diff --git "a/10944/metadata.json" "b/10944/metadata.json" new file mode 100644--- /dev/null +++ "b/10944/metadata.json" @@ -0,0 +1,48497 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "10944", + "quality_score": 0.8694, + "per_segment_quality_scores": [ + { + "start": 127.4, + "end": 127.98, + "probability": 0.2836 + }, + { + "start": 128.86, + "end": 131.0, + "probability": 0.0581 + }, + { + "start": 131.58, + "end": 132.7, + "probability": 0.027 + }, + { + "start": 134.26, + "end": 137.08, + "probability": 0.1198 + }, + { + "start": 137.08, + "end": 138.1, + "probability": 0.0128 + }, + { + "start": 138.72, + "end": 138.88, + "probability": 0.0037 + }, + { + "start": 139.0, + "end": 139.0, + "probability": 0.0 + }, + { + "start": 139.0, + "end": 139.0, + "probability": 0.0 + }, + { + "start": 139.0, + "end": 139.0, + "probability": 0.0 + }, + { + "start": 139.0, + "end": 139.0, + "probability": 0.0 + }, + { + "start": 139.0, + "end": 139.0, + "probability": 0.0 + }, + { + "start": 139.0, + "end": 139.0, + "probability": 0.0 + }, + { + "start": 139.0, + "end": 139.0, + "probability": 0.0 + }, + { + "start": 139.0, + "end": 139.0, + "probability": 0.0 + }, + { + "start": 139.0, + "end": 139.0, + "probability": 0.0 + }, + { + "start": 139.0, + "end": 139.0, + "probability": 0.0 + }, + { + "start": 140.3, + "end": 141.16, + "probability": 0.0549 + }, + { + "start": 141.26, + "end": 142.22, + "probability": 0.279 + }, + { + "start": 142.32, + "end": 142.66, + "probability": 0.3178 + }, + { + "start": 142.7, + "end": 144.14, + "probability": 0.6654 + }, + { + "start": 144.14, + "end": 146.36, + "probability": 0.7481 + }, + { + "start": 146.86, + "end": 150.74, + "probability": 0.8089 + }, + { + "start": 151.54, + "end": 160.0, + "probability": 0.8942 + }, + { + "start": 160.2, + "end": 161.14, + "probability": 0.9068 + }, + { + "start": 161.68, + "end": 164.12, + "probability": 0.7825 + }, + { + "start": 164.4, + "end": 169.4, + "probability": 0.9863 + }, + { + "start": 170.66, + "end": 179.66, + "probability": 0.9255 + }, + { + "start": 180.62, + "end": 183.74, + "probability": 0.9909 + }, + { + "start": 183.82, + "end": 185.44, + "probability": 0.2128 + }, + { + "start": 186.26, + "end": 192.68, + "probability": 0.9176 + }, + { + "start": 193.22, + "end": 194.66, + "probability": 0.9073 + }, + { + "start": 194.84, + "end": 201.54, + "probability": 0.9257 + }, + { + "start": 202.02, + "end": 204.64, + "probability": 0.6778 + }, + { + "start": 204.8, + "end": 208.62, + "probability": 0.8051 + }, + { + "start": 209.84, + "end": 213.02, + "probability": 0.9569 + }, + { + "start": 213.02, + "end": 216.28, + "probability": 0.5926 + }, + { + "start": 216.96, + "end": 221.04, + "probability": 0.9492 + }, + { + "start": 221.32, + "end": 224.04, + "probability": 0.897 + }, + { + "start": 224.26, + "end": 228.16, + "probability": 0.886 + }, + { + "start": 228.46, + "end": 229.12, + "probability": 0.7957 + }, + { + "start": 229.22, + "end": 229.82, + "probability": 0.8602 + }, + { + "start": 229.88, + "end": 230.68, + "probability": 0.7763 + }, + { + "start": 231.12, + "end": 235.86, + "probability": 0.8217 + }, + { + "start": 236.48, + "end": 237.24, + "probability": 0.6811 + }, + { + "start": 237.4, + "end": 237.92, + "probability": 0.7176 + }, + { + "start": 237.96, + "end": 243.98, + "probability": 0.8814 + }, + { + "start": 244.24, + "end": 244.74, + "probability": 0.4094 + }, + { + "start": 244.96, + "end": 245.3, + "probability": 0.4767 + }, + { + "start": 245.36, + "end": 248.58, + "probability": 0.7249 + }, + { + "start": 248.58, + "end": 251.28, + "probability": 0.8417 + }, + { + "start": 251.3, + "end": 254.34, + "probability": 0.9471 + }, + { + "start": 254.42, + "end": 255.94, + "probability": 0.7821 + }, + { + "start": 256.48, + "end": 257.02, + "probability": 0.9451 + }, + { + "start": 257.06, + "end": 258.42, + "probability": 0.936 + }, + { + "start": 258.48, + "end": 260.12, + "probability": 0.9619 + }, + { + "start": 261.06, + "end": 261.34, + "probability": 0.3008 + }, + { + "start": 261.34, + "end": 264.54, + "probability": 0.5564 + }, + { + "start": 265.08, + "end": 266.04, + "probability": 0.1263 + }, + { + "start": 266.04, + "end": 269.24, + "probability": 0.5715 + }, + { + "start": 270.6, + "end": 279.36, + "probability": 0.641 + }, + { + "start": 279.36, + "end": 279.89, + "probability": 0.1523 + }, + { + "start": 280.98, + "end": 283.0, + "probability": 0.7788 + }, + { + "start": 283.85, + "end": 286.42, + "probability": 0.8206 + }, + { + "start": 286.96, + "end": 289.96, + "probability": 0.9665 + }, + { + "start": 290.56, + "end": 290.8, + "probability": 0.511 + }, + { + "start": 290.84, + "end": 291.94, + "probability": 0.531 + }, + { + "start": 291.96, + "end": 292.54, + "probability": 0.7077 + }, + { + "start": 292.56, + "end": 294.08, + "probability": 0.5738 + }, + { + "start": 294.36, + "end": 295.36, + "probability": 0.6232 + }, + { + "start": 295.5, + "end": 297.2, + "probability": 0.2021 + }, + { + "start": 297.28, + "end": 297.74, + "probability": 0.4421 + }, + { + "start": 297.94, + "end": 302.5, + "probability": 0.6992 + }, + { + "start": 302.58, + "end": 303.51, + "probability": 0.532 + }, + { + "start": 304.12, + "end": 306.7, + "probability": 0.965 + }, + { + "start": 307.18, + "end": 309.43, + "probability": 0.8496 + }, + { + "start": 309.9, + "end": 312.4, + "probability": 0.9635 + }, + { + "start": 312.46, + "end": 314.38, + "probability": 0.925 + }, + { + "start": 314.74, + "end": 319.72, + "probability": 0.9673 + }, + { + "start": 320.26, + "end": 324.32, + "probability": 0.9223 + }, + { + "start": 324.98, + "end": 327.52, + "probability": 0.6993 + }, + { + "start": 328.02, + "end": 330.87, + "probability": 0.6986 + }, + { + "start": 331.04, + "end": 331.82, + "probability": 0.8575 + }, + { + "start": 332.0, + "end": 332.84, + "probability": 0.6967 + }, + { + "start": 333.6, + "end": 335.54, + "probability": 0.6844 + }, + { + "start": 340.7, + "end": 341.72, + "probability": 0.5528 + }, + { + "start": 341.94, + "end": 343.72, + "probability": 0.7776 + }, + { + "start": 343.72, + "end": 346.42, + "probability": 0.5848 + }, + { + "start": 346.54, + "end": 349.32, + "probability": 0.8715 + }, + { + "start": 350.04, + "end": 350.92, + "probability": 0.8038 + }, + { + "start": 352.05, + "end": 354.26, + "probability": 0.5145 + }, + { + "start": 354.3, + "end": 358.94, + "probability": 0.6734 + }, + { + "start": 359.18, + "end": 361.44, + "probability": 0.8311 + }, + { + "start": 361.7, + "end": 363.32, + "probability": 0.9676 + }, + { + "start": 363.5, + "end": 364.71, + "probability": 0.7474 + }, + { + "start": 367.14, + "end": 373.11, + "probability": 0.9653 + }, + { + "start": 373.24, + "end": 380.78, + "probability": 0.9819 + }, + { + "start": 381.89, + "end": 383.74, + "probability": 0.9971 + }, + { + "start": 384.28, + "end": 388.88, + "probability": 0.6658 + }, + { + "start": 389.54, + "end": 394.48, + "probability": 0.9889 + }, + { + "start": 395.22, + "end": 404.66, + "probability": 0.9886 + }, + { + "start": 405.08, + "end": 409.26, + "probability": 0.993 + }, + { + "start": 409.34, + "end": 414.5, + "probability": 0.8953 + }, + { + "start": 415.08, + "end": 416.24, + "probability": 0.7382 + }, + { + "start": 416.28, + "end": 422.06, + "probability": 0.9709 + }, + { + "start": 422.34, + "end": 428.66, + "probability": 0.9819 + }, + { + "start": 428.98, + "end": 430.4, + "probability": 0.6353 + }, + { + "start": 430.44, + "end": 432.6, + "probability": 0.9192 + }, + { + "start": 432.78, + "end": 436.14, + "probability": 0.9966 + }, + { + "start": 436.54, + "end": 437.66, + "probability": 0.7734 + }, + { + "start": 438.24, + "end": 444.52, + "probability": 0.9709 + }, + { + "start": 445.28, + "end": 447.62, + "probability": 0.4206 + }, + { + "start": 447.72, + "end": 451.75, + "probability": 0.4652 + }, + { + "start": 452.68, + "end": 455.98, + "probability": 0.4268 + }, + { + "start": 455.98, + "end": 459.11, + "probability": 0.4901 + }, + { + "start": 462.52, + "end": 463.3, + "probability": 0.976 + }, + { + "start": 465.82, + "end": 468.06, + "probability": 0.998 + }, + { + "start": 468.42, + "end": 469.88, + "probability": 0.7353 + }, + { + "start": 469.94, + "end": 472.86, + "probability": 0.6908 + }, + { + "start": 473.38, + "end": 476.8, + "probability": 0.7471 + }, + { + "start": 477.44, + "end": 479.58, + "probability": 0.947 + }, + { + "start": 480.26, + "end": 483.84, + "probability": 0.9965 + }, + { + "start": 487.28, + "end": 491.74, + "probability": 0.9924 + }, + { + "start": 491.88, + "end": 498.54, + "probability": 0.9701 + }, + { + "start": 498.8, + "end": 499.46, + "probability": 0.6358 + }, + { + "start": 499.76, + "end": 500.62, + "probability": 0.747 + }, + { + "start": 501.56, + "end": 502.06, + "probability": 0.3637 + }, + { + "start": 502.1, + "end": 504.28, + "probability": 0.6341 + }, + { + "start": 504.86, + "end": 505.58, + "probability": 0.5402 + }, + { + "start": 505.78, + "end": 506.72, + "probability": 0.6943 + }, + { + "start": 506.82, + "end": 507.88, + "probability": 0.6377 + }, + { + "start": 510.02, + "end": 519.82, + "probability": 0.9761 + }, + { + "start": 520.12, + "end": 522.6, + "probability": 0.5176 + }, + { + "start": 522.74, + "end": 526.5, + "probability": 0.8252 + }, + { + "start": 526.5, + "end": 527.84, + "probability": 0.465 + }, + { + "start": 529.94, + "end": 533.82, + "probability": 0.6676 + }, + { + "start": 534.6, + "end": 538.94, + "probability": 0.7708 + }, + { + "start": 539.99, + "end": 543.7, + "probability": 0.9756 + }, + { + "start": 543.76, + "end": 546.02, + "probability": 0.8726 + }, + { + "start": 546.38, + "end": 550.84, + "probability": 0.7166 + }, + { + "start": 551.88, + "end": 553.96, + "probability": 0.6151 + }, + { + "start": 553.98, + "end": 554.8, + "probability": 0.4492 + }, + { + "start": 554.9, + "end": 557.58, + "probability": 0.8988 + }, + { + "start": 559.07, + "end": 562.62, + "probability": 0.9001 + }, + { + "start": 564.92, + "end": 566.28, + "probability": 0.4295 + }, + { + "start": 567.04, + "end": 570.48, + "probability": 0.7275 + }, + { + "start": 570.68, + "end": 572.5, + "probability": 0.6623 + }, + { + "start": 572.74, + "end": 575.78, + "probability": 0.9525 + }, + { + "start": 575.98, + "end": 579.66, + "probability": 0.6496 + }, + { + "start": 579.78, + "end": 582.42, + "probability": 0.4291 + }, + { + "start": 583.16, + "end": 586.11, + "probability": 0.9869 + }, + { + "start": 586.48, + "end": 589.02, + "probability": 0.7189 + }, + { + "start": 589.6, + "end": 593.18, + "probability": 0.9813 + }, + { + "start": 594.3, + "end": 596.85, + "probability": 0.5 + }, + { + "start": 599.96, + "end": 600.86, + "probability": 0.5699 + }, + { + "start": 601.04, + "end": 601.84, + "probability": 0.7834 + }, + { + "start": 602.04, + "end": 606.64, + "probability": 0.5894 + }, + { + "start": 607.34, + "end": 608.24, + "probability": 0.2949 + }, + { + "start": 608.44, + "end": 609.8, + "probability": 0.8679 + }, + { + "start": 609.92, + "end": 614.22, + "probability": 0.4681 + }, + { + "start": 614.68, + "end": 617.63, + "probability": 0.6177 + }, + { + "start": 617.78, + "end": 620.76, + "probability": 0.6228 + }, + { + "start": 620.84, + "end": 622.92, + "probability": 0.8452 + }, + { + "start": 622.92, + "end": 624.12, + "probability": 0.2581 + }, + { + "start": 624.14, + "end": 624.38, + "probability": 0.008 + }, + { + "start": 624.48, + "end": 625.96, + "probability": 0.556 + }, + { + "start": 626.3, + "end": 626.96, + "probability": 0.2654 + }, + { + "start": 627.02, + "end": 629.38, + "probability": 0.8399 + }, + { + "start": 629.6, + "end": 633.64, + "probability": 0.9518 + }, + { + "start": 634.04, + "end": 634.98, + "probability": 0.7472 + }, + { + "start": 635.08, + "end": 638.4, + "probability": 0.4797 + }, + { + "start": 638.5, + "end": 638.64, + "probability": 0.4046 + }, + { + "start": 638.68, + "end": 639.7, + "probability": 0.5444 + }, + { + "start": 640.08, + "end": 641.18, + "probability": 0.7935 + }, + { + "start": 641.22, + "end": 642.18, + "probability": 0.5876 + }, + { + "start": 642.56, + "end": 644.54, + "probability": 0.5272 + }, + { + "start": 645.1, + "end": 646.78, + "probability": 0.4596 + }, + { + "start": 646.84, + "end": 650.74, + "probability": 0.8185 + }, + { + "start": 650.78, + "end": 651.66, + "probability": 0.4227 + }, + { + "start": 651.98, + "end": 654.0, + "probability": 0.8992 + }, + { + "start": 654.02, + "end": 654.48, + "probability": 0.818 + }, + { + "start": 655.02, + "end": 658.84, + "probability": 0.9795 + }, + { + "start": 659.42, + "end": 660.34, + "probability": 0.6439 + }, + { + "start": 660.34, + "end": 664.38, + "probability": 0.7186 + }, + { + "start": 664.96, + "end": 665.9, + "probability": 0.1704 + }, + { + "start": 665.9, + "end": 670.22, + "probability": 0.5025 + }, + { + "start": 673.62, + "end": 674.52, + "probability": 0.5197 + }, + { + "start": 675.3, + "end": 676.24, + "probability": 0.6483 + }, + { + "start": 676.44, + "end": 677.8, + "probability": 0.6706 + }, + { + "start": 677.92, + "end": 677.92, + "probability": 0.0998 + }, + { + "start": 677.92, + "end": 677.92, + "probability": 0.0016 + }, + { + "start": 677.92, + "end": 678.66, + "probability": 0.8782 + }, + { + "start": 679.64, + "end": 681.84, + "probability": 0.8853 + }, + { + "start": 681.96, + "end": 682.26, + "probability": 0.1829 + }, + { + "start": 682.3, + "end": 683.9, + "probability": 0.9905 + }, + { + "start": 685.16, + "end": 686.46, + "probability": 0.0923 + }, + { + "start": 686.64, + "end": 688.1, + "probability": 0.1285 + }, + { + "start": 688.1, + "end": 689.68, + "probability": 0.7942 + }, + { + "start": 689.68, + "end": 691.36, + "probability": 0.0083 + }, + { + "start": 691.36, + "end": 692.06, + "probability": 0.3084 + }, + { + "start": 692.46, + "end": 693.46, + "probability": 0.8687 + }, + { + "start": 693.54, + "end": 697.78, + "probability": 0.9656 + }, + { + "start": 699.68, + "end": 700.86, + "probability": 0.042 + }, + { + "start": 700.86, + "end": 701.48, + "probability": 0.6541 + }, + { + "start": 701.78, + "end": 706.28, + "probability": 0.911 + }, + { + "start": 706.3, + "end": 706.75, + "probability": 0.3434 + }, + { + "start": 707.14, + "end": 709.52, + "probability": 0.4885 + }, + { + "start": 709.54, + "end": 711.64, + "probability": 0.865 + }, + { + "start": 712.66, + "end": 715.1, + "probability": 0.9934 + }, + { + "start": 715.1, + "end": 718.6, + "probability": 0.9828 + }, + { + "start": 718.66, + "end": 719.4, + "probability": 0.949 + }, + { + "start": 719.76, + "end": 723.34, + "probability": 0.6171 + }, + { + "start": 725.84, + "end": 727.58, + "probability": 0.8286 + }, + { + "start": 728.02, + "end": 728.28, + "probability": 0.5884 + }, + { + "start": 728.82, + "end": 733.14, + "probability": 0.9313 + }, + { + "start": 733.62, + "end": 738.58, + "probability": 0.871 + }, + { + "start": 739.04, + "end": 740.68, + "probability": 0.7861 + }, + { + "start": 740.9, + "end": 743.26, + "probability": 0.5043 + }, + { + "start": 743.36, + "end": 749.44, + "probability": 0.7475 + }, + { + "start": 749.52, + "end": 750.28, + "probability": 0.4343 + }, + { + "start": 751.32, + "end": 756.24, + "probability": 0.9886 + }, + { + "start": 756.8, + "end": 760.48, + "probability": 0.8042 + }, + { + "start": 760.94, + "end": 765.94, + "probability": 0.9686 + }, + { + "start": 766.32, + "end": 766.58, + "probability": 0.3056 + }, + { + "start": 766.7, + "end": 767.32, + "probability": 0.7517 + }, + { + "start": 767.6, + "end": 768.16, + "probability": 0.9048 + }, + { + "start": 768.36, + "end": 769.66, + "probability": 0.8703 + }, + { + "start": 769.8, + "end": 772.14, + "probability": 0.9561 + }, + { + "start": 772.24, + "end": 773.24, + "probability": 0.7682 + }, + { + "start": 773.5, + "end": 775.24, + "probability": 0.916 + }, + { + "start": 775.3, + "end": 776.98, + "probability": 0.7518 + }, + { + "start": 777.06, + "end": 777.38, + "probability": 0.5361 + }, + { + "start": 777.56, + "end": 781.92, + "probability": 0.9722 + }, + { + "start": 782.28, + "end": 784.72, + "probability": 0.4373 + }, + { + "start": 785.2, + "end": 787.64, + "probability": 0.9332 + }, + { + "start": 788.34, + "end": 789.64, + "probability": 0.2245 + }, + { + "start": 789.7, + "end": 790.02, + "probability": 0.5321 + }, + { + "start": 792.65, + "end": 794.6, + "probability": 0.7178 + }, + { + "start": 794.66, + "end": 796.06, + "probability": 0.7759 + }, + { + "start": 796.12, + "end": 797.0, + "probability": 0.8549 + }, + { + "start": 797.1, + "end": 797.91, + "probability": 0.7853 + }, + { + "start": 798.34, + "end": 798.86, + "probability": 0.8691 + }, + { + "start": 798.94, + "end": 801.12, + "probability": 0.9752 + }, + { + "start": 801.56, + "end": 802.8, + "probability": 0.6164 + }, + { + "start": 803.06, + "end": 808.82, + "probability": 0.7559 + }, + { + "start": 809.32, + "end": 809.94, + "probability": 0.6729 + }, + { + "start": 810.16, + "end": 811.54, + "probability": 0.7349 + }, + { + "start": 811.86, + "end": 814.13, + "probability": 0.9275 + }, + { + "start": 814.51, + "end": 816.44, + "probability": 0.9504 + }, + { + "start": 816.84, + "end": 820.06, + "probability": 0.5826 + }, + { + "start": 820.12, + "end": 820.92, + "probability": 0.7541 + }, + { + "start": 821.12, + "end": 828.06, + "probability": 0.9733 + }, + { + "start": 828.06, + "end": 830.6, + "probability": 0.9979 + }, + { + "start": 831.16, + "end": 834.8, + "probability": 0.9987 + }, + { + "start": 835.86, + "end": 838.4, + "probability": 0.9277 + }, + { + "start": 838.88, + "end": 840.8, + "probability": 0.2879 + }, + { + "start": 841.18, + "end": 843.18, + "probability": 0.8776 + }, + { + "start": 843.64, + "end": 848.6, + "probability": 0.9888 + }, + { + "start": 849.26, + "end": 854.4, + "probability": 0.5321 + }, + { + "start": 856.74, + "end": 861.12, + "probability": 0.9559 + }, + { + "start": 861.8, + "end": 863.9, + "probability": 0.9954 + }, + { + "start": 865.34, + "end": 869.04, + "probability": 0.9402 + }, + { + "start": 871.6, + "end": 872.5, + "probability": 0.1992 + }, + { + "start": 873.3, + "end": 878.52, + "probability": 0.9666 + }, + { + "start": 879.14, + "end": 881.42, + "probability": 0.9912 + }, + { + "start": 882.2, + "end": 884.32, + "probability": 0.6496 + }, + { + "start": 885.3, + "end": 885.58, + "probability": 0.3558 + }, + { + "start": 885.66, + "end": 890.14, + "probability": 0.9908 + }, + { + "start": 891.06, + "end": 896.28, + "probability": 0.9242 + }, + { + "start": 897.1, + "end": 899.56, + "probability": 0.9706 + }, + { + "start": 900.2, + "end": 901.64, + "probability": 0.9257 + }, + { + "start": 902.62, + "end": 904.42, + "probability": 0.8523 + }, + { + "start": 904.9, + "end": 906.64, + "probability": 0.9617 + }, + { + "start": 907.08, + "end": 908.6, + "probability": 0.9842 + }, + { + "start": 909.32, + "end": 912.06, + "probability": 0.9386 + }, + { + "start": 912.88, + "end": 914.94, + "probability": 0.8019 + }, + { + "start": 915.74, + "end": 916.84, + "probability": 0.7983 + }, + { + "start": 916.92, + "end": 919.9, + "probability": 0.9195 + }, + { + "start": 920.76, + "end": 922.66, + "probability": 0.8229 + }, + { + "start": 923.28, + "end": 923.88, + "probability": 0.1667 + }, + { + "start": 923.88, + "end": 930.34, + "probability": 0.9814 + }, + { + "start": 931.44, + "end": 931.66, + "probability": 0.6146 + }, + { + "start": 931.82, + "end": 938.2, + "probability": 0.9971 + }, + { + "start": 939.04, + "end": 942.86, + "probability": 0.9795 + }, + { + "start": 944.08, + "end": 948.08, + "probability": 0.9959 + }, + { + "start": 948.9, + "end": 952.84, + "probability": 0.9766 + }, + { + "start": 954.48, + "end": 955.94, + "probability": 0.9535 + }, + { + "start": 956.24, + "end": 960.02, + "probability": 0.9828 + }, + { + "start": 960.02, + "end": 963.22, + "probability": 0.9608 + }, + { + "start": 964.2, + "end": 966.14, + "probability": 0.8065 + }, + { + "start": 966.28, + "end": 968.11, + "probability": 0.804 + }, + { + "start": 969.28, + "end": 970.28, + "probability": 0.6138 + }, + { + "start": 970.4, + "end": 971.24, + "probability": 0.7143 + }, + { + "start": 972.1, + "end": 976.31, + "probability": 0.9899 + }, + { + "start": 976.84, + "end": 979.82, + "probability": 0.9295 + }, + { + "start": 980.64, + "end": 984.66, + "probability": 0.9668 + }, + { + "start": 985.28, + "end": 988.48, + "probability": 0.4211 + }, + { + "start": 989.54, + "end": 991.69, + "probability": 0.9242 + }, + { + "start": 992.06, + "end": 993.36, + "probability": 0.9944 + }, + { + "start": 994.12, + "end": 997.6, + "probability": 0.9276 + }, + { + "start": 998.42, + "end": 998.82, + "probability": 0.5553 + }, + { + "start": 998.88, + "end": 1000.08, + "probability": 0.8317 + }, + { + "start": 1000.12, + "end": 1002.16, + "probability": 0.9412 + }, + { + "start": 1002.96, + "end": 1008.46, + "probability": 0.9773 + }, + { + "start": 1009.24, + "end": 1012.16, + "probability": 0.7 + }, + { + "start": 1012.72, + "end": 1014.68, + "probability": 0.9899 + }, + { + "start": 1015.58, + "end": 1018.89, + "probability": 0.9901 + }, + { + "start": 1019.3, + "end": 1020.6, + "probability": 0.4979 + }, + { + "start": 1021.32, + "end": 1021.98, + "probability": 0.7167 + }, + { + "start": 1022.02, + "end": 1026.74, + "probability": 0.9954 + }, + { + "start": 1027.0, + "end": 1027.36, + "probability": 0.8038 + }, + { + "start": 1028.38, + "end": 1029.24, + "probability": 0.872 + }, + { + "start": 1030.12, + "end": 1030.8, + "probability": 0.4848 + }, + { + "start": 1031.0, + "end": 1033.22, + "probability": 0.6617 + }, + { + "start": 1033.26, + "end": 1034.98, + "probability": 0.9714 + }, + { + "start": 1035.82, + "end": 1036.42, + "probability": 0.8109 + }, + { + "start": 1036.54, + "end": 1039.76, + "probability": 0.9629 + }, + { + "start": 1040.18, + "end": 1041.12, + "probability": 0.7636 + }, + { + "start": 1041.14, + "end": 1043.8, + "probability": 0.9882 + }, + { + "start": 1043.96, + "end": 1047.76, + "probability": 0.9686 + }, + { + "start": 1047.76, + "end": 1054.26, + "probability": 0.9904 + }, + { + "start": 1055.32, + "end": 1061.38, + "probability": 0.9795 + }, + { + "start": 1061.38, + "end": 1065.94, + "probability": 0.9858 + }, + { + "start": 1066.36, + "end": 1069.8, + "probability": 0.8551 + }, + { + "start": 1069.8, + "end": 1075.1, + "probability": 0.9849 + }, + { + "start": 1075.1, + "end": 1076.54, + "probability": 0.4852 + }, + { + "start": 1076.62, + "end": 1079.88, + "probability": 0.9411 + }, + { + "start": 1080.04, + "end": 1083.44, + "probability": 0.6718 + }, + { + "start": 1083.58, + "end": 1084.94, + "probability": 0.993 + }, + { + "start": 1085.66, + "end": 1086.62, + "probability": 0.8468 + }, + { + "start": 1086.76, + "end": 1087.56, + "probability": 0.8027 + }, + { + "start": 1087.76, + "end": 1087.84, + "probability": 0.3836 + }, + { + "start": 1088.02, + "end": 1088.24, + "probability": 0.6502 + }, + { + "start": 1088.3, + "end": 1092.06, + "probability": 0.8853 + }, + { + "start": 1092.7, + "end": 1095.84, + "probability": 0.7014 + }, + { + "start": 1096.26, + "end": 1098.7, + "probability": 0.8853 + }, + { + "start": 1098.7, + "end": 1099.52, + "probability": 0.7221 + }, + { + "start": 1099.58, + "end": 1099.58, + "probability": 0.4645 + }, + { + "start": 1099.58, + "end": 1100.54, + "probability": 0.6677 + }, + { + "start": 1100.76, + "end": 1101.18, + "probability": 0.7511 + }, + { + "start": 1101.26, + "end": 1101.46, + "probability": 0.1335 + }, + { + "start": 1101.46, + "end": 1103.58, + "probability": 0.9824 + }, + { + "start": 1103.64, + "end": 1104.6, + "probability": 0.7175 + }, + { + "start": 1104.78, + "end": 1106.62, + "probability": 0.975 + }, + { + "start": 1106.92, + "end": 1113.58, + "probability": 0.7828 + }, + { + "start": 1114.04, + "end": 1115.76, + "probability": 0.5796 + }, + { + "start": 1115.82, + "end": 1123.24, + "probability": 0.9832 + }, + { + "start": 1123.42, + "end": 1123.78, + "probability": 0.7226 + }, + { + "start": 1123.78, + "end": 1127.32, + "probability": 0.6488 + }, + { + "start": 1127.52, + "end": 1130.02, + "probability": 0.9875 + }, + { + "start": 1130.02, + "end": 1133.02, + "probability": 0.9766 + }, + { + "start": 1133.34, + "end": 1136.72, + "probability": 0.9878 + }, + { + "start": 1136.72, + "end": 1141.02, + "probability": 0.801 + }, + { + "start": 1141.36, + "end": 1144.48, + "probability": 0.9772 + }, + { + "start": 1144.88, + "end": 1150.94, + "probability": 0.9814 + }, + { + "start": 1151.48, + "end": 1152.96, + "probability": 0.8176 + }, + { + "start": 1153.16, + "end": 1154.28, + "probability": 0.7393 + }, + { + "start": 1154.78, + "end": 1155.96, + "probability": 0.7614 + }, + { + "start": 1156.92, + "end": 1158.54, + "probability": 0.8842 + }, + { + "start": 1158.62, + "end": 1163.82, + "probability": 0.7047 + }, + { + "start": 1163.92, + "end": 1164.3, + "probability": 0.7863 + }, + { + "start": 1164.5, + "end": 1165.66, + "probability": 0.6034 + }, + { + "start": 1165.88, + "end": 1168.02, + "probability": 0.9857 + }, + { + "start": 1168.38, + "end": 1172.72, + "probability": 0.966 + }, + { + "start": 1172.72, + "end": 1177.78, + "probability": 0.9634 + }, + { + "start": 1178.1, + "end": 1181.74, + "probability": 0.9844 + }, + { + "start": 1181.9, + "end": 1184.64, + "probability": 0.8612 + }, + { + "start": 1184.98, + "end": 1187.94, + "probability": 0.9681 + }, + { + "start": 1188.74, + "end": 1192.6, + "probability": 0.9977 + }, + { + "start": 1193.14, + "end": 1200.62, + "probability": 0.8828 + }, + { + "start": 1200.78, + "end": 1201.66, + "probability": 0.7484 + }, + { + "start": 1202.04, + "end": 1207.88, + "probability": 0.9678 + }, + { + "start": 1208.24, + "end": 1209.82, + "probability": 0.662 + }, + { + "start": 1209.84, + "end": 1211.34, + "probability": 0.7148 + }, + { + "start": 1211.4, + "end": 1213.88, + "probability": 0.754 + }, + { + "start": 1214.18, + "end": 1216.01, + "probability": 0.9827 + }, + { + "start": 1216.8, + "end": 1220.16, + "probability": 0.7335 + }, + { + "start": 1220.18, + "end": 1221.6, + "probability": 0.9614 + }, + { + "start": 1221.64, + "end": 1226.02, + "probability": 0.9662 + }, + { + "start": 1226.16, + "end": 1226.16, + "probability": 0.2671 + }, + { + "start": 1226.16, + "end": 1228.22, + "probability": 0.8151 + }, + { + "start": 1228.68, + "end": 1230.98, + "probability": 0.7446 + }, + { + "start": 1231.2, + "end": 1233.04, + "probability": 0.9941 + }, + { + "start": 1233.1, + "end": 1234.88, + "probability": 0.9277 + }, + { + "start": 1234.96, + "end": 1236.56, + "probability": 0.9897 + }, + { + "start": 1236.72, + "end": 1238.9, + "probability": 0.9595 + }, + { + "start": 1238.96, + "end": 1239.7, + "probability": 0.9946 + }, + { + "start": 1240.34, + "end": 1241.01, + "probability": 0.9199 + }, + { + "start": 1241.84, + "end": 1243.0, + "probability": 0.9868 + }, + { + "start": 1243.08, + "end": 1246.76, + "probability": 0.9778 + }, + { + "start": 1247.26, + "end": 1250.02, + "probability": 0.8878 + }, + { + "start": 1250.52, + "end": 1250.94, + "probability": 0.3335 + }, + { + "start": 1251.04, + "end": 1255.38, + "probability": 0.9763 + }, + { + "start": 1255.38, + "end": 1259.68, + "probability": 0.6469 + }, + { + "start": 1259.94, + "end": 1261.3, + "probability": 0.9153 + }, + { + "start": 1261.38, + "end": 1262.42, + "probability": 0.9879 + }, + { + "start": 1263.0, + "end": 1263.78, + "probability": 0.3974 + }, + { + "start": 1263.98, + "end": 1263.98, + "probability": 0.2617 + }, + { + "start": 1263.98, + "end": 1265.24, + "probability": 0.6604 + }, + { + "start": 1268.52, + "end": 1268.8, + "probability": 0.5815 + }, + { + "start": 1268.84, + "end": 1269.66, + "probability": 0.5747 + }, + { + "start": 1269.68, + "end": 1270.44, + "probability": 0.684 + }, + { + "start": 1270.56, + "end": 1273.46, + "probability": 0.9602 + }, + { + "start": 1273.54, + "end": 1277.07, + "probability": 0.9097 + }, + { + "start": 1277.44, + "end": 1278.14, + "probability": 0.8496 + }, + { + "start": 1278.24, + "end": 1281.14, + "probability": 0.986 + }, + { + "start": 1282.16, + "end": 1285.3, + "probability": 0.9051 + }, + { + "start": 1286.5, + "end": 1289.56, + "probability": 0.9969 + }, + { + "start": 1289.6, + "end": 1293.2, + "probability": 0.9007 + }, + { + "start": 1293.28, + "end": 1294.5, + "probability": 0.5848 + }, + { + "start": 1295.06, + "end": 1295.66, + "probability": 0.5898 + }, + { + "start": 1296.6, + "end": 1297.82, + "probability": 0.6491 + }, + { + "start": 1299.21, + "end": 1308.42, + "probability": 0.9204 + }, + { + "start": 1308.96, + "end": 1311.06, + "probability": 0.8275 + }, + { + "start": 1311.44, + "end": 1316.56, + "probability": 0.9479 + }, + { + "start": 1316.86, + "end": 1317.62, + "probability": 0.6749 + }, + { + "start": 1318.42, + "end": 1322.36, + "probability": 0.965 + }, + { + "start": 1323.34, + "end": 1328.74, + "probability": 0.9964 + }, + { + "start": 1329.02, + "end": 1331.62, + "probability": 0.9718 + }, + { + "start": 1333.06, + "end": 1338.94, + "probability": 0.9651 + }, + { + "start": 1339.22, + "end": 1340.58, + "probability": 0.6357 + }, + { + "start": 1342.1, + "end": 1345.5, + "probability": 0.6709 + }, + { + "start": 1346.54, + "end": 1348.14, + "probability": 0.9892 + }, + { + "start": 1348.7, + "end": 1352.38, + "probability": 0.9434 + }, + { + "start": 1353.4, + "end": 1357.28, + "probability": 0.796 + }, + { + "start": 1358.04, + "end": 1363.92, + "probability": 0.9847 + }, + { + "start": 1365.0, + "end": 1365.54, + "probability": 0.9047 + }, + { + "start": 1368.42, + "end": 1368.86, + "probability": 0.5306 + }, + { + "start": 1369.48, + "end": 1370.52, + "probability": 0.8116 + }, + { + "start": 1370.58, + "end": 1372.42, + "probability": 0.987 + }, + { + "start": 1373.38, + "end": 1379.96, + "probability": 0.9615 + }, + { + "start": 1380.84, + "end": 1384.93, + "probability": 0.8633 + }, + { + "start": 1385.84, + "end": 1394.2, + "probability": 0.8977 + }, + { + "start": 1394.36, + "end": 1394.84, + "probability": 0.7365 + }, + { + "start": 1395.42, + "end": 1396.02, + "probability": 0.3504 + }, + { + "start": 1396.06, + "end": 1396.68, + "probability": 0.6816 + }, + { + "start": 1397.16, + "end": 1400.5, + "probability": 0.6627 + }, + { + "start": 1402.17, + "end": 1404.49, + "probability": 0.8101 + }, + { + "start": 1406.1, + "end": 1407.02, + "probability": 0.9675 + }, + { + "start": 1407.14, + "end": 1407.88, + "probability": 0.427 + }, + { + "start": 1407.96, + "end": 1409.7, + "probability": 0.9146 + }, + { + "start": 1410.74, + "end": 1412.14, + "probability": 0.9932 + }, + { + "start": 1412.28, + "end": 1413.36, + "probability": 0.9874 + }, + { + "start": 1413.68, + "end": 1415.54, + "probability": 0.8926 + }, + { + "start": 1415.66, + "end": 1416.4, + "probability": 0.9722 + }, + { + "start": 1418.4, + "end": 1420.18, + "probability": 0.9985 + }, + { + "start": 1420.3, + "end": 1424.44, + "probability": 0.7435 + }, + { + "start": 1424.9, + "end": 1427.64, + "probability": 0.9686 + }, + { + "start": 1427.72, + "end": 1428.66, + "probability": 0.7576 + }, + { + "start": 1429.14, + "end": 1430.7, + "probability": 0.9949 + }, + { + "start": 1431.78, + "end": 1434.8, + "probability": 0.7961 + }, + { + "start": 1434.82, + "end": 1437.36, + "probability": 0.9634 + }, + { + "start": 1437.88, + "end": 1439.64, + "probability": 0.8382 + }, + { + "start": 1440.7, + "end": 1442.94, + "probability": 0.9827 + }, + { + "start": 1443.02, + "end": 1445.02, + "probability": 0.8717 + }, + { + "start": 1445.4, + "end": 1446.36, + "probability": 0.728 + }, + { + "start": 1447.3, + "end": 1450.04, + "probability": 0.9856 + }, + { + "start": 1450.42, + "end": 1451.11, + "probability": 0.8916 + }, + { + "start": 1451.46, + "end": 1453.1, + "probability": 0.9966 + }, + { + "start": 1455.44, + "end": 1456.62, + "probability": 0.7296 + }, + { + "start": 1456.76, + "end": 1457.7, + "probability": 0.9771 + }, + { + "start": 1457.78, + "end": 1458.82, + "probability": 0.6577 + }, + { + "start": 1459.0, + "end": 1459.82, + "probability": 0.678 + }, + { + "start": 1460.52, + "end": 1461.84, + "probability": 0.8735 + }, + { + "start": 1462.02, + "end": 1463.3, + "probability": 0.9487 + }, + { + "start": 1463.4, + "end": 1464.66, + "probability": 0.9775 + }, + { + "start": 1465.5, + "end": 1466.42, + "probability": 0.8684 + }, + { + "start": 1466.74, + "end": 1467.26, + "probability": 0.9058 + }, + { + "start": 1467.36, + "end": 1467.96, + "probability": 0.9137 + }, + { + "start": 1468.28, + "end": 1469.94, + "probability": 0.9922 + }, + { + "start": 1470.68, + "end": 1472.85, + "probability": 0.7978 + }, + { + "start": 1473.54, + "end": 1476.5, + "probability": 0.988 + }, + { + "start": 1476.5, + "end": 1481.0, + "probability": 0.9735 + }, + { + "start": 1481.2, + "end": 1482.08, + "probability": 0.9103 + }, + { + "start": 1482.48, + "end": 1483.54, + "probability": 0.8229 + }, + { + "start": 1483.86, + "end": 1485.1, + "probability": 0.9865 + }, + { + "start": 1485.14, + "end": 1486.2, + "probability": 0.899 + }, + { + "start": 1486.62, + "end": 1487.98, + "probability": 0.9734 + }, + { + "start": 1488.44, + "end": 1488.88, + "probability": 0.9125 + }, + { + "start": 1488.98, + "end": 1490.14, + "probability": 0.8462 + }, + { + "start": 1490.86, + "end": 1491.95, + "probability": 0.9614 + }, + { + "start": 1492.86, + "end": 1495.78, + "probability": 0.98 + }, + { + "start": 1495.94, + "end": 1499.5, + "probability": 0.9568 + }, + { + "start": 1500.0, + "end": 1501.88, + "probability": 0.9897 + }, + { + "start": 1502.34, + "end": 1504.61, + "probability": 0.9854 + }, + { + "start": 1504.92, + "end": 1507.5, + "probability": 0.4945 + }, + { + "start": 1509.56, + "end": 1512.14, + "probability": 0.6502 + }, + { + "start": 1512.6, + "end": 1514.02, + "probability": 0.9893 + }, + { + "start": 1514.74, + "end": 1516.12, + "probability": 0.946 + }, + { + "start": 1516.7, + "end": 1520.51, + "probability": 0.9649 + }, + { + "start": 1521.5, + "end": 1522.06, + "probability": 0.161 + }, + { + "start": 1522.68, + "end": 1524.14, + "probability": 0.793 + }, + { + "start": 1524.62, + "end": 1525.4, + "probability": 0.7375 + }, + { + "start": 1525.6, + "end": 1526.4, + "probability": 0.641 + }, + { + "start": 1526.92, + "end": 1528.6, + "probability": 0.9347 + }, + { + "start": 1528.98, + "end": 1529.3, + "probability": 0.8164 + }, + { + "start": 1529.38, + "end": 1530.68, + "probability": 0.8721 + }, + { + "start": 1530.86, + "end": 1531.82, + "probability": 0.3232 + }, + { + "start": 1532.24, + "end": 1533.56, + "probability": 0.5798 + }, + { + "start": 1534.16, + "end": 1534.16, + "probability": 0.2264 + }, + { + "start": 1534.16, + "end": 1535.36, + "probability": 0.8554 + }, + { + "start": 1535.78, + "end": 1539.3, + "probability": 0.9987 + }, + { + "start": 1539.9, + "end": 1542.58, + "probability": 0.9902 + }, + { + "start": 1543.08, + "end": 1544.66, + "probability": 0.9519 + }, + { + "start": 1544.8, + "end": 1545.72, + "probability": 0.8296 + }, + { + "start": 1546.28, + "end": 1548.74, + "probability": 0.968 + }, + { + "start": 1549.04, + "end": 1551.66, + "probability": 0.981 + }, + { + "start": 1552.24, + "end": 1556.14, + "probability": 0.9791 + }, + { + "start": 1556.14, + "end": 1559.32, + "probability": 0.8961 + }, + { + "start": 1559.8, + "end": 1562.12, + "probability": 0.8968 + }, + { + "start": 1562.52, + "end": 1564.24, + "probability": 0.9385 + }, + { + "start": 1564.44, + "end": 1566.12, + "probability": 0.8911 + }, + { + "start": 1566.64, + "end": 1568.96, + "probability": 0.8052 + }, + { + "start": 1569.48, + "end": 1570.46, + "probability": 0.7621 + }, + { + "start": 1570.84, + "end": 1571.82, + "probability": 0.8659 + }, + { + "start": 1571.9, + "end": 1572.82, + "probability": 0.7459 + }, + { + "start": 1572.9, + "end": 1573.66, + "probability": 0.4654 + }, + { + "start": 1573.96, + "end": 1575.28, + "probability": 0.9416 + }, + { + "start": 1575.72, + "end": 1576.9, + "probability": 0.9355 + }, + { + "start": 1577.0, + "end": 1578.2, + "probability": 0.4971 + }, + { + "start": 1578.26, + "end": 1579.8, + "probability": 0.9546 + }, + { + "start": 1580.94, + "end": 1583.04, + "probability": 0.9971 + }, + { + "start": 1583.66, + "end": 1585.58, + "probability": 0.9263 + }, + { + "start": 1585.88, + "end": 1589.3, + "probability": 0.969 + }, + { + "start": 1589.6, + "end": 1590.2, + "probability": 0.8671 + }, + { + "start": 1590.24, + "end": 1590.78, + "probability": 0.9023 + }, + { + "start": 1590.88, + "end": 1591.56, + "probability": 0.9087 + }, + { + "start": 1591.76, + "end": 1596.6, + "probability": 0.9534 + }, + { + "start": 1597.1, + "end": 1599.02, + "probability": 0.0072 + }, + { + "start": 1600.55, + "end": 1605.78, + "probability": 0.4015 + }, + { + "start": 1606.44, + "end": 1611.68, + "probability": 0.9952 + }, + { + "start": 1611.82, + "end": 1613.3, + "probability": 0.9968 + }, + { + "start": 1613.48, + "end": 1616.0, + "probability": 0.783 + }, + { + "start": 1616.54, + "end": 1618.62, + "probability": 0.8018 + }, + { + "start": 1618.78, + "end": 1620.16, + "probability": 0.9065 + }, + { + "start": 1620.4, + "end": 1621.64, + "probability": 0.7479 + }, + { + "start": 1621.66, + "end": 1625.48, + "probability": 0.9767 + }, + { + "start": 1625.64, + "end": 1627.52, + "probability": 0.5769 + }, + { + "start": 1627.56, + "end": 1628.1, + "probability": 0.1691 + }, + { + "start": 1628.1, + "end": 1629.28, + "probability": 0.812 + }, + { + "start": 1629.34, + "end": 1632.92, + "probability": 0.9839 + }, + { + "start": 1633.16, + "end": 1633.38, + "probability": 0.519 + }, + { + "start": 1633.44, + "end": 1633.74, + "probability": 0.4578 + }, + { + "start": 1633.76, + "end": 1634.72, + "probability": 0.7151 + }, + { + "start": 1634.86, + "end": 1635.86, + "probability": 0.6515 + }, + { + "start": 1635.98, + "end": 1637.16, + "probability": 0.5442 + }, + { + "start": 1637.26, + "end": 1638.28, + "probability": 0.8657 + }, + { + "start": 1638.58, + "end": 1645.34, + "probability": 0.9167 + }, + { + "start": 1645.38, + "end": 1645.72, + "probability": 0.3041 + }, + { + "start": 1646.12, + "end": 1648.7, + "probability": 0.8734 + }, + { + "start": 1649.2, + "end": 1652.02, + "probability": 0.9129 + }, + { + "start": 1652.3, + "end": 1653.52, + "probability": 0.5374 + }, + { + "start": 1654.08, + "end": 1656.58, + "probability": 0.9428 + }, + { + "start": 1656.84, + "end": 1659.82, + "probability": 0.9809 + }, + { + "start": 1659.98, + "end": 1662.28, + "probability": 0.9777 + }, + { + "start": 1662.66, + "end": 1664.92, + "probability": 0.9397 + }, + { + "start": 1665.32, + "end": 1673.76, + "probability": 0.8994 + }, + { + "start": 1674.1, + "end": 1676.58, + "probability": 0.7671 + }, + { + "start": 1676.98, + "end": 1679.62, + "probability": 0.9718 + }, + { + "start": 1679.94, + "end": 1680.42, + "probability": 0.6839 + }, + { + "start": 1685.74, + "end": 1686.06, + "probability": 0.5298 + }, + { + "start": 1686.14, + "end": 1687.25, + "probability": 0.9272 + }, + { + "start": 1688.04, + "end": 1689.78, + "probability": 0.9238 + }, + { + "start": 1689.94, + "end": 1695.44, + "probability": 0.9622 + }, + { + "start": 1695.44, + "end": 1699.08, + "probability": 0.9867 + }, + { + "start": 1699.92, + "end": 1705.3, + "probability": 0.9585 + }, + { + "start": 1705.92, + "end": 1711.04, + "probability": 0.9967 + }, + { + "start": 1711.18, + "end": 1716.34, + "probability": 0.9967 + }, + { + "start": 1716.7, + "end": 1720.44, + "probability": 0.8413 + }, + { + "start": 1720.68, + "end": 1724.29, + "probability": 0.7921 + }, + { + "start": 1724.94, + "end": 1726.12, + "probability": 0.6951 + }, + { + "start": 1726.22, + "end": 1728.52, + "probability": 0.9838 + }, + { + "start": 1728.74, + "end": 1728.88, + "probability": 0.2482 + }, + { + "start": 1729.36, + "end": 1729.5, + "probability": 0.3887 + }, + { + "start": 1729.5, + "end": 1729.96, + "probability": 0.5668 + }, + { + "start": 1730.56, + "end": 1732.78, + "probability": 0.9528 + }, + { + "start": 1733.5, + "end": 1737.1, + "probability": 0.7397 + }, + { + "start": 1737.26, + "end": 1741.0, + "probability": 0.5665 + }, + { + "start": 1741.12, + "end": 1742.0, + "probability": 0.7733 + }, + { + "start": 1743.62, + "end": 1746.54, + "probability": 0.4207 + }, + { + "start": 1746.7, + "end": 1746.86, + "probability": 0.0239 + }, + { + "start": 1746.88, + "end": 1747.96, + "probability": 0.796 + }, + { + "start": 1747.98, + "end": 1749.52, + "probability": 0.9658 + }, + { + "start": 1749.58, + "end": 1753.35, + "probability": 0.9891 + }, + { + "start": 1753.64, + "end": 1754.08, + "probability": 0.276 + }, + { + "start": 1754.46, + "end": 1754.98, + "probability": 0.7391 + }, + { + "start": 1755.02, + "end": 1755.64, + "probability": 0.8658 + }, + { + "start": 1755.8, + "end": 1759.6, + "probability": 0.9243 + }, + { + "start": 1759.78, + "end": 1761.2, + "probability": 0.9474 + }, + { + "start": 1761.72, + "end": 1762.94, + "probability": 0.9722 + }, + { + "start": 1764.02, + "end": 1771.34, + "probability": 0.98 + }, + { + "start": 1772.16, + "end": 1774.28, + "probability": 0.7705 + }, + { + "start": 1776.24, + "end": 1781.86, + "probability": 0.9966 + }, + { + "start": 1782.64, + "end": 1787.86, + "probability": 0.97 + }, + { + "start": 1788.54, + "end": 1790.16, + "probability": 0.9746 + }, + { + "start": 1791.1, + "end": 1793.72, + "probability": 0.9006 + }, + { + "start": 1794.52, + "end": 1803.02, + "probability": 0.9888 + }, + { + "start": 1803.02, + "end": 1807.66, + "probability": 0.8518 + }, + { + "start": 1808.06, + "end": 1809.02, + "probability": 0.7548 + }, + { + "start": 1809.24, + "end": 1810.12, + "probability": 0.9312 + }, + { + "start": 1810.54, + "end": 1811.28, + "probability": 0.7096 + }, + { + "start": 1811.32, + "end": 1816.36, + "probability": 0.9438 + }, + { + "start": 1816.72, + "end": 1818.92, + "probability": 0.9572 + }, + { + "start": 1819.28, + "end": 1820.4, + "probability": 0.9048 + }, + { + "start": 1820.48, + "end": 1823.5, + "probability": 0.9843 + }, + { + "start": 1824.02, + "end": 1829.28, + "probability": 0.9898 + }, + { + "start": 1829.9, + "end": 1834.0, + "probability": 0.7588 + }, + { + "start": 1834.0, + "end": 1835.76, + "probability": 0.8936 + }, + { + "start": 1844.82, + "end": 1845.36, + "probability": 0.4664 + }, + { + "start": 1847.37, + "end": 1851.1, + "probability": 0.9692 + }, + { + "start": 1851.1, + "end": 1854.62, + "probability": 0.9977 + }, + { + "start": 1855.38, + "end": 1861.32, + "probability": 0.9777 + }, + { + "start": 1861.52, + "end": 1862.98, + "probability": 0.9492 + }, + { + "start": 1863.7, + "end": 1866.08, + "probability": 0.4282 + }, + { + "start": 1866.4, + "end": 1870.84, + "probability": 0.9705 + }, + { + "start": 1871.74, + "end": 1876.19, + "probability": 0.9689 + }, + { + "start": 1877.58, + "end": 1879.6, + "probability": 0.9956 + }, + { + "start": 1879.78, + "end": 1884.66, + "probability": 0.9858 + }, + { + "start": 1884.98, + "end": 1886.3, + "probability": 0.6157 + }, + { + "start": 1886.58, + "end": 1887.28, + "probability": 0.6792 + }, + { + "start": 1887.56, + "end": 1890.16, + "probability": 0.5363 + }, + { + "start": 1890.34, + "end": 1891.78, + "probability": 0.592 + }, + { + "start": 1891.78, + "end": 1899.28, + "probability": 0.9685 + }, + { + "start": 1899.86, + "end": 1903.34, + "probability": 0.9395 + }, + { + "start": 1903.64, + "end": 1904.26, + "probability": 0.8738 + }, + { + "start": 1905.92, + "end": 1911.34, + "probability": 0.9568 + }, + { + "start": 1911.58, + "end": 1912.56, + "probability": 0.6047 + }, + { + "start": 1913.02, + "end": 1916.66, + "probability": 0.9662 + }, + { + "start": 1918.96, + "end": 1922.3, + "probability": 0.723 + }, + { + "start": 1922.32, + "end": 1922.62, + "probability": 0.4534 + }, + { + "start": 1922.68, + "end": 1923.2, + "probability": 0.3072 + }, + { + "start": 1923.22, + "end": 1927.46, + "probability": 0.8803 + }, + { + "start": 1928.44, + "end": 1932.15, + "probability": 0.9982 + }, + { + "start": 1933.48, + "end": 1935.58, + "probability": 0.9812 + }, + { + "start": 1938.22, + "end": 1942.58, + "probability": 0.9951 + }, + { + "start": 1943.22, + "end": 1945.06, + "probability": 0.8751 + }, + { + "start": 1945.7, + "end": 1948.04, + "probability": 0.7617 + }, + { + "start": 1949.34, + "end": 1951.46, + "probability": 0.5431 + }, + { + "start": 1951.7, + "end": 1954.14, + "probability": 0.5698 + }, + { + "start": 1957.34, + "end": 1959.32, + "probability": 0.2159 + }, + { + "start": 1959.32, + "end": 1962.92, + "probability": 0.9377 + }, + { + "start": 1963.0, + "end": 1963.92, + "probability": 0.9526 + }, + { + "start": 1964.32, + "end": 1967.5, + "probability": 0.3704 + }, + { + "start": 1967.62, + "end": 1969.6, + "probability": 0.9442 + }, + { + "start": 1970.04, + "end": 1971.06, + "probability": 0.8401 + }, + { + "start": 1971.28, + "end": 1976.5, + "probability": 0.8287 + }, + { + "start": 1979.82, + "end": 1981.1, + "probability": 0.0702 + }, + { + "start": 1981.64, + "end": 1984.06, + "probability": 0.9784 + }, + { + "start": 1985.62, + "end": 1988.1, + "probability": 0.9614 + }, + { + "start": 1996.9, + "end": 1998.14, + "probability": 0.9997 + }, + { + "start": 1999.5, + "end": 2007.3, + "probability": 0.9766 + }, + { + "start": 2007.92, + "end": 2011.44, + "probability": 0.9261 + }, + { + "start": 2013.2, + "end": 2016.46, + "probability": 0.9929 + }, + { + "start": 2018.2, + "end": 2022.7, + "probability": 0.9717 + }, + { + "start": 2023.01, + "end": 2028.0, + "probability": 0.99 + }, + { + "start": 2032.46, + "end": 2033.55, + "probability": 0.6238 + }, + { + "start": 2036.22, + "end": 2046.06, + "probability": 0.9893 + }, + { + "start": 2048.76, + "end": 2056.86, + "probability": 0.9987 + }, + { + "start": 2056.86, + "end": 2062.86, + "probability": 0.9988 + }, + { + "start": 2065.46, + "end": 2067.94, + "probability": 0.9427 + }, + { + "start": 2082.04, + "end": 2082.14, + "probability": 0.6461 + }, + { + "start": 2083.54, + "end": 2084.02, + "probability": 0.3039 + }, + { + "start": 2085.9, + "end": 2090.54, + "probability": 0.7476 + }, + { + "start": 2090.64, + "end": 2091.46, + "probability": 0.665 + }, + { + "start": 2091.46, + "end": 2093.78, + "probability": 0.96 + }, + { + "start": 2093.84, + "end": 2094.94, + "probability": 0.6325 + }, + { + "start": 2094.94, + "end": 2096.54, + "probability": 0.8924 + }, + { + "start": 2096.62, + "end": 2099.48, + "probability": 0.675 + }, + { + "start": 2100.12, + "end": 2102.28, + "probability": 0.9166 + }, + { + "start": 2103.12, + "end": 2105.6, + "probability": 0.9841 + }, + { + "start": 2106.54, + "end": 2108.74, + "probability": 0.9896 + }, + { + "start": 2109.16, + "end": 2110.96, + "probability": 0.3994 + }, + { + "start": 2111.38, + "end": 2113.38, + "probability": 0.8347 + }, + { + "start": 2115.28, + "end": 2115.82, + "probability": 0.109 + }, + { + "start": 2115.82, + "end": 2116.4, + "probability": 0.3022 + }, + { + "start": 2116.4, + "end": 2117.38, + "probability": 0.8848 + }, + { + "start": 2117.7, + "end": 2120.58, + "probability": 0.9799 + }, + { + "start": 2120.75, + "end": 2122.41, + "probability": 0.949 + }, + { + "start": 2122.7, + "end": 2125.42, + "probability": 0.9712 + }, + { + "start": 2125.64, + "end": 2128.84, + "probability": 0.9561 + }, + { + "start": 2129.0, + "end": 2131.52, + "probability": 0.7498 + }, + { + "start": 2133.1, + "end": 2138.58, + "probability": 0.8133 + }, + { + "start": 2140.26, + "end": 2142.92, + "probability": 0.6115 + }, + { + "start": 2144.94, + "end": 2146.62, + "probability": 0.8572 + }, + { + "start": 2147.72, + "end": 2157.72, + "probability": 0.86 + }, + { + "start": 2158.14, + "end": 2162.76, + "probability": 0.9932 + }, + { + "start": 2166.58, + "end": 2171.68, + "probability": 0.9917 + }, + { + "start": 2171.68, + "end": 2177.64, + "probability": 0.9917 + }, + { + "start": 2182.2, + "end": 2186.91, + "probability": 0.897 + }, + { + "start": 2190.66, + "end": 2195.16, + "probability": 0.9897 + }, + { + "start": 2196.7, + "end": 2201.94, + "probability": 0.9661 + }, + { + "start": 2202.88, + "end": 2205.14, + "probability": 0.8304 + }, + { + "start": 2207.38, + "end": 2212.7, + "probability": 0.8534 + }, + { + "start": 2213.46, + "end": 2215.22, + "probability": 0.9331 + }, + { + "start": 2216.0, + "end": 2217.08, + "probability": 0.6483 + }, + { + "start": 2218.0, + "end": 2222.0, + "probability": 0.9731 + }, + { + "start": 2222.74, + "end": 2225.8, + "probability": 0.9557 + }, + { + "start": 2227.8, + "end": 2229.5, + "probability": 0.9916 + }, + { + "start": 2230.24, + "end": 2241.12, + "probability": 0.9878 + }, + { + "start": 2241.82, + "end": 2242.66, + "probability": 0.4546 + }, + { + "start": 2243.18, + "end": 2247.1, + "probability": 0.8572 + }, + { + "start": 2251.32, + "end": 2254.04, + "probability": 0.9701 + }, + { + "start": 2254.32, + "end": 2255.14, + "probability": 0.8685 + }, + { + "start": 2255.26, + "end": 2256.01, + "probability": 0.9613 + }, + { + "start": 2258.1, + "end": 2260.88, + "probability": 0.1189 + }, + { + "start": 2261.22, + "end": 2262.86, + "probability": 0.8498 + }, + { + "start": 2264.56, + "end": 2267.7, + "probability": 0.7407 + }, + { + "start": 2268.18, + "end": 2269.92, + "probability": 0.9115 + }, + { + "start": 2270.24, + "end": 2273.76, + "probability": 0.9937 + }, + { + "start": 2275.96, + "end": 2277.72, + "probability": 0.804 + }, + { + "start": 2278.28, + "end": 2280.24, + "probability": 0.8538 + }, + { + "start": 2281.08, + "end": 2284.16, + "probability": 0.9269 + }, + { + "start": 2287.4, + "end": 2291.18, + "probability": 0.9951 + }, + { + "start": 2291.18, + "end": 2293.88, + "probability": 0.9996 + }, + { + "start": 2294.51, + "end": 2301.1, + "probability": 0.8378 + }, + { + "start": 2303.14, + "end": 2304.02, + "probability": 0.5295 + }, + { + "start": 2305.56, + "end": 2311.74, + "probability": 0.9679 + }, + { + "start": 2312.66, + "end": 2313.95, + "probability": 0.5789 + }, + { + "start": 2316.06, + "end": 2319.98, + "probability": 0.993 + }, + { + "start": 2319.98, + "end": 2325.42, + "probability": 0.8918 + }, + { + "start": 2326.56, + "end": 2329.64, + "probability": 0.9755 + }, + { + "start": 2329.64, + "end": 2332.3, + "probability": 0.9958 + }, + { + "start": 2333.34, + "end": 2337.3, + "probability": 0.8767 + }, + { + "start": 2337.3, + "end": 2342.68, + "probability": 0.993 + }, + { + "start": 2344.28, + "end": 2344.77, + "probability": 0.9756 + }, + { + "start": 2346.48, + "end": 2347.22, + "probability": 0.4948 + }, + { + "start": 2347.98, + "end": 2349.56, + "probability": 0.6661 + }, + { + "start": 2351.2, + "end": 2355.0, + "probability": 0.99 + }, + { + "start": 2355.66, + "end": 2359.58, + "probability": 0.991 + }, + { + "start": 2359.64, + "end": 2362.34, + "probability": 0.9902 + }, + { + "start": 2362.4, + "end": 2364.24, + "probability": 0.6121 + }, + { + "start": 2364.96, + "end": 2367.68, + "probability": 0.8697 + }, + { + "start": 2368.14, + "end": 2370.2, + "probability": 0.017 + }, + { + "start": 2370.6, + "end": 2376.64, + "probability": 0.9527 + }, + { + "start": 2376.82, + "end": 2377.54, + "probability": 0.6087 + }, + { + "start": 2377.86, + "end": 2379.84, + "probability": 0.5309 + }, + { + "start": 2384.62, + "end": 2386.58, + "probability": 0.6354 + }, + { + "start": 2386.76, + "end": 2390.62, + "probability": 0.9507 + }, + { + "start": 2390.92, + "end": 2391.64, + "probability": 0.5355 + }, + { + "start": 2391.72, + "end": 2394.3, + "probability": 0.8491 + }, + { + "start": 2394.5, + "end": 2397.08, + "probability": 0.9917 + }, + { + "start": 2397.36, + "end": 2399.79, + "probability": 0.9409 + }, + { + "start": 2400.08, + "end": 2401.06, + "probability": 0.8831 + }, + { + "start": 2401.62, + "end": 2404.7, + "probability": 0.9962 + }, + { + "start": 2405.36, + "end": 2407.52, + "probability": 0.9977 + }, + { + "start": 2408.58, + "end": 2412.8, + "probability": 0.9893 + }, + { + "start": 2412.8, + "end": 2416.58, + "probability": 0.9962 + }, + { + "start": 2417.76, + "end": 2419.3, + "probability": 0.9808 + }, + { + "start": 2420.24, + "end": 2421.34, + "probability": 0.9845 + }, + { + "start": 2422.22, + "end": 2424.52, + "probability": 0.7796 + }, + { + "start": 2425.64, + "end": 2426.68, + "probability": 0.8056 + }, + { + "start": 2426.92, + "end": 2432.14, + "probability": 0.8889 + }, + { + "start": 2433.52, + "end": 2436.23, + "probability": 0.8614 + }, + { + "start": 2437.26, + "end": 2439.68, + "probability": 0.9675 + }, + { + "start": 2440.4, + "end": 2446.34, + "probability": 0.9857 + }, + { + "start": 2448.5, + "end": 2451.94, + "probability": 0.9956 + }, + { + "start": 2454.26, + "end": 2455.52, + "probability": 0.7163 + }, + { + "start": 2455.84, + "end": 2461.66, + "probability": 0.9546 + }, + { + "start": 2463.0, + "end": 2466.54, + "probability": 0.986 + }, + { + "start": 2466.84, + "end": 2469.9, + "probability": 0.6873 + }, + { + "start": 2470.06, + "end": 2471.38, + "probability": 0.7224 + }, + { + "start": 2471.56, + "end": 2472.78, + "probability": 0.9233 + }, + { + "start": 2472.86, + "end": 2474.9, + "probability": 0.9665 + }, + { + "start": 2476.04, + "end": 2479.42, + "probability": 0.8567 + }, + { + "start": 2480.4, + "end": 2481.76, + "probability": 0.981 + }, + { + "start": 2481.96, + "end": 2482.7, + "probability": 0.8154 + }, + { + "start": 2482.84, + "end": 2484.02, + "probability": 0.9316 + }, + { + "start": 2484.48, + "end": 2488.44, + "probability": 0.9941 + }, + { + "start": 2488.82, + "end": 2491.54, + "probability": 0.9887 + }, + { + "start": 2492.08, + "end": 2498.32, + "probability": 0.9755 + }, + { + "start": 2498.92, + "end": 2502.08, + "probability": 0.7471 + }, + { + "start": 2502.2, + "end": 2506.76, + "probability": 0.959 + }, + { + "start": 2507.48, + "end": 2511.36, + "probability": 0.7736 + }, + { + "start": 2511.98, + "end": 2514.66, + "probability": 0.9699 + }, + { + "start": 2515.46, + "end": 2518.94, + "probability": 0.9743 + }, + { + "start": 2519.92, + "end": 2522.3, + "probability": 0.6565 + }, + { + "start": 2523.04, + "end": 2526.82, + "probability": 0.9929 + }, + { + "start": 2527.66, + "end": 2530.96, + "probability": 0.9589 + }, + { + "start": 2531.18, + "end": 2535.5, + "probability": 0.9766 + }, + { + "start": 2535.6, + "end": 2536.46, + "probability": 0.7192 + }, + { + "start": 2536.76, + "end": 2538.54, + "probability": 0.995 + }, + { + "start": 2539.16, + "end": 2541.98, + "probability": 0.8042 + }, + { + "start": 2542.78, + "end": 2545.94, + "probability": 0.8532 + }, + { + "start": 2546.42, + "end": 2547.96, + "probability": 0.866 + }, + { + "start": 2548.14, + "end": 2549.8, + "probability": 0.9772 + }, + { + "start": 2550.44, + "end": 2552.2, + "probability": 0.9949 + }, + { + "start": 2552.78, + "end": 2554.04, + "probability": 0.907 + }, + { + "start": 2555.46, + "end": 2560.1, + "probability": 0.996 + }, + { + "start": 2560.88, + "end": 2562.2, + "probability": 0.6457 + }, + { + "start": 2562.39, + "end": 2567.04, + "probability": 0.8225 + }, + { + "start": 2567.76, + "end": 2571.72, + "probability": 0.9478 + }, + { + "start": 2572.14, + "end": 2573.98, + "probability": 0.9724 + }, + { + "start": 2574.5, + "end": 2575.9, + "probability": 0.3884 + }, + { + "start": 2577.06, + "end": 2577.22, + "probability": 0.242 + }, + { + "start": 2577.34, + "end": 2578.44, + "probability": 0.4306 + }, + { + "start": 2578.44, + "end": 2579.1, + "probability": 0.8059 + }, + { + "start": 2579.36, + "end": 2582.44, + "probability": 0.7065 + }, + { + "start": 2582.66, + "end": 2584.1, + "probability": 0.6965 + }, + { + "start": 2584.22, + "end": 2585.8, + "probability": 0.9414 + }, + { + "start": 2586.08, + "end": 2587.68, + "probability": 0.9621 + }, + { + "start": 2589.35, + "end": 2590.4, + "probability": 0.4767 + }, + { + "start": 2590.4, + "end": 2591.1, + "probability": 0.4935 + }, + { + "start": 2591.2, + "end": 2592.08, + "probability": 0.5754 + }, + { + "start": 2592.32, + "end": 2598.08, + "probability": 0.1854 + }, + { + "start": 2598.08, + "end": 2602.68, + "probability": 0.8775 + }, + { + "start": 2605.21, + "end": 2611.42, + "probability": 0.976 + }, + { + "start": 2611.48, + "end": 2613.66, + "probability": 0.9874 + }, + { + "start": 2615.44, + "end": 2617.34, + "probability": 0.9893 + }, + { + "start": 2617.5, + "end": 2621.04, + "probability": 0.9901 + }, + { + "start": 2621.04, + "end": 2621.28, + "probability": 0.0346 + }, + { + "start": 2621.28, + "end": 2622.06, + "probability": 0.7203 + }, + { + "start": 2622.38, + "end": 2629.1, + "probability": 0.9956 + }, + { + "start": 2629.1, + "end": 2632.86, + "probability": 0.9954 + }, + { + "start": 2633.4, + "end": 2638.48, + "probability": 0.7483 + }, + { + "start": 2639.54, + "end": 2641.24, + "probability": 0.7267 + }, + { + "start": 2641.76, + "end": 2643.5, + "probability": 0.8403 + }, + { + "start": 2643.78, + "end": 2649.54, + "probability": 0.2834 + }, + { + "start": 2652.54, + "end": 2654.24, + "probability": 0.3466 + }, + { + "start": 2654.24, + "end": 2655.32, + "probability": 0.3295 + }, + { + "start": 2655.66, + "end": 2657.56, + "probability": 0.7263 + }, + { + "start": 2658.04, + "end": 2659.88, + "probability": 0.0303 + }, + { + "start": 2659.88, + "end": 2665.84, + "probability": 0.795 + }, + { + "start": 2667.72, + "end": 2671.62, + "probability": 0.2122 + }, + { + "start": 2671.64, + "end": 2672.34, + "probability": 0.3662 + }, + { + "start": 2672.94, + "end": 2674.04, + "probability": 0.5937 + }, + { + "start": 2674.18, + "end": 2678.94, + "probability": 0.5659 + }, + { + "start": 2679.2, + "end": 2680.9, + "probability": 0.4745 + }, + { + "start": 2681.46, + "end": 2682.7, + "probability": 0.6135 + }, + { + "start": 2683.36, + "end": 2684.08, + "probability": 0.6442 + }, + { + "start": 2684.94, + "end": 2686.14, + "probability": 0.3315 + }, + { + "start": 2686.2, + "end": 2687.4, + "probability": 0.0071 + }, + { + "start": 2687.52, + "end": 2688.04, + "probability": 0.084 + }, + { + "start": 2688.72, + "end": 2690.44, + "probability": 0.831 + }, + { + "start": 2692.36, + "end": 2693.88, + "probability": 0.7413 + }, + { + "start": 2694.04, + "end": 2694.9, + "probability": 0.8344 + }, + { + "start": 2695.12, + "end": 2701.38, + "probability": 0.8222 + }, + { + "start": 2701.38, + "end": 2706.38, + "probability": 0.8484 + }, + { + "start": 2706.86, + "end": 2709.24, + "probability": 0.5322 + }, + { + "start": 2709.38, + "end": 2710.12, + "probability": 0.6814 + }, + { + "start": 2710.16, + "end": 2713.48, + "probability": 0.9196 + }, + { + "start": 2716.3, + "end": 2719.52, + "probability": 0.8591 + }, + { + "start": 2720.06, + "end": 2721.18, + "probability": 0.8464 + }, + { + "start": 2721.18, + "end": 2723.56, + "probability": 0.2098 + }, + { + "start": 2723.74, + "end": 2724.86, + "probability": 0.9956 + }, + { + "start": 2725.06, + "end": 2728.48, + "probability": 0.8647 + }, + { + "start": 2729.48, + "end": 2732.94, + "probability": 0.9379 + }, + { + "start": 2733.84, + "end": 2737.24, + "probability": 0.9635 + }, + { + "start": 2737.74, + "end": 2739.08, + "probability": 0.7997 + }, + { + "start": 2739.58, + "end": 2740.77, + "probability": 0.9597 + }, + { + "start": 2741.7, + "end": 2742.78, + "probability": 0.9584 + }, + { + "start": 2744.04, + "end": 2750.74, + "probability": 0.7801 + }, + { + "start": 2752.68, + "end": 2753.3, + "probability": 0.0131 + }, + { + "start": 2753.3, + "end": 2754.72, + "probability": 0.4532 + }, + { + "start": 2755.04, + "end": 2758.38, + "probability": 0.7278 + }, + { + "start": 2758.42, + "end": 2759.9, + "probability": 0.6064 + }, + { + "start": 2760.02, + "end": 2767.18, + "probability": 0.8364 + }, + { + "start": 2767.48, + "end": 2770.1, + "probability": 0.9533 + }, + { + "start": 2770.72, + "end": 2772.44, + "probability": 0.8003 + }, + { + "start": 2772.7, + "end": 2773.62, + "probability": 0.6779 + }, + { + "start": 2773.62, + "end": 2777.82, + "probability": 0.9812 + }, + { + "start": 2778.36, + "end": 2780.06, + "probability": 0.5984 + }, + { + "start": 2780.26, + "end": 2781.26, + "probability": 0.7279 + }, + { + "start": 2781.3, + "end": 2783.76, + "probability": 0.8284 + }, + { + "start": 2783.88, + "end": 2784.48, + "probability": 0.6331 + }, + { + "start": 2784.48, + "end": 2790.1, + "probability": 0.9726 + }, + { + "start": 2790.14, + "end": 2792.82, + "probability": 0.7626 + }, + { + "start": 2792.86, + "end": 2794.22, + "probability": 0.4415 + }, + { + "start": 2794.28, + "end": 2796.3, + "probability": 0.9185 + }, + { + "start": 2796.34, + "end": 2796.82, + "probability": 0.3679 + }, + { + "start": 2796.82, + "end": 2797.84, + "probability": 0.5714 + }, + { + "start": 2797.98, + "end": 2799.74, + "probability": 0.8765 + }, + { + "start": 2799.8, + "end": 2800.36, + "probability": 0.6691 + }, + { + "start": 2800.38, + "end": 2810.7, + "probability": 0.8862 + }, + { + "start": 2811.06, + "end": 2813.44, + "probability": 0.8699 + }, + { + "start": 2815.48, + "end": 2818.02, + "probability": 0.6603 + }, + { + "start": 2818.52, + "end": 2819.66, + "probability": 0.755 + }, + { + "start": 2819.84, + "end": 2821.5, + "probability": 0.844 + }, + { + "start": 2821.68, + "end": 2823.58, + "probability": 0.8143 + }, + { + "start": 2823.84, + "end": 2827.78, + "probability": 0.7529 + }, + { + "start": 2828.06, + "end": 2830.14, + "probability": 0.988 + }, + { + "start": 2831.08, + "end": 2834.1, + "probability": 0.8594 + }, + { + "start": 2834.36, + "end": 2834.96, + "probability": 0.1149 + }, + { + "start": 2835.12, + "end": 2837.58, + "probability": 0.8631 + }, + { + "start": 2837.93, + "end": 2844.06, + "probability": 0.9958 + }, + { + "start": 2844.06, + "end": 2849.54, + "probability": 0.9983 + }, + { + "start": 2849.7, + "end": 2854.26, + "probability": 0.6421 + }, + { + "start": 2854.36, + "end": 2854.36, + "probability": 0.1465 + }, + { + "start": 2854.36, + "end": 2857.8, + "probability": 0.9025 + }, + { + "start": 2858.68, + "end": 2866.34, + "probability": 0.9365 + }, + { + "start": 2867.64, + "end": 2874.14, + "probability": 0.9456 + }, + { + "start": 2874.5, + "end": 2876.67, + "probability": 0.9889 + }, + { + "start": 2877.46, + "end": 2882.22, + "probability": 0.9976 + }, + { + "start": 2882.8, + "end": 2885.08, + "probability": 0.9426 + }, + { + "start": 2885.74, + "end": 2886.64, + "probability": 0.7053 + }, + { + "start": 2886.78, + "end": 2893.3, + "probability": 0.9819 + }, + { + "start": 2893.66, + "end": 2895.3, + "probability": 0.909 + }, + { + "start": 2895.46, + "end": 2895.94, + "probability": 0.712 + }, + { + "start": 2896.06, + "end": 2898.06, + "probability": 0.9651 + }, + { + "start": 2898.96, + "end": 2900.42, + "probability": 0.6741 + }, + { + "start": 2900.66, + "end": 2904.46, + "probability": 0.9985 + }, + { + "start": 2904.46, + "end": 2908.34, + "probability": 0.9914 + }, + { + "start": 2909.0, + "end": 2910.18, + "probability": 0.9404 + }, + { + "start": 2910.22, + "end": 2912.54, + "probability": 0.9841 + }, + { + "start": 2912.6, + "end": 2917.26, + "probability": 0.9883 + }, + { + "start": 2918.12, + "end": 2924.04, + "probability": 0.9956 + }, + { + "start": 2924.54, + "end": 2925.9, + "probability": 0.7533 + }, + { + "start": 2926.18, + "end": 2928.84, + "probability": 0.9154 + }, + { + "start": 2929.18, + "end": 2931.35, + "probability": 0.8872 + }, + { + "start": 2931.72, + "end": 2936.63, + "probability": 0.91 + }, + { + "start": 2941.46, + "end": 2946.02, + "probability": 0.8305 + }, + { + "start": 2946.3, + "end": 2947.76, + "probability": 0.8096 + }, + { + "start": 2947.98, + "end": 2949.96, + "probability": 0.8394 + }, + { + "start": 2950.16, + "end": 2955.88, + "probability": 0.9292 + }, + { + "start": 2957.5, + "end": 2959.92, + "probability": 0.9963 + }, + { + "start": 2960.98, + "end": 2962.4, + "probability": 0.7059 + }, + { + "start": 2965.26, + "end": 2966.52, + "probability": 0.1658 + }, + { + "start": 2967.4, + "end": 2967.76, + "probability": 0.1416 + }, + { + "start": 2968.1, + "end": 2972.96, + "probability": 0.1989 + }, + { + "start": 2972.98, + "end": 2973.68, + "probability": 0.3399 + }, + { + "start": 2973.68, + "end": 2973.86, + "probability": 0.1479 + }, + { + "start": 2976.3, + "end": 2977.34, + "probability": 0.0449 + }, + { + "start": 2986.83, + "end": 2991.98, + "probability": 0.0617 + }, + { + "start": 3004.42, + "end": 3010.96, + "probability": 0.6589 + }, + { + "start": 3011.56, + "end": 3014.18, + "probability": 0.9863 + }, + { + "start": 3014.96, + "end": 3017.38, + "probability": 0.6476 + }, + { + "start": 3017.82, + "end": 3022.3, + "probability": 0.8406 + }, + { + "start": 3022.66, + "end": 3026.8, + "probability": 0.7222 + }, + { + "start": 3027.2, + "end": 3032.42, + "probability": 0.8841 + }, + { + "start": 3032.72, + "end": 3034.66, + "probability": 0.9342 + }, + { + "start": 3037.94, + "end": 3041.8, + "probability": 0.2455 + }, + { + "start": 3042.82, + "end": 3043.58, + "probability": 0.6457 + }, + { + "start": 3043.62, + "end": 3045.46, + "probability": 0.9028 + }, + { + "start": 3045.74, + "end": 3046.7, + "probability": 0.6823 + }, + { + "start": 3046.82, + "end": 3049.88, + "probability": 0.7164 + }, + { + "start": 3050.64, + "end": 3053.71, + "probability": 0.9944 + }, + { + "start": 3053.96, + "end": 3057.08, + "probability": 0.9952 + }, + { + "start": 3057.26, + "end": 3060.46, + "probability": 0.7899 + }, + { + "start": 3061.18, + "end": 3070.26, + "probability": 0.9536 + }, + { + "start": 3071.24, + "end": 3074.86, + "probability": 0.9739 + }, + { + "start": 3075.6, + "end": 3079.82, + "probability": 0.9707 + }, + { + "start": 3080.56, + "end": 3081.78, + "probability": 0.9736 + }, + { + "start": 3082.42, + "end": 3086.52, + "probability": 0.903 + }, + { + "start": 3086.64, + "end": 3087.73, + "probability": 0.6729 + }, + { + "start": 3088.72, + "end": 3093.56, + "probability": 0.8183 + }, + { + "start": 3094.08, + "end": 3098.48, + "probability": 0.7599 + }, + { + "start": 3099.48, + "end": 3103.86, + "probability": 0.9091 + }, + { + "start": 3104.46, + "end": 3110.54, + "probability": 0.906 + }, + { + "start": 3111.28, + "end": 3114.46, + "probability": 0.7767 + }, + { + "start": 3115.14, + "end": 3119.08, + "probability": 0.9834 + }, + { + "start": 3119.08, + "end": 3123.96, + "probability": 0.9922 + }, + { + "start": 3124.6, + "end": 3127.84, + "probability": 0.9841 + }, + { + "start": 3127.84, + "end": 3132.48, + "probability": 0.9907 + }, + { + "start": 3133.18, + "end": 3140.26, + "probability": 0.9906 + }, + { + "start": 3140.7, + "end": 3143.46, + "probability": 0.9183 + }, + { + "start": 3144.1, + "end": 3149.3, + "probability": 0.9976 + }, + { + "start": 3149.9, + "end": 3154.54, + "probability": 0.9966 + }, + { + "start": 3154.9, + "end": 3155.69, + "probability": 0.8596 + }, + { + "start": 3156.72, + "end": 3162.74, + "probability": 0.9653 + }, + { + "start": 3163.54, + "end": 3167.94, + "probability": 0.9559 + }, + { + "start": 3168.48, + "end": 3170.8, + "probability": 0.8044 + }, + { + "start": 3171.56, + "end": 3172.73, + "probability": 0.8788 + }, + { + "start": 3173.78, + "end": 3177.26, + "probability": 0.9337 + }, + { + "start": 3177.98, + "end": 3180.14, + "probability": 0.9928 + }, + { + "start": 3181.18, + "end": 3187.54, + "probability": 0.9712 + }, + { + "start": 3188.18, + "end": 3190.08, + "probability": 0.6982 + }, + { + "start": 3190.5, + "end": 3194.32, + "probability": 0.986 + }, + { + "start": 3194.88, + "end": 3197.34, + "probability": 0.941 + }, + { + "start": 3198.06, + "end": 3198.72, + "probability": 0.757 + }, + { + "start": 3198.8, + "end": 3199.98, + "probability": 0.9747 + }, + { + "start": 3200.26, + "end": 3204.84, + "probability": 0.9888 + }, + { + "start": 3205.32, + "end": 3207.48, + "probability": 0.8763 + }, + { + "start": 3208.12, + "end": 3211.5, + "probability": 0.9944 + }, + { + "start": 3212.12, + "end": 3214.96, + "probability": 0.9813 + }, + { + "start": 3215.46, + "end": 3216.84, + "probability": 0.7985 + }, + { + "start": 3217.46, + "end": 3218.54, + "probability": 0.8101 + }, + { + "start": 3218.84, + "end": 3221.94, + "probability": 0.9558 + }, + { + "start": 3222.68, + "end": 3225.9, + "probability": 0.9323 + }, + { + "start": 3226.64, + "end": 3229.74, + "probability": 0.9053 + }, + { + "start": 3230.62, + "end": 3233.98, + "probability": 0.9528 + }, + { + "start": 3235.92, + "end": 3241.48, + "probability": 0.951 + }, + { + "start": 3241.94, + "end": 3244.68, + "probability": 0.8053 + }, + { + "start": 3244.76, + "end": 3245.92, + "probability": 0.5908 + }, + { + "start": 3246.36, + "end": 3255.72, + "probability": 0.997 + }, + { + "start": 3256.28, + "end": 3258.26, + "probability": 0.7491 + }, + { + "start": 3259.1, + "end": 3267.14, + "probability": 0.967 + }, + { + "start": 3267.82, + "end": 3272.5, + "probability": 0.9881 + }, + { + "start": 3273.06, + "end": 3277.72, + "probability": 0.896 + }, + { + "start": 3277.96, + "end": 3282.66, + "probability": 0.9529 + }, + { + "start": 3282.86, + "end": 3285.34, + "probability": 0.983 + }, + { + "start": 3285.5, + "end": 3287.58, + "probability": 0.7717 + }, + { + "start": 3288.02, + "end": 3289.12, + "probability": 0.6147 + }, + { + "start": 3289.18, + "end": 3290.32, + "probability": 0.597 + }, + { + "start": 3290.74, + "end": 3295.68, + "probability": 0.9688 + }, + { + "start": 3296.4, + "end": 3298.96, + "probability": 0.9856 + }, + { + "start": 3299.2, + "end": 3301.22, + "probability": 0.9945 + }, + { + "start": 3301.66, + "end": 3303.46, + "probability": 0.9905 + }, + { + "start": 3304.04, + "end": 3307.06, + "probability": 0.9756 + }, + { + "start": 3307.7, + "end": 3311.6, + "probability": 0.9946 + }, + { + "start": 3311.68, + "end": 3312.56, + "probability": 0.6852 + }, + { + "start": 3312.7, + "end": 3314.6, + "probability": 0.8634 + }, + { + "start": 3315.0, + "end": 3320.82, + "probability": 0.8882 + }, + { + "start": 3320.82, + "end": 3326.24, + "probability": 0.9875 + }, + { + "start": 3326.56, + "end": 3328.58, + "probability": 0.8187 + }, + { + "start": 3328.58, + "end": 3330.6, + "probability": 0.6552 + }, + { + "start": 3331.04, + "end": 3333.6, + "probability": 0.5898 + }, + { + "start": 3334.34, + "end": 3339.2, + "probability": 0.9915 + }, + { + "start": 3339.2, + "end": 3345.88, + "probability": 0.9935 + }, + { + "start": 3346.04, + "end": 3346.1, + "probability": 0.0868 + }, + { + "start": 3346.1, + "end": 3346.82, + "probability": 0.7278 + }, + { + "start": 3347.04, + "end": 3347.88, + "probability": 0.6884 + }, + { + "start": 3347.94, + "end": 3348.62, + "probability": 0.8425 + }, + { + "start": 3348.66, + "end": 3349.9, + "probability": 0.6014 + }, + { + "start": 3350.0, + "end": 3355.18, + "probability": 0.9355 + }, + { + "start": 3355.18, + "end": 3358.92, + "probability": 0.9648 + }, + { + "start": 3359.58, + "end": 3362.3, + "probability": 0.8433 + }, + { + "start": 3362.56, + "end": 3364.24, + "probability": 0.9625 + }, + { + "start": 3364.38, + "end": 3369.4, + "probability": 0.9885 + }, + { + "start": 3369.7, + "end": 3370.62, + "probability": 0.6809 + }, + { + "start": 3370.66, + "end": 3373.74, + "probability": 0.9957 + }, + { + "start": 3373.96, + "end": 3374.26, + "probability": 0.7847 + }, + { + "start": 3374.34, + "end": 3375.88, + "probability": 0.9895 + }, + { + "start": 3375.96, + "end": 3376.8, + "probability": 0.6528 + }, + { + "start": 3376.8, + "end": 3379.42, + "probability": 0.9803 + }, + { + "start": 3379.48, + "end": 3381.42, + "probability": 0.9506 + }, + { + "start": 3381.7, + "end": 3383.4, + "probability": 0.9905 + }, + { + "start": 3383.4, + "end": 3384.94, + "probability": 0.1634 + }, + { + "start": 3385.48, + "end": 3386.0, + "probability": 0.0699 + }, + { + "start": 3386.56, + "end": 3387.34, + "probability": 0.2162 + }, + { + "start": 3387.34, + "end": 3389.68, + "probability": 0.6236 + }, + { + "start": 3390.56, + "end": 3391.64, + "probability": 0.5992 + }, + { + "start": 3391.8, + "end": 3395.58, + "probability": 0.9766 + }, + { + "start": 3395.74, + "end": 3396.0, + "probability": 0.7119 + }, + { + "start": 3396.12, + "end": 3397.18, + "probability": 0.4726 + }, + { + "start": 3397.54, + "end": 3398.42, + "probability": 0.6393 + }, + { + "start": 3398.86, + "end": 3401.48, + "probability": 0.8364 + }, + { + "start": 3401.58, + "end": 3402.22, + "probability": 0.8208 + }, + { + "start": 3402.34, + "end": 3403.04, + "probability": 0.7424 + }, + { + "start": 3403.4, + "end": 3405.92, + "probability": 0.849 + }, + { + "start": 3408.26, + "end": 3409.1, + "probability": 0.5005 + }, + { + "start": 3409.1, + "end": 3409.74, + "probability": 0.3597 + }, + { + "start": 3409.82, + "end": 3411.54, + "probability": 0.9201 + }, + { + "start": 3411.78, + "end": 3416.28, + "probability": 0.7642 + }, + { + "start": 3416.48, + "end": 3420.68, + "probability": 0.9766 + }, + { + "start": 3420.92, + "end": 3422.84, + "probability": 0.9431 + }, + { + "start": 3423.52, + "end": 3424.19, + "probability": 0.4144 + }, + { + "start": 3424.8, + "end": 3427.64, + "probability": 0.9772 + }, + { + "start": 3427.86, + "end": 3428.58, + "probability": 0.8041 + }, + { + "start": 3429.39, + "end": 3431.52, + "probability": 0.8516 + }, + { + "start": 3431.74, + "end": 3436.3, + "probability": 0.915 + }, + { + "start": 3436.76, + "end": 3439.28, + "probability": 0.995 + }, + { + "start": 3439.58, + "end": 3444.44, + "probability": 0.9979 + }, + { + "start": 3444.44, + "end": 3450.82, + "probability": 0.9883 + }, + { + "start": 3451.34, + "end": 3453.06, + "probability": 0.6841 + }, + { + "start": 3453.58, + "end": 3457.5, + "probability": 0.755 + }, + { + "start": 3457.5, + "end": 3461.0, + "probability": 0.9592 + }, + { + "start": 3461.02, + "end": 3461.76, + "probability": 0.4735 + }, + { + "start": 3461.76, + "end": 3462.9, + "probability": 0.8099 + }, + { + "start": 3463.0, + "end": 3463.4, + "probability": 0.3021 + }, + { + "start": 3463.4, + "end": 3464.46, + "probability": 0.5828 + }, + { + "start": 3464.64, + "end": 3466.02, + "probability": 0.9888 + }, + { + "start": 3466.12, + "end": 3466.48, + "probability": 0.8119 + }, + { + "start": 3466.56, + "end": 3467.68, + "probability": 0.8029 + }, + { + "start": 3467.82, + "end": 3471.0, + "probability": 0.9589 + }, + { + "start": 3471.2, + "end": 3472.06, + "probability": 0.1239 + }, + { + "start": 3473.0, + "end": 3476.36, + "probability": 0.0902 + }, + { + "start": 3476.6, + "end": 3480.08, + "probability": 0.8724 + }, + { + "start": 3481.3, + "end": 3482.11, + "probability": 0.5111 + }, + { + "start": 3482.88, + "end": 3483.68, + "probability": 0.5215 + }, + { + "start": 3484.06, + "end": 3485.74, + "probability": 0.939 + }, + { + "start": 3485.84, + "end": 3486.04, + "probability": 0.2843 + }, + { + "start": 3486.1, + "end": 3488.62, + "probability": 0.8162 + }, + { + "start": 3489.04, + "end": 3494.54, + "probability": 0.9352 + }, + { + "start": 3494.54, + "end": 3497.78, + "probability": 0.9971 + }, + { + "start": 3498.32, + "end": 3501.0, + "probability": 0.9556 + }, + { + "start": 3502.06, + "end": 3502.78, + "probability": 0.0971 + }, + { + "start": 3502.78, + "end": 3502.94, + "probability": 0.5296 + }, + { + "start": 3502.94, + "end": 3503.4, + "probability": 0.7042 + }, + { + "start": 3503.64, + "end": 3510.72, + "probability": 0.9138 + }, + { + "start": 3511.1, + "end": 3516.16, + "probability": 0.8849 + }, + { + "start": 3516.8, + "end": 3524.26, + "probability": 0.9816 + }, + { + "start": 3524.72, + "end": 3525.36, + "probability": 0.7773 + }, + { + "start": 3525.9, + "end": 3526.86, + "probability": 0.8208 + }, + { + "start": 3527.0, + "end": 3529.14, + "probability": 0.9334 + }, + { + "start": 3529.38, + "end": 3530.42, + "probability": 0.6591 + }, + { + "start": 3530.46, + "end": 3530.76, + "probability": 0.0436 + }, + { + "start": 3530.86, + "end": 3531.42, + "probability": 0.348 + }, + { + "start": 3531.42, + "end": 3534.28, + "probability": 0.3215 + }, + { + "start": 3534.28, + "end": 3534.8, + "probability": 0.2889 + }, + { + "start": 3534.92, + "end": 3535.5, + "probability": 0.6726 + }, + { + "start": 3535.66, + "end": 3537.06, + "probability": 0.3296 + }, + { + "start": 3538.04, + "end": 3541.12, + "probability": 0.7947 + }, + { + "start": 3541.34, + "end": 3543.46, + "probability": 0.9562 + }, + { + "start": 3543.8, + "end": 3544.52, + "probability": 0.4133 + }, + { + "start": 3544.56, + "end": 3546.0, + "probability": 0.7932 + }, + { + "start": 3548.35, + "end": 3551.54, + "probability": 0.0426 + }, + { + "start": 3551.54, + "end": 3557.86, + "probability": 0.1377 + }, + { + "start": 3557.86, + "end": 3557.86, + "probability": 0.0233 + }, + { + "start": 3557.86, + "end": 3558.4, + "probability": 0.6057 + }, + { + "start": 3558.4, + "end": 3558.8, + "probability": 0.282 + }, + { + "start": 3559.02, + "end": 3560.16, + "probability": 0.3089 + }, + { + "start": 3560.16, + "end": 3560.96, + "probability": 0.6424 + }, + { + "start": 3561.96, + "end": 3563.12, + "probability": 0.5351 + }, + { + "start": 3563.26, + "end": 3564.6, + "probability": 0.6699 + }, + { + "start": 3564.64, + "end": 3565.24, + "probability": 0.7999 + }, + { + "start": 3565.9, + "end": 3566.72, + "probability": 0.6663 + }, + { + "start": 3566.78, + "end": 3567.38, + "probability": 0.5468 + }, + { + "start": 3567.5, + "end": 3568.46, + "probability": 0.9261 + }, + { + "start": 3568.5, + "end": 3571.58, + "probability": 0.9906 + }, + { + "start": 3572.34, + "end": 3574.74, + "probability": 0.9925 + }, + { + "start": 3575.24, + "end": 3576.1, + "probability": 0.5497 + }, + { + "start": 3576.32, + "end": 3577.12, + "probability": 0.6721 + }, + { + "start": 3577.18, + "end": 3577.9, + "probability": 0.832 + }, + { + "start": 3577.94, + "end": 3583.86, + "probability": 0.9688 + }, + { + "start": 3584.36, + "end": 3588.76, + "probability": 0.9941 + }, + { + "start": 3588.88, + "end": 3588.88, + "probability": 0.3366 + }, + { + "start": 3588.9, + "end": 3590.66, + "probability": 0.8742 + }, + { + "start": 3590.74, + "end": 3595.2, + "probability": 0.9087 + }, + { + "start": 3595.34, + "end": 3596.86, + "probability": 0.8831 + }, + { + "start": 3596.88, + "end": 3597.06, + "probability": 0.4083 + }, + { + "start": 3597.14, + "end": 3597.96, + "probability": 0.5924 + }, + { + "start": 3598.56, + "end": 3599.84, + "probability": 0.5656 + }, + { + "start": 3599.94, + "end": 3602.04, + "probability": 0.6107 + }, + { + "start": 3602.08, + "end": 3606.32, + "probability": 0.9217 + }, + { + "start": 3606.36, + "end": 3609.54, + "probability": 0.9883 + }, + { + "start": 3609.54, + "end": 3614.72, + "probability": 0.8705 + }, + { + "start": 3615.16, + "end": 3615.58, + "probability": 0.5078 + }, + { + "start": 3615.66, + "end": 3619.38, + "probability": 0.9972 + }, + { + "start": 3619.54, + "end": 3619.84, + "probability": 0.6699 + }, + { + "start": 3619.98, + "end": 3620.94, + "probability": 0.9257 + }, + { + "start": 3621.32, + "end": 3621.86, + "probability": 0.8594 + }, + { + "start": 3622.02, + "end": 3627.38, + "probability": 0.9983 + }, + { + "start": 3628.06, + "end": 3628.76, + "probability": 0.5917 + }, + { + "start": 3629.82, + "end": 3629.84, + "probability": 0.1382 + }, + { + "start": 3629.84, + "end": 3632.48, + "probability": 0.9404 + }, + { + "start": 3632.98, + "end": 3636.9, + "probability": 0.9839 + }, + { + "start": 3638.36, + "end": 3640.78, + "probability": 0.717 + }, + { + "start": 3641.77, + "end": 3646.52, + "probability": 0.8357 + }, + { + "start": 3646.76, + "end": 3649.22, + "probability": 0.9961 + }, + { + "start": 3649.48, + "end": 3653.26, + "probability": 0.9969 + }, + { + "start": 3653.52, + "end": 3656.59, + "probability": 0.9941 + }, + { + "start": 3656.66, + "end": 3659.32, + "probability": 0.8501 + }, + { + "start": 3659.52, + "end": 3660.12, + "probability": 0.3919 + }, + { + "start": 3660.24, + "end": 3661.18, + "probability": 0.7699 + }, + { + "start": 3661.22, + "end": 3663.7, + "probability": 0.5799 + }, + { + "start": 3663.88, + "end": 3667.68, + "probability": 0.9372 + }, + { + "start": 3667.84, + "end": 3668.72, + "probability": 0.938 + }, + { + "start": 3672.75, + "end": 3676.18, + "probability": 0.8288 + }, + { + "start": 3676.22, + "end": 3677.58, + "probability": 0.7433 + }, + { + "start": 3677.84, + "end": 3679.9, + "probability": 0.8612 + }, + { + "start": 3680.39, + "end": 3683.84, + "probability": 0.9785 + }, + { + "start": 3684.14, + "end": 3685.7, + "probability": 0.1063 + }, + { + "start": 3685.86, + "end": 3686.48, + "probability": 0.7669 + }, + { + "start": 3687.04, + "end": 3689.58, + "probability": 0.9495 + }, + { + "start": 3689.92, + "end": 3691.82, + "probability": 0.9666 + }, + { + "start": 3691.9, + "end": 3693.48, + "probability": 0.8046 + }, + { + "start": 3693.64, + "end": 3695.0, + "probability": 0.8249 + }, + { + "start": 3695.12, + "end": 3698.14, + "probability": 0.9854 + }, + { + "start": 3698.72, + "end": 3700.86, + "probability": 0.5685 + }, + { + "start": 3700.86, + "end": 3704.72, + "probability": 0.7322 + }, + { + "start": 3704.78, + "end": 3705.38, + "probability": 0.9521 + }, + { + "start": 3705.44, + "end": 3706.14, + "probability": 0.8549 + }, + { + "start": 3706.24, + "end": 3706.72, + "probability": 0.9031 + }, + { + "start": 3707.58, + "end": 3707.94, + "probability": 0.4988 + }, + { + "start": 3709.1, + "end": 3711.56, + "probability": 0.2205 + }, + { + "start": 3712.96, + "end": 3715.62, + "probability": 0.7114 + }, + { + "start": 3716.78, + "end": 3719.1, + "probability": 0.9313 + }, + { + "start": 3720.1, + "end": 3721.36, + "probability": 0.9363 + }, + { + "start": 3721.8, + "end": 3723.82, + "probability": 0.1754 + }, + { + "start": 3738.92, + "end": 3739.6, + "probability": 0.0349 + }, + { + "start": 3747.9, + "end": 3749.0, + "probability": 0.7762 + }, + { + "start": 3749.08, + "end": 3749.8, + "probability": 0.6931 + }, + { + "start": 3749.84, + "end": 3752.7, + "probability": 0.9823 + }, + { + "start": 3753.16, + "end": 3754.44, + "probability": 0.8912 + }, + { + "start": 3754.54, + "end": 3755.0, + "probability": 0.7099 + }, + { + "start": 3756.56, + "end": 3761.66, + "probability": 0.9721 + }, + { + "start": 3761.66, + "end": 3763.8, + "probability": 0.9917 + }, + { + "start": 3764.68, + "end": 3768.06, + "probability": 0.9438 + }, + { + "start": 3768.42, + "end": 3768.74, + "probability": 0.0853 + }, + { + "start": 3769.04, + "end": 3769.04, + "probability": 0.8477 + }, + { + "start": 3770.98, + "end": 3771.86, + "probability": 0.9844 + }, + { + "start": 3775.22, + "end": 3783.14, + "probability": 0.934 + }, + { + "start": 3784.9, + "end": 3789.16, + "probability": 0.8207 + }, + { + "start": 3790.56, + "end": 3793.26, + "probability": 0.9992 + }, + { + "start": 3793.32, + "end": 3795.02, + "probability": 0.9951 + }, + { + "start": 3795.64, + "end": 3797.04, + "probability": 0.6752 + }, + { + "start": 3797.94, + "end": 3799.94, + "probability": 0.9525 + }, + { + "start": 3800.7, + "end": 3803.88, + "probability": 0.9984 + }, + { + "start": 3803.92, + "end": 3808.32, + "probability": 0.9863 + }, + { + "start": 3808.88, + "end": 3810.5, + "probability": 0.9551 + }, + { + "start": 3810.88, + "end": 3812.06, + "probability": 0.9287 + }, + { + "start": 3812.06, + "end": 3813.87, + "probability": 0.9902 + }, + { + "start": 3814.2, + "end": 3814.82, + "probability": 0.887 + }, + { + "start": 3815.66, + "end": 3817.16, + "probability": 0.7962 + }, + { + "start": 3818.02, + "end": 3818.02, + "probability": 0.3539 + }, + { + "start": 3818.02, + "end": 3821.68, + "probability": 0.5782 + }, + { + "start": 3821.68, + "end": 3824.4, + "probability": 0.8034 + }, + { + "start": 3824.4, + "end": 3824.96, + "probability": 0.089 + }, + { + "start": 3825.84, + "end": 3825.84, + "probability": 0.1682 + }, + { + "start": 3825.88, + "end": 3827.84, + "probability": 0.5739 + }, + { + "start": 3827.84, + "end": 3831.96, + "probability": 0.9819 + }, + { + "start": 3832.02, + "end": 3832.68, + "probability": 0.8018 + }, + { + "start": 3833.18, + "end": 3833.56, + "probability": 0.0042 + }, + { + "start": 3833.76, + "end": 3837.82, + "probability": 0.9909 + }, + { + "start": 3838.24, + "end": 3843.72, + "probability": 0.9966 + }, + { + "start": 3843.92, + "end": 3845.36, + "probability": 0.9142 + }, + { + "start": 3846.22, + "end": 3847.64, + "probability": 0.9968 + }, + { + "start": 3848.2, + "end": 3850.7, + "probability": 0.997 + }, + { + "start": 3850.84, + "end": 3851.68, + "probability": 0.5431 + }, + { + "start": 3852.66, + "end": 3857.06, + "probability": 0.9567 + }, + { + "start": 3857.4, + "end": 3858.26, + "probability": 0.8822 + }, + { + "start": 3858.52, + "end": 3859.2, + "probability": 0.8862 + }, + { + "start": 3859.28, + "end": 3861.54, + "probability": 0.9823 + }, + { + "start": 3863.28, + "end": 3864.46, + "probability": 0.9789 + }, + { + "start": 3864.96, + "end": 3866.68, + "probability": 0.8835 + }, + { + "start": 3867.72, + "end": 3869.3, + "probability": 0.3159 + }, + { + "start": 3869.3, + "end": 3870.62, + "probability": 0.6608 + }, + { + "start": 3871.76, + "end": 3875.38, + "probability": 0.955 + }, + { + "start": 3877.68, + "end": 3878.5, + "probability": 0.8742 + }, + { + "start": 3878.98, + "end": 3880.38, + "probability": 0.958 + }, + { + "start": 3880.56, + "end": 3880.72, + "probability": 0.4172 + }, + { + "start": 3880.86, + "end": 3882.08, + "probability": 0.8705 + }, + { + "start": 3882.88, + "end": 3888.32, + "probability": 0.9946 + }, + { + "start": 3888.82, + "end": 3889.78, + "probability": 0.812 + }, + { + "start": 3890.42, + "end": 3893.68, + "probability": 0.9296 + }, + { + "start": 3894.36, + "end": 3898.8, + "probability": 0.9858 + }, + { + "start": 3899.3, + "end": 3900.8, + "probability": 0.9826 + }, + { + "start": 3900.98, + "end": 3902.88, + "probability": 0.9783 + }, + { + "start": 3902.94, + "end": 3904.28, + "probability": 0.9929 + }, + { + "start": 3904.64, + "end": 3906.28, + "probability": 0.978 + }, + { + "start": 3907.78, + "end": 3908.9, + "probability": 0.9349 + }, + { + "start": 3909.46, + "end": 3910.74, + "probability": 0.91 + }, + { + "start": 3911.14, + "end": 3912.04, + "probability": 0.8801 + }, + { + "start": 3912.6, + "end": 3914.42, + "probability": 0.9892 + }, + { + "start": 3915.16, + "end": 3918.38, + "probability": 0.9076 + }, + { + "start": 3918.56, + "end": 3919.3, + "probability": 0.6312 + }, + { + "start": 3919.72, + "end": 3921.22, + "probability": 0.8909 + }, + { + "start": 3921.94, + "end": 3924.3, + "probability": 0.9808 + }, + { + "start": 3924.66, + "end": 3928.68, + "probability": 0.5179 + }, + { + "start": 3929.5, + "end": 3930.84, + "probability": 0.6299 + }, + { + "start": 3931.38, + "end": 3933.66, + "probability": 0.9834 + }, + { + "start": 3934.75, + "end": 3935.08, + "probability": 0.264 + }, + { + "start": 3935.08, + "end": 3936.24, + "probability": 0.625 + }, + { + "start": 3941.08, + "end": 3946.62, + "probability": 0.799 + }, + { + "start": 3947.16, + "end": 3949.74, + "probability": 0.9832 + }, + { + "start": 3951.66, + "end": 3952.24, + "probability": 0.8398 + }, + { + "start": 3954.14, + "end": 3955.76, + "probability": 0.8929 + }, + { + "start": 3956.58, + "end": 3956.98, + "probability": 0.4328 + }, + { + "start": 3957.1, + "end": 3958.06, + "probability": 0.9337 + }, + { + "start": 3959.66, + "end": 3961.9, + "probability": 0.2174 + }, + { + "start": 3962.06, + "end": 3963.92, + "probability": 0.0617 + }, + { + "start": 3965.4, + "end": 3968.68, + "probability": 0.1491 + }, + { + "start": 3968.68, + "end": 3972.26, + "probability": 0.811 + }, + { + "start": 3972.46, + "end": 3973.89, + "probability": 0.9922 + }, + { + "start": 3974.52, + "end": 3976.94, + "probability": 0.7751 + }, + { + "start": 3977.0, + "end": 3977.7, + "probability": 0.2988 + }, + { + "start": 3980.56, + "end": 3987.74, + "probability": 0.5844 + }, + { + "start": 3987.74, + "end": 3988.22, + "probability": 0.1088 + }, + { + "start": 3988.22, + "end": 3989.78, + "probability": 0.8563 + }, + { + "start": 3990.2, + "end": 3992.38, + "probability": 0.9067 + }, + { + "start": 3992.58, + "end": 3995.14, + "probability": 0.9276 + }, + { + "start": 3996.02, + "end": 3997.28, + "probability": 0.7694 + }, + { + "start": 3997.92, + "end": 4001.74, + "probability": 0.9546 + }, + { + "start": 4002.3, + "end": 4005.16, + "probability": 0.9726 + }, + { + "start": 4005.72, + "end": 4009.06, + "probability": 0.9515 + }, + { + "start": 4009.16, + "end": 4011.06, + "probability": 0.9812 + }, + { + "start": 4011.28, + "end": 4012.64, + "probability": 0.9811 + }, + { + "start": 4013.0, + "end": 4014.66, + "probability": 0.9146 + }, + { + "start": 4015.04, + "end": 4018.04, + "probability": 0.7619 + }, + { + "start": 4019.1, + "end": 4019.24, + "probability": 0.2945 + }, + { + "start": 4019.28, + "end": 4023.1, + "probability": 0.9842 + }, + { + "start": 4023.78, + "end": 4029.28, + "probability": 0.9255 + }, + { + "start": 4030.34, + "end": 4032.76, + "probability": 0.9972 + }, + { + "start": 4033.3, + "end": 4035.55, + "probability": 0.983 + }, + { + "start": 4035.78, + "end": 4039.02, + "probability": 0.9555 + }, + { + "start": 4039.02, + "end": 4040.52, + "probability": 0.9973 + }, + { + "start": 4040.54, + "end": 4042.86, + "probability": 0.6359 + }, + { + "start": 4042.91, + "end": 4045.48, + "probability": 0.9964 + }, + { + "start": 4046.36, + "end": 4048.44, + "probability": 0.7026 + }, + { + "start": 4049.14, + "end": 4051.54, + "probability": 0.9883 + }, + { + "start": 4052.46, + "end": 4052.88, + "probability": 0.0497 + }, + { + "start": 4053.32, + "end": 4053.38, + "probability": 0.0169 + }, + { + "start": 4053.38, + "end": 4054.9, + "probability": 0.1174 + }, + { + "start": 4057.98, + "end": 4061.8, + "probability": 0.9292 + }, + { + "start": 4062.42, + "end": 4063.85, + "probability": 0.9263 + }, + { + "start": 4064.1, + "end": 4066.56, + "probability": 0.9919 + }, + { + "start": 4067.34, + "end": 4069.17, + "probability": 0.9185 + }, + { + "start": 4069.9, + "end": 4073.72, + "probability": 0.949 + }, + { + "start": 4073.74, + "end": 4076.16, + "probability": 0.7188 + }, + { + "start": 4076.94, + "end": 4079.96, + "probability": 0.8752 + }, + { + "start": 4080.28, + "end": 4082.16, + "probability": 0.7921 + }, + { + "start": 4084.14, + "end": 4086.8, + "probability": 0.0086 + }, + { + "start": 4087.8, + "end": 4091.7, + "probability": 0.6976 + }, + { + "start": 4095.98, + "end": 4096.8, + "probability": 0.3763 + }, + { + "start": 4096.94, + "end": 4101.2, + "probability": 0.9961 + }, + { + "start": 4101.68, + "end": 4104.78, + "probability": 0.9942 + }, + { + "start": 4104.78, + "end": 4108.32, + "probability": 0.9971 + }, + { + "start": 4108.66, + "end": 4109.9, + "probability": 0.9637 + }, + { + "start": 4110.0, + "end": 4111.04, + "probability": 0.8599 + }, + { + "start": 4111.32, + "end": 4115.4, + "probability": 0.9668 + }, + { + "start": 4116.2, + "end": 4117.52, + "probability": 0.7632 + }, + { + "start": 4120.8, + "end": 4124.08, + "probability": 0.9688 + }, + { + "start": 4124.86, + "end": 4128.18, + "probability": 0.7939 + }, + { + "start": 4135.52, + "end": 4137.6, + "probability": 0.7222 + }, + { + "start": 4137.96, + "end": 4140.06, + "probability": 0.0342 + }, + { + "start": 4140.32, + "end": 4140.66, + "probability": 0.1001 + }, + { + "start": 4141.56, + "end": 4143.26, + "probability": 0.0475 + }, + { + "start": 4143.64, + "end": 4145.76, + "probability": 0.2051 + }, + { + "start": 4148.66, + "end": 4157.88, + "probability": 0.0881 + }, + { + "start": 4159.6, + "end": 4160.16, + "probability": 0.0707 + }, + { + "start": 4182.68, + "end": 4183.54, + "probability": 0.4902 + }, + { + "start": 4184.1, + "end": 4185.44, + "probability": 0.4112 + }, + { + "start": 4185.62, + "end": 4186.76, + "probability": 0.4299 + }, + { + "start": 4186.98, + "end": 4188.48, + "probability": 0.9302 + }, + { + "start": 4189.5, + "end": 4196.9, + "probability": 0.7981 + }, + { + "start": 4197.08, + "end": 4202.26, + "probability": 0.9759 + }, + { + "start": 4203.32, + "end": 4208.86, + "probability": 0.8332 + }, + { + "start": 4209.5, + "end": 4211.38, + "probability": 0.7872 + }, + { + "start": 4211.98, + "end": 4213.68, + "probability": 0.9089 + }, + { + "start": 4214.56, + "end": 4216.18, + "probability": 0.9827 + }, + { + "start": 4216.62, + "end": 4218.75, + "probability": 0.9766 + }, + { + "start": 4219.92, + "end": 4222.66, + "probability": 0.9799 + }, + { + "start": 4223.24, + "end": 4225.12, + "probability": 0.9155 + }, + { + "start": 4225.94, + "end": 4227.4, + "probability": 0.9907 + }, + { + "start": 4229.36, + "end": 4231.52, + "probability": 0.8119 + }, + { + "start": 4232.16, + "end": 4235.89, + "probability": 0.9855 + }, + { + "start": 4237.41, + "end": 4241.18, + "probability": 0.9829 + }, + { + "start": 4241.94, + "end": 4243.24, + "probability": 0.8823 + }, + { + "start": 4244.18, + "end": 4245.88, + "probability": 0.9822 + }, + { + "start": 4246.2, + "end": 4250.98, + "probability": 0.9418 + }, + { + "start": 4251.52, + "end": 4256.48, + "probability": 0.9727 + }, + { + "start": 4257.12, + "end": 4262.2, + "probability": 0.8441 + }, + { + "start": 4262.2, + "end": 4267.2, + "probability": 0.8996 + }, + { + "start": 4267.68, + "end": 4270.72, + "probability": 0.98 + }, + { + "start": 4271.04, + "end": 4272.96, + "probability": 0.9368 + }, + { + "start": 4273.5, + "end": 4275.1, + "probability": 0.6317 + }, + { + "start": 4275.1, + "end": 4280.4, + "probability": 0.1773 + }, + { + "start": 4280.4, + "end": 4281.54, + "probability": 0.5384 + }, + { + "start": 4281.64, + "end": 4283.54, + "probability": 0.3383 + }, + { + "start": 4283.64, + "end": 4285.85, + "probability": 0.5064 + }, + { + "start": 4287.38, + "end": 4289.53, + "probability": 0.5842 + }, + { + "start": 4290.44, + "end": 4294.62, + "probability": 0.596 + }, + { + "start": 4295.7, + "end": 4297.75, + "probability": 0.4955 + }, + { + "start": 4297.92, + "end": 4297.92, + "probability": 0.4384 + }, + { + "start": 4297.92, + "end": 4297.94, + "probability": 0.5434 + }, + { + "start": 4297.96, + "end": 4299.0, + "probability": 0.506 + }, + { + "start": 4299.06, + "end": 4301.82, + "probability": 0.8386 + }, + { + "start": 4303.22, + "end": 4305.98, + "probability": 0.8692 + }, + { + "start": 4307.32, + "end": 4308.26, + "probability": 0.9175 + }, + { + "start": 4310.26, + "end": 4311.1, + "probability": 0.6954 + }, + { + "start": 4311.88, + "end": 4314.04, + "probability": 0.6772 + }, + { + "start": 4314.12, + "end": 4314.98, + "probability": 0.6016 + }, + { + "start": 4315.04, + "end": 4315.63, + "probability": 0.7792 + }, + { + "start": 4316.76, + "end": 4317.92, + "probability": 0.8007 + }, + { + "start": 4319.22, + "end": 4321.66, + "probability": 0.9222 + }, + { + "start": 4322.68, + "end": 4324.4, + "probability": 0.9958 + }, + { + "start": 4324.7, + "end": 4327.92, + "probability": 0.9217 + }, + { + "start": 4329.0, + "end": 4332.18, + "probability": 0.6802 + }, + { + "start": 4332.46, + "end": 4334.88, + "probability": 0.9561 + }, + { + "start": 4335.24, + "end": 4336.28, + "probability": 0.7352 + }, + { + "start": 4336.8, + "end": 4338.47, + "probability": 0.9943 + }, + { + "start": 4339.66, + "end": 4340.78, + "probability": 0.5912 + }, + { + "start": 4345.66, + "end": 4347.5, + "probability": 0.9945 + }, + { + "start": 4350.16, + "end": 4351.64, + "probability": 0.8259 + }, + { + "start": 4351.9, + "end": 4352.74, + "probability": 0.6168 + }, + { + "start": 4353.04, + "end": 4353.58, + "probability": 0.8446 + }, + { + "start": 4354.24, + "end": 4356.94, + "probability": 0.9473 + }, + { + "start": 4357.32, + "end": 4363.5, + "probability": 0.0415 + }, + { + "start": 4363.5, + "end": 4363.5, + "probability": 0.0244 + }, + { + "start": 4363.5, + "end": 4363.6, + "probability": 0.1323 + }, + { + "start": 4363.6, + "end": 4367.16, + "probability": 0.6893 + }, + { + "start": 4367.4, + "end": 4369.66, + "probability": 0.8085 + }, + { + "start": 4370.0, + "end": 4372.16, + "probability": 0.9463 + }, + { + "start": 4372.16, + "end": 4374.34, + "probability": 0.896 + }, + { + "start": 4374.7, + "end": 4376.32, + "probability": 0.35 + }, + { + "start": 4376.56, + "end": 4383.52, + "probability": 0.9256 + }, + { + "start": 4384.46, + "end": 4389.3, + "probability": 0.9961 + }, + { + "start": 4389.3, + "end": 4393.82, + "probability": 0.8471 + }, + { + "start": 4394.34, + "end": 4396.12, + "probability": 0.9858 + }, + { + "start": 4396.72, + "end": 4398.76, + "probability": 0.353 + }, + { + "start": 4398.84, + "end": 4400.28, + "probability": 0.5168 + }, + { + "start": 4400.28, + "end": 4401.04, + "probability": 0.6153 + }, + { + "start": 4401.2, + "end": 4403.02, + "probability": 0.7867 + }, + { + "start": 4403.22, + "end": 4403.98, + "probability": 0.8121 + }, + { + "start": 4404.08, + "end": 4412.36, + "probability": 0.8712 + }, + { + "start": 4412.72, + "end": 4416.5, + "probability": 0.9915 + }, + { + "start": 4416.92, + "end": 4420.72, + "probability": 0.8907 + }, + { + "start": 4420.96, + "end": 4422.94, + "probability": 0.7607 + }, + { + "start": 4423.18, + "end": 4425.9, + "probability": 0.9128 + }, + { + "start": 4426.14, + "end": 4427.78, + "probability": 0.9364 + }, + { + "start": 4428.08, + "end": 4431.52, + "probability": 0.8237 + }, + { + "start": 4431.92, + "end": 4432.68, + "probability": 0.7681 + }, + { + "start": 4432.86, + "end": 4435.06, + "probability": 0.9291 + }, + { + "start": 4435.58, + "end": 4435.88, + "probability": 0.0573 + }, + { + "start": 4435.88, + "end": 4437.28, + "probability": 0.4302 + }, + { + "start": 4437.46, + "end": 4438.24, + "probability": 0.6505 + }, + { + "start": 4438.36, + "end": 4439.14, + "probability": 0.5698 + }, + { + "start": 4439.54, + "end": 4439.94, + "probability": 0.2679 + }, + { + "start": 4439.98, + "end": 4440.89, + "probability": 0.4604 + }, + { + "start": 4441.06, + "end": 4442.92, + "probability": 0.754 + }, + { + "start": 4443.44, + "end": 4444.72, + "probability": 0.853 + }, + { + "start": 4445.61, + "end": 4448.73, + "probability": 0.8737 + }, + { + "start": 4449.2, + "end": 4450.24, + "probability": 0.9294 + }, + { + "start": 4450.98, + "end": 4452.52, + "probability": 0.4034 + }, + { + "start": 4452.72, + "end": 4454.68, + "probability": 0.7971 + }, + { + "start": 4454.78, + "end": 4456.2, + "probability": 0.9509 + }, + { + "start": 4456.5, + "end": 4459.78, + "probability": 0.7848 + }, + { + "start": 4460.36, + "end": 4464.06, + "probability": 0.8955 + }, + { + "start": 4464.54, + "end": 4465.96, + "probability": 0.6979 + }, + { + "start": 4466.24, + "end": 4467.49, + "probability": 0.9066 + }, + { + "start": 4467.7, + "end": 4468.48, + "probability": 0.3286 + }, + { + "start": 4468.6, + "end": 4469.42, + "probability": 0.6895 + }, + { + "start": 4469.5, + "end": 4470.72, + "probability": 0.7753 + }, + { + "start": 4471.12, + "end": 4473.64, + "probability": 0.9458 + }, + { + "start": 4474.62, + "end": 4483.38, + "probability": 0.8861 + }, + { + "start": 4483.61, + "end": 4486.84, + "probability": 0.7029 + }, + { + "start": 4487.38, + "end": 4490.46, + "probability": 0.9715 + }, + { + "start": 4491.12, + "end": 4493.04, + "probability": 0.9307 + }, + { + "start": 4493.7, + "end": 4494.86, + "probability": 0.6663 + }, + { + "start": 4494.9, + "end": 4495.66, + "probability": 0.7483 + }, + { + "start": 4496.02, + "end": 4497.64, + "probability": 0.2121 + }, + { + "start": 4497.9, + "end": 4498.74, + "probability": 0.4976 + }, + { + "start": 4498.74, + "end": 4499.46, + "probability": 0.7906 + }, + { + "start": 4499.48, + "end": 4500.54, + "probability": 0.6835 + }, + { + "start": 4500.6, + "end": 4501.6, + "probability": 0.8086 + }, + { + "start": 4502.5, + "end": 4505.2, + "probability": 0.8534 + }, + { + "start": 4505.62, + "end": 4510.94, + "probability": 0.7454 + }, + { + "start": 4511.22, + "end": 4514.08, + "probability": 0.8767 + }, + { + "start": 4515.5, + "end": 4516.92, + "probability": 0.8563 + }, + { + "start": 4517.42, + "end": 4518.42, + "probability": 0.7501 + }, + { + "start": 4518.54, + "end": 4518.7, + "probability": 0.6637 + }, + { + "start": 4519.04, + "end": 4519.86, + "probability": 0.7517 + }, + { + "start": 4520.34, + "end": 4522.8, + "probability": 0.6143 + }, + { + "start": 4522.8, + "end": 4525.18, + "probability": 0.3152 + }, + { + "start": 4525.24, + "end": 4526.92, + "probability": 0.7829 + }, + { + "start": 4527.04, + "end": 4527.62, + "probability": 0.716 + }, + { + "start": 4527.68, + "end": 4528.34, + "probability": 0.8752 + }, + { + "start": 4528.98, + "end": 4531.3, + "probability": 0.6361 + }, + { + "start": 4531.42, + "end": 4533.02, + "probability": 0.8975 + }, + { + "start": 4533.32, + "end": 4535.68, + "probability": 0.9464 + }, + { + "start": 4536.34, + "end": 4538.5, + "probability": 0.9647 + }, + { + "start": 4538.82, + "end": 4539.22, + "probability": 0.8846 + }, + { + "start": 4539.38, + "end": 4539.7, + "probability": 0.9024 + }, + { + "start": 4539.74, + "end": 4540.28, + "probability": 0.8136 + }, + { + "start": 4540.38, + "end": 4541.02, + "probability": 0.8464 + }, + { + "start": 4541.38, + "end": 4544.32, + "probability": 0.9871 + }, + { + "start": 4544.98, + "end": 4548.64, + "probability": 0.9467 + }, + { + "start": 4549.48, + "end": 4550.58, + "probability": 0.4549 + }, + { + "start": 4551.34, + "end": 4554.02, + "probability": 0.9395 + }, + { + "start": 4554.56, + "end": 4555.36, + "probability": 0.9523 + }, + { + "start": 4555.7, + "end": 4557.56, + "probability": 0.8419 + }, + { + "start": 4557.68, + "end": 4558.18, + "probability": 0.8434 + }, + { + "start": 4558.28, + "end": 4559.12, + "probability": 0.8854 + }, + { + "start": 4559.32, + "end": 4559.8, + "probability": 0.9071 + }, + { + "start": 4559.86, + "end": 4560.52, + "probability": 0.795 + }, + { + "start": 4561.76, + "end": 4564.74, + "probability": 0.973 + }, + { + "start": 4564.9, + "end": 4565.54, + "probability": 0.9905 + }, + { + "start": 4565.56, + "end": 4566.88, + "probability": 0.9009 + }, + { + "start": 4567.5, + "end": 4569.68, + "probability": 0.7823 + }, + { + "start": 4569.82, + "end": 4570.49, + "probability": 0.4471 + }, + { + "start": 4571.1, + "end": 4571.74, + "probability": 0.7949 + }, + { + "start": 4571.9, + "end": 4572.64, + "probability": 0.6683 + }, + { + "start": 4573.2, + "end": 4574.36, + "probability": 0.9678 + }, + { + "start": 4574.42, + "end": 4574.9, + "probability": 0.9127 + }, + { + "start": 4574.98, + "end": 4575.78, + "probability": 0.9274 + }, + { + "start": 4575.9, + "end": 4576.5, + "probability": 0.9661 + }, + { + "start": 4576.58, + "end": 4577.0, + "probability": 0.8767 + }, + { + "start": 4577.08, + "end": 4577.64, + "probability": 0.4101 + }, + { + "start": 4578.08, + "end": 4578.96, + "probability": 0.945 + }, + { + "start": 4580.2, + "end": 4581.1, + "probability": 0.5875 + }, + { + "start": 4581.12, + "end": 4581.67, + "probability": 0.6256 + }, + { + "start": 4582.22, + "end": 4583.7, + "probability": 0.9803 + }, + { + "start": 4583.72, + "end": 4584.7, + "probability": 0.3122 + }, + { + "start": 4584.74, + "end": 4585.74, + "probability": 0.7822 + }, + { + "start": 4586.18, + "end": 4588.06, + "probability": 0.981 + }, + { + "start": 4588.56, + "end": 4593.14, + "probability": 0.9782 + }, + { + "start": 4593.2, + "end": 4593.94, + "probability": 0.6876 + }, + { + "start": 4594.38, + "end": 4597.26, + "probability": 0.9 + }, + { + "start": 4598.41, + "end": 4601.18, + "probability": 0.8552 + }, + { + "start": 4608.08, + "end": 4609.54, + "probability": 0.4928 + }, + { + "start": 4610.1, + "end": 4611.99, + "probability": 0.7505 + }, + { + "start": 4612.12, + "end": 4614.32, + "probability": 0.8917 + }, + { + "start": 4614.68, + "end": 4616.34, + "probability": 0.9736 + }, + { + "start": 4617.42, + "end": 4622.56, + "probability": 0.8633 + }, + { + "start": 4626.22, + "end": 4628.22, + "probability": 0.6259 + }, + { + "start": 4628.28, + "end": 4630.48, + "probability": 0.6326 + }, + { + "start": 4630.52, + "end": 4631.55, + "probability": 0.9175 + }, + { + "start": 4632.02, + "end": 4632.02, + "probability": 0.5214 + }, + { + "start": 4632.02, + "end": 4632.38, + "probability": 0.2658 + }, + { + "start": 4632.5, + "end": 4633.4, + "probability": 0.3367 + }, + { + "start": 4633.66, + "end": 4636.52, + "probability": 0.9919 + }, + { + "start": 4636.64, + "end": 4638.98, + "probability": 0.5347 + }, + { + "start": 4638.98, + "end": 4643.42, + "probability": 0.1758 + }, + { + "start": 4643.42, + "end": 4645.72, + "probability": 0.343 + }, + { + "start": 4647.62, + "end": 4651.94, + "probability": 0.3216 + }, + { + "start": 4652.62, + "end": 4652.74, + "probability": 0.4011 + }, + { + "start": 4652.74, + "end": 4654.7, + "probability": 0.6125 + }, + { + "start": 4655.06, + "end": 4655.2, + "probability": 0.2637 + }, + { + "start": 4655.2, + "end": 4655.26, + "probability": 0.3777 + }, + { + "start": 4655.38, + "end": 4659.78, + "probability": 0.8717 + }, + { + "start": 4660.3, + "end": 4663.82, + "probability": 0.9612 + }, + { + "start": 4664.1, + "end": 4665.74, + "probability": 0.8551 + }, + { + "start": 4666.1, + "end": 4669.06, + "probability": 0.9821 + }, + { + "start": 4669.06, + "end": 4672.42, + "probability": 0.9769 + }, + { + "start": 4672.58, + "end": 4674.32, + "probability": 0.5876 + }, + { + "start": 4674.7, + "end": 4676.48, + "probability": 0.6547 + }, + { + "start": 4676.6, + "end": 4677.56, + "probability": 0.9443 + }, + { + "start": 4680.2, + "end": 4681.16, + "probability": 0.5461 + }, + { + "start": 4682.0, + "end": 4683.7, + "probability": 0.7417 + }, + { + "start": 4685.64, + "end": 4687.64, + "probability": 0.7391 + }, + { + "start": 4688.56, + "end": 4689.66, + "probability": 0.9224 + }, + { + "start": 4689.96, + "end": 4691.78, + "probability": 0.9963 + }, + { + "start": 4692.08, + "end": 4694.26, + "probability": 0.9591 + }, + { + "start": 4694.58, + "end": 4695.58, + "probability": 0.7444 + }, + { + "start": 4695.62, + "end": 4697.2, + "probability": 0.9575 + }, + { + "start": 4699.76, + "end": 4702.0, + "probability": 0.9838 + }, + { + "start": 4702.0, + "end": 4702.02, + "probability": 0.7301 + }, + { + "start": 4702.28, + "end": 4704.94, + "probability": 0.9019 + }, + { + "start": 4705.14, + "end": 4707.98, + "probability": 0.7573 + }, + { + "start": 4708.16, + "end": 4709.2, + "probability": 0.9961 + }, + { + "start": 4709.7, + "end": 4710.5, + "probability": 0.9224 + }, + { + "start": 4712.12, + "end": 4712.64, + "probability": 0.9729 + }, + { + "start": 4713.68, + "end": 4715.38, + "probability": 0.7497 + }, + { + "start": 4717.64, + "end": 4720.18, + "probability": 0.6197 + }, + { + "start": 4722.3, + "end": 4723.34, + "probability": 0.8189 + }, + { + "start": 4723.72, + "end": 4730.06, + "probability": 0.9551 + }, + { + "start": 4730.9, + "end": 4735.56, + "probability": 0.9651 + }, + { + "start": 4736.04, + "end": 4736.36, + "probability": 0.7534 + }, + { + "start": 4738.22, + "end": 4739.04, + "probability": 0.5893 + }, + { + "start": 4740.38, + "end": 4741.4, + "probability": 0.9615 + }, + { + "start": 4741.9, + "end": 4743.36, + "probability": 0.9201 + }, + { + "start": 4743.42, + "end": 4744.22, + "probability": 0.617 + }, + { + "start": 4744.66, + "end": 4746.94, + "probability": 0.9845 + }, + { + "start": 4747.24, + "end": 4751.7, + "probability": 0.9929 + }, + { + "start": 4751.7, + "end": 4752.34, + "probability": 0.743 + }, + { + "start": 4752.36, + "end": 4753.14, + "probability": 0.8792 + }, + { + "start": 4753.64, + "end": 4759.44, + "probability": 0.9066 + }, + { + "start": 4759.62, + "end": 4760.64, + "probability": 0.659 + }, + { + "start": 4760.78, + "end": 4761.42, + "probability": 0.8727 + }, + { + "start": 4761.92, + "end": 4763.36, + "probability": 0.7816 + }, + { + "start": 4763.66, + "end": 4764.4, + "probability": 0.6489 + }, + { + "start": 4764.46, + "end": 4765.38, + "probability": 0.8949 + }, + { + "start": 4765.46, + "end": 4766.9, + "probability": 0.8364 + }, + { + "start": 4767.4, + "end": 4768.7, + "probability": 0.7276 + }, + { + "start": 4768.8, + "end": 4769.64, + "probability": 0.9803 + }, + { + "start": 4770.2, + "end": 4771.51, + "probability": 0.9439 + }, + { + "start": 4771.8, + "end": 4776.84, + "probability": 0.9822 + }, + { + "start": 4777.12, + "end": 4780.24, + "probability": 0.9243 + }, + { + "start": 4780.62, + "end": 4781.72, + "probability": 0.8809 + }, + { + "start": 4781.72, + "end": 4783.22, + "probability": 0.7608 + }, + { + "start": 4783.42, + "end": 4783.94, + "probability": 0.8278 + }, + { + "start": 4783.98, + "end": 4784.32, + "probability": 0.7979 + }, + { + "start": 4784.36, + "end": 4785.92, + "probability": 0.4333 + }, + { + "start": 4786.06, + "end": 4789.98, + "probability": 0.679 + }, + { + "start": 4790.2, + "end": 4791.16, + "probability": 0.586 + }, + { + "start": 4791.54, + "end": 4793.84, + "probability": 0.9115 + }, + { + "start": 4793.92, + "end": 4795.1, + "probability": 0.5242 + }, + { + "start": 4795.38, + "end": 4798.24, + "probability": 0.7743 + }, + { + "start": 4801.8, + "end": 4804.28, + "probability": 0.733 + }, + { + "start": 4804.94, + "end": 4807.06, + "probability": 0.9751 + }, + { + "start": 4808.18, + "end": 4808.96, + "probability": 0.6707 + }, + { + "start": 4809.6, + "end": 4812.84, + "probability": 0.9803 + }, + { + "start": 4813.26, + "end": 4814.3, + "probability": 0.9695 + }, + { + "start": 4815.26, + "end": 4816.64, + "probability": 0.9816 + }, + { + "start": 4817.16, + "end": 4822.18, + "probability": 0.989 + }, + { + "start": 4822.7, + "end": 4824.82, + "probability": 0.9905 + }, + { + "start": 4825.44, + "end": 4826.7, + "probability": 0.9314 + }, + { + "start": 4826.86, + "end": 4829.5, + "probability": 0.9814 + }, + { + "start": 4830.04, + "end": 4830.36, + "probability": 0.0022 + }, + { + "start": 4830.78, + "end": 4831.32, + "probability": 0.9318 + }, + { + "start": 4831.58, + "end": 4832.06, + "probability": 0.0076 + }, + { + "start": 4832.18, + "end": 4838.72, + "probability": 0.981 + }, + { + "start": 4839.38, + "end": 4841.38, + "probability": 0.83 + }, + { + "start": 4841.46, + "end": 4843.6, + "probability": 0.9946 + }, + { + "start": 4844.06, + "end": 4846.24, + "probability": 0.998 + }, + { + "start": 4846.72, + "end": 4850.54, + "probability": 0.8373 + }, + { + "start": 4850.54, + "end": 4852.6, + "probability": 0.7159 + }, + { + "start": 4853.14, + "end": 4855.12, + "probability": 0.0707 + }, + { + "start": 4855.12, + "end": 4856.26, + "probability": 0.0384 + }, + { + "start": 4856.98, + "end": 4858.78, + "probability": 0.8867 + }, + { + "start": 4859.26, + "end": 4861.52, + "probability": 0.6641 + }, + { + "start": 4862.16, + "end": 4864.7, + "probability": 0.852 + }, + { + "start": 4865.12, + "end": 4866.48, + "probability": 0.9069 + }, + { + "start": 4868.38, + "end": 4870.38, + "probability": 0.7749 + }, + { + "start": 4870.58, + "end": 4872.24, + "probability": 0.4702 + }, + { + "start": 4872.46, + "end": 4873.98, + "probability": 0.6661 + }, + { + "start": 4877.0, + "end": 4878.38, + "probability": 0.7396 + }, + { + "start": 4881.06, + "end": 4882.08, + "probability": 0.091 + }, + { + "start": 4882.08, + "end": 4883.68, + "probability": 0.5642 + }, + { + "start": 4887.24, + "end": 4890.94, + "probability": 0.6565 + }, + { + "start": 4890.96, + "end": 4894.8, + "probability": 0.927 + }, + { + "start": 4894.88, + "end": 4897.22, + "probability": 0.9946 + }, + { + "start": 4898.28, + "end": 4900.6, + "probability": 0.9909 + }, + { + "start": 4900.6, + "end": 4904.0, + "probability": 0.6848 + }, + { + "start": 4904.04, + "end": 4904.68, + "probability": 0.7374 + }, + { + "start": 4904.9, + "end": 4906.82, + "probability": 0.797 + }, + { + "start": 4907.14, + "end": 4907.7, + "probability": 0.7811 + }, + { + "start": 4907.74, + "end": 4911.58, + "probability": 0.8519 + }, + { + "start": 4912.56, + "end": 4914.26, + "probability": 0.9426 + }, + { + "start": 4914.74, + "end": 4918.62, + "probability": 0.7956 + }, + { + "start": 4918.82, + "end": 4919.32, + "probability": 0.943 + }, + { + "start": 4919.44, + "end": 4925.46, + "probability": 0.9751 + }, + { + "start": 4927.22, + "end": 4927.44, + "probability": 0.6288 + }, + { + "start": 4927.5, + "end": 4935.48, + "probability": 0.9771 + }, + { + "start": 4936.74, + "end": 4936.74, + "probability": 0.0315 + }, + { + "start": 4936.74, + "end": 4941.22, + "probability": 0.9299 + }, + { + "start": 4942.12, + "end": 4942.92, + "probability": 0.635 + }, + { + "start": 4943.32, + "end": 4945.46, + "probability": 0.9829 + }, + { + "start": 4945.48, + "end": 4947.04, + "probability": 0.9439 + }, + { + "start": 4947.12, + "end": 4949.6, + "probability": 0.9954 + }, + { + "start": 4949.88, + "end": 4950.3, + "probability": 0.0544 + }, + { + "start": 4950.3, + "end": 4953.94, + "probability": 0.9725 + }, + { + "start": 4953.94, + "end": 4954.12, + "probability": 0.1421 + }, + { + "start": 4954.3, + "end": 4956.92, + "probability": 0.9866 + }, + { + "start": 4957.04, + "end": 4962.02, + "probability": 0.8096 + }, + { + "start": 4962.28, + "end": 4963.84, + "probability": 0.9128 + }, + { + "start": 4964.14, + "end": 4967.86, + "probability": 0.8302 + }, + { + "start": 4968.04, + "end": 4968.48, + "probability": 0.6352 + }, + { + "start": 4968.48, + "end": 4971.64, + "probability": 0.587 + }, + { + "start": 4972.04, + "end": 4977.24, + "probability": 0.9102 + }, + { + "start": 4977.42, + "end": 4977.92, + "probability": 0.9047 + }, + { + "start": 4977.98, + "end": 4983.02, + "probability": 0.9885 + }, + { + "start": 4983.88, + "end": 4985.3, + "probability": 0.8119 + }, + { + "start": 4985.52, + "end": 4985.82, + "probability": 0.0312 + }, + { + "start": 4985.82, + "end": 4986.12, + "probability": 0.3951 + }, + { + "start": 4986.2, + "end": 4989.26, + "probability": 0.7219 + }, + { + "start": 4989.94, + "end": 4992.98, + "probability": 0.9622 + }, + { + "start": 4993.16, + "end": 4997.02, + "probability": 0.9854 + }, + { + "start": 4997.24, + "end": 4998.76, + "probability": 0.9922 + }, + { + "start": 4999.32, + "end": 5003.46, + "probability": 0.9905 + }, + { + "start": 5003.64, + "end": 5008.52, + "probability": 0.9929 + }, + { + "start": 5009.24, + "end": 5012.76, + "probability": 0.8145 + }, + { + "start": 5013.06, + "end": 5014.53, + "probability": 0.8606 + }, + { + "start": 5015.04, + "end": 5016.18, + "probability": 0.5188 + }, + { + "start": 5016.26, + "end": 5017.28, + "probability": 0.9805 + }, + { + "start": 5017.38, + "end": 5019.7, + "probability": 0.7585 + }, + { + "start": 5020.0, + "end": 5023.82, + "probability": 0.7634 + }, + { + "start": 5024.02, + "end": 5024.3, + "probability": 0.4554 + }, + { + "start": 5024.3, + "end": 5024.3, + "probability": 0.6327 + }, + { + "start": 5024.3, + "end": 5025.58, + "probability": 0.38 + }, + { + "start": 5025.66, + "end": 5027.82, + "probability": 0.3242 + }, + { + "start": 5027.82, + "end": 5029.04, + "probability": 0.6861 + }, + { + "start": 5029.24, + "end": 5030.0, + "probability": 0.7584 + }, + { + "start": 5031.78, + "end": 5031.98, + "probability": 0.0249 + }, + { + "start": 5031.98, + "end": 5033.32, + "probability": 0.5572 + }, + { + "start": 5033.4, + "end": 5036.24, + "probability": 0.9819 + }, + { + "start": 5036.24, + "end": 5040.36, + "probability": 0.9886 + }, + { + "start": 5042.58, + "end": 5044.4, + "probability": 0.2047 + }, + { + "start": 5044.4, + "end": 5044.94, + "probability": 0.1499 + }, + { + "start": 5044.94, + "end": 5045.66, + "probability": 0.4801 + }, + { + "start": 5045.7, + "end": 5047.2, + "probability": 0.9863 + }, + { + "start": 5047.74, + "end": 5050.12, + "probability": 0.9485 + }, + { + "start": 5050.16, + "end": 5051.06, + "probability": 0.8435 + }, + { + "start": 5051.4, + "end": 5051.96, + "probability": 0.7943 + }, + { + "start": 5052.08, + "end": 5055.2, + "probability": 0.7158 + }, + { + "start": 5055.24, + "end": 5055.76, + "probability": 0.8082 + }, + { + "start": 5056.0, + "end": 5059.04, + "probability": 0.9335 + }, + { + "start": 5059.16, + "end": 5060.04, + "probability": 0.8048 + }, + { + "start": 5060.32, + "end": 5060.54, + "probability": 0.2249 + }, + { + "start": 5060.54, + "end": 5060.8, + "probability": 0.8887 + }, + { + "start": 5060.92, + "end": 5060.94, + "probability": 0.8371 + }, + { + "start": 5061.04, + "end": 5062.52, + "probability": 0.7383 + }, + { + "start": 5062.64, + "end": 5063.3, + "probability": 0.7379 + }, + { + "start": 5063.3, + "end": 5063.96, + "probability": 0.9424 + }, + { + "start": 5064.04, + "end": 5065.76, + "probability": 0.935 + }, + { + "start": 5065.92, + "end": 5068.84, + "probability": 0.994 + }, + { + "start": 5068.86, + "end": 5070.2, + "probability": 0.8884 + }, + { + "start": 5070.52, + "end": 5073.18, + "probability": 0.9 + }, + { + "start": 5073.24, + "end": 5074.4, + "probability": 0.8822 + }, + { + "start": 5074.4, + "end": 5075.74, + "probability": 0.9852 + }, + { + "start": 5075.82, + "end": 5076.79, + "probability": 0.9255 + }, + { + "start": 5077.38, + "end": 5079.76, + "probability": 0.9884 + }, + { + "start": 5080.16, + "end": 5083.98, + "probability": 0.5306 + }, + { + "start": 5084.02, + "end": 5084.44, + "probability": 0.8226 + }, + { + "start": 5084.5, + "end": 5085.0, + "probability": 0.8491 + }, + { + "start": 5085.22, + "end": 5086.22, + "probability": 0.8445 + }, + { + "start": 5086.22, + "end": 5086.66, + "probability": 0.4941 + }, + { + "start": 5086.84, + "end": 5089.2, + "probability": 0.5959 + }, + { + "start": 5089.24, + "end": 5094.22, + "probability": 0.7486 + }, + { + "start": 5094.3, + "end": 5094.8, + "probability": 0.3432 + }, + { + "start": 5094.82, + "end": 5094.82, + "probability": 0.1963 + }, + { + "start": 5094.88, + "end": 5095.44, + "probability": 0.5983 + }, + { + "start": 5095.48, + "end": 5096.96, + "probability": 0.8024 + }, + { + "start": 5097.06, + "end": 5097.46, + "probability": 0.2751 + }, + { + "start": 5097.5, + "end": 5103.32, + "probability": 0.9706 + }, + { + "start": 5103.76, + "end": 5104.26, + "probability": 0.7083 + }, + { + "start": 5104.34, + "end": 5107.54, + "probability": 0.9282 + }, + { + "start": 5107.74, + "end": 5108.56, + "probability": 0.8736 + }, + { + "start": 5108.78, + "end": 5111.88, + "probability": 0.9821 + }, + { + "start": 5112.18, + "end": 5114.88, + "probability": 0.9082 + }, + { + "start": 5114.88, + "end": 5117.66, + "probability": 0.9929 + }, + { + "start": 5118.24, + "end": 5118.72, + "probability": 0.1083 + }, + { + "start": 5118.72, + "end": 5119.25, + "probability": 0.1307 + }, + { + "start": 5120.1, + "end": 5120.58, + "probability": 0.1245 + }, + { + "start": 5121.54, + "end": 5123.08, + "probability": 0.9352 + }, + { + "start": 5124.44, + "end": 5125.7, + "probability": 0.8671 + }, + { + "start": 5126.58, + "end": 5126.98, + "probability": 0.1223 + }, + { + "start": 5127.18, + "end": 5128.5, + "probability": 0.6399 + }, + { + "start": 5128.64, + "end": 5130.32, + "probability": 0.7364 + }, + { + "start": 5130.34, + "end": 5131.84, + "probability": 0.9896 + }, + { + "start": 5132.14, + "end": 5133.42, + "probability": 0.4084 + }, + { + "start": 5134.2, + "end": 5135.78, + "probability": 0.7 + }, + { + "start": 5136.22, + "end": 5138.51, + "probability": 0.9346 + }, + { + "start": 5139.98, + "end": 5141.96, + "probability": 0.6739 + }, + { + "start": 5143.0, + "end": 5146.26, + "probability": 0.9296 + }, + { + "start": 5146.84, + "end": 5148.24, + "probability": 0.3909 + }, + { + "start": 5149.28, + "end": 5156.12, + "probability": 0.8534 + }, + { + "start": 5157.82, + "end": 5158.98, + "probability": 0.6081 + }, + { + "start": 5159.08, + "end": 5159.68, + "probability": 0.6514 + }, + { + "start": 5159.68, + "end": 5160.14, + "probability": 0.8147 + }, + { + "start": 5160.22, + "end": 5160.88, + "probability": 0.7487 + }, + { + "start": 5164.0, + "end": 5168.22, + "probability": 0.0906 + }, + { + "start": 5168.8, + "end": 5172.64, + "probability": 0.0811 + }, + { + "start": 5174.54, + "end": 5175.8, + "probability": 0.0284 + }, + { + "start": 5176.12, + "end": 5178.26, + "probability": 0.2336 + }, + { + "start": 5178.84, + "end": 5185.78, + "probability": 0.728 + }, + { + "start": 5189.54, + "end": 5194.0, + "probability": 0.691 + }, + { + "start": 5194.04, + "end": 5194.68, + "probability": 0.0793 + }, + { + "start": 5194.68, + "end": 5195.14, + "probability": 0.5272 + }, + { + "start": 5195.14, + "end": 5196.18, + "probability": 0.7509 + }, + { + "start": 5196.86, + "end": 5200.04, + "probability": 0.4992 + }, + { + "start": 5200.3, + "end": 5203.64, + "probability": 0.4188 + }, + { + "start": 5204.2, + "end": 5208.38, + "probability": 0.2321 + }, + { + "start": 5209.56, + "end": 5210.84, + "probability": 0.0002 + }, + { + "start": 5211.62, + "end": 5214.34, + "probability": 0.1751 + }, + { + "start": 5214.86, + "end": 5218.04, + "probability": 0.2916 + }, + { + "start": 5218.64, + "end": 5220.54, + "probability": 0.7798 + }, + { + "start": 5220.88, + "end": 5221.64, + "probability": 0.0397 + }, + { + "start": 5221.72, + "end": 5224.96, + "probability": 0.4926 + }, + { + "start": 5225.64, + "end": 5226.06, + "probability": 0.2875 + }, + { + "start": 5226.06, + "end": 5226.78, + "probability": 0.6271 + }, + { + "start": 5226.96, + "end": 5228.46, + "probability": 0.3133 + }, + { + "start": 5228.54, + "end": 5230.86, + "probability": 0.2549 + }, + { + "start": 5231.02, + "end": 5232.06, + "probability": 0.8169 + }, + { + "start": 5232.2, + "end": 5233.1, + "probability": 0.9797 + }, + { + "start": 5233.18, + "end": 5235.8, + "probability": 0.4763 + }, + { + "start": 5238.06, + "end": 5239.75, + "probability": 0.4492 + }, + { + "start": 5239.92, + "end": 5241.06, + "probability": 0.4939 + }, + { + "start": 5241.12, + "end": 5243.46, + "probability": 0.2842 + }, + { + "start": 5244.08, + "end": 5244.86, + "probability": 0.2508 + }, + { + "start": 5245.2, + "end": 5247.12, + "probability": 0.6843 + }, + { + "start": 5247.48, + "end": 5248.96, + "probability": 0.2828 + }, + { + "start": 5249.98, + "end": 5250.58, + "probability": 0.5508 + }, + { + "start": 5251.26, + "end": 5251.68, + "probability": 0.0041 + }, + { + "start": 5251.68, + "end": 5252.12, + "probability": 0.4877 + }, + { + "start": 5252.54, + "end": 5254.9, + "probability": 0.4947 + }, + { + "start": 5254.9, + "end": 5255.68, + "probability": 0.6826 + }, + { + "start": 5256.52, + "end": 5259.37, + "probability": 0.6488 + }, + { + "start": 5260.26, + "end": 5261.5, + "probability": 0.4418 + }, + { + "start": 5261.9, + "end": 5263.38, + "probability": 0.2655 + }, + { + "start": 5263.56, + "end": 5267.06, + "probability": 0.7109 + }, + { + "start": 5267.28, + "end": 5268.78, + "probability": 0.5972 + }, + { + "start": 5269.12, + "end": 5270.44, + "probability": 0.8436 + }, + { + "start": 5270.64, + "end": 5271.2, + "probability": 0.2992 + }, + { + "start": 5271.72, + "end": 5272.4, + "probability": 0.0874 + }, + { + "start": 5272.4, + "end": 5273.03, + "probability": 0.1747 + }, + { + "start": 5273.54, + "end": 5273.54, + "probability": 0.1705 + }, + { + "start": 5273.54, + "end": 5275.38, + "probability": 0.4354 + }, + { + "start": 5275.6, + "end": 5276.5, + "probability": 0.7718 + }, + { + "start": 5276.54, + "end": 5276.78, + "probability": 0.3431 + }, + { + "start": 5276.86, + "end": 5277.46, + "probability": 0.8646 + }, + { + "start": 5277.58, + "end": 5280.72, + "probability": 0.7057 + }, + { + "start": 5280.86, + "end": 5281.56, + "probability": 0.32 + }, + { + "start": 5281.92, + "end": 5282.98, + "probability": 0.3749 + }, + { + "start": 5283.42, + "end": 5284.68, + "probability": 0.5859 + }, + { + "start": 5284.68, + "end": 5285.64, + "probability": 0.5056 + }, + { + "start": 5285.88, + "end": 5287.24, + "probability": 0.749 + }, + { + "start": 5287.24, + "end": 5287.66, + "probability": 0.1298 + }, + { + "start": 5287.92, + "end": 5288.99, + "probability": 0.7215 + }, + { + "start": 5289.3, + "end": 5292.18, + "probability": 0.6653 + }, + { + "start": 5292.38, + "end": 5293.1, + "probability": 0.3443 + }, + { + "start": 5293.54, + "end": 5296.24, + "probability": 0.6537 + }, + { + "start": 5296.26, + "end": 5297.6, + "probability": 0.5912 + }, + { + "start": 5297.76, + "end": 5299.21, + "probability": 0.0874 + }, + { + "start": 5299.86, + "end": 5303.44, + "probability": 0.6993 + }, + { + "start": 5303.54, + "end": 5307.3, + "probability": 0.6151 + }, + { + "start": 5307.7, + "end": 5309.28, + "probability": 0.4344 + }, + { + "start": 5309.44, + "end": 5310.52, + "probability": 0.7055 + }, + { + "start": 5310.68, + "end": 5311.4, + "probability": 0.5967 + }, + { + "start": 5311.58, + "end": 5312.24, + "probability": 0.4548 + }, + { + "start": 5312.26, + "end": 5312.9, + "probability": 0.6713 + }, + { + "start": 5313.12, + "end": 5313.98, + "probability": 0.7957 + }, + { + "start": 5314.2, + "end": 5321.96, + "probability": 0.0193 + }, + { + "start": 5323.8, + "end": 5325.6, + "probability": 0.0334 + }, + { + "start": 5328.64, + "end": 5331.3, + "probability": 0.132 + }, + { + "start": 5331.3, + "end": 5331.46, + "probability": 0.0393 + }, + { + "start": 5331.46, + "end": 5331.46, + "probability": 0.0824 + }, + { + "start": 5331.46, + "end": 5332.4, + "probability": 0.2456 + }, + { + "start": 5333.44, + "end": 5336.52, + "probability": 0.495 + }, + { + "start": 5336.78, + "end": 5340.76, + "probability": 0.9448 + }, + { + "start": 5341.36, + "end": 5342.74, + "probability": 0.8132 + }, + { + "start": 5343.1, + "end": 5344.72, + "probability": 0.7708 + }, + { + "start": 5348.02, + "end": 5355.26, + "probability": 0.9756 + }, + { + "start": 5355.48, + "end": 5359.56, + "probability": 0.8865 + }, + { + "start": 5359.94, + "end": 5360.5, + "probability": 0.3855 + }, + { + "start": 5361.68, + "end": 5362.5, + "probability": 0.3413 + }, + { + "start": 5362.92, + "end": 5363.4, + "probability": 0.7532 + }, + { + "start": 5363.4, + "end": 5364.52, + "probability": 0.5908 + }, + { + "start": 5364.94, + "end": 5364.94, + "probability": 0.4177 + }, + { + "start": 5364.94, + "end": 5368.42, + "probability": 0.502 + }, + { + "start": 5369.58, + "end": 5370.46, + "probability": 0.7092 + }, + { + "start": 5370.72, + "end": 5371.14, + "probability": 0.6534 + }, + { + "start": 5371.3, + "end": 5372.4, + "probability": 0.7827 + }, + { + "start": 5373.24, + "end": 5376.56, + "probability": 0.5797 + }, + { + "start": 5376.56, + "end": 5379.76, + "probability": 0.6219 + }, + { + "start": 5380.36, + "end": 5380.74, + "probability": 0.5553 + }, + { + "start": 5380.82, + "end": 5384.76, + "probability": 0.791 + }, + { + "start": 5385.08, + "end": 5386.42, + "probability": 0.7798 + }, + { + "start": 5387.66, + "end": 5392.6, + "probability": 0.6739 + }, + { + "start": 5392.66, + "end": 5393.02, + "probability": 0.772 + }, + { + "start": 5393.62, + "end": 5395.9, + "probability": 0.1639 + }, + { + "start": 5404.6, + "end": 5404.6, + "probability": 0.0441 + }, + { + "start": 5404.6, + "end": 5404.6, + "probability": 0.0378 + }, + { + "start": 5404.6, + "end": 5404.6, + "probability": 0.1467 + }, + { + "start": 5404.62, + "end": 5404.62, + "probability": 0.0583 + }, + { + "start": 5404.62, + "end": 5404.62, + "probability": 0.2676 + }, + { + "start": 5425.94, + "end": 5428.24, + "probability": 0.7531 + }, + { + "start": 5429.26, + "end": 5436.34, + "probability": 0.9642 + }, + { + "start": 5436.88, + "end": 5437.54, + "probability": 0.9858 + }, + { + "start": 5438.6, + "end": 5440.2, + "probability": 0.9808 + }, + { + "start": 5440.92, + "end": 5442.98, + "probability": 0.9817 + }, + { + "start": 5443.94, + "end": 5448.32, + "probability": 0.9144 + }, + { + "start": 5450.02, + "end": 5454.79, + "probability": 0.9993 + }, + { + "start": 5454.96, + "end": 5458.26, + "probability": 0.9988 + }, + { + "start": 5459.18, + "end": 5461.36, + "probability": 0.998 + }, + { + "start": 5463.76, + "end": 5464.32, + "probability": 0.7386 + }, + { + "start": 5464.4, + "end": 5464.9, + "probability": 0.0136 + }, + { + "start": 5465.32, + "end": 5466.4, + "probability": 0.7953 + }, + { + "start": 5466.5, + "end": 5468.48, + "probability": 0.9427 + }, + { + "start": 5468.9, + "end": 5470.14, + "probability": 0.89 + }, + { + "start": 5471.74, + "end": 5473.76, + "probability": 0.9539 + }, + { + "start": 5474.32, + "end": 5476.06, + "probability": 0.8419 + }, + { + "start": 5477.78, + "end": 5478.86, + "probability": 0.8519 + }, + { + "start": 5479.04, + "end": 5482.06, + "probability": 0.9956 + }, + { + "start": 5482.06, + "end": 5486.02, + "probability": 0.9993 + }, + { + "start": 5486.66, + "end": 5489.88, + "probability": 0.991 + }, + { + "start": 5490.42, + "end": 5492.4, + "probability": 0.6522 + }, + { + "start": 5492.56, + "end": 5497.74, + "probability": 0.9888 + }, + { + "start": 5498.48, + "end": 5499.74, + "probability": 0.9951 + }, + { + "start": 5500.48, + "end": 5502.82, + "probability": 0.9967 + }, + { + "start": 5503.58, + "end": 5504.62, + "probability": 0.9985 + }, + { + "start": 5505.32, + "end": 5508.68, + "probability": 0.9985 + }, + { + "start": 5509.44, + "end": 5511.94, + "probability": 0.9608 + }, + { + "start": 5512.68, + "end": 5513.18, + "probability": 0.461 + }, + { + "start": 5513.54, + "end": 5514.0, + "probability": 0.9394 + }, + { + "start": 5514.12, + "end": 5517.2, + "probability": 0.9658 + }, + { + "start": 5517.88, + "end": 5524.2, + "probability": 0.9766 + }, + { + "start": 5524.76, + "end": 5525.78, + "probability": 0.847 + }, + { + "start": 5525.88, + "end": 5526.86, + "probability": 0.9732 + }, + { + "start": 5526.98, + "end": 5528.38, + "probability": 0.5363 + }, + { + "start": 5528.48, + "end": 5529.52, + "probability": 0.9102 + }, + { + "start": 5530.06, + "end": 5532.56, + "probability": 0.9734 + }, + { + "start": 5533.14, + "end": 5537.5, + "probability": 0.9208 + }, + { + "start": 5538.42, + "end": 5542.05, + "probability": 0.0697 + }, + { + "start": 5542.66, + "end": 5543.62, + "probability": 0.6511 + }, + { + "start": 5543.76, + "end": 5546.26, + "probability": 0.9963 + }, + { + "start": 5546.92, + "end": 5549.82, + "probability": 0.9983 + }, + { + "start": 5550.56, + "end": 5553.14, + "probability": 0.9727 + }, + { + "start": 5553.74, + "end": 5556.4, + "probability": 0.9883 + }, + { + "start": 5556.64, + "end": 5557.98, + "probability": 0.9626 + }, + { + "start": 5558.96, + "end": 5563.1, + "probability": 0.0553 + }, + { + "start": 5563.64, + "end": 5568.56, + "probability": 0.9846 + }, + { + "start": 5568.94, + "end": 5569.51, + "probability": 0.9448 + }, + { + "start": 5570.1, + "end": 5571.58, + "probability": 0.8921 + }, + { + "start": 5571.72, + "end": 5574.24, + "probability": 0.9951 + }, + { + "start": 5574.24, + "end": 5577.48, + "probability": 0.9556 + }, + { + "start": 5577.92, + "end": 5580.94, + "probability": 0.9338 + }, + { + "start": 5581.34, + "end": 5583.22, + "probability": 0.9965 + }, + { + "start": 5583.58, + "end": 5585.18, + "probability": 0.9038 + }, + { + "start": 5586.56, + "end": 5589.86, + "probability": 0.8125 + }, + { + "start": 5590.46, + "end": 5591.26, + "probability": 0.6593 + }, + { + "start": 5591.34, + "end": 5592.94, + "probability": 0.9783 + }, + { + "start": 5593.38, + "end": 5594.78, + "probability": 0.9752 + }, + { + "start": 5594.94, + "end": 5596.08, + "probability": 0.9588 + }, + { + "start": 5596.4, + "end": 5597.27, + "probability": 0.9907 + }, + { + "start": 5597.8, + "end": 5600.44, + "probability": 0.9262 + }, + { + "start": 5600.8, + "end": 5602.18, + "probability": 0.9708 + }, + { + "start": 5602.42, + "end": 5603.42, + "probability": 0.7492 + }, + { + "start": 5603.82, + "end": 5608.98, + "probability": 0.9147 + }, + { + "start": 5609.14, + "end": 5612.04, + "probability": 0.702 + }, + { + "start": 5612.04, + "end": 5613.04, + "probability": 0.8224 + }, + { + "start": 5613.44, + "end": 5614.36, + "probability": 0.7172 + }, + { + "start": 5614.56, + "end": 5614.98, + "probability": 0.8901 + }, + { + "start": 5615.1, + "end": 5617.2, + "probability": 0.9238 + }, + { + "start": 5617.76, + "end": 5620.42, + "probability": 0.8982 + }, + { + "start": 5620.74, + "end": 5622.26, + "probability": 0.903 + }, + { + "start": 5622.42, + "end": 5623.24, + "probability": 0.9753 + }, + { + "start": 5623.38, + "end": 5626.02, + "probability": 0.8998 + }, + { + "start": 5626.16, + "end": 5627.22, + "probability": 0.4968 + }, + { + "start": 5627.54, + "end": 5628.24, + "probability": 0.5769 + }, + { + "start": 5628.52, + "end": 5632.6, + "probability": 0.9224 + }, + { + "start": 5633.4, + "end": 5634.49, + "probability": 0.8427 + }, + { + "start": 5634.9, + "end": 5635.44, + "probability": 0.8519 + }, + { + "start": 5635.5, + "end": 5637.36, + "probability": 0.6493 + }, + { + "start": 5637.62, + "end": 5638.66, + "probability": 0.9012 + }, + { + "start": 5638.8, + "end": 5640.67, + "probability": 0.9971 + }, + { + "start": 5640.84, + "end": 5642.3, + "probability": 0.6793 + }, + { + "start": 5642.4, + "end": 5643.65, + "probability": 0.8111 + }, + { + "start": 5644.0, + "end": 5645.74, + "probability": 0.9658 + }, + { + "start": 5645.9, + "end": 5646.52, + "probability": 0.6668 + }, + { + "start": 5646.64, + "end": 5648.82, + "probability": 0.9602 + }, + { + "start": 5648.96, + "end": 5650.98, + "probability": 0.8699 + }, + { + "start": 5651.4, + "end": 5653.16, + "probability": 0.9514 + }, + { + "start": 5653.16, + "end": 5655.04, + "probability": 0.6209 + }, + { + "start": 5655.18, + "end": 5657.8, + "probability": 0.6864 + }, + { + "start": 5659.42, + "end": 5662.66, + "probability": 0.9681 + }, + { + "start": 5662.66, + "end": 5665.56, + "probability": 0.8843 + }, + { + "start": 5666.56, + "end": 5669.0, + "probability": 0.8911 + }, + { + "start": 5669.9, + "end": 5672.12, + "probability": 0.889 + }, + { + "start": 5672.22, + "end": 5676.76, + "probability": 0.7418 + }, + { + "start": 5677.9, + "end": 5680.94, + "probability": 0.9983 + }, + { + "start": 5681.22, + "end": 5685.02, + "probability": 0.9668 + }, + { + "start": 5685.42, + "end": 5688.98, + "probability": 0.9882 + }, + { + "start": 5689.48, + "end": 5692.58, + "probability": 0.9495 + }, + { + "start": 5692.9, + "end": 5696.14, + "probability": 0.9712 + }, + { + "start": 5696.48, + "end": 5700.64, + "probability": 0.9505 + }, + { + "start": 5701.46, + "end": 5703.15, + "probability": 0.9941 + }, + { + "start": 5703.7, + "end": 5705.24, + "probability": 0.9415 + }, + { + "start": 5705.8, + "end": 5707.94, + "probability": 0.8435 + }, + { + "start": 5708.5, + "end": 5709.16, + "probability": 0.8761 + }, + { + "start": 5709.24, + "end": 5710.26, + "probability": 0.8432 + }, + { + "start": 5710.76, + "end": 5714.84, + "probability": 0.9959 + }, + { + "start": 5715.22, + "end": 5718.88, + "probability": 0.9709 + }, + { + "start": 5718.88, + "end": 5722.92, + "probability": 0.999 + }, + { + "start": 5723.3, + "end": 5725.12, + "probability": 0.95 + }, + { + "start": 5725.78, + "end": 5727.84, + "probability": 0.998 + }, + { + "start": 5728.86, + "end": 5730.62, + "probability": 0.9565 + }, + { + "start": 5731.0, + "end": 5733.52, + "probability": 0.9817 + }, + { + "start": 5734.12, + "end": 5736.6, + "probability": 0.995 + }, + { + "start": 5736.78, + "end": 5737.28, + "probability": 0.5854 + }, + { + "start": 5737.46, + "end": 5738.36, + "probability": 0.9561 + }, + { + "start": 5738.76, + "end": 5741.88, + "probability": 0.8788 + }, + { + "start": 5742.02, + "end": 5746.32, + "probability": 0.876 + }, + { + "start": 5746.44, + "end": 5747.24, + "probability": 0.6519 + }, + { + "start": 5747.92, + "end": 5750.88, + "probability": 0.9665 + }, + { + "start": 5751.3, + "end": 5753.14, + "probability": 0.9062 + }, + { + "start": 5753.22, + "end": 5754.5, + "probability": 0.9359 + }, + { + "start": 5755.02, + "end": 5755.5, + "probability": 0.7753 + }, + { + "start": 5755.64, + "end": 5758.42, + "probability": 0.8641 + }, + { + "start": 5759.12, + "end": 5759.64, + "probability": 0.501 + }, + { + "start": 5759.66, + "end": 5763.5, + "probability": 0.9172 + }, + { + "start": 5764.02, + "end": 5764.94, + "probability": 0.945 + }, + { + "start": 5765.42, + "end": 5768.26, + "probability": 0.9093 + }, + { + "start": 5768.66, + "end": 5770.93, + "probability": 0.9844 + }, + { + "start": 5773.56, + "end": 5779.8, + "probability": 0.7838 + }, + { + "start": 5780.18, + "end": 5781.16, + "probability": 0.803 + }, + { + "start": 5781.2, + "end": 5781.92, + "probability": 0.9431 + }, + { + "start": 5784.74, + "end": 5787.36, + "probability": 0.0249 + }, + { + "start": 5788.3, + "end": 5790.71, + "probability": 0.625 + }, + { + "start": 5791.58, + "end": 5792.56, + "probability": 0.0224 + }, + { + "start": 5792.68, + "end": 5795.28, + "probability": 0.3908 + }, + { + "start": 5795.42, + "end": 5795.76, + "probability": 0.0451 + }, + { + "start": 5795.9, + "end": 5797.06, + "probability": 0.2205 + }, + { + "start": 5797.12, + "end": 5798.14, + "probability": 0.9277 + }, + { + "start": 5798.5, + "end": 5800.24, + "probability": 0.8347 + }, + { + "start": 5800.7, + "end": 5804.52, + "probability": 0.945 + }, + { + "start": 5804.84, + "end": 5808.6, + "probability": 0.9057 + }, + { + "start": 5808.78, + "end": 5809.96, + "probability": 0.1566 + }, + { + "start": 5810.04, + "end": 5811.52, + "probability": 0.8398 + }, + { + "start": 5811.84, + "end": 5813.38, + "probability": 0.0869 + }, + { + "start": 5813.38, + "end": 5815.44, + "probability": 0.5835 + }, + { + "start": 5815.54, + "end": 5817.24, + "probability": 0.7759 + }, + { + "start": 5817.66, + "end": 5820.09, + "probability": 0.6792 + }, + { + "start": 5822.24, + "end": 5822.92, + "probability": 0.6048 + }, + { + "start": 5823.02, + "end": 5823.84, + "probability": 0.2332 + }, + { + "start": 5824.44, + "end": 5827.34, + "probability": 0.7276 + }, + { + "start": 5827.42, + "end": 5828.19, + "probability": 0.7527 + }, + { + "start": 5828.64, + "end": 5830.82, + "probability": 0.7934 + }, + { + "start": 5830.84, + "end": 5833.32, + "probability": 0.8882 + }, + { + "start": 5833.46, + "end": 5834.26, + "probability": 0.4994 + }, + { + "start": 5834.48, + "end": 5836.83, + "probability": 0.9858 + }, + { + "start": 5837.04, + "end": 5839.2, + "probability": 0.9287 + }, + { + "start": 5839.78, + "end": 5843.52, + "probability": 0.899 + }, + { + "start": 5843.92, + "end": 5843.92, + "probability": 0.2724 + }, + { + "start": 5843.92, + "end": 5844.62, + "probability": 0.724 + }, + { + "start": 5844.68, + "end": 5846.18, + "probability": 0.8079 + }, + { + "start": 5847.63, + "end": 5850.2, + "probability": 0.4712 + }, + { + "start": 5850.6, + "end": 5852.46, + "probability": 0.4933 + }, + { + "start": 5852.54, + "end": 5853.6, + "probability": 0.7391 + }, + { + "start": 5853.9, + "end": 5856.56, + "probability": 0.8952 + }, + { + "start": 5856.56, + "end": 5859.5, + "probability": 0.637 + }, + { + "start": 5859.52, + "end": 5859.94, + "probability": 0.5212 + }, + { + "start": 5859.96, + "end": 5860.44, + "probability": 0.5219 + }, + { + "start": 5860.56, + "end": 5860.94, + "probability": 0.3002 + }, + { + "start": 5864.75, + "end": 5866.2, + "probability": 0.2604 + }, + { + "start": 5868.62, + "end": 5870.42, + "probability": 0.2644 + }, + { + "start": 5870.42, + "end": 5870.42, + "probability": 0.5054 + }, + { + "start": 5870.66, + "end": 5871.16, + "probability": 0.0394 + }, + { + "start": 5871.16, + "end": 5871.16, + "probability": 0.743 + }, + { + "start": 5871.16, + "end": 5872.94, + "probability": 0.2654 + }, + { + "start": 5873.04, + "end": 5877.14, + "probability": 0.9781 + }, + { + "start": 5877.14, + "end": 5883.16, + "probability": 0.8931 + }, + { + "start": 5883.26, + "end": 5883.34, + "probability": 0.3189 + }, + { + "start": 5883.42, + "end": 5884.12, + "probability": 0.796 + }, + { + "start": 5884.24, + "end": 5885.12, + "probability": 0.7192 + }, + { + "start": 5885.4, + "end": 5888.08, + "probability": 0.7487 + }, + { + "start": 5888.42, + "end": 5888.84, + "probability": 0.728 + }, + { + "start": 5889.14, + "end": 5890.64, + "probability": 0.9853 + }, + { + "start": 5893.42, + "end": 5895.18, + "probability": 0.6756 + }, + { + "start": 5895.2, + "end": 5900.04, + "probability": 0.7753 + }, + { + "start": 5900.22, + "end": 5901.5, + "probability": 0.9041 + }, + { + "start": 5901.76, + "end": 5902.38, + "probability": 0.6612 + }, + { + "start": 5907.07, + "end": 5909.7, + "probability": 0.834 + }, + { + "start": 5909.76, + "end": 5910.45, + "probability": 0.9186 + }, + { + "start": 5912.12, + "end": 5915.72, + "probability": 0.7061 + }, + { + "start": 5917.44, + "end": 5918.95, + "probability": 0.8353 + }, + { + "start": 5919.4, + "end": 5923.48, + "probability": 0.9683 + }, + { + "start": 5923.48, + "end": 5928.38, + "probability": 0.9871 + }, + { + "start": 5929.12, + "end": 5932.16, + "probability": 0.7441 + }, + { + "start": 5932.16, + "end": 5935.24, + "probability": 0.9838 + }, + { + "start": 5936.0, + "end": 5938.44, + "probability": 0.9829 + }, + { + "start": 5938.94, + "end": 5941.3, + "probability": 0.9368 + }, + { + "start": 5941.3, + "end": 5945.36, + "probability": 0.6974 + }, + { + "start": 5945.82, + "end": 5946.16, + "probability": 0.3239 + }, + { + "start": 5948.74, + "end": 5951.34, + "probability": 0.3726 + }, + { + "start": 5951.66, + "end": 5952.08, + "probability": 0.7569 + }, + { + "start": 5952.28, + "end": 5953.62, + "probability": 0.7226 + }, + { + "start": 5953.72, + "end": 5954.32, + "probability": 0.6792 + }, + { + "start": 5954.52, + "end": 5956.66, + "probability": 0.7604 + }, + { + "start": 5956.74, + "end": 5956.9, + "probability": 0.1331 + }, + { + "start": 5957.44, + "end": 5961.34, + "probability": 0.7677 + }, + { + "start": 5961.86, + "end": 5965.88, + "probability": 0.6239 + }, + { + "start": 5965.9, + "end": 5967.84, + "probability": 0.9883 + }, + { + "start": 5968.22, + "end": 5970.74, + "probability": 0.9561 + }, + { + "start": 5971.61, + "end": 5973.9, + "probability": 0.9775 + }, + { + "start": 5973.9, + "end": 5974.36, + "probability": 0.0059 + }, + { + "start": 5974.76, + "end": 5975.76, + "probability": 0.6188 + }, + { + "start": 5975.86, + "end": 5976.28, + "probability": 0.862 + }, + { + "start": 5976.36, + "end": 5978.11, + "probability": 0.8928 + }, + { + "start": 5978.7, + "end": 5979.84, + "probability": 0.9221 + }, + { + "start": 5980.04, + "end": 5982.16, + "probability": 0.981 + }, + { + "start": 5982.36, + "end": 5983.8, + "probability": 0.778 + }, + { + "start": 5984.07, + "end": 5986.38, + "probability": 0.959 + }, + { + "start": 5986.38, + "end": 5987.06, + "probability": 0.3868 + }, + { + "start": 5987.58, + "end": 5988.76, + "probability": 0.8551 + }, + { + "start": 5988.92, + "end": 5993.2, + "probability": 0.781 + }, + { + "start": 5993.74, + "end": 5999.32, + "probability": 0.9347 + }, + { + "start": 5999.44, + "end": 6000.04, + "probability": 0.9154 + }, + { + "start": 6000.3, + "end": 6007.3, + "probability": 0.9783 + }, + { + "start": 6007.3, + "end": 6011.34, + "probability": 0.998 + }, + { + "start": 6012.14, + "end": 6016.22, + "probability": 0.9989 + }, + { + "start": 6016.56, + "end": 6021.54, + "probability": 0.9236 + }, + { + "start": 6021.98, + "end": 6025.12, + "probability": 0.9517 + }, + { + "start": 6025.3, + "end": 6030.66, + "probability": 0.9907 + }, + { + "start": 6030.76, + "end": 6032.34, + "probability": 0.8585 + }, + { + "start": 6032.42, + "end": 6032.88, + "probability": 0.7755 + }, + { + "start": 6033.26, + "end": 6034.0, + "probability": 0.6703 + }, + { + "start": 6034.4, + "end": 6035.02, + "probability": 0.5685 + }, + { + "start": 6036.3, + "end": 6040.98, + "probability": 0.5666 + }, + { + "start": 6050.04, + "end": 6051.76, + "probability": 0.6982 + }, + { + "start": 6052.76, + "end": 6053.6, + "probability": 0.7497 + }, + { + "start": 6055.12, + "end": 6058.16, + "probability": 0.7526 + }, + { + "start": 6059.9, + "end": 6062.72, + "probability": 0.7436 + }, + { + "start": 6063.32, + "end": 6067.08, + "probability": 0.9964 + }, + { + "start": 6067.64, + "end": 6072.52, + "probability": 0.9909 + }, + { + "start": 6072.62, + "end": 6072.96, + "probability": 0.8113 + }, + { + "start": 6073.12, + "end": 6075.38, + "probability": 0.965 + }, + { + "start": 6075.84, + "end": 6081.3, + "probability": 0.9946 + }, + { + "start": 6082.0, + "end": 6088.22, + "probability": 0.9982 + }, + { + "start": 6088.46, + "end": 6090.28, + "probability": 0.9883 + }, + { + "start": 6091.34, + "end": 6091.86, + "probability": 0.4633 + }, + { + "start": 6092.0, + "end": 6092.78, + "probability": 0.7654 + }, + { + "start": 6092.92, + "end": 6097.04, + "probability": 0.9953 + }, + { + "start": 6097.46, + "end": 6098.22, + "probability": 0.9961 + }, + { + "start": 6098.82, + "end": 6100.3, + "probability": 0.6068 + }, + { + "start": 6101.02, + "end": 6104.5, + "probability": 0.9974 + }, + { + "start": 6104.5, + "end": 6108.36, + "probability": 0.9799 + }, + { + "start": 6109.44, + "end": 6110.32, + "probability": 0.7887 + }, + { + "start": 6110.42, + "end": 6111.84, + "probability": 0.8708 + }, + { + "start": 6112.12, + "end": 6113.48, + "probability": 0.7459 + }, + { + "start": 6113.58, + "end": 6115.01, + "probability": 0.9303 + }, + { + "start": 6115.59, + "end": 6119.89, + "probability": 0.9961 + }, + { + "start": 6120.43, + "end": 6127.61, + "probability": 0.8134 + }, + { + "start": 6127.69, + "end": 6128.05, + "probability": 0.1979 + }, + { + "start": 6128.05, + "end": 6130.13, + "probability": 0.5408 + }, + { + "start": 6130.19, + "end": 6133.03, + "probability": 0.7603 + }, + { + "start": 6134.29, + "end": 6136.47, + "probability": 0.9667 + }, + { + "start": 6137.29, + "end": 6138.15, + "probability": 0.4727 + }, + { + "start": 6138.29, + "end": 6142.51, + "probability": 0.9773 + }, + { + "start": 6143.09, + "end": 6146.09, + "probability": 0.8813 + }, + { + "start": 6147.11, + "end": 6148.85, + "probability": 0.9413 + }, + { + "start": 6149.17, + "end": 6151.07, + "probability": 0.7661 + }, + { + "start": 6151.27, + "end": 6156.57, + "probability": 0.9375 + }, + { + "start": 6156.89, + "end": 6157.19, + "probability": 0.5355 + }, + { + "start": 6157.25, + "end": 6160.17, + "probability": 0.9849 + }, + { + "start": 6161.01, + "end": 6164.81, + "probability": 0.9894 + }, + { + "start": 6164.89, + "end": 6167.49, + "probability": 0.7627 + }, + { + "start": 6167.53, + "end": 6168.95, + "probability": 0.9248 + }, + { + "start": 6169.31, + "end": 6169.93, + "probability": 0.5362 + }, + { + "start": 6169.93, + "end": 6170.41, + "probability": 0.3177 + }, + { + "start": 6170.45, + "end": 6170.91, + "probability": 0.6606 + }, + { + "start": 6170.93, + "end": 6171.47, + "probability": 0.7793 + }, + { + "start": 6171.59, + "end": 6173.41, + "probability": 0.2268 + }, + { + "start": 6176.01, + "end": 6179.03, + "probability": 0.1982 + }, + { + "start": 6186.19, + "end": 6186.91, + "probability": 0.0043 + }, + { + "start": 6191.05, + "end": 6195.59, + "probability": 0.3866 + }, + { + "start": 6196.25, + "end": 6199.67, + "probability": 0.0362 + }, + { + "start": 6201.82, + "end": 6202.47, + "probability": 0.0709 + }, + { + "start": 6202.47, + "end": 6203.57, + "probability": 0.0935 + }, + { + "start": 6207.39, + "end": 6208.27, + "probability": 0.6813 + }, + { + "start": 6211.43, + "end": 6213.27, + "probability": 0.1303 + }, + { + "start": 6213.27, + "end": 6213.79, + "probability": 0.0096 + }, + { + "start": 6213.81, + "end": 6215.35, + "probability": 0.0336 + }, + { + "start": 6219.15, + "end": 6227.03, + "probability": 0.052 + }, + { + "start": 6227.03, + "end": 6229.05, + "probability": 0.3411 + }, + { + "start": 6229.31, + "end": 6229.55, + "probability": 0.1579 + }, + { + "start": 6229.69, + "end": 6234.95, + "probability": 0.2168 + }, + { + "start": 6235.71, + "end": 6235.89, + "probability": 0.0142 + }, + { + "start": 6236.59, + "end": 6237.83, + "probability": 0.0121 + }, + { + "start": 6260.0, + "end": 6260.0, + "probability": 0.0 + }, + { + "start": 6260.0, + "end": 6260.0, + "probability": 0.0 + }, + { + "start": 6260.0, + "end": 6260.0, + "probability": 0.0 + }, + { + "start": 6260.0, + "end": 6260.0, + "probability": 0.0 + }, + { + "start": 6260.0, + "end": 6260.0, + "probability": 0.0 + }, + { + "start": 6260.0, + "end": 6260.0, + "probability": 0.0 + }, + { + "start": 6260.0, + "end": 6260.0, + "probability": 0.0 + }, + { + "start": 6260.0, + "end": 6260.0, + "probability": 0.0 + }, + { + "start": 6260.0, + "end": 6260.0, + "probability": 0.0 + }, + { + "start": 6260.0, + "end": 6260.0, + "probability": 0.0 + }, + { + "start": 6260.16, + "end": 6260.64, + "probability": 0.017 + }, + { + "start": 6260.64, + "end": 6261.06, + "probability": 0.3169 + }, + { + "start": 6262.22, + "end": 6264.56, + "probability": 0.9873 + }, + { + "start": 6264.76, + "end": 6266.02, + "probability": 0.8181 + }, + { + "start": 6266.68, + "end": 6271.12, + "probability": 0.9181 + }, + { + "start": 6271.62, + "end": 6276.72, + "probability": 0.9121 + }, + { + "start": 6276.72, + "end": 6280.66, + "probability": 0.9943 + }, + { + "start": 6281.44, + "end": 6285.74, + "probability": 0.9948 + }, + { + "start": 6286.56, + "end": 6290.2, + "probability": 0.9899 + }, + { + "start": 6290.52, + "end": 6291.72, + "probability": 0.9517 + }, + { + "start": 6292.24, + "end": 6295.06, + "probability": 0.9934 + }, + { + "start": 6295.06, + "end": 6299.44, + "probability": 0.9629 + }, + { + "start": 6299.56, + "end": 6303.52, + "probability": 0.9849 + }, + { + "start": 6303.92, + "end": 6308.2, + "probability": 0.8806 + }, + { + "start": 6308.62, + "end": 6310.94, + "probability": 0.8025 + }, + { + "start": 6311.44, + "end": 6312.42, + "probability": 0.9848 + }, + { + "start": 6312.54, + "end": 6313.5, + "probability": 0.9146 + }, + { + "start": 6313.74, + "end": 6315.58, + "probability": 0.915 + }, + { + "start": 6316.02, + "end": 6319.38, + "probability": 0.9506 + }, + { + "start": 6319.78, + "end": 6323.38, + "probability": 0.9731 + }, + { + "start": 6323.5, + "end": 6323.64, + "probability": 0.395 + }, + { + "start": 6323.8, + "end": 6325.3, + "probability": 0.7409 + }, + { + "start": 6325.5, + "end": 6331.16, + "probability": 0.9883 + }, + { + "start": 6331.78, + "end": 6332.56, + "probability": 0.9153 + }, + { + "start": 6332.74, + "end": 6334.86, + "probability": 0.9943 + }, + { + "start": 6335.2, + "end": 6338.14, + "probability": 0.9723 + }, + { + "start": 6338.52, + "end": 6339.62, + "probability": 0.4999 + }, + { + "start": 6340.12, + "end": 6340.84, + "probability": 0.9596 + }, + { + "start": 6341.12, + "end": 6342.86, + "probability": 0.8293 + }, + { + "start": 6343.54, + "end": 6348.64, + "probability": 0.9204 + }, + { + "start": 6349.2, + "end": 6356.18, + "probability": 0.9956 + }, + { + "start": 6357.08, + "end": 6363.96, + "probability": 0.9774 + }, + { + "start": 6363.96, + "end": 6370.56, + "probability": 0.9993 + }, + { + "start": 6371.32, + "end": 6372.92, + "probability": 0.7993 + }, + { + "start": 6373.06, + "end": 6378.86, + "probability": 0.9556 + }, + { + "start": 6379.06, + "end": 6380.44, + "probability": 0.7356 + }, + { + "start": 6381.1, + "end": 6384.2, + "probability": 0.8149 + }, + { + "start": 6384.4, + "end": 6385.88, + "probability": 0.8218 + }, + { + "start": 6386.16, + "end": 6388.22, + "probability": 0.9384 + }, + { + "start": 6388.78, + "end": 6393.14, + "probability": 0.9321 + }, + { + "start": 6393.5, + "end": 6397.02, + "probability": 0.9797 + }, + { + "start": 6398.08, + "end": 6399.42, + "probability": 0.8988 + }, + { + "start": 6400.0, + "end": 6401.2, + "probability": 0.9375 + }, + { + "start": 6401.32, + "end": 6404.24, + "probability": 0.9862 + }, + { + "start": 6404.32, + "end": 6406.53, + "probability": 0.8819 + }, + { + "start": 6407.28, + "end": 6409.24, + "probability": 0.995 + }, + { + "start": 6409.34, + "end": 6410.4, + "probability": 0.787 + }, + { + "start": 6410.44, + "end": 6417.88, + "probability": 0.9658 + }, + { + "start": 6418.0, + "end": 6420.58, + "probability": 0.9671 + }, + { + "start": 6421.32, + "end": 6424.4, + "probability": 0.8807 + }, + { + "start": 6426.64, + "end": 6428.38, + "probability": 0.6314 + }, + { + "start": 6429.2, + "end": 6431.02, + "probability": 0.6013 + }, + { + "start": 6431.1, + "end": 6431.12, + "probability": 0.466 + }, + { + "start": 6431.18, + "end": 6432.58, + "probability": 0.92 + }, + { + "start": 6432.92, + "end": 6435.46, + "probability": 0.4898 + }, + { + "start": 6435.9, + "end": 6438.58, + "probability": 0.9825 + }, + { + "start": 6438.58, + "end": 6441.6, + "probability": 0.9966 + }, + { + "start": 6442.0, + "end": 6444.3, + "probability": 0.9968 + }, + { + "start": 6444.3, + "end": 6446.72, + "probability": 0.7875 + }, + { + "start": 6448.1, + "end": 6449.54, + "probability": 0.5956 + }, + { + "start": 6449.7, + "end": 6451.08, + "probability": 0.7974 + }, + { + "start": 6451.14, + "end": 6452.52, + "probability": 0.8233 + }, + { + "start": 6453.4, + "end": 6455.28, + "probability": 0.9096 + }, + { + "start": 6456.08, + "end": 6460.18, + "probability": 0.5661 + }, + { + "start": 6462.04, + "end": 6467.62, + "probability": 0.5836 + }, + { + "start": 6468.22, + "end": 6473.08, + "probability": 0.9917 + }, + { + "start": 6473.08, + "end": 6479.48, + "probability": 0.9849 + }, + { + "start": 6479.58, + "end": 6481.8, + "probability": 0.8641 + }, + { + "start": 6482.2, + "end": 6484.62, + "probability": 0.9788 + }, + { + "start": 6485.12, + "end": 6486.26, + "probability": 0.893 + }, + { + "start": 6486.36, + "end": 6489.3, + "probability": 0.8815 + }, + { + "start": 6490.14, + "end": 6494.08, + "probability": 0.9862 + }, + { + "start": 6494.72, + "end": 6498.2, + "probability": 0.9589 + }, + { + "start": 6498.6, + "end": 6502.26, + "probability": 0.9855 + }, + { + "start": 6502.96, + "end": 6506.42, + "probability": 0.9801 + }, + { + "start": 6506.42, + "end": 6510.0, + "probability": 0.9792 + }, + { + "start": 6510.54, + "end": 6511.04, + "probability": 0.8049 + }, + { + "start": 6511.28, + "end": 6516.9, + "probability": 0.7368 + }, + { + "start": 6517.02, + "end": 6517.32, + "probability": 0.9175 + }, + { + "start": 6517.44, + "end": 6519.42, + "probability": 0.9973 + }, + { + "start": 6519.6, + "end": 6521.48, + "probability": 0.9558 + }, + { + "start": 6521.9, + "end": 6523.8, + "probability": 0.7695 + }, + { + "start": 6524.04, + "end": 6524.76, + "probability": 0.9524 + }, + { + "start": 6525.02, + "end": 6529.49, + "probability": 0.9353 + }, + { + "start": 6529.62, + "end": 6529.78, + "probability": 0.3791 + }, + { + "start": 6529.88, + "end": 6530.08, + "probability": 0.7309 + }, + { + "start": 6530.26, + "end": 6533.2, + "probability": 0.746 + }, + { + "start": 6533.28, + "end": 6535.44, + "probability": 0.8368 + }, + { + "start": 6536.16, + "end": 6540.61, + "probability": 0.9673 + }, + { + "start": 6540.88, + "end": 6544.52, + "probability": 0.9775 + }, + { + "start": 6544.52, + "end": 6546.16, + "probability": 0.8594 + }, + { + "start": 6546.56, + "end": 6548.6, + "probability": 0.6991 + }, + { + "start": 6548.64, + "end": 6550.08, + "probability": 0.9223 + }, + { + "start": 6550.22, + "end": 6551.98, + "probability": 0.5914 + }, + { + "start": 6552.22, + "end": 6554.16, + "probability": 0.9902 + }, + { + "start": 6554.86, + "end": 6555.86, + "probability": 0.4568 + }, + { + "start": 6556.42, + "end": 6557.26, + "probability": 0.8235 + }, + { + "start": 6557.28, + "end": 6558.58, + "probability": 0.8626 + }, + { + "start": 6559.02, + "end": 6563.02, + "probability": 0.9409 + }, + { + "start": 6563.06, + "end": 6563.82, + "probability": 0.6272 + }, + { + "start": 6563.86, + "end": 6566.08, + "probability": 0.8621 + }, + { + "start": 6566.08, + "end": 6569.46, + "probability": 0.9795 + }, + { + "start": 6569.66, + "end": 6570.94, + "probability": 0.9304 + }, + { + "start": 6570.94, + "end": 6572.22, + "probability": 0.9927 + }, + { + "start": 6573.3, + "end": 6576.74, + "probability": 0.9768 + }, + { + "start": 6576.74, + "end": 6582.84, + "probability": 0.9278 + }, + { + "start": 6583.0, + "end": 6585.12, + "probability": 0.9932 + }, + { + "start": 6585.66, + "end": 6590.04, + "probability": 0.9802 + }, + { + "start": 6590.04, + "end": 6594.08, + "probability": 0.9905 + }, + { + "start": 6595.01, + "end": 6600.06, + "probability": 0.9937 + }, + { + "start": 6600.22, + "end": 6606.22, + "probability": 0.9908 + }, + { + "start": 6606.22, + "end": 6614.18, + "probability": 0.9946 + }, + { + "start": 6614.82, + "end": 6618.72, + "probability": 0.9897 + }, + { + "start": 6620.0, + "end": 6624.0, + "probability": 0.9922 + }, + { + "start": 6624.22, + "end": 6625.8, + "probability": 0.6846 + }, + { + "start": 6626.34, + "end": 6627.58, + "probability": 0.7756 + }, + { + "start": 6628.4, + "end": 6632.28, + "probability": 0.9988 + }, + { + "start": 6632.48, + "end": 6633.5, + "probability": 0.4979 + }, + { + "start": 6634.2, + "end": 6636.94, + "probability": 0.989 + }, + { + "start": 6637.66, + "end": 6642.96, + "probability": 0.9525 + }, + { + "start": 6643.02, + "end": 6643.82, + "probability": 0.7255 + }, + { + "start": 6644.48, + "end": 6650.62, + "probability": 0.8667 + }, + { + "start": 6650.94, + "end": 6652.54, + "probability": 0.9902 + }, + { + "start": 6653.26, + "end": 6655.12, + "probability": 0.8804 + }, + { + "start": 6655.74, + "end": 6662.98, + "probability": 0.9855 + }, + { + "start": 6664.54, + "end": 6664.78, + "probability": 0.3718 + }, + { + "start": 6664.78, + "end": 6665.04, + "probability": 0.8773 + }, + { + "start": 6665.12, + "end": 6667.66, + "probability": 0.9105 + }, + { + "start": 6667.72, + "end": 6668.14, + "probability": 0.9114 + }, + { + "start": 6668.24, + "end": 6668.98, + "probability": 0.9086 + }, + { + "start": 6669.06, + "end": 6670.14, + "probability": 0.7596 + }, + { + "start": 6670.34, + "end": 6671.26, + "probability": 0.8224 + }, + { + "start": 6671.74, + "end": 6675.26, + "probability": 0.888 + }, + { + "start": 6675.46, + "end": 6679.18, + "probability": 0.9888 + }, + { + "start": 6679.26, + "end": 6679.86, + "probability": 0.8683 + }, + { + "start": 6679.88, + "end": 6680.4, + "probability": 0.9388 + }, + { + "start": 6680.48, + "end": 6682.7, + "probability": 0.9412 + }, + { + "start": 6683.18, + "end": 6683.74, + "probability": 0.8855 + }, + { + "start": 6683.82, + "end": 6684.98, + "probability": 0.7149 + }, + { + "start": 6685.1, + "end": 6689.04, + "probability": 0.9954 + }, + { + "start": 6689.94, + "end": 6692.64, + "probability": 0.719 + }, + { + "start": 6693.56, + "end": 6695.04, + "probability": 0.9417 + }, + { + "start": 6695.14, + "end": 6695.9, + "probability": 0.8758 + }, + { + "start": 6696.34, + "end": 6699.74, + "probability": 0.9897 + }, + { + "start": 6700.04, + "end": 6702.82, + "probability": 0.9483 + }, + { + "start": 6703.22, + "end": 6705.54, + "probability": 0.8019 + }, + { + "start": 6705.66, + "end": 6706.42, + "probability": 0.8317 + }, + { + "start": 6706.5, + "end": 6707.26, + "probability": 0.8998 + }, + { + "start": 6707.36, + "end": 6709.94, + "probability": 0.9784 + }, + { + "start": 6710.18, + "end": 6710.78, + "probability": 0.5569 + }, + { + "start": 6710.88, + "end": 6714.9, + "probability": 0.7937 + }, + { + "start": 6715.54, + "end": 6716.36, + "probability": 0.6679 + }, + { + "start": 6716.86, + "end": 6717.2, + "probability": 0.7263 + }, + { + "start": 6726.32, + "end": 6726.7, + "probability": 0.376 + }, + { + "start": 6726.76, + "end": 6727.66, + "probability": 0.6068 + }, + { + "start": 6728.26, + "end": 6729.34, + "probability": 0.7032 + }, + { + "start": 6731.18, + "end": 6737.3, + "probability": 0.983 + }, + { + "start": 6737.82, + "end": 6745.58, + "probability": 0.9556 + }, + { + "start": 6745.58, + "end": 6749.92, + "probability": 0.9971 + }, + { + "start": 6750.64, + "end": 6752.84, + "probability": 0.8572 + }, + { + "start": 6753.42, + "end": 6755.46, + "probability": 0.9427 + }, + { + "start": 6755.96, + "end": 6758.74, + "probability": 0.9771 + }, + { + "start": 6760.28, + "end": 6768.66, + "probability": 0.816 + }, + { + "start": 6768.66, + "end": 6772.48, + "probability": 0.9881 + }, + { + "start": 6773.08, + "end": 6775.72, + "probability": 0.623 + }, + { + "start": 6776.46, + "end": 6781.38, + "probability": 0.9061 + }, + { + "start": 6781.82, + "end": 6783.04, + "probability": 0.9738 + }, + { + "start": 6783.14, + "end": 6784.68, + "probability": 0.7296 + }, + { + "start": 6785.34, + "end": 6788.3, + "probability": 0.993 + }, + { + "start": 6789.26, + "end": 6792.24, + "probability": 0.9866 + }, + { + "start": 6793.34, + "end": 6798.8, + "probability": 0.9649 + }, + { + "start": 6799.3, + "end": 6804.26, + "probability": 0.9864 + }, + { + "start": 6804.38, + "end": 6809.0, + "probability": 0.898 + }, + { + "start": 6809.7, + "end": 6811.9, + "probability": 0.9883 + }, + { + "start": 6812.4, + "end": 6815.17, + "probability": 0.9665 + }, + { + "start": 6815.38, + "end": 6821.3, + "probability": 0.956 + }, + { + "start": 6822.28, + "end": 6824.5, + "probability": 0.9832 + }, + { + "start": 6825.08, + "end": 6827.62, + "probability": 0.5919 + }, + { + "start": 6827.74, + "end": 6829.02, + "probability": 0.6494 + }, + { + "start": 6829.08, + "end": 6830.1, + "probability": 0.1778 + }, + { + "start": 6830.86, + "end": 6831.36, + "probability": 0.005 + }, + { + "start": 6831.74, + "end": 6835.0, + "probability": 0.9366 + }, + { + "start": 6835.32, + "end": 6836.35, + "probability": 0.7939 + }, + { + "start": 6836.52, + "end": 6839.3, + "probability": 0.9247 + }, + { + "start": 6839.64, + "end": 6840.64, + "probability": 0.729 + }, + { + "start": 6840.66, + "end": 6847.0, + "probability": 0.9097 + }, + { + "start": 6847.45, + "end": 6851.08, + "probability": 0.6443 + }, + { + "start": 6851.16, + "end": 6852.72, + "probability": 0.8838 + }, + { + "start": 6853.56, + "end": 6855.0, + "probability": 0.8636 + }, + { + "start": 6855.1, + "end": 6856.78, + "probability": 0.9578 + }, + { + "start": 6857.28, + "end": 6859.24, + "probability": 0.6896 + }, + { + "start": 6859.3, + "end": 6864.78, + "probability": 0.7776 + }, + { + "start": 6866.68, + "end": 6869.9, + "probability": 0.1241 + }, + { + "start": 6869.92, + "end": 6869.92, + "probability": 0.1507 + }, + { + "start": 6869.92, + "end": 6872.2, + "probability": 0.9098 + }, + { + "start": 6872.78, + "end": 6874.92, + "probability": 0.7888 + }, + { + "start": 6875.0, + "end": 6882.72, + "probability": 0.9897 + }, + { + "start": 6883.16, + "end": 6884.44, + "probability": 0.9075 + }, + { + "start": 6884.58, + "end": 6885.12, + "probability": 0.7845 + }, + { + "start": 6885.56, + "end": 6886.38, + "probability": 0.975 + }, + { + "start": 6886.44, + "end": 6888.28, + "probability": 0.9679 + }, + { + "start": 6888.32, + "end": 6889.92, + "probability": 0.9837 + }, + { + "start": 6890.38, + "end": 6892.84, + "probability": 0.7114 + }, + { + "start": 6893.58, + "end": 6899.74, + "probability": 0.976 + }, + { + "start": 6900.72, + "end": 6902.16, + "probability": 0.7311 + }, + { + "start": 6902.5, + "end": 6907.48, + "probability": 0.9927 + }, + { + "start": 6907.94, + "end": 6912.64, + "probability": 0.9351 + }, + { + "start": 6915.24, + "end": 6921.46, + "probability": 0.9962 + }, + { + "start": 6922.6, + "end": 6922.94, + "probability": 0.6872 + }, + { + "start": 6923.18, + "end": 6925.68, + "probability": 0.9458 + }, + { + "start": 6926.16, + "end": 6929.1, + "probability": 0.7879 + }, + { + "start": 6929.32, + "end": 6930.46, + "probability": 0.5033 + }, + { + "start": 6931.04, + "end": 6934.5, + "probability": 0.9491 + }, + { + "start": 6935.7, + "end": 6936.82, + "probability": 0.9829 + }, + { + "start": 6936.9, + "end": 6939.54, + "probability": 0.9426 + }, + { + "start": 6940.36, + "end": 6945.52, + "probability": 0.9969 + }, + { + "start": 6946.58, + "end": 6947.9, + "probability": 0.9583 + }, + { + "start": 6948.52, + "end": 6950.94, + "probability": 0.9564 + }, + { + "start": 6951.4, + "end": 6952.86, + "probability": 0.9803 + }, + { + "start": 6953.06, + "end": 6955.4, + "probability": 0.9824 + }, + { + "start": 6956.1, + "end": 6958.39, + "probability": 0.9526 + }, + { + "start": 6959.12, + "end": 6964.36, + "probability": 0.9658 + }, + { + "start": 6965.46, + "end": 6969.08, + "probability": 0.8174 + }, + { + "start": 6969.84, + "end": 6971.48, + "probability": 0.9956 + }, + { + "start": 6971.54, + "end": 6972.84, + "probability": 0.8651 + }, + { + "start": 6973.32, + "end": 6973.98, + "probability": 0.9896 + }, + { + "start": 6975.14, + "end": 6978.85, + "probability": 0.9932 + }, + { + "start": 6979.54, + "end": 6982.7, + "probability": 0.9568 + }, + { + "start": 6982.7, + "end": 6986.54, + "probability": 0.9969 + }, + { + "start": 6987.06, + "end": 6990.2, + "probability": 0.9915 + }, + { + "start": 6990.7, + "end": 6994.14, + "probability": 0.9607 + }, + { + "start": 6994.3, + "end": 6995.5, + "probability": 0.9644 + }, + { + "start": 6997.44, + "end": 7000.58, + "probability": 0.8335 + }, + { + "start": 7000.72, + "end": 7005.18, + "probability": 0.9767 + }, + { + "start": 7005.18, + "end": 7009.22, + "probability": 0.8984 + }, + { + "start": 7010.66, + "end": 7018.0, + "probability": 0.894 + }, + { + "start": 7018.6, + "end": 7020.32, + "probability": 0.7081 + }, + { + "start": 7020.4, + "end": 7023.32, + "probability": 0.9844 + }, + { + "start": 7023.74, + "end": 7025.16, + "probability": 0.7966 + }, + { + "start": 7026.76, + "end": 7029.18, + "probability": 0.9491 + }, + { + "start": 7032.41, + "end": 7034.84, + "probability": 0.7603 + }, + { + "start": 7036.39, + "end": 7038.86, + "probability": 0.878 + }, + { + "start": 7038.92, + "end": 7038.94, + "probability": 0.1507 + }, + { + "start": 7038.94, + "end": 7041.8, + "probability": 0.8578 + }, + { + "start": 7042.02, + "end": 7042.86, + "probability": 0.6707 + }, + { + "start": 7044.37, + "end": 7048.02, + "probability": 0.6661 + }, + { + "start": 7048.08, + "end": 7050.04, + "probability": 0.8887 + }, + { + "start": 7051.08, + "end": 7051.08, + "probability": 0.325 + }, + { + "start": 7051.08, + "end": 7053.96, + "probability": 0.7386 + }, + { + "start": 7055.93, + "end": 7058.5, + "probability": 0.845 + }, + { + "start": 7058.64, + "end": 7065.0, + "probability": 0.9624 + }, + { + "start": 7067.69, + "end": 7070.14, + "probability": 0.9927 + }, + { + "start": 7070.28, + "end": 7071.7, + "probability": 0.7717 + }, + { + "start": 7071.76, + "end": 7075.12, + "probability": 0.8691 + }, + { + "start": 7075.82, + "end": 7078.08, + "probability": 0.7999 + }, + { + "start": 7079.2, + "end": 7086.6, + "probability": 0.7913 + }, + { + "start": 7087.52, + "end": 7089.44, + "probability": 0.8544 + }, + { + "start": 7089.64, + "end": 7092.12, + "probability": 0.7744 + }, + { + "start": 7092.92, + "end": 7100.72, + "probability": 0.9033 + }, + { + "start": 7100.96, + "end": 7103.98, + "probability": 0.9688 + }, + { + "start": 7104.34, + "end": 7105.6, + "probability": 0.8735 + }, + { + "start": 7106.12, + "end": 7108.28, + "probability": 0.491 + }, + { + "start": 7108.38, + "end": 7110.36, + "probability": 0.9368 + }, + { + "start": 7110.9, + "end": 7113.72, + "probability": 0.9946 + }, + { + "start": 7114.16, + "end": 7118.1, + "probability": 0.732 + }, + { + "start": 7118.38, + "end": 7123.91, + "probability": 0.8274 + }, + { + "start": 7124.78, + "end": 7129.02, + "probability": 0.5686 + }, + { + "start": 7129.02, + "end": 7129.02, + "probability": 0.1411 + }, + { + "start": 7129.02, + "end": 7130.46, + "probability": 0.9209 + }, + { + "start": 7131.04, + "end": 7135.46, + "probability": 0.9928 + }, + { + "start": 7135.46, + "end": 7139.56, + "probability": 0.9927 + }, + { + "start": 7139.9, + "end": 7141.8, + "probability": 0.9902 + }, + { + "start": 7142.28, + "end": 7146.06, + "probability": 0.9961 + }, + { + "start": 7146.16, + "end": 7149.61, + "probability": 0.9992 + }, + { + "start": 7150.16, + "end": 7154.4, + "probability": 0.9978 + }, + { + "start": 7154.4, + "end": 7158.3, + "probability": 0.921 + }, + { + "start": 7158.76, + "end": 7161.38, + "probability": 0.9711 + }, + { + "start": 7161.82, + "end": 7164.18, + "probability": 0.9934 + }, + { + "start": 7165.2, + "end": 7167.52, + "probability": 0.9121 + }, + { + "start": 7169.0, + "end": 7171.28, + "probability": 0.7819 + }, + { + "start": 7171.34, + "end": 7172.94, + "probability": 0.8385 + }, + { + "start": 7173.0, + "end": 7175.7, + "probability": 0.9513 + }, + { + "start": 7176.3, + "end": 7183.34, + "probability": 0.9795 + }, + { + "start": 7183.34, + "end": 7187.62, + "probability": 0.989 + }, + { + "start": 7187.98, + "end": 7190.16, + "probability": 0.9443 + }, + { + "start": 7190.62, + "end": 7191.86, + "probability": 0.7524 + }, + { + "start": 7192.8, + "end": 7195.7, + "probability": 0.9749 + }, + { + "start": 7196.3, + "end": 7200.58, + "probability": 0.9954 + }, + { + "start": 7200.88, + "end": 7201.96, + "probability": 0.7561 + }, + { + "start": 7202.0, + "end": 7205.36, + "probability": 0.9854 + }, + { + "start": 7205.86, + "end": 7211.56, + "probability": 0.8555 + }, + { + "start": 7211.88, + "end": 7213.88, + "probability": 0.9868 + }, + { + "start": 7214.12, + "end": 7214.92, + "probability": 0.8187 + }, + { + "start": 7214.94, + "end": 7216.44, + "probability": 0.8379 + }, + { + "start": 7217.16, + "end": 7219.42, + "probability": 0.9716 + }, + { + "start": 7219.86, + "end": 7223.06, + "probability": 0.7173 + }, + { + "start": 7224.12, + "end": 7230.6, + "probability": 0.9294 + }, + { + "start": 7231.16, + "end": 7233.52, + "probability": 0.9881 + }, + { + "start": 7234.98, + "end": 7235.78, + "probability": 0.9332 + }, + { + "start": 7236.32, + "end": 7242.36, + "probability": 0.9761 + }, + { + "start": 7242.38, + "end": 7246.64, + "probability": 0.9911 + }, + { + "start": 7246.78, + "end": 7247.68, + "probability": 0.8771 + }, + { + "start": 7248.12, + "end": 7250.9, + "probability": 0.9863 + }, + { + "start": 7251.38, + "end": 7254.26, + "probability": 0.9635 + }, + { + "start": 7254.3, + "end": 7255.28, + "probability": 0.8823 + }, + { + "start": 7255.6, + "end": 7256.3, + "probability": 0.8483 + }, + { + "start": 7256.38, + "end": 7262.46, + "probability": 0.982 + }, + { + "start": 7262.86, + "end": 7266.58, + "probability": 0.9546 + }, + { + "start": 7266.76, + "end": 7267.7, + "probability": 0.6808 + }, + { + "start": 7268.98, + "end": 7273.28, + "probability": 0.9413 + }, + { + "start": 7273.86, + "end": 7278.62, + "probability": 0.9873 + }, + { + "start": 7279.18, + "end": 7280.36, + "probability": 0.4967 + }, + { + "start": 7282.6, + "end": 7285.86, + "probability": 0.0224 + }, + { + "start": 7286.16, + "end": 7286.46, + "probability": 0.1395 + }, + { + "start": 7286.46, + "end": 7286.5, + "probability": 0.3171 + }, + { + "start": 7286.5, + "end": 7289.54, + "probability": 0.9341 + }, + { + "start": 7289.72, + "end": 7291.0, + "probability": 0.0123 + }, + { + "start": 7291.42, + "end": 7297.44, + "probability": 0.9866 + }, + { + "start": 7297.54, + "end": 7299.98, + "probability": 0.9865 + }, + { + "start": 7300.6, + "end": 7303.98, + "probability": 0.9696 + }, + { + "start": 7303.98, + "end": 7309.16, + "probability": 0.9854 + }, + { + "start": 7309.9, + "end": 7317.5, + "probability": 0.984 + }, + { + "start": 7317.6, + "end": 7321.8, + "probability": 0.8678 + }, + { + "start": 7321.8, + "end": 7326.46, + "probability": 0.9362 + }, + { + "start": 7326.76, + "end": 7327.28, + "probability": 0.611 + }, + { + "start": 7327.44, + "end": 7329.72, + "probability": 0.4057 + }, + { + "start": 7329.84, + "end": 7331.24, + "probability": 0.6318 + }, + { + "start": 7331.32, + "end": 7332.8, + "probability": 0.8933 + }, + { + "start": 7332.88, + "end": 7334.56, + "probability": 0.8235 + }, + { + "start": 7334.92, + "end": 7336.34, + "probability": 0.2244 + }, + { + "start": 7336.72, + "end": 7337.86, + "probability": 0.6443 + }, + { + "start": 7337.94, + "end": 7339.56, + "probability": 0.9421 + }, + { + "start": 7339.64, + "end": 7340.52, + "probability": 0.6176 + }, + { + "start": 7340.92, + "end": 7341.5, + "probability": 0.85 + }, + { + "start": 7341.7, + "end": 7344.26, + "probability": 0.8774 + }, + { + "start": 7344.74, + "end": 7348.58, + "probability": 0.5647 + }, + { + "start": 7348.68, + "end": 7354.57, + "probability": 0.8877 + }, + { + "start": 7367.36, + "end": 7370.52, + "probability": 0.7418 + }, + { + "start": 7371.22, + "end": 7373.04, + "probability": 0.9907 + }, + { + "start": 7374.08, + "end": 7378.5, + "probability": 0.9054 + }, + { + "start": 7378.54, + "end": 7380.56, + "probability": 0.9845 + }, + { + "start": 7381.36, + "end": 7387.48, + "probability": 0.9909 + }, + { + "start": 7389.48, + "end": 7392.34, + "probability": 0.9141 + }, + { + "start": 7393.58, + "end": 7394.6, + "probability": 0.918 + }, + { + "start": 7394.82, + "end": 7398.96, + "probability": 0.9403 + }, + { + "start": 7399.4, + "end": 7402.56, + "probability": 0.9202 + }, + { + "start": 7402.56, + "end": 7405.54, + "probability": 0.9956 + }, + { + "start": 7405.78, + "end": 7405.96, + "probability": 0.7329 + }, + { + "start": 7406.1, + "end": 7407.76, + "probability": 0.9724 + }, + { + "start": 7407.82, + "end": 7410.43, + "probability": 0.9689 + }, + { + "start": 7411.08, + "end": 7413.16, + "probability": 0.5695 + }, + { + "start": 7413.34, + "end": 7413.82, + "probability": 0.8953 + }, + { + "start": 7413.96, + "end": 7415.52, + "probability": 0.8013 + }, + { + "start": 7416.9, + "end": 7423.64, + "probability": 0.952 + }, + { + "start": 7424.12, + "end": 7424.66, + "probability": 0.6893 + }, + { + "start": 7424.74, + "end": 7430.42, + "probability": 0.9971 + }, + { + "start": 7430.42, + "end": 7435.48, + "probability": 0.7318 + }, + { + "start": 7435.48, + "end": 7436.02, + "probability": 0.0606 + }, + { + "start": 7436.66, + "end": 7440.82, + "probability": 0.9941 + }, + { + "start": 7441.38, + "end": 7444.1, + "probability": 0.9967 + }, + { + "start": 7444.1, + "end": 7447.06, + "probability": 0.9966 + }, + { + "start": 7447.46, + "end": 7449.1, + "probability": 0.9729 + }, + { + "start": 7449.36, + "end": 7449.36, + "probability": 0.1009 + }, + { + "start": 7449.36, + "end": 7455.54, + "probability": 0.9198 + }, + { + "start": 7455.6, + "end": 7456.66, + "probability": 0.4461 + }, + { + "start": 7458.28, + "end": 7459.6, + "probability": 0.9278 + }, + { + "start": 7459.68, + "end": 7463.11, + "probability": 0.7054 + }, + { + "start": 7464.36, + "end": 7464.86, + "probability": 0.2837 + }, + { + "start": 7466.28, + "end": 7467.2, + "probability": 0.3391 + }, + { + "start": 7467.2, + "end": 7470.19, + "probability": 0.8381 + }, + { + "start": 7470.44, + "end": 7472.7, + "probability": 0.9832 + }, + { + "start": 7473.24, + "end": 7475.86, + "probability": 0.9764 + }, + { + "start": 7476.18, + "end": 7477.76, + "probability": 0.5045 + }, + { + "start": 7478.28, + "end": 7478.4, + "probability": 0.1151 + }, + { + "start": 7478.4, + "end": 7480.94, + "probability": 0.4122 + }, + { + "start": 7481.1, + "end": 7486.9, + "probability": 0.9769 + }, + { + "start": 7487.26, + "end": 7487.4, + "probability": 0.3954 + }, + { + "start": 7487.56, + "end": 7488.2, + "probability": 0.6802 + }, + { + "start": 7488.36, + "end": 7491.82, + "probability": 0.9231 + }, + { + "start": 7492.88, + "end": 7493.98, + "probability": 0.0127 + }, + { + "start": 7494.56, + "end": 7497.66, + "probability": 0.9946 + }, + { + "start": 7497.8, + "end": 7501.4, + "probability": 0.7427 + }, + { + "start": 7501.86, + "end": 7505.48, + "probability": 0.933 + }, + { + "start": 7506.12, + "end": 7508.32, + "probability": 0.8998 + }, + { + "start": 7508.46, + "end": 7509.18, + "probability": 0.5143 + }, + { + "start": 7509.36, + "end": 7512.0, + "probability": 0.9692 + }, + { + "start": 7512.3, + "end": 7515.8, + "probability": 0.9775 + }, + { + "start": 7516.16, + "end": 7519.76, + "probability": 0.8122 + }, + { + "start": 7519.76, + "end": 7523.14, + "probability": 0.9194 + }, + { + "start": 7523.46, + "end": 7527.86, + "probability": 0.7873 + }, + { + "start": 7528.24, + "end": 7533.5, + "probability": 0.9557 + }, + { + "start": 7533.5, + "end": 7542.0, + "probability": 0.9741 + }, + { + "start": 7542.1, + "end": 7544.8, + "probability": 0.9829 + }, + { + "start": 7545.48, + "end": 7546.8, + "probability": 0.8931 + }, + { + "start": 7547.02, + "end": 7548.04, + "probability": 0.9658 + }, + { + "start": 7548.24, + "end": 7549.78, + "probability": 0.9304 + }, + { + "start": 7550.04, + "end": 7555.92, + "probability": 0.9937 + }, + { + "start": 7555.92, + "end": 7561.9, + "probability": 0.998 + }, + { + "start": 7562.38, + "end": 7564.42, + "probability": 0.9177 + }, + { + "start": 7564.72, + "end": 7564.86, + "probability": 0.5042 + }, + { + "start": 7564.86, + "end": 7566.84, + "probability": 0.7122 + }, + { + "start": 7567.14, + "end": 7569.86, + "probability": 0.9516 + }, + { + "start": 7570.08, + "end": 7575.04, + "probability": 0.8888 + }, + { + "start": 7575.38, + "end": 7578.64, + "probability": 0.9818 + }, + { + "start": 7578.64, + "end": 7584.92, + "probability": 0.9717 + }, + { + "start": 7585.18, + "end": 7585.48, + "probability": 0.2733 + }, + { + "start": 7585.56, + "end": 7585.72, + "probability": 0.4381 + }, + { + "start": 7585.8, + "end": 7586.3, + "probability": 0.849 + }, + { + "start": 7586.5, + "end": 7589.86, + "probability": 0.9171 + }, + { + "start": 7590.24, + "end": 7591.94, + "probability": 0.8206 + }, + { + "start": 7592.32, + "end": 7596.78, + "probability": 0.9746 + }, + { + "start": 7597.1, + "end": 7599.24, + "probability": 0.88 + }, + { + "start": 7599.34, + "end": 7600.54, + "probability": 0.9025 + }, + { + "start": 7601.36, + "end": 7603.28, + "probability": 0.7383 + }, + { + "start": 7603.32, + "end": 7606.64, + "probability": 0.9313 + }, + { + "start": 7606.78, + "end": 7608.45, + "probability": 0.998 + }, + { + "start": 7608.96, + "end": 7609.34, + "probability": 0.5067 + }, + { + "start": 7609.48, + "end": 7609.68, + "probability": 0.4277 + }, + { + "start": 7609.7, + "end": 7610.48, + "probability": 0.4859 + }, + { + "start": 7611.63, + "end": 7614.16, + "probability": 0.5456 + }, + { + "start": 7616.0, + "end": 7620.56, + "probability": 0.6657 + }, + { + "start": 7621.2, + "end": 7623.78, + "probability": 0.8765 + }, + { + "start": 7623.98, + "end": 7625.12, + "probability": 0.9539 + }, + { + "start": 7625.22, + "end": 7627.08, + "probability": 0.8123 + }, + { + "start": 7627.6, + "end": 7629.64, + "probability": 0.6511 + }, + { + "start": 7629.76, + "end": 7630.52, + "probability": 0.981 + }, + { + "start": 7630.6, + "end": 7634.66, + "probability": 0.9921 + }, + { + "start": 7634.72, + "end": 7635.6, + "probability": 0.7787 + }, + { + "start": 7635.88, + "end": 7638.12, + "probability": 0.9506 + }, + { + "start": 7638.12, + "end": 7639.48, + "probability": 0.485 + }, + { + "start": 7639.9, + "end": 7640.46, + "probability": 0.5608 + }, + { + "start": 7640.82, + "end": 7641.1, + "probability": 0.2945 + }, + { + "start": 7641.2, + "end": 7642.86, + "probability": 0.8178 + }, + { + "start": 7643.24, + "end": 7644.32, + "probability": 0.7815 + }, + { + "start": 7644.4, + "end": 7645.98, + "probability": 0.7773 + }, + { + "start": 7646.92, + "end": 7650.4, + "probability": 0.9928 + }, + { + "start": 7650.4, + "end": 7653.88, + "probability": 0.9884 + }, + { + "start": 7654.1, + "end": 7656.34, + "probability": 0.9031 + }, + { + "start": 7656.76, + "end": 7657.66, + "probability": 0.4802 + }, + { + "start": 7657.72, + "end": 7660.74, + "probability": 0.9913 + }, + { + "start": 7660.96, + "end": 7661.94, + "probability": 0.9294 + }, + { + "start": 7662.04, + "end": 7663.36, + "probability": 0.9848 + }, + { + "start": 7663.46, + "end": 7664.88, + "probability": 0.9971 + }, + { + "start": 7665.0, + "end": 7668.36, + "probability": 0.9912 + }, + { + "start": 7668.42, + "end": 7668.88, + "probability": 0.5982 + }, + { + "start": 7669.04, + "end": 7669.6, + "probability": 0.5296 + }, + { + "start": 7669.72, + "end": 7671.1, + "probability": 0.2011 + }, + { + "start": 7671.36, + "end": 7672.17, + "probability": 0.3732 + }, + { + "start": 7672.36, + "end": 7674.52, + "probability": 0.9001 + }, + { + "start": 7677.32, + "end": 7678.14, + "probability": 0.4633 + }, + { + "start": 7678.14, + "end": 7678.14, + "probability": 0.6413 + }, + { + "start": 7678.22, + "end": 7679.14, + "probability": 0.8672 + }, + { + "start": 7679.22, + "end": 7681.72, + "probability": 0.9865 + }, + { + "start": 7682.58, + "end": 7683.96, + "probability": 0.9465 + }, + { + "start": 7684.02, + "end": 7687.6, + "probability": 0.8913 + }, + { + "start": 7688.1, + "end": 7688.64, + "probability": 0.4001 + }, + { + "start": 7688.84, + "end": 7690.95, + "probability": 0.8853 + }, + { + "start": 7692.22, + "end": 7692.94, + "probability": 0.7266 + }, + { + "start": 7693.04, + "end": 7693.94, + "probability": 0.8127 + }, + { + "start": 7694.08, + "end": 7695.74, + "probability": 0.8918 + }, + { + "start": 7695.78, + "end": 7696.74, + "probability": 0.8924 + }, + { + "start": 7697.24, + "end": 7698.11, + "probability": 0.8564 + }, + { + "start": 7698.3, + "end": 7701.22, + "probability": 0.9883 + }, + { + "start": 7702.44, + "end": 7705.7, + "probability": 0.9841 + }, + { + "start": 7706.5, + "end": 7710.2, + "probability": 0.967 + }, + { + "start": 7711.2, + "end": 7714.3, + "probability": 0.8534 + }, + { + "start": 7714.98, + "end": 7717.3, + "probability": 0.8971 + }, + { + "start": 7717.3, + "end": 7720.32, + "probability": 0.9954 + }, + { + "start": 7720.38, + "end": 7720.86, + "probability": 0.8901 + }, + { + "start": 7720.92, + "end": 7721.76, + "probability": 0.5596 + }, + { + "start": 7721.87, + "end": 7727.52, + "probability": 0.9744 + }, + { + "start": 7727.68, + "end": 7729.4, + "probability": 0.6399 + }, + { + "start": 7729.84, + "end": 7731.58, + "probability": 0.9775 + }, + { + "start": 7731.72, + "end": 7732.58, + "probability": 0.6777 + }, + { + "start": 7732.62, + "end": 7735.32, + "probability": 0.9806 + }, + { + "start": 7735.32, + "end": 7737.58, + "probability": 0.9878 + }, + { + "start": 7737.72, + "end": 7739.46, + "probability": 0.5052 + }, + { + "start": 7739.62, + "end": 7742.42, + "probability": 0.9043 + }, + { + "start": 7742.42, + "end": 7744.84, + "probability": 0.9789 + }, + { + "start": 7745.64, + "end": 7749.84, + "probability": 0.9895 + }, + { + "start": 7749.9, + "end": 7751.14, + "probability": 0.8614 + }, + { + "start": 7752.42, + "end": 7753.9, + "probability": 0.9552 + }, + { + "start": 7754.34, + "end": 7754.78, + "probability": 0.8737 + }, + { + "start": 7755.02, + "end": 7757.78, + "probability": 0.8119 + }, + { + "start": 7758.14, + "end": 7759.16, + "probability": 0.7401 + }, + { + "start": 7759.22, + "end": 7760.26, + "probability": 0.6559 + }, + { + "start": 7760.42, + "end": 7761.56, + "probability": 0.4976 + }, + { + "start": 7761.66, + "end": 7762.12, + "probability": 0.7753 + }, + { + "start": 7762.16, + "end": 7762.9, + "probability": 0.9058 + }, + { + "start": 7762.92, + "end": 7765.78, + "probability": 0.7606 + }, + { + "start": 7765.78, + "end": 7767.58, + "probability": 0.631 + }, + { + "start": 7767.68, + "end": 7769.68, + "probability": 0.5318 + }, + { + "start": 7770.46, + "end": 7772.42, + "probability": 0.9641 + }, + { + "start": 7772.42, + "end": 7774.5, + "probability": 0.9406 + }, + { + "start": 7774.62, + "end": 7775.06, + "probability": 0.5969 + }, + { + "start": 7775.14, + "end": 7779.88, + "probability": 0.8849 + }, + { + "start": 7780.2, + "end": 7781.48, + "probability": 0.5272 + }, + { + "start": 7782.44, + "end": 7783.68, + "probability": 0.7949 + }, + { + "start": 7783.9, + "end": 7784.62, + "probability": 0.5555 + }, + { + "start": 7785.0, + "end": 7787.84, + "probability": 0.9264 + }, + { + "start": 7787.94, + "end": 7788.98, + "probability": 0.9937 + }, + { + "start": 7789.1, + "end": 7790.98, + "probability": 0.9387 + }, + { + "start": 7791.06, + "end": 7791.4, + "probability": 0.8273 + }, + { + "start": 7791.44, + "end": 7794.24, + "probability": 0.5732 + }, + { + "start": 7794.26, + "end": 7794.3, + "probability": 0.0226 + }, + { + "start": 7794.86, + "end": 7795.62, + "probability": 0.6521 + }, + { + "start": 7795.68, + "end": 7795.9, + "probability": 0.9592 + }, + { + "start": 7795.9, + "end": 7796.1, + "probability": 0.7945 + }, + { + "start": 7796.44, + "end": 7801.28, + "probability": 0.9604 + }, + { + "start": 7801.46, + "end": 7806.32, + "probability": 0.9863 + }, + { + "start": 7806.5, + "end": 7807.46, + "probability": 0.8633 + }, + { + "start": 7807.82, + "end": 7809.6, + "probability": 0.9033 + }, + { + "start": 7809.6, + "end": 7812.9, + "probability": 0.9533 + }, + { + "start": 7813.1, + "end": 7814.6, + "probability": 0.7478 + }, + { + "start": 7815.32, + "end": 7817.44, + "probability": 0.365 + }, + { + "start": 7817.54, + "end": 7820.62, + "probability": 0.765 + }, + { + "start": 7820.64, + "end": 7821.0, + "probability": 0.1635 + }, + { + "start": 7821.0, + "end": 7821.04, + "probability": 0.1275 + }, + { + "start": 7821.3, + "end": 7822.02, + "probability": 0.3331 + }, + { + "start": 7822.02, + "end": 7824.06, + "probability": 0.9215 + }, + { + "start": 7825.74, + "end": 7826.13, + "probability": 0.0957 + }, + { + "start": 7827.4, + "end": 7828.06, + "probability": 0.0266 + }, + { + "start": 7828.06, + "end": 7828.06, + "probability": 0.0168 + }, + { + "start": 7828.06, + "end": 7831.7, + "probability": 0.8479 + }, + { + "start": 7832.46, + "end": 7833.84, + "probability": 0.7425 + }, + { + "start": 7834.64, + "end": 7836.56, + "probability": 0.7792 + }, + { + "start": 7836.94, + "end": 7838.74, + "probability": 0.9954 + }, + { + "start": 7839.64, + "end": 7840.8, + "probability": 0.7846 + }, + { + "start": 7840.86, + "end": 7842.54, + "probability": 0.9854 + }, + { + "start": 7842.72, + "end": 7844.55, + "probability": 0.9973 + }, + { + "start": 7845.46, + "end": 7849.4, + "probability": 0.8815 + }, + { + "start": 7849.86, + "end": 7850.38, + "probability": 0.9233 + }, + { + "start": 7850.5, + "end": 7853.06, + "probability": 0.9854 + }, + { + "start": 7853.8, + "end": 7857.51, + "probability": 0.9858 + }, + { + "start": 7857.68, + "end": 7863.68, + "probability": 0.7718 + }, + { + "start": 7863.96, + "end": 7866.6, + "probability": 0.9382 + }, + { + "start": 7866.86, + "end": 7869.76, + "probability": 0.9915 + }, + { + "start": 7869.76, + "end": 7874.04, + "probability": 0.9961 + }, + { + "start": 7875.06, + "end": 7876.04, + "probability": 0.9248 + }, + { + "start": 7876.76, + "end": 7878.31, + "probability": 0.7342 + }, + { + "start": 7879.46, + "end": 7881.12, + "probability": 0.4558 + }, + { + "start": 7881.12, + "end": 7883.26, + "probability": 0.8011 + }, + { + "start": 7883.6, + "end": 7885.96, + "probability": 0.9938 + }, + { + "start": 7886.54, + "end": 7890.94, + "probability": 0.9099 + }, + { + "start": 7891.6, + "end": 7894.12, + "probability": 0.9287 + }, + { + "start": 7894.12, + "end": 7894.75, + "probability": 0.3112 + }, + { + "start": 7895.02, + "end": 7896.26, + "probability": 0.5366 + }, + { + "start": 7896.42, + "end": 7898.32, + "probability": 0.982 + }, + { + "start": 7898.44, + "end": 7899.38, + "probability": 0.4694 + }, + { + "start": 7899.84, + "end": 7901.34, + "probability": 0.9893 + }, + { + "start": 7902.06, + "end": 7903.48, + "probability": 0.9734 + }, + { + "start": 7904.32, + "end": 7911.8, + "probability": 0.9919 + }, + { + "start": 7912.36, + "end": 7915.06, + "probability": 0.9729 + }, + { + "start": 7917.48, + "end": 7921.94, + "probability": 0.9912 + }, + { + "start": 7922.02, + "end": 7923.31, + "probability": 0.9814 + }, + { + "start": 7923.7, + "end": 7925.22, + "probability": 0.9989 + }, + { + "start": 7925.78, + "end": 7928.84, + "probability": 0.6063 + }, + { + "start": 7929.06, + "end": 7930.58, + "probability": 0.9235 + }, + { + "start": 7930.92, + "end": 7931.9, + "probability": 0.7053 + }, + { + "start": 7932.3, + "end": 7933.85, + "probability": 0.9774 + }, + { + "start": 7934.44, + "end": 7937.84, + "probability": 0.9932 + }, + { + "start": 7938.06, + "end": 7945.2, + "probability": 0.9938 + }, + { + "start": 7945.54, + "end": 7946.46, + "probability": 0.8293 + }, + { + "start": 7946.66, + "end": 7948.38, + "probability": 0.9391 + }, + { + "start": 7948.48, + "end": 7952.54, + "probability": 0.9806 + }, + { + "start": 7952.84, + "end": 7953.6, + "probability": 0.7555 + }, + { + "start": 7953.8, + "end": 7956.02, + "probability": 0.9873 + }, + { + "start": 7956.38, + "end": 7959.92, + "probability": 0.9324 + }, + { + "start": 7959.98, + "end": 7963.2, + "probability": 0.9888 + }, + { + "start": 7963.26, + "end": 7964.7, + "probability": 0.8438 + }, + { + "start": 7964.88, + "end": 7967.92, + "probability": 0.8077 + }, + { + "start": 7968.56, + "end": 7969.16, + "probability": 0.4792 + }, + { + "start": 7971.09, + "end": 7975.16, + "probability": 0.8059 + }, + { + "start": 7975.16, + "end": 7978.8, + "probability": 0.8732 + }, + { + "start": 7978.9, + "end": 7980.96, + "probability": 0.9336 + }, + { + "start": 7981.1, + "end": 7981.9, + "probability": 0.7806 + }, + { + "start": 7982.26, + "end": 7984.06, + "probability": 0.8687 + }, + { + "start": 7985.2, + "end": 7990.1, + "probability": 0.9878 + }, + { + "start": 7990.1, + "end": 7992.0, + "probability": 0.7098 + }, + { + "start": 7992.3, + "end": 7994.8, + "probability": 0.7049 + }, + { + "start": 7994.84, + "end": 7995.36, + "probability": 0.2716 + }, + { + "start": 7995.44, + "end": 7995.92, + "probability": 0.5699 + }, + { + "start": 7995.98, + "end": 7996.46, + "probability": 0.739 + }, + { + "start": 7996.68, + "end": 7997.24, + "probability": 0.212 + }, + { + "start": 7998.28, + "end": 8001.32, + "probability": 0.0188 + }, + { + "start": 8002.26, + "end": 8008.73, + "probability": 0.0283 + }, + { + "start": 8012.02, + "end": 8013.12, + "probability": 0.1436 + }, + { + "start": 8013.42, + "end": 8016.14, + "probability": 0.6128 + }, + { + "start": 8016.18, + "end": 8022.0, + "probability": 0.7964 + }, + { + "start": 8022.0, + "end": 8028.14, + "probability": 0.9844 + }, + { + "start": 8028.74, + "end": 8029.7, + "probability": 0.6104 + }, + { + "start": 8030.02, + "end": 8030.42, + "probability": 0.2063 + }, + { + "start": 8030.42, + "end": 8031.61, + "probability": 0.4986 + }, + { + "start": 8031.96, + "end": 8033.78, + "probability": 0.9186 + }, + { + "start": 8033.98, + "end": 8035.84, + "probability": 0.8347 + }, + { + "start": 8035.94, + "end": 8038.04, + "probability": 0.958 + }, + { + "start": 8038.3, + "end": 8039.9, + "probability": 0.9577 + }, + { + "start": 8039.98, + "end": 8040.34, + "probability": 0.6552 + }, + { + "start": 8065.08, + "end": 8065.78, + "probability": 0.2947 + }, + { + "start": 8066.6, + "end": 8068.02, + "probability": 0.5959 + }, + { + "start": 8068.76, + "end": 8070.96, + "probability": 0.7309 + }, + { + "start": 8071.98, + "end": 8074.04, + "probability": 0.7532 + }, + { + "start": 8074.26, + "end": 8078.8, + "probability": 0.8988 + }, + { + "start": 8078.92, + "end": 8080.14, + "probability": 0.8688 + }, + { + "start": 8080.62, + "end": 8081.38, + "probability": 0.6816 + }, + { + "start": 8082.38, + "end": 8085.18, + "probability": 0.8778 + }, + { + "start": 8085.42, + "end": 8088.1, + "probability": 0.819 + }, + { + "start": 8088.8, + "end": 8089.26, + "probability": 0.8979 + }, + { + "start": 8090.52, + "end": 8092.72, + "probability": 0.6819 + }, + { + "start": 8093.92, + "end": 8102.2, + "probability": 0.8774 + }, + { + "start": 8103.24, + "end": 8107.4, + "probability": 0.9377 + }, + { + "start": 8107.86, + "end": 8109.34, + "probability": 0.9407 + }, + { + "start": 8109.52, + "end": 8110.78, + "probability": 0.7811 + }, + { + "start": 8111.6, + "end": 8112.84, + "probability": 0.8937 + }, + { + "start": 8112.94, + "end": 8114.0, + "probability": 0.7981 + }, + { + "start": 8114.22, + "end": 8115.26, + "probability": 0.9611 + }, + { + "start": 8115.64, + "end": 8117.76, + "probability": 0.8515 + }, + { + "start": 8118.48, + "end": 8121.76, + "probability": 0.9227 + }, + { + "start": 8122.46, + "end": 8127.01, + "probability": 0.7821 + }, + { + "start": 8127.82, + "end": 8128.36, + "probability": 0.6617 + }, + { + "start": 8128.36, + "end": 8130.22, + "probability": 0.8926 + }, + { + "start": 8130.36, + "end": 8135.32, + "probability": 0.8176 + }, + { + "start": 8135.4, + "end": 8136.52, + "probability": 0.5137 + }, + { + "start": 8137.16, + "end": 8137.78, + "probability": 0.6203 + }, + { + "start": 8138.08, + "end": 8138.78, + "probability": 0.7519 + }, + { + "start": 8139.18, + "end": 8140.12, + "probability": 0.8851 + }, + { + "start": 8141.34, + "end": 8142.2, + "probability": 0.6908 + }, + { + "start": 8142.44, + "end": 8148.9, + "probability": 0.7511 + }, + { + "start": 8149.62, + "end": 8152.4, + "probability": 0.8865 + }, + { + "start": 8153.1, + "end": 8159.98, + "probability": 0.863 + }, + { + "start": 8160.56, + "end": 8161.22, + "probability": 0.6838 + }, + { + "start": 8161.3, + "end": 8162.7, + "probability": 0.7331 + }, + { + "start": 8163.04, + "end": 8164.8, + "probability": 0.865 + }, + { + "start": 8167.38, + "end": 8167.38, + "probability": 0.0453 + }, + { + "start": 8167.54, + "end": 8169.61, + "probability": 0.4641 + }, + { + "start": 8170.56, + "end": 8171.9, + "probability": 0.5081 + }, + { + "start": 8172.06, + "end": 8172.06, + "probability": 0.6036 + }, + { + "start": 8172.06, + "end": 8174.06, + "probability": 0.4213 + }, + { + "start": 8174.1, + "end": 8176.16, + "probability": 0.7726 + }, + { + "start": 8176.6, + "end": 8178.02, + "probability": 0.1776 + }, + { + "start": 8178.54, + "end": 8179.6, + "probability": 0.3626 + }, + { + "start": 8179.74, + "end": 8182.63, + "probability": 0.9121 + }, + { + "start": 8183.2, + "end": 8184.2, + "probability": 0.8838 + }, + { + "start": 8184.48, + "end": 8185.86, + "probability": 0.8513 + }, + { + "start": 8185.9, + "end": 8186.56, + "probability": 0.5583 + }, + { + "start": 8187.22, + "end": 8191.28, + "probability": 0.6145 + }, + { + "start": 8191.32, + "end": 8192.64, + "probability": 0.8566 + }, + { + "start": 8192.76, + "end": 8194.44, + "probability": 0.5809 + }, + { + "start": 8194.56, + "end": 8197.82, + "probability": 0.9881 + }, + { + "start": 8197.9, + "end": 8201.49, + "probability": 0.9312 + }, + { + "start": 8202.56, + "end": 8203.46, + "probability": 0.929 + }, + { + "start": 8205.84, + "end": 8208.14, + "probability": 0.565 + }, + { + "start": 8208.14, + "end": 8212.98, + "probability": 0.7876 + }, + { + "start": 8213.02, + "end": 8213.95, + "probability": 0.5179 + }, + { + "start": 8214.64, + "end": 8216.36, + "probability": 0.3482 + }, + { + "start": 8217.22, + "end": 8221.31, + "probability": 0.9493 + }, + { + "start": 8222.78, + "end": 8224.26, + "probability": 0.9561 + }, + { + "start": 8224.36, + "end": 8225.88, + "probability": 0.9329 + }, + { + "start": 8226.36, + "end": 8226.97, + "probability": 0.585 + }, + { + "start": 8228.46, + "end": 8228.74, + "probability": 0.3494 + }, + { + "start": 8228.74, + "end": 8229.56, + "probability": 0.4442 + }, + { + "start": 8229.66, + "end": 8230.46, + "probability": 0.7661 + }, + { + "start": 8230.52, + "end": 8231.7, + "probability": 0.7308 + }, + { + "start": 8232.16, + "end": 8233.79, + "probability": 0.8898 + }, + { + "start": 8234.42, + "end": 8237.6, + "probability": 0.2293 + }, + { + "start": 8237.98, + "end": 8238.1, + "probability": 0.3771 + }, + { + "start": 8238.28, + "end": 8241.08, + "probability": 0.6573 + }, + { + "start": 8241.64, + "end": 8243.88, + "probability": 0.9935 + }, + { + "start": 8243.96, + "end": 8244.92, + "probability": 0.7959 + }, + { + "start": 8245.76, + "end": 8249.46, + "probability": 0.1318 + }, + { + "start": 8249.84, + "end": 8251.54, + "probability": 0.8656 + }, + { + "start": 8251.56, + "end": 8253.58, + "probability": 0.908 + }, + { + "start": 8253.58, + "end": 8256.02, + "probability": 0.9966 + }, + { + "start": 8256.4, + "end": 8257.22, + "probability": 0.5093 + }, + { + "start": 8258.12, + "end": 8260.5, + "probability": 0.6617 + }, + { + "start": 8260.66, + "end": 8263.14, + "probability": 0.626 + }, + { + "start": 8263.14, + "end": 8263.7, + "probability": 0.0264 + }, + { + "start": 8263.7, + "end": 8265.96, + "probability": 0.9884 + }, + { + "start": 8266.52, + "end": 8267.5, + "probability": 0.9582 + }, + { + "start": 8267.58, + "end": 8268.16, + "probability": 0.0522 + }, + { + "start": 8268.18, + "end": 8272.72, + "probability": 0.676 + }, + { + "start": 8272.84, + "end": 8273.46, + "probability": 0.4253 + }, + { + "start": 8273.66, + "end": 8275.68, + "probability": 0.586 + }, + { + "start": 8275.9, + "end": 8277.92, + "probability": 0.8594 + }, + { + "start": 8278.36, + "end": 8278.94, + "probability": 0.5207 + }, + { + "start": 8279.22, + "end": 8281.04, + "probability": 0.7646 + }, + { + "start": 8281.26, + "end": 8281.96, + "probability": 0.002 + }, + { + "start": 8282.31, + "end": 8285.58, + "probability": 0.7507 + }, + { + "start": 8285.66, + "end": 8286.14, + "probability": 0.0937 + }, + { + "start": 8287.62, + "end": 8290.06, + "probability": 0.2197 + }, + { + "start": 8290.2, + "end": 8290.36, + "probability": 0.0659 + }, + { + "start": 8290.44, + "end": 8290.46, + "probability": 0.0569 + }, + { + "start": 8290.46, + "end": 8290.46, + "probability": 0.028 + }, + { + "start": 8290.46, + "end": 8290.46, + "probability": 0.0286 + }, + { + "start": 8290.46, + "end": 8291.4, + "probability": 0.6064 + }, + { + "start": 8291.78, + "end": 8291.78, + "probability": 0.2941 + }, + { + "start": 8291.84, + "end": 8292.8, + "probability": 0.7491 + }, + { + "start": 8292.96, + "end": 8295.44, + "probability": 0.9637 + }, + { + "start": 8295.74, + "end": 8297.36, + "probability": 0.9404 + }, + { + "start": 8298.46, + "end": 8298.88, + "probability": 0.3557 + }, + { + "start": 8298.88, + "end": 8302.08, + "probability": 0.8418 + }, + { + "start": 8302.22, + "end": 8303.52, + "probability": 0.9465 + }, + { + "start": 8303.88, + "end": 8304.98, + "probability": 0.8656 + }, + { + "start": 8305.24, + "end": 8307.98, + "probability": 0.6511 + }, + { + "start": 8308.66, + "end": 8308.66, + "probability": 0.0098 + }, + { + "start": 8308.66, + "end": 8312.33, + "probability": 0.9222 + }, + { + "start": 8312.68, + "end": 8314.46, + "probability": 0.5056 + }, + { + "start": 8314.5, + "end": 8315.72, + "probability": 0.5616 + }, + { + "start": 8316.0, + "end": 8317.4, + "probability": 0.8168 + }, + { + "start": 8317.52, + "end": 8319.32, + "probability": 0.2959 + }, + { + "start": 8319.32, + "end": 8319.72, + "probability": 0.5383 + }, + { + "start": 8320.1, + "end": 8325.46, + "probability": 0.7848 + }, + { + "start": 8325.56, + "end": 8326.08, + "probability": 0.0716 + }, + { + "start": 8326.08, + "end": 8326.08, + "probability": 0.0017 + }, + { + "start": 8326.66, + "end": 8326.94, + "probability": 0.0288 + }, + { + "start": 8326.94, + "end": 8328.06, + "probability": 0.3752 + }, + { + "start": 8328.3, + "end": 8331.58, + "probability": 0.5156 + }, + { + "start": 8331.84, + "end": 8333.06, + "probability": 0.7568 + }, + { + "start": 8333.24, + "end": 8333.42, + "probability": 0.1669 + }, + { + "start": 8333.72, + "end": 8335.44, + "probability": 0.6182 + }, + { + "start": 8335.44, + "end": 8335.65, + "probability": 0.4945 + }, + { + "start": 8337.46, + "end": 8340.12, + "probability": 0.3963 + }, + { + "start": 8342.76, + "end": 8343.2, + "probability": 0.0426 + }, + { + "start": 8343.2, + "end": 8343.2, + "probability": 0.1792 + }, + { + "start": 8343.2, + "end": 8343.26, + "probability": 0.013 + }, + { + "start": 8343.26, + "end": 8343.82, + "probability": 0.0569 + }, + { + "start": 8343.92, + "end": 8345.22, + "probability": 0.2451 + }, + { + "start": 8346.47, + "end": 8347.5, + "probability": 0.2034 + }, + { + "start": 8347.5, + "end": 8347.74, + "probability": 0.0733 + }, + { + "start": 8347.74, + "end": 8349.74, + "probability": 0.5552 + }, + { + "start": 8349.76, + "end": 8352.08, + "probability": 0.7955 + }, + { + "start": 8352.08, + "end": 8352.94, + "probability": 0.5344 + }, + { + "start": 8353.26, + "end": 8355.0, + "probability": 0.7119 + }, + { + "start": 8355.08, + "end": 8358.04, + "probability": 0.6302 + }, + { + "start": 8358.08, + "end": 8358.6, + "probability": 0.5323 + }, + { + "start": 8358.64, + "end": 8359.38, + "probability": 0.449 + }, + { + "start": 8359.54, + "end": 8361.1, + "probability": 0.6475 + }, + { + "start": 8361.36, + "end": 8363.82, + "probability": 0.4307 + }, + { + "start": 8363.9, + "end": 8367.04, + "probability": 0.4493 + }, + { + "start": 8367.12, + "end": 8367.28, + "probability": 0.532 + }, + { + "start": 8367.58, + "end": 8369.04, + "probability": 0.6131 + }, + { + "start": 8369.52, + "end": 8370.62, + "probability": 0.2152 + }, + { + "start": 8370.96, + "end": 8372.94, + "probability": 0.7642 + }, + { + "start": 8373.76, + "end": 8376.74, + "probability": 0.5695 + }, + { + "start": 8377.16, + "end": 8378.84, + "probability": 0.6076 + }, + { + "start": 8379.18, + "end": 8380.32, + "probability": 0.1193 + }, + { + "start": 8380.32, + "end": 8383.28, + "probability": 0.3061 + }, + { + "start": 8383.28, + "end": 8387.12, + "probability": 0.2727 + }, + { + "start": 8387.2, + "end": 8387.5, + "probability": 0.7871 + }, + { + "start": 8387.64, + "end": 8389.56, + "probability": 0.6574 + }, + { + "start": 8389.6, + "end": 8392.8, + "probability": 0.8059 + }, + { + "start": 8393.44, + "end": 8394.62, + "probability": 0.3094 + }, + { + "start": 8394.7, + "end": 8396.08, + "probability": 0.9683 + }, + { + "start": 8396.12, + "end": 8398.48, + "probability": 0.5412 + }, + { + "start": 8399.02, + "end": 8402.04, + "probability": 0.5461 + }, + { + "start": 8402.72, + "end": 8403.18, + "probability": 0.6498 + }, + { + "start": 8403.3, + "end": 8405.28, + "probability": 0.4704 + }, + { + "start": 8405.28, + "end": 8405.94, + "probability": 0.5843 + }, + { + "start": 8405.96, + "end": 8406.9, + "probability": 0.3156 + }, + { + "start": 8408.78, + "end": 8411.24, + "probability": 0.5603 + }, + { + "start": 8412.64, + "end": 8416.1, + "probability": 0.9883 + }, + { + "start": 8416.12, + "end": 8421.48, + "probability": 0.9172 + }, + { + "start": 8421.78, + "end": 8423.62, + "probability": 0.9078 + }, + { + "start": 8423.74, + "end": 8427.22, + "probability": 0.9053 + }, + { + "start": 8427.68, + "end": 8428.52, + "probability": 0.8555 + }, + { + "start": 8429.04, + "end": 8431.25, + "probability": 0.6398 + }, + { + "start": 8431.78, + "end": 8435.26, + "probability": 0.6717 + }, + { + "start": 8435.36, + "end": 8436.97, + "probability": 0.9943 + }, + { + "start": 8437.34, + "end": 8440.72, + "probability": 0.9253 + }, + { + "start": 8441.56, + "end": 8442.2, + "probability": 0.4944 + }, + { + "start": 8442.64, + "end": 8445.64, + "probability": 0.83 + }, + { + "start": 8445.76, + "end": 8448.5, + "probability": 0.8007 + }, + { + "start": 8449.34, + "end": 8450.46, + "probability": 0.8792 + }, + { + "start": 8450.64, + "end": 8452.32, + "probability": 0.7932 + }, + { + "start": 8452.32, + "end": 8454.88, + "probability": 0.9845 + }, + { + "start": 8455.44, + "end": 8457.85, + "probability": 0.9615 + }, + { + "start": 8458.44, + "end": 8463.18, + "probability": 0.7551 + }, + { + "start": 8463.32, + "end": 8467.2, + "probability": 0.6828 + }, + { + "start": 8467.34, + "end": 8470.26, + "probability": 0.9309 + }, + { + "start": 8470.26, + "end": 8472.42, + "probability": 0.9653 + }, + { + "start": 8472.74, + "end": 8473.2, + "probability": 0.5009 + }, + { + "start": 8473.24, + "end": 8474.5, + "probability": 0.9933 + }, + { + "start": 8474.54, + "end": 8476.2, + "probability": 0.8621 + }, + { + "start": 8476.54, + "end": 8477.64, + "probability": 0.7322 + }, + { + "start": 8477.72, + "end": 8478.64, + "probability": 0.5147 + }, + { + "start": 8478.74, + "end": 8479.26, + "probability": 0.4881 + }, + { + "start": 8479.46, + "end": 8480.7, + "probability": 0.6251 + }, + { + "start": 8480.76, + "end": 8481.7, + "probability": 0.6621 + }, + { + "start": 8481.88, + "end": 8482.6, + "probability": 0.8389 + }, + { + "start": 8482.66, + "end": 8483.66, + "probability": 0.7885 + }, + { + "start": 8483.8, + "end": 8484.52, + "probability": 0.7505 + }, + { + "start": 8485.04, + "end": 8486.09, + "probability": 0.566 + }, + { + "start": 8486.32, + "end": 8489.38, + "probability": 0.5333 + }, + { + "start": 8489.96, + "end": 8491.24, + "probability": 0.9155 + }, + { + "start": 8491.28, + "end": 8492.52, + "probability": 0.8719 + }, + { + "start": 8492.58, + "end": 8493.28, + "probability": 0.6396 + }, + { + "start": 8493.34, + "end": 8493.84, + "probability": 0.8505 + }, + { + "start": 8493.88, + "end": 8495.88, + "probability": 0.9573 + }, + { + "start": 8495.88, + "end": 8496.5, + "probability": 0.7247 + }, + { + "start": 8496.54, + "end": 8497.3, + "probability": 0.6584 + }, + { + "start": 8497.82, + "end": 8499.12, + "probability": 0.6443 + }, + { + "start": 8499.32, + "end": 8500.72, + "probability": 0.4072 + }, + { + "start": 8501.0, + "end": 8505.46, + "probability": 0.8827 + }, + { + "start": 8505.7, + "end": 8507.32, + "probability": 0.9252 + }, + { + "start": 8507.6, + "end": 8510.3, + "probability": 0.925 + }, + { + "start": 8510.46, + "end": 8511.62, + "probability": 0.6918 + }, + { + "start": 8512.1, + "end": 8517.68, + "probability": 0.7759 + }, + { + "start": 8517.74, + "end": 8521.14, + "probability": 0.9113 + }, + { + "start": 8521.4, + "end": 8523.12, + "probability": 0.7973 + }, + { + "start": 8523.82, + "end": 8526.64, + "probability": 0.8379 + }, + { + "start": 8526.72, + "end": 8528.74, + "probability": 0.7275 + }, + { + "start": 8537.22, + "end": 8537.98, + "probability": 0.5658 + }, + { + "start": 8538.18, + "end": 8540.82, + "probability": 0.2451 + }, + { + "start": 8540.82, + "end": 8541.02, + "probability": 0.805 + }, + { + "start": 8541.14, + "end": 8542.08, + "probability": 0.8517 + }, + { + "start": 8542.08, + "end": 8542.68, + "probability": 0.8363 + }, + { + "start": 8542.76, + "end": 8548.32, + "probability": 0.9683 + }, + { + "start": 8548.62, + "end": 8550.3, + "probability": 0.9678 + }, + { + "start": 8550.92, + "end": 8551.89, + "probability": 0.741 + }, + { + "start": 8552.2, + "end": 8556.64, + "probability": 0.8809 + }, + { + "start": 8556.8, + "end": 8559.97, + "probability": 0.8208 + }, + { + "start": 8560.52, + "end": 8561.3, + "probability": 0.3208 + }, + { + "start": 8561.54, + "end": 8562.2, + "probability": 0.9163 + }, + { + "start": 8562.54, + "end": 8563.48, + "probability": 0.5731 + }, + { + "start": 8563.52, + "end": 8565.56, + "probability": 0.9376 + }, + { + "start": 8565.8, + "end": 8568.76, + "probability": 0.9633 + }, + { + "start": 8569.7, + "end": 8574.84, + "probability": 0.7175 + }, + { + "start": 8575.32, + "end": 8576.74, + "probability": 0.998 + }, + { + "start": 8576.9, + "end": 8577.2, + "probability": 0.3917 + }, + { + "start": 8577.22, + "end": 8578.18, + "probability": 0.5273 + }, + { + "start": 8578.34, + "end": 8579.6, + "probability": 0.681 + }, + { + "start": 8579.76, + "end": 8580.88, + "probability": 0.8833 + }, + { + "start": 8581.3, + "end": 8582.12, + "probability": 0.9946 + }, + { + "start": 8582.2, + "end": 8587.12, + "probability": 0.9966 + }, + { + "start": 8587.78, + "end": 8589.52, + "probability": 0.6013 + }, + { + "start": 8591.61, + "end": 8594.11, + "probability": 0.9624 + }, + { + "start": 8594.66, + "end": 8595.54, + "probability": 0.677 + }, + { + "start": 8596.3, + "end": 8596.82, + "probability": 0.7428 + }, + { + "start": 8597.04, + "end": 8603.0, + "probability": 0.9733 + }, + { + "start": 8603.12, + "end": 8610.04, + "probability": 0.9834 + }, + { + "start": 8610.36, + "end": 8611.18, + "probability": 0.7179 + }, + { + "start": 8611.44, + "end": 8617.34, + "probability": 0.7895 + }, + { + "start": 8617.76, + "end": 8620.06, + "probability": 0.9308 + }, + { + "start": 8620.14, + "end": 8620.82, + "probability": 0.7217 + }, + { + "start": 8621.44, + "end": 8622.56, + "probability": 0.6708 + }, + { + "start": 8622.64, + "end": 8625.14, + "probability": 0.8607 + }, + { + "start": 8625.18, + "end": 8627.18, + "probability": 0.7523 + }, + { + "start": 8627.2, + "end": 8628.19, + "probability": 0.5392 + }, + { + "start": 8628.38, + "end": 8629.94, + "probability": 0.5471 + }, + { + "start": 8630.04, + "end": 8631.61, + "probability": 0.9304 + }, + { + "start": 8632.3, + "end": 8634.3, + "probability": 0.7795 + }, + { + "start": 8634.52, + "end": 8635.92, + "probability": 0.8726 + }, + { + "start": 8635.96, + "end": 8637.92, + "probability": 0.4916 + }, + { + "start": 8637.92, + "end": 8641.16, + "probability": 0.7782 + }, + { + "start": 8642.78, + "end": 8644.48, + "probability": 0.0948 + }, + { + "start": 8644.6, + "end": 8645.32, + "probability": 0.5325 + }, + { + "start": 8645.34, + "end": 8647.24, + "probability": 0.8621 + }, + { + "start": 8647.38, + "end": 8649.0, + "probability": 0.9046 + }, + { + "start": 8649.66, + "end": 8653.04, + "probability": 0.9919 + }, + { + "start": 8653.54, + "end": 8655.3, + "probability": 0.9442 + }, + { + "start": 8655.46, + "end": 8657.7, + "probability": 0.5557 + }, + { + "start": 8657.76, + "end": 8662.66, + "probability": 0.7425 + }, + { + "start": 8663.86, + "end": 8666.42, + "probability": 0.9683 + }, + { + "start": 8666.8, + "end": 8668.2, + "probability": 0.8184 + }, + { + "start": 8668.28, + "end": 8669.78, + "probability": 0.5047 + }, + { + "start": 8670.08, + "end": 8673.78, + "probability": 0.9289 + }, + { + "start": 8673.82, + "end": 8675.32, + "probability": 0.9338 + }, + { + "start": 8675.86, + "end": 8680.28, + "probability": 0.9312 + }, + { + "start": 8680.5, + "end": 8683.94, + "probability": 0.9721 + }, + { + "start": 8683.94, + "end": 8686.56, + "probability": 0.9945 + }, + { + "start": 8686.84, + "end": 8688.7, + "probability": 0.6132 + }, + { + "start": 8688.78, + "end": 8691.68, + "probability": 0.9707 + }, + { + "start": 8691.94, + "end": 8693.27, + "probability": 0.4282 + }, + { + "start": 8693.92, + "end": 8695.3, + "probability": 0.7562 + }, + { + "start": 8696.1, + "end": 8696.62, + "probability": 0.1443 + }, + { + "start": 8696.62, + "end": 8697.24, + "probability": 0.5115 + }, + { + "start": 8697.32, + "end": 8697.88, + "probability": 0.4897 + }, + { + "start": 8697.94, + "end": 8698.7, + "probability": 0.7598 + }, + { + "start": 8698.96, + "end": 8704.14, + "probability": 0.7605 + }, + { + "start": 8704.98, + "end": 8706.63, + "probability": 0.9952 + }, + { + "start": 8707.24, + "end": 8708.24, + "probability": 0.5312 + }, + { + "start": 8708.46, + "end": 8709.6, + "probability": 0.5944 + }, + { + "start": 8710.0, + "end": 8711.38, + "probability": 0.8871 + }, + { + "start": 8711.42, + "end": 8712.62, + "probability": 0.652 + }, + { + "start": 8712.64, + "end": 8713.9, + "probability": 0.5037 + }, + { + "start": 8714.14, + "end": 8716.07, + "probability": 0.6936 + }, + { + "start": 8716.54, + "end": 8718.54, + "probability": 0.9754 + }, + { + "start": 8719.1, + "end": 8720.07, + "probability": 0.5333 + }, + { + "start": 8720.48, + "end": 8721.89, + "probability": 0.9294 + }, + { + "start": 8723.0, + "end": 8725.02, + "probability": 0.7653 + }, + { + "start": 8725.78, + "end": 8727.06, + "probability": 0.6405 + }, + { + "start": 8727.68, + "end": 8732.42, + "probability": 0.8804 + }, + { + "start": 8732.68, + "end": 8733.1, + "probability": 0.656 + }, + { + "start": 8734.38, + "end": 8736.04, + "probability": 0.9924 + }, + { + "start": 8736.68, + "end": 8739.92, + "probability": 0.7969 + }, + { + "start": 8740.0, + "end": 8743.06, + "probability": 0.958 + }, + { + "start": 8743.54, + "end": 8744.96, + "probability": 0.3342 + }, + { + "start": 8745.08, + "end": 8746.9, + "probability": 0.4649 + }, + { + "start": 8746.96, + "end": 8749.02, + "probability": 0.9968 + }, + { + "start": 8749.12, + "end": 8750.04, + "probability": 0.6796 + }, + { + "start": 8750.28, + "end": 8752.72, + "probability": 0.7084 + }, + { + "start": 8755.16, + "end": 8759.66, + "probability": 0.9592 + }, + { + "start": 8760.24, + "end": 8763.0, + "probability": 0.8124 + }, + { + "start": 8764.2, + "end": 8768.24, + "probability": 0.7811 + }, + { + "start": 8768.38, + "end": 8769.56, + "probability": 0.4708 + }, + { + "start": 8770.73, + "end": 8773.56, + "probability": 0.9917 + }, + { + "start": 8773.76, + "end": 8774.1, + "probability": 0.7602 + }, + { + "start": 8774.58, + "end": 8775.55, + "probability": 0.9478 + }, + { + "start": 8775.72, + "end": 8780.62, + "probability": 0.9907 + }, + { + "start": 8780.7, + "end": 8781.94, + "probability": 0.6648 + }, + { + "start": 8782.38, + "end": 8785.22, + "probability": 0.5505 + }, + { + "start": 8785.8, + "end": 8788.12, + "probability": 0.7401 + }, + { + "start": 8788.36, + "end": 8789.34, + "probability": 0.2971 + }, + { + "start": 8790.34, + "end": 8794.92, + "probability": 0.81 + }, + { + "start": 8795.0, + "end": 8797.06, + "probability": 0.9315 + }, + { + "start": 8797.14, + "end": 8798.96, + "probability": 0.4727 + }, + { + "start": 8799.14, + "end": 8800.16, + "probability": 0.9709 + }, + { + "start": 8800.52, + "end": 8801.26, + "probability": 0.7324 + }, + { + "start": 8801.26, + "end": 8802.02, + "probability": 0.2548 + }, + { + "start": 8802.16, + "end": 8802.44, + "probability": 0.036 + }, + { + "start": 8802.76, + "end": 8807.1, + "probability": 0.9722 + }, + { + "start": 8807.1, + "end": 8811.06, + "probability": 0.9819 + }, + { + "start": 8811.44, + "end": 8812.08, + "probability": 0.1392 + }, + { + "start": 8812.48, + "end": 8813.04, + "probability": 0.4804 + }, + { + "start": 8813.32, + "end": 8813.81, + "probability": 0.7331 + }, + { + "start": 8814.72, + "end": 8816.4, + "probability": 0.7471 + }, + { + "start": 8816.42, + "end": 8819.08, + "probability": 0.816 + }, + { + "start": 8819.7, + "end": 8823.96, + "probability": 0.7473 + }, + { + "start": 8823.98, + "end": 8825.98, + "probability": 0.6511 + }, + { + "start": 8826.02, + "end": 8826.42, + "probability": 0.4871 + }, + { + "start": 8826.58, + "end": 8829.96, + "probability": 0.8641 + }, + { + "start": 8830.28, + "end": 8834.12, + "probability": 0.9792 + }, + { + "start": 8834.12, + "end": 8834.88, + "probability": 0.7375 + }, + { + "start": 8835.76, + "end": 8837.32, + "probability": 0.6876 + }, + { + "start": 8837.34, + "end": 8840.68, + "probability": 0.9482 + }, + { + "start": 8840.78, + "end": 8844.72, + "probability": 0.9547 + }, + { + "start": 8844.78, + "end": 8845.92, + "probability": 0.8448 + }, + { + "start": 8846.28, + "end": 8847.16, + "probability": 0.5767 + }, + { + "start": 8848.06, + "end": 8848.74, + "probability": 0.6931 + }, + { + "start": 8859.42, + "end": 8863.02, + "probability": 0.7207 + }, + { + "start": 8864.26, + "end": 8865.48, + "probability": 0.7054 + }, + { + "start": 8865.76, + "end": 8867.0, + "probability": 0.5505 + }, + { + "start": 8867.42, + "end": 8870.62, + "probability": 0.9468 + }, + { + "start": 8871.02, + "end": 8878.66, + "probability": 0.319 + }, + { + "start": 8879.2, + "end": 8881.82, + "probability": 0.6556 + }, + { + "start": 8882.1, + "end": 8886.64, + "probability": 0.8347 + }, + { + "start": 8887.12, + "end": 8889.24, + "probability": 0.8623 + }, + { + "start": 8889.42, + "end": 8892.54, + "probability": 0.8921 + }, + { + "start": 8892.94, + "end": 8895.26, + "probability": 0.4836 + }, + { + "start": 8895.28, + "end": 8895.98, + "probability": 0.5585 + }, + { + "start": 8896.08, + "end": 8897.3, + "probability": 0.6049 + }, + { + "start": 8897.8, + "end": 8901.14, + "probability": 0.7725 + }, + { + "start": 8901.6, + "end": 8902.96, + "probability": 0.9032 + }, + { + "start": 8903.14, + "end": 8904.06, + "probability": 0.6197 + }, + { + "start": 8904.2, + "end": 8908.04, + "probability": 0.7576 + }, + { + "start": 8908.04, + "end": 8908.8, + "probability": 0.5786 + }, + { + "start": 8909.18, + "end": 8912.94, + "probability": 0.6491 + }, + { + "start": 8913.06, + "end": 8914.0, + "probability": 0.9717 + }, + { + "start": 8914.08, + "end": 8916.32, + "probability": 0.9521 + }, + { + "start": 8916.58, + "end": 8918.68, + "probability": 0.7706 + }, + { + "start": 8918.98, + "end": 8920.7, + "probability": 0.7833 + }, + { + "start": 8920.92, + "end": 8924.4, + "probability": 0.5995 + }, + { + "start": 8924.42, + "end": 8925.5, + "probability": 0.7357 + }, + { + "start": 8925.95, + "end": 8926.06, + "probability": 0.6799 + }, + { + "start": 8926.08, + "end": 8926.48, + "probability": 0.3219 + }, + { + "start": 8926.58, + "end": 8932.2, + "probability": 0.6636 + }, + { + "start": 8932.22, + "end": 8933.76, + "probability": 0.9501 + }, + { + "start": 8934.0, + "end": 8936.0, + "probability": 0.7643 + }, + { + "start": 8936.12, + "end": 8942.04, + "probability": 0.9818 + }, + { + "start": 8944.76, + "end": 8945.88, + "probability": 0.7004 + }, + { + "start": 8946.24, + "end": 8950.32, + "probability": 0.883 + }, + { + "start": 8950.4, + "end": 8954.04, + "probability": 0.9916 + }, + { + "start": 8954.2, + "end": 8958.86, + "probability": 0.8384 + }, + { + "start": 8958.98, + "end": 8959.52, + "probability": 0.7621 + }, + { + "start": 8970.8, + "end": 8971.42, + "probability": 0.6186 + }, + { + "start": 8973.56, + "end": 8976.62, + "probability": 0.6024 + }, + { + "start": 8977.28, + "end": 8983.76, + "probability": 0.8765 + }, + { + "start": 8983.84, + "end": 8984.42, + "probability": 0.8311 + }, + { + "start": 8985.08, + "end": 8993.52, + "probability": 0.8623 + }, + { + "start": 8995.1, + "end": 8995.96, + "probability": 0.5919 + }, + { + "start": 8996.92, + "end": 8997.22, + "probability": 0.249 + }, + { + "start": 8998.32, + "end": 9010.98, + "probability": 0.9431 + }, + { + "start": 9011.46, + "end": 9013.02, + "probability": 0.7666 + }, + { + "start": 9013.16, + "end": 9016.26, + "probability": 0.8757 + }, + { + "start": 9017.92, + "end": 9019.86, + "probability": 0.6407 + }, + { + "start": 9020.62, + "end": 9023.64, + "probability": 0.9756 + }, + { + "start": 9025.78, + "end": 9035.06, + "probability": 0.9806 + }, + { + "start": 9035.06, + "end": 9043.12, + "probability": 0.9299 + }, + { + "start": 9044.16, + "end": 9045.38, + "probability": 0.7758 + }, + { + "start": 9045.82, + "end": 9050.12, + "probability": 0.984 + }, + { + "start": 9050.44, + "end": 9051.28, + "probability": 0.8399 + }, + { + "start": 9053.2, + "end": 9057.02, + "probability": 0.0877 + }, + { + "start": 9058.92, + "end": 9060.46, + "probability": 0.1736 + }, + { + "start": 9062.3, + "end": 9063.34, + "probability": 0.1508 + }, + { + "start": 9063.64, + "end": 9070.76, + "probability": 0.5046 + }, + { + "start": 9071.66, + "end": 9079.68, + "probability": 0.8121 + }, + { + "start": 9080.28, + "end": 9081.92, + "probability": 0.5186 + }, + { + "start": 9082.82, + "end": 9086.04, + "probability": 0.7208 + }, + { + "start": 9086.72, + "end": 9087.16, + "probability": 0.488 + }, + { + "start": 9087.32, + "end": 9088.86, + "probability": 0.8164 + }, + { + "start": 9089.22, + "end": 9093.16, + "probability": 0.9023 + }, + { + "start": 9093.48, + "end": 9094.82, + "probability": 0.8461 + }, + { + "start": 9095.24, + "end": 9098.2, + "probability": 0.9554 + }, + { + "start": 9098.52, + "end": 9104.84, + "probability": 0.9887 + }, + { + "start": 9104.98, + "end": 9107.62, + "probability": 0.9425 + }, + { + "start": 9108.0, + "end": 9111.78, + "probability": 0.9279 + }, + { + "start": 9113.0, + "end": 9115.84, + "probability": 0.6603 + }, + { + "start": 9116.2, + "end": 9118.32, + "probability": 0.9754 + }, + { + "start": 9118.52, + "end": 9120.02, + "probability": 0.7444 + }, + { + "start": 9120.48, + "end": 9126.5, + "probability": 0.98 + }, + { + "start": 9126.62, + "end": 9127.88, + "probability": 0.7021 + }, + { + "start": 9128.46, + "end": 9134.5, + "probability": 0.6931 + }, + { + "start": 9134.54, + "end": 9138.42, + "probability": 0.8282 + }, + { + "start": 9139.02, + "end": 9140.88, + "probability": 0.1741 + }, + { + "start": 9141.28, + "end": 9143.07, + "probability": 0.1414 + }, + { + "start": 9144.2, + "end": 9145.92, + "probability": 0.0384 + }, + { + "start": 9146.08, + "end": 9147.0, + "probability": 0.324 + }, + { + "start": 9147.02, + "end": 9149.0, + "probability": 0.776 + }, + { + "start": 9149.4, + "end": 9152.68, + "probability": 0.0854 + }, + { + "start": 9153.3, + "end": 9153.3, + "probability": 0.0129 + }, + { + "start": 9154.15, + "end": 9157.03, + "probability": 0.1594 + }, + { + "start": 9158.04, + "end": 9158.82, + "probability": 0.9172 + }, + { + "start": 9159.12, + "end": 9160.46, + "probability": 0.8502 + }, + { + "start": 9160.46, + "end": 9161.74, + "probability": 0.924 + }, + { + "start": 9161.78, + "end": 9162.3, + "probability": 0.7979 + }, + { + "start": 9162.36, + "end": 9163.78, + "probability": 0.6753 + }, + { + "start": 9164.72, + "end": 9175.56, + "probability": 0.9889 + }, + { + "start": 9176.02, + "end": 9178.74, + "probability": 0.9283 + }, + { + "start": 9178.88, + "end": 9180.18, + "probability": 0.9117 + }, + { + "start": 9180.62, + "end": 9181.44, + "probability": 0.9863 + }, + { + "start": 9181.62, + "end": 9182.4, + "probability": 0.7503 + }, + { + "start": 9182.52, + "end": 9184.9, + "probability": 0.7038 + }, + { + "start": 9185.22, + "end": 9186.66, + "probability": 0.7698 + }, + { + "start": 9187.52, + "end": 9190.41, + "probability": 0.9485 + }, + { + "start": 9190.92, + "end": 9191.62, + "probability": 0.7313 + }, + { + "start": 9191.92, + "end": 9197.22, + "probability": 0.8405 + }, + { + "start": 9197.46, + "end": 9198.12, + "probability": 0.8438 + }, + { + "start": 9198.18, + "end": 9199.22, + "probability": 0.8379 + }, + { + "start": 9199.3, + "end": 9200.4, + "probability": 0.9391 + }, + { + "start": 9200.94, + "end": 9201.98, + "probability": 0.6752 + }, + { + "start": 9202.48, + "end": 9203.88, + "probability": 0.8839 + }, + { + "start": 9204.66, + "end": 9207.77, + "probability": 0.9658 + }, + { + "start": 9208.2, + "end": 9209.36, + "probability": 0.9766 + }, + { + "start": 9209.56, + "end": 9211.2, + "probability": 0.9237 + }, + { + "start": 9211.5, + "end": 9214.68, + "probability": 0.9974 + }, + { + "start": 9215.1, + "end": 9222.84, + "probability": 0.9316 + }, + { + "start": 9223.12, + "end": 9223.82, + "probability": 0.3403 + }, + { + "start": 9224.32, + "end": 9227.18, + "probability": 0.2547 + }, + { + "start": 9227.28, + "end": 9229.4, + "probability": 0.8514 + }, + { + "start": 9229.52, + "end": 9230.9, + "probability": 0.5543 + }, + { + "start": 9231.08, + "end": 9233.22, + "probability": 0.2636 + }, + { + "start": 9233.22, + "end": 9235.16, + "probability": 0.4897 + }, + { + "start": 9235.58, + "end": 9237.82, + "probability": 0.3478 + }, + { + "start": 9239.76, + "end": 9240.96, + "probability": 0.0072 + }, + { + "start": 9241.04, + "end": 9244.92, + "probability": 0.716 + }, + { + "start": 9246.14, + "end": 9249.94, + "probability": 0.9969 + }, + { + "start": 9250.88, + "end": 9254.98, + "probability": 0.8983 + }, + { + "start": 9255.5, + "end": 9256.6, + "probability": 0.1686 + }, + { + "start": 9257.16, + "end": 9260.4, + "probability": 0.88 + }, + { + "start": 9260.66, + "end": 9263.18, + "probability": 0.1431 + }, + { + "start": 9263.52, + "end": 9266.06, + "probability": 0.8822 + }, + { + "start": 9266.14, + "end": 9267.62, + "probability": 0.7981 + }, + { + "start": 9268.22, + "end": 9270.58, + "probability": 0.9644 + }, + { + "start": 9271.38, + "end": 9277.5, + "probability": 0.9893 + }, + { + "start": 9277.56, + "end": 9280.06, + "probability": 0.9073 + }, + { + "start": 9280.16, + "end": 9281.32, + "probability": 0.8549 + }, + { + "start": 9283.04, + "end": 9289.64, + "probability": 0.9673 + }, + { + "start": 9289.64, + "end": 9296.14, + "probability": 0.9548 + }, + { + "start": 9296.96, + "end": 9303.28, + "probability": 0.9927 + }, + { + "start": 9303.28, + "end": 9310.8, + "probability": 0.9982 + }, + { + "start": 9311.56, + "end": 9318.38, + "probability": 0.9458 + }, + { + "start": 9320.23, + "end": 9323.0, + "probability": 0.4603 + }, + { + "start": 9323.36, + "end": 9323.76, + "probability": 0.0951 + }, + { + "start": 9323.92, + "end": 9327.08, + "probability": 0.4174 + }, + { + "start": 9327.08, + "end": 9327.85, + "probability": 0.7124 + }, + { + "start": 9328.3, + "end": 9331.0, + "probability": 0.7746 + }, + { + "start": 9331.68, + "end": 9334.28, + "probability": 0.5482 + }, + { + "start": 9334.34, + "end": 9335.36, + "probability": 0.3189 + }, + { + "start": 9335.36, + "end": 9337.24, + "probability": 0.8476 + }, + { + "start": 9337.4, + "end": 9341.06, + "probability": 0.9653 + }, + { + "start": 9341.47, + "end": 9345.48, + "probability": 0.9978 + }, + { + "start": 9346.47, + "end": 9347.58, + "probability": 0.5115 + }, + { + "start": 9347.76, + "end": 9348.26, + "probability": 0.6036 + }, + { + "start": 9348.48, + "end": 9349.36, + "probability": 0.3849 + }, + { + "start": 9350.28, + "end": 9353.56, + "probability": 0.8425 + }, + { + "start": 9354.2, + "end": 9356.3, + "probability": 0.8739 + }, + { + "start": 9356.9, + "end": 9359.92, + "probability": 0.9747 + }, + { + "start": 9359.92, + "end": 9364.62, + "probability": 0.981 + }, + { + "start": 9370.94, + "end": 9372.36, + "probability": 0.2691 + }, + { + "start": 9372.38, + "end": 9373.52, + "probability": 0.6474 + }, + { + "start": 9373.6, + "end": 9374.26, + "probability": 0.7844 + }, + { + "start": 9374.26, + "end": 9375.18, + "probability": 0.3829 + }, + { + "start": 9375.56, + "end": 9382.77, + "probability": 0.9146 + }, + { + "start": 9383.86, + "end": 9387.84, + "probability": 0.9792 + }, + { + "start": 9388.42, + "end": 9389.96, + "probability": 0.9 + }, + { + "start": 9391.48, + "end": 9396.72, + "probability": 0.9639 + }, + { + "start": 9397.48, + "end": 9401.6, + "probability": 0.9001 + }, + { + "start": 9402.58, + "end": 9408.18, + "probability": 0.9771 + }, + { + "start": 9408.24, + "end": 9410.2, + "probability": 0.9172 + }, + { + "start": 9410.78, + "end": 9415.08, + "probability": 0.8279 + }, + { + "start": 9415.68, + "end": 9417.38, + "probability": 0.9399 + }, + { + "start": 9417.86, + "end": 9421.0, + "probability": 0.8989 + }, + { + "start": 9421.64, + "end": 9422.22, + "probability": 0.8533 + }, + { + "start": 9422.52, + "end": 9427.16, + "probability": 0.7731 + }, + { + "start": 9427.72, + "end": 9429.92, + "probability": 0.9635 + }, + { + "start": 9430.46, + "end": 9432.05, + "probability": 0.8801 + }, + { + "start": 9432.7, + "end": 9436.5, + "probability": 0.9487 + }, + { + "start": 9436.62, + "end": 9437.8, + "probability": 0.7658 + }, + { + "start": 9438.16, + "end": 9438.96, + "probability": 0.7383 + }, + { + "start": 9439.08, + "end": 9441.84, + "probability": 0.8905 + }, + { + "start": 9441.98, + "end": 9443.14, + "probability": 0.2843 + }, + { + "start": 9443.4, + "end": 9444.48, + "probability": 0.9122 + }, + { + "start": 9444.5, + "end": 9446.2, + "probability": 0.8227 + }, + { + "start": 9446.72, + "end": 9450.94, + "probability": 0.9399 + }, + { + "start": 9451.08, + "end": 9451.62, + "probability": 0.385 + }, + { + "start": 9451.74, + "end": 9453.26, + "probability": 0.7054 + }, + { + "start": 9453.54, + "end": 9454.44, + "probability": 0.9398 + }, + { + "start": 9454.88, + "end": 9455.82, + "probability": 0.722 + }, + { + "start": 9456.12, + "end": 9457.07, + "probability": 0.8186 + }, + { + "start": 9458.04, + "end": 9458.58, + "probability": 0.7206 + }, + { + "start": 9458.76, + "end": 9459.44, + "probability": 0.9264 + }, + { + "start": 9459.52, + "end": 9460.76, + "probability": 0.8972 + }, + { + "start": 9460.94, + "end": 9462.22, + "probability": 0.8003 + }, + { + "start": 9462.52, + "end": 9463.46, + "probability": 0.7872 + }, + { + "start": 9463.56, + "end": 9464.5, + "probability": 0.9664 + }, + { + "start": 9464.52, + "end": 9466.42, + "probability": 0.9763 + }, + { + "start": 9466.64, + "end": 9466.9, + "probability": 0.706 + }, + { + "start": 9467.12, + "end": 9467.64, + "probability": 0.7764 + }, + { + "start": 9467.74, + "end": 9469.38, + "probability": 0.5035 + }, + { + "start": 9469.48, + "end": 9470.28, + "probability": 0.3415 + }, + { + "start": 9470.36, + "end": 9471.6, + "probability": 0.7631 + }, + { + "start": 9472.13, + "end": 9474.75, + "probability": 0.76 + }, + { + "start": 9475.34, + "end": 9482.78, + "probability": 0.899 + }, + { + "start": 9483.14, + "end": 9485.16, + "probability": 0.9827 + }, + { + "start": 9485.86, + "end": 9486.8, + "probability": 0.7728 + }, + { + "start": 9486.92, + "end": 9488.62, + "probability": 0.5797 + }, + { + "start": 9489.92, + "end": 9491.78, + "probability": 0.9019 + }, + { + "start": 9492.06, + "end": 9493.16, + "probability": 0.9233 + }, + { + "start": 9493.26, + "end": 9494.6, + "probability": 0.7507 + }, + { + "start": 9498.7, + "end": 9501.34, + "probability": 0.4448 + }, + { + "start": 9501.56, + "end": 9502.66, + "probability": 0.7633 + }, + { + "start": 9503.04, + "end": 9504.3, + "probability": 0.9159 + }, + { + "start": 9504.34, + "end": 9507.06, + "probability": 0.8325 + }, + { + "start": 9507.7, + "end": 9512.48, + "probability": 0.859 + }, + { + "start": 9512.84, + "end": 9518.8, + "probability": 0.8926 + }, + { + "start": 9518.86, + "end": 9519.94, + "probability": 0.7313 + }, + { + "start": 9520.12, + "end": 9522.64, + "probability": 0.5844 + }, + { + "start": 9522.64, + "end": 9524.36, + "probability": 0.7545 + }, + { + "start": 9524.52, + "end": 9525.1, + "probability": 0.8049 + }, + { + "start": 9525.12, + "end": 9525.66, + "probability": 0.4513 + }, + { + "start": 9525.72, + "end": 9526.1, + "probability": 0.4929 + }, + { + "start": 9526.1, + "end": 9526.52, + "probability": 0.1897 + }, + { + "start": 9526.58, + "end": 9529.58, + "probability": 0.6683 + }, + { + "start": 9529.8, + "end": 9530.88, + "probability": 0.1505 + }, + { + "start": 9531.02, + "end": 9532.02, + "probability": 0.7648 + }, + { + "start": 9532.16, + "end": 9538.28, + "probability": 0.9907 + }, + { + "start": 9538.54, + "end": 9540.98, + "probability": 0.9097 + }, + { + "start": 9541.28, + "end": 9542.68, + "probability": 0.6955 + }, + { + "start": 9543.02, + "end": 9545.76, + "probability": 0.9565 + }, + { + "start": 9545.86, + "end": 9546.72, + "probability": 0.9512 + }, + { + "start": 9546.76, + "end": 9547.16, + "probability": 0.5878 + }, + { + "start": 9547.41, + "end": 9549.48, + "probability": 0.734 + }, + { + "start": 9549.56, + "end": 9550.78, + "probability": 0.741 + }, + { + "start": 9550.86, + "end": 9553.12, + "probability": 0.8732 + }, + { + "start": 9553.28, + "end": 9557.28, + "probability": 0.8097 + }, + { + "start": 9557.34, + "end": 9559.72, + "probability": 0.8898 + }, + { + "start": 9560.08, + "end": 9562.68, + "probability": 0.7674 + }, + { + "start": 9563.24, + "end": 9566.66, + "probability": 0.8744 + }, + { + "start": 9567.26, + "end": 9569.22, + "probability": 0.5408 + }, + { + "start": 9569.34, + "end": 9575.64, + "probability": 0.9839 + }, + { + "start": 9576.54, + "end": 9578.22, + "probability": 0.2319 + }, + { + "start": 9578.36, + "end": 9579.54, + "probability": 0.2155 + }, + { + "start": 9579.62, + "end": 9583.48, + "probability": 0.9817 + }, + { + "start": 9583.72, + "end": 9588.02, + "probability": 0.9761 + }, + { + "start": 9588.6, + "end": 9588.78, + "probability": 0.223 + }, + { + "start": 9588.86, + "end": 9595.62, + "probability": 0.7728 + }, + { + "start": 9595.82, + "end": 9596.48, + "probability": 0.5065 + }, + { + "start": 9596.54, + "end": 9598.53, + "probability": 0.7012 + }, + { + "start": 9603.26, + "end": 9608.42, + "probability": 0.2851 + }, + { + "start": 9608.54, + "end": 9610.3, + "probability": 0.668 + }, + { + "start": 9610.4, + "end": 9613.06, + "probability": 0.8599 + }, + { + "start": 9615.22, + "end": 9619.76, + "probability": 0.6739 + }, + { + "start": 9619.86, + "end": 9623.18, + "probability": 0.779 + }, + { + "start": 9623.74, + "end": 9625.34, + "probability": 0.6688 + }, + { + "start": 9625.42, + "end": 9627.76, + "probability": 0.7491 + }, + { + "start": 9627.98, + "end": 9629.26, + "probability": 0.4222 + }, + { + "start": 9629.34, + "end": 9630.36, + "probability": 0.3823 + }, + { + "start": 9630.72, + "end": 9634.97, + "probability": 0.9188 + }, + { + "start": 9636.18, + "end": 9637.32, + "probability": 0.3964 + }, + { + "start": 9641.18, + "end": 9642.2, + "probability": 0.0337 + }, + { + "start": 9642.32, + "end": 9643.94, + "probability": 0.0316 + }, + { + "start": 9646.95, + "end": 9648.08, + "probability": 0.0488 + }, + { + "start": 9648.24, + "end": 9651.08, + "probability": 0.5233 + }, + { + "start": 9651.18, + "end": 9654.12, + "probability": 0.9708 + }, + { + "start": 9654.28, + "end": 9657.01, + "probability": 0.9944 + }, + { + "start": 9657.56, + "end": 9659.52, + "probability": 0.9658 + }, + { + "start": 9659.52, + "end": 9661.4, + "probability": 0.6992 + }, + { + "start": 9661.7, + "end": 9664.44, + "probability": 0.828 + }, + { + "start": 9665.86, + "end": 9668.86, + "probability": 0.7894 + }, + { + "start": 9673.28, + "end": 9673.72, + "probability": 0.6793 + }, + { + "start": 9673.76, + "end": 9675.52, + "probability": 0.7542 + }, + { + "start": 9676.04, + "end": 9678.82, + "probability": 0.7985 + }, + { + "start": 9679.3, + "end": 9681.22, + "probability": 0.9281 + }, + { + "start": 9681.74, + "end": 9683.27, + "probability": 0.9946 + }, + { + "start": 9684.94, + "end": 9687.54, + "probability": 0.9424 + }, + { + "start": 9691.34, + "end": 9692.48, + "probability": 0.5054 + }, + { + "start": 9699.2, + "end": 9706.06, + "probability": 0.7089 + }, + { + "start": 9707.62, + "end": 9709.16, + "probability": 0.8325 + }, + { + "start": 9710.0, + "end": 9712.63, + "probability": 0.704 + }, + { + "start": 9713.22, + "end": 9714.6, + "probability": 0.748 + }, + { + "start": 9714.92, + "end": 9715.08, + "probability": 0.4976 + }, + { + "start": 9715.08, + "end": 9716.58, + "probability": 0.8708 + }, + { + "start": 9717.06, + "end": 9717.38, + "probability": 0.2883 + }, + { + "start": 9717.38, + "end": 9718.36, + "probability": 0.4741 + }, + { + "start": 9719.2, + "end": 9721.24, + "probability": 0.8389 + }, + { + "start": 9721.66, + "end": 9722.12, + "probability": 0.6315 + }, + { + "start": 9722.22, + "end": 9726.32, + "probability": 0.9548 + }, + { + "start": 9727.08, + "end": 9728.1, + "probability": 0.3502 + }, + { + "start": 9728.16, + "end": 9731.14, + "probability": 0.6041 + }, + { + "start": 9731.48, + "end": 9734.22, + "probability": 0.9717 + }, + { + "start": 9735.46, + "end": 9738.6, + "probability": 0.9688 + }, + { + "start": 9739.68, + "end": 9742.42, + "probability": 0.9884 + }, + { + "start": 9742.42, + "end": 9746.94, + "probability": 0.9852 + }, + { + "start": 9747.9, + "end": 9750.54, + "probability": 0.6595 + }, + { + "start": 9750.7, + "end": 9753.55, + "probability": 0.9935 + }, + { + "start": 9753.65, + "end": 9753.86, + "probability": 0.2563 + }, + { + "start": 9753.86, + "end": 9755.12, + "probability": 0.546 + }, + { + "start": 9755.22, + "end": 9758.32, + "probability": 0.7964 + }, + { + "start": 9758.5, + "end": 9761.14, + "probability": 0.6699 + }, + { + "start": 9761.34, + "end": 9762.78, + "probability": 0.5822 + }, + { + "start": 9762.86, + "end": 9763.7, + "probability": 0.8302 + }, + { + "start": 9763.76, + "end": 9766.7, + "probability": 0.8464 + }, + { + "start": 9766.82, + "end": 9767.12, + "probability": 0.7889 + }, + { + "start": 9768.24, + "end": 9771.66, + "probability": 0.7953 + }, + { + "start": 9772.64, + "end": 9775.82, + "probability": 0.9849 + }, + { + "start": 9775.92, + "end": 9777.58, + "probability": 0.9698 + }, + { + "start": 9777.74, + "end": 9779.64, + "probability": 0.6776 + }, + { + "start": 9779.72, + "end": 9782.22, + "probability": 0.7865 + }, + { + "start": 9784.06, + "end": 9787.94, + "probability": 0.9268 + }, + { + "start": 9789.06, + "end": 9791.0, + "probability": 0.8056 + }, + { + "start": 9791.64, + "end": 9793.26, + "probability": 0.8392 + }, + { + "start": 9794.24, + "end": 9797.3, + "probability": 0.9736 + }, + { + "start": 9797.38, + "end": 9801.92, + "probability": 0.9527 + }, + { + "start": 9802.04, + "end": 9803.32, + "probability": 0.9932 + }, + { + "start": 9803.54, + "end": 9805.28, + "probability": 0.7723 + }, + { + "start": 9805.5, + "end": 9809.3, + "probability": 0.7992 + }, + { + "start": 9809.34, + "end": 9810.72, + "probability": 0.7719 + }, + { + "start": 9810.86, + "end": 9811.04, + "probability": 0.1686 + }, + { + "start": 9811.1, + "end": 9812.6, + "probability": 0.9358 + }, + { + "start": 9813.64, + "end": 9815.98, + "probability": 0.9235 + }, + { + "start": 9816.08, + "end": 9817.08, + "probability": 0.4979 + }, + { + "start": 9817.24, + "end": 9817.42, + "probability": 0.691 + }, + { + "start": 9817.42, + "end": 9817.78, + "probability": 0.2984 + }, + { + "start": 9817.84, + "end": 9818.1, + "probability": 0.5978 + }, + { + "start": 9818.84, + "end": 9820.4, + "probability": 0.0371 + }, + { + "start": 9820.73, + "end": 9823.44, + "probability": 0.8257 + }, + { + "start": 9823.6, + "end": 9826.5, + "probability": 0.9871 + }, + { + "start": 9826.5, + "end": 9829.9, + "probability": 0.9967 + }, + { + "start": 9830.84, + "end": 9831.24, + "probability": 0.4821 + }, + { + "start": 9831.54, + "end": 9832.98, + "probability": 0.9478 + }, + { + "start": 9833.1, + "end": 9835.9, + "probability": 0.7925 + }, + { + "start": 9835.9, + "end": 9837.8, + "probability": 0.8878 + }, + { + "start": 9838.18, + "end": 9840.36, + "probability": 0.9277 + }, + { + "start": 9840.52, + "end": 9846.42, + "probability": 0.9905 + }, + { + "start": 9847.0, + "end": 9847.7, + "probability": 0.4808 + }, + { + "start": 9847.74, + "end": 9850.8, + "probability": 0.9101 + }, + { + "start": 9854.12, + "end": 9855.76, + "probability": 0.8124 + }, + { + "start": 9856.32, + "end": 9858.48, + "probability": 0.9006 + }, + { + "start": 9858.58, + "end": 9858.8, + "probability": 0.8683 + }, + { + "start": 9858.9, + "end": 9863.98, + "probability": 0.9879 + }, + { + "start": 9864.1, + "end": 9866.77, + "probability": 0.5241 + }, + { + "start": 9867.62, + "end": 9868.58, + "probability": 0.7431 + }, + { + "start": 9869.76, + "end": 9870.56, + "probability": 0.6248 + }, + { + "start": 9871.78, + "end": 9873.92, + "probability": 0.8401 + }, + { + "start": 9875.18, + "end": 9882.02, + "probability": 0.9695 + }, + { + "start": 9882.24, + "end": 9889.26, + "probability": 0.9937 + }, + { + "start": 9890.8, + "end": 9893.5, + "probability": 0.9599 + }, + { + "start": 9894.38, + "end": 9897.74, + "probability": 0.8017 + }, + { + "start": 9898.42, + "end": 9901.12, + "probability": 0.5262 + }, + { + "start": 9901.38, + "end": 9906.56, + "probability": 0.9728 + }, + { + "start": 9906.56, + "end": 9912.14, + "probability": 0.9235 + }, + { + "start": 9912.26, + "end": 9913.8, + "probability": 0.9951 + }, + { + "start": 9914.58, + "end": 9918.22, + "probability": 0.9648 + }, + { + "start": 9918.3, + "end": 9921.08, + "probability": 0.9784 + }, + { + "start": 9922.06, + "end": 9924.18, + "probability": 0.8558 + }, + { + "start": 9925.18, + "end": 9928.7, + "probability": 0.9961 + }, + { + "start": 9930.12, + "end": 9934.08, + "probability": 0.6955 + }, + { + "start": 9936.6, + "end": 9939.2, + "probability": 0.9788 + }, + { + "start": 9939.98, + "end": 9941.99, + "probability": 0.7809 + }, + { + "start": 9943.36, + "end": 9947.22, + "probability": 0.9906 + }, + { + "start": 9948.0, + "end": 9951.34, + "probability": 0.9737 + }, + { + "start": 9952.76, + "end": 9957.14, + "probability": 0.9325 + }, + { + "start": 9957.8, + "end": 9961.32, + "probability": 0.9355 + }, + { + "start": 9961.32, + "end": 9965.44, + "probability": 0.9897 + }, + { + "start": 9967.12, + "end": 9971.16, + "probability": 0.9919 + }, + { + "start": 9972.36, + "end": 9974.04, + "probability": 0.6551 + }, + { + "start": 9974.8, + "end": 9980.44, + "probability": 0.8461 + }, + { + "start": 9980.44, + "end": 9985.84, + "probability": 0.9893 + }, + { + "start": 9986.04, + "end": 9987.11, + "probability": 0.4942 + }, + { + "start": 9987.98, + "end": 9991.32, + "probability": 0.9791 + }, + { + "start": 9992.2, + "end": 9992.98, + "probability": 0.9821 + }, + { + "start": 9994.34, + "end": 9994.58, + "probability": 0.6716 + }, + { + "start": 9994.86, + "end": 9995.48, + "probability": 0.7618 + }, + { + "start": 9995.58, + "end": 9998.94, + "probability": 0.9141 + }, + { + "start": 10000.04, + "end": 10007.88, + "probability": 0.9655 + }, + { + "start": 10009.52, + "end": 10013.12, + "probability": 0.6322 + }, + { + "start": 10014.54, + "end": 10016.82, + "probability": 0.9915 + }, + { + "start": 10017.84, + "end": 10022.86, + "probability": 0.9866 + }, + { + "start": 10024.2, + "end": 10029.22, + "probability": 0.7793 + }, + { + "start": 10029.28, + "end": 10030.22, + "probability": 0.5099 + }, + { + "start": 10032.44, + "end": 10034.22, + "probability": 0.6718 + }, + { + "start": 10035.04, + "end": 10035.98, + "probability": 0.7979 + }, + { + "start": 10036.74, + "end": 10039.54, + "probability": 0.8555 + }, + { + "start": 10040.26, + "end": 10040.6, + "probability": 0.0751 + }, + { + "start": 10040.74, + "end": 10041.92, + "probability": 0.3228 + }, + { + "start": 10042.54, + "end": 10043.98, + "probability": 0.9102 + }, + { + "start": 10044.68, + "end": 10044.8, + "probability": 0.2712 + }, + { + "start": 10044.86, + "end": 10046.52, + "probability": 0.7856 + }, + { + "start": 10046.66, + "end": 10048.74, + "probability": 0.7738 + }, + { + "start": 10048.9, + "end": 10050.28, + "probability": 0.8779 + }, + { + "start": 10050.66, + "end": 10052.07, + "probability": 0.8896 + }, + { + "start": 10052.86, + "end": 10054.2, + "probability": 0.8867 + }, + { + "start": 10054.22, + "end": 10054.54, + "probability": 0.7433 + }, + { + "start": 10055.37, + "end": 10056.63, + "probability": 0.9481 + }, + { + "start": 10057.64, + "end": 10059.66, + "probability": 0.9951 + }, + { + "start": 10059.72, + "end": 10060.56, + "probability": 0.7694 + }, + { + "start": 10060.76, + "end": 10061.94, + "probability": 0.5042 + }, + { + "start": 10062.22, + "end": 10064.56, + "probability": 0.8826 + }, + { + "start": 10065.16, + "end": 10069.06, + "probability": 0.9894 + }, + { + "start": 10069.84, + "end": 10070.5, + "probability": 0.8263 + }, + { + "start": 10071.38, + "end": 10071.88, + "probability": 0.6885 + }, + { + "start": 10072.14, + "end": 10080.93, + "probability": 0.8518 + }, + { + "start": 10081.82, + "end": 10082.54, + "probability": 0.9553 + }, + { + "start": 10082.66, + "end": 10085.1, + "probability": 0.8803 + }, + { + "start": 10085.94, + "end": 10090.8, + "probability": 0.9042 + }, + { + "start": 10091.42, + "end": 10097.1, + "probability": 0.9746 + }, + { + "start": 10097.26, + "end": 10101.66, + "probability": 0.9363 + }, + { + "start": 10101.66, + "end": 10106.86, + "probability": 0.6846 + }, + { + "start": 10107.02, + "end": 10109.06, + "probability": 0.7839 + }, + { + "start": 10109.2, + "end": 10109.34, + "probability": 0.437 + }, + { + "start": 10109.96, + "end": 10112.84, + "probability": 0.9331 + }, + { + "start": 10112.92, + "end": 10114.57, + "probability": 0.8665 + }, + { + "start": 10115.4, + "end": 10116.52, + "probability": 0.576 + }, + { + "start": 10116.52, + "end": 10116.78, + "probability": 0.2649 + }, + { + "start": 10116.86, + "end": 10119.32, + "probability": 0.6288 + }, + { + "start": 10119.96, + "end": 10121.9, + "probability": 0.8929 + }, + { + "start": 10122.0, + "end": 10123.66, + "probability": 0.8994 + }, + { + "start": 10123.72, + "end": 10126.18, + "probability": 0.9727 + }, + { + "start": 10126.42, + "end": 10130.64, + "probability": 0.6787 + }, + { + "start": 10131.28, + "end": 10132.34, + "probability": 0.1242 + }, + { + "start": 10132.34, + "end": 10134.34, + "probability": 0.958 + }, + { + "start": 10134.42, + "end": 10139.4, + "probability": 0.9871 + }, + { + "start": 10139.66, + "end": 10140.18, + "probability": 0.6825 + }, + { + "start": 10140.64, + "end": 10143.94, + "probability": 0.9519 + }, + { + "start": 10144.14, + "end": 10146.32, + "probability": 0.3852 + }, + { + "start": 10146.32, + "end": 10146.32, + "probability": 0.4732 + }, + { + "start": 10146.32, + "end": 10146.6, + "probability": 0.6269 + }, + { + "start": 10147.28, + "end": 10147.66, + "probability": 0.5893 + }, + { + "start": 10147.78, + "end": 10149.22, + "probability": 0.9571 + }, + { + "start": 10149.22, + "end": 10149.66, + "probability": 0.7595 + }, + { + "start": 10149.78, + "end": 10150.38, + "probability": 0.3847 + }, + { + "start": 10150.46, + "end": 10151.2, + "probability": 0.6681 + }, + { + "start": 10151.28, + "end": 10153.48, + "probability": 0.8969 + }, + { + "start": 10153.5, + "end": 10154.12, + "probability": 0.967 + }, + { + "start": 10154.5, + "end": 10159.0, + "probability": 0.9774 + }, + { + "start": 10159.24, + "end": 10160.76, + "probability": 0.6757 + }, + { + "start": 10160.9, + "end": 10163.66, + "probability": 0.989 + }, + { + "start": 10164.16, + "end": 10166.32, + "probability": 0.9665 + }, + { + "start": 10167.04, + "end": 10170.42, + "probability": 0.981 + }, + { + "start": 10171.44, + "end": 10172.22, + "probability": 0.4455 + }, + { + "start": 10172.24, + "end": 10173.52, + "probability": 0.9141 + }, + { + "start": 10173.66, + "end": 10175.02, + "probability": 0.9978 + }, + { + "start": 10175.34, + "end": 10176.24, + "probability": 0.8434 + }, + { + "start": 10176.34, + "end": 10177.02, + "probability": 0.552 + }, + { + "start": 10177.06, + "end": 10179.8, + "probability": 0.7606 + }, + { + "start": 10179.8, + "end": 10179.8, + "probability": 0.0565 + }, + { + "start": 10179.8, + "end": 10180.24, + "probability": 0.6751 + }, + { + "start": 10180.32, + "end": 10181.04, + "probability": 0.368 + }, + { + "start": 10181.12, + "end": 10184.54, + "probability": 0.8779 + }, + { + "start": 10184.74, + "end": 10188.08, + "probability": 0.8053 + }, + { + "start": 10188.24, + "end": 10188.64, + "probability": 0.8667 + }, + { + "start": 10188.74, + "end": 10189.48, + "probability": 0.8115 + }, + { + "start": 10189.64, + "end": 10191.22, + "probability": 0.7721 + }, + { + "start": 10191.54, + "end": 10191.96, + "probability": 0.7316 + }, + { + "start": 10192.12, + "end": 10192.26, + "probability": 0.8674 + }, + { + "start": 10192.42, + "end": 10193.46, + "probability": 0.9895 + }, + { + "start": 10193.54, + "end": 10194.8, + "probability": 0.7637 + }, + { + "start": 10194.94, + "end": 10195.24, + "probability": 0.3035 + }, + { + "start": 10195.36, + "end": 10197.42, + "probability": 0.7451 + }, + { + "start": 10197.86, + "end": 10199.96, + "probability": 0.9922 + }, + { + "start": 10200.66, + "end": 10205.03, + "probability": 0.9888 + }, + { + "start": 10205.25, + "end": 10207.29, + "probability": 0.8677 + }, + { + "start": 10207.43, + "end": 10211.41, + "probability": 0.7229 + }, + { + "start": 10211.77, + "end": 10214.25, + "probability": 0.9328 + }, + { + "start": 10214.95, + "end": 10216.85, + "probability": 0.8306 + }, + { + "start": 10217.01, + "end": 10221.05, + "probability": 0.3818 + }, + { + "start": 10221.11, + "end": 10224.28, + "probability": 0.74 + }, + { + "start": 10224.9, + "end": 10229.01, + "probability": 0.9917 + }, + { + "start": 10229.19, + "end": 10231.09, + "probability": 0.9111 + }, + { + "start": 10231.64, + "end": 10234.43, + "probability": 0.722 + }, + { + "start": 10234.61, + "end": 10235.15, + "probability": 0.7561 + }, + { + "start": 10235.27, + "end": 10235.51, + "probability": 0.8594 + }, + { + "start": 10235.55, + "end": 10238.19, + "probability": 0.9476 + }, + { + "start": 10239.15, + "end": 10242.37, + "probability": 0.7909 + }, + { + "start": 10242.63, + "end": 10243.63, + "probability": 0.9431 + }, + { + "start": 10244.17, + "end": 10245.69, + "probability": 0.8866 + }, + { + "start": 10245.73, + "end": 10247.72, + "probability": 0.7164 + }, + { + "start": 10247.93, + "end": 10251.61, + "probability": 0.9751 + }, + { + "start": 10252.09, + "end": 10253.03, + "probability": 0.7747 + }, + { + "start": 10253.05, + "end": 10253.65, + "probability": 0.946 + }, + { + "start": 10253.85, + "end": 10254.57, + "probability": 0.7593 + }, + { + "start": 10254.71, + "end": 10255.79, + "probability": 0.8635 + }, + { + "start": 10255.79, + "end": 10258.25, + "probability": 0.969 + }, + { + "start": 10258.31, + "end": 10259.09, + "probability": 0.7858 + }, + { + "start": 10259.37, + "end": 10260.39, + "probability": 0.6568 + }, + { + "start": 10261.19, + "end": 10263.39, + "probability": 0.8195 + }, + { + "start": 10263.43, + "end": 10265.77, + "probability": 0.9584 + }, + { + "start": 10265.77, + "end": 10267.91, + "probability": 0.4536 + }, + { + "start": 10268.05, + "end": 10268.33, + "probability": 0.6111 + }, + { + "start": 10268.99, + "end": 10270.81, + "probability": 0.745 + }, + { + "start": 10270.85, + "end": 10271.25, + "probability": 0.8928 + }, + { + "start": 10271.29, + "end": 10272.47, + "probability": 0.8166 + }, + { + "start": 10273.53, + "end": 10276.44, + "probability": 0.9871 + }, + { + "start": 10277.89, + "end": 10279.97, + "probability": 0.8746 + }, + { + "start": 10282.77, + "end": 10285.91, + "probability": 0.6802 + }, + { + "start": 10288.23, + "end": 10288.35, + "probability": 0.0105 + }, + { + "start": 10295.89, + "end": 10297.43, + "probability": 0.0964 + }, + { + "start": 10366.14, + "end": 10366.3, + "probability": 0.1998 + }, + { + "start": 10366.4, + "end": 10366.82, + "probability": 0.2626 + }, + { + "start": 10370.3, + "end": 10370.4, + "probability": 0.0425 + }, + { + "start": 10372.58, + "end": 10374.54, + "probability": 0.4365 + }, + { + "start": 10375.12, + "end": 10378.54, + "probability": 0.1192 + }, + { + "start": 10379.16, + "end": 10380.78, + "probability": 0.044 + }, + { + "start": 10381.5, + "end": 10382.74, + "probability": 0.0015 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10509.06, + "end": 10510.02, + "probability": 0.0509 + }, + { + "start": 10511.36, + "end": 10515.52, + "probability": 0.1096 + }, + { + "start": 10517.27, + "end": 10518.4, + "probability": 0.0184 + }, + { + "start": 10518.4, + "end": 10521.58, + "probability": 0.0775 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10615.0, + "end": 10615.0, + "probability": 0.0 + }, + { + "start": 10635.86, + "end": 10637.7, + "probability": 0.4684 + }, + { + "start": 10639.35, + "end": 10646.92, + "probability": 0.9649 + }, + { + "start": 10646.92, + "end": 10651.74, + "probability": 0.9918 + }, + { + "start": 10651.84, + "end": 10654.18, + "probability": 0.9766 + }, + { + "start": 10654.4, + "end": 10656.77, + "probability": 0.9404 + }, + { + "start": 10656.84, + "end": 10660.18, + "probability": 0.9976 + }, + { + "start": 10661.62, + "end": 10663.55, + "probability": 0.6441 + }, + { + "start": 10664.58, + "end": 10665.8, + "probability": 0.6426 + }, + { + "start": 10665.88, + "end": 10666.08, + "probability": 0.7708 + }, + { + "start": 10666.22, + "end": 10669.88, + "probability": 0.9955 + }, + { + "start": 10669.88, + "end": 10675.34, + "probability": 0.9984 + }, + { + "start": 10675.46, + "end": 10677.42, + "probability": 0.7759 + }, + { + "start": 10677.94, + "end": 10681.5, + "probability": 0.7549 + }, + { + "start": 10682.76, + "end": 10686.62, + "probability": 0.9929 + }, + { + "start": 10687.36, + "end": 10687.7, + "probability": 0.5252 + }, + { + "start": 10687.94, + "end": 10690.15, + "probability": 0.6532 + }, + { + "start": 10690.72, + "end": 10691.52, + "probability": 0.938 + }, + { + "start": 10691.72, + "end": 10697.0, + "probability": 0.9291 + }, + { + "start": 10697.71, + "end": 10703.26, + "probability": 0.9772 + }, + { + "start": 10703.34, + "end": 10703.94, + "probability": 0.7103 + }, + { + "start": 10704.07, + "end": 10705.82, + "probability": 0.9284 + }, + { + "start": 10705.96, + "end": 10706.06, + "probability": 0.4196 + }, + { + "start": 10706.2, + "end": 10706.88, + "probability": 0.8027 + }, + { + "start": 10706.92, + "end": 10710.52, + "probability": 0.9902 + }, + { + "start": 10711.32, + "end": 10711.76, + "probability": 0.8831 + }, + { + "start": 10711.8, + "end": 10712.1, + "probability": 0.7806 + }, + { + "start": 10712.1, + "end": 10714.38, + "probability": 0.9141 + }, + { + "start": 10714.48, + "end": 10716.0, + "probability": 0.7507 + }, + { + "start": 10716.16, + "end": 10717.12, + "probability": 0.6494 + }, + { + "start": 10717.64, + "end": 10719.84, + "probability": 0.8206 + }, + { + "start": 10720.1, + "end": 10724.04, + "probability": 0.9832 + }, + { + "start": 10724.08, + "end": 10725.14, + "probability": 0.7403 + }, + { + "start": 10725.2, + "end": 10727.08, + "probability": 0.6703 + }, + { + "start": 10727.08, + "end": 10729.09, + "probability": 0.6031 + }, + { + "start": 10729.42, + "end": 10732.42, + "probability": 0.8368 + }, + { + "start": 10732.76, + "end": 10733.74, + "probability": 0.6697 + }, + { + "start": 10736.36, + "end": 10740.58, + "probability": 0.9736 + }, + { + "start": 10740.78, + "end": 10741.64, + "probability": 0.7 + }, + { + "start": 10741.76, + "end": 10742.2, + "probability": 0.9132 + }, + { + "start": 10742.3, + "end": 10742.84, + "probability": 0.8822 + }, + { + "start": 10742.84, + "end": 10744.54, + "probability": 0.9858 + }, + { + "start": 10744.72, + "end": 10747.72, + "probability": 0.9932 + }, + { + "start": 10747.78, + "end": 10749.5, + "probability": 0.9966 + }, + { + "start": 10750.42, + "end": 10754.08, + "probability": 0.9991 + }, + { + "start": 10754.2, + "end": 10754.44, + "probability": 0.63 + }, + { + "start": 10754.5, + "end": 10759.12, + "probability": 0.4684 + }, + { + "start": 10759.14, + "end": 10763.32, + "probability": 0.9115 + }, + { + "start": 10763.46, + "end": 10764.72, + "probability": 0.9761 + }, + { + "start": 10764.98, + "end": 10766.6, + "probability": 0.51 + }, + { + "start": 10766.6, + "end": 10766.76, + "probability": 0.1944 + }, + { + "start": 10766.76, + "end": 10767.38, + "probability": 0.7344 + }, + { + "start": 10767.44, + "end": 10770.16, + "probability": 0.9539 + }, + { + "start": 10770.56, + "end": 10774.24, + "probability": 0.9512 + }, + { + "start": 10774.74, + "end": 10776.82, + "probability": 0.8491 + }, + { + "start": 10777.06, + "end": 10780.88, + "probability": 0.488 + }, + { + "start": 10781.24, + "end": 10781.32, + "probability": 0.0583 + }, + { + "start": 10781.34, + "end": 10781.78, + "probability": 0.4888 + }, + { + "start": 10781.82, + "end": 10786.09, + "probability": 0.9474 + }, + { + "start": 10786.62, + "end": 10787.6, + "probability": 0.8682 + }, + { + "start": 10787.66, + "end": 10794.94, + "probability": 0.9807 + }, + { + "start": 10795.82, + "end": 10795.82, + "probability": 0.1134 + }, + { + "start": 10795.82, + "end": 10796.22, + "probability": 0.3712 + }, + { + "start": 10796.22, + "end": 10796.7, + "probability": 0.3766 + }, + { + "start": 10796.8, + "end": 10798.08, + "probability": 0.3604 + }, + { + "start": 10803.58, + "end": 10808.98, + "probability": 0.3203 + }, + { + "start": 10809.84, + "end": 10812.34, + "probability": 0.0616 + }, + { + "start": 10814.1, + "end": 10816.8, + "probability": 0.7512 + }, + { + "start": 10817.12, + "end": 10820.88, + "probability": 0.9937 + }, + { + "start": 10820.88, + "end": 10823.84, + "probability": 0.7558 + }, + { + "start": 10823.96, + "end": 10829.98, + "probability": 0.9857 + }, + { + "start": 10830.14, + "end": 10831.18, + "probability": 0.6853 + }, + { + "start": 10831.68, + "end": 10837.56, + "probability": 0.9883 + }, + { + "start": 10837.56, + "end": 10840.8, + "probability": 0.9377 + }, + { + "start": 10841.22, + "end": 10843.6, + "probability": 0.8856 + }, + { + "start": 10843.72, + "end": 10844.21, + "probability": 0.8022 + }, + { + "start": 10844.9, + "end": 10846.16, + "probability": 0.76 + }, + { + "start": 10846.36, + "end": 10847.88, + "probability": 0.6637 + }, + { + "start": 10848.14, + "end": 10848.42, + "probability": 0.7066 + }, + { + "start": 10848.48, + "end": 10855.22, + "probability": 0.9809 + }, + { + "start": 10855.38, + "end": 10857.78, + "probability": 0.9282 + }, + { + "start": 10858.08, + "end": 10860.12, + "probability": 0.8278 + }, + { + "start": 10860.5, + "end": 10860.84, + "probability": 0.4353 + }, + { + "start": 10860.96, + "end": 10863.38, + "probability": 0.9982 + }, + { + "start": 10863.38, + "end": 10866.34, + "probability": 0.8833 + }, + { + "start": 10867.3, + "end": 10873.16, + "probability": 0.9682 + }, + { + "start": 10873.16, + "end": 10879.08, + "probability": 0.9744 + }, + { + "start": 10879.16, + "end": 10879.5, + "probability": 0.0388 + }, + { + "start": 10880.21, + "end": 10883.29, + "probability": 0.7283 + }, + { + "start": 10885.2, + "end": 10888.26, + "probability": 0.8966 + }, + { + "start": 10888.4, + "end": 10893.56, + "probability": 0.9602 + }, + { + "start": 10895.16, + "end": 10898.14, + "probability": 0.9761 + }, + { + "start": 10899.32, + "end": 10899.78, + "probability": 0.8967 + }, + { + "start": 10901.4, + "end": 10902.26, + "probability": 0.5565 + }, + { + "start": 10904.12, + "end": 10905.7, + "probability": 0.9154 + }, + { + "start": 10905.88, + "end": 10908.98, + "probability": 0.9865 + }, + { + "start": 10910.38, + "end": 10916.46, + "probability": 0.9857 + }, + { + "start": 10917.8, + "end": 10920.44, + "probability": 0.7519 + }, + { + "start": 10922.28, + "end": 10927.26, + "probability": 0.9933 + }, + { + "start": 10927.86, + "end": 10935.22, + "probability": 0.9961 + }, + { + "start": 10937.24, + "end": 10940.56, + "probability": 0.9205 + }, + { + "start": 10941.6, + "end": 10942.64, + "probability": 0.478 + }, + { + "start": 10942.74, + "end": 10946.16, + "probability": 0.9755 + }, + { + "start": 10946.62, + "end": 10948.36, + "probability": 0.98 + }, + { + "start": 10949.38, + "end": 10955.15, + "probability": 0.8662 + }, + { + "start": 10955.38, + "end": 10957.52, + "probability": 0.9924 + }, + { + "start": 10957.82, + "end": 10960.16, + "probability": 0.9631 + }, + { + "start": 10961.24, + "end": 10963.8, + "probability": 0.9916 + }, + { + "start": 10964.96, + "end": 10966.87, + "probability": 0.8748 + }, + { + "start": 10967.9, + "end": 10968.52, + "probability": 0.9639 + }, + { + "start": 10969.6, + "end": 10971.76, + "probability": 0.978 + }, + { + "start": 10971.96, + "end": 10972.72, + "probability": 0.6131 + }, + { + "start": 10972.88, + "end": 10975.94, + "probability": 0.9623 + }, + { + "start": 10976.98, + "end": 10979.88, + "probability": 0.9826 + }, + { + "start": 10980.96, + "end": 10983.28, + "probability": 0.915 + }, + { + "start": 10985.31, + "end": 10990.54, + "probability": 0.9757 + }, + { + "start": 10990.8, + "end": 10991.62, + "probability": 0.7031 + }, + { + "start": 10991.68, + "end": 10995.0, + "probability": 0.9834 + }, + { + "start": 10995.16, + "end": 10995.68, + "probability": 0.5842 + }, + { + "start": 10995.96, + "end": 10997.18, + "probability": 0.5671 + }, + { + "start": 10997.24, + "end": 10997.8, + "probability": 0.5735 + }, + { + "start": 10998.32, + "end": 10999.92, + "probability": 0.8732 + }, + { + "start": 11000.1, + "end": 11000.72, + "probability": 0.8671 + }, + { + "start": 11000.84, + "end": 11001.68, + "probability": 0.8208 + }, + { + "start": 11001.9, + "end": 11002.84, + "probability": 0.9484 + }, + { + "start": 11002.9, + "end": 11004.07, + "probability": 0.9941 + }, + { + "start": 11004.95, + "end": 11009.44, + "probability": 0.8336 + }, + { + "start": 11009.8, + "end": 11013.1, + "probability": 0.9634 + }, + { + "start": 11013.6, + "end": 11016.8, + "probability": 0.9929 + }, + { + "start": 11016.8, + "end": 11019.98, + "probability": 0.9658 + }, + { + "start": 11020.86, + "end": 11021.9, + "probability": 0.9473 + }, + { + "start": 11021.98, + "end": 11022.9, + "probability": 0.7118 + }, + { + "start": 11023.22, + "end": 11031.96, + "probability": 0.9194 + }, + { + "start": 11032.7, + "end": 11036.44, + "probability": 0.9873 + }, + { + "start": 11037.18, + "end": 11040.44, + "probability": 0.7937 + }, + { + "start": 11041.3, + "end": 11044.48, + "probability": 0.9005 + }, + { + "start": 11045.32, + "end": 11045.64, + "probability": 0.7611 + }, + { + "start": 11045.88, + "end": 11046.62, + "probability": 0.7304 + }, + { + "start": 11046.8, + "end": 11048.53, + "probability": 0.9854 + }, + { + "start": 11049.44, + "end": 11053.42, + "probability": 0.9008 + }, + { + "start": 11054.0, + "end": 11056.6, + "probability": 0.9736 + }, + { + "start": 11057.6, + "end": 11059.14, + "probability": 0.7842 + }, + { + "start": 11060.36, + "end": 11064.6, + "probability": 0.9746 + }, + { + "start": 11065.68, + "end": 11067.58, + "probability": 0.7607 + }, + { + "start": 11068.32, + "end": 11071.26, + "probability": 0.9791 + }, + { + "start": 11071.48, + "end": 11071.9, + "probability": 0.3127 + }, + { + "start": 11074.3, + "end": 11081.54, + "probability": 0.9829 + }, + { + "start": 11082.54, + "end": 11084.59, + "probability": 0.8368 + }, + { + "start": 11085.34, + "end": 11093.21, + "probability": 0.864 + }, + { + "start": 11094.8, + "end": 11096.7, + "probability": 0.9937 + }, + { + "start": 11098.0, + "end": 11100.32, + "probability": 0.7876 + }, + { + "start": 11101.84, + "end": 11105.78, + "probability": 0.9241 + }, + { + "start": 11107.36, + "end": 11108.58, + "probability": 0.7531 + }, + { + "start": 11108.8, + "end": 11111.08, + "probability": 0.9497 + }, + { + "start": 11111.42, + "end": 11113.36, + "probability": 0.9798 + }, + { + "start": 11114.4, + "end": 11116.05, + "probability": 0.8911 + }, + { + "start": 11116.86, + "end": 11119.89, + "probability": 0.986 + }, + { + "start": 11121.12, + "end": 11122.74, + "probability": 0.9343 + }, + { + "start": 11123.72, + "end": 11128.44, + "probability": 0.9595 + }, + { + "start": 11129.58, + "end": 11130.92, + "probability": 0.9097 + }, + { + "start": 11131.92, + "end": 11135.62, + "probability": 0.9235 + }, + { + "start": 11136.88, + "end": 11138.1, + "probability": 0.616 + }, + { + "start": 11139.1, + "end": 11142.34, + "probability": 0.994 + }, + { + "start": 11143.3, + "end": 11145.23, + "probability": 0.9319 + }, + { + "start": 11146.12, + "end": 11151.04, + "probability": 0.9168 + }, + { + "start": 11152.1, + "end": 11156.38, + "probability": 0.9541 + }, + { + "start": 11157.12, + "end": 11158.2, + "probability": 0.9586 + }, + { + "start": 11158.24, + "end": 11160.2, + "probability": 0.9752 + }, + { + "start": 11160.58, + "end": 11161.88, + "probability": 0.9761 + }, + { + "start": 11162.1, + "end": 11169.08, + "probability": 0.8975 + }, + { + "start": 11170.34, + "end": 11174.07, + "probability": 0.8759 + }, + { + "start": 11175.72, + "end": 11180.76, + "probability": 0.9735 + }, + { + "start": 11180.82, + "end": 11184.76, + "probability": 0.7702 + }, + { + "start": 11185.72, + "end": 11186.48, + "probability": 0.5066 + }, + { + "start": 11188.04, + "end": 11190.28, + "probability": 0.9862 + }, + { + "start": 11191.42, + "end": 11193.02, + "probability": 0.8267 + }, + { + "start": 11193.18, + "end": 11197.05, + "probability": 0.8625 + }, + { + "start": 11197.42, + "end": 11199.46, + "probability": 0.9913 + }, + { + "start": 11199.5, + "end": 11202.64, + "probability": 0.8625 + }, + { + "start": 11202.86, + "end": 11204.16, + "probability": 0.7202 + }, + { + "start": 11204.82, + "end": 11205.54, + "probability": 0.6891 + }, + { + "start": 11205.88, + "end": 11207.46, + "probability": 0.9653 + }, + { + "start": 11208.38, + "end": 11210.88, + "probability": 0.9375 + }, + { + "start": 11211.9, + "end": 11213.74, + "probability": 0.9896 + }, + { + "start": 11214.02, + "end": 11217.3, + "probability": 0.9929 + }, + { + "start": 11217.3, + "end": 11221.14, + "probability": 0.9913 + }, + { + "start": 11221.48, + "end": 11222.56, + "probability": 0.8525 + }, + { + "start": 11223.32, + "end": 11225.76, + "probability": 0.7349 + }, + { + "start": 11226.46, + "end": 11228.95, + "probability": 0.9973 + }, + { + "start": 11229.16, + "end": 11229.94, + "probability": 0.7862 + }, + { + "start": 11231.86, + "end": 11234.88, + "probability": 0.9644 + }, + { + "start": 11235.86, + "end": 11237.82, + "probability": 0.8926 + }, + { + "start": 11238.76, + "end": 11244.74, + "probability": 0.9816 + }, + { + "start": 11246.4, + "end": 11248.54, + "probability": 0.9414 + }, + { + "start": 11248.54, + "end": 11251.0, + "probability": 0.9805 + }, + { + "start": 11251.2, + "end": 11254.56, + "probability": 0.9989 + }, + { + "start": 11254.77, + "end": 11261.7, + "probability": 0.8496 + }, + { + "start": 11262.14, + "end": 11264.02, + "probability": 0.986 + }, + { + "start": 11264.52, + "end": 11265.22, + "probability": 0.96 + }, + { + "start": 11265.34, + "end": 11266.9, + "probability": 0.7178 + }, + { + "start": 11268.18, + "end": 11271.12, + "probability": 0.851 + }, + { + "start": 11272.04, + "end": 11273.22, + "probability": 0.5454 + }, + { + "start": 11274.64, + "end": 11279.52, + "probability": 0.894 + }, + { + "start": 11280.54, + "end": 11284.34, + "probability": 0.7485 + }, + { + "start": 11284.34, + "end": 11289.54, + "probability": 0.9679 + }, + { + "start": 11289.66, + "end": 11291.19, + "probability": 0.68 + }, + { + "start": 11291.56, + "end": 11292.62, + "probability": 0.6496 + }, + { + "start": 11293.02, + "end": 11293.94, + "probability": 0.8632 + }, + { + "start": 11294.3, + "end": 11295.68, + "probability": 0.9357 + }, + { + "start": 11295.86, + "end": 11297.02, + "probability": 0.9131 + }, + { + "start": 11297.34, + "end": 11299.08, + "probability": 0.692 + }, + { + "start": 11299.5, + "end": 11303.72, + "probability": 0.993 + }, + { + "start": 11304.6, + "end": 11308.42, + "probability": 0.9507 + }, + { + "start": 11308.96, + "end": 11309.98, + "probability": 0.6945 + }, + { + "start": 11311.14, + "end": 11313.96, + "probability": 0.9881 + }, + { + "start": 11314.5, + "end": 11317.72, + "probability": 0.9964 + }, + { + "start": 11317.72, + "end": 11322.22, + "probability": 0.9934 + }, + { + "start": 11322.76, + "end": 11325.5, + "probability": 0.981 + }, + { + "start": 11326.26, + "end": 11330.16, + "probability": 0.9651 + }, + { + "start": 11330.16, + "end": 11331.12, + "probability": 0.9069 + }, + { + "start": 11333.41, + "end": 11333.48, + "probability": 0.1188 + }, + { + "start": 11333.48, + "end": 11334.0, + "probability": 0.3869 + }, + { + "start": 11334.1, + "end": 11335.18, + "probability": 0.7375 + }, + { + "start": 11335.24, + "end": 11336.12, + "probability": 0.8093 + }, + { + "start": 11336.42, + "end": 11340.54, + "probability": 0.997 + }, + { + "start": 11340.54, + "end": 11344.1, + "probability": 0.9928 + }, + { + "start": 11344.3, + "end": 11349.28, + "probability": 0.9985 + }, + { + "start": 11350.16, + "end": 11354.3, + "probability": 0.9919 + }, + { + "start": 11355.04, + "end": 11358.12, + "probability": 0.9746 + }, + { + "start": 11358.9, + "end": 11363.38, + "probability": 0.7881 + }, + { + "start": 11364.24, + "end": 11365.18, + "probability": 0.8512 + }, + { + "start": 11365.18, + "end": 11368.67, + "probability": 0.9509 + }, + { + "start": 11369.5, + "end": 11370.54, + "probability": 0.9639 + }, + { + "start": 11370.74, + "end": 11371.78, + "probability": 0.7551 + }, + { + "start": 11372.2, + "end": 11375.04, + "probability": 0.9844 + }, + { + "start": 11375.04, + "end": 11378.46, + "probability": 0.9762 + }, + { + "start": 11378.62, + "end": 11380.38, + "probability": 0.9765 + }, + { + "start": 11380.7, + "end": 11384.84, + "probability": 0.8865 + }, + { + "start": 11384.84, + "end": 11387.45, + "probability": 0.8899 + }, + { + "start": 11388.5, + "end": 11388.86, + "probability": 0.2991 + }, + { + "start": 11389.14, + "end": 11390.38, + "probability": 0.6475 + }, + { + "start": 11390.44, + "end": 11391.98, + "probability": 0.8043 + }, + { + "start": 11392.24, + "end": 11398.68, + "probability": 0.9628 + }, + { + "start": 11399.32, + "end": 11399.52, + "probability": 0.5122 + }, + { + "start": 11400.06, + "end": 11402.92, + "probability": 0.9248 + }, + { + "start": 11403.08, + "end": 11407.52, + "probability": 0.9891 + }, + { + "start": 11407.62, + "end": 11408.2, + "probability": 0.7603 + }, + { + "start": 11408.42, + "end": 11410.1, + "probability": 0.9949 + }, + { + "start": 11410.66, + "end": 11412.82, + "probability": 0.9731 + }, + { + "start": 11412.98, + "end": 11413.62, + "probability": 0.6551 + }, + { + "start": 11413.64, + "end": 11415.38, + "probability": 0.9852 + }, + { + "start": 11416.18, + "end": 11418.8, + "probability": 0.6316 + }, + { + "start": 11421.08, + "end": 11424.5, + "probability": 0.0237 + }, + { + "start": 11429.54, + "end": 11431.22, + "probability": 0.0071 + }, + { + "start": 11432.52, + "end": 11439.42, + "probability": 0.5176 + }, + { + "start": 11440.24, + "end": 11442.18, + "probability": 0.1122 + }, + { + "start": 11442.64, + "end": 11444.4, + "probability": 0.0287 + }, + { + "start": 11444.8, + "end": 11445.98, + "probability": 0.3678 + }, + { + "start": 11446.36, + "end": 11447.34, + "probability": 0.5885 + }, + { + "start": 11447.46, + "end": 11448.64, + "probability": 0.2599 + }, + { + "start": 11450.16, + "end": 11453.45, + "probability": 0.9626 + }, + { + "start": 11454.4, + "end": 11460.8, + "probability": 0.5529 + }, + { + "start": 11460.8, + "end": 11466.12, + "probability": 0.9451 + }, + { + "start": 11466.22, + "end": 11467.98, + "probability": 0.0765 + }, + { + "start": 11468.88, + "end": 11469.58, + "probability": 0.498 + }, + { + "start": 11469.8, + "end": 11471.25, + "probability": 0.3848 + }, + { + "start": 11471.5, + "end": 11475.62, + "probability": 0.4567 + }, + { + "start": 11475.92, + "end": 11478.06, + "probability": 0.8204 + }, + { + "start": 11480.0, + "end": 11482.0, + "probability": 0.2016 + }, + { + "start": 11482.22, + "end": 11485.76, + "probability": 0.9678 + }, + { + "start": 11486.02, + "end": 11486.28, + "probability": 0.2588 + }, + { + "start": 11486.38, + "end": 11486.76, + "probability": 0.2727 + }, + { + "start": 11486.84, + "end": 11487.7, + "probability": 0.6203 + }, + { + "start": 11487.7, + "end": 11488.04, + "probability": 0.0446 + }, + { + "start": 11488.04, + "end": 11489.32, + "probability": 0.6779 + }, + { + "start": 11489.99, + "end": 11493.74, + "probability": 0.8145 + }, + { + "start": 11494.12, + "end": 11495.22, + "probability": 0.8648 + }, + { + "start": 11495.32, + "end": 11497.16, + "probability": 0.8293 + }, + { + "start": 11497.6, + "end": 11499.96, + "probability": 0.9077 + }, + { + "start": 11500.42, + "end": 11502.1, + "probability": 0.3833 + }, + { + "start": 11502.4, + "end": 11506.1, + "probability": 0.9586 + }, + { + "start": 11507.76, + "end": 11507.96, + "probability": 0.7956 + }, + { + "start": 11508.96, + "end": 11509.26, + "probability": 0.5229 + }, + { + "start": 11509.38, + "end": 11510.14, + "probability": 0.8438 + }, + { + "start": 11510.38, + "end": 11513.54, + "probability": 0.862 + }, + { + "start": 11514.08, + "end": 11516.1, + "probability": 0.9292 + }, + { + "start": 11516.2, + "end": 11516.94, + "probability": 0.9376 + }, + { + "start": 11516.98, + "end": 11517.46, + "probability": 0.5415 + }, + { + "start": 11517.6, + "end": 11519.1, + "probability": 0.9869 + }, + { + "start": 11519.24, + "end": 11520.04, + "probability": 0.7465 + }, + { + "start": 11520.46, + "end": 11522.12, + "probability": 0.6068 + }, + { + "start": 11522.72, + "end": 11523.82, + "probability": 0.9404 + }, + { + "start": 11524.8, + "end": 11525.06, + "probability": 0.8169 + }, + { + "start": 11525.14, + "end": 11525.88, + "probability": 0.8659 + }, + { + "start": 11525.94, + "end": 11529.46, + "probability": 0.8738 + }, + { + "start": 11529.94, + "end": 11531.96, + "probability": 0.815 + }, + { + "start": 11532.84, + "end": 11537.96, + "probability": 0.9725 + }, + { + "start": 11538.42, + "end": 11541.22, + "probability": 0.995 + }, + { + "start": 11542.0, + "end": 11545.0, + "probability": 0.9872 + }, + { + "start": 11546.22, + "end": 11548.52, + "probability": 0.7474 + }, + { + "start": 11548.82, + "end": 11556.6, + "probability": 0.9938 + }, + { + "start": 11557.04, + "end": 11563.52, + "probability": 0.9154 + }, + { + "start": 11563.54, + "end": 11563.92, + "probability": 0.1009 + }, + { + "start": 11565.78, + "end": 11566.6, + "probability": 0.0067 + }, + { + "start": 11566.6, + "end": 11566.6, + "probability": 0.0682 + }, + { + "start": 11566.6, + "end": 11566.6, + "probability": 0.0915 + }, + { + "start": 11566.6, + "end": 11566.6, + "probability": 0.1967 + }, + { + "start": 11566.6, + "end": 11566.6, + "probability": 0.1233 + }, + { + "start": 11566.6, + "end": 11568.0, + "probability": 0.6575 + }, + { + "start": 11568.12, + "end": 11573.0, + "probability": 0.9121 + }, + { + "start": 11573.62, + "end": 11573.78, + "probability": 0.5128 + }, + { + "start": 11573.94, + "end": 11576.65, + "probability": 0.9021 + }, + { + "start": 11576.96, + "end": 11579.72, + "probability": 0.9697 + }, + { + "start": 11580.46, + "end": 11584.6, + "probability": 0.9034 + }, + { + "start": 11584.66, + "end": 11585.42, + "probability": 0.9837 + }, + { + "start": 11586.02, + "end": 11588.86, + "probability": 0.3602 + }, + { + "start": 11590.28, + "end": 11595.06, + "probability": 0.986 + }, + { + "start": 11595.06, + "end": 11599.56, + "probability": 0.8379 + }, + { + "start": 11599.72, + "end": 11600.4, + "probability": 0.5905 + }, + { + "start": 11600.86, + "end": 11603.86, + "probability": 0.9902 + }, + { + "start": 11604.52, + "end": 11607.16, + "probability": 0.5234 + }, + { + "start": 11607.3, + "end": 11608.1, + "probability": 0.8988 + }, + { + "start": 11608.28, + "end": 11609.86, + "probability": 0.876 + }, + { + "start": 11610.16, + "end": 11614.08, + "probability": 0.9971 + }, + { + "start": 11614.08, + "end": 11618.52, + "probability": 0.9291 + }, + { + "start": 11618.98, + "end": 11626.32, + "probability": 0.9945 + }, + { + "start": 11626.72, + "end": 11630.9, + "probability": 0.9948 + }, + { + "start": 11631.36, + "end": 11634.6, + "probability": 0.8679 + }, + { + "start": 11634.72, + "end": 11635.7, + "probability": 0.9399 + }, + { + "start": 11635.9, + "end": 11636.6, + "probability": 0.8514 + }, + { + "start": 11636.72, + "end": 11637.74, + "probability": 0.6242 + }, + { + "start": 11638.06, + "end": 11641.38, + "probability": 0.6593 + }, + { + "start": 11641.62, + "end": 11643.86, + "probability": 0.9399 + }, + { + "start": 11644.08, + "end": 11644.9, + "probability": 0.8326 + }, + { + "start": 11645.2, + "end": 11646.78, + "probability": 0.9966 + }, + { + "start": 11647.54, + "end": 11648.31, + "probability": 0.8908 + }, + { + "start": 11648.9, + "end": 11649.6, + "probability": 0.9565 + }, + { + "start": 11650.36, + "end": 11651.04, + "probability": 0.9641 + }, + { + "start": 11651.9, + "end": 11657.3, + "probability": 0.9768 + }, + { + "start": 11657.74, + "end": 11659.74, + "probability": 0.9735 + }, + { + "start": 11660.0, + "end": 11660.34, + "probability": 0.1134 + }, + { + "start": 11660.56, + "end": 11663.74, + "probability": 0.124 + }, + { + "start": 11664.18, + "end": 11665.9, + "probability": 0.2093 + }, + { + "start": 11666.02, + "end": 11667.98, + "probability": 0.0469 + }, + { + "start": 11667.98, + "end": 11669.76, + "probability": 0.5157 + }, + { + "start": 11669.88, + "end": 11670.96, + "probability": 0.9497 + }, + { + "start": 11671.44, + "end": 11675.26, + "probability": 0.7001 + }, + { + "start": 11675.26, + "end": 11681.2, + "probability": 0.6699 + }, + { + "start": 11681.78, + "end": 11685.56, + "probability": 0.739 + }, + { + "start": 11685.88, + "end": 11686.66, + "probability": 0.6025 + }, + { + "start": 11687.14, + "end": 11688.96, + "probability": 0.0479 + }, + { + "start": 11689.18, + "end": 11693.62, + "probability": 0.0351 + }, + { + "start": 11693.62, + "end": 11696.7, + "probability": 0.2036 + }, + { + "start": 11696.86, + "end": 11699.9, + "probability": 0.3807 + }, + { + "start": 11700.56, + "end": 11701.62, + "probability": 0.4641 + }, + { + "start": 11701.92, + "end": 11703.26, + "probability": 0.9299 + }, + { + "start": 11703.38, + "end": 11705.61, + "probability": 0.8826 + }, + { + "start": 11705.98, + "end": 11708.66, + "probability": 0.9204 + }, + { + "start": 11708.74, + "end": 11710.1, + "probability": 0.5779 + }, + { + "start": 11710.1, + "end": 11711.54, + "probability": 0.6492 + }, + { + "start": 11711.58, + "end": 11712.35, + "probability": 0.4614 + }, + { + "start": 11712.64, + "end": 11713.08, + "probability": 0.5235 + }, + { + "start": 11713.48, + "end": 11716.96, + "probability": 0.991 + }, + { + "start": 11717.1, + "end": 11719.94, + "probability": 0.9767 + }, + { + "start": 11720.2, + "end": 11721.32, + "probability": 0.7595 + }, + { + "start": 11721.82, + "end": 11722.76, + "probability": 0.9604 + }, + { + "start": 11722.98, + "end": 11725.84, + "probability": 0.9921 + }, + { + "start": 11725.84, + "end": 11729.94, + "probability": 0.9985 + }, + { + "start": 11730.34, + "end": 11731.86, + "probability": 0.9549 + }, + { + "start": 11732.0, + "end": 11734.68, + "probability": 0.9627 + }, + { + "start": 11734.82, + "end": 11735.52, + "probability": 0.2215 + }, + { + "start": 11735.62, + "end": 11736.48, + "probability": 0.7626 + }, + { + "start": 11737.08, + "end": 11737.88, + "probability": 0.7609 + }, + { + "start": 11738.04, + "end": 11739.4, + "probability": 0.9195 + }, + { + "start": 11739.7, + "end": 11740.72, + "probability": 0.9069 + }, + { + "start": 11740.98, + "end": 11742.08, + "probability": 0.8343 + }, + { + "start": 11742.22, + "end": 11744.36, + "probability": 0.6623 + }, + { + "start": 11744.56, + "end": 11749.04, + "probability": 0.821 + }, + { + "start": 11749.16, + "end": 11749.98, + "probability": 0.6145 + }, + { + "start": 11750.22, + "end": 11751.22, + "probability": 0.9081 + }, + { + "start": 11751.28, + "end": 11751.96, + "probability": 0.3225 + }, + { + "start": 11752.08, + "end": 11754.16, + "probability": 0.9932 + }, + { + "start": 11754.32, + "end": 11755.4, + "probability": 0.8534 + }, + { + "start": 11755.6, + "end": 11756.32, + "probability": 0.8996 + }, + { + "start": 11756.4, + "end": 11757.12, + "probability": 0.7051 + }, + { + "start": 11757.46, + "end": 11760.08, + "probability": 0.9688 + }, + { + "start": 11760.48, + "end": 11765.78, + "probability": 0.9672 + }, + { + "start": 11766.0, + "end": 11766.74, + "probability": 0.6331 + }, + { + "start": 11767.12, + "end": 11768.06, + "probability": 0.6492 + }, + { + "start": 11768.08, + "end": 11768.76, + "probability": 0.7242 + }, + { + "start": 11768.82, + "end": 11769.66, + "probability": 0.9801 + }, + { + "start": 11769.78, + "end": 11770.18, + "probability": 0.5555 + }, + { + "start": 11770.2, + "end": 11771.1, + "probability": 0.8094 + }, + { + "start": 11771.62, + "end": 11772.62, + "probability": 0.8602 + }, + { + "start": 11772.8, + "end": 11775.46, + "probability": 0.9742 + }, + { + "start": 11775.6, + "end": 11778.27, + "probability": 0.6675 + }, + { + "start": 11778.62, + "end": 11780.5, + "probability": 0.7317 + }, + { + "start": 11780.54, + "end": 11784.32, + "probability": 0.8358 + }, + { + "start": 11784.48, + "end": 11787.16, + "probability": 0.5435 + }, + { + "start": 11787.28, + "end": 11789.46, + "probability": 0.78 + }, + { + "start": 11790.4, + "end": 11793.06, + "probability": 0.5046 + }, + { + "start": 11793.06, + "end": 11793.06, + "probability": 0.6412 + }, + { + "start": 11793.14, + "end": 11793.96, + "probability": 0.5808 + }, + { + "start": 11794.06, + "end": 11794.88, + "probability": 0.8695 + }, + { + "start": 11795.32, + "end": 11798.14, + "probability": 0.7396 + }, + { + "start": 11798.14, + "end": 11801.38, + "probability": 0.281 + }, + { + "start": 11801.72, + "end": 11802.06, + "probability": 0.1484 + }, + { + "start": 11802.24, + "end": 11802.92, + "probability": 0.119 + }, + { + "start": 11802.94, + "end": 11802.94, + "probability": 0.4202 + }, + { + "start": 11802.94, + "end": 11802.94, + "probability": 0.1084 + }, + { + "start": 11802.94, + "end": 11805.32, + "probability": 0.1464 + }, + { + "start": 11809.5, + "end": 11812.1, + "probability": 0.0828 + }, + { + "start": 11812.46, + "end": 11817.04, + "probability": 0.5535 + }, + { + "start": 11817.48, + "end": 11818.61, + "probability": 0.8992 + }, + { + "start": 11819.24, + "end": 11822.98, + "probability": 0.8496 + }, + { + "start": 11822.98, + "end": 11823.08, + "probability": 0.2084 + }, + { + "start": 11823.66, + "end": 11824.24, + "probability": 0.4243 + }, + { + "start": 11824.24, + "end": 11828.5, + "probability": 0.9643 + }, + { + "start": 11829.22, + "end": 11831.18, + "probability": 0.9544 + }, + { + "start": 11831.4, + "end": 11832.96, + "probability": 0.9906 + }, + { + "start": 11833.36, + "end": 11835.12, + "probability": 0.8324 + }, + { + "start": 11835.24, + "end": 11836.2, + "probability": 0.998 + }, + { + "start": 11839.08, + "end": 11840.36, + "probability": 0.0029 + }, + { + "start": 11840.36, + "end": 11840.36, + "probability": 0.0253 + }, + { + "start": 11840.36, + "end": 11841.78, + "probability": 0.4658 + }, + { + "start": 11841.9, + "end": 11843.76, + "probability": 0.9757 + }, + { + "start": 11843.96, + "end": 11847.08, + "probability": 0.6581 + }, + { + "start": 11849.76, + "end": 11850.5, + "probability": 0.0281 + }, + { + "start": 11850.7, + "end": 11852.26, + "probability": 0.8772 + }, + { + "start": 11852.74, + "end": 11855.25, + "probability": 0.9756 + }, + { + "start": 11855.6, + "end": 11855.78, + "probability": 0.4538 + }, + { + "start": 11855.78, + "end": 11857.94, + "probability": 0.0946 + }, + { + "start": 11858.84, + "end": 11860.3, + "probability": 0.1494 + }, + { + "start": 11860.66, + "end": 11861.12, + "probability": 0.6317 + }, + { + "start": 11862.04, + "end": 11862.04, + "probability": 0.0884 + }, + { + "start": 11862.04, + "end": 11862.74, + "probability": 0.5724 + }, + { + "start": 11863.44, + "end": 11864.72, + "probability": 0.6301 + }, + { + "start": 11864.9, + "end": 11865.5, + "probability": 0.0853 + }, + { + "start": 11865.72, + "end": 11867.98, + "probability": 0.929 + }, + { + "start": 11868.26, + "end": 11871.17, + "probability": 0.3086 + }, + { + "start": 11880.08, + "end": 11885.28, + "probability": 0.1825 + }, + { + "start": 11885.38, + "end": 11888.98, + "probability": 0.1533 + }, + { + "start": 11888.98, + "end": 11888.98, + "probability": 0.1426 + }, + { + "start": 11888.98, + "end": 11890.0, + "probability": 0.1926 + }, + { + "start": 11890.16, + "end": 11893.9, + "probability": 0.1171 + }, + { + "start": 11893.9, + "end": 11894.26, + "probability": 0.2586 + }, + { + "start": 11894.52, + "end": 11895.06, + "probability": 0.1975 + }, + { + "start": 11895.9, + "end": 11896.04, + "probability": 0.1376 + }, + { + "start": 11896.04, + "end": 11897.7, + "probability": 0.6537 + }, + { + "start": 11898.18, + "end": 11899.09, + "probability": 0.7906 + }, + { + "start": 11899.76, + "end": 11901.51, + "probability": 0.8752 + }, + { + "start": 11902.68, + "end": 11906.5, + "probability": 0.8944 + }, + { + "start": 11907.66, + "end": 11907.66, + "probability": 0.005 + }, + { + "start": 11908.22, + "end": 11909.33, + "probability": 0.0276 + }, + { + "start": 11910.46, + "end": 11912.76, + "probability": 0.4772 + }, + { + "start": 11912.76, + "end": 11913.16, + "probability": 0.902 + }, + { + "start": 11914.27, + "end": 11916.78, + "probability": 0.8635 + }, + { + "start": 11916.9, + "end": 11921.66, + "probability": 0.985 + }, + { + "start": 11921.98, + "end": 11922.18, + "probability": 0.8103 + }, + { + "start": 11922.32, + "end": 11922.72, + "probability": 0.1578 + }, + { + "start": 11922.8, + "end": 11923.32, + "probability": 0.1245 + }, + { + "start": 11923.34, + "end": 11924.22, + "probability": 0.6555 + }, + { + "start": 11924.93, + "end": 11929.18, + "probability": 0.8261 + }, + { + "start": 11929.7, + "end": 11931.5, + "probability": 0.8242 + }, + { + "start": 11931.54, + "end": 11932.78, + "probability": 0.691 + }, + { + "start": 11932.94, + "end": 11933.74, + "probability": 0.745 + }, + { + "start": 11933.92, + "end": 11934.6, + "probability": 0.7836 + }, + { + "start": 11934.78, + "end": 11935.58, + "probability": 0.2197 + }, + { + "start": 11937.24, + "end": 11938.78, + "probability": 0.0864 + }, + { + "start": 11938.78, + "end": 11940.58, + "probability": 0.1556 + }, + { + "start": 11941.1, + "end": 11942.3, + "probability": 0.5107 + }, + { + "start": 11942.46, + "end": 11944.08, + "probability": 0.6341 + }, + { + "start": 11944.8, + "end": 11945.62, + "probability": 0.2858 + }, + { + "start": 11945.8, + "end": 11947.2, + "probability": 0.394 + }, + { + "start": 11947.6, + "end": 11948.52, + "probability": 0.0942 + }, + { + "start": 11948.52, + "end": 11949.88, + "probability": 0.2255 + }, + { + "start": 11949.88, + "end": 11950.22, + "probability": 0.3744 + }, + { + "start": 11950.22, + "end": 11950.8, + "probability": 0.0327 + }, + { + "start": 11950.9, + "end": 11951.26, + "probability": 0.53 + }, + { + "start": 11951.66, + "end": 11954.06, + "probability": 0.3278 + }, + { + "start": 11954.06, + "end": 11954.06, + "probability": 0.4802 + }, + { + "start": 11954.2, + "end": 11957.86, + "probability": 0.5914 + }, + { + "start": 11957.92, + "end": 11957.96, + "probability": 0.0622 + }, + { + "start": 11957.96, + "end": 11959.3, + "probability": 0.9256 + }, + { + "start": 11960.19, + "end": 11961.52, + "probability": 0.6275 + }, + { + "start": 11961.54, + "end": 11963.38, + "probability": 0.7993 + }, + { + "start": 11963.54, + "end": 11964.58, + "probability": 0.9927 + }, + { + "start": 11965.18, + "end": 11966.44, + "probability": 0.7536 + }, + { + "start": 11966.74, + "end": 11967.4, + "probability": 0.845 + }, + { + "start": 11967.5, + "end": 11967.96, + "probability": 0.674 + }, + { + "start": 11967.96, + "end": 11968.66, + "probability": 0.2294 + }, + { + "start": 11969.26, + "end": 11970.24, + "probability": 0.1398 + }, + { + "start": 11970.56, + "end": 11971.46, + "probability": 0.9174 + }, + { + "start": 11971.52, + "end": 11972.2, + "probability": 0.3703 + }, + { + "start": 11972.32, + "end": 11972.34, + "probability": 0.0688 + }, + { + "start": 11972.34, + "end": 11973.78, + "probability": 0.523 + }, + { + "start": 11973.9, + "end": 11975.12, + "probability": 0.6267 + }, + { + "start": 11975.28, + "end": 11975.54, + "probability": 0.6214 + }, + { + "start": 11975.6, + "end": 11977.26, + "probability": 0.8259 + }, + { + "start": 11977.32, + "end": 11978.06, + "probability": 0.9587 + }, + { + "start": 11978.12, + "end": 11978.84, + "probability": 0.8696 + }, + { + "start": 11979.06, + "end": 11979.46, + "probability": 0.6424 + }, + { + "start": 11979.66, + "end": 11982.14, + "probability": 0.9655 + }, + { + "start": 11982.88, + "end": 11986.56, + "probability": 0.8584 + }, + { + "start": 11986.84, + "end": 11989.12, + "probability": 0.8728 + }, + { + "start": 11989.84, + "end": 11991.24, + "probability": 0.9648 + }, + { + "start": 11991.52, + "end": 11992.72, + "probability": 0.9138 + }, + { + "start": 11992.82, + "end": 11993.66, + "probability": 0.9615 + }, + { + "start": 11994.16, + "end": 11995.98, + "probability": 0.9944 + }, + { + "start": 11995.98, + "end": 12001.64, + "probability": 0.9936 + }, + { + "start": 12002.54, + "end": 12004.88, + "probability": 0.6599 + }, + { + "start": 12005.9, + "end": 12008.84, + "probability": 0.0412 + }, + { + "start": 12009.2, + "end": 12009.74, + "probability": 0.3579 + }, + { + "start": 12009.78, + "end": 12010.22, + "probability": 0.2011 + }, + { + "start": 12010.62, + "end": 12011.54, + "probability": 0.29 + }, + { + "start": 12012.47, + "end": 12015.02, + "probability": 0.0109 + }, + { + "start": 12015.52, + "end": 12016.15, + "probability": 0.2289 + }, + { + "start": 12017.7, + "end": 12020.94, + "probability": 0.7364 + }, + { + "start": 12021.78, + "end": 12022.78, + "probability": 0.2518 + }, + { + "start": 12023.3, + "end": 12024.88, + "probability": 0.0612 + }, + { + "start": 12025.82, + "end": 12027.33, + "probability": 0.062 + }, + { + "start": 12029.78, + "end": 12030.48, + "probability": 0.0151 + }, + { + "start": 12032.25, + "end": 12035.04, + "probability": 0.5933 + }, + { + "start": 12035.56, + "end": 12037.64, + "probability": 0.914 + }, + { + "start": 12037.72, + "end": 12038.8, + "probability": 0.9623 + }, + { + "start": 12039.04, + "end": 12040.58, + "probability": 0.9689 + }, + { + "start": 12040.86, + "end": 12041.2, + "probability": 0.8262 + }, + { + "start": 12042.18, + "end": 12043.12, + "probability": 0.9377 + }, + { + "start": 12043.42, + "end": 12044.86, + "probability": 0.8899 + }, + { + "start": 12045.06, + "end": 12046.58, + "probability": 0.7983 + }, + { + "start": 12046.66, + "end": 12049.36, + "probability": 0.2242 + }, + { + "start": 12060.14, + "end": 12060.62, + "probability": 0.7972 + }, + { + "start": 12060.7, + "end": 12061.22, + "probability": 0.8519 + }, + { + "start": 12061.34, + "end": 12063.3, + "probability": 0.9844 + }, + { + "start": 12063.78, + "end": 12066.68, + "probability": 0.9228 + }, + { + "start": 12066.84, + "end": 12068.22, + "probability": 0.823 + }, + { + "start": 12068.4, + "end": 12069.94, + "probability": 0.8835 + }, + { + "start": 12070.2, + "end": 12071.46, + "probability": 0.7109 + }, + { + "start": 12071.66, + "end": 12073.46, + "probability": 0.7295 + }, + { + "start": 12073.86, + "end": 12075.4, + "probability": 0.6516 + }, + { + "start": 12075.78, + "end": 12079.14, + "probability": 0.9956 + }, + { + "start": 12079.14, + "end": 12082.72, + "probability": 0.9985 + }, + { + "start": 12082.86, + "end": 12084.64, + "probability": 0.9072 + }, + { + "start": 12085.2, + "end": 12089.36, + "probability": 0.9854 + }, + { + "start": 12089.36, + "end": 12091.66, + "probability": 0.9701 + }, + { + "start": 12092.1, + "end": 12093.52, + "probability": 0.9967 + }, + { + "start": 12093.66, + "end": 12096.7, + "probability": 0.9401 + }, + { + "start": 12096.98, + "end": 12098.74, + "probability": 0.905 + }, + { + "start": 12098.86, + "end": 12100.72, + "probability": 0.9052 + }, + { + "start": 12101.02, + "end": 12104.28, + "probability": 0.9823 + }, + { + "start": 12104.42, + "end": 12106.12, + "probability": 0.9487 + }, + { + "start": 12106.32, + "end": 12109.7, + "probability": 0.9905 + }, + { + "start": 12109.98, + "end": 12111.55, + "probability": 0.9329 + }, + { + "start": 12113.12, + "end": 12114.4, + "probability": 0.649 + }, + { + "start": 12114.92, + "end": 12116.79, + "probability": 0.5532 + }, + { + "start": 12117.02, + "end": 12119.3, + "probability": 0.9858 + }, + { + "start": 12119.46, + "end": 12121.16, + "probability": 0.7209 + }, + { + "start": 12121.62, + "end": 12125.54, + "probability": 0.9671 + }, + { + "start": 12125.64, + "end": 12127.52, + "probability": 0.9966 + }, + { + "start": 12127.72, + "end": 12129.78, + "probability": 0.9401 + }, + { + "start": 12129.92, + "end": 12131.36, + "probability": 0.6312 + }, + { + "start": 12131.4, + "end": 12131.88, + "probability": 0.9131 + }, + { + "start": 12131.94, + "end": 12132.6, + "probability": 0.6862 + }, + { + "start": 12132.64, + "end": 12133.5, + "probability": 0.5598 + }, + { + "start": 12133.68, + "end": 12135.34, + "probability": 0.8657 + }, + { + "start": 12135.42, + "end": 12136.88, + "probability": 0.9172 + }, + { + "start": 12136.98, + "end": 12138.14, + "probability": 0.7102 + }, + { + "start": 12138.38, + "end": 12142.74, + "probability": 0.9245 + }, + { + "start": 12142.92, + "end": 12148.64, + "probability": 0.9234 + }, + { + "start": 12148.7, + "end": 12149.42, + "probability": 0.7608 + }, + { + "start": 12150.02, + "end": 12154.58, + "probability": 0.6257 + }, + { + "start": 12155.3, + "end": 12155.64, + "probability": 0.7903 + }, + { + "start": 12155.68, + "end": 12158.22, + "probability": 0.8776 + }, + { + "start": 12158.58, + "end": 12160.18, + "probability": 0.672 + }, + { + "start": 12161.02, + "end": 12162.35, + "probability": 0.9365 + }, + { + "start": 12163.86, + "end": 12168.6, + "probability": 0.6752 + }, + { + "start": 12168.68, + "end": 12169.74, + "probability": 0.8626 + }, + { + "start": 12170.5, + "end": 12178.82, + "probability": 0.9631 + }, + { + "start": 12205.89, + "end": 12208.81, + "probability": 0.6294 + }, + { + "start": 12210.72, + "end": 12214.0, + "probability": 0.6303 + }, + { + "start": 12214.4, + "end": 12215.44, + "probability": 0.7322 + }, + { + "start": 12215.44, + "end": 12217.78, + "probability": 0.8406 + }, + { + "start": 12217.82, + "end": 12218.26, + "probability": 0.5073 + }, + { + "start": 12218.36, + "end": 12219.1, + "probability": 0.6457 + }, + { + "start": 12219.3, + "end": 12221.66, + "probability": 0.9518 + }, + { + "start": 12222.65, + "end": 12224.7, + "probability": 0.5935 + }, + { + "start": 12226.02, + "end": 12228.84, + "probability": 0.7945 + }, + { + "start": 12232.46, + "end": 12234.46, + "probability": 0.8616 + }, + { + "start": 12234.74, + "end": 12237.54, + "probability": 0.8152 + }, + { + "start": 12238.2, + "end": 12243.0, + "probability": 0.7407 + }, + { + "start": 12243.82, + "end": 12246.42, + "probability": 0.9556 + }, + { + "start": 12246.44, + "end": 12249.24, + "probability": 0.8793 + }, + { + "start": 12249.42, + "end": 12257.08, + "probability": 0.8843 + }, + { + "start": 12257.28, + "end": 12257.88, + "probability": 0.5154 + }, + { + "start": 12260.69, + "end": 12262.94, + "probability": 0.4382 + }, + { + "start": 12263.54, + "end": 12266.66, + "probability": 0.5326 + }, + { + "start": 12267.0, + "end": 12267.28, + "probability": 0.066 + }, + { + "start": 12267.28, + "end": 12271.31, + "probability": 0.0502 + }, + { + "start": 12271.94, + "end": 12275.7, + "probability": 0.0772 + }, + { + "start": 12276.6, + "end": 12277.08, + "probability": 0.3344 + }, + { + "start": 12277.08, + "end": 12280.3, + "probability": 0.0346 + }, + { + "start": 12283.24, + "end": 12284.4, + "probability": 0.0544 + }, + { + "start": 12286.28, + "end": 12294.62, + "probability": 0.3614 + }, + { + "start": 12304.0, + "end": 12305.28, + "probability": 0.0015 + }, + { + "start": 12306.46, + "end": 12308.06, + "probability": 0.359 + }, + { + "start": 12308.94, + "end": 12313.06, + "probability": 0.0861 + }, + { + "start": 12323.22, + "end": 12324.38, + "probability": 0.5378 + }, + { + "start": 12324.54, + "end": 12324.92, + "probability": 0.198 + }, + { + "start": 12324.92, + "end": 12325.74, + "probability": 0.2382 + }, + { + "start": 12325.88, + "end": 12327.42, + "probability": 0.1333 + }, + { + "start": 12349.04, + "end": 12351.44, + "probability": 0.5385 + }, + { + "start": 12352.3, + "end": 12355.72, + "probability": 0.9718 + }, + { + "start": 12355.86, + "end": 12359.08, + "probability": 0.974 + }, + { + "start": 12359.98, + "end": 12362.32, + "probability": 0.9653 + }, + { + "start": 12362.48, + "end": 12364.0, + "probability": 0.798 + }, + { + "start": 12364.42, + "end": 12366.34, + "probability": 0.9015 + }, + { + "start": 12366.98, + "end": 12374.08, + "probability": 0.9863 + }, + { + "start": 12374.78, + "end": 12380.76, + "probability": 0.9517 + }, + { + "start": 12381.42, + "end": 12386.4, + "probability": 0.9988 + }, + { + "start": 12386.8, + "end": 12389.98, + "probability": 0.9023 + }, + { + "start": 12390.4, + "end": 12391.42, + "probability": 0.8108 + }, + { + "start": 12392.46, + "end": 12394.56, + "probability": 0.9897 + }, + { + "start": 12395.26, + "end": 12399.3, + "probability": 0.8201 + }, + { + "start": 12399.58, + "end": 12402.66, + "probability": 0.9961 + }, + { + "start": 12402.76, + "end": 12403.67, + "probability": 0.9556 + }, + { + "start": 12403.94, + "end": 12408.38, + "probability": 0.9941 + }, + { + "start": 12408.74, + "end": 12410.21, + "probability": 0.9846 + }, + { + "start": 12410.92, + "end": 12412.0, + "probability": 0.9746 + }, + { + "start": 12412.16, + "end": 12412.8, + "probability": 0.6605 + }, + { + "start": 12412.88, + "end": 12416.82, + "probability": 0.9241 + }, + { + "start": 12416.82, + "end": 12418.93, + "probability": 0.9914 + }, + { + "start": 12419.96, + "end": 12423.98, + "probability": 0.9972 + }, + { + "start": 12423.98, + "end": 12427.6, + "probability": 0.8311 + }, + { + "start": 12427.84, + "end": 12428.3, + "probability": 0.468 + }, + { + "start": 12428.48, + "end": 12429.84, + "probability": 0.8943 + }, + { + "start": 12429.96, + "end": 12434.6, + "probability": 0.9007 + }, + { + "start": 12435.12, + "end": 12437.96, + "probability": 0.9922 + }, + { + "start": 12438.42, + "end": 12443.52, + "probability": 0.8809 + }, + { + "start": 12443.86, + "end": 12444.74, + "probability": 0.8558 + }, + { + "start": 12444.88, + "end": 12445.94, + "probability": 0.9663 + }, + { + "start": 12446.3, + "end": 12451.64, + "probability": 0.9816 + }, + { + "start": 12452.72, + "end": 12453.52, + "probability": 0.6878 + }, + { + "start": 12453.58, + "end": 12454.88, + "probability": 0.7436 + }, + { + "start": 12454.96, + "end": 12456.58, + "probability": 0.6741 + }, + { + "start": 12456.8, + "end": 12457.06, + "probability": 0.193 + }, + { + "start": 12457.06, + "end": 12460.01, + "probability": 0.6311 + }, + { + "start": 12460.64, + "end": 12461.6, + "probability": 0.2112 + }, + { + "start": 12465.86, + "end": 12468.14, + "probability": 0.1763 + }, + { + "start": 12468.26, + "end": 12471.75, + "probability": 0.9966 + }, + { + "start": 12472.6, + "end": 12474.74, + "probability": 0.9199 + }, + { + "start": 12474.88, + "end": 12478.18, + "probability": 0.9577 + }, + { + "start": 12478.26, + "end": 12480.86, + "probability": 0.942 + }, + { + "start": 12481.6, + "end": 12485.08, + "probability": 0.9979 + }, + { + "start": 12485.12, + "end": 12489.4, + "probability": 0.8246 + }, + { + "start": 12489.9, + "end": 12491.19, + "probability": 0.7619 + }, + { + "start": 12491.8, + "end": 12496.9, + "probability": 0.9537 + }, + { + "start": 12497.5, + "end": 12500.16, + "probability": 0.8364 + }, + { + "start": 12500.9, + "end": 12503.05, + "probability": 0.9277 + }, + { + "start": 12503.8, + "end": 12506.16, + "probability": 0.9385 + }, + { + "start": 12506.62, + "end": 12509.42, + "probability": 0.9856 + }, + { + "start": 12509.54, + "end": 12513.38, + "probability": 0.9147 + }, + { + "start": 12513.54, + "end": 12515.66, + "probability": 0.981 + }, + { + "start": 12516.12, + "end": 12518.33, + "probability": 0.9929 + }, + { + "start": 12518.72, + "end": 12521.86, + "probability": 0.9801 + }, + { + "start": 12522.12, + "end": 12522.74, + "probability": 0.6038 + }, + { + "start": 12523.06, + "end": 12524.56, + "probability": 0.7402 + }, + { + "start": 12524.66, + "end": 12526.27, + "probability": 0.9155 + }, + { + "start": 12526.36, + "end": 12529.62, + "probability": 0.9617 + }, + { + "start": 12530.66, + "end": 12538.24, + "probability": 0.9878 + }, + { + "start": 12538.4, + "end": 12540.38, + "probability": 0.9906 + }, + { + "start": 12540.62, + "end": 12542.68, + "probability": 0.9057 + }, + { + "start": 12543.02, + "end": 12545.14, + "probability": 0.9197 + }, + { + "start": 12545.44, + "end": 12550.06, + "probability": 0.979 + }, + { + "start": 12550.36, + "end": 12552.1, + "probability": 0.6409 + }, + { + "start": 12552.14, + "end": 12554.98, + "probability": 0.8774 + }, + { + "start": 12555.28, + "end": 12563.8, + "probability": 0.7954 + }, + { + "start": 12564.18, + "end": 12565.76, + "probability": 0.8901 + }, + { + "start": 12566.28, + "end": 12567.72, + "probability": 0.9452 + }, + { + "start": 12568.12, + "end": 12571.28, + "probability": 0.7939 + }, + { + "start": 12572.64, + "end": 12575.68, + "probability": 0.9967 + }, + { + "start": 12575.94, + "end": 12578.28, + "probability": 0.9761 + }, + { + "start": 12578.72, + "end": 12582.28, + "probability": 0.9912 + }, + { + "start": 12582.74, + "end": 12585.82, + "probability": 0.9824 + }, + { + "start": 12586.72, + "end": 12590.78, + "probability": 0.9751 + }, + { + "start": 12591.3, + "end": 12594.02, + "probability": 0.8855 + }, + { + "start": 12594.16, + "end": 12597.44, + "probability": 0.9714 + }, + { + "start": 12597.44, + "end": 12599.92, + "probability": 0.9751 + }, + { + "start": 12600.42, + "end": 12600.82, + "probability": 0.5089 + }, + { + "start": 12601.22, + "end": 12606.24, + "probability": 0.9955 + }, + { + "start": 12606.48, + "end": 12607.3, + "probability": 0.8553 + }, + { + "start": 12607.38, + "end": 12608.14, + "probability": 0.6489 + }, + { + "start": 12608.26, + "end": 12608.88, + "probability": 0.7686 + }, + { + "start": 12609.22, + "end": 12610.4, + "probability": 0.6425 + }, + { + "start": 12610.48, + "end": 12612.34, + "probability": 0.6767 + }, + { + "start": 12612.38, + "end": 12613.12, + "probability": 0.853 + }, + { + "start": 12614.3, + "end": 12616.34, + "probability": 0.023 + }, + { + "start": 12616.34, + "end": 12618.0, + "probability": 0.5486 + }, + { + "start": 12618.04, + "end": 12619.5, + "probability": 0.6757 + }, + { + "start": 12619.54, + "end": 12622.46, + "probability": 0.7461 + }, + { + "start": 12622.8, + "end": 12625.14, + "probability": 0.8441 + }, + { + "start": 12625.18, + "end": 12627.86, + "probability": 0.9374 + }, + { + "start": 12630.58, + "end": 12631.58, + "probability": 0.9946 + }, + { + "start": 12632.54, + "end": 12634.3, + "probability": 0.8889 + }, + { + "start": 12635.86, + "end": 12636.72, + "probability": 0.8061 + }, + { + "start": 12636.8, + "end": 12639.52, + "probability": 0.4852 + }, + { + "start": 12639.56, + "end": 12643.64, + "probability": 0.9634 + }, + { + "start": 12644.28, + "end": 12647.34, + "probability": 0.9902 + }, + { + "start": 12650.06, + "end": 12651.04, + "probability": 0.6489 + }, + { + "start": 12652.52, + "end": 12654.98, + "probability": 0.0579 + }, + { + "start": 12654.98, + "end": 12655.4, + "probability": 0.1263 + }, + { + "start": 12661.2, + "end": 12662.0, + "probability": 0.0372 + }, + { + "start": 12663.7, + "end": 12670.9, + "probability": 0.7577 + }, + { + "start": 12671.44, + "end": 12675.06, + "probability": 0.081 + }, + { + "start": 12675.06, + "end": 12678.46, + "probability": 0.3159 + }, + { + "start": 12678.64, + "end": 12680.45, + "probability": 0.288 + }, + { + "start": 12681.68, + "end": 12683.82, + "probability": 0.0803 + }, + { + "start": 12684.18, + "end": 12684.74, + "probability": 0.0558 + }, + { + "start": 12685.2, + "end": 12686.58, + "probability": 0.0697 + }, + { + "start": 12686.98, + "end": 12687.68, + "probability": 0.0634 + }, + { + "start": 12688.08, + "end": 12688.5, + "probability": 0.2708 + }, + { + "start": 12688.92, + "end": 12692.66, + "probability": 0.6218 + }, + { + "start": 12692.84, + "end": 12702.35, + "probability": 0.7749 + }, + { + "start": 12705.62, + "end": 12707.28, + "probability": 0.6132 + }, + { + "start": 12707.48, + "end": 12711.2, + "probability": 0.912 + }, + { + "start": 12713.22, + "end": 12713.52, + "probability": 0.3625 + }, + { + "start": 12713.78, + "end": 12714.88, + "probability": 0.3721 + }, + { + "start": 12714.88, + "end": 12715.74, + "probability": 0.7751 + }, + { + "start": 12715.9, + "end": 12717.76, + "probability": 0.9253 + }, + { + "start": 12718.2, + "end": 12720.82, + "probability": 0.821 + }, + { + "start": 12720.94, + "end": 12724.32, + "probability": 0.9934 + }, + { + "start": 12724.34, + "end": 12726.88, + "probability": 0.9559 + }, + { + "start": 12726.92, + "end": 12728.4, + "probability": 0.5831 + }, + { + "start": 12728.44, + "end": 12729.24, + "probability": 0.9131 + }, + { + "start": 12729.26, + "end": 12729.52, + "probability": 0.025 + }, + { + "start": 12734.42, + "end": 12735.06, + "probability": 0.2917 + }, + { + "start": 12736.78, + "end": 12740.26, + "probability": 0.2092 + }, + { + "start": 12740.42, + "end": 12741.17, + "probability": 0.7311 + }, + { + "start": 12741.32, + "end": 12742.58, + "probability": 0.7999 + }, + { + "start": 12742.64, + "end": 12744.36, + "probability": 0.5346 + }, + { + "start": 12744.38, + "end": 12750.42, + "probability": 0.371 + }, + { + "start": 12751.42, + "end": 12753.08, + "probability": 0.0325 + }, + { + "start": 12753.38, + "end": 12753.38, + "probability": 0.0497 + }, + { + "start": 12753.38, + "end": 12753.38, + "probability": 0.213 + }, + { + "start": 12753.38, + "end": 12756.16, + "probability": 0.5606 + }, + { + "start": 12756.26, + "end": 12757.22, + "probability": 0.8105 + }, + { + "start": 12757.93, + "end": 12760.3, + "probability": 0.9668 + }, + { + "start": 12760.82, + "end": 12764.34, + "probability": 0.6577 + }, + { + "start": 12765.62, + "end": 12766.28, + "probability": 0.7857 + }, + { + "start": 12766.94, + "end": 12768.9, + "probability": 0.9278 + }, + { + "start": 12769.48, + "end": 12772.26, + "probability": 0.8057 + }, + { + "start": 12772.76, + "end": 12774.78, + "probability": 0.7156 + }, + { + "start": 12777.09, + "end": 12779.36, + "probability": 0.5319 + }, + { + "start": 12779.98, + "end": 12782.64, + "probability": 0.8323 + }, + { + "start": 12783.02, + "end": 12783.58, + "probability": 0.9489 + }, + { + "start": 12784.34, + "end": 12786.16, + "probability": 0.0432 + }, + { + "start": 12786.16, + "end": 12787.66, + "probability": 0.8863 + }, + { + "start": 12788.18, + "end": 12788.3, + "probability": 0.6591 + }, + { + "start": 12788.86, + "end": 12790.86, + "probability": 0.7287 + }, + { + "start": 12791.74, + "end": 12792.36, + "probability": 0.4577 + }, + { + "start": 12793.04, + "end": 12795.02, + "probability": 0.6372 + }, + { + "start": 12795.1, + "end": 12798.5, + "probability": 0.7256 + }, + { + "start": 12800.4, + "end": 12801.76, + "probability": 0.0425 + }, + { + "start": 12801.8, + "end": 12804.4, + "probability": 0.0159 + }, + { + "start": 12805.02, + "end": 12808.3, + "probability": 0.6202 + }, + { + "start": 12808.52, + "end": 12809.4, + "probability": 0.3665 + }, + { + "start": 12809.56, + "end": 12810.12, + "probability": 0.1389 + }, + { + "start": 12811.02, + "end": 12811.6, + "probability": 0.0283 + }, + { + "start": 12812.48, + "end": 12815.54, + "probability": 0.9185 + }, + { + "start": 12815.56, + "end": 12817.88, + "probability": 0.8931 + }, + { + "start": 12821.1, + "end": 12823.26, + "probability": 0.1759 + }, + { + "start": 12823.92, + "end": 12825.98, + "probability": 0.0969 + }, + { + "start": 12828.52, + "end": 12829.08, + "probability": 0.1659 + }, + { + "start": 12829.08, + "end": 12829.24, + "probability": 0.2818 + }, + { + "start": 12829.24, + "end": 12829.76, + "probability": 0.263 + }, + { + "start": 12829.96, + "end": 12831.22, + "probability": 0.4058 + }, + { + "start": 12833.6, + "end": 12838.76, + "probability": 0.8882 + }, + { + "start": 12845.26, + "end": 12846.22, + "probability": 0.0676 + }, + { + "start": 12846.22, + "end": 12846.22, + "probability": 0.3079 + }, + { + "start": 12846.22, + "end": 12847.16, + "probability": 0.5147 + }, + { + "start": 12847.36, + "end": 12850.5, + "probability": 0.4973 + }, + { + "start": 12852.3, + "end": 12855.96, + "probability": 0.6345 + }, + { + "start": 12856.18, + "end": 12859.58, + "probability": 0.9805 + }, + { + "start": 12859.58, + "end": 12865.72, + "probability": 0.9708 + }, + { + "start": 12865.96, + "end": 12869.02, + "probability": 0.9533 + }, + { + "start": 12869.28, + "end": 12870.02, + "probability": 0.8186 + }, + { + "start": 12870.14, + "end": 12871.83, + "probability": 0.9609 + }, + { + "start": 12872.38, + "end": 12875.46, + "probability": 0.9758 + }, + { + "start": 12875.9, + "end": 12879.4, + "probability": 0.9565 + }, + { + "start": 12881.0, + "end": 12884.74, + "probability": 0.9294 + }, + { + "start": 12885.12, + "end": 12890.7, + "probability": 0.0594 + }, + { + "start": 12891.6, + "end": 12892.93, + "probability": 0.0289 + }, + { + "start": 12893.88, + "end": 12896.18, + "probability": 0.3969 + }, + { + "start": 12896.36, + "end": 12896.92, + "probability": 0.6855 + }, + { + "start": 12906.2, + "end": 12909.34, + "probability": 0.8863 + }, + { + "start": 12909.4, + "end": 12911.86, + "probability": 0.9292 + }, + { + "start": 12911.88, + "end": 12915.62, + "probability": 0.9619 + }, + { + "start": 12915.7, + "end": 12915.94, + "probability": 0.6213 + }, + { + "start": 12915.94, + "end": 12919.78, + "probability": 0.0155 + }, + { + "start": 12943.92, + "end": 12945.08, + "probability": 0.6398 + }, + { + "start": 12945.18, + "end": 12946.7, + "probability": 0.9589 + }, + { + "start": 12947.06, + "end": 12950.28, + "probability": 0.7707 + }, + { + "start": 12950.48, + "end": 12951.42, + "probability": 0.8704 + }, + { + "start": 12951.56, + "end": 12952.02, + "probability": 0.8174 + }, + { + "start": 12952.08, + "end": 12952.42, + "probability": 0.6912 + }, + { + "start": 12952.42, + "end": 12954.24, + "probability": 0.5367 + }, + { + "start": 12958.07, + "end": 12963.26, + "probability": 0.6129 + }, + { + "start": 12963.26, + "end": 12966.28, + "probability": 0.8167 + }, + { + "start": 12966.46, + "end": 12969.72, + "probability": 0.9064 + }, + { + "start": 12969.9, + "end": 12972.08, + "probability": 0.9476 + }, + { + "start": 12972.28, + "end": 12974.46, + "probability": 0.9971 + }, + { + "start": 12974.66, + "end": 12975.04, + "probability": 0.7646 + }, + { + "start": 12975.12, + "end": 12978.12, + "probability": 0.9901 + }, + { + "start": 12978.34, + "end": 12979.2, + "probability": 0.8822 + }, + { + "start": 12979.26, + "end": 12981.76, + "probability": 0.9788 + }, + { + "start": 12981.84, + "end": 12986.82, + "probability": 0.9834 + }, + { + "start": 12987.26, + "end": 12988.74, + "probability": 0.7624 + }, + { + "start": 12988.82, + "end": 12991.16, + "probability": 0.9691 + }, + { + "start": 12991.38, + "end": 12991.96, + "probability": 0.9407 + }, + { + "start": 12992.1, + "end": 12993.9, + "probability": 0.9194 + }, + { + "start": 12994.06, + "end": 12996.6, + "probability": 0.974 + }, + { + "start": 12996.6, + "end": 13000.36, + "probability": 0.9966 + }, + { + "start": 13000.62, + "end": 13003.96, + "probability": 0.9897 + }, + { + "start": 13004.12, + "end": 13005.66, + "probability": 0.7375 + }, + { + "start": 13005.84, + "end": 13007.52, + "probability": 0.5116 + }, + { + "start": 13008.02, + "end": 13008.38, + "probability": 0.6819 + }, + { + "start": 13008.48, + "end": 13010.04, + "probability": 0.9851 + }, + { + "start": 13010.2, + "end": 13010.48, + "probability": 0.7391 + }, + { + "start": 13010.58, + "end": 13011.58, + "probability": 0.8291 + }, + { + "start": 13011.7, + "end": 13012.96, + "probability": 0.7342 + }, + { + "start": 13013.0, + "end": 13013.42, + "probability": 0.8464 + }, + { + "start": 13013.5, + "end": 13014.42, + "probability": 0.8275 + }, + { + "start": 13014.5, + "end": 13015.66, + "probability": 0.9852 + }, + { + "start": 13015.76, + "end": 13017.1, + "probability": 0.9792 + }, + { + "start": 13017.2, + "end": 13017.78, + "probability": 0.7502 + }, + { + "start": 13017.88, + "end": 13018.83, + "probability": 0.6055 + }, + { + "start": 13019.34, + "end": 13022.24, + "probability": 0.9481 + }, + { + "start": 13022.68, + "end": 13025.96, + "probability": 0.9766 + }, + { + "start": 13026.14, + "end": 13028.76, + "probability": 0.9705 + }, + { + "start": 13028.76, + "end": 13032.06, + "probability": 0.9888 + }, + { + "start": 13032.48, + "end": 13036.6, + "probability": 0.8162 + }, + { + "start": 13036.76, + "end": 13037.24, + "probability": 0.8364 + }, + { + "start": 13037.44, + "end": 13040.64, + "probability": 0.9747 + }, + { + "start": 13040.74, + "end": 13044.44, + "probability": 0.9951 + }, + { + "start": 13044.8, + "end": 13044.96, + "probability": 0.7124 + }, + { + "start": 13045.08, + "end": 13047.1, + "probability": 0.8116 + }, + { + "start": 13047.3, + "end": 13050.48, + "probability": 0.9826 + }, + { + "start": 13050.54, + "end": 13052.32, + "probability": 0.9858 + }, + { + "start": 13055.18, + "end": 13055.28, + "probability": 0.0543 + }, + { + "start": 13055.28, + "end": 13058.95, + "probability": 0.2284 + }, + { + "start": 13060.08, + "end": 13062.44, + "probability": 0.1598 + }, + { + "start": 13062.44, + "end": 13063.92, + "probability": 0.4013 + }, + { + "start": 13065.0, + "end": 13068.07, + "probability": 0.6189 + }, + { + "start": 13069.56, + "end": 13075.42, + "probability": 0.807 + }, + { + "start": 13075.42, + "end": 13080.48, + "probability": 0.9897 + }, + { + "start": 13081.58, + "end": 13085.82, + "probability": 0.7446 + }, + { + "start": 13086.74, + "end": 13095.06, + "probability": 0.9781 + }, + { + "start": 13095.06, + "end": 13102.9, + "probability": 0.9899 + }, + { + "start": 13104.0, + "end": 13109.86, + "probability": 0.979 + }, + { + "start": 13109.86, + "end": 13115.96, + "probability": 0.9014 + }, + { + "start": 13116.56, + "end": 13119.3, + "probability": 0.4075 + }, + { + "start": 13119.86, + "end": 13124.26, + "probability": 0.9825 + }, + { + "start": 13128.72, + "end": 13137.18, + "probability": 0.968 + }, + { + "start": 13139.7, + "end": 13146.48, + "probability": 0.845 + }, + { + "start": 13147.04, + "end": 13150.86, + "probability": 0.9897 + }, + { + "start": 13152.6, + "end": 13161.0, + "probability": 0.9983 + }, + { + "start": 13161.0, + "end": 13173.06, + "probability": 0.9585 + }, + { + "start": 13173.78, + "end": 13180.2, + "probability": 0.9723 + }, + { + "start": 13180.2, + "end": 13186.8, + "probability": 0.9989 + }, + { + "start": 13187.64, + "end": 13191.66, + "probability": 0.9761 + }, + { + "start": 13192.18, + "end": 13193.76, + "probability": 0.8955 + }, + { + "start": 13194.36, + "end": 13199.44, + "probability": 0.9644 + }, + { + "start": 13200.06, + "end": 13202.3, + "probability": 0.803 + }, + { + "start": 13202.8, + "end": 13208.72, + "probability": 0.9937 + }, + { + "start": 13209.08, + "end": 13210.76, + "probability": 0.999 + }, + { + "start": 13211.92, + "end": 13215.5, + "probability": 0.9763 + }, + { + "start": 13216.16, + "end": 13217.62, + "probability": 0.9519 + }, + { + "start": 13217.94, + "end": 13221.24, + "probability": 0.9056 + }, + { + "start": 13221.64, + "end": 13221.88, + "probability": 0.7118 + }, + { + "start": 13222.1, + "end": 13223.56, + "probability": 0.7134 + }, + { + "start": 13223.58, + "end": 13225.86, + "probability": 0.8399 + }, + { + "start": 13226.38, + "end": 13229.78, + "probability": 0.7054 + }, + { + "start": 13230.58, + "end": 13233.61, + "probability": 0.4957 + }, + { + "start": 13242.48, + "end": 13243.62, + "probability": 0.6753 + }, + { + "start": 13246.62, + "end": 13247.98, + "probability": 0.8606 + }, + { + "start": 13248.08, + "end": 13249.02, + "probability": 0.7065 + }, + { + "start": 13249.1, + "end": 13250.2, + "probability": 0.9246 + }, + { + "start": 13250.36, + "end": 13257.06, + "probability": 0.884 + }, + { + "start": 13257.66, + "end": 13261.94, + "probability": 0.8892 + }, + { + "start": 13263.24, + "end": 13273.14, + "probability": 0.9838 + }, + { + "start": 13273.68, + "end": 13276.7, + "probability": 0.876 + }, + { + "start": 13277.8, + "end": 13283.58, + "probability": 0.9987 + }, + { + "start": 13283.58, + "end": 13289.1, + "probability": 0.9979 + }, + { + "start": 13290.28, + "end": 13295.72, + "probability": 0.9904 + }, + { + "start": 13296.5, + "end": 13300.64, + "probability": 0.991 + }, + { + "start": 13301.7, + "end": 13304.36, + "probability": 0.9941 + }, + { + "start": 13304.76, + "end": 13308.52, + "probability": 0.9958 + }, + { + "start": 13309.8, + "end": 13315.34, + "probability": 0.8956 + }, + { + "start": 13315.9, + "end": 13319.44, + "probability": 0.8465 + }, + { + "start": 13319.58, + "end": 13322.18, + "probability": 0.9706 + }, + { + "start": 13322.94, + "end": 13326.7, + "probability": 0.9559 + }, + { + "start": 13326.7, + "end": 13332.42, + "probability": 0.9989 + }, + { + "start": 13333.4, + "end": 13336.78, + "probability": 0.9986 + }, + { + "start": 13336.78, + "end": 13341.7, + "probability": 0.9969 + }, + { + "start": 13343.16, + "end": 13349.4, + "probability": 0.9274 + }, + { + "start": 13350.36, + "end": 13356.58, + "probability": 0.9662 + }, + { + "start": 13356.68, + "end": 13359.94, + "probability": 0.9746 + }, + { + "start": 13360.74, + "end": 13366.6, + "probability": 0.9714 + }, + { + "start": 13367.46, + "end": 13372.78, + "probability": 0.9847 + }, + { + "start": 13373.62, + "end": 13377.86, + "probability": 0.9864 + }, + { + "start": 13378.88, + "end": 13383.44, + "probability": 0.9875 + }, + { + "start": 13384.02, + "end": 13388.9, + "probability": 0.9968 + }, + { + "start": 13388.9, + "end": 13392.48, + "probability": 0.9949 + }, + { + "start": 13393.6, + "end": 13400.68, + "probability": 0.8998 + }, + { + "start": 13401.04, + "end": 13403.68, + "probability": 0.339 + }, + { + "start": 13403.68, + "end": 13405.56, + "probability": 0.9507 + }, + { + "start": 13406.26, + "end": 13409.78, + "probability": 0.9407 + }, + { + "start": 13410.24, + "end": 13415.12, + "probability": 0.9412 + }, + { + "start": 13416.04, + "end": 13422.0, + "probability": 0.967 + }, + { + "start": 13422.58, + "end": 13428.88, + "probability": 0.984 + }, + { + "start": 13429.74, + "end": 13432.63, + "probability": 0.9196 + }, + { + "start": 13433.34, + "end": 13435.74, + "probability": 0.9402 + }, + { + "start": 13436.9, + "end": 13442.66, + "probability": 0.9928 + }, + { + "start": 13443.32, + "end": 13448.46, + "probability": 0.9943 + }, + { + "start": 13449.16, + "end": 13452.34, + "probability": 0.9104 + }, + { + "start": 13453.24, + "end": 13457.72, + "probability": 0.994 + }, + { + "start": 13457.72, + "end": 13464.22, + "probability": 0.9965 + }, + { + "start": 13466.58, + "end": 13473.59, + "probability": 0.9035 + }, + { + "start": 13473.72, + "end": 13480.04, + "probability": 0.9993 + }, + { + "start": 13480.24, + "end": 13480.96, + "probability": 0.7443 + }, + { + "start": 13481.38, + "end": 13483.94, + "probability": 0.0022 + }, + { + "start": 13484.27, + "end": 13484.68, + "probability": 0.0042 + }, + { + "start": 13484.68, + "end": 13484.68, + "probability": 0.0565 + }, + { + "start": 13484.68, + "end": 13488.52, + "probability": 0.677 + }, + { + "start": 13488.56, + "end": 13489.16, + "probability": 0.476 + }, + { + "start": 13489.22, + "end": 13491.72, + "probability": 0.6959 + }, + { + "start": 13508.46, + "end": 13512.06, + "probability": 0.475 + }, + { + "start": 13513.14, + "end": 13515.96, + "probability": 0.5717 + }, + { + "start": 13516.76, + "end": 13519.7, + "probability": 0.2524 + }, + { + "start": 13520.29, + "end": 13522.68, + "probability": 0.626 + }, + { + "start": 13522.9, + "end": 13525.22, + "probability": 0.8683 + }, + { + "start": 13525.38, + "end": 13526.91, + "probability": 0.7356 + }, + { + "start": 13528.44, + "end": 13532.28, + "probability": 0.9718 + }, + { + "start": 13532.38, + "end": 13533.7, + "probability": 0.842 + }, + { + "start": 13535.12, + "end": 13539.56, + "probability": 0.9718 + }, + { + "start": 13539.86, + "end": 13541.35, + "probability": 0.897 + }, + { + "start": 13542.02, + "end": 13544.38, + "probability": 0.6055 + }, + { + "start": 13545.18, + "end": 13546.24, + "probability": 0.9541 + }, + { + "start": 13547.12, + "end": 13550.1, + "probability": 0.9522 + }, + { + "start": 13550.8, + "end": 13553.24, + "probability": 0.9502 + }, + { + "start": 13553.94, + "end": 13557.36, + "probability": 0.8665 + }, + { + "start": 13557.94, + "end": 13562.3, + "probability": 0.9719 + }, + { + "start": 13563.48, + "end": 13566.62, + "probability": 0.9354 + }, + { + "start": 13566.62, + "end": 13571.16, + "probability": 0.9836 + }, + { + "start": 13571.18, + "end": 13572.1, + "probability": 0.7795 + }, + { + "start": 13572.64, + "end": 13573.84, + "probability": 0.8433 + }, + { + "start": 13574.36, + "end": 13578.24, + "probability": 0.7786 + }, + { + "start": 13579.08, + "end": 13586.24, + "probability": 0.9531 + }, + { + "start": 13587.1, + "end": 13591.2, + "probability": 0.9938 + }, + { + "start": 13591.5, + "end": 13595.88, + "probability": 0.9919 + }, + { + "start": 13595.88, + "end": 13600.72, + "probability": 0.9928 + }, + { + "start": 13600.96, + "end": 13603.5, + "probability": 0.9225 + }, + { + "start": 13603.98, + "end": 13607.48, + "probability": 0.988 + }, + { + "start": 13608.1, + "end": 13613.02, + "probability": 0.8522 + }, + { + "start": 13613.5, + "end": 13615.26, + "probability": 0.9928 + }, + { + "start": 13615.82, + "end": 13619.28, + "probability": 0.8224 + }, + { + "start": 13619.28, + "end": 13624.52, + "probability": 0.9355 + }, + { + "start": 13625.72, + "end": 13627.76, + "probability": 0.6485 + }, + { + "start": 13627.88, + "end": 13632.02, + "probability": 0.9097 + }, + { + "start": 13633.34, + "end": 13634.22, + "probability": 0.8268 + }, + { + "start": 13634.4, + "end": 13637.17, + "probability": 0.9175 + }, + { + "start": 13638.12, + "end": 13638.48, + "probability": 0.4865 + }, + { + "start": 13640.1, + "end": 13642.44, + "probability": 0.8867 + }, + { + "start": 13642.48, + "end": 13645.36, + "probability": 0.9516 + }, + { + "start": 13645.48, + "end": 13649.06, + "probability": 0.9591 + }, + { + "start": 13655.8, + "end": 13658.96, + "probability": 0.6662 + }, + { + "start": 13661.16, + "end": 13662.32, + "probability": 0.796 + }, + { + "start": 13662.4, + "end": 13667.22, + "probability": 0.8748 + }, + { + "start": 13668.28, + "end": 13669.56, + "probability": 0.9756 + }, + { + "start": 13669.68, + "end": 13671.81, + "probability": 0.7334 + }, + { + "start": 13673.24, + "end": 13674.54, + "probability": 0.1593 + }, + { + "start": 13678.42, + "end": 13679.78, + "probability": 0.1364 + }, + { + "start": 13680.56, + "end": 13682.6, + "probability": 0.0083 + }, + { + "start": 13683.14, + "end": 13687.2, + "probability": 0.8155 + }, + { + "start": 13687.92, + "end": 13690.98, + "probability": 0.9485 + }, + { + "start": 13690.98, + "end": 13695.5, + "probability": 0.9844 + }, + { + "start": 13696.22, + "end": 13699.64, + "probability": 0.884 + }, + { + "start": 13699.7, + "end": 13704.22, + "probability": 0.9429 + }, + { + "start": 13704.86, + "end": 13708.2, + "probability": 0.9755 + }, + { + "start": 13708.2, + "end": 13713.12, + "probability": 0.8026 + }, + { + "start": 13713.48, + "end": 13715.72, + "probability": 0.9374 + }, + { + "start": 13716.0, + "end": 13720.28, + "probability": 0.9845 + }, + { + "start": 13720.7, + "end": 13724.0, + "probability": 0.9142 + }, + { + "start": 13724.0, + "end": 13727.9, + "probability": 0.9716 + }, + { + "start": 13730.2, + "end": 13731.52, + "probability": 0.6724 + }, + { + "start": 13732.36, + "end": 13737.82, + "probability": 0.9685 + }, + { + "start": 13748.33, + "end": 13750.4, + "probability": 0.8328 + }, + { + "start": 13750.56, + "end": 13753.0, + "probability": 0.9837 + }, + { + "start": 13753.02, + "end": 13756.8, + "probability": 0.9958 + }, + { + "start": 13765.87, + "end": 13769.12, + "probability": 0.7284 + }, + { + "start": 13769.22, + "end": 13772.6, + "probability": 0.9733 + }, + { + "start": 13772.96, + "end": 13773.96, + "probability": 0.7253 + }, + { + "start": 13776.61, + "end": 13779.05, + "probability": 0.1269 + }, + { + "start": 13780.94, + "end": 13782.36, + "probability": 0.0305 + }, + { + "start": 13791.6, + "end": 13795.58, + "probability": 0.5295 + }, + { + "start": 13795.97, + "end": 13801.38, + "probability": 0.9375 + }, + { + "start": 13802.2, + "end": 13806.14, + "probability": 0.6477 + }, + { + "start": 13806.3, + "end": 13807.0, + "probability": 0.8449 + }, + { + "start": 13810.76, + "end": 13814.22, + "probability": 0.1029 + }, + { + "start": 13816.66, + "end": 13817.8, + "probability": 0.0486 + }, + { + "start": 13829.88, + "end": 13832.56, + "probability": 0.5013 + }, + { + "start": 13832.62, + "end": 13833.04, + "probability": 0.3146 + }, + { + "start": 13833.18, + "end": 13838.5, + "probability": 0.9336 + }, + { + "start": 13839.0, + "end": 13841.4, + "probability": 0.8912 + }, + { + "start": 13841.48, + "end": 13842.92, + "probability": 0.6155 + }, + { + "start": 13842.96, + "end": 13843.74, + "probability": 0.7848 + }, + { + "start": 13856.74, + "end": 13862.1, + "probability": 0.0422 + }, + { + "start": 13864.14, + "end": 13868.74, + "probability": 0.4451 + }, + { + "start": 13869.08, + "end": 13873.26, + "probability": 0.8462 + }, + { + "start": 13873.82, + "end": 13876.4, + "probability": 0.9822 + }, + { + "start": 13876.5, + "end": 13877.28, + "probability": 0.6345 + }, + { + "start": 13878.0, + "end": 13880.26, + "probability": 0.1371 + }, + { + "start": 13882.28, + "end": 13887.16, + "probability": 0.034 + }, + { + "start": 13897.06, + "end": 13897.36, + "probability": 0.0338 + }, + { + "start": 13898.12, + "end": 13901.44, + "probability": 0.3129 + }, + { + "start": 13901.44, + "end": 13901.92, + "probability": 0.549 + }, + { + "start": 13902.08, + "end": 13906.04, + "probability": 0.9753 + }, + { + "start": 13906.46, + "end": 13913.66, + "probability": 0.8172 + }, + { + "start": 13913.7, + "end": 13915.2, + "probability": 0.7186 + }, + { + "start": 13916.58, + "end": 13921.34, + "probability": 0.0625 + }, + { + "start": 13936.6, + "end": 13940.68, + "probability": 0.4949 + }, + { + "start": 13940.68, + "end": 13941.52, + "probability": 0.7128 + }, + { + "start": 13941.52, + "end": 13946.5, + "probability": 0.9109 + }, + { + "start": 13946.56, + "end": 13947.9, + "probability": 0.7619 + }, + { + "start": 13948.68, + "end": 13950.62, + "probability": 0.8662 + }, + { + "start": 13951.84, + "end": 13954.66, + "probability": 0.6616 + }, + { + "start": 13955.94, + "end": 13958.1, + "probability": 0.0556 + }, + { + "start": 13958.1, + "end": 13958.1, + "probability": 0.2659 + }, + { + "start": 13958.1, + "end": 13958.1, + "probability": 0.3659 + }, + { + "start": 13958.1, + "end": 13958.1, + "probability": 0.4492 + }, + { + "start": 13958.1, + "end": 13958.1, + "probability": 0.5039 + }, + { + "start": 13958.1, + "end": 13958.1, + "probability": 0.5516 + }, + { + "start": 13958.1, + "end": 13958.1, + "probability": 0.6184 + }, + { + "start": 13958.1, + "end": 13958.1, + "probability": 0.6121 + }, + { + "start": 13958.1, + "end": 13960.1, + "probability": 0.0994 + }, + { + "start": 13960.5, + "end": 13963.5, + "probability": 0.5332 + }, + { + "start": 13964.78, + "end": 13964.98, + "probability": 0.2202 + }, + { + "start": 13978.96, + "end": 13981.66, + "probability": 0.4572 + }, + { + "start": 13983.7, + "end": 13984.06, + "probability": 0.465 + }, + { + "start": 13984.06, + "end": 13984.22, + "probability": 0.0196 + }, + { + "start": 13984.22, + "end": 13985.14, + "probability": 0.0962 + }, + { + "start": 13985.32, + "end": 13986.56, + "probability": 0.0566 + }, + { + "start": 14009.56, + "end": 14016.02, + "probability": 0.9865 + }, + { + "start": 14016.56, + "end": 14017.36, + "probability": 0.5843 + }, + { + "start": 14021.58, + "end": 14022.8, + "probability": 0.7812 + }, + { + "start": 14024.52, + "end": 14028.28, + "probability": 0.929 + }, + { + "start": 14028.84, + "end": 14030.54, + "probability": 0.8448 + }, + { + "start": 14031.88, + "end": 14040.92, + "probability": 0.777 + }, + { + "start": 14042.14, + "end": 14043.56, + "probability": 0.8637 + }, + { + "start": 14043.72, + "end": 14050.92, + "probability": 0.9635 + }, + { + "start": 14051.02, + "end": 14052.14, + "probability": 0.9046 + }, + { + "start": 14052.44, + "end": 14055.58, + "probability": 0.9824 + }, + { + "start": 14055.94, + "end": 14063.0, + "probability": 0.9495 + }, + { + "start": 14063.22, + "end": 14063.76, + "probability": 0.6717 + }, + { + "start": 14064.1, + "end": 14066.22, + "probability": 0.9905 + }, + { + "start": 14066.34, + "end": 14074.96, + "probability": 0.99 + }, + { + "start": 14075.66, + "end": 14080.34, + "probability": 0.9971 + }, + { + "start": 14080.54, + "end": 14082.58, + "probability": 0.9597 + }, + { + "start": 14083.02, + "end": 14089.64, + "probability": 0.9801 + }, + { + "start": 14092.62, + "end": 14093.18, + "probability": 0.0747 + }, + { + "start": 14093.18, + "end": 14094.5, + "probability": 0.7671 + }, + { + "start": 14094.5, + "end": 14098.9, + "probability": 0.6885 + }, + { + "start": 14099.28, + "end": 14105.24, + "probability": 0.9631 + }, + { + "start": 14105.52, + "end": 14106.8, + "probability": 0.6284 + }, + { + "start": 14107.28, + "end": 14108.04, + "probability": 0.4572 + }, + { + "start": 14108.16, + "end": 14111.48, + "probability": 0.7571 + }, + { + "start": 14111.6, + "end": 14116.86, + "probability": 0.8873 + }, + { + "start": 14117.12, + "end": 14123.3, + "probability": 0.9386 + }, + { + "start": 14124.26, + "end": 14128.24, + "probability": 0.7073 + }, + { + "start": 14128.44, + "end": 14131.5, + "probability": 0.6704 + }, + { + "start": 14131.74, + "end": 14132.36, + "probability": 0.6866 + }, + { + "start": 14132.9, + "end": 14136.84, + "probability": 0.9146 + }, + { + "start": 14137.34, + "end": 14140.46, + "probability": 0.9776 + }, + { + "start": 14141.2, + "end": 14145.28, + "probability": 0.9767 + }, + { + "start": 14145.68, + "end": 14146.84, + "probability": 0.9654 + }, + { + "start": 14146.96, + "end": 14148.36, + "probability": 0.9871 + }, + { + "start": 14148.42, + "end": 14149.4, + "probability": 0.7737 + }, + { + "start": 14149.48, + "end": 14156.96, + "probability": 0.9922 + }, + { + "start": 14156.96, + "end": 14164.5, + "probability": 0.9788 + }, + { + "start": 14164.66, + "end": 14166.46, + "probability": 0.817 + }, + { + "start": 14167.06, + "end": 14168.04, + "probability": 0.7515 + }, + { + "start": 14168.34, + "end": 14169.37, + "probability": 0.9263 + }, + { + "start": 14170.24, + "end": 14172.46, + "probability": 0.9165 + }, + { + "start": 14172.76, + "end": 14176.1, + "probability": 0.9874 + }, + { + "start": 14177.22, + "end": 14181.94, + "probability": 0.9896 + }, + { + "start": 14182.56, + "end": 14187.02, + "probability": 0.9933 + }, + { + "start": 14187.3, + "end": 14188.0, + "probability": 0.5238 + }, + { + "start": 14188.12, + "end": 14188.6, + "probability": 0.7852 + }, + { + "start": 14188.6, + "end": 14188.92, + "probability": 0.8067 + }, + { + "start": 14189.78, + "end": 14191.3, + "probability": 0.3594 + }, + { + "start": 14191.3, + "end": 14194.14, + "probability": 0.6297 + }, + { + "start": 14194.18, + "end": 14196.8, + "probability": 0.4854 + }, + { + "start": 14197.32, + "end": 14200.76, + "probability": 0.6502 + }, + { + "start": 14201.0, + "end": 14205.86, + "probability": 0.9261 + }, + { + "start": 14205.94, + "end": 14206.74, + "probability": 0.5963 + }, + { + "start": 14207.12, + "end": 14208.53, + "probability": 0.8125 + }, + { + "start": 14208.98, + "end": 14210.12, + "probability": 0.8993 + }, + { + "start": 14210.3, + "end": 14211.12, + "probability": 0.8549 + }, + { + "start": 14211.22, + "end": 14212.28, + "probability": 0.9162 + }, + { + "start": 14213.7, + "end": 14217.96, + "probability": 0.932 + }, + { + "start": 14218.3, + "end": 14219.34, + "probability": 0.7101 + }, + { + "start": 14219.44, + "end": 14220.42, + "probability": 0.6655 + }, + { + "start": 14221.6, + "end": 14222.88, + "probability": 0.9606 + }, + { + "start": 14224.44, + "end": 14226.08, + "probability": 0.6497 + }, + { + "start": 14226.6, + "end": 14230.2, + "probability": 0.9909 + }, + { + "start": 14230.58, + "end": 14233.56, + "probability": 0.9961 + }, + { + "start": 14233.78, + "end": 14235.46, + "probability": 0.9966 + }, + { + "start": 14235.6, + "end": 14241.4, + "probability": 0.9915 + }, + { + "start": 14241.56, + "end": 14241.76, + "probability": 0.2014 + }, + { + "start": 14241.82, + "end": 14242.7, + "probability": 0.9004 + }, + { + "start": 14243.3, + "end": 14245.77, + "probability": 0.8629 + }, + { + "start": 14246.26, + "end": 14247.08, + "probability": 0.9166 + }, + { + "start": 14247.24, + "end": 14249.44, + "probability": 0.9819 + }, + { + "start": 14249.86, + "end": 14252.47, + "probability": 0.981 + }, + { + "start": 14252.9, + "end": 14260.1, + "probability": 0.9514 + }, + { + "start": 14260.2, + "end": 14263.14, + "probability": 0.9779 + }, + { + "start": 14263.34, + "end": 14263.64, + "probability": 0.3664 + }, + { + "start": 14263.68, + "end": 14264.64, + "probability": 0.7589 + }, + { + "start": 14266.27, + "end": 14270.92, + "probability": 0.8676 + }, + { + "start": 14271.1, + "end": 14271.1, + "probability": 0.6371 + }, + { + "start": 14271.18, + "end": 14273.46, + "probability": 0.5486 + }, + { + "start": 14273.46, + "end": 14276.4, + "probability": 0.8887 + }, + { + "start": 14277.14, + "end": 14280.22, + "probability": 0.9548 + }, + { + "start": 14283.32, + "end": 14285.36, + "probability": 0.5987 + }, + { + "start": 14286.82, + "end": 14286.92, + "probability": 0.035 + }, + { + "start": 14291.76, + "end": 14294.82, + "probability": 0.6942 + }, + { + "start": 14295.92, + "end": 14300.62, + "probability": 0.8621 + }, + { + "start": 14301.4, + "end": 14302.02, + "probability": 0.7015 + }, + { + "start": 14303.45, + "end": 14305.16, + "probability": 0.7695 + }, + { + "start": 14305.44, + "end": 14306.28, + "probability": 0.967 + }, + { + "start": 14307.08, + "end": 14307.54, + "probability": 0.3374 + }, + { + "start": 14308.1, + "end": 14308.1, + "probability": 0.0105 + }, + { + "start": 14308.1, + "end": 14312.46, + "probability": 0.7353 + }, + { + "start": 14312.64, + "end": 14315.15, + "probability": 0.9858 + }, + { + "start": 14315.5, + "end": 14320.08, + "probability": 0.9943 + }, + { + "start": 14320.18, + "end": 14325.88, + "probability": 0.845 + }, + { + "start": 14327.06, + "end": 14329.52, + "probability": 0.9368 + }, + { + "start": 14329.98, + "end": 14336.28, + "probability": 0.8962 + }, + { + "start": 14338.3, + "end": 14345.12, + "probability": 0.9812 + }, + { + "start": 14345.26, + "end": 14347.14, + "probability": 0.9774 + }, + { + "start": 14348.18, + "end": 14349.0, + "probability": 0.8637 + }, + { + "start": 14349.48, + "end": 14350.62, + "probability": 0.9594 + }, + { + "start": 14351.04, + "end": 14353.28, + "probability": 0.9028 + }, + { + "start": 14354.26, + "end": 14354.7, + "probability": 0.7029 + }, + { + "start": 14354.84, + "end": 14355.94, + "probability": 0.5429 + }, + { + "start": 14356.16, + "end": 14360.98, + "probability": 0.8696 + }, + { + "start": 14362.54, + "end": 14365.7, + "probability": 0.9042 + }, + { + "start": 14366.38, + "end": 14368.7, + "probability": 0.8643 + }, + { + "start": 14368.9, + "end": 14369.96, + "probability": 0.6396 + }, + { + "start": 14370.02, + "end": 14371.44, + "probability": 0.916 + }, + { + "start": 14372.24, + "end": 14373.82, + "probability": 0.6907 + }, + { + "start": 14375.14, + "end": 14376.2, + "probability": 0.876 + }, + { + "start": 14377.58, + "end": 14378.2, + "probability": 0.9672 + }, + { + "start": 14378.26, + "end": 14385.08, + "probability": 0.9775 + }, + { + "start": 14385.5, + "end": 14389.46, + "probability": 0.9922 + }, + { + "start": 14390.3, + "end": 14393.38, + "probability": 0.9893 + }, + { + "start": 14394.24, + "end": 14395.01, + "probability": 0.8606 + }, + { + "start": 14395.66, + "end": 14396.78, + "probability": 0.9542 + }, + { + "start": 14396.84, + "end": 14398.19, + "probability": 0.9755 + }, + { + "start": 14398.38, + "end": 14400.48, + "probability": 0.8252 + }, + { + "start": 14400.72, + "end": 14405.18, + "probability": 0.9539 + }, + { + "start": 14405.88, + "end": 14410.66, + "probability": 0.9819 + }, + { + "start": 14411.7, + "end": 14412.44, + "probability": 0.6052 + }, + { + "start": 14413.48, + "end": 14417.38, + "probability": 0.9814 + }, + { + "start": 14418.62, + "end": 14419.9, + "probability": 0.9224 + }, + { + "start": 14420.72, + "end": 14422.94, + "probability": 0.981 + }, + { + "start": 14423.64, + "end": 14427.26, + "probability": 0.8032 + }, + { + "start": 14427.86, + "end": 14429.04, + "probability": 0.7253 + }, + { + "start": 14429.92, + "end": 14431.2, + "probability": 0.8429 + }, + { + "start": 14432.16, + "end": 14436.22, + "probability": 0.9614 + }, + { + "start": 14437.8, + "end": 14441.0, + "probability": 0.9844 + }, + { + "start": 14441.08, + "end": 14447.04, + "probability": 0.9478 + }, + { + "start": 14447.38, + "end": 14448.38, + "probability": 0.5134 + }, + { + "start": 14448.94, + "end": 14450.96, + "probability": 0.8334 + }, + { + "start": 14451.46, + "end": 14455.2, + "probability": 0.9525 + }, + { + "start": 14456.18, + "end": 14459.32, + "probability": 0.9363 + }, + { + "start": 14459.46, + "end": 14460.92, + "probability": 0.9688 + }, + { + "start": 14461.08, + "end": 14465.2, + "probability": 0.9515 + }, + { + "start": 14465.56, + "end": 14467.92, + "probability": 0.8221 + }, + { + "start": 14469.18, + "end": 14470.51, + "probability": 0.9661 + }, + { + "start": 14472.12, + "end": 14477.08, + "probability": 0.9896 + }, + { + "start": 14479.18, + "end": 14480.84, + "probability": 0.7507 + }, + { + "start": 14481.02, + "end": 14485.14, + "probability": 0.9888 + }, + { + "start": 14486.17, + "end": 14488.54, + "probability": 0.915 + }, + { + "start": 14488.7, + "end": 14490.3, + "probability": 0.9673 + }, + { + "start": 14490.4, + "end": 14494.06, + "probability": 0.9264 + }, + { + "start": 14495.74, + "end": 14498.64, + "probability": 0.7099 + }, + { + "start": 14498.64, + "end": 14500.16, + "probability": 0.6704 + }, + { + "start": 14500.28, + "end": 14505.8, + "probability": 0.9672 + }, + { + "start": 14506.84, + "end": 14509.78, + "probability": 0.979 + }, + { + "start": 14509.78, + "end": 14513.74, + "probability": 0.9904 + }, + { + "start": 14514.74, + "end": 14518.04, + "probability": 0.9529 + }, + { + "start": 14519.7, + "end": 14519.7, + "probability": 0.2136 + }, + { + "start": 14519.7, + "end": 14523.44, + "probability": 0.9931 + }, + { + "start": 14523.48, + "end": 14525.32, + "probability": 0.8066 + }, + { + "start": 14525.46, + "end": 14527.98, + "probability": 0.9954 + }, + { + "start": 14528.6, + "end": 14529.02, + "probability": 0.7256 + }, + { + "start": 14529.22, + "end": 14529.82, + "probability": 0.8395 + }, + { + "start": 14529.94, + "end": 14533.0, + "probability": 0.7948 + }, + { + "start": 14533.22, + "end": 14535.22, + "probability": 0.7086 + }, + { + "start": 14535.54, + "end": 14539.9, + "probability": 0.995 + }, + { + "start": 14540.18, + "end": 14544.9, + "probability": 0.979 + }, + { + "start": 14545.32, + "end": 14545.74, + "probability": 0.6743 + }, + { + "start": 14546.62, + "end": 14550.42, + "probability": 0.9251 + }, + { + "start": 14550.58, + "end": 14553.04, + "probability": 0.9956 + }, + { + "start": 14553.1, + "end": 14557.2, + "probability": 0.9445 + }, + { + "start": 14557.56, + "end": 14558.06, + "probability": 0.3648 + }, + { + "start": 14558.06, + "end": 14558.22, + "probability": 0.2574 + }, + { + "start": 14558.22, + "end": 14559.46, + "probability": 0.534 + }, + { + "start": 14559.6, + "end": 14561.66, + "probability": 0.8651 + }, + { + "start": 14561.7, + "end": 14562.2, + "probability": 0.4995 + }, + { + "start": 14562.22, + "end": 14564.3, + "probability": 0.9178 + }, + { + "start": 14569.62, + "end": 14575.2, + "probability": 0.8947 + }, + { + "start": 14575.76, + "end": 14578.32, + "probability": 0.969 + }, + { + "start": 14578.4, + "end": 14578.82, + "probability": 0.0886 + }, + { + "start": 14579.18, + "end": 14580.04, + "probability": 0.837 + }, + { + "start": 14582.06, + "end": 14584.9, + "probability": 0.4788 + }, + { + "start": 14587.6, + "end": 14590.18, + "probability": 0.6093 + }, + { + "start": 14590.74, + "end": 14596.22, + "probability": 0.8573 + }, + { + "start": 14597.32, + "end": 14598.58, + "probability": 0.9333 + }, + { + "start": 14598.72, + "end": 14604.06, + "probability": 0.9899 + }, + { + "start": 14605.62, + "end": 14607.78, + "probability": 0.994 + }, + { + "start": 14607.78, + "end": 14611.16, + "probability": 0.7839 + }, + { + "start": 14612.28, + "end": 14614.42, + "probability": 0.9976 + }, + { + "start": 14615.34, + "end": 14615.86, + "probability": 0.4301 + }, + { + "start": 14616.02, + "end": 14616.88, + "probability": 0.4482 + }, + { + "start": 14617.66, + "end": 14620.2, + "probability": 0.911 + }, + { + "start": 14621.16, + "end": 14626.08, + "probability": 0.533 + }, + { + "start": 14627.56, + "end": 14628.02, + "probability": 0.8418 + }, + { + "start": 14629.4, + "end": 14630.98, + "probability": 0.8707 + }, + { + "start": 14633.68, + "end": 14642.18, + "probability": 0.9878 + }, + { + "start": 14643.78, + "end": 14645.74, + "probability": 0.6016 + }, + { + "start": 14647.58, + "end": 14648.88, + "probability": 0.8034 + }, + { + "start": 14649.98, + "end": 14651.14, + "probability": 0.9258 + }, + { + "start": 14652.52, + "end": 14654.08, + "probability": 0.8691 + }, + { + "start": 14654.38, + "end": 14658.14, + "probability": 0.9609 + }, + { + "start": 14658.6, + "end": 14660.7, + "probability": 0.8638 + }, + { + "start": 14661.08, + "end": 14662.04, + "probability": 0.7001 + }, + { + "start": 14662.42, + "end": 14664.52, + "probability": 0.9563 + }, + { + "start": 14665.08, + "end": 14666.66, + "probability": 0.7872 + }, + { + "start": 14667.3, + "end": 14667.66, + "probability": 0.6954 + }, + { + "start": 14667.68, + "end": 14668.68, + "probability": 0.7872 + }, + { + "start": 14668.92, + "end": 14670.54, + "probability": 0.895 + }, + { + "start": 14670.88, + "end": 14674.86, + "probability": 0.7716 + }, + { + "start": 14675.36, + "end": 14680.94, + "probability": 0.882 + }, + { + "start": 14681.26, + "end": 14682.62, + "probability": 0.6499 + }, + { + "start": 14682.92, + "end": 14684.18, + "probability": 0.8622 + }, + { + "start": 14684.5, + "end": 14685.8, + "probability": 0.9363 + }, + { + "start": 14687.02, + "end": 14689.14, + "probability": 0.8716 + }, + { + "start": 14690.48, + "end": 14693.2, + "probability": 0.894 + }, + { + "start": 14693.66, + "end": 14696.82, + "probability": 0.8037 + }, + { + "start": 14697.92, + "end": 14699.7, + "probability": 0.907 + }, + { + "start": 14700.02, + "end": 14702.3, + "probability": 0.8241 + }, + { + "start": 14703.2, + "end": 14703.72, + "probability": 0.7917 + }, + { + "start": 14704.54, + "end": 14705.44, + "probability": 0.9917 + }, + { + "start": 14706.3, + "end": 14709.58, + "probability": 0.8255 + }, + { + "start": 14709.78, + "end": 14710.94, + "probability": 0.5156 + }, + { + "start": 14711.02, + "end": 14714.0, + "probability": 0.8433 + }, + { + "start": 14715.1, + "end": 14719.94, + "probability": 0.7988 + }, + { + "start": 14720.16, + "end": 14721.7, + "probability": 0.7223 + }, + { + "start": 14722.02, + "end": 14723.24, + "probability": 0.698 + }, + { + "start": 14723.6, + "end": 14726.74, + "probability": 0.7126 + }, + { + "start": 14727.22, + "end": 14731.44, + "probability": 0.9834 + }, + { + "start": 14731.94, + "end": 14735.24, + "probability": 0.9339 + }, + { + "start": 14735.58, + "end": 14736.28, + "probability": 0.7836 + }, + { + "start": 14736.56, + "end": 14737.2, + "probability": 0.7183 + }, + { + "start": 14737.64, + "end": 14740.0, + "probability": 0.9824 + }, + { + "start": 14740.5, + "end": 14742.24, + "probability": 0.8314 + }, + { + "start": 14742.76, + "end": 14744.6, + "probability": 0.8633 + }, + { + "start": 14744.98, + "end": 14746.38, + "probability": 0.955 + }, + { + "start": 14746.64, + "end": 14747.78, + "probability": 0.9795 + }, + { + "start": 14748.02, + "end": 14748.32, + "probability": 0.9512 + }, + { + "start": 14749.74, + "end": 14750.86, + "probability": 0.9312 + }, + { + "start": 14752.02, + "end": 14752.88, + "probability": 0.9966 + }, + { + "start": 14755.88, + "end": 14758.98, + "probability": 0.7911 + }, + { + "start": 14759.52, + "end": 14761.0, + "probability": 0.6277 + }, + { + "start": 14761.64, + "end": 14764.27, + "probability": 0.8818 + }, + { + "start": 14764.9, + "end": 14766.14, + "probability": 0.9788 + }, + { + "start": 14766.5, + "end": 14767.46, + "probability": 0.8829 + }, + { + "start": 14767.62, + "end": 14768.2, + "probability": 0.3866 + }, + { + "start": 14768.32, + "end": 14771.3, + "probability": 0.7873 + }, + { + "start": 14772.17, + "end": 14777.73, + "probability": 0.8294 + }, + { + "start": 14778.56, + "end": 14780.78, + "probability": 0.9675 + }, + { + "start": 14781.06, + "end": 14784.84, + "probability": 0.9819 + }, + { + "start": 14785.64, + "end": 14787.2, + "probability": 0.0003 + }, + { + "start": 14787.2, + "end": 14788.08, + "probability": 0.5226 + }, + { + "start": 14788.16, + "end": 14790.42, + "probability": 0.0242 + }, + { + "start": 14790.56, + "end": 14791.62, + "probability": 0.2731 + }, + { + "start": 14792.15, + "end": 14793.34, + "probability": 0.0026 + }, + { + "start": 14793.44, + "end": 14793.6, + "probability": 0.0415 + }, + { + "start": 14793.6, + "end": 14793.6, + "probability": 0.2581 + }, + { + "start": 14793.6, + "end": 14794.78, + "probability": 0.6978 + }, + { + "start": 14794.78, + "end": 14796.7, + "probability": 0.7802 + }, + { + "start": 14796.8, + "end": 14798.34, + "probability": 0.7825 + }, + { + "start": 14798.6, + "end": 14803.4, + "probability": 0.9904 + }, + { + "start": 14805.58, + "end": 14806.42, + "probability": 0.7258 + }, + { + "start": 14806.8, + "end": 14807.4, + "probability": 0.5895 + }, + { + "start": 14807.42, + "end": 14809.22, + "probability": 0.7748 + }, + { + "start": 14809.26, + "end": 14812.66, + "probability": 0.9946 + }, + { + "start": 14812.94, + "end": 14812.94, + "probability": 0.1372 + }, + { + "start": 14812.94, + "end": 14815.34, + "probability": 0.8124 + }, + { + "start": 14815.5, + "end": 14817.8, + "probability": 0.9329 + }, + { + "start": 14818.1, + "end": 14819.92, + "probability": 0.7571 + }, + { + "start": 14819.92, + "end": 14820.94, + "probability": 0.6573 + }, + { + "start": 14820.94, + "end": 14823.83, + "probability": 0.7842 + }, + { + "start": 14824.56, + "end": 14824.74, + "probability": 0.0159 + }, + { + "start": 14824.98, + "end": 14825.58, + "probability": 0.3644 + }, + { + "start": 14825.84, + "end": 14827.26, + "probability": 0.6421 + }, + { + "start": 14827.26, + "end": 14830.14, + "probability": 0.8818 + }, + { + "start": 14830.6, + "end": 14831.22, + "probability": 0.5774 + }, + { + "start": 14831.26, + "end": 14831.76, + "probability": 0.4158 + }, + { + "start": 14832.44, + "end": 14835.31, + "probability": 0.8355 + }, + { + "start": 14835.84, + "end": 14836.24, + "probability": 0.4618 + }, + { + "start": 14836.34, + "end": 14837.52, + "probability": 0.988 + }, + { + "start": 14850.1, + "end": 14852.36, + "probability": 0.7876 + }, + { + "start": 14853.56, + "end": 14855.34, + "probability": 0.6389 + }, + { + "start": 14856.06, + "end": 14857.0, + "probability": 0.7222 + }, + { + "start": 14858.3, + "end": 14861.12, + "probability": 0.9824 + }, + { + "start": 14861.16, + "end": 14864.28, + "probability": 0.7508 + }, + { + "start": 14864.28, + "end": 14864.94, + "probability": 0.2764 + }, + { + "start": 14864.94, + "end": 14865.42, + "probability": 0.3292 + }, + { + "start": 14866.76, + "end": 14868.66, + "probability": 0.7935 + }, + { + "start": 14869.66, + "end": 14872.82, + "probability": 0.9954 + }, + { + "start": 14874.18, + "end": 14876.66, + "probability": 0.9182 + }, + { + "start": 14877.26, + "end": 14881.72, + "probability": 0.9873 + }, + { + "start": 14882.72, + "end": 14884.24, + "probability": 0.9169 + }, + { + "start": 14884.6, + "end": 14887.26, + "probability": 0.8366 + }, + { + "start": 14887.76, + "end": 14888.92, + "probability": 0.888 + }, + { + "start": 14890.0, + "end": 14892.56, + "probability": 0.8044 + }, + { + "start": 14892.84, + "end": 14894.44, + "probability": 0.9652 + }, + { + "start": 14894.6, + "end": 14895.74, + "probability": 0.9186 + }, + { + "start": 14896.06, + "end": 14899.98, + "probability": 0.9468 + }, + { + "start": 14900.36, + "end": 14903.64, + "probability": 0.9268 + }, + { + "start": 14904.3, + "end": 14906.04, + "probability": 0.7471 + }, + { + "start": 14906.58, + "end": 14910.1, + "probability": 0.9221 + }, + { + "start": 14910.56, + "end": 14913.56, + "probability": 0.8165 + }, + { + "start": 14913.84, + "end": 14914.98, + "probability": 0.9728 + }, + { + "start": 14915.42, + "end": 14917.9, + "probability": 0.9335 + }, + { + "start": 14918.6, + "end": 14920.78, + "probability": 0.9723 + }, + { + "start": 14921.18, + "end": 14926.3, + "probability": 0.9854 + }, + { + "start": 14926.8, + "end": 14929.5, + "probability": 0.9366 + }, + { + "start": 14930.32, + "end": 14930.86, + "probability": 0.9396 + }, + { + "start": 14930.98, + "end": 14935.98, + "probability": 0.9801 + }, + { + "start": 14937.1, + "end": 14938.08, + "probability": 0.9792 + }, + { + "start": 14938.18, + "end": 14939.46, + "probability": 0.9381 + }, + { + "start": 14939.58, + "end": 14940.72, + "probability": 0.9294 + }, + { + "start": 14941.54, + "end": 14944.44, + "probability": 0.9244 + }, + { + "start": 14945.14, + "end": 14946.0, + "probability": 0.8677 + }, + { + "start": 14946.2, + "end": 14947.22, + "probability": 0.7489 + }, + { + "start": 14947.5, + "end": 14949.42, + "probability": 0.8385 + }, + { + "start": 14949.6, + "end": 14950.66, + "probability": 0.8565 + }, + { + "start": 14950.74, + "end": 14954.1, + "probability": 0.8209 + }, + { + "start": 14954.2, + "end": 14956.96, + "probability": 0.6568 + }, + { + "start": 14957.0, + "end": 14959.47, + "probability": 0.8721 + }, + { + "start": 14960.38, + "end": 14962.2, + "probability": 0.603 + }, + { + "start": 14962.28, + "end": 14964.46, + "probability": 0.9546 + }, + { + "start": 14965.5, + "end": 14966.86, + "probability": 0.9625 + }, + { + "start": 14967.42, + "end": 14968.9, + "probability": 0.6763 + }, + { + "start": 14969.08, + "end": 14970.52, + "probability": 0.8937 + }, + { + "start": 14970.8, + "end": 14975.28, + "probability": 0.9249 + }, + { + "start": 14975.86, + "end": 14978.46, + "probability": 0.4355 + }, + { + "start": 14979.28, + "end": 14979.64, + "probability": 0.9161 + }, + { + "start": 14979.74, + "end": 14980.23, + "probability": 0.9529 + }, + { + "start": 14980.46, + "end": 14984.06, + "probability": 0.9762 + }, + { + "start": 14984.64, + "end": 14988.92, + "probability": 0.9627 + }, + { + "start": 14989.56, + "end": 14990.78, + "probability": 0.7827 + }, + { + "start": 14992.46, + "end": 14994.34, + "probability": 0.5709 + }, + { + "start": 14994.34, + "end": 14997.3, + "probability": 0.8166 + }, + { + "start": 14997.54, + "end": 14999.62, + "probability": 0.7715 + }, + { + "start": 15000.0, + "end": 15001.32, + "probability": 0.7363 + }, + { + "start": 15001.48, + "end": 15008.16, + "probability": 0.9551 + }, + { + "start": 15008.76, + "end": 15010.2, + "probability": 0.9856 + }, + { + "start": 15010.64, + "end": 15013.68, + "probability": 0.9977 + }, + { + "start": 15014.24, + "end": 15019.26, + "probability": 0.866 + }, + { + "start": 15019.36, + "end": 15020.38, + "probability": 0.4906 + }, + { + "start": 15020.84, + "end": 15021.52, + "probability": 0.7737 + }, + { + "start": 15021.58, + "end": 15022.38, + "probability": 0.6713 + }, + { + "start": 15022.7, + "end": 15024.38, + "probability": 0.6592 + }, + { + "start": 15026.61, + "end": 15029.64, + "probability": 0.9953 + }, + { + "start": 15029.98, + "end": 15032.64, + "probability": 0.9834 + }, + { + "start": 15033.78, + "end": 15036.42, + "probability": 0.9634 + }, + { + "start": 15037.26, + "end": 15041.54, + "probability": 0.8959 + }, + { + "start": 15041.66, + "end": 15042.1, + "probability": 0.8508 + }, + { + "start": 15042.44, + "end": 15043.32, + "probability": 0.9638 + }, + { + "start": 15044.56, + "end": 15045.38, + "probability": 0.5284 + }, + { + "start": 15046.12, + "end": 15047.06, + "probability": 0.9082 + }, + { + "start": 15047.22, + "end": 15049.38, + "probability": 0.6898 + }, + { + "start": 15049.44, + "end": 15049.78, + "probability": 0.5986 + }, + { + "start": 15050.72, + "end": 15055.06, + "probability": 0.5806 + }, + { + "start": 15055.08, + "end": 15056.18, + "probability": 0.8298 + }, + { + "start": 15056.38, + "end": 15060.66, + "probability": 0.8663 + }, + { + "start": 15061.38, + "end": 15062.7, + "probability": 0.6663 + }, + { + "start": 15062.76, + "end": 15063.92, + "probability": 0.9584 + }, + { + "start": 15064.24, + "end": 15066.58, + "probability": 0.9232 + }, + { + "start": 15066.98, + "end": 15068.5, + "probability": 0.7575 + }, + { + "start": 15068.68, + "end": 15070.74, + "probability": 0.9841 + }, + { + "start": 15071.46, + "end": 15073.36, + "probability": 0.7393 + }, + { + "start": 15073.6, + "end": 15074.78, + "probability": 0.9949 + }, + { + "start": 15076.1, + "end": 15077.36, + "probability": 0.9229 + }, + { + "start": 15077.48, + "end": 15077.92, + "probability": 0.2195 + }, + { + "start": 15078.0, + "end": 15078.26, + "probability": 0.3955 + }, + { + "start": 15078.44, + "end": 15079.68, + "probability": 0.9331 + }, + { + "start": 15081.03, + "end": 15085.08, + "probability": 0.9465 + }, + { + "start": 15085.14, + "end": 15085.93, + "probability": 0.515 + }, + { + "start": 15086.76, + "end": 15089.86, + "probability": 0.7415 + }, + { + "start": 15089.96, + "end": 15090.14, + "probability": 0.0066 + }, + { + "start": 15091.4, + "end": 15093.16, + "probability": 0.6532 + }, + { + "start": 15095.5, + "end": 15096.22, + "probability": 0.6859 + }, + { + "start": 15097.93, + "end": 15102.06, + "probability": 0.358 + }, + { + "start": 15104.2, + "end": 15106.66, + "probability": 0.4229 + }, + { + "start": 15107.28, + "end": 15110.08, + "probability": 0.6555 + }, + { + "start": 15110.7, + "end": 15111.27, + "probability": 0.6718 + }, + { + "start": 15111.94, + "end": 15112.83, + "probability": 0.6719 + }, + { + "start": 15113.66, + "end": 15114.96, + "probability": 0.8373 + }, + { + "start": 15115.24, + "end": 15117.28, + "probability": 0.8523 + }, + { + "start": 15117.48, + "end": 15120.88, + "probability": 0.9291 + }, + { + "start": 15121.28, + "end": 15122.24, + "probability": 0.6498 + }, + { + "start": 15123.58, + "end": 15125.08, + "probability": 0.8986 + }, + { + "start": 15125.26, + "end": 15127.8, + "probability": 0.978 + }, + { + "start": 15128.06, + "end": 15132.04, + "probability": 0.9915 + }, + { + "start": 15132.22, + "end": 15132.62, + "probability": 0.6175 + }, + { + "start": 15132.74, + "end": 15134.7, + "probability": 0.8162 + }, + { + "start": 15135.02, + "end": 15137.74, + "probability": 0.7488 + }, + { + "start": 15138.54, + "end": 15139.31, + "probability": 0.1845 + }, + { + "start": 15149.54, + "end": 15151.46, + "probability": 0.7585 + }, + { + "start": 15152.32, + "end": 15154.88, + "probability": 0.6611 + }, + { + "start": 15156.8, + "end": 15157.58, + "probability": 0.6911 + }, + { + "start": 15159.96, + "end": 15162.91, + "probability": 0.7764 + }, + { + "start": 15164.62, + "end": 15170.4, + "probability": 0.9839 + }, + { + "start": 15171.6, + "end": 15173.28, + "probability": 0.7857 + }, + { + "start": 15174.5, + "end": 15175.52, + "probability": 0.6306 + }, + { + "start": 15176.4, + "end": 15177.66, + "probability": 0.7507 + }, + { + "start": 15178.62, + "end": 15178.99, + "probability": 0.9351 + }, + { + "start": 15180.42, + "end": 15181.02, + "probability": 0.9663 + }, + { + "start": 15181.1, + "end": 15186.96, + "probability": 0.9844 + }, + { + "start": 15187.58, + "end": 15188.06, + "probability": 0.9738 + }, + { + "start": 15188.68, + "end": 15190.22, + "probability": 0.7465 + }, + { + "start": 15191.94, + "end": 15197.24, + "probability": 0.8179 + }, + { + "start": 15198.0, + "end": 15200.32, + "probability": 0.9585 + }, + { + "start": 15201.1, + "end": 15206.62, + "probability": 0.994 + }, + { + "start": 15207.0, + "end": 15207.26, + "probability": 0.6674 + }, + { + "start": 15208.3, + "end": 15209.62, + "probability": 0.8035 + }, + { + "start": 15212.26, + "end": 15218.48, + "probability": 0.4019 + }, + { + "start": 15219.26, + "end": 15223.62, + "probability": 0.8455 + }, + { + "start": 15223.66, + "end": 15224.82, + "probability": 0.4122 + }, + { + "start": 15225.06, + "end": 15226.16, + "probability": 0.9276 + }, + { + "start": 15226.26, + "end": 15231.26, + "probability": 0.9921 + }, + { + "start": 15231.84, + "end": 15232.56, + "probability": 0.7977 + }, + { + "start": 15234.43, + "end": 15242.1, + "probability": 0.9858 + }, + { + "start": 15242.82, + "end": 15247.14, + "probability": 0.9711 + }, + { + "start": 15247.82, + "end": 15253.7, + "probability": 0.9543 + }, + { + "start": 15254.44, + "end": 15255.56, + "probability": 0.8877 + }, + { + "start": 15257.26, + "end": 15258.92, + "probability": 0.9955 + }, + { + "start": 15259.04, + "end": 15260.38, + "probability": 0.8417 + }, + { + "start": 15260.48, + "end": 15263.36, + "probability": 0.9926 + }, + { + "start": 15263.8, + "end": 15265.94, + "probability": 0.9406 + }, + { + "start": 15266.08, + "end": 15266.84, + "probability": 0.7407 + }, + { + "start": 15266.96, + "end": 15268.54, + "probability": 0.947 + }, + { + "start": 15268.86, + "end": 15272.52, + "probability": 0.9933 + }, + { + "start": 15272.8, + "end": 15274.32, + "probability": 0.9827 + }, + { + "start": 15277.41, + "end": 15280.39, + "probability": 0.5488 + }, + { + "start": 15281.9, + "end": 15284.44, + "probability": 0.9984 + }, + { + "start": 15285.1, + "end": 15286.44, + "probability": 0.9798 + }, + { + "start": 15286.98, + "end": 15290.36, + "probability": 0.828 + }, + { + "start": 15291.02, + "end": 15291.8, + "probability": 0.7215 + }, + { + "start": 15293.28, + "end": 15297.1, + "probability": 0.943 + }, + { + "start": 15297.18, + "end": 15299.34, + "probability": 0.794 + }, + { + "start": 15300.88, + "end": 15303.96, + "probability": 0.9786 + }, + { + "start": 15304.0, + "end": 15309.28, + "probability": 0.9733 + }, + { + "start": 15309.84, + "end": 15312.24, + "probability": 0.9609 + }, + { + "start": 15313.06, + "end": 15315.74, + "probability": 0.9572 + }, + { + "start": 15315.78, + "end": 15316.84, + "probability": 0.9144 + }, + { + "start": 15318.04, + "end": 15319.46, + "probability": 0.9795 + }, + { + "start": 15319.9, + "end": 15322.36, + "probability": 0.9578 + }, + { + "start": 15322.42, + "end": 15325.61, + "probability": 0.9858 + }, + { + "start": 15326.24, + "end": 15326.96, + "probability": 0.846 + }, + { + "start": 15327.1, + "end": 15328.08, + "probability": 0.9745 + }, + { + "start": 15328.22, + "end": 15332.16, + "probability": 0.9578 + }, + { + "start": 15335.68, + "end": 15337.54, + "probability": 0.6751 + }, + { + "start": 15338.18, + "end": 15342.84, + "probability": 0.9977 + }, + { + "start": 15343.42, + "end": 15345.7, + "probability": 0.9563 + }, + { + "start": 15345.92, + "end": 15346.64, + "probability": 0.8901 + }, + { + "start": 15347.0, + "end": 15348.14, + "probability": 0.9858 + }, + { + "start": 15348.14, + "end": 15350.38, + "probability": 0.5157 + }, + { + "start": 15350.38, + "end": 15350.45, + "probability": 0.1208 + }, + { + "start": 15351.16, + "end": 15353.62, + "probability": 0.858 + }, + { + "start": 15353.7, + "end": 15355.22, + "probability": 0.9451 + }, + { + "start": 15355.26, + "end": 15356.0, + "probability": 0.9374 + }, + { + "start": 15356.06, + "end": 15357.6, + "probability": 0.9941 + }, + { + "start": 15357.94, + "end": 15360.0, + "probability": 0.6332 + }, + { + "start": 15360.36, + "end": 15362.42, + "probability": 0.9532 + }, + { + "start": 15362.64, + "end": 15363.38, + "probability": 0.8462 + }, + { + "start": 15363.74, + "end": 15367.62, + "probability": 0.9553 + }, + { + "start": 15367.72, + "end": 15370.58, + "probability": 0.9773 + }, + { + "start": 15370.74, + "end": 15370.96, + "probability": 0.372 + }, + { + "start": 15371.02, + "end": 15373.0, + "probability": 0.7806 + }, + { + "start": 15373.12, + "end": 15375.62, + "probability": 0.889 + }, + { + "start": 15399.13, + "end": 15401.54, + "probability": 0.8625 + }, + { + "start": 15401.86, + "end": 15402.24, + "probability": 0.3103 + }, + { + "start": 15402.26, + "end": 15404.54, + "probability": 0.3452 + }, + { + "start": 15405.52, + "end": 15407.22, + "probability": 0.542 + }, + { + "start": 15408.7, + "end": 15410.42, + "probability": 0.9712 + }, + { + "start": 15410.54, + "end": 15412.04, + "probability": 0.8979 + }, + { + "start": 15413.42, + "end": 15421.44, + "probability": 0.8909 + }, + { + "start": 15422.34, + "end": 15423.3, + "probability": 0.5158 + }, + { + "start": 15425.12, + "end": 15428.58, + "probability": 0.8103 + }, + { + "start": 15430.28, + "end": 15433.34, + "probability": 0.6659 + }, + { + "start": 15434.7, + "end": 15441.08, + "probability": 0.8446 + }, + { + "start": 15441.08, + "end": 15446.32, + "probability": 0.9337 + }, + { + "start": 15447.12, + "end": 15451.84, + "probability": 0.9483 + }, + { + "start": 15452.9, + "end": 15457.31, + "probability": 0.7024 + }, + { + "start": 15457.78, + "end": 15464.82, + "probability": 0.7038 + }, + { + "start": 15469.62, + "end": 15475.86, + "probability": 0.5589 + }, + { + "start": 15476.56, + "end": 15480.96, + "probability": 0.832 + }, + { + "start": 15480.96, + "end": 15485.32, + "probability": 0.9888 + }, + { + "start": 15485.82, + "end": 15492.88, + "probability": 0.5979 + }, + { + "start": 15494.02, + "end": 15497.54, + "probability": 0.9972 + }, + { + "start": 15498.96, + "end": 15502.36, + "probability": 0.9518 + }, + { + "start": 15503.54, + "end": 15505.4, + "probability": 0.9723 + }, + { + "start": 15505.9, + "end": 15509.68, + "probability": 0.923 + }, + { + "start": 15510.78, + "end": 15513.36, + "probability": 0.9941 + }, + { + "start": 15513.42, + "end": 15519.44, + "probability": 0.9855 + }, + { + "start": 15520.58, + "end": 15525.76, + "probability": 0.9966 + }, + { + "start": 15526.94, + "end": 15530.38, + "probability": 0.9806 + }, + { + "start": 15530.52, + "end": 15531.64, + "probability": 0.7091 + }, + { + "start": 15531.74, + "end": 15533.26, + "probability": 0.9302 + }, + { + "start": 15533.9, + "end": 15536.86, + "probability": 0.9032 + }, + { + "start": 15537.66, + "end": 15544.82, + "probability": 0.8503 + }, + { + "start": 15544.96, + "end": 15546.16, + "probability": 0.6984 + }, + { + "start": 15546.92, + "end": 15547.92, + "probability": 0.9707 + }, + { + "start": 15548.34, + "end": 15550.7, + "probability": 0.9253 + }, + { + "start": 15552.24, + "end": 15552.9, + "probability": 0.9388 + }, + { + "start": 15554.42, + "end": 15555.54, + "probability": 0.8262 + }, + { + "start": 15555.7, + "end": 15560.1, + "probability": 0.9558 + }, + { + "start": 15560.16, + "end": 15563.02, + "probability": 0.6647 + }, + { + "start": 15563.02, + "end": 15564.54, + "probability": 0.9182 + }, + { + "start": 15564.62, + "end": 15565.9, + "probability": 0.9867 + }, + { + "start": 15567.2, + "end": 15570.54, + "probability": 0.9397 + }, + { + "start": 15570.62, + "end": 15571.96, + "probability": 0.9636 + }, + { + "start": 15572.5, + "end": 15573.72, + "probability": 0.9661 + }, + { + "start": 15574.1, + "end": 15575.04, + "probability": 0.8488 + }, + { + "start": 15575.12, + "end": 15575.8, + "probability": 0.8188 + }, + { + "start": 15576.28, + "end": 15578.28, + "probability": 0.8982 + }, + { + "start": 15578.46, + "end": 15579.0, + "probability": 0.7777 + }, + { + "start": 15580.24, + "end": 15586.34, + "probability": 0.9828 + }, + { + "start": 15586.52, + "end": 15590.34, + "probability": 0.9938 + }, + { + "start": 15591.26, + "end": 15594.28, + "probability": 0.9737 + }, + { + "start": 15595.32, + "end": 15597.5, + "probability": 0.7645 + }, + { + "start": 15598.98, + "end": 15599.94, + "probability": 0.6584 + }, + { + "start": 15600.7, + "end": 15602.12, + "probability": 0.9875 + }, + { + "start": 15602.74, + "end": 15603.34, + "probability": 0.8571 + }, + { + "start": 15603.56, + "end": 15605.44, + "probability": 0.9568 + }, + { + "start": 15606.1, + "end": 15608.55, + "probability": 0.9497 + }, + { + "start": 15627.88, + "end": 15627.88, + "probability": 0.0232 + }, + { + "start": 15627.88, + "end": 15630.68, + "probability": 0.8462 + }, + { + "start": 15635.24, + "end": 15636.5, + "probability": 0.3795 + }, + { + "start": 15636.72, + "end": 15637.94, + "probability": 0.1974 + }, + { + "start": 15638.08, + "end": 15638.58, + "probability": 0.8427 + }, + { + "start": 15638.76, + "end": 15640.08, + "probability": 0.7246 + }, + { + "start": 15640.9, + "end": 15643.28, + "probability": 0.9761 + }, + { + "start": 15643.28, + "end": 15651.12, + "probability": 0.9299 + }, + { + "start": 15651.2, + "end": 15654.28, + "probability": 0.9408 + }, + { + "start": 15655.14, + "end": 15656.5, + "probability": 0.0627 + }, + { + "start": 15657.96, + "end": 15663.02, + "probability": 0.9135 + }, + { + "start": 15663.48, + "end": 15666.82, + "probability": 0.9692 + }, + { + "start": 15667.32, + "end": 15673.62, + "probability": 0.9722 + }, + { + "start": 15673.62, + "end": 15679.18, + "probability": 0.999 + }, + { + "start": 15679.96, + "end": 15684.19, + "probability": 0.8952 + }, + { + "start": 15685.58, + "end": 15688.02, + "probability": 0.0258 + }, + { + "start": 15688.26, + "end": 15690.18, + "probability": 0.3427 + }, + { + "start": 15692.94, + "end": 15697.6, + "probability": 0.3221 + }, + { + "start": 15697.94, + "end": 15700.98, + "probability": 0.1709 + }, + { + "start": 15701.0, + "end": 15703.2, + "probability": 0.0698 + }, + { + "start": 15703.86, + "end": 15704.48, + "probability": 0.0496 + }, + { + "start": 15705.66, + "end": 15707.38, + "probability": 0.0386 + }, + { + "start": 15707.9, + "end": 15708.22, + "probability": 0.0857 + }, + { + "start": 15708.22, + "end": 15708.22, + "probability": 0.0756 + }, + { + "start": 15708.22, + "end": 15708.22, + "probability": 0.0998 + }, + { + "start": 15708.22, + "end": 15709.2, + "probability": 0.1389 + }, + { + "start": 15710.82, + "end": 15715.1, + "probability": 0.9064 + }, + { + "start": 15715.1, + "end": 15718.9, + "probability": 0.9878 + }, + { + "start": 15719.78, + "end": 15720.64, + "probability": 0.7814 + }, + { + "start": 15720.7, + "end": 15727.72, + "probability": 0.9448 + }, + { + "start": 15728.12, + "end": 15729.48, + "probability": 0.7405 + }, + { + "start": 15729.9, + "end": 15733.72, + "probability": 0.8125 + }, + { + "start": 15733.72, + "end": 15738.42, + "probability": 0.9916 + }, + { + "start": 15738.84, + "end": 15739.92, + "probability": 0.7437 + }, + { + "start": 15740.06, + "end": 15740.54, + "probability": 0.5264 + }, + { + "start": 15740.58, + "end": 15741.12, + "probability": 0.7429 + }, + { + "start": 15741.18, + "end": 15743.78, + "probability": 0.9906 + }, + { + "start": 15743.78, + "end": 15747.96, + "probability": 0.998 + }, + { + "start": 15748.74, + "end": 15749.8, + "probability": 0.7046 + }, + { + "start": 15749.92, + "end": 15750.68, + "probability": 0.8284 + }, + { + "start": 15750.82, + "end": 15751.72, + "probability": 0.5902 + }, + { + "start": 15751.92, + "end": 15753.38, + "probability": 0.8604 + }, + { + "start": 15753.46, + "end": 15758.46, + "probability": 0.8716 + }, + { + "start": 15758.72, + "end": 15762.54, + "probability": 0.9843 + }, + { + "start": 15762.54, + "end": 15766.42, + "probability": 0.9055 + }, + { + "start": 15766.78, + "end": 15768.44, + "probability": 0.8256 + }, + { + "start": 15768.94, + "end": 15769.04, + "probability": 0.099 + }, + { + "start": 15769.04, + "end": 15770.92, + "probability": 0.9366 + }, + { + "start": 15771.1, + "end": 15773.62, + "probability": 0.9305 + }, + { + "start": 15774.08, + "end": 15779.92, + "probability": 0.9227 + }, + { + "start": 15780.3, + "end": 15780.94, + "probability": 0.4494 + }, + { + "start": 15781.14, + "end": 15784.14, + "probability": 0.8465 + }, + { + "start": 15784.32, + "end": 15787.76, + "probability": 0.7698 + }, + { + "start": 15787.94, + "end": 15791.06, + "probability": 0.837 + }, + { + "start": 15791.42, + "end": 15794.68, + "probability": 0.6971 + }, + { + "start": 15795.58, + "end": 15799.4, + "probability": 0.9541 + }, + { + "start": 15799.98, + "end": 15803.92, + "probability": 0.983 + }, + { + "start": 15804.06, + "end": 15805.12, + "probability": 0.8901 + }, + { + "start": 15805.2, + "end": 15805.92, + "probability": 0.6246 + }, + { + "start": 15806.06, + "end": 15806.3, + "probability": 0.5822 + }, + { + "start": 15806.6, + "end": 15809.76, + "probability": 0.8346 + }, + { + "start": 15810.26, + "end": 15812.15, + "probability": 0.9907 + }, + { + "start": 15812.72, + "end": 15813.83, + "probability": 0.9199 + }, + { + "start": 15814.5, + "end": 15815.43, + "probability": 0.9974 + }, + { + "start": 15816.34, + "end": 15817.48, + "probability": 0.7747 + }, + { + "start": 15818.04, + "end": 15821.3, + "probability": 0.709 + }, + { + "start": 15821.58, + "end": 15827.48, + "probability": 0.7037 + }, + { + "start": 15827.7, + "end": 15828.54, + "probability": 0.4143 + }, + { + "start": 15828.66, + "end": 15829.7, + "probability": 0.5274 + }, + { + "start": 15830.18, + "end": 15831.18, + "probability": 0.7061 + }, + { + "start": 15831.6, + "end": 15833.39, + "probability": 0.9416 + }, + { + "start": 15834.91, + "end": 15837.62, + "probability": 0.8364 + }, + { + "start": 15837.72, + "end": 15840.21, + "probability": 0.6127 + }, + { + "start": 15840.82, + "end": 15845.77, + "probability": 0.7924 + }, + { + "start": 15846.58, + "end": 15847.5, + "probability": 0.8441 + }, + { + "start": 15847.64, + "end": 15851.2, + "probability": 0.3402 + }, + { + "start": 15852.08, + "end": 15856.12, + "probability": 0.3391 + }, + { + "start": 15856.2, + "end": 15858.8, + "probability": 0.1772 + }, + { + "start": 15858.8, + "end": 15861.0, + "probability": 0.2509 + }, + { + "start": 15861.1, + "end": 15863.0, + "probability": 0.1132 + }, + { + "start": 15863.22, + "end": 15863.3, + "probability": 0.3114 + }, + { + "start": 15865.1, + "end": 15867.42, + "probability": 0.0254 + }, + { + "start": 15867.42, + "end": 15867.42, + "probability": 0.1394 + }, + { + "start": 15867.42, + "end": 15867.42, + "probability": 0.0853 + }, + { + "start": 15867.42, + "end": 15867.42, + "probability": 0.0432 + }, + { + "start": 15867.42, + "end": 15869.44, + "probability": 0.3612 + }, + { + "start": 15869.5, + "end": 15871.36, + "probability": 0.3369 + }, + { + "start": 15871.68, + "end": 15871.88, + "probability": 0.3441 + }, + { + "start": 15871.9, + "end": 15872.94, + "probability": 0.9148 + }, + { + "start": 15873.26, + "end": 15877.36, + "probability": 0.4039 + }, + { + "start": 15877.36, + "end": 15881.16, + "probability": 0.4341 + }, + { + "start": 15881.94, + "end": 15887.06, + "probability": 0.8095 + }, + { + "start": 15887.4, + "end": 15891.46, + "probability": 0.4798 + }, + { + "start": 15891.46, + "end": 15892.0, + "probability": 0.172 + }, + { + "start": 15892.18, + "end": 15892.22, + "probability": 0.0557 + }, + { + "start": 15892.42, + "end": 15894.2, + "probability": 0.7123 + }, + { + "start": 15894.22, + "end": 15894.22, + "probability": 0.2329 + }, + { + "start": 15894.42, + "end": 15894.96, + "probability": 0.4619 + }, + { + "start": 15895.04, + "end": 15895.16, + "probability": 0.117 + }, + { + "start": 15895.16, + "end": 15897.02, + "probability": 0.0917 + }, + { + "start": 15897.32, + "end": 15899.46, + "probability": 0.6183 + }, + { + "start": 15899.52, + "end": 15902.5, + "probability": 0.2599 + }, + { + "start": 15903.38, + "end": 15905.74, + "probability": 0.8878 + }, + { + "start": 15905.74, + "end": 15906.09, + "probability": 0.1505 + }, + { + "start": 15906.44, + "end": 15906.72, + "probability": 0.2195 + }, + { + "start": 15906.72, + "end": 15909.76, + "probability": 0.8989 + }, + { + "start": 15909.76, + "end": 15914.9, + "probability": 0.8006 + }, + { + "start": 15915.5, + "end": 15916.1, + "probability": 0.8872 + }, + { + "start": 15916.24, + "end": 15917.25, + "probability": 0.5224 + }, + { + "start": 15917.38, + "end": 15918.42, + "probability": 0.4702 + }, + { + "start": 15918.52, + "end": 15918.68, + "probability": 0.2903 + }, + { + "start": 15918.68, + "end": 15920.06, + "probability": 0.5797 + }, + { + "start": 15920.12, + "end": 15920.68, + "probability": 0.5796 + }, + { + "start": 15920.72, + "end": 15921.5, + "probability": 0.3177 + }, + { + "start": 15921.6, + "end": 15921.6, + "probability": 0.3811 + }, + { + "start": 15921.6, + "end": 15921.84, + "probability": 0.4573 + }, + { + "start": 15921.98, + "end": 15923.0, + "probability": 0.7787 + }, + { + "start": 15923.24, + "end": 15924.98, + "probability": 0.632 + }, + { + "start": 15925.18, + "end": 15925.18, + "probability": 0.0472 + }, + { + "start": 15925.18, + "end": 15925.76, + "probability": 0.419 + }, + { + "start": 15925.82, + "end": 15925.82, + "probability": 0.3652 + }, + { + "start": 15925.92, + "end": 15926.06, + "probability": 0.3634 + }, + { + "start": 15926.16, + "end": 15926.52, + "probability": 0.7004 + }, + { + "start": 15926.7, + "end": 15927.98, + "probability": 0.9797 + }, + { + "start": 15928.12, + "end": 15928.38, + "probability": 0.3062 + }, + { + "start": 15928.56, + "end": 15930.22, + "probability": 0.9761 + }, + { + "start": 15931.44, + "end": 15936.0, + "probability": 0.9673 + }, + { + "start": 15936.58, + "end": 15941.6, + "probability": 0.9652 + }, + { + "start": 15942.18, + "end": 15943.68, + "probability": 0.8978 + }, + { + "start": 15943.72, + "end": 15944.22, + "probability": 0.0492 + }, + { + "start": 15944.3, + "end": 15948.8, + "probability": 0.981 + }, + { + "start": 15948.8, + "end": 15952.36, + "probability": 0.7484 + }, + { + "start": 15952.4, + "end": 15955.08, + "probability": 0.9245 + }, + { + "start": 15955.08, + "end": 15958.3, + "probability": 0.5492 + }, + { + "start": 15958.58, + "end": 15959.4, + "probability": 0.4703 + }, + { + "start": 15959.42, + "end": 15960.16, + "probability": 0.757 + }, + { + "start": 15960.76, + "end": 15961.02, + "probability": 0.3327 + }, + { + "start": 15961.02, + "end": 15962.11, + "probability": 0.0156 + }, + { + "start": 15963.0, + "end": 15966.58, + "probability": 0.889 + }, + { + "start": 15966.9, + "end": 15967.96, + "probability": 0.708 + }, + { + "start": 15968.12, + "end": 15969.62, + "probability": 0.6675 + }, + { + "start": 15969.72, + "end": 15972.62, + "probability": 0.8825 + }, + { + "start": 15972.62, + "end": 15972.62, + "probability": 0.0531 + }, + { + "start": 15972.62, + "end": 15975.18, + "probability": 0.9197 + }, + { + "start": 15975.24, + "end": 15981.8, + "probability": 0.7656 + }, + { + "start": 15982.22, + "end": 15982.5, + "probability": 0.553 + }, + { + "start": 15982.84, + "end": 15986.46, + "probability": 0.8779 + }, + { + "start": 15987.96, + "end": 15989.63, + "probability": 0.373 + }, + { + "start": 15991.66, + "end": 16004.58, + "probability": 0.8455 + }, + { + "start": 16004.66, + "end": 16004.86, + "probability": 0.4121 + }, + { + "start": 16004.94, + "end": 16007.14, + "probability": 0.693 + }, + { + "start": 16008.1, + "end": 16012.12, + "probability": 0.7628 + }, + { + "start": 16013.76, + "end": 16017.42, + "probability": 0.8911 + }, + { + "start": 16019.68, + "end": 16021.2, + "probability": 0.7614 + }, + { + "start": 16022.56, + "end": 16026.92, + "probability": 0.8931 + }, + { + "start": 16027.94, + "end": 16030.2, + "probability": 0.8999 + }, + { + "start": 16030.38, + "end": 16034.7, + "probability": 0.9869 + }, + { + "start": 16034.96, + "end": 16036.38, + "probability": 0.8302 + }, + { + "start": 16037.24, + "end": 16038.42, + "probability": 0.9385 + }, + { + "start": 16038.46, + "end": 16039.88, + "probability": 0.9533 + }, + { + "start": 16040.3, + "end": 16043.78, + "probability": 0.9342 + }, + { + "start": 16044.92, + "end": 16051.62, + "probability": 0.8032 + }, + { + "start": 16052.14, + "end": 16054.56, + "probability": 0.939 + }, + { + "start": 16055.04, + "end": 16056.32, + "probability": 0.8962 + }, + { + "start": 16056.36, + "end": 16057.29, + "probability": 0.7881 + }, + { + "start": 16058.14, + "end": 16059.73, + "probability": 0.9922 + }, + { + "start": 16061.76, + "end": 16062.34, + "probability": 0.654 + }, + { + "start": 16062.56, + "end": 16063.14, + "probability": 0.7373 + }, + { + "start": 16063.73, + "end": 16065.78, + "probability": 0.6556 + }, + { + "start": 16066.18, + "end": 16068.28, + "probability": 0.8772 + }, + { + "start": 16070.18, + "end": 16071.9, + "probability": 0.9965 + }, + { + "start": 16072.08, + "end": 16076.28, + "probability": 0.9961 + }, + { + "start": 16077.82, + "end": 16079.04, + "probability": 0.9873 + }, + { + "start": 16079.24, + "end": 16081.24, + "probability": 0.9745 + }, + { + "start": 16081.52, + "end": 16083.96, + "probability": 0.9449 + }, + { + "start": 16084.02, + "end": 16088.1, + "probability": 0.9928 + }, + { + "start": 16088.68, + "end": 16090.96, + "probability": 0.6893 + }, + { + "start": 16091.44, + "end": 16095.6, + "probability": 0.8827 + }, + { + "start": 16095.78, + "end": 16096.16, + "probability": 0.5669 + }, + { + "start": 16096.28, + "end": 16098.3, + "probability": 0.9258 + }, + { + "start": 16098.38, + "end": 16099.44, + "probability": 0.8208 + }, + { + "start": 16101.04, + "end": 16105.3, + "probability": 0.9707 + }, + { + "start": 16105.3, + "end": 16109.62, + "probability": 0.873 + }, + { + "start": 16109.62, + "end": 16113.1, + "probability": 0.9987 + }, + { + "start": 16113.9, + "end": 16117.5, + "probability": 0.9376 + }, + { + "start": 16118.16, + "end": 16119.58, + "probability": 0.796 + }, + { + "start": 16120.1, + "end": 16123.24, + "probability": 0.915 + }, + { + "start": 16123.3, + "end": 16126.8, + "probability": 0.9344 + }, + { + "start": 16127.72, + "end": 16129.0, + "probability": 0.9238 + }, + { + "start": 16129.62, + "end": 16133.34, + "probability": 0.9807 + }, + { + "start": 16133.34, + "end": 16136.88, + "probability": 0.9922 + }, + { + "start": 16137.46, + "end": 16138.28, + "probability": 0.6454 + }, + { + "start": 16138.38, + "end": 16140.26, + "probability": 0.9117 + }, + { + "start": 16140.44, + "end": 16142.36, + "probability": 0.9435 + }, + { + "start": 16142.44, + "end": 16144.04, + "probability": 0.9843 + }, + { + "start": 16144.3, + "end": 16146.0, + "probability": 0.9453 + }, + { + "start": 16146.04, + "end": 16146.68, + "probability": 0.8592 + }, + { + "start": 16146.78, + "end": 16148.2, + "probability": 0.9651 + }, + { + "start": 16148.6, + "end": 16151.14, + "probability": 0.9872 + }, + { + "start": 16151.88, + "end": 16153.74, + "probability": 0.8826 + }, + { + "start": 16153.94, + "end": 16154.14, + "probability": 0.2629 + }, + { + "start": 16154.2, + "end": 16154.48, + "probability": 0.9417 + }, + { + "start": 16154.56, + "end": 16155.1, + "probability": 0.7396 + }, + { + "start": 16155.22, + "end": 16156.5, + "probability": 0.9893 + }, + { + "start": 16157.16, + "end": 16160.8, + "probability": 0.9526 + }, + { + "start": 16161.88, + "end": 16166.54, + "probability": 0.996 + }, + { + "start": 16167.02, + "end": 16170.2, + "probability": 0.8675 + }, + { + "start": 16170.88, + "end": 16171.88, + "probability": 0.6895 + }, + { + "start": 16171.94, + "end": 16175.96, + "probability": 0.988 + }, + { + "start": 16176.76, + "end": 16179.36, + "probability": 0.8744 + }, + { + "start": 16179.84, + "end": 16183.78, + "probability": 0.9621 + }, + { + "start": 16184.36, + "end": 16186.1, + "probability": 0.999 + }, + { + "start": 16186.66, + "end": 16189.26, + "probability": 0.852 + }, + { + "start": 16189.86, + "end": 16190.62, + "probability": 0.5718 + }, + { + "start": 16190.7, + "end": 16195.62, + "probability": 0.9724 + }, + { + "start": 16195.62, + "end": 16200.5, + "probability": 0.9583 + }, + { + "start": 16200.5, + "end": 16205.16, + "probability": 0.9767 + }, + { + "start": 16205.62, + "end": 16207.06, + "probability": 0.5532 + }, + { + "start": 16207.76, + "end": 16210.38, + "probability": 0.9976 + }, + { + "start": 16210.38, + "end": 16212.86, + "probability": 0.9798 + }, + { + "start": 16213.3, + "end": 16217.16, + "probability": 0.9893 + }, + { + "start": 16217.16, + "end": 16221.8, + "probability": 0.9031 + }, + { + "start": 16222.28, + "end": 16223.15, + "probability": 0.911 + }, + { + "start": 16224.48, + "end": 16227.26, + "probability": 0.9717 + }, + { + "start": 16227.3, + "end": 16228.2, + "probability": 0.9325 + }, + { + "start": 16228.68, + "end": 16230.58, + "probability": 0.8354 + }, + { + "start": 16232.08, + "end": 16234.08, + "probability": 0.8284 + }, + { + "start": 16234.3, + "end": 16234.64, + "probability": 0.6138 + }, + { + "start": 16234.72, + "end": 16235.12, + "probability": 0.389 + }, + { + "start": 16235.44, + "end": 16235.44, + "probability": 0.1613 + }, + { + "start": 16235.46, + "end": 16237.4, + "probability": 0.8234 + }, + { + "start": 16237.48, + "end": 16238.86, + "probability": 0.969 + }, + { + "start": 16238.94, + "end": 16239.98, + "probability": 0.9688 + }, + { + "start": 16240.06, + "end": 16241.74, + "probability": 0.2078 + }, + { + "start": 16242.3, + "end": 16245.62, + "probability": 0.9344 + }, + { + "start": 16246.89, + "end": 16252.0, + "probability": 0.8774 + }, + { + "start": 16252.32, + "end": 16253.28, + "probability": 0.8722 + }, + { + "start": 16253.32, + "end": 16256.48, + "probability": 0.9524 + }, + { + "start": 16259.08, + "end": 16260.32, + "probability": 0.8926 + }, + { + "start": 16260.44, + "end": 16261.34, + "probability": 0.8778 + }, + { + "start": 16261.8, + "end": 16263.32, + "probability": 0.9918 + }, + { + "start": 16263.48, + "end": 16266.74, + "probability": 0.9359 + }, + { + "start": 16267.72, + "end": 16268.5, + "probability": 0.7991 + }, + { + "start": 16268.62, + "end": 16274.76, + "probability": 0.9551 + }, + { + "start": 16275.04, + "end": 16276.56, + "probability": 0.8129 + }, + { + "start": 16276.66, + "end": 16278.32, + "probability": 0.9246 + }, + { + "start": 16278.6, + "end": 16279.46, + "probability": 0.9679 + }, + { + "start": 16279.72, + "end": 16281.92, + "probability": 0.9693 + }, + { + "start": 16281.92, + "end": 16285.6, + "probability": 0.9567 + }, + { + "start": 16285.7, + "end": 16287.22, + "probability": 0.8026 + }, + { + "start": 16287.6, + "end": 16288.06, + "probability": 0.6619 + }, + { + "start": 16288.1, + "end": 16289.24, + "probability": 0.985 + }, + { + "start": 16289.38, + "end": 16292.7, + "probability": 0.9663 + }, + { + "start": 16293.12, + "end": 16295.74, + "probability": 0.8382 + }, + { + "start": 16295.8, + "end": 16299.66, + "probability": 0.793 + }, + { + "start": 16299.88, + "end": 16300.36, + "probability": 0.9306 + }, + { + "start": 16312.3, + "end": 16313.76, + "probability": 0.4411 + }, + { + "start": 16315.54, + "end": 16316.06, + "probability": 0.6946 + }, + { + "start": 16316.82, + "end": 16317.7, + "probability": 0.6881 + }, + { + "start": 16320.1, + "end": 16323.32, + "probability": 0.9004 + }, + { + "start": 16324.9, + "end": 16326.06, + "probability": 0.9468 + }, + { + "start": 16327.34, + "end": 16329.56, + "probability": 0.9746 + }, + { + "start": 16331.6, + "end": 16334.64, + "probability": 0.7772 + }, + { + "start": 16335.78, + "end": 16336.36, + "probability": 0.2732 + }, + { + "start": 16337.74, + "end": 16338.86, + "probability": 0.6736 + }, + { + "start": 16338.96, + "end": 16339.56, + "probability": 0.8562 + }, + { + "start": 16341.48, + "end": 16344.38, + "probability": 0.9724 + }, + { + "start": 16344.9, + "end": 16345.04, + "probability": 0.1579 + }, + { + "start": 16346.66, + "end": 16347.18, + "probability": 0.0618 + }, + { + "start": 16347.18, + "end": 16349.02, + "probability": 0.3345 + }, + { + "start": 16349.02, + "end": 16349.02, + "probability": 0.5972 + }, + { + "start": 16349.16, + "end": 16349.94, + "probability": 0.8848 + }, + { + "start": 16350.12, + "end": 16352.98, + "probability": 0.6326 + }, + { + "start": 16353.1, + "end": 16353.86, + "probability": 0.014 + }, + { + "start": 16354.16, + "end": 16356.16, + "probability": 0.8364 + }, + { + "start": 16357.4, + "end": 16358.38, + "probability": 0.5294 + }, + { + "start": 16358.42, + "end": 16359.18, + "probability": 0.8199 + }, + { + "start": 16359.24, + "end": 16360.26, + "probability": 0.8322 + }, + { + "start": 16360.64, + "end": 16361.42, + "probability": 0.9543 + }, + { + "start": 16361.58, + "end": 16363.24, + "probability": 0.927 + }, + { + "start": 16363.44, + "end": 16366.36, + "probability": 0.8176 + }, + { + "start": 16366.72, + "end": 16367.98, + "probability": 0.6432 + }, + { + "start": 16368.22, + "end": 16369.98, + "probability": 0.7659 + }, + { + "start": 16370.92, + "end": 16375.54, + "probability": 0.9858 + }, + { + "start": 16376.64, + "end": 16380.98, + "probability": 0.8824 + }, + { + "start": 16381.92, + "end": 16386.46, + "probability": 0.5608 + }, + { + "start": 16386.62, + "end": 16387.34, + "probability": 0.6122 + }, + { + "start": 16387.42, + "end": 16388.55, + "probability": 0.519 + }, + { + "start": 16389.06, + "end": 16392.44, + "probability": 0.9915 + }, + { + "start": 16393.24, + "end": 16394.52, + "probability": 0.9912 + }, + { + "start": 16394.76, + "end": 16397.98, + "probability": 0.748 + }, + { + "start": 16398.62, + "end": 16400.82, + "probability": 0.9966 + }, + { + "start": 16401.56, + "end": 16404.54, + "probability": 0.9647 + }, + { + "start": 16404.54, + "end": 16408.98, + "probability": 0.9863 + }, + { + "start": 16409.68, + "end": 16412.88, + "probability": 0.9967 + }, + { + "start": 16413.6, + "end": 16414.81, + "probability": 0.9973 + }, + { + "start": 16415.8, + "end": 16417.23, + "probability": 0.9027 + }, + { + "start": 16418.14, + "end": 16419.34, + "probability": 0.9738 + }, + { + "start": 16419.48, + "end": 16421.44, + "probability": 0.892 + }, + { + "start": 16422.36, + "end": 16423.84, + "probability": 0.9456 + }, + { + "start": 16423.94, + "end": 16428.64, + "probability": 0.7593 + }, + { + "start": 16429.5, + "end": 16430.52, + "probability": 0.7231 + }, + { + "start": 16432.04, + "end": 16439.8, + "probability": 0.9782 + }, + { + "start": 16440.76, + "end": 16445.86, + "probability": 0.9642 + }, + { + "start": 16446.42, + "end": 16447.9, + "probability": 0.7589 + }, + { + "start": 16448.12, + "end": 16452.66, + "probability": 0.9678 + }, + { + "start": 16453.22, + "end": 16456.96, + "probability": 0.9869 + }, + { + "start": 16457.02, + "end": 16461.64, + "probability": 0.9939 + }, + { + "start": 16462.76, + "end": 16466.14, + "probability": 0.965 + }, + { + "start": 16466.14, + "end": 16469.66, + "probability": 0.9991 + }, + { + "start": 16470.14, + "end": 16471.04, + "probability": 0.7535 + }, + { + "start": 16471.88, + "end": 16476.98, + "probability": 0.9701 + }, + { + "start": 16478.04, + "end": 16480.88, + "probability": 0.9606 + }, + { + "start": 16480.88, + "end": 16486.84, + "probability": 0.9965 + }, + { + "start": 16488.36, + "end": 16493.46, + "probability": 0.9639 + }, + { + "start": 16493.46, + "end": 16498.96, + "probability": 0.9982 + }, + { + "start": 16499.76, + "end": 16505.26, + "probability": 0.9832 + }, + { + "start": 16505.68, + "end": 16507.2, + "probability": 0.8913 + }, + { + "start": 16508.48, + "end": 16508.97, + "probability": 0.8384 + }, + { + "start": 16509.98, + "end": 16510.82, + "probability": 0.6482 + }, + { + "start": 16511.66, + "end": 16518.46, + "probability": 0.9854 + }, + { + "start": 16519.74, + "end": 16520.72, + "probability": 0.8159 + }, + { + "start": 16521.56, + "end": 16524.04, + "probability": 0.9991 + }, + { + "start": 16524.04, + "end": 16527.66, + "probability": 0.9373 + }, + { + "start": 16527.86, + "end": 16529.3, + "probability": 0.7269 + }, + { + "start": 16529.42, + "end": 16530.98, + "probability": 0.775 + }, + { + "start": 16531.36, + "end": 16535.92, + "probability": 0.9158 + }, + { + "start": 16536.82, + "end": 16537.18, + "probability": 0.3056 + }, + { + "start": 16537.34, + "end": 16543.44, + "probability": 0.9646 + }, + { + "start": 16543.7, + "end": 16547.76, + "probability": 0.9325 + }, + { + "start": 16548.28, + "end": 16556.06, + "probability": 0.9663 + }, + { + "start": 16556.64, + "end": 16561.82, + "probability": 0.9495 + }, + { + "start": 16563.04, + "end": 16564.86, + "probability": 0.9442 + }, + { + "start": 16565.7, + "end": 16568.48, + "probability": 0.9256 + }, + { + "start": 16569.52, + "end": 16575.66, + "probability": 0.98 + }, + { + "start": 16576.66, + "end": 16579.32, + "probability": 0.9811 + }, + { + "start": 16580.98, + "end": 16583.04, + "probability": 0.9035 + }, + { + "start": 16584.72, + "end": 16590.08, + "probability": 0.9792 + }, + { + "start": 16590.18, + "end": 16593.76, + "probability": 0.9695 + }, + { + "start": 16594.16, + "end": 16596.03, + "probability": 0.9901 + }, + { + "start": 16596.14, + "end": 16597.12, + "probability": 0.7225 + }, + { + "start": 16597.58, + "end": 16599.32, + "probability": 0.8442 + }, + { + "start": 16599.59, + "end": 16602.3, + "probability": 0.8527 + }, + { + "start": 16603.36, + "end": 16607.92, + "probability": 0.948 + }, + { + "start": 16608.36, + "end": 16611.38, + "probability": 0.973 + }, + { + "start": 16612.74, + "end": 16616.02, + "probability": 0.9992 + }, + { + "start": 16616.02, + "end": 16618.62, + "probability": 0.995 + }, + { + "start": 16619.34, + "end": 16620.92, + "probability": 0.9958 + }, + { + "start": 16621.96, + "end": 16625.28, + "probability": 0.998 + }, + { + "start": 16626.0, + "end": 16631.28, + "probability": 0.9967 + }, + { + "start": 16632.58, + "end": 16635.48, + "probability": 0.9151 + }, + { + "start": 16636.12, + "end": 16637.52, + "probability": 0.9627 + }, + { + "start": 16638.16, + "end": 16640.24, + "probability": 0.973 + }, + { + "start": 16640.8, + "end": 16642.18, + "probability": 0.9626 + }, + { + "start": 16642.4, + "end": 16645.74, + "probability": 0.9775 + }, + { + "start": 16645.82, + "end": 16651.58, + "probability": 0.711 + }, + { + "start": 16652.14, + "end": 16654.2, + "probability": 0.7864 + }, + { + "start": 16655.4, + "end": 16655.44, + "probability": 0.8059 + }, + { + "start": 16655.62, + "end": 16656.38, + "probability": 0.8687 + }, + { + "start": 16656.44, + "end": 16659.92, + "probability": 0.9728 + }, + { + "start": 16660.06, + "end": 16660.4, + "probability": 0.6252 + }, + { + "start": 16660.64, + "end": 16661.58, + "probability": 0.6964 + }, + { + "start": 16661.62, + "end": 16663.4, + "probability": 0.7302 + }, + { + "start": 16663.46, + "end": 16664.12, + "probability": 0.7836 + }, + { + "start": 16664.32, + "end": 16664.9, + "probability": 0.698 + }, + { + "start": 16665.76, + "end": 16667.34, + "probability": 0.9888 + }, + { + "start": 16668.36, + "end": 16671.26, + "probability": 0.8929 + }, + { + "start": 16672.58, + "end": 16675.78, + "probability": 0.9746 + }, + { + "start": 16675.86, + "end": 16677.48, + "probability": 0.9521 + }, + { + "start": 16678.66, + "end": 16679.88, + "probability": 0.7191 + }, + { + "start": 16680.06, + "end": 16681.82, + "probability": 0.6405 + }, + { + "start": 16682.0, + "end": 16683.58, + "probability": 0.4779 + }, + { + "start": 16683.76, + "end": 16687.74, + "probability": 0.803 + }, + { + "start": 16688.86, + "end": 16691.72, + "probability": 0.99 + }, + { + "start": 16692.7, + "end": 16695.42, + "probability": 0.9791 + }, + { + "start": 16696.3, + "end": 16697.56, + "probability": 0.9474 + }, + { + "start": 16698.38, + "end": 16701.3, + "probability": 0.9762 + }, + { + "start": 16701.62, + "end": 16704.72, + "probability": 0.9922 + }, + { + "start": 16705.34, + "end": 16710.5, + "probability": 0.9961 + }, + { + "start": 16710.6, + "end": 16711.3, + "probability": 0.6147 + }, + { + "start": 16711.98, + "end": 16712.74, + "probability": 0.7554 + }, + { + "start": 16712.84, + "end": 16718.1, + "probability": 0.845 + }, + { + "start": 16718.32, + "end": 16725.42, + "probability": 0.9748 + }, + { + "start": 16725.48, + "end": 16727.08, + "probability": 0.6914 + }, + { + "start": 16727.16, + "end": 16728.05, + "probability": 0.6636 + }, + { + "start": 16729.26, + "end": 16732.34, + "probability": 0.9791 + }, + { + "start": 16733.2, + "end": 16734.66, + "probability": 0.7571 + }, + { + "start": 16734.8, + "end": 16738.44, + "probability": 0.894 + }, + { + "start": 16739.68, + "end": 16741.24, + "probability": 0.7118 + }, + { + "start": 16741.76, + "end": 16744.18, + "probability": 0.999 + }, + { + "start": 16744.62, + "end": 16748.02, + "probability": 0.9221 + }, + { + "start": 16748.04, + "end": 16748.11, + "probability": 0.0114 + }, + { + "start": 16748.6, + "end": 16750.12, + "probability": 0.489 + }, + { + "start": 16750.32, + "end": 16750.98, + "probability": 0.207 + }, + { + "start": 16750.98, + "end": 16753.9, + "probability": 0.873 + }, + { + "start": 16754.2, + "end": 16755.5, + "probability": 0.2819 + }, + { + "start": 16756.48, + "end": 16756.68, + "probability": 0.3923 + }, + { + "start": 16756.86, + "end": 16756.94, + "probability": 0.3166 + }, + { + "start": 16756.94, + "end": 16758.3, + "probability": 0.7661 + }, + { + "start": 16758.4, + "end": 16760.58, + "probability": 0.9927 + }, + { + "start": 16761.42, + "end": 16764.74, + "probability": 0.9686 + }, + { + "start": 16765.56, + "end": 16766.3, + "probability": 0.2073 + }, + { + "start": 16767.2, + "end": 16769.82, + "probability": 0.9326 + }, + { + "start": 16770.66, + "end": 16773.78, + "probability": 0.4214 + }, + { + "start": 16774.14, + "end": 16776.42, + "probability": 0.9774 + }, + { + "start": 16777.3, + "end": 16784.1, + "probability": 0.8688 + }, + { + "start": 16784.94, + "end": 16787.32, + "probability": 0.7668 + }, + { + "start": 16788.12, + "end": 16790.28, + "probability": 0.9663 + }, + { + "start": 16790.4, + "end": 16796.12, + "probability": 0.8101 + }, + { + "start": 16796.46, + "end": 16799.6, + "probability": 0.915 + }, + { + "start": 16800.12, + "end": 16804.62, + "probability": 0.9803 + }, + { + "start": 16804.66, + "end": 16805.1, + "probability": 0.7515 + }, + { + "start": 16805.3, + "end": 16805.62, + "probability": 0.6801 + }, + { + "start": 16805.68, + "end": 16806.98, + "probability": 0.905 + }, + { + "start": 16807.88, + "end": 16808.22, + "probability": 0.5168 + }, + { + "start": 16808.3, + "end": 16809.1, + "probability": 0.7851 + }, + { + "start": 16809.18, + "end": 16810.84, + "probability": 0.9927 + }, + { + "start": 16810.98, + "end": 16811.86, + "probability": 0.7557 + }, + { + "start": 16812.2, + "end": 16813.24, + "probability": 0.9411 + }, + { + "start": 16813.32, + "end": 16816.48, + "probability": 0.957 + }, + { + "start": 16816.94, + "end": 16817.3, + "probability": 0.6053 + }, + { + "start": 16817.68, + "end": 16818.76, + "probability": 0.8224 + }, + { + "start": 16819.92, + "end": 16820.3, + "probability": 0.6121 + }, + { + "start": 16820.36, + "end": 16821.44, + "probability": 0.9012 + }, + { + "start": 16821.66, + "end": 16825.08, + "probability": 0.7382 + }, + { + "start": 16831.86, + "end": 16832.92, + "probability": 0.1783 + }, + { + "start": 16833.02, + "end": 16834.42, + "probability": 0.7275 + }, + { + "start": 16834.66, + "end": 16836.9, + "probability": 0.9946 + }, + { + "start": 16837.82, + "end": 16840.34, + "probability": 0.9966 + }, + { + "start": 16840.34, + "end": 16842.28, + "probability": 0.8939 + }, + { + "start": 16843.94, + "end": 16844.42, + "probability": 0.2818 + }, + { + "start": 16844.42, + "end": 16844.42, + "probability": 0.1139 + }, + { + "start": 16844.42, + "end": 16847.5, + "probability": 0.9572 + }, + { + "start": 16847.66, + "end": 16852.38, + "probability": 0.9442 + }, + { + "start": 16852.54, + "end": 16854.16, + "probability": 0.9827 + }, + { + "start": 16854.24, + "end": 16857.69, + "probability": 0.9723 + }, + { + "start": 16858.22, + "end": 16861.46, + "probability": 0.9967 + }, + { + "start": 16861.84, + "end": 16864.66, + "probability": 0.913 + }, + { + "start": 16864.78, + "end": 16869.72, + "probability": 0.939 + }, + { + "start": 16869.9, + "end": 16872.28, + "probability": 0.9883 + }, + { + "start": 16872.38, + "end": 16872.84, + "probability": 0.6009 + }, + { + "start": 16872.92, + "end": 16876.02, + "probability": 0.898 + }, + { + "start": 16876.22, + "end": 16877.46, + "probability": 0.9958 + }, + { + "start": 16877.58, + "end": 16878.08, + "probability": 0.8144 + }, + { + "start": 16878.26, + "end": 16879.3, + "probability": 0.9486 + }, + { + "start": 16879.4, + "end": 16880.58, + "probability": 0.9656 + }, + { + "start": 16880.64, + "end": 16882.28, + "probability": 0.9137 + }, + { + "start": 16882.56, + "end": 16885.4, + "probability": 0.9519 + }, + { + "start": 16885.62, + "end": 16888.94, + "probability": 0.9971 + }, + { + "start": 16889.2, + "end": 16891.12, + "probability": 0.8611 + }, + { + "start": 16891.16, + "end": 16892.98, + "probability": 0.9786 + }, + { + "start": 16894.48, + "end": 16896.32, + "probability": 0.5899 + }, + { + "start": 16896.74, + "end": 16898.18, + "probability": 0.563 + }, + { + "start": 16898.18, + "end": 16898.18, + "probability": 0.6669 + }, + { + "start": 16898.42, + "end": 16900.52, + "probability": 0.6747 + }, + { + "start": 16900.54, + "end": 16901.12, + "probability": 0.9305 + }, + { + "start": 16908.44, + "end": 16909.7, + "probability": 0.6035 + }, + { + "start": 16909.78, + "end": 16911.22, + "probability": 0.7486 + }, + { + "start": 16911.38, + "end": 16916.2, + "probability": 0.7477 + }, + { + "start": 16916.44, + "end": 16922.18, + "probability": 0.8887 + }, + { + "start": 16922.56, + "end": 16924.12, + "probability": 0.8916 + }, + { + "start": 16924.18, + "end": 16925.08, + "probability": 0.5473 + }, + { + "start": 16925.18, + "end": 16926.04, + "probability": 0.8678 + }, + { + "start": 16926.16, + "end": 16929.32, + "probability": 0.4765 + }, + { + "start": 16929.32, + "end": 16930.02, + "probability": 0.3685 + }, + { + "start": 16930.8, + "end": 16933.24, + "probability": 0.9417 + }, + { + "start": 16933.96, + "end": 16939.65, + "probability": 0.8856 + }, + { + "start": 16940.84, + "end": 16942.74, + "probability": 0.6712 + }, + { + "start": 16942.74, + "end": 16944.78, + "probability": 0.1749 + }, + { + "start": 16944.78, + "end": 16947.16, + "probability": 0.6516 + }, + { + "start": 16947.7, + "end": 16951.2, + "probability": 0.9468 + }, + { + "start": 16951.38, + "end": 16953.0, + "probability": 0.7343 + }, + { + "start": 16953.48, + "end": 16958.88, + "probability": 0.8761 + }, + { + "start": 16959.08, + "end": 16959.96, + "probability": 0.5939 + }, + { + "start": 16960.58, + "end": 16962.98, + "probability": 0.8461 + }, + { + "start": 16963.98, + "end": 16964.66, + "probability": 0.9458 + }, + { + "start": 16964.76, + "end": 16965.56, + "probability": 0.8481 + }, + { + "start": 16965.98, + "end": 16968.4, + "probability": 0.9573 + }, + { + "start": 16968.96, + "end": 16971.16, + "probability": 0.9896 + }, + { + "start": 16971.16, + "end": 16974.02, + "probability": 0.8641 + }, + { + "start": 16974.14, + "end": 16975.78, + "probability": 0.9026 + }, + { + "start": 16976.02, + "end": 16979.24, + "probability": 0.8677 + }, + { + "start": 16979.24, + "end": 16982.58, + "probability": 0.8705 + }, + { + "start": 16982.86, + "end": 16984.62, + "probability": 0.8777 + }, + { + "start": 16984.9, + "end": 16985.54, + "probability": 0.5362 + }, + { + "start": 16985.7, + "end": 16987.1, + "probability": 0.6318 + }, + { + "start": 16987.18, + "end": 16989.16, + "probability": 0.8033 + }, + { + "start": 16989.44, + "end": 16994.64, + "probability": 0.9794 + }, + { + "start": 16994.72, + "end": 16996.18, + "probability": 0.9307 + }, + { + "start": 16996.48, + "end": 16996.88, + "probability": 0.6483 + }, + { + "start": 16996.96, + "end": 16997.72, + "probability": 0.2441 + }, + { + "start": 16997.9, + "end": 16999.68, + "probability": 0.8214 + }, + { + "start": 16999.98, + "end": 17001.32, + "probability": 0.7655 + }, + { + "start": 17001.56, + "end": 17001.96, + "probability": 0.5118 + }, + { + "start": 17002.0, + "end": 17002.9, + "probability": 0.8831 + }, + { + "start": 17002.94, + "end": 17003.32, + "probability": 0.7811 + }, + { + "start": 17003.5, + "end": 17004.7, + "probability": 0.6069 + }, + { + "start": 17004.92, + "end": 17005.54, + "probability": 0.8288 + }, + { + "start": 17005.6, + "end": 17006.08, + "probability": 0.8163 + }, + { + "start": 17012.16, + "end": 17012.84, + "probability": 0.6693 + }, + { + "start": 17016.93, + "end": 17024.66, + "probability": 0.6185 + }, + { + "start": 17026.04, + "end": 17027.76, + "probability": 0.9849 + }, + { + "start": 17027.82, + "end": 17029.26, + "probability": 0.9961 + }, + { + "start": 17029.86, + "end": 17030.45, + "probability": 0.5029 + }, + { + "start": 17031.24, + "end": 17032.62, + "probability": 0.987 + }, + { + "start": 17033.42, + "end": 17034.8, + "probability": 0.9851 + }, + { + "start": 17035.88, + "end": 17039.42, + "probability": 0.8612 + }, + { + "start": 17041.89, + "end": 17043.58, + "probability": 0.8823 + }, + { + "start": 17043.68, + "end": 17045.31, + "probability": 0.9854 + }, + { + "start": 17046.58, + "end": 17047.7, + "probability": 0.5604 + }, + { + "start": 17047.76, + "end": 17048.96, + "probability": 0.7608 + }, + { + "start": 17049.34, + "end": 17053.68, + "probability": 0.9639 + }, + { + "start": 17054.26, + "end": 17055.72, + "probability": 0.9856 + }, + { + "start": 17056.56, + "end": 17059.54, + "probability": 0.7919 + }, + { + "start": 17059.54, + "end": 17063.32, + "probability": 0.9487 + }, + { + "start": 17063.5, + "end": 17065.06, + "probability": 0.5733 + }, + { + "start": 17065.86, + "end": 17069.2, + "probability": 0.8025 + }, + { + "start": 17069.6, + "end": 17073.7, + "probability": 0.9155 + }, + { + "start": 17074.3, + "end": 17075.92, + "probability": 0.8864 + }, + { + "start": 17076.34, + "end": 17078.26, + "probability": 0.8243 + }, + { + "start": 17078.42, + "end": 17078.94, + "probability": 0.4757 + }, + { + "start": 17079.0, + "end": 17079.48, + "probability": 0.3208 + }, + { + "start": 17079.5, + "end": 17080.1, + "probability": 0.7966 + }, + { + "start": 17080.32, + "end": 17081.34, + "probability": 0.9739 + }, + { + "start": 17081.66, + "end": 17082.42, + "probability": 0.5724 + }, + { + "start": 17082.78, + "end": 17084.08, + "probability": 0.6283 + }, + { + "start": 17084.9, + "end": 17090.78, + "probability": 0.9768 + }, + { + "start": 17091.32, + "end": 17092.56, + "probability": 0.8525 + }, + { + "start": 17093.88, + "end": 17095.54, + "probability": 0.7455 + }, + { + "start": 17095.9, + "end": 17096.32, + "probability": 0.2399 + }, + { + "start": 17096.38, + "end": 17100.92, + "probability": 0.6911 + }, + { + "start": 17100.94, + "end": 17104.74, + "probability": 0.6633 + }, + { + "start": 17105.1, + "end": 17105.9, + "probability": 0.6539 + }, + { + "start": 17106.2, + "end": 17107.76, + "probability": 0.8712 + }, + { + "start": 17108.52, + "end": 17109.64, + "probability": 0.8828 + }, + { + "start": 17109.88, + "end": 17110.1, + "probability": 0.9618 + }, + { + "start": 17110.26, + "end": 17113.4, + "probability": 0.9919 + }, + { + "start": 17113.88, + "end": 17115.73, + "probability": 0.5171 + }, + { + "start": 17117.4, + "end": 17120.5, + "probability": 0.8485 + }, + { + "start": 17121.04, + "end": 17123.3, + "probability": 0.7683 + }, + { + "start": 17123.3, + "end": 17127.68, + "probability": 0.983 + }, + { + "start": 17127.97, + "end": 17129.76, + "probability": 0.5217 + }, + { + "start": 17129.92, + "end": 17130.36, + "probability": 0.5943 + }, + { + "start": 17130.52, + "end": 17133.24, + "probability": 0.603 + }, + { + "start": 17133.3, + "end": 17134.26, + "probability": 0.8786 + }, + { + "start": 17134.78, + "end": 17135.88, + "probability": 0.2273 + }, + { + "start": 17138.96, + "end": 17141.44, + "probability": 0.5478 + }, + { + "start": 17141.88, + "end": 17144.76, + "probability": 0.9845 + }, + { + "start": 17144.94, + "end": 17146.2, + "probability": 0.9922 + }, + { + "start": 17146.42, + "end": 17150.02, + "probability": 0.9826 + }, + { + "start": 17151.04, + "end": 17154.72, + "probability": 0.9969 + }, + { + "start": 17155.0, + "end": 17159.56, + "probability": 0.9966 + }, + { + "start": 17159.82, + "end": 17162.1, + "probability": 0.8411 + }, + { + "start": 17162.18, + "end": 17163.72, + "probability": 0.9889 + }, + { + "start": 17163.86, + "end": 17166.4, + "probability": 0.8945 + }, + { + "start": 17166.56, + "end": 17170.98, + "probability": 0.938 + }, + { + "start": 17171.86, + "end": 17172.93, + "probability": 0.926 + }, + { + "start": 17173.44, + "end": 17176.08, + "probability": 0.9805 + }, + { + "start": 17176.16, + "end": 17176.78, + "probability": 0.8366 + }, + { + "start": 17176.9, + "end": 17177.74, + "probability": 0.905 + }, + { + "start": 17177.84, + "end": 17178.76, + "probability": 0.7688 + }, + { + "start": 17179.56, + "end": 17184.16, + "probability": 0.989 + }, + { + "start": 17184.82, + "end": 17192.32, + "probability": 0.9286 + }, + { + "start": 17192.9, + "end": 17194.08, + "probability": 0.5322 + }, + { + "start": 17194.4, + "end": 17195.88, + "probability": 0.9593 + }, + { + "start": 17196.2, + "end": 17199.06, + "probability": 0.9775 + }, + { + "start": 17199.06, + "end": 17202.64, + "probability": 0.81 + }, + { + "start": 17204.1, + "end": 17206.34, + "probability": 0.9893 + }, + { + "start": 17206.34, + "end": 17208.56, + "probability": 0.9741 + }, + { + "start": 17208.62, + "end": 17210.92, + "probability": 0.9928 + }, + { + "start": 17211.92, + "end": 17212.68, + "probability": 0.548 + }, + { + "start": 17212.84, + "end": 17216.56, + "probability": 0.9678 + }, + { + "start": 17217.58, + "end": 17219.76, + "probability": 0.856 + }, + { + "start": 17220.0, + "end": 17220.46, + "probability": 0.4796 + }, + { + "start": 17220.56, + "end": 17221.9, + "probability": 0.505 + }, + { + "start": 17221.9, + "end": 17223.32, + "probability": 0.7448 + }, + { + "start": 17223.8, + "end": 17224.14, + "probability": 0.5351 + }, + { + "start": 17224.46, + "end": 17226.02, + "probability": 0.6348 + }, + { + "start": 17226.44, + "end": 17228.68, + "probability": 0.9915 + }, + { + "start": 17228.68, + "end": 17232.54, + "probability": 0.8984 + }, + { + "start": 17233.52, + "end": 17238.34, + "probability": 0.9957 + }, + { + "start": 17238.34, + "end": 17243.64, + "probability": 0.9985 + }, + { + "start": 17244.58, + "end": 17246.08, + "probability": 0.808 + }, + { + "start": 17246.6, + "end": 17249.88, + "probability": 0.6323 + }, + { + "start": 17250.24, + "end": 17253.9, + "probability": 0.9759 + }, + { + "start": 17254.12, + "end": 17256.78, + "probability": 0.9781 + }, + { + "start": 17256.78, + "end": 17260.22, + "probability": 0.9956 + }, + { + "start": 17260.68, + "end": 17264.66, + "probability": 0.9894 + }, + { + "start": 17265.08, + "end": 17267.14, + "probability": 0.8179 + }, + { + "start": 17267.34, + "end": 17271.08, + "probability": 0.9539 + }, + { + "start": 17271.3, + "end": 17272.16, + "probability": 0.5176 + }, + { + "start": 17272.36, + "end": 17275.4, + "probability": 0.9934 + }, + { + "start": 17275.94, + "end": 17276.56, + "probability": 0.848 + }, + { + "start": 17276.86, + "end": 17278.8, + "probability": 0.8975 + }, + { + "start": 17278.96, + "end": 17279.82, + "probability": 0.6643 + }, + { + "start": 17279.9, + "end": 17281.8, + "probability": 0.6027 + }, + { + "start": 17281.98, + "end": 17284.64, + "probability": 0.897 + }, + { + "start": 17285.32, + "end": 17287.74, + "probability": 0.8655 + }, + { + "start": 17287.98, + "end": 17288.78, + "probability": 0.6068 + }, + { + "start": 17288.88, + "end": 17291.16, + "probability": 0.9883 + }, + { + "start": 17291.56, + "end": 17294.5, + "probability": 0.9951 + }, + { + "start": 17294.94, + "end": 17300.02, + "probability": 0.9645 + }, + { + "start": 17300.24, + "end": 17302.6, + "probability": 0.9293 + }, + { + "start": 17302.88, + "end": 17304.22, + "probability": 0.8528 + }, + { + "start": 17304.88, + "end": 17308.18, + "probability": 0.9745 + }, + { + "start": 17308.48, + "end": 17314.52, + "probability": 0.9943 + }, + { + "start": 17315.04, + "end": 17318.76, + "probability": 0.9937 + }, + { + "start": 17319.06, + "end": 17322.92, + "probability": 0.9462 + }, + { + "start": 17323.12, + "end": 17325.9, + "probability": 0.9933 + }, + { + "start": 17326.06, + "end": 17327.08, + "probability": 0.739 + }, + { + "start": 17327.18, + "end": 17329.38, + "probability": 0.973 + }, + { + "start": 17329.66, + "end": 17332.96, + "probability": 0.9671 + }, + { + "start": 17333.42, + "end": 17336.54, + "probability": 0.9995 + }, + { + "start": 17336.91, + "end": 17338.06, + "probability": 0.9127 + }, + { + "start": 17338.16, + "end": 17339.06, + "probability": 0.8421 + }, + { + "start": 17339.08, + "end": 17343.2, + "probability": 0.9966 + }, + { + "start": 17343.66, + "end": 17347.38, + "probability": 0.9944 + }, + { + "start": 17347.8, + "end": 17348.68, + "probability": 0.6923 + }, + { + "start": 17348.78, + "end": 17349.88, + "probability": 0.9607 + }, + { + "start": 17349.94, + "end": 17351.0, + "probability": 0.9785 + }, + { + "start": 17351.12, + "end": 17354.38, + "probability": 0.9743 + }, + { + "start": 17354.4, + "end": 17358.02, + "probability": 0.9858 + }, + { + "start": 17358.14, + "end": 17359.76, + "probability": 0.99 + }, + { + "start": 17360.18, + "end": 17361.1, + "probability": 0.5495 + }, + { + "start": 17361.12, + "end": 17366.08, + "probability": 0.9973 + }, + { + "start": 17366.16, + "end": 17368.32, + "probability": 0.8798 + }, + { + "start": 17369.04, + "end": 17371.02, + "probability": 0.9937 + }, + { + "start": 17371.58, + "end": 17372.16, + "probability": 0.3 + }, + { + "start": 17372.16, + "end": 17373.2, + "probability": 0.6942 + }, + { + "start": 17373.34, + "end": 17376.78, + "probability": 0.9956 + }, + { + "start": 17377.32, + "end": 17380.72, + "probability": 0.1941 + }, + { + "start": 17382.88, + "end": 17383.12, + "probability": 0.4199 + }, + { + "start": 17383.28, + "end": 17386.58, + "probability": 0.9391 + }, + { + "start": 17386.6, + "end": 17387.68, + "probability": 0.6609 + }, + { + "start": 17387.94, + "end": 17390.22, + "probability": 0.6082 + }, + { + "start": 17390.7, + "end": 17391.44, + "probability": 0.9382 + }, + { + "start": 17391.6, + "end": 17392.1, + "probability": 0.6503 + }, + { + "start": 17392.42, + "end": 17394.48, + "probability": 0.9075 + }, + { + "start": 17394.86, + "end": 17395.28, + "probability": 0.723 + }, + { + "start": 17395.42, + "end": 17396.06, + "probability": 0.7363 + }, + { + "start": 17398.98, + "end": 17400.48, + "probability": 0.7373 + }, + { + "start": 17400.88, + "end": 17403.89, + "probability": 0.7151 + }, + { + "start": 17405.88, + "end": 17411.66, + "probability": 0.9834 + }, + { + "start": 17412.78, + "end": 17414.14, + "probability": 0.9655 + }, + { + "start": 17414.3, + "end": 17416.56, + "probability": 0.9226 + }, + { + "start": 17417.44, + "end": 17422.92, + "probability": 0.8304 + }, + { + "start": 17423.64, + "end": 17429.64, + "probability": 0.7179 + }, + { + "start": 17430.78, + "end": 17431.95, + "probability": 0.7146 + }, + { + "start": 17433.78, + "end": 17434.8, + "probability": 0.8739 + }, + { + "start": 17435.58, + "end": 17439.26, + "probability": 0.9824 + }, + { + "start": 17441.74, + "end": 17445.42, + "probability": 0.9678 + }, + { + "start": 17446.1, + "end": 17450.02, + "probability": 0.9351 + }, + { + "start": 17450.06, + "end": 17454.62, + "probability": 0.821 + }, + { + "start": 17454.7, + "end": 17455.54, + "probability": 0.6631 + }, + { + "start": 17455.54, + "end": 17461.88, + "probability": 0.9945 + }, + { + "start": 17462.22, + "end": 17464.08, + "probability": 0.894 + }, + { + "start": 17464.92, + "end": 17466.0, + "probability": 0.8623 + }, + { + "start": 17466.62, + "end": 17467.64, + "probability": 0.7866 + }, + { + "start": 17467.72, + "end": 17469.62, + "probability": 0.7755 + }, + { + "start": 17470.22, + "end": 17471.24, + "probability": 0.7387 + }, + { + "start": 17471.96, + "end": 17473.44, + "probability": 0.7191 + }, + { + "start": 17473.8, + "end": 17474.22, + "probability": 0.8446 + }, + { + "start": 17475.08, + "end": 17479.8, + "probability": 0.9663 + }, + { + "start": 17486.28, + "end": 17487.15, + "probability": 0.8428 + }, + { + "start": 17488.0, + "end": 17489.9, + "probability": 0.1411 + }, + { + "start": 17490.1, + "end": 17492.51, + "probability": 0.0773 + }, + { + "start": 17494.01, + "end": 17494.8, + "probability": 0.2551 + }, + { + "start": 17496.24, + "end": 17497.19, + "probability": 0.1694 + }, + { + "start": 17499.48, + "end": 17501.64, + "probability": 0.2454 + }, + { + "start": 17501.64, + "end": 17503.21, + "probability": 0.5114 + }, + { + "start": 17504.36, + "end": 17506.96, + "probability": 0.9619 + }, + { + "start": 17507.4, + "end": 17510.7, + "probability": 0.0846 + }, + { + "start": 17512.08, + "end": 17514.64, + "probability": 0.2115 + }, + { + "start": 17515.48, + "end": 17516.78, + "probability": 0.7325 + }, + { + "start": 17516.96, + "end": 17518.42, + "probability": 0.9008 + }, + { + "start": 17518.42, + "end": 17521.52, + "probability": 0.716 + }, + { + "start": 17521.98, + "end": 17524.7, + "probability": 0.7925 + }, + { + "start": 17525.32, + "end": 17525.98, + "probability": 0.5494 + }, + { + "start": 17526.14, + "end": 17530.74, + "probability": 0.8617 + }, + { + "start": 17532.7, + "end": 17534.36, + "probability": 0.8141 + }, + { + "start": 17535.84, + "end": 17537.12, + "probability": 0.9015 + }, + { + "start": 17538.9, + "end": 17539.8, + "probability": 0.6355 + }, + { + "start": 17539.94, + "end": 17542.4, + "probability": 0.8112 + }, + { + "start": 17542.64, + "end": 17544.9, + "probability": 0.9956 + }, + { + "start": 17544.98, + "end": 17545.56, + "probability": 0.5784 + }, + { + "start": 17545.76, + "end": 17548.54, + "probability": 0.8694 + }, + { + "start": 17549.6, + "end": 17553.84, + "probability": 0.8191 + }, + { + "start": 17554.24, + "end": 17556.38, + "probability": 0.8684 + }, + { + "start": 17557.26, + "end": 17560.92, + "probability": 0.7428 + }, + { + "start": 17561.32, + "end": 17562.0, + "probability": 0.7043 + }, + { + "start": 17562.88, + "end": 17565.22, + "probability": 0.957 + }, + { + "start": 17566.18, + "end": 17568.52, + "probability": 0.5014 + }, + { + "start": 17569.46, + "end": 17572.06, + "probability": 0.9797 + }, + { + "start": 17573.04, + "end": 17573.14, + "probability": 0.2117 + }, + { + "start": 17573.14, + "end": 17578.3, + "probability": 0.8833 + }, + { + "start": 17578.9, + "end": 17579.18, + "probability": 0.7176 + }, + { + "start": 17580.26, + "end": 17582.32, + "probability": 0.8983 + }, + { + "start": 17582.48, + "end": 17587.64, + "probability": 0.9373 + }, + { + "start": 17588.64, + "end": 17589.26, + "probability": 0.4996 + }, + { + "start": 17589.36, + "end": 17593.94, + "probability": 0.5259 + }, + { + "start": 17595.28, + "end": 17596.1, + "probability": 0.5586 + }, + { + "start": 17596.66, + "end": 17601.74, + "probability": 0.9512 + }, + { + "start": 17602.32, + "end": 17603.06, + "probability": 0.5322 + }, + { + "start": 17603.16, + "end": 17603.58, + "probability": 0.4697 + }, + { + "start": 17603.94, + "end": 17604.6, + "probability": 0.8888 + }, + { + "start": 17604.82, + "end": 17605.04, + "probability": 0.3889 + }, + { + "start": 17605.1, + "end": 17606.66, + "probability": 0.9625 + }, + { + "start": 17606.7, + "end": 17606.94, + "probability": 0.7434 + }, + { + "start": 17606.98, + "end": 17607.66, + "probability": 0.9431 + }, + { + "start": 17609.2, + "end": 17613.54, + "probability": 0.3426 + }, + { + "start": 17613.7, + "end": 17614.24, + "probability": 0.6237 + }, + { + "start": 17614.52, + "end": 17619.98, + "probability": 0.9917 + }, + { + "start": 17620.32, + "end": 17620.38, + "probability": 0.052 + }, + { + "start": 17620.76, + "end": 17620.76, + "probability": 0.0966 + }, + { + "start": 17621.24, + "end": 17622.74, + "probability": 0.1945 + }, + { + "start": 17622.98, + "end": 17625.26, + "probability": 0.9266 + }, + { + "start": 17625.82, + "end": 17628.74, + "probability": 0.9946 + }, + { + "start": 17628.74, + "end": 17629.96, + "probability": 0.5339 + }, + { + "start": 17630.2, + "end": 17631.98, + "probability": 0.8218 + }, + { + "start": 17632.2, + "end": 17632.82, + "probability": 0.4233 + }, + { + "start": 17633.02, + "end": 17638.04, + "probability": 0.1894 + }, + { + "start": 17638.08, + "end": 17638.99, + "probability": 0.1018 + }, + { + "start": 17641.85, + "end": 17645.56, + "probability": 0.3369 + }, + { + "start": 17645.62, + "end": 17646.85, + "probability": 0.4114 + }, + { + "start": 17647.44, + "end": 17649.52, + "probability": 0.4592 + }, + { + "start": 17651.07, + "end": 17655.06, + "probability": 0.7283 + }, + { + "start": 17655.24, + "end": 17658.78, + "probability": 0.675 + }, + { + "start": 17659.82, + "end": 17661.72, + "probability": 0.8091 + }, + { + "start": 17662.36, + "end": 17664.3, + "probability": 0.7352 + }, + { + "start": 17664.36, + "end": 17666.04, + "probability": 0.8573 + }, + { + "start": 17666.3, + "end": 17666.56, + "probability": 0.6881 + }, + { + "start": 17666.56, + "end": 17667.4, + "probability": 0.9366 + }, + { + "start": 17667.58, + "end": 17670.5, + "probability": 0.9917 + }, + { + "start": 17670.82, + "end": 17672.4, + "probability": 0.9925 + }, + { + "start": 17674.36, + "end": 17677.32, + "probability": 0.9517 + }, + { + "start": 17678.2, + "end": 17682.56, + "probability": 0.6101 + }, + { + "start": 17682.68, + "end": 17683.34, + "probability": 0.5045 + }, + { + "start": 17683.9, + "end": 17685.52, + "probability": 0.6796 + }, + { + "start": 17686.06, + "end": 17686.24, + "probability": 0.645 + }, + { + "start": 17686.24, + "end": 17688.18, + "probability": 0.3045 + }, + { + "start": 17696.0, + "end": 17697.9, + "probability": 0.7363 + }, + { + "start": 17703.54, + "end": 17706.48, + "probability": 0.5993 + }, + { + "start": 17714.0, + "end": 17716.22, + "probability": 0.1517 + }, + { + "start": 17718.22, + "end": 17720.04, + "probability": 0.2715 + }, + { + "start": 17720.74, + "end": 17721.14, + "probability": 0.5069 + }, + { + "start": 17721.42, + "end": 17722.12, + "probability": 0.2161 + }, + { + "start": 17722.34, + "end": 17722.6, + "probability": 0.4958 + }, + { + "start": 17722.6, + "end": 17727.86, + "probability": 0.5617 + }, + { + "start": 17728.2, + "end": 17733.06, + "probability": 0.4073 + }, + { + "start": 17733.42, + "end": 17735.94, + "probability": 0.8021 + }, + { + "start": 17736.72, + "end": 17736.8, + "probability": 0.0426 + }, + { + "start": 17736.8, + "end": 17739.82, + "probability": 0.6772 + }, + { + "start": 17755.92, + "end": 17757.84, + "probability": 0.584 + }, + { + "start": 17757.88, + "end": 17758.0, + "probability": 0.5735 + }, + { + "start": 17758.2, + "end": 17759.22, + "probability": 0.7149 + }, + { + "start": 17759.32, + "end": 17762.16, + "probability": 0.9872 + }, + { + "start": 17762.22, + "end": 17763.94, + "probability": 0.9499 + }, + { + "start": 17764.2, + "end": 17764.5, + "probability": 0.8795 + }, + { + "start": 17767.33, + "end": 17769.66, + "probability": 0.7448 + }, + { + "start": 17770.64, + "end": 17773.54, + "probability": 0.9438 + }, + { + "start": 17775.14, + "end": 17779.04, + "probability": 0.9911 + }, + { + "start": 17779.58, + "end": 17780.18, + "probability": 0.7551 + }, + { + "start": 17781.78, + "end": 17788.08, + "probability": 0.9672 + }, + { + "start": 17788.76, + "end": 17791.14, + "probability": 0.9923 + }, + { + "start": 17792.96, + "end": 17795.88, + "probability": 0.9562 + }, + { + "start": 17795.96, + "end": 17797.58, + "probability": 0.8001 + }, + { + "start": 17798.66, + "end": 17804.88, + "probability": 0.9985 + }, + { + "start": 17805.6, + "end": 17811.19, + "probability": 0.9647 + }, + { + "start": 17811.6, + "end": 17814.52, + "probability": 0.9877 + }, + { + "start": 17816.0, + "end": 17819.98, + "probability": 0.9534 + }, + { + "start": 17820.74, + "end": 17822.44, + "probability": 0.766 + }, + { + "start": 17824.02, + "end": 17829.46, + "probability": 0.9478 + }, + { + "start": 17830.18, + "end": 17836.94, + "probability": 0.9847 + }, + { + "start": 17838.24, + "end": 17841.32, + "probability": 0.9878 + }, + { + "start": 17841.46, + "end": 17846.5, + "probability": 0.9812 + }, + { + "start": 17846.58, + "end": 17850.9, + "probability": 0.9852 + }, + { + "start": 17852.22, + "end": 17855.19, + "probability": 0.6586 + }, + { + "start": 17855.54, + "end": 17855.86, + "probability": 0.9359 + }, + { + "start": 17855.94, + "end": 17859.34, + "probability": 0.9969 + }, + { + "start": 17860.14, + "end": 17860.98, + "probability": 0.9487 + }, + { + "start": 17861.46, + "end": 17862.14, + "probability": 0.821 + }, + { + "start": 17862.72, + "end": 17864.22, + "probability": 0.7596 + }, + { + "start": 17864.5, + "end": 17873.58, + "probability": 0.6131 + }, + { + "start": 17873.58, + "end": 17879.18, + "probability": 0.9497 + }, + { + "start": 17880.18, + "end": 17882.44, + "probability": 0.9377 + }, + { + "start": 17883.1, + "end": 17884.36, + "probability": 0.7299 + }, + { + "start": 17884.62, + "end": 17886.78, + "probability": 0.781 + }, + { + "start": 17886.98, + "end": 17888.26, + "probability": 0.8286 + }, + { + "start": 17888.36, + "end": 17889.92, + "probability": 0.9821 + }, + { + "start": 17890.06, + "end": 17891.1, + "probability": 0.9521 + }, + { + "start": 17891.72, + "end": 17894.91, + "probability": 0.7405 + }, + { + "start": 17897.26, + "end": 17901.38, + "probability": 0.953 + }, + { + "start": 17902.18, + "end": 17907.26, + "probability": 0.953 + }, + { + "start": 17907.26, + "end": 17909.6, + "probability": 0.9819 + }, + { + "start": 17909.78, + "end": 17916.4, + "probability": 0.9656 + }, + { + "start": 17916.58, + "end": 17917.56, + "probability": 0.699 + }, + { + "start": 17917.7, + "end": 17919.06, + "probability": 0.6878 + }, + { + "start": 17919.34, + "end": 17920.84, + "probability": 0.8551 + }, + { + "start": 17922.0, + "end": 17922.42, + "probability": 0.2704 + }, + { + "start": 17922.44, + "end": 17925.8, + "probability": 0.8805 + }, + { + "start": 17925.8, + "end": 17929.72, + "probability": 0.9919 + }, + { + "start": 17929.84, + "end": 17932.36, + "probability": 0.812 + }, + { + "start": 17932.92, + "end": 17935.84, + "probability": 0.6553 + }, + { + "start": 17936.38, + "end": 17944.12, + "probability": 0.8377 + }, + { + "start": 17944.22, + "end": 17948.7, + "probability": 0.9526 + }, + { + "start": 17949.18, + "end": 17951.34, + "probability": 0.8781 + }, + { + "start": 17951.48, + "end": 17953.36, + "probability": 0.4054 + }, + { + "start": 17953.52, + "end": 17953.56, + "probability": 0.5918 + }, + { + "start": 17954.64, + "end": 17960.38, + "probability": 0.9941 + }, + { + "start": 17960.38, + "end": 17964.24, + "probability": 0.8735 + }, + { + "start": 17964.92, + "end": 17968.64, + "probability": 0.9644 + }, + { + "start": 17969.06, + "end": 17972.14, + "probability": 0.9918 + }, + { + "start": 17972.14, + "end": 17976.9, + "probability": 0.9578 + }, + { + "start": 17976.94, + "end": 17978.66, + "probability": 0.7799 + }, + { + "start": 17978.94, + "end": 17980.44, + "probability": 0.7664 + }, + { + "start": 17980.7, + "end": 17985.22, + "probability": 0.7458 + }, + { + "start": 17985.28, + "end": 17992.68, + "probability": 0.6437 + }, + { + "start": 17992.96, + "end": 17994.48, + "probability": 0.9012 + }, + { + "start": 17994.7, + "end": 17996.02, + "probability": 0.529 + }, + { + "start": 17996.6, + "end": 17999.54, + "probability": 0.805 + }, + { + "start": 17999.78, + "end": 18004.14, + "probability": 0.9741 + }, + { + "start": 18004.48, + "end": 18006.54, + "probability": 0.8184 + }, + { + "start": 18006.56, + "end": 18008.86, + "probability": 0.8917 + }, + { + "start": 18009.48, + "end": 18011.28, + "probability": 0.8269 + }, + { + "start": 18011.8, + "end": 18016.04, + "probability": 0.9816 + }, + { + "start": 18016.44, + "end": 18018.98, + "probability": 0.9954 + }, + { + "start": 18019.0, + "end": 18019.44, + "probability": 0.5813 + }, + { + "start": 18019.62, + "end": 18021.07, + "probability": 0.6414 + }, + { + "start": 18021.58, + "end": 18024.2, + "probability": 0.4941 + }, + { + "start": 18030.78, + "end": 18036.14, + "probability": 0.8291 + }, + { + "start": 18043.24, + "end": 18045.38, + "probability": 0.4462 + }, + { + "start": 18045.42, + "end": 18046.26, + "probability": 0.6646 + }, + { + "start": 18046.36, + "end": 18048.18, + "probability": 0.713 + }, + { + "start": 18049.56, + "end": 18051.8, + "probability": 0.7654 + }, + { + "start": 18052.34, + "end": 18060.88, + "probability": 0.9725 + }, + { + "start": 18061.78, + "end": 18063.4, + "probability": 0.9933 + }, + { + "start": 18066.22, + "end": 18069.78, + "probability": 0.8708 + }, + { + "start": 18070.02, + "end": 18070.83, + "probability": 0.8873 + }, + { + "start": 18071.48, + "end": 18076.58, + "probability": 0.9905 + }, + { + "start": 18077.3, + "end": 18080.46, + "probability": 0.9652 + }, + { + "start": 18080.9, + "end": 18083.18, + "probability": 0.9898 + }, + { + "start": 18085.02, + "end": 18085.48, + "probability": 0.6948 + }, + { + "start": 18087.4, + "end": 18089.7, + "probability": 0.7498 + }, + { + "start": 18091.9, + "end": 18094.76, + "probability": 0.6182 + }, + { + "start": 18095.48, + "end": 18095.98, + "probability": 0.9434 + }, + { + "start": 18096.84, + "end": 18098.2, + "probability": 0.7222 + }, + { + "start": 18098.32, + "end": 18100.14, + "probability": 0.7682 + }, + { + "start": 18101.52, + "end": 18103.1, + "probability": 0.9777 + }, + { + "start": 18104.16, + "end": 18106.92, + "probability": 0.9744 + }, + { + "start": 18110.8, + "end": 18116.6, + "probability": 0.9534 + }, + { + "start": 18118.4, + "end": 18122.34, + "probability": 0.7313 + }, + { + "start": 18123.94, + "end": 18129.32, + "probability": 0.9911 + }, + { + "start": 18130.46, + "end": 18131.22, + "probability": 0.8724 + }, + { + "start": 18133.11, + "end": 18138.02, + "probability": 0.8132 + }, + { + "start": 18139.52, + "end": 18141.34, + "probability": 0.9888 + }, + { + "start": 18142.28, + "end": 18144.04, + "probability": 0.9117 + }, + { + "start": 18145.16, + "end": 18152.86, + "probability": 0.9299 + }, + { + "start": 18154.88, + "end": 18161.48, + "probability": 0.9912 + }, + { + "start": 18161.78, + "end": 18163.8, + "probability": 0.761 + }, + { + "start": 18164.0, + "end": 18166.84, + "probability": 0.9559 + }, + { + "start": 18168.2, + "end": 18169.63, + "probability": 0.9707 + }, + { + "start": 18171.0, + "end": 18173.12, + "probability": 0.9991 + }, + { + "start": 18174.8, + "end": 18178.62, + "probability": 0.8118 + }, + { + "start": 18179.98, + "end": 18181.38, + "probability": 0.9585 + }, + { + "start": 18182.96, + "end": 18187.24, + "probability": 0.9464 + }, + { + "start": 18188.19, + "end": 18193.18, + "probability": 0.9926 + }, + { + "start": 18194.06, + "end": 18195.0, + "probability": 0.5311 + }, + { + "start": 18195.58, + "end": 18196.48, + "probability": 0.9954 + }, + { + "start": 18197.54, + "end": 18199.84, + "probability": 0.9717 + }, + { + "start": 18201.02, + "end": 18201.62, + "probability": 0.5261 + }, + { + "start": 18201.9, + "end": 18203.74, + "probability": 0.5341 + }, + { + "start": 18203.86, + "end": 18204.64, + "probability": 0.9237 + }, + { + "start": 18204.7, + "end": 18205.52, + "probability": 0.9696 + }, + { + "start": 18205.58, + "end": 18206.36, + "probability": 0.9883 + }, + { + "start": 18206.54, + "end": 18207.76, + "probability": 0.924 + }, + { + "start": 18207.82, + "end": 18208.44, + "probability": 0.8706 + }, + { + "start": 18208.58, + "end": 18208.94, + "probability": 0.9258 + }, + { + "start": 18210.18, + "end": 18211.76, + "probability": 0.9011 + }, + { + "start": 18212.48, + "end": 18214.3, + "probability": 0.9047 + }, + { + "start": 18216.14, + "end": 18221.72, + "probability": 0.996 + }, + { + "start": 18221.84, + "end": 18222.3, + "probability": 0.7483 + }, + { + "start": 18224.94, + "end": 18225.46, + "probability": 0.9343 + }, + { + "start": 18227.36, + "end": 18228.66, + "probability": 0.9766 + }, + { + "start": 18229.9, + "end": 18231.56, + "probability": 0.8892 + }, + { + "start": 18232.46, + "end": 18233.0, + "probability": 0.3682 + }, + { + "start": 18233.04, + "end": 18235.32, + "probability": 0.6404 + }, + { + "start": 18235.38, + "end": 18236.3, + "probability": 0.9423 + }, + { + "start": 18236.38, + "end": 18239.04, + "probability": 0.9534 + }, + { + "start": 18239.04, + "end": 18242.1, + "probability": 0.8251 + }, + { + "start": 18242.76, + "end": 18245.38, + "probability": 0.9468 + }, + { + "start": 18245.46, + "end": 18246.8, + "probability": 0.8979 + }, + { + "start": 18246.96, + "end": 18248.12, + "probability": 0.9705 + }, + { + "start": 18249.98, + "end": 18250.98, + "probability": 0.9016 + }, + { + "start": 18251.42, + "end": 18252.16, + "probability": 0.9932 + }, + { + "start": 18252.76, + "end": 18254.06, + "probability": 0.6098 + }, + { + "start": 18254.64, + "end": 18257.38, + "probability": 0.9594 + }, + { + "start": 18257.44, + "end": 18260.3, + "probability": 0.799 + }, + { + "start": 18260.9, + "end": 18262.68, + "probability": 0.8192 + }, + { + "start": 18263.0, + "end": 18266.58, + "probability": 0.8649 + }, + { + "start": 18266.94, + "end": 18270.62, + "probability": 0.9465 + }, + { + "start": 18270.98, + "end": 18277.3, + "probability": 0.9058 + }, + { + "start": 18277.6, + "end": 18281.82, + "probability": 0.9985 + }, + { + "start": 18281.82, + "end": 18285.92, + "probability": 0.9817 + }, + { + "start": 18286.06, + "end": 18286.84, + "probability": 0.5856 + }, + { + "start": 18287.16, + "end": 18291.32, + "probability": 0.9518 + }, + { + "start": 18291.6, + "end": 18293.84, + "probability": 0.9099 + }, + { + "start": 18294.22, + "end": 18294.54, + "probability": 0.7033 + }, + { + "start": 18294.72, + "end": 18296.82, + "probability": 0.7802 + }, + { + "start": 18296.92, + "end": 18297.38, + "probability": 0.9755 + }, + { + "start": 18297.6, + "end": 18299.52, + "probability": 0.7781 + }, + { + "start": 18299.82, + "end": 18300.34, + "probability": 0.764 + }, + { + "start": 18300.46, + "end": 18301.36, + "probability": 0.6135 + }, + { + "start": 18301.5, + "end": 18304.28, + "probability": 0.9391 + }, + { + "start": 18304.72, + "end": 18306.34, + "probability": 0.9863 + }, + { + "start": 18306.54, + "end": 18306.74, + "probability": 0.8308 + }, + { + "start": 18307.3, + "end": 18307.56, + "probability": 0.556 + }, + { + "start": 18307.6, + "end": 18309.78, + "probability": 0.6539 + }, + { + "start": 18315.46, + "end": 18316.8, + "probability": 0.9422 + }, + { + "start": 18317.48, + "end": 18317.74, + "probability": 0.8196 + }, + { + "start": 18330.12, + "end": 18331.12, + "probability": 0.6786 + }, + { + "start": 18331.46, + "end": 18332.32, + "probability": 0.7762 + }, + { + "start": 18332.52, + "end": 18332.84, + "probability": 0.7162 + }, + { + "start": 18333.18, + "end": 18334.28, + "probability": 0.7277 + }, + { + "start": 18334.86, + "end": 18341.54, + "probability": 0.9331 + }, + { + "start": 18341.54, + "end": 18348.18, + "probability": 0.9741 + }, + { + "start": 18348.24, + "end": 18349.08, + "probability": 0.567 + }, + { + "start": 18349.52, + "end": 18356.52, + "probability": 0.8571 + }, + { + "start": 18357.02, + "end": 18359.4, + "probability": 0.5698 + }, + { + "start": 18360.04, + "end": 18363.12, + "probability": 0.9976 + }, + { + "start": 18363.52, + "end": 18368.4, + "probability": 0.9352 + }, + { + "start": 18368.54, + "end": 18370.58, + "probability": 0.6613 + }, + { + "start": 18370.9, + "end": 18372.96, + "probability": 0.6785 + }, + { + "start": 18373.56, + "end": 18378.26, + "probability": 0.8109 + }, + { + "start": 18378.76, + "end": 18381.88, + "probability": 0.9462 + }, + { + "start": 18382.28, + "end": 18382.8, + "probability": 0.5041 + }, + { + "start": 18383.3, + "end": 18384.78, + "probability": 0.9781 + }, + { + "start": 18385.18, + "end": 18388.9, + "probability": 0.9048 + }, + { + "start": 18389.93, + "end": 18396.62, + "probability": 0.9071 + }, + { + "start": 18396.62, + "end": 18401.54, + "probability": 0.9525 + }, + { + "start": 18402.14, + "end": 18404.06, + "probability": 0.723 + }, + { + "start": 18404.22, + "end": 18408.94, + "probability": 0.9875 + }, + { + "start": 18411.14, + "end": 18413.38, + "probability": 0.8141 + }, + { + "start": 18413.68, + "end": 18420.94, + "probability": 0.9512 + }, + { + "start": 18421.32, + "end": 18422.0, + "probability": 0.6692 + }, + { + "start": 18422.22, + "end": 18424.86, + "probability": 0.934 + }, + { + "start": 18425.18, + "end": 18429.06, + "probability": 0.9313 + }, + { + "start": 18429.32, + "end": 18433.08, + "probability": 0.9907 + }, + { + "start": 18433.58, + "end": 18438.78, + "probability": 0.9822 + }, + { + "start": 18438.86, + "end": 18439.7, + "probability": 0.7119 + }, + { + "start": 18440.22, + "end": 18440.86, + "probability": 0.7836 + }, + { + "start": 18440.98, + "end": 18441.48, + "probability": 0.7407 + }, + { + "start": 18441.48, + "end": 18443.76, + "probability": 0.9186 + }, + { + "start": 18443.96, + "end": 18451.0, + "probability": 0.9539 + }, + { + "start": 18451.36, + "end": 18454.38, + "probability": 0.9597 + }, + { + "start": 18455.0, + "end": 18456.16, + "probability": 0.7268 + }, + { + "start": 18456.34, + "end": 18461.7, + "probability": 0.9083 + }, + { + "start": 18462.62, + "end": 18467.7, + "probability": 0.7498 + }, + { + "start": 18467.96, + "end": 18472.12, + "probability": 0.9907 + }, + { + "start": 18472.4, + "end": 18473.52, + "probability": 0.6578 + }, + { + "start": 18473.7, + "end": 18474.75, + "probability": 0.4317 + }, + { + "start": 18475.5, + "end": 18476.42, + "probability": 0.7553 + }, + { + "start": 18477.26, + "end": 18483.4, + "probability": 0.7807 + }, + { + "start": 18483.6, + "end": 18485.86, + "probability": 0.9755 + }, + { + "start": 18486.32, + "end": 18489.66, + "probability": 0.9912 + }, + { + "start": 18490.18, + "end": 18493.56, + "probability": 0.9689 + }, + { + "start": 18494.1, + "end": 18497.92, + "probability": 0.9495 + }, + { + "start": 18498.16, + "end": 18498.44, + "probability": 0.7612 + }, + { + "start": 18499.28, + "end": 18499.98, + "probability": 0.8666 + }, + { + "start": 18500.76, + "end": 18502.52, + "probability": 0.8042 + }, + { + "start": 18503.06, + "end": 18504.06, + "probability": 0.9502 + }, + { + "start": 18509.36, + "end": 18509.98, + "probability": 0.272 + }, + { + "start": 18524.2, + "end": 18528.18, + "probability": 0.6379 + }, + { + "start": 18529.68, + "end": 18530.1, + "probability": 0.5663 + }, + { + "start": 18530.18, + "end": 18531.34, + "probability": 0.6071 + }, + { + "start": 18531.56, + "end": 18533.38, + "probability": 0.8237 + }, + { + "start": 18533.72, + "end": 18534.1, + "probability": 0.7823 + }, + { + "start": 18534.22, + "end": 18535.3, + "probability": 0.951 + }, + { + "start": 18535.5, + "end": 18537.06, + "probability": 0.9893 + }, + { + "start": 18539.3, + "end": 18540.82, + "probability": 0.8865 + }, + { + "start": 18541.18, + "end": 18542.48, + "probability": 0.7058 + }, + { + "start": 18542.84, + "end": 18545.16, + "probability": 0.9922 + }, + { + "start": 18545.38, + "end": 18547.34, + "probability": 0.8973 + }, + { + "start": 18548.0, + "end": 18549.26, + "probability": 0.9968 + }, + { + "start": 18549.32, + "end": 18552.02, + "probability": 0.9346 + }, + { + "start": 18552.32, + "end": 18554.42, + "probability": 0.7413 + }, + { + "start": 18554.54, + "end": 18557.26, + "probability": 0.957 + }, + { + "start": 18559.24, + "end": 18561.04, + "probability": 0.5664 + }, + { + "start": 18562.54, + "end": 18563.14, + "probability": 0.5533 + }, + { + "start": 18563.24, + "end": 18565.28, + "probability": 0.8993 + }, + { + "start": 18565.34, + "end": 18567.18, + "probability": 0.6951 + }, + { + "start": 18567.7, + "end": 18568.72, + "probability": 0.9347 + }, + { + "start": 18569.06, + "end": 18570.59, + "probability": 0.9456 + }, + { + "start": 18571.88, + "end": 18574.36, + "probability": 0.8206 + }, + { + "start": 18574.4, + "end": 18575.32, + "probability": 0.0083 + }, + { + "start": 18575.38, + "end": 18575.38, + "probability": 0.139 + }, + { + "start": 18575.68, + "end": 18575.94, + "probability": 0.4331 + }, + { + "start": 18576.02, + "end": 18577.42, + "probability": 0.9163 + }, + { + "start": 18577.46, + "end": 18578.34, + "probability": 0.4372 + }, + { + "start": 18582.8, + "end": 18585.2, + "probability": 0.9861 + }, + { + "start": 18585.32, + "end": 18589.08, + "probability": 0.9934 + }, + { + "start": 18590.56, + "end": 18591.12, + "probability": 0.6207 + }, + { + "start": 18591.54, + "end": 18593.26, + "probability": 0.5472 + }, + { + "start": 18593.4, + "end": 18596.7, + "probability": 0.913 + }, + { + "start": 18597.62, + "end": 18601.08, + "probability": 0.4655 + }, + { + "start": 18602.22, + "end": 18603.02, + "probability": 0.5117 + }, + { + "start": 18603.48, + "end": 18606.06, + "probability": 0.7457 + }, + { + "start": 18606.18, + "end": 18611.92, + "probability": 0.9521 + }, + { + "start": 18611.92, + "end": 18617.46, + "probability": 0.9463 + }, + { + "start": 18618.58, + "end": 18620.14, + "probability": 0.9423 + }, + { + "start": 18620.26, + "end": 18621.68, + "probability": 0.955 + }, + { + "start": 18621.82, + "end": 18628.18, + "probability": 0.8846 + }, + { + "start": 18628.2, + "end": 18629.34, + "probability": 0.9585 + }, + { + "start": 18632.7, + "end": 18634.1, + "probability": 0.6639 + }, + { + "start": 18634.68, + "end": 18637.14, + "probability": 0.7981 + }, + { + "start": 18637.94, + "end": 18638.46, + "probability": 0.9678 + }, + { + "start": 18638.52, + "end": 18640.66, + "probability": 0.9872 + }, + { + "start": 18640.76, + "end": 18641.56, + "probability": 0.9833 + }, + { + "start": 18642.24, + "end": 18644.3, + "probability": 0.9846 + }, + { + "start": 18644.94, + "end": 18647.16, + "probability": 0.9991 + }, + { + "start": 18648.12, + "end": 18648.66, + "probability": 0.695 + }, + { + "start": 18649.52, + "end": 18651.44, + "probability": 0.9937 + }, + { + "start": 18652.04, + "end": 18652.99, + "probability": 0.9811 + }, + { + "start": 18654.06, + "end": 18656.8, + "probability": 0.967 + }, + { + "start": 18657.68, + "end": 18658.86, + "probability": 0.9794 + }, + { + "start": 18660.44, + "end": 18660.94, + "probability": 0.1934 + }, + { + "start": 18661.34, + "end": 18661.8, + "probability": 0.3725 + }, + { + "start": 18661.94, + "end": 18668.44, + "probability": 0.8751 + }, + { + "start": 18669.16, + "end": 18669.92, + "probability": 0.3149 + }, + { + "start": 18670.02, + "end": 18671.58, + "probability": 0.252 + }, + { + "start": 18671.92, + "end": 18673.02, + "probability": 0.9517 + }, + { + "start": 18673.24, + "end": 18673.42, + "probability": 0.3059 + }, + { + "start": 18673.68, + "end": 18676.42, + "probability": 0.9427 + }, + { + "start": 18676.62, + "end": 18677.4, + "probability": 0.4819 + }, + { + "start": 18677.48, + "end": 18678.26, + "probability": 0.9961 + }, + { + "start": 18678.26, + "end": 18678.26, + "probability": 0.6545 + }, + { + "start": 18678.26, + "end": 18678.5, + "probability": 0.9917 + }, + { + "start": 18679.0, + "end": 18687.66, + "probability": 0.9831 + }, + { + "start": 18687.78, + "end": 18690.06, + "probability": 0.9604 + }, + { + "start": 18690.26, + "end": 18691.29, + "probability": 0.9985 + }, + { + "start": 18691.48, + "end": 18693.38, + "probability": 0.5313 + }, + { + "start": 18693.52, + "end": 18695.28, + "probability": 0.5894 + }, + { + "start": 18695.34, + "end": 18696.01, + "probability": 0.8428 + }, + { + "start": 18696.52, + "end": 18698.91, + "probability": 0.9658 + }, + { + "start": 18699.14, + "end": 18700.54, + "probability": 0.1949 + }, + { + "start": 18701.4, + "end": 18702.73, + "probability": 0.7148 + }, + { + "start": 18703.1, + "end": 18704.54, + "probability": 0.7562 + }, + { + "start": 18704.68, + "end": 18705.08, + "probability": 0.865 + }, + { + "start": 18705.1, + "end": 18706.58, + "probability": 0.9648 + }, + { + "start": 18706.7, + "end": 18712.78, + "probability": 0.9851 + }, + { + "start": 18712.82, + "end": 18713.18, + "probability": 0.7418 + }, + { + "start": 18713.28, + "end": 18713.93, + "probability": 0.9801 + }, + { + "start": 18714.32, + "end": 18715.74, + "probability": 0.9929 + }, + { + "start": 18715.82, + "end": 18717.32, + "probability": 0.9375 + }, + { + "start": 18717.46, + "end": 18722.02, + "probability": 0.9801 + }, + { + "start": 18722.02, + "end": 18724.38, + "probability": 0.9849 + }, + { + "start": 18725.0, + "end": 18725.74, + "probability": 0.9473 + }, + { + "start": 18726.56, + "end": 18731.24, + "probability": 0.8978 + }, + { + "start": 18731.54, + "end": 18733.0, + "probability": 0.7509 + }, + { + "start": 18733.76, + "end": 18735.21, + "probability": 0.9833 + }, + { + "start": 18735.88, + "end": 18737.22, + "probability": 0.9865 + }, + { + "start": 18737.58, + "end": 18738.76, + "probability": 0.9961 + }, + { + "start": 18738.94, + "end": 18740.6, + "probability": 0.9922 + }, + { + "start": 18741.28, + "end": 18741.76, + "probability": 0.8348 + }, + { + "start": 18741.88, + "end": 18742.86, + "probability": 0.9279 + }, + { + "start": 18742.94, + "end": 18745.74, + "probability": 0.9731 + }, + { + "start": 18746.62, + "end": 18747.89, + "probability": 0.8684 + }, + { + "start": 18748.82, + "end": 18749.94, + "probability": 0.8615 + }, + { + "start": 18750.26, + "end": 18750.74, + "probability": 0.9075 + }, + { + "start": 18751.28, + "end": 18753.36, + "probability": 0.9656 + }, + { + "start": 18753.52, + "end": 18754.48, + "probability": 0.9912 + }, + { + "start": 18754.78, + "end": 18755.38, + "probability": 0.7305 + }, + { + "start": 18755.86, + "end": 18757.9, + "probability": 0.551 + }, + { + "start": 18758.3, + "end": 18758.78, + "probability": 0.8959 + }, + { + "start": 18759.22, + "end": 18760.36, + "probability": 0.7007 + }, + { + "start": 18760.5, + "end": 18761.8, + "probability": 0.9976 + }, + { + "start": 18762.12, + "end": 18764.9, + "probability": 0.9954 + }, + { + "start": 18766.31, + "end": 18772.86, + "probability": 0.9525 + }, + { + "start": 18773.0, + "end": 18775.02, + "probability": 0.9013 + }, + { + "start": 18775.64, + "end": 18776.88, + "probability": 0.9932 + }, + { + "start": 18777.02, + "end": 18779.16, + "probability": 0.9456 + }, + { + "start": 18779.54, + "end": 18781.66, + "probability": 0.9663 + }, + { + "start": 18782.02, + "end": 18783.68, + "probability": 0.9981 + }, + { + "start": 18785.08, + "end": 18785.57, + "probability": 0.5392 + }, + { + "start": 18786.42, + "end": 18786.86, + "probability": 0.5919 + }, + { + "start": 18787.32, + "end": 18788.14, + "probability": 0.66 + }, + { + "start": 18788.26, + "end": 18795.5, + "probability": 0.9911 + }, + { + "start": 18795.66, + "end": 18796.31, + "probability": 0.8849 + }, + { + "start": 18796.5, + "end": 18797.04, + "probability": 0.5682 + }, + { + "start": 18797.08, + "end": 18797.38, + "probability": 0.7717 + }, + { + "start": 18797.48, + "end": 18798.56, + "probability": 0.9917 + }, + { + "start": 18798.76, + "end": 18802.58, + "probability": 0.9973 + }, + { + "start": 18803.26, + "end": 18805.04, + "probability": 0.9985 + }, + { + "start": 18805.62, + "end": 18806.88, + "probability": 0.9303 + }, + { + "start": 18807.32, + "end": 18809.2, + "probability": 0.9417 + }, + { + "start": 18809.5, + "end": 18812.84, + "probability": 0.981 + }, + { + "start": 18813.08, + "end": 18814.74, + "probability": 0.9316 + }, + { + "start": 18815.06, + "end": 18815.78, + "probability": 0.9453 + }, + { + "start": 18815.82, + "end": 18818.52, + "probability": 0.5099 + }, + { + "start": 18820.16, + "end": 18823.66, + "probability": 0.6877 + }, + { + "start": 18823.98, + "end": 18831.58, + "probability": 0.9648 + }, + { + "start": 18831.88, + "end": 18832.74, + "probability": 0.6395 + }, + { + "start": 18832.86, + "end": 18833.56, + "probability": 0.9154 + }, + { + "start": 18834.46, + "end": 18837.34, + "probability": 0.054 + }, + { + "start": 18837.56, + "end": 18838.49, + "probability": 0.2256 + }, + { + "start": 18839.34, + "end": 18842.74, + "probability": 0.9543 + }, + { + "start": 18842.74, + "end": 18845.46, + "probability": 0.558 + }, + { + "start": 18846.02, + "end": 18849.94, + "probability": 0.9563 + }, + { + "start": 18850.04, + "end": 18851.1, + "probability": 0.9025 + }, + { + "start": 18851.36, + "end": 18853.44, + "probability": 0.9116 + }, + { + "start": 18853.76, + "end": 18856.2, + "probability": 0.9658 + }, + { + "start": 18856.76, + "end": 18858.46, + "probability": 0.9878 + }, + { + "start": 18859.14, + "end": 18859.34, + "probability": 0.4716 + }, + { + "start": 18859.64, + "end": 18861.46, + "probability": 0.1249 + }, + { + "start": 18861.46, + "end": 18862.46, + "probability": 0.2261 + }, + { + "start": 18862.46, + "end": 18863.86, + "probability": 0.2085 + }, + { + "start": 18864.24, + "end": 18866.08, + "probability": 0.1135 + }, + { + "start": 18866.5, + "end": 18867.24, + "probability": 0.0994 + }, + { + "start": 18867.84, + "end": 18868.86, + "probability": 0.0486 + }, + { + "start": 18870.0, + "end": 18872.36, + "probability": 0.2142 + }, + { + "start": 18872.48, + "end": 18874.82, + "probability": 0.9095 + }, + { + "start": 18874.98, + "end": 18879.06, + "probability": 0.6729 + }, + { + "start": 18880.6, + "end": 18883.24, + "probability": 0.0655 + }, + { + "start": 18883.28, + "end": 18888.56, + "probability": 0.583 + }, + { + "start": 18888.64, + "end": 18890.46, + "probability": 0.7319 + }, + { + "start": 18890.82, + "end": 18892.98, + "probability": 0.7342 + }, + { + "start": 18893.12, + "end": 18893.82, + "probability": 0.0583 + }, + { + "start": 18893.98, + "end": 18899.0, + "probability": 0.5387 + }, + { + "start": 18899.08, + "end": 18900.3, + "probability": 0.7686 + }, + { + "start": 18900.4, + "end": 18907.76, + "probability": 0.8553 + }, + { + "start": 18908.04, + "end": 18910.0, + "probability": 0.2031 + }, + { + "start": 18910.18, + "end": 18913.12, + "probability": 0.8116 + }, + { + "start": 18913.22, + "end": 18914.96, + "probability": 0.2427 + }, + { + "start": 18914.96, + "end": 18915.12, + "probability": 0.1838 + }, + { + "start": 18915.12, + "end": 18916.16, + "probability": 0.6131 + }, + { + "start": 18916.48, + "end": 18918.16, + "probability": 0.3935 + }, + { + "start": 18919.22, + "end": 18922.76, + "probability": 0.9956 + }, + { + "start": 18922.92, + "end": 18925.92, + "probability": 0.9973 + }, + { + "start": 18926.72, + "end": 18928.76, + "probability": 0.9941 + }, + { + "start": 18928.88, + "end": 18933.1, + "probability": 0.7848 + }, + { + "start": 18934.08, + "end": 18937.56, + "probability": 0.8229 + }, + { + "start": 18938.18, + "end": 18938.72, + "probability": 0.3998 + }, + { + "start": 18939.44, + "end": 18941.63, + "probability": 0.9976 + }, + { + "start": 18943.92, + "end": 18944.76, + "probability": 0.0307 + }, + { + "start": 18946.16, + "end": 18946.65, + "probability": 0.113 + }, + { + "start": 18947.04, + "end": 18947.74, + "probability": 0.1545 + }, + { + "start": 18949.44, + "end": 18951.32, + "probability": 0.1968 + }, + { + "start": 18951.56, + "end": 18953.06, + "probability": 0.7355 + }, + { + "start": 18953.06, + "end": 18955.66, + "probability": 0.4127 + }, + { + "start": 18956.31, + "end": 18958.7, + "probability": 0.6504 + }, + { + "start": 18958.78, + "end": 18960.07, + "probability": 0.8679 + }, + { + "start": 18960.76, + "end": 18963.78, + "probability": 0.9985 + }, + { + "start": 18963.78, + "end": 18966.04, + "probability": 0.9788 + }, + { + "start": 18967.06, + "end": 18969.12, + "probability": 0.6016 + }, + { + "start": 18969.2, + "end": 18972.52, + "probability": 0.9342 + }, + { + "start": 18972.54, + "end": 18973.72, + "probability": 0.7393 + }, + { + "start": 18974.24, + "end": 18976.58, + "probability": 0.5363 + }, + { + "start": 18976.64, + "end": 18979.22, + "probability": 0.675 + }, + { + "start": 18979.5, + "end": 18985.84, + "probability": 0.1571 + }, + { + "start": 18987.26, + "end": 18989.06, + "probability": 0.3631 + }, + { + "start": 18989.28, + "end": 18991.99, + "probability": 0.6145 + }, + { + "start": 18999.18, + "end": 19000.56, + "probability": 0.4331 + }, + { + "start": 19000.62, + "end": 19004.18, + "probability": 0.0931 + }, + { + "start": 19004.5, + "end": 19007.66, + "probability": 0.6403 + }, + { + "start": 19008.4, + "end": 19009.76, + "probability": 0.4465 + }, + { + "start": 19009.86, + "end": 19014.08, + "probability": 0.7005 + }, + { + "start": 19014.58, + "end": 19015.14, + "probability": 0.2622 + }, + { + "start": 19015.14, + "end": 19017.74, + "probability": 0.8813 + }, + { + "start": 19018.26, + "end": 19018.98, + "probability": 0.7319 + }, + { + "start": 19019.18, + "end": 19020.5, + "probability": 0.3684 + }, + { + "start": 19020.58, + "end": 19022.06, + "probability": 0.8802 + }, + { + "start": 19022.56, + "end": 19026.5, + "probability": 0.8538 + }, + { + "start": 19026.66, + "end": 19026.68, + "probability": 0.0336 + }, + { + "start": 19026.7, + "end": 19028.92, + "probability": 0.9441 + }, + { + "start": 19029.86, + "end": 19033.78, + "probability": 0.8542 + }, + { + "start": 19033.94, + "end": 19034.88, + "probability": 0.981 + }, + { + "start": 19034.98, + "end": 19036.02, + "probability": 0.9567 + }, + { + "start": 19036.68, + "end": 19039.86, + "probability": 0.9082 + }, + { + "start": 19039.92, + "end": 19042.24, + "probability": 0.8812 + }, + { + "start": 19042.56, + "end": 19044.48, + "probability": 0.9736 + }, + { + "start": 19044.88, + "end": 19047.94, + "probability": 0.7743 + }, + { + "start": 19048.66, + "end": 19049.46, + "probability": 0.6302 + }, + { + "start": 19049.58, + "end": 19050.82, + "probability": 0.7234 + }, + { + "start": 19051.12, + "end": 19053.72, + "probability": 0.8321 + }, + { + "start": 19054.1, + "end": 19055.98, + "probability": 0.6888 + }, + { + "start": 19056.06, + "end": 19059.56, + "probability": 0.9237 + }, + { + "start": 19059.84, + "end": 19060.72, + "probability": 0.1988 + }, + { + "start": 19060.82, + "end": 19065.02, + "probability": 0.7501 + }, + { + "start": 19065.3, + "end": 19069.92, + "probability": 0.7265 + }, + { + "start": 19070.04, + "end": 19071.0, + "probability": 0.4715 + }, + { + "start": 19071.1, + "end": 19072.94, + "probability": 0.6775 + }, + { + "start": 19073.33, + "end": 19077.72, + "probability": 0.6668 + }, + { + "start": 19078.02, + "end": 19080.64, + "probability": 0.3638 + }, + { + "start": 19080.74, + "end": 19085.78, + "probability": 0.3888 + }, + { + "start": 19086.44, + "end": 19088.14, + "probability": 0.2999 + }, + { + "start": 19088.32, + "end": 19090.6, + "probability": 0.7637 + }, + { + "start": 19091.57, + "end": 19096.92, + "probability": 0.7568 + }, + { + "start": 19097.48, + "end": 19098.55, + "probability": 0.9351 + }, + { + "start": 19099.82, + "end": 19106.96, + "probability": 0.9209 + }, + { + "start": 19107.08, + "end": 19107.92, + "probability": 0.5938 + }, + { + "start": 19107.92, + "end": 19109.22, + "probability": 0.9396 + }, + { + "start": 19109.48, + "end": 19113.02, + "probability": 0.7925 + }, + { + "start": 19113.64, + "end": 19115.42, + "probability": 0.764 + }, + { + "start": 19115.52, + "end": 19117.36, + "probability": 0.8416 + }, + { + "start": 19117.52, + "end": 19119.14, + "probability": 0.7575 + }, + { + "start": 19119.14, + "end": 19121.96, + "probability": 0.9426 + }, + { + "start": 19122.16, + "end": 19124.38, + "probability": 0.8844 + }, + { + "start": 19124.7, + "end": 19125.3, + "probability": 0.6884 + }, + { + "start": 19125.52, + "end": 19126.49, + "probability": 0.9781 + }, + { + "start": 19126.8, + "end": 19127.98, + "probability": 0.5375 + }, + { + "start": 19128.06, + "end": 19129.8, + "probability": 0.7416 + }, + { + "start": 19130.8, + "end": 19135.02, + "probability": 0.9062 + }, + { + "start": 19135.4, + "end": 19137.08, + "probability": 0.6832 + }, + { + "start": 19137.12, + "end": 19143.44, + "probability": 0.7366 + }, + { + "start": 19144.02, + "end": 19146.22, + "probability": 0.979 + }, + { + "start": 19146.9, + "end": 19147.92, + "probability": 0.2786 + }, + { + "start": 19148.58, + "end": 19151.04, + "probability": 0.6639 + }, + { + "start": 19151.18, + "end": 19152.6, + "probability": 0.0173 + }, + { + "start": 19152.7, + "end": 19153.54, + "probability": 0.266 + }, + { + "start": 19153.54, + "end": 19154.3, + "probability": 0.0898 + }, + { + "start": 19154.52, + "end": 19158.68, + "probability": 0.6835 + }, + { + "start": 19158.88, + "end": 19159.9, + "probability": 0.7618 + }, + { + "start": 19160.04, + "end": 19163.12, + "probability": 0.7971 + }, + { + "start": 19163.22, + "end": 19165.98, + "probability": 0.9578 + }, + { + "start": 19169.38, + "end": 19172.08, + "probability": 0.8028 + }, + { + "start": 19173.16, + "end": 19173.36, + "probability": 0.2567 + }, + { + "start": 19173.84, + "end": 19176.52, + "probability": 0.207 + }, + { + "start": 19176.52, + "end": 19178.76, + "probability": 0.3564 + }, + { + "start": 19178.92, + "end": 19180.64, + "probability": 0.795 + }, + { + "start": 19181.44, + "end": 19182.06, + "probability": 0.5048 + }, + { + "start": 19182.18, + "end": 19183.26, + "probability": 0.8954 + }, + { + "start": 19184.94, + "end": 19187.08, + "probability": 0.6 + }, + { + "start": 19187.18, + "end": 19192.42, + "probability": 0.9976 + }, + { + "start": 19193.44, + "end": 19196.68, + "probability": 0.7688 + }, + { + "start": 19196.68, + "end": 19198.88, + "probability": 0.78 + }, + { + "start": 19198.9, + "end": 19199.42, + "probability": 0.7277 + }, + { + "start": 19199.5, + "end": 19204.32, + "probability": 0.9658 + }, + { + "start": 19204.48, + "end": 19205.76, + "probability": 0.768 + }, + { + "start": 19205.86, + "end": 19207.22, + "probability": 0.9955 + }, + { + "start": 19210.48, + "end": 19211.52, + "probability": 0.9339 + }, + { + "start": 19212.98, + "end": 19216.02, + "probability": 0.8821 + }, + { + "start": 19216.6, + "end": 19220.76, + "probability": 0.9421 + }, + { + "start": 19221.0, + "end": 19221.52, + "probability": 0.8468 + }, + { + "start": 19221.63, + "end": 19224.48, + "probability": 0.9456 + }, + { + "start": 19224.56, + "end": 19225.12, + "probability": 0.4739 + }, + { + "start": 19225.12, + "end": 19227.98, + "probability": 0.9868 + }, + { + "start": 19228.68, + "end": 19230.06, + "probability": 0.323 + }, + { + "start": 19230.3, + "end": 19235.26, + "probability": 0.995 + }, + { + "start": 19235.64, + "end": 19236.82, + "probability": 0.9983 + }, + { + "start": 19238.26, + "end": 19240.0, + "probability": 0.5842 + }, + { + "start": 19241.02, + "end": 19243.72, + "probability": 0.9547 + }, + { + "start": 19244.62, + "end": 19251.32, + "probability": 0.9886 + }, + { + "start": 19251.32, + "end": 19257.9, + "probability": 0.9988 + }, + { + "start": 19258.2, + "end": 19259.36, + "probability": 0.8833 + }, + { + "start": 19260.34, + "end": 19260.76, + "probability": 0.4826 + }, + { + "start": 19261.02, + "end": 19263.14, + "probability": 0.9614 + }, + { + "start": 19263.36, + "end": 19264.82, + "probability": 0.6946 + }, + { + "start": 19264.84, + "end": 19268.86, + "probability": 0.6179 + }, + { + "start": 19268.86, + "end": 19270.22, + "probability": 0.1797 + }, + { + "start": 19271.9, + "end": 19273.16, + "probability": 0.5278 + }, + { + "start": 19273.48, + "end": 19276.64, + "probability": 0.8643 + }, + { + "start": 19276.64, + "end": 19276.86, + "probability": 0.1276 + }, + { + "start": 19277.6, + "end": 19277.8, + "probability": 0.0149 + }, + { + "start": 19277.8, + "end": 19279.58, + "probability": 0.5637 + }, + { + "start": 19279.66, + "end": 19281.48, + "probability": 0.25 + }, + { + "start": 19281.74, + "end": 19282.9, + "probability": 0.7646 + }, + { + "start": 19283.27, + "end": 19283.9, + "probability": 0.0077 + }, + { + "start": 19285.77, + "end": 19288.94, + "probability": 0.2141 + }, + { + "start": 19289.61, + "end": 19291.24, + "probability": 0.9844 + }, + { + "start": 19291.42, + "end": 19291.86, + "probability": 0.9075 + }, + { + "start": 19291.86, + "end": 19292.8, + "probability": 0.883 + }, + { + "start": 19292.86, + "end": 19294.88, + "probability": 0.9976 + }, + { + "start": 19296.3, + "end": 19298.48, + "probability": 0.9086 + }, + { + "start": 19298.86, + "end": 19300.52, + "probability": 0.6448 + }, + { + "start": 19300.64, + "end": 19301.78, + "probability": 0.9839 + }, + { + "start": 19301.82, + "end": 19302.14, + "probability": 0.9416 + }, + { + "start": 19302.24, + "end": 19306.9, + "probability": 0.9945 + }, + { + "start": 19306.92, + "end": 19310.54, + "probability": 0.994 + }, + { + "start": 19310.62, + "end": 19311.98, + "probability": 0.5379 + }, + { + "start": 19312.04, + "end": 19312.84, + "probability": 0.8315 + }, + { + "start": 19313.0, + "end": 19315.37, + "probability": 0.9614 + }, + { + "start": 19315.54, + "end": 19317.3, + "probability": 0.9646 + }, + { + "start": 19317.76, + "end": 19318.87, + "probability": 0.928 + }, + { + "start": 19319.28, + "end": 19320.26, + "probability": 0.9117 + }, + { + "start": 19321.32, + "end": 19322.8, + "probability": 0.5294 + }, + { + "start": 19322.9, + "end": 19323.02, + "probability": 0.5134 + }, + { + "start": 19323.54, + "end": 19325.46, + "probability": 0.2518 + }, + { + "start": 19325.46, + "end": 19329.94, + "probability": 0.6807 + }, + { + "start": 19330.62, + "end": 19333.28, + "probability": 0.9233 + }, + { + "start": 19333.76, + "end": 19335.37, + "probability": 0.9323 + }, + { + "start": 19336.32, + "end": 19339.56, + "probability": 0.6722 + }, + { + "start": 19339.82, + "end": 19343.0, + "probability": 0.9203 + }, + { + "start": 19343.24, + "end": 19345.24, + "probability": 0.7634 + }, + { + "start": 19345.54, + "end": 19346.48, + "probability": 0.9754 + }, + { + "start": 19346.9, + "end": 19347.46, + "probability": 0.3821 + }, + { + "start": 19347.6, + "end": 19347.9, + "probability": 0.6929 + }, + { + "start": 19349.0, + "end": 19352.02, + "probability": 0.0726 + }, + { + "start": 19352.08, + "end": 19353.52, + "probability": 0.9512 + }, + { + "start": 19355.08, + "end": 19357.68, + "probability": 0.9136 + }, + { + "start": 19357.92, + "end": 19361.2, + "probability": 0.2836 + }, + { + "start": 19361.34, + "end": 19362.62, + "probability": 0.5886 + }, + { + "start": 19362.76, + "end": 19365.34, + "probability": 0.9453 + }, + { + "start": 19365.44, + "end": 19366.62, + "probability": 0.7219 + }, + { + "start": 19366.68, + "end": 19367.62, + "probability": 0.8048 + }, + { + "start": 19367.64, + "end": 19368.44, + "probability": 0.8793 + }, + { + "start": 19368.56, + "end": 19369.6, + "probability": 0.6795 + }, + { + "start": 19370.08, + "end": 19370.48, + "probability": 0.7325 + }, + { + "start": 19370.54, + "end": 19371.68, + "probability": 0.9323 + }, + { + "start": 19371.74, + "end": 19374.66, + "probability": 0.9326 + }, + { + "start": 19374.68, + "end": 19378.26, + "probability": 0.9468 + }, + { + "start": 19378.4, + "end": 19381.62, + "probability": 0.9824 + }, + { + "start": 19381.62, + "end": 19385.38, + "probability": 0.9883 + }, + { + "start": 19385.44, + "end": 19390.42, + "probability": 0.98 + }, + { + "start": 19390.62, + "end": 19393.72, + "probability": 0.7505 + }, + { + "start": 19393.86, + "end": 19394.66, + "probability": 0.6273 + }, + { + "start": 19394.66, + "end": 19395.26, + "probability": 0.9258 + }, + { + "start": 19395.38, + "end": 19399.28, + "probability": 0.834 + }, + { + "start": 19399.74, + "end": 19401.92, + "probability": 0.4593 + }, + { + "start": 19402.54, + "end": 19404.18, + "probability": 0.5432 + }, + { + "start": 19404.3, + "end": 19405.18, + "probability": 0.9961 + }, + { + "start": 19405.54, + "end": 19408.26, + "probability": 0.9396 + }, + { + "start": 19408.38, + "end": 19411.16, + "probability": 0.8428 + }, + { + "start": 19411.52, + "end": 19412.72, + "probability": 0.9298 + }, + { + "start": 19413.02, + "end": 19414.38, + "probability": 0.8049 + }, + { + "start": 19414.52, + "end": 19417.04, + "probability": 0.9912 + }, + { + "start": 19417.32, + "end": 19417.96, + "probability": 0.562 + }, + { + "start": 19418.32, + "end": 19418.82, + "probability": 0.9006 + }, + { + "start": 19419.24, + "end": 19425.2, + "probability": 0.9751 + }, + { + "start": 19425.78, + "end": 19426.39, + "probability": 0.7266 + }, + { + "start": 19427.36, + "end": 19429.38, + "probability": 0.5681 + }, + { + "start": 19429.42, + "end": 19430.04, + "probability": 0.9102 + }, + { + "start": 19430.44, + "end": 19432.52, + "probability": 0.7332 + }, + { + "start": 19432.58, + "end": 19432.86, + "probability": 0.6136 + }, + { + "start": 19432.94, + "end": 19433.8, + "probability": 0.7747 + }, + { + "start": 19434.94, + "end": 19435.8, + "probability": 0.6797 + }, + { + "start": 19436.16, + "end": 19436.64, + "probability": 0.9384 + }, + { + "start": 19437.34, + "end": 19437.84, + "probability": 0.3574 + }, + { + "start": 19438.68, + "end": 19439.52, + "probability": 0.3157 + }, + { + "start": 19439.88, + "end": 19440.08, + "probability": 0.2101 + }, + { + "start": 19440.1, + "end": 19442.76, + "probability": 0.8873 + }, + { + "start": 19443.46, + "end": 19445.36, + "probability": 0.3317 + }, + { + "start": 19445.5, + "end": 19445.7, + "probability": 0.4892 + }, + { + "start": 19445.74, + "end": 19446.62, + "probability": 0.7281 + }, + { + "start": 19446.92, + "end": 19448.36, + "probability": 0.975 + }, + { + "start": 19449.26, + "end": 19451.88, + "probability": 0.9085 + }, + { + "start": 19454.06, + "end": 19455.06, + "probability": 0.6925 + }, + { + "start": 19457.04, + "end": 19461.36, + "probability": 0.9025 + }, + { + "start": 19461.84, + "end": 19465.52, + "probability": 0.9234 + }, + { + "start": 19466.0, + "end": 19467.9, + "probability": 0.8277 + }, + { + "start": 19468.04, + "end": 19468.72, + "probability": 0.9199 + }, + { + "start": 19468.8, + "end": 19472.06, + "probability": 0.9777 + }, + { + "start": 19474.82, + "end": 19474.92, + "probability": 0.5546 + }, + { + "start": 19475.67, + "end": 19475.94, + "probability": 0.0427 + }, + { + "start": 19476.24, + "end": 19478.4, + "probability": 0.8046 + }, + { + "start": 19479.06, + "end": 19481.57, + "probability": 0.7617 + }, + { + "start": 19482.26, + "end": 19483.46, + "probability": 0.7256 + }, + { + "start": 19483.54, + "end": 19484.53, + "probability": 0.9584 + }, + { + "start": 19484.74, + "end": 19487.71, + "probability": 0.8997 + }, + { + "start": 19488.9, + "end": 19491.96, + "probability": 0.7741 + }, + { + "start": 19492.86, + "end": 19498.08, + "probability": 0.7433 + }, + { + "start": 19498.5, + "end": 19503.94, + "probability": 0.9656 + }, + { + "start": 19504.08, + "end": 19511.38, + "probability": 0.9851 + }, + { + "start": 19511.4, + "end": 19513.11, + "probability": 0.9802 + }, + { + "start": 19513.3, + "end": 19513.94, + "probability": 0.7587 + }, + { + "start": 19514.12, + "end": 19514.36, + "probability": 0.4928 + }, + { + "start": 19514.46, + "end": 19515.18, + "probability": 0.638 + }, + { + "start": 19515.8, + "end": 19516.82, + "probability": 0.9575 + }, + { + "start": 19517.04, + "end": 19518.04, + "probability": 0.9607 + }, + { + "start": 19518.12, + "end": 19522.32, + "probability": 0.7783 + }, + { + "start": 19522.44, + "end": 19523.28, + "probability": 0.6517 + }, + { + "start": 19524.62, + "end": 19528.32, + "probability": 0.8813 + }, + { + "start": 19529.08, + "end": 19530.98, + "probability": 0.744 + }, + { + "start": 19531.12, + "end": 19531.58, + "probability": 0.5078 + }, + { + "start": 19531.64, + "end": 19532.02, + "probability": 0.4786 + }, + { + "start": 19532.08, + "end": 19535.4, + "probability": 0.9593 + }, + { + "start": 19535.5, + "end": 19536.12, + "probability": 0.9409 + }, + { + "start": 19536.38, + "end": 19538.08, + "probability": 0.7597 + }, + { + "start": 19538.24, + "end": 19540.92, + "probability": 0.8201 + }, + { + "start": 19540.98, + "end": 19547.4, + "probability": 0.9891 + }, + { + "start": 19547.62, + "end": 19548.42, + "probability": 0.8193 + }, + { + "start": 19548.5, + "end": 19549.56, + "probability": 0.3863 + }, + { + "start": 19550.14, + "end": 19553.98, + "probability": 0.6519 + }, + { + "start": 19554.14, + "end": 19554.38, + "probability": 0.2637 + }, + { + "start": 19554.86, + "end": 19555.9, + "probability": 0.8962 + }, + { + "start": 19555.98, + "end": 19556.26, + "probability": 0.8404 + }, + { + "start": 19556.32, + "end": 19556.68, + "probability": 0.5987 + }, + { + "start": 19556.72, + "end": 19557.5, + "probability": 0.9894 + }, + { + "start": 19557.56, + "end": 19558.98, + "probability": 0.1495 + }, + { + "start": 19559.92, + "end": 19561.5, + "probability": 0.8618 + }, + { + "start": 19561.5, + "end": 19561.76, + "probability": 0.9117 + }, + { + "start": 19561.84, + "end": 19563.87, + "probability": 0.7618 + }, + { + "start": 19564.18, + "end": 19567.25, + "probability": 0.8379 + }, + { + "start": 19570.24, + "end": 19571.16, + "probability": 0.3372 + }, + { + "start": 19571.16, + "end": 19571.66, + "probability": 0.1151 + }, + { + "start": 19571.84, + "end": 19574.64, + "probability": 0.9537 + }, + { + "start": 19574.64, + "end": 19577.34, + "probability": 0.9986 + }, + { + "start": 19577.56, + "end": 19581.02, + "probability": 0.8339 + }, + { + "start": 19581.62, + "end": 19584.44, + "probability": 0.9846 + }, + { + "start": 19585.12, + "end": 19590.46, + "probability": 0.9041 + }, + { + "start": 19592.3, + "end": 19594.16, + "probability": 0.8403 + }, + { + "start": 19594.82, + "end": 19597.14, + "probability": 0.8748 + }, + { + "start": 19597.92, + "end": 19601.59, + "probability": 0.7182 + }, + { + "start": 19602.18, + "end": 19609.22, + "probability": 0.9811 + }, + { + "start": 19609.5, + "end": 19614.24, + "probability": 0.9727 + }, + { + "start": 19614.54, + "end": 19615.81, + "probability": 0.9546 + }, + { + "start": 19616.1, + "end": 19618.6, + "probability": 0.9798 + }, + { + "start": 19618.94, + "end": 19623.54, + "probability": 0.9982 + }, + { + "start": 19624.48, + "end": 19626.72, + "probability": 0.6887 + }, + { + "start": 19626.94, + "end": 19627.96, + "probability": 0.9651 + }, + { + "start": 19628.54, + "end": 19631.27, + "probability": 0.9965 + }, + { + "start": 19631.46, + "end": 19632.36, + "probability": 0.981 + }, + { + "start": 19632.36, + "end": 19632.68, + "probability": 0.97 + }, + { + "start": 19633.72, + "end": 19634.94, + "probability": 0.5023 + }, + { + "start": 19635.0, + "end": 19636.92, + "probability": 0.5912 + }, + { + "start": 19637.77, + "end": 19640.06, + "probability": 0.3767 + }, + { + "start": 19640.12, + "end": 19642.8, + "probability": 0.2913 + }, + { + "start": 19644.7, + "end": 19648.52, + "probability": 0.687 + }, + { + "start": 19648.6, + "end": 19650.53, + "probability": 0.7473 + }, + { + "start": 19650.62, + "end": 19651.26, + "probability": 0.7424 + }, + { + "start": 19652.1, + "end": 19653.78, + "probability": 0.6247 + }, + { + "start": 19653.78, + "end": 19656.24, + "probability": 0.4741 + }, + { + "start": 19656.24, + "end": 19657.26, + "probability": 0.7772 + }, + { + "start": 19657.57, + "end": 19663.16, + "probability": 0.9809 + }, + { + "start": 19664.0, + "end": 19669.6, + "probability": 0.87 + }, + { + "start": 19670.1, + "end": 19675.86, + "probability": 0.9966 + }, + { + "start": 19676.16, + "end": 19678.2, + "probability": 0.9531 + }, + { + "start": 19678.88, + "end": 19681.78, + "probability": 0.9857 + }, + { + "start": 19682.04, + "end": 19687.59, + "probability": 0.9919 + }, + { + "start": 19688.48, + "end": 19692.58, + "probability": 0.6805 + }, + { + "start": 19693.56, + "end": 19693.8, + "probability": 0.3176 + }, + { + "start": 19693.8, + "end": 19694.56, + "probability": 0.7414 + }, + { + "start": 19694.82, + "end": 19695.52, + "probability": 0.7893 + }, + { + "start": 19695.64, + "end": 19695.99, + "probability": 0.9398 + }, + { + "start": 19697.06, + "end": 19698.66, + "probability": 0.2514 + }, + { + "start": 19698.72, + "end": 19700.04, + "probability": 0.2543 + }, + { + "start": 19701.82, + "end": 19703.26, + "probability": 0.4583 + }, + { + "start": 19703.26, + "end": 19703.68, + "probability": 0.0679 + }, + { + "start": 19704.14, + "end": 19705.78, + "probability": 0.5956 + }, + { + "start": 19705.78, + "end": 19709.18, + "probability": 0.8114 + }, + { + "start": 19709.18, + "end": 19713.4, + "probability": 0.9976 + }, + { + "start": 19713.8, + "end": 19717.72, + "probability": 0.9818 + }, + { + "start": 19718.4, + "end": 19720.88, + "probability": 0.9908 + }, + { + "start": 19721.0, + "end": 19722.12, + "probability": 0.9217 + }, + { + "start": 19722.54, + "end": 19723.08, + "probability": 0.6698 + }, + { + "start": 19723.3, + "end": 19725.04, + "probability": 0.9677 + }, + { + "start": 19725.44, + "end": 19728.14, + "probability": 0.7676 + }, + { + "start": 19728.38, + "end": 19729.82, + "probability": 0.3973 + }, + { + "start": 19730.3, + "end": 19733.12, + "probability": 0.8894 + }, + { + "start": 19733.56, + "end": 19736.38, + "probability": 0.9682 + }, + { + "start": 19736.8, + "end": 19738.4, + "probability": 0.9481 + }, + { + "start": 19738.92, + "end": 19739.86, + "probability": 0.8784 + }, + { + "start": 19743.04, + "end": 19748.82, + "probability": 0.993 + }, + { + "start": 19749.2, + "end": 19750.14, + "probability": 0.6023 + }, + { + "start": 19750.22, + "end": 19753.32, + "probability": 0.9764 + }, + { + "start": 19753.64, + "end": 19754.48, + "probability": 0.9683 + }, + { + "start": 19754.76, + "end": 19757.28, + "probability": 0.9888 + }, + { + "start": 19757.52, + "end": 19757.94, + "probability": 0.5462 + }, + { + "start": 19758.0, + "end": 19759.62, + "probability": 0.5311 + }, + { + "start": 19760.12, + "end": 19765.92, + "probability": 0.9946 + }, + { + "start": 19765.92, + "end": 19769.58, + "probability": 0.9923 + }, + { + "start": 19769.76, + "end": 19770.3, + "probability": 0.7846 + }, + { + "start": 19771.04, + "end": 19772.04, + "probability": 0.9238 + }, + { + "start": 19772.46, + "end": 19773.24, + "probability": 0.9017 + }, + { + "start": 19776.7, + "end": 19777.3, + "probability": 0.3464 + }, + { + "start": 19784.11, + "end": 19786.74, + "probability": 0.8561 + }, + { + "start": 19786.82, + "end": 19789.54, + "probability": 0.9092 + }, + { + "start": 19789.98, + "end": 19793.45, + "probability": 0.9766 + }, + { + "start": 19793.64, + "end": 19794.32, + "probability": 0.8639 + }, + { + "start": 19794.44, + "end": 19797.64, + "probability": 0.9957 + }, + { + "start": 19797.74, + "end": 19798.2, + "probability": 0.5751 + }, + { + "start": 19798.26, + "end": 19798.82, + "probability": 0.911 + }, + { + "start": 19799.26, + "end": 19806.66, + "probability": 0.9279 + }, + { + "start": 19806.74, + "end": 19807.57, + "probability": 0.8604 + }, + { + "start": 19808.54, + "end": 19808.62, + "probability": 0.4253 + }, + { + "start": 19808.68, + "end": 19813.12, + "probability": 0.9812 + }, + { + "start": 19813.52, + "end": 19816.02, + "probability": 0.9811 + }, + { + "start": 19816.36, + "end": 19816.78, + "probability": 0.678 + }, + { + "start": 19816.92, + "end": 19818.18, + "probability": 0.973 + }, + { + "start": 19818.44, + "end": 19819.1, + "probability": 0.9878 + }, + { + "start": 19819.14, + "end": 19819.66, + "probability": 0.8339 + }, + { + "start": 19819.76, + "end": 19822.68, + "probability": 0.8191 + }, + { + "start": 19822.82, + "end": 19827.94, + "probability": 0.9572 + }, + { + "start": 19828.08, + "end": 19831.86, + "probability": 0.8695 + }, + { + "start": 19832.98, + "end": 19834.96, + "probability": 0.8813 + }, + { + "start": 19835.08, + "end": 19835.88, + "probability": 0.759 + }, + { + "start": 19835.94, + "end": 19838.76, + "probability": 0.9155 + }, + { + "start": 19839.33, + "end": 19841.62, + "probability": 0.5035 + }, + { + "start": 19841.78, + "end": 19841.96, + "probability": 0.834 + }, + { + "start": 19842.02, + "end": 19845.48, + "probability": 0.8621 + }, + { + "start": 19845.48, + "end": 19850.0, + "probability": 0.6663 + }, + { + "start": 19850.08, + "end": 19850.1, + "probability": 0.023 + }, + { + "start": 19850.1, + "end": 19852.36, + "probability": 0.9734 + }, + { + "start": 19852.52, + "end": 19855.16, + "probability": 0.8893 + }, + { + "start": 19855.24, + "end": 19856.28, + "probability": 0.8273 + }, + { + "start": 19856.36, + "end": 19857.3, + "probability": 0.9668 + }, + { + "start": 19857.34, + "end": 19859.74, + "probability": 0.9727 + }, + { + "start": 19860.08, + "end": 19860.98, + "probability": 0.9381 + }, + { + "start": 19861.22, + "end": 19862.58, + "probability": 0.7368 + }, + { + "start": 19862.88, + "end": 19865.84, + "probability": 0.8454 + }, + { + "start": 19866.02, + "end": 19869.06, + "probability": 0.8858 + }, + { + "start": 19869.32, + "end": 19872.7, + "probability": 0.9771 + }, + { + "start": 19872.9, + "end": 19875.62, + "probability": 0.725 + }, + { + "start": 19875.94, + "end": 19876.85, + "probability": 0.7645 + }, + { + "start": 19877.18, + "end": 19880.68, + "probability": 0.8583 + }, + { + "start": 19881.36, + "end": 19883.81, + "probability": 0.9902 + }, + { + "start": 19884.14, + "end": 19887.4, + "probability": 0.8074 + }, + { + "start": 19887.62, + "end": 19889.24, + "probability": 0.5113 + }, + { + "start": 19889.66, + "end": 19889.66, + "probability": 0.5492 + }, + { + "start": 19889.66, + "end": 19889.82, + "probability": 0.7659 + }, + { + "start": 19889.9, + "end": 19893.62, + "probability": 0.8603 + }, + { + "start": 19893.66, + "end": 19898.86, + "probability": 0.9575 + }, + { + "start": 19899.68, + "end": 19901.65, + "probability": 0.9449 + }, + { + "start": 19902.8, + "end": 19903.32, + "probability": 0.7346 + }, + { + "start": 19903.64, + "end": 19903.64, + "probability": 0.4846 + }, + { + "start": 19903.64, + "end": 19909.84, + "probability": 0.8235 + }, + { + "start": 19911.44, + "end": 19913.44, + "probability": 0.8195 + }, + { + "start": 19913.64, + "end": 19915.26, + "probability": 0.8081 + }, + { + "start": 19915.34, + "end": 19916.0, + "probability": 0.7728 + }, + { + "start": 19916.04, + "end": 19920.6, + "probability": 0.7906 + }, + { + "start": 19920.66, + "end": 19921.52, + "probability": 0.9111 + }, + { + "start": 19921.54, + "end": 19923.15, + "probability": 0.9442 + }, + { + "start": 19938.44, + "end": 19940.54, + "probability": 0.0713 + }, + { + "start": 19943.5, + "end": 19944.42, + "probability": 0.0609 + }, + { + "start": 19946.13, + "end": 19948.46, + "probability": 0.4458 + }, + { + "start": 19948.8, + "end": 19948.96, + "probability": 0.2798 + }, + { + "start": 19949.18, + "end": 19949.44, + "probability": 0.3625 + }, + { + "start": 19949.44, + "end": 19953.94, + "probability": 0.9822 + }, + { + "start": 19956.7, + "end": 19964.08, + "probability": 0.9863 + }, + { + "start": 19964.5, + "end": 19966.54, + "probability": 0.6873 + }, + { + "start": 19967.12, + "end": 19969.1, + "probability": 0.843 + }, + { + "start": 19969.2, + "end": 19969.96, + "probability": 0.8945 + }, + { + "start": 19972.21, + "end": 19973.82, + "probability": 0.2379 + }, + { + "start": 19988.51, + "end": 19992.84, + "probability": 0.6723 + }, + { + "start": 19993.06, + "end": 19994.84, + "probability": 0.6569 + }, + { + "start": 19994.92, + "end": 19995.76, + "probability": 0.6812 + }, + { + "start": 19995.82, + "end": 19997.2, + "probability": 0.7824 + }, + { + "start": 19997.32, + "end": 19999.06, + "probability": 0.7523 + }, + { + "start": 19999.06, + "end": 20002.18, + "probability": 0.7371 + }, + { + "start": 20002.18, + "end": 20006.32, + "probability": 0.671 + }, + { + "start": 20006.56, + "end": 20007.86, + "probability": 0.3273 + }, + { + "start": 20007.98, + "end": 20008.96, + "probability": 0.7773 + }, + { + "start": 20009.08, + "end": 20013.3, + "probability": 0.5896 + }, + { + "start": 20013.3, + "end": 20016.0, + "probability": 0.2071 + }, + { + "start": 20016.08, + "end": 20017.0, + "probability": 0.3162 + }, + { + "start": 20017.1, + "end": 20018.68, + "probability": 0.7075 + }, + { + "start": 20018.76, + "end": 20019.42, + "probability": 0.7894 + }, + { + "start": 20020.57, + "end": 20026.78, + "probability": 0.9609 + }, + { + "start": 20026.84, + "end": 20030.84, + "probability": 0.9933 + }, + { + "start": 20030.86, + "end": 20031.12, + "probability": 0.6828 + }, + { + "start": 20032.94, + "end": 20038.12, + "probability": 0.0586 + }, + { + "start": 20038.12, + "end": 20038.88, + "probability": 0.0347 + }, + { + "start": 20039.68, + "end": 20040.56, + "probability": 0.0293 + }, + { + "start": 20056.38, + "end": 20060.6, + "probability": 0.1052 + }, + { + "start": 20061.36, + "end": 20068.22, + "probability": 0.0647 + }, + { + "start": 20068.82, + "end": 20070.92, + "probability": 0.0858 + }, + { + "start": 20071.64, + "end": 20073.2, + "probability": 0.0474 + }, + { + "start": 20073.56, + "end": 20074.52, + "probability": 0.2548 + }, + { + "start": 20093.0, + "end": 20093.0, + "probability": 0.0 + }, + { + "start": 20093.0, + "end": 20093.0, + "probability": 0.0 + }, + { + "start": 20093.0, + "end": 20093.0, + "probability": 0.0 + }, + { + "start": 20093.0, + "end": 20093.0, + "probability": 0.0 + }, + { + "start": 20093.0, + "end": 20093.0, + "probability": 0.0 + }, + { + "start": 20093.0, + "end": 20093.0, + "probability": 0.0 + }, + { + "start": 20093.0, + "end": 20093.0, + "probability": 0.0 + }, + { + "start": 20093.0, + "end": 20093.0, + "probability": 0.0 + }, + { + "start": 20093.0, + "end": 20093.0, + "probability": 0.0 + }, + { + "start": 20093.0, + "end": 20093.0, + "probability": 0.0 + }, + { + "start": 20093.0, + "end": 20093.0, + "probability": 0.0 + }, + { + "start": 20093.0, + "end": 20093.0, + "probability": 0.0 + }, + { + "start": 20093.0, + "end": 20093.0, + "probability": 0.0 + }, + { + "start": 20093.0, + "end": 20093.0, + "probability": 0.0 + }, + { + "start": 20093.0, + "end": 20093.0, + "probability": 0.0 + }, + { + "start": 20093.0, + "end": 20093.0, + "probability": 0.0 + }, + { + "start": 20093.0, + "end": 20093.0, + "probability": 0.0 + }, + { + "start": 20093.0, + "end": 20093.0, + "probability": 0.0 + }, + { + "start": 20093.0, + "end": 20093.0, + "probability": 0.0 + }, + { + "start": 20093.0, + "end": 20093.0, + "probability": 0.0 + }, + { + "start": 20093.0, + "end": 20093.0, + "probability": 0.0 + }, + { + "start": 20093.0, + "end": 20093.0, + "probability": 0.0 + }, + { + "start": 20093.0, + "end": 20093.0, + "probability": 0.0 + }, + { + "start": 20093.0, + "end": 20093.0, + "probability": 0.0 + }, + { + "start": 20093.22, + "end": 20094.68, + "probability": 0.0856 + }, + { + "start": 20095.24, + "end": 20095.3, + "probability": 0.0207 + }, + { + "start": 20095.36, + "end": 20101.18, + "probability": 0.5153 + }, + { + "start": 20101.18, + "end": 20101.68, + "probability": 0.1068 + }, + { + "start": 20101.68, + "end": 20103.19, + "probability": 0.0579 + }, + { + "start": 20104.58, + "end": 20107.22, + "probability": 0.077 + }, + { + "start": 20107.22, + "end": 20111.96, + "probability": 0.1237 + }, + { + "start": 20115.38, + "end": 20118.31, + "probability": 0.7659 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.0, + "end": 20215.0, + "probability": 0.0 + }, + { + "start": 20215.14, + "end": 20215.28, + "probability": 0.2097 + }, + { + "start": 20215.28, + "end": 20215.28, + "probability": 0.0195 + }, + { + "start": 20215.28, + "end": 20215.28, + "probability": 0.0445 + }, + { + "start": 20215.28, + "end": 20215.74, + "probability": 0.0453 + }, + { + "start": 20215.74, + "end": 20219.38, + "probability": 0.4661 + }, + { + "start": 20219.48, + "end": 20219.82, + "probability": 0.1388 + }, + { + "start": 20220.52, + "end": 20223.22, + "probability": 0.9468 + }, + { + "start": 20223.28, + "end": 20223.8, + "probability": 0.8371 + }, + { + "start": 20230.12, + "end": 20231.9, + "probability": 0.4735 + }, + { + "start": 20232.0, + "end": 20232.0, + "probability": 0.2881 + }, + { + "start": 20232.0, + "end": 20232.78, + "probability": 0.727 + }, + { + "start": 20233.06, + "end": 20234.36, + "probability": 0.7557 + }, + { + "start": 20235.88, + "end": 20241.1, + "probability": 0.9708 + }, + { + "start": 20243.09, + "end": 20245.16, + "probability": 0.998 + }, + { + "start": 20245.46, + "end": 20248.72, + "probability": 0.9746 + }, + { + "start": 20248.9, + "end": 20249.72, + "probability": 0.8943 + }, + { + "start": 20249.76, + "end": 20250.3, + "probability": 0.8996 + }, + { + "start": 20250.4, + "end": 20250.94, + "probability": 0.6944 + }, + { + "start": 20251.84, + "end": 20252.56, + "probability": 0.8453 + }, + { + "start": 20252.88, + "end": 20254.58, + "probability": 0.7909 + }, + { + "start": 20255.0, + "end": 20257.5, + "probability": 0.9722 + }, + { + "start": 20257.82, + "end": 20262.32, + "probability": 0.9888 + }, + { + "start": 20263.62, + "end": 20264.28, + "probability": 0.964 + }, + { + "start": 20266.26, + "end": 20272.16, + "probability": 0.8667 + }, + { + "start": 20272.4, + "end": 20277.16, + "probability": 0.9565 + }, + { + "start": 20278.22, + "end": 20279.3, + "probability": 0.7535 + }, + { + "start": 20280.08, + "end": 20283.18, + "probability": 0.9745 + }, + { + "start": 20284.4, + "end": 20286.38, + "probability": 0.9799 + }, + { + "start": 20286.46, + "end": 20287.76, + "probability": 0.9307 + }, + { + "start": 20288.9, + "end": 20290.64, + "probability": 0.5432 + }, + { + "start": 20292.08, + "end": 20293.28, + "probability": 0.8145 + }, + { + "start": 20293.42, + "end": 20295.24, + "probability": 0.924 + }, + { + "start": 20295.46, + "end": 20297.18, + "probability": 0.9907 + }, + { + "start": 20297.26, + "end": 20299.84, + "probability": 0.993 + }, + { + "start": 20300.3, + "end": 20303.4, + "probability": 0.9894 + }, + { + "start": 20303.42, + "end": 20303.98, + "probability": 0.3746 + }, + { + "start": 20304.48, + "end": 20306.9, + "probability": 0.9985 + }, + { + "start": 20307.1, + "end": 20309.74, + "probability": 0.7419 + }, + { + "start": 20310.02, + "end": 20312.24, + "probability": 0.9982 + }, + { + "start": 20312.62, + "end": 20313.56, + "probability": 0.9291 + }, + { + "start": 20313.66, + "end": 20316.16, + "probability": 0.9387 + }, + { + "start": 20317.38, + "end": 20319.28, + "probability": 0.9179 + }, + { + "start": 20319.54, + "end": 20321.06, + "probability": 0.9839 + }, + { + "start": 20321.9, + "end": 20325.72, + "probability": 0.8657 + }, + { + "start": 20325.84, + "end": 20326.42, + "probability": 0.7758 + }, + { + "start": 20326.5, + "end": 20327.6, + "probability": 0.9312 + }, + { + "start": 20328.32, + "end": 20329.7, + "probability": 0.9876 + }, + { + "start": 20329.76, + "end": 20330.46, + "probability": 0.8513 + }, + { + "start": 20330.56, + "end": 20331.4, + "probability": 0.9719 + }, + { + "start": 20331.58, + "end": 20332.78, + "probability": 0.8746 + }, + { + "start": 20333.08, + "end": 20334.28, + "probability": 0.6885 + }, + { + "start": 20334.98, + "end": 20337.16, + "probability": 0.8483 + }, + { + "start": 20337.5, + "end": 20339.1, + "probability": 0.818 + }, + { + "start": 20339.24, + "end": 20340.48, + "probability": 0.9688 + }, + { + "start": 20341.44, + "end": 20347.22, + "probability": 0.9949 + }, + { + "start": 20348.78, + "end": 20350.12, + "probability": 0.4458 + }, + { + "start": 20350.4, + "end": 20353.3, + "probability": 0.9982 + }, + { + "start": 20353.56, + "end": 20354.34, + "probability": 0.8779 + }, + { + "start": 20354.4, + "end": 20356.84, + "probability": 0.974 + }, + { + "start": 20357.14, + "end": 20360.1, + "probability": 0.9903 + }, + { + "start": 20360.1, + "end": 20363.22, + "probability": 0.908 + }, + { + "start": 20363.68, + "end": 20365.8, + "probability": 0.97 + }, + { + "start": 20365.92, + "end": 20367.02, + "probability": 0.7552 + }, + { + "start": 20367.88, + "end": 20369.76, + "probability": 0.8802 + }, + { + "start": 20370.24, + "end": 20374.76, + "probability": 0.9805 + }, + { + "start": 20374.76, + "end": 20378.7, + "probability": 0.9444 + }, + { + "start": 20379.0, + "end": 20385.32, + "probability": 0.9874 + }, + { + "start": 20385.82, + "end": 20387.22, + "probability": 0.8917 + }, + { + "start": 20387.58, + "end": 20390.54, + "probability": 0.9771 + }, + { + "start": 20391.12, + "end": 20391.92, + "probability": 0.3463 + }, + { + "start": 20391.94, + "end": 20393.7, + "probability": 0.8945 + }, + { + "start": 20394.14, + "end": 20397.74, + "probability": 0.9534 + }, + { + "start": 20397.92, + "end": 20398.4, + "probability": 0.8023 + }, + { + "start": 20398.6, + "end": 20400.6, + "probability": 0.9387 + }, + { + "start": 20400.66, + "end": 20403.26, + "probability": 0.9201 + }, + { + "start": 20415.58, + "end": 20420.64, + "probability": 0.5522 + }, + { + "start": 20421.44, + "end": 20424.62, + "probability": 0.4422 + }, + { + "start": 20425.5, + "end": 20426.32, + "probability": 0.4916 + }, + { + "start": 20427.1, + "end": 20430.0, + "probability": 0.8846 + }, + { + "start": 20431.2, + "end": 20432.16, + "probability": 0.8078 + }, + { + "start": 20432.36, + "end": 20433.32, + "probability": 0.9073 + }, + { + "start": 20433.4, + "end": 20437.22, + "probability": 0.9577 + }, + { + "start": 20439.22, + "end": 20444.98, + "probability": 0.983 + }, + { + "start": 20446.06, + "end": 20448.86, + "probability": 0.9946 + }, + { + "start": 20449.84, + "end": 20457.24, + "probability": 0.9902 + }, + { + "start": 20458.1, + "end": 20458.64, + "probability": 0.9133 + }, + { + "start": 20458.74, + "end": 20459.22, + "probability": 0.6853 + }, + { + "start": 20459.3, + "end": 20460.36, + "probability": 0.9087 + }, + { + "start": 20460.6, + "end": 20461.16, + "probability": 0.7633 + }, + { + "start": 20461.24, + "end": 20463.88, + "probability": 0.9881 + }, + { + "start": 20464.0, + "end": 20464.72, + "probability": 0.5342 + }, + { + "start": 20464.72, + "end": 20464.93, + "probability": 0.4905 + }, + { + "start": 20465.38, + "end": 20470.8, + "probability": 0.9542 + }, + { + "start": 20471.58, + "end": 20473.64, + "probability": 0.7738 + }, + { + "start": 20473.72, + "end": 20475.24, + "probability": 0.6347 + }, + { + "start": 20475.24, + "end": 20475.24, + "probability": 0.0149 + }, + { + "start": 20475.24, + "end": 20475.68, + "probability": 0.0994 + }, + { + "start": 20475.8, + "end": 20478.06, + "probability": 0.8771 + }, + { + "start": 20479.95, + "end": 20482.48, + "probability": 0.9536 + }, + { + "start": 20483.64, + "end": 20488.54, + "probability": 0.9768 + }, + { + "start": 20488.66, + "end": 20498.16, + "probability": 0.9945 + }, + { + "start": 20498.38, + "end": 20498.98, + "probability": 0.4216 + }, + { + "start": 20499.02, + "end": 20499.56, + "probability": 0.8795 + }, + { + "start": 20499.74, + "end": 20500.7, + "probability": 0.7613 + }, + { + "start": 20502.4, + "end": 20505.66, + "probability": 0.9884 + }, + { + "start": 20505.66, + "end": 20510.4, + "probability": 0.955 + }, + { + "start": 20511.72, + "end": 20514.86, + "probability": 0.8882 + }, + { + "start": 20515.72, + "end": 20516.74, + "probability": 0.8323 + }, + { + "start": 20516.8, + "end": 20518.08, + "probability": 0.9609 + }, + { + "start": 20518.28, + "end": 20525.1, + "probability": 0.9696 + }, + { + "start": 20526.1, + "end": 20528.4, + "probability": 0.887 + }, + { + "start": 20528.58, + "end": 20534.46, + "probability": 0.8313 + }, + { + "start": 20535.02, + "end": 20539.66, + "probability": 0.9861 + }, + { + "start": 20539.7, + "end": 20544.14, + "probability": 0.9859 + }, + { + "start": 20544.22, + "end": 20547.68, + "probability": 0.9973 + }, + { + "start": 20549.28, + "end": 20552.46, + "probability": 0.9905 + }, + { + "start": 20552.6, + "end": 20556.34, + "probability": 0.9951 + }, + { + "start": 20556.88, + "end": 20562.72, + "probability": 0.9966 + }, + { + "start": 20562.72, + "end": 20566.86, + "probability": 0.9839 + }, + { + "start": 20567.54, + "end": 20571.64, + "probability": 0.9985 + }, + { + "start": 20572.24, + "end": 20574.34, + "probability": 0.9956 + }, + { + "start": 20576.82, + "end": 20579.36, + "probability": 0.9889 + }, + { + "start": 20579.9, + "end": 20584.36, + "probability": 0.938 + }, + { + "start": 20585.08, + "end": 20586.66, + "probability": 0.9966 + }, + { + "start": 20586.82, + "end": 20592.32, + "probability": 0.8043 + }, + { + "start": 20593.58, + "end": 20597.8, + "probability": 0.9949 + }, + { + "start": 20597.8, + "end": 20601.12, + "probability": 0.9928 + }, + { + "start": 20603.62, + "end": 20609.18, + "probability": 0.6276 + }, + { + "start": 20609.18, + "end": 20609.18, + "probability": 0.2229 + }, + { + "start": 20609.18, + "end": 20612.52, + "probability": 0.8651 + }, + { + "start": 20612.62, + "end": 20617.77, + "probability": 0.9678 + }, + { + "start": 20618.24, + "end": 20620.72, + "probability": 0.0007 + }, + { + "start": 20620.72, + "end": 20623.86, + "probability": 0.4215 + }, + { + "start": 20624.4, + "end": 20624.64, + "probability": 0.0337 + }, + { + "start": 20624.64, + "end": 20624.99, + "probability": 0.2794 + }, + { + "start": 20625.5, + "end": 20628.29, + "probability": 0.749 + }, + { + "start": 20628.9, + "end": 20630.58, + "probability": 0.0269 + }, + { + "start": 20631.16, + "end": 20633.6, + "probability": 0.0482 + }, + { + "start": 20633.66, + "end": 20633.66, + "probability": 0.1162 + }, + { + "start": 20633.68, + "end": 20634.8, + "probability": 0.4791 + }, + { + "start": 20634.98, + "end": 20634.98, + "probability": 0.5137 + }, + { + "start": 20634.98, + "end": 20634.98, + "probability": 0.0364 + }, + { + "start": 20634.98, + "end": 20634.98, + "probability": 0.5038 + }, + { + "start": 20634.98, + "end": 20637.08, + "probability": 0.1958 + }, + { + "start": 20638.7, + "end": 20638.86, + "probability": 0.0131 + }, + { + "start": 20639.18, + "end": 20639.9, + "probability": 0.4714 + }, + { + "start": 20640.52, + "end": 20641.44, + "probability": 0.3568 + }, + { + "start": 20641.5, + "end": 20643.46, + "probability": 0.272 + }, + { + "start": 20643.56, + "end": 20644.01, + "probability": 0.4152 + }, + { + "start": 20644.02, + "end": 20646.03, + "probability": 0.4206 + }, + { + "start": 20648.48, + "end": 20648.7, + "probability": 0.0309 + }, + { + "start": 20648.7, + "end": 20650.36, + "probability": 0.8704 + }, + { + "start": 20650.4, + "end": 20652.08, + "probability": 0.4081 + }, + { + "start": 20652.58, + "end": 20653.97, + "probability": 0.4617 + }, + { + "start": 20654.54, + "end": 20654.54, + "probability": 0.2672 + }, + { + "start": 20654.54, + "end": 20655.72, + "probability": 0.3885 + }, + { + "start": 20655.98, + "end": 20658.55, + "probability": 0.0736 + }, + { + "start": 20659.36, + "end": 20660.06, + "probability": 0.0827 + }, + { + "start": 20660.22, + "end": 20662.26, + "probability": 0.3833 + }, + { + "start": 20662.4, + "end": 20664.28, + "probability": 0.4714 + }, + { + "start": 20664.44, + "end": 20667.25, + "probability": 0.7598 + }, + { + "start": 20668.2, + "end": 20668.2, + "probability": 0.2205 + }, + { + "start": 20668.2, + "end": 20668.2, + "probability": 0.2254 + }, + { + "start": 20668.8, + "end": 20673.14, + "probability": 0.9849 + }, + { + "start": 20673.2, + "end": 20676.44, + "probability": 0.9917 + }, + { + "start": 20676.44, + "end": 20678.96, + "probability": 0.631 + }, + { + "start": 20679.2, + "end": 20679.64, + "probability": 0.7283 + }, + { + "start": 20679.74, + "end": 20680.62, + "probability": 0.4663 + }, + { + "start": 20680.62, + "end": 20681.34, + "probability": 0.1404 + }, + { + "start": 20681.9, + "end": 20682.62, + "probability": 0.5283 + }, + { + "start": 20682.76, + "end": 20683.77, + "probability": 0.1581 + }, + { + "start": 20684.12, + "end": 20684.4, + "probability": 0.1883 + }, + { + "start": 20684.4, + "end": 20685.44, + "probability": 0.3363 + }, + { + "start": 20685.62, + "end": 20687.34, + "probability": 0.3672 + }, + { + "start": 20687.34, + "end": 20688.89, + "probability": 0.6632 + }, + { + "start": 20689.18, + "end": 20691.9, + "probability": 0.7964 + }, + { + "start": 20693.5, + "end": 20697.6, + "probability": 0.6416 + }, + { + "start": 20697.68, + "end": 20698.36, + "probability": 0.7883 + }, + { + "start": 20698.52, + "end": 20701.38, + "probability": 0.9263 + }, + { + "start": 20702.88, + "end": 20703.38, + "probability": 0.3516 + }, + { + "start": 20703.44, + "end": 20706.72, + "probability": 0.8988 + }, + { + "start": 20709.4, + "end": 20712.1, + "probability": 0.7177 + }, + { + "start": 20712.84, + "end": 20713.3, + "probability": 0.5288 + }, + { + "start": 20713.38, + "end": 20714.36, + "probability": 0.3921 + }, + { + "start": 20714.8, + "end": 20715.9, + "probability": 0.8494 + }, + { + "start": 20716.06, + "end": 20717.34, + "probability": 0.6107 + }, + { + "start": 20718.12, + "end": 20719.1, + "probability": 0.9973 + }, + { + "start": 20719.82, + "end": 20723.86, + "probability": 0.9589 + }, + { + "start": 20724.04, + "end": 20724.66, + "probability": 0.8796 + }, + { + "start": 20724.88, + "end": 20726.68, + "probability": 0.9863 + }, + { + "start": 20727.12, + "end": 20729.94, + "probability": 0.9956 + }, + { + "start": 20730.12, + "end": 20735.33, + "probability": 0.9971 + }, + { + "start": 20735.82, + "end": 20737.76, + "probability": 0.9977 + }, + { + "start": 20737.82, + "end": 20738.24, + "probability": 0.7299 + }, + { + "start": 20738.48, + "end": 20739.26, + "probability": 0.8491 + }, + { + "start": 20739.48, + "end": 20741.94, + "probability": 0.8084 + }, + { + "start": 20742.92, + "end": 20743.58, + "probability": 0.6519 + }, + { + "start": 20744.24, + "end": 20745.22, + "probability": 0.2683 + }, + { + "start": 20746.72, + "end": 20747.18, + "probability": 0.0177 + }, + { + "start": 20747.18, + "end": 20747.18, + "probability": 0.0263 + }, + { + "start": 20747.18, + "end": 20748.58, + "probability": 0.5699 + }, + { + "start": 20748.6, + "end": 20749.72, + "probability": 0.8689 + }, + { + "start": 20749.94, + "end": 20750.93, + "probability": 0.7343 + }, + { + "start": 20753.21, + "end": 20754.68, + "probability": 0.1654 + }, + { + "start": 20754.68, + "end": 20756.26, + "probability": 0.025 + }, + { + "start": 20756.62, + "end": 20757.76, + "probability": 0.4849 + }, + { + "start": 20758.34, + "end": 20759.6, + "probability": 0.5145 + }, + { + "start": 20759.68, + "end": 20760.3, + "probability": 0.759 + }, + { + "start": 20760.34, + "end": 20762.08, + "probability": 0.2193 + }, + { + "start": 20763.04, + "end": 20766.6, + "probability": 0.5255 + }, + { + "start": 20769.82, + "end": 20770.3, + "probability": 0.1874 + }, + { + "start": 20772.18, + "end": 20773.0, + "probability": 0.2956 + }, + { + "start": 20773.44, + "end": 20774.92, + "probability": 0.7053 + }, + { + "start": 20775.46, + "end": 20777.24, + "probability": 0.7969 + }, + { + "start": 20777.82, + "end": 20779.18, + "probability": 0.3864 + }, + { + "start": 20779.54, + "end": 20780.03, + "probability": 0.0189 + }, + { + "start": 20780.38, + "end": 20784.16, + "probability": 0.3551 + }, + { + "start": 20785.18, + "end": 20790.5, + "probability": 0.9633 + }, + { + "start": 20790.5, + "end": 20792.0, + "probability": 0.7126 + }, + { + "start": 20792.04, + "end": 20792.88, + "probability": 0.7634 + }, + { + "start": 20793.14, + "end": 20795.22, + "probability": 0.507 + }, + { + "start": 20795.22, + "end": 20796.44, + "probability": 0.925 + }, + { + "start": 20797.32, + "end": 20801.47, + "probability": 0.2761 + }, + { + "start": 20802.84, + "end": 20807.38, + "probability": 0.9863 + }, + { + "start": 20807.88, + "end": 20810.11, + "probability": 0.9692 + }, + { + "start": 20810.36, + "end": 20814.64, + "probability": 0.991 + }, + { + "start": 20815.38, + "end": 20819.88, + "probability": 0.9664 + }, + { + "start": 20820.42, + "end": 20820.42, + "probability": 0.0712 + }, + { + "start": 20820.42, + "end": 20821.34, + "probability": 0.8937 + }, + { + "start": 20821.6, + "end": 20822.1, + "probability": 0.9851 + }, + { + "start": 20822.58, + "end": 20823.06, + "probability": 0.8306 + }, + { + "start": 20823.28, + "end": 20826.98, + "probability": 0.8396 + }, + { + "start": 20827.24, + "end": 20827.24, + "probability": 0.1013 + }, + { + "start": 20827.24, + "end": 20828.52, + "probability": 0.5407 + }, + { + "start": 20828.8, + "end": 20830.34, + "probability": 0.8191 + }, + { + "start": 20830.72, + "end": 20830.72, + "probability": 0.1571 + }, + { + "start": 20830.72, + "end": 20835.28, + "probability": 0.9019 + }, + { + "start": 20835.28, + "end": 20839.62, + "probability": 0.7279 + }, + { + "start": 20840.22, + "end": 20840.76, + "probability": 0.0095 + }, + { + "start": 20840.76, + "end": 20843.64, + "probability": 0.5525 + }, + { + "start": 20843.84, + "end": 20845.02, + "probability": 0.3122 + }, + { + "start": 20845.06, + "end": 20846.16, + "probability": 0.566 + }, + { + "start": 20846.48, + "end": 20846.48, + "probability": 0.4555 + }, + { + "start": 20846.66, + "end": 20848.96, + "probability": 0.9309 + }, + { + "start": 20849.42, + "end": 20851.0, + "probability": 0.9128 + }, + { + "start": 20851.26, + "end": 20851.86, + "probability": 0.7416 + }, + { + "start": 20852.2, + "end": 20854.0, + "probability": 0.7017 + }, + { + "start": 20854.0, + "end": 20855.06, + "probability": 0.5406 + }, + { + "start": 20855.3, + "end": 20860.6, + "probability": 0.953 + }, + { + "start": 20860.8, + "end": 20862.64, + "probability": 0.5977 + }, + { + "start": 20862.66, + "end": 20864.52, + "probability": 0.5558 + }, + { + "start": 20864.74, + "end": 20865.86, + "probability": 0.4948 + }, + { + "start": 20867.34, + "end": 20868.8, + "probability": 0.8265 + }, + { + "start": 20869.24, + "end": 20873.44, + "probability": 0.6134 + }, + { + "start": 20873.56, + "end": 20874.94, + "probability": 0.587 + }, + { + "start": 20874.96, + "end": 20877.14, + "probability": 0.9415 + }, + { + "start": 20877.4, + "end": 20878.14, + "probability": 0.7949 + }, + { + "start": 20878.44, + "end": 20879.06, + "probability": 0.9535 + }, + { + "start": 20879.34, + "end": 20881.2, + "probability": 0.5166 + }, + { + "start": 20881.38, + "end": 20881.62, + "probability": 0.09 + }, + { + "start": 20881.86, + "end": 20884.51, + "probability": 0.5838 + }, + { + "start": 20885.72, + "end": 20885.9, + "probability": 0.3034 + }, + { + "start": 20888.9, + "end": 20889.28, + "probability": 0.038 + }, + { + "start": 20890.82, + "end": 20891.02, + "probability": 0.0159 + }, + { + "start": 20891.02, + "end": 20892.1, + "probability": 0.5462 + }, + { + "start": 20892.12, + "end": 20893.31, + "probability": 0.7966 + }, + { + "start": 20893.44, + "end": 20894.52, + "probability": 0.9093 + }, + { + "start": 20894.54, + "end": 20896.19, + "probability": 0.6753 + }, + { + "start": 20900.7, + "end": 20905.06, + "probability": 0.1457 + }, + { + "start": 20905.1, + "end": 20908.6, + "probability": 0.191 + }, + { + "start": 20914.7, + "end": 20915.66, + "probability": 0.137 + }, + { + "start": 20918.62, + "end": 20921.62, + "probability": 0.633 + }, + { + "start": 20921.82, + "end": 20923.26, + "probability": 0.3971 + }, + { + "start": 20923.58, + "end": 20925.78, + "probability": 0.6713 + }, + { + "start": 20926.04, + "end": 20927.64, + "probability": 0.681 + }, + { + "start": 20927.8, + "end": 20928.1, + "probability": 0.2517 + }, + { + "start": 20928.1, + "end": 20929.84, + "probability": 0.2588 + }, + { + "start": 20929.9, + "end": 20932.44, + "probability": 0.7635 + }, + { + "start": 20932.72, + "end": 20934.22, + "probability": 0.6659 + }, + { + "start": 20934.4, + "end": 20934.8, + "probability": 0.673 + }, + { + "start": 20935.08, + "end": 20937.44, + "probability": 0.4885 + }, + { + "start": 20937.5, + "end": 20939.29, + "probability": 0.6689 + }, + { + "start": 20939.8, + "end": 20944.74, + "probability": 0.791 + }, + { + "start": 20945.1, + "end": 20945.38, + "probability": 0.713 + }, + { + "start": 20946.02, + "end": 20946.66, + "probability": 0.1802 + }, + { + "start": 20950.74, + "end": 20951.0, + "probability": 0.3364 + }, + { + "start": 20957.96, + "end": 20961.46, + "probability": 0.6312 + }, + { + "start": 20961.62, + "end": 20965.42, + "probability": 0.8587 + }, + { + "start": 20965.58, + "end": 20969.8, + "probability": 0.9634 + }, + { + "start": 20970.86, + "end": 20975.62, + "probability": 0.3468 + }, + { + "start": 20985.06, + "end": 20987.28, + "probability": 0.0065 + }, + { + "start": 20987.38, + "end": 20987.38, + "probability": 0.3645 + }, + { + "start": 20987.4, + "end": 20987.4, + "probability": 0.0051 + }, + { + "start": 20987.4, + "end": 20987.4, + "probability": 0.3842 + }, + { + "start": 20987.4, + "end": 20987.46, + "probability": 0.0767 + }, + { + "start": 20987.46, + "end": 20987.46, + "probability": 0.0437 + }, + { + "start": 20987.46, + "end": 20987.46, + "probability": 0.2291 + }, + { + "start": 20987.46, + "end": 20991.4, + "probability": 0.3933 + }, + { + "start": 20992.88, + "end": 20996.46, + "probability": 0.9647 + }, + { + "start": 20996.8, + "end": 20999.16, + "probability": 0.8394 + }, + { + "start": 20999.64, + "end": 21000.16, + "probability": 0.3972 + }, + { + "start": 21000.38, + "end": 21003.52, + "probability": 0.9306 + }, + { + "start": 21003.98, + "end": 21005.38, + "probability": 0.8559 + }, + { + "start": 21005.58, + "end": 21008.24, + "probability": 0.8575 + }, + { + "start": 21008.8, + "end": 21011.33, + "probability": 0.9456 + }, + { + "start": 21011.68, + "end": 21014.62, + "probability": 0.8809 + }, + { + "start": 21015.12, + "end": 21018.7, + "probability": 0.9895 + }, + { + "start": 21019.16, + "end": 21019.92, + "probability": 0.3809 + }, + { + "start": 21020.02, + "end": 21023.06, + "probability": 0.8339 + }, + { + "start": 21023.32, + "end": 21024.46, + "probability": 0.659 + }, + { + "start": 21024.58, + "end": 21025.69, + "probability": 0.7323 + }, + { + "start": 21025.96, + "end": 21028.18, + "probability": 0.9797 + }, + { + "start": 21028.18, + "end": 21031.4, + "probability": 0.9583 + }, + { + "start": 21032.04, + "end": 21033.64, + "probability": 0.9624 + }, + { + "start": 21033.78, + "end": 21035.72, + "probability": 0.9425 + }, + { + "start": 21036.2, + "end": 21037.34, + "probability": 0.9574 + }, + { + "start": 21038.0, + "end": 21040.8, + "probability": 0.9652 + }, + { + "start": 21041.9, + "end": 21046.84, + "probability": 0.976 + }, + { + "start": 21047.04, + "end": 21047.94, + "probability": 0.8796 + }, + { + "start": 21048.08, + "end": 21049.4, + "probability": 0.8794 + }, + { + "start": 21049.52, + "end": 21052.1, + "probability": 0.8031 + }, + { + "start": 21052.48, + "end": 21054.36, + "probability": 0.4801 + }, + { + "start": 21055.02, + "end": 21058.64, + "probability": 0.9761 + }, + { + "start": 21059.14, + "end": 21062.18, + "probability": 0.9897 + }, + { + "start": 21063.44, + "end": 21066.12, + "probability": 0.9819 + }, + { + "start": 21066.12, + "end": 21074.56, + "probability": 0.9725 + }, + { + "start": 21075.3, + "end": 21079.04, + "probability": 0.9401 + }, + { + "start": 21079.4, + "end": 21082.22, + "probability": 0.7917 + }, + { + "start": 21082.92, + "end": 21086.58, + "probability": 0.8961 + }, + { + "start": 21086.86, + "end": 21090.58, + "probability": 0.5986 + }, + { + "start": 21090.88, + "end": 21094.62, + "probability": 0.9661 + }, + { + "start": 21095.12, + "end": 21098.72, + "probability": 0.9951 + }, + { + "start": 21098.76, + "end": 21103.68, + "probability": 0.9929 + }, + { + "start": 21104.32, + "end": 21108.02, + "probability": 0.775 + }, + { + "start": 21108.56, + "end": 21112.26, + "probability": 0.9167 + }, + { + "start": 21112.44, + "end": 21113.22, + "probability": 0.7786 + }, + { + "start": 21113.34, + "end": 21116.7, + "probability": 0.9167 + }, + { + "start": 21117.5, + "end": 21118.58, + "probability": 0.297 + }, + { + "start": 21119.32, + "end": 21122.2, + "probability": 0.3696 + }, + { + "start": 21122.58, + "end": 21123.99, + "probability": 0.9866 + }, + { + "start": 21124.32, + "end": 21127.92, + "probability": 0.9287 + }, + { + "start": 21128.02, + "end": 21128.74, + "probability": 0.7129 + }, + { + "start": 21128.78, + "end": 21131.54, + "probability": 0.981 + }, + { + "start": 21131.54, + "end": 21135.3, + "probability": 0.9967 + }, + { + "start": 21135.5, + "end": 21138.34, + "probability": 0.9694 + }, + { + "start": 21138.74, + "end": 21139.65, + "probability": 0.9204 + }, + { + "start": 21139.96, + "end": 21140.86, + "probability": 0.9014 + }, + { + "start": 21141.26, + "end": 21144.49, + "probability": 0.8764 + }, + { + "start": 21144.68, + "end": 21145.47, + "probability": 0.6664 + }, + { + "start": 21145.78, + "end": 21146.8, + "probability": 0.9182 + }, + { + "start": 21146.86, + "end": 21148.7, + "probability": 0.973 + }, + { + "start": 21148.7, + "end": 21151.62, + "probability": 0.8635 + }, + { + "start": 21151.76, + "end": 21152.88, + "probability": 0.0504 + }, + { + "start": 21153.46, + "end": 21155.44, + "probability": 0.9169 + }, + { + "start": 21155.52, + "end": 21156.86, + "probability": 0.8594 + }, + { + "start": 21157.4, + "end": 21162.82, + "probability": 0.6534 + }, + { + "start": 21163.44, + "end": 21168.96, + "probability": 0.9424 + }, + { + "start": 21169.32, + "end": 21170.02, + "probability": 0.9642 + }, + { + "start": 21170.12, + "end": 21171.6, + "probability": 0.724 + }, + { + "start": 21171.66, + "end": 21174.9, + "probability": 0.4933 + }, + { + "start": 21174.98, + "end": 21175.66, + "probability": 0.6342 + }, + { + "start": 21176.04, + "end": 21177.12, + "probability": 0.9773 + }, + { + "start": 21177.66, + "end": 21178.58, + "probability": 0.8136 + }, + { + "start": 21178.72, + "end": 21182.72, + "probability": 0.9875 + }, + { + "start": 21182.72, + "end": 21188.1, + "probability": 0.9875 + }, + { + "start": 21188.22, + "end": 21191.19, + "probability": 0.7121 + }, + { + "start": 21192.34, + "end": 21193.4, + "probability": 0.8406 + }, + { + "start": 21193.56, + "end": 21197.08, + "probability": 0.9766 + }, + { + "start": 21197.58, + "end": 21200.22, + "probability": 0.8917 + }, + { + "start": 21200.34, + "end": 21201.95, + "probability": 0.7283 + }, + { + "start": 21202.82, + "end": 21207.72, + "probability": 0.6993 + }, + { + "start": 21208.06, + "end": 21209.88, + "probability": 0.9912 + }, + { + "start": 21209.98, + "end": 21212.62, + "probability": 0.7976 + }, + { + "start": 21212.84, + "end": 21219.46, + "probability": 0.9468 + }, + { + "start": 21219.48, + "end": 21223.64, + "probability": 0.9278 + }, + { + "start": 21223.64, + "end": 21228.54, + "probability": 0.9788 + }, + { + "start": 21229.28, + "end": 21230.68, + "probability": 0.9855 + }, + { + "start": 21230.74, + "end": 21231.96, + "probability": 0.8168 + }, + { + "start": 21232.02, + "end": 21233.36, + "probability": 0.7745 + }, + { + "start": 21233.7, + "end": 21236.28, + "probability": 0.788 + }, + { + "start": 21236.5, + "end": 21238.78, + "probability": 0.9504 + }, + { + "start": 21239.28, + "end": 21241.58, + "probability": 0.8447 + }, + { + "start": 21241.9, + "end": 21244.26, + "probability": 0.7897 + }, + { + "start": 21244.48, + "end": 21245.44, + "probability": 0.9703 + }, + { + "start": 21245.96, + "end": 21248.24, + "probability": 0.9957 + }, + { + "start": 21248.24, + "end": 21252.16, + "probability": 0.9949 + }, + { + "start": 21252.86, + "end": 21254.81, + "probability": 0.6978 + }, + { + "start": 21255.68, + "end": 21258.1, + "probability": 0.6744 + }, + { + "start": 21258.62, + "end": 21261.48, + "probability": 0.9929 + }, + { + "start": 21261.48, + "end": 21265.4, + "probability": 0.9798 + }, + { + "start": 21265.88, + "end": 21268.04, + "probability": 0.7503 + }, + { + "start": 21268.44, + "end": 21272.68, + "probability": 0.9601 + }, + { + "start": 21273.14, + "end": 21275.56, + "probability": 0.8451 + }, + { + "start": 21275.8, + "end": 21277.88, + "probability": 0.9517 + }, + { + "start": 21278.22, + "end": 21279.54, + "probability": 0.9949 + }, + { + "start": 21279.76, + "end": 21280.4, + "probability": 0.9588 + }, + { + "start": 21280.62, + "end": 21281.34, + "probability": 0.9886 + }, + { + "start": 21281.48, + "end": 21282.0, + "probability": 0.5617 + }, + { + "start": 21282.3, + "end": 21283.18, + "probability": 0.5615 + }, + { + "start": 21283.54, + "end": 21286.26, + "probability": 0.8851 + }, + { + "start": 21286.9, + "end": 21288.22, + "probability": 0.8365 + }, + { + "start": 21289.54, + "end": 21290.56, + "probability": 0.9001 + }, + { + "start": 21290.82, + "end": 21292.86, + "probability": 0.9779 + }, + { + "start": 21292.86, + "end": 21296.52, + "probability": 0.9933 + }, + { + "start": 21296.58, + "end": 21298.04, + "probability": 0.9629 + }, + { + "start": 21298.64, + "end": 21299.1, + "probability": 0.3926 + }, + { + "start": 21299.14, + "end": 21301.2, + "probability": 0.9939 + }, + { + "start": 21301.3, + "end": 21302.4, + "probability": 0.9932 + }, + { + "start": 21302.46, + "end": 21304.3, + "probability": 0.9861 + }, + { + "start": 21304.54, + "end": 21309.76, + "probability": 0.9694 + }, + { + "start": 21309.76, + "end": 21314.52, + "probability": 0.9797 + }, + { + "start": 21314.86, + "end": 21318.58, + "probability": 0.8475 + }, + { + "start": 21318.98, + "end": 21321.62, + "probability": 0.981 + }, + { + "start": 21321.72, + "end": 21325.04, + "probability": 0.8914 + }, + { + "start": 21325.4, + "end": 21327.67, + "probability": 0.5899 + }, + { + "start": 21328.22, + "end": 21328.62, + "probability": 0.2773 + }, + { + "start": 21328.74, + "end": 21329.54, + "probability": 0.8818 + }, + { + "start": 21329.6, + "end": 21330.44, + "probability": 0.7523 + }, + { + "start": 21330.54, + "end": 21332.81, + "probability": 0.9316 + }, + { + "start": 21333.1, + "end": 21335.65, + "probability": 0.7581 + }, + { + "start": 21336.24, + "end": 21336.4, + "probability": 0.7156 + }, + { + "start": 21336.52, + "end": 21336.96, + "probability": 0.6978 + }, + { + "start": 21337.22, + "end": 21338.04, + "probability": 0.918 + }, + { + "start": 21338.32, + "end": 21339.86, + "probability": 0.9427 + }, + { + "start": 21339.96, + "end": 21343.34, + "probability": 0.9854 + }, + { + "start": 21344.02, + "end": 21345.27, + "probability": 0.9978 + }, + { + "start": 21346.92, + "end": 21352.2, + "probability": 0.7653 + }, + { + "start": 21352.92, + "end": 21356.88, + "probability": 0.979 + }, + { + "start": 21356.88, + "end": 21363.16, + "probability": 0.9793 + }, + { + "start": 21364.14, + "end": 21367.36, + "probability": 0.9644 + }, + { + "start": 21367.72, + "end": 21368.96, + "probability": 0.629 + }, + { + "start": 21369.18, + "end": 21370.18, + "probability": 0.7327 + }, + { + "start": 21370.26, + "end": 21374.98, + "probability": 0.9675 + }, + { + "start": 21375.36, + "end": 21376.78, + "probability": 0.9699 + }, + { + "start": 21376.92, + "end": 21377.32, + "probability": 0.4404 + }, + { + "start": 21377.42, + "end": 21378.14, + "probability": 0.9594 + }, + { + "start": 21378.2, + "end": 21379.74, + "probability": 0.7888 + }, + { + "start": 21379.92, + "end": 21381.66, + "probability": 0.9662 + }, + { + "start": 21381.9, + "end": 21384.1, + "probability": 0.9951 + }, + { + "start": 21384.28, + "end": 21385.1, + "probability": 0.5427 + }, + { + "start": 21385.2, + "end": 21386.56, + "probability": 0.9458 + }, + { + "start": 21386.7, + "end": 21387.8, + "probability": 0.9832 + }, + { + "start": 21387.94, + "end": 21389.08, + "probability": 0.9288 + }, + { + "start": 21389.32, + "end": 21391.22, + "probability": 0.9312 + }, + { + "start": 21391.68, + "end": 21392.0, + "probability": 0.7233 + }, + { + "start": 21392.08, + "end": 21394.14, + "probability": 0.9881 + }, + { + "start": 21394.58, + "end": 21395.46, + "probability": 0.5281 + }, + { + "start": 21395.64, + "end": 21396.14, + "probability": 0.49 + }, + { + "start": 21396.58, + "end": 21396.58, + "probability": 0.6598 + }, + { + "start": 21396.68, + "end": 21402.04, + "probability": 0.9214 + }, + { + "start": 21402.46, + "end": 21404.64, + "probability": 0.9985 + }, + { + "start": 21404.96, + "end": 21408.6, + "probability": 0.9453 + }, + { + "start": 21408.66, + "end": 21412.28, + "probability": 0.846 + }, + { + "start": 21412.48, + "end": 21413.42, + "probability": 0.8268 + }, + { + "start": 21413.5, + "end": 21416.02, + "probability": 0.8716 + }, + { + "start": 21416.1, + "end": 21417.28, + "probability": 0.4489 + }, + { + "start": 21417.48, + "end": 21419.06, + "probability": 0.918 + }, + { + "start": 21419.28, + "end": 21422.14, + "probability": 0.9492 + }, + { + "start": 21422.3, + "end": 21423.8, + "probability": 0.611 + }, + { + "start": 21424.8, + "end": 21426.34, + "probability": 0.9827 + }, + { + "start": 21426.62, + "end": 21428.16, + "probability": 0.5569 + }, + { + "start": 21428.3, + "end": 21433.68, + "probability": 0.885 + }, + { + "start": 21434.12, + "end": 21436.1, + "probability": 0.7859 + }, + { + "start": 21436.16, + "end": 21438.52, + "probability": 0.9888 + }, + { + "start": 21438.52, + "end": 21441.64, + "probability": 0.8935 + }, + { + "start": 21441.76, + "end": 21442.76, + "probability": 0.472 + }, + { + "start": 21442.8, + "end": 21443.5, + "probability": 0.9495 + }, + { + "start": 21444.48, + "end": 21446.14, + "probability": 0.8903 + }, + { + "start": 21446.14, + "end": 21447.62, + "probability": 0.931 + }, + { + "start": 21447.64, + "end": 21448.74, + "probability": 0.8905 + }, + { + "start": 21449.9, + "end": 21450.0, + "probability": 0.1993 + }, + { + "start": 21450.0, + "end": 21451.4, + "probability": 0.9426 + }, + { + "start": 21451.46, + "end": 21452.08, + "probability": 0.7234 + }, + { + "start": 21452.58, + "end": 21454.14, + "probability": 0.8107 + }, + { + "start": 21454.66, + "end": 21459.06, + "probability": 0.804 + }, + { + "start": 21459.12, + "end": 21460.92, + "probability": 0.9803 + }, + { + "start": 21461.0, + "end": 21462.5, + "probability": 0.9485 + }, + { + "start": 21462.88, + "end": 21464.02, + "probability": 0.688 + }, + { + "start": 21464.08, + "end": 21465.47, + "probability": 0.9282 + }, + { + "start": 21465.62, + "end": 21466.83, + "probability": 0.7734 + }, + { + "start": 21467.8, + "end": 21468.18, + "probability": 0.7722 + }, + { + "start": 21468.24, + "end": 21469.5, + "probability": 0.9679 + }, + { + "start": 21469.6, + "end": 21470.42, + "probability": 0.9861 + }, + { + "start": 21470.48, + "end": 21471.66, + "probability": 0.9751 + }, + { + "start": 21471.74, + "end": 21473.28, + "probability": 0.9836 + }, + { + "start": 21473.34, + "end": 21474.71, + "probability": 0.9868 + }, + { + "start": 21475.88, + "end": 21477.26, + "probability": 0.8085 + }, + { + "start": 21477.38, + "end": 21477.84, + "probability": 0.8342 + }, + { + "start": 21477.92, + "end": 21478.4, + "probability": 0.73 + }, + { + "start": 21478.46, + "end": 21479.02, + "probability": 0.3685 + }, + { + "start": 21479.08, + "end": 21480.37, + "probability": 0.9004 + }, + { + "start": 21480.84, + "end": 21482.94, + "probability": 0.7192 + }, + { + "start": 21483.04, + "end": 21485.72, + "probability": 0.9368 + }, + { + "start": 21485.9, + "end": 21487.75, + "probability": 0.9075 + }, + { + "start": 21488.34, + "end": 21489.11, + "probability": 0.7722 + }, + { + "start": 21489.4, + "end": 21491.44, + "probability": 0.9644 + }, + { + "start": 21492.88, + "end": 21495.42, + "probability": 0.9946 + }, + { + "start": 21496.64, + "end": 21498.18, + "probability": 0.9651 + }, + { + "start": 21498.62, + "end": 21499.74, + "probability": 0.2673 + }, + { + "start": 21499.86, + "end": 21500.38, + "probability": 0.9595 + }, + { + "start": 21501.04, + "end": 21502.57, + "probability": 0.9885 + }, + { + "start": 21503.64, + "end": 21504.6, + "probability": 0.9692 + }, + { + "start": 21504.7, + "end": 21505.36, + "probability": 0.7776 + }, + { + "start": 21505.54, + "end": 21506.16, + "probability": 0.2387 + }, + { + "start": 21506.38, + "end": 21506.66, + "probability": 0.8361 + }, + { + "start": 21506.78, + "end": 21509.5, + "probability": 0.9334 + }, + { + "start": 21509.7, + "end": 21511.76, + "probability": 0.8948 + }, + { + "start": 21511.84, + "end": 21514.9, + "probability": 0.9745 + }, + { + "start": 21515.14, + "end": 21517.54, + "probability": 0.9886 + }, + { + "start": 21517.54, + "end": 21519.08, + "probability": 0.9974 + }, + { + "start": 21519.16, + "end": 21519.64, + "probability": 0.7472 + }, + { + "start": 21520.56, + "end": 21521.0, + "probability": 0.7063 + }, + { + "start": 21521.26, + "end": 21522.8, + "probability": 0.7012 + }, + { + "start": 21522.84, + "end": 21525.04, + "probability": 0.9994 + }, + { + "start": 21525.14, + "end": 21525.64, + "probability": 0.9061 + }, + { + "start": 21525.72, + "end": 21527.02, + "probability": 0.9697 + }, + { + "start": 21527.5, + "end": 21528.28, + "probability": 0.737 + }, + { + "start": 21540.98, + "end": 21550.18, + "probability": 0.7234 + }, + { + "start": 21550.34, + "end": 21551.96, + "probability": 0.4247 + }, + { + "start": 21552.12, + "end": 21552.88, + "probability": 0.8293 + }, + { + "start": 21553.18, + "end": 21553.74, + "probability": 0.8915 + }, + { + "start": 21553.82, + "end": 21555.02, + "probability": 0.8332 + }, + { + "start": 21556.08, + "end": 21557.78, + "probability": 0.8719 + }, + { + "start": 21559.06, + "end": 21562.04, + "probability": 0.9908 + }, + { + "start": 21562.14, + "end": 21563.52, + "probability": 0.7615 + }, + { + "start": 21563.66, + "end": 21564.84, + "probability": 0.8773 + }, + { + "start": 21565.36, + "end": 21566.22, + "probability": 0.9473 + }, + { + "start": 21566.28, + "end": 21567.08, + "probability": 0.9706 + }, + { + "start": 21567.12, + "end": 21568.88, + "probability": 0.7869 + }, + { + "start": 21568.88, + "end": 21571.12, + "probability": 0.8371 + }, + { + "start": 21571.28, + "end": 21572.88, + "probability": 0.9596 + }, + { + "start": 21572.92, + "end": 21574.72, + "probability": 0.6388 + }, + { + "start": 21575.34, + "end": 21576.94, + "probability": 0.9228 + }, + { + "start": 21577.86, + "end": 21581.38, + "probability": 0.8937 + }, + { + "start": 21581.9, + "end": 21584.5, + "probability": 0.9373 + }, + { + "start": 21585.38, + "end": 21588.58, + "probability": 0.6974 + }, + { + "start": 21589.26, + "end": 21592.3, + "probability": 0.8913 + }, + { + "start": 21592.82, + "end": 21593.62, + "probability": 0.6673 + }, + { + "start": 21594.18, + "end": 21599.58, + "probability": 0.9849 + }, + { + "start": 21600.94, + "end": 21604.82, + "probability": 0.9727 + }, + { + "start": 21605.69, + "end": 21610.44, + "probability": 0.9982 + }, + { + "start": 21610.44, + "end": 21613.84, + "probability": 0.9971 + }, + { + "start": 21613.84, + "end": 21619.34, + "probability": 0.9829 + }, + { + "start": 21619.44, + "end": 21622.16, + "probability": 0.995 + }, + { + "start": 21622.22, + "end": 21625.4, + "probability": 0.9956 + }, + { + "start": 21626.62, + "end": 21630.06, + "probability": 0.9153 + }, + { + "start": 21630.3, + "end": 21630.74, + "probability": 0.7057 + }, + { + "start": 21630.94, + "end": 21636.94, + "probability": 0.8003 + }, + { + "start": 21637.18, + "end": 21637.68, + "probability": 0.3333 + }, + { + "start": 21637.72, + "end": 21638.5, + "probability": 0.8043 + }, + { + "start": 21638.6, + "end": 21639.82, + "probability": 0.7303 + }, + { + "start": 21639.94, + "end": 21641.64, + "probability": 0.8321 + }, + { + "start": 21642.78, + "end": 21643.36, + "probability": 0.0051 + }, + { + "start": 21643.72, + "end": 21645.42, + "probability": 0.6801 + }, + { + "start": 21645.5, + "end": 21648.7, + "probability": 0.9375 + }, + { + "start": 21648.7, + "end": 21653.02, + "probability": 0.9585 + }, + { + "start": 21653.78, + "end": 21654.9, + "probability": 0.71 + }, + { + "start": 21655.0, + "end": 21656.48, + "probability": 0.8462 + }, + { + "start": 21656.66, + "end": 21658.4, + "probability": 0.6512 + }, + { + "start": 21659.46, + "end": 21661.0, + "probability": 0.854 + }, + { + "start": 21661.36, + "end": 21664.72, + "probability": 0.8982 + }, + { + "start": 21664.88, + "end": 21666.18, + "probability": 0.9296 + }, + { + "start": 21666.36, + "end": 21666.98, + "probability": 0.8216 + }, + { + "start": 21667.02, + "end": 21667.86, + "probability": 0.7153 + }, + { + "start": 21668.08, + "end": 21671.48, + "probability": 0.8198 + }, + { + "start": 21672.04, + "end": 21675.4, + "probability": 0.998 + }, + { + "start": 21675.4, + "end": 21679.72, + "probability": 0.9982 + }, + { + "start": 21680.74, + "end": 21684.44, + "probability": 0.9916 + }, + { + "start": 21684.5, + "end": 21684.76, + "probability": 0.4688 + }, + { + "start": 21684.96, + "end": 21685.16, + "probability": 0.6749 + }, + { + "start": 21685.38, + "end": 21688.32, + "probability": 0.9974 + }, + { + "start": 21689.02, + "end": 21693.03, + "probability": 0.9949 + }, + { + "start": 21693.3, + "end": 21698.2, + "probability": 0.999 + }, + { + "start": 21698.64, + "end": 21700.52, + "probability": 0.9893 + }, + { + "start": 21701.12, + "end": 21704.24, + "probability": 0.866 + }, + { + "start": 21704.3, + "end": 21706.86, + "probability": 0.7016 + }, + { + "start": 21707.26, + "end": 21712.5, + "probability": 0.8859 + }, + { + "start": 21713.44, + "end": 21717.76, + "probability": 0.9681 + }, + { + "start": 21717.76, + "end": 21721.02, + "probability": 0.5138 + }, + { + "start": 21721.36, + "end": 21722.98, + "probability": 0.5222 + }, + { + "start": 21723.12, + "end": 21723.98, + "probability": 0.8708 + }, + { + "start": 21724.08, + "end": 21725.42, + "probability": 0.9895 + }, + { + "start": 21725.8, + "end": 21729.34, + "probability": 0.6262 + }, + { + "start": 21729.42, + "end": 21730.58, + "probability": 0.7884 + }, + { + "start": 21730.78, + "end": 21732.3, + "probability": 0.9376 + }, + { + "start": 21732.42, + "end": 21733.88, + "probability": 0.7908 + }, + { + "start": 21734.48, + "end": 21737.0, + "probability": 0.9902 + }, + { + "start": 21737.1, + "end": 21738.08, + "probability": 0.9503 + }, + { + "start": 21738.12, + "end": 21740.49, + "probability": 0.9609 + }, + { + "start": 21740.84, + "end": 21742.52, + "probability": 0.9746 + }, + { + "start": 21742.58, + "end": 21747.6, + "probability": 0.9805 + }, + { + "start": 21748.54, + "end": 21749.8, + "probability": 0.625 + }, + { + "start": 21750.52, + "end": 21751.44, + "probability": 0.5117 + }, + { + "start": 21752.08, + "end": 21753.42, + "probability": 0.6837 + }, + { + "start": 21754.16, + "end": 21757.04, + "probability": 0.8652 + }, + { + "start": 21757.14, + "end": 21758.38, + "probability": 0.9497 + }, + { + "start": 21758.46, + "end": 21762.0, + "probability": 0.9858 + }, + { + "start": 21762.52, + "end": 21766.96, + "probability": 0.8545 + }, + { + "start": 21767.08, + "end": 21769.24, + "probability": 0.8197 + }, + { + "start": 21769.72, + "end": 21774.76, + "probability": 0.9909 + }, + { + "start": 21775.52, + "end": 21776.94, + "probability": 0.7777 + }, + { + "start": 21777.32, + "end": 21778.88, + "probability": 0.9839 + }, + { + "start": 21779.36, + "end": 21784.52, + "probability": 0.8893 + }, + { + "start": 21784.62, + "end": 21786.76, + "probability": 0.5642 + }, + { + "start": 21787.26, + "end": 21789.7, + "probability": 0.8569 + }, + { + "start": 21790.12, + "end": 21792.2, + "probability": 0.8508 + }, + { + "start": 21792.5, + "end": 21795.48, + "probability": 0.97 + }, + { + "start": 21796.06, + "end": 21798.94, + "probability": 0.6914 + }, + { + "start": 21799.0, + "end": 21800.26, + "probability": 0.9917 + }, + { + "start": 21800.32, + "end": 21802.28, + "probability": 0.9958 + }, + { + "start": 21802.4, + "end": 21803.76, + "probability": 0.9116 + }, + { + "start": 21804.58, + "end": 21806.4, + "probability": 0.9623 + }, + { + "start": 21806.8, + "end": 21807.96, + "probability": 0.9855 + }, + { + "start": 21808.28, + "end": 21809.66, + "probability": 0.9727 + }, + { + "start": 21809.8, + "end": 21811.84, + "probability": 0.9893 + }, + { + "start": 21812.62, + "end": 21815.96, + "probability": 0.9976 + }, + { + "start": 21816.56, + "end": 21819.12, + "probability": 0.9504 + }, + { + "start": 21820.1, + "end": 21822.72, + "probability": 0.9968 + }, + { + "start": 21822.84, + "end": 21823.62, + "probability": 0.2503 + }, + { + "start": 21823.68, + "end": 21824.42, + "probability": 0.8362 + }, + { + "start": 21824.84, + "end": 21827.84, + "probability": 0.991 + }, + { + "start": 21828.12, + "end": 21830.32, + "probability": 0.9924 + }, + { + "start": 21830.78, + "end": 21832.84, + "probability": 0.9867 + }, + { + "start": 21832.84, + "end": 21833.5, + "probability": 0.3354 + }, + { + "start": 21833.92, + "end": 21836.0, + "probability": 0.9912 + }, + { + "start": 21836.6, + "end": 21837.46, + "probability": 0.9077 + }, + { + "start": 21838.44, + "end": 21841.22, + "probability": 0.9536 + }, + { + "start": 21841.68, + "end": 21842.1, + "probability": 0.7983 + }, + { + "start": 21842.14, + "end": 21843.0, + "probability": 0.8519 + }, + { + "start": 21843.0, + "end": 21846.88, + "probability": 0.9977 + }, + { + "start": 21847.0, + "end": 21848.08, + "probability": 0.6778 + }, + { + "start": 21848.14, + "end": 21854.54, + "probability": 0.9844 + }, + { + "start": 21855.0, + "end": 21856.52, + "probability": 0.8992 + }, + { + "start": 21856.78, + "end": 21857.46, + "probability": 0.5755 + }, + { + "start": 21857.5, + "end": 21859.16, + "probability": 0.6541 + }, + { + "start": 21860.22, + "end": 21861.22, + "probability": 0.747 + }, + { + "start": 21861.44, + "end": 21863.44, + "probability": 0.8834 + }, + { + "start": 21863.7, + "end": 21868.02, + "probability": 0.8825 + }, + { + "start": 21868.12, + "end": 21870.2, + "probability": 0.726 + }, + { + "start": 21870.96, + "end": 21871.18, + "probability": 0.2047 + }, + { + "start": 21873.76, + "end": 21875.16, + "probability": 0.2555 + }, + { + "start": 21875.34, + "end": 21879.94, + "probability": 0.9819 + }, + { + "start": 21880.2, + "end": 21880.62, + "probability": 0.6263 + }, + { + "start": 21880.7, + "end": 21884.22, + "probability": 0.9647 + }, + { + "start": 21887.72, + "end": 21889.04, + "probability": 0.8661 + }, + { + "start": 21891.32, + "end": 21893.74, + "probability": 0.3769 + }, + { + "start": 21896.74, + "end": 21899.08, + "probability": 0.4814 + }, + { + "start": 21901.12, + "end": 21903.62, + "probability": 0.7381 + }, + { + "start": 21904.78, + "end": 21906.86, + "probability": 0.7613 + }, + { + "start": 21907.0, + "end": 21912.44, + "probability": 0.904 + }, + { + "start": 21913.66, + "end": 21915.58, + "probability": 0.4208 + }, + { + "start": 21917.44, + "end": 21919.66, + "probability": 0.9758 + }, + { + "start": 21920.88, + "end": 21923.1, + "probability": 0.8336 + }, + { + "start": 21924.86, + "end": 21925.68, + "probability": 0.8323 + }, + { + "start": 21926.94, + "end": 21932.54, + "probability": 0.8176 + }, + { + "start": 21933.54, + "end": 21937.04, + "probability": 0.9646 + }, + { + "start": 21937.9, + "end": 21938.48, + "probability": 0.2683 + }, + { + "start": 21940.04, + "end": 21945.22, + "probability": 0.8823 + }, + { + "start": 21947.04, + "end": 21951.72, + "probability": 0.9896 + }, + { + "start": 21952.92, + "end": 21953.56, + "probability": 0.9274 + }, + { + "start": 21954.28, + "end": 21955.39, + "probability": 0.3753 + }, + { + "start": 21956.08, + "end": 21957.68, + "probability": 0.6052 + }, + { + "start": 21958.4, + "end": 21960.06, + "probability": 0.9386 + }, + { + "start": 21962.34, + "end": 21963.28, + "probability": 0.6159 + }, + { + "start": 21964.1, + "end": 21965.84, + "probability": 0.8334 + }, + { + "start": 21969.7, + "end": 21972.24, + "probability": 0.9341 + }, + { + "start": 21973.38, + "end": 21976.4, + "probability": 0.7191 + }, + { + "start": 21979.38, + "end": 21985.16, + "probability": 0.8734 + }, + { + "start": 21986.5, + "end": 21989.34, + "probability": 0.9966 + }, + { + "start": 21991.44, + "end": 21995.84, + "probability": 0.9398 + }, + { + "start": 21997.58, + "end": 21999.44, + "probability": 0.8635 + }, + { + "start": 22000.52, + "end": 22004.68, + "probability": 0.7627 + }, + { + "start": 22005.94, + "end": 22008.34, + "probability": 0.5435 + }, + { + "start": 22009.8, + "end": 22015.42, + "probability": 0.797 + }, + { + "start": 22015.48, + "end": 22023.52, + "probability": 0.8221 + }, + { + "start": 22024.56, + "end": 22029.18, + "probability": 0.8276 + }, + { + "start": 22029.9, + "end": 22030.72, + "probability": 0.5947 + }, + { + "start": 22031.0, + "end": 22032.56, + "probability": 0.9214 + }, + { + "start": 22032.84, + "end": 22033.92, + "probability": 0.7902 + }, + { + "start": 22033.96, + "end": 22036.36, + "probability": 0.6686 + }, + { + "start": 22036.88, + "end": 22039.06, + "probability": 0.8733 + }, + { + "start": 22039.72, + "end": 22040.26, + "probability": 0.9579 + }, + { + "start": 22042.94, + "end": 22045.04, + "probability": 0.5108 + }, + { + "start": 22046.82, + "end": 22052.82, + "probability": 0.533 + }, + { + "start": 22052.92, + "end": 22053.68, + "probability": 0.8834 + }, + { + "start": 22054.44, + "end": 22056.56, + "probability": 0.4916 + }, + { + "start": 22057.26, + "end": 22059.54, + "probability": 0.972 + }, + { + "start": 22060.48, + "end": 22061.82, + "probability": 0.6689 + }, + { + "start": 22061.96, + "end": 22064.9, + "probability": 0.9835 + }, + { + "start": 22065.02, + "end": 22065.44, + "probability": 0.4865 + }, + { + "start": 22065.73, + "end": 22067.0, + "probability": 0.642 + }, + { + "start": 22067.2, + "end": 22068.68, + "probability": 0.7803 + }, + { + "start": 22068.74, + "end": 22072.9, + "probability": 0.979 + }, + { + "start": 22072.98, + "end": 22074.9, + "probability": 0.3287 + }, + { + "start": 22074.94, + "end": 22077.04, + "probability": 0.8482 + }, + { + "start": 22077.06, + "end": 22079.5, + "probability": 0.9105 + }, + { + "start": 22081.08, + "end": 22083.08, + "probability": 0.99 + }, + { + "start": 22083.46, + "end": 22085.52, + "probability": 0.973 + }, + { + "start": 22085.56, + "end": 22086.44, + "probability": 0.9492 + }, + { + "start": 22086.58, + "end": 22088.14, + "probability": 0.9925 + }, + { + "start": 22088.58, + "end": 22094.54, + "probability": 0.7646 + }, + { + "start": 22095.94, + "end": 22098.46, + "probability": 0.9579 + }, + { + "start": 22099.76, + "end": 22103.06, + "probability": 0.9141 + }, + { + "start": 22103.66, + "end": 22106.22, + "probability": 0.8203 + }, + { + "start": 22106.9, + "end": 22109.02, + "probability": 0.9181 + }, + { + "start": 22109.7, + "end": 22114.48, + "probability": 0.9194 + }, + { + "start": 22114.5, + "end": 22117.2, + "probability": 0.8088 + }, + { + "start": 22117.72, + "end": 22119.48, + "probability": 0.5361 + }, + { + "start": 22119.54, + "end": 22120.62, + "probability": 0.8339 + }, + { + "start": 22120.64, + "end": 22121.48, + "probability": 0.8147 + }, + { + "start": 22122.46, + "end": 22124.62, + "probability": 0.9515 + }, + { + "start": 22125.34, + "end": 22126.8, + "probability": 0.8934 + }, + { + "start": 22126.98, + "end": 22127.72, + "probability": 0.8305 + }, + { + "start": 22128.44, + "end": 22130.8, + "probability": 0.7631 + }, + { + "start": 22131.52, + "end": 22137.66, + "probability": 0.9503 + }, + { + "start": 22137.68, + "end": 22138.85, + "probability": 0.4586 + }, + { + "start": 22139.12, + "end": 22140.76, + "probability": 0.7998 + }, + { + "start": 22140.82, + "end": 22145.9, + "probability": 0.8407 + }, + { + "start": 22147.4, + "end": 22147.96, + "probability": 0.2816 + }, + { + "start": 22149.82, + "end": 22150.14, + "probability": 0.1688 + }, + { + "start": 22169.88, + "end": 22171.96, + "probability": 0.3135 + }, + { + "start": 22173.18, + "end": 22176.24, + "probability": 0.7628 + }, + { + "start": 22177.96, + "end": 22179.88, + "probability": 0.9564 + }, + { + "start": 22182.94, + "end": 22191.68, + "probability": 0.9961 + }, + { + "start": 22194.16, + "end": 22197.9, + "probability": 0.9681 + }, + { + "start": 22198.9, + "end": 22201.28, + "probability": 0.8704 + }, + { + "start": 22203.94, + "end": 22205.24, + "probability": 0.5338 + }, + { + "start": 22206.0, + "end": 22209.74, + "probability": 0.9375 + }, + { + "start": 22210.26, + "end": 22213.94, + "probability": 0.6057 + }, + { + "start": 22215.82, + "end": 22215.84, + "probability": 0.3371 + }, + { + "start": 22215.84, + "end": 22218.42, + "probability": 0.5717 + }, + { + "start": 22218.82, + "end": 22221.04, + "probability": 0.9761 + }, + { + "start": 22223.32, + "end": 22229.14, + "probability": 0.9684 + }, + { + "start": 22229.32, + "end": 22231.02, + "probability": 0.5699 + }, + { + "start": 22233.24, + "end": 22238.84, + "probability": 0.9901 + }, + { + "start": 22243.3, + "end": 22249.7, + "probability": 0.7738 + }, + { + "start": 22251.24, + "end": 22254.52, + "probability": 0.7907 + }, + { + "start": 22256.32, + "end": 22257.64, + "probability": 0.729 + }, + { + "start": 22259.08, + "end": 22259.8, + "probability": 0.842 + }, + { + "start": 22260.28, + "end": 22264.04, + "probability": 0.6684 + }, + { + "start": 22266.0, + "end": 22269.2, + "probability": 0.3367 + }, + { + "start": 22270.94, + "end": 22274.86, + "probability": 0.9683 + }, + { + "start": 22276.02, + "end": 22280.92, + "probability": 0.9656 + }, + { + "start": 22281.88, + "end": 22283.26, + "probability": 0.9551 + }, + { + "start": 22284.7, + "end": 22287.56, + "probability": 0.3412 + }, + { + "start": 22288.29, + "end": 22297.78, + "probability": 0.9266 + }, + { + "start": 22300.44, + "end": 22306.14, + "probability": 0.6759 + }, + { + "start": 22307.18, + "end": 22308.8, + "probability": 0.9707 + }, + { + "start": 22309.48, + "end": 22311.6, + "probability": 0.6004 + }, + { + "start": 22312.56, + "end": 22317.52, + "probability": 0.9877 + }, + { + "start": 22319.3, + "end": 22324.94, + "probability": 0.9666 + }, + { + "start": 22327.62, + "end": 22330.34, + "probability": 0.934 + }, + { + "start": 22331.14, + "end": 22335.48, + "probability": 0.9924 + }, + { + "start": 22336.96, + "end": 22342.18, + "probability": 0.5667 + }, + { + "start": 22342.18, + "end": 22345.94, + "probability": 0.9704 + }, + { + "start": 22346.72, + "end": 22351.58, + "probability": 0.7651 + }, + { + "start": 22352.4, + "end": 22352.47, + "probability": 0.2217 + }, + { + "start": 22353.44, + "end": 22354.08, + "probability": 0.8784 + }, + { + "start": 22354.84, + "end": 22356.69, + "probability": 0.6808 + }, + { + "start": 22357.24, + "end": 22358.56, + "probability": 0.8167 + }, + { + "start": 22361.36, + "end": 22364.0, + "probability": 0.2558 + }, + { + "start": 22387.68, + "end": 22389.7, + "probability": 0.6964 + }, + { + "start": 22390.96, + "end": 22392.06, + "probability": 0.9113 + }, + { + "start": 22392.64, + "end": 22397.96, + "probability": 0.9712 + }, + { + "start": 22399.84, + "end": 22401.08, + "probability": 0.9277 + }, + { + "start": 22401.2, + "end": 22402.32, + "probability": 0.8145 + }, + { + "start": 22402.34, + "end": 22403.36, + "probability": 0.9215 + }, + { + "start": 22403.44, + "end": 22404.26, + "probability": 0.9181 + }, + { + "start": 22404.78, + "end": 22406.76, + "probability": 0.817 + }, + { + "start": 22409.16, + "end": 22415.08, + "probability": 0.9743 + }, + { + "start": 22416.2, + "end": 22421.04, + "probability": 0.9536 + }, + { + "start": 22421.04, + "end": 22424.28, + "probability": 0.9955 + }, + { + "start": 22425.32, + "end": 22427.04, + "probability": 0.9915 + }, + { + "start": 22428.58, + "end": 22429.9, + "probability": 0.7543 + }, + { + "start": 22431.36, + "end": 22433.84, + "probability": 0.6427 + }, + { + "start": 22435.1, + "end": 22438.12, + "probability": 0.9174 + }, + { + "start": 22438.32, + "end": 22440.48, + "probability": 0.8857 + }, + { + "start": 22440.64, + "end": 22441.98, + "probability": 0.9917 + }, + { + "start": 22443.14, + "end": 22444.64, + "probability": 0.8958 + }, + { + "start": 22444.78, + "end": 22446.26, + "probability": 0.7274 + }, + { + "start": 22446.56, + "end": 22447.26, + "probability": 0.7749 + }, + { + "start": 22447.9, + "end": 22450.48, + "probability": 0.928 + }, + { + "start": 22450.92, + "end": 22452.14, + "probability": 0.652 + }, + { + "start": 22452.9, + "end": 22460.0, + "probability": 0.9769 + }, + { + "start": 22460.12, + "end": 22462.22, + "probability": 0.7348 + }, + { + "start": 22463.26, + "end": 22468.6, + "probability": 0.9528 + }, + { + "start": 22469.74, + "end": 22471.7, + "probability": 0.9805 + }, + { + "start": 22473.08, + "end": 22475.09, + "probability": 0.4065 + }, + { + "start": 22475.72, + "end": 22476.4, + "probability": 0.5841 + }, + { + "start": 22476.44, + "end": 22477.12, + "probability": 0.4006 + }, + { + "start": 22477.14, + "end": 22477.92, + "probability": 0.799 + }, + { + "start": 22478.04, + "end": 22479.48, + "probability": 0.7985 + }, + { + "start": 22480.56, + "end": 22480.56, + "probability": 0.1263 + }, + { + "start": 22480.74, + "end": 22480.9, + "probability": 0.6066 + }, + { + "start": 22481.06, + "end": 22482.96, + "probability": 0.8628 + }, + { + "start": 22485.3, + "end": 22486.57, + "probability": 0.5838 + }, + { + "start": 22486.92, + "end": 22489.1, + "probability": 0.8591 + }, + { + "start": 22489.3, + "end": 22489.76, + "probability": 0.3728 + }, + { + "start": 22489.88, + "end": 22491.2, + "probability": 0.9346 + }, + { + "start": 22494.71, + "end": 22501.3, + "probability": 0.3 + }, + { + "start": 22501.3, + "end": 22507.5, + "probability": 0.8966 + }, + { + "start": 22508.16, + "end": 22509.08, + "probability": 0.6562 + }, + { + "start": 22510.44, + "end": 22514.92, + "probability": 0.9622 + }, + { + "start": 22517.46, + "end": 22517.97, + "probability": 0.9573 + }, + { + "start": 22519.98, + "end": 22522.3, + "probability": 0.9764 + }, + { + "start": 22522.3, + "end": 22525.9, + "probability": 0.6688 + }, + { + "start": 22525.98, + "end": 22527.38, + "probability": 0.4791 + }, + { + "start": 22528.46, + "end": 22533.66, + "probability": 0.8882 + }, + { + "start": 22534.3, + "end": 22537.32, + "probability": 0.8 + }, + { + "start": 22539.12, + "end": 22544.18, + "probability": 0.9733 + }, + { + "start": 22545.64, + "end": 22548.48, + "probability": 0.8418 + }, + { + "start": 22548.6, + "end": 22549.82, + "probability": 0.7357 + }, + { + "start": 22551.2, + "end": 22553.32, + "probability": 0.9623 + }, + { + "start": 22554.22, + "end": 22555.24, + "probability": 0.6513 + }, + { + "start": 22555.4, + "end": 22557.44, + "probability": 0.988 + }, + { + "start": 22557.48, + "end": 22558.08, + "probability": 0.6875 + }, + { + "start": 22559.14, + "end": 22561.72, + "probability": 0.7856 + }, + { + "start": 22562.94, + "end": 22563.94, + "probability": 0.6955 + }, + { + "start": 22564.06, + "end": 22567.3, + "probability": 0.7401 + }, + { + "start": 22569.06, + "end": 22571.1, + "probability": 0.9255 + }, + { + "start": 22572.38, + "end": 22574.4, + "probability": 0.9595 + }, + { + "start": 22576.32, + "end": 22577.46, + "probability": 0.8708 + }, + { + "start": 22579.04, + "end": 22580.22, + "probability": 0.6846 + }, + { + "start": 22580.3, + "end": 22582.04, + "probability": 0.9319 + }, + { + "start": 22582.12, + "end": 22588.72, + "probability": 0.9329 + }, + { + "start": 22592.04, + "end": 22592.66, + "probability": 0.6723 + }, + { + "start": 22593.88, + "end": 22596.28, + "probability": 0.8996 + }, + { + "start": 22597.44, + "end": 22603.22, + "probability": 0.9723 + }, + { + "start": 22603.36, + "end": 22604.3, + "probability": 0.3526 + }, + { + "start": 22605.36, + "end": 22606.26, + "probability": 0.7598 + }, + { + "start": 22606.44, + "end": 22607.9, + "probability": 0.9832 + }, + { + "start": 22608.14, + "end": 22614.18, + "probability": 0.6538 + }, + { + "start": 22614.96, + "end": 22616.0, + "probability": 0.8388 + }, + { + "start": 22616.16, + "end": 22616.84, + "probability": 0.7153 + }, + { + "start": 22616.92, + "end": 22624.58, + "probability": 0.8475 + }, + { + "start": 22625.48, + "end": 22628.68, + "probability": 0.9928 + }, + { + "start": 22629.98, + "end": 22630.6, + "probability": 0.7844 + }, + { + "start": 22630.7, + "end": 22633.72, + "probability": 0.9024 + }, + { + "start": 22635.14, + "end": 22638.36, + "probability": 0.943 + }, + { + "start": 22638.56, + "end": 22639.7, + "probability": 0.9279 + }, + { + "start": 22640.35, + "end": 22642.76, + "probability": 0.8404 + }, + { + "start": 22642.76, + "end": 22645.9, + "probability": 0.9952 + }, + { + "start": 22646.82, + "end": 22648.52, + "probability": 0.6508 + }, + { + "start": 22649.04, + "end": 22649.84, + "probability": 0.8794 + }, + { + "start": 22649.94, + "end": 22650.4, + "probability": 0.3022 + }, + { + "start": 22650.46, + "end": 22657.0, + "probability": 0.9736 + }, + { + "start": 22657.94, + "end": 22658.3, + "probability": 0.6084 + }, + { + "start": 22658.32, + "end": 22663.06, + "probability": 0.9907 + }, + { + "start": 22663.88, + "end": 22668.46, + "probability": 0.9985 + }, + { + "start": 22668.46, + "end": 22671.68, + "probability": 0.9812 + }, + { + "start": 22671.74, + "end": 22674.32, + "probability": 0.8942 + }, + { + "start": 22678.88, + "end": 22681.44, + "probability": 0.9783 + }, + { + "start": 22682.12, + "end": 22686.9, + "probability": 0.9272 + }, + { + "start": 22686.98, + "end": 22688.82, + "probability": 0.9862 + }, + { + "start": 22689.96, + "end": 22695.23, + "probability": 0.5756 + }, + { + "start": 22695.7, + "end": 22696.34, + "probability": 0.0868 + }, + { + "start": 22696.34, + "end": 22698.26, + "probability": 0.51 + }, + { + "start": 22698.26, + "end": 22701.3, + "probability": 0.937 + }, + { + "start": 22702.14, + "end": 22703.72, + "probability": 0.7134 + }, + { + "start": 22704.34, + "end": 22705.76, + "probability": 0.6698 + }, + { + "start": 22707.4, + "end": 22710.3, + "probability": 0.7419 + }, + { + "start": 22711.04, + "end": 22711.62, + "probability": 0.7713 + }, + { + "start": 22712.4, + "end": 22713.48, + "probability": 0.552 + }, + { + "start": 22713.64, + "end": 22716.44, + "probability": 0.9292 + }, + { + "start": 22716.48, + "end": 22719.44, + "probability": 0.727 + }, + { + "start": 22719.48, + "end": 22720.4, + "probability": 0.8984 + }, + { + "start": 22721.46, + "end": 22726.0, + "probability": 0.9668 + }, + { + "start": 22726.82, + "end": 22729.6, + "probability": 0.9801 + }, + { + "start": 22731.14, + "end": 22736.7, + "probability": 0.9478 + }, + { + "start": 22737.78, + "end": 22739.17, + "probability": 0.9379 + }, + { + "start": 22740.7, + "end": 22743.78, + "probability": 0.991 + }, + { + "start": 22743.78, + "end": 22752.1, + "probability": 0.9027 + }, + { + "start": 22752.3, + "end": 22753.93, + "probability": 0.9055 + }, + { + "start": 22754.66, + "end": 22757.2, + "probability": 0.8909 + }, + { + "start": 22757.2, + "end": 22760.7, + "probability": 0.9809 + }, + { + "start": 22761.96, + "end": 22763.4, + "probability": 0.8543 + }, + { + "start": 22763.46, + "end": 22764.6, + "probability": 0.9293 + }, + { + "start": 22765.42, + "end": 22766.34, + "probability": 0.8594 + }, + { + "start": 22767.02, + "end": 22771.08, + "probability": 0.9941 + }, + { + "start": 22771.08, + "end": 22778.06, + "probability": 0.9797 + }, + { + "start": 22778.16, + "end": 22779.04, + "probability": 0.8983 + }, + { + "start": 22779.62, + "end": 22781.56, + "probability": 0.8792 + }, + { + "start": 22781.66, + "end": 22782.26, + "probability": 0.6992 + }, + { + "start": 22782.44, + "end": 22783.16, + "probability": 0.7532 + }, + { + "start": 22785.86, + "end": 22787.4, + "probability": 0.9878 + }, + { + "start": 22788.34, + "end": 22792.22, + "probability": 0.9663 + }, + { + "start": 22792.6, + "end": 22794.69, + "probability": 0.5353 + }, + { + "start": 22795.58, + "end": 22798.7, + "probability": 0.748 + }, + { + "start": 22800.12, + "end": 22801.66, + "probability": 0.9639 + }, + { + "start": 22801.76, + "end": 22803.24, + "probability": 0.8496 + }, + { + "start": 22804.04, + "end": 22806.94, + "probability": 0.9576 + }, + { + "start": 22807.78, + "end": 22808.46, + "probability": 0.501 + }, + { + "start": 22809.28, + "end": 22812.02, + "probability": 0.8988 + }, + { + "start": 22812.26, + "end": 22814.24, + "probability": 0.6886 + }, + { + "start": 22814.96, + "end": 22817.7, + "probability": 0.9919 + }, + { + "start": 22817.88, + "end": 22819.45, + "probability": 0.9841 + }, + { + "start": 22820.6, + "end": 22822.48, + "probability": 0.7504 + }, + { + "start": 22823.22, + "end": 22824.35, + "probability": 0.9781 + }, + { + "start": 22824.56, + "end": 22828.68, + "probability": 0.9365 + }, + { + "start": 22830.32, + "end": 22832.52, + "probability": 0.9183 + }, + { + "start": 22833.56, + "end": 22837.12, + "probability": 0.9824 + }, + { + "start": 22837.12, + "end": 22840.76, + "probability": 0.9888 + }, + { + "start": 22841.62, + "end": 22843.7, + "probability": 0.9934 + }, + { + "start": 22844.02, + "end": 22845.9, + "probability": 0.6665 + }, + { + "start": 22846.78, + "end": 22849.96, + "probability": 0.9904 + }, + { + "start": 22849.96, + "end": 22853.1, + "probability": 0.9883 + }, + { + "start": 22853.18, + "end": 22858.68, + "probability": 0.977 + }, + { + "start": 22859.4, + "end": 22860.28, + "probability": 0.8162 + }, + { + "start": 22860.42, + "end": 22861.7, + "probability": 0.2445 + }, + { + "start": 22862.16, + "end": 22864.68, + "probability": 0.9346 + }, + { + "start": 22865.14, + "end": 22865.7, + "probability": 0.3484 + }, + { + "start": 22866.1, + "end": 22866.96, + "probability": 0.9701 + }, + { + "start": 22867.9, + "end": 22869.22, + "probability": 0.9536 + }, + { + "start": 22869.88, + "end": 22871.19, + "probability": 0.9796 + }, + { + "start": 22872.08, + "end": 22873.66, + "probability": 0.97 + }, + { + "start": 22873.72, + "end": 22876.84, + "probability": 0.9969 + }, + { + "start": 22877.58, + "end": 22878.38, + "probability": 0.3789 + }, + { + "start": 22878.7, + "end": 22879.27, + "probability": 0.1898 + }, + { + "start": 22880.78, + "end": 22881.28, + "probability": 0.0296 + }, + { + "start": 22881.4, + "end": 22883.16, + "probability": 0.7261 + }, + { + "start": 22883.96, + "end": 22886.0, + "probability": 0.7548 + }, + { + "start": 22886.08, + "end": 22890.44, + "probability": 0.9191 + }, + { + "start": 22891.16, + "end": 22892.18, + "probability": 0.9056 + }, + { + "start": 22893.52, + "end": 22896.72, + "probability": 0.9891 + }, + { + "start": 22896.86, + "end": 22900.34, + "probability": 0.9089 + }, + { + "start": 22900.5, + "end": 22901.26, + "probability": 0.7886 + }, + { + "start": 22903.3, + "end": 22907.16, + "probability": 0.9268 + }, + { + "start": 22907.16, + "end": 22909.38, + "probability": 0.8333 + }, + { + "start": 22910.5, + "end": 22912.6, + "probability": 0.8233 + }, + { + "start": 22912.78, + "end": 22916.38, + "probability": 0.8721 + }, + { + "start": 22917.34, + "end": 22919.48, + "probability": 0.9447 + }, + { + "start": 22919.51, + "end": 22924.22, + "probability": 0.8567 + }, + { + "start": 22925.46, + "end": 22926.0, + "probability": 0.278 + }, + { + "start": 22926.34, + "end": 22926.54, + "probability": 0.2048 + }, + { + "start": 22926.58, + "end": 22928.92, + "probability": 0.948 + }, + { + "start": 22930.04, + "end": 22931.06, + "probability": 0.9402 + }, + { + "start": 22931.64, + "end": 22932.72, + "probability": 0.9916 + }, + { + "start": 22933.74, + "end": 22935.34, + "probability": 0.9434 + }, + { + "start": 22936.06, + "end": 22937.85, + "probability": 0.7365 + }, + { + "start": 22939.08, + "end": 22942.86, + "probability": 0.9958 + }, + { + "start": 22942.86, + "end": 22948.06, + "probability": 0.9904 + }, + { + "start": 22949.78, + "end": 22950.72, + "probability": 0.9257 + }, + { + "start": 22952.26, + "end": 22956.54, + "probability": 0.9969 + }, + { + "start": 22957.68, + "end": 22958.96, + "probability": 0.9567 + }, + { + "start": 22959.16, + "end": 22962.86, + "probability": 0.9165 + }, + { + "start": 22964.46, + "end": 22967.06, + "probability": 0.8628 + }, + { + "start": 22967.06, + "end": 22970.08, + "probability": 0.9843 + }, + { + "start": 22971.2, + "end": 22977.0, + "probability": 0.9439 + }, + { + "start": 22977.2, + "end": 22979.02, + "probability": 0.886 + }, + { + "start": 22979.16, + "end": 22980.86, + "probability": 0.7902 + }, + { + "start": 22982.7, + "end": 22983.14, + "probability": 0.0064 + }, + { + "start": 22985.14, + "end": 22987.28, + "probability": 0.9022 + }, + { + "start": 22988.22, + "end": 22990.06, + "probability": 0.5593 + }, + { + "start": 22990.2, + "end": 22991.96, + "probability": 0.6982 + }, + { + "start": 22992.8, + "end": 22993.68, + "probability": 0.9856 + }, + { + "start": 22994.48, + "end": 22996.96, + "probability": 0.7402 + }, + { + "start": 22998.0, + "end": 23004.42, + "probability": 0.9331 + }, + { + "start": 23005.46, + "end": 23006.7, + "probability": 0.4558 + }, + { + "start": 23007.6, + "end": 23009.64, + "probability": 0.968 + }, + { + "start": 23009.64, + "end": 23012.96, + "probability": 0.9741 + }, + { + "start": 23013.4, + "end": 23014.74, + "probability": 0.9742 + }, + { + "start": 23015.72, + "end": 23019.84, + "probability": 0.9614 + }, + { + "start": 23021.26, + "end": 23021.68, + "probability": 0.555 + }, + { + "start": 23021.8, + "end": 23024.2, + "probability": 0.7695 + }, + { + "start": 23024.26, + "end": 23025.0, + "probability": 0.711 + }, + { + "start": 23026.9, + "end": 23028.24, + "probability": 0.5376 + }, + { + "start": 23028.28, + "end": 23028.96, + "probability": 0.6831 + }, + { + "start": 23029.08, + "end": 23034.02, + "probability": 0.9707 + }, + { + "start": 23034.92, + "end": 23036.88, + "probability": 0.9504 + }, + { + "start": 23037.26, + "end": 23040.88, + "probability": 0.9639 + }, + { + "start": 23041.0, + "end": 23041.94, + "probability": 0.8745 + }, + { + "start": 23042.46, + "end": 23043.7, + "probability": 0.9526 + }, + { + "start": 23043.78, + "end": 23044.78, + "probability": 0.6552 + }, + { + "start": 23045.28, + "end": 23045.82, + "probability": 0.6024 + }, + { + "start": 23045.9, + "end": 23047.53, + "probability": 0.9731 + }, + { + "start": 23048.46, + "end": 23049.72, + "probability": 0.7475 + }, + { + "start": 23051.08, + "end": 23052.1, + "probability": 0.7708 + }, + { + "start": 23052.22, + "end": 23052.82, + "probability": 0.96 + }, + { + "start": 23054.0, + "end": 23057.8, + "probability": 0.8253 + }, + { + "start": 23058.72, + "end": 23061.76, + "probability": 0.9252 + }, + { + "start": 23062.98, + "end": 23065.0, + "probability": 0.6797 + }, + { + "start": 23066.36, + "end": 23068.36, + "probability": 0.9785 + }, + { + "start": 23070.2, + "end": 23072.16, + "probability": 0.9769 + }, + { + "start": 23072.7, + "end": 23074.68, + "probability": 0.6401 + }, + { + "start": 23075.9, + "end": 23080.62, + "probability": 0.8826 + }, + { + "start": 23081.5, + "end": 23086.56, + "probability": 0.9165 + }, + { + "start": 23087.66, + "end": 23090.86, + "probability": 0.7946 + }, + { + "start": 23091.74, + "end": 23093.62, + "probability": 0.1756 + }, + { + "start": 23094.53, + "end": 23097.26, + "probability": 0.7256 + }, + { + "start": 23097.44, + "end": 23098.08, + "probability": 0.886 + }, + { + "start": 23098.28, + "end": 23099.76, + "probability": 0.4402 + }, + { + "start": 23101.2, + "end": 23105.78, + "probability": 0.4821 + }, + { + "start": 23106.38, + "end": 23107.48, + "probability": 0.8571 + }, + { + "start": 23107.78, + "end": 23110.34, + "probability": 0.5673 + }, + { + "start": 23110.44, + "end": 23113.44, + "probability": 0.5792 + }, + { + "start": 23114.06, + "end": 23117.4, + "probability": 0.2606 + }, + { + "start": 23117.58, + "end": 23123.06, + "probability": 0.5117 + }, + { + "start": 23124.62, + "end": 23126.52, + "probability": 0.5084 + }, + { + "start": 23127.8, + "end": 23128.4, + "probability": 0.3999 + }, + { + "start": 23128.4, + "end": 23129.04, + "probability": 0.0794 + }, + { + "start": 23129.04, + "end": 23129.95, + "probability": 0.4963 + }, + { + "start": 23130.72, + "end": 23131.4, + "probability": 0.3257 + }, + { + "start": 23131.54, + "end": 23132.52, + "probability": 0.8375 + }, + { + "start": 23133.96, + "end": 23136.48, + "probability": 0.8319 + }, + { + "start": 23137.6, + "end": 23141.58, + "probability": 0.9029 + }, + { + "start": 23142.26, + "end": 23147.92, + "probability": 0.9397 + }, + { + "start": 23149.18, + "end": 23150.92, + "probability": 0.9295 + }, + { + "start": 23151.22, + "end": 23152.06, + "probability": 0.9434 + }, + { + "start": 23152.14, + "end": 23155.04, + "probability": 0.6119 + }, + { + "start": 23155.24, + "end": 23156.1, + "probability": 0.0409 + }, + { + "start": 23156.6, + "end": 23157.66, + "probability": 0.6623 + }, + { + "start": 23157.84, + "end": 23160.02, + "probability": 0.2437 + }, + { + "start": 23160.96, + "end": 23162.68, + "probability": 0.651 + }, + { + "start": 23162.7, + "end": 23163.06, + "probability": 0.7376 + }, + { + "start": 23163.1, + "end": 23163.4, + "probability": 0.8539 + }, + { + "start": 23163.46, + "end": 23165.24, + "probability": 0.9823 + }, + { + "start": 23166.42, + "end": 23168.66, + "probability": 0.7728 + }, + { + "start": 23168.72, + "end": 23170.52, + "probability": 0.9047 + }, + { + "start": 23170.6, + "end": 23172.12, + "probability": 0.7495 + }, + { + "start": 23172.48, + "end": 23174.34, + "probability": 0.9047 + }, + { + "start": 23174.9, + "end": 23176.44, + "probability": 0.8532 + }, + { + "start": 23176.5, + "end": 23178.98, + "probability": 0.9875 + }, + { + "start": 23179.44, + "end": 23179.78, + "probability": 0.2332 + }, + { + "start": 23179.86, + "end": 23182.36, + "probability": 0.9733 + }, + { + "start": 23182.76, + "end": 23185.82, + "probability": 0.7055 + }, + { + "start": 23186.38, + "end": 23190.83, + "probability": 0.9391 + }, + { + "start": 23192.48, + "end": 23197.32, + "probability": 0.8873 + }, + { + "start": 23197.88, + "end": 23198.32, + "probability": 0.4089 + }, + { + "start": 23198.46, + "end": 23200.39, + "probability": 0.6712 + }, + { + "start": 23200.9, + "end": 23205.46, + "probability": 0.5201 + }, + { + "start": 23206.4, + "end": 23207.76, + "probability": 0.7657 + }, + { + "start": 23208.24, + "end": 23211.36, + "probability": 0.9062 + }, + { + "start": 23211.46, + "end": 23212.26, + "probability": 0.6967 + }, + { + "start": 23214.74, + "end": 23215.04, + "probability": 0.0209 + }, + { + "start": 23215.04, + "end": 23215.4, + "probability": 0.0713 + }, + { + "start": 23215.86, + "end": 23216.74, + "probability": 0.6394 + }, + { + "start": 23216.8, + "end": 23222.17, + "probability": 0.8619 + }, + { + "start": 23222.8, + "end": 23226.48, + "probability": 0.8977 + }, + { + "start": 23227.64, + "end": 23228.64, + "probability": 0.7947 + }, + { + "start": 23229.18, + "end": 23231.0, + "probability": 0.8892 + }, + { + "start": 23231.36, + "end": 23234.76, + "probability": 0.9597 + }, + { + "start": 23235.18, + "end": 23235.76, + "probability": 0.8934 + }, + { + "start": 23236.78, + "end": 23241.41, + "probability": 0.9119 + }, + { + "start": 23243.44, + "end": 23245.79, + "probability": 0.97 + }, + { + "start": 23246.22, + "end": 23249.28, + "probability": 0.9924 + }, + { + "start": 23249.54, + "end": 23252.56, + "probability": 0.9719 + }, + { + "start": 23252.66, + "end": 23255.5, + "probability": 0.9711 + }, + { + "start": 23255.88, + "end": 23257.82, + "probability": 0.9861 + }, + { + "start": 23257.82, + "end": 23260.38, + "probability": 0.9937 + }, + { + "start": 23261.02, + "end": 23264.8, + "probability": 0.8918 + }, + { + "start": 23264.88, + "end": 23267.46, + "probability": 0.5569 + }, + { + "start": 23267.98, + "end": 23271.58, + "probability": 0.9543 + }, + { + "start": 23273.54, + "end": 23275.58, + "probability": 0.7668 + }, + { + "start": 23275.98, + "end": 23282.7, + "probability": 0.9929 + }, + { + "start": 23282.7, + "end": 23286.02, + "probability": 0.9948 + }, + { + "start": 23286.38, + "end": 23288.42, + "probability": 0.6226 + }, + { + "start": 23290.1, + "end": 23291.02, + "probability": 0.8849 + }, + { + "start": 23291.3, + "end": 23294.98, + "probability": 0.8651 + }, + { + "start": 23295.2, + "end": 23296.92, + "probability": 0.8904 + }, + { + "start": 23296.98, + "end": 23297.94, + "probability": 0.3665 + }, + { + "start": 23298.92, + "end": 23299.28, + "probability": 0.4332 + }, + { + "start": 23299.4, + "end": 23300.62, + "probability": 0.885 + }, + { + "start": 23300.84, + "end": 23308.38, + "probability": 0.8029 + }, + { + "start": 23308.44, + "end": 23309.04, + "probability": 0.6864 + }, + { + "start": 23309.4, + "end": 23312.38, + "probability": 0.9449 + }, + { + "start": 23313.76, + "end": 23315.85, + "probability": 0.6148 + }, + { + "start": 23316.44, + "end": 23318.32, + "probability": 0.9562 + }, + { + "start": 23318.56, + "end": 23320.06, + "probability": 0.8957 + }, + { + "start": 23320.24, + "end": 23322.08, + "probability": 0.9282 + }, + { + "start": 23322.08, + "end": 23325.08, + "probability": 0.985 + }, + { + "start": 23325.84, + "end": 23328.2, + "probability": 0.914 + }, + { + "start": 23328.28, + "end": 23329.32, + "probability": 0.8572 + }, + { + "start": 23331.16, + "end": 23333.04, + "probability": 0.6187 + }, + { + "start": 23333.22, + "end": 23337.38, + "probability": 0.9185 + }, + { + "start": 23338.06, + "end": 23340.6, + "probability": 0.9961 + }, + { + "start": 23341.72, + "end": 23343.4, + "probability": 0.77 + }, + { + "start": 23344.38, + "end": 23347.08, + "probability": 0.981 + }, + { + "start": 23347.08, + "end": 23350.4, + "probability": 0.9178 + }, + { + "start": 23351.1, + "end": 23353.68, + "probability": 0.9463 + }, + { + "start": 23355.44, + "end": 23356.46, + "probability": 0.9392 + }, + { + "start": 23358.56, + "end": 23360.56, + "probability": 0.9934 + }, + { + "start": 23360.62, + "end": 23361.5, + "probability": 0.7441 + }, + { + "start": 23361.98, + "end": 23363.96, + "probability": 0.9796 + }, + { + "start": 23364.8, + "end": 23365.46, + "probability": 0.4784 + }, + { + "start": 23366.28, + "end": 23367.72, + "probability": 0.9815 + }, + { + "start": 23368.78, + "end": 23370.29, + "probability": 0.0777 + }, + { + "start": 23372.24, + "end": 23373.24, + "probability": 0.5621 + }, + { + "start": 23373.88, + "end": 23381.42, + "probability": 0.0445 + }, + { + "start": 23381.62, + "end": 23381.62, + "probability": 0.4233 + }, + { + "start": 23381.62, + "end": 23381.62, + "probability": 0.0557 + }, + { + "start": 23381.62, + "end": 23384.08, + "probability": 0.937 + }, + { + "start": 23385.16, + "end": 23386.85, + "probability": 0.7215 + }, + { + "start": 23387.88, + "end": 23389.91, + "probability": 0.9558 + }, + { + "start": 23390.46, + "end": 23395.6, + "probability": 0.8433 + }, + { + "start": 23396.02, + "end": 23397.72, + "probability": 0.6542 + }, + { + "start": 23397.84, + "end": 23398.76, + "probability": 0.9471 + }, + { + "start": 23401.06, + "end": 23404.54, + "probability": 0.9394 + }, + { + "start": 23404.62, + "end": 23405.13, + "probability": 0.8184 + }, + { + "start": 23405.54, + "end": 23405.54, + "probability": 0.2491 + }, + { + "start": 23405.62, + "end": 23407.96, + "probability": 0.715 + }, + { + "start": 23409.48, + "end": 23411.66, + "probability": 0.6145 + }, + { + "start": 23413.7, + "end": 23417.12, + "probability": 0.558 + }, + { + "start": 23421.54, + "end": 23422.88, + "probability": 0.5584 + }, + { + "start": 23423.02, + "end": 23428.16, + "probability": 0.6674 + }, + { + "start": 23428.44, + "end": 23432.7, + "probability": 0.8102 + }, + { + "start": 23433.36, + "end": 23434.77, + "probability": 0.2827 + }, + { + "start": 23435.62, + "end": 23436.82, + "probability": 0.6997 + }, + { + "start": 23436.9, + "end": 23438.18, + "probability": 0.918 + }, + { + "start": 23441.02, + "end": 23445.1, + "probability": 0.6477 + }, + { + "start": 23445.96, + "end": 23449.32, + "probability": 0.7463 + }, + { + "start": 23450.38, + "end": 23454.88, + "probability": 0.9631 + }, + { + "start": 23455.66, + "end": 23458.7, + "probability": 0.7441 + }, + { + "start": 23458.9, + "end": 23459.28, + "probability": 0.3798 + }, + { + "start": 23460.14, + "end": 23461.64, + "probability": 0.6626 + }, + { + "start": 23461.96, + "end": 23462.9, + "probability": 0.684 + }, + { + "start": 23462.9, + "end": 23466.2, + "probability": 0.8518 + }, + { + "start": 23467.76, + "end": 23470.92, + "probability": 0.7998 + }, + { + "start": 23471.72, + "end": 23474.21, + "probability": 0.989 + }, + { + "start": 23475.14, + "end": 23476.15, + "probability": 0.8628 + }, + { + "start": 23476.84, + "end": 23479.04, + "probability": 0.9272 + }, + { + "start": 23479.38, + "end": 23482.52, + "probability": 0.9809 + }, + { + "start": 23483.0, + "end": 23487.66, + "probability": 0.962 + }, + { + "start": 23488.4, + "end": 23489.44, + "probability": 0.9881 + }, + { + "start": 23489.78, + "end": 23493.76, + "probability": 0.9769 + }, + { + "start": 23494.28, + "end": 23495.36, + "probability": 0.9796 + }, + { + "start": 23495.5, + "end": 23497.56, + "probability": 0.9966 + }, + { + "start": 23498.06, + "end": 23501.76, + "probability": 0.8169 + }, + { + "start": 23502.1, + "end": 23506.08, + "probability": 0.9933 + }, + { + "start": 23506.72, + "end": 23510.64, + "probability": 0.7768 + }, + { + "start": 23511.36, + "end": 23517.24, + "probability": 0.8569 + }, + { + "start": 23517.58, + "end": 23518.36, + "probability": 0.7177 + }, + { + "start": 23518.6, + "end": 23520.04, + "probability": 0.9042 + }, + { + "start": 23520.4, + "end": 23523.1, + "probability": 0.9757 + }, + { + "start": 23523.44, + "end": 23523.86, + "probability": 0.2948 + }, + { + "start": 23524.52, + "end": 23527.42, + "probability": 0.6668 + }, + { + "start": 23527.64, + "end": 23529.0, + "probability": 0.7878 + }, + { + "start": 23529.28, + "end": 23533.88, + "probability": 0.7687 + }, + { + "start": 23534.0, + "end": 23535.08, + "probability": 0.9424 + }, + { + "start": 23535.16, + "end": 23535.6, + "probability": 0.6689 + }, + { + "start": 23536.0, + "end": 23538.98, + "probability": 0.6044 + }, + { + "start": 23539.32, + "end": 23540.77, + "probability": 0.3371 + }, + { + "start": 23544.84, + "end": 23546.16, + "probability": 0.5744 + }, + { + "start": 23546.18, + "end": 23548.42, + "probability": 0.6534 + }, + { + "start": 23548.81, + "end": 23552.92, + "probability": 0.9877 + }, + { + "start": 23553.0, + "end": 23559.78, + "probability": 0.9802 + }, + { + "start": 23560.52, + "end": 23566.54, + "probability": 0.7895 + }, + { + "start": 23566.6, + "end": 23571.62, + "probability": 0.9965 + }, + { + "start": 23571.63, + "end": 23576.96, + "probability": 0.9997 + }, + { + "start": 23577.28, + "end": 23583.32, + "probability": 0.9783 + }, + { + "start": 23583.4, + "end": 23583.7, + "probability": 0.6564 + }, + { + "start": 23583.92, + "end": 23586.52, + "probability": 0.6398 + }, + { + "start": 23587.02, + "end": 23589.62, + "probability": 0.7589 + }, + { + "start": 23590.82, + "end": 23596.62, + "probability": 0.9814 + }, + { + "start": 23596.82, + "end": 23601.14, + "probability": 0.9636 + }, + { + "start": 23601.16, + "end": 23607.62, + "probability": 0.9681 + }, + { + "start": 23607.62, + "end": 23614.38, + "probability": 0.991 + }, + { + "start": 23615.66, + "end": 23621.06, + "probability": 0.639 + }, + { + "start": 23621.4, + "end": 23622.35, + "probability": 0.8301 + }, + { + "start": 23622.48, + "end": 23623.0, + "probability": 0.9579 + }, + { + "start": 23625.28, + "end": 23629.45, + "probability": 0.7079 + }, + { + "start": 23630.24, + "end": 23633.88, + "probability": 0.7535 + }, + { + "start": 23633.96, + "end": 23636.34, + "probability": 0.7045 + }, + { + "start": 23636.54, + "end": 23636.66, + "probability": 0.4314 + }, + { + "start": 23639.94, + "end": 23643.88, + "probability": 0.9934 + }, + { + "start": 23646.98, + "end": 23647.86, + "probability": 0.6442 + }, + { + "start": 23649.14, + "end": 23649.8, + "probability": 0.5481 + }, + { + "start": 23649.84, + "end": 23657.74, + "probability": 0.9761 + }, + { + "start": 23657.82, + "end": 23658.44, + "probability": 0.7136 + }, + { + "start": 23659.48, + "end": 23662.12, + "probability": 0.8517 + }, + { + "start": 23662.26, + "end": 23663.7, + "probability": 0.9158 + }, + { + "start": 23663.84, + "end": 23666.64, + "probability": 0.7031 + }, + { + "start": 23666.96, + "end": 23668.74, + "probability": 0.9874 + }, + { + "start": 23669.34, + "end": 23674.06, + "probability": 0.8583 + }, + { + "start": 23674.66, + "end": 23678.16, + "probability": 0.7486 + }, + { + "start": 23678.42, + "end": 23679.0, + "probability": 0.6062 + }, + { + "start": 23679.28, + "end": 23680.24, + "probability": 0.394 + }, + { + "start": 23688.5, + "end": 23689.46, + "probability": 0.6472 + }, + { + "start": 23689.66, + "end": 23693.72, + "probability": 0.6533 + }, + { + "start": 23693.9, + "end": 23695.7, + "probability": 0.865 + }, + { + "start": 23696.46, + "end": 23703.54, + "probability": 0.8486 + }, + { + "start": 23703.66, + "end": 23711.96, + "probability": 0.9889 + }, + { + "start": 23714.48, + "end": 23722.48, + "probability": 0.9602 + }, + { + "start": 23724.9, + "end": 23730.16, + "probability": 0.8624 + }, + { + "start": 23730.38, + "end": 23735.88, + "probability": 0.9873 + }, + { + "start": 23736.8, + "end": 23738.32, + "probability": 0.9468 + }, + { + "start": 23738.84, + "end": 23740.36, + "probability": 0.8688 + }, + { + "start": 23740.68, + "end": 23744.72, + "probability": 0.9851 + }, + { + "start": 23745.04, + "end": 23746.48, + "probability": 0.9668 + }, + { + "start": 23746.88, + "end": 23752.08, + "probability": 0.9515 + }, + { + "start": 23752.42, + "end": 23755.24, + "probability": 0.6175 + }, + { + "start": 23756.06, + "end": 23758.26, + "probability": 0.3132 + }, + { + "start": 23758.56, + "end": 23762.1, + "probability": 0.8383 + }, + { + "start": 23762.34, + "end": 23763.26, + "probability": 0.939 + }, + { + "start": 23767.56, + "end": 23770.8, + "probability": 0.9053 + }, + { + "start": 23771.68, + "end": 23775.9, + "probability": 0.9723 + }, + { + "start": 23776.48, + "end": 23777.94, + "probability": 0.9302 + }, + { + "start": 23778.26, + "end": 23779.1, + "probability": 0.7593 + }, + { + "start": 23779.18, + "end": 23783.43, + "probability": 0.9423 + }, + { + "start": 23783.48, + "end": 23784.76, + "probability": 0.7585 + }, + { + "start": 23784.84, + "end": 23785.76, + "probability": 0.7478 + }, + { + "start": 23785.86, + "end": 23786.52, + "probability": 0.567 + }, + { + "start": 23787.99, + "end": 23790.76, + "probability": 0.7979 + }, + { + "start": 23794.98, + "end": 23795.92, + "probability": 0.6718 + }, + { + "start": 23796.0, + "end": 23796.0, + "probability": 0.3261 + }, + { + "start": 23796.0, + "end": 23796.82, + "probability": 0.6138 + }, + { + "start": 23796.84, + "end": 23797.5, + "probability": 0.6679 + }, + { + "start": 23797.66, + "end": 23801.78, + "probability": 0.8116 + }, + { + "start": 23801.78, + "end": 23804.78, + "probability": 0.8825 + }, + { + "start": 23805.36, + "end": 23806.64, + "probability": 0.6929 + }, + { + "start": 23806.78, + "end": 23811.76, + "probability": 0.9917 + }, + { + "start": 23811.98, + "end": 23815.68, + "probability": 0.9516 + }, + { + "start": 23816.56, + "end": 23820.02, + "probability": 0.9883 + }, + { + "start": 23820.2, + "end": 23823.38, + "probability": 0.9483 + }, + { + "start": 23823.78, + "end": 23824.67, + "probability": 0.632 + }, + { + "start": 23825.1, + "end": 23825.48, + "probability": 0.9387 + }, + { + "start": 23825.6, + "end": 23827.76, + "probability": 0.9595 + }, + { + "start": 23827.88, + "end": 23832.62, + "probability": 0.845 + }, + { + "start": 23833.24, + "end": 23837.64, + "probability": 0.9916 + }, + { + "start": 23837.64, + "end": 23842.74, + "probability": 0.875 + }, + { + "start": 23842.76, + "end": 23843.1, + "probability": 0.3727 + }, + { + "start": 23843.1, + "end": 23843.8, + "probability": 0.6405 + }, + { + "start": 23844.2, + "end": 23846.5, + "probability": 0.795 + }, + { + "start": 23848.3, + "end": 23855.42, + "probability": 0.4425 + }, + { + "start": 23859.76, + "end": 23865.44, + "probability": 0.4864 + }, + { + "start": 23865.66, + "end": 23867.72, + "probability": 0.8397 + }, + { + "start": 23868.72, + "end": 23869.22, + "probability": 0.1885 + }, + { + "start": 23876.6, + "end": 23876.8, + "probability": 0.4202 + }, + { + "start": 23876.8, + "end": 23878.58, + "probability": 0.2536 + }, + { + "start": 23878.74, + "end": 23885.52, + "probability": 0.6788 + }, + { + "start": 23888.66, + "end": 23893.52, + "probability": 0.8959 + }, + { + "start": 23894.36, + "end": 23895.9, + "probability": 0.0348 + }, + { + "start": 23896.82, + "end": 23899.48, + "probability": 0.2629 + }, + { + "start": 23915.68, + "end": 23918.94, + "probability": 0.0321 + }, + { + "start": 23919.08, + "end": 23920.52, + "probability": 0.156 + }, + { + "start": 23920.52, + "end": 23924.82, + "probability": 0.5399 + }, + { + "start": 23925.34, + "end": 23928.26, + "probability": 0.2345 + }, + { + "start": 23929.03, + "end": 23932.9, + "probability": 0.5163 + }, + { + "start": 23933.54, + "end": 23934.84, + "probability": 0.7949 + }, + { + "start": 23935.4, + "end": 23938.7, + "probability": 0.7482 + }, + { + "start": 23938.78, + "end": 23940.74, + "probability": 0.9301 + }, + { + "start": 23941.22, + "end": 23946.68, + "probability": 0.9467 + }, + { + "start": 23947.02, + "end": 23950.78, + "probability": 0.9805 + }, + { + "start": 23951.15, + "end": 23956.86, + "probability": 0.9174 + }, + { + "start": 23956.94, + "end": 23958.36, + "probability": 0.7522 + }, + { + "start": 23958.92, + "end": 23962.38, + "probability": 0.5804 + }, + { + "start": 23963.72, + "end": 23970.86, + "probability": 0.9899 + }, + { + "start": 23971.18, + "end": 23972.66, + "probability": 0.7134 + }, + { + "start": 23973.26, + "end": 23976.5, + "probability": 0.9179 + }, + { + "start": 23977.83, + "end": 23982.9, + "probability": 0.9172 + }, + { + "start": 23983.9, + "end": 23986.84, + "probability": 0.989 + }, + { + "start": 23987.42, + "end": 23988.78, + "probability": 0.7246 + }, + { + "start": 23989.1, + "end": 23994.18, + "probability": 0.9619 + }, + { + "start": 23995.2, + "end": 23996.3, + "probability": 0.9341 + }, + { + "start": 23997.0, + "end": 23999.42, + "probability": 0.8572 + }, + { + "start": 24001.06, + "end": 24003.04, + "probability": 0.9352 + }, + { + "start": 24004.28, + "end": 24009.08, + "probability": 0.4959 + }, + { + "start": 24009.22, + "end": 24010.92, + "probability": 0.7389 + }, + { + "start": 24011.12, + "end": 24012.56, + "probability": 0.9349 + }, + { + "start": 24014.24, + "end": 24018.72, + "probability": 0.7726 + }, + { + "start": 24018.72, + "end": 24024.48, + "probability": 0.9979 + }, + { + "start": 24026.14, + "end": 24029.44, + "probability": 0.9951 + }, + { + "start": 24031.34, + "end": 24037.38, + "probability": 0.9919 + }, + { + "start": 24037.72, + "end": 24039.28, + "probability": 0.7558 + }, + { + "start": 24039.38, + "end": 24046.38, + "probability": 0.9614 + }, + { + "start": 24047.32, + "end": 24047.9, + "probability": 0.7134 + }, + { + "start": 24048.82, + "end": 24053.56, + "probability": 0.9932 + }, + { + "start": 24053.56, + "end": 24059.32, + "probability": 0.9715 + }, + { + "start": 24060.32, + "end": 24062.44, + "probability": 0.7194 + }, + { + "start": 24062.62, + "end": 24066.32, + "probability": 0.9736 + }, + { + "start": 24066.94, + "end": 24069.62, + "probability": 0.9378 + }, + { + "start": 24070.02, + "end": 24070.54, + "probability": 0.7007 + }, + { + "start": 24070.58, + "end": 24077.18, + "probability": 0.8952 + }, + { + "start": 24077.68, + "end": 24083.08, + "probability": 0.9175 + }, + { + "start": 24083.12, + "end": 24089.4, + "probability": 0.9855 + }, + { + "start": 24090.32, + "end": 24095.94, + "probability": 0.9802 + }, + { + "start": 24096.14, + "end": 24098.0, + "probability": 0.9405 + }, + { + "start": 24098.2, + "end": 24100.26, + "probability": 0.89 + }, + { + "start": 24100.72, + "end": 24102.5, + "probability": 0.603 + }, + { + "start": 24102.62, + "end": 24104.76, + "probability": 0.9549 + }, + { + "start": 24105.74, + "end": 24110.08, + "probability": 0.9482 + }, + { + "start": 24110.14, + "end": 24112.7, + "probability": 0.996 + }, + { + "start": 24112.7, + "end": 24118.16, + "probability": 0.7037 + }, + { + "start": 24118.92, + "end": 24121.96, + "probability": 0.9928 + }, + { + "start": 24122.16, + "end": 24126.56, + "probability": 0.7588 + }, + { + "start": 24126.94, + "end": 24127.72, + "probability": 0.7042 + }, + { + "start": 24128.02, + "end": 24130.1, + "probability": 0.6012 + }, + { + "start": 24149.34, + "end": 24151.26, + "probability": 0.757 + }, + { + "start": 24152.9, + "end": 24156.14, + "probability": 0.9653 + }, + { + "start": 24158.34, + "end": 24161.0, + "probability": 0.9751 + }, + { + "start": 24161.0, + "end": 24163.76, + "probability": 0.9975 + }, + { + "start": 24164.98, + "end": 24165.64, + "probability": 0.7886 + }, + { + "start": 24165.74, + "end": 24169.06, + "probability": 0.9925 + }, + { + "start": 24169.56, + "end": 24172.46, + "probability": 0.9212 + }, + { + "start": 24172.84, + "end": 24176.14, + "probability": 0.9246 + }, + { + "start": 24177.1, + "end": 24178.58, + "probability": 0.8139 + }, + { + "start": 24178.96, + "end": 24179.52, + "probability": 0.6947 + }, + { + "start": 24179.92, + "end": 24180.53, + "probability": 0.9609 + }, + { + "start": 24181.14, + "end": 24181.72, + "probability": 0.5768 + }, + { + "start": 24182.28, + "end": 24184.04, + "probability": 0.8118 + }, + { + "start": 24184.54, + "end": 24184.92, + "probability": 0.819 + }, + { + "start": 24185.0, + "end": 24185.42, + "probability": 0.778 + }, + { + "start": 24185.5, + "end": 24185.84, + "probability": 0.8467 + }, + { + "start": 24186.2, + "end": 24188.12, + "probability": 0.9956 + }, + { + "start": 24188.62, + "end": 24190.66, + "probability": 0.9968 + }, + { + "start": 24191.8, + "end": 24192.26, + "probability": 0.7121 + }, + { + "start": 24192.55, + "end": 24196.88, + "probability": 0.9727 + }, + { + "start": 24198.28, + "end": 24200.7, + "probability": 0.9956 + }, + { + "start": 24201.32, + "end": 24202.18, + "probability": 0.7948 + }, + { + "start": 24202.64, + "end": 24206.44, + "probability": 0.9855 + }, + { + "start": 24206.56, + "end": 24209.3, + "probability": 0.6641 + }, + { + "start": 24209.94, + "end": 24213.56, + "probability": 0.9963 + }, + { + "start": 24214.82, + "end": 24220.5, + "probability": 0.9972 + }, + { + "start": 24221.16, + "end": 24224.06, + "probability": 0.992 + }, + { + "start": 24224.72, + "end": 24226.1, + "probability": 0.9976 + }, + { + "start": 24227.04, + "end": 24230.86, + "probability": 0.9972 + }, + { + "start": 24231.0, + "end": 24234.92, + "probability": 0.996 + }, + { + "start": 24235.82, + "end": 24237.71, + "probability": 0.8862 + }, + { + "start": 24240.52, + "end": 24244.32, + "probability": 0.9941 + }, + { + "start": 24244.32, + "end": 24248.66, + "probability": 0.8896 + }, + { + "start": 24249.92, + "end": 24254.1, + "probability": 0.9628 + }, + { + "start": 24254.72, + "end": 24257.44, + "probability": 0.9471 + }, + { + "start": 24257.5, + "end": 24260.94, + "probability": 0.9805 + }, + { + "start": 24261.9, + "end": 24263.28, + "probability": 0.9932 + }, + { + "start": 24264.54, + "end": 24267.4, + "probability": 0.9961 + }, + { + "start": 24268.18, + "end": 24271.5, + "probability": 0.9896 + }, + { + "start": 24272.2, + "end": 24274.64, + "probability": 0.9973 + }, + { + "start": 24275.42, + "end": 24279.66, + "probability": 0.72 + }, + { + "start": 24279.82, + "end": 24282.5, + "probability": 0.9746 + }, + { + "start": 24282.5, + "end": 24285.0, + "probability": 0.9964 + }, + { + "start": 24285.3, + "end": 24287.86, + "probability": 0.9891 + }, + { + "start": 24287.86, + "end": 24291.42, + "probability": 0.9831 + }, + { + "start": 24291.42, + "end": 24292.46, + "probability": 0.9453 + }, + { + "start": 24292.78, + "end": 24294.91, + "probability": 0.8947 + }, + { + "start": 24295.4, + "end": 24298.82, + "probability": 0.9362 + }, + { + "start": 24299.5, + "end": 24300.41, + "probability": 0.9877 + }, + { + "start": 24301.06, + "end": 24304.98, + "probability": 0.9891 + }, + { + "start": 24306.36, + "end": 24307.4, + "probability": 0.9403 + }, + { + "start": 24308.42, + "end": 24310.22, + "probability": 0.9924 + }, + { + "start": 24310.3, + "end": 24312.08, + "probability": 0.9705 + }, + { + "start": 24312.12, + "end": 24318.56, + "probability": 0.9824 + }, + { + "start": 24320.22, + "end": 24324.28, + "probability": 0.9341 + }, + { + "start": 24324.8, + "end": 24328.04, + "probability": 0.9918 + }, + { + "start": 24328.24, + "end": 24329.48, + "probability": 0.951 + }, + { + "start": 24329.5, + "end": 24329.92, + "probability": 0.3809 + }, + { + "start": 24329.98, + "end": 24333.34, + "probability": 0.9092 + }, + { + "start": 24333.72, + "end": 24335.84, + "probability": 0.995 + }, + { + "start": 24337.06, + "end": 24338.5, + "probability": 0.9119 + }, + { + "start": 24338.62, + "end": 24342.68, + "probability": 0.9949 + }, + { + "start": 24343.52, + "end": 24346.14, + "probability": 0.9983 + }, + { + "start": 24346.14, + "end": 24347.92, + "probability": 0.8739 + }, + { + "start": 24348.36, + "end": 24349.7, + "probability": 0.9917 + }, + { + "start": 24349.78, + "end": 24350.1, + "probability": 0.4427 + }, + { + "start": 24350.16, + "end": 24350.78, + "probability": 0.7524 + }, + { + "start": 24351.08, + "end": 24353.18, + "probability": 0.6626 + }, + { + "start": 24353.56, + "end": 24355.52, + "probability": 0.615 + }, + { + "start": 24355.82, + "end": 24356.62, + "probability": 0.8909 + }, + { + "start": 24356.84, + "end": 24357.44, + "probability": 0.2322 + }, + { + "start": 24358.94, + "end": 24361.95, + "probability": 0.8655 + }, + { + "start": 24362.9, + "end": 24365.64, + "probability": 0.5903 + }, + { + "start": 24365.78, + "end": 24367.2, + "probability": 0.0588 + }, + { + "start": 24368.66, + "end": 24370.18, + "probability": 0.1654 + }, + { + "start": 24370.18, + "end": 24373.32, + "probability": 0.9059 + }, + { + "start": 24373.48, + "end": 24376.72, + "probability": 0.9247 + }, + { + "start": 24376.72, + "end": 24378.78, + "probability": 0.9876 + }, + { + "start": 24379.06, + "end": 24381.98, + "probability": 0.9966 + }, + { + "start": 24382.32, + "end": 24386.72, + "probability": 0.9854 + }, + { + "start": 24386.82, + "end": 24388.14, + "probability": 0.9736 + }, + { + "start": 24388.18, + "end": 24389.38, + "probability": 0.9463 + }, + { + "start": 24389.9, + "end": 24392.5, + "probability": 0.9808 + }, + { + "start": 24392.78, + "end": 24396.22, + "probability": 0.7961 + }, + { + "start": 24396.7, + "end": 24398.92, + "probability": 0.88 + }, + { + "start": 24399.58, + "end": 24402.58, + "probability": 0.8918 + }, + { + "start": 24402.66, + "end": 24410.88, + "probability": 0.9161 + }, + { + "start": 24410.9, + "end": 24413.94, + "probability": 0.7471 + }, + { + "start": 24414.14, + "end": 24420.0, + "probability": 0.9949 + }, + { + "start": 24420.0, + "end": 24424.7, + "probability": 0.985 + }, + { + "start": 24424.88, + "end": 24425.86, + "probability": 0.9369 + }, + { + "start": 24425.9, + "end": 24426.44, + "probability": 0.4067 + }, + { + "start": 24426.48, + "end": 24427.61, + "probability": 0.3901 + }, + { + "start": 24430.98, + "end": 24433.14, + "probability": 0.8146 + }, + { + "start": 24433.34, + "end": 24435.24, + "probability": 0.75 + }, + { + "start": 24436.3, + "end": 24440.9, + "probability": 0.9443 + }, + { + "start": 24441.02, + "end": 24441.86, + "probability": 0.6722 + }, + { + "start": 24442.9, + "end": 24443.74, + "probability": 0.0386 + }, + { + "start": 24444.72, + "end": 24449.02, + "probability": 0.7446 + }, + { + "start": 24449.62, + "end": 24452.12, + "probability": 0.773 + }, + { + "start": 24452.38, + "end": 24454.9, + "probability": 0.7925 + }, + { + "start": 24457.8, + "end": 24459.64, + "probability": 0.763 + }, + { + "start": 24460.26, + "end": 24461.8, + "probability": 0.8511 + }, + { + "start": 24461.9, + "end": 24463.19, + "probability": 0.8687 + }, + { + "start": 24464.2, + "end": 24466.98, + "probability": 0.8779 + }, + { + "start": 24468.22, + "end": 24468.75, + "probability": 0.2561 + }, + { + "start": 24468.94, + "end": 24469.34, + "probability": 0.3799 + }, + { + "start": 24469.48, + "end": 24470.96, + "probability": 0.22 + }, + { + "start": 24471.18, + "end": 24472.18, + "probability": 0.0339 + }, + { + "start": 24473.12, + "end": 24473.86, + "probability": 0.6111 + }, + { + "start": 24474.56, + "end": 24475.04, + "probability": 0.6808 + }, + { + "start": 24476.92, + "end": 24478.58, + "probability": 0.7815 + }, + { + "start": 24481.02, + "end": 24484.14, + "probability": 0.9712 + }, + { + "start": 24484.62, + "end": 24487.92, + "probability": 0.9609 + }, + { + "start": 24488.52, + "end": 24492.26, + "probability": 0.6378 + }, + { + "start": 24492.78, + "end": 24493.18, + "probability": 0.9559 + }, + { + "start": 24494.26, + "end": 24495.39, + "probability": 0.9556 + }, + { + "start": 24496.9, + "end": 24499.68, + "probability": 0.8635 + }, + { + "start": 24499.76, + "end": 24501.2, + "probability": 0.9799 + }, + { + "start": 24501.32, + "end": 24502.73, + "probability": 0.7096 + }, + { + "start": 24503.74, + "end": 24507.18, + "probability": 0.9848 + }, + { + "start": 24507.8, + "end": 24512.46, + "probability": 0.9924 + }, + { + "start": 24512.94, + "end": 24514.44, + "probability": 0.9905 + }, + { + "start": 24514.56, + "end": 24515.06, + "probability": 0.916 + }, + { + "start": 24516.16, + "end": 24519.7, + "probability": 0.9055 + }, + { + "start": 24520.66, + "end": 24523.36, + "probability": 0.9326 + }, + { + "start": 24523.56, + "end": 24525.7, + "probability": 0.9459 + }, + { + "start": 24528.18, + "end": 24529.7, + "probability": 0.8707 + }, + { + "start": 24530.16, + "end": 24531.4, + "probability": 0.7426 + }, + { + "start": 24531.52, + "end": 24533.88, + "probability": 0.9445 + }, + { + "start": 24534.1, + "end": 24539.49, + "probability": 0.9585 + }, + { + "start": 24541.46, + "end": 24546.2, + "probability": 0.3819 + }, + { + "start": 24546.2, + "end": 24546.64, + "probability": 0.0703 + }, + { + "start": 24546.64, + "end": 24550.02, + "probability": 0.968 + }, + { + "start": 24550.06, + "end": 24550.86, + "probability": 0.5379 + }, + { + "start": 24551.0, + "end": 24553.48, + "probability": 0.9453 + }, + { + "start": 24554.9, + "end": 24555.56, + "probability": 0.2636 + }, + { + "start": 24555.88, + "end": 24558.14, + "probability": 0.488 + }, + { + "start": 24558.18, + "end": 24559.98, + "probability": 0.7194 + }, + { + "start": 24560.06, + "end": 24561.05, + "probability": 0.4797 + }, + { + "start": 24561.62, + "end": 24563.22, + "probability": 0.0127 + }, + { + "start": 24564.04, + "end": 24564.94, + "probability": 0.4792 + }, + { + "start": 24565.68, + "end": 24567.0, + "probability": 0.835 + }, + { + "start": 24567.06, + "end": 24568.14, + "probability": 0.7647 + }, + { + "start": 24568.26, + "end": 24573.54, + "probability": 0.8901 + }, + { + "start": 24574.1, + "end": 24574.9, + "probability": 0.5007 + }, + { + "start": 24575.06, + "end": 24577.42, + "probability": 0.6633 + }, + { + "start": 24577.54, + "end": 24578.48, + "probability": 0.6934 + }, + { + "start": 24578.52, + "end": 24580.56, + "probability": 0.6852 + }, + { + "start": 24580.66, + "end": 24580.98, + "probability": 0.6002 + }, + { + "start": 24581.0, + "end": 24588.32, + "probability": 0.9407 + }, + { + "start": 24588.98, + "end": 24589.82, + "probability": 0.4539 + }, + { + "start": 24590.02, + "end": 24591.66, + "probability": 0.8475 + }, + { + "start": 24591.78, + "end": 24594.54, + "probability": 0.6794 + }, + { + "start": 24595.26, + "end": 24598.92, + "probability": 0.9518 + }, + { + "start": 24599.88, + "end": 24602.48, + "probability": 0.9382 + }, + { + "start": 24602.52, + "end": 24605.42, + "probability": 0.805 + }, + { + "start": 24606.28, + "end": 24607.85, + "probability": 0.4951 + }, + { + "start": 24608.48, + "end": 24610.82, + "probability": 0.9326 + }, + { + "start": 24612.32, + "end": 24619.84, + "probability": 0.7777 + }, + { + "start": 24620.18, + "end": 24622.46, + "probability": 0.988 + }, + { + "start": 24622.64, + "end": 24623.34, + "probability": 0.5041 + }, + { + "start": 24623.38, + "end": 24625.12, + "probability": 0.6665 + }, + { + "start": 24625.32, + "end": 24626.02, + "probability": 0.6588 + }, + { + "start": 24626.04, + "end": 24627.66, + "probability": 0.8619 + }, + { + "start": 24628.04, + "end": 24630.56, + "probability": 0.6391 + }, + { + "start": 24630.62, + "end": 24631.3, + "probability": 0.88 + }, + { + "start": 24631.5, + "end": 24633.06, + "probability": 0.8649 + }, + { + "start": 24633.82, + "end": 24635.1, + "probability": 0.9155 + }, + { + "start": 24635.3, + "end": 24636.0, + "probability": 0.6958 + }, + { + "start": 24636.5, + "end": 24639.4, + "probability": 0.9111 + }, + { + "start": 24639.67, + "end": 24641.84, + "probability": 0.5747 + }, + { + "start": 24641.9, + "end": 24642.06, + "probability": 0.7139 + }, + { + "start": 24642.18, + "end": 24644.26, + "probability": 0.9043 + }, + { + "start": 24644.32, + "end": 24647.21, + "probability": 0.925 + }, + { + "start": 24647.48, + "end": 24648.66, + "probability": 0.987 + }, + { + "start": 24649.16, + "end": 24650.74, + "probability": 0.811 + }, + { + "start": 24650.8, + "end": 24651.94, + "probability": 0.9905 + }, + { + "start": 24652.64, + "end": 24654.58, + "probability": 0.8891 + }, + { + "start": 24654.58, + "end": 24654.96, + "probability": 0.7806 + }, + { + "start": 24656.38, + "end": 24657.08, + "probability": 0.5588 + }, + { + "start": 24657.08, + "end": 24659.72, + "probability": 0.8319 + }, + { + "start": 24659.72, + "end": 24660.72, + "probability": 0.9934 + }, + { + "start": 24676.12, + "end": 24678.24, + "probability": 0.6343 + }, + { + "start": 24678.8, + "end": 24681.28, + "probability": 0.8313 + }, + { + "start": 24681.56, + "end": 24686.52, + "probability": 0.7116 + }, + { + "start": 24686.54, + "end": 24687.84, + "probability": 0.5887 + }, + { + "start": 24688.94, + "end": 24691.72, + "probability": 0.887 + }, + { + "start": 24691.86, + "end": 24693.02, + "probability": 0.9842 + }, + { + "start": 24693.1, + "end": 24694.52, + "probability": 0.844 + }, + { + "start": 24695.6, + "end": 24697.13, + "probability": 0.9934 + }, + { + "start": 24698.68, + "end": 24705.34, + "probability": 0.8656 + }, + { + "start": 24705.98, + "end": 24708.26, + "probability": 0.8092 + }, + { + "start": 24708.32, + "end": 24709.44, + "probability": 0.9916 + }, + { + "start": 24711.44, + "end": 24713.62, + "probability": 0.7833 + }, + { + "start": 24713.7, + "end": 24715.02, + "probability": 0.9629 + }, + { + "start": 24715.1, + "end": 24716.14, + "probability": 0.782 + }, + { + "start": 24719.82, + "end": 24723.12, + "probability": 0.7704 + }, + { + "start": 24724.3, + "end": 24728.52, + "probability": 0.7241 + }, + { + "start": 24728.72, + "end": 24732.28, + "probability": 0.8888 + }, + { + "start": 24732.6, + "end": 24733.19, + "probability": 0.8931 + }, + { + "start": 24733.4, + "end": 24733.93, + "probability": 0.225 + }, + { + "start": 24734.18, + "end": 24734.78, + "probability": 0.7063 + }, + { + "start": 24736.12, + "end": 24738.46, + "probability": 0.7341 + }, + { + "start": 24739.7, + "end": 24741.62, + "probability": 0.901 + }, + { + "start": 24741.76, + "end": 24743.1, + "probability": 0.9569 + }, + { + "start": 24743.14, + "end": 24744.06, + "probability": 0.9398 + }, + { + "start": 24744.64, + "end": 24747.68, + "probability": 0.8984 + }, + { + "start": 24748.46, + "end": 24753.5, + "probability": 0.9908 + }, + { + "start": 24753.6, + "end": 24757.01, + "probability": 0.7228 + }, + { + "start": 24758.58, + "end": 24762.58, + "probability": 0.998 + }, + { + "start": 24763.1, + "end": 24763.76, + "probability": 0.5655 + }, + { + "start": 24764.0, + "end": 24765.38, + "probability": 0.9463 + }, + { + "start": 24765.54, + "end": 24766.24, + "probability": 0.7771 + }, + { + "start": 24766.8, + "end": 24768.96, + "probability": 0.9773 + }, + { + "start": 24769.3, + "end": 24770.5, + "probability": 0.6937 + }, + { + "start": 24770.52, + "end": 24771.44, + "probability": 0.9078 + }, + { + "start": 24774.12, + "end": 24774.64, + "probability": 0.5105 + }, + { + "start": 24775.51, + "end": 24779.44, + "probability": 0.983 + }, + { + "start": 24779.64, + "end": 24781.02, + "probability": 0.7159 + }, + { + "start": 24781.58, + "end": 24785.28, + "probability": 0.7984 + }, + { + "start": 24785.4, + "end": 24787.74, + "probability": 0.9616 + }, + { + "start": 24788.22, + "end": 24789.24, + "probability": 0.9713 + }, + { + "start": 24790.88, + "end": 24792.1, + "probability": 0.9772 + }, + { + "start": 24794.76, + "end": 24795.3, + "probability": 0.7289 + }, + { + "start": 24795.88, + "end": 24800.72, + "probability": 0.8512 + }, + { + "start": 24801.52, + "end": 24803.56, + "probability": 0.7778 + }, + { + "start": 24803.68, + "end": 24805.2, + "probability": 0.9897 + }, + { + "start": 24805.9, + "end": 24808.0, + "probability": 0.9502 + }, + { + "start": 24808.98, + "end": 24812.44, + "probability": 0.9126 + }, + { + "start": 24812.52, + "end": 24813.12, + "probability": 0.4259 + }, + { + "start": 24813.2, + "end": 24814.38, + "probability": 0.894 + }, + { + "start": 24814.48, + "end": 24815.78, + "probability": 0.807 + }, + { + "start": 24816.28, + "end": 24818.78, + "probability": 0.7421 + }, + { + "start": 24819.8, + "end": 24820.66, + "probability": 0.8168 + }, + { + "start": 24821.38, + "end": 24822.94, + "probability": 0.9709 + }, + { + "start": 24824.28, + "end": 24828.04, + "probability": 0.9918 + }, + { + "start": 24828.92, + "end": 24832.8, + "probability": 0.8145 + }, + { + "start": 24833.78, + "end": 24834.68, + "probability": 0.8279 + }, + { + "start": 24835.98, + "end": 24839.92, + "probability": 0.7119 + }, + { + "start": 24841.0, + "end": 24843.24, + "probability": 0.9531 + }, + { + "start": 24844.46, + "end": 24846.46, + "probability": 0.8615 + }, + { + "start": 24847.51, + "end": 24850.1, + "probability": 0.7943 + }, + { + "start": 24850.84, + "end": 24851.0, + "probability": 0.2759 + }, + { + "start": 24851.16, + "end": 24851.79, + "probability": 0.8818 + }, + { + "start": 24852.42, + "end": 24854.62, + "probability": 0.8859 + }, + { + "start": 24855.4, + "end": 24858.04, + "probability": 0.8599 + }, + { + "start": 24858.08, + "end": 24861.48, + "probability": 0.9434 + }, + { + "start": 24861.84, + "end": 24865.84, + "probability": 0.8945 + }, + { + "start": 24865.9, + "end": 24866.18, + "probability": 0.5186 + }, + { + "start": 24866.22, + "end": 24867.38, + "probability": 0.8209 + }, + { + "start": 24868.44, + "end": 24870.42, + "probability": 0.9968 + }, + { + "start": 24870.5, + "end": 24871.56, + "probability": 0.9181 + }, + { + "start": 24872.32, + "end": 24874.06, + "probability": 0.9819 + }, + { + "start": 24874.16, + "end": 24876.06, + "probability": 0.8324 + }, + { + "start": 24876.42, + "end": 24878.46, + "probability": 0.957 + }, + { + "start": 24878.5, + "end": 24879.62, + "probability": 0.7048 + }, + { + "start": 24880.02, + "end": 24882.1, + "probability": 0.9961 + }, + { + "start": 24882.16, + "end": 24883.89, + "probability": 0.8821 + }, + { + "start": 24884.28, + "end": 24886.58, + "probability": 0.978 + }, + { + "start": 24886.88, + "end": 24887.74, + "probability": 0.8273 + }, + { + "start": 24888.16, + "end": 24889.28, + "probability": 0.984 + }, + { + "start": 24889.66, + "end": 24891.16, + "probability": 0.965 + }, + { + "start": 24891.24, + "end": 24894.86, + "probability": 0.9575 + }, + { + "start": 24894.94, + "end": 24896.12, + "probability": 0.9694 + }, + { + "start": 24897.66, + "end": 24902.04, + "probability": 0.9878 + }, + { + "start": 24902.12, + "end": 24902.94, + "probability": 0.8045 + }, + { + "start": 24903.42, + "end": 24903.86, + "probability": 0.7138 + }, + { + "start": 24903.94, + "end": 24904.8, + "probability": 0.6207 + }, + { + "start": 24904.84, + "end": 24906.98, + "probability": 0.8977 + }, + { + "start": 24907.0, + "end": 24908.08, + "probability": 0.8104 + }, + { + "start": 24908.14, + "end": 24908.36, + "probability": 0.762 + }, + { + "start": 24908.38, + "end": 24909.14, + "probability": 0.6784 + }, + { + "start": 24909.71, + "end": 24912.54, + "probability": 0.9651 + }, + { + "start": 24937.3, + "end": 24940.7, + "probability": 0.6797 + }, + { + "start": 24942.84, + "end": 24947.18, + "probability": 0.6071 + }, + { + "start": 24948.02, + "end": 24949.32, + "probability": 0.8339 + }, + { + "start": 24950.06, + "end": 24953.02, + "probability": 0.9917 + }, + { + "start": 24953.66, + "end": 24955.33, + "probability": 0.9585 + }, + { + "start": 24956.54, + "end": 24957.4, + "probability": 0.8862 + }, + { + "start": 24957.52, + "end": 24959.18, + "probability": 0.9132 + }, + { + "start": 24959.62, + "end": 24961.42, + "probability": 0.4495 + }, + { + "start": 24962.36, + "end": 24967.48, + "probability": 0.7248 + }, + { + "start": 24968.78, + "end": 24971.74, + "probability": 0.7241 + }, + { + "start": 24972.42, + "end": 24973.82, + "probability": 0.7496 + }, + { + "start": 24973.96, + "end": 24976.0, + "probability": 0.9109 + }, + { + "start": 24976.2, + "end": 24979.38, + "probability": 0.9431 + }, + { + "start": 24980.08, + "end": 24982.84, + "probability": 0.9977 + }, + { + "start": 24983.04, + "end": 24987.66, + "probability": 0.9128 + }, + { + "start": 24988.76, + "end": 24990.06, + "probability": 0.9204 + }, + { + "start": 24990.48, + "end": 24991.68, + "probability": 0.5404 + }, + { + "start": 24992.02, + "end": 24994.98, + "probability": 0.9588 + }, + { + "start": 24995.62, + "end": 25001.44, + "probability": 0.8154 + }, + { + "start": 25001.46, + "end": 25003.46, + "probability": 0.634 + }, + { + "start": 25003.98, + "end": 25008.34, + "probability": 0.8342 + }, + { + "start": 25008.66, + "end": 25009.96, + "probability": 0.4546 + }, + { + "start": 25010.56, + "end": 25011.74, + "probability": 0.3821 + }, + { + "start": 25011.74, + "end": 25012.18, + "probability": 0.1016 + }, + { + "start": 25012.22, + "end": 25012.94, + "probability": 0.469 + }, + { + "start": 25013.04, + "end": 25015.46, + "probability": 0.5382 + }, + { + "start": 25015.74, + "end": 25016.82, + "probability": 0.6618 + }, + { + "start": 25016.94, + "end": 25018.2, + "probability": 0.8342 + }, + { + "start": 25018.2, + "end": 25022.46, + "probability": 0.873 + }, + { + "start": 25023.0, + "end": 25025.62, + "probability": 0.9338 + }, + { + "start": 25025.84, + "end": 25027.12, + "probability": 0.1307 + }, + { + "start": 25030.72, + "end": 25032.46, + "probability": 0.3584 + }, + { + "start": 25032.68, + "end": 25035.02, + "probability": 0.7966 + }, + { + "start": 25035.66, + "end": 25042.32, + "probability": 0.9061 + }, + { + "start": 25042.74, + "end": 25043.23, + "probability": 0.9822 + }, + { + "start": 25044.24, + "end": 25045.03, + "probability": 0.6442 + }, + { + "start": 25045.84, + "end": 25049.82, + "probability": 0.9757 + }, + { + "start": 25050.02, + "end": 25054.0, + "probability": 0.946 + }, + { + "start": 25054.74, + "end": 25057.68, + "probability": 0.9749 + }, + { + "start": 25057.94, + "end": 25058.48, + "probability": 0.7515 + }, + { + "start": 25060.1, + "end": 25063.02, + "probability": 0.8417 + }, + { + "start": 25063.2, + "end": 25065.24, + "probability": 0.5261 + }, + { + "start": 25065.78, + "end": 25066.26, + "probability": 0.5845 + }, + { + "start": 25066.44, + "end": 25070.78, + "probability": 0.3569 + }, + { + "start": 25070.78, + "end": 25072.54, + "probability": 0.4277 + }, + { + "start": 25072.8, + "end": 25074.4, + "probability": 0.7466 + }, + { + "start": 25074.56, + "end": 25075.84, + "probability": 0.2041 + }, + { + "start": 25076.49, + "end": 25079.02, + "probability": 0.8453 + }, + { + "start": 25080.34, + "end": 25083.24, + "probability": 0.7642 + }, + { + "start": 25083.44, + "end": 25086.59, + "probability": 0.3243 + }, + { + "start": 25086.86, + "end": 25089.3, + "probability": 0.4315 + }, + { + "start": 25090.36, + "end": 25093.34, + "probability": 0.3362 + }, + { + "start": 25094.12, + "end": 25095.64, + "probability": 0.9185 + }, + { + "start": 25095.86, + "end": 25097.7, + "probability": 0.6939 + }, + { + "start": 25098.14, + "end": 25102.78, + "probability": 0.3823 + }, + { + "start": 25103.82, + "end": 25106.8, + "probability": 0.0573 + }, + { + "start": 25108.0, + "end": 25110.0, + "probability": 0.3615 + }, + { + "start": 25110.02, + "end": 25110.46, + "probability": 0.3828 + }, + { + "start": 25110.52, + "end": 25111.42, + "probability": 0.4142 + }, + { + "start": 25111.52, + "end": 25113.66, + "probability": 0.4576 + }, + { + "start": 25113.92, + "end": 25114.24, + "probability": 0.35 + }, + { + "start": 25116.94, + "end": 25119.76, + "probability": 0.0894 + }, + { + "start": 25120.58, + "end": 25122.06, + "probability": 0.6897 + }, + { + "start": 25122.56, + "end": 25125.22, + "probability": 0.8398 + }, + { + "start": 25125.26, + "end": 25126.08, + "probability": 0.3205 + }, + { + "start": 25126.14, + "end": 25127.38, + "probability": 0.837 + }, + { + "start": 25127.7, + "end": 25128.77, + "probability": 0.9834 + }, + { + "start": 25129.46, + "end": 25130.94, + "probability": 0.9976 + }, + { + "start": 25132.19, + "end": 25134.94, + "probability": 0.7966 + }, + { + "start": 25135.4, + "end": 25137.48, + "probability": 0.9912 + }, + { + "start": 25137.94, + "end": 25139.41, + "probability": 0.7538 + }, + { + "start": 25140.02, + "end": 25143.6, + "probability": 0.9941 + }, + { + "start": 25143.88, + "end": 25147.38, + "probability": 0.9466 + }, + { + "start": 25147.52, + "end": 25148.4, + "probability": 0.8483 + }, + { + "start": 25148.48, + "end": 25152.3, + "probability": 0.9866 + }, + { + "start": 25152.7, + "end": 25153.46, + "probability": 0.7855 + }, + { + "start": 25153.62, + "end": 25155.94, + "probability": 0.9719 + }, + { + "start": 25156.02, + "end": 25158.22, + "probability": 0.9604 + }, + { + "start": 25158.86, + "end": 25161.48, + "probability": 0.9458 + }, + { + "start": 25161.62, + "end": 25165.14, + "probability": 0.748 + }, + { + "start": 25165.18, + "end": 25165.82, + "probability": 0.2754 + }, + { + "start": 25166.02, + "end": 25166.22, + "probability": 0.6379 + }, + { + "start": 25166.36, + "end": 25167.34, + "probability": 0.7608 + }, + { + "start": 25167.66, + "end": 25170.42, + "probability": 0.9498 + }, + { + "start": 25170.58, + "end": 25171.3, + "probability": 0.5928 + }, + { + "start": 25171.8, + "end": 25172.0, + "probability": 0.4739 + }, + { + "start": 25172.04, + "end": 25174.66, + "probability": 0.6862 + }, + { + "start": 25174.74, + "end": 25175.4, + "probability": 0.4838 + }, + { + "start": 25175.48, + "end": 25178.68, + "probability": 0.9668 + }, + { + "start": 25178.82, + "end": 25179.9, + "probability": 0.9846 + }, + { + "start": 25181.18, + "end": 25183.56, + "probability": 0.9745 + }, + { + "start": 25183.74, + "end": 25184.28, + "probability": 0.8489 + }, + { + "start": 25184.32, + "end": 25184.86, + "probability": 0.2824 + }, + { + "start": 25184.92, + "end": 25185.2, + "probability": 0.8784 + }, + { + "start": 25185.38, + "end": 25186.12, + "probability": 0.4783 + }, + { + "start": 25186.34, + "end": 25187.7, + "probability": 0.91 + }, + { + "start": 25187.78, + "end": 25190.26, + "probability": 0.864 + }, + { + "start": 25192.02, + "end": 25192.64, + "probability": 0.0083 + }, + { + "start": 25192.78, + "end": 25197.02, + "probability": 0.938 + }, + { + "start": 25197.02, + "end": 25200.66, + "probability": 0.8751 + }, + { + "start": 25200.74, + "end": 25205.04, + "probability": 0.9684 + }, + { + "start": 25205.16, + "end": 25205.46, + "probability": 0.5786 + }, + { + "start": 25205.84, + "end": 25206.38, + "probability": 0.3164 + }, + { + "start": 25206.38, + "end": 25208.5, + "probability": 0.5233 + }, + { + "start": 25208.9, + "end": 25209.32, + "probability": 0.7748 + }, + { + "start": 25210.3, + "end": 25212.52, + "probability": 0.8252 + }, + { + "start": 25213.07, + "end": 25215.34, + "probability": 0.9733 + }, + { + "start": 25215.4, + "end": 25216.68, + "probability": 0.6616 + }, + { + "start": 25216.72, + "end": 25218.12, + "probability": 0.9377 + }, + { + "start": 25218.42, + "end": 25219.65, + "probability": 0.1266 + }, + { + "start": 25219.8, + "end": 25220.34, + "probability": 0.7817 + }, + { + "start": 25220.8, + "end": 25225.32, + "probability": 0.7893 + }, + { + "start": 25225.4, + "end": 25227.0, + "probability": 0.4736 + }, + { + "start": 25227.1, + "end": 25228.04, + "probability": 0.4783 + }, + { + "start": 25228.3, + "end": 25229.32, + "probability": 0.8853 + }, + { + "start": 25229.72, + "end": 25234.39, + "probability": 0.895 + }, + { + "start": 25235.7, + "end": 25236.68, + "probability": 0.0592 + }, + { + "start": 25236.68, + "end": 25236.68, + "probability": 0.0135 + }, + { + "start": 25236.68, + "end": 25236.68, + "probability": 0.0867 + }, + { + "start": 25236.68, + "end": 25236.68, + "probability": 0.3895 + }, + { + "start": 25236.68, + "end": 25236.68, + "probability": 0.1229 + }, + { + "start": 25236.68, + "end": 25237.82, + "probability": 0.2572 + }, + { + "start": 25237.84, + "end": 25239.76, + "probability": 0.415 + }, + { + "start": 25240.34, + "end": 25241.14, + "probability": 0.3755 + }, + { + "start": 25243.32, + "end": 25243.8, + "probability": 0.3848 + }, + { + "start": 25244.02, + "end": 25244.12, + "probability": 0.5785 + }, + { + "start": 25245.1, + "end": 25245.28, + "probability": 0.2457 + }, + { + "start": 25245.76, + "end": 25246.74, + "probability": 0.5555 + }, + { + "start": 25246.82, + "end": 25248.04, + "probability": 0.5184 + }, + { + "start": 25249.22, + "end": 25251.15, + "probability": 0.8578 + }, + { + "start": 25252.34, + "end": 25253.7, + "probability": 0.8881 + }, + { + "start": 25254.76, + "end": 25257.14, + "probability": 0.724 + }, + { + "start": 25257.84, + "end": 25260.35, + "probability": 0.9968 + }, + { + "start": 25261.34, + "end": 25262.94, + "probability": 0.7993 + }, + { + "start": 25263.1, + "end": 25263.7, + "probability": 0.9514 + }, + { + "start": 25263.82, + "end": 25264.6, + "probability": 0.8969 + }, + { + "start": 25264.8, + "end": 25266.08, + "probability": 0.9581 + }, + { + "start": 25266.36, + "end": 25266.9, + "probability": 0.8932 + }, + { + "start": 25266.98, + "end": 25268.12, + "probability": 0.9578 + }, + { + "start": 25268.66, + "end": 25270.8, + "probability": 0.8721 + }, + { + "start": 25271.14, + "end": 25272.6, + "probability": 0.5991 + }, + { + "start": 25273.66, + "end": 25274.36, + "probability": 0.5358 + }, + { + "start": 25274.9, + "end": 25277.92, + "probability": 0.9329 + }, + { + "start": 25278.12, + "end": 25279.32, + "probability": 0.9766 + }, + { + "start": 25279.36, + "end": 25280.14, + "probability": 0.7091 + }, + { + "start": 25280.14, + "end": 25281.76, + "probability": 0.9135 + }, + { + "start": 25281.86, + "end": 25282.32, + "probability": 0.7311 + }, + { + "start": 25283.16, + "end": 25284.76, + "probability": 0.9172 + }, + { + "start": 25285.34, + "end": 25285.34, + "probability": 0.2288 + }, + { + "start": 25285.34, + "end": 25287.46, + "probability": 0.776 + }, + { + "start": 25287.79, + "end": 25290.24, + "probability": 0.4329 + }, + { + "start": 25290.48, + "end": 25291.58, + "probability": 0.661 + }, + { + "start": 25291.84, + "end": 25293.28, + "probability": 0.0678 + }, + { + "start": 25293.28, + "end": 25295.16, + "probability": 0.4569 + }, + { + "start": 25295.22, + "end": 25295.88, + "probability": 0.819 + }, + { + "start": 25296.54, + "end": 25302.02, + "probability": 0.8633 + }, + { + "start": 25304.03, + "end": 25308.78, + "probability": 0.9738 + }, + { + "start": 25308.84, + "end": 25309.84, + "probability": 0.6687 + }, + { + "start": 25310.1, + "end": 25310.76, + "probability": 0.1904 + }, + { + "start": 25310.82, + "end": 25311.92, + "probability": 0.4114 + }, + { + "start": 25312.14, + "end": 25312.54, + "probability": 0.4555 + }, + { + "start": 25312.56, + "end": 25314.17, + "probability": 0.5792 + }, + { + "start": 25317.32, + "end": 25321.62, + "probability": 0.1961 + }, + { + "start": 25321.62, + "end": 25322.36, + "probability": 0.2736 + }, + { + "start": 25322.5, + "end": 25323.4, + "probability": 0.6766 + }, + { + "start": 25323.5, + "end": 25325.08, + "probability": 0.7876 + }, + { + "start": 25325.12, + "end": 25326.18, + "probability": 0.3618 + }, + { + "start": 25326.24, + "end": 25328.54, + "probability": 0.7818 + }, + { + "start": 25328.7, + "end": 25329.5, + "probability": 0.4625 + }, + { + "start": 25329.52, + "end": 25333.0, + "probability": 0.1165 + }, + { + "start": 25338.9, + "end": 25339.1, + "probability": 0.5316 + }, + { + "start": 25344.94, + "end": 25346.6, + "probability": 0.2193 + }, + { + "start": 25347.18, + "end": 25349.94, + "probability": 0.0864 + }, + { + "start": 25349.96, + "end": 25353.3, + "probability": 0.7196 + }, + { + "start": 25353.3, + "end": 25353.98, + "probability": 0.8493 + }, + { + "start": 25354.46, + "end": 25357.14, + "probability": 0.8681 + }, + { + "start": 25383.42, + "end": 25385.84, + "probability": 0.3545 + }, + { + "start": 25385.84, + "end": 25386.47, + "probability": 0.5615 + }, + { + "start": 25402.22, + "end": 25402.3, + "probability": 0.1947 + }, + { + "start": 25402.3, + "end": 25406.44, + "probability": 0.6358 + }, + { + "start": 25406.5, + "end": 25408.97, + "probability": 0.5953 + }, + { + "start": 25409.48, + "end": 25410.98, + "probability": 0.9747 + }, + { + "start": 25411.04, + "end": 25412.42, + "probability": 0.833 + }, + { + "start": 25414.48, + "end": 25416.12, + "probability": 0.9461 + }, + { + "start": 25416.2, + "end": 25421.98, + "probability": 0.675 + }, + { + "start": 25422.02, + "end": 25422.7, + "probability": 0.5083 + }, + { + "start": 25423.18, + "end": 25423.8, + "probability": 0.8877 + }, + { + "start": 25423.9, + "end": 25424.7, + "probability": 0.4176 + }, + { + "start": 25424.86, + "end": 25427.74, + "probability": 0.9226 + }, + { + "start": 25429.72, + "end": 25431.14, + "probability": 0.7886 + }, + { + "start": 25431.76, + "end": 25433.68, + "probability": 0.9524 + }, + { + "start": 25439.03, + "end": 25443.86, + "probability": 0.4052 + }, + { + "start": 25443.86, + "end": 25447.42, + "probability": 0.9976 + }, + { + "start": 25447.58, + "end": 25448.38, + "probability": 0.7059 + }, + { + "start": 25448.64, + "end": 25450.96, + "probability": 0.9254 + }, + { + "start": 25451.3, + "end": 25452.12, + "probability": 0.5013 + }, + { + "start": 25453.02, + "end": 25453.92, + "probability": 0.2019 + }, + { + "start": 25454.52, + "end": 25454.7, + "probability": 0.0781 + }, + { + "start": 25454.7, + "end": 25457.32, + "probability": 0.8926 + }, + { + "start": 25458.28, + "end": 25464.98, + "probability": 0.5703 + }, + { + "start": 25465.1, + "end": 25466.76, + "probability": 0.8238 + }, + { + "start": 25466.78, + "end": 25471.48, + "probability": 0.9038 + }, + { + "start": 25471.48, + "end": 25475.62, + "probability": 0.617 + }, + { + "start": 25476.36, + "end": 25478.06, + "probability": 0.8156 + }, + { + "start": 25478.84, + "end": 25481.82, + "probability": 0.8098 + }, + { + "start": 25482.38, + "end": 25487.68, + "probability": 0.9878 + }, + { + "start": 25488.4, + "end": 25492.76, + "probability": 0.8334 + }, + { + "start": 25492.76, + "end": 25497.2, + "probability": 0.9928 + }, + { + "start": 25498.2, + "end": 25501.92, + "probability": 0.9758 + }, + { + "start": 25502.6, + "end": 25508.74, + "probability": 0.963 + }, + { + "start": 25509.88, + "end": 25514.52, + "probability": 0.9906 + }, + { + "start": 25515.14, + "end": 25518.02, + "probability": 0.7874 + }, + { + "start": 25518.68, + "end": 25521.46, + "probability": 0.9697 + }, + { + "start": 25521.9, + "end": 25523.76, + "probability": 0.9006 + }, + { + "start": 25525.22, + "end": 25526.56, + "probability": 0.9362 + }, + { + "start": 25526.66, + "end": 25528.38, + "probability": 0.9058 + }, + { + "start": 25528.44, + "end": 25529.78, + "probability": 0.9819 + }, + { + "start": 25530.12, + "end": 25532.94, + "probability": 0.9366 + }, + { + "start": 25533.1, + "end": 25533.9, + "probability": 0.6713 + }, + { + "start": 25534.16, + "end": 25534.62, + "probability": 0.6215 + }, + { + "start": 25534.7, + "end": 25536.02, + "probability": 0.8074 + }, + { + "start": 25536.1, + "end": 25537.04, + "probability": 0.6583 + }, + { + "start": 25537.4, + "end": 25541.4, + "probability": 0.7687 + }, + { + "start": 25541.58, + "end": 25542.34, + "probability": 0.8241 + }, + { + "start": 25544.82, + "end": 25546.18, + "probability": 0.5692 + }, + { + "start": 25546.74, + "end": 25547.88, + "probability": 0.6783 + }, + { + "start": 25549.1, + "end": 25553.49, + "probability": 0.9593 + }, + { + "start": 25554.48, + "end": 25559.28, + "probability": 0.8412 + }, + { + "start": 25559.28, + "end": 25563.68, + "probability": 0.9973 + }, + { + "start": 25564.32, + "end": 25565.14, + "probability": 0.8128 + }, + { + "start": 25565.76, + "end": 25571.46, + "probability": 0.9915 + }, + { + "start": 25572.12, + "end": 25573.22, + "probability": 0.8884 + }, + { + "start": 25573.8, + "end": 25577.54, + "probability": 0.7621 + }, + { + "start": 25578.26, + "end": 25582.44, + "probability": 0.9479 + }, + { + "start": 25583.08, + "end": 25583.54, + "probability": 0.6865 + }, + { + "start": 25584.54, + "end": 25585.94, + "probability": 0.0278 + }, + { + "start": 25585.94, + "end": 25586.08, + "probability": 0.0189 + }, + { + "start": 25586.08, + "end": 25586.08, + "probability": 0.0274 + }, + { + "start": 25586.08, + "end": 25587.57, + "probability": 0.2154 + }, + { + "start": 25588.6, + "end": 25589.66, + "probability": 0.1577 + }, + { + "start": 25590.54, + "end": 25593.38, + "probability": 0.6557 + }, + { + "start": 25593.38, + "end": 25597.86, + "probability": 0.9697 + }, + { + "start": 25599.18, + "end": 25602.21, + "probability": 0.9666 + }, + { + "start": 25602.72, + "end": 25606.0, + "probability": 0.9771 + }, + { + "start": 25607.54, + "end": 25611.98, + "probability": 0.9841 + }, + { + "start": 25612.7, + "end": 25615.26, + "probability": 0.8497 + }, + { + "start": 25615.72, + "end": 25617.38, + "probability": 0.7158 + }, + { + "start": 25617.76, + "end": 25620.0, + "probability": 0.9736 + }, + { + "start": 25620.52, + "end": 25624.62, + "probability": 0.9611 + }, + { + "start": 25625.3, + "end": 25631.02, + "probability": 0.983 + }, + { + "start": 25631.1, + "end": 25634.76, + "probability": 0.811 + }, + { + "start": 25635.92, + "end": 25642.26, + "probability": 0.9095 + }, + { + "start": 25642.56, + "end": 25643.6, + "probability": 0.8513 + }, + { + "start": 25644.48, + "end": 25648.3, + "probability": 0.9856 + }, + { + "start": 25648.82, + "end": 25654.66, + "probability": 0.979 + }, + { + "start": 25655.32, + "end": 25656.88, + "probability": 0.8538 + }, + { + "start": 25657.06, + "end": 25659.1, + "probability": 0.8555 + }, + { + "start": 25659.52, + "end": 25660.28, + "probability": 0.6443 + }, + { + "start": 25660.52, + "end": 25661.2, + "probability": 0.8515 + }, + { + "start": 25661.32, + "end": 25662.7, + "probability": 0.9018 + }, + { + "start": 25663.14, + "end": 25664.6, + "probability": 0.9727 + }, + { + "start": 25664.72, + "end": 25665.22, + "probability": 0.6848 + }, + { + "start": 25665.42, + "end": 25666.92, + "probability": 0.9072 + }, + { + "start": 25670.5, + "end": 25672.9, + "probability": 0.7456 + }, + { + "start": 25673.08, + "end": 25677.7, + "probability": 0.9889 + }, + { + "start": 25678.44, + "end": 25678.94, + "probability": 0.4269 + }, + { + "start": 25680.86, + "end": 25682.36, + "probability": 0.4218 + }, + { + "start": 25682.42, + "end": 25683.62, + "probability": 0.5853 + }, + { + "start": 25683.82, + "end": 25685.38, + "probability": 0.9182 + }, + { + "start": 25685.85, + "end": 25688.34, + "probability": 0.7006 + }, + { + "start": 25688.42, + "end": 25690.18, + "probability": 0.9972 + }, + { + "start": 25690.74, + "end": 25691.06, + "probability": 0.772 + }, + { + "start": 25691.66, + "end": 25695.4, + "probability": 0.9121 + }, + { + "start": 25695.6, + "end": 25696.24, + "probability": 0.709 + }, + { + "start": 25696.5, + "end": 25705.82, + "probability": 0.9621 + }, + { + "start": 25705.86, + "end": 25706.9, + "probability": 0.9813 + }, + { + "start": 25707.02, + "end": 25707.86, + "probability": 0.7912 + }, + { + "start": 25709.7, + "end": 25712.98, + "probability": 0.4481 + }, + { + "start": 25713.06, + "end": 25720.27, + "probability": 0.9956 + }, + { + "start": 25720.36, + "end": 25723.16, + "probability": 0.8715 + }, + { + "start": 25723.94, + "end": 25729.04, + "probability": 0.9721 + }, + { + "start": 25729.4, + "end": 25733.94, + "probability": 0.9697 + }, + { + "start": 25734.42, + "end": 25735.32, + "probability": 0.9839 + }, + { + "start": 25735.6, + "end": 25738.36, + "probability": 0.8502 + }, + { + "start": 25738.42, + "end": 25738.92, + "probability": 0.6942 + }, + { + "start": 25739.0, + "end": 25739.44, + "probability": 0.693 + }, + { + "start": 25740.26, + "end": 25741.06, + "probability": 0.7226 + }, + { + "start": 25741.97, + "end": 25743.96, + "probability": 0.2787 + }, + { + "start": 25744.06, + "end": 25745.72, + "probability": 0.6675 + }, + { + "start": 25745.76, + "end": 25746.26, + "probability": 0.6109 + }, + { + "start": 25747.44, + "end": 25748.1, + "probability": 0.5506 + }, + { + "start": 25751.32, + "end": 25753.34, + "probability": 0.7581 + }, + { + "start": 25753.54, + "end": 25754.62, + "probability": 0.8096 + }, + { + "start": 25754.78, + "end": 25758.76, + "probability": 0.8075 + }, + { + "start": 25759.84, + "end": 25764.38, + "probability": 0.7569 + }, + { + "start": 25764.38, + "end": 25767.79, + "probability": 0.9517 + }, + { + "start": 25769.14, + "end": 25771.48, + "probability": 0.7405 + }, + { + "start": 25771.48, + "end": 25774.94, + "probability": 0.9957 + }, + { + "start": 25775.76, + "end": 25779.24, + "probability": 0.9578 + }, + { + "start": 25779.66, + "end": 25784.14, + "probability": 0.9946 + }, + { + "start": 25784.26, + "end": 25785.04, + "probability": 0.7108 + }, + { + "start": 25785.2, + "end": 25789.5, + "probability": 0.9548 + }, + { + "start": 25789.8, + "end": 25793.16, + "probability": 0.9873 + }, + { + "start": 25793.9, + "end": 25794.6, + "probability": 0.8221 + }, + { + "start": 25795.22, + "end": 25797.9, + "probability": 0.5653 + }, + { + "start": 25799.02, + "end": 25799.58, + "probability": 0.9315 + }, + { + "start": 25800.38, + "end": 25800.88, + "probability": 0.1611 + }, + { + "start": 25801.58, + "end": 25802.66, + "probability": 0.6879 + }, + { + "start": 25803.6, + "end": 25805.44, + "probability": 0.3979 + }, + { + "start": 25805.88, + "end": 25808.24, + "probability": 0.988 + }, + { + "start": 25808.86, + "end": 25812.92, + "probability": 0.8585 + }, + { + "start": 25813.0, + "end": 25818.22, + "probability": 0.9462 + }, + { + "start": 25819.06, + "end": 25819.55, + "probability": 0.6624 + }, + { + "start": 25820.52, + "end": 25823.08, + "probability": 0.992 + }, + { + "start": 25823.52, + "end": 25825.54, + "probability": 0.9061 + }, + { + "start": 25825.62, + "end": 25827.98, + "probability": 0.9093 + }, + { + "start": 25828.3, + "end": 25829.9, + "probability": 0.9344 + }, + { + "start": 25830.5, + "end": 25831.22, + "probability": 0.6785 + }, + { + "start": 25831.38, + "end": 25831.94, + "probability": 0.8463 + }, + { + "start": 25832.06, + "end": 25835.06, + "probability": 0.9824 + }, + { + "start": 25835.24, + "end": 25836.94, + "probability": 0.7973 + }, + { + "start": 25837.5, + "end": 25840.68, + "probability": 0.9415 + }, + { + "start": 25841.02, + "end": 25843.04, + "probability": 0.8909 + }, + { + "start": 25843.62, + "end": 25846.6, + "probability": 0.9487 + }, + { + "start": 25847.74, + "end": 25849.6, + "probability": 0.9284 + }, + { + "start": 25850.18, + "end": 25852.76, + "probability": 0.853 + }, + { + "start": 25853.42, + "end": 25856.8, + "probability": 0.9557 + }, + { + "start": 25857.0, + "end": 25860.05, + "probability": 0.8228 + }, + { + "start": 25860.34, + "end": 25864.18, + "probability": 0.7827 + }, + { + "start": 25865.0, + "end": 25867.92, + "probability": 0.9069 + }, + { + "start": 25868.06, + "end": 25871.0, + "probability": 0.974 + }, + { + "start": 25871.5, + "end": 25873.4, + "probability": 0.8683 + }, + { + "start": 25873.66, + "end": 25878.12, + "probability": 0.9706 + }, + { + "start": 25878.52, + "end": 25884.96, + "probability": 0.998 + }, + { + "start": 25885.26, + "end": 25889.12, + "probability": 0.9971 + }, + { + "start": 25889.18, + "end": 25890.59, + "probability": 0.998 + }, + { + "start": 25890.97, + "end": 25895.42, + "probability": 0.91 + }, + { + "start": 25895.82, + "end": 25897.34, + "probability": 0.8659 + }, + { + "start": 25897.42, + "end": 25900.72, + "probability": 0.9807 + }, + { + "start": 25901.14, + "end": 25901.72, + "probability": 0.8894 + }, + { + "start": 25901.94, + "end": 25902.74, + "probability": 0.8329 + }, + { + "start": 25902.82, + "end": 25906.68, + "probability": 0.9788 + }, + { + "start": 25906.8, + "end": 25908.26, + "probability": 0.9392 + }, + { + "start": 25908.4, + "end": 25909.86, + "probability": 0.9623 + }, + { + "start": 25910.24, + "end": 25913.38, + "probability": 0.9761 + }, + { + "start": 25914.94, + "end": 25916.27, + "probability": 0.0686 + }, + { + "start": 25916.9, + "end": 25919.0, + "probability": 0.7765 + }, + { + "start": 25919.64, + "end": 25922.56, + "probability": 0.9966 + }, + { + "start": 25923.32, + "end": 25927.4, + "probability": 0.9944 + }, + { + "start": 25927.54, + "end": 25930.44, + "probability": 0.7452 + }, + { + "start": 25931.06, + "end": 25936.14, + "probability": 0.8874 + }, + { + "start": 25936.34, + "end": 25937.62, + "probability": 0.9497 + }, + { + "start": 25938.02, + "end": 25939.86, + "probability": 0.9903 + }, + { + "start": 25940.04, + "end": 25945.28, + "probability": 0.9907 + }, + { + "start": 25945.42, + "end": 25945.92, + "probability": 0.5763 + }, + { + "start": 25947.82, + "end": 25950.12, + "probability": 0.6266 + }, + { + "start": 25950.58, + "end": 25950.84, + "probability": 0.3774 + }, + { + "start": 25950.98, + "end": 25952.52, + "probability": 0.347 + }, + { + "start": 25952.52, + "end": 25952.72, + "probability": 0.1204 + }, + { + "start": 25952.72, + "end": 25953.58, + "probability": 0.5001 + }, + { + "start": 25953.7, + "end": 25954.59, + "probability": 0.9298 + }, + { + "start": 25955.44, + "end": 25957.74, + "probability": 0.7616 + }, + { + "start": 25957.8, + "end": 25957.88, + "probability": 0.4581 + }, + { + "start": 25957.88, + "end": 25958.62, + "probability": 0.797 + }, + { + "start": 25958.82, + "end": 25964.32, + "probability": 0.9935 + }, + { + "start": 25965.22, + "end": 25971.68, + "probability": 0.9868 + }, + { + "start": 25972.24, + "end": 25974.94, + "probability": 0.9475 + }, + { + "start": 25975.0, + "end": 25976.51, + "probability": 0.9917 + }, + { + "start": 25978.56, + "end": 25980.56, + "probability": 0.0233 + }, + { + "start": 25980.56, + "end": 25980.56, + "probability": 0.509 + }, + { + "start": 25980.56, + "end": 25992.88, + "probability": 0.4033 + }, + { + "start": 25992.94, + "end": 25993.72, + "probability": 0.7559 + }, + { + "start": 25994.64, + "end": 25995.88, + "probability": 0.8971 + }, + { + "start": 25995.92, + "end": 25997.04, + "probability": 0.825 + }, + { + "start": 25997.16, + "end": 25997.75, + "probability": 0.9375 + }, + { + "start": 25998.1, + "end": 25998.96, + "probability": 0.6597 + }, + { + "start": 25999.06, + "end": 26003.06, + "probability": 0.9377 + }, + { + "start": 26003.06, + "end": 26006.92, + "probability": 0.9181 + }, + { + "start": 26007.54, + "end": 26011.1, + "probability": 0.8279 + }, + { + "start": 26011.54, + "end": 26013.84, + "probability": 0.8394 + }, + { + "start": 26014.71, + "end": 26016.5, + "probability": 0.8027 + }, + { + "start": 26016.68, + "end": 26018.82, + "probability": 0.997 + }, + { + "start": 26019.36, + "end": 26024.98, + "probability": 0.9324 + }, + { + "start": 26025.0, + "end": 26025.0, + "probability": 0.0 + }, + { + "start": 26025.78, + "end": 26029.7, + "probability": 0.6237 + }, + { + "start": 26030.54, + "end": 26034.76, + "probability": 0.9369 + }, + { + "start": 26034.88, + "end": 26040.08, + "probability": 0.9398 + }, + { + "start": 26041.24, + "end": 26043.98, + "probability": 0.927 + }, + { + "start": 26044.08, + "end": 26045.11, + "probability": 0.9966 + }, + { + "start": 26046.4, + "end": 26048.92, + "probability": 0.9971 + }, + { + "start": 26049.58, + "end": 26050.7, + "probability": 0.5414 + }, + { + "start": 26050.72, + "end": 26051.75, + "probability": 0.7915 + }, + { + "start": 26052.22, + "end": 26054.34, + "probability": 0.9373 + }, + { + "start": 26054.8, + "end": 26058.48, + "probability": 0.99 + }, + { + "start": 26059.08, + "end": 26063.38, + "probability": 0.9528 + }, + { + "start": 26063.98, + "end": 26065.84, + "probability": 0.976 + }, + { + "start": 26066.78, + "end": 26073.56, + "probability": 0.9845 + }, + { + "start": 26074.14, + "end": 26077.96, + "probability": 0.9229 + }, + { + "start": 26077.96, + "end": 26080.54, + "probability": 0.8579 + }, + { + "start": 26081.82, + "end": 26087.54, + "probability": 0.9885 + }, + { + "start": 26087.82, + "end": 26088.34, + "probability": 0.9834 + }, + { + "start": 26088.42, + "end": 26089.92, + "probability": 0.7756 + }, + { + "start": 26090.5, + "end": 26091.48, + "probability": 0.9172 + }, + { + "start": 26091.74, + "end": 26093.34, + "probability": 0.9559 + }, + { + "start": 26093.66, + "end": 26095.28, + "probability": 0.8462 + }, + { + "start": 26095.48, + "end": 26096.7, + "probability": 0.4833 + }, + { + "start": 26098.48, + "end": 26099.22, + "probability": 0.371 + }, + { + "start": 26099.94, + "end": 26105.18, + "probability": 0.603 + }, + { + "start": 26106.24, + "end": 26109.58, + "probability": 0.5844 + }, + { + "start": 26109.58, + "end": 26110.18, + "probability": 0.1666 + }, + { + "start": 26111.28, + "end": 26114.4, + "probability": 0.5515 + }, + { + "start": 26114.52, + "end": 26115.34, + "probability": 0.7006 + }, + { + "start": 26115.9, + "end": 26116.98, + "probability": 0.5846 + }, + { + "start": 26117.05, + "end": 26121.12, + "probability": 0.6948 + }, + { + "start": 26122.08, + "end": 26124.92, + "probability": 0.7032 + }, + { + "start": 26129.9, + "end": 26130.26, + "probability": 0.7489 + }, + { + "start": 26131.32, + "end": 26131.64, + "probability": 0.3518 + }, + { + "start": 26133.87, + "end": 26135.94, + "probability": 0.8718 + }, + { + "start": 26136.04, + "end": 26136.54, + "probability": 0.7564 + }, + { + "start": 26136.78, + "end": 26139.56, + "probability": 0.9705 + }, + { + "start": 26139.68, + "end": 26141.78, + "probability": 0.9834 + }, + { + "start": 26141.78, + "end": 26142.2, + "probability": 0.1223 + }, + { + "start": 26142.28, + "end": 26147.6, + "probability": 0.8558 + }, + { + "start": 26147.66, + "end": 26148.58, + "probability": 0.7574 + }, + { + "start": 26148.58, + "end": 26149.21, + "probability": 0.6552 + }, + { + "start": 26149.74, + "end": 26152.24, + "probability": 0.7698 + }, + { + "start": 26152.64, + "end": 26155.88, + "probability": 0.9866 + }, + { + "start": 26156.52, + "end": 26157.4, + "probability": 0.6491 + }, + { + "start": 26157.46, + "end": 26158.9, + "probability": 0.5787 + }, + { + "start": 26159.0, + "end": 26160.46, + "probability": 0.5811 + }, + { + "start": 26160.46, + "end": 26160.93, + "probability": 0.5873 + }, + { + "start": 26161.42, + "end": 26161.86, + "probability": 0.6522 + }, + { + "start": 26161.88, + "end": 26163.4, + "probability": 0.6709 + }, + { + "start": 26165.31, + "end": 26183.12, + "probability": 0.5282 + }, + { + "start": 26183.38, + "end": 26187.66, + "probability": 0.9076 + }, + { + "start": 26188.6, + "end": 26193.36, + "probability": 0.89 + }, + { + "start": 26193.54, + "end": 26198.16, + "probability": 0.6208 + }, + { + "start": 26198.6, + "end": 26199.44, + "probability": 0.9729 + }, + { + "start": 26199.44, + "end": 26200.46, + "probability": 0.5679 + }, + { + "start": 26200.56, + "end": 26202.16, + "probability": 0.9477 + }, + { + "start": 26203.02, + "end": 26204.44, + "probability": 0.9834 + }, + { + "start": 26205.16, + "end": 26206.04, + "probability": 0.4669 + }, + { + "start": 26206.72, + "end": 26209.16, + "probability": 0.9712 + }, + { + "start": 26209.64, + "end": 26209.98, + "probability": 0.0885 + }, + { + "start": 26211.2, + "end": 26211.4, + "probability": 0.0176 + }, + { + "start": 26211.86, + "end": 26213.46, + "probability": 0.5278 + }, + { + "start": 26213.6, + "end": 26214.09, + "probability": 0.8726 + }, + { + "start": 26214.66, + "end": 26215.22, + "probability": 0.4719 + }, + { + "start": 26215.34, + "end": 26217.64, + "probability": 0.9473 + }, + { + "start": 26217.74, + "end": 26218.23, + "probability": 0.9456 + }, + { + "start": 26218.72, + "end": 26219.24, + "probability": 0.9068 + }, + { + "start": 26219.32, + "end": 26219.7, + "probability": 0.9242 + }, + { + "start": 26220.04, + "end": 26220.32, + "probability": 0.7603 + }, + { + "start": 26220.62, + "end": 26221.52, + "probability": 0.6505 + }, + { + "start": 26221.52, + "end": 26222.24, + "probability": 0.6613 + }, + { + "start": 26222.32, + "end": 26222.72, + "probability": 0.6644 + }, + { + "start": 26222.92, + "end": 26223.26, + "probability": 0.5916 + }, + { + "start": 26223.42, + "end": 26224.9, + "probability": 0.7265 + }, + { + "start": 26226.68, + "end": 26229.24, + "probability": 0.6031 + }, + { + "start": 26229.24, + "end": 26229.44, + "probability": 0.4777 + }, + { + "start": 26229.44, + "end": 26232.24, + "probability": 0.7722 + }, + { + "start": 26232.68, + "end": 26233.41, + "probability": 0.9849 + }, + { + "start": 26233.66, + "end": 26233.86, + "probability": 0.7023 + }, + { + "start": 26234.48, + "end": 26235.4, + "probability": 0.4845 + }, + { + "start": 26235.52, + "end": 26236.38, + "probability": 0.77 + }, + { + "start": 26236.46, + "end": 26238.18, + "probability": 0.6797 + }, + { + "start": 26238.32, + "end": 26238.66, + "probability": 0.6292 + }, + { + "start": 26238.82, + "end": 26239.66, + "probability": 0.9248 + }, + { + "start": 26240.16, + "end": 26243.38, + "probability": 0.9602 + }, + { + "start": 26244.24, + "end": 26244.85, + "probability": 0.7942 + }, + { + "start": 26245.28, + "end": 26246.48, + "probability": 0.9257 + }, + { + "start": 26246.54, + "end": 26247.31, + "probability": 0.9517 + }, + { + "start": 26247.4, + "end": 26248.3, + "probability": 0.777 + }, + { + "start": 26248.42, + "end": 26249.42, + "probability": 0.7491 + }, + { + "start": 26249.5, + "end": 26249.72, + "probability": 0.5563 + }, + { + "start": 26249.92, + "end": 26250.2, + "probability": 0.7269 + }, + { + "start": 26250.2, + "end": 26251.04, + "probability": 0.7781 + }, + { + "start": 26251.2, + "end": 26251.6, + "probability": 0.4055 + }, + { + "start": 26251.7, + "end": 26255.4, + "probability": 0.6406 + }, + { + "start": 26255.96, + "end": 26255.96, + "probability": 0.0017 + }, + { + "start": 26255.96, + "end": 26255.96, + "probability": 0.0415 + }, + { + "start": 26255.96, + "end": 26255.96, + "probability": 0.0114 + }, + { + "start": 26255.96, + "end": 26256.32, + "probability": 0.611 + }, + { + "start": 26258.5, + "end": 26258.96, + "probability": 0.2627 + }, + { + "start": 26259.38, + "end": 26260.53, + "probability": 0.5932 + }, + { + "start": 26261.22, + "end": 26262.9, + "probability": 0.4666 + }, + { + "start": 26263.42, + "end": 26264.82, + "probability": 0.5973 + }, + { + "start": 26265.22, + "end": 26265.32, + "probability": 0.0582 + }, + { + "start": 26265.92, + "end": 26267.67, + "probability": 0.6245 + }, + { + "start": 26268.74, + "end": 26269.82, + "probability": 0.6579 + }, + { + "start": 26269.82, + "end": 26270.38, + "probability": 0.3828 + }, + { + "start": 26271.08, + "end": 26276.68, + "probability": 0.9414 + }, + { + "start": 26277.44, + "end": 26279.16, + "probability": 0.5107 + }, + { + "start": 26280.02, + "end": 26281.2, + "probability": 0.9629 + }, + { + "start": 26281.86, + "end": 26286.38, + "probability": 0.9899 + }, + { + "start": 26287.1, + "end": 26288.68, + "probability": 0.7718 + }, + { + "start": 26289.34, + "end": 26290.04, + "probability": 0.4587 + }, + { + "start": 26290.5, + "end": 26292.48, + "probability": 0.9333 + }, + { + "start": 26292.56, + "end": 26292.98, + "probability": 0.9322 + }, + { + "start": 26293.88, + "end": 26296.24, + "probability": 0.988 + }, + { + "start": 26297.24, + "end": 26299.14, + "probability": 0.8608 + }, + { + "start": 26299.72, + "end": 26301.83, + "probability": 0.9885 + }, + { + "start": 26302.64, + "end": 26305.06, + "probability": 0.9112 + }, + { + "start": 26305.22, + "end": 26310.26, + "probability": 0.98 + }, + { + "start": 26310.26, + "end": 26313.74, + "probability": 0.9901 + }, + { + "start": 26314.86, + "end": 26317.1, + "probability": 0.9939 + }, + { + "start": 26318.06, + "end": 26319.34, + "probability": 0.7722 + }, + { + "start": 26320.18, + "end": 26320.2, + "probability": 0.0183 + }, + { + "start": 26320.2, + "end": 26320.72, + "probability": 0.6062 + }, + { + "start": 26320.76, + "end": 26321.78, + "probability": 0.6125 + }, + { + "start": 26321.9, + "end": 26333.22, + "probability": 0.671 + }, + { + "start": 26333.26, + "end": 26334.52, + "probability": 0.7893 + }, + { + "start": 26335.98, + "end": 26338.64, + "probability": 0.9349 + }, + { + "start": 26339.32, + "end": 26341.86, + "probability": 0.9531 + }, + { + "start": 26343.16, + "end": 26349.46, + "probability": 0.9752 + }, + { + "start": 26349.46, + "end": 26354.44, + "probability": 0.9805 + }, + { + "start": 26355.12, + "end": 26357.24, + "probability": 0.8875 + }, + { + "start": 26357.72, + "end": 26359.2, + "probability": 0.9335 + }, + { + "start": 26360.02, + "end": 26360.8, + "probability": 0.7748 + }, + { + "start": 26363.42, + "end": 26365.68, + "probability": 0.544 + }, + { + "start": 26366.42, + "end": 26369.04, + "probability": 0.9631 + }, + { + "start": 26369.5, + "end": 26370.08, + "probability": 0.5902 + }, + { + "start": 26370.2, + "end": 26370.72, + "probability": 0.7834 + }, + { + "start": 26372.38, + "end": 26377.18, + "probability": 0.9962 + }, + { + "start": 26378.18, + "end": 26380.88, + "probability": 0.9928 + }, + { + "start": 26381.52, + "end": 26383.66, + "probability": 0.3714 + }, + { + "start": 26385.0, + "end": 26387.5, + "probability": 0.9448 + }, + { + "start": 26388.0, + "end": 26389.76, + "probability": 0.7387 + }, + { + "start": 26390.5, + "end": 26393.5, + "probability": 0.7578 + }, + { + "start": 26393.62, + "end": 26395.68, + "probability": 0.4636 + }, + { + "start": 26396.12, + "end": 26398.66, + "probability": 0.9118 + }, + { + "start": 26401.74, + "end": 26402.94, + "probability": 0.31 + }, + { + "start": 26403.2, + "end": 26403.3, + "probability": 0.3445 + }, + { + "start": 26403.3, + "end": 26408.14, + "probability": 0.5625 + }, + { + "start": 26408.68, + "end": 26414.04, + "probability": 0.8766 + }, + { + "start": 26414.88, + "end": 26418.74, + "probability": 0.7306 + }, + { + "start": 26419.0, + "end": 26419.74, + "probability": 0.6158 + }, + { + "start": 26420.22, + "end": 26422.18, + "probability": 0.998 + }, + { + "start": 26422.58, + "end": 26424.02, + "probability": 0.8883 + }, + { + "start": 26424.8, + "end": 26425.54, + "probability": 0.8988 + }, + { + "start": 26426.54, + "end": 26426.68, + "probability": 0.7439 + }, + { + "start": 26426.94, + "end": 26426.94, + "probability": 0.2692 + }, + { + "start": 26426.96, + "end": 26429.22, + "probability": 0.7025 + }, + { + "start": 26429.82, + "end": 26432.46, + "probability": 0.7021 + }, + { + "start": 26432.52, + "end": 26433.7, + "probability": 0.9124 + }, + { + "start": 26435.28, + "end": 26440.2, + "probability": 0.2457 + }, + { + "start": 26440.2, + "end": 26441.08, + "probability": 0.7761 + }, + { + "start": 26441.22, + "end": 26443.74, + "probability": 0.6197 + }, + { + "start": 26443.88, + "end": 26446.5, + "probability": 0.9507 + }, + { + "start": 26446.96, + "end": 26447.02, + "probability": 0.3513 + }, + { + "start": 26447.08, + "end": 26447.8, + "probability": 0.8655 + }, + { + "start": 26449.2, + "end": 26450.1, + "probability": 0.6877 + }, + { + "start": 26450.2, + "end": 26451.06, + "probability": 0.6832 + }, + { + "start": 26451.5, + "end": 26452.26, + "probability": 0.9692 + }, + { + "start": 26452.38, + "end": 26453.62, + "probability": 0.7393 + }, + { + "start": 26453.78, + "end": 26453.84, + "probability": 0.4526 + }, + { + "start": 26453.9, + "end": 26456.72, + "probability": 0.9927 + }, + { + "start": 26457.26, + "end": 26460.52, + "probability": 0.975 + }, + { + "start": 26460.58, + "end": 26464.36, + "probability": 0.9883 + }, + { + "start": 26465.0, + "end": 26467.64, + "probability": 0.8753 + }, + { + "start": 26467.8, + "end": 26471.44, + "probability": 0.7841 + }, + { + "start": 26471.88, + "end": 26476.56, + "probability": 0.9671 + }, + { + "start": 26477.06, + "end": 26479.0, + "probability": 0.7842 + }, + { + "start": 26479.38, + "end": 26482.58, + "probability": 0.7571 + }, + { + "start": 26484.57, + "end": 26491.4, + "probability": 0.9864 + }, + { + "start": 26491.4, + "end": 26497.56, + "probability": 0.8753 + }, + { + "start": 26497.98, + "end": 26501.66, + "probability": 0.9517 + }, + { + "start": 26502.16, + "end": 26506.68, + "probability": 0.9912 + }, + { + "start": 26507.08, + "end": 26509.5, + "probability": 0.9981 + }, + { + "start": 26509.5, + "end": 26513.3, + "probability": 0.9801 + }, + { + "start": 26515.62, + "end": 26519.66, + "probability": 0.9848 + }, + { + "start": 26519.66, + "end": 26522.3, + "probability": 0.6636 + }, + { + "start": 26523.34, + "end": 26526.46, + "probability": 0.9438 + }, + { + "start": 26529.02, + "end": 26531.82, + "probability": 0.0572 + }, + { + "start": 26531.82, + "end": 26536.64, + "probability": 0.7238 + }, + { + "start": 26537.14, + "end": 26539.08, + "probability": 0.7161 + }, + { + "start": 26539.62, + "end": 26540.92, + "probability": 0.7759 + }, + { + "start": 26541.0, + "end": 26541.4, + "probability": 0.7168 + }, + { + "start": 26541.42, + "end": 26543.42, + "probability": 0.7705 + }, + { + "start": 26543.6, + "end": 26547.8, + "probability": 0.9038 + }, + { + "start": 26548.26, + "end": 26549.7, + "probability": 0.9438 + }, + { + "start": 26550.22, + "end": 26554.2, + "probability": 0.9889 + }, + { + "start": 26554.9, + "end": 26560.4, + "probability": 0.6802 + }, + { + "start": 26560.92, + "end": 26563.9, + "probability": 0.8428 + }, + { + "start": 26563.9, + "end": 26568.18, + "probability": 0.752 + }, + { + "start": 26568.58, + "end": 26569.36, + "probability": 0.6271 + }, + { + "start": 26569.58, + "end": 26572.9, + "probability": 0.9847 + }, + { + "start": 26573.68, + "end": 26574.14, + "probability": 0.6006 + }, + { + "start": 26574.38, + "end": 26574.88, + "probability": 0.8906 + }, + { + "start": 26577.36, + "end": 26578.68, + "probability": 0.6923 + }, + { + "start": 26578.84, + "end": 26579.64, + "probability": 0.8846 + }, + { + "start": 26579.72, + "end": 26583.72, + "probability": 0.814 + }, + { + "start": 26584.28, + "end": 26584.28, + "probability": 0.0741 + }, + { + "start": 26584.9, + "end": 26589.86, + "probability": 0.9806 + }, + { + "start": 26590.46, + "end": 26592.22, + "probability": 0.6616 + }, + { + "start": 26592.32, + "end": 26596.22, + "probability": 0.9774 + }, + { + "start": 26596.72, + "end": 26599.72, + "probability": 0.9202 + }, + { + "start": 26600.04, + "end": 26607.78, + "probability": 0.9355 + }, + { + "start": 26608.14, + "end": 26613.72, + "probability": 0.9847 + }, + { + "start": 26613.8, + "end": 26614.02, + "probability": 0.0141 + }, + { + "start": 26614.48, + "end": 26616.08, + "probability": 0.631 + }, + { + "start": 26616.08, + "end": 26617.04, + "probability": 0.255 + }, + { + "start": 26617.88, + "end": 26618.84, + "probability": 0.9509 + }, + { + "start": 26619.46, + "end": 26623.92, + "probability": 0.8726 + }, + { + "start": 26624.28, + "end": 26625.02, + "probability": 0.8428 + }, + { + "start": 26625.16, + "end": 26627.04, + "probability": 0.8262 + }, + { + "start": 26628.5, + "end": 26629.04, + "probability": 0.0426 + }, + { + "start": 26629.04, + "end": 26629.56, + "probability": 0.065 + }, + { + "start": 26629.56, + "end": 26630.7, + "probability": 0.5426 + }, + { + "start": 26630.92, + "end": 26632.62, + "probability": 0.6753 + }, + { + "start": 26632.94, + "end": 26634.08, + "probability": 0.5082 + }, + { + "start": 26634.16, + "end": 26634.88, + "probability": 0.9961 + }, + { + "start": 26635.44, + "end": 26637.68, + "probability": 0.9798 + }, + { + "start": 26638.76, + "end": 26638.86, + "probability": 0.2887 + }, + { + "start": 26638.86, + "end": 26640.28, + "probability": 0.3297 + }, + { + "start": 26641.48, + "end": 26642.1, + "probability": 0.6654 + }, + { + "start": 26642.24, + "end": 26652.88, + "probability": 0.4901 + }, + { + "start": 26653.14, + "end": 26654.22, + "probability": 0.851 + }, + { + "start": 26654.44, + "end": 26658.84, + "probability": 0.9459 + }, + { + "start": 26659.0, + "end": 26663.16, + "probability": 0.7559 + }, + { + "start": 26663.24, + "end": 26666.1, + "probability": 0.9845 + }, + { + "start": 26667.1, + "end": 26671.76, + "probability": 0.9935 + }, + { + "start": 26672.34, + "end": 26675.04, + "probability": 0.9704 + }, + { + "start": 26679.72, + "end": 26683.82, + "probability": 0.9188 + }, + { + "start": 26684.74, + "end": 26688.88, + "probability": 0.9928 + }, + { + "start": 26688.88, + "end": 26693.9, + "probability": 0.9509 + }, + { + "start": 26694.62, + "end": 26697.76, + "probability": 0.9863 + }, + { + "start": 26698.2, + "end": 26699.98, + "probability": 0.9915 + }, + { + "start": 26700.74, + "end": 26703.57, + "probability": 0.9781 + }, + { + "start": 26704.34, + "end": 26708.3, + "probability": 0.9434 + }, + { + "start": 26709.62, + "end": 26712.74, + "probability": 0.6341 + }, + { + "start": 26712.84, + "end": 26715.9, + "probability": 0.8351 + }, + { + "start": 26717.48, + "end": 26720.72, + "probability": 0.8873 + }, + { + "start": 26722.06, + "end": 26723.0, + "probability": 0.5938 + }, + { + "start": 26723.66, + "end": 26726.58, + "probability": 0.8629 + }, + { + "start": 26726.96, + "end": 26728.08, + "probability": 0.9858 + }, + { + "start": 26729.0, + "end": 26733.28, + "probability": 0.9709 + }, + { + "start": 26733.28, + "end": 26739.8, + "probability": 0.9238 + }, + { + "start": 26740.68, + "end": 26744.64, + "probability": 0.9412 + }, + { + "start": 26744.64, + "end": 26749.84, + "probability": 0.9485 + }, + { + "start": 26750.72, + "end": 26754.44, + "probability": 0.9774 + }, + { + "start": 26755.06, + "end": 26761.82, + "probability": 0.949 + }, + { + "start": 26762.92, + "end": 26766.98, + "probability": 0.731 + }, + { + "start": 26767.32, + "end": 26770.14, + "probability": 0.7187 + }, + { + "start": 26770.94, + "end": 26773.4, + "probability": 0.8457 + }, + { + "start": 26774.36, + "end": 26775.64, + "probability": 0.7343 + }, + { + "start": 26776.22, + "end": 26778.42, + "probability": 0.8925 + }, + { + "start": 26779.36, + "end": 26779.82, + "probability": 0.4553 + }, + { + "start": 26780.12, + "end": 26780.74, + "probability": 0.5748 + }, + { + "start": 26780.88, + "end": 26782.22, + "probability": 0.7727 + }, + { + "start": 26782.5, + "end": 26784.0, + "probability": 0.8264 + }, + { + "start": 26784.08, + "end": 26788.4, + "probability": 0.9431 + }, + { + "start": 26788.44, + "end": 26791.52, + "probability": 0.8973 + }, + { + "start": 26792.3, + "end": 26793.18, + "probability": 0.9589 + }, + { + "start": 26793.32, + "end": 26794.46, + "probability": 0.702 + }, + { + "start": 26794.52, + "end": 26796.62, + "probability": 0.8997 + }, + { + "start": 26797.16, + "end": 26801.36, + "probability": 0.9102 + }, + { + "start": 26801.42, + "end": 26804.34, + "probability": 0.9901 + }, + { + "start": 26804.84, + "end": 26806.04, + "probability": 0.9684 + }, + { + "start": 26806.7, + "end": 26808.12, + "probability": 0.9761 + }, + { + "start": 26808.58, + "end": 26810.28, + "probability": 0.8481 + }, + { + "start": 26810.66, + "end": 26815.76, + "probability": 0.9222 + }, + { + "start": 26815.98, + "end": 26818.0, + "probability": 0.7589 + }, + { + "start": 26818.38, + "end": 26820.0, + "probability": 0.6799 + }, + { + "start": 26825.08, + "end": 26825.12, + "probability": 0.7551 + }, + { + "start": 26825.12, + "end": 26826.14, + "probability": 0.6481 + }, + { + "start": 26826.36, + "end": 26828.68, + "probability": 0.9534 + }, + { + "start": 26828.88, + "end": 26834.71, + "probability": 0.9196 + }, + { + "start": 26834.96, + "end": 26839.48, + "probability": 0.9888 + }, + { + "start": 26839.86, + "end": 26841.84, + "probability": 0.9782 + }, + { + "start": 26842.2, + "end": 26844.0, + "probability": 0.9982 + }, + { + "start": 26844.06, + "end": 26846.76, + "probability": 0.9947 + }, + { + "start": 26847.2, + "end": 26849.09, + "probability": 0.9897 + }, + { + "start": 26849.22, + "end": 26851.86, + "probability": 0.8613 + }, + { + "start": 26851.92, + "end": 26853.39, + "probability": 0.9772 + }, + { + "start": 26854.46, + "end": 26855.38, + "probability": 0.5114 + }, + { + "start": 26855.58, + "end": 26861.4, + "probability": 0.9179 + }, + { + "start": 26861.52, + "end": 26867.32, + "probability": 0.9735 + }, + { + "start": 26867.6, + "end": 26869.78, + "probability": 0.9897 + }, + { + "start": 26870.26, + "end": 26872.04, + "probability": 0.4942 + }, + { + "start": 26873.26, + "end": 26874.54, + "probability": 0.1943 + }, + { + "start": 26874.54, + "end": 26875.88, + "probability": 0.8242 + }, + { + "start": 26876.42, + "end": 26880.96, + "probability": 0.6488 + }, + { + "start": 26881.6, + "end": 26882.68, + "probability": 0.8483 + }, + { + "start": 26883.14, + "end": 26885.14, + "probability": 0.9624 + }, + { + "start": 26885.22, + "end": 26886.59, + "probability": 0.3221 + }, + { + "start": 26887.3, + "end": 26890.02, + "probability": 0.6129 + }, + { + "start": 26890.5, + "end": 26893.8, + "probability": 0.6621 + }, + { + "start": 26894.5, + "end": 26900.5, + "probability": 0.7849 + }, + { + "start": 26901.02, + "end": 26902.64, + "probability": 0.9911 + }, + { + "start": 26903.5, + "end": 26905.8, + "probability": 0.5673 + }, + { + "start": 26906.44, + "end": 26910.68, + "probability": 0.9622 + }, + { + "start": 26911.2, + "end": 26911.78, + "probability": 0.9088 + }, + { + "start": 26914.9, + "end": 26915.62, + "probability": 0.0032 + }, + { + "start": 26915.62, + "end": 26915.62, + "probability": 0.2265 + }, + { + "start": 26915.62, + "end": 26915.62, + "probability": 0.3264 + }, + { + "start": 26915.62, + "end": 26915.62, + "probability": 0.4363 + }, + { + "start": 26915.62, + "end": 26916.96, + "probability": 0.5459 + }, + { + "start": 26917.1, + "end": 26920.16, + "probability": 0.9558 + }, + { + "start": 26920.58, + "end": 26922.96, + "probability": 0.8143 + }, + { + "start": 26944.8, + "end": 26948.22, + "probability": 0.7325 + }, + { + "start": 26948.84, + "end": 26953.72, + "probability": 0.9957 + }, + { + "start": 26953.72, + "end": 26959.06, + "probability": 0.9924 + }, + { + "start": 26959.98, + "end": 26961.6, + "probability": 0.994 + }, + { + "start": 26962.28, + "end": 26963.36, + "probability": 0.7907 + }, + { + "start": 26964.56, + "end": 26967.68, + "probability": 0.9985 + }, + { + "start": 26970.1, + "end": 26977.86, + "probability": 0.8206 + }, + { + "start": 26980.09, + "end": 26982.52, + "probability": 0.9941 + }, + { + "start": 26984.14, + "end": 26989.3, + "probability": 0.9861 + }, + { + "start": 26989.3, + "end": 26995.12, + "probability": 0.995 + }, + { + "start": 26995.48, + "end": 26997.14, + "probability": 0.7562 + }, + { + "start": 26998.1, + "end": 27004.08, + "probability": 0.9932 + }, + { + "start": 27005.36, + "end": 27007.66, + "probability": 0.7532 + }, + { + "start": 27009.08, + "end": 27013.9, + "probability": 0.9788 + }, + { + "start": 27015.5, + "end": 27019.4, + "probability": 0.8411 + }, + { + "start": 27020.26, + "end": 27021.44, + "probability": 0.5431 + }, + { + "start": 27022.5, + "end": 27024.36, + "probability": 0.9921 + }, + { + "start": 27025.12, + "end": 27029.56, + "probability": 0.9752 + }, + { + "start": 27029.68, + "end": 27035.82, + "probability": 0.7505 + }, + { + "start": 27036.42, + "end": 27039.16, + "probability": 0.5508 + }, + { + "start": 27040.94, + "end": 27042.68, + "probability": 0.8228 + }, + { + "start": 27043.78, + "end": 27047.16, + "probability": 0.9413 + }, + { + "start": 27048.2, + "end": 27052.34, + "probability": 0.9971 + }, + { + "start": 27053.06, + "end": 27056.6, + "probability": 0.7841 + }, + { + "start": 27058.06, + "end": 27060.1, + "probability": 0.9022 + }, + { + "start": 27060.62, + "end": 27064.42, + "probability": 0.9953 + }, + { + "start": 27065.4, + "end": 27070.58, + "probability": 0.9225 + }, + { + "start": 27072.12, + "end": 27075.56, + "probability": 0.9805 + }, + { + "start": 27076.54, + "end": 27079.16, + "probability": 0.7047 + }, + { + "start": 27079.56, + "end": 27083.94, + "probability": 0.9448 + }, + { + "start": 27084.6, + "end": 27091.22, + "probability": 0.997 + }, + { + "start": 27093.54, + "end": 27096.98, + "probability": 0.9781 + }, + { + "start": 27097.16, + "end": 27098.98, + "probability": 0.7432 + }, + { + "start": 27100.96, + "end": 27102.56, + "probability": 0.7674 + }, + { + "start": 27104.26, + "end": 27111.24, + "probability": 0.9948 + }, + { + "start": 27112.16, + "end": 27116.64, + "probability": 0.9448 + }, + { + "start": 27117.74, + "end": 27122.06, + "probability": 0.9899 + }, + { + "start": 27122.06, + "end": 27126.14, + "probability": 0.9101 + }, + { + "start": 27126.58, + "end": 27127.88, + "probability": 0.8789 + }, + { + "start": 27129.56, + "end": 27130.34, + "probability": 0.5586 + }, + { + "start": 27131.92, + "end": 27136.2, + "probability": 0.9849 + }, + { + "start": 27136.2, + "end": 27140.8, + "probability": 0.8444 + }, + { + "start": 27141.94, + "end": 27144.64, + "probability": 0.9971 + }, + { + "start": 27144.64, + "end": 27149.38, + "probability": 0.9891 + }, + { + "start": 27149.48, + "end": 27149.84, + "probability": 0.2602 + }, + { + "start": 27150.16, + "end": 27154.42, + "probability": 0.9917 + }, + { + "start": 27154.42, + "end": 27158.54, + "probability": 0.9948 + }, + { + "start": 27160.34, + "end": 27163.34, + "probability": 0.998 + }, + { + "start": 27164.3, + "end": 27165.42, + "probability": 0.9135 + }, + { + "start": 27166.48, + "end": 27167.2, + "probability": 0.7074 + }, + { + "start": 27167.28, + "end": 27168.86, + "probability": 0.9448 + }, + { + "start": 27169.04, + "end": 27172.04, + "probability": 0.9058 + }, + { + "start": 27172.98, + "end": 27178.52, + "probability": 0.9739 + }, + { + "start": 27180.3, + "end": 27182.36, + "probability": 0.9915 + }, + { + "start": 27184.68, + "end": 27192.37, + "probability": 0.9888 + }, + { + "start": 27192.62, + "end": 27193.8, + "probability": 0.786 + }, + { + "start": 27195.08, + "end": 27199.34, + "probability": 0.9843 + }, + { + "start": 27199.44, + "end": 27201.01, + "probability": 0.9651 + }, + { + "start": 27201.8, + "end": 27203.56, + "probability": 0.9166 + }, + { + "start": 27203.86, + "end": 27206.16, + "probability": 0.5966 + }, + { + "start": 27206.62, + "end": 27207.58, + "probability": 0.4229 + }, + { + "start": 27207.86, + "end": 27209.1, + "probability": 0.7171 + }, + { + "start": 27211.48, + "end": 27212.18, + "probability": 0.1512 + }, + { + "start": 27212.18, + "end": 27213.92, + "probability": 0.7756 + }, + { + "start": 27214.62, + "end": 27216.38, + "probability": 0.6096 + }, + { + "start": 27216.46, + "end": 27217.2, + "probability": 0.6794 + }, + { + "start": 27217.22, + "end": 27219.4, + "probability": 0.8245 + }, + { + "start": 27219.58, + "end": 27221.84, + "probability": 0.7496 + }, + { + "start": 27222.08, + "end": 27223.22, + "probability": 0.9861 + }, + { + "start": 27224.22, + "end": 27226.28, + "probability": 0.9683 + }, + { + "start": 27227.12, + "end": 27228.5, + "probability": 0.8764 + }, + { + "start": 27229.26, + "end": 27234.56, + "probability": 0.9568 + }, + { + "start": 27234.64, + "end": 27235.84, + "probability": 0.8547 + }, + { + "start": 27236.4, + "end": 27238.04, + "probability": 0.9993 + }, + { + "start": 27238.2, + "end": 27238.36, + "probability": 0.628 + }, + { + "start": 27239.02, + "end": 27239.96, + "probability": 0.6978 + }, + { + "start": 27240.52, + "end": 27241.7, + "probability": 0.7554 + }, + { + "start": 27242.78, + "end": 27245.56, + "probability": 0.9788 + }, + { + "start": 27246.58, + "end": 27249.9, + "probability": 0.9308 + }, + { + "start": 27250.58, + "end": 27255.42, + "probability": 0.9907 + }, + { + "start": 27256.74, + "end": 27258.14, + "probability": 0.9434 + }, + { + "start": 27259.7, + "end": 27264.02, + "probability": 0.8686 + }, + { + "start": 27265.48, + "end": 27267.98, + "probability": 0.9041 + }, + { + "start": 27269.14, + "end": 27270.54, + "probability": 0.9008 + }, + { + "start": 27270.6, + "end": 27274.82, + "probability": 0.9928 + }, + { + "start": 27275.08, + "end": 27278.16, + "probability": 0.9943 + }, + { + "start": 27278.38, + "end": 27279.71, + "probability": 0.5411 + }, + { + "start": 27281.1, + "end": 27281.12, + "probability": 0.4028 + }, + { + "start": 27281.12, + "end": 27281.12, + "probability": 0.236 + }, + { + "start": 27281.12, + "end": 27281.32, + "probability": 0.2335 + }, + { + "start": 27281.44, + "end": 27283.7, + "probability": 0.4307 + }, + { + "start": 27283.82, + "end": 27285.54, + "probability": 0.8394 + }, + { + "start": 27285.7, + "end": 27288.58, + "probability": 0.9385 + }, + { + "start": 27289.56, + "end": 27290.32, + "probability": 0.2864 + }, + { + "start": 27294.02, + "end": 27295.2, + "probability": 0.2615 + }, + { + "start": 27295.2, + "end": 27295.2, + "probability": 0.0188 + }, + { + "start": 27295.2, + "end": 27295.78, + "probability": 0.2106 + }, + { + "start": 27296.1, + "end": 27297.2, + "probability": 0.3088 + }, + { + "start": 27297.26, + "end": 27297.28, + "probability": 0.2104 + }, + { + "start": 27297.28, + "end": 27297.28, + "probability": 0.1196 + }, + { + "start": 27297.28, + "end": 27298.06, + "probability": 0.1547 + }, + { + "start": 27299.42, + "end": 27300.78, + "probability": 0.0545 + }, + { + "start": 27301.92, + "end": 27303.68, + "probability": 0.4019 + }, + { + "start": 27308.66, + "end": 27310.18, + "probability": 0.6331 + }, + { + "start": 27311.58, + "end": 27313.56, + "probability": 0.9839 + }, + { + "start": 27314.48, + "end": 27316.14, + "probability": 0.9695 + }, + { + "start": 27317.42, + "end": 27319.2, + "probability": 0.6883 + }, + { + "start": 27319.3, + "end": 27321.04, + "probability": 0.4842 + }, + { + "start": 27321.98, + "end": 27322.56, + "probability": 0.7123 + }, + { + "start": 27322.9, + "end": 27323.36, + "probability": 0.6336 + }, + { + "start": 27324.24, + "end": 27327.34, + "probability": 0.9751 + }, + { + "start": 27328.0, + "end": 27329.68, + "probability": 0.8691 + }, + { + "start": 27330.14, + "end": 27330.88, + "probability": 0.6682 + }, + { + "start": 27331.72, + "end": 27335.2, + "probability": 0.9868 + }, + { + "start": 27335.96, + "end": 27338.58, + "probability": 0.9779 + }, + { + "start": 27339.46, + "end": 27341.06, + "probability": 0.9567 + }, + { + "start": 27341.12, + "end": 27342.92, + "probability": 0.784 + }, + { + "start": 27343.74, + "end": 27346.64, + "probability": 0.8825 + }, + { + "start": 27347.26, + "end": 27348.5, + "probability": 0.9481 + }, + { + "start": 27349.0, + "end": 27351.18, + "probability": 0.867 + }, + { + "start": 27351.58, + "end": 27354.72, + "probability": 0.7897 + }, + { + "start": 27354.72, + "end": 27360.52, + "probability": 0.9719 + }, + { + "start": 27361.66, + "end": 27362.84, + "probability": 0.9983 + }, + { + "start": 27363.1, + "end": 27365.1, + "probability": 0.8828 + }, + { + "start": 27365.44, + "end": 27366.54, + "probability": 0.5025 + }, + { + "start": 27368.18, + "end": 27375.54, + "probability": 0.9802 + }, + { + "start": 27376.28, + "end": 27380.34, + "probability": 0.6662 + }, + { + "start": 27381.56, + "end": 27382.84, + "probability": 0.4838 + }, + { + "start": 27384.98, + "end": 27387.58, + "probability": 0.8878 + }, + { + "start": 27388.62, + "end": 27394.74, + "probability": 0.9766 + }, + { + "start": 27395.6, + "end": 27397.86, + "probability": 0.999 + }, + { + "start": 27399.2, + "end": 27402.52, + "probability": 0.9568 + }, + { + "start": 27403.82, + "end": 27406.94, + "probability": 0.6999 + }, + { + "start": 27407.46, + "end": 27412.06, + "probability": 0.8455 + }, + { + "start": 27412.72, + "end": 27415.52, + "probability": 0.9348 + }, + { + "start": 27416.68, + "end": 27417.8, + "probability": 0.9878 + }, + { + "start": 27418.34, + "end": 27425.5, + "probability": 0.7497 + }, + { + "start": 27426.3, + "end": 27427.0, + "probability": 0.9536 + }, + { + "start": 27427.24, + "end": 27427.76, + "probability": 0.9788 + }, + { + "start": 27428.78, + "end": 27431.62, + "probability": 0.9863 + }, + { + "start": 27432.28, + "end": 27437.02, + "probability": 0.8279 + }, + { + "start": 27437.02, + "end": 27444.14, + "probability": 0.9061 + }, + { + "start": 27444.82, + "end": 27446.15, + "probability": 0.8225 + }, + { + "start": 27447.26, + "end": 27449.72, + "probability": 0.7697 + }, + { + "start": 27451.0, + "end": 27452.4, + "probability": 0.9645 + }, + { + "start": 27452.54, + "end": 27455.56, + "probability": 0.6946 + }, + { + "start": 27455.7, + "end": 27457.96, + "probability": 0.9619 + }, + { + "start": 27458.62, + "end": 27459.26, + "probability": 0.9473 + }, + { + "start": 27459.32, + "end": 27459.92, + "probability": 0.9146 + }, + { + "start": 27460.14, + "end": 27463.06, + "probability": 0.8996 + }, + { + "start": 27464.02, + "end": 27466.16, + "probability": 0.8419 + }, + { + "start": 27466.98, + "end": 27469.06, + "probability": 0.9204 + }, + { + "start": 27470.56, + "end": 27472.8, + "probability": 0.9945 + }, + { + "start": 27473.74, + "end": 27477.14, + "probability": 0.9976 + }, + { + "start": 27477.66, + "end": 27479.1, + "probability": 0.9796 + }, + { + "start": 27479.78, + "end": 27481.34, + "probability": 0.6551 + }, + { + "start": 27483.42, + "end": 27484.32, + "probability": 0.5061 + }, + { + "start": 27485.22, + "end": 27486.7, + "probability": 0.733 + }, + { + "start": 27487.68, + "end": 27489.5, + "probability": 0.8754 + }, + { + "start": 27489.7, + "end": 27491.02, + "probability": 0.9017 + }, + { + "start": 27492.5, + "end": 27496.14, + "probability": 0.9961 + }, + { + "start": 27496.8, + "end": 27500.32, + "probability": 0.9902 + }, + { + "start": 27500.8, + "end": 27504.26, + "probability": 0.8411 + }, + { + "start": 27504.42, + "end": 27506.9, + "probability": 0.9917 + }, + { + "start": 27507.1, + "end": 27510.44, + "probability": 0.6744 + }, + { + "start": 27511.92, + "end": 27512.84, + "probability": 0.7428 + }, + { + "start": 27512.92, + "end": 27518.18, + "probability": 0.8414 + }, + { + "start": 27518.34, + "end": 27519.12, + "probability": 0.3946 + }, + { + "start": 27519.18, + "end": 27519.94, + "probability": 0.2737 + }, + { + "start": 27520.04, + "end": 27520.96, + "probability": 0.8744 + }, + { + "start": 27521.66, + "end": 27523.43, + "probability": 0.695 + }, + { + "start": 27523.94, + "end": 27524.99, + "probability": 0.7547 + }, + { + "start": 27525.6, + "end": 27529.9, + "probability": 0.9875 + }, + { + "start": 27530.42, + "end": 27534.12, + "probability": 0.8871 + }, + { + "start": 27534.7, + "end": 27538.1, + "probability": 0.98 + }, + { + "start": 27538.68, + "end": 27541.74, + "probability": 0.974 + }, + { + "start": 27542.44, + "end": 27543.36, + "probability": 0.644 + }, + { + "start": 27543.36, + "end": 27545.49, + "probability": 0.871 + }, + { + "start": 27545.66, + "end": 27546.12, + "probability": 0.8682 + }, + { + "start": 27546.14, + "end": 27547.05, + "probability": 0.4892 + }, + { + "start": 27547.32, + "end": 27547.64, + "probability": 0.7966 + }, + { + "start": 27548.02, + "end": 27548.9, + "probability": 0.9691 + }, + { + "start": 27549.74, + "end": 27552.24, + "probability": 0.9911 + }, + { + "start": 27553.42, + "end": 27556.26, + "probability": 0.986 + }, + { + "start": 27556.26, + "end": 27558.88, + "probability": 0.9047 + }, + { + "start": 27559.26, + "end": 27561.2, + "probability": 0.8132 + }, + { + "start": 27561.78, + "end": 27565.5, + "probability": 0.9624 + }, + { + "start": 27565.7, + "end": 27566.74, + "probability": 0.6698 + }, + { + "start": 27566.82, + "end": 27568.7, + "probability": 0.5504 + }, + { + "start": 27568.8, + "end": 27569.68, + "probability": 0.1221 + }, + { + "start": 27589.18, + "end": 27589.86, + "probability": 0.3572 + }, + { + "start": 27590.96, + "end": 27592.22, + "probability": 0.4389 + }, + { + "start": 27593.04, + "end": 27597.62, + "probability": 0.8912 + }, + { + "start": 27598.52, + "end": 27601.2, + "probability": 0.931 + }, + { + "start": 27602.16, + "end": 27605.78, + "probability": 0.9089 + }, + { + "start": 27606.28, + "end": 27606.5, + "probability": 0.2871 + }, + { + "start": 27606.5, + "end": 27607.2, + "probability": 0.59 + }, + { + "start": 27607.26, + "end": 27608.98, + "probability": 0.9576 + }, + { + "start": 27609.12, + "end": 27610.8, + "probability": 0.8219 + }, + { + "start": 27611.4, + "end": 27614.76, + "probability": 0.9634 + }, + { + "start": 27615.44, + "end": 27618.18, + "probability": 0.9917 + }, + { + "start": 27618.18, + "end": 27622.24, + "probability": 0.9766 + }, + { + "start": 27622.44, + "end": 27626.06, + "probability": 0.9781 + }, + { + "start": 27626.94, + "end": 27627.88, + "probability": 0.778 + }, + { + "start": 27628.02, + "end": 27632.22, + "probability": 0.991 + }, + { + "start": 27632.46, + "end": 27633.0, + "probability": 0.8175 + }, + { + "start": 27633.52, + "end": 27636.28, + "probability": 0.9911 + }, + { + "start": 27636.62, + "end": 27641.68, + "probability": 0.961 + }, + { + "start": 27643.36, + "end": 27643.74, + "probability": 0.6161 + }, + { + "start": 27643.82, + "end": 27648.7, + "probability": 0.9902 + }, + { + "start": 27648.7, + "end": 27653.1, + "probability": 0.9901 + }, + { + "start": 27654.06, + "end": 27657.62, + "probability": 0.7905 + }, + { + "start": 27657.72, + "end": 27658.3, + "probability": 0.8957 + }, + { + "start": 27658.68, + "end": 27663.92, + "probability": 0.9773 + }, + { + "start": 27664.5, + "end": 27668.82, + "probability": 0.9847 + }, + { + "start": 27669.56, + "end": 27670.56, + "probability": 0.6746 + }, + { + "start": 27670.56, + "end": 27675.32, + "probability": 0.7796 + }, + { + "start": 27675.64, + "end": 27678.4, + "probability": 0.9863 + }, + { + "start": 27678.8, + "end": 27680.72, + "probability": 0.9835 + }, + { + "start": 27681.28, + "end": 27682.02, + "probability": 0.8637 + }, + { + "start": 27682.32, + "end": 27685.88, + "probability": 0.79 + }, + { + "start": 27686.04, + "end": 27689.96, + "probability": 0.9194 + }, + { + "start": 27690.56, + "end": 27694.99, + "probability": 0.934 + }, + { + "start": 27695.34, + "end": 27695.42, + "probability": 0.3545 + }, + { + "start": 27695.52, + "end": 27696.28, + "probability": 0.8234 + }, + { + "start": 27696.48, + "end": 27700.98, + "probability": 0.9897 + }, + { + "start": 27701.26, + "end": 27701.8, + "probability": 0.4808 + }, + { + "start": 27701.88, + "end": 27705.08, + "probability": 0.9766 + }, + { + "start": 27705.08, + "end": 27708.6, + "probability": 0.9819 + }, + { + "start": 27709.52, + "end": 27711.8, + "probability": 0.7679 + }, + { + "start": 27711.98, + "end": 27713.48, + "probability": 0.9108 + }, + { + "start": 27713.94, + "end": 27715.0, + "probability": 0.9745 + }, + { + "start": 27715.42, + "end": 27716.68, + "probability": 0.9835 + }, + { + "start": 27716.74, + "end": 27720.5, + "probability": 0.971 + }, + { + "start": 27720.5, + "end": 27725.08, + "probability": 0.9046 + }, + { + "start": 27725.94, + "end": 27726.52, + "probability": 0.614 + }, + { + "start": 27726.96, + "end": 27728.04, + "probability": 0.8411 + }, + { + "start": 27728.36, + "end": 27728.96, + "probability": 0.3385 + }, + { + "start": 27728.96, + "end": 27731.55, + "probability": 0.9199 + }, + { + "start": 27732.08, + "end": 27734.89, + "probability": 0.9119 + }, + { + "start": 27735.34, + "end": 27737.66, + "probability": 0.9951 + }, + { + "start": 27738.1, + "end": 27740.82, + "probability": 0.7789 + }, + { + "start": 27741.22, + "end": 27741.9, + "probability": 0.612 + }, + { + "start": 27742.02, + "end": 27747.48, + "probability": 0.9834 + }, + { + "start": 27747.48, + "end": 27754.88, + "probability": 0.8708 + }, + { + "start": 27755.58, + "end": 27757.54, + "probability": 0.9882 + }, + { + "start": 27757.66, + "end": 27761.86, + "probability": 0.9847 + }, + { + "start": 27761.86, + "end": 27766.22, + "probability": 0.957 + }, + { + "start": 27766.5, + "end": 27769.62, + "probability": 0.9681 + }, + { + "start": 27769.98, + "end": 27772.9, + "probability": 0.9015 + }, + { + "start": 27773.48, + "end": 27775.56, + "probability": 0.9629 + }, + { + "start": 27776.06, + "end": 27781.0, + "probability": 0.978 + }, + { + "start": 27781.04, + "end": 27781.26, + "probability": 0.7342 + }, + { + "start": 27781.46, + "end": 27783.4, + "probability": 0.6196 + }, + { + "start": 27783.46, + "end": 27784.46, + "probability": 0.5414 + }, + { + "start": 27786.92, + "end": 27787.14, + "probability": 0.455 + }, + { + "start": 27808.88, + "end": 27811.7, + "probability": 0.7195 + }, + { + "start": 27812.8, + "end": 27816.54, + "probability": 0.8737 + }, + { + "start": 27817.92, + "end": 27820.9, + "probability": 0.9094 + }, + { + "start": 27821.72, + "end": 27825.88, + "probability": 0.9747 + }, + { + "start": 27828.88, + "end": 27830.78, + "probability": 0.7393 + }, + { + "start": 27830.88, + "end": 27832.38, + "probability": 0.7016 + }, + { + "start": 27832.48, + "end": 27833.78, + "probability": 0.8996 + }, + { + "start": 27834.92, + "end": 27836.72, + "probability": 0.9938 + }, + { + "start": 27836.76, + "end": 27843.38, + "probability": 0.9323 + }, + { + "start": 27844.04, + "end": 27845.84, + "probability": 0.9976 + }, + { + "start": 27847.06, + "end": 27850.58, + "probability": 0.9741 + }, + { + "start": 27851.06, + "end": 27853.28, + "probability": 0.9979 + }, + { + "start": 27853.86, + "end": 27857.08, + "probability": 0.996 + }, + { + "start": 27857.82, + "end": 27861.4, + "probability": 0.9803 + }, + { + "start": 27862.04, + "end": 27862.55, + "probability": 0.9106 + }, + { + "start": 27862.98, + "end": 27864.16, + "probability": 0.9604 + }, + { + "start": 27864.94, + "end": 27868.46, + "probability": 0.9889 + }, + { + "start": 27868.52, + "end": 27872.68, + "probability": 0.9306 + }, + { + "start": 27872.84, + "end": 27876.1, + "probability": 0.9095 + }, + { + "start": 27876.22, + "end": 27880.64, + "probability": 0.995 + }, + { + "start": 27880.78, + "end": 27884.06, + "probability": 0.998 + }, + { + "start": 27885.34, + "end": 27886.2, + "probability": 0.9521 + }, + { + "start": 27887.88, + "end": 27890.62, + "probability": 0.7166 + }, + { + "start": 27890.9, + "end": 27891.72, + "probability": 0.9473 + }, + { + "start": 27892.82, + "end": 27893.66, + "probability": 0.9808 + }, + { + "start": 27894.54, + "end": 27895.45, + "probability": 0.9846 + }, + { + "start": 27896.72, + "end": 27900.47, + "probability": 0.9552 + }, + { + "start": 27901.36, + "end": 27902.58, + "probability": 0.9866 + }, + { + "start": 27903.36, + "end": 27906.86, + "probability": 0.9868 + }, + { + "start": 27907.16, + "end": 27911.32, + "probability": 0.9611 + }, + { + "start": 27911.32, + "end": 27916.36, + "probability": 0.9921 + }, + { + "start": 27916.46, + "end": 27917.66, + "probability": 0.7373 + }, + { + "start": 27918.32, + "end": 27920.8, + "probability": 0.9801 + }, + { + "start": 27920.96, + "end": 27923.36, + "probability": 0.9988 + }, + { + "start": 27923.74, + "end": 27925.1, + "probability": 0.9137 + }, + { + "start": 27926.46, + "end": 27928.48, + "probability": 0.9767 + }, + { + "start": 27929.02, + "end": 27933.59, + "probability": 0.7896 + }, + { + "start": 27934.18, + "end": 27936.0, + "probability": 0.9922 + }, + { + "start": 27937.82, + "end": 27940.68, + "probability": 0.9454 + }, + { + "start": 27941.22, + "end": 27945.44, + "probability": 0.9697 + }, + { + "start": 27945.52, + "end": 27947.74, + "probability": 0.9953 + }, + { + "start": 27947.86, + "end": 27951.48, + "probability": 0.9873 + }, + { + "start": 27952.02, + "end": 27955.2, + "probability": 0.536 + }, + { + "start": 27956.42, + "end": 27956.42, + "probability": 0.4103 + }, + { + "start": 27956.42, + "end": 27957.26, + "probability": 0.4658 + }, + { + "start": 27957.44, + "end": 27958.84, + "probability": 0.8943 + }, + { + "start": 27958.88, + "end": 27962.1, + "probability": 0.7464 + }, + { + "start": 27962.3, + "end": 27964.1, + "probability": 0.91 + }, + { + "start": 27964.22, + "end": 27966.7, + "probability": 0.6868 + }, + { + "start": 27967.08, + "end": 27968.1, + "probability": 0.9432 + }, + { + "start": 27968.46, + "end": 27971.39, + "probability": 0.931 + }, + { + "start": 27971.64, + "end": 27974.74, + "probability": 0.9788 + }, + { + "start": 27975.02, + "end": 27975.66, + "probability": 0.9316 + }, + { + "start": 27975.78, + "end": 27977.44, + "probability": 0.9836 + }, + { + "start": 27977.54, + "end": 27979.04, + "probability": 0.9751 + }, + { + "start": 27979.1, + "end": 27982.08, + "probability": 0.9312 + }, + { + "start": 27982.52, + "end": 27983.26, + "probability": 0.8356 + }, + { + "start": 27983.98, + "end": 27989.66, + "probability": 0.8318 + }, + { + "start": 27990.18, + "end": 27992.72, + "probability": 0.9951 + }, + { + "start": 27993.3, + "end": 27998.14, + "probability": 0.9766 + }, + { + "start": 27998.9, + "end": 28002.55, + "probability": 0.9922 + }, + { + "start": 28003.18, + "end": 28004.82, + "probability": 0.9746 + }, + { + "start": 28005.1, + "end": 28006.54, + "probability": 0.9922 + }, + { + "start": 28007.02, + "end": 28012.42, + "probability": 0.9928 + }, + { + "start": 28012.98, + "end": 28013.92, + "probability": 0.8194 + }, + { + "start": 28014.08, + "end": 28014.92, + "probability": 0.3783 + }, + { + "start": 28016.28, + "end": 28016.96, + "probability": 0.3387 + }, + { + "start": 28016.96, + "end": 28021.66, + "probability": 0.8496 + }, + { + "start": 28021.66, + "end": 28026.24, + "probability": 0.9935 + }, + { + "start": 28026.7, + "end": 28029.5, + "probability": 0.8912 + }, + { + "start": 28029.96, + "end": 28033.06, + "probability": 0.986 + }, + { + "start": 28033.06, + "end": 28036.52, + "probability": 0.9121 + }, + { + "start": 28036.52, + "end": 28038.54, + "probability": 0.768 + }, + { + "start": 28038.76, + "end": 28045.28, + "probability": 0.9929 + }, + { + "start": 28045.32, + "end": 28046.3, + "probability": 0.8354 + }, + { + "start": 28046.72, + "end": 28049.2, + "probability": 0.9976 + }, + { + "start": 28050.88, + "end": 28053.04, + "probability": 0.995 + }, + { + "start": 28053.08, + "end": 28053.86, + "probability": 0.6348 + }, + { + "start": 28054.44, + "end": 28055.4, + "probability": 0.6457 + }, + { + "start": 28074.78, + "end": 28076.2, + "probability": 0.6538 + }, + { + "start": 28080.02, + "end": 28081.84, + "probability": 0.7849 + }, + { + "start": 28083.92, + "end": 28087.26, + "probability": 0.9768 + }, + { + "start": 28088.56, + "end": 28089.54, + "probability": 0.7926 + }, + { + "start": 28090.74, + "end": 28092.12, + "probability": 0.9716 + }, + { + "start": 28092.24, + "end": 28093.16, + "probability": 0.9812 + }, + { + "start": 28093.16, + "end": 28094.14, + "probability": 0.7719 + }, + { + "start": 28095.28, + "end": 28097.7, + "probability": 0.9972 + }, + { + "start": 28099.46, + "end": 28103.0, + "probability": 0.999 + }, + { + "start": 28103.0, + "end": 28108.48, + "probability": 0.9977 + }, + { + "start": 28109.9, + "end": 28113.4, + "probability": 0.976 + }, + { + "start": 28113.4, + "end": 28117.42, + "probability": 0.9867 + }, + { + "start": 28118.54, + "end": 28121.44, + "probability": 0.9609 + }, + { + "start": 28122.34, + "end": 28123.64, + "probability": 0.4656 + }, + { + "start": 28123.8, + "end": 28125.18, + "probability": 0.8635 + }, + { + "start": 28125.3, + "end": 28128.0, + "probability": 0.944 + }, + { + "start": 28129.06, + "end": 28130.3, + "probability": 0.9161 + }, + { + "start": 28131.34, + "end": 28134.86, + "probability": 0.9859 + }, + { + "start": 28134.98, + "end": 28136.22, + "probability": 0.9085 + }, + { + "start": 28137.0, + "end": 28139.39, + "probability": 0.9083 + }, + { + "start": 28140.54, + "end": 28140.62, + "probability": 0.1816 + }, + { + "start": 28140.62, + "end": 28140.9, + "probability": 0.4646 + }, + { + "start": 28140.92, + "end": 28141.74, + "probability": 0.8136 + }, + { + "start": 28141.84, + "end": 28142.72, + "probability": 0.8806 + }, + { + "start": 28142.74, + "end": 28143.8, + "probability": 0.9872 + }, + { + "start": 28143.94, + "end": 28144.84, + "probability": 0.8033 + }, + { + "start": 28145.7, + "end": 28147.36, + "probability": 0.8977 + }, + { + "start": 28148.3, + "end": 28149.72, + "probability": 0.9195 + }, + { + "start": 28149.82, + "end": 28151.4, + "probability": 0.8381 + }, + { + "start": 28151.52, + "end": 28154.82, + "probability": 0.9711 + }, + { + "start": 28156.02, + "end": 28156.84, + "probability": 0.8896 + }, + { + "start": 28157.82, + "end": 28159.12, + "probability": 0.8294 + }, + { + "start": 28160.7, + "end": 28163.84, + "probability": 0.9863 + }, + { + "start": 28164.66, + "end": 28167.54, + "probability": 0.9773 + }, + { + "start": 28167.86, + "end": 28168.26, + "probability": 0.7457 + }, + { + "start": 28168.74, + "end": 28170.09, + "probability": 0.815 + }, + { + "start": 28171.0, + "end": 28172.96, + "probability": 0.9191 + }, + { + "start": 28174.2, + "end": 28178.3, + "probability": 0.137 + }, + { + "start": 28182.34, + "end": 28184.0, + "probability": 0.9788 + }, + { + "start": 28184.4, + "end": 28186.38, + "probability": 0.9778 + }, + { + "start": 28193.14, + "end": 28194.27, + "probability": 0.7779 + }, + { + "start": 28196.88, + "end": 28197.58, + "probability": 0.8292 + }, + { + "start": 28198.1, + "end": 28200.42, + "probability": 0.171 + }, + { + "start": 28200.72, + "end": 28201.96, + "probability": 0.6672 + }, + { + "start": 28202.68, + "end": 28203.74, + "probability": 0.2944 + }, + { + "start": 28203.98, + "end": 28204.1, + "probability": 0.6811 + }, + { + "start": 28204.34, + "end": 28206.34, + "probability": 0.1632 + }, + { + "start": 28207.02, + "end": 28207.72, + "probability": 0.2797 + }, + { + "start": 28208.46, + "end": 28210.5, + "probability": 0.0921 + }, + { + "start": 28239.04, + "end": 28243.42, + "probability": 0.1992 + }, + { + "start": 28244.06, + "end": 28246.06, + "probability": 0.7232 + }, + { + "start": 28247.56, + "end": 28248.74, + "probability": 0.9518 + }, + { + "start": 28248.82, + "end": 28249.7, + "probability": 0.3515 + }, + { + "start": 28249.98, + "end": 28251.28, + "probability": 0.5951 + }, + { + "start": 28252.42, + "end": 28253.72, + "probability": 0.0362 + }, + { + "start": 28253.72, + "end": 28254.6, + "probability": 0.6449 + }, + { + "start": 28256.53, + "end": 28262.28, + "probability": 0.553 + }, + { + "start": 28262.46, + "end": 28262.82, + "probability": 0.4053 + }, + { + "start": 28268.08, + "end": 28268.54, + "probability": 0.083 + }, + { + "start": 28272.28, + "end": 28273.0, + "probability": 0.0146 + }, + { + "start": 28273.0, + "end": 28276.12, + "probability": 0.6537 + }, + { + "start": 28276.18, + "end": 28278.48, + "probability": 0.6544 + }, + { + "start": 28278.52, + "end": 28280.24, + "probability": 0.006 + }, + { + "start": 28280.36, + "end": 28281.8, + "probability": 0.5492 + }, + { + "start": 28282.58, + "end": 28288.68, + "probability": 0.0629 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.0, + "end": 28394.0, + "probability": 0.0 + }, + { + "start": 28394.88, + "end": 28398.9, + "probability": 0.0752 + }, + { + "start": 28400.1, + "end": 28401.68, + "probability": 0.0983 + }, + { + "start": 28401.68, + "end": 28403.48, + "probability": 0.5088 + }, + { + "start": 28404.52, + "end": 28405.46, + "probability": 0.6106 + }, + { + "start": 28406.88, + "end": 28407.22, + "probability": 0.0548 + }, + { + "start": 28407.22, + "end": 28407.22, + "probability": 0.2424 + }, + { + "start": 28407.22, + "end": 28408.14, + "probability": 0.1893 + }, + { + "start": 28408.86, + "end": 28409.66, + "probability": 0.7806 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28527.0, + "end": 28527.0, + "probability": 0.0 + }, + { + "start": 28541.79, + "end": 28545.03, + "probability": 0.0181 + }, + { + "start": 28545.89, + "end": 28547.15, + "probability": 0.1447 + }, + { + "start": 28547.15, + "end": 28548.34, + "probability": 0.2086 + }, + { + "start": 28551.75, + "end": 28551.75, + "probability": 0.1222 + }, + { + "start": 28551.75, + "end": 28551.75, + "probability": 0.0817 + }, + { + "start": 28551.75, + "end": 28552.03, + "probability": 0.0646 + }, + { + "start": 28554.61, + "end": 28556.57, + "probability": 0.335 + }, + { + "start": 28559.48, + "end": 28559.55, + "probability": 0.0828 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.0, + "end": 28647.0, + "probability": 0.0 + }, + { + "start": 28647.34, + "end": 28648.54, + "probability": 0.2273 + }, + { + "start": 28648.54, + "end": 28648.54, + "probability": 0.2581 + }, + { + "start": 28648.54, + "end": 28650.84, + "probability": 0.3395 + }, + { + "start": 28651.74, + "end": 28657.0, + "probability": 0.4641 + }, + { + "start": 28657.34, + "end": 28657.94, + "probability": 0.9019 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.0, + "end": 28784.0, + "probability": 0.0 + }, + { + "start": 28784.12, + "end": 28784.24, + "probability": 0.0262 + }, + { + "start": 28784.24, + "end": 28784.24, + "probability": 0.0286 + }, + { + "start": 28784.24, + "end": 28786.1, + "probability": 0.3207 + }, + { + "start": 28787.8, + "end": 28790.3, + "probability": 0.8265 + }, + { + "start": 28790.3, + "end": 28797.08, + "probability": 0.9754 + }, + { + "start": 28797.68, + "end": 28798.32, + "probability": 0.7116 + }, + { + "start": 28798.38, + "end": 28800.68, + "probability": 0.993 + }, + { + "start": 28800.68, + "end": 28805.08, + "probability": 0.9298 + }, + { + "start": 28805.52, + "end": 28806.7, + "probability": 0.985 + }, + { + "start": 28807.38, + "end": 28808.86, + "probability": 0.953 + }, + { + "start": 28809.78, + "end": 28812.26, + "probability": 0.7542 + }, + { + "start": 28813.14, + "end": 28814.06, + "probability": 0.7501 + }, + { + "start": 28815.64, + "end": 28816.0, + "probability": 0.4669 + }, + { + "start": 28816.02, + "end": 28820.58, + "probability": 0.7895 + }, + { + "start": 28821.62, + "end": 28823.77, + "probability": 0.9263 + }, + { + "start": 28825.6, + "end": 28826.4, + "probability": 0.891 + }, + { + "start": 28826.46, + "end": 28827.52, + "probability": 0.9347 + }, + { + "start": 28827.84, + "end": 28832.32, + "probability": 0.9773 + }, + { + "start": 28833.06, + "end": 28834.98, + "probability": 0.9878 + }, + { + "start": 28835.54, + "end": 28836.04, + "probability": 0.619 + }, + { + "start": 28836.18, + "end": 28840.08, + "probability": 0.9526 + }, + { + "start": 28840.48, + "end": 28844.38, + "probability": 0.9922 + }, + { + "start": 28844.38, + "end": 28848.36, + "probability": 0.9851 + }, + { + "start": 28848.36, + "end": 28852.46, + "probability": 0.995 + }, + { + "start": 28853.84, + "end": 28859.96, + "probability": 0.9561 + }, + { + "start": 28861.66, + "end": 28862.86, + "probability": 0.6684 + }, + { + "start": 28864.64, + "end": 28866.7, + "probability": 0.9907 + }, + { + "start": 28867.72, + "end": 28868.82, + "probability": 0.9955 + }, + { + "start": 28870.38, + "end": 28873.1, + "probability": 0.9294 + }, + { + "start": 28874.9, + "end": 28877.34, + "probability": 0.8422 + }, + { + "start": 28878.68, + "end": 28882.78, + "probability": 0.8535 + }, + { + "start": 28883.64, + "end": 28884.96, + "probability": 0.7753 + }, + { + "start": 28886.44, + "end": 28889.14, + "probability": 0.9937 + }, + { + "start": 28890.32, + "end": 28891.88, + "probability": 0.8645 + }, + { + "start": 28892.3, + "end": 28895.68, + "probability": 0.9766 + }, + { + "start": 28896.78, + "end": 28901.94, + "probability": 0.811 + }, + { + "start": 28902.82, + "end": 28907.82, + "probability": 0.9949 + }, + { + "start": 28907.86, + "end": 28908.22, + "probability": 0.3442 + }, + { + "start": 28908.38, + "end": 28913.48, + "probability": 0.9868 + }, + { + "start": 28914.14, + "end": 28915.12, + "probability": 0.8823 + }, + { + "start": 28915.86, + "end": 28918.34, + "probability": 0.9616 + }, + { + "start": 28918.94, + "end": 28920.38, + "probability": 0.4603 + }, + { + "start": 28920.76, + "end": 28921.74, + "probability": 0.8347 + }, + { + "start": 28921.94, + "end": 28921.94, + "probability": 0.2038 + }, + { + "start": 28921.94, + "end": 28925.14, + "probability": 0.9827 + }, + { + "start": 28925.44, + "end": 28926.27, + "probability": 0.9292 + }, + { + "start": 28926.86, + "end": 28927.5, + "probability": 0.8423 + }, + { + "start": 28927.96, + "end": 28928.76, + "probability": 0.5478 + }, + { + "start": 28929.18, + "end": 28929.76, + "probability": 0.7594 + }, + { + "start": 28950.98, + "end": 28954.48, + "probability": 0.695 + }, + { + "start": 28956.1, + "end": 28957.45, + "probability": 0.9956 + }, + { + "start": 28959.42, + "end": 28961.68, + "probability": 0.8151 + }, + { + "start": 28963.0, + "end": 28968.88, + "probability": 0.8906 + }, + { + "start": 28968.94, + "end": 28972.5, + "probability": 0.9499 + }, + { + "start": 28973.64, + "end": 28978.08, + "probability": 0.9659 + }, + { + "start": 28978.08, + "end": 28981.42, + "probability": 0.98 + }, + { + "start": 28983.44, + "end": 28983.92, + "probability": 0.4989 + }, + { + "start": 28985.02, + "end": 28985.42, + "probability": 0.7421 + }, + { + "start": 28985.5, + "end": 28989.0, + "probability": 0.9899 + }, + { + "start": 28990.36, + "end": 28993.04, + "probability": 0.9949 + }, + { + "start": 28993.04, + "end": 28997.89, + "probability": 0.9209 + }, + { + "start": 28999.18, + "end": 29001.52, + "probability": 0.9951 + }, + { + "start": 29002.36, + "end": 29005.38, + "probability": 0.9972 + }, + { + "start": 29005.6, + "end": 29006.04, + "probability": 0.8194 + }, + { + "start": 29006.24, + "end": 29006.8, + "probability": 0.7526 + }, + { + "start": 29007.72, + "end": 29009.59, + "probability": 0.7882 + }, + { + "start": 29011.24, + "end": 29011.62, + "probability": 0.495 + }, + { + "start": 29011.72, + "end": 29012.1, + "probability": 0.7959 + }, + { + "start": 29012.12, + "end": 29016.18, + "probability": 0.7696 + }, + { + "start": 29016.32, + "end": 29017.66, + "probability": 0.8408 + }, + { + "start": 29018.28, + "end": 29022.8, + "probability": 0.9272 + }, + { + "start": 29024.42, + "end": 29027.7, + "probability": 0.7338 + }, + { + "start": 29029.0, + "end": 29032.48, + "probability": 0.7464 + }, + { + "start": 29033.5, + "end": 29039.4, + "probability": 0.9933 + }, + { + "start": 29039.88, + "end": 29040.38, + "probability": 0.6932 + }, + { + "start": 29040.78, + "end": 29041.36, + "probability": 0.5506 + }, + { + "start": 29041.58, + "end": 29043.0, + "probability": 0.938 + }, + { + "start": 29047.0, + "end": 29047.0, + "probability": 0.1414 + }, + { + "start": 29047.0, + "end": 29047.7, + "probability": 0.915 + }, + { + "start": 29048.34, + "end": 29049.85, + "probability": 0.1234 + }, + { + "start": 29050.18, + "end": 29051.1, + "probability": 0.8687 + }, + { + "start": 29051.24, + "end": 29051.72, + "probability": 0.3984 + }, + { + "start": 29051.72, + "end": 29052.91, + "probability": 0.8949 + }, + { + "start": 29054.14, + "end": 29056.72, + "probability": 0.808 + }, + { + "start": 29057.24, + "end": 29058.15, + "probability": 0.3934 + }, + { + "start": 29059.32, + "end": 29060.06, + "probability": 0.6606 + }, + { + "start": 29073.42, + "end": 29075.96, + "probability": 0.5187 + }, + { + "start": 29076.68, + "end": 29079.64, + "probability": 0.6466 + }, + { + "start": 29080.12, + "end": 29084.46, + "probability": 0.9832 + }, + { + "start": 29085.22, + "end": 29085.44, + "probability": 0.0059 + } + ], + "segments_count": 9696, + "words_count": 49310, + "avg_words_per_segment": 5.0856, + "avg_segment_duration": 2.2611, + "avg_words_per_minute": 100.6918, + "plenum_id": "10944", + "duration": 29382.72, + "title": null, + "plenum_date": "2010-12-15" +} \ No newline at end of file