diff --git "a/110360/metadata.json" "b/110360/metadata.json" new file mode 100644--- /dev/null +++ "b/110360/metadata.json" @@ -0,0 +1,13252 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "110360", + "quality_score": 0.8381, + "per_segment_quality_scores": [ + { + "start": 28.06, + "end": 28.82, + "probability": 0.1308 + }, + { + "start": 29.38, + "end": 32.06, + "probability": 0.5967 + }, + { + "start": 32.34, + "end": 40.22, + "probability": 0.9604 + }, + { + "start": 41.76, + "end": 44.74, + "probability": 0.8091 + }, + { + "start": 44.86, + "end": 46.3, + "probability": 0.9271 + }, + { + "start": 46.88, + "end": 49.67, + "probability": 0.9535 + }, + { + "start": 50.8, + "end": 53.82, + "probability": 0.6624 + }, + { + "start": 54.04, + "end": 57.52, + "probability": 0.9829 + }, + { + "start": 57.52, + "end": 62.74, + "probability": 0.9976 + }, + { + "start": 63.98, + "end": 67.22, + "probability": 0.875 + }, + { + "start": 70.64, + "end": 71.6, + "probability": 0.7958 + }, + { + "start": 72.66, + "end": 73.86, + "probability": 0.8467 + }, + { + "start": 73.94, + "end": 78.0, + "probability": 0.9757 + }, + { + "start": 78.0, + "end": 82.64, + "probability": 0.9988 + }, + { + "start": 82.64, + "end": 87.44, + "probability": 0.9604 + }, + { + "start": 87.68, + "end": 87.86, + "probability": 0.6145 + }, + { + "start": 94.42, + "end": 95.62, + "probability": 0.6658 + }, + { + "start": 95.88, + "end": 100.7, + "probability": 0.871 + }, + { + "start": 101.37, + "end": 106.74, + "probability": 0.9413 + }, + { + "start": 116.42, + "end": 117.02, + "probability": 0.4567 + }, + { + "start": 117.56, + "end": 122.08, + "probability": 0.8985 + }, + { + "start": 123.4, + "end": 125.52, + "probability": 0.9402 + }, + { + "start": 125.64, + "end": 126.52, + "probability": 0.9387 + }, + { + "start": 127.34, + "end": 130.08, + "probability": 0.9963 + }, + { + "start": 131.04, + "end": 131.76, + "probability": 0.8149 + }, + { + "start": 131.76, + "end": 132.26, + "probability": 0.6063 + }, + { + "start": 132.58, + "end": 137.48, + "probability": 0.844 + }, + { + "start": 137.72, + "end": 139.98, + "probability": 0.0399 + }, + { + "start": 140.2, + "end": 143.94, + "probability": 0.9907 + }, + { + "start": 143.94, + "end": 146.94, + "probability": 0.9819 + }, + { + "start": 147.84, + "end": 150.52, + "probability": 0.9276 + }, + { + "start": 150.64, + "end": 151.62, + "probability": 0.7852 + }, + { + "start": 151.62, + "end": 154.18, + "probability": 0.9388 + }, + { + "start": 155.18, + "end": 159.16, + "probability": 0.9423 + }, + { + "start": 159.16, + "end": 162.8, + "probability": 0.8847 + }, + { + "start": 163.32, + "end": 165.12, + "probability": 0.9094 + }, + { + "start": 165.12, + "end": 167.36, + "probability": 0.9252 + }, + { + "start": 167.88, + "end": 171.5, + "probability": 0.9949 + }, + { + "start": 172.12, + "end": 173.16, + "probability": 0.7508 + }, + { + "start": 173.18, + "end": 175.44, + "probability": 0.9734 + }, + { + "start": 175.44, + "end": 178.64, + "probability": 0.9798 + }, + { + "start": 179.62, + "end": 183.14, + "probability": 0.8889 + }, + { + "start": 183.22, + "end": 184.3, + "probability": 0.8089 + }, + { + "start": 184.94, + "end": 186.74, + "probability": 0.7388 + }, + { + "start": 187.56, + "end": 191.24, + "probability": 0.7463 + }, + { + "start": 191.84, + "end": 192.52, + "probability": 0.8298 + }, + { + "start": 192.58, + "end": 193.38, + "probability": 0.9162 + }, + { + "start": 193.44, + "end": 195.16, + "probability": 0.7692 + }, + { + "start": 195.8, + "end": 196.54, + "probability": 0.537 + }, + { + "start": 196.62, + "end": 197.96, + "probability": 0.801 + }, + { + "start": 198.08, + "end": 199.52, + "probability": 0.9085 + }, + { + "start": 200.14, + "end": 202.14, + "probability": 0.8714 + }, + { + "start": 203.18, + "end": 204.76, + "probability": 0.7507 + }, + { + "start": 205.34, + "end": 206.24, + "probability": 0.7174 + }, + { + "start": 207.18, + "end": 209.24, + "probability": 0.9465 + }, + { + "start": 210.02, + "end": 211.08, + "probability": 0.7041 + }, + { + "start": 211.34, + "end": 212.43, + "probability": 0.9712 + }, + { + "start": 213.38, + "end": 213.9, + "probability": 0.3167 + }, + { + "start": 214.14, + "end": 214.96, + "probability": 0.7817 + }, + { + "start": 215.42, + "end": 216.6, + "probability": 0.7597 + }, + { + "start": 216.66, + "end": 219.28, + "probability": 0.792 + }, + { + "start": 219.94, + "end": 220.28, + "probability": 0.8263 + }, + { + "start": 220.62, + "end": 222.7, + "probability": 0.9613 + }, + { + "start": 222.8, + "end": 223.66, + "probability": 0.8346 + }, + { + "start": 223.8, + "end": 225.02, + "probability": 0.8741 + }, + { + "start": 225.36, + "end": 226.6, + "probability": 0.8831 + }, + { + "start": 226.76, + "end": 227.26, + "probability": 0.652 + }, + { + "start": 227.5, + "end": 228.42, + "probability": 0.7382 + }, + { + "start": 228.52, + "end": 229.82, + "probability": 0.6583 + }, + { + "start": 230.3, + "end": 230.88, + "probability": 0.8761 + }, + { + "start": 230.98, + "end": 232.1, + "probability": 0.7056 + }, + { + "start": 232.48, + "end": 234.62, + "probability": 0.7153 + }, + { + "start": 234.62, + "end": 235.3, + "probability": 0.79 + }, + { + "start": 235.38, + "end": 237.02, + "probability": 0.9531 + }, + { + "start": 237.7, + "end": 239.58, + "probability": 0.6684 + }, + { + "start": 239.98, + "end": 242.82, + "probability": 0.9835 + }, + { + "start": 243.36, + "end": 246.26, + "probability": 0.97 + }, + { + "start": 247.32, + "end": 249.18, + "probability": 0.9577 + }, + { + "start": 249.26, + "end": 249.72, + "probability": 0.9602 + }, + { + "start": 250.54, + "end": 251.26, + "probability": 0.847 + }, + { + "start": 251.76, + "end": 252.82, + "probability": 0.8641 + }, + { + "start": 252.92, + "end": 253.68, + "probability": 0.5298 + }, + { + "start": 253.74, + "end": 255.64, + "probability": 0.9715 + }, + { + "start": 255.76, + "end": 255.94, + "probability": 0.8353 + }, + { + "start": 257.26, + "end": 258.54, + "probability": 0.6411 + }, + { + "start": 259.12, + "end": 260.54, + "probability": 0.9448 + }, + { + "start": 265.26, + "end": 266.08, + "probability": 0.836 + }, + { + "start": 283.98, + "end": 284.84, + "probability": 0.7008 + }, + { + "start": 284.9, + "end": 285.72, + "probability": 0.463 + }, + { + "start": 286.52, + "end": 287.62, + "probability": 0.6555 + }, + { + "start": 288.74, + "end": 291.42, + "probability": 0.9742 + }, + { + "start": 292.86, + "end": 293.66, + "probability": 0.7582 + }, + { + "start": 293.86, + "end": 294.72, + "probability": 0.9346 + }, + { + "start": 294.82, + "end": 297.04, + "probability": 0.9945 + }, + { + "start": 297.12, + "end": 302.26, + "probability": 0.9919 + }, + { + "start": 304.16, + "end": 306.54, + "probability": 0.9962 + }, + { + "start": 309.64, + "end": 310.96, + "probability": 0.8604 + }, + { + "start": 312.94, + "end": 318.12, + "probability": 0.9901 + }, + { + "start": 318.78, + "end": 319.6, + "probability": 0.9951 + }, + { + "start": 322.3, + "end": 324.84, + "probability": 0.8881 + }, + { + "start": 325.84, + "end": 331.8, + "probability": 0.9919 + }, + { + "start": 333.76, + "end": 335.74, + "probability": 0.9391 + }, + { + "start": 338.02, + "end": 340.02, + "probability": 0.9526 + }, + { + "start": 341.14, + "end": 341.4, + "probability": 0.5108 + }, + { + "start": 341.96, + "end": 342.86, + "probability": 0.9898 + }, + { + "start": 343.86, + "end": 347.12, + "probability": 0.9333 + }, + { + "start": 348.66, + "end": 349.62, + "probability": 0.9652 + }, + { + "start": 350.58, + "end": 352.08, + "probability": 0.6927 + }, + { + "start": 353.24, + "end": 355.5, + "probability": 0.9858 + }, + { + "start": 355.92, + "end": 358.78, + "probability": 0.9428 + }, + { + "start": 360.86, + "end": 362.38, + "probability": 0.7791 + }, + { + "start": 363.28, + "end": 368.42, + "probability": 0.9939 + }, + { + "start": 369.06, + "end": 370.4, + "probability": 0.9543 + }, + { + "start": 372.04, + "end": 373.96, + "probability": 0.9889 + }, + { + "start": 373.96, + "end": 376.8, + "probability": 0.9735 + }, + { + "start": 377.92, + "end": 380.06, + "probability": 0.9427 + }, + { + "start": 380.88, + "end": 381.86, + "probability": 0.878 + }, + { + "start": 382.44, + "end": 386.44, + "probability": 0.9307 + }, + { + "start": 388.08, + "end": 388.9, + "probability": 0.882 + }, + { + "start": 389.68, + "end": 390.7, + "probability": 0.9637 + }, + { + "start": 391.64, + "end": 394.58, + "probability": 0.9731 + }, + { + "start": 396.16, + "end": 398.4, + "probability": 0.9866 + }, + { + "start": 399.22, + "end": 401.68, + "probability": 0.95 + }, + { + "start": 402.64, + "end": 404.6, + "probability": 0.8409 + }, + { + "start": 405.7, + "end": 407.08, + "probability": 0.977 + }, + { + "start": 408.02, + "end": 411.48, + "probability": 0.9946 + }, + { + "start": 411.48, + "end": 416.0, + "probability": 0.9895 + }, + { + "start": 416.74, + "end": 419.82, + "probability": 0.99 + }, + { + "start": 420.48, + "end": 425.7, + "probability": 0.9993 + }, + { + "start": 428.22, + "end": 430.96, + "probability": 0.9886 + }, + { + "start": 431.28, + "end": 432.34, + "probability": 0.7497 + }, + { + "start": 433.08, + "end": 435.16, + "probability": 0.9979 + }, + { + "start": 437.2, + "end": 437.9, + "probability": 0.9143 + }, + { + "start": 438.58, + "end": 443.42, + "probability": 0.9976 + }, + { + "start": 444.0, + "end": 445.42, + "probability": 0.9768 + }, + { + "start": 446.14, + "end": 447.66, + "probability": 0.8359 + }, + { + "start": 448.76, + "end": 450.18, + "probability": 0.7843 + }, + { + "start": 450.8, + "end": 453.94, + "probability": 0.9895 + }, + { + "start": 454.96, + "end": 458.06, + "probability": 0.9825 + }, + { + "start": 458.68, + "end": 460.5, + "probability": 0.9408 + }, + { + "start": 461.1, + "end": 465.02, + "probability": 0.991 + }, + { + "start": 465.9, + "end": 467.94, + "probability": 0.9921 + }, + { + "start": 468.92, + "end": 472.06, + "probability": 0.8311 + }, + { + "start": 472.88, + "end": 474.64, + "probability": 0.5685 + }, + { + "start": 475.22, + "end": 476.34, + "probability": 0.9051 + }, + { + "start": 476.52, + "end": 477.06, + "probability": 0.9266 + }, + { + "start": 477.56, + "end": 478.8, + "probability": 0.829 + }, + { + "start": 479.66, + "end": 480.48, + "probability": 0.8752 + }, + { + "start": 482.62, + "end": 486.5, + "probability": 0.9685 + }, + { + "start": 488.43, + "end": 490.96, + "probability": 0.9518 + }, + { + "start": 492.16, + "end": 492.74, + "probability": 0.6983 + }, + { + "start": 493.32, + "end": 494.47, + "probability": 0.97 + }, + { + "start": 495.5, + "end": 497.42, + "probability": 0.9933 + }, + { + "start": 498.28, + "end": 500.88, + "probability": 0.9136 + }, + { + "start": 501.44, + "end": 502.78, + "probability": 0.7442 + }, + { + "start": 503.48, + "end": 504.26, + "probability": 0.5932 + }, + { + "start": 505.54, + "end": 507.54, + "probability": 0.8383 + }, + { + "start": 510.87, + "end": 513.84, + "probability": 0.9362 + }, + { + "start": 514.86, + "end": 516.56, + "probability": 0.8955 + }, + { + "start": 517.92, + "end": 519.7, + "probability": 0.7549 + }, + { + "start": 521.46, + "end": 523.08, + "probability": 0.9972 + }, + { + "start": 527.12, + "end": 530.78, + "probability": 0.9402 + }, + { + "start": 531.58, + "end": 532.92, + "probability": 0.7277 + }, + { + "start": 533.96, + "end": 537.04, + "probability": 0.6337 + }, + { + "start": 538.06, + "end": 539.76, + "probability": 0.8229 + }, + { + "start": 540.06, + "end": 541.82, + "probability": 0.5068 + }, + { + "start": 541.84, + "end": 543.54, + "probability": 0.6529 + }, + { + "start": 543.68, + "end": 544.24, + "probability": 0.6597 + }, + { + "start": 545.46, + "end": 545.8, + "probability": 0.4852 + }, + { + "start": 545.86, + "end": 547.1, + "probability": 0.8173 + }, + { + "start": 547.2, + "end": 550.36, + "probability": 0.8956 + }, + { + "start": 550.92, + "end": 553.26, + "probability": 0.5669 + }, + { + "start": 553.26, + "end": 554.92, + "probability": 0.9364 + }, + { + "start": 554.98, + "end": 558.28, + "probability": 0.7921 + }, + { + "start": 558.84, + "end": 559.8, + "probability": 0.9738 + }, + { + "start": 559.9, + "end": 560.24, + "probability": 0.9088 + }, + { + "start": 560.4, + "end": 563.75, + "probability": 0.9047 + }, + { + "start": 564.2, + "end": 566.26, + "probability": 0.4791 + }, + { + "start": 566.42, + "end": 566.92, + "probability": 0.8469 + }, + { + "start": 568.34, + "end": 571.18, + "probability": 0.9848 + }, + { + "start": 571.74, + "end": 573.46, + "probability": 0.8516 + }, + { + "start": 573.48, + "end": 573.48, + "probability": 0.3272 + }, + { + "start": 573.48, + "end": 579.48, + "probability": 0.8429 + }, + { + "start": 580.68, + "end": 581.31, + "probability": 0.8861 + }, + { + "start": 581.7, + "end": 582.32, + "probability": 0.9005 + }, + { + "start": 582.52, + "end": 588.72, + "probability": 0.8405 + }, + { + "start": 590.12, + "end": 593.7, + "probability": 0.9897 + }, + { + "start": 593.84, + "end": 595.46, + "probability": 0.9907 + }, + { + "start": 596.16, + "end": 598.18, + "probability": 0.5355 + }, + { + "start": 599.0, + "end": 608.5, + "probability": 0.6792 + }, + { + "start": 609.22, + "end": 611.22, + "probability": 0.99 + }, + { + "start": 612.02, + "end": 612.74, + "probability": 0.7681 + }, + { + "start": 613.8, + "end": 619.7, + "probability": 0.5455 + }, + { + "start": 620.42, + "end": 623.3, + "probability": 0.8225 + }, + { + "start": 625.4, + "end": 628.24, + "probability": 0.4505 + }, + { + "start": 628.86, + "end": 630.14, + "probability": 0.7851 + }, + { + "start": 630.78, + "end": 633.74, + "probability": 0.7172 + }, + { + "start": 634.64, + "end": 636.26, + "probability": 0.9595 + }, + { + "start": 637.86, + "end": 639.3, + "probability": 0.9403 + }, + { + "start": 639.34, + "end": 642.1, + "probability": 0.4758 + }, + { + "start": 642.1, + "end": 643.02, + "probability": 0.7569 + }, + { + "start": 643.52, + "end": 645.56, + "probability": 0.8584 + }, + { + "start": 645.8, + "end": 646.86, + "probability": 0.6282 + }, + { + "start": 647.4, + "end": 649.04, + "probability": 0.5605 + }, + { + "start": 649.4, + "end": 651.12, + "probability": 0.9199 + }, + { + "start": 651.26, + "end": 652.12, + "probability": 0.8011 + }, + { + "start": 652.12, + "end": 653.29, + "probability": 0.7049 + }, + { + "start": 655.28, + "end": 655.28, + "probability": 0.1295 + }, + { + "start": 655.28, + "end": 655.49, + "probability": 0.4238 + }, + { + "start": 655.92, + "end": 657.46, + "probability": 0.6328 + }, + { + "start": 658.34, + "end": 660.56, + "probability": 0.8246 + }, + { + "start": 660.6, + "end": 661.82, + "probability": 0.6496 + }, + { + "start": 661.94, + "end": 662.7, + "probability": 0.8875 + }, + { + "start": 662.86, + "end": 663.22, + "probability": 0.7771 + }, + { + "start": 663.38, + "end": 664.36, + "probability": 0.5164 + }, + { + "start": 664.44, + "end": 665.06, + "probability": 0.6621 + }, + { + "start": 665.8, + "end": 668.24, + "probability": 0.9336 + }, + { + "start": 668.9, + "end": 669.64, + "probability": 0.4261 + }, + { + "start": 669.7, + "end": 671.02, + "probability": 0.7111 + }, + { + "start": 671.5, + "end": 673.58, + "probability": 0.9434 + }, + { + "start": 674.28, + "end": 676.86, + "probability": 0.8791 + }, + { + "start": 677.3, + "end": 679.18, + "probability": 0.5805 + }, + { + "start": 680.34, + "end": 680.96, + "probability": 0.9761 + }, + { + "start": 681.12, + "end": 685.04, + "probability": 0.9849 + }, + { + "start": 685.04, + "end": 688.16, + "probability": 0.8691 + }, + { + "start": 688.3, + "end": 690.4, + "probability": 0.682 + }, + { + "start": 691.12, + "end": 693.76, + "probability": 0.6758 + }, + { + "start": 694.26, + "end": 695.34, + "probability": 0.8496 + }, + { + "start": 695.44, + "end": 696.68, + "probability": 0.8355 + }, + { + "start": 697.04, + "end": 701.6, + "probability": 0.9401 + }, + { + "start": 702.02, + "end": 704.22, + "probability": 0.8317 + }, + { + "start": 704.78, + "end": 710.02, + "probability": 0.7093 + }, + { + "start": 710.1, + "end": 712.44, + "probability": 0.7805 + }, + { + "start": 712.48, + "end": 714.52, + "probability": 0.7986 + }, + { + "start": 714.54, + "end": 718.34, + "probability": 0.8289 + }, + { + "start": 718.36, + "end": 719.28, + "probability": 0.339 + }, + { + "start": 719.4, + "end": 721.3, + "probability": 0.838 + }, + { + "start": 721.46, + "end": 723.36, + "probability": 0.5829 + }, + { + "start": 723.54, + "end": 729.3, + "probability": 0.9794 + }, + { + "start": 729.72, + "end": 730.12, + "probability": 0.655 + }, + { + "start": 730.12, + "end": 731.06, + "probability": 0.6766 + }, + { + "start": 731.42, + "end": 732.38, + "probability": 0.9336 + }, + { + "start": 732.74, + "end": 733.32, + "probability": 0.6287 + }, + { + "start": 733.4, + "end": 734.16, + "probability": 0.9702 + }, + { + "start": 734.4, + "end": 735.08, + "probability": 0.7772 + }, + { + "start": 735.58, + "end": 737.56, + "probability": 0.977 + }, + { + "start": 756.32, + "end": 757.54, + "probability": 0.6342 + }, + { + "start": 757.68, + "end": 760.04, + "probability": 0.899 + }, + { + "start": 760.32, + "end": 763.38, + "probability": 0.9233 + }, + { + "start": 764.38, + "end": 768.76, + "probability": 0.9609 + }, + { + "start": 768.98, + "end": 773.88, + "probability": 0.9798 + }, + { + "start": 774.76, + "end": 775.54, + "probability": 0.3458 + }, + { + "start": 776.06, + "end": 778.56, + "probability": 0.8041 + }, + { + "start": 779.28, + "end": 779.92, + "probability": 0.9338 + }, + { + "start": 780.84, + "end": 790.52, + "probability": 0.9776 + }, + { + "start": 791.66, + "end": 795.54, + "probability": 0.8971 + }, + { + "start": 796.44, + "end": 801.62, + "probability": 0.9974 + }, + { + "start": 801.62, + "end": 807.3, + "probability": 0.9976 + }, + { + "start": 808.4, + "end": 808.86, + "probability": 0.7592 + }, + { + "start": 809.76, + "end": 810.56, + "probability": 0.9771 + }, + { + "start": 811.52, + "end": 812.88, + "probability": 0.9212 + }, + { + "start": 813.36, + "end": 815.68, + "probability": 0.9762 + }, + { + "start": 816.1, + "end": 817.6, + "probability": 0.9421 + }, + { + "start": 818.76, + "end": 820.21, + "probability": 0.9373 + }, + { + "start": 821.2, + "end": 822.94, + "probability": 0.852 + }, + { + "start": 823.58, + "end": 825.42, + "probability": 0.8321 + }, + { + "start": 825.98, + "end": 830.58, + "probability": 0.9824 + }, + { + "start": 831.3, + "end": 834.54, + "probability": 0.9013 + }, + { + "start": 837.96, + "end": 840.76, + "probability": 0.9938 + }, + { + "start": 840.94, + "end": 844.16, + "probability": 0.8788 + }, + { + "start": 844.92, + "end": 847.98, + "probability": 0.3565 + }, + { + "start": 848.68, + "end": 853.2, + "probability": 0.7637 + }, + { + "start": 853.78, + "end": 855.0, + "probability": 0.6874 + }, + { + "start": 855.0, + "end": 857.88, + "probability": 0.8483 + }, + { + "start": 868.52, + "end": 868.52, + "probability": 0.0733 + }, + { + "start": 868.52, + "end": 868.54, + "probability": 0.0757 + }, + { + "start": 868.54, + "end": 868.54, + "probability": 0.1478 + }, + { + "start": 868.54, + "end": 868.58, + "probability": 0.3957 + }, + { + "start": 868.58, + "end": 868.58, + "probability": 0.016 + }, + { + "start": 868.58, + "end": 868.58, + "probability": 0.0247 + }, + { + "start": 868.58, + "end": 872.12, + "probability": 0.9067 + }, + { + "start": 872.42, + "end": 875.42, + "probability": 0.9708 + }, + { + "start": 876.3, + "end": 876.94, + "probability": 0.8537 + }, + { + "start": 877.58, + "end": 877.76, + "probability": 0.0651 + }, + { + "start": 877.76, + "end": 878.62, + "probability": 0.8073 + }, + { + "start": 879.48, + "end": 880.14, + "probability": 0.3262 + }, + { + "start": 880.72, + "end": 882.83, + "probability": 0.6184 + }, + { + "start": 884.18, + "end": 885.96, + "probability": 0.8829 + }, + { + "start": 886.68, + "end": 890.6, + "probability": 0.946 + }, + { + "start": 890.6, + "end": 891.12, + "probability": 0.0882 + }, + { + "start": 891.12, + "end": 891.16, + "probability": 0.082 + }, + { + "start": 891.44, + "end": 891.44, + "probability": 0.2063 + }, + { + "start": 891.44, + "end": 892.66, + "probability": 0.7231 + }, + { + "start": 892.74, + "end": 893.64, + "probability": 0.8976 + }, + { + "start": 893.82, + "end": 897.66, + "probability": 0.9902 + }, + { + "start": 898.48, + "end": 903.68, + "probability": 0.7145 + }, + { + "start": 904.0, + "end": 909.0, + "probability": 0.963 + }, + { + "start": 909.4, + "end": 911.6, + "probability": 0.8159 + }, + { + "start": 912.6, + "end": 914.12, + "probability": 0.8295 + }, + { + "start": 914.4, + "end": 918.2, + "probability": 0.9888 + }, + { + "start": 918.34, + "end": 919.12, + "probability": 0.5776 + }, + { + "start": 920.04, + "end": 922.56, + "probability": 0.9716 + }, + { + "start": 923.34, + "end": 924.7, + "probability": 0.9734 + }, + { + "start": 924.76, + "end": 927.06, + "probability": 0.9791 + }, + { + "start": 927.5, + "end": 932.92, + "probability": 0.9969 + }, + { + "start": 933.3, + "end": 935.82, + "probability": 0.9104 + }, + { + "start": 936.68, + "end": 938.74, + "probability": 0.9717 + }, + { + "start": 939.42, + "end": 942.74, + "probability": 0.9948 + }, + { + "start": 942.76, + "end": 947.68, + "probability": 0.986 + }, + { + "start": 947.82, + "end": 950.44, + "probability": 0.9988 + }, + { + "start": 951.58, + "end": 953.48, + "probability": 0.8894 + }, + { + "start": 953.98, + "end": 957.14, + "probability": 0.9912 + }, + { + "start": 957.48, + "end": 957.78, + "probability": 0.7952 + }, + { + "start": 958.38, + "end": 959.04, + "probability": 0.595 + }, + { + "start": 959.14, + "end": 960.54, + "probability": 0.9375 + }, + { + "start": 961.26, + "end": 962.68, + "probability": 0.6345 + }, + { + "start": 964.0, + "end": 964.74, + "probability": 0.7538 + }, + { + "start": 965.28, + "end": 966.06, + "probability": 0.9973 + }, + { + "start": 967.82, + "end": 968.9, + "probability": 0.6357 + }, + { + "start": 969.82, + "end": 970.62, + "probability": 0.4016 + }, + { + "start": 971.78, + "end": 972.66, + "probability": 0.6979 + }, + { + "start": 972.78, + "end": 974.88, + "probability": 0.709 + }, + { + "start": 974.96, + "end": 975.58, + "probability": 0.534 + }, + { + "start": 975.58, + "end": 976.24, + "probability": 0.9798 + }, + { + "start": 991.42, + "end": 993.3, + "probability": 0.7562 + }, + { + "start": 993.98, + "end": 996.12, + "probability": 0.5666 + }, + { + "start": 996.92, + "end": 997.84, + "probability": 0.9954 + }, + { + "start": 1002.86, + "end": 1006.02, + "probability": 0.8229 + }, + { + "start": 1006.94, + "end": 1009.76, + "probability": 0.9784 + }, + { + "start": 1011.38, + "end": 1013.86, + "probability": 0.3835 + }, + { + "start": 1014.34, + "end": 1021.44, + "probability": 0.9053 + }, + { + "start": 1022.5, + "end": 1026.28, + "probability": 0.9795 + }, + { + "start": 1026.5, + "end": 1029.64, + "probability": 0.9828 + }, + { + "start": 1030.26, + "end": 1034.42, + "probability": 0.9593 + }, + { + "start": 1034.5, + "end": 1037.54, + "probability": 0.9814 + }, + { + "start": 1038.28, + "end": 1041.72, + "probability": 0.9547 + }, + { + "start": 1041.9, + "end": 1043.04, + "probability": 0.8591 + }, + { + "start": 1045.92, + "end": 1045.92, + "probability": 0.0551 + }, + { + "start": 1045.92, + "end": 1047.96, + "probability": 0.8508 + }, + { + "start": 1048.68, + "end": 1050.9, + "probability": 0.9655 + }, + { + "start": 1051.04, + "end": 1053.2, + "probability": 0.6539 + }, + { + "start": 1053.22, + "end": 1056.14, + "probability": 0.985 + }, + { + "start": 1056.84, + "end": 1058.3, + "probability": 0.9957 + }, + { + "start": 1058.74, + "end": 1060.14, + "probability": 0.6648 + }, + { + "start": 1060.7, + "end": 1061.86, + "probability": 0.9383 + }, + { + "start": 1062.04, + "end": 1068.78, + "probability": 0.9903 + }, + { + "start": 1069.14, + "end": 1069.58, + "probability": 0.6537 + }, + { + "start": 1070.1, + "end": 1070.84, + "probability": 0.9547 + }, + { + "start": 1071.04, + "end": 1073.46, + "probability": 0.6094 + }, + { + "start": 1073.88, + "end": 1075.02, + "probability": 0.8447 + }, + { + "start": 1075.2, + "end": 1077.3, + "probability": 0.9736 + }, + { + "start": 1077.8, + "end": 1081.08, + "probability": 0.982 + }, + { + "start": 1081.6, + "end": 1083.74, + "probability": 0.9449 + }, + { + "start": 1083.82, + "end": 1084.44, + "probability": 0.8689 + }, + { + "start": 1084.58, + "end": 1085.7, + "probability": 0.9406 + }, + { + "start": 1085.84, + "end": 1086.92, + "probability": 0.6583 + }, + { + "start": 1087.42, + "end": 1088.02, + "probability": 0.7396 + }, + { + "start": 1088.36, + "end": 1088.94, + "probability": 0.6326 + }, + { + "start": 1089.08, + "end": 1089.96, + "probability": 0.5639 + }, + { + "start": 1090.06, + "end": 1091.94, + "probability": 0.4166 + }, + { + "start": 1092.96, + "end": 1094.34, + "probability": 0.7558 + }, + { + "start": 1094.42, + "end": 1096.24, + "probability": 0.9651 + }, + { + "start": 1096.66, + "end": 1103.58, + "probability": 0.9546 + }, + { + "start": 1104.2, + "end": 1107.64, + "probability": 0.9901 + }, + { + "start": 1108.32, + "end": 1109.28, + "probability": 0.7963 + }, + { + "start": 1109.66, + "end": 1111.42, + "probability": 0.9635 + }, + { + "start": 1111.74, + "end": 1113.06, + "probability": 0.738 + }, + { + "start": 1113.66, + "end": 1114.18, + "probability": 0.517 + }, + { + "start": 1114.24, + "end": 1114.7, + "probability": 0.8831 + }, + { + "start": 1114.82, + "end": 1115.36, + "probability": 0.781 + }, + { + "start": 1115.54, + "end": 1117.96, + "probability": 0.6698 + }, + { + "start": 1118.22, + "end": 1119.26, + "probability": 0.9039 + }, + { + "start": 1119.7, + "end": 1122.1, + "probability": 0.9876 + }, + { + "start": 1122.82, + "end": 1128.48, + "probability": 0.8984 + }, + { + "start": 1128.9, + "end": 1129.74, + "probability": 0.9701 + }, + { + "start": 1130.38, + "end": 1132.6, + "probability": 0.9297 + }, + { + "start": 1132.94, + "end": 1135.56, + "probability": 0.9316 + }, + { + "start": 1136.08, + "end": 1140.46, + "probability": 0.8244 + }, + { + "start": 1141.08, + "end": 1141.92, + "probability": 0.7896 + }, + { + "start": 1142.1, + "end": 1145.02, + "probability": 0.7804 + }, + { + "start": 1145.24, + "end": 1146.5, + "probability": 0.9235 + }, + { + "start": 1147.16, + "end": 1151.66, + "probability": 0.9887 + }, + { + "start": 1152.24, + "end": 1153.96, + "probability": 0.7751 + }, + { + "start": 1154.66, + "end": 1156.98, + "probability": 0.9222 + }, + { + "start": 1157.5, + "end": 1163.68, + "probability": 0.9966 + }, + { + "start": 1163.82, + "end": 1165.54, + "probability": 0.9743 + }, + { + "start": 1166.02, + "end": 1168.0, + "probability": 0.8657 + }, + { + "start": 1168.5, + "end": 1171.46, + "probability": 0.9949 + }, + { + "start": 1171.46, + "end": 1176.92, + "probability": 0.9985 + }, + { + "start": 1177.04, + "end": 1180.18, + "probability": 0.9846 + }, + { + "start": 1180.26, + "end": 1181.18, + "probability": 0.9758 + }, + { + "start": 1181.38, + "end": 1182.74, + "probability": 0.6794 + }, + { + "start": 1182.74, + "end": 1184.74, + "probability": 0.9084 + }, + { + "start": 1203.78, + "end": 1205.5, + "probability": 0.697 + }, + { + "start": 1206.42, + "end": 1209.58, + "probability": 0.8777 + }, + { + "start": 1210.74, + "end": 1212.66, + "probability": 0.9887 + }, + { + "start": 1213.68, + "end": 1216.78, + "probability": 0.9988 + }, + { + "start": 1218.0, + "end": 1221.64, + "probability": 0.9979 + }, + { + "start": 1222.4, + "end": 1223.36, + "probability": 0.9841 + }, + { + "start": 1224.48, + "end": 1227.46, + "probability": 0.9299 + }, + { + "start": 1228.32, + "end": 1232.6, + "probability": 0.9865 + }, + { + "start": 1233.34, + "end": 1234.78, + "probability": 0.7883 + }, + { + "start": 1235.74, + "end": 1237.38, + "probability": 0.8922 + }, + { + "start": 1238.1, + "end": 1240.56, + "probability": 0.9557 + }, + { + "start": 1241.62, + "end": 1244.4, + "probability": 0.976 + }, + { + "start": 1245.32, + "end": 1247.14, + "probability": 0.9558 + }, + { + "start": 1248.6, + "end": 1254.12, + "probability": 0.995 + }, + { + "start": 1254.22, + "end": 1255.2, + "probability": 0.8363 + }, + { + "start": 1255.86, + "end": 1257.02, + "probability": 0.9972 + }, + { + "start": 1257.54, + "end": 1258.7, + "probability": 0.9841 + }, + { + "start": 1260.68, + "end": 1261.18, + "probability": 0.2341 + }, + { + "start": 1261.32, + "end": 1266.88, + "probability": 0.9987 + }, + { + "start": 1267.96, + "end": 1273.26, + "probability": 0.9637 + }, + { + "start": 1273.9, + "end": 1276.94, + "probability": 0.9862 + }, + { + "start": 1278.42, + "end": 1282.12, + "probability": 0.9934 + }, + { + "start": 1282.84, + "end": 1285.1, + "probability": 0.9688 + }, + { + "start": 1286.34, + "end": 1287.04, + "probability": 0.8259 + }, + { + "start": 1287.14, + "end": 1288.52, + "probability": 0.9433 + }, + { + "start": 1288.68, + "end": 1289.78, + "probability": 0.9316 + }, + { + "start": 1291.1, + "end": 1293.45, + "probability": 0.9421 + }, + { + "start": 1294.14, + "end": 1295.6, + "probability": 0.7275 + }, + { + "start": 1296.26, + "end": 1300.1, + "probability": 0.9939 + }, + { + "start": 1300.98, + "end": 1303.92, + "probability": 0.6762 + }, + { + "start": 1304.06, + "end": 1306.16, + "probability": 0.9694 + }, + { + "start": 1307.16, + "end": 1311.46, + "probability": 0.9924 + }, + { + "start": 1312.0, + "end": 1313.0, + "probability": 0.4353 + }, + { + "start": 1313.98, + "end": 1319.26, + "probability": 0.9977 + }, + { + "start": 1319.26, + "end": 1324.1, + "probability": 0.9963 + }, + { + "start": 1324.82, + "end": 1326.38, + "probability": 0.7672 + }, + { + "start": 1327.06, + "end": 1329.46, + "probability": 0.9976 + }, + { + "start": 1329.46, + "end": 1333.96, + "probability": 0.9233 + }, + { + "start": 1334.04, + "end": 1334.34, + "probability": 0.5204 + }, + { + "start": 1334.38, + "end": 1335.52, + "probability": 0.8917 + }, + { + "start": 1336.98, + "end": 1340.92, + "probability": 0.9806 + }, + { + "start": 1341.18, + "end": 1341.42, + "probability": 0.7401 + }, + { + "start": 1349.46, + "end": 1350.26, + "probability": 0.7833 + }, + { + "start": 1355.96, + "end": 1358.22, + "probability": 0.1527 + }, + { + "start": 1359.32, + "end": 1359.32, + "probability": 0.0389 + }, + { + "start": 1359.32, + "end": 1361.2, + "probability": 0.1456 + }, + { + "start": 1363.8, + "end": 1363.8, + "probability": 0.1256 + }, + { + "start": 1363.8, + "end": 1363.8, + "probability": 0.2864 + }, + { + "start": 1363.8, + "end": 1365.28, + "probability": 0.0563 + }, + { + "start": 1383.28, + "end": 1384.18, + "probability": 0.6857 + }, + { + "start": 1386.58, + "end": 1387.06, + "probability": 0.5121 + }, + { + "start": 1388.0, + "end": 1388.8, + "probability": 0.8857 + }, + { + "start": 1389.04, + "end": 1391.36, + "probability": 0.5002 + }, + { + "start": 1393.72, + "end": 1396.44, + "probability": 0.8387 + }, + { + "start": 1396.48, + "end": 1399.02, + "probability": 0.5867 + }, + { + "start": 1407.32, + "end": 1409.16, + "probability": 0.6782 + }, + { + "start": 1410.18, + "end": 1417.26, + "probability": 0.989 + }, + { + "start": 1417.66, + "end": 1421.96, + "probability": 0.645 + }, + { + "start": 1422.06, + "end": 1424.46, + "probability": 0.9709 + }, + { + "start": 1424.68, + "end": 1426.34, + "probability": 0.628 + }, + { + "start": 1426.7, + "end": 1427.8, + "probability": 0.7443 + }, + { + "start": 1427.84, + "end": 1428.28, + "probability": 0.6396 + }, + { + "start": 1428.5, + "end": 1430.7, + "probability": 0.9563 + }, + { + "start": 1431.16, + "end": 1431.56, + "probability": 0.677 + }, + { + "start": 1431.6, + "end": 1436.02, + "probability": 0.6479 + }, + { + "start": 1440.26, + "end": 1442.36, + "probability": 0.9024 + }, + { + "start": 1446.8, + "end": 1450.8, + "probability": 0.9798 + }, + { + "start": 1451.08, + "end": 1451.74, + "probability": 0.8643 + }, + { + "start": 1452.5, + "end": 1455.24, + "probability": 0.8717 + }, + { + "start": 1455.86, + "end": 1457.24, + "probability": 0.9728 + }, + { + "start": 1457.74, + "end": 1459.2, + "probability": 0.9266 + }, + { + "start": 1459.62, + "end": 1464.52, + "probability": 0.9859 + }, + { + "start": 1465.24, + "end": 1467.2, + "probability": 0.7499 + }, + { + "start": 1467.68, + "end": 1471.54, + "probability": 0.9634 + }, + { + "start": 1472.24, + "end": 1472.66, + "probability": 0.792 + }, + { + "start": 1473.06, + "end": 1473.76, + "probability": 0.9508 + }, + { + "start": 1473.84, + "end": 1474.54, + "probability": 0.9593 + }, + { + "start": 1474.86, + "end": 1475.42, + "probability": 0.755 + }, + { + "start": 1475.78, + "end": 1478.28, + "probability": 0.9759 + }, + { + "start": 1478.94, + "end": 1481.92, + "probability": 0.5949 + }, + { + "start": 1482.6, + "end": 1485.44, + "probability": 0.8489 + }, + { + "start": 1486.2, + "end": 1488.74, + "probability": 0.9142 + }, + { + "start": 1489.08, + "end": 1491.76, + "probability": 0.5245 + }, + { + "start": 1492.94, + "end": 1495.48, + "probability": 0.9909 + }, + { + "start": 1496.04, + "end": 1499.1, + "probability": 0.9124 + }, + { + "start": 1499.44, + "end": 1500.32, + "probability": 0.9272 + }, + { + "start": 1501.02, + "end": 1502.56, + "probability": 0.9782 + }, + { + "start": 1502.9, + "end": 1506.28, + "probability": 0.9669 + }, + { + "start": 1506.8, + "end": 1510.08, + "probability": 0.9941 + }, + { + "start": 1510.32, + "end": 1512.87, + "probability": 0.8198 + }, + { + "start": 1513.54, + "end": 1515.84, + "probability": 0.6445 + }, + { + "start": 1516.08, + "end": 1517.08, + "probability": 0.9507 + }, + { + "start": 1517.58, + "end": 1518.0, + "probability": 0.9067 + }, + { + "start": 1518.46, + "end": 1519.88, + "probability": 0.8065 + }, + { + "start": 1521.14, + "end": 1527.16, + "probability": 0.9819 + }, + { + "start": 1527.7, + "end": 1531.26, + "probability": 0.9065 + }, + { + "start": 1531.5, + "end": 1534.6, + "probability": 0.9977 + }, + { + "start": 1535.36, + "end": 1537.48, + "probability": 0.9245 + }, + { + "start": 1538.08, + "end": 1540.64, + "probability": 0.9212 + }, + { + "start": 1541.18, + "end": 1543.04, + "probability": 0.9238 + }, + { + "start": 1543.8, + "end": 1546.2, + "probability": 0.747 + }, + { + "start": 1546.72, + "end": 1549.74, + "probability": 0.9237 + }, + { + "start": 1550.72, + "end": 1550.88, + "probability": 0.4635 + }, + { + "start": 1551.16, + "end": 1554.56, + "probability": 0.9926 + }, + { + "start": 1554.56, + "end": 1558.72, + "probability": 0.6354 + }, + { + "start": 1559.06, + "end": 1562.16, + "probability": 0.8183 + }, + { + "start": 1562.92, + "end": 1563.32, + "probability": 0.3285 + }, + { + "start": 1563.84, + "end": 1564.66, + "probability": 0.4309 + }, + { + "start": 1565.2, + "end": 1566.9, + "probability": 0.812 + }, + { + "start": 1567.5, + "end": 1572.82, + "probability": 0.9717 + }, + { + "start": 1572.82, + "end": 1576.34, + "probability": 0.9379 + }, + { + "start": 1576.74, + "end": 1577.6, + "probability": 0.7136 + }, + { + "start": 1578.28, + "end": 1582.54, + "probability": 0.9757 + }, + { + "start": 1583.16, + "end": 1584.68, + "probability": 0.9793 + }, + { + "start": 1585.5, + "end": 1587.7, + "probability": 0.9546 + }, + { + "start": 1587.7, + "end": 1592.64, + "probability": 0.7881 + }, + { + "start": 1592.8, + "end": 1592.8, + "probability": 0.0 + }, + { + "start": 1593.32, + "end": 1595.84, + "probability": 0.9523 + }, + { + "start": 1596.44, + "end": 1599.2, + "probability": 0.968 + }, + { + "start": 1599.84, + "end": 1603.02, + "probability": 0.9902 + }, + { + "start": 1603.02, + "end": 1606.78, + "probability": 0.9862 + }, + { + "start": 1607.58, + "end": 1614.1, + "probability": 0.9753 + }, + { + "start": 1614.92, + "end": 1619.16, + "probability": 0.969 + }, + { + "start": 1619.72, + "end": 1622.66, + "probability": 0.8719 + }, + { + "start": 1623.32, + "end": 1626.8, + "probability": 0.9706 + }, + { + "start": 1627.32, + "end": 1632.36, + "probability": 0.9263 + }, + { + "start": 1632.98, + "end": 1633.98, + "probability": 0.981 + }, + { + "start": 1634.68, + "end": 1638.18, + "probability": 0.9839 + }, + { + "start": 1638.9, + "end": 1640.18, + "probability": 0.6183 + }, + { + "start": 1641.42, + "end": 1642.42, + "probability": 0.8082 + }, + { + "start": 1643.12, + "end": 1644.2, + "probability": 0.7609 + }, + { + "start": 1645.14, + "end": 1646.32, + "probability": 0.8714 + }, + { + "start": 1647.9, + "end": 1648.9, + "probability": 0.7532 + }, + { + "start": 1649.28, + "end": 1649.86, + "probability": 0.6334 + }, + { + "start": 1649.92, + "end": 1654.0, + "probability": 0.9541 + }, + { + "start": 1654.2, + "end": 1654.98, + "probability": 0.5038 + }, + { + "start": 1655.38, + "end": 1655.96, + "probability": 0.1841 + }, + { + "start": 1657.82, + "end": 1659.18, + "probability": 0.8761 + }, + { + "start": 1679.24, + "end": 1680.14, + "probability": 0.5588 + }, + { + "start": 1680.72, + "end": 1682.5, + "probability": 0.8569 + }, + { + "start": 1683.18, + "end": 1683.98, + "probability": 0.6969 + }, + { + "start": 1685.44, + "end": 1691.5, + "probability": 0.8753 + }, + { + "start": 1691.56, + "end": 1692.24, + "probability": 0.8726 + }, + { + "start": 1692.88, + "end": 1694.38, + "probability": 0.9825 + }, + { + "start": 1696.46, + "end": 1698.1, + "probability": 0.8376 + }, + { + "start": 1699.7, + "end": 1701.26, + "probability": 0.9741 + }, + { + "start": 1702.48, + "end": 1703.96, + "probability": 0.7359 + }, + { + "start": 1704.96, + "end": 1707.22, + "probability": 0.9987 + }, + { + "start": 1708.32, + "end": 1709.47, + "probability": 0.9316 + }, + { + "start": 1710.38, + "end": 1711.3, + "probability": 0.8991 + }, + { + "start": 1712.6, + "end": 1713.42, + "probability": 0.9348 + }, + { + "start": 1714.64, + "end": 1715.34, + "probability": 0.6899 + }, + { + "start": 1715.96, + "end": 1719.74, + "probability": 0.989 + }, + { + "start": 1720.62, + "end": 1724.42, + "probability": 0.9692 + }, + { + "start": 1725.22, + "end": 1726.12, + "probability": 0.8789 + }, + { + "start": 1727.38, + "end": 1728.86, + "probability": 0.9938 + }, + { + "start": 1730.34, + "end": 1735.4, + "probability": 0.9816 + }, + { + "start": 1736.42, + "end": 1740.88, + "probability": 0.9953 + }, + { + "start": 1742.68, + "end": 1743.1, + "probability": 0.8944 + }, + { + "start": 1743.64, + "end": 1744.1, + "probability": 0.8902 + }, + { + "start": 1744.94, + "end": 1747.4, + "probability": 0.9977 + }, + { + "start": 1748.06, + "end": 1748.74, + "probability": 0.9856 + }, + { + "start": 1749.8, + "end": 1752.3, + "probability": 0.9282 + }, + { + "start": 1752.42, + "end": 1753.52, + "probability": 0.8614 + }, + { + "start": 1753.74, + "end": 1757.46, + "probability": 0.9888 + }, + { + "start": 1758.22, + "end": 1760.72, + "probability": 0.9857 + }, + { + "start": 1762.68, + "end": 1765.72, + "probability": 0.9989 + }, + { + "start": 1766.0, + "end": 1769.02, + "probability": 0.9365 + }, + { + "start": 1770.86, + "end": 1771.96, + "probability": 0.9912 + }, + { + "start": 1774.94, + "end": 1780.58, + "probability": 0.9592 + }, + { + "start": 1781.58, + "end": 1784.42, + "probability": 0.9971 + }, + { + "start": 1784.42, + "end": 1787.62, + "probability": 0.9966 + }, + { + "start": 1789.12, + "end": 1792.02, + "probability": 0.9173 + }, + { + "start": 1792.54, + "end": 1794.32, + "probability": 0.9347 + }, + { + "start": 1795.02, + "end": 1799.5, + "probability": 0.8493 + }, + { + "start": 1800.52, + "end": 1801.04, + "probability": 0.8481 + }, + { + "start": 1801.68, + "end": 1803.36, + "probability": 0.8911 + }, + { + "start": 1804.14, + "end": 1805.94, + "probability": 0.9966 + }, + { + "start": 1806.66, + "end": 1809.48, + "probability": 0.9947 + }, + { + "start": 1810.38, + "end": 1813.28, + "probability": 0.8311 + }, + { + "start": 1813.84, + "end": 1814.54, + "probability": 0.9333 + }, + { + "start": 1815.34, + "end": 1819.02, + "probability": 0.9091 + }, + { + "start": 1820.14, + "end": 1822.14, + "probability": 0.9897 + }, + { + "start": 1823.63, + "end": 1826.38, + "probability": 0.9976 + }, + { + "start": 1827.88, + "end": 1828.5, + "probability": 0.2531 + }, + { + "start": 1828.5, + "end": 1830.26, + "probability": 0.5634 + }, + { + "start": 1830.56, + "end": 1831.48, + "probability": 0.918 + }, + { + "start": 1831.5, + "end": 1832.14, + "probability": 0.6928 + }, + { + "start": 1832.96, + "end": 1834.82, + "probability": 0.9869 + }, + { + "start": 1835.72, + "end": 1836.74, + "probability": 0.7649 + }, + { + "start": 1837.3, + "end": 1841.36, + "probability": 0.973 + }, + { + "start": 1842.2, + "end": 1843.22, + "probability": 0.47 + }, + { + "start": 1844.86, + "end": 1848.8, + "probability": 0.995 + }, + { + "start": 1850.1, + "end": 1851.24, + "probability": 0.7492 + }, + { + "start": 1852.08, + "end": 1855.12, + "probability": 0.9951 + }, + { + "start": 1855.7, + "end": 1857.2, + "probability": 0.8789 + }, + { + "start": 1857.94, + "end": 1860.98, + "probability": 0.8174 + }, + { + "start": 1861.82, + "end": 1861.84, + "probability": 0.0053 + }, + { + "start": 1863.08, + "end": 1869.0, + "probability": 0.1181 + }, + { + "start": 1869.0, + "end": 1871.32, + "probability": 0.8785 + }, + { + "start": 1871.86, + "end": 1872.23, + "probability": 0.9292 + }, + { + "start": 1872.8, + "end": 1874.84, + "probability": 0.9532 + }, + { + "start": 1875.26, + "end": 1876.23, + "probability": 0.9883 + }, + { + "start": 1876.94, + "end": 1881.18, + "probability": 0.9839 + }, + { + "start": 1881.76, + "end": 1883.62, + "probability": 0.682 + }, + { + "start": 1884.58, + "end": 1886.02, + "probability": 0.9704 + }, + { + "start": 1886.74, + "end": 1888.88, + "probability": 0.9891 + }, + { + "start": 1889.6, + "end": 1890.3, + "probability": 0.5948 + }, + { + "start": 1890.66, + "end": 1892.86, + "probability": 0.794 + }, + { + "start": 1893.04, + "end": 1894.08, + "probability": 0.9597 + }, + { + "start": 1894.42, + "end": 1895.27, + "probability": 0.9401 + }, + { + "start": 1895.46, + "end": 1896.3, + "probability": 0.9144 + }, + { + "start": 1896.7, + "end": 1901.42, + "probability": 0.9784 + }, + { + "start": 1901.78, + "end": 1903.16, + "probability": 0.9912 + }, + { + "start": 1903.6, + "end": 1903.96, + "probability": 0.7963 + }, + { + "start": 1904.02, + "end": 1904.74, + "probability": 0.9179 + }, + { + "start": 1904.88, + "end": 1908.52, + "probability": 0.9838 + }, + { + "start": 1909.0, + "end": 1911.34, + "probability": 0.9951 + }, + { + "start": 1911.36, + "end": 1913.74, + "probability": 0.9958 + }, + { + "start": 1913.94, + "end": 1914.18, + "probability": 0.7026 + }, + { + "start": 1915.56, + "end": 1916.42, + "probability": 0.7595 + }, + { + "start": 1918.38, + "end": 1920.98, + "probability": 0.8069 + }, + { + "start": 1940.32, + "end": 1943.32, + "probability": 0.7373 + }, + { + "start": 1944.66, + "end": 1949.12, + "probability": 0.9863 + }, + { + "start": 1950.7, + "end": 1951.24, + "probability": 0.9086 + }, + { + "start": 1952.54, + "end": 1954.96, + "probability": 0.9761 + }, + { + "start": 1955.82, + "end": 1961.98, + "probability": 0.9632 + }, + { + "start": 1962.92, + "end": 1966.84, + "probability": 0.9995 + }, + { + "start": 1966.84, + "end": 1971.3, + "probability": 0.9996 + }, + { + "start": 1972.14, + "end": 1975.48, + "probability": 0.9475 + }, + { + "start": 1976.2, + "end": 1977.74, + "probability": 0.8883 + }, + { + "start": 1977.94, + "end": 1981.54, + "probability": 0.9748 + }, + { + "start": 1982.06, + "end": 1983.72, + "probability": 0.9334 + }, + { + "start": 1984.44, + "end": 1990.6, + "probability": 0.9978 + }, + { + "start": 1991.66, + "end": 1993.34, + "probability": 0.8823 + }, + { + "start": 1994.02, + "end": 1995.66, + "probability": 0.9971 + }, + { + "start": 1996.22, + "end": 1997.84, + "probability": 0.9973 + }, + { + "start": 1998.38, + "end": 1999.48, + "probability": 0.8801 + }, + { + "start": 1999.96, + "end": 2004.1, + "probability": 0.9989 + }, + { + "start": 2004.26, + "end": 2004.84, + "probability": 0.5151 + }, + { + "start": 2006.4, + "end": 2008.98, + "probability": 0.9078 + }, + { + "start": 2009.58, + "end": 2013.96, + "probability": 0.9873 + }, + { + "start": 2014.06, + "end": 2014.58, + "probability": 0.8546 + }, + { + "start": 2014.6, + "end": 2015.38, + "probability": 0.8872 + }, + { + "start": 2016.22, + "end": 2020.8, + "probability": 0.9965 + }, + { + "start": 2021.44, + "end": 2025.7, + "probability": 0.9836 + }, + { + "start": 2026.12, + "end": 2029.38, + "probability": 0.9807 + }, + { + "start": 2030.18, + "end": 2033.07, + "probability": 0.9614 + }, + { + "start": 2033.58, + "end": 2034.96, + "probability": 0.8986 + }, + { + "start": 2035.76, + "end": 2036.94, + "probability": 0.9018 + }, + { + "start": 2037.4, + "end": 2039.3, + "probability": 0.4679 + }, + { + "start": 2039.36, + "end": 2040.72, + "probability": 0.9728 + }, + { + "start": 2041.28, + "end": 2043.42, + "probability": 0.9581 + }, + { + "start": 2044.82, + "end": 2047.24, + "probability": 0.7345 + }, + { + "start": 2049.79, + "end": 2053.3, + "probability": 0.9504 + }, + { + "start": 2053.96, + "end": 2055.56, + "probability": 0.9277 + }, + { + "start": 2056.02, + "end": 2062.14, + "probability": 0.9844 + }, + { + "start": 2062.14, + "end": 2065.68, + "probability": 0.998 + }, + { + "start": 2066.2, + "end": 2066.88, + "probability": 0.8797 + }, + { + "start": 2068.18, + "end": 2071.43, + "probability": 0.9985 + }, + { + "start": 2071.76, + "end": 2073.56, + "probability": 0.758 + }, + { + "start": 2074.02, + "end": 2076.0, + "probability": 0.9197 + }, + { + "start": 2076.68, + "end": 2080.78, + "probability": 0.9751 + }, + { + "start": 2081.46, + "end": 2089.28, + "probability": 0.788 + }, + { + "start": 2089.28, + "end": 2092.94, + "probability": 0.9946 + }, + { + "start": 2093.34, + "end": 2101.42, + "probability": 0.9963 + }, + { + "start": 2101.48, + "end": 2106.42, + "probability": 0.9998 + }, + { + "start": 2107.08, + "end": 2110.98, + "probability": 0.9457 + }, + { + "start": 2111.14, + "end": 2112.24, + "probability": 0.7273 + }, + { + "start": 2112.4, + "end": 2113.38, + "probability": 0.8708 + }, + { + "start": 2114.0, + "end": 2117.7, + "probability": 0.9839 + }, + { + "start": 2118.18, + "end": 2120.39, + "probability": 0.9906 + }, + { + "start": 2120.8, + "end": 2123.04, + "probability": 0.9952 + }, + { + "start": 2123.44, + "end": 2126.38, + "probability": 0.9978 + }, + { + "start": 2131.76, + "end": 2132.74, + "probability": 0.1942 + }, + { + "start": 2132.74, + "end": 2136.88, + "probability": 0.581 + }, + { + "start": 2137.18, + "end": 2138.56, + "probability": 0.8299 + }, + { + "start": 2139.22, + "end": 2143.58, + "probability": 0.9967 + }, + { + "start": 2143.66, + "end": 2144.24, + "probability": 0.6864 + }, + { + "start": 2148.82, + "end": 2149.34, + "probability": 0.5733 + }, + { + "start": 2149.36, + "end": 2151.04, + "probability": 0.8742 + }, + { + "start": 2158.02, + "end": 2158.02, + "probability": 0.07 + }, + { + "start": 2158.02, + "end": 2158.02, + "probability": 0.132 + }, + { + "start": 2158.02, + "end": 2158.08, + "probability": 0.1691 + }, + { + "start": 2158.08, + "end": 2158.08, + "probability": 0.0649 + }, + { + "start": 2164.54, + "end": 2164.9, + "probability": 0.0108 + }, + { + "start": 2168.4, + "end": 2169.18, + "probability": 0.1882 + }, + { + "start": 2170.17, + "end": 2174.34, + "probability": 0.134 + }, + { + "start": 2174.7, + "end": 2177.18, + "probability": 0.0577 + }, + { + "start": 2202.1, + "end": 2202.14, + "probability": 0.2678 + }, + { + "start": 2215.24, + "end": 2217.88, + "probability": 0.9351 + }, + { + "start": 2218.56, + "end": 2222.5, + "probability": 0.9963 + }, + { + "start": 2223.22, + "end": 2228.56, + "probability": 0.999 + }, + { + "start": 2229.1, + "end": 2231.64, + "probability": 0.8255 + }, + { + "start": 2233.2, + "end": 2239.18, + "probability": 0.9806 + }, + { + "start": 2240.04, + "end": 2242.4, + "probability": 0.6672 + }, + { + "start": 2242.46, + "end": 2246.1, + "probability": 0.9202 + }, + { + "start": 2246.7, + "end": 2247.72, + "probability": 0.7837 + }, + { + "start": 2248.48, + "end": 2249.64, + "probability": 0.958 + }, + { + "start": 2250.9, + "end": 2254.08, + "probability": 0.9172 + }, + { + "start": 2255.14, + "end": 2257.76, + "probability": 0.9389 + }, + { + "start": 2258.56, + "end": 2259.8, + "probability": 0.7712 + }, + { + "start": 2260.58, + "end": 2262.2, + "probability": 0.8782 + }, + { + "start": 2262.3, + "end": 2263.44, + "probability": 0.9851 + }, + { + "start": 2263.6, + "end": 2264.14, + "probability": 0.0188 + }, + { + "start": 2264.44, + "end": 2270.02, + "probability": 0.9031 + }, + { + "start": 2270.06, + "end": 2275.86, + "probability": 0.6257 + }, + { + "start": 2276.62, + "end": 2280.06, + "probability": 0.6631 + }, + { + "start": 2280.74, + "end": 2281.78, + "probability": 0.9946 + }, + { + "start": 2282.42, + "end": 2283.32, + "probability": 0.781 + }, + { + "start": 2283.6, + "end": 2286.0, + "probability": 0.9888 + }, + { + "start": 2286.46, + "end": 2287.62, + "probability": 0.9528 + }, + { + "start": 2287.9, + "end": 2288.22, + "probability": 0.1824 + }, + { + "start": 2288.4, + "end": 2288.92, + "probability": 0.5722 + }, + { + "start": 2288.92, + "end": 2289.72, + "probability": 0.3096 + }, + { + "start": 2289.72, + "end": 2297.06, + "probability": 0.8053 + }, + { + "start": 2297.86, + "end": 2301.46, + "probability": 0.9761 + }, + { + "start": 2302.02, + "end": 2303.76, + "probability": 0.6289 + }, + { + "start": 2304.18, + "end": 2304.18, + "probability": 0.1018 + }, + { + "start": 2304.18, + "end": 2304.18, + "probability": 0.1531 + }, + { + "start": 2304.18, + "end": 2304.46, + "probability": 0.1405 + }, + { + "start": 2304.5, + "end": 2309.28, + "probability": 0.9103 + }, + { + "start": 2309.52, + "end": 2312.9, + "probability": 0.9232 + }, + { + "start": 2313.46, + "end": 2314.48, + "probability": 0.6627 + }, + { + "start": 2314.93, + "end": 2318.84, + "probability": 0.9687 + }, + { + "start": 2318.94, + "end": 2323.86, + "probability": 0.9656 + }, + { + "start": 2324.06, + "end": 2327.14, + "probability": 0.9663 + }, + { + "start": 2327.14, + "end": 2328.54, + "probability": 0.2224 + }, + { + "start": 2328.56, + "end": 2328.7, + "probability": 0.1128 + }, + { + "start": 2328.86, + "end": 2330.26, + "probability": 0.5162 + }, + { + "start": 2330.26, + "end": 2331.02, + "probability": 0.3202 + }, + { + "start": 2331.2, + "end": 2333.7, + "probability": 0.7947 + }, + { + "start": 2334.62, + "end": 2334.82, + "probability": 0.1594 + }, + { + "start": 2334.82, + "end": 2336.22, + "probability": 0.0276 + }, + { + "start": 2336.64, + "end": 2337.98, + "probability": 0.8652 + }, + { + "start": 2338.42, + "end": 2340.96, + "probability": 0.9782 + }, + { + "start": 2340.98, + "end": 2346.5, + "probability": 0.7786 + }, + { + "start": 2346.5, + "end": 2352.28, + "probability": 0.9943 + }, + { + "start": 2352.46, + "end": 2358.7, + "probability": 0.8254 + }, + { + "start": 2358.7, + "end": 2360.38, + "probability": 0.7763 + }, + { + "start": 2360.74, + "end": 2362.0, + "probability": 0.8681 + }, + { + "start": 2362.12, + "end": 2362.96, + "probability": 0.5771 + }, + { + "start": 2363.02, + "end": 2365.7, + "probability": 0.9957 + }, + { + "start": 2366.28, + "end": 2368.0, + "probability": 0.9065 + }, + { + "start": 2368.42, + "end": 2371.88, + "probability": 0.9844 + }, + { + "start": 2372.72, + "end": 2376.58, + "probability": 0.9501 + }, + { + "start": 2376.94, + "end": 2377.52, + "probability": 0.9794 + }, + { + "start": 2377.9, + "end": 2378.76, + "probability": 0.8603 + }, + { + "start": 2379.04, + "end": 2380.64, + "probability": 0.8269 + }, + { + "start": 2381.36, + "end": 2383.14, + "probability": 0.8755 + }, + { + "start": 2400.38, + "end": 2400.44, + "probability": 0.0043 + }, + { + "start": 2400.44, + "end": 2401.96, + "probability": 0.3679 + }, + { + "start": 2404.14, + "end": 2406.72, + "probability": 0.6919 + }, + { + "start": 2409.13, + "end": 2414.46, + "probability": 0.9687 + }, + { + "start": 2415.64, + "end": 2416.91, + "probability": 0.9181 + }, + { + "start": 2418.2, + "end": 2426.44, + "probability": 0.9547 + }, + { + "start": 2427.74, + "end": 2429.02, + "probability": 0.9629 + }, + { + "start": 2430.56, + "end": 2433.84, + "probability": 0.9223 + }, + { + "start": 2434.92, + "end": 2436.72, + "probability": 0.9328 + }, + { + "start": 2437.7, + "end": 2442.74, + "probability": 0.968 + }, + { + "start": 2442.96, + "end": 2443.63, + "probability": 0.8151 + }, + { + "start": 2444.98, + "end": 2449.76, + "probability": 0.9575 + }, + { + "start": 2451.02, + "end": 2453.66, + "probability": 0.9329 + }, + { + "start": 2454.3, + "end": 2455.86, + "probability": 0.9812 + }, + { + "start": 2456.42, + "end": 2459.58, + "probability": 0.9735 + }, + { + "start": 2460.6, + "end": 2464.16, + "probability": 0.9761 + }, + { + "start": 2464.94, + "end": 2466.28, + "probability": 0.5544 + }, + { + "start": 2467.0, + "end": 2467.6, + "probability": 0.8157 + }, + { + "start": 2467.8, + "end": 2471.52, + "probability": 0.927 + }, + { + "start": 2473.4, + "end": 2477.5, + "probability": 0.9643 + }, + { + "start": 2478.56, + "end": 2484.4, + "probability": 0.9448 + }, + { + "start": 2485.12, + "end": 2487.92, + "probability": 0.9921 + }, + { + "start": 2488.58, + "end": 2490.88, + "probability": 0.9058 + }, + { + "start": 2491.1, + "end": 2492.62, + "probability": 0.6017 + }, + { + "start": 2492.7, + "end": 2493.58, + "probability": 0.7754 + }, + { + "start": 2493.68, + "end": 2496.86, + "probability": 0.7317 + }, + { + "start": 2497.5, + "end": 2497.84, + "probability": 0.189 + }, + { + "start": 2497.84, + "end": 2499.92, + "probability": 0.4547 + }, + { + "start": 2499.94, + "end": 2500.04, + "probability": 0.4445 + }, + { + "start": 2500.82, + "end": 2504.6, + "probability": 0.9522 + }, + { + "start": 2504.9, + "end": 2506.64, + "probability": 0.4872 + }, + { + "start": 2507.14, + "end": 2508.62, + "probability": 0.5403 + }, + { + "start": 2509.58, + "end": 2511.82, + "probability": 0.7334 + }, + { + "start": 2512.44, + "end": 2520.18, + "probability": 0.9954 + }, + { + "start": 2520.52, + "end": 2522.12, + "probability": 0.9043 + }, + { + "start": 2522.44, + "end": 2525.02, + "probability": 0.6668 + }, + { + "start": 2527.06, + "end": 2527.62, + "probability": 0.7367 + }, + { + "start": 2528.6, + "end": 2530.08, + "probability": 0.0243 + }, + { + "start": 2530.08, + "end": 2530.08, + "probability": 0.0939 + }, + { + "start": 2530.08, + "end": 2530.08, + "probability": 0.3036 + }, + { + "start": 2530.08, + "end": 2532.86, + "probability": 0.1191 + }, + { + "start": 2533.32, + "end": 2535.3, + "probability": 0.5729 + }, + { + "start": 2536.0, + "end": 2540.18, + "probability": 0.9282 + }, + { + "start": 2540.66, + "end": 2542.61, + "probability": 0.8536 + }, + { + "start": 2543.34, + "end": 2546.06, + "probability": 0.7805 + }, + { + "start": 2546.6, + "end": 2548.86, + "probability": 0.9946 + }, + { + "start": 2549.26, + "end": 2552.94, + "probability": 0.7663 + }, + { + "start": 2553.0, + "end": 2554.08, + "probability": 0.4932 + }, + { + "start": 2554.1, + "end": 2554.62, + "probability": 0.3256 + }, + { + "start": 2554.62, + "end": 2556.92, + "probability": 0.9543 + }, + { + "start": 2557.32, + "end": 2559.26, + "probability": 0.9585 + }, + { + "start": 2559.66, + "end": 2560.94, + "probability": 0.6373 + }, + { + "start": 2561.52, + "end": 2563.88, + "probability": 0.7007 + }, + { + "start": 2564.44, + "end": 2567.3, + "probability": 0.9349 + }, + { + "start": 2567.3, + "end": 2572.04, + "probability": 0.9451 + }, + { + "start": 2572.4, + "end": 2573.88, + "probability": 0.9258 + }, + { + "start": 2574.92, + "end": 2578.74, + "probability": 0.8304 + }, + { + "start": 2578.8, + "end": 2578.8, + "probability": 0.1064 + }, + { + "start": 2578.82, + "end": 2581.18, + "probability": 0.8372 + }, + { + "start": 2581.98, + "end": 2582.0, + "probability": 0.2171 + }, + { + "start": 2582.0, + "end": 2583.56, + "probability": 0.9893 + }, + { + "start": 2583.66, + "end": 2584.92, + "probability": 0.6072 + }, + { + "start": 2585.22, + "end": 2587.98, + "probability": 0.8299 + }, + { + "start": 2588.9, + "end": 2589.78, + "probability": 0.5866 + }, + { + "start": 2591.92, + "end": 2593.56, + "probability": 0.6086 + }, + { + "start": 2593.82, + "end": 2594.76, + "probability": 0.056 + }, + { + "start": 2594.76, + "end": 2594.76, + "probability": 0.2905 + }, + { + "start": 2594.78, + "end": 2595.98, + "probability": 0.8548 + }, + { + "start": 2598.2, + "end": 2600.0, + "probability": 0.3369 + }, + { + "start": 2600.0, + "end": 2603.42, + "probability": 0.5184 + }, + { + "start": 2603.42, + "end": 2604.35, + "probability": 0.4126 + }, + { + "start": 2605.32, + "end": 2606.36, + "probability": 0.4702 + }, + { + "start": 2607.08, + "end": 2608.78, + "probability": 0.9836 + }, + { + "start": 2609.62, + "end": 2614.2, + "probability": 0.9657 + }, + { + "start": 2614.98, + "end": 2615.7, + "probability": 0.3787 + }, + { + "start": 2616.3, + "end": 2619.64, + "probability": 0.7683 + }, + { + "start": 2620.18, + "end": 2625.16, + "probability": 0.7121 + }, + { + "start": 2625.74, + "end": 2628.12, + "probability": 0.8671 + }, + { + "start": 2628.8, + "end": 2630.08, + "probability": 0.9951 + }, + { + "start": 2630.16, + "end": 2631.22, + "probability": 0.9221 + }, + { + "start": 2631.28, + "end": 2631.92, + "probability": 0.6063 + }, + { + "start": 2632.22, + "end": 2633.76, + "probability": 0.6611 + }, + { + "start": 2634.76, + "end": 2640.58, + "probability": 0.7922 + }, + { + "start": 2644.34, + "end": 2645.4, + "probability": 0.4715 + }, + { + "start": 2645.4, + "end": 2646.14, + "probability": 0.5948 + }, + { + "start": 2646.28, + "end": 2647.18, + "probability": 0.9569 + }, + { + "start": 2649.84, + "end": 2651.68, + "probability": 0.7737 + }, + { + "start": 2658.28, + "end": 2658.98, + "probability": 0.084 + }, + { + "start": 2660.12, + "end": 2660.72, + "probability": 0.9314 + }, + { + "start": 2662.18, + "end": 2662.28, + "probability": 0.946 + }, + { + "start": 2676.92, + "end": 2678.06, + "probability": 0.4499 + }, + { + "start": 2678.74, + "end": 2679.6, + "probability": 0.8034 + }, + { + "start": 2679.68, + "end": 2680.5, + "probability": 0.6135 + }, + { + "start": 2681.65, + "end": 2685.14, + "probability": 0.1238 + }, + { + "start": 2712.68, + "end": 2715.22, + "probability": 0.5741 + }, + { + "start": 2715.38, + "end": 2715.78, + "probability": 0.3477 + }, + { + "start": 2716.33, + "end": 2720.77, + "probability": 0.9222 + }, + { + "start": 2721.78, + "end": 2726.5, + "probability": 0.8703 + }, + { + "start": 2727.32, + "end": 2731.08, + "probability": 0.9701 + }, + { + "start": 2731.92, + "end": 2734.0, + "probability": 0.9005 + }, + { + "start": 2734.16, + "end": 2734.84, + "probability": 0.7679 + }, + { + "start": 2735.1, + "end": 2738.38, + "probability": 0.8814 + }, + { + "start": 2738.44, + "end": 2741.42, + "probability": 0.9712 + }, + { + "start": 2741.92, + "end": 2742.5, + "probability": 0.9779 + }, + { + "start": 2743.44, + "end": 2744.08, + "probability": 0.2581 + }, + { + "start": 2744.98, + "end": 2745.9, + "probability": 0.683 + }, + { + "start": 2746.5, + "end": 2751.04, + "probability": 0.7827 + }, + { + "start": 2751.68, + "end": 2754.4, + "probability": 0.9759 + }, + { + "start": 2754.96, + "end": 2755.06, + "probability": 0.4982 + }, + { + "start": 2755.06, + "end": 2758.62, + "probability": 0.912 + }, + { + "start": 2758.76, + "end": 2766.84, + "probability": 0.9852 + }, + { + "start": 2769.04, + "end": 2771.2, + "probability": 0.89 + }, + { + "start": 2771.24, + "end": 2771.52, + "probability": 0.5376 + }, + { + "start": 2771.52, + "end": 2771.74, + "probability": 0.7047 + }, + { + "start": 2771.92, + "end": 2774.68, + "probability": 0.9751 + }, + { + "start": 2775.24, + "end": 2776.06, + "probability": 0.7102 + }, + { + "start": 2777.06, + "end": 2778.31, + "probability": 0.7187 + }, + { + "start": 2778.42, + "end": 2779.82, + "probability": 0.763 + }, + { + "start": 2780.32, + "end": 2784.0, + "probability": 0.9917 + }, + { + "start": 2784.54, + "end": 2787.38, + "probability": 0.9033 + }, + { + "start": 2788.32, + "end": 2788.82, + "probability": 0.5463 + }, + { + "start": 2789.06, + "end": 2791.6, + "probability": 0.9237 + }, + { + "start": 2791.64, + "end": 2792.44, + "probability": 0.6676 + }, + { + "start": 2792.6, + "end": 2793.37, + "probability": 0.923 + }, + { + "start": 2794.04, + "end": 2794.52, + "probability": 0.7812 + }, + { + "start": 2794.58, + "end": 2798.74, + "probability": 0.9632 + }, + { + "start": 2799.32, + "end": 2800.16, + "probability": 0.5206 + }, + { + "start": 2800.32, + "end": 2802.62, + "probability": 0.9775 + }, + { + "start": 2803.78, + "end": 2806.72, + "probability": 0.9835 + }, + { + "start": 2806.76, + "end": 2807.7, + "probability": 0.8586 + }, + { + "start": 2807.82, + "end": 2809.26, + "probability": 0.9219 + }, + { + "start": 2810.1, + "end": 2810.56, + "probability": 0.6893 + }, + { + "start": 2810.64, + "end": 2810.72, + "probability": 0.6863 + }, + { + "start": 2810.76, + "end": 2813.14, + "probability": 0.9917 + }, + { + "start": 2813.44, + "end": 2814.56, + "probability": 0.8122 + }, + { + "start": 2814.72, + "end": 2814.9, + "probability": 0.0938 + }, + { + "start": 2815.34, + "end": 2816.86, + "probability": 0.8289 + }, + { + "start": 2817.4, + "end": 2820.4, + "probability": 0.8298 + }, + { + "start": 2820.72, + "end": 2820.8, + "probability": 0.8547 + }, + { + "start": 2820.92, + "end": 2821.98, + "probability": 0.9911 + }, + { + "start": 2822.02, + "end": 2822.7, + "probability": 0.852 + }, + { + "start": 2823.08, + "end": 2824.74, + "probability": 0.7525 + }, + { + "start": 2825.02, + "end": 2825.12, + "probability": 0.762 + }, + { + "start": 2826.66, + "end": 2831.44, + "probability": 0.8481 + }, + { + "start": 2831.9, + "end": 2831.9, + "probability": 0.1306 + }, + { + "start": 2831.9, + "end": 2834.4, + "probability": 0.8146 + }, + { + "start": 2834.58, + "end": 2835.38, + "probability": 0.7185 + }, + { + "start": 2835.82, + "end": 2835.98, + "probability": 0.1458 + }, + { + "start": 2836.24, + "end": 2837.32, + "probability": 0.8386 + }, + { + "start": 2837.5, + "end": 2837.52, + "probability": 0.5798 + }, + { + "start": 2837.64, + "end": 2839.24, + "probability": 0.5371 + }, + { + "start": 2839.38, + "end": 2840.96, + "probability": 0.3626 + }, + { + "start": 2843.4, + "end": 2843.62, + "probability": 0.0571 + }, + { + "start": 2843.62, + "end": 2844.8, + "probability": 0.103 + }, + { + "start": 2845.12, + "end": 2845.12, + "probability": 0.0917 + }, + { + "start": 2845.12, + "end": 2845.12, + "probability": 0.1761 + }, + { + "start": 2845.12, + "end": 2845.12, + "probability": 0.136 + }, + { + "start": 2845.12, + "end": 2849.8, + "probability": 0.5248 + }, + { + "start": 2850.98, + "end": 2853.02, + "probability": 0.81 + }, + { + "start": 2853.24, + "end": 2857.6, + "probability": 0.7286 + }, + { + "start": 2857.9, + "end": 2857.9, + "probability": 0.0633 + }, + { + "start": 2857.9, + "end": 2862.84, + "probability": 0.7905 + }, + { + "start": 2863.36, + "end": 2865.74, + "probability": 0.6302 + }, + { + "start": 2865.98, + "end": 2868.0, + "probability": 0.7722 + }, + { + "start": 2868.62, + "end": 2868.62, + "probability": 0.2038 + }, + { + "start": 2868.62, + "end": 2870.28, + "probability": 0.6001 + }, + { + "start": 2870.28, + "end": 2871.2, + "probability": 0.2153 + }, + { + "start": 2871.92, + "end": 2874.04, + "probability": 0.8044 + }, + { + "start": 2874.28, + "end": 2878.32, + "probability": 0.7256 + }, + { + "start": 2878.44, + "end": 2878.56, + "probability": 0.4401 + }, + { + "start": 2878.66, + "end": 2883.2, + "probability": 0.9832 + }, + { + "start": 2883.46, + "end": 2883.96, + "probability": 0.5037 + }, + { + "start": 2884.34, + "end": 2887.06, + "probability": 0.9194 + }, + { + "start": 2887.72, + "end": 2887.86, + "probability": 0.2203 + }, + { + "start": 2887.94, + "end": 2888.36, + "probability": 0.8313 + }, + { + "start": 2888.88, + "end": 2889.66, + "probability": 0.6078 + }, + { + "start": 2889.78, + "end": 2890.28, + "probability": 0.6997 + }, + { + "start": 2890.44, + "end": 2891.1, + "probability": 0.1073 + }, + { + "start": 2891.24, + "end": 2891.66, + "probability": 0.6756 + }, + { + "start": 2891.76, + "end": 2892.12, + "probability": 0.761 + }, + { + "start": 2892.14, + "end": 2892.18, + "probability": 0.4325 + }, + { + "start": 2892.18, + "end": 2893.88, + "probability": 0.8108 + }, + { + "start": 2893.94, + "end": 2896.18, + "probability": 0.8244 + }, + { + "start": 2896.4, + "end": 2898.02, + "probability": 0.5781 + }, + { + "start": 2898.46, + "end": 2899.22, + "probability": 0.0292 + }, + { + "start": 2899.22, + "end": 2899.22, + "probability": 0.0191 + }, + { + "start": 2899.22, + "end": 2901.49, + "probability": 0.6715 + }, + { + "start": 2902.04, + "end": 2904.96, + "probability": 0.7534 + }, + { + "start": 2905.44, + "end": 2907.15, + "probability": 0.6295 + }, + { + "start": 2907.3, + "end": 2910.76, + "probability": 0.9951 + }, + { + "start": 2910.94, + "end": 2913.6, + "probability": 0.7984 + }, + { + "start": 2913.8, + "end": 2917.52, + "probability": 0.6145 + }, + { + "start": 2917.6, + "end": 2917.64, + "probability": 0.0831 + }, + { + "start": 2919.9, + "end": 2920.44, + "probability": 0.0208 + }, + { + "start": 2920.44, + "end": 2922.74, + "probability": 0.265 + }, + { + "start": 2923.04, + "end": 2926.36, + "probability": 0.4666 + }, + { + "start": 2926.48, + "end": 2927.24, + "probability": 0.035 + }, + { + "start": 2928.02, + "end": 2930.34, + "probability": 0.1484 + }, + { + "start": 2930.62, + "end": 2933.4, + "probability": 0.1252 + }, + { + "start": 2933.4, + "end": 2933.56, + "probability": 0.3222 + }, + { + "start": 2933.56, + "end": 2937.46, + "probability": 0.0393 + }, + { + "start": 2938.36, + "end": 2938.78, + "probability": 0.2456 + }, + { + "start": 2939.04, + "end": 2939.5, + "probability": 0.2329 + }, + { + "start": 2940.34, + "end": 2940.82, + "probability": 0.0398 + }, + { + "start": 2941.88, + "end": 2942.7, + "probability": 0.1693 + }, + { + "start": 2943.94, + "end": 2944.28, + "probability": 0.0956 + }, + { + "start": 2944.66, + "end": 2945.54, + "probability": 0.131 + }, + { + "start": 2948.98, + "end": 2953.24, + "probability": 0.1699 + }, + { + "start": 2954.56, + "end": 2955.42, + "probability": 0.0975 + }, + { + "start": 2959.76, + "end": 2960.6, + "probability": 0.3711 + }, + { + "start": 2962.16, + "end": 2964.5, + "probability": 0.0345 + }, + { + "start": 3026.0, + "end": 3026.0, + "probability": 0.0 + }, + { + "start": 3026.0, + "end": 3026.0, + "probability": 0.0 + }, + { + "start": 3026.0, + "end": 3026.0, + "probability": 0.0 + }, + { + "start": 3026.0, + "end": 3026.0, + "probability": 0.0 + }, + { + "start": 3026.0, + "end": 3026.0, + "probability": 0.0 + }, + { + "start": 3026.0, + "end": 3026.0, + "probability": 0.0 + }, + { + "start": 3026.0, + "end": 3026.0, + "probability": 0.0 + }, + { + "start": 3026.0, + "end": 3026.0, + "probability": 0.0 + }, + { + "start": 3026.0, + "end": 3026.0, + "probability": 0.0 + }, + { + "start": 3026.0, + "end": 3026.0, + "probability": 0.0 + }, + { + "start": 3026.0, + "end": 3026.0, + "probability": 0.0 + }, + { + "start": 3026.0, + "end": 3026.0, + "probability": 0.0 + }, + { + "start": 3026.0, + "end": 3026.0, + "probability": 0.0 + }, + { + "start": 3026.0, + "end": 3026.0, + "probability": 0.0 + }, + { + "start": 3026.0, + "end": 3026.0, + "probability": 0.0 + }, + { + "start": 3026.18, + "end": 3027.0, + "probability": 0.1589 + }, + { + "start": 3031.38, + "end": 3033.22, + "probability": 0.4217 + }, + { + "start": 3037.08, + "end": 3040.18, + "probability": 0.0442 + }, + { + "start": 3044.64, + "end": 3045.5, + "probability": 0.0031 + }, + { + "start": 3067.12, + "end": 3067.58, + "probability": 0.0122 + }, + { + "start": 3070.58, + "end": 3070.78, + "probability": 0.0238 + }, + { + "start": 3074.22, + "end": 3076.96, + "probability": 0.0406 + }, + { + "start": 3078.51, + "end": 3080.88, + "probability": 0.0924 + }, + { + "start": 3081.72, + "end": 3082.28, + "probability": 0.0856 + }, + { + "start": 3082.66, + "end": 3083.44, + "probability": 0.0328 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3148.0, + "end": 3148.0, + "probability": 0.0 + }, + { + "start": 3150.64, + "end": 3150.96, + "probability": 0.0771 + }, + { + "start": 3150.96, + "end": 3151.32, + "probability": 0.0545 + }, + { + "start": 3152.42, + "end": 3152.62, + "probability": 0.1214 + }, + { + "start": 3152.62, + "end": 3152.62, + "probability": 0.0239 + }, + { + "start": 3152.62, + "end": 3152.62, + "probability": 0.0163 + }, + { + "start": 3152.62, + "end": 3153.84, + "probability": 0.5874 + }, + { + "start": 3153.96, + "end": 3154.96, + "probability": 0.851 + }, + { + "start": 3155.0, + "end": 3158.6, + "probability": 0.9554 + }, + { + "start": 3159.2, + "end": 3159.91, + "probability": 0.3618 + }, + { + "start": 3160.66, + "end": 3162.9, + "probability": 0.9021 + }, + { + "start": 3163.22, + "end": 3164.98, + "probability": 0.9623 + }, + { + "start": 3165.38, + "end": 3168.88, + "probability": 0.7944 + }, + { + "start": 3169.16, + "end": 3170.16, + "probability": 0.9552 + }, + { + "start": 3170.16, + "end": 3171.12, + "probability": 0.8205 + }, + { + "start": 3171.4, + "end": 3172.86, + "probability": 0.986 + }, + { + "start": 3173.38, + "end": 3174.74, + "probability": 0.722 + }, + { + "start": 3175.5, + "end": 3176.55, + "probability": 0.9893 + }, + { + "start": 3177.26, + "end": 3178.34, + "probability": 0.8359 + }, + { + "start": 3178.74, + "end": 3181.14, + "probability": 0.9353 + }, + { + "start": 3181.54, + "end": 3182.48, + "probability": 0.8686 + }, + { + "start": 3183.44, + "end": 3188.32, + "probability": 0.9785 + }, + { + "start": 3189.46, + "end": 3190.68, + "probability": 0.7314 + }, + { + "start": 3191.16, + "end": 3192.2, + "probability": 0.9603 + }, + { + "start": 3192.68, + "end": 3194.82, + "probability": 0.9943 + }, + { + "start": 3194.82, + "end": 3197.2, + "probability": 0.9988 + }, + { + "start": 3198.74, + "end": 3202.54, + "probability": 0.9491 + }, + { + "start": 3202.64, + "end": 3205.38, + "probability": 0.9944 + }, + { + "start": 3205.38, + "end": 3207.94, + "probability": 0.9937 + }, + { + "start": 3208.64, + "end": 3211.5, + "probability": 0.9916 + }, + { + "start": 3211.68, + "end": 3212.26, + "probability": 0.4905 + }, + { + "start": 3212.38, + "end": 3212.86, + "probability": 0.8245 + }, + { + "start": 3213.0, + "end": 3213.74, + "probability": 0.7623 + }, + { + "start": 3215.66, + "end": 3216.26, + "probability": 0.6832 + }, + { + "start": 3216.34, + "end": 3217.82, + "probability": 0.9581 + }, + { + "start": 3222.18, + "end": 3223.04, + "probability": 0.6698 + }, + { + "start": 3223.34, + "end": 3225.88, + "probability": 0.606 + }, + { + "start": 3226.66, + "end": 3229.26, + "probability": 0.8854 + }, + { + "start": 3229.44, + "end": 3232.28, + "probability": 0.9025 + }, + { + "start": 3234.2, + "end": 3234.56, + "probability": 0.0646 + }, + { + "start": 3234.56, + "end": 3235.04, + "probability": 0.2273 + }, + { + "start": 3235.82, + "end": 3236.58, + "probability": 0.3755 + }, + { + "start": 3236.66, + "end": 3236.8, + "probability": 0.3586 + }, + { + "start": 3236.96, + "end": 3238.5, + "probability": 0.8918 + }, + { + "start": 3239.1, + "end": 3239.84, + "probability": 0.1603 + }, + { + "start": 3240.16, + "end": 3242.18, + "probability": 0.1574 + }, + { + "start": 3242.48, + "end": 3242.48, + "probability": 0.1111 + }, + { + "start": 3242.48, + "end": 3242.86, + "probability": 0.2826 + }, + { + "start": 3242.86, + "end": 3242.88, + "probability": 0.2658 + }, + { + "start": 3243.0, + "end": 3245.18, + "probability": 0.8208 + }, + { + "start": 3245.64, + "end": 3245.78, + "probability": 0.1384 + }, + { + "start": 3246.12, + "end": 3247.34, + "probability": 0.4725 + }, + { + "start": 3249.52, + "end": 3250.82, + "probability": 0.6127 + }, + { + "start": 3252.66, + "end": 3256.06, + "probability": 0.899 + }, + { + "start": 3257.6, + "end": 3259.0, + "probability": 0.6904 + }, + { + "start": 3259.58, + "end": 3259.84, + "probability": 0.964 + }, + { + "start": 3260.7, + "end": 3260.7, + "probability": 0.4836 + }, + { + "start": 3260.7, + "end": 3263.24, + "probability": 0.6808 + }, + { + "start": 3263.98, + "end": 3264.54, + "probability": 0.4008 + }, + { + "start": 3265.1, + "end": 3267.24, + "probability": 0.8201 + }, + { + "start": 3267.4, + "end": 3267.5, + "probability": 0.891 + }, + { + "start": 3267.62, + "end": 3269.36, + "probability": 0.8804 + }, + { + "start": 3269.5, + "end": 3271.0, + "probability": 0.9783 + }, + { + "start": 3272.0, + "end": 3272.66, + "probability": 0.98 + }, + { + "start": 3274.5, + "end": 3275.57, + "probability": 0.6445 + }, + { + "start": 3277.74, + "end": 3278.74, + "probability": 0.984 + }, + { + "start": 3279.4, + "end": 3280.6, + "probability": 0.9548 + }, + { + "start": 3282.14, + "end": 3282.82, + "probability": 0.5509 + }, + { + "start": 3282.82, + "end": 3283.78, + "probability": 0.7054 + }, + { + "start": 3284.04, + "end": 3285.52, + "probability": 0.961 + }, + { + "start": 3285.98, + "end": 3286.96, + "probability": 0.5143 + }, + { + "start": 3287.9, + "end": 3292.72, + "probability": 0.6655 + }, + { + "start": 3293.96, + "end": 3296.44, + "probability": 0.999 + }, + { + "start": 3296.64, + "end": 3297.76, + "probability": 0.9873 + }, + { + "start": 3298.42, + "end": 3300.56, + "probability": 0.9976 + }, + { + "start": 3300.84, + "end": 3306.48, + "probability": 0.974 + }, + { + "start": 3306.86, + "end": 3310.7, + "probability": 0.9974 + }, + { + "start": 3310.96, + "end": 3315.32, + "probability": 0.9852 + }, + { + "start": 3315.8, + "end": 3316.44, + "probability": 0.2871 + }, + { + "start": 3316.54, + "end": 3316.74, + "probability": 0.7308 + }, + { + "start": 3316.8, + "end": 3317.1, + "probability": 0.8664 + }, + { + "start": 3317.16, + "end": 3318.0, + "probability": 0.5984 + }, + { + "start": 3318.66, + "end": 3319.74, + "probability": 0.994 + }, + { + "start": 3320.42, + "end": 3322.98, + "probability": 0.9932 + }, + { + "start": 3323.74, + "end": 3326.46, + "probability": 0.0375 + }, + { + "start": 3327.1, + "end": 3327.1, + "probability": 0.1014 + }, + { + "start": 3327.1, + "end": 3327.1, + "probability": 0.0184 + }, + { + "start": 3327.1, + "end": 3329.52, + "probability": 0.9617 + }, + { + "start": 3329.6, + "end": 3332.66, + "probability": 0.9858 + }, + { + "start": 3333.4, + "end": 3334.98, + "probability": 0.9812 + }, + { + "start": 3335.96, + "end": 3338.16, + "probability": 0.9849 + }, + { + "start": 3338.44, + "end": 3339.94, + "probability": 0.9302 + }, + { + "start": 3340.4, + "end": 3342.34, + "probability": 0.9458 + }, + { + "start": 3342.88, + "end": 3349.26, + "probability": 0.9544 + }, + { + "start": 3349.96, + "end": 3350.86, + "probability": 0.991 + }, + { + "start": 3351.56, + "end": 3354.82, + "probability": 0.9838 + }, + { + "start": 3355.48, + "end": 3355.66, + "probability": 0.5941 + }, + { + "start": 3355.78, + "end": 3358.02, + "probability": 0.7506 + }, + { + "start": 3358.14, + "end": 3359.21, + "probability": 0.9967 + }, + { + "start": 3360.06, + "end": 3361.62, + "probability": 0.9751 + }, + { + "start": 3361.68, + "end": 3363.4, + "probability": 0.9569 + }, + { + "start": 3363.52, + "end": 3364.77, + "probability": 0.9976 + }, + { + "start": 3365.28, + "end": 3366.81, + "probability": 0.9187 + }, + { + "start": 3367.94, + "end": 3372.94, + "probability": 0.9493 + }, + { + "start": 3372.98, + "end": 3373.64, + "probability": 0.7167 + }, + { + "start": 3374.66, + "end": 3377.62, + "probability": 0.9209 + }, + { + "start": 3378.14, + "end": 3379.24, + "probability": 0.9854 + }, + { + "start": 3379.96, + "end": 3380.48, + "probability": 0.5901 + }, + { + "start": 3381.34, + "end": 3383.06, + "probability": 0.9461 + }, + { + "start": 3383.4, + "end": 3385.32, + "probability": 0.9382 + }, + { + "start": 3385.32, + "end": 3388.62, + "probability": 0.9321 + }, + { + "start": 3389.2, + "end": 3389.98, + "probability": 0.6062 + }, + { + "start": 3391.52, + "end": 3392.12, + "probability": 0.9128 + }, + { + "start": 3393.16, + "end": 3394.16, + "probability": 0.9189 + }, + { + "start": 3394.5, + "end": 3395.4, + "probability": 0.9745 + }, + { + "start": 3395.5, + "end": 3396.8, + "probability": 0.9474 + }, + { + "start": 3397.38, + "end": 3398.72, + "probability": 0.7689 + }, + { + "start": 3399.42, + "end": 3400.48, + "probability": 0.9316 + }, + { + "start": 3401.34, + "end": 3403.94, + "probability": 0.7145 + }, + { + "start": 3404.08, + "end": 3406.78, + "probability": 0.9203 + }, + { + "start": 3407.92, + "end": 3413.14, + "probability": 0.8809 + }, + { + "start": 3413.22, + "end": 3415.0, + "probability": 0.9707 + }, + { + "start": 3415.66, + "end": 3418.32, + "probability": 0.8574 + }, + { + "start": 3418.48, + "end": 3418.91, + "probability": 0.9727 + }, + { + "start": 3420.0, + "end": 3421.04, + "probability": 0.9827 + }, + { + "start": 3421.84, + "end": 3429.88, + "probability": 0.943 + }, + { + "start": 3430.26, + "end": 3430.68, + "probability": 0.5252 + }, + { + "start": 3431.28, + "end": 3434.22, + "probability": 0.9331 + }, + { + "start": 3434.68, + "end": 3435.9, + "probability": 0.9671 + }, + { + "start": 3436.2, + "end": 3437.06, + "probability": 0.0147 + }, + { + "start": 3437.18, + "end": 3440.24, + "probability": 0.9917 + }, + { + "start": 3441.34, + "end": 3444.9, + "probability": 0.8837 + }, + { + "start": 3445.46, + "end": 3447.66, + "probability": 0.7611 + }, + { + "start": 3448.86, + "end": 3453.88, + "probability": 0.8202 + }, + { + "start": 3453.88, + "end": 3455.7, + "probability": 0.1559 + }, + { + "start": 3456.54, + "end": 3456.76, + "probability": 0.057 + }, + { + "start": 3456.76, + "end": 3456.76, + "probability": 0.0477 + }, + { + "start": 3456.76, + "end": 3458.74, + "probability": 0.8516 + }, + { + "start": 3458.96, + "end": 3459.86, + "probability": 0.9678 + }, + { + "start": 3460.48, + "end": 3461.81, + "probability": 0.7822 + }, + { + "start": 3461.98, + "end": 3463.1, + "probability": 0.5451 + }, + { + "start": 3463.36, + "end": 3467.1, + "probability": 0.9245 + }, + { + "start": 3467.28, + "end": 3470.28, + "probability": 0.8558 + }, + { + "start": 3470.72, + "end": 3471.78, + "probability": 0.6305 + }, + { + "start": 3472.08, + "end": 3472.26, + "probability": 0.4073 + }, + { + "start": 3472.3, + "end": 3473.72, + "probability": 0.7616 + }, + { + "start": 3473.98, + "end": 3475.48, + "probability": 0.9742 + }, + { + "start": 3476.2, + "end": 3478.6, + "probability": 0.9476 + }, + { + "start": 3479.12, + "end": 3480.42, + "probability": 0.9731 + }, + { + "start": 3481.1, + "end": 3482.18, + "probability": 0.9912 + }, + { + "start": 3482.92, + "end": 3484.86, + "probability": 0.9478 + }, + { + "start": 3485.38, + "end": 3491.06, + "probability": 0.9759 + }, + { + "start": 3491.68, + "end": 3492.36, + "probability": 0.9684 + }, + { + "start": 3492.86, + "end": 3493.04, + "probability": 0.5401 + }, + { + "start": 3493.06, + "end": 3497.8, + "probability": 0.9557 + }, + { + "start": 3497.8, + "end": 3498.56, + "probability": 0.0132 + }, + { + "start": 3499.24, + "end": 3499.7, + "probability": 0.1674 + }, + { + "start": 3499.88, + "end": 3500.06, + "probability": 0.0828 + }, + { + "start": 3500.06, + "end": 3502.29, + "probability": 0.9658 + }, + { + "start": 3502.54, + "end": 3506.2, + "probability": 0.8882 + }, + { + "start": 3506.2, + "end": 3506.78, + "probability": 0.7783 + }, + { + "start": 3507.14, + "end": 3510.41, + "probability": 0.9832 + }, + { + "start": 3510.46, + "end": 3511.36, + "probability": 0.5792 + }, + { + "start": 3511.48, + "end": 3512.5, + "probability": 0.7209 + }, + { + "start": 3514.14, + "end": 3515.06, + "probability": 0.0604 + }, + { + "start": 3515.12, + "end": 3515.56, + "probability": 0.6113 + }, + { + "start": 3515.62, + "end": 3517.22, + "probability": 0.7913 + }, + { + "start": 3518.94, + "end": 3519.46, + "probability": 0.9696 + }, + { + "start": 3520.16, + "end": 3521.05, + "probability": 0.6724 + }, + { + "start": 3522.1, + "end": 3522.8, + "probability": 0.505 + }, + { + "start": 3522.94, + "end": 3525.44, + "probability": 0.4008 + }, + { + "start": 3526.3, + "end": 3527.22, + "probability": 0.2782 + }, + { + "start": 3527.82, + "end": 3528.3, + "probability": 0.3141 + }, + { + "start": 3528.3, + "end": 3528.3, + "probability": 0.248 + }, + { + "start": 3528.3, + "end": 3529.6, + "probability": 0.4129 + }, + { + "start": 3529.96, + "end": 3531.06, + "probability": 0.1627 + }, + { + "start": 3531.42, + "end": 3532.95, + "probability": 0.9692 + }, + { + "start": 3533.52, + "end": 3534.08, + "probability": 0.7371 + }, + { + "start": 3534.18, + "end": 3534.69, + "probability": 0.8523 + }, + { + "start": 3535.32, + "end": 3535.68, + "probability": 0.5242 + }, + { + "start": 3535.9, + "end": 3538.83, + "probability": 0.9741 + }, + { + "start": 3539.68, + "end": 3541.62, + "probability": 0.7544 + }, + { + "start": 3541.64, + "end": 3545.16, + "probability": 0.6994 + }, + { + "start": 3545.4, + "end": 3546.18, + "probability": 0.1885 + }, + { + "start": 3546.3, + "end": 3547.56, + "probability": 0.708 + }, + { + "start": 3549.14, + "end": 3551.7, + "probability": 0.9215 + }, + { + "start": 3551.9, + "end": 3553.28, + "probability": 0.9299 + }, + { + "start": 3553.3, + "end": 3554.54, + "probability": 0.9929 + }, + { + "start": 3556.0, + "end": 3557.2, + "probability": 0.5295 + }, + { + "start": 3560.26, + "end": 3561.14, + "probability": 0.0001 + }, + { + "start": 3567.32, + "end": 3567.9, + "probability": 0.6778 + }, + { + "start": 3568.48, + "end": 3570.24, + "probability": 0.8721 + }, + { + "start": 3571.42, + "end": 3572.08, + "probability": 0.3724 + }, + { + "start": 3572.18, + "end": 3572.88, + "probability": 0.7339 + }, + { + "start": 3572.98, + "end": 3575.7, + "probability": 0.8195 + }, + { + "start": 3576.08, + "end": 3577.16, + "probability": 0.351 + }, + { + "start": 3578.36, + "end": 3580.6, + "probability": 0.823 + }, + { + "start": 3580.8, + "end": 3582.48, + "probability": 0.4268 + }, + { + "start": 3584.68, + "end": 3584.68, + "probability": 0.001 + }, + { + "start": 3593.92, + "end": 3594.7, + "probability": 0.3788 + }, + { + "start": 3594.7, + "end": 3595.26, + "probability": 0.8355 + }, + { + "start": 3595.26, + "end": 3597.62, + "probability": 0.7462 + }, + { + "start": 3598.8, + "end": 3603.72, + "probability": 0.98 + }, + { + "start": 3603.94, + "end": 3605.04, + "probability": 0.5136 + }, + { + "start": 3606.22, + "end": 3606.26, + "probability": 0.4338 + }, + { + "start": 3606.26, + "end": 3609.04, + "probability": 0.9319 + }, + { + "start": 3611.8, + "end": 3613.4, + "probability": 0.9993 + }, + { + "start": 3614.0, + "end": 3616.28, + "probability": 0.9512 + }, + { + "start": 3616.48, + "end": 3619.6, + "probability": 0.6587 + }, + { + "start": 3622.04, + "end": 3622.4, + "probability": 0.8603 + }, + { + "start": 3622.48, + "end": 3624.88, + "probability": 0.9961 + }, + { + "start": 3625.06, + "end": 3626.9, + "probability": 0.9832 + }, + { + "start": 3627.62, + "end": 3628.32, + "probability": 0.9803 + }, + { + "start": 3628.48, + "end": 3629.12, + "probability": 0.3543 + }, + { + "start": 3629.14, + "end": 3629.62, + "probability": 0.7409 + }, + { + "start": 3629.72, + "end": 3632.56, + "probability": 0.9795 + }, + { + "start": 3632.56, + "end": 3634.8, + "probability": 0.9883 + }, + { + "start": 3635.3, + "end": 3636.52, + "probability": 0.8116 + }, + { + "start": 3637.36, + "end": 3640.3, + "probability": 0.718 + }, + { + "start": 3640.38, + "end": 3642.5, + "probability": 0.9602 + }, + { + "start": 3643.04, + "end": 3644.26, + "probability": 0.9927 + }, + { + "start": 3644.92, + "end": 3646.12, + "probability": 0.9015 + }, + { + "start": 3646.88, + "end": 3648.06, + "probability": 0.7216 + }, + { + "start": 3656.52, + "end": 3657.14, + "probability": 0.5539 + }, + { + "start": 3657.42, + "end": 3663.24, + "probability": 0.7716 + }, + { + "start": 3664.64, + "end": 3668.84, + "probability": 0.9889 + }, + { + "start": 3670.32, + "end": 3673.64, + "probability": 0.7939 + }, + { + "start": 3674.16, + "end": 3676.42, + "probability": 0.958 + }, + { + "start": 3677.3, + "end": 3678.8, + "probability": 0.9945 + }, + { + "start": 3678.92, + "end": 3680.43, + "probability": 0.9924 + }, + { + "start": 3680.64, + "end": 3682.14, + "probability": 0.8226 + }, + { + "start": 3683.22, + "end": 3684.54, + "probability": 0.7486 + }, + { + "start": 3684.88, + "end": 3687.68, + "probability": 0.9405 + }, + { + "start": 3687.68, + "end": 3690.14, + "probability": 0.9998 + }, + { + "start": 3690.88, + "end": 3693.92, + "probability": 0.8496 + }, + { + "start": 3694.96, + "end": 3697.22, + "probability": 0.7988 + }, + { + "start": 3697.8, + "end": 3699.58, + "probability": 0.9951 + }, + { + "start": 3699.64, + "end": 3702.84, + "probability": 0.8632 + }, + { + "start": 3702.84, + "end": 3703.22, + "probability": 0.0155 + }, + { + "start": 3703.22, + "end": 3704.26, + "probability": 0.5456 + }, + { + "start": 3704.6, + "end": 3706.58, + "probability": 0.9912 + }, + { + "start": 3707.12, + "end": 3709.4, + "probability": 0.7869 + }, + { + "start": 3710.2, + "end": 3716.15, + "probability": 0.8682 + }, + { + "start": 3716.76, + "end": 3721.7, + "probability": 0.994 + }, + { + "start": 3721.7, + "end": 3726.42, + "probability": 0.998 + }, + { + "start": 3728.17, + "end": 3732.7, + "probability": 0.9854 + }, + { + "start": 3733.9, + "end": 3738.76, + "probability": 0.9977 + }, + { + "start": 3739.06, + "end": 3742.78, + "probability": 0.9677 + }, + { + "start": 3743.42, + "end": 3745.9, + "probability": 0.9954 + }, + { + "start": 3745.9, + "end": 3749.72, + "probability": 0.9983 + }, + { + "start": 3750.64, + "end": 3754.54, + "probability": 0.8379 + }, + { + "start": 3755.28, + "end": 3758.44, + "probability": 0.9893 + }, + { + "start": 3758.56, + "end": 3760.68, + "probability": 0.9946 + }, + { + "start": 3761.4, + "end": 3764.82, + "probability": 0.998 + }, + { + "start": 3765.06, + "end": 3769.58, + "probability": 0.9924 + }, + { + "start": 3769.72, + "end": 3771.76, + "probability": 0.9849 + }, + { + "start": 3771.76, + "end": 3774.26, + "probability": 0.9987 + }, + { + "start": 3775.32, + "end": 3779.1, + "probability": 0.9845 + }, + { + "start": 3779.32, + "end": 3780.68, + "probability": 0.9966 + }, + { + "start": 3780.8, + "end": 3782.68, + "probability": 0.77 + }, + { + "start": 3783.32, + "end": 3785.1, + "probability": 0.9951 + }, + { + "start": 3786.14, + "end": 3786.92, + "probability": 0.5989 + }, + { + "start": 3787.04, + "end": 3789.42, + "probability": 0.9552 + }, + { + "start": 3790.6, + "end": 3792.2, + "probability": 0.9734 + }, + { + "start": 3793.2, + "end": 3797.0, + "probability": 0.837 + }, + { + "start": 3797.38, + "end": 3800.92, + "probability": 0.8416 + }, + { + "start": 3801.26, + "end": 3803.48, + "probability": 0.9905 + }, + { + "start": 3804.4, + "end": 3808.0, + "probability": 0.9973 + }, + { + "start": 3808.54, + "end": 3810.66, + "probability": 0.8095 + }, + { + "start": 3811.3, + "end": 3815.88, + "probability": 0.9655 + }, + { + "start": 3816.68, + "end": 3818.86, + "probability": 0.8008 + }, + { + "start": 3818.98, + "end": 3821.86, + "probability": 0.9152 + }, + { + "start": 3822.66, + "end": 3828.13, + "probability": 0.9874 + }, + { + "start": 3828.42, + "end": 3833.98, + "probability": 0.9472 + }, + { + "start": 3834.52, + "end": 3836.6, + "probability": 0.9814 + }, + { + "start": 3836.6, + "end": 3840.16, + "probability": 0.9987 + }, + { + "start": 3840.24, + "end": 3842.6, + "probability": 0.9861 + }, + { + "start": 3844.12, + "end": 3847.94, + "probability": 0.9966 + }, + { + "start": 3847.94, + "end": 3850.36, + "probability": 0.9966 + }, + { + "start": 3851.28, + "end": 3851.98, + "probability": 0.6816 + }, + { + "start": 3853.24, + "end": 3856.8, + "probability": 0.9713 + }, + { + "start": 3857.24, + "end": 3858.14, + "probability": 0.9442 + }, + { + "start": 3858.82, + "end": 3859.52, + "probability": 0.7729 + }, + { + "start": 3859.98, + "end": 3864.32, + "probability": 0.9972 + }, + { + "start": 3864.34, + "end": 3867.76, + "probability": 0.9974 + }, + { + "start": 3868.96, + "end": 3871.06, + "probability": 0.9884 + }, + { + "start": 3871.7, + "end": 3875.56, + "probability": 0.8779 + }, + { + "start": 3875.84, + "end": 3876.48, + "probability": 0.6868 + }, + { + "start": 3876.5, + "end": 3878.96, + "probability": 0.9068 + }, + { + "start": 3879.14, + "end": 3881.08, + "probability": 0.9949 + }, + { + "start": 3881.16, + "end": 3883.5, + "probability": 0.8558 + }, + { + "start": 3883.6, + "end": 3887.3, + "probability": 0.9748 + }, + { + "start": 3887.76, + "end": 3888.56, + "probability": 0.9662 + }, + { + "start": 3888.64, + "end": 3889.4, + "probability": 0.9013 + }, + { + "start": 3890.28, + "end": 3894.5, + "probability": 0.996 + }, + { + "start": 3895.08, + "end": 3896.94, + "probability": 0.9146 + }, + { + "start": 3897.34, + "end": 3899.68, + "probability": 0.9941 + }, + { + "start": 3900.42, + "end": 3901.96, + "probability": 0.7808 + }, + { + "start": 3902.64, + "end": 3904.35, + "probability": 0.9685 + }, + { + "start": 3904.5, + "end": 3905.86, + "probability": 0.9735 + }, + { + "start": 3906.16, + "end": 3906.74, + "probability": 0.9815 + }, + { + "start": 3907.6, + "end": 3910.22, + "probability": 0.95 + }, + { + "start": 3910.94, + "end": 3912.48, + "probability": 0.8677 + }, + { + "start": 3912.88, + "end": 3915.9, + "probability": 0.9966 + }, + { + "start": 3916.0, + "end": 3918.42, + "probability": 0.7827 + }, + { + "start": 3918.96, + "end": 3922.2, + "probability": 0.9879 + }, + { + "start": 3923.22, + "end": 3923.72, + "probability": 0.8591 + }, + { + "start": 3923.8, + "end": 3924.82, + "probability": 0.9218 + }, + { + "start": 3925.2, + "end": 3927.78, + "probability": 0.9138 + }, + { + "start": 3928.4, + "end": 3929.4, + "probability": 0.9976 + }, + { + "start": 3929.94, + "end": 3931.82, + "probability": 0.9041 + }, + { + "start": 3933.21, + "end": 3936.42, + "probability": 0.9854 + }, + { + "start": 3936.8, + "end": 3940.92, + "probability": 0.9602 + }, + { + "start": 3940.92, + "end": 3943.56, + "probability": 0.9956 + }, + { + "start": 3944.0, + "end": 3945.26, + "probability": 0.9205 + }, + { + "start": 3945.44, + "end": 3946.92, + "probability": 0.9844 + }, + { + "start": 3948.39, + "end": 3952.82, + "probability": 0.9204 + }, + { + "start": 3953.98, + "end": 3956.92, + "probability": 0.9145 + }, + { + "start": 3957.56, + "end": 3960.1, + "probability": 0.974 + }, + { + "start": 3960.64, + "end": 3963.98, + "probability": 0.9976 + }, + { + "start": 3963.98, + "end": 3967.54, + "probability": 0.9792 + }, + { + "start": 3968.58, + "end": 3973.3, + "probability": 0.9809 + }, + { + "start": 3974.42, + "end": 3975.36, + "probability": 0.864 + }, + { + "start": 3975.52, + "end": 3977.64, + "probability": 0.9945 + }, + { + "start": 3977.78, + "end": 3982.68, + "probability": 0.9926 + }, + { + "start": 3982.68, + "end": 3986.22, + "probability": 0.9971 + }, + { + "start": 3987.1, + "end": 3991.18, + "probability": 0.9978 + }, + { + "start": 3991.84, + "end": 3995.51, + "probability": 0.9717 + }, + { + "start": 3996.32, + "end": 3997.92, + "probability": 0.3655 + }, + { + "start": 3999.0, + "end": 4004.48, + "probability": 0.9561 + }, + { + "start": 4005.02, + "end": 4007.18, + "probability": 0.9979 + }, + { + "start": 4008.02, + "end": 4013.42, + "probability": 0.9821 + }, + { + "start": 4014.2, + "end": 4015.5, + "probability": 0.6351 + }, + { + "start": 4015.5, + "end": 4016.68, + "probability": 0.8565 + }, + { + "start": 4017.85, + "end": 4022.34, + "probability": 0.9942 + }, + { + "start": 4023.0, + "end": 4023.76, + "probability": 0.9617 + }, + { + "start": 4024.24, + "end": 4024.75, + "probability": 0.9772 + }, + { + "start": 4025.48, + "end": 4026.04, + "probability": 0.9463 + }, + { + "start": 4026.76, + "end": 4027.54, + "probability": 0.7407 + }, + { + "start": 4027.94, + "end": 4029.1, + "probability": 0.9973 + }, + { + "start": 4029.88, + "end": 4033.46, + "probability": 0.9921 + }, + { + "start": 4034.14, + "end": 4034.83, + "probability": 0.2056 + }, + { + "start": 4035.3, + "end": 4039.54, + "probability": 0.8903 + }, + { + "start": 4039.64, + "end": 4040.34, + "probability": 0.9446 + }, + { + "start": 4040.58, + "end": 4041.24, + "probability": 0.9644 + }, + { + "start": 4041.48, + "end": 4044.98, + "probability": 0.5743 + }, + { + "start": 4045.32, + "end": 4050.08, + "probability": 0.186 + }, + { + "start": 4050.08, + "end": 4052.3, + "probability": 0.9893 + }, + { + "start": 4052.8, + "end": 4055.28, + "probability": 0.2993 + }, + { + "start": 4055.7, + "end": 4055.9, + "probability": 0.0525 + }, + { + "start": 4055.9, + "end": 4055.9, + "probability": 0.2506 + }, + { + "start": 4055.9, + "end": 4059.16, + "probability": 0.6252 + }, + { + "start": 4059.28, + "end": 4064.58, + "probability": 0.9737 + }, + { + "start": 4064.58, + "end": 4065.04, + "probability": 0.2574 + }, + { + "start": 4065.22, + "end": 4066.35, + "probability": 0.7395 + }, + { + "start": 4066.68, + "end": 4072.36, + "probability": 0.9946 + }, + { + "start": 4072.8, + "end": 4074.94, + "probability": 0.9869 + }, + { + "start": 4076.46, + "end": 4077.02, + "probability": 0.1007 + }, + { + "start": 4077.02, + "end": 4082.68, + "probability": 0.5887 + }, + { + "start": 4082.84, + "end": 4084.24, + "probability": 0.5948 + }, + { + "start": 4084.34, + "end": 4087.1, + "probability": 0.8717 + }, + { + "start": 4087.36, + "end": 4089.46, + "probability": 0.9716 + }, + { + "start": 4089.6, + "end": 4091.46, + "probability": 0.6248 + }, + { + "start": 4091.68, + "end": 4092.74, + "probability": 0.3682 + }, + { + "start": 4092.76, + "end": 4097.42, + "probability": 0.9991 + }, + { + "start": 4097.42, + "end": 4101.2, + "probability": 0.9984 + }, + { + "start": 4101.68, + "end": 4101.7, + "probability": 0.9404 + }, + { + "start": 4102.52, + "end": 4104.02, + "probability": 0.5842 + }, + { + "start": 4104.54, + "end": 4107.0, + "probability": 0.9462 + }, + { + "start": 4107.7, + "end": 4109.4, + "probability": 0.8955 + }, + { + "start": 4110.1, + "end": 4110.1, + "probability": 0.0555 + }, + { + "start": 4110.1, + "end": 4113.84, + "probability": 0.9768 + }, + { + "start": 4113.84, + "end": 4117.84, + "probability": 0.9384 + }, + { + "start": 4118.0, + "end": 4119.12, + "probability": 0.0113 + }, + { + "start": 4119.14, + "end": 4119.81, + "probability": 0.0858 + }, + { + "start": 4119.84, + "end": 4119.9, + "probability": 0.1967 + }, + { + "start": 4120.62, + "end": 4124.1, + "probability": 0.9749 + }, + { + "start": 4124.2, + "end": 4125.08, + "probability": 0.5488 + }, + { + "start": 4125.08, + "end": 4125.26, + "probability": 0.1212 + }, + { + "start": 4125.26, + "end": 4125.8, + "probability": 0.4347 + }, + { + "start": 4126.1, + "end": 4126.58, + "probability": 0.4514 + }, + { + "start": 4127.2, + "end": 4127.2, + "probability": 0.0013 + }, + { + "start": 4128.3, + "end": 4129.14, + "probability": 0.0938 + }, + { + "start": 4129.4, + "end": 4129.88, + "probability": 0.4598 + }, + { + "start": 4129.9, + "end": 4131.5, + "probability": 0.2547 + }, + { + "start": 4131.5, + "end": 4132.44, + "probability": 0.3395 + }, + { + "start": 4132.62, + "end": 4134.34, + "probability": 0.5987 + }, + { + "start": 4134.4, + "end": 4135.66, + "probability": 0.8401 + }, + { + "start": 4135.9, + "end": 4136.22, + "probability": 0.2923 + }, + { + "start": 4137.54, + "end": 4137.56, + "probability": 0.2523 + }, + { + "start": 4137.56, + "end": 4137.56, + "probability": 0.062 + }, + { + "start": 4137.56, + "end": 4137.56, + "probability": 0.022 + }, + { + "start": 4137.56, + "end": 4138.54, + "probability": 0.54 + }, + { + "start": 4138.66, + "end": 4139.36, + "probability": 0.9073 + }, + { + "start": 4139.68, + "end": 4142.68, + "probability": 0.947 + }, + { + "start": 4143.18, + "end": 4146.86, + "probability": 0.5665 + }, + { + "start": 4149.14, + "end": 4152.18, + "probability": 0.0009 + }, + { + "start": 4152.18, + "end": 4154.82, + "probability": 0.7726 + }, + { + "start": 4155.0, + "end": 4156.66, + "probability": 0.8804 + }, + { + "start": 4157.28, + "end": 4160.74, + "probability": 0.9969 + }, + { + "start": 4160.74, + "end": 4166.1, + "probability": 0.9966 + }, + { + "start": 4166.72, + "end": 4166.98, + "probability": 0.3878 + }, + { + "start": 4167.16, + "end": 4170.3, + "probability": 0.9878 + }, + { + "start": 4170.36, + "end": 4172.48, + "probability": 0.6837 + }, + { + "start": 4173.48, + "end": 4177.0, + "probability": 0.9929 + }, + { + "start": 4177.34, + "end": 4179.6, + "probability": 0.9923 + }, + { + "start": 4180.18, + "end": 4181.79, + "probability": 0.9961 + }, + { + "start": 4181.98, + "end": 4184.06, + "probability": 0.971 + }, + { + "start": 4184.8, + "end": 4186.76, + "probability": 0.992 + }, + { + "start": 4187.36, + "end": 4190.44, + "probability": 0.0022 + }, + { + "start": 4191.44, + "end": 4192.1, + "probability": 0.2017 + }, + { + "start": 4192.1, + "end": 4193.36, + "probability": 0.2301 + }, + { + "start": 4194.6, + "end": 4194.6, + "probability": 0.0474 + }, + { + "start": 4194.6, + "end": 4194.62, + "probability": 0.0738 + }, + { + "start": 4194.62, + "end": 4195.04, + "probability": 0.147 + }, + { + "start": 4195.04, + "end": 4198.44, + "probability": 0.9741 + }, + { + "start": 4199.12, + "end": 4202.52, + "probability": 0.9648 + }, + { + "start": 4203.2, + "end": 4206.42, + "probability": 0.9288 + }, + { + "start": 4207.02, + "end": 4209.3, + "probability": 0.5383 + }, + { + "start": 4209.4, + "end": 4213.58, + "probability": 0.6162 + }, + { + "start": 4214.3, + "end": 4215.52, + "probability": 0.9635 + }, + { + "start": 4216.0, + "end": 4219.56, + "probability": 0.9517 + }, + { + "start": 4220.44, + "end": 4222.88, + "probability": 0.9965 + }, + { + "start": 4223.82, + "end": 4226.06, + "probability": 0.9958 + }, + { + "start": 4227.0, + "end": 4227.48, + "probability": 0.9917 + }, + { + "start": 4227.84, + "end": 4228.36, + "probability": 0.9758 + }, + { + "start": 4228.72, + "end": 4231.76, + "probability": 0.9896 + }, + { + "start": 4232.56, + "end": 4234.72, + "probability": 0.9873 + }, + { + "start": 4236.4, + "end": 4239.8, + "probability": 0.7929 + }, + { + "start": 4240.34, + "end": 4241.1, + "probability": 0.9446 + }, + { + "start": 4241.34, + "end": 4245.84, + "probability": 0.9839 + }, + { + "start": 4246.0, + "end": 4248.04, + "probability": 0.9019 + }, + { + "start": 4249.62, + "end": 4250.48, + "probability": 0.0857 + }, + { + "start": 4250.48, + "end": 4250.58, + "probability": 0.1078 + }, + { + "start": 4250.58, + "end": 4250.58, + "probability": 0.1814 + }, + { + "start": 4250.58, + "end": 4253.08, + "probability": 0.485 + }, + { + "start": 4255.04, + "end": 4258.3, + "probability": 0.9698 + }, + { + "start": 4259.0, + "end": 4260.58, + "probability": 0.9249 + }, + { + "start": 4261.64, + "end": 4264.52, + "probability": 0.9856 + }, + { + "start": 4264.98, + "end": 4266.2, + "probability": 0.892 + }, + { + "start": 4266.64, + "end": 4267.53, + "probability": 0.8413 + }, + { + "start": 4268.58, + "end": 4270.66, + "probability": 0.7094 + }, + { + "start": 4270.98, + "end": 4272.14, + "probability": 0.6918 + }, + { + "start": 4272.42, + "end": 4274.6, + "probability": 0.9901 + }, + { + "start": 4275.28, + "end": 4277.08, + "probability": 0.9148 + }, + { + "start": 4277.64, + "end": 4279.2, + "probability": 0.9117 + }, + { + "start": 4279.74, + "end": 4281.06, + "probability": 0.9207 + }, + { + "start": 4281.7, + "end": 4282.94, + "probability": 0.9187 + }, + { + "start": 4283.4, + "end": 4286.84, + "probability": 0.9641 + }, + { + "start": 4287.22, + "end": 4289.84, + "probability": 0.9857 + }, + { + "start": 4290.02, + "end": 4293.72, + "probability": 0.9974 + }, + { + "start": 4293.84, + "end": 4294.86, + "probability": 0.8989 + }, + { + "start": 4295.48, + "end": 4299.18, + "probability": 0.6939 + }, + { + "start": 4299.82, + "end": 4300.54, + "probability": 0.0237 + }, + { + "start": 4300.54, + "end": 4300.54, + "probability": 0.094 + }, + { + "start": 4300.54, + "end": 4303.24, + "probability": 0.1172 + }, + { + "start": 4303.52, + "end": 4303.7, + "probability": 0.2002 + }, + { + "start": 4303.7, + "end": 4303.76, + "probability": 0.0299 + }, + { + "start": 4303.76, + "end": 4310.26, + "probability": 0.448 + }, + { + "start": 4310.96, + "end": 4312.58, + "probability": 0.0107 + }, + { + "start": 4312.58, + "end": 4313.18, + "probability": 0.1028 + }, + { + "start": 4313.38, + "end": 4315.6, + "probability": 0.9094 + }, + { + "start": 4315.6, + "end": 4316.14, + "probability": 0.711 + }, + { + "start": 4316.14, + "end": 4316.16, + "probability": 0.4377 + }, + { + "start": 4317.58, + "end": 4317.98, + "probability": 0.2425 + }, + { + "start": 4318.5, + "end": 4318.64, + "probability": 0.7193 + }, + { + "start": 4318.7, + "end": 4320.0, + "probability": 0.992 + }, + { + "start": 4320.86, + "end": 4323.86, + "probability": 0.8244 + }, + { + "start": 4324.4, + "end": 4326.91, + "probability": 0.9739 + }, + { + "start": 4327.78, + "end": 4331.54, + "probability": 0.9797 + }, + { + "start": 4332.02, + "end": 4333.76, + "probability": 0.9833 + }, + { + "start": 4334.68, + "end": 4336.82, + "probability": 0.8989 + }, + { + "start": 4337.46, + "end": 4339.56, + "probability": 0.8267 + }, + { + "start": 4339.56, + "end": 4342.76, + "probability": 0.9984 + }, + { + "start": 4343.44, + "end": 4347.22, + "probability": 0.9771 + }, + { + "start": 4347.62, + "end": 4348.47, + "probability": 0.9766 + }, + { + "start": 4348.88, + "end": 4351.27, + "probability": 0.9796 + }, + { + "start": 4351.88, + "end": 4354.12, + "probability": 0.9779 + }, + { + "start": 4354.62, + "end": 4356.2, + "probability": 0.9961 + }, + { + "start": 4357.06, + "end": 4360.6, + "probability": 0.9307 + }, + { + "start": 4360.8, + "end": 4363.22, + "probability": 0.9489 + }, + { + "start": 4364.06, + "end": 4369.24, + "probability": 0.9699 + }, + { + "start": 4370.24, + "end": 4375.14, + "probability": 0.9919 + }, + { + "start": 4375.26, + "end": 4378.36, + "probability": 0.9929 + }, + { + "start": 4378.8, + "end": 4380.48, + "probability": 0.9714 + }, + { + "start": 4381.2, + "end": 4384.74, + "probability": 0.9587 + }, + { + "start": 4385.84, + "end": 4387.92, + "probability": 0.0474 + }, + { + "start": 4387.92, + "end": 4387.92, + "probability": 0.2796 + }, + { + "start": 4387.92, + "end": 4387.92, + "probability": 0.1053 + }, + { + "start": 4387.92, + "end": 4393.68, + "probability": 0.9015 + }, + { + "start": 4394.0, + "end": 4396.08, + "probability": 0.9982 + }, + { + "start": 4396.74, + "end": 4399.08, + "probability": 0.6852 + }, + { + "start": 4399.62, + "end": 4401.18, + "probability": 0.8047 + }, + { + "start": 4401.64, + "end": 4402.24, + "probability": 0.9766 + }, + { + "start": 4402.52, + "end": 4405.1, + "probability": 0.9435 + }, + { + "start": 4405.22, + "end": 4406.22, + "probability": 0.9954 + }, + { + "start": 4407.3, + "end": 4410.5, + "probability": 0.9987 + }, + { + "start": 4410.96, + "end": 4412.6, + "probability": 0.7625 + }, + { + "start": 4413.0, + "end": 4419.14, + "probability": 0.9472 + }, + { + "start": 4419.18, + "end": 4421.7, + "probability": 0.9749 + }, + { + "start": 4422.2, + "end": 4427.2, + "probability": 0.9653 + }, + { + "start": 4427.74, + "end": 4428.06, + "probability": 0.5913 + }, + { + "start": 4428.72, + "end": 4429.88, + "probability": 0.4892 + }, + { + "start": 4430.0, + "end": 4431.8, + "probability": 0.9482 + }, + { + "start": 4432.18, + "end": 4432.84, + "probability": 0.1327 + }, + { + "start": 4432.84, + "end": 4433.46, + "probability": 0.3417 + }, + { + "start": 4433.46, + "end": 4433.94, + "probability": 0.1567 + }, + { + "start": 4434.74, + "end": 4441.56, + "probability": 0.9215 + }, + { + "start": 4442.14, + "end": 4443.42, + "probability": 0.772 + }, + { + "start": 4443.64, + "end": 4445.58, + "probability": 0.8583 + }, + { + "start": 4446.1, + "end": 4447.7, + "probability": 0.9238 + }, + { + "start": 4448.12, + "end": 4448.22, + "probability": 0.0396 + }, + { + "start": 4448.22, + "end": 4451.36, + "probability": 0.8205 + }, + { + "start": 4451.42, + "end": 4452.62, + "probability": 0.9172 + }, + { + "start": 4453.0, + "end": 4454.64, + "probability": 0.984 + }, + { + "start": 4455.36, + "end": 4458.96, + "probability": 0.9786 + }, + { + "start": 4459.24, + "end": 4460.12, + "probability": 0.9329 + }, + { + "start": 4460.34, + "end": 4461.24, + "probability": 0.204 + }, + { + "start": 4461.32, + "end": 4463.24, + "probability": 0.9985 + }, + { + "start": 4466.24, + "end": 4469.25, + "probability": 0.9847 + }, + { + "start": 4469.7, + "end": 4472.22, + "probability": 0.9913 + }, + { + "start": 4472.5, + "end": 4479.82, + "probability": 0.998 + }, + { + "start": 4479.88, + "end": 4480.38, + "probability": 0.5898 + }, + { + "start": 4480.44, + "end": 4484.9, + "probability": 0.9881 + }, + { + "start": 4485.52, + "end": 4487.64, + "probability": 0.993 + }, + { + "start": 4493.02, + "end": 4496.12, + "probability": 0.9391 + }, + { + "start": 4496.52, + "end": 4497.6, + "probability": 0.8658 + }, + { + "start": 4497.9, + "end": 4500.0, + "probability": 0.8827 + }, + { + "start": 4500.18, + "end": 4502.08, + "probability": 0.9912 + }, + { + "start": 4502.2, + "end": 4502.56, + "probability": 0.9155 + }, + { + "start": 4504.48, + "end": 4508.86, + "probability": 0.9835 + }, + { + "start": 4509.62, + "end": 4510.02, + "probability": 0.9322 + }, + { + "start": 4510.8, + "end": 4511.34, + "probability": 0.2836 + }, + { + "start": 4511.76, + "end": 4511.76, + "probability": 0.0856 + }, + { + "start": 4511.76, + "end": 4515.22, + "probability": 0.9852 + }, + { + "start": 4515.76, + "end": 4518.42, + "probability": 0.6244 + }, + { + "start": 4519.0, + "end": 4523.52, + "probability": 0.987 + }, + { + "start": 4523.84, + "end": 4528.08, + "probability": 0.7302 + }, + { + "start": 4528.16, + "end": 4529.52, + "probability": 0.5494 + }, + { + "start": 4529.58, + "end": 4529.6, + "probability": 0.0177 + }, + { + "start": 4529.6, + "end": 4530.56, + "probability": 0.5692 + }, + { + "start": 4530.82, + "end": 4532.5, + "probability": 0.8944 + }, + { + "start": 4533.0, + "end": 4535.94, + "probability": 0.9929 + }, + { + "start": 4536.31, + "end": 4539.92, + "probability": 0.9771 + }, + { + "start": 4540.36, + "end": 4542.48, + "probability": 0.9707 + }, + { + "start": 4543.0, + "end": 4545.0, + "probability": 0.765 + }, + { + "start": 4545.2, + "end": 4548.36, + "probability": 0.9463 + }, + { + "start": 4548.9, + "end": 4549.06, + "probability": 0.0546 + }, + { + "start": 4549.06, + "end": 4549.06, + "probability": 0.3341 + }, + { + "start": 4549.06, + "end": 4553.14, + "probability": 0.8358 + }, + { + "start": 4553.28, + "end": 4555.4, + "probability": 0.9695 + }, + { + "start": 4555.74, + "end": 4557.16, + "probability": 0.4478 + }, + { + "start": 4558.02, + "end": 4559.68, + "probability": 0.9978 + }, + { + "start": 4560.2, + "end": 4563.26, + "probability": 0.9744 + }, + { + "start": 4564.16, + "end": 4565.42, + "probability": 0.9661 + }, + { + "start": 4565.86, + "end": 4570.02, + "probability": 0.9874 + }, + { + "start": 4570.02, + "end": 4570.64, + "probability": 0.3602 + }, + { + "start": 4571.26, + "end": 4571.26, + "probability": 0.0866 + }, + { + "start": 4571.26, + "end": 4572.16, + "probability": 0.1731 + }, + { + "start": 4572.46, + "end": 4575.01, + "probability": 0.3134 + }, + { + "start": 4575.08, + "end": 4578.84, + "probability": 0.9829 + }, + { + "start": 4578.86, + "end": 4582.98, + "probability": 0.9689 + }, + { + "start": 4582.98, + "end": 4587.06, + "probability": 0.798 + }, + { + "start": 4587.51, + "end": 4590.54, + "probability": 0.9779 + }, + { + "start": 4591.14, + "end": 4595.38, + "probability": 0.983 + }, + { + "start": 4595.88, + "end": 4600.22, + "probability": 0.9963 + }, + { + "start": 4601.06, + "end": 4603.72, + "probability": 0.9893 + }, + { + "start": 4604.48, + "end": 4608.06, + "probability": 0.958 + }, + { + "start": 4608.28, + "end": 4609.84, + "probability": 0.9969 + }, + { + "start": 4610.4, + "end": 4612.66, + "probability": 0.9932 + }, + { + "start": 4612.96, + "end": 4617.06, + "probability": 0.9921 + }, + { + "start": 4617.48, + "end": 4621.86, + "probability": 0.9973 + }, + { + "start": 4622.36, + "end": 4627.9, + "probability": 0.9907 + }, + { + "start": 4628.0, + "end": 4629.76, + "probability": 0.7808 + }, + { + "start": 4629.88, + "end": 4632.72, + "probability": 0.9798 + }, + { + "start": 4635.4, + "end": 4636.34, + "probability": 0.9464 + }, + { + "start": 4636.76, + "end": 4639.62, + "probability": 0.9933 + }, + { + "start": 4640.18, + "end": 4641.46, + "probability": 0.7511 + }, + { + "start": 4642.0, + "end": 4645.94, + "probability": 0.9931 + }, + { + "start": 4646.64, + "end": 4651.44, + "probability": 0.986 + }, + { + "start": 4652.78, + "end": 4656.6, + "probability": 0.8898 + }, + { + "start": 4657.38, + "end": 4661.78, + "probability": 0.9842 + }, + { + "start": 4662.58, + "end": 4666.06, + "probability": 0.9935 + }, + { + "start": 4667.3, + "end": 4672.74, + "probability": 0.7812 + }, + { + "start": 4673.62, + "end": 4677.06, + "probability": 0.5843 + }, + { + "start": 4677.66, + "end": 4678.82, + "probability": 0.8773 + }, + { + "start": 4680.08, + "end": 4681.08, + "probability": 0.0532 + }, + { + "start": 4681.08, + "end": 4681.08, + "probability": 0.0071 + }, + { + "start": 4681.08, + "end": 4682.64, + "probability": 0.3699 + }, + { + "start": 4682.64, + "end": 4682.68, + "probability": 0.3327 + }, + { + "start": 4682.68, + "end": 4686.36, + "probability": 0.7658 + }, + { + "start": 4687.9, + "end": 4688.18, + "probability": 0.2514 + }, + { + "start": 4688.18, + "end": 4688.18, + "probability": 0.0763 + }, + { + "start": 4688.86, + "end": 4689.72, + "probability": 0.2928 + }, + { + "start": 4689.74, + "end": 4693.06, + "probability": 0.8984 + }, + { + "start": 4693.16, + "end": 4698.66, + "probability": 0.9917 + }, + { + "start": 4698.84, + "end": 4699.76, + "probability": 0.514 + }, + { + "start": 4700.48, + "end": 4703.1, + "probability": 0.9915 + }, + { + "start": 4703.86, + "end": 4705.32, + "probability": 0.9602 + }, + { + "start": 4705.76, + "end": 4707.9, + "probability": 0.9764 + }, + { + "start": 4708.54, + "end": 4712.24, + "probability": 0.981 + }, + { + "start": 4712.78, + "end": 4714.16, + "probability": 0.9907 + }, + { + "start": 4714.8, + "end": 4718.82, + "probability": 0.9937 + }, + { + "start": 4718.82, + "end": 4722.18, + "probability": 0.9897 + }, + { + "start": 4722.88, + "end": 4725.26, + "probability": 0.995 + }, + { + "start": 4725.96, + "end": 4728.94, + "probability": 0.9268 + }, + { + "start": 4728.94, + "end": 4732.75, + "probability": 0.9993 + }, + { + "start": 4734.0, + "end": 4736.04, + "probability": 0.9968 + }, + { + "start": 4736.82, + "end": 4739.52, + "probability": 0.9995 + }, + { + "start": 4739.64, + "end": 4740.92, + "probability": 0.7803 + }, + { + "start": 4741.44, + "end": 4742.9, + "probability": 0.9468 + }, + { + "start": 4743.54, + "end": 4745.46, + "probability": 0.9236 + }, + { + "start": 4745.86, + "end": 4750.76, + "probability": 0.9634 + }, + { + "start": 4751.14, + "end": 4752.64, + "probability": 0.9746 + }, + { + "start": 4754.9, + "end": 4756.6, + "probability": 0.9813 + }, + { + "start": 4757.92, + "end": 4761.22, + "probability": 0.9618 + }, + { + "start": 4761.84, + "end": 4763.12, + "probability": 0.8246 + }, + { + "start": 4763.68, + "end": 4766.92, + "probability": 0.9635 + }, + { + "start": 4768.28, + "end": 4770.2, + "probability": 0.9388 + }, + { + "start": 4770.24, + "end": 4773.42, + "probability": 0.9185 + }, + { + "start": 4774.66, + "end": 4780.02, + "probability": 0.9853 + }, + { + "start": 4780.88, + "end": 4781.14, + "probability": 0.7407 + }, + { + "start": 4781.16, + "end": 4782.16, + "probability": 0.7443 + }, + { + "start": 4782.56, + "end": 4783.42, + "probability": 0.7416 + }, + { + "start": 4783.56, + "end": 4786.4, + "probability": 0.9302 + }, + { + "start": 4786.44, + "end": 4787.62, + "probability": 0.9507 + }, + { + "start": 4788.06, + "end": 4789.84, + "probability": 0.9342 + }, + { + "start": 4791.26, + "end": 4793.0, + "probability": 0.9302 + }, + { + "start": 4793.26, + "end": 4793.5, + "probability": 0.033 + }, + { + "start": 4795.52, + "end": 4795.76, + "probability": 0.0607 + }, + { + "start": 4795.76, + "end": 4798.92, + "probability": 0.9866 + }, + { + "start": 4799.48, + "end": 4799.94, + "probability": 0.9307 + }, + { + "start": 4800.46, + "end": 4800.94, + "probability": 0.96 + }, + { + "start": 4802.5, + "end": 4804.64, + "probability": 0.9982 + }, + { + "start": 4805.72, + "end": 4808.86, + "probability": 0.8987 + }, + { + "start": 4809.08, + "end": 4811.54, + "probability": 0.972 + }, + { + "start": 4811.86, + "end": 4812.7, + "probability": 0.9767 + }, + { + "start": 4812.94, + "end": 4813.74, + "probability": 0.9652 + }, + { + "start": 4814.14, + "end": 4816.36, + "probability": 0.9943 + }, + { + "start": 4816.4, + "end": 4817.08, + "probability": 0.9392 + }, + { + "start": 4817.28, + "end": 4818.92, + "probability": 0.9936 + }, + { + "start": 4819.52, + "end": 4822.18, + "probability": 0.9976 + }, + { + "start": 4822.34, + "end": 4823.0, + "probability": 0.994 + }, + { + "start": 4823.66, + "end": 4827.3, + "probability": 0.9038 + }, + { + "start": 4827.92, + "end": 4831.1, + "probability": 0.9736 + }, + { + "start": 4831.46, + "end": 4832.0, + "probability": 0.8503 + }, + { + "start": 4832.48, + "end": 4833.08, + "probability": 0.5928 + }, + { + "start": 4833.64, + "end": 4835.68, + "probability": 0.9746 + }, + { + "start": 4836.22, + "end": 4838.94, + "probability": 0.9694 + }, + { + "start": 4839.34, + "end": 4841.14, + "probability": 0.9905 + }, + { + "start": 4841.66, + "end": 4843.66, + "probability": 0.9958 + }, + { + "start": 4843.7, + "end": 4845.26, + "probability": 0.9429 + }, + { + "start": 4845.94, + "end": 4846.3, + "probability": 0.7968 + }, + { + "start": 4846.96, + "end": 4851.92, + "probability": 0.9917 + }, + { + "start": 4851.98, + "end": 4852.4, + "probability": 0.4231 + }, + { + "start": 4852.62, + "end": 4853.22, + "probability": 0.5406 + }, + { + "start": 4853.32, + "end": 4854.34, + "probability": 0.9841 + }, + { + "start": 4854.74, + "end": 4856.62, + "probability": 0.9568 + }, + { + "start": 4857.14, + "end": 4858.36, + "probability": 0.9718 + }, + { + "start": 4858.54, + "end": 4860.76, + "probability": 0.973 + }, + { + "start": 4861.28, + "end": 4863.4, + "probability": 0.9332 + }, + { + "start": 4864.64, + "end": 4871.08, + "probability": 0.9959 + }, + { + "start": 4871.74, + "end": 4875.42, + "probability": 0.9841 + }, + { + "start": 4875.66, + "end": 4880.32, + "probability": 0.0984 + }, + { + "start": 4880.32, + "end": 4880.52, + "probability": 0.1013 + }, + { + "start": 4881.56, + "end": 4881.82, + "probability": 0.042 + }, + { + "start": 4881.82, + "end": 4881.82, + "probability": 0.1745 + }, + { + "start": 4881.82, + "end": 4881.82, + "probability": 0.0218 + }, + { + "start": 4881.82, + "end": 4882.17, + "probability": 0.2343 + }, + { + "start": 4883.02, + "end": 4883.68, + "probability": 0.7198 + }, + { + "start": 4883.7, + "end": 4886.66, + "probability": 0.8859 + }, + { + "start": 4887.3, + "end": 4888.1, + "probability": 0.8511 + }, + { + "start": 4888.82, + "end": 4893.04, + "probability": 0.9799 + }, + { + "start": 4893.36, + "end": 4897.98, + "probability": 0.0717 + }, + { + "start": 4898.62, + "end": 4902.66, + "probability": 0.9691 + }, + { + "start": 4902.82, + "end": 4907.3, + "probability": 0.867 + }, + { + "start": 4907.84, + "end": 4910.99, + "probability": 0.9888 + }, + { + "start": 4911.78, + "end": 4915.36, + "probability": 0.967 + }, + { + "start": 4915.36, + "end": 4917.98, + "probability": 0.0456 + }, + { + "start": 4918.58, + "end": 4919.04, + "probability": 0.312 + }, + { + "start": 4919.04, + "end": 4921.9, + "probability": 0.1213 + }, + { + "start": 4922.58, + "end": 4922.68, + "probability": 0.2178 + }, + { + "start": 4922.68, + "end": 4922.68, + "probability": 0.0454 + }, + { + "start": 4922.68, + "end": 4924.56, + "probability": 0.4722 + }, + { + "start": 4925.78, + "end": 4928.26, + "probability": 0.2518 + }, + { + "start": 4928.34, + "end": 4929.25, + "probability": 0.3718 + }, + { + "start": 4929.7, + "end": 4930.28, + "probability": 0.3991 + }, + { + "start": 4930.38, + "end": 4930.7, + "probability": 0.6681 + }, + { + "start": 4930.76, + "end": 4932.3, + "probability": 0.8604 + }, + { + "start": 4932.6, + "end": 4933.54, + "probability": 0.8188 + }, + { + "start": 4934.36, + "end": 4935.49, + "probability": 0.9956 + }, + { + "start": 4935.8, + "end": 4936.98, + "probability": 0.9669 + }, + { + "start": 4937.1, + "end": 4939.28, + "probability": 0.7886 + }, + { + "start": 4939.8, + "end": 4947.04, + "probability": 0.9902 + }, + { + "start": 4947.66, + "end": 4947.72, + "probability": 0.5093 + }, + { + "start": 4947.74, + "end": 4952.2, + "probability": 0.9279 + }, + { + "start": 4952.74, + "end": 4957.92, + "probability": 0.9354 + }, + { + "start": 4958.94, + "end": 4959.4, + "probability": 0.7419 + }, + { + "start": 4959.54, + "end": 4961.2, + "probability": 0.9885 + }, + { + "start": 4961.48, + "end": 4963.42, + "probability": 0.8738 + }, + { + "start": 4963.84, + "end": 4965.48, + "probability": 0.1327 + }, + { + "start": 4965.62, + "end": 4965.88, + "probability": 0.1118 + }, + { + "start": 4966.62, + "end": 4967.58, + "probability": 0.0522 + }, + { + "start": 4967.58, + "end": 4969.6, + "probability": 0.5061 + }, + { + "start": 4969.68, + "end": 4970.06, + "probability": 0.4752 + }, + { + "start": 4970.5, + "end": 4972.36, + "probability": 0.5638 + }, + { + "start": 4972.36, + "end": 4972.74, + "probability": 0.5813 + }, + { + "start": 4972.88, + "end": 4976.57, + "probability": 0.9272 + }, + { + "start": 4977.28, + "end": 4980.76, + "probability": 0.9495 + }, + { + "start": 4980.84, + "end": 4982.38, + "probability": 0.4888 + }, + { + "start": 4983.32, + "end": 4985.04, + "probability": 0.9269 + }, + { + "start": 4985.04, + "end": 4985.4, + "probability": 0.1269 + }, + { + "start": 4985.86, + "end": 4985.86, + "probability": 0.2315 + }, + { + "start": 4985.94, + "end": 4985.94, + "probability": 0.1646 + }, + { + "start": 4985.94, + "end": 4985.94, + "probability": 0.2908 + }, + { + "start": 4986.06, + "end": 4988.28, + "probability": 0.6618 + }, + { + "start": 4988.28, + "end": 4988.63, + "probability": 0.4327 + }, + { + "start": 4989.56, + "end": 4992.28, + "probability": 0.0033 + }, + { + "start": 4992.28, + "end": 4992.28, + "probability": 0.0497 + }, + { + "start": 4992.28, + "end": 4992.28, + "probability": 0.0269 + }, + { + "start": 4992.28, + "end": 4993.08, + "probability": 0.4859 + }, + { + "start": 4993.2, + "end": 4994.33, + "probability": 0.9412 + }, + { + "start": 4994.6, + "end": 4995.4, + "probability": 0.8165 + }, + { + "start": 4995.5, + "end": 5000.94, + "probability": 0.8306 + }, + { + "start": 5000.98, + "end": 5001.72, + "probability": 0.5078 + }, + { + "start": 5001.78, + "end": 5002.68, + "probability": 0.0569 + }, + { + "start": 5002.92, + "end": 5007.32, + "probability": 0.6653 + }, + { + "start": 5008.38, + "end": 5011.48, + "probability": 0.9519 + }, + { + "start": 5012.7, + "end": 5017.06, + "probability": 0.8414 + }, + { + "start": 5017.28, + "end": 5019.67, + "probability": 0.9933 + }, + { + "start": 5020.24, + "end": 5024.36, + "probability": 0.9717 + }, + { + "start": 5025.18, + "end": 5025.2, + "probability": 0.0298 + }, + { + "start": 5025.2, + "end": 5028.34, + "probability": 0.9906 + }, + { + "start": 5029.08, + "end": 5030.29, + "probability": 0.8363 + }, + { + "start": 5031.22, + "end": 5034.78, + "probability": 0.9929 + }, + { + "start": 5034.92, + "end": 5036.14, + "probability": 0.9402 + }, + { + "start": 5037.02, + "end": 5038.0, + "probability": 0.8489 + }, + { + "start": 5038.64, + "end": 5041.42, + "probability": 0.953 + }, + { + "start": 5041.74, + "end": 5042.72, + "probability": 0.9263 + }, + { + "start": 5043.3, + "end": 5048.44, + "probability": 0.8789 + }, + { + "start": 5049.0, + "end": 5050.9, + "probability": 0.965 + }, + { + "start": 5051.04, + "end": 5051.58, + "probability": 0.8574 + }, + { + "start": 5051.78, + "end": 5053.84, + "probability": 0.9777 + }, + { + "start": 5054.24, + "end": 5057.26, + "probability": 0.8686 + }, + { + "start": 5057.78, + "end": 5059.92, + "probability": 0.9891 + }, + { + "start": 5060.4, + "end": 5063.9, + "probability": 0.7268 + }, + { + "start": 5064.54, + "end": 5065.28, + "probability": 0.0475 + }, + { + "start": 5065.28, + "end": 5065.88, + "probability": 0.0868 + }, + { + "start": 5065.88, + "end": 5065.94, + "probability": 0.1769 + }, + { + "start": 5065.94, + "end": 5066.8, + "probability": 0.807 + }, + { + "start": 5066.94, + "end": 5067.26, + "probability": 0.3704 + }, + { + "start": 5067.58, + "end": 5068.7, + "probability": 0.8124 + }, + { + "start": 5068.74, + "end": 5069.28, + "probability": 0.7472 + }, + { + "start": 5069.42, + "end": 5070.14, + "probability": 0.9745 + }, + { + "start": 5070.48, + "end": 5071.0, + "probability": 0.6283 + }, + { + "start": 5071.22, + "end": 5071.6, + "probability": 0.8886 + }, + { + "start": 5071.9, + "end": 5075.05, + "probability": 0.9575 + }, + { + "start": 5075.26, + "end": 5075.88, + "probability": 0.772 + }, + { + "start": 5076.26, + "end": 5077.42, + "probability": 0.6534 + }, + { + "start": 5077.62, + "end": 5081.26, + "probability": 0.7456 + }, + { + "start": 5081.58, + "end": 5088.54, + "probability": 0.7688 + }, + { + "start": 5088.76, + "end": 5092.52, + "probability": 0.9924 + }, + { + "start": 5092.56, + "end": 5096.72, + "probability": 0.9923 + }, + { + "start": 5096.98, + "end": 5097.0, + "probability": 0.0968 + }, + { + "start": 5097.0, + "end": 5099.78, + "probability": 0.9911 + }, + { + "start": 5099.78, + "end": 5102.24, + "probability": 0.4946 + }, + { + "start": 5102.3, + "end": 5102.32, + "probability": 0.6274 + }, + { + "start": 5102.42, + "end": 5102.54, + "probability": 0.565 + }, + { + "start": 5102.54, + "end": 5102.56, + "probability": 0.2578 + }, + { + "start": 5102.56, + "end": 5103.44, + "probability": 0.5584 + }, + { + "start": 5108.16, + "end": 5108.16, + "probability": 0.078 + }, + { + "start": 5108.16, + "end": 5109.04, + "probability": 0.0366 + }, + { + "start": 5109.42, + "end": 5112.6, + "probability": 0.7539 + }, + { + "start": 5112.66, + "end": 5114.26, + "probability": 0.9612 + }, + { + "start": 5114.26, + "end": 5114.75, + "probability": 0.5652 + }, + { + "start": 5115.26, + "end": 5118.24, + "probability": 0.7465 + }, + { + "start": 5118.76, + "end": 5119.84, + "probability": 0.6305 + }, + { + "start": 5120.58, + "end": 5121.46, + "probability": 0.9814 + }, + { + "start": 5122.36, + "end": 5124.8, + "probability": 0.8605 + }, + { + "start": 5125.98, + "end": 5130.92, + "probability": 0.9701 + }, + { + "start": 5131.0, + "end": 5132.72, + "probability": 0.9414 + }, + { + "start": 5133.34, + "end": 5135.48, + "probability": 0.9322 + }, + { + "start": 5135.76, + "end": 5136.34, + "probability": 0.3334 + }, + { + "start": 5136.62, + "end": 5137.78, + "probability": 0.7119 + }, + { + "start": 5138.26, + "end": 5139.8, + "probability": 0.5373 + }, + { + "start": 5139.94, + "end": 5141.0, + "probability": 0.9619 + }, + { + "start": 5141.46, + "end": 5142.36, + "probability": 0.9213 + }, + { + "start": 5142.76, + "end": 5144.64, + "probability": 0.8982 + }, + { + "start": 5144.7, + "end": 5145.6, + "probability": 0.9385 + }, + { + "start": 5145.66, + "end": 5149.78, + "probability": 0.9961 + }, + { + "start": 5150.5, + "end": 5154.57, + "probability": 0.9874 + }, + { + "start": 5155.42, + "end": 5160.12, + "probability": 0.9621 + }, + { + "start": 5161.14, + "end": 5166.84, + "probability": 0.9599 + }, + { + "start": 5167.74, + "end": 5176.12, + "probability": 0.87 + }, + { + "start": 5176.54, + "end": 5177.62, + "probability": 0.916 + }, + { + "start": 5177.68, + "end": 5180.9, + "probability": 0.9939 + }, + { + "start": 5180.9, + "end": 5183.6, + "probability": 0.9993 + }, + { + "start": 5183.74, + "end": 5185.04, + "probability": 0.9419 + }, + { + "start": 5186.44, + "end": 5187.0, + "probability": 0.3311 + }, + { + "start": 5187.2, + "end": 5189.18, + "probability": 0.9956 + }, + { + "start": 5189.34, + "end": 5190.38, + "probability": 0.8238 + }, + { + "start": 5190.88, + "end": 5191.4, + "probability": 0.8643 + }, + { + "start": 5191.46, + "end": 5192.46, + "probability": 0.9806 + }, + { + "start": 5193.42, + "end": 5194.02, + "probability": 0.7991 + }, + { + "start": 5194.48, + "end": 5195.9, + "probability": 0.9589 + }, + { + "start": 5197.08, + "end": 5198.2, + "probability": 0.9905 + }, + { + "start": 5198.56, + "end": 5199.75, + "probability": 0.9854 + }, + { + "start": 5202.2, + "end": 5202.2, + "probability": 0.0349 + }, + { + "start": 5202.2, + "end": 5202.9, + "probability": 0.4891 + }, + { + "start": 5203.74, + "end": 5205.94, + "probability": 0.9911 + }, + { + "start": 5206.72, + "end": 5210.06, + "probability": 0.9725 + }, + { + "start": 5210.58, + "end": 5211.32, + "probability": 0.9822 + }, + { + "start": 5212.52, + "end": 5214.04, + "probability": 0.9558 + }, + { + "start": 5214.56, + "end": 5215.46, + "probability": 0.8027 + }, + { + "start": 5216.08, + "end": 5218.64, + "probability": 0.9961 + }, + { + "start": 5218.64, + "end": 5222.5, + "probability": 0.9965 + }, + { + "start": 5223.16, + "end": 5223.97, + "probability": 0.6632 + }, + { + "start": 5224.52, + "end": 5226.68, + "probability": 0.9945 + }, + { + "start": 5227.4, + "end": 5228.02, + "probability": 0.9561 + }, + { + "start": 5228.38, + "end": 5230.98, + "probability": 0.9634 + }, + { + "start": 5231.18, + "end": 5232.18, + "probability": 0.8132 + }, + { + "start": 5232.58, + "end": 5233.86, + "probability": 0.9946 + }, + { + "start": 5235.68, + "end": 5239.54, + "probability": 0.9963 + }, + { + "start": 5239.96, + "end": 5241.06, + "probability": 0.9941 + }, + { + "start": 5241.38, + "end": 5246.32, + "probability": 0.9868 + }, + { + "start": 5247.02, + "end": 5248.74, + "probability": 0.845 + }, + { + "start": 5249.58, + "end": 5253.54, + "probability": 0.9647 + }, + { + "start": 5254.1, + "end": 5254.6, + "probability": 0.896 + }, + { + "start": 5255.7, + "end": 5257.7, + "probability": 0.7374 + }, + { + "start": 5257.74, + "end": 5259.38, + "probability": 0.5336 + }, + { + "start": 5259.38, + "end": 5259.48, + "probability": 0.4815 + }, + { + "start": 5268.2, + "end": 5269.74, + "probability": 0.5973 + }, + { + "start": 5269.74, + "end": 5271.3, + "probability": 0.1123 + }, + { + "start": 5271.84, + "end": 5272.64, + "probability": 0.4083 + }, + { + "start": 5281.04, + "end": 5282.42, + "probability": 0.0937 + }, + { + "start": 5282.5, + "end": 5284.66, + "probability": 0.8138 + }, + { + "start": 5285.44, + "end": 5286.68, + "probability": 0.8282 + }, + { + "start": 5287.34, + "end": 5288.12, + "probability": 0.8879 + }, + { + "start": 5288.16, + "end": 5291.65, + "probability": 0.8522 + }, + { + "start": 5292.14, + "end": 5292.44, + "probability": 0.9627 + }, + { + "start": 5292.66, + "end": 5293.0, + "probability": 0.6435 + }, + { + "start": 5293.08, + "end": 5298.9, + "probability": 0.9923 + }, + { + "start": 5298.9, + "end": 5305.02, + "probability": 0.9931 + }, + { + "start": 5305.22, + "end": 5307.3, + "probability": 0.96 + }, + { + "start": 5308.18, + "end": 5310.42, + "probability": 0.9548 + }, + { + "start": 5310.62, + "end": 5316.66, + "probability": 0.9897 + }, + { + "start": 5317.78, + "end": 5317.78, + "probability": 0.6904 + }, + { + "start": 5318.32, + "end": 5318.6, + "probability": 0.9994 + }, + { + "start": 5319.36, + "end": 5323.56, + "probability": 0.9924 + }, + { + "start": 5324.56, + "end": 5325.22, + "probability": 0.3705 + }, + { + "start": 5326.14, + "end": 5328.9, + "probability": 0.9558 + }, + { + "start": 5329.86, + "end": 5333.11, + "probability": 0.9976 + }, + { + "start": 5333.3, + "end": 5337.62, + "probability": 0.9915 + }, + { + "start": 5338.16, + "end": 5339.5, + "probability": 0.7793 + }, + { + "start": 5339.98, + "end": 5345.1, + "probability": 0.9981 + }, + { + "start": 5345.52, + "end": 5347.3, + "probability": 0.9968 + }, + { + "start": 5347.34, + "end": 5347.84, + "probability": 0.8903 + }, + { + "start": 5348.28, + "end": 5354.16, + "probability": 0.9536 + }, + { + "start": 5354.16, + "end": 5357.92, + "probability": 0.9982 + }, + { + "start": 5358.48, + "end": 5362.24, + "probability": 0.8078 + }, + { + "start": 5362.58, + "end": 5365.12, + "probability": 0.9506 + }, + { + "start": 5365.2, + "end": 5366.96, + "probability": 0.4312 + }, + { + "start": 5367.28, + "end": 5369.38, + "probability": 0.9902 + }, + { + "start": 5369.72, + "end": 5370.5, + "probability": 0.9525 + }, + { + "start": 5371.24, + "end": 5374.24, + "probability": 0.9331 + }, + { + "start": 5374.74, + "end": 5379.0, + "probability": 0.7212 + }, + { + "start": 5379.68, + "end": 5383.18, + "probability": 0.9916 + }, + { + "start": 5383.18, + "end": 5387.02, + "probability": 0.9937 + }, + { + "start": 5387.92, + "end": 5388.98, + "probability": 0.9927 + }, + { + "start": 5389.26, + "end": 5391.08, + "probability": 0.9547 + }, + { + "start": 5391.36, + "end": 5394.44, + "probability": 0.9016 + }, + { + "start": 5394.86, + "end": 5395.74, + "probability": 0.8508 + }, + { + "start": 5396.18, + "end": 5400.28, + "probability": 0.9965 + }, + { + "start": 5400.78, + "end": 5407.08, + "probability": 0.9954 + }, + { + "start": 5407.4, + "end": 5411.7, + "probability": 0.9697 + }, + { + "start": 5411.72, + "end": 5414.08, + "probability": 0.9349 + }, + { + "start": 5414.28, + "end": 5415.34, + "probability": 0.9867 + }, + { + "start": 5415.64, + "end": 5416.56, + "probability": 0.9311 + }, + { + "start": 5416.74, + "end": 5418.13, + "probability": 0.9873 + }, + { + "start": 5418.9, + "end": 5419.9, + "probability": 0.8685 + }, + { + "start": 5419.9, + "end": 5420.12, + "probability": 0.873 + }, + { + "start": 5420.58, + "end": 5420.82, + "probability": 0.6013 + }, + { + "start": 5420.96, + "end": 5425.8, + "probability": 0.9811 + }, + { + "start": 5425.94, + "end": 5429.04, + "probability": 0.986 + }, + { + "start": 5429.56, + "end": 5435.42, + "probability": 0.9949 + }, + { + "start": 5435.92, + "end": 5437.18, + "probability": 0.8869 + }, + { + "start": 5437.4, + "end": 5438.86, + "probability": 0.9102 + }, + { + "start": 5439.0, + "end": 5439.91, + "probability": 0.989 + }, + { + "start": 5440.04, + "end": 5441.28, + "probability": 0.9585 + }, + { + "start": 5441.56, + "end": 5444.68, + "probability": 0.9989 + }, + { + "start": 5444.68, + "end": 5449.74, + "probability": 0.9275 + }, + { + "start": 5449.84, + "end": 5454.52, + "probability": 0.7949 + }, + { + "start": 5455.04, + "end": 5461.12, + "probability": 0.9772 + }, + { + "start": 5461.34, + "end": 5462.0, + "probability": 0.8646 + }, + { + "start": 5462.78, + "end": 5467.12, + "probability": 0.994 + }, + { + "start": 5467.18, + "end": 5468.92, + "probability": 0.9755 + }, + { + "start": 5469.42, + "end": 5470.84, + "probability": 0.9785 + }, + { + "start": 5471.0, + "end": 5472.22, + "probability": 0.894 + }, + { + "start": 5472.9, + "end": 5477.46, + "probability": 0.9941 + }, + { + "start": 5477.46, + "end": 5483.76, + "probability": 0.9795 + }, + { + "start": 5485.1, + "end": 5488.14, + "probability": 0.9969 + }, + { + "start": 5488.28, + "end": 5491.42, + "probability": 0.9939 + }, + { + "start": 5492.04, + "end": 5492.62, + "probability": 0.6259 + }, + { + "start": 5492.8, + "end": 5497.2, + "probability": 0.9614 + }, + { + "start": 5497.38, + "end": 5501.14, + "probability": 0.9927 + }, + { + "start": 5501.86, + "end": 5504.9, + "probability": 0.9962 + }, + { + "start": 5504.98, + "end": 5506.32, + "probability": 0.9708 + }, + { + "start": 5506.56, + "end": 5510.57, + "probability": 0.9966 + }, + { + "start": 5511.48, + "end": 5517.68, + "probability": 0.9388 + }, + { + "start": 5518.58, + "end": 5520.76, + "probability": 0.9535 + }, + { + "start": 5521.44, + "end": 5528.28, + "probability": 0.9746 + }, + { + "start": 5528.96, + "end": 5532.8, + "probability": 0.9937 + }, + { + "start": 5532.98, + "end": 5534.6, + "probability": 0.9319 + }, + { + "start": 5535.4, + "end": 5539.2, + "probability": 0.8477 + }, + { + "start": 5539.84, + "end": 5546.02, + "probability": 0.9856 + }, + { + "start": 5546.58, + "end": 5547.2, + "probability": 0.6497 + }, + { + "start": 5547.96, + "end": 5553.74, + "probability": 0.9975 + }, + { + "start": 5554.76, + "end": 5555.72, + "probability": 0.9659 + }, + { + "start": 5556.38, + "end": 5559.72, + "probability": 0.926 + }, + { + "start": 5560.5, + "end": 5561.92, + "probability": 0.5104 + }, + { + "start": 5561.96, + "end": 5565.18, + "probability": 0.9944 + }, + { + "start": 5565.24, + "end": 5567.48, + "probability": 0.9949 + }, + { + "start": 5567.86, + "end": 5570.12, + "probability": 0.957 + }, + { + "start": 5570.78, + "end": 5574.38, + "probability": 0.9782 + }, + { + "start": 5574.94, + "end": 5578.46, + "probability": 0.9971 + }, + { + "start": 5578.46, + "end": 5581.24, + "probability": 0.9954 + }, + { + "start": 5581.64, + "end": 5582.56, + "probability": 0.7349 + }, + { + "start": 5582.74, + "end": 5583.54, + "probability": 0.9867 + }, + { + "start": 5583.62, + "end": 5583.82, + "probability": 0.0203 + }, + { + "start": 5583.82, + "end": 5587.84, + "probability": 0.8522 + }, + { + "start": 5588.24, + "end": 5590.32, + "probability": 0.9792 + }, + { + "start": 5590.32, + "end": 5594.3, + "probability": 0.9976 + }, + { + "start": 5594.66, + "end": 5597.12, + "probability": 0.9492 + }, + { + "start": 5597.2, + "end": 5598.7, + "probability": 0.9788 + }, + { + "start": 5599.12, + "end": 5599.38, + "probability": 0.7158 + }, + { + "start": 5599.78, + "end": 5600.14, + "probability": 0.0396 + }, + { + "start": 5600.8, + "end": 5601.64, + "probability": 0.0773 + }, + { + "start": 5601.74, + "end": 5603.4, + "probability": 0.2 + }, + { + "start": 5604.2, + "end": 5604.2, + "probability": 0.0463 + }, + { + "start": 5604.2, + "end": 5604.8, + "probability": 0.608 + }, + { + "start": 5605.08, + "end": 5605.64, + "probability": 0.6349 + }, + { + "start": 5605.64, + "end": 5607.64, + "probability": 0.6497 + }, + { + "start": 5607.84, + "end": 5608.3, + "probability": 0.9068 + }, + { + "start": 5608.34, + "end": 5610.18, + "probability": 0.9426 + }, + { + "start": 5614.08, + "end": 5615.3, + "probability": 0.6479 + }, + { + "start": 5618.92, + "end": 5619.62, + "probability": 0.7028 + }, + { + "start": 5619.68, + "end": 5620.16, + "probability": 0.2114 + }, + { + "start": 5620.16, + "end": 5621.7, + "probability": 0.8486 + }, + { + "start": 5622.36, + "end": 5623.0, + "probability": 0.1212 + }, + { + "start": 5624.22, + "end": 5625.74, + "probability": 0.3199 + }, + { + "start": 5626.05, + "end": 5630.8, + "probability": 0.8444 + }, + { + "start": 5630.88, + "end": 5633.74, + "probability": 0.9855 + }, + { + "start": 5633.86, + "end": 5635.56, + "probability": 0.4286 + }, + { + "start": 5635.58, + "end": 5636.5, + "probability": 0.7817 + }, + { + "start": 5636.76, + "end": 5639.7, + "probability": 0.2157 + }, + { + "start": 5639.7, + "end": 5643.92, + "probability": 0.7511 + }, + { + "start": 5645.71, + "end": 5646.2, + "probability": 0.0016 + }, + { + "start": 5646.2, + "end": 5646.8, + "probability": 0.1725 + }, + { + "start": 5646.92, + "end": 5648.26, + "probability": 0.0282 + }, + { + "start": 5648.26, + "end": 5648.84, + "probability": 0.1384 + }, + { + "start": 5648.9, + "end": 5649.92, + "probability": 0.3733 + }, + { + "start": 5649.92, + "end": 5651.02, + "probability": 0.4529 + }, + { + "start": 5651.04, + "end": 5651.78, + "probability": 0.7506 + }, + { + "start": 5651.98, + "end": 5656.76, + "probability": 0.994 + }, + { + "start": 5656.88, + "end": 5660.22, + "probability": 0.9983 + }, + { + "start": 5660.68, + "end": 5662.96, + "probability": 0.9161 + }, + { + "start": 5663.44, + "end": 5665.1, + "probability": 0.8054 + }, + { + "start": 5665.62, + "end": 5666.58, + "probability": 0.6298 + }, + { + "start": 5666.68, + "end": 5670.14, + "probability": 0.9621 + }, + { + "start": 5670.26, + "end": 5674.4, + "probability": 0.994 + }, + { + "start": 5675.24, + "end": 5678.12, + "probability": 0.9201 + }, + { + "start": 5678.3, + "end": 5680.18, + "probability": 0.9668 + }, + { + "start": 5680.54, + "end": 5681.76, + "probability": 0.983 + }, + { + "start": 5682.1, + "end": 5685.55, + "probability": 0.9447 + }, + { + "start": 5685.62, + "end": 5685.84, + "probability": 0.912 + }, + { + "start": 5686.66, + "end": 5689.28, + "probability": 0.011 + }, + { + "start": 5689.34, + "end": 5690.16, + "probability": 0.7662 + }, + { + "start": 5690.68, + "end": 5692.58, + "probability": 0.8896 + }, + { + "start": 5697.76, + "end": 5700.36, + "probability": 0.902 + }, + { + "start": 5702.06, + "end": 5706.12, + "probability": 0.386 + }, + { + "start": 5706.12, + "end": 5707.31, + "probability": 0.0117 + }, + { + "start": 5708.42, + "end": 5709.88, + "probability": 0.2028 + }, + { + "start": 5710.28, + "end": 5715.26, + "probability": 0.0143 + }, + { + "start": 5715.62, + "end": 5717.34, + "probability": 0.004 + }, + { + "start": 5718.82, + "end": 5718.86, + "probability": 0.0235 + }, + { + "start": 5718.86, + "end": 5719.1, + "probability": 0.1036 + }, + { + "start": 5719.1, + "end": 5722.56, + "probability": 0.3174 + }, + { + "start": 5722.64, + "end": 5724.84, + "probability": 0.1243 + }, + { + "start": 5729.38, + "end": 5736.96, + "probability": 0.3619 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.0, + "end": 5853.0, + "probability": 0.0 + }, + { + "start": 5853.14, + "end": 5855.08, + "probability": 0.0906 + }, + { + "start": 5855.08, + "end": 5855.88, + "probability": 0.0075 + }, + { + "start": 5857.13, + "end": 5857.34, + "probability": 0.0361 + }, + { + "start": 5857.38, + "end": 5858.36, + "probability": 0.0374 + }, + { + "start": 5858.36, + "end": 5858.52, + "probability": 0.2329 + }, + { + "start": 5858.56, + "end": 5859.12, + "probability": 0.2729 + }, + { + "start": 5859.26, + "end": 5859.94, + "probability": 0.3259 + }, + { + "start": 5860.06, + "end": 5860.22, + "probability": 0.4671 + }, + { + "start": 5860.32, + "end": 5861.98, + "probability": 0.2253 + }, + { + "start": 5863.16, + "end": 5864.96, + "probability": 0.542 + }, + { + "start": 5865.08, + "end": 5865.32, + "probability": 0.2195 + }, + { + "start": 5865.32, + "end": 5866.18, + "probability": 0.3834 + }, + { + "start": 5867.0, + "end": 5867.84, + "probability": 0.2535 + }, + { + "start": 5868.06, + "end": 5868.62, + "probability": 0.252 + }, + { + "start": 5868.62, + "end": 5869.84, + "probability": 0.7582 + }, + { + "start": 5869.96, + "end": 5870.72, + "probability": 0.0504 + }, + { + "start": 5870.74, + "end": 5876.48, + "probability": 0.2894 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.0, + "end": 6272.0, + "probability": 0.0 + }, + { + "start": 6272.24, + "end": 6273.24, + "probability": 0.0489 + }, + { + "start": 6274.15, + "end": 6275.85, + "probability": 0.1067 + }, + { + "start": 6276.4, + "end": 6277.46, + "probability": 0.0959 + }, + { + "start": 6277.54, + "end": 6279.78, + "probability": 0.0468 + }, + { + "start": 6280.65, + "end": 6283.5, + "probability": 0.1924 + }, + { + "start": 6284.14, + "end": 6285.35, + "probability": 0.3103 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.61, + "end": 6480.42, + "probability": 0.4127 + }, + { + "start": 6481.26, + "end": 6483.08, + "probability": 0.6916 + }, + { + "start": 6483.94, + "end": 6485.5, + "probability": 0.8185 + }, + { + "start": 6486.1, + "end": 6488.12, + "probability": 0.8525 + }, + { + "start": 6491.64, + "end": 6492.04, + "probability": 0.9194 + }, + { + "start": 6494.38, + "end": 6495.22, + "probability": 0.8036 + }, + { + "start": 6497.02, + "end": 6498.32, + "probability": 0.748 + }, + { + "start": 6500.06, + "end": 6500.78, + "probability": 0.817 + }, + { + "start": 6502.0, + "end": 6502.74, + "probability": 0.9277 + }, + { + "start": 6503.36, + "end": 6504.42, + "probability": 0.8204 + }, + { + "start": 6505.28, + "end": 6505.84, + "probability": 0.8112 + }, + { + "start": 6507.18, + "end": 6507.86, + "probability": 0.7003 + }, + { + "start": 6508.86, + "end": 6510.7, + "probability": 0.9745 + }, + { + "start": 6511.56, + "end": 6512.14, + "probability": 0.9917 + }, + { + "start": 6513.0, + "end": 6513.64, + "probability": 0.9192 + }, + { + "start": 6514.68, + "end": 6515.26, + "probability": 0.9703 + }, + { + "start": 6515.84, + "end": 6516.58, + "probability": 0.9038 + }, + { + "start": 6517.76, + "end": 6518.4, + "probability": 0.9881 + }, + { + "start": 6519.04, + "end": 6519.68, + "probability": 0.852 + }, + { + "start": 6520.48, + "end": 6521.1, + "probability": 0.9962 + }, + { + "start": 6522.44, + "end": 6526.56, + "probability": 0.9756 + }, + { + "start": 6527.16, + "end": 6528.18, + "probability": 0.8355 + }, + { + "start": 6529.18, + "end": 6531.48, + "probability": 0.9613 + }, + { + "start": 6532.44, + "end": 6533.12, + "probability": 0.9935 + }, + { + "start": 6534.76, + "end": 6535.32, + "probability": 0.9655 + }, + { + "start": 6535.86, + "end": 6536.4, + "probability": 0.8259 + }, + { + "start": 6538.84, + "end": 6539.52, + "probability": 0.9821 + }, + { + "start": 6540.82, + "end": 6541.16, + "probability": 0.9441 + }, + { + "start": 6546.9, + "end": 6547.6, + "probability": 0.7596 + }, + { + "start": 6549.28, + "end": 6550.02, + "probability": 0.8177 + }, + { + "start": 6553.6, + "end": 6554.2, + "probability": 0.6463 + }, + { + "start": 6555.06, + "end": 6556.92, + "probability": 0.8607 + }, + { + "start": 6557.94, + "end": 6559.32, + "probability": 0.9413 + }, + { + "start": 6559.88, + "end": 6561.64, + "probability": 0.9618 + }, + { + "start": 6562.06, + "end": 6563.56, + "probability": 0.9846 + }, + { + "start": 6564.02, + "end": 6565.64, + "probability": 0.9721 + }, + { + "start": 6565.94, + "end": 6566.5, + "probability": 0.9794 + }, + { + "start": 6567.04, + "end": 6567.62, + "probability": 0.7939 + }, + { + "start": 6568.2, + "end": 6568.78, + "probability": 0.8559 + }, + { + "start": 6569.32, + "end": 6570.24, + "probability": 0.8822 + }, + { + "start": 6570.78, + "end": 6571.44, + "probability": 0.9614 + }, + { + "start": 6572.14, + "end": 6572.82, + "probability": 0.7316 + }, + { + "start": 6574.02, + "end": 6574.78, + "probability": 0.9911 + }, + { + "start": 6578.82, + "end": 6583.48, + "probability": 0.8985 + }, + { + "start": 6588.1, + "end": 6589.76, + "probability": 0.3877 + }, + { + "start": 6591.26, + "end": 6591.83, + "probability": 0.9657 + }, + { + "start": 6592.86, + "end": 6594.26, + "probability": 0.8152 + }, + { + "start": 6595.06, + "end": 6596.42, + "probability": 0.3852 + }, + { + "start": 6596.58, + "end": 6597.16, + "probability": 0.7564 + }, + { + "start": 6597.66, + "end": 6599.0, + "probability": 0.761 + }, + { + "start": 6599.24, + "end": 6602.59, + "probability": 0.7273 + }, + { + "start": 6603.36, + "end": 6603.9, + "probability": 0.6531 + }, + { + "start": 6604.44, + "end": 6605.46, + "probability": 0.8665 + }, + { + "start": 6605.58, + "end": 6606.9, + "probability": 0.9712 + }, + { + "start": 6607.02, + "end": 6607.8, + "probability": 0.6684 + }, + { + "start": 6607.94, + "end": 6610.12, + "probability": 0.9755 + }, + { + "start": 6611.64, + "end": 6612.21, + "probability": 0.3506 + }, + { + "start": 6612.81, + "end": 6615.84, + "probability": 0.5187 + }, + { + "start": 6615.88, + "end": 6616.96, + "probability": 0.7254 + }, + { + "start": 6619.4, + "end": 6620.66, + "probability": 0.876 + }, + { + "start": 6620.82, + "end": 6625.82, + "probability": 0.6883 + }, + { + "start": 6625.84, + "end": 6628.42, + "probability": 0.7487 + }, + { + "start": 6634.38, + "end": 6635.52, + "probability": 0.2197 + }, + { + "start": 6637.85, + "end": 6644.3, + "probability": 0.9827 + }, + { + "start": 6644.48, + "end": 6645.02, + "probability": 0.9107 + }, + { + "start": 6652.36, + "end": 6655.22, + "probability": 0.4749 + }, + { + "start": 6655.62, + "end": 6658.12, + "probability": 0.912 + }, + { + "start": 6658.94, + "end": 6662.54, + "probability": 0.9844 + }, + { + "start": 6663.14, + "end": 6665.42, + "probability": 0.9104 + }, + { + "start": 6665.52, + "end": 6666.92, + "probability": 0.9951 + }, + { + "start": 6668.21, + "end": 6670.08, + "probability": 0.9839 + }, + { + "start": 6674.94, + "end": 6678.26, + "probability": 0.8099 + }, + { + "start": 6679.01, + "end": 6680.28, + "probability": 0.0337 + }, + { + "start": 6680.94, + "end": 6681.36, + "probability": 0.0077 + }, + { + "start": 6682.26, + "end": 6682.36, + "probability": 0.0006 + }, + { + "start": 6683.3, + "end": 6683.78, + "probability": 0.3924 + }, + { + "start": 6685.94, + "end": 6690.3, + "probability": 0.0294 + }, + { + "start": 6693.51, + "end": 6694.58, + "probability": 0.0398 + }, + { + "start": 6694.58, + "end": 6694.98, + "probability": 0.3751 + }, + { + "start": 6694.98, + "end": 6696.82, + "probability": 0.006 + }, + { + "start": 6723.2, + "end": 6723.58, + "probability": 0.2124 + }, + { + "start": 6745.72, + "end": 6749.18, + "probability": 0.8818 + }, + { + "start": 6751.08, + "end": 6752.98, + "probability": 0.0867 + }, + { + "start": 6757.44, + "end": 6762.62, + "probability": 0.8365 + }, + { + "start": 6763.42, + "end": 6765.74, + "probability": 0.9825 + }, + { + "start": 6766.56, + "end": 6767.3, + "probability": 0.9776 + }, + { + "start": 6769.34, + "end": 6772.68, + "probability": 0.9937 + }, + { + "start": 6772.68, + "end": 6775.12, + "probability": 0.9508 + }, + { + "start": 6776.48, + "end": 6777.74, + "probability": 0.9485 + }, + { + "start": 6778.28, + "end": 6779.34, + "probability": 0.911 + }, + { + "start": 6780.4, + "end": 6784.34, + "probability": 0.9847 + }, + { + "start": 6785.88, + "end": 6789.68, + "probability": 0.9905 + }, + { + "start": 6790.98, + "end": 6792.25, + "probability": 0.8221 + }, + { + "start": 6793.96, + "end": 6796.42, + "probability": 0.9577 + }, + { + "start": 6797.52, + "end": 6799.86, + "probability": 0.9791 + }, + { + "start": 6801.92, + "end": 6802.96, + "probability": 0.8585 + }, + { + "start": 6803.62, + "end": 6804.7, + "probability": 0.9551 + }, + { + "start": 6805.32, + "end": 6810.12, + "probability": 0.5789 + }, + { + "start": 6810.48, + "end": 6812.64, + "probability": 0.3933 + }, + { + "start": 6812.7, + "end": 6814.54, + "probability": 0.1911 + }, + { + "start": 6814.68, + "end": 6815.64, + "probability": 0.3519 + }, + { + "start": 6816.0, + "end": 6816.5, + "probability": 0.0002 + }, + { + "start": 6816.5, + "end": 6817.56, + "probability": 0.578 + }, + { + "start": 6817.72, + "end": 6818.52, + "probability": 0.0913 + }, + { + "start": 6819.56, + "end": 6821.58, + "probability": 0.4864 + }, + { + "start": 6822.4, + "end": 6824.06, + "probability": 0.4173 + }, + { + "start": 6824.22, + "end": 6830.98, + "probability": 0.6684 + }, + { + "start": 6831.16, + "end": 6832.02, + "probability": 0.4498 + }, + { + "start": 6832.1, + "end": 6833.7, + "probability": 0.6271 + }, + { + "start": 6834.64, + "end": 6836.54, + "probability": 0.0131 + }, + { + "start": 6839.16, + "end": 6841.38, + "probability": 0.8428 + }, + { + "start": 6841.4, + "end": 6842.1, + "probability": 0.4902 + }, + { + "start": 6845.94, + "end": 6847.98, + "probability": 0.4208 + }, + { + "start": 6848.18, + "end": 6848.5, + "probability": 0.2807 + }, + { + "start": 6849.46, + "end": 6851.2, + "probability": 0.9695 + }, + { + "start": 6851.76, + "end": 6853.06, + "probability": 0.9813 + }, + { + "start": 6853.82, + "end": 6856.22, + "probability": 0.8955 + }, + { + "start": 6857.44, + "end": 6859.25, + "probability": 0.2742 + }, + { + "start": 6860.18, + "end": 6864.56, + "probability": 0.6656 + }, + { + "start": 6864.98, + "end": 6865.0, + "probability": 0.1014 + }, + { + "start": 6865.0, + "end": 6867.57, + "probability": 0.6542 + }, + { + "start": 6870.1, + "end": 6871.54, + "probability": 0.484 + }, + { + "start": 6873.94, + "end": 6876.38, + "probability": 0.3591 + }, + { + "start": 6876.38, + "end": 6876.62, + "probability": 0.2643 + }, + { + "start": 6877.2, + "end": 6877.76, + "probability": 0.4233 + }, + { + "start": 6878.25, + "end": 6879.18, + "probability": 0.9014 + }, + { + "start": 6879.18, + "end": 6883.31, + "probability": 0.5171 + }, + { + "start": 6884.4, + "end": 6888.46, + "probability": 0.6742 + }, + { + "start": 6888.46, + "end": 6889.06, + "probability": 0.5174 + }, + { + "start": 6890.38, + "end": 6894.66, + "probability": 0.9791 + }, + { + "start": 6895.06, + "end": 6896.22, + "probability": 0.8788 + }, + { + "start": 6897.04, + "end": 6901.08, + "probability": 0.7821 + }, + { + "start": 6901.28, + "end": 6902.52, + "probability": 0.9309 + }, + { + "start": 6903.2, + "end": 6905.16, + "probability": 0.9736 + }, + { + "start": 6906.18, + "end": 6906.42, + "probability": 0.8372 + }, + { + "start": 6907.0, + "end": 6910.02, + "probability": 0.9458 + }, + { + "start": 6910.06, + "end": 6911.8, + "probability": 0.6499 + }, + { + "start": 6913.67, + "end": 6918.72, + "probability": 0.9531 + }, + { + "start": 6919.9, + "end": 6922.24, + "probability": 0.0499 + }, + { + "start": 6922.78, + "end": 6923.54, + "probability": 0.0062 + }, + { + "start": 6924.64, + "end": 6926.66, + "probability": 0.0803 + }, + { + "start": 6926.98, + "end": 6927.46, + "probability": 0.1326 + }, + { + "start": 6927.58, + "end": 6929.62, + "probability": 0.5904 + }, + { + "start": 6931.41, + "end": 6932.56, + "probability": 0.4761 + }, + { + "start": 6932.56, + "end": 6932.56, + "probability": 0.4231 + }, + { + "start": 6932.58, + "end": 6932.7, + "probability": 0.6378 + }, + { + "start": 6932.7, + "end": 6934.28, + "probability": 0.3534 + }, + { + "start": 6934.32, + "end": 6937.1, + "probability": 0.6909 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.0, + "end": 7038.0, + "probability": 0.0 + }, + { + "start": 7038.14, + "end": 7041.22, + "probability": 0.4677 + }, + { + "start": 7042.04, + "end": 7043.7, + "probability": 0.1768 + }, + { + "start": 7044.06, + "end": 7046.22, + "probability": 0.6896 + }, + { + "start": 7047.44, + "end": 7049.1, + "probability": 0.3076 + }, + { + "start": 7049.22, + "end": 7051.02, + "probability": 0.5593 + }, + { + "start": 7051.02, + "end": 7051.44, + "probability": 0.0394 + }, + { + "start": 7051.44, + "end": 7052.72, + "probability": 0.1211 + }, + { + "start": 7053.16, + "end": 7055.98, + "probability": 0.4234 + }, + { + "start": 7056.76, + "end": 7060.26, + "probability": 0.7387 + }, + { + "start": 7060.76, + "end": 7061.9, + "probability": 0.9619 + }, + { + "start": 7062.44, + "end": 7064.94, + "probability": 0.9518 + }, + { + "start": 7064.96, + "end": 7065.62, + "probability": 0.6449 + }, + { + "start": 7065.93, + "end": 7069.18, + "probability": 0.6774 + }, + { + "start": 7069.22, + "end": 7072.92, + "probability": 0.0821 + }, + { + "start": 7072.92, + "end": 7073.78, + "probability": 0.376 + }, + { + "start": 7073.92, + "end": 7074.18, + "probability": 0.4658 + }, + { + "start": 7074.32, + "end": 7074.88, + "probability": 0.5468 + }, + { + "start": 7075.54, + "end": 7076.62, + "probability": 0.6174 + }, + { + "start": 7076.62, + "end": 7077.14, + "probability": 0.8923 + }, + { + "start": 7078.14, + "end": 7080.6, + "probability": 0.8776 + }, + { + "start": 7080.78, + "end": 7086.74, + "probability": 0.9814 + }, + { + "start": 7086.94, + "end": 7089.34, + "probability": 0.9385 + }, + { + "start": 7089.34, + "end": 7093.34, + "probability": 0.5651 + }, + { + "start": 7093.34, + "end": 7093.84, + "probability": 0.6666 + }, + { + "start": 7095.08, + "end": 7098.82, + "probability": 0.522 + }, + { + "start": 7099.66, + "end": 7102.6, + "probability": 0.8575 + }, + { + "start": 7102.98, + "end": 7103.22, + "probability": 0.5521 + }, + { + "start": 7103.48, + "end": 7107.06, + "probability": 0.9911 + }, + { + "start": 7107.44, + "end": 7111.34, + "probability": 0.942 + }, + { + "start": 7113.17, + "end": 7117.44, + "probability": 0.9623 + }, + { + "start": 7119.0, + "end": 7119.34, + "probability": 0.363 + }, + { + "start": 7119.42, + "end": 7124.02, + "probability": 0.864 + }, + { + "start": 7124.82, + "end": 7127.58, + "probability": 0.542 + }, + { + "start": 7140.0, + "end": 7146.1, + "probability": 0.9072 + }, + { + "start": 7146.58, + "end": 7147.58, + "probability": 0.5312 + }, + { + "start": 7148.1, + "end": 7148.58, + "probability": 0.4174 + }, + { + "start": 7149.02, + "end": 7152.38, + "probability": 0.9893 + }, + { + "start": 7152.38, + "end": 7155.75, + "probability": 0.5909 + }, + { + "start": 7157.24, + "end": 7159.72, + "probability": 0.9814 + }, + { + "start": 7160.76, + "end": 7162.72, + "probability": 0.999 + }, + { + "start": 7163.2, + "end": 7164.58, + "probability": 0.5272 + }, + { + "start": 7167.16, + "end": 7173.9, + "probability": 0.8382 + }, + { + "start": 7174.36, + "end": 7175.34, + "probability": 0.7887 + }, + { + "start": 7176.02, + "end": 7177.3, + "probability": 0.9198 + }, + { + "start": 7177.56, + "end": 7177.86, + "probability": 0.0483 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.0, + "end": 25246.0, + "probability": 0.0 + }, + { + "start": 25246.42, + "end": 25248.26, + "probability": 0.8822 + }, + { + "start": 25248.36, + "end": 25249.86, + "probability": 0.9248 + }, + { + "start": 25262.98, + "end": 25263.24, + "probability": 0.269 + }, + { + "start": 25263.38, + "end": 25264.3, + "probability": 0.764 + }, + { + "start": 25264.62, + "end": 25266.34, + "probability": 0.6987 + }, + { + "start": 25266.4, + "end": 25267.0, + "probability": 0.7151 + }, + { + "start": 25267.08, + "end": 25267.98, + "probability": 0.6686 + }, + { + "start": 25268.74, + "end": 25270.94, + "probability": 0.9816 + }, + { + "start": 25270.94, + "end": 25273.44, + "probability": 0.9832 + }, + { + "start": 25274.1, + "end": 25275.6, + "probability": 0.7719 + }, + { + "start": 25276.12, + "end": 25276.98, + "probability": 0.5012 + }, + { + "start": 25278.1, + "end": 25278.68, + "probability": 0.3306 + }, + { + "start": 25279.22, + "end": 25281.14, + "probability": 0.6816 + }, + { + "start": 25281.96, + "end": 25283.46, + "probability": 0.5945 + }, + { + "start": 25283.6, + "end": 25287.86, + "probability": 0.985 + }, + { + "start": 25289.08, + "end": 25291.34, + "probability": 0.7075 + }, + { + "start": 25292.26, + "end": 25293.74, + "probability": 0.9385 + }, + { + "start": 25293.9, + "end": 25294.76, + "probability": 0.5151 + }, + { + "start": 25295.8, + "end": 25295.9, + "probability": 0.1714 + }, + { + "start": 25297.32, + "end": 25297.34, + "probability": 0.1417 + }, + { + "start": 25299.19, + "end": 25304.28, + "probability": 0.9661 + }, + { + "start": 25304.28, + "end": 25306.6, + "probability": 0.7846 + }, + { + "start": 25306.64, + "end": 25307.94, + "probability": 0.8678 + }, + { + "start": 25307.94, + "end": 25308.42, + "probability": 0.8534 + }, + { + "start": 25309.92, + "end": 25312.06, + "probability": 0.989 + }, + { + "start": 25312.74, + "end": 25314.12, + "probability": 0.51 + }, + { + "start": 25314.68, + "end": 25318.84, + "probability": 0.9148 + }, + { + "start": 25319.48, + "end": 25320.8, + "probability": 0.6896 + }, + { + "start": 25321.4, + "end": 25323.68, + "probability": 0.8809 + }, + { + "start": 25324.3, + "end": 25327.36, + "probability": 0.9102 + }, + { + "start": 25327.44, + "end": 25328.08, + "probability": 0.5851 + }, + { + "start": 25328.88, + "end": 25330.36, + "probability": 0.8244 + }, + { + "start": 25330.96, + "end": 25333.14, + "probability": 0.9314 + }, + { + "start": 25333.62, + "end": 25337.04, + "probability": 0.7795 + }, + { + "start": 25337.58, + "end": 25337.68, + "probability": 0.0728 + }, + { + "start": 25337.68, + "end": 25338.58, + "probability": 0.7994 + }, + { + "start": 25338.62, + "end": 25341.28, + "probability": 0.8225 + }, + { + "start": 25341.9, + "end": 25342.12, + "probability": 0.591 + }, + { + "start": 25342.7, + "end": 25344.82, + "probability": 0.7537 + }, + { + "start": 25345.34, + "end": 25346.16, + "probability": 0.8422 + }, + { + "start": 25346.76, + "end": 25347.78, + "probability": 0.9775 + }, + { + "start": 25348.38, + "end": 25349.38, + "probability": 0.9675 + }, + { + "start": 25349.52, + "end": 25351.48, + "probability": 0.9653 + }, + { + "start": 25352.38, + "end": 25354.1, + "probability": 0.8623 + }, + { + "start": 25354.32, + "end": 25355.72, + "probability": 0.537 + }, + { + "start": 25355.92, + "end": 25356.64, + "probability": 0.3969 + }, + { + "start": 25356.9, + "end": 25357.2, + "probability": 0.5404 + }, + { + "start": 25357.26, + "end": 25357.76, + "probability": 0.917 + }, + { + "start": 25357.82, + "end": 25358.48, + "probability": 0.8889 + }, + { + "start": 25358.48, + "end": 25360.4, + "probability": 0.9531 + }, + { + "start": 25360.46, + "end": 25362.98, + "probability": 0.6552 + }, + { + "start": 25363.76, + "end": 25366.02, + "probability": 0.9911 + }, + { + "start": 25366.96, + "end": 25368.08, + "probability": 0.8476 + }, + { + "start": 25368.44, + "end": 25368.98, + "probability": 0.7881 + }, + { + "start": 25369.56, + "end": 25371.52, + "probability": 0.9941 + }, + { + "start": 25371.6, + "end": 25373.28, + "probability": 0.8352 + }, + { + "start": 25374.1, + "end": 25374.32, + "probability": 0.4589 + }, + { + "start": 25374.4, + "end": 25375.14, + "probability": 0.9652 + }, + { + "start": 25375.26, + "end": 25376.0, + "probability": 0.7037 + }, + { + "start": 25376.14, + "end": 25376.56, + "probability": 0.7555 + }, + { + "start": 25378.08, + "end": 25379.36, + "probability": 0.9604 + }, + { + "start": 25379.94, + "end": 25381.74, + "probability": 0.9856 + }, + { + "start": 25382.38, + "end": 25383.48, + "probability": 0.6484 + }, + { + "start": 25384.02, + "end": 25384.56, + "probability": 0.748 + }, + { + "start": 25384.68, + "end": 25385.48, + "probability": 0.844 + }, + { + "start": 25386.84, + "end": 25387.62, + "probability": 0.7799 + }, + { + "start": 25387.68, + "end": 25389.26, + "probability": 0.8588 + }, + { + "start": 25389.62, + "end": 25389.88, + "probability": 0.6372 + }, + { + "start": 25390.0, + "end": 25392.14, + "probability": 0.8249 + }, + { + "start": 25392.6, + "end": 25393.2, + "probability": 0.5834 + }, + { + "start": 25393.3, + "end": 25394.64, + "probability": 0.8535 + }, + { + "start": 25395.12, + "end": 25395.96, + "probability": 0.5857 + }, + { + "start": 25396.0, + "end": 25396.62, + "probability": 0.7636 + }, + { + "start": 25396.76, + "end": 25399.16, + "probability": 0.6362 + }, + { + "start": 25400.42, + "end": 25400.52, + "probability": 0.6142 + }, + { + "start": 25400.52, + "end": 25402.18, + "probability": 0.7797 + }, + { + "start": 25402.3, + "end": 25403.42, + "probability": 0.7332 + }, + { + "start": 25403.64, + "end": 25406.2, + "probability": 0.9059 + }, + { + "start": 25406.32, + "end": 25409.02, + "probability": 0.9436 + }, + { + "start": 25409.78, + "end": 25410.88, + "probability": 0.978 + }, + { + "start": 25411.08, + "end": 25411.76, + "probability": 0.9822 + }, + { + "start": 25411.98, + "end": 25413.74, + "probability": 0.7416 + }, + { + "start": 25414.78, + "end": 25416.08, + "probability": 0.6403 + }, + { + "start": 25417.1, + "end": 25417.84, + "probability": 0.7867 + }, + { + "start": 25418.56, + "end": 25421.66, + "probability": 0.9826 + }, + { + "start": 25422.28, + "end": 25423.6, + "probability": 0.9592 + }, + { + "start": 25423.86, + "end": 25425.04, + "probability": 0.9544 + }, + { + "start": 25425.42, + "end": 25427.02, + "probability": 0.8627 + }, + { + "start": 25427.58, + "end": 25429.58, + "probability": 0.7973 + }, + { + "start": 25430.24, + "end": 25431.46, + "probability": 0.9607 + }, + { + "start": 25431.84, + "end": 25432.78, + "probability": 0.7578 + }, + { + "start": 25432.84, + "end": 25434.54, + "probability": 0.9512 + }, + { + "start": 25435.38, + "end": 25437.84, + "probability": 0.7743 + }, + { + "start": 25437.9, + "end": 25440.58, + "probability": 0.9793 + }, + { + "start": 25440.58, + "end": 25446.66, + "probability": 0.9909 + }, + { + "start": 25447.32, + "end": 25447.56, + "probability": 0.3075 + }, + { + "start": 25447.66, + "end": 25450.18, + "probability": 0.9293 + }, + { + "start": 25450.8, + "end": 25451.5, + "probability": 0.9702 + }, + { + "start": 25451.64, + "end": 25452.56, + "probability": 0.864 + }, + { + "start": 25452.68, + "end": 25453.92, + "probability": 0.7881 + }, + { + "start": 25455.68, + "end": 25459.08, + "probability": 0.9486 + }, + { + "start": 25459.24, + "end": 25462.82, + "probability": 0.9683 + }, + { + "start": 25463.32, + "end": 25464.28, + "probability": 0.7414 + }, + { + "start": 25464.72, + "end": 25467.14, + "probability": 0.9327 + }, + { + "start": 25467.56, + "end": 25470.44, + "probability": 0.8797 + }, + { + "start": 25470.9, + "end": 25471.28, + "probability": 0.65 + }, + { + "start": 25471.36, + "end": 25472.74, + "probability": 0.8718 + }, + { + "start": 25473.16, + "end": 25473.82, + "probability": 0.7287 + }, + { + "start": 25473.94, + "end": 25475.32, + "probability": 0.9708 + }, + { + "start": 25475.4, + "end": 25476.74, + "probability": 0.5973 + }, + { + "start": 25477.6, + "end": 25479.54, + "probability": 0.8279 + }, + { + "start": 25480.34, + "end": 25481.44, + "probability": 0.7432 + }, + { + "start": 25481.52, + "end": 25482.34, + "probability": 0.5439 + }, + { + "start": 25482.46, + "end": 25485.14, + "probability": 0.9404 + }, + { + "start": 25485.58, + "end": 25486.22, + "probability": 0.5133 + }, + { + "start": 25486.56, + "end": 25487.84, + "probability": 0.841 + }, + { + "start": 25488.26, + "end": 25488.66, + "probability": 0.5569 + }, + { + "start": 25489.28, + "end": 25490.64, + "probability": 0.9181 + }, + { + "start": 25491.52, + "end": 25492.62, + "probability": 0.8669 + }, + { + "start": 25492.86, + "end": 25496.74, + "probability": 0.9891 + }, + { + "start": 25497.32, + "end": 25498.02, + "probability": 0.8103 + }, + { + "start": 25498.18, + "end": 25499.28, + "probability": 0.9183 + }, + { + "start": 25499.38, + "end": 25500.48, + "probability": 0.8643 + }, + { + "start": 25500.92, + "end": 25501.94, + "probability": 0.9487 + }, + { + "start": 25502.34, + "end": 25503.02, + "probability": 0.752 + }, + { + "start": 25503.12, + "end": 25503.46, + "probability": 0.9002 + }, + { + "start": 25504.52, + "end": 25508.18, + "probability": 0.9792 + }, + { + "start": 25509.98, + "end": 25514.56, + "probability": 0.8222 + }, + { + "start": 25515.58, + "end": 25521.14, + "probability": 0.8271 + } + ], + "segments_count": 2647, + "words_count": 12788, + "avg_words_per_segment": 4.8311, + "avg_segment_duration": 1.7772, + "avg_words_per_minute": 30.0388, + "plenum_id": "110360", + "duration": 25543.0, + "title": null, + "plenum_date": "2022-11-16" +} \ No newline at end of file