74, + "probability": 0.9952 + }, + { + "start": 28225.54, + "end": 28227.71, + "probability": 0.9821 + }, + { + "start": 28229.56, + "end": 28233.44, + "probability": 0.9592 + }, + { + "start": 28235.26, + "end": 28240.96, + "probability": 0.9349 + }, + { + "start": 28241.5, + "end": 28241.72, + "probability": 0.0309 + }, + { + "start": 28241.9, + "end": 28243.04, + "probability": 0.6102 + }, + { + "start": 28243.58, + "end": 28246.38, + "probability": 0.8516 + }, + { + "start": 28247.0, + "end": 28248.44, + "probability": 0.9852 + }, + { + "start": 28249.56, + "end": 28250.4, + "probability": 0.8482 + }, + { + "start": 28250.8, + "end": 28252.4, + "probability": 0.9731 + }, + { + "start": 28252.46, + "end": 28255.34, + "probability": 0.7385 + }, + { + "start": 28255.38, + "end": 28256.02, + "probability": 0.6214 + }, + { + "start": 28256.18, + "end": 28258.12, + "probability": 0.7293 + }, + { + "start": 28260.56, + "end": 28268.72, + "probability": 0.9834 + }, + { + "start": 28269.46, + "end": 28272.84, + "probability": 0.9829 + }, + { + "start": 28275.26, + "end": 28276.48, + "probability": 0.9852 + }, + { + "start": 28277.56, + "end": 28279.14, + "probability": 0.2143 + }, + { + "start": 28279.34, + "end": 28281.15, + "probability": 0.9204 + }, + { + "start": 28283.9, + "end": 28285.58, + "probability": 0.9254 + }, + { + "start": 28286.76, + "end": 28290.74, + "probability": 0.9664 + }, + { + "start": 28291.72, + "end": 28292.62, + "probability": 0.8848 + }, + { + "start": 28293.62, + "end": 28296.92, + "probability": 0.9984 + }, + { + "start": 28297.62, + "end": 28301.8, + "probability": 0.9938 + }, + { + "start": 28303.32, + "end": 28306.74, + "probability": 0.8986 + }, + { + "start": 28307.94, + "end": 28312.28, + "probability": 0.9697 + }, + { + "start": 28314.24, + "end": 28316.5, + "probability": 0.9506 + }, + { + "start": 28317.12, + "end": 28317.96, + "probability": 0.7362 + }, + { + "start": 28318.22, + "end": 28319.42, + "probability": 0.9692 + }, + { + "start": 28320.28, + "end": 28321.32, + "probability": 0.9481 + }, + { + "start": 28322.4, + "end": 28325.22, + "probability": 0.9968 + }, + { + "start": 28325.5, + "end": 28326.08, + "probability": 0.7442 + }, + { + "start": 28330.84, + "end": 28332.1, + "probability": 0.58 + }, + { + "start": 28334.24, + "end": 28334.42, + "probability": 0.6011 + }, + { + "start": 28339.16, + "end": 28339.74, + "probability": 0.5999 + }, + { + "start": 28341.02, + "end": 28341.98, + "probability": 0.8854 + }, + { + "start": 28342.1, + "end": 28342.54, + "probability": 0.3713 + }, + { + "start": 28342.68, + "end": 28343.56, + "probability": 0.942 + }, + { + "start": 28344.04, + "end": 28344.3, + "probability": 0.6573 + }, + { + "start": 28345.46, + "end": 28347.26, + "probability": 0.8976 + }, + { + "start": 28347.3, + "end": 28347.72, + "probability": 0.8357 + }, + { + "start": 28347.88, + "end": 28349.28, + "probability": 0.9884 + }, + { + "start": 28349.96, + "end": 28350.22, + "probability": 0.9799 + }, + { + "start": 28352.82, + "end": 28355.36, + "probability": 0.8158 + }, + { + "start": 28356.22, + "end": 28357.13, + "probability": 0.5747 + }, + { + "start": 28363.86, + "end": 28363.86, + "probability": 0.0149 + }, + { + "start": 28363.86, + "end": 28364.41, + "probability": 0.4702 + }, + { + "start": 28365.06, + "end": 28366.34, + "probability": 0.5685 + }, + { + "start": 28367.88, + "end": 28368.46, + "probability": 0.6594 + }, + { + "start": 28368.54, + "end": 28368.88, + "probability": 0.4609 + }, + { + "start": 28369.98, + "end": 28370.54, + "probability": 0.1079 + }, + { + "start": 28371.18, + "end": 28373.2, + "probability": 0.9084 + }, + { + "start": 28374.54, + "end": 28375.04, + "probability": 0.2303 + }, + { + "start": 28375.16, + "end": 28375.98, + "probability": 0.2867 + }, + { + "start": 28377.16, + "end": 28377.36, + "probability": 0.1907 + }, + { + "start": 28377.36, + "end": 28379.5, + "probability": 0.8472 + }, + { + "start": 28380.2, + "end": 28381.24, + "probability": 0.602 + }, + { + "start": 28381.24, + "end": 28382.48, + "probability": 0.0209 + }, + { + "start": 28382.48, + "end": 28382.48, + "probability": 0.0254 + }, + { + "start": 28382.48, + "end": 28383.02, + "probability": 0.4393 + }, + { + "start": 28388.7, + "end": 28389.28, + "probability": 0.0639 + }, + { + "start": 28389.28, + "end": 28389.28, + "probability": 0.1813 + }, + { + "start": 28389.28, + "end": 28389.28, + "probability": 0.139 + }, + { + "start": 28389.28, + "end": 28390.02, + "probability": 0.1976 + }, + { + "start": 28391.74, + "end": 28396.24, + "probability": 0.6548 + }, + { + "start": 28397.2, + "end": 28400.94, + "probability": 0.941 + }, + { + "start": 28401.76, + "end": 28402.52, + "probability": 0.9221 + }, + { + "start": 28404.68, + "end": 28406.22, + "probability": 0.9739 + }, + { + "start": 28407.52, + "end": 28409.84, + "probability": 0.8529 + }, + { + "start": 28411.3, + "end": 28412.14, + "probability": 0.9756 + }, + { + "start": 28412.52, + "end": 28414.18, + "probability": 0.8367 + }, + { + "start": 28415.46, + "end": 28416.58, + "probability": 0.9756 + }, + { + "start": 28417.14, + "end": 28417.8, + "probability": 0.7778 + }, + { + "start": 28418.66, + "end": 28422.34, + "probability": 0.9893 + }, + { + "start": 28423.64, + "end": 28424.28, + "probability": 0.5047 + }, + { + "start": 28425.26, + "end": 28427.26, + "probability": 0.8232 + }, + { + "start": 28429.14, + "end": 28430.9, + "probability": 0.9683 + }, + { + "start": 28432.32, + "end": 28433.68, + "probability": 0.6694 + }, + { + "start": 28433.76, + "end": 28434.82, + "probability": 0.9956 + }, + { + "start": 28434.96, + "end": 28435.78, + "probability": 0.7303 + }, + { + "start": 28437.66, + "end": 28438.64, + "probability": 0.865 + }, + { + "start": 28438.86, + "end": 28440.68, + "probability": 0.5747 + }, + { + "start": 28442.2, + "end": 28442.84, + "probability": 0.7342 + }, + { + "start": 28443.92, + "end": 28446.13, + "probability": 0.5056 + }, + { + "start": 28446.47, + "end": 28448.14, + "probability": 0.9932 + }, + { + "start": 28448.72, + "end": 28450.5, + "probability": 0.8939 + }, + { + "start": 28451.16, + "end": 28453.74, + "probability": 0.9746 + }, + { + "start": 28455.36, + "end": 28459.12, + "probability": 0.7629 + }, + { + "start": 28459.9, + "end": 28461.8, + "probability": 0.8499 + }, + { + "start": 28461.86, + "end": 28462.94, + "probability": 0.8112 + }, + { + "start": 28464.56, + "end": 28468.48, + "probability": 0.9526 + }, + { + "start": 28469.18, + "end": 28470.76, + "probability": 0.9779 + }, + { + "start": 28471.96, + "end": 28472.04, + "probability": 0.0368 + }, + { + "start": 28472.04, + "end": 28473.64, + "probability": 0.981 + }, + { + "start": 28474.5, + "end": 28476.92, + "probability": 0.8417 + }, + { + "start": 28478.54, + "end": 28481.18, + "probability": 0.6826 + }, + { + "start": 28481.8, + "end": 28483.3, + "probability": 0.9878 + }, + { + "start": 28484.36, + "end": 28485.06, + "probability": 0.6362 + }, + { + "start": 28486.28, + "end": 28489.06, + "probability": 0.9917 + }, + { + "start": 28489.14, + "end": 28489.54, + "probability": 0.5724 + }, + { + "start": 28490.24, + "end": 28491.46, + "probability": 0.9399 + }, + { + "start": 28492.3, + "end": 28494.98, + "probability": 0.9589 + }, + { + "start": 28496.8, + "end": 28499.2, + "probability": 0.8387 + }, + { + "start": 28500.14, + "end": 28501.34, + "probability": 0.7849 + }, + { + "start": 28502.1, + "end": 28505.28, + "probability": 0.7818 + }, + { + "start": 28506.66, + "end": 28508.48, + "probability": 0.9971 + }, + { + "start": 28509.44, + "end": 28510.82, + "probability": 0.9392 + }, + { + "start": 28512.04, + "end": 28513.92, + "probability": 0.9678 + }, + { + "start": 28515.32, + "end": 28516.52, + "probability": 0.9674 + }, + { + "start": 28517.06, + "end": 28517.66, + "probability": 0.699 + }, + { + "start": 28518.48, + "end": 28520.46, + "probability": 0.6631 + }, + { + "start": 28520.88, + "end": 28523.6, + "probability": 0.9663 + }, + { + "start": 28524.66, + "end": 28526.12, + "probability": 0.866 + }, + { + "start": 28527.06, + "end": 28529.14, + "probability": 0.9271 + }, + { + "start": 28529.86, + "end": 28531.44, + "probability": 0.8248 + }, + { + "start": 28531.58, + "end": 28533.48, + "probability": 0.8666 + }, + { + "start": 28533.88, + "end": 28537.64, + "probability": 0.7222 + }, + { + "start": 28539.8, + "end": 28539.82, + "probability": 0.7087 + }, + { + "start": 28539.94, + "end": 28541.92, + "probability": 0.9756 + }, + { + "start": 28542.04, + "end": 28543.52, + "probability": 0.8151 + }, + { + "start": 28544.4, + "end": 28545.28, + "probability": 0.4997 + }, + { + "start": 28545.28, + "end": 28546.32, + "probability": 0.8918 + }, + { + "start": 28548.16, + "end": 28549.14, + "probability": 0.9459 + }, + { + "start": 28551.14, + "end": 28552.86, + "probability": 0.9697 + }, + { + "start": 28554.56, + "end": 28555.18, + "probability": 0.7056 + }, + { + "start": 28555.36, + "end": 28556.26, + "probability": 0.7485 + }, + { + "start": 28556.84, + "end": 28557.49, + "probability": 0.7281 + }, + { + "start": 28558.66, + "end": 28559.14, + "probability": 0.5789 + }, + { + "start": 28559.94, + "end": 28562.78, + "probability": 0.8785 + }, + { + "start": 28563.9, + "end": 28565.3, + "probability": 0.9873 + }, + { + "start": 28565.7, + "end": 28568.54, + "probability": 0.7263 + }, + { + "start": 28569.56, + "end": 28570.65, + "probability": 0.818 + }, + { + "start": 28572.24, + "end": 28574.41, + "probability": 0.835 + }, + { + "start": 28575.28, + "end": 28577.1, + "probability": 0.6924 + }, + { + "start": 28578.9, + "end": 28580.96, + "probability": 0.9912 + }, + { + "start": 28584.18, + "end": 28585.62, + "probability": 0.9707 + }, + { + "start": 28585.8, + "end": 28586.58, + "probability": 0.5185 + }, + { + "start": 28586.66, + "end": 28586.9, + "probability": 0.4871 + }, + { + "start": 28586.94, + "end": 28588.26, + "probability": 0.9535 + }, + { + "start": 28589.28, + "end": 28591.32, + "probability": 0.8977 + }, + { + "start": 28592.4, + "end": 28593.22, + "probability": 0.9138 + }, + { + "start": 28593.48, + "end": 28594.28, + "probability": 0.9337 + }, + { + "start": 28594.38, + "end": 28594.9, + "probability": 0.3345 + }, + { + "start": 28595.02, + "end": 28595.58, + "probability": 0.5593 + }, + { + "start": 28595.62, + "end": 28596.24, + "probability": 0.9091 + }, + { + "start": 28596.3, + "end": 28597.16, + "probability": 0.9285 + }, + { + "start": 28597.52, + "end": 28598.74, + "probability": 0.9669 + }, + { + "start": 28598.8, + "end": 28599.54, + "probability": 0.872 + }, + { + "start": 28600.84, + "end": 28601.92, + "probability": 0.9845 + }, + { + "start": 28603.5, + "end": 28605.78, + "probability": 0.921 + }, + { + "start": 28606.46, + "end": 28607.0, + "probability": 0.9255 + }, + { + "start": 28607.58, + "end": 28608.42, + "probability": 0.8296 + }, + { + "start": 28609.92, + "end": 28610.76, + "probability": 0.7589 + }, + { + "start": 28610.92, + "end": 28612.55, + "probability": 0.9829 + }, + { + "start": 28613.4, + "end": 28614.7, + "probability": 0.8608 + }, + { + "start": 28614.74, + "end": 28615.62, + "probability": 0.9695 + }, + { + "start": 28616.3, + "end": 28617.58, + "probability": 0.936 + }, + { + "start": 28617.7, + "end": 28619.56, + "probability": 0.7531 + }, + { + "start": 28619.92, + "end": 28622.56, + "probability": 0.9331 + }, + { + "start": 28623.58, + "end": 28625.33, + "probability": 0.9729 + }, + { + "start": 28627.6, + "end": 28629.0, + "probability": 0.686 + }, + { + "start": 28629.16, + "end": 28631.74, + "probability": 0.9039 + }, + { + "start": 28632.86, + "end": 28634.58, + "probability": 0.8103 + }, + { + "start": 28635.86, + "end": 28637.42, + "probability": 0.9709 + }, + { + "start": 28639.36, + "end": 28641.6, + "probability": 0.7226 + }, + { + "start": 28642.3, + "end": 28646.12, + "probability": 0.8314 + }, + { + "start": 28647.16, + "end": 28648.36, + "probability": 0.6898 + }, + { + "start": 28649.12, + "end": 28650.64, + "probability": 0.9805 + }, + { + "start": 28651.22, + "end": 28653.5, + "probability": 0.924 + }, + { + "start": 28656.16, + "end": 28659.52, + "probability": 0.7251 + }, + { + "start": 28662.5, + "end": 28664.56, + "probability": 0.9949 + }, + { + "start": 28666.44, + "end": 28668.3, + "probability": 0.9527 + }, + { + "start": 28668.92, + "end": 28670.1, + "probability": 0.1715 + }, + { + "start": 28670.24, + "end": 28672.8, + "probability": 0.917 + }, + { + "start": 28673.28, + "end": 28673.5, + "probability": 0.4483 + }, + { + "start": 28673.6, + "end": 28674.7, + "probability": 0.6443 + }, + { + "start": 28674.94, + "end": 28677.9, + "probability": 0.5092 + }, + { + "start": 28678.42, + "end": 28681.06, + "probability": 0.5387 + }, + { + "start": 28681.8, + "end": 28685.28, + "probability": 0.7656 + }, + { + "start": 28685.32, + "end": 28686.34, + "probability": 0.843 + }, + { + "start": 28688.8, + "end": 28689.38, + "probability": 0.8867 + }, + { + "start": 28689.54, + "end": 28692.3, + "probability": 0.9629 + }, + { + "start": 28692.3, + "end": 28693.89, + "probability": 0.809 + }, + { + "start": 28695.4, + "end": 28696.32, + "probability": 0.9255 + }, + { + "start": 28697.34, + "end": 28699.26, + "probability": 0.9463 + }, + { + "start": 28700.34, + "end": 28701.08, + "probability": 0.7409 + }, + { + "start": 28702.24, + "end": 28703.86, + "probability": 0.9944 + }, + { + "start": 28706.44, + "end": 28707.66, + "probability": 0.9974 + }, + { + "start": 28707.7, + "end": 28708.6, + "probability": 0.9881 + }, + { + "start": 28709.62, + "end": 28709.78, + "probability": 0.7793 + }, + { + "start": 28710.1, + "end": 28710.94, + "probability": 0.8642 + }, + { + "start": 28711.12, + "end": 28713.36, + "probability": 0.8184 + }, + { + "start": 28713.48, + "end": 28714.02, + "probability": 0.7497 + }, + { + "start": 28714.5, + "end": 28718.7, + "probability": 0.7413 + }, + { + "start": 28719.02, + "end": 28722.98, + "probability": 0.9219 + }, + { + "start": 28724.32, + "end": 28726.7, + "probability": 0.9818 + }, + { + "start": 28726.7, + "end": 28730.06, + "probability": 0.7904 + }, + { + "start": 28731.66, + "end": 28732.66, + "probability": 0.987 + }, + { + "start": 28733.26, + "end": 28737.06, + "probability": 0.8949 + }, + { + "start": 28737.7, + "end": 28740.36, + "probability": 0.7661 + }, + { + "start": 28740.5, + "end": 28741.94, + "probability": 0.966 + }, + { + "start": 28742.06, + "end": 28742.44, + "probability": 0.5601 + }, + { + "start": 28742.76, + "end": 28744.02, + "probability": 0.9801 + }, + { + "start": 28745.5, + "end": 28746.82, + "probability": 0.8335 + }, + { + "start": 28747.28, + "end": 28747.94, + "probability": 0.6473 + }, + { + "start": 28748.52, + "end": 28749.38, + "probability": 0.5351 + }, + { + "start": 28749.46, + "end": 28751.66, + "probability": 0.8397 + }, + { + "start": 28753.4, + "end": 28754.08, + "probability": 0.893 + }, + { + "start": 28754.3, + "end": 28754.72, + "probability": 0.9762 + }, + { + "start": 28754.72, + "end": 28758.38, + "probability": 0.9377 + }, + { + "start": 28759.18, + "end": 28760.34, + "probability": 0.9525 + }, + { + "start": 28760.78, + "end": 28762.38, + "probability": 0.3974 + }, + { + "start": 28762.66, + "end": 28762.68, + "probability": 0.1057 + }, + { + "start": 28762.68, + "end": 28763.48, + "probability": 0.716 + }, + { + "start": 28764.64, + "end": 28766.26, + "probability": 0.5161 + }, + { + "start": 28766.38, + "end": 28767.88, + "probability": 0.9491 + }, + { + "start": 28768.64, + "end": 28771.16, + "probability": 0.7096 + }, + { + "start": 28771.22, + "end": 28775.24, + "probability": 0.9352 + }, + { + "start": 28775.69, + "end": 28780.87, + "probability": 0.3846 + }, + { + "start": 28781.08, + "end": 28787.74, + "probability": 0.9759 + }, + { + "start": 28789.12, + "end": 28791.24, + "probability": 0.9795 + }, + { + "start": 28791.36, + "end": 28792.11, + "probability": 0.6113 + }, + { + "start": 28792.88, + "end": 28794.72, + "probability": 0.9301 + }, + { + "start": 28795.54, + "end": 28796.54, + "probability": 0.7109 + }, + { + "start": 28797.62, + "end": 28798.68, + "probability": 0.9817 + }, + { + "start": 28799.44, + "end": 28801.04, + "probability": 0.803 + }, + { + "start": 28801.08, + "end": 28802.88, + "probability": 0.8809 + }, + { + "start": 28803.4, + "end": 28805.18, + "probability": 0.9495 + }, + { + "start": 28805.34, + "end": 28805.48, + "probability": 0.4557 + }, + { + "start": 28807.54, + "end": 28808.52, + "probability": 0.5605 + }, + { + "start": 28809.56, + "end": 28810.62, + "probability": 0.7749 + }, + { + "start": 28811.62, + "end": 28813.16, + "probability": 0.8064 + }, + { + "start": 28813.16, + "end": 28814.16, + "probability": 0.3878 + }, + { + "start": 28814.24, + "end": 28815.6, + "probability": 0.951 + }, + { + "start": 28816.02, + "end": 28818.28, + "probability": 0.9673 + }, + { + "start": 28819.54, + "end": 28820.64, + "probability": 0.8942 + }, + { + "start": 28822.92, + "end": 28823.81, + "probability": 0.9941 + }, + { + "start": 28824.24, + "end": 28824.86, + "probability": 0.6042 + }, + { + "start": 28826.78, + "end": 28827.34, + "probability": 0.7817 + }, + { + "start": 28827.68, + "end": 28831.46, + "probability": 0.9604 + }, + { + "start": 28831.66, + "end": 28833.74, + "probability": 0.9946 + }, + { + "start": 28833.74, + "end": 28834.42, + "probability": 0.9167 + }, + { + "start": 28835.18, + "end": 28838.56, + "probability": 0.9941 + }, + { + "start": 28839.98, + "end": 28840.2, + "probability": 0.7424 + }, + { + "start": 28841.0, + "end": 28842.01, + "probability": 0.6718 + }, + { + "start": 28843.68, + "end": 28844.78, + "probability": 0.9447 + }, + { + "start": 28845.8, + "end": 28846.82, + "probability": 0.723 + }, + { + "start": 28846.88, + "end": 28851.91, + "probability": 0.9517 + }, + { + "start": 28852.48, + "end": 28853.12, + "probability": 0.483 + }, + { + "start": 28853.2, + "end": 28853.2, + "probability": 0.146 + }, + { + "start": 28853.38, + "end": 28855.04, + "probability": 0.8835 + }, + { + "start": 28855.06, + "end": 28856.1, + "probability": 0.3392 + }, + { + "start": 28856.42, + "end": 28857.66, + "probability": 0.2009 + }, + { + "start": 28858.34, + "end": 28858.62, + "probability": 0.4078 + }, + { + "start": 28859.16, + "end": 28859.82, + "probability": 0.3418 + }, + { + "start": 28860.26, + "end": 28861.96, + "probability": 0.8221 + }, + { + "start": 28862.1, + "end": 28862.22, + "probability": 0.2952 + }, + { + "start": 28862.92, + "end": 28863.78, + "probability": 0.6155 + }, + { + "start": 28865.28, + "end": 28866.72, + "probability": 0.6479 + }, + { + "start": 28867.88, + "end": 28868.26, + "probability": 0.8539 + }, + { + "start": 28869.66, + "end": 28870.9, + "probability": 0.803 + }, + { + "start": 28871.04, + "end": 28873.48, + "probability": 0.8945 + }, + { + "start": 28874.76, + "end": 28876.0, + "probability": 0.958 + }, + { + "start": 28877.24, + "end": 28878.68, + "probability": 0.9359 + }, + { + "start": 28878.78, + "end": 28879.6, + "probability": 0.7769 + }, + { + "start": 28879.76, + "end": 28880.36, + "probability": 0.9023 + }, + { + "start": 28880.74, + "end": 28881.22, + "probability": 0.6956 + }, + { + "start": 28882.04, + "end": 28882.26, + "probability": 0.9883 + }, + { + "start": 28882.98, + "end": 28883.1, + "probability": 0.2509 + }, + { + "start": 28883.1, + "end": 28884.88, + "probability": 0.8945 + }, + { + "start": 28885.22, + "end": 28886.74, + "probability": 0.9695 + }, + { + "start": 28887.66, + "end": 28888.44, + "probability": 0.9937 + }, + { + "start": 28889.18, + "end": 28890.24, + "probability": 0.9561 + }, + { + "start": 28890.26, + "end": 28891.1, + "probability": 0.9242 + }, + { + "start": 28892.24, + "end": 28896.36, + "probability": 0.9895 + }, + { + "start": 28897.48, + "end": 28901.72, + "probability": 0.8821 + }, + { + "start": 28902.1, + "end": 28903.5, + "probability": 0.7654 + }, + { + "start": 28903.66, + "end": 28904.05, + "probability": 0.8776 + }, + { + "start": 28905.52, + "end": 28908.18, + "probability": 0.4841 + }, + { + "start": 28909.44, + "end": 28913.61, + "probability": 0.8787 + }, + { + "start": 28914.68, + "end": 28914.72, + "probability": 0.0293 + }, + { + "start": 28914.74, + "end": 28915.44, + "probability": 0.7141 + }, + { + "start": 28915.94, + "end": 28915.98, + "probability": 0.5565 + }, + { + "start": 28916.04, + "end": 28916.64, + "probability": 0.8149 + }, + { + "start": 28919.04, + "end": 28920.93, + "probability": 0.4048 + }, + { + "start": 28926.48, + "end": 28928.0, + "probability": 0.8154 + }, + { + "start": 28929.08, + "end": 28930.88, + "probability": 0.7994 + }, + { + "start": 28931.46, + "end": 28931.8, + "probability": 0.4639 + }, + { + "start": 28932.38, + "end": 28933.12, + "probability": 0.4959 + }, + { + "start": 28933.86, + "end": 28934.1, + "probability": 0.4702 + }, + { + "start": 28934.96, + "end": 28936.78, + "probability": 0.5159 + }, + { + "start": 28937.16, + "end": 28939.42, + "probability": 0.7253 + }, + { + "start": 28940.62, + "end": 28942.86, + "probability": 0.0934 + }, + { + "start": 28965.82, + "end": 28966.78, + "probability": 0.5519 + }, + { + "start": 28967.36, + "end": 28968.16, + "probability": 0.6278 + }, + { + "start": 28969.7, + "end": 28975.56, + "probability": 0.9341 + }, + { + "start": 28976.5, + "end": 28979.74, + "probability": 0.9893 + }, + { + "start": 28980.1, + "end": 28982.14, + "probability": 0.9587 + }, + { + "start": 28982.82, + "end": 28983.3, + "probability": 0.5926 + }, + { + "start": 28983.94, + "end": 28984.6, + "probability": 0.5248 + }, + { + "start": 28985.62, + "end": 28987.26, + "probability": 0.8255 + }, + { + "start": 28988.26, + "end": 28989.32, + "probability": 0.8938 + }, + { + "start": 28989.4, + "end": 28994.52, + "probability": 0.6607 + }, + { + "start": 28994.6, + "end": 28995.39, + "probability": 0.1996 + }, + { + "start": 28996.26, + "end": 28999.5, + "probability": 0.8763 + }, + { + "start": 29000.38, + "end": 29003.92, + "probability": 0.9897 + }, + { + "start": 29003.92, + "end": 29006.64, + "probability": 0.9972 + }, + { + "start": 29007.78, + "end": 29009.68, + "probability": 0.8607 + }, + { + "start": 29009.74, + "end": 29012.42, + "probability": 0.956 + }, + { + "start": 29012.52, + "end": 29016.22, + "probability": 0.3301 + }, + { + "start": 29017.06, + "end": 29019.0, + "probability": 0.9727 + }, + { + "start": 29019.92, + "end": 29021.2, + "probability": 0.9603 + }, + { + "start": 29022.54, + "end": 29024.2, + "probability": 0.8315 + }, + { + "start": 29024.98, + "end": 29027.52, + "probability": 0.9752 + }, + { + "start": 29028.7, + "end": 29032.28, + "probability": 0.8573 + }, + { + "start": 29032.4, + "end": 29034.4, + "probability": 0.6977 + }, + { + "start": 29034.5, + "end": 29038.26, + "probability": 0.55 + }, + { + "start": 29039.46, + "end": 29040.12, + "probability": 0.1419 + }, + { + "start": 29040.12, + "end": 29044.18, + "probability": 0.9878 + }, + { + "start": 29045.44, + "end": 29047.58, + "probability": 0.8828 + }, + { + "start": 29048.64, + "end": 29052.38, + "probability": 0.9961 + }, + { + "start": 29052.46, + "end": 29052.58, + "probability": 0.3301 + }, + { + "start": 29052.68, + "end": 29052.84, + "probability": 0.3926 + }, + { + "start": 29052.92, + "end": 29054.18, + "probability": 0.9412 + }, + { + "start": 29054.28, + "end": 29055.08, + "probability": 0.7753 + }, + { + "start": 29057.55, + "end": 29061.76, + "probability": 0.973 + }, + { + "start": 29061.76, + "end": 29065.96, + "probability": 0.9856 + }, + { + "start": 29066.67, + "end": 29069.4, + "probability": 0.9855 + }, + { + "start": 29070.04, + "end": 29073.02, + "probability": 0.9556 + }, + { + "start": 29073.42, + "end": 29074.56, + "probability": 0.6557 + }, + { + "start": 29074.86, + "end": 29076.42, + "probability": 0.9506 + }, + { + "start": 29076.82, + "end": 29078.36, + "probability": 0.9937 + }, + { + "start": 29078.46, + "end": 29080.22, + "probability": 0.9961 + }, + { + "start": 29080.56, + "end": 29082.7, + "probability": 0.9498 + }, + { + "start": 29083.64, + "end": 29086.66, + "probability": 0.958 + }, + { + "start": 29086.8, + "end": 29088.45, + "probability": 0.9935 + }, + { + "start": 29089.0, + "end": 29091.74, + "probability": 0.8462 + }, + { + "start": 29091.74, + "end": 29095.46, + "probability": 0.9945 + }, + { + "start": 29098.58, + "end": 29099.72, + "probability": 0.6769 + }, + { + "start": 29099.72, + "end": 29102.43, + "probability": 0.9458 + }, + { + "start": 29102.5, + "end": 29104.66, + "probability": 0.991 + }, + { + "start": 29104.66, + "end": 29106.6, + "probability": 0.8167 + }, + { + "start": 29106.66, + "end": 29109.12, + "probability": 0.9675 + }, + { + "start": 29109.26, + "end": 29109.36, + "probability": 0.4091 + }, + { + "start": 29110.72, + "end": 29113.09, + "probability": 0.9624 + }, + { + "start": 29114.5, + "end": 29120.26, + "probability": 0.9876 + }, + { + "start": 29120.27, + "end": 29124.62, + "probability": 0.9932 + }, + { + "start": 29125.34, + "end": 29129.46, + "probability": 0.9937 + }, + { + "start": 29130.06, + "end": 29131.6, + "probability": 0.9921 + }, + { + "start": 29131.94, + "end": 29133.14, + "probability": 0.9899 + }, + { + "start": 29133.28, + "end": 29135.52, + "probability": 0.9861 + }, + { + "start": 29136.0, + "end": 29138.72, + "probability": 0.9418 + }, + { + "start": 29139.46, + "end": 29141.72, + "probability": 0.9943 + }, + { + "start": 29142.28, + "end": 29144.3, + "probability": 0.9923 + }, + { + "start": 29145.58, + "end": 29151.24, + "probability": 0.9888 + }, + { + "start": 29151.94, + "end": 29154.68, + "probability": 0.9597 + }, + { + "start": 29155.38, + "end": 29159.96, + "probability": 0.9799 + }, + { + "start": 29160.5, + "end": 29166.1, + "probability": 0.999 + }, + { + "start": 29166.8, + "end": 29170.1, + "probability": 0.9197 + }, + { + "start": 29170.94, + "end": 29175.32, + "probability": 0.9406 + }, + { + "start": 29175.32, + "end": 29179.3, + "probability": 0.999 + }, + { + "start": 29180.18, + "end": 29180.78, + "probability": 0.6379 + }, + { + "start": 29181.24, + "end": 29181.54, + "probability": 0.2968 + }, + { + "start": 29182.16, + "end": 29183.36, + "probability": 0.3246 + }, + { + "start": 29183.42, + "end": 29184.92, + "probability": 0.0368 + }, + { + "start": 29185.02, + "end": 29185.2, + "probability": 0.3685 + }, + { + "start": 29185.26, + "end": 29185.72, + "probability": 0.4416 + }, + { + "start": 29186.12, + "end": 29188.44, + "probability": 0.2054 + }, + { + "start": 29188.88, + "end": 29190.78, + "probability": 0.8305 + }, + { + "start": 29191.42, + "end": 29192.67, + "probability": 0.8469 + }, + { + "start": 29193.34, + "end": 29197.14, + "probability": 0.6667 + }, + { + "start": 29197.36, + "end": 29200.07, + "probability": 0.8894 + }, + { + "start": 29200.74, + "end": 29202.06, + "probability": 0.6725 + }, + { + "start": 29202.1, + "end": 29203.56, + "probability": 0.9941 + }, + { + "start": 29205.38, + "end": 29207.16, + "probability": 0.1792 + }, + { + "start": 29207.16, + "end": 29207.16, + "probability": 0.3158 + }, + { + "start": 29207.16, + "end": 29208.35, + "probability": 0.4965 + }, + { + "start": 29208.44, + "end": 29208.48, + "probability": 0.198 + }, + { + "start": 29208.58, + "end": 29209.6, + "probability": 0.701 + }, + { + "start": 29209.86, + "end": 29210.94, + "probability": 0.473 + }, + { + "start": 29211.04, + "end": 29211.74, + "probability": 0.9163 + }, + { + "start": 29212.34, + "end": 29212.68, + "probability": 0.9077 + }, + { + "start": 29213.14, + "end": 29214.48, + "probability": 0.7258 + }, + { + "start": 29214.48, + "end": 29215.5, + "probability": 0.7703 + }, + { + "start": 29215.56, + "end": 29216.38, + "probability": 0.9607 + }, + { + "start": 29217.68, + "end": 29219.2, + "probability": 0.9954 + }, + { + "start": 29219.56, + "end": 29220.02, + "probability": 0.8687 + }, + { + "start": 29221.8, + "end": 29224.66, + "probability": 0.9873 + }, + { + "start": 29226.3, + "end": 29229.02, + "probability": 0.9703 + }, + { + "start": 29230.31, + "end": 29232.68, + "probability": 0.1007 + }, + { + "start": 29233.34, + "end": 29233.46, + "probability": 0.4087 + }, + { + "start": 29234.96, + "end": 29237.98, + "probability": 0.7002 + }, + { + "start": 29238.28, + "end": 29239.98, + "probability": 0.9722 + }, + { + "start": 29240.1, + "end": 29241.42, + "probability": 0.9159 + }, + { + "start": 29241.78, + "end": 29243.31, + "probability": 0.9722 + }, + { + "start": 29243.6, + "end": 29244.26, + "probability": 0.499 + }, + { + "start": 29244.68, + "end": 29246.42, + "probability": 0.9707 + }, + { + "start": 29246.96, + "end": 29254.1, + "probability": 0.9976 + }, + { + "start": 29255.38, + "end": 29258.68, + "probability": 0.9344 + }, + { + "start": 29258.68, + "end": 29261.98, + "probability": 0.9954 + }, + { + "start": 29262.54, + "end": 29266.82, + "probability": 0.994 + }, + { + "start": 29267.38, + "end": 29268.64, + "probability": 0.5783 + }, + { + "start": 29269.26, + "end": 29271.18, + "probability": 0.9864 + }, + { + "start": 29271.26, + "end": 29272.22, + "probability": 0.9665 + }, + { + "start": 29272.6, + "end": 29273.4, + "probability": 0.3199 + }, + { + "start": 29273.76, + "end": 29274.06, + "probability": 0.7168 + }, + { + "start": 29274.66, + "end": 29276.02, + "probability": 0.312 + }, + { + "start": 29277.54, + "end": 29277.54, + "probability": 0.7861 + }, + { + "start": 29278.32, + "end": 29279.77, + "probability": 0.9863 + }, + { + "start": 29280.64, + "end": 29282.84, + "probability": 0.6461 + }, + { + "start": 29282.96, + "end": 29283.63, + "probability": 0.895 + }, + { + "start": 29284.02, + "end": 29284.9, + "probability": 0.8267 + }, + { + "start": 29284.9, + "end": 29284.98, + "probability": 0.3339 + }, + { + "start": 29284.98, + "end": 29285.61, + "probability": 0.876 + }, + { + "start": 29286.06, + "end": 29286.9, + "probability": 0.7609 + }, + { + "start": 29287.76, + "end": 29290.2, + "probability": 0.4498 + }, + { + "start": 29290.34, + "end": 29290.76, + "probability": 0.6109 + }, + { + "start": 29291.66, + "end": 29292.4, + "probability": 0.2766 + }, + { + "start": 29293.42, + "end": 29297.86, + "probability": 0.9199 + }, + { + "start": 29298.02, + "end": 29300.7, + "probability": 0.7439 + }, + { + "start": 29300.8, + "end": 29301.74, + "probability": 0.9282 + }, + { + "start": 29302.66, + "end": 29303.58, + "probability": 0.9199 + }, + { + "start": 29303.62, + "end": 29306.96, + "probability": 0.9886 + }, + { + "start": 29307.54, + "end": 29309.76, + "probability": 0.7578 + }, + { + "start": 29309.88, + "end": 29314.28, + "probability": 0.9948 + }, + { + "start": 29314.94, + "end": 29321.0, + "probability": 0.8474 + }, + { + "start": 29321.24, + "end": 29324.94, + "probability": 0.7572 + }, + { + "start": 29324.94, + "end": 29325.6, + "probability": 0.666 + }, + { + "start": 29326.04, + "end": 29327.38, + "probability": 0.8107 + }, + { + "start": 29328.0, + "end": 29330.5, + "probability": 0.8954 + }, + { + "start": 29330.6, + "end": 29331.4, + "probability": 0.8362 + }, + { + "start": 29331.58, + "end": 29332.24, + "probability": 0.9547 + }, + { + "start": 29332.6, + "end": 29337.08, + "probability": 0.9636 + }, + { + "start": 29337.34, + "end": 29338.48, + "probability": 0.8493 + }, + { + "start": 29339.6, + "end": 29341.52, + "probability": 0.834 + }, + { + "start": 29342.42, + "end": 29345.12, + "probability": 0.8047 + }, + { + "start": 29345.7, + "end": 29347.98, + "probability": 0.9885 + }, + { + "start": 29348.94, + "end": 29353.82, + "probability": 0.9907 + }, + { + "start": 29354.44, + "end": 29356.56, + "probability": 0.813 + }, + { + "start": 29357.3, + "end": 29359.24, + "probability": 0.9403 + }, + { + "start": 29359.84, + "end": 29360.87, + "probability": 0.9575 + }, + { + "start": 29361.2, + "end": 29363.74, + "probability": 0.8938 + }, + { + "start": 29364.18, + "end": 29364.9, + "probability": 0.5092 + }, + { + "start": 29364.96, + "end": 29365.88, + "probability": 0.9897 + }, + { + "start": 29366.72, + "end": 29368.5, + "probability": 0.5184 + }, + { + "start": 29369.08, + "end": 29369.7, + "probability": 0.8386 + }, + { + "start": 29369.72, + "end": 29371.89, + "probability": 0.3039 + }, + { + "start": 29372.14, + "end": 29372.14, + "probability": 0.3362 + }, + { + "start": 29372.14, + "end": 29373.2, + "probability": 0.7137 + }, + { + "start": 29373.32, + "end": 29374.18, + "probability": 0.8754 + }, + { + "start": 29374.2, + "end": 29377.14, + "probability": 0.7606 + }, + { + "start": 29377.32, + "end": 29380.06, + "probability": 0.7339 + }, + { + "start": 29383.7, + "end": 29386.35, + "probability": 0.8964 + }, + { + "start": 29390.12, + "end": 29393.04, + "probability": 0.864 + }, + { + "start": 29395.88, + "end": 29396.9, + "probability": 0.895 + }, + { + "start": 29397.12, + "end": 29399.46, + "probability": 0.9727 + }, + { + "start": 29399.54, + "end": 29401.76, + "probability": 0.906 + }, + { + "start": 29403.08, + "end": 29403.9, + "probability": 0.778 + }, + { + "start": 29405.34, + "end": 29408.84, + "probability": 0.998 + }, + { + "start": 29408.84, + "end": 29412.06, + "probability": 0.9883 + }, + { + "start": 29412.7, + "end": 29417.28, + "probability": 0.9773 + }, + { + "start": 29417.28, + "end": 29420.88, + "probability": 0.9877 + }, + { + "start": 29420.96, + "end": 29421.36, + "probability": 0.7652 + }, + { + "start": 29421.52, + "end": 29424.06, + "probability": 0.9983 + }, + { + "start": 29424.08, + "end": 29425.7, + "probability": 0.6021 + }, + { + "start": 29425.86, + "end": 29426.68, + "probability": 0.7031 + }, + { + "start": 29426.7, + "end": 29427.82, + "probability": 0.9574 + }, + { + "start": 29427.94, + "end": 29429.56, + "probability": 0.786 + }, + { + "start": 29430.36, + "end": 29430.9, + "probability": 0.8819 + }, + { + "start": 29431.14, + "end": 29431.88, + "probability": 0.191 + }, + { + "start": 29431.96, + "end": 29432.78, + "probability": 0.8244 + }, + { + "start": 29433.54, + "end": 29435.78, + "probability": 0.8319 + }, + { + "start": 29435.96, + "end": 29438.12, + "probability": 0.7016 + }, + { + "start": 29438.24, + "end": 29439.62, + "probability": 0.2483 + }, + { + "start": 29439.82, + "end": 29440.66, + "probability": 0.6549 + }, + { + "start": 29441.04, + "end": 29442.68, + "probability": 0.9749 + }, + { + "start": 29442.68, + "end": 29443.03, + "probability": 0.6312 + }, + { + "start": 29443.9, + "end": 29445.38, + "probability": 0.4148 + }, + { + "start": 29445.78, + "end": 29448.46, + "probability": 0.5516 + }, + { + "start": 29448.84, + "end": 29450.8, + "probability": 0.963 + }, + { + "start": 29451.0, + "end": 29457.52, + "probability": 0.9224 + }, + { + "start": 29458.56, + "end": 29460.28, + "probability": 0.4754 + }, + { + "start": 29460.62, + "end": 29460.62, + "probability": 0.1417 + }, + { + "start": 29460.62, + "end": 29461.1, + "probability": 0.5041 + }, + { + "start": 29461.26, + "end": 29464.04, + "probability": 0.8142 + }, + { + "start": 29464.04, + "end": 29468.54, + "probability": 0.973 + }, + { + "start": 29468.9, + "end": 29470.12, + "probability": 0.6573 + }, + { + "start": 29470.22, + "end": 29474.3, + "probability": 0.9785 + }, + { + "start": 29474.86, + "end": 29475.98, + "probability": 0.8435 + }, + { + "start": 29476.34, + "end": 29479.6, + "probability": 0.9824 + }, + { + "start": 29479.6, + "end": 29481.78, + "probability": 0.999 + }, + { + "start": 29482.24, + "end": 29483.62, + "probability": 0.9567 + }, + { + "start": 29483.94, + "end": 29484.44, + "probability": 0.0613 + }, + { + "start": 29484.44, + "end": 29485.04, + "probability": 0.0758 + }, + { + "start": 29487.6, + "end": 29488.3, + "probability": 0.0858 + }, + { + "start": 29488.34, + "end": 29491.88, + "probability": 0.9852 + }, + { + "start": 29492.6, + "end": 29494.34, + "probability": 0.1568 + }, + { + "start": 29494.36, + "end": 29494.48, + "probability": 0.1104 + }, + { + "start": 29494.48, + "end": 29495.44, + "probability": 0.6143 + }, + { + "start": 29496.04, + "end": 29496.46, + "probability": 0.4807 + }, + { + "start": 29496.72, + "end": 29498.22, + "probability": 0.6628 + }, + { + "start": 29498.6, + "end": 29501.12, + "probability": 0.9974 + }, + { + "start": 29501.8, + "end": 29502.7, + "probability": 0.9189 + }, + { + "start": 29503.52, + "end": 29504.84, + "probability": 0.8629 + }, + { + "start": 29506.43, + "end": 29509.84, + "probability": 0.8885 + }, + { + "start": 29511.24, + "end": 29511.8, + "probability": 0.6942 + }, + { + "start": 29512.26, + "end": 29516.22, + "probability": 0.5972 + }, + { + "start": 29516.22, + "end": 29516.22, + "probability": 0.0799 + }, + { + "start": 29516.22, + "end": 29516.7, + "probability": 0.5368 + }, + { + "start": 29517.06, + "end": 29518.52, + "probability": 0.8374 + }, + { + "start": 29519.04, + "end": 29521.58, + "probability": 0.9369 + }, + { + "start": 29522.54, + "end": 29523.54, + "probability": 0.5767 + }, + { + "start": 29523.54, + "end": 29524.4, + "probability": 0.3328 + }, + { + "start": 29524.4, + "end": 29524.94, + "probability": 0.8357 + }, + { + "start": 29525.2, + "end": 29526.16, + "probability": 0.9336 + }, + { + "start": 29526.44, + "end": 29527.14, + "probability": 0.8161 + }, + { + "start": 29527.22, + "end": 29528.36, + "probability": 0.5518 + }, + { + "start": 29528.5, + "end": 29530.24, + "probability": 0.7713 + }, + { + "start": 29530.5, + "end": 29532.61, + "probability": 0.7825 + }, + { + "start": 29532.82, + "end": 29536.14, + "probability": 0.87 + }, + { + "start": 29536.16, + "end": 29538.1, + "probability": 0.9854 + }, + { + "start": 29538.1, + "end": 29540.84, + "probability": 0.978 + }, + { + "start": 29541.16, + "end": 29542.2, + "probability": 0.3415 + }, + { + "start": 29542.52, + "end": 29542.54, + "probability": 0.6376 + }, + { + "start": 29542.76, + "end": 29543.3, + "probability": 0.7456 + }, + { + "start": 29543.62, + "end": 29545.7, + "probability": 0.9834 + }, + { + "start": 29546.26, + "end": 29549.34, + "probability": 0.612 + }, + { + "start": 29549.7, + "end": 29552.14, + "probability": 0.996 + }, + { + "start": 29552.24, + "end": 29554.26, + "probability": 0.9954 + }, + { + "start": 29554.26, + "end": 29557.2, + "probability": 0.972 + }, + { + "start": 29557.28, + "end": 29557.9, + "probability": 0.7978 + }, + { + "start": 29558.04, + "end": 29558.56, + "probability": 0.5213 + }, + { + "start": 29558.6, + "end": 29561.44, + "probability": 0.8559 + }, + { + "start": 29561.44, + "end": 29562.52, + "probability": 0.2781 + }, + { + "start": 29562.72, + "end": 29565.42, + "probability": 0.9821 + }, + { + "start": 29566.54, + "end": 29566.98, + "probability": 0.2408 + }, + { + "start": 29567.14, + "end": 29569.28, + "probability": 0.8421 + }, + { + "start": 29569.46, + "end": 29573.06, + "probability": 0.5271 + }, + { + "start": 29574.28, + "end": 29579.18, + "probability": 0.1829 + }, + { + "start": 29581.66, + "end": 29583.63, + "probability": 0.4647 + }, + { + "start": 29583.92, + "end": 29583.98, + "probability": 0.6779 + }, + { + "start": 29583.98, + "end": 29585.32, + "probability": 0.3384 + }, + { + "start": 29585.36, + "end": 29588.02, + "probability": 0.5904 + }, + { + "start": 29588.18, + "end": 29589.14, + "probability": 0.7586 + }, + { + "start": 29589.24, + "end": 29592.76, + "probability": 0.6113 + }, + { + "start": 29592.78, + "end": 29593.74, + "probability": 0.8303 + }, + { + "start": 29594.16, + "end": 29594.9, + "probability": 0.6432 + }, + { + "start": 29594.94, + "end": 29598.52, + "probability": 0.7653 + }, + { + "start": 29603.22, + "end": 29605.3, + "probability": 0.5504 + }, + { + "start": 29605.42, + "end": 29606.92, + "probability": 0.6669 + }, + { + "start": 29607.48, + "end": 29607.96, + "probability": 0.254 + }, + { + "start": 29608.43, + "end": 29610.62, + "probability": 0.5147 + }, + { + "start": 29610.96, + "end": 29611.17, + "probability": 0.0645 + }, + { + "start": 29611.78, + "end": 29613.44, + "probability": 0.578 + }, + { + "start": 29613.66, + "end": 29617.14, + "probability": 0.1447 + }, + { + "start": 29617.32, + "end": 29618.08, + "probability": 0.6986 + }, + { + "start": 29618.98, + "end": 29619.38, + "probability": 0.2526 + }, + { + "start": 29620.1, + "end": 29622.88, + "probability": 0.8881 + }, + { + "start": 29622.94, + "end": 29625.92, + "probability": 0.1192 + }, + { + "start": 29625.98, + "end": 29626.99, + "probability": 0.8091 + }, + { + "start": 29627.44, + "end": 29631.38, + "probability": 0.4798 + }, + { + "start": 29631.64, + "end": 29633.94, + "probability": 0.7883 + }, + { + "start": 29634.48, + "end": 29635.14, + "probability": 0.0774 + }, + { + "start": 29637.61, + "end": 29642.06, + "probability": 0.4555 + }, + { + "start": 29642.36, + "end": 29644.42, + "probability": 0.1893 + }, + { + "start": 29645.24, + "end": 29645.58, + "probability": 0.1116 + }, + { + "start": 29645.58, + "end": 29646.88, + "probability": 0.3048 + }, + { + "start": 29647.46, + "end": 29649.86, + "probability": 0.7705 + }, + { + "start": 29650.82, + "end": 29652.22, + "probability": 0.8216 + }, + { + "start": 29653.2, + "end": 29653.88, + "probability": 0.4369 + }, + { + "start": 29655.22, + "end": 29656.3, + "probability": 0.6627 + }, + { + "start": 29656.9, + "end": 29659.34, + "probability": 0.7104 + }, + { + "start": 29659.46, + "end": 29661.74, + "probability": 0.989 + }, + { + "start": 29661.74, + "end": 29664.58, + "probability": 0.896 + }, + { + "start": 29665.12, + "end": 29669.12, + "probability": 0.5392 + }, + { + "start": 29669.14, + "end": 29671.64, + "probability": 0.6871 + }, + { + "start": 29672.92, + "end": 29675.58, + "probability": 0.458 + }, + { + "start": 29676.62, + "end": 29678.66, + "probability": 0.8304 + }, + { + "start": 29678.66, + "end": 29680.16, + "probability": 0.9299 + }, + { + "start": 29680.18, + "end": 29680.24, + "probability": 0.1619 + }, + { + "start": 29680.24, + "end": 29680.94, + "probability": 0.7328 + }, + { + "start": 29681.1, + "end": 29681.96, + "probability": 0.7159 + }, + { + "start": 29682.02, + "end": 29682.12, + "probability": 0.6259 + }, + { + "start": 29682.44, + "end": 29685.2, + "probability": 0.4795 + }, + { + "start": 29687.96, + "end": 29691.36, + "probability": 0.1462 + }, + { + "start": 29691.8, + "end": 29695.38, + "probability": 0.5709 + }, + { + "start": 29695.38, + "end": 29696.62, + "probability": 0.5544 + }, + { + "start": 29696.74, + "end": 29698.82, + "probability": 0.9171 + }, + { + "start": 29698.9, + "end": 29701.64, + "probability": 0.8095 + }, + { + "start": 29701.68, + "end": 29702.22, + "probability": 0.8628 + }, + { + "start": 29702.58, + "end": 29703.97, + "probability": 0.2809 + }, + { + "start": 29704.24, + "end": 29706.26, + "probability": 0.5369 + }, + { + "start": 29706.38, + "end": 29707.3, + "probability": 0.7525 + }, + { + "start": 29708.04, + "end": 29708.94, + "probability": 0.5774 + }, + { + "start": 29709.57, + "end": 29712.26, + "probability": 0.9956 + }, + { + "start": 29712.52, + "end": 29713.96, + "probability": 0.9224 + }, + { + "start": 29714.96, + "end": 29718.26, + "probability": 0.8752 + }, + { + "start": 29718.84, + "end": 29722.22, + "probability": 0.9763 + }, + { + "start": 29724.38, + "end": 29730.64, + "probability": 0.9644 + }, + { + "start": 29730.76, + "end": 29731.52, + "probability": 0.7913 + }, + { + "start": 29732.26, + "end": 29734.04, + "probability": 0.7422 + }, + { + "start": 29735.1, + "end": 29737.82, + "probability": 0.7115 + }, + { + "start": 29738.48, + "end": 29739.08, + "probability": 0.979 + }, + { + "start": 29739.16, + "end": 29740.62, + "probability": 0.7871 + }, + { + "start": 29740.86, + "end": 29742.02, + "probability": 0.7844 + }, + { + "start": 29743.22, + "end": 29744.2, + "probability": 0.5072 + }, + { + "start": 29744.92, + "end": 29745.26, + "probability": 0.6362 + }, + { + "start": 29745.82, + "end": 29747.04, + "probability": 0.662 + }, + { + "start": 29747.78, + "end": 29748.3, + "probability": 0.6787 + }, + { + "start": 29748.64, + "end": 29749.18, + "probability": 0.4677 + }, + { + "start": 29749.68, + "end": 29750.38, + "probability": 0.9825 + }, + { + "start": 29750.44, + "end": 29753.66, + "probability": 0.9868 + }, + { + "start": 29754.68, + "end": 29755.82, + "probability": 0.8635 + }, + { + "start": 29756.74, + "end": 29760.06, + "probability": 0.9126 + }, + { + "start": 29760.32, + "end": 29761.04, + "probability": 0.5521 + }, + { + "start": 29761.28, + "end": 29761.64, + "probability": 0.7635 + }, + { + "start": 29762.54, + "end": 29766.42, + "probability": 0.9629 + }, + { + "start": 29766.68, + "end": 29770.5, + "probability": 0.9169 + }, + { + "start": 29770.9, + "end": 29771.92, + "probability": 0.8612 + }, + { + "start": 29772.68, + "end": 29776.76, + "probability": 0.9953 + }, + { + "start": 29776.76, + "end": 29779.4, + "probability": 0.999 + }, + { + "start": 29779.92, + "end": 29780.38, + "probability": 0.527 + }, + { + "start": 29780.6, + "end": 29784.78, + "probability": 0.8132 + }, + { + "start": 29785.6, + "end": 29786.52, + "probability": 0.7738 + }, + { + "start": 29787.2, + "end": 29787.68, + "probability": 0.736 + }, + { + "start": 29788.24, + "end": 29792.28, + "probability": 0.9374 + }, + { + "start": 29792.42, + "end": 29795.4, + "probability": 0.9865 + }, + { + "start": 29795.6, + "end": 29798.38, + "probability": 0.9896 + }, + { + "start": 29799.04, + "end": 29800.7, + "probability": 0.9736 + }, + { + "start": 29803.32, + "end": 29804.96, + "probability": 0.8357 + }, + { + "start": 29805.5, + "end": 29807.2, + "probability": 0.9868 + }, + { + "start": 29807.76, + "end": 29810.0, + "probability": 0.9587 + }, + { + "start": 29810.18, + "end": 29810.98, + "probability": 0.5373 + }, + { + "start": 29811.8, + "end": 29815.2, + "probability": 0.9796 + }, + { + "start": 29816.58, + "end": 29817.92, + "probability": 0.8782 + }, + { + "start": 29817.96, + "end": 29818.6, + "probability": 0.8319 + }, + { + "start": 29818.66, + "end": 29819.2, + "probability": 0.7364 + }, + { + "start": 29819.32, + "end": 29820.42, + "probability": 0.853 + }, + { + "start": 29821.0, + "end": 29823.68, + "probability": 0.9814 + }, + { + "start": 29824.5, + "end": 29826.28, + "probability": 0.9148 + }, + { + "start": 29826.32, + "end": 29827.98, + "probability": 0.719 + }, + { + "start": 29828.08, + "end": 29830.18, + "probability": 0.7773 + }, + { + "start": 29830.34, + "end": 29832.58, + "probability": 0.953 + }, + { + "start": 29834.28, + "end": 29834.8, + "probability": 0.7256 + }, + { + "start": 29835.08, + "end": 29839.92, + "probability": 0.57 + }, + { + "start": 29839.96, + "end": 29840.72, + "probability": 0.689 + }, + { + "start": 29841.32, + "end": 29842.18, + "probability": 0.7046 + }, + { + "start": 29842.36, + "end": 29844.1, + "probability": 0.5769 + }, + { + "start": 29844.9, + "end": 29845.54, + "probability": 0.9614 + }, + { + "start": 29845.66, + "end": 29847.68, + "probability": 0.9258 + }, + { + "start": 29847.94, + "end": 29850.48, + "probability": 0.9489 + }, + { + "start": 29851.08, + "end": 29853.6, + "probability": 0.8784 + }, + { + "start": 29853.7, + "end": 29854.15, + "probability": 0.6225 + }, + { + "start": 29854.52, + "end": 29858.42, + "probability": 0.7991 + }, + { + "start": 29858.56, + "end": 29859.71, + "probability": 0.3757 + }, + { + "start": 29859.9, + "end": 29860.12, + "probability": 0.5997 + }, + { + "start": 29860.18, + "end": 29862.26, + "probability": 0.9658 + }, + { + "start": 29862.88, + "end": 29864.5, + "probability": 0.9004 + }, + { + "start": 29864.62, + "end": 29865.72, + "probability": 0.8538 + }, + { + "start": 29866.38, + "end": 29866.72, + "probability": 0.9046 + }, + { + "start": 29867.4, + "end": 29870.2, + "probability": 0.81 + }, + { + "start": 29870.7, + "end": 29873.08, + "probability": 0.7884 + }, + { + "start": 29873.08, + "end": 29874.84, + "probability": 0.9779 + }, + { + "start": 29874.94, + "end": 29875.62, + "probability": 0.3301 + }, + { + "start": 29876.08, + "end": 29878.7, + "probability": 0.9946 + }, + { + "start": 29881.06, + "end": 29881.68, + "probability": 0.7219 + }, + { + "start": 29881.94, + "end": 29885.56, + "probability": 0.896 + }, + { + "start": 29886.36, + "end": 29887.0, + "probability": 0.7712 + }, + { + "start": 29887.54, + "end": 29892.32, + "probability": 0.9335 + }, + { + "start": 29892.88, + "end": 29895.66, + "probability": 0.9897 + }, + { + "start": 29895.8, + "end": 29899.56, + "probability": 0.9375 + }, + { + "start": 29900.22, + "end": 29901.98, + "probability": 0.9943 + }, + { + "start": 29902.12, + "end": 29903.22, + "probability": 0.9191 + }, + { + "start": 29903.74, + "end": 29905.86, + "probability": 0.6932 + }, + { + "start": 29906.48, + "end": 29908.14, + "probability": 0.9619 + }, + { + "start": 29908.62, + "end": 29909.8, + "probability": 0.9893 + }, + { + "start": 29909.94, + "end": 29911.32, + "probability": 0.9932 + }, + { + "start": 29911.92, + "end": 29912.54, + "probability": 0.8941 + }, + { + "start": 29913.08, + "end": 29916.74, + "probability": 0.9248 + }, + { + "start": 29917.04, + "end": 29917.98, + "probability": 0.8394 + }, + { + "start": 29918.02, + "end": 29918.26, + "probability": 0.6631 + }, + { + "start": 29918.34, + "end": 29918.86, + "probability": 0.4581 + }, + { + "start": 29919.7, + "end": 29921.46, + "probability": 0.8325 + }, + { + "start": 29921.52, + "end": 29922.06, + "probability": 0.8423 + }, + { + "start": 29923.24, + "end": 29924.66, + "probability": 0.9846 + }, + { + "start": 29924.66, + "end": 29929.98, + "probability": 0.9441 + }, + { + "start": 29930.14, + "end": 29934.28, + "probability": 0.9893 + }, + { + "start": 29934.96, + "end": 29935.8, + "probability": 0.9765 + }, + { + "start": 29935.9, + "end": 29936.72, + "probability": 0.9829 + }, + { + "start": 29936.94, + "end": 29940.38, + "probability": 0.9671 + }, + { + "start": 29941.0, + "end": 29941.72, + "probability": 0.8273 + }, + { + "start": 29942.54, + "end": 29945.44, + "probability": 0.9978 + }, + { + "start": 29945.96, + "end": 29948.71, + "probability": 0.8365 + }, + { + "start": 29949.58, + "end": 29952.04, + "probability": 0.9407 + }, + { + "start": 29952.18, + "end": 29953.85, + "probability": 0.027 + }, + { + "start": 29954.64, + "end": 29956.02, + "probability": 0.8826 + }, + { + "start": 29956.48, + "end": 29957.98, + "probability": 0.9644 + }, + { + "start": 29958.66, + "end": 29959.94, + "probability": 0.9753 + }, + { + "start": 29961.28, + "end": 29964.1, + "probability": 0.9689 + }, + { + "start": 29964.16, + "end": 29966.38, + "probability": 0.9635 + }, + { + "start": 29966.44, + "end": 29966.88, + "probability": 0.598 + }, + { + "start": 29967.44, + "end": 29970.12, + "probability": 0.962 + }, + { + "start": 29970.2, + "end": 29970.72, + "probability": 0.8514 + }, + { + "start": 29971.18, + "end": 29973.39, + "probability": 0.922 + }, + { + "start": 29974.36, + "end": 29975.24, + "probability": 0.8138 + }, + { + "start": 29975.46, + "end": 29978.54, + "probability": 0.9831 + }, + { + "start": 29978.62, + "end": 29979.98, + "probability": 0.8905 + }, + { + "start": 29980.54, + "end": 29982.74, + "probability": 0.9637 + }, + { + "start": 29982.74, + "end": 29985.34, + "probability": 0.9974 + }, + { + "start": 29985.5, + "end": 29988.88, + "probability": 0.8669 + }, + { + "start": 29989.82, + "end": 29990.42, + "probability": 0.764 + }, + { + "start": 29991.4, + "end": 29993.14, + "probability": 0.1918 + }, + { + "start": 29993.2, + "end": 29994.02, + "probability": 0.9785 + }, + { + "start": 29994.48, + "end": 29995.76, + "probability": 0.9443 + }, + { + "start": 29996.44, + "end": 29999.56, + "probability": 0.9935 + }, + { + "start": 30000.6, + "end": 30001.38, + "probability": 0.9939 + }, + { + "start": 30002.54, + "end": 30003.14, + "probability": 0.9941 + }, + { + "start": 30005.2, + "end": 30008.4, + "probability": 0.9193 + }, + { + "start": 30009.66, + "end": 30011.75, + "probability": 0.5119 + }, + { + "start": 30012.62, + "end": 30014.28, + "probability": 0.8186 + }, + { + "start": 30014.84, + "end": 30015.76, + "probability": 0.9688 + }, + { + "start": 30015.86, + "end": 30019.54, + "probability": 0.9756 + }, + { + "start": 30020.46, + "end": 30021.52, + "probability": 0.9592 + }, + { + "start": 30023.04, + "end": 30025.98, + "probability": 0.7206 + }, + { + "start": 30027.4, + "end": 30029.66, + "probability": 0.8877 + }, + { + "start": 30029.98, + "end": 30035.68, + "probability": 0.9742 + }, + { + "start": 30036.02, + "end": 30037.86, + "probability": 0.9557 + }, + { + "start": 30039.1, + "end": 30044.14, + "probability": 0.8002 + }, + { + "start": 30045.24, + "end": 30046.96, + "probability": 0.4486 + }, + { + "start": 30047.04, + "end": 30051.2, + "probability": 0.8655 + }, + { + "start": 30051.68, + "end": 30056.1, + "probability": 0.9648 + }, + { + "start": 30056.52, + "end": 30058.2, + "probability": 0.9727 + }, + { + "start": 30058.32, + "end": 30059.34, + "probability": 0.9834 + }, + { + "start": 30059.9, + "end": 30061.42, + "probability": 0.821 + }, + { + "start": 30062.3, + "end": 30066.04, + "probability": 0.9935 + }, + { + "start": 30067.0, + "end": 30069.32, + "probability": 0.8369 + }, + { + "start": 30069.34, + "end": 30070.06, + "probability": 0.8984 + }, + { + "start": 30070.44, + "end": 30071.4, + "probability": 0.9229 + }, + { + "start": 30071.44, + "end": 30073.32, + "probability": 0.7991 + }, + { + "start": 30073.44, + "end": 30075.74, + "probability": 0.9738 + }, + { + "start": 30076.48, + "end": 30078.26, + "probability": 0.8259 + }, + { + "start": 30078.8, + "end": 30078.8, + "probability": 0.1087 + }, + { + "start": 30078.8, + "end": 30081.24, + "probability": 0.9268 + }, + { + "start": 30082.48, + "end": 30087.12, + "probability": 0.8828 + }, + { + "start": 30087.9, + "end": 30089.54, + "probability": 0.8604 + }, + { + "start": 30089.62, + "end": 30090.92, + "probability": 0.6929 + }, + { + "start": 30091.7, + "end": 30092.4, + "probability": 0.6814 + }, + { + "start": 30093.2, + "end": 30095.84, + "probability": 0.9209 + }, + { + "start": 30096.64, + "end": 30097.5, + "probability": 0.9209 + }, + { + "start": 30097.58, + "end": 30100.42, + "probability": 0.9741 + }, + { + "start": 30101.14, + "end": 30101.68, + "probability": 0.963 + }, + { + "start": 30101.74, + "end": 30105.36, + "probability": 0.7253 + }, + { + "start": 30105.82, + "end": 30111.14, + "probability": 0.9344 + }, + { + "start": 30111.22, + "end": 30111.62, + "probability": 0.7417 + }, + { + "start": 30111.88, + "end": 30114.2, + "probability": 0.3617 + }, + { + "start": 30114.34, + "end": 30117.48, + "probability": 0.116 + }, + { + "start": 30117.7, + "end": 30118.98, + "probability": 0.8392 + }, + { + "start": 30119.06, + "end": 30121.22, + "probability": 0.8012 + }, + { + "start": 30167.76, + "end": 30168.52, + "probability": 0.5522 + }, + { + "start": 30168.64, + "end": 30169.64, + "probability": 0.9824 + }, + { + "start": 30170.3, + "end": 30172.38, + "probability": 0.964 + }, + { + "start": 30175.02, + "end": 30182.98, + "probability": 0.9615 + }, + { + "start": 30183.27, + "end": 30191.94, + "probability": 0.9795 + }, + { + "start": 30194.72, + "end": 30196.02, + "probability": 0.946 + }, + { + "start": 30197.28, + "end": 30199.86, + "probability": 0.6959 + }, + { + "start": 30200.42, + "end": 30202.33, + "probability": 0.9937 + }, + { + "start": 30204.78, + "end": 30207.14, + "probability": 0.9062 + }, + { + "start": 30208.54, + "end": 30210.2, + "probability": 0.9691 + }, + { + "start": 30212.28, + "end": 30214.1, + "probability": 0.7662 + }, + { + "start": 30215.9, + "end": 30222.62, + "probability": 0.9863 + }, + { + "start": 30222.76, + "end": 30225.2, + "probability": 0.9902 + }, + { + "start": 30226.6, + "end": 30232.84, + "probability": 0.9004 + }, + { + "start": 30233.68, + "end": 30237.7, + "probability": 0.983 + }, + { + "start": 30238.66, + "end": 30241.74, + "probability": 0.9772 + }, + { + "start": 30243.0, + "end": 30246.6, + "probability": 0.9987 + }, + { + "start": 30246.66, + "end": 30247.76, + "probability": 0.8352 + }, + { + "start": 30247.78, + "end": 30248.54, + "probability": 0.8908 + }, + { + "start": 30248.62, + "end": 30250.6, + "probability": 0.744 + }, + { + "start": 30251.36, + "end": 30253.6, + "probability": 0.7064 + }, + { + "start": 30254.76, + "end": 30257.2, + "probability": 0.9906 + }, + { + "start": 30257.44, + "end": 30261.76, + "probability": 0.9723 + }, + { + "start": 30262.58, + "end": 30267.86, + "probability": 0.9758 + }, + { + "start": 30267.96, + "end": 30270.94, + "probability": 0.8408 + }, + { + "start": 30271.1, + "end": 30277.38, + "probability": 0.9365 + }, + { + "start": 30277.5, + "end": 30281.42, + "probability": 0.9907 + }, + { + "start": 30281.98, + "end": 30284.7, + "probability": 0.964 + }, + { + "start": 30286.8, + "end": 30288.9, + "probability": 0.8751 + }, + { + "start": 30290.28, + "end": 30294.12, + "probability": 0.7103 + }, + { + "start": 30294.46, + "end": 30298.2, + "probability": 0.992 + }, + { + "start": 30299.16, + "end": 30300.44, + "probability": 0.6827 + }, + { + "start": 30300.5, + "end": 30301.82, + "probability": 0.7245 + }, + { + "start": 30301.94, + "end": 30303.8, + "probability": 0.8372 + }, + { + "start": 30304.44, + "end": 30309.88, + "probability": 0.9353 + }, + { + "start": 30310.14, + "end": 30314.2, + "probability": 0.8931 + }, + { + "start": 30314.72, + "end": 30315.74, + "probability": 0.5896 + }, + { + "start": 30315.88, + "end": 30319.5, + "probability": 0.9909 + }, + { + "start": 30320.12, + "end": 30323.12, + "probability": 0.9419 + }, + { + "start": 30323.96, + "end": 30329.28, + "probability": 0.9829 + }, + { + "start": 30329.58, + "end": 30330.88, + "probability": 0.9171 + }, + { + "start": 30331.4, + "end": 30333.44, + "probability": 0.9934 + }, + { + "start": 30333.9, + "end": 30337.02, + "probability": 0.9808 + }, + { + "start": 30337.4, + "end": 30340.1, + "probability": 0.9966 + }, + { + "start": 30341.0, + "end": 30343.7, + "probability": 0.7351 + }, + { + "start": 30344.4, + "end": 30347.06, + "probability": 0.8661 + }, + { + "start": 30347.16, + "end": 30348.36, + "probability": 0.4126 + }, + { + "start": 30348.88, + "end": 30352.66, + "probability": 0.9936 + }, + { + "start": 30353.68, + "end": 30354.6, + "probability": 0.7866 + }, + { + "start": 30354.62, + "end": 30355.66, + "probability": 0.6226 + }, + { + "start": 30355.84, + "end": 30357.9, + "probability": 0.9905 + }, + { + "start": 30358.3, + "end": 30360.79, + "probability": 0.8401 + }, + { + "start": 30361.72, + "end": 30361.72, + "probability": 0.5244 + }, + { + "start": 30362.42, + "end": 30365.68, + "probability": 0.9224 + }, + { + "start": 30366.22, + "end": 30369.18, + "probability": 0.9333 + }, + { + "start": 30369.24, + "end": 30370.94, + "probability": 0.8145 + }, + { + "start": 30370.98, + "end": 30372.8, + "probability": 0.5917 + }, + { + "start": 30374.92, + "end": 30375.36, + "probability": 0.126 + }, + { + "start": 30375.36, + "end": 30375.36, + "probability": 0.1013 + }, + { + "start": 30375.36, + "end": 30375.96, + "probability": 0.2897 + }, + { + "start": 30376.56, + "end": 30379.5, + "probability": 0.9156 + }, + { + "start": 30379.88, + "end": 30383.26, + "probability": 0.9814 + }, + { + "start": 30383.78, + "end": 30384.78, + "probability": 0.6897 + }, + { + "start": 30385.0, + "end": 30386.98, + "probability": 0.8088 + }, + { + "start": 30387.62, + "end": 30389.48, + "probability": 0.8969 + }, + { + "start": 30389.86, + "end": 30393.0, + "probability": 0.9924 + }, + { + "start": 30394.07, + "end": 30395.62, + "probability": 0.9255 + }, + { + "start": 30395.94, + "end": 30398.58, + "probability": 0.6552 + }, + { + "start": 30399.08, + "end": 30400.54, + "probability": 0.4059 + }, + { + "start": 30401.89, + "end": 30404.04, + "probability": 0.3754 + }, + { + "start": 30404.82, + "end": 30405.17, + "probability": 0.9102 + }, + { + "start": 30405.62, + "end": 30406.5, + "probability": 0.4784 + }, + { + "start": 30406.58, + "end": 30406.93, + "probability": 0.9565 + }, + { + "start": 30407.18, + "end": 30410.68, + "probability": 0.958 + }, + { + "start": 30410.9, + "end": 30411.42, + "probability": 0.7236 + }, + { + "start": 30411.58, + "end": 30414.82, + "probability": 0.941 + }, + { + "start": 30418.2, + "end": 30418.52, + "probability": 0.3197 + }, + { + "start": 30418.52, + "end": 30418.52, + "probability": 0.1056 + }, + { + "start": 30418.52, + "end": 30418.98, + "probability": 0.6933 + }, + { + "start": 30419.24, + "end": 30422.12, + "probability": 0.6666 + }, + { + "start": 30422.24, + "end": 30423.83, + "probability": 0.8013 + }, + { + "start": 30423.94, + "end": 30424.88, + "probability": 0.5795 + }, + { + "start": 30425.88, + "end": 30428.78, + "probability": 0.5773 + }, + { + "start": 30428.96, + "end": 30430.16, + "probability": 0.8962 + }, + { + "start": 30430.18, + "end": 30432.38, + "probability": 0.7012 + }, + { + "start": 30432.74, + "end": 30434.1, + "probability": 0.9302 + }, + { + "start": 30434.26, + "end": 30437.64, + "probability": 0.9712 + }, + { + "start": 30437.76, + "end": 30439.5, + "probability": 0.5574 + }, + { + "start": 30439.56, + "end": 30440.66, + "probability": 0.99 + }, + { + "start": 30440.94, + "end": 30443.96, + "probability": 0.9751 + }, + { + "start": 30444.42, + "end": 30449.0, + "probability": 0.6262 + }, + { + "start": 30449.46, + "end": 30453.16, + "probability": 0.9648 + }, + { + "start": 30453.32, + "end": 30454.62, + "probability": 0.6913 + }, + { + "start": 30455.22, + "end": 30456.32, + "probability": 0.7859 + }, + { + "start": 30457.04, + "end": 30458.54, + "probability": 0.9746 + }, + { + "start": 30458.96, + "end": 30462.38, + "probability": 0.8597 + }, + { + "start": 30463.28, + "end": 30466.74, + "probability": 0.4434 + }, + { + "start": 30467.64, + "end": 30468.37, + "probability": 0.4578 + }, + { + "start": 30468.64, + "end": 30470.78, + "probability": 0.993 + }, + { + "start": 30472.28, + "end": 30475.86, + "probability": 0.8584 + }, + { + "start": 30476.0, + "end": 30476.92, + "probability": 0.7571 + }, + { + "start": 30477.3, + "end": 30482.32, + "probability": 0.7944 + }, + { + "start": 30482.38, + "end": 30483.32, + "probability": 0.722 + }, + { + "start": 30484.18, + "end": 30485.76, + "probability": 0.3694 + }, + { + "start": 30486.2, + "end": 30486.54, + "probability": 0.7065 + }, + { + "start": 30487.34, + "end": 30488.4, + "probability": 0.9598 + }, + { + "start": 30489.76, + "end": 30491.24, + "probability": 0.2708 + }, + { + "start": 30491.26, + "end": 30493.38, + "probability": 0.5652 + }, + { + "start": 30493.4, + "end": 30494.26, + "probability": 0.6646 + }, + { + "start": 30494.26, + "end": 30495.14, + "probability": 0.7781 + }, + { + "start": 30495.76, + "end": 30497.38, + "probability": 0.439 + }, + { + "start": 30497.52, + "end": 30501.46, + "probability": 0.8686 + }, + { + "start": 30501.88, + "end": 30506.62, + "probability": 0.888 + }, + { + "start": 30506.96, + "end": 30508.86, + "probability": 0.4744 + }, + { + "start": 30509.14, + "end": 30512.5, + "probability": 0.9054 + }, + { + "start": 30512.54, + "end": 30513.0, + "probability": 0.9091 + }, + { + "start": 30513.04, + "end": 30514.7, + "probability": 0.8147 + }, + { + "start": 30514.78, + "end": 30515.48, + "probability": 0.682 + }, + { + "start": 30516.24, + "end": 30517.7, + "probability": 0.9531 + }, + { + "start": 30517.7, + "end": 30518.18, + "probability": 0.716 + }, + { + "start": 30518.48, + "end": 30520.82, + "probability": 0.8116 + }, + { + "start": 30520.92, + "end": 30523.72, + "probability": 0.9042 + }, + { + "start": 30523.72, + "end": 30524.56, + "probability": 0.1866 + }, + { + "start": 30524.68, + "end": 30526.24, + "probability": 0.73 + }, + { + "start": 30526.28, + "end": 30529.56, + "probability": 0.8495 + }, + { + "start": 30529.62, + "end": 30531.42, + "probability": 0.9215 + }, + { + "start": 30531.8, + "end": 30536.08, + "probability": 0.782 + }, + { + "start": 30536.74, + "end": 30540.02, + "probability": 0.9811 + }, + { + "start": 30540.04, + "end": 30542.0, + "probability": 0.9941 + }, + { + "start": 30542.06, + "end": 30543.32, + "probability": 0.7081 + }, + { + "start": 30543.5, + "end": 30546.22, + "probability": 0.8844 + }, + { + "start": 30546.58, + "end": 30547.6, + "probability": 0.9863 + }, + { + "start": 30548.42, + "end": 30550.6, + "probability": 0.7261 + }, + { + "start": 30550.72, + "end": 30553.54, + "probability": 0.738 + }, + { + "start": 30553.8, + "end": 30556.9, + "probability": 0.895 + }, + { + "start": 30557.74, + "end": 30559.07, + "probability": 0.9741 + }, + { + "start": 30559.16, + "end": 30560.92, + "probability": 0.9549 + }, + { + "start": 30561.04, + "end": 30562.24, + "probability": 0.8124 + }, + { + "start": 30564.7, + "end": 30565.56, + "probability": 0.6443 + }, + { + "start": 30565.56, + "end": 30566.24, + "probability": 0.7379 + }, + { + "start": 30566.7, + "end": 30568.04, + "probability": 0.9894 + }, + { + "start": 30568.14, + "end": 30568.78, + "probability": 0.9797 + }, + { + "start": 30568.94, + "end": 30569.56, + "probability": 0.9665 + }, + { + "start": 30569.64, + "end": 30570.2, + "probability": 0.6431 + }, + { + "start": 30570.2, + "end": 30571.2, + "probability": 0.5441 + }, + { + "start": 30571.6, + "end": 30571.8, + "probability": 0.8628 + }, + { + "start": 30572.02, + "end": 30575.29, + "probability": 0.1425 + }, + { + "start": 30575.5, + "end": 30576.42, + "probability": 0.2852 + }, + { + "start": 30577.34, + "end": 30577.4, + "probability": 0.0591 + }, + { + "start": 30577.42, + "end": 30578.08, + "probability": 0.2322 + }, + { + "start": 30578.08, + "end": 30579.86, + "probability": 0.5071 + }, + { + "start": 30580.68, + "end": 30581.36, + "probability": 0.3079 + }, + { + "start": 30582.84, + "end": 30583.12, + "probability": 0.4774 + }, + { + "start": 30583.26, + "end": 30585.56, + "probability": 0.5464 + }, + { + "start": 30585.56, + "end": 30585.95, + "probability": 0.3538 + }, + { + "start": 30586.82, + "end": 30587.78, + "probability": 0.9709 + }, + { + "start": 30587.9, + "end": 30590.38, + "probability": 0.8797 + }, + { + "start": 30592.36, + "end": 30593.62, + "probability": 0.4434 + }, + { + "start": 30594.08, + "end": 30596.48, + "probability": 0.8167 + }, + { + "start": 30598.22, + "end": 30600.18, + "probability": 0.7143 + }, + { + "start": 30600.84, + "end": 30602.66, + "probability": 0.0066 + }, + { + "start": 30605.96, + "end": 30606.04, + "probability": 0.1562 + }, + { + "start": 30612.92, + "end": 30615.82, + "probability": 0.7936 + }, + { + "start": 30615.98, + "end": 30618.0, + "probability": 0.6744 + }, + { + "start": 30618.12, + "end": 30620.18, + "probability": 0.7368 + }, + { + "start": 30620.36, + "end": 30620.6, + "probability": 0.4144 + }, + { + "start": 30620.62, + "end": 30621.28, + "probability": 0.6426 + }, + { + "start": 30621.3, + "end": 30621.94, + "probability": 0.703 + }, + { + "start": 30622.32, + "end": 30622.74, + "probability": 0.1292 + }, + { + "start": 30623.36, + "end": 30624.16, + "probability": 0.6644 + }, + { + "start": 30640.3, + "end": 30644.14, + "probability": 0.2326 + }, + { + "start": 30645.08, + "end": 30647.0, + "probability": 0.8286 + }, + { + "start": 30647.0, + "end": 30647.62, + "probability": 0.4544 + }, + { + "start": 30647.86, + "end": 30648.34, + "probability": 0.3742 + }, + { + "start": 30648.36, + "end": 30649.32, + "probability": 0.9614 + }, + { + "start": 30649.6, + "end": 30651.24, + "probability": 0.791 + }, + { + "start": 30651.5, + "end": 30652.76, + "probability": 0.8608 + }, + { + "start": 30653.22, + "end": 30656.36, + "probability": 0.7375 + }, + { + "start": 30656.36, + "end": 30656.46, + "probability": 0.0344 + }, + { + "start": 30656.62, + "end": 30656.62, + "probability": 0.117 + }, + { + "start": 30656.64, + "end": 30658.48, + "probability": 0.7398 + }, + { + "start": 30658.54, + "end": 30663.4, + "probability": 0.5924 + }, + { + "start": 30664.84, + "end": 30665.78, + "probability": 0.7404 + }, + { + "start": 30666.06, + "end": 30668.08, + "probability": 0.9852 + }, + { + "start": 30668.14, + "end": 30669.9, + "probability": 0.5091 + }, + { + "start": 30670.94, + "end": 30672.36, + "probability": 0.7762 + }, + { + "start": 30673.48, + "end": 30674.64, + "probability": 0.6259 + }, + { + "start": 30674.86, + "end": 30676.78, + "probability": 0.5407 + }, + { + "start": 30677.26, + "end": 30677.86, + "probability": 0.3612 + }, + { + "start": 30678.12, + "end": 30679.6, + "probability": 0.7032 + }, + { + "start": 30679.74, + "end": 30680.22, + "probability": 0.4842 + }, + { + "start": 30680.28, + "end": 30681.86, + "probability": 0.9038 + }, + { + "start": 30681.88, + "end": 30682.84, + "probability": 0.6978 + }, + { + "start": 30682.9, + "end": 30685.3, + "probability": 0.7871 + }, + { + "start": 30685.3, + "end": 30687.02, + "probability": 0.3943 + }, + { + "start": 30687.14, + "end": 30688.58, + "probability": 0.9488 + }, + { + "start": 30688.7, + "end": 30689.62, + "probability": 0.5948 + }, + { + "start": 30689.72, + "end": 30690.54, + "probability": 0.8984 + }, + { + "start": 30690.6, + "end": 30691.5, + "probability": 0.852 + }, + { + "start": 30692.22, + "end": 30693.66, + "probability": 0.5198 + }, + { + "start": 30694.42, + "end": 30694.84, + "probability": 0.6211 + }, + { + "start": 30698.8, + "end": 30699.96, + "probability": 0.6855 + }, + { + "start": 30699.98, + "end": 30701.04, + "probability": 0.0725 + }, + { + "start": 30701.04, + "end": 30701.82, + "probability": 0.6726 + }, + { + "start": 30702.58, + "end": 30703.36, + "probability": 0.6204 + }, + { + "start": 30703.46, + "end": 30705.16, + "probability": 0.4823 + }, + { + "start": 30705.56, + "end": 30706.32, + "probability": 0.2895 + }, + { + "start": 30706.55, + "end": 30706.62, + "probability": 0.6598 + }, + { + "start": 30706.7, + "end": 30707.2, + "probability": 0.9652 + }, + { + "start": 30707.44, + "end": 30708.14, + "probability": 0.6622 + }, + { + "start": 30710.24, + "end": 30715.68, + "probability": 0.5415 + }, + { + "start": 30715.88, + "end": 30716.86, + "probability": 0.5632 + }, + { + "start": 30717.32, + "end": 30719.68, + "probability": 0.5474 + }, + { + "start": 30720.8, + "end": 30723.16, + "probability": 0.5444 + }, + { + "start": 30723.32, + "end": 30724.34, + "probability": 0.0484 + }, + { + "start": 30724.94, + "end": 30725.84, + "probability": 0.0783 + }, + { + "start": 30725.98, + "end": 30727.9, + "probability": 0.2485 + }, + { + "start": 30729.4, + "end": 30730.76, + "probability": 0.4182 + }, + { + "start": 30730.82, + "end": 30731.76, + "probability": 0.7907 + }, + { + "start": 30731.86, + "end": 30733.13, + "probability": 0.5264 + }, + { + "start": 30733.38, + "end": 30734.38, + "probability": 0.3685 + }, + { + "start": 30735.86, + "end": 30737.8, + "probability": 0.7323 + }, + { + "start": 30738.32, + "end": 30739.4, + "probability": 0.5602 + }, + { + "start": 30740.18, + "end": 30741.28, + "probability": 0.7405 + }, + { + "start": 30741.54, + "end": 30743.34, + "probability": 0.5629 + }, + { + "start": 30743.5, + "end": 30744.84, + "probability": 0.8207 + }, + { + "start": 30744.98, + "end": 30745.04, + "probability": 0.0344 + }, + { + "start": 30747.35, + "end": 30750.92, + "probability": 0.5132 + }, + { + "start": 30750.92, + "end": 30751.55, + "probability": 0.0028 + }, + { + "start": 30754.6, + "end": 30756.31, + "probability": 0.7302 + }, + { + "start": 30762.5, + "end": 30764.96, + "probability": 0.9941 + }, + { + "start": 30765.04, + "end": 30772.26, + "probability": 0.9604 + }, + { + "start": 30773.24, + "end": 30776.54, + "probability": 0.7131 + }, + { + "start": 30777.08, + "end": 30781.48, + "probability": 0.983 + }, + { + "start": 30782.86, + "end": 30783.74, + "probability": 0.9868 + }, + { + "start": 30784.78, + "end": 30790.18, + "probability": 0.9371 + }, + { + "start": 30790.78, + "end": 30793.94, + "probability": 0.9893 + }, + { + "start": 30794.42, + "end": 30799.06, + "probability": 0.9658 + }, + { + "start": 30799.3, + "end": 30804.42, + "probability": 0.9848 + }, + { + "start": 30804.52, + "end": 30809.92, + "probability": 0.6993 + }, + { + "start": 30810.28, + "end": 30814.2, + "probability": 0.9044 + }, + { + "start": 30814.58, + "end": 30817.94, + "probability": 0.9448 + }, + { + "start": 30818.2, + "end": 30818.58, + "probability": 0.8136 + }, + { + "start": 30820.5, + "end": 30821.44, + "probability": 0.5261 + }, + { + "start": 30821.56, + "end": 30822.22, + "probability": 0.3927 + }, + { + "start": 30822.62, + "end": 30823.76, + "probability": 0.0755 + }, + { + "start": 30845.76, + "end": 30846.3, + "probability": 0.0097 + }, + { + "start": 30847.5, + "end": 30848.06, + "probability": 0.9459 + }, + { + "start": 30849.22, + "end": 30851.19, + "probability": 0.9149 + }, + { + "start": 30858.9, + "end": 30860.02, + "probability": 0.8021 + }, + { + "start": 30860.58, + "end": 30861.64, + "probability": 0.8618 + }, + { + "start": 30863.9, + "end": 30865.82, + "probability": 0.6848 + }, + { + "start": 30866.92, + "end": 30868.62, + "probability": 0.9531 + }, + { + "start": 30869.24, + "end": 30870.18, + "probability": 0.4805 + }, + { + "start": 30871.04, + "end": 30876.34, + "probability": 0.686 + }, + { + "start": 30877.86, + "end": 30884.54, + "probability": 0.9802 + }, + { + "start": 30884.54, + "end": 30889.28, + "probability": 0.9982 + }, + { + "start": 30889.94, + "end": 30891.27, + "probability": 0.9636 + }, + { + "start": 30891.56, + "end": 30892.46, + "probability": 0.7306 + }, + { + "start": 30892.52, + "end": 30893.36, + "probability": 0.9941 + }, + { + "start": 30894.74, + "end": 30899.18, + "probability": 0.995 + }, + { + "start": 30899.92, + "end": 30901.44, + "probability": 0.9019 + }, + { + "start": 30902.0, + "end": 30905.14, + "probability": 0.9792 + }, + { + "start": 30906.7, + "end": 30908.46, + "probability": 0.9232 + }, + { + "start": 30909.76, + "end": 30910.08, + "probability": 0.7221 + }, + { + "start": 30911.0, + "end": 30913.16, + "probability": 0.9841 + }, + { + "start": 30914.14, + "end": 30915.54, + "probability": 0.6054 + }, + { + "start": 30916.24, + "end": 30917.5, + "probability": 0.9739 + }, + { + "start": 30917.62, + "end": 30921.12, + "probability": 0.998 + }, + { + "start": 30921.76, + "end": 30924.68, + "probability": 0.9612 + }, + { + "start": 30925.48, + "end": 30927.92, + "probability": 0.8334 + }, + { + "start": 30928.58, + "end": 30930.3, + "probability": 0.9974 + }, + { + "start": 30932.08, + "end": 30933.62, + "probability": 0.8767 + }, + { + "start": 30934.78, + "end": 30937.52, + "probability": 0.9939 + }, + { + "start": 30938.26, + "end": 30941.62, + "probability": 0.8948 + }, + { + "start": 30942.76, + "end": 30945.02, + "probability": 0.9745 + }, + { + "start": 30945.56, + "end": 30946.98, + "probability": 0.5304 + }, + { + "start": 30947.16, + "end": 30948.16, + "probability": 0.9497 + }, + { + "start": 30948.3, + "end": 30949.06, + "probability": 0.9687 + }, + { + "start": 30949.44, + "end": 30951.44, + "probability": 0.9215 + }, + { + "start": 30951.7, + "end": 30952.3, + "probability": 0.8062 + }, + { + "start": 30953.4, + "end": 30956.42, + "probability": 0.994 + }, + { + "start": 30957.16, + "end": 30959.78, + "probability": 0.9001 + }, + { + "start": 30960.22, + "end": 30961.76, + "probability": 0.9821 + }, + { + "start": 30962.68, + "end": 30965.6, + "probability": 0.9928 + }, + { + "start": 30966.1, + "end": 30968.92, + "probability": 0.9929 + }, + { + "start": 30968.92, + "end": 30971.66, + "probability": 0.9783 + }, + { + "start": 30972.36, + "end": 30974.06, + "probability": 0.4037 + }, + { + "start": 30974.54, + "end": 30979.32, + "probability": 0.8481 + }, + { + "start": 30980.82, + "end": 30985.18, + "probability": 0.9928 + }, + { + "start": 30986.0, + "end": 30988.06, + "probability": 0.9642 + }, + { + "start": 30988.68, + "end": 30991.38, + "probability": 0.9032 + }, + { + "start": 30991.98, + "end": 30993.74, + "probability": 0.9991 + }, + { + "start": 30994.4, + "end": 30997.72, + "probability": 0.9545 + }, + { + "start": 30998.48, + "end": 31000.86, + "probability": 0.9969 + }, + { + "start": 31001.4, + "end": 31003.28, + "probability": 0.9727 + }, + { + "start": 31003.7, + "end": 31006.5, + "probability": 0.9985 + }, + { + "start": 31007.62, + "end": 31010.98, + "probability": 0.9974 + }, + { + "start": 31011.56, + "end": 31015.6, + "probability": 0.9993 + }, + { + "start": 31016.28, + "end": 31019.7, + "probability": 0.9536 + }, + { + "start": 31020.26, + "end": 31021.54, + "probability": 0.9051 + }, + { + "start": 31021.96, + "end": 31025.28, + "probability": 0.9797 + }, + { + "start": 31027.24, + "end": 31028.36, + "probability": 0.7927 + }, + { + "start": 31029.02, + "end": 31031.0, + "probability": 0.8833 + }, + { + "start": 31031.74, + "end": 31033.8, + "probability": 0.9624 + }, + { + "start": 31035.04, + "end": 31039.42, + "probability": 0.7093 + }, + { + "start": 31039.96, + "end": 31042.48, + "probability": 0.761 + }, + { + "start": 31043.12, + "end": 31046.1, + "probability": 0.9312 + }, + { + "start": 31046.7, + "end": 31047.98, + "probability": 0.9644 + }, + { + "start": 31048.3, + "end": 31050.14, + "probability": 0.9749 + }, + { + "start": 31050.66, + "end": 31052.02, + "probability": 0.9784 + }, + { + "start": 31052.7, + "end": 31054.14, + "probability": 0.8612 + }, + { + "start": 31055.36, + "end": 31056.14, + "probability": 0.854 + }, + { + "start": 31056.26, + "end": 31059.16, + "probability": 0.9896 + }, + { + "start": 31059.86, + "end": 31061.22, + "probability": 0.9328 + }, + { + "start": 31061.86, + "end": 31063.04, + "probability": 0.9814 + }, + { + "start": 31063.6, + "end": 31066.98, + "probability": 0.9831 + }, + { + "start": 31067.42, + "end": 31071.46, + "probability": 0.7282 + }, + { + "start": 31071.46, + "end": 31072.98, + "probability": 0.9833 + }, + { + "start": 31073.68, + "end": 31075.26, + "probability": 0.9849 + }, + { + "start": 31076.46, + "end": 31079.8, + "probability": 0.9883 + }, + { + "start": 31080.42, + "end": 31083.6, + "probability": 0.9626 + }, + { + "start": 31084.14, + "end": 31086.42, + "probability": 0.9854 + }, + { + "start": 31086.6, + "end": 31089.68, + "probability": 0.874 + }, + { + "start": 31090.32, + "end": 31093.54, + "probability": 0.9933 + }, + { + "start": 31093.88, + "end": 31094.72, + "probability": 0.9599 + }, + { + "start": 31094.82, + "end": 31095.73, + "probability": 0.8993 + }, + { + "start": 31095.8, + "end": 31096.93, + "probability": 0.9887 + }, + { + "start": 31098.22, + "end": 31098.84, + "probability": 0.8965 + }, + { + "start": 31098.92, + "end": 31099.08, + "probability": 0.7979 + }, + { + "start": 31099.38, + "end": 31100.7, + "probability": 0.9849 + }, + { + "start": 31101.18, + "end": 31104.32, + "probability": 0.9889 + }, + { + "start": 31104.96, + "end": 31106.34, + "probability": 0.9927 + }, + { + "start": 31106.36, + "end": 31107.12, + "probability": 0.8148 + }, + { + "start": 31107.2, + "end": 31111.42, + "probability": 0.9948 + }, + { + "start": 31111.76, + "end": 31114.14, + "probability": 0.9917 + }, + { + "start": 31115.2, + "end": 31116.52, + "probability": 0.7634 + }, + { + "start": 31117.34, + "end": 31117.9, + "probability": 0.7723 + }, + { + "start": 31118.6, + "end": 31120.02, + "probability": 0.8195 + }, + { + "start": 31120.12, + "end": 31121.52, + "probability": 0.9011 + }, + { + "start": 31121.96, + "end": 31123.15, + "probability": 0.9062 + }, + { + "start": 31123.4, + "end": 31123.72, + "probability": 0.8173 + }, + { + "start": 31123.8, + "end": 31125.34, + "probability": 0.7724 + }, + { + "start": 31125.7, + "end": 31126.56, + "probability": 0.9832 + }, + { + "start": 31126.72, + "end": 31126.88, + "probability": 0.6936 + }, + { + "start": 31126.92, + "end": 31127.6, + "probability": 0.3953 + }, + { + "start": 31127.98, + "end": 31130.12, + "probability": 0.9292 + }, + { + "start": 31130.44, + "end": 31133.18, + "probability": 0.8584 + }, + { + "start": 31133.8, + "end": 31135.13, + "probability": 0.959 + }, + { + "start": 31135.96, + "end": 31137.32, + "probability": 0.9134 + }, + { + "start": 31137.52, + "end": 31138.92, + "probability": 0.9459 + }, + { + "start": 31142.66, + "end": 31147.1, + "probability": 0.9732 + }, + { + "start": 31147.12, + "end": 31151.3, + "probability": 0.9821 + }, + { + "start": 31152.2, + "end": 31153.94, + "probability": 0.9961 + }, + { + "start": 31154.52, + "end": 31158.72, + "probability": 0.9889 + }, + { + "start": 31159.3, + "end": 31161.42, + "probability": 0.8926 + }, + { + "start": 31162.06, + "end": 31165.5, + "probability": 0.9988 + }, + { + "start": 31165.5, + "end": 31168.16, + "probability": 0.9995 + }, + { + "start": 31169.34, + "end": 31170.26, + "probability": 0.9978 + }, + { + "start": 31173.58, + "end": 31176.58, + "probability": 0.5736 + }, + { + "start": 31177.28, + "end": 31182.92, + "probability": 0.9978 + }, + { + "start": 31183.06, + "end": 31184.34, + "probability": 0.7646 + }, + { + "start": 31184.44, + "end": 31186.72, + "probability": 0.998 + }, + { + "start": 31187.36, + "end": 31189.92, + "probability": 0.9752 + }, + { + "start": 31190.02, + "end": 31190.94, + "probability": 0.5019 + }, + { + "start": 31191.46, + "end": 31196.8, + "probability": 0.9834 + }, + { + "start": 31197.96, + "end": 31200.58, + "probability": 0.8539 + }, + { + "start": 31200.8, + "end": 31203.8, + "probability": 0.9915 + }, + { + "start": 31203.8, + "end": 31207.46, + "probability": 0.9989 + }, + { + "start": 31208.22, + "end": 31211.8, + "probability": 0.9949 + }, + { + "start": 31212.32, + "end": 31213.18, + "probability": 0.9877 + }, + { + "start": 31213.66, + "end": 31215.98, + "probability": 0.9964 + }, + { + "start": 31215.98, + "end": 31219.1, + "probability": 0.9985 + }, + { + "start": 31219.62, + "end": 31220.7, + "probability": 0.9111 + }, + { + "start": 31221.04, + "end": 31223.5, + "probability": 0.9948 + }, + { + "start": 31223.92, + "end": 31228.7, + "probability": 0.9968 + }, + { + "start": 31229.12, + "end": 31232.86, + "probability": 0.9735 + }, + { + "start": 31233.22, + "end": 31234.0, + "probability": 0.9223 + }, + { + "start": 31234.54, + "end": 31234.62, + "probability": 0.0113 + }, + { + "start": 31242.14, + "end": 31243.82, + "probability": 0.141 + }, + { + "start": 31247.48, + "end": 31251.9, + "probability": 0.0389 + }, + { + "start": 31253.62, + "end": 31259.52, + "probability": 0.0367 + }, + { + "start": 31260.92, + "end": 31261.06, + "probability": 0.1261 + }, + { + "start": 31261.06, + "end": 31263.46, + "probability": 0.041 + }, + { + "start": 31263.48, + "end": 31267.59, + "probability": 0.0439 + }, + { + "start": 31283.1, + "end": 31284.92, + "probability": 0.3421 + }, + { + "start": 31296.24, + "end": 31299.68, + "probability": 0.9697 + }, + { + "start": 31299.82, + "end": 31303.44, + "probability": 0.9851 + }, + { + "start": 31303.48, + "end": 31305.14, + "probability": 0.7533 + }, + { + "start": 31305.54, + "end": 31310.2, + "probability": 0.9951 + }, + { + "start": 31310.84, + "end": 31311.28, + "probability": 0.8714 + }, + { + "start": 31311.76, + "end": 31315.1, + "probability": 0.9961 + }, + { + "start": 31316.38, + "end": 31319.76, + "probability": 0.9775 + }, + { + "start": 31320.68, + "end": 31322.48, + "probability": 0.931 + }, + { + "start": 31322.94, + "end": 31323.94, + "probability": 0.8097 + }, + { + "start": 31323.96, + "end": 31324.77, + "probability": 0.9841 + }, + { + "start": 31325.3, + "end": 31326.88, + "probability": 0.9505 + }, + { + "start": 31326.96, + "end": 31327.56, + "probability": 0.809 + }, + { + "start": 31328.2, + "end": 31329.31, + "probability": 0.9456 + }, + { + "start": 31329.82, + "end": 31332.26, + "probability": 0.909 + }, + { + "start": 31332.48, + "end": 31333.28, + "probability": 0.9855 + }, + { + "start": 31333.42, + "end": 31334.86, + "probability": 0.9722 + }, + { + "start": 31336.08, + "end": 31338.26, + "probability": 0.9909 + }, + { + "start": 31339.44, + "end": 31341.58, + "probability": 0.9273 + }, + { + "start": 31341.64, + "end": 31341.84, + "probability": 0.7397 + }, + { + "start": 31341.94, + "end": 31342.66, + "probability": 0.8914 + }, + { + "start": 31342.68, + "end": 31343.56, + "probability": 0.9106 + }, + { + "start": 31343.66, + "end": 31344.56, + "probability": 0.8151 + }, + { + "start": 31345.48, + "end": 31346.88, + "probability": 0.7319 + }, + { + "start": 31347.66, + "end": 31349.08, + "probability": 0.806 + }, + { + "start": 31349.68, + "end": 31352.68, + "probability": 0.9912 + }, + { + "start": 31353.48, + "end": 31354.16, + "probability": 0.809 + }, + { + "start": 31355.16, + "end": 31356.3, + "probability": 0.9778 + }, + { + "start": 31356.34, + "end": 31359.22, + "probability": 0.9839 + }, + { + "start": 31360.24, + "end": 31361.18, + "probability": 0.5235 + }, + { + "start": 31361.98, + "end": 31363.18, + "probability": 0.9871 + }, + { + "start": 31366.6, + "end": 31367.4, + "probability": 0.987 + }, + { + "start": 31368.9, + "end": 31370.62, + "probability": 0.6621 + }, + { + "start": 31371.48, + "end": 31375.04, + "probability": 0.8988 + }, + { + "start": 31376.26, + "end": 31379.48, + "probability": 0.9187 + }, + { + "start": 31380.6, + "end": 31382.1, + "probability": 0.8791 + }, + { + "start": 31382.18, + "end": 31383.84, + "probability": 0.9307 + }, + { + "start": 31383.98, + "end": 31385.46, + "probability": 0.8012 + }, + { + "start": 31387.26, + "end": 31388.48, + "probability": 0.3573 + }, + { + "start": 31389.3, + "end": 31393.82, + "probability": 0.8845 + }, + { + "start": 31395.08, + "end": 31396.98, + "probability": 0.9968 + }, + { + "start": 31397.98, + "end": 31403.36, + "probability": 0.9836 + }, + { + "start": 31404.22, + "end": 31405.92, + "probability": 0.9943 + }, + { + "start": 31406.42, + "end": 31407.99, + "probability": 0.8759 + }, + { + "start": 31408.2, + "end": 31409.59, + "probability": 0.9324 + }, + { + "start": 31411.22, + "end": 31413.74, + "probability": 0.8329 + }, + { + "start": 31414.48, + "end": 31415.9, + "probability": 0.8299 + }, + { + "start": 31417.2, + "end": 31420.64, + "probability": 0.9901 + }, + { + "start": 31421.8, + "end": 31424.18, + "probability": 0.978 + }, + { + "start": 31424.72, + "end": 31425.6, + "probability": 0.9674 + }, + { + "start": 31427.02, + "end": 31427.02, + "probability": 0.3779 + }, + { + "start": 31427.54, + "end": 31433.3, + "probability": 0.917 + }, + { + "start": 31434.06, + "end": 31435.22, + "probability": 0.834 + }, + { + "start": 31436.54, + "end": 31438.32, + "probability": 0.9904 + }, + { + "start": 31438.44, + "end": 31439.04, + "probability": 0.0387 + }, + { + "start": 31439.1, + "end": 31441.92, + "probability": 0.9941 + }, + { + "start": 31442.52, + "end": 31443.64, + "probability": 0.9762 + }, + { + "start": 31444.34, + "end": 31451.0, + "probability": 0.963 + }, + { + "start": 31452.28, + "end": 31453.72, + "probability": 0.9029 + }, + { + "start": 31454.44, + "end": 31455.58, + "probability": 0.9275 + }, + { + "start": 31456.28, + "end": 31457.88, + "probability": 0.7394 + }, + { + "start": 31458.44, + "end": 31460.95, + "probability": 0.761 + }, + { + "start": 31463.68, + "end": 31466.44, + "probability": 0.8667 + }, + { + "start": 31467.06, + "end": 31467.3, + "probability": 0.728 + }, + { + "start": 31467.38, + "end": 31468.26, + "probability": 0.7568 + }, + { + "start": 31468.32, + "end": 31468.72, + "probability": 0.8487 + }, + { + "start": 31468.74, + "end": 31470.0, + "probability": 0.8726 + }, + { + "start": 31471.14, + "end": 31471.16, + "probability": 0.0927 + }, + { + "start": 31471.16, + "end": 31474.48, + "probability": 0.9984 + }, + { + "start": 31475.36, + "end": 31479.7, + "probability": 0.9924 + }, + { + "start": 31480.48, + "end": 31484.06, + "probability": 0.9873 + }, + { + "start": 31485.14, + "end": 31486.72, + "probability": 0.7418 + }, + { + "start": 31487.54, + "end": 31488.94, + "probability": 0.8907 + }, + { + "start": 31489.76, + "end": 31491.08, + "probability": 0.9595 + }, + { + "start": 31492.02, + "end": 31493.66, + "probability": 0.9985 + }, + { + "start": 31494.64, + "end": 31496.9, + "probability": 0.995 + }, + { + "start": 31497.1, + "end": 31499.38, + "probability": 0.9898 + }, + { + "start": 31500.22, + "end": 31503.78, + "probability": 0.96 + }, + { + "start": 31504.4, + "end": 31506.14, + "probability": 0.9913 + }, + { + "start": 31507.38, + "end": 31508.28, + "probability": 0.9404 + }, + { + "start": 31509.24, + "end": 31509.82, + "probability": 0.9069 + }, + { + "start": 31510.62, + "end": 31510.88, + "probability": 0.8463 + }, + { + "start": 31510.98, + "end": 31513.6, + "probability": 0.9162 + }, + { + "start": 31514.44, + "end": 31516.06, + "probability": 0.9949 + }, + { + "start": 31516.48, + "end": 31517.36, + "probability": 0.8985 + }, + { + "start": 31517.48, + "end": 31518.22, + "probability": 0.8427 + }, + { + "start": 31518.64, + "end": 31520.48, + "probability": 0.9742 + }, + { + "start": 31520.52, + "end": 31521.54, + "probability": 0.9908 + }, + { + "start": 31523.68, + "end": 31526.78, + "probability": 0.9831 + }, + { + "start": 31527.44, + "end": 31528.58, + "probability": 0.9567 + }, + { + "start": 31530.38, + "end": 31532.76, + "probability": 0.9744 + }, + { + "start": 31533.14, + "end": 31534.15, + "probability": 0.8786 + }, + { + "start": 31535.3, + "end": 31536.96, + "probability": 0.7657 + }, + { + "start": 31537.56, + "end": 31540.66, + "probability": 0.8814 + }, + { + "start": 31540.66, + "end": 31545.02, + "probability": 0.7213 + }, + { + "start": 31545.28, + "end": 31546.06, + "probability": 0.9883 + }, + { + "start": 31547.3, + "end": 31554.22, + "probability": 0.9951 + }, + { + "start": 31555.44, + "end": 31557.44, + "probability": 0.9705 + }, + { + "start": 31557.76, + "end": 31558.12, + "probability": 0.9636 + }, + { + "start": 31559.26, + "end": 31561.68, + "probability": 0.9962 + }, + { + "start": 31562.98, + "end": 31564.9, + "probability": 0.1147 + }, + { + "start": 31564.9, + "end": 31565.34, + "probability": 0.5258 + }, + { + "start": 31565.48, + "end": 31566.32, + "probability": 0.8132 + }, + { + "start": 31566.7, + "end": 31567.19, + "probability": 0.9201 + }, + { + "start": 31568.58, + "end": 31569.56, + "probability": 0.8828 + }, + { + "start": 31570.6, + "end": 31571.82, + "probability": 0.9873 + }, + { + "start": 31573.15, + "end": 31575.09, + "probability": 0.9847 + }, + { + "start": 31576.54, + "end": 31579.21, + "probability": 0.5701 + }, + { + "start": 31579.34, + "end": 31580.7, + "probability": 0.9456 + }, + { + "start": 31581.28, + "end": 31583.8, + "probability": 0.9136 + }, + { + "start": 31585.2, + "end": 31586.9, + "probability": 0.8323 + }, + { + "start": 31590.36, + "end": 31592.57, + "probability": 0.9945 + }, + { + "start": 31593.84, + "end": 31598.14, + "probability": 0.9661 + }, + { + "start": 31598.54, + "end": 31599.44, + "probability": 0.9961 + }, + { + "start": 31600.28, + "end": 31602.2, + "probability": 0.8306 + }, + { + "start": 31602.96, + "end": 31607.42, + "probability": 0.9851 + }, + { + "start": 31608.3, + "end": 31611.8, + "probability": 0.9944 + }, + { + "start": 31612.86, + "end": 31614.82, + "probability": 0.9243 + }, + { + "start": 31616.08, + "end": 31617.48, + "probability": 0.6488 + }, + { + "start": 31618.54, + "end": 31620.24, + "probability": 0.8101 + }, + { + "start": 31620.4, + "end": 31621.78, + "probability": 0.561 + }, + { + "start": 31621.84, + "end": 31623.78, + "probability": 0.9133 + }, + { + "start": 31624.42, + "end": 31625.48, + "probability": 0.7873 + }, + { + "start": 31626.04, + "end": 31628.82, + "probability": 0.9292 + }, + { + "start": 31629.84, + "end": 31633.58, + "probability": 0.9771 + }, + { + "start": 31633.68, + "end": 31634.36, + "probability": 0.7288 + }, + { + "start": 31634.36, + "end": 31635.16, + "probability": 0.8738 + }, + { + "start": 31635.92, + "end": 31638.44, + "probability": 0.7898 + }, + { + "start": 31638.96, + "end": 31639.42, + "probability": 0.6754 + }, + { + "start": 31639.48, + "end": 31640.46, + "probability": 0.95 + }, + { + "start": 31640.92, + "end": 31644.51, + "probability": 0.9961 + }, + { + "start": 31645.2, + "end": 31646.26, + "probability": 0.8995 + }, + { + "start": 31646.32, + "end": 31648.14, + "probability": 0.8618 + }, + { + "start": 31648.18, + "end": 31649.12, + "probability": 0.8513 + }, + { + "start": 31649.6, + "end": 31650.62, + "probability": 0.9722 + }, + { + "start": 31651.02, + "end": 31652.56, + "probability": 0.9965 + }, + { + "start": 31653.22, + "end": 31654.64, + "probability": 0.8733 + }, + { + "start": 31656.1, + "end": 31657.12, + "probability": 0.8979 + }, + { + "start": 31657.6, + "end": 31659.18, + "probability": 0.9976 + }, + { + "start": 31659.78, + "end": 31660.32, + "probability": 0.7233 + }, + { + "start": 31660.46, + "end": 31662.6, + "probability": 0.7988 + }, + { + "start": 31663.44, + "end": 31664.92, + "probability": 0.9587 + }, + { + "start": 31665.58, + "end": 31667.06, + "probability": 0.9978 + }, + { + "start": 31667.8, + "end": 31669.06, + "probability": 0.8562 + }, + { + "start": 31669.76, + "end": 31671.59, + "probability": 0.9587 + }, + { + "start": 31672.24, + "end": 31674.44, + "probability": 0.9328 + }, + { + "start": 31674.8, + "end": 31677.72, + "probability": 0.9287 + }, + { + "start": 31678.62, + "end": 31680.98, + "probability": 0.9077 + }, + { + "start": 31682.2, + "end": 31686.5, + "probability": 0.938 + }, + { + "start": 31687.26, + "end": 31688.78, + "probability": 0.9372 + }, + { + "start": 31689.66, + "end": 31691.44, + "probability": 0.9904 + }, + { + "start": 31692.96, + "end": 31694.56, + "probability": 0.7467 + }, + { + "start": 31695.3, + "end": 31696.9, + "probability": 0.9733 + }, + { + "start": 31697.46, + "end": 31698.44, + "probability": 0.9386 + }, + { + "start": 31699.88, + "end": 31701.04, + "probability": 0.9751 + }, + { + "start": 31701.08, + "end": 31701.8, + "probability": 0.7719 + }, + { + "start": 31702.28, + "end": 31703.91, + "probability": 0.9712 + }, + { + "start": 31704.76, + "end": 31705.72, + "probability": 0.9896 + }, + { + "start": 31706.22, + "end": 31709.02, + "probability": 0.988 + }, + { + "start": 31709.6, + "end": 31711.78, + "probability": 0.875 + }, + { + "start": 31712.16, + "end": 31713.98, + "probability": 0.9779 + }, + { + "start": 31714.38, + "end": 31714.88, + "probability": 0.7178 + }, + { + "start": 31714.88, + "end": 31714.98, + "probability": 0.7699 + }, + { + "start": 31715.38, + "end": 31716.62, + "probability": 0.9841 + }, + { + "start": 31717.8, + "end": 31720.54, + "probability": 0.9304 + }, + { + "start": 31721.24, + "end": 31723.22, + "probability": 0.9264 + }, + { + "start": 31724.04, + "end": 31724.3, + "probability": 0.8751 + }, + { + "start": 31725.5, + "end": 31726.45, + "probability": 0.9365 + }, + { + "start": 31726.78, + "end": 31732.06, + "probability": 0.9881 + }, + { + "start": 31732.2, + "end": 31734.76, + "probability": 0.793 + }, + { + "start": 31736.58, + "end": 31740.23, + "probability": 0.7427 + }, + { + "start": 31740.78, + "end": 31741.34, + "probability": 0.7068 + }, + { + "start": 31742.36, + "end": 31743.14, + "probability": 0.8712 + }, + { + "start": 31743.78, + "end": 31744.16, + "probability": 0.6417 + }, + { + "start": 31745.18, + "end": 31746.26, + "probability": 0.8667 + }, + { + "start": 31747.12, + "end": 31749.34, + "probability": 0.9868 + }, + { + "start": 31749.68, + "end": 31751.96, + "probability": 0.9775 + }, + { + "start": 31752.7, + "end": 31754.74, + "probability": 0.8787 + }, + { + "start": 31755.32, + "end": 31756.84, + "probability": 0.9294 + }, + { + "start": 31757.74, + "end": 31758.26, + "probability": 0.9683 + }, + { + "start": 31759.36, + "end": 31760.06, + "probability": 0.9194 + }, + { + "start": 31761.22, + "end": 31762.66, + "probability": 0.6983 + }, + { + "start": 31763.12, + "end": 31767.14, + "probability": 0.879 + }, + { + "start": 31767.6, + "end": 31769.64, + "probability": 0.9914 + }, + { + "start": 31770.38, + "end": 31771.54, + "probability": 0.7791 + }, + { + "start": 31772.74, + "end": 31776.71, + "probability": 0.9652 + }, + { + "start": 31778.28, + "end": 31779.74, + "probability": 0.7049 + }, + { + "start": 31780.62, + "end": 31781.6, + "probability": 0.7935 + }, + { + "start": 31783.06, + "end": 31789.98, + "probability": 0.9289 + }, + { + "start": 31790.6, + "end": 31791.56, + "probability": 0.5454 + }, + { + "start": 31792.15, + "end": 31793.5, + "probability": 0.9407 + }, + { + "start": 31793.88, + "end": 31795.56, + "probability": 0.9598 + }, + { + "start": 31796.12, + "end": 31797.16, + "probability": 0.5816 + }, + { + "start": 31797.2, + "end": 31801.7, + "probability": 0.8753 + }, + { + "start": 31802.08, + "end": 31803.2, + "probability": 0.8981 + }, + { + "start": 31803.28, + "end": 31803.64, + "probability": 0.7627 + }, + { + "start": 31803.74, + "end": 31806.72, + "probability": 0.9943 + }, + { + "start": 31807.38, + "end": 31809.64, + "probability": 0.8806 + }, + { + "start": 31810.4, + "end": 31812.0, + "probability": 0.4294 + }, + { + "start": 31812.46, + "end": 31814.71, + "probability": 0.9927 + }, + { + "start": 31815.16, + "end": 31816.12, + "probability": 0.6466 + }, + { + "start": 31816.24, + "end": 31817.1, + "probability": 0.9513 + }, + { + "start": 31817.24, + "end": 31818.16, + "probability": 0.9674 + }, + { + "start": 31818.54, + "end": 31821.0, + "probability": 0.8058 + }, + { + "start": 31821.38, + "end": 31822.52, + "probability": 0.7041 + }, + { + "start": 31823.06, + "end": 31823.24, + "probability": 0.259 + }, + { + "start": 31823.24, + "end": 31823.24, + "probability": 0.3091 + }, + { + "start": 31823.24, + "end": 31826.1, + "probability": 0.6523 + }, + { + "start": 31827.02, + "end": 31828.54, + "probability": 0.7906 + }, + { + "start": 31828.62, + "end": 31830.4, + "probability": 0.9107 + }, + { + "start": 31830.4, + "end": 31833.36, + "probability": 0.9502 + }, + { + "start": 31833.36, + "end": 31834.04, + "probability": 0.3291 + }, + { + "start": 31834.14, + "end": 31835.38, + "probability": 0.9867 + }, + { + "start": 31835.52, + "end": 31835.52, + "probability": 0.5742 + }, + { + "start": 31835.56, + "end": 31836.34, + "probability": 0.4527 + }, + { + "start": 31836.98, + "end": 31837.44, + "probability": 0.1893 + }, + { + "start": 31837.9, + "end": 31840.54, + "probability": 0.4825 + }, + { + "start": 31840.92, + "end": 31841.5, + "probability": 0.7512 + }, + { + "start": 31841.72, + "end": 31841.72, + "probability": 0.1266 + }, + { + "start": 31841.72, + "end": 31842.1, + "probability": 0.1163 + }, + { + "start": 31842.92, + "end": 31843.78, + "probability": 0.8953 + }, + { + "start": 31844.04, + "end": 31844.56, + "probability": 0.3397 + }, + { + "start": 31844.7, + "end": 31845.3, + "probability": 0.2752 + }, + { + "start": 31845.3, + "end": 31846.1, + "probability": 0.8181 + }, + { + "start": 31846.12, + "end": 31846.86, + "probability": 0.7457 + }, + { + "start": 31848.22, + "end": 31849.72, + "probability": 0.9795 + }, + { + "start": 31853.28, + "end": 31854.9, + "probability": 0.7254 + }, + { + "start": 31855.54, + "end": 31855.98, + "probability": 0.4936 + }, + { + "start": 31857.18, + "end": 31860.34, + "probability": 0.7747 + }, + { + "start": 31861.12, + "end": 31861.54, + "probability": 0.9342 + }, + { + "start": 31862.58, + "end": 31863.12, + "probability": 0.9385 + }, + { + "start": 31863.86, + "end": 31864.86, + "probability": 0.8878 + }, + { + "start": 31865.68, + "end": 31866.2, + "probability": 0.8261 + }, + { + "start": 31866.24, + "end": 31866.58, + "probability": 0.6665 + }, + { + "start": 31866.82, + "end": 31867.36, + "probability": 0.6551 + }, + { + "start": 31869.2, + "end": 31870.22, + "probability": 0.0923 + }, + { + "start": 31870.22, + "end": 31870.22, + "probability": 0.0803 + }, + { + "start": 31870.22, + "end": 31871.28, + "probability": 0.502 + }, + { + "start": 31872.16, + "end": 31872.56, + "probability": 0.5062 + }, + { + "start": 31873.18, + "end": 31875.66, + "probability": 0.9742 + }, + { + "start": 31876.3, + "end": 31878.3, + "probability": 0.982 + }, + { + "start": 31879.12, + "end": 31880.74, + "probability": 0.8604 + }, + { + "start": 31881.5, + "end": 31882.48, + "probability": 0.8413 + }, + { + "start": 31882.72, + "end": 31883.58, + "probability": 0.6379 + }, + { + "start": 31883.88, + "end": 31887.36, + "probability": 0.8809 + }, + { + "start": 31888.6, + "end": 31889.8, + "probability": 0.991 + }, + { + "start": 31889.94, + "end": 31891.1, + "probability": 0.5049 + }, + { + "start": 31892.26, + "end": 31893.28, + "probability": 0.9784 + }, + { + "start": 31893.9, + "end": 31894.22, + "probability": 0.8537 + }, + { + "start": 31894.52, + "end": 31896.2, + "probability": 0.1041 + }, + { + "start": 31896.88, + "end": 31897.72, + "probability": 0.07 + }, + { + "start": 31897.72, + "end": 31898.12, + "probability": 0.3816 + }, + { + "start": 31898.88, + "end": 31900.76, + "probability": 0.1755 + }, + { + "start": 31901.22, + "end": 31903.36, + "probability": 0.4995 + }, + { + "start": 31903.36, + "end": 31903.36, + "probability": 0.0121 + }, + { + "start": 31903.36, + "end": 31904.42, + "probability": 0.8314 + }, + { + "start": 31904.56, + "end": 31904.98, + "probability": 0.9478 + }, + { + "start": 31905.28, + "end": 31906.74, + "probability": 0.6301 + }, + { + "start": 31907.26, + "end": 31908.28, + "probability": 0.4543 + }, + { + "start": 31908.84, + "end": 31909.9, + "probability": 0.386 + }, + { + "start": 31910.7, + "end": 31911.48, + "probability": 0.3 + }, + { + "start": 31911.76, + "end": 31912.76, + "probability": 0.8723 + }, + { + "start": 31913.32, + "end": 31914.04, + "probability": 0.938 + }, + { + "start": 31915.62, + "end": 31917.36, + "probability": 0.976 + }, + { + "start": 31918.0, + "end": 31919.36, + "probability": 0.629 + }, + { + "start": 31920.72, + "end": 31923.86, + "probability": 0.8757 + }, + { + "start": 31924.38, + "end": 31925.34, + "probability": 0.8834 + }, + { + "start": 31925.5, + "end": 31925.85, + "probability": 0.6904 + }, + { + "start": 31926.54, + "end": 31927.56, + "probability": 0.4141 + }, + { + "start": 31927.56, + "end": 31927.92, + "probability": 0.3159 + }, + { + "start": 31928.9, + "end": 31930.7, + "probability": 0.7396 + }, + { + "start": 31930.98, + "end": 31931.96, + "probability": 0.6245 + }, + { + "start": 31932.28, + "end": 31933.26, + "probability": 0.6266 + }, + { + "start": 31933.3, + "end": 31935.52, + "probability": 0.9838 + }, + { + "start": 31935.64, + "end": 31936.14, + "probability": 0.0003 + }, + { + "start": 31936.2, + "end": 31936.4, + "probability": 0.5354 + }, + { + "start": 31937.82, + "end": 31938.04, + "probability": 0.8287 + }, + { + "start": 31938.5, + "end": 31940.73, + "probability": 0.6015 + }, + { + "start": 31941.64, + "end": 31942.56, + "probability": 0.782 + }, + { + "start": 31944.48, + "end": 31946.54, + "probability": 0.5993 + }, + { + "start": 31947.4, + "end": 31948.04, + "probability": 0.6115 + }, + { + "start": 31949.22, + "end": 31950.26, + "probability": 0.8843 + }, + { + "start": 31950.36, + "end": 31951.2, + "probability": 0.6491 + }, + { + "start": 31951.38, + "end": 31951.68, + "probability": 0.3326 + }, + { + "start": 31951.94, + "end": 31952.04, + "probability": 0.246 + }, + { + "start": 31952.78, + "end": 31955.4, + "probability": 0.8588 + }, + { + "start": 31956.42, + "end": 31956.7, + "probability": 0.6033 + }, + { + "start": 31957.72, + "end": 31957.76, + "probability": 0.5573 + }, + { + "start": 31957.76, + "end": 31958.78, + "probability": 0.657 + }, + { + "start": 31959.12, + "end": 31961.66, + "probability": 0.7125 + }, + { + "start": 31962.22, + "end": 31963.36, + "probability": 0.923 + }, + { + "start": 31963.98, + "end": 31967.38, + "probability": 0.9365 + }, + { + "start": 31967.94, + "end": 31968.72, + "probability": 0.7701 + }, + { + "start": 31969.68, + "end": 31972.3, + "probability": 0.9346 + }, + { + "start": 31973.78, + "end": 31980.18, + "probability": 0.6591 + }, + { + "start": 31981.64, + "end": 31986.0, + "probability": 0.9196 + }, + { + "start": 31986.92, + "end": 31988.0, + "probability": 0.8057 + }, + { + "start": 31988.08, + "end": 31989.28, + "probability": 0.9727 + }, + { + "start": 31989.48, + "end": 31993.8, + "probability": 0.9502 + }, + { + "start": 31994.56, + "end": 31995.7, + "probability": 0.9475 + }, + { + "start": 31995.92, + "end": 31997.36, + "probability": 0.7888 + }, + { + "start": 31997.84, + "end": 31999.04, + "probability": 0.8651 + }, + { + "start": 31999.84, + "end": 32003.98, + "probability": 0.7862 + }, + { + "start": 32004.52, + "end": 32006.7, + "probability": 0.7956 + }, + { + "start": 32007.46, + "end": 32010.82, + "probability": 0.9792 + }, + { + "start": 32011.82, + "end": 32016.28, + "probability": 0.8382 + }, + { + "start": 32017.3, + "end": 32022.9, + "probability": 0.9978 + }, + { + "start": 32022.9, + "end": 32024.7, + "probability": 0.7517 + }, + { + "start": 32025.38, + "end": 32026.7, + "probability": 0.9966 + }, + { + "start": 32027.42, + "end": 32029.5, + "probability": 0.7207 + }, + { + "start": 32029.96, + "end": 32035.08, + "probability": 0.9977 + }, + { + "start": 32035.9, + "end": 32037.28, + "probability": 0.3746 + }, + { + "start": 32038.4, + "end": 32039.02, + "probability": 0.3747 + }, + { + "start": 32039.02, + "end": 32039.23, + "probability": 0.8498 + }, + { + "start": 32040.12, + "end": 32041.61, + "probability": 0.9828 + }, + { + "start": 32041.78, + "end": 32044.26, + "probability": 0.8998 + }, + { + "start": 32044.92, + "end": 32046.12, + "probability": 0.9767 + }, + { + "start": 32046.64, + "end": 32050.64, + "probability": 0.943 + }, + { + "start": 32051.16, + "end": 32054.6, + "probability": 0.3341 + }, + { + "start": 32054.64, + "end": 32058.9, + "probability": 0.7769 + }, + { + "start": 32059.57, + "end": 32063.3, + "probability": 0.6319 + }, + { + "start": 32064.18, + "end": 32068.64, + "probability": 0.9575 + }, + { + "start": 32069.32, + "end": 32071.5, + "probability": 0.9554 + }, + { + "start": 32072.26, + "end": 32074.0, + "probability": 0.9607 + }, + { + "start": 32074.42, + "end": 32075.52, + "probability": 0.744 + }, + { + "start": 32077.02, + "end": 32079.16, + "probability": 0.6977 + }, + { + "start": 32080.14, + "end": 32081.74, + "probability": 0.7173 + }, + { + "start": 32082.36, + "end": 32084.46, + "probability": 0.912 + }, + { + "start": 32085.18, + "end": 32086.54, + "probability": 0.9954 + }, + { + "start": 32089.55, + "end": 32092.1, + "probability": 0.7062 + }, + { + "start": 32092.66, + "end": 32095.58, + "probability": 0.9775 + }, + { + "start": 32095.92, + "end": 32100.34, + "probability": 0.9556 + }, + { + "start": 32100.98, + "end": 32106.96, + "probability": 0.9905 + }, + { + "start": 32107.68, + "end": 32109.48, + "probability": 0.8626 + }, + { + "start": 32110.2, + "end": 32114.86, + "probability": 0.991 + }, + { + "start": 32115.48, + "end": 32115.84, + "probability": 0.9372 + }, + { + "start": 32115.96, + "end": 32118.88, + "probability": 0.9802 + }, + { + "start": 32119.24, + "end": 32120.1, + "probability": 0.6501 + }, + { + "start": 32120.58, + "end": 32123.04, + "probability": 0.9965 + }, + { + "start": 32124.04, + "end": 32125.6, + "probability": 0.9016 + }, + { + "start": 32125.72, + "end": 32126.38, + "probability": 0.6358 + }, + { + "start": 32126.48, + "end": 32127.62, + "probability": 0.802 + }, + { + "start": 32128.28, + "end": 32129.8, + "probability": 0.7297 + }, + { + "start": 32129.98, + "end": 32131.46, + "probability": 0.9863 + }, + { + "start": 32131.82, + "end": 32135.68, + "probability": 0.9952 + }, + { + "start": 32135.74, + "end": 32141.72, + "probability": 0.9975 + }, + { + "start": 32141.8, + "end": 32142.36, + "probability": 0.9507 + }, + { + "start": 32142.98, + "end": 32143.98, + "probability": 0.9578 + }, + { + "start": 32144.06, + "end": 32144.82, + "probability": 0.6634 + }, + { + "start": 32144.86, + "end": 32147.5, + "probability": 0.906 + }, + { + "start": 32147.94, + "end": 32149.22, + "probability": 0.8217 + }, + { + "start": 32149.78, + "end": 32150.67, + "probability": 0.6117 + }, + { + "start": 32151.58, + "end": 32153.26, + "probability": 0.9578 + }, + { + "start": 32153.84, + "end": 32157.0, + "probability": 0.7144 + }, + { + "start": 32158.04, + "end": 32158.84, + "probability": 0.464 + }, + { + "start": 32159.02, + "end": 32160.58, + "probability": 0.7903 + }, + { + "start": 32161.32, + "end": 32163.34, + "probability": 0.9245 + }, + { + "start": 32163.98, + "end": 32168.04, + "probability": 0.9521 + }, + { + "start": 32168.82, + "end": 32173.38, + "probability": 0.8022 + }, + { + "start": 32173.46, + "end": 32174.12, + "probability": 0.9248 + }, + { + "start": 32174.18, + "end": 32175.28, + "probability": 0.9524 + }, + { + "start": 32175.76, + "end": 32176.28, + "probability": 0.4921 + }, + { + "start": 32177.22, + "end": 32179.92, + "probability": 0.9978 + }, + { + "start": 32180.62, + "end": 32185.76, + "probability": 0.9822 + }, + { + "start": 32186.42, + "end": 32190.46, + "probability": 0.9531 + }, + { + "start": 32191.2, + "end": 32191.78, + "probability": 0.8949 + }, + { + "start": 32192.76, + "end": 32193.52, + "probability": 0.8412 + }, + { + "start": 32193.58, + "end": 32194.78, + "probability": 0.9453 + }, + { + "start": 32194.78, + "end": 32200.74, + "probability": 0.9758 + }, + { + "start": 32201.68, + "end": 32207.9, + "probability": 0.9797 + }, + { + "start": 32208.76, + "end": 32211.56, + "probability": 0.957 + }, + { + "start": 32212.18, + "end": 32217.68, + "probability": 0.9873 + }, + { + "start": 32218.26, + "end": 32220.02, + "probability": 0.9962 + }, + { + "start": 32220.6, + "end": 32224.74, + "probability": 0.9828 + }, + { + "start": 32225.32, + "end": 32226.86, + "probability": 0.728 + }, + { + "start": 32226.92, + "end": 32227.88, + "probability": 0.8936 + }, + { + "start": 32228.02, + "end": 32230.32, + "probability": 0.7303 + }, + { + "start": 32230.56, + "end": 32231.26, + "probability": 0.9747 + }, + { + "start": 32231.96, + "end": 32234.22, + "probability": 0.9919 + }, + { + "start": 32234.86, + "end": 32236.28, + "probability": 0.9672 + }, + { + "start": 32236.78, + "end": 32240.44, + "probability": 0.9614 + }, + { + "start": 32241.08, + "end": 32242.1, + "probability": 0.7864 + }, + { + "start": 32242.18, + "end": 32242.68, + "probability": 0.9283 + }, + { + "start": 32243.04, + "end": 32245.24, + "probability": 0.8588 + }, + { + "start": 32246.34, + "end": 32246.98, + "probability": 0.9384 + }, + { + "start": 32247.1, + "end": 32250.78, + "probability": 0.9858 + }, + { + "start": 32251.42, + "end": 32252.82, + "probability": 0.7952 + }, + { + "start": 32253.36, + "end": 32255.72, + "probability": 0.9253 + }, + { + "start": 32256.28, + "end": 32257.44, + "probability": 0.9127 + }, + { + "start": 32258.06, + "end": 32259.9, + "probability": 0.9739 + }, + { + "start": 32260.02, + "end": 32260.93, + "probability": 0.998 + }, + { + "start": 32261.6, + "end": 32262.06, + "probability": 0.8224 + }, + { + "start": 32265.82, + "end": 32266.72, + "probability": 0.7524 + }, + { + "start": 32270.06, + "end": 32275.2, + "probability": 0.8381 + }, + { + "start": 32275.32, + "end": 32275.76, + "probability": 0.7858 + }, + { + "start": 32275.9, + "end": 32276.3, + "probability": 0.5573 + }, + { + "start": 32276.48, + "end": 32276.72, + "probability": 0.8147 + }, + { + "start": 32276.78, + "end": 32277.56, + "probability": 0.5201 + }, + { + "start": 32277.56, + "end": 32277.72, + "probability": 0.8168 + }, + { + "start": 32277.9, + "end": 32278.44, + "probability": 0.7667 + }, + { + "start": 32278.56, + "end": 32278.7, + "probability": 0.4461 + }, + { + "start": 32278.8, + "end": 32280.28, + "probability": 0.8135 + }, + { + "start": 32282.46, + "end": 32283.66, + "probability": 0.9217 + }, + { + "start": 32292.7, + "end": 32296.44, + "probability": 0.7347 + }, + { + "start": 32297.38, + "end": 32299.34, + "probability": 0.8647 + }, + { + "start": 32300.34, + "end": 32301.57, + "probability": 0.9798 + }, + { + "start": 32303.08, + "end": 32303.32, + "probability": 0.4734 + }, + { + "start": 32303.86, + "end": 32307.88, + "probability": 0.666 + }, + { + "start": 32308.62, + "end": 32310.2, + "probability": 0.9319 + }, + { + "start": 32310.68, + "end": 32312.4, + "probability": 0.9382 + }, + { + "start": 32313.18, + "end": 32314.12, + "probability": 0.0685 + }, + { + "start": 32314.78, + "end": 32314.78, + "probability": 0.0459 + }, + { + "start": 32315.64, + "end": 32317.0, + "probability": 0.7581 + }, + { + "start": 32317.86, + "end": 32318.9, + "probability": 0.3651 + }, + { + "start": 32319.12, + "end": 32321.82, + "probability": 0.9683 + }, + { + "start": 32322.3, + "end": 32322.74, + "probability": 0.5012 + }, + { + "start": 32322.86, + "end": 32324.88, + "probability": 0.972 + }, + { + "start": 32325.42, + "end": 32328.5, + "probability": 0.6514 + }, + { + "start": 32328.5, + "end": 32330.76, + "probability": 0.9678 + }, + { + "start": 32331.06, + "end": 32331.99, + "probability": 0.8993 + }, + { + "start": 32332.08, + "end": 32332.12, + "probability": 0.6953 + }, + { + "start": 32332.2, + "end": 32333.46, + "probability": 0.6704 + }, + { + "start": 32334.36, + "end": 32337.3, + "probability": 0.738 + }, + { + "start": 32337.38, + "end": 32338.32, + "probability": 0.9079 + }, + { + "start": 32352.36, + "end": 32352.56, + "probability": 0.9678 + }, + { + "start": 32353.36, + "end": 32353.46, + "probability": 0.097 + }, + { + "start": 32354.0, + "end": 32354.66, + "probability": 0.2336 + }, + { + "start": 32354.66, + "end": 32355.26, + "probability": 0.2061 + }, + { + "start": 32355.32, + "end": 32355.36, + "probability": 0.1289 + }, + { + "start": 32355.36, + "end": 32357.42, + "probability": 0.0631 + }, + { + "start": 32357.7, + "end": 32358.6, + "probability": 0.0068 + }, + { + "start": 32358.86, + "end": 32358.88, + "probability": 0.0775 + }, + { + "start": 32358.88, + "end": 32361.64, + "probability": 0.1136 + }, + { + "start": 32362.0, + "end": 32364.28, + "probability": 0.0275 + }, + { + "start": 32364.28, + "end": 32364.28, + "probability": 0.0656 + }, + { + "start": 32365.94, + "end": 32367.18, + "probability": 0.2644 + }, + { + "start": 32367.18, + "end": 32367.6, + "probability": 0.0706 + }, + { + "start": 32370.26, + "end": 32371.02, + "probability": 0.0682 + }, + { + "start": 32374.02, + "end": 32374.32, + "probability": 0.0162 + }, + { + "start": 32374.32, + "end": 32374.42, + "probability": 0.1133 + }, + { + "start": 32375.32, + "end": 32375.36, + "probability": 0.0044 + }, + { + "start": 32386.4, + "end": 32387.22, + "probability": 0.0346 + }, + { + "start": 32387.22, + "end": 32388.78, + "probability": 0.0256 + }, + { + "start": 32388.8, + "end": 32388.98, + "probability": 0.0279 + }, + { + "start": 32390.38, + "end": 32394.9, + "probability": 0.1294 + }, + { + "start": 32395.84, + "end": 32397.51, + "probability": 0.356 + }, + { + "start": 32398.08, + "end": 32401.58, + "probability": 0.0148 + }, + { + "start": 32401.58, + "end": 32403.86, + "probability": 0.0652 + }, + { + "start": 32403.92, + "end": 32404.2, + "probability": 0.0384 + }, + { + "start": 32404.2, + "end": 32404.82, + "probability": 0.0257 + }, + { + "start": 32405.0, + "end": 32405.0, + "probability": 0.0 + }, + { + "start": 32405.0, + "end": 32405.0, + "probability": 0.0 + }, + { + "start": 32405.0, + "end": 32405.0, + "probability": 0.0 + }, + { + "start": 32405.0, + "end": 32405.0, + "probability": 0.0 + }, + { + "start": 32405.0, + "end": 32405.0, + "probability": 0.0 + }, + { + "start": 32405.0, + "end": 32405.0, + "probability": 0.0 + }, + { + "start": 32405.0, + "end": 32405.0, + "probability": 0.0 + }, + { + "start": 32405.0, + "end": 32405.0, + "probability": 0.0 + }, + { + "start": 32405.0, + "end": 32405.0, + "probability": 0.0 + }, + { + "start": 32405.0, + "end": 32405.0, + "probability": 0.0 + }, + { + "start": 32405.0, + "end": 32405.0, + "probability": 0.0 + }, + { + "start": 32405.39, + "end": 32405.44, + "probability": 0.0408 + }, + { + "start": 32405.44, + "end": 32406.6, + "probability": 0.2889 + }, + { + "start": 32407.56, + "end": 32409.76, + "probability": 0.2406 + }, + { + "start": 32409.98, + "end": 32413.38, + "probability": 0.8734 + }, + { + "start": 32413.68, + "end": 32416.68, + "probability": 0.895 + }, + { + "start": 32419.24, + "end": 32421.04, + "probability": 0.8979 + }, + { + "start": 32422.06, + "end": 32424.32, + "probability": 0.9585 + }, + { + "start": 32424.86, + "end": 32430.34, + "probability": 0.7519 + }, + { + "start": 32430.98, + "end": 32430.98, + "probability": 0.4957 + }, + { + "start": 32430.98, + "end": 32432.76, + "probability": 0.9021 + }, + { + "start": 32433.84, + "end": 32435.66, + "probability": 0.7151 + }, + { + "start": 32436.18, + "end": 32437.04, + "probability": 0.545 + }, + { + "start": 32437.62, + "end": 32439.48, + "probability": 0.8386 + }, + { + "start": 32439.64, + "end": 32440.82, + "probability": 0.8562 + }, + { + "start": 32442.14, + "end": 32443.92, + "probability": 0.6914 + }, + { + "start": 32444.0, + "end": 32444.44, + "probability": 0.7007 + }, + { + "start": 32444.62, + "end": 32445.64, + "probability": 0.9742 + }, + { + "start": 32445.76, + "end": 32446.56, + "probability": 0.9113 + }, + { + "start": 32446.62, + "end": 32447.22, + "probability": 0.61 + }, + { + "start": 32447.28, + "end": 32447.98, + "probability": 0.8861 + }, + { + "start": 32448.26, + "end": 32449.58, + "probability": 0.8728 + }, + { + "start": 32449.98, + "end": 32451.81, + "probability": 0.96 + }, + { + "start": 32452.02, + "end": 32452.56, + "probability": 0.3634 + }, + { + "start": 32453.22, + "end": 32455.36, + "probability": 0.6666 + }, + { + "start": 32455.48, + "end": 32457.1, + "probability": 0.8408 + }, + { + "start": 32459.34, + "end": 32460.44, + "probability": 0.9941 + }, + { + "start": 32460.96, + "end": 32462.28, + "probability": 0.9485 + }, + { + "start": 32463.22, + "end": 32467.16, + "probability": 0.9744 + }, + { + "start": 32467.54, + "end": 32470.2, + "probability": 0.8952 + }, + { + "start": 32470.28, + "end": 32473.18, + "probability": 0.8673 + }, + { + "start": 32473.23, + "end": 32475.4, + "probability": 0.8953 + }, + { + "start": 32475.92, + "end": 32477.18, + "probability": 0.7246 + }, + { + "start": 32477.84, + "end": 32480.24, + "probability": 0.9239 + }, + { + "start": 32480.6, + "end": 32481.8, + "probability": 0.4467 + }, + { + "start": 32482.0, + "end": 32484.42, + "probability": 0.8739 + }, + { + "start": 32484.52, + "end": 32486.5, + "probability": 0.9138 + }, + { + "start": 32486.66, + "end": 32487.06, + "probability": 0.6289 + }, + { + "start": 32487.16, + "end": 32487.64, + "probability": 0.7455 + }, + { + "start": 32487.68, + "end": 32488.96, + "probability": 0.834 + }, + { + "start": 32489.54, + "end": 32492.44, + "probability": 0.7454 + }, + { + "start": 32493.06, + "end": 32499.48, + "probability": 0.9686 + }, + { + "start": 32500.2, + "end": 32500.9, + "probability": 0.8555 + }, + { + "start": 32501.68, + "end": 32506.66, + "probability": 0.998 + }, + { + "start": 32507.22, + "end": 32510.01, + "probability": 0.9009 + }, + { + "start": 32510.54, + "end": 32513.1, + "probability": 0.7729 + }, + { + "start": 32513.7, + "end": 32514.3, + "probability": 0.8147 + }, + { + "start": 32515.64, + "end": 32518.3, + "probability": 0.7914 + }, + { + "start": 32518.32, + "end": 32521.76, + "probability": 0.9609 + }, + { + "start": 32523.1, + "end": 32524.56, + "probability": 0.9051 + }, + { + "start": 32524.9, + "end": 32525.78, + "probability": 0.9983 + }, + { + "start": 32526.3, + "end": 32530.14, + "probability": 0.9846 + }, + { + "start": 32530.2, + "end": 32531.24, + "probability": 0.7568 + }, + { + "start": 32532.92, + "end": 32534.26, + "probability": 0.6865 + }, + { + "start": 32534.42, + "end": 32534.92, + "probability": 0.8317 + }, + { + "start": 32535.6, + "end": 32540.62, + "probability": 0.0476 + }, + { + "start": 32540.8, + "end": 32541.52, + "probability": 0.1447 + }, + { + "start": 32541.58, + "end": 32545.74, + "probability": 0.9951 + }, + { + "start": 32545.98, + "end": 32548.44, + "probability": 0.8811 + }, + { + "start": 32548.92, + "end": 32550.06, + "probability": 0.018 + }, + { + "start": 32550.06, + "end": 32550.08, + "probability": 0.0851 + }, + { + "start": 32550.08, + "end": 32553.62, + "probability": 0.974 + }, + { + "start": 32554.46, + "end": 32556.32, + "probability": 0.9135 + }, + { + "start": 32556.74, + "end": 32558.38, + "probability": 0.7104 + }, + { + "start": 32558.6, + "end": 32560.26, + "probability": 0.7726 + }, + { + "start": 32560.48, + "end": 32562.08, + "probability": 0.7446 + }, + { + "start": 32562.62, + "end": 32562.62, + "probability": 0.0589 + }, + { + "start": 32562.62, + "end": 32563.36, + "probability": 0.8201 + }, + { + "start": 32564.34, + "end": 32568.46, + "probability": 0.9922 + }, + { + "start": 32569.16, + "end": 32571.2, + "probability": 0.9609 + }, + { + "start": 32571.68, + "end": 32572.68, + "probability": 0.9767 + }, + { + "start": 32573.4, + "end": 32578.86, + "probability": 0.8872 + }, + { + "start": 32579.24, + "end": 32582.34, + "probability": 0.9157 + }, + { + "start": 32582.34, + "end": 32586.34, + "probability": 0.9124 + }, + { + "start": 32586.38, + "end": 32587.16, + "probability": 0.4451 + }, + { + "start": 32587.78, + "end": 32591.48, + "probability": 0.9252 + }, + { + "start": 32591.56, + "end": 32591.7, + "probability": 0.8147 + }, + { + "start": 32593.08, + "end": 32593.52, + "probability": 0.2489 + }, + { + "start": 32593.52, + "end": 32593.78, + "probability": 0.4613 + }, + { + "start": 32594.06, + "end": 32596.08, + "probability": 0.1438 + }, + { + "start": 32596.72, + "end": 32597.7, + "probability": 0.1443 + }, + { + "start": 32597.74, + "end": 32597.74, + "probability": 0.2162 + }, + { + "start": 32597.76, + "end": 32598.9, + "probability": 0.8761 + }, + { + "start": 32599.06, + "end": 32600.28, + "probability": 0.8574 + }, + { + "start": 32600.42, + "end": 32600.98, + "probability": 0.4831 + }, + { + "start": 32601.12, + "end": 32602.38, + "probability": 0.9583 + }, + { + "start": 32602.6, + "end": 32602.88, + "probability": 0.6151 + }, + { + "start": 32602.92, + "end": 32604.3, + "probability": 0.9832 + }, + { + "start": 32604.44, + "end": 32604.8, + "probability": 0.2013 + }, + { + "start": 32604.82, + "end": 32608.3, + "probability": 0.3818 + }, + { + "start": 32608.3, + "end": 32608.84, + "probability": 0.6537 + }, + { + "start": 32608.94, + "end": 32609.32, + "probability": 0.9496 + }, + { + "start": 32613.58, + "end": 32613.58, + "probability": 0.0158 + }, + { + "start": 32624.82, + "end": 32625.26, + "probability": 0.003 + }, + { + "start": 32625.26, + "end": 32626.94, + "probability": 0.3524 + }, + { + "start": 32627.6, + "end": 32629.04, + "probability": 0.1464 + }, + { + "start": 32629.04, + "end": 32633.84, + "probability": 0.4546 + }, + { + "start": 32634.06, + "end": 32635.08, + "probability": 0.0999 + }, + { + "start": 32636.06, + "end": 32636.16, + "probability": 0.1749 + }, + { + "start": 32636.16, + "end": 32637.91, + "probability": 0.0691 + }, + { + "start": 32639.78, + "end": 32644.24, + "probability": 0.4629 + }, + { + "start": 32645.52, + "end": 32647.54, + "probability": 0.0137 + }, + { + "start": 32647.74, + "end": 32648.28, + "probability": 0.5103 + }, + { + "start": 32648.6, + "end": 32651.04, + "probability": 0.6041 + }, + { + "start": 32651.4, + "end": 32652.36, + "probability": 0.6622 + }, + { + "start": 32652.76, + "end": 32653.24, + "probability": 0.8525 + }, + { + "start": 32653.26, + "end": 32653.88, + "probability": 0.5046 + }, + { + "start": 32653.9, + "end": 32655.62, + "probability": 0.4581 + }, + { + "start": 32655.76, + "end": 32656.44, + "probability": 0.6875 + }, + { + "start": 32656.82, + "end": 32656.96, + "probability": 0.3455 + }, + { + "start": 32656.96, + "end": 32657.68, + "probability": 0.3947 + }, + { + "start": 32657.76, + "end": 32658.14, + "probability": 0.6863 + }, + { + "start": 32658.14, + "end": 32658.58, + "probability": 0.6836 + }, + { + "start": 32659.1, + "end": 32659.42, + "probability": 0.2075 + }, + { + "start": 32659.5, + "end": 32660.32, + "probability": 0.9712 + }, + { + "start": 32660.34, + "end": 32661.1, + "probability": 0.9487 + }, + { + "start": 32661.58, + "end": 32663.02, + "probability": 0.967 + }, + { + "start": 32663.1, + "end": 32663.42, + "probability": 0.9061 + }, + { + "start": 32663.46, + "end": 32663.46, + "probability": 0.2098 + }, + { + "start": 32663.46, + "end": 32665.3, + "probability": 0.6784 + }, + { + "start": 32665.34, + "end": 32667.24, + "probability": 0.4109 + }, + { + "start": 32667.28, + "end": 32668.5, + "probability": 0.6606 + }, + { + "start": 32668.54, + "end": 32668.9, + "probability": 0.3973 + }, + { + "start": 32669.36, + "end": 32671.26, + "probability": 0.8008 + }, + { + "start": 32671.28, + "end": 32672.08, + "probability": 0.9895 + }, + { + "start": 32672.32, + "end": 32672.42, + "probability": 0.8961 + }, + { + "start": 32673.1, + "end": 32674.14, + "probability": 0.5438 + }, + { + "start": 32674.14, + "end": 32675.04, + "probability": 0.5001 + }, + { + "start": 32675.92, + "end": 32677.26, + "probability": 0.8651 + }, + { + "start": 32677.3, + "end": 32678.14, + "probability": 0.9717 + }, + { + "start": 32678.3, + "end": 32679.82, + "probability": 0.9663 + }, + { + "start": 32680.38, + "end": 32681.04, + "probability": 0.9434 + }, + { + "start": 32681.96, + "end": 32682.42, + "probability": 0.9791 + }, + { + "start": 32683.38, + "end": 32683.82, + "probability": 0.6227 + }, + { + "start": 32683.9, + "end": 32684.34, + "probability": 0.2538 + }, + { + "start": 32684.34, + "end": 32685.48, + "probability": 0.8803 + }, + { + "start": 32685.54, + "end": 32687.07, + "probability": 0.8759 + }, + { + "start": 32687.68, + "end": 32688.38, + "probability": 0.0505 + }, + { + "start": 32688.6, + "end": 32688.66, + "probability": 0.1483 + }, + { + "start": 32688.66, + "end": 32688.66, + "probability": 0.1318 + }, + { + "start": 32688.9, + "end": 32689.44, + "probability": 0.5856 + }, + { + "start": 32689.44, + "end": 32690.5, + "probability": 0.7807 + }, + { + "start": 32690.68, + "end": 32692.98, + "probability": 0.9521 + }, + { + "start": 32694.3, + "end": 32695.36, + "probability": 0.7789 + }, + { + "start": 32695.44, + "end": 32697.9, + "probability": 0.9195 + }, + { + "start": 32698.0, + "end": 32702.22, + "probability": 0.9587 + }, + { + "start": 32702.3, + "end": 32705.24, + "probability": 0.6281 + }, + { + "start": 32706.58, + "end": 32707.32, + "probability": 0.9696 + }, + { + "start": 32708.92, + "end": 32709.94, + "probability": 0.9182 + }, + { + "start": 32710.46, + "end": 32713.86, + "probability": 0.978 + }, + { + "start": 32713.96, + "end": 32719.14, + "probability": 0.9979 + }, + { + "start": 32719.9, + "end": 32722.14, + "probability": 0.8568 + }, + { + "start": 32722.26, + "end": 32724.35, + "probability": 0.9119 + }, + { + "start": 32724.98, + "end": 32727.08, + "probability": 0.9636 + }, + { + "start": 32727.22, + "end": 32728.52, + "probability": 0.6139 + }, + { + "start": 32728.6, + "end": 32730.86, + "probability": 0.8976 + }, + { + "start": 32731.72, + "end": 32732.7, + "probability": 0.7447 + }, + { + "start": 32732.9, + "end": 32733.84, + "probability": 0.9059 + }, + { + "start": 32733.94, + "end": 32737.3, + "probability": 0.6642 + }, + { + "start": 32738.52, + "end": 32740.06, + "probability": 0.8689 + }, + { + "start": 32740.46, + "end": 32743.28, + "probability": 0.9814 + }, + { + "start": 32743.6, + "end": 32744.84, + "probability": 0.7933 + }, + { + "start": 32744.92, + "end": 32745.96, + "probability": 0.8209 + }, + { + "start": 32745.98, + "end": 32747.54, + "probability": 0.6392 + }, + { + "start": 32747.66, + "end": 32749.1, + "probability": 0.8916 + }, + { + "start": 32749.48, + "end": 32751.66, + "probability": 0.944 + }, + { + "start": 32751.72, + "end": 32753.7, + "probability": 0.6604 + }, + { + "start": 32753.74, + "end": 32756.26, + "probability": 0.9439 + }, + { + "start": 32756.82, + "end": 32758.22, + "probability": 0.2974 + }, + { + "start": 32758.32, + "end": 32761.46, + "probability": 0.9764 + }, + { + "start": 32761.64, + "end": 32762.79, + "probability": 0.792 + }, + { + "start": 32763.3, + "end": 32764.6, + "probability": 0.9822 + }, + { + "start": 32764.68, + "end": 32765.4, + "probability": 0.8459 + }, + { + "start": 32765.96, + "end": 32767.54, + "probability": 0.6669 + }, + { + "start": 32768.57, + "end": 32771.08, + "probability": 0.9767 + }, + { + "start": 32771.2, + "end": 32772.72, + "probability": 0.9155 + }, + { + "start": 32772.8, + "end": 32773.7, + "probability": 0.9835 + }, + { + "start": 32773.84, + "end": 32774.58, + "probability": 0.8933 + }, + { + "start": 32774.74, + "end": 32775.96, + "probability": 0.7622 + }, + { + "start": 32776.58, + "end": 32777.26, + "probability": 0.912 + }, + { + "start": 32777.54, + "end": 32778.32, + "probability": 0.9292 + }, + { + "start": 32778.44, + "end": 32783.48, + "probability": 0.9948 + }, + { + "start": 32783.84, + "end": 32789.12, + "probability": 0.9778 + }, + { + "start": 32789.86, + "end": 32790.64, + "probability": 0.8944 + }, + { + "start": 32791.22, + "end": 32795.0, + "probability": 0.9951 + }, + { + "start": 32795.02, + "end": 32796.9, + "probability": 0.969 + }, + { + "start": 32798.22, + "end": 32802.94, + "probability": 0.9904 + }, + { + "start": 32803.0, + "end": 32804.52, + "probability": 0.8338 + }, + { + "start": 32804.66, + "end": 32806.04, + "probability": 0.856 + }, + { + "start": 32806.82, + "end": 32810.12, + "probability": 0.7287 + }, + { + "start": 32811.12, + "end": 32816.56, + "probability": 0.9125 + }, + { + "start": 32817.0, + "end": 32818.26, + "probability": 0.8726 + }, + { + "start": 32818.82, + "end": 32820.04, + "probability": 0.7585 + }, + { + "start": 32820.08, + "end": 32822.28, + "probability": 0.5156 + }, + { + "start": 32822.32, + "end": 32823.7, + "probability": 0.7314 + }, + { + "start": 32823.74, + "end": 32827.68, + "probability": 0.7062 + }, + { + "start": 32828.18, + "end": 32833.56, + "probability": 0.8884 + }, + { + "start": 32833.68, + "end": 32836.12, + "probability": 0.9896 + }, + { + "start": 32836.66, + "end": 32839.2, + "probability": 0.8719 + }, + { + "start": 32839.74, + "end": 32841.58, + "probability": 0.3341 + }, + { + "start": 32841.62, + "end": 32842.73, + "probability": 0.8895 + }, + { + "start": 32843.5, + "end": 32844.48, + "probability": 0.957 + }, + { + "start": 32844.6, + "end": 32845.91, + "probability": 0.9097 + }, + { + "start": 32846.68, + "end": 32847.3, + "probability": 0.6743 + }, + { + "start": 32847.84, + "end": 32853.02, + "probability": 0.9785 + }, + { + "start": 32853.16, + "end": 32853.7, + "probability": 0.1325 + }, + { + "start": 32854.02, + "end": 32854.94, + "probability": 0.4789 + }, + { + "start": 32855.52, + "end": 32857.06, + "probability": 0.8071 + }, + { + "start": 32858.0, + "end": 32858.59, + "probability": 0.6187 + }, + { + "start": 32859.56, + "end": 32861.38, + "probability": 0.8718 + }, + { + "start": 32861.92, + "end": 32863.0, + "probability": 0.604 + }, + { + "start": 32864.04, + "end": 32868.88, + "probability": 0.8809 + }, + { + "start": 32869.46, + "end": 32870.3, + "probability": 0.4659 + }, + { + "start": 32870.44, + "end": 32873.94, + "probability": 0.6919 + }, + { + "start": 32874.1, + "end": 32874.4, + "probability": 0.7727 + }, + { + "start": 32874.52, + "end": 32878.66, + "probability": 0.9966 + }, + { + "start": 32879.72, + "end": 32880.52, + "probability": 0.2796 + }, + { + "start": 32881.42, + "end": 32883.44, + "probability": 0.5895 + }, + { + "start": 32884.54, + "end": 32885.24, + "probability": 0.8547 + }, + { + "start": 32885.34, + "end": 32886.14, + "probability": 0.8735 + }, + { + "start": 32886.26, + "end": 32886.98, + "probability": 0.8758 + }, + { + "start": 32887.96, + "end": 32891.54, + "probability": 0.842 + }, + { + "start": 32892.64, + "end": 32893.12, + "probability": 0.7015 + }, + { + "start": 32893.24, + "end": 32894.76, + "probability": 0.9189 + }, + { + "start": 32894.88, + "end": 32895.14, + "probability": 0.5232 + }, + { + "start": 32895.64, + "end": 32896.74, + "probability": 0.8887 + }, + { + "start": 32896.98, + "end": 32897.69, + "probability": 0.8135 + }, + { + "start": 32899.32, + "end": 32901.45, + "probability": 0.8475 + }, + { + "start": 32902.14, + "end": 32909.24, + "probability": 0.971 + }, + { + "start": 32909.48, + "end": 32910.56, + "probability": 0.9148 + }, + { + "start": 32910.64, + "end": 32911.67, + "probability": 0.9746 + }, + { + "start": 32912.75, + "end": 32914.9, + "probability": 0.8413 + }, + { + "start": 32915.4, + "end": 32916.76, + "probability": 0.6904 + }, + { + "start": 32916.96, + "end": 32920.18, + "probability": 0.7784 + }, + { + "start": 32920.92, + "end": 32924.3, + "probability": 0.9545 + }, + { + "start": 32924.34, + "end": 32925.42, + "probability": 0.4511 + }, + { + "start": 32925.84, + "end": 32926.42, + "probability": 0.7738 + }, + { + "start": 32926.52, + "end": 32927.51, + "probability": 0.8669 + }, + { + "start": 32928.3, + "end": 32933.76, + "probability": 0.6664 + }, + { + "start": 32934.24, + "end": 32934.98, + "probability": 0.7302 + }, + { + "start": 32936.14, + "end": 32938.74, + "probability": 0.6795 + }, + { + "start": 32938.94, + "end": 32940.56, + "probability": 0.7035 + }, + { + "start": 32940.96, + "end": 32943.38, + "probability": 0.9862 + }, + { + "start": 32943.92, + "end": 32944.16, + "probability": 0.4602 + }, + { + "start": 32944.32, + "end": 32944.6, + "probability": 0.5493 + }, + { + "start": 32945.02, + "end": 32945.36, + "probability": 0.568 + }, + { + "start": 32945.84, + "end": 32950.22, + "probability": 0.7008 + }, + { + "start": 32950.64, + "end": 32953.36, + "probability": 0.9849 + }, + { + "start": 32954.2, + "end": 32956.58, + "probability": 0.9674 + }, + { + "start": 32956.76, + "end": 32959.54, + "probability": 0.8394 + }, + { + "start": 32960.12, + "end": 32961.44, + "probability": 0.9475 + }, + { + "start": 32962.06, + "end": 32963.28, + "probability": 0.9873 + }, + { + "start": 32963.86, + "end": 32964.92, + "probability": 0.7355 + }, + { + "start": 32965.66, + "end": 32969.9, + "probability": 0.8808 + }, + { + "start": 32970.8, + "end": 32974.22, + "probability": 0.8413 + }, + { + "start": 32974.68, + "end": 32975.28, + "probability": 0.4984 + }, + { + "start": 32975.57, + "end": 32978.7, + "probability": 0.967 + }, + { + "start": 32978.8, + "end": 32980.16, + "probability": 0.9866 + }, + { + "start": 32980.36, + "end": 32981.88, + "probability": 0.9937 + }, + { + "start": 32982.42, + "end": 32984.44, + "probability": 0.7036 + }, + { + "start": 32984.52, + "end": 32986.0, + "probability": 0.7497 + }, + { + "start": 32986.26, + "end": 32988.04, + "probability": 0.9312 + }, + { + "start": 32988.46, + "end": 32991.1, + "probability": 0.9634 + }, + { + "start": 32991.66, + "end": 32992.66, + "probability": 0.7491 + }, + { + "start": 32992.78, + "end": 32993.76, + "probability": 0.7966 + }, + { + "start": 32993.82, + "end": 32994.82, + "probability": 0.8396 + }, + { + "start": 32995.1, + "end": 32996.54, + "probability": 0.6265 + }, + { + "start": 32996.84, + "end": 32997.6, + "probability": 0.6948 + }, + { + "start": 32997.68, + "end": 32998.3, + "probability": 0.7661 + }, + { + "start": 32998.6, + "end": 33000.54, + "probability": 0.631 + }, + { + "start": 33000.54, + "end": 33001.1, + "probability": 0.4227 + }, + { + "start": 33001.52, + "end": 33004.2, + "probability": 0.9766 + }, + { + "start": 33004.44, + "end": 33005.12, + "probability": 0.7892 + }, + { + "start": 33006.12, + "end": 33007.86, + "probability": 0.8977 + }, + { + "start": 33046.8, + "end": 33047.86, + "probability": 0.5964 + }, + { + "start": 33050.72, + "end": 33051.8, + "probability": 0.7673 + }, + { + "start": 33053.62, + "end": 33057.16, + "probability": 0.9909 + }, + { + "start": 33061.64, + "end": 33064.44, + "probability": 0.9032 + }, + { + "start": 33065.2, + "end": 33067.86, + "probability": 0.8312 + }, + { + "start": 33069.66, + "end": 33072.26, + "probability": 0.8808 + }, + { + "start": 33073.42, + "end": 33078.2, + "probability": 0.9969 + }, + { + "start": 33078.26, + "end": 33079.64, + "probability": 0.6474 + }, + { + "start": 33080.44, + "end": 33082.02, + "probability": 0.5631 + }, + { + "start": 33082.84, + "end": 33084.34, + "probability": 0.8571 + }, + { + "start": 33084.56, + "end": 33087.94, + "probability": 0.7553 + }, + { + "start": 33088.62, + "end": 33089.18, + "probability": 0.7278 + }, + { + "start": 33089.3, + "end": 33091.02, + "probability": 0.9951 + }, + { + "start": 33091.56, + "end": 33095.64, + "probability": 0.677 + }, + { + "start": 33095.78, + "end": 33097.08, + "probability": 0.9591 + }, + { + "start": 33097.94, + "end": 33098.86, + "probability": 0.2652 + }, + { + "start": 33100.36, + "end": 33101.68, + "probability": 0.9705 + }, + { + "start": 33101.82, + "end": 33103.22, + "probability": 0.9487 + }, + { + "start": 33103.66, + "end": 33106.4, + "probability": 0.8892 + }, + { + "start": 33107.38, + "end": 33107.88, + "probability": 0.7216 + }, + { + "start": 33108.6, + "end": 33109.92, + "probability": 0.9783 + }, + { + "start": 33110.78, + "end": 33111.74, + "probability": 0.1229 + }, + { + "start": 33112.46, + "end": 33117.16, + "probability": 0.9663 + }, + { + "start": 33117.2, + "end": 33119.3, + "probability": 0.8859 + }, + { + "start": 33119.44, + "end": 33120.28, + "probability": 0.71 + }, + { + "start": 33120.8, + "end": 33122.98, + "probability": 0.8711 + }, + { + "start": 33123.5, + "end": 33125.92, + "probability": 0.7564 + }, + { + "start": 33127.0, + "end": 33128.4, + "probability": 0.7029 + }, + { + "start": 33130.26, + "end": 33132.54, + "probability": 0.9927 + }, + { + "start": 33133.36, + "end": 33134.8, + "probability": 0.7636 + }, + { + "start": 33135.5, + "end": 33136.8, + "probability": 0.9796 + }, + { + "start": 33138.08, + "end": 33143.32, + "probability": 0.98 + }, + { + "start": 33143.32, + "end": 33147.98, + "probability": 0.9811 + }, + { + "start": 33148.22, + "end": 33148.83, + "probability": 0.8179 + }, + { + "start": 33149.22, + "end": 33149.88, + "probability": 0.8187 + }, + { + "start": 33150.9, + "end": 33153.72, + "probability": 0.9505 + }, + { + "start": 33154.8, + "end": 33159.18, + "probability": 0.9764 + }, + { + "start": 33159.18, + "end": 33163.86, + "probability": 0.8818 + }, + { + "start": 33163.94, + "end": 33167.26, + "probability": 0.5544 + }, + { + "start": 33167.5, + "end": 33171.14, + "probability": 0.8968 + }, + { + "start": 33171.28, + "end": 33172.5, + "probability": 0.5878 + }, + { + "start": 33172.84, + "end": 33174.86, + "probability": 0.9783 + }, + { + "start": 33175.58, + "end": 33179.46, + "probability": 0.9226 + }, + { + "start": 33180.36, + "end": 33180.88, + "probability": 0.6657 + }, + { + "start": 33180.96, + "end": 33181.74, + "probability": 0.8539 + }, + { + "start": 33181.84, + "end": 33182.94, + "probability": 0.9419 + }, + { + "start": 33183.34, + "end": 33186.24, + "probability": 0.9857 + }, + { + "start": 33186.56, + "end": 33189.08, + "probability": 0.9668 + }, + { + "start": 33191.58, + "end": 33193.26, + "probability": 0.9497 + }, + { + "start": 33194.48, + "end": 33195.98, + "probability": 0.8156 + }, + { + "start": 33196.34, + "end": 33199.28, + "probability": 0.8342 + }, + { + "start": 33199.9, + "end": 33201.04, + "probability": 0.9604 + }, + { + "start": 33201.22, + "end": 33205.2, + "probability": 0.9196 + }, + { + "start": 33205.26, + "end": 33206.5, + "probability": 0.9072 + }, + { + "start": 33206.54, + "end": 33207.32, + "probability": 0.9198 + }, + { + "start": 33207.38, + "end": 33208.34, + "probability": 0.6224 + }, + { + "start": 33208.54, + "end": 33210.7, + "probability": 0.9766 + }, + { + "start": 33211.86, + "end": 33214.35, + "probability": 0.749 + }, + { + "start": 33214.6, + "end": 33215.98, + "probability": 0.916 + }, + { + "start": 33216.12, + "end": 33220.58, + "probability": 0.9689 + }, + { + "start": 33220.68, + "end": 33224.54, + "probability": 0.9866 + }, + { + "start": 33224.62, + "end": 33225.52, + "probability": 0.5602 + }, + { + "start": 33225.52, + "end": 33228.2, + "probability": 0.7652 + }, + { + "start": 33228.32, + "end": 33229.2, + "probability": 0.7389 + }, + { + "start": 33230.42, + "end": 33232.38, + "probability": 0.8523 + }, + { + "start": 33233.08, + "end": 33236.4, + "probability": 0.9707 + }, + { + "start": 33236.48, + "end": 33237.64, + "probability": 0.8942 + }, + { + "start": 33238.54, + "end": 33240.94, + "probability": 0.9359 + }, + { + "start": 33241.2, + "end": 33245.96, + "probability": 0.9795 + }, + { + "start": 33246.38, + "end": 33249.18, + "probability": 0.577 + }, + { + "start": 33249.9, + "end": 33253.52, + "probability": 0.6466 + }, + { + "start": 33254.1, + "end": 33255.84, + "probability": 0.5247 + }, + { + "start": 33255.84, + "end": 33257.24, + "probability": 0.5003 + }, + { + "start": 33257.74, + "end": 33260.1, + "probability": 0.71 + }, + { + "start": 33260.2, + "end": 33261.1, + "probability": 0.4727 + }, + { + "start": 33261.84, + "end": 33264.8, + "probability": 0.6454 + }, + { + "start": 33265.32, + "end": 33266.88, + "probability": 0.9724 + }, + { + "start": 33266.9, + "end": 33268.0, + "probability": 0.7561 + }, + { + "start": 33268.76, + "end": 33272.78, + "probability": 0.8075 + }, + { + "start": 33272.94, + "end": 33274.14, + "probability": 0.6998 + }, + { + "start": 33274.7, + "end": 33275.58, + "probability": 0.9609 + }, + { + "start": 33276.12, + "end": 33278.98, + "probability": 0.9746 + }, + { + "start": 33279.8, + "end": 33281.12, + "probability": 0.4561 + }, + { + "start": 33281.24, + "end": 33281.67, + "probability": 0.9535 + }, + { + "start": 33282.34, + "end": 33287.22, + "probability": 0.9373 + }, + { + "start": 33287.36, + "end": 33288.09, + "probability": 0.8491 + }, + { + "start": 33289.34, + "end": 33291.23, + "probability": 0.9146 + }, + { + "start": 33291.38, + "end": 33296.36, + "probability": 0.8312 + }, + { + "start": 33297.98, + "end": 33299.12, + "probability": 0.7266 + }, + { + "start": 33299.2, + "end": 33299.5, + "probability": 0.4454 + }, + { + "start": 33299.56, + "end": 33302.56, + "probability": 0.6759 + }, + { + "start": 33303.54, + "end": 33306.06, + "probability": 0.9463 + }, + { + "start": 33306.3, + "end": 33307.64, + "probability": 0.8594 + }, + { + "start": 33310.38, + "end": 33312.36, + "probability": 0.8252 + }, + { + "start": 33313.46, + "end": 33316.45, + "probability": 0.7511 + }, + { + "start": 33316.98, + "end": 33317.36, + "probability": 0.8308 + }, + { + "start": 33317.42, + "end": 33318.02, + "probability": 0.5611 + }, + { + "start": 33318.76, + "end": 33324.24, + "probability": 0.8797 + }, + { + "start": 33324.34, + "end": 33326.14, + "probability": 0.7636 + }, + { + "start": 33326.46, + "end": 33327.66, + "probability": 0.9828 + }, + { + "start": 33328.16, + "end": 33330.6, + "probability": 0.9452 + }, + { + "start": 33330.66, + "end": 33335.1, + "probability": 0.811 + }, + { + "start": 33335.46, + "end": 33336.54, + "probability": 0.6797 + }, + { + "start": 33337.26, + "end": 33338.16, + "probability": 0.9905 + }, + { + "start": 33339.06, + "end": 33341.84, + "probability": 0.9336 + }, + { + "start": 33342.04, + "end": 33343.12, + "probability": 0.6678 + }, + { + "start": 33343.12, + "end": 33347.38, + "probability": 0.8632 + }, + { + "start": 33347.5, + "end": 33348.58, + "probability": 0.8448 + }, + { + "start": 33349.4, + "end": 33352.08, + "probability": 0.6193 + }, + { + "start": 33352.08, + "end": 33352.62, + "probability": 0.656 + }, + { + "start": 33353.38, + "end": 33353.86, + "probability": 0.5426 + }, + { + "start": 33353.86, + "end": 33354.7, + "probability": 0.9891 + }, + { + "start": 33354.82, + "end": 33356.74, + "probability": 0.9773 + }, + { + "start": 33356.82, + "end": 33357.48, + "probability": 0.8022 + }, + { + "start": 33358.06, + "end": 33360.02, + "probability": 0.8827 + }, + { + "start": 33360.56, + "end": 33361.56, + "probability": 0.7297 + }, + { + "start": 33362.38, + "end": 33363.62, + "probability": 0.7666 + }, + { + "start": 33363.82, + "end": 33364.14, + "probability": 0.374 + }, + { + "start": 33364.6, + "end": 33365.24, + "probability": 0.6451 + }, + { + "start": 33365.74, + "end": 33366.9, + "probability": 0.9819 + }, + { + "start": 33367.2, + "end": 33367.34, + "probability": 0.4955 + }, + { + "start": 33367.42, + "end": 33367.88, + "probability": 0.519 + }, + { + "start": 33370.16, + "end": 33372.14, + "probability": 0.5703 + }, + { + "start": 33372.26, + "end": 33372.62, + "probability": 0.5198 + }, + { + "start": 33372.62, + "end": 33373.18, + "probability": 0.727 + }, + { + "start": 33373.26, + "end": 33373.5, + "probability": 0.8732 + }, + { + "start": 33373.64, + "end": 33374.08, + "probability": 0.7836 + }, + { + "start": 33374.14, + "end": 33374.56, + "probability": 0.4529 + }, + { + "start": 33375.1, + "end": 33377.72, + "probability": 0.9595 + }, + { + "start": 33380.8, + "end": 33381.08, + "probability": 0.0079 + }, + { + "start": 33393.38, + "end": 33394.56, + "probability": 0.3867 + }, + { + "start": 33394.56, + "end": 33394.64, + "probability": 0.9976 + }, + { + "start": 33394.64, + "end": 33394.64, + "probability": 0.0703 + }, + { + "start": 33394.64, + "end": 33394.68, + "probability": 0.086 + }, + { + "start": 33395.82, + "end": 33395.84, + "probability": 0.4831 + }, + { + "start": 33401.22, + "end": 33402.8, + "probability": 0.109 + }, + { + "start": 33405.62, + "end": 33405.82, + "probability": 0.0108 + }, + { + "start": 33408.14, + "end": 33408.78, + "probability": 0.2225 + }, + { + "start": 33409.98, + "end": 33412.84, + "probability": 0.1577 + }, + { + "start": 33413.4, + "end": 33416.08, + "probability": 0.1315 + }, + { + "start": 33416.08, + "end": 33416.72, + "probability": 0.0715 + }, + { + "start": 33417.34, + "end": 33417.62, + "probability": 0.2684 + }, + { + "start": 33436.68, + "end": 33437.38, + "probability": 0.437 + }, + { + "start": 33440.38, + "end": 33443.78, + "probability": 0.8969 + }, + { + "start": 33445.26, + "end": 33447.3, + "probability": 0.7338 + }, + { + "start": 33448.12, + "end": 33449.08, + "probability": 0.0752 + }, + { + "start": 33449.82, + "end": 33450.7, + "probability": 0.4942 + }, + { + "start": 33450.74, + "end": 33451.72, + "probability": 0.9712 + }, + { + "start": 33453.38, + "end": 33455.68, + "probability": 0.6876 + }, + { + "start": 33456.5, + "end": 33458.14, + "probability": 0.8945 + }, + { + "start": 33458.22, + "end": 33461.24, + "probability": 0.9127 + }, + { + "start": 33461.28, + "end": 33462.38, + "probability": 0.9701 + }, + { + "start": 33463.2, + "end": 33463.58, + "probability": 0.9571 + }, + { + "start": 33465.22, + "end": 33470.44, + "probability": 0.9976 + }, + { + "start": 33471.22, + "end": 33473.06, + "probability": 0.509 + }, + { + "start": 33473.2, + "end": 33477.14, + "probability": 0.9746 + }, + { + "start": 33478.48, + "end": 33479.54, + "probability": 0.9806 + }, + { + "start": 33482.52, + "end": 33484.22, + "probability": 0.9869 + }, + { + "start": 33485.34, + "end": 33486.94, + "probability": 0.9996 + }, + { + "start": 33490.4, + "end": 33491.18, + "probability": 0.9992 + }, + { + "start": 33491.72, + "end": 33494.02, + "probability": 0.9998 + }, + { + "start": 33495.04, + "end": 33496.1, + "probability": 0.8225 + }, + { + "start": 33496.94, + "end": 33498.58, + "probability": 0.8776 + }, + { + "start": 33500.24, + "end": 33501.98, + "probability": 0.7592 + }, + { + "start": 33503.32, + "end": 33504.5, + "probability": 0.9888 + }, + { + "start": 33505.74, + "end": 33507.52, + "probability": 0.5534 + }, + { + "start": 33508.2, + "end": 33509.3, + "probability": 0.9252 + }, + { + "start": 33509.68, + "end": 33511.2, + "probability": 0.9205 + }, + { + "start": 33513.32, + "end": 33513.94, + "probability": 0.5607 + }, + { + "start": 33515.18, + "end": 33516.6, + "probability": 0.9106 + }, + { + "start": 33516.66, + "end": 33520.18, + "probability": 0.8921 + }, + { + "start": 33521.82, + "end": 33523.26, + "probability": 0.9856 + }, + { + "start": 33524.0, + "end": 33527.16, + "probability": 0.9881 + }, + { + "start": 33528.26, + "end": 33529.26, + "probability": 0.8373 + }, + { + "start": 33529.4, + "end": 33530.94, + "probability": 0.7921 + }, + { + "start": 33531.18, + "end": 33531.7, + "probability": 0.9013 + }, + { + "start": 33531.74, + "end": 33532.46, + "probability": 0.8711 + }, + { + "start": 33532.88, + "end": 33534.74, + "probability": 0.9937 + }, + { + "start": 33534.84, + "end": 33535.52, + "probability": 0.7207 + }, + { + "start": 33535.62, + "end": 33535.98, + "probability": 0.7526 + }, + { + "start": 33537.98, + "end": 33541.1, + "probability": 0.9019 + }, + { + "start": 33541.62, + "end": 33544.34, + "probability": 0.9848 + }, + { + "start": 33545.86, + "end": 33547.2, + "probability": 0.8239 + }, + { + "start": 33547.42, + "end": 33549.47, + "probability": 0.9973 + }, + { + "start": 33549.56, + "end": 33549.64, + "probability": 0.0432 + }, + { + "start": 33549.66, + "end": 33549.96, + "probability": 0.4947 + }, + { + "start": 33550.04, + "end": 33550.42, + "probability": 0.8716 + }, + { + "start": 33550.52, + "end": 33551.48, + "probability": 0.6385 + }, + { + "start": 33551.52, + "end": 33552.7, + "probability": 0.8916 + }, + { + "start": 33555.66, + "end": 33560.56, + "probability": 0.9884 + }, + { + "start": 33565.32, + "end": 33568.34, + "probability": 0.9984 + }, + { + "start": 33568.34, + "end": 33570.66, + "probability": 0.9974 + }, + { + "start": 33571.36, + "end": 33574.42, + "probability": 0.9868 + }, + { + "start": 33574.52, + "end": 33576.24, + "probability": 0.9907 + }, + { + "start": 33576.4, + "end": 33578.14, + "probability": 0.8121 + }, + { + "start": 33578.14, + "end": 33580.26, + "probability": 0.9437 + }, + { + "start": 33580.74, + "end": 33582.12, + "probability": 0.9916 + }, + { + "start": 33582.22, + "end": 33583.88, + "probability": 0.9814 + }, + { + "start": 33585.34, + "end": 33586.72, + "probability": 0.9603 + }, + { + "start": 33586.98, + "end": 33588.12, + "probability": 0.949 + }, + { + "start": 33588.46, + "end": 33592.46, + "probability": 0.9914 + }, + { + "start": 33593.86, + "end": 33594.46, + "probability": 0.9024 + }, + { + "start": 33594.62, + "end": 33597.74, + "probability": 0.9899 + }, + { + "start": 33597.74, + "end": 33600.54, + "probability": 0.9969 + }, + { + "start": 33601.12, + "end": 33601.88, + "probability": 0.6952 + }, + { + "start": 33602.34, + "end": 33602.62, + "probability": 0.8967 + }, + { + "start": 33602.74, + "end": 33603.88, + "probability": 0.9814 + }, + { + "start": 33604.0, + "end": 33605.34, + "probability": 0.9875 + }, + { + "start": 33607.54, + "end": 33610.54, + "probability": 0.9819 + }, + { + "start": 33611.1, + "end": 33611.78, + "probability": 0.9084 + }, + { + "start": 33611.86, + "end": 33612.98, + "probability": 0.9503 + }, + { + "start": 33613.0, + "end": 33615.14, + "probability": 0.9102 + }, + { + "start": 33615.26, + "end": 33616.32, + "probability": 0.998 + }, + { + "start": 33617.56, + "end": 33618.74, + "probability": 0.8153 + }, + { + "start": 33621.22, + "end": 33623.62, + "probability": 0.9713 + }, + { + "start": 33624.14, + "end": 33626.02, + "probability": 0.9965 + }, + { + "start": 33626.96, + "end": 33629.82, + "probability": 0.9443 + }, + { + "start": 33630.0, + "end": 33631.58, + "probability": 0.8656 + }, + { + "start": 33631.66, + "end": 33632.54, + "probability": 0.6762 + }, + { + "start": 33635.2, + "end": 33636.14, + "probability": 0.9982 + }, + { + "start": 33638.0, + "end": 33640.24, + "probability": 0.9983 + }, + { + "start": 33640.38, + "end": 33641.76, + "probability": 0.8882 + }, + { + "start": 33641.92, + "end": 33642.18, + "probability": 0.8427 + }, + { + "start": 33642.3, + "end": 33643.04, + "probability": 0.7537 + }, + { + "start": 33643.2, + "end": 33643.56, + "probability": 0.5054 + }, + { + "start": 33644.23, + "end": 33646.08, + "probability": 0.8989 + }, + { + "start": 33647.5, + "end": 33648.82, + "probability": 0.3162 + }, + { + "start": 33648.9, + "end": 33648.9, + "probability": 0.3697 + }, + { + "start": 33648.96, + "end": 33649.22, + "probability": 0.9036 + }, + { + "start": 33651.18, + "end": 33657.98, + "probability": 0.9712 + }, + { + "start": 33658.62, + "end": 33659.54, + "probability": 0.705 + }, + { + "start": 33661.1, + "end": 33664.84, + "probability": 0.9971 + }, + { + "start": 33664.96, + "end": 33665.72, + "probability": 0.7285 + }, + { + "start": 33666.08, + "end": 33668.06, + "probability": 0.9937 + }, + { + "start": 33668.54, + "end": 33668.72, + "probability": 0.5517 + }, + { + "start": 33668.84, + "end": 33669.38, + "probability": 0.6646 + }, + { + "start": 33669.44, + "end": 33670.32, + "probability": 0.9537 + }, + { + "start": 33673.2, + "end": 33678.4, + "probability": 0.9622 + }, + { + "start": 33680.0, + "end": 33683.04, + "probability": 0.9474 + }, + { + "start": 33683.16, + "end": 33684.72, + "probability": 0.6917 + }, + { + "start": 33684.86, + "end": 33685.46, + "probability": 0.8354 + }, + { + "start": 33686.1, + "end": 33688.78, + "probability": 0.9078 + }, + { + "start": 33689.44, + "end": 33692.1, + "probability": 0.9247 + }, + { + "start": 33692.1, + "end": 33694.02, + "probability": 0.9954 + }, + { + "start": 33694.1, + "end": 33695.98, + "probability": 0.6357 + }, + { + "start": 33697.1, + "end": 33698.72, + "probability": 0.8393 + }, + { + "start": 33702.34, + "end": 33704.46, + "probability": 0.9498 + }, + { + "start": 33704.84, + "end": 33705.24, + "probability": 0.5567 + }, + { + "start": 33705.58, + "end": 33707.74, + "probability": 0.973 + }, + { + "start": 33708.68, + "end": 33710.18, + "probability": 0.9874 + }, + { + "start": 33710.8, + "end": 33713.66, + "probability": 0.9988 + }, + { + "start": 33714.36, + "end": 33714.8, + "probability": 0.521 + }, + { + "start": 33716.6, + "end": 33719.6, + "probability": 0.9559 + }, + { + "start": 33719.92, + "end": 33724.04, + "probability": 0.9669 + }, + { + "start": 33724.36, + "end": 33724.94, + "probability": 0.9559 + }, + { + "start": 33725.04, + "end": 33729.14, + "probability": 0.9941 + }, + { + "start": 33730.86, + "end": 33734.86, + "probability": 0.9989 + }, + { + "start": 33735.3, + "end": 33736.8, + "probability": 0.2535 + }, + { + "start": 33736.84, + "end": 33739.38, + "probability": 0.4774 + }, + { + "start": 33740.18, + "end": 33742.1, + "probability": 0.2674 + }, + { + "start": 33742.48, + "end": 33743.98, + "probability": 0.6599 + }, + { + "start": 33744.02, + "end": 33746.96, + "probability": 0.9713 + }, + { + "start": 33747.84, + "end": 33749.1, + "probability": 0.9775 + }, + { + "start": 33749.22, + "end": 33752.32, + "probability": 0.774 + }, + { + "start": 33752.38, + "end": 33753.58, + "probability": 0.9104 + }, + { + "start": 33753.76, + "end": 33754.27, + "probability": 0.1038 + }, + { + "start": 33754.46, + "end": 33755.0, + "probability": 0.6727 + }, + { + "start": 33755.16, + "end": 33756.8, + "probability": 0.8609 + }, + { + "start": 33756.86, + "end": 33757.96, + "probability": 0.9351 + }, + { + "start": 33758.04, + "end": 33759.9, + "probability": 0.9937 + }, + { + "start": 33761.06, + "end": 33762.28, + "probability": 0.9294 + }, + { + "start": 33762.58, + "end": 33763.66, + "probability": 0.9108 + }, + { + "start": 33763.84, + "end": 33765.5, + "probability": 0.9758 + }, + { + "start": 33765.58, + "end": 33766.88, + "probability": 0.8339 + }, + { + "start": 33767.48, + "end": 33770.36, + "probability": 0.9619 + }, + { + "start": 33770.88, + "end": 33771.78, + "probability": 0.8223 + }, + { + "start": 33771.86, + "end": 33773.94, + "probability": 0.9743 + }, + { + "start": 33774.04, + "end": 33774.6, + "probability": 0.4854 + }, + { + "start": 33775.1, + "end": 33778.56, + "probability": 0.9583 + }, + { + "start": 33780.77, + "end": 33781.8, + "probability": 0.2453 + }, + { + "start": 33782.7, + "end": 33782.96, + "probability": 0.0263 + }, + { + "start": 33782.96, + "end": 33783.94, + "probability": 0.2798 + }, + { + "start": 33784.44, + "end": 33785.14, + "probability": 0.7357 + }, + { + "start": 33785.66, + "end": 33786.0, + "probability": 0.0534 + }, + { + "start": 33786.0, + "end": 33788.91, + "probability": 0.725 + }, + { + "start": 33789.58, + "end": 33790.32, + "probability": 0.8315 + }, + { + "start": 33790.62, + "end": 33793.78, + "probability": 0.8821 + }, + { + "start": 33794.88, + "end": 33797.02, + "probability": 0.3435 + }, + { + "start": 33797.02, + "end": 33799.04, + "probability": 0.7871 + }, + { + "start": 33799.48, + "end": 33800.84, + "probability": 0.6638 + }, + { + "start": 33800.98, + "end": 33802.54, + "probability": 0.7883 + }, + { + "start": 33802.62, + "end": 33803.27, + "probability": 0.7532 + }, + { + "start": 33803.76, + "end": 33805.56, + "probability": 0.862 + }, + { + "start": 33805.62, + "end": 33807.64, + "probability": 0.7947 + }, + { + "start": 33807.7, + "end": 33807.7, + "probability": 0.1154 + }, + { + "start": 33807.7, + "end": 33808.08, + "probability": 0.0816 + }, + { + "start": 33808.36, + "end": 33809.84, + "probability": 0.973 + }, + { + "start": 33810.04, + "end": 33812.24, + "probability": 0.9633 + }, + { + "start": 33813.16, + "end": 33814.85, + "probability": 0.9519 + }, + { + "start": 33815.8, + "end": 33817.18, + "probability": 0.907 + }, + { + "start": 33819.44, + "end": 33821.38, + "probability": 0.9626 + }, + { + "start": 33821.44, + "end": 33821.72, + "probability": 0.577 + }, + { + "start": 33821.78, + "end": 33822.22, + "probability": 0.9136 + }, + { + "start": 33823.54, + "end": 33824.0, + "probability": 0.7722 + }, + { + "start": 33824.86, + "end": 33825.74, + "probability": 0.9829 + }, + { + "start": 33826.76, + "end": 33828.03, + "probability": 0.9908 + }, + { + "start": 33828.98, + "end": 33833.2, + "probability": 0.9953 + }, + { + "start": 33833.72, + "end": 33837.62, + "probability": 0.7086 + }, + { + "start": 33839.0, + "end": 33840.82, + "probability": 0.7925 + }, + { + "start": 33840.86, + "end": 33843.6, + "probability": 0.9888 + }, + { + "start": 33844.06, + "end": 33846.28, + "probability": 0.8941 + }, + { + "start": 33847.62, + "end": 33849.74, + "probability": 0.9801 + }, + { + "start": 33849.74, + "end": 33852.02, + "probability": 0.9924 + }, + { + "start": 33852.22, + "end": 33852.7, + "probability": 0.8253 + }, + { + "start": 33852.82, + "end": 33853.44, + "probability": 0.9509 + }, + { + "start": 33853.46, + "end": 33854.98, + "probability": 0.9982 + }, + { + "start": 33855.1, + "end": 33856.06, + "probability": 0.9888 + }, + { + "start": 33857.08, + "end": 33857.54, + "probability": 0.5616 + }, + { + "start": 33857.54, + "end": 33857.72, + "probability": 0.8421 + }, + { + "start": 33857.8, + "end": 33858.44, + "probability": 0.7026 + }, + { + "start": 33858.46, + "end": 33859.4, + "probability": 0.9482 + }, + { + "start": 33859.48, + "end": 33860.44, + "probability": 0.9966 + }, + { + "start": 33860.48, + "end": 33863.26, + "probability": 0.6854 + }, + { + "start": 33863.4, + "end": 33863.62, + "probability": 0.6919 + }, + { + "start": 33863.8, + "end": 33865.06, + "probability": 0.8563 + }, + { + "start": 33865.12, + "end": 33866.56, + "probability": 0.9089 + }, + { + "start": 33866.72, + "end": 33868.01, + "probability": 0.8678 + }, + { + "start": 33868.22, + "end": 33870.4, + "probability": 0.9077 + }, + { + "start": 33870.54, + "end": 33870.78, + "probability": 0.4274 + }, + { + "start": 33870.78, + "end": 33872.04, + "probability": 0.9805 + }, + { + "start": 33872.1, + "end": 33873.09, + "probability": 0.9301 + }, + { + "start": 33873.54, + "end": 33874.78, + "probability": 0.9121 + }, + { + "start": 33874.84, + "end": 33875.96, + "probability": 0.7313 + }, + { + "start": 33877.18, + "end": 33880.9, + "probability": 0.9269 + }, + { + "start": 33880.9, + "end": 33884.1, + "probability": 0.9593 + }, + { + "start": 33884.28, + "end": 33884.98, + "probability": 0.9611 + }, + { + "start": 33888.49, + "end": 33889.06, + "probability": 0.1656 + }, + { + "start": 33889.06, + "end": 33889.06, + "probability": 0.3148 + }, + { + "start": 33889.06, + "end": 33890.34, + "probability": 0.5545 + }, + { + "start": 33891.1, + "end": 33891.68, + "probability": 0.5615 + }, + { + "start": 33893.56, + "end": 33895.14, + "probability": 0.8435 + }, + { + "start": 33897.6, + "end": 33899.2, + "probability": 0.4834 + }, + { + "start": 33899.96, + "end": 33903.7, + "probability": 0.9813 + }, + { + "start": 33907.2, + "end": 33908.92, + "probability": 0.9698 + }, + { + "start": 33908.98, + "end": 33910.02, + "probability": 0.7739 + }, + { + "start": 33910.12, + "end": 33911.7, + "probability": 0.9078 + }, + { + "start": 33912.18, + "end": 33913.26, + "probability": 0.9521 + }, + { + "start": 33913.62, + "end": 33914.28, + "probability": 0.3979 + }, + { + "start": 33915.76, + "end": 33917.83, + "probability": 0.8382 + }, + { + "start": 33919.64, + "end": 33919.74, + "probability": 0.1515 + }, + { + "start": 33920.46, + "end": 33921.84, + "probability": 0.7523 + }, + { + "start": 33922.16, + "end": 33922.79, + "probability": 0.3689 + }, + { + "start": 33923.82, + "end": 33923.92, + "probability": 0.474 + }, + { + "start": 33923.92, + "end": 33925.5, + "probability": 0.6203 + }, + { + "start": 33926.06, + "end": 33927.12, + "probability": 0.6949 + }, + { + "start": 33927.32, + "end": 33928.12, + "probability": 0.6091 + }, + { + "start": 33928.16, + "end": 33928.94, + "probability": 0.96 + }, + { + "start": 33929.54, + "end": 33930.34, + "probability": 0.7401 + }, + { + "start": 33930.34, + "end": 33931.39, + "probability": 0.6555 + }, + { + "start": 33931.9, + "end": 33934.02, + "probability": 0.8196 + }, + { + "start": 33934.04, + "end": 33935.28, + "probability": 0.821 + }, + { + "start": 33935.82, + "end": 33936.14, + "probability": 0.303 + }, + { + "start": 33936.14, + "end": 33937.06, + "probability": 0.6023 + }, + { + "start": 33937.94, + "end": 33938.38, + "probability": 0.8972 + }, + { + "start": 33939.36, + "end": 33939.74, + "probability": 0.73 + }, + { + "start": 33939.8, + "end": 33945.82, + "probability": 0.9638 + }, + { + "start": 33945.92, + "end": 33946.26, + "probability": 0.6369 + }, + { + "start": 33946.3, + "end": 33947.36, + "probability": 0.9552 + }, + { + "start": 33947.64, + "end": 33950.06, + "probability": 0.1788 + }, + { + "start": 33950.18, + "end": 33952.32, + "probability": 0.9863 + }, + { + "start": 33952.4, + "end": 33953.46, + "probability": 0.9897 + }, + { + "start": 33954.58, + "end": 33956.7, + "probability": 0.9745 + }, + { + "start": 33958.12, + "end": 33960.5, + "probability": 0.0225 + }, + { + "start": 33961.0, + "end": 33963.66, + "probability": 0.4217 + }, + { + "start": 33964.18, + "end": 33965.82, + "probability": 0.78 + }, + { + "start": 33966.2, + "end": 33969.68, + "probability": 0.9426 + }, + { + "start": 33969.78, + "end": 33971.74, + "probability": 0.9621 + }, + { + "start": 33972.46, + "end": 33973.12, + "probability": 0.5667 + }, + { + "start": 33973.12, + "end": 33974.44, + "probability": 0.9505 + }, + { + "start": 33974.72, + "end": 33976.48, + "probability": 0.9907 + }, + { + "start": 33976.76, + "end": 33979.12, + "probability": 0.9517 + }, + { + "start": 33979.86, + "end": 33980.6, + "probability": 0.7511 + }, + { + "start": 33981.08, + "end": 33981.94, + "probability": 0.9783 + }, + { + "start": 33984.24, + "end": 33985.28, + "probability": 0.9142 + }, + { + "start": 33985.84, + "end": 33987.26, + "probability": 0.882 + }, + { + "start": 33987.98, + "end": 33989.54, + "probability": 0.8793 + }, + { + "start": 33991.98, + "end": 33995.12, + "probability": 0.7839 + }, + { + "start": 33998.54, + "end": 34000.68, + "probability": 0.192 + }, + { + "start": 34000.68, + "end": 34000.68, + "probability": 0.1081 + }, + { + "start": 34000.68, + "end": 34003.5, + "probability": 0.9197 + }, + { + "start": 34007.66, + "end": 34008.2, + "probability": 0.3541 + }, + { + "start": 34008.26, + "end": 34008.92, + "probability": 0.7701 + }, + { + "start": 34009.92, + "end": 34012.8, + "probability": 0.5734 + }, + { + "start": 34013.78, + "end": 34015.16, + "probability": 0.6183 + }, + { + "start": 34016.36, + "end": 34018.1, + "probability": 0.8681 + }, + { + "start": 34019.38, + "end": 34022.76, + "probability": 0.8774 + }, + { + "start": 34023.2, + "end": 34024.88, + "probability": 0.9934 + }, + { + "start": 34025.26, + "end": 34025.78, + "probability": 0.7699 + }, + { + "start": 34026.58, + "end": 34030.78, + "probability": 0.943 + }, + { + "start": 34031.52, + "end": 34034.48, + "probability": 0.872 + }, + { + "start": 34035.2, + "end": 34036.02, + "probability": 0.9273 + }, + { + "start": 34036.94, + "end": 34041.36, + "probability": 0.4833 + }, + { + "start": 34043.06, + "end": 34044.42, + "probability": 0.9953 + }, + { + "start": 34044.68, + "end": 34049.76, + "probability": 0.9969 + }, + { + "start": 34050.56, + "end": 34052.56, + "probability": 0.995 + }, + { + "start": 34052.78, + "end": 34056.28, + "probability": 0.9688 + }, + { + "start": 34057.46, + "end": 34058.58, + "probability": 0.7426 + }, + { + "start": 34059.08, + "end": 34059.46, + "probability": 0.6401 + }, + { + "start": 34059.46, + "end": 34060.0, + "probability": 0.7724 + }, + { + "start": 34060.08, + "end": 34061.5, + "probability": 0.6446 + }, + { + "start": 34061.52, + "end": 34061.64, + "probability": 0.5056 + }, + { + "start": 34061.72, + "end": 34062.06, + "probability": 0.5781 + }, + { + "start": 34062.18, + "end": 34062.83, + "probability": 0.9292 + }, + { + "start": 34063.36, + "end": 34064.38, + "probability": 0.9207 + }, + { + "start": 34064.46, + "end": 34066.48, + "probability": 0.9678 + }, + { + "start": 34066.58, + "end": 34067.78, + "probability": 0.9238 + }, + { + "start": 34067.86, + "end": 34068.32, + "probability": 0.7079 + }, + { + "start": 34068.48, + "end": 34070.6, + "probability": 0.9027 + }, + { + "start": 34070.78, + "end": 34073.26, + "probability": 0.9298 + }, + { + "start": 34073.48, + "end": 34074.24, + "probability": 0.7719 + }, + { + "start": 34074.58, + "end": 34075.98, + "probability": 0.7273 + }, + { + "start": 34076.62, + "end": 34077.6, + "probability": 0.6352 + }, + { + "start": 34077.7, + "end": 34080.14, + "probability": 0.6641 + }, + { + "start": 34080.46, + "end": 34080.68, + "probability": 0.6609 + }, + { + "start": 34081.22, + "end": 34082.1, + "probability": 0.9399 + }, + { + "start": 34082.16, + "end": 34082.94, + "probability": 0.6216 + }, + { + "start": 34082.94, + "end": 34083.94, + "probability": 0.7773 + }, + { + "start": 34084.14, + "end": 34085.88, + "probability": 0.8302 + }, + { + "start": 34085.88, + "end": 34086.44, + "probability": 0.7782 + }, + { + "start": 34086.46, + "end": 34086.94, + "probability": 0.9647 + }, + { + "start": 34090.32, + "end": 34092.84, + "probability": 0.9941 + }, + { + "start": 34092.84, + "end": 34096.4, + "probability": 0.9904 + }, + { + "start": 34096.88, + "end": 34097.92, + "probability": 0.7908 + }, + { + "start": 34098.5, + "end": 34104.78, + "probability": 0.9253 + }, + { + "start": 34105.54, + "end": 34107.76, + "probability": 0.9772 + }, + { + "start": 34108.54, + "end": 34111.84, + "probability": 0.955 + }, + { + "start": 34112.56, + "end": 34114.52, + "probability": 0.7462 + }, + { + "start": 34115.52, + "end": 34117.96, + "probability": 0.8676 + }, + { + "start": 34119.14, + "end": 34119.88, + "probability": 0.8213 + }, + { + "start": 34120.38, + "end": 34121.16, + "probability": 0.9868 + }, + { + "start": 34121.18, + "end": 34122.52, + "probability": 0.7925 + }, + { + "start": 34122.98, + "end": 34123.48, + "probability": 0.808 + }, + { + "start": 34124.04, + "end": 34127.63, + "probability": 0.9941 + }, + { + "start": 34128.1, + "end": 34134.83, + "probability": 0.9984 + }, + { + "start": 34135.4, + "end": 34137.26, + "probability": 0.947 + }, + { + "start": 34137.92, + "end": 34138.94, + "probability": 0.8558 + }, + { + "start": 34139.72, + "end": 34141.66, + "probability": 0.8972 + }, + { + "start": 34142.34, + "end": 34143.22, + "probability": 0.7473 + }, + { + "start": 34144.62, + "end": 34145.35, + "probability": 0.5725 + }, + { + "start": 34147.78, + "end": 34148.82, + "probability": 0.8792 + }, + { + "start": 34149.54, + "end": 34151.62, + "probability": 0.8864 + }, + { + "start": 34152.78, + "end": 34155.3, + "probability": 0.9641 + }, + { + "start": 34155.38, + "end": 34158.2, + "probability": 0.9899 + }, + { + "start": 34158.78, + "end": 34160.14, + "probability": 0.9658 + }, + { + "start": 34161.1, + "end": 34162.0, + "probability": 0.65 + }, + { + "start": 34162.64, + "end": 34166.68, + "probability": 0.8364 + }, + { + "start": 34167.44, + "end": 34168.22, + "probability": 0.9692 + }, + { + "start": 34168.96, + "end": 34169.72, + "probability": 0.9893 + }, + { + "start": 34170.62, + "end": 34172.0, + "probability": 0.9934 + }, + { + "start": 34172.86, + "end": 34175.44, + "probability": 0.8793 + }, + { + "start": 34175.94, + "end": 34177.32, + "probability": 0.9932 + }, + { + "start": 34177.76, + "end": 34179.7, + "probability": 0.9669 + }, + { + "start": 34179.88, + "end": 34180.94, + "probability": 0.6545 + }, + { + "start": 34181.82, + "end": 34188.5, + "probability": 0.9539 + }, + { + "start": 34189.02, + "end": 34190.13, + "probability": 0.9822 + }, + { + "start": 34190.96, + "end": 34193.52, + "probability": 0.9867 + }, + { + "start": 34194.24, + "end": 34196.52, + "probability": 0.8968 + }, + { + "start": 34196.8, + "end": 34198.0, + "probability": 0.9576 + }, + { + "start": 34198.28, + "end": 34200.08, + "probability": 0.9923 + }, + { + "start": 34200.66, + "end": 34203.2, + "probability": 0.9694 + }, + { + "start": 34203.72, + "end": 34205.9, + "probability": 0.9299 + }, + { + "start": 34207.68, + "end": 34209.1, + "probability": 0.5964 + }, + { + "start": 34209.22, + "end": 34209.88, + "probability": 0.9662 + }, + { + "start": 34210.38, + "end": 34210.88, + "probability": 0.9087 + }, + { + "start": 34211.5, + "end": 34211.86, + "probability": 0.5493 + }, + { + "start": 34211.92, + "end": 34212.42, + "probability": 0.7999 + }, + { + "start": 34212.86, + "end": 34213.62, + "probability": 0.5878 + }, + { + "start": 34214.06, + "end": 34214.48, + "probability": 0.7726 + }, + { + "start": 34214.94, + "end": 34215.42, + "probability": 0.8525 + }, + { + "start": 34215.8, + "end": 34218.64, + "probability": 0.9098 + }, + { + "start": 34218.96, + "end": 34219.82, + "probability": 0.9475 + }, + { + "start": 34220.56, + "end": 34223.16, + "probability": 0.9148 + }, + { + "start": 34223.74, + "end": 34227.16, + "probability": 0.9675 + }, + { + "start": 34227.62, + "end": 34228.22, + "probability": 0.7892 + }, + { + "start": 34229.08, + "end": 34229.18, + "probability": 0.8105 + }, + { + "start": 34229.28, + "end": 34229.58, + "probability": 0.7167 + }, + { + "start": 34229.64, + "end": 34234.28, + "probability": 0.9432 + }, + { + "start": 34234.7, + "end": 34235.04, + "probability": 0.6746 + }, + { + "start": 34235.08, + "end": 34236.54, + "probability": 0.8522 + }, + { + "start": 34236.7, + "end": 34237.56, + "probability": 0.9388 + }, + { + "start": 34238.06, + "end": 34239.24, + "probability": 0.8682 + }, + { + "start": 34239.48, + "end": 34240.6, + "probability": 0.9794 + }, + { + "start": 34241.28, + "end": 34243.02, + "probability": 0.9858 + }, + { + "start": 34243.78, + "end": 34245.72, + "probability": 0.9841 + }, + { + "start": 34246.26, + "end": 34252.14, + "probability": 0.971 + }, + { + "start": 34252.14, + "end": 34256.18, + "probability": 0.999 + }, + { + "start": 34256.76, + "end": 34260.38, + "probability": 0.9144 + }, + { + "start": 34260.96, + "end": 34262.4, + "probability": 0.9584 + }, + { + "start": 34262.82, + "end": 34265.6, + "probability": 0.9929 + }, + { + "start": 34265.6, + "end": 34269.64, + "probability": 0.9977 + }, + { + "start": 34270.2, + "end": 34272.4, + "probability": 0.999 + }, + { + "start": 34273.4, + "end": 34275.94, + "probability": 0.9617 + }, + { + "start": 34276.32, + "end": 34280.56, + "probability": 0.9976 + }, + { + "start": 34281.22, + "end": 34282.3, + "probability": 0.9128 + }, + { + "start": 34283.04, + "end": 34285.2, + "probability": 0.9338 + }, + { + "start": 34285.3, + "end": 34286.18, + "probability": 0.8537 + }, + { + "start": 34286.88, + "end": 34291.7, + "probability": 0.8825 + }, + { + "start": 34291.98, + "end": 34297.76, + "probability": 0.9977 + }, + { + "start": 34298.2, + "end": 34301.06, + "probability": 0.9728 + }, + { + "start": 34301.38, + "end": 34302.86, + "probability": 0.6178 + }, + { + "start": 34303.38, + "end": 34303.9, + "probability": 0.7455 + }, + { + "start": 34304.04, + "end": 34307.84, + "probability": 0.928 + }, + { + "start": 34308.08, + "end": 34309.02, + "probability": 0.9819 + }, + { + "start": 34310.08, + "end": 34316.4, + "probability": 0.8535 + }, + { + "start": 34317.88, + "end": 34319.14, + "probability": 0.7814 + }, + { + "start": 34319.26, + "end": 34323.5, + "probability": 0.9407 + }, + { + "start": 34324.46, + "end": 34330.96, + "probability": 0.959 + }, + { + "start": 34330.96, + "end": 34331.18, + "probability": 0.6575 + }, + { + "start": 34331.62, + "end": 34332.81, + "probability": 0.601 + }, + { + "start": 34333.66, + "end": 34334.32, + "probability": 0.7275 + }, + { + "start": 34334.5, + "end": 34334.8, + "probability": 0.8513 + }, + { + "start": 34335.24, + "end": 34338.08, + "probability": 0.9908 + }, + { + "start": 34338.14, + "end": 34339.36, + "probability": 0.9956 + }, + { + "start": 34340.0, + "end": 34342.6, + "probability": 0.9901 + }, + { + "start": 34342.88, + "end": 34348.3, + "probability": 0.9932 + }, + { + "start": 34348.66, + "end": 34349.5, + "probability": 0.8254 + }, + { + "start": 34349.5, + "end": 34350.56, + "probability": 0.5761 + }, + { + "start": 34350.86, + "end": 34350.96, + "probability": 0.1856 + }, + { + "start": 34351.48, + "end": 34351.86, + "probability": 0.7376 + }, + { + "start": 34352.32, + "end": 34352.58, + "probability": 0.3448 + }, + { + "start": 34352.58, + "end": 34352.92, + "probability": 0.5204 + }, + { + "start": 34352.94, + "end": 34354.26, + "probability": 0.8844 + }, + { + "start": 34376.54, + "end": 34379.74, + "probability": 0.6996 + }, + { + "start": 34380.32, + "end": 34380.6, + "probability": 0.5182 + }, + { + "start": 34380.76, + "end": 34387.3, + "probability": 0.9561 + }, + { + "start": 34388.24, + "end": 34391.7, + "probability": 0.8628 + }, + { + "start": 34391.82, + "end": 34397.88, + "probability": 0.8828 + }, + { + "start": 34397.96, + "end": 34399.0, + "probability": 0.7244 + }, + { + "start": 34399.68, + "end": 34403.88, + "probability": 0.8981 + }, + { + "start": 34404.16, + "end": 34405.44, + "probability": 0.9769 + }, + { + "start": 34406.04, + "end": 34406.75, + "probability": 0.4775 + }, + { + "start": 34407.38, + "end": 34408.46, + "probability": 0.3523 + }, + { + "start": 34409.68, + "end": 34410.72, + "probability": 0.4337 + }, + { + "start": 34410.78, + "end": 34410.88, + "probability": 0.074 + }, + { + "start": 34410.88, + "end": 34411.38, + "probability": 0.6648 + }, + { + "start": 34411.4, + "end": 34411.64, + "probability": 0.5527 + }, + { + "start": 34411.82, + "end": 34412.34, + "probability": 0.507 + }, + { + "start": 34412.34, + "end": 34417.04, + "probability": 0.9197 + }, + { + "start": 34417.26, + "end": 34417.32, + "probability": 0.3561 + }, + { + "start": 34417.34, + "end": 34418.07, + "probability": 0.5625 + }, + { + "start": 34418.84, + "end": 34419.44, + "probability": 0.8143 + }, + { + "start": 34420.1, + "end": 34421.4, + "probability": 0.9602 + }, + { + "start": 34422.26, + "end": 34423.84, + "probability": 0.722 + }, + { + "start": 34424.06, + "end": 34428.13, + "probability": 0.9966 + }, + { + "start": 34428.24, + "end": 34429.36, + "probability": 0.9907 + }, + { + "start": 34429.82, + "end": 34434.02, + "probability": 0.9536 + }, + { + "start": 34434.68, + "end": 34441.78, + "probability": 0.9564 + }, + { + "start": 34442.12, + "end": 34443.02, + "probability": 0.6155 + }, + { + "start": 34443.38, + "end": 34444.32, + "probability": 0.6835 + }, + { + "start": 34444.56, + "end": 34446.22, + "probability": 0.9331 + }, + { + "start": 34446.64, + "end": 34449.04, + "probability": 0.8759 + }, + { + "start": 34449.52, + "end": 34451.3, + "probability": 0.8055 + }, + { + "start": 34451.84, + "end": 34454.62, + "probability": 0.958 + }, + { + "start": 34455.18, + "end": 34456.24, + "probability": 0.9296 + }, + { + "start": 34456.36, + "end": 34458.14, + "probability": 0.9977 + }, + { + "start": 34458.76, + "end": 34458.9, + "probability": 0.1189 + }, + { + "start": 34458.9, + "end": 34459.6, + "probability": 0.9074 + }, + { + "start": 34460.38, + "end": 34463.14, + "probability": 0.4203 + }, + { + "start": 34463.64, + "end": 34463.72, + "probability": 0.0459 + }, + { + "start": 34463.72, + "end": 34463.92, + "probability": 0.138 + }, + { + "start": 34464.08, + "end": 34465.08, + "probability": 0.1542 + }, + { + "start": 34465.4, + "end": 34465.7, + "probability": 0.598 + }, + { + "start": 34465.76, + "end": 34466.14, + "probability": 0.719 + }, + { + "start": 34466.16, + "end": 34471.02, + "probability": 0.9551 + }, + { + "start": 34471.14, + "end": 34471.14, + "probability": 0.3827 + }, + { + "start": 34471.22, + "end": 34472.76, + "probability": 0.9799 + }, + { + "start": 34473.82, + "end": 34477.5, + "probability": 0.9266 + }, + { + "start": 34478.14, + "end": 34482.34, + "probability": 0.9526 + }, + { + "start": 34482.54, + "end": 34484.86, + "probability": 0.8048 + }, + { + "start": 34484.92, + "end": 34487.28, + "probability": 0.989 + }, + { + "start": 34487.8, + "end": 34491.38, + "probability": 0.9824 + }, + { + "start": 34491.6, + "end": 34492.36, + "probability": 0.5353 + }, + { + "start": 34492.7, + "end": 34494.3, + "probability": 0.8179 + }, + { + "start": 34495.68, + "end": 34498.48, + "probability": 0.8408 + }, + { + "start": 34499.3, + "end": 34502.32, + "probability": 0.9849 + }, + { + "start": 34503.0, + "end": 34503.8, + "probability": 0.5704 + }, + { + "start": 34504.26, + "end": 34506.28, + "probability": 0.9757 + }, + { + "start": 34506.42, + "end": 34507.68, + "probability": 0.9355 + }, + { + "start": 34508.84, + "end": 34509.32, + "probability": 0.3208 + }, + { + "start": 34509.38, + "end": 34510.38, + "probability": 0.678 + }, + { + "start": 34510.58, + "end": 34511.36, + "probability": 0.5495 + }, + { + "start": 34511.58, + "end": 34512.3, + "probability": 0.5266 + }, + { + "start": 34512.86, + "end": 34513.86, + "probability": 0.8896 + }, + { + "start": 34513.94, + "end": 34514.84, + "probability": 0.965 + }, + { + "start": 34514.84, + "end": 34515.76, + "probability": 0.7747 + }, + { + "start": 34516.08, + "end": 34517.72, + "probability": 0.9364 + }, + { + "start": 34518.6, + "end": 34521.86, + "probability": 0.925 + }, + { + "start": 34522.96, + "end": 34524.72, + "probability": 0.4416 + }, + { + "start": 34525.02, + "end": 34525.52, + "probability": 0.1865 + }, + { + "start": 34525.7, + "end": 34528.06, + "probability": 0.9466 + }, + { + "start": 34528.06, + "end": 34531.6, + "probability": 0.7824 + }, + { + "start": 34532.22, + "end": 34533.22, + "probability": 0.9244 + }, + { + "start": 34533.38, + "end": 34539.08, + "probability": 0.9445 + }, + { + "start": 34539.16, + "end": 34540.62, + "probability": 0.879 + }, + { + "start": 34541.18, + "end": 34544.54, + "probability": 0.8461 + }, + { + "start": 34544.66, + "end": 34545.8, + "probability": 0.8774 + }, + { + "start": 34545.9, + "end": 34546.56, + "probability": 0.4893 + }, + { + "start": 34547.12, + "end": 34547.94, + "probability": 0.6838 + }, + { + "start": 34549.02, + "end": 34550.3, + "probability": 0.9041 + }, + { + "start": 34550.38, + "end": 34551.66, + "probability": 0.9867 + }, + { + "start": 34551.82, + "end": 34553.2, + "probability": 0.954 + }, + { + "start": 34553.86, + "end": 34556.18, + "probability": 0.7511 + }, + { + "start": 34556.48, + "end": 34557.54, + "probability": 0.8924 + }, + { + "start": 34557.62, + "end": 34560.1, + "probability": 0.8804 + }, + { + "start": 34560.16, + "end": 34561.3, + "probability": 0.9909 + }, + { + "start": 34561.34, + "end": 34562.16, + "probability": 0.936 + }, + { + "start": 34562.3, + "end": 34562.9, + "probability": 0.963 + }, + { + "start": 34563.56, + "end": 34566.88, + "probability": 0.9257 + }, + { + "start": 34567.88, + "end": 34569.28, + "probability": 0.9976 + }, + { + "start": 34569.46, + "end": 34573.15, + "probability": 0.9934 + }, + { + "start": 34574.7, + "end": 34578.64, + "probability": 0.9563 + }, + { + "start": 34579.12, + "end": 34582.2, + "probability": 0.9148 + }, + { + "start": 34583.04, + "end": 34585.9, + "probability": 0.8936 + }, + { + "start": 34587.34, + "end": 34587.9, + "probability": 0.9668 + }, + { + "start": 34588.74, + "end": 34593.46, + "probability": 0.9901 + }, + { + "start": 34594.14, + "end": 34595.9, + "probability": 0.983 + }, + { + "start": 34596.6, + "end": 34598.16, + "probability": 0.1817 + }, + { + "start": 34598.86, + "end": 34601.08, + "probability": 0.6747 + }, + { + "start": 34601.92, + "end": 34602.3, + "probability": 0.2767 + }, + { + "start": 34602.32, + "end": 34604.44, + "probability": 0.8382 + }, + { + "start": 34604.54, + "end": 34606.56, + "probability": 0.6504 + }, + { + "start": 34607.68, + "end": 34609.32, + "probability": 0.9893 + }, + { + "start": 34609.9, + "end": 34612.48, + "probability": 0.8657 + }, + { + "start": 34613.48, + "end": 34615.6, + "probability": 0.9446 + }, + { + "start": 34616.18, + "end": 34618.04, + "probability": 0.8896 + }, + { + "start": 34618.14, + "end": 34619.04, + "probability": 0.6205 + }, + { + "start": 34619.18, + "end": 34619.58, + "probability": 0.8764 + }, + { + "start": 34619.9, + "end": 34620.76, + "probability": 0.9669 + }, + { + "start": 34621.18, + "end": 34622.36, + "probability": 0.9431 + }, + { + "start": 34622.44, + "end": 34623.3, + "probability": 0.9009 + }, + { + "start": 34625.56, + "end": 34626.24, + "probability": 0.8857 + }, + { + "start": 34627.28, + "end": 34629.22, + "probability": 0.9248 + }, + { + "start": 34630.1, + "end": 34631.84, + "probability": 0.8684 + }, + { + "start": 34632.52, + "end": 34633.5, + "probability": 0.7342 + }, + { + "start": 34634.22, + "end": 34636.88, + "probability": 0.8698 + }, + { + "start": 34636.96, + "end": 34638.18, + "probability": 0.9608 + }, + { + "start": 34638.36, + "end": 34641.2, + "probability": 0.9948 + }, + { + "start": 34642.14, + "end": 34643.44, + "probability": 0.8716 + }, + { + "start": 34643.46, + "end": 34645.94, + "probability": 0.8064 + }, + { + "start": 34647.56, + "end": 34648.52, + "probability": 0.9741 + }, + { + "start": 34649.08, + "end": 34649.32, + "probability": 0.922 + }, + { + "start": 34649.4, + "end": 34650.44, + "probability": 0.9932 + }, + { + "start": 34651.22, + "end": 34652.5, + "probability": 0.4981 + }, + { + "start": 34653.72, + "end": 34654.3, + "probability": 0.6755 + }, + { + "start": 34654.36, + "end": 34654.36, + "probability": 0.0343 + }, + { + "start": 34654.36, + "end": 34655.5, + "probability": 0.6547 + }, + { + "start": 34656.3, + "end": 34659.44, + "probability": 0.7838 + }, + { + "start": 34660.26, + "end": 34661.32, + "probability": 0.9727 + }, + { + "start": 34661.36, + "end": 34662.86, + "probability": 0.9938 + }, + { + "start": 34664.04, + "end": 34665.02, + "probability": 0.8618 + }, + { + "start": 34665.08, + "end": 34668.16, + "probability": 0.9401 + }, + { + "start": 34668.16, + "end": 34671.28, + "probability": 0.7729 + }, + { + "start": 34671.78, + "end": 34673.9, + "probability": 0.9783 + }, + { + "start": 34673.94, + "end": 34676.62, + "probability": 0.9626 + }, + { + "start": 34677.18, + "end": 34681.14, + "probability": 0.9984 + }, + { + "start": 34681.14, + "end": 34684.3, + "probability": 0.9299 + }, + { + "start": 34684.88, + "end": 34688.92, + "probability": 0.8948 + }, + { + "start": 34689.0, + "end": 34689.26, + "probability": 0.4416 + }, + { + "start": 34689.3, + "end": 34690.23, + "probability": 0.6943 + }, + { + "start": 34690.72, + "end": 34691.14, + "probability": 0.6836 + }, + { + "start": 34691.39, + "end": 34693.68, + "probability": 0.978 + }, + { + "start": 34694.42, + "end": 34696.1, + "probability": 0.9701 + }, + { + "start": 34697.0, + "end": 34699.3, + "probability": 0.6688 + }, + { + "start": 34699.92, + "end": 34700.88, + "probability": 0.6955 + }, + { + "start": 34702.46, + "end": 34703.08, + "probability": 0.0002 + }, + { + "start": 34703.7, + "end": 34707.28, + "probability": 0.3846 + }, + { + "start": 34707.28, + "end": 34707.28, + "probability": 0.1659 + }, + { + "start": 34707.28, + "end": 34709.76, + "probability": 0.4469 + }, + { + "start": 34710.0, + "end": 34710.0, + "probability": 0.5081 + }, + { + "start": 34710.0, + "end": 34710.0, + "probability": 0.5726 + }, + { + "start": 34710.0, + "end": 34712.53, + "probability": 0.1414 + }, + { + "start": 34716.76, + "end": 34719.14, + "probability": 0.0903 + }, + { + "start": 34719.14, + "end": 34719.14, + "probability": 0.0424 + }, + { + "start": 34719.14, + "end": 34719.14, + "probability": 0.1727 + }, + { + "start": 34719.14, + "end": 34719.14, + "probability": 0.0449 + }, + { + "start": 34719.14, + "end": 34720.65, + "probability": 0.5058 + }, + { + "start": 34721.04, + "end": 34721.68, + "probability": 0.8755 + }, + { + "start": 34721.68, + "end": 34722.88, + "probability": 0.9399 + }, + { + "start": 34722.94, + "end": 34724.0, + "probability": 0.6888 + }, + { + "start": 34724.48, + "end": 34728.94, + "probability": 0.9087 + }, + { + "start": 34729.16, + "end": 34729.36, + "probability": 0.161 + }, + { + "start": 34729.36, + "end": 34730.4, + "probability": 0.8082 + }, + { + "start": 34731.32, + "end": 34733.5, + "probability": 0.7253 + }, + { + "start": 34733.92, + "end": 34735.0, + "probability": 0.8569 + }, + { + "start": 34735.1, + "end": 34735.82, + "probability": 0.467 + }, + { + "start": 34736.3, + "end": 34737.64, + "probability": 0.9055 + }, + { + "start": 34737.84, + "end": 34739.08, + "probability": 0.9452 + }, + { + "start": 34758.04, + "end": 34758.98, + "probability": 0.6549 + }, + { + "start": 34760.78, + "end": 34762.48, + "probability": 0.8318 + }, + { + "start": 34764.22, + "end": 34765.2, + "probability": 0.8087 + }, + { + "start": 34766.64, + "end": 34769.74, + "probability": 0.9781 + }, + { + "start": 34770.88, + "end": 34771.34, + "probability": 0.9888 + }, + { + "start": 34774.46, + "end": 34776.84, + "probability": 0.999 + }, + { + "start": 34777.66, + "end": 34779.9, + "probability": 0.9628 + }, + { + "start": 34780.8, + "end": 34784.12, + "probability": 0.9932 + }, + { + "start": 34785.84, + "end": 34788.46, + "probability": 0.9958 + }, + { + "start": 34789.8, + "end": 34791.5, + "probability": 0.6907 + }, + { + "start": 34792.06, + "end": 34792.94, + "probability": 0.8945 + }, + { + "start": 34793.72, + "end": 34794.86, + "probability": 0.9662 + }, + { + "start": 34795.88, + "end": 34798.48, + "probability": 0.8416 + }, + { + "start": 34799.52, + "end": 34801.54, + "probability": 0.6615 + }, + { + "start": 34802.14, + "end": 34803.96, + "probability": 0.929 + }, + { + "start": 34805.32, + "end": 34806.06, + "probability": 0.8213 + }, + { + "start": 34807.32, + "end": 34808.1, + "probability": 0.8425 + }, + { + "start": 34810.6, + "end": 34814.1, + "probability": 0.943 + }, + { + "start": 34814.14, + "end": 34816.1, + "probability": 0.9774 + }, + { + "start": 34816.8, + "end": 34821.6, + "probability": 0.9627 + }, + { + "start": 34822.2, + "end": 34823.72, + "probability": 0.9962 + }, + { + "start": 34824.7, + "end": 34827.04, + "probability": 0.8642 + }, + { + "start": 34827.92, + "end": 34831.16, + "probability": 0.7821 + }, + { + "start": 34831.26, + "end": 34834.44, + "probability": 0.9734 + }, + { + "start": 34834.9, + "end": 34837.6, + "probability": 0.9552 + }, + { + "start": 34838.3, + "end": 34838.7, + "probability": 0.9548 + }, + { + "start": 34841.22, + "end": 34844.5, + "probability": 0.9652 + }, + { + "start": 34844.82, + "end": 34846.54, + "probability": 0.8579 + }, + { + "start": 34848.48, + "end": 34851.6, + "probability": 0.5496 + }, + { + "start": 34851.68, + "end": 34852.84, + "probability": 0.6758 + }, + { + "start": 34853.76, + "end": 34854.97, + "probability": 0.6824 + }, + { + "start": 34856.44, + "end": 34858.8, + "probability": 0.7565 + }, + { + "start": 34859.4, + "end": 34860.56, + "probability": 0.8621 + }, + { + "start": 34861.64, + "end": 34864.9, + "probability": 0.8809 + }, + { + "start": 34866.46, + "end": 34869.06, + "probability": 0.6731 + }, + { + "start": 34869.06, + "end": 34872.34, + "probability": 0.9792 + }, + { + "start": 34872.92, + "end": 34876.8, + "probability": 0.9814 + }, + { + "start": 34877.32, + "end": 34879.2, + "probability": 0.9018 + }, + { + "start": 34879.9, + "end": 34883.14, + "probability": 0.8759 + }, + { + "start": 34884.5, + "end": 34887.88, + "probability": 0.9128 + }, + { + "start": 34888.74, + "end": 34889.4, + "probability": 0.6796 + }, + { + "start": 34890.5, + "end": 34892.04, + "probability": 0.9971 + }, + { + "start": 34893.28, + "end": 34900.48, + "probability": 0.7483 + }, + { + "start": 34901.29, + "end": 34904.64, + "probability": 0.8848 + }, + { + "start": 34906.28, + "end": 34907.18, + "probability": 0.6895 + }, + { + "start": 34907.72, + "end": 34911.78, + "probability": 0.9316 + }, + { + "start": 34912.76, + "end": 34917.72, + "probability": 0.9944 + }, + { + "start": 34918.24, + "end": 34919.48, + "probability": 0.7522 + }, + { + "start": 34920.08, + "end": 34921.38, + "probability": 0.9744 + }, + { + "start": 34922.04, + "end": 34925.24, + "probability": 0.8224 + }, + { + "start": 34925.98, + "end": 34929.18, + "probability": 0.6729 + }, + { + "start": 34930.02, + "end": 34930.62, + "probability": 0.6174 + }, + { + "start": 34931.7, + "end": 34932.98, + "probability": 0.8275 + }, + { + "start": 34934.0, + "end": 34935.86, + "probability": 0.9933 + }, + { + "start": 34935.92, + "end": 34940.5, + "probability": 0.8305 + }, + { + "start": 34941.48, + "end": 34944.24, + "probability": 0.9978 + }, + { + "start": 34944.7, + "end": 34945.8, + "probability": 0.7648 + }, + { + "start": 34946.4, + "end": 34946.9, + "probability": 0.9253 + }, + { + "start": 34947.62, + "end": 34948.52, + "probability": 0.9365 + }, + { + "start": 34948.96, + "end": 34949.59, + "probability": 0.8838 + }, + { + "start": 34949.92, + "end": 34951.64, + "probability": 0.9901 + }, + { + "start": 34951.76, + "end": 34952.46, + "probability": 0.9515 + }, + { + "start": 34952.82, + "end": 34954.48, + "probability": 0.9761 + }, + { + "start": 34956.14, + "end": 34957.92, + "probability": 0.9985 + }, + { + "start": 34958.46, + "end": 34961.26, + "probability": 0.991 + }, + { + "start": 34961.44, + "end": 34964.17, + "probability": 0.9932 + }, + { + "start": 34964.58, + "end": 34966.44, + "probability": 0.9156 + }, + { + "start": 34967.12, + "end": 34967.62, + "probability": 0.7935 + }, + { + "start": 34967.74, + "end": 34968.14, + "probability": 0.9237 + }, + { + "start": 34968.3, + "end": 34973.06, + "probability": 0.9812 + }, + { + "start": 34973.48, + "end": 34975.62, + "probability": 0.9959 + }, + { + "start": 34976.2, + "end": 34980.16, + "probability": 0.9657 + }, + { + "start": 34981.18, + "end": 34981.52, + "probability": 0.882 + }, + { + "start": 34982.16, + "end": 34985.68, + "probability": 0.6882 + }, + { + "start": 34986.78, + "end": 34989.1, + "probability": 0.637 + }, + { + "start": 34990.0, + "end": 34990.36, + "probability": 0.5604 + }, + { + "start": 34990.46, + "end": 34991.9, + "probability": 0.9888 + }, + { + "start": 34992.0, + "end": 34993.02, + "probability": 0.8264 + }, + { + "start": 34993.12, + "end": 34993.92, + "probability": 0.9598 + }, + { + "start": 34994.28, + "end": 34995.86, + "probability": 0.9609 + }, + { + "start": 34996.14, + "end": 34997.14, + "probability": 0.7153 + }, + { + "start": 34997.66, + "end": 35000.7, + "probability": 0.994 + }, + { + "start": 35001.52, + "end": 35005.46, + "probability": 0.9787 + }, + { + "start": 35006.18, + "end": 35006.28, + "probability": 0.7578 + }, + { + "start": 35006.92, + "end": 35010.14, + "probability": 0.9601 + }, + { + "start": 35010.18, + "end": 35010.72, + "probability": 0.8422 + }, + { + "start": 35011.26, + "end": 35013.04, + "probability": 0.7414 + }, + { + "start": 35013.82, + "end": 35017.24, + "probability": 0.9902 + }, + { + "start": 35017.58, + "end": 35020.06, + "probability": 0.8892 + }, + { + "start": 35020.46, + "end": 35024.24, + "probability": 0.7956 + }, + { + "start": 35024.54, + "end": 35025.01, + "probability": 0.6276 + }, + { + "start": 35025.72, + "end": 35028.08, + "probability": 0.9821 + }, + { + "start": 35028.18, + "end": 35028.94, + "probability": 0.7602 + }, + { + "start": 35029.06, + "end": 35031.92, + "probability": 0.8641 + }, + { + "start": 35032.04, + "end": 35032.96, + "probability": 0.4909 + }, + { + "start": 35033.56, + "end": 35035.7, + "probability": 0.9938 + }, + { + "start": 35036.34, + "end": 35040.46, + "probability": 0.9735 + }, + { + "start": 35041.24, + "end": 35041.68, + "probability": 0.9184 + }, + { + "start": 35042.26, + "end": 35042.68, + "probability": 0.5727 + }, + { + "start": 35042.74, + "end": 35044.05, + "probability": 0.8268 + }, + { + "start": 35044.58, + "end": 35045.7, + "probability": 0.8174 + }, + { + "start": 35045.8, + "end": 35051.28, + "probability": 0.923 + }, + { + "start": 35051.54, + "end": 35053.88, + "probability": 0.9197 + }, + { + "start": 35055.06, + "end": 35056.08, + "probability": 0.9561 + }, + { + "start": 35056.22, + "end": 35062.02, + "probability": 0.9822 + }, + { + "start": 35062.96, + "end": 35064.48, + "probability": 0.699 + }, + { + "start": 35065.2, + "end": 35066.0, + "probability": 0.6775 + }, + { + "start": 35066.2, + "end": 35067.6, + "probability": 0.3568 + }, + { + "start": 35067.88, + "end": 35069.64, + "probability": 0.3312 + }, + { + "start": 35070.28, + "end": 35074.82, + "probability": 0.434 + }, + { + "start": 35074.92, + "end": 35076.02, + "probability": 0.3173 + }, + { + "start": 35076.22, + "end": 35077.32, + "probability": 0.3254 + }, + { + "start": 35077.42, + "end": 35080.86, + "probability": 0.9119 + }, + { + "start": 35081.24, + "end": 35083.68, + "probability": 0.2544 + }, + { + "start": 35083.68, + "end": 35085.96, + "probability": 0.7448 + }, + { + "start": 35087.7, + "end": 35088.02, + "probability": 0.0169 + }, + { + "start": 35089.02, + "end": 35089.4, + "probability": 0.0165 + }, + { + "start": 35089.4, + "end": 35089.75, + "probability": 0.3421 + }, + { + "start": 35091.3, + "end": 35095.0, + "probability": 0.64 + }, + { + "start": 35096.08, + "end": 35097.7, + "probability": 0.7877 + }, + { + "start": 35099.04, + "end": 35099.46, + "probability": 0.7725 + }, + { + "start": 35100.24, + "end": 35101.54, + "probability": 0.095 + }, + { + "start": 35105.4, + "end": 35106.28, + "probability": 0.9707 + }, + { + "start": 35106.28, + "end": 35106.28, + "probability": 0.4643 + }, + { + "start": 35106.28, + "end": 35108.1, + "probability": 0.5577 + }, + { + "start": 35108.34, + "end": 35108.88, + "probability": 0.6358 + }, + { + "start": 35109.06, + "end": 35111.02, + "probability": 0.9568 + }, + { + "start": 35113.36, + "end": 35120.32, + "probability": 0.9592 + }, + { + "start": 35122.04, + "end": 35123.54, + "probability": 0.9889 + }, + { + "start": 35124.28, + "end": 35130.18, + "probability": 0.9468 + }, + { + "start": 35130.32, + "end": 35133.92, + "probability": 0.9479 + }, + { + "start": 35134.62, + "end": 35135.7, + "probability": 0.5824 + }, + { + "start": 35135.84, + "end": 35138.01, + "probability": 0.9985 + }, + { + "start": 35138.78, + "end": 35142.16, + "probability": 0.9351 + }, + { + "start": 35143.16, + "end": 35146.56, + "probability": 0.9919 + }, + { + "start": 35147.24, + "end": 35152.34, + "probability": 0.9524 + }, + { + "start": 35152.92, + "end": 35153.96, + "probability": 0.7573 + }, + { + "start": 35154.3, + "end": 35157.3, + "probability": 0.9629 + }, + { + "start": 35159.87, + "end": 35162.27, + "probability": 0.4821 + }, + { + "start": 35163.36, + "end": 35164.26, + "probability": 0.5619 + }, + { + "start": 35164.34, + "end": 35165.18, + "probability": 0.9142 + }, + { + "start": 35165.32, + "end": 35170.32, + "probability": 0.9942 + }, + { + "start": 35170.64, + "end": 35172.8, + "probability": 0.9873 + }, + { + "start": 35172.98, + "end": 35174.12, + "probability": 0.7178 + }, + { + "start": 35174.54, + "end": 35175.36, + "probability": 0.456 + }, + { + "start": 35176.5, + "end": 35177.44, + "probability": 0.8838 + }, + { + "start": 35178.5, + "end": 35182.72, + "probability": 0.9871 + }, + { + "start": 35183.74, + "end": 35189.16, + "probability": 0.9849 + }, + { + "start": 35189.16, + "end": 35192.98, + "probability": 0.8967 + }, + { + "start": 35193.74, + "end": 35194.32, + "probability": 0.5076 + }, + { + "start": 35196.53, + "end": 35198.9, + "probability": 0.9298 + }, + { + "start": 35199.0, + "end": 35204.26, + "probability": 0.9848 + }, + { + "start": 35204.68, + "end": 35207.0, + "probability": 0.9742 + }, + { + "start": 35208.98, + "end": 35210.4, + "probability": 0.9549 + }, + { + "start": 35211.64, + "end": 35217.46, + "probability": 0.9426 + }, + { + "start": 35218.26, + "end": 35221.8, + "probability": 0.9678 + }, + { + "start": 35222.44, + "end": 35226.94, + "probability": 0.9946 + }, + { + "start": 35228.42, + "end": 35230.64, + "probability": 0.9937 + }, + { + "start": 35231.88, + "end": 35237.64, + "probability": 0.9298 + }, + { + "start": 35238.54, + "end": 35240.9, + "probability": 0.9987 + }, + { + "start": 35242.58, + "end": 35243.14, + "probability": 0.6622 + }, + { + "start": 35243.22, + "end": 35250.92, + "probability": 0.982 + }, + { + "start": 35253.44, + "end": 35255.97, + "probability": 0.8888 + }, + { + "start": 35256.88, + "end": 35261.24, + "probability": 0.9814 + }, + { + "start": 35262.1, + "end": 35270.0, + "probability": 0.9954 + }, + { + "start": 35270.96, + "end": 35271.74, + "probability": 0.7211 + }, + { + "start": 35272.4, + "end": 35275.46, + "probability": 0.9342 + }, + { + "start": 35275.82, + "end": 35276.96, + "probability": 0.7769 + }, + { + "start": 35277.1, + "end": 35279.76, + "probability": 0.7037 + }, + { + "start": 35280.46, + "end": 35281.48, + "probability": 0.9554 + }, + { + "start": 35282.4, + "end": 35283.2, + "probability": 0.7824 + }, + { + "start": 35283.28, + "end": 35284.08, + "probability": 0.6562 + }, + { + "start": 35284.2, + "end": 35285.66, + "probability": 0.9736 + }, + { + "start": 35287.56, + "end": 35289.2, + "probability": 0.9785 + }, + { + "start": 35290.94, + "end": 35295.56, + "probability": 0.9763 + }, + { + "start": 35295.64, + "end": 35297.28, + "probability": 0.9884 + }, + { + "start": 35298.32, + "end": 35303.1, + "probability": 0.9858 + }, + { + "start": 35304.44, + "end": 35305.62, + "probability": 0.9971 + }, + { + "start": 35306.24, + "end": 35308.48, + "probability": 0.9035 + }, + { + "start": 35309.88, + "end": 35310.88, + "probability": 0.7122 + }, + { + "start": 35312.22, + "end": 35313.94, + "probability": 0.866 + }, + { + "start": 35316.5, + "end": 35317.68, + "probability": 0.8607 + }, + { + "start": 35318.96, + "end": 35320.08, + "probability": 0.791 + }, + { + "start": 35320.16, + "end": 35321.46, + "probability": 0.9403 + }, + { + "start": 35321.58, + "end": 35322.62, + "probability": 0.9697 + }, + { + "start": 35323.42, + "end": 35328.64, + "probability": 0.9424 + }, + { + "start": 35329.9, + "end": 35334.2, + "probability": 0.9908 + }, + { + "start": 35334.72, + "end": 35336.6, + "probability": 0.8291 + }, + { + "start": 35337.42, + "end": 35339.9, + "probability": 0.9878 + }, + { + "start": 35340.66, + "end": 35343.72, + "probability": 0.9941 + }, + { + "start": 35343.94, + "end": 35344.72, + "probability": 0.6675 + }, + { + "start": 35346.4, + "end": 35350.98, + "probability": 0.9873 + }, + { + "start": 35351.74, + "end": 35353.2, + "probability": 0.8335 + }, + { + "start": 35353.6, + "end": 35355.38, + "probability": 0.7116 + }, + { + "start": 35355.48, + "end": 35360.48, + "probability": 0.979 + }, + { + "start": 35360.58, + "end": 35363.33, + "probability": 0.9912 + }, + { + "start": 35365.46, + "end": 35368.5, + "probability": 0.9873 + }, + { + "start": 35368.5, + "end": 35371.5, + "probability": 0.9422 + }, + { + "start": 35372.34, + "end": 35373.96, + "probability": 0.9408 + }, + { + "start": 35374.5, + "end": 35375.42, + "probability": 0.7587 + }, + { + "start": 35375.62, + "end": 35378.86, + "probability": 0.995 + }, + { + "start": 35379.06, + "end": 35379.79, + "probability": 0.7397 + }, + { + "start": 35380.9, + "end": 35383.1, + "probability": 0.9577 + }, + { + "start": 35384.06, + "end": 35387.22, + "probability": 0.9438 + }, + { + "start": 35387.42, + "end": 35392.24, + "probability": 0.9927 + }, + { + "start": 35392.72, + "end": 35396.02, + "probability": 0.6398 + }, + { + "start": 35396.82, + "end": 35398.58, + "probability": 0.8072 + }, + { + "start": 35399.3, + "end": 35399.9, + "probability": 0.797 + }, + { + "start": 35400.52, + "end": 35402.35, + "probability": 0.6169 + }, + { + "start": 35402.5, + "end": 35406.62, + "probability": 0.9792 + }, + { + "start": 35408.28, + "end": 35411.58, + "probability": 0.9917 + }, + { + "start": 35412.64, + "end": 35414.7, + "probability": 0.9492 + }, + { + "start": 35415.32, + "end": 35421.2, + "probability": 0.987 + }, + { + "start": 35421.76, + "end": 35423.0, + "probability": 0.5822 + }, + { + "start": 35424.5, + "end": 35425.06, + "probability": 0.7279 + }, + { + "start": 35425.1, + "end": 35428.14, + "probability": 0.9955 + }, + { + "start": 35428.52, + "end": 35428.76, + "probability": 0.1716 + }, + { + "start": 35428.76, + "end": 35429.88, + "probability": 0.5412 + }, + { + "start": 35430.9, + "end": 35431.7, + "probability": 0.8038 + }, + { + "start": 35431.92, + "end": 35432.52, + "probability": 0.7312 + }, + { + "start": 35432.56, + "end": 35433.54, + "probability": 0.9041 + }, + { + "start": 35434.52, + "end": 35434.96, + "probability": 0.8365 + }, + { + "start": 35435.7, + "end": 35441.62, + "probability": 0.9399 + }, + { + "start": 35441.62, + "end": 35447.54, + "probability": 0.9946 + }, + { + "start": 35448.32, + "end": 35449.04, + "probability": 0.5719 + }, + { + "start": 35449.98, + "end": 35451.8, + "probability": 0.9012 + }, + { + "start": 35452.34, + "end": 35453.86, + "probability": 0.8736 + }, + { + "start": 35453.94, + "end": 35455.46, + "probability": 0.7116 + }, + { + "start": 35456.0, + "end": 35457.22, + "probability": 0.9847 + }, + { + "start": 35457.74, + "end": 35458.98, + "probability": 0.8942 + }, + { + "start": 35460.19, + "end": 35461.77, + "probability": 0.7493 + }, + { + "start": 35462.34, + "end": 35464.68, + "probability": 0.9064 + }, + { + "start": 35465.2, + "end": 35468.38, + "probability": 0.734 + }, + { + "start": 35469.1, + "end": 35473.22, + "probability": 0.9941 + }, + { + "start": 35473.92, + "end": 35477.32, + "probability": 0.9784 + }, + { + "start": 35477.96, + "end": 35479.84, + "probability": 0.9821 + }, + { + "start": 35480.3, + "end": 35483.66, + "probability": 0.9337 + }, + { + "start": 35485.32, + "end": 35488.82, + "probability": 0.814 + }, + { + "start": 35488.82, + "end": 35492.0, + "probability": 0.9453 + }, + { + "start": 35492.86, + "end": 35495.48, + "probability": 0.9896 + }, + { + "start": 35496.42, + "end": 35499.66, + "probability": 0.981 + }, + { + "start": 35499.82, + "end": 35503.28, + "probability": 0.9932 + }, + { + "start": 35503.82, + "end": 35504.22, + "probability": 0.3629 + }, + { + "start": 35504.22, + "end": 35506.16, + "probability": 0.7907 + }, + { + "start": 35506.76, + "end": 35512.32, + "probability": 0.9379 + }, + { + "start": 35513.4, + "end": 35517.1, + "probability": 0.997 + }, + { + "start": 35519.24, + "end": 35522.06, + "probability": 0.634 + }, + { + "start": 35522.84, + "end": 35523.92, + "probability": 0.7003 + }, + { + "start": 35524.0, + "end": 35525.6, + "probability": 0.411 + }, + { + "start": 35525.88, + "end": 35527.24, + "probability": 0.6851 + }, + { + "start": 35527.32, + "end": 35534.16, + "probability": 0.8789 + }, + { + "start": 35534.74, + "end": 35536.94, + "probability": 0.8243 + }, + { + "start": 35537.6, + "end": 35539.48, + "probability": 0.8546 + }, + { + "start": 35540.06, + "end": 35544.14, + "probability": 0.7201 + }, + { + "start": 35544.14, + "end": 35552.7, + "probability": 0.7092 + }, + { + "start": 35553.46, + "end": 35554.31, + "probability": 0.3127 + } + ], + "segments_count": 13479, + "words_count": 62077, + "avg_words_per_segment": 4.6055, + "avg_segment_duration": 1.726, + "avg_words_per_minute": 100.8653, + "plenum_id": "100335", + "duration": 36926.69, + "title": null, + "plenum_date": "2021-10-25" +} \ No newline at end of file